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Ballade [English: Ballad] nom féminin (ancien provençal ballada, de ballar, danser). (i) Au Moyen

Âge, poème lyrique d’origine chorégraphique, d’abord chanté, puis destiné seulement à la récitation. (ii) À

partir du xive siècle, poème à forme fixe, composé de trois strophes suivies d’un envoi d’une demi-strophe.

(iii) Poème narratif mis à la mode en Allemagne et en Angleterre à la fin du xviie siècle, relatant de façon

pathétique une tradition historique ou légendaire. (iv) Pièce vocale ou instrumentale inspirée par une ballade

littéraire (Chopin, Liszt, Brahms ont écrit des ballades pour piano).

Balade [English: Walk / Stroll] nom féminin (de balader) Familier. Promenade : Faire une balade dans

les bois. Synonymes : excursion - marche - promenade - sortie - tour - virée

� Note de l’auteur : Nous sommes le 1er août 2022, Stéphane vient de répondre à l’éditeur afin de

valider les épreuves de notre travail, en collaboration avec Igor, sur le caractère bien posé au sens fort de “la

chaîne” avec seuils de régularité (semble-t-il) quasi minimaux sur les dérives. Ceci répond à la question que

m’avait posée François, il y a 12 ans maintenant. Ma thèse est définitivement finie, il est temps de tourner

la page et de commencer la rédaction de mon mémoire d’habilitation. Je créé un fichier HDR.tex et tape ces

lignes. Advienne que pourra.
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Présentation du manuscrit

Le présent manuscrit vise à retracer les travaux effectués depuis la fin de la préparation de mon
doctorat (2010-2013 - sous la direction de F. Delarue) à aujourd’hui. Il couvre ainsi la période d’
ATER (2013-2014) effectué à L’université Nice Côte d’Azur, de Maître de Conférence à l’Université
Savoie Mont Blanc (2014-2020) puis à Nantes Université (2020- ).

Le choix du titre n’est pas si anodin: d’une part le manuscrit est écrit dans l’espoir de proposer
au lecteur une balade de l’analyse classique à l’analyse stochastique, au gré des questions rencontrées
et de certaines solutions proposées; d’autre part il aspire (dans une certaine mesure !) à être
une ballade, les différents objets et concepts manipulés recélant (dans la limite de ce que mes
compétences me permettent d’en comprendre et d’en exposer) une part de beauté. Surtout, la
démarche permet d’égayer un peu la rédaction du mémoire. De fait, le manuscrit est écrit de
façon linéaire. Des concepts, questions et raisonnements introduits en amont de la lecture seront
régulièrement réutilisés en aval.

Le manuscrit comprend ainsi 6 chapitres, un interlude et un bestiaire et se structure en deux
parties : chapitres 1 et 2, interlude et chapitre 3, puis viennent les chapitres 4, 5 et 6. Les chapitres
1 et 4 ne contiennent aucun résultat personnel et ont vocation à introduire chacune des deux parties.
Le bestiaire contient des définitions d’espaces fonctionnels utilisés dans le manuscrit.

La première partie est relative aux EDS linéaires (au sens de McKean-Vlasov). Le second
chapitre, l’interlude et le troisième chapitre portent sur des travaux liés à la régularisation par le

bruit, selon la terminologie de F. Flandoli dans ces notes cours à Saint Flour (2010) et introduite
dans le chapitre 1. Ils exposent les résultats des travaux [4, 6, 7, 8] et [13] de la bibliographie
personnelle, respectivement.

La seconde partie est liée aux EDS non-linéaires (au sens de McKean-Vlasov), telles qu’introduites
dans le chapitre 4 . Le chapitre 5 porte sur les travaux [9, 12] et le chapitre 6 sur les travaux [5, 11].



Overview of the manuscript

The present manuscript aims to trace the work carried out from the end of my PhD preparation
(2010-2013 - under the supervision of F. Delarue) up until today. It covers the period of my ATER
(2013-2014) at the University of Nice Côte d’Azur, my position as Maître de Conférences at the
University Savoie Mont Blanc (2014-2020), and my current position at Nantes University (2020-).

The title of this manuscript, “Bal(l)ade between Probability and PDE”, was deliberately chosen
to take the reader on a journey from classical analysis to stochastic analysis, following the questions
explored and solutions proposed: this is the balade. Also, the manuscript aims to convey more than
just technical exposition (to some extent!); the objects and concepts manipulated possess aesthetic
qualities (to the best of my ability to comprehend and present them), which is the ballade. Es-
pecially, this approach adds an element of liveliness and interest to the writing of the manuscript.
Therefore, the manuscript is written in a linear way. Concepts, questions, and reasoning introduced
earlier in the text will be regularly reused downstream.

The manuscript consists of 6 chapters, an interlude and a Bestiary and is structured into two
parts: Chapters 1 and 2, interlude, and Chapter 3, followed by Chapters 4, 5, and 6. Chapters 1
and 4 contain no personal results and aim to introduce each of the two parts. The bestiary contains
definitions of functional spaces used in the manuscript.

The first part is related to linear SDEs (in the sense of McKean-Vlasov). The second chapter,
the interlude, and the third chapter deal with work related to regularization by noise, according
to the terminology of F. Flandoli in his lecture notes at Saint Flour (2010) and introduced in
Chapter 1. They present the results of the work [4, 6, 7, 8] and [13] from the personal bibliography,
respectively.

The second part is related to non-linear SDEs (in the sense of McKean-Vlasov), introduced in
Chapter 4. Chapter 5 deals with the work [9, 12], and Chapter 6 deals with the work [5, 11].
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Chapter 1

Well-posedness of SDE

� Throughout the manuscript, we define functional spaces on the fly, sometimes without explicitly

specifying the ambient space when it seems understandable to us. This is done in order to enhance

readability. At the end of the manuscript, the reader will find a brief bestiary of the spaces used,

see 6.5.

1.1 Regularization by noise

Since the 70’s, many works have shown that Stochastic differential equations with coefficients that
are less regular than Lipschitz can be well-posed in either a weak or strong sense. This phenomenon
is known as regularization by noise. Indeed, ODEs are SDEs and it is therefore impossible to solve
SDEs in full generality outside the Cauchy Lipschitz framework without taking advantage of the
noise, see e.g. the celebrated work of Di Perna and Lions [DL89]. In this vein, we refer to the
pioneering works of Zvonkin and Veretennikov: [Zvo74], [Ver80] for strong regularization, i.e. well-
posedness holds in a strong sense and Stroock and Varadhan’s [SV79] for weak regularization, i.e.

well-posedness holds in weak sense, both outside the Lipschitz framework. Consider indeed the
SDE with measurable coefficients F, σ : R+ × Rd → Rd × Rd⊗d:

dXt = F (t,Xt)dt+ σ(t,Xt)dBt,

where B denotes a d-dimensional Brownian motion. If σ = 0 the SDE may be ill-posed as soon
as F is less than Lipschitz. However, if σ is assumed to be uniformly non degenerate, the result
of Zvonkin and Veretennikov tells us that the SDE is well-posed in a strong sense as soon as σ
is Lipschitz in space and F only bounded and measurable. From Stroock and Varadhan’s theory,
we know that the Lipschitz condition on the coefficient σ may be relaxed to continuity for weak
well-posedness to hold. In both cases, σ is assumed to be uniformly non degenerate, which justifies
again that this is a regularization by noise phenomenon.

From both perspectives, the well-posedness of the SDE relies on obtaining a “good” theory for
the (at least formally) associated PDE, i.e. driven by the generator of the Markov process that
solves the SDE. The terminology of “good” depends on the type of well-posedness we are looking
for. From the formal discussion below, we will see that a heuristic rule with vague contours seems
to emerge for what “good” means: to obtain weak well-posedness, a sufficient condition is to control
the gradient of the associated PDE in supremum norm while to obtain strong well-posedness, a
sufficient condition is to control the second order derivatives of the PDE in a suitable Lebesgue

1



norm.

If we focus on the drift part of the equation, we can roughly describe the regularization phe-
nomenon by considering the following framework: given a noise (Wt)t≥0 with fluctuations of order
tγ , γ > 0, what kind of minimal regularity Cβb (Rd), β ≤ 1 must12 be assumed on the coefficient F
of the formal equation3

dYt = F (t, Yt)dt+ σdWt, Y0 = y ∈ Rd, (SDE)

with σ > 0, while preserving the well-posedness of the system in the weak or strong sense? To
illustrate this, we will mainly consider the case F : x 7→ sign(x)|x|β in the following sections
(Peano-like drift).

1.1.1 Weak regularization

The probabilistic viewpoint From a probabilistic viewpoint, an answer to the weak regular-
ization phenomenon has been addressed in the work [DF14] by Delarue and Flandoli4: we have to
compare the fluctuations of the noise W and of one of the extremal solutions of the deterministic
version of the Peano equation associated with the SDE i.e.

dYt = sign(Yt)|Yt|βdt, Y0 = 0.

To regularize the equation, the noise has to dominate the system in small time so that the solution
leaves the singularity of the initial configuration. This competition can be made explicit. There
must be a time 0 < tσ < 1 such that, below this instant, the noise dominates the system and
pushes the solution far enough from the singularity, while above, the drift dominates the system
and constrains the solution to fluctuate around one of the extremal solutions of the deterministic
Peano equation (which was chosen by flipping a coin, in a Brownian case). A good way to see how
the instant tσ looks like is to compare the fluctuations of the extremal solutions (±cβt1/(1−β)) with
the fluctuations of the noise “tγ”. This leads to the following equation for tσ

σtγσ = t
1

1−β
σ ,

which gives tσ = σ(1−β)/(1−γ(1−β)) and leads to the condition:

β > 1 − 1
γ
. (weak heuristic rule)

Thus, the more singular the drift is, the more “irregular” the noise has to be to restore well-
posedness. We emphasize that, having this observation in mind, it is possible to build a rigorous
class of counter-examples for weak well-posedness to hold below such a threshold (see Chapter 2).
This is the reason why we say that this analysis is related to weak regularization.

1Here, Cβ
b (Rd) denotes the space of bounded Hölder continuous function on Rd, we refer to 6.5 for details on the

functional spaces used in the manuscript.
2For a negative value of β, one may think of a generalized derivative (whence a distribution) of a Cβ+1

b map, and

so on if β < −1.
3The terminology of “formal” relies on the fact that, in the case of a distributional drift, the meaning of the SDE

has to be specified.
4We emphasize that the Authors consider the case of a Brownian noise, but we choose to formulate it more

generally for pedagogical purposes.
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The PDE viewpoint Let us restrict our discussion to a certain class of noises for which the
associated SDE would have a Markovian solution5. For instance, α-stable noise with stability
parameter α in (0, 2], where the case α = 2 corresponds to a Brownian motion. The PDE associated
with the SDE can be written, in the framework of the Peano example, as follows:

∂tu(t, x) + sgn(x)(|x|β)Du(t, x) + 1
2∆

α
2 u(t, x) = 0,

where ∆α/2 stands for the usual fractional Laplacian. The previous discussion more or less suggests
that, in order to preserve weak well-posedness, the transport term of the PDE should be a negligible
perturbation of the fractional Laplacian in small time (i.e. the noise dominates). To see this, let
us introduce the corresponding rescaled function uλ(t, x) := u(λt, λ1/αx) for λ > 0 (reflecting the
parabolic scale for t and x). We then get that uλ satisfies the following equation:

∂tuλ(t, x) + λ1− 1
α sgn(x)|λ

1
αx|βDuλ(t, x) + 1

2∆
α
2 uλ(t, x) = 0,

so that the terms associated with the principal part of the partial differential operator in the above
PDE, namely ∂tuλ and ∆α/2uλ, are comparable. On the other hand, if β > 1 − α, the scaled drift
coefficient goes to zero with λ, and the principal part of the partial differential operator dominates;
if β = 1 − α, the scaled drift coefficient stays at a macro scale and the rescaled drift has the
same order as the principal part of the partial differential operator (critical case); otherwise, the
drift explodes when λ goes to zero. As in this case we have α = 1/γ, we have thus recovered the
weak heuristic rule from the probabilistic analysis done before.

1.1.2 Strong regularization

The case of strong uniqueness is much more involved. Let us first emphasize that all the results
we found in the literature and that hold in any dimension6, see e.g. [Zvo74, Ver80, KR05, Zha10,
Dav07, FF11, Pri12a, BFGM19, CG16, WZ16, FFPV17, CZZ21, Pri18a, Ger22], suggest the follow-
ing heuristic rule:

β ≥ 1 − 1
2γ . (strong heuristic rule)

Thus, there is a gap between strong and weak regularization. The main point now is that, to the
best of our knowledge, there are no counter-examples that prove that this gap is indeed a price to
pay for passing from weak to strong regularization. In order to understand where this gap comes
from, we need to go a little further in the PDE based proof, known as Zvonkin Transform. This is
the purpose of the next section. We believe that through this, the reader may be convinced that
the above rule gives the optimal threshold for the method employed.

The Zvonkin Transform The main idea of the Zvonkin approach consists in rewriting the SDE
(with σ = 1) as

Xt = u(t,Xt) +X0 − u(0, X0) −M0,t(α, u,X) + Wt, (Zvonkin transform)
5Actually, only Markovian noises will be considered in this manuscript.
6The scalar case may indeed introduce some specific features, see e.g. [BC03, GO13, ABM20, 13]
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with

M0,t(α, u,X) :=


∫ t

0
Du(s,Xs) · dWs, if α = 2;∫ t

0

∫
R\{0}

Ñ(dr, dz){u(s,Xs− + z) − u(s,Xs−)}, if α < 2,

with Ñ the compensated Poisson measure associated with W and where u is the solution of

∂tu(t, x) + ⟨F (t, x), Du(t, x)⟩ + 1
2∆

α
2 u(t, x) = F (t, x), u(T, ·) = 0.

The above stochastic dynamics is known as the Zvonkin transform. It follows from Itô’s formula,
provided that u is smooth enough. This transformation allows to eliminate the bad drift in the
equation and to replace it with the solution of a parabolic PDE that benefits from the smoothing
effect associated with the generator of the noise. Indeed, the mild solution of the above formal
PDE writes

u(t, x) =
∫ T

t
dsPαs−t[{F (s, ·) + F (s, ·) ·Du(s, ·)}](x), x ∈ Rd,

where (Pαt )t denotes the usual stable semi-group. It is well known that this semi-group maps Cβb
to Cβ+α

b with a critical singularity (w.c.s. )7. This is also known as Schauder estimates, see e.g.

[Fri64, KP10] for α = 2 or [10, MP14] in the pure jump case. Therefore, we could expect at best
that u(t, ·) ∈ Cα+β

b .
Note now that the Zvonkin transform is (almost) a classical SDE, without any clear non-

degeneracy assumption on the noise. Hence, its strong well-posedness relies on the usual stability
argument of Grönwall type. Therefore, we need the stochastic integral M(α, u,X) to be Lipschitz
continuous in the spatial variable. When α < 2, it follows from the interpolation type Lemma 4.1 in
[Pri12a] that a sufficient condition is that for any t in [0, T ], u(t, ·) must belong to C1+η

b , η > α/2.
When α = 2, it suffices to have that for any t in [0, T ], u(t, ·) belongs to C2

b .
Therefore, we obtain that β must satisfy α + β > 1 + α/2 ⇔ β > 1 − α/2. In other words,

denoting the self similarity index of the noise by γ again, we get that strong well-posedness holds
for

β > 1 − 1
2γ .

Thus, we can conclude that the threshold for strong well-posedness coming from strong heuristic rule
is optimal for the Zvonkin approach, although it appears in non-Markovian cases where, obviously,
PDE does not come into play.

7� The reader may wonder why, given the form of the above mild representation, a critical singularity is satisfying.
This comes from the fact that, for non-integer β, it is possible to control the Cβ+α

b of the integrated semi-group

uniformly in t, i.e. there exists C > 0 (not depending on t) such that for any f in Cβ
b , |
∫ T

t

P α
s−tfds|

C
β+α
b

< C|f |
C

β
b

.

From now on, the sentence w.c.s. will refer to this fact.
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Chapter 2

Regularization by degenerate noise

In this chapter, we summarize the results obtained in the works [4],[6] and [7],[8]. The common
feature of all this works is the model considered: we investigated the smoothing properties of a
noise propagating through a chain of n differential equations or oscillators. When n = 2, the model
can be written as a classical kinetic model. In other words, we were concerned with the smoothing
effect of a degenerate noise. This was studied at three levels: weak regularization was derived in
[4],[6], Schauder estimates for the corresponding PDE were derived in [7] and strong regularization
in [8].

To connect this chapter with Chapter 1, the reader may consider these works as an attempt
(and a successful one !) to make rigorous the discussion on the thresholds and the associated
smoothing effect related to the strong and weak regularization phenomenon. As previously noted,
in the classical Brownian and sub-critical stable case (i.e. when the parameter α of the Markovian
stable noise belongs to (1, 2]), the weak heuristic rule (to derive weak well-posedness) may lead to
consider distributional drift, which implies additional issues to be resolved (we refer to Chapter
3 for further investigations in this direction). In this chapter, we somehow disrupt the noise by
making it propagate through a weak Hörmander structure. As a consequence, the noise added into
the system degenerates and its associated scaling exponent “γ” is bigger than 1: the noise is more
regular. In view of the rules previously obtained, this lead to positive thresholds for the minimal
regularity required on the drift, so that we can work with functions. This is more flexible to use
tools from stochastic calculus.

2.1 Peano-like system perturbed by a noise propagating through a weak Hör-

mander structure

In this section, we present the archetypal model considered in the previously mentioned works from
our personal bibliography. We have simplified the exposition as much as possible, while retaining
the essential properties of the model. Furthermore, we have chosen this model to fit as close as
possible with the discussion presented in Chapter 1.

� In the following, we invite the reader to perform the calculations in the case n = 2 to avoid

confusion between all indices and perhaps gain a better understanding of what is happening, with

the kinetic case in mind.
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The noise Let us first introduce the archetypal noise propagating through the weak Hörmander
structure. For n ≥ 2, it writes,

dWt = AWtdt+ EdBt, with A =



0 · · · · · · · · · 0
1 0 · · · 0

...
0 1 0

...
...

... . . . . . . 0
...

0 · · · 0 1 0


, X0 = 0, (2.1.1)

where E = (1, 0, . . . , 0)∗ = (1,01,n−1)∗. In other words, W is simply a Brownian motion and its
iterated time integral (we emphasize that this could have been a d-dimensional Brownian motion
and its associated iterated time integral). This simple model is a natural generalization of the
Kolmogorov’s example [Kol34] (n = 2). In this work, Kolmogorov showed that this process is
Gaussian and admits a smooth density, so this noise is said to be hypoelliptic while being non-
elliptic, see [Hör67]. The main point to notice now is that each component of this noise lives at its
own time scale: the ith component W i lives at a time scale or order ti−1/2, 1 ≤ i ≤ n. This can be
clearly seen when considering the associated density q which satisfies, for x, y ∈ Rn, t < s ∈ (R+)2,

q(t, s, x, y) ≍ gc(t, s, x, y) := 1
(s− t) n2d

2

exp
(

−c−1 1
2(s− t)|T−1

s−t(etAx− y)|2
)
,

with c = 1 and where Tr is the (diagonal) intrinsic scale matrix of the system i.e. (Tr)i,i = ri,
1 ≤ i ≤ n. We point out that the Gaussian density in the above right hand side also suggests that
for any 2 ≤ i ≤ n, the ith component feels the transport of the initial conditions of the previous
levels1 1 ≤ j < i. This is reminiscent of the model: these transports, which are at scale of tj ,
1 ≤ j < i ≤ n, are not negligible in small time, as the typical time scale of the ith component is
ti−1/2.

The Peano-like system We now pick a collection of indices (βji )2≤i≤j≤n each of them in (0, 1)
and we consider the following Peano-like system:

dXt = P (Xt)dt, P = (P1, . . . , Pn)∗, Pi =
n∑
j=i

P ji , P ji = pi,jsign(xj)|xj |β
j
i .

(Peano like system)
This system is precisely designed to be perturbed by the above noise. The perturbed version reads
as:

dXt = (AXt + P (Xt)) dt+ EdBt. (perturbed Peano like system)

1This is well-seen from the specific sub-diagonal structure of A and fact that the matrice is nilpotent of degree n.
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2.2 Failure of uniqueness for a perturbed Peano-like system

For i ∈ [[2, n]] and j ∈ [[i, n]], we consider the Peano like system with pk,ℓ = 0 for any (k, ℓ) ̸= (i, j).
Namely, 

ẋ1
t = ẋ2

t = . . . = ẋi−1
t = 0

ẋit = sign(xjt )|x
j
t |β

j
i

ẋi+1
t = xit, . . . , ẋ

j
t = xj−1

t

ẋj+1
t = ẋj+2

t = . . . = ẋnt = 0

t ≥ 0,

and xl0 = 0 for all l in [[1, j]]. Each entry (xkt )t≥0,k∈[[1,n]] of the above dynamics is scalar. It is
well seen that the global well-posedness of this system relies on the well-posedness of the ith equa-
tion, whose extremal solutions write ±cij

βj
i

t((j−i)β
j
i +1)/(1−βj

i ), for some positive cij
βj

i

. At this stage,
it is worth noting that this system also have some interesting features: not only do the extremal
solutions depend on the level (“i”) of the chain, but they also depend on their position (“j”) in the
equation.

Still reasoning by analogy with Chapter 1, we begin by comparing the fluctuations of the noise
and the extremal solutions. To this end, we add a small parameter σ > 0 in the front of the
Brownian motion in the above system (i.e. with σE instead of E). Let us now fix 2 ≤ i ≤ j ≤ n
and consider thus the component SDE

Zi,jt = x0 + σW i
t (component SDE)

+
∫ t

0
sign

(∫ s

0
. . .

∫ si+2

0
Zi,jsi+1

dsi+1 . . . dsj

)∣∣∣∣∣
∫ s

0
. . .

∫ si+2

0
Zi,jsi+1

dsi+1 . . . dsj

∣∣∣∣∣
βj

i

ds

where W i is the (i− 1)th iterated integral in time of the Brownian motion. As this noise (impulsed
in the ith level of the chain) lives at scale i− 1/2, we are thus looking for a small time ti,jσ solving

σt
2i−1

2 = σt

(j−i)β
j
i

+1

1−β
j
i ,

which gives as a necessary condition for ti,jσ to be defined:

βji >
2i− 3
2j − 1 (n = 2 ⇒ β2

2 > 1/3).

It turns out that such a comparison can also yield counter-examples. Let us recall that, in their
work, Delarue and Flandoli showed that for the noise to restore well-posedness, there must exist
a time 0 < ti,jσ < 1 such that below this time, the solution behaves like the noise, and above it,
it fluctuates around one of the extremal solutions of the Peano system. Let us assume that this
instant does not exist i.e. that βji < [2i−3/(2j−1)]. It is thus natural to wonder wether as soon as
the solution starts just above the singularity, it will remain around the positive extremal solution
of the Peano system with high probability, as the intensity of the noise is not "strong enough" to

7



balance the fluctuations of the extremal solution. This can be made rigorous. Introduce for a given
parameter λ ∈ (0, 1), for any continuous path Y from R+ to R, the following stoping time

τ(Y ) = inf{t ≥ 0 : Yt ≤ (1 − λ)cij
βj

i

t((j−i)β
j
i +1)/(1−βj

i )}.

we prove in [4] (n = 2) and [6] the following lemma.

Lemma 2.2.1. Let Zi,j be the weak solution of the component SDE starting from some x0 > 0
and suppose that βji < [2i− 3/(2j − 1)]. Then, there exists a positive ρ, depending on λ, βji , i and

E|W i
1| only, such that

Px0(τ(Zi,j) ≥ ρ) ≥ 3/4.

Letting the initial condition x0 tend to 0, we can deduce that the weak solution (Zi,j ,W i) of
the component SDE starting from 0 at time 0 remains around the positive extremal with high
probability. But the symmetry of the system implies that this is also the case for (−Zi,j−,W i),
and if uniqueness in law holds, this means that

P0(τ(Zi,j) ≥ ρ) ≥ 3/4 and P0(τ(−Zi,j) ≥ ρ) ≥ 3/4,

which is obviously impossible. We deduce the following result taken from [4] (n = 2) and [6].

Theorem 2.2.2 (Failure of weak uniqueness). For any

βji <
2i− 3
2j − 1 ,

uniqueness in law fails for the component SDE with x0 = 0.

To resume, for a diagonal system, i.e. pi,j = 0, i ̸= j, we obtain in the case n = 2 (kinetic
model) that uniqueness fails as soon as β2

2 < 1/3 = 1 − 1/(3/2) where t3/2 represents the typical
order of fluctuations of

∫ t
0 Bsds. More generally, this proves that uniqueness fails as soon as βii <

1 − 2/(2i − 1) = 1 − 1/(i − 1/2) where i − 1/2 stands for the typical order of fluctuations of the
(i− 1)th iterated in time integral of a Brownian motion: this is precisely the weak heuristic rule in
Chapter 1.

2.3 Smoothing properties of the PDE associated to the Peano like system: tools

The results on weak and strong regularization may rely heavily, in the Markovian setting, on
the smoothing properties of the associated PDE. Here, we summarize the main (and common)
ingredients that will be useful for further investigations in these directions. We first write the
operator and PDE associated to the perturbed Peano example. For any positive time horizon
T > 0, we define the Cauchy problem C (T, f, g,L) as follows:

∂tu(t, x1, . . . , xn) + Lu(t, x1, . . . , xn) := ∂tu(t, x1, . . . , xn) + 1
2∆x1u(t, x1, . . . , xn)

+⟨Ax,Dxu(t, x1, . . . , xn)⟩ +
n∑
i=2

n∑
j=i

sign(xj)(|xj |β
j
i ) ·Dxiu(t, x1, . . . , xn)

= −f(t, x1, . . . , xn), (t, x1, . . . , xn) ∈ [0, T ) × Rn

u(T, x1, . . . , xn) = g(x1, . . . , xn), (x1, . . . , xn) ∈ Rn,
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where the maps f, g will be specified later on.

Our strategy to study the smoothing properties of L on the data (P, f, g) rests upon the
parametrix approach see e.g. the work of McKean and Singer [MS67] or the book of Friedman
[Fri64]. Roughly speaking, this approach is a perturbative argument consisting in expanding the
operator L around a good proxy, usually denoted by L̃. In our setting, the term good proxy relates
to the fact that the operator L̃ is the generator of the “closest” Gaussian approximation of the
process formally associated with the generator L. The associated fundamental solutions, denoted
by p and p̃, play a key role (assuming they exist, which is the case when the coefficients of the
generator and the data (f, g) are smooth by Hörmander theorem [Hör67] ).

The parametrix kernel When employing the parametrix approach, we are led to control the
approximation error of the operator L by the proxy one L̃. This error is encoded in what we call
the parametrix kernel and usually takes the form, on a given time interval [t, T ],∣∣∣∣∣

∫ T

t

[
(L̃ − L

)
ψ1(s, y)

]
ψ2(s, y)dyds

∣∣∣∣∣
for some suitable maps ψ1, ψ2 for which the above formulation makes sense, and which mainly
depend on the way we chose to approximate L. Let us only clarify at this stage that one of these
maps usually takes the form of the density of the proxy (i.e. of the fundamental solution associated
with it). In all the cases we consider, it is necessary to prove that this error is negligible in small
time so that the generator L̃ is indeed a good approximation of L. As one of the maps involved
in the above error takes the form of the density of the proxy, we understand that the perturbation
must be of the same order as the typical fluctuations of this process.

The proxy and associated freezing curve In our case, the “good proxy” is the generator L̃
of the Gaussian (Ornstein-Uhlenbeck) process X̃ whose dynamics writes

dX̃t = P (θt)dt+AX̃tdt+ EdBt, X̃t = etAX̃0 +
∫ t

0
e−(s−t)AP (θs)ds+

∫ t

0
e−(s−t)AEdBs

for some freezing curve R+ ∋ t 7→ θt ∈ Rn and where for the second equality in the above,
we explicitly solved the equation. This process admits a Gaussian density p̃ which is also the
fundamental solution of L̃.

To go further, we need to choose a freezing curve. In the previous paragraph, we emphasized
that the perturbation must be of the typical order of the process. Let us consider, for instance, the
case of a non degenerate Gaussian noise (i.e. n = 1 in our setting). In such a case, the mean of the
Gaussian process is the map mt,s := id, for all t < s ∈ R2

+ and if we want to approximate L on a
given interval [t, s], the idea consists in either freezing the coefficients on the initial condition x at
time t (forward parametrix) or on the terminal condition y at time s (backward parametrix). This
reproduces the typical fluctuations of the process well. Each of the two approaches has its benefits
and drawbacks. The first one is very robust and allows to handle a large class of problems but
requires more a priori knowledge on the operator L; the second is more subtle but appears to be
more delicate to work with and less flexible, especially because, at the end of the day, we somehow
loose the fact that we work with a density.
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In the general case n ≥ 2, the story becomes rather different since, as we saw on the density
q of the noise, the ith component feels the transport of the jth previous one, j ≤ i − 1. Thus, to
reproduce the typical fluctuations of the process, we need to freeze along the transport term of the
system i.e. along the curve given as the solution of

.
θt,s(y) = F (t, θt,s(y)), θs,s(y) = y

which we call the backward flow or
.
θt,s(x) = F (t, θt,s(x)), θt,t(x) = x

which we call the forward flow. Note that in our setting, the existence of a solution to such
equations follows from Peano’s theorem, while without mollifying procedure, the uniqueness is not
guaranteed. However, this does not prevent us from choosing, once and for all, a given solution
and to working with it.

As a consequence, we distinguish two kinds of degenerate Gaussian type kernel gbackward
c,m and

gforward
c,m which reproduce the behavior of the O.U. process. We indeed know from the work of

Delarue and Menozzi [DM10] that the following estimates hold in either the forward or backward
cases: for any l ∈ [[0, n]], r ∈ {0, 1}:

|Dxl
Dk

x1
p̃(t, s, x, y)| ≤ c̄

(s− t)(l− 1
2

)+ k
2

gc(t, s, x, y),

where

gc(t, s, x, y) =: gbackward
c (t, s, x, y) = c

(s− t) n2d
2

exp
(
−c−1(s− t)

∣∣T−1
s−t
(
x− θt,s(y)

)∣∣2)
in the backward case and

gc(t, s, x, y) =: gforward
c (t, s, x, y) = c

(s− t) n2d
2

exp
(
−c−1(s− t)

∣∣T−1
s−t
(
θt,s(x) − y

)∣∣2)
otherwise. The above estimates reflect the different scales at which each component of the sys-
tem lives. In particular, compared to the typical behavior of non degenerate Gaussian noise, it
must be noted that even a first order differentiation w.r.t. a degenerate variable may produce a
non-integrable time singularity.

2.4 Weak regularization for the perturbed Peano like system

In the light of the previous section, it is unnecessary to look for solutions of the perturbed Peano
like system in the regime βji < [2i− 3/(2j− 1)]. We thus focus from now on on the complementary
set, up to the critical case i.e. we assume that

βji >
2i− 3
2j − 1 , 2 ≤ i ≤ j ≤ n.
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Under such conditions, the continuity assumed on the coefficients allows to use a compactness
argument to obtain existence of a solution. The tricky part concerns uniqueness in law. The crucial
point here is that, in this framework, few informations are known on the law or the generator L of
the process. On the other hand, we obtained numerous results on the solution of a frozen (along
a suitable transport term) version of the Peano like system in the previous paragraph. We thus
aim to take advantage of this knowledge, viewing the generator L as a perturbation of the frozen
one. This is where parametrix comes into play. The approach implemented in [6] is in the spirit
of the original approach of Stroock and Varadhan to prove uniqueness for the Martingale problem
[SV79]. The objective, to obtain uniqueness, is to prove that for a sufficiently large class of functions
f : [0, T ] × Rn → R it holds that for any two martingale solutions Pi, i = 1, 2 starting from x at
time t, it holds that

EP1(t,x)

[∫ T

t
f(s,Xs)ds

]
= EP2(t,x)

[∫ T

t
f(s,Xt,x

s )ds
]
.

To do so, the idea consists in approaching the above quantities by the one associated to the
proxy. Let f ∈ C∞

0 ([0, T ) × Rn,R) be given. Denoting by P̃ the associated law, we may define

G̃f(t, x) = EP̃(t,x)

[∫ T

t
f(s,Xs)ds

]
=
∫ T

t

∫
Rn

f(s, y)p̃(t, s, x, y)dyds.

Assuming that this is a smooth map from [0, T )×Rn → R, this quantity solves the Cauchy problem

∂tG̃f + M̃tf = −f, (t, x) ∈ [0, T ) × Rn,

where, for all (t, x) ∈ [0, T ) × Rn,

M̃tf :=
∫ T

t

∫
Rn

L̃p̃(t, s, x, y)f(s, y)dyds,

(the choice of such an operator will be justified latter on) and we may expand the Green kernel G̃
applied to some smooth map f along any given martingale solution through Itô’s formula to obtain

0 = E
[
G̃f(T,Xt,x

T )
]

= G̃f(t, x) + E

[∫ T

t
(∂s + L)G̃f(s,Xt,x

s )ds
]

= G̃f(t, x) + E

[∫ T

t

(
LG̃− M̃s

)
f(s,Xt,x

s )ds
]

− E

[∫ T

t
f(s,Xt,x

s )ds
]
,

using as well the Cauchy problem satisfied by G̃f . From here, the strategy consists in first control-
ling the first two terms in the right hand side above in terms of the Lq([0, T ], Lp(Rn))-norm of f
to obtain the a.e. existence of a density for the Pi(t, x), i = 1, 2 lying in the dual Lebesgue space.
This follows from a pointwise control of the parametrix kernel, which is given by

(
LG̃− M̃s

)
f and

by the Gaussian estimate on the density p̃. Once this is proven, it remains to estimate suitably the
Lq([0, T ], Lp(Rn)) norm of the parametrix kernel and deduce that the operator [I −

(
LG̃− M̃s

)
] is

invertible on this space. We thus choose f in the above to be the inverse of this operator applied
to some function ϕ ∈ Lq([0, T ], Lp(Rn)) and obtain, for i = 1, 2 that

EPi

[∫ T

t
ϕ(s,Xt,x

s )ds
]

= G̃
[
[I −

(
LG̃− M̃s

)
]−1
]
ϕ(t, x),
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from which uniqueness follows. Let us noticed that, in order to conclude, it is crucial to obtain
a good control on the parametrix kernel. We briefly detail how this control works. Let f ∈
C∞

0 ([0, T ) × Rn,R), we have, for any (t, x) ∈ [0, T ) × Rn, using estimates on the derivative of the
proxy: ∣∣∣(LG̃− M̃s

)
f(t, x)

∣∣∣
=

∣∣∣∣∣
∫ T

t

∫
Rn

f(s, y)(L − L̃)p̃(t, s, x, y)dyds
∣∣∣∣∣

≤
∫ T

t

∫
Rn

|f(s, y)|
n∑
i=2

n∑
j=i

∣∣∣(sign(xj)|xj |β
j
i ) − sign(θs)|θs|β

j
i

)
Dxi p̃(t, s, x, y)

∣∣∣ dyds
≤

∫ T

t

∫
Rn

|f(s, y)|
n∑
i=2

n∑
j=i

∣∣∣xj − θjs

∣∣∣βj
i c̄

(s− t)(i− 1
2

)
gc,m(t, s, x, y)dyds.

To conclude, the procedure would now consist in choosing the curve θ along with we freeze the
coefficients in L in order to fit the exponential decay in the Gaussian density g2: this is what was
hinted in the previous paragraph by saying that the perturbation must be of the typical order of
the frozen process. Here, this gives us that θ should be chosen as the backward flow with terminal
condition y at time s, which was defined in the previous section. This justifies, a posteriori, the
choice of the operator M̃ above which allows to integrate w.r.t. the terminal conditions. In this case,
starting from the last inequality obtained in the previous equation, we obtain that (by deteriorating
the variance of the Gaussian kernel)∣∣∣(LG̃− M̃s

)
f(t, x)

∣∣∣
≤ C

n∑
i=2

n∑
j=i

∫ T

t

ds

(s− t)i− 1
2

−βj
i (j− 1

2
)

∫
Rn

gbackward
c,m (t, s, x, y)|f(s, y)|dy,

for some C > 0. The condition on the family of indexes (βji ) is precisely designed to give that for all
i ∈ [[2, n]], j ∈ [[i, n]], 1−{(i−1)+1/2−βji (j−1+1/2) > 0 so that all the above time singularities are
integrable. To conclude this computation, we eventually need to prove that gbackward

c,m is comparable
to a density. Indeed, the dependence on the covariance matrix w.r.t. the spatial integration variable
in p̃ (the space integration is done over the terminal condition which appears in the freezing curve)
breaks the density property of gbackward

c,m . If the coefficients in the equation solved by the curve θ
were Lipschitz, θ would be a Lipschitz homeomorphism, and in such case, one could use the fact
that

C−1(s− t)|T−1
s−t(θs,t(x) − y)|2 ≤ (s− t)|T−1

s−t(x− θt,s(y))|2

≤ C(s− t)|T−1
s−t(θs,t(x) − y)|2,

for some C > 0. The point is that, in our setting, the solution of the transport equation is not
smooth and is even non unique. We thus managed to prove that the above estimate holds for the
chosen flow up to some additional constant in the upper and lower bounds, and where the latter
may involved any other Peano solution of the transport equation. This allowed us to deduce the
result.

2By using the inequality: ∀η > 0, ∀q > 0, ∃C̄ > 0 s.t. ∀σ > 0, σqe−ησ ≤ C̄.
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Let us emphasize that the choice of the freezing curve as described above also leads to other
pathological phenomena. In such a case, the Cauchy problem associated with G̃f and M̃tf stated
above is ill-posed, as the lost of the density property prevents us from benefiting from the smooth-
ness of f around the singularity in t. This can be circumvent through suitable truncation procedure,
which we will not elaborate on here.

2.5 Schauder estimates

Once weak well-posedness has been proved, we can investigate the associated Cauchy problem
C (T, f, g,L). It is indeed known that well-posedness of the martingale problem gives rise to the
existence and uniqueness of a mild solution (i.e. as a semi-group) for the PDE. Having this mild
solution at hand, it is reasonable to investigate what the smoothing effect of the semi-group is
(especially in the perspective of building a strong solution). Namely, denoting by (Pt,s)0≤t<s≤T
the family of semi-groups associated with the Markovian (weak) solution of the perturbed Peano
like system, we aim to establish, in a rather optimal way, the set of functions to which Pt,sφ be-
longs for any 0 ≤ t < s ≤ T , when φ lies is in a suitable (here anisotropic) Hölder space. This
translates into PDE terminology as Schauder estimates fo the Cauchy problem C (T, f, g,L) where f
and g belong to anisotropic Hölder spaces. This is the purpose of the work [7] which we sketch here.

The approach still relies on the parametrix method. We begin by considering a sequence of
solutions (um)m of the Cauchy problem where the parameter m represents the smoothing parameter
of the coefficients of the equation. Under this mollified setting, we know from Hörmander’s theorem
that the PDE is hyppoelliptic, so the sequence of maps (um)m is a sequence of smooth functions.
As the Cauchy problem associated with both Lm and L̃ are well posed for any m > 0, we can write

(∂t + Lm)um = −f ⇔ (∂t + L̃)um = −f + (L̃ − Lm)um.

Since p̃ is the fundamental solution associated with L̃, we obtain that

um(t, x) =
∫

Rn
g(y)p̃(t, T, x, y)dy +

∫ T

t

∫
Rn

f(s, y)p̃(t, s, x, y)dyds

+
∫ T

t

∫
Rn

(Lm − L̃)um(s, y)p̃(t, s, x, y)dyds.

Having this representation, the strategy now consists in investigating for any j in [[1, n]], for any
(x1, . . . , xj−1, xj+1, . . . , xn) ∈ Rn−1 the sensitivity of the map

xj 7→ um(t, x1, . . . , xj−1, xj , xj+1, . . . , xn), t ∈ [0, T ]

w.r.t. the sensitivity of f and g, and the parametrix kernel, uniformly in m > 0. In the previous
part, we proved that under the condition assumed on the family of Hölder coefficients β (allowing
weak well-posedness to hold), the parametrix kernel is negligible in small time, or equivalently, the
drift (or transport term) is a negligible perturbation of the principal part of the operator (so that
for any m > 0, L̃ − Lm ≈ 0), so we can forget the third term in the r.h.s. of the previous equation.
Therefore, we mainly focus on the second term in the above right-hand side, the estimation of the
first one following from similar arguments.

13



From the computations we have done in the previous section, we understand that it is hopeless
to estimate derivatives in the degenerate direction (i.e. w.r.t. xj , j ≥ 2) without imposing any
threshold on the Hölder regularity on the data f . We therefore investigate the Hölder norm of
the solution instead. Let x, x′ ∈ Rn such that x1 = x′

1 (we do not focus on the non degenerate
direction, which is more classical). We aim to estimate um(t, x)−um(t, x′), for t in [0, T ]. However,
the strategy differs depending on the regime in which the estimate is performed: if the spatial
perturbation is small w.r.t. the order of the typical fluctuation of the process, which is the so-
called diagonal regime, we compare the density; otherwise we are in the off-diagonal regime and we
usually clumsily estimate the norm of the difference as the sum of the norms of each term.

To distinguish between the two regimes, we introduce the splitting time t0 where the change
of regime occurs. It can be easily derived from the various scalings associated with the proxy and
takes the form:

t0 := t+ c0

{
n∑
ℓ=2

|xℓ − x′
ℓ|

1
2ℓ−1

}2

=: t+ c0d2(x, x′), c0 > 0.

In other words, the regime occurs at different scales depending on the variable we consider. This
naturally defines a homogeneous quasi-distance denoted above by d. The change of regime occurs
at two levels: at a global level where we naturally compare the global time length interval T−t with
the spatial perturbation, and at a local level inside the time integration when the global regime is
diagonal (otherwise it remains off-diagonal once and for all). We now sketch the computations in
the (global and local) diagonal regime to better understand what kind of smoothing effect can be
expected. We have (keeping in mind that we illustrate the computations for g ≡ 0 and L̃ − L ≈ 0),

u(t, x) − u(t, x′) ≈
∫ T

t0∧T

∫
Rn

f(s, y){p̃(t, s, x, y) − p̃(t, s, x′, y)}dyds

=
∫ T

t0∧T

∫
Rn

f(s, y)
∫ 1

0
Dxp̃(t, s, x′ + λ(x′ − x), y)dλ · (x− x′)dyds,

thanks to Taylor expansion. The point is to notice that we now need to exploit the regularity of f
to quantify the smoothing effect of the generator. This is done through cancellation argument by
rewriting the above term as:∫ T

t0∧T

∫
Rn

{f(s, y) − f(s, θs)}
∫ 1

0
Dxp̃(t, s, x′ + λ(x′ − x), y)dλ · (x− x′)dyds.

The remainder term is equal to 0 if p̃ is a density. This, together with the hope of using the
Gaussian exponential decay to smoothen the singularity resulting from the above differentiation
(in order to obtain a non-exploding bound in small time) suggests choosing the forward freezing
curve with starting conditions (τ, ξ) as the freezing curve, and then set the parameters (τ, ξ) to
(t, x) after differentiating and expanding the densities. Together with the Gaussian bound on the
density of the proxy, we deduce that the above term can be estimated by:

C max
1≤j≤n

|f |
L∞([fj ]

γj
∞ )

∫ T

t0∧T
ds

n∑
i=2

|(x− x′)i|(s− t)(i− 1
2

)(γj−1)

≤ C max
1≤j≤n

|f |
L∞([fj ]

γj
∞ )

n∑
i=2


n∑
j=2

|(x− x′)j |
1

2j−1


2+γi(2i−1)

,
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where |f |
L∞([fj ]

γj
∞ )

denotes the supremum in time of the Hölder-modulus of the map f w.r.t. its
jth variable, assumed to be uniform w.r.t. the other space variables. This leads us to choose
γj = γ/(2j − 1) for any j in [[2, n]] to obtain that

∣∣∣∣∣
∫ T

t0∧T

∫
Rn

f(s, y){p̃(t, s, x, y) − p̃(t, s, x′, y′)}dyds
∣∣∣∣∣ ≤ Cd2+γ(x, x′), ∀m > 0.

This a posteriori justifies the choice of data (f, g) in anisotropic Hölder spaces associated with the
quasi-distance d defined above, which reflects the particular scales of the system.

Let us briefly explain the main consequences of the above calculations when dealing with the
off-diagonal regime. To conclude the above computations, we a posteriori chose the same initial
condition ξ = x for the forward transport of um(t, x) and um(t, x′). However, it is clear that such
a choice for the latter is anything but natural, since the associated proxy starts from x′. In the
off-diagonal regime, we do not compare the density, but rather estimate the norm of each term in
the difference. Hence, this requires the forward transport associated with each term to be initial-
ized at point x and x′, respectively. As a consequence, we need to investigate the sensitivity of the
parametrix to a change of initial condition in the freezing curve. This can be achieved through a
careful analysis of the mean and covariance of the proxy.

Finally, we discuss the control of the parametrix kernel. The implicit representation also implies
many issues to solve. The first one may be the fact that the parametrix kernel involves differentia-
tion of the solution um with respect to the degenerate variable, although we saw that the derivatives
of um cannot be estimated uniformly with respect to the mollification parameter, at least for “gen-
eral” data f, g. To overcome this problem, we rebalance the derivative onto the density, thanks
to an integration by parts argument, and use a cancellation argument to take advantage of the a

priori Hölder regularity of um. We thus obtain our estimates in terms of... our estimates. We
first conclude in small times through a circular argument made possible by scaling the PDE and
suitably equilibrating the constant appearing in the splitting time t0 (where the change of regime
occurs).

To conclude, we obtained, for any γ in (0, 1), denoting by Cγb,d the anisotropic Hölder space
roughly introduced above, that for any t < T ∈ R+, the family of semi-group (Pt,s)t≤s<T maps
Cγb,d to C2+γ

b,d . This means that, for any j ∈ [[1, n]], the map xj 7→ Pt,sf(·, xj , ·) is in C
(2+γ)/2j−1
b :

the smoothing effect translates into a gain of regularity of order 2/(2j − 1). In other words, the
smoothing effect decreases as one moves away from the source of noise. This particular feature is
reminiscent of the weak Hörmander-like structure.

2.6 Strong regularization

As emphasized in Chapter 1, our strategy for proving strong well-posedness rests upon the Zvonkin
transform. In the considered setting, it writes:

Xt = u(t,Xt) + x0 − u(0, x0) −
∫ t

0
Du(s,Xs)EdBs + EBt,
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where u = (u1, . . . , un)∗ and each ui satisfies

∂tui(t, x) + ⟨ Ax+ P (x)︸ ︷︷ ︸
=F (x)=(F1,...,Fn)(x)

, Dui(t, x)⟩ + 1
2∆x1ui(t, x) = Fi(x).

We then need to obtain a Lipschitz continuous in space integrand in the stochastic integral associ-
ated with the Zvonkin transform. Due to the particular structure of the embedding matrix E (recall
that E = (1,01,n−1)∗), this means that the gradient D1u (w.r.t. the non degenerate variable) must
be Lipschitz in all spatial directions. This requires the solution u to have the same regularity in
all the spatial directions. As a consequence, the regularity exponent of the drift does not depend
on the level “i” of the chain anymore, and this is why we now work with the family β = (βji )i,j
satisfying

∀i, k ∈ [[1, n]], βji = βjk =: βj , ∀j ∈ [[1, n]].
As highlighted in the precedent section through Schauder estimates, we expect, for any i in

[[1, n]], any j in [[1, n]], for fixed (x1:j−1, xj+1:n) in Rn−1 and t in [0, T ], the map

(ui)j(t, ·) : R ∋ zj 7→ ui(t,x1:j−1, zj ,xj+1:n) ∈ R (2.6.1)

to be in C2/(2j−1)+βj for any βj in
(
0, 1/[2j−1]

)
, uniformly w.r.t. t and (x1:j−1,xj+1:n). Especially,

we can deduce that, as (ui)j(t, ·) belongs to C2/(2j−1)+βj , (Dx1ui)j(t, ·) belongs to C1/(2j−1)+βj

b , i.e.

due to homogeneity reasons, one differentiation w.r.t. the non degenerate variable induces a loss
of Hölder regularity of order 1/(2j − 1) w.r.t. the jth degenerate variable. Since the previous
Schauder estimates only hold for a bounded source, we need to extend them to the unbounded
case. In this case, we cannot expect the solutions (ui)i∈[[1,n]] to be bounded anymore but rather
to have linear growth (and consequently bounded gradients). Therefore, we specifically state the
parabolic bootstrap in terms of usual Hölder spaces on the gradients. We prove that for any βj in(
(2j−2)/(2j−1), 1

)
, the map (Dx1ui)j(t, ·) uniformly belongs to C1/(2j−1)+βj−ε

b for any 0 < ε << 1
(the infinitesimal loss of regularity is due to the fact that we did not need a “true” Schauder es-
timate to conclude the proof, which allowed us to bypass the scaling and the balancing procedure
described previously). To obtain Lipschitz control in all the spatial directions of the gradient Dx1u,
we require 1/(2j − 1) + βj > 1 ⇔ βj > (2j − 2)/(2j − 1). Not that the previous thresholds write
βj > (2j − 2)/(2j − 1) = 1 − 1/(2j − 1) = 1 − 1/[2 × (j − 1/2)] where (j − 1/2) denotes the typical
fluctuations of the (j − 1)th iterated time integral of a Brownian motion. Thus, we end up with
the thresholds in strong heuristic rule, which we have shown to be optimal with respect to the
methodology.

2.7 General model and results, comments

For some n ≥ 1, we consider the following perturbed chain of differential equations

dX1
t = F1(t,X1

t , . . . , X
n
t )dt+ σ(t,X1

t , . . . , X
n
t )dBt,

dX2
t = F2(t,X1

t , . . . , X
n
t )dt,

dX3
t = F3(t,X2

t , . . . , X
n
t )dt,

...
dXn

t = Fn(t,Xn−1
t , Xn

t )dt,

t ≥ 0
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where (Bt)t≥0 stands for a d-dimensional Brownian motion and for all i ∈ [[1, n]], t ≥ 0 the compo-
nent Xi

t is Rd-valued as well (i.e. Xt ∈ Rnd). The diffusion coefficient σ is assumed to be (at least)
uniformly non degenerate and bounded. At the PDE level, the system writes, for any horizon time
T > 0,

∂tu(t, x1, . . . , xn) + ⟨F1(t, x1, . . . , xn), Dx1u(t, x1, . . . , xn)⟩ + 1
2Tr

(
D2
x1
u(t, x1, . . . , xn)a(t, x1, . . . , xn)

)
⟩

+
n∑
i=2

⟨Fi(t, xi−1, . . . , xn), Dxiu(t, x1, . . . , xn) = −f(t, x1, . . . , xn), (t, x1, . . . , xn) ∈ [0, T ) × Rnd

u(T, x1, . . . , xn) = g(x1, . . . , xn), (x1, . . . , xn) ∈ Rnd,
(2.7.1)

with a = σσ∗, for given data g : Rnd → R and f : [0, T ] × Rnd → R.

Let us discuss the weak Hörmander structure in this general case. It takes the following form: the
noise propagates in the ith component through the (i−1)th, 2 ≤ i ≤ n, thanks to the non-degeneracy
of the gradients

(
Dxi−1

Fi(t, ·)
)
i∈[[2,n]]

(components which transmit the noise). In other words, up
to a mollification of the diffusion coefficient, the drift is needed to span the space through Lie
Bracketing. Moreover, the specific drift structure we consider here requires only one additional Lie
bracket at each level of the chain to generate the corresponding directions, up to some regularization
of the diffusion coefficient again. Eventually, we do not require the drift of each component to be
smooth w.r.t. its other entries, but only to be Hölder continuous. This is the main reason why this
framework falls under the regularization by noise theory.

Mathematically, this translates into the following assumptions:
(ML) The coefficients F and σ are measurable in time and F (t, 0, . . . , 0) is bounded uniformly in
time.

(UE) The diffusion matrix a := σσ∗ is uniformly elliptic and bounded, uniformly in time, i.e. there
exists Λ ≥ 1 s.t. for all t ≥ 0, (x, ζ) ∈ Rnd × Rd:

Λ−1|ζ|2 ≤ ⟨a(t,x)ζ, ζ⟩ ≤ Λ|ζ|2.

(Hη) For all i ∈ [[2, n]], there exists a closed convex subset Ei−1 ⊂ GLd(R) (set of invertible d × d
matrices) s.t., for all t ≥ 0 and (xi−1, . . . , xn) ∈ R(n−i+2)d, Dxi−1

Fi(t, xi−1, . . . , xn) ∈ Ei−1. For
example, Ei−1 may be a closed ball included in GLd(R) the latter being an open set. Moreover,
Dxi−1

Fi is η-Hölder continuous w.r.t. xi−1 uniformly in xi:n and time. Importantly, we assume as
well that Dxi−1

Fi is also bounded (which is automatically the case if the Ei−1 are balls).
(Tβ) There exists a family of coefficients β = (βji )1≤i≤j≤n each of them lying in (0, 1) such that for
any i ∈ [[1, n]], j ∈ [[1, n]] the map xj 7→ Fi(·, xj , ·) is uniformly βji -Hölder continuous.

The results obtained in the works [6, 7, 8] generalize the ones previously sketched. Specifically,
the following theorems were obtained in those works.
Theorem 2.7.1 ([6]). Under the above assumptions, if the family of coefficients β satisfies

∀i ≤ j ∈ [[1, n]]2, βji > (2i− 3)/(2j − 1),

and if moreover the coefficient σ is η-Hölder continuous, then, weak well-posedness hold for the

system. The result remains true if F1 is only bounded or in Lq(R+, L
p(Rnd)) with [n2d/p]+[2/q] <

1, p ≥ 2, q > 2.
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To the best of our knowledge, one of the first results on the well-posedness of the system without
Lipschitz assumption on the diffusion coefficient goes back to Menozzi [Men11] who extended the
result to a spatially continuous diffusion coefficient in [Men18]. A particular configuration of the
system was also considered in [Zha18]. In all cases, the results do not provide further information
except for the diffusion coefficient. The results (and counter-examples) obtained in [6] have been
successfully extend to the case of a perturbation by an α-stable process in [MM21]. All these results
enter the weak heuristic rule of Chapter 1. Regarding the counter-example, it was built based on
the study in [DF14]. It a psoteriori appears that similar arguments were used by Tanaka, Tsuchiya
and Watanabe in [TTW74] to prove that uniqueness fails for non degenerate α-stable driven SDE
when β < 1 − α, which again emphasizes the heuristic.

Concerning the smoothing effect of the semi-group (Schauder estimates) the result we proved
is the following.

Theorem 2.7.2 ([7]). Let γ ∈ (0, 1). Assume the conditions of the previous theorem to hold and

assume moreover that a = σσ∗ ∈ L∞([0, T ], Cγb,d(Rnd,Rd⊗d)
)

where Cδb,d(Rnd,R), δ > 0, denotes

the anisotropic Hölder space associated with the homogeneous distance d. Let f, g belong respectively

to C2+γ
b,d (Rnd,R) and L∞([0, T ], Cγb,d(Rnd,R)

)
. Then, the Cauchy problem C (T, f, g,L) admits a

unique mild and weak solution u in C2+γ
b,d (Rnd,R) which verifies

∥u∥
L∞(C2+γ

b,d )
≤ C

(
∥g∥

C2+γ
b,d

+ ∥f∥L∞(Cγ
b,d)

)
. (2.7.2)

for some constant C := C
(
T
)
> 0.

As far as we know, the first Schauder estimates for this model goes back to the seminal work
of Lunardi [Lun97]. The estimates were obtained for homogeneous linear drift and diffusion coef-
ficient satisfying some structural assumptions. Later, Lorenzi extended these results to the kinetic
framework (n = 2) in [Lor05], by removing the structural assumptions and allowing for unbounded
diffusion. Then, Priola considered the same model with an additional non-linear homogeneous drift
coefficient for the non degenerate variable in [Pri09]. This last result has also been proved to hold
for inhomogeneous drift (for the non degenerate variable) in the kinetic case by Imbert and Mouhot
in [IM21]. Hence, in the current framework of degenerate Kolmogorov equations, focusing on the
drift, the Schauder estimates was only proved, to the best of our knowledge, for either linear drifts
or Hölder perturbations on the non degenerate variable of a linear drift. The result has also been
considered for non-local operator (associated with α-stable noise) in [ZH20] in the kinetic case and
[Mar20] in the general setting.

We eventually derived the following result on strong well-posedness.

Theorem 2.7.3 ([8]). Under the above assumptions, if moreover the family of coefficients β sat-

isfies

∀j ∈ [[1, n]], βji > (2j − 2)/(2j − 1), ∀i ∈ [[1, n]]

and the coefficient σ is Lipschitz continuous in space uniformly in time, then, strong well-posedness

hold for the system of perturbed chain of differential equations.

For strong regularization, one of the first result has been obtained in the kinetic case and
was originally presented in the personal work [1]. This work was later revisited and extended in
[WZ16, FFPV17] and eventually in [Pri21] from a path-by-path perspective. In the recent work
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[Ger22], Gerencser studied the diagonal Peano perturbed system with fractional Brownian motion.
Once again, all the results confirme the strong heuristic rule obtained in Chapter 1 for strong
regularization.

2.8 (Some) perspectives

Before considering some perspectives w.r.t. the previous results, let us first mention that the
somehow natural question on heat kernel estimate on the density of the process, under the assump-
tions of weak uniqueness, has been investigated in the work [16], for n = 2 (kinetic system) in in
collaboration with S. Menozzi, A. Pesce and X. Zhang.

• How to reach critical thresholds ? To start with, let us comment on the assumptions
on the coefficients as well as their optimality. We first notice that the assumptions on the
η-Hölder regularity of the gradient in the non degenerate direction of the drift of the degen-
erate variable clearly appears to be artificial. The presence of a small regularity parameter
only avoids to use harmonic analysis tools to remove it, as in this case, we would face to
the integration of a critical singularity. Also, all the critical case for the weak and strong
thresholds remain open as they also imply a critical singularity.

• Is there a price to pay to pass from weak to strong uniqueness ? A main question
raised by the above results lies in the gap between the minimal regularity asked on the drifted
to obtain weak and strong well-posedness. As mentioned in Chapter 1, all the results we found
in the literature present the same gap, although the approach used mainly differs from the one
we exposed here. It seems to be a quite challenging question. Firstly, because it is not clear
at all that this gap is indeed a price to pay to pass from weak to strong well-posedness. As an
example, in the scalar case (d = 1 and n is arbitrary), it can be easily proved that the system
has a unique strong solution under the assumptions of weak well-posedness. Secondly, as far
as we know, the only counter example to strong well-posedness, while weak well-posedness
holds, based on the drift, is due to Tsirelson (see e.g. [Che05]) and relies on non markovian
structure.
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Interlude

Quantification of the smoothing effect of a drifted super-critical

noise

In this interlude, we briefly describe the result obtained in [10] which are related to the smoothing
effect of the semi-group associated with an α-stable noise in the so-called super-critical regime,
i.e. for α in (0, 1). We investigate this effect through Schauder estimates, deriving such estimates
for drifted fractional operators in the super-critical case. Furthermore, the drift is allowed to be
unbounded.

This result is also linked to the weak heuristic rule in Chapter 1. As explained at the beginning
of the previous chapter, to work with functions (i.e. with a coefficient β > 0) the weak heuristic rule
forces to choose noises with fluctuations (or self-similarity index) of order γ > 1. For α-stable noises,
this condition writes 1/α > 1 ⇔ α < 1: this is the super-critical regime. As such, this framework
presents some similarities with the previous works on degenerate Brownian noise exposed in Chapter
2. However, the noise is here non degenerate and possesses its own drawbacks, especially since the
associated density does not integrate more moments than α̃ < α.

The system

For a fixed time horizon T > 0, we investigate the smoothing effect of a drifted α-stable noise whose
generator writes, for any smooth function φ : Rd → R:

∀t ∈ [0, T ], Lαt φ := ∆
α
2 φ(x) + F (t, x) ·Dφ(x),

where the drift F : [0, T ] × Rd → Rd is locally β-Hölder continuous and where ∆α/2 denotes the
fractional Laplacian.

As previously mentioned, we quantify the smoothing effect of the noise through Schauder
estimates. Specifically, we aim to establish global Schauder estimates for the Cauchy problem
C (T, f, g,Lα):

∂tu(t, x) + ∆
α
2 u(t, x) + F (t, x) ·Dxu(t, x) = −f(t, x), on [0, T ) × Rd,

u(T, x) = g(x), on Rd, (2.8.1)

where the source f : [0, T ] × Rd → R and terminal condition g : Rd → R are assumed to belong
to some suitable Hölder spaces and to be bounded.

We focus on the super-critical case, i.e. α ∈ (0, 1), even though the estimates could be extended
to the simpler case α ∈ [1, 2). The difficulty lies in the fact that in Fourier space, the principal
part of the operator Lα, namely ∆α/2, is of order α and does not dominate the drift term, which
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is roughly speaking of order one. From the PDE heuristic for the weak heuristic rule exposed in
Chapter 1 (see the "PDE viewpoint" therein), we understand that the Hölder regularity “β” of the
drift must compensate for the low smoothing effect of the operator ∆α/2. This implies that β is
such that β+α > 1. We also refer to the class of counter-examples in the previous chapter to have
a probabilistic viewpoint on this constraint.

Strategy

To obtain the Schauder estimates for the Cauchy problem C (T, f, g,Lα), we implement the pro-
cedure based on parametrix expansion exposed in Chapter 2. Following this latter, the choice of
the proxy to approximate Lα is crucial, and following the degenerate case, the proxy must involve
a (forward) frozen flow associated with the system (a flow of the ODE dyt = F (t, yt)dt). Indeed,
as the fluctuations of the associated driftless process typically behave like t1/α, the transport of
the initial condition, which is of order t, cannot be neglected in small time. This main particu-
larity leads to similar issues to solve. Especially, we again must investigate the sensibility of the
parametrix expansion w.r.t. the frozen flow.

In [7], the main difficulties encountered were in handling the degeneracy of the operator and
its associated anisotropic behavior while the derivation of a Duhamel representation (or first order
parametrix expansion) as well as the existence of a solution were the easier parts. We here face
different problems, especially when trying to obtain a suitable Duhamel representation or when
dealing with the existence part. These difficulties arise from two main features of our framework:
the stable operator ∆α/2 induces major integrability issues, and we consider drift terms that are
only locally Hölder continuous. To overcome these particularities, we localize the Cauchy problem
C (T, f, g,∆α/2, F ) by multiplying all the coefficients by a suitable localizing test function.

Comments and general result

The main result we obtain is the following theorem.

Theorem 2.8.1 ([10]). There exists a class of functions S α+β
b ([0, T ] × Rd) that contains the set

Cα+β
b ([0, T ] × Rd) on which the Cauchy problem has a unique solution satisfying:

∥u∥
L∞([0,T ],Cα+β

b
)

≤ C(∥g∥
Cα+β

b
+ ∥f∥

L∞([0,T ],Cβ
b

)
). (2.8.2)

An interesting example covered by these assumptions is the non-local Ornstein-Uhlenbeck pro-
cess with generator:

△α/2φ(x) +Ax ·Dxφ(x), (2.8.3)

with F (t, x) = Ax and A is any d × d real matrix. If α = 2, the Schauder estimates were first
proved by Da Prato and Lunardi [DPL95]. After that paper the O.U. operator has been much
investigated as a prototype of operator with unbounded coefficients.

Schauder estimates in the α-stable non-local framework have been addressed by several authors.
For driftless operators or in the case α ≥ 1 (but possibly including a general diffusion coefficients),
we can refer to e.g.[Bas09], [MP14], [IJS]. In the particular elliptic setting, when α ∈ [1, 2) and Lα
is a non degenerate symmetric α-stable operator and for bounded Hölder drifts, global Schauder
estimates were obtained by Priola, see e.g. Section 3 in [Pri12b] and [Pri18b] with respective
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applications to the strong well-posedness and Davie’s uniqueness for the corresponding SDE. Also,
when α ∈ [1, 2), elliptic Schauder estimates can be proven for more general Lévy-type generators
that are invariant for translations, see Section 6 in [Pri18b].

There is also a rather large literature concerning the regularity of the solution of the Cauchy
problem when the drift (possibly depending on the solution) is divergence free, i.e. ∇ ·F (t, x) = 0.
We can refer e.g. to [CV10] or [SVZ13].

However, fewer result were available in the drifted case when α ∈ (0, 1). When F is Hölder
continuous and bounded, Silvestre obtained in [Sil12] sharp Schauder estimates on balls for the
fractional Laplacian. Nevertheless, it seems that the above result when Lα = ∆α/2 cannot be
obtained from the result by Silvestre using a standard covering argument for a locally Hölder drift
F . Indeed the Schauder constant in [Sil12] also depends on the global boundedness of F . We can
mention as well the recent work of Zhang and Zhao [ZZ18], who address, through probabilistic
arguments, the parabolic Dirichlet problem in the super-critical case for stable-like operators with
a non trivial bounded drift. They also obtain interior Schauder estimates and some boundary decay
estimates. In the whole space, related estimates in Besov spaces for bounded drifts and potentially
singular spherical measures can also be found in Chen et al. [CZZ17].
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Chapter 3

Weak-regularisation for SDE with distributional drift

In this chapter, we focus on the results obtained in [13]. Therein, we consider the weak well-
posedness of a formal SDE i.e. a SDE with distributional drift. We investigate the weak well-
posedness through the martingale formulation, modifying slightly the original Stroock and Varad-
han perspective in order to avoid the issues coming from the distributional drift. Then, we link the
martingale solutions to the dynamics suggested by the formal SDE.

This result is thus part of the “regularization by noise” perspective, as defined in Chapter 1.
In this latter, we derive the weak heuristic rule which somehow suggests that we could solve, in a
weak sense, formal SDE with distributional drift (with regularity parameter β < 0), provided the
noise scales at least at order γ < 1. The purpose of this work is to investigate what can be said
in this regime, considering α-stable Markovian noise for α in (1, 2] (which scales at order 1/α).
The Markovian setting allows us to use the connection with PDEs, and the results, such as those
presented in Chapter 2, strongly rely on PDE theory. In this regard, it should be emphasized that
the forward parametrix approach, outlined in previous parts, plays a central role, although it is
implemented in a simpler way due to the structure of the problem. This enables us to focus on
other issues specific to the distributional framework, especially concerning the meaning to give to
the dynamics of the solution.

3.1 The formal formulation

The noise The class of noises we consider is the class of d-dimensional symmetric α-stable process
W, for some α in (1, 2] (thus including Brownian noise). The semi-group generated by the noise
is denoted by (Pαt )t, and its generator is denoted by Lα. When α = 2, L2 = (1/2)∆ where ∆
stands for the usual Laplace operator on Rd. In the pure-jump stable case α ∈ (1, 2), for all
φ ∈ C∞

0 (Rd,R):
Lαφ(x) = p.v.

∫
Rd

[
φ(x+ z) − φ(x)

]
ν(dz),

where, writing in polar coordinates z = ρξ, (ρ, ξ) ∈ R+ × Sd−1, the Lévy measure decomposes
as ν(dz) = µ(dξ)dρ/ρ1+α with µ a symmetric non degenerate measure on the sphere Sd−1. We
assume:

(UE) There exists κ ≥ 1 s.t. for all λ ∈ Rd:

κ−1|λ|α ≤
∫
Sd−1

|λ · ξ|αµ(dξ) ≤ κ|λ|α.
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The formal SDE We are interested in providing a well-posedness theory for the following formal
d-dimensional stable driven SDE. For a fixed T > 0, t ∈ [0, T ]:

Xt = x+
∫ t

0
F (s,Xs)ds+ Wt, (formal SDE)

The crucial point in the above SDE lies in the fact that the drift F is only supposed to be-
long to the space Lr([0, T ], Bβ

p,q(Rd,Rd)), where Bβ
p,q(Rd,Rd) denotes a Besov space. In a nut-

shell, when p = q = ∞, for any non integer β > 0, Besov spaces coincide with Hölder spaces
Bβ

∞,∞(Rd,Rd) = Cβb (Rd,Rd); when β < 0, this somehow indicates that the Hölder modulus blows
up at rate β. The parameters p and q are related to the integrability of such a modulus. We refer
to Section 2.6.4 of [Tri83] for a rigorous definition. The parameters (p, q, β, r) are allowed to be
s.t. −1/2 < β < 0, p, q, r ≥ 1. Assuming the parameter β to be strictly negative implies that F
may not even be a function, but just a distribution, so it is not clear that the integral part in the
above equation has any meaning, at least as it is written. This is why, at this stage, we refer to it
as the formal d-dimensional stable SDE or “the formal SDE”.

The formal PDE As done in the previous part, our approach to tackle the solvability (in a
sense to be precised) of the formal SDE turns into investigating the smoothing effect (and hence
the well-posedness) of the associated PDE. Here, the Cauchy Problem C (T, f, g,Lα, F ) associated
with writes

(∂t + F ·D + Lα)u = f, uT = g, (formal Cauchy problem)
for f and g in large enough classes F and G respectively. We again use the term formal as it is not
clear wether the above product F ·Du is meaningful, since product between two distributions can
only be defined under suitable constraints.

3.2 Rigorous formulation of the problem and results for drift as generalized

derivative of a Hölder map

From now on, we assume that the parameters satisfy p, q, r = +∞, in order to focus on the
parameter β. In this case, as Bβ

∞,∞ = Cβb can be identified with Hölder space, the drift F is
the generalized derivative of a function F belonging to Bβ+1

∞,∞ = Cβ+1
b .

Rigorous formulation for the PDE As at this stage everything remains formal, we need to
define appropriate notions to work with. The first one relies on the PDE. The product to handle,
between the gradient of the PDE solution and the distributional drift, suggests to work with mild
formulation of the problem in order to benefit from the smoothing effect of the semi-group generated
by the noise. The natural candidate for the mild solution or, in comparison with Chapter 2, the
parametrix expansion around the generator of the noise, formally gives that the mild solution of
the formal Cauchy problem writes

∀(t, x) ∈ [0, T ] × Rd, u(t, x) = PαT−t[g](x) −
∫ T

t
dsPαs−t[{f − F ·Du}](s, x).

We then need to specify the space in which we are looking for such a solution. Especially, we must
take care to ensure that: (i) the space is contained in the space of functions v for which the product
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F · Dv makes sense as a distribution (hence with the same regularity as F ); (ii) the semi-group
indeed maps distribution with the same regularity as F ... onto this space.

To do so, we know that for any δ > 0, the semi-group Pαt maps Cδb to Cδ+αb w.c.s. . In our
work, we also manage to prove that this remains valid for any 0 > δ > −1/2 (up to an in-
finitesimal loss of regularization). Therefore, we have that for any t > 0, Pαt F belongs to Cα+β

b

w.c.s. , which somehow settles point (ii). On the other hand, we need the sum of the regularity
indexes of F and Du to be strictly positive in order to define the product between them thanks
to the Bony’s paraproduct rule. Combining this with the previous point, we obtain the condition
{β} + {β + α− 1} > 0 ⇔ β > (1 − α)/2, as if Pαt F belongs to Cα+β

b w.c.s. then DPαt F belongs to
Cα+β−1
b w.c.s.

Hence, for maps f : R+ × Rd → R and g : Rd → R and T > 0, we define the solutions to the
formal Cauchy problem C (T, f, g,Lα, F ) as the mild solutions u belonging to C0,1([0, T ] × Rd,R)
with Du in C0

b ([0, T ], Bθ
∞,∞(Rd,Rd)) where θ + β > 0 (we mainly have in mind θ = α + β − 1 up

to a small loss 0 < ϵ << 1).

Solving the PDE Given this definition, it remains to solve the PDE. To this aim, we implement
the strategy outlined in Chapter 2 to handle both Schauder estimates and Strong regularization.
The main idea to handle the distributional case is to work within the framework of Besov spaces.
Especially, we use as crucial tools duality results between Besov spaces as well as their thermic
characterization. This is done by working on the Cauchy problem with mollified coefficients and
large class of data. By doing so, we obtain the following result which gives an affirmative answer to
the well-posedness, in the sense previously defined, to the formal Cauchy problem C (T, f, g,Lα, F ),
through a compactness argument.

Theorem 3.2.1. Let β > (1 − α)/2. For all f in C([0, T ], Bβ
∞,∞(Rd,R)) and g ∈ C1(Rd,R) with

Dg ∈ Bα+β−1
∞,∞ (Rd,Rd) the formal Cauchy problem C (T, f, g,Lα, F ) admits a unique mild solution.

Moreover it satisfies that for all (t ≤ s) in [0, T ]2, x in Rd:

|u(t, x) − u(s, x)| ≤ C|t− s|
α+β

α , |Du(t, x) −Du(s, x)| ≤ C|t− s|
α+β−1

α .

Rigorous definition of the martingale problem Having a well-posedness theory for the PDE
at hand allows us, in turn, to rigorously define the martingale problem. However, the main draw-
back in our setting lies in the explicit use of the generator in the definition of the martingale problem
from Stroock and Varadhan’s theory. The generator is required to act on a sufficiently large class
of functions, E , which must be chosen to be rich enough to characterize a Markov process through
the martingale formulation (see, e.g., [SV79]). In our current setting, the main issue arises from
the fact that the generator includes a distributional part (the drift term F ). Even if E is chosen so
that the products in (F ·D+Lα)ϕ are well defined for ϕ ∈ E , this term could only be a distribution
with the same regularity as F . To avoid this issue, the idea is to take E as the set of functions for
which (∂t + F ·D + Lα)ϕ is a well-defined function.

Having these considerations in mind, we rewrite the Martingale Problem associated with (F,Lα, x)
for x ∈ Rd as follows: find a probability measure Pα on the space Ωα (with Ω2 = C([0, T ],Rd) and
Ωα = D([0, T ],Rd) when 1 < α < 2) equipped with its canonical filtration so that
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(i) Pα(X0 = x) = 1,

(ii) ∀f ∈ C([0, T ],S(Rd)), g ∈ C1(Rd,R) with Dg ∈ Bα+β−1
∞,∞ (Rd,Rd),(

u(t,Xt) −
∫ t

0
f(s,Xs)ds− u(0, x)

)
0≤t≤T

is a (square integrable if α = 2) martingale under Pα where u is the mild solution of the
Cauchy Problem C (T, f, g,Lα, F )1.

From the Cauchy to the Martingale problem (i) The first step of the procedure is to mollify
the coefficients to ensure that the mollified SDE is well-posed. We then solve the (mollified) Cauchy
problem C (T,−Fm, 0,Lα, Fm), where the parameter m is associated to the mollifying procedure,
and remove the drift by using the Zvonkin transform. This allows in turn to derive tightness of the
sequence of laws induces by the solutions on the canonical space Ωα.

(ii) We identify the limit, denoted by Pα, as a solution of the martingale problem. This follows
from the expansion of the solution of the mollified Cauchy problem C (T, f, g,Lα, Fm) along the
solution of the mollified SDE. Namely, when e.g. α = 2, this gives that for each m,

um(t,Xm
t ) − um(0, x0) −

∫ t

0
f(s,Xm

s )ds =
∫ t

0
Dum(r,Xm

r ) · dBr.

Then, using the convergence of (um, Dum)m≥1 to the solution (u,Du) of C (T, f, g,L2, F ) on every
compact subsets of [0, T ] × Rd together with a uniform control of the moment of Xm, we deduce
that (

u(t,Xt)−
∫ t

0
f(s,Xs)ds− u(0, x)

)
0≤t≤T

, (3.2.1)

is a P2 square integrable martingale. This is where we use that the gradients of um and u are
uniformly bounded.

(iii) We then turn to prove uniqueness. To do so, we come back to the canonical space Ωα and
let Pα and P̃α be two solutions of the Martingale Problem associated with (F,Lα, x), x ∈ Rd.
Hence, for all f ∈ C0([0, T ],S(Rd)) it holds, denoting by u the solution of the Cauchy problem
C (T, f, 0,Lα, F ),

−u(0, x) = EPα

[∫ T

0
f(s,Xs)ds

]
= EP̃α

[∫ T

0
f(s,Xs)ds

]
,

thanks to Itô’s formula. Therefore, the marginal laws of the canonical process are the same under
Pα and P̃α. Classical tools allow to obtain the uniqueness and the (strong) Markov property of
the solution.

We have thus proved.
1We chose to work with E = S(Rd), where S stands for the class of Schwartz functions. This is mainly motivated

by the fact that such a class is rich enough to characterize the law of the Markov process and also by the fact that our

approach is based on Besov spaces. Indeed, this class is continuously embedded into any Besov space Bs
l,m(Rd, R),

s ∈ R, 1 ≤ l, m ≤ ∞, see e.g. paragraph 2.3.3 in [Tri83]. Note that it is also dense in Bs
l,m(Rd, R) provided

l, m < ∞.
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Theorem 3.2.2. Let α ∈ (1, 2] and β > (1 − α)/2. Then, the Martingale Problem associated with

(F,Lα, x) for x ∈ Rd, is well-posed in the above sense. Moreover, the canonical process under Pα

is strong Markov.

� Compared to the weak heuristic rule (which here writes β > 1 − α), the threshold obtained

above appears to be more restrictive: this comes from the distributional setting investigated here

and the perturbative/mild approach used to solve the PDE which imposes to define properly the

product F (t, ·)Du(t, ·). As this requires the sum of the regularity exponent of the two terms involved

in the product to be strictly positive, we mainly obtain that β + α + β − 1 > 0, which is stronger

than the weak heuristic rule.

3.3 Meaning of the dynamics for a drift as generalized derivative

At this stage, we built a martingale solution associated to the data of the formal SDE. Nevertheless,
we said nothing on the dynamics of the process2. In the work currently exposed in this chapter,
we managed to specify in which way the process evolves. We recall that we still work within the
framework of the previous section i.e. with a drift component obtained as a generalized derivative
of (β + 1)-Hölder map.

Building the dynamics The next step consists in linking the Martingale Problem and the
formal SDE. Usually, i.e. for sufficiently smooth drifts, the starting point consists in building the
noise from the canonical process and the drift. Here, the challenge lies into building the (a) drift,
which requires to have a noise at hand (otherwise the problem is ill-posed). To do so, the strategy
consists in building simultaneously the Martingale solution and the noise (X,W) as the solution
of a kind of enlarged Martingale Problem. This allows in turn to build the drift as the difference
between them. Indeed, having such a canonical process at hand, we decompose the increment of
the process X as

Xt+h −Xt = {E[Xt+h −Xt|Ft]} + {Xt+h −Xt − E[Xt+h −Xt|Ft]}, 0 < h << 1,

where Ft := σ(Xs,Ws, 0 ≤ s ≤ t). Clearly, the first difference in the above right hand side stands
for a drift term, while the second stands for a martingale part. It thus “suffices” to relate both
parts with (i) the original drift F and (ii) the α-stable noise W which we have now at hand.

To do so, the starting point is the Zvonkin-like transform: for the mild solution of C (F,Lα, 0, x, t+
h), we can write Xt+h − Xt = u(t + h,Xt+h) − u(t + h,Xt) and using then Itô’s formula (up to
mollification argument) to obtain that,

Xt+h −Xt = u(t,Xt) − u(t+ h,Xt) +
∫ t+h

t

∫
Rd\{0}

{u(r,Xr− + x) − um(r,Xr−)}dÑ(r, x)

where Ñ is the compensated Poisson measure associated with the stable noise and where we further
assume that α < 2 to avoid the dichotomy when writing the martingale part.

2Note indeed that the pathological case under consideration breaks the equivalence between weak and martingale

solution.
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(i) To obtain the drift, we take conditional expectation and obtain that E[Xt+h − Xt|Ft] =
u(t,Xt) −u(t+h,Xt). From the mild representation of u we then derive, expanding one more time
the gradient in the mild representation,

E[Xt+h −Xt|Ft]

= u(t,Xt) − u(t+ h,Xt) =
∫ t+h

t
dsPαs−t[F ·Du](s,Xt)

=
∫ t+h

t
dsPαs−t[F ](s,Xt) +

∫ t+h

t
dsPαs−t

[
F ·

{∫ s

t
drPαr−t[F ·Du](r,Xt)

}]
(s,Xt).

As for any t > 0, Pαt maps Cβb to Cβ+α
b w.c.s. we understand that the first term in the last equality

is or order h(β+α)/α while the second has better regularity, due to the successive applications of
the semi-group, and is thus of order h1+ε for some ε > 0. This hints the shape of the drift: in
small time, only the first term matters and the drift thus looks like the convolution of the original
distributional drift with the density of the noise.

� The idea of iterating the expansion is reminiscent from the parametrix approach. It is indeed

usual to iterate the expansion to obtain an infinite series, avoiding thus the implicit representation.

The crucial point being that the iteration of the parametrix kernel gives better smoothing effect so

that the series indeed converges.

(ii) To obtain the noise, we subtract the conditional expectation of the increment and get that

Xt+h −Xt − E[Xt+h −Xt|Ft] =
∫ t+h

t

∫
Rd\{0}

{u(r,Xr− + x) − um(r,Xr−)}dÑ(r, x)

=
∫ t+h

t

∫
Rd\{0}

{u(r,Xr− + x) − um(r,Xr−) − x}dÑ(r, x) + (Wt+h − Wt).

From the smoothness of u(t, ·) (which almost lies in Cβ+α) together with Taylor expansion, we can
see that the first term in the last equality have fluctuations of order h1/α+(β+α−1)/α (up to a small
loss) while the last one has fluctuations of order h1/α. Thus, in small time, only the increment
Wt+h − Wt matters. This allows to identify the noise.

At this stage, we deduce that the infinitesimal dynamics of X should reads as

dXt = F (t,Xt, dt) + dWt, with ∀x ∈ Rd, ∀r, s, F (r, x, s− r) =
∫ s

r
dvPαs−r[F ](r,Xr)

The result we obtained give an even better description as we were able to define a stochastic
calculus, where stochastic integrals are in the spirit of Young (even more in the spirit of non-linear
Young integral) called stochastic non-linear Young integral. The above description also provides
a natural candidate for being a weak solution. This latter fact, as well as other properties, are
summarized in the resume below, which hold in the general case.

3.4 Comments and general results

� We encourage the reader to regularly choose p = q = r = ∞ and α = 2 to simplify the state-

ments (especially the conditions) and make the connection with the previous part.
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We start with the condition assumed on the parameter p, q, r and β related to the Lebesgue-
Besov space Lr(Bβ

p,q) where the drift is assumed to live. We say that these parameters satisfy a
good relation if

p, q, r ≥ 1, α ∈
(1 + [d/p]

1 − [1/r] , 2
]
, β ∈

(1 − α+ [d/p] + [α/r]
2 , 0

)
. (good relation)

We also set up once and for all the quantity

θ := β + α− d

p
− α

r
, (Df(θ))

related with the smoothing effect of the noise as it will appear many times below.

Theorem 3.4.1. Let p, q, r ≥ 1, α ∈ (1, 2] and β ∈ (−1/2, 0) satisfy a good relation. For all f in

C([0, T ], Bθ−α
∞,∞(Rd,R)) and g ∈ C1(Rd,R) with Dg ∈ Bθ−1

∞,∞(Rd,Rd), where θ is given by (Df(θ)),
the formal Cauchy problem C (F,Lα, f, g, T ) admits a unique mild solution. Moreover it satisfies

that for all (t ≤ s) in [0, T ]2, x in Rd:

|u(t, x) − u(s, x)| ≤ C|t− s|
θ
α ,

|Du(t, x) −Du(s, x)| ≤ C|t− s|
θ−1

α .

We can therefore define the associated Martingale Problem and the corresponding well-posedness
result.

Theorem 3.4.2. Let p, q, r ≥ 1, α ∈ (1, 2] and β ∈ (−1/2, 0) satisfy a good relation. Then, the

Martingale Problem associated with (F,Lα, x) for x ∈ Rd, is well-posed. Moreover, the canonical

process under Pα is strong Markov.

For Brownian noise, a same kind (the drift was supposed to be in fractional Sobolev spaces)
of result was obtained by Flandoli, Issoglio and Russo [FIR17]. This latter results extended to the
inhomogeneous setting previous results of Bass and Chen [BC01] and Flandoli, Russo and Wolf,
[FRW03], [FRW04]). We can also refer to Zhang and Zhao [ZZ17]. In the pure-jump setting,
this result has been obtained for homogeneous drift as generalized derivative of Hölder function
and in the scalar case by Athreya, Butkovski and Mytnik [ABM20]. In either [FIR17], [ZZ17] or
[ABM20], for homogeneous drift as generalized derivative of Hölder function, the threshold for
weak well-posedness to hold is β > (1 − α)/2, which fits ours.

As already discussed, it is not possible to go beyond such thresholds in full generality, as Bony’s
paraproduct rule comes into play. To bypass such limit, Delarue and Diel [DD15] added some
rough path structure to the drift and handled the case of a drift in L∞(B(−2/3)+

∞,∞ ) in the scalar case.
The multi-dimensional case has been done with paracontrolled calculus by Cannizzaro and Choukh
in [CC18]. This latter setting has been extending recently in the pure jump case by Kremp and
Perkowski in [KP22].

Building the dynamics: general case In the following, we say that p, q, r ≥ 1, α ∈ (1, 2] and
β ∈ (−1/2, 0) satisfy a good relation for the dynamics if the following relation holds:

p, q, r ≥ 1, α ∈
(1 + [d/p]

1 − [1/r] , 2
]
, β ∈

(1 − α+ [2d/p] + [2α/r]
2 , 1

)
.

(good relation for the dynamics)
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We emphasize that the above condition is slightly more constraining than the previous one when p
and/or r is not +∞.

We start by defining the non-linear stochastic Young integral. This definition mainly comes
from the work [DD15] which somehow extends to the stochastic framework the non-linear Young
integral introduced in [CG16].

Definition 3.4.3. Let τ > 0, (Ω̃, F̃ , (F̃t)0≤t≤τ , P̃) be a filtered probability space and let (ψt)0≤t≤τ
be a progressively measurable process on it. Let (A(s, t))0≤s≤t≤τ be a continuous and progressively

measurable map in the sense that for any 0 ≤ s ≤ t,

Ω̃ × {s′ ∈ [0, s], t′ ∈ [0, t], s′ ≤ t′} ∋ (ω, s′, t′) 7→ A(s′, t′)

is F̃t ⊗ B({s′ ∈ [0, s], t′ ∈ [0, t], s′ ≤ t′}) measurable and

{s′ ∈ [0, τ ], t′ ∈ [0, τ ], s′ ≤ t′} ∋ (s, t) 7→ A(s, t)

is continuous. For ℓ ≥ 1, we call Lℓ-stochastic non-linear Young integral of ψ with respect to the

pseudo increment A the limit in Lℓ(Ω̃, P̃)

lim
∆ partition of [0,τ ]

|∆|→0

∑
ti∈∆

ψtiA(ti, ti+1) =:
∫ τ

0
ψtA(t, t+ dt),

when it exists.

We are then in position to state the following theorem which concerns the dynamics of the
solution (X,W) of the enlarged martingale problem.

Theorem 3.4.4. For α ∈ (1, 2] and β ∈ (−1/2, 0) satisfying a good relation for the dynamics it

holds that there exists a probability measure Pα on C([0, T ],R2d) when α = 2 and D([0, T ],R2d)
when 1 < α < 2 such that the canonical process, denoted by (X,W), satisfies

(i) The law of X under Pα is a solution of the Martingale problem associated with (F,Lα, x),
x ∈ Rd and the law of W under Pα is a Brownian motion if α = 2 and an α-stable process

with generator Lα if α < 2.

(ii) The dynamics of the canonical process reads

Xt = x+
∫ t

0
F (s,Xs, ds) + Wt, Pα − a.s. (dynamics)

where for any 0 ≤ v ≤ s ≤ T , x ∈ Rd,

F (v, x, s− v) :=
∫ s

v
dr

∫
Rd
dyF (r, y)pα(r − v, y − x),

with pα the (smooth) density of W and where the integral in the dynamics is understood as

an Lℓ-stochastic non-linear Young integral, for any 1 ≤ ℓ < α, in the sense of the above

definition.
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As already mentioned, we prove a stronger result concerning the dynamics. We show that it
is possible to define a stochastic non-linear Young integral against the process, leading in turn to
use Itô calculus. This is done for a suitable class of progressively measurable processes ψ which we
now describe. For any q′ ≥ 1, any δ ∈ (0, 1), we set

Hδ
q′(Ω,F , (Ft)t,P) :=

{
(ψt)t∈[0,T ] progressively measurable, (3.4.1)

sup
t∈[0,T ]

E
1
q′ [|ψ|q′ ] + sup

s ̸=t∈[0,T ]

E
1
q′ [|ψs − ψt|q

′ ]
|t− s|δ

< +∞
}
.

Corollary 3.4.5 (Associated Lℓ-stochastic non-linear Young integral, 1 ≤ ℓ < α ). Under the

above assumptions, one can define a stochastic non-linear Young integral w.r.t. the quantities in

appearing in the dynamics. Namely, for any 1 ≤ ℓ, q < α, for which there exists q′ ≥ 1 satisfying

1/q′ + 1/q = 1/ℓ, one has ∫ t

0
ψsdXs =

∫ t

0
ψsF (s,Xs, ds) +

∫ t

0
ψsdWs,

for any ψ ∈ H1−1/α−ε2

q′ , for all 0 < ε2 < (θ− 1)/α and where the first term in the above right hand

side is defined as an Lℓ-stochastic non-linear Young integral.

For SDE with distributional drift, only few informations are usually given on the dynamics: the
results may relies only the martingale formulation, at the level of the Zvonkin transform, [FIR17];
in terms of Dirichlet process, [ZZ17] and [ABM20]; as the limit of any smooth mollification, [ZZ17].
At the end of the day, the shape of the drift remains very obscur. To the best of our knowledge, this
accurate description is due to [DD15] through the clever analysis of the increment exposed before.
Our results clearly rely on them, and sometimes precise / clarify some associated questions.

Further properties and weak formulation. The previously described dynamics for the Mar-
tingale solution strongly suggests that a notion of weak solution associated with the formal SDE
can be considered. This leads to the following definition.

Definition 3.4.6. We call weak solution of the formal SDE a pair (Y,Z) of adapted processes on

a filtered probability space (Ω,F , {Ft}t≥0,P) such that Z is an {Ft}t≥0 α-stable process and (Y,Z)
satisfies

Yt = x+
∫ t

0
F (s, Ys, ds) + Zt, P − a.s., E|

∫ t

0
F (s, Ys, ds)| < +∞ (3.4.2)

for any t in [0, T ] and where for any 0 ≤ v ≤ s ≤ T , x ∈ Rd,

F (v, x, s− v) =
∫ s

v
dr

∫
Rd
dyF (r, y)pα(r − v, y − x)

with pα the (smooth) density of Z.

We say that weak uniqueness holds for the formal SDE if for any two weak solutions (Y,Z),
(Ω,F , {Ft}t≥0,P) and (Ỹ , Z̃), (Ω̃, F̃ , {F̃t}t≥0, P̃) with the same initial condition, then (Yt)t≥0

(law)=
(Ỹt)t≥0.
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We then prove the following well-posedness result

Theorem 3.4.7. Let p, q, r ≥ 1, α ∈ (1, 2] and β ∈ (−1/2, 0) satisfy a good relation for the dynamics.

Then,

(i) the formal SDE admits a unique weak solution;

(ii) if d = 1, pathwise uniqueness holds, i.e. the paths of two weak solutions defined on the same

probability basis (Ω,F , {Ft}t≥0,P,Z) coincide a.s. whenever they start from the same initial

condition.

Moreover, one can define an associated L1-stochastic non-linear Young calculus i.e. the above

Corollary hold with ℓ = 1 therein.

The following proposition somehow highlight why we thought that the above description is
actually the most accurate description that has been done.

Proposition 3.4.8. Either the Martingale solution or the weak solution of the formal SDE is: (i)

A virtual solution of the formal SDE; (ii) A Dirichlet process; (iii) It holds that for any smooth

approximating sequence (Fm)m≥1 such that

lim
m→+∞

∥F − Fm∥
Lr(Bβ

p,q)
= 03,

lim
m→∞

∥∥∥∥∫ t

0
F (s,Xs, ds) −

∫ t

0
Fm(s,Xs)ds

∥∥∥∥
Lℓ

= 0, 1 ≤ ℓ < α,

with ℓ = 1 for the weak solution; (iv) If F is time-space β-Hölder continuous, the previous con-

struction coincides with the “usual” drift:∫ t

0
F (s,Xs, ds) =

∫ t

0
F (s,Xs)ds, a.s..

3.5 (Some) perspectives

• How robust are the notions of well-posedness for SDE with distributional drift ?

Although we obtain well-posedness for both the Martingale problem and the weak formulation
associated with the formal SDE, we did not proved that both formulations are equivalents.
What we were able to prove is that weak existence implies the existence of a Martingale solu-
tion and that uniqueness for the Martingale problem implies weak uniqueness. The remaining
connections are more involved, due to the a priori lack of Itô differential calculus. There is
a recent work in that direction, from Issoglio and Russo [IR22], but the picture is still not
complete.

• Are thresholds from the weak heuristic rule attainable ? Another question relies
on the heuristic given in Chapter 1. Therein, it is suggested that a for a non degenerate
Brownian noise, a drift in L∞(B−1+ε

∞,∞ ), 0 < ε << 1, is attainable. To do so, the main
issue in the above approach relies on multiplication between distributions. As emphasized,
the maximal thresholds we obtained precisely allows to define the product in the Duhamel

3When p and/or r are/is +∞ the β should be replaced by β − ε, for some ε meant to be small.
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formula thanks to Bony’s paraproduct rule. In this sense, the thresholds are sharp. There are
nevertheless other possibilities to bypass such a limit, through rough path or paracontroled
calculus. This is precisely what is done by the Authors in [DD15] and then in [CC18] but
implies, in counterpart, to add some structure to the drift in the sense that it has to be
enhanced into a rough path structure. As an application, such a result may allow to define the
characteristics of the PDE studied by Jabin and Wang in [JW18] and allow give a microscopic
(at the scale of the particles) interpretation on the associated Propagation of Chaos result.
This latter perspective is anything but innocent: we will see at the end of Chapter 5 that the
threshold from the weak heuristic rule with a non degenerate Brownian noise can be attained
for a certain class of McKean-Vlasov SDEs.
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Chapter 4

Non-linear SDEs and associated Mean-Field systems

In the last decade, there has been a real enthusiasm from both the probabilistic and PDE community
for non-linear (in McKean sense) and Mean-Field systems. In particular under the impulse of the
recent (simultaneous) works of Lasry and Lions, and Caines, Huang and Malhamé, on Mean Field
Games [LL06a, LL06b, LL07] and [HMC06] respectively, as well as some recent breakthroughs
on fluid mechanics problems [JW18, BJW19]. In both cases, nonlinear systems, in the sense of
McKean Vlasov, as well as the associated particles systems interacting in mean field, play a central
role.

The objective of this chapter is to present such systems and some associated mathematical
tools introduced quite recently by the Mean Field Games community. This part is thus purely
bibliographic, no personal results will be presented. It also allows us to make the switch between
linear and non-linear (in the McKean sense) SDE in the manuscript, as these systems will appear
in all the remaining chapters.

4.1 The systems

Non-linear SDEs (in the sense of McKean) have the particularity to involve the law of the process
in their coefficients: the solution of such a system feels, in addition to its own position, its own law.
Typically, the system writes

dXt = b (t,Xt,µt) dt+ σ(t,Xt,µt)dBt, X0 ∼ µ, µ ∈ P(Rd), t ≥ 0, (McKean-Vlasov SDE)

where P(Rd) is the space of probability measures on Rd, (b, σ) : R+ × Rd × P(Rd) → Rd × Rd⊗d

and (µt)t≥0 denotes the family of marginals of the X process. The terminology of non-linear, which
could seems obscure from the probabilistic viewpoint, relates on the historical treatment of such
processes by McKean [McK66]: the (law) solution of the SDE solves (in a distributional sense) a
non-linear Fokker-Planck equation i.e. whose operator involves the solution itself. In the following,
we call McKean-Vlasov SDE such a system.

Intuitively, these systems can be understood as the asymptotic dynamics of a particle12 evolving

1The asymptotic relates to the number of particles in the system.
2We emphasize that the terminology of “particle” is purely generic here, and does not refer to any particular

physical problem.
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within an interacting system, where the interaction is of mean-field type:

dXi
t = b

(
t,Xi

t ,µ
N
t

)
dt+ σ(t,Xi

t ,µ
N
t )dBi

t, Xi
0 ∼ µ, i = 1, · · · , N, (Mean-Field SDE)

µN
t = 1

N

N∑
i=1

δXi
t
, t ≥ 0, µ ∈ P(Rd)

{Xi
0}i being N independent r.v. independent of the {Bi}i which are N independent Brownian

motions of dimension d; the mean-field interaction translates into the dependence of the dynamics
w.r.t. the empirical measure of the system µN and the symmetry of the system, in the sense that
the law of the above N -uplet is permutation’s invariant.

4.2 Well-posedness of the systems and Propagation of Chaos

Well-posedness theory for such systems relies on classical Cauchy-Lipschitz framework. Obviously,
as infinite dimensional variable comes into play, the distance used to quantify the Lipschitz property
appears to be crucial. A natural candidate is the Wasserstein distance: for all µ, ν in Pℓ(Rd), where
Pℓ(Rd) stands for space of probability measures with finite ℓth moment,

Wℓ(µ, ν) =
(

inf
X∼µ,Y∼ν

E[|X − Y |ℓ]
)1/ℓ

,

especially for ℓ = 1, 2. This indeed comes from the above form which makes explicitly appears
the corresponding Lℓ distance. On the one hand, this relation allows to implement a fixed point
procedure to establish well-posedness results, in a rather similar way than for classical SDEs. On
the other hand, it allows to ensure the well-posedness of the associated Mean-Field particle system,
viewed as a high dimensional SDE, as the Lipschitz regularity of the coefficients w.r.t. Wasserstein
distance for empirical measure gives rise to Lipschitz regularity for Euclidean distance on RNd. We
may refer at this stage to e.g. [McK67, Fun84] or [Szn91, CD18a].

Once the system has been shown to be well-posed, the next question concerns the Propagation
of Chaos phenomenon relying the McKean-Vlasov SDE and the Mean-Field SDE. When the initial
conditions are independent (or asymptotically independent) we can show, as long as the coefficients
are Lipschitz (w.r.t. the Euclidean distance for the spatial argument and w.r.t. the Wasserstein
distance for the law argument) that the chaos propagates in the system so that, when the number
N of particles is large, the particles “become independent”: we talk about Propagation of Chaos.
Roughly speaking, this can be stated as

∀k, lim
N→+∞

µ1:k,N
0 → µ⊗k

0 =⇒ lim
N→+∞

µ1:k,N
t → µ⊗k

t , t > 0,

where for any t ≥ 0, we denoted by µ1:k,N
t denotes the joint law of k particles in the Mean-Field SDE.

From [Szn91], this is equivalent to a law of large number on the space of probability measures:

µN
0 → µ =⇒ µN

t → µt, t > 0.

It seems that the terminology of Propagation of Chaos goes back to Kac’s work [Kac56] see also
the work of McKean [McK67] and one of the probably most known reference for Propagation of
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Chaos: the Sznitmann lecture notes [Szn91]. Therein, the Author implements a coupling procedure
between the particles in the Mean-Field SDE with an auxiliary system of independent copies of the
solution of the McKean-Vlasov SDE in order to estimate the L2-distance between two (correspond-
ing, through the coupling) elements of both systems and then manage to prove that this distance
is of order N−1/2, where N stands for the number of particles. The proof again heavily relies on
Lipschitz assumptions w.r.t. the 2-Wasserstein distance, the L2 framework appearing to be quite
natural as we somehow look for a rate of convergence for an ad hoc LLN.

�We strongly advice the interested reader to have a look on the two recent very complete

surveys [CD22, CD21] from Chaintron and Diez for additional references.

The Propagation of Chaos is crucial from the point of view of applications: on the one hand
the McKean-Vlasov SDE provides an approximation of a particle evolving in the Mean-Field SDE
in large regime - which allows to work with a d-dimensional system instead of a Nd one (this is,
roughly, the idea behind the Mean Field Game); on the other hand the Propagation of Chaos allows
to consider the Mean-Field SDE as a (spatial) discretization of the McKean-Vlasov SDE. From this
latter numerical perspective, the result in [Szn91] is a strong result, we call it strong Propagation
of Chaos as the “approximation error” stays at the level of the path.

4.3 Markov process...

� The Markov property and associated non-linear PDE for the McKean-Vlasov SDE and the

Mean-Field SDE goes back to the origin of the study of these processes see e.g. [Bos05] for a

survey. We however chose to present things in a slightly different manner here. More in the spirit

of the Lions lecture on Mean Field Games at Collège de France, especially the formalism from the

books of Carmona and Delarue [CD18a, CD18b]. The interested reader being again strongly advice

to consult those pedagogical monographs for further details.

The Mean-Field SDE, understood as a high dimensional SDE, satisfies the Markov property. A
natural question lies in the propagation of this property to the asymptotic system, i.e. of McKean-
Vlasov type. We can a priori guess what could be, or not, possible. Indeed, the Mean-Field SDE
verifies the Markov property only as a process taking values in RNd. The mean-field structure
implies that the characterization of the law of the ith particle (among the N) at time t+ s, for any
s ≥ 0, is done thanks to the position of the said particle at time t and to the statistical distribution
of the whole system at this time. Therefore, when “N is large” - i.e. in the asymptotic regime
N → +∞ - the law of the process at time t+ s, for any s ≥ 0, should be characterized not by the
statistical distribution of the particles in space at time t, but by their probabilistic distribution. In
other words, the Markov property should be considered on the enlarged space Rd × P2(Rd).

To formalize this, a possible strategy consists in introducing the decoupled flow associated with
the McKean-Vlasov SDE. Introduce, for Lipschitz coefficients (w.r.t. W2 for the law variable) and
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for an initial condition ξ ∼ µ for the McKean-Vlasov SDE

Xt,x,ξ
s = x+

∫ s

t
b(r,Xt,x,ξ

r ,µt,µ
r )dr +

∫ s

t
σ(r,Xt,x,ξ

r ,µt,µ
r )dBr,

µt,ξ
t = µ = L(ξ), x ∈ Rd, t ∈ [0, T ]. (decoupled SDE)

This is a classical linear SDE parametrized by the law (the family of marginals (µt,µ
s )t≤s≤T ) of the

McKean-Vlasov SDE (the family of marginals (µt,µ
s )t≤s≤T depends on ξ only through its law by

weak uniqueness, which follows from strong uniqueness).
Consider now the processes Xt,x and Xt,x,δx (respectively solutions of the McKean-Vlasov SDE

and of the associated decoupled SDE initialized in x at time t): they solve (in a strong sense) the
same SDE and are hence indistinguishable. Thus, since Xt,x,δx is Markovian, so is Xt,x. The sub-
tlety, lies in the fact that the inhomogeneous semi-group is, in addition to the time, parameterized
by the law of the solution of the McKean-Vlasov SDE. Namely, letting ξ ∼ µ and (t, x) ∈ [0, T ]×Rd,
we know that for all bounded measurable functions g : Rd → R, for all s in [t, T ], there exists

ust,µ : [t, s] × Rd ∋ (r, x) 7→ ust,µ(r, x)

continuous, such that
E
[
g(Xt,x,µ

s )|Fr
]

= ust,µ(r,Xt,x,µ
r ).

Since, for any r in [t, T ], the processes (Xt,ξ
s )s∈[t,T ] and (Xr,Xt,ξ

r
s )s∈[r,T ] coincide on [r, T ] it is the same

for (µt,µ
s )s∈[t,T ] and (µr,µt,µ

r
s )s∈[t,T ]. Thus, for all s in [t, T ], for all r in [t, s], ust,µ(r, ·) = us

r,µt,µ
r

(r, ·),
so that

E
[
g(Xt,x,µ

s )|Fr
]

= ust,µ(r,Xt,x,µ
r ) = us

r,µt,µ
r

(r,Xt,x,µ
r ).

Finally, if
U s : [0, s] × Rd × P2(Rd) ∋ (t, x, µ) 7→ U s(t, x, µ) := E

[
g(Xt,x,µ

s )
]
,

then for all r in [t, s],

E
[
g(Xt,ξ

s )|Fr
]

= E
[
g(Xt,ξ,µ

s )|Fr
]

= U s(r,Xt,ξ
r ,µt,µ

r ).

In other words, for the Markov property to be satisfied, the underlying space of Rd must be en-
larged to Rd × P2(Rd). This is exactly what we guessed previously.

Before going further and investigating the dynamics of the decoupling field U , let us first focus
on the law argument therein, to derive what is the dynamics of such a field w.r.t. this variable.
To do so, we come back to the previous discussion where the flow property of the weak solution
actually leads to define the semi-group associated with. For any t ≤ s in [0, T ] and for any bounded
measurable φ : P2(Rd) → R we define the family of operators (Pt,s)0≤t≤s by:

Pt,sφ : P2(Rd) ∋ µ 7→ φ(µt,µ
s ) ∈ R.

4.4 ... and related PDE

The dynamics of the (previously defined) semi-group can be derived through differential calculus
on space of probability measures. Two approaches, which are linked, will be used below. The
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first one is called the flat derivative and is a Gateau derivative on space of signed measure: a map
φ : P(Rd) → R is said to have a flat derivative if there exists δmφ ∈ C0(Pβ(Rd)×Rd,R)3 satisfying
supµ∈K δmφ(µ)(y) ≤ cK(1 + |y|β) such that

lim
h→0

h−1{φ(µ+ h(ν − µ)) − φ(µ)} =
∫

Rd
δmφ(µ)(y)d(µ− ν)(y).

The second one is called the Lions (or intrinsic) derivative and is defined on P2(Rd). A map
φ : P2(Rd) → R is said to have a Lions or intrinsic derivative if there exists a map ∂µφ ∈
C0(P2(Rd) × Rd,Rd) satisfying supµ∈K ∂µφ(µ)(y) ≤ cK(1 + |y|) such that

∀ϕ ∈ L2(µ), lim
h→0

h−1{φ
(
µ ◦ (Id + hϕ)−1

)
− φ(µ)} =

∫
∂µφ(µ)(y) · ϕ(y)dµ(y).

These two derivatives are, by construction, quite different but may be linked in favorable cases as

Dδmφ = ∂µφ,

which emphasizes the fact that the Lions derivative has a gradient structure. This can be seen on
simple examples: if φ : µ 7→

∫
ϕdµ, with ϕ : R → R thus δmφ = ϕ and ∂µφ = Dϕ.

Having such notions of differentiation, we can then obtain an ad hoc Itô’s formula for flow
of measures induced by an Itô process. This latter makes naturally appear the Lions derivative,
which seems to be the more natural object in this framework. We however present it through
the prism of the flat derivative, as we feel this is the easiest way to sketch it. If X is the square
integrable solution of the McKean-Vlasov SDE and µ := (µt)t the associated flow of measures, if
φ : P2(Rd) → R is a “smooth” map, then

φ(µt+h) − φ(µt) =
∫

Rd

∫ 1

0
dλδmφ(λµt+h + (1 − λ)µt)(y)d(µt+h − µt)(y)

and we can apply the classical Itô’s formula for δmφ(·)(Xt+h) − δmφ(·)(Xt) in the above to deduce

dφ(µt) =
∫

Rd
L[δmφ](µt)(y)dµt(y)dt

where “L” stands for the generator of the decoupled SDE associated with X (i.e. the “classical
generator” associated with the linear SDE parametrized by the law of the solution of the McKean-
Vlasov SDE). We deduce in turn that the family of generators (Lt)t of (Pt,s)t≤s writes, for any
smooth functions φ : P2(Rd) → R

Ltφ(µ) :=
∫

Rd
L[δmφ](µ)(y)dµ(y)

=
∫

Rd
b(t, y, µ)Dδmφ(µ)(y)dµ(y) +

∫
Rd

1
2Trσσ∗(t, y, µ)D2δmφ(µ)(y)dµ(y)

=
∫

Rd
b(t, y, µ)∂µφ(µ)(y)dµ(y) +

∫
Rd

1
2Trσσ∗(t, y, µ)D∂µφ(µ)(y)dµ(y).

3When no precisions are given, the space Pβ is equipped with the distance Wβ , β > 0 with the convention that

P0 = P and W0 = dTV.
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We deduce that the related PDE is the Cauchy problem defined on [0, T ] × P2(Rd) for some
T > 0, by

∂t ˚uffl(t, µ) + Lt ˚uffl(t, µ) = f(t, µ), (t, µ) ∈ [0, T ) × P2(Rd), ˚uffl(T, µ) = g(µ) on P2(Rd)

for some data f : R+ × P2(Rd) → R and g : P2(Rd) → R, with the following probabilistic
representation (when it holds):

∀(t, µ) ∈ [0, T ] × P2(Rd), ˚uffl(t, µ) =
∫ T

t
f(s,µt,µ

s )ds+ g(µt,µ
T ),

where µ stands for the weak solution of the McKean-Vlasov SDE.

We are now in position to deduce the dynamics of the decoupling field UT . As showed above,
the Markov property is achieved provided the decoupled SDE comes into play, the dynamics writes

∂tU
T (t, x, µ) + LUT (t, x, µ) := ∂tU

T (t, x, µ) + (L + L )UT (t, x, µ) = 0, on [0, T ) × Rd × P2(Rd)
UT (T, x, µ) = g(x, µ), on Rd × P2(Rd),

for some data f : R+ × Rd × P2(Rd) → R and g : Rd × P2(Rd) → R. Non-linear version of the
above PDE are known as the Master Equation (of the MFG) and have been thoroughly studied in
this perspective, see e.g. the work of Cardaliaguet, Delarue, Lasry and Lions [CDLL19].
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Chapter 5

Regularization and restoration of chaos for Non-linear SDEs “by

noise”

In this chapter, we present the results of the works [3, 9, 12] on non-linear (in a McKean-Vlasov
sense) SDEs, related Mean Field systems and associated PDEs. The main purpose of these works is
to provide a “robust” theory on the well-posedness of the systems and on the associated Propagation
of Chaos for rather irregular coefficients and data, provided the diffusion coefficient is uniformly
non degenerate.

These works thus also rely on the first part of the manuscript, as regularization by noise is
considered, but in the McKean-Vlasov framework. As such, the main purpose of these works is
to understand how (and although it acts only in the state space of the position) the noise in the
McKean-Vlasov equation would allow to obtain regularization property w.r.t. the measure argu-
ment and restore uniqueness and/or Propagation of Chaos in “non-smooth” cases. It appears that
the noise still has some smoothing effects, through the law, and allows to extend the classical well-
posedness and Propagation of Chaos theory to a rather large class of equations provided it is non
degenerate. To highlight these features, we mainly work under a “favorable” framework i.e. the
coefficients are somehow Hölder continuous, the metric on the measure argument being precised
latter on.

5.1 Back to well-posedness of McKean-Vlasov SDEs

� There are many results on well-posedness for McKean-Vlasov SDEs with drift of the form of an

interaction kernel, for rather irregular or singular interaction kernel, as many physical problems rely

on this kind of equations. However, to the best of our knowledge, most of these works built unique

solution from an ad hoc procedure, taking benefit from the particular structure as an interaction

kernel, or as linear maps of the measure, and/or some structural properties on the kernel, e.g.

assumed to be divergent free or whatever else. In this sense, we feel that those results do not ex-

actly provide a general well-posedness theory outside the Cauchy-Lipschitz Wasserstein framework.

We refer again the interested reader to the surveys [Bos05, JW17, CD22, CD21] for further refer-

ences. An example of result more in the same spirit of ours is certainly the work of Jourdain [Jou97].

Yet again, ODEs are McKean-Vlasov SDEs, so that it is unexpected to obtain a general well-
posedness theory outside the Cauchy-Lipschitz framework without counterparts. In fact, in full
generality, the situation is even worse since, as suggested by the counter-example of Sheutzow
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[Sch87], uniqueness may fail for the McKean-Vlasov SDE

dYt = F (Yt,νt)dt+ σdBt, νt = Law(Yt),

when σ = 0 for F (y, ν) :=
∫
F̃ dν, F̃ bounded and having only linear growth, while this is not

the case for classical SDE. However, when σ > 0, it seems that the usual Lipschitz property w.r.t.
the Wasserstein metric can be weakened to a Lipschitz property w.r.t. the total variation distance
defined, for any µ, ν ∈ P(Rd), as

dTV(µ, ν) = sup
A∈B(Rd)

|µ(A) − ν(A)|.

This goes back to the work of Shiga and Tanaka [ST85] for a particular type of measure dependence
(linear functions of measure) and then to Jourdain [Jou97] in a rather general framework.

At this stage, we further need to precise what we meant by “weakened”. This refers to the fact
that, for any probability measures µ, ν with full support on some compact subset K of Rd it holds
that, e.g. Wℓ(µ, ν) ≤ diam(K)d1/ℓ

TV(µ, ν), and a large class of solutions of non degenerate SDEs lives
with high probability in compact subsets of the considered space. Whence, the non degeneracy of
the noise allows one to consider stronger topology for the infinite dimensional variable.

While being not exactly formulated as this at that time, this latter fact can be seen as the
starting point of the work [9]. Having this kind of phenomenon in mind, we try to carry out a
general and meticulous study of these smoothing effects. As in the case of linear SDEs (in the
McKean sense), it seems clear to us that such properties would be visible on the associated PDE.
The study thus aims at reproducing, in an ad hoc framework, an “old” result on smoothing effects
of non degenerate linear parabolic PDEs illustrated in a book of Friedman, see [Fri64].

� We emphasize that there is no hope to obtain better smoothing effect than the one we

chose to investigate, at least in the framework we’ve tried to handle. Indeed, the following counter-

example communicated by F. Delarue is clear: the McKean-Vlasov SDE dYt = F (E[Yt])dt+ σdBt
may have several solutions as soon as F is Hölder continuous as the ODE dyt = F (yt)dt may

have several solutions as well. To regularize the latter equation, we should add some noise on

the measure space. This can be achieved by adding a common noise to the system, as in such a

situation the dynamics of the measure flow becomes stochastic. It however seems that even in such

a case, the finite dimensional noise is not big enough to provide such kind of smoothing effect. This

can be seen from the results in Chapter 2 where, as the number of oscillators tends to infinity, the

minimal threshold for the drift tends to one. Thus, bigger noise is needed. We refer e.g. to the

work [Mar22] of Marx or to his Ph.D. thesis [Mar19] for related discussion and references on that

latter topic, see also [DH22].

5.2 Smoothing effect of the McKean-Vlasov semi-group: primer

� primer, noun, 1. [uncountable, countable] a type of paint that is put on wood, metal, etc. before

it is painted to help the paint to stay on the surface. 2. [countable] (North American English) a

book that contains basic instructions. 3. [countable] (old-fashioned) a book for teaching children

how to read, or containing basic facts about a school subject.
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Let us try to foster what the smoothing effect of a McKean-Vlasov semi-group could be by
considering for (at least) bounded and measurable map (f, f̃) : P(Rd) × Rd → R × R

X̃ξ
t = ξ +Bt, ξ ∼ µ and is independent of B

P̃tf(µ) := f(µµ
t ) with µµ

t = L(X̃µ
t ),

P̃tf̃(x) = E[f(X̃x
t )], t ≥ 0.

We first assume that f has a bounded flat derivative. Let t > 0, for any µ, µ′ ∈ P(Rd), we can
write

P̃tf(µ) − P̃tf(µ′) = f(µµ
t ) − f(µµ′

t ) =
∫

Rd

∫ 1

0
dλδmf

(
λµµ

t + (1 − λ)µµ′

t

)
(y)d(µµ

t − µµ′

t )(y)

=
∫

Rd

∫ 1

0
dλP̃t[δmf

(
λµµ

t + (1 − λ)µµ′

t

)
](y)d(µ− µ′)(y).

The semi-group thus preserves the flat differentiability property. Moreover, it holds that

δmP̃tf(µ) = Rd ∋ y 7→ P̃t[δmf(µµ
t )](y).

It is well known that for any t > 0, P̃t maps Cβb to C2+β
b w.c.s. so that, provided the flat derivative

of f lies in Cβb uniformly in the measure argument, it holds that the flat derivative of P̃tf lies in
C2+β
b , uniformly in the measure argument, w.c.s. This allows to understand the smoothing effect of

the (state space) noise: this latter smooths the flat derivative of the entry. In other words, the noise
smooths the law of the linear process (which is absolutely continuous w.r.t. Lebesgue measure),
which in turn smooths maps on which it acts. As such, the flat differentiation property allows to
linearize maps of measures and to take advantage of the smoothing effect of the law.

The smoothing effect as a weakening of the topology A rather natural perspective to see
this consists in reasoning by duality. If we start with a map f in C 1,β(Pβ(Rd)) (space of functions
having a β-Hölder continuous flat derivative), then for any µ, µ′ in Pβ(Rd) we obtain that there
exists Cf such that

|f(µ) − f(µ′)| ≤ Cf sup
φ∈Cβ

∫
φd(µ− µ′).

By composing it with the McKean-Vlasov semi-group, the computations done in the previous
paragraph show that there exists C ′

f,t for which

|P̃tf(µ) − P̃tf(µ′)| ≤ C ′
f,t sup

φ∈C2+β

∫
φd(µ− µ′).

Therefore we end up to be Lipschitz w.r.t. a coarser topology.

Smoothing effect in term of distance of transport Let us now consider this smoothing effect
in terms of transportation distance. Let f in C 1,β

b (P(Rd)) (space of function having a bounded
β-Hölder continuous flat derivative) and let Π(µ, µ′) be the set of all transport plans from µ to µ′.
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Then, for any µ, µ′ in P(Rd) and any transference plan π ∈ Π(µ, µ′) it holds

|f(µ) − f(µ′)| = |
∫ 1

0
dλ

∫
Rd
δmf((1 − λ)µ+ λµ′)(y)d(µ− µ′)(y)|

= |
∫ 1

0
dλ

∫
Rd
δmf((1 − λ)µ+ λµ′)(x) − δmf((1 − λ)µ+ λµ′)(y)dπ(x, y)|

≤ Cf sup
µ

|δmf(µ)(·)|Cβ
b

∫
(Rd)2

{
|x− y|β ∧ 1

}
dπ(x, y).

Taking then the infimum over Π(µ, µ′) gives that

|f(µ) − f(µ′)| ≤ W̄β(µ, µ′) := inf
π∈Π(µ,µ′)

∫
(Rd)2

{
|x− y|β ∧ 1

}
π(dx, dy).

On the other hand, we have proved that that for any t > 0, the flat derivative of P̃tf(µ) is in C2+β
b .

In particular, we obtain that

|P̃tf(µ) − P̃tf(µ′)| ≤ Ct,fW̄1(µ, µ′)

where W̄1 denotes the bounded-Lipschitz distance. It is easily seen that W̄1 ≤ cW̄β ≤ c̃W̄ β
1 . Whence

here, the smoothing effect is better seen as what happens in the linear (in McKean-Vlasov sense)
case: we start with a Hölder continuous map and end up with a Lipschitz one (w.r.t. W̄1).

Smoothing effect in term of differentiability Another perspective is linked to a differentia-
bility property. Indeed, starting with a map f in C 1,β

b (P(Rd)), we end up with a map differentiable
in the Lions sense, with differentiable Lions derivative. Indeed, denoting for t > 0 by ˚uffl(t, ·) = P̃tf ,
for any ϕ ∈ L2(µ) we have, (denoting as well µλ,ϕ :=

(
λµ ◦ (Id + hϕ)−1 + (1 − λ)µ

)
and recalling

that δm ˚uffl(t, ·) is in C2+β
b w.c.s. ),

˚uffl(t, µ ◦ (Id + hϕ)−1
)

− ˚uffl(t, µ)

=
∫

Rd

∫ 1

0
δm ˚uffl(t, µλ,ϕ)(y)dλd(µ ◦ (Id + hϕ)−1 − µ)(y)

=
∫

Rd

∫ 1

0
{δm ˚uffl(t, µλ,ϕ)(y + hϕ(y)) − δm ˚uffl(t, µλ,ϕ)(y)}dλdµ(y)

= h

∫
Rd

∫ 1

0
Dδm ˚uffl(t, µλ,ϕ)(y) · ϕ(y)dλdµ(y)

= h

∫
Rd

∫ 1

0
∂µ ˚uffl(t, µλ,ϕ)(y) · ϕ(y)dλdµ(y),

and thus for any t > 0, ∂µ ˚uffl(t, µ) = ∂µP̃tf(µµ
t ) = DP̃tδmf(µµ

t ) lies in Cβ+1
b , so that it is differen-

tiable (in space). This, in particular, implies that ˚uffl(t, ·) is Lipschitz w.r.t. W2.

Schauder like estimates From the previous discussions, it can be deduced that for any φ ∈
C 1,β
b (P(Rd)), for any t > 0, P̃tf ∈ C 1,2+β

b (P(Rd)) w.c.s. so that for f ∈ L∞([0, T ],C 1,β
b (P(Rd))),

g ∈ C 1,2+β
b (P(Rd)),

˚uffl(t, µ) :=
∫ T

t
P̃s−tf(s, µ)ds+ P̃T−tg(µ)
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solves, in a classical sense, the PDE

(∂t + L̃t)˚uffl(t, µ) = f on [0, T ) × P2(Rd), ˚uffl(T, ·) = g,

and satisfies the Schauder-like estimates

∥˚uffl∥
L∞([0,T ],C 1,2+β

b
)

≤ CT (∥f∥
L∞([0,T ],C 1,β

b
)

+ ∥g∥
C 1,2+β

b
).

5.3 Investigating the McKean-Vlasov system

We now come back to the general form of the McKean-Vlasov SDE, as stated in the previous
chapter i.e. we are given the following system

dXt = b (t,Xt,µt) dt+ σ(t,Xt,µt)dBt, X0 = ξ ∼ µ, µ ∈ P2(Rd), t ≥ 0,
(McKean-Vlasov SDE)

with B a d-dimensional Brownian motion and ξ a square integrable r.v. independent of B; and the
associated Cauchy Problem, for T > 0,

∂tU(t, x, µ) +LU(t, x, µ) := ∂tU(t, x, µ) + (L + L )U(t, x, µ) = f(t, x, µ), on [0, T ) × Rd × P2(Rd),
(Cauchy problem)

for some data (f, g) : [0, T ] × Rd × P2(Rd) → R to be specified latter on. As suggested by the
discussion done in the previous part, we mainly assume that the coefficients a, b lie in C

0,β,(2,β)
b (R+×

Rd × P(Rd)) (space of bounded functions being continuous in time, β-Hölder continuous in space
and having 2 β-Hölder bounded flat derivatives). The main objective is to somehow reproduce the
previous simple calculations in a general setting.

Tools. To investigate the smoothing effect of the operator L, we rely, as in the previous chapters,
on a parametrix approach. However things are here quite more subtle: because of the non-linear
(in McKean sense) structure of the problem, the choice of the proxy becomes quite involved. There
is no hope to avoid the dependence of the proxy w.r.t. the law argument while we precisely need
to investigate smoothness in that direction. To overcome this problem and indeed work with proxy
having frozen law argument in its coefficients, the idea consists in building a suitable sequence of
proxys defined through Picard iterations. This works as follows. For any m ≥ 0 we set

dX
(m+1)
t = b(t,X(m+1)

t ,µ
(m)
t )dt+ σ(t,X(m+1)

t ,µ
(m)
t )dBt, X0 = ξ ∼ µ, µ ∈ P(Rd), t ≥ 0,

The above system is a linear SDE (in McKean sense) and thus admits a unique smooth weak solution
for a large class of coefficients b, σ, provided σ is uniformly non degenerate and bounded, which is
obviously assumed here. By smooth, we mean that the law of the process is absolutely continuous
and has moreover Gaussian like density, for any positive time. Indeed, from the well-posedness
of the SDE, for any m ≥ 0 and time t > 0, it holds that dµ

(m+1),µ
t (x) = p(m+1)(µ; t, ·)dx and

p(m+1)(µ, t, ·) =
∫
q(m+1)(µ, x, t, ·)dµ(x), with q(m+1)(µ, x, t, ·) the density of the (m + 1)th Picard

proxy initialized at point x, i.e. the density of the associated decoupled flow and we know from
Friedman [Fri64] that,

q(m+1)(µ, x, t, ·) = q̃(m+1)(µ, x, t, ·) +
∑
k≥1

q̃(m+1) ⊗H(m+1)(µ, x, t, ·)
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where q̃(m+1) is the density of the “usual” proxy (frozen in the spatial argument), ⊗ stands for
a space-time like convolution operator and H(m+1) is the parametrix kernel (L(m) − L̃(m))q̃(m+1).
This is the main tool to have at hand in order to start our program.

On the well-posedness of the McKean-Vlasov SDE. We begin by studying the weak well-
posedness of the McKean-Vlasov SDE through the martingale formulation. Our approach relies on
Banach fixed point on the space of martingale solutions

MT := {P ∈ C0([0, T ],P(Rd)) : P0 = µ},

equip with the distance
d

[0,T ]
TV (P,Q) := sup

t∈[0,T ]

dTV(Pt,Qt).

To make the Picard iterations converge on this space, we expand two successive iterations of the
scheme through a classical parametrix expansion and investigate the sensitivity of such an expan-
sion w.r.t. the frozen (at the previous step) law argument. To do so, we use the fact that the
coefficients are, uniformly in the time and in the spatial argument, in C 1,β

b , which in turn implies
that they are Lipschitz for the distance defined by duality on the functional space Cβb . This space
being included in L∞, we deduce, from the dual representation of the dTV-distance, that they are
Lipschitz for the total variation distance, uniformly in time and thus Lipschitz for d[0,T ]

TV . Let us
point out that, along the calculations, the Hölder continuity assumed on the flat derivative of the
diffusion coefficient is crucial to preserve the convergence of the series.

Once the weak well-posedness has been proved, the strong uniqueness may be obtained almost
for free. Indeed, having at hand a weak solution allows one to consider the McKean-Vlasov SDE
as a linear SDE parametrized by the flow of measure associated with the (unique) weak solution.
It is therefore possible, at this stage, to take benefit from the results on strong well-posedness for
linear SDE. In the current setting, we obtained strong well-posedness by adding only a Lipschitz
assumption (in space) on the diffusion coefficient.

On the related Cauchy problem. Thanks to the convergence of the Picard sequence towards
the unique solution of the corresponding martingale problems, we can identify the (pointwise) limit
of q(m) as the density q of the decoupled flow associated to the McKean-Vlasov process. We then
prove that this density is, on the one hand, smooth enough to apply the operator L := L + L on
it; on the other hand, behaves well in the sense that its derivatives have Gaussian type bounds.
The first part of the operator, L, is classical and can be found in [Fri64]. The second one, L , is
more involved, and relies on the smoothing effect previously exhibited. We thus manage to prove
it through the parametrix expansion along the Picard sequence, uniformly in the Picard argument
“m”. A compactness argument allows to conclude, along a subsequence of the Picard sequence. This
thus justifies, through Markov property (stemming from weak well-posedness) and Itô’s formula,
that the density q of the decoupled flow associated with the McKean-Vlasov SDE is a fundamental
solution of L: it satisfies,

(∂t + L)q(µ, t, s, x, y) = 0, q(µ, t, s, x, y) → δx, t ↑ s.
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From this result, we eventually derive that

U(t, x, µ) := E
[
g(Xt,x,µ

T ,µt,µ
T ) +

∫ T

t
f(s,Xt,x,µ

s ,µt,µ
s )ds

]
is a “classical” solution to the Cauchy problem with data (f, g), provided f ∈ C0,β,(2,β)([0, T ] ×
Rd × P2(Rd)) and g ∈ C2+β,(2,2+β)(Rd × P2(Rd)).

5.4 General results on well-posedness and comments

We state here our results, as they are in the works. For all this part, we consider the general
McKean-Vlasov SDE and its associated Mean-Field SDE whose diffusion coefficient is assumed to
be uniformly elliptic.

Well-posedness results For the well-posedness, the first result has been given in [3]. To the best
of our knowledge, this is one of the first general results on the well-posedness of McKean-Vlasov
SDEs outside the Cauchy-Lipschitz-Wasserstein framework that includes a diffusion coefficient
depending on the law argument and using the Zvonkin approach through PDE on Wasserstein
space. It must be indeed stressed that many other results on well-posedness in this setting relied
on Girsanov transform. As such, asking for the diffusion coefficient to be law independent appears
to be very convenient. We refer to e.g. [Jou97, VM21]. This result may be seen as a preliminary
result as it can be included in the results in [9].

(A) The coefficients satisfy the the following structural assumptions

(b, σ)(t, x, µ) := (b, σ)(t, x,
∫
φdµ),

where φi : Rd → Rd is a bounded β-Hölder map (the map φ appearing in the drift can be
distinct from the map appearing in the diffusion) and b, σ lie in C0,β,2

b .

The terminology of “structural assumption” relies on the fact that the dependence w.r.t. the law
argument is assumed to be of scalar type (possibly composed with a smooth function). The theorem
proved is the following

Theorem 5.4.1 ([3]). Under assumption (A), the McKean-Vlasov SDE has a unique strong solu-

tion.

The following works contain more general results. The first result we prove therein is under the
following set of assumptions and regards the well-posedness.

(A1) The drift coefficient b lies in L∞(R+ × Rd × P(Rd),Rd) and is Lipschitz-continuous in dTV,
uniformly with respect to (t, x);

(A2) The diffusion coefficient a := σσ∗ lies in C
0,β,(1,β)
b (R+ × Rd × P(Rd),Rd).

Theorem 5.4.2 ([9]). Under the above, the martingale problem associated with the McKean-Vlasov SDE

is well-posed for any initial distribution µ ∈ P(Rd). In particular, weak uniqueness in law holds.

Also, as underlined in the previous section:
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Corollary 5.4.3 ([9]). Assume that the assumptions (A1)-(A2) hold and that for all (t, µ) in

R+ × P(Rd), the map x 7→ σ(t, x, µ) is Lipschitz continuous uniformly with respect to t and µ.

Then, strong uniqueness holds for the McKean-Vlasov SDE.

The regularity of the coefficients w.r.t. the measure argument are stated in a quite different way:
for the drift b, a rather general Lipschitz continuity w.r.t. the dTV distance is required, while for
the diffusion coefficient we rather choose to suppose that it has a Hölder continuous flat derivative.
This last assumption implies that a is Lipchitz w.r.t. the distance defined by duality with the space
of Cβb functions. In fact, in the presence of absolutely continuous measures (w.r.t. the Lebesgue
measure), it seems to be an almost equivalent regularity assumption (in the sense that all the ex-
amples we have in mind for Lipschitz continuous functions w.r.t. the distance defined by duality
with the space of Cβb functions have a.e. a Hölder continuous flat derivative). However, assuming
the existence of a flat derivative appears to be crucial when dealing with the parametrix expansion
used to obtain the result, because it gives more flexibility: to smooth singularities induced by the
differentiation of the heat kernel and to investigate the regularity of the law of the McKean-Vlasov
process w.r.t. the measure argument. This is the reason why, below, we further assumed such kind
of regularity for the drift as well.

We emphasize that the well-posedness result has then been extended by Frikha, Konakov and
Menozzi for stable driven McKean-Vlasov SDE in [FKM21]. There also are several recent works
on the well-posedness of the McKean-Vlasov SDE for coefficients being Lipschitz continuous w.r.t.
to stronger metric than the Wasserstein one, e.g. [HW19, HY21, HW22] where they use fractional
Wasserstein or weighted total variation distance. In the case of a convolution type (or at least linear
in the measure argument) interaction, we can also refer to [Lac18, MV20, RZ21] where singular
drift are considered (but without distribution dependent diffusion coefficient). Also, in [HŠS21], the
Authors investigate well-posedness for coefficients with polynomial growth in the measure argument,
introducing ad-hoc Lyapunov functions.

Density estimates

(B1) The diffusion coefficient a := σσ∗ and drift coefficient b lie in C0
b (R+×Rd×P(Rd)). Moreover,

they belong for any (t, µ) in Cβb , uniformly and for any (t, x) it belongs to C 2,β
b , uniformly.

� At the end, we only require the flat derivatives of the coefficient to be Hölder continuous

w.r.t. the additional variable steaming from the flat differential, uniformly in the others. We any-

how chose to state the above more readable version.

The result we obtain is the following

Theorem 5.4.4 ([9]). Assume that (A1), (A2) and (B1) hold. Let T > 0 and (s, z) ∈ (0, T ]×Rd.

Then, the mapping [0, s)×Rd×P2(Rd) ∋ (t, x, µ) 7→ q(µ, t, s, x, z) is in C1,2,2([0, s)×Rd×P2(Rd))
and is the fundamental solution associated with L. Moreover, for any (µ, t, x, v) ∈ P2(Rd)× [0, s)×
(Rd)2,

|∂nv [∂µq(µ, t, s, x, z)](v)| ≤ C

(t− s)
1+n−β

2

g(c(s− t), z − x), n ∈ {0, 1} ,

|∂tq(µ, t, s, x, z)| ≤ C

s− t
g(c(s− t), z − x).
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From this result and the key relation

p(µ, s, t, z) =
∫

Rd
q(µ, s, t, x, z) dµ(x), (5.4.1)

we deduce the following corollary.

Corollary 5.4.5 ([9]). Assume that (B1) hold. Let T > 0 and (s, z) ∈ (0, T ] × Rd. Then, the

mapping [0, s) × P2(Rd) ∋ (t, µ) 7→ p(µ, t, s, z) is in C1,2([0, s) × P2(Rd)) and is the fundamental

solution associated with L . Moreover, for any (µ, t, v) ∈ P2(Rd) × [0, s) × Rd,

|∂nv [∂µp(µ, t, s, z)](v)| ≤ C

{
1

(s− t) 1+n
2

g(c(s− t), z − v)

+ 1
(s− t)

1+n−η
2

∫
Rd
g(c(s− t), z − x)dµ(x)

}
, n ∈ {0, 1} ,

|∂tp(µ, t, s, z)| ≤ C

s− t

∫
Rd
g(c(s− t), z − x)dµ(x).

Remark. We importantly emphasize that, as a by product of our proof, Gaussian estimate on the

Holder modulus of the density of the decoupled flow as well as on its derivatives w.r.t. all variables

are available.

On the Cauchy problem on Rd × P2(Rd). The assumptions on the data f, g slightly differ
from what we stated in the “Primer” as we wanted to handle unbounded entries.

(C1) The two maps [0, T ] × Rd × P2(Rd) ∋ (t, x, µ) 7→ f(t, x, µ) and Rd × P2(Rd) ∋ (x, µ) 7→
g(x, µ) are continuous and the two maps P2(Rd) ∋ µ 7→ f(t, x, µ), g(x, µ) have a continuous
linear functional derivative for any fixed (t, x) ∈ [0, T ] × Rd. Moreover, the maps [0, T ] ×
(Rd)2 × P2(Rd) ∋ (t, x, y, µ) 7→ δmf(t, x, µ)(y), (Rd)2 × P2(Rd) ∋ (x, y, µ) 7→ δmg(x, µ)(y) are
continuous.

(C1) The maps f, g, δmf and δmg satisfy the following regularity and growth assumptions: there
exist C := C(T ) ≥ 0 and r ≥ 1 such that for any (t, x, y, µ) ∈ [0, T ] × (Rd)2 × P2(Rd) and
any bounded set D ⊂ Rd,

sup
x̸=x′,x,x′∈D

|f(t, x, µ) − f(t, x′, µ)|
|x− x′|β

≤ C(1 +M r
2 (µ)), (5.4.2)

sup
y ̸=y′,y,y′∈D

|δmf(t, x, µ)(y) − δmf(t, x, µ)(y′)|
|y − y′|β

≤ C exp
(
α

|x|2

T

)
(1 +M r

2 (µ)), (5.4.3)

and

|f(t, x, µ)| + |g(x, µ)| ≤ C exp
(
α

|x|2

T

)
(1 +M r

2 (µ)), (5.4.4)

|δmf(t, x, µ)(y)| + |δmg(x, µ)(y)| ≤ C exp
(
α

|x|2

T

)
(1 + |y|2 +M r

2 (µ)), (5.4.5)

where M2(µ) := (
∫
Rd |x|2 dµ(x))1/2 and α is any non-negative constant satisfying α < (2c)−1,

the constant c depending on the constant appearing in the estimates on the transition density
q.
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Theorem 5.4.6 ([9]). Assume that (A1), (A2), (B1), (C1) and (C2) hold. Then, the function

U defined by

U(t, x, µ) :=
∫
Rd
g(z,µt,µ

T )q(µ, t, T, x, z)dz −
∫ T

t

∫
Rd
f(s, z,µt,µ

s )q(µ, t, s, x, z)dzds

= E

[
g(Xt,x,µ

T ,µt,µ
T ) −

∫ T

t
f(s,Xt,x,µ

s ,µt,µ
s )ds

]
,

is a solution of the Cauchy problem in the strip [0, T ] × Rd × P2(Rd) and

|U(t, x, µ)| ≤ C exp
(k|x|2

T

)
(1 +M q

2 (µ)), for (t, x, µ) ∈ [0, T ] × Rd × P2(Rd), (5.4.6)

where C := C(T, ) and k := k(λ, α) are positive constants.

Moreover, U is unique among all of the classical solutions to the Cauchy problem on [0, T ] ×
Rd × P2(Rd) with source term f and terminal condition g.

For smooth coefficients and data, the above Cauchy problem was already proved to be well-posed
in [BLP09, CCD22] (in the last reference, a non-linear version coming from MFG was investigated).
For non-smooth terminal condition, it has been investigated by Crisan and McMurray [CM17], using
the smoothing effect of the McKean-Vlasov semi-group through Malliavin Calculus.

5.5 From the PDE on Wasserstein space to Propagation of Chaos: general

results and comments

In this section, we focus on the results obtained in [12], where we precisely use the smoothing
property of the PDE to provide a Propagation of Chaos theory for the Mean-Field SDE with
non-Lipschitz (w.r.t. euclidean and Wasserstein distance) coefficients.

In some sense, this part relies on numerical perspectives (or is inspired by what happens in this
setting): for the time discretization of linear (in the McKean sense) SDE, it is well known that
smoothing properties of the associated PDE can be used to reinforce, or obtain, the convergence
rate of the associated Euler-Maruyama scheme. Either under weaker regularity assumptions on
the coefficients, or with better rates. We refer e.g. on the one hand to Dareiotis and Gerencsér
[DG20] and Lê and Ling [LL21] and on the other hand to the works of Talay and Tubaro [TT90]
and Konakov and Menozzi [KM17]. Therein, the two options are investigated. The first one (which
comes secondly in the chronological order) consists in using the smoothing properties of the noise,
through the Zvonkin transform, to prove that the strong (at the level of the path) convergence still
holds for irregular (even singular) drift; the second one consists in using the PDE to estimate the
weak convergence rate of the scheme (i.e. at the level of the semi-group). The better rates obtained
are respectively of the order of the square root of the number of point in the discretization grid for
the strong rate and of the order of this number for the weak rate.

In that perspective, the same questions for the spatial discretization scheme arise. Whence
here for the Mean-Field SDE and the associated Propagation of Chaos phenomenon. Previous
results strongly suggest to investigate both approaches to see wether the smoothing properties al-
lows to “restore” the Propagation of Chaos i.e. to prove: that it holds for non-Lipschitz (w.r.t.
Wasserstein-1 distance for the law argument) coefficients; that better rates than the usual one of
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the order of the square root of the number of particles can be obtained.

� We deliberately chose to introduce the above perspectives through the prism of numerical

probability as it seems to be more confortable for us to justify the terminology used and the

intuitions. But, obviously, restoration of, or better rate for, Propagation of Chaos may rely to

other perspectives.

Empirical projection We start with useful connection between the discretized and continuous
(in space) version of the measure. Let φ : P2(Rd) → R be a smooth map. For N ≥ 1, we may
define φN as the empirical projection of φ on RdN i.e. φN : RdN ∋ x = (x1, . . . , xN ) 7→ φ(µN

x )
where µN

x := N−1∑N
i=1 δxi . If φ is of class C 1,2, then φN is in C2 and for all (x1, . . . , xN ) ∈ RdN :

∂xiφ
N (x1, . . . , xN ) = 1

N
Dδmφ

N (µN
x )(xi),

and

∂xj∂xiφ
N (x1, . . . , xN ) = 1

N2
Dδm (Dδmφ(.)(xi)) (µN

x )(xj) + 1i=j
1
N
D2δm(µN

x )(xj).

The above calculations show that the difference between Lφ and its space discretization LNφN is
of order N−1DδmDδmφ which also rewrites N−1∂2

µφ.

Propagation of Chaos Thanks to the smoothing properties of the McKean-Vlasov semi-group,
we are able to obtain “Propagation of Chaos”1 results for particles having only Hölder continuous
coefficients in space and w.r.t. the measure variable. This, at three levels: at the level of the
density, at the level of the semi-group and at the level of the path. The two first levels rely on what
we called a weak Propagation of Chaos, from a numerical perspective, whereas they are strong
forms of chaos as they rely on stronger topology than the one induces by Wasserstein distance.

To do so, we need to rather assume an additional regularity assumptions on the coefficients.
This rely on the fact that we now need to obtain a good estimate on the error term appearing when
approximating a map u : P2(Rd) → R by its empirical projection. As stated above, this leads us
to obtain estimate on the second order Lions derivative on both densities (of the McKean-Vlasov
process and its associated decouple flow). To do so, we further assume that.

(D) The coefficients b and σ satisfy the assumptions of the previous section and are now assumed
to belong to C

0,β,(3,β)
b (R+ × Rd × P(Rd)).

We then compare the densities of the solution of the McKean-Vlasov SDE and of one element
of the Mean-Field SDE. The natural idea consists in comparing the density of the McKean-Vlasov
process p(µ, 0, t, z) with the density of the first particle in the Mean-Field SDE p1,N (µ, 0, t, z) as
fundamental solutions of the Kolmogorov Backward equation on the Wasserstein driven by L and
to estimate the error. To this aim, we crucially use the fact that, because of the symmetry of the
system, it holds that lims↑t E[p(µN

s , s, t, z)] = p1,N (µ, 0, t, z). The result is the following.
1� We here used quote mark because all the results we obtained do not rigorously lead to Propagation of Chaos

results as it has been shortly defined in the previous chapter. In order to avoid a long discussion, we nevertheless
chose to use this terminology as this relies on the approximation of the McKean-Vlasov SDE by the Mean-Field SDE,
and vice versa.
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Theorem 5.5.1 ([12]). Assume that (A1), (A2), (B1) and (D) hold. Then, there exist posi-

tive constants KT , c, (not depending on (D)), T 7→ KT being non-decreasing, such that for any

(t, µ, z) ∈ (0, T ] × P2(Rd) × Rd

|(p1,N − p)(µ, 0, t, z)| ≤ K+

N

{
1

t
1−η

2

∫
Rd
g(ct, z − x)|x|µ(dx) + 1

t1− η
2

∫
Rd
g(ct, z − x)µ(dx)

}
.

While being rather natural from a numerical perspective, this kind of result is, to the best of
our knowledge, new in the perspective of the Propagation of Chaos. We do not found pointwise
Gaussian estimates on the difference on the two densities in the Literature, but rather estimate in
dTV, which follows from the above. Also we obtain, as a by-product of our analysis, the following
uniform, in N , gaussian estimate on the density of one element of the Mean-Field SDE.

Theorem 5.5.2 ([12]). Assume that (A1), (A2), (B1) and (D) hold. Then, there exist posi-

tive constants KT , c, (not depending on (D)), T 7→ KT being non-decreasing, such that for any

(t, µ, z) ∈ (0, T ] × P2(Rd) × Rd

p1,N (µ, 0, t, z) ≤ KT

∫
Rd
g(ct, z − x)µ(dx)

The next result we have stand at the level of the semi-group of the McKean-Vlasov and of the
Mean-Field system. We compare their actions by testing them along a suitable class of functions,
namely any φ lying in C 2,β(P2(Rd)). As such, for β = 1, it holds that the above space contains the
1-Lipschitz functions. So that the result below allows to obtain the convergence in Wasserstein-1
distance.

Theorem 5.5.3 ([12]). Assume that (A1), (A2), (B1) and (D) hold. Then, there exists a positive

constant KT , (not depending on (D)), T 7→ KT being non-decreasing such that for all φ lying in

C 2,β(P2(Rd)) whose associated norm is bounded by one

E
[
|φ(µNT ) − φ(µT )|

]
≤ KT

{
1

T
1−β

2

E[W2(µN0 , µ)2]1/2 + 1
N

1
2

}
.

|(PN
T − PT )φ(µ)| := |E[φ(µNT )] − φ(µT )| ≤ KT

T 1− β
2

1
N
,

This result relies on the analysis done by Carmona and Delarue in Chapter 5 of [CD18a]. How-
ever, the semi-group approach developed is reminiscent from the works of Mischler and Mouhot
[MM13], Mischler, Mouhot and Wennberg [MMW15] with a slightly different formalism and from
the work of Cardaliaguet, Delarue, Lasry and Lions [CDLL19].

� We briefly come back to our previous footnote. The second above result quantify the

convergence of the empirical measure associated with the Mean-Field SDE to the law of the

McKean-Vlasov SDE, as such, it truly provides a (at least) qualitative (without rate) Propaga-

tion of Chaos result. The first one is more subtle: for sure, if the class of maps “φ” for which

it holds should contain the set of bounded continuous maps, then the convergence in law of the

empirical measure follows, and thus the Propagation of Chaos result hold. This is however not

the case. As it is stated (i.e. for the class of maps “φ” is shown to hold), it implies the conver-

gence in Wasserstein-1 distance of the law of one particle in Mean-Field SDE to the law of the
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McKean-Vlasov SDE: this is more an approximation result. Also, the rate of convergence obtained

is better than the usual one, of order
√
N . Such rates (of order N) have been shown to be optimal

in a recent work of Lacker [Lac23].

The last result relies on Zvonkin transform and thus requires the diffusion coefficient to be
Lipschitz. While Zvonkin transform was already applied to recover a (strong) convergence rate of
time discretization scheme, it seems that it is the first time it is used to obtain strong convergence
rate for Propagation of Chaos. We emphasize that we do not exactly recover the result for the
McKean-Vlasov SDE with Lipschitz (w.r.t. Wasserstein distance) for the L2-norm of the sup. This
comes from the Zvonkin Transform, which makes appear in the proof an additional term involving
the expectation of the supremum in time of the difference between the McKean-Vlasov law and the
corresponding i.i.d. approximation. It is quite hard to handle this term in full generality and we
handle it through results of Fournier-Guillin [FG15] together with previous result obtained in [11].

Theorem 5.5.4 ([12]). Assume that (A1), (A2), (B1) and (D) hold and that Mr(µ) < +∞,

for some r > 4. Assume that for any t ∈ [0, T ], the map Rd × P2(Rd) ∋ (x, µ) 7→ σ(t, x, µ) is

Lipschitz continuous, uniformly in time. Then, there exists a positive constant KT , T 7→ KT being

non-decreasing, such that

sup
0≤t≤T

E[W2(µt, µNt )2] + max
i=1,...,N

sup
0≤t≤T

E
[
|Xi

t − X̄i
t |2
]

≤ KT εN

and

max
i=1,...,N

E
[

sup
0≤t≤T

|Xi
t − X̄i

t |2
]

≤ KT
√
εN

where εN is defined by

εN :=


N−1/2 if d < 4,
N−1/2 log(1 +N) if d = 4,
N−2/d if d > 4.

.

5.6 (Some) perspectives

We first emphasize that, as our results strongly rely on suitable heat kernel estimates on the
density of the decoupled flow associated with the McKean-Vlasov SDE, we may expect to recover
such kind of results for another classes of Markovian noise e.g. for stable driven McKean-Vlasov
SDE. These investigations have been done by Cavallazzi in his PhD thesis and gave rise to the
works [Cav22a, Cav22b] where a positive answer is given.

• From Mean-Field approximation to “true” Propagation of Chaos results. In com-
parison with the recent works Lacker [Lac23, LLF23], where the Propagation of Chaos is
investigated through a method based on relative entropy and BBGKY Hierarchy, we ob-
tained an optimal rate of convergence for the empirical measure. However, we do not specify
a “true” quantitative Propagation of Chaos (at the level of k-uplet). It would be interesting
to investigate wether we could obtain such kind of estimates using the Kolmogorov PDE on
Wasserstein space.
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• About singular drifts. An intensive field of research regards the Propagation of Chaos for
a singular interaction kernel (the dependence of the drift coefficient is linear in the measure
argument and often takes the form of a convolution with the kernel). Most of the results are
of weak form and rely on the use of relative entropy. On the d-dimensional Torus [JW18] deals
with a W−1,∞ interaction kernel, having divergence in this space. We can also refer to [BJS22]
and [Han22] for less singular kernels. On the whole Rd, there are results of Lacker [Lac18]
for a kernel in L∞ but without rate, then Jabir in the same setting [Jab19] with explicit rate
and Tomasevic [Tom19] for Lq(time(Lp(space)) kernel with d/p + 2/q < 1, without rate as
well. For a strong Propagation of Chaos result, still without rate, we can refer to the recent
work of Hao, Röckner and Zhang [HRZ22]. As such, the extension of the previously exposed
theory to obtain the well-posedness and Propagation of Chaos in singular cases is another
natural question.

• Back to the regularization by noise: to what extent can the drift of the system be

“bad” ? Focusing on the well-posedness part, one may wonder if the well-posedness result
can be extended to a larger class of coefficients. When the diffusion coefficient is constant and
the drift is a inhomogeneous convolution kernel, we considered this perspective with Jabir
and Menozzi in the works [17, 18] of the personal bibliography. Therein, we study the case of
a singular in time and distributional in space kernel: b = (t, x, µ) 7→

∫
b̃(t, y − x)dµ(y) with

b̃ ∈ L∞(B−β
∞,∞) (in fact, we consider a rather larger class letting the integrability exponents

of the Besov and Lebegues spaces to be finite natural numbers). Taking advantage of the
smoothing effect of the McKean-Vlasov density, we succeed in bypassing the limit coming
from the Bony’s rule and obtain the well posedness for kernel up to L∞(B−1+

∞,∞), thus (almost)
reaching the weak heuristic rule. Assuming further condition on the divergence of the kernel,
on the initial condition or by reducing the time interval on which the equation is considered,
we also obtain well-posedness in the critical case b̃ ∈ L∞(B−1

∞,∞), see also [HRZ23] for similar
(and simultaneous) work. The extension to larger class of interaction remains open.
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Chapter 6

The Skorokhod problem on the Wasserstein space

In this chapter, we present the works [5] and [11] where reflected stochastic systems are investigated.
The main particularity in the setting considered lies into the fact that the reflection is done according
to a constraint on the law of the system, and not on its path, as it was introduced in the so-called
Skorokhod problem. In this sense, the equations under consideration are non-linear, in the sense
of McKean-Vlasov.

6.1 Mean reflected SDE: scalar system and constraint.

A (toy) financial illustration Consider a financial entity with a (dynamical) strategy (πt)t in
a basket of assets S = (S1, . . . , Sd). Suppose that, under the constraint of the regulator or at the
request of a client, the portfolio manager is allowed to hold this position Xt = ξ +

∫ t
0 πr · dSr at

time t only if it is acceptable in view of a given risk measure e.g. a VaRα, α ∈ (0, 1) (constraint
on the risk of loss) or a utility function (constraint on a minimal gain). To satisfy this constraint,
the manager must add a quantity of money Kt to the portfolio at each time t. The dynamics of
his wealth is thus

dXt = πtdSt + dKt.

Obviously, the agent will want to cover the risk minimally so that E[h(Xt)]dKt = 0, where h =
1R+ − (1 − α)) in the case of the VaRα or h = u(·) − p for some utility function u in the second
case. Under the standard assumptions of the Black & Scholes model, we obtain an equation of the
form

dXt = b(Xt)dt+ σ(Xt)dBt + dKt, X0 = ξ ∼ µ t ≥ 0, (Mean Reflected SDE)

associated to the constraint E[h(Xt)] ≥ 0 with K deterministic and non decreasing, K0 = 0,∫ t
0 E[h(Xs)]dKs = 0: this is what we called a Mean Reflected SDE. The path of the solution being

reflected according to a constraint on its “mean”. There is here a striking parallel with the so-called
Skorokhod problem introduced in [Sko62] where the path, rather than the expectation of some
functional, of the solution is constrained.

� The terminology of “mean reflected” comes from the work of Briand, Elie and Hu [BEH18]

where such systems have been, to the best of our knowledge, introduced for the first time in a

backward setting i.e. therein, the Authors considered a backward SDE with mean reflection.
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Another point of view: the Skorokhod problem on Fokker-Planck equation As a con-
sequence of the above formulation, there is another way to understand the Mean Reflected SDE.
Once the equation is proved to be well-posed, we can derive, through Itô’s formula, the dynamics of
the law of the system. When doing so with the mean reflected SDE, we end up with the following
reflected Fokker-Planck equation:

dµt(x) =
{
Dx(µt(x)b(x)) + 1

2D
2
x(µt(x)a(x))

}
dt+Dx (µt(x)) dKt,∫

h dµt ≥ 0
∫ t

0

( ∫
h dµs

)
dKs = 0, t ≥ 0,

where a = σ2. In other words, solving the above system translates into searching for solution to
the Skorokhod problem stated on Partial Differential Equation of Fokker-Planck type.

� We emphasize that the above formulation a posteriori justifies the deterministic condition

implicitly assumed on the process K. We however emphasize that, without such a restriction,

Briand, Elie and Hu proved in [BEH18] that this could lead to ill-posedness issues.

Shape of the reflection Let us try to foster the shape of the process K added in the system.
Introduce for this purpose an auxiliary process U = (Ut)t so that Xt = Ut + Kt. The constraint
thus rewrites: Ht(Kt) := E[h(Ut +Kt)] ≥ 0 which therefore suggests that Kt ≥ H−1

t (0) but as the
process K should start from 0 and being non-decreasing this gives that Kt ≥ sups≤t(H−1

t )+(0).
Eventually, we may deduce from the flatness condition: ∀t ≥ 0,

∫ t
0 E[h(Xs)]dKs = 0 that

∀t ≥ 0, Kt := sup
s≤t

inf{x ∈ R+ : E[h(x+ Ut)] ≥ 0}.

The above form obtained for the reflection process gives a thorough justification to the fact that the
Mean Reflected SDE is a non-linear SDE, in the McKean-Vlasov sense. It also strongly suggests
that there should be a Mean-Field counterpart.

Reflected interacting particle system with mean-field constraint Having an explicit for-
mula for the reflection process allows to identify a natural Mean-Field counterpart for the Mean
Reflected SDE. It writes

Xi
t = ξ̄i +

∫ t

0
b(Xi

s)ds+
∫ t

0
σ(Xi

s)dBi
s +KN

t , 1 ≤ i ≤ N,

1
N

N∑
i=1

h(Xi
t) ≥ 0, 1

N

N∑
i=1

∫ t

0
h(Xi

t) dKN
s = 0, t ≥ 0,

(MF-RSDE)

with

KN
t := inf

{
x ≥ 0 : 1

N

N∑
i=1

h
(
x+ U is

)
≥ 0

}
,

where
U is = ξ̄i +

∫ s

0
b(Xi

r)dr +
∫ s

0
σ(Xi

r)dBi
r, 1 ≤ i ≤ N.
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The main issue with the above definition relies on the initial conditions of the particle system: if
we choose to define (ξ̄i)i as independent copies of ξ, nothing guaranteed that the event ΩN :={∑N

i=1 h(ξ̄i) ≥ 0
}

is of full measure. To overcome this issue, we can take advantage to the explicit
representation of the reflection process K and choose to translate the initial conditions in order to
satisfy the constraint by defining

ξ̄i := ξi + Λ(µN (ξ)), i = 1, . . . , N,

with (ξi)i independent copies of ξ, µN (ξ) := N−1∑N
i=1 δξi and

Λ(µN (ξ)) = inf
{
x ≥ 0 : 1

N

N∑
i=1

h
(
x+ ξi

)
≥ 0

}
.

This choice allows to preserve the fact that µN (ξ̄) → µ and also leads to the fact that the MF-RSDE
satisfies, for any N , a Skorokhod problem.

Indeed if h is concave the particle system can be seen as a multidimensional reflected SDE in
RN with oblique reflection in the direction (1, . . . , 1) on the boundary of the constraint

O :=
{

(x1, . . . , xN ) ∈ RN : HN (x1, . . . , xn) > 0
}
,

whereHN is the empirical projection of the mapH: P2(Rd) ∋ µ 7→
∫
hdµ ∈ R i.e. HN (x1, . . . , xN ) =∑N

i=1 h(xi). This is whence a “classical” Skorokhod problem which enters the framework in e.g.

[LS84].

Well-posedness of the systems In [5], we rigorously prove all the above facts. The strategy
mainly relies on the explicit form obtained for the reflection process K. As such, we ask the map
h : R → R appearing in the constraint to be an increasing and bi-Lipschitz function: this ensures,
at the one hand, that the process K obtained as a generalized inverse is itself Lipschitz continuous
w.r.t. the Wasserstein-1 distance; on the other hand that it has a non degenerate derivative (at
least almost everywhere). Having these assumptions at hand, and assuming moreover Lipschitz
continuity of the coefficients as well as square integrability of the initial condition, we obtain the
following results.

Theorem 6.1.1 ([5]). Under the above assumptions, the Mean Reflected SDE has a unique solution

(X,K).

This result is nothing else but the forward version of the result in [BEH18]. The next result
regards the approximation by the MF-RSDE.

Theorem 6.1.2 ([5]). Under the above assumptions, for any N > 0, any T > 0, there exists a

constant CT depending on b, σ and h such that

max
1≤j≤N

E

[
sup
s≤T

∣∣∣Xj
s − X̄j

s

∣∣∣2] ≤ CTN
−1/2,

where X̄j stands for the copy of the Mean Reflected SDE with Brownian motion Bj and initial

condition ξj.

Also, we propose a Euler-Maruyama discretization scheme of the interacting particle system
and prove that it converges (pathwise) to the unique solution of the system at the optimal rate.
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6.2 A general framework

The previous Mean-Field counterpart of the Skokorkhod problem with “weak” constraint (the
terminology “weak” relies on the fact that the constraint is on law of the process) suggests some
natural generalizations. Some of which are considered in [11]. Let us settle the framework. For a
smooth map H : P2(Rd) → R for coefficients (b, σ0, σ1) : R+ × Rd → Rd × Rd×d × Rd×d consider:

Xi
t = ξi +

∫ t

0
b(s,Xi

s) ds+
∫ t

0
σ0(s,Xi

s) dBi
s +

∫ t

0
σ1(s,Xi

s) dWs +
∫ t

0
∂µH

(
µN
s

)
(Xi

s) dKN
s ,

µN
t = 1

N

N∑
i=1

δXi
t
, H

(
µN
t

)
≥ 0,

∫ t

0
H
(
µN
s

)
dKN

s = 0, t ≥ 0,

(reflected SDE with normal constraint in mean field)

where the {Bi}i and W are independent Brownian motions, W being a common noise as, contrary
to the idyosyncratic noises {Bi}i, it acts on all the particles of the system. The initial conditions
of the particles {ξi}i are (for a while) i.i.d. square integrable random variable with law µ and are
independent of the {Bi}i and W . The process KN is a continuous, non-decreasing process adapted
to the filtration FN generated by the {ξi}i, the {Bi}i and W .

On the event ΩN :=
{
H
(
N−1∑N

i=1 δξi

)
≥ 0

}
, this system indeed reads as a classical reflected

SDE in (Rd)N , with normal reflection in the constraint

ON =
{

(x1, . . . , xN ) ∈ (Rn)N , HN (x1, . . . , xn) = H

(
1
N

N∑
i=1

δxi

)
> 0

}
.

The reflection is said to be normal as ∂xiH
N (x1, . . . , xN ) = N−1∂µH

(
1
N

∑N
i=1 δxi

)
(xi) therefore,

the vector −(∂µH
(

1
N

∑N
i=1 δxi

)
(x1), . . . , ∂µH

(
1
N

∑N
i=1 δxi

)
(xN )) is an outward normal to the set

ON at the point (x1, . . . , xN ) ∈ ∂ON . As such, well-posedness of the solution is immediate under
classical assumptions as it again enters the framework of [LS84].

We may thus guess the asymptotic (McKean-Vlasov) dynamics. The candidate writes:

Xt = ξ +
∫ t

0
b(s,Xs) ds+

∫ t

0
σ0(s,Xs) dBs +

∫ t

0
σ1(s,Xs)dWs +

∫ t

0
∂µH(µs)(Xs) dKs, (6.2.1)

H(µt) ≥ 0,
∫ t

0
H(µs) dKs = 0, t ≥ 0,

(reflected SDE with normal constraint on its conditional law)

where µt = Law(Xt|W ) is the conditional law of X at time t and (Kt)t is a continuous non-
decreasing process adapted to the filtration FW associated with W . This structure (i.e. as a con-
ditional McKean-Vlasov SDE) is reminiscent from the common noise setting, see e.g. [CD18b]. The
Lions derivative ∂µH(µ)(·) arises naturally as a gradient of H in the Wasserstein space P2(Rd) (see
[CD18a]), so that the “outward normal” to the set O := {µ, H(µ) > 0} at a point µ ∈ ∂O is, at least
formally, ∂µH(µ)(·). This is a therefore a reflected SDE with normal constraint on its conditional law.

Let us now justify the assumptions we previosuly made on the reflection K. To so so, we again
come back to the dynamics of the conditional law through the related Fokker-Planck equation. It
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writes
dtµt(x) =

{
div(µt(x)b(t, x)) + 1

2
∑
i,j

D2
i,j(µt(x)aij(t, x))

}
dt

+div (µt(x)σ1(t, x)dWt) + div (µt(x)∂µH(µt)(x)) dKt,

H(µt) ≥ 0
∫ t

0
H(µs) dKs = 0, t ≥ 0,

where a = (σ0σ
∗
0 + σ1σ

∗
1). This is a stochastic Fokker-Planck equation with normal reflection,

which justifies the fact that K is assumed to be a continuous non-decreasing process adapted to
the filtration FW associated with W .

6.3 SDE with normal constraint on its conditional law: general results and

comments

To tackle the above systems, we assume the following conditions to hold:

(HΩ) The probability space is (Ω,P) = (Ω0 × Ω1,P0 ⊗ P1), where Ω0 supports the ξ and B, while
Ω1 supports W with associated filtration FW = F1.

(Hc) The functions b : Ω × R+ × Rd → Rd and σ0, σ1 : Ω × R + ×Rd → Rd×d are measurable
with respect to E ⊗ B

(
Rd
)

and

(i) For all T > 0, there exists LT such that, P-a.s., for each t ∈ [0, T ],

∀x ∈ Rd,∀y ∈ Rd, |b(t, x)−b(t, y)|+|σ0(t, x)−σ0(t, y)|+|σ1(t, x)−σ1(t, y)| ≤ LT |x−y|;

(ii) b, σ0, σ1 are globally bounded: for all T > 0, there exists CT such that, P-a.s.,

sup
t≤T, x∈Rd

{|b(t, x)| + |σ0(t, x)| + |σ1(t, x)|} ≤ CT .

(H0) The initial condition ξ ∼ µ0 is independent of B and W , in L2(Ω0) and with H(µ0) ≥ 0;

(HH) The function H : P2(Rd) → R is fully C2 and

(i) there exists M > 0 such that: ∀µ ∈ P2(Rd),

|H(µ)| +
∫

Rd
|∂µH(µ)|2(x) dµ(x) +

∫
Rd

|∂y∂µH(µ)(y)| dµ(y)

+
∫

Rd×Rd

∣∣∣D2
µµH(µ)(x, y)

∣∣∣ dµ(x)dµ(y) ≤ M2,

(ii) there exist β > 0 and η > 0 such that

∀µ ∈ P2(Rd) with − η ≤ H(µ) ≤ 0,
∫

Rd
|∂µH(µ)|2(x) dµ(x) ≥ β2,

(iii) there exists C1 ≥ 0 such that

∀X,Y ∈ L2, E
[
|∂µH([X])(X) − ∂µH([Y ])(Y )|2

]
≤ C1 E

[
|X − Y |2

]
.
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The above assumptions allow to build a solution by a penalization procedure inspired from
[LS84, LMS81]: the SDE with normal constraint on its conditional law can be approached by
a sequence of penalized McKean-Vlasov SDE, where the penalization comes into play once the
boundary of the constraint set is about to be touched. Yet again, the approach for the well-
posedness heavily relies on a suitable bi-Lipschitz property of the map H, which is assumed to hold
locally i.e. in a neighborhood of the boundary of the constraint set (for the bound from below).
The result is the following.

Theorem 6.3.1 ([11]). Under the above assumptions, the reflected SDE with normal constraint on

its conditional law has a unique strong and weak square integrable solution. In addition, we have,

for any T > 0 and for any θ > 0,

E

[
sup

0≤s≤T
|Xs|2

]
≤ C(T ), E

[
exp{θKT }

]
≤ Cθ(T ),

for some constants C(T ) and Cθ(T ) depending on the data, T and, for Cθ(T ), θ.

The next result rigorously justifies the Mean-Field approximation. As in the previous paragraph,
this can be done on the event where the empirical measure associated with the initial conditions
satisfies the constraint. Therefore, the reflected SDE with normal constraint in mean field is not
exactly a solution to the Skorokhod problem. We may however slightly modify the initial data
therein in order to obtain a Mean-Field system that satisfies the Skorokhod problem and which
indeed approximates the reflected SDE with normal constraint on its conditional law. To do so, the
main idea consists in transporting the initial conditions when they are not far from the (empirical
projection of the) constraint set along the gradient flow associated with H and eventually replacing
it (by some arbitrary point in the set) when they are too far away. The result we obtain is the
following.

Theorem 6.3.2 ([11]). Let X̄i denotes the strong solution of the reflected SDE with normal con-

straint on its conditional law with Brownian motion Bi and initial condition ξi, i = 1, . . . , N . For

T ≥ 0, there exists a constant C(T ) independent of N such that

sup
i=1,...,N

sup
t∈[0,T ]

E
[
|Xi

t − X̄i
t |21ΩN

]
≤ C(T )E1/2

[
sup

0≤t≤T
W 2

2 (µ̄Ns , µ̄s)
]

and, for N large enough,

sup
i=1,...,N

E

[
sup

0≤t≤T
|Xi

t − X̄i
t |21ΩN

]
≤ C(T ) E1/4

[
sup

0≤s≤T
W 2

2 (µ̄Ns , µ̄s)
]
.

Lemma 6.3.3 ([11]). Assume that the initial data satisfies the following moment condition: there

exists an integer p ≥ 8 such that the Lions derivative of H and the law of the initial condition have

finite p-moment. Then, there exists CT > 0 such that

E

[
sup

0≤t≤T
W 2

2 (µ̄Ns , µ̄s)
]

≤ CT ϵN ,

where ϵN has been defined at the end of Chapter 4.
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Last, bu not least, it is worth noticing that the parallel with the Skorokhod problem suggests
to investigate the associated PDE i.e. through the dynamics of the family of semi-groups (Pt)t≥0

defined by
∀t ≥ 0,∀g ∈ C0

b (O,R), Ptg(µ) = E[g(µt,µ
T )],

where µ denotes the flow of conditional law of the solutions to the reflected SDE with normal
constraint on its conditional law. Enlarging naively the definition of viscosity solution on finite
dimensional space, we show that the dynamics of ˚uffl : [0, T ] × O ∋ (t, µ) 7→ Ptg(µ) is given (in the
viscosity sense) by the the following (backward) Neumann problem in the set O = {µ, H(µ) > 0}:

(∂t + L )˚uffl(t, µ) + 1
2

∫
Rd×Rd

Tr
(
∂2
µ ˚uffl(t, µ)(x, y)σ1(t, x)σ∗

1(t, y)
)
dµ(x)dµ(y) = 0 in [0, T ) × O∫

Rd
∂µ ˚uffl(t, µ)(y) · ∂µH(µ)(y)µ(dy) = 0 in [0, T ) × ∂O

˚uffl(T, µ) = g(µ) in O.

The second condition is exactly the Neumann boundary condition associated with the set O, whence
on the Wasserstein space. Conversely, any smooth solution to the above Neumann problem can be
written as E[g(µt,µ

T )].

6.4 BSDE with normal constraint on its law.

As already mentioned, mean reflected systems were introduced for scalar backward SDE by Briand
Elie and Hu in [BEH18]. In the scalar case exposed at the beginning of this chapter, we mentioned
that, up to some technical arguments, the tools used to investigate the well-posedness of the mean
reflected forward and backward system are somehow similar. Such an analogy leads us to investigate
wether the penalization procedure roughly described previously allows to tackle the corresponding
general formulation in the backward setting. It appeared that the strategy is robust enough to
handle backward systems, up to the additional common noise. The system considered is the
following

Yt = ξ +
∫ T

t
f(s, Ys, Zs) ds−

∫ T

t
Zs dBs +

∫ T

t
∂µH(νs)(Ys)dKs, 0 ≤ t ≤ T,

H(νt) ≥ 0, 0 ≤ t ≤ T,

∫ T

0
H(νs)dKs = 0,

(BSDE with normal constraint on its law)
where νt = Law(Yt), ξ ∈ L2(FT ), where the processes Y,Z are respectively of d and d×d dimension
and where f : Ω × R+ × Rd × Rd×d → Rd. Here again, H is a map from P2(Rd) to R and ∂µH
denotes the Lions’ derivative so that the “outward normal” to the set O := {µ, H(µ) > 0} at a
point µ ∈ ∂O is again, at least formally, ∂µH(µ)(·). For this reason the above is now called a
BSDE with normal constraint on its law.

Let us now briefly expose how (and why) the assumptions used to handle the backward system
slightly differ from the assumptions done in the forward case. Firstly, we work with a map H
assumed to be concave, in the Lions sense. Secondly, no common noise comes into play. The
point is indeed that in the forward case, in the common noise setting, the process K is no longer
deterministic (recalling the associated Fokker-Planck equation), and we crucially need to control
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uniformly the diffusion coefficient(s) to control the random K (whereas, even in the forward setting,
we were able to obtain the results without boundedness of the diffusion coefficient without common
noise). For those who are familiar with BSDE, the problem is now rather clear: it may be quite
restrictive to impose conditions so that the process Z above is bounded. This is the reason why
we chose to work without the common noise. We eventually conclude by emphasizing that the lack
of boundedness (even in Lp-norm) of the process Z explains why we further assumed that H was
concave.

We now summarize the results obtained in this setting. We first prove the well-posedness of
the BSDE with normal constraint on its law, still through the penalization procedure. Then we
investigated the Mean Field counterpart of such a system, extending to the current framework the
results obtained in by Briand and Hibon in [BH21]. Namely, we consider the backward system

Y i
t = ξi +

∫ T

t
f(s, Y i

s , Z
i,i
s )ds−

∫ T

t

N∑
j=1

Zi,js dBj
s +

∫ T

t
DµH(νNs )(Y i

s )dKN
s ,

∀t ∈ [0, T ] : νNt = 1
N

N∑
i=1

δY i
t
, H(νNt ) ≥ 0,

∫ T

0
H(νNs )dKN

s = 0, 1 ≤ i ≤ N,

where for each i, j, Zi,js is a d × d matrix, {Bi}1≤i≤N are N independent d-dimensional Brownian
motions and KN is a continuous non decreasing process. Assuming that H(νT ) > 0 this system is,
conditionally to ΩN = {H(νNT ) ≥ 0}, a classical reflected BSDE in (Rd)N , with normal reflection
on the boundary of the constraint

ON =
{

(y1, . . . , yN ) ∈ (Rd)N , H
(

1
N

N∑
i=1

δyi

)
> 0

}
.

We then proved the convergence toward the BSDE with normal constraint on its law.

Eventually, we connect the system with a PDE when the process Y is a real-valued process and
in a Markovian set up (i.e. when ξ = g(XT ) for some g : Rd → R and some diffusion process X
evolving according to coefficients b, σ : R+ × Rd → R and to the scalar valued Brownian motion
B). In this case, the solution of the BSDE with normal constraint on its law can be written in term
of the position X and its law thanks to a decoupling field U : R+ × Rd × P2(Rd) → R. When the
constraint is on the path, the dynamics of such a decoupling field is given thanks to an obstacle
problem, as shown in [EKKP+97]. Here, assuming that the generator f is deterministic we show
that such a decoupling field exists and, when f does not depend on the Z argument, we obtain
that U solves, still in the (naïve) viscosity sense, the following obstacle problem on the Wasserstein
space: 

min
{{

(∂t + L)U(t, x, µ) + f(t, x, U(t, x, µ))
}
;

H(U(t, ·, µ)♯µ)
}

= 0, on [0, T ) × Rd × P2(Rd),

U(T, ·, ·) = g,

where for any probability measures ν and mesurable function φ, φ♯ν denotes the push-forward of
the measure ν by the map φ.
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6.5 (A) perspective

Before giving some perspectives, we emphasize that the case of BSDE with normal constraint on
its law with common noise has been studied by Moreau in its PhD thesis.

Long time behavior. In the “forward case”, an interesting question lies in the long-time
behavior of such a system when it possesses a stationary law. It could provides a natural candidate
to solve a minimization problem on the Wasserstein space with constraint. This fact is somehow
suggested by the work of Jabir [Jab17] where, starting from such a minimization problem and
building a solution by penalization procedure, the Author ends up with a Mean Reflected SDE. We
emphasize that links with other works in that direction are of interest, see e.g. [Dau23] for optimal
control under constraint.
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(rough) Bestiary of functions spaces used within the manuscript

Let λ ≥ 0, γ ∈ [0, 2] and β ∈ (0, 1].

• We say that φ ∈ Cλ(Rm,Rn) if φ : Rm → Rn is ⌊λ⌋-times differentiable and D⌊λ⌋φ is
λ− ⌊λ⌋-Hölder continuous.

• We say that φ ∈ Cλb (Rm,Rn) if φ : Rm → Rn is ⌊λ⌋-times differentiable, with bounded
derivatives and D⌊λ⌋φ is bounded and λ− ⌊λ⌋-Hölder continuous.

Definition 6.5.1. We introduce S α+β
b ([0, T ] × Rd) the set of functions ψ(t, x) defined on

[0, T ] × Rd such that:

(i) The function ψ is continuous on [0, T ] × Rd.

(ii) For any t ∈ [0, T ] the function ψ(t, ·) ∈ Cα+β
b (Rd) and the norm |ψ(t, ·)|

Cα+β
b

is bounded

w.r.t t ∈ [0, T ], i.e., ψ ∈ L∞([0, T ], Cα+β
b (Rd)

)
.

(iii) There exists a function φψ : [0, T ]×Rd → R s.t. for any smooth and compactly supported

function η ∈ C∞
0 ([0, T ] × Rd), the product (φψη)(t, x) is bounded and β + α− 1-Hölder

continuous in space uniformly in t ∈ [0, T ] and for any x ∈ Rd, 0 ≤ t < s ≤ T , it holds

that:

ψ(s, x) − ψ(t, x) =
∫ s

t
φψ(v, x)dv.

For ψ ∈ C α+β
b ([0, T ] × Rd), we write ∂tψ = φψ which is actually the generalized deriva-

tive w.r.t. the time variable of the function ψ.

• When being not specified, the space Pγ(Rd) is endowed with the γ−Wasserstein distance and
for γ = 0, P0(Rd) denotes the space of probability measure endowed with the weak topology.

Definition 6.5.2. We say that φ : Pγ(Rd) → R has a flat derivative if there exists δmφ ∈
C0(Pγ(Rd) × Rd,R) satisfying supµ∈K δmφ(µ)(y) ≤ cK(1 + |y|γ), where K is any compact set of

Pγ(Rd) such that

lim
h→0

h−1{φ(µ+ h(ν − µ)) − φ(µ)} =
∫

Rd
δmφ(µ)(y)d(µ− ν)(y).

Definition 6.5.3. We say that φ : Pγ(Rd) → R has two flat derivatives if for all y the map

δmφ(·)(y) admits a flat derivative δ2
mφ(·)(y, ·) such that δ2

mφ is in C0(Pγ(Rd) × Rd × Rd) and

satisfies that for any compact K ⊂ Pγ(Rd), supµ∈K δ
2
mφ(µ)(y, y′) ≤ cK(1 + |y|γ + |y′|γ).

Definition 6.5.4. And so on for n flat derivatives, n ≥ 3...
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• We say that φ ∈ C n,β if φ : Pβ(Rd) → R is continuous, admits n flat derivatives which are
all β-Hölder continuous.

• We say that φ ∈ C n,β
b if φ : Pβ(Rd) → R is bounded continuous, admits n flat derivatives

which are all bounded and β-Hölder continuous w.r.t. all spatial arguments.

Definition 6.5.5. Let ℓ, m be two integers. We denote by C
ℓ,λ,(m,β)
b (R+ × Rd × Pγ(Rd)) the set

of maps φ : R+ × Rd × Pγ(Rd) such that, for any (x, µ) ∈ R+ × Rd the map φ(·, x, µ) is in

Cℓb(R+,R) and its derivatives ly in C0
b (R+ × Rd× Pγ(Rd)); for any (t, µ) ∈ R+ × Pγ(Rd), the map

φ(t, ·, µ) lies in Cλb (Rd,R), each derivative being (if λ ≥ 1) in C0
b (R+ × Rd × Pγ(Rd)); for any

(t, x) ∈ R+ × Rd, the map φ(t, x, ·) lies in Cm,β, each of its nth flat derivative being in addition in

C0
b (R+ × Rd × Pγ(Rd) × Rn×d).

Definition 6.5.6. For integers ℓ,m we say that the continuous map φ : R+ × Rd × P2(Rd) is in

Cℓ,2,2(R+ × Rd × P2(Rd)) if the following conditions hold:

(i) For any µ ∈ P2(Rd), the map R+ × Rd ∋ (t, x) 7→ φ(t, x, µ) is in Cℓ,2(R+ × Rd) and the

functions R+ × Rd × P2(Rd) ∋ (t, x, µ) 7→ ∂ℓtφ(t, x, µ), ∂xφ(t, x, µ), ∂2
xφ(t, x, µ) are continu-

ous.

(ii) For any (t, x) ∈ R+ × Rd, the map P2(Rd) ∋ µ 7→ φ(t, x, µ) is continuously L-differentiable

and for any µ ∈ P2(Rd), we can find a version of the mapping Rd ∋ v 7→ ∂µφ(t, x, µ)(v) such

that the mapping R+ × Rd × P2(Rd) × Rd ∋ (t, x, µ, v) 7→ ∂µφ(t, x, µ)(v) is locally bounded

and is continuous at any (t, x, µ, v) such that v ∈ supp(µ).

(iii) For the version of ∂µφ mentioned above and for any (t, x, µ) in R+×Rd×P2(Rd), the mapping

Rd ∋ v 7→ ∂µφ(t, x, µ)(v) is continuously differentiable and its derivative ∂v[∂µφ(t, x, µ)](v) ∈
Rd×d is jointly continuous in (t, x, µ, v) at any point (t, x, µ, v) such that v ∈ supp(µ).

The continuous function φ : R+×Rd×P2(Rd) is in Cℓ,2,2f (R+×Rd×P2(Rd)) if φ ∈ Cℓ,2,2(R+×
Rd × P2(Rd)) in the above sense and the following additional condition holds:

(iv) For each v ∈ Rd, the version P2(Rd) ∋ µ 7→ ∂µφ(t, x, µ)(v) discussed in (ii) is L-differentiable

(component by component) with a derivative given by (µ, v, v′) 7→ ∂2
µφ(t, x, µ)(v)(v′) ∈ Rd×d

such that for any µ ∈ P2(Rd) and X ∈ L2 with [X] = µ, the Rd×d-valued random variable

∂2
µφ(t, x, µ)(v)(X) gives the Fréchet derivative of the map L2 ∋ X ′ 7→ ∂2

µφ(t, x, [X ′])(v) for

every v ∈ Rd. Denoting ∂2
µφ(t, x, µ)(v)(v′) by ∂2

µφ(t, x, µ)(v, v′), the map R+ ×Rd×P2(R) ×
(Rd)2 ∋ (t, x, µ, v, v′) 7→ ∂2

µφ(t, x, µ)(v, v′) is also assumed to be continuous for the product

topology.

The spaces C1,2(R+ × P2(Rd)) and C1,2
f (R+ × P2(Rd)), are defined through the above, where

we adequately remove the space variable.

• We say that φ ∈ C1,1(R+ × P2(Rd)) if φ is continuous, t 7→ φ(t, µ) ∈ C1(R+) for any
µ ∈ P2(Rd), (t, µ) 7→ ∂tφ(t, µ) being continuous and if for any t ∈ R+, µ 7→ φ(t, µ) is
continuously L-differentiable such that we can find a version of v 7→ ∂µφ(t, µ)(v) satisfying:
(t, µ, v) 7→ ∂µφ(t, µ)(v) is locally bounded and continuous at any (t, µ, v) satisfying v ∈
supp(µ).
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• We will say that φ ∈ C1,2
f (R+ × P2(Rd)) if φ ∈ C1,2(R+ × P2(Rd)) and for the version of ∂µφ

previously considered, for any (t, v) ∈ [0, T ] × Rd, the mapping P2(Rd) ∋ µ 7→ ∂µφ(t, µ)(v)
is L-differentiable with a derivative given by (t, µ, v, v′) 7→ ∂µφ(t, µ)(v, v′) ∈ Rd×d such that
for any µ ∈ P2(Rd) and X ∈ L2 with [X] = µ, ∂µφ(t, µ)(v,X) gives the Fréchet derivative
of the map L2 ∋ X ′ 7→ ∂µφ(t, [X ′])(v) for every (t, v) ∈ R+ × Rd. Moreover, the map
R+ × P2(Rd) × (Rd)2 ∋ (t, µ, v, v′) 7→ ∂2

µφ(t, µ)(v, v′) is assumed to be continuous for the
product topology.
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Titre. Bal(l)ade entre EDP et probabilités.

Résumé. Ce manuscrit vise à retracer les travaux effectués depuis ma soutenance de thèse au LJAD, à l’université

de Nice Côte d’Azur, poursuivis durant mon affectation au LAMA à l’Université Savoie Mont Blanc puis au LMJL

à Nantes Université. Ces travaux s’inscrivent dans le domaine de l’analyse stochastique et se situent, de fait, à la

frontière de la théorie des probabilités (plus particulièrement celle des Équations Différentielles Stochastiques, EDS)

et des Équations aux Dérivées Partielles, EDP.

Deux grandes classes d’EDS y sont abordées : les EDS “classiques” dont les coefficients sont peu réguliers,

voire singuliers; les EDS de McKean-Vlasov, qui ont la particularité d’intégrer la loi de sa solution à l’équation.

Dans tous les cas, les EDP associées sont étudiées. Il s’agit d’EDP du second ordre, avec parfois une certaine struc-

ture non linéaire particulière, dont l’espace d’état sous-jacent est éventuellement augmenté de l’espace de Wasserstein.

Ces systèmes sont étudiés en grande partie du point de vue de la régularisation par le bruit, qui peut agir sous

différentes formes. Il s’agit de comprendre comment les fluctuations du bruits de l’EDS permettent de s’affranchir des

conditions de régularité usuelles pour garantir l’existence, et surtout l’unicité, d’une solution. Dans tous les cas, une

étude fine de l’EDP associée s’avère cruciale. Pour la seconde classe, le manuscrit traite aussi d’une généralisation

infinie dimensionnelle du problème de Skorokhod.

Mots clés : EDS, EDP, résolubilité, schéma numérique, Mckean-Vlasov, champ moyen

Title. Bal(l)ade entre EDP et probabilités.

Absctract. This manuscript aims to trace the work done since my thesis defense at LJAD, Université Nice Côte

d’Azur, continued during my assignment at LAMA, Université Savoie Mont Blanc, and then at LMJL, Nantes

Université. This work falls within the field of stochastic analysis and lies at the intersection of probability theory

(especially Stochastic Differential Equations, SDEs) and Partial Differential Equations, PDEs.

Two main classes of SDEs are addressed: "classical" SDEs with coefficients that are irregular or even singular,

and McKean-Vlasov SDEs, which have the peculiarity of integrating the law of their solution into the equation. In all

cases, the associated PDEs are studied. These are second-order PDEs, sometimes with a specific nonlinear structure,

whose underlying state space may be augmented with the Wasserstein space.

These systems are studied primarily from the perspective of regularization by noise, which can act in various

forms. The aim is to understand how the noise fluctuations of the SDEs allow one to overcome the usual regularity

conditions to ensure the existence, and especially the uniqueness, of a solution. In all cases, a detailed study of the

associated PDE is crucial. For the second class, the manuscript also deals with an infinite-dimensional generalization

of the Skorokhod problem.

Key words: SDEs, PDEs, numerical scheme, McKean-Vlasov, mean-field
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