
HAL Id: tel-04837269
https://hal.science/tel-04837269v1

Submitted on 13 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Exploring the Impact of the User’s Browsing
Environment on Web Privacy

Jean Luc Intumwayase

To cite this version:
Jean Luc Intumwayase. Exploring the Impact of the User’s Browsing Environment on Web Privacy.
Computer Science [cs]. Université de Lille, 2024. English. �NNT : �. �tel-04837269�

https://hal.science/tel-04837269v1
https://hal.archives-ouvertes.fr

Centre de Recherche en Informatique,

 Signal et Automatique de Lille

madis Graduate School
Inria Centre at the University of Lille
cristal — Spirals research team

Exploring the Impact of the User’s
Browsing Environment on Web

Privacy

Jean Luc INTUMWAYASE

Thesis defended on December 5th 2024 for the degree of doctor of
philosophy in computer science in front of a jury composed of

Supervisor & Co-supervisor

Romain Rouvoy Professor University of Lille
Pierre Laperdrix Research Scientist CR CNRS

Reviewers
Johann Bourcier Professor University of Pau
Nataliia Bielova Research Director INRIA

Examiners
Walter Rudametkin Professor University of Rennes

(Jury President)
Aurore Fass Associate Professor CISPA

Centre de Recherche en Informatique,

 Signal et Automatique de Lille

École Graduée madis
Centre Inria de l’Université de Lille

cristal — Équipe de recherche Spirals

Explorer l’Impact de
l’Environnement de Navigation de

l’Utilisateur sur le Respect de la Vie
Privée en Ligne

Jean Luc INTUMWAYASE

Thèse soutenue le 5 décembre 2024 pour obtenir le grade de docteur en
informatique devant le jury composé de

Directeur & Co-directeur
Romain Rouvoy Professeur Université de Lille
Pierre Laperdrix Chargé de recherche CNRS

Rapporteurs

Johann Bourcier Professeur Université de Pau
Nataliia Bielova Directrice de recherche INRIA

Examinateurs
Walter Rudametkin Professeur Université de Rennes

(Président du Jury)
Aurore Fass Maitre de conférence CISPA

Abstract

The evolution of the web has followed a dual trajectory, marked by technological ad-
vancements that enhance user experience and an increase in privacy risks. User tracking
techniques exploit aspects of the user’s browsing environment (UBE), and this exposes
users to privacy risks. Addressing these risks while maintaining seamless web functionality
is essential for the future of the web. In this thesis, we investigate the impact of the
UBE on web privacy by analyzing the trade-off between usability and privacy. Our aim
is to enhance web privacy by minimizing unnecessary UBE information exposure while
maintaining website functionality. We provide three contributions for understanding the
interplay between the user’s browsing environment and web privacy:

1. We present a framework to determine the relevance of information within the UBE
in relation to website functionality when accessed by websites. We categorize UBE
information into geolocation, device, and browser attributes, and simulate website
visits using various UBE constructs through browser instrumentation. This approach
allows us to systematically restrict specific UBE attributes and observe the resulting
website behavior. Our methodology involves designing a web crawler that uses these
different UBE constructs and collects data from websites. To quantify the impact of
modifying UBE attributes, we introduce Similarity Radar, a multidimensional
tool that compares web pages and computes similarity scores. We use Similarity
Radar to compare website behavior in normal versus restricted environments to
identify discrepancies that indicate the relevance of specific UBE attributes. This
framework enables the safe restriction of nonessential UBE information, thereby
enhancing user privacy.

2. We use Similarity Radar to investigate the impact of the User Agent (UA)
string and associated device information on serving its original purpose of tailoring
website content to various browsers. Similar to the comparison between standard
and restricted UBE described previously, we crawl 270, 048 web pages across 11, 252
domains using three standard browsers and a set of ‘None’ browsers—clones of the
standard browsers with their UA and associated information set to ‘None’. We then
compare the similarity between the standard and ‘None’ browsers. Before JavaScript
(JS) execution, we observe 100% similarity, indicating that UA headers are irrelevant
to website functionality today. However, after JS execution, 8.4% of crawled web

iv

pages change. These changes are primarily driven by third-party scripts related to
advertising, bot detection, and content delivery networks. Further investigating, we
classify these changes based on levels of usability severity, with most being minor
CSS adjustments and a smaller percentage causing significant usability issues. This
indicates the obsolescence of the UA string and associated device information amidst
its significance in browser fingerprinting.

3. We investigate the enforcement of cookie consent notices across different continents,
focusing on how visibility and impact vary by geographic location. We use a novel
automated visual detection technique based on Similarity Radar to efficiently
detect consent notices. For each of the five countries—Brazil, France, Japan, South
Africa, and the United States—we analyzed 14, 078 websites, repeating this process
three times under different interaction scenarios: first without interacting with cookie
consent notices, then by accepting them, and finally by rejecting them. The results
reveal disparities in consent notice prevalence, with France showing the highest
visibility at 69% and Japan the lowest at 27%. We also observe that third-party
cookies increase after users interact with consent notices, particularly in the US,
while France maintains the lowest number of third-party cookies due to its stringent
regulations. This indicates a correlation between consent notice visibility and user
tracking practices.

Résumé

L’évolution du web a suivi une trajectoire double, marquée par des avancées technologiques
qui améliorent l’expérience utilisateur et une augmentation des risques pour le respect
de la vie privée. Les techniques de traçage des utilisateurs exploitent des aspects de
l’environnement de navigation de l’utilisateur (UBE). Aborder ces risques tout en main-
tenant une fonctionnalité web fluide est essentiel pour l’avenir du web. Dans cette thèse,
nous étudions l’impact de l’UBE sur le respect de la vie privée en ligne en analysant le
compromis entre utilisabilité et respect de la vie privée. Notre objectif est d’améliorer le
respect de la vie privée en minimisant l’exposition inutile des informations UBE tout en
maintenant la fonctionnalité des sites web. Nous apportons trois contributions dans ce
domaine :

1. Nous présentons un cadre pour déterminer la pertinence des informations au sein de
l’UBE en relation avec la fonctionnalité des sites web lorsqu’ils sont consultés. Notre
approche permet de restreindre systématiquement des attributs UBE et d’observer
le comportement résultant du site web. Nous introduisons Similarity Radar,
un outil pour comparer le comportement des sites web dans des environnements
normaux versus restreints afin d’identifier les divergences qui indiquent la pertinence
de certains attributs UBE. Ce cadre permet la restriction sûre des informations
UBE non essentielles, améliorant ainsi le respect de la vie privée de l’utilisateur.

2. Nous utilisons Similarity Radar pour étudier l’impact de l’en-tête HTTP User-
Agent (UA) sur le web. De manière similaire à la comparaison entre l’UBE standard
et restreint décrite précédemment, nous explorons 270 048 pages web sur 11 252
domaines en utilisant trois navigateurs standard et un ensemble de navigateurs
« None » — des clones des navigateurs standard avec leur UA et informations
associées définies comme « None ». Nous comparons ensuite la similarité entre les
navigateurs standard et les navigateurs « None ». Avant l’exécution de JavaScript
(JS), nous observons une similarité de 100 %, indiquant que les en-têtes UA sont
aujourd’hui sans pertinence pour la fonctionnalité des sites web. Cependant, après
l’exécution du JS, 8,4 % des pages web explorées changent. Ces changements sont
principalement dus à des scripts tiers liés à la publicité, à la détection de robots
et aux réseaux de diffusion de contenu. En approfondissant, nous classons ces
changements selon des niveaux de gravité en termes d’utilisabilité, la plupart étant

vi

de légères modifications CSS et un plus petit pourcentage causant des problèmes
d’utilisabilité significatifs. Cela indique l’obsolescence de l’en-tête UA malgré leur
importance dans le fingerprinting des navigateurs.

3. Nous examinons l’usage des bannières de consentement aux cookies sur différents
continents, en nous concentrant sur la manière dont la visibilité et l’impact varient
selon la localisation géographique. Nous utilisons une nouvelle technique de détection
visuelle automatisée basée sur Similarity Radar pour détecter efficacement les
bannières de consentement. Pour chacun des cinq pays—Brésil, France, Japon,
Afrique du Sud et États-Unis—nous avons analysé 14 078 sites web, en répétant ce
processus trois fois sous différents scénarios d’interaction : d’abord sans interagir
avec les bannières de consentement aux cookies, puis en les acceptant, et enfin en les
refusant. Les résultats révèlent des disparités dans la prévalence des bannières de
consentement, la France affichant la plus haute visibilité à 69 % et le Japon la plus
basse à 27 %. Nous observons également que les cookies tiers augmentent après que
les utilisateurs interagissent avec les bannières de consentement, en particulier aux
États-Unis, tandis que la France maintient le nombre le plus bas de cookies tiers en
raison de sa réglementation stricte. Cela indique une corrélation entre la visibilité
des bannières de consentement et les pratiques de traçage des utilisateurs.

Acknowledgements

My PhD journey began during the COVID-19 pandemic amidst lockdowns in both France
and Rwanda, where I was residing. Navigating this challenging period required the
collective support of many people. First and foremost, I extend my deepest gratitude to
my supervisors, Romain Rouvoy and Pierre Laperdrix. Their trust in my abilities to work
with them, along with their support, patience, and guidance, has been invaluable to me.
Romain, I am profoundly thankful to you and your family for assisting me in settling into
Lille. Your help made what could have been a daunting transition smooth and welcoming.
Pierre, I am grateful for your active support and prompt feedback in our shared office
environment.

I am also grateful to Imane Fouad, whose collaboration has been instrumental to my
PhD experience. Imane, your timely feedback and thoughtful discussions have enriched
my work. Additionally, I thank the members of the Spirals team, whose camaraderie has
made my past three years enjoyable. Lionel Seinturier, thank you for leading Spirals with
excellence and for creating an environment of strong work ethic and lasting memories. To
Adrien, Rémy, Daniel, Pierre J., Naif, Salman, Antoine, Brell, Hugo, Maxime, Maryam,
Sihem, Belkis, Iliana, Emile, Thibaut, Edouard, Olga, Walter, Clément, Simon, and all the
members of Spirals: your conversations during seminars, coffee breaks, lunches, corridor
encounters, pots, afterworks, home visits, and countless other interactions have made this
journey unforgettable.

Moreover, the completion of this journey would not have been possible without the
unwavering love and support of my family. Transitioning our lives to a different country
during a global pandemic was a formidable challenge, one that was made manageable
thanks to the resilience and encouragement of my wife — Christella, and children —
Khaliq, Cleo, and Elon. Christella, your steadfast support enabled me to continue my
work despite the upheavals we faced. I am thankful to my parents — Origène Rutayisire
& Béatrice Mukanyandwi, and my sisters — Emelyne Ingabire Niwe, Ines Michelle
Iradukunda, Teta Sonia Kanakabakwiye, and Reine Axcelle Nancy Kanyange — whose
constant encouragement has been my anchor. I also extend my heartfelt thanks to our
friends Christian & Megan Hardin, Daniel & Liz Koenigsberg, and every other friend in
Lille and elsewhere. Thank you all!

Jean Luc INTUMWAYASE
Lille, December 2024

Table of contents

List of figures xiii

List of tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

1.2.1 Determining information relevance in the user’s browsing environment 2
1.2.2 Exploring the impact of device information on the web 2
1.2.3 Exploring the geolocation impact on enforcing privacy policies . . 3

1.3 List of Publications . 3
1.4 List of Tools . 4
1.5 Outline . 4

2 Background & Related work 7
2.1 Background . 7

2.1.1 How the web works . 7
2.1.2 Misuse of the user’s browsing environment 9

2.2 Measuring web similarity . 10
2.2.1 Analyzing text content of a web page 10
2.2.2 Analyzing the HTML structure of a web page 10
2.2.3 Analyzing JavaScript & CSS . 12
2.2.4 Analyzing visual rendering of a web page 13
2.2.5 Detecting web page breakage . 15

2.3 Minimizing browser distinctiveness . 17
2.3.1 Analyzing leaks from the user’s browsing environment 17
2.3.2 Restricting access to the user’s browsing environment 18

2.4 The geolocation impact on privacy policies 21
2.4.1 Identifying cookie consent notices 21
2.4.2 User interaction with cookie consent banners 25

x Table of contents

3 Determining information relevance in the user’s browsing environment 29
3.1 Overview . 29
3.2 What is UBE information? . 30
3.3 Simulating access to UBE . 32

3.3.1 Simulating geolocation . 32
3.3.2 Simulating device and browser information 34

3.4 Designing the crawler . 37
3.4.1 Crawl orchestration . 38
3.4.2 Dealing with dynamicity of web pages 39

3.5 Similarity Radar . 42
3.5.1 Computing similarity scores for each dimension 43
3.5.2 Computing the similarity score Sscore 46
3.5.3 Determining information relevance in UBE 46

3.6 Threats to validity . 47
3.6.1 Bot detection . 47
3.6.2 Investigating web page functionality 48
3.6.3 Scope of relevance of UBE attributes 48

3.7 Conclusion . 49

4 Exploring the impact of device information on the web 51
4.1 Overview . 51
4.2 Motivation . 52
4.3 UA-Radar: Measuring Web Similarity in the Wild 53

4.3.1 Overview . 53
4.3.2 Implementation Details . 55

4.4 Exploring the Impact of UA Changes . 58
4.4.1 Crawl Description & Statistics . 59
4.4.2 Empirical Results & Findings . 60

4.5 Discussion . 75
4.6 Impact of None-browsers on web privacy 75
4.7 Threats to Validity . 76
4.8 Conclusion . 76

5 Exploring the geolocation impact on enforcing privacy policies 79
5.1 Overview . 79
5.2 Motivation . 79
5.3 Web Crawling Methodology . 81

5.3.1 Preparing the crawler . 83
5.3.2 Connecting to countries . 84
5.3.3 Visual detection of banners . 85
5.3.4 Classification of banners . 87

Table of contents xi

5.4 Analysis . 88
5.4.1 Data collection . 88
5.4.2 Prevalence of cookie consent banners 89
5.4.3 State of cookies . 90
5.4.4 State of tracking . 93

5.5 Discussion . 96
5.6 Threats to validity . 97
5.7 Conclusion . 99

6 Conclusion 101
6.1 Contributions . 102

6.1.1 Determining information relevance in the user’s browsing environment102
6.1.2 Exploring the impact of device information on the web 103
6.1.3 Exploring the geolocation impact on enforcing privacy policies . . 103

6.2 Future work . 104
6.2.1 Short-term perspectives . 104
6.2.2 Long-term perspectives . 106

6.3 Concluding note . 106

Bibliography 128

A Appendices 129

Appendices 129
A Exploring the impact of device information on the web 129

A.1 Crawled Domains . 129
A.2 Navigator Properties Exposed During the Crawl 129
A.3 UA-Radar . 130
A.4 Running the Application . 130
A.5 Changing Test Files . 131
A.6 HTML Content Comparison . 134

B Exploring the geolocation impact on enforcing privacy policies 135
B.1 Crawler Details . 135
B.2 Results of Our Experimentation 135

List of figures

2.1 Detecting web page structure from HTML tags, heuristics, and visual cues.
This approach [26] mimicks the user’s visual perception of the web page
(left image) and converts it into web structures (right image). 11

2.2 Different JavaScript syntax for the same behavior across two sets of exam-
ples. The first set demonstrates two ways to define a function that adds
two numbers, and the second set shows two approaches to fetch data from
a URL and parse it as JSON. When measuring the similarity of the two
sets, an ideal approach should consider that both the left and right sides in
the above sets are similar. 13

2.3 Detection of visual bugs in an HTML5 canvas game, as proposed by
Macklon et al., involves identifying any mismatch between an expected
image and an actual image. If there is a difference between the expected
image (a) and the actual image (b), that difference indicates the presence
of a visual bug in the game. This is illustrated in image (c). This approach
relies on an arbitrary representation of objects and image comparison. . . 16

3.1 Categories of UBE information: Geolocation, Device, and Browser Information 30

3.2 Browser geolocation exposing the user’s coordinates due to bypassed
permission-granting process in Puppeteer. 33

3.3 Comparing real devices with Puppeteer’s UBE simulation while visiting
https://www.whatsapp.com/download/: (a) real MacBook Pro, (b) sim-
ulated MacBook Pro, (c) real iPhone 13, (d) simulated iPhone 13, (e)
simulated Galaxy S8. 37

3.4 . 41

3.5 . 42

3.6 . 42

3.7 Similarity score Sscore for two web pages (v′
ij(t), v′

ik(t)) 43

xiv List of figures

4.1 Similarity radar for a web page: the above represents the similarity between
standard browsers and their None counterparts when accessing the home
page of www.academiabarilla.it. Each colored pentagon corresponds
to a single comparison, and its vertices represent the similarity scores
across five dimensions: HTML structure, HTML content, visual rendering,
JavaScript, and CSS. Overlapping pentagons near the 100% mark indicate
a marginal impact of the UA on the web page. 54

4.2 Highlighting web page similarity: standard browser (UA) versus None-
browser (UA′). We crawl each web page twice using standard browsers
(Chromium, Firefox, WebKit) and their None-browser counterparts. The
dual crawl allows us to filter out dynamic content and focus on the static
content of the web page, thereby eliminating potential bias in our analysis.
Subsequently, we execute a static comparison between standard and None-
browsers’ pages to identify UA-attributable differences, thereby facilitating
the computation of similarity scores. 55

4.3 Contour-based visual analysis: the figure illustrates the process of contour-
based analysis on a screenshot taken from www.academiabarilla.it. The
top image represents the original screenshot, while the bottom image
shows the identified contours (edges), representing different objects and
shapes within the web page. This technique enables a comparison of visual
rendering, capturing significant changes such as text modifications, broken
links, or missing images. 57

4.5 Average similarity scores across website categories: this figure illustrates the
average similarity scores between standard browsers and their None-browser
counterparts for the top five categories in our dataset. 66

4.6 Comparison of web page rendering with standard and none browsers,
illustrating a ’severe’ problem severity case where a failure of margin
collapse occurs in the none browser. The affected area is highlighted in red. 70

4.7 Example of "unusable" problem severity: access to the web page is inten-
tionally restricted when using a None Browser. 72

4.8 Problem severity distribution across website categories: this heat map
depicts how changes in the UA impact different website categories, high-
lighting the prevalence of problem severity levels in each category. 74

List of figures xv

5.1 Overview of our methodology for analyzing the prevalence of cookie con-
sent banners and the state of cookies and tracking. The process begins
with the preparation of the crawler, ensuring accurate data collection and
integration of browser extensions to accept or reject cookie consent banners.
This is followed by establishing a geo-location connection using HOXX VPN.
The crawler is then executed in three distinct instances: without inter-
action with the banner, with IDCAC accepting consent banners, and with
Consent-o-Matic rejecting them. Screenshots are captured during the
first instance for subsequent visual detection of banners. The final stages
involve identifying websites displaying the banners and analyzing the state
of cookies and tracking. 81

5.2 A comparison of the success rate of interaction, through either acceptance
or rejection of cookies, by different Firefox browser extensions. The results
are based on a sample experiment conducted on 100 domains, aiming to
decide on suitable extensions for our analysis of the state of cookies and
tracking, which required not removing cookies or blocking HTTP requests. 82

5.3 Distribution of third-party cookies across websites for different countries.
The upper plot illustrates the number of third-party cookies served to the
user when no banner is shown and the plot at the bottom illustrates when
the user has not interacted with the consent banner yet. 85

5.4 Distribution of third-party cookies across websites for different countries.
The upper plot illustrates the number of third-party cookies after the user
accepts cookies, and the plot at the bottom illustrates the situation when
the user rejects consent to cookies. 86

5.5 Comparative analysis of cookies set during the crawl across five countries
under the No Banner and No Interaaction scenarios. 91

5.6 Comparative analysis of cookies set during the crawl across five countries
under the Accept and Reject scenarios. 92

5.7 Prevalence of consent banners, ID cookies, sites serving ID cookies, third-
party requests, and tracking requests in different scenarios: the upper
figure shows the No Banner scenario, when no consent banner is shown
in countries other than FR and consequently no consent prevalence is
measured. The figure at the bottom shows the No Interaction scenario
when a consent banner is shown but the user has not yet interacted with it. 94

5.8 ID cookies, sites serving ID cookies, third-party requests, and tracking
requests in different scenarios: the upper figure shows the Accept scenario
while the figure at the bottom shows the Reject scenario. 95

5.9 Comparative analysis of HTTP requests made during the crawl across five
countries: Brazil (BR), France (FR), Japan (JP), South Africa (ZA), and
the United States (US). 97

xvi List of figures

5.10 Comparative analysis of HTTP requests made during the crawl across five
countries: Brazil (BR), France (FR), Japan (JP), South Africa (ZA), and
the United States (US). 98

List of tables

4.1 Summary of crawled resources . 60
4.2 Internet categories of the UA-dependent domains 67
4.3 Summary of problem severity levels for UA-dependent domains 67
4.4 Change impact analysis of the 955 UA-dependent websites: this table

details the specific changes detected, their associated impact, the problem
severity level, and the number of occurrences, providing a comprehensive
overview of how changes in the UA affect different aspects of the web page. 71

4.5 Web privacy implications of UA usage: this table presents an analysis of
domains based on their interaction with UA. 76

5.1 Comparison of the number of domains displaying cookie consent banners
and their corresponding prevalence percentages in five countries: Brazil
(BR), France (FR), Japan (JP), South Africa (ZA), and the United States
(US), as identified by two different detection methods - our automated
visual approach and the z-index approach. 83

A.1 Categories of Crawled Domains . 130
A.2 Navigator Properties for Chromium Browsers 131
A.3 Navigator Properties for Firefox Browsers 132
A.4 Navigator Properties for WebKit Browsers 133
A.5 Results for No Interaction . 136
A.6 Results for Accept . 136
A.7 Results for Reject . 136

Chapter 1

Introduction

1.1 Motivation

The web supports a broad diversity of devices and configurations. Anyone with a browser-
enabled computing device and an Internet connection can access it from anywhere. So,
websites rely on information like whether the user’s device is a phone or a computer,
operating system, browser, and geolocation to adjust layouts on each user’s device. This
information, dubbed the “user’s browsing environment”, is key to web functionality but
can also be problematic when misused [61, 142, 24]. For example, knowing that a user is
accessing a website from a specific location enables the website to use the nearest web
server to load its content faster. However, websites also store location information not
just for faster loading speeds, but for finding patterns in user behavior to influence their
preference for products [11, 31, 106]. This misuse of the user’s browsing environment
constitutes the “web privacy” issue pertaining to the lack of transparency in the collection,
treatment, and sharing of user data [53].

The issue of web privacy has had a profound impact on the evolution of web tech-
nologies. On one hand, protective measures have been implemented to prevent websites
from misusing the user’s browsing environment [69, 221, 226, 156, 81]. On the other
hand, websites have developed methods to bypass these protective measures [67, 89].
Governments have also stepped in, introducing web privacy regulations that require
websites to be transparent about their use of data [84, 27, 22]. These developments
have influenced the evolution of web technologies. However, one overlooked factor is the
necessity of information accessible through the user’s browsing environment. No work
has examined whether this information is essential to the functionality of the web today,
given the evolution of its technologies. Instead, the focus has been on protecting against
misuse of the environment and requiring transparency on data practices.

Our main objective in this thesis is to better understand the relevance of the information
exposed in the user’s browsing environment, given their role in bypassing privacy protective
measures. Specifically, we examine the impact of exposing device information on the web

2 Introduction

today. Additionally, we explore the impact of geolocation on web privacy, given that
regulations are neither omnipresent nor enforced the same way. To address these points,
we pose and answer the following research questions:

• How can we investigate the relevance of information in the user’s browsing environ-
ment?

• What is the impact of device information on today’s web? Can web technologies
support an unknown device?

• Does geolocation have an impact on the enforcement of privacy regulations?

1.2 Contributions

1.2.1 Determining information relevance in the user’s browsing
environment

The primary contribution of this thesis is the development of a tool to compare web pages
across various similarity dimensions. This helps us understand the impact of changes in
the user’s browsing environment, which in turn indicates the relevance of the information
being investigated. We instrumentalize multiple visits of the same web page with different
settings, then measure the similarity of the HTML structure, text content, JavaScript,
CSS, visual rendering, and the state of cookies and tracking each time we visit the web
page. We compute a similarity score on each of those measured dimensions, and these
scores help understand the impact of changes in the user’s browsing environment on
the visited web page’s functionality. High similarity scores indicate the irrelevance of
the investigated settings. This detailed analysis at scale enhances our understanding
of the relevance of exposed information in the user’s browsing environment, ultimately
contributing to the improvement of web privacy.

1.2.2 Exploring the impact of device information on the web

In the early days of the web, visiting the same web page from different browsing environ-
ments could provide very different results. Due to different rendering engines behind every
browser, some elements of a web page could break or be positioned in the wrong location.
At that time, the User Agent (UA) string was introduced to expose device information for
content negotiation. UA provides information such as whether the browsing environment is
on a desktop or mobile, the operating system, type and specific version of the used browser.
By knowing this information, a developer could provide a web page that was tailored
for that specific browsing environment to remove any usability problems. Over the past
three decades, device information remained exposed by UA, but its necessity is debated.
Browsers now adopt the exact same standards and use the same languages to display the

1.3 List of Publications 3

same content to user. Moreover, the diversity of device types, operating systems, and
browsers has become so large that UA is one of the top contributors to tracking users
in the field of browser fingerprinting. Our goal is to understand the impact of exposing
device information through UA and the handling of unknown UA on the web. We use
our web page similarity approach to compare web pages visited using known UA versus
unknown UA. We crawl 270, 048 web pages from 11, 252 domains using 3 different browsing
environments to observe that 100% of the web pages were similar before any JavaScript
was executed, demonstrating the absence of differential serving. Our experiments show
that only a very small number of websites are affected by unkown device information,
which can be fixed in most cases by updating code to become browser-agnostic. Our study
brings some proof that it may be time to stop exposing device information in the user’s
browsing environment.

1.2.3 Exploring the geolocation impact on enforcing privacy
policies

Regulatory frameworks, such as GDPR in Europe, CCPA in the United States, and
LGPD in Brazil have made cookie consent banners a standard feature on websites, seeking
user consent for cookies and tracking technologies. However, the visibility and impact of
these banners may vary based on the user’s geographical location. We introduce a novel
automated visual detection technique to explore the enforcement of cookie consent banners.
This methodology outperformes earlier techniques that depend on manual observations
or inspection of HTML/CSS elements. Our analysis of 70, 390 web pages visited across
five countries on different continents reveals geographical disparities in banner visibility,
with France exhibiting the highest prevalence at 69% and Japan the lowest at 27%. This
variation in visibility correlates with the state of cookies and tracking. Our further analysis
of 351, 950 web pages indicates that third-party cookies increase post-banner interactions,
notably in the US. Conversely, France, with its stringent regulations, maintains the lowest
number of third-party cookies. Tracking trends follow these patterns with a relationship
between banner visibility and user tracking. We demonstrate the importance of visually
detecting banner visibility, as it directly impacts tracking activities and provides insights
into user consent practices.

1.3 List of Publications

[112] Jean Luc Intumwayase, Imane Fouad, Pierre Laperdrix, and Romain Rouvoy. “UA-
Radar: Exploring the Impact of User Agents on the Web”. In: Proceedings of the
22nd Workshop on Privacy in the Electronic Society. 2023, pp. 31–43

4 Introduction

1.4 List of Tools

• UA-Radar: Web Similarity Framework implemented in Node.js [111].

• Cookie Consent: Crawler, code for automatic visual detection, and extensions to
interact with cookie consent notices [110].

1.5 Outline

In this chapter, we introduce the impact of information exposed in the user’s browsing
environment on web functionality and privacy. We present our motivations for the thesis,
highlighting the use of device information and geolocation to optimize user experience,
but also to track user behavior, raising privacy concerns. We introduce our contributions,
including the development of a tool to compare web pages across various dimensions,
exploring the impact of device information on the web via the UA string, and exploring the
geolocation impact on enforcing privacy regulations. These contributions aim to enhance
our understanding of the user’s browsing environment and inform the development of
better protective measures for web privacy.

In Chapter 2, we define the user’s browsing environment and explain how it works.
We review previous work on measuring web similarity. We present the contributions and
gaps of existing studies on the impact of device information on the web. We do a similar
presentation on the impact of geolocation on enforcing privacy regulations on the web.
We highlight the common or different aspects those studies present to our approaches in
this thesis.

In chapter 3, we introduce dimensions of similarity in a web page, such as the HTML
structure, text content, JavaScript, CSS, visual rendering, and the state of cookies and
tracking. We use these dimensions to present a methodology for investigating the impact
of changes in the user’s browsing environment on a web page. The result is a tool for
measuring the impact of changes and enabling analysis to determine the relevance of
information in the user’s browsing environment. We conclude the chapter by discussing
the scope of our web similarity tool.

In Chapter 4, we use our web similarity tool to examine the relevance of device
information on the web through the use of UA. Can unknown UA be supported on the
web? We compare websites’ treatment of known UAs and ‘None-browsers’. We further
evaluate the changes caused by ‘None-browsers’ and their impact on the usability of the
visited web pages. We discuss our findings, and conclude with thoughts on the future of
UAs and device information in the user’s browsing environment.

In Chapter 5, we introduce a methodology for automatic visual detection of cookie
consent banners. This helps us analyze their prevalence and understand countries where
enforcement of privacy regulations is weak or nonexistent. We further use our web
similarity tool to examine the state of cookies and tracking on the websites when visited

1.5 Outline 5

from different countries with different privacy regulation landscape. We conduct cookie and
tracking analyses for different scenarios of banner interactions, including non-interaction,
acceptance, and rejection of the cookie consent banners.

We conclude this thesis with Chapter 6, reflecting on our contributions and their
implications to web privacy. We discuss our short and long-term perspectives and ways to
further our contributions. From enhancing the similarity metrics to uniformity of shareable
information, we present our views to further the work in this thesis and enhancing web
privacy.

Chapter 2

Background & Related work

In this chapter, we provide background for concepts in this thesis such as the ‘user’s
browsing environment’, ‘web page similarity’, and ‘web page breakage’. First, we explain
how the web works, with an emphasis on how the evolution of its technologies led to
the aforementioned issue of web privacy. We then present related work and discuss the
methodologies used in those studies, relevant to our contributions in this thesis. We
explain the concept of web similarity and review previous research on similarity dimensions
in a web page and the measurements used to quantify the similarity of two web pages.
Furthermore, we discuss web page breakage, including key concepts and existing research
on detecting and addressing breakage. Next, we delve into the topic of device information
and its impact on web functionality. We explain key concepts related to device information,
such as the UA string, and review previous work on minimizing the exposure of device
information and its impact on the web. We also explore existing approaches to detect user
consent in light of privacy regulations. Additionally, we review previous research on user
tracking in different geographical locations to address disparity in tracking. Finally, we
conclude with a discussion of the methodologies used in this thesis to address the topics
covered.

2.1 Background

2.1.1 How the web works

In 1989, Tim Berners-Lee proposed merging technologies of computers, data networks,
and hypertext into a global information-sharing system [2]. This system came to be known
as the World Wide Web, or just the web. To access information on the web, a user needs
a computer, a browser, and an Internet connection. Web servers provide information on
the web. A web server is a system that accepts user requests from the browser, also called
a ‘client’, and sends back responses. A set of protocols is used for the user’s browser to
communicate with a web server. TCP/IP is used to establish a connection between the
computer running the browser and the computer hosting the web server. The Internet

8 Background & Related work

Protocol (IP) assigns a unique address to each device connected to the Internet, ensuring
connection between the correct devices when a user’s browser communicates with a web
server [189]. The Transmission Control Protocol (TCP) provides reliable delivery of
information between connected devices [190].

Once the computer running the user’s browser and the computer hosting the web server
are connected, the next step is to establish a ‘client-server’ communication. This involves
setting up communication between the browser and the web server. Hypertext Transfer
Protocol (HTTP) is used to create that communication [163]. The browser sends an HTTP
request to the web server, requesting for a resource such as a hypertext document, and the
web server responds to the request with an HTTP response. The HTTP response often
contains the requested resource in the form of HTML code. Hypertext Markup Language
(HTML) is a standard annotation of information on the web, used to create hypertext
documents [16]. Information on the web is accessed through hypermedia documents, which
extend hypertext by incorporating non-textual elements such as images, audio, video, and
interactive elements. These documents are commonly referred to as HTML documents.
In this thesis, we use the term ‘HTML document’ to refer to a hypermedia document.

An HTML document is written following a structure called Document Object Model
(DOM) [58], which represents the document as a tree of nodes with relationships to each
other. That DOM representation makes it possible for other programming languages to
interact with the HTML document, and modify its structure or content. That is why
it can include separate files called Cascading Style Sheets (CSS) documents also called
stylesheets [49], used to specify the styling of information in the document. An HTML
document can also include separate files called JavaScript [63], or simply scripts, which are
programs executed by browsers to add interactivity to the website. So, when a user visits
a website to access information, their browser makes an HTTP request to the web server
hosting that website, and the web server responds with an HTML document. The HTML
document that the web server responds with is then loaded in the browser, which can also
load separate files including stylesheets and scripts if specified by the HTML document.
When the browser has completed loading all files as required by the HTML document,
the final presentation of that HTML document in the browser is called a ‘web page’. The
process of presenting the web page in the browser is called ‘web page rendering’.

The user’s browsing environment consists of the context in which a web page is rendered.
This includes data on the application layer such as device information, operating system,
user’s geolocation, the browser and its configurations. By the late 1990s, millions of users
were already accessing the web using various browsing environments [2]. At that time, web
page rendering was different in every browser as vendors pursued market domination. This
created accessibility issues, as a website could render correctly in one browser and not in
another. Messages reading “best viewed in [specific name of browser]” became commonly
displayed on websites as developers with limited resources chose to focus on specific
browsers. Then the World Wide Web Consortium (W3C), a consortium of organizations

2.1 Background 9

in charge of the web, developed standards to promote consistent web page rendering
across different browsers regardless of their underlying engines.

2.1.2 Misuse of the user’s browsing environment

Some web technologies have become a double-edged sword by providing functionality
while being detrimental to user privacy. Web cookies, for example, are small files that
store information about user activities on a website. Cookies were invented for useful
purposes such as knowing the user session and keeping them logged in, their location
and language, or storing items in the cart while the user is purchasing products on the
web. However, cookies are also used to keep track of user activities even when the user
is visiting other websites [13]. For example, some cookies are set by websites other than
the one being visited by the user. These are called third-party cookies and are used to
identify users and keep track of their activities as they visit different websites.

Similarly, JavaScript is a programming language that was invented to give developers
the capacity to modify web pages once they were loaded in the browser, but it came with
unintended consequences [14]. In the early days of the web, web pages were ‘static’,
meaning that browsers rendered web pages as exactly stored on the web servers. To
modify a static web page, the website administrator had to modify the content of that
page on the web server and the user had to make a new request of the web page to see the
changes in the browser. This process was cumbersome to website administrators and users
alike as each was required to take action to see modified content. Also, the functionality
of the web was limited to websites showing content to users, and users could not generate
or send content to web servers.

JavaScript resolved those challenges: web pages could be modified without the need
for users to make new requests, and users could generate content and send it to web
servers [82]. Web pages with those capabilities were called ‘dynamic web pages’. A
dynamic web page, as opposed to a static web page, is constructed during the rendering
of the web page. JavaScript also revolutionized browser graphics, animations, games,
data streaming, and extended the functionalities of the web [47, 56, 248, 138]. Most
common web functionalities are written, tested, and packaged in JavaScript libraries, which
authors often share for free. Many package managers, which automate the distribution
of JavaScript libraries are also available on the web for free [136, 42, 201]. To promote
efficient use of JavaScript on the web, many frameworks emerged with distinct purposes
proposing standard ways to write code and reuse it [94, 4, 76, 183]. As a result, because
of its many applications, JavaScript became so popular that 99% of websites use it at
present [225]. Every web browser offers a JavaScript engine to execute scripts on the
user’s device.

However, JavaScript is also often exploited to collect and share user data without their
knowledge [137, 154, 242, 64]. Many studies found JavaScript to be an enabler for websites

10 Background & Related work

to extract data from the user’s browser environment [205, 253, 141, 65, 131]. JavaScript
is also a channel for user tracking. ‘User tracking’ are techniques used to identify users
and to keep track of their activities on the web. These techniques may or may not require
the user’s consent. User tracking without consent occurs because users do not consent to
such practices when asked with transparency [126].

2.2 Measuring web similarity

Web similarity is the degree of resemblance between two or more websites in terms of
similarity dimensions such as their structure, content, and visual rendering among others.
To the best of our knowledge, no previous research explored dimensions of web similarity
to the end of detecting web page breakage. Previous studies have addressed web similarity
or web page comparison for different purposes, with methodologies worth reviewing and
emulating in case they fit our purpose. In this section, we will discuss works relevant to
our approach while highlighting differences or commonalities.

2.2.1 Analyzing text content of a web page

Previous studies analyzing the text content of a web page mostly devise the best strategy
for detecting when the content has been updated [34, 219, 146, 70]. From inspecting
HTTP headers such as Last-Modified, Date, and Expires to detecting changes in the
size of web pages or measuring differences in word count, those approaches give no insight
into the actual changes of content inside the HTML tags. To gain more insights into
content change, some studies introduced methods to classify web pages depending on
their content [212, 100, 98, 88]. Tombros et al. contributed to the classification techniques
categories based on word significance and their frequency distribution [219]. While this
may have been insightful, it still did not solve the issue of measuring changes in the actual
text.

Detecting changes in text content requires tracking text alterations inside each visible
HTML tag on both web pages. This is challenging due to large volumes of text on
web pages, which is computationally intensive. So, simply comparing text content in
HTML tags is inefficient and does not scale for large web pages. Our goal is to develop a
comparison method that is both efficient in tracking all changes despite the size of the
web page. To achieve this, we adopt a method for disregarding similarities and focusing
on actual changes to ensure that the process remains computationally feasible. We present
this approach in detail in Chapter 3.

2.2.2 Analyzing the HTML structure of a web page

Early studies used heuristics to deduce web page structure from a combination of HTML
tags, semantic blocks, and visual cues [36, 26]. The methods analyzed HTML structure

2.2 Measuring web similarity 11

and adapted it based on detected patterns using heuristics. These approaches aim to
detect the structure of a web page based on how users perceive it visually rather than
following the DOM hierarchy. Figure 2.1 illustrates how the approaches deduce HTML
structure. While mimicking the user’s perception can help classifying the importance
of changes on a web page, these approaches may overlook changes of lesser significance.
We were interested in detecting any alterations to the structure of the web page for our
analysis of the relevance of information within the user’s browsing environment. What
may seem less important from the user’s perspective could potentially be relevant to the
web page’s usability, for instance. Furthermore, it is difficult to keep up with design
choices on the web, and without that understanding these approaches become misleading.

Figure 2.1: Detecting web page structure from HTML tags, heuristics, and visual cues.
This approach [26] mimicks the user’s visual perception of the web page (left image) and

converts it into web structures (right image).

Choudhary et al. solve the previous subjective DOM interpretation indirectly [37].
The authors introduce WEBDIFF to automate the detection of discrepancies in a web
application’s behavior and appearance when accessed through various browsers. WEBD-
IFF’s approach to comparing the DOM structure combines HTML tags and their XPath
to compute a ‘match index’ for pairs of DOM nodes of different web pages to determine
how closely those nodes match. After matching the DOM nodes, WEBDIFF compares
them visually using the Earth Mover’s Distance (EMD) metric [192]. The effectiveness
of this approach in identifying differences in the structure and visual rendering of web
pages could be useful in detecting web page breakage. However, its stated limitation in

12 Background & Related work

handling embedded objects could lead to false positives, suggesting change where content
has simply not changed.

Other studies focused on Tree Edit Distance (TED) [217] and Flexible Tree Matching
(FTM) [128, 129] to analyze web structure with a focus on DOM. TED and FTM are both
used to measure the similarity between two tree structures. TED’s approach uses the
smallest number of changes (edits) to transform one tree into another, while FTM looks
for a ’best match’ between nodes of two trees. TED is strict about the positioning of the
nodes in the tree while FTM is less strict. That flexibility makes FTM able to compare
large web pages in realistic times although computationally intensive. Brisset et al.
proposed Similarity-based Flexible Tree Matching (SFTM) to address that computational
intensity [23]. SFTM improves FTM by adding similarity labels and propagation. This
gives TED-like quality while offering improvement in computation times. This makes
SFTM our choice in measuring the similarity of HTML structure as described in Chapter 3.

2.2.3 Analyzing JavaScript & CSS

The methods to analyze JavaScript are usually applicable to CSS due to their shared
characteristic of manipulating of the DOM. Furthermore, there are common technical
concepts behind JavaScript and CSS, as well as other general-purpose languages, such
as syntax and control structures. Therefore, our review also includes methodologies for
source code similarity in languages beyond just JavaScript and CSS.

Due to the size of the code base, previous studies resorted to techniques to measure
code pair and structure similarity [256, 92], or to abstracting the code to measure similarity
more effectively [123, 155, 99, 172]. The problem with those approaches in our context is
the level of granularity in their measurements. When we compare JavaScript on a web
page, we want to understand any change however minor it may be. The limitation of the
previously mentioned approaches is that the abstraction process can conceal important
details relevant to usability of the web page. On the other hand, not every difference
in lines of code is worth measuring. For example, there may be a different syntax for
the same code block as illustrated by listings in figure 2.2. If that difference does not
change the behavior of the code, it is not worth tracking for measurements. The same
goes for comments or other changes in the code file that are not interpreted differently by
JavaScript or CSS.

2.2 Measuring web similarity 13

function add(a, b) {
return a + b;

}
const add = (a, b) => a + b;

function fetchData() {
return fetch(’url’).then(

response => response.json())
;

}

async function fetchData() {
const response = await fetch(’

url’);
return response.json();

}

Figure 2.2: Different JavaScript syntax for the same behavior across two sets of examples.
The first set demonstrates two ways to define a function that adds two numbers, and the
second set shows two approaches to fetch data from a URL and parse it as JSON. When
measuring the similarity of the two sets, an ideal approach should consider that both the

left and right sides in the above sets are similar.

Dotzler et al. presented an approach to convert JavaScript and CSS code into an
Abstract Syntax Tree (AST) to analyze and compare code at a granular level [59]. The
study introduced optimized algorithms for ‘tree diffing’ such as identifying subtrees and
mapping node movements to enhance detection of minor code changes. In the context of
this thesis, this approach could be applied in comparing the JavaScript and CSS code of
two web pages to measure their similarity. This methodology was later added in GumTree,
a syntax-aware diffing tool, to detect specific changes that lead to issues in JavaScript
functions or CSS rules [73]. This allows for effective analysis of JavaScript and CSS
code without computational constraints. Methods based on Abstract Syntax Tree (AST)
provide a better understanding of code similarity beyond textual comparison [17, 249, 143].
Other studies focused on approaches to summarize code in their similarity analyses [243,
34, 121].

On GumTree, Falleri et al. addressed the challenges of computing detailed and
accurate edit scripts for change in source code files [73]. Their methodology operates at
the level of AST granularity enabling the representation of the structure of the code more
accurately by including move actions alongside the usual add, delete, and update actions.
This is essential in representing code editing patterns such as refactoring where code is
moved but not altered. The primary objective of the algorithm was not to just find the
shortest sequence of actions between two versions of a file but to identify a sequence that
closely reflects the actual changes. We used GumTree for computing the similarity of
JavaScript and CSS as discussed in Chapter 3.

2.2.4 Analyzing visual rendering of a web page

Previous studies relied on color and text features in measuring the visual similarity of web
pages in what in the context of web page similarity can seem like an oversimplification of

14 Background & Related work

the visual content of a web page. Varish et al. developed a Content-Based Image Retrieval
(CIBR) system that focuses on retrieving similar images from a database based on visual
features [231]. Their methodology was to convert RGB images to HSV (Hue, Saturation,
Value) format and using quantized histograms of the Hue and Saturation components.
Color features are extracted from these histograms to indicate the distribution of the
colors in the images. When considering the application of CIBR to comparing visual
rendering of web pages, relying on the color and texture of features for analyzing elements
such as text, icons, and layout structures is inefficient. This methodology assumes that
images share consistent patterns as in a collection of photographs. Unlike a typical
photograph, screenshots of web pages contain complex details that affect the appearance
of a web page including formatting options such as font size and spacing. Therefore a
more comprehensive approach is needed to detect any changes in visual rendering.

Wenyin et al. introduced an approach to identify phishing websites by comparing
their visual similarities with legitimate web pages [250]. Their methodology focused on
three metrics to measure visual similarity: block level similarity, layout similarity, and
overall style similarity. These metrics were computed based on a detailed segmentation
of web pages into salient blocks. Block level similarity was quantified as the weighted
average of similarities between matched block pairs, focusing on features like color for
text blocks and dominant color for image blocks. Layout similarity was measured by
comparing the structure and arrangement of those blocks. The overall style similarity was
evaluated based on the style feature histograms of the web pages, considering elements
like font, background, and text alignment. Similar to Varish et al., while innovative, this
approach is somewhat simplistic due to the level of details that could change in a block.
For example, changes such as formatting or broken elements in a block may be overlooked
because of their granularity.

Law et al. worked on web page similarity using a method that combines visual and
structural analysis [139]. They processed screenshots of visited web pages to extract
color and edge-based features in order to identify changes between web page versions.
Special attention was given to the visible part of web pages, considering that significant
information is usually located in the parts visible without scrolling. The study also focused
on extracting structural features from the web page’s source code. This included analyzing
hyperlinks, image URLs, and operations detected between VIPS structures [26] of different
versions of a web page. Those features helped in understanding the structural changes
that may not be visually apparent but are essential in determining the similarity between
web page versions. While innovative in combining visual and structural analysis, this
approach falls short in efficiently detecting changes in visual rendering. This is due to the
assumption that the most significant information is located in the parts visible without
scrolling, and the focus on detecting structural changes rather than changes in visual
rendering.

2.2 Measuring web similarity 15

Hashmi et al. introduced QLUE, an approach that uses computer vision techniques to
emulate human perception in evaluating web page similarities [101]. QLUE overcame the
subjectivity of human-based evaluations by breaking down web pages into components,
matching those components between the original and modified web pages, and then
calculating a similarity score. QLUE marked an advancement in web page evaluation and
opened avenues for future research including refining the tool to handle dynamic content,
interactive elements, and integrating it with other web measurement tools. However,
QLUE’s capacity to process a web page in minutes is impractical for large-scale studies.
To that end, we introduce our novel approach to measuring visual rendering. We discuss
that in Chapter 3.

2.2.5 Detecting web page breakage

One of the observed impacts of changes in a user’s browsing environment is ‘web page
breakage’. This refers to any unintended consequence that occurs to a web page due to
changes in the user’s browsing environment. Known cases of web page breakage include
blank pages, malfunctioning elements such as forms, links, buttons, slowdowns, freezing,
crashing, and other errors and display issues. There is currently no standard definition for
web page breakage, and there is no comprehensive dataset of known cases. While there
are mechanisms to collect user reports of breakage, these have not led to a systematic
definition of the term [165]. As a result, the ambiguity surrounding the term ‘web page
breakage’ makes it difficult to automate its detection. In this thesis, we address this
challenge by resorting to measuring the similarity between different versions of a web page
and defining any significant dissimilarity as web page breakage. We discuss more on our
approach in Chapter 4. Existing methodologies for detecting web page breakage can be
categorized into two main approaches based on their scope of analysis: one focuses on the
analysis of individual web elements within a web page, while the other analyzes the web
page as a whole.

One example of analyzing individual web elements is the framework developed by
Fouquet et al., which inspects web page features such as images, forms, and buttons
when JavaScript is blocked [79]. The framework classifies these web elements as either
working or broken based on the DOM state after the initial page load with JavaScript
blocked. However, a limitation of this approach is that it is difficult to leverage in the
wild because it requires adjusting the detection heuristics by thinking of every possible
breakage scenario. This approach could be effective if either of the following conditions are
met: first if there was a comprehensive dataset of instances of web page breakage; second,
if there was a universally accepted definition of what constitutes web page breakage.
Unfortunately, as previously mentioned none of those conditions are met. Additionally,
the focus on individual web elements instead of the whole page makes it challenging to
determine the cause of the breakage in a web page.

16 Background & Related work

(a) Expected image (b) Actual image (c) Bug detection

Figure 2.3: Detection of visual bugs in an HTML5 canvas game, as proposed by
Macklon et al., involves identifying any mismatch between an expected image and an
actual image. If there is a difference between the expected image (a) and the actual
image (b), that difference indicates the presence of a visual bug in the game. This is

illustrated in image (c). This approach relies on an arbitrary representation of objects
and image comparison.

In contrast to analyzing individual web elements, another approach to detecting web
page breakage involves analyzing the entire web page. One example of this approach is the
method presented by Macklon et al., which focuses on detecting visual bugs in HTML5
<canvas> games [149]. This approach uses an internal representation of objects called
Canvas Objects Representation (COR) to identify and compare visual elements of the
game. The key part of the methodology was decomposing visual content of the web page
into individual images, similar to breaking down a screenshot into its constituent visual
elements. Figure 2.3 illustrates the approach in detecting visual mismatches between two
images, a and b, with image c showing detected mismatches. By treating differences in
web page similarity as web page breakage, this approach could be leveraged to detect the
breakage of visual elements in a web page. In Chapter 3, we elaborate on our approach
to measuring the similarity of visual rendering of a web page. Our approach focuses
on all visual elements, not just those related to canvas. This is useful for identifying
subtle changes that may not be apparent such as slight shifts in layout, color changes, or
alterations in text content. Also, a standard approach is essential for visual rendering
of web pages in the wild, because unlike the custom representation of COR objects in a
canvas game, web pages vary in layout and design.

Nisenoff et al. conducted a study to understand how users perceive web page break-
ages [165]. The study involved a qualitative analysis of extension user reviews, GitHub
issue reports, and a user survey. The authors note the diversity of reported issues and
knowledge of users, emphasizing the need for easy ways to report breakage issues. They
also suggested that further research is needed to find patterns in web page breakage. In
Chapter 4, we discuss our approach to detecting web page breakage and our heuristics to
classify usability issues that result from it.

2.3 Minimizing browser distinctiveness 17

2.3 Minimizing browser distinctiveness

As we have seen in Section 2.1.1, browsers were initially designed to be distinguished from
one another due to how they rendered web pages. This was later addressed by the W3C,
which approved standards such as HTML5 and CSS3 to ensure that web pages render
consistently across all browsers. However, this did not prevent browsers from continuing
to reveal information about the user’s browsing environment that still distinguishes
them from one another. For example, through the Navigator interface, browsers reveal
information about the device’s hardware, operating system, geolocation, the name of
browser, its version, vendor, and list of installed plugins among other things. The diversity
of this information makes browsers uniquely identifiable on the web through techniques
such as ‘browser fingerprinting’ [61, 67]. These techniques become increasingly effective
as the collected information becomes more diverse. The more distinctive the collected
information from the browser or its environment, the more effective the fingerprint.

Previous studies addressed the issue of browser distinctiveness through two main ap-
proaches, as we will see in the following sections. The first approach involved investigating
the user’s browsing environment to identify information leaks that contribute to browser
fingerprinting. Studies using this approach focused on determining the sources of these
leaks to develop countermeasures. These studies analyzed the diversity and variability of
User-Agent strings, examined fingerprinting techniques under different conditions, and
developed techniques for fingerprinting browser extensions based on style modifications.
The second approach aimed to minimize the distinctiveness of browsers by enforcing
restrictions on access to information from the user’s browsing environment. Studies using
this approach focused on limiting the information that browsers reveal. These studies
proposed techniques such as debloating browsers by removing non-essential features,
using anti-fingerprinting browsers that disguise system and browser properties, and using
information flow control mechanisms to restrict nonessential information flow. Proposed
techniques also include using Shadow DOMs to isolate styles applied by extensions and
implementing Content Protection Policies (CPPs) to control access to sensitive data by
third-party scripts.

2.3.1 Analyzing leaks from the user’s browsing environment

Kline et al. analyzed a comScore data set of over one billion User-Agent (UA) strings
sent over two years [125]. Their analysis revealed that UAs provide a detailed view of
client systems indicating the diversity of system configurations and applications. The
study showed the variability of UAs and highlighted that popular UAs comprise 26% of all
traffic, the rest, majority of which are unique constituting a high degree of diversity. They
pointed out that this diversity could be a rich source of browser fingerprinting and could
be used to track individual users. In Chapter 4, we explore the impact of the UAs and

18 Background & Related work

other device information on the web and the implications of restricting that information
to generic text.

Juarez et al. examined the effectiveness of fingerprinting techniques under various
conditions such as browsing habits and Tor browser versions [114]. The key takeaway from
this approach is the importance of restricting the amount of information that the browser
reveals. Similar to this approach, dynamically altering the information from the user’s
browsing environment can make browser fingerprinting more challenging. This could
involve regularly changing browser characteristics or randomizing certain information.
However, evaluating the impact of this approach on user experience could be a much
harder challenge. It requires testing the browser’s functionality across various websites
while dynamically altering the information it reveals and assessing any web page breakages
that may arise. Further research is needed to determine the feasibility of this approach.

Laperdrix et al. developed a technique for fingerprinting browser extensions based
on the style modifications that extensions make on web pages [135]. They analyzed CSS
selectors used by extensions, and managed to detect the presence of those extensions
on web pages. This information can be used to improve browser fingerprinting. As a
countermeasure, the authors suggested using Shadow DOMs in browsers to isolate styles
applied by extensions from the main page’s DOM. This means that styles injected by
extensions would not be visible by the main web page hence masking the presence of
browser extensions. This approach restricts information available in the user’s browsing
environment and can be used as a defense against browser fingerprinting.

2.3.2 Restricting access to the user’s browsing environment

Qian et al. introduced Slimium, a framework designed to identify and eliminate non-
essential features in the Chromium browser [182]. The authors employed a feauture-code
mapping technique to identify features that can be safely removed without impacting the
browser’s functionality. The study demonstrates that debloating a browser not only reduces
its complexity but also lowers the number of vulnerabilities which reduces information leaks
thereby enhancing user privacy. While the study provides a comprehensive approach in
debloating unnecessary features from Chromium, the framework assumes that the features
being debloated remain consistent over time. However, web content and browser features
are dynamic and continually evolve. Changes in web standards, browser functionalities, or
even website designs might render a debloated browser less effective or even dysfunctional
over time. By modifying the browser’s codebase, there is a risk of introducing new
vulnerabilities. Furthermore, the study focuses on the Chromium browser, which, while
widely used, is just one in many browsers available. The methodologies and the findings
in this study might not be applicable to other browsers.

Baumann et al. presented an anti-fingerprinting browser, Disguised Chromium Browser
(DCB), protecting against Flash and canvas fingerprinting without deactivating fea-

2.3 Minimizing browser distinctiveness 19

tures [12]. DCB used real-world data to disguise system and browser properties, main-
taining usability while preventing detectability through unrealistic or constantly changing
parameters. For example, DCB modified the canvas element in every session, making
it unique and undetectable, ensuring the fingerprinter cannot detect modifications or
re-identify users. This approach counters fingerprinting techniques using graphic rendering
engines and Unicode glyphs.

Datta et al. evaluated the ability of Anti-Fingerprinting Privacy Enhancing Techniques
(AFPET) in masking or spoofing browser attributes used in fingerprinting [51]. The authors
evaluated various AFPETs including the Tor Browser Bundle, and found inconsistencies
in the behaviors of some AFPETs. The Tor browser was identified as the most effective in
masking attributes while other AFPETs either left several attributes unmasked or behaved
inconsistently. The study’s findings highlight the importance of effectively masking browser
attributes as a defense technique against fingerprinting. This is a good addition to the
landscape of information restriction as a means to enchance user privacy. Future research
should focus on improving browser attribute masking techniques to limit the leakage of
nonessential information.

Starov et al.analyzed 58, 034 Google Chrome extensions to determine how extensions
become fingerprintable through unnecessary page modifications termed, extension bloat,
and found that 5.7% of those extensions are unnecessarily identifiable due to bloat [210].
To reduce fingerprintability, the authors proposed an in-browser mechanism providing
coarse-grained access control for extensions to protect against fingerprinting and malicious
extensions exfiltrating user data.

Vastel et al. developed FP-Scanner, a tool to detect alterations in browser fingerprints
caused by countermeasures such as script blockers and User-Agent spoofers, introducing
inconsistencies that would not otherwise occur [233]. By analyzing browser attributes
such as HTTP headers, user agent, WebGL, canvas, and the JavaScript, FP-Scanner
identified altered browser fingerprints. This suggests that many privacy-enhancing tools
may unintentionally make browsers more uniquely identifiable instead of less. The study
underscores that restricting nonessential information is not straightforward, as efforts
to mask or alter information can create new privacy risks. This highlights the need for
restricting nonessential information without inadvertently exposing new information by
creating patterns or inconsistencies that could be used for fingerprinting. This is why
detecting web page breakage, as discussed earlier and later in Chapter 4, is important
to prevent further increasing the risk of leaking information from the user’s browsing
environment rather than preventing it.

Torok et al. introduced Sandcastle, a browser fingerprinting defense technique focusing
on minimizing interference between the fingerprinting process with legitimate web appli-
cations [220]. Their approach was to partition code dealing with identifiable information
into sandboxes, ensuring that sensitive information is not transmitted over the network
while still being usable on the client-side. This method involved a detailed structure

20 Background & Related work

for the sandboxing process including specific rules for data handling, computation, and
communication between the sandbox and the main application context. By confining
high-entropy data to client-side operations and preventing it from being sent over the
network, Sandcastle could reduce the information leaks, thus providing a solution to the
challenge of maintaining web pages functional while also respecting user privacy. However,
its shortcomings lie in the sandboxing techniques against code obfuscation. Furthermore,
future assessments are needed to examine the behavior of different browsers across different
websites.

Senol et al. investigated the effects of Google Chrome’s UA reduction efforts on
exposing potentially identifying browser features using an instrumented cralwer to analyze
JavaScript calls, HTTP headers, and HTML elements related to UA client hints (UA-
CHs) [200]. The authors quantified access to high-entropy browser features through
UA-CH HTTP headers and JavaScript API, focusing on the access of third-party scripts
to these features. The study showed that scripts from third-party domains retrieve high
entropy UA-CHs, indicating widespread use by trackers and advertisers exfiltrating those
hints to remote servers by tracker scripts. The study concluded that UA reduction efforts
have been effective in minimizing the passive collection of identifying browser features,
but that third-party tracking and advertising scripts continue to have unrestricted access
on those features.

Xiao et al. identified vulnerabilities through hidden properties abusing (HPA) in
Node.js applications where unexpected properties can lead to information leaks [254]. The
study implies that restricting nonessential information in Node.js requires examination
of how objects are shared and manipulated between client and server sides. To address
these leaks, there could be an implementation of stringent checks on the properties of the
objects being processed, ensuring that only essential properties are allowed to interact
with the system’s core functionalities. In Chapter 3, we develop a tool to examine such
scenario where the relevance of information can be tested using web similarity. As we
further explore in Chapter 4, if such information does not break the web page, it can be
deemed nonessential.

Wang et al. introduced Content Protection Policy (CPP) focusing on fine-grained
confidentiality and integrity protection for sensitive client-side user data in web applica-
tions [246]. The study targets the issue of sensitive data exposure by identifying a gap in
existing browser security policies which restrict script execution but do not limit access
to sensitive web content by third-party scripts. The authors developed DOMinator, a
system integrated into the browser to ensure that all script interactions with the DOM
are checked for permissions by applying the least privilege principle. Unlike conventional
approaches, CPP operates at an object level, allowing precise control over individual data
elements. This granularity is important in restricting nonessential data exposure. By
allowing control over what data third-party scripts can access, CPP reduces the risks of
unintentional information leaks. This makes this approach useful in enhancing user privacy

2.4 The geolocation impact on privacy policies 21

through nonessential information restriction, given the increasing reliance complexity
of web applications and the widespread use of third-party scripts. However, it requires
widespread adoption by browser vendors and the web community and thus its challenging
feasibility.

In conclusion, the issue of browser distinctiveness has been addressed through various
approaches, ranging from investigating the user’s browsing environment to identify infor-
mation leaks to enforcing restrictions on access to information from the user’s browsing
environment. While these methods have shown promise, they often fall short in providing
comprehensive solutions, either by being overly ambitious or only offering limited solutions.
A phased approach is necessary, with research conducted on a case-by-case basis to explore
the relevance of various information in the user’s browsing environment. In this thesis, we
have developed a tool that provides a framework for analyzing that relevance. This tool
serves as the backbone for conducting research on browser distinctiveness, eliminating the
need to develop a new tool for each study. Using this tool, we have explored the impact
of device information on the web, and Chapter 3 will delve into that.

2.4 The geolocation impact on privacy policies

Privacy policies have become increasingly lengthy, complex, and difficult to understand
over time, with their effectiveness being subject to scrutiny [145, 6, 209, 152]. Early
studies of the regulatory landscape on the web have cast doubt on the ability of privacy
regulations to change the behavior of websites, beyond requiring them to display cookie
consent notices [54, 207]. Furthermore, there is a question of what happens when users
are located in countries that are not covered by these policies. Previous studies indicate
that web behavior remains unscathed regardless of geolocation. For example, Sørensen
et al. claimed that user profiling has become a standard product offered for sale to
any advertiser and that third-party activities did not change as a result of privacy
regulations [208]. Another method that has not been hindered by privacy regulations
is cookie synchronization [171, 223, 224]. In this section, we investigate the impact of
geolocation on privacy policies across countries, focusing on techniques to identify cookie
consent notices and interaction with those notices. We classify previous studies into three
categories: human-assisted, filter-list, and z-index based methodologies. Additionally, we
examine the advantages and disadvantages of existing approaches for interacting with
cookie consent notices.

2.4.1 Identifying cookie consent notices

When a user sees a cookie consent notice, they usually notice a popup up or a highlighted
section of the web page with words like ‘policy’, ‘cookie’, ‘privacy’, etc. While that is easy
for the user to understand, it is difficult to simulate the user’s perception. That simulation

22 Background & Related work

must recognize the notice on the web page as a cookie consent notice or privacy policy,
and not mistake it for something else like a discount offer, an email subscription, or an
age verification pop-up.

Some of the previous studies mentioned below used human-assisted approaches to
reduce bias in their analyses. Others used filter lists, which are known to be used by
consent management platforms (CMPs). This approach assumes that certain patterns
of elements on the web page indicate the presence of a CMP, and therefore, the website
presents cookie consent notices to the users. However, not all websites use CMPs for
consent management. Another approach is to calculate the superpositioning of elements
on the web page using z-index and look for keywords in elements at each position. This
approach is limited by two assumptions:

1. The web page is designed in conventional ways, such that consent text can only be
expected in certain elements, which is not always the case on the web.

2. The consent text is predictable and can be looked up from a set of words.

Unfortunately, the second assumption continues to be a challenge for any approach
to automatically detect cookie consent notices. Furthermore, the existing studies have
not addressed the scenario where a website may selectively display cookie consent notices
based on the user’s geolocation. For instance, a website may only show the notice to
users located in countries with privacy regulations, while users in other countries may not
see the notice at all. This limitation highlights the need for further research to develop
methods for detecting cookie consent notices across different countries.

Human-assisted methodologies Gray et al.analyzed different types of consent
notices, focusing on how they are designed and their implications for user privacy consent
using an interaction criticism approach integrating perspectives from Human-Computer
Interaction (HCI) studies [93]. The authors analyzed the intent of the designer, the
designed interface, and the social impact, providing a comprehensive view of how consent
mechanisms work and their potential pitfalls. The study identified various dark patterns
in consent notices such as tracking walls that manipulate user consent. These patterns
often obscure or complicate the process of refusing consent, pushing users towards agreeing
to data collection and processing unknowingly or unwillingly. The study highlighted legal
and ethical issues surrounding these practices, especially in compliance of regulations
such as GDPR. In Chapter 5, we explore the landscape of cookie consent notices across
different countries, which may highlight differences in intent and purpose across regions.

Santos et al. conducted a study that examined both the design and textual content
of cookie consent notices and evaluated their compliance with privacy regulations [197].
The authors manually annotated cookie banners on English-speaking websites visited by
users residing in the EU. To detect cookie banners, they followed a three-step approach:
segmentation, scoring, and tree traversal. First, they segmented webpages into small

2.4 The geolocation impact on privacy policies 23

segments and built a segment tree based on the HTML tag and text in the segments.
Second, they assigned a score to each segment based on its inner text using a vocabulary
set that they created by analyzing cookie banner content. They ranked tree leaf segments
according to their scores. Third, they used the highest-scoring segments to traverse their
segment tree, performing both bottom-up and top-down tree traversals. They captured
HTML elements that contained cookie banners. To reduce false positives like websites
with no banners, they used the segment scores to decide whether a cookie banner existed
based on a threshold they set. Finally, they manually filtered out any remaining false
positives. The study identifies common issues in cookie banners, such as vague language,
technical jargon, and misleading statements, which can obscure the true purpose of data
collection, thereby impeding the ability of users to make informed decisions. While this is
a good approach, it may be difficult to scale in terms of the size of analyzed websites and
beyond the English language.

Filter lists methodologies Nouwens et al. developed Consent-O-Matic, a browser
extension that answers cookie consent notices based on user preferences, bypassing non-
compliant interfaces [167]. This achieved this by designing an interoperability of CMPs in
the Consent-O-Matic extension. The study highlights a gap in web privacy where the rights
of the user are often overlooked due to ineffective enforcement of GDPR. By automating
consent based on user-set preferences, Consent-O-Matic challenges the practices of CMPs
of framing default positive choices for the users and serving consent mechanisms as a
formality.

Another study by Kampanos et al. investigated the compliance of cookie consent
notices to privacy regulations, and their implications on user privacy in Greece and the
UK [116]. This is based on the IDCAC extension [124]. The study found discrepancy
between the number of websites using third-party cookies and those displaying cookie
consent notices, indicating non-compliance with privacy regulations such as GDPR. This
highlights the widespread issue of overlooking user choice leading to information leaks
and making users vulnerable to tracking. Furthermore, the study provided comparative
analysis into how privacy practices vary between countries under similar legal frameworks.
For example, cookie consent management in Greece showed higher compliance and
transparency compared to the UK where there is more tracking.

Bollinger et al. introduced CookieBlock, a browser extension that uses machine
learning to enforce GDPR cookie consent notices [19]. CookieBlock relies on CMPs to
label the purpose of collected cookie consent notices. This ground truth data is then used
to train classifiers to categorize cookies based on their purpose. The idea is that users
can set preferences for which types of cookies to allow or decline, and CookieBlock will
enforce automatic filtering of cookie consent notices based on those user-set preferences.
The study highlights a gap in GDPR compliance, with many websites failing to provide
legally valid consent options for cookies.

24 Background & Related work

Z-index methodologies Khandelwal et al. proposed CookieEnforcer, a system for
automated analysis and enforcement of cookie consent notices on websites [120]. The
objective of the study was to addressed the issue of cookie consent notices designed to
manipulate users into consenting to privacy-compromising settings. The authors used
a z-index approach to detect the presence of a notice, and then used a BERT [55] text
classifer to determine that the type of the notice is a cookie consent. The fact that this
study only examined 250 and required manual annotation to validate the presence of
cookie consent banners limits its scalability and feasibility.

Rasaii et al. conducted a measurement study to analyze the cookie landscape from
different geographic locations using BannerClick, a tool they developed to automatically
interact with cookie consent notices [186]. The study revealed how cookie practices vary
depending on the user’s geographic location with significant differences between EU and
non-EU regions such as the increase in third-party cookies and tracking. Despite the
reported accuracy of BannerClick in interacting with the consent notices, the tool is
limited to 12 languages and the explicit consent notice text, making it ineffective for use
in the wild where there is a large number of languages and nuances in consent notices.

Methodologies based on z-index present limitations in their reliance on HTML rendering
patterns when considering their application in real-world scenarios. One of those limitations
is their ability to capture the full diversity of text in cookie consent notices across the
web. Many websites employ techniques to generate dynamic content and complex layouts
which can result in cookie notices that do not conform to standard rendering patterns
leading to cases where methodologies that rely on HTML rendering patterns failing to
detect the cookie consent notice.

For example, Listing 2.1 shows what we observed on websites that use React to
manipulate the DOM, creating elements on the fly upon user interactions and other
triggers. In this example, the cookie notice <div className="cookie-consent-banner">
is rendered based on the showNotice state variable. If this notice is not present at the
initial page load, the HTML rendering patterns will miss it, leading to a false negative
in detecting the notice. In Chapter 5, we discuss such cases where the same web page
displays a cookie consent notice only to users from regulated areas.

Listing 2.1: Cookie consent notice generated on the fly by React
function CookieNotice() {
const [showNotice, setShowNotice] = useState(false);

useEffect(() => {
// notice is rendered based on a state variable
setShowNotice(checkCookieConsent());

}, []);

if (!showNotice) return null;

2.4 The geolocation impact on privacy policies 25

return (
<div className="cookie-consent-banner">
We use cookies for better user experience. <button onClick={handleConsent

}>Accept</button>
</div>

);
}

Websites also use HTML or CSS to alter the appearance of consent notices. In
this case, as shown in Listing 2.2, the notice is hidden off-screen by the CSS property
transform: translateX(-100%) and can only be displayed by a condition from the
JavaScript function acceptCookies(). This could be the case where a website selectively
displays a consent notice only when the user is located in a regulated country.

Listing 2.2: Cookie consent notice altered by JavaScript
<div id="unique-consent-model" style="transform:␣translateX(-100%);">
<div class="custom-consent-banner">
We use cookies for better user experience. <a href="javascript:void(0);"

onclick="acceptCookies()">Agree
</div>

</div>

Another limitation in detecting cookie consent notices pertains to the use of machine
learning models. While the studies demonstrate high accuracy in controlled test scenarios,
these models are difficult to implement in real-world scenarios with the evolving nature of
web technologies and privacy policies. Websites update their interfaces and the wording
of cookie notices, which render previously trained models less effective. This necessitates
continuous training and updating of the models, a process that is resource-instensive and
does not always keep up with the rate of change of the web as we have seen in Chapter 5
with CookieBlock [19]. In Chapter 5, we introduce a novel approach for automatic visual
detection of consent notices, thereby addressing the limitations of relying solely on manual
observation, CMPs, or HTML/CSS components.

2.4.2 User interaction with cookie consent banners

Previous studies have highlighted violations in cookie consent mechanisms, which any
study on the impact of cookie consent notices should carefully consider to avoid a biased
evaluation of tracking based on different user choices.

Utz et al. conducted experiments on a German website with over 80, 000 unique
users to to examine the design and effectiveness of cookie consent notices in relation
to GDPR and user understanding of privacy choices [227]. When users were given a
binary choice (accept or decline), more opted to accept tracking. In contrast, when

26 Background & Related work

required to approve cookie use for each category individually, users were more likely
to decline. This indicates that simpler choices might lead to increased acceptance of
nonessential information collection. However, this may also be because simpler choices
include mandatory options such as essential cookies for the website to function. The study
also discusses user expectations and misconceptions about consent notices. Many users
mistakenly believe that not interacting with a consent notice will prevent websites from
collecting data. This misunderstanding underscores the need for clearer communication
in consent mechanisms, ensuring users are truly informed about what constitutes the
collected information and how it is handled.

Matte et al. studied the compliance of cookie consent notices with legal regulations such
as GDPR and the ePrivacy Directive [153]. They used the Interactive Advertising Bureau
(IAB), EU’s Transparency and Consent Framework (TCF), to detect legal violations
in the implementation of these notices on European websites. The authors identified
four types of potential legal violations: consent stored before choice, no way to opt-out,
pre-selected choices, and non-respect of choice. These violations were observed in various
proportions across the websites, highlighting widespread issues in the practice of obtaining
user consent for cookies and tracking. While the methodology in this study is limited
to consent notices compliant to TCF, it can be used as a benchmark for evaluating the
effectiveness of consent management platforms (CMP).

O’Connor et al. conducted a user study to understand how websites comply with
the California Consumer Privacy Act (CCPA) [168]. They found that most websites,
instead of providing clear cookie consent notices with an option to decline, implement
a “Do Not Sell" link. However, this approach often presents users with lengthy forms or
dark patterns, making it difficult to decline consent for the use of cookies. The authors
conducted manual observations to examine the impact of this behavior on users. They
found that users often fail to decline consent and become less aware of their right to do so.

Sanchez-Rola et al. found that the GDPR has influenced non-EU websites to adopt
similar practices to EU websites [196]. However, the study revealed persistent tracking,
often without clear user consent, and noted the prevalence of cookies capable of identifying
users across the majority of websites. Furthermore, the authors uncovered numerous
instances of misleading information presented to users, making it challenging to refuse
cookie consent.

Santos et al. highlighted the use of vague language and framing techniques in cookie
consent notices [198]. They used an interdisciplinary approach to evaluate cookie consent
notices against the ePrivacy Directive and the GDPR with a focus on the textual content
of the notices. Their methodology involved a three-step process: segmenting web pages
based on HTML tags and text, assigning scores to segments based on a vocabulary set,
and traversing the segment tree to capture HTML elements containing cookie consent
notices. Their analysis revealed that 89% of the consent notices violated at least one
legal requirement, while 61% violated the purpose specificity requirement by using vague

2.4 The geolocation impact on privacy policies 27

language such as “user experience enhancement". The authors suggest standardizing
the purposes of cookie consent notices and improving the clarity of data processing
descriptions.

Dimova et al. conducted a longitudinal analysis of Facebook’s cookie-based tracking
from 2015 and 2022 [57]. The authors examined how practices of setting cookies for
both users and non-users have evolved in response to privacy regulations such as GDPR.
They found that Facebook initially set cookies automatically when non-users visited
the website, leading to tracking across websites with Facebook resources. Over time,
stricter regulations prompted a reduction in such practices. For registered users, Facebook
introduced more granular controls over cookie settings, including choices for optional
cookies related to advertising and third-party cookies. However, the study noted the use
of dark patterns in consent mechanisms, which can influence users towards more invasive
privacy choices.

Iordanou et al. developed a browser extension to analyze cross-border tracking flows
and geolocate trackers in relation to the geolocation of users [113]. The authors collected
data from the interactions of 350 real users with cookie consent notices and combined it
with ISP datasets. This allowed them to identify and geolocate web trackers from captured
tracking flows. They found that most tracking flows within the EU remain confined within
the GDPR jurisdiction, suggesting that EU data protection laws effectively regulate these
flows. However, the study does not discuss the prevalence of cookie consent notices and
the state of tracking in websites across countries, regardless of the geolocation of the web
trackers.

Wesselkamp et al. developed a browser extension, ERNIE, to detect cookie-based
tracking techniques [251]. The authors focused on moments before and after user interac-
tion with cookie consent notices. Their analysis included technical and legal assessments
of tracking techniques in the context of GDPR. The study found tracking activities before
any user interaction with consent notices and after rejection of the consent by users. We
adopt the methodology of detecting ID cookies from this study into our own approach of
measuring the state of cookies, as discussed in Chapter 5. These ID cookies are used by
websites and third parties to identify users across sessions and websites. The methodology
to detect ID cookies in this study involves comparing cookies between a main user session
and a simulated separate user to determine if a cookie is user-specific.

Papadogiannakis et al. employed an automated method to detect first-party ID leaking,
ID synchronization, and browser fingerprinting in their investigation of how websites track
users even when they do not consent or choose to reject cookies [170]. The study revealed
widespread first-party ID leaking and third-party ID synchronization, indicating that
many websites do not fully comply with GDPR as they continue to track users without
proper consent. In Chapter 5, we conduct a similar investigation to explore the state of
tracking on the same websites across different countries and observe differences.

28 Background & Related work

Munir et al. addressed the shift in web tracking from third-party to first-party cookies
due to the increasing prevalence of browsers blocking third-party cookies [159]. They
proposed CookieGraph, a machine learning-based method to detect and block first-party
tracking cookies. The authors demonstrated that first-party cookies are being used to
store and share identifiers with trackers, even when third-party cookies are blocked. The
study highlighted the ineffectiveness of solely blocking third-party cookies in preventing
tracking and the impracticality of blocking all first-party cookies, as it would result in
web page breakage.

The variation in user tracking across countries with different levels of privacy regulations
has been reported on previously [80]. However, the methodology used to measure the
prevalence of cookie consent notice enforcement and user interaction with those notices
has not been comprehensively addressed. Studies on this topic have limited geographic
coverage and do not consider the interplay of tracking across locations for the same users.
We considered the challenges in the studies above when designing our approach to user
interaction with cookie consent notices, which we discuss in detail in Chapter 5.

Chapter 3

Determining information relevance in
the user’s browsing environment

3.1 Overview

The user’s browsing environment reveals a lot of information about the device and the
browser. This information raises privacy concerns, as its diversity allows for the identifica-
tion of users on the web without their consent through fingerprinting techniques [132]. To
enhance user privacy, it is essential to evaluate the necessity of sharing this information
with websites. Such an evaluation can help minimize data exposure by only sharing
information that is essential for website functionality. To achieve this, the browser must
be able to assess the relevance of each piece of information that the website is trying to
access.

In this chapter, we propose a novel approach to determine that relevance by simulating
website visits from a normal user’s browsing environment versus restricted environments.
We design web similarity techniques to observe differences in website behavior when
various restricted environments are used and the information in those environments that
cause the changes. If a piece of information is removed from the used environment and
there is no difference in website behavior, it indicates that the removed information
is irrelevant to website functionality and therefore unnecessary. On the other hand, if
differences are found, a change impact analysis can help further determine the type of
change and its severity to website functionality.

In the following sections, we delve into the details of our approach and the resulting
web similarity tool. First, we review various types of information in the user’s browsing
environment and formalize our objective. We then discuss the simulation of the user’s
browsing environment. Next, we show the crawl process in experimenting with the
simulated user’s browsing environment. We then elaborate on the design of our web
similarity, including the choice of web similarity dimensions to investigate, the use of
similarity radar, the implementation details and how we determine the relevance of

30 Determining information relevance in the user’s browsing environment

information in the user’s browsing environment. Finally, we discuss the threats to the
validity of our tool and potential future improvements before concluding this chapter.

Geolocation
IP Address, Geolocation API

Device Information
Type, Model, OS,
CPU, GPU, RAM,
Touchscreen capabilities,
Device orientation,
Accessibility settings

Browser Information
Vendor, Name, Version,
User agent string, Installed
plugins, Installed fonts,
Canvas, Cookies, MIME
types, Do Not Track setting,
Local storage, Permissions,
Language preferences, Time-
zone, Load times,
Content security policy

Figure 3.1: Categories of UBE information: Geolocation, Device, and Browser
Information

3.2 What is UBE information?

The information in the user’s browsing environment, which we refer to as “UBE infor-
mation”, can generally be categorized into geolocation, device, and browser data. This
information encompasses various aspects of the user’s hardware, software, and configu-
rations. Websites access this information through HTTP headers or browser APIs via
JavaScript. Additionally, server-side technologies can reveal UBE information by analyzing
network and HTTP requests [158, 245, 213, 151]. In this chapter, we focus on methods
of UBE access via JavaScript and HTTP headers. Previous works have explored UBE
information extensively, and our experiments build upon those foundations [235, 237,
233, 89, 9, 8]. Figure 3.1 summarizes UBE information. Our objective is to determine
the relevance of this information when websites access it, not to exhaustively list it.
Geolocation information allows websites to determine the user’s country and timezone,
which in turn influences the experience and privacy compliance measures provided to
the user [80]. Device information helps websites decide on the appropriate layout and
functionality [162, 259], while browser information determines the specific features the
website can use [179, 133].

3.2 What is UBE information? 31

A UBE construct u = G ∪D ∪B represents sets of attributes G, D, B corresponding
to geolocation, device, and browser information respectively. The set G = {g1, g2}
includes attributes that define the user’s geographical location where g1 and g2 represent
the IP address and the browser geolocation data obtained via the Geolocation API
respectively. The set D = {d1, d2, ..., dk} includes attributes that characterize the user’s
device where di represents device information such as its type, model, OS, CPU, GPU,
RAM specifications, touchscreen capabilities, device orientation, accessibility settings, etc.
The set B = {b1, b2, ..., bk} includes browser attributes where bi represents information
such as the browser vendor, name, version, plugins, etc. as illustrated in figure 3.1.

To determine the relevance of information accessed by a website, we introduce a
modified UBE construct u′ = G′ ∪D′ ∪B′ which simulates restricted access by partially
populating or completely omitting specific attributes. G′, D′, and B′ are the modified
sets of attributes for the geolocation, device, and browser information respectively such
that G′ ⊆ G, D′ ⊆ D, and B′ ⊆ B. The set u′ allows simulating different levels of data
exposure in a controlled manner. For example, a construct u′ where G′={gi}, D′=∅, and
B′={bi} can be a simulation of a UBE where only the IP address and the user agent
string are exposed to the website.

We define a function f : u→ r that maps the UBE construct u to a result r representing
the behavior of the website when visited using UBE construct u . Similarly, we define
f ′ : u′ → r′ when the same website is visited using a modified UBE construct u′. The
difference in website behavior ∆r = |r − r′| between r and r′ determines the relevance
of the modified attributes. If ∆r ≠ 0, further analysis can indicate the type of change
and its severity. We will explore this in Chapter 4. If ∆r = 0, it indicates that the
difference ∆u = u− u′ between the original UBE construct u and the modified construct
u′ is irrelevant to the website’s functionality. Attributes in ∆u = {x1, x2, ..., xk} such
that ∆u = {x ∈ u | x /∈ u′} can therefore be restricted without negatively impacting the
website’s functionality.

We analyze the impact of each attribute xi in ∆u by considering whether the removal
of each attribute affects the overall difference in website behavior ∆r. Specifically, we
define the binary impact function δ : ∆u→ {0, 1} that indicates whether the removal of
an attribute xi has any impact on ∆r such that:

δ(xi) =

1 if f(u) ̸= f(u \ {xi})
0 if f(u) = f(u \ {xi})

(3.1)

where u \ {xi} represents the UBE construct u with the attribute xi removed. If δ(xi) = 0
for a specific attribute xi, this attribute does not affect the functionality and can be
considered irrelevant. Thus, the set of irrelevant attributes I ⊆ ∆u is defined as I =
{xi ∈ ∆u | δ(xi) = 0}. Conversely, the set of relevant attributes R ⊆ ∆u is defined as
R = {xi ∈ ∆u | δ(xi) = 1}. Our objective is to determine a minimal set R and a maximal

32 Determining information relevance in the user’s browsing environment

set I while maintaining the website’s functionality. This would ultimately lead to a new
UBE construct u′′ ⊆ u that balances functionality and web privacy.

3.3 Simulating access to UBE

To determine the UBE construct u′′ ⊆ u, we need to test website visits using simulated
UBE constructs to maximize the set I and minimize the set R. So UBE simulation is
key to this process. The ideal way to simulate a UBE construct u′ would be to physically
visit different locations, install new computers, and access websites with a variety of
browsers and configurations. This approach is impractical, however, due to resource and
time constraints. To overcome these limitations, we alternatively turn to UBE simulation
techniques. Methods such as browser instrumentation, browser extensions, script injection
via developer tools, VPNs, and proxy servers provide controlled environments where
specific UBE attributes can be modified or restricted. Network interception was also once
valuable for this purpose, however, the increasing adoption of the QUIC protocol has
rendered its future relevance questionable [130, 195]. Hence, the following sections explore
the methods we mentioned previously of simulating UBE, except for network interception.

3.3.1 Simulating geolocation

The two most common methods to geolocate users are IP and browser-based geoloca-
tion [118, 211]. IP geolocation determines the user’s approximate location, typically at the
city level, by looking up the IP address in a geolocation database. Browser geolocation uses
the Geolocation API to request more precise location data directly from the user’s device.
This method prompts the user for explicit permission before accessing the device’s location.
Although IP geolocation can be inaccurate when the user uses IP masking techniques such
as VPN or a proxy server [85], it is more widely implemented due to its simplicity and
the fact that it does not require user interaction [122, 176]. However, both methods have
their advantages and specific use cases. Of the existing UBE simulation techniques, only
browser instrumentation can bypass the permission-granting process in simulating browser
geolocation. Listing 3.1 illustrates an example of that override in Puppeteer [180]. The
override not only can give websites access to the device’s physical location but can also
help simulate various geolocation information like the custom coordinates, as figure 3.2
shows. Apart from Puppeteer, other browser instrumentation tools like Selenium and
Playwright can bypass the permission-granting process. This approach can also work in
other UBE simulation techniques but will require user interaction to grant the permission.

In any scenario, G′ always contains at least g1 representing the IP address, since the
web server receives it by default. Therefore, we simulate G′ in a UBE construct u′ with
either {g1} if only the IP address is available in u′ or {g1, g2} if both the IP address and
browser geolocation are accessible in u′. G′ ̸= ∅ because the empty set is not possible.

3.3 Simulating access to UBE 33

Figure 3.2: Browser geolocation exposing the user’s coordinates due to bypassed
permission-granting process in Puppeteer.

Apart from using a regular IP address (i.e. the normal, unmasked IP address of a user) to
simulate G′ = {g1}, the two most common methods for simulating g1 are VPN and proxy
servers [75, 148]. VPN functions at the operating system level to ensure that all network
traffic is routed to a designated endpoint. Proxy servers function at the application level,
meaning that only G′ (specifically the IP address) and B′-related browser attributes in
UBE construct u′ would be affected. This limitation can lead to inconsistencies across
UBE constructs and network requests, hence the VPN is more reliable for simulating a
consistent UBE. For designated areas, our UBE simulation uses VPN when G′ = {g1} and
both VPN and browser geolocation using browser instrumentation when G′ = {g1, g2}.

Listing 3.1: JS Navigator.geolocation
import puppeteer from ’puppeteer’;

(async () => {

const browser = await puppeteer.launch({ devtools: true });

const page = await browser.newPage();

// Grants permission for changing geolocation
const context = browser.defaultBrowserContext();

34 Determining information relevance in the user’s browsing environment

await context.overridePermissions(
’https://browserleaks.com/geo’,
[’geolocation’]

);

// Changes to geolocation to custom coordinates
await page.setGeolocation({
latitude: 50.60576931698431,
longitude: 3.148223957839548

});

await page.goto(’https://browserleaks.com/geo/’);

...
})();

3.3.2 Simulating device and browser information

Browser instrumentation

Browser instrumentation mimics real browsers and allows control over browser interactions,
device emulation, and JavaScript execution. This makes it useful for handling websites that
rely heavily on JavaScript, which is a big part of the web [79]. A unique feature of browser
instrumentation is its ability to simulate user interactions, such as mouse movements,
clicks, scrolling, keyboard input, and screenshot capturing. Another strength of browser
instrumentation is its ability to bypass permission-based APIs like the Geolocation API
demonstrated earlier. This capability extends to other browser APIs, enabling simulation
of various UBE constructs.

Browser instrumentation tools such as Puppeteer, Playwright, and Selenium offer
ways to simulate various devices [181, 173, 38]. This allows us to emulate attributes
{d1, d2, ..., dk} of device D′ in UBE construct u′ without having to manually spoof every
attribute. Browser instrumentation tools also allow configuring browser profiles in a way
we can simulate attributes {b1, b2, ..., bk} of browser B′ in UBE construct u′. These tools
are extensive in emulating device and browser environments that, when coupled with our
previous approach for simulating device geolocation, they give a flexible way to build lots
of UBE constructs u′ that can help us achieve our objective of determining a new UBE
construct u′′ ⊆ u that balances functionality and web privacy.

While browser instrumentation tools are effective in simulating device and browser
information, certain attributes are difficult to spoof convincingly. The presence of the
WEB_DRIVER attribute, for example, or navigator.deviceMemory inconsistencies lead
to these tools being detected by some websites as bots [234]. WEB_DRIVER is a flag

3.3 Simulating access to UBE 35

that indicates whether the browser is being controlled by an automation tool, while
navigator.DeviceMemory is an attribute that indicates the approximate amount of
device memory in gigabytes. In simulating the UBE construct u′, we can overwrite these
attributes, but this is not always foolproof. Some websites still find ways to identify
browser automation [20]. Despite these limitations, however, browser instrumentation
remains an effective method to simulate UBE constructs. Listing 3.2 demonstrates how
to emulate an iPhone 15 in Puppeteer, and how to bypass basic detection by flagging off
the navigator.webdriver attribute.

Listing 3.2: Puppeteer device emulation
import puppeteer from ’puppeteer’;
import {KnownDevices} from ’puppeteer’;

const iPhone = KnownDevices[’iPhone␣15’];

(async () => {

const browser = await puppeteer.launch({
headless: false

});

const page = await browser.newPage();

await page.evaluateOnNewDocument(() => {
Object.defineProperty(navigator, ’webdriver’, {
get: () => false,

});
});

await page.emulate(iPhone);

await page.goto(’https://www.responsivedesignchecker.com/’);

...
})();

Browser extensions and developer tools

Browser extensions offer UBE simulation through JavaScript and browser APIs. They
can modify HTTP headers, manipulate cookies, and inject scripts into web pages during
website navigation. Although browser extensions can emulate device attributes such
as screen size, and touch capability detection, they do not provide complete device

36 Determining information relevance in the user’s browsing environment

emulation. Unlike browser instrumentation tools, browser extensions cannot emulate
hardware characteristics. They are limited to what is exposed by browser APIs and
cannot simulate a complete UBE u′ = G′ ∪ D′ ∪ B′. Browser developer tools on the
other hand provide greater control over device emulation compared to browser extensions.
However, like browser extensions, they are limited in their ability to emulate hardware
characteristics and are confined to manual interactions. This limits their scalability for
automated crawls. Both browser extensions and developer tools face significant limitations
in simulating various UBE constructs for crawls at scale.

HTTP client libraries

HTTP client libraries help configure and make HTTP requests to web servers. Tools like
cURL, wget, or libraries in programming languages offer a scalable way to modify HTTP
headers while crawling websites [247, 252, 188]. While this method can allow device
emulation through user agent spoofing, it cannot simulate geolocation nor can it handle
navigation of a web page including the execution of JavaScript. Listing 3.3 illustrates an
example of the Python’s requests library making an HTTP request that emulates an
iPhone running iOS 15. While this may lead to receiving a response from a web server,
the web page is not rendered, hence this method is very limited in simulating a complete
u′ = G′ ∪D′ ∪B′.

Listing 3.3: HTTP clients
import requests

headers = {
’User-Agent’: ’Mozilla/5.0␣(iPhone;␣CPU␣iPhone␣OS␣15_0␣like␣Mac␣OS␣X)’,
’Accept-Language’: ’en-US,en;q=0.9’

}

response = requests.get(’https://example.com’, headers=headers)

Further processing of the response
print(response.text)

In conclusion, for any experiment requiring control of UBE including rendering web
pages, executing JavaScript, and simulating a UBE construct u′ = G′ ∪D′ ∪B′, browser
instrumentation is more effective than other simulation techniques (cf. Figure 3.3). Beyond
simulating UBE, scalability is essential as we need to test as many UBE constructs as there
are attributes in our UBE. This is necessary in order to achieve our goal of determining a
UBE construct u′′ ⊆ u that balances functionality and privacy. Browser instrumentation
also stands out compared to techniques like developer tools or browser extensions because
it can be used at scale. We not only need to programmatically modify UBE constructs,

3.4 Designing the crawler 37

but we must also do so as we crawl from one web page to another. For this reason we opt
for browser instrumentation, specifically Playwright, which is similar to Puppeteer but
supports more browsers and can be used in multiple programming languages. In the next
section, we discuss how we orchestrate crawls with the UBE constructs we have built.
We elaborate on our crawl process in a way it can also be implemented using Puppeteer,
Selenium, and any other browser instrumentation tools.

(a) (b)

(c) (d) (e)

Figure 3.3: Comparing real devices with Puppeteer’s UBE simulation while visiting
https://www.whatsapp.com/download/: (a) real MacBook Pro, (b) simulated

MacBook Pro, (c) real iPhone 13, (d) simulated iPhone 13, (e) simulated Galaxy S8.

3.4 Designing the crawler

Let W = {w1, w2, . . . , wn} be the set of web pages to be crawled where each wi ∈ W

represents a distinct URL. For each web page wi ∈ W , there is a UBE construct u used
in crawling the web page. Let U = {u1, u2, . . . , um} be the set of all UBE constructs,

38 Determining information relevance in the user’s browsing environment

where uj ∈ U is a distinct UBE construct. uj = Gj ∪Dj ∪Bj where Gj, Dj, Bj represent
specific sets of geolocation, device, and browser attributes respectively. Our crawl process
is described by a function C : W × U → R where W is the set of web pages, U is the
set of UBE constructs, and R is the set of data collected from the web pages during the
crawl. For each web page wi ∈ W and each UBE construct uj ∈ U , the crawler performs
a request-response cycle and collects the data rij = C(wi, uj) where rij ∈ R represents
the response obtained from the web page wi under UBE construct uj. Each response rij

contains an HTML document, JavaScript and CSS files, a captured screenshot of the web
page, and data about cookies and HTTP requests.

Algorithm 1 Crawl web pages with different UBE constructs
1: function CrawlWebPages(W , U ′)
2: R← empty list ▷ Declare results list for responses
3: for each wi in W do ▷ Loop over each web page
4: for each u′

j in U ′ do ▷ Loop over each UBE construct
5: rij ← SendRequest(wi, u′

j) ▷ Send HTTP request
6: Add(rij, R) ▷ Record the response in the results list
7: return R ▷ Return the list of responses

3.4.1 Crawl orchestration

Algorithm 1 outlines the process for crawling web pages W using UBE constructs U . We
express the crawl responses R = {rij = C(wi, uj) | wi ∈ W, uj ∈ U} in Equation 3.2 where
the rows correspond to the web pages W and the columns correspond to UBE constructs
U . Let M be the matrix of responses, where each element Mij represents the response rij

collected from web page wi under UBE construct uj.

M =


r11 r12 · · · r1m

r21 r22 · · · r2m

...
rn1 rn2 · · · rnm

 (3.2)

As the crawl is performed over time, we also consider the time factor in the process.
The function Ct : W × U → R represents the crawl performed at a time t where
Ct(wi, uj) = rij(t) is the response collected from web page wi under UBE construct uj.
The crawl responses become R(t) = {rij(t) = Ct(wi, uj) | wi ∈ W, uj ∈ U, t ∈ T}, where
each response rij(t) represents the crawl result for web page wi under UBE construct uj

at time t. T is the set of times at which the crawls are performed. The matrix becomes
M(t) = {rij(t) = Ct(wi, uj) | wi ∈ W, uj ∈ U, t ∈ T}, where the rows correspond to
the web pages W , the columns correspond to the UBE constructs U , and the elements
Mij(t) = rij(t) represent the responses over time.

3.4 Designing the crawler 39

Algorithm 2 Determine URL failure based on M(t)
1: function CheckURLFailure(wi, U, M(t))
2: failed← False ▷ Initialize failure flag
3: for each uj in U do ▷ Loop over each UBE construct
4: rij(t)←M(t)[wi][uj] ▷ Get response for URL and uj

5: if rij(t) < 200 or rij(t) ≥ 400 then ▷ Check if the response code is invalid
6: failed← True ▷ Mark the URL as failed
7: break ▷ Exit the loop if failure is detected
8: return failed ▷ Return whether the URL has failed

M(t) and R(t) help us validate our crawl by tracking the status of individual crawls
for different web pages and UBE constructs over time. The matrix M(t) provides granular
control by mapping the status of each crawl at time t, enabling us to pinpoint which
specific crawls may have failed. This helps in identifying incomplete or erroneous crawls
that should be discarded (cf. Listing 2), preventing invalid data from being stored in our
final results. The use of M(t) ensures that we maintain data integrity by detecting errors
in the crawl responses, such as non-OK HTTP status codes, timeouts, or other network
failures. As the crawl is performed over time, M(t) allows us to differentiate between valid
and invalid responses within the overall crawl dataset R(t). For example, if a web page
fails to load or returns an error status code under a particular UBE construct at time t,
this failure will be captured using M(t), enabling us to discard this specific response from
the valid set of crawl results (cf. Listing 3). After processing the responses using M(t), we
define the set of valid responses V (t) = {rij(t) ∈ R(t) |Mij(t) indicates a valid response},
which only includes the successful crawls from R(t). This ensures that only valid crawl
data is stored, maintaining the integrity of the dataset for further analysis.

Algorithm 3 Save or discard crawl data based on URL failures
1: function SaveOrDiscardCrawls(R(t), M(t), U, W)
2: V (t)← empty list ▷ Declare V (t) to store valid responses
3: for each wi in W do ▷ Loop over each URL
4: failed← CheckURLFailure(wi, U, M(t))
5: if failed then
6: discard R(t)[wi] ▷ Discard crawl data if URL failed
7: else
8: Add(R(t)[wi], V (t)) ▷ Add valid responses to V (t)
9: return V (t) ▷ Return list of valid responses in V (t)

3.4.2 Dealing with dynamicity of web pages

To address the dynamicity of web pages in our crawl data, we transform the set of valid
crawl data V (t) into the set of valid static crawl data V ′(t). This transformation involves
removing dynamic content from HTML, JS, and CSS files stored during the crawl. To

40 Determining information relevance in the user’s browsing environment

achieve that, our crawl process is duplicated from start to finish, i.e. we run the crawl
Ct : W × U → R at a time t where Ct(wi, uj) = rij(t) is the response collected from web
page wi under UBE construct uj and we also run a simultaneous crawl Ct′ : W × U → R

at a time t′ where Ct′(wi, uj) = rij(t′) is the response collected from web page wi under
UBE construct uj to address the dynamicity of web pages. Thus, for each web page w

and UBE construct u, we have two sets of valid crawl data vwu(t) from V (t) and vwu(t′)
from V (t′). We compare the HTML, JS, and CSS content between vwu(t) and vwu(t′),
and any difference in these contents is considered dynamic and discarded. This process
results in v′

wu(t), which contains only the static content that is identical in both vwu(t)
and vwu(t′). The aggregate of all v′

wu(t) forms V ′(t), the valid static crawl data.

Algorithm 4 IdentifyDiffNodes
1: function IdentifydiffNodes(AST1, AST2)
2: DiffNodes← empty list ▷ Declare list for diff nodes
3: Queue1 ← new queue containing root of AST1
4: Queue2 ← new queue containing root of AST2
5: while Queue1 is not empty and Queue2 is not empty do
6: n1 ← Queue1.dequeue()
7: n2 ← Queue2.dequeue()
8: if NodesDiffer(n1, n2) then
9: DiffNodes.append(n1) ▷ Add diff node to list

10: Queue1.enqueue(n1.children)
11: Queue2.enqueue(n2.children)
12: return DiffNodes ▷ Return the list of diff nodes

Algorithm 5 RemoveDiffBlocks
1: function RemovediffBlocks(AST, DiffNodes)
2: for all n in DiffNodes do ▷ Iterate over diff nodes
3: b← FindEnclosingBlock(n) ▷ Find enclosing block for node
4: if b is not already in BlocksToRemove then ▷ Check if block is already listed
5: BlocksToRemove.append(b) ▷ Add block to removal list
6: for all b in BlocksToRemove do ▷ Iterate over blocks to remove
7: RemoveNode(b) ▷ Remove the block from the AST
8: return AST ▷ Return the modified AST

Let D = {HTML, JS, CSS} represent the dimensions of content we are considering,
hence cwu

d (t) and cwu
d (t′) are the content of dimension d ∈ D extracted from vwu(t)

and vwu(t′). For each web page w and UBE construct u, we compute the intersection
cwu

d (t)∩ cwu
d (t′) which contains the content that is identical in both crawls. The union over

all dimensions d gives us v′
wu(t), the static content for web page w and UBE construct u

such that:

v′
wu(t) =

⋃
d∈D

(cwu
d (t) ∩ cwu

d (t′)) (3.3)

3.4 Designing the crawler 41

Hence, the set of valid static crawl data V ′(t) is formed by aggregating v′
wu(t) such

that:

V ′(t) = {v′
wu(t) | w ∈ W, u ∈ U} (3.4)

We use a line-by-line comparison of vwu(t) against vwu(t′) but the removal process
ensures that v′

wu(t) remains syntactically correct. To achieve that, we remove entire
syntactic blocks where differences occur. For that, we need recourse to abstract syntax
trees (AST). We parse the HTML, JS, and CSS files into their respective ASTs. For
example, for the HTML parser, we do ASTwu

HTML(t) = Parse (cwu
HTML(t)) and ASTwu

HTML(t′) =
Parse (cwu

HTML(t′)). We use a similar approach for JS and CSS parsers. We then compare
the ASTs to identify diff nodes which we remove and reconstruct the modified tree to
obtain v′

wu(t).

Algorithm 4 illustrates the process of identifying diff nodes in detail. Algorithm 5
details how, for each diff node, we remove the syntactic block containing that node
from vwu(t). The function FindEnclosingBlock(n) traverses up the AST from node
n to find the smallest syntactic block that can be safely removed (node b), and then
RemoveNode(b) removes b and its descendants from the AST. In Chapter 4 we discuss
the use of existing tools and previous works to implement this. After modifying the ASTs,
we reconstruct the code files such that c′wu

HTML(t) = Unparse (ModifiedASTwu
HTML(t)) in the

case of the HTML document. We use a similar approach in reconstructing the JS and
CSS files. This approach ensures syntactic validity, so that in the next process of doing
web similarity, parsers can process V ′(t) without encountering syntax errors. Below are
examples of our syntactic block removal approach once a difference is found.

HTML

Original in vwu(t):

<div>
<p>April 1, 2023.</p>
<p>Welcome.</p>

</div>

Original in vwu(t′):

<div>
<p>April 2, 2023.</p>
<p>Welcome.</p>

</div>

Resulting v′
wu(t):

<div>
<p>Welcome.</p>

</div>

Figure 3.4

42 Determining information relevance in the user’s browsing environment

JS

Original in vwu(t):

function getUserCount() {
return 150;

}
var n = getUserCount();

Original in vwu(t′):

function getUserCount() {
return 155;

}
var n = getUserCount();

Resulting v′
wu(t):

var n = getUserCount();

Figure 3.5

CSS

Original in vwu(t):

.header {
background-image: url(

’header_v1.png’);
color: #333;

}

Original in vwu(t′):

.header {
background-image: url(

’header_v2.png’);
color: #333;

}

Resulting v′
wu(t):

.header {
color: #333;

}

Figure 3.6

3.5 Similarity Radar

As we advance toward analyzing our crawl data, it is essential to quantify how similar two
instances of the same web page are, when crawled using varying UBE constructs. This is
where the concept of Similarity Radar comes in. Similarity Radar allows us to
compare two instances of the same web page wi crawled at time t using two distinct UBE
constructs uj and uk. The valid static crawl data v′

ij(t) and v′
ik(t) correspond to seven

similarity dimensions such as the HTML structure, JavaScript, CSS, visual rendering,
cookies, HTTP requests, and textual content. The radar’s function is to provide a visual
representation of the degree of similarity between these two responses across the seven
dimensions. Each axis on the radar represents one dimension, and for each axis, a similarity
score Sd is calculated based on how similar the two responses are in that specific dimension.

Therefore, we define Sd to represent the similarity score for dimension d and Sscore

to be the overall similarity score across all seven dimensions. For each dimension d, the
similarity score between v′

ij(t) and v′
ik(t) is calculated as:

Sd(v′
ij(t), v′

ik(t)) = matched elements in dimension d

total elements in dimension d
× 100 (3.5)

The score Sd ranges between 0 (completely different) and 100 (identical). The overall
similarity score Sscore is then calculated as the average of the similarity scores across all

3.5 Similarity Radar 43

dimensions where n is the total number of dimensions:

Sscore(v′
ij(t), v′

ik(t)) = 1
n

n∑
d=1

(Sd(v′
ij(t), v′

ik(t))) (3.6)

Similarity Radar allows us to compute and visualize the similarity between two
crawls. But beyond visualization, this score plays a role in identifying relevant and
irrelevant attributes of the UBE construct. As we have seen in Section 3.2, f(u) represents
the function that maps a UBE construct u to the result of a web crawl. To analyze the
relevance of an attribute xi ∈ u, we use the similarity score Sscore as a metric to assess how
removing xi from the UBE construct affects the web page behavior (cf. Equation 3.1).
The similarity radar helps us compute δ(xi) for each attribute xi ∈ u, which ultimately
leads to classifying attributes into I = {xi ∈ ∆u | δ(xi) = 0} (irrelevant attributes) and
R = {xi ∈ ∆u | δ(xi) = 1} (relevant attributes). By iterating through all attributes
xi ∈ u, we compute which attributes do not affect web page behavior and can thus be
removed from the UBE construct (the set I).

Visual Rendering

HTML Structure

CSS

JavaScript

HTML Content

Cookies

HTTP Requests

Figure 3.7: Similarity score Sscore for two web pages (v′
ij(t), v′

ik(t))

3.5.1 Computing similarity scores for each dimension

We define methods to compute the similarity scores for each of the seven dimensions.
Detailed implementation of our approach to computing the scores are in Chapter 4 for
HTML structure, JS, CSS, visual rendering, and textual content. We provide more details
concerning cookies and HTTP requests in Chapter 5.

44 Determining information relevance in the user’s browsing environment

HTML Structure

As mentioned in Chapter 2, to compare the HTML structure of web pages, we use the
similarity-based flexible tree matching algorithm (SFTM) [23]. SFTM parses two web
pages v′

ij(t) and v′
ik(t) into their respective DOM trees Tij and Tik. It then computes the

similarity S0(n, m) between nodes n ∈ Tij and m ∈ Tik. Finally, SFTM finds an optimal
matching M between the nodes of the two DOM trees. We compute the similarity score
SHTML using SFTM’s c(M), which is the cumulative cost of matching nodes based on
their similarities:

SHTML =
(

1− c(M)
max(|Tij|, |Tik|)

)
× 100 (3.7)

JavaScript

JavaScript code in web pages is often distributed across multiple files and inline scripts.
Comparing JavaScript code between two web page instances requires matching cor-
responding scripts and then computing their similarities. We begin by extracting
all JavaScript files and inline scripts from both web page instances v′

ij(t) and v′
ik(t).

Let Jij = {J (1)
ij , J

(2)
ij , . . . , J

(n)
ij } be the set of JavaScript files from v′

ij(t) and Jik =
{J (1)

ik , J
(2)
ik , . . . , J

(m)
ik } from v′

ik(t). To match JavaScript files between the two sets, we
first attempt to match files based on exact file names (URLs). For each file J

(a)
ij in Jij,

if there exists a file J
(b)
ik in Jik such that their URLs are identical, we consider them a

matched pair. For JavaScript files that remain unmatched after exact name matching,
we use Locality Sensitive Hashing (LSH) to find similar files based on their content [50].
LSH allows us to find files that are similar but have different names or inline scripts.

For each matched pair (J (a)
ij , J

(b)
ik), we parse the code into ASTs and compare them

using a tree-diff algorithm, GumTree [73]. The GumTree comparison returns the
number of matched AST nodes and the number of edit operations required to transform
one AST into the other. The similarity score for the pair is calculated as:

S
(a)
JS = Number of matched AST nodes

Total number of AST nodes × 100 (3.8)

For unmatched files, we treat them as having a similarity score of 0%. We compute
the overall JavaScript similarity score SJS where p is the number of matched file pairs:

SJS = 1
p

p∑
a=1

(S(a)
JS) (3.9)

CSS

The comparison of CSS files follows a similar process to that of JavaScript. We match
CSS files based on exact file names (URLs). We use LSH to find similar CSS files with

3.5 Similarity Radar 45

different names or inline CSS. For each matched pair (C(a)
ij , C

(b)
ik), we parse the code into

ASTs and compare them:

S
(a)
CSS = Number of matched AST nodes

Total number of AST nodes × 100 (3.10)

We then compute the overall CSS similarity score SCSS where q is the number of
matched CSS file pairs:

SCSS = 1
q

q∑
a=1

(S(a)
CSS) (3.11)

Visual rendering

Algorithm 6 Extract contour properties from screenshot
1: function FindContourProperties(s)
2: g ← ConvertToGrayscale(s) ▷ Convert screenshot to grayscale
3: C ← FindContours(g) ▷ Find contours from grayscale image
4: Atotal ←

∑|C|
i=1 ContourArea(Ci) ▷ Calculate total contour area

5: Mtotal ←
∑|C|

i=1 ContourMoments(Ci) ▷ Calculate total contour moments
6: A← ∑|C|

i=1

(
ContourArea(Ci)

Atotal

)2
▷ Calculate normalized area measure

7: M ← ∑|C|
i=1

(
ContourMoments(Ci)

Mtotal

)2
▷ Calculate normalized moments measure

8: return (|C|, A, M) ▷ Return contour count, area, and moments

To compare the visual rendering, we propose a novel approach to compare screenshots
of web pages v′

ij(t) and v′
ik(t) based on contour-based analysis using the Canny edge

detection algorithm [29]. This method captures granular changes in visual content such
as text changes, broken links, or missing images. Algorithm 6 describes the process of
extracting contour properties from a screenshot. Using the contour properties |C| (number
of contours), A (weighted aggregate contour area), and M (weighted aggregate contour
moments), we compute the geometric mean GM and finally, the similarity score SVisual:

GM = 3
√
|C| × A×M (3.12)

SVisual =
(

1− |GM1 −GM2|
GM1+GM2

2

)
× 100 (3.13)

Cookies

We analyze the cookies set by each web page, considering their names, values, and domains.
The comparison involves matching cookies between v′

ij(t) and v′
ik(t) based on their names

and domains. For matched cookies, we compute the similarity score SCookies where the
“Number of matching cookies” counts cookies that are present in both web pages and have
identical names and domains:

46 Determining information relevance in the user’s browsing environment

SCookies = Number of matching cookies
Total number of cookies × 100 (3.14)

HTTP requests

During the crawl of v′
ij(t) and v′

ik(t), we intercept HTTP requests and responses made
during the crawl. We match requests based on exact URLs. Then we compute the
similarity score SHTTP:

SHTTP = Number of matching requests
Total number of requests × 100 (3.15)

Textual Content

To compare the textual content of web pages v′
ij(t) and v′

ik(t), we use Diff Match Patch [91],
a diff library based on Myer’s diff algorithm [160]. This algorithm computes the Levenshtein
distance d between two sequences of characters, which represents the minimum number
of single-character edits required to change one word into the other. We compute the
similarity score SText where |Tij| and |Tik| are the lengths of the textual content of the
web pages v′

ij(t) and v′
ik(t):

SText =
(

1− d

max(|Tij|, |Tik|)

)
× 100 (3.16)

3.5.2 Computing the similarity score Sscore

Algorithm 7 outlines the steps for computing the similarity score Sd of each dimension,
after which we aggregate to obtain the overall similarity score Sscore (cf. Equation 3.6)
between web pages v′

ij(t) and v′
ik(t).

Algorithm 7 Compute similarity between two web pages
1: function ComputeSimilarity(wi, t, uj, uk)
2: v′

ij(t)← V ′(t)[wi][uj]
3: v′

ik(t)← V ′(t)[wi][uk]
4: for each dimension d in {1, 2, . . . , n} do
5: Sd ← ComputeDimensionSimilarity(d, v′

ij(t), v′
ik(t))

6: Compute overall similarity score:
7: Sscore ← 1

n

∑n
d=1(Sd)

8: return {Sd}n
d=1, Sscore

3.5.3 Determining information relevance in UBE

From Equation 3.6, let U = {u1, u2, . . . , um} be the set of all UBE constructs used for the
crawl. For a given URL wi, we compute pairwise similarity scores between all crawls rij(t)

3.6 Threats to validity 47

for each pair uj, uk ∈ U . This gives us a set of similarity scores across all dimensions and
all pairs of UBE constructs:

S = {Sscore(rij(t), rik(t)) | uj, uk ∈ U, t ∈ T} (3.17)

By iterating over all attributes xi ∈ u, we determine the relevance of each attribute
using δ(xi) (cf. Equation 3.1). This leads to the construction of I = {xi ∈ ∆u | δ(xi) = 0}
the set of irrelevant attributes, and R = {xi ∈ ∆u | δ(xi) = 1} The set of relevant
attributes. Algorithm 8 outlines the steps to deduct the sets I and R hence defining a
new UBE construct u′′ ⊆ u that balances functionality and web privacy.

Algorithm 8 Deriving relevant and irrelevant attributes from valid static crawl data
1: function DeriveAttributes(U, D, V ′(t), wi)
2: Sscore ← empty list ▷ Store Sscore across V ′(t)
3: I ← empty set ▷ Initialize irrelevant attributes set
4: R← empty set ▷ Initialize relevant attributes set
5: for each pair of UBE constructs uj, uk ∈ U do
6: v′

ij(t)← V ′(t)[wi][uj] ▷ Retrieve data from V ′(t) for {wi, uj}
7: v′

ik(t)← V ′(t)[wi][uk] ▷ Retrieve data from V ′(t) for {wi, uk}
8: for each dimension d ∈ D do
9: Sd ← ComputeSimilarity(v′

ij(t)[d], v′
ik(t)[d]) ▷ Compute Sd

10: Sscore[uj, uk]← 1
n

∑n
d=1(Sd) ▷ Aggregate Sscore

11: for each attribute xi ∈ ∆u do ▷ Evaluate relevance of xi in ∆u
12: Swithxi

← Sscore(v′
ij(t), v′

ik(t)) ▷ Similarity across U (full UBE)
13: Swithoutxi

← Sscore(v′
ij(t) \ {xi}, v′

ik(t) \ {xi}) ▷ Similarity without xi

14: if Swithxi
− Swithoutxi

̸= 0 then
15: δ(xi)← 1 ▷ xi is relevant
16: Add(xi, R) ▷ Add to relevant attributes set
17: else
18: δ(xi)← 0 ▷ xi is irrelevant
19: Add(xi, I) ▷ Add to irrelevant attributes set
20: return I, R ▷ Return irrelevant and relevant attributes sets

3.6 Threats to validity

3.6.1 Bot detection

In Section 3.4, we addressed the validity of the crawl results. One reason these results could
be invalid is that websites may detect our crawler and treat it as a bot. Some websites
employ sophisticated techniques to detect bots and consequently change or restrict the
content they serve. These techniques involve analyzing browser behaviors, HTTP headers,
JavaScript execution environments, and network patterns [236, 144, 115, 108]. Simulating
the UBE while avoiding bot detection is a challenging problem because mimicking real

48 Determining information relevance in the user’s browsing environment

user behavior in browsers can introduce inconsistencies, which in turn become indicators
of automation and bot behavior [66, 96]. To mitigate the impact of bot detection on
our UBE simulation, browser instrumentation tools like Playwright helps us control real
browsers, thereby reducing the likelihood of detection. We also implement strategies to
address basic bot detection mechanisms, such as removing automation indicators like the
navigator.webdriver property in Listing 3.2. However, despite these measures, there
remains a significant chance that some websites may still detect our crawler as a bot,
especially when we begin experimenting with varying UBE constructs. Therefore, while
our approach minimizes detection risks, it is possible that some of the data we consider
valid is actually content intended for bots rather than humans.

3.6.2 Investigating web page functionality

Our study focuses on analyzing the JavaScript code itself rather than its runtime func-
tionality. While our approach examines observable differences across multiple similarity
dimensions, it does not determine whether these differences lead to functional changes.
For example, assessing the similarity of JavaScript code without executing and interacting
with the web page makes it difficult to understand the practical implications of any dis-
crepancies. JavaScript events such as clicks and other user interactions might malfunction
or exhibit performance issues that are not detectable through our analysis. A functional
analysis could provide deeper insights into the changes resulting from our work [35, 5].
Moreover, functionality encompasses not only usability but also performance, accessibility,
and alignment with user expectations. Crawlers lack the contextual understanding and
experiential insight that humans possess. Therefore, our method does not address the
nuances of functional degradation that may result from UBE modifications.

3.6.3 Scope of relevance of UBE attributes

Our method aims to identify irrelevant UBE attributes by observing the absence of
differences in web page behavior when certain attributes are modified or omitted. However,
the absence of observable changes does not conclusively prove irrelevance. Some attributes
may influence aspects of the web page that are not captured by our similarity dimensions,
such as server-side processing, analytics, or personalization that does not manifest in the
similarity dimensions we investigated. Furthermore, the relevance of UBE attributes may
vary across different contexts, user scenarios, or over time. A web page might not utilize
a specific attribute under certain conditions but rely on it in others. Our snapshot-based
analysis may not capture these conditional dependencies, potentially leading to incorrect
conclusions about attribute relevance.

3.7 Conclusion 49

3.7 Conclusion

In this chapter, we presented a novel approach for determining the relevance of information
in the UBE by simulating website visits using different UBE constructs. In this approach,
we propose to use web similarity techniques to assess how restricting or omitting specific
UBE attributes impacts website behavior. This method allows for the identification of
irrelevant attributes that can be safely restricted, thereby enhancing user privacy without
compromising usability.

We began by categorizing UBE information into geolocation, device, and browser
attributes and formalized our objective. We then explored different ways to simulate the
UBE. Through browser instrumentation, we elaborated a method to simulate varying
UBE constructs and crawl the web to study the impact of UBE attributes. For the crawl
process, we proposed a method to remove dynamic content and focus on static elements
in our analysis. We introduced Similarity Radar, a multidimensional approach to
compare web page behavior across similarity dimensions in the web page. This approach
allows computing similarity scores through which the impact of UBE attributes can be
assessed. These scores help determine irrelevant UBE attributes which can be restricted
to enhance user privacy.

Our novel approach not only provides a systematic framework to analyze the relevance
of information in the user’s browsing environment but also lays the groundwork for further
analysis. In the following chapter, we delve deeper into the impact of device information
beyond determining nonessential information. Specifically, we will examine how our
method can help determine the type and severity of changes in website behavior resulting
from modifying device information.

Chapter 4

Exploring the impact of device
information on the web

4.1 Overview

In the early days of the web, giving the same web page to different browsers could provide
very different results. As the rendering engine behind each browser would differ, some
elements of a page could break or be positioned in the wrong location. At that time, the
User Agent (UA) string was introduced for content negotiation. By knowing the browser
used to connect to the server, a developer could provide a web page that was tailored
for that specific browser to remove any usability problems. Over the past three decades,
the UA string remained exposed by browsers, but its current usefulness is being debated.
Browsers now adopt the exact same standards and use the same languages to display
the same content to users, bringing the question if the content of the UA string is still
relevant today, or if it is a relic of the past. Moreover, the diversity of means to browse
the web has become so large that the UA string is one of the top contributors to tracking
users in the field of browser fingerprinting, bringing a sense of urgency to deprecate it.

In this study, our goal was to understand the impact of the UA on the web and if
this legacy string is still actively used to adapt the content served to users. We crawled
270, 048 web pages from 11, 252 domains using 3 different browsers and 2 different UA
strings to observe that 100% of the web pages were similar before any JavaScript was
executed, demonstrating the absence of differential serving. Our experiments also showed
that only a very small number of websites are affected by the lack of UA information,
which can be fixed in most cases by updating code to become browser-agnostic. Our study
brought some proof that it may be time to turn the page on the UA string and retire it
from current web browsers.

52 Exploring the impact of device information on the web

4.2 Motivation

In the early days of the web, web browsers had different technological stacks and would
not interpret HTML tags the exact same way [95]. This created usability problems as
the exact same version of a web page would render differently on different browsers. To
remedy this problem, each browser started to include a User Agent (UA) header that
would expose the browser and its version to the server. Web developers could then provide
a version that was tailored to the user’s browser so that the website would appear as
intended with all the elements in the right place.

In 2023, more than 30 years after it was first officially introduced [105], the UA string
is still being used and its history is long, granular, and complex [125]. What was first
introduced as a tool to help servers to deliver the most optimized content to users became
a source of competition and now tracking [7]. In particular, UA exposed by browsers
can be leveraged by browser fingerprinting, which has seen a steady rise in the past
decade [132]. By running a little script on a web page, a server can collect a wide range
of information on the device being used by the user from the browser and its version to
the size of the screen or the GPU. The diversity of today’s devices and configurations
is so large that it is possible to identify users based only on this information. No other
identifiers like cookies are needed to track users on the Internet if a fingerprint is precise
enough. Because of the danger posed by fingerprinting, some browser vendors started to
make modifications to limit the information revealed by the browser. One such initiative
is the UA Client Hints by Google [226], whose goal is to freeze the UA string as it is one
of the most revealing information in fingerprints [62, 134].

In this study, we investigated the impact of the UA string on the web and whether
servers still leverage it to adapt the content that is served to users. We assessed this
impact by comparing the similarities between web pages when browsed using standard
browsers versus so-called None-browsers. None-browsers are the standard browsers from
which we removed the User-Agent request-header field, the navigator.userAgent, and
other identifying information in the JavaScript. For the comparison, we crawled 270, 048
web pages from 11, 252 domains and observed 100% similarity in the web pages before
the execution of JavaScript, demonstrating the absence of differential serving. However,
8.4% of the web pages changed after the execution of JavaScript, hence highlighting the
dependency on UA for content adaptation. We conducted a change impact analysis on
UA-dependent web pages and found that third-party scripts from ads, bot detection, and
content delivery network services were behind the changes in the web pages.

This study addressed the following research questions:

• RQ1: Do modern websites adapt to the UA?

• RQ2: What changes are created by different UA? What are their causes?

• RQ3: What is the impact of removing identifying information from the UA?

4.3 UA-Radar: Measuring Web Similarity in the Wild 53

4.3 UA-Radar: Measuring Web Similarity in the
Wild

4.3.1 Overview

Given the evolution of web technologies, measuring the similarity of two web pages is a
complex task that requires considering multiple dimensions. While a raw web page is
an HTML document sent by the web server, web pages include Cascading Style Sheets
(CSS) that describe how the page must be rendered in the browser, and JavaScript (JS)
programs that the browser relies on to interact with the user and inject dynamic behavior
into the web page. Therefore, an effective comparison of two web pages requires exploring
multiple dimensions of similarities to better detect the occurrences of any difference. To
that end, we introduce a similarity radar that relies on the following dimensions: 1) the
HTML markup which represents the structure of the page with only the nodes of the
DOM tree, 2) the HTML content which contains all the content of the nodes of the DOM
tree, 3) the JavaScript code present in the page, 4) the CSS code included in the page,
and 5) the visual rendering or visual similarity between two pages. Separating a page
along these dimensions ensures the comparison can be articulated around meaningful and
logical parts of a page. This helps us pinpoint more easily the source of a difference and it
also facilitates the comparison, as each dimension can have its own comparison algorithm
since JS code behaves differently from CSS code and regular textual content. Finally,
visual rendering was added to understand if providing a UA header with only the string
"None", which contains no specific device information would break a website or not.

In Figure 4.1, we present the similarity radar with three colored pentagons, each
representing a comparison between a standard browser and its corresponding None
browser counterpart. Specifically, we compare Chromium versus Chromium-None (CCN),
Firefox versus Firefox-None (FFN), and WebKit versus WebKit-None (WWN). The
vertices of each pentagon are anchored to the similarity scores for the five dimensions
discussed above: HTML structure, HTML content, visual rendering, JavaScript, and CSS.
The further a vertex is from the center of the chart, the higher the similarity score. As
such, a pentagon that covers a larger area within the chart represents a higher degree of
overall similarity. In the scenario where all three pentagons overlap towards the 100%
mark on all five dimensions, the radar charts reveal that the None-browsers are highly
similar to their standard counterparts. This indicates that the UA has a marginal impact
on the web page. On the other hand, if there are deviations from the overlap scenario
such as the FFN where the pentagon is smaller than the others, it suggests that Firefox is
impacted when the UA is not known.

Removing dynamic content To understand the impact of different UA, it is important
to filter out the content that may differ because a page may have been visited at a

54 Exploring the impact of device information on the web

Figure 4.1: Similarity radar for a web page: the above represents the similarity between
standard browsers and their None counterparts when accessing the home page of

www.academiabarilla.it. Each colored pentagon corresponds to a single comparison,
and its vertices represent the similarity scores across five dimensions: HTML structure,
HTML content, visual rendering, JavaScript, and CSS. Overlapping pentagons near the

100% mark indicate a marginal impact of the UA on the web page.

4.3 UA-Radar: Measuring Web Similarity in the Wild 55

different time of the day (like different articles shown on a news website) or that has
been personalized based on user preferences. To achieve this goal, we extract a backbone
for each visited web page by comparing the page with itself collected from two distinct
crawls. This way, the dynamic content is revealed and can be excluded from our similarity
analysis. For example, if we visit a web page twice using a standard browser (UA) and
download its resources as W1 and W2, A is the backbone of the visited web page such
that every resource in A belongs to both W1 and W2. Similarly, when investigating the
impact of UA, the same page is visited twice with a None-browser (UA′), and resources
are downloaded as W3 and W4. B is the backbone for the web page visited using UA′,
such that every resource in B belongs to both W3 and W4. Finally, a comparison between
A and B results in a similarity radar for the web page visited using UA and UA′ (cf.
Fig. 4.2).

using UA

using UA

using UA'

using UA'

Webpage
W1

Crawl #1

Crawl #2

Crawl #3

Crawl #4

Webpage
W2

Webpage
W3

Webpage
W4

Webpage diffing
W1 vs. W2

Webpage diffing
W3 vs. W4

Extract static content

Static content
for UA (A)

Extract static content

Static content
for UA' (B)

Static comparison
A vs. B

Difference between
UA and UA'

UA - standard browser
UA' - none browser

Figure 4.2: Highlighting web page similarity: standard browser (UA) versus
None-browser (UA′). We crawl each web page twice using standard browsers (Chromium,
Firefox, WebKit) and their None-browser counterparts. The dual crawl allows us to filter
out dynamic content and focus on the static content of the web page, thereby eliminating

potential bias in our analysis. Subsequently, we execute a static comparison between
standard and None-browsers’ pages to identify UA-attributable differences, thereby

facilitating the computation of similarity scores.

4.3.2 Implementation Details

Our methodology for measuring web page similarity is a combination of both existing tools
and research to evaluate the similarity of the HTML structure, HTML content, JavaScript,
and CSS. To measure the visual similarity of web pages, we propose a novel approach
for comparing web page screenshots using traditional image processing techniques. This
comprehensive approach provides an in-depth understanding of web page similarity in the
wild.

56 Exploring the impact of device information on the web

Removing dynamic content Every browser uses document object model (DOM)
to hierarchically organize nodes of the HTML document as a tree that renders in the
browser. This allows structural comparison of 2 DOM trees to capture the similarity of
the HTML structure of 2 web pages. Previous works have studied document structural
similarity algorithms based on tree edit distance, tree matching, and various approximation
techniques [18, 187, 25]. We use SFTM, a DOM tree matching tool, to measure the
similarity of the HTML structure of two web pages in the wild [23]. We choose SFTM
because, in contrast to other tree-matching algorithms, the algorithm behind it efficiently
processes any valid DOM tree in microseconds, not dozens of seconds. To assess the
similarity of the HTML structure of 2 web pages, we extract the DOM trees from the
HTML documents and feed them to SFTM. SFTM then builds a graph between the two
DOM trees with edges representing edit operations on the nodes. We then create labels
for the insertion, deletion, and replacement operations on the nodes in the graph. The
output of the process is an object containing the number of edges (|E|) and the number
of edit operations (|C|).

A similarity score (S1) is then computed as S1 = |C|/|E|.

Comparing the HTML content We use the Diff Match Patch library [91] that
implements Myer’s diff algoirthm [160] to compare the similarity of HTML content over
other text comparison tools for several reasons. Firstly, it has a high level of accuracy in
detecting similarities between text snippets even in the presence of minor variations, such
as white space or case sensitivity. Additionally, the library has the capability to handle
long text sequences efficiently, making it ideal for comparing HTML content which can
often be lengthy. Finally, the library offers a flexible API, allowing for customization of the
comparison process to meet specific requirements, such as ignoring HTML markups in this
context. These features make Diff Match Patch an ideal choice for evaluating the similarity
of HTML content. The Diff Match Patch library implements Myer’s diff algorithm [160].
To assess the similarity of the HTML content of 2 web pages, we feed the raw content
of the HTML documents to Diff Match Patch. The library returns a graph of edges (E)
with edit operations on the nodes. Diff Match Patch uses the Levenshtein distance (d) to
compute the number of edit operations between 2 streams of characters from the HTML
documents. A similarity score (S2) is then computed such as S2 = d/|E| [257].

Comparing JS & CSS To assess the similarity of JS or CSS on 2 web pages, we need
to first build an abstract syntax tree (AST) from each JS script and CSS stylesheet. We
apply a Locality-Sensitive Hash (LSH) function on the content of each file to determine
specific files with changes [50]. Once we extract ASTs to compare, similarly to the process
of comparing the HTML structure, we conduct a tree-matching process to obtain a graph
of edges and edit operations on nodes of the AST trees. We use GumTree, an AST diff
tool that allows a plug-and-play of language parsers, to compare the AST trees [73]. We

4.3 UA-Radar: Measuring Web Similarity in the Wild 57

Figure 4.3: Contour-based visual analysis: the figure illustrates the process of
contour-based analysis on a screenshot taken from www.academiabarilla.it. The top
image represents the original screenshot, while the bottom image shows the identified
contours (edges), representing different objects and shapes within the web page. This

technique enables a comparison of visual rendering, capturing significant changes such as
text modifications, broken links, or missing images.

then create labels for the insertion, deletion, and replacement operations on the nodes
in the resulting graph. The output of the process is an object containing the number of
edges (|E|) and the number of edit operations (|D|) reported by GumTree. A similarity
score (S3) is then computed such as S3 = |D|/|E|.

Comparing visual rendering State-of-the-art image comparison algorithms are based
on perceptual hashing, histogram, or by looking at pixel-by-pixel changes [60, 127, 206,
229, 241]. While those algorithms can detect the smallest difference when comparing
pictures or screenshots of web pages, they fail to capture more macro changes, like text
changes, broken links, or missing images. We introduce a novel approach to compare the
visual rendering of web pages based on the Canny edge detection algorithm to detect any
object or shape in the screenshot, which can represent text, multimedia content, and visual
sections of the web page regardless of its size [29]. Our algorithm computes the number of
edges (contours) in a screenshot of the web pages, hence calling it contour-based analysis.

We rely on the OpenCV [21] library to retrieve contours from an image. OpenCV
implements the shape analysis algorithm by Satoshi et al. [215]. For better accuracy, we
convert the original screenshot into a binary image and then find the contours in the
image. Using the contours in the image, we compute the areas of the contours and their
moments. In OpenCV, moments are the average of the intensities of an image’s pixels.

58 Exploring the impact of device information on the web

The area of a contour gives it relevance compared to other contours in the image while the
moment helps us determine the difference in the same contour. For example, web pages
on news websites often have the same contours, but with different text and photos in
the same placeholder. Using moments helps us determine if the content within the same
contour has changed. Algorithm 9 shows the steps we take to compute the properties of
our image contour analysis, where s is the file path of the screenshot, while cv::cvtColor,
cv::findContours, cv::contourArea, cv::boundingRect are arrays computed using OpenCV
functions. The image contour properties that we compute are the number of contours
(|C|), the weighted aggregate of contour areas (A), and the weighted aggregate contour
moments (M).

Algorithm 9 Contour properties: this algorithm takes an input image s, converts it to
a grayscale image g, finds contours C from the grayscale image, stores the area of each
contour in Y , calculates the bounding rectangle Z, and computes the weighted areas A
and moments M of the contours.

1: function FindContourProperties(s)
2: g = cv::cvtColor(s) ▷ Convert image s to grayscale image g
3: C = cv::findContours(g) ▷ Find contours C from image g
4: Y = cv::contourArea(C) ▷ Store area of each contour in Y
5: Z = cv::boundingRect(C) ▷ Bounding rectangle Z
6: Let A = 0, M = 0 ▷ Weighted areas A & moments M
7: for i = 1 to |C| do
8: A = A + Y 2

i ÷ Y
9: M = M + Z2

i ÷ Z

10: return <|C|, A, M>

Since the contour properties (C, A, and M) are heterogeneous, when comparing two
screenshots to find their similarity, we compute the geometric mean (GM) of the contour
properties of each screenshot. Finally, we compute the visual similarity score (S) as the
ratio of the absolute difference of the geometric means (GM1 and GM2) to their arithmetic
mean such that:

GM = 3
√
|C| × A×M (4.1)

S = |GM1 −GM2|
(GM1 + GM2)/2 (4.2)

4.4 Exploring the Impact of UA Changes

To explore the impact of UA on the web, we crawled websites with the default HTTP’s
UA header and with the "None" string in its place. We conducted regression tests based
on the similarity radars provided by UA-Radar. We then analyzed the edit operations
for the dimensions in each test to determine if the observed changes were due to the

4.4 Exploring the Impact of UA Changes 59

removal of identifying information in the UA or not. We also explore in this section why
those changes occurred.

4.4.1 Crawl Description & Statistics

We used a web testing and automation framework called Playwright to instrument standard
browsers, namely Chromium (C), Firefox (F), and Safari (with the WebKit engine W) [174].
To instrument the None-browsers, we modified the HTTP request-header field User-Agent
of the standard browsers and changed it to the word "None". We also modified information
that identifies the browser in the JavaScripts of the standard browsers. In particular, we
changed navigator.appVersion, navigator.platform, navigator.userAgent, and
navigator.vendor and placed the word "None" on each of those properties. Furthermore,
to avoid our modified browsers from being detected as bots, we set navigator.webdriver
to false. Detailed lists of navigator properties exposed on all browsers during the crawl
are available in the Appendices. We called the resulting browsers after their modified
versions: Chromium-None (CN), Firefox-None (FN), and WebKit-None (WN). In the
end, we ran the crawl with 6 browsers in total.

After preparing the browsers to be used, we decided on how to run the crawl. We
used the Tranco list to choose the domains to crawl [1]. We chose the Tranco list
as its ranking of website popularity surpasses other sources of web traffic analysis [175].
Nevertheless, previous studies have expressed concerns about the methodology used to
create popular lists, such as Tranco and their representativeness [199]. For that reason,
we randomized our crawl of domains on the Tranco list until we reached the limit of
our computing resources. We finally crawled homepages of 12, 000 domains with 1, 765
in the Top 10k domains, 6, 036 between the Top 10k and Top 100k, and 4, 199 between
the Top 100k and Top 1M. Aqeel et al. have also questioned the representativeness of
measurement studies that rely only on landing pages and no internal pages, citing a
difference in structure and content between the landing page and the internal pages[10].
This was not a concern for our study as our objective was to analyze the impact of
restricting the UA without being specific on the type of structure or content.

We crawled the homepage of each domain four times with each browser: twice (for
self-comparison to remove dynamic content) before the execution of JS to study differential
serving, and twice after the execution of JS to study content adaptation. This represents 24
visits per homepage in total. For differential serving, we waited for the domcontentloaded

event to be fired before saving on disk the complete HTML document with all first and
third-party JS and CSS files. For content adaptation, we waited 15 seconds after the load

event was fired to save everything on disk. To avoid being rejected due to a high number
of requests, our crawler sent exactly one request to one domain with one browser at a
time, and only multiple requests to multiple domains in parallel. The crawl ran for 1
month. A repository for the dataset of this paper is available in the Appendices.

60 Exploring the impact of device information on the web

If all 24 requests were not successfully crawled with the data correctly saved, the
crawled domain was ignored and all downloaded resources for the crawled web page were
deleted on the disk. In the end, we successfully crawled and saved data for 270, 048
web pages from 11, 252 domains. We stored 5.85 Terabytes of compressed files on the
disk. Table 4.1 summarizes the resources we saved on the disk during our crawl. It is
worth noting that JS takes most of the resources on the Internet today with 73% of the
downloaded files and 80% of disk space in our dataset.

Table 4.1: Summary of crawled resources

Resource type Number of files Resource size
HTML 180, 032 17 GB
JavaScript 73, 573, 872 4, 705 GB
CSS 27, 060, 120 959 GB
Screenshots 180, 032 167 GB
Total: 100, 994, 056 5, 848 GB

4.4.2 Empirical Results & Findings

In this section, we use the following notations: CCN for the comparison between pages
from Chromium against Chromium-None, FFN for Firefox against Firefox-None and
WWN for WebKit against WebKit-None.

Differential Serving

The average similarity scores before JS is executed are 100% for all the tested browsers
(CCN , FFN , and WWN) on HTML structure, HTML content, JS, and CSS (cf. Fig-
ure 4.4a). One takeaway is that web servers reply to all HTTP requests with the same
HTML document, regardless of the fact that the UA in the HTTP request header is
known or not. This is possible because browsers adopt the same standards, such as
responsive web design to adjust the rendering of web pages to browsing environments.
That means that, nowadays, websites focus on consistent user experience across devices
and browsers rather than device-specific content. The fact that UA is no longer the sole
factor in determining the content served makes them less relevant and hence removing the
significance of the UA can reduce the attack surface and improve the privacy and security
of users.

Content Adaptation

When JavaScript is executed, the average similarity scores remain 100% on JS and CSS.
However, there are changes in visual rendering, the HTML structure, and the HTML
content. 158 out of the 11, 252 domains are not 100% visually similar for at least one of

4.4 Exploring the Impact of UA Changes 61

HTML
structure

HTML
content

Visual
rendering

JavaScript

CSS

97

98

99

100

Chromium vs. Chromium-None (CCN)

Firefox vs. Firefox-None (FFN)

Webkit vs. WebKit-None (WWN)

(a) All

62 Exploring the impact of device information on the web

HTML
structure

HTML
content

Visual
rendering

JavaScript

CSS

90

95

100

Chromium vs. Chromium-None (CCN)

Firefox vs. Firefox-None (FFN)

Webkit vs. WebKit-None (WWN)

(a) News

4.4 Exploring the Impact of UA Changes 63

HTML
structure

HTML
content

Visual
rendering

JavaScript

CSS

99

100

Chromium vs. Chromium-None (CCN)

Firefox vs. Firefox-None (FFN)

Webkit vs. WebKit-None (WWN)

(b) Internet Services

64 Exploring the impact of device information on the web

HTML
structure

HTML
content

Visual
rendering

JavaScript

CSS

99

100

Chromium vs. Chromium-None (CCN)

Firefox vs. Firefox-None (FFN)

Webkit vs. WebKit-None (WWN)

(c) Business

4.4 Exploring the Impact of UA Changes 65

HTML
structure

HTML
content

Visual
rendering

JavaScript

CSS

99

100

Chromium vs. Chromium-None (CCN)

Firefox vs. Firefox-None (FFN)

Webkit vs. WebKit-None (WWN)

(d) Marketing

66 Exploring the impact of device information on the web

HTML
structure

HTML
content

Visual
rendering

JavaScript

CSS

96

98

100

Chromium vs. Chromium-None (CCN)

Firefox vs. Firefox-None (FFN)

Webkit vs. WebKit-None (WWN)

(e) Online Shopping

Figure 4.5: Average similarity scores across website categories: this figure illustrates the
average similarity scores between standard browsers and their None-browser counterparts

for the top five categories in our dataset.

4.4 Exploring the Impact of UA Changes 67

CCN , FFN , or WWN . Going with the same logic, 955 are not 100% similar on both
the HTML structure and HTML content for at least one of CCN , FFN , WWN . We
looked up the 158 domains with at least one difference and found that all those domains
also have at least one difference on both HTML structure and HTML content for at least
one of CCN , FFN , or WWN . We then established that, out of 11, 252 domains, 955
are changed by the lack of a known UA or other identifying information. That is, 8.4% of
our dataset was dependent on the UA. Table 4.2 lists the Internet categories to which
the UA-dependent domains belong. We used McAfee SmartFilter to obtain the Internet
categories of the UA-dependent domains [33].

Table 4.2: Internet categories of the UA-dependent domains

Category Number of Domains
News 180
Internet Services 156
Business 128
Online Shopping 109
Marketing 106
Blogs 89
Education 71
Entertainment 68
Information 38
Finance 10
Total 955

Table 4.3: Summary of problem severity levels for UA-dependent domains

Category Number of domains
IRRITANT 225
MODERATE 131
NO PATTERN 6
SEVERE 526
UNUSABLE 67
TOTAL 955

The last 5 radars depicted in Figure 4.5 provide a category-wise breakdown of the
average similarity scores between standard browsers and their None-browser counterparts
for the top 5 website categories in our data set, namely: news, internet services, business,
online shopping, and marketing. In the category "news" (cf. Figure 4.5a), the HTML
content and visual rendering dimensions have lower similarity scores compared to other
dimensions. This suggests that, in this category, the absence of a known UA tends to
influence the visual presentation and HTML content of the web pages more significantly.
For the "internet services", "business", and "marketing" categories (cf. Figures 4.5b, 4.5c,
and 4.5d), all three comparisons (CCN, FFN, and WWN) show similarity scores gravitating

68 Exploring the impact of device information on the web

towards 100% across all dimensions. This indicates the similarity of HTML content and
visual rendering, irrespective of the browser’s UA. Therefore, we can infer that the impact
of the UA on these categories is marginal. The category "online shopping" (cf. Figure 4.5e),
however, presents a contrast. The HTML content and visual rendering dimensions have
lower similarity scores, close to the category "news", but we observe a departure from the
pattern observed in other categories. While, the similarity scores for the WebKit browser
usually top the charts, followed by Chromium, in the category "online shopping" the
HTML content similarity score for WebKit drops dramatically, coming closer to Firefox.
Additionally, the visual rendering is impacted across all browsers. This may suggest
that online shopping websites employ more complex or diverse techniques for content
adaptation based on UA, which could potentially be linked to the need for enhanced user
experience or functionality specific to the website’s purpose.

The consistent performance of WebKit, then Chromium across categories prompts
further exploration. One plausible explanation could lie in the rendering engine used
by the browsers. Both browsers use Blink, however, WebKit consistently outperforms
Chromium in our analysis. While this difference could stem from how each browser
integrates and uses the Blink engine, the underlying reasons for this consistent trend
are not immediately apparent from our study and would require further investigation.
Such research could provide insights into how browser architecture and rendering engines
influence content adaptation.

Changes created by different UA and their causes

Due to the intensive manual efforts required to analyze the changes, out of the 955 domains
that changed because of the None-browser, we manually analyzed the changes for 204
domains. We detected 10 patterns of the impact of those changes and used the 10 patterns
to apply heuristics to the rest of the data set in order to classify the severity of the impact
on the usability of the web pages.

To build that classification, we borrowed the taxonomy of problem severity scale in
usability by Rubin et al. [191]. Algorithm 10 details the steps in conducting the heuristics
for that classification. The algorithm takes six inputs: C, CN , F , FN , W , and WN ,
which represent the used browsers: Chromium, Chromium-None, Firefox, Firefox-None,
WebKit, and WebKit-None, respectively. It then performs static comparison operations
between each standard browser and its None counterpart to determine the differences,
denoted as ∆CCN , ∆FFN , and ∆WWN .

If all three differences are identical, the algorithm then computes the differences
between every pair of standard browsers, denoted as ∆CF , ∆CW , and ∆FW . It also
assigns the three differences from the standard to None comparisons to the list R, and
the differences from the standard to standard comparisons to the list N . Following
this, the algorithm checks for specific CSS and HTML properties and attributes in the
differences. These include the CSS properties "margin-top, bottom", "white-space: wrap",

4.4 Exploring the Impact of UA Changes 69

Algorithm 10 Change impact analysis: this algorithm assesses the impact on a web
page when changes occur due to the use of a None-browser. It evaluates the differences
detected in the static comparison (as illustrated in Figure 4.2) of both standard and
None-browsers. Subsequently, these differences are categorized based on specific patterns
that we identified during manual analysis.

1: function FindChangeImpact(C, CN, F, FN, W, WN)
2: Let ∆CCN ← StaticComparison(C, CN)
3: Let ∆FFN ← StaticComparison(F, FN)
4: Let ∆WWN ← StaticComparison(W, WN)
5: Let ∆CF ← StaticComparison(C, F)
6: Let ∆CW ← StaticComparison(C, W)
7: Let ∆FW ← StaticComparison(F, W)
8: if ∆CCN = ∆FFN & ∆FFN = ∆WWN then
9: Let R← [∆CCN, ∆FFN, ∆WWN]

10: Let N ← [∆CF, ∆CW, ∆FW]
11: if margin-{top,bottom} ∈ ∆CCN then
12: return"Margin collapsing fail"
13: else if white-space: wrap ∈ ∆CCN then
14: return"Soft-wrap fail"
15: else if page-break-before,after ∈ ∆CCN then
16: return"Unnecessary blank lines"
17: else if <tag css> ∈ ∆CCN then
18: return"Inline css changes"
19: else if ∈ ∆CCN then
20: return"Lazy loading fail"
21: else if <iframe width|height> ∈ ∆CCN then
22: return"Displaced iframe"
23: else if <tag inactive|disabled> ∈ ∆CCN then
24: return"Disabled component"
25: else if CAPTCHA|403|error ∈ ∆CCN then
26: return"Browser not identified"
27: else if R ̸= N then
28: return"Content restriction"
29: else
30: return"No pattern"
31: else
32: Let x← ∆CCN ̸= ∆FFN ̸= ∆WWN
33: Let y ← ∆CF ̸= ∆CW ̸= ∆FW
34: if x & y then
35: return"No impact"
36: else
37: return"No pattern"

70 Exploring the impact of device information on the web

(a) Standard browser - normal margin rendering (b) None browser - failure of margin collapse

Figure 4.6: Comparison of web page rendering with standard and none browsers,
illustrating a ’severe’ problem severity case where a failure of margin collapse occurs in

the none browser. The affected area is highlighted in red.

"page-break-before, after", any CSS attributes associated with HTML tags, the image
source attribute, and the width or height attributes of iframes. For each of these, if they
are found in the differences, the algorithm returns a corresponding impact statement.
To select the properties and attributes that the algorithm used, we conducted a manual
analysis of 100 websites to build a list of HTML and CSS properties that cause changes
in the web page when the UA is not known. Afterward, we utilized that list to classify
the levels of problem severity identified by our change impact analysis.

Listing 4.1: Example of unintentional restriction: a function that relies on known UA
(parameter b) in a script from Google Ad Manager.

function rn(a, b, c, d) {
O(a.K, {
transition: c / 1E3 + "s",
"transition-timing-function": d,
"margin-top": b

})
}

Additionally, if a disabled or inactive tag is found, or any instance of CAPTCHA,
HTTP 403 error is detected, the algorithm will return the respective impact statements. If
the differences in R are not identical to this N , the algorithm returns "content restriction".
If none of the specific properties or attributes is found, it returns "no pattern". If the
three differences are not identical, the algorithm checks if each difference is unique and
returns "no impact" if that is the case. Otherwise, it returns "no impact".

Below are the definitions of the problem severity categories that we use:

4.4 Exploring the Impact of UA Changes 71

1. Irritant: The problem occurs only intermittently, can be circumvented easily, or is
dependent on a standard that is outside the product’s boundaries. Could also be a
cosmetic problem.

2. Moderate: The user will be able to use the product in most cases, but will have to
undertake some moderate effort in getting around the problem.

3. Severe: The user will probably use or attempt to use the product here, but will be
severely limited in his or her ability to do so.

4. Unusable: The user is not able to or will not want to use a particular part of the
product because of the way that the product has been designed and implemented.

Table 4.4: Change impact analysis of the 955 UA-dependent websites: this table details
the specific changes detected, their associated impact, the problem severity level, and the
number of occurrences, providing a comprehensive overview of how changes in the UA

affect different aspects of the web page.

Change Impact Severity Occurences
CSS property: margin-{top,bottom} Failure of margin collapsing SEVERE 252
{∆CCN ̸=∆FFN ̸=∆WWN} & {∆CF ̸=∆CW ̸=∆FW} No impact IRRITANT 225
Missing image SRC reference Failure of lazy loading SEVERE 101
CSS property: white-space: wrap Failure of soft-wrap SEVERE 99
Change of CSS attribute(s) Change of inline CSS MODERATE 83
CSS property: page-break-{before,after} Unnecessary blank lines SEVERE 74
iFrame width | height Displaced iframe MODERATE 48
{∆CCN = ∆FFN = ∆WWN} ≠ {∆CF = ∆CW = ∆FW} Content restriction UNUSABLE 38
CAPTCHA or 403 Error or Browser Error Browser not identified UNUSABLE 22
CSS :disabled | :inactive Disabled component UNUSABLE 7
No pattern - - 6

It should be noted that we do not address the behaviour and interaction with the
functionality of the web page, so the use of the word "UNUSABLE" in the problem severity
scale by Rubin et al. should not create confusion. Table 4.4 shows the classes of the
impact of the changes and the severity of the impact. On 425 out of the 955 domains
(44.5%), the impact of browsing those domains with a None-browser was spacing issues
(failure of margin collapsing, failure of soft-wrap, and unnecessary blank lines), while on
515 domains, the impact was driven by CSS issues. Table 4.3 shows the distribution of
problem severity for the 955 domains, revealing that just 7% of the domains were unusable
when we browsed them using a None-browser.

Some HTML elements change while the browser adjusts the web page to an unknown
UA. These changes only occur after the execution of JavaScript. Therefore, the cause
of the changes is located in JS scripts on the web pages. Hence, we can say that JS
is the cause of the changes and that CSS and HTML are affected by those changes.
Looking at the content of JS scripts on the web pages, we did not find a pattern of similar
instructions in the scripts. However, the sources of the scripts produced a pattern. 76%
of the SEVERE issues were caused by third-party scripts from Google Ad Manager, while
93% of all changes in the HTML content comparison were caused by third-party scripts

72 Exploring the impact of device information on the web

from ad domains. The remaining 7% of domains responsible for UA changes were from
bot detection and content delivery networks (CDN) websites.

Current ad-displaying scripts rely on known browsers, so the use of None-browsers
creates invalid references. For example, in Figure 4.6, we showcase a prominent instance of
a ’severe’ problem severity case that we investigated during our study. In the first subfigure,
we see the web page as accessed through a standard browser, where the rendering and
layout are as intended. However, the same web page, when accessed through a None
browser, as shown in the second subfigure, experiences a failure of margin collapse, a
fundamental aspect of CSS layout. This failure results in a distortion in the web page’s
layout, as highlighted in red in the figure. Upon investigating the cause of this issue, we
found a script from Google Ad Manager that was affecting the rendering of the page in
None browsers. As presented in Listing 4.1, the function ‘rn(a, b, c, d)‘ applies a CSS
transition and a top margin to an element based on the known UA (parameter ‘b‘). When
the User Agent is not recognized, as in the case of a None browser, the function fails to
apply the intended styles, causing the observed layout distortion.

(a) Standard browser - normal page access

(b) None browser - access intentionally restricted

Figure 4.7: Example of "unusable" problem severity: access to the web page is
intentionally restricted when using a None Browser.

Listing 4.2: Example of intentional restriction: a function that runs a CAPTCHA test
when the UA is not recognized.

function Hl() {
var a, b;

4.4 Exploring the Impact of UA Changes 73

return "function" === typeof(null == (a = E.navigator) ? void 0 : null == (b
= a.userAgentData) ? void 0 : b.getHighEntropyValues)

}
...
Hl() ? (d(), t(r.linkAttribution)) : r.enableRecaptcha && p("require", "

recaptcha", "recaptcha.js");

We classified such cases that cause usability issues due to code written to acknowledge
the UA as an unintentional restriction. However, the cause of the remaining 7% of the
issues ranked as "UNUSABLE" was intentional. For example, In Figure 4.7, we illustrate
a case of the "unusable" problem severity level. The first subfigure portrays a standard
browser smoothly accessing a web page normally without any issues. The second subfigure
illustrates a None browser attempting to access the same web page but being intentionally
restricted. This is an example of the "unusable" severity level, where the user’s ability
to access the web page is hindered due to the intentional restriction applied when an
unrecognized UA is detected. This restrictive behavior is commonly driven by JavaScript
scripts embedded in the website that use the UA string to dictate access or modify the
user’s experience. As shown in Listing 4.2, some scripts initiate a CAPTCHA test or
a similar challenge when they fail to recognize the UA. In the case of a None browser,
whose UA string is not recognized, this results in an intentional restriction, preventing
the user from accessing the site’s content.

In Figure 4.8, we present the distribution of problem severity across the top five
website categories: news, Internet services, business, online shopping, and marketing.
The heat map allows us to observe the prevalence of the different severity levels, namely,
irritant, moderate, severe, and unusable, across these categories. The color intensity in
each cell of the heat map is proportional to the number of websites in a category that
falls under a particular problem severity level. Lighter colors indicate a lower count,
while darker colors represent a higher count. The heat map provides a visual summary
of our findings, revealing the extent to which different website categories are impacted
by changes in the UA. For example, we can observe that the ’Severe’ problem severity
level is particularly prevalent in the ’news’ and ’online Shopping’ categories. Conversely,
the ’Internet services’ and ’marketing’ categories have a substantial number of websites
with ’irritant’ or ’moderate’ problem severity levels. The final observation is the pattern
of the ’unusable’ severity level, where the majority of occurrences are concentrated in the
’Internet services’ and ’online shopping categories’.

Impact of removing identifying information from the UA

Firstly, the UA request-header field in the HTTP request has no impact on the web server’s
response. Secondly, the navigator.userAgent is used marginally for ads, bot detection,
and CDN services, and the use of UA, in this case, causes usability problems of different
severity. Additionally, we found that browsers could still determine that a None-browser

74 Exploring the impact of device information on the web

News Internet Services Business Online Shopping Marketing

Categories

IR
R

IT
A

N
T

M
O

D
E

R
A

T
E

S
E

V
E

R
E

U
N

U
S

A
B

L
E

S
ev

er
it

y
L

ev
el

s

12 42 17 19 51

24 10 18 22 19

141 52 34 150 21

0 19 2 22 4

0

20

40

60

80

100

120

140

N
u

m
b

er
of

W
eb

si
te

s

Figure 4.8: Problem severity distribution across website categories: this heat map depicts
how changes in the UA impact different website categories, highlighting the prevalence of

problem severity levels in each category.

4.5 Discussion 75

is related to its descendant standard browser. The usability problems experienced due to
the removal of identifying information in the UA could be fixed by adopting a feature
detection approach in determining the browser in the case of bot detection or by adopting
a browser-agnostic approach in writing the code in the case of ads and CDN services.
This approach ensures that the user’s privacy is protected while also promoting a secure
web browsing experience.

4.5 Discussion

While useful when it was introduced 3 decades ago, our study shows that the User-Agent
HTTP header, which contains precise device information, has stopped being relevant on
today’s web. With the crawls that we performed, our results highlight that web servers do
not adapt their response anymore based on the provided HTTP UA header. By providing
different UA, all responses we collected for a single web page were identical and the only
differences we observed were done by scripts that would parse the provided user agent at
runtime. Then, the data we obtained during our crawls highlight the two following key
insights:

• All the standardization efforts pursued by the major web actors have had a real
positive impact on the web. Browsers have become robust enough that they do
not need web pages tailored for them. The browsers used on the market today
implement the same set of features and provide a near-identical experience when it
comes to rendering pages.

• There are no major hurdles to retiring the historical HTTP User-Agent header
and transitioning towards a less-granular solution like UA Client hints [109]. As
mentioned in Section 4.6, the HTTP User-Agent header contributes a lot to the
field of browser fingerprinting as it is one of the top attributes revealing the most
information. Without it, the privacy of web users would be severely improved as
there would be a lot fewer leaks of precise and unique information on the web.

4.6 Impact of None-browsers on web privacy

UA strings are a critical component in various tracking techniques, including browser
fingerprinting, posing a significant concern for web privacy [67]. In our study, we first
examined the impact of None-browsers on web page usability. To understand the potential
implications on tracking techniques, we analyzed how domains in our data set accessed
UA information via the JavaScript API. Specifically, 3,772 domains out of 11,252 access
the UA via the JavaScript API, a common method used in browser fingerprinting [164].
Cross-referencing our dataset with a list of known trackers from uBlock Origin (uBO)
[103], we found that 612 domains (5.4%) out of the 11,252 were on the uBO list. 38.3%

76 Exploring the impact of device information on the web

Domain category Number of Domains
Total domains analyzed 11, 252
Domains accessing UA via JS API 3, 772
Domains with Vary UA-related header 584
Domains listed on uBO 612
UA-dependent domains 955

Table 4.5: Web privacy implications of UA usage: this table presents an analysis of
domains based on their interaction with UA.

of these trackers were affected by changes in the UA, suggesting that many trackers can
operate without issues in the face of None-browsers or may be using other methods beyond
UA strings to track users. Our findings also highlight the current state of web practices.
Only 129 domains out of 11,252 contained Accept-CH response headers, suggesting that
the use of Client Hints for content adaptation is not yet widespread [109]. Moreover, 584
domains return a Vary header that indicates their use of UA. Finally, our study suggests
that the majority of the web remains accessible even without UA information, with only
7% of the domains becoming unusable when browsed using a None-browser. This could
encourage further adoption of None-browsers, thereby increasing user privacy.

4.7 Threats to Validity

A lot of process can run on the server-side of a website and this paper focuses on the
impact of UA on the client-side. This may threaten our conclusion on the impact of the
UA on the web since the server-side is also part of the web ecosystem.

Our conclusion on the impact of the UA on the web is also based on the fact that
the None-browsers provided the string "None" for UA and other identifying information.
Empty, null or undefined UA and other identifying information may incur more breakages
and other findings.

4.8 Conclusion

In this study, we investigated the role of the User Agent in today’s web by crawling We
crawled 270, 048 web pages from 11, 252 domains with different configurations. Our data
shows that websites no longer negotiate content based on the UA field in the HTTP
request headers. Through JS scripts, Navigator.userAgent can be used for content
adaptation, as few websites experience usability issues when they face an unusual user
agent. However, the majority of those issues are unintentionally caused by third party
scripts from ads, bot detection, and CDN services and can be fixed by writing browser-
agnostic code. By cross-referencing our dataset with a list of known trackers from uBlock
Origin, we discovered that a substantial number of known trackers did not change due to

4.8 Conclusion 77

None-browsers, suggesting their robustness or the use of other tracking methods beyond
UA strings. The main takeaway of our results is that after three decades of usage, it
may be finally time to retire the HTTP User Agent header and transition towards a
more privacy-preserving way of sharing device information. The UA has been abused too
many times over the years to reveal information about users and sometimes even identify
them by contributing to their browser fingerprinting. Removing it from today’s ecosystem
would be a great step forward for online privacy and would contribute greatly to reducing
the clutter from legacy technology.

Chapter 5

Exploring the geolocation impact on
enforcing privacy policies

5.1 Overview

Regulatory frameworks, such as GDPR in Europe, CCPA in the United States, and LGPD
in Brazil have made cookie consent banners a standard feature on websites, seeking user
consent for cookies and tracking technologies. However, the visibility and impact of these
banners may vary based on the user’s geographic location. In our study, we introduce a
novel automated visual detection technique to explore the enforcement of cookie consent
banners. This methodology outperformed earlier techniques that depended on manual
observations or inspection of HTML/CSS elements. Our analysis of 70, 390 web pages
visited across five countries on different continents revealed geographical disparities in
banner visibility, with France exhibiting the highest prevalence at 69% and Japan the
lowest at 27%. This variation in visibility correlates with the state of cookies and tracking.
Our further analysis of 351, 950 web pages indicated that third-party cookies increased post-
banner interactions, notably in the US. Conversely, France, with its stringent regulations,
maintained the lowest number of third-party cookies. Tracking trends closely followed
these patterns, highlighting the relationship between banner visibility and user tracking.
Our study underscores the significance of our new automated visual detection method,
given that banner visibility has a direct correlation with tracking activities, highlighting
its necessity for accurate insights into web privacy and user consent practices.

5.2 Motivation

The advent of the General Data Protection Regulation (GDPR) in Europe and the
California Consumer Privacy Act (CCPA) in the United States has led to a significant
increase in the prevalence of cookie consent banners on websites. These banners, which
request the user consent for the use of cookies and other tracking technologies, have

80 Exploring the geolocation impact on enforcing privacy policies

become a ubiquitous part of the online experience [93]. However, the visibility and the
impact of these banners can vary significantly depending on the geographic location of
the user [230].

The methodologies in previous studies on the prevalence of cookie consent banners
have relied on manual observations of small numbers of websites [153, 15, 97], or the
inspection of HTML/CSS elements to detect those banners at scale [116, 119, 167, 19,
186, 198, 228]. There is a question of whether the presence of those elements on the web
page guarantees the visibility of consent banners. In some cases, the banner is disabled
if the user is visiting the website from a non-regulated area. Another challenge is the
limited use of languages to understand the content of the banner to declare it a cookie
consent banner. We conduct automatic visual detection of banners to investigate the
visibility of consent banners in five countries from different continents. To address the
limitation of languages we use automatic translation to decide on the type of the banner.
We, furthermore, examine the geographical impact of those consent banners on the state
of cookies and tracking in those countries. Our study sheds light on the following research
questions:

• How does the visibility of cookie consent banners vary across continents?

• How does the state of cookies get impacted by regional variation in banner visibility?

• How does the state of tracking get impacted by regional variation in banner visibility?

To examine the variability in cookie consent banner visibility across continents and its
impact on cookies and tracking, we introduced a novel technique for automated visual
detection of these banners. With automatic translation, we addressed language limitations
in identifying banner types. We further crawled across 14, 078 domains from five countries
on different continents, under various scenarios, to answer the above research questions.
Our newly introduced automated visual detection technique has proven to be considerably
more effective than previous methods for identifying cookie consent banners. Traditional
techniques, such as inspecting HTML/CSS elements or relying on manual observations,
often face challenges. They might not accurately detect banners, especially when these
are disabled in non-regulated regions. For instance, past research using these traditional
methodologies reported a 47% prevalence of banners in Europe [186]. In contrast, our
visual approach detected a prevalence of 69% in France. Such differences highlight the
precision of our methodology. Moreover, our in-depth exploration across various web
pages offers insights into the state of cookies and tracking, emphasizing the relationship
between banner visibility and user tracking practices.

In the following sections, we will discuss our methodology, present our data collection
and findings, and discuss their implications. We will also present the threats to the validity
of our approach before concluding the study.

5.3 Web Crawling Methodology 81

OpenWPM

OpenWPM Crawls

Brazil (BR)

France (FR)

Japan (JP)

South Africa (ZA)

United States (US)

OpenWPM running on
Ubuntu LTS 22.04

No Interaction with
Cookie Banners

Cookie Consent Banner Detection

Location-Based Impact Analysis

Language Detection Banner Classification
Text ExtractionBanner Detection

State of cookies and HTTP requests
Identifying ID cookies

Determining third-party HTTP requests

Determining tracking HTTP requests

Prevalence of cookie consent banners

14,078 Websites

14,078 Websites

14,078 Websites

Accept Cookie
Consent Banners

Reject Cookie
Consent Banners

Connecting
to Countries

Geo-Differential AnalysisConfiguring OpenWPM

Connecting to VPN
Running the Crawls
and Analysis

Figure 5.1: Overview of our methodology for analyzing the prevalence of cookie consent
banners and the state of cookies and tracking. The process begins with the preparation of
the crawler, ensuring accurate data collection and integration of browser extensions to
accept or reject cookie consent banners. This is followed by establishing a geo-location
connection using HOXX VPN. The crawler is then executed in three distinct instances:

without interaction with the banner, with IDCAC accepting consent banners, and with
Consent-o-Matic rejecting them. Screenshots are captured during the first instance for

subsequent visual detection of banners. The final stages involve identifying websites
displaying the banners and analyzing the state of cookies and tracking.

5.3 Web Crawling Methodology

In our empirical exploration of the enforcement of cookie consent banners, we employed
our novel automated visual detection methodology to examine geographical disparities.
Selecting countries was pivotal; our aim was to contrast regions with stringent data
protection regulations, like those under GDPR and CCPA, against areas without such
comprehensive regulations. While we aspired to cover more than five geographically diverse
countries, we faced specific challenges. Reliable VPN services, essential for authentic geo-
location representation, were sparse, leading to South Africa being our sole representation
from Africa. Additionally, our constrained computing resources posed challenges for
extensive crawls across numerous countries. Given these considerations, we selected Brazil,
Japan, and South Africa – each distinctive and not under comprehensive regulations like
GDPR or CCPA. We also incorporated France, impacted by GDPR, and the United
States, impacted by CCPA. After determining the countries for our study, we conducted
our research through a structured five-stage process. First, we prepared our crawler for
efficient data collection and chose a reliable VPN service to maintain authentic connections
to target countries. With this foundation, we ran the crawler across countries in three
distinct scenarios: pre-interaction with the consent banner (No Interaction), and post-
interaction (accept, and reject). We reran the post-interaction scenarios to facilitate
the identification of ID cookies. During the post-interaction scenario, screenshots were
captured to be used in the visual detection of banners.

82 Exploring the geolocation impact on enforcing privacy policies

I d
on

’t
ca

re
ab

ou
t

co
ok

ie
s

C
oo

ki
e

Q
ui

ck
M

an
ag

er

C
on

se
nt

-O
-M

at
ic

C
oo

ki
eB

lo
ck

M
in

im
al

C
on

se
nt

C
on

se
nt

D
ia

lo
g

R
em

ov
er

Po
lis

h
C

oo
ki

e
C

on
se

nt
G

D
PR

N
ot

C
on

se
nt

G
lo

ba
l C

on
se

nt
M

an
ag

er

Su
pe

r
A

ge
nt

0%

5%

10%

15%

20%

30%

50%
Accept
Reject

Figure 5.2: A comparison of the success rate of interaction, through either acceptance or
rejection of cookies, by different Firefox browser extensions. The results are based on a
sample experiment conducted on 100 domains, aiming to decide on suitable extensions for
our analysis of the state of cookies and tracking, which required not removing cookies or

blocking HTTP requests.

5.3 Web Crawling Methodology 83

Country Approach Domains with banners Banner Prevalence

BR visual 4,932 35%
z-index 3,788 27%

FR visual 9,723 69%
z-index 7,467 53%

JP visual 3,801 27%
z-index 2,919 21%

ZA visual 5,849 43%
z-index 4,492 33%

US visual 4,435 32%
z-index 3,406 25%

Table 5.1: Comparison of the number of domains displaying cookie consent banners and
their corresponding prevalence percentages in five countries: Brazil (BR), France (FR),

Japan (JP), South Africa (ZA), and the United States (US), as identified by two different
detection methods - our automated visual approach and the z-index approach.

5.3.1 Preparing the crawler

Our web crawler is based on OpenWPM, a web privacy measurement framework designed
to collect data for privacy studies [68]. OpenWPM utilizes Mozilla Firefox as its browser
for operation. Within Firefox, an OpenWPM extension is installed to facilitate the
collection of web measurements. We explored different approaches to enhance our crawler’s
capabilities, particularly in interacting with cookie consent banners. BannerClick [185],
introduced by Rasaii et al. in their study [186], appeared to be a potential fit. However,
integrating it without disrupting our existing pipeline proved challenging due to the
specific browser profile it uses. Achieving compatibility would require having access to the
identical browser profile and the precise browser version used in their study, necessitating
the exploration of alternate avenues. While the CookieBlock study discusses the ability to
engage with banners dynamically, the code provided falls short of implementing that [19].

Having not found a solution in recent studies, we searched for capable extensions in
Firefox Browser Add-ons. Our search criteria included extensions that did not remove
cookies or block HTTP requests, as we would need that data for analyzing the state of
cookies and tracking. The top 10 extensions we found were: I don’t care about cookies
(IDCAC) [107], Cookie Quick Manager [44], Consent-O-Matic [43], CookieBlock [45],
Minimal Consent [157], Google Consent Dialog Remover [90], Polish Cookie Consent [177],
GDPR Not Consent [83], Global Consent Manager [86], and Super Agent [214]. We
collected a sample of 100 domains to experiment with those extensions and choose one
to use for our data collection process. We manually visited the web pages of those
100 domains to observe when cookie consent banners are displayed. We then manually
interacted with the banners and observed the cookies set in the accept and reject
scenarios and, then, built a ground truth data set to assess the performance of the chosen
extensions to test. Furthermore, we used a crawler to run a Firefox browser with different

84 Exploring the geolocation impact on enforcing privacy policies

profiles, each with a separate extension among the chosen Top 10, and an extension we
built to track the interaction with the cookie banners. Finally, we compared the cookies
set by each extension in the accept and reject scenarios against our ground truth data
set. Figure 5.2 shows the success rate of interaction (accept or reject) by each of those
extensions. IDCAC accepted banners the most (53%) but Consent-O-Matic rejected those
banners the most (38%). Note how CookieBlock is close to Consent-O-Matic without
the use of the feature extractor. CookieBlock could have done better had the code been
available. Eventually, we had to use two extensions instead of one, IDCAC for accepting
cookie consent banners and Consent-O-Matic for rejecting them.

Despite these challenges, our methodology accounted for the reality of cookie consent
banners on the Internet. There are instances where websites impose a minimum set of
functional cookies that cannot be rejected [117]. Furthermore, dark patterns in cookie
consent interfaces often make it difficult to fully reject cookies or obfuscate the process of
doing so [204, 102]. In our approach, using IDCAC to accept cookies and Consent-O-Matic
to reject them helped us interact better with the banners during our study. However, we
recognize that this approach does not capture every detail that our visual approach can.
Also, building a new tool based on our visual detection of cookie consent banners was
outside the scope of this study due to time and resource constraints.

5.3.2 Connecting to countries

For our analysis, we needed to connect our crawlers to the countries we targeted to collect
authentic measurements. We could use virtual private network (VPN) services or run
our crawlers in different cloud computing regions. Due to resource constraints, we chose
the avenue of VPN services. We considered NordVPN [166], HOXX VPN [104], and
ProtonVPN [178]. Our choice of those three was influenced by several factors. First, their
extensive server coverage ensures a wide geographical spread, which is crucial for our study.
Second, their proven stability and speed are essential to maintain the integrity of our data
collection process [255, 30, 232]. Lastly, previous research endeavors have highlighted their
reliability in ensuring genuine localized browsing experiences, making them ideal for our
study [150, 222, 258]. While NordVPN had worked initially, they eventually suspended
our account because their terms of service do not allow web scrapping. Concerned that
ProtonVPN shares almost similar terms with NordVPN and could lead us to the same
outcome, we opted for HOXX VPN and contacted them to let them be aware of our crawl
scenarios. The adoption of HOXX VPN ensured that websites presented our crawlers with
content tailored to users from the target geographic locations. This helped us understand
the variability of cookie consent banners across different regions.

5.3 Web Crawling Methodology 85

0 100 200 300 400

2K

4K

6K

Domains

No Banner

0 5K 10K 15K

80K

160K

240K

320K

Domains

No Interaction

BR FR JP ZA US

Figure 5.3: Distribution of third-party cookies across websites for different countries. The
upper plot illustrates the number of third-party cookies served to the user when no

banner is shown and the plot at the bottom illustrates when the user has not interacted
with the consent banner yet.

5.3.3 Visual detection of banners

To detect cookie consent banners, we used different tools and approaches. First, we used
the screenshots captured using OpenWPM in the crawl without interaction with the
banners. Then, we used OpenCV [21], an open-source computer vision library, to detect
the presence of these banners. Our process began with transforming the color screenshot
into a grayscale image, simplifying the image by removing color data and allowing us
to concentrate on structural details. We further simplified the image by converting the
grayscale image into a binary format. It is important to note that not all banners create
an obscure background or significantly alter pixel intensity. Therefore, instead of solely

86 Exploring the geolocation impact on enforcing privacy policies

0 1K 2K 3K

20K

40K

60K

80K

Domains

Accept

0 1K 2K 3K

20K

60K

80K

100K

Domains

Reject

BR FR JP ZA US

Figure 5.4: Distribution of third-party cookies across websites for different countries. The
upper plot illustrates the number of third-party cookies after the user accepts cookies, and
the plot at the bottom illustrates the situation when the user rejects consent to cookies.

relying on pixel intensity to distinguish between banners and the background, we based
our analysis on geometric attributes. Utilizing the binary image, we performed a contour
analysis to identify potential banners, focusing on rectangular shapes [216]. This is because
cookie consent banners commonly present themselves as rectangles, regardless of their
background. We also considered the relative size and position of these rectangles. This
approach helped us to detect rectangle or four-sided objects included in the web page.
While some of the detected rectangle objects could be a cookie consent banner, at this
point we could not reliably determine that as a fact, so we wanted to make a distinction
between a cookie consent banner and any other rectangle object. Soe et al. determined
that the typical height of a banner is at least one-third of the browser screen height [203].

5.3 Web Crawling Methodology 87

It is difficult to determine a threshold for the height of a typical banner, so we assumed
that each rectangle object detected from the screenshot is a potential banner.

We used Tesseract, an optical character recognition (OCR) engine that extracts text
from images [218], to determine the textual content within the pixel coordinates of
identified banners. As the banners were detected from the binary images where text
details could be lost, we applied the coordinates back to the original screenshots when
using Tesseract. Since we were crawling from different geo-locations with various languages,
it was necessary to ensure that Tesseract knew the language of the text in the banner.
This step was important as the language used on the web page can vary based on the user
geolocation, and specifying that language to Tesseract improved accuracy in extracting
text from the banners. For that, we used Google Cloud Translation API [40], to detect
the language used on the crawled websites and then specify those languages when running
Tesseract. After that, we had groups of text, each deemed to be a banner and we wanted
to determine whether any of those banners was a cookie consent banner. Therefore, we
proceeded to the classification of the banners.

5.3.4 Classification of banners

One of the techniques used by previous studies to determine a cookie consent banner was
to match pre-selected words against the text from web pages [186]. While this can have
limited success in the case of common languages, it becomes a problem when the language
on the crawled website is unknown. For that, we have decided to use the same dataset
as discussed previously, of detected languages on the websites to classify the banners.
Our goal was to isolate cookie consent banners from other types of banners. To achieve
this, we employed the Term Frequency-Inverse Document Frequency (TF-IDF) model to
transform text from each banner into a vector representation that we can use in clustering
techniques [184, 147]. The TF-IDF model measures the importance of a term within the
banner’s text while offsetting its overall prevalence across all banners, accounting for the
frequent appearance of certain terms.

We used the k-means clustering algorithm on banners after transforming them with
TF-IDF [202]. This algorithm divides banners into groups, with each banner being part
of a group that is similarly close. To decide the best number of groups, we looked at the
silhouette score, which tells us how similar an item is to others in its group compared to
items in other groups. We ran the k-means clustering nine times, with group numbers
from 2 to 10. We chose this range because it gave us a good balance with regards to
computations. We picked the group number that had the highest silhouette score. After
grouping, we looked at which groups had the most banners. We then found the average
TF-IDF vector for each of these groups and picked out the top three words. These
words give a quick idea of what the banners in that group are about. For example, if
the top words are use, cookie, and accept, we can guess that the group is about cookie

88 Exploring the geolocation impact on enforcing privacy policies

consent banners. We adjusted our method if we came across banners that were different
or unique. Language was also important. For non-English banners, we used the Google
Cloud Translation API to translate the top three words. This helped us to group banners
correctly, even if they were in different languages. We have listed all the top three words
we used in the appendix.

5.4 Analysis

After setting up our pipeline, it was time to collect data and conduct our analysis on
the prevalence of consent banners and the state of cookies and tracking. We ran thirty
crawls in total, six for each country that we studied namely, Brazil (BR), France (FR),
Japan (JP), South Africa (ZA), and the United States (US). The six crawls per country
consisted of two crawls without interaction with the cookie consent banners, two crawls
where we used IDCAC to accept the cookie consent banners, and finally two crawls where
Consent-O-Martic rejected them. The dual crawl in the no interaction, accept, and
reject scenarios in each of the five countries permitted us to understand the state of
cookies and tracking by looking at the same page and the same country.

5.4.1 Data collection

We used the Tranco list to choose the domains to crawl [1]. We chose the Tranco list
as its ranking of website popularity surpasses other sources of web traffic analysis [140].
We also chose Tranco due to the fact that it integrates other rankings, such as the
Chrome User Experience Report [48] and Cloudflare Radar [41] and the fact that it was
possible to configure local Tranco rankings for our target countries [194]. Aqeel et al.
have also questioned the representativeness of measurement studies that rely only on
landing pages and no internal pages, citing a difference in structure and content between
the landing page and the internal pages [10]. This was not a concern for our study as
our objective was to assess the prevalence of cookie consent banners and their impact on
cookies and tracking, and home pages are by default where those banners are triggered.

Due to the need to conduct a uniform, yet representative, study taking into account
the impact of cookie consent banners on local domains, we configured local Tranco top
10k lists from BR, FR, JP, ZA, and the US. We combined those lists to make a single list
of 50, 000 domains, from which we eventually got a list of 14, 078 unique domains. We
crawled the homepage of each of those domains six times from each country, collecting
twice the data for scenarios when (1) the user does not interact with the consent banner,
(2) the user accepts the consent banner, and (3) the user rejects the consent banner. In
total, we crawled the homepages of 14, 078 domains thirty times.

5.4 Analysis 89

5.4.2 Prevalence of cookie consent banners

We ran benchmarks comparing our automated visual approach for detecting cookie consent
banners on the selected set of 14, 078 domains against the z-index approach. In the
z-index approach, we examined layered components on a web page for potential cookie
consent banners by checking for elements with higher z-index values, which often indicate
overlaying elements like banners. We further incorporated text matching, searching
specifically for the words we had obtained, using the banner classification process, within
these elements. By contrasting the z-index and text matching method against our
automated visual approach, we aimed to assess the effectiveness of each technique in
identifying cookie consent banners. Table 5.1 summarizes the results of the comparison
of each method in detecting cookie consent banners. The discrepancy between the
two approaches can be attributed to the limited capability of the z-index approach to
comprehend the complexity of the code used to display the banner.

The results of our automated visual approach in detecting cookie consent banners show
a variation in the prevalence of the banners. Out of the crawled 14, 078 websites, France
had the highest prevalence of consent banners at 69%, more than twice that of the United
States, which had 32%, while Japan had the lowest prevalence at 27%. While France
and Japan sit on both ends of the spectrum, we observed the lower ends occupied by
South Africa at 43%, Brazil at 35%, and the United States. The high prevalence of cookie
consent banners in France is due to the strict data protection regulations enforced in the
European Union (EU). The EU’s GDPR and ePrivacy Directive necessitate explicit user
consent for the use of cookies on websites, explaining the high percentage of domains with
banners [239, 260]. Previous GDPR fines have also contributed to the higher prevalence
of cookie consent banners in France [193].

Despite Japan’s introduction of the Amended Act on the Protection of Personal
Information, the exact scope and enforcement level of this legislation remains unclear,
possibly contributing to the lower prevalence of cookie consent banners observed. Unlike
the well-established and strictly enforced data protection regulations in the EU, Japan’s
regulatory framework may not yet exert a strong influence on the practices of website
operators regarding cookie consent. This situation might explain the 27% prevalence of
domains displaying cookie consent banners in Japan, as compared to the 69% prevalence
in France. The uncertainty surrounding the enforcement and the breadth of the Amended
Act could lead to less adoption of cookie consent banners in Japan. This is also the case
for the US which does not have a federal law regulating the use of cookies, but state-level
laws like the California Consumer Privacy Act (CCPA) and Virginia Consumer Data
Protection Act (CDPA) consider cookies as personal information [32, 74]. While this may
contribute to an elevated prevalence of consent banners on websites operating or having a
significant user base in these states, it remains unclear how those state-level laws can be
enforced for a wider impact.

90 Exploring the geolocation impact on enforcing privacy policies

A slightly higher prevalence of cookie consent banners in South Africa compared to
Brazil, the US, and Japan, may be explained by the Protection of Personal Information
(POPI) Act that applies to businesses operating within South Africa [52]. POPI mandates
data protection measures including cookie consent banners. While the enforcement clarity
may not be entirely apparent, it instills a level of caution among website developers to
avoid potential legal repercussions. The presence of cookie and personal data protection
guidelines under Brazil’s LGPD is acknowledged, yet effective compliance and enforcement
have been scrutinized in several studies [71, 72, 28]. This might be a contributing factor to
the observed low prevalence of cookie consent banners in Brazil. The regulatory landscape
in the five countries significantly influences the prevalence of cookie consent banners.
Effectiveness in stringency and enforcement drives higher prevalence while the opposite
drives down the prevalence. These results underscore the importance of understanding
regional nuances in cookie policies across countries and their impact.

5.4.3 State of cookies

The state of cookies on the crawled websites provides insights into the user experience
when visiting those websites from different countries. Unlike first-party cookies, which are
created by the domain a user is visiting, third-party cookies are set by a domain other
than the one the user is currently visiting. These cookies are primarily utilized for tracking
and online advertising purposes, enabling delivery of content to users based on their
behavior or preferences [169, 208]. For instance, while visiting a news website, a user may
be served an advertisement through a third-party domain, such as ad.doubleclick.net.
This third-party domain can leave a cookie due to its embedded content on the original
site, like an ad or tracking pixel.

Our results, as shown in Figure 5.3 indicate that before interaction, users in the US
are served with the highest number of third-party cookies, more than double the number
of other countries such as Brazil, Japan, and South Africa. Users in France are served
the least number of third-party cookies. The high number of third-party cookies in the
US may be explained by the fact that online advertising is often the business model
of websites operating in or targeting users from the US [244]. As we have previously
mentioned, this often means including third-party cookies to enable targeted advertising.
In France, in addition to GDPR, the low amount of third-party cookies may be explained
by the oversight of third-party cookies and other trackers by the country’s data protection
authority, CNIL [46]. Given this oversight, websites that operate in France or target
French users tend to adopt a more conservative approach [240, 161]. Specifically, they
may limit their use of third-party cookies to ensure that they remain compliant with local
regulations and avoid potential penalties [77]. This proactive compliance can explain the
low amount of third-party cookies served to users in France compared to other countries.

5.4 Analysis 91

BR JP ZA US

10K

15K

20K

No Banner

BR FR JP ZA US

10K

100K

1M

No Interaction

ID cookies TP Cookies FP Cookies All cookies

Figure 5.5: Comparative analysis of cookies set during the crawl across five countries
under the No Banner and No Interaaction scenarios.

To avoid bias during the analysis of the state of cookies after interaction with consent
banners, it was necessary to determine common websites where the extensions, IDCAC and
Consent-O-Matic, had worked to accept and reject the banners. Out of 14, 078 domains
that we crawled, the extensions had both worked on 3, 082 domains (21.9%). Thus, our
further analysis of the state of cookies after interaction with banners focused on those
3, 082 websites. Most of the disparity in the distribution of third-party cookies remains
after interaction with consent banners, both in the accept and reject cases, especially in
the case of the US having the highest number of third-party cookies being served and

92 Exploring the geolocation impact on enforcing privacy policies

BR FR JP ZA US

10K

100K

1M

Accept

BR FR JP ZA US

10K

100K

1M

Reject

ID cookies TP Cookies FP Cookies All cookies

Figure 5.6: Comparative analysis of cookies set during the crawl across five countries
under the Accept and Reject scenarios.

France having the least. It is worth noting, however, that although the overall number
remains the lowest, third-party cookies increase in France when the user interacts with
the consent banner. This is not the case in other countries. Figures 5.5 and 5.6 illustrates
the state of cookies across countries before and after interacting with consent banners.
The number of third-party cookies remains almost the same after user interaction with
the consent banner, despite the fact that it is measured with a far smaller dataset. That
indicates a surge in third-party cookies after user interaction with the content banner. This

5.4 Analysis 93

prevalence of third-party cookies shows an interest by the website operators in tracking
user behaviors across different websites.

This trend, along with the reliance on granular data by tracking mechanisms, led us
to the topic of ID cookies. ID cookies are special because they are designed to provide
distinct identifiers that can be used for tracking, especially for advertisers and data
analytics platforms seeking to understand user behavior and preferences. To understand
the prevalence of these ID cookies in our study, we used the methodology introduced by
Wesselkamp et al. [251]. Compared to the vast number of cookies shown in Figures 5.5 and
5.6, ID cookies appear to be less prevalent. However, as shown by Figure 5.8, when users
interact with consent banners (accept and reject), the number of ID cookies triples in
each country except South Africa where it quadruples. In all cases, the number of ID
cookies in the Reject scenario remain a bit less than that in the Accept scenario. That is
the same case with websites serving those ID cookies. That increase can be linked to the
use of dark patterns in the design of interfaces for cookie consent banners. Dark patterns
trick users into making decisions they might not necessarily want to make, such as placing
the "Accept All" button in a more prominent position or misleading users into thinking
they have rejected cookies when they have not.

No banner The observations above raise the question: what happens when there is no
cookie consent banner? Figure 5.7 illustrates the state of cookies in the No Interaction
plot. However, the scenario of No Interaction differs from the situation where no banner
is shown. To examine that later situation, we checked for websites where consent banners
were accepted and rejected in France but no banner was shown on those websites in any
other country. We found 429 such websites. The No Banner plot in Figure 5.5 illustrates
the distribution of third-party cookies on those websites. Contrary to the trend in other
plots where the US has the highest number of third-party cookies, half of these 409
websites show an unusually high number of third-party cookies with South Africa being on
top. Figure 5.7 also corroborates this trend where South Africa has the highest prevalence
of ID cookies and websites that serve ID cookies when no consent banner was shown. This
suggests that consent banners present restraint to website operators who only unleash
the majority of tracking when the user interacts with the banner. On the contrary, in
regions where the regulations or their enforcement is not clear, users are targeted by a
high number of cookies and tracking.

5.4.4 State of tracking

Figures 5.9 and 5.10 illustrate the analysis of HTTP requests during our crawls across the
five countries. The substantial volume of requests can be attributed to essential HTTP
requests that websites need to function properly. In general, when a website displays the
consent banner, HTTP requests tend to have a similar pattern whether it is third-party
or tracking requests except for the US. Before interaction with the consent banner, our

94 Exploring the geolocation impact on enforcing privacy policies

BR JP ZA US
70%

80%

90%

100%

79

73

92

78

84
81

98

78

95 95
93 94

88

75

96

90

No Banner

BR FR JP ZA US

25%

50%

75%

35

69

27

43

32

13
7

13 14 17
23 21 23 24 2427 27 28 27 27

15
10

14 17 16

No Interaction

Consent ID cookies Sites with ID Cookies TP requests Tracking

Figure 5.7: Prevalence of consent banners, ID cookies, sites serving ID cookies,
third-party requests, and tracking requests in different scenarios: the upper figure shows
the No Banner scenario, when no consent banner is shown in countries other than FR

and consequently no consent prevalence is measured. The figure at the bottom shows the
No Interaction scenario when a consent banner is shown but the user has not yet

interacted with it.

5.4 Analysis 95

BR FR JP ZA US

25%

50%

75%

100%

39

26

50

64
58

84
77 80 82 78

94 93 95 93 94

61

39

50

66
60

Accept

BR FR JP ZA US

25%

50%

75%

100%

38

23

49

66

51

79
71 71

82 80

93 93 95 93 94

56

37

50

63 59

Reject

ID cookies Sites with ID Cookies TP requests Tracking

Figure 5.8: ID cookies, sites serving ID cookies, third-party requests, and tracking
requests in different scenarios: the upper figure shows the Accept scenario while the

figure at the bottom shows the Reject scenario.

96 Exploring the geolocation impact on enforcing privacy policies

results indicate that most third-party requests sent by the websites in the US are also
tracking requests. This changes after interaction with the consent banner, where there
is a surge of both third-party requests in the accept and reject cases. This indicates
dense activities upon user consent and suggests that websites do not necessarily honor
the user’s choice of consent.

When there is no banner displayed, tracking mechanisms across countries seem to
be uninhibited as seen in figure 5.9. This suggests that in the absence of regulations or
enforcement, website operators rely heavily on third-party tools and tracking mechanisms.
Similar to our previous discussion concerning the prevalence of the consent banners, the
high number of HTTP requests including third-party and tracking in the US can be
attributed to the advertising industry and the lack of a federal data protection regulation
like GDPR in Europe. State-specific regulations such as California’s CCPA do not
specifically require explicit consent upfront. On the contrary, South Africa’s POPI Act
is similar to GDPR but its enforcement is not as stringent, hence the increase in HTTP
requests and tracking.

5.5 Discussion

We explored the enforcement of cookie banners across continents, providing an overview
of their adoption and implementation. One key observation from our study is the role of
consent banners in notifying users about the use of cookies and other related disclaimers.
Consent banners serve as a "garde fou" for website operators, essentially acting as a safety
net. Instead of immediately initiating tracking, operators await user engagement. This
works in regions with stringent regulations on data protection and user privacy, compelling
website operators to secure user consent before conducting intrusive activities such as
tracking. On the contrary, when users visit websites from areas without such regulations,
website operators often do not always seek upfront consent.

Consequently, these websites revert to their older behavior patterns, relying heavily
on third-party tools and tracking mechanisms. This differentiation in approach highlights
disparity in user experience based on their geographic location and the regulatory envi-
ronment. Furthermore, our study highlights economic incentives behind the adoption of
certain tracking mechanisms. The reliance on third-party tools and tracking mechanisms,
particularly in unregulated regions, might be driven by the potential gains from targeted
advertising and data sharing. This economic angle warrants further exploration to under-
stand the trade-offs between user privacy and revenue generation. In conclusion, while
cookie banners have become a ubiquitous feature of the modern web, their enforcement
and impact vary widely across regions. Striking a balance between regulatory compliance,
user experience, and economic incentives remains a challenging task for website operators.

5.6 Threats to validity 97

BR JP ZA US

40K

80K

120K

No Banner

BR FR JP ZA US

10K

100K

1M

No Interaction

Tracking TP Requests All Requests

Figure 5.9: Comparative analysis of HTTP requests made during the crawl across five
countries: Brazil (BR), France (FR), Japan (JP), South Africa (ZA), and the United

States (US).

5.6 Threats to validity

A primary concern regarding the validity of our study is the reliance on the k-Means
clustering technique that we used. While the method is robust, no clustering technique
is error-free. The potential for misclassification, even if minimal, exists. Such misclas-
sifications, however subtle, could introduce deviations in our data, thereby influencing
the banner prevalence discussed in our study. Additionally, our reliance on the Google
Translation API introduces another layer of potential complexity. Though this API offers

98 Exploring the geolocation impact on enforcing privacy policies

BR FR JP ZA US

10K

100K

1M

Accept

BR FR JP ZA US

10K

100K

1M

Reject

Tracking TP Requests All Requests

Figure 5.10: Comparative analysis of HTTP requests made during the crawl across five
countries: Brazil (BR), France (FR), Japan (JP), South Africa (ZA), and the United

States (US).

efficiency, it might not always capture the nuances of every language perfectly. This could
lead to potential misinterpretations of cookie consent banners, especially when analyzing
the wording and intent across diverse linguistic landscapes. Furthermore, the use of
cookies and HTTP requests in our study can also be influenced by regional, cultural, or
local intricacies in designing websites and creating content. Different regions might have
unique design philosophies, content creation standards, or user engagement strategies,
which could inadvertently affect the way cookies are utilized or HTTP requests are made.

5.7 Conclusion 99

5.7 Conclusion

Our study provides a comprehensive analysis of cookie consent banners on a global
scale, emphasizing the impact of regional regulations on website behavior. Through
automated visual detection across a vast dataset of web pages, we identified disparities
in the enforcement and visibility of consent banners based on geographic location. The
findings indicate that while many regions have adopted consent banners as a tool for
transparency, their implementations vary. This variability can lead to diff user experiences
and perceptions about online privacy. These disparities highlight the need for harmonized
web privacy norms and more stringent, universally applicable regulations.

Chapter 6

Conclusion

The evolution of the web has been characterized by a dual trajectory: the advancement
of technologies enhancing user experience and the increase in privacy risks introduced
by these technologies. User tracking techniques have become more sophisticated. They
leverage aspects of the user’s browsing environment (UBE) such as device information,
geolocation, and browser configurations. This raises concerns about the extent to which
user information is exposed without explicit consent. Consequently, there is a growing
demand for solutions that address these privacy risks while maintaining the seamless
functionality that users expect.

In this thesis, we explored the impact of the UBE on user privacy by analyzing the
interplay between usability and privacy. Our main objective was to determine the extent
to which information exposure from the UBE is necessary for web page functionality, and
how this exposure can be minimized to preserve user privacy. We contributed to a deeper
understanding of how exposed information affects web page usability and to the broader
discussion on protecting UBE access to enhance web privacy. One of our key findings is
that not all UBE information is essential to web functionality. While certain attributes
may be relevant, others provide little to no functional benefit and primarily serve tracking
purposes. Determining this distinction is essential to limit unnecessary UBE exposure
without compromising user experience.

Browser vendors are at the forefront of addressing these challenges. They face the dual
responsibility of protecting user privacy and ensuring seamless website functionality. On
one hand, they must implement measures to prevent tracking techniques that exploit UBE
information. On the other hand, they need to maintain the flow of essential data that
websites require to function properly. Striking this balance is complex, as overly restrictive
mechanisms may cause website breakage, while lenient ones unnecessarily expose the
UBE and threaten the user’s privacy. Determining the relevance of UBE information each
time it is about to be served is therefore essential. This involves assessing the necessity
of requested information in real-time and deciding whether to allow or block it based on
its impact on functionality. Such evaluation requires understanding the consequences of
restricting each requested information. As we have seen in Chapter 3, implementing this

102 Conclusion

mechanism is fraught with challenges. UBE simulation and web functionality analysis are
complex problems due to the vast diversity of UBE and the unpredictable ways in which
websites may respond to changes in UBE. More work is needed to be done in simulating the
UBE in such a way that it accurately reflects real user behavior. Additionally, analyzing
website functionality to anticipate potential breakages demands predicting functional
behavior by analyzing the JavaScript code on the website.

Given these complexities, user delegation can be an alternative short-term approach.
By empowering users to make choices about the level of data exposure they are comfortable
with, user privacy protections can be tailored to individual preferences. Users can decide
how much functionality they are willing to compromise in exchange for enhanced privacy.
For example, a user may choose to block certain UBE information even if it means
occasional web page breakage. To facilitate informed decision-making, users would need
transparent information about what data is collected and how it affects their browsing
experience. Explaining the implications of blocking specific UBE information can help
users understand the trade-offs involved. Our framework, discussed in Chapter 3 provides
such transparency. This contributes to the creation of nuanced privacy controls that go
beyond simple allow-or-block options.

6.1 Contributions

In this thesis, we aimed to explore the impact of the user’s browsing environment on web
privacy. Our primary objective was to investigate the relevance of the exposed information
to website functionality. Our contributions can serve as groundwork for developing defense
techniques against user privacy risks.

6.1.1 Determining information relevance in the user’s browsing
environment

We presented a novel approach to determine the relevance of UBE information concerning
website functionality. Our aim was to learn how to enhance user privacy by minimizing
information exposure. We categorized UBE information into geolocation, device, and
browser attributes. To assess the impact of restricting specific UBE attributes, we simu-
lated website visits using different UBE constructs by leveraging browser instrumentation
tools like Playwright. This allowed us to systematically restrict specific UBE attributes
and study their effects. Our methodology involved designing a web crawler that collects
data from websites under these varying UBE constructs. We focused on static content by
removing dynamic elements to ensure consistent analysis. We introduced Similarity
Radar, a multidimensional tool that quantifies the impact of modifying UBE attributes
across seven dimensions: HTML structure, JavaScript, CSS, visual rendering, cookies,
HTTP requests, and textual content. By computing similarity scores for these dimensions,

6.1 Contributions 103

we can determine how changes in UBE attributes affect website behavior. This helps
restrict certain UBE attributes without negatively impacting website functionality. This
approach provides a systematic framework to balance user privacy with website usability
by identifying nonessential UBE information that can be safely restricted.

6.1.2 Exploring the impact of device information on the web

We explored the impact of the user agent (UA) string and associated information on
websites to assess whether it remains essential for content adaptation and to evaluate
its role in user tracking. Motivated by the contribution of UA information to browser
fingerprinting, we aimed to determine if generalizing this information would affect website
functionality. Our goal was to understand whether UA still serves its original purpose of
tailoring content to specific browsers. To achieve this, we conducted a crawl of 270, 048
web pages from 11, 252 domains using three standard browsers — Chromium, Firefox,
and WebKit — and their modified counterparts, referred to as “None-browsers”, where
UA and other identifying information were replaced with the word “None”. We used
the our novel framework described in the previous section and Similarity Radar to
measure the relevance of UA. Our results revealed that before JavaScript execution, 100%
of web pages were identical across all dimensions, indicating that servers no longer adapt
content based on UA information. After JavaScript execution, we observed changes in
8.4% of web pages affecting visual rendering and HTML content. Further analysis showed
that these changes were caused by third-party scripts related to ads, bot detection, and
content delivery networks. We found that the usability issues were minimal and could be
resolved by adopting browser-agnostic coding practices. Our study concludes that UA is
no longer essential for website functionality, and retiring it could enhance user privacy
without significantly impacting user experience.

6.1.3 Exploring the geolocation impact on enforcing privacy
policies

We investigated the prevalence and enforcement of cookie consent banners across different
continents and examined how the geolocation impacts the state of cookies and user tracking.
Motivated by the inconsistencies in visibility of cookie banners in different geographic
locations, and the limitations of previous studies that relied on manual observations or
HTML/CSS inspection, we introduced a novel automated visual detection technique. Our
methodology involved crawling 14, 078 websites from five countries — Brazil, France,
Japan, South Africa, and the United States — using OpenWPM. We used a combination
of OpenCV for image processing and Tesseract OCR for text extraction to detect and
classify cookie consent banners visually, and finally overcome language barriers through
automatic translation. Our crawler ran in three distinct scenarios: without interacting
with the cookie consent banner, accepting the banner, and rejecting it. Our results

104 Conclusion

revealed significant geographical disparities in the visibility of cookie consent banners
and their enforcement. France exhibits the highest prevalence at 69%, due to strict
GDPR regulations, while Japan has the lowest at 27%. We find that banner visibility
correlates with the number of third-party cookies and tracking requests. The United States
shows an increase in third-party cookies and tracking activities after user interaction with
banners, an indication that websites do not honor user choices effectively. Our study
underscores the importance of automated detection methods for accurate analysis in web
privacy measurements. Additionally, there is a need for harmonized regulations to ensure
consistent enforcement of user privacy protections worldwide.

6.2 Future work

In this thesis, we advanced our understanding of the interplay between UBE information
and website behavior. However, our studies have also uncovered several areas that
require further exploration to enhance privacy protections without compromising the
user experience. The challenges range from improving the crawl validity, conducting
more studies to draw out behavioral patterns of UBE information to website usability,
to improving simulation of the UBE and analyzing web functionality. We discuss those
points in detail in the following sections.

6.2.1 Short-term perspectives

In the short run, further research can build upon our findings to address current limitations
and open questions. This could range from conducting studies on the absence of UA to
examining cross-browser behavioral patterns to provide deeper insights into the impact
of restricted UBE information in various browsers. Enhancing our methodologies for
UBE simulation can also contribute to the accuracy of web privacy measurements in the
short-term.

Removing UA entirely

A study should be conducted to explore the impact of having no UA information at
all — i.e, setting the UA string and all identifying information to be empty, then null,
then undefined — rather than generalizing it to a placeholder value like “None”. In
Chapter 4, we investigated the impact of modifying UA and identifying information to
“None” and observed that most websites continued to function correctly, suggesting that
the significance of UA has diminished on the web. However, replacing the UA with
a generic value still provides some information to websites, which may influence their
behavior. The open question is, would the UA still be insignificant if its value exposed
to the websites was empty, null, or undefined? Additionally, examining cross-browser
behavioral patterns in this context could reveal more to the relevance of UA on the web.

6.2 Future work 105

Restricting the set I of irrelevant UBE attributes

In Chapter 3, we determined the relevance of individual UBE attributes by simulating
their absence and observing changes in website behavior. This approach allowed us to
identify the set I of irrelevant attributes that could be restricted without impacting
functionality. A study should be conducted to evaluate the collective impact of restricting
all attributes in the set I on website behavior. The aim would be to develop an effective
defense against browser fingerprinting. Browser fingerprinting relies on collecting a wide
array of UBE information to create unique identifiers for users [238], so such a study
would answer the following research questions:

• Does restricting the set I of irrelevant UBE attributes lead to website breakage? If
so, at what extent? What drives the breakages and why?

• What is the impact of this collective restriction on the uniqueness of browser
fingerprints?

By restricting all irrelevant attributes, it could be observed whether cumulative
effects lead to functionality issues not evident when attributes are restricted individually.
Moreover, measuring the change in fingerprint uniqueness would provide more insights
on the effectiveness of attribute restriction in enhancing web privacy. And lastly, such a
study would provide evidence-based insights into the trade-offs needed to improve user
privacy settings.

Better addressing bot detection

A short-term solution to bot detection could be to include randomness in our browsing
patterns such as simulating realistic mouse movements, clicks, and interacting with web
elements in a non-uniform manner. Additionally, we can simulate the UBE constructs
using real browser fingerprints [87] where the crawler presents different, legitimate browser
configurations to avoid detection. Collaborating with existing research on evading bot
detection can help enhance the validity of our crawl process. Finally, integrating machine
learning models that learn and replicate human interaction patterns on websites can
further help improve our crawler’s ability to pass bot detection tests.

Qualitative study on geolocation impact on privacy policy enforcement

It may be interesting to inquire the websites that intentionally change banner visibility,
state of cookies and tracking depending on the user’s geolocation. A study should be
conducted by interviewing available representatives from those websites to understand if
there are reasons for that.

106 Conclusion

6.2.2 Long-term perspectives

Advancements in artificial intelligence (AI) offer opportunities to enhance UBE simulation
to make web measurements more accurate. Ongoing research can leverage AI to identify
subtle cues that distinguish automated tools from real users. This would then help
incorporate the findings in device emulation in such a way that crawlers can better avoid
bot detection. But this is a cat and mouse game between web researchers and bot hunters.
Bot hunters continuously develop sophisticated detection methods such as analyzing
behavioral biometrics, detecting inconsistencies in UBE attributes, or employing machine
learning models themselves to identify automated behavior [3, 237, 39]. More research is
needed to explore the possibility of automating the UBE while maximizing the chance to
pass most bot detection tests.

Functional analysis of web pages presents another challenge because predicting the
functional behavior and interaction outcomes of HTML, CSS, and JavaScript — both
individually and collectively — is inherently complex. This complexity is amplified
when code is obfuscated or when multiple functionalities are bundled together [78].
Understanding the intended functionality of web page components is essential when
evaluating the relevance of UBE attributes. As we have discussed in Section 3.6.2, without
this understanding, we cannot claim fully determining the relevance of UBE attributes.
Determining functional behavior would put closure to breakage concerns due to restricting
irrelevant UBE attributes. That would lead to enhanced privacy controls and web privacy.

6.3 Concluding note

In conclusion, the future of the web depends on our ability to balance technologies with
privacy protections. Understanding the interplay between the user’s browsing environment
and website functionality will continue to be relevant. As the race between trackers and
protective measures continues, determining the distinction between relevant and irrelevant
UBE attributes, hence tradeoffs between website functionality and privacy risks, is likely
to inspire new designs of privacy controls.

Bibliography

[1] A research-oriented top sites ranking hardened against manipulation. url: https:
//tranco-list.eu/ (visited on 09/2023).

[2] A short history of the Web. en. Jan. 2024. url: https://www.home.cern/science/
computing/birth-web/short-history-web (visited on 02/2024).

[3] Alejandro Acien, Aythami Morales, Julian Fierrez, and Ruben Vera-Rodriguez.
“BeCAPTCHA-Mouse: Synthetic mouse trajectories and improved bot detection”.
In: Pattern Recognition 127 (2022), p. 108643.

[4] Sanchit Aggarwal et al. “Modern web-development using reactjs”. In: International
Journal of Recent Research Aspects 5.1 (2018), pp. 133–137.

[5] Abdul Haddi Amjad, Shaoor Munir, Zubair Shafiq, and Muhammad Ali Gulzar.
“Blocking Tracking JavaScript at the Function Granularity”. In: arXiv preprint
arXiv:2405.18385 (2024).

[6] Ryan Amos, Gunes Acar, Eli Lucherini, Mihir Kshirsagar, Arvind Narayanan,
and Jonathan Mayer. “Privacy policies over time: Curation and analysis of a
million-document dataset”. In: Proceedings of the Web Conference 2021. 2021,
pp. 2165–2176.

[7] Aaron Andersen. History of the Browser User-Agent String. url: https://webaim.
org/blog/user-agent-string-history/.

[8] Nampoina Andriamilanto, Tristan Allard, and Gaëtan Le Guelvouit. “FPSelect:
low-cost browser fingerprints for mitigating dictionary attacks against web au-
thentication mechanisms”. In: Proceedings of the 36th Annual Computer Security
Applications Conference. 2020, pp. 627–642.

[9] Elbren Antonio, Arnel Fajardo, and Ruji Medina. “Tracking browser fingerprint
using rule based algorithm”. In: 2020 16th IEEE International Colloquium on
Signal Processing & Its Applications (CSPA). IEEE. 2020, pp. 225–229.

[10] Waqar Aqeel, Balakrishnan Chandrasekaran, Anja Feldmann, and Bruce M Maggs.
“On landing and internal web pages: The strange case of jekyll and hyde in web
performance measurement”. In: Proceedings of the ACM Internet Measurement
Conference. 2020, pp. 680–695.

https://tranco-list.eu/
https://tranco-list.eu/
https://www.home.cern/science/computing/birth-web/short-history-web
https://www.home.cern/science/computing/birth-web/short-history-web
https://webaim.org/blog/user-agent-string-history/
https://webaim.org/blog/user-agent-string-history/

108 Bibliography

[11] Benjamin Baron and Mirco Musolesi. “Where you go matters: A study on the
privacy implications of continuous location tracking”. In: Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 4.4 (2020), pp. 1–32.

[12] Peter Baumann, Stefan Katzenbeisser, Martin Stopczynski, and Erik Tews. “Dis-
guised chromium browser: Robust browser, flash and canvas fingerprinting protec-
tion”. In: Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic
Society. 2016, pp. 37–46.

[13] Colin J Bennett. “Cookies, web bugs, webcams and cue cats: Patterns of surveillance
on the world wide web”. In: Ethics and Information Technology 3 (2001), pp. 195–
208.

[14] Brent W Benson Jr. “Javascript”. In: ACM SIGPLAN Notices 34.4 (1999), pp. 25–
27.

[15] Carlos Bermejo Fernandez, Dimitris Chatzopoulos, Dimitrios Papadopoulos, and
Pan Hui. “This Website Uses Nudging: MTurk Workers’ Behaviour on Cookie
Consent Notices”. en. In: Proceedings of the ACM on Human-Computer Interaction
5.CSCW2 (Oct. 2021), pp. 1–22. doi: 10.1145/3476087. url: https://dl.acm.org/
doi/10.1145/3476087 (visited on 06/11/2023).

[16] Tim Berners-Lee and Daniel W. Connolly. RFC 1866 - Hypertext Markup Language
- 2.0. Request for Comments RFC 1866. Internet Engineering Task Force, Nov.
1995. doi: 10.17487/RFC1866. url: https://datatracker.ietf.org/doc/rfc1866.

[17] Benjamin Biegel, Quinten David Soetens, Willi Hornig, Stephan Diehl, and Serge
Demeyer. “Comparison of similarity metrics for refactoring detection”. In: Proceed-
ings of the 8th working conference on mining software repositories. 2011, pp. 53–
62.

[18] Philip Bille. “A survey on tree edit distance and related problems”. In: Theoretical
computer science 337.1-3 (2005), pp. 217–239.

[19] Dino Bollinger, Karel Kubicek, Carlos Cotrini, and David Basin. “Automating
Cookie Consent and GDPR Violation Detection”. In: 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX Association, Aug. 2022,
pp. 2893–2910. isbn: 978-1-939133-31-1. url: https://www.usenix.org/conference/
usenixsecurity22/presentation/bollinger.

[20] Bot detection test: verify if your bot is detected. url: https://deviceandbrowserinfo.
com/are_you_a_bot (visited on 08/2024).

[21] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

[22] Brazilian General Data Protection Law (LGPD, English translation). url: https:
/ / iapp . org / resources / article / brazilian - data - protection - law - lgpd - english -
translation/ (visited on 02/2024).

https://doi.org/10.1145/3476087
https://dl.acm.org/doi/10.1145/3476087
https://dl.acm.org/doi/10.1145/3476087
https://doi.org/10.17487/RFC1866
https://datatracker.ietf.org/doc/rfc1866
https://www.usenix.org/conference/usenixsecurity22/presentation/bollinger
https://www.usenix.org/conference/usenixsecurity22/presentation/bollinger
https://deviceandbrowserinfo.com/are_you_a_bot
https://deviceandbrowserinfo.com/are_you_a_bot
https://iapp.org/resources/article/brazilian-data-protection-law-lgpd-english-translation/
https://iapp.org/resources/article/brazilian-data-protection-law-lgpd-english-translation/
https://iapp.org/resources/article/brazilian-data-protection-law-lgpd-english-translation/

Bibliography 109

[23] Sacha Brisset, Romain Rouvoy, Lionel Seinturier, and Renaud Pawlak. “SFTM:
Fast matching of web pages using Similarity-based Flexible Tree Matching”. In:
Information Systems 112 (2023), p. 102126.

[24] Justin Brookman, Phoebe Rouge, Aaron Alva, and Christina Yeung. “Cross-device
tracking: Measurement and disclosures”. In: Proceedings on Privacy Enhancing
Technologies (2017).

[25] David Buttler. A short survey of document structure similarity algorithms. Tech.
rep. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States),
2004.

[26] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. “Extracting content
structure for web pages based on visual representation”. In: Web Technologies and
Applications: 5th Asia-Pacific Web Conference, APWeb 2003, Xian, China, April
23–25, 2003 Proceedings 5. Springer. 2003, pp. 406–417.

[27] California Consumer Privacy Act (CCPA). en. Oct. 2018. url: https://oag.ca.
gov/privacy/ccpa (visited on 05/2023).

[28] Edna Dias Canedo, Angelica Toffano Seidel Calazans, Ian Nery Bandeira, Pedro
Henrique Teixeira Costa, and Eloisa Toffano Seidel Masson. “Guidelines adopted
by agile teams in privacy requirements elicitation after the Brazilian general data
protection law (LGPD) implementation”. In: Requirements Engineering 27.4 (2022),
pp. 545–567.

[29] John Canny. “A computational approach to edge detection”. In: IEEE Transactions
on pattern analysis and machine intelligence 6 (1986), pp. 679–698.

[30] Marco Capece, Angelo Di Giovanni, Lorenzo Cirigliano, Luigi Napolitano, Roberto
La Rocca, Massimiliano Creta, Gianluigi Califano, Felice Crocetto, Claudia Collà
Ruvolo, Giuseppe Celentano, et al. “YouTube as a source of information on penile
prosthesis”. In: Andrologia 54.1 (2022), e14246.

[31] Juan Miguel Carrascosa, Jakub Mikians, Ruben Cuevas, Vijay Erramilli, and
Nikolaos Laoutaris. “I always feel like somebody’s watching me: measuring online
behavioural advertising”. In: Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies. 2015, pp. 1–13.

[32] Preeti S Chauhan and Nir Kshetri. “2021 state of the practice in data privacy and
security”. In: Computer 54.8 (2021), pp. 125–132.

[33] Check Single URL. url: https://sitelookup.mcafee.com/en/feedback/url?action=
checksingle&sid=BF6DB84A3A60F9AEB8F69A93DA023455.

[34] Huan-Yuan Chen and Hong Yu. “Intent-based Web Page Summarization with
Structure-Aware Chunking and Generative Language Models”. In: Companion
Proceedings of the ACM Web Conference 2023. 2023, pp. 310–313.

https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://sitelookup.mcafee.com/en/feedback/url?action=checksingle&sid=BF6DB84A3A60F9AEB8F69A93DA023455
https://sitelookup.mcafee.com/en/feedback/url?action=checksingle&sid=BF6DB84A3A60F9AEB8F69A93DA023455

110 Bibliography

[35] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos. “Detecting
filter list evasion with event-loop-turn granularity javascript signatures”. In: 2021
IEEE Symposium on Security and Privacy (SP). IEEE. 2021, pp. 1715–1729.

[36] Yu Chen, Wei-Ying Ma, and Hong-Jiang Zhang. “Detecting web page structure
for adaptive viewing on small form factor devices”. In: Proceedings of the 12th
international conference on World Wide Web. 2003, pp. 225–233.

[37] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. “WEBDIFF: Auto-
mated identification of cross-browser issues in web applications”. In: 2010 IEEE
International Conference on Software Maintenance. IEEE. 2010, pp. 1–10.

[38] Chrome device emulation. en. url: https://developer.chrome.com/docs/chromedriver/
mobile-emulation (visited on 08/2024).

[39] Zi Chu, Steven Gianvecchio, and Haining Wang. “Bot or human? A behavior-
based online bot detection system”. In: From Database to Cyber Security: Essays
Dedicated to Sushil Jajodia on the Occasion of His 70th Birthday (2018), pp. 432–
449.

[40] Cloud Translation. en. url: https : //cloud .google . com/translate (visited on
05/2023).

[41] Cloudflare Radar. en. July 2023. url: https://radar.cloudflare.com/ (visited on
09/2023).

[42] Mark Clow and Mark Clow. “Introducing Webpack”. In: Angular 5 Projects: Learn
to Build Single Page Web Applications Using 70+ Projects (2018), pp. 133–137.

[43] Consent-O-Matic Extension. en-US. url: https://addons.mozilla.org/en-US/
firefox/addon/consent-o-matic/ (visited on 09/2023).

[44] Cookie Quick Manager Extension. url: https://addons.mozilla.org/en-US/firefox/
addon/cookie-quick-manager/ (visited on 09/15/2023).

[45] CookieBlock Extension. url: https://addons.mozilla.org/en-US/firefox/addon/
cookieblock/ (visited on 09/2023).

[46] Cookies et traceurs : que dit la loi ? fr. url: https://www.cnil.fr/fr/cookies-et-
autres-traceurs/regles/cookies/que-dit-la-loi (visited on 10/2023).

[47] Stephen W Crown. “Improving visualization skills of engineering graphics students
using simple JavaScript web based games”. In: Journal of Engineering Education
90.3 (2001), pp. 347–355.

[48] CrUX Methodology. en. June 2022. url: https://developer.chrome.com/docs/crux/
methodology/ (visited on 09/2023).

[49] CSS Snapshot. url: https://www.w3.org/TR/CSS/.

https://developer.chrome.com/docs/chromedriver/mobile-emulation
https://developer.chrome.com/docs/chromedriver/mobile-emulation
https://cloud.google.com/translate
https://radar.cloudflare.com/
https://addons.mozilla.org/en-US/firefox/addon/consent-o-matic/
https://addons.mozilla.org/en-US/firefox/addon/consent-o-matic/
https://addons.mozilla.org/en-US/firefox/addon/cookie-quick-manager/
https://addons.mozilla.org/en-US/firefox/addon/cookie-quick-manager/
https://addons.mozilla.org/en-US/firefox/addon/cookieblock/
https://addons.mozilla.org/en-US/firefox/addon/cookieblock/
https://www.cnil.fr/fr/cookies-et-autres-traceurs/regles/cookies/que-dit-la-loi
https://www.cnil.fr/fr/cookies-et-autres-traceurs/regles/cookies/que-dit-la-loi
https://developer.chrome.com/docs/crux/methodology/
https://developer.chrome.com/docs/crux/methodology/
https://www.w3.org/TR/CSS/

Bibliography 111

[50] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. “Locality-
sensitive hashing scheme based on p-stable distributions”. In: Proceedings of the
twentieth annual symposium on Computational geometry. 2004, pp. 253–262.

[51] Amit Datta, Jianan Lu, and Michael Carl Tschantz. “Evaluating anti-fingerprinting
privacy enhancing technologies”. In: The World Wide Web Conference. 2019,
pp. 351–362.

[52] Michelle De Bruyn et al. “The protection of personal information (POPI) act-
impact on South Africa”. In: International Business & Economics Research Journal
(IBER) 13.6 (2014), pp. 1315–1340.

[53] Martin Degeling, Christine Utz, Christopher Lentzsch, Henry Hosseini, Florian
Schaub, and Thorsten Holz. “We value your privacy... now take some cookies: Mea-
suring the GDPR’s impact on web privacy”. In: arXiv preprint arXiv:1808.05096
(2018).

[54] Martin Degeling, Christine Utz, Christopher Lentzsch, Henry Hosseini, Florian
Schaub, and Thorsten Holz. “We value your privacy... now take some cookies: Mea-
suring the GDPR’s impact on web privacy”. In: arXiv preprint arXiv:1808.05096
(2018).

[55] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert: Pre-
training of deep bidirectional transformers for language understanding”. In: arXiv
preprint arXiv:1810.04805 (2018).

[56] Marco Di Benedetto, Federico Ponchio, Fabio Ganovelli, and Roberto Scopigno.
“SpiderGL: a JavaScript 3D graphics library for next-generation WWW”. In:
Proceedings of the 15th International Conference on Web 3D Technology. 2010,
pp. 165–174.

[57] Yana Dimova, Gertjan Franken, Victor Le Pochat, Wouter Joosen, and Lieven
Desmet. “Tracking the Evolution of Cookie-based Tracking on Facebook”. In:
Proceedings of the 21st Workshop on Privacy in the Electronic Society. 2022,
pp. 181–196.

[58] DOM Standard. url: https://dom.spec.whatwg.org/.

[59] Georg Dotzler and Michael Philippsen. “Move-optimized source code tree differenc-
ing”. In: Proceedings of the 31st IEEE/ACM international conference on automated
software engineering. 2016, pp. 660–671.

[60] Andrea Drmic, Marin Silic, Goran Delac, Klemo Vladimir, and Adrian S Kur-
dija. “Evaluating robustness of perceptual image hashing algorithms”. In: 2017
40th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). IEEE. 2017, pp. 995–1000.

https://dom.spec.whatwg.org/

112 Bibliography

[61] Peter Eckersley. “How unique is your web browser?” In: Privacy Enhancing Tech-
nologies: 10th International Symposium, PETS 2010, Berlin, Germany, July 21-23,
2010. Proceedings 10. Springer. 2010, pp. 1–18.

[62] Peter Eckersley. “How unique is your web browser?” In: Privacy Enhancing Tech-
nologies: 10th International Symposium, PETS 2010, Berlin, Germany, July 21-23,
2010. Proceedings 10. Springer. 2010, pp. 1–18.

[63] ECMAScript Language Specification. url: https://tc39.es/ecma262/.

[64] Magdalini Eirinaki and Michalis Vazirgiannis. “Web mining for web personalization”.
In: ACM Transactions on Internet Technology (TOIT) 3.1 (2003), pp. 1–27.

[65] Sebastian Elbaum, Gregg Rothermel, Srikanth Karre, and Marc Fisher II. “Lever-
aging user-session data to support web application testing”. In: IEEE Transactions
on Software Engineering 31.3 (2005), pp. 187–202.

[66] Steven Englehardt, Christian Eubank, Peter Zimmerman, Dillon Reisman, and
Arvind Narayanan. “Web privacy measurement: Scientific principles, engineer-
ing platform, and new results”. In: Manuscript posted at http://randomwalker.
info/publications/WebPrivacyMeasurement. pdf 8 (2014), pp. 20–62.

[67] Steven Englehardt and Arvind Narayanan. “Online tracking: A 1-million-site
measurement and analysis”. In: Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. 2016, pp. 1388–1401.

[68] Steven Englehardt and Arvind Narayanan. “Online tracking: A 1-million-site
measurement and analysis”. In: Proceedings of ACM CCS 2016. 2016.

[69] Enhanced Tracking Protection in Firefox for desktop | Firefox Help. url: https:
//support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
(visited on 11/2023).

[70] Steffie Jacob Eravuchira, Vaibhav Bajpai, Jürgen Schönwälder, and Sam Crawford.
“Measuring web similarity from dual-stacked hosts”. In: 2016 12th International
Conference on Network and Service Management (CNSM). IEEE. 2016, pp. 181–
187.

[71] Abigayle Erickson. “Comparative Analysis of the EU’s GDPR and Brazil’s LGPD:
Enforcement Challenges with the LGPD”. In: Brook. J. Int’l L. 44 (2018), p. 859.

[72] Khyara F Passos. “Compliance with brazil’s new data privacy legislation: What
us companies need to know”. In: Compliance with Brazil’s New Data Privacy
Legislation: What US Companies Need to Know: F. Passos, Khyara. [Sl]: SSRN,
2021.

https://tc39.es/ecma262/
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop

Bibliography 113

[73] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. “Fine-grained and accurate source code differencing”. In: Proceedings of
the 29th ACM/IEEE international conference on Automated software engineering.
2014, pp. 313–324.

[74] Heather Federman. “Examining Virginia’s New Data Protection Law”. In: Risk
Management 68.6 (2021), pp. 8–9.

[75] Paul Ferguson and Geoff Huston. “What is a VPN?” In: (1998).

[76] Olga Filipova. Learning Vue. js 2. Packt Publishing Ltd, 2016.

[77] Imane Fouad, Cristiana Santos, Feras Al Kassar, Nataliia Bielova, and Stefano
Calzavara. “On compliance of cookie purposes with the purpose specification
principle”. In: 2020 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE. 2020, pp. 326–333.

[78] Romain Fouquet. “Improving Web User Privacy Through Content Blocking”. PhD
thesis. Université de Lille, 2023.

[79] Romain Fouquet, Pierre Laperdrix, and Romain Rouvoy. “Breaking Bad: Quanti-
fying the Addiction of Web Elements to JavaScript”. In: ACM Transactions on
Internet Technology 23.1 (2023), pp. 1–28.

[80] Nathaniel Fruchter, Hsin Miao, Scott Stevenson, and Rebecca Balebako. “Variations
in tracking in relation to geographic location”. In: arXiv preprint arXiv:1506.04103
(2015).

[81] Kiran Garimella, Orestis Kostakis, and Michael Mathioudakis. “Ad-blocking: A
study on performance, privacy and counter-measures”. In: Proceedings of the 2017
ACM on Web Science Conference. 2017, pp. 259–262.

[82] Jesse James Garrett et al. “Ajax: A new approach to web applications”. In: (2005).

[83] GDPR Not Consent Extension. en-US. url: https ://addons.mozilla .org/en-
US/firefox/addon/gdpr-not-consent/ (visited on 09/2023).

[84] General Data Protection Regulation. en. url: https://eur-lex.europa.eu/eli/reg/
2016/679/oj (visited on 05/2023).

[85] Phillipa Gill, Yashar Ganjali, and Bernard Wong. “Dude, Where’s That {IP}?
Circumventing Measurement-based {IP} Geolocation”. In: 19th USENIX Security
Symposium (USENIX Security 10). 2010.

[86] Global Consent Manager. en-US. url: https://addons.mozilla.org/en-US/firefox/
addon/global-consent-manager/ (visited on 09/2023).

[87] Global Statistics- Am I Unique ? url: https://amiunique.org/fingerprints-global-
statistics (visited on 09/2024).

https://addons.mozilla.org/en-US/firefox/addon/gdpr-not-consent/
https://addons.mozilla.org/en-US/firefox/addon/gdpr-not-consent/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://addons.mozilla.org/en-US/firefox/addon/global-consent-manager/
https://addons.mozilla.org/en-US/firefox/addon/global-consent-manager/
https://amiunique.org/fingerprints-global-statistics
https://amiunique.org/fingerprints-global-statistics

114 Bibliography

[88] Eric J Glover, Kostas Tsioutsiouliklis, Steve Lawrence, David M Pennock, and
Gary W Flake. “Using web structure for classifying and describing web pages”.
In: Proceedings of the 11th international conference on World Wide Web. 2002,
pp. 562–569.

[89] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. “Hiding in the
crowd: an analysis of the effectiveness of browser fingerprinting at large scale”. In:
Proceedings of the 2018 world wide web conference. 2018, pp. 309–318.

[90] Google Consent Dialog Remover Extension. en-US. url: https://addons.mozilla.
org/en-US/firefox/addon/google-consent-dialog-remover/ (visited on 09/2023).

[91] google/diff-match-patch. Jan. 2023. url: https://github.com/google/diff-match-
patch.

[92] Thamme Gowda and Chris A Mattmann. “Clustering web pages based on struc-
ture and style similarity (application paper)”. In: 2016 IEEE 17th International
conference on information reuse and integration (IRI). IEEE. 2016, pp. 175–180.

[93] Colin M. Gray, Cristiana Santos, Nataliia Bielova, Michael Toth, and Damian
Clifford. “Dark Patterns and the Legal Requirements of Consent Banners: An
Interaction Criticism Perspective”. en. In: Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. Yokohama Japan: ACM, May 2021,
pp. 1–18. isbn: 978-1-4503-8096-6. doi: 10.1145/3411764.3445779. url: https:
//dl.acm.org/doi/10.1145/3411764.3445779 (visited on 07/2023).

[94] Brad Green and Shyam Seshadri. AngularJS. " O’Reilly Media, Inc.", 2013.

[95] Alan Grosskurth and Michael W Godfrey. “Architecture and evolution of the
modern web browser”. In: Preprint submitted to Elsevier Science 12.26 (2006),
pp. 235–246.

[96] Saikat Guha, Bin Cheng, and Paul Francis. “Challenges in measuring online
advertising systems”. In: Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement. 2010, pp. 81–87.

[97] Hana Habib, Megan Li, Ellie Young, and Lorrie Cranor. ““Okay, whatever”: An
Evaluation of Cookie Consent Interfaces”. en. In: CHI Conference on Human
Factors in Computing Systems. New Orleans LA USA: ACM, Apr. 2022, pp. 1–27.
isbn: 978-1-4503-9157-3. doi: 10.1145/3491102.3501985. url: https://dl.acm.org/
doi/10.1145/3491102.3501985 (visited on 08/2023).

[98] Alexander Hambley, Yeliz Yesilada, Markel Vigo, and Simon Harper. “Web Struc-
ture Derived Clustering for Optimised Web Accessibility Evaluation”. In: Proceed-
ings of the ACM Web Conference. 2023.

https://addons.mozilla.org/en-US/firefox/addon/google-consent-dialog-remover/
https://addons.mozilla.org/en-US/firefox/addon/google-consent-dialog-remover/
https://github.com/google/diff-match-patch
https://github.com/google/diff-match-patch
https://doi.org/10.1145/3411764.3445779
https://dl.acm.org/doi/10.1145/3411764.3445779
https://dl.acm.org/doi/10.1145/3411764.3445779
https://doi.org/10.1145/3491102.3501985
https://dl.acm.org/doi/10.1145/3491102.3501985
https://dl.acm.org/doi/10.1145/3491102.3501985

Bibliography 115

[99] Sakib Haque, Zachary Eberhart, Aakash Bansal, and Collin McMillan. “Semantic
similarity metrics for evaluating source code summarization”. In: Proceedings of
the 30th IEEE/ACM International Conference on Program Comprehension. 2022,
pp. 36–47.

[100] Mahdi Hashemi. “Web page classification: a survey of perspectives, gaps, and future
directions”. In: Multimedia Tools and Applications 79.17-18 (2020), pp. 11921–
11945.

[101] Waleed Hashmi, Moumena Chaqfeh, Lakshminarayanan Subramanian, and Yasir
Zaki. “QLUE: A computer vision tool for uniform qualitative evaluation of web
pages”. In: Proceedings of the ACM Web Conference 2022. 2022, pp. 2400–2410.

[102] Philip Hausner and Michael Gertz. Dark Patterns in the Interaction with Cookie
Banners. 2021. arXiv: 2103.14956 [cs.HC].

[103] Raymond Hill. uBlock Origin (uBO). Aug. 2023. url: https://github.com/gorhill/
uBlock (visited on 07/2023).

[104] Hoxx VPN. url: https://hoxx.com/ (visited on 09/2023).

[105] HTTP Request Fields. url: https://www.w3.org/Protocols/HTTP/HTRQ_
Headers.html.

[106] Boyang Hu, Qicheng Lin, Yao Zheng, Qiben Yan, Matthew Troglia, and Qingyang
Wang. “Characterizing location-based mobile tracking in mobile ad networks”. In:
2019 IEEE Conference on Communications and Network Security (CNS). IEEE.
2019, pp. 223–231.

[107] I Don’t Care About Cookies Extension. en-US. (Visited on 09/2023).

[108] Christos Iliou, Theodoros Kostoulas, Theodora Tsikrika, Vasilis Katos, Stefanos
Vrochidis, and Yiannis Kompatsiaris. “Towards a framework for detecting advanced
web bots”. In: Proceedings of the 14th international conference on availability,
reliability and security. 2019, pp. 1–10.

[109] Improving user privacy and developer experience with User-Agent Client Hints. en.
June 2020. url: https://developer.chrome.com/articles/user-agent-client-hints/
(visited on 07/2023).

[110] Jean Luc Intumwayase. intumwa/cookie-prevalence. en. url: https://github.com/
intumwa/cookie-prevalence (visited on 01/2024).

[111] Jean Luc Intumwayase. intumwa/ua-radar. Oct. 2022. url: https://github.com/
intumwa/ua-radar?tab=readme-ov-file#ua-radar-1 (visited on 01/2024).

[112] Jean Luc Intumwayase, Imane Fouad, Pierre Laperdrix, and Romain Rouvoy.
“UA-Radar: Exploring the Impact of User Agents on the Web”. In: Proceedings of
the 22nd Workshop on Privacy in the Electronic Society. 2023, pp. 31–43.

https://arxiv.org/abs/2103.14956
https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock
https://hoxx.com/
https://www.w3.org/Protocols/HTTP/HTRQ_Headers.html
https://www.w3.org/Protocols/HTTP/HTRQ_Headers.html
https://developer.chrome.com/articles/user-agent-client-hints/
https://github.com/intumwa/cookie-prevalence
https://github.com/intumwa/cookie-prevalence
https://github.com/intumwa/ua-radar?tab=readme-ov-file#ua-radar-1
https://github.com/intumwa/ua-radar?tab=readme-ov-file#ua-radar-1

116 Bibliography

[113] Costas Iordanou, Georgios Smaragdakis, Ingmar Poese, and Nikolaos Laoutaris.
“Tracing cross border web tracking”. In: Proceedings of the internet measurement
conference 2018. 2018, pp. 329–342.

[114] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt.
“A critical evaluation of website fingerprinting attacks”. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security. 2014,
pp. 263–274.

[115] Jordan Jueckstock and Alexandros Kapravelos. “Visiblev8: In-browser monitoring
of javascript in the wild”. In: Proceedings of the Internet Measurement Conference.
2019, pp. 393–405.

[116] Georgios Kampanos and Siamak F. Shahandashti. “Accept All: The Landscape of
Cookie Banners in Greece and the UK”. In: CoRR abs/2104.05750 (2021). arXiv:
2104.05750. url: https://arxiv.org/abs/2104.05750.

[117] Farzaneh Karegar, John Sören Pettersson, and Simone Fischer-Hübner. “The
Dilemma of User Engagement in Privacy Notices: Effects of Interaction Modes
and Habituation on User Attention”. en. In: ACM Transactions on Privacy and
Security 23.1 (Feb. 2020), pp. 1–38. doi: 10.1145/3372296. url: https://dl.acm.
org/doi/10.1145/3372296 (visited on 06/2023).

[118] Ethan Katz-Bassett, John P John, Arvind Krishnamurthy, David Wetherall,
Thomas Anderson, and Yatin Chawathe. “Towards IP geolocation using delay
and topology measurements”. In: Proceedings of the 6th ACM SIGCOMM confer-
ence on Internet measurement. 2006, pp. 71–84.

[119] Rishabh Khandelwal, Asmit Nayak, Hamza Harkous, and Kassem Fawaz. “Au-
tomated Cookie Notice Analysis and Enforcement”. In: 32nd USENIX Security
Symposium (USENIX Security 23). Anaheim, CA: USENIX Association, Aug. 2023,
pp. 1109–1126. isbn: 978-1-939133-37-3. url: https://www.usenix.org/conference/
usenixsecurity23/presentation/khandelwal.

[120] Rishabh Khandelwal, Asmit Nayak, Hamza Harkous, and Kassem Fawaz. “Au-
tomated cookie notice analysis and enforcement”. In: 32nd USENIX Security
Symposium (USENIX Security 23). 2023, pp. 1109–1126.

[121] Rohit Khankhoje. “Web Page Element Identification Using Selenium and CNN: A
Novel Approach”. In: Journal of Software 1.1 (2023).

[122] Hyungsub Kim, Sangho Lee, and Jong Kim. “Exploring and mitigating privacy
threats of HTML5 geolocation API”. In: Proceedings of the 30th Annual Computer
Security Applications Conference. 2014, pp. 306–315.

[123] Jung Il Kim and Eun Joo Lee. “An Approach to Detect Similar Script Functions
in Web Applications Based on Calling Information”. In: Applied Mechanics and
Materials 263 (2013), pp. 1593–1599.

https://arxiv.org/abs/2104.05750
https://arxiv.org/abs/2104.05750
https://doi.org/10.1145/3372296
https://dl.acm.org/doi/10.1145/3372296
https://dl.acm.org/doi/10.1145/3372296
https://www.usenix.org/conference/usenixsecurity23/presentation/khandelwal
https://www.usenix.org/conference/usenixsecurity23/presentation/khandelwal

Bibliography 117

[124] Daniel Kladnik. I don’t care about cookies. en. url: https://www.i-dont-care-
about-cookies.eu/ (visited on 06/2023).

[125] Jeff Kline, Paul Barford, Aaron Cahn, and Joel Sommers. “On the structure
and characteristics of user agent string”. In: Proceedings of the 2017 Internet
Measurement Conference. 2017, pp. 184–190.

[126] Konrad Kollnig, Anastasia Shuba, Max Van Kleek, Reuben Binns, and Nigel
Shadbolt. “Goodbye tracking? Impact of iOS app tracking transparency and privacy
labels”. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability,
and Transparency. 2022, pp. 508–520.

[127] Yuriy Kotsarenko. “Measuring perceived color difference using YIQ NTSC transmis-
sion color space in mobile applications”. In: Programacion Matematica y Software
(2018).

[128] Ranjitha Kumar, Jerry O Talton, Salman Ahmad, and Scott R Klemmer. “Brico-
lage: example-based retargeting for web design”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 2011, pp. 2197–2206.

[129] Ranjitha Kumar, Jerry O Talton, Salman Ahmad, Tim Roughgarden, and Scott R
Klemmer. “Flexible tree matching”. In: Proceedings of the Twenty-Second Inter-
national Joint Conference on Artificial Intelligence-Volume Volume Three. 2011,
pp. 2674–2679.

[130] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. “The
quic transport protocol: Design and internet-scale deployment”. In: Proceedings
of the conference of the ACM special interest group on data communication. 2017,
pp. 183–196.

[131] Tomer Laor, Naif Mehanna, Antonin Durey, Vitaly Dyadyuk, Pierre Laperdrix,
Clémentine Maurice, Yossi Oren, Romain Rouvoy, Walter Rudametkin, and Yuval
Yarom. “Drawnapart: A device identification technique based on remote gpu
fingerprinting”. In: arXiv preprint arXiv:2201.09956 (2022).

[132] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. “Browser
fingerprinting: A survey”. In: ACM Transactions on the Web (TWEB) 14.2 (2020),
pp. 1–33.

[133] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. “Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints”. In: 2016
IEEE Symposium on Security and Privacy (SP). IEEE. 2016, pp. 878–894.

[134] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. “Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints”. In: 2016
IEEE Symposium on Security and Privacy (SP). IEEE. 2016, pp. 878–894.

https://www.i-dont-care-about-cookies.eu/
https://www.i-dont-care-about-cookies.eu/

118 Bibliography

[135] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick
Nikiforakis. “Fingerprinting in style: Detecting browser extensions via injected
style sheets”. In: 30th USENIX Security Symposium (USENIX Security 21). 2021,
pp. 2507–2524.

[136] Irvine Lapsley. “The NPM agenda: back to the future”. In: Financial accountability
& management 24.1 (2008), pp. 77–96.

[137] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. “Thou shalt not depend on me: Analysing the use of
outdated javascript libraries on the web”. In: arXiv preprint arXiv:1811.00918
(2018).

[138] Guillaume Lavoué, Laurent Chevalier, and Florent Dupont. “Streaming compressed
3D data on the web using JavaScript and WebGL”. In: Proceedings of the 18th
international conference on 3D web technology. 2013, pp. 19–27.

[139] Marc T Law, Carlos Sureda Gutierrez, Nicolas Thome, Stéphane Gançarski, and
Matthieu Cord. “Structural and visual similarity learning for web page archiving”.
In: 2012 10th International Workshop on Content-Based Multimedia Indexing
(CBMI). IEEE. 2012, pp. 1–6.

[140] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. “Tranco: A Research-Oriented Top Sites Rank-
ing Hardened Against Manipulation”. In: Proceedings of the 26th Annual Net-
work and Distributed System Security Symposium. NDSS 2019. Feb. 2019. doi:
10.14722/ndss.2019.23386.

[141] Sebastian Lekies, Ben Stock, and Martin Johns. “25 million flows later: large-
scale detection of DOM-based XSS”. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. 2013, pp. 1193–1204.

[142] Ada Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.
“Internet jones and the raiders of the lost trackers: An archaeological study of web
tracking from 1996 to 2016”. In: 25th USENIX Security Symposium (USENIX
Security 16). 2016.

[143] Xiao Li and Xiao Jing Zhong. “The source code plagiarism detection using AST”. In:
2010 International symposium on intelligence information processing and trusted
computing. IEEE. 2010, pp. 406–408.

[144] Xigao Li, Babak Amin Azad, Amir Rahmati, and Nick Nikiforakis. “Good bot,
bad bot: Characterizing automated browsing activity”. In: 2021 IEEE symposium
on security and privacy (sp). IEEE. 2021, pp. 1589–1605.

[145] Thomas Linden, Rishabh Khandelwal, Hamza Harkous, and Kassem Fawaz. “The
privacy policy landscape after the GDPR”. In: arXiv preprint arXiv:1809.08396
(2018).

https://doi.org/10.14722/ndss.2019.23386

Bibliography 119

[146] Ling Liu, Calton Pu, and Wei Tang. “Webcq-detecting and delivering information
changes on the web”. In: Proceedings of the ninth international conference on
Information and knowledge management. 2000, pp. 512–519.

[147] Qing Liu, Jing Wang, Dehai Zhang, Yun Yang, and NaiYao Wang. “Text features
extraction based on TF-IDF associating semantic”. In: 2018 IEEE 4th international
conference on computer and communications (ICCC). IEEE. 2018, pp. 2338–2343.

[148] Ari Luotonen and Kevin Altis. “World-wide web proxies”. In: Computer Networks
and ISDN systems 27.2 (1994), pp. 147–154.

[149] Finlay Macklon, Mohammad Reza Taesiri, Markos Viggiato, Stefan Antoszko,
Natalia Romanova, Dale Paas, and Cor-Paul Bezemer. “Automatically Detecting
Visual Bugs in HTML5 Canvas Games”. In: Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 2022, pp. 1–11.

[150] Aniss Maghsoudlou, Lukas Vermeulen, Ingmar Poese, and Oliver Gasser. Charac-
terizing the VPN Ecosystem in the Wild. Feb. 2023. url: http://arxiv.org/abs/
2302.06566 (visited on 08/2023).

[151] Masood Mansoori and Ian Welch. “How do they find us? A study of geolocation
tracking techniques of malicious web sites”. In: Computers & Security 97 (2020),
p. 101948.

[152] Florencia Marotta-Wurgler. “Self-regulation and competition in privacy policies”.
In: The Journal of Legal Studies 45.S2 (2016), S13–S39.

[153] Célestin Matte, Nataliia Bielova, and Cristiana Santos. “Do Cookie Banners Respect
my Choice? Measuring Legal Compliance of Banners from IAB Europe’s Trans-
parency and Consent Framework”. In: arXiv preprint arXiv:1911.09964 (2019).

[154] Jonathan R Mayer and John C Mitchell. “Third-party web tracking: Policy and
technology”. In: 2012 IEEE symposium on security and privacy. IEEE. 2012,
pp. 413–427.

[155] Paul W McBurney and Collin McMillan. “An empirical study of the textual
similarity between source code and source code summaries”. In: Empirical Software
Engineering 21 (2016), pp. 17–42.

[156] Nicolas Merz, Zach Yale, Heather Geiger, Darrien Park, Kurt Blair, and Daniel
Kailly. “Chrome’s Proposed Feature-by uBlock Origin”. In: (2018).

[157] Minimal Consent Extension. en-US. url: https://addons.mozilla.org/en-US/
firefox/addon/minimal-consent/ (visited on 09/2023).

[158] James A Muir and Paul C Van Oorschot. “Internet geolocation: Evasion and
counterevasion”. In: Acm computing surveys (csur) 42.1 (2009), pp. 1–23.

http://arxiv.org/abs/2302.06566
http://arxiv.org/abs/2302.06566
https://addons.mozilla.org/en-US/firefox/addon/minimal-consent/
https://addons.mozilla.org/en-US/firefox/addon/minimal-consent/

120 Bibliography

[159] Shaoor Munir, Sandra Siby, Umar Iqbal, Steven Englehardt, Zubair Shafiq, and
Carmela Troncoso. “CookieGraph: Understanding and Detecting First-Party Track-
ing Cookies”. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security. 2023, pp. 3490–3504.

[160] Eugene W Myers. “An O (ND) difference algorithm and its variations”. In: Algo-
rithmica 1.1-4 (1986), pp. 251–266.

[161] Paarth Naithani. “Curtailing the cookie monster through data protection by
default”. In: Tilburg Law Review 27.1 (2022), pp. 22–36.

[162] Michael Nebeling and Moira C Norrie. “Responsive design and development:
methods, technologies and current issues”. In: Web Engineering: 13th International
Conference, ICWE 2013, Aalborg, Denmark, July 8-12, 2013. Proceedings 13.
Springer. 2013, pp. 510–513.

[163] Henrik Nielsen, Roy T. Fielding, and Tim Berners-Lee. RFC 1945 - Hypertext
Transfer Protocol –HTTP/1.0. Request for Comments RFC 1945. Internet Engi-
neering Task Force, May 1996. doi: 10.17487/RFC1945. url: https://datatracker.
ietf.org/doc/rfc1945.

[164] Nick NIKIFORAKIS, A Kapravelos, W Joosen, C Kruegel, F Piessens, and G Vigna.
Cookieless monster: Exploring the ecosystem of web-based device fingerprinting 2013
IEEE Symposium on Security and Privacy. 2013.

[165] Alexandra Nisenoff, Arthur Borem, Madison Pickering, Grant Nakanishi, Maya
Thumpasery, and Blase Ur. “Defining “Broken”: User Experiences and Remediation
Tactics When Ad-Blocking or Tracking-Protection Tools Break a Website’s User
Experience”. In: Proceedings of the 32nd USENIX Security Symposium. 2023.

[166] NordVPN Official Website. en. url: https://nordvpn.com/ (visited on 04/2023).

[167] Midas Nouwens, Rolf Bagge, Janus Bager Kristensen, and Clemens Nylandsted
Klokmose. “Consent-o-matic: Automatically answering consent pop-ups using
adversarial interoperability”. In: CHI Conference on Human Factors in Computing
Systems Extended Abstracts. 2022, pp. 1–7.

[168] Sean O’Connor, Ryan Nurwono, Aden Siebel, and Eleanor Birrell. “(Un) clear and
(In) conspicuous: The right to opt-out of sale under CCPA”. In: Proceedings of the
20th Workshop on Workshop on Privacy in the Electronic Society. 2021, pp. 59–72.

[169] Ognjen Pantelic, Kristina Jovic, and Stefan Krstovic. “Cookies implementation
analysis and the impact on user privacy regarding GDPR and CCPA regulations”.
In: Sustainability 14.9 (2022), p. 5015.

[170] Emmanouil Papadogiannakis, Panagiotis Papadopoulos, Nicolas Kourtellis, and
Evangelos P Markatos. “User tracking in the post-cookie era: How websites bypass
gdpr consent to track users”. In: Proceedings of the web conference 2021. 2021,
pp. 2130–2141.

https://doi.org/10.17487/RFC1945
https://datatracker.ietf.org/doc/rfc1945
https://datatracker.ietf.org/doc/rfc1945
https://nordvpn.com/

Bibliography 121

[171] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos Markatos. “Cookie
synchronization: Everything you always wanted to know but were afraid to ask”.
In: The World Wide Web Conference. 2019, pp. 1432–1442.

[172] Seongsoo Park, Seungcheol Ko, Jungsik Choi, Hwansoo Han, Seong-Je Cho, and
Jongmoo Choi. “Detecting source code similarity using code abstraction”. In:
Proceedings of the 7th International Conference on Ubiquitous Information Man-
agement and Communication. 2013, pp. 1–9.

[173] Playwright device emulation. en. url: https://github.com/microsoft/playwright/
blob/main/packages/playwright-core/src/server/deviceDescriptorsSource.json
(visited on 08/2024).

[174] Playwright Library. url: https://playwright.dev/docs/api/class-playwright.

[175] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. “Tranco: A research-oriented top sites ranking
hardened against manipulation”. In: arXiv preprint arXiv:1806.01156 (2018).

[176] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and Bamba
Gueye. “IP geolocation databases: Unreliable?” In: ACM SIGCOMM Computer
Communication Review 41.2 (2011), pp. 53–56.

[177] Polish Cookie Consent Extension. en-US. url: https://addons.mozilla.org/en-
US/firefox/addon/polish-cookie-consent/ (visited on 09/2023).

[178] Proton VPN. en. url: https://protonvpn.com (visited on 09/2023).

[179] Gaston Pugliese, Christian Riess, Freya Gassmann, and Zinaida Benenson. “Long-
term observation on browser fingerprinting: Users’ trackability and perspective”.
In: Proceedings on Privacy Enhancing Technologies (2020).

[180] Puppeteer. en. url: https://pptr.dev/ (visited on 08/2024).

[181] Puppeteer device emulation. en. url: https://pptr.dev/api/puppeteer.knowndevices
(visited on 08/2024).

[182] Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee.
“Slimium: debloating the chromium browser with feature subsetting”. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
2020, pp. 461–476.

[183] Rohit Rai. Socket. IO real-time web application development. Packt Publishing Ltd,
2013.

[184] Juan Ramos et al. “Using tf-idf to determine word relevance in document queries”.
In: Proceedings of the first instructional conference on machine learning. Vol. 242.
1. Citeseer. 2003, pp. 29–48.

[185] A Rasaii. BannerClick Extension. url: https://github.com/bannerclick/bannerclick
(visited on 09/2023).

https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/server/deviceDescriptorsSource.json
https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/server/deviceDescriptorsSource.json
https://playwright.dev/docs/api/class-playwright
https://addons.mozilla.org/en-US/firefox/addon/polish-cookie-consent/
https://addons.mozilla.org/en-US/firefox/addon/polish-cookie-consent/
https://protonvpn.com
https://pptr.dev/
https://pptr.dev/api/puppeteer.knowndevices
https://github.com/bannerclick/bannerclick

122 Bibliography

[186] Ali Rasaii, Shivani Singh, Devashish Gosain, and Oliver Gasser. Exploring the
Cookieverse: A Multi-Perspective Analysis of Web Cookies. arXiv:2302.05353 [cs].
Feb. 2023. url: http://arxiv.org/abs/2302.05353 (visited on 08/2023).

[187] Davi De Castro Reis, Paulo Braz Golgher, Altigran Soares Silva, and AlbertoF
Laender. “Automatic web news extraction using tree edit distance”. In: Proceedings
of the 13th international conference on World Wide Web. 2004, pp. 502–511.

[188] requests: Python HTTP for Humans. url: https://requests.readthedocs.io (visited
on 08/2024).

[189] RFC 791 - Internet Protocol. Request for Comments RFC 791. Internet Engineering
Task Force. doi: 10.17487/RFC0791. url: https://datatracker.ietf.org/doc/rfc791.

[190] RFC 9293 - Transmission Control Protocol. Request for Comments RFC 9293.
Internet Engineering Task Force. doi: 10.17487/RFC9293. url: https://datatracker.
ietf.org/doc/rfc9293.

[191] Jeffrey Rubin and Dana Chisnell. Handbook of usability testing: How to plan, design,
and conduct effective tests. John Wiley & Sons, 2008.

[192] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. “The earth mover’s distance
as a metric for image retrieval”. In: International journal of computer vision 40
(2000), pp. 99–121.

[193] Jukka Ruohonen and Kalle Hjerppe. Predicting the Amount of GDPR Fines. 2020.
arXiv: 2003.05151 [cs.CY].

[194] Kimberly Ruth, Deepak Kumar, Brandon Wang, Luke Valenta, and Zakir Du-
rumeric. “Toppling top lists: Evaluating the accuracy of popular website lists”. In:
Proceedings of the 22nd ACM Internet Measurement Conference. 2022, pp. 374–387.

[195] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. “A First Look
at QUIC in the Wild”. In: Passive and Active Measurement: 19th International
Conference, PAM 2018, Berlin, Germany, March 26–27, 2018, Proceedings 19.
Springer. 2018, pp. 255–268.

[196] Iskander Sanchez-Rola, Matteo Dell’Amico, Platon Kotzias, Davide Balzarotti,
Leyla Bilge, Pierre-Antoine Vervier, and Igor Santos. “Can I opt out yet? GDPR
and the global illusion of cookie control”. In: Proceedings of the 2019 ACM Asia
conference on computer and communications security. 2019, pp. 340–351.

[197] Cristiana Santos, Arianna Rossi, Lorena Sanchez Chamorro, Kerstin Bongard-
Blanchy, and Ruba Abu-Salma. “Cookie banners, what’s the purpose? analyzing
cookie banner text through a legal lens”. In: Proceedings of the 20th Workshop on
Workshop on Privacy in the Electronic Society. 2021, pp. 187–194.

http://arxiv.org/abs/2302.05353
https://requests.readthedocs.io
https://doi.org/10.17487/RFC0791
https://datatracker.ietf.org/doc/rfc791
https://doi.org/10.17487/RFC9293
https://datatracker.ietf.org/doc/rfc9293
https://datatracker.ietf.org/doc/rfc9293
https://arxiv.org/abs/2003.05151

Bibliography 123

[198] Cristiana Santos, Arianna Rossi, Lorena Sanchez Chamorro, Kerstin Bongard-
Blanchy, and Ruba Abu-Salma. “Cookie banners, what’s the purpose? analyzing
cookie banner text through a legal lens”. In: Proceedings of the 20th Workshop on
Workshop on Privacy in the Electronic Society. 2021, pp. 187–194.

[199] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmermann,
Stephen D. Strowes, and Narseo Vallina-Rodriguez. “A Long Way to the Top:
Significance, Structure, and Stability of Internet Top Lists”. en. In: Proceedings of
the Internet Measurement Conference 2018. Boston MA USA: ACM, Oct. 2018,
pp. 478–493. isbn: 978-1-4503-5619-0.

[200] Asuman Senol and Gunes Acar. “Unveiling the Impact of User-Agent Reduction
and Client Hints: A Measurement Study”. In: Proceedings of the 22nd Workshop
on Privacy in the Electronic Society. 2023, pp. 91–106.

[201] Kyle Simpson. You Don’t Know JS: ES6 & Beyond. " O’Reilly Media, Inc.", 2015.

[202] Kristina P Sinaga and Miin-Shen Yang. “Unsupervised K-means clustering algo-
rithm”. In: IEEE access 8 (2020), pp. 80716–80727.

[203] Than Htut Soe, Oda Elise Nordberg, Frode Guribye, and Marija Slavkovik. “Cir-
cumvention by design - dark patterns in cookie consent for online news outlets”.
en. In: Proceedings of the 11th Nordic Conference on Human-Computer Inter-
action: Shaping Experiences, Shaping Society. Tallinn Estonia: ACM, Oct. 2020,
pp. 1–12. isbn: 978-1-4503-7579-5. doi: 10.1145/3419249.3420132. url: https:
//dl.acm.org/doi/10.1145/3419249.3420132 (visited on 08/2023).

[204] Than Htut Soe, Cristiana Teixeira Santos, and Marija Slavkovik. Automated
detection of dark patterns in cookie banners: how to do it poorly and why it is hard
to do it any other way. 2022. arXiv: 2204.11836 [cs.LG].

[205] Yuri Son, Geumhwan Cho, Hyoungshick Kim, and Simon Woo. “Understanding
Users’ Risk Perceptions about Personal Health Records Shared on Social Networking
Services”. In: Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security. 2019, pp. 352–365.

[206] Jingkuan Song, Yi Yang, Zi Huang, Heng Tao Shen, and Richang Hong. “Multiple
feature hashing for real-time large scale near-duplicate video retrieval”. In: Pro-
ceedings of the 19th ACM international conference on Multimedia. 2011, pp. 423–
432.

[207] Jannick Sørensen and Sokol Kosta. “Before and after gdpr: The changes in third
party presence at public and private european websites”. In: The World Wide Web
Conference. 2019, pp. 1590–1600.

[208] Jannick Kirk Sørensen and Hilde Van den Bulck. “Public service media online,
advertising and the third-party user data business: A trade versus trust dilemma?”
In: Convergence 26.2 (2020), pp. 421–447.

https://doi.org/10.1145/3419249.3420132
https://dl.acm.org/doi/10.1145/3419249.3420132
https://dl.acm.org/doi/10.1145/3419249.3420132
https://arxiv.org/abs/2204.11836

124 Bibliography

[209] Mukund Srinath, Shomir Wilson, and C Lee Giles. “Privacy at scale: Introducing
the privaseer corpus of web privacy policies”. In: arXiv preprint arXiv:2004.11131
(2020).

[210] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and Nick Nikiforakis.
“Unnecessarily Identifiable: Quantifying the fingerprintability of browser extensions
due to bloat”. In: The World Wide Web Conference. 2019, pp. 3244–3250.

[211] Thomas Steiner, Anssi Kostiainen, and Marijn Kruisselbrink. “Geolocation in the
Browser”. In: Companion Proceedings of The 2019 World Wide Web Conference.
2019, pp. 913–918.

[212] Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. “Impact of similarity
measures on web-page clustering”. In: Workshop on artificial intelligence for web
search (AAAI 2000). Vol. 58. 2000, p. 64.

[213] Keen Sung, Joydeep Biswas, Erik Learned-Miller, Brian N Levine, and Marc
Liberatore. “Server-side traffic analysis reveals mobile location information over the
internet”. In: IEEE Transactions on Mobile Computing 18.6 (2018), pp. 1407–1418.

[214] Super Agent Extension. en-US. url: https://addons.mozilla.org/en-US/firefox/
addon/super-agent/ (visited on 09/2023).

[215] Satoshi Suzuki et al. “Topological structural analysis of digitized binary images by
border following”. In: Computer vision, graphics, and image processing 30.1 (1985),
pp. 32–46.

[216] Satoshi Suzuki et al. “Topological structural analysis of digitized binary images by
border following”. In: Computer vision, graphics, and image processing 30.1 (1985),
pp. 32–46.

[217] Kuo-Chung Tai. “The tree-to-tree correction problem”. In: Journal of the ACM
(JACM) 26.3 (1979), pp. 422–433.

[218] Tesseract documentation. en-US. url: https://tesseract-ocr.github.io/ (visited on
05/2023).

[219] Anastasios Tombros and Zeeshan Ali. “Factors affecting web page similarity”. In:
Advances in Information Retrieval: 27th European Conference on IR Research,
ECIR 2005, Santiago de Compostela, Spain, March 21-23, 2005. Proceedings 27.
Springer. 2005, pp. 487–501.

[220] Ryan Torok and Amit Levy. “Only Pay for What You Leak: Leveraging Sand-
boxes for a Minimally Invasive Browser Fingerprinting Defense”. In: 2023 IEEE
Symposium on Security and Privacy (SP). IEEE. 2023, pp. 1023–1040.

[221] Tracking Prevention Policy. Aug. 2019. url: https : / / webkit . org / tracking -
prevention-policy/ (visited on 11/2023).

https://addons.mozilla.org/en-US/firefox/addon/super-agent/
https://addons.mozilla.org/en-US/firefox/addon/super-agent/
https://tesseract-ocr.github.io/
https://webkit.org/tracking-prevention-policy/
https://webkit.org/tracking-prevention-policy/

Bibliography 125

[222] Willemijn Tutuarima. “Measuring Accessibility of Popular Websites when using
ProtonVPN”. In: (2021).

[223] Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and Norbert
Pohlmann. “Measuring the impact of the gdpr on data sharing in ad networks”. In:
Proceedings of the 15th ACM Asia Conference on Computer and Communications
Security. 2020, pp. 222–235.

[224] Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and Norbert
Pohlmann. “The unwanted sharing economy: An analysis of cookie syncing and
user transparency under GDPR”. In: arXiv preprint arXiv:1811.08660 (2018).

[225] Usage Statistics of JavaScript as Client-side Programming Language on Websites,
February 2024. url: https://w3techs.com/technologies/details/cp- javascript
(visited on 02/2024).

[226] User-Agent Reduction. url: https://www.chromium.org/updates/ua-reduction/
(visited on 11/2023).

[227] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and Thorsten Holz.
“(Un) informed consent: Studying GDPR consent notices in the field”. In: Proceed-
ings of the 2019 acm sigsac conference on computer and communications security.
2019, pp. 973–990.

[228] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and Thorsten Holz.
“(Un) informed consent: Studying GDPR consent notices in the field”. In: Proceed-
ings of the 2019 acm sigsac conference on computer and communications security.
2019, pp. 973–990.

[229] Cyril Vallez, Andrei Kucharavy, and Ljiljana Dolamic. “Needle In A Haystack, Fast:
Benchmarking Image Perceptual Similarity Metrics At Scale”. In: arXiv preprint
arXiv:2206.00282 (2022).

[230] Rob Van Eijk, Hadi Asghari, Philipp Winter, and Arvind Narayanan. “The impact
of user location on cookie notices (inside and outside of the European Union)”. In:
arXiv preprint arXiv:2110.09832 (2021).

[231] Naushad Varish and Arup Kumar Pal. “A content based image retrieval using color
and texture features”. In: Proceedings of the International Conference on Advances
in Information Communication Technology & Computing. 2016, pp. 1–7.

[232] Matteo Varvello, Iñigo Querejeta Azurmendi, Antonio Nappa, Panagiotis Pa-
padopoulos, Goncalo Pestana, and Benjamin Livshits. “VPN-Zero: A Privacy-
Preserving Decentralized Virtual Private Network”. In: 2021 IFIP Networking
Conference (IFIP Networking). IEEE. 2021, pp. 1–6.

[233] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. “{Fp-
Scanner}: The privacy implications of browser fingerprint inconsistencies”. In: 27th
USENIX Security Symposium (USENIX Security 18). 2018, pp. 135–150.

https://w3techs.com/technologies/details/cp-javascript
https://www.chromium.org/updates/ua-reduction/

126 Bibliography

[234] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. “{Fp-
Scanner}: The privacy implications of browser fingerprint inconsistencies”. In: 27th
USENIX Security Symposium (USENIX Security 18). 2018, pp. 135–150.

[235] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. “Fp-
stalker: Tracking browser fingerprint evolutions”. In: 2018 IEEE Symposium on
Security and Privacy (SP). IEEE. 2018, pp. 728–741.

[236] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc. “FP-
Crawlers: studying the resilience of browser fingerprinting to block crawlers”. In:
MADWeb’20-NDSS Workshop on Measurements, Attacks, and Defenses for the
Web. 2020.

[237] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc. “Fp-
crawlers: studying the resilience of browser fingerprinting to block crawlers”. In:
MADWeb’20-NDSS Workshop on Measurements, Attacks, and Defenses for the
Web. 2020.

[238] Visualize your browser and device fingerprint. url: https://deviceandbrowserinfo.
com/info_device (visited on 09/2024).

[239] W Gregory Voss. “First the GDPR, now the proposed ePrivacy regulation”. In:
Journal of Internet Law 21.1 (2017), pp. 3–11.

[240] Asma AI Vranaki and Francesca Farmer. “The Decline of Third-Party Cookies in
the AdTech Sector: Of Data Protection Law and Regulation (I)”. In: Available at
SSRN 4414566 (2022).

[241] Vytautas Vyšniauskas. “Anti-aliased pixel and intensity slope detector”. In: Elek-
tronika ir elektrotechnika 95.7 (2009), pp. 107–110.

[242] Tim Wambach and Katharina Bräunlich. “The evolution of third-party web track-
ing”. In: Information Systems Security and Privacy: Second International Confer-
ence, ICISSP 2016, Rome, Italy, February 19-21, 2016, Revised Selected Papers 2.
Springer. 2017, pp. 130–147.

[243] Haoyu Wang, Mengxin Liu, Yao Guo, and Xiangqun Chen. “Similarity-based web
browser optimization”. In: Proceedings of the 23rd international conference on
World wide web. 2014, pp. 575–584.

[244] Xinfei Wang. “A survey of online advertising click-through rate prediction models”.
In: 2020 IEEE International Conference on Information Technology, Big Data and
Artificial Intelligence (ICIBA). Vol. 1. IEEE. 2020, pp. 516–521.

[245] Yong Wang, Daniel Burgener, Marcel Flores, Aleksandar Kuzmanovic, and Cheng
Huang. “Towards {Street-Level}{Client-Independent}{IP} Geolocation”. In: 8th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
11). 2011.

https://deviceandbrowserinfo.com/info_device
https://deviceandbrowserinfo.com/info_device

Bibliography 127

[246] Zilun Wang, Wei Meng, and Michael R Lyu. “Fine-Grained Data-Centric Content
Protection Policy for Web Applications”. In: Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security. 2023, pp. 2845–2859.

[247] Steve Ward and Mat Hostetter. “Curl: a language for web content”. In: International
journal of Web engineering and technology 1.1 (2003), pp. 41–62.

[248] Michael Weeks. “Creating a web-based, 2-D action game in JavaScript with
HTML5”. In: Proceedings of the 2014 ACM Southeast Regional Conference. 2014,
pp. 1–6.

[249] Wu Wen, Xiaobo Xue, Ya Li, Peng Gu, and Jianfeng Xu. “Code similarity detection
using ast and textual information”. In: International Journal of Performability
Engineering 15.10 (2019), p. 2683.

[250] Liu Wenyin, Guanglin Huang, Liu Xiaoyue, Zhang Min, and Xiaotie Deng. “Detec-
tion of phishing webpages based on visual similarity”. In: Special interest tracks and
posters of the 14th international conference on World Wide Web. 2005, pp. 1060–
1061.

[251] Vera Wesselkamp, Imane Fouad, Cristiana Santos, Yanis Boussad, Nataliia Bielova,
and Arnaud Legout. “In-depth technical and legal analysis of tracking on health
related websites with ernie extension”. In: Proceedings of the 20th Workshop on
Workshop on Privacy in the Electronic Society. 2021, pp. 151–166.

[252] Wget - GNU Project - Free Software Foundation. url: https://www.gnu.org/
software/wget/ (visited on 08/2024).

[253] Tingmin Wu, Rongjunchen Zhang, Wanlun Ma, Sheng Wen, Xin Xia, Cecile Paris,
Surya Nepal, and Yang Xiang. “What risk? i don’t understand. an empirical study
on users’ understanding of the terms used in security texts”. In: Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security. 2020,
pp. 248–262.

[254] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang Yang, Hong Hu, Guofei Gu,
and Wenke Lee. “Abusing hidden properties to attack the node. js ecosystem”. In:
30th USENIX Security Symposium (USENIX Security 21). 2021, pp. 2951–2968.

[255] Diwen Xue, Reethika Ramesh, Arham Jain, Michalis Kallitsis, J. Alex Halderman,
Jedidiah R. Crandall, and Roya Ensafi. “OpenVPN is Open to VPN Finger-
printing”. In: 31st USENIX Security Symposium (USENIX Security 22). Boston,
MA: USENIX Association, Aug. 2022, pp. 483–500. isbn: 978-1-939133-31-1. url:
https://www.usenix.org/conference/usenixsecurity22/presentation/xue-diwen.

https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.usenix.org/conference/usenixsecurity22/presentation/xue-diwen

128 Bibliography

[256] Tetsuo Yamamoto, Makoto Matsushita, Toshihiro Kamiya, and Katsuro Inoue.
“Measuring similarity of large software systems based on source code correspon-
dence”. In: Product Focused Software Process Improvement: 6th International Con-
ference, PROFES 2005, Oulu, Finland, June 13-15, 2005. Proceedings 6. Springer.
2005, pp. 530–544.

[257] Li Yujian and Liu Bo. “A normalized Levenshtein distance metric”. In: IEEE
transactions on pattern analysis and machine intelligence 29.6 (2007), pp. 1091–
1095.

[258] Muhammad Zain ul Abideen, Shahzad Saleem, and Madiha Ejaz. “Vpn traffic
detection in ssl-protected channel”. In: Security and Communication Networks
2019 (2019), pp. 1–17.

[259] Yujing Zeng, Jie Gao, and Chunsong Wu. “Responsive web design and its use by
an e-commerce website”. In: Cross-Cultural Design: 6th International Conference,
CCD 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June
22-27, 2014. Proceedings 6. Springer. 2014, pp. 509–519.

[260] Frederik J Zuiderveen Borgesius, Sanne Kruikemeier, Sophie C Boerman, and
Natali Helberger. “Tracking walls, take-it-or-leave-it choices, the GDPR, and the
ePrivacy regulation”. In: Eur. Data Prot. L. Rev. 3 (2017), p. 353.

Appendix A

Appendices

A Exploring the impact of device information on the
web

Code repository for UA-Radar can be found on GitHub1. The artifacts include various
forms of data and code that were used in the experiments, as well as detailed documentation
and instructions to help others reproduce and validate the results.

A.1 Crawled Domains

A total of 12, 000 domains were crawled to gather data and examine the relevance of the UA
and associated information on the web. The websites selected for crawling were randomly
chosen from the Tranco2 list in April 2022. A comprehensive list of the crawled domains
can be found in the file ./crawled_domains.json. We used McAfee SmartFilter3 to
obtain the Internet categories of the crawled domains. Table A.1 shows the list of the
categories of the crawled domains.

A.2 Navigator Properties Exposed During the Crawl

To examine the relevance of the user agent on the web, we instrumented the so-called
“None-browsers”—a browser with just the string “None” in place of the user agent and
any other browser identifying information. To instrument the None browsers, we modified
the User-Agent HTTP request-header field of the standard browsers and changed it to the
word “None”. We also modified information that identifies the browser in the Navigator
objects of the standard browsers. In particular, we changed navigator.appVersion,
navigator.platform, navigator.userAgent, and navigator.vendor and placed the

1https://github.com/intumwa/ua-radar
2https://tranco-list.eu/
3https://sitelookup.mcafee.com/en/feedback/url?action=checksingle&sid=

BF6DB84A3A60F9AEB8F69A93DA023455

https://github.com/intumwa/ua-radar
https://tranco-list.eu/
https://sitelookup.mcafee.com/en/feedback/url?action=checksingle&sid=BF6DB84A3A60F9AEB8F69A93DA023455
https://sitelookup.mcafee.com/en/feedback/url?action=checksingle&sid=BF6DB84A3A60F9AEB8F69A93DA023455

130 Appendices

Table A.1: Categories of Crawled Domains

CATEGORY DOMAINS

Internet Services 1,575
Business 1,419
Marketing 1,230
Education 724
News 702
Entertainment 631
Blogs 583
Games 491
Ads 459
Online Shopping 443
Information 434
Social Networking 355
Search Engines 352
Health 304
Miscellaneous 259
Malicious Sites 250
Finance 234
Pornography 207
Online Forum 204
Government 201
Non-Profit 166
No Category 35
TOTAL 11,252

word “None” on each of those properties. Furthermore, to avoid our modified browsers from
being detected as bots, we set navigator.webdriver to false. Tables A.2, A.3, and A.4
detail the navigator properties exposed on all browsers during the crawl.

A.3 UA-Radar

UA-Radar is a Node.js application that relies on a Node.js add-on written in C++.
The add-on takes care of the comparison tasks for each dimension of UA-Radar (Visual
similarity, HTML structure, JavaScript, and CSS). To test the comparisons, we use
Docker35. Below are instructions to produce results.

A.4 Running the Application

Move into the directory ./similarity, build a Docker image36, and run it.

cd similarity
docker build -t similarity .
docker run similarity

35https://www.docker.com/get-started/
36https://hub.docker.com/r/uaradar/similarity

https://www.docker.com/get-started/
https://hub.docker.com/r/uaradar/similarity

A Exploring the impact of device information on the web 131

Table A.2: Navigator Properties for Chromium Browsers

Navigator Property Chromium Chromium-None

appCodeName Mozilla Mozilla
appName Netscape Netscape
appVersion 5.0 (X11; Linux x86_64)

AppleWebKit/537.36 (KHTML, like
Gecko)
HeadlessChrome/101.0.4951.15
Safari/537.364

None

buildID - -
connection NetworkInformation {onchange: null,

effectiveType: ’4g’, rtt: 100, downlink:
1.5, saveData: false}

NetworkInformation {onchange: null,
effectiveType: ’4g’, rtt: 100, downlink:
1.5, saveData: false}

cookieEnabled TRUE TRUE
doNotTrack null null
geolocation Geolocation {} Geolocation {}
hardwareConcurrency 8 8
ink Ink {} Ink {}
language en-US en-US
languages [’en-US’] [’en-US’]
maxTouchPoints 0 0
mediaCapabilities MediaCapabilities {} MediaCapabilities {}
mediaSession MediaSession {metadata: null,

playbackState: ’none’}
MediaSession {metadata: null,
playbackState: ’none’}

mimeTypes MimeTypeArray {0: MimeType, 1:
MimeType, application/pdf:
MimeType, text/pdf: MimeType,
length: 2}

MimeTypeArray {0: MimeType, 1:
MimeType, application/pdf:
MimeType, text/pdf: MimeType,
length: 2}

onLine TRUE TRUE
pdfViewerEnabled TRUE TRUE
oscpu - -
permissions Permissions {} Permissions {}
platform Linux x86_645 None6

plugins Plugins {} Plugins {}
product Gecko Gecko
productSub 20030107 20030107
scheduling Scheduling {} Scheduling {}
userAgent Mozilla/5.0 (X11; Linux x86_64)

AppleWebKit/537.36 (KHTML, like
Gecko)
HeadlessChrome/101.0.4951.15
Safari/537.36

None7

vendor Google Inc.8 None9

vendorSub - -
webdriver TRUE TRUE

A.5 Changing Test Files

In the file ./similarity/app.js, the visual comparison is the default UA-Radar
dimension available as follows:

const compare = require(’./index.js’);

(async () => {

132 Appendices

Table A.3: Navigator Properties for Firefox Browsers

Navigator Property Firefox Firefox-None

appCodeName Mozilla Mozilla
appName Netscape Netscape
appVersion 5.0 (X11)10 None
buildID 20181001000000 20181001000000
connection - -
cookieEnabled TRUE TRUE
doNotTrack unspecified11 unspecified12

geolocation Geolocation {} Geolocation {}
hardwareConcurrency 8 8
ink - -
language en-US en-US
languages [’en-US’, ’en’] [’en-US’, ’en’]
maxTouchPoints 0 0
mediaCapabilities MediaCapabilities {} MediaCapabilities {}
mediaSession MediaSession { metadata: null,

playbackState: "none" }
MediaSession { metadata: null,
playbackState: "none" }

mimeTypes MimeTypeArray { length: 0 } MimeTypeArray { length: 0 }
onLine TRUE TRUE
pdfViewerEnabled - -
oscpu Linux x86_6413 Linux x86_6414

permissions Permissions {} Permissions {}
platform Linux x86_6415 None16

plugins Plugins {} Plugins {}
product Gecko Gecko
productSub 2010010117 2010010118

scheduling - -
userAgent Mozilla/5.0 (X11; Linux x86_64;

rv:98.0) Gecko/20100101
Firefox/98.019

None20

vendor - None21

vendorSub - -
webdriver FALSE22 FALSE23

const srcImg = ’./test-files/1.png’;
const dstImg = ’./test-files/2.png’;
const visual = compare.screenshots(srcImg, dstImg, (err, res) => {
if (err) console.error(err);
else console.log(res);

});
})();

compare.screenshots is a function of the addon behind this Node.js application.
It takes 2 parameters of the images that you want to compare. If you want to com-
pare two JS scripts or CSS stylesheets, you’d change the comparison function from
compare.screenshots to compare.scripts and the 2 parameters would change to 2 JS
files or 2 CSS files that you want to compare accordingly.

A Exploring the impact of device information on the web 133

Table A.4: Navigator Properties for WebKit Browsers

Navigator Property WebKit WebKit-None

appCodeName Mozilla Mozilla
appName Netscape Netscape
appVersion 5.0 (Macintosh; Intel Mac OS X

10_15_2) AppleWebKit/605.1.15
(KHTML, like Gecko) Version/13.0.4
Safari/605.1.1524

None

buildID - -
connection - -
cookieEnabled TRUE TRUE
doNotTrack - -
geolocation Geolocation {getCurrentPosition:

function, watchPosition: function,
clearWatch: function}

Geolocation {getCurrentPosition:
function, watchPosition: function,
clearWatch: function}

hardwareConcurrency 8 8
ink - -
language en-US en-US
languages [’en-US’] [’en-US’]
maxTouchPoints 0 0
mediaCapabilities MediaCapabilities {decodingInfo:

function, encodingInfo: function}
MediaCapabilities {decodingInfo:
function, encodingInfo: function}

mediaSession MediaSession {metadata: null,
playbackState: "none",
setActionHandler: function,
callActionHandler: function,
setPositionState: function}

MediaSession {metadata: null,
playbackState: "none",
setActionHandler: function,
callActionHandler: function,
setPositionState: function}

mimeTypes MimeTypeArray {0: MimeType, 1:
MimeType, application/pdf:
MimeType, text/pdf: MimeType,
length: 2, item: function, namedItem:
function}

MimeTypeArray {0: MimeType, 1:
MimeType, application/pdf:
MimeType, text/pdf: MimeType,
length: 2, item: function, namedItem:
function}

onLine TRUE TRUE
pdfViewerEnabled - -
oscpu - -
permissions - -
platform Linux x86_6425 None26

plugins Plugins {} Plugins {}
product Gecko Gecko
productSub 2003010727 2003010728

scheduling - -
userAgent Mozilla/5.0 (Macintosh; Intel Mac OS

X 10_15_7) AppleWebKit/605.1.15
(KHTML, like Gecko) Version/15.4
Safari/605.1.1529

None30

vendor Apple Computer, Inc.31 None32

vendorSub - -
webdriver FALSE33 FALSE34

Comparing JS Scripts

const compare = require(’./index.js’);

(async () => {

134 Appendices

const srcJS = "./test-files/1.js";
const dstJS = "./test-files/2.js";
const js = compare.scripts(srcJS, dstJS, (err, res) => {
if (err) console.error(err);
else console.log(res);

});
})();

Comparing CSS Scripts

(async () => {
const srcCSS = "./test-files/1.css";
const dstCSS = "./test-files/2.css";
const css = compare.scripts(srcCSS, dstCSS, (err, res) => {
if (err) console.error(err);
else console.log(res);

});
})();

Comparing the HTML Structure

The same approach applies to comparing the HTML structure:

(async () => {
const srcHtml = "./test-files/1.html";
const dstHtml = "./test-files/2.html";
const html = compare.structure(srcHtml, dstHtml, (err, res) => {
if (err) console.error(err);
else console.log(res);

});
})();

It is worth noting that to see results for a compound metric as UA-Radar proposes,
you can run all four comparisons at the same time.

A.6 HTML Content Comparison

The Node.js add-on behind UA-Radar uses SFTM 37 to compare HTML structure (just
nodes of the DOM trees and their attributes). To compare the content of the nodes of
the DOM trees, we used Diff Match Patch38.

37https://github.com/lssol/sftm-csharp
38https://github.com/google/diff-match-patch

https://github.com/lssol/sftm-csharp
https://github.com/google/diff-match-patch

B Exploring the geolocation impact on enforcing privacy policies 135

The complete UA-Radar comparison combines the above comparisons (HTML
structure, HTML content, visual similarity, JS, and CSS).

B Exploring the geolocation impact on enforcing pri-
vacy policies

Code repository for this study can be found on GitHub39. It contains details concerning
our crawler and the cookie consent banner detection code, along with instructions on how
to run it.

B.1 Crawler Details

The directory ./crawler contains details concerning our crawler and the cookie consent
banner detection code and how to run it.

Use ./crawler/demo.py to run the crawler, but ensure the following are in order:

1. The right Firefox profile. We use different Firefox profiles:

• accept - ./data/cookie-accept

• no interaction - ./data/cookie-reject

2. Ensure to set the right profile 40:

• For acceptance: driver.install_addon(’/path/to/extension/idcac.xpi’)

• For rejection: driver.install_addon(’/path/to/extension/consent_o_matic.xpi’)

3. ./data/websites.txt is the list of domains that we have repeatedly crawled, each
6 times from five countries.

4. When everything is ready, run the cookie consent banner detector at ./crawler/popup.py

B.2 Results of Our Experimentation

Below is a summary of the results of our experimentation, broken down into Tables A.5, A.6, and A.7.
The tables are based on interaction scenarios seen in Chapter 5: No Interaction, Accept,
and Reject. Each table displays data across five countries: Brazil (BR), France (FR),
Japan (JP), South Africa (ZA), and the United States (US).

39https://github.com/intumwa/cookie-prevalence/
40https://github.com/intumwa/cookie-prevalence/blob/929238c6326b4e9c41666ab0a96df2f2886faad5/

crawler/openwpm/deploy_browsers/deploy_firefox.py#L146C80-L146C80

https://github.com/intumwa/cookie-prevalence/
https://github.com/intumwa/cookie-prevalence/blob/929238c6326b4e9c41666ab0a96df2f2886faad5/crawler/openwpm/deploy_browsers/deploy_firefox.py#L146C80-L146C80
https://github.com/intumwa/cookie-prevalence/blob/929238c6326b4e9c41666ab0a96df2f2886faad5/crawler/openwpm/deploy_browsers/deploy_firefox.py#L146C80-L146C80

136 Appendices

Table A.5: Results for No Interaction

Type BR FR JP ZA US

Visited Websites with ID cookies 3272 2959 3269 3413 3384
Number of ID cookies 46047 17477 53331 60970 90680
Number of First-Party Cookies 211452 173160 231161 243408 200753
Number of Third-Party Cookies 154717 68841 184562 190757 336323
Total number of cookies 366169 242001 415723 434165 537076
Visited Websites with TP requests 3794 3788 3884 3798 3797
Visited Websites with tracking requests 2065 1462 2002 2344 2221
Number of TP requests 273352 281190 299351 323953 323977
Number of tracking requests 123763 114760 153136 160642 169911
Total number of HTTP requests 694985 642300 727550 763214 804479

Table A.6: Results for Accept

Type BR FR JP ZA US

Visited Websites with ID cookies 3417 3129 3269 3333 3182
Number of ID cookies 43257 19637 54715 75392 79695
Number of First-Party Cookies 64546 57320 65771 67649 63117
Number of Third-Party Cookies 45970 18576 44664 50584 73773
Total number of cookies 110516 75896 110435 118233 136890
Visited Websites with TP requests 3850 3788 3884 3802 3828
Visited Websites with tracking requests 2476 1594 2051 2692 2447
Number of TP requests 287175 289981 303991 331462 325236
Number of tracking requests 150336 137527 161578 167894 177761
Total number of HTTP requests 768951 696623 854123 833363 829815

Table A.7: Results for Reject

Type BR FR JP ZA US

Visited Websites with ID cookies 3227 2900 2911 3329 3273
Number of ID cookies 42522 17908 56118 75139 88322
Number of First-Party Cookies 66996 58994 64219 69364 75773
Number of Third-Party Cookies 43888 18494 49808 44419 95901
Total number of cookies 110884 77488 114027 113783 171674
Visited Websites with TP requests 3794 3785 3883 3804 3826
Visited Websites with tracking requests 2297 1510 2021 2552 2388
Number of TP requests 286636 283201 302909 328516 34648
Number of tracking requests 144173 119165 159270 163284 175623
Total number of HTTP requests 743016 686514 748634 776973 829051

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.2.1 Determining information relevance in the user's browsing environment
	1.2.2 Exploring the impact of device information on the web
	1.2.3 Exploring the geolocation impact on enforcing privacy policies

	1.3 List of Publications
	1.4 List of Tools
	1.5 Outline

	2 Background & Related work
	2.1 Background
	2.1.1 How the web works
	2.1.2 Misuse of the user's browsing environment

	2.2 Measuring web similarity
	2.2.1 Analyzing text content of a web page
	2.2.2 Analyzing the HTML structure of a web page
	2.2.3 Analyzing JavaScript & CSS
	2.2.4 Analyzing visual rendering of a web page
	2.2.5 Detecting web page breakage

	2.3 Minimizing browser distinctiveness
	2.3.1 Analyzing leaks from the user's browsing environment
	2.3.2 Restricting access to the user's browsing environment

	2.4 The geolocation impact on privacy policies
	2.4.1 Identifying cookie consent notices
	2.4.2 User interaction with cookie consent banners

	3 Determining information relevance in the user's browsing environment
	3.1 Overview
	3.2 What is UBE information?
	3.3 Simulating access to UBE
	3.3.1 Simulating geolocation
	3.3.2 Simulating device and browser information

	3.4 Designing the crawler
	3.4.1 Crawl orchestration
	3.4.2 Dealing with dynamicity of web pages

	3.5 Similarity Radar
	3.5.1 Computing similarity scores for each dimension
	3.5.2 Computing the similarity score Sscore
	3.5.3 Determining information relevance in UBE

	3.6 Threats to validity
	3.6.1 Bot detection
	3.6.2 Investigating web page functionality
	3.6.3 Scope of relevance of UBE attributes

	3.7 Conclusion

	4 Exploring the impact of device information on the web
	4.1 Overview
	4.2 Motivation
	4.3 UA-Radar: Measuring Web Similarity in the Wild
	4.3.1 Overview
	4.3.2 Implementation Details

	4.4 Exploring the Impact of UA Changes
	4.4.1 Crawl Description & Statistics
	4.4.2 Empirical Results & Findings

	4.5 Discussion
	4.6 Impact of None-browsers on web privacy
	4.7 Threats to Validity
	4.8 Conclusion

	5 Exploring the geolocation impact on enforcing privacy policies
	5.1 Overview
	5.2 Motivation
	5.3 Web Crawling Methodology
	5.3.1 Preparing the crawler
	5.3.2 Connecting to countries
	5.3.3 Visual detection of banners
	5.3.4 Classification of banners

	5.4 Analysis
	5.4.1 Data collection
	5.4.2 Prevalence of cookie consent banners
	5.4.3 State of cookies
	5.4.4 State of tracking

	5.5 Discussion
	5.6 Threats to validity
	5.7 Conclusion

	6 Conclusion
	6.1 Contributions
	6.1.1 Determining information relevance in the user's browsing environment
	6.1.2 Exploring the impact of device information on the web
	6.1.3 Exploring the geolocation impact on enforcing privacy policies

	6.2 Future work
	6.2.1 Short-term perspectives
	6.2.2 Long-term perspectives

	6.3 Concluding note

	Bibliography
	A Appendices
	Appendices
	A Exploring the impact of device information on the web
	A.1 Crawled Domains
	A.2 Navigator Properties Exposed During the Crawl
	A.3 UA-Radar
	A.4 Running the Application
	A.5 Changing Test Files
	A.6 HTML Content Comparison

	B Exploring the geolocation impact on enforcing privacy policies
	B.1 Crawler Details
	B.2 Results of Our Experimentation

