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Résumé

Le système visuel est capable de traiter rapidement et efficacement des mouvements complexes dans des scènes visuelles
riches. Une partie de ce traitement a lieu dans la rétine et le cortex. En particulier, la connectivité latérale permet de
générer des ondes induites par des objets en mouvements. Dans notre travail, nous nous intéressons particulièrement
à l’implication de ces ondes dans deux mécanismes de la perception du mouvement : l’anticipation et l’omission
saccadique. L’anticipation est le nom donné à l’ensemble des mécanismes du système visuel permettant d’avancer dans
le temps la représentation du stimulus dans la rétine ou le cortex. Leur but est de compenser le retard d’environ 100
ms qui se produit lors du traitement visuel au niveau de la rétine. Avec un tel retard, nous ne pourrions pas attraper
un objet en mouvement. L’omission saccadique est un mécanisme qui permet d’ignorer les mouvements oculaires
très rapides appelés saccades oculaires. Ces saccades nous permettent d’explorer la scène visuelle bien que nous ne
les percevions pas (omission saccadique). L’hypothèse actuelle est que l’omission saccadique ne se produit qu’en
présence de mouvements oculaires. Cependant, une hypothèse alternative soutient le rôle indispensable des stimuli
périsaccadiques. Des expériences sur les saccades sans mouvement oculaire ont montré qu’en présence de stimuli
périsaccadiques (avec un taux de rafraîchissement suffisamment élevée, 1440 Hz), les individus perçoivent une barre en
mouvement plus lente, plus nette, avec une amplitude réduite et sans traînée. Cela créé un mouvement que le système
visuel pourrait facilement effacer grâce à la propagation d’ondes suppressives, déjà présentes dans les mouvements
apparents, par le biais de la connectivité latérale dans le cortex. Dans ce mécanisme potentiel d’omission saccadique, la
représentation la plus récente de l’objet en mouvement inhibe les plus anciennes grâce aux ondes suppressives.

L’objectif de cette thèse est d’étudier les mécanismes d’anticipation et d’omission saccadique sous le point de vue de la
modélisation. Pour ce faire, nous utilisons un modèle rétino-cortical appelé « modèle Chimère ». Il contient d’abord un
modèle rétinien composé de cellules bipolaires, amacrines et ganglionnaires interconnectées, avec un contrôle de gain
sur les cellules bipolaires et ganglionnaires. La sortie rétinienne est envoyée à un modèle cortical, un réseau de colonnes
corticales, chacune correspondant à des équations de champ moyen, capables de produire l’intensité du signal d’un pixel
dans l’imagerie dépendante du voltage. La sortie du modèle peut donc être comparée à des expériences biologiques. Ce
modèle rétino-cortical a été implémenté dans la plateforme Macular créée à l’INRIA. Cette thèse présente le modèle
chimère, certaines de ses propriétés dynamiques et son implémentation, avant d’y étudier l’anticipation et l’omission
saccadique. Après une calibration du modèle reproduisant des expériences réalisées dans le laboratoire de F. Chavane,
nous montrons comment différents paramètres expérimentaux (vitesse de la barre, contraste) et physiologiques (intensité
de la sortie rétinienne, connexions des cellules amacrines, contrôle de gain, intensité des connexions corticales, ...)
impactent l’anticipation au niveau de la rétine et du cortex. Pour l’omission saccadique, nous reproduisons d’abord
les ondes suppressives observées avec le mouvement apparent avant d’étudier la réponse rétino-corticale de stimuli
correspondant au mouvement avec ou sans stimuli périsaccadiques affichés à une fréquence de rafraîchissement de
60Hz (vidéoprojecteurs classiques) ou de 1440Hz (vitesse de rafraîchissement à laquelle un effet de traînée est perçu).
Nous étudions également l’impact des phases statiques et le rôle potentiel de la propagation d’ondes suppressives.

Mots-clés : Neurosciences computationnelles, Modèle rétino-cortical, Vision du mouvement, Anticipation visuelle,
Saccade simulées, Ondes d’activité.

4



Abstract

The visual system is able to process complex movements quickly and efficiently in rich visual scenes thanks to a
processing taking place in the retina, the LGN, and the visual cortex. Especially, lateral connectivity enables the
generation of waves that only appear when a moving object is present. In our work, we are particularly interested in the
involvement of these waves in two mechanisms of motion vision: anticipation and saccadic omission. Anticipation is
the name given to the set of mechanisms in the visual system to bring forward in time the representation of the stimulus
in the retina or cortex. Their aim is to compensate for the 100ms delay in visual processing in the retina. With such
a delay, we would not be able to catch a moving object. Saccadic omission is a mechanism for ignoring very rapid
eye movements known as ocular saccades. These saccades enable us to explore the visual scene although we do not
perceive them (saccadic omission). The current hypothesis is that saccadic omission only occurs in the presence of eye
movements. However, an alternative hypothesis supports the indispensable role of perisaccadic stimuli. Experiments on
saccades without eye movement have shown that in the presence of perisaccadic stimuli (with a sufficiently high frame
rate, 1440 Hz) individuals perceive a slower, sharper moving bar, with reduced amplitude and no smear. This creates a
movement that the visual system could easily erase. This process could be caused by the propagation of suppressive
waves, already exhibited in apparent movements, through lateral connectivity in the cortex. In this potential mechanism
of saccadic omission the most recent representation of the moving object inhibits older ones thanks to suppressive
waves.

The aim of this thesis is to study the mechanisms of anticipation and saccadic omission from a modelling perspective.
To this end, we are using a retinal-cortical model known as the ‘Chimera model’. It first contains a retinal model made
up of bipolar, amacrine and ganglion cells interconnected, with gain control on the bipolar and ganglion cells. The
retinal output is sent to a cortical model, a network of cortical columns, each corresponding to mean-field equations,
capable of producing the signal intensity of a pixel in voltage-dependent imaging. The output of the model can therefore
be compared with biological experiments. This retino-cortical model has been implemented in the Macular plateform
created at INRIA. This thesis introduces the Chimera model, review some of its dynamical properties, and discuss
its implementation, before studying anticipation and saccadic omission. After a calibration of the model reproducing
experiments made in F. Chavane lab, we show how different experimental (bar speed, contrast) and physiological
(retinal output intensity, amacrine cells connections, gain control, cortical connections intensity, ...) impact anticipation
at the level of the retina and in the cortex. For saccadic omission, we first reproduce the suppressive waves observed
with apparent movement before studying the retino-cortical response of stimuli corresponding to movement, with or
without perisaccadic stimuli, displayed at a refresh rate of 60Hz (classical video projectors) or 1440Hz (refresh speed at
which a smear effect is perceived). We also study the impact of static phases and the potential role of suppressive wave
propagation.

Keywords : Computational neuroscience, Retino-cortical model, Motion vision, Visual anticipation, Simulated
saccades, Activity waves.
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Introduction en Français

La vision
La perception visuelle est un processus aussi complexe qu’essentiel pour beaucoup d’organismes et l’être humain n’y
fait pas exception. Cette capacité à détecter les radiations lumineuses de l’environnement, ainsi qu’à y trouver un sens,
a toujours été intimement liée à notre survie, et plus généralement à la nécessité de nous déplacer, d’interagir avec
le monde extérieur. On doit cette aptitude au système visuel dont la porte d’entrée est l’œil. Les rayons lumineux
traversent ce dernier pour venir activer des cellules photoréceptrices au fond de l’œil, dans la rétine. Ces rayons
lumineux engendrent un signal électrique traité par les couches neuronales successives de la rétine, avant d’être envoyé
au thalamus, par le biais du nerf optique, puis de rejoindre l’aire visuelle primaire (V1). Cette région du cerveau a pour
rôle de différencier des propriétés particulières de l’image (orientation, fréquences spatiales, mouvement...). Le système
visuel fait ensuite intervenir de nombreuses autres zones corticales responsables de traitements toujours plus complexes
et intégrés. Tout ceci est rendu possible via le traitement préliminaire de l’information visuelle par la rétine, qui est
bien plus qu’une simple caméra. C’est dans la rétine que naîssent une trentaine de canaux d’information constituant
autant de représentations différentes et complémentaires du monde, chacune associée à une modalité de la vision. C’est
également dans la rétine que commencent les traitements d’un certain nombre de propriétés comme la représentation de
l’orientation, la couleur ou encore le mouvement des objets perçus. Le système visuel est aussi capable d’analyser des
mouvements rapides et complexes dans des scènes visuelles extrêmement riches et complexes. Dans la rétine, comme
dans le cortex, ce sont les propriétés particulières du réseau neuronal qui permettent d’analyser ces mouvements. Dans
ce contexte, deux mécanismes nous intéressent tout particulièrement : l’anticipation et l’omission saccadique.

L’anticipation
La vision du mouvement présente un défaut majeur qui réside dans la lenteur du procédé de phototransduction
(conversion de la lumière en variations de potentiel électrique) au sein des photorécepteurs. Cela induit un délai de
100 ms entre la capture de photons par les photorécepteurs et l’arrivée du signal électrique rétinien dans le cortex
visuel primaire [1]. Un tel retard entre la réalité et notre perception rendrait la vision non effective. Face à un danger
tel qu’un prédateur ou une voiture se déplaçant à 50 km/h, notre perception de ces derniers accuserait un retard de
1.4 m sur le mouvement réel. En d’autres termes, le danger aurait déjà parcouru 1.4 m avant que notre système
visuel ne détecte le début du mouvement réel. Cet exemple permet de souligner la gravité qu’aurait un retard de cette
ampleur. Moins dramatiquement, un tel retard devrait nous empêcher d’attraper un objet en mouvement. Mais alors,
comment les espèces animales peuvent-elles alors se reposer sur la vision pour chasser ou fuir ? Le système visuel a
mis en place des mécanismes d’anticipation pour compenser ce défaut. Ces derniers se mettent uniquement en place
pour des objets en mouvement, mais restent inactifs pour des objets fixes. L’anticipation permet d’avancer dans le
temps la représentation neurale des futures positions de l’objet en mouvement et ainsi de compenser le retard dû à la
phototransduction. Cette compensation dépend bien sûr de la vitesse de l’objet et devient inopérante pour des objets
trop rapides. Des mécanismes d’anticipation ont été mis en évidence dans la rétine et dans le cortex visuel primaire.
Dans la rétine, deux types d’anticipation ont été mis au jour. Le premier, dit par "adaptation", correspond à un chute
plus précoce du pic d’activité des cellules de sortie de la rétine afin de l’avancer [1]. Ce pic est ce à quoi répondent
principalement les cellules corticales, et son avancement leur permet donc de répondre plus tôt. Le second type, dit
par "prédiction", correspond quand à lui à un décalage plus précoce de l’intégralité de la réponse rétinienne. Dans les
deux cas, des cellules rétiniennes spécifiques, les cellules amacrines, semblent également être à l’origine du processus
[2]. Au sein du cortex visuel primaire, un autre procédé d’anticipation, dit "par latence", a été identifié [3]. Dans
ce cas, le mouvement de l’objet entraîne la propagation d’une onde d’activité transmise par la connectivité latérale
des colonnes corticales excitées par la barre, vers d’autres colonnes corticales plus distantes. Les colonnes corticales
sont, en quelque sorte, les unités de traitement dans le cortex visuel. Elles sont constituées de quelques milliers de
neurones avec une organisation spécifique. L’onde d’activité induite par un objet en mouvement permet aux colonnes
corticales distantes de répondre de façon plus précoce. Récemment, S. Souihel et B. Cessac ont soulevé l’hypothèse que
l’anticipation rétinale puisse présenter des caractéristiques similaires à l’anticipation corticale par latence. Un objet en
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mouvement pourrait produire, par le biais du réseau des cellules amacrines, une onde d’activation précoce des cellules
ganglionnaires.

L’omission saccadique
Les saccades oculaires sont des mouvements oculaires très rapides, se produisant environ 3 fois par seconde, avec
une vitesse maximale de 500 °/s, et une vitesse moyenne de 200 °/s [4, 5]. Ce processus est essentiel pour explorer
rapidement une scène visuelle et en saisir les informations essentielles. Il est également à l’origine de nos capacités de
reconnaissance faciale et de lecture. Lors d’une saccade, la représentation de la scène visuelle se déplace à la même
vitesse que la saccade. Cependant, nous ne percevons aucun flou de mouvement. Au contraire, la scène visuelle reste
stable, claire et précise. C’est ce qu’on appelle "l’omission saccadique". Une explication actuelle de ce phénomène
est basée sur un signal appelé "décharge corollaire" [6]. Cette copie de la commande oculaire motrice engendre une
perte de sensibilité visuelle au mouvement appelée "suppression saccadique", pendant la saccade. Cependant, cette
explication a ses limites. Lorsqu’un stimulus est montré à un sujet uniquement pendant une saccade, pas avant ni après,
alors le stimulus est perçu mais avec une traînée. Cela signifie que la décharge corollaire ne suffit pas à expliquer
l’omission saccadique. En revanche, l’ajout de stimuli périsaccadiques avant et/ou après la saccade permet de faire
disparaître la traînée. Les stimuli périsaccadiques agissent donc comme des masques qui vont cacher le mouvement du
stimulus [7]. C’est dans ce contexte qu’est né l’explication alternative d’une omission saccadique supportée par ces
masques périsaccadiques.

Des expériences psychophysiques récentes [8] ont réussi à effacer la traînée dans une saccade simulée, sans aucun
mouvement des yeux, chez le sujet humain. Dans ces expériences, les mouvements de saccades oculaires ont été
reproduits en utilisant un stimulus se déplaçant à la vitesse de la saccade et affiché avec un appareil ayant une fréquence
d’images de 1440 Hz. Traditionnellement, les stimuli dans les expériences psychophysiques sont affichés à une
fréquence de 60 Hz. A 60 Hz, les sujets observent un mouvement apparent, avec une traînée autour de la trajectoire
du stimulus. L’utilisation d’un taux de rafraîchissement de 1440 Hz permet de supprimer cet effet. Dans l’expérience,
deux types de stimuli ont été utilisés : une simple barre blanche en mouvement (_M_) ou la même barre en mouvement
précédée et suivie de phases statiques : masques avant et arrière (SMS). Seul le stimulus _M_ conduit à la traînée,
alors que le SMS en est exempt et permet de percevoir un mouvement plus lent et plus court. Par conséquent, le
masquage du mouvement (SMS) n’est pas suffisant pour éviter la perception du mouvement de la barre, mais pourrait le
rendre plus facile à ignorer. Des processus supplémentaires, comme la suppression saccadique, seront nécessaires pour
supprimer complètement le mouvement. Une hypothèse, proposée pour expliquer ce masquage temporel du mouvement
est soutenue par des expériences dans le cortex visuel primaire du singe réalisées par Frédéric Chavane et son équipe
(Institut des Neurosciences de la Timone) montrant des ondes suppressives se propageant dans la direction opposée d’un
mouvement et provenant d’ondes d’activité [9]. Ces ondes suppressives se propagent aux zones précédemment activées
par le mouvement et suppriment ainsi l’activité résiduelle. Cet effet suppressif de la dernière position du stimulus vers
la précédente pourrait expliquer l’effacement de la traînée. À partir de ces expériences, on peut donc se demander si le
masquage temporel des mouvements peut être expliqué par des ondes suppressives se propageant dans le cortex et dans
la rétine.

Contexte de la thèse. Cette thèse étudie, sous l’angle de la modélisation, les mécanismes d’anticipation et d’omission
saccadique en utilisant un modèle intégré rétine-cortex, appelé "Chimera model", présenté ci-dessous.

Le travail sur l’anticipation s’inscrit dans le cadre d’une précédente collaboration, l’ANR Trajectory
(https://team.inria.fr/biovision/anr-trajectory/) entre Frédéric Chavane, Alain Destexhe, Olivier Marre, Bruno Cessac
et Selma Souihel (ancienne doctorante) visant à mieux comprendre comment les mécanismes d’ anticipation dans
la rétine et le cortex se combinent. C’est dans le cadre de la thèse de Selma Souihel, dirigée par Bruno Cessac, que
le "Chimera model" a été initié. Cependant, il n’a pas été finalisé, et la thèse de Selma Souihel a essentiellement
porté sur la modélisation de l’anticipation dans la rétine. Notre premier objectif a été de finaliser le "Chimera model".
D’une part, du point du modèle lui-même, en étudiant son comportement dynamique et recherchant des plages de
paramètres donnant lieu à un comportement stable et biologiquement plausible. D’autre part, du point de vue de la
simulation. Une grande partie de notre activité de thèse a en effet consisté à porter le modèle sur la plateforme de
simulation Macular (https://team.inria.fr/biovision/Macular-software/), décrite dans le chapitre 2, de façon à obtenir des
simulations rapides et réalistes (avec notament une taille de cortex raisonable), en deux dimensions. Cela nous a permis
d’avoir des résultats nouveaux sur le rôle respectifs des mécanismes d’anticipation dans la rétine et le cortex. Au delà
de l’anticipation, le "Chimera model" et la plateforme Macular permettent de simuler le complexe rétine cortex, avec
des entrées visuelles réalistes (films), en faisant varier notament des paramètres physiologiques parfois impossible à
contrôler expérimentalement. En particulier, nous avons réussit à mettre en oeuvre un modèle amélioré ayant la capacité
de reproduire l’anticipation par prédiction.

Le travail sur l’omission saccadique s’inscrit, lui, dans le cadre de la collaboration ANR Shooting Star
(https://team.inria.fr/biovision/anr-shootingstar/), entre Mark Wexler, Frédéric Chavane, Olivier Marre, Alain Destexhe
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et Bruno Cessac visant à tester l’hypothèse d’omission saccadique par ondes suppressives. Notre objectif était de tenter
reproduire les ondes d’activité corticale avec le "Chimera model" et d’y simuler des saccades. Ceci, afin de repoduire
les résultats expérimentaux de M. Wexler et F. Chavane, et d’étudier l’existence et la nature d’ondes suppressives. A
l’aide de la plateforme Macular nous avons pu ainsi mettre en évidence un effet de traînée plutôt observée avec un taux
de rafraichissement à 1440 Hz qu’à 60 Hz, avec un modèle mathématique simple permettant de comprendre cet effet.
Nous avons aussi constaté la perte dans l’identité du stimulus à 1440 Hz. Nous mettons également en évidence d’une
suppression des phases statiques sur le mouvement et une différence de réponse corticale entre les stimuli M et SMS.
Enfin, nous montrons comment des phases statiques de tailles différentes de la phase mouvante peuvent influencer sur
la réponse à celle-ci.

Le chimera model
Le "Chimera model" vise à modéliser et simuler le complexe rétine-cortex, en "négligeant" le thalamus i.e. en le
considérant comme un simple relais. Nous faisons cela dans un soucis de simplicité du modèle bien que le thalamus soit
plus qu’un simple relais [10, 11]. Il s’agissait aussi de disposer d’une plateforme de simulation associée, permettant de
jouer des entrées rétiniennes réalistes (films). Le terme "Chimera model" provient du fait que le modèle de rétine a
été calibré à partir de données sur la souris alors que le modèle cortical a été calibré à partir de données sur le singe
[12, 13, 9]. Nous discutons cet aspect plus en détail dans la thèse. La modélisation a l’avantage de pouvoir ici palier
aux lacunes expérimentales qui ne permettent pas de mesurer la rétine et le cortex en même temps et de modifier "à
la main" des paramètres physiologiques impossibles à contrôler expérimentalement. La modélisation octroie aussi la
possibilité de pouvoir identifier les facteurs suffisant pour engendrer l’anticipation et l’omission saccadique.

Ce modèle rétino-cortical produit une activité correspondant à l’intensité des pixels en imagerie à colorant sensible au
voltage (VSDI) en réponse à une stimulation rétinienne. Le modèle de rétine est basé sur de précédents travaux sur la
rétine de souris [1, 14, 15, 16]. Il simule un graphe constitué de cellules bipolaires, amacrines et ganglionnaires. Le
champ récepteur des cellules bipolaires est une fonction qui permet de reproduire la réponse des photorécepteurs et
des cellules horizontales. Les cellules bipolaires disposent d’un système de contrôle de gain connu pour reproduire
l’anticipation par adaptation. Les cellules amacrines sont, quant à elles, utilisées dans le but de mettre en place une
connectivité latérale qui pourrait être à l’origine de l’anticipation par prédiction mais également de la propagation
d’ondes au sein de la rétine. Le modèle cortical a été créé à partir d’expériences chez le macaque. Il utilise des réseaux
connectés de modèles de champs moyens représentant chacun une colonne corticale. Pour chaque colonne corticale, on
compte un modèle de champ moyen correspondant à sa population excitatrice et un à sa population inhibitrice. A cela
s’ajoute une connectivité latérale entre les colonnes où les signaux se propagent à une vitesse de 300mm/s. On obtient
en sortie l’intensité du pixel d’imagerie voltage dépendante (VSDI) contenant la colonne corticale. Ce modèle était
utilisé dans le but de reproduire des résultats d’imagerie optique voltage dépendant.

Macular
Macular est un logiciel élaboré, sous la direction de Bruno Cessac, par des ingénieurs du Service d’Etudes et Développe-
ment (SED) de l’Inria, ainsi que par des doctorants dont je fait partie. Il s’agit d’une plateforme modulaire de simulation
de rétine et de cortex visuel primaire. Elle permet de reproduire l’activité spontanée ou la réponse à des stimuli
visuels en condition de vision normale, altérée (pharmacologie, pathologie...) ou prosthétique. Macular se structure en
ensemble de couches pour reproduire l’architecture de la rétine. Chaque couche est composée d’un type d’objet pouvant
être une cellule ou une population d’une colonne corticale. Le tout est ensuite interconnecté par le biais de synapses
pouvant incorporer ou non un délai dynamique. Dans notre cas, le "Chimera model" reçoit une entrée spatio-temporelle
sous la forme d’une vidéo. Une description complète est donnée dans le chapitre 2.

Plan de thèse
Le premier chapitre est destiné à introduire ensemble l’ensemble des connaissances nécessaires à la compréhension de
cette thèse ainsi que de l’état de la littérature sur les différents sujets que nous aborderons.

Dans un second chapitre, nous introduisons le "Chimera model" et discutons ses élements et sa dynamique. En
particulier, nous montrons que, sous certains régimes de paramètres, le modèle présente des instabilités pathologiques
(oscillations) qu’il a fallu contrôler. Nous présentons ensuite le logiciel Macular et l’implémentation du "Chimera
Model". Nous expliquons en particulier, comment nous l’avons adapté pour réaliser des simulations bi-dimensionnelles
ainsi que les différentes modifications effectuées pour le rendre plus proche de la réalité. Nous détaillons aussi la
calibration du modèle que nous avons effectué afin de reproduire les premiers résultats expérimentaux sur les ondes
corticales induites par les objets en mouvement.

Le troisième chapitre est consacré au mécanisme d’anticipation. Après avoir introduit des mesures quantitatives,
expérimentalement accessibles, de l’anticipation, nous étudions l’effet d’un certain nombre de paramètres associés
au stimulus - tels que le contraste, la vitesse-; physiologiques - tels que la portée des connections corticales-; ou
encore phénoménologiques - tels les paramètres contrôlant l’anticipation rétinienne, le contrôle de gain et/ou la
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connectivité latérale amacrine. Un résultat important de ce travail est de montrer comment la réponse VSDI, mesurable
expérimentalement, est modifiée de façon visible par les mécanismes d’anticipation rétiniens, mettant en évidence les
rôles respectifs de l’anticipation par avancement du pic d’activité (rétine) et l’anticipation par latence (cortex). Nous
montrons également comment le réseau amacrine influe sur la réponse rétinienne et corticale à un objet en mouvement.

Le quatrième chapitre est consacré à l’omission saccadique. Nous reproduisons tout d’abord des ondes suppressives
similaires aux expériences de Frédéric Chavane. Nous utilisons ensuite des stimuli de Mark Wexler (mouvement
simple ou mouvement entourant des phases statiques) affichés à un taux de rafraîchissement de 60 Hz ou 1440 Hz
pour comprendre l’impact que peuvent avoir la phase statique et la vitesse de rafraichissement sur l’activité corticale,
comment la phase statique déclenche potentiellement des ondes suppressives et quels en sont les paramètres importants.
Ceci pour là aussi mieux discerner les rôles respectifs de la rétine et du cortex V1 dans ce mécanisme.

Dans la conclusion, nous montrons un modèle rétino-cortical fonctionnel capable de reproduire à la fois les expériences
d’anticipation [3] et d’ondes suppressives [9] dans le cortex visuel primaire. Ce modèle rétino-cortical nous a permis
de souligner l’importance de l’output rétinien fourni au cortex, de la vitesse de la barre ainsi que de l’équilibre des
connexions excitatrices et inhibitrices. Il nous a également permis de montrer le transfert de l’anticipation par rétine dans
le cortex malgré une réduction de l’anticipation corticale. Nous avons pu voir la capacité des deux types d’anticipation
rétinienne se combiner favorablement pour l’anticipation corticale. Dans le contexte de l’omission saccadique, nous
avons découvert une perte de continuité engendrée par un faible taux de rafraîchissement sur un stimulus se déplaçant à
la vitesse d’une saccade. Nous montrons de plus un plus grand smear dans le cas d’un stimulus possédant des phases
statiques. Nous observons le shape-dragging uniquement pour des phases statiques plus grande que celle en mouvement.
Enfin, nous reproduisons l’onde suppressive dans un mouvement apparent mais nous ne mettons en évidence qu’une
gaussienne inhibitrice dans le cas des stimuli de saccades simulées avec phases statiques.

Le texte comprend également des annexes décrivant dans un premier temps les différents sets de paramètres utilisés
tout au long de la thèse. Une seconde annexe décrivant plus en détail les équations de mean-field du modèle et sa
connectivité. Enfin, le dernier montre un résultat préliminaire que nous avons commencé à étudier sur les paramètres de
mise en forme de la réponse rétino-corticale.
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Introduction (english)

Vision
Visual perception is a complex process, essential for many organisms, including humans. The ability to detect and make
sense of light coming from the environment has always been intimately linked to our survival, and more generally to
the need to move around and interact with the outside world. We owe this ability to the visual system, whose gateway
is the eye. Light rays pass through the eye to activate photoreceptor cells at the back of the eye, in the retina. These
light rays generate an electrical signal that is processed by successive layers of neurons in the retina, before being sent
to the thalamus via the optic nerve and on to the primary visual area (V1). The role of this region of the brain is to
differentiate specific properties of the image (orientation, spatial frequency, movement, etc.). The visual system then
involves many other cortical areas responsible for increasingly complex and integrated processing. All this is made
possible by the preliminary processing of visual information by the retina, which is much more than just a camera. It is
in the retina that around thirty "information channels" are created, each representing a different and complementary
view of the world, each associated with a different mode of vision. It is also in the retina that the processing of a number
of properties begins, such as the representation of orientation, colour and the movement of perceived objects. The visual
system is also capable of analysing rapid and complex movements, in extremely rich and complex visual scenes. In the
retina, as in the cortex, it is the specific properties of the neural networks that enable these movements to be analysed.
In this context, two mechanisms are of particular interest to us in this thesis: anticipation and saccadic omission.

Anticipation
A major flaw in motion vision is the slowness of the phototransduction process (conversion of light into variations
of electrical potential) within the photoreceptors. This results in a delay of 100 ms between the photons captured
by the photoreceptors and the arrival of the retinal electrical signal in the primary visual cortex [1]. Such a delay
between reality and our perception would render vision ineffective. Faced with a danger such as a predator, or a car
moving at 50km/h, our perception of them would lag behind the real movement by 1.4 m. In other words, the danger
would have already travelled 1.4 m before our visual system detected the start of the actual movement. This example
highlights the seriousness of a delay of this magnitude. Less dramatically, such a delay should prevent us from catching
a moving object. With such a delay, how can animal species rely on vision to hunt or flee? The visual system has
developed anticipatory mechanisms to compensate for this defect. These are only put in place for moving objects, but
remain inactive for stationary objects. Anticipation allows the neural representation of future positions of the moving
object to be brought forward in time, thereby compensating for the delay caused by phototransduction. Of course, this
compensation depends on the speed of the object and becomes inoperative for objects that are too fast. Anticipatory
mechanisms have been demonstrated in the retina and in the primary visual cortex. Two types of anticipation have
been identified in the retina. The first, known as "adaptation", corresponds to an earlier fall in the peak activity of the
retinal output cells in order to bring it forward [1]. This peak is what the cortical cells mainly respond to, and bringing
it forward therefore enables them to respond earlier. The second type, known as "predicting", corresponds to an earlier
shift in the entire retinal response [2]. In both cases, specific retinal cells, the amacrine cells, seem to be at the origin of
the process. Within the primary visual cortex, another process of anticipation, known as ’latency anticipation’, has been
identified [3]. In this case, the movement of the object leads to the propagation of a wave of activity transmitted by
the lateral connectivity of the cortical columns excited by the bar to other more distant cortical columns. The cortical
columns are, in a way, the processing units in the visual cortex. They are made up of a few thousand neurons with a
specific organisation. The wave of activity induced by a moving object enables the more distant cortical columns to
respond earlier. Recently, S. Souihel and B. Cessac have hypothesised that retinal anticipation may have characteristics
similar to latency cortical anticipation. A moving object could produce an early ganglion cell activation wave via the
amacrine cell network.
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Saccadic omission
Ocular saccades are very rapid eye movements, occurring about 3 times per second, with a maximum speed of 500
°/s, and an average speed of 200 °/s [4, 5]. This process is essential for rapidly exploring a visual scene and grasping
the essential information. It is also at the root of our facial recognition and reading abilities. During a saccade, the
representation of the visual scene moves at the same speed as the saccade. However, there is no motion blur. Instead,
the visual scene remains stable, clear and precise. This is known as ‘saccadic omission’. A current explanation of this
phenomenon is based on a signal called ‘corollary discharge’ [6]. This copy of the ocular motor command causes a
loss of visual sensitivity to movement called ‘saccadic suppression’ during the saccade. However, this explanation
has its limits. When a stimulus is shown to a subject only during a saccade, not before or after, then the stimulus is
perceived but with a trail. This means that the corollary discharge is not sufficient to explain saccadic omission. On the
other hand, adding perisaccadic stimuli before and/or after the saccade makes it possible to eliminate the drag. The
perisaccadic stimuli therefore act like masks that hide the movement of the stimulus [7]. It is in this context that the
alternative explanation of a saccadic omission supported by these perisaccadic masks was born.

Recent psychophysical experiments [8] have succeeded in erasing the smear in a simulated saccade without any eye
movement in the human subject. In these experiments, eye saccade movements were reproduced using a stimulus
moving at the speed of the saccade and displayed with a device having a frame rate of 1440 Hz whereas, traditionally,
stimuli in psychophysical experiments are displayed at a rate of 60 Hz. At 60 Hz, subjects observe an apparent illusory
movement, with a smear around the trajectory of the stimulus. Using a refresh rate of 1440 Hz eliminates this effect. In
the experiment, two types of stimuli were used: a simple moving white bar (_M_) or the same moving bar preceded
and followed by static phases: front and static masks (SMS). Only the _M_ stimulus led to a smear, whereas the SMS
was free of smear and allowed a slower, shorter movement to be perceived. Therefore, motion masking (SMS) is not
sufficient to avoid the perception of the bar, but could make it easier to ignore. Additional processes, such as saccadic
suppression, will be required to completely suppress the movement. One hypothesis proposed to explain this temporal
motion masking is supported by experiments in the primary visual cortex of monkeys performed by Frédéric Chavane
lab (Institut des Neurosciences de la Timone) showing suppressive waves propagating in the opposite direction of a
motion and originating from activity waves [9]. These suppressive waves propagate to areas previously activated by
the movement and thus suppress their residual activity. This suppressive effect from the last stimulus position to the
previous one could explain the erasure of smear. On the basis of these experiments, we can therefore ask whether the
temporal masking of movements can be explained by suppressive waves propagating in the cortex and retina.

Thesis context This thesis studies, from a modelling perspective, the mechanisms of anticipation and saccadic
omission using an integrated retina-cortex model, called the ’Chimera model’, presented below.

The work on anticipation is part of a previous collaboration, the ANR Trajectory (https://team.inria.fr/biovision/anr-
trajectory/) between Frédéric Chavane, Alain Destexhe, Olivier Marre, Bruno Cessac and Selma Souihel (former
doctoral student) aimed at gaining a better understanding of how anticipation mechanisms in the retina and cortex
work together. The Chimera model was first developed as part of Selma Souihel’s thesis, supervised by Bruno Cessac.
However, it was not finalised, and Selma Souihel’s thesis focused mainly on modelling anticipation in the retina. Our
first objective was to finalise the Chimera model. Firstly, from the point of view of the model itself, by studying its
dynamic behaviour and looking for ranges of parameters giving rise to stable and biologically plausible behaviour.
Secondly, from the point of view of simulation. A large part of our work during the thesis consisted of porting the
model to the Macular simulation platform (https://team.inria.fr/biovision/Macular-software/), described below, in order
to obtain fast and realistic simulations (including a reasonable cortex size) in two dimensions. This enabled us to obtain
new results on the respective roles of anticipation mechanisms in the retina and cortex. In addition to anticipation, the
Chimera model and the Macular platform can be used to simulate the retina-cortex complex, using realistic visual inputs
(films) and varying physiological parameters that are sometimes impossible to control experimentally.

The work on saccadic omission is part of the ANR Shooting star collaboration (https://team.inria.fr/biovision/anr-
shootingstar/) between Mark Wexler, Frédéric Chavane, Olivier Marre, Alain Destexhe and Bruno Cessac aimed at
testing the hypothesis of saccadic omission by suppressive waves. Our aim was to generate cortical activity waves
using the Chimera model and to simulate saccades. The aim was to reproduce the experimental results of M. Wexler
and F. Chavane, and to study the existence and nature of suppressive waves. Using the Macular platform, we were
able to highlight a drag effect that was more noticeable with a refresh rate of 1440 Hz than at 60 Hz, using a simple
mathematical model to understand this effect. We also observed a loss of stimulus identity at 1440 Hz. We also
demonstrate the suppression of static phases in movement and a difference in cortical response between the M and SMS
stimuli. Finally, we show how static phases of different sizes can influence the response to the moving phase.

Chimera model
The ‘Chimera model’ aims to model and simulate the retina-cortex complex, ‘neglecting’ the thalamus i.e. considering
it as a simple relay. We did this for the sake of simplicity of the model, even though the thalamus is more than just
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a simple relay [10, 11]. The aim was also to have an associated simulation platform, enabling realistic retinal inputs
(films) to be played. The term ‘Chimera model’ comes from the fact that the retinal model was calibrated using mouse
data whereas the cortical model was calibrated using monkey data [12, 13, 9]. We discuss this aspect in more detail in
the thesis. Modelling has the advantage of being able to compensate for experimental shortcomings, which make it
impossible to measure the retina and cortex at the same time and to modify ‘by hand’ physiological parameters that
are impossible to control experimentally. Modelling also makes it possible to identify the factors that are sufficient to
generate saccadic anticipation and omission.

This retino-cortical model produces activity corresponding to the intensity of pixels in voltage-sensitive dye imaging
(VSDI) in response to retinal stimulation. The retinal model is based on previous work on the mouse retina [1, 14, 15, 16].
It simulates a graph made up of bipolar, amacrine and ganglion cells. The bipolar cell receptive field is a function that
reproduces the response of photoreceptors and horizontal cells. Bipolar cells have a gain control system known for
reproducing adapting anticipation. Amacrine cells are used to set up lateral connectivity, which could be at the origin of
predicting anticipation as well as wave propagation within the retina. The cortical model was created on the basis of
experiments with macaques [12, 13, 9]. It uses connected networks of mean-field models, each representing a cortical
column. For each cortical column, there is one mean field model corresponding to its excitatory population and one to
its inhibitory population. In addition, there is lateral connectivity between the columns where the signals propagate at a
speed of 300 mm/s. The output is the intensity of the voltage-dependent imaging pixel (VSDI) containing the cortical
column. This model was used to reproduce voltage-dependent imaging results.

Macular
Macular is a software package developed, under the direction of Bruno Cessac, by engineers from Inria’s Research
and Development Department (SED), as well as by doctoral students including myself. This is a modular platform
for simulating the retina and primary visual cortex. It can be used to reproduce spontaneous responses or responses to
visual stimuli under conditions of normal vision, altered vision (pharmacology, pathology, etc.) or prosthetic vision.
Macular is structured in layers to reproduce the architecture of the retina. Each layer is composed of a type of object,
which may be a cell or a population of a cortical column. The whole is then interconnected by synapses that may or
may not incorporate a dynamic delay. In our case, the ’Chimera model’ receives a spatio-temporal input in the form of
a video. A full description is given in chapter 2.

Thesis outline
The first chapter is intended to provide a general introduction to the knowledge required to understand this thesis and
the state of the literature on the various subjects we will be addressing.

In the second chapter, we introduce the Chimera model and discuss its elements and dynamics. In particular, we
show that, under certain parameters regimes, the model exhibits pathological instabilities (oscillations) that had to
be controlled. We then present the Macular software and the implementation of the Chimera Model. In particular,
we explain how we adapted it to carry out two-dimensional simulations, and the various modifications made to bring
it closer to reality. We also detail the calibration of the model that we carried out in order to reproduce the initial
experimental results on cortical waves induced by moving objects.

The third chapter is devoted to the anticipation mechanism. After introducing experimentally accessible quantitative
measures of anticipation, we study the effect of a number of parameters associated with the stimulus - such as contrast
and speed -, physiological parameters - such as the range of cortical connections - and phenomenological parameters -
such as those controlling retinal anticipation, gain control and/or lateral amacrine connectivity. An important result
of this work is to show how the experimentally measurable VSDI response is visibly modified by retinal anticipation
mechanisms, highlighting the respective roles of anticipation by advancing peak activity (retina) and anticipation by
latency (cortex). We also show how the amacrine network influences the retinal and cortical response to a moving
object. In particular, we have succeeded in implementing an improved model with the ability to reproduce predicting
anticipation.

The fourth chapter is devoted to saccadic omission. We first reproduce suppressive waves similar to Frédéric Chavane’s
experiments. We then use Mark Wexler stimuli (simple motion or motion surrounding static phases) displayed at a
refresh rate of 60 Hz or 1440 Hz to understand the impact that static phase and refresh rate can have on cortical activity,
how static phase potentially triggers suppressive waves and what the important parameters are. The aim is also to gain a
better understanding of the respective roles of the retina and V1 cortex in this mechanism.

In the conclusion, we show a functional retino-cortical model capable of reproducing both anticipatory [3] and
suppressive wave [9] experiences in the primary visual cortex. This retino-cortical model enabled us to highlight the
importance of the retinal output supplied to the cortex, the speed of the bar and the balance of excitatory and inhibitory
connections. It also enabled us to show the transfer of retinal anticipation to the cortex despite a reduction in cortical
anticipation. We were able to see the capacity of the two types of retinal anticipation to combine favourably for cortical
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anticipation. In the context of saccadic omission, we found a loss of continuity caused by a low refresh rate on a
stimulus moving at the speed of a saccade. We also show a greater smear in the case of a stimulus with static phases.
We observe shape-dragging only for static phases that are larger than the moving phase. Finally, we reproduce the
suppressive wave in apparent motion but show that an inhibitory Gaussian is present in the case of simulated saccade
stimuli with static phases.

The text also includes appendices describing the different sets of parameters used throughout the thesis. A second
appendix describes in more detail the model’s mean-field equations and its connectivity. Finally, the last one shows a
preliminary result that we have started to study on the shaping parameters of the retino-cortical response.
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Chapter 1

State of the art

1.1 Visual system
1.1.1 The retina
Introduction to retina
The retina is the organ where visual signals are received and where the first processing of visual information takes place.
It is a thin neurosensory membrane composed of several layers (Fig. 1.1B, C) and located at the back of the eye [17].
This position allows it to receive the light from outside, concentrated in the crystalline lens. Light passes through the
entire depth of the retina up to the outer nuclear layer (ONL), made up of photoreceptors (Fig. 1.1A).

The cells of the retina have two special properties. The majority of retinal cells do not have well-defined axons and only
make local connections with their neighbours via dendrites or small axonal processes. In addition, they don’t spike
either, and respond with continuous and gradual changes in their potential.

Photoreceptors
These light-sensitive retinal cells are able to carry out the phototransduction process which transforms the light signal
into an electrical signal [18]. Darkness causes them to hyperpolarise the photoreceptors and increase the release of
glutamate. Then, they transfer this signal to synapses with bipolar and horizontal cells in the outer plexiform layer
(OPL) [17]. There are two main types of photoreceptor [18]. The first are the rods, which are more sensitive to light but
do not discriminate colour, only grey levels. They are saturated during the day and are therefore only used for scotopic
vision. The second are the cones which require greater light intensity and can therefore produce photopic vision. They
are crucial for seeing details, contrasts and colours [19]. The cones are a family including three subtypes, each of which
detects a different colour: red, green or blue.

Bipolar cells
Bipolar cells are located in the inner nuclear layer (INL) and contact ganglion and amacrine cells in the inner plexiform
layer (IPL) [17]. There are around ten bipolar subtypes in the mouse retina [20]. Little is known about their response
because their intermediate position makes them difficult to record. Bipolar cells constitute the first level of integration
within the retina. They bring together the activity of a localized region of photoreceptors, building up the central
‘receptive field’. In addition to this central receptive field, there is also a peripheral receptive field which produces an
effect opposite to that of the central zone (inhibition or excitation) [21]. It remains unclear whether this is due to a direct
connection with the horizontal cells (feedforward) or an indirect action via the photoreceptors (feedback) [22]. There
are two main types of bipolar cells, which are depolarised or hyperpolarised by glutamate and depend on the receptor
expressed on their synapses. In the presence of light, the so-called ‘ON’ cells have an active central receptor field
that is depolarised and a hyperpolarised periphery that is inhibited (Fig. 1.2A, B). In the case of ‘OFF’ bipolar cells,
the opposite occurs, with the periphery activated by light and the center inactivated (Fig. 1.2C, D). Bipolar cells are
sensitive to the difference in activity between their photoreceptors and those in their vicinity. The aim of this mechanism
is to improve contrast vision and visual acuity. [23, 21]

Horizontal cells
Horizontal cells are inhibitory GABAergic neurons responsible for feedback on photoreceptors and feedforward
modulation of bipolar cells [21]. The horizontal cells are hyperpolarised by light, making them active. Their main role
is to shape the center-surround receptive fields of the bipolar cells. There are only 2 subtypes of horizontal cells in
mammals [24].
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Figure 1.1: Illustration of the organisation of the retina. A) Diagram of an eye: light enters through the iris, passes
through the crystalline lens and ends up on the retina. At the center of the retina is the fovea, in which is located the
small depression where the photoreceptors are naked, the fovea. The optic nerve is where the ganglion axons are
grouped together. B) Diagram of the organisation of the different cells in the depth of the retina. Each cell is associated
with a letter: ganglion cells (G), amacrine cells (A), bipolar cells (B), horizontal cells (H), cone cells (C) and rod cells
(R). C Microscopic image of the retina. The outer nuclear layer (ONL) with photoreceptor nuclei, the outer plexiform
layer (OPL) with photoreceptor/bipolar cell synapses, the inner nuclear layer (INL) with bipolar and amacrine cell
nuclei, the inner plexiform layer with synapses between bipolar, amacrine and ganglion cells and the ganglion cell layer
(GCL) with their nuclei. Adapted from [17].

Figure 1.2: Fonctionnement des cellules bipolaires ON et OFF. A-D) Diagram of the bipolar cell receptive field,
separated into a central and peripheral region (left). The green region corresponds to that activated by light and the red
to that inhibited by it. A beam of light is sent to one of the two regions (yellow cylinder). The voltage in response to
this beam of light is shown over time (right). The yellow rectangle shows the interval when the light beam is present.
We show this for 4 conditions. Firstly, we have an ON bipolar cell illuminated at its center (A) or periphery (B). Then
we have a bipolar cell illuminated in its center (C) or its periphery (D).
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Amacrine cells
Amacrine cells are activated by bipolar cells. They generate feedback inhibition on bipolar cells to refine the cen-
ter/surround receptive field and regulate the gain of the feedforward signal. They also feedforward inhibit ganglion
cells to complexify the spatio-temporal components of the receptive field. In some cases, they can also inhibit lateral
connectivity with other amacrine cells [21]. Almost all are axonless and their signals are carried by dendrites [25]. A
distinction is made between wide-field amacrine cells responsible for transient activity via long-distance connections
and localised to a single layer of the retina, and narrow-field amacrine cells for connectivity between layers over a long
period of time [26]. The amacrine cells are the retinal cell family with the most different representatives (45 subtypes in
mice) [20]. They participate in the creation of the different parallel channels encoded in ganglion cells. Some amacrines
are dedicated to specific visual processes, while others are more versatile.

We can take as an example the amacrine starburst cells which release GABA onto ganglion cells or other starburst
cells depending on the direction of movement [27]. This property is due to two factors. Firstly, the ability of starburst
dendrites to respond more to movements from the soma towards the dendrites. Secondly, an asymmetry in the expression
of cholinergic (excitation) and GABAergic (inhibition) receptors.

Ganglion cells
Ganglion cells are the least represented cells in the retina. There are 1 million ganglion cells for over 100 million
photoreceptors [21] in humans. They correspond to the second and last level of integration of the retina. They can be
ON, OFF [28] or both [29]. The axons of ganglion cells are grouped together in the optic nerve, a the bench of RGCs
axons connecting the retina to the thalamus LGN. Because of this long distance i.e. larger than a centimeter, distance
beyond which action potentials are necessary to transmit neuronal voltages, ganglion cells are the only spiking cells in
the retina. Each ganglion cell encodes a local property of the visual field (direction of movement, orientation of an
object, expansion of an object, local movement, contrast, colour, etc) [30, 31]. There are at least a dozen of subtypes of
ganglion cells in the mouse, with very different morphologies, as well as their receptive fields. All the cells of a given
subtype pave the retina in a regular fashion, with no overlap between their receptive fields. This mosaic of ganglion
cells makes it possible to create around thirty different versions of the visual world [32, 33]. Each subtype has a uniform
morphology, the same physiological properties and a similar gene expression [31].

Retina organisation
At the center of the retina is the fovea, an area of maximum cell density composed exclusively of cones [34, 35]. These
cones are unique in that they are connected to just one bipolar cell, which also contacts just one ganglion cell. This
gives this area very high visual acuity. In contrast, in the peripheral part of the retina, each ganglion cell brings together
the activities of many bipolar cells, which in turn bring together the activities of a whole region of photoreceptors.
Moreover, the further away you are from the fovea, the more the cone density is reduced, leaving only rods.

Within the retina there are two major neuronal pathways: parvocellular and magnocellular [36, 37]. The first is the
parvocellular (P) pathway, which is made up of "midget" cells representing the majority of cells in the fovea. They are
responsible for managing shapes and colours. They have a small dendritic tree which gives them high spatial resolution
but they have a low temporal resolution. They receive inputs from a single cone type (red or green). The center and
surround may be associated with a different cone. They are mainly responsible for the red/green colour axis. The
blue/yellow axis is carried by another very small pathway. The magnocellular pathway, on the other hand, is responsible
for motion detection [38]. This is made possible by these "parasol" cells, which have very high temporal resolution
and very wide receptive fields. They receive inputs from all types of cones without colour specificity and are therefore
insensitive to the chromaticity of the stimulus. As a result, they will perceive two stimuli of different colours but the
same luminance as identical.

1.1.2 Lateral geniculate nucleus of the thalamus
The thalamus is a nuclear complex located in the diencephalon and composed of the hypothalamus, epythalamus, ventral
thalamus and dorsal thalamus. It acts primarily as a relay center, redirecting all sensory inputs and motor outputs [39].
The thalamus is lateralised, with each of its halves responsible for the contralateral part of the visual field. The lateral
geniculate nucleus (LGN) is located in the ventral part of the thalamus. It is in this region that the majority of fibres
from the retina synapse are located. The LGN is made up of 6 layers. Layers 2, 3 and 5 receive axons from the temporal
retina of the ipsilateral eye. Axons from the nasal retina of the contralateral eye synapse go into the other layers [40].
Only 7% of thalamic inputs come from the retina, the remainder coming equally from inhibitory connections from the
reticular nucleus of the thalamus (TRN), the primary visual cortex and the parabrachial nucleus (PBN) (see Fig. 1.3)
[41].

The cells of the LGN are mainly thalamo-cortical cells divided between a very large magnocellular class in layers 1 and
2 and a very small parvocellular class in layers 3 to 6 (Sec. 1.1.1 for more information on parvo and magnocellular
pathways) [40]. Thalamo-cortical cells make almost no connections in the LGN. The LGN also contains inhibitory
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interneurons which inhibit the thalamo-cortical cells. When a signal is sent to the cortex, a copy is also sent to the
reticular cells of the TRN, which will retrocontrol the thalamo-cortical cells by inhibiting them. The axons of the
thalamo-cortical cells reach the primary visual cortex and establish connections in layer 4 [42]. In response, layers
5 and 6 of the cortex send feedback to the thalamo-cortical and reticular neurons. The cortex thus has considerable
control over the thalamus.

The LGN has long been considered to be a simple relay because it does not generate complex receptive fields. In fact,
it reproduces the receptive fields of ganglion cells in the thalamus (ON/OFF) in thalamo-cortical neurons [43] and
interneurons [44]. The LGN also has retinotopy like the retina [45] (see section 1.1.3 for the definition of retinotopy).
However, the thalamus is not just a relay, as it controls the flow of information to the cortex. To do this, it uses networks
and cells with complex properties.

Thalamo-cortical cells have the capacity to adopt a burst or tonic discharge behaviour depending on the resting potential
imposed by their synaptic inputs [46]. The tonic mode seems to be the one that dominates during wakefulness. For
the same input, the response of a thalamo-cortical cell changes according to the mode it is in. The tonic mode is
associated with a linear response that preserves the properties of the input [41]. The burst mode, on the other hand,
has the particularity of generating a non-linear response as a function of the intensity of the input. It also has a much
stronger signal-to-noise ratio. For this reason, burst is seen as a transient increase in detectability that could signal the
presence of an unexpected visual cue to the cortex.

Regarding the organisation of the network in which the LGN is found, the retinal neurons are activating the thalamo-
cortical neurons and the interneurons [41]. The parabrachial neurons generate direct or indirect excitation (disinhibition)
of the thalamo-cortical neurons. In the case of cortical fibres, they excite both thalamo-cortical neurons and inhibitory
neurons. The exact effect depends on the exact configuration of these connections, which remains unknown.

Cortical or parabrachial pathways also have the capacity to initiate the transition from burst to tonic mode by activating
metabotropic receptors. The same can be observed for the reverse transition with inhibition of TRN or interneurons.

For all these reasons, the hypothesis of an organisation of LGN afferent fibres with a driver (retinal input) responsible
for transmitting the signal from the retina and modulators (parabrachial, cortical and reticular axons) has emerged.

Figure 1.3: Diagram of the LGN network. On the right are the inputs from the lateral geniculate nucleus (LGN)
originating from the retina. The LGN (light grey) is divided between thalamo-cortical cells and inhibitory interneurons.
The LGN is part of the thalamus (dark grey), which includes the thalamic reticular nucleus (TRN). Layers 4 and 6
of the cortex (orange) participate in this network. There is also the parabrachial nucleus (PBN) (blue). The retina
sends excitatory fibres to the two subpopulations of the LGN. The thalamo-cortical cells send excitatory fibres to the
TRN and the cortex. The cortex in turn excites the TRN as well as the cortico-thalamic cells and interneurons. The
interneurons inhibit and the TRN inhibits the thalamo-cortical cells. The PBN sends excitations to the interneurons and
TRNs while inhibiting the thalamo-cortical cells. The neurotransmitter type of the neurons is indicated by the colour of
the rectangles and arrows: glutamatergic (green), GABAergic (red) and cholinergic (blue).
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1.1.3 The visual cortex
General organisation
The visual cortex is the set of brain regions specialised in the processing of visual information (Fig. 1.4). It entirely
covers the occipital lobe at the back of the skull, where most of the visual cortex is concentrated. It also includes other
regions in the temporal and parietal lobes. The thalamic-cortical neurons of the LGN project to the primary visual area
(V1) located in the occipital lobe [40]. This very first area carries out initial processing before sending the signal to the
secondary visual area (V2). At this stage, there is a branch which leads to two pathways with distinct roles [47, 48].
The first is the dorsal pathway, which deals with the processing of movement and the coding of localisation ("how"
pathway). It passes through the dorsomedial area, the medial temporal area and the parietal cortex. The second is
the ventral pathway, responsible for shape and object recognition and long-term memory ("what" pathway). It passes
through visual area V4 and then the temporal lobe. Beyond this are the associative areas of the parietal and frontal lobes
[49]. They receive sensory information from several sensory systems, process it together and interpret it. It is possible
to describe three levels of organisation within the visual system.

Figure 1.4: Illustration of the visual cortex. The signal arrives first in V1 (red) before travelling through V2 (orange),
V3 (yellow) and then splitting off. The ventral pathway responsible for ‘what’ (purple) starts from V4 (pink) and
extends deep into the temporal cortex. The dorsal pathway responsible for ‘where’ (light green) starts from middle
temporal area (dark green) and goes into the parietal lobe. Adapted from wikipedia.

The deep cortical hierarchy represents the final level of organisation of the visual cortex. This hierarchy has been
established on the basis of all the connections in the visual cortex and their direction [50]. The flow of information
circulates within this network. Some connections are made in the direction of this hierarchy (feedforward), others go
backwards (feedback) or establish connections of the same hierarchical level (lateral connectivity). The further one
progresses in the hierarchy of visual processing areas, the more complex and specialised the receptive fields of the cells
become [51]. Thus, in the temporal area, neurons are activated by the presence of specific two-dimensional shapes in
their spatial receptive field [52]. A distinction is made between areas of early vision, which isolate all the most basic
aspects of an image (movement, colour, orientation, etc.), and areas of high-level vision, which possess conceptual or
thematic modalities. They are the place where connections and features converge [53]. At this stage, the definition of
receptive field is no longer sufficient because it is no longer reduced solely to the spatial dimension. The receptive field
extends to all the dimensions of the stimulus features. We should speak of a preferential or selective response [54].

The cortical column is the smallest level of organisation. It is a functional unit of the cortex, initially defined by several
characteristics [55]. They are made up of neurons specific to the same modality, so they all respond in the same way
to a given stimulus. All the neurons in a column may, for example, respond to the same angle of orientation of the
object [56] or to a single tactile modality [57]. Cortical columns show very strong connectivity within the column and
little with its neighbourhood. In addition, their size is highly conserved in mammals, with only the number of columns
varying between species [58]. This definition has evolved with the discovery of many different types of cortical columns
in visual areas. They now correspond above all to a vertical grouping of cells that share the same selectivity to a feature.
Cortical columns are mainly present in the visual cortex and only a few areas have shown the presence of functional
cortical columns (V3, mediotemporal area) [59].
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The cortical map is the intermediate level of organisation of the visual cortex that is also found in other sensory or
motor cortices [60]. These cortical maps are an organisation of the feature space to which the selective neurons belong,
within the cortical area. Neurons with very similar selectivity to stimulus features are grouped together in sub-regions
of the cortical area. There is thus a continuum of neuron selectivity within the cortex.
Two examples of this concept can be described in figure 1.5. Our first example is the retinotopic maps present in the
LGN or V1 [61] (Fig. 1.5A-C). Neurons excited by close visual field positions are also anatomically adjacent. This
space-dependent cortical map of the visual field is more specifically called a topographical map. Retinotopic maps are
present in all areas of the occipital lobe (V1, V2, V3, V4, ML). The retinotopic maps of the LGN and V1 are described
as first order because they are simple and continuous. From V2 onwards, the retinotopic maps become more complex
and the retinotopy becomes partial because certain regions, whose receptive field has a similar spatial position, are no
longer adjacent [62]. The second example is the orientation map in V1 (Fig. 1.5D). Neurons selective to a specific
orientation are surrounded by neurons selective to a very close orientation angle [63]. There are about fifteen cortical
maps in humans [64].

Figure 1.5: Example of cortical maps. A) Visual field representation. B, C) Cortical map of visual field representation
in (B) LGN and (C) V1. The distance of the visual field (A) as well as the cortical maps (B,C) are expressed in degrees
of visual angle. The fovea is shown in green while 6 areas have been colourised to highlight them in the visual field
and each cortical map. D) Cortical map of orientation selectivity in V1. Each colour is associated with a particular bar
orientation (top). A, B, C are adapted from [61] and D from [63].

V1 Area
The primary visual area (V1) is the entry point to the visual cortex. V1 neurons are organised with retinotopy close
to the retina. The V1 areas of each hemisphere receive information from the contralateral visual field, except for the
fovea which projects entirely onto the two hemispheres [65]. Within the V1 cortex, the projection of the fovea is
over-represented in relation to its size in the retina [66]. There are a few cells with the same center/surround receptive
field [67] but the majority have more elaborate receptive fields.

Area V1 is composed of cortical columns organised according to two features [56]. First, there are cortical columns that
are specific to precise stimulus orientations. These columns are then grouped into parallel bands where each column is
specific to one eye (ocular dominance column). Simple, complex and hypercomplex cells are the three types of cell that
make up the cortical orientation columns (see below).

A number of features are supported by V1 [68] :

• Linear and oriented patterns (bars, gratings or edges) as well as spatial frequency (gratings). To achieve this,
two types of cells are used : simple cells and complex cells [69, 70]. Simple cells have receptive fields that can
vary with dissociated ON and OFF parts. This makes them sensitive to the position of the bar or the phase of
the grating. Complex cells have extremely varied receptive fields, which are difficult to analyse and generally
have overlapping or mixed ON and OFF parts. They respond whatever the phase or position of the stimulus.

• Detection of the ends of bars or gratings. This feature requires hypercomplex cells [71]. Their response is
maximum for small bars or edges. If the size of the bar increases, the response will decrease as the bar starts to
excite OFF portions of the receptive fields.

• Absolute depth of an object by calculating the difference in angle between the object and the two eyes [72].
This processing requires neurons receptive inputs from both eyes.

• Slow temporal frequency of linear and oriented patterns. Certain simple and complex cells are sensitive to the
direction of a movement as well as its speed if it is not too fast [73]. These cells remain mainly present in
eccentric positions.
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• Colour of a bar supported by double-opponent cells. They have a central and peripheral receptive field that
responds to two different colours. A distinction is made between cells sensitive to red and green and those
sensitive to blue and yellow [74]. Their receptive field is slightly selective to orientation.

The theory still accepted today explains the mode of formation of the cortical maps of V1 on the basis of the particular
distribution of the feedforward fibres of the LGN on layer 4 of V1 [43]. For the moment, only the V1 retinotopy and
the occular dominance columns have found an anatomical substrate to explain them. The other cortical maps remain
unexplained. This theory is being increasingly challenged today with the accumulation of anatomical evidence on the
importance of the existence of a microcircuit that could be involved in the creation of cortical maps. Some of this
evidence points to the importance of local modulatory feedback within the cortical column, between different layers
[75]. A number of anatomical results also point to the important responsibility of lateral excitatory and inhibitory
connectivity within the same cortical layer [76]. Studies have emphasised the importance of inhibition within V1.
Inhibitory cells have a slightly wider and weaker orientation selectivity, which allows them to accentuate the orientation
selectivity of excitatory cells in V1. They are also recruited by both the LGN and areas higher in the hierarchy in order
to modulate V1. Finally, inhibition modulates brain states to amplify communication between neurons and reduce noise
[77].

V2 Area
Area V2 has a second-order retinotopy [62]. This means that retinotopy is present but with some discontinuity In the
case of V2, this discontinuity is located at the level of its horizontal axis. The visual field is cut off and separated along
the entire length of the horizontal axis. It receives its inputs from area V1 and sends feedback to V1 which reinforces
the suppression caused by the peripheral parts of V1’s receptive fields [67].

In addition to processes shared with V1 (orientation, colour, absolute depth), V2 analyses a number of specific features
[68, 73] :

• Contours defined by superimposing different textures.

• Determining whether each edge belongs to a given surface. Perception tends to attribute edges to one surface,
which is an object, while the second surface is background. These cells are also selective according to the
direction in which the surface with the edges is located. [78].

• Relative depth between two image planes.

The increasing complexity of the features processed by the visual areas from V2 onwards makes it difficult to study
their receptive fields. Despite this, one study found four types of receptive fields [79]. A first part of the receptive fields
were V1-like. A second part had very elongated complex receptive fields. Some of the receptive fields had complex
shapes with multiple preferential orientations. These receptive fields are made up of separate excitatory and inhibitory
portions that take on elaborate shapes. Finally, a small proportion of the receptor fields had a center-surround structure,
as in LGN.

"What" ventral pathway
The ventral pathway groups together a set of regions specialising in the identification of objects [68, 73]. In hierarchical
order it is made of :

• V4 area with selectivity for orientation, colour, depth, simple shapes, contours caused by a motion differential,
curves and colour hue.

• The posterior inferior temporal area (PIT) is selective to the combination of several features (simple shape,
colour, size, orientation) present on the fovea. It is retinotopic.

• Anterior inferior temporal area (AIT) is selective for moderately complex 2D shapes [52], colour, depth,
texture and 3D shapes. AIT codes for sub-parts of objects.

"How" ventral pathway
The dorsal pathway is made up of regions specialised in spatial vision [68, 73] which eventually project into the
premotor areas of the frontal lobe. In hierarchical order it is constituated from :

• The middle temporal area (MT) processes the speed and direction of movement, depth, movement gradients
and any element generated by movement. It has cortical columns for this purpose. Its neurons have a very
wide receptive field and mainly receive input from the magnocellular pathway, which encodes movement more
effectively [38].
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• Medial superior temporal (MST) is selective to movement, expansion, rotation, orientation and speed of
movement, as well as to movements generated by head or eye movement. They have even wider receptive
fields than MT.

• Caudal intraparietal area (CIP) is selective to inclined or curved flat surfaces, 3D orientation of elongated
stimuli and position in depth.

• Lateral intraparietal area (LIP) contains a salience map which is used to determine where in the visual field to
direct attention and perform occular saccades.

1.2 Saccades
1.2.1 Saccadic vision
In our daily lives, we we are all the time scanning our environment, whether consciously or unconsciously. Carrying
out any task requires us to move our gaze many times from one point to another. This is because we need to use our
central vision, which is the most accurate. This involves moving our eye to place each point of interest on our fovea.
These eye movements are called "saccades" and we make them on average 3 times a second [5]. Let’s take the example
of an ‘ordinary’ task. I want you to take the time to read this sentence and focus on each moment when you stop on a
word like this one, but also on each time you move from one word to another. While you were reading the previous
sentence, you made 37 saccades to move your gaze over each word, one by one. During the movement of a saccade, our
eyes move at an average speed of 200 degrees/s and can reach peak speeds of up to 500 degrees/s [4]. Each saccade
is separated by moments of pause when we keep our eyes still to take in information from the environment. These
fixations can last 300 ms or more depending on whether our attention is directed on something or not [5]. Did you
notice the movements between each fixations? Did your visual field move at high speed from one letter to the next? Or
did it remain stable throughout to allow you to complete your task without any problems?

At the speed at which the saccades are moving, you should be able to see the movement with a motion blur in most
cases. However, when you make a saccade, your perception of the entire visual field shifts without leaving any trace of
the movement that may have occurred in between. Our visual system is aware that these movements are merely parasitic
movements arising from our own movements and that they must be ignored so as not to contaminate the perception of
the visual environment. Without it, you would perceive a scene moving at high speed 3 times per second. This break in
attention that occurs during the movement of a saccade is called "saccadic omission" [7]. It is accompanied by a second
phenomenon called saccadic suppression.

The term saccadic suppression refers to a biological phenomenon that causes a reduction in visual system activity
during a saccade. Note that this suppression must nevertheless be accompanied by a saccadic omission to avoid seeing
a completely black frame between the two saccade fixations. This suppression is due to a decrease in the perception of
saccade movements [80]. This saccadic suppression has been demonstrated in the magnocellular pathway [81]. Burr et
al. presented an isoluminance or luminance grating in motion during a saccade or fixation. The luminance stimulus
presents a grating and a background of different luminance (black/yellow) whereas in equiluminance the grating and
background are of different colours but identical luminance. The perception of the luminance stimulus during a saccade
is different to that during fixation, so the phenomenon of saccadic suppression is present. At the same time, during
fixations, movement is perceived better in luminance than in isoluminance. This means that motion is perceived by cells
that do not detect colours. This is the particularity of the magnocellular pathway. In humans, suppression is found in the
LGN, V1 but also V2, V3 and MT [82]. Deletion remains more pronounced in LGN and V1. The site of suppression
could therefore be on the LGN or in V1 but accompanied by indirect feedback on the LGN. In the LGN, magnocellular
and parvocellular cells show a sharp drop in discharge frequency starting 50 ms before the saccade and continuing
throughout its duration [83]. This is followed by a considerable amplification of the discharge frequency after the
saccade. In the retina, the projection of a video reproducing a saccade leads to inhibition after the start of the saccade,
generated by amacrine cells [84]. The retina may play a role in saccadic suppression, but it cannot be the sole cause.
Phosphenes (light sensations without stimuli) caused by electrical stimulation in the visual cortex are suppressed. So,
this is evidence of suppression without activation of the retina [85]. Finally, the exact site of this suppression remains
very uncertain. The mechanism thought to be at the origin of the omission is motion masking and the one at the origine
of suppression is corollary discharge.

1.2.2 Corollary discharge
The corollary discharge corresponds to a copy of the occulomotor command which is sent to the eye muscles to generate
a saccade [6]. This command therefore contains all the information necessary for the saccade. This explanation makes
it possible to justify why we observe a suppression which is initiated even before the movement has begun.

The corollary discharge is thought to be created in the intermediate superior colliculus. Neurons in this region send the
motor command that triggers the saccade. These neurons form a map of the amplitudes and directions of the saccades.
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The corollary discharge passes via the dorsomedial thalamic nucleus (MD) and then the frontal eye field (FEF). All
these neurons are activated before a saccade [86]. Inhibition of MD causes a shift in the perception of the visual field
just after a saccade. This effect is explained by the role of the corrolary discharge in creating the continuity perceived
between two saccades despite the disappearance of the latter [87, 88]. The corrolary discharge creates a remapping
of the neurons’ receptive fields in many regions of the visual cortex (V2, V3, V4, FEF, SC) [6]. This corresponds to
reassigning to each receptive field the response that corresponds to the new position in the visual field that they will
occupy after the saccade [89, 90]. This makes it possible to switch between the visual field before and after the saccade.
There is a second negative version of corrolary discharge which originates from a connection of a neuron in the
superficial superior colliculus with an inhibitory interneuron [91]. This suppression travels through the inferior pulvinar
(IP) and middle temporal cortex (MT). It also begins before the saccade and inhibition of the neuron in the superior
colliculus relieves the suppression in MT. Saccadic suppression could therefore be caused by corrolary discharge.

1.2.3 Temporal motion masking
Campbell and Wurtz devised an experiment which revealed the importance of fixations before and after on the perception
of a saccade (saccadic omission) [7]. They performed saccades preceded and/or followed by fixation in the dark or
in bright light. A motion blur was perceived in the case of fixations in the dark, but the increase in fixation time in
the light condition masked it. This was the first instance of backward temporal masking. This temporal masking is
associated with an illusion in which the flash of an object is less well perceived if it is followed or preceded by the flash
of an object [92]. The forward mask which precedes the object masks the weaker activity generated by the object. The
feedback mask, on the other hand, inhibits the object’s activity.

Another series of experiments on saccades showed that our visual system is able to detect speeds of up to 800 degrees/s
when a low spatial frequency stimulus is used [80]. Building on this, it was subsequently shown that motion displayed
during a saccade performed without pre- or post-saccadic stimuli can be seen in the context of low spatial frequency
grating [93]. This demonstrates that motion is not completely suppressed during saccades. Conversely, the addition
of increasingly long pre- and postsaccadic stimuli leads to the progressive disappearance of the perception of this
movement [94].

More recently, Duyck et al. developed a new procedure for creating simulated saccades. These simulated saccades
correspond to the display of a grating moving at the average speed of a saccade (176 degrees/s) and displayed at a
frame rate of 1440 Hz. This very high frame rate is used to ensure that the movement of the saccade, because of its
speed, will be perceived as continuous by the cortex. In comparison, our eye would be capable of a frame rate of up to
250 Hz in the case of natural images [95]. In the case of a traditional frame rate of 60 Hz, such rapid movement is no
longer continuous but apparent. This study showed a reduction in the amplitude of the perceived saccade for longer
peri-saccadic mask durations. Other unpublished studies also seem to show a reduction in speed. The perception of
movement would therefore be reduced but not totally erased.

Mark Wexler has also shown the presence of a smear observable at 60 Hz but which is erased at 1440 Hz to allow the
stimulus movement to be perceived (unpublished). Using the same saccade procedure simulated at high frame rate,
Wexler and Cavanagh demonstrated a new illusion which they called shape-dragging [96]. This illusion appears when a
simulated saccade is performed where the peri-saccadic masks have a different shape to the object that is moving in the
saccade. In this context, the object that the observer perceives as moving in the saccade is the object that makes up the
perisaccadic masks. It is the same shape and size. Based on these two observations by Mark Wexler (disappearance of
the smear at 1440 Hz and shape-dragging) the ANR shooting star was created with the aim of exploring the biological
substrates underlying these two effects. This study is being carried out at the level of the retina and the cortex, as well
as by modelling both. It is this modelling that is the subject of part of this thesis.

In conclusion, it is possible that the blur observed in the saccade-only condition is caused by suppression by corrolary
discharge alone without saccadic omission. Conversely, the results of Duyck and Wexler show a clear perception of the
moving bar in the presence of a static phase but no saccadic omission. It is possible that saccadic omission is the result
of these two effects combined. It has been suggested that the suppressive effect of the corrolary discharge reduces the
response in the LGN during the saccade. At the same time, this suppression is followed by a strong amplification of the
response in the LGN [83]. It could contribute to increasing the strength of the backward mask response and facilitate
temporal masking [97].

1.3 Motion processing
1.3.1 Retinal motion anticipation
The retina is not just a reactive encoder, it is able to respond in a proactive way, especially with regards to stimuli. In
visual processing, it is able to extrapolate and estimate how the visual stimulus is the most likely to behave in a near
future, given the information of the past. This is, of course, based on the assumption that the stimulus is predictable to
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some extent. In particular, several studies have suggested that the predictability of stimuli can be learned from spatial
and temporal regularities, arising e.g. in a deterministic trajectory.

Prediction is a rather wide concept. If by this term, one refers to motion extrapolation, studies have reported that it
already starts at the level of the retina. Berry et al. [1] have first shown that local gain control mechanisms, occurring at
the level of retinal bipolar and ganglion cells, can explain a form of local anticipation for a moving bar, by advancing the
peak in the retinal ganglion cells response. This explains the change in the shape of response observed in experimental
data - bringing the ganglion cells to their activity peak earlier than when they respond to a flashed bar - without
modifying the time at which their activity starts increasing, i.e. when the bar enters in their receptive field. Another
study by Johnston et al. [98] has emphasized the role of lateral inhibition in the elicitation of anticipatory mechanisms
at the retinal level. They have proposed that motion anticipation can be mediated via feed-forward inhibition from
amacrine cells inputs that specifically suppress the response to the moving object in the latter half of the receptive
field. This mechanism as well truncates the response and yields an early response peak. According to the authors, this
"adaptation anticipation" occurs at the level of synapses. It requires each excitatory synapse to be more distal than an
inhibitory synapse on the pathway. The latter will inhibit its EPSP and generate a shift forward (anticipation) of the peak.
Thus, there must be an excess of inhibitory synapses compared to excitatory ones. In this case, motion anticipation
arises from the general properties of the retina connectome and from the feedforward inhibition that ganglion cells
receive from amacrine cells. Souihel and Cessac [14] explored, in a modelling study, another potential anticipatory
effect of amacrine cells. In addition to the feed-worward effects discussed in [98] feedback inhibition due to amacrine
cells could induce a wave of activity further anticipating the bipolar cell response and thereby enhancing the effect
of gain control. Finally, Menz et al. [2] observed that motion anticipation can, in addition to a peak advancement
by truncation of the response, arise by advancing the onset of the response, with a strong anticipatory effect. They
hypothetize that this effect may come from amacrine cells: hyper-polarizing these cells would provide a dis-inhibitory
input to ganglion cells prior to the object crossing the receptive field center.

1.3.2 Cortical motion anticipation
The cortex is not left out either, with its ability to extrapolate and estimate trajectories. It has also been shown that
anticipation is further carried out at the level of the primary visual cortex [99, 100, 101, 3]. Jancke et al. [99] first
demonstrated the existence of anticipatory mechanisms in the cat primary visual cortex. They recorded cells in the
central visual field of area 17 of anesthetized cats, responding to small squares of light, either flashed or moving in
different directions, and with different speeds. When presented with the moving stimulus, these cells show a reduction
of neural latencies, as compared to the flashed stimulus. Subramaniyan et al. [101] have reported the existence of
similar anticipatory effects in the macaque primary visual cortex, showing that a moving bar is processed faster than
a flashed bar. They give two possible explanations to this phenomenon : either a shift in the cells receptive fields,
induced by motion, or a faster propagation of motion signals. Consistent with the study by Jancke et al., they reported
a speed dependence of the response latency as well as a luminance dependence. However, Subramaniyan et al. note
that the motion representation delays are not reduced to zero, irrespective of the experimental setting of the flash lag
effect. As a consequence, moving objects representation in V1 should be mislocalized. This observation is in favor of a
collaborative work conducted, on the one hand, by the retina and V1 to help reducing the latencies, and, on the other
hand, by other specialized brain regions which carry out predictive computations. Learning and training seem also to
play important roles in calibrating the response of the nervous system to a giving moving object. Finally, Benvenuti
et al. [100, 3] have studied the trajectory-based activity in V1. They have compared voltage sensitive dye imaging
responses for different cortical locations along a bar trajectory. By centering all positions on the same relative time
events (bar centered in the middle of the receptive field), they have highlighted a gradient in the response (see also Fig.
3.1). The further the bar starts from the current position of a cortical column the earlier its activity rises. They gave
convincing arguments that this increase is carried by the lateral connectivity in the cortex.

1.3.3 Cortical suppressive wave
Chemla et al. [9] identified the generation of a suppressive wave in the primary visual cortex of macaque monkeys using
apparent movement stimuli. Apparent motion is an illusion associated with certain types of stimuli. This fake motion is
characterised by an impression of movement perceived by the cortex, even though the visual stimulus is only a flash of
distinct objects ordered from a precise spatio-temporal sequence. For the illusion to occur, the objects must be flashed
at regular intervals in time and distance. These intervals constraint the perceived speed of the apparent movement.

Two white dots of 0.25 degree of visual angle were successively flashed against a black background. The left dot is
flashed first, lasts 100 ms, then the right dot is flashed within a delay of 50 ms. This flash has also a duration of 100
ms. The distance between the dots was set to 1 or 2 degrees. The authors observed an apparent speed ranging from
5 to 66.6 degree/s by varying the flash duration of the stimuli. They exhibited a specific non-linearity present in the
response to apparent movement. For this, they calculated the difference between the cortical (V1) activity generated by
the complete stimulus and the sum of cortical activity generated by the isolated white dots making up the apparent
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motion. On this basis, they observed a mechanism of suppressive waves propagation that we are going to describe and
reproduce with our model. In addition to this, they also used a cortical model based on Di Volo’s paper [13] described
in section 2.2.1. Their simulated cortical area has a periodic geometry and consists of only one dimension. The retinal
inptus received by the cortical columns corresponds to a stereotyped drive mimicking the retina. Their model allows the
use of static or dynamic adaptation. One difference between this model and Di Volo’s paper is the presence of external
drive and retinal input feed to the inhibitory population. In our case, our geometry is just a plane where each edge is
zero. This allows us to use real visual stimuli and a spatial orientation of up/down and left/right. Connectivity was
biased towards inhibitory excitation. Chemla et al. also set up a gain on inhibitors for certain experiments. This gain
has the same role of reinforcing inhibition as our biased connectivity but the methodology for achieving this is not the
same. In their case, the gain is an amplification factor that increases the slope of the inhibitory transfer function (B.1).
Finally, the cortex of our model receives realistic retinal input from a model of the retina processing the visual stimulus
presented to it. This retina allows us to study the activity of the cortex as a function of a whole spectrum of different
biologically inspired retinal responses. In our simulations, for the sake of simplicity, we have kept the retina static,
although we can modify the time scale parameters. In addition, we only have a static adaptation, which is a little less
precise. The Chema et al. model made it possible to reproduce the suppression wave and to study the effect of a few
parameters on it. Our aim is to reproduce the same type of wave.

1.4 Models
1.4.1 Retinal model
This model is made of 3 bidimensional layers whose structure is shown in Fig. 2.3: A layer of bipolar cells (BCs), a
layer of amacrine cells (ACs) and a layer of retinal ganglion cells (RGCs). The layers are rectangle grids, with the
same dimension Lx × Ly mm2 and the same number of cells, N . BCs are labelled with an index i = 1 . . . N , ACs are
labelled with an index j = 1 . . . N , RGCs with an index k = 1 . . . N . Cells are located on the nodes of their grid layer
and are spaced by a distance δ mm in both directions x, y. Spatial coordinates are noted x⃗ = (x, y) and the coordinates
of, e.g., BC i are (xi, yi).

The 3 layers ought to be parametrised by a vertical coordinate, z. However, this parametrisation is implicit in the retinal
layers label BCs, ACs, RGCs and we are not going to use a vertical distance between layers. Since all layers have the
same grid spacing, δ, and the same number of neurons, there is a vertical alignment of nodes: the BC with index i = 10
is vertically aligned with the AC of index j = 10 and the RGC with index k = 10. This given, we define the Euclidean

distance between a cells i, in layer 1, and a cell j, in layer 2 as d(i, j) =
√
(xi − xj )

2
+

(
yi − y2j

)
. That is, we do

not consider the vertical distance, for simplicity. The distance d(i, j) is used for connectivity patterns.

There is indeed an interlayer connectivity. The connectivity from BCs to ACs is characterized by a connectivity
matrix ΓB

A , with entries ΓBi

Aj
= 1 if there is a connection from BC i to AC j, and ΓBi

Aj
= 0 otherwise. In the paper,

the connectivity structure of ΓB
A is called "nearest-neighbours+1": the BC with coordinate i connects to the AC

with coordinate i and with the four nearest neighbours of this AC. The synaptic weight from BC i to AC j is then
WBi

Aj
= wB

A ΓBi

Aj
where the parameter wB

A ≥ 0 controls the excitatory synapses amplitude. This form of synaptic
weigths allows us to tune the synaptic intensity from BCs to ACs with the unique parameter wB

A . The connectivity from
ACs to BCs is also characterized by a synaptic weight matrix WA

B with entries WAj

Bi
= wA

B Γ
Aj

Bi
, wA

B ≤ 0 (inhibition
from AC j to BC i) where ΓA

B is "one to one" (AC j only connects to BC with index i = j). The synapse from BC i to

RGC k corresponds to "Gaussian pooling" [1] where WBi

Gk
= wB

G
e
− d(i,k)2

2σ2

2πσ2 with wB
G ≥ 0. Likewise, the connectivity

from AC j to RGC k is characterized by a synaptic weight WAj

Gk
= wA

G
e
− d(j,k)2

2σ2

2πσ2 with wA
G ≤ 0. Synaptic weights are

expressed in Hz. The different types of connectivity are summarized in the appendix B.2.

Cell types have characteristic times, expressed in seconds, corresponding to the integration time of their response to
external influence and including synaptic delay. Here, we consider that all BCs have the same characteristic time, τB .
Likewise, all ACs have a characteristic time, τA, and RGCs a characteristic time, τG.

The dynamics of cells is based on their voltage. We note VBi
the voltage of BC i and so on. Voltage rectification

takes place below a certain threshold (eq. (1.3)). In addition, BCs and RGCs have gain control, a desensitization when
activated by a steady illumination. (eq. (1.5), (1.8)), characterized by an activation variable ABi for BCs, AGk

for
RGCs [102]. The dynamics of voltages and activations is given by eq. (1.2) below.

BCs receive a visual input featuring the pre-processing of a visual stimulus via photo-receptors and horizontal cells.
In this study, a visual stimulus is a grey scale video, that is a function S(x⃗, t) ∈ [ 0, 1 ] where 0 corresponds to black
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and 1 to white. The pre-processing of this visual stimulus via photo-receptors and horizontal cells is modelled by a
spatio-temporal convolution: [

KBi

x⃗,t
∗ S

]
(t) ≡ Vidrive

(t), (1.1)

where KBi(x⃗, t) is a spatio-temporal kernel, centered at the coordinate of the BC i, and called "OPL kernel" (where
"OPL" stands for "Outer Plexiform Layer" https://www.ncbi.nlm.nih.gov/books/NBK11518/). Spatially, this
is a Gaussian with a center of radius σc and sstemporally, a gamma function with a characteristic time τc (see appendix
A.1 for the value of these parameters). Therefore, the OPL input of BCs is monophasic in space and time. As shown in
[16] the presence of lateral inhibition (here, by ACs) allows nevertheless to generate biphasic profiles in space and in
time for the BCs response. Note that the spatial RF is circular: we do not consider orientation selective cells in this
paper. In the definition of KBi

there is a multiplicative factor, C, which allows us to control the amplitude of Vidrive
(t).

This is used, in section 3.2.1, to modify the amplitude of the retinal input to the cortex.

The joint evolution of BCs, ACs, RGCs, driven by the stimulus S is given by the following set of equations. We use the
standard notations of dynamical systems theory, where the time variable is omitted except for the non autonomous term
(here, the drive term). We refer to the papers [14, 15, 16] for detail about this model.



dVBi

dt = −VBi

τB
+
∑NA

j=1 W
Aj

Bi
VAj

+ Vidrive
(t),

dABi

dt = −ABi

τaB
+ hB NB(VBi

),

dVAj

dt = −VAj

τA
+
∑NB

i=1 W
Bi

Aj
RB (VBi , ABi ) ,

dVGk

dt = −VGk

τG
+
∑NA

j=1 W
Aj

Gk
VAj

+
∑NB

i=1 W
Bi

Gk
RB (VBi

, ABi
) ,

dAGk

dt = −AGk

τaG
+ hG NG(VGk

),

(1.2)

where, in addition to voltages, we have introduced the activity variables, ABi
for BCs, AGk

for RGCs, ruling the gain
control mechanisms on these cell type. There is no gain control on ACs. BCs are, in addition, rectified. The function:

NB(VBi
) =

{
0, if VBi

≤ θB ;
VBi

− θB , else, (1.3)

models this BCs voltage rectification, where θB is the rectification threshold. The BCs output to ACs and RGCs is then
characterized by a non linear response to its voltage variation, given by :

RB (VBi , ABi ) = NB (VBi ) GB (ABi ) , (1.4)
where the function:

GB(A) =

{
0, if A ≤ 0;

1
1+A6 , otherwise. (1.5)

implements the gain control of BCs as a function the activity variable ABi
[1].

As ganglion cells are spiking cells, their response function is:
RG (VGk

, AGk
) = NG(VGk

)GG(AGk
). (1.6)

This function corresponds to a probability of firing within a small time interval. Thus, it is expressed in Hz. Consequently,
αG is expressed in Hz mV−1 and Nmax

G in Hz. A non-linearity is fixed so as to impose an upper limit over the firing
rate. Here, it is modeled by a piece-wise linear function :

NG (V ) =

{
0, if V ≤ 0;
αG(V − θG), if θG ≤ V ≤ Nmax

G /αG + θG;
Nmax

G , else.
(1.7)

We have, for the RGCs gain control:

GG(A) =

{
0, if A ≤ 0;

1
1+A , else. (1.8)

which actually differs from the non-linearity in the BCs gain control, following [102]. The gain control rate, hB for
BCs, hG for RGCs, expressed in Hz mV−1, tunes the intensity of the gain control. In particular, if hB = 0, ABi

→ 0
exponentially fast so that the gain GB(A) = 1. The same remark holds for RGCs.

Parameters values of the model can be found in the appendix A.1.
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1.4.2 Cortical model
This is a two dimensional model composed of two populations of cortical columns: excitatory (E) and inhibitory (I),
located in a cortical area of dimension αLx × αLy, where α is a magnification factor from retina to cortex. Cortical
columns represent the spatial average of cortical neurons at a space scale roughly corresponding to one pixel of voltage
sensitive dye imaging (VSDI signal) [103]. This model has actually been employed in [9] to reproduce the VSDI
response to a simple visual stimuli (apparent motion) in the awake monkey primary visual cortex (V1). Cortical spatial
coordinates are noted (x, y) ≡ x⃗. We thus use the same notations as for the retina, to alleviate notations, although there
is a magnification factor between these two systems of coordinates.

The activity of cortical columns is represented by their average firing rate: νE for excitatory columns, νI for inhibitory
columns. The equations for cortical neurons dynamics are based on a mean-field model of Adapting Exponential
(AdEx) neurons [10, 12, 13]. The types of neurons modelled were chosen on the basis of their electrophysiology:
regular-spiking (RS) excitatory neurons and fast-spiking (FS) inhibitory neurons [104]. This model was derived under
the hypothesis that the network dynamics is Markovian at a timescale of a few ms and stationary for a duration T . One
describes then the collective dynamics through a master equation formalism developed by El Boustani and Destexhe
[105]. This system can reproduce asynchronous irregular regime, a typical feature of the awake states, as well as Up
and Down states, characteristic of sleep or anesthesia states [13, 106].

The spatially extended dynamical system reads:
T ∂νE(x⃗,t)

dt = −νE(x⃗, t) + FE

[
νaff (x⃗, t) + νdrive + AE

E νinputE (x⃗, t) , AI
E νinputI (x⃗, t)

]
T ∂νI(x⃗,t)

dt = −νI(x⃗, t) + FI

[
νaff (x⃗, t) + νdrive + AE

I νinputE (x⃗, t) , AI
I ν

input
I (x⃗, t)

]
,

(1.9)

where νE(x⃗, t) (resp. νI(x⃗, t)) is the population rate of the excitatory (resp. inhibitory) cortical column located at x⃗, at
time t. T is the characteristic integration time.

In eq. (1.9) the functions FE (resp. FI ) are the transfer functions of excitatory (resp. inhibitory) neurons. They describe
the firing rate of population E (resp. I) as a function of the excitatory and inhibitory rates νE and νI . Their form is
made explicit in the appendix, section B.1. The term νaff (x⃗, t) in eq. (1.9) corresponds to the retino-thalamic input
(sensory drive). As the thalamus is not considered here (we assimilate it to a simple relay) this input comes directly
from the RGCs. There is a direct correspondence, a retinotopy, between a point in the retina (RGC), and a point in V1
(cortical column). Here, this mapping is linear. There is just a magnification factor α from the retina to V1. Each RGC
inputs a cortical column and νaff (x⃗, t) is the firing rate emitted by the RGC that inputs the cortical column located at x⃗.
Note that, in the absence of gain control or amacrine connectivity, the retinal model is reduced to a convolution cascade
[14, 15, 16]. In this case, the input νaff (x⃗, t) is therefore similar to the one used in [3]. In the transfer functions FE ,
FI , we include a spatially uniform external drive νdrive. This drive represents the background constant input coming
from the rest of the brain.

νinputE (x⃗, t) (resp. νinputI (x⃗, t)) are excitatory (resp. inhibitory) inputs coming from the column itself or from other
cortical columns. They are multiplied by an amplification connectivity factor Apre

post, where pre and post ∈ E, I stands
respectively for "pre synaptic" and "post synaptic". In our case AE

E = AI
I = AI

E = 1 and AE
I = 1.5. This connectivity

corresponds to the observed physiology of the real cortex. We have: νinputE (x⃗, t) =
∫
R NE(x⃗− x⃗′) νE(x⃗

′, t− ||x⃗′ − x⃗||/vc) dx⃗′

νinputI (x⃗, t) =
∫
R NI(x⃗− x⃗′) νI(x⃗

′, t− ||x⃗′ − x⃗||/vc) dx⃗′
(1.10)

where NE ,NI are 2D circular Gaussian connectivity kernels with mean-square deviation σE , σI :

NX(x⃗) =
e
− 1

2
∥x⃗∥2

σ2
X

2πσ2
X

, (1.11)

with X = E, I . This form follows e.g. [12], although our connectivity kernel is two dimensional in contrast to their
paper. Thus, σE , σI control the two dimensional cortical extent of the excitatory and inhibitory connections. Note, that,
due to the normalisation of the Gaussian the shorter the cortical extent the larger the amplitude of the synaptic weight
NX(x⃗) (see section 3.2.3 for a consequence of this). The parameter vc is the speed of axonal conduction (assumed
to be a constant). Equations (1.10) therefore express that the excitatory input νinputE (x⃗, t) is the sum of the incoming
excitatory activity from the connected columns arising with a delay ||x⃗′ − x⃗||/vc depending on the distance between
the columns and the axonal conduction speed.
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The cortical model is designed to reproduce the pixels intensity of voltage sensitive dye imaging, corresponding to
a variation of fluorescent luminosity with respect of the fluorescent baseline. Its expression depends on the average
membrane potential of the excitatory and inhibitory populations in the column located at x⃗, at time t. Its expression is
given by equation (B.11) in the appendix, section B.1.

Remark. Note that this type of cortical model can exhibit pathological (i.e. model induced) oscillations due to
bifurcations when some parameters become too large (such as νdrive or the conduction speed). This phenomenon is
well known and has been reported in the literature [107]. We observe as well such oscillations when parameters such as
the retinal output amplitude becomes too large. This is commented in the afferent section.

1.5 Conclusion
However, one can ask at which stage of the visual system do these predictions start taking place. At the level of the
early stages of the visual system ? Or in late-stage processors ? At the current state of the art there are convincing
benches of evidence that anticipation takes place along the pathway from retina to cortex. This has been observed with
a large diversity of recording conditions (in vitro, in vivo, anesthetized, awake), for different animal models (rodent, cat,
monkey . . . ). This suggests that there might exist a synergy between the retina, the thalamus-LGN and the cortex to
optimize anticipation. This leads to a natural question: How does the dynamical response of the retina to a moving
object affect the dynamics changes in the cortex ?

We will also investigate how the cortex can respond to stimuli mimicking saccades and how this activity can be
influenced by the frame rate of the stimulus used in the experiments. We will also try to determine whether it is
possible that the mechanisms of smear reduction and shape-dragging can be generated in the cortex. Finally, we will go
further by exploring the suppressive interaction that could be generated between responses to peri-saccadic stimuli and
movement. The aim of all this will be to gain a better understanding of the extent to which V1 cortex is responsible for
the phenomena generated during saccades?

Along these lines, the purpose of this thesis is to answer these two questions, using a computational model, grounded on
experimental studies performed at the Institut des Neurosciences de la Timone, in F. Chavane Lab, as well as preexisting
models themselves grounded on experiments. Rather than developing a biologically plausible model for one species, the
aim of this article is to reconcile two sets of work that have been conducted to model different species, and to study the
potential effect of known retinal anticipatory mechanisms on cortical anticipation. The model consists first of a retinal
model developed in [14] to confront several potential mechanisms of retinal anticipation (gain control, amacrine cells)
and further studied in [15, 16]. This retina model is used as an input to a cortical mean-field model of V1, previously
developed by A. Destexhe and his collaborators [12, 9], and calibrated on experimental VSDI signal data on the monkey
cortex V1, performed in F. Chavane Lab. Note that, as further discussed in the text, we will not consider the effects of
the thalamus (LGN) in this work. More precisely, it will be transparent, considered as a simple relay.
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Chapter 2

The Chimera model in Macular

2.1 Macular
2.1.1 Introduction to Macular
I introduce here the software Macular, which I used intensively in my thesis, and to the development of which I
contributed significantly. Macular is a visual system simulation platform coded in C++/Python at INRIA by the SED
(experimentation and development service at Inria). It allows reproduce experimental retinal or cortical response to
chosen visual stimuli movies in normal or altered vision. Macular is constructed as a layer-by-layer replica of the visual
system. The first layer of this simulated system can receive a visual input corresponding to a stimulus video. It is also
possible to provide nothing in order to observe spontaneous activity. Furthermore, Macular offers the opportunity to use
inputs corresponding to models of retinal prostheses. Once the experimental results have been successfully reproduced,
Macular grants the ability to change easily all the model parameters to explore and predict new results. The main aim
of Macular is to provide neuroscientists with a tool capable of reproducing experimental results and also predicting new
results. Some of these results may not be experimentally verifiable.

Macular consists of 4 main objects :

• Cell object can be biological cell but also networks of cells such as cortical columns. Each cell is associated to
a state. This is a vector with a number of state variable defined by the model. Cell state evolves in time by
following specific functions. These functions take into account inputs of the system and a set of parameters.
Inputs can be external or synaptic. Parameters are constants, chosen by the user between each simulations.
Cells can also have multiple outputs. For example, the amacrine cells in our model have a state V defining
their voltage: V = −V−VL

τA
+ Vsyn. This is a differential equation for the voltage dynamics. Two parameters

are used in this formula: the characteristic time of the amacrines (τA) and their leak potential (VL). The last
variable Vsyn corresponds to the synaptic inputs received by the amacrine cell.

• Synapse object are the connections existing between cells of same or differents types. They have a cellular
input, an synaptic amplification factor parameter and a function defining what is their output. Note that this
amplification factor is the same for all synaptic connections of the same type. It should be distinguished from
the connectivity weight, the value of which depends on the type of connectivity (Gaussian, uniform, etc.).
Among these parameters, synapses have a conduction speed that allows them to set a delay corresponding to
propagation or integration. For example, in our model, the synapse connecting the amacrines to the bipolars is
defined by its output: wa

b × Vpre. This is made up of the synaptic amplification factor parameter wa
b and the

voltage of the pre-synaptic cell Vpre.

• Cell layers are the second level of organisation in Macular. A layer represents a two dimensional grid with
a defined size and density. Each layer groups together a single type of Macular cell with the same set of
parameter values. The cells in a layer can be interconnected.

• Graph object is composed of cell layers connected between them with synapses (Fig. 2.1). Each layers can
send or receive multiple synapses. The size and the number of cells in a layer or synaptic connection length
is defined during the graph generation. During this step are also set the synaptic weights of each synaptic
connection depending on the connectivty type. Macular graphs can be saved in files.

Macular has a number of pre-defined connectivity types:
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Figure 2.1: The Chimera model in Macular. This graph is made up of 5 layers whose bottom-up axis reproduces
the retino-cortical pathway. Each layer is made up of 20x20 Macular cells. In this example, we have one layer for
each cell type bipolar, amacrine and ganglion cells, then the primary visual cortex with its excitatory and inhibitory
populations. Synapses connecting the cells can be seen between each layer. They appear as lines between layers, with
colours depending on their type.

• One to one connectivity connects Macular cells with the same spatial position in another layer.

• Nearest neighbor connects all Macular cells with their 4 nearest adjacent cells.

• Nearest neighbor + 1 connects Macular cells to their 4 nearest neighbours as well as to the cell in the same
position as it in the post-synaptic layer.

• Fully connected creates a graph where all the Macular cells within one layer, or between two layers, are
connected with a uniform weight.

• Radius connected connects all the Macular cells in a given radius with a uniform weight.

• Gaussian connectivity also connects all Macular cells in a radius d[pre,post] <= 3σ. However, each Gaussian
connection has a varying Gaussian synaptic weight W pre

post which depends on this same distance via a Gaussian
profile :

W
pre
post =

e−
d2[ pre, post ]

2 σ2

2π σ2
. (2.1)

Note that the normalisation holds for a two dimensional Gaussian distribution. This equation does not actually
integrates the boundary conditions, for simplicity, but they are taken into account in Macular.

Macular’s first major advantage is its modularity. The user can implements their own cells and synapses and then use
them in their own graph. Macular allows users to generate the graph of their choice by connecting the cells in the way
they want. Macular also provides a number of generic cells and synapses.

The second major advantage of this platform is its simplicity. Macular has two easy-to-use graphical interfaces. One
GUI, Macular Graph Simulator is used for simulation, parameters setting, graph creation and to visualise different
aspects of the simulation in real time (stimulus, layer activity, specific selected cell response, 3D graph). This GUI is
made up of views that users can organise as they wish. Figure 2.2 shows an example of how this GUI is organised.
The GUI structure and all Macular parameters and states can be saved in reimportable session files. The other GUI,
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called the Macular Template Engine, is used for creating cells and synapses from scratch (input, parameters, vector
field, functions). The user doesn’t need to master a programming language to use Macular. They just need to have the
equations, parameters and corresponding units for the model and enter them in specific cells. The physical units must
be consistent. Several differential equation solvers are also available. Note that a programmer with Python and C++
skills can perform all these operations without using the graphical interface.

Figure 2.2: Macular simulator graphic interface. On the top left are heatmaps of the five layers of our model : bipolar
cells (cyan), amacrine cells (magenta), ganglion cells (yellow), excitatory cortical population (green) and inhibitory
cortical population (red). On the right are shown the temporal evolution of outputs chosen by the user. At the top is the
response of a bipolar (red) and the firing rate of a ganglion (pink). At the bottom is the mean voltage of the excitatory
(blue) and inhibitory (orange) populations. Stimulus, heatmaps and graphs are refreshed in real time when simulation
progresses.

2.1.2 Spatio-temporal representations in Macular
A visual scene is a spatio-temporal event. It is therefore important to carefully handle space and time.
Within Macular, 4 spatial representations co-exist, each of them has to match :

• Movie, in pixels. The input of Macular is a movie where each pixel is defined by a light intensity level
corresponding to a grey level from 1 to 255. Colour management is not implemented. All RGB video is
processed in greyscale.

• Visual field in degree of visual angle. This is the actual representation of the visual environment and of the
bipolar receptive fields that integrate the visual field. Degrees of visual angle are a more precise unit of
measurement than metres. They do not depend on the distance at which objects are perceived. The "pixels per
degree" parameter is used to manage the conversion between the movies spatial units and the visual field units.
The variable δx is associated with the distance of a pixel in degrees of visual angle.

• Retinal space in millimeters or micrometers. Millimeters are the default unit used by Macular. Micrometers
are automatically converted to millimeters. The appropriate conversion factor must be used to convert between
the degrees of visual angle of the visual field and th metric system. This factor varies according to the animal
species under consideration.

• Cortical space in millimeters or micrometers. This conversion factor is different from that for the retina. So
there will also be a conversion factor between retinal and cortical spatial representation.
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The choice of millimeters as the default unit was motivated by the use of conduction velocities and connectivity radii
most often expressed with mm rather than in degrees of visual angle in the literature of the retina. Despite this choice
within Macular, for the remainder of this thesis we have decided to express the results of our experiments in degrees of
visual angle in the same way as the paper from which we drew inspiration [3].
The degree per mm ratio is implicit, unlike the pixel per degree ratio, which is explicitly defined as a Macular parameter.
It is the user’s responsibility to use the appropriate conversion factors to ensure consistency between the size of the
simulated area and the radii of connectivity between the visual field and the retinal/cortical spaces. In the Chimera
model, we set a degree per mm parameter of 3.33 in the retina and 0.33 in the cortex. This means that to simulate
an area of 18.45 × 3.15 degrees we set the area of the retinal layers at 5.535 × 0.945 mm and the cortical layers at
55.35 × 9.45 mm. The area in degrees is defined as a function of the number of pixels and the "pixel per degree"
parameter. We set this to 300, which requires a stimulus of 5535× 945 pixels. If we also want to establish Gaussian
connections of 5 degrees radius in the cortex, then we need to set the radius of their connectivity to 15 mm.
Another parameter implicitly defined in Macular is the distance between cells δx. This is defined as a function of the
size of the simulated area and the number of cells on the x and y axes. We have a cortical area of 18.45× 3.15 degrees
made up of 83× 15 cells. The value of δx is identical in the horizontal and vertical directions, and is calculated from :
δx = Lx

ncellsX
−1 . The result is δx = 0.225 degrees.

Macular’s temporal dimensions can be divided into 3 groups :

• Movie in frame index. A video is a succession of images. The time of a video is therefore defined by the index
of the current frame.

• Real time in millisecond or second. This represents the elapsed time of the stimulus as well as cellular and
synaptic processes. The duration of a frame δt is used to convert a video frame index into real time. All the
characteristic times of biological processes are expressed in this temporal representation.

• Integration in second. They correspond to the time steps of the integrator of differential equations dt (eg :
Runge-Kutta).

2.1.3 Spatio-temporal conditions in Macular
To ensure that the different spatial and temporal representations co-exist correctly, certain conditions should be validated
to prevent errors in the simulations.
Two conditions on temporal representations :

• δt ≪ τcell, the time between each frame must be much less than those used to integrate the different cells.
In this way, the speed of the bar is slow enough to give the cells time to activate before the bar leaves their
receptive field.

• dt ≪ δt, the time step for integrating the differential equations must be much smaller than the duration of the
frames. This produces smooth response curves, not stair-stepped.

• δx ≪ σcell, the radius of the cell receptive field must exceed the size of a pixel in degrees of visual angle. The
receptive field needs to contain enough pixels to integrate the video image correctly. This also gives the cells
more time to integrate.

• σcell ≪ LX,Y , the radius of the cell receptive field must be sufficiently smaller than the sizes of the visual
field. The size of the visual field must be adapted to that of the receptive field.

The last condition to meet involves both time and space. It comes into play when we use stimuli from a moving object:
vstim ≤ 2σcell+lX

τcell
. The speed of the object must not exceed the response speed of the cells. The cells must have enough

time to integrate the movement of the object. The peak of the time component of the receptive field must occur while
the object is still in the receptive field. If the characteristic time of the receptive field τcell decreases, the integration of
the object will be increased and will be able to support higher object speeds.

It may be possible to play with these different conditions to test particular cases of the retino-cortical model. This is
what we do in the chapter 4.2. In this chapter, we play in particular with the last condition on the speed object and the
first condition between the δt and the τcell.

2.1.4 Spatial accuracy and frame rate of stimuli
An important part of my thesis is based on the use of various speed and frame rate stimuli. In this context, I had the
opportunity to learn how to create and simulate stimuli in Macular.

The first difficulty to take into account is the precision of the spatial dimensions of the stimulus. When you want to
impose a spatial dimension on an element of the stimulus (length, width, speed), you are always forced to round up or
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down the number of pixels. This round-off can lead to a more or less significant shift in the spatial dimension actually
applied to the stimulus element. There is an essential parameter for limiting the amplitude of this shift: pixel per
degree. This parameter acts as the spatial resolution of the stimulus. If we increase its value sufficiently, the pixels will
have a sufficiently low value in degrees so that one pixel more or less will cause negligible variation. On the contrary,
decreasing it would cause a drop in the precision of the spatial dimensions.

A spatial precision that is too low creates another problem when you want to simulate at high frame rates. It is possible
to obtain a bar speed of less than 1 pixel/frame. This means that the bar will not move with each frame and that the
effective frame rate will therefore be reduced. This is particularly true for simulating slow speeds which require the bar
to move a very small distance each frame. As a consequence, the spatial resolution (pixel per degree) must be very high.

For a bar speed of 6 degrees/s travelling at 1440 Hz, the stimulus travels 0.004 degrees in one frame. I decided to set
my pixel per degree at 300 for a spatial resolution of 0.0033 degrees/pixel (1 µm of retina). As a result, the value of
a pixel in degrees is negligible. If necessary, this pixel per degree value can be adapted to work with smaller spatial
dimensions. It should be noted, however, that increasing the size of the stimulus also generates a time cost during the
Macular simulation. A decision therefore needs to be made between performance and accuracy.

For stimulus speed studies, I recommend creating different stimuli for each speed condition. Macular offers to modify
the value of frame per second (δt) to change the speed of the stimulus with a single video. This method was not
appropriate in my case though. This seems practical and avoids having to create new videos with different pixel/frame
motion speeds. However, changing the speed of the bar in this way also changes the frame rate of the stimulus. As
this thesis demonstrates, the frame rate is not a parameter to underestimate as the results obtained will be a mixture of
effects caused by frame rate and bar speed.

2.1.5 Getting started with Macular
Macular targets users in the community of modellers and biologists. For this reason, it was necessary for Macular to be
tested by users with these skills. As a biologist by training, I was able to play this role, while developing my thesis
model. Using Macular for the first time was relatively straightforward. The presence of clear GUIs guided me. I was
able to quickly create my first graphs and Macular sessions and run simulations.

The difficulties I encountered with my model gradually pushed me to understand Macular more and more. I didn’t
initially have any skills in C++ and all my knowledge came from learning before my internship in the Biovision team
and from interacting with members of the team and members of the SED INRIA, particularly during an early two-week
coding sprint. A coding sprint is a period of time during which the development team meets to focus on a piece of code
with the aim of producing a list of tasks to be carried out on the code. All this led to a better understanding of Macular.
Organised into around twenty modules, Macular is the biggest piece of code I’ve ever worked with.

The initial help from the Macular developers gave me an initial overview of the most important files in the package.
From there, I was able to gradually move from module to module to understand them. Running tests also enabled me to
confirm the roles of the various functions present. The availability of the developers to ask questions also reinforced my
learning. Today, I can navigate Macular very easily and modify its code.

2.1.6 Macular improvements
My regular use of Macular, my understanding of it and the improvement of my C++ skills have enabled me to contribute
to the development of the platform throughout my thesis. Firstly, I was able to implement a number of functionalties
and fixes myself. Secondly, I was also able to help identify and reproduce numerous bugs that I was able to pass on to
the development teams when I couldn’t solve them on my own. Finally, I also thought about and identified the needs for
new features to be implemented.
Most of the fixes and new features were implemented as part of 3 coding sprints (16-24 May 2022, 6-30 November
2023, 2-5 April 2024). In this context, I was responsible for listing and organising all the bugs and new features to
be worked on. My most important role was to check that each add-on worked properly and that my results were not
regressed in Macular. I also had to check that the add-on met my expectations. As a biologist user, my role also
extended to active participation in thinking about the various tasks to be carried out and the best way of implementing
them. Finally, I was also sometimes able to assist the development team on the programming side.

Unit management Especially, I have highlighted a major problem in the management of units in Macular. This
resulted in a lack of clarity that caused a lot of confusion. Discussions with my thesis supervisor led us to the conclusion
that there was a need for explicitly defined units in Macular. We needed to reduce the risk of inconsistent units within
or between cells, while leaving the choice to users. Based on this observation, the SED developed a new version of
Macular in which each parameter is defined with a physical quantity chosen from a list. Once the quantity has been
chosen, the unit must also be selected from a second list. For example, you can choose "Voltage" as the physical
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quantity and "V" or "mV" as the unit. Macular automatically converts the chosen unit to its default unit. This prevents
any inconsistency in the units. I was able to contribute to this project by testing and checking the units in my model.

This problem of managing units was also found in Macular’s spatio-temporal representations. As we explained in
the section 2.1.2, Macular co-exists with 4 spatial representations. In reality, there is a 5th dimensionless spatial
representation internal to Macular that I called "Macular units". This is the internal dimensionless representation used
by Macular in its calculations. Initially, to create a graph, it was required to enter the size of the graph used in Macular’s
internal representation. This size defined the value of internal δx and δy used in Macular’s calculations. Consequently,
it was important to enter all the connectivity radii or the conduction velocity in this 5th spatial representation. It was
therefore necessary to perform calculations to navigate between this representation and the biological representations
in meters. To remedy this, it could be possible to simply enter the size of the area to be simulated directly in mm or
degrees of visual angle when creating the graph, instead of Macular units. The simulated area size was defined by
the pixel per degree parameter and the stimulus size in pixels. However, the realisation of this solution required the
introduction of a new functionality as we needed to be able to simulate graphs with layers of different sizes.

Patches I also had to solve additional problems, mostly associated with the connectivity. In order to work, Gaussian
connectivity takes a connectivity radius as input and uses it to calculate its sigma, which is 3 times smaller. In the case
of intra-layer connections, the input that was received was treated as a sigma instead of the radius. This consistency
problem led to the use of connectivity radii 3 times larger than expected. We therefore reintroduced the calculation of
the sigma from the radius.

In biology, the cells in a cortical column send a majority of their output to the other cells in the cortical column. This
can be summed up by the presence of a strong auto-connectivity. This auto-connectivity is normally present in the
cortical model, but not in our initial Chimera model. This poses a problem because it should be their strongest source
of input. We have therefore modified the implementation of our Gaussian models to take account of the connections
between the cortical columns themselves.

Among the other types of connectivity, nearest neighbour should correspond to a connection between a cell and its
closest environment. In modelling terms, this corresponds to the 4 directly adjacent cells. However, we discovered
that our nearest neighbour had been configured to connect all the cells within a given radius. We renamed this nearest
neighbour ‘radius neighbour’ before creating a radius neighbour function connecting only the 4 nearest neighbours.

Other problems lay in the management of synaptic inputs. Firstly, there was a duplication of excitatory cortical inputs,
normally counted only once. This resulted in far too much excitation of the system. In addition, inhibitory inputs were
also used as excitatory inputs. As a result, the excitation of the system was still too high.

The last of these corrections was made for the Gaussian weight. We noticed that by changing the connectivity distance
and the spacing between cells so as to keep the same ratio, we obtained a different Gaussian profile instead of a constant
one. We first tried to implement dynamic normalisation. This solution was complex to implement and in the meantime
we have found another. Our weights were not dimensionless as they should have been but had a unit in mm−2. To
make it dimensionless we multiplied it by the spacing between the δx and δy cells.

New features Over the course of the coding sprints, Macular has been enhanced with new features that I have
contributed to implement. Graph generation has been improved by making it possible to create several inter-layer
synapses of the same type with different parameters, create several intra-layer synapses and use several layers of cells
of the same type with different parameters. Parameter management has also been enhanced with the ability not to reset
parameters when re-initialising the simulation, and the ability to save and then import the state of the system so as not
to have to run a transient. A new specific fibre conduction velocity parameter has been added to the synaptic parameters.
This was previously global for all synapses. Finally, there have been a number of improvements to make Macular easier
to use for users, including the possibility of deleting cell types and synapses, the introduction of a batch to simulate
Macular in a terminal and a considerable increase in the speed of simulations, which were far too slow. This required a
refactoring of the cells and synapses as well as parallelization.

Exploring The Virtual Brain (TVB) During the first coding sprint at the start of my thesis (16 to 24 May 2022),
we also studied the possibility of connecting Macular with a cortical simulation software called The Virtual Brain
(https://www.thevirtualbrain.org/tvb/zwei/brainsimulator-software). It was in this context that I studied in detail the
TVB code, which I was introduced to during a stay in Alain Destexhe’s team. The Virtual Brain is a Python program
created by the Human Brain Project under the supervision of Viktor Jirsa. The software simulates an entire brain, with
each region corresponding to a mean field model based on several works [105, 12, 13]. Users can define the number of
regions to be modelled and their names. The connectivity between the regions will be defined using a connectivity file
containing tractography data. These are experiments that determine whether two brain regions are connected and how
strongly.
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Taking into account all these features of TVB it was an interesting opportunity to connect it with Macular and that’s why
we spent two weeks with the SED to study this possibility. Linking the retina part of Macular to TVB requires sending
an output file containing the activity of retinal ganglion cells from Macular to TVB. But all TVB stimuli are generated
by discretising a spatial and temporal function, and there is no way of importing a data file and using it to create a
stimulus. However, this first problem could be solved because TVB offers the opportunity to create its own stimuli.
A second complication is associated with the spatiality of the stimulus, which is not fully managed by TVB. The TVB
graph consists only of a set of regions defined at a single point, which are not subdivided into sub-regions. There is
therefore no spatial component within the cortical regions in TVB. This is not compatible with the stimulus from our
retina, which have a two spatial representation with a resulution that can vary. Connecting Macular to TVB would
require the outputs of each of our ganglion cells to be connected to a sub-region of V1 cortex. This is feature which is
currently not available in TVB although this feature is currently being developed by its developers.

For these reasons, the Macular - TVB assembly has been set aside for the time being.

Macular documentation The development of my knowledge of Macular has also enabled me to play an active
part in writing exhaustive documentation on the implementation, structure and operation of Macular. In particular,
I was able to describe how to create, parameterise and simulate the retino-cortical model developed for this thesis.
https://Macular.gitlabpages.inria.fr/Macular/user_doc/Macular/main.html.

2.2 The Chimera model
2.2.1 Initial Macular implementation
The retinal-cortical model we use in this thesis was developed in previous work. It is a fusion of the two models of retina
and cortex presented in the introduction (respectively section 1.4.1 and 1.4.2). These two models were assembled by
Frédéric Chavane, Alain Destexhe, Mattéo Di Volo, Selma Souihel and Bruno Cessac. In addition to the mathematical
formulation, this work gave rise to a C++ code (Selma Souihel’s thesis in collaboration with Mattéo Di Volo) [108].
This code was implemented in the Macular platform.

Here, It is important to emphasize several of the biggest differences between our implementation and that of Zerlaut
et al. and Di Volo et al. [12, 9, 13] as they impacted and constrained the implementation in Macular. The Zerlaut et
al. model is composed of a one-dimensional area of cortical columns separated between an excitatory and inhibitory
population. Di Volo et al. model was initially one-dimensional but has been adapted to a two-dimensional area. These
cortical columns are inter-connected by a lateral Gaussian connection with a dynamic delay depending on the distance
and conduction velocity of the fibres. In addition the cortical area has a periodic ring-shaped geometry. At the edges,
the connectivity connects the cortical columns present at the two opposite edges. In these one dimensional ring models
the calculation of the Gaussian weights is based on a formula using a one-dimensional normalisation with no boundary.
In contrast, we have two dimensional scenes with a bottom, a top, a left, a right, thus no periodic boundary conditions
are acceptable. Instead, we used zero boundary conditions.

Another difference lays in the retino thalamic input. Each cortical column receives a stereotyped retino-thalamic input
that mimics the input from the retina. In the previous models, this input is received only by the excitatory population,
not by the inhibitory population. The excitatory population is also the only one to receive a background input (νext)
which reproduces the activity constantly coming from the other regions of the cortex. This activity ensures that cortical
columns are never totally inactive, even in the absence of a stimulus. The inhibitory population only receives excitatory
inputs from the excitatory population of the cortex. Each cortical column has an adaptation variable which reproduces
its capacity to inactivate in the event of excessive activity. In the case of Zerlaut et al., this variable is static. In Di Volo
et al. case, the adaptation becomes dynamic and enables us to obtain results that are more stable and closer to AdEx
neural network models [13].

The major difference in our retino-cortical model lies in the use of a retinal model to create and send retinal inputs to
the cortex. Our retinal input is therefore driven by a real visual stimulus. Because of the retinal spatialisation, we are
therefore forced to adopt a geometry with a top, a bottom, a right, a left. As a consequence, we can’t manage edges from
a periodic geometry (rings) as is the case in all traditional models. Instead, we have to opt for zero edge management,
which means that the cells located on the edges will receive less input than the others. The existence of these edges will
have a direct influence on the cortical cells or columns close to them. We believe that these properties take us further
away from biological reality than simple zero edges.

In our case, we can act on the cortex by modifying the parameters of the retina to create responses with different
intensities and activity profiles that reproduce specific features of biology. Selma Souihel initially added this retinal
input only to the excitatory population of the model, as did the input from the rest of the cortex (νext). Our model
subsequently evolved to incorporate the presence of retinal and external drive on the inhibitory population as well [109].
It was also added a bias in favour of inhibitor excitation. Finally, we have switched to a two-dimensional Gaussian
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formula to simulate two-dimensional areas. As regards the adaptation of the cortical columns, we have retained the
static adaptation of Zerlaut in an initial concern to limit the excessive calculation time that would be generated by an
additional differential equation.

This model is a "chimera" model in the following sense. While the design and parameters of the cortical model are
based on previous works on the monkey visual cortex, the retinal model is essentially based on previous works dealing
with mice retinas. In addition, as mentioned above, there is no thalamus, or, more precisely, it is transparent, considered
as a simple relay. In this sense, our model resembles more a "Frankenstein" creature than a real, actual organism.
However, we believe that it captures the main mechanisms in the retino-cortical entanglement. Also, the advantage
of such a model, with its joint simulation platform, is that one can easily modify the parameters of such or such
components and see how it modifies the observed response. This is actually the main philosophy of this work where
we vary physiological parameters, such as the conduction speed, or the effect of amacrine cells, that cannot be easily
varied experimentally. This also means that the chimera model could be made closer to monkeys by adjusting the retina
model to experimental results on monkeys retinas (that we didn’t have). Note that a feature of the simulator Macular is
precisely to afford such changes in the retina design.

The first graph (illustrated in Figure 2.3) that we retrieved at the beginning of this thesis formed the skeleton from
which we added and modified certain elements to improve it:

• Bipolar layer receives an external input corresponding to the result of the convolution between the spatio-
temporal stimulus (video) and the photoreceptor receptive field. This receptive field may or may not include
the effect of horizontal cells with a center/surround. In this graph the bipolar is OFF without surround. The
bipolar cells send their output one-to-one to the amacrine cells and with a 540 µm Gaussian to the ganglion
cells with a weight of 0.15.

• Amacrine layer is excited by the bipolars before inhibiting them with nearest neighbour + 1 connectivity. This
corresponds only to the feedback inhibition in Figure 2.3.

• Ganglion cell layer pool together the activity of bipolar cells. Each cell then contacts a single excitatory
column with a weigth of 20 Hz. The activity of this cell is first multiplied by the density of ganglion cells in
the retina (400mm−2) to obtain the ganglion response per mm−2. This is then divided by the cortical density
(4000mm−2) to evenly distribute the retinal response across the cortical column.

• Excitatory cortical layer is activated by ganglion cells. It sends synapses to the inhibitory cortical layer and to
itself, with radii of connectivity of 2.7 mm and 3.6 mm respectively.

• Inhibitory cortical layer receives ganglion cells and then sends them one-to-one to the excitatory populations.
They also contact each other within a radius of 1.8 mm.

In addition to this graph, we also had a stimulus from Selma. A 180-frame video of a 60x60 pixels square. In the
context of the default set of Macular parameters, the pixel ratio in degrees of visual angle is 5. This gives a field of view
of 12× 12 degrees. The stimulus is a vertically centered black bar moving from left to right on a white background.
The bar measures 5× 15 pixels or 1× 3 degrees and moves at 20 degrees/s for a δt = 0.005 s. The switch between
degrees and millimeters require to multiply by two conversion factors that are respectively f = 0.3 mm/deg in the
retina and f = 3 mm/deg in the cortex [110, 111]. All the layers in this graph have grids of 20 × 20 cells within a
square area of 3.6 mm for the retina and 36 mm for the cortex. The spacing between cells is therefore 190 µm and 1.9
mm respectively.

Our first simulations were therefore carried out with this graph and Selma’s stimulus, in addition to the parameter values
that were present by default in Macular. Details of this initial set of parameters can be found in appendix A.2.

2.2.2 Model calibration
Initial parameter set.
The first, necessary, step was to calibrate the cortical model in order to be sure that it correctly reproduces the results of
biological experiments, especially the one made by Benvenuti and his colleagues on the monkey primary visual cortex
with VSDI signaling [3] (Fig. 2.4). This experiment have shown the existence of anticipatory cortical waves when a
white moving bar at 6°/s is presented to monkeys 4.5. The time evolution of VSDI intensity has been centered at the
time which the centre of the bar is at the middle of the receptive field. This allows to show that cortical columns far
from the initial bar position are activated earlier than the one close to it. This is due to an anticipation wave supported
by the lateral connectivity in the cortex. More details on this mechanism are given in the next chapters.

These results had already been partly reproduced by [108] who had designed the retino-cortical model. Despite this, the
first simulations carried out with the implementation described in the previous session (2.2.1) were not successful.
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Figure 2.3: Synthetic view of the retino-cortical model. A stimulus is perceived by the retina, triggering a response.
From top to bottom: The stimulus is first convolved with a spatio-temporal receptive field (black traces labelled
"space" and "time" in the purple circles), that mimics in the Outer Plexiform Layer (OPL) the concerted activity of
photoreceptors and Horizontal cells and is fed to Bipolar cells (purple circles). This response is rectified by a low
voltage threshold (purple squares). Bipolar cells responses are then pooled to retinal Ganglion cells (orange). The firing
rate response of a Ganglion cell is a sigmoidal function of the voltage (orange square). Gain control can be applied at
the Bipolar and Ganglion cells level (grey circles) triggering anticipation by a shift in the time to peak. The Bipolar
cells activity is modulated by lateral inhibition through Amacrine cells (pink). The Ganglion cells response (firing rate)
is sent to cortical columns in the primary visual cortex depicted, at the bottom right, as two interconnected mean field
units (circles) corresponding respectively to excitatory (green) and inhibitory (red) population. Cortical columns are
connected together by an excitatory (big green circle) and inhibitory (big red circle) lateral connectivity. Note that we
assume the same conduction velocity vC for both connectivities.
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Figure 2.4: Experimental results from Benvenuti et al. used as a calibration model A) The different bar positions
in the visual field are represented by a color gradient. The darker the colour, the closer the cortical column is to the
origin of the bar. B) Experimental response of cortical columns located on the trajectory of a moving bar. Each curve
was centered on the moment when the center of the bar was at the center of the cortical columns’ receptive field.

For example, Figure 2.5 shows the very strange response obtained by our first graph and parameter set. The cortical
response seems to be in a state of saturation. This saturation is caused by the presence of the external drive and the
model’s inability to support this input.

Figure 2.5: Cortical response of the initial implementation of the retino-cortical model with a darkfield stimulus.
A) VSDI signal from excitators (green) and inhibitors (red). B) Excitatory mean voltage (purple).

Connectivity and parameters consistency
To improve the retino-cortical model, I had to expand the model’s outputs to better understand the different of the
equations. All of this combined with dimensional analyses of these same equations.

It was also at this stage that I added more comments and corrected the existing ones and their units. During these
calibrations, I set the ganglion and cortical firing rates at 30 Hz and 40 Hz respectively modifying the value of the
activity amplification factor received by the bipolar cells (C) 1.4.1. I chose values fairly far from the saturation value
(200 Hz) but not too low to give me some freedom for future experiments.

Exploring Macular enabled us to improve connectivity in our model. The cortical connections in Selma Souihel’s retino-
cortical model used one-to-one connectivity between excitatory and inhibitory populations. Only the intra-population
connections used Gaussians. In Di Volo’s case, the connections between populations of different types were made by a
Gaussian. We therefore decided to use this same structure for the cortical connections in our model. To do this, we
added a Gaussian connectivity from the excitatory population to the inhibitory one and vice versa.
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Our aim was to incorporate additional elements of biology, under the guidance of Frédéric Chavane and Alain Destexhe.
We incorporated retinal and external drive (νext) into the excitatory inputs received by the inhibitory population. We also
introduced a connectivity biased towards excitation of the inhibitory population. This translates into the implementation
of an amplification factor AE

I = 1.5 on the synaptic inputs coming from the excitatory population and sent to the
inhibitory population (1.9).

We also discovered the presence of a variable substitution in the calculation of σV and τV . The parameters τE and τI
were replaced by QE and QI respectively. In our case, this meant using much higher values for τE and τI .

It was through this further development of the retino-cortical model that we were also able to highlight a number of
inconsistencies within our set of parameters. To resolve these inconsistencies, we configured a new set of parameters
corresponding to the one described by Zerlaut et al. [12].

At retinal level, we decided to use ON bipolar cells and therefore to invert the stimulus contrast: a moving white bar on
a black background. We also increased the size of the cortical area, the speed of the bar and the conduction speed of the
fibres to get closer to that used by Benvenuti et al. Unlike Zerlaut’s parameter set, we set the retino-thalamic input νAff

to 0. In fact, our input comes directly from the retinal model. We also used a much lower integration time because we
observed artefacts arising from under-integration (sawtooth curve). For details of all the modified parameters in this
section, please refer to the appendix A.3.1.

It was the implementation of all these changes that led to the result illustrated in Figure 2.6 A. We can see that the
response of the cortical columns close to the bar are active much earlier the further they are from the origin of the bar.
This means they have a greater latency. So we’re seeing anticipation. However, there is also a significant drop in the
VSDI signal just before its peak. This pre-peak drop is not present in the biological results of Benvenuti et al. visible in
figure 2.4 B. It is therefore an artefact whose origin we need to elucidate and then remove it.

Following on from the inconsistencies noted for the various parameters, we realised the existence of the 5th spatial
representation internal to Macular as detailed in the section 2.1.6. As a result, spatial parameters were overestimated
by a factor of 1.7 in our simulations. The effective length of the connections was 8.7 mm instead of 15 mm for the
excitators and 1.74 mm instead of 3 mm for the inhibitors. The effective fibre conduction velocity was actually 174
mm/s instead of 300 mm/s. These corrections generated a huge amount of instability in the form of oscillations and
an increase in the pre-peak drop (Fig. 2.6 B). As mentioned in section 1.4.2, the cortical model is known to exhibit
pathological activity in the form of regular oscillations associated with bifurcations. In specific regions of the parameters
space where the small changes in parameters can shift the state of the system from a rest state to oscillations [13].

In order to remove these two simulation artefacts, carried out a new set of changes to the parameters of our model. The
distance and conduction speed parameters of this set were selected to be as close as possible to those of Selma Souihel’s
article [14]. Details of these modified parameters can be found in the appendix A.3.2. We also removed all the cortical
columns located 1 degrees or less from the edges to limit edge effects.

We also set out to drastically reduce the external drive (νext) to avoid oscillations in the steady state. This resulted in
zero mean excitatory and inhibitory discharge frequencies in the steady state.

Figure 2.7 shows the result of this simulation in this case. We note the presence of a lot of oscillations despite the set of
parameters in more close to biology than the previous one. We had one major issue, the shape of the response is formed
by a succession of 2 positive peaks and 1 negative drop. In this setting, the VSDI or mean voltage The pre-peak drop is
even higher, without knowing why. We speculate that this shape is associated with an inhibitory/excitatory imbalance.
The first rising phase would be initiated by excitatory lateral connectivity, the pre-peak drop by the arrival of too much
inhibition and the second large peak by the onset of the retinal input. Lateral inhibition would therefore be stronger
than lateral excitation, enough to completely counterbalance it. On the other hand, the retinal feedforward input is
much stronger than the lateral connectivity, which enables it to compensate for the inhibition. The good point was that
oscillations are less present for lower external drive.

Stabilisation of the cortical model
After numerous unsuccessful attempts to get rid of the oscillations and the inhibitory drop. We started to think about
implementing two new properties of the retino-cortical model already studied and used by Mattéo DiVolo [13]. The
first property is the use of dynamic adaptation. Adaptation is a variable reproducing neurons desensitization following a
high activity. The second property is the use of a second-order retino-cortical model including the dynamics of the
variances and co-variances of the sub-threshold statistical quantities (µV , σV and τV ).

Unfortunately, the slowness of our simulations meant that we did not immediately implement these two solutions,
which would have required us to implement several more differential equations. The simulation time would have been
drastically increased. In preparation for work on dynamic adaptation, we modified the parameter set to use the one
found in The Virtual Brain (section 2.1.6). The transfer function fitting parameters have been changed (10 parameters
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Figure 2.6: Cortical response of the first corrections of the implementation of the retino-cortical model with a
0.5× 1.5 degrees bar moving at 6deg/s on a 31× 31 cell grid of 6× 6 degrees. A) VSDI signal with correction of inputs
(retinal excitation on inhibitors, biased connectivity) and Gaussian (self-connection, equal intra and inter-layer Gaussian).
B) VSDI signal with correction for inputs, Gaussian and spatial parameters (length of connectivity, conduction velocity).
The legend on the two graphs corresponds to the position in degrees of the cortical column relative to the origin of the
bar. The lighter the blue colour, the further the cortical column is from the origin of the bar.

Figure 2.7: Cortical response of the distance-optimised retino-cortical model with a 0.67× 2 degrees bar moving at
6deg/s on a 37× 37 cell grid of 8.1× 8.1 degrees. A,B) Excitatory (green) and inhibitory (red) activity. C,D) Excitatory
(green) and inhibitory (red) mean voltage. E) VSDI signal.

instead of 11). This parameter set has some differences from that of Di Volo et al. [13]. All these differences are listed
in appendix A.3.3. The most notable parameter is the decrease in the excitatory quantal conductance QE . This means
that the excitation is attenuated. When we tested this new set, we noticed that these parameters were much more stable
and made the oscillations disappear (Fig. 2.8 A). However, the pre-peak drop problem was still present.

In this set, we also switched to longitudinal graphs instead of square graphs. Because of the reduction in the height of
the simulated area, we were forced to reduce the height of the bar, which we set equal to the new height of the simulated
area. This graph format allows us to produce much longer motion trajectories while minimising the computation time
required. This transition was also motivated by the desire to study the origin of the inhibitory drop. We began to think
that it might be edge effects. To verify this, we wanted to increase the length of the simulated areas.
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To do this, we also had to reduce the width of the area because our simulations were too time-consuming. A simulation
showed that a simulation with 20× 4 cells had almost the same cortical response as with 20× 20 cells. The results
with longer longitudinal graphs did not ultimately change anything, and edge effects do not seem to be an issue.

Balance of excitation and inhibition
The reason for the pre-peak drop was eventually found in the bipolar cells. In our retino-cortical model, retinal cells
have an activation threshold. In our parameter set, this threshold was non-zero in bipolars. A parameter value inherited
from Berry’s model equation [1]. With this threshold to 0 mV, the drop disappears (Fig. 2.8 B). We think that this
threshold excessively slows down the system’s response because bipolars have to pass the threshold before to send
excitation to ganglion cells. As a consequence, there is a desynchronisation in the activation of bipolar cells in response
to the bar. Once this threshold was removed, all the bipolar cells in contact with the bar were activated without delay.
As a result, the response of the cortical columns is also more synchronised and their response is more stable. This
finally restores the balance between excitation and inhibition that had apparently been broken by the desynchronisation
of responses.

According to Mattéo Di Volo’s advice, inhibitors should always be 5 times more active than exictators. This was
no longer true our case, the excitators were too high. So to calm the excitators we increased their inhibitory quantal
conductance Qi. This increases the inhibitors’ control over the system. We also took the opportunity to reduce the
value of τB , which we felt was too high, and set it at 50 ms. The changes made to the parameters are listed in the
appendix A.3.4. The result obtained with these parameters can be seen in figure 2.8 C. We chose not to display the
curves closest to the edges of the cortex, which were more strongly affected by edge effects. We can see that there is a
nice anticipation with the cells far from the origin of the bar (light blue) activating before the others. There are no more
oscillations or drops, just small peaks after each latency.

However, our curve is still quite different from the biological reality (Fig. 2.4 A). Indeed, our curve is too symmetrical
and the latency slopes increase too abruptly. The increase in latency should be more gradual and the part of the curve
after the peak should have cortical columns with more condensed response curves than the part before the peak.

Figure 2.8: Cortical response of the retino-cortical model with new P parameters and bipolar threshold with a
0.67× 0.9 degrees bar moving at 6deg/s on a 20× 4 cell grid of 4.28× 0.9 degrees. A) VSDI signal with the new P
parameter set for the transfer function. B) Same as A but without bipolar threshold. C) Same as B with a set balancing
inh/exc.

Steady-state cortical activity
The previous results were still not close enough to what we were looking for. To be viable, Di Volo’s Di volo advised us
on the importance of always having a cortical model in a non null steady-state activity. This is the condition that has to
be met to obtain a network dynamic that is asynchronous and irregular as in an awake brain. We therefore decided to
develop a set of parameters revolving around a non-negligible external drive. We set it at 2 Hz, as in Di Volo’s article
[13]. However, the introduction of this external drive has led to the disappearance of latency. We hypothesised that
the addition of external drive increased the overall level of activity and could therefore drown out latency. To remedy
this, we decreased the inhibitory quantal conductance of the excitatory population. The aim is to remove some of the
inhibition received by the excitators in order to increase excitation in the network.

Inspired from biology we have also increased the size of the connections from the OPL to the bipolars by following
the literature [112, 113]. The characteristic time of ganglion cells was also increased to correspond to the same value
recommended by Olivier Marre. We extended it to other cells due to a lack of values in the literature.
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We have also redefined the size of the graph to use the same size as Benvenuti et al. It was also at this stage that we
applied our new methodology for creating stimuli as explained in the section 2.1.4. This allows us to improve the
accuracy of all the model’s spatial parameters and to set a frame rate equal to 60 Hz. The appendix A.3.5 catalogues all
these changes in the retino-cortical model.

This new set of parameters finally produces curves very close to what we were looking for (Fig. 2.9 A). The anticipation
is present, and the slopes of the latencies have no intermediate peaks or drops. They also increase much more gradually,
as seen in the experiment by Bienvenuti et al. These curves are also asymmetric, as desired. The response curves after
the peak are much more condensed. We believe that using a higher characteristic time of retinal cells has had a crucial
effect on this loss of asymmetry by creating a terminal part of the curve that decreases more slowly.

Simulation of large cortical area
A remaining problem with this new set lies in its instability for simulations on large networks (41× 15 cells), which
would reduce possible edge effects and would be preferable for experiments on simulated saccades. After a series of
tests, the connectivity probability parameter, known for its ability to reduce oscillations, was selected to stabilise the
network. We can see that using this parameter at pconnec = 0.0375 ((Fig. 2.9 B) strongly alters the graph obtained
previously (Fig. 2.9 A).

The last modification to be implemented was produced following the second coding sprint (November 2023) where
we considerably increased the speed of Macular. This enabled us to simulate quite larger graphs: 83 × 15 cells
(18.45× 3.15 degrees) (Fig. 2.9 C). The results are close to those of the two previous models, with a clearly visible and
clean anticipation. Increasing the horizontal size of the simulated area has become essential for studying the anticipation
of very slow speeds or high amplitudes. Indeed, larger speeds or amplitudes increase the capacity of latency to grow
over very long distances. If we want to see their dynamics correctly, the distance of the cortical area must be greater
than that of the latency.

Figure 2.9: Cortical response of the retino-cortical model with external drive non null with a 0.67× 0.9 degrees
bar moving at 6deg/s on a various grid size. A) VSDI signal with parameter set including non-zero external drive and
41x5 graph. B) Same as A with a new parameter set based on a connection probability (pconnec) of 0.0375. C) Same
as B with 83x15 cells and a new parameter set based on asymmetric retinal/cortical layers.

2.3 Conclusion
In conclusion, all of these trials and errors were gradually aggregated to give a final set of parameters detailed in the
appendix A.1 and illustrated by the diagram of the retino-cortical model in figure 2.3. Throughout these simulations I
developed a large number of stimuli of different proportions to adapt to each simulation.

The last result obtained highlights the success of our calibration of the retino-cortical model to reproduce the anticipation
by cortical latency observed by Benvenuti [3]. We used the same speed of 6 deg/s and obtained an anticipation speed
very close to theirs. Our retino-cortical model is now ready to study anticipation in more detail and continue with
simulated saccade.
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Chapter 3

Anticipation waves

3.1 Introduction
In this paper, benvenuti et al. [3] demonstrate the presence of an anticipatory wave that propagates ahead of feedforward
bar activity in macaque primary visual cortex. This anticipation is carried by the lateral connectivity of V1. The
retino-cortical model was calibrated so as to reproduce these results. Note however that, although our color gradient is
similar to the one used by these authors, it corresponds to different positions. Indeed, in our simulations, the cortical
area used is bigger than in their experiments (18 degrees versus 7 degrees). A larger simulated cortical area was indeed
needed to be able to correctly observe the effect of certain parameters such as bar speed or cortical latency.

3.1.1 Indicators for anticipation
From now, both simulated retinal and cortical areas are 2D spaces of 81× 15 retinal cells. As two consecutive retinal
or cortical columns are spaced by 0.225◦ of visual angle these areas correspond to 18.225◦ × 3.375◦. Using the
conversion factor of about 0.3 mm per degree in the retina, approximated from https://www.ncbi.nlm.nih.gov/
books/NBK11556/ and 3 mm per degree in the cortex for humans this gives a retinal area of ∼ 5.46× 1mm2 and a
cortical area of 54.6× 10mm2 with a spacing of 67.5 µm between retinal cells and 675 µm between cortical columns.
We discard the first and the last horizontal degree in all figures to reduce boundaries effects, giving thus an effective
cortical space of 16.45◦ long.

In this paper, we mainly consider the motion of a bar, moving horizontally, from left to right, along the x axis with a
constant speed vB . The bar starts to move at time t = 0 where the center of the RF of the cortical column located at
x = 0 coincides with the middle of the bar. The bar has dimensions 0.67× 0.9 degrees of visual angle, i.e. its height is
small compared to the vertical extent of the retina and the cortex. As a consequence, we will consider, in the definition
of anticipation indicators, that the bar response is characterized by two dimensional graphs, with one spatial dimension,
x, and the time, t.

Cortical anticipation
In this section, we define several indicators related to the cortical activity when responding to the moving bar. These
indicators are here introduced in a case where the sensory drive of the cortical model consists of the retinal response
to a white bar with neither gain control nor amacrine cells. This especially means that the retina is passive. We refer
this as control conditions (CTL). All parameters are given in the table A.1 of the appendix. The illustrative figure 3.1
corresponds to a bar moving at 6◦/s (equivalent to 18 mm/s in the cortex). This is also the value of the default bar
speed.

The indicators for cortical anticipation are based on the typical VSDI signal curves, shown in Fig. 3.1A, and reproducing
the experimental observations made by [3]. We first define quantities attached to individual columns, i.e. depending on
the spatial coordinate x.
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Figure 3.1: The paradigm of cortical anticipation by latency. A) Typical time course of the VSDI signal response
for a fixed cortical column located at x. The time to peak corresponds to the yellow dotted line. The insert shows a
zoom of the proximal part of the curve where the activation time is computed (the black dotted line corresponds to
the threshold θ, see text.). B) Global representation of the spatio-temporal VSDI responses using a collapse of
the VSDI signals. The curves corresponding to cortical columns located at different spatial locations are shifted so
that their maximum coincides. Then, these curves are colored so that the different cortical columns positions in the V1
field are represented by a color gradient (displayed on the top of the figure), from black (x = 0 degree, point where
the bar starts) to light blue (x = 18.45 degree). The legend at the top left represents the color gradient (from black
to light blue) associated with the position of the cortical column. C) inverted time space representation where the
cortical space (x coordinate, in degrees of visual angle) is represented as a function of time (in ms). The dotted black
line corresponds to the displacement of the center of the moving bar. This is a straight line, x = vB t (the center of the
bar is located at x = 0 when t = 0). The time to peak, tP (x), is represented by triangles, colored according to the color
gradient. The curve (orange line) is a straight line too, with equation x = vB (t− tP (0)), where tP (0) is the time to
peak for the column located at x = 0. The peak speed (PS) is the slope of this curve (thus, in CTL conditions, this
is the bar speed, vB). The activation time, tON (x) is represented by circles colored according to the color gradient.
The curve represents a crossover between two regimes, well fitted by straight lines (red curves), and separated by an
inflection point. The spatial position of this inflection point is the anticipation range (AR). The slope of the first linear
part (dark red dashed arrow) corresponds to the short-range activation speed (SRAS). The slope of the second linear
part (light red dashed arrow) is the long range activation speed (LRAS). In CTL conditions, this slope is equal to vB .
D) Maximal latency (ML) and Standard Peak Delay (SPD). The cortical space is represented as a function of the
latency (in ms). The latency increases until saturation (red vertical line), at a time called maximal latency (ML). The
peak delay (triangle) is constant and equal to the standard peak delay (SPD), (yellow vertical line).
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Local indicators.

• tcenter(x) is the time when the middle of the bar reaches the center of the receptive field of the column located
at x. We have tcenter(0) = 0.

• The activation time (AT), tON (x), is the time when the VSDI signal response becomes larger than a threshold
θ = 0.001.

• The latency is tL(x) = tON (x) − tcenter(x). Since tON (x) ≤ tcenter(x), the latency can be negative or
equal to 0. The latency increases therefore when its value become more negative.

• The time to peak (TTP) is the time tP (x) when the VSDI signal has its maximum (see Fig. 3.1B).

• The peak delay is tPD(x) = tP (x)− tcenter(x). This quantity can, a priori, have any sign, although in CTL
conditions it is always positive. This value can be negative though due to e.g. to the retina influence.

The latency, tL(x), depends on the distance of the column to the point where the bar started. To illustrate this dependence
we use a color code, similarly to the paper [3]. The different cortical columns positions in the V1 field are represented
by a color gradient (see Fig. 3.1B), from black (x = 0 degree, point where the bar starts) to light blue (x = 18.45
degree). Although, for a spatio-temporal representation x, t, there is a redundancy between the x coordinate and the
color, this representation is actually quite didactic and insightful. Especially, as shown in Fig. 3.1B, if one shifts all
these curves so that their peak coincides, one observes a change in the shape of the response prior to the peak: the
latency increases with the distance to the bar origin, so that the columns start to respond earlier and earlier. Following
[3] we interpret this as a cortical anticipation by latency. We now introduce global indicators to quantify this form of
anticipation.

Global spatial indicators. Although the latency corresponds to a time as a function of space, it is useful to invert
the axes and, instead, to represent space as a function of time: the curve tL(x) becomes x(tL) by a simple symmetry
with respect to the first diagonal. The cortical space, ploted in function of the activation time and the time to peak have
characteristic shapes illustrated in Fig. 3.1C. This allows us to define four spatial indicator, following Benvenuti et al.
[3]:

• The anticipation range (AR) is the maximal spatial limit of anticipation, the maximal distance at which
cortical columns constructively interact to anticipate motion, as argued in [3]. It corresponds to the ordinate of
the inflexion point in Fig. 3.1C. Beyond this spatial position, anticipation saturates because lateral connectivity,
which causes anticipation, has a finite radius. Consequently, beyond the anticipation range, the slope of the
activation time becomes constant (Fig. 3.1C), the activation time is no longer affected by the lateral cortical
propagation, but only by the bar speed.

• The short-range activation speed (SRAS) is the slope of the activation time before the inflection point (Fig.
3.1 C). This speed, actually sums up two different contributions: the bar speed and the anticipation speed
carried by lateral connectivity (Fig. 3.1C).

• The Long range activation speed (LRAS) is the slope of the activation time after the inflection point. This
cortical region is characterized by an absence of lateral cortical connectivity influence. In our model, its slope
is only constrained by the bar speed. We mention this quantity because it is expected to vary due to feedback
effects [3] and would become relevant with a model including a thalamus-LGN (see discussion).

• The Peak speed (PS) is the slope of the time to peak curve. It is parallel to the moving bar curve. It is constant
in our case, because the bar speed is constant.

Global temporal indicators. One can also plot x as a function of the latency (see figure 3.1D). We obtain two
temporal indicators, illustrated in Fig. 3.1D:

• The maximal latency (ML). One observes that the latency of cortical columns close from the starting point of
the bar (black circles) increases until saturation as the columns are located further and further from the starting
point of the bar. The saturation value is the maximal latency.

• The standard peak delay (SPD). In contrast to ML, the peak delay is actually independent of x, in all the
cases studied in the paper. We discuss this homogeneity in the discussion section. We call this value the SPD.

Interpretation. The figure 3.1 essentially shows that the moving bar triggers a wave of cortical activity, transmitted
by the columns sensing the bar to the distant columns via the lateral connectivity, at a speed which accumulates the
bar speed and the axonal velocity (Fig. 3.1B and C). This reproduces the observations of Benvenuti et al. [3] and
was interpreted by the authors as an indication that cortical anticipation mainly holds by latency. The accumulation
of the signals sent by the columns sensing the bar, via the lateral connectivity, advances the time when the distant

46



columns - not yet sensing the bar - start nevertheless to respond to it. This is the explanation of the change in the early
VSDI response profile (before the peak), in Fig. 3.1B, as a function of the color gradient. One observes therefore
that the latency becomes more and more negative with the distance of the cortical column to the position where the
bar starts, Fig. 3.1D, meaning that the cortical columns are informed earlier and earlier that something is arriving.
This observation holds until a saturation value, the maximal latency, where the gain of anticipation provided by the
lateral cortical connectivity reaches a maximum. This suggests that cortical connectivity and axonal velocity impacts
anticipation (sections 3.2.3, 3.2.4). As developed below, we also observe an anticipation by peak shift, where the peak
in the VSDI signal is advanced with respect to the peak in the RGCs response.

Retinal anticipation
Anticipation has also been observed in the retina, according to different modalities. The first characterization was
provided Berry et al. [1]. It is characterized by a shift in the peak of the ganglion cell response to a moving object,
occurring before the peak response to the same object when flashed [1, 102]. This can be explained by gain control
which has the effect of advancing the peak response of the cell’s activity. In our model, this effect can arise at the level
of BCs or RGCs. A detailed study was published in [14]. It shows that, with gain control, anticipation time grows
with the size and the contrast of the bar while it decreases with its velocity. In our retina model, amacrine cells can
also induce anticipation by advancement of the peak, independently of gain control, although these two effects can
constructively combine. We qualify this peak shift mechanism as peak anticipation or adapting anticipation (using
the terminology of [98]) since BCs and RGCs adapt according to their level of activity. Therefore, we quantify retinal
anticipation by a RGC peak shift and we define the same peak-based quantities as for the cortical case (time to peak and
SPD).

3.1.2 Model calibration result
The figure 3.1 illustrates the result of our model in CTL conditions, with a bar speed of 6◦/s. Our model reproduces
the shape of the latency curve shown in [3], Fig. 4: cortical columns far from the bar origin are activated much earlier
than the ones close to the bar origin. This curve is divided in two regimes, reproduced by our model, commented in
section 3.1.1 and illustrated in Fig. 3.1. In the first regime (short-range activation) the slope have a value of 24.8◦/s in
experimental data and of 21.3◦/s in simulated data. The inflection point differs though: 2◦ in experiments and 6.3◦ in
simulations. Also, the activation in our model can occur up to 880 ms before the center of the bar arrives at the center
of the receptive field (i.e. a maximal latency of −880 ms) while in [3] it is said that "latency scatter for the medium and
long trajectories that fully covered a wide range of values from 0 to −400 and −800 ms". We finally note a difference
in the time of the peak, very close to zero in experiments (Fig. 4D of [3]) but located at 139 ms in the simulation. To
understand these discrepancies, it is important to note that our simulations are made in control conditions i.e. without
any retinal anticipation mechanism, whereas such mechanisms are presumably present in experimental conditions.
Indeed, as commented later, adding retinal anticipation reduces these differences (section 3.3). Taken together, these
results provide a good basis for further explorations on the role of retinal and cortical effects on anticipation with
discrepancies expected to be reduced in the presence of a realistic retinal input.

3.2 Cortical anticipation depends on stimulus features and on physiological parameters
We now study study, in CTL conditions, the dependence of anticipation on several parameters, such as the bar speed or
contrast, and physiological parameters, such as the conduction speed following the modalities described in section 3.2.
The default value of the parameters, including the bar speed, are those reported in the Appendix A.1.

3.2.1 Increasing the retinal output amplitude enhances anticipation
We varied the retinal output amplitude (ROA), sent by retinal ganglion cells, in a range from 1 to 50 Hz (figure 3.3).
For this, we increased the amplitude C of the OPL kernel (eq. (1.1)). This has the effect of increasing the firing rate of
the RGCs in a linear way (Fig. 3.2). Note that we are still in CTL conditions here, the retina is passive. Increasing
the retinal input increases almost linearly the VSDI signal (Fig. 3.3 E) with a slight saturation presumably due to the
sigmoid activation functions FE , FI in the mean field model of cortical columns (eq. (1.9)). Here, we chose to stay in
the almost linear range. Indeed, we observed that increasing too much the amplitude of the input leads to pathological
oscillations which, as mentioned above, are artefacts of the cortical model.

The collapse of VSDI signals, shown in Fig. 3.3 A (1 Hz) and Fig. 3.3 B (35 Hz), has globally the same shape as
the paradigmatic figure 3.1A, although we observe a clear difference in the latencies between A and B. This is a first
indication that increasing the ROA enhances anticipation by latency. Fig. 3.3 C shows the temporal profile of the VSDI
signal for the cortical column located at the center of the lattice (x = 9◦, y = 1.35◦). One observes an increase in the
slope before the peak, resulting in an increase of the maximal latency (ML) which becomes more negative as shown
in Fig. 3.3 F (red trace). There is a saturation for large retinal inputs amplitude though. Along the same lines, we
plot, in 3.3 D, the spatial VSDI signal for the time when the central cortical column reaches its maximum. Note that

47



Figure 3.2: The amplitude of the retinal output changes linearly with the amplitude of the OPL.

the x coordinates has been shifted so that the central cortical column is actually located at x = 0 in this figure. We
observe a spread of the left part of the peak and a more abrupt slope on the right part, as the ROA increases. Those
combined effects results in a increase of the anticipation range (AR) as shown in Fig. 3.3 F (green trace), with again
a saturation effect. Finally, the spatial and temporal effects combine to increase the short range anticipation speed
(SRAS). Therefore, anticipation by latency becomes more prominent (ML and AR) and spreads faster (SRAS) as the
ROA increases.

Interestingly, we also observe a slight anticipation by peak shift. This appears in Fig. 3.3 C where we remark a shift
of the time to peak as the ROA increases. For a more quantitative study we have plotted in Fig. 3.3 H the SPD as
a function of the ROA. It is constant for RGCs, but essentially decreases for the cortex. This figure also shows the
difference between the cortical and retinal SPD, which is negative, meaning that the VSDI peak arises earlier than the
RGC frequency peak. Thus, in addition to show anticipation by latency, the VSDI signal is also a bit in advance on the
RGC peak. This effect is primary due to the cortical lateral connectivity. It decreases when the cortical extent decreases
as further commented in section 3.2.3. It is enhanced when the retinal input increases, up to some maximum at about 35
Hz, where the difference is maximal, i.e. where the VSDI peak anticipates the most the RGC frequency peak. However,
beyond 35 Hz, we start to observe (small) oscillations in the VSDI signal so that the increase of the curve after 35 Hz
might be an artefact of the model. It is interesting to note that even at small retinal amplitudes (1Hz), the cortex remains
8.8 ms ahead of the retina. In Fig. 3.3 I we have plotted the time profile of the frequency response near the peak for the
central RGC, and, in Fig. 3.3 J, the time profile of the VSDI, near the peak for the central cortical column. The red
traces correspond to a 1 Hz ROA and the green traces to 35 Hz. The green traces have actually been rescaled to match
the amplitude of the red ones. This is to show that, in addition to a simple rescaling (which makes the RGC response
overlap in Fig. 3.3 I), there are, in the cortex, non linear effects which modify the shape of the response and thereby
impact the anticipation.

To summarize, an increase in the ROA non-linearly enhances the anticipation which extends further, earlier and faster,
with a saturation when the amplitude of the retinal input becomes too large. Rising the ROA increases the overall
activity level transmitted laterally by cortical columns. Thus, more distant cortical columns are above the threshold
earlier as shown by the increase in ML and AR. The results also demonstrate the presence of a mechanism in the cortex
enabling anticipation by peak shift, an effect which increases with the amplitude of retinal input. This effect is quite
weaker though than the anticipation by latency (maximum 15 ms for the peak delay and minimum 200 ms for the
latency).
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Figure 3.3: The effect of the retinal output amplitude (ROA) on the cortical response. VSDI signal response to
ROA at A, 1 Hz and B) 35 Hz. The color bar on the left of Fig. A represents the color gradient introduced in section
3.1.1. C) Temporal VSDI signal in response to increasing retinal amplitude for the cortical column located at the
center of the lattice (x = 9◦, y = 1.35◦). D) Spatial VSDI signal in response to increasing retinal amplitude, for the
time where the central cortical column reaches its maximum. The x coordinates has been shifted so that the central
cortical column is actually located at x = 0. E) VSDI signal amplitude of the central cortical column versus the ROA.
F) Temporal and spatial indicators: maximal latency (red, scale on the right) and anticipation range (green, scale on
the left) versus the ROA. G) Speed indicator: short-range activation speed (red) versus the ROA. H) Retino-cortical
SPD variation versus the ROA for the central cell. The ganglion firing rate SPD is plotted in orange and the VSDI
signal in blue (scale on the left). In black, is represented the difference between the cortical and RGC SPD (scale on
the right). A negative value means a cortical peak arising earlier than the RGC peak. I) Shape of the central RGC
response profile to the moving bar, for 1 Hz (red) and 35 Hz (dashed green). Note that the red trace is normally quite
smaller than the green trace, but we have rescaled it to show that the difference between 1 Hz and 35 Hz, at the retinal
input level, is only a rescaling. This contrasts with J) VSDI signal, where the same rescaling let also appear distortions
due to the non linearities in the cortical model. The dotted vertical lines in I, J correspond to the peaks in the RGCs
firing rate or VSDI signal at 1 Hz (red) and 35 Hz (green).
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Stimulus contrast. We assessed the impact of the stimulus contrast in the movies by increasing it from 0.1 to 1 by
increments of 0.1. As we checked (Fig. 3.4) the effect is completely equivalent to increasing the amplitude C of the
OPL kernel and thus, the amplitude of the retinal input.

Figure 3.4: Stimulus contrast and retinal output amplitude comparison. A) Temporal and spatial indicators
in function of VSDI amplitude: Maximal latency with retinal output (red) or stimulus contrast (dark red) variant.
Anticipation range with retinal output (green) or stimulus contrast (light green) variant. B) Speed indicator: short-range
activation speed with retinal output (red) or stimulus contrast (dark red) variant.

3.2.2 Cortical anticipation non monotonously depend on the bar speed

Figure 3.5: The effect of the bar speed on the cortical response. A) decay of the BC voltage peak and RGC firing
rate (ROA) as the bar speed increases. B) VSDI signal amplitude of the central cortical column. C) Temporal and
spatial indicators: maximal latency (red) and anticipation range (green) in function of the bar speed. D) ML and AR
as a function of the RGC firing rate, in the case where the firing rate is constrained by the retinal input (red for ML,
dark green for AR) and in the case where the firing rate is constrained by the bar speed (brown for ML, light green
for AR). E) Speed indicator : short-range activation speed (red) versus the bar speed. F) SRAS as a function of the
ganglion firing rate, in the case where the firing rate is constrained by the retinal input (red) and in the case where the
firing rate is constrained by the bar speed (brown). G) SPD difference between cortical VSDI and ganglion firing rate.

We have done simulations with speeds ranging from 3 ◦/s (equivalent to 18 mm/s of the cortex) to 30 ◦/s (resp. 90
mm/s in the cortex), still in conditions where the retina is passive, with the default parameters of Appendix A.1. Our
results are summarized in Fig. 3.5. The first remark is that, increasing the bar speed decreases the amplitude of the
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retinal input. This is because the OPL kernel KBi in eq. (1.1) has less time to integrate the stimulus. We actually see
the decrease in the BCs activity and RGCs activity as the bar speed increases (Fig. 3.5 A). This induces a decrease in
the VSDI signal activity (Fig. 3.5 B). Thus, from the conclusions of the previous section, one expects a reduction of the
anticipation by latency. Increasing the bar speed indeed diminishes the ML and the AR (Fig. 3.5C).

Is this effect on ML and AR only due to the ROA reduction or are there more subtle, non linear, effects hidden ? To
address this question we plotted ML, AR as a function of the ROA itself controlled by the bar speed and compared
to the case of Fig. 3.3 F where the ROA was under direct control. (Fig. 3.5 D). For the range of bar speeds that we
explored the ROA varies in the interval [10, 45] Hz, a bit less that the range of retinal inputs explored in the previous
section. In the common interval of variation, we observe that the AR, when it is controlled by a direct variation of the
ROA (dark green curve) behaves almost linearly, similarly to the case when the retinal input is tuned by the bar speed
(dark green curve), although with a smaller slope in this case. In contrast, the ML decreases non linearly, and goes to
saturation when the ROA is directly tuned (red trace) whereas it decreases sharply and slightly non linearly in the case
where the ROA is tuned by the bar speed (brown trace). This evidences that the decay in ML and AR versus the bar
speed is not only due to the decay in the ROA but includes additional, non linear effects.

Similarly, we studied the effect of the bar speed on the SRAS, Fig. 3.5 E. This quantity shows an increase up to 9◦/s
(2.7 mm/s in the retina, 27 mm/s in the cortex), then a decrease, suggesting the existence of a range of preferred speeds
where anticipation by latency is optimal. Note that this effect cannot be explained only by the decrease of the ROA, as
shown by Fig. 3.5 F. The red trace (direct control of ROA) is rather different from the curve where ROA is controlled
by the bar speed (brown trace).

One actually expects three distinct effects as the bar speed increases. First, a decrease of the VSDI signal, since the
OPL convolution kernel has less time to integrate the stimulus, directly impacting the anticipation. Second, a cortical
column integrates the retinal signal as well but if the speed of the bar is very small (say, even static) its response occurs
within a characteristic time quite shorter than the time it takes to the bar to reach the next column. In other words, when
the bar arrives to the next column, the activity coming from the previous one has dropped to zero. This does not allow
the columns to build up a non linear propagating front travelling faster than the bar. As the bar speed increases this front
takes place and anticipation gradually increases. However, the lateral cortical connectivity has less time to build up long
range excitation. Thus, as a third effect, the activity generated by this bar eventually catches up the one carried by the
lateral connectivity. In consequence, the speed of anticipation is gradually overwhelmed by the speed of the bar. This
last effect explains the maximum observed in the SRAS. Beyond this point anticipation by latency is more and more
driven by the decay of the VSDI signal, as the bar speed approaches the conduction speed (although we are far from
this limit in our bar speed range).

Finally, we investigated the role of the bar speed on the anticipation by peak shift (Figs. 3.5 G). The SPD shows up a
minimum at about 4.1◦/s, where the advance of the cortical SPD with respect to the RGC SPD is maximal. After this
minimum there is a non linear, sigmoidal like, increase of the SPD, which switches from negative to positive at about
16◦/s. Thus, for larger speed, the cortical peak is delayed with respect to the RGC peak. This effect of the SPD can be
explained as follows. An increase in the speed causes a reduction in the RGC response (Fig. 3.5 A) and cortical SPDs
before stabilising above 9 ◦/s. The RGC SPD actually stabilizes at a time which is nearly the characteristic integration
time of the RF, about 100 ms, as expected from a direct integration of (1.1). This explains the observed saturation.

To sum up increasing the bar speed first decreases the amplitude of the retinal input. In parallel, one observes a
monotonous decrease of ML and a (moderate) decay of AR. However, this detrimental effect on anticipation is not only
due to the decay of the output; additional, non linear effect take place. This is prominent when observing the SRAS
which shows a "preferred" speeds range (at about 9◦/s) where it is maximal. This preferred speed is also the place
where the SPDs of RGCs and cortex saturate. We also observe a slight anticipation by peak shift (overwhelmed by
anticipation by latency) with a "preferred" speed at about 4.1◦/s.

3.2.3 The role of excitatory and inhibitory connections length on cortical anticipation
We have next explored the influence of the excitatory and inhibitory connectivity lengths on cortical anticipation, an
effect which cannot be studied experimentally (Fig. 3.6). We need to recall first a salient feature of the model. The
cortical connectivity is modeled by a normalized Gaussian kernel (section 1.4.2, eq. (1.11)) where the cortical extent
(excitatory or inhibitory) is the mean square deviation of the Gaussian. As a consequence, the shorter the cortical
extensions, the more the Gaussian connectivity profile is concentrated around the cortical column’s receptive field, with
a higher weight. Inversely, increasing the cortical extensions spreads the Gaussian and reduces its weights. Therefore,
acting on the Gaussian mean square deviation dramatically influences the value of the mean cortical column voltage for
the excitatory and inhibitory populations as well as their polarisation in the steady state, with, thereby a significant
impact on the VSDI signal, AR, and ML. This is illustrated in Fig. 3.6.
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We maintained the ratio between the two respective lengths to a constant ratio of 0.2 so as to keep the balance between
excitation and inhibition extents. The excitatory extent was then varied from 1◦ to 7◦ and the inhibitory extent from
0.2◦ to 1.4◦. The first prominent effect, observed in Fig. 3.6 A, is the behaviour of the VSDI signal. In contrast to the
previous cases, it is non monotonous. It decays up to a minimum at about 2◦ before increasing. To better understand
this behaviour we have plotted, in Fig. 3.6 E, the peak of the excitatory mean voltage (called µV,E in the appendix
B.1) as a function of the excitatory cortical extent (dark green) while the light green curve represents the excitatory
mean voltage at rest. The difference between the two, "mean voltage difference", is shown in Fig. 3.6 F (dark green).
Likewise, Fig. 3.6 G shows the peak of the inhibitory mean voltage (brown) and inhibitory mean voltage at rest (red),
while the red trace in Fig. 3.6 G shows the difference between these two quantities. The total VSDI signal as a function
of the cortical extent is a linear combination of these two traces, (eq. (B.11), appendix B.1).

When the cortical extent increases from 1◦ up to 2◦ we observe that the excitatory and inhibitory mean voltages increase
while the mean voltage differences decreases, explaining the observed decay of the VSDI signal. This decrease is due
to the fact that the mean voltage at rest increases faster than the peak mean voltage, for both population. As anticipated
above, this behaviour can be explained by the Gaussian connectivity profiles. Increasing the cortical length decreases
the intensity of the coupling between two cortical columns. Short extensions give a concentrated Gaussian with strong
weights but short range influence. When the inhibitory cortical extent is 0.2◦ (resp. 1◦ for the excitatory cortical extent),
the inhibitory Gaussian is so concentrated that its weight far exceeds that of the excitatory. This inhibitory dominance
gives rise to a strong steady-state hyperpolarisation and an overall sensitisation of the cortical column which reacts
more strongly to the stimulus. This hyperpolarisation is reduced by the elongation of the inhibitory extensions above
0.2◦. This mean votage difference decreases leading to a reduction in the VSDI. From 2◦, we observe a decay in the
steady state voltage for excitatory and inhibitory population, corresponding to a new phase of hyperpolarisation at rest.
When the cortical extent increases, the excitatory and inhibitory weights decrease thereby diminishing the mean voltage
at rest. In contrast, the mean voltage peak increases for excitators and have a moderate variation for inhibitors. As a
consequence, the mean voltage differences increase, leading to an increase of the VSDI.

We observe a positive effect on anticipation by latency since AR and ML increase when the cortical extent increases
(Fig. 3.6 B) as well as SRAS (Fig. 3.6 C) with a saturation for an excitatory and inhibitory length respectively at 7◦ and
1.4◦. Here, it is interesting to note that the measured AR is always larger than the length of the corresponding excitatory
connectivity (black dotted line, Fig. 3.6B). The cortical columns are therefore influenced beyond the excitatory extent,
and, therefore also earlier, promoting anticipation. This is particularly true up to 4◦ where this effect is maximal.
Beyond 7◦, the AR and ML start to saturate. We believe that this arises because the Gaussian extent increases at the
expense of proximity activity until the weights on the periphery of the Gaussian become insufficient to activate the
cortical columns, corresponding to this limit of 7◦.

We observe that the SPD is also affected by the increase in cortical extent, Fig. 3.6 D. For cortical extent smaller than
2◦ the cortical peak is delayed with respect to the RGC peak. In particular, as the connections length tends to 0, the
SPD difference (black trace) in Fig. 3.6 tends to 0. This justifies our comment in section 3.2.1 where we claimed that
the difference between RGC and VSDI SPD is primary due to the cortical lateral connectivity. Beyond 2◦ the cortical
SPD decreases (while the RGC SPD obviously stays constant), Fig. 3.6 D, so that the VSDI signal peak is more and
more in advance to the RGC peak with a saturation at about 5◦. The time scale of this peak delay (maximum −14 ms)
is quite lower than the ML though.

Therefore, anticipation is enhanced by increasing the length of excitatory and inhibitory fibres at a constant ratio for
values inferior to 7◦. This improvement also involved an earlier shift in the VSDI peak. These effects are highly
dependent on changes in the Gaussian profile. The effect is the strongest with an excitatory length of 4◦ and an
inhibitory length of 0.8◦. This is close to the physiological connectivity that we use in the rest of the paper.

3.2.4 The role of conduction velocity
We finally investigate the influence of fibre conduction velocity between cortical columns on anticipation in control
conditions (Figure 3.7), in the range 100− 333 ◦/s. The effects are rather easy to resume and are shown in Fig. 3.7.
There is no effect on the VSDI signal. The ML slightly decreases while the AR slightly increases. More interesting is the
behaviour of SRAS which is increasing almost linearly. In the paper [3] Benvenuti et al. proposed a phenomenological,
physiologically plausible model of lateral cortical integration in response to a moving bar (Fig. 3 of their paper). In their
model, SRAS increases linearly with a 1:1 ratio to the fibre conduction speed (Fig. 3D of their paper). In our model,
which integrates more biological features, we also observe a (quasi)-linear behaviour but the slope, ∼ 0.035 is far from
1. In our opinion, this is because they only used lateral excitation while inhibitory lateral connectivity also plays an
important role. Inhibition acts as in impediment to the activation of cortical columns, explaining the small slope. The
increase in fibre conduction speed is also accompanied by a very slight decrease of 0.6 ms in the shift between the
cortex and the ganglion cells SPD (3.7 E).
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Figure 3.6: The effect of excitatory and inhibitory connectivity length on the cortical response. In the whole figure,
the variable on abscissa is the excitatory cortical extent, but recall that there is a constant ratio with the inhibitory
extent. A) VSDI signal amplitude of the central cortical column versus the cortical extent length. B) Temporal and
spatial indicators: anticipation range (green) and maximal latency (red) in function of excitatory. The black dotted
line represents the equality between distance and length of excitatory connectivity. C) Speed indicator : short-range
activation speed (red) in function of excitatory extent. D) Difference between RGC SPD and VSDI signal SPD. E)
Excitatory mean voltage at the peak (dark green) and at the steady-state (light green). F) Inhibitory mean voltage
at the peak (dark red) and at the steady-state (light red). G) Mean voltage peak amplitude for excitators (green) or
inhibitors (red). This is the difference between the average peak voltage and the steady state voltage.

To sum up, the only remarkable effect induced by an increase in the conduction velocity is a linear increase in the SRAS,
similar to what has been conjectured by Benvenuti et al. in [3], but with a quite smaller slope, due to lateral inhibition.

We have shown that our cortical model can reproduce the cortical anticipation observed experimentally, although with
some quantitative discrepancies, and explored effects that cannot be studied in an experimental setting. The anticipation
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Figure 3.7: The effect of fibre conduction velocity on the cortical response A) Temporal and spatial indicators:
anticipation range (green) and maximal latency (red) in function of excitatory and inhibitory extent. B) Speed indicator:
short-range activation speed (red) in function of fibre conduction velocity. C) Difference between RGC SPD and VSDI
signal SPD.

in our model clearly results from the propagation of activity in an excitatory/inhibitory balanced horizontal network. We
have also shown that, in addition to latency, cortical anticipation has a peak shift component. The ability of this system
to anticipate is closely linked to a few parameters. Increasing the amplitude (Fig. 3.3) or the length of connectivity at a
constant inh/exc ratio (Fig. 3.6) improves the ability to anticipate by shift and latency. On the contrary, increasing the
speed of the bar (Fig.3.5) first increases anticipation then decreases it, beyond a "preferred speed". Finally, increasing
the conduction velocity of cortical fibres (Fig.3.7) allows anticipation to propagate more rapidly in the cortex, as
expected. This propagation remains limited by inhibition though.

3.3 Cortical anticipation is influenced by the retina
We now investigate how the cortical response behaves if the retinal drive is itself generating peak anticipation during
the integration of the motion. Our retina model first implements gain control following [1, 102]. This has the effect of
advancing the peak response of ganglion cells’ activity. The effect increases with the size and the contrast of the bar
while it decreases with its velocity [108, 114]. Anticipation in the retina can also be studied from the point of view of the
population, taking into account the interactions between the different cells. We have therefore implemented amacrine
cell connectivity and designed a retinal circuit capable, under certain conditions, of improving retinal anticipation.
Theoretical and numerical results concerning the role of lateral connectivity in retinal anticipation of motion trajectories
can be found in [108, 114]. Note that, in general, these mechanisms generating peak anticipation also modify the time
profile of the RGCs response to the moving bar (see Fig. 3.8 E, 3.10 E). The resulting effect on the cortical response is
thus not only a shift in the VSDI signal peak, but a change in its global shape as well (see e.g. Fig. 3.8 F, 3.10 F or Fig.
3.12). This entails potential changes in the VSDI signal amplitude and in the latency. In general, the global effect is
quite entangled.

Gain control and amacrine cells connectivity cause, on one hand, a decrease in the ROA, and on the other hand, a shift
of the response peak earlier while changing its shape. Now, as we saw above, decreasing the amplitude of the retinal
input impacts the cortical response. Thus, to isolate the effect of e.g. gain control on anticipation we need to compare
the situation with gain control to the situation with no gain control, while the ROA are identical. The set of control
simulations where no effect (gain control or amacrine cells network) is present, but where the amplitude of the retinal
input is rescaled to match the case where the effect is present is called "equivalent retinal output amplitude" (EROA).

3.3.1 Gain control in the retina enhances cortical anticipation
In the model, gain control can be present in BCs or RGCs. We ran simulations with increasing values of the strength of
these two gain controls and compare these results to EROA conditions.

Variation of BCs gain control. We first simulated the response to the moving bar with a bipolar gain control
(parameters hB in eq. (1.2)) varying between 0 and 9.2 mV/s. As shown in [108, 115] gain control triggers the
appearance of adapting anticipation in the cortex. We investigate here what is the induced effect on cortical anticipation,
by latency and by peak shift.

The increase in hB is first associated to a moderate decrease in the amplitude of the VSDI signal (Fig 3.8A). This was
expected since the strength of gain control in BCs reduces the amplitude of the retinal response. We observe however a
slight deviation of the VSDI signal compared to the EROA condition: the amplitude of the VSDI signal remains larger.
This is because, when hB increases, gain control changes the shape of the BC response (not shown) and thereby the
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RGC profile integrated by the cortex (Fig. 3.8 E, F). Anticipation by latency (AR and ML) is slightly favoured for
small values of hB (≤ 4.3 mV/s) before being attenuated. There is no difference with EROA for AR. In the case of the
ML, the decreasing regime is less marked than for EROA condition. For a gain control of 9.2 mV/s, ML increases by
7.6% more than EROA (Fig. 3.8 B). This indicates an additional positive effect of gain control on ML, which partially
compensates for the anticipation decay due to retinal amplitude output reduction. The SRAS increases much more
than in the EROA condition (Fig. 3.8 C). In comparison, it is 26.7% faster than the speed observed in EROA for BCs
gain control at 9.2 mV/s. This effect is strong enough to compensate and even reverse the slight decrease due to the
reduction in the amplitude of the retinal input.

Concerning the anticipation by peak shift, the presence of BCs gain control results in a −77 ms (−51.5%) increase
in RGC SPD between hB = 0 and hB = 9.2 mV/s (Fig. 3.8 E). This is accompanied by an earlier shift in the cortex
peak of −72.5 ms (−53%) (Fig. 3.8 F), corresponding to a strong anticipation by peak shift. Note the difference in the
response profiles for hB = 0 (red traces) and hB = 9.2 mV/s (green dashed traces) in the RGC response and in the
VSDI response. Fig. 3.8 D illustrates the evolution of the RGC SPD (orange trace), the cortical SPD (blue trace), and
the difference of these two quantities (black trace). This difference shows a maximum at hB = 4.9 mV/s.

To sum up, this study demonstrates the direct influence of retinal peak anticipation on the cortex when increasing the
BCs gain control. BCs gain control induces a earlier shift of the RGC peak, a reduced amplitude in the retinal input, and
a change in the RGC response profile, with a corollary anticipation in the VSDI signal, by adaptation and by latency.
However, the impact on anticipation depends on the level of BCs gain control. For small hB (≤ 4.9) the main effect is
an increase in the peak shift with no significant effect on the cortical anticipation by latency. For larger hB anticipatory
waves propagate faster (SRAS) than in EROA condition but with a reduced latency (ML) and a reduced range at which
cortical columns begin to anticipate (AR). Large hB lead to a reduction in the peak shift of the cortex, detrimental
effects on ML and AR, while SRAS saturates. This suggests therefore that there is an optimal value for BCs gain
control.
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Figure 3.8: The effect of bipolar gain control strength, hB , on the cortical response. A) VSDI signal amplitude of
the central cortical column versus hB . B) Temporal and spatial indicators: anticipation range (green) and maximal
latency (red) versus hB . C) Speed indicator : short-range activation speed (red) in function of bipolar gain control
weight. In A, B, C, we also drawn the Equivalent Retinal Output Amplitude (EROA) curve. This is the dotted black
curve with the same coloured symbols. D) SPD for RGCs (orange), VSDI signal (blue) for the central cell (scales on
the left) and difference between RGC SPD and VSDI signal SPD (black, scales on the right). E) Shape of the central
RGC response profile to the moving bar, without gain control (red) and with BC gain control (dashed green). Note
that the two traces have been rescaled to have the same maximum. This is to emphasize the change in the shape of the
response induced by BCs gain control. F) VSDI signal, same conditions. In E,F, the dotted lines correspond to the
peaks in the RGC firing rate or VSDI signal without BCs gain control (red) and with it (green).

Variation of RGCs gain control. Here, we varied the RGCs gain control, hG, from 0.18 mV−1Hz to 0.54 mV−1Hz
(Fig. 3.9). Note that the range of values is very different from BCs gain control because the non linearity in the gain
function is quite different (see eq. (1.5) versus (1.8)). The result shows strong similarities with BCs gain control though.
The first similarity is that the stronger the gain control, the lower the VSDI signal (Fig. 3.9A) with a similar range
of values, although the decay of the VSDI signal curve is identical to the EROA condition and has a different profile
than for BCs gain control. As a second similarity, the RGCs gain control reduces AR and ML (Fig. 3.9B). However,
this reduction is steeper and monotonous. Compared to EROA condition, AR remains unchanged while ML increases
slightly (6.1% at 0.54 mV/s). The SRAS curve shows, in contrast, a big difference with the bipolar case. SRAS
increases up to hG = 0.29 mV/s before decreasing slightly (Fig. 3.9C). The EROA curve shows a smaller increase
and a larger decrease. RGCs gain control has therefore a positive effect on SRAS (21.9% at 0.54 Hz). This effect is
opposed to the negative effect of retinal amplitude reduction. Below 0.29 mV/s, the positive effect predominates before
being overwhelmed by the reduction in retinal amplitude.

We observe an increase in the peak shifts in the retina and in the cortex by the addition of RGCs gain control. The
RGCs arises 50.5 ms earlier for hG = 0.54 mV/Hz compared to control conditions, hG = 0 (Fig. 3.9 E) while the
cortical SPD occurs up to 52 ms earlier (−38.1%) in the cortex (Fig. 3.9 F). As shown by Fig. 3.9D, when hG increases,
the RGC SPD (orange trace) decreases as well as the cortical SPD (blue trace), while the difference between the two
decreases for small values of hG (< 0.1 Hz/mV) and then stays constant (black trace). Fig. 3.9E, F also reveals a major
difference with BCs gain control (compare to Fig. 3.8 E, F): the response profile of RGCs and cortical columns is quite
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Figure 3.9: The effect of RGCs gain control strength, hG, on the cortical response. The representation is the same
as in Fig. 3.8

less modified than in the case of BC gain control. Essentially, RGC gain control only entails a peak shift. In contrast
BCs gain control induces a cascade of convolutions up to the RGC, modifying the RGC response profile and the VSDI
signal.

To conclude, the RGCs gain has a negative effect on cortical anticipation by latency while transferring the adaption
anticipation coming from the retina and enhancing the intrinsic cortical shift. SRAS shows also some improvement in
the presence of RGC gain control. A similar compensatory effect is observed in ML (compared to EROA), but not
sufficient to compensate the decrease in ML. Finally, we mentioned in section 2.2.2 that the time of the peak in CTL
conditions is located at 139 ms, while the peak observed in experiments (Fig. 4D of [8]) is very close to 0. We proposed
that the discrepancy ought to be due to the absence of retinal anticipation mechanisms in CTL conditions. Here we see
that combining the maximal peak shift due to BCs gain control (−72 ms) and the peak shift due to RGCs gain control
(−52 ms) we arrive at a cumulative peak shift of −134 ms, so that, compared to CTL, the time to peak with gain control
is close to 0, as observed in experiments.

3.3.2 The anticipatory role of amacrine cells
Here, we study the effect of lateral ACs inhibition. ACs, like horizontal cells, provide a lateral connectivity somewhat
entangling the "vertical" information channels from photoreceptors to retinal ganglion cells via bipolar cells. Although
some ACs can have excitatory connections (e.g. cholinergic) we mainly focus here on inhibitory effects of ACs.
Amacrine cells constitute networks which modulate and can potentially propagate the response of BCs to a moving
signal to other BCs and RGCs. This depends though crucially on the scaling between synaptic weights (wA

B , wB
A , wA

G,
wB

G in the model) and characteristic integration times (τA, τB , τG in the model). A detailed study in [16] shows that
tuning these parameters dramatically change the shape of the response to simple flashes (e.g. from monophasic response
to biphasic), while [108, 115] emphasize the effect of stimulus induced wave propagation leading to an advancement
of the peak time in RGCs. The network response to the moving bar also depends on the connectivity structure. By
construction, our model has a feedback connectivity where BCs act on ACs which modulate BCs back. But, one can
also study a feed-forward case where BCs input ACs without reciprocal connection, simply by setting wA

B = 0. S.
Ebert [116] shown in her thesis that the response is rather different. Especially, with feedback connections ACs can
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induce effects similar to BCs gain control while modifying the spatio-temporal BC response (e.g. leading to biphasic
or polyphasic responses even if the OPL input is monophasic [16]). The aforementioned studies were focusing on
anticipation at the retinal level. Here, we analyse the impact on cortical anticipation, along the same lines as the previous
sections, feed-forward versus feedback inhibition.

Feed-Forward amacrine inhibition. We study first the direct influence of feed-forward inhibition pathway with
connectivity from BCs to ACs and from ACs to RGCs, respectively characterized by the parameters wB

A and wA
G in eq.

(1.2). We varied wA
G ≤ 0, controlling the intensity of ACs synapses to RGCs, and wB

A ≥ 0, controlling the intensity
of BCs synapses to ACs, from 0 to 1 Hz, restricting to the case wA

G = −wB
A . The other parameters are tuned to the

control value (appendix A.1). The results are shown in Fig. 3.10. As expected, the inhibitory effect of ACs induces a
decrease in the VSDI signal amplitude (Fig. 3.10 A). Note that the VSDI signal curve in this condition is essentially
indistinguishable from the EROA curve, confirming that the effect of ACs on VSDI, in feedforward conditions, is only
a drop in the amplitude of the retinal input. Fig. 3.10 B shows a detrimental effect of forward inhibition on the AR,
as well as on the ML, although less important than in EROA. In contrast, the comparison of the SRAS obtained with
feedforward inhibition and its corresponding EROA reveals a compensatory effect of the retinal amplitude. While
EROA decreases fast, SRAS remains relatively constant suggesting a mechanism which counterbalances the decrease in
speed due to the decrease in amplitude.

The most prominent effect occurs on the SPD of RGCs (orange trace) and VSDI signal (blue trace) which decrease
sharply (Fig. 3.10 D), though with a difference becoming smaller and smaller in absolute value (black trace). These
behaviors are accompanied by a strongly advancement of −104 ms (−69.4%) for the RGC spd (Fig. 3.10 E) and of
−88 ms (−64.2%) for the VSDI signal peak (Fig. 3.10 F), when

∣∣wA
G

∣∣ = wB
A = 1 Hz. Note that we observe also

a small rebound of the VSDI signal (Fig. 3.10 F), arising when
∣∣wA

G

∣∣ becomes large. When the bar arrives in their
receptive field, BCs activity increases, increasing the ACs activity and their inhibitory effect on the RGC. When

∣∣wA
G

∣∣
is large enough it takes over the excitation from BCs and the RGC firing rate drops to 0. Because the ACs have here a
shorter time scale than BCs (corresponding e.g. to the peak of the green dashed curve in Fig. 3.10 E), their effect lasts
shorter and the rebound corresponds to the residual activity coming from BCs.

Thus, the presence of feedforward inhibitory connectivity implements adapting anticipation within the cortex, with an
increasing effect as the intensity the synaptic weights increases, while severely penalising cortical latency anticipation
(AR, ML) and intrinsic cortical shift. Surprisingly, though, the speed of the anticipatory wave remains stable thanks to
compensation for the decay of the amplitude of the retinal input. All these effects are not simply due to a decrease in
the ROA but entail additional effects presumably due, as for gain control, to the difference in the BCs response profile.

Amacrine feedback inhibition. The feedback loops BCs → ACs → BCs induce a complex interaction between
the moving object, the local cells response and the influence of these cells on distant cells, propagated via the lateral
amacrine inhibition. The picture is that of a moving bar propagating in a non homogeneous landscape of activities
modulated by the amacrine network. This entails specific effects, not present with a feedforward connectivity, such as
the existence of resonant frequencies [15], a change in the shape of BCs response [16] or the existence of a preferred
speed range at which adapting anticipation is maximal [116]. In addition, the feedback loop propagates inhibition
producing a decay of the response before and after the peak. This actually differs from gain control, which only acts
on the post-peak portion of the curve. It has been shown that these feedback effects can be characterized by (1) the
characteristic integration times of BCs (τB) and ACs (τA); (2) the average intensity of the connection from BCs to ACs,
wB

A ≥ 0, and ACs to BCs, wA
B ≤ 0. Actually, the relevant parameter is µ = −wA

B wB
A τ2, where 1

τ =
∣∣∣ 1
τB

− 1
τA

∣∣∣. In

particular, this shows that the synaptic weight effects of the feedback loop is characterized by the product wA
B wB

A . Here,
we keep τA, τB constant and vary wB

A with wA
B = −wB

A from 0 to 12 Hz. The values of the other parameters are given
in the Appendix A.1. The goal here is to show an example of the potential effects of this type of connectivity while a
more exhaustive study would require to vary other parameters as well, a task well beyond the scope of this paper.

The result of our simulations are shown in Fig. 3.11. The amacrine feedback loop primarily drops the amplitude of
the VSDI signal with no significant difference from the EROA (Fig. 3.11A). It also influences the ML as well as AR
(Fig. 3.11B) with a slight optimum. A comparison with the corresponding EROA curve reveals a negative effect of the
feedback loop in addition to that caused by the reduction in the amplitude of the retinal input, particularly for AR (−9.1
% at 12 Hz) but also for ML (−3.7 % at 12 Hz). On the opposite, the SRAS is a little bit higher. This increase contrasts
with the reduction observed in the EROA condition. At 12 Hz, the difference with EROA is 39.3 %. This indicates a
compensation of the retinal input decay by the amacrine feedback loop. This compensation counterbalances up to 6 Hz
before being overtaken. The simulations also reveal an earlier SPD shift of 50 ms (−36.6 %) for RGCs (Fig. 3.11E)
transmitted to the VSDI signal. We actually observe in Fig.3.11E and F, as in the previous section, a change in the
shape of the RGCs response and VSDI (green traces), compared to control (red traces). The SPD for RGCs and VSDI
signal, as well as their difference, versus wA

B is shown in Fig. 3.11D. The RGC (orange trace) and cortical (blue trace)
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Figure 3.10: The effect of forward inhibition, controlled by wA
G = −wB

A , on the cortical response. A) VSDI signal
amplitude of the central cortical column. B) Temporal and spatial indicators: anticipation range (green) and maximal
latency (red). C) Speed indicator : short-range activation speed (red). D) SPD for RGCs (orange), cortical columns
(blue) and difference between the cortical and RGC SPD (black). E) Shape of the central RGC response profile to
the moving bar, without feedforward AC connection (wA

G = −wB
A = 0) (red) and when these parameters take the

maximum value (
∣∣wA

G

∣∣ = wB
A = 1 Hz, dashed green). Note that the two traces have been normalized to have the same

maximum at 1 Hz. F) VSDI signal, same conditions. The dotted lines in E, F correspond to the peaks in the RGC firing
rate or VSDI signal without feedforward AC connection (red) and with it (green).

SPDs increase but their difference diminishes (black trace). This shows an increase in retinal SPD at the expense of
cortical SPD. The difference is minimal at wB

A = 12 Hz but the SPD is maximal at this same connectivity value. A
behavior similar to the feedforward effect but with a smoother slope.

These results demonstrate the capacity of amacrine retro-control to provoke adapting anticipation influencing the cortex.
However, this is accompanied by a negative effect on cortical anticipation by latency mainly manifested by a drop in the
AR, ML and of the cortical peak shift.

3.3.3 The anticipatory impact of the retina
We now synthesize our observations about the cortical correlates of the retinal anticipatory mechanisms. Although our
investigations are absolutely non exhaustive - a more detailed study would require to vary a larger set of parameters
in the model - it reveals several effects which are generic, i.e. present on a wide range of parameters value, although
the quantitative observations may depend on these parameters. These generic effects are an advancement of the RGC
output peak, a decrease in the ROA, and a global change in the shape of the firing rate response. This has an impact on
the VSDI response, illustrated in the figures above and summarized in Fig. 3.12.

In Fig. 3.12 A, we compare the respective effect of BC and RGC gain control on the VSDI signal at the central cell. It
is however rather difficult to compare quantitatively the effects of these two gain control mechanisms, as a systematic
study would require to modify jointly hB and hG in a two dimensional map, a task beyond the scope of this paper.
Here, we only compare the model response in a case where BCs and RGCs gain control are tuned so that the retinal
output amplitude is the same (ROA = 17.1 Hz), that is hB = 8.554 mV/s (magenta trace) and hG = 0.359 mV/s
(yellow trace). The first observation is a peak shift stronger for BC gain control than for RGC gain control. There is
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Figure 3.11: The effect of ACs-BCs feedback loop on the cortical response. A) Amplitude quantity: VSDI signal
amplitude of the central cortical column versus the feedback loop weight. B) Temporal and spatial indicators:
anticipation range (green) and maximal latency (red). C) Speed indicator : short-range activation speed (red) in
function of amacrine to bipolar weight. D) SPD for RGCs (orange), cortical columns (blue) and difference between the
cortical and RGC SPD (black). E) Shape of the central RGC response profile to the moving bar, without feedback
AC connection (wA

B = −wB
A = 0) (red) and when these parameters take the maximum value (

∣∣wA
B

∣∣ = wB
A = 1

Hz, dashed green). Note that the two traces have been rescaled to have the same maximum. F) VSDI signal, same
conditions. The dotted lines in E,F correspond to the peaks in the RGC firing rate or VSDI signal without feedforward
AC connection (red) and with it (green).

a SPD difference of 25 ms (36.7%). There is also a strong difference in the VSDI signal profile, after the pic. It is
unfortunately not possible to compare this with the experimental results in [3] as the VSDI profiles they show (e.g.
Fig. 4 D) is cut before the place where such a possible rebound may occur. Performing new experiments on a larger
time scale would be a way to confirm the role of BC gain control on the VSDI signal profile. Finally, one sees a small
variation in the early part of the curves, where latency is computed. The smallness of this variation is due to the scaling
of the figure though, where we wanted to show the whole VSDI profile. Now, remember that cortical latency indicators
are computed at the very beginning of the activity rising, when this activity exceeds a threshold of 0.001 (section 3.1.1).
Thus, there is a small but significant effect on latency indicators. There is a difference of −1.2% for AR , −2% for
ML and −7% for SRAS, in favour of BC gain control. This suggests that, overall, BC gain control is more effective.
However, cortical anticipation by latency is slightly affected compared to adapting anticipation which is much higher.
To sum up BCs control appears more effective at generating peak anticipation while limiting the impact on cortical
latency anticipation and increasing the speed of anticipation.

In the same vein, Fig. 3.12 B compares the role of feedforward versus feedback amacrine cells connectivity, adjusting
the control parameters wA

G = 0.7 Hz (feedforward) and wA
B = 11 Hz (feedback) so that the ROA are equal to 13.1 Hz.

We observe here a small pic shift and a small change in latency while the main visible effect is a change in the shape of
the VSDI profile after the peak. For these value of parameters, the AR actually decreases by −6.9% when comparing
the feedback case to the feedforward case, the ML decreases of −6% and SRAS by −7.3 %. Finally, SPD arrives 9
ms later in the feedforward case than in the feedback case (10.6 %). Although the difference is rather tiny, a general
conclusion would require a more systematic study. In particular, a comparison of Fig. 3.10 and Fig. 3.11 suggests a
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better efficiency of amacrine connectivity in the form of a feedback loop. Adaptating anticipation is more pronounced
while limiting the impact on cortical latency anticipation despite the smaller intrinsic cortical delay. On the basis of
preliminary results obtained in [116] we actually believe that the main difference between the two effects would hold
when varying the bar speed. We expect the presence of a preferred bar speed - where anticipation is maximum - in the
feedback case and not in the feedforward case (where anticipation would grow monotonously until saturation).

Figure 3.12: Gain control and amacrine connectivity comparison. A) Temporal profile of the VSDI response with
a BC gain control hB = 8.554 mV/s (magenta) and a RGC gain control hC = 0.359mV/s (yellow). B) Temporal
profile of the VSDI response with amacrine feedback connectivity weight wA

B = 11 Hz (purple) and feedforward
weight at wA

G = 0.7Hz (orange). C) Temporal profile of the VSDI response with bipolar gain control hB = 8.554
mV/s (majenta) and amacrine feedback connectivity weight

∣∣wA
B

∣∣ = 11 Hz (purple). D) Temporal profile of the
VSDI response with ganglion gain control hG = 0.359 mV/s (yellow) and amacrine feedforward connectivity weight∣∣wA

G

∣∣ = 0.7 Hz (orange).

Fig. 3.12 C compares the BCs gain control to the ACs feedback still tuning the respective parameters so that the ROA
are equal: BCs gain control hB = 9.2 mV/s and the feedback loop

∣∣wA
B

∣∣ = 9 Hz (same ROA of 16.1 Hz). Considering
the difference between AR in the BC gain control case and in the feedback connectivity case, we obtain a decrease
of −8.4 %. This is −10.3% for ML, and −4.9% for SRAS, while SPD arises 36 ms later 55.2% and the intrinsic
cortical SPD 3.4 ms (43%) after. In this example BCs gain control provides more anticipation with a visible effect on
latency. Fig. 3.12 D compares as well the RGCs gain control to the ACs feedforward connectivity with hG = 0.36
mV/s, wB

A = 0.6Hz (ROA equal to 17 Hz). We observe a decrease of −10.1 % for AR, −11.3% for ML and −8.4 %
for SRAS. The RGC SPD arises 17ms (18.1 %) later and the cortical SPD 6ms (41.4 %) later. For this set of parameters
RGC gain control performs better than feedforward amacrine connectivity.

To sum up, this study provides an effective way of studying the potential impact of retinal anticipation mechanisms on
cortical anticipation with a main drawback: parameters tuning. Although, the retinal model has been designed to have a
minimal set of parameters (compared to a real retina) there are still quite a lot and a systematic study of the effects
requires actually an (ongoing) systematic mathematical analysis (Cessac-Ebert, in preparation). Note that numerical
simulations do not allow to effectively sample the parameter space of the retina model, while a mathematical analysis
shows that some parameters (such as τA, τB , wA

B , w
B
A ) are actually dependent. Another alternative for parameter tuning
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would be experimental tests. Experiments on the retina somewhat allow one to tune these parameters so as to match
empirical responses. But, as said in the introduction, they mainly hold for mice (or salamanders). A more efficient way
and a bigger challenge would be to tune these parameters from the observation of the V1 VSDI signal, on the basis of
this model and of the afferent simulation platform. We actually made in this thesis a conjecture about the shape of the
VSDI signal (presence of a rebound after the main peak) when, e.g., BCs gain control or ACs feedback connectivity is
present. Their influence results in a mesurable effect on the VSDI signal profile. It would be interesting to test these
conjectures in new experiments.

In this spirit, we would like to come to the remark made in section 2.2.2. In CTL condition (without retinal anticipation)
the anticipation by latency is a bit too high (−880 ms for ML) compared to ∼ −400,−600 ms in Fig. 4D of [3] (where
this range of variations comes from feedback effects). We have actually shown that adding a realistic retinal output has
the effect of reducing the anticipation by latency in our model, in a range compatible with experimental observations
(see e.g. Fig. 3.10 B). The same holds for the anticipation range which was 6.3◦ in CTL conditions compared to 2◦

in experiments. Again, the retina has the effect of reducing this discrepancy. To get better insights on the parameters
values experiments could for example focus more on the VSDI shape (e.g. after the peak) and also investigate the
effects of the bar speed on peak anticipation and latency anticipation.

3.3.4 Reproduction of predicting anticipation in the retina
Creation of the anticipation model by prediction
"Predicting anticipation" is another form of retinal anticipation identified in the salamander by Menz et al. [2]. Some
retinal ganglion cells in the salamander are capable of producing predicting anticipation in addition to adapting
anticipation. This form of anticipation translates the entire peak without loss of amplitude. This effect is mainly
supported by biphasic amacrine cells. These cells are characterised by an initial hyperpolarisation phase followed by
a depolarisation phase. These two phases correspond respectively to disinhibition and inhibition of ganglion cells.
According to Menz et al., this is the application of substractive gain control of biphasic amacrine activity on the response
of retinal ganglion cells that enables this "predicting anticipation" to be generated (Fig. 3.13). Here, we aim to reproduce
this new type of anticipation by recreating biphasic amacrine cells. With this idea in mind, we have developed a a few
hypotheses on which we base our model.

Figure 3.13: Diagram of the subtraction of the biphasic amacrine voltage from the ganglionic voltage. A)
Hypothetical voltage curve of a ganglion cell (orange) and a biphasic amacrine cell with its positive (green) and negative
(red) parts. The amplitude of these two parts are equal, so the profile is balanced. B) Result of subtraction between
ganglion voltage and biphasic amacrine voltage. First we can see the result of the subtraction between the negative
part of the biphasic amacrine voltage and the ganglion voltage (orange-red). The same applies to the subtraction of the
positive part (orange-green). Finally, we have the ganglion voltage curve before subtraction (orange dotted line) for
comparison; this is the response without lateral connectivity (feedforward).

We conjecture first that the disinhibition phase enables the early response peak to be set up (orange-red curve in Fig.
3.13B), while the inhibition would have the role of completely erasing the initial peak which would have occurred in
the absence of the amacrines (orange-green curve in Fig. 3.13B). The inhibition phase also serves to stop the growth
of the earlier peak when it reaches the amplitude of the displaced peak. We believe that to achieve this effect, it is
important that the inhibition and disinhibition peaks are perfectly balanced (Fig. 3.13A). This allows the early part of
the response to be amplified with the same amplitude as the terminal part of the response is reduced. If the inhibition is
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strong enough to completely suppress the retinal ganglion cell peak, this means that its disinhibition is strong enough to
create an earlier peak of the same amplitude.

On one hand, we assume that the depolarisation phase of biphasic amacrines comes from direct excitation by bipolar
cells. An approximate measurement of the characteristic time of this depolarisation phase was made in Menz et al: 0.3 s.
This depolarisation must correspond to the feedforward response of the retina. To achieve this, the connectivity between
the bipolar and amacrine cells must be established at the same spatial position. On the other hand, we hypothesise that
the presence of a first phase of hyperpolarisation of biphasic amacrines could be explained by the presence of a second
type of amacrine responsible for inhibiting them. This inhibition must occur earlier than the feedforward response and
must therefore be mediated by long-distance lateral connectivity. We suggest that these second amacrine cells type are
also excited by bipolar cells. Finally, biphasic amacrine cells should be able to apply their disinhibition-inhibition to
cells of the retinal feedforward pathway such as bipolar or ganglion cells.

On the basis of all these hypotheses we have developed a model as an extension for the retino-cortical model introduced
in chapter 2.2 with the same parameter values. We then made a few modifications to the amacrine connectivity of
the retina part of the model (Fig. 3.14. The amacrine cells still receive input from the bipolars although no longer
one-to-one but within a given radius with uniform weights. There is also no longer any inhibition of ganglion cells.
Instead, they inhibit in one-to-one a new type of amacrine cell that we have named "biphasic amacrine".

These biphasic amacrine cells also receive bipolar input and establish a one-to-one connection with the retinal ganglion
cells. Note that the choice of a uniform lateral connectivity of the bipolars to the amacrines could also have been
replaced by a connectivity of this type from the amacrines to the biphasic amacrines. The important thing is that, in the
end, the inhibition from the amacrines to the biphasic amacrines is shifted. Unfortunately, We did not have enough
biological information to determine which of these two situations is the more likely. We were able to identify the
parameters that were essential for reproducing this predicting anticipation. The length of the radius between bipolar
and amacrine increases the distance at which the amacrines start to activate. The biphasic amacrine characteristic time
must be high enough to slow the rise and fall of their response. This results in a longer residual activity. Without this
activity, we would obtain triphasic profiles. The third phase of a triphasic profile is a hyperpolarisation resulting from
the activation of the amacrines by the bipolars, downstream in the trajectory of the bar.

We have also decreased the characteristic time of the amacrines was decreased to increase their slope and decay and
thus accentuate the time lag between the inhibition of the amacrines on the biphasic amacrines and their feedforward
response.

The different factors amplifying the connections between amacrines are also crucial. The two amplification factors on
the bipolar-amacrine and biphasic amacrine-amacrine synapses control the amplitude of the voltage hyperpolarisation
phase of the biphasic amacrine cell. On the other hand, we have the amplification factor of the biphasic bipolar-amacrine
synapse which controls the amplitude of the depolarisation phase of the voltage of the biphasic amacrine cell. These
three amplification factors had to be carefully selected to shape a balanced biphasic profile as in Fig 3.13A.

Finally, the amplification of the biphasic amacrine cells towards the ganglion cells serves to create a subtraction of the
biphasic profile strong enough to suppress the feedforward response and create an earlier one. It is also necessary to
establish a connectivity between the biphasic amacrines and the retinal ganglion cells.

The connectivity on the bipolars does not allow the amplification factors to be manipulated in such a way as to create
the biphasic profile and then subtract it sufficiently. Indeed each change always has repercussions on the biphasic
amacrines. Input and output has therefore to be decoupled.

We thus established a new set of parameters synaptic weight was set to 0.68 mm. The characteristic time of biphasic
amacrines is tauABi

= 0.3 s and that of amacrines is tauA = 0.005 s. Connection amplification were set at 3.5 Hz
between bipolars and amacrines, −4 Hz between amacrines and biphasic amacrines, 8 Hz between bipolars and biphasic
amacrines and −0.4 Hz between biphasic amacrines and ganglion cells.

Finally, the weight between the retina and the cortex was reduced to 0.1 Hz. This reduction in retinal-cortical weight
resulted in very weak VSDI signals in our control condition. Because of this, the latency was no longer visible because
it was below the activation threshold we had set. For this reason, we decided to divide activation threshold by 10 define
in Sec 3.2
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Figure 3.14: Synthetic view of the retino-cortical model with biphasic amacrine. This model is a modified version
of the retino-cortical model used throughout this thesis and described in figure 2.3. The amacrine connectivity has been
modified. Bipolar cells (purple circles) connect all amacrine cells (pink circle "A") or biphasic amacrine cells (pink
circles "ABi") within a given radius. The amacrine cells then inhibit the biphasic amacrine cell in the same position.
The biphasic amacrine cells in turn inhibit the ganglion cell at their position.

It is important to note that to facilitate the explorations leading to our results, we have reduced the size of the cortical
size (3.15× 9◦) compared to the rest of this thesis. This parameter set was applied in Macular to reproduce anticipation
by prediction. We compared it to a control condition where the bipolar/amacrine and bipolar/amacrine bi-phasic
amplification are 0.
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Effect of the anticipation model by prediction on cortical anticipation
Figure 3.15A shows no variation in bipolar response. This contrast with the frequency of ganglion discharge where the
peak of the predicting condition is earlier than the control (3.15B). In addition, this ganglion firing rate predicting peak
is also earlier than the bipolar one see in A. In addition to this, the descending part of the curve falls sharply in the
presence of predicting.

The voltage of ganglion cells (3.15C), in the absence of predicting, shows only one depolarising peak, whereas with
prediction a second hyperpolarising peak appears, smaller and later than the depolarising peak. Amacrine cells are
activated very early in the predicting condition, their voltage become a long plateau. In predicting condition, bi-phasic
amacrine cells consist in one hyperpolarised peak followed by a depolarisated peak (3.15E). At cortical level, in the
predicting case, the peak of the VSDI signal obtained (3.15G) happens 60 ms earlier and is higher compare to control
(3.15F). The latency is also accentuated in the prediction condition. We can see a second rounded peak in the VSDI of
the prediction condition. If we compare latency indicators, anticipation by prediction causes twice as much AR (3.15H),
a slower speed (3.15I), and a latency 1.5 times earlier (3.15J). The ganglion peak arrives 95 ms earlier (3.15K) and the
cortical peak 60 ms earlier (3.15L).

In the following, we use the term feedforward to refer to the response obtained in the control condition in the absence of
any lateral connectivity. Our results show that the ganglion peak is shifted relative to the feedforward peak obtained in
control condition without altering its amplitude. We believe that combining these two characteristics demonstrates the
successful reproduction of predicting anticipation within the retina. It also demonstrates that a subtractive connection of
the amacrine biphasic voltage to ganglion is enough to generate predicting anticipation. The hyperpolarised peak of
amacrine biphasic voltage causes a strong disinhibition at the origin of the depolarize peak observed in the ganglion
response in predicting condition. A little bit later, the depolarised peak in the voltage of the biphasic amacrines leads
to the inhibition of the ganglion response, which falls sharply. This drop occurs at the precise moment when the
amplitude of the predicted ganglion response has reached that of the control condition. We can see that this inhibition
actually causes a very strong hyperpolarisation of the ganglion voltage. This hyperpolarisation masks the peak firing
rate depolarisation caused by the feedforward (control) pathway. The shift in the ganglion firing rate peak in the
predicting condition is explained by the earlier activation of ganglion cells excited by biphasic amacrines. In turn,
biphasic amacrines activate earlier thanks to their long-distance lateral connectivity with bipolars.

The shape of the biphasic amacrine response is explained by the subtraction of the bipolar response by the amacrine
voltage. The switch between the hyperpolarised and depolarised peaks depends on the amplification values of the
biphasic bipolar-amacrine and biphasic amacrine-amacrine synapses. The slower dynamics of the biphasic amacrine
cells enable them to counterbalance the long, constant inhibition they receive from the amacrines. If this were not the
case, a third hyperpolarised peak could appear.

The shape of the amacrine curve can be explained by the use of a characteristic time that is sufficiently low in relation to
the frame rate for the amacrines to perceive the image as static. The explanation of this phenomenon (shaping parameter
r) is described in detail in the appendix C.

It should be noted that in our case, the activity of the biphasic amacrines is unbalanced. The hyperpolarised phase of
the biphasic amacrine response is just over 2 times smaller than the depolarised phase. Balancing these two peaks
required the use of a characteristic time that was too long compared with Menz et al (1 s). The use of an unbalanced
voltage profile for biphasic amacrines resulted in the abrupt decrease in ganglion voltage or firing rate observed after
the depolarised peak. But also the strong hyperpolarisation of the ganglion voltage. We do not know whether or not
these two characteristics are observed in biology.

The VSDI signal in the presence of predicting anticipation in the retina is 84 ms earlier. In the predicting condition, the
peak of the cortical response is 25 ms later than the ganglion response compared with the control condition. Prediction
improved the overall delay in the peak while reducing the proportion that can be attributed to the cortical anticipation.
Anticipation by retinal predicting also led to a reduction in SRAS and a sharp increase in AR and ML. We expected ML
to increase due to the translation of the retinal response peak. However, the increase in ML is much greater than the
increase in peak delay. This means that there is an additional effect of the predicting on the ML that is not due to the
peak shift. Note that the AR and ML values are currently underestimated. Indeed, the current size of the cortical area is
not long enough to observe the moment when latency is no longer increasing. This could also have minimised SRAS.

In the presence of the prediction, the VSDI peak is doubled due to potentially two phenomena. The first is a strong
residual activation trail on either side of the bar trajectory. This contrasts with a total absence of activity on the bar
trajectory. The biphasic amacrine cells on the edges of the trajectory are activated by the bipolars seeing the bar but not
inhibited by the amacrines.
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Figure 3.15: Predicting anticipation in chimera model. A-E) Time profile of bipolar cell response ((A), ganglion
discharge frequency (B), ganglion voltage (C), amacrine voltage (D), biphasic amacrine voltage (E) with control
condition (black) or with predicting (red). The grey rectangles in the figures represent the time during which the bar
is in the receptive field of the cortical column. The black dotted line is the time when the center of the bar passes
through the center of the receptive field. (F, G) Spatio-temporal representation of the VSDIs centerd on the arrival
of the bar at the center of the receptive field for the control condition (F) and the predicting condition (G). The red
line corresponds to the peak time of the VSDI with predicting. The blue gradient corresponds to the distance between
the cortical column and the origin of the bar trajectory. H-L) Barplots of the variation in RA (H), SRAS (I), ML (J),
ganglion SPD (K) and cortical SPD (L) for the control condition (black) and that with predicting (red).

3.3.5 Predicting and adapting anticipation interactions
Bipolar gain control and predicting anticipation
We are taking advantage of the reproduction of predicting anticipation in the retina to evaluate the extent to which this
anticipation interacts with adapting anticipation. We start with the addition of gain control on bipolars in addition to
predicting. We compare four conditions: control, predicting, gain control and predicting with gain control.
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Figure 3.16: Effect of bipolar gain control on predicting anticipation. A, B) Temporal profile of bipolar cell
response ((A) and ganglion discharge frequency (B) with the control condition (black), bipolar gain control (yellow),
predicting (red) or both (green). The grey rectangles in the figures represent the time during which the bar is in the
receptive field of the cortical column. The black dotted line is the time when the center of the bar passes through the
center of the receptive field. C-F) Spatio-temporal representation of the centerd VSDIs as in Figure 3.15 for the
control condition (C), the predicting (D), the bipolar gain control (E) or both (F). The red line corresponds to the peak
time of the VSDI with predicting and the yellow line to that with gain control. G-L) Barplots of variation in RA (G),
SRAS (H), ML (I), ganglion SPD (J), cortical SPD (K) and the difference between the two SPDs (L) for the control
condition (black), predicting (red), bipolar gain control (yellow), both (green).

Bipolar cell responses in the presence of bipolar gain control and with or without predicting differ from those in the
control or predicting condition (Fig. 3.16A). Their peak is also slightly earlier. In addition, there is a small peak at the
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end of the curve. In the ganglion, the firing rate peak with predicting and bipolar gain control is the earliest, slightly
earlier than that with predicting only (Fig. 3.16B). The peak with bipolar gain control is slightly later than that with
predicting. We also observed a small peak in activity beyond 1300 ms. At the cortical level, the two conditions with
predicting (Fig. 3.16D and F) have a stronger amplitude compare to condition control (Fig. 3.16D). In the case of the
gain control condition, the amplitude is the smallest (Fig. 3.16E). The conditions with predicting both show a doubled
VSDI peak.

The AR is longer in both cases where predicting is present and gain control is associated with the smaller AR value
(Fig. 3.16J). On the other hand, SRAS is maximal in the gain control condition, not far from the control condition (Fig.
3.16K). The SRAS with predicting anticipation is weaker than without. ML is maximal with only predicting, followed
closely by the predicting + gain control condition (Fig. 3.16L) and far from the condition without predicting. The two
conditions without predicting have a much lower ML with a minimum in the gain control only case. The ganglion
firing rate peak delay shift is 2 to 3 times lower in the presence of gain control or predicting (Fig. 3.16G). The gain
control remains the weakest of the three. The peak of the VSDI signal is also well advanced by the gain control and the
predicting (Fig. 3.16H) but more with gain control. This is reflected by a difference in SPD between the cortex and the
ganglion cells which is negative only in the control and gain control conditions (Fig. 3.16I). The predicting condition
shows the greatest delay in the ganglion peak.

In bipolar response, the second small peak for conditions with bipolar gain control is caused by a sufficiently rapid
decrease in the bipolar response. Indeed, this decrease in bipolar response is accompanied by a reduction in gain control
before the bar has left their receptive field. As a consequence, the bipolar is no longer under the influence of adaptation
and can be activated again by the bar. In ganglion response, the second peak is explained by a triphasic voltage profile
of biphasic amacrines. This is revealed by the more rapid post-peak decay ganglion voltage in the presence of gain
control.

In this figure, AR and ML are again underestimated because of the distance of the simulated cortical area. Despite this,
AR is greater with predicting and compensate in whole or in part for the loss of AR caused by gain control when the
two retinal anticipations are combined. The same dynamic can be observed for ML.

Overall, the bipolar gain control and the predicting greatly improve the peak shift. However, it should be noted that
the shift observed in the presence of predicting and bipolar gain control does not correspond to the linear sum of the
two shifts caused by predicting or bipolar gain control alone. In ganglion cells, the difference between the control
SPD and that with predicting and gain control is 1.5 times smaller than expected with the linear sum. For cortical
SPD, it’s 1.4 times less. This demonstrates a competition between both shift effects caused by bipolar gain control and
predicting anticipation. Finally, we note that bipolar gain control increases the shift of the peak associated with latency
anticipation. This effect can also be observed when bipolar gain control is combined with predicting. In this case, the
cortical peak lags behind the ganglion peak, but much less than in the case of predicting alone. We can see a non-linear
effect from the interaction between predicting and bipolar gain control. In fact, the difference between the two ganglion
and cortical peaks is 2.05 times smaller than the linear sum of these two conditions alone. Bipolar gain control seems to
counterbalance the negative effect of predicting anticipation on the delay of the cortical peak.

Ganglion gain control and predicting anticipation
We continue by adding ganglion gain control with predicting anticipation. The bipolar response is identical whatever
the condition (Fig. 3.17A). In the presence of gain control and predicting, the ganglion peak becomes earlier than
with predicting or gain control alone (Fig. 3.17B). The time to peak in the predicting condition is much earlier than in
the gain control condition, which is itself earlier than in the control condition. The cortical response with ganglion
gain control and predicting (Fig. 3.17F) causes a slightly higher peak than with gain control alone (Fig. 3.17E) but
lower than the control condition (Fig. 3.17C) or predicting alone (Fig. 3.17D). We note that the presence of predicting
anticipation accentuates latency (Fig. 3.17J) and ML (Fig. 3.17L). On the other hand, it reduces SRAS (Fig. 3.17K).
The time taken to reach the ganglion peak is reduced a little by the ganglion gain control, a lot by the predicting and
even more by both (Fig. 3.17G). The same is true for the peak of the VSDI signal, but with a weaker effect of predicting
anticipation alone (Fig. 3.17H). These two changes in SPD generate a difference that is positive with predicting. The
cortical peak therefore arrives later than the ganglion peak. Overall, the gain control improved this difference beyond
that observed for the control condition.

We conjecture that ganglion gain control exhibits an effect similar to that of bipolar gain control when added to
predictive anticipation. AR and ML are underestimate. The increase in AR and ML with predicting anticipation offsets
the normally expected drop by adding extra gain control.
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Figure 3.17: Effect of ganglion gain control on predicting anticipation. A, B) Temporal profile of bipolar cell
response (A) and ganglion discharge frequency (B) with the control condition (black), ganglion gain control (yellow),
predicting (red) or both (green). The grey rectangles in the figures represent the time during which the bar is in the
receptive field of the cortical column. The black dotted line is the time when the center of the bar passes through the
center of the receptive field. C-F) Spatio-temporal representation of the centerd VSDIs as in Figure 3.15 for the
control condition (C), predicting (D), ganglion gain control (E) or both (F). The red line corresponds to the time of
the VSDI peak with predicting and the yellow line to that with gain control. G-L) Barplots of variation in RA (G),
SRAS (H), ML (I), ganglion SPD (J), the cortical SPD (K) and the difference between the two SPDs (L) for the control
condition (black), predicting (red), ganglion gain control (yellow), both (green).

The change in spike time in the ganglion with predicting and gain control is 1.16 times smaller than with the addition of
the lags caused by predicting and gain control alone. In the cortex, the linear sum of the predicting and gain control
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condition is only 1.08 times stronger than the condition with both combined. The lower non-linearity in ganglion
compare to bipolar could be explained by the choice of a weaker bipolar gain control. Finally, once again, gain control
causes an improvement in the delay of cortical spikes over ganglion spikes, while predicting increases it. The difference
between the delays does not behave linearly. The difference obtained between predicting and ganglion gain control is
1.65 less than we would have expected by summing the effects of both alone compared with the control. This means
that the effect of the ganglion gain control on the cortical compensate for the the one in predicting.

Conclusion on adapting and predicting anticipation interaction
We first demonstrated our ability to reproduce a new form of retinal anticipation by predicting, never before reproduced,
using our new model. In this context, we put forward a number of hypotheses on how this anticipation is formed and
which parameters are important (characteristic time of the two types of amacrine cells, lateral connectivity, amplification
factor). Our observations are consistent with the importance of subtraction between biphasic amacrine voltage to
ganglion voltage for predicting anticipation as conjectured by Menz et al. The earlier hyperpolarisation phase is
generated by lateral inhibition via another type of amacrine with a rapid characteristic time. The depolarisation phase
results from feedforward input from bipolar cells. The hyperpolarisation phase generates disinhibition in the ganglion
cells, which can go as far as forming a peak of the same amplitude as that of the feedforward obtained without lateral
amacrine connectivity. The depolarisation phase creates an inhibition which suppresses the old feedforward peak,
which will be replaced by the newly formed, earlier peak. This predicting anticipation improves some of the latency
anticipation indicators (AR, ML, ganglion SPD, cortical SPD) but reduces others (SRAS, SPD difference). Despite this,
we are aware that our model still has limitations that we would like to improve in the future.

Secondly, we tried to assess the extent to which predicting anticipation was influenced by adapting anticipation. In
particular, we wondered whether these two types of anticipation could be compatible. We were able to see that in our
results predicting anticipation seems to have a positive effect on AR, ML and both ganglion and cortical SPDs. On the
other hand, it reduces SRAS and the difference between ganglion and cortical SPDs. In the case of adaptive anticipation
with gain control, we observe more or less the opposite, with ML and AR decreasing while the difference in SPDs
increases. On the other hand, both SPDs also increase in the gain control conditions. In our simulations, the two types
of anticipation seem to partly compensate for each other’s defect. Both improve on each other while bringing forward
the ganglion and cortical peaks ever earlier. Our results therefore point to a combination of the two which would be
favourable for anticipation in both the retina and the cortex. This seems to reinforce a hypothesis we developed during
our work on the co-existence of so many anticipation mechanisms within the visual system. We suggest that all these
anticipation mechanisms can fit together and interact in such a way as to limit each other’s defect and ultimately obtain
an ever greater shift in peak responses. It is also possible that each anticipation can be recruited according to the level
of anticipation required for the speed of the object being processed. Anticipation cannot grow indefinitely because
the lateral connections in biology are not. The accumulation of several parallel anticipation channels could overcome
this limitation and increase anticipation efficiency without having to set up ever longer connections. An alternative
hypothesis would be several anticipation processes in order to make different function for which it would be adapted.

For the future, we need to be able to confirm all this by using a graph of a more suitable size, but also parameters that
are more and more optimised, as mentioned above. We also need to ensure that these results do not stem from the two
potentially strange phenomena we have identified. Finally, we would like to be able to evaluate in a little more depth
the effect of adapting anticipation on predicting anticipation. To do this, we want to test different levels of gain control.
We could also evaluate the effect of adaptive anticipation with feedback or feedforward amacrine connectivity. The aim
is to evaluate each time how the capacity for interaction between the two types of anticipation evolves.
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Chapter 4

Suppressive waves in simulated saccades

In this final chapter, we study another type of phenomenon induced in the cortex by a moving object and enabled by the
cortical lateral connectivity. The aim here is to study the different properties observed in the V1 response to simulated
saccades. As a preliminary step, used also as a validation of the model, we first attempt to reproduce suppressive waves
as our working hypothesis is that they are closely linked to the cortical response to simulated saccades. Another crucial
experimental parameter we want to investigate is the frame rate of the video projector. Currently, many experiments use
video projectors with a 60 Hz refresh rate without consideration of the impact of the frame rate. We therefore also want
to better understand this impact on the visual system. After these two tests, we look at the properties of the simulated
saccades. It is with this objective in mind that we are going to carry out a series of experiments. For each simulation we
use the model and parameters (Macular graph) described in the chapter 2.2 and detailed in the appendix A.1. In each
case the stimuli are designed to better address the questions we are rising.

4.1 Suppressive waves in apparent motion
Suppressive waves were demonstrated by Chemla et al. in area V1 of macaques [9]. To do this, they used apparent
movements that generated illusions of movement. They noted the appearance of a suppressive wave in the apparent
movement which moves from the most recent flashed point to the oldest. This suppression would be carried by the
inhibitory gain control. We have adapted the stimulus used in Chemla et al. experiments to our setting. Two stimuli
were created corresponding to two different Macular graphs and two different sets of parameters. The first stimulus
measured 4.275× 4.275 degrees (135× 135 pixels, corresponding to 20× 20 cells in our model) with a pixel/degree
ratio of 31.6. The parameter set is the one described in section 2.2.2 and appendix A.3.4. The second stimulus has a
size of 18.45× 3.15 degrees (5535× 945 pixels, 15× 83 cells) with a pixel/degree ratio of 300. Its parameter set is the
default one defined in the appendix A.1 and used in the anticipation chapter 3. For both stimuli, the white dots of the
stimulus are disks with a diameter of 1 degrees (300 pixels) separated by 1 degree from the left and right of the center
of the visual scene. Our white dots are therefore larger than Chemla et al, so as to obtain a sufficiently visible response
in our setting. Our results are synthetized in Fig. 4.1 and 4.2.

Fig. 4.1 A shows the stimuli (top row) and the simulated VSDI signal response (see legend). The second row of this
figure shows the response to the left dot. It has roughly a Gaussian shape which spreads over time before fading away.
The next row shows the response to the right dot. It has the same shape and evolution as for the right dot, delayed in
time. The last row of figure 4.1 A shows the VSDI signal response to the successive flash of the left and right dots.
The Gaussian like activity generated by the first dot spreads out until it eventually reaches the position of the right dot,
before this second dot is flashed. When this flash occurs (at 150 ms) the response to the left and right dot interfere
(between 150 and 400 ms).

In order to better visualise the interactions of these two responses we use, in Fig. 4.1 B, the representation proposed by
Chemla et al. This heatmap represents the VSDI signal response where time is on abscissa and the horizontal coordinate
(degrees of cortex) is on the vertical axis. In this representation, the left dot is at the bottom, while the right dot is at the
top. One sees the Gaussian spread, which increases with time and reaches the position where the top spot is located.
Note that, obviously, the bottom response (left spot) arrives earlier than the top response (right dot). There is a delay of
11 ms between the appearance of the stimulus on the right and the increase in its activity.

This obvious ordering is in strong contrast to what is observed in Fig. 4.1 C where we used the method proposed by
Chemla et al. to investigate the nature of the interaction between the two Gaussian spots corresponding to non linear

71



Figure 4.1: The retino-cortical model reproduces the suppressive wave in apparent motion. A) Time sequence
of the VSDI signal map for different stimuli. Time is represented by the top purple arrow. The black squares below
this arrow present the stimuli at different times. There are 3 stimuli: (1) a static white dot, on the left side of the black
square, flashed during the time interval [0, 100] ms; (2) a static white dot, on the right side of the black square, flashed
during the time interval [150, 200] ms; (3) the apparent motion corresponding to (1) followed by (2). The first line
represents the activity (VSDI signal) generated by stimulus (1). The second line is the activity in response to stimulus
(2). The last line is the activity of the apparent motion (stimulus (3)). B) Time-horizontal representation of VSDI
signal to two-stroke apparent motion (stimulus (3)). We have adopted here the representation of [9], where time is on
abscissa and the horizontal space on ordinate. C) Time-horizontal representation of the non linearity in response to the
two-stroke apparent motion stimulus. The non-linearity is obtained by subtracting the sum of the flash activities of
the isolated left and right dots from the activity of the apparent motion. Thus, this is the response to (1)+(2) minus
the response to (3). D) Suppressive wave using the same representation as in A. Each time of the time sequence is
accompanied by the stimulus frame of the corresponding time. This simulation was carried out with the parameter set
of Sec. 2.2.2 and appendix A.3.4, a graph of 20× 20 cells and square stimuli.
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effects. This method consists of substracting from the apparent motion response (4.1 A top) the sum of the left stimulus
response (4.1 A middle) and the right stimulus response (4.1 A bottom). The result is then normalised dividing it by the
sum of the responses to the right and left stimuli. This non-linearity represents the part of the apparent motion response
that cannot be explained by the mere response to the flash of the stimuli that makes it up. It is a prominent characteristic
of the apparent motion. Using this methodology in Fig. 4.1 C we observe a suppressive wave (the red color corresponds
to a negative effect) propagating backwards. The wave originates at the same time and in the same place as the spot of
activity generated by the stimulus on the right thus, the last flashed dot, and moves toward the region corresponding
to the first flashed dot. This region of negative activity fades abruptly to become an area of weak suppression, as
a "shadow", which is clearly distinguishable from its surrounding positions where the suppression is visible. The
suppression moves and becomes concentrated where the left stimulus was flashed. Therefore, the suppression starts in
the most recent spot of activity and then spreads to the oldest. The level of suppression is relatively high. To make
the suppressive wave more explicit we have also presented this suppression in the same representation as figure 4.1 A.
Figure 4.1 D thus shows the propagation of a suppressive wave backwards, from right to left.

Chemla et al. conjectured that the size of the activity spots is linked to the extent of the lateral cortical connections. In
this conjecture, the suppression wave would have the same spatial extension and the same speed as the response to a
local stimulus (81.7 degrees/s). The cortical model used by the authors enabled them to reproduce a suppressive wave.
An important parameter of this model is the cortical extent of the excitatory/inhibitory connections. They tuned it so as
to obtain a VSDI response similar to the experimental one. The inferred size is close to the one reported in the literature.
They also highlight that the suppression requires an inhibitory gain stronger than the excitatory gain and a model based
on conductances. To remind you, this gain is an amplification coefficient for the slope of the transfer function. This
means that for lower excitations, the inhibitors will increase their discharge frequency more strongly. They showed
that with a current-dependent model, the interaction between the two spots of dot activity did not lead to suppression
but, on the contrary, to reinforcement. They found that suppression increases with a reduction in external drive as well
as with an increase in the synaptic timescale ratio (τE /τI ) ratio or adaptation. They also conjectured the need for an
asynchronous, irregular and spontaneous regime which only occurs for a non-zero external drive. According to them,
as long as this regime is present, whatever the modified parameters, the suppression wave is almost always observed.
They concluded that this suppression could be a kind of a dynamic normalisation of lateral connectivity, created by the
excitatory/inhibitory balance and induced by the non-linearity of excitatory and inhibitory conductances. Its role would
be to ensure that there is only one representation of the stimulus at a time in the cortex.

We also carried out a quantitative analysis of our results to compare them with those of Chemla et al. We reveal
a maximum extension of the activity spot of around 4 degrees. This is a slightly smaller connection size than the
the cortical extent of the excitatory connections (5 degrees). This size is also twice as small as the spatial extension
measured by Chemla et al. (2 degrees). We believe that if the suppressive wave and the activity Gaussian are both due to
lateral connectivity, we should be able to verify this by varying the length of the connections as well as the speed of fibre
conduction. We actually conjecture that the size of the activity spots depends on the excitatory/inhibitory balance. We
could evaluate this by varying the parameters affecting inhibition (excitatory/inhibitory connection amplification factor,
inhibitory characteristic time, quantal conductance of inhibitors). Note that the duration of our activity spots is twice as
long as Chemla et al. (400 ms compared with 200 ms). This discrepancy could be fixed by modifying the values of the
characteristic times of the retina. This additional degree of freedom in our model, not present in the previous cortical
models (including the one used by Chemla et al), allows us to better tune the simulation results to experiments, in a
similar way as we did already in chapter 3. We have previously observed what looks very much like a suppression
wave in Figures B and C. However, it is important to confirm this impression by quantitative measurement. However, it
is important to confirm this impression with a quantitative measurement. To do this, we need to determine how the
maximum suppression peak behaves over time. If this maximum peak remains at the same position, then what we have
observed is simply a spot that spreads out gradually. On the other hand, if the maximum peak moves in space, this
means that it is a propagating wave. This maximum peak moves from 2.7 degrees (left stimulus) to 1.6 degrees (right
stimulus) at a speed of 11.4 degrees/s. The speed of propagation of the wave is half that of the spread of the Gaussian
activity (25.8 degrees/s). This confirms the presence of a propagating suppressive wave. The wave suppresses up to
−45% of the sum of the responses from the right and left stimuli, which is close to the −50% observed by Chemla et al.
Unlike Chemla et al. biological results, our two speeds (gaussian activity and suppression) are different and much lower.
It would be interesting to check whether this difference in velocity is explained by the difference in retinal characteristic
times. Finally, the delay that we observed in the cortical response in relation to the stimulus flash is also present in the
results of Chemla et al. but is twice as long (11 ms compared with 23 ms). In our model, this delay is reproduced by the
characteristic time cascade, from the retinal layers, to cortical layers. In biology, this cascade corresponds to the time
taken by the visual signal to "pass through" the visual system.

If we compare our results with those of the Chemla et al. cortical model, our suppression wave seems actually quite
different from theirs. The article by Chemla et al. does not present any analysis of the behaviour of the maximum
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peak of suppression. It is therefore not possible to conclude with certainty that their model reproduces the suppressive
wave. Furthermore, the time-horizontal representations of the suppression seem to evoke the spreading of a Gaussian
spot rather than a wave. A spot mainly located halfway between the two flashed points. On the contrary, in our result,
we clearly have the displacement of a suppressive wave between the most recent and the oldest point. A behaviour
closer to the biological results observed. This means that our model would have a parameterisation more favourable to
suppressive waves. However, we do not know which parameters are responsible for this difference.

Figure 4.2: The presence of the suppressive wave of apparent motion depends on the parameters. Same presentation
as Fig. 4.1. This simulation was carried out with the default parameter set (Appendix A.1). The size of the graph used
is 15× 83 cells. In contrast to Fig. 4.1 the horizontal axis of figures A, B and C has been cropped to keep only a square
of 4.275 degree centered on the apparent motion and comparable to the graph of figure 4.1. Here, we don’t see a clear
wave propagation, in contrast to 4.1.

Figure 4.1 demonstrates the ability of our model to reproduce the suppressive wave observed by Chemla et al. We can
actually go beyond as we also have the possibility of modifying the different model parameters, in particular those of
the retina, to understand their respective roles. In this spirit, we studied the effects of some parameters variations on
the suppressive wave. We run new simulations, this time using the default set that we have used throughout this thesis
A.1, in particular in the chapter 3 on anticipation. We want to apply this default set because it is the closest to biology
and the most stable. It is also the set that gave us the best results for anticipation. The question therefore arises as
to whether it can also give good results in the context of apparent motion. In this default set we have modified : the
amplitude of the OPL (C), the retino-cortical weight (wRC), the inhibitory quantal conductance (QI ) of excitators, the
probability of connection between neurons in the mean fields (pconnec), the connectivity distance of bipolar cells (σc),
the characteristic time of bipolar cells (τB) and a non-zero external drive (νext). This last choice was motivated by the
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results obtained by the authors of the cortical model. Indeed, a non-zero external drive is normally essential for cortical
mean fields models to function correctly [12, 13]. In [9] the authors actually conjectured that an external drive of zero
would be detrimental to the suppressive wave. The comparative values of the default set and the set in figure 4.1 is
illustrated by the table 4.1.

Figure 4.2 investigates this aspect, where we have dropped the stimulus representation as it is the same as in Fig. 4.1.
In figure 4.2 A one observes as well a spot of activity at the bottom corresponding to the point on the left and then a
second spot at the top corresponding to the point on the right. As in the previous case, the activity spot on the left-hand
point is the first to arrive. Here, with a delay of 36 ms compared to 13 ms for the other set of parameters. The spots
are spread over a radius of 1.8° and have a duration of about 500 ms instead of 400 ms. Figure 4.2 B also shows the
presence of a suppressive wave propagating backwards for this parameter set. The maximum suppression only rises
up to −11% of the sum of the responses from the right and left stimuli. This is 34% less than for the previous set.
The peak of this maximum suppression moves from the position of the right stimulus to that of the left at a speed of
11.4 degrees/s, similarly to the previous example. In both sets, the region of the right stimulus is transformed into
a suppression "shadow". This means that we do have a suppressive wave propagating. However, this suppressive
wave remains almost impossible to see in the representation of Figure 4.2 C. We can actually see a suppression zone
switching from right to left. But, the wave transiting between these two spots is too weak and noisy to be clearly visible.
Overall, this new set of parameters seems to generate a suppressive wave but weaker, with less performance and longer
compare to the Figure 4.1. Hence, the results in Figure 4.1 are the "better" ones we have obtained for reproducing
the suppressive wave. As such, we decided to name this parameter set as the "better" set and distinguish it from the
"default" set used in the rest of the thesis. Certain parameters must have affected the wave.

Parameter name Symbol Default value Better value Expected effect
Pixel per degree ppd 300 30 More spatial precision

Width (X) LX 18.45 4.28 Less edge effects
Length (Y) LY 3.15 0.9 Less edge effects
Frame rates δt 60 188.68 No effect

OPL input amplitude C 0.025 0.5 Maintains the bipolar
response amplitude equivalent

OPL center RF size σc 0.2 0.3 Increases the extension of
activity spots and suppression

OPL center characteristic time τc 0.1 0.02 Increase activity spot and
suppression duration

Bipolar characteristic time τB 0.1 0.05 Increase activity spot and
suppression duration

Ganglion characteristic time τG 0.1 0.02 Increase activity spot and
suppression duration

Retino-cortical amplitude wRC 2.5 4 Maintains the amplitude of the
retinal output sent

to the cortex.
Inhibitory quantal conductance QIE 3 4.5 Increases excitation to

of excitatory population the detriment of inhibition.
Probability of connectivity pconnec 0.0375 0.05 More stablity

External drive νext 2 0 Decrease the suppressive wave

Table 4.1: Comparison between the default parameter set and the better one. The "default" set corresponds to
the parameters used in the rest of this thesis and in figure 4.2. The "better" set corresponds to the parameters used in
figure 4.1, and is so named because it is the set that gave the best suppression results with apparent motion. For each
parameter in our retino-cortical model, we give its name, symbol, its value in the best set, its value in the default set and
the expected effect of this parameter on the retino-cortical model and suppression.

To go further, we are trying to understand which parameters may be responsible for these changes. The table 4.1
summarises all the different parameter values in the two sets and their assumed effects. First of all, we have the
amplitude of the OPL and the weight of the retino-cortical connectivity. The aim is to see only a possible effect of the
retina on the cortex through the spatio-temporal profile of its response and not through the intensity of its response. In
theory, this parameter should smooth out some of the differences in response between the two sets rather than widening
the difference. The decrease in the bipolar connectivity distance could theoretically lead to a shrinking of the activity
spot or to suppression. In contrast, tests during the calibration of the model (Sec. 2.2.2) showed that the increase in the
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probability of connection that we had carried out had very little effect on the response profile of the cortex. Its main
effect was to stabilise the network.

The differences observed in the delay of the cortical response and in its duration could be explained by the characteristic
times of OPL, bipolar and ganglion cells. All three have been considerably increased. The duration of the spots would
be longer due to the slower decay phase of the Gaussian spot response. This effect on the Gaussian spots could be
transferred to the suppression of which they are at the origin. Note that the change in characteristic time did not affect
the speed of propagation of the suppressive wave. It is conceivable that the increase in the characteristic time could
have contributed to the expansion in the size of the activity spot by slowing down the decay of the activity. Despite
this, the most likely hypothesis for the reduction in the size of the activity spots is the involvement of the external drive
(µdrive) increased from 0 to 2 Hz.

In the presence of a non-zero external drive, the system is in an active state even at steady-state. The basic level of
activity has risen compared with that of the better set. As it rose, this level of activity was able to completely drown out
the low-intensity regions of the activity spot and its periphery. This would explain the shrinking of the activity spots
observed with the non-zero external drive. In the case of the high-intensity regions of the activity spot, these were not
drowned but their amplitude was drastically reduced. The amplitude of the VSDI depends both on the peak of activity
and on the base level. This is why the maximum VSDI signal in the default set is divided by two compared with the
better set. We assume that, in addition, the increase in the base level could also reinforce the network gain control
carried by inhibitors and therefore also reduce the average discharge frequency of the cortical columns. This would
contribute to reducing the VSDI response. Finally, a larger external drive screens the dynamics and diminishes the
spread of the Gaussian spots, preventing them from interacting and generating the suppressive wave. In our case, the
suppressive wave would be generated but with a very low intensity. The signal-to-noise ratio would be not enough to
observe a salient wave. This observation is in line with that made by Chemla et al, where reducing the external drive
increased the level of suppression. On the other hand, it is surprising because it contradicts their conjecture that a zero
external drive should not generate a suppressive wave.

As a conclusion, we built a simulation set-up allowing us to reproduce the experiments of Chemla et al. in [9] for the
apparent motion. We used an apparent movement stimulus with the same temporal and an adapted spatial dimensions
as theirs. We fixed the connectivity extent and the conduction velocity of the cortical fibres at the value indicated by
Frederic Chavane. All the cortical parameters are based on previous study on cortical mean field model [12, 13].

Our model is indeed capable of reproducing the suppressive wave of an apparent movement as studied by Chemla et al.
This suppression wave is initiated by the appearance of the response to the most recent stimulus propagating back to the
position of the oldest stimulus. This is the same observation made by Chemla et al. in the macaque. Despite differences
in the temporal, spatial and speed properties of the wave and spots of activity, we think that our model have provided a
better reproduction of the suppressive wave than that proposed by the cortical model used by Chemla et al. Indeed, the
suppressive wave is much more visible in our time-horizontal representation than in theirs. In addition, our simulation
setting (model + Macular plateform) allows us to go beyond the experimental setting by modifying both retinal and
cortical physiological parameters in a way which is not accessible to experiments.

We used two sets of parameters to study the suppressive wave. The "better" set corresponds to the parameterisation
that gave the best suppressive wave. The "default" set is the set of parameter values used in the rest of this thesis. The
default set of parameters showed a weaker suppression wave. As we checked, some specific parameters could be good
candidates for obtaining a highly visible suppressive wave. This is especially true for the background activity νext.
We confirm that a low external drive improves the level of the suppressive wave. We obtained the best result with a
zero external drive. This is actually a surprising result given the importance of a non-zero external drive for the proper
functioning of mean field cortical models[13]. For the moment we have no explanation for this contradiction.

Another interesting parameter that we didn’t explore by lack of time could be the inhibitory quantal conductance QI of
excitatory cells. The effect of this parameter on the suppression wave would confirm the importance of inhibition or
the inhibition/excitation balance. Finally, the characteristic time of bipolar cells (τB) could play a role in extending
the duration of the suppressive wave. A separate, more in-depth study of these different parameters could confirm
these different hypotheses. It could enable the parameters to be optimised to obtain a suppressive wave that is as close
as possible to biology. In this context, we would need an external drive low enough to enhance suppression but high
enough to be compatible with the proper functioning of mean field models. According to Chemla et al, the suppressive
wave is a dynamic normalisation of lateral connections caused by the excitatory/inhibitory balance. We could investigate
the impact of this balance in our model. This could be done by varying the strength of the excitators or inhibitors
by increasing parameters such as the synapse amplification factor, characteristic times or quantal conductances. This
exploration would also be an opportunity to test our hypothesis that the extension of the cortical response also depends
on this excitatory/inhibitory balance in addition to their connectivity distance. The suppressive wave is thought to
be supported by lateral connectivity. This assertion could be verified by assessing the extent to which changing the
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conduction velocity of this lateral connectivity can affect the speed at which the suppressive wave propagates. Finally,
for the sake of simplicity, we have so far used a passive retina. This is not realistic because in the biological retina
there are amacrine cells whose modulatory role by inhibition is essential. They create a dynamic gain control that is
constantly present in the retina. If we want to get even closer to the Chemla et al. experiment, we need to add this
amacrine connectivity or gain control directly. This change could make it possible to correct the difference observed
between our quantification of the suppressive wave and that of Chemla et al. In addition, experiments have shown the
importance of the retina in saccadic suppression [84].

4.2 Simulated saccades
4.2.1 Introduction to simulated saccade
Simulated saccades are a means of reproducing the saccade phenomenon [5] in a psycho-physics context where the
gaze is fixed [8]. This is a way of isolating the visual component of the saccadic omission from the motor component.
Recall that saccadic omission is the fact of not perceiving the movement of a saccade. Its visual component is carried
by a peri-saccadic masking mechanism. In the case of a saccadic movement without peri-saccadic elements, a blurry
smear is percepted during the saccade. In the presence of static phases before or after saccades, this smear is removed,
leaving only a clear continous perception of a visual scene [7]. In particular Mark Wexler from the "Psychologie de la
Perception" laboratory was able to reproduce this result with simulated saccades without eye movement (unpublished
work). He has also shown with Duyck et al. that simulated saccades with masks were perceived with a shorter amplitude
of motion [8]. In some other preliminary experiments, at the origin of the ANR shooting star, Mark Wexler and Patrick
Cavanagh [96] have demonstrated the existence of an illusion induced by saccades, called "shape-dragging" (See Fig.
4.8 for an illustration). When the moving shape differs from the static shape, observers reported a clear moving shape
corresponding to the static shape.
To construct simulated saccades, they used three essential elements. Firstly, a movement reproducing a standard saccade
which he measured in subjects. The measured average amplitude of the saccade is 6 degrees, its average duration is 34
ms and its average speed is 176 degrees/s. Secondly, he used stimuli consisting of a movement phase preceded and
followed by forward and backward static phases respectively: static-movement-static (SMS). They compared this with
a stimulus with only movement, no static phases: -movement- (_M_). The duration of the static phases was set to 100
ms by default but could be varied. Finally, these stimuli had to be displayed using a video projector with a refresh rate
of 1440 Hz. Using our model we would like here to investigate the impact that the different properties of a simulated
saccade have on the retino-cortical response: high speed, presence of static phases, high versus low frame rate. In
particular, we look more closely at effect of static phases on smear masking and shape-dragging.

We carry out our simulations with simulated saccade stimuli strongly inspired by the stimuli that Mark Wexler sent to
us. However, he didn’t communicate us the actual dimensions (in degrees) of these stimuli. For this reason, we decided
to infer these dimensions on the basis that the distance between the two static phases should be of 6 degrees. From this
we could determine a degree/pixel ratio of 0.078. From this ratio, we could calculate any dimension in degrees from the
pixel sizes. Mark’s stimuli have all the same width but can have two different heights when testing shape-dragging.
There are high bars, called "wide" (W), and small ones called "narrow" (N). Calculating the height of the wide bar
from the degree/pixel ratio of 0.078 gives 2.96 degrees. This dimension fits into our simulated area but we preferred to
reduce it to 2.15 degrees to leave 0.5 degrees of margin with the edges. This choice was made to limit edge effects and
also to see if the cortical activity extends beyond the stimulus size. We also changed the height value for the narrow
bar. We indeed thought it was important to keep the same proportion as Mark’s between the heights of the narrow and
wide bars. We ended up with a wide bar dimension of 1.08× 2.15 degrees and a narrow bar dimension of 1.08× 0.45
degrees. We set the saccade speed at 200 degrees/s and the static phase duration at 100 ms on the advice of Mark.
Finally, we chose to use a motion amplitude of 12 degrees. This is a correction that we decided to make in order to
obtain high-speed, low-frame-rate simulations where the bar flashes several times along the trajectory instead of just
once. We used all these measurements to create SMS, _M_ but also S_S stimuli at different speeds, frame rates and bar
heights. The axis chosen for the movement of the bar is the horizontal axis, to be compatible with our horizontal graphs.
In the remainder of this section, we use a three-letter nomenclature to describe these stimuli. The first letter refers to the
first static phase, the second to movement and the last to the second static phase. Three possibilities are possible for
each of these letters: N for a narrow bar, W for a wide bar and ‘_’ for the absence of a bar. The difficulties encountered
in using these high frame rate stimuli in Macular simulations are detailed in the section 2.1.4.

4.2.2 Role of the refresh rate in simulated saccade
We examine first the effect that a simulated saccade can have on the cortical activity using the setup presented in the
section 4.2.1. A saccade is characterised by high speed, the presence of static phase and a high frame rate. Before going
any further, we want to evaluate what the activity generated by a non-saccadic movement in the context of the SMS
stimulus with high frame rate (1440 Hz). To set up a non-saccadic movement, we take care not to use the main property
of a saccade: a high speed of movement. We have therefore chosen a bar moving at 6 degrees/s. The purpose of this
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Figure 4.3: The activity generated by slow movement is indistinguishable from that of successive static phases. A)
Time sequences of the VSDI signal (bottom) for a 6 degrees/s NNN stimulus (top) displayed at a frame rate of 1440
Hz. There is a static phase, with a narrow bar, from 0 to 100 ms, followed by the motion of the narrow bar, in the
interval [100, 2520] ms, finally ending by a static phase, still with a narrow bar. The time is indicated by the purple
arrow above each time sequence. B) Time-horizontal heatmap representation of the VSDI signal in response to the
stimulus displayed in A. C) Time-horizontal VSDI curves representation for the same conditions as A using the same
color gradient as chapter 3

first simulation is to serve as a control condition that we will compare in the simulations that follow, which will have
the properties of a saccade (fast movement and SMS). This control condition will give us a better idea of the specific
characteristics of the response to a true saccadic movement.

In Fig. 4.3 A we show the evolution of the stimulus and the activity of the simulated cortical area over time. The static
phase of the stimulus begins in the first frame (0 ms). In the next frames, from 214 to 2356 ms, we can see the slow
progression of the movement of the bar with a speed of 6 degrees/s) between the positions of the two static phases. The
movement lasted for 2520 ms, representing the majority of the stimulus duration. The first static phase produces a very
large spot of activity. The movement phase that follows generates a strong activity looking like a continuous translation
of the spot of activity initiated by the static phase. The amplitude and size of this spot is constant during movement.
Moreover, no trace of residual activity remains behind this spot. Figure 4.3 B corresponds to the same condition using
the representation already used in the previous section (Sec. 4.1, Fig. 4.1 B). The first static phase, on the left, is shown
at the bottom of this representation, while the second static phase, on the right, is at the top. The translation of the
activity generated by the initial static phase is clearly visible. Note the 37 ms delay before the response of the left
static phase. This delay is identical to that observed in the apparent motion with the same default parameter set (Sec.
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4.1). The duration of the activity generated by the static phases is about 570 ms, the same for that generated by the
movement.

Figure 4.3 C is another representation of the VSDI activity as a function of time and horizontal position. It is similar
to the one used in the chapter on anticipation (Sec. 3, Fig. 3.1 A). The VSDI signal is plotted as a function of time
for each horizontal position. A blue gradient is associated with the horizontal coordinate of the cortical column. The
closer a cortical column is to the left edge (0 degrees), the darker its colour; conversely, the closer it is to the right edge
(18 degrees), the lighter its colour. On the far left and right of the graph one observes the VSDI peaks of the cortical
columns close to the static phases. In between are the VSDI peaks of the cortical columns situated on the trajectory of
the movement. The difference between the static phase peaks and the movement peaks is very small (−6%). We can
also see that when the cortical columns of the second part of the movement is activated, the response of the first static
phase is over. In addition, when the cortical columns of the second static phase are activated, the response of the first
part of the movement is over.

The activity spots of the movement and static phases are almost identical. This means that the cortex should not be able
to distinguish the static phases from the movement. This phenomenon happens because the movement is slow enough
for the bar to remain in the receptive field for a long time and generate a response equivalent to a static bar flashed for
100 ms. We conjecture that no trace of residual activity remains behind the spot because of the slowness of the bar, 6
degrees/s, quite smaller here than saccadic speed. This is because the time required for the bar to cross the receptive
field of the cortical column is quite a bit longer than the characteristic time of integration of this column. In this context,
the cortical columns have time to inactivate completely when the bar has just left their receptive field. On this basis we
raise the hypothesis that the interaction between static phases and movement depends largely on two temporal ratios.

The first is the ratio between the characteristic integration time of the cortical column and the time that the bar stays
in its receptive field (shaping parameter rho in C). The higher this ratio, the earlier the static phase arrives. The static
phase will be flashed even before the movement activity has a chance to develop. The two activities will thus increase
almost simultaneously, facilitating their interaction.

The second ratio is between the duration of the static phase and the entire movement. The greater this ratio, the greater
the difference in amplitude between the VSDI peaks in favour of the static phases. We can assume that the higher the
amplitude of the VSDI peak of the static phase, the greater the suppression it causes. Moreover, this also generates a
difference in VSDI signal slope between the peaks of the static phases and those of the movement. The slope of the
VSDI signal in the second static phase is much steeper than the slopes caused by the movement. If the difference in
slope is sufficient, then the response to the second static phase could catch up with or even exceed the response of the
cortical columns at the start of the movement trajectory. All this means that the speed of the movement, its amplitude,
the duration of the static phases, the size of the receptive field and the characteristic time of the cortical columns are
crucial parameters. This could be a sign of the influence of shapings parameters (C).

With a bar moving at 6 degrees/s, the ratio between the characteristic time of the cortical column and the duration of the
movement is extremely low (1.2). The cortical columns of the first part of the movement have time to inactivate before
the end of the movement. It is therefore impossible for the second static phase to influence the cortical columns of
the first part of the movement. The same assumption applies to the interaction between the columns in the first static
phase and those in the second part of the movement. The ratio between the time of the static phase and that of the
moving phase is low (0.04). The small difference between the amplitude of the static phase and the movement therefore
suggests that here the static phase could not exert much influence on the activity generated by the movement. This is
reinforced by the fact that the VSDI signal from the static phase will become lower than that caused by the movement
even though we are still at the start of the movement. All this suggests that the static phases for such a low speed has a
little impact on the movement.

In this section, we want to observe the impact that the frame rate can have on the response of the cortical columns in
the case of a fast, saccadic, motion. We therefore first carried out simulations with a bar speed of 200 degrees/s, static
phases and a frame rate of 60 Hz or 1440 Hz. We then produce the same 3 graphical representations as used for the 6
degrees/s stimulus.

The stimulus and response for a low frame rate (60 Hz) is shown in Figure 4.4 A. The first static phase appears at 0 ms
and remains until the onset of movement. The start of the movement can be seen in frame 116 ms of the figure, while
its end can be seen in frame 166 ms. Here, the movement lasts 60 ms, which is shorter than the static phases. We could
only display two frames of movement because the speed is too high to have more in our representation. The second
static phase can be seen in the 200 and 250 ms frames. The VSDI response barely begins to appear at the 33 ms frame.
Note the progressive spreading over a long distance of a spot of Gaussian activity on the left of the spot, generated by
the static phase.
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The response caused by the moving phase of the bar is present in 166 ms frame. In contrast to the case when the speed
is 6 degrees/s, it appears discontinuous. It is made up of 3 rectangular motion spots of low amplitude and very little
spatial spread. There is no trace of these spots of motion activity in the 116 ms frame while the movement has already
begun. Here we have a delay in the cortical response. This delay is also particularly noticeable for the second static
phase, which is not yet visible in frame 200 ms, i.e. 34 ms after the start of the static phase. The second Gaussian spot
of activity associated with the second static phase becomes clearly visible in frame 250 ms. Here too, its Gaussian
spread is quite wide. Unlike the 6 degrees/s condition, when the spot of activity from the second stimulus appears, the
motion spots are still clearly present.

With the representation in figure 4.4 B, the three motion activity spots are located in-between the spots corresponding
to the first and second static phases (located at the bottom and top respectively). These three motion spots have very
similar onset times. The static phases last longer (400 ms) than the motion phases (300 ms). Added to this is a delay
of 37 ms before activation associated with the first static phase. This time is similar to that observed with the control
condition at 6 degrees/s. The motion and static phase activity spots measure 0.48 degrees high, 1.06 degrees wide and
are spaced 1.6 degrees apart.

The VSDI curves as a function of time and horizontal coordinate reveal maximum VSDI amplitudes for static phase
that are 4.2 times greater than those for motion (Fig. 4.4 C). The response to the second static phase was slightly lower
than to the first (1.09 times less). Their slope is also much steeper. So, when the VSDI signal peaks at the beginning of
the trajectory reaches its maximum, the cortical columns excited by the second static phase are already at the same level
of activity. We can also see that the activity associated with the first static phase is always much higher than the activity
generated by the movement, including the columns located at the end of the trajectory. This is a notable difference
from the 6 degrees/s condition, which showed little difference between the static and motion phases. Within the motion
trajectory, we can see fluctuations in the maximum VSDI signal due to the response in the form of spots.
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Figure 4.4: The bar speed and the frame rate of the video projector modifies the response of the cortex. A,
B) Time sequences of the VSDI signal for a 200 degrees/s NNN stimulus displayed at a frame rate of 60 Hz (A), or
1440 Hz (D). The time is indicated by the purple arrow above each time sequence. B, E) Time-horizontal heatmap
representation of the VSDI signal for the 1440 Hz (B) and 60 Hz (E) case. C, F) Time-horizontal curves representation
of the VSDI signal for the 1440 Hz (C) and 60 Hz (F) case.

81



What becomes this experiment for a high frame rate of 1440 Hz ? Here, the evolution of the stimulus over time seems
very similar to that at 60 Hz (Fig. 4.4 D). However, if we look at the response, a continuous band of residual activity
gradually develops between the two static phases. There is a delay between the start of the bar movement and the
appearance of the band. This band has a pitch of 0.44 degrees, equal to the pitch of the activity generated by the static
phases. As for the response to the static phases, it doesn’t seem any different from that with the slow frame rate (60 Hz).
The band of activity remains long enough to be present at the same time as the response to the second static phase.

However, the result obtained differs both from the response at 60 Hz. It is smooth and does not show the discontinuous
motion spots of Fig. 4.4 A. In addition it differs from the response to the 6 degrees/s movement for its residual activity
and time scale. Figure 4.4 E confirms that the duration of the static phases and their size at 1440 Hz is the same as at 60
Hz. The delay also remains unchanged. The time elapsed between the start of the movement and the second static phase
is extremely short (Fig. 4.4 F). This very short lapse of time explains why, as at 60 Hz, the first static phase generates
activation that remains throughout the movement and the second static phase has time to respond sufficiently to equal or
exceed the activity generated by the movement, including the start of its trajectory. The slope of activation of the static
phases is much steeper than that of the movement phases. In contrast to 60 Hz, the maximum VSDI is the same for
both static phases and is 10 times larger than that caused by movement. However, the maximum activity generated by
the movement is lower.

In the two figures Fig. 4.4 A and D, the two stimuli look very similar despite the large difference in frame rate. The
limited number of frames we were able to show did actually not allow us to have enough frames of movement to see a
difference between those two stimuli. Despite this, the video of these two stimuli are very different. In the 1440 Hz
stimulus, the movement of the bar appears fluid and continuous. All the fine details of the rapid movement of the bar
are captured. Every cortical position is activated in the same way. In the 60 Hz stimulus, the bar remains static for a
long time before jumping to a new position. However, this time is still much less than the duration of the static phase.
The perceived movement is discontinuous and corresponds to an apparent motion. Only 3 shifts of the bar are observed
within the trajectory of its movement.

At the cortical level, these two very different stimuli generate a spatio-temporal response whose structure is similar to
theirs. Thus the discontinuous stimulus at 60 Hz provokes a discontinuous and heterogeneous response to a continuous
movement. The bar activates a limited number of cortical columns in the trajectory of the bar. Conversely, at 1440 Hz,
this leads in our model of V1 to a homogeneous and continuous band of activity. In comparison, at 1440 Hz, all the
cortical columns in the trajectory of the bar are activated, but for less time than those in the activity spots at 60 Hz. With
a high frame rate, the bar leaves the receptive field of the cortical columns too quickly to give them time to integrate. In
contrast, with a low frame rate, the bar remains stationary for longer, leaving more time for the few cortical columns
it activates to integrate. This is why the 60 Hz activity spots have a greater amplitude than the 1440 Hz band. The
discontinuity in 60 stimulus is also responsible for the strongest response in the first static phase. When the movement
starts, the first frame is in the same place as the static phase. The bar therefore remains at this position for one more
frame before jumping to its next position. This means that the cortical columns at the position of the first static phase
will be activated for one more frame.

In terms of spatial dimensions, the activity spots created at 60 Hz are identical to those in the static phase. A dimension
not so far from their true spatial dimension. At 60 Hz, therefore, the spatial dimensions and the shape of the bar
are preserved. This is very different from the case at 1440 Hz where only the vertical dimension is preserved. This
observation was also made by Awen Louboutin, another doctoral student under the supervison of Olivier Marre in the
ANR Shooting Star project (private communication). They are running simulations of a photoreceptor model from
Rieke’s laboratory to visualise the outputs sent by the photoreceptors to the rest of the retina. This photoreceptor
model, which is more accurate than ours, takes into account the different processes that take place in a photoreceptor.
All the simulation parameters were configured to create two different sets based on the monkey and macaque retina
respectively. The stimulus used here belongs to the WNW category and is displayed at a frame rate of 60 or 1000 Hz.
At 60 Hz, he observed spots of activity of the same shape as the bar, while at 1000 Hz there was only a blurred band of
lower intensity (respectively 75% and 60% of the response of the static bar). Awen describes this effect as a loss of bar
identity of the bar in the case of the high frame rate. He also speculates that this demonstrates the role of photoreceptors
in this phenomenon.

For our part, we argue that these different effects are mainly caused by five parameters: the speed of the bar, the time
it takes for the bar to cross the receptive field of the bipolar cells (or photoreceptors), the frame rate, the size of the
receptive field and the characteristic time of the retinal cells. Their interaction can be summed up in two relationships.
Firstly, there is a relationship between the frame rate and the speed of the bar. If the frame rate is much higher than the
speed of the bar, then the corresponding stimulus will present a continuous movement that generates a real movement.
Otherwise, the stimulus will be discontinuous and will only generate apparent movement. It is therefore the relationship
between the frame rate and the speed of the bar that will be responsible for obtaining a discontinuous retinal or cortical
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response. Then there is the relationship between the time taken for the bar to pass through the cells receptive field
and the characteristic time of the cells, which we mentioned at the beginning of this section for its potential role in
the interaction between the static phases and the movement phase. This is also the shaping parameter ρ presented in
the appendix C. If the characteristic time is longer than the time of the bar in the receptive field, then residual activity
will be observed to a greater or lesser extent. This explains the band at high frame rate and the presence of several
visible spots at low frame rate. This phenomenon can be caused at the photoreceptor layer if the photoreceptors are slow
enough to respond. It is important to stress that the natural visual environment is made up of continuous movements
processed at high frame rates by our eyes. Low frame rates are only due to the limitations of human technology. Our
results demonstrate the major impact that the frame rate can have on the stimulus of the moving object and also on the
response of the visual system. This highlights the importance of not neglecting the frame rate in visual experiences,
particularly in the context of fast movements such as saccades. It is very likely that the difference in spatio-temporal
structure (continuous/discontinuous) at high and low frame rates can lead to radically different internal perceptions of
bar movement. The succession of spots at 60 Hz could thus be perceived by the subject as a moving bar due to the
apparent movement and clear shape that the spots take. The 1440 Hz band, on the other hand, could be perceived as a
blurred bar with a smear.

These two frame rate conditions have one thing in common, that differs from the 6 degrees/s bar speed condition.
Residual activity is left behind the bar. With a high speed of 200 degrees/s, the duration of the movement is extremely
short. As a result, the cortical columns do not have time to inactivate before the movement ends. At 6 degrees/s, the
opposite is true: the cortical columns have plenty of time to return to the state of equilibrium. This drag would increase
with the ratio between the characteristic time and the duration of the movement phase. It would be a necessary point for
good interaction with the activity generated by the static phases.

We believe that the results obtained here illustrate how the static phases, in particular the one after movement, can have
a non-negligible influence on movement activity. With a bar speed of 200 degrees/s the ratio between the characteristic
integration timescale of the cortical columns and the time necessary to cross the receptive field of the column is 40. In
our opinion, this explains the capacity of the first static phase to generate an activity that lasts longer than the movement
itself. This is how the activity created by the first static phase can influence the activity generated throughout the
movement. This is also what allows the last static phase to become active before the cortical columns of the movement
reach their maximum activity, including those at the start of the trajectory. This contrasts with the 6 degrees/s condition
where this ratio is 33 times lower (1.2). Consequently, the activity of the static phase disappears well before the end of
the movement and the activity of the second static phase appears well after the end of the movement.

The second ratio between the duration of the static phases and the entire movement phase is 1.7. This is a value 42 faith
higher than that obtained with a bar speed of 6 degrees/s. We assume that this high value is responsible for the large
difference in amplitude between the activity of the static phase and that of the movement. This difference in amplitude
is accompanied by an equally large difference in VSDI slope. The activity of the static phases increases so quickly that
the second static phase has time to catch up with, or even, exceeds the maximum activity generated by the movement,
including that of the cortical columns at the start of the trajectory. This allows the second static phase to exceed the
movement activity over a large part of the movement trajectory. This amplitude is also important to ensure that the
activity of the first static phase always remains well above that of the movement. In contrast, when the bar speed is 6
degrees/s, there is virtually no difference in these amplitudes. As a result, the first static phase does not remain active
throughout the movement and the second static phase does not activate with a sufficient slope to catch up with the
activity of the movement.

We suggest that these effects result from a balance between 5 main parameters: the speed of movement, the amplitude of
motion, the duration of the static phases, the size of the receptive field and the characteristic time of the cortical columns.
These parameters greatly influence the opportunity for static phases to interact with movement. A balance that could be
crucial for effective suppression between static phases and movement. All this would make it possible to justify that the
effect of static phases comes into play in the context of saccade. This arises because the speed reaches a sufficiently
high value. This would also provide a reason for the effect of the duration of static phases seen on saccade amplitude
[8] and smear (unpublished work). Indeed, we believe that a reduction in the smear generated by the rapid movement
of a saccade is associated with a strong suppression wave. A suppression wave which, according to Benvenuti et al.
[3], should make it possible to erase the old representations of the movement and therefore the residual activity which
generates the smear.

4.2.3 Effect of the static phases on smear
In this section, we study the implication of static phases on the absence of perception of a smear. This results from
discussions with Mark Wexler (unpublished work). He has observed with psycho-physical tests on humans that the use
of simulated saccades reduces the presence of a smear left behind the bar. The longer the static phase, the less visible
this smear. As part of the ANR shooting star project, Mark Wexler is working with Frédéric Chavane to extend these
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experiments to monkeys, where VSDI measurements are possible, and observe the cortical response. They are using
only two stimuli, NNN and _N_. The aim of this section is to carry out the same experiment in our retino-cortical model.
The characteristics of the stimuli we used are the same as those presented in section 4.2.1 and used in section 4.2.2.

In order to study smear, we first had to decide how to quantify it. We know that a smear is experienced, at the perceptual
level, as a bar that is more or less elongated towards the back, and blurred. We think that this smear can be expressed by
two components in the cortical response. A first horizontal component corresponding to residual activity upstream of
the bar. A second vertical component corresponding to a greater spread of the cortical response. These two components
were quantified using two methods developed by Mark Wexler and Frédéric Chavane (private communication).

The level of residual activity on the horizontal axis can be measured by constructing a horizontal section of activity
along the stimulus trajectory (Fig. 4.5). This section is constructed by averaging over each vertical slice. This allows
us to take into account the entire area behind the stimulus. As far as possible, we try to separate the two effects that
make up the smear in order to understand how each behaves. This is why, in order to measure only the residual activity
(horizontal smear), we have to take into account a restricted vertical zone in the wake of the moving bar. We only want
to consider the cortical columns that were in direct contact with the passage of the bar. We can see in figure 4.4 D that
the cortical columns directly in contact with the passage of the bar show an activity at least greater than 50% of the
maximum activity of their vertical slice. With this in mind, we used a threshold to average out only those values in each
vertical slice that exceed 50% of the vertical slice’s maximum response. This creates a high-activity rectangle of interest
centered on the same horizontal line as the spot of activity generated by the moving bar (Fig. 4.5 A). In this method, we
keep the whole horizontal axis, including the static phases, because we also want to see how their activity evolves.

The spread along the vertical axis can be measured in a similar way by using a vertical section and averaging each
horizontal slice (Fig. 4.5 A). This horizontal slice will nevertheless be defined to capture only the movement phase
and not the static phases. It will also take into account the entire vertical axis, as no threshold will be applied. We
abandoned this idea because of two issues. First, the presence of the static phases, even if truncated, risked to make the
edges of the movement higher in intensity than the movement itself thereby attracting our measurement zone there.
Second, the measurements would have been biased by the close proximity of the static phases.

The two smear quantification methods are illustrated in Figure 4.5 through a thought experiment. Figure 4.5 A represents
a fictive spatial heatmap of the VSDI signal in response to a NNN stimulus accompanied by the frame of the labeled
stimulus. We have pictured here 5 zones of increasing size represented by different colours. Each of these areas
represents the movement response of different scenarios associated with an increasing smear. From the lowest to
highest intensity of smear we have the red, orange, green, cyan and blue zones. Both (horizontal and vertical) smear
components are increased.

First, the higher the smear, the more the active region lengthens horizontally. This corresponds to the increase in
residual activity on the horizontal axis. This residual activity is reflected in the horizontal profile including all the
vertical positions located in a zone of high activity (> 50% of the maximum of the integrated vertical line). This
corresponds to a rectangle centered on the motion axis. The increase in the horizontal component of the smear causes
the Gaussian-like activity to elongate backwards becoming gradually a plateau (Fig. 4.5 B). Second, the increase in
the smear causes as well the activation zones to spread out vertically. This spread is reflected in the widening of the
horizontal activity profile (Fig. 4.5 C) as the smear increases. If the smear increases sufficiently, the widening can lead
to a plateau response.

The magenta zone in Fig. 4.5 B symbolises the core of high residual activity generated by the first static phase. For the
sake of clarity, we have chosen to show it as invariant to smear levels. However, a smaller residual activity should also
be accompanied by a stronger decrease in the residual activity of the static phase. In the vertical profile (Fig. 4.5 C), the
activity cores of the static phases have been excluded from the calculation of the profile. We are only interested in the
spread around the movement, not the static phases.

Figure 4.6 corresponds to the application of this method to quantify the smear to the NNN and _N_ conditions. The
displayed profile shows the average response present on the horizontal axis, in the zone of high intensity located around
the axis of movement. This profile was calculated for a series of frames ranging from 0 to 599 ms. This time interval
was chosen in order to clearly see the decay of the cortical response over time. The speed of this decay is associated
with the residual activity (horizontal component of the smear). For each frame, the scale of the y-axis was set to the
same maximal value of 0.015. This value was chosen so that the motion response and part of the static phase response
could be sufficiently visualised.

From frame 0 to 79 ms, only the horizontal NNN profile shows an activity, located to the left of the cortical area (blue).
From frame 119 ms, a small amount of activity emerges to the left of the stimulus response profile (red). This activity
continues to increase and to propagate from near to near in the next frame (159ms). At the same time, there is a slight
increase in the VSDI signal to the right of the peak in the NNN profile, which is also propagating. In the second half
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Figure 4.5: The concept of mean sections. A), top. A white square propagates from left to right, at a speed of 6
degree/s, on a black background, from a first position (dashed rectangle on the left), with a static phase lasting 100 ms,
to a second position (dashed rectangle on the right) with a static phase of the same duration. This corresponds to a NNN
stimulus. A), bottom. Sketch of the spatial VSDI response at the time corresponding to a specific stimulus position
(a specific frame). The violet square represents the region directly activated by the first static phase. The colours red,
orange, green, light blue and blue represent a discretisation of the activity generated by the movement of the bar. From
red to blue, each colour corresponds to an increasing level of smear i.e., a spread of the response beyond the spatial
region of the stimulus. This is associated to an increase in the horizontal residual activity and a vertical spread. The
smear is first integrated vertically by averaging the contributions of the horizontal sections represented by the vertical
dashed white arrow. The two horizontal white lines delimit the zone where the average is done. This is a dynamic zone
obtained by applying a threshold of 50% to the maximum response of the vertical position. This vertical integration
gives rise to B), horizontal profile of the VSDI signal at the corresponding frame. The more residual activity there is
in the A spot, the more the horizontal profile shows a plateau. Similarly to B, an horizontal integration along vertical
sections (horizontal dashed white lines) and only in the stimulus movement zone (vertical white lines) provides C),
vertical profile of the VSDI signal for the same frame as A and B. The more the spot of activity in A spreads out, the
wider the Gaussian-like profile.

of the horizontal profile, the responses of the two conditions are equal. In the 199 ms frame, a second response peak
appears to the right of the horizontal axis. This peak continues to increase and at 239 ms creates an inequality in the
responses between the two conditions for distant distances. At the same time, we observe a response from _N_ in the
form of a straight plateau. From frame 439 ms, one can observe an asymmetric decrease in this plateau of activity. The
anterior part of the response decreases before the posterior part. This reduction continues until the residual activity is
almost non-existent. The residual activity of the NNN condition is also decreasing. At the center of the response profile,
between the two peaks, the difference in response between NNN and _N_ appears to be gradually diminishing.

The same experiment carried out on monkeys by Frédéric Chavane and Mark Wexler revealed peaks of activity generated
by static phases at the same height as the activity carried by the movement (private communication). Activity in static
phases also lasts less time than in our simulation. They made a Gaussian fit of the horizontal profile for each frame. The
aim was to determine the size of the residual activity spot and therefore the level of smear. The graph obtained showed
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Figure 4.6: Static phases increase the horizontal cortical smear. Time sequences of the horizontal section averaged
over the vertical axis defined in Figure 4.5 A. The blue curves correspond to the condition with static phase (NNN) and
the red curves to those without (_N_). In both cases the moving phase has a velocity of 200 degree/s and the frame rate
is 1440 Hz. The stimulus presented at the top of each frame is NNN.

that this spot was larger in the absence of a static phase than with one. In our case, the horizontal profile does not have a
Gaussian shape to achieve the same kind of fit.

The activity associated with the static phases in our figure corresponds to the two large peaks on the left and right. The
activity observed between the two is that generated by movement. This is visible in the _N_ condition, whereas it is
drowned out by the activity of the static phases in the NNN condition. We can see that our static phases create a much
higher level of activity than the movement and are less spread out. Their activity remains for almost the entire stimulus.
Our static phases generate a response 10 times stronger than movement, whereas in the monkey experiments the static
phases and the movement phase generate the same response amplitude. Our static phases are therefore too strong and
less spread out compared with the movement phase. This can lead to an increased smear effect. We tried to set up
Gaussian fits of the horizontal profile for each frame but without success. We were not surprised because we believe
that the response obtained for the movement activity profile is a plateau, not a Gaussian. The use of a Gaussian fit does
therefore not seem appropriate.

The way how this plateau decreases, with an asymmetry in favour of the anterior part, is linked to the fact that this is the
oldest activated zone. The region near the second peak, on the other hand, decreases very little due to the very strong
presence of the static phase peak, which comes last. We conjecture that the speed at which the different positions of
the horizontal profile decrease depends strongly on the activity present there. With each new frame, the VSDI signal
decreases by a fraction of the actual VSDI. Thus, the activity linked to the static phases in the last 3 frames (519, 559
and 599 ms) decreases by a much greater magnitude between frames than that of movement. We suggest that this
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explains why the difference between NNN and _N_ decreases. In our opinion, this cannot be considered as a decrease
in smear. Our results show that NNN activity is still greater than in _N_.

As a result, we could ask whether the increase in activity that we measure in NNN with our method should be considered
as an increase in smear. Another solution would be to measure the smear as the amplitude of the movement response.
This amplitude depends on the state of activation of the cortex before the start of the movement. With this second
solution, we could explain why static phases would reduce the perceived smear. In fact, static phases lead to an increase
in the level of global activity, particularly on the trajectory of the bar. Because of the non-linearity of the cortical
response (dynamic gain), a high state of activation of the cortex causes a lower response from it. As a result, the
amplitude of the movement response will be reduced, as will the smear. However, this is hardly visible in our case.
The activity associated with our static phases seems too high and not spread out enough in relation to the length of the
movement. This can be explained by our choice to use a movement amplitude twice as large as for a saccade. With
well-spread static phases, part or all of the movement zone sees an increase in the activity of the cortical columns that
make it up. The activity of the movement will then be reduced because it will be drowned in it.

Figure 4.7: Static phases increase the vertical cortical smear. A,B)Time-vertical representation of the VSDI signal of
the cortical columns located at the center of the horizontal axis with (A), static phases (NNN), or (B) without (_N_). C)
Time sequences of the normalized vertical section averaged over the horizontal axis and time for NNN (blue) and _N_
(red). For each frame of motion, a vertical section is calculated as shown in figure 4.5 B. The stimulus presented at the
top of each frame is NNN.

We now study the vertical component of the smear, the spread (Fig. 4.7). We use a representation of the VSDI as a
function of time and vertical position for the column at the center of the horizontal axis. We first apply it to the NNN
condition (Fig. 4.7 A). On the left is the start of the stimulus. Here, we see an area devoid of VSDI signal up to about
0.14 s. Beyond this point, a central zone on the vertical axis becomes very active. This zone has a height of 0.44 degrees
and a duration of around 400 ms. Around this zone of strong activity is a zone of activity half as strong and lasting half
as long, which extends across the entire vertical slice. This organisation is symmetrical along the horizontal axis.

The result obtained with _N_ is very similar (Fig. 4.7 B). The only difference lies in the level of activity in the center
of the spot but also in its vicinity. These are weaker and last a little less time. We change the representation in order to
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use the vertical profile integrating the vertical sections as introduced in figure 4.5. We make a profile for several frames
covering the duration between 0 and 450 ms (Fig. 4.7 C). We decided not to take more than this, because beyond this
point the motion activity starts to become too small to be relevant. Each of the profiles has been normalised to make it
easier to compare their shape. Shape is important for measuring spread. The vertical profile of NNN becomes non-zero
from frame 63 ms, while that of _N_ becomes non-zero at frame 128 ms. For all the following frames, the profile
created by NNN varies very little. The _N_ profile is invariant, but there is a gradual increase in activity around the
central peak.

The spots of activity observed in 4.7 A and B have a height equal to that of the bar we used. This high-activity spot is
formed by the positions that were in direct contact with the passage of the bar. We assume that the absence of VSDI
before 140 ms can be explained by the use of the vertical profile of the cortical columns located at the center of the
horizontal axis. These cortical columns receive very little excitation from static phases that are too far away from them.
Taking into account that movement starts at 100 ms, this means that the delay before activation of these cortical columns
is 40 ms. This delay is compatible with that observed so far in all the other figures in this section. In the NNN case, the
increase in activity observed compared with _N_ reflects an overall increase in the level of activity generated by the
static phases. There is also a change in shape, as shown by the normalised vertical profile. The NNN condition profile
appears higher and wider. This change in shape seems to be consistent with a greater spread for the NNN condition and
therefore a greater smear.

In conclusion, our work on smear showed very contradictory results to those of Mark Wexler and Frédéric Chavane.
They found a significant difference between NNN and _N_ in the radius of the Gaussian fits performed on the horizontal
profiles in their monkey experiments. In our case, we found no evidence of a decrease in smear in the NNN condition
compared to the _N_ condition. This observation was made both for the horizontal smear, which we called residual
activity, and the vertical smear, which we called spread. On the contrary, our measurements seem to reveal stronger
residual activity and spread in the NNN condition. This would suggest an increase in smear in this condition. It should
be noted that our horizontal profiles did not show any Gaussian profiles allowing a fit. We think that the most plausible
explanation for all these changes lies in the very large difference in proportion between the response amplitude of the
static phases and that of the movement phase compared with the experiments in monkeys. Our static phases are much
too high, too sharp. The static phases of the monkey have a very spread out shape which could enable them to interact
more strongly with all the cortical columns on the movement trajectory. In our case, we doubled the amplitude of the
physiological saccade, which could also be partly responsible for the low overlap of the trajectory of the bar by the
static phase. It would be interesting to modify the amplitude of our static phases, their spread and perhaps the amplitude
of our movement in order to assess whether we obtain a reduction in the smear by correcting these deviations in our
simulation compared with that of Chavane and Wexler. This would confirm the importance of the shape of the static
phase and the equality of the amplitudes between the static and moving phases.

4.2.4 Shape-dragging effect in simulated saccades
When a simulated saccade is performed on humans an illusion called shape-dragging has been highlighted by Mark
Wexler and Patrick Cavanagh [96]. To give an example, if the static phases correspond to a solid circle and the moving
phase to a hollow circle, the subjects will see a solid circle in motion. This only happens in the context of a simulated
saccade (high speed of movement, a high frame rate, and static phases) where the shapes of the static phases differ
from those of the moving phase (e.g. changing their size, shape or filling). Subjects perceive the slow movement of
an object having all the properties of the one used for the static phases instead of the one of the moving phase. The
moving object is masked by the static phase object. Mark Wexler and Frédéric Chavane have carried out another series
of unpublished experiments in monkeys (private communication). In order to quantify, they used WNW and NWN
stimuli in order to measure changes in the size of the cortical response. A region of the V1 cortex was recorded during
the stimulus presentation. To check whether the size of the cortical has changed, they used the same method as we
used and described in detail for the vertical smear (Sec. 4.2.3). They calculated vertical profiles by integrating each
horizontal line in an area between the two static phases. This was averaged over 5 frames where motion occurs. A
Gaussian fit was then used to calculate the thickness of the vertical profile. Their analyses revealed a non-significant
difference between the width of the peak of the vertical profiles between NWN and WWW conditions and between
WNW and NNN. In this section we simulate the same experiments and analysis with our retino-cortical model. To do
this we will use the stimuli WNW, NWN, NNN and WWW, the creation and nomenclature of which is introduced in
section 4.2.1. The extension of the bar (vertical) is therefore perpendicular to the direction of movement (horizontal).
The speed of motion is 200 degrees/s and the frame rate is 1440 Hz.
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Figure 4.8: Static phases with a bar height smaller than the height in the moving phase don’t cause shape-
dragging. A, B) Time sequence of VSDI signal spatial heatmap and stimuli for WWW (A) and NWN (B).C, D, E)
Time-vertical representation of the VSDI signal of the cortical columns located at the center of the horizontal axis with
NWN (B), NNN (C) or WWW stimulus (D). F) Time sequences of the normalized vertical section averaged over the
horizontal axis and time for NNN (blue), WWW (orange) and NWN (pink). The stimulus presented at the top of each
frame is NWN.
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The results are shown in Fig. 4.8. The response of the cortex to the WWW stimulus generates the presence of a long
rectangular spot of activity indicator in frame 100 ms and measuring 1.08× 2.08 degrees (Fig. 4.8 A). The activity of
this spot increases until the frame 193 ms. This spot radiates an activation halo of about half the size of the spot. In
frame 146 ms, a band of activity extends from the spot to the right. This band stops at the position where a second
spot of high activity appears, identical to the one on the left. Between 216 and 356 ms, the activity of this second spot
continues to increase while that of the first spot decreases. After that, the activity of the second spot and the inter-spot
region begin to decrease.

In the condition with the NWN stimulus, we can see the transition from the static phase to the movement phase between
frames 100 and 123 ms (Fig. 4.8 B). The bar increases in height between these two frames before returning to its
original shape in frame 170 ms, where the second static phase occurs. Here too, a spot of activity intensifies between
100 and 193 ms. However, the size of this spot is 4.3 times smaller (1.08 × 0.48 degrees) than that of the WWW
stimulus. A band of activity extends from this spot between frames 146 and 193 ms. At the position where this band
ends, a second spot of activity appears and develops between 216 and 356 ms. This is also the interval where the first
spot of activity decreases. Beyond this, the second spot of activity and the motion activity decrease.

The evolution in time of the vertical profile at the center of the visual area shows a very intense response over the entire
height of the cortical area (3.15 degrees) and for 330 ms for the NWN condition (Fig. 4.8 C). This response is preceded
by a fairly long delay. In contrast, with the NNN stimulus, we see a much smaller spot of vertical profile activity (0.45
degrees) with a duration of 320 ms (Fig. 4.8 D). This spot also has much lower activity than the NWN condition.
Surrounding this spot is a halo of VSDI activation twice as weak as the spot. The horizontal profile in response to a
WWW stimulus is very similar to that of NWN (Fig. 4.8 E). The only difference is a stronger VSDI signal in the WWW
case.

In order to take into account the whole length of the motion trajectory, we set up the same vertical profile integrating
the horizontal positions as Mark Wexler did. However, we have decided not to average over time, as we believe it is
important to see the evolution of size over time. A set of frames was chosen to display the profile. The time interval
of these frames stops when the response to movement starts to reduce dans une simulation sans phase statique (_N_).
We also decided to normalise the vertical profile in order to focus mainly on the shape of the response evoked by the
movement. A change in the size of the cortical response will result in a change in the shape of the vertical profile of
this response. If the size of the response increases, we will expect a flatter, more spread-out profile; conversely, if the
size decreases, the profile will be narrower. Finally, we were unable to use a Gaussian fit to measure the width of the
cortical response which was not Gaussian. The stimulus we chose to display in this figure 4.8 F is the NWN stimulus. It
highlights the two frames of motion (128 and 160 ms) where the bar is higher than in the rest of the stimulus. Frames
up to 95 ms show an identical NNN and NWN profile that is very different from the WWW profile. The WWW profile
is flattened and wide, while the other two are pointed and narrow. The shape of the NNN and WWW profiles remained
virtually unchanged for the duration of the stimulus. However, from frame 128 ms, the vertical profile of the response
to the NWN stimulus gradually approaches the flat, wide shape of the WWW profile. The difference between the two
shapes diminishes again after 450 ms.

We want to try and determine whether or not our result reveals shape-dragging. The two spots on the right and left of
the spatial heatmaps (Fig. 4.8 A and B) correspond to responses to static phases. The one in between corresponds to
movement. The static phases W of the stimulus are 4.7 times greater than those of N. This increase in the height of the
stimulus generates an increase in the height of the activity spot of 4.3 between WWW and NWN. This means that there
has been a slight change in the expected proportions of the height of the bar. The height of the WWW spot is smaller
than that of NWN. We think that this is linked to the low spatial resolution that we have on the vertical axis. It is also
possible that edge effects may play a role. The substitution of static N phases by higher static W phases generates an
overall increase in activity. This is made possible by the very strong VSDI signal caused by the static phases. We do
not believe that a simple increase in the overall level should be considered as an increase in the size of the perceived
stimulus. It is the shape of the response profile that seems to be the best indicator. The main difference between our
results and those of Mark is the shape of the vertical profiles obtained. In their case, the NNN and NWN vertical profiles
resemble Gaussians. In our case, on the other hand, the profiles are very spread out and flat. It is possible that this
difference in shape could be resolved by adding amacrines or gain controls. Despite this difference, we come to the
same conclusion as Mark Wexler and Frédéric Chavane : there is no difference between the heights of movement with
the NWN and WWW stimuli. Static phases do not affect the moving phase. We did not observe any effect in the V1
cortex that might be associated with shape-dragging in the case of the NWN and WWW stimuli.

In Fig. 4.9 we investigate the stimulation of the cortex by a WNW stimulus. The response begins with the development
of an intense spot of size 1.08× 2.08 degrees (Fig. 4.9 A). A thin band of activity appears in the central part of this
spot, progressing until it stops where a second high spot of activity of the same size as the first appears. From 240 ms,
the VSDI signal from the first spot is reduced while the second increases. This second spot and the response to the
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Figure 4.9: Static phases with a bar height larger than the height in the moving phase cause shape-dragging.
A) Time sequence of VSDI response and stimulus for the WNW condition. B, C, D) Time-vertical representation of
the VSDI signal of cortical columns located at the center of the horizontal axis with WNW (B), NNN (C) or WWW
stimulus (D). E) Time sequences of the normalized vertical section averaged over the horizontal axis and time for NNN
(blue), WWW (orange) and WNW (green). The stimulus presented at the top of each frame is WNW.

movement do not decrease until the 380 ms frame. A vertical section through the middle of the horizontal axis of each
heatmaps in 4.9 A shows the vertical profile of the band of activity located between the two static phases (Fig. 4.9 B).
This band measures 0.45 degrees and lasts 370 ms. Surrounding this band is an activation halo half as intense as its
center. This vertical band appears to have a vertical profile at the center of the horizontal axis intermediate between that
obtained with the NNN (Fig. 4.9 C) and WWW (Fig. 4.9 D) stimuli. For a more complete picture, we also use the
vertical profile integrated on the horizontal axis (Fig. 4.9 E). In the early stages of the simulation, the profile of NWN
merges with that of WWW. Both are spread out and flat, unlike that of NNN, which is sharp and narrow. The arrival of
the movement causes a slight downward inflection in the WNW profile, which is slightly closer to the NNN profile.
Despite this, the shape of the WNW condition remains much closer to that of WWW.
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This experiment shows responses related to the static phases which are identical when we look at the temporal sequence
of the spatial heatmaps. However, the height of the movement is much smaller, equal to that of the moving bar in
the WNW stimulus. This band is the same size as that observed for NNN in the section 4.2.2. The vertical profile
at the center of the cortical area of WNW is closer to that of the NNN condition than WWW. On the other hand, the
normalised vertical profile incorporating horizontal positions tends to point in the direction of greater shape similarity
between WNW and WWW. This difference is due to the fact that the vertical profile of figures B, C and D is only
calculated for the central vertical line. This position is equidistant from the two static phases. It receives the least
excitation from the static phases. This can be seen in the 356 ms frame in figure 4.9 A. The halo of the two static phases
does not reach the center of the horizontal axis. In the vertical profile used in figure 4.9 E, the entire motion trajectory is
integrated. This makes it possible to take into account all the variations on this trajectory, including those close to the
static phases. It is in this context that we observe a proximity between the NWN and WWW vertical profiles. This
suggests that the static phases do have an impact on the shape that could be perceived in the case of a WNW stimulus.

Overall, our simulations carried out to explore the effect of shape-dragging seem to have revealed effects that contradict
those of Frédéric Chavane and Mark Wexler, as well as my own results. In their preliminary experiments with monkeys,
Chavane and Wexler found no significant difference in the size of vertical profiles between NNN and WNW or WWW
and NWN. To do this, they used Gaussian fits, which we were unable to do due to the lack of vertical profiles resembling
a Gaussian. We decided to concentrate instead on the shape of the vertical profile by adding a normalisation not present
in the monkey experiments. This process enabled us to identify a WNW vertical profile whose shape is closer to WWW
than to NNN. This could indicate a shape-dragging effect. On the other hand, we were unable to observe the same
change in the shape of the vertical profile of NWN and therefore no shape-dragging. We do not yet know why we
obtained two contradictory results with respect to shape dragging in the cortex. We wonder whether it is conceivable
that the effect of shape-dragging in humans is also stronger and more visible in the WNW case than in the NWN case.
However, these results need to be put into perspective as it is possible that the change in shape is not sufficient to
consider that the size of the response has changed and that the same level of activity is also potentially required. We
think that our differences with the biological results may still be due to our static phases being too strong. Even though
we don’t integrate static phases directly into the calculation of the vertical profile, they still have an influence on the
lateral connectivity. Another probable explanation is our use of normalisation. If Mark Wexler and Frédéric Chavane
applied normalisation to their analyses of the temporal profile, perhaps they too could observe the same results as us.
Finally, shape-dragging could be used in areas with a higher hierarchical level. This could require interaction between
the ‘what’ and ‘how’ pathways.

4.3 Suppressive effect in simulated saccades
In section 4.1, we introduced Chemla et al.’s [9] demonstration of the presence of suppressive waves within apparent
movement in macaques. They gave evidence of a suppressive wave which goes in the opposite direction of motion
in order, according to Chemla et al, to suppress the earlier representation of the stimulus in the cortex. The section
4.2 investigated the impact that static phases can have on the smear of movement as well as the size or shape of the
object perceived as moving (shape-dragging) during a saccade. The central question that we address in this final section
establishes the bridge between these two phenomena. We believe that the effects of smear reduction and shape-dragging
could be explained by a suppressive interaction between the static phases and the motion phase. This exploration has
not yet been the subject of any previous experiments, nor simulations, to our best knowledge. The experimental set-up
we are using was defined during discussions with members of the ANR ShootingStar. We ran simulations with the
default set as in 4.1 for the three types of stimuli : SMS, S_S and _M_. SMS stimuli are extremely different from
apparent movement. It’s real continuous movement made up of a large number of frames. This movement is much
faster and is bordered by long static phases. From advice of our partners, we calculate the difference between the SMS
activity and the sum of the S_S and _M_ activities. This procedure allows us to highlight the non-linearities present in
SMS and which originate in the interaction between the static phases and the movement phase. We will do this for three
of the stimulus sets used: NNN, WNW and NWN.

Figure 4.10 A shows the response to the NNN stimulus. The bottom and top of the representation correspond respectively
to the left and right of the cortical area. The first static phase generates a long, intense activation at the bottom, while
the second creates an identical activation at the top. In between is a mixture of the response evoked by the movement
of the bar and that of the two static phases. In figure 4.10 B we subtracted the responses generated by a stimulus
with no movement phase (N_N) and another with no static phase (_N_). A first suppressive spot appears at 0.11 s,
at the same time as the moving phase response develops. The position of this suppressive spot is identical to that
of the first static phase. Its duration is 350 ms, slightly less than the static phase responses. We can also observe a
spread of the suppression with time in the direction of movement. This spread reaches a maximum of 2.8 degrees,
110 ms after the start of suppression, and then starts to decrease. A second suppression spot occurs at 0.19 s when
the response to the second static phase appears. From this spot, suppression spreads in the opposite direction to the
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Figure 4.10: The NNN stimulus creates suppressive spots spreading from static phases to motion phase. A)
Time-horizontal heatmap of the VSDI signal for the NNN stimulus. B), Time-horizontal heatmap, and (C), time
sequence of the suppressive non-linear effect generated by the saccade. This non-linearity is the difference in activity
between the NNN condition and the sum of those generated by motion phase (_N_) or static phases alone.

movement. The suppression extends to 2.4 degrees after 140 ms before diminishing. The temporal sequence of this
same suppression starts with a spot in frame 128 ms (Fig. 4.10 C). A suppression band extends from this spot in
the direction of motion and gradually intensifies. A second spot then appears at 214 ms and extends in the opposite
direction to the movement. Note the presence of a virtually suppression-free zone of 0.5 degrees at the center of the
motion trajectory. The maximum value reached by suppression is only −7.5%.

The start of suppression here occurs at the moment when the movement starts, which is the earliest we can have. In
fact, we couldn’t have seen any suppression before because we’re looking specifically at suppression between motion
and the static phase. Actually, we don’t really see a suppressive wave propagating in these results. The maximum of
the two suppression spots always remains at the same position, that of the static phase, compare to Fig. 4.1 A where a
propagation is clearly visible. Here we only have a suppression spot that spreads with time. The suppression generated
by these spots doesn’t cover the entire trajectory of the movement and their value is slightly less than that observed in
the apparent motion for the same set of parameters (11%). In the case of the suppressive spot in the first static phase, the
suppression is maximal in the static phase and then decreases in the same direction as the motion. This is the expected
behaviour, if we omit the absence of a wave, that observed for the suppression of apparent motion (Sec. 4.1). However,
this is not true for the second static phase. Its suppressive spot is maximal on the static phase and intensifies in the
direction and in the opposite direction of the motion. This is the opposite of what we expected. This means that recent
representations of the bar are more suppressed than earlier ones.
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Figure 4.11: The WNW stimulus creates suppressive spots spreading from static phases to motion phase. Same
description as figure 4.10 for WNW, _N_ and W_W stimuli.

Figure 4.11 A is the equivalent of figure 4.10 A in the case of a WNW stimulus. The horizontal size of the two activity
spots is 0.48 degrees and lasts 400 ms as for NNN (Figure. 4.10 A). However, the activation halo is relatively strong
and extended by 2 degrees. This figure shows the structure of the response to the WNW stimulus (Fig. 4.11 B). A first
suppression spot arrives at the position of the first static phase and at the start of the movement. The spot lasts for 360
ms. From this spot, strong suppression spreads out in the direction of movement. After 110 ms the suppression extends
to 4.8 degrees and then shortens. It is in this spot that the maximum suppression is observed (−10%). At the moment
of response to the second static phase and its position, a second suppression spot appears, lasting 360 ms. This spot
extends asymmetrically in the direction but in the opposite direction to the movement. It extends to 3.7 degrees after
150 ms. The temporal sequence of response to the WNW stimulus allows us to see the left suppression spot starting at
128 ms and then extending in the direction of movement (Fig. 4.11 C). It is accompanied by weaker suppression on
either side of the motion trajectory. The appearance of the second spot on the right produces the same thing, but in the
opposite direction to the movement. Note that only a very small part (1 degree) of the motion trajectory is not affected
by the suppression of one of the two static phases.

This result and the conclusions to be drawn are almost identical to those in figure 4.10. No suppressive wave can
be observed and the position of the suppression maximum does not vary. All that we have is a spot which spreads
asymmetrically in the direction of motion. This results in a suppression whose gradient intensifies in the opposite
direction to the movement for the first static phase and in the same direction for the second. The only two differences
with the figure are the intensity and the spreading distance of the suppression. These two characteristics are higher here
due to the presence of larger static phases. A larger static phase increases the VSDI signal sufficiently to generate an
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activation halo, including on the horizontal axis. The maximum suppression value observed here is very close to that of
the apparent motion (10% compared with 11%. This larger size and greater intensity could lead to better suppression of
static phases in the movement.

Figure 4.12: The NWN stimulus creates suppressive spots spreading from static phases to motion phase. Same
description as figure 4.10 for NWN, _W_ and N_N stimuli.

We conclude our with the NWN stimulus. The spots of activity generated by the static phases for the response to the
NWN stimulus (Fig. 4.12 A) are the same as those for NNN (Fig. 4.10 A). The activities generated by the two static
phases last 400 ms and measure 0.48 degrees along the horizontal axis. The only difference lies in the activity generated
between the two static phases, on the movement trajectory. This is stronger and lasts longer (230 ms). Suppression with
the same representation reveals a spot of activity at the positions of the two static phases (Fig. 4.12 B). The first arrives
at the start of the movement and lasts 490 ms. The second arrives at the start of the response to the second static phase
and lasts 450 ms. Over time, these two spots both spread asymmetrically in the two directions of the horizontal axis.
Both spread with greater intensity in the direction of movement than the other way round. In the case of the first spot,
suppression spreads out to 2.7 degrees after 110 ms from the start of the suppression spot. In the opposite direction
of movement, the suppression is barely visible. For the second spot, the suppression spreads out by a maximum of
2.2 degrees after 180 ms of spot. In the opposite direction, suppression also increases very slightly. The maximum
suppression observed in this condition is 11%. The suppression time sequence also shows the arrival of two spots at
128 and 185 ms respectively (Fig. 4.12 C). From these two spots extends a suppressive band with a height of x degrees
which covers part of the motion trajectory. The positions of the static phases are the areas where maximum suppression
remains. An area 4.4 degrees long and free of suppression separates the two suppressive bands.
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The difference in the VSDI signal of the motion phase observed with the NWN stimulus is justified by the presence of a
larger moving phase, which therefore generates stronger activity during its passage. This greater activity also explains
the greater height of the suppression band compared with that obtained with NNN or WNW. This height is very close to
the true height of the bar. This means that the larger the moving bar, the larger the suppression generated. Once again,
we conjecture that what we are observing is not a wave because the maximum suppression remains fixed. What we see
is a spot of activity that spreads progressively from the static phases in the direction of motion. This explains why, in
the case of the first static phase, the activity spreads out in the oldest positions but suppresses the most recent positions
to a greater extent.

In conclusion, these incomplete results seem to show a kind of halo of suppression of the static phases towards the
trajectory of movement. But no waves were observed in any of the three experiments. The simulation generating the
strongest suppression was that of the NWN stimulus, followed by WNW and finally NNN. On the other hand, the
WNW stimulus produced the greatest suppression, followed by NWN and NNN. The size of the bars is an important
parameter in the level of suppression obtained.

We speculate that the difference between the suppression phenomena observed in the apparent motion and SMS stimuli
with simulated saccade may be due to the nature of the stimuli being compared. In the case of apparent motion, we
compare two identical stimuli. They are simple short flashes creating two Gaussian shapes of static and identical activity.
On the contrary, SMS stimuli are made up of two radically different phases. In on one hand we have the static phase,
which is a long flash creating intense static activity. On the other hand, we have the moving phase, which creates
dynamic activity over time, homogeneous and of low intensity. Apparent motion and SMS are far too different to
be comparable. The presence of a suppressive wave in apparent motion does not imply that one should be observed
between static phases and motion. We further suggest that a suppressive wave may only appear in motion. This is the
case in apparent motion as well as in the moving phase of the SMS stimulus. On the other hand, there is no movement,
even apparent movement, between the static phases and the moving phase. The interval of time and space between
the static phases and the moving phase is not regular. The duration of the static phases is too long compared with the
moving phase, and they are at the same position as the first and last flashes of the moving phase.

This preliminary work actually suggests that there are no suppressive waves between the static phases and the motion.
Instead, we would have a simple asymmetric suppression spot that grows in the direction of the motion trajectory.
Despite the absence of a wave, this suppression spot can nevertheless have a significant impact on motion. If the
suppression halo is sufficiently intense and extensive, the entire motion trajectory could be intensely suppressed. We
believe that this could be enough for the static phases to exert their two potential roles: suppressing the smear by
drowning it out and modifying the shape of the moving stimulus. The static phases could not therefore have the role of
suppressing the early representations of movement. This role could be carried by the movement itself. In this way, each
representation of the moving object would be responsible for suppressing previous representations. To explore this
hypothesis, we would have to calculate the non-linearity from the difference between the _M_ stimulus and the sum of
all the frames that make up the movement of this stimulus. It would be interesting to compare these two non-linearities
within the movement itself and between the SMS phases with a global non-linearity. This global linearity would
correspond to the difference between the SMS stimulus and the sum of all the frames that make up the movement
of this stimulus as well as the two static phases. This global non-linearity would allow us to see how the other two
non-linearities interact together. In particular, whether the suppression spot on the static phase modulates the suppression
wave carried by the moving phase. We had initially thought of implementing such a procedure. Unfortunately, we had
to give up because it requires an absolutely enormous number of simulations to be carried out. The most feasible thing
would be to find an approximation with a reduced number of simulations.

The greater suppression intensity and distance of the WNW could partly explain why we obtain a difference in the
shape of the moving phase in the case of the WNW. To confirm this, it would be interesting to run simulations with the
"better" set of parameters used in the apparent motion (Sec. 4.1). This set gave results closer to those of Chemla et
al. and could perhaps reveal a suppression wave. We should also try to reduce the motion distance to 6 degrees, as
we think the results might be better with a shorter distance. The distance of a saccade is on average 6 degrees, so it is
possible that the connectivity distances at the cortical level are carefully optimised to work at this motion size and not
much more.

96



Discussion

4.4 Conclusion
We have completed the implementation of the chimera model within Macular. This task was an opportunity to participate
in the final development of Macular by adding a number of important functionalities and improving existing ones. The
Chimera model was then calibrated to reproduce in a qualitative way the results of Benvenuti’s experiments on cortical
anticipation [3].

This first step led us to explore all the parameters, physiological or otherwise, that can influence cortical anticipation.
We were able to note the absolute importance of the amplitude of retinal output on the level of cortical anticipation. This
was a parameter that we had to separate from the other effects that we subsequently observed. We also demonstrated
that anticipation in our model is supported by lateral connectivity and depends on the excitation/inhibition balance
as in biology. We also demonstrated an effect that is not observed in biology: anticipation by latency in the cortex is
associated with a slight earlier shift in the cortical response peak.

The Chimera model enabled us to go further by studying the interaction between retinal anticipation and cortical
anticipation. We started with adaptive anticipation, which we applied with gain control or amacrine connections on
bipolars or ganglion cells. Overall, cortical anticipation was reduced by retinal anticipation despite the presence of
compensatory effects and to different degrees depending on the condition. Anticipation was less affected in the case of
gain control or when one of these two features was applied to bipolars. As a counterpart to the reduction in cortical
anticipation, the shift in the cortical response peak was strongly shifted in each of these conditions. This indicates a
transfer of retinal anticipation to the cortex. On the other hand, the peak shift that is specific to cortical anticipation was
reduced. We can easily understand how the peak shift can contribute to the system’s anticipation, but we wonder about
the role of accentuated latency slopes. Do they generate the shift or do they play a more specific role in anticipation? It
is possible that anticipation by peak shift informs ‘something has happened’ while anticipation by latency could inform
certain cells that ‘something is happening’ to trigger different processes.

A second retinal anticipation by ‘predicting’ has recently been discovered [2]. No retinal model has yet reproduced this
new mode of anticipation. We have succeeded in reproducing it by adapting our model to incorporate an amacrine with
a biphasic profile. We have shown that this profile is essential for creating predicting anticipation as conjectured by
Menz. We propose that this biphasic profile depends both on connectivity between two different types of amacrine,
including one with a large receptive field, and one with a very high characteristic time of the biphasic amacrine cell.
This predicting anticipation greatly improves anticipation by latency and peak shift, although here again the proportion
of peak shift attributable to the cortex is reduced. However, we observed a somewhat strange behaviour in the cortical
response with a rounded peak following the first. This could be a biological effect or an artefact of our model.

The addition of bipolar or ganglion gain control makes it possible to study how predicting anticipation behaves in
the presence of adapting anticipation. On one hand, predicting anticipation increases the range of anticipation and
its maximum latency, but reduces the peak shift generated by the cortex. On the other hand, anticipation has the
opposite effect on these three anticipation indicators. The two together therefore make it possible to improve all the
anticipation indicators while slightly increasing the shift in the cortical response peak. We think it is possible that these
two anticipations could be complementary by compensating for each other’s defect. This would make it possible to
obtain strong retinal anticipation with less impact on cortical anticipation. It is possible that a balance needs to be found
between the two that allows the indicators of anticipation to be improved as much as possible. This is particularly
the case for the speed of anticipation, which is the only one deleteriously impacted by the addition of predicting with
adaptation. We think this would explain why we have two anticipations in the retina: a synergy of anticipation.

The Chimera model also enabled us to investigate the impact of a simulated saccade on the cortical response and to
compare it with a non-saccadic movement. The non-saccadic movement at 1440Hz is a translation of the response
to the static phase without any residual activity. Increasing the speed to 200°/s makes the motion response much

97



weaker and with residual activity (smear). The main difference in reducing the frame rate to 60 Hz is that the activity
is discontinuous compared with 1440 Hz. This discontinuity is due to the stimulus being displayed at 60Hz, which
results in a loss of information. The strength of the smear depends on the ratio between the time for the bar to cross the
receptive field and the characteristic time of the cell. These results led us to reflect on the ability of static phases to act
on the motion phase. We believe that two ratios make this possible. A first ratio between the characteristic time of the
cortical columns and the duration of the movement in the receptive field. The static phase will have more time to grow
and suppress the movement. A second ratio between the duration of the static phase and the moving phase. This would
make it possible to increase the intensity of the response to the static phase compared with that to movement, as well as
its slope so that it grows faster than the response of the cortical columns to movement.

Despite good timing in the interaction between the response to static phases and to movement, the smear (horizontal
and vertical) did not disappear in the presence of static phases. On the contrary, it seems to have increased. This result
nevertheless reveals that the response to our static phases is far too high compared to the motion phase. In unpublished
preliminary results by Wexler and Chavane, their static phases have the same amplitude as the motion. This goes in
the opposite direction to the second ratio mentioned above. Nevertheless, it might be thought that a lower but more
spread-out static phase would allow the entire movement to be impacted equally. It’s also possible that to observe a
difference in smear, you don’t need static phases that are too strong. The shape-dragging results were contradictory.
Using a larger static phase than the WNW movement alters the shape of the movement response, which becomes
closer to the shape of the static phase (WWW) than the movement. In contrast, there is no difference in shape in the
case of smaller static phase (NWN). It is possible that the shape-dragging effect is more easily observed, including in
psychophysical experiments, with the WNW condition than NWN.

Finally, we studied the suppressive wave in the context of simulated saccades. To this end, we first succeeded in
reproducing the anticipation wave described by Chemla et al. [9] with apparent motion. This wave propagates from
the most recent representation of the apparent motion to the oldest, as detailed in their paper. This suppressive wave
seems to be particularly influenced and reduced by certain parameters such as the increase in constant background
noise received by the cortical columns from the rest of the cortex (external drive). The characteristic time of the retinal
cells also causes a significant change in the duration of suppression. The three simulated saccade conditions showed
asymmetric suppression in the direction of motion. However, this is only a spreading spot of suppression rather than a
suppressive wave. We suggest that the difference in nature between the static and motion phases may play a role in
this observation. We also hypothesise that static phases may be involved in the suppression of smear or the creation of
shape-dragging solely via this Gaussian spot. At the same time, the role of suppressing each previous representation in
the movement would be assumed by the cortical columns activated later.

The work carried out throughout this thesis has made it possible to present a model of the retino-cortical pathway that
is highly parameterisable and adaptable by adding new cells or functions. This model makes it possible to study the
parallels between the retina and the cortex, while offering the ability to act on both in order to better understand their
interaction. This model has been able to reproduce numerous mechanisms associated with movement processing: the
two retinal anticipations (adaptation, predicting), cortical anticipation and the suppressive wave. It was in this context
that we were able to note the crucial importance of the different mechanisms of anticipation, gain control or adaptation
on movement processes such as saccades. We believe that it is essential to take all these mechanisms into account if we
want to study motion processing. In the end, we have provided a suitable environment for modelling motion processing
and this environment could be extended to other visual processes.

4.5 Future work
Chimera model
Our Chimera model demonstrated a good ability to qualitatively reproduce the results of latency anticipation [3] but
also of suppressive wave in apparent motion [9]. Despite this, it has presented some limitations in terms of reproducing
these experiments in a more qualitative way. There are still many directions in which this model can be improved. Some
of the parameters used are still not sufficiently inspired by biology. For example, the distance between bipolar cells
could be too large [117]. The δx value for ganglion cells has yet to be found in the literature. The problem is that to
vary δx we must not touch the size of the simulated area because it doesn’t change between bipolars and ganglion cells.
What varies in the retina is the cell density. Bipolars are much more numerous than ganglion cells. For this reason, we
suggest using a bipolar area that is larger than the ganglion area. Another parameter that needs to be improved is the
characteristic times of amacrines and bipolars. To do this, we need to be able to determine these values from biological
experiments in the literature. Finally, we could modify the amplification of inputs from the retina so that inhibitors
receive 2/3 of retinal inputs and excitators only 1/3 [109]. To go further, we could try to insert bipolar and ganglion
cells from the magnocellular or parvocellular pathways and then compare the impact this may have on the perception of
movements, anticipation and also saccades. It would be interesting to confirm the greater ability of magnocellular cells
to detect movement [38].
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We could also undertake more extensive modifications such as adding new cell types, a variety of synapses and more
realistic types of connectivity than the nearest neighbours. This would make it possible to implement more realistic
retinal circuits and access their role in motion analysis or anticipation. In particular, it would be interesting to study the
effect of gap junction and amacrine connectivity, and whether their collaboration can improve cortical anticipation as
suggested by [115]. The current cortex model is very unstable, and we could study the ability of amacrines to reduce
these oscillations in the model. We would also like to add dynamic adaptation [115] to the current model, as well as
second-order dynamics [105, 118] involving the co-variances of all the sub-threshold variation statistics. In particular
the second order model introduces corrections in the Jacobian of the cortical model at the steady state. These corrections
increase the value at which the retinal output amplitude triggers a Hopf bifurcation generating pathological oscillations.
This would make our model more stable and allow us to test wider ranges of the different parameters whose effect on
cortical anticipation has been tested. Another major change is the addition of a thalamus mean field model obtained by
Overwiening etal. [11] and based on the same principle as the current cortical model. This model takes into account the
particularities of thalamo-cortical neurons, such as their burst/tonic regime change. Rather than adding the thalamus
model to Macular, it is planned to put the thalamus in TVB and then set up the interface between Macular and TVB
with the aim of simulating a whole brain with realistic retinal inputs. This final step would enable us to study the impact
of the retina, thalamus and V1 on other cortical regions.

Anticipation corticale
We reproduced anticipation faithfully and were able to explore how it was affected by adapting anticipation and by
predicting. However, we noted discrepancies between the values measured by Benvenuti and those of our model, which
were much lower. The implementation of a gain or amacrine connectivity control reduced this discrepancy. For this
reason, we would like to carry out all the experiments that we anticipated in chapter 3 but in the presence of gain
control or amacrine connectivity. It would be interesting to note whether or not there were any new effects or changes
to those already known. To go even further, we could tune our parameters with gain control or amacrine connectivity
until we get as close as possible to Benvenuti’s results. In doing so, we could note whether the parameters we obtain
are consistent with biology, but we could also start from a perfectly calibrated model in order to study the impact of
the chimera model’s parameters on anticipation. Among the possible new effects, we expect to observe potentially a
preferential speed of bars in the retina as observed by Selma, but also in the latency of the cortex.

During this thesis, we also did not have the time to test the effect of a certain number of parameters on anticipation.
If we had more time, we would have liked to test the impact of the width and height of the bar or simulated area, the
number of cells and their separation distance, the characteristic times of the retinal cells and their connection length.
This would allow us to see in a little more detail the impact of the retina on the cortex. We would also have liked to
see the consequences on the anticipation of other types of connectivity, such as a Gaussian in the case of amacrines
towards bipolars or ganglion cells. We were interested in comparing the effect of gain control with one-to-one amacrine
connectivity to determine the extent to which gain control can be reduced to a particular type of amacrine connectivity.
It would have been relevant to perform simulations in the presence of surround/center receptive fields. Finally, as
Macular easily allows us to do, we could change stimulus to evaluate anticipation in more complex cases than a simple
bar: curved trajectory, back-and-forth trajectory, two moving objects (See [108]).

Anticicipation par prédiction
Our retinal model is the first to demonstrate predicting anticipation. These results need to be put into perspective,
however, as we are still at the beginning of this new model, which still needs a lot of fine-tuning. To begin with, we
need to reproduce the predicting anticipation result in a larger graph in order to avoid observing saturated anticipation
ranges in our simulations. We also need to increase the frame rate to compensate for the frame rate artefact observed
in amacrines, which have a very low characteristic time. The use of Gaussian connectivity would seem much more
relevant at the biological level. We also need to understand whether the strange activity with a second peak in the
cortex and very strong edge activity in the retina is an artefact that we can remove or a authentic behaviour that can be
observed in biology.

It would be interesting to modify the different parameters that we think are the most important for predicting anticipation:
the characteristic time of the biphasic amacrine, the size of the bipolar-amacrine connection and the amplitude and
symmetry of the biphasic profile. On the contrary, we could vary the characteristic time of the amacrines to confirm that
it doesn’t have that much impact. Successfully varying these different elements would make it possible to confirm their
importance and to obtain an optimised set of parameters in which predicting anticipation is optimal. To influence the
balance of the profile, the characteristic time at 1 s could be necessary unless we find an alternative.

With this new optimised set, we will study the combined effect of predicting and adaptive anticipation. We want to
confirm our hypothesis of complementarity between these two anticipations. Experiments should be carried out with
varying levels of gain control and predicting in order to obtain the combination that maximises the beneficial effects on
cortical anticipation. We believe that the key lies in the balance between these two modes of anticipation. All this could
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also be extended with amacrine connectivity instead of gain control. Once we have found the balance between the
two anticipations, we suggest using this set to carry out the experiments we did in our chapter on anticipation 3. This
dual-anticipation model could be more relevant than the single-anticipation model mentioned above for reproducing a
cortical anticipation that is as close as possible to Benvenuti.

Simulated saccades
The simulated saccade experiments showed a large difference in the smear and shape dragging results compared to the
unpublished results of Wexler and Chavane. We would like to try to improve them by first using a saccade size corrected
to 6 degrees like in biology. We want to increase the height of the simulated area to better see the vertical section of the
‘W’ (wide) bars and limit the edge effects on them. However, the most important thing will be to reduce the height
of the responses to static phases so that it is as high as the response to movement. This can be done by adjusting the
amplitude of the static phases and their spread. With all these corrections, we would be able to determine whether these
changes were sufficient to explain the differences in shape dragging and smear. If this were the case, it would indicate
the importance of these parameters on these two effects. We would also like to test the veracity of our hypothesis that
the ratio of bar time in the receptive field to characteristic time has a strong impact on smear.

Suppressive wave
The SMS suppressive waves reproduced by our model seem to testify to an effect of the static phases on the motion
that is only due to a suppression Gaussian. However, we would need to test other parameter sets to ensure that we
continue to observe this. An interesting first set would be the ‘better’ set described in section 4.1.This set showed a
much stronger suppression wave in the case of apparent motion and this could also be for SMS. A second set that would
be interesting is the optimised set mentioned earlier in the presence of gain control or amacrine. Gain control has been
shown to participate in the saccadic suppression mechanism, so it could play a role here too. We believe that in the
presence of gain control, the strength of our static phases would be considerably reduced while that of movement would
be less impacted. We can also prefer this set to one that includes predicting anticipation to determine to what extent it
can participate in motion processing in the case of a movement as fast as a saccade.

To extend our knowledge of suppression in simulated saccades, we need to experiment with certain parameters. Firstly,
we want to separate the calculation of the non-linearity between SMS and _M_ + S_S by deciding to separate the two
static phases: _M_ + __S + S__. We want to evaluate the possibility that the two static phases can suppress each other,
in particular by working at 6 degrees of amplitude of movement. It is possible to go even further by summing the
system response to a single frame of motion. This would allow us to see the effect of the suppression wave that we
think is propagating from a recent representation to an older one. We want to finish confirming our initial impressions
of the negative impact of the external drive. But we also want to explore new ones with the balance between inhibition
and excitation, which seems to determine the strength of a suppression wave. We could do this by changing the
strength of the exc/inh synapses, their characteristic time, their quantal conductances and the size of their connections.
Another parameter that could have an impact on suppression is the conduction velocity of the fibres, we should have a
suppression Gaussian propagating more slowly. Finally, we need to see if the two ratio hypothesis we have developed is
correct. That is, the ratio between the travel time of the bar in the receptive field and the characteristic time, and the ratio
between the duration of the static phase and the moving phase. The first must allow the second static phase to arrive at
the same time as the responses to the movement trajectory. The second must increase the amplitude of the response to
the static phase and the slope to catch up with the activity evoked by the movement. Simulations varying the parameters
of these two ratios will be used to determine whether this has an impact on suppression in the simulated saccades.

Shaping parameters
Finally, during this thesis we began to characterise the response of the retina to a stimulus as a function of three
dimensionless parameters. We began to confirm the impact of these parameters by means of simulation in Macular.
However, we are not finished yet. We still have to test varying κ by changing the value of the bar thickness to change
only κ and not ρ. But also, to get better results for r.
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Appendix A

Parameters sets

A.1 Model parameters (default values)

Parameter category Parameter Name Symbol Value Unit
Simulated area Number of cells (X) ncellsX 83 Dimensionless

Number of cells (Y) ncellsY 15 Dimensionless
Width (X) LX 18.45 degrees
Height (Y) LY 3.15 degrees
Cell distance δ 0.225 degrees
mm retina per degree rpd 0.3 mm/degrees
mm cortex per degree cpd 3 mm/degrees

Stimulus video (moving
bar)

Speed vB 6 degrees/s

Width (X) lX 0.67 degrees
Height (Y) lY 0.9 degrees
Frame rates δt 60 Hz
Pixel per degree ppd 300 pixel/degrees

OPL OPL input amplitude C 0.025 Dimensionless
Integration time step (ODE
solver)

dt 0.0004 s

RF size σc 0.2 degrees
Characteristic time τc 0.1 s

Bipolar cells Characteristic time τB 0.1 s
Activity characteristic time τaB

0.1 s
Threshold θB 0 mV
Activity rate hB [0,9.2] mV−1Hz

Amacrine cells Characteristic time τA 0.05 s
Weight bipolar to amacrine

∣∣wB
A

∣∣ [0,12] Hz
Weight amacrine to bipolar wA

B [0,12] Hz
Weight amacrine to ganglion wA

G [0,1] Hz
Ganglion cells Radius bipolar to ganglion σG 0.3 degrees

Characteristic time τG 0.1 s
Activity characteristic time τaG

0.189 s
Threshold θG 0 mV
Activity rate hG [0,0.54] mV−1Hz
Weight bipolar to ganglion wB

G 0.15 Dimensionless
Pooling extent σ 0.09 mm
Non linear rectification αG 1110 Hz/mV
Non linear rectification limit NGmax

212 Hz
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Cortical shared parame-
ters values

Membrane capacitance for
cortical columns

Cm 0.2 nF

Excitatory reversal potential VE 0 mV
Inhibitory reversal potential VI -80 mV
Leak reversal potential VL -65 mV
Cell number in network Ntot 10 000 Dimensionless
Excitatory quantal conduc-
tance

QE 1.5 nS

Leak conductance gL 10 nS
Excitatory characteristic
time

τE 0.005 s

Inhibitory characteristic time τI 0.005 s
External drive νext 2 Hz
Mean field characteristic
time

T 0.005 s

Fraction of inhibitory cells gei 0.2 Dimensionless
Probability of connectivity pconnec 0.0375 Dimensionless
Mean voltage initial fit value µ0

V -60 mV
Mean voltage initial fit varia-
tion

δµ0
V 10 mV

Sigma initial fit value σ0
V 4 mV

Sigma initial fit variation δσ0
V 6 mV

Normalized tau initial fit
value

(τNV )0 0.5 Dimensionless

Normalized tau initial fit vari-
ation

(δτNV )0 1 Dimensionless

Cortical excitators (RS) Sigma extent σE 1.67 degrees
Initial activity νE0

1.86 Hz
Inhibitory quantal conduc-
tance

QI 3 nS

P parameters PE [-49.8, 5.06, -
25, 1.4, -0.41,
10.5, -36, 7.4,
1.2, -40.7]

mV

Cortical inhibitors (FS) Sigma extent σI 0.3 degrees
Initial activity νI0 12.66 Hz
Inhibitory quantal conduc-
tance

QI 5 nS

P parameters PI [-51.4, 4, -8.3,
0.2, -0.5, 1.4, -
14.6, 4.5, 2.8,
-15.3]

mV

Cortical column connectiv-
ity

Retino-cortical amplitude wRC 2.5 Dimensionless

Cortical density ρcort 4000 mm−2

Retinal density ρret 400 mm−2

Fiber conduction velocity vC 300 mm/s
Weight excitatory to excita-
tory

AE
E 1 Dimensionless

Weight inhibitory to in-
hibitory

AI
I 1 Dimensionless

Weight excitatory to in-
hibitory

AE
I 1.5 Dimensionless

Weight inhibitory to excita-
tory

AI
E 1 Dimensionless
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Table A.1: Model parameters. For each parameter in our retino-cortical model, we give its name, symbol, unit and the
default value used in control condition.

A.2 Initial Chimera parameters
The use of these parameters is described in the section 1.4.1 and 1.4.2.

Parameter category Parameter Name Symbol Value Unit
Simulated area Number of cells (X) ncellsX 20 Dimensionless

Number of cells (Y) ncellsY 20 Dimensionless
Width (X) LX 12 degrees
Length (Y) LY 12 degrees
Cell distance δ 0.633 degrees
mm retina per degree rpd 0.3 mm/degrees
mm cortex per degree cpd 3 mm/degrees

Stimulus video Speed vstim 20 degrees/s
Width (X) lX 1 degrees
Length (Y) lY 3 degrees
Frame rates δt 200 Hz
Pixel per degree ppd 5 pixel/degrees

OPL OPL input amplitude ampOPL 1 Dimensionless
Integration time step dt 0.002 s
Center RF size σc 0.3 degrees
Center characteristic time τc 0.02 s
Weight surround wsurr 0 Dimensionless
Surround RF size σsurr 0.967 degrees
Surround characteristic time τsurr 0.005 s

Bipolar cells Characteristic time τB 0.1 s
Activity characteristic time τaB

0.1 s
Amacrine input characteris-
tic time

τextA 0.1 s

Threshold θB 5.32 mV
Activity rate hB 0 mV−1Hz

Amacrine cells Characteristic time τA 0.05 s
Weight bipolar to amacrine wB

A 0 Hz
Weight amacrine to bipolar wA

B 0 Hz
Weight amacrine to ganglion wA

G 0 Hz
Ganglion cells Radius bipolar to ganglion σG 1.8 degrees

Characteristic time τG 0.02 s
Activity characteristic time τaG

0.189 s
Threshold θG 0 mV
Activity rate hG 0 mV−1Hz
Weight bipolar to ganglion wB

G 0.15 Dimensionless
Non linear rectification αG 1110 Hz/mV
Non linear rectification limit NGmax 212 Hz

Cortical shared parame-
ters values

Membrane capacitance Cm 0.2 nF

Excitatory reversal potential VE 0 mV
Inhibitory reversal potential VI -80 mV
Leak reversal potential EL -65 mV
Cell number in network Ntot 10 000 Dimensionless
Excitatory quantal conduc-
tance

QE 1 nS

Inhibitory quantal conduc-
tance

QI 5 nS

Leak conductance gL 10 nS
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Excitatory characteristic
time

τE 0.005 s

Inhibitory characteristic time τI 0.005 s
External drive νext 2 Hz
Mean field characteristic
time

T 0.005 s

Fraction of inhibitory cells gei 0.2 Dimensionless
Probability of connectivity pconnec 0.05 Dimensionless
Mean voltage initial fit value µ0

V -0.06 mV
Mean voltage initial fit varia-
tion

δµ0
V 0.01 mV

Sigma initial fit value σ0
V 0.004 mV

Sigma initial fit variation δσ0
V 0.006 mV

Normalized tau initial fit
value

(τNV )0 0.5 Dimensionless

Normalized tau initial fit vari-
ation

(δτNV )0 1 Dimensionless

Cortical excitators (RS) Sigma extent to excitators σEE
1.2 degrees

Sigma extent to inhibitors σEI
0.9 degrees

Initial activity νE0 0 Hz
P parameters PE [-5.66e-02,

7.29e-03,
-2.85e-02,
-5.79e-03,
-4.22e-03, 0, 0,
0, 0, 0, 0]

mV

Cortical inhibitors (FS) Sigma extent to excitators σIE 0 (one-to-one) degrees
Sigma extent to inhibitors σII 0.6 degrees
Initial activity νI0 0 Hz
P parameters PI [-5.41e-02,

5.45e-03,
1.97e-03,
1.04e-03,
3.18e-05, 0, 0,
0, 0, 0, 0]

mV

Cortical column connectiv-
ity

Retino-cortical amplitude wRC 20 Dimensionless

Cortical density ρcort 4000 mm−2

Retinal density ρret 400 mm−2

Fiber conduction velocity vC 1 mm/s
Weight excitatory to excita-
tory

AE
E 1 Dimensionless

Weight inhibitory to in-
hibitory

AI
I 1 Dimensionless

Weight excitatory to in-
hibitory

AE
I 1 Dimensionless

Weight inhibitory to excita-
tory

AI
E 1 Dimensionless

Table A.2: Model parameters. For each parameter in our retino-cortical model, we give its name, symbol, unit and the
default value used in the initial set.

A.3 Calibration parameter sets
A.3.1 Connectivity and parameter consistency set change

• dt = 0.0004 s
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• ppd = 10 pixel/degrees

• LX = LY = 6 degrees

• dx = dy = 0.31 degrees

• δt = 43.47 Hz

• vstim = 3 degrees/s

• C = 0.2 Hz

• Cm = 150 pF

• νAff = 0 Hz

• νext = 4 Hz

• AE
I = 1.5

• vC = 300 mm/s

• (τNV )0) = 0.67

• (δτNV )0 = 1.33

• µ0
V = −60 mV

• δµ0
V = 10 mV

• σ0
V = 4 mV

• δσ0
V = 6 mV

• Excitatory TF parameters (mV) : −51.4, 6.1e−3, 7.4e−3, 5.8e−5,−1.5e−4, 5.6e−4, 2.7e−4, 5.3e−4,−6.8e−4,
4.9e−4, 1.2e−3

• Inhibitory TF parameters (mV) : −54.6, 4.6e−3,−1.8e−3, 6.6e−4,−3e−4, 3.9e−4,−5.1e−4,−6.4e−6,−1.4e−3,
− 4.9e−4,−3.6e−4

A.3.2 Optimized distance set change
• ppd = 7.41 pixel/degrees

• LX = LY = 8.1 degrees

• dx = dy = 0.225 degrees

• lX = 0.67 degrees

• lY = 2 degrees

• δt = 32.26 Hz

• vstim = 6 degrees/s

• C = 0.65

• τB = τext = 200 ms

• σG = 90 µm

• νext = 0.004 Hz

A.3.3 Cortical model stabilisation set change
• ppd = 30 pixel/degrees

• LX = 4.28 degrees

• LY = 0.9 degrees

• ly = 0.9 degrees

• δt = 188.68 Hz

• Cm = 0.2 nF
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• QE = 1.5 nS

• (τNV )0 = 0.5

• (δτNV )0 = 1

• Excitatory P params (mV) : −49.8, 5.06,−25, 1.4,−0.41, 10.5,−36, 7.4, 1.2,−40.7

• Inhibitory P params (mV) : −51.4, 4,−8.3, 0.2,−0.5, 1.4,−14.6, 4.5, 2.8,−15.3

A.3.4 Excitatory inhibitory balance set change
• C = 0.5

• τB = 50 ms

• ΘB = 0 mV

• wRC = 4

• Qi = 4.5 nS

A.3.5 Steady-state cortical activity
• ppd = 300 pixel/degrees

• LX = 9 degrees

• δt = 60 Hz

• C = 0.025

• σC = 60 µm

• τc = τB = τG = 100 ms

• wRC = 2.5

• νext = 2 Hz

• QIexc = 3 nS
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Appendix B

Retino-cortical model

B.1 Mean-field cortical equations
We summarize here the mean-field equations derived in a series of paper [105, 12, 9, 13, 119]. The goal is to propose
dynamical equations characterising the average dynamics of the two populations of neurons, excitators and inhibitors, at
the level of a cortical column. In the core paper, we have given the main equations ruling the dynamics. Here, we give
more detail of their constitutive elements. For clarity we rewrite the dynamical equations (1.9), giving the evolution of
the excitatory population rate, νE(x⃗, t), for the cortical column located at x⃗ at time t, (resp. νI(x⃗, t) for the inhibitory
population rate), in the form: T ∂νE(x⃗,t)

dt = −νE(x⃗, t) + FE

[
IE
E (x⃗, t), II

E(x⃗, t)
]

T ∂νI(x⃗,t)
dt = −νI(x⃗, t) + FI

[
IE
I (x⃗, t) , II

I (x⃗, t)
]
.

(B.1)

where: 
IE
E (x⃗, t) = νaff (x⃗, t) + νdrive + AE

E νinputE (x⃗, t),

II
E(x⃗, t) = AI

E νinputI (x⃗, t),

IE
I (x⃗, t) = νaff (x⃗, t) + νdrive + AE

I νinputE (x⃗, t),

II
I (x⃗, t) = AI

I ν
input
I (x⃗, t).

(B.2)

Here, IY
X(x⃗, t), X,Y = {E, I }2, is the total contribution (firing rates) of population Y controlling the time evolution

of population X .

Note a few important differences with the aforementioned papers. First, the retino-thalamic input νaff is, in our case,
acting on the two populations, excitatory and inhibitory. Also, we have introduced the coefficients AY

X weighting
the relative contributions of excitatory and inhibitory populations, νinputE , νinputI , from the other columns. These
coefficients were implicitly set to 1 in these papers and, in this case, IE

E = IE
I , II

E = II
I so that the superscript Y

becomes useless.

We then define, dropping the (x⃗, t) dependence for legibility:

µGY
X
= IY

XKXτXQX (B.3)

σGY
X
= QX

√
IY
XKEτX

2 ; X,Y = {E, I }2 . (B.4)

where, µGY
X

is contribution of population Y to the mean conductance of population X and σGX
the corresponding

standard deviation, computed from shot-noise theory [120]. KE (resp. KI ) is the number of excitatory synapses (resp.
inhibitory), QE (resp. QI ) the unitary excitatory conductance (resp. inhibitory), and τE (resp. τI ) the excitatory decay
(resp. inhibitory). See table in appendix A.1 for the value of these parameters.

The total input conductance of the neuron µG and its effective membrane time constant τ effm are controlled by the mean
conductances as follows:
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µG =
∑

X,Y ∈{E,I }2

µGY
X

+ gL,

τ effm =
cm
µG

,

(B.5)

where Cm is the membrance capacitance, assumed to be the same for all neurons and gL is the leak conductance.

The transfer functions of excitatory (resp. inhibitory) neurons appearing in eq. (B.1) take the form:

FX(IX
E , II

X) =
1

2τV,X
erfc(

νeffthr,X − µV,X√
2σV,X

), X = E, I. (B.6)

The quantity:

µV,X =

∑
Y=E,I µGY

X
VY + gL VL

µG
, X = E, I, (B.7)

is the mean-voltage of the population X in the cortical column, where VE , VI , VL are respectively the reversal potentials
for excitatory (E), inhibitory (I) neurons and for the leak. Likewise:

σV,X =

√√√√ ∑
Y=E,I

KY IY
X

(UY τY )2

2 (τ effm + τY )
, (B.8)

τV,X =

∑
Y=E,I

(
KY IY

X (UY τY )
2
)∑

Y=E,I

(
KY IY

X (UY τY )2/(τ effm + τY )
) , (B.9)

where we defined UY = QY

µG
(VY − µV,Y ) and where X = (E, I).

Finally, in eq. (B.1), νeffthr,X is a phenomenological threshold expressed as a first order expansion (eq. (B.10)) of
the three sub-threshold statistical quantities : µV,X , σV,X , τV,X . As it does not exist an analytic formulation of the
transfer function for complex models such as the Adaptive Exponential IF or Hodgkin Huxley, Zerlaut et al. [12] have
developed a semi-analytic method based on a phenomenological threshold which carries the single neuron non-linearities
mechanisms (spike/reset and adaptation). This leads to the following expression for the phenomenological threshold:

νeffthr,X = PX,0 +
∑

u∈{µV,X ,σV,X ,τN
V,X}

PX,u ·
(u− u0

δu0

)
+

∑
u,v∈{µV,X ,σV,X ,τN

V,X}2

PX,uv ·
(u− u0

δu0

)(v − v0

δv0

)
,

(B.10)

where τNV,X = τV,XGl/cm is an unitless parameter. Coefficients PX,u have been fitted on numerical simulations of a
given single AdEx neuron model with conductance-based exponential synapses [121]. Note that they are different for
excitators and inhibitors. The value of these coefficients in our model are given in the table of appendix A.1, as well as
the coefficients µ0

V , δµ0
V , σ0

V ,δσ0
V , (τNV )0, (δτNV )0 which are actually assumed to be constant over the populations E, I .

Finally, the VSDI signal is given by:

V SDI(x⃗, t) = 0.8 × V SDIE(x⃗, t) + 0.2 × V SDII(x⃗, t), (B.11)

where the coefficient 0.8 and 0.2 corresponds to the fraction of excitators and inhibitors in the colum population and:

V SDIX(x⃗, t) =
µV,X(x⃗, t)− µV,X0(x⃗)

µV,X0(x⃗)
, X = E, I,

where µV,X0
(x⃗) is the average membrane potential at rest (i.e. when νaff = 0, for the population X). Note that it

depends on x⃗, due to boundary conditions.
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B.2 Connectivity type
Our retino-cortical model contains three different connectivity types :

• One to one connectivity link cells or cortical column populations with the same spatial position. This is
the case for the connectivity from bipolar to amacrine or from ganglion cell to excitatory/inhibitory cortical
column population.

• Nearest neighbor + 1 connects a cells or cortical column with its 4 nearest adjacent cells or cortical columns.
This is used to connect BCs to ACs and reciprocally.

• Gaussian connectivity connects the pre- and post-synaptic cell (column) with a weight proportional to a
Gaussian function of the distance d[pre,post] between the pre- and post-synaptic cell (eq. (1.11) in the text).
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Appendix C

Shaping retino-cortical response

C.1 Introduction to dimensionless shaping parameters

Figure C.1: Description of shaping parameters for a white bar of width on a black background. The purple disc
corresponds to the bipolar cell’s receptive field and the green curves its temporal response. A) ρ shaping parameter
based on the ratio between the thickness of the bar lX and that of the receptive field σc. On the left is the case where
the thickness of the bar is greater than the radius of connectivity and on the right when it is much less. B) κ shaping
parameter based on the distance travelled by the bar during the bipolar response time vB × τB , all expressed as a
number of σc. C) r shaping parameter based on the ratio between the time between two frames δt, here illustrated
by the displacement of the bar, and the bipolar response τB . Se represent here the high frame rate case where the
successive bars are closer together and the low frame rate case where the bars are further apart. This corresponds to the
continuous and static regimes respectively.

During our work on refresh rate, Bruno undertook an analysis of the impact of different parameters on a simplified
model containing only bipolar cells and no Macular. Their default parameters were : lX = 1.33 degrees, vB = 33.3
degrees/s, δt = 0.01s, σc = 0.33 degrees and τB = 0.01 s. The aim of this analysis was to identify how each parameter
and their combination could explain the shape of the temporal response. The result was 3 dimensionless parameters
derived from the combination of other spatial or temporal parameters. All these parameters are illustrated in Figure C.1.

These three parameters and their equations are :

• κ = 2
5
lX
σc

. The term lX corresponds to the thickness of the bar while σc is the radius of the connectivity
Gaussian between the OPL and the bipolars. κ measures the size of the bar compared to the radius of bipolar
connectivity. It controls the shape of the response to the moving bar. This shape can be a Gaussian when κ is
small and sees its peak flatten as κ increases too much (Fig. C.2A). This is because when the bar exceeds 2

5

of the receptive field, the bar is too large and the bipolar cell saturates. The 2
5 ratio is used to normalise and

ensure that the transition between the Gaussian and saturated regimes occurs for κ ∼ 1.

• ρ = vB×τB
σc

. The term vB is the speed of the bar and τB the characteristic time of the bipolar cell. ρ measures
the distance travelled by the bar in σc during the characteristic time of the bipolar cell. It is responsible for the
amplitude and time at which the peak of the response occurs (Fig. C.2B and C). When ρ is high, the peak is
earlier and lower. The bar leaves the bipolar cell’s receptive field very quickly and integration is stopped early.
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• r = δt
τB

. The term δt is the time between each frame of the video (inverse of the frame rate). r evaluates the
reaction time of the cell to the frames it sees. This determines how it will perceive the movement in the video.
If the frame rate is much faster than the bipolar characteristic time (r ≪ 1) then the cell doesn’t have time to
react and integrate each frame. The movement is perceived as continuous (Fig. C.2D). When the frame rate
is slower (r ≫ 1), the cell will have time to react fully and even more before the next frame arrives. The
movement is perceived as a static image. The cell therefore integrates for longer and saturates (Fig. C.2F). In
this case, the bipolar cell acts as a low-pass integrator over the duration δt. Finally, in the case of equality
(r ∼ 1), we obtain an intermediate regime of a series of low pass filters. The cell has just enough time to react
fully before the frame changes. The movement will therefore be perceived, but as a more or less apparent
movement. The response remains similar to the continuous response, with a more or less delayed and reduced
response (Fig. C.2E). In both continuous and intermediate domain everything depends on κ and ρ, not in static
one.

Figure C.2: Results of experiments on shaping parameters. A) Spatial integration of bipolars as a function of time
for a kappa varying at 0.4 (violet), 1 (green), 2 (blue) and 4 (yellow). B - F) Bipolar response as a function of time.
The "Exact" curve (pink crosses) corresponds to the model response whereas "Cont" (blue or green) represents the
equivalent response with a continuous regime. B, C) Response of the bipolar cells to the parameter ρ by varying the
speed of the bar. The dotted lines represent the passage of the bar through the receptive field. B) Result with ρ = 1
(v = 10 mm/s). C) Result with ρ = 10 (v = 100 mm/s). D, E, F) Response of the bipolar cells to the three regimes
of r by modifying δt. D) Continuous regime with r = 0.01 (δt = 0.1), the exact curve is the same as the continuous
response. E) Intermediate regime with r = 1 (δt = 10), the exact curve is slightly behind the continuous response.
F) Static regime with r = 10 (δt = 100), the exact curve is very late as well as saturated compared to that of the
continuous regime.

C.2 Shaping effect in Macular simulation
We decided to continue these initial experiments by transposing them to Macular. In the case of our retino-cortical
model we have a τB = 0.1. For simulations running at 60 Hz frame rate, r = 0.17. We are typically in the intermediate
regime. On the other hand, when the frame rate is increased to 14440 Hz, r = 0.007. This is a continuous regime for
the bar. The size of the bar is 0.67 degrees and σc = 0.2 degrees. This gives us a κ = 1.34 which is larger than 1 but
despite this we are not yet in the flat regime. As for ρ, it is equal to 3 with a default speed of 6deg/s. I then carried out
simulations by varying the three formatting parameters.
We start with κ which flattens the response when it is large. We vary κ from 0.0133 to 100 by changing the value
of σc from 20.15 degrees to 0.00357 degrees (Fig. C.3A, B). The more blue the gradient of the curves, the more
kappa increases. Our bipolar responses behave very differently from those expected in Bruno’s code (Fig. C.3A). The
amplitudes of the responses increase and their shape remains Gaussian despite the κ being much greater than 1. The
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same thing is observed in the cortex, although the differences in amplitude are tempered there (Fig. C.3B). We think
this is because the variable σc also plays a role in the variable ρ which impacts the amplitude of the response. Varying
the two shaping parameters therefore does not allow us to clearly see the individual effect of each. A new simulation
would have to be run with a different bar thickness.
We then move on to the ρ shaping variable, which should decrease the amplitude of the peak and shift it to later times
as it increases. We produce a graph with ρ ranging from 2.25 to 15 by accelerating the bar speed from 4.5 degrees/s
to 30 degrees/s (Fig. C.3C, D). In this graph, the redder the curve, the higher the ρ. The behaviour of the bipolars is
identical to that identified in Bruno’s code (Fig. C.3C). The more ρ is increased, the more the amplitude and shift are
reduced. Note also that these two effects decrease exponentially as ρ increases. The behaviour observed in the cortex is
identical except that the characteristic times of the curves are slower (Fig. C.3D).
The last shaping parameter to be studied here is r. Increasing this shaping parameter should lead to saturation of the
activity in addition to its later offset. We increase the r from 0.01 to 100, i.e. a change in frame rate from 1000 Hz to
0.1 Hz (Fig. C.3E, F). Here, the bluer the curves, the greater the increase in r. The observed behaviour is only partly
consistent with Bruno’s code. While bipolar activity saturates and reaches a plateau when a very large r is used, the
peak here is earlier (Fig. C.3E). In addition, if we compare the peak times of the frame rates at 10, 100 and 1000Hz, we
see no clear relationship between the decrease in frame rate and the amplitude of the peak. At the cortical level, there is
no great difference in these dynamics apart from their greater spread over time (Fig. C.3F).

Figure C.3: Effect of shaping parameters on bipolar and cortical response in Macular A,B) Variation of the value
of the connectivity distance σC to change the value of κ in bipolar (A) and cortical layers (B). C,D) Variation of the bar
speed value to change that of ρ in bipolar (C) and cortical layers (D). E,F) Variation of the frame rate value to change
the value of r in bipolar (E) and cortical layers (F).
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