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RÉSUMÉ

Les systèmes de surveillance basée sur les événements (SBE) tels que HealthMap, ProMED
et PADI-web sont utilisés quotidiennement afin de détecter des événements épidémiologiques
signalés dans les médias en ligne (articles). Une fois les articles collectés, ces systèmes
s’appuient sur des algorithmes de classification supervisée et/ou une modération humaine
pour classer les articles selon leur pertinence. L’application de telles méthodes peut être
difficile, car les jeux de données épidémiologiques ne sont pas équilibrés. D’autre part,
l’annotation d’articles, qui sert à l’apprentissage des méthodes supervisées, est coûteuse et
chronophage. De plus, les facteurs de risque liés à l’apparition et transmission des maladies
(facteurs de risque environnementaux et épidémiologiques) ne se trouvent pas toujours dans
les données textuelles et ne sont donc pas pris en compte par les systèmes de SBE.
Dans ce contexte, nous proposons une approche non-supervisée qui s’appuie sur les informa-
tions spatio-temporelles des événements épidémiologiques détectés, pour classer les articles
en tenant compte des facteurs environnementaux par le biais de cartes de risques. Cette méth-
ode, appelée EpiDCA, est une adaptation de l’algorithme des cellules dendritiques (DCA),
inspirée par la théorie du danger. EpiDCA se caractérise par des paramètres définis par des
experts, ce qui le rend applicable à différentes maladies et contextes environnementaux. La
méthode proposée a été testée sur un premier jeu de données relatif à l’influenza aviaire en
Asie entre 2018 et 2019, ainsi qu’une carte de risque produite pour la même région. Pour
l’évaluer, nous avons calculé la précision, le rappel et le F-score. EpiDCA a obtenu une très
bonne performance avec un F-score de 0,82 pour un jeu de données déséquilibré et de 0,90
pour un ensemble de données équilibré. Les résultats ont également confirmé que la prise
en compte des facteurs de risque des maladies est une bonne approche pour la classification
des événements. EpiDCA a ensuite été comparé aux méthodes d’apprentissage supervisé et
s’est avéré compétitif.
Après cette application initiale, l’objectif était d’évaluer la robustesse et la généricité de
la méthode dans différents contextes géographiques et à travers divers systèmes épidémi-
ologiques, notamment une maladie animale transfrontalière (la peste porcine africaine) et
une maladie zoonotique vectorielle (la fièvre du Nil occidental) en Europe. Nous avons con-
struit un jeu de données original à partir des articles détectés par PADI-web. Nous avons
également développé une méthode d’annotation pour labelliser les articles. Nous avons
ensuite proposé une extension de la méthode qui permet d’intégrer des covariables sup-
plémentaires pour l’améliorer en termes de réactivité et de précision. Les perspectives avec
EpiDCA incluent la réduction du nombre de paramètres et l’application du modèle à d’autres
contextes de surveillance qui s’appuient sur les mêmes types de sources, tels que les mal-
adies végétales et la sécurité alimentaire.

Mots-clés : Surveillance basée sur les événements, Théorie du danger, Algorithme des

cellules dendritiques, Influenza aviaire, Peste porcine africaine, Fièvre du Nil occidental.

iii



ABSTRACT

Event Based Surveillance (EBS) systems such as HealthMap, Promed and PADI-web are
used daily to timely detect outbreak events reported in web articles. Once the articles are
collected, these systems rely on human moderation and supervised classification algorithms
to classify articles according to their relevance. Applying such methods can be challenging,
as epidemiological datasets have an imbalanced class distribution, and because the annota-
tion task, which is critical to the success of these models, can be expensive and time consum-
ing. Another important limitation of EBS systems is that the drivers of disease transmission
(e.g. disease characteristics, environmental and epidemiological risk factors) are not always
found in textual data and are therefore not taken into account by EBS systems.
In this context, we propose an unsupervised approach that relies on the spatio-temporal infor-
mation of the reported epidemiological events, to classify articles while taking into account
the environmental factors associated with disease onset through risk mapping. This method,
called EpiDCA, is an adaptation of the Dendritic Cells Algorithm (DCA), inspired by the
danger theory. EpiDCA is characterized by expert-defined parameters, making it applicable
to different diseases and environmental contexts. The proposed method was first tested and
evaluated using a dataset related to avian influenza (AI) in Asia between 2018 and 2019, and
a suitability map for AI produced for the same area. To measure the accuracy of the model,
we calculated the precision, recall and F-score. EpiDCA achieved a very good performance
with an F-score of 0.82 and 0.90 for an imbalanced and a balanced dataset respectively. The
results confirmed that considering disease risk factors is a good approach in event classifica-
tion. EpiDCA was then compared with state-of-the-art supervised machine learning methods
and appeared to be competitive.
After this initial application, we aimed to evaluate the robustness and genericity of the
method in different geographical contexts and across various epidemiological systems, specif-
ically; a transboundary animal disease (African Swine Fever) and a vector-borne zoonotic
disease (West-Nile Virus Disease) in Europe. For this purpose, we constructed an original
dataset from articles detected by PADI-web. We also developed a method and guidelines to
annotate the articles. The consistent results confirmed the robustness of EpiDCA. Then we
extended the method by integrating additional covariates to further enhance its reactivity and
accuracy. Future perspectives with EpiDCA include the reduction of the number of param-
eters and the application of the model to other surveillance contexts that rely on the same
sources, such as plant disease surveillance, and food security surveillance.

Keywords: Event-based surveillance, Danger theory, Dendritic Cells Algorithm, Avian In-
fluenza, African Swine Fever, West-Nile Disease.
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Introduction

This chapter provides an understanding of Event-Based Surveillance systems within the con-
text of Epidemic Intelligence (EI), establishing the global framework for this thesis. It
highlights the research objectives and summarizes the contributions associated with these
objectives.
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Emerging diseases represent a growing risk for both public health and veterinary health
[36]. To mitigate the risk of outbreaks, many countries have adopted an Epidemic Intel-
ligence (EI) strategy that integrates two components [123]: i) indicator-based surveillance
(IBS) relying on official sources such as the World Health Organisation (WHO), the World
Organisation for Animal Health (WOAH), or the Food and Agriculture Organisation (FAO),
and ii) Event-based surveillance (EBS) relying on unofficial sources (online media, social
networks, etc.).
IBS systems produce structured and reliable data, offering an extensive range of informa-
tion regarding confirmed epidemiological events. However, these systems can be limited in
their ability to detect early events due to the delays inherent in the pipeline process, which
includes disease observation, laboratory confirmation, administrative processing, and final
reporting [146]. EBS, on the other hand, is the organized process of detecting and report-
ing information, represented as events, to public health authorities by rapidly capturing data
from various unstructured sources [11]. This system enables authorities to be better pre-
pared for endemic and pandemic disease outbreaks by serving as a crucial component of
an effective early warning system [11, 122]. Together, IBS and EBS systems complement
each other by addressing different needs in disease surveillance. While IBS systems provide
detailed and structured data about confirmed cases, EBS systems offer rapid detection and
initial alerts.
Since the early 2000s, several automatised EBS tools that are now called EBS systems, have
been developed to collect and analyze a continuous stream of unstructured textual data, such
as news articles and reports, to extract timely and relevant information about outbreaks and
events [57, 161, 29]. The final output of all the EBS systems is a set of articles classified ac-
cording to their relevance to the epidemiological topic, with epidemiological data extracted
from these articles. Various studies have since assessed their performances, and limitations.
Their capacity to detect relevant health information has been recognised [12]. For example,
during the SARS outbreak (Severe Acute Respiratory Syndrome) in 2003 [115], the H1N1
outbreak (a strain of influenza) in 2009 [88], and more recently the COVID-19 pandemic
(Coronavirus Disease 2019) [20].
EBS systems can be classified based on the diseases they cover (public health, animal health,
plant health or one health), the languages they support, their geographical focus, or, more
importantly, the type of moderation they employ. Moderation can vary: it can be manual,
meaning human-moderated, as in the case of ProMED (Program for Monitoring Emerg-
ing Diseases) managed by the International Society for Infectious Diseases (ISID) [171],
semi-automated (a hybrid of manual and automated processes) like the Global Public Health
Intelligence Network (GPHIN) and HealthMap [57], or fully automated, as it is for European
Commission Medical Information System (MedISys) [133], and the Platform for Automated
Extraction of Disease Information (PADI-web) [161]. Each method has its strengths and lim-
itations. ProMED outputs present a very low level of false positive detection but it is limited
by resource constraints (availability of experts), and this expert validation is time-consuming
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[29]. Semi-automated systems, combining automated data collection and classification with
expert moderation, offer improved timeliness but still facing similar limitations as fully man-
ual systems. Unlike moderated systems, fully automated systems process data more quickly
and are more cost-efficient, thanks to machine learning classifiers. However, they also face
limitations, such as dealing with noisy data and filtering out false positives.

Motivation

Given the overwhelming amount of data available on the web, one of the primary challenges
to establishing and sustaining an EBS system is designing a system that can detect a sufficient
number of relevant health events while ensuring it is not overloaded [11]. EBS systems usu-
ally classify collected articles as relevant or irrelevant by relying on human moderation or by
implementing classification algorithms. These systems use annotated data to improve their
classification in terms of accuracy and thus swiftly detect outbreak events. Consequently,
the performance of these algorithms is highly dependent on the quality of the dataset used to
train them [114]. Indeed, epidemiological text classification can be challenging for various
reasons [156]. First, epidemiology related texts can be ambiguous, as sometimes the disease
is mentioned but none outbreak is reported. Instead, they might present general information
related to the disease, or draw the disease history in a given area [157]. Second, a single
article can report one event (outbreak) and simultaneously report other events or other types
of epidemiological information in other areas. In this case, different types of information
and multiple locations are found within the same text.
Notably, disease-related characteristics and environmental drivers are not always found in
textual documents and are therefore not taken into account in the classification. However,
disease-related characteristics and environmental drivers can significantly influence the way
information is processed and reported. For example, West-Nile virus Disease (WND) out-
breaks are more likely to occur in summer when vectors are active, making events reported
during that period more likely to be relevant [66]. To the best of our knowledge, no research
study has attempted to address the classification limitations in event-based surveillance sys-
tems by combining epidemiological and environmental data.
This thesis is interdisciplinary and enables the combination of data-driven approaches and
model-based methods that integrate expert knowledge.

This thesis is mainly funded by the ‘MOnitoring Outbreaks for Disease surveillance
H2020 in a data science context (MOOD1)’ project. The MOOD project aims at taking
advantage of data mining, analysis and visualization of health, environmental and other data
to enhance the utility of EBS. Ultimately, MOOD is supporting the work of European
and global public and veterinary health agencies and surveillance practitioners by providing

1https://mood-h2020.eu/
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existing monitoring platforms with novel features, and methodological and practical support
adapted to their needs.

Objectives

Our main objective is to address a key limitations of EBS systems such as managing the
overwhelming volume of collected articles and addressing the lack of explainability for de-
tected events. We propose an unsupervised model that is robust and generic (independent of
a specific disease or host) and that integrates epidemiological and environmental data, plac-
ing detected epidemiological events in their environmental context. This approach not only
enhances the classification of EBS systems but also provides valuable explanatory insights
and incorporates expert epidemiological knowledge. Our model is inspired by the Dendritic
Cells Algorithm (DCA) [67], which is based on the danger theory [105]. This choice is jus-
tified by DCA’s advantages in real-time applications: it operates in an unsupervised manner
without requiring training periods [172] and has proven effective in reducing false positives
[111]. To the best of our knowledge, applying DCA within the context of EBS systems is
novel and has not been explored before.

In this context, we want to address the following research questions:

• How can the DCA be applied to EBS systems, and how can its inherent limitations be
addressed?

• What specific types of epidemiological and environmental information should be used
as inputs for the method?

• How can we evaluate the robustness and genericity of the method through case studies?

Contributions

In this thesis, we present four key contributions to address our objectives:

• Development of EpiDCA, an unsupervised method based on the Dendritic Cells algo-
rithm (DCA) to combine epidemiological and environmental data in EBS systems.

• Establishment of an annotation method and production of an original dataset for three
different case studies to evaluate the proposed method.

• Evaluation of the method’s robustness and genericity using the produced dataset.
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• Introduction of an extension of EpiDCA designed to integrate real-time environmental
data into the model.

This thesis is organized into two main parts. Part I: State of the Art begins with Chap-
ter 1, which reviews the state of the art in various surveillance approaches, including IBS
and EBS. Chapter 2 details the characteristics and epidemiological context of the diseases
used as case studies. Chapter 3 discusses the inspiration behind the proposed method.
Part II: Contributions starts with Chapter 4, which introduces EpiDCA, the method devel-
oped, and its application to an initial case study. Chapter 5 details the annotation method
applied to create an original dataset. This dataset is used in Chapter 6 to evaluate the method.
Finally, Chapter 7 explores an extension of the proposed approach. Chapter 8 concludes the
thesis by summarizing the key findings, drawing conclusions, and discussing future perspec-
tives.
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State of the art

6





CHAPTER 1

DATA-DRIVEN EPIDEMIOLOGICAL SURVEIL-
LANCE

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Indicators-based surveillance . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Indicator-based surveillance systems . . . . . . . . . . . . 10
1.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Event-based surveillance . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Event-based surveillance systems . . . . . . . . . . . . . 13
1.3.2 Limitations and discussion . . . . . . . . . . . . . . . . . 20

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

In this chapter, we aim to set the context of our research and provide a comprehensive
overview of current surveillance approaches. We begin by presenting Epidemic Intelligence
(EI) as a framework for disease surveillance, introducing Indicator-Based Surveillance along
with its main characteristics and limitations. Next, we explore event-based surveillance
(EBS), which is the primary focus of our research, discussing its associated systems and
highlighting current challenges. Finally, we discuss potential strategies to address these
challenges.
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1.1 Introduction

Epidemiological surveillance relies on an intersection of various overlapping strategies.
They differ in terms of the nature of the data collected and the types of sources used, but
they are complementary and they converge toward the same ultimate goal: the timely detec-
tion of events representing a threat to human and animal health.
EI concept, as it is used today, was developed in the early 2000s. The French Institut de Veille
Sanitaire (Institute of Health Surveillance) and the European Center for Disease Prevention
and Control (ECDC) proposed an EI framework to enhance disease surveillance in Europe
in 2006 [156]. Eight years later, the World Health Organisation (WHO) published a compre-
hensive guide providing key definitions and detailing the implementation of early warning
activities [122]. EI can be defined as a formalized surveillance process that encompasses all
activities related to the early identification of potential health hazards that may represent a
risk to health, and their verification, assessment and investigation, EI relies on two main and
complementary components: "Indicator-based surveillance" which refers to structured data
collected through routine surveillance systems and "Event-based surveillance" which refers
to unstructured data on potential and non-verified disease outbreaks (i.e. events) gathered
from sources of any nature.
In this chapter, we will discuss Indicator-Based Surveillance (IBS) and then focus on Event-
Based Surveillance (EBS) systems. This will set the context of our work, including the
limitations we aim to address.

1.2 Indicators-based surveillance

IBS involves the systematic collection, monitoring, analysis, and interpretation of structured
data, such as case numbers, prevalence rates 1, and mortality rates2. This data originates
from official sources at various levels, with local public health authorities reporting to na-
tional agencies, which in turn contribute data to international organizations that centralize
and analyze information on a global scale [50, 156].
On a global scale, three main health organizations play a crucial role in coordinating surveil-
lance and sharing information:

• World Organisation for Animal Health (WOAH): Established in 1924 to combat
infectious animal diseases [26].

1Prevalence rate is the proportion of a population that has a specific disease or condition at a particular time
or over a specified period.

2Mortality rate is defined as the number of deaths in a given population during a specific time period divided
by the total population.
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Figure 1.1: Epidemic Intelligence (EI) Framework.

• World Health Organization (WHO): Founded in 1948 to monitor human transmis-
sible diseases, including zoonoses.

• Food and Agriculture Organization (FAO): Created in 1945 to improve agricultural
productivity in developing countries, notably through the enhancement of veterinary
services [107].

1.2.1 Indicator-based surveillance systems

After the 1990s, information technology, such as web access, online databases, and the de-
velopment of geographic information systems, significantly evolved, pushing international
organizations to implement more transparent disease reporting systems via appropriate web
platforms [6]. In 1994, the FAO launched an emergency prevention and rapid response sys-
tem for transboundary diseases (EMPRES), initially focusing on swine plagues and avian
influenza. Since 2004, EMPRES-i, the FAO’s web platform open to the community, has
allowed the visualization of epidemiological data on more than 34 transboundary diseases
[164]. In 1996, the OIE implemented a secure online disease reporting system. This sys-
tem was modernized in 2006 with a web interface open to the community (WAHIS: World
Animal Health Information System). This interface provides access to epidemiological in-
formation on more than 100 infectious diseases of terrestrial and aquatic animals, reported
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in over 180 countries [99]. At the European level, two systems are responsible for collecting,
centralizing, and sharing health data on infectious diseases. The Animal Disease Notifica-
tion System (ADNS) [65], created in 1982, centralizes and analyzes health data on 45 exotic
animal diseases that may emerge in Europe in order to alert European countries in case of an
introduction risk. Similarly, the online notification system TESSy, created in 2004, allows
the sharing of health information on 52 human infectious diseases [2]. IBS systems offer
distinct advantages by presenting officially confirmed (validated) information through maps
and graphs, facilitating visual representation of disease outbreaks, as shown in Figure 1.2.
They communicate findings via reports and provide users with the ability to download data
in structured tabular formats containing detailed epidemiological information, such as the
location, date of observation and confirmation, host, number of host and more. The charac-
teristics of these main IBS systems are detailed in Table 1.1, providing comparison of their
creation dates, geographic coverage, languages, targeted diseases, information sources, and
access levels 1.1.

IBS system WAHIS ADNS EMPRES-i TESSy
Year of Creation 1996 1998 2004 2004
Geographic Coverage Global European Global European
Number of Languages 3 1 1 1
Targeted Disease1 A A A, H H
Sources2 O O, N O O
Access Public Restricted Public Restricted and Public
References [99] [65] [164] [2]

1 A = Animal, H = Human.
2 O = Official N = Non-official.

Table 1.1: Characteristics of the main IBS systems adapted from [4].

These features make IBS systems invaluable as a reference or gold-standard for evalu-
ating EBS systems (that will be presented in Section 1.3). They are essential for assessing
detection accuracy (i.e. identification of confirmed events) and for measuring reactivity (i.e.
the time difference between detection by EBS systems and confirmation by IBS systems).

1.2.2 Limitations

While IBS systems and official sources remain the cornerstone of disease surveillance, like
all systems, they have their limitations. First, before reporting to an international health au-
thority, they follow a specific pipeline: disease observation, laboratory confirmation, admin-
istrative processing, and final reporting, often resulting in an unavoidable delay [146]. When
it comes to the timely detection of outbreaks and important public health events, IBS sys-
tems often fail, as presented in a retrospective study by [78] on H1N1 outbreaks in 2009, and
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Figure 1.2: Events display on EMPRES-i and WAHIS platforms.

Zika outbreaks in 2015. Second, in resource-limited settings, classical IBS approaches can
be limited by available diagnostic capacity and surveillance architecture [15]. Furthermore,
the systems are not suited to the detection of rare but high-impact outbreaks or emerging and
unknown diseases several examples has highlighted this limitation, such as Avian Influenza
and COVID-19 outbreaks [121].

1.3 Event-based surveillance

Event-based surveillance (EBS) have been developed to address the limitations of indicator-
based surveillance (IBS) [13] and complement it by relying on non-official sources, such as
web articles, social media, and other digital platforms, to detect events [59, 89]. An event in
this context is defined as any occurrence that may pose a threat to public health and requires
urgent attention [11]. EBS involves the daily collection, monitoring, assessment, and inter-
pretation of potential reported outbreaks from a variety of sources. Systems like ProMED
[29], HealthMap [57], MedISys, GPHIN, Argus, BioCaster and PADI-web [161] are de-
signed to detect unusual health events reported in web articles and extract relevant health
information. These systems enable near real-time detection of infectious disease outbreaks
by identifying and analyzing relevant articles on a daily basis [59].
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1.3.1 Event-based surveillance systems

ProMED, established in 1994, is one of the first event-EBS systems implemented by the
International Society for Infectious Diseases (ISID). It enables health practitioners and the
public to report potential infectious disease outbreaks. Reports, both formal and informal,
are reviewed and commented on by subject matter experts before being posted to the global
network. ProMED’s reports, which focus on emerging and re-emerging outbreaks as defined
by the WHO, are accessible to over 90,000 subscribers and followers worldwide [38].
GPHIN, short for the Global Public Health Intelligence Network, was developed in 1997
through a partnership between the Canadian government and the WHO. It functions as a
multilingual EBS system, its primary role is to gather and disseminate relevant information
on disease outbreaks and other public health events by monitoring global media sources in-
cluding news wires and websites [106].
Argus and MedISys both lunched in 2004 represent significant advancements in EBS. Devel-
oped by the Center for Infectious Disease Research at Georgetown University, Argus focuses
on identifying potential health threats within the United States. Meanwhile, MedISys, initi-
ated by the Joint Research Center at the request of the European Commission, serves as an
automatic news aggregator with extensive global coverage across more than five thousand
topics, spanning animal health, public health issues, and threats related to chemical, nuclear,
and bio terrorist attacks [133, 117].
HealthMap, developed by Harvard University in 2006, collects and integrates outbreak data
from a variety of sources, including news media (e.g., Google News), expert-curated ac-
counts (e.g., ProMED ), and validated official alerts. Through the use of text processing
algorithms, the system classifies alerts by location and disease and then overlays them on an
interactive geographic map [57]. The same year the university of Tokyo launched BioCaster,
a non-governmental public health surveillance system known for its open ontology-centered
approach, focusing on Asia-Pacific languages [35].
In France, since 2016, the International health monitoring (Veille Sanitaire Internationale,
VSI) of the Animal Health Epidemiological Surveillance Platform (Épidémiosurveillance
en Santé Animale, ESA) has been using PADI-web (Platform for Automated extraction of
Disease Information from the Web) to complement its event-based surveillance component.
PADI-web ensures the detection, verification, and communication of infectious disease sig-
nals. Unlike the previously mentioned health surveillance systems, PADI-web has been
developed initially for animal health surveillance [6], and recently for plant disease surveil-
lance [132].

While this is not an exhaustive review of EBS systems, these ones are often cited as
examples or used in research studies due to their extensive geographical and disease cover-
age, operational platforms, and accessible data. Other EBS systems exist and are currently
under development. For example, recent advancements include the Global Rapid Identifi-
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cation of Threats System for Infectious Diseases in Textual Data Sources (GRITS) [79] and
the Data Analysis for Information Extraction in Any Language (DANIEL). GRITS enhances
epidemic surveillance by automatically analyzing epidemiological texts to extract critical in-
formation about disease outbreaks, such as the likely disease, dates, and affected countries,
with the innovative option of suggesting potentially associated infectious diseases. Simi-
larly, DANIEL’s novel approach allows the system to process multiple languages without
the need for translations. The benefit of this method is to increase coverage across a variety
of languages, including low-resourced languages, rather than focusing on optimizing results
for a specific language [134].
Typically, all EBS systems revolve around four key steps: data collection, classification,
information extraction, and communication. The global framework of the EBS system is
illustrated in Figure 1.3. We describe the steps involved: data collection, classification, in-
formation extraction, and communication, using examples. However, it’s important to note
that these steps are not always distinct. For instance, extraction and classification might oc-
cur in different orders, and extraction may not be used in all EBS systems. For simplicity
and clarity, we present them in this specific sequence to clearly illustrate each step

Figure 1.3: Key steps of event-based surveillance systems.

Data collection

This step involves the daily detection and collection of epidemiological events, with each
system using a variety of methods and sources, which may overlap. ProMED for example,
identifies potential infectious disease outbreaks through reports submitted by both formal
sources, such as health practitioners and public health professionals, and informal sources,
including concerned members of the public. It operates in multiple languages including
French, Spanish, Portuguese, Russian and Arabic [171, 29].
HealthMap collects and integrates data from informal sources, including news articles, social
platforms aggregated through Google News, Baidu, SOSO and formal souces like expert-
curated accounts from ProMED [57, 25]. MedISys retrieves news articles from specialised
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official and unofficial medical sites, general news media and selected blogs, it operates in
over 50 languages, making it one of the most expansive systems of its kind to date [133]. Ar-
gus [116] collects information in 40 native languages from media sources, including printed
newspapers, electronic media, Internet-based newsletters and blogs, as well as from official
sources the WHO and WOAH [100]. BioCaster [35] collects information from EurekAlert!,
European Media Monitor Alerts (EMMA), Google, the CDC’s Morbidity and Mortality
Weekly Report (MMWR), MeltWater, WOAH, ProMED, Reuters, WHO and Vetsweb. It
scans for articles in Arabic, Chinese, English, French, Japanese, Korean, Portuguese, Rus-
sian, Spanish, Thai and Vietnamese. The system gives a special priority to languages of the
Asia-Pacific region.
PADI-web retrieves web articles from Google News through two types of customized RSS
feeds: Disease-based RSS feeds consist of disease names, while symptom-based RSS feeds
include clinical signs and hosts. It operates in 16 languages [156]. Table 1.2 presents the
main characteristics of the EBS cited in this section, including disease and geographical
coverage, targeted languages, and sources used.

EBS system ProMED GPHIN Argus MedISys HealthMap BioCaster PADI-web GRITS DANIEL
Year of Creation 1994 1997 2004 2004 2006 2006 2016 2012 2015
Geographic Coverage Global Global Global Global Global Global1 Global Global Global
Number of Languages 2 5 9 40 50 7 13 M M M
Targeted Disease3 H, A, P H, A, P, E H, A, P, E H, A, P, E H, A, P, E H, A, P, E A, P H, A H, A
Classification4 H SA A H SA SA A A A
Sources5 O, N O, N O, N N N O, N N N N
Type of Sources6 W, U W W W W, U, S W, U, S W W W
References [171, 29] [115] [117] [133] [57] [35] [161] [79] [93]

1 BioCaster focuses on Asia-Pacific languages and health hazards.
2 M = Multilingual 3 H = Human, A = Animal, P = Plant, E = Environmental.
4 H = Human intervention (experts), SA = Semi-automated, A = Automated.
5 O = Official, N = Non-Official.
6 W = Web, S = Social media, U = Users.

Table 1.2: Characteristics of the main EBS systems, adapted from [4].

Classification

The classification step is a crucial step in EBS. Given the overwhelming amount of data
available on the web, one of the primary challenges to establishing and sustaining an EBS
system is designing a system that can detect a sufficient number of relevant health events
while ensuring it is not overloaded [11]. The documents classification can be manual i.e.,
done by human moderators (such as for ProMED) or automated. Most commonly, there are
two types of classification approaches [131].

• Keywords based classification: documents are categorized based on the presence of
predefined keywords.
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• Machine learning classification: classifiers are trained on manually labeled data and
automatically learn rules to label unclassified news articles (supervised methods), or
use unsupervised methods that autonomously identify patterns and structures within
data to classify documents that share similar characteristics.

Most EBS systems (PADI-web, HealthMap, MedISys) use binary classification catego-
rizing news articles as either ’Relevant’ or ’Irrelevant,’ as shown in Figure 1.3, Step 2.
The first version of PADI-web used a keyword-based classification approach, where articles
are classified as relevant if they contain in the text (title and body) one of the keywords re-
lated to an outbreak event (e.g. ‘outbreak’ ‘cases’ ‘spread’) [6].
MedISys classification relies on an approach involving Boolean combinations and keyword
weightings. A document is considered relevant if it matches one of a predefined set of alerts.
Two types of signals (i.e. single and combination) are implemented. A single signal consists
of attributing positive and negative weights to relevant and irrelevant keywords. An article
is kept if the sum of the keyword weights it contains is above a given threshold. A combina-
tion signal is based on keywords combined by Boolean expressions (i.e. ‘AND’ and ‘AND
NOT’). Documents are selected if they contain at least two relevant keywords and do not
include any irrelevant keywords.
Systems like HealthMap, BioCaster, Argus, and GPHIN rely on supervised machine learn-
ing classifiers, specifically Bayesian algorithms and Support Vector Machines (SVMs).
HealthMap uses a Bayesian machine learning algorithm, relevant documents are then clas-
sified by location [57]. GPHIN computes a relevance score for each report, reflecting the
SVM classifier’s confidence. Expert moderators further verify classifications from GPHIN,
HealthMap, and Argus. Articles with high relevance scores are kept, while low-scoring re-
ports are automatically discarded. Experts review medium-relevance reports and check au-
tomatically discarded articles to ensure no relevant information is missed. BioCaster’s clas-
sification is totally automated, relying on a naive Bayes classifier trained on a gold-standard
corpus [35]. The second version of PADI-web 2.0 [161], integrated a machine learning clas-
sifier in addition to keyword-based methods. Later, [156] introduced PADI-web 3.0, which
featured fine-grained classification of sentences to refine the notion of relevance and identify
specific categories.
Modern EBS systems aim at improving the classification task beyond traditional machine
learning approaches by focusing on Natural Language Processing (NLP) techniques [110].
For example, GRITS uses ensemble learning with logistic regression classifiers, where each
classifier estimates the probability that a document is associated with a specific disease [79].
Additionally, the multilingual news surveillance system DANIEL leverages repetition and
prominence (the beginning and the end of a news text often comprises the salient zones),
in news writing, avoiding language-specific NLP toolkits by focusing on the general struc-
ture of journalistic texts [93]. Recent versions of these tools integrate language model ap-
proaches, such as the PADI-web for plant health surveillance [132].
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Information extraction

Information extraction (IE) is the process of converting unstructured text into structured data
containing information of interest. Different methods are used to achieve this task, includ-
ing rule-based approaches and machine learning methods, as well as advanced models like
transformers [118] and Bidirectional Encoder Representations from Transformers (BERT)
[140, 98]. In the context of EBS, the objective is to extract relevant epidemiological infor-
mation disseminated throughout the text, focusing on epidemiological data such as spatial
and temporal entities (indicating where and when the event occurred), as well as thematic
entities related to the host and causal agent (such as the pathogen or disease causing the
event), as illustrated in Figure 1.4 [80].

Figure 1.4: Snippet of an article detected by PADI-web, with highlighted epidemiological
entities.

Several challenges are encountered in this step. The vocabulary used is diverse, espe-
cially when it relates to animal diseases, due to the existence of numerous hosts and a less
formal vocabulary compared to humans for describing clinical signs [5]. Outbreaks’ spatial
information can be provided at different levels of granularity, and multiple events and lo-
cations may be mentioned within the same documents, adding to the ambiguity [159]. For
example, a document might specify one location as the origin of the disease while describ-
ing the epidemiological situation in another location, or it could notify about an event in
one location while detailing control measures in a neighboring area. Several studies have
addressed the challenges associated with extracting the spatial information [149, 4, 155].
Not all EBS systems perform automated event extraction; for example, ProMED operates
through a human-moderated process. In this case, experts extract and summarize key epi-
demiological information from reports before publishing them. For HealthMap, events ex-
traction operates through an unsupervised approach. Where extraction of the epidemiologi-
cal data relies on the document structure based on the hypothesis that the most relevant infor-
mation appears at the beginning of a news report. Diseases and locations are first searched
in the title, then in the document headlines, and finally in the full content. Experts further
correct any errors in extractions when necessary [25].
In PADI-web, two types of approaches are employed and combined for entity extraction from
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texts: (1) dictionary-based approaches and (2) classifier-based approaches. The dictionary-
based approach entails matching terms from a document with a predefined list of keywords.
Some dictionaries may include an ontological structure rather than a simple list of terms
[159].
In the GRITS system, the information extraction process involves transforming words into
vectors using the term frequency-inverse document frequency (TF-IDF) method. This pipeline
begins with feature extraction through pattern-matching tools, which identify and extract
relevant terms and phrases related to disease outbreaks, such as disease names, symptoms,
locations, and dates. Once these features are extracted, the words are transformed into nu-
merical vectors using the TF-IDF method, highlighting significant terms by evaluating their
importance within the document relative to a larger corpus [93].

Communication

This step involves the communication of information to relevant authorities (such as national
public health networks) or broader networks (including end-users of EBS systems). Various
output are possible depending on the EBS system.
ProMED for example, publishes reports to the website ProMEDmail.org, as shown in Fig-
ure 1.5. In addition to sending e-mails to the subscribers [29]. HealthMap displays relevant

Figure 1.5: ProMED interface: Example of the latest published reports.

events on an interactive map accessible at Healthmap.org (see Figure 1.6). Its filtering and
visualization features enable users to efficiently identify pertinent elements within their ar-
eas of interest, bringing structure to an otherwise overwhelming amount of information [57].
PADI-web offers several types of output. Users can navigate the platform to filter documents
based on classification, date, and location (see Figure 1.7). The system also provides his-
tograms to visualize the number of news articles over time, with aggregation options by
day, month, or year, as well as a visualization feature per map. Moreover, users can export
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Figure 1.6: HealthMap interface: Display of recent outbreaks on the map and access to
related articles.

Figure 1.7: PADI-web interface: document filtering.

structured datasets containing extracted epidemiological entities from search results in for-
mats such as CSV, JSON, and XLS. Additionally, the system includes an automatic email
notification feature, that enables end-users to receive timely updates and alerts [160].

Effectiveness of EBS systems in disease surveillance

Event-Based Surveillance (EBS) systems have demonstrated their effectiveness in both hu-
man and animal health contexts.
For example, in the context of human health, ProMED played a crucial role during the 2003
SARS (Severe Acute Respiratory Syndrome) outbreak, sending daily reports that alerted
medical staff at a hospital in Toronto. This early warning system allowed the hospital to
isolate patients as soon as the disease appeared there [171]. GPHIN detected the SARS out-
break in southern China in 2003, issuing an early alert based on information from Chinese
electronic media [115]. It also significantly contributed to monitoring the Ebola outbreak in
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West Africa in 2014 [41]. During the 2009 H1N1 pandemic, HealthMap demonstrated im-
pressive results with an average delay of just 12 days between the notification of suspected
cases and their confirmation, which greatly enhanced the effectiveness of health responses
[88]. In the 2020 COVID-19 pandemic, ProMED provided valuable information that helped
identify new outbreak clusters [20].
In the field of animal health, in January 2014, ProMED was the first to report cases of
African swine fever in wild boars in Lithuania, following alerts from local hunters [29]. A
study on the 2019 avian influenza outbreak highlighted that PADI-web was very efficient in
early detection of cases in wild birds [158].

Despite their effectiveness, EBS systems have some limitations, which will be discussed
in the next section.

1.3.2 Limitations and discussion

While EBS systems have demonstrated their effectiveness in terms of relevance and early
detection, several limitations can be highlighted.

First, the methods discussed in Section 1.3.1 involve machine learning and NLP tech-
niques for document classification. Supervised methods are widely used and have shown
satisfactory results in various studies for text classification [82]. However, these methods
face several challenges: First, the success of supervised models heavily depends on the
quality of annotated data. Annotating data can be expensive and time-consuming [114, 43].
In addition, balanced class distribution facilitates easier training and prevents bias. However,
epidemiology-related datasets, like many real-world datasets, often exhibit imbalanced class
distributions [114]. Moreover, supervised methods are limited to predefined categories used
during training, and classification of epidemiology-related texts can be ambiguous, as some
documents may mention a disease without reporting an outbreak, or may provide general
disease information rather than specific outbreak details [157].
Keyword-based methods, such as dictionaries and ontologies, also face significant chal-
lenges. First, these methods require frequent updates to include new terms, which involves
time-consuming manual work [159]. Second, adapting keyword-based methods to unknown
diseases and evolving vocabulary is challenging, as they are based on predefined case stud-
ies. For example, a retrospective study conducted by [160] showed that during the early
stages of the COVID-19 outbreak, keywords such as ‘pneumonia symptoms’ and ‘mystery
illness’ were crucial for detecting relevant reports. However, once the disease was identified,
the vocabulary shifted to terms related to the virus family and specific COVID-19 acronyms,
highlighting the need for dynamic and adaptable keyword methods in EBS systems. Another
major limitation is the lack of a formal definition of "relevance," which complicates the com-
parison of EBS system performance [12, 156]. For instance, in the PADI-web EBS system,
the "Relevant" class includes articles related to outbreak declarations, preventive and control
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measures, as well as economic and political consequences. In contrast, general information
like economic and political consequences is considered irrelevant in MedISys and ProMED
[96, 171].

Moreover, disease-related characteristics and environmental drivers can significantly in-
fluence how information is processed and reported. For example, West Nile virus outbreaks
are more likely during the summer when vectors are active [66], increasing the likelihood
of relevant events being reported during that period. However, to our knowledge, no EBS
system currently incorporates environmental data. All the classification methods used to
categorize articles rely solely on the epidemiological data found in the texts.
Each disease has a distinct outbreak definition, and its outbreak pattern often varies due to
external risk factors. The spatio-temporal aspects of an epidemiological event play a crucial
role in determining its ’relevance’ [86]. This variability can reduce the robustness of classifi-
cation models, especially when encountering unseen outbreak patterns that differ from those
in the training data [111].

Based on the elements and limitations discussed in this chapter, our objective is to pro-
pose an unsupervised method that takes into account epidemiological data found in the
documents (detected articles) and environmental data found in external sources. Several
researchers have applied unsupervised machine learning algorithms to bio-informatics and
text mining areas [163, 91, 94]. These methods help overcome the limitations associated
with supervised models, as described in Section 1.3.2. For instance, [163] demonstrated the
potential of these methods in identifying novel patterns and relationships from electronic
health records without relying on manually annotated labels. [91] compared both supervised
and unsupervised methods for biomedical text classification and found that unsupervised
topic clustering methods are robust and applicable in real-world settings. [94] proposed an
unsupervised machine learning model that detects latent infectious disease information from
individuals’ social media messages, using textual and temporal information along with sen-
timent analysis.
For the integration of environmental data, an effective approach is to rely on the results
produced by risk-based surveillance methods and spatial modeling of infectious diseases.
These methods are fundamental research fields that enhance public health preparedness and
strategies for managing outbreaks [97, 64], and they rely on the spatial distribution of dis-
ease risks factors (environmental data) [77]. They help to highlight surveillance areas and
adapt prevention and control measures when necessary [17]. This aspect of epidemiological
surveillance will be explored in Chapter 2.
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1.4 Conclusion

In this chapter, we have established the contextual framework for our work by detailing key
components of EI framework, including IBS and EBS. We described main EBS systems
highlighting their characteristics and limitations.
From this presentation, we have identified several challenges, some inherent to the methods
of classification and data extraction in EBS systems including both supervised and unsuper-
vised methods, and others related to the onset of diseases. These challenges vary in complex-
ity depending on the disease type. Each type, such as vector-borne diseases, transboundary
diseases with resistant viruses, or zoonotic diseases affecting multiple hosts, presents unique
characteristics and therefore requires different surveillance approaches. A key observation
made is that a significant amount of data is available and from various sources and of differ-
ent natures (textual epidemiological data, spatial environmental data, etc.). Our hypothesis
is that combining these data within the context of EBS can enhance the EBS systems in
terms of classification and early detection as it places the detected events within their envi-
ronmental context. To address these challenges, our objective is to propose an unsupervised
method that integrates both epidemiological data from detected articles and environmental
data from external sources. Unlike traditional text-based methods that classify each article
individually, our approach evaluates the collective impact of all detected events within their
environmental context to enhance classification accuracy.

For the advantages presented earlier in unsupervised methods, the goal of this work is
to develop an unsupervised model that combines epidemiological and environmental data
in an EBS context. We aim for the model to be robust, generic, and easily adaptable to
various case studies. Therefore, we selected three distinct case studies representing different
epidemiological systems: a zoonotic disease (Avian Influenza, AI), a transboundary disease
(African Swine Fever, ASF), and a vector-borne disease (West-Nile virus Disease, WND).
Before building the method, the first step is to better understand the selected case studies,
the relevant epidemiological features and the key environmental drivers related to each one.
Thus, in the next chapter (Chapter 2), we will focus on these diseases, their characteristics,
and their epidemiological surveillance context.
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This chapter provides insight into three selected case studies; Avian Influenza (AI),
African Swine Fever (ASF), and West Nile Disease (WND), that will be used to evaluate
the robustness and genericity of our proposed model. Each of these diseases represents a
different epidemiological system with distinct characteristics (transmission mechanisms, af-
fected hosts, epidemiology and surveillance), which will be detailed in this chapter. All three
are notifiable and have global coverage, ensuring comprehensive data availability from both
IBS and EBS systems.
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2.1 Introduction

A good starting point for understanding any infectious disease is to get familiar with its
epidemiological triad. This model is fundamental in understanding disease patterns. Ac-
cording to it, the disease process arises from a complex interaction among factors associated
with: 1. the pathogen, 2. the host, and 3. the environment [39, 84], as presented in Figure
2.1. What appears as very schematic and simple at first glance reveals multiple layers of
complexity when considering the unique characteristics of each disease. For example, some
diseases may have multiple transmission routes, such as vector-borne transmission and/or
direct contact transmission. In addition, the term ’environment’ is broadly used to encom-
pass diverse factors and determinants of infectious diseases [39], including socioeconomic
and demographic influences. Nevertheless, the interest of this model lies in that it compels
us to approach each case study from an integrated perspective, which is particularly relevant
in this study as we aim to build a model that combines epidemiological and environmental
data in the context of EBS.

Figure 2.1: Epidemiological Triad.

The motivation behind selecting these diseases lies in their diverse characteristics, in-
cluding variation in transmission patterns, pathogens, affected hosts, surveillance challenges
and environmental drivers. These differences make them ideal candidates for evaluating the
genericity and robustness of our model which is designed to be independent from a specific
disease or a host.
Avian Influenza (AI), African Swine Fever (ASF), and West Nile Virus (WND) were se-
lected because they are globally widespread and receive significant media coverage, which
enhances data availability in EBS systems. Additionally, they address particularly topical
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issues in Europe, with significant public health and economic impacts. They are also subject
to notifications to the WOAH and the WHO, ensuring the availability of relevant and con-
firmed event data in IBS systems.
This chapter aims to present the main characteristics of AI, ASF and WND as well as their
epidemiological context, with the goal of better understanding which epidemiological fea-
tures and environmental drivers to consider.

2.2 Avian Influenza

2.2.1 Disease characteristics

Avian Influenza (AI), also known as bird flu, is a highly contagious viral disease that primar-
ily affects avian species, both domestic and wild [28]. AI viruses possess a great zoonotic
potential as they are able to infect different avian and mammalian animals hosts, from which
they can be transmitted to humans [112]. AI viruses are typed according to their pathogenic-
ity in poultry into highly pathogenic avian influenza (HPAI) with flock mortality as high as
100%. These viruses have been restricted to subtypes H5 and H7, although not all H5 and
H7 viruses cause HPAI [28], and low pathogenic avian influenza (LPAI) that cause a milder,
primarily respiratory, disease.
Aquaric birds belonging to the orders Anseriformes (ducks, geese) and Charadriiformes
(shorebirds) act as natural reservoirs of AI viruses (see Figure 2.2). For this reason, the
proximity to water is described as a significant risk factor for virus transmission [85]. Ducks,
geese and wild water fowl, suffer mild illness whereas poultry birds are more severely af-
fected and are responsible for the large outbreaks and epidemics in poultry (see Figure 2.2).
AI spread worldwide, via migratory birds and poultry trade activities.
The symptoms of AI in birds can vary significantly depending on the virus’s pathogenicity.
LPAI infections may present subtle signs such as ruffled feathers, slight weight loss, transient
reductions in egg production, and mild respiratory symptoms. In contrast, HPAI can cause
severe disease, particularly in chickens and turkeys, with a sudden onset of severe symp-
toms such as diarrhea, edema, nervous symptoms, and a rapid cessation of egg production,
often leading to mortality within 48 hours [60]. When humans are infected with AI viruses,
they often experience no symptoms or mild symptoms such as cough, headache, weakness,
and runny nose. However, some strains can cause severe disease, particularly among in-
fants and individuals with underlying medical conditions, potentially leading to pulmonary
inflammation and death [9].

25



CHAPTER 2

Figure 2.2: Possible routes of transmission of AI, natural cycle (green arrows), other trans-
missions (orange arrows).

2.2.2 Epidemiology and surveillance

Avian influenza outbreaks have displayed a diverse geographical spread and impact over the
years. Initially, AI was predominantly observed in poultry population across Asia where, the
HPAI virus is endemic in many countries [73]. In the beginning of the 2000s, many aspects
of the epidemiology of AI infections in poultry and other birds appear to have changed
dramatically from those established in the preceding century. The number of outbreaks of
the HPAI disease has increased alarmingly in the last 10 years and (see Figure 2.3), even
more noticeably, the impact in terms of the number of birds involved and the costs of disease
control have dramatically escalated.

Figure 2.3: Global distribtuion of HPAI in 2023, adapted from [42].

Currently, global avian influenza surveillance primarily involves wild birds, poultry, re-
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lated environments, human cases, and high-risk populations. The surveillance content and
methods differ accordingly [44]. In wild birds, AI surveillance relies on three primary strate-
gies. Active surveillance that involves capturing birds or hunting waterfowl in specific habi-
tats or high-risk areas with known outbreaks. Passive surveillance that focuses on examining
unusual bird deaths and visible signs of illness. Finally, sentinel surveillance that monitors
domestic ducks in typical habitats to track disease spread among wild birds. Collected sam-
ples, such as cloacal swabs, feces, and environmental samples, are analyzed for serological
and pathogenic indicators [150]
In domestic birds, the targets for surveillance primarily encompass domestic fowl, water-
fowl, and ornamental birds, with a particular focus on ducks due to their proximity to migra-
tory waterfowl. Surveillance methodologies include clinical sign observation and laboratory
examination. On poultry farms, surveillance can be achieved by monitoring signs associated
with AI infection.
When AI is detected in a given area, a surveillance zone is established to contain and monitor
the outbreak. Control measures include closing all poultry and egg markets within a 10-km
radius of the infected location, installing infected area sign-boards within a 3-km radius, and
establishing a surveillance perimeter with a radius of 3–10 km in areas where no vaccination
is implemented (Figure 2.4). The zone is considered free from AI when no cases are reported
3 to 4 weeks after the outbreak’s detection [9, 85, 127].

Figure 2.4: Schematic representation of delimitation zones in an infected area adapted from
[127, 162]

The surveillance of human infection with AI viruses primarily depends on medical re-
porting in healthcare facilities. Moreover, active surveillance of high-risk occupational pop-
ulations is conducted in several countries. For instance, China regularly performs active
surveillance among high-risk groups, such as poultry farmers, poultry traders, and poultry
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slaughtering and processing staff. Different countries have adopted various strategies to con-
trol HPAI. In Europe and North America, the approach typically involves culling infected
and suspected birds. In contrast, some countries, such as China, have adopted a strategy that
combines culling with vaccination
On both global and regional levels, the AI surveillance network has shown considerable
growth [44]. Various networks have been established to enhance early detection and re-
sponse to AI outbreaks and facilitate communication and data exchange. Examples include
the Global Influenza Surveillance and Response System (GISRS) [75] and the OFFLU net-
work [37]. Internationally, the World Organisation for Animal Health (WOAH) mandates
member countries to promptly report outbreaks of HPAI in domestic and wild birds, as
well as LPAI subtypes H5 and H7 in poultry, and any unusual mortality events among wild
birds [150]. Additionally, human cases of avian influenza must be reported to the WHO.
Confirmed cases of avian influenza are documented in various IBS databases mentioned in
Chapter 1, such as EMPRES-i FAO and WAHIS-WOAH. These databases provide com-
prehensive information, including the location of outbreaks, observation and confirmation
dates, and other relevant details such as the subtype, host, and number of cases.
When it comes to event-based surveillance (EBS) of AI, this disease benefits from exten-
sive media coverage. Both general and specialized media outlets actively report on vari-
ous aspects of AI, including outbreaks, control measures, and the introduction of new virus
strains. As an example, in a study conducted by [158], websites, such as: Poultry Site1 and
WATTpoultry2, appeared to be valuable sources for both PADI-web and HealthMap EBS
systems.

2.3 African Swine Fever

2.3.1 Disease characteristics

African Swine Fever (ASF) is a very complex viral disease that affects only porcine species
(both wild and domestic), producing a variety of clinical signs and lesions from acute, sub-
acute and chronic. It can easily be confused with classical swine fever (hog cholera), or
other hemorrhagic diseases, for this reason laboratory test is required to establish a correct
diagnosis [3].
ASF transmission can occur directly through close contact with infectious animals or in-
directly by ingesting infected pork products, touching contaminated objects (fomites), or
possibly via mechanical vectors. Additionally, ASF can be effectively transmitted by the

1Poultry Site is a specialized website providing news and information on the poultry industry. Available at
https://www.poultrysite.com/

2WATTpoultry is a specialized website providing industry news and analysis on poultry and avian diseases.
available at https://www.wattagnet.com/
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biological soft tick vector, genus Ornithodoros spp., if present. However, Ornithodoros spp.
is not considered significant in the current ASF epidemic in Central and Eastern Europe. In
the absence of this tick vector, the most efficient transmission method is direct contact with
the blood of infected animals (see Figure 2.5).

Figure 2.5: Possible routes of transmission of ASF, biological transmission (orange arrows),
and mechanical transmission (blue arrows).

Several factors make the ASF virus a serious threat to the global swine industry and
national economies. Mortality rates can reach 100% in acute cases. The high morbidity and
mortality associated with the virus, alongside the absence of an effective vaccine and its high
resistance, contribute to its severity. In addition, ASF virus is very stable in the environment
and in food, able to remain in preserved meat for up to 6 months, which allows for possible
transmission, especially to wild boars, through abandoned human food waste [81].

2.3.2 Epidemiology and surveillance

ASF is endemic in sub-Saharan African countries. Eradicated from Western Europe since
the late 1990s, except for an endemic form in Sardinia, ASF was reintroduced to Georgia in
June 2007. The introduced strain was identified as closely related to strains found in East
Africa and Madagascar. The most probable hypothesis for the virus’s introduction to Eurasia
suggests contaminated pork products from a cruise ship. Through the trade of pigs and pork,
the virus rapidly spread among domestic pig populations and wild boars populations.
Azerbaijan and Russia were affected in 2008, impacting both wild and domesticated popula-
tions. Despite Russian authorities’ interventions in 2009, the virus was detected in pigs near
the European border north of Saint Petersburg, close to the Estonia-Finland border. In 2012,
Ukraine and Belarus reported their first outbreaks, followed by the virus’s first introduction
to the Baltic countries (Latvia, Lithuania, Estonia, and Poland) in 2014 [61]. During that
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period, ASF infections were primarily observed on pig farms with low biosecurity, occa-
sionally spilling over into the wild boar population. It was initially predicted that the disease
would fade out in wild boars once controlled in domestic pigs due to the high mortality
rate and lack of long-term carriers. However, this proved incorrect in Poland and the Baltic
states, where ASF persisted in the wild boar population independently of outbreaks in do-
mestic pigs [34, 119].
In 2023, African swine fever (ASF) impacted 14 European countries, notably Croatia and
Sweden where ASF emerged among wild boars, and Greece where ASF re-emerged after
being free since 2021. The number of ASF outbreaks among domestic pigs in the EU was
five times higher than in 2022, reaching a similar magnitude to that in 2019 [47]. The global
distribution of ASF is shown in Figure 2.6. ASF surveillance in wild boar is carried out ei-

Figure 2.6: Global distribution of ASF in 2023, adapted from [165]

ther by testing all the wild boar found sick or dead for virus detection (passive surveillance)
or by testing for virus (and antibodies) all hunted wild boar (active surveillance) [63]. ASF
surveillance focuses on both passive and active monitoring of wild boars and domestic pigs.
The main strategic aims of surveillance in domestic pigs are early detection of potentially
infected holdings [162], which is challenging because of the wide range of non-specific clin-
ical signs produced[56]. In livestock, if the disease is suspected (when pigs display clinical
signs, show post-mortem lesions...etc), the holding must be placed under official surveillance
until the ASF situation is clarified through laboratory tests. Key measures include: counting
all pigs by category, compiling lists of sick, dead, or potentially infected pigs, and creating
a map of the holding for epidemiological investigations. All pigs should be confined to their
living quarters, and no pigs or pig products should leave the holding until ASF is ruled out.
Additionally, movement of people and vehicles to and from the farm should be restricted,
and disinfection protocols should be enforced at stable entrances and exits [162, 63].
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Upon ASF confirmation, immediate actions must be taken in the affected holding. All pigs
must be euthanized without delay, and samples collected for further epidemiological inves-
tigation, particularly to trace the virus’s introduction and estimate how long ASF may have
been present before notification. The investigation should also determine the virus’s possi-
ble origin, identify contact holdings potentially infected from the same source, and assess
whether vectors (e.g. soft ticks) or wild boars contributed to the infection. Any pigs, meat
products, semen, ova, or embryos that left the holding should be traced, and thorough clean-
ing and disinfection of the holding should be performed [162].
Being a highly contagious disease, like HPAI, the establishment of a protection (contain-
ment) zone with at least a 3 km radius and a surveillance zone with at least a 10 km radius
around the outbreak site is required (see Figure 2.4). Movement and transport of pigs are
prohibited, and restrictions cannot be lifted earlier than 30 days post-cleaning in the protec-
tion zone and 20 days in the surveillance zone. Due to the resistant nature of ASF virus,
restocking is permitted no sooner than 40 days after cleaning and disinfection.
ASF is a notifiable disease and its notification to the WOHA is mandatory [58].
In the context of EBS, numerous media outlets, both specialized (such as PigSite3) and non-
specialized, publish reports on ASF outbreaks, virus introductions, and control measures.
Which are collected daily by EBS systems, such as PADI-web.

2.4 West-Nile virus disease

2.4.1 Disease characteristics

West-Nile Disease (WND) is a multi-host mosquito borne virus belonging to the Japanese
encephalitis (JE) antigenic complex (genus Flavivirus, family Flaviviridae) [102]. The most
common route of WND infection to humans is through the bite of an infected mosquito of the
genus Culex. Mosquitoes become infected when they feed on infected birds that have high
levels of WND virus in their blood. This cycle of transmission between birds and mosquitoes
is referred to as "enzootic amplification". Infected mosquitoes can then transmit the virus
when they feed on humans or other animals. People, horses, and most other mammals do not
develop high-level viremia4, they do not contribute to the transmission cycle and hence are
traditionally called “dead-end” hosts [136]. The transmission of the virus from mosquitoes
to humans or horses is known as spillover, referring to the infection of unintended hosts
outside the primary enzootic cycle (see Figure 2.7).

While most human infections with WND, around 80%, are asymptomatic and often go
unnoticed, approximately 20% of individuals develop flu-like symptoms known as West

3PigSite is a specialized online platform for swine diseases and industry news. Available at https:
//www.thepigsite.com/

4Viremia refers to the presence of viruses in the blood.
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Figure 2.7: Transmission pathways of WND virus, enzootic cycle (green arrows), other
transmissions (orange arrows).

Nile fever. Additionally, about 1% of cases develop a severe, potentially fatal, neuroinvasive
disease.

2.4.2 Epidemiology and surveillance

Since its first discovery in 1937 in the West Nile district of Uganda, the WND virus has un-
dergone a substantial geographical migration and spread around the globe [52]. Historically,
WND has been associated with asymptomatic infections and sporadic disease outbreaks in
humans and horses in Africa, India, and Middle East [19, 125]. However, starting in the
mid-1990s, the frequency, severity, and geographic range of WND outbreaks increased dra-
matically, and the virus has caused frequent outbreaks of severe neuroinvasive disease in
humans and horses in Europe and the Mediterranean Basin [19, 31].
In 1999, The virus reached the American continent, marked by a cluster of encephalitis cases
reported in the metropolitan area of New York. Within three years, the virus had spread the
contiguous U.S. and the neighboring countries of Canada and Mexico [125]. Since its dis-
covery, the virus has spread to a vast region of the globe and is now considered the most
important causative agent of viral encephalitis worldwide [52, 19].

WND surveillance like other diseases discussed relies on a multi-disciplinary approach,
involving experts from animal, human, and environmental health. However, being a mosquito-
borne disease, it is highly influenced by environmental data and seasonal patterns. The main
objective of WND surveillance is the early detection of virus circulation among birds (par-
ticularly corvids), mosquitoes, horses, and humans at a local level. Thus, each country
maintains its own national and regional surveillance systems, which are adjusted to reflect
current epidemiological and ecological conditions [103].
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Figure 2.8: Global distribution of WND in 2024, adapted from [31, 51].

For example, in the United-States, where WNV is endemic, ArboNET is a surveillance sys-
tem that was implemented by the CDC in the 2000s to monitor cases in humans, birds, and
horses. ArboNET maintains data on arboviral infections among presumptive viremic blood
donors, veterinary disease cases, mosquitoes, dead birds, and sentinel animals. Since its cre-
ation that was initially targeting WND, ArboNET now also monitors other arboviroses such
as dengue and zika [108].
At the European level, WND infection is notifiable for humans and equids. Although hu-
mans are considered a dead-end host as discussed in Section 2.4.1, one of the main goals of
human WND surveillance is to prevent human-to-human transmission via the donation of
contaminated substances of human origin, such as blood. Human cases are reported accord-
ing to the EU case definition by national public health authorities and are recorded in The
European Surveillance System (TESSy) at the European Centre for Disease Prevention and
Control (ECDC) [169].
In addition to these surveillance systems, several studies have explored environmental vari-
ables and risk factors, including vegetation indices, temperature fluctuations, and socioeco-
nomic factors, as disease drivers to better predict WND outbreaks and target surveillance
areas [84, 14]. Currently, several equine vaccines for WND virus have been licensed and
are successful in horses. However, there is no WND virus vaccine approved for human use,
although several candidates have shown promising results in clinical trials [137].
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2.5 Spatial modelling and risk-based surveillance

Besides the surveillance strategies discussed earlier in this chapter, the spatial modeling
of infectious diseases [64] and risk mapping methods are two fundamental research fields
that have been used to enhance public health preparedness and the planning of strategies to
contain outbreaks [97].
The purpose of spatial modeling in animal and public health is threefold: to describe existing
spatial patterns (descriptive) [76, 18], to understand the biological mechanisms that lead to
disease occurrence (explanatory), and to predict future occurrences in different geographical
areas or over time (predictive).
These methods rely on the spatial distribution of disease risks factors [77], and they help to
highlight surveillance areas and adapt prevention and control measures when necessary [17].

Covariate group Risk factor AI ASF WND

Climate

Temperature X X
Humidity X X
Precipitation X X
Frost
Snow

Water Surface water (wetlands) X X

Hosts

Domestic birds abundance X X
Wild bird abundance X X
Bird migration
Pig density X
Wild boar density X
Human population X X

Vector
Ticks X
Mosquitos (Culex spp., Aedes spp.) X

Agriculture
Farm densities
Farm location X X
Biosecurity measures X X
Wildlife Trade and Wildlife market X

Table 2.1: Risk factors associated with the diseases: AI, ASF, and WND.

The risk factors driving a given disease can be numerous, including environmental, cli-
matic, socioeconomic, and demographic factors. Their importance varies depending on the
characteristics of the disease. For instance, in mosquito-borne diseases such as malaria,
dengue, and WND, environmental factors that create suitable conditions for the vectors such
as warm temperature and humidity play a key role [90]. For zoonotic disease such as AI,
several studies show that environmental drivers such as the proximity to wetlands, and poul-
try density are crucial [53]. For transboundary and highly contagious diseases such as ASF,
factors such as trade movements, biosecurity measures, and reservoir populations are the
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primary drivers [167].
Various methods can be found in the literature that aim at identifying the weights of disease
risk factors. Multi-Criteria Decision Analysis (MCDA) is commonly used for this purpose,
allowing experts to systematically evaluate and prioritize criteria based on their relative im-
portance [143, 144, 124]. The outputs of these methods, such as risk maps and suitability
maps, can serve as valuable sources for environmental data. Table 2.1 summarizes the dis-
ease risk factors that are associated with the three diseases:

2.6 Conclusion

In this chapter, we described three different diseases, detailing their characteristics, includ-
ing symptoms, hosts, transmission cycles, as well as the surveillance and control measures
employed to monitor them.
The literature review highlights that: first, surveillance strategies must be adapted to the
unique characteristics and environmental drivers of each disease, which underscores the need
of integrating expert knowledge in the surveillance methods. Second, it points out ongoing
challenges in monitoring these diseases.
The three case studies presented here involve notifiable diseases that are monitored by var-
ious networks and IBS systems. Despite these efforts, challenges persist due to incomplete
reporting of outbreaks, which may result from inadequate surveillance systems, or concerns
about political and economic impacts [150] (especially for AI and ASF). Additionally, symp-
toms of these diseases can be non-specific and overlap with other illnesses, which can delay
the monitoring process and notification.
These issues underscore the importance of EBS systems, which address the gaps in tradi-
tional surveillance and enhance the early detection and response to such diseases. Consid-
ering the elements presented in this chapter, and building on the limitations inherent to EBS
systems discussed in Chapter 1, Section 1.3.2, the next chapter (Chapter 3), will present the
intuition behind our proposed model that aims to integrate data-driven approach and expert
knowledge to enhance EBS systems.
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In this chapter, we explain the intuition and inspiration behind our model. We begin by
introducing the general concept of Artificial Immune Systems (AIS), a family of algorithms
inspired by the human immune system. Next, we explore the danger theory, an immunolog-
ical concept that served as the foundation for the Dendritic Cells Algorithm (DCA), which,
as we will discuss in the following chapter, forms the basis for our model.
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3.1 Introduction

Computer science have a great history of drawing inspirations from nature’s designs; genet-
ics and natural evolution has inspired the genetic algorithms [130]. The human brain has
inspired the neural network model, which is one of the foundations of artificial intelligence
[168]. Similarly, the human immune system has inspired the development of a family of
algorithms called Artificial Immune Systems (AIS).
The immune system can be visualized as a series of defensive layers protecting the host.
Once an antigen1 enters the body, it faces two subsystems: the innate and acquired immune
systems. These subsystems are interconnected and comprised of many types of cells and
molecules produced by specialized organs [129].
The innate immune system is the body’s first line of defense against intruders. It responds in
the same way to all germs and foreign organisms, which is why it is referred to as the "non-
specific" immune system [83]. While the adaptive immune system responds to previously
unknown antigens, and builds a response to them that can remain in the body over a long
period of time.
Classically, immunology has focused on the body’s capacity to discriminate between anti-
gens belonging to ’self’ or ’non-self’. This foundational theory, introduced by Paul Ehrlich
in 1891, has guided immunological research since its conception [62]. However, Numerous
questions remained unanswered with this paradigm. For example, why do intestines contain
millions of bacteria, yet the immune system does not react against these colonies of non-self
invaders? [67]. Many antigens that enter the body are harmless, and it would be unneces-
sary and potentially harmful to trigger adaptive immune responses against them. Allergic
conditions are good examples of deleterious adaptive immune responses against apparently
harmless molecules [30]. In 1994, immunologist Polly Matzinger controversially postulated
that the immune system’s objective is not to discriminate between self and non-self, but to
react to signs of damage to the body. This theory is known as the Danger Theory [105], and
suggests that the immune system responds to the presence of molecules known as danger
signals, In other terms it is the environmental context in which the antigens are perceived
that will condition the immune response.
When considered from a computational point-of-view, the immune system can be seen as a
rich source of inspiration, as it displays learning, adaptability, and robustness [153]. This
remarkable information-processing biological system has caught the attention of computer
scientists leading to the development of a family of algorithms called: Artificial Immune
Systems (AIS) [1].

1An antigen is a large protein molecule capable of inducing an immune response in the body by the pro-
duction of antibodies.
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3.2 Artificial Immune Systems

AIS in the literature can be broadly categorized into two generations. The first generation
relies on simplified immune models [87]. These algorithms draw inspiration from basic
immunological concepts. For instance, the clonal selection algorithm, inspired by Burnet’s
clonal selection theory [27], suggests that only cells capable of recognizing an antigen will
proliferate. Initially proposed to solve pattern recognition problems, it involves processes
such as initial population generation, selection, cloning, hypermutation, and receptor editing
[74]. Another example is the negative selection algorithm, which mimics the immune sys-
tem’s ability to distinguish between self and non-self. It is mainly used for anomaly detection
and is beneficial for one-class classifications, outlier detection, and fault and intrusion de-
tection problems [72]. However, these algorithms have often shown considerable limitations
when applied to complex realistic applications. To address these challenges, a second gen-
eration has emerged that is more sophisticated and relies on interdisciplinary collaboration
to develop a deeper understanding of the immune system, thereby producing more complex
models. These new models draw inspiration from cutting-edge immunology, such as the
Dendritic Cell Algorithm (DCA) [67], which is based on the Danger Theory [67]. In the
next section, we will explain in detail the Danger Theory and the functioning of the DCA,
as they form the basis of our model.

3.3 Danger Theory

3.3.1 Core concepts

The danger theory states that the recognition of an antigen by a cell is not due to the cell
distinguishing between self and non-self, but rather depends on the environmental context
(signals) in which the antigen is identified. This theory is based on the functioning of den-
dritic immune cells (DCs) [105], which form part of the body’s first line of defence against
invaders.

3.3.2 Dendritic Cells

DCs are a type of antigen-presenting cells. They are seen as detectors responsible for polic-
ing different tissues. They have the ability to combine a multitude of molecular information
and to interpret this conflicting information for the immune system, which leads to the in-
duction of responses against perceived pathogenic threats [32].
Throughout their lifespan, (DCs) exist in one of three states, namely "immature", "semi-
mature", and "mature". In their initial state, the (DCs) are "immature". Then, based on the
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concentration and the type of signals they are exposed to, (DCs) differentiate into either a
"semi-mature" form to suppress the immune alarm, or a "mature" form to activate it [70]
(see Figure 3.1).
In immunology, there are four main types of signals, namely the pathogenic associated
molecular patterns (PAMPs), danger signals (Ds), safe signals (Ss), and inflammatory cy-
tokines (I) [32].

• Pathogen-associated molecular patterns (PAMPs) are molecules found in groups of
pathogens. These small molecular motifs are conserved within classes of microbes and
can be detected by dendritic cells (DCs), leading to immune activation. The presence
of PAMPs clearly indicates an abnormal situation.

• Danger signals (Ds) are released due to unprogrammed cell death, such as necro-
sis, which is caused by external factors like infection, toxins, or trauma. Ds indicate
abnormality but with a lower confidence level compared to PAMP signals.

• Safe signals (Ss) are produced via the process of normal cell death, i.e. apoptosis. Ss
are indicators of normality which means that the antigen collected by the DC, within
this context, it is not harmful and the situation does not require an immune reaction.

• Inflammatory cytokines (I) are signals proving that there is an increase in tempera-
ture in the affected tissue. Inflammation signals have the effect of amplifying the other
three categories of signals, but they have no efficiency when they are present alone in
the system.

The robustness of the immune system mostly lies in the ability of the DCs to sense
an early death cell (viewed as an outbreak event). The danger theory offers a multivariate
detection approach that does not require a training phase [111]. This theory, combined with
the behaviour of DCs, inspired the development of the DCA [32], a classification algorithm
that has been successfully applied to a wide range of challenging real-world applications.

3.4 Dendritic Cells Algorithm (DCA) and related work

3.4.1 Original DCA version

DCA is a population-based system with each agent in the system is represented as a cell
(DC). Each cell has the ability to collect data items called antigens, which represent the
specific data instances that need to be classified [32]. The DCA was initially designed by
[67] to be used as an anomaly detection algorithm. It consists of a four-phase process:
Pre-processing and Categorization, Detection, Context assessment, and Classification (see
Figure 3.2).
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Figure 3.1: Maturation of the dendritic cells.

3.4.1.1 Pre-Processing and Categorization phase

In the pre-processing and categorization step, the most important features from the database
are selected. Each feature is then transformed into a numerical value and assigned to an
appropriate signal category. In other words, this process quantifies each feature and classifies
it into the relevant category, allowing us to interpret the data as signals (Figure 3.2, phase 1).

• PAMPs: increase in proportion to the presence of data representing an "abnormal"
situation, it is a confidence indicator of anomaly.

• Danger signals (danger signal): increase in proportion to the presence of data repre-
senting an "abnormal" situation, has lower confidence than PAMP signal (i.e. a lower
weight).

• Safe signals (safe signal): increase in proportion to the presence of data representing
a "normal" situation and has a negative weight.

• Inflamation signals: Amplify the output values of the other three signal categories.
However, when present alone, they do not impact the state of a dendritic cell.

To perform data pre-processing, some DCA studies involve users or experts to select or
extract the most interesting features and assign them to their appropriate [32] signal cate-
gories. Other DCA studies apply some dimensional reduction techniques such as the princi-
pal component analysis [70].
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Figure 3.2: Representation of the DCA phases.

3.4.1.2 Detection phase

During the detection phase, each DC is exposed randomly to i Antigens (Ags), (Figure 3.2,
phase 2 ). Based on the induced signal database, the algorithm processes its input signals to
get three cumulative output signal values known as:

• The co-stimulatory molecule signal value (CSM)

• The semi-mature signal value (smDC)

• The mature signal value (mDC)

These cumulative output signal values are calculated using the defined input signal values
and a set of weights, as shown in equation 3.1 where C ∈ {CSM,smDC,mDC}:

C[CSM,smDC,mDC] = ((WPAMP×PAMP)+ (WDs×Ds)+ (WSs×Ss))×1+ I (3.1)

where PAMP, SS and SD represent PAMP, safe and danger signals’ values, and WS and
WD their corresponding weights. PAMP Signals (PAMPs), Danger signals (Ds) have a pos-
itive weight and Safe signals (Ss) have a negative weight. The weight values can be either
derived empirically from the data or from user-defined values [32]. I represents the in-
flammation signal. Although inflammation signals have occasionally been incorporated in
various DCA implementations found in the literature, most proposed DCAs tend to ignore
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these signals, focusing instead on PAMPs, DSs, and SSs [32]. Among the few studies that
have incorporated this signal, we can cite [69].

These three DC output signals has two roles: first, it allows an assessment of the cell’s
context and the classification of the cell as semi-mature or mature; second, it is used to stop
antigens sampling [55]. To limit the time spent sampling data, a migration threshold value
(MT) is assigned to each DC in the population upon its creation. If a DC’s CSM value
exceeds the MT, the DC’s exposure to Ags is stopped, otherwise the algorithm continues
sampling and keeps calculating and updating the CSM values [33].

3.4.1.3 Context assessment phase

In the context assessment phase, upon migration, the cumulative output signals are evaluated,
and the cell context is determined by selecting the greater value between the semi-mature
and mature output signals (the greater of semi-mature or mature output signal becomes the
cell context). The cell context is used to generate for each antigen an anomaly coefficient
which will be used in the final step (classification) [32] to label the antigens as "normal" or
"anomalous", (Figure 3.2, phase 3.) The context assessment phase can be seen as a ’local’
classification at the DC scale, while the classification phase, which we will detail next, can
be seen as a global classification at the DCs population scale.

3.4.1.4 Classification phase

After the context assessment phase, the anomaly coefficient (noted MCAV: molecular anti-
gen value) reflects the degree of anomaly of a given antigen, and is defined as the proportion
of mature DCs among the total number of DCs that have sampled the antigen (formula 3.2).
Once the anomaly coefficient is calculated for each antigen, the algorithm can perform its
classification task. This is done by comparing the anomaly coefficient of each antigen to
an anomaly threshold. The anomaly threshold can be a user-defined parameter or can be
generated automatically from the data.
The closer the anomaly coefficient is to 1, the greater the probability that the antigen is
anomalous.

Anomaly coe f f icient =
α

α +β
(3.2)

where α and β are the number of mature and immature DCs that sampled the antigen,
respectively (Figure 3.2, phase 4).

42



FROM BIOLOGICAL INSIGHT TO COMPUTATIONAL DESIGN

3.4.1.5 DCA a worked example

To illustrate the model, many studies [32, 16] have given a step by step application example
of the DCA in the field of bank security.
In this context, the DCA is applied to the dataset presented in Table 3.1. Each client is seen
as an antigen, with features such as the age, the number of credits, and income. The objec-
tive is to classify clients as "normal" or "anomalous" to decide whether to grant credit or not.
The data item IDs (Table 3.1) represent the row numbers of the clients in this case.

Client Age Income Number of credit cards Duration of loan
ID 1 24 650 1 30
ID 2 30 1000 3 10
ID 3 36 1300 3 8

Table 3.1: An example of an input dataset where clients represent antigens (Ags), and the
features: age, income, number of credit cards, and duration of loan’ are used to generate the
PAMPs, Ds, and Ss.

Pre-Processing and Categorization phase

DCA initially selects certain attributes and categorizes them into PAMPs, Ds, and Ss signal
types. Expert knowledge is used to map these features to their most appropriate signal types.
For example, PAMPs may include features like the number of credit cards, Ds might include
the duration of loan, and Ss signals could include the age and incomes. The resulting dataset
is then transformed into a signal dataset, as shown in Table 3.2. This transformation process
is detailed in the subsequent section.

Client (Ag) PAMP Ds Ss
Ag 1 100 0 100
Ag 2 0 100 0
Ag 3 20 50 40

Table 3.2: PAMPs, Ds, and Ss corresponding to the input dataset presented in Table 3.1.

Detection phase and Context assessment phase

To show the calculations under different input signals, three iterations (cycles) with three
set of signals are shown. The derived output signal values are used to demonstrate how
to perform the anomaly coefficient (MCAV) calculation for three antigens (Ag1, Ag2 and
Ag3). Three DCs are required, one for each iteration, termed DC1, DC2 and DC3 for the
purpose of identification.
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The calculation of the output signals is given by Eq. 3.3, using the signal values shown
in Table 3.2, and the weights presented in Table 3.3.

C[CSM,smDC,mDC] = (WPAMP×PAMP)+ (WDs×Ds)+ (WSs×Ss) (3.3)

WPAMP WDs WSs
CSM 2 2 1
smDC 0 0 1
mDC 2 1 -2

Table 3.3: weights used for signals processing.

The worked example is performed as follows:

• Each antigen is randomly multiplied to form an antigen vector A:

A = {Ag1,Ag1,Ag1,Ag1,Ag1,Ag2,Ag2,Ag2,Ag2,Ag3,Ag3,Ag3}

where Nb-antigen (Ag1) = 5, Nb-antigen (Ag2) = 4 and Nb-antigen (Ag3) = 3.

• Cycle l = 0: DC1 randomly samples antigens from A, so

DC1a(m) = {Ag1,Ag1,Ag1,Ag2,Ag2}

where a(m) is a sub-antigen vector and m is the DC index. DC1 samples input signals,
so

DC1s(m) = {100,0,100}

where s(m) is the signal vector of DCm. DC1 calculates output signals using Eq. 3.3,
so DC1 outputs:

CCSM = (100×2)+ (0×2)+ (100×1) = 300

CsmDC = (100×0)+ (0×0)+ (100×1) = 100

CmDC = (100×2)+ (0×1)+ (100×−2) = 0

DC1 has exceeded its migration threshold as the value for CCSM is greater than mt =
100. Also, CsmDC < CmDC and therefore DC1 is assigned a cell context value of 1,
indicating that its collected antigens may be anomalous.

• By removing the antigens already used by DC1, the antigen vector now consists of:

A = {Ag1,Ag1,Ag2,Ag2,Ag3,Ag3,Ag3}
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• Cycle l = 1: DC2 randomly samples antigens, so

DC2a(m) = {Ag2,Ag2,Ag1}

DC2 samples input signals, so

DC2s(m) = {0,100,0}

DC2 calculates output signals, so DC2 outputs:

CCSM = (0×2)+ (100×2)+ (0×1) = 200

CsmDC = (0×0)+ (100×0)+ (0×1) = 0

CmDC = (0×2)+ (100×1)+ (0×−2) = 100

DC2 has exceeded its migration threshold. Also, CsmDC < CmDC, and therefore DC2
is assigned a cell context value of 1, indicating that its collected antigens may be
anomalous.

• The antigen vector now consists of:

A = {Ag1,Ag3,Ag3,Ag3}

• Cycle l = 2: DC3 samples antigens, so

DC3a(m) = {Ag1,Ag3,Ag3,Ag3}

DC3 samples input signals, so

DC3s(m) = {20,50,40}

DC3 calculates output signals, so DC3 outputs:

CCSM = (20×2)+ (50×2)+ (40×1) = 180

CsmDC = (20×0)+ (50×0)+ (40×1) = 40

CmDC = (20×2)+ (50×1)+ (40×−2) = 10

From the output calculation: DC3 has exceeded its migration threshold and the cell
context value is 0 (immature DC)

Classification phase

• To generate the anomaly coefficients, we have to look for the antigens having a cell
context equal to 1. Among the three DC cycles, we notice that in l = 0 and l = 1 the
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cell context = 1. Therefore, to represent the Nb-mature variable, we have to count how
many times each antigen is repeated in the DC1 a(m) and DC2 a(m) antigen vectors.
For instance, in DC1 a(m), Ag1 is repeated 3 times, thus,

Nb-mature (Ag1)= 3 and in DC2 a(m), Ag1 is repeated 1 time, thus, Nb-mature (Ag1) = 1

Ag1 has been exposed 5 times in total, Hence,

Anomaly coefficient (Ag1) =
4
5
= 0.8

Similarly, Ag2 is repeated 2 times in DC1 and 2 times in DC2:

Nb-mature (Ag2) = 4

Hence,

Anomaly coefficient (Ag2) =
4
4
= 1.0

Ag3 does not appear in any context 1 vector:

Nb-mature (Ag3) = 0

Hence,

Anomaly coefficient (Ag3) =
0
3
= 0.0

• To perform antigen classification, a threshold (at) must be applied to the Anomaly
coefficient. This threshold can either be generated automatically from data or be a
user-defined parameter. Let us assume that at = 0.4. In this case, client1 (Ag1) and
client2 (Ag2) are classified as anomalous which means that they are not allowed to
have a credit. This is because their corresponding Anomaly coefficients are greater
than the defined anomaly threshold. However, client3 (Ag3) is classified as normal
(see Table 3.4).

Antigen type Nb-antigen Nb-mature Anomaly coefficient
Ag1 5 4 0.8
Ag2 4 4 1.0
Ag3 3 0 0.0

Table 3.4: Anomaly coefficients of Antigens 1, 2, and 3.

3.4.2 DCA Improvements and Extended Versions

In this section, we provide an overview of the main improvements and extensions of the
DCA.
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Following the initial implementation of the DCA, [145] conducted a theoretical analysis
that provided foundational insights, while [70] approached the DCA from a mathematical
perspective, paving the way for subsequent advancements. One of the first improvements,
implemented by the creator of the DCA, is the deterministic version known as dDCA [68].
In this version, the number of parameters has been reduced for simplification. A minimum of
two signal categories is required: an activating signal with a positive weight (danger signals)
and an inhibitory signal with a negative weight (safe signals), as shown in Eq. 4.1.

CSM =WD×SD +WS×SS (3.4)

The pool of DCs is typically defined to be 100. In addition, the output context value of DCs
is simplified to a single factor, in contrast to the first version where there were three output
signals for each DC. Here, a positive value indicate a mature cell context and negative value
indicates a semi-mature cell context.
Based on these improvements, many researchers have adapted and further developed the
DCA to suit their specific needs. Most of them have proposed contributions in the pre-
processing and categorization phase, addressing the signals and weight acquisition aspects.
For example, [49] proposed an optimization technique to generate the set of optimal weights
by using a genetic algorithm. [173] applied a numerical differentiation method in the pre-
processing step to realize an adaptive acquisition of signals. [172] presented a model that
combines a numerical differentiation for signal extraction with DCA that performs anomaly
detection, then implemented it to earthquake prediction. [138] proposed a model employing
Krill herd optimization for relevant feature selection, coupled with the DCA for identifying
and classifying spam messages. [33] hypothesized that the DCA’s sensitivity to the input
class data order could be due to non-clear separation of contexts and noisy data, and thus
proposed a hybrid fuzzy clustering approach to address this issue. [95] introduced a network
intrusion detection algorithm based on the DCA, which incorporates multiresolution analy-
sis and a segmentation approach to improve feature selection and signal categorization.

3.5 Conclusion

Literature review show that the DCA has distinct advantages when applied to real-time prob-
lems, as it does not require extensive training periods [172], and it has shown promising
results by reducing high rates of false positives [111]. In addition, this method enables data
items (’antigens’) to be classified by integrating heterogeneous data through the use of two
types of signals (danger and safe signals).
However, as seen in the previous examples, improvements have primarily focused on the
pre-processing and categorisation phase. The DCA still relies on a large number of stochas-
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tic elements and variable thresholds, which has drawn some criticism. Very few studies
have addressed the migration threshold issue and random exposure in the detection phase,
despite their crucial importance. As shown by [120], if a migration threshold is too low, a
cell will migrate too quickly and will not be able to gather a representative sample of the
input signals. If a migration threshold is too high, the cell will migrate too slowly and will
misclassify the gathered antigens. Among the studies that have focused on this problem,
[55] stands out as an example, focusing on building dynamism for the migration threshold
of DCs and proposing a method for good sampling of antigens by DCs to ultimately generate
a novel semi-supervised classifier.
Moreover, since its creation, the DCA has mainly been applied in the fields of computer
security and anomaly detection. When it comes to epidemiological surveillance, one notable
example is [111], who proposed an outbreak detection model based on danger theory.
In the next chapter (Chapter 4), we will explore how the DCA can be applied to the context
of EBS (Event-based surveillance). To the best of our knowledge, this novel application has
not been previously attempted. We will also address the limitations related to the migration
threshold and the random exposure of the DCs, drawing inspiration from the studies cited
previously to enhance the robustness and accuracy of the DCA in this new context.
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In this chapter, we present the first contribution of the thesis: a model that integrates epi-
demiological and environmental data for event-based surveillance. This chapter introduces
our proposed model, EpiDCA, which is based on the Dendritic Cell Algorithm (DCA) dis-
cussed previously in Chapter 3. We provide a comprehensive overview of the methodology
underlying EpiDCA, detailing its four phases: the pre-processing and categorization phase,
the detection phase, the context assessment phase, and the classification phase. Additionally,
we apply our model to a first case study Avian Influenza (see Chapter 2, Section 2.2) and
present the preliminary results of this initial implementation.
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4.1 Introduction and objectives

In Chapter 3, we provided an overview of the danger theory and the DCA, which form the
basis of our model. We presented the various works on DCA extensions and highlighted the
limitations inherent to the method, which have been pointed out by several research studies.
These limitations include the random exposure of the DCs in the detection phase, the setting
of the migration threshold value in the context assessment phase, and the need to predefine
the population of DCs before running the algorithm.
In this chapter, we present EpiDCA, an enhanced adaptation of the DCA specifically de-
signed for application in the context of EBS. The objective of this model is to provide a
robust and generic approach that can be easily applied to various epidemiological systems
(zoonotic, vectorial, transboundary diseases), thus improving the EBS systems in terms of
classification and early detection.
The specific contributions described in this chapter include:

• The development of a DCA based approach in an event-based surveillance context to
combine epidemiological data and environmental data. To our knowledge, the DCA
has not yet been implemented in EBS systems;

• The integration of spatial information in the Detection phase. Thus, the random de-
tection of the DCA is replaced by a deterministic approach that depends on the spatial
distance between the DCs and the antigens, extending the study described in [55];

• The integration of temporal information to determine the migration threshold;

• A detailed application and preliminary results from a first case study.

4.2 EpiDCA Workflow

In this section, we introduce the overall architecture of our proposed model, EpiDCA. Each
subsequent subsection will provide a detailed description of a specific phase of the algorithm,
highlighting the contributions of our method and presenting the corresponding pseudo-code
for each phase.
In order to provide clarity, below are brief definitions of key concepts used in our context
before diving into the details:

• Antigens (Ags): In the context of our work, the events extracted from the detected
articles by EBS systems represent our antigens (what we want to classify). Each event
is characterized by the features: Date, Coordinates (location), affected Host, Source,
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and Subtype. Initially, the anomaly coefficient of each incoming antigen is set to 0; it
is calculated at the end of the process. See Input and Output in Algorithm 1.

• Dendritic Cells (DCs): As in the original DCA, in our model, the DCs represent the
instances that will transform the input signals (danger and safe signals) into an output
signal (CSM).
Instead of initializing a population of DCs, a new cell is created for each incoming
antigen. See Initialize in Algorithm 1.

• Danger signals (Ds): Epidemiological metadata extracted from detected events rep-
resent the danger signals. This metadata includes the source that reported the event
(official or non-official), the name of the disease, the pathogen subtype (if available),
and the host.

• Safe signals (Ss): Refer to the environmental context or the environmental data ex-
tracted from disease suitability maps. The events’ locations are extracted and associ-
ated by spatial correspondence with the corresponding environmental data.

Like the DCA, EpiDCA is divided into four main phases: the Pre-Processing and Cate-
gorization phase, the Detection phase, the Context Assessment phase, and the Classification
phase (see Chapter 3 , Section 3.4.1), as illustrated in Figure 4.1.

Figure 4.1: Towards a four-phase process for the event-based surveillance context.

The pseudo-code for the main EpiDCA phases is presented in Algorithm 1. Each phase
will be explained in detail in the following subsections.
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Algorithm 1 Main algorithm: EpiDCA
Input Antigens: set of antigens (Date,Coord,Host,Source,Subtype, /0), Disease
Output AGs (antigens classified as "normal" or "anomalous")
Initialize Empty set of cells: DCs

AGs← Antigens+ListCell = /0+AnomalyCoe f = Normal
▷ ListCell is the list of cells that have been exposed to an ag - AnomalyCoef is set as
Normal
▷ Call procedure to calculate Danger and Safe signals

1: Pre_Processing_and_Categorization_phase(AGs)
▷ Call procedure to detect DCs

2: Detection_phase(ag,DCs)
▷ Call procedure to assess DCs context

3: Context_Assessment_Phase(DCs)
▷ Call procedure to classify antigens

4: Classi f ication_Phase(AGs)
▷ The anomaly coefficient is used to assess the degree of anomaly of a given antigen,
the closer it is to 1, the greater the probability that the antigen is anomalous

4.2.1 Pre-Processing and Categorization phase

In the Pre-Processing and Categorization phase (Figure 4.1 Phase 1), input data (here, epi-
demiological data extracted from detected event and environmental data risks maps) are con-
verted into two categories of signals: danger signals (Ds) and safe signals (Ss) as described
in Chapter 3, Section 3.4.1.1. The epidemiological data extracted from the articles (source
of information, host, disease) represent the danger signals. We refer to the knowledge of
experts in order to establish a score and give a numerical value to each epidemiological data.
For example, taking the example of AI: +30 if the source of information is official, +30 if
the affected host is a wild bird, +40 if the highly pathogenic subtype is mentioned, etc (see
Algorithm 1, Phase 1). Hence, if none of the AI epidemiological data are mentioned, the
danger signal value is very low and the article is more likely to be discarded. These values
were evaluated and refined empirically (see Section 4.3.5).
The environmental data represent safe signals. A maximum safe signal indicates that the
environment is not favourable to the occurrence and the dissemination of the disease, a safe
signal equal to 0 indicates on the contrary a suitable environment where risk factors are
found.
Unlike the classic DCA versions where a group of DCs is initialized, in EpiDCA each anti-
gen generates (or triggers the creation of) a new DC. Each DC is characterized by a date of
creation, coordinates that specify its spatial location, an output signal (CSM), the Dc.Context
(which can be mature or semi-mature), and a number of expositions (NbExp) that is used to
calculate the context.
The complete pseudo-code to define the DCs creation is presented in Algorithm 2: New
Cell.
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Algorithm 2 New Cell

Input ag: antigen (Date,Coord,Host,Source,Subtype, /0), Disease
Output cell

1: Ds← DangerSignal (ag, Disease) (Eq1)
2: Ss← Sa f eSignal (ag, Disease) (Eq2)
3: CSM←ComputeSignal (Ds, Ss)(Eq3)
4: Return cell (Date, Coord, NbExp = 1, CSM, Context)

Following the pre-processing and categorisation phase, E piDCA is structured in three
phases detailed in the following subsections.

4.2.2 Detection phase

In the detection phase, the DCs are exposed to the Ags (Figure 4.1 Phase 2). The CSM_incoming
of the newly created cell is calculated by combining the weighted danger and safe signals as
shown in Eq. 4.1.

CSM =WD×DS +WS×SS (4.1)

Where WD and WS are the weights of Danger and Safe signals respectively.

The weighting can be adapted to the studied disease: For a disease strongly influenced
by environmental factors (for example a vector-borne disease such as West Nile fever, or
involving a wild reservoir, such as avian influenza) a greater weight could be given to the
safe signals that define the environmental context in our approach.
In EpiDCA, the exposure of the DCs depends on: (1) the spatial distance between the DCs
and the Ags with the radius of coverage R of the DCs and (2) a temporal window (the
difference in days between the Ags publication date), (see Figure 4.2). At each time step,
the cumulative output signals (CSM) of the DCs are updated as shown in Eq. 4.2:

{
CSMt+1 =CSMt +(∆dist×CSMincoming)

CSM0 = 0
(4.2)

with ∆dist a distance coefficient inversely proportional to the spatial distance, and is
calculated as follow (Eq. 4.3):

∆dist =
Disease.space_limit−DistCellAnt

Disease.space_limit
(4.3)

Disease.space_limit represents the maximum distance within which two events can over-
lap. If an outbreak event occurs at a distance greater than this limit, the two events are con-

55



CHAPTER 4

sidered unrelated and are not impacted by each other. This parameter depends on the disease
being studied,
DistCellAnt represent the calculated distances between an incoming Ag (event) and the ex-
isting DCs (older events).
Equations 4.2 and 4.3 reflect that the greater the distance, the lower the contribution of the
CSM_incoming, this translates the fact that the spread of certain diseases is linked to the
distance between the observed events [135].

Figure 4.2: Example of a DC exposure.

Similarly, the temporal parameter Disease.time_limit refers to the maximum temporal dis-
tance within which two events can be considered related. If the time between events exceeds
Disease.time_limit, the DCs will stop detection and proceed to the next step. This is why
both spatial and temporal conditions are checked before calculating the CSM.
The complete pseudo-code for the detection phase is presented in Phase 2 - Procedure De-
tection phase.
The parameters Disease.space_limit and Disease.time_limit represent the spatial and tem-
poral parameters used by the DCs, respectively. This aspect will be further explained in
Subsection 4.3.2.

4.2.3 Context assessment phase

The context assessment phase takes into account the CSM and the number of exposures of
each cell. At the end of this phase, each cell is labeled as "mature DC" or "semi-mature
DC" (Figure 4.1, Phase 3). The "mature" label means that the cell concerned has been
greatly exposed to danger signals during the defined period, unlike "semi-mature" cells.
This information is then used in the Classification phase.
The CSM is defined through the calculation of the Ratio_Exp, which is a dynamic threshold
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Phase 2 – Procedure Detection phase

Input ag : antigen (Date, Coord, Host, Source, Subtype, /0)
DCs : Cell (Date, Coord, NbExp, CSM, Context)

Output updated ag: antigen (Date, Coord, Host, Source, Subtype, ListCell), updated
DCs: Cell (Date, Coord, NbExp ,CSM, Context)

▷ In the detection phase, all the DCs are exposed to the incoming antigen ag
▷ Compute the exposure for each cell to the antigen (if exists)

for each cell dc of DCs do
DistCellAnt← calculation distance between ag and dc
Di f f daysCellAnt← calculation di f f days between ag and dc
if DistCellAnt < Disease.space_limit and

Di f f daysCellAnt < Disease.time_limit then
∆dist ← (Disease.space_limit−DistCellAnt)

Disease.space_limit
dc.CSM← dc.CSM+(∆_dist×dc.CSM)
dc.NbExp← dc.NbExp+ 1
ag.ListCell← ag.ListCell + dc

end if
end for
DCs← DCs+NewCell(ag,Disease)

that is calculated as the ratio of the mean CSM across all DCs to the number of DCs in the
database, as shown in Eq 4.4.

Ratio_Exp =
Mean(DCs.CSM)

Mean(DCs.NbExp)
(4.4)

For each DC, if its CSM is greater than Ratio_Exp, it is considered mature. Otherwise,
it is considered semi-mature.
The complete pseudo-code to define the cellular context is presented in Phase 3 - Procedure
Context Assessment phase.

4.2.4 Classification phase

Finally, in the classification phase (Figure 4.1, Phase 4), the output signals are used to gen-
erate an anomaly coefficient specific to each antigen, which thus takes into account the
epidemiological data extracted from the articles (danger signals), the environmental context
(safe signals), and the spatio-temporal information of the events.
The Anomaly coefficient is calculated as the ratio of the total number of mature DCs to the
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Phase 3 – Procedure Context Assessment Phase

Input DCs (Date, Coord, NbExp, CSM, Context)
Output updated: DCs (Date, Coord, NbExp, CSM, Context)

Ratio_Exp = Mean(DCs.CSM)
Mean(DCs.NbExp)

▷ Ratio_Exp depends on the disease, it is used as a threshold to assign the dc.context
for each cell dc of DCs do

if dc.CSM
dc.NbExp > Ratio_Exp then

dc.context← mature
else

dc.context← semi−mature
end if

end for

Phase 4 – Procedure Classification phase

Input AGs set of antigens
Output updated: CoeffAnomaly of each ag of AGs

for each antigen ag of AGs do
Compute anomaly coefficient

Coe f f ← ag.ListCell.mature()
ag.ListCell.length()

▷ sum of matures cells exposed to ag divided by sum of total exposed cells to ag
if Coe f f > disease.AnomalyT hreshold then

ag.AnomalyCoe f ← anomalous
else

ag.AnomalyCoe f ← normal
end if

end for

total number of DCs exposed to a given Ag, as shown in Eq. 4.5.

Coe f f =
ag.ListCell.mature()
ag.ListCell.length()

(4.5)

This anomaly coefficient value is between 0 and 1, the more it tends towards 1 the greater
the probability that the antigen is anomalous. The anomaly threshold (AnomalyThreshold) is
set at 0.5 as proposed in the literature [32]. The complete pseudo-code for the classification
phase is presented in Phase 4 - Procedure Classification phase.

4.3 Methodology - First application on Avian Influenza

For reasons of data availability, we first implemented EpiDCA on the case study of AI in
Asia. The following subsections describes the data collection, parameter settings, and anal-
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yses conducted.

4.3.1 Data collection

AI is the focus of constant attention, and its events are reported in media articles by offi-
cial sources (i.e., FAO, OIE, etc.) as well as non-official sources (i.e., online media, social
networks, etc.) to promptly implement protection and control measures. We constructed a
dataset from two EBS systems: HealthMap and PADI-Web [22]. Articles published between
August 2018 and July 2019 were manually labeled as ’Relevant’ or ’Irrelevant’. Relevant
articles were those that reported at least one AI event (outbreak) (see example Figure 4.3).
Articles labeled as irrelevant either described measures (e.g., economic, political, control
measures) or were related to another disease. The dataset used for this first evaluation was
initially collected for a previous work[158], and the articles were annotated by two epidemi-
ologists (B. Boudoua and S. Valentin). We obtained two corpora:

• DB_AI_Initial: We first obtained an imbalanced corpus of 202 news articles (174 rel-
evant and 28 irrelevant) related to AI only. This imbalance is typical in EBS contexts,
where relevant articles frequently outnumber irrelevant ones. We first tested EpiDCA
on this corpus. As a reminder, EpiDCA, is unsupervised, meaning no training phase
is required. The purpose of the annotation is for classification evaluation, allowing us
to compare the method’s classification with the manual classification.

To fairly compare our unsupervised method with state-of-the-art supervised machine
learning techniques and to prevent bias towards the majority class, we extended this
corpus to create:

• DB_AI_Extended: a balanced corpus of 348 articles (174 relevant and 174 irrelevant).
In this case, the irrelevant articles either described economic/control measures or were
related to African Swine Fever (ASF).

4.3.2 Parameters setting

Danger and Safe signals

Epidemiological metadata extracted from detected articles were used to generate danger sig-
nals (as presented in Table 4.1) consisting of three categories of parameters: the information

59



CHAPTER 4

Figure 4.3: Example of a relevant article detected by HealthMap, epidemiological metadata
are underlined in red.

source (official/non-official), the host (e.g., wild birds, domestic poultry in the case of AI),
and the subtype (e.g., highly pathogenic subtype vs low pathogenic subtype).

Articles ID Epidemiological data
Source Subtype Host

ID1 FAO HPAI Wild birds
ID2 Twitter Unspecified Unspecified
ID3 OIE LPAI Domestic birds
ID4 Reuters HPAI Humans
Antigens ID Danger signals

Source Subtype Host Total Ds
Ag1 30 40 20 90
Ag2 20 10 10 40
Ag3 30 30 30 90
Ag4 20 40 5 65

Table 4.1: Example of AI epidemiological metadata extracted from documents detected by
HealthMap and PADI-web, and converted to Danger signals.

Each parameter category is defined by a minimum and maximum score, as outlined in
Table 4.2. Initially, we established a range for each parameter category based on expert
recommendations. Subsequently, experiments were conducted on a sample guided by these
expert-recommended values to determine the most appropriate scores within these prede-
fined ranges. Higher scores indicate greater relevance for epidemiological data. For ex-
ample, official sources such as the OIE and the FAO are assigned higher scores than less
reliable sources such as online media and social media, and Highly Pathogenic Avian In-
fluenza (HPAI) scores higher than Low Pathogenic Avian Influenza (LPAI) and unspecified
subtypes. It is important to note that the cumulative danger signal for each antigen must not
exceed 100 according to the first DCA version established by [67].

To generate the safe signals, we created a suitability map for AI occurrence following
the spatial multicriteria decision analysis approach developed by [143], updated with recent
geographic datasets [23]. Risk factors used to build the suitability map included: domes-
tic waterfowl density, chicken density, human population density, proximity to open water,
proximity to areas suitable for rice-growing, and proximity to roads [143].
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Parameter [min - max] Label Score
Source [20 - 30] Official 30

Non-official 20
Subtype [0 - 40] HPAI 40

LPAI 30
Unspecified 10
Else 0

Host [0 - 30] Domestic birds 30
Wild birds 20
Unspecified birds 10
Humans 5
Else 0

Table 4.2: Overview table of the parameters and scores used to generate the Danger Signals.

In this map (Figure 4.4), suitability is expressed on a continuous scale ranging from 0 (lowest
suitability) to 255 (highest suitability).

Figure 4.4: Suitability map of Asia for the occurrence of avian influenza (AI) in sensitive
hosts, on a continuous scale from least to most suitable, along with the locations of AI events
detected by EBS systems.

These suitability values were converted to safe signals applying a decreasing linear trans-
formation (Figure 4.4). Safe signals thus lie within a range from 0 (the environment is suit-
able for AI occurrence) to 100 (the environment is not suitable for AI occurrence). Next,
the events were associated with their environmental data by spatial correspondence using
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QGIS1, and the "point sampling tool" plugin2 that allows one to assign to the events (points)
the attributes (safe signal scores) of the underlying raster risk map (Figure 4.4).

DCs Coverage and migration threshold

We relied on expert knowledge to determine the radius of coverage and the migration thresh-
old of the DCs. As AI viruses are likely to spread through different pathways (poultry trans-
portation, wild birds migration, etc.) [170], it is difficult to precisely determine dissemina-
tion distance values. We set the DCs’ radius of coverage at 20 km, a distance corresponding
to the buffer zone where restrictions and control measures are implemented (surveillance
zone) when AI outbreaks occur. Similarly, the migration threshold for DCs was set at 21
days [127, 9], because beyond this period, a location is considered free from AI if no new
AI event is detected.

4.3.3 Classification analysis

This analysis aims to evaluate EpiDCA’s capability to discern relevant events from irrelevant
ones. From the following indices:

• True Positive (TP): Number of relevant articles correctly detected

• True Negative (TN): Number of irrelevant articles correctly detected

• False Positive (FP): Number of irrelevant articles incorrectly detected

• False Negative (FN): Number of relevant articles incorrectly detected

We calculated these metrics: precision, recall, and F-score, which are defined as follows:

Precision =
T P

T P+FP
(4.6)

Recall =
T P

T P+FN
(4.7)

F-score =
2× (Precision×Recall)

Precision+Recall
(4.8)

These metrics were calculated for each class (relevant and irrelevant), the results and the
weighted average F-scores are presented in Section 4.4.

1https://www.qgis.org/de/site/
2https://plugins.qgis.org/plugins/pointsamplingtool/
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Our method was tested on the imbalanced corpus DB_AI_Initial. A first test was carried
out with fixed Ds values, meaning that all the epidemiological data used to compute Ds had a
unique score, and without taking into account the Ss. Then, a second test with Ds computed
with the scoring defined by the experts (Table 4.2), and without taking into account the Safe
signals (Ss). Finally, a third test with both Ds and Ss was carried out.

4.3.4 Reactivity analysis

In our context, as discussed in Sections 3 and 4, each incoming antigen triggers the creation
of a new DC that is initially immature. Based on the signals it detects, this DC differentiates
into a mature cell (indicating an anomaly) or remains semi-mature.
Reactivity is defined as the time difference, measured in days, between the maturation date
of the DCs and the confirmation date of an event that occurred at the same location. This
measure of reactivity allows us to assess whether our system is capable of early detection of
outbreaks. The reactivity of each mature DC is calculated as:

Reactivity = Maturation Date−Confirmation Date (4.9)

The conditions can be summarized as follows:

• Reactivity > 0: Late detection. This suggests that the detection happened later than
the confirmation date.

• Reactivity = 0: Detection occurred on the same day as the confirmation.

• Reactivity < 0: Early detection. This suggests that the detection happened earlier than
the confirmation date.

The reactivity analysis was conducted on AI-confirmed events. We relied on the AI out-
breaks data reported by the IBS system EMPRES-i, which allows us to download structured
data regarding AI outbreaks in both humans and birds (domestic and wild). Epidemiological
data such as the subtype, host, number of cases, number of animals culled, and the location
at the administrative, regional, and district levels are provided.
Knowing that each article is characterized by its publication date and each DC is charac-
terized by its maturation date, the calculation of the reactivity index involves the following
steps:

1. Linking Events: Each event in the DB_AI_Initial database that has been confirmed
is linked to its corresponding confirmation date (the date of official notification) from
the EMPRES-i database.
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For this corpus, the linkage of detected events with confirmed events is facilitated by
the detailed information provided in both articles and the EMPRES-i database. Both
sources include epidemiological data such as the event subtype, host species, location,
and the number of affected and culled individuals. This level of detail, which is also
common in online media reports, allows for precise matching. See Figure 4.5 for an
example of an AI article detected by HealthMap, and Table 4.3 for how the event is
reported in the EMPRES-i database, which is considered as a gold-standard because
it contains officially confirmed events.

2. Reactivity Calculation: The reactivity of each mature DC is calculated using Eq. 4.9
. This allows us to assess the timeliness of our detection system in relation to the
confirmed events.

Figure 4.5: Example of an article detected by HealthMap.

Id latitude longitude country locality reportingDate subtypes species sumCases sumDestroyed
249487 27.7714 85.3186 Nepal Tarkeshwor 23-03-24 H5N1 domestic, chicken 2125 28548

Table 4.3: Extract of metadata associated with the AI event reported in Figure 4.5 stored in
the EMPRES-i database.
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4.3.5 Sensitivity analysis

The sensitivity analysis we conducted was divided into two phases. In the initial phase, we
aimed to systematically evaluate the scores assigned by experts to various parameters. The
second phase used the Morris method One At a Time (OAT) to identify parameters that had
a more significant influence.

Phase 1: Sensitivity to the scores assigned by the experts

The first phase of the sensitivity analysis was conducted using the method described in [124].
For each parameter (Subtype/Disease Name, Host, and Source), the range of scores was
defined by the minimum and the maximum values given by different experts Table 4.2. The
sensitivity analysis was conducted according to the following steps:

1. We choose the score value we want to test.

2. We use the 4.10 formula to adjust the other scores accordingly:

Si =
(100−Sm) ·Si0
(100−Sm0)

(4.10)

where Sm0 and Si0 are the initial scores of the main changing parameter and the i-th
parameter in the base model, respectively. This formula allows adjusting the other
scores while ensuring that the total Ds score does not exceed 100.

3. We conducted a series of simulations to assess the impact of the new scores distribu-
tion. Each simulation involved multiple iterations where we systematically modified
one or two parameters at a time. We adhered to the hierarchical scoring system pro-
vided by experts.

4. Additionally, we performed one iteration in which each group of parameters (Source,
Subtype/Disease name, and Host) was set to zero. This approach allowed us to assess
the individual impact of each parameter group on the overall model performance.

5. After each run, we calculated precision, recall, and F-score for both the negative and
positive classes.

A total of 100 iterations was conducted on DB_AI_Initial. All the results of these simula-
tions are available in the appendix.
The objective of this approach is to evaluate the effects of the new scores across various
scenarios, and to understand the individual impact of different parameter groups on model
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performance.

Phase 2: Morris method (One step at a time method)

The Morris method [142], is a one-step-at-a-time (OAT) global sensitivity analysis tech-
nique, where only one input parameter is adjusted per run. This method involves the follow-
ing steps:

1. Elementary Effects Calculation: Local sensitivity measures, known as elementary
effects, are calculated by measuring the perturbation in the output of the model when
one parameter is changed.

2. Statistical Analysis: From the distribution of elementary effects, two key statistics
are derived:

• Mean (µ∗): The mean of the absolute values of the elementary effects. A high
mean indicates a parameter with a significant impact on the output.

• Variance (σ ): The variance of the elementary effects. A large variance suggests
that the parameter either interacts with other factors or has a non-linear effect on
the output.

Usually, these thresholds are used for the OAT sensitivity analysis:

• Parameters with negligible effects (µ∗ < 0.1),

• Parameters with linear effects on the output and without interaction between parame-
ters (σ < 0.1),

• Parameters with interactions and/or nonlinear relationships (µ∗ > 0.1 and σ > 0.1).

The objective of the OAT method is to evaluate each parameter individually and identify
those with significant influence.
In the following section, we present and discuss the classification results, reactivity results,
and sensitivity analysis results
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4.4 Results and discussion

Classification results

This section presents the classification results of EpiDCA on both corpora (DB_AI_Initial
and DB_AI_Extended) introduced in Section 4.3.1
The results presented in Table 4.4 with the imbalanced corpus show a high precision value
and a lower recall value for the relevant class, while the opposite pattern is observed for the
irrelevant class. The best results were obtained when both Ds and Ss were computed. These
results suggest that an appropriate Ds scoring, based on epidemiological data, is crucial for
effective classification. Furthermore, considering the environmental context, particularly
through its spatio-temporal dimensions via the safe signal, significantly improves the accu-
racy of identifying and classifying articles detected by EBS systems.

Fixed Ds values Precision Recall F-score
Relevant class 0.861 0.534 0.659
Irrelevant class 0.138 0.464 0.213
Weighted average 0.759 0.524 0.529
Without Ss
Relevant class 0.980 0.569 0.720
Irrelevant class 0.257 0.928 0.403
Weighted average 0.879 0.619 0.675
Computed Ss and Ds
Relevant class 0.971 0.787 0.869
Irrelevant class 0.393 0.857 0.539
Weighted average 0.889 0.797 0.823

Table 4.4: EpiDCA classification results on the DB_AI_Initial corpus. For each test, the
evaluation metrics (precision, recall and F-score) were calculated per class. The last row
indicates the weighted average scores.

Then, additional tests were conducted on the balanced corpus (DB_AI_Extended ), in or-
der to fairly compare EpiDCA with supervised machine learning methods. We used Weka3

software to test four supervised learning methods (SVM (with a polynomial kernel), Naive
Bayes, K-nn and Random Forest) by performing a 5-fold cross-validation. We obtained
F-scores comprised between 0.868 (Naive Bayes) and 0.908 (Random Forest). The classi-
fication results are presented in Table 4.5 for EpiDCA and in Table 4.6 for the supervised
learning methods.

The results confirm that an appropriate danger signals categorization and scoring in the

3https://www.cs.waikato.ac.nz/ml/weka/index.html
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pre-processing phase is crucial for a good classification. Very good results (precision, recall
and F-score greater than 0.9) were obtained with computed Ds, with or without Ss. Of note,
even better results were obtained without including the Ss (Table 4.5), which is probably
an artefact due to the irrelevant ASF events included in the DB_AI_Extended to obtain a
balanced dataset. Indeed, ASF is a disease that differs from AI in terms of hosts and risks
factors [126]. For this reason, it is likely that the use of the same risk map (safe signals) and
parameters to classify these events biases the evaluation.

Fixed Ds values Precision Recall F-score
Relevant class 0.514 0.511 0.513
Irrelevant class 0.514 0.517 0.515
Macro average 0.514 0.514 0.514
Without Ss
Relevant class 0.885 0.936 0.910
Irrelevant class 0.932 0.879 0.905
Macro average 0.908 0.907 0.907
Computed Ss and Ds
Relevant class 0.897 0.908 0.902
Irrelevant class 0.907 0.896 0.901
Macro average 0.902 0.902 0.901

Table 4.5: EpiDCA classification results on the DB_AI_Extended corpus. For each test, the
evaluation metrics (precision, recall and F-score) were calculated per class. The last row
indicates the macro average scores.

Unlike the supervised methods, EpiDCA produced consistent detection results and effec-
tively differentiated between relevant and irrelevant articles, all without requiring a training
phase. Moreover, since no training phase is required, the proposed approach is able to pro-
cess real-time input and has significant potential for implementation as a real-time system.
The effectiveness of EpiDCA can be attributed to the use of expert-defined parameters and
its integration of spatio-temporal information. Both of these aspects are crucial in the effec-
tive analysis of epidemiological data.
Another key feature of the proposed method is the ability to adjust the scores given to the
epidemiological data in order to generate the danger signals. This offers the possibility to
highlight a specific type of AI events (wild birds cases, domestic birds cases, or human cases)
simply by modifying the danger signals parameters.
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Method Precision Recall F-score
SVM 0.895 0.894 0.894
Naive Bayes 0.869 0.868 0.868
K-nn 0.893 0.891 0.891
Random Forest 0.916 0.908 0.908

Table 4.6: Classification results with supervised machine learning methods on the
DB_AI_Extended corpus.

Reactivity analysis results

Results demonstrate the effectiveness of our method in early detecting events. Out of the
202 DCs analyzed, 62.38 % (126/202) were classified as matured, with reactivity ranging
from 36 days before to 29 days after official confirmation. Impressively, 34.05% (43/126) of
the matured DCs were associated with early detected events. Notably, early detected events
were primarily associated with AI cases in wild birds. In contrast, human cases were all
confirmed on the same day or after official confirmation. For domestic birds, the detection
patterns were more varied, with events detected both before and after confirmation, as shown
in Figure 4.6.
This variation can be explained by the structured monitoring systems in place for domestic
birds and humans, such as farms surveillance and medical reporting, which in most cases en-
sure timely detection and reporting. In contrast, the surveillance of wild birds is challenging
due to difficulties in obtaining samples, often relying on targeted populations over localized
areas or the reporting of opportunistically found dead animals or live birds caught for other
reasons [139]. These challenges align with studies on AI, which indicate that EBS systems
are particularly effective in the early detection of AI in wild birds [158, 59].

Figure 4.6: Reactivity of EpiDCA to AI.
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Sensitivity analysis results

Overall, the model exhibited robustness, with minimal changes in results. The weights as-
signed by the experts appeared to be the most suitable for both corpora.
In our analysis using the Morris method (OAT), we observed that all parameters exhibited a
negligible effect on the results, as indicated by their σ∗ values being less than 0.1, as shown
in Figure 4.7. Results indicate that the source parameter had no impact on the classification

Figure 4.7: Morris OAT results for AI_Initial. The graph represents the average of elemen-
tary effects in absolute values (µ∗) according to their standard deviation (σ ) with respect to
model outputs.

results. This lack of impact is due to the fact that both corpora used exclusively consisted of
non-official sources.
The Subtype parameter group proved to have the most significant impact. When setting this
parameter to 0, the F-score dropped from 0.8 to 0.6. Specifically, the HPAI parameter had
a notable impact on the classification; this can be attributed to the precision associated with
specifying the subtype, indicating an event that is already confirmed at a local scale.
The Host parameter group demonstrated a significant influence, and assigning a value of 0
to the ’other host’ label proved crucial for filtering out irrelevant events.
The temporal parameter appeared to have an important impact on the classification. How-
ever, assessing the temporal and spatial parameters separately poses challenges due to their
inherent interdependence.
When the time window is too short, very few events occur within a specific zone. Conse-
quently, even if we adjust the spatial parameter to different distances, the resulting changes
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may not be discernible. This is why the outcomes of the OAT method indicate that the spatial
parameter is negligible. Further experiments were conducted by adjusting this parameter to
greater distances (over 1500 km) and extending the temporal parameter. In these instances,
DCs systematically sample all incoming antigens, transitioning from immature to mature
states. As a result, the anomaly threshold (the ratio of mature to immature DCs) consistently
exceeds 0.5, leading to the classification of all antigens as abnormal. It is important to note
that the integration of the spatial parameter in EpiDCA is a key contribution, as it transforms
the previously random exposure of DCs to antigens into a deterministic process.

4.5 Conclusion

In this chapter, we presented EpiDCA along with our methodological contributions, includ-
ing a first case study application on avian influenza in Asia. We evaluated EpiDCA in terms
of classification performance, reactivity and sensitivity to parameters. In terms of classifica-
tion, EpiDCA successfully detected relevant events in both unbalanced and balanced corpora
(DB_AI_Initial and DB_AI_Extended, respectively). Very promising results, comparable to
those of well-known supervised methods, were obtained.
Regarding reactivity, EpiDCA effectively identified officially confirmed events, with partic-
ularly strong results observed in the context of wild birds. Additionally, the model demon-
strated robustness, indicating that the chosen parameters are well-suited for its application
on AI cas study.
Our next objective is to test the robustness and genericity of EpiDCA when applied to dif-
ferent case studies and geographical contexts.
In the next chapter (Chapter 5), we will introduce a method and guideline for annotating
articles according to their epidemiological topic. This involves three types of diseases: a
zoonotic disease (Avian Influenza - AI), a cross-border animal disease (African Swine Fever
- ASF), and a vector-borne disease (West Nile Disease - WND). The resulting dataset will
be used to evaluate EpiDCA.
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In the previous chapter, we introduced EpiDCA and demonstrated its initial application
on the case study of AI in Asia, using two corpora: DB_AI_Initial and DB_AI_Extended.
In this chapter, we present an original annotation method and guidelines that we used to
create an annotated dataset. This dataset is designed to evaluate EpiDCA across different
geographical contexts and diseases, including Avian Influenza in France, African Swine
Fever, and West Nile Disease in Europe.
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5.1 Introduction and Objectives

This chapter aims to present an annotation method and guidelines designed to produce an
original annotated dataset. The annotations regarding epidemiological topics, combined with
the extraction of epidemiological metadata and location information, will enable us to evalu-
ate the robustness and genericity of EpiDCA on different geographical contexts and diseases,
including Avian Influenza in France, African Swine Fever, and West Nile Disease in Europe.
EBS systems usually classify articles as relevant or irrelevant by relying on human mod-
eration or by implementing classification algorithms. These systems use annotated data to
improve their classification in terms of accuracy and thus swiftly detect outbreak events.
Consequently, the performance of these algorithms is highly dependent on the quality of the
dataset used to train them [114].
As previously discussed in Chapter 1, the classification of epidemiological texts and the
information extraction poses several challenges, as noted by [161, 157]. These challenges
include the ambiguity often found in epidemiology-related texts, where disease mentions
may not necessarily indicate an outbreak but could instead provide general disease informa-
tion or historical context in a specific area. Furthermore, several locations can be mentioned
within the text and at different levels of granularity [147], and the notion of ’Relevance’
doesn’t have a formal definition [161].
In this chapter, we present a method and a guideline that allow annotating articles according
to their epidemiological topic when dealing with three different types of diseases: a zoonotic
disease (Avian Influenza - AI), a cross-border animal disease (African Swine fever - ASF)
and a vector-borne disease (West Nile Disease - WND). Metadata, such as the disease name,
events’ location, host, and virus subtype (specifically for AI), were manually extracted with
special attention given to the outbreaks’ locations reported in articles.
The contribution described in this chapter can be divided into two parts. First, it offers a
detailed and reproducible annotation method that enhances the precision and reliability of
epidemiological datasets. The annotation method and guidelines we present are designed
to be generic, and can also be used to annotate datasets for the same diseases or serve as
templates for annotating datasets related to diseases that share common characteristics: the
WND guidelines can be used as a template for other vector-borne diseases, the AI guide-
lines can be used for other zoonotic diseases, and the ASF guidelines can be used for other
transboundary diseases.
Second, the dataset produced will be used to validate EpiDCA but can also serve as a valu-
able resource for training supervised machine learning methods and fine-tuning language
models.
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5.2 Methodology

5.2.1 Construction of the dataset

We collected articles that were published within recent periods characterized by occurrences
of outbreak events. Specifically: For AI, we focused on articles published online between
August 2022 and January 2023 in France, as this period was marked by a significant number
of AI events in the country [10]. Regarding ASF, we selected articles published between
April and July 2022 in Europe. This period was chosen as it was characterized by new
introductions and occurrences of ASF in some European countries [47]. For WND, we fo-
cused on articles published between June and September 2022 in Europe. As a vector-borne
disease, the number of recorded WND cases is higher at the end of summer due to the in-
creasing activity of its transmitting vectors (mosquitoes) during this period [46].
Extracted articles were provided with the following information: ID, title, source, publica-
tion date and URL. For each disease, a corpus composed of manually annotated news articles
was compiled. Due to copyright reasons the texts of articles are not stored in the database
but remain accessible via the provided URLs. The production of these corpora revolved
around two axes: first, the articles annotation by relevance, and second, the epidemiological
metadata extraction. The label’s definition was built upon the framework described by [159].
The annotation was done at the document scale, with the annotator assigning one of three
primary labels to each article: Relevant event, Relevant general information, or Irrelevant.
While each category includes different subclasses with more nuanced definitions, we sim-
plified the annotation process by using these three main categories. The definitions of these
categories are as follows:

• Relevant (events): Articles that clearly describe at least one epidemiological event
along with its location. This category includes three subclasses: Confirmed cases,
Persistent outbreaks, and Warning signals. Example: “The highly pathogenic bird
flu, avian influenza, has been detected last week in a duck farm in France’s eastern
department of Ain, causing a total of 10,600 ducks culled.” [166];

• Relevant (general information): Articles that do not directly refer to a specific out-
break but still provide information on the incidence of a disease in the area studied.
This category includes four subclasses: Assessment of the number of outbreaks, Gen-
eral consequences, Absence of new cases since a specific time, or Highlights of old
events only. For example: “A novel research from the University of Extremadura
(UEx), published in the journal Veterinary Microbiology, demonstrates the circula-
tion of West Nile Virus in small wild birds (passerines) within a radius of about 15
kilometers from the city of Badajoz.” [48];

• Irrelevant: Articles that mention the disease name without necessarily containing
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relevant epidemiological information on the incidence of the disease in a given region.
This category includes either preparedness articles or articles that are too vague in
terms of spatial information. For example: “Swine fever: Dead deer: New fence in
the national park is ready. With the relocation of the fixed fence in the protection
corridor along the border with Poland over a length of eleven kilometers to the west,
wild animals now have enough space to withdraw from the floodplain areas regularly
affected by flooding.” [8]

If both “event” and “general information” types were found in the same document, the
“event” label takes priority. In cases where multiple outbreak events were reported within
a single document, the article was duplicated for each mentioned event. Thus, the resulting
number of articles (717 articles for AI, 300 for ASF, and 409 for WND) include duplicates;
events with the same ID were extracted from the same article. The detailed guidelines, along
with the manually annotated corpora, are available in an open source data repository [24].
In addition to the annotation by relevance, the epidemiological metadata associated with each
article were manually extracted. It includes: the publication date, the disease name, the host,
and the virus subtype (specifically for AI). A particular emphasis was given to the event’s
spatial information. In epidemiological texts, the location is provided at different levels of
granularity. At a minimum, the continent/country is mentioned, and the department and/or
the city can also be specified. For each article, we manually extracted all the cited locations
and then associated the most detailed granularity location with its latitude and longitude co-
ordinates. Example: “The highly pathogenic bird flu, avian influenza, has been detected in
a duck farm in France’s eastern department of Ain, causing a total of 10,600 ducks culled.”
In this example, the AI event is associated with the coordinates of Ain, France. Table 5.1
provides a summary of the different categories with examples for each subclass.

5.2.2 Guidelines design

The guidelines were designed according to an iterative process made of two annotation
rounds, both performed by two epidemiologists ( B. Boudoua and M. Richard). The ob-
jective was to make the guideline as generic as possible and as precise as necessary so that
non-expert annotators could annotate these diseases related articles without running into am-
biguity issues.

First, a preliminary guideline version was established with concise labels definitions that
aim to describe the main content of the articles (Figure 5.1, Step 1) as ‘Relevant’ - this
class includes articles that mention at least one outbreak event; or ‘Irrelevant’ - this class
includes articles that don’t contain any epidemiological information. During the first anno-
tation round and for each case study, the experts were asked to annotate independently and
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Figure 5.1: Pipeline of the annotation guideline elaboration process.

blindly a sample (n) made of 40 to 50 articles extracted from PADI-web. The annotators had
to choose one single label for each article based on its relevance for epidemic intelligence
purposes. Subsequently, the annotation agreement was calculated using the Cohen’s Kappa
coefficient [109]. Then, the annotation disagreements were discussed among the experts and
this process led to the reformulation and refinement of the labels definition (Figure 5.1, Step
2).
Once these modifications were integrated, a second annotation round was done by the ex-
perts. To ensure the clarity and precision of the guidelines, we calculated the annotation
agreement after each annotation round, using Cohen’s Kappa coefficient. This coefficient
measures the agreement between two observers during qualitative coding into categories,
and is calculated as presented in Eq. 5.1:

K =
Pr(a)−Pr(e)

1−Pr(e)
(5.1)

where Pr(a) is the proportion of agreement between annotators and Pr(e) the probability
of random agreement. The kappa values are between –1 and +1 and the higher the value,
the stronger the agreement (K=1: perfect agreement). (Figure 5.1, Step 3). Following the
integration of all the modifications, the final guideline version described in Table 1 was used
to annotate the corpora (Figure 5.1. Step 4).
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5.3 Results and discussion

Two rounds of annotation were required for both AI and ASF corpora before obtaining a
satisfying Cohen’s Kappa coefficient. A very good result was obtained during the initial
annotation round for the WND corpus. This outcome underscores the effectiveness of our
approach in designing the annotation guidelines. Our experience with the first two corpora
(AI and ASF) enabled us to refine and develop guidelines that are both relevant and generic.
These refined guidelines were easily applied to the new corpus (WND).
Table 5.2 compares the agreement results obtained in the first annotation round (initial ver-
sion of the guidelines), and the second annotation round (final version of the guidelines).
Results obtained for both AI and ASF during the initial round of annotation indicate a mod-
erate agreement, with Cohen’s kappa coefficients of 0.43 and 0.61 respectively. In contrast,
the results obtained after the revision of the guidelines reflect a significant to almost perfect
agreement with Cohen’s kappa coefficients of 0.78 and 1 for AI and ASF respectively. For
the WND corpus, a very good result of 0.84 was obtained during the first round of annota-
tion, highlighting the relevance and genericity of our guidelines.

AI (n=48) ASF (n=40) WND (n=50)
Annotation Round 1 0.427 0.605 0.844
Annotation Round 2 0.78 1

Table 5.2: Cohen’s Kappa values obtained during the two rounds of annotation.

Following annotation, we obtained three corpora:

• DB_AI_France: a corpus of 717 articles published between August 2022 and January
2023

• DB_ASF_Europe: a corpus of 300 articles published between April and July 2022

• DB_WND_Europe: a corpus of 409 articles published between June and September
2022

This allowed us to highlight specific characteristics for each case study. Table 5.3 illustrates
the differences observed in label distribution, clarity of articles, and spatial information pre-
cision among events of AI, ASF, and WND.

5.4 Conclusion

In this chapter, we presented an annotation method and guidelines that can be used as a
reference for annotating datasets related to the same diseases described here or serve as tem-
plates for annotating datasets related to diseases with similar characteristics. For example,

78



AN ANNOTATION METHOD AND AN ORIGINAL DATASET FOR EVENT-BASED

SURVEILLANCE OF AI, ASF AND WND

DB_AI_France DB_ASF_Europe DB_WND_Europe

Observations
noted during
annotation

Ambiguous articles (con-
taining several types of in-
formation, several likely la-
bels)

Mostly clear and unambigu-
ous articles (containing only
one type of information)

Ambiguous articles (con-
taining several types of in-
formation, several likely la-
bels)

Relevance
Annotation

Observations

Majority of articles with the
"event" label (63%)

Majority of articles with the
"event" label (79%) includ-
ing a lot of "Warning sig-
nals" (11.3%)

Majority of articles with the
"event" label (70.2%)

21.1% of articles with the
"general information" label

11.6% of articles with the
"general information" label

10.3% of articles with the
"general information" label

15.9% of irrelevant articles 9.3% of irrelevant articles 19.6% of irrelevant articles

Spatial
Information

4 levels of precision for the
mentioned scale: country,
region, department and city

3 levels of precision for the
mentioned scale: country,
region and city

3 levels of precision for the
mentioned scale: country,
region, and city

The city is mostly men-
tioned (62.6%)

The city is mostly men-
tioned (43%)

The city is mostly men-
tioned (63.3%)

Table 5.3: Specificity and differences observed during the annotation for each disease.

the WND guidelines can be used as a template for other vector-borne diseases, the AI guide-
lines for other zoonotic diseases, and the ASF guidelines for other transboundary diseases.
The resulting dataset can be used for training supervised learning methods and/or fine-tuning
language models. Additionally, the locations extracted from the document allow for testing
spatial-based methods across different levels of spatial granularity, ranging from country to
city level. It is important to note that when annotating epidemiological textual data, choos-
ing one label per article may lead to disagreements between annotators and information loss
as different types of information (such as outbreak events, description of prophylactic mea-
sures, consequences, etc.) can coexist within the same document. Therefore, prioritizing
information is essential to bypass this limitation.
The detailed guidelines, along with the manually annotated corpora, are valuable resources
available for the community in an open source data repository [24].
In the next chapter (Chapter 6), we will evaluate EpiDCA on this dataset.
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This chapter focuses on evaluating the proposed model, EpiDCA, across various geo-
graphical contexts and case studies.
Using the three corpora (DB_AI_France, DB_ASF_Europe, and DB_WND_Europe) gen-
erated through the annotation and guideline methods described in Chapter 5, we evaluate
EpiDCA in terms of classification and reactivity, and sensitivity to the defined parameters.
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6.1 Introduction and Objectives

EpiDCA showed promising results when applied to AI in Asia (see Chapter 4), and better
results were obtained when safe signals (environmental data) were taken into account (see
Chapter 4, Section 4.4). In this chapter, we want to evaluate the robustness and genericity of
EpiDCA when applied to different geographical contexts and case studies.
Thus, we created an original and comprehensive dataset that includes articles related to three
different epidemiological systems (AI in France, ASF, and WND in Europe) (see Chapter 5).
We obtained a corpus composed of three annotated corpora including: 717 events for AI, 300
for ASF, and 409 for WND (see Chapter 5). The epidemiological metadata mentioned in the
texts were extracted to generate danger signals. The locations were extracted and associated
with their geographical coordinates, to project the events on risk maps and generate the safe
signals.
In this chapter, we will evaluate EpiDCA in terms of classification. reactivity (meaning if
events are detected timely, before the official confirmation by IBS systems), we will also
evaluate the impact of spatial information granularity on the classification accuracy, and
conduct a sensitivity analysis to assess how the parameters impact the method’s performance.

6.2 Methodology

6.2.1 Classification methods

Parameters setting

In this section, we will present the parameters setting of danger and safe signals, followed
by the temporal window and DCs coverage.

Danger signals

As defined in Chapter 4, epidemiological metadata extracted from detected articles were
used to generate danger signals. Table 6.1 summarizes the parameters used to generate the
danger signals for each disease.
We considered three categories of parameters for each case study: the source (official/non-
official), the host, and a third parameter. For AI, the third parameter is the subtype. For
WND and ASF, where no subtype is reported, we took into account the disease name. In
some instances, the disease name is clearly mentioned, while in other cases it is either not
specified or other diseases are mentioned.
Each parameter category is defined by a minimum and maximum score. Initially, we es-
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tablished a range for each parameter category based on the literature and expert recommen-
dations. Subsequently, experiments were conducted on a sample guided by these expert-
recommended values to determine the most appropriate scores within these predefined ranges.
Higher scores indicate greater relevance for epidemiological data. For example, regarding
AI subtypes, HPAI subtype scores higher than LPAI and unspecified subtypes. For ASF,
it has been demonstrated that in Europe, wild boars play a major role in the spread of the
disease, Thus, a higher score is attributed to wild boars compared to domestic pigs [151,
152].

Defining the danger signals for WND has been more challenging due to two main fac-
tors. First, because multiple hosts (birds, humans, horses) are involved. And second, because
WND is a vector-borne disease, which requires considering information on the activity of
the vector (mosquitoes), and it is common that information about the vectors activity is re-
ported on online media.
The highest scores were given to the ’human’ and ’bird’ labels, because surveillance and
media predominantly focus on human cases of WND, and birds play a crucial role in am-
plifying the viremia before transmission (see Chapter 2, Section 2.4.1). Therefore, events
detected in birds are considered as early signals of a potential WND outbreak.
For convenience, the label ’mosquitoes’ is listed alongside hosts in the Table 6.1 however, it
is important to note that mosquitoes are vectors rather than hosts.
Because we have more labels for WND compared to AI and ASF, and the overall Ds must
not exceed 100 (as defined in the literature [67]), it was decided to lower the Source score
to a maximum of 20. This adjustment was made because the Source parameter appeared
to be the least impactful when the sensitivity analysis was conducted for the first EpiDCA
evaluation (see Chapter 4, Section 4.3.5).

Parameters AI ASF WND
Source Official = 30

Non-Official = 20
Official = 30
Non-Official = 20

Official = 20
Non-Official = 10

Subtype /disease
name

HPAI = 40
LPAI = 30
Unspecified = 10
Other = 0

ASF = 40
Unspecified = 10
Other = 0

WND = 40
Unspecified = 10
Other = 0

Host Domestic birds = 30
Wild birds = 20
Unspecified = 10
Humans = 5
Other = 0

Wild boars = 30
Domestic pigs =
20
Unspecified = 10
Meat = 5
Other = 0

Humans = 40
Mosquitos = 30
Birds = 30
Horses = 20
Unspecified = 10
Other = 0

Table 6.1: Parameters used for AI, ASF, and WND.
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Suitability maps and safe signals

Safe signals were generated following the same method described in Chapter 4, Section
4.3.2. First, we used existing recent risk maps or updated ones with recent environmental
data to produce suitability maps for disease occurrence for each case study. These maps
were developed using different methods, such as statistical models as described by [71], or
the MCDA approach as described by [144]. Then, suitability values were converted to safe
signals by applying a decreasing linear transformation. Safe signals thus lie within a range
from 0 (the environment is suitable for disease occurrence) to 100 (the environment is not
suitable for disease occurrence).
Next, the events were associated with their environmental data by spatial correspondence
using QGIS1, and the "point sampling tool" plugin2 that allows one to assign to the events
(points) the attributes (safe signal scores) of the underlying raster risk map.
For AI in France, we used a suitability map produced according to the methodology de-
scribed in a study by [71] (see Figure 6.1). This study ranked spatial predictor variables
related to poultry production based on their significance in the spatial distribution of HPAI
H5N8 outbreaks during the 2016–2017 epizootic. Twelve variables, primarily concerning
poultry production and water bird habitats, were evaluated for their impact on the spatial
distribution of these outbreaks. We used an updated version of this map, which includes
predictor variables for the year 2020-2021.

For ASF in Europe, the suitability map was created based on the ASFORCE report (Tar-
geted Research Effort on African Swine Fever)3 as part of an European project. Their report
presents a risk map of ASF transmission from wild boars to domestic pigs in Europe, based
on four risk factors; density of rural population, pig population density in the low-biosecurity
sector, density or rural settlements and density of secondary roads. The layers of these four
risk factors were combined using the Weighted Linear Combination (WLC) method [101].
The map produced was based on data from 2005, we updated the produced map using more
recent data on domestic pigs density from 2015 available on the FAO website4. ASF events
were then projected onto this updated map using QGIS (see Figure 6.2).

For WND in Europe, the suitability map was produced in a study conducted by [154]
using the method of a statistical model. The key predictors used include: temperature
anomalies in July, remotely sensed Modified Normalized Difference Water Index (MNDWI)
anomalies in early June, presence of wetlands, locations of birds’ migratory routes, and the
occurrence of WND in the previous year. The resulting map (Figure 6.3) shows the pre-
dicted occurrence of WND in Europe and neighboring countries at a district level. The

1https://www.qgis.org/de/site/
2https://plugins.qgis.org/plugins/pointsamplingtool/
3https://cordis.europa.eu/project/id/311931/reporting
4https://www.fao.org/livestock-systems/global-distributions/pigs/en/
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Figure 6.1: Probability of having at least one HPAI-H5N8 outbreak in sensitive hosts in
France. Using 2020-2021 predictor variables. Detected AI events from DB_AI_France
have been added using QGIS.

WND events from DB_WND_Europe were added using QGIS. As shown in Figure 6.2,
some WND events from DB_WND_Europe fall outside the risk map. To avoid biases in the
evaluation due to missed values within the safe signals (Ss), these events were excluded from
further evaluation. As a result, the number of events that will be mentioned in the remainder
of this chapter is 354 events for WND.

Temporal window and radius of coverage

These parameters were defined based on expertise and literature. For AI and ASF, the param-
eters were primarily based on control and surveillance measures, as discussed in Chapter 2,
Sections 2.2.2 and 2.3.2. ASF is mainly transmitted by wild boars. Its natural diffusion dy-
namics are more easily identifiable than for AI, it occurs gradually, in a slow and continuous
manner. The radius of coverage of the DCs in this case, is set to 10 km, which corresponds
to the distance for which restrictions and control measures are implemented (surveillance
zone) around ASF outbreaks. The migration threshold of the DCs has been sat to 40 days
because, beyond this period, if no new event is detected, the affected area is considered to
be free from the disease, despite the virus being resistant.
For WND the DCs coverage is set to 20 km, however the temporal window is extended to 90
days because the virus can be maintained throughout the active season of the vector [136]. A
summary of the temporal and spatial parameters used for the three case studies is provided
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Figure 6.2: Suitability for occurrence of ASF outbreaks in domestic pigs in Europe.
The map produced by [7] updated with recent data on domestic pigs. ASF events from
DB_ASF_Europe have been added using QGIS.

in Table 6.2. To evaluate the overall classification on the three case studies, We applied the

Parameters AI ASF WND
DCs Coverage 20 km 10 km 20 km
Migration
Threshold

21 days 40 days 90 days

References [127, 9] [162] [77]

Table 6.2: Spatial and temporal parameters used for AI, ASF and WND. Based on expertise
and literature.

same approach as the one described in Chapter 4, Section 4.3.3. We calculated the Precision,
Recall, and F-score for each of the relevant and irrelevant classes. Then, we computed the
weighted F-score, which takes into account the imbalanced nature of the three corpora. This
was done in two rounds: the first one, without computing the Safe signals (Safe signals set
to 0), and a second round, with the Safe signals included.

6.2.2 Spatial analysis methods

Spatial analysis aims to evaluate the impact of an event’s location granularity on the model’s
performance. Specifically, we investigate whether the model performs better when locations
are provided at different levels of granularity, such as country, region, department, and city
levels as described in Table 5.3, Chapter 5.

To achieve this, we filtered the dataset, as shown in Figure 6.4 and calculated the output
metrics for different levels of spatial granularity. We progressively removed events asso-
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Figure 6.3: Map illustrating the predicted probability of WND occurrence in humans, Europe
and neighboring countries [154]. detected events from DB_WND_Europe were added using
QGIS.

Figure 6.4: Visualization of spatial granularity levels mentioned in the dataset. With 3 levels
for DB_AI_France corpus and 3 levels for both DB_ASF_Europe and DB_WND_Europe
corpora.

ciated with each level of location to observe the impact on the algorithm’s classification
performance.

6.2.3 Reactivity analysis methods

As described in Chapter 4, Section 4.3.4, the reactivity, is defined as the time difference,
measured in days, between the maturation date of the DCs and the confirmation date of
an event that occurred at the same location. This measure of reactivity allows us to assess
whether our system is capable of early detection of outbreaks.
Due to time constraints, data availability, and the time-consuming nature of linking detected
events with confirmed events from IBS systems, we were unable to include the reactivity
analysis for the _DB_AI_France corpus in this chapter. However, the reactivity of EpiDCA
to AI has already been assessed in Chapter 4 on the DB_AI_initial corpus.
For ASF confirmed events, we referred to EMPRES-i database. ASF events are reported
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with the date of confirmation, the affected host (either wild boar or pig), and the location
with its coordinates. Each row in the database corresponds to a single host, with separate
entries for each case, particularly for wild boars.
For WND confirmed events, we referred to ECDC’s TESSy database5. TESSy provides
case-based data, reporting only confirmed WND cases in humans. Each row corresponds to
a single case, with available information including the date of diagnosis and location details
at the NUTS-3 level. NUTS stands for Nomenclature of Territorial Units for Statistics [128].
The standardization NUTS system is hierarchical, subdividing each member state into three
levels: NUTS 1, NUTS 2, and NUTS 3, with each level being a further subdivision of the
previous one. For example, in France, the NUTS 3 level corresponds to departments.

6.2.4 Sensitivity analysis methods

Sensitivity analyses for both ASF and WND were conducted as detailed in Chapter 4, Sec-
tion 4.3.5. The first phase involved assessing the systematic evaluation of parameters, while
the second phase used the Morris One-at-a-Time (OAT) method to identify the most influ-
ential parameters.

6.3 Results and discussion

In this section, we will present and discuss the results regarding the classification, spatial
analysis, reactivity, and sensitivity.

6.3.1 Classification results

Classification measures were calculated on both relevant and irrelevant classes with and
without including Safe signals (see Table 6.3). Overall, for these three corpora, as with
DB_AI_initial, Epi_DCA achieved better results when considering safe signals (Ss).
This confirms that including environmental data enhances classification, with F-scores of
0.642, 0.843, and 0.848 for DB_AI_France, DB_ASF_Europe, and DB_WND_Europe, re-
spectively.
Results are summarized in Table 6.3. EpiDCA effectively detects the relevant class despite
the datasets being highly imbalanced (see Chapter 5, Table 5.3).
Results obtained for the DB_WND_Europe and DB_ASF_Europe corpora are similar to
those observed with the AI_Initial corpus (see Chapter 1, Section 4.4). This consistency

5https://www.ecdc.europa.eu/en/publications-data/european-surveillanc
e-system-tessy
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across different datasets demonstrates the robustness of the method when applied to differ-
ent diseases.
Regarding AI, the classification results on DB_AI_France with an F-score of 0.642 were
lower than those obtained with DB_AI_Initial with an F-score of 0.823, even though both
corpora pertain to the same disease. This difference could be due to several factors:
First, the main difference between the two corpora is that DB_AI_Initial relies on articles
detected by PADI-Web and HealthMap EBS systems, while DB_AI_France relies on articles
detected by PADI-Web only. This makes DB_AI_Initial more diverse in terms of sources
covered and detected events. Although DB_AI_France contains a larger volume of data
with 717 events compared to 202 events in DB_AI_Initial, this increased volume could po-
tentially introduce more noise, which might negatively affect the classification.
Secondly, AI exhibits different epidemiological patterns in Asia compared to France. For in-
stance, Asia experiences more frequent outbreaks and continuous reporting and on a larger
spatial scale, resulting in distinct and varied spatio-temporal patterns that may help the al-
gorithm identify and distinguish between different outbreak events more effectively. In con-
trast, France experiences less frequent outbreaks, which can lead to less variability in spatio-
temporal patterns.
In conclusion, the diversity of the DB_AI_Initial corpus, including a range of affected hosts
and broader geographical contexts (from a continent to a country), may contribute to its
better classification performance compared to the more homogeneous AI_France corpus.

6.3.2 Spatial analysis results

In this section, we present the spatial analysis results of the three corpora. We evaluated the
impact of the events’ location granularity on the model’s classification.
To achieve this, we filtered the dataset as shown in Figure 6.4, and each time, calculated
the output metrics for different levels of spatial granularity. For each of the relevant and
irrelevant classes, we calculated Precision, Recall, and F-Score. Results are presented in
Table 6.4, the last column of the table represents the weighted F-Score.

DB_AI_France

For the DB_AI_France corpus, the precision for the positive class is highest at the City level
(0.978), indicating that the model is most accurate at relevant events when they are reported
this granularity. However, the overall performance was best at the department level, with an
F-score of 0.675. The best precision for the negative class is achieved at the Country level
(0.212). This high precision suggests that the model is very effective at correctly identifying
irrelevant events when events are reported at this broad scale. However, this might be be-
cause many irrelevant events, which are often reported with less specific location details, are
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DB_AI_France
Precision Recall F-score

Without Ss
Relevant class 0.846 0.512 0.638
Irrelevant class 0.164 0.508 0.248
Weighted average 0.736 0.511 0.575
Computed Ss and Ds
Relevant class 0.883 0.588 0.706
Irrelevant class 0.212 0.587 0.312
weighted average 0.755 0.587 0.642

DB_ASF_Europe
Without Ss
Relevant class 0.830 0.953 0.888
Irrelevant class 0.607 0.269 0.373
Weighted average 0.802 0.881 0.833
Computed Ss and Ds
Relevant class 0.852 0.950 0.899
Irrelevant class 0.571 0.285 0.380
Weighted average 0.818 0.88 0.843

DB_WND_Europe
Without Ss
Relevant class 0.928 0.889 0.905
Irrelevant class 0.413 0.510 0.457
Weighted average 0.856 0.839 0.847
Computed Ss and Ds
Relevant class 0.928 0.882 0.904
Irrelevant class 0.419 0.553 0.477
Weighted average 0.862 0.839 0.848

Table 6.3: EpiDCA classification results on DB_AI_France, DB_WND_Europe, and
DB_WND_Europe. For each test, the evaluation metrics (precision, recall and F-score)
were calculated per class. The last row indicates the macro average scores.

included at the country level. Consequently, this could artificially improve precision for the
negative class but might affect the overall balance and effectiveness of the dataset. Overall,
the classification performance, particularly in terms of precision, is good. Detailed results
are presented in Table 6.4.

DB_ASF_Europe

For the second corpus, when events reported at the country level are included, the precision
for the positive class is relatively high (0.852), while the precision for the negative class is
moderate (0.571). This observation aligns with the previously noted pattern, where exclud-
ing country-level events leads to a decrease in precision for the negative class. The best
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Positive Class Results Negative Class Results
AI_France Precision Recall F-score Precision Recall F-score Weighted F-score
Country 0.883 0.588 0.706 0.212 0.587 0.312 0.642
Region 0.965 0.588 0.708 0.113 0.773 0.227 0.671
Department 0.963 0.567 0.714 0.134 0.744 0.277 0.675
City 0.978 0.543 0.698 0.089 0.791 0.16 0.671
ASF_Europe
Country 0.852 0.950 0.899 0.571 0.285 0.380 0.843
Region 0.753 0.986 0.854 0.666 0.076 0.137 0.839
City 0.771 0.989 0.867 0.500 0.333 0.625 0.855
WND_Europe
Country 0.928 0.882 0.904 0.419 0.553 0.447 0.848
Region 0.967 0.569 0.717 0.116 0.75 0.201 0.68
City 0.976 0.535 0.692 0.098 0.8 0.175 0.659

Table 6.4: Classification results for the three datasets. Each row in the results table corre-
sponds to a different level of spatial detail, starting from the country level and progressing
through the region level, department level, and finally the city level. Precision, Recall, and
F-score are provided for each class, followed by the weighted F-score for each level.

overall performance is observed when events are reported at the city level, with a weighted
F-score of 0.855.

DB_WND_Europe

The patterns observed for the DB_WND_Europe corpus differ from those seen previously.
Notably, the weighted F-score drops from 0.84 to 0.6 as the corpus is filtered from the
Country level to the City level. A key factor contributing to this might be the relationship
between locations’ granularity and events’ relevance. In WND articles, the granularity of
location reporting does not always correlate clearly with the relevance of the events. This is
because WND articles often includes a significant amount of general or broad information
that are reported at various levels of granularity. For instance, information reported at the
country level may include both relevant and irrelevant events, which affects the precision
and recall metrics differently compared to the corpora where location granularity is more
tightly linked with the relevance of events.
Another factor that might explain the observed differences is that the WND corpus covers
a relatively short period compared to the two other corpora. This shorter time-frame might
lead to less representative data and could affect the overall performance metrics. Especially
since spatial and temporal factors are closely linked in the method used (as discussed in
Chapter 4, Section 4.3.5), the shorter reporting period might further complicate how these
factors interact, potentially impacting the precision and recall metrics.
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6.3.3 Reactivity analysis results

DB_ASF_Europe

The reactivity varied from 30 days before to 48 days after official confirmation. Out of the
300 DCs analyzed, 242 were classified as matured. Among these matured DCs, 17.33%
(52/300) was associated with early detected events, 9% (27/300) were linked to late detected
events, and 10% DCs (30/300) matured the same day as the official notification. These
results confirm the effectiveness of EpiDCA in detecting timely and confirmed events,as
shown in Figure 6.5.

Figure 6.5: Reactivity of EpiDCA to ASF events.

Another important aspect, shown in Figure 6.5, is that early detection of events was ob-
served in both wild boars and domestic pigs but the results does not clearly indicate whether
one type of hosts is detected better than the other (unlike the clear distinction seen with AI
and the early detection in wild birds). Logically, EpiDCA and EBS systems in general, might
be more effective in detecting wild boars events due to passive surveillance methods that ran-
domly uncover carcasses and affected wild boars (see Chaper 2, Section 2.3.2). However,
this advantage is not distinctly apparent in the results. One reason could be the complexity of
event linking: reported events in media outlets usually define outbreaks involving multiple
hosts, while EMPRES-i records each ASF event per host. This inconsistency can introduce
bias, as a single reported outbreak involving several hosts might be recorded as multiple sep-
arate events. Additionally, 44.33% (133/300) of the matured DCs were not associated with
any confirmed event. This can be explained by several factors. It may be due to incomplete
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declarations not recorded in systems like EMPRES-i, or from false alarms later refuted by
laboratory results.
The primary challenge in linking events reported in media articles with the confirmed events
stored in the EMPRES-i dataset lies in the differing reporting structures and levels of detail
provided. Media articles typically offer general information about events without specifying
exact numbers or precise locations of affected hosts. Consequently, a single article may refer
to one or multiple events occurring in one or several locations.
On the other hand, the EMPRES-i dataset is case-based for ASF events, with each row repre-
senting an individual host. This is particularly relevant for wild pigs, as health authorities are
required to report the exact location where carcasses are found. Consequently, it is common
to have multiple rows with the same date but slightly different coordinates.
Moreover, unlike AI, where multiple indicators such as subtype, number of affected hosts,
number culled, location, and date of confirmation define an event, ASF events are determined
by only three factors: host, location, and confirmation date. This makes it challenging to effi-
ciently link reported events across datasets, especially in scenarios where multiple events are
reported at the same location with several days or weeks in between, as the linking process
becomes even more complex.

DB_WND_Europe

We relied on the TESSy database for our analysis because the DB_WND_Europe corpus
predominantly focused on human cases, accounting for 77% (272/354) of the events. This
approach allowed us to concentrate specifically on human cases, though we did not include
events involving birds, horses, or vectors that tested positive for WND.
From the analysis of human events, reactivity varied from 2 to 75 days after official confir-
mation. Out of the 354 DCs analyzed, 275 were classified as matured, with 52.7% (145/275)
linked to a confirmed event.
This is not surprising, as the reactivity of IBS systems is typically more timely for human
case confirmations due to the direct involvement of individuals in the healthcare system, such
as hospitalizations or medical visits. This aligns with the results observed for human cases
of AI, in Chapter 1, Section 4.4, and is supported by other studies [158, 59]. Furthermore,
for WND cases in Europe, the ECDC relies on weekly updates and integrates data from the
TESSy database to ensure that new human infections are promptly captured and reported.
In the future, it is crucial to assess reactivity of WND not only for human cases but also for
events involving birds, horses, and mosquitoes that test positive for WND virus. Linking
the locations of these events with human case locations could enhance our understanding of
reactivity, as early detection in birds and other hosts is considered a significant early signal
for potential outbreaks.
In addition, similar to ASF, only three factors determine a WND event (location, confirma-
tion date, and host). This makes it difficult to link events from two different databases with
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certainty, especially when multiple outbreaks occur at the same location just a few days or
weeks apart.
Reactivity results showed that while linking official and non-official data is a promising ap-
proach to assess EBS reactivity, it is more challenging for certain diseases due to differing
reporting configurations and the nature of the events.

6.3.4 Sensitivity analysis results

The same method described in Chapter 4 Section 4.3.5 was followed to conduct the sensi-
tivity analysis on the corpora WND_DB_Europe and ASF_DB_Europe.
Overall, the model exhibited robustness, with minimal changes in results, and the weights
assigned by the experts appeared to be the most suitable for the datasets.
When applying the OAT method, we observed that all parameters exhibited a negligible ef-
fect on the results, as indicated by their σ∗ values being less than 0.1 (see Figure 6.6). This
demonstrates the overall robustness of EpiDCA.
For each parameter, we made the following observations:

Figure 6.6: Morris OAT results for ASF_Europe (left), and WND_Europe (right). The
graph represents the average of elementary effects in absolute values (µ∗) according to their
standard deviation (σ ) with respect to model outputs.

Same as for AI_Initial, results indicate that the source parameter had no impact on the
classification results, this is due to the fact that the datasets used exclusively consisted of non-
official sources. The "Disease name" parameter proved to be the parameter with the most
significant impact for the WND corpora, and when setting this parameter to 0 the F-score
dropped from 0.8 to 0.6. For the DB_ASF_Europe corpora, the "Disease name" parameter
appeared to have a negligible impact.
For both corpora, assigning a value of 0 to the "Other disease" label proved crucial for filter-
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ing out irrelevant articles that mentioned other diseases. The Host parameter group demon-
strated a significant influence on the DB_WND_Europe corpora; specifically, when set to 0
the F-score declined from 0.8 to 0.6, Notably, the label "Human" demonstrated the highest
influence, this can be explained by the prevalence of human cases in the DB_WND_Europe
corpus. Similar pattern was observed in the DB_ASF_Europe corpus with the label ‘Do-
mestic pigs’.
In all three datasets, assigning a value of 0 to the "Other host" label proved crucial for
filtering out irrelevant articles. This parameter played a key role in accurately classifying
irrelevant events that mentioned hosts not normally affected by the studied diseases.
The temporal parameter impacted the classification results in both the AI and ASF datasets,
whereas its influence was negligible in the WND dataset. This observation may be attributed
to the relatively short period covered by the WND dataset.
For the spatial parameter, the same observations as described in Chapter 4, Section 4.3.5
were noted. Assessing the temporal and spatial parameters separately poses challenges due
to their inherent interdependence.

6.4 Conclusion

In this chapter, we tested EpiDCA across various geographical contexts and epidemiological
systems, including AI in France, WND and ASF in Europe.
Overall, the classification results demonstrated the robustness of the model across differ-
ent datasets, and its ability in detecting relevant events even in highly imbalanced datasets.
EpiDCA achieved very good F-scores of 0.843 and 0.848 for the DB_ASF_Europe and
DB_WND_Europe corpora respectively. Although the results for the DB_AI_France cor-
pus were slightly lower than those for the DB_AI_Initial corpus, with F-scores of 0.642
and 0.704 respectively, it is important to note that these results are still promising, and it
highlight that dataset diversity, including variations in epidemiological data, spatiotemporal
information, and reporting frequency, might influence the classification outcome.
The reactivity analysis revealed that linking official with non-official events is a very ef-
fective approach to assess the method’s reactivity and showed very good results for early
detecting AI and ASF events, and it underscores the need for a more comprehensive ap-
proach that considers both human and animal hosts to assess reactivity in multi-host and
vector-borne diseases like WND. It also highlights the challenges in linking data, as this
process is time-consuming and complex, especially if the datasets do not share the same
structure (e.g., event-based vs. case-based datasets).
Spatial analysis showed that a minimum scale is required for optimal performance and that
the way events are reported also influences classification, as there might be a correlation
between the spatial granularity and the relevance of the reported events.
Moreover, the sensitivity analysis confirmed the robustness of the model’s parameters.
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EXPANDING EPIDCA TO CONSIDER AD-
DITIONAL COVARIATES

7.1 Introduction and Objectives . . . . . . . . . . . . . . . . . . . . . 96
7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Preliminary results and discussion . . . . . . . . . . . . . . . . . 99
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

In this final chapter, we propose an extension of the EpiDCA designed to integrate ex-
ternal covariates and real-time environmental data. We outline the methodology and provide
an initial test using the DB_WND_Europe corpus. Preliminary findings are discussed, high-
lighting potential for future development and refinement of the approach.
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7.1 Introduction and Objectives

One of the foundations of EpiDCA is the integration of environmental spatio-temporal infor-
mation through safe signals derived from risk maps. These maps are created using different
methods, all relying on historical environmental data, such as temperature, host population
density, or case occurrences from the previous year. In the precedent chapters (Chapters 4
and 6), this approach has proven efficient, yielding better classification results when con-
sidering safe signals. However, it relies on static data and does not integrate new, real-time
environmental information.
To address these limitations, we propose an extension that allows for the consideration of
external, real-time covariates. This can either complement the risk maps or serve as a valu-
able alternative in scenarios where the risk map is unavailable.
To achieve this, we rely on the literature, particularly insights from the early versions of
DCA (see Chapter 3, Section 3.4.1), which introduced the concept of "Inflammation sig-
nals" designed to amplify both Danger and Safe signals [67, 16, 32].
Our assumption is that integrating external covariates (real-time environmental data) might
either enhance classification performance and/or reduce the maturation delay of the DCs
(the difference between the maturation date and the creation date), thereby improving the
model’s reactivity.
In this chapter, we present the method for an initial test, along with preliminary results.
To conduct this initial experiment, we rely on the DB_WND_Europe corpus.
WND (described in Chapter 2, Section 2.4) is a vector-borne disease highly influenced by
environmental drivers [136], which makes it an ideal candidate for testing how real-time
environmental data impact the model’s outcomes.

7.2 Methodology

The EpiDCA workflow remains unchanged and includes the following phases: Pre-processing
and Categorizing, Detection, Context Assessment, and Classification (see Chapter 4, Section
4.2). However, in this extended version of EpiDCA, there is a modification in the Context
Assessment phase. Specifically, we include external covariates by integrating the Inflamma-
tion signals (I), as described in the literature [32, 67, 16].

In the Context Assessment phase, the updated CSM function operates as follows:

CSM = ((WD×SD)+ (WS×SS))× (1+ I) (7.1)

where:
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• WD and WS are weights for the Danger and Safe signals SD and SS, respectively.

• I is the inflammation signal.

The concept of the inflammation signal within the DCA is cited in the literature. How-
ever, while it has occasionally been mentioned, most proposed DCAs tend to ignore these
signals and base their implementations on DSs and SSs. To the best of our knowledge, spe-
cific values and worked examples for the inflammation signal have not yet been presented.
In our proposed extension, the inflammation signal ranges between 0 and 1 and represents
a normalized risk (or suitability score) derived from a given covariate. For example, if a
disease has an elevated chance of transmission under certain climatic conditions, the inflam-
mation signal would reflect this increased risk. Thus, when the signal reaches its maximum
value, the global CSM is multiplied by 2.
As described in Chapter 2, Section 2.4, several research studies have investigated the en-
vironmental drivers of WND. It is noted that in Europe, key climatic drivers include the
temperature, NDVI, precipitation, and migratory routes, among others. A study conducted
by [54, 141] further reinforced this by demonstrating that ambient temperature plays a signif-
icant role in increasing the vectorial capacity of Culex mosquitoes, thereby accelerating their
transmission cycle, the biting rate, and the transmission probability, which in turn results in
outbreaks. Another study [141], demonstrated that transmission occurs within a range of
temperatures from 12°C to 35°C, with the highest risk at an optimal temperature of 24°C.
Meanwhile, [54] found that in Europe, the mean temperature of the warmest quarter ranged
between 20-26°C in regions with WND occurrence.
To extend the method, an initial trial was conducted by integrating real-time temperature
data.
To do so, temperature was converted into an Inflammation signal (I) that reflects the optimal
temperature for WND transmission. Figure 7.1 shows that I is low at extreme temperatures
and increases to a maximum value within the optimal temperature range between 20 degrees
and 26 degrees.

Temperature data extraction

Daily mean temperature data were extracted from ERA5-Land, a dataset produced by the
European Centre for Medium-Range Weather Forecasts (ECMWF) under the Copernicus
Climate Change Service. This dataset provides high-resolution global climate data with
hourly updates and a 9 km spatial resolution, covering the period from 1950 to the present,
and supports comprehensive land monitoring by offering detailed insights into various envi-
ronmental variables [113].
To download the temperature data, we used Google Earth Engine (GEE), a cloud-based
geospatial retrieval and processing platform that allows users to explore, analyze, and down-
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Figure 7.1: Relationship between Inflammation Signal (I) and the temperature.

load spatial data directly from a web-based editor.
To conduct a series of tests using different time intervals of temperature data, we extracted
a time series of temperature data for each location in our dataset. This time series spans
from the publication date, which is also the detection date of the event, to 60 days prior to
the detection date. This approach ensured that we could assess the impact of temperature on
our classification results across different time frames. We then linked each location with the
corresponding temperature data for the dates we wanted to analyze.

Classification analysis

The classification analysis was conducted in the same way as described in Chapter 4, Section
4.3.3 and Chapter 6, Section 6.2.1. The only difference is in the Context assessment phase,
where we used Eq. 7.1 to calculate the CSM values.
We conducted a series of tests considering the daily mean temperature recorded at the events’
locations for various lags: d-3, d-30, d-50, and d-60. This was done to account for the
delayed impact temperature can have on disease transmission.
After each test, we calculated the precision, recall, and F-score for the positive and negative
classes, followed by the weighted F-score.

Reactivity analysis

In this context, we calculated the reactivity as the difference in days between the creation
date and the maturation date of a DC.
We conducted this analysis with and without integrating the Inflammation signal to see if
it impacts reactivity, as our hypothesis is that it might reduce the maturation delay that is
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calculated for each mature DC as follow:

Reactivity = Maturation_Date−Creation_Date (7.2)

7.3 Preliminary results and discussion

Classification results

The baseline model, which does not include temperature data, achieved a weighted F-score
of 0.848. This serves as a reference for evaluating the effect of including temperature data
(see first row of Table 7.1).
When temperature data from 3 days prior to the detection dates was included, the weighted
F-score dropped substantially to 0.724. This suggests that recent temperature data might
introduce noise that does not contribute positively to the classification. From an epidemi-
ological point of view, this result is not surprising. Temperature changes over such a short
period are unlikely to have a direct impact on vector activity and disease transmission, thus
the observed result is expected. Using temperature data from d-30 resulted in a slight im-
provement over d-3, with a weighted F-score of 0.739. The best performance among the
tested lags was observed with temperature data from 50 days prior to the detection dates,
achieving a weighted F-score of 0.810. This is relatively close to the baseline performance.
Including temperature data from 60 days prior to the detection date resulted in a weighted F-
score of 0.710. This decline indicates that while the 50-day lag effectively captures relevant
information, extending the lag to 60 days may introduce irrelevant environmental informa-
tion.
Overall, the results highlight the importance of selecting an appropriate time lag for inte-
grating temperature data into the model. The d-50 lag appears to be the most effective,
providing a balanced perspective on the environmental conditions influencing disease trans-
mission while maintaining classification performance. The decline in performance for both
shorter (d-3) and longer (d-60) lags suggests that there is an optimal window where tem-
perature data is most relevant. However, the dataset used in this study is limited in terms
of the time window (from June to September 2022), making it difficult to draw definitive
conclusions, In addition, the temperature information is already partially integrated into the
risk map through the variable:"Temperature anomaly for the month of June". In the case
of WND, it would be particularly interesting to apply this method to a dataset covering at
least a one-year period. This would allow us to evaluate whether the method can effectively
filter false positives, especially given that WND cases are reported throughout the year, but
the disease is characterized by seasonality and is highly influenced by temperature and other
environmental factors.
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Positive Class Results Negative Class Results
Precision Recall F-score Precision Recall F-score Weighted F-score

Baseline 0.928 0.882 0.904 0.419 0.553 0.447 0.848
d-3 0.92 0.679 0.782 0.228 0.617 0.333 0.724
d-30 0.922 0.702 0.797 0.241 0.617 0.347 0.739
d-50 0.923 0,823 0,87 0.325 0.553 0.409 0.810
d-60 0.801 0.730 0.764 0.311 0.402 0.351 0.710

Table 7.1: Classification performance metrics for different temperature lags. The first row
shows the baseline results (without temperature), while the remaining rows show results
obtained with various temperature lags.

Reactivity results

The reactivity was calculated as the difference in days from between the maturation date and
the creation date of each DC.
Given that improving reactivity would be less meaningful if it came at the expense of clas-
sification performance, we compared results from two scenarios: the baseline that doesn’t
consider external covariates and the test using temperature data from 50 days prior to the
detection dates (see Table 7.1).
The reactivity analysis results (see Table 7.2) showed that including temperature in the anal-
ysis reduced the maximum delay from 30 days to 26 days and the mean delay from 5 days
to 4 days. This confirms that considering real-time data can be a good approach to enhance
the model’s reactivity.

Weighted F-score Mean reactivity delay (Days) Delay (max nb of days)
Baseline 0.848 5 30
d-50 0.810 4 26

Table 7.2: Comparison of the reactivity resluts with and without including the temperature.

7.4 Conclusion

In this chapter, we presented an extension of EpiDCA designed to integrate external real-time
environmental data into the model. We achieved this by integrating inflammation signals into
the Context assessment phase, as described in the literature. An initial test was conducted
using the DB_WND_Europe corpus and daily mean temperature data for various time lags
relative to the detected events’ locations and dates.
Our results show that integrating temperature data affects both classification performance
and reactivity, and underscore the importance of relying on expert knowledge to select the
appropriate variable and time windows for integrating real-time environmental data.
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In terms of reactivity, including temperature data improved the model’s reactivity by re-
ducing both the maximum and mean delays between the creation and maturation of DCs.
Specifically. This demonstrates that integrating temperature data can improve the model’s
reactivity without significantly compromising classification performance.
However, while our extension of EpiDCA shows promising results, further tests with more
extensive datasets and the inclusion of additional covariates are necessary to fully evaluate
benefits and limitations of integrating real-time environmental data in the model.
Additionally, we can consider developing a more sophisticated CSM function than the one
used here, which, as described in the literature, defines the I signal as a value between 0 and
1, implying it is always additive. It might be interesting to explore a calculation method that,
in certain instances, could reduce the global CSM, potentially offering a more nuanced and
effective approach.
The extension of EpiDCA offers various perspectives for methodological improvement.
First, this approach needs to be tested on a more extensive dataset and include additional
covariates to assess its impact over a larger time window. Second, it would be interesting to
explore a more sophisticated approach to both the function that converts covariates to the I
signal and the global CSM function.
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In this final chapter, we present our general conclusions and perspectives. We begin
by summarizing the key contributions. Following this, we explore potential future research
directions and applications of our work.
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8.1 Summary of the main contributions

This work falls within the context of event-based surveillance (EBS) and sits at the intersec-
tion of epidemiology and computer science.
The main objective of this thesis was to develop a comprehensive approach for EBS systems
that goes beyond traditional text-based classification methods by considering the environ-
mental context of the detected events.
In this thesis the four main contributions are:

1. Development of an unsupervised method called EpiDCA

2. Creation of an annotation method and production of an original dataset.

3. Evaluation of EpiDCA on the produced dataset.

4. Introduction of an extension of EpiDCA

Developement of EpiDCA

EpiDCA, which is an adaptation of the Dendritic Cells Algorithm (DCA) [67] inspired by
danger theory [105], introduces a new approach to EBS systems. To the best of our knowl-
edge, this is the first application of this kind in the context of EBS surveillance. The method-
ological contribution of EpiDCA lies in its innovative approach to overcome specific limi-
tations of the original DCA, including the integration of spatio-temporal information during
the detection phase. We successfully applied EpiDCA to a first case study using the PADI-
Web and HealthMap dataset, which includes documents related to avian influenza (AI) in
Asia from 2018 to 2019. We used environmental data derived from an updated suitability
map for AI in the same region. The model’s performance was evaluated using precision,
recall, and F-score metrics, achieving an F-score of 0.823 on an imbalanced dataset and
0.90 on a balanced dataset. EpiDCA was also compared with leading supervised machine
learning methods and demonstrated competitive performance. These results highlight the
effectiveness of considering disease risk factors in event classification.
Additionally, reactivity analysis showed that EpiDCA effectively detected outbreak events
timely, particularly for wild birds.

Creation of an annotation method and production of an original
dataset

As a significant contribution, we developed a comprehensive annotation method and guide-
lines, that was used to produce an original dataset. In addition to the annotation of the
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documents by relevance, we extracted the events’ epidemiological data and locations infor-
mation. This dataset was specifically designed for evaluating EpiDCA and can also be used
for fine-tuning language models, and training supervised machine-learning methods. Ad-
ditionally, it can be used for testing spatial-based methods, as it provides epidemiological
events at different granularities, from country to city levels. Importantly, this dataset, along
with the annotation guidelines, is available to the community, offering a valuable resource
for future studies and model development.

Evaluation of EpiDCA on the produced dataset

To ensure that EpiDCA is a robust and generic method, we evaluated it across a range of
datasets representing different diseases and geographical contexts. Specifically, we tested
EpiDCA on datasets for avian influenza (AI) in France, West Nile virus Disease (WND),
and African swine fever (ASF) in Europe.
Our evaluation covered several aspects: classification accuracy, reactivity, spatial analysis,
and sensitivity analysis. The classification and sensitivity analysis results demonstrated the
robustness of the model, showing strong performance across various datasets. Importantly,
considering environmental data (through the use of Safe Signals) consistently enhanced re-
sults across all configurations. Reactivity analysis demonstrated the model’s capability to
detect outbreaks early. Despite this analysis being more challenging in some cases, such as
with WND and ASF.

Extension of EpiDCA

We proposed an extension of EpiDCA designed to integrate real-time environmental data
into the model aiming to improve the classification and/or the reactivity. Drawing on liter-
ature and the concept of inflammation signals, we included temperature data into the CSM
function in the Detection phase. We conducted an initial test using the WND case study,
evaluating the impact of temperature data on both classification performance and reactiv-
ity. Our results indicated that while recent temperature data can introduced noise, using
data from a 50-day window preserved classification performance and improved reactivity
by reducing delays in DC maturation. These findings highlight the potential for enhancing
EpiDCA with real-time environmental data, though further testing with larger datasets and
additional variables is needed to fully assess its effectiveness and limitations.
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8.2 Perspectives

This thesis is interdisciplinary, combining data-driven approaches with model-based meth-
ods that integrate expert knowledge. This original work opens new perspectives for various
applications and methodological contributions in the field of epidemiological surveillance,
which we discuss in this section.
EpiDCA is an adaptation of the DCA. While it uses the same phases: Pre-processing and
Categorization, Detection phase, Context Assessment phase, and Classification, this version
addresses limitations related the Detection and Context Assessment phases highlighted by
previous studies [68, 32, 55].
One noted limitation in EpiDCA is that the Pre-processing and Categorization phase in-
volved the manual extraction of epidemiological data (Danger signals) and locations from
the text, which was time-consuming and could be improved. Several studies have addressed
these limitations, ranging from DCA studies proposing optimization methods [49, 33] to
text-mining works that focus on the automated information extraction from texts [155, 148].
Combining these advances could enhance EpiDCA’s efficiency and usability.
In addition to these improvements, another significant contribution of EpiDCA has been
the consideration of the spatio-temporal information of the detected events in the Detection
phase. However, integrating network analysis methods into EpiDCA could offer additional
layers of understanding. For example, by identifying highly connected holdings that are crit-
ical for surveillance and disease prevention [45], rather than focusing on the geographical
distance only.
Integrating environmental data through risk mapping appears to be a promising approach.
Various tools can provide this input, and it is important to combine available data sources.
For example, Arbocarto [104] is an operational spatial modeling tool that predicts the dy-
namics of Aedes mosquito species based on weather and environmental variables. It pro-
vides weekly updates on the distribution of these mosquitoes, which are vectors for topical
diseases such as dengue fever, Zika virus, and Chikungunya.
Moreover, to convert the risk map information (such as risk index or probability of occur-
rence of a given disease) into a Safe signal, we used a relatively simple linear function. How-
ever, it may be beneficial to explore alternative methods that could provide more nuanced
insights. For example, applying an exponential decay function, which has been effectively
used in epidemiological modeling [21].

In this work, we have successfully applied EpiDCA to three distinct case studies, demon-
strating its robustness and genericity in animal and human disease surveillance. Looking
ahead, we can extend this approach by adapting and applying it to other areas that rely on
similar data sources (textual and environmental data). For instance, applying EpiDCA in
the context of food security surveillance and plant disease surveillance, both of which are
relevant and current topics in early surveillance systems [40, 92, 132].
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