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réalisation de ce projet de thèse.
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Un grand merci à mes anciens professeurs, Carole Saya, Christian Mejia-Taulé et Frédérique
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Mots Clés : Modélisation par processus gaussiens, Estimation d’ensembles d’excursion,
Plans d’expériences séquentiels

Résumé

De nombreuses questions industrielles sont liées aux problèmes d’estimation d’ensembles
d’excursion, sous la forme de l’estimation d’un ensemble de valeurs d’entrée admissibles
de modèle, correspondant par exemple à des schémas de conception optimale admissibles.
L’ensemble d’excursion que nous cherchons à estimer est défini comme l’ensemble des valeurs
du modèle dans l’espace des entrées (espace de design) satisfaisant une ou des contraintes
données sur les sorties du modèle. Dans ce qui suit, nous considérons le cadre d’un simulateur
numérique de type bôıte noire, pouvant être évalué en tout point de l’espace de design, mais
telle que chacune de ces évaluations soit coûteuse en temps de calcul.

Une manière efficace d’estimer un ensemble d’excursion consiste à modéliser la fonction
bôıte noire comme la réalisation d’un processus gaussien. La construction séquentielle d’un
plan d’expériences, c’est-a-dire un ensemble de points de l’espace de design ainsi que les
évaluations associées par la fonction bôıte noire, permet l’apprentissage progressif du modèle
de substitution. Les points ajoutés au plan d’expériences séquentiel sont choisis en fonction
de l’optimisation d’un critère d’acquisition, dépendant du modèle de substitution à l’étape
courante. De nombreux types de critères d’acquisition peuvent être envisagés suivant l’objectif
fixé sur la fonction bôıte noire (connaissance globale, optimisation, estimation d’un ensemble
d’excursion, etc.). Il existe également une classe de critères d’acquisition appelée ”Stepwise
Uncertainty Reduction” (SUR) ayant pour but d’anticiper l’impact de l’ajout de la prochaine
évaluation au plan d’expériences sur une mesure d’incertitude bien choisie.

L’objectif de cette thèse est d’étudier les critères d’acquisition adaptés à l’estimation
d’ensembles d’excursion, pour des fonctions bôıtes noires à sorties scalaires ou vectorielles,
et d’appliquer ces contributions à une application de calibration d’un simulateur numérique
pour la conception d’éoliennes. La première partie se concentre, dans le cas de sorties scalaires,
sur l’amélioration d’un critère d’acquisition adapté à l’estimation d’ensembles d’excursion en
une version SUR. Le but de cette démarche est de combiner la robustesse du critère choisi
due à son caractère exploratoire avec les bonnes performances en termes d’exploitation des
stratégies de type SUR. La seconde partie se concentre sur le cadre de travail de modèles
de type bôıte noire avec sortie vectorielle, et pour lesquels toutes les composantes de sor-
tie sont évaluées simultanément (données isotopiques). L’objectif de cette seconde partie est
de développer plusieurs critères adaptés à l’estimation simultanée de chacun des ensembles
d’excursion pour chaque composante de sortie du modèle. Parmi les critères proposés, on
distingue des critères inspirés du cadre scalaire utilisant un modèle de substitution sur chaque
composante de sortie du modèle et un autre critère utilisant un modèle de substitution de
type Multi-Output Gaussian Process (MOGP) ayant pour objectif de prendre en compte la
corrélation entre les différentes composantes de sortie de la fonction bôıte noire. Les différentes
stratégies proposées sont appliquées à la calibration d’un simulateur numérique pour la con-
ception d’éoliennes. Le but de cette application est de trouver l’ensemble des paramètres
d’entrée du simulateur (coefficients de raideur de certains matériaux), tels que les modes vi-
bratoires calculés par le simulateur ne soient pas trop éloignés pour une norme adaptée et par
rapport à des seuils fixés, des modes observés issus des données expérimentales.
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Abstract

Many industrial issues are related to excursion set estimation problems, in the form of
estimating a set of feasible model input values, corresponding for example to feasible optimal
design schemes. The excursion set we seek to estimate is defined as the set of model values
in the input space (design space) satisfying a given constraint(s) on the model outputs. In
the following, we consider the framework of a black box numerical simulator, which can be
evaluated at any point in the design space, but for a high computational time.

An efficient way of estimating an excursion set is to model the black box function as the
realization of a Gaussian process. The sequential construction of a design of experiments, i.e.
a set of points in the design space and the associated evaluations by the black box function,
enables the progressive learning of the surrogate model. The points added to the sequential
design of experiments are chosen according to the optimization of an acquisition criterion, that
depends on the surrogate model at the current stage. Many types of acquisition criteria can
be considered, depending on the objective set for the black box function (global knowledge,
optimization, estimation of an excursion set, etc.). There is also a class of acquisition criteria
called ”Stepwise Uncertainty Reduction” (SUR), whose aim is to anticipate the impact of
adding the next evaluation to the experimental design on a well-chosen uncertainty measure.

The aim of this thesis is to study acquisition criteria suitable for estimating excursion sets,
for black box functions with scalar or vector outputs, and to apply these contributions to the
calibration of a numerical simulator for wind turbine design. The first part focuses, in the case
of scalar outputs, on the improvement of an acquisition criterion adapted to the estimation
of excursion sets into a SUR version. The aim of this approach is to combine the robustness
of the chosen criterion due to its exploration property with good performance in terms of the
exploitation of SUR-type strategies. The second part focuses on the framework of black box
models with vector output, and for which all output components are evaluated simultaneously
(isotopic data). The aim of this second part is to develop several criteria adapted to the
simultaneous estimation of each of the excursion sets for each output component of the model.
Among the proposed criteria, we distinguish between criteria inspired by the scalar framework
using a surrogate model on each model output component, and another criterion using a Multi-
Output Gaussian Process (MOGP) type surrogate model whose aim is to take into account the
correlation between the different output components of the black box function. The different
proposed strategies are applied to the calibration of a numerical simulator for wind turbine
design. The aim of this application is to find a set of input parameters of the simulator
(stiffness coefficients for certain materials), such that the vibration modes calculated by the
simulator are not too far apart, for an adapted norm and in relation to fixed thresholds, from
the observed modes derived from experimental data.
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Introduction

Contexte

De nombreuses problématiques industrielles actuelles sont liées à l’estimation d’ensembles
d’excursion, notamment dans le cadre de problèmes de conception optimale complexes, où
l’on recherche des solutions réalisables. La quantité d’intérêt du problème est généralement
une sortie d’un simulateur numérique coûteux en temps de calcul, modélisée par une fonction
bôıte noire notée g, représentant un ou plusieurs phénomènes physiques complexes. L’objectif
est de trouver les valeurs de paramètres d’entrée de g telles que la quantité d’intérêt respecte
une certaine contrainte, par exemple reste en dessous d’un seuil fixé. Parmi les nombreux
exemples d’applications, on peut citer le cas du paramétrage du contrôle d’un système de
dépollution d’un véhicule ([El Amri et al., 2020]), récemment étudié dans le cadre d’une thèse
IFP Énergies Nouvelles.

D’un point de vue mathématique, un problème d’estimation d’ensemble d’excursion con-
siste à estimer, à partir d’un nombre limité d’évaluations potentiellement coûteuses de g,
l’ensemble défini par

Γ? :=
{
x ∈ X, g(x) ≤ T

}
, (1)

où X désigne l’espace des entrées appelé espace de design et T un seuil prédéfini. Pour résoudre
ce problème, il est possible de définir de façon séquentielle un ensemble de points d’évaluations
dans X et d’évaluations correspondantes par g, que l’on appelle plan d’expériences (noté DoE
pour Design of Experiments). L’objectif d’une telle approche est d’adapter le DoE au fur et
à mesure de l’enrichissement, afin de limiter le nombre d’évaluations coûteuses de g (voir par
exemple [Ginsbourger, 2017]). Pour cela, on sélectionne séquentiellement les nouveaux points
à ajouter au DoE en optimisant un critère d’acquisition qui exploite l’information fournie par
un modèle de substitution du modèle g. Un modèle de substitution est un modèle moins
coûteux en temps de calcul, et défini à partir d’un nombre limité d’évaluations du vrai modèle
bôıte noire g.

Parmi les différents modèles de substitution possibles, nous nous intéressons à la régression
par processus gaussiens (notée GPR pour Gaussian Process Regression), qui consiste à con-
sidérer le modèle g comme la réalisation d’un processus gaussien. L’avantage d’un tel modèle
de substitution, qui le rend particulièrement populaire, est le fait qu’il fournisse à la fois une
prédiction, mais également une estimation de l’erreur associée. De plus, un processus gaussien
est entièrement déterminé par ses deux premiers moments (moyenne et covariance), et ces mo-
ments peuvent être mis à jour conditionnellement à des observations de façon analytique, ce
qui est particulièrement intéressant pour la procédure d’enrichissement séquentielle.

Les critères d’acquisition adaptés à l’estimation d’un ensemble d’excursion incluent des
critères standards comme le nombre de déviation noté ”U” et le critère Bichon qui ont pour
objectif d’estimer la frontière de l’ensemble Γ?. Les stratégies de réduction progressive de
l’incertitude (notées SUR pour Stepwise Uncertainty Reduction) sont généralement plus effi-
caces, puisqu’elles anticipent l’impact de l’ajout de nouveaux points au DoE sur la réduction
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de l’incertitude de prédiction. Parmi elles, on peut par exemple citer la stratégie SUR Vorob’ev
inspirée de la théorie des ensembles aléatoires.

Motivation : application au simulateur d’éoliennes

L’application qui motive notre travail est proposée par IFP Énergies Nouvelles, et concerne
la calibration d’un simulateur numérique pour la conception d’éoliennes. Le simulateur
numérique en question étudie les fréquences de vibration et les modes de déformation de
la structure mécanique d’une éolienne à l’arrêt et en réponse à des charges de vent. L’objectif
de l’étude de la signature vibratoire (fréquences et modes) d’une éolienne est d’identifier les
défauts structurels (défauts de masse ou de raideur, usure prématurée, désalignement de com-
posants, etc.). L’éolienne étudiée est la DTU 10-MW Reference Wind Turbine (DTU 10MW
RWT).

Le simulateur numérique peut être considéré comme un modèle bôıte noire vectoriel,
prenant en entrée des paramètres du système correspondant aux coefficients de raideur de cer-
tains matériaux, et renvoyant en sortie les fréquences de vibration et les modes de déformation
de la structure mécanique. Le but est de trouver l’ensemble des valeurs des paramètres d’entrée
Θ du simulateur, telles que les fréquences de vibration λi(Θ) et les modes de déformation
Modi(Θ) calculés par le simulateur ne soient pas trop éloignés, selon une certaine mesure de
similarité et pour des seuils fixés, des fréquences de référence λ?i et des modes Mod?i calculés
à partir de données expérimentales. Dans le cahier des charges pour l’application IFPEN,
il est demandé de rechercher simultanément chacun des ensembles d’excursions partiels pour
plusieurs composantes de sortie. Nous allons aborder ce problème de pré-calibration selon
deux formulations : l’une prenant en compte les deux modes principaux ensemble, et l’autre
traitant séparément les modes et les fréquences, avec une mesure de similarité distincte pour
chaque approche.

Les données du simulateur sont supposées être isotopiques, ce qui signifie que les différentes
composantes de sortie du simulateur sont évaluées simultanément pour un point d’évaluation
donné. Cette hypothèse signifie qu’un point d’évaluation commun pour toutes les com-
posantes de sortie du simulateur doit être choisi pour l’enrichissement du plan d’expérience,
afin d’utiliser correctement toutes les informations fournies par les simulations coûteuses du
simulateur.

Problématiques et défis de la thèse

Les objectifs principaux de cette thèse sont d’étudier les critères d’acquisition adaptés à
l’estimation des ensembles d’excursion, pour les fonctions bôıtes noires à sortie scalaire ou
vectorielle, et d’appliquer ces contributions à l’application présentée ci-dessus concernant la
calibration d’un simulateur numérique pour la conception d’éoliennes.

Tout d’abord, dans le cadre des fonctions bôıtes noires à sortie scalaire, nous avons re-
marqué que le critère SUR Vorob’ev n’est pas toujours robuste, notamment en raison de son
faible caractère exploratoire. En effet, lors de la recherche d’un ensemble d’excursion composé
de plusieurs composantes connexes et pour un nombre raisonnable de simulations, la stratégie
d’enrichissement basée sur le critère SUR Vorob’ev manque parfois certaines composantes
connexes. Nous proposons donc de résoudre ce problème en développant une version SUR du
critère Bichon. L’idée sous-jacente du critère SUR Bichon est de proposer une stratégie SUR
facile à mettre en œuvre qui combine la robustesse du critère Bichon (en raison de sa nature
exploratoire) avec les performances reconnues des stratégies SUR (en termes d’exploitation).
Il est important de rappeler que chaque critère d’acquisition définit un certain équilibre entre
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l’exploration de l’espace de design et son exploitation dans un but spécifique, dans notre cas,
l’estimation d’un ensemble d’excursion.

La seconde partie, motivée par l’application à la conception d’éoliennes, se concentre sur
le cadre des modèles bôıte noire avec sortie vectorielle, pour lesquels toutes les composantes
de sortie sont évaluées simultanément (données isotopiques). Dans ce cadre, le modèle bôıte
noire vectoriel est noté g := (g1, . . . , gp)>, et pour un vecteur de seuils T := (T1, . . . , Tp)>, les
ensembles d’excursion partiels sont définis par

Γ?i := {x ∈ X, gi(x) ≤ Ti}, (2)

et l’ensemble d’excursion global Γ? est défini comme l’intersection de tous les ensembles
d’excursion partiels :

Γ? := {x ∈ X, g(x) ≤ T } =
p⋂
i=1

Γ?i . (3)

L’étude de [Fossum et al., 2021] se concentre sur l’estimation de l’ensemble d’excursion global
Γ? en utilisant des extensions des critères SUR de la variance de la mesure d’excursion et
de la variance de Bernoulli intégrée. Ces critères utilisent un modèle de substitution de
processus Gaussien à sorties multiples et une généralisation de la probabilité de couverture.
L’estimation de chacun des ensembles d’excursion partiels Γ?i est différente de l’estimation de
l’ensemble d’excursion global, car elle nécessite non plus de découvrir seulement les frontières
de l’ensemble d’excursion global, mais toutes les frontières de chacun des ensembles d’excursion
partiels. Pour ce faire, trois nouvelles stratégies d’enrichissement basées sur le critère Bichon
sont introduites. Les deux premières utilisent des critères scalaires basés sur des modèles
de substitution indépendants, tandis que la troisième utilise un processus gaussien à sortie
vectorielle. Les différentes stratégies étudiées sont ensuite mises en œuvre dans le cadre
de l’application susmentionnée, à savoir la calibration d’un simulateur numérique pour la
conception d’éoliennes.

Organisation du manuscrit

Ce manuscrit est structuré en cinq chapitres. Les deux premiers chapitres présentent des
outils classiques issus de la littérature scientifique, fournissant ainsi les bases nécessaires à la
compréhension de la suite du manuscrit. Les trois chapitres suivants présentent les contribu-
tions spécifiques de cette recherche. L’organisation du manuscrit est la suivante :

• Le Chapitre 1 fournit un aperçu de la régression par processus gaussiens (GPR), et de son
utilisation dans le cadre de DoEs séquentiels pour la modélisation des fonctions bôıtes
noires couteuses. La régression par processus gaussiens (GPR) est un exemple de modèle
de substitution, construit à partir d’un échantillon entrées/sorties du modèle bôıte noire.
Ce modèle de substitution offre la possibilité de définir un critère d’enrichissement peu
coûteux sur l’ensemble des entrées du modèle, permettant ainsi l’ajout efficace de points
pertinents au plan d’expériences.

• Le Chapitre 2 introduit le problème d’estimation d’un ensemble d’excursion et explore
divers critères standards d’enrichissement de DoEs dédiés à ce cadre. La classe des
critères Stepwise Uncertainty Reduction (SUR) est également abordée, ces critères an-
ticipant l’impact de l’ajout de points au plan d’expériences séquentiel en minimisant
l’espérance d’une incertitude résiduelle conditionnelle. Plusieurs exemples de stratégies
SUR sont présentés, y compris une extension adaptée au cadre des modèles vectoriels.
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• Le Chapitre 3 propose un nouveau critère SUR pour l’enrichissement des DoEs basé sur
le critère Bichon dans le contexte de l’estimation d’un ensemble d’excursion via GPR.
Ce nouveau critère est comparé aux critères usuels comme le critère SUR Vorob’ev ou
le critère Bichon. Des simulations numériques sur des fonctions tests classiques met-
tent en évidence le bon comportement exploratoire et la robustesse du nouveau critère.
Les résultats de ce chapitre ont été publiés dans la revue Statistics and Computing
([Duhamel et al., 2023]).

• Le Chapitre 4 étudie l’estimation des ensembles d’excursion dans le cadre d’une fonction
bôıte noire vectorielle. Il introduit trois critères d’enrichissement du plan d’expériences
inspirés par le critère Bichon, adaptés à l’estimation simultanée de chacun des ensembles
d’excursion partiels pour chaque composante de sortie du modèle. Ces critères sont
comparés sur des exemples analytiques avec plusieurs composantes de sortie.

• Le Chapitre 5 applique la méthodologie proposée au Chapitre 4 à la pré-calibration d’un
simulateur numérique d’éolienne. Le simulateur numérique reproduit les fréquences de
vibration et les modes de déformation de l’éolienne en réponse aux charges de vent.
L’objectif de cette application est de trouver l’ensemble des valeurs des paramètres
d’entrée du simulateur (coefficients de raideur de certains matériaux) telles que les sorties
simulées soient suffisamment proches des fréquences et modes de référence, pour une
mesure de dissimilarité et des seuils spécifiés.

Parmi les contributions scientifiques apportées durant cette thèse, on compte un article
publié dans la revue Statistics and Computing, des participations (présentations orales) a des
congrès scientifiques internationaux (SAMO 2022, SIAM UQ 2022, Journées de la Statistiques
2023 de la SFdS et SIAM UQ 2024), ainsi que de nombreuses participations à des évenements
nationaux (Journées MASCOT NUM et CIROQUO) (1 présentation orale et 5 poster ses-
sions). De plus, un projet d’article sur les Chapitres 4 et 5 est en cours, avec une soumission
prévue avant la fin de l’année 2024.
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Introduction

Context

Many industrial problems are linked to the estimation of excursion sets, particularly in the
context of complex optimal design problems, where feasible solutions are sought. The quantity
of interest in the problem is usually an output of a computationally time-consuming numerical
simulator, modeled by a black-box function denoted g, representing one or more complex
physical phenomena. The objective is to find input parameter values of g such that the
quantity of interest respects a certain constraint, e.g., remains below a fixed threshold. Among
the many examples of applications, we can cite the case of parameterizing the control of a
vehicle pollution control system ([El Amri et al., 2020]), recently studied as part of an IFP
Énergies Nouvelles thesis.

From a mathematical point of view, an excursion set estimation problem consists in esti-
mating, from a limited number of potentially costly evaluations of g, the set defined by

Γ? :=
{
x ∈ X, g(x) ≤ T

}
, (4)

where X denotes the space of inputs called the design space and T a predefined threshold.
To solve this problem, it is possible to sequentially define a set of evaluation points in X and
corresponding evaluations by g, which we call Design of Experiments (DoE). The aim of such
an approach is to adapt the DoE as enrichment proceeds, in order to limit the number of
costly evaluations of g (see for example [Ginsbourger, 2017]). This is achieved by sequentially
selecting new points to be added to the DoE by optimizing an acquisition criterion that
exploits the information provided by a surrogate model of the g model. A surrogate model is
one that is less costly in terms of computation time, and is defined on the basis of a limited
number of evaluations of the true g black box model.

Among the various possible surrogate models, we are interested in Gaussian Process Re-
gression (GPR), which consists in considering the g model as the realization of a Gaussian
process. The advantage of such a surrogate model, which makes it particularly popular, is
that it provides both a prediction and an estimate of the associated error. Furthermore, a
Gaussian process is entirely determined by its first two moments (mean and covariance), and
these moments can be updated analytically conditional on observations, which is particularly
interesting for the sequential enrichment procedure.

Acquisition criteria suitable for estimating an excursion set include standard criteria such
as Deviation number denoted ”U” and Bichon criterion, which aim to estimate the boundary
of the Γ? set. Stepwise Uncertainty Reduction strategies (SUR) are generally more effective,
since they anticipate the impact of adding new points to the DoE on reducing prediction
uncertainty. SUR Vorob’ev strategy is one example, inspired by random set theory.
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Motivation: application to wind turbine simulator

The application that motivates our work is proposed by IFP Énergies Nouvelles, and concerns
the calibration of a numerical simulator for wind turbine design. The numerical simulator in
question studies the vibration frequencies and deformation modes of the mechanical structure
of a wind turbine at standstill and in response to wind loads. The aim of studying the
vibration signature (frequencies and modes) of a wind turbine is to identify structural faults
(mass or stiffness defects, premature wear, component misalignment, etc.). The wind turbine
studied is the DTU 10-MW Reference Wind Turbine (DTU 10MW RWT).

The numerical simulator can be considered a vector-valued black box model, taking as
input system parameters corresponding to the stiffness coefficients of certain materials, and
returning as output the vibration frequencies and deformation modes of the mechanical struc-
ture. The aim is to find the set of values for the input parameters Θ for the simulator,
such that the simulated vibration frequencies λi(Θ) and deformation modes Modi(Θ) closely
match, within specified thresholds, the reference frequencies λ?i and modes Mod?i obtained
from experimental data. In the specifications for the IFPEN application, we are asked to
simultaneously search each of the partial excursion sets for several output components. We
will approach this pre-calibration problem using two formulations: one taking into account
the two main modes together, and the other treating modes and frequencies separately, with
a distinct dissimilarity measure for each approach.

Simulator data are assumed to be isotopic, which means that the different simulator output
components are evaluated simultaneously for a given evaluation point. This assumption means
that a common evaluation point for all simulator output components must be chosen for
DoE enrichment, in order to make proper use of all the information provided by expensive
simulations of the simulator.

Issues and challenges of the thesis

The main objectives of this thesis are to study acquisition criteria suitable for estimating
excursion sets, for black box functions with scalar or vector output, and to apply these contri-
butions to the application presented above concerning the calibration of a numerical simulator
for wind turbine design.

First of all, in the context of black box functions with scalar output, we noted that SUR
Vorob’ev criterion is not always robust, notably due to its weak exploratory character. Indeed,
when searching for an excursion set composed of several connected components and for a
reasonable number of simulations, the enrichment strategy based on SUR Vorob’ev criterion
sometimes misses certain connected components. We therefore propose to solve this problem
by developing a SUR version of Bichon criterion. The idea behind SUR Bichon criterion is to
propose an easy-to-implement SUR strategy that combines the robustness of Bichon criterion
(due to its exploratory nature) with the recognized performance of SUR strategies (in terms
of exploitation). It’s important to remember that each acquisition criterion defines a certain
balance between exploring the design space and exploiting it for a specific purpose, in our
case the estimation of an excursion set.

The second part, motivated by application to wind turbine design, focuses on the frame-
work of black box models with vector output, for which all output components are evaluated
simultaneously (isotopic data). In this framework, the vector black box model is denoted
g := (g1, . . . , gp)>, and for a vector of thresholds T := (T1, . . . , Tp)>, the partial excursion sets
are defined by

Γ?i := {x ∈ X, gi(x) ≤ Ti}, (5)
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and the global excursion set Γ? is defined as the intersection of all partial excursion sets :

Γ? := {x ∈ X, g(x) ≤ T } =
p⋂
i=1

Γ?i . (6)

The study of [Fossum et al., 2021] focuses on estimating the global excursion set Γ? using
extensions of the SUR Excursion measure variance and Integrated Bernoulli variance criteria.
These criteria use a multi-output Gaussian process surrogate model and a generalization
of coverage probability. Estimating each of the partial excursion sets Γ?i is different from
estimating the global excursion set, as it requires discovering both the global and partial
boundaries. To achieve this, three new enrichment strategies based on Bichon criterion are
introduced. The first two use scalar criteria based on independent surrogate models, while
the third uses a multi-output Gaussian process. The various strategies studied are then
implemented in the context of the aforementioned application, which concerns the calibration
of a numerical simulator for wind turbine design.

Manuscript organization

This manuscript is structured in five chapters. The first two chapters present classic tools
from the scientific literature, providing the foundations for understanding the rest of the
manuscript. The following three chapters present the specific contributions of this research.
The manuscript is organized as follows:

• Chapter 1 provides an overview of Gaussian process regression (GPR), and its use in se-
quential DoEs for modeling expensive black box functions. Gaussian Process Regression
(GPR) is an example of a surrogate model, built from a sample input/output black box
model. This surrogate model offers the possibility of defining an inexpensive enrichment
criterion on all model inputs, enabling the efficient addition of relevant points to the
DoE.

• Chapter 2 introduces the problem of estimating an excursion set and explores various
standard DoEs enrichment criteria dedicated to this framework. The class of Stepwise
Uncertainty Reduction (SUR) criteria is also discussed, which anticipate the impact of
adding points to the sequential experimental design by minimizing the expectation of
a conditional residual uncertainty. Several examples of SUR strategies are presented,
including an extension adapted to the framework of vector models.

• Chapter 3 proposes a new SUR criterion for DoE enrichment based on Bichon criterion
in the context of excursion set estimation via GPR. This new criterion is compared to
usual criteria such as SUR Vorob’ev criterion or Bichon criterion. Numerical simulations
on classical test functions highlight the good exploratory behavior and robustness of the
new criterion. The results of this chapter have been published in the journal Statistics
and Computing ([Duhamel et al., 2023]).

• Chapter 4 studies the estimation of excursion sets within the framework of a vector black
box function. It introduces three DoE enrichment criteria inspired by Bichon criterion,
adapted for the simultaneous estimation of each partial excursion set for each model
output component. These criteria are compared on analytical examples with several
output components.

• Chapter 5 applies the methodology proposed in Chapter 4 to the pre-calibration of a
numerical wind turbine simulator. The numerical simulator reproduces the vibration
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frequencies and deformation modes of the wind turbine in response to wind loads. The
aim of this application is to find the set of values for the input parameters of the
simulator (stiffness coefficients of certain materials) such that the simulated outputs are
sufficiently close to the reference frequencies and modes, for a measure of dissimilarity
and specified thresholds.

Among the scientific contributions made during this thesis are an article published in the
journal Statistics and Computing, participations (oral presentations) at international scientific
congresses (SAMO 2022, SIAM UQ 2022, Journées de la Statistique 2023 of the SFdS and
SIAM UQ 2024), as well as numerous participations in national events (Journées MASCOT
NUM and CIROQUO) (1 oral presentation and 5 poster sessions). In addition, a draft article
on Chapters 4 and 5 is underway, with submission expected before the end of the year 2024.
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Chapter 1

Background to Gaussian process
regression

Outlines
Surrogate models are approximations of the output of the simulator built from a sample of simulations,
which can replace the original expensive simulator with a less time-consuming version. Among surrogate
models, Gaussian Process Regression (GPR) is very popular: the simulator (black box function) is
considered as a realization of a Gaussian process (GP). The use of such a GPR model, coupled with
a strategy of sequential addition of points evaluated by the black box function, called sequential design
of experiments (DoE), is commonly used to obtain information on the black box function in a time-
efficient way. This chapter seeks to provide an overview of GPR and its use in the context of sequential
DoEs for modeling black box functions.

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Principle of GPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Covariance structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Covariance structure type . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Initial design of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Sequential DoE and enrichment criteria . . . . . . . . . . . . . . . . . . . . 17
1.6.1 Global enrichment criteria . . . . . . . . . . . . . . . . . . . . . . . 19
1.6.2 Goal-oriented enrichment criteria for optimization . . . . . . . . . 19

1.7 Extension to vector-valued models . . . . . . . . . . . . . . . . . . . . . . 20
1.7.1 Principle of multi-output Gaussian processes . . . . . . . . . . . . 20
1.7.2 Covariance structure . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7.3 Autokrigeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1 Introduction

In the 1950s, Daniel Krige developed an empirical approach ([Krige, 1951]) to solve problems
of bias when estimating the grade of a block of ore from a limited number of samples around
the block, notably in South African gold mines. Subsequently, Georges Matheron brought
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a theoretical formalization ([Matheron, 1963]) to this method, introducing a key tool called
the variogram to analyze the degree of spatial dependency of observations. This led to the
development of the variogram-based estimation method known as Kriging.

Geostatistics, which emerged from these advances, applies Kriging theory to data located
in a geographical space. This approach integrates probabilistic tools to study spatially cor-
related phenomena. From the 1970s to the present day, geostatistics has spread to other
fields such as meteorology, hydrology and oceanography. The method has also been applied
to time-consuming industrial calculation codes, thus generalizing the geostatistical approach
to functions with input parameter vectors of dimension d > 3 and with data not necessarily
geographical.

Kriging, as introduced by Georges Matheron, is an interpolation technique formulated as a
linear combination of observations. This method is based on determining the optimal weights
to assign to neighboring observations in order to predict the value at an unobserved point.
From this point of view, Kriging can be interpreted as the Best Linear Unbiased Predictor
(BLUP). This means it provides the best possible unbiased linear prediction for unobserved
values, taking into account the spatial dependency structure of the data.

A Bayesian approach examining the Kriging problem in function space is also possible.
This perspective uses Gaussian Processes (GPs) to describe the distribution of possible func-
tions that could represent the data. The prior Gaussian distribution is conditioned to the
simulation results at design points. It describes the distribution of these functions taking into
account the observed data (see Figure 1.1). Thanks to the Gaussian property, the distribu-
tion is totally characterized by its mean and covariance. This is known as Gaussian process
regression (GPR) or Bayesian approach of Kriging.

Figure 1.1: Illustration of GP realizations conditioned by observations.

In summary, although these two points of view, BLUP and GPR, use different approaches,
they lead to the same predictor. These two perspectives offer complementary angles for
understanding how Kriging works and how can spatial dependence of data be taken into
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account to perform accurate interpolations. In this thesis we focus mainly on GPR, and refer
to [Matheron, 1963], [Cressie, 1990] and [Baillargeon, 2005] for more details on the BLUP
point of view.

Many other interpolation methods have also been developed and are frequently used. Some
are deterministic, such as barycentric methods [Arnaud and Emery, 2000] and spline meth-
ods [Wahba, 1990], and some are stochastic, such as multiple linear regression [Jobson, 1991].
However, GPR distinguishes itself from these other interpolation methods by taking into
account the spatial dependency structure of the data. GPR also offers the advantage of pro-
viding, due to its stochastic nature, an estimate of the error associated with the model, which,
thanks to the Bayesian viewpoint of Kriging, provides a credible interval for the prediction.

1.2 Principle of GPR

In this section, we assume that the reader is familiar with the notions of Gaussian processes
(GPs) and stationary processes, and refer to the books by [Breiman, 1992] and [Lindgren, 2012]
for further details if necessary.

Let X be a compact set of Rd (d ∈ N?) and g : X → R a black box function, whose
analytical expression is unknown but which can be evaluated at any point of X at a heavy
computational cost. In the context of GPR, g is considered as a realization of a GP ξ defined
on a probabilistic space (Ω,F ,P), i.e., g(x) = ξ(x, ω) for a given ω in Ω. More precisely, the
process is written as the sum of a deterministic part and a stochastic part:

ξ(x) := m(x) + Z(x), ∀ x ∈ X

with m the trend of ξ (deterministic part) and Z a stationary GP (stochastic part), of zero
mean, known covariance kernel k : X2 → R and in particular variance function σ2(x) :=
k(x,x) for any x in X. We simply recall that a stationary GP is a GP which requires any
joint distribution to be translation-invariant. To limit the complexity of estimating the trend
function m, the choice of this latter is often parametrized as a linear combination of known
basis functions (fi)li=1 with coefficients β := {βi}li=1 to be estimated. The choice of the
covariance kernel associated with the GP Z (see Section 1.3) is crucial since it determines the
predictor regularity and the dependency structure of the data.

Let us denote g(χn) := (g(x(1)), ..., g(x(n)))> the evaluations of g on an initial design of
experiments (DoE) χn := (x(1), ...,x(n)) belonging to Xn. The random vector ξ(χn) then
corresponds to the finite-dimensional distribution of the process (ξ(x),x ∈ X) on χn and we
define En as the event ξ(χn) = g(χn). K := (k(x(i),x(j)))1≤i,j≤n is the covariance matrix
of ξ(χn) and k(x) the cross-covariance matrix between ξ(χn) and ξ(x) defined by k(x) :=
(k(x,x(1)), ..., k(x,x(n)))> for any x in X. We denote f(x) := (f1(x), ..., fl(x))> the evaluation
vector of f on x defining the trend and F ∈ Rn×l the matrix with f(x(i))> as ith row. When β
is known, the process ξ conditioned on the event En is still Gaussian ([O’Hagan, 1978]) with
mean, variance and covariance respectively denoted mn, σ2

n, and kn given by

mn(x) = f(x)>β + k(x)>K−1(g(χn)− Fβ
)
, (1.1)

σ2
n(x) = σ2(x)− k(x)>K−1k(x), (1.2)

kn(x,x′) = k(x,x′)− k(x)>K−1k(x′). (1.3)

We notice that the best linear unbiased predictor (BLUP) (with respect to mean quadratic
error) is given by (1.1) with variance (1.2) and covariance (1.3). Also, the error σ2

n(x) of the
model at a point x does not depend on the evaluations of g on the DoE.
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When β is unknown and estimated by the maximum likelihood estimator (MLE)

β̂ :=
(
F>K−1F

)−1F>K−1g(χn),

formulas (1.1), (1.2) and (1.3) become

mn(x) = f(x)>β̂ + k(x)>K−1(g(χn)− Fβ̂
)
, (1.4)

σ2
n(x) = σ2(x)− k(x)>K−1k(x)+(

f(x)> − k(x)>K−1F
)(
F>K−1F

)−1(f(x)> − k(x)>K−1F
)>
, (1.5)

kn(x,x′) = k(x,x′)− k(x)>K−1k(x′)+(
f(x)> − k(x)>K−1F

)(
F>K−1F

)−1(f(x′)> − k(x′)>K−1F
)>
. (1.6)

Their interpretation as conditional expectation, covariance and variance is still possi-
ble in a Bayesian framework with a non informative prior distribution on the parameter β
([Helbert et al., 2009]).

The main advantage of this method is that predictive mean and variance functions are
analytically tractable, and this is due to the Gaussian nature of the processes used.

1.3 Covariance structure

The choice of covariance structure, given by the kernel k, plays a key role in Gaussian process
regression. Recalling that for all (x,x′) ∈ X2,

k(x,x′) := Cov(ξ(x), ξ(x′)),

k defines the reciprocal influence of design space points on each other, with respect to Gaussian
process modeling. In practice, we often choose a class of parameter-dependent covariance
structures. Its parameters are then estimated, based on the available model observations. The
two main methods for estimating covariance parameters are maximum likelihood estimation
and cross-validation. In practice, the type of covariance structure used is chosen on the basis
of expert knowledge of the expected regularity for the black box function under consideration.

1.3.1 Covariance structure type

Most of the time, the study of multidimensional kernels on X ⊂ Rd, really boils down to
the study of one-dimensional kernels by tensor product. For x := (x1, . . . , xd)> and x :=
(x′1, . . . , x′d)> belonging to X,

k(x,x′) :=
d∏
i=1

ki(xi,x′i),

with ki one-dimensional kernels.
It is important to note that any positive definite symmetrical function can be used to

define a covariance kernel, but we will present some of the main types of covariance kernels
commonly used in the literature. Recall that the stationary nature of the GPs used implies
that the covariance kernel k(x,x′), evaluated at two points, depends only on x − x′. In
this section, we consider isotropic kernels, a special case of stationary kernels for which the
covariance kernel k(x,x′) is a function of the distance hx,x′ := ‖x−x′‖ between the two points
x and x′, where ‖.‖ denotes the Euclidean norm on X.
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The most basic type of kernel is the Gaussian (or squared exponential) kernel (see e.g.
[Rasmussen et al., 2006]) given by

k(x,x′) := σ2 exp
(
−
h2

x,x′

2θ2

)
(1.7)

This covariance kernel corresponds to infinitely differentiable process trajectories. [Stein, 1999]
argues that imposing such strict regularity constraints is often unrealistic for modeling physi-
cal processes and suggests the use of the Matérn kernel class, which is also particularly widely
used in the literature.

The Matérn ν type covariance kernel, of parameters (σ, θ) ∈ (R∗+)2 is defined, for all
(x,x′) ∈ X2, by:

kν(x,x′) = σ2 21−ν

Γ(ν)

(√
2ν hx,x′

θ

)
Kν

(√
2ν hx,x′

θ

)
, (1.8)

where Γ(.) denotes the Euler Gamma function, Kν(.) the modified Bessel function of the
second kind ([Abramowitz and Stegun, 1965]).

In the case where ν is a positive half-integer (i.e., of the form p + 1/2 with p ∈ N),
there exists a simplified expression from [Abramowitz and Stegun, 1965] of Eq. (1.8) as the
product of an exponential and a polynomial of order p. For p a natural number, the simplified
expression is given by

kν=p+ 1
2
(x,x′) = exp

(
−
√

2νhx,x′

θ

)
Γ(p+ 1)
Γ(2p+ 1)

p∑
i=0

(p+ i)!
i!(p− i)!

(√
8νhx,x′

θ

)p−i
. (1.9)

In the case of ν = 1/2, the kernel is said to be exponential, and when ν is made to
tend towards +∞, the kernel tends towards the Gaussian kernel. Table 1.1 summarizes
the expressions of the Matérn ν type covariance kernels and the regularity of the associated
trajectories (see [Paciorek, 2003]), for different classical values of ν.

Name ν values Expression of kν(x,x′) Trajectory regularity
Exponential 1

2 σ2 exp
(
−hx,x′

θ

)
C0

Matérn 3/2 3
2 σ2

(
1 +

√
3hx,x′
θ

)
exp

(
−
√

3hx,x′
θ

)
C1

Matérn 5/2 5
2 σ2

(
1 +

√
5hx,x′
θ +

5h2
x,x′

3θ2

)
exp

(
−
√

5hx,x′
θ

)
C2

Gaussian +∞ σ2 exp
(
−
h2

x,x′
2θ2

)
C∞

Table 1.1: Summary of some Matérn-type covariance kernels.

The different types of covariance kernel presented above are illustrated in Figure 1.2. The
covariance between two points is plotted (Figure 1.2a) as a function of the distance between
them, with θ = σ = 1. Figure 1.2b shows examples of trajectories associated with these
different types of covariance structure.

Other classes of covariance kernels include γ−exponential functions, rational quadratic
functions and piecewise polynomial functions (see [Rasmussen et al., 2006] for more details).
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(a) Covariance kernel (b) Example of trajectories

Figure 1.2: On the left, comparison of different types of covariance kernel for fixed parameters
θ = σ = 1, as a function of the distance between the two points under consideration. On the
right, comparison of examples of associated trajectories on the interval [0, 1], with a constant
zero trend.

1.3.2 Parameter estimation

The choice of covariance kernel parameters, also known as hyperparameters, is also important
to ensure that the GPR model used is suitable for the studied black box function. In practice,
these hyperparameters are estimated on the basis of evaluations already carried out of the
black box function on the latent DoE. Two general estimation methods can be distinguished.

The first method by maximum likelihood consists in maximizing a likelihood function,
aiming to find hyperparameters where, within the assumed statistical model, the data ob-
served on the latent DoE are the most probable (see for example [Ginsbourger et al., 2009],
[Gorbach et al., 2017] and [Gauchy, 2022]). Hyperparameter values that maximize the likeli-
hood function are called the maximum likelihood estimates (MLE). The maximum likelihood
method is a general approach that is not exclusively limited to hyperparameter estimation in
the context of Gaussian process regression (see [Stigler, 2007], [Rossi, 2018] for more general
explanations of this method).

The second method by cross-validation (see for example [Gorbach et al., 2017]) involves
segmenting the entire DoE into several distinct sets, then using some to train the surrogate
model and others to evaluate its performance, by minimizing an estimated generalization
error of the model. In the case of K-fold cross-validation, for a regression dataset consisting
of inputs X and corresponding outputs y, the generalization error is

− 1
K

K∑
k=1

log pθ
(
yk |X,y−k

)
(1.10)

with log pθ
(
yk |X,y−k

)
the log-likelihood of the outputs yk of the kth block knowing the

outputs y−k of the other blocks and all latent DoE evaluation pointsX. When the blocks have
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size 1, we deal with Leave-One-Out (LOO) cross validation. As with the maximum likelihood
method, cross-validation methods are more general and not only applicable to the case of
hyperparameter optimization for Gaussian process regression (see for example [Allen, 1974]
and [Stone, 1974]).

1.4 Examples

The principle of GPR and the notion of covariance structure are illustrated below on examples
performed in the R language with the help of the Dicekriging package.

To illustrate the notion of GPR, we simulate a trajectory of a centered Gaussian process
of covariance kernel of type Matérn 5/2 with a correlation length θ equal to 0.2 and a scaling
parameter σ equal to 1 (Figure 1.3a). This trajectory is then used as a black box function,
with 5 evaluation points chosen uniformly over [0, 1], to apply and compare the different GPR
methods (known parameters, MLE with constant trend and MLE with linear trend) on a
simple example.

The results for the different types of GPR (Figures 1.3b, 1.3c and 1.3d) show that the
prediction error associated with the model taking into account knowledge of the constant
trend is better than that of the other two models where the (constant or linear) trend must
be estimated. In practice, the black box function to be estimated is not a simulated trajectory
of a GP and the trend is therefore unknown, which justifies the interest of models with trend
estimation. In the case of the model MLE with constant trend, the trend is relatively well
estimated compared with the case of the model MLE with linear trend (Table 1.2). In the
latter case, the poor estimation of θ, linked to the small number of observations compared to
the complexity of hyperparameter optimization, results in a very poor prediction error (Figure
1.3c). In practice, the trend of the black box function to be estimated is not necessarily
constant, and the model MLE with linear trend may sometimes still be more suitable than
the model MLE with constant trend.

GPR type m or m̂ θ or θ̂ σ or σ̂
Known parameters 0 0.2 1

MLE with constant trend −0.55 0.19 0.85
MLE with linear trend −1.84 + 2.44x 0.0134 0.37

Table 1.2: Summary of hyperparameters for the different GPR models used.

This example illustrates the concept of GPR. In the presented case, the type of covariance
kernel used corresponds well, by definition, to that of the trajectory. However, in practice,
the choice of kernel type is a difficult step that can lead to poor predictions (see Section 1.3).

1.5 Initial design of experiments

In the context of an expensive industrial model (e.g. a computational simulator), approxi-
mating a black box function g by the use of GPR requires an initial Design of experiments
(DoE) which is then sequentially enriched (see e.g. [Ginsbourger, 2017]). The aim of such an
approach is to adapt the DoE as enrichment proceeds, in order to limit the number of costly
g evaluations. The first phase of the sequential enrichment strategy is to define a small initial
DoE (generally 5d to 10d points). A first GP is ajusted to this initial DoE (see formulas of
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(a) Simulated trajectory (b) Known constant trend

(c) Unknown constant trend (d) Unknown linear trend

Figure 1.3: Comparison of different types of GPR, based on 5 observation points uniformly
distributed over [0, 1], for a black box function simulated from a centered Gaussian process of
kernel covariance Matérn 5/2 (θ = 0.2 and σ = 1).

Section 1.2). New points are then sequentially selected one by one by optimizing an acqui-
sition criterion which exploits information given by the GP (see next section). The choice
of initial DoE has an impact on further enrichment. Most initial DoE involve geometrical
considerations, in the sense that the aim is to spread the DoE points as evenly as possible in
the design space. In some cases, sequential constructions are used, but without taking into
account the surrogate model provided by GPR. Some of the main types of initial DoE are
presented below.
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Minimax and Maximin distance designs

The Minimax distance design proposed by [Johnson et al., 1990] minimizes the maximum
distance between all points in X and their closest point among the DoE. It minimizes the
quantity :

ΦmM
(
x(1), . . . ,x(n)) := max

x∈X
min
i
‖x− x(i)‖. (1.11)

In other words, it comes down to finding a configuration (x(1), . . . ,x(n)) that minimizes the
radius of n balls of the same radius that completely cover the space X. This method is
relatively time-consuming, since it requires numerous evaluations of the norm present in (1.11).

Another method for distributing points, which is less computationally intensive, involves
choosing a design that maximizes the minimum distance between any two DoE points. This
approach, known as the Maximin distance design ([Johnson et al., 1990]), aims to keep the
DoE points as far apart as possible by maximizing the quantity

ΦMm
(
x(1), . . . ,x(n)) := min

i 6=j
‖x(i) − x(j)‖, (1.12)

where ‖.‖ denotes, for example, the Euclidean norm on X. This is equivalent to finding
a configuration (x(1), . . . ,x(n)) that maximizes the radius of n non-intersecting balls of the
same radius with respective centers x(1), . . . ,x(n).

Latin hypercube sampling designs

In statistical sampling, a Latin square involves a square grid with one sample per row and
column. The Latin hypercube sampling (LHS) introduced by [McKay et al., 1979] extends
this concept to an arbitrary number of dimensions, ensuring that each sample is the only one
in its axis-aligned hyperplane. The range of each component is divided into n equally probable
intervals and n sampling points are strategically placed to meet the Latin hypercube criteria.
The main advantage of this method is the good distribution of DoE point projections on each
dimension. It should also be noted that this sampling method does not require more samples
as the number of dimensions increases.

Numerous LHS designs can thus be proposed, including some with poor space-filling prop-
erties, such as the one with all points distributed along a straight diagonal line of the design
hypercube. Various algorithms can be used to optimize the space-filing character of LHS de-
signs (see [Damblin et al., 2013] and [Dupuy et al., 2015]), including Minimax and Maximin
criteria applied to a preliminary set of different LHS designs. Figure 1.4 shows a compari-
son between a classic LHS plan and an LHS plan optimized by the Maximin criterion. This
comparison highlights the space-filling nature of the optimized LHS plan compared with the
classic LHS plan, which nevertheless has a good distribution of DoE point projections on each
dimension.

Other designs

Many other types of design can be cited, such as low-discrepancy sequences ([Sobol’, 1967],
[Halton, 1960], etc.). See [Pronzato and Müller, 2012] for a full review of possible designs
that can be used as initial DoE. Note that the low-discrepancy criterion can also be used to
optimize LHS, in place of the Maximin and Minimax criteria.

1.6 Sequential DoE and enrichment criteria

As a reminder, the initial phase of the sequential enrichment strategy involves defining a small
initial DoE, fitting a GP to this DoE. Then, the steps for updating the GP and optimizing the
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(a) LHS design (b) LHS Maximin optimized design

Figure 1.4: Comparison of an LHS plan and an LHS plan optimized by the Maximin criterion,
for 10 points on [0, 1]2.

criterion follow one another until the stopping criterion is verified, and then a final GP update
is performed. Figure 1.5 provides a synthetic scheme of this sequential strategy. The choice
of enrichment criterion is crucial and depends on the model’s objective (global knowledge,
optimization or excursion set estimation). This is the subject of this section, and of Chapter
2 for the case of excursion set estimation. The stopping criterion is also an important element
of the sequential enrichment strategy via GPR. It is usually a fixed simulation budget, or
defined as a threshold on the remaining uncertainty, calculated according to the objective.

Figure 1.5: Diagram of the sequential DoE construction, coupled with GPR.

We distinguish enrichment criteria according to the associated objective: global knowledge,
optimization, estimation of excursion sets. Criteria linked to global knowledge of the function
and those associated with an optimization objective for the black box function are presented
below. Criteria related to the goal of estimating excursion sets, which are pivotal in this thesis,
are deferred to the next chapter with a detailed introduction to the context of excursion set
estimation.
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1.6.1 Global enrichment criteria

Among the enrichment criteria used to build a sequential design of experiments, there is one
type of criterion, called global criteria, that provide global knowledge of the black box model.

mse criterion

The ”mean squared error” (mse) criterion (see for example [Jin et al., 2002]) is the most nat-
ural global enrichment criterion. It consists in maximizing the Kriging variance, conditional
on the first n observations. In other words, we are looking for the point in the design space for
which the uncertainty associated with the Kriging model is as high as possible. The criterion
is given by the following formula:

x(n+1) ∈ arg max
x∈X

σ2
n(x). (1.13)

Note that the Kriging variance σ2
n does not depend on the values taken by the model on the

design of experiments (see Section 1.2). Therefore, this criterion can also be used to construct
initial DoE (see [Abtini, 2018]). The same applies to the next two criteria.

MMSE criterion

The ”Maximum Mean Squared Error” (MMSE) criterion from [Sacks and Schiller, 1988] is a
one-step ahead version of the mse criterion. We look for the point in the design space which,
when added to the DoE, would give the best possible improvement in the overall Kriging error
(in the sense of the L∞ norm on the design space). The MMSE is formulated as follows:

x(n+1) ∈ arg min
x∈X

{
max
y∈X

σ2
n,x(y)

}
. (1.14)

where σ2
n,x denotes the Kriging variance conditional on the first n evaluations and the addition

of x (see update formulas of Section 1.2 with x(n+1) = x). The disadvantage of this criterion
is that it often has many local minima and is difficult to optimize.

IMSE criterion

The ”Integrated Mean Squared Error” (IMSE) criterion introduced by [Sacks et al., 1989] is
an alternative to the MMSE criterion, replacing the maximum of the Kriging variance used
to quantify the error obtained, by the integral of the Kriging variance. By default, we use the
renormalized restriction of the Lebesgue measure on X (denoted by PX) for integration, but
it is possible to choose other measures on X. The resulting criterion is given by :

x(n+1) ∈ arg min
x∈X

{∫
X
σ2
n,x(y) dPX(y)

}
. (1.15)

Unlike the MMSE criterion, the IMSE criterion is more regular thus simpler to optimize.

1.6.2 Goal-oriented enrichment criteria for optimization

Among the criteria used to build sequential experimental designs, we historically find those
associated with the objective of optimizing the black box model.
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PI criterion

The ”Probability Improvement” (PI) criterion, whose original idea came from [Kushner, 1964],
measures the probability that the posterior GP modeling the black box model is smaller than
a real constant c, for example strictly less than the current minimum gmin in the optimization
context. The criterion is written:

x(n+1) ∈ arg max
x∈X

PI(x) with PI(x) := P
[
ξ(x) ≤ c

∣∣ En]. (1.16)

The function PI can be rewritten more simply as:

PI(x) = φ

(
c−mn(x)
σn(x)

)
,

with φ the cumulative distribution function (cdf) of the standard normal distribution.
The choice of c is crucial: if it is too small, the search will be too global, while if it is too

large, the search will be too local. An example of a possible choice for c is c := gmin−0.25|gmin|,
with gmin := (x(1), . . . ,x(n)) (see [Jones, 2001] for details).

EI criterion

The ”Expected Improvement” (EI) criterion introduced in [Jones et al., 1998] is an alternative
to the PI criterion, which does not require parameter calibration. It quantifies the potential
improvement provided by the surrogate model over the current minimum gmin. The EI crite-
rion is formulated as :

x(n+1) ∈ arg max
x∈X

EI(x) with EI(x) := E
[
(gmin − ξ(x))+∣∣ En], (1.17)

where (.)+ : y 7→ max(0, y) denotes the positive value function. One can express the expected
improvement in explicit form:

EI(x) =
(
gmin −mn(x)

)
φ

(
gmin −mn(x)

σn(x)

)
+ σn(x)ϕ

(
gmin −mn(x)

σn(x)

)
,

with ϕ the probability distribution function (pdf) of the standard normal distribution. Note
that for a fixed x in the design space,

∂EI
∂mn

= −φ
(
gmin −mn

σn

)
< 0 and ∂EI

∂σn
= ϕ

(
gmin −mn

σn

)
> 0,

which means that the smaller mn is, the larger EI is, and the larger σn is, the larger EI is.
The use of the EI criterion thus makes it possible to obtain a compromise between local

and global optimization, which is in fact equivalent to an exploration-exploitation compromise
of the model in an optimization context. The Bayesian optimization algorithm associated with
the construction of a sequential experimental design using the EI criterion is known as the
”Efficient Global Optimization” (EGO) algorithm (see [Jones et al., 1998] for more details).

1.7 Extension to vector-valued models

1.7.1 Principle of multi-output Gaussian processes

Vector-valued Gaussian process regression, also known as multi-output Gaussian process
(MOGP) regression is a generalization of GPR to build a surrogate of a deterministic vector-
valued function g : X ⊂ Rd 7→ Rp. MOGP is based on the fundamental belief that the output

20



components are correlated in some manner. Therefore, a crucial aspect of MOGP is to take
advantage of correlations between output components to mutualize the information acquired
on each output and obtain more accurate predictions than if the output components were
modeled independently.

In the following, we are interested in a framework where prediction importance is the
same for all model components (symmetric MOGP) and where the evaluation points are the
same for each component of model output (isotopic data). This often occurs when the p
output responses at a point x can be obtained through a single simulation (see for example
[Liu et al., 2018] for more details on MOGP).

Let us assume that g := (g1, . . . , gp)> is the realization of a vector-valued Gaussian process
ξ := (ξ1, . . . , ξp)>. This process is characterized by its mean M := (M1, . . . ,Mp) : Rd → Rp
and covariance K := (Ki,j)1≤i,j≤p : Rd × Rd → S+

p (R) functions (a priori, both assumed
known here) defined for (i, j) ∈ {1, . . . , p}2 by

Mi(x) := E(ξi(x)) and Ki,j(x,x′) := Cov(ξi(x), ξj(x′)), (1.18)

with S+(R) denoting real symmetric positive semi-definite matrices of size p. We note Σ(x) :=
K(x,x) the covariance matrix of ξ(x). Let χn := (x(1), . . . ,x(n))> denote the DoE at step n.
We define

ξ(χn) :=
(
ξ1(x(1)), . . . , ξ1(x(n)), . . . , ξp(x(1)), . . . , ξp(x(n))

)> ∈ Rpn×1, (1.19)

g(χn) :=
(
g1(x(1)), . . . , g1(x(n)), . . . , gp(x(1)), . . . , gp(x(n))

)> ∈ Rpn×1, (1.20)

and En the event ξ(χn) = g(χn). The process ξ(χn) is characterized by

M(χn) :=
(
M1(x(1)), . . . ,M1(x(n)), . . . ,Mp(x(1)), . . . ,Mp(x(n))

)> ∈ Rpn×1. (1.21)

and

Kχn,χn :=

 K11 (χn, χn) · · · K1p (χn, χn)
... . . . ...

Kp1 (χn, χn) · · · Kpp (χn, χn)

 ∈ Rpn×pn, (1.22)

with Kii′ (χn, χn) = E[(ξi(χn)−E[ξi(χn)])(ξi′(χn)−E[ξi′(χn)])>] ∈ Rn×n the cross-covariance
matrix between ξi(χn) and ξi′(χn). In the same way, we note Kχn(x) ∈ Rpn×p the cross-
covariance matrix between ξ(χn) and ξ(x) defined from blocks

Kii′ (x, χn) := (Kii′(x,x(1)), . . . ,Kii′(x,x(n)))> ∈ R1×n. (1.23)

Surrogate update formulas, which are extensions of Formulas (1.1), (1.2) and (1.3) to the
vector case, are then given (see for example [Liu et al., 2018]) by:

Mn(x) = M(x) + Kχn(x)>K−1
χn,χn

(
g(χn)−M(χn)

)
, (1.24)

Σn(x) = Σ(x)−Kχn(x)>K−1
χn,χnKχn(x), (1.25)

Kn(x,x′) = K(x,x′)−Kχn(x)>K−1
χn,χnKχn(x′). (1.26)

where Mn, Σn and Kn denote the mean, variance and covariance functions, respectively, of
the process ξn := ξ |En.

In the case where the a priori trend is no longer known, but assumed to be a lin-
ear combination of basis functions with coefficients to be estimated, update formulas ex-
ist ([Helterbrand and Cressie, 1994]) and are extension of Formulas (1.4), (1.5), and (1.6).

21



More precisely, for an integer 1 ≤ i ≤ p, assume that the ith component of M is a lin-
ear combination of li functions, denoted as vector Fi(x) ∈ Rli×1 for any x ∈ X. We note
β := (β1, . . . , βp)> ∈ R(Σpi=1 li)×1 with βi ∈ R1×li the coefficients for the ith component and
F(x) the block diagonal matrix defined by F(x) := diag(F1(x)>, . . . , Fp(x)>) ∈ Rp×(Σpi=1 li).
We then have:

M(x) = F(x)β. (1.27)

Noting
F(χn) := diag

(
F1(χn), . . . ,Fp(χn)

)
∈ Rpn×(Σpi=1 li),

with Fi(χn) :=
(
Fi(x(1)), . . . , Fi(x(n))

)> ∈ Rn×li , these update formulas are given by:

Mn(x) = F(x) β̂ + Kχn(x)>K−1
χn,χn

(
g(χn)− F(χn) β̂

)
, (1.28)

Σn(x) = Σ(x)−Kχn(x)>K−1
χn,χnKχn(x) +

(
F(x)−Kχn(x)>K−1

χn,χnF(χn)
)

(
F(χn)>K−1

χn,χnF(χn)
)−1(F(x)−Kχn(x)>K−1

χn,χnF(χn)
)>
, (1.29)

Kn(x,x′) = K(x,x′)−Kχn(x)>K−1
χn,χnKχn(x′) +

(
F(x)−Kχn(x)>K−1

χn,χnF(χn)
)

(
F(χn)>K−1

χn,χnF(χn)
)−1(Fχn(x′)−Kχn(x′)>K−1

χn,χnF(χn)
)>
, (1.30)

with β̂ :=
(
F(χn)>K−1

χn,χnF(χn)
)−1F(χn)>K−1

χn,χnG(χn) the maximum likelihood estimator.
The sequential procedure in the vector case is similar to the scalar one (Section 1.5, Figure

1.5): an initial DoE is generated and an initial MOGP is fitted, then they are followed by a
succession of MOGP updates and optimizations from a well-chosen enrichment criterion. An
example of a vector criterion adapted to the estimation of excursion sets will be presented in
the next chapter, Section 2.2.4.

1.7.2 Covariance structure

The choice of the covariance structure is a complex matter, often necessitating the formulation
of simplifying assumptions for practical implementation. The main kernels to take correlation
among the components of g into account are outlined below.

Separable kernels

One simple way to model this correlation is to use separable kernels, which can be formu-
lated as a product of a kernel function in the input space and a kernel function that en-
codes the interactions between the output components (see for example [Liu et al., 2018] and
[Alvarez et al., 2012]). Typically,

∀ 1 ≤ i, j ≤ p, K(x,x′)i,j = k(x,x′) kp(i, j), (1.31)

where k and kp are respectively scalar kernels on X2 and {1, . . . , p}2. Equivalently, we can
consider the matrix expression:(

K(x,x′)i,j
)
1≤i,j≤p := k(x,x′) B, (1.32)

with B a p× p symmetric positive definite matrix. We then recognize the intrinsic coregion-
alization model (ICM) (see [Goovaerts, 1997]).
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A natural generalization of this model, known as the linear model of coregionalization
(LMC) ([Goulard and Voltz, 1992]) is given by

(
K(x,x′)i,j

)
1≤i,j≤p :=

Q∑
q=1

kq(x,x′) Bq, (1.33)

with kq scalar kernels on X2 and Bq p × p symetric and positive definite matrices. This
covariance structure comes from a model where outputs g1, . . . , gp are assumed to be linear
combinations of Q independent latent Gaussian processes. ICM is therefore a special case of
LMC with only one latent process.

In ICM or LMC, the choice of scalar kernels kq can be made among the classical scalar
kernels (see Section 1.3.1). As explained in [Alvarez et al., 2012] and in [Liu et al., 2018],
different possible structures exist for Bq in order to reduce the number of parameters to be
estimated. Some of the main possible structures are presented below:

• ”Independant”
Bq = I, (1.34)

• ”Semi-parametric latent factor model” (SLFM) from [Teh et al., 2005]

Bq = aq
(
aq
)> with aq := {aqi }1≤i≤p, (1.35)

• ”Spherical parametrization” from [Osborne, 2007]

Bq = diag(e)STSdiag(e) (1.36)

with e ∈ Rp scale factors of each output and S upper triangular matrix whose ith column
is associated to a spherical representation of points in Rp (see e.g., [Pelamatti et al., 2024]),

• ”Free-form” from [Bonilla et al., 2007] which requires a Cholesky factorization of Bq,

Bq = LLT, (1.37)

• ”Low rank free form” from [Bonilla et al., 2007]

Bq = L̃L̃T (1.38)

with L̃ ∈ Rp×p̃ and 1 ≤ p̃ ≤ p. This type of parameterization with Q = 1 (ICM) is
called Multi-task Gaussian Process (MTGP).

Once the Bq structure has been chosen, hyperparameters can be estimated by maximum
likelihood (see e.g. [Bonilla et al., 2007]). Table 1.3 summarizes the number of hyperparam-
eters to be estimated for each type of Bq.

Other kernels

Convolution processes extend the possibilities for modeling correlations between output com-
ponents, compared with separable models such as LMC. The idea of convolution processes
([Ver Hoef and Barry, 1998]) is to model dependencies between output components by con-
volving a basic process with an output-dependent smoothing kernel. The convoluted process
remains Gaussian, which considerably facilitates its analytical treatment. What is more,
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Name Bq Features Number of
hyperparameters

Independant I I identity matrix 0
Semi-parametric latent

aq
(
aq
)> aq ∈ Rp pfactor model (SLFM)

Spherical diag(e)STSdiag(e) e ∈ Rp and S ∈ Rp×p p(p−1)
2parametrization particular UT

Free-form LLT L ∈ Rp×p LT p(p+1)
2

Low rank free-form L̃L̃T L̃ ∈ Rp×p̃ LT p̃(p̃+1)
2

Table 1.3: Summary of possible structures for Bq matrices (UT and LT stand for Upper
Triangular and Lower Triangular).

unlike LMCs which share the same hyperparameters for all latent processes, convolution pro-
cesses allow the use of individual hyperparameters for each output component. This enables
more flexible modeling of the relationships between different output components, particularly
useful in situations where outputs have complex dependencies.

References [Fricker et al., 2013], and [Alvarez and Lawrence, 2011] provide further details
on convolution processes, while [Liu et al., 2018] offers an overview of the various options
available for modeling the correlation in a MOGP.

1.7.3 Autokrigeability

The ICM model is more restrictive than the LMC models, since it assumes that each base
covariance kq (x,x′) contributes equally to the construction of autocovariances and cross-
covariances for the outputs. In the case of ICM, for isotopic data with noise-free observations,
the elementary properties of the Kronecker product (see [Horn and Johnson, 2012]) make it
possible to simplify calculations of the inverse of Kχn,χn in the surrogate model update formu-
las, compared with the complete inversion of the Kχn,χn matrix required in the case of LMC
(see [Alvarez et al., 2012]). These properties significantly reduce computational complexity,
making the model more efficient for large covariance matrices.

It can also be shown that, in this case, predictions for the ith simulator output depend
only on the gi(χn) observations of this same component (see for example [Wackernagel, 2003],
[Helterbrand and Cressie, 1994] and [Bonilla et al., 2007]). In other words, prediction with
the ICM model is equivalent to independent prediction for each output. This property is
known as autokrigeability.

In practice, the same shared covariance hyperparameters transcribe a certain dependence
between outputs (see [Teh et al., 2005] and [Liu et al., 2018]), and allows a better performance
of the ICM model compared to independent models ([Liu et al., 2018]) when a small amount of
data is available. The advantage of this model over two independent models is that it reduces
the number of parameters to be estimated by taking into account the correlation between
model output components, making it more robust when less data is available. In the case
of heterotopic data (different surrogate model evaluation points for each output component),
the autokrigeability property no longer applies, allowing the ICM model to demonstrate its
effectiveness by learning the correlations between outputs and using them for predictions.

In the following, we present calculations to obtain the autokrigeability property, using the
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elementary properties of the Kronecker product (see for example [Horn and Johnson, 2012]),
in the case of an ICM model with isotopic data and no noise. We distinguish the case of
a known constant trend from the more general case of an unknown linear trend. These
calculations are inspired by [Bonilla et al., 2007] and [Helterbrand and Cressie, 1994] for the
cases of known constant trend and unknown linear trend respectively. We use the various
notations introduced in Section 1.7.1.

Calculations for a known constant trend

It is assumed that the trend M and the covariance K a priori are both known. It is important
to remember that in the case of the ICM model:(

K(x,x′)i,j
)
1≤i,j≤p := k(x,x′) B, (1.39)

with B ∈ Rp×p symmetric positive definite matrix, called coregionalization and k continuous
kernel with values in R defined on X. Just remember that Kχn,χn ∈ Rpn×pn denotes the block
covariance matrix on χn and Kχn(x) ∈ Rpn×p the covariance matrix between x and χn. We
then have

Kχn,χn = B⊗ k(χn, χn) and Kχn(x) = B⊗ k(χn,x) (1.40)

with k(χn, χn) := (k(x(k),x(l))1≤k,l≤n ∈ Rn×n and k(χn,x) :=
(
k(x(1),x), . . . , k(x(n),x)

)> ∈
Rn×1. According to Equation (1.24) we have :

Mn(x) = M(x) + Kχn(x)>K−1
χn,χn

(
g(χn)−M(χn)

)
= M(x) +

(
B⊗ k(χn,x)

)>(B⊗ k(χn, χn)
)−1(

g(χn)−M(χn)
)

= M(x) +
(
B> ⊗ k(χn,x)>

)(
B−1 ⊗ k(χn, χn)−1)(g(χn)−M(χn)

)
= M(x) +

(
B>B−1)⊗ (k(χn,x)>k(χn, χn)−1)(g(χn)−M(χn)

)
= M(x) + Ip ⊗

(
k(χn,x)>k(χn, χn)−1)(g(χn)−M(χn)

)
(1.41)

where Ip ∈ Rp×p is the identity matrix and g(χn) ∈ Rpn×1 and M(χn) ∈ Rpn×1 respectively
represent the column vectors of the g model and M trend evaluations on the χn DoE by
concatenating the p blocks of size n corresponding to the evaluations of each g component on
χn. Using index notation to denote the components of each vector quantity, we obtain for all
i ∈ {1, . . . , p}

Mn,i(x) = Mi(x) + k(χn,x)>k(χn, χn)−1(gi(χn)−Mi(χn)
)
. (1.42)

The prediction at a fixed x point and for a given i component depends only on the ith

component’s evaluations of g on the DoE.
However, when updating the multivariate covariance matrix, the B term does not disap-

pear. Indeed, according to Equation (1.25) and reusing the calculation performed in (1.41),
we obtain :

Kn(x,x′) = K(x,x′)−Kχn(x)>K−1
χn,χnKχn(x′)

= K(x,x′)− Ip ⊗
(
k(χn,x)>k(χn, χn)−1)Kχn(x′)

= K(x,x′)− Ip ⊗
(
k(χn,x)>k(χn, χn)−1)(B⊗ k(χn,x′)

)
= K(x,x′)−

(
IpB

)
⊗
(
k(χn,x)>k(χn, χn)−1k(χn,x′)

)
= K(x,x′)−

(
k(χn,x)>k(χn, χn)−1k(χn,x′)

)
B (1.43)

because
(
k(χn,x)>k(χn, χn)−1k(χn,x)

)
∈ R. Unlike the update for the mean, the covariance

update therefore depends on the coregionalization matrix.
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Calculations for an unknown linear trend

We place ourselves in the case where the a priori trend is no longer assumed to be known,
but a linear combination of base functions with coefficients to be estimated (Equation (1.27)).
We retain the case of an ICM (Equation (1.39)) with isotopic (and noise-free) data.

The formulas for updating the surrogate model are given in Equations (1.28), (1.29) and
(1.30). Combining Equation (1.28) with the calculation performed in Equation (1.41), we see
that Mn depends on B only through the maximum likelihood estimator β̂ of β defined by

β̂ :=
(
F(χn)>K−1

χn,χnF(χn)
)−1F(χn)>K−1

χn,χng(χn).

All we need to do is study the dependence of β̂ on B.
Let us take a simplified case where F1 = . . . = Fp = F ? with F ? : X → Rl?×1, and

l1 = . . . = lp = l? for l? ∈ N?. In this case, we have :

F(χn) = Ip ⊗ F ?(χn) (1.44)

where F ?(χn) := (F ?(x(1)), . . . , F ?(x(n)))> ∈ Rn×l? . Reinjecting (1.44) and (1.40) into the
expression of β̂, we obtain:

β̂ =
(
F(χn)>K−1

χn,χn
F(χn)

)−1F(χn)>K−1
χn,χn

g(χn)

=
((
Ip ⊗ F ?(χn)

)>(B⊗ k(χn, χn)
)−1(

Ip ⊗ F ?(χn)
))−1(

Ip ⊗ F ?(χn)
)>(B⊗ k(χn, χn)

)−1
g(χn)

=
((
Ip ⊗ F ?(χn)>

)(
B−1 ⊗ k(χn, χn)−1)(Ip ⊗ F ?(χn)

))−1(
Ip ⊗ F ?(χn)>

)(
B−1 ⊗ k(χn, χn)−1)g(χn)

=
(
B−1 ⊗ F ?(χn)>k(χn, χn)−1F ?(χn)

)−1(
B−1 ⊗ F ?(χn)>k(χn, χn)−1)g(χn)

=
(
B⊗

(
F ?(χn)>k(χn, χn)−1F ?(χn)

)−1
)(

B−1 ⊗ F ?(χn)>k(χn, χn)−1)g(χn)

= Ip ⊗
((
F ?(χn)>k(χn, χn)−1F ?(χn)

)−1
F ?(χn)>k(χn, χn)−1

)
g(χn), (1.45)

hence the expected result that β̂i does not depend on gj(χn) if i 6= j. The result demonstrated
above generalizes ([Helterbrand and Cressie, 1994]) to the case where Fi are not necessarily
equal. However, in the case where we impose restrictions between the βi, for example β1 = β2,
the result no longer holds (see [Helterbrand and Cressie, 1994]).

Finally, the autokriging property is not guaranteed in the case of heterotopic data, i.e.,
when the DoE evaluation points are no longer necessarily common to all simulator output
components.
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Summary:
The aim of Chapter 1 is to introduce Gaussian process regression (GPR)

as a probabilistic model for deterministic numerical simulators, which are
costly to evaluate. GPR involves the choice of both a trend and covariance
structure, depending on parameters to be fitted from input/output samples.
We illustrate GPR on simple analytical examples. Then, sequential design of
experiments (DoE) based on GPR is introduced, with a specific focus on en-
richment criteria. This chapter presents criteria suitable for black box global
knowledge and black box optimization. Finally, the extension of Gaussian
process regression (GPR) to vector-valued functions g : X ⊂ Rd 7→ Rp is
presented, it is known as Multi-output Gaussian process (MOGP) regres-
sion. Different joint correlation kernels are presented that enhance predictive
accuracy compared to separate output modeling.

The following chapter focuses on the study of enrichment criteria for the
purpose of excursion set estimation, starting with an introduction to the
framework of excursion set estimation.
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Chapter 2

Background and tools for
estimating excursion sets

Outlines
The first part of this chapter introduces excursion set estimation and explores various standard DoE
enrichment criteria dedicated to this framework. The second part concerns the class of Stepwise Uncer-
tainty Reduction (SUR) criteria. These criteria anticipate the impact of adding points to the sequential
DoE, minimizing the expectation of a conditional residual uncertainty. Several examples of SUR strate-
gies are presented, with an extension adapted to vector-valued model framework.

Contents
2.1 Excursion set estimation and adapted enrichment criteria . . . . . . . . . 28

2.1.1 Excursion set estimation framework . . . . . . . . . . . . . . . . . 28
2.1.2 Deviation number criterion . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3 tmse, tMMSE and tIMSE criteria . . . . . . . . . . . . . . . . . . 31
2.1.4 Bichon and Ranjan criteria . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Stepwise Uncertainty Reduction (SUR) strategies for excursion set estima-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.1 Introduction to SUR strategies . . . . . . . . . . . . . . . . . . . . 35
2.2.2 SUR Excursion measure variance and Integrated Bernouilli variance

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Basics on Vorob’ev Theory and corresponding SUR strategy . . . 38
2.2.4 Extension of SUR Excursion measure variance and Integrated Bernoulli

variance strategies for vector-valued models . . . . . . . . . . . . . 40

2.1 Excursion set estimation and adapted enrichment criteria

2.1.1 Excursion set estimation framework

Nowadays, many industrial challenges arise from the difficulty of identifying feasible solu-
tions, particularly when solving complex problems related to industrial product design. In
this manuscript, the set of feasible solutions is called excursion set. Excursion set estimation
consists in determining input parameter values that guarantee that a quantity of interest
remains within specified limits, e.g., below a threshold. In practice, this quantity of inter-
est often comes from a computationally expensive numerical model, typically a black box
function representing a complex physical phenomenon. This is also known as an inversion
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problem ([Chevalier, 2013]) and this problematic arises in various fields of application. For
example, in the context of vehicle pollution control, this has been explored in the study of
[El Amri et al., 2020]. Another example is the application to Autonomous Underwater Vehi-
cles (AUV) sampling with salinity and temperature excursion sets from [Fossum et al., 2021].
The application covered by this thesis concerns the design of wind turbines. We refer to
Chapter 5 for more details on this application.

Mathematical formulation

Recall that X denotes a compact set in Rd and g : X → R is a black box function, requiring
a significant amount of time for computation. The objective of an excursion set estimation
problem is to determine the set defined by:

Γ? :=
{
x ∈ X, g(x) ≤ T

}
(2.1)

with T a prescribed threshold. Given the high computational cost of evaluating the black box
function g, estimating the set Γ? must be done by limiting the number of evaluations of g.

Under assumptions of continuity of the black box function g, the problem of estimating
Γ? is in fact equivalent ([Bect et al., 2012]) to that of estimating

∂Γ? :=
{
x ∈ X, g(x) = T

}
. (2.2)

Indeed, estimation of both Γ? and ∂Γ? requires the selection of sampling points to refine our
knowledge of function g in a neighborhood of ∂Γ?. Besides, still under the assumption of
continuity of g, and if T belongs to the image of g, level set ∂Γ? is a curve, a surface, or more
generally a hypersurface of X (of dimension d− 1), depending on d the dimension of X. Thus,
the difficulty of Γ? estimation strongly increases with the dimension d of design space. It may
also be noted that, in practice, the direction of the inequality in Equation (2.1) has limited
significance, since an estimate of Γ? allows an estimate of

X\Γ? :=
{
x ∈ X, g(x) > T

}
, (2.3)

and vice versa.

Differences with estimating a probability of failure

Let us now look at a slightly different problem. Consider a probability measure on X, for
example Lebesgue measure on X, denoted by PX. We are now interested in estimating a failure
probability of a system (see for example [Vazquez and Bect, 2009] and [Bect et al., 2012]).
This translates into the estimates not of Γ? (resp. X\Γ?) but of

PX(Γ?) := PX
(
x ∈ X, g(x) ≤ T

)
, (2.4)

(resp. PX(X\Γ?)). The problem of estimating a failure probability is broader than that
of estimating an excursion set, since it requires the selection of sampling points to refine
knowledge of the volume PX(Γ?), which does not necessarily imply good knowledge of the
level set ∂Γ?. On the other hand, it is clear that good knowledge of level set ∂Γ? implies good
knowledge of the volume PX(Γ?) but in the case where we are interested in volume, it might
not be necessary to characterize ∂Γ? with precision.
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Ways of estimating an excursion set

Recall (see Chapter 1) that the Gaussian process used as surrogate model is denoted ξ, that
the event given by the n first observations of the model in a sequential DoE is denoted En, and
that mn and σn denote respectively the Kriging mean and standard deviation conditional on
these observations. At the end of sequential DoE enrichment, and following a final update of
the surrogate model based on observations, mn provides an estimate of the black box function
g. Thus, it is common and natural to use, as an estimator of Γ?, the set

Γ̂1 :=
{
x ∈ X, mn(x) ≤ T

}
, (2.5)

which we call naive estimator of Γ?. From Vorob’ev random set theory ([Molchanov, 2005]),
it is also possible to use as estimator of Γ? the Vorob’ev expectation (see Section 2.2.3) of
random set

Γ
∣∣ En :=

{
x ∈ X, ξ(x) ≤ T

}∣∣∣ En. (2.6)

In the following, we denote Vorob’ev estimator by Γ̂2, while naive estimator is denoted either
by Γ̂1, or more concisely, by Γ̂ if Vorob’ev estimator is not employed.

Let pn be the coverage probability defined by

pn(x) := P(x ∈ Γ | En) = P(ξ(x) ≤ T | En) = φ

(
T −mn(x)
σn(x)

)
, (2.7)

where φ denotes the cumulative distribution function of standard normal distribution, we
obtain that

Γ̂1 =
{
x ∈ X, mn(x) ≤ T

}
a.s.=
{

x ∈ X,
T −mn(x)
σn(x) ≥ 0 and σn(x) 6= 0

}
=
{

x ∈ X, φ
(
T −mn(x)
σn(x)

)
≥ φ(0) and σn(x) 6= 0

}
as φ increases

a.s.=
{

x ∈ X, pn(x) ≥ 1
2

}
. (2.8)

In other words, the estimator Γ̂1 is almost surely equal to the set of x for which the coverage
probability is greater than or equal to 1/2.

Goal-oriented enrichment criteria

We recall that goal-oriented enrichment criteria are criteria adapted to a particular objective,
such as optimization (see Section 1.6.2). These enrichment criteria are said to be adaptive,
since they take into account model observations. This is commonly referred to as active learn-
ing (see for example [Bryan et al., 2005] and [Echard et al., 2011]). The aim of the following
sections is to present the main enrichment criteria oriented to the estimation of excursion
sets or failure probabilities (volume of an excursion set). By default, the proposed criteria
are considered to be suitable for estimating excursion sets, and we will indicate specifically
whether any of the criteria mentioned are rather suited to estimate a failure probability.
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2.1.2 Deviation number criterion

The deviation number or ”U” criterion was introduced in [Echard et al., 2011] as part of an
active learning reliability method. It is written as :

x(n+1) ∈ arg min
x∈X

U(x) with U(x) := |mn(x)− T |
σn(x) . (2.9)

The choice of this ”U” criterion is quite natural in a context of excursion set estimation, since
it simultaneously gives importance to points x of the design space, such that mn(x) is close
to T and such that σn(x) is sufficiently large. This brings us back to the trade-off between
exploration and exploitation, in a context where exploitation corresponds to the estimation
of an excursion set.

Using strict monotonicity and symmetry about the point (0, 1/2) of the function φ enables
us to show that

arg min
x∈X

U(x) := arg min
x∈X

{ |mn(x)− T |
σn(x)

}

= arg min
x∈X

{∣∣∣∣mn(x)− T
σn(x) − 0

∣∣∣∣
}

= arg min
x∈X

{∣∣∣∣φ(mn(x)− T
σn(x)

)
− φ(0)

∣∣∣∣
}

= arg min
x∈X

{∣∣∣∣pn(x)− 1
2

∣∣∣∣
}
. (2.10)

So, minimizing the deviation number means finding a point x such that the probability of
coverage is as close as possible to 1/2.

According to [Echard et al., 2011], the ”U” enrichment criterion gives more importance to
points located in a neighborhood close of the border, thus favorising exploitation to explo-
ration, contrarly to Bichon and Ranjan criteria (see Section 2.1.4). Other enrichment criteria
based on coverage probability and very similar to the ”U” criterion can be cited, such as
entropy or probability of incorrect classification ([Bryan et al., 2005]). However, similarly to
the ”U” criterion, they have poor exploration properties.

2.1.3 tmse, tMMSE and tIMSE criteria

Three criteria called tmse, tIMSE and tMMSE, presented in [Picheny et al., 2010], generalize
the mse, MMSE and IMSE criteria (see Section 1.6.1), to the estimation of excursion sets.
They incorporate weights corresponding to the probability that the surrogate model belongs
to the interval [T − ε, T + ε], where ε is a ”relatively” small positive real number. The added
prefix ”t” stands for ”targeted”, indicating that the focus is on the area of interest relative to
the excursion set.

tmse criterion

Recall that the mse criterion improves the DoE by adding a point where the Kriging variance
is maximum. In the tmse criterion, the improvement is weighted according to the probability
that the surrogate model, at this point, belongs to the interval [T−ε, T+ε], given the previous
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observations. The expression of the tmse is given for a positive real number ε by

x(n+1) ∈ arg max
x∈X

tmse(x) with tmse(x) :=E
[
σ2
n(x)1[T−ε,T+ε](ξ(x))

∣∣ En]
=σ2

n(x)P
(
ξ(x) ∈ [T − ε, T + ε]

∣∣ En). (2.11)

tMMSE criterion

For the tMMSE criterion, the approach is similar to that of the MMSE criterion, aiming
to minimize the maximum Kriging variance after updating the DoE with the point under
consideration. However, in addition to this, we incorporate the weighting of the tmse criterion,
linked to the estimation of excursion sets. The criterion is formulated as follows:

x(n+1) ∈ arg min
x∈X

{
max
y∈X

tmsex(y)
}

with tmsex(y) :=E
[
σ2
n,x(y)1[T−ε,T+ε](ξ(y))

∣∣ En]
=σ2

n,x(y)P
(
ξ(y) ∈ [T − ε, T + ε]

∣∣ En),
(2.12)

where σ2
n,x is defined as the Kriging variance conditioned on En enlarged with point x.

tIMSE criterion

The tIMSE criterion is obtained by replacing the maximum in the tMMSE criterion with an
integral to measure the total error on the design space instead of the maximum error. The
formulation of the tIMSE criterion is as follows:

xn+1 ∈ arg min
x∈X

{∫
X

tmsex(y) dPX(y)
}
, (2.13)

where PX denotes Lesbesgue measure on X.

Although Kriging variance remains independent of model values (see Section 1.2), these
criteria now depend on these values with the introduction of weights. Within these criteria, we
also observe the balance between exploration and exploitation. This is the distinction between
global and local search of the excursion set. The three criteria presented above depend on
the fixed parameter ε > 0 and that the choice of this parameter will have an impact on the
compromise. In practice, according to [Picheny et al., 2010], the value of the parameter ε has
moderate impact on the criteria and their use in a sequential enrichment strategy, except for
very large or very small values.

2.1.4 Bichon and Ranjan criteria

Formulation and origin

Bichon and Ranjan criteria, introduced in [Bichon et al., 2008] and [Ranjan et al., 2008] are
goal-oriented criteria for the DoE enrichment. These criteria are an adaptation of EI from
[Jones et al., 1998], introduced in the context of global optimization, to the excursion set
estimation framework.

As a reminder, the original idea of EI is to select a point x which improves the current
mimimum gmin, i.e., where ξ(x) is below gmin, while taking into account the uncertainty of the
surrogate model. The idea behind both Bichon and Ranjan criteria is to adapt this strategy
to the excursion set estimation framework by considering both the variability of the surrogate
model and the potential improvement in the knowledge of the excursion set boundary. This
is the exploration-exploitation compromise.
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To introduce Bichon criterion ([Bichon et al., 2008]), it is necessary to define, for a fixed
x belonging to X, a random variable FF(x) (Feasibility Function) defined by

FF(x) : = ε(x)−min
{
|T − ξ(x)|, ε(x)

}
=
(
ε(x)− |T − ξ(x)|

)+
,

(2.14)

with ( . )+ := max( . , 0) and ε(x) a fixed function. This function EFF represents the distance
between the surrogate model (i.e. the response under GP assumptions) and the bounds of
the interval [T − ε(x), T + ε(x)] only if the surrogate model belongs to this interval and is 0
otherwise. In practice, the interval width ε(x) is chosen proportional to the posterior standard
deviation σn(x), leading in particular to a null value of the criterion for the points already
present in the DoE. An example is given in Figure 2.1. The feasibility function is drawn for
one sample path of ξ| En. Its maximization aims to select points close to the boundary of the
excursion set naive estimate or points associated to high values of ε(x). Then, the average of

Figure 2.1: Representation of Feasibility Function (bottom) for a given example of a GP
sample path conditioned on 5 evaluations of the g function, a threshold T set to 0 and
ε(x) := σn(x) (top). The height of the gray area represents, for each value of x, the value of
FF(x).

FF over all sample paths gives the Expected Feasibility Function (EFF)

EFF(x) := E
[(
ε(x)− |T − ξ(x)|

)+ ∣∣∣ En]. (2.15)

The new selected point according to Bichon criterion is

x(n+1) ∈ argmax
x∈X

EFF(x). (2.16)
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Ranjan criterion is an alternative to Bichon criterion given by

x(n+1) ∈ argmax
x∈X

EFF2(x) with EFF2(x) := E
[(
ε(x)2 − |T − ξ(x)|2

)+ ∣∣∣ En]. (2.17)

The representation as mean distance of the surrogate model to the bounds of the interval
[T − ε(x), T + ε(x)] (Figure 2.1) is less obvious due to the introduction of squares. However,
this criterion is also widely used in the context of estimating excursion sets.

Statistical interpretation

To interpret (2.15) and (2.17), it is possible to make a heuristic analogy with the theory of
statistical tests ([Dagnelie, 1992]). Let x be fixed, suppose that ξ(x)| En ∼ N (mn(x), σn(x))
with mn(x) unknown and σn(x) > 0 known and let us define the following statistical test

H0 : mn(x) = T against H1 : mn(x) 6= T. (2.18)

We choose υδx :=
(
ξ(x)−T
σn(x)

)δ ∣∣∣ En as the conditional test statistic which follows standard
normal distribution under H0 for δ = 1 (Bichon criterion) and χ2 distribution with 1 degree
of freedom (denoted χ2

1) for δ = 2 (Ranjan criterion). Consequently, we refute Hypothesis H0
at order α if

|υδx| > κδα, (2.19)

with κ1
α := q1−α2 the quantile of order 1−α

2 of the standard normal distribution and κ2
α := z1−α

the quantile of order 1− α of the χ2
1 distribution.

However, our goal is not to refute the hypothesis that mn(x) = T but rather to select
the x for which, on average conditioned on the event ”H0 is plausible” (i.e., κδα − |υδx| > 0),
the quantity κδα − vδx is the largest possible, weighted by the probability that H0 is plausible.
Multiplying E

[
(κδα − |υδx|)+∣∣ En] by σn(x)δ leads to both Bichon and Ranjan criteria with

ε(x) := κδασn(x)δ, and has the effect to increase the exploration ability of the criterion.

Explicit formulas

Finally, explicit formulations of Bichon and Ranjan criteria (see [Bect et al., 2012] for a proof)
can be calculated based on the posterior Kriging mean and variance, the threshold T and the
width ε(x).

EFF(x) = (mn(x)− T )
[
2φ
(
T −mn(x)
σn(x)

)
− φ

(
T− −mn(x)

σn(x)

)
− φ

(
T+ −mn(x)

σn(x)

)]

− σn(x)
[
2ϕ
(
T −mn(x)
σn(x)

)
− ϕ

(
T− −mn(x)

σn(x)

)
− ϕ

(
T+ −mn(x)

σn(x)

)]

+ ε(x)
[
φ

(
T+ −mn(x)

σn(x)

)
− φ

(
T− −mn(x)

σn(x)

)]
,

(2.20)
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and

EFF2(x) = 2σn(x)(mn(x)− T )
[
ϕ

(
T+ −mn(x)

σn(x)

)
− ϕ

(
T− −mn(x)

σn(x)

)]

+ σn(x)(T+ −mn(x))ϕ
(
T+ −mn(x)

σn(x)

)
− σn(x)(T− −mn(x))ϕ

(
T− −mn(x)

σn(x)

)

+
(
ε(x)2 − σn(x)2 − (T −mn(x))2)[φ(T+ −mn(x)

σn(x)

)
− φ

(
T− −mn(x)

σn(x)

)]
,

(2.21)
with T± := T ± ε(x), ϕ and φ represent respectively the probability density and cumulative
distribution functions of the standard normal distribution. In practice, the enrichment of the
DoE is done by maximizing the criterion given by Equation (2.20) for Bichon criterion and
the one given by Equation (2.21) for Ranjan criterion.

Link with tmse and tIMSE criteria

Bichon criterion, defined by equation (2.15), can be rewritten as:

EFF(x) = E
[(
ε(x)− |T − ξ(x)|

)
1[T−ε,T+ε](ξ(x))

∣∣∣ En]. (2.22)

Thus, Bichon criterion is actually a variation of the tmse criterion (see Section 2.1.3), by
replacing σn(x)2 by

(
ε(x) − |T − ξ(x)|

)
. In Figure 2.1, if instead of taking the grey vertical

average distance on the graph, we simply consider the value of σn(x)2, then we obtain an
interpretation of the tmse criterion. Since the tIMSE criterion is an integral criterion based
on the tmse criterion, it is reasonable to ask whether an integral version of Bichon criterion
would be as natural to formulate. In reality, the dependence of the quantity

(
ε(x)−|T−ξ(x)|

)
on ξ(x) in Bichon criterion makes things relatively more complex than for the tIMSE criterion
(see Chapter 2 for an introduction to a SUR version of Bichon criterion).

2.2 Stepwise Uncertainty Reduction (SUR) strategies for ex-
cursion set estimation

In this section, we present Stepwise Uncertainty Reduction (SUR) strategies, which anticipate
the successive impacts of selecting the next sampling points. A general introduction to this
type of strategy is first given, followed by some specific examples of SUR strategies adapted
to the estimation of excursion sets.

2.2.1 Introduction to SUR strategies

Origin and formulation

k-step lookahead strategies are optimal Bayesian enrichment strategies (for a finite horizon of
k new points). The aim of these strategies is to anticipate the successive impacts of choosing
the next sampling points, in order to optimally select the points that lead to minimization of
a Bayesian risk, chosen by assuming the successive addition of the k points considered to the
DoE (see for example [Bect et al., 2012]). In practice, the use of such criteria is not possible
for large values of k, since it generally requires the calculation of k + 1 nested conditional
expectations. Stepwise Uncertainty Reduction (SUR) strategies correspond to the simplified
case where k = 1.
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More precisely, let us introduce a residual uncertainty Hn, computed with the GP model
conditioned on En. From this residual uncertainty, the conditional residual uncertaintyHn+1(x)
is defined as the updated uncertainty when adding x to DoE χn. This conditional uncertainty
is then a measurable function of the random variable ξ(x)| En and corresponds to the Bayesian
risk of k-step lookahead strategies when k = 1. The associated SUR strategy is then defined
by

x(n+1) ∈ argmin
x∈X

Jn(x) with Jn(x) := E
[
Hn+1(x)

]
. (2.23)

Note that the expectation in Jn(x) is relative to the distribution of ξ(x)| En. Eq. (2.23)
means that evaluating the surrogate model at x(n+1) decreases at most the expected residual
uncertainty.

SUR strategies are numerically more complex to implement, but are generally more ef-
ficient than other goal oriented strategies ([Bect et al., 2012] and [Chevalier, 2013]), for the
same number of evaluations. Theoretical convergence results for these strategies under certain
assumptions have been provided in [Bect et al., 2019]. A reduction in the numerical complex-
ity of SUR strategies is frequently used through the use of Kriging update formulas introduced
in [Chevalier, 2013].

Kriging update formulas

In the context of SUR strategies, the quantity Jn(x) in Equation (2.23) for a fixed x is usually
simplified thanks to Kriging update formulas and more particularly using Kriging standard
deviation. Indeed, contrary to the trend, the Kriging standard deviation does not depend on
surrogate model observations. For instance the recurrence formula, used in [Chevalier, 2013]
is efficient for calculating Kriging model in the context of universal Kriging and when Kriging
parameters β and θ do not need to be re-estimated. These Kriging update formulas are given
for all y,y′ in X2 by

mn+1(y) = mn(y) + kn
(
y,x(n+1)) kn(x(n+1),x(n+1))−1 (

g
(
x(n+1))−mn

(
x(n+1))) , (2.24)

σ2
n+1 (y) = σ2

n (y)− k2
n

(
y,x(n+1))σ2

n

(
x(n+1))−1

, (2.25)

kn+1
(
y,y′

)
= kn

(
y,y′

)
− kn

(
y,x(n+1))kn(x(n+1),x(n+1))−1

kn
(
y′,x(n+1)), (2.26)

with x(n+1) the (n + 1) th observation point and can be demonstrated from Equations (1.1),
(1.2) and (1.3) using Schur’s complement formula ([Horn and Johnson, 2012]). These kriging
update formulas can be interpreted as kriging formulas on the DoE χn with a single observation
(x(n+1), g(x(n+1))).

As for SUR strategies, it is possible to generalize these formulas to the case of simultaneous
addition of q points ([Chevalier, 2013]). The advantage of these formulas is that the expres-
sions of mn, σn, and kn are reused to reduce computational time. It is particularly useful
in SUR strategies where numerous evaluations of Kriging formulas are necessary for multiple
assessments of the sampling criterion in the context of its minimization (Equation (2.23)).
Finally, it can be shown that these Kriging formulas still coincide with Gaussian process con-
ditional formulas in the context of universal Kriging (see Appendix A of [Chevalier, 2013] for
a proof).

In the following, several classic examples of SUR strategies are presented in the context
of estimating excursion sets or estimating a failure probability. SUR criteria presented below
are defined from their conditional residual uncertainty Hn+1(x) (or their residual uncertainty
Hn) and the SUR formulation of Equation (2.23).
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2.2.2 SUR Excursion measure variance and Integrated Bernouilli variance
strategies

SUR Excursion measure variance

Recall that PX denotes a probability measure on X, for example Lebesgue measure on X, and
let Γ? and Γ denote respectively the excursion set we are looking at (Equation (2.1)) and the
associated random set induced by ξ (Equation (2.6)). Let γ? be the volume of Γ? and γ the
random variable modeling the volume of Γ:

γ? := PX(Γ?) = PX
(
x ∈ X, g(x) ≤ T

)
, (2.27)

and
γ := PX(Γ) = PX

(
x ∈ X, ξ(x) ≤ T

)
=
∫
X

1{ξ(z)≤T} dPX(z), (2.28)

Recall that pn denotes the coverage probability of Γ conditioned on En, defined by

pn(x) := P(x ∈ Γ | En) = P(ξ(x) ≤ T | En) = φ

(
T −mn(x)
σn(x)

)
. (2.29)

With these notations, it is easy to show using Fubini Tonelli Theorem that

E[γ| En] =
∫
X
pn(z) dPX(z), (2.30)

which gives an estimator of the volume γ? of the set Γ?.
The SUR Excursion measure variance criterion ([Bect et al., 2012]) is a natural SUR strat-

egy when estimating a failure probability, i.e., when estimating the volume γ?. This SUR
strategy is defined by considering the conditional variance of the excursion set volume as the
residual uncertainty. More precisely, we have

Hn := Var
[
γ
∣∣ En] and Hn+1(x) := Var

[
γ
∣∣ ξ(x), En

]
(2.31)

This criterion was initially considered impractical, as it might require Monte Carlo approxima-
tions, involving conditional simulations of Gaussian random fields. An explicit computation
of this volume variance was proposed by [Chevalier et al., 2014a], making the criterion usable
in practice.

SUR Integrated Bernouilli variance

The SUR Integrated Bernoulli variance criterion was initially introduced in [Bect et al., 2012]
as an alternative to the initially impractical Excursion Measure Variance criterion before
becoming a standard criterion. The idea was to provide an upper bound for the SUR Excursion
measure variance criterion.

From Equations (2.30) and (2.31) and using Cauchy-Schwarz Inequality then Fubini Tonelli
Theorem, we obtain

Var
[
γ
∣∣ En] = E

[(
γ − E[γ| En]

)2∣∣∣ En]
= E

[( ∫
X

1{ξ(z)≤T} − pn(z) dPX(z)
)2∣∣∣∣∣ En

]

≤ E
[ ∫

X

(
1{ξ(z)≤T} − pn(z)

)2 dPX(z)
∣∣∣∣ En]

=
∫
X

Var
[
1{ξ(z)≤T}

∣∣ En] dPX(z)

=
∫
X
pn(z)

(
1− pn(z)

)
dPX(z). (2.32)
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Thus, the SUR Integrated Bernouilli variance criterion is the SUR strategy defined by
posing

Hn :=
∫
X
pn(z)

(
1− pn(z)

)
dPX(z) and Hn+1 :=

∫
X
pn+1(z)

(
1− pn+1(z)

)
dPX(z), (2.33)

with
pn+1(z) := P(z ∈ Γ | ξ(x), En). (2.34)

Inequality (2.32) shows that, as the uncertainty associated with the Integrated Bernoulli
variance tends towards 0, the uncertainty associated with the Excursion measure variance
also tends towards 0. Additionally, the function p 7→ p(1− p) is zero at p = 0 and p = 1, and
reaches a maximum at p = 1/2. Therefore, the uncertainty associated with the Integrated
Bernoulli variance is high when large regions of X are uncertain (pn(z) ' 1/2) and low when
large regions of X are well determined (pn(z) ' 0 or 1).

An explicit formulation of the SUR Integrated Bernoulli variance criterion has been pro-
vided by [Chevalier et al., 2014a], enabling its practical application without the need for
Monte Carlo methods on ξ(x) to estimate mn+1 and subsequently derive pn+1.

In the case of the SUR Integrated Bernoulli variance criterion, when the associated resid-
ual uncertainty Hn (Equation (2.33)) tends towards 0, this means that for each point z of
X, pn(z) = 0 or 1, indicating that all points are perfectly classified. The SUR Integrated
Bernoulli variance criterion therefore seems better suited to estimating excursion sets than
the SUR Excursion measure variance criterion, which is more appropriate for estimating
volume γ?. However, the latter criterion is still derived from a criterion suitable for esti-
mating a failure probability. The next section introduces Vorob’ev theory of random sets
from [Molchanov, 2005], including in particular an extension of the notion of variance for
a random set, called Vorob’ev deviation. This section then presents a SUR criterion from
[Chevalier, 2013] that uses Vorob’ev deviation on random set Γ.

2.2.3 Basics on Vorob’ev Theory and corresponding SUR strategy

Vorob’ev expectation

In this part, the notion of expectation for random closed sets in the sense of Vorob’ev is
drawn from [Molchanov, 2005] and has been further adopted in [Azzimonti, 2016] in the case
of Bayesian set estimation based on random field priors. The framework is a compact set
X ⊂ Rd and a random closed set Γ of X. We note C the set of all compacts of X. It is recalled
that Γ : Ω → C is a random closed set if it is a measurable function for the Borel σ-algebra
on C with respect to the Fell topology, on the probability space (Ω,F ,P). The Fell topology
is generated by sets of the form {C ∈ C, C ∩U} for any open set U ⊂ X and {C ∈ C, C ∩ F}
for any closed set F ⊂ X. This is equivalent to saying that

∀C ∈ C,
{
w ∈ Ω,Γ(w) ∩ C 6= ∅

}
∈ F . (2.35)

Let us define the parametric family
{
Qα
}
α∈[0,1] by:

Qα := {x ∈ X : p(x) := P(x ∈ Γ) ≥ α}, ∀α ∈ [0, 1]. (2.36)

The elements of {Qα}α∈[0,1] are called the Vorob’ev quantiles of the random closed set Γ and
the function p is called the coverage function of Γ.

The Vorob’ev approach from [Molchanov, 2005] is only one among several approaches to
generalize the notion of expectation to random closed sets. From the parametric family of
Vorob’ev quantiles (Eq. (2.36)), the expectation of Γ in the sense of Vorob’ev is then defined
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as the Vorob’ev quantile of measure equal (or the closest higher one) to the expectation of
the measure of Γ, as specified in the definition below.

Definition 1. Vorob’ev expectation of a random closed set Γ is the set Qα? , where Vorob’ev
threshold α? is defined by

∀α > α?, PX(Qα) < E[PX(Γ)] ≤ PX(Qα?), (2.37)

where PX denotes Lebesgue measure on X.

Remark 1.
• Based on Equation (2.36), the function α 7→ PX(Qα) is decreasing on [0, 1].
• The uniqueness of α? in the definition is easily checked. The existence of such α? in
the definition of Vorob’ev expectation is based on the fact that α 7→ PX(Qα) is decreas-
ing and left continuous as the coverage function p has upper semi-continuity property (see
[Molchanov, 2005] page 23).
• The continuity of the function α 7→ PX(Qα) ensures equality PX(Qα?) = E[PX(Γ)] in the
definition of Vorob’ev expectation.

In the particular case where Γ is given by {x ∈ X, ξ(x) ≤ T} | En with ξ a stochastic
process indexed by X with continuous trajectories conditioned on the event En corresponding
to n evaluations of ξ and T a fixed threshold, Γ is a random closed set ([Molchanov, 2005,
page 3]). A sufficient condition to obtain a stochastic process with continuous trajectories is
to consider a separable Gaussian process with continuous mean and covariance kernel of type
Matérn 3/2 or 5/2 ([Paciorek, 2003, pages 35 and 44]). Moreover, in this case, the function
α 7→ PX(Qα) is continuous and so the equality PX(Qα?) = E[PX(Γ)| En] is verified. It is also
important to recall that naive estimator Γ̂1 is almost surely equal to the median of Vorob’ev
(quantile of order 1/2) in the case of the restriction of the Lebesgue measure for PX. Indeed,
by noting φ the cumulative distribution function of the standard normal distribution,

Γ̂1 =
{
x ∈ X, mn(x) ≤ T

}
a.s.=
{

x ∈ X,
T −mn(x)
σn(x) ≥ 0 and σn(x) 6= 0

}
=
{

x ∈ X, φ
(
T −mn(x)
σn(x)

)
≥ φ(0) and σn(x) 6= 0

}
as φ increases

a.s.=
{

x ∈ X, pn(x) ≥ 1
2

}
= Q 1

2
, (2.38)

where pn is the coverage function pn(x) := P(ξ(x) ≤ T | En).
Repeating the previous calculation and replacing 1/2 by Vorob’ev threshold α?, we obtain:

Qα?
a.s.=
{

x ∈ X, mn(x) 6 T − φ−1 (α?)σn(x)
}

(2.39)

Vorob’ev deviation

The concept of Vorob’ev deviation is used to define residual uncertainty Hn(x) in a SUR
strategy. Let us start by introducing the notion of distance between two random closed sets.
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For all random closed sets Γ1,Γ2 defined on X, the average distance dPX with respect to a
measure PX between Γ1 and Γ2 is defined by:

dPX (Γ1,Γ2) := E [PX (Γ1∆Γ2)] (2.40)

where ∆ is the random symmetric difference: Γ1∆Γ2 := (Γ1\Γ2) ∪ (Γ2\Γ1). In addition, the
function dPX checks the properties of a distance.

Proposition 1. Noting Qα? the Vorob’ev expectation of the random closed set Γ and as-
suming that α? ≥ 1

2 , it results that, for any measurable set M included in X such that
PX(M) = E[PX(Γ)],

dPX (Γ, Qα?) ≤ dPX (Γ,M) . (2.41)

This proposition from [Molchanov, 2005] justifies the choice of Vorob’ev quantile family
to define Vorob’ev expectation and also allows to define Vorob’ev deviation. Moreover, when
E[PX(Γ)] = PX(Qα?), which arises for example in the case of Γ := {x ∈ X, ξ(x) ≤ T} with ξ
a stochastic process indexed by X with continuous trajectories, the condition α? ≥ 1

2 is no
longer necessary (see [El Amri, 2019, page 28] for the proof).

Definition 2. Vorob’ev deviation of random set Γ is defined as the quantity dPX(Γ, Qα?).
Vorob’ev deviation quantifies the variability of random closed set Γ relative to its Vorob’ev
expectation.

SUR Vorob’ev criterion

Once the basic elements of Vorob’ev theory are introduced, the associated SUR strategy is
simply defined from the definition of SUR strategies via Equation (3.16) by taking:

Hn := E
[
PX(Γ∆Qn,α?n)

∣∣ En] and Hn+1(x) := E
[
PX(Γ∆Qn+1,α?n+1

)
∣∣ ξ(x), En

]
(2.42)

where Qn,α?n denotes Vorob’ev expectation conditioned on En and Qn+1,α?n+1
Vorob’ev expec-

tation conditioned on En and the addition of the point (x, ξ(x)) to the DoE. The idea behind
(2.42) is to take as residual uncertainty, the variation with respect to Vorob’ev expectation of
random closed set Γ, with Γ := {x ∈ X, ξ(x) ≤ T}. With the assumption that α?n+1 = α?n and
by re-injecting the quantity Hn+1(x) of (2.42) in the Jn criterion (2.23), it is possible to find
a simplified formulation involving only an integral of a simple quantity [Chevalier, 2013]. This
quantity is dependent on the cumulative distribution functions of the standard normal dis-
tribution and the bivariate centered normal distribution with given covariance matrix. Such
a formulation then allows less time consuming computations and therefore is implemented in
the package KrigInv ([Chevalier et al., 2014b]).

2.2.4 Extension of SUR Excursion measure variance and Integrated Bernoulli
variance strategies for vector-valued models

We present in this section excursion set estimation methodologies that have been devel-
oped in the context of a vector-valued black box model. Extensions of the SUR criteria
of Excursion measure variance and Integrated Bernoulli variance have been proposed in
[Fossum et al., 2021] in the context of vector-valued black box functions and multi-output
Gaussian process surrogate models (see Chapter 1, Section 1.7 for the introduction of MOGPs
models).

We begin by recalling that in this framework, it is possible to assume that the vector-valued
black box model g := (g1, . . . , gp)> is the realization of a multi-output Gaussian process
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ξ := (ξ1, . . . , ξp)>. In this case, M := (M1, . . . ,Mp)> and K denote the trend vector and
covariance of ξ respectively, and Σ(x) := K(x,x) denotes the variance at a fixed point x.
Also, the DoE is defined by χn := (x(1), . . . ,x(n)) and En is the event ξ(χn) = g(χn).

Let T := (T1, . . . , Tp)> be a fixed threshold vector. For i integer between 1 and p, the
partial excursion sets are defined by

Γ?i := {x ∈ X, gi(x) ≤ Ti}, (2.43)

and the global excursion set Γ? is defined as the intersection of all partial excursion sets:

Γ? := {x ∈ X, g(x) ≤ T } =
p⋂
i=1

Γ?i . (2.44)

In a similar way to the scalar framework (Section 2.2.2), we can also define random set

Γ := {x ∈ X, ξ(x) ≤ T }, (2.45)

and random variable γ as the volume of Γ:

γ := PX(Γ) = PX
(
x ∈ X, ξ(x) ≤ T

)
=
∫
X

1{ξ(z)≤T } dPX(z), (2.46)

where PX denotes Lebesgue measure on X. The coverage probability of Γ conditioned on En
is defined by

pn(x) := P(x ∈ Γ |En) = P(ξ(x) ≤ T |En) = φp
(
T ,Mn(x),Σn(x)

)
, (2.47)

where φp
(
. ,Mn(x

)
,Σn(x)) is the distribution function of a multivariate normal distribution

with mean Mn(x) and variance Σn(x). Using Fubini-Tonelli Theorem, it can be readily shown
that

E[γ| En] =
∫
X
pn(z) dPX(z), (2.48)

which gives an estimator of the volume γ? := PX(Γ?).
The SUR strategy of Excursion measure variance is defined analogously to the scalar case

with Equation (2.23) and the residual uncertainty

Hn := Var
[
γ
∣∣En] and Hn+1(x) := Var

[
γ
∣∣ ξ(x), En

]
. (2.49)

The SUR strategy of the Integrated Bernoulli variance is also defined in a similar way to
the scalar case with Equation (2.23) and the residual uncertainty

Hn :=
∫
X
pn(z)

(
1− pn(z)

)
dPX(z) and Hn+1 :=

∫
X
pn+1(z)

(
1− pn+1(z)

)
dPX(z), (2.50)

with
pn+1(z) := P(z ∈ Γ | ξ(x), En). (2.51)

Explicit formulations of these two criteria have also been proposed in [Fossum et al., 2021].
Similarly to the scalar case, for the SUR Excursion measure variance strategy, the explicit
formulation avoids the use of conditional Gaussian random field simulations, while for the
SUR Integrated Bernoulli variance strategy, the explicit formulation avoids the use of ξ(x)
simulations to estimate Mn+1 and deduce pn+1.
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Summary:
The aim of this chapter is to introduce the background of excursion set es-

timation and explore various existing enrichment criteria tailored to this con-
text within the framework of constructing sequential design of experiments
using Gaussian processes. Among the presented criteria are the Deviation
Number criterion, the range of the three criteria tmse, tMMSE, and tIMSE,
as well as Bichon and Ranjan criteria. Also, the Stepwise Uncertainty Re-
duction (SUR) class of criteria stands out from the others. These criteria
consist in anticipating the impact of adding the next point to the sequential
experimental design, in order to select the points that lead to minimization
of the expectation of a conditionnal residual uncertainty. Several examples
of SUR strategies are presented, with an extension adapted to vector-valued
model framework.

The aim of the next chapter is to develop a SUR version of Bichon cri-
terion. The underlying idea is to propose an easy-to-implement SUR strat-
egy that combines the robustness of Bichon criterion (due to its exploratory
nature) with the recognized performance of SUR strategies (in terms of ex-
ploitation). Chapter 3 thus presents the construction of the criterion, its
simplification into an explicit formulation, and robustness and performance
tests on 2D and 6D analytical examples.
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Chapter 3

A SUR version of the Bichon
criterion

Outlines
In the context of excursion set estimation via GPR, we propose in this chapter a new SUR criterion for
DoE enrichment, based on the Bichon criterion ([Bichon et al., 2008]). The aim is to propose a more
efficient version of the Bichon criterion, and to compare it with classical criteria such as the Vorob’ev
SUR criterion ([Chevalier, 2013]). We will see that numerical simulations on classical test functions
highlight the good exploratory behavior of the new criterion on the different zones of the design space,
as well as a certain robustness with regard to the stationarity assumption made with the use of GPR.
The results of this chapter have given rise to a published article referenced as [Duhamel et al., 2023].
As this chapter is a complete article, some sections present similarities with what was presented in
chapters 1 and 2.
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3.1 Introduction

Nowadays, many industrial issues are related to a problem of excursion set estimation for
instance, to find feasible solutions of complex optimal design problems. This problem consists
in finding, the set of input parameter values such that a quantity of interest defined from
its outputs respects a constraint, for example remains below a threshold. In general, the
quantity of interest is an output of a numerical model, computationally expensive, which is
often a black box function, representing the complex physical phenomenon. The problem
is also known as an inversion problem ([Chevalier, 2013]). For example, the application to
a vehicle pollution control system, allowing compliance with pollutant emission norms was
studied in [El Amri et al., 2020].

An effective way to solve this kind of problems is to replace the costly black box function of
interest by a surrogate model based on Gaussian processes. The advantage of a Gaussian pro-
cess is that it is entirely determined by its two first moments: mean and covariance functions.
Also, the formulas for updating mean and covariance functions conditionally on observations
are easily tractable. The set of evaluation points and the corresponding evaluations of the
black box function is called Design of Experiments (DoE) and the choice of new evaluation
points is made sequentially by the optimization of an acquisition criterion that depends on
the Gaussian process (see for example [Bect et al., 2012] and [Moustapha et al., 2021]). Ac-
quisition criteria are useful to select the runs which provide the best information considering
a given objective: improvement of the predictive quality of the whole response surface, opti-
mizing a quantity of interest, quantification of a failure probability, estimating an excursion
set (inversion), etc. Acquisition criteria suitable for inversion include: the deviation number
denoted U ([Echard et al., 2011]), the Bichon criterion also known as Expected Feasibility
Function ([Bichon et al., 2008]), and the Ranjan criterion ([Ranjan et al., 2008]). The two
last criteria are adaptations of the classical optimization-oriented Expected Improvement cri-
terion ([Jones et al., 1998]) for excursion set estimation. The U criterion is the ratio of the
absolute deviation of the prediction mean from the threshold defining the excursion set, to
the value of the prediction standard deviation. All these criteria are based on an exploration
targeted to a better knowledge of the boundary of the excursion set.

In addition, there is a more elaborate and in general more efficient class of criteria that
anticipate the impact of adding new points to the DoE: the Stepwise Uncertainty Reduction
(SUR) strategies ([Bect et al., 2012]). For example, SUR strategies based on the volume of
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the excursion set can be cited as particularly suitable for the inversion framework. It is shown
in [Bect et al., 2012] that those SUR criteria provide better performances compared to other
criteria.

[Chevalier, 2013] introduced a SUR strategy based on Vorob’ev random set theory
([Molchanov, 2005]), that goes beyond taking into account the volume of excursion sets like
other SUR strategies. However, we have noticed that SUR Vorob’ev criterion (SUR Vorob’ev)
is not robust enough in the sense that it lacks exploration such that with a reasonable number
of simulations it sometimes misses some of connected components of the set. Moreover, SUR
Vorob’ev requires some approximations about the Vorob’ev threshold. Therefore we propose
to tackle these issues by a SUR version of the Bichon criterion (SUR Bichon), which is easier
to set up and more robust than SUR Vorob’ev. It should be noted that a SUR version of the
U criterion could have been envisaged but this would require simulation of the observations
for the estimation of the associated criterion and therefore a higher computational cost.

This article is divided into three main sections. In section 3.2, the framework of excursion
set estimation is recalled. Details on the construction of the sequential DoE based on Gaus-
sian process regression are given as well as details on the Bichon acquisition criterion. Section
3.3 is dedicated to the new SUR Bichon criterion, with some reminders on SUR strategies
beforehand, and a simplified and easy-to-implement formulation of this new criterion. Nu-
merical aspects are discussed in section 3.4 with tests of SUR Bichon performances, compared
to those of SUR Vorob’ev and Bichon for several analytical examples. Appendices present
technical proofs, theoretical results on kriging and bases of Vorob’ev theory.

3.2 The framework for estimating excursion sets

3.2.1 Some reminders on Gaussian process regression

Let X be a compact set of Rd (d ∈ N?) and g : X→ R a black box function, whose analytical
expression is unknown but which can be evaluated at any point of X at a heavy computational
cost. The objective of an excursion set estimation problem is to estimate the domain defined
by

Γ? :=
{
x ∈ X, g(x) ≤ T

}
(3.1)

with T a fixed threshold, while limiting the number of costly evaluations of g.
Surrogate models, also known as meta-models, are approximations of the output of the

simulator built from a sample of simulations and that are not expensive to evaluate. Therefore
they can replace the original expensive simulator in a time-saving manner. Among surrogate
models, Gaussian Process Regression (GPR) is very popular: g is considered as a realization
of a Gaussian process (GP) ξ defined on a probabilistic space (Ω,F ,P), i.e. g(x) = ξ(x, ω) for
a given ω in Ω. This type of surrogate models gives, in addition to a prediction, an associated
prediction error estimate.

More precisely, the process is written as the sum of a deterministic part and a stochastic
part:

ξ(x) := m(x) + Z(x), ∀ x ∈ X (3.2)
with m the trend of ξ (deterministic part) and Z a stationary GP, of zero mean, known
covariance kernel k : X2 → R and in particular variance function σ2(x) := k(x,x) for any x
in X (stochastic part). To limit the complexity of estimating the trend function m, the choice
of this latter is often parametrized as a linear combination of known basis functions (fi)li=1
with coefficients β := {βi}li=1 to be estimated. The choice of the covariance kernel associated
with the GP Z is crucial since it determines the predictor regularity. Different implementation
choices are detailed in Section 3.4.1.
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Let us denote g(χn) := (g(x(1)), ..., g(x(n)))> the evaluations of g on an initial design of
experiments χn := (x(1), ...,x(n)) belonging to Xn. The random vector ξ(χn) then corresponds
to the finite-dimensional distribution of the process (ξ(x),x ∈ X) on χn and we define En as
the event ξ(χn) = g(χn). K := (k(x(i),x(j)))1≤i,j≤n is the covariance matrix on χn and k(x)
the covariance vector between x and χn defined by k(x) := (k(x,x(1)), ..., k(x,x(n)))> for
any x in X. We denote f(x) := (f1(x), ..., fl(x))> the evaluation vector of f on x defining
the trend and F ∈ Rn×l the matrix with f(x(i))> as ith row. When β is known, the process
ξ conditioned on the event En is still Gaussian ([O’Hagan, 1978]) with mean, variance and
covariance respectively denoted mn, σ2

n, and kn given by

mn(x) = f(x)>β + k(x)>K−1(g(χn)− Fβ
)
, (3.3)

σ2
n(x) = σ2(x)− k(x)>K−1k(x), (3.4)

kn(x,x′) = k(x,x′)− k(x)>K−1k(x′). (3.5)

We notice that the best linear unbiased predictor (BLUP) (with respect to mean quadratic
error) is given by (3.3) with variance (3.4) and covariance (3.5).

When β is unknown and estimated by the maximum likelihood estimator (MLE)

β̂ :=
(
F>K−1F

)−1F>K−1g(χn), (3.6)

formulas (3.3), (3.4) and (3.5) become

mn(x) = f(x)>β̂ + k(x)>K−1(g(χn)− Fβ̂
)
, (3.7)

σ2
n(x) = σ2(x)− k(x)>K−1k(x)+(

f(x)> − k(x)>K−1F
)(
F>K−1F

)−1(f(x)> − k(x)>K−1F
)>
, (3.8)

kn(x,x′) = k(x,x′)− k(x)>K−1k(x′)+(
f(x)> − k(x)>K−1F

)(
F>K−1F

)−1(f(x′)> − k(x′)>K−1F
)>
. (3.9)

Their interpretation as conditional expectation, covariance and variance is still possi-
ble in a Bayesian context with a non informative prior distribution on the parameter β
([Helbert et al., 2009]).

In order to save costly evaluations of function g, a sequential strategy of enrichment of the
DoE is classically used (see e.g. [Ginsbourger, 2017]). Figure 3.1 provides a generic scheme
of a sequential strategy. The stopping criteria can be a budget of simulations or a threshold
on the remaining uncertainty on the estimation of the excursion set.

Among enrichment criteria, one can distinguish criteria that lead to an overall im-
provement of the model from goal-oriented criteria, which are adapted to particular frame-
works such as optimization or inversion. The classical Mean Squared Error (MSE) criterion
([Jin et al., 2002]), aims to select the point which has the highest prediction variance, as
well as its integral versions IMSE and MMSE ([Picheny et al., 2010]) standing for Maximum
Mean Squared Error. Among goal oriented criteria, classical Expected Improvement (EI) from
[Jones et al., 1998], allows for global optimization. Several inversion-adapted criteria can be
cited: deviation number ([Echard et al., 2011]), ratio of the distance of the prediction mean to
the threshold to the kriging standard deviation; Bichon criterion also known as Expected Fea-
sibility Function (EFF) ([Bichon et al., 2008]), and Ranjan criterion ([Ranjan et al., 2008]).
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Sequential construction of a DoE (by GPR)

Figure 3.1: Diagram of the sequential DoE construction, coupled with GPR.

3.2.2 Towards more exploration: the Bichon criterion

The Bichon criterion (Bichon), originally presented in [Bichon et al., 2008] is a goal-oriented
criterion for the DoE enrichment. This criterion is an adaptation of EI from [Jones et al., 1998],
introduced in the context of global optimization, to the inversion framework.

As a reminder, the original idea of EI is to select a point x that allows an improvement of
gmin − ξ(x) with gmin the current minimum observed on the DoE, while taking into account
the uncertainty of the surrogate model. The idea behind Bichon is to adapt this strategy to
the excursion set estimation framework by considering both the variability of the surrogate
model and the potential improvement in the knowledge of the excursion set boundary. This
is the exploration-exploitation compromise.

To introduce Bichon, it is necessary to define, for a fixed x belonging to X, a random
variable FF(x) (Feasibility Function) defined by

FF(x) : = ε(x)−min
{
|T − ξ(x)|, ε(x)

}
=
(
ε(x)− |T − ξ(x)|

)+
,

(3.10)

with ( . )+ := max( . , 0). This function represents the distance of the surrogate model to
the bounds of the interval [T − ε(x), T + ε(x)] only if the surrogate model belongs to this
interval and is 0 otherwise. In practice, the interval width ε(x) is chosen proportional to the
kriging standard deviation σn(x), leading in particular to a null value of the criterion for the
points already present in the DoE. An example is given in Figure 3.2. The feasibility function
is drawn for one sample path of ξ| En. Its maximization aims to select points close to the
boundary of the excursion set estimate or points associated to high values of ε(x). Then, the
average of FF over all sample paths, gives the Expected Feasibility Function (EFF)

EFF(x) := E
[(
ε(x)− |T − ξ(x)|

)+ ∣∣∣ En]. (3.11)

The new selected points according Bichon are

x(n+1) ∈ argmax
x∈X

EFF(x). (3.12)

To interpret (3.11), it is possible to make a heuristic analogy with the theory of statistical
tests ([Dagnelie, 1992]). Let x be fixed, suppose that ξ(x)| En ∼ N (mn(x), σn(x)) with mn(x)
unknown and σn(x) > 0 known and let us define the following statistical test

H0 : mn(x) = T against H1 : mn(x) 6= T (3.13)
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Figure 3.2: Representation of Feasibility Function (bottom) for a given example of a GP
sample path conditioned on 5 evaluations of the g function, a threshold T set to 0 and
ε(x) := σn(x) (top).

We choose υx := ξ(x)−T
σn(x)

∣∣∣ En as the test statistic which follows standard normal distribution
under H0. Consequently, if we want to refute Hypothesis H0 at order α it is necessary that

|υx| > κ (3.14)

with κ := q1−α2 the quantile of order 1− α
2 of the standard normal distribution.

However, what we wish to do is not to refute the hypothesis that mn(x) = T but rather
to select, among the x for which the hypothesis H0 is plausible i.e. κ − |υx| > 0, the x for
which the quantity κ− |υx| is the largest in average. Multiplying (κ− |υx|)+ by σn(x) leads
to Bichon criterion with ε(x) := κσn(x), and has the effect to increase the exploration ability
of the criterion.

Finally, an explicit formulation of Bichon (see [Bect et al., 2012] for a proof) can be cal-
culated based on the posterior kriging trend and variance, the threshold T and the width
ε(x)
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EFF(x) = (mn(x)− T )
[
2φ
(
T −mn(x)
σn(x)

)
− φ

(
T− −mn(x)

σn(x)

)
− φ

(
T+ −mn(x)

σn(x)

)]

− σn(x)
[
2ϕ
(
T −mn(x)
σn(x)

)
− ϕ

(
T− −mn(x)

σn(x)

)
− ϕ

(
T+ −mn(x)

σn(x)

)]

+ ε(x)
[
φ

(
T+ −mn(x)

σn(x)

)
− φ

(
T− −mn(x)

σn(x)

)]
,

(3.15)

with T± := T ± ε(x), ϕ and φ represent respectively the probability density and cumulative
distribution functions of the standard normal distribution. In practice, the enrichment of the
DoE is done by maximizing the criterion given by Equation (3.15). The main objective of
this work is to propose a SUR version of this goal-oriented criterion, in order to obtain a SUR
method that is simpler to set up and more robust than SUR Vorob’ev.

3.3 SUR Bichon criterion

This section focuses on an adaptation of the Bichon criterion to a SUR strategy. The new
SUR criterion we introduce can be implemented in the framework of GPR without any ap-
proximation unlike SUR Vorob’ev (see Appendix A and [Chevalier, 2013]). Moreover, SUR
Bichon performs better than Bichon criterion and corrects the lack of robustness observed
when applying SUR Vorob’ev, at least on test cases studied in Section 3.4.

3.3.1 Reminders on SUR strategies

SUR strategies aim at maximizing the mean uncertainty reduction induced by new evaluations.
Let us introduce a residual uncertainty Hn, computed with the GP model conditioned on En.
From this residual uncertainty, the conditional residual uncertainty Hn+1(x) is defined as
the updated uncertainty when adding x to DoE χn. This conditional uncertainty is then a
measurable function of the random variable ξ(x)| En. The associated SUR strategy is then
defined by

x(n+1) ∈ argmin
x∈X

Jn(x) with Jn(x) := E
[
Hn+1(x)

]
. (3.16)

Note that the expectation in Jn(x) is relative to the distribution of ξ(x)| En. Eq. (3.16)
means that evaluating the surrogate model at x(n+1) will decrease at most, the expected
residual uncertainty.

More details on SUR strategies and their origin from k-step lookahead strategies can be
found in [Bect et al., 2012]. Among classical SUR strategies based on GPR, we can quote for
example different criteria using the excursion set volume, presented in [Bect et al., 2012].
A more complex criterion requiring notions about the random set theory of Vorob’ev
([Molchanov, 2005]) introduced in [Chevalier, 2013], can also be cited. We refer to Appendix
A for more details on Vorob’ev theory and the associated SUR Vorob’ev strategy.

SUR strategies are numerically more complex to implement, but are generally more ef-
ficient than other goal oriented strategies ([Bect et al., 2012] and [Chevalier, 2013]), for the
same number of evaluations. A reduction in the numerical complexity of SUR strategies is
frequently used through the use of kriging update formulas introduced in [Chevalier, 2013]
(see Appendix B).
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3.3.2 Formulation of the SUR Bichon criterion

Let PX a probability measure on X. Following the formalism of SUR strategies given in section
3.3.1, we first define a residual uncertainty Hn by

Hn :=
∫
X

EFF(z) dPX(z)

=
∫
X
E
[(
κσn(z)− |T − ξ(z)|

)+∣∣∣ En] dPX(z), with κ > 0.
(3.17)

The corresponding conditional residual uncertainty is then defined by

Hn+1(x) :=
∫
X
E
[(
κσn+1(z)− |T − ξ(z)|

)+∣∣∣ ξ(x), En
]

dPX(z), with κ > 0, (3.18)

with σn+1(z) the kriging standard deviation computed from Equation (3.34) in Appendix B
and x being the n+ 1th observation point. In practice, the chosen probability measure PX is
the Lebesgue measure restricted and normalized on X and the coefficient κ is usually set to 1
like in Bichon ([Bect et al., 2012]). The residual uncertainty Hn represents the average (with
respect to PX) of mean distances (in positive values) of ξ(z) to the bounds of the interval
[T −κσn(z), T +κσn(z)], conditioned on En. An overall reduction in σn leads to a decrease in
the uncertainty Hn. The same applies to the addition of a new point close to the boundary
defined by the threshold T .

The problem is to find

x(n+1) ∈ argmin
x∈X

Jn(x) with Jn(x) := E
[ ∫

X
E
[(
κσn+1(z)−|T − ξ(z)|

)+∣∣∣ ξ(x), En
]

dPX(z)
]
,

(3.19)
with κ > 0. The first expectation is relative to ξ(x)| En and the second one is relative to ξ(z)
knowing ξ(x), En.

Lemma 1.
Jn(x) =

∫
X
E
[(
κσn+1(z)− |T − ξ(z)|

)+ ∣∣∣ En] dPX(z). (3.20)

Proof. The integrand of the chosen residual uncertainty in (3.18) is a positive quantity, by pos-
itivity of the expectation. So, by re-injecting the expression of uncertainty (3.18) into (3.16),
then applying Fubini–Tonnelli theorem (thanks to σ-finite measures and positive integrand),
we obtain

Jn(x) =
∫
X
E
[
E
[(
κσn+1(z)− |T − ξ(z)|

)+∣∣∣ ξ(x), En
]]

dPX(z), (3.21)

Then, in (3.21) the two expectations are reduced in one to obtain (3.20).

Finally, Proposition 2 below provides an explicit formula for the integrand of (3.20).

Proposition 2. For all x, z belonging to X2, we have

E
[(
κσn+1(z)− |T − ξ(z)|

)+ ∣∣∣ En]
= (mn(z)− T )

[
2φ
(
T −mn(z)
σn(z)

)
− φ

(
T− −mn(z)

σn(z)

)
− φ

(
T+ −mn(z)

σn(z)

)]

− σn(z)
[
2ϕ
(
T −mn(z)
σn(z)

)
− ϕ

(
T− −mn(z)

σn(z)

)
− ϕ

(
T+ −mn(z)

σn(z)

)]

+ εx(z)
[
φ

(
T+ −mn(z)

σn(z)

)
− φ

(
T− −mn(z)

σn(z)

)]
(3.22)
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where εx(z) := κσn+1(z), T± := T ± εx(z), ϕ and φ denote the probability density and
cumulative distribution functions of the standard normal distribution, respectively.

The dependency in x in Equation (3.22) is only given via εx(z) = κσn+1(z), therefore
only via σn+1(z), which is independent of the model evaluation on x according to the kriging
formulas. In practice, kriging update formulas (see Equation (3.34) Appendix B) will be used
to get a fast evaluation of εx(z). The proof of Proposition 2 is postponed to Appendix C.

3.4 Numerical experiments

The performances of SUR Bichon are illustrated on two analytical examples, and compared
to SUR Vorob’ev and standard Bichon performances. The chosen test functions are the
rescaled Branin function in dimension 2 and rescaled Hartmann function in dimension 6
([Picheny et al., 2013]). The choice of the threshold T for each of these functions is discussed
later.

Several DoE enrichment strategies can be considered: an enrichment by Bichon χ0,n,
one using SUR Bichon χ1,n and one using SUR Vorob’ev χ2,n, all three after n iterations.
The criteria performance is evaluated through two different estimators: naive estimator
Γ̂1 := m−1

n (] −∞, T ]) and Vorob’ev estimator noted Γ̂2, which corresponds to the Vorob’ev
expectation (Appendix A). The performances of the different criteria are then compared af-
ter n iterations with the approximation error Err(Γ̂i(χj,n)) := PX(Γ̂i(χj,n)∆Γ?)/PX(Γ?), for
(i, j) ∈ {1, 2}2. This error measures the relative volume of the symmetric difference between
estimator Γ̂i(χj,n) and true excursion set Γ? defined in (3.1).

3.4.1 Implementation choices

As mentioned earlier, the choices of trend m and covariance kernel k are fundamental. In
the following, the trend is chosen as a single constant term m, see [Roustant et al., 2012] for
more details. A classical kernel product of type Matérn 5/2 is chosen:

k(x,x′) := Cov
(
Z(x),Z(x′)

)
= σ2

c

d∏
i=1

RMatérn 5/2
(
hi, θi

)
, ∀ (x,x′) ∈ X2, (3.23)

with a vector of parameters θ belonging to R? d+ , estimated by maximizing the likelihood at
each iteration, hi = |xi − x′i|, σc a fixed parameter and

RMatérn 5/2
(
hi, θi

)
:=
(

1 +
√

5|hi|
θi

+ 5h2
i

3θ2
i

)
exp

(
−
√

5|hi|
θi

)
. (3.24)

This choice leads to trajectories of class C2 ([Paciorek, 2003]).
The implementation of SUR Bichon from formulas (3.20) and (3.22), is greatly inspired by

the implementation of various SUR criteria in the package KrigInv ([Chevalier et al., 2014b]).
In addition, the chosen measure PX is the renormalized Lebesgue measure restricted to X,
which is possible because X is compact. In (3.20), the integration is performed using a Sobol’
sequence with n.points integration points (package randtoolbox [Dutang and Savicky, 2013]).
The criterion is optimized with the genetic algorithm Genoud (with pop.size = 50d) (package
rgenoud, [Mebane Jr and Sekhon, 2011]). Unless explicitly stated, κ in (3.22) is set to 1, initial
DoEs are obtained by LHS optimized by maximizing minimal distances between the points
(Latin Hypercube Sampling, [Dupuy et al., 2015]) with size to be specified in the following,
and n.points defined above is set to 104.
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The volume of Γ? and Γ̂i(χj,n)∆Γ? are approached using a quasi-Monte Carlo methods
([Lemieux, 2009]) with a Sobol’ sequence of size 104.

3.4.2 Performance tests on Branin-rescaled 2D function

The Branin-rescaled function, defined in [Picheny et al., 2013] on X := [0, 1]2, is repre-
sented in Figure 3.3. The Γ? excursion set is defined by the upper bound T = 10 on the
function values, which leads to 3 disconnected areas and the volume of Γ? represents 15.74%
of the total volume of X. The tests are performed on 100 different initial DoEs of size 10. 20
iterations (1 simulation per iteration) are run for SUR Bichon, SUR Vorob’ev and Bichon.

Figure 3.3: Representation of the Branin-rescaled function on X.

Black solid lines (line plot) of Figure 3.4 represent the approximation error for each of the
100 initial DoEs of size 10. This makes it possible to visualize the enrichment performances
throughout the iterations. Bichon seems to perform less well than the other two SUR criteria:
the median is higher. SUR Bichon appears more robust than SUR Vorob’ev throughout the
enrichment, no matter which estimator is chosen. Indeed, in the case of SUR Vorob’ev, several
extreme cases present stagnation of the approximation error. These rare stagnations are due
to the late discovery of one of the three components of the excursion set as illustrated below.
The logarithmic scale of the graph seems to show a stagnation of the curve for these few cases,
but it is in fact a faster progression towards a threshold value, due to the simplification of
the problem to the two remaining components. Also, the approximation error with Γ̂1 seems
more robust than with Γ̂2 (see Appendix D for more details), and this can be explained by
the fact that estimators Γ̂1 and Γ̂2 are respectively based on an extension of median and mean
concepts to sets (Appendix A).

We focus on one run of the enrichment with SUR Vorob’ev associated with one of the
outliers of Figure 3.4. The associated Γ̂1 (resp. Γ̂2) estimators are represented as green full
(resp. dotted) line on Figure 3.5, after 20 iterations. This figure shows that SUR Vorob’ev
misses one of the three areas of the exact excursion set Γ? presented in Figure 3.3. The use
of SUR Bichon allows a better exploration of the design space, which here allows to detect
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Bichon

(a) Err
(
Γ̂1(χ0,n)

)

SUR Bichon

(b) Err
(
Γ̂1(χ1,n)

)

SUR Vorob’ev

(c) Err
(
Γ̂1(χ2,n)

)

(d) Err
(
Γ̂2(χ0,n)

)
(e) Err

(
Γ̂2(χ1,n)

)
(f) Err

(
Γ̂2(χ2,n)

)
Figure 3.4: Line plots (with logarithmic scale) of the approximation error Err

(
Γ̂i(χj,n)

)
for

the different criteria during 20 iterations, for Branin-rescaled function inversion (d = 2) with
T = 10, for 100 different initial DoEs of size 10 of type LHS Maximin, for κ = 1 and with
n.points= 104. Left column: Bichon with naive estimator (a) and Vorob’ev estimator (d).
Middle column: SUR Bichon with naive estimator (b) and Vorob’ev estimator (e). Right
column: SUR Vorob’ev with naive estimator (c) and Vorob’ev estimator (f).

the three areas of Γ̂?. We notice that there is very few differences between the two types
of estimators and given the robustness of naive estimator Γ̂1 compared to Γ̂2 (Appendix D),
naive estimator is kept for the remaining tests in dimension 2.

The characteristic statistical values of the empirical distribution for the error approxima-
tion with näıve Γ̂1 estimator are given in Table 3.1 for SUR Bichon, SUR Vorob’ev and Bichon.
This table confirms the poor performance of Bichon in relation to the two SUR criteria. In
the following, Bichon is set aside to focus on the comparison of the two SUR Bichon and SUR
Vorob’ev. It can be also seen that only for the quantile 5%, the results are slightly better
for SUR Vorob’ev. All others results show SUR Bichon is more efficient than SUR Vorob’ev:
the outliers of SUR Vorob’ev deteriorate the characteristic values especially mean or standard
deviation.

To summarize, the study of the performances of SUR Bichon on Branin-rescaled function,
showed that for T = 10 the sought excursion set with three connected components is better
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SUR Bichon

(a) Γ̂1(χ1,n)

SUR Vorob’ev

(b) Γ̂1(χ2,n) (c) Γ?

(d) Γ̂2(χ1,n) (e) Γ̂2(χ2,n)

Figure 3.5: Representation of two Γ̂ estimators for each of the two criteria after 20 iterations,
in comparison with the true excursion set (top right), for Branin-rescaled function inversion
(d = 2) with T = 10, for a particular initial DoE of size 10 where SUR Bichon outperforms
SUR Vorob’ev. Left column: SUR Bichon with naive estimator (a) and Vorob’ev estimator
(d). Middle column: SUR Vorob’ev with naive estimator (b) and Vorob’ev estimator (e).
Right column: true excursion set and Branin-rescaled contour lines (c).

(×100)
Crit. ite = 10 ite = 20

SUR B. SUR V. B. SUR B. SUR V. B.
Mean 7.82 12.35 15.07 1.09 3.18 1.71

Median 7.24 7.78 11.94 1.08 1.08 1.59
Quantile 5% 4.36 4.24 5.53 0.57 0.51 0.89
Quantile 95% 12.94 36.42 37.87 1.59 35.13 3.25

Standard Deviation 3.21 10.79 9.97 0.34 8.17 0.73
Interquartile Range 3.80 5.38 9.24 0.52 0.64 0.89

Table 3.1: Summary of empirical distributions of the Err
(
Γ̂i(χj,n)

)
for the different criteria

after 10 and 20 iterations, for Branin-rescaled function inversion (d = 2) with T = 10, for 100
different initial DoEs of size 10 of type LHS Maximin.
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detected when using SUR Bichon. Indeed, the latter, unlike SUR Vorob’ev, makes it possible
to avoid extreme cases for which one of the three connected components is completely missed.

3.4.3 Performance tests on Hartmann-rescaled 6D function

In this section the inversion results for the Hartmann-rescaled function ([Picheny et al., 2013])
on X := [0, 1]6 are presented. The excursion set Γ? is defined by the upper bound T = −1.6,
with a volume that represents 15.45% of the total volume of X. Results of clustering methods
(not presented here) suggest that Γ? is composed of only one large connected component.
The tests are performed on 50 different initial DoEs of size 30 and 600 iterations of DoE
enrichment are run for both SUR Bichon and SUR Vorob’ev.

Line plots on Figure 3.3 show the approximation error along the iterations of the enrich-
ment. Firstly, it can be observed that the improvement of the approximation error during the
enrichment is slower than in dimension 2, which is consistent with the increasing difficulty
of the problem in higher dimension. Moreover, we observe that SUR Bichon performs better
than SUR Vorob’ev whatever the chosen estimator, with respect to the robustness to outliers
but also on average, especially from the 300th iteration. In addition, it is clear from Figure
3.3 (a) and (c) that naive estimator Γ̂1 gives a more robust approximation error than Γ̂2, with
SUR Bichon enrichment. We thus decide to present the numerical results in the following of
the section for Γ̂1 only.

We focus on one of the outliers of Figure 3.3 (b) for which the enrichment strategy is
based on SUR Vorob’ev. For an extreme case, we represent in pairwise projection the points
of a Sobol’ sequence of size 5.103 on X belonging to Γ̂1∆Γ?, with Γ̂1 the estimator obtained
after 600 iterations (see Figure 3.7). There are only 55 misclassified points observed for SUR
Bichon, against 247 in the case of SUR Vorob’ev. Moreover, among the 247 points for the
case SUR Vorob’ev, 191 correspond to Γ̂\Γ? (unfeasible points that are predicted feasible),
whereas the remaining misclassified points correspond to feasible points that were predicted
unfeasible (as for 2D example). This allows to further illustrate the robustness of SUR Bichon
compared to SUR Vorob’ev. A comparable study was carried out on the other extreme runs
as well as on the non-extreme ones. The results showed that the configuration for the other
extreme run is comparable to that in Figure 7 while the configurations for the non-extreme
runs are all more or less similar and relatively balanced in terms of number of misclassified
points between SUR Bichon and SUR Vorob’ev criteria.

The characteristic statistical values of the empirical distribution for the approximation
error are given in Figure 3.2 for both SUR Bichon and SUR Vorob’ev. It can be confirmed
that except at the beginning where enrichment is not yet sufficient, SUR Bichon performs
better for all indicators than SUR Vorob’ev, and not only in terms of robustness (see e.g. the
quantile of order 5% or the median).

In summary, the tests on Hartmann-rescaled function in dimension 6 with T = −1.6,
further highlight the robustness of SUR Bichon compared to SUR Vorob’ev, in dimension
higher than 2. In addition to the robustness, it was also observed that in this 6 dimensional
case, beyond about 300 iterations, SUR Bichon performs better than SUR Vorob’ev, even
without considering the outliers.

The robustness of SUR Bichon can be explained by its exploratory capability forced by
the kriging standard deviation in factor of the SUR Bichon formulation (see Section 3.2.2).
Besides, the Vorob’ev expectation is strongly dependent on the stationarity assumption of the
underlying Gaussian process (Appendix D), which has an influence on the enrichment, since
the enrichment with SUR Vorob’ev is based on the Vorob’ev deviation (Appendix A), and
then on the Vorob’ev expectation. This could explain the lack of robustness of SUR Vorob’ev.
Indeed, in practice the stationarity hypothesis is never rigorously checked (unless the model

55



SUR Bichon

(a) Err
(
Γ̂1(χ1,n)

)

SUR Vorob’ev

(b) Err
(
Γ̂1(χ2,n)

)

(c) Err
(
Γ̂2(χ1,n)

)
(d) Err

(
Γ̂2(χ2,n)

)
Figure 3.6: Line plots (with logarithmic scale) of the approximation error
PX
(
Γ̂i(χj,n)∆Γ?

)
/PX(Γ?) (with a Sobol’ sequence of size 104) for the different criteria

during 600 iterations, for Hartmann-rescaled function inversion (d = 6) with T = −1.6, for 50
different initial DoEs of size 30 of type LHS Maximin, for κ = 1 and with n.points= 104. Left
column: SUR Bichon with naive estimator (a) and Vorob’ev estimator (c). Right column:
SUR Vorob’ev with naive estimator (b) and Vorob’ev estimator (d).

is defined as a given realization of a stationary Gaussian process). Eventually, the calculation
of the Vorob’ev criterion is sensitive to the determination of the Vorob’ev threshold α? (see
Appendix A). However, we have verified that the determination of α? was not the problem for
the robustness of SUR Vorob’ev by checking the numerical simplicity of the minimum search
for the function α 7→

∣∣E[PX(Γ)|En
]
− PX(Qα)

∣∣.
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SUR Bichon

(a) Γ̂1(χ1,n)∆Γ̂?

SUR Vorob’ev

(b) Γ̂1(χ2,n)∆Γ̂?

Figure 3.7: Pairwise projection plot of Γ̂1∆Γ? for a 5.103-Sobol’ sequence, for the two criteria
after 600 iterations, for Hartmann-rescaled function inversion (d = 6) with T = −1.6, for a
particular initial DoE of size 30 where SUR Bichon outperforms on SUR Vorob’ev, for κ = 1
and for n.points= 104. Left column: SUR Bichon. Right column: SUR Vorob’ev.

(×100)
Crit. ite = 99 ite = 300 ite = 600

SUR B. SUR V. SUR B. SUR V. SUR B. SUR V.
Mean 40.42 35.05 13.92 16.55 5.61 9.94

Median 40.32 34.72 13.92 15.28 5.66 8.83
Quantile 5% 34.14 28.84 12.09 12.74 4.62 7.17
Quantile 95% 46.67 44.40 15.38 29.42 6.45 11.63

Standard Deviation 3.98 4.48 0.99 6.14 0.61 5.26
Interquartile Range 5.26 4.56 1.13 1.81 0.68 1.75

Table 3.2: Summary of empirical distributions of the approximation error PX(Γ̂∆Γ?)/PX(Γ?)
(with a Sobol’ sequence of size 104) for the different criteria after 99, 300 and 600 iterations,
for Hartmann-rescaled function inversion (d = 6) with T = −1.6, for 50 different initial DoEs
of size 30 of type LHS Maximin, for κ = 1 and with n.points= 104.

3.5 Conclusion

In the framework of solving inversion problems using Gaussian Process Regression, we have
proposed a new SUR criterion based on the Bichon criterion for DoE enrichment. Numerical
simulations have demonstrated its good exploratory behavior, as far as its robustness from
different points of view. Indeed, our new criterion is robust with the stationarity assumption
of the underlying Gaussian process. Moreover, it is robust to the geometry of the set to be
retrieved, in particular in terms of number of connected components.
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3.7 Appendices

A Basics on Vorob’ev Theory and corresponding SUR strategy

Vorob’ev expectation

In this part, the notion of expectation for random closed sets in the sense of Vorob’ev is defined
from [Molchanov, 2005]. The framework is a compact set X ⊂ Rd and a random closed set Γ
of X. It is recalled that Γ : Ω→ C is a random closed set if it is a measurable function on the
probability space (Ω,F ,P) with values in the set of all compacts of X in the sense that:

∀C ∈ C,
{
w ∈ Ω,Γ(w) ∩ C 6= ∅

}
∈ F . (3.25)

Let us define the parametric family
{
Qα
}
α∈[0,1] of Vorob’ev quantiles is defined by:

Qα := {x ∈ X : p(x) := P(x ∈ Γ) ≥ α}, ∀α ∈ [0, 1]. (3.26)

The elements of {Qα}α∈[0,1] are called the Vorob’ev quantiles of the random closed set Γ and
the function p is called the coverage function of Γ.

To define the expectation of the random closed set Γ, [Molchanov, 2005] comes back to the
expectation of a real random variable: the measure of the Γ set PX(Γ). From the parametric
family of Vorob’ev quantiles (Eq. (3.26)), the expectation of Γ in the sense of Vorob’ev is
then defined as the Vorob’ev quantile of measure equal (or the closest one higher) to the
expectation of the measure of Γ. More precisely, the Vorob’ev expectation of a random closed
set Γ is the set Qα? , where α? is defined as the Vorob’ev threshold by

∀α > α?, PX(Qα) < E[PX(Γ)] ≤ PX(Qα?), (3.27)

where PX denotes the Lebesgue measure on X. α? is called the Vorob’ev threshold.
Remark 2.
• Based on Equation (3.26), the function α 7→ PX(Qα) is decreasing on [0, 1].
• The uniqueness of α? in the definition is easily checked. The existence of such α? in the
definition of Vorob’ev expectation is based on the decreasing and continuity to the left of
the function α 7→ PX(Qα) which is itself guaranteed by the superior semi-continuity of the
coverage function p (see [Molchanov, 2005] page 23).
• The continuity of the function α 7→ PX(Qα) ensures equality PX(Qα?) = E[PX(Γ)] in the
definition of Vorob’ev expectation.
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In the particular case where Γ is given by Γ := {x ∈ X, ξ(x) ≤ T} with ξ a stochastic
process indexed by X with continuous trajectories conditioned on the event En corresponding
to n evaluations of ξ and T a fixed threshold, Γ is a random closed set ([Molchanov, 2005,
page 3]). A sufficient condition to obtain a stochastic process with continuous trajectories is
to consider a separable Gaussian process with continuous mean and covariance kernel of type
Matérn 3/2 or 5/2 ([Paciorek, 2003, pages 35 and 44]). Moreover, in this case, the function
α 7→ PX(Qα) is continuous and so the equality PX(Qα?) = E[PX(Γ)| En] is verified. It is also
important to notice that naive estimator Γ̂1 is almost surely equal to the median of Vorob’ev
(quantile of order 1/2). Indeed, by noting φ the distribution function of the standard normal
distribution,

Γ̂1 =
{
x ∈ X, mn(x) ≤ T

}
a.s.=
{

x ∈ X,
T −mn(x)
σn(x) ≥ 0 and σn(x) 6= 0

}
=
{

x ∈ X, φ
(
T −mn(x)
σn(x)

)
≥ φ(0) and σn(x) 6= 0

}
as φ increases

a.s.=
{

x ∈ X, pn(x) ≥ 1
2

}
= Q 1

2
, (3.28)

where pn is the coverage function pn(x) := P(ξ(x) ≤ T | En).
Repeating the previous calculation and replacing 1/2 by the Vorob’ev threshold α?, we

obtain :
Qα?

a.s.=
{

x ∈ X, mn(x) 6 T − φ−1 (α?)σn(x)
}

(3.29)

Vorob’ev deviation

The introduction of the concept of Vorob’ev deviation is used to define residual uncertainty
Hn(x) in a SUR strategy. Let us start by introducing the notion of distance between two
random closed sets.

The average distance dPX with respect to a measure PX on all pairs of random closed sets
included in X is defined by: for all random closed sets Γ1,Γ2 defined on X,

dPX (Γ1,Γ2) := E [PX (Γ1∆Γ2)] (3.30)

where ∆ is the random symmetric difference: ∀ω ∈ Ω, Γ1∆Γ2(ω) := (Γ1\Γ2)(ω)∪(Γ2\Γ1)(ω).
In addition, the function dPX checks the properties of a distance.

The following proposition [Molchanov, 2005] justifies the choice of the Vorob’ev quantile
family to define the Vorob’ev expectation and also allows to define the Vorob’ev deviation.
Moreover, when E[PX(Γ)] = PX(Qα?) (especially in the case of Γ := {x ∈ X, ξ(x) ≤ T} with
ξ a stochastic process indexed by X with continuous trajectories), the condition α? ≥ 1

2 is no
longer necessary (see [El Amri, 2019, page 28] for the proof)

Proposition 3. Noting Qα? the Vorob’ev expectation of the random closed set Γ and as-
suming that α? ≥ 1

2 , it results that: for any measurable set M included in X such that
PX(M) = E[PX(Γ)],

dPX (Γ, Qα?) ≤ dPX (Γ,M) (3.31)
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The Vorob’ev deviation of the random set Γ is defined as the quantity dPX(Γ, Qα?). The
Vorob’ev deviation quantifies the variability of the random closed set Γ relative to its Vorob’ev
expectation.

SUR Vorob’ev criterion

Once the basic elements of Vorob’ev theory are introduced, the associated SUR strategy is
simply defined from the definition of SUR strategies via Equation (3.16) by taking:

Hn := E
[
PX(Γ∆Qn,α?n)

∣∣ En] and Hn+1(x) := E
[
PX(Γ∆Qn+1,α?n+1

)
∣∣ ξ(x), En

]
(3.32)

where Qn,α?n denotes the Vorob’ev expectation conditioned on En and Qn+1,α?n+1
the Vorob’ev

expectation conditioned on En and the addition of the point (x, ξ(x)) to the DoE. The idea
behind (3.32) is to take as residual uncertainty, the variation with respect to the Vorob’ev
expectation of the random closed set Γ, with Γ := {x ∈ X, ξ(x) ≤ T}. With the assumption
that α?n+1 = α?n and by re-injecting the quantity Hn+1(x) of (3.32) in the Jn criterion (3.16),
it is possible to find a simplified formulation involving only an integral of a simple quantity
[Chevalier, 2013]. This quantity is dependent on the cumulative distribution functions of
the standard normal distribution and the bivariate centered normal distribution with given
covariance matrix. Such a formulation then allows less time consuming computations and
therefore is implemented in the package KrigInv ([Chevalier et al., 2014b]).

B Kriging update formulas

In the context of SUR strategies, the quantity Jn(x) in Equation (3.16) for a fixed x is usually
simplified thanks to formulas of kriging and conditionally on the point (x, ξ(x)) added to the
DoE, and more particularly using the kriging standard deviation. Indeed, contrary to the
trend, the kriging standard deviation does not depend on surrogate model observations. For
instance the recurrent formula, used in [Chevalier, 2013] is efficient for calculating kriging
model in the context of universal kriging and when the kriging parameters β and θ do not
need to be re-estimated. These kriging update formulas are given for all y,y′ in X2 by

mn+1(y) = mn(y) + kn
(
y,x(n+1)) kn(x(n+1),x(n+1))−1 (

g
(
x(n+1))−mn

(
x(n+1))) , (3.33)

σ2
n+1 (y) = σ2

n (y)− k2
n

(
y,x(n+1))σ2

n

(
x(n+1))−1

, (3.34)

kn+1
(
y,y′

)
= kn

(
y,y′

)
− kn

(
y,x(n+1))kn(x(n+1),x(n+1))−1

kn
(
y′,x(n+1)), (3.35)

with x(n+1) the n+ 1 th observation point.
As for SUR strategies, it is possible to generalize these formulas in the case of simulta-

neous additions of q points ([Chevalier, 2013]). The advantage of these formulas is that the
expressions of mn, σn, and kn are reused to reduce computational time. It is particularly
useful in SUR strategies where many evaluations of the kriging formulas may be required for
the numerous evaluations of the sampling criterion (in the context of its minimization (3.16)).
Finally, it can be shown that these kriging formulas still coincide with the Gaussian process
conditional formulas in the context of universal kriging (see Appendix A of [Chevalier, 2013]
for a proof).

C Proof of the explicit formula for SUR Bichon

The interest of this appendix is to propose a demonstration of Proposition 2, allowing to give
an explicit expression of SUR Bichon. Let us start by stating and proving an intermediate
lemma.
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Lemma 2. Let N be a standard Gaussian random variable and (a, b) ∈ R2 such that a < b,
then:

E
[
N1[a,b](N)

]
= −ϕ(b) + ϕ(a) (3.36)

where ϕ is the probability density function of the standard normal distribution.
Proof.

E
[
N1[a,b](N)

]
= 1√

2π

∫ b

a
te−

t2
2 dt = 1√

2π

[
− e−

t2
2
]b
a

= −ϕ(b) + ϕ(a) (3.37)

Proposition 1. For all x, z belonging to X2, we have:

E
[(
κσn+1(z)− |T − ξ(z)|

)+ ∣∣∣ En]
= (mn(z)− T )

[
2φ
(
T −mn(z)
σn(z)

)
− φ

(
T− −mn(z)

σn(z)

)
− φ

(
T+ −mn(z)

σn(z)

)]

− σn(z)
[
2ϕ
(
T −mn(z)
σn(z)

)
− ϕ

(
T− −mn(z)

σn(z)

)
− ϕ

(
T+ −mn(z)

σn(z)

)]
(3.38)

+ εx(z)
[
φ

(
T+ −mn(z)

σn(z)

)
− φ

(
T− −mn(z)

σn(z)

)]
where εx(y) := κσn+1(z), T± := T ± εx(z), ϕ and φ denote the probability density and

cumulative distribution functions of the standard normal distribution, respectively.

Proof. For the proof only and for the sake of lightening the notations, we note En the con-
ditional expectation E [ . | En]. In addition, the expression to be calculated is separated into
three terms that are calculated separately. Specifically:

En
[(
κσn+1(z)− |T − ξ(z)|

)+] = En
[(
εx(z)− |T − ξ(z)|

)
1[T−,T+]

(
ξ(z)

)]
= En

[
εx(z) 1[T−,T+]

(
ξ(z)

)]
− En

[(
T −mn(z) +mn(z)− ξ(z)

)
1[T−,T [

(
ξ(z)

)]
+ En

[(
T −mn(z) +mn(z)− ξ(z)

)
1[T,T+]

(
ξ(z)

)]
= En

[
εx(z) 1[T−,T+]

(
ξ(z)

)]
︸ ︷︷ ︸

1©

+
(
T −mn(z)

)[
En
[
1[T,T+]

(
ξ(z)

)]
− En

[
1[T−,T ]

(
ξ(z)

)]]
︸ ︷︷ ︸

2©

−
[
En
[(
mn(z)− ξ(z)

)
1[T−,T ]

(
ξ(z)

)]
− En

[(
mn(z)− ξ(z)

)
1[T,T+]

(
ξ(z)

)]]
︸ ︷︷ ︸

3©
(3.39)

The calculation of the three terms separately is as follows:

1© : = En
[
εx(z) 1[T−,T+]

(
ξ(z)

)]
= εx(z)En

[
1[

T−−mn(z)
σn(z) ,

T+−mn(z)
σn(z)

](ξ(z)−mn(z)
σn(z)

)]

= εx(z)
[
φ

(
T+ −mn(z)

σn(z)

)
− φ

(
T− −mn(z)

σn(z)

)]
(3.40)
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2© : =
(
T −mn(z)

)[
En
[
1[T,T+]

(
ξ(z)

)]
− En

[
1[T−,T ]

(
ξ(z)

)]]
=
(
mn(z)− T

)[
En
[
1[T−,T ]

(
ξ(z)

)]
− En

[
1[T,T+]

(
ξ(z)

)]]

=
(
mn(z)− T

)[
2φ
(
T −mn(z)
σn(z)

)
− φ

(
T− −mn(z)

σn(z)

)
− φ

(
T+ −mn(z)

σn(z)

)]
(3.41)

For the calculation of 3©, the use of Lemma 2 is necessary, using the notations of it.

3© : = −
[
En
[(
mn(z)− ξ(z)

)
1[T−,T ]

(
ξ(z)

)]
− En

[(
mn(y)− ξ(z)

)
1[T,T+]

(
ξ(z)

)]]

= σn(z)
[
En

[(
ξ(z)−mn(z)

σn(z)

)
1[

T−−mn(z)
σn(z) ,

T−mn(z)
σn(z)

](ξ(z)−mn(z)
σn(z)

)]

− En

[(
ξ(z)−mn(z)

σn(z)

)
1[

T−mn(z)
σn(z) ,

T+−mn(z)
σn(z)

](ξ(z)−mn(z)
σn(z)

)]]

= σn(z)
[
E
[
N 1[

T−−mn(z)
σn(z) ,

T−mn(z)
σn(z)

](N)]− E
[
N 1[

T−mn(z)
σn(z) ,

T+−mn(z)
σn(z)

](N)]]

= −σn(z)
[
2ϕ
(
T −mn(z)
σn(z)

)
− ϕ

(
T− −mn(z)

σn(z)

)
− ϕ

(
T+ −mn(z)

σn(z)

)]
(3.42)

The expected result is then obtained by re-injecting the expressions of 1©, 2©, and 3© obtained
in Equations (3.40) to (3.42) in Equation (3.39).

Remark 3.
• In this proof of Proposition 2, the fact that mn(z), σn(z), εx(z) and T± are constant
with respect to ξ(z) is implicitly used, in particular to output mn(z), σn(z) and εx(z) of the
conditional expectation En, but also for the renormalization of ξ(z) and the transition to the
density probability and cumulative distribution functions of the standard normal distribution.

D Robustness of estimators with respect to the GP stationarity assump-
tion.

A certain instability of the approximation error was observed at the beginning of the enrich-
ment in Figures 3.4 and 3.3 in the case of estimator Γ̂2 corresponding to Vorob’ev expectation,
in comparison to Γ̂1 naive estimator. This robustness of naive estimator Γ̂1 compared to Γ̂2
can be explained by the fact that naive estimator corresponds to the median of Vorob’ev (Ap-
pendix A, equation (3.28)). Indeed, even if the notions of expectation and median of Vorob’ev
are not similar to the classical ones, the property of minimizing the first absolute central mo-
ment of the median is preserved when extending the notion of median to the framework of
Vorob’ev random sets ([Molchanov, 2005] page 178). It is also possible to ”read” the lack of
robustness on Equation (3.29) of Appendix A which is recalled below:

Qα?
a.s.=
{

x ∈ X, mn(x) 6 T − φ−1 (α?)σn(x)
}
.

Knowing the strong dependence of the σn term on the stationarity condition of the process,
it is straightforward that the term φ−1(α?)σn(x) plays an important role in the non-robustness
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of Γ̂2 = Qα? estimator, compared to naive estimator Γ̂1 where this term φ−1(α?)σn(x) does
not appear.

To illustrate this robustness issue, we define the Loggruy function in dimension 2 as follows:

∀x ∈ R2, Loggruy(x) = 10 log10

(
3.6 + 104

( 2∑
i=1

(xi−ai)2− r2
)
×· · ·×

( 2∑
i=1

(xi−ei)2− r2
))

(3.43)

with (ai)i =
(

0.153
0.939

)
; (bi)i =

(
0.854
0.814

)
; (ci)i =

(
0.510
0.621

)
; (di)i =

(
0.207
0.386

)
; (ei)i =

(
0.815
0.146

)
and r := 0.07.

The threshold chosen is T = 10 log10(3.6) and the corresponding Γ? excursion set (Equa-
tion (3.1)) is composed of 5 disconnected components. This function is particularly interesting
in our context, since it has strong gradients at the edges of the domain and weaker gradients
in the middle, where the different zones of the Γ? excursion set are located (Figure 3.8c). This
means that the stationarity assumption of the kriging meta-model cannot be verified.

Figure 3.8 represents in the case of an enrichment of 100 and 200 points of SUR Vorob’ev,
from an initial DoE of size 10, the contour lines of the coverage probability pn and the kriging
mean mn. Estimators Γ̂1 and Γ̂2 are also represented and compared to Γ?. An irregularity is
observed for the contour lines of pn either after 100 or 200 iterations. But, mn is relatively
accurate even after 100 iterations. Γ̂2 estimator is then less efficient than Γ̂1 estimator.

In summary, Γ̂2 estimator related to Vorob’ev theory is more dependent on the stationar-
ity hypothesis than Γ̂1 naive estimator, and this is essentially explained by the construction
of Vorob’ev expectation which is more sensitive to the kriging standard deviation (Equa-
tion (3.29)). Consequently, the approximation error Err

(
Γ̂2(χj,n)

)
is more dependent on the

stationarity hypothesis than the naive approximation error Err
(
Γ̂1(χj,n)

)
.

3.8 Additions to the article

A Influence of the κ parameter

The impact of the κ parameter on the performance of SUR Bichon criterion is demonstrated
using the Branin-rescaled test function. The tests previously conducted with the Branin-
rescaled function (Section 3.4) are repeated with κ taking values from the set 0.1, 0.5, 1, 2, 10
for SUR Bichon criterion. As shown in Figure 3.3, the results align with the theoretical
expectation that κ should not be too large or too small to strike a balance between exploration
and exploitation. The value κ = 1, which has been used so far, appears to be quite appropriate.

Additionally, it is observed that it is preferable to decrease κ rather than increase it. This
is consistent with the formulation of SUR Bichon criterion, where the term multiplied by κ
primarily controls the exploration aspect, while the other term balances both exploration and
exploitation due to the expectation (see Equation (3.17)).

B Use of Importance Sampling for evaluating the SUR Bichon criterion

Importance sampling (see, for example, [Tokdar and Kass, 2010]) is a statistical method used
to estimate properties of a target distribution by sampling from a different, more convenient
distribution and reweighting the samples to account for the discrepancy between the two
distributions. This approach is particularly useful for exploring rare events or low-probability
regions by focusing computational resources on areas that contribute most to the estimation.

The use of an importance sampling method was considered instead of Sobol’ sequences for
evaluating the integral involved in the explicit formulation of SUR Bichon criterion (see Section
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(a) ite = 100, pn (b) ite = 100, mn (c) Loggruy function

(d) ite = 200, pn (e) ite = 200, mn

Figure 3.8: At left and center, representation of the two Γ̂1 and Γ̂2 estimators after 100
iterations (first line) and 200 iterations (second line) for SUR Vorob’ev, and with the contour
lines of pn (first column) and mn (second column), in comparison with the true excursion set
(top right), for Loggruy function inversion (d = 2) with T = 10 log10(3.6), for a particular
initial DoE of size 10.

(×10−3)
κ 0.1 0.5 1 2 10 SUR Vorob’ev

Mean 1.67 1.69 1.74 1.72 2.24 3.94
Median 1.59 1.6 1.65 1.69 2.14 1.64
Q0.05 1 1 0.97 1.1 1.25 0.97
Q0.95 2.55 2.55 2.73 2.5 3.65 3.98
SD 0.49 0.52 0.57 0.45 0.72 10.65
IQR 0.675 0.675 0.74 0.58 0.94 0.66

Table 3.3: Characteristic values of the empirical distributions of the comparison measure
PX(Γ̂∆Γ?) (with a grid 200 × 200) for the different criteria after 20 iterations, in the case of
the inversion of the Branin-rescaled function (d = 2) with T = 10, for 100 different initial
plans of size 10 of type LHS Maximin, for κ ∈ {0.1, 0.5, 1, 2, 10} and with n.points = 10 000.
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3.4.1), similar to the approach implemented in the KrigInv package from [Chevalier et al., 2014b].
However, the results showed that while this method slightly reduces computational cost, it
significantly limits the exploratory potential that makes SUR Bichon criterion particularly
appealing.

Summary:
The aim of this chapter is to introduce, in the context of excursion set

estimation via GPR, a new DoE enrichment criterion, based on the Bichon
criterion. The idea is to propose a more efficient version of the Bichon criterion
by adapting a SUR version of this criterion, while retaining the interesting
exploratory character of the Bichon criterion. This exploratory character
allows us to explore the design space sufficiently, in the case of a complex
excursion set, e.g. made up of several connected components. An explicit
formulation of the new criterion is proposed, making it easier to implement.
Numerical simulations on 2 and 6d analytic examples, and comparisons with
the Bichon and SUR Vorob’ev criteria, demonstrate the performance and
robustness of the new SUR Bichon criterion. Also, the SUR Bichon criterion
proves resistant to the stationarity assumption of the underlying Gaussian
process.

The next chapter presents, within the framework of vector black box mod-
els, new methodologies for the simultaneous estimation of partial excursion
sets on each output component.
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Chapter 4

Excursion set estimation on vector
valued models

Outlines
The aim of this chapter is to study the estimation of excursion sets using Gaussian processes in the
context of a vector-valued black box function. In the context of simultaneous estimation of each partial
excursion set defined for each model output component, we propose three experimental design enrich-
ment criteria, all three inspired by [Bichon et al., 2008]. The first two are derived from the framework
of scalar Gaussian process regression, while the third one is based on a multi-output Gaussian pro-
cess surrogate model. The three criteria are compared on two analytical examples with input space
dimension 2 and 6, and output space dimension 2.
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4.1 The framework for estimating excursion sets

For this chapter to be self contained, we recall first basics on Gaussian process regression and
Scalar Bichon criterion reviewed in Chapters 1 and 2.

4.1.1 Reminders on Gaussian process regression and scalar Bichon criterion

Gaussian process regression

In the context of estimating an excursion set, given X a compact set of Rd and g : X → R a
black box function, our objective is to estimate the set

Γ? :=
{
x ∈ X, g(x) ≤ T

}
, (4.1)

with T a fixed threshold, while limiting the number of costly g evaluations. To tackle this
problem, a sequential Design of Experiments (DoE) enrichment strategy is used, where we
recall that the DoE designates the set of evaluation points where g is evaluated. The first step
is to define a small initial DoE and to build a first surrogate model based on the corresponding
g evaluations. This DoE and the associated surrogate model are then sequentially updated
using a well chosen acquisition criterion. Finally, a last update of the substitution model is
performed to obtain an estimator of Γ?.

Gaussian Process Regression (GPR) is a popular surrogate model: the black box function
g is considered as a realization of a Gaussian process (GP) ξ, which is written as

ξ(x) := m(x) + Z(x), ∀ x ∈ X (4.2)

with m the trend of ξ (deterministic part) and Z a centered stationary GP of known covariance
kernel k : X2 → R (stochastic part). The choice of the covariance kernel k is crucial, since
it determines the regularity of the predictor (see Section 1.3.1 in Chapter 1). To limit the
difficulty of estimating the m function, it is common practice to set m as a linear combination
of given basis functions (fi)li=1 with coefficients β := {βi}li=1 to be estimated.

Let χn := (x(1), ...,x(n)) be the initial experimental design, g(χn) and ξ(χn) denote the
vectors of evaluations of g and ξ on χn and notation En corresponds to the event ξ(χn) = g(χn).
K := (k(x(i),x(j)))1≤i,j≤n is the covariance matrix of ξ(χn) and k(x) the cross-covariance
matrix between ξ(χn) and ξ(x) defined by k(x) := (k(x,x(1)), ..., k(x,x(n)))> for any x in X.
We denote f(x) := (f1(x), ..., fl(x))> the evaluation vector of f on x defining the trend and
F ∈ Rn×l the matrix with f(x(i))> as ith row. When β is unknown and estimated by the
maximum likelihood estimator (MLE)

β̂ :=
(
F>K−1F

)−1F>K−1g(χn),

the mean, variance and covariance of the conditionned process ξ | En, respectively denoted mn,
σ2
n, and kn are given by

mn(x) = f(x)>β̂ + k(x)>K−1(g(χn)− Fβ̂
)
, (4.3)

σ2
n(x) = σ2(x)− k(x)>K−1k(x)+(

f(x)> − k(x)>K−1F
)(
F>K−1F

)−1(f(x)> − k(x)>K−1F
)>
, (4.4)

kn(x,x′) = k(x,x′)− k(x)>K−1k(x′)+(
f(x)> − k(x)>K−1F

)(
F>K−1F

)−1(f(x′)> − k(x′)>K−1F
)>
. (4.5)
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In the sequential DoE enrichment strategy, the choice of acquisition function is essential
and depends on the objective on the black box function: global knowledge, optimization or
estimation of an excursion set, etc. For more details on the various possible acquisition cri-
teria, see Section 1.6 of Chapter 1 (for global knowledge and optimization) and Chapter 2
(for estimation of an excursion set). Below, we recall Bichon criterion, designed for estimat-
ing an excursion set and often used for its exploratory properties, while maintaining good
performances in terms of exploitation.

Scalar Bichon criterion

Bichon criterion, originally presented in [Bichon et al., 2008], is a goal-oriented DoE en-
richment criterion. This criterion is an adaptation of Expected Improvement (EI) from
[Jones et al., 1998], introduced in the context of global optimization, to the context of ex-
cursion set estimation. This adaptation of EI criterion is made by considering both the
variability of the surrogate model and the potential improvement in the knowledge of the
excursion set boundary.

The new points selected according to Bichon criterion are such that the Expected Feasi-
bility Function (EFF) is maximized, i.e.,

x(n+1) ∈ argmax
x∈X

EFF(x), (4.6)

where EFF is defined by

EFF(x) := E
[(
ε(x)− |T − ξ(x)|

)+ ∣∣∣ En], (4.7)

with ( . )+ := max( . , 0) and ε(x) a fixed function.
The function EFF represents, on average, the distance of the surrogate model to the limits

of the interval [T − ε(x), T + ε(x)] only if the surrogate model belongs to this interval and
is 0 otherwise. In practice, the width of the interval ε(x) is chosen to be proportional to
the posterior standard deviation of the surrogate model σn(x), leading in particular to a null
value of the criterion for points already in the DoE. Criterion maximization in Equation (4.6)
aims to select points close to the boundary of the excursion set approximated through GPR,
or points associated with high values of ε(x). This is a compromise between exploitation and
exploration.

For a statistical interpretation of Bichon criterion and an explicit formulation, see Section
2.1.4 of Chapter 2.

4.1.2 Excursion sets in the case of several outputs

Vector-valued black box models are widely used in industry to optimize and calibrate complex
systems. They take various parameters as inputs and provide several critical components
as outputs, such as mechanical stress and acoustic response in automotive, or mechanical
stress and production cost in industrial manufacturing. These models ensure a close match
between simulated results and experimental data, and can be leveraged for improving system
performance and efficiency. It is sometimes crucial to check, for a given set of input parameters,
which constraints on the outputs are respected, to ensure that the system meets the desired
specifications and performance limits.

Simulator data are assumed to be isotopic, which means that the various simulator output
components are evaluated simultaneously for a given input point. This means that a point
must be chosen as DoE enrichment, in order to use the information provided by all simulator
output components.
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In this framework, the vector-valued black box model is denoted g := (g1, . . . , gp)> and
for a fixed T := (T1, . . . , Tp)> vector of thresholds, the partial excursion sets are defined by

Γ?i := {x ∈ X, gi(x) ≤ Ti}, (4.8)

and the global excursion set Γ? is defined as the intersection of all partial excursion sets:

Γ? := {x ∈ X, g(x) ≤ T } =
p⋂
i=1

Γ?i . (4.9)

For the estimation of the global excursion set Γ?, extensions of SUR Excursion measure
variance and Integrated Bernoulli variance criteria have been developed in [Fossum et al., 2021]
(see Section 2.2.4). These criteria use a multi-output Gaussian process surrogate model, and
a generalization of the notion of coverage probability.

In this work, we aim to simultaneously estimate each of the partial excursion sets Γ?i . This
problem is quite different from that of estimating the global excursion set, since it requires
discovering not only the boundary of the global excursion set, but also each of the boundaries
of partial excursion sets. To illustrate this difference, we define the 2D function

g1(x) :=
(
x̄2 −

5x̄2
1

4π2 + 5x̄1
π
− 6

)2
+ 10

(
1− 1

8π
)

cos(x̄1) + 10 (4.10)

and

g2(x) :=
(
x̄2 −

3x̄2
1

4π2 + 4x̄1
π
− 6

)2
+ 10

(
1− 1

8π
)

cos(x̄1) + 2x̄1 − 9x̄2 + 32 (4.11)

with x̄1 := 15x1−5 and x̄2 := 15x2. Figure 4.1 shows for this 2D function the level sets for each
component (left and middle), and excursion sets corresponding respectively to T1 = T2 = 10
(right).

(a) g1 and Γ?1 (b) g2 and Γ?2 (c) Γ?

Figure 4.1: Left and middle: level sets for each component of the 2D function, and the partial
excursion set Γ?1 for threshold T1 = 10 (left), Γ?2 for threshold T2 = 10 (middle). On the right,
comparison of these partial excursion sets with the global excursion set Γ?.

To the best of our knowledge, there are no criteria suitable for simultaneous estimation of
each of the partial excursion sets Γ?i . We introduce three new enrichment strategies based on
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Bichon criterion for this simultaneous estimation objective. The first two strategies use scalar
criteria based on independent surrogate models. The third strategy introduces a new criterion
based on a multi-output Gaussian process, leveraging correlation between the different output
components. These three enrichment procedures are compared on simple analytical examples
on input space dimension 2 and 6, each with two output components. The study of the three
criteria as well as the implementation on the analytical examples are presented below. The
application of this methodology to a real case study is postponed to Chapter 5, with a detailed
description of the characteristics of the numerical simulator.

4.2 Two natural extensions of Bichon criterion

The two criteria discussed below naturally extend Bichon criterion in the context of a vector-
valued black box function and an objective of simultaneous estimation of different partial
excursion sets Γ?i . Each output component gi of the black box model g is modeled by a
Gaussian process ξi, and we assume that all surrogate models ξi are independent.

Due to the isotopic nature of the g model data, the new point chosen by the algorithm
can be used to update all of the surrogate models. Although it is theoretically possible to
design separate sequential DoEs for each component, this would lead to a potential loss of
cross-information and require twice as many iterations. Therefore, it is preferable to opt for
a common sequential DoE, enabling the simultaneous use of information from both output
components of the black box function at each evaluation.

For simplicity, scalar criteria proposed below are presented for a black-box model with two
output components (p = 2), although they can be generalized for any number of components.

4.2.1 Alternating Scalar Bichon criterion

The first criterion we introduce, called Alternating Scalar Bichon criterion, consists in maxi-
mizing Bichon criterion of each output component with the associated ξi surrogate model and
Ti threshold alternatively. Note

x(n+1)
i ∈ argmax

x∈X
EFFi(x),∀ i ∈ {1, 2}, (4.12)

with EFFi Bichon criterion associated with the surrogate model ξi and threshold Ti (see
Section 4.1.1). Alternating Scalar Bichon criterion is then expressed as follows:

x(n+1) :=
{

x(n+1)
1 if n+ 1 is even

x(n+1)
2 otherwise.

(4.13)

Alternating Scalar Bichon criterion places equal importance on exploring each partial
excursion set associated to each output component, regardless of the complexity of their
respective estimation. Although simple to implement, this criterion seems rather limited
when the difference in complexity between the estimation of the two partial excursion sets is
substantial.

4.2.2 Pareto Scalar Bichon criterion

The aim is to develop a DoE enrichment criterion that takes into account the difficulty of esti-
mating each partial excursion set, in order to choose a point that offers an optimal compromise
for simultaneously improving knowledge of both outputs near the thresholds.
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To do this, let us start by recalling the notion of Pareto front, a central concept in the field
of multi-objective optimization (see for example [Marler and Arora, 2004]). When optimizing
a vector-valued function, the optimization of one component does not necessarily coincide
with the optimization of another component. The Pareto front represents a set of points
in the output space which are not dominated by any other point, i.e., for each point on
the Pareto front, there is no other point that has better values in all output dimensions
([Marler and Arora, 2004]). Figure 4.2 illustrates this concept in the case of maximizing a
vector-valued function with two output components.

Each point on the Pareto front represents an optimal compromise between the different
output components. Several methods exist for selecting the ’best’ point on this front, although
the notion of ’best’ point is relative to the objective set. These include the optimisation
of scalar aggregation functions that combine multiple objectives ([Srinivas and Deb, 1994]).
For example, a common approach is to minimise the Euclidean distance to the ideal point,
whose coordinates are the maximum values of each output ([Vincent and Grantham, 1981]).
Another method is the search for the ”knee point”, where a small improvement in one objective
leads to a large deterioration in another, making it possible to find balanced compromises
([Deb et al., 2003]). Finally, interactive approaches allow decision-makers to express their
preferences in an iterative process, adjusting priorities until a satisfactory point is reached
([Miettinen and Mäkelä, 2006]).

Figure 4.2: Example of a Pareto front.

The idea of the Pareto Scalar Bichon criterion is to construct a Pareto front for the vector-
valued function whose ith output component corresponds to Bichon criterion associated to
surrogate model ξi and threshold Ti. Then, the enrichment point is the point in the input
space corresponding to a point on Pareto front that minimizes the distance to the ideal point.
This is possible because the output components are normalised on the basis of the initial
DoE, which avoids unfairly favouring one or the other depending on their respective order of
magnitude (see Section 4.4.1).

In summary, Pareto Scalar Bichon criterion is given by

x(n+1) ∈ argmin
x∈P

{√
(EFF1(x)− I1)2 + (EFF2(x)− I2)2

}
. (4.14)
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with (I1, I2) :=
(
max
x∈P

EFF1(x),max
x∈P

EFF2(x)
)

the ideal point and P the set of points in the
input space corresponding to Pareto front.

If Bichon criterion of one of the two output components is relatively flat, this will lead to
an enrichment oriented more towards the other component. Compared to Alternating Scalar
Bichon criterion, Pareto Scalar Bichon criterion offers a compromise for the simultaneous
estimation of both sets of partial excursions, taking into account the difficulty of estimating
each of them.

4.3 Vector output extension to Bichon criterion

The aim of this section is to propose a new vector criterion based on joint modeling (with a
MOGP) of the two outputs of the black box model.

4.3.1 Reminders on multi-output Gaussian process regression

Vector-valued Gaussian process regression, also known as multi-output Gaussian process
(MOGP) regression is a generalization of GPR to build a surrogate of a deterministic vector-
valued function g : X ⊂ Rd 7→ Rp. MOGP is based on the fundamental belief that the output
components are correlated in some manner. Therefore, a crucial aspect of MOGP is to take
advantage of correlations between output components to mutualize the information acquired
on each output and obtain more accurate predictions than if the output components were
modeled independently. In the following, we are interested in a framework where prediction
importance is the same for all model components (symmetric MOGP) and where the eval-
uation points are the same for each component of model output (isotopic data). This often
occurs when the p output responses at a point x can be obtained through a single simulation
(see for example [Liu et al., 2018] for more details on MOGP).

Let us assume that g := (g1, . . . , gp)> is the realization of a vector-valued Gaussian process
ξ := (ξ1, . . . , ξp)>. This process is characterized by its mean M := (M1, . . . ,Mp) : Rd → Rp
and covariance K := (Ki,j)1≤i,j≤p : Rd × Rd → S+

p (R) functions (a priori, both assumed
known here) defined for (i, j) ∈ {1, . . . , p}2 by

Mi(x) := E(ξi(x)) and Ki,j(x,x′) := Cov(ξi(x), ξj(x′)), (4.15)

with S+(R) denoting real symmetric positive semi-definite matrices of size p. We note Σ(x) :=
K(x,x) the covariance matrix of ξ(x). Let χn := (x(1), . . . ,x(n))> denote the DoE at step n.
We define

ξ(χn) :=
(
ξ1(x(1)), . . . , ξ1(x(n)), . . . , ξp(x(1)), . . . , ξp(x(n))

)> ∈ Rpn×1, (4.16)

g(χn) :=
(
g1(x(1)), . . . , g1(x(n)), . . . , gp(x(1)), . . . , gp(x(n))

)> ∈ Rpn×1, (4.17)

and En the event ξ(χn) = g(χn). The process ξ(χn) is characterized by

M(χn) :=
(
M1(x(1)), . . . ,M1(x(n)), . . . ,Mp(x(1)), . . . ,Mp(x(n))

)> ∈ Rpn×1. (4.18)

and

Kχn,χn :=

 K11 (χn, χn) · · · K1p (χn, χn)
... . . . ...

Kp1 (χn, χn) · · · Kpp (χn, χn)

 ∈ Rpn×pn, (4.19)
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with Kii′ (χn, χn) = E[(ξi(χn)−E[ξi(χn)])(ξi′(χn)−E[ξi′(χn)])>] ∈ Rn×n the cross-covariance
matrix between ξi(χn) and ξi′(χn). In the same way, we note Kχn(x) ∈ Rpn×p the cross-
covariance matrix between ξ(χn) and ξ(x) defined from blocks

Kii′ (x, χn) := (Kii′(x,x(1)), . . . ,Kii′(x,x(n)))> ∈ R1×n. (4.20)

Surrogate update formulas, which are extensions of Formulas (4.3), (4.4) and (4.3) to the
vector case (with β known), are then given (see for example [Liu et al., 2018]) by:

Mn(x) = M(x) + Kχn(x)>K−1
χn,χn

(
g(χn)−M(χn)

)
, (4.21)

Σn(x) = Σ(x)−Kχn(x)>K−1
χn,χnKχn(x), (4.22)

Kn(x,x′) = K(x,x′)−Kχn(x)>K−1
χn,χnKχn(x′). (4.23)

where Mn, Σn and Kn denote the mean, variance and covariance functions, respectively, of
the process ξn := ξ |En.

In the case where the a priori trend is no longer known, but assumed to be a linear
combination of basis functions with coefficients to be estimated, there are also update formulas
([Helterbrand and Cressie, 1994]). The sequential procedure in the vector case is similar to
the scalar one (Chapter 1, Section 1.6 , Figure 1.5): an initial DoE is generated and an initial
MOGP is fitted, then they are followed by a succession of MOGP updates and optimizations
from a well-chosen enrichment criterion.

4.3.2 The proposed Vector Bichon criterion

In this section, we look at a generalization of Bichon criterion (Section 4.1.1) in the context of
multi-output Gaussian process regression, again with the aim of estimating different partial
excursion sets simultaneously.

Recall that Σn(x) is the covariance matrix of ξn(x) := (ξn,1(x), . . . , ξn,p(x))> = ξ(x) |En.
We extend scalar Bichon criterion (Equations (4.6) and (4.7)) to the vector setting as follows:

x(n+1) ∈ argmax
x∈X

VEFF(x) (4.24)

with

VEFF(x) := det
(
Σn(x)

) 1
2p E

[(
κ−min

i

(
|Ti − ξi(x)|
σn,i(x)

))+ ∣∣∣∣∣ En
]

(4.25)

and σn,i(x) :=
√

(Σn(x))i,i. Using the minimum allows us to select a point that improves our
knowledge of at least one of the partial excursion sets we are looking for. The multiplicative
term σn(x) of Scalar Bichon criterion, which helps improving the exploratory power, has been
replaced here by the determinant of the covariance matrix Σn(x) raised to the power 1/(2p).
This multiplicative term gives a smaller weight to points x for which the components of ξn(x)
have strong correlation. The 1/(2p) power ensures homogeneity with the scalar case, allowing
us to have a term in σn(x) when all marginal variables are independent. It is important to note
that the correlation of ξ plays a role not only in the multiplicative term with the determinant,
but also in the expectation, since this expectation involves a minimum on random variables,
thus structure depending on the correlation.

Initially, a criterion using the minimum over B(x)−1(T − ξ(x)) was considered, where
B(x)B(x)> represents the Cholesky decomposition of Σn(x). This approach would decorre-
late the variable ξ(x), simplifying the expectation calculations while accounting for output
correlations within the B(x)−1 term. However, this does not fully align with the objective,
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which is to select an x such that at least one of the ξi(x) is close to Ti, rather than ensuring
that at least one of the (B(x)−1ξ(x))i is close to (B(x)−1T )i.

In the following, we restrict ourselves to the case of a vector-valued black box model
with two output components (p = 2). Proposition 1 below presents an explicit formulation of
Vector Bichon criterion, facilitating its practical implementation. The proof of this proposition
is given in Appendix A.

Proposition 1. Noting FYx the cumulative distribution function of Yx := mini
(
|Ti−ξi(x)|
σn,i(x)

) ∣∣∣En,
we have

VEFF(x) = det
(
Σn(x)

) 1
2p

∫ κ

0
FYx(t) dt. (4.26)

Furthermore, for every x ∈ X and every t ∈ R,

FYx(t) =
2∑
i=1

(
φ(t+αi)−φ(−t+αi)

)
−P

(
(U1, U2) ∈ [α1− t, α1 + t]× [α2− t, α2 + t]

)
, (4.27)

with αi := Ti−Mn,i(x)
σn,i(x) , φ c.d.f of N (0, 1), (U1, U2) ∼ N

(( 0
0

)
,

( 1 ρ
ρ 1

))
and ρ the correla-

tion coefficient between ξn,1(x) and ξn,2(x).

It should be pointed out that the values αi and ρ, defined in Proposition 1, are functions
of n and x, although this dependence is not explicitly stated in the simplified notation. Note
also that in Equation (4.27), FYx depends only on αi and ρ and the integral of FYx in Equation
(4.26) between 0 and κ can thus be calculated outside the DoE sequential enrichment loop
(see Section 4.4.1 and Appendix B).

4.4 Numerical experiments

We present here the numerical experiments carried out on two analytical test functions in order
to compare the different criteria proposed in Sections 4.2 and 4.3 We begin by detailing the
choices made for the implementation of the acquisition criteria and the parameters linked
to enrichment of the DoE. We then present the first results obtained on a function from
R2 to R2 based on the Branin function in 2D ([Picheny et al., 2013]). Finally, we present
the results obtained on a function from R4 to R2 based on the Hartmann function in 4D
([Picheny et al., 2013]).

The performances of the different criteria are compared after n iterations by computing
the partial relative approximation error

Erri := PX(Γ̂i∆Γ?i )
PX(Γ?i )

(4.28)

on each output component, with Γ̂i the naive estimator Γ̂i := M−1
n,i (]−∞, Ti]). Each partial

relative error measures, for the ith output component, the relative volume of the symmetric
difference between estimator Γ̂i and true partial excursion set Γ?i defined in (4.8). The sum
of partial relative errors defined by

Errsum :=
∑
i

PX(Γ̂i∆Γ?i )
PX(Γ?i )

, (4.29)

is also computed to analyse performances of the various acquisition criteria.
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4.4.1 Implementation choices

Criteria implementation

The implementation of Alternating and Pareto Scalar Bichon criteria are respectively based on
Equations (4.13) and (4.14). For Scalar Pareto Bichon criterion, which requires scaled data,
we subtract the mean of the values obtained on the initial DoE, then divide by the standard
deviation of these values. The Pareto front is obtained using the NSGA-II algorithm in the
mco package ([Trautmann et al., 2013]), with 150 generations of size 100.

The implementation of Vector Bichon criterion is based on Equations (4.26) and (4.27) of
Proposition 1. As previously discussed, according to Equation (4.27), FYx depends solely on
αi and ρ. We thus propose to approximate the function

H :
{

R× R× [−1, 1] −→ R
(α1, α2, ρ) 7−→

∫ κ
0 FYx(t) dt

outside the enrichment procedure. The function H is approximated with a Gauss-Legendre
quadrature method (see Appendix B for details on interpolation and quadrature methods).
Then at each iteration of the enrichment the approximation of H is evaluated at (α1, α2, ρ)
with αi := Ti−Mn,i(x)

σn,i(x) and ρ the correlation coefficient between ξn,1(x) and ξn,2(x).

Model selection

For both scalar Bichon criteria (Alternating and Pareto), the ξis are assumed to be GPs with
constant mean and Matérn 5/2 covariance:

k(x,x′) := σ2
c

d∏
j=1

RMatérn 5/2
(
hj , θj

)
, ∀ (x,x′) ∈ X2, (4.30)

with a vector of parameters θ belonging to R? d+ , estimated by maximizing the likelihood at
each iteration, hj = |xj − x′j | for j ∈ {1, . . . , d}, σc a fixed parameter and

RMatérn 5/2
(
hj , θj

)
:=
(

1 +
√

5|hj |
θj

+
5h2

j

3θ2
j

)
exp

(
−
√

5|hj |
θj

)
. (4.31)

Moreover, ξ1 and ξ2 are assumed to be independant from each other.
For Vector Bichon criterion, we use a MOGP with an ICM-type separable kernel (see

[Goovaerts, 1997]). Separable models simplify output correlations, improving parameter esti-
mation and efficiency while offering flexibility in multi-output Gaussian processes, as demon-
strated in [Alvarez et al., 2012] and [Liu et al., 2018]. They can be expressed as a product of a
kernel function in the input space and a kernel function that encodes inter-output correlations.
Specifically, (

K(x,x′)i,j
)
1≤i,j≤p := k(x,x′) B, (4.32)

where k is a scalar kernel on X2 and B is a p× p symmetric positive definite matrix. Hyper-
parameters of the covariance structure can be estimated using maximum likelihood (see, e.g.,
[Bonilla et al., 2007]).

As outlined in [Alvarez et al., 2012] and [Liu et al., 2018], different structures for the ma-
trix B can reduce the number of parameters to estimate (see Chapter 1, Section 1.3). The
choice of B in our case follows [Pelamatti et al., 2024], which corresponds to a special case of
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the ”spherical parametrization” introduced by [Osborne, 2007]. For p = 2, the matrix B is
parameterized as:

B = σ2
kOut

(
1 cos(θkOut)

cos(θkOut) 1

)
,

where σkOut ∈ R is a scaling factor common to all components (homoscedasticity), and
θkOut ∈ [0, π] is the parameter controlling inter-output correlation under the spherical pa-
rameterization. The scalar kernel k is selected as in Equation (4.30), with σc = 1.

The different scalar and vector models presented above are implemented using the kergp
package from [Deville et al., 2015]. Hyperparameter optimization is performed using a LN
COBYLA algorithm with a multistart of 10, on the following search ranges: θj ∈ [0.1, 500],
θkOut ∈ [0, π], σ2

c ∈ [10−1, 105] et σ2
kOut ∈ [10−1, 105].

In the following, we will refer to the two scalar strategies associated with Alternating and
Pareto Bichon criteria respectively as ”Alternating Scal” and ”Pareto Scal”. Vector strategy
associated with Vector Bichon criterion will be referred to as ”Vect”.

Other parameters

Criteria are optimized with the genetic algorithm Genoud (with pop.size = 1000) (package
rgenoud, [Mebane Jr and Sekhon, 2011]). Initial DoEs are Latin Hypercube Sampling (LHS)
designs optimized from Maximin distance ([Dupuy et al., 2015]), with size to be specified in
the following.

Partial relative errors Erri and their sum Errsum (Equations (4.28) and (4.29)) are esti-
mated from a grid of size 400 × 400 for the example based on Branin function, and from
a Sobol’ sequence (package randtoolbox [Dutang and Savicky, 2013]) of size 10 000 for the
example based on Hartmann function.

4.4.2 Performance tests based on the 2D Branin function

A model based on the 2D Branin function with two output components

In this Section, we evaluate performances of the proposed criteria on the 2D Branin func-
tion. The first output component is identical to Branin function (see [Roustant et al., 2012]
and [Picheny et al., 2013]) and the second component is a modification of this function, as
presented in [Liu et al., 2018]. This is the same test function as for Figure 4.1, whose ex-
pression is given by Equations (4.10) and (4.11). For this test case, we choose a threshold
vector T := (10, 10). The partial excursion set associated with the first output component
has three connected components, while that associated with the second component has only
one. The level sets of the test function under consideration, as well as the partial excursion
sets associated with T , are plotted in Figure 4.3.

Standard Performance tests

We study the enrichment of 40 initial LHS Maximin DoEs of size 5. The study is carried out
over 30 iterations for the different DoE enrichment strategies, by studying the partial relative
errors and their sum (Equations (4.28) and (4.29)). Figure 4.4 shows, in logarithmic scale, the
average errors over the 40 initial DoEs, as a function of the number of iterations. The results
show good performance for the three strategies studied, with errors decreasing significantly
as the number of iterations grows. Note that for all three strategies, the relative partial error
associated with the second component decreases faster than that associated with the first
component, in line with the relative simplicity of the partial excursion set Γ?2 compared to
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(a) g1(x) (b) g2(x)

Figure 4.3: Representation of the model based on the 2D Branin function with the first
component on the left and the second one on the right and the contour of excursion sets in
blue (with T = (10, 10)).

Γ?1 (see Figure 4.4). Despite an apparent slight advantage for Vector strategy at the start
of enrichment, the graph shows few significant differences between the various enrichment
strategies.

(a) Err1 (b) Err2 (c) Errsum

Figure 4.4: Averaged partial relative errors and of their sum with respect to the number
of iterations when estimating excursion sets of the enhanced 2D Branin test function with
T = (10, 10). The three enrichment stategies Vect, Alternating Scal and Pareto Scal, are
performed from an initial DoE of size 5 and with 30 enrichment iterations. Averages are
evaluated over 40 LHS Maximin intial DoEs randomly chosen.

We plotted functional boxplots of partial relative errors and their sum. Functional box-
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plots, as an extension of traditional boxplots, are used to visualize and summarize sets of curves
or functional data, showing the distribution, median, quartiles and any outliers. We use the
fda package with the Modified Band Depth (MBD) algorithm (see [Sun and Genton, 2011]).

Based on the center outward ordering induced by band depth for functional data, the main
indicators of a functional boxplot are: the median curve, the envelope of the 50% central region
(’Box’) and the maximum non-outlying envelope (’Bar’) based on the concept of band depth
([Sun and Genton, 2011]). Curves outside this envelope are considered outliers.

The functional boxplots of the partial relative errors and their sum for the three enrichment
strategies are shown in Figure 4.5. These graphical representations confirm the differences
in the estimation of partial excursion sets for the two output components, while showing no
notable differences between the different strategies.

Standard ”Data profiles”

In this section, we analyze the data on partial relative errors in a way that differs from
functional boxplots. The approach is to examine, for a given iteration and a fixed threshold,
the percentage of relative error curves that are definitively below that threshold from that
iteration onwards. These graphs, which we call ”Data profiles”, provide a clear visualization of
data conformity in relation to a specified threshold. This approach is particularly relevant in
industrial contexts where it is crucial that errors remain below a defined tolerance threshold.

More precisely, let ite denote the iteration stage and C denote a threshold value, the
partial ”Data profile” associated with the ith output component is given by :

DPi(ite, C) := 100× #{j ∈ {1, . . . ,NLHS},∀ k ≥ ite,Err(j)
i (k) < C}

NLHS
, (4.33)

with NLHS the number of repetitions, Err(j)
i the error for the ith component and the jth initial

DoE and for any set A, #{A} the cardinal of A.
The total ”Data profile” corresponding to the percentage of errors definitely below thresh-

old C for both output components after iteration ite is given by :

DPtot(ite, C) := 100×
#
{
j ∈ {1, . . . ,NLHS}, ∀ i,∀ k ≥ ite,Err(j)

i (k) < C
}

NLHS
. (4.34)

Figure 4.6 shows ”Data profiles” (Equations (4.33) and (4.34)) associated with the partial
relative errors, for thresholds C = 20%, 10% and 5%. We observe a rapid growth of the ”Data
profiles” from 0 to 100%, which is consistent with the relative simplicity of the excursion set
estimation problem under consideration (see Figure 4.4). We also observe that for the different
threshold values, Vector strategy seems to perform slightly better than the other two, as its
data profiles reach 100% more quickly.

These results must be set against the higher computation times of Vector strategy com-
pared with the two Scalar strategies (Figure 4.7). This Figure shows that the computation
time for Vector strategy increases exponentially with the number of iterations. In the next
section, we will plot data profiles with respect to total computation time (enrichment and g
evaluations) rather than the number of iterations.

”Data profiles” as a function of total computing time

We now represent ”Data profiles” as a function of total computation time, rather than the
number of iterations. By total computation time, we mean the time required for enrichment
(optimization of acquisition criteria and updating surrogate model) as well as the time required
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(a) Vect, Err1 (b) Vect, Err2 (c) Vect, Errsum

(d) Alternating Scal, Err1 (e) Alternating Scal, Err2 (f) Alternating Scal, Errsum

(g) Pareto Scal, Err1 (h) Pareto Scal, Err2 (i) Pareto Scal, Errsum

Figure 4.5: Functional boxplots of partial relative errors and of their sum, for the different
criteria, in the case of enrichment of 40 LHS Maximin initial DoEs of size 5 with 30 iterations,
for the model based on the 2D Branin test function with T = (10, 10).
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(a) C = 20%, DP1 (b) C = 20%, DP2 (c) C = 20%, DPtot

(d) C = 10%, DP1 (e) C = 10%, DP2 (f) C = 10%, DPtot

(g) C = 5%, DP1 (h) C = 5%, DP2 (i) C = 5%, DPtot

Figure 4.6: Standard ”Data profiles” of partial relative errors with threshold set equal to
20%, 10% and 5%, for the different criteria, in the case of enrichment of 40 LHS Maximin
initial DoEs of size 5 with 30 iterations, for the model based on the 2D Branin function with
T = (10, 10).
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(a) Line plots (b) Means

Figure 4.7: Enrichment calculation time (assuming that the evaluation time of g is negligible)
for the different criteria, in the case of enrichment of 40 LHS Maximin initial DoEs of size 5
with 30 iterations, for the model based on the 2D Branin function with T = (10, 10).

for evaluations of black box model g. To do this, we set a threshold C = 10% and consider
several evaluation times for g: 3h, 10min and 1min. Data profiles are obtained in a similar
way to Equations (4.33) and (4.34), replacing iteration by total computation time.

The results obtained (Figure 4.8) show that for long evaluation times of g (3h), curves are
analogous to standard data profiles (Figure 4.7). However, when the evaluation time of g is
shorter, Vector strategy becomes less advantageous and the strategy associated with Alternat-
ing Scalar criterion seems much more interesting. This is due to the significant computation
time (a few minutes) required to update the vector surrogate model, which is negligible when
the evaluation time of g is 3h. It should also be noted that the strategy associated with Pareto
Scalar criterion is more expensive in computation time than that associated with Alternating
Scalar criterion (Figure 4.7), which explains its inferior performance when the computation
time of g is very short (1min).

Failure of Alternating Scalar Bichon criterion for an inappropriate choice of
threshold T

Before moving on to the 4D test case, we look at a test case with an inappropriate choice
of threshold T to show the limits of Alternating Scalar criterion. The test function is still
based on the 2D Branin function, but we choose T = (10, 10 000) instead of T = (10, 10).
The partial excursion set associated with the first output component is the same as in the
previous setting (Figure 4.3a), while that of the second component corresponds to the full
design space X.

We are still considering the enrichment of 40 initial LHS Maximin DoEs of size 5, with
30 iterations. Figure 4.9, which plots means of partial relative errors and of their sum, shows
that Alternating Scalar criterion performs much worse than the other two criteria, with jerky
improvements. This is consistent with the fact that Alternating Scalar criterion go enriching
the DoE with respect to the second component (one in two) while the excursion set associated
to this component is already fully identified. Moreover, for all strategies, the error associated
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(a) Eval g = 3h, DP1 (b) Eval g = 3h, DP2 (c) Eval g = 3h, DPtot

(d) Eval g = 10min, DP1 (e) Eval g = 10min, DP2 (f) Eval g = 10min, DPtot

(g) Eval g = 1min, DP1 (h) Eval g = 1min, DP2 (i) Eval g = 1min, DPtot

Figure 4.8: ”Data profiles” as a function of total computing time of partial relative errors for
evaluation times of g of 3h, 10min and 1min, with C = 10%, for the different criteria, in the
case of enrichment of 40 LHS Maximin initial DoEs of size 5 with 30 iterations, for the model
based on the 2D Branin function with T = (10, 10).
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with the second output component is zero, since the partial excursion set Γ?2 is very simple to
identify.

(a) Err1 (b) Err2 (c) Errsum

Figure 4.9: Averaged partial relative errors and of their sum with respect to the number of
iterations when estimating excursion sets of the model based on the 2D Branin function with
T = (10, 10 000). The three enrichment stategies Vect, Alternating Scal and Pareto Scal,
are performed from an initial DoE of size 5 and with 30 enrichment iterations. Averages are
evaluated over 40 LHS Maximin intial DoEs randomly chosen.

The functional boxplots corresponding to the error on the first component (Figure 4.10)
confirm that Alternating Scalar Bichon criterion fails for this choice of T . In contrast, Vector
and Pareto Scalar strategies continue to perform well, despite the substantial difference in
difficulty between the estimation of the two partial excursion sets. Thus, Alternating Scalar
criterion is highly dependent on the balance between the difficulty of estimating different
partial excursion sets, which is a real weakness compared to other strategies.

(a) Vect, Err1 (b) Alternating Scal, Err1 (c) Pareto Scal, Err1

Figure 4.10: Functional boxplots of partial relative errors for the first component, for the
different criteria, in the case of enrichment of 40 LHS Maximin initial DoEs of size 5 with 30
iterations, for the model based on the 2D Branin function with T = (10, 10 000).
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4.4.3 Performance tests based on the 4D Hartmann function

A model based on the 4D Hartmann function with two output components

The test function used is based on the 4D Hartmann function, and is composed with two
output components. The first component is the 4D Hartmann function ([Picheny et al., 2013])
defined by

∀x ∈ [0, 1]4, g1(x) = 1
0.839

1.1−
4∑
i=1

αi exp

− 4∑
j=1

Aij (xj − Pij)2

 , (4.35)

with

(Aij) =


10 3 17 3.50

0.05 10 17 0.1
3 3.5 1.7 10
17 8 0.05 10

 , (Pij) = 10−4


1312 1696 5569 124
2329 4135 8307 3736
2348 1451 3522 2883
4047 8828 8732 5743


and α = (1.0, 1.2, 3.0, 3.2)>. The second output component is obtained by modifying the
4D Hartmann function, adding noise from a random variable uniformly distributed over the
interval [−1, 1] to the coefficients α and A :

A′ = A+ 5Anoise et α′ = α+ αnoise.

No modification of P is made to preserve a certain correlation between the two output com-
ponents. Rounding the values of 5Anoise and αnoise to the hundredth and the unit respectively,
we finally obtain

(A′ij) =


7 −2 14 0.50

−0.95 9 19 5.1
7 1.5 1.7 10
16 13 4.05 5

 and α′ = (0.44, 0.25, 2.41, 2.63)>.

The choice of threshold vector T = (−1,−1.6) yields relative volumes around 9.5% (rela-
tively to the volume of the total design space) for each partial excursion set, while the volume
of the global excursion set represents 5.67% of the one of total design space. Clustering tests
on the data have been carried out and show that each of the partial excursion sets appears to
comprise a single connected component.

Standard Performance tests

In the context of the enrichment of 40 LHS Maximin initial DoEs of size 20, we compare
over 200 iterations the different DoE enrichment strategies by studying the partial relative
errors and their sum (Equations (4.28) and (4.29)). Figure 4.11 shows, in logarithmic scale,
the averaged errors on the initial 40 DoEs, as a function of the number of iterations in the
sequential enrichment strategy. The results show good performance for all three strategies,
with errors decreasing significantly.

Alternating Scalar Bichon criterion performs well in estimating the partial excursion set
associated with the second component. However, this increased performance on the second
component seems to be detrimental to the estimation of the partial excursion set associated
with the first one. Vector Bichon criterion better manages the trade-off between simultaneous
learning of both components, by concentrating efforts where they are most needed, i.e., on
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(a) Err1 (b) Err2 (c) Errsum

Figure 4.11: Averaged partial relative errors and of their sum with respect to the number of
iterations when estimating excursion sets of the model based on the 4D Hartmann function
with T = (−1.6,−1). The three enrichment stategies Vect, Alternating Scal and Pareto Scal,
are performed from an initial DoE of size 20 and with 200 enrichment iterations. Averages
are evaluated over 40 LHS Maximin intial DoEs randomly chosen.

the first component. Pareto Scalar Bichon criterion performs slightly less than the other two
criteria in estimating partial excursion sets, but is nonetheless relatively efficient.

We also plot functional boxplots of partial relative errors and their sum in Figure 4.12. For
details on the interpretation of functional boxplots, we refer to Section 4.4.2. These graphical
representations confirm the results obtained with the averages, showing a better compromise
in the simultaneous search for the two partial excursion sets for Vector criterion (see Figure
4.12c versus Figures 4.12f and 4.12i). The functional boxplots also reveal a better robustness
of Vector criterion, with less instability than the other strategies, which are characterized by
”spikes” in functional boxplots.

Standard ”Data profiles”

In this section, we analyze ”Data profiles” of the partial relative errors, in a similar way to
what was done in Section 4.4.2 for the enhanced 2D Branin function (see Equations (4.33)
and (4.34)). ”Data profiles” show, as a function of the number of iterations and for a given
threshold, the percentage of initial DoEs tested for which the relative partial error is definitely
below a prescribed threshold. The total ”Data profile” corresponds to the percentage of errors
that are definitively below the threshold for both output components.

Figure 4.13 shows ”Data profiles” associated with partial relative errors for thresholds
values C = 20%, 10% and 5%. We observe slower growth of the ”Data profiles” from 0 to
100%, compared to that of the model based on the 2D Branin function (Figure 4.6). This
is due to the increased dimension of design space X, which renders the estimation of partial
excursion sets more difficult. For the different thresholds, we observe that Vector strategy
offers a better balance in estimating the two partial excursion sets. Pareto Scalar strategy
also performs well, rivalling Vector strategy, particularly for thresholds set to 10% and 5%.
Alternating Scalar strategy appears to perform less well overall than the other two, particularly
with regards to first output component.
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(a) Vect, Err1 (b) Vect, Err2 (c) Vect, Errsum

(d) Alternating Scal, Err1 (e) Alternating Scal, Err2 (f) Alternating Scal, Errsum

(g) Pareto Scal, Err1 (h) Pareto Scal, Err2 (i) Pareto Scal, Errsum

Figure 4.12: Functional boxplots of partial relative errors and of their sum, for the differ-
ent criteria, in the case of enrichment of 40 LHS Maximin initial DoEs of size 20 with 200
iterations, for the model based on the 4D Hartmann function with T = (−1.6,−1).
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(a) C = 20%, DP1 (b) C = 20%, DP2 (c) C = 20%, DPtot

(d) C = 10%, DP1 (e) C = 10%, DP2 (f) C = 10%, DPtot

(g) C = 5%, DP1 (h) C = 5%, DP2 (i) C = 5%, DPtot

Figure 4.13: Standard ”Data profiles” of partial relative errors with C = 20%, 10% and 5%,
for the different criteria, in the case of enrichment of 40 LHS Maximin initial DoEs of size 20
with 200 iterations, for the model based on the 4D Hartmann function with T = (−1.6,−1).
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These results must be set against the higher computation times of Vector strategy com-
pared with Alternating and Pareto Scalar strategies (Figure 4.14). In the following section we
plot data profiles in terms of total computation time (enrichment and g evaluations) rather
than in terms of number of iterations.

(a) Line plots (b) Means

Figure 4.14: Enrichment calculation time (assuming that the evaluation time of g is negligible)
for the different criteria, in the case of enrichment of 40 LHS Maximin initial DoEs of size 20
with 200 iterations, for the model based on the 4D Hartmann function with T = (−1.6,−1).

”Data profiles” as a function of total computing time

We fix the threshold to C = 10% and plot the data profiles as a function of total computation
time (time required for enrichment and evaluations of g) for different evaluation times of g:
3h, 10min and 1min. The results obtained (Figure 4.15) show that for large evaluation times
(3h), the curves are analogous to standard data profiles (Figure 4.14). However, when the
evaluation time of g is shorter, Alternating Scalar strategy becomes more attractive than the
other two strategies, due to its low computation time for sequential DoE enrichment. The long
computation time required to update the vector surrogate model of order of a few minutes,
is no longer negligible when the evaluation time of g is small (1min). Finally, Pareto Scalar
and Vector strategies show comparable performance when the evaluation time of g is small
(1min), with a slight advantage for Vector strategy.

4.5 Conclusion

To simultaneously estimate the partial excursion sets of a vector-valued black box function
with isotopic data (simultaneous evaluations of all output components), we have proposed
three sequential DoE enrichment strategies. Two of these strategies use a scalar surrogate
model for each output component with a suitable criterion for choosing a common enrichment
point, while the third strategy uses a vector surrogate model (MOGP) with a criterion that
takes into account the correlation between outputs. The performance of the three criteria was
tested on 2 and 4 dimensional test functions, each with two output components.
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(a) Eval g = 3h, DP1 (b) Eval g = 3h, DP2 (c) Eval g = 3h, DPtot

(d) Eval g = 10min, DP1 (e) Eval g = 10min, DP2 (f) Eval g = 10min, DPtot

(g) Eval g = 1min, DP1 (h) Eval g = 1min, DP2 (i) Eval g = 1min, DPtot

Figure 4.15: ”Data profiles” as a function of total computing time of partial relative errors
for evaluation times of g of 3h, 10min and 1min, with C = 10%, for the different criteria, in
the case of enrichment of 40 LHS Maximin initial DoEs of size 20 with 200 iterations, for the
enhanced 4D Hartmann test function with T = (−1.6,−1).
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All three strategies showed a significant reduction in relative partial errors over the course
of iterations. Analysis of these errors via functional boxplots revealed, especially for the
4-dimensional case, that Vector strategy offers a better compromise for the simultaneous
search of the two excursion sets, with increased robustness. Also, we have highlighted the
limitations of Alternating Scalar strategy with an unsuitable threshold, where it completely
failed to estimate partial excursion sets. Vector and Pareto Scalar strategies were robust and
efficient even in these difficult cases.

Data profiles, which show the percentage of curves with errors remaining below a given
threshold confirmed these results. Vector strategy performed better in these examples with
a good compromise between the two components but due to much higher computation time
for updating vector surrogate model, it was above all interesting for functions g with high
evaluation times (3h). For very low evaluation times of g (1min), Alternating Scalar strategy
was more advantageous, due to its low computation time for enrichment (updating the sub-
stitution model and optimizing the enrichment criterion). In this last setting, Pareto Scalar
and Vector strategies showed relatively similar performance .

Finally, although the results of Vector strategy are promising, the MOGP surrogate model
we considered has limitations due to the separable nature of the correlation structure and in-
duced property of autokrigeability (see Chapter 1, Section 1.7.3), which simplifies calculations
but can reduce flexibility and accuracy by not necessarily capturing complex interactions be-
tween outputs.

4.6 Appendices

A Proof of the integral formulation for Vector Bichon criterion

Lemma 3. Let κ > 0 and Y be a non negative real random variable. Then we have

E
[
(κ− Y )+] =

∫ κ

0
FY (t) dt, (4.36)

where (.)+ denotes the positive part function and FY the cumulative distribution function of
Y .

Proof.

E
[
(κ− Y )+] = E

[
(κ− Y )1κ−Y≥0

]
= κE[1Y≤κ]− E[Y 1Y≤κ]

= κFY (κ)−
∫ +∞

0
P[Y 1Y≤κ ≥ t] dt (because Y 1Y≤κ ≥ 0)

= κFY (κ)−
∫ κ

0
P[Y 1Y≤κ ≥ t] dt

= κFY (κ)−
∫ κ

0
P[t ≤ Y ≤ κ] dt

= κFY (κ)−
∫ κ

0

(
FY (κ)− FY (t)

)
dt

=
∫ κ

0
FY (t) dt.
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Proposition 1. Noting FYx the cumulative distribution function of Yx := mini
(
|Ti−ξi(x)|
σn,i(x)

) ∣∣∣En,
we have

VEFF(x) = det
(
Σn(x)

) 1
2p

∫ κ

0
FYx(t) dt. (4.37)

Furthermore, for every x ∈ X and every t ∈ R,

FYx(t) =
2∑
i=1

(
φ(t+αi)−φ(−t+αi)

)
−P

(
(U1, U2) ∈ [α1− t, α1 + t]× [α2− t, α2 + t]

)
, (4.38)

with αi := Ti−Mn,i(x)
σn,i(x) , φ c.d.f of N (0, 1), (U1, U2) ∼ N

(( 0
0

)
,

( 1 ρ
ρ 1

))
and ρ the correla-

tion coefficient between ξn,1(x) and ξn,2(x).

Proof. The integral formulation of Equation (4.37) follows directly from Lemma 3 applied
with Y = Yx (see initial formulation of VEFF in Equation (4.25)).

To calculate FYx , we note Pn := P( . |En). Let t ∈ R,

FYx(t) = Pn

[
min
i

(
|Ti − ξi(x)|
σn,i(x)

)
≤ t
]

= Pn

(
|T1 − ξ1(x)|
σn,1(x) ≤ t

)
+ Pn

(
|T2 − ξ2(x)|
σn,2(x) ≤ t

)
︸ ︷︷ ︸

1©

− Pn

({
|T1 − ξ1(x)|
σn,1(x) ≤ t

}⋂{
|T2 − ξ2(x)|
σn,2(x) ≤ t

})
︸ ︷︷ ︸

2©

. (4.39)

The marginal distributions of ξ(x) := (ξ1(x), ξ2(x))> verify

ξi(x) ∼ N (Mn,i(x), σn,i(x)2),∀ i ∈ {1, 2},

so for i fixed,

Pn

(
|Ti − ξi(x)|
σn,i(x) ≤ t

)
= Pn

(
−t ≤ ξi(x)− Ti

σn,i(x) ≤ t
)

= Pn

(
−t+ Ti −Mn,i(x)

σn,i(x) ≤ ξi(x)−Mn,i(x)
σn,i(x) ≤ t+ Ti −Mn,i(x)

σn,i(x)

)
= φ(t+ αi)− φ(−t+ αi),

with αi := Ti−Mn,i(x)
σn,i(x) and φ c.d.f. of N (0, 1). Thus,

1© =
2∑
i=1

(
φ(t+ αi)− φ(−t+ αi)

)
. (4.40)

Next,

2© = Pn

({
|T1 − ξ1(x)|
σn,1(x) ≤ t

}⋂{
|T2 − ξ2(x)|
σn,2(x) ≤ t

})
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= Pn
((
ξ1(x), ξ2(x)

)
∈ [T1 ± t σn,1(x)]× [T2 ± t σn,2(x)]

)
= Pn

((
ξ1(x)−Mn,1(x)

σn,1(x) ,
ξ2(x)−Mn,2(x)

σn,2(x)

)
∈ [α1 ± t]× [α2 ± t]

)
= P

(
(U1, U2) ∈ [α1 ± t]× [α2 ± t]

)
, (4.41)

with (U1, U2) ∼ N
(( 0

0

)
,

( 1 ρ
ρ 1

))
and ρ the correlation coefficient between ξ1(x) and

ξ2(x).
By reinjecting 1© and 2© from Equations (4.40) and (4.41) into Equation (4.39), we obtain

the expected result.

B Estimation of H : (α1, α2, ρ) 7→
∫ κ

0 FYx(t) dt
In this appendix, we present the way in which, for a fixed x, the quantity

∫ κ
0 FYx(t) dt, required

to implement Vector Bichon criterion, is estimated (see Proposition 1, Equation (4.26)). We
begin by recalling that, according to Equation (4.27), the quantity FYx (and therefore its
integral between 0 and κ) depend only on αi and ρ. Here, we present the interpolation
method used to estimate the function

H :
{

R× R× [−1, 1] −→ R
(α1, α2, ρ) 7−→

∫ κ
0 FYx(t) dt ,

outside the DoE enrichment loop. The first part presents the estimation of H for a triplet
(α1, α2, ρ) fixed in R2× [0, 1] using a Gauss-Legendre quadrature method (used for estimation
of H at the interpolation points). The second part studies the various symmetries of the H
function, with a view to reducing the computation time required for interpolation. The third
part concerns the interpolation method for estimating H on [−50, 50]2 × [−1, 1], while the
interpolation of H outside [−50, 50]2 × [−1, 1] is deferred to the last part.

Estimation of H for (α1, α2, ρ) fixed using Gaussian quadrature method

To estimate H for (α1, α2, ρ) fixed, we start by recalling that according to Proposition 1,

H(α1, α2, ρ) :=
∫ κ

0
FYx(t) dt (4.42)

and for every x ∈ X and every t ∈ R,

FYx(t) =
2∑
i=1

(
φ(t+ αi)− φ(−t+ αi)

)
− P

(
(U1, U2) ∈ [α1 ± t]× [α2 ± t]

)
, (4.43)

with φ c.d.f of N (0, 1) and (U1, U2) ∼ N
(( 0

0

)
,

( 1 ρ
ρ 1

))
.

The calculation of FYx(t) in (4.43) involves an orthant probability, in the particular case of
the bivariate centered normal distribution (for a recent review on orthant probabilities see for
example [Azzimonti and Ginsbourger, 2018]). This orthant probability is obtained using the
pvtnorm function in the mvtnorm package in R computer language. The calculation method
used is ’TVPACK’ from [Genz, 2004], which is particularly suited to the 2 and 3 dimensions.

For (α1, α2, ρ) fixed, the estimation of H(α1, α2, ρ) :=
∫ κ

0 FYx(t) dt is done using a Gauss-
Legendre quadrature method (see [Abramowitz and Stegun, 1965]) between 0 and κ with the
package gaussquad and nquad = 10 quadrature points. Using 10 quadrature points leads to a
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relative error of 10−16 (compared to a reference with 100 quadrature points), and we do not
do any better with more quadrature points due to limitations on the estimation of FYx . The
results of estimating H as a function of α1 and α2 and for different values of ρ are shown in
Figure 4.16 (with κ = 1). The function exhibits a certain regularity as a function of α1, α2
and ρ. Also, when ρ is close to 0 the maximum of the function H seems to be located around
(α1, α2) = (0, 0), whereas when |ρ| > 0.5 it appears that there are two maxima, symmetrically
positioned relatively to point (0, 0). This is consistent since, for example, if ρ ' 1 the random
variables are highly correlated and so a α1 and a α2 small in |.| but of opposite signs provide
more information than α1 = α2 = 0.

Study of the symmetries of the H function

The H function has several symmetries, which is beneficial in terms of reducing the compu-
tation time for the interpolation presented next. Let m ∈ R2 and Σ ∈ R2×2, let N (m,Σ) be
the bivariate normal distribution with mean m and covariance matrix Σ. By definition of H,

H(α1, α2, α) =
∫ κ

0
P
(

min(|X1|, |X2|) ≤ t
)

dt, (4.44)

with (X1, X2) ∼ N
(( α1

α2

)
,
( 1 ρ
ρ 1

))
. With these notations, we can see that (X1,−X2) ∼

N
(( α1
−α2

)
,
( 1 −ρ
−ρ 1

))
and that (−X1,−X2) ∼ N

(( −α1
−α2

)
,
( 1 ρ
ρ 1

))
, which allows

us to demonstrate the following symmetries on the function H:

∀ ρ ∈ [−1, 1],∀ (α1, α2) ∈ R2, H(α1, α2, ρ) = H(α1,−α2,−ρ) (4.45)

and
∀ ρ ∈ [−1, 1],∀ (α1, α2) ∈ R2, H(α1, α2, ρ) = H(−α1,−α2, ρ). (4.46)

Equation (4.45) represents, for a fixed α1, a central symmetry with respect to point (α2, ρ) =
(0, 0), which restricts our study to ρ ∈ [0, 1]. Furthermore, Equation (4.46), for a fixed ρ,
exhibits central symmetry with respect to the point (α1, α2) := (0, 0), thus restricting our
study to α1 ∈ R+.

In summary, the symmetries of Equations (4.45) and (4.46) make it possible to restrict the
interpolation of H function to the set R+ × R× [0, 1]. In numerical terms, it makes sense to
leave a margin equivalent to the interpolation step size at the boundaries (α1 = 0 and ρ = 0)
to ensure consistent regularity of the interpolation function. We also note the presence of two
axial symmetries with respect to the lines α2 = α1 and α2 = −α1 (see Figure 4.16). However,
these symmetries are not taken into account to reduce the computation time required for
interpolation, as their implementation would be too complex.

Interpolation of H on [−50, 50]2 × [−1, 1]

Recall that our objective is to estimate the function H : (α1, α2, ρ) 7→
∫ κ
0 FYx(t) dt over

its entire domain, outside the DoE enrichment loop, in order to reduce the computation
time needed to evaluate Vector Bichon criterion. With this in mind, and given the observed
regularity of H (see Figure 4.16), we opt for an interpolation method, using the ipol routine
from the chebpol package ([Gaure, 2013]), while exploiting the symmetries of H previously
highlighted. To begin with, we focus on interpolating the function H over the compact subset
[−50, 50]2 × [−1, 1].
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Figure 4.16: Representation of the level sets of H (with κ = 1) on a grid of size 50 × 50 for
α := (α1, α2) ∈ [−4, 4] , and for ρ values of −1, −0.5, 0, 0.5 and 1.
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The interpolation methods compared are: multilinear interpolation (see, for example,
[Wagner, 2008]), the Floater-Hormann method ([Floater and Hormann, 2007]) which relies
on the construction of pole-free barycentric rational interpolants, and the Stalker method,
a spline-based method proposed in the chebpol package that preserves monotonicity and
extrema. The Stalker method preserves any existing monotonicity or, failing that, limits
overshoot, i.e., the difference between the extrema values of the interpolation points and the
extrema values of the interpolation function (see [Gaure, 2013]).

The type of grid used for interpolation plays a crucial role in the quality of the interpolation
process. The distribution of grid points along the ρ component is chosen on a regular basis.
For the α1 and α2 components, we compare a regular grid with an irregular grid obtained
by a cubic transformation on each component (see the example in Figure 4.17 for (α1, α2) ∈
[−1, 1]2). The use of an irregular grid based on a cubic transformation aims to concentrate
more points in the region of interest of the H function. This region of interest corresponds to
high values of H, i.e., values of (α1, α2) not too far to the axes α1 = 0 and α2 = 0 (see Figure
4.16).

Figure 4.17: Comparison between a regular grid and an irregular grid resulting from a cubic
transformation, on [−1, 1]2, with 15 points per dimension.

The various interpolation methods are evaluated on [−50, 50]2 × [−1, 1], using the two
proposed grids (regular and cubic irregular), with 200 interpolation points per dimension.
The results in term of interpolation errors are computed over two different sets of points: 105

random points selected in the area of interest [−5, 5]2× [−1, 1] (cf. Table 4.1) and 105 random
points selected in the global interpolation area ([−50, 50]2 × [−1, 1] (cf. Table 4.2). These
results indicate that the Stalker (cubic) and Floater-Hormann (regular) methods perform
best. However, the Floater-Hormann method turns out to be excessively expensive when
evaluating the interpolation function at a specific point, as shown in Table 4.3. Consequently,
the interpolation method chosen for the H function is the Stalker (cubic) method.

Interpolation of H outside [−50, 50]× [−1, 1]

By default, the chebpol package creates the interpolation function even beyond the interpola-
tion domain by multilinearly extending beyond the domain boundary. Table 4.4 summarizes
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Method
Error Mean Median q0.05 q0.95 Maximum

Multilinear (regular) 2.75e−3 2.20e−3 7.66e−5 7.34e−3 4.15e−2

Floater-Hormann (regular) 3.65e−5 5.27e−8 9.00e−10 9.88e−5 2.22e−2

Stalker (regular) 8.60e−4 3.54e−4 1.44e−5 4.30e−3 2.90e−2

Multilinear (cubic) 2.17e−4 1.40e−4 8.61e−6 6.25e−4 3.81e−3

Floater-Hormann (cubic) 7.82e15 2.94e13 1.03e10 4.34e15 2.00e19

Stalker (cubic) 1.03e−5 7.47e−6 4.95e−7 2.70e−5 5.93e−3

Table 4.1: Absolute errors of different interpolation methods chosen with 200 interpolation
points per dimension and for 105 points chosen randomly on [−5, 5]2 × [−1, 1].

Method
Error Mean Median q0.05 q0.95 Maximum

Multilinear (regular) 3.34e−4 0 0 2.74e−3 2.68e−2

Floater-Hormann (regular) 1.30e−6 3.00e−10 0 1.35e−6 7.80e−3

Stalker (regular) 1.63e−4 0 0 5.02e−4 1.89e−2

Multilinear (cubic) 2.62e−5 0 0 1.98e−4 1.35e−3

Floater-Hormann (cubic) 1.33e21 1.53e18 5.37e14 3.57e20 9.83e24

Stalker (cubic) 1.36e−6 0 0 1.08e−5 1.24e−4

Table 4.2: Absolute errors of different interpolation methods chosen with 200 interpolation
points per dimension and for 105 points chosen randomly on [−50, 50]2 × [−1, 1].

Grid
Method Multilinear Floater-Hormann Stalker True evaluation

regular 2.29e−2s 3min 12s 8.95e−2s 3min 29s
cubic 6.95e−3s 2min 55s 1.86e−2s 3min 29s

Table 4.3: Comparison of interpolation function evaluation computation times for 104 ran-
domly selected points, between the different interpolation methods selected.

the interpolation errors made on a few points outside the interpolation domain or on its
boundary, allowing us to compare the case of a point outside the domain with that of its
projection onto the domain. Since all the results show a very low error, especially when the
values of the H function are high, we retain the default multilinear interpolation method to
predict outside the domain.
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Point (α1, α2, ρ) True value of H Stalker Error
(−50, 0, 0) 3.687e−1 3.687e−1 2.084e−10

(−100, 0, 0) 3.687e−1 3.687e−1 2.084e−10

(−100, 0, 0.5) 3.687e−1 3.687e−1 2.084e−10

(−10000, 0, 0) 3.687e−1 3.687e−1 2.084e−10

(−10000, 0, 0.5) 3.687e−1 3.687e−1 2.084e−10

(−100, 0.1, 0) 3.672e−1 3.672e−1 3.053e−7

(−100, 0.1, 0.5) 3.672e−1 3.672e−1 3.053e−7

(−100, 3, 0.5) 7.869e−3 7.734e−3 1.357e−4

(−50, 3, 0.5) 7.869e−3 7.734e−3 1.357e−4

Table 4.4: Values and absolute errors of the Stalker method (with cubic grid) for points,
mainly chosen outside or on the boundary of the interpolation domain, in the context of
interpolation of H on [−50, 50]2 × [−1, 1] with 200 interpolation points per dimension.

Summary:
This chapter explores the estimation of excursion sets via Gaussian pro-

cesses for a vector black-box function. Three strategies to enrich the DoE are
proposed: the first two are based on scalar surrogate models for each output
component, and the third one is based on a vector surrogate model (MOGP)
taking the correlation between outputs into account. Tested on functions in
dimensions 2 and 4 with two output components, all three strategies show a
substantial reduction in relative errors as a function of the number of itera-
tions. Vector strategy offers better performances on the presented examples,
but is more costly in terms of computation time of the enrichment criterion.
Alternating Scalar strategy is more advantageous for short computation times
but fails to properly estimate partial excursion sets in the case of an inappro-
priate choice of threshold in relation to the values of the black box function.
The MOGP surrogate model used is, however, limited by its separable corre-
lation structure, which reduces flexibility and accuracy.

The following chapter presents the application of these different method-
ologies to our industrial test case. This application, proposed by IFP Énergies
Nouvelles, concerns the pre-calibration of a wind turbine numerical model.
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Chapter 5

Multi-output excursion set
estimation applied to the
pre-calibration of a wind turbine
numerical model

Outlines
The aim of this chapter is to apply the methodology proposed in Chapter 4 to the pre-calibration of
a wind turbine numerical model. The numerical simulator outputs are the vibration frequencies and
deformation modes of the wind turbine in response to a wind load. In practice, observations of the
modes and frequencies are used to pre-calibrate the numerical model. This pre-calibration is expressed
as a multi-output excursion set estimation. Details of the numerical simulator and the formalization
of the simulator pre-calibration problem are presented first. Next, the various enrichment strategies
introduced in Chapter 4 are applied to the numerical wind turbine simulator, seen as a vector-valued
black box function.
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5.1 Introduction

5.1.1 Excited deformation modes in wave theory

In the wave theory of physics and engineering, the notion of an oscillation eigenmode in
dynamical systems with several degrees of freedom is a fundamental concept, providing an
essential tool for studying the vibratory behavior of complex structures (see for example
[Blevins and Plunkett, 1980], [Nayfeh and Mook, 2008] and [Kneubühl, 2013]). For linearized
complex dynamical systems, eigenmodes characterize specific oscillation states of the system,
i.e., specific configurations in which the system can oscillate after being disturbed in the
vicinity of its equilibrium state. The associated natural frequencies of vibration are called the
eigenfrequencies. Classic examples of dynamical systems are mechanical systems, acoustic
systems, molecular systems and electrical systems.

In the case of mechanical systems, the study of eigenmodes of deformation is fundamental
to understanding the overall behavior and structure of objects. In fact, each object has its own
set of deformation modes that vary according to its geometry, materials and the stresses to
which it is subjected. Analysis of these eigenmodes enables the system to be decomposed as a
set of independent harmonic oscillators, simplifying the understanding of vibratory phenom-
ena. As a reminder, a harmonic oscillator is an oscillator model characterized by a sinusoidal
time evolution of fixed amplitude, where the frequency is determined solely by the properties
of the system. An example of eigenmodes of deformation in the case of a circular diaphragm
fixed at its circumference is shown in Figure 5.1. Other classic examples include a vibrating
string in 2D space, fixed at both ends.

Figure 5.1: Vibrational modes of a circular membrane (CC BY-SA-ND 4.0; [Russell, 2018]).

Figure 5.2: Tacoma Narrows
bridge collapse, Nov. 1940.

When a dynamical system is subjected to external ex-
citation, it may resonate with its own vibration frequencies
associated with its various eigenmodes. This resonance is
of paramount importance in engineering, particularly civil
engineering, where the determination of eigenfrequencies
is crucial to avoid structural damage caused by excessive
vibrations and to design stronger, safer structures. The
collapse of the Tacoma Narrows Bridge in the USA is one
of the most famous civil engineering accidents in history
(see Figure 5.2).

Beyond their practical uses, eigenmodes are of significant theoretical importance, forming
the basis of key concepts in physics such as eigenstates in quantum mechanics or the no-
tion of the photon in electromagnetism. They provide an unified conceptual framework for
understanding oscillation and vibration phenomena in a wide range of complex systems.

5.1.2 The case of a wind turbine structure
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Figure 5.3: Illustration of offshore
wind turbines.

The application motivating our study is proposed
by IFP Énergies Nouvelles and concerns the pre-
calibration of a wind turbine numerical simulator.
The OpenFAST ([Release, 2020]) wind turbine nu-
merical simulator can calculate the vibration fre-
quencies and deformation modes of the mechanical
structure of the DTU 10-MW reference wind tur-
bine (DTU 10MW RWT), both at standstill and in
response to wind loading. The numerical simula-
tor is considered a black box model, taking system
parameters (such as stiffness coefficients of certain
materials) as inputs and returning vibration frequencies and deformation eigenmodes as out-
puts. In this Chapter, inputs are noted Θ and outputs λi(Θ) for frequencies and Modi(Θ) for
modes, with i ∈ {1, . . . , p} and p the number of modes. It should be recalled that studying
the vibration signature (frequencies and modes) of a wind turbine is of practical interest, as
it can be used to identify structural faults as mass or stiffness defects, premature wear, and
misalignment of components (see [Cadoret, 2023]).

Our aim here is to pre-calibrate the numerical model (Figure 5.4) by determining a set of
feasible input parameters Θ for the simulator. These parameters should ensure that vibration
frequencies λi(Θ) and deformation modes Modi(Θ) calculated by the simulator are sufficiently
close, according to a certain measure of dissimilarity and within fixed thresholds, to the
observed frequencies λ?i and modes Mod?i , derived from experimental data based on the theory
of Operational Modal Analysis (OMA).

Figure 5.4: Schematic diagram of the wind turbine simulator.

Bayesian History Matching (BHM) aims to restrict the Θ parameter space by elimi-
nating implausible sets, using a comparison between simulated and observed data. This
approach improves the accuracy of simulator predictions by effectively reducing the pa-
rameter space to be explored (see [Kennedy and O’Hagan, 2001], [Bower et al., 2010] and
[Andrianakis et al., 2015] for more details on BHM). The method used in this thesis to pre-
calibrate the numerical wind turbine simulator can be seen as an alternative to BHM with an
emulator based on Gaussian process regression, using OMA experimental data.

The black box model representing the simulator is presented in Section 5.2 , where we
detail the wind turbine under study and OMA theory. Section 5.3 deals with mode matching,
an essential step before solving the calibration problem, aimed at matching simulated modes
with reference ones. The pre-calibration problem is presented in Section 5.4 . Two simplified
formulations of the pre-calibration problem are addressed in Sections 5.5 and 5.6, using the
new methodology based on GPR introduced in Chapter 4. The first formulation uses only
the two main modes, while the second uses both frequencies and modes. Finally, Section
5.7 provides the conclusion, and Section 5.8 includes an appendix related to mode matching
(Section 5.3).
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5.2 The wind turbine numerical model

In this section, we begin by describing the wind turbine itself: the DTU 10 MW RWT. Next,
we discuss the Operational Modal Analysis (OMA) approach to determining reference frequen-
cies λ?i and modes Mod?i . Finally, the numerical simulator calculating simulated frequencies
λi(Θ) and modes Modi(Θ), presented as a black-box function, is introduced.

5.2.1 Presentation of the DTU 10MW Reference Wind Turbine

Since the late 1970s, wind turbines have steadily increased in size, presenting challenges due
to the linear dependency of turbine mass on the cube of the rotor radius. To address this
challenge, the Light Rotor project, a collaboration between the DTU Wind Energy research
team and Vestas Wind Systems, aimed to optimize blade design considering aerodynamic,
structural, and aero-servo-elastic factors. As part of this initiative, a 10 MW reference rotor,
known as the DTU 10 MW Reference Wind Turbine (DTU 10MW RWT), was developed
to assess the performance of new designs (see [Bak et al., 2013]). The design process in-
volves a comprehensive aerodynamic, structural and aero-servoelastic study of the turbine.
Below, we outline some key features of this wind turbine. Further details are available in
[Bak et al., 2013].

Key features

The DTU 10MW RWT wind turbine, designed for offshore installation, is a traditional three-
bladed wind turbine with a rated output of 10 MW. The turbine features a rotor diameter of
178.3m, a hub height of 119.0m, and a hub diameter of 5.6m. Its general geometry is illustrated
in Figure 5.5. The structural definition of the DTU 10MW RWT, excluding the blades, was
derived by scaling up the reference NREL 5MW wind turbine from [Jonkman et al., 2009].
Modifications from the NREL 5MW include: adaptation to the offshore wind climate, con-
version of the drivetrain from high to medium speed, a reduced hub height, and prebending
of the blades to ensure clearance from the tower.

Figure 5.5: Plots of the DTU 10 MW RWT geometry from [Bak et al., 2013].
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Aerodynamic design

The aerodynamic design of the DTU 10MW RWT is based on Blade Element Momentum
(BEM) theory, which combines plane element theory and moment theory to calculate local
forces on propellers or wind turbines. This overcomes the difficulties associated with cal-
culating induced rotor speeds. The theory uses a simplified Rankine-Froude actuator-disk
model (see [Rankine, 1865] and [Froude, 1889]) to estimate wind turbine efficiency, taking an-
gular momentum into account. The rotor design is also evaluated using computational fluid
dynamics (CFD) (see for example [Anderson and Wendt, 1995]).

Airfoil selection was influenced by the rotor’s lightweight, which requires relatively thick
airfoils. FFA-W3 profiles were chosen for their availability and thickness, and Gurney flaps
were added to improve aerodynamic performance (Figure 5.6). The rotor’s aerodynamic
characteristics were calculated using EllipSys2D, with 3D corrections and manual adjustments.
Rotor design was carried out using HAWTOPT software ([Fuglsang and Thomsen, 2001]),
based on BEM theory and numerical optimization.

Figure 5.6: 2D mesh around the FFA-W3-336 airfoil fitted with a Gurney flap from
[Bak et al., 2013].

Structural design

The blades are made of fiberglass-reinforced composites with balsa as the core material. The
elastic properties of the multidirectional laminates were calculated using Classical Lamina-
tion Theory (CLT) ([Jones, 2018]). The internal structure of the blades was modeled using
ABAQUS software ([Manual, 2012]), with approximately 35 000 elements. Each blade was di-
vided into 11 circular regions and 100 radial regions to define the laminated composite (Figure
5.7). The stiffness and mass properties of the cross-sections were calculated using BECAS soft-
ware ([Blasques, 2012]). Linear buckling analysis showed blade resistance to buckling modes.
The tower is made of S355 steel, with a diameter ranging from 8.3m at the base to 5.5m at
the top. The tower’s buckling analysis showed a buckling load 3.15 times greater than the
given force, guaranteeing sufficient safety.

Aero-Servo-Elastic design

The DTU 10MW RWT was designed to withstand anticipated loads and operating conditions,
with detailed analyses ensuring structural safety and aeroelastic performance ([Bak et al., 2013]).
Turbine components were determined through a scaling procedure, with the nacelle and hub
located 119m above ground level. The drivetrain uses a 50 : 1 ratio, ensuring a compact,
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Figure 5.7: Representation of the blade’s composite stratification, divided into 11 circumfer-
ential and 100 radial regions from [Bak et al., 2013].

lightweight design. The turbine is designed for offshore conditions conforming to IEC 61400-1
Ed.3 standard, with load simulations carried out using HAWC2 software ([Larsen and Hansen, 2009]).
Vibration and stability issues have been resolved by adjusting natural blade frequencies and
aerodynamic damping.

5.2.2 Operational Modal Analysis (OMA)

Operational Modal Analysis (OMA) (see for example [Brincker and Ventura, 2015]) is a method
based on observed data used to identify the vibratory characteristics of mechanical structures,
such as wind turbines. The result of OMA is then exploited to calibrate the numerical sim-
ulator by reducing the gap between the frequencies and modes obtained from the simulator
and those obtained from OMA, as is the focus of our application ([Cadoret, 2023]).

In classical modal analysis (see for example [Fu and He, 2001]), the structure under study
is subjected to a known excitation, and the measurement of inputs and responses enables the
identification of a linear transfer function expressed as a function of the eigenmodes to be
determined. This type of modal analysis is only suitable for studies where the environment is
controllable, which is not the case for a wind turbine subjected to wind loading. Operational
modal analysis (OMA) is a more advanced technique, where the structure is subjected to
an unknown wind excitation. This excitation is modeled through a stochastic process with
known mean and covariance. In this approach, measurements of responses alone enable the
identification of a transfer function expressed in terms of eigenmodes. A final identification
phase yields the desired eigenmodes (see Figure 5.8).

Standard mechanical vibration problem

A mechanical vibration problem is generally a second-order linear problem of the form{
Msξ̈ + Csξ̇ +Ksξ = Lρρ

y = Oaξ̈ +Ov ξ̇ +Omξ + Lµµ
, (5.1)

where ξ denotes the displacement vector of the structure, ρ the stochastic excitation and µ the
measurement noise. The matrices Ms, Cs and Ks are the mass, damping and stiffness matrices
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Figure 5.8: OMA summary diagram.

of the system, and it is further assumed that Ms and Ks are positive definite symmetric
matrices. The outputs y of the system are assumed to be a linear combination of motion,
velocity and acceleration via the matrices Oa, Ov and Om. By setting x := (ξ>, ξ̇>)>, it is
possible to reduce ([Tisseur and Meerbergen, 2001]) to a first-order linear problem of the form{

ẋ = Ax+Bv

y = Cx+Dw
, (5.2)

with
A :=

(
0 I

−M−1
s Ks −M−1

s Cs

)
, B :=

(
0

Ms
−1Lρ

)
,

C :=
(
Om −OaM−1

s Ks Ov −OaM−1
s Cs

)
, D :=

(
OaM

−1
s Lρ Lµ

)
,

as well as v := ρ and w := (ρ> µ>)>.
From discrete measurements yk sampled at times tk = k∆t with k ≥ 0 integer, we consider

the simplified discrete system assuming the excitation v constant on [k∆t, (k + 1)∆t]:{
xk+1 = Ãkxk + B̃kvk

yk = C̃kxk + D̃kwk

, (5.3)

with Ãk := exp(∆tA), B̃k := (A− I)A−1B, C̃k := C and D̃k := D. Since the system is time-
invariant (none of the 4 matrices Ãk, B̃k, C̃k and D̃k really depends on k), we can express the
statistic Rn := E[yk+ny

>
k ] as a function of Ã :

Rn := C̃Ãn−1G (5.4)

with G := E[xk+1y
>
k ] (see [Cadoret, 2023] for more details on deriving (5.3) and (5.4)).

OMA principle

The aim of OMA is to identify a system, as described by Equation (5.3), that best matches
the yk series of measurements of the mechanical system under study. The OMA principle
is based on the fact that, when excited by white noise, the correlation functions Rn of the
responses play the same role as the impulse responses. This makes it possible to apply classical
system identification techniques by replacing temporal responses with observation correlation
functions ([Cadoret, 2023]).
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Stochastic Subspace Identification (SSI) algorithms (see for example [Reynders, 2012] and
[Van Overschee and De Moor, 2012]) are commonly used to estimate the modal characteristics
of structures from the resulting transfer function Rn. Based on simple linear algebra concepts,
these algorithms represent an efficient and stable set of methods.

In the OMA framework, the SSI-Cov algorithm is applied to the Hankel matrix R̂n of the
unbiased estimators of the correlation matrices Rn obtained from the yk. More precisely, the
singular value decomposition of the R̂n Hankel matrix is used to estimate the Ak state matrix.
From the relationship between Ak and A (Ak := exp(∆tA)), the eigendecomposition of the A
matrix, corresponding to the system’s vibration frequencies and deformation modes, can be
determined from the eigendecomposition of the Âk estimate. For more technical details on esti-
mating the eigendecomposition of A, please refer to [Döhler and Mevel, 2013]. Variants of the
SSI algorithm offer different approaches to estimating and organizing correlation matrices, in-
fluencing the factorization of subspace matrices (see for example [Peeters and De Roeck, 1999]
and [Reynders et al., 2008]).

The SSI-Cov method estimates a state system based on correlations but requires the order
(i.e., size n of Rn matrix) of the system to be specified. The classic approach is to estimate
the system for different model orders, then identify the structures that remain invariant with
the change in order. This is frequently done using a stabilization diagram, which displays the
quantities identified as a function of model order.

To summarize, for an OMA analysis, a stochastic excitation is applied to the mechanical
system to obtain a transfer function (quantity Rn in Equation (5.4)), which is then used by
the SSI method to identify frequencies and eigenmodes.

Advantages and limitations of OMA

The main advantages of OMA are manifold. It allows the identification of the wind turbine’s
vibration signature, providing a discrete set of vibration modes that can be used to calibrate
a simulator. OMA also enables the modal properties of the structure to be tracked over
time and can reconstruct modal deformations when the structure is equipped with a sufficient
number of sensors.

However, OMA is based on important assumptions, such as the linearity and time invari-
ance of mechanical systems. These assumptions are not always respected in real-life situations,
especially for operating wind turbines. This is why we have studied the simplified case of a
wind turbine at standstill. OMA also relies on the stationarity and ergodicity of the excitation
signal corresponding to the wind, which is not always verified. However, despite these limi-
tations, OMA remains an effective method for monitoring wind turbine vibration, predicting
maintenance operations, and calibrating numerical models.

5.2.3 Model overview

The black box model

The numerical wind simulator we are studying is regarded as a black-box model. We only
have access to its inputs and outputs, without any knowledge or control over the internal
mechanisms or equations of the model.

It takes as input the parameters of the system, corresponding to the stiffness coefficients
of certain materials, and returns as output the vibration frequencies and deformation modes
of the mechanical structure (see Figure 5.9). The simulator is implemented in the OpenFAST
software ([Release, 2020]), which enables prior linearization of the mechanical system before
the calculation of system vibration frequencies and deformation modes.
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Figure 5.9: Schematic diagram of the black box wind model.

Data are assumed to be isotopic, meaning that one simulation produces the various output
components simultaneously at each evaluation point. This assumption means that a common
evaluation point must be chosen for experimental design enrichment and contributes to all
output components.

Model inputs

The inputs to the black box model represent multiplicative stiffness coefficients at the level
of various structural elements and are represented by Θ ∈ X ⊂ R3. More precisely, the cross-
section of the reference blade (Figure 5.7) is decomposed along two main axes (one vertical and
one horizontal) and the first two components of Θ correspond to material stiffness coefficients
along each of these main directions. The third component of Θ corresponds to a stiffness
coefficient at the tower level.

By default, the multiplicative stiffness coefficients are set to 1 and the information provided
by the mechanical experts at IFP Énergies Nouvelles enables us to define a precise X design
space on which to restrict our study. The range of possible multiplicative stiffness coefficients
is given by Θ ∈ X := [0.8, 1.2]× [0.6, 1.4]2.

Model outputs

The outputs of the black box model correspond to the vibration frequencies λi(Θ) and associ-
ated deformation modes Modi(Θ), defined for i ranging from 1 to 26. These eigenvalues and
eigenvectors are conjugated in pairs due to the quadratic formalization of the problem (see
[Tisseur and Meerbergen, 2001]), which reduces the number of unique vibration frequencies
and deformation modes to 13.

The real part of the vibration frequencies provided by the simulator (eigenvalues of the
quadratic problem) represents the resonance frequency, which indicates the speed of oscilla-
tion. The imaginary part of the vibration frequencies reflects the damping, describing how the
energy decreases over time. These two aspects capture both oscillatory behavior and energy
dissipation in the system.

Observed data

Normally, the reference λ?i frequencies and Mod?i modes to which the simulated frequencies
and modes are compared are obtained from the OMA analysis presented in Section 5.2.2.
However, for our methodological purpose, we did not use real wind turbine data as required
for the OMA approach. Instead, we emulated the OMA reference modes and frequencies
by using the simulator response for fixed parameters Θ with reference Θ? := (1, 1, 1). This
illustrates the problem of calibrating a numerical wind turbine simulator, even though the
reference frequencies and modes should normally be obtained more rigorously from OMA
analysis. The reference modes λ?i and Mod?i are thus defined for all i as follows:

λ?i := λi(Θ?) and Mod?i := Modi(Θ?). (5.5)
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In physics, the modulus of the complex vibration frequency represents the overall magni-
tude of the oscillation and can be interpreted as a measure integrating both oscillation speed
and energy loss. Table 5.1 shows the 13 moduli of the reference vibration frequencies. This
table allows us to identify the main modes and their influence on the overall system in relation
to the other modes.

i 1 2 3 4 5 6 7 8 9 10 11 12 13
|λ?i | 15.44 15.49 11.99 11.83 11.01 6.41 6.49 5.82 1.62 1.61 4.18 4.01 4.09

Table 5.1: Summary table of |λ?i | for i ∈ {1, . . . , 13}, in percentages relative to ∑ |λ?i |.
The formalization of the simulator pre-calibration problem involves defining an order be-

tween the frequencies and modes obtained from the simulator, before comparing them with
the references. The matching of simulated frequencies and modes with reference frequencies
and modes is detailed in the next section.

5.3 Mode matching

Both formulations we propose in Section 5.4 to address the pre-calibration step of wind
turbine simulator are built on a dissimilarity measure based on ordered frequencies and modes.
Mode matching is a preliminary step ensuring label matching between frequencies and modes
generated by the simulator and those of the reference case. In this section, we propose an
algorithm designed for mode matching.

5.3.1 Matching example and mode matching algorithm

To recover the right pairing between the reference modes and the mode obtained with a given
Θ, the idea is to compute the distances between each of the 13 reference modes and each of the
13 simulated modes and to bring together the closest ones. To do that we use the following
dissimilarity measure :

Measi,j :=
(

1− | < Mod?i ,Modj(Θ) > |2
‖Mod?i ‖2‖Modj(Θ)‖2

)
, (5.6)

with < . , . > being the canonical Hermitian scalar product. This measure allows to assess
the degree of dissimilarity between Mod?i and Modj(Θ) (evaluated at 0 in the case of perfect
collinearity and 1 in the case of orthogonality). We put all the pairwise distances in a 13× 13
matrix. It can be seen that the lowest distances are mainly located on the diagonal, but not
all of them. This indicates a better match than the natural one for several modes.

An example is given in Figure 5.10b, where the simulated modes are obtained with
Θ = (1.05, 1.1, 1.1). For this example we first notice that, if we remove rows 2 and 8 and
columns 2 and 8 in the matrix in Figure 5.10b, the corresponding submatrix has only one
white cell per row and column. From this submatrix we can thus deduce a permutation of
{1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13}, namely the circular permutation (3 4 5), which allows match-
ing simulated modes with the ones obtained from OMA. Now if we focus on the values Measi,j
for i, j ∈ {2, 8}, we remark that Meas2,8 is about 300 times higher than Meas2,2 or Meas8,8,
meaning that for these two labels there is no reason to apply a permutation.

We now introduce a sequential algorithm based on Equation (5.6) to automatically recover
the best matching. This algorithm begins by pairing the modes with the smallest dissimilarity
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(a) Frequencies (b) Modes

Figure 5.10: On the left, comparison of simulated (red) and reference (black) frequencies for
Θ = (1.05, 1.1, 1.1). On the right, representation of the table of dissimilarity measure values
between simulated and reference modes.

and remove the corresponding row and column from the matrix. It then iterates until all pairs
are obtained.

Algorithm 1: Mode matching
Input : Matrix Meas :=

(
Measi,j

)
i,j

Output: Matrix Res for mode matching
1 k ← 1, Res← NULL;
2 while k ≤ 13 do
3 Select the indices ik and jk corresponding to the smallest value of Meas;
4 All elements in row ik or column jk of Meas are replaced by 1;
5 Add a line in Res with (ik, jk);
6 k ← k + 1;
7 end
8 Sort rows of matrix Res by first column;
9 return Res

Algorithm 1 sequentially matches mode labels to correct the default labels assigned by
the simulator. It begins with straightforward matches and proceeds to handle more complex
ones. The algorithm outputs a permutation that maps reference mode labels to simulated
mode labels. For instance, using Θ = (1.05, 1.1, 1.1), Algorithm 1 generates the following
permutation: (

1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 4 5 3 6 7 8 9 10 11 12 13

)
,

indicating how mode labels from the reference case are matched to the simulated case. This
permutation corresponds to the (3 4 5) cycle identified earlier (Figure 5.10).
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5.3.2 Checking the mode matching

We then perform more general tests using a Maximin LHS design of size 100 for Θ values.
For each row and each column of the matrix

(
Measi,j

)
i,j

, we study the ratio between the
second smallest value and the smallest value, calling the minimum of these ratios over all
rows and columns the minimum matching ratio. This minimum matching ratio indicates the
potential difficulty for a sequential matching algorithm to accurately match mode labels. A
minimum matching ratio close to 1 could cause problems for the algorithm in determining the
best match between two elements in the same row or column. Conversely, a high minimum
matching ratio indicates that the algorithm is unlikely to make mismatches. In the previous
example, this ratio was 369. The boxplot of minimum matching ratios for Θ values from a
LHS Maximin design of size 100 defined on X = [0.8, 1.2] × [0.6, 1.4]2 (Figure 5.11), show
relatively high values, with a median minimum matching ratio above 10.

Figure 5.11: Boxplots (in logarithmic scale) of the minimum matching ratio for Θ values from
a Maximin LHS design of size 100 on [0.8, 1.2]× [0.6, 1.4]2.

We checked that the case corresponding to the lowest minimum matching ratio on Figure
5.11 (Θ := (1.1673, 0.9646, 0.6424)), was not problematic for Algorithm 1. This is because,
even when two very low values are close together in the same row of

(
Measi,j

)
i,j

, Algorithm
1 initially eliminates the most obvious matches. The more complex cases become simpler by
process of elimination, as fewer choices remain. This highlights the effectiveness of Algorithm
1 in globally optimizing the mode matching on the dissimilarity table, rather than performing
row-by-row or column-by-column matching.

The results above demonstrate the effective performance of mode matching algorithm
(Algorithm 1), showing robustness in handling challenging matching scenarios. Appendix
A further explores the consistency of the permutation provided by this algorithm concerning
vibration frequencies. Hereafter, we assume the permutation σalgo provided by mode matching
algorithm is applied to the simulated frequencies and modes. Thus, we denote λi(Θ) and
Modi(Θ) instead of λσalgo(i)(Θ) and Modσalgo(i)(Θ), representing the simulated frequencies
and modes aligned with the references λ?i and Mod?i .
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5.4 Pre-calibration as a multiple excursion set estimation prob-
lem

We begin by recalling that we use a black box simulator, which takes as input the stiffness
parameters Θ of the mechanical system and returns as output the vibration frequencies λi(Θ)
and the associated deformation modes Modi(Θ), for i ranging from 1 to 26. As these frequen-
cies and modes are conjugated in pairs, we limit our study to i ranging from 1 to 13. The
reference frequencies λ?i and modes Mod?i should normally be obtained by OMA analysis (see
Section 5.2.2). Since we do not have access to these data, we simulate these reference frequen-
cies and modes with the simulator using Θ? := (1, 1, 1). To simplify the problem and visualize
results, we limit ourselves to two simulator input parameters, X := [0.8, 1.2] × [0.6, 1.4], and
set the third component of Θ to 1.

The pre-calibration problem initially supplied by IFP Énergies Nouvelles consists of iden-
tifying the input parameters Θ of the simulator so that the simulated modes and frequencies
are not too far from the reference modes and frequencies. To define the notion of distance
between simulated and reference modes, we need a measure of dissimilarity between modes.
The notion proposed by the experts is comparable to that used for mode matching and is
defined by:

Measi(Θ) :=
(

1− | < Mod?i ,Modi(Θ) > |2
‖Mod?i ‖2‖Modi(Θ)‖2

)
, (5.7)

with i ∈ {1, . . . 13} and < . , . > representing the canonical Hermitian scalar product. This
measure evaluates the degree of proximity between two vectors, indicating their level of
collinearity (evaluated as 0 in the case of perfect collinearity and 1 in the case of orthog-
onality). This dissimilarity measure, combined with thresholds (T1, . . . , T13), enables us to
define what we mean by ”not too far appart” for simulated modes compared to reference
modes.

We do the same thing for vibration frequencies, considering the relative error defined by:

Measλi (Θ) := |λi(Θ)− λ?i |
|λ?i |

, (5.8)

as a measure of dissimilarity. This dissimilarity measure combined with thresholds (T λ1 , . . . , T λ13)
allows us to define the notion of “not too far appart” for simulated frequencies compared with
reference frequencies.

In summary, we want to estimate partial excursion sets associated with each mode and
each frequency. Specifically, for each i ∈ 1, . . . , 13, we aim to find Γ?i and Γ?λ,i, which are the
sets of input parameters Θ such that the distances Measi(Θ) and Measλi (Θ) do not exceed
the thresholds Ti and T λi , respectively. Mathematically, it gives:

Γ?1 :=
{

Θ ∈ X, g1(Θ) := ln
(
Meas1(Θ)

)
≤ T1

}
,

...
...

Γ?13 :=
{

Θ ∈ X, g13(Θ) := ln
(
Meas13(Θ)

)
≤ T13

}
,

Γ?λ,1 :=
{

Θ ∈ X, gλ1 (Θ) := ln
(
Measλ1(Θ)

)
≤ T λ1

}
,

...
...

Γ?λ,13 :=
{

Θ ∈ X, gλ13(Θ) := ln
(
Measλ13(Θ)

)
≤ T λ13

}
,

(5.9)

where X := [0.8, 1.2]×[0.6, 1.4] is the (compact) design space, constructed included θ? := (1, 1)
and ln denotes the natural logarithm. The use of the logarithm removes the positivity con-

110

https://www.ifpenergiesnouvelles.fr/


straints on Measi and Measλi , which is not compatible with Gaussian process regression.

As it is not possible to consider all the modes and frequencies of the structure, we focus on
the two principal modes (Figure 5.12), referred to as Formulation 1. These two main modes
are determined by examining the modulus of their associated vibration frequencies (Table 5.1
in Section 5.2.3). This limitation is necessary since the methods presented in chapter 4 are
restricted to the simultaneous estimation of only two partial excursion sets.

Figure 5.12: Schematic diagram of Formulation 1 of the pre-calibration problem using only
the two main modes.

The problem is therefore reduced to estimating the two excursion sets:
Γ?1 :=

{
Θ ∈ X, g1(Θ) := ln

(
Meas1(Θ)

)
≤ T1

}
,

Γ?2 :=
{

Θ ∈ X, g2(Θ) := ln
(
Meas2(Θ)

)
≤ T2

}
.

(5.10)

The short computation times of the black box g, around 5 seconds, allow us to represent
its level sets on a 30 × 30 grid (Figure 5.13). The dissimilarity measure for the first mode
shows good identification of Θ?

1 but not Θ?
2, whereas the dissimilarity measure for the second

mode allows good identification of Θ?
1 −Θ?

2 but not Θ?
1 + Θ?

2.

(a) Measure on Mod1 (b) Measure on Mod2

Figure 5.13: Representation of the logarithm of dissimilarity measures Meas1(Θ) (left) and
Meas2(Θ) (right), on a grid of size 30 by 30 for the first two components of Θ on [0.8, 1.2]×
[0.6, 1.4].

The low simulation time of the black box g limits the practical interest of strategies using
a sequential DoE. However, this application enables us to illustrate the methodologies of
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Chapter 4, and to compare their performances using true evaluations (Figure 5.13) instead of
performing tests on an analytical test function. Simulation times are generally much higher
in most industrial applications, justifying the interest of the approaches presented in Chapter
4.

As we have no precise indication of how to define the vector of thresholds T , we choose
to determine it from a quantile of order 10% defined using the 30× 30 grid (see Figure 5.13),
i.e., T = (−8.868,−8.891). Solving the pre-calibration problem using this formulation with
the two main modes is detailed in Section 5.5.

According to table 5.1 in Section 5.2.3, information regarding the two principal modes
comprises approximately one-third of the total information. We therefore want to include
more information and not limit ourselves to the two principal modes. We propose a second
formulation of the simulator pre-calibration problem that involves using information from
both deformation modes and vibration frequencies, as both types of data are provided simul-
taneously by the simulator. The idea is to aggregate all measures associated with frequencies
on one hand, and all those associated with modes on the other (Figure 5.14), referred to as
Formulation 2.

Figure 5.14: Schematic diagram of Formulation 2 of the pre-calibration problem using modes
and frequencies.

The estimation problem we aim to address can be formulated as follows:
Γ?1 :=

{
Θ ∈ X, g1(Θ) := ln

(∑13
i=1 Measλi (Θ)

)
≤ T1

}
,

Γ?2 :=
{

Θ ∈ X, g2(Θ) := ln
(∑13

i=1 Measi(Θ)
)
≤ T2

}
,

(5.11)

where T := (T1, T2) is a fixed vector of thresholds, and X := [0.8, 1.2]× [0.6, 1.4].
The level sets of the new black box function considered are represented on a grid of size

30 × 30 (Figure 5.15). Unlike Formulation 1, the two components of the black box function
each identify the two components of Θ. Once again, without precise guidance for determining
the threshold vector T , we determine it from a quantile of order 10% defined using the 30×30
grid (see Figure 5.13), i.e., T = (−1.254,−4.981). The two excursion sets thus proposed
are easier to determine than those proposed in Formulation 1 (Figure 5.13), since the two
sets of partial excursions resemble each other. Solving the pre-calibration problem using this
formulation with frequencies and modes is detailed in Section 5.6.

5.5 Pre-calibration using only the two main modes (Formu-
lation 1)

Enrichment is conducted over 30 iterations starting from initial LHS Maximin DoEs of size 5,
employing the three methodologies (’Alternating Scal’, ’Pareto Scal’, and ’Vect’) introduced
in Chapter 4.

Implementation choices for surrogate models and enrichment criteria are similar to those
in Section 4.4.1 of Chapter 4. The search bounds of the GP hyperparameters have been
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(a) Measure on λ (b) Measure on Mod

Figure 5.15: Representation of the logarithm of the sum of dissimilarity measures Measλi (Θ)
(left) and Measi(Θ) (right), on a grid of size 30 by 30 for the first two components of Θ on
[0.8, 1.2]× [0.6, 1.4].

adjusted to the X design space by scaling the bounds selected in Chapter 4 according to the
ranges of each component of X: θ1 ∈ [0.04, 250], θ2 ∈ [0.08, 400]. Partial relative errors Erri
and their sum Errsum (Equations (4.28) and (4.29) from Chapter 4) are estimated from a grid
of size 30 by comparing with the true evaluations of the black box function g (Figure 5.13).

For three different initial DoEs, sequential DoEs and partial excursion set estimates af-
ter 30 iterations are shown in Figure 5.16 for the different enrichment strategies. In these
examples, Pareto Scalar strategy demonstrates the best estimates of partial excursion sets.
Alternating Scalar strategy performs well overall, but exhibits limitations in the third exam-
ple. Vector strategy, while less effective in estimating partial excursion sets, demonstrates
good exploration capabilities across the design space.

Line plots and means of partial relative errors and their sum are shown in Figure 5.17
for 10 different initial DoEs. The results show better performances for the scalar criteria, in
particular for Pareto Scalar criterion. Plateaus observed in Figure 5.17a for relative errors
below 0.1 highlight the limits of using a grid of size 30× 30 to estimate partial relative errors.

We next plot standard Data profiles introduced in Sections 4.4.2 and 4.4.3 of Chapter 4.
Due to the low precision of partial relative errors for values that are too low, relatively high
thresholds are chosen for the Data profiles: C = 100%, 50% and 20%. Data profiles obtained
(Figure 5.18) confirm the better performance of Alternating and Pareto Scalar strategies com-
pared with Vector strategy.

It is also interesting to compare the strategies in terms of range (length scale) hyperpa-
rameters estimation (Figure 5.19). For SOGP models (scalar strategies), θ(j)

1 and θ
(j)
2 repre-

sent the ranges concerning the two input parameters for the jth output component. These
plots highlight significant differences in range between the two output components for SOGP
models using scalar strategies, consistent with variations of the black box function shown in
Figure 5.13. These range differences between output components cannot be captured by the
MOGP model (Vector strategy) as the separable covariance model imposes a common range
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(a) Vect, LHS 1 (b) Alternating Scal, LHS 1 (c) Pareto Scal, LHS 1

(d) Vect, LHS 2 (e) Alternating Scal, LHS 2 (f) Pareto Scal, LHS 2

(g) Vect, LHS 3 (h) Alternating Scal, LHS 3 (i) Pareto Scal, LHS 3

Figure 5.16: Representation of the enrichment of 3 initial LHS Maximin DoEs of size 5 after
30 iterations for the different enrichment criteria, for the pre-calibration using only the two
main modes (Formulation 1) with T = (−8.868,−8.891). Boundaries of partial excursion sets
are overlaid, calculated from a 30× 30 grid.
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(a) Err1 (b) Err2 (c) Errsum

(d) Err1 (means) (e) Err2 (means) (f) Errsum (means)

Figure 5.17: Line plots and means of partial relative errors and of their sum with the number
of iterations when estimating excursion sets of the pre-calibration using only the two main
modes (Formulation 1) with T = (−8.868,−8.891). The three enrichment strategies Vect,
Alternating Scal and Pareto Scal, are performed from an initial DoE of size 5 and with
30 enrichment iterations. Means are evaluated over 10 LHS Maximin intial DoE randomly
chosen.

on both output components. This specific constraint of MOGP explains the relatively poor
performance of Vector strategy in this context, underlining the limitations of such a separa-
ble MOGP model. It is also relevant to note that the θkOut parameter of the MOGP model
(Figure 5.19b) is close to π/2, indicating a low correlation between the variables.

5.6 Pre-calibration using frequencies and modes (Formula-
tion 2)

The same tests are conducted as previously. Figure 5.20 shows sequential DoEs and partial
excursion set estimates after 30 iterations for three different initial DoEs, using the different
enrichment strategies. In these examples, the accuracy of partial excursion set estimation
appears to be higher than that observed in Formulation 1 (see Figure 5.16). Vector strategy
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(a) C = 100%, DP1 (b) C = 100%, DP2 (c) C = 100%, DPtot

(d) C = 50%, DP1 (e) C = 50%, DP2 (f) C = 50%, DPtot

(g) C = 20%, DP1 (h) C = 20%, DP2 (i) C = 20%, DPtot

Figure 5.18: Standard ”Data profiles” (DPs) of partial relative errors for the pre-calibration
using only the two main modes (Formulation 1) with T = (−8.868,−8.891). DPs are repre-
sented for the different criteria, in the case of enrichment of 10 LHS Maximin initial DoEs of
size 5 with 30 iterations.
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(a) Vect, θ1 and θ2 (b) Vect, θkOut

(c) Alternating Scal, θ(1)
1 and θ(1)

2 (d) Alternating Scal, θ(2)
1 and θ(2)

2

(e) Pareto Scal, θ(1)
1 and θ

(1)
2 (f) Pareto Scal, θ(2)

1 and θ
(2)
2

Figure 5.19: Representation of θ(1)
i and θ(2)

i hyperparameters of SOGP models associated with
Alternating and Pareto Scalar criteria, and of θi and θkOut hyperparameters of MOGP model
associated with Vector criterion, in the case of enrichment of 10 LHS Maximin initial DoEs of
size 5 with 30 iterations, for the pre-calibration using only the two main modes (Formulation
1) with T = (−8.868,−8.891).
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again demonstrates the best ability to explore the design space (Figure 5.20).
Figure 5.21 presents line plots and means of partial relative errors and their sum for 10

different initial DoEs. The results demonstrate the superior performance of Pareto Scalar and
Vector strategies compared to Alternating Scalar strategy. As observed in Formulation 1 of
the pre-calibration problem, plateaus visible in Figure 5.21b, when relative errors are less than
0.1, highlight the limitations of estimating partial relative errors using a grid of size 30× 30.

We once again plot the standard Data profiles presented in Sections 4.4.2 and 4.4.3 of
chapter 4. In a similar way to Formulation 1, we use high thresholds for Data profiles, specif-
ically C = 100%, 50% and 20%, due to the limited precision of partial relative errors for
very low values. The Data profiles obtained (Figure 5.22) do not show a significantly better
performance of Pareto Scalar and Vector strategies compared to Alternating Scalar strategy.
Upon analyzing the Data profiles, the performance appears to be relatively similar across the
different strategies. Compared with Formulation 1, the results obtained for Vector strategy
on Formulation 2 of the pre-calibration problem are much better. This is due to the greater
correlation between the two output components (see Figure 5.15 in Section 5.4).

It is also interesting to compare the strategies in terms of range (length scale) hyperparam-
eters estimation (Figure 5.23). For SOGP models, θ(j)

1 and θ(j)
2 denote the ranges concerning

the two input parameters for the jth output component. In contrast to Formulation 1, these
plots reveal negligible differences in range between the two output components for SOGP
models associated with the two scalar strategies, consistent with the variations observed in
the black box function (Figure 5.15). This minor disparity in range between the output com-
ponents in Formulation 2 explains the better performance of Vector strategy compared to
Formulation 1, as the MOGP model used necessitates a common range hyperparameter for
both output components (separable model). It is also worth noting that the θkOut parameter
of MOGP model (Figure 5.23b) is closer to π/2 than in Formulation 1, indicating a stronger
estimated correlation between the output components.

5.7 Conclusion

The various sequential DoE enrichment strategies presented in Chapter 4 are illustrated on
two formulations of a wind turbine simulator pre-calibration problem. It is recalled that
the strategies developed in chapter 4 are designed for the simultaneous estimation of partial
excursion sets within the framework of a couple-valued black box function, and for isotopic
data (simultaneous evaluation of all simulator output components).

Based on the analysis, the sequential enrichment strategies outlined in Chapter 4 show
promising potential for the simultaneous estimation of partial excursion sets. They also high-
light limitations of the MOGP model used in Vector strategy, which employs a separable
ICM model with a shared range parameter for both simulator output components. However,
in scenarios involving substantial correlation between the two outputs, the Vector strategy
yields results comparable to other scalar strategies and exhibits a more exploratory nature.
Unlike Chapter 4, the impact of this exploratory aspect on reducing partial relative errors
compared to other strategies could not be emphasized due to the simplicity of the proposed
partial excursion sets and the associated low accuracies of estimation errors.
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(a) Vect, LHS 1 (b) Alternating Scal, LHS 1 (c) Pareto Scal, LHS 1

(d) Vect, LHS 2 (e) Alternating Scal, LHS 2 (f) Pareto Scal, LHS 2

(g) Vect, LHS 3 (h) Alternating Scal, LHS 3 (i) Pareto Scal, LHS 3

Figure 5.20: Representation of the enrichment of 3 initial LHS Maximin DoEs of size 5 after
30 iterations for the different enrichment criteria, for the pre-calibration using frequencies and
modes (Formulation 2) with T = (−1.254,−4.981). Boundaries of partial excursion sets are
overlaid, calculated from a 30× 30 grid.
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(a) Err1 (b) Err2 (c) Errsum

(d) Err1 (means) (e) Err2 (means) (f) Errsum (means)

Figure 5.21: Line plots and means of partial relative errors and of their sum with the number
of iterations when estimating excursion sets of the pre-calibration using frequencies and modes
(Formulation 2) with T = (−1.254,−4.981). The three enrichment strategies Vect, Alternat-
ing Scal and Pareto Scal, are performed from an initial DoE of size 5 and with 30 enrichment
iterations. Means are evaluated over 10 LHS Maximin intial DoE randomly chosen.

5.8 Appendix

A Checking mode matching with respect to vibration frequencies

In this section, we assess the consistency of mode matching algorithm (Algorithm 1 from
Section 5.3.1) with respect to vibration frequencies. We want to verify whether the frequencies
are correctly paired after mode matching. We evaluate the performance of Algorithm 1 for
two different values of Θ: Θ = (1.05, 1.1, 1.1) and (1.673, 0.9646, 0.6424). For each of these
cases, we compute the sum of relative errors associated with the vibration frequencies λ across
10 000 random permutations σ on {1, . . . , 13}:

13∑
i=1

|λσ(i)(Θ)− λ?i |
|λ?i |

. (5.12)
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(a) C = 100%, DP1 (b) C = 100%, DP2 (c) C = 100%, DPtot

(d) C = 50%, DP1 (e) C = 50%, DP2 (f) C = 50%, DPtot

(g) C = 20%, DP1 (h) C = 20%, DP2 (i) C = 20%, DPtot

Figure 5.22: Standard ”Data profiles” (DPs) of partial relative errors for the pre-calibration
using frequencies and modes (Formulation 2) with T = (−1.254,−4.981). DPs are represented
for the different criteria, in the case of enrichment of 10 LHS Maximin initial DoEs of size 5
with 30 iterations.
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(a) Vect, θ1 and θ2 (b) Vect, θkOut

(c) Alternating Scal, θ(1)
1 and θ(1)

2 (d) Alternating Scal, θ(2)
1 and θ(2)

2

(e) Pareto Scal, θ(1)
1 and θ

(1)
2 (f) Pareto Scal, θ(2)

1 and θ
(2)
2

Figure 5.23: Representation of θ(1)
i and θ(2)

i hyperparameters of SOGP models associated with
Alternating and Pareto Scalar criteria, and of θi and θkOut hyperparameters of MOGP model
associated with Vector criterion, in the case of enrichment of 10 LHS Maximin initial DoEs
of size 5 with 30 iterations, for the pre-calibration using frequencies and modes (Formulation
2) with T = (−1.254,−4.981).
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We then compare the values obtained with different choices for permutation σ: we try 10 000
random permutations, the identity and finally the permutation provided by Algorithm 1. The
results are shown in Figure 5.24 (see also Table 5.2). These results highlight the efficiency of
Algorithm 1, at least for Θ = (1.05, 1.1, 1.1) and Θ = (1.673, 0.9646, 0.6424).

(a) Θ = (1.05, 1.1, 1.1) (b) Θ = (1.673, 0.9646, 0.6424)

Figure 5.24: Boxplot (with logarithmic scale) of the distribution of the values of Equation
(5.12) for 10 000 random permutations on {1, . . . 13} and comparison with the same measure
for the identity permutation and for the permutation resulting from mode matching algorithm
(Algorithm 1).

Θ Mean Median Min Max σ = id σ = σalgo
(1.05, 1.1, 1.1) 15.68 15.63 2.65 28.35 0.641 0.496

(1.673, 0.9646, 0.6424) 14.85 14.86 3.56 25.70 4.056 1.216

Table 5.2: Summary table of the distribution of the values of Equation (5.12) for 10 000
random permutations on {1, . . . 13} and comparison with the same measure for the identity
permutation and for the permutation resulting from mode matching algorithm (Algorithm 1).

We then repeat the experiment for 100 different values of Θ (sampled from a Maximin
LHS). For each value of Θ we compute the sum in (5.12) for 10000 random permutations, but
also for σ set to the identity and σ set to the permutation provided by Algorithm 1. Let us
summarize the results from these experiments. For 23 values of Θ in the LHS, at least one of
the 10000 random permutations beats the identity, while for any value of Θ in the LHS, the
permutation provided by Algorithm 1 is better than any random permutation.
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Summary:
This chapter implements the methodology presented in Chapter 4 for pre-

calibrating a numerical wind turbine simulator capable of simulating vibration
frequencies and deformation modes under wind loading. The objective is to
determine a set of input parameters Θ for the simulator such that the sim-
ulated vibration frequencies λi(Θ) and deformation modes Modi(Θ) closely
match the reference values λ?i and Mod?i obtained from experimental data
using operational modal analysis (OMA).

Sequential DoE enrichment strategies are applied to two formulations of
the pre-calibration problem: the first focuses on the two main deformation
modes, while the second is more general, encompassing all deformation modes
on one hand, and all vibration frequencies on the other hand. The results
demonstrate that these strategies help in the estimation of partial excursion
sets. However, we observe limitations probably due to the lack of flexibility
for the covariance structure of the MOGP model we employed.
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Conclusion/Perspectives

Cette thèse a permis d’explorer et de développer des méthodes avancées pour la conception
séquentielle de plans d’expériences (DoEs), visant à estimer des ensembles d’excursion d’une
fonction bôıte noire à sortie scalaire ou vectorielle. Les différentes méthodes d’enrichissement
proposées s’appuient sur un modèle de substitution, c’est-à-dire une approximation du véritable
modèle, déterminé à partir d’un nombre restreint d’évaluations du modèle et moins coûteux
à évaluer que ce dernier. Nous avons utilisé un modèle de substitution de type régression par
processus gaussiens (GPR) pour le cas scalaire et son extension aux fonctions vectorielles, con-
nue sous le nom de processus gaussiens multi-sorties (MOGP). L’un des principaux avantages
de ces modèles est qu’ils offrent non seulement des prédictions ponctuelles, mais également
une estimation de l’incertitude qui leur est associée.

Contributions principales

Dans le cadre de l’estimation des ensembles d’excursion pour des modèles bôıtes noires à
sortie scalaire, nous avons développé une version Stepwise Uncertainty Reduction (SUR) du
critère Bichon, critère couramment utilisé avec la régression par processus gaussiens (GPR).
Les stratégies SUR enrichissent le DoE en anticipant l’impact de l’ajout de nouveaux points
pour réduire une incertitude résiduelle spécifique.

L’objectif était de créer une version plus efficace du critère Bichon et de la comparer à des
critères classiques tels que les critères Bichon et SUR Vorob’ev. Une formulation explicite du
critère a été développée pour faciliter sa mise en œuvre pratique. Les simulations numériques
sur des fonctions analytiques en 2 et 6 dimensions ont montré que ce nouveau critère offre
un bon comportement exploratoire dans différentes zones de l’espace de design. Grâce à son
caractère exploratoire, il permet de détecter efficacement des ensembles d’excursion complexes
avec plusieurs composantes connexes, tout en maintenant des performances équivalentes au
critère SUR Vorob’ev en termes d’exploitation. En résumé, le critère SUR Bichon combine
l’exploration et la robustesse du critère Bichon avec l’exploitation et les performances des
stratégies SUR.

Dans le cadre de modèles bôıtes noires à sorties vectorielles, nous avons développé trois
stratégies pour l’estimation simultanée des ensembles d’excursions partiels associés à chaque
composante de sortie. Ces stratégies s’appliquent à des données isotopiques, où toutes les
composantes de sortie sont évaluées simultanément.

Les deux premières stratégies utilisent un modèle de substitution scalaire pour chaque
composante de sortie avec un critère adapté (Alterné ou Pareto) pour le choix d’un point
d’enrichissement commun. La troisième stratégie utilise un modèle de substitution vectoriel
(MOGP) avec un critère prenant en compte la corrélation entre les sorties. Une formulation
explicite de ce critère vectoriel a été développée pour permettre son implémentation pratique.
La performance de ces trois critères a été testée sur des fonctions de test à 2 et 4 dimensions,
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chacune ayant deux composantes de sortie. Toutes les stratégies montrent une réduction
significative des erreurs relatives partielles au fil des itérations.

L’analyse de ces erreurs via des boxplots fonctionnels révèle que, surtout pour le cas 4-
dimensionnel, la stratégie vectorielle offre un meilleur compromis pour la recherche simultanée
des deux ensembles d’excursion, avec une robustesse accrue. La stratégie scalaire alternée a
échoué dans le cas d’un choix de seuil inadapté, alors que les stratégies vectorielle et scalaire
Pareto se sont avérées robustes et efficaces même dans ce cas difficile. Les profils de données
(Data profiles) confirment ces résultats, montrant que la stratégie vectorielle est plus perfor-
mante, bien que son temps de calcul plus élevé la rende particulièrement intéressante pour
des fonctions avec des temps d’évaluation élevés. Pour des temps d’évaluation très courts, la
stratégie scalaire alternée est plus avantageuse en raison de son faible temps de calcul pour
l’enrichissement.

Application industrielle

Les différentes stratégies d’enrichissement séquentiel du DoE présentées au chapitre 4 sont
illustrées sur un cas d’application industriel de pré-calibration d’un simulateur d’éolienne. Ce
simulateur prend en entrée des paramètres du système, tels que les coefficients de rigidité de
certains matériaux, et renvoie en sortie les fréquences de vibration et les modes de déformation
de la structure mécanique en réponse à des charges de vent. L’éolienne étudiée est la DTU
10-MW de référence. L’objectif est d’identifier des jeux de paramètres admissibles en entrée
du simulateur, pour que les fréquences de vibration et les modes de déformation en sortie cor-
respondent aux données expérimentales obtenues par l’Operational Modal Analysis (OMA),
méthode d’identification des caractéristiques vibratoires de structures mécaniques.

Les stratégies d’enrichissement séquentielles développées au Chapitre 4 ont été appliquées
à deux formulations spécifiques du problème de pré-calibration. La première se concentre sur
l’estimation simultanée des deux ensembles d’excursion partiels associés aux deux principaux
modes de déformation, tandis que la seconde englobe tous les modes de déformation d’un
côté et toutes les fréquences de vibration de l’autre. Les résultats montrent que les nouvelles
méthodes offrent de bons résultats pratiques pour l’estimation des ensembles d’excursions
partiels. Cependant, des limites du modèle MOGP utilisé pour la stratégie vectorielle ont
été observées, notamment en raison de l’utilisation d’un paramètre de portée commun pour
les deux composantes de sortie. Malgré cela, en cas de corrélation significative entre les
deux sorties, la stratégie vectorielle produit des résultats comparables aux autres stratégies
scalaires, avec un caractère exploratoire plus développé. L’impact de ce caractère exploratoire
sur la réduction des erreurs relatives partielles n’a toutefois pas pu être mis en évidence en
raison de la simplicité des ensembles d’excursion partiels proposés et des faibles précisions des
erreurs relatives partielles.

Ces méthodologies, validées dans un contexte industriel, ouvrent la voie à des applications
dans divers domaines nécessitant des modèles précis et efficaces pour des systèmes complexes à
sorties multiples. Elles représentent une avancée significative vers l’optimisation des processus
de conception de plans d’expériences pour l’estimation simultanée d’ensembles d’excursions
partiels dans des environnements de simulation coûteuse à sortie vectorielle.

Limites de l’étude et perspectives de recherche

Plusieurs limites ont été identifiées dans notre étude. Elles sont présentées ci-dessous, accom-
pagnées de perspectives de recherche.
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Dans notre étude, les prédictions issues de la régression par processus gaussiens reposent
sur l’hypothèse que le modèle est une réalisation d’un processus gaussien stationnaire. Cette
hypothèse n’est cependant pas toujours vérifiée en pratique, ce qui peut restreindre la flex-
ibilité et la précision des modèles. Pour surmonter ce problème, il est possible de relaxer
cette hypothèse en utilisant des processus gaussiens non stationnaires (voir par exemple
[Paciorek and Schervish, 2003] et [Heinonen et al., 2016]). Cette approche pourrait améliorer
le modèle de substitution, particulièrement dans les contextes où les relations entre les vari-
ables d’entrée et de sortie évoluent de manière fortement non stationnaire.

Dans le Chapitre 4, la stratégie scalaire Alternée a montré des limites significatives, par-
ticulièrement lorsque l’une des valeurs du vecteur de seuil T est fortement inadaptée par
rapport aux valeurs du modèle bôıte noire de la composante de sortie correspondante. Dans
de telles situations, cette stratégie échoue à estimer précisément les ensembles d’excursions
partiels en attribuant un poids égal aux deux composantes, alors que l’ensemble d’excursion
partiel associé à l’une d’entre elles est déjà complètement déterminé. Actuellement, nous ne
voyons pas de perspectives claires d’amélioration pour cette problématique, à moins de vérifier
attentivement le vecteur de seuils par rapport aux valeurs du modèle sur le DoE initial, ou
d’utiliser les deux autres stratégies disponibles.

Ensuite, bien que la structure de corrélation séparable du modèle MOGP simplifie les
calculs, elle réduit la flexibilité et la précision en ne capturant pas les interactions complexes
entre les sorties (voir Section 1.7.3 du Chapitre 1 sur l’autokrigeabilité). Cette limite peut
entrâıner une perte d’efficacité dans certains scénarios où ces interactions jouent un rôle cru-
cial. Nous avons également observé que l’utilisation d’un paramètre de portée commun pour
les deux composantes de sortie est limitante lorsque les paramètres de portée estimés pour
chaque composante sont très différents (voir Section 5.5 du Chapitre 5). Pour surmonter ces
limites du modèle séparable, il serait pertinent d’explorer des structures de corrélation plus
complexes et adaptatives qui pourraient mieux modéliser les interactions entre les différentes
composantes de sortie, augmentant ainsi la précision et l’efficacité du modèle (voir Section 1.3
du Chapitre 1). Une étude sur des stratégies combinées, par exemple en utilisant un critère
vectoriel associé à des modèles de GPR indépendants pour chaque composante, permettrait
de déterminer avec précision l’impact du critère et du modèle sur la stratégie vectorielle pro-
posée. Une autre approche pour résoudre les problèmes liés à l’autokrigeabilité du modèle
MOGP consisterait à utiliser des données hétérotopiques, où l’évaluation du modèle n’est pas
systématiquement réalisée pour toutes les composantes de sortie. Cependant, l’utilisation de
cette méthode dépend du contexte d’application spécifique.

Une autre limite rencontrée est le temps de calcul élevé associé à la stratégie Vectorielle.
Cette approche nécessite un temps de calcul considérablement plus long pour la mise à jour
du modèle de substitution (MOGP) et l’optimisation du critère d’enrichissement, la rendant
moins adaptée aux fonctions bôıtes noires avec des temps d’évaluation courts. Pour surmonter
cette limite, il serait bénéfique de développer des algorithmes plus efficaces pour la mise à
jour du modèle de substitution vectoriel et pour l’optimisation du critère d’enrichissement.
Cela permettrait de réduire les temps de calcul et améliorer les performances de la stratégie
vectorielle, dans le cas de fonctions bôıtes noires avec des temps d’évaluation courts.

Les trois stratégies ont été évaluées sur des cas à deux composantes de sortie, mais
elles sont théoriquement généralisables à un nombre de sorties supérieur. Cependant, cette
généralisation nécessite des efforts supplémentaires pour formuler des approches simples à
implémenter, particulièrement pour la stratégie Vectorielle. Une voie d’amélioration serait
donc de développer des formulations et des algorithmes qui facilitent cette extension, per-
mettant ainsi l’application des stratégies à des problèmes plus complexes comportant p > 2
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composantes de sortie.

Dans le Chapitre 5, nous avons discuté des limites précedemment citées associées au modèle
MOGP utilisé. Du point de vue de l’application, il est également important de noter que nous
n’avons pas eu accès aux données OMA réelles et que nous avons utilisé des fréquences de
vibration et des modes de déformation simulés pour illustrer les méthodologies développées
dans le Chapitre 4. En pratique, il serait essentiel d’utiliser les données OMA réelles fournies
par les experts éoliens. De plus, nous nous sommes limités à seulement deux paramètres
d’entrée du simulateur, alors qu’en pratique, jusqu’à six paramètres peuvent être considérés
pour la calibration du simulateur, ce qui accrôıt la complexité de l’estimation des ensembles
d’excursions partiels.

Par ailleurs, l’application de ces méthodes à d’autres secteurs industriels tels que la santé,
l’automobile ou l’aérospatiale pourrait ouvrir de nouvelles perspectives et défis, renforçant
ainsi l’impact de ce travail.
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Conclusion/Perspectives

This thesis explored and developed advanced methods for sequential Design of Experiments
(DoEs) aimed at estimating excursion sets of a black-box function with scalar or vector output.
The various enrichment methods proposed are based on a surrogate model, i.e., an approx-
imation of the true model, determined from a limited number of model evaluations and less
costly to evaluate than the latter. We used Gaussian Process Regression (GPR) surrogate
models for the scalar case and their extension to vector functions, known as Multi-Output
Gaussian Processes (MOGP). One of the main advantages of these models is that they offer
not only point predictions but also an estimate of the uncertainty associated with them.

Main contributions

In the context of estimating excursion sets for black box models with scalar outputs, we have
developed a Stepwise Uncertainty Reduction (SUR) version of Bichon criterion, commonly
used with Gaussian process regression (GPR). SUR strategies enrich the DoE by anticipating
the impact of adding new points to reduce a specific residual uncertainty.

The aim was to create a more efficient version of Bichon criterion and compare it with
classical criteria such as Bichon and SUR Vorob’ev criteria. An explicit formulation of the
criterion was developed to facilitate its practical implementation. Numerical simulations on
analytical functions in 2 and 6 dimensions have shown that this new criterion offers good
exploratory behavior in different zones of the design space. Thanks to its exploratory nature,
it can efficiently detect complex excursion sets with several connected components, while
maintaining performance equivalent to SUR Vorob’ev criterion in terms of exploitation. In
summary, SUR Bichon criterion combines the exploration and robustness of Bichon criterion
with the exploitation and performance of SUR strategies.

Within the framework of black box models with vector outputs, we have developed three
strategies for the simultaneous estimation of partial excursion sets associated with each out-
put component. These strategies apply to isotopic data, where all output components are
evaluated simultaneously.

The first two strategies use a scalar surrogate model for each output component with
a suitable criterion (Alternating or Pareto) for choosing a common enrichment point. The
third strategy uses a vector surrogate model (MOGP) with a criterion that takes into account
the correlation between outputs. An explicit formulation of this vector criterion has been
developed for practical implementation. The performance of these three criteria was tested
on 2 and 4 dimensional test functions, each with two output components. All strategies show
a significant reduction in relative partial errors with each iteration.

Analysis of these errors via functional boxplots reveals that, especially for the 4-dimensional
case, Vector strategy offers a better compromise for the simultaneous search of both excursion
sets, with increased robustness. Alternating scalar strategy failed in the case of an inappropri-
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ate choice of threshold, while Vector and Pareto scalar strategies proved robust and effective
even in this difficult case. Data profiles confirm these results, showing that Vector strategy
performs better, although its higher computation time makes it particularly interesting for
functions with high evaluation times. For very short evaluation times, Alternating scalar
strategy is more advantageous due to its low computation time for enrichment.

Industrial application

The various sequential DoE enrichment strategies presented in Chapter 4 are illustrated
through an industrial case study involving the pre-calibration of a wind turbine simulator.
The simulator takes system parameters such as material stiffness coefficients as input and
outputs vibration frequencies and deformation modes of the mechanical structure in response
to wind loads. The wind turbine under study is the DTU 10-MW reference model. The
objective is to identify acceptable parameter sets for the simulator input so that the output
vibration frequencies and deformation modes closely match the experimental data obtained by
Operational Modal Analysis (OMA), a method used to identify the vibratory characteristics
of mechanical structures.

The sequential enrichment strategies developed in Chapter 4 have been applied to two
distinct formulations of the pre-calibration problem. The first formulation focuses on the si-
multaneous estimation of two partial excursion sets associated with the two main deformation
modes, while the second encompasses all deformation modes on one side and all vibration fre-
quencies on the other. The results show that the new methods offer good practical results for
estimating partial excursion sets. However, limitations of the MOGP model used for Vector
strategy were observed, notably due to the use of a common range parameter for both output
components. Despite this limitation, in cases where significant correlation exists between the
two outputs, Vector strategy produced results comparable to the other scalar strategies, with a
more developed exploratory character. Nevertheless, the impact of this exploratory approach
on reducing partial relative errors could not be conclusively demonstrated, primarily due to
the simplicity of the proposed partial excursion sets and the inherent imprecision associated
with partial relative errors.

These methodologies, validated in an industrial context, pave the way for applications
in various fields requiring accurate and efficient models for complex systems with multiple
outputs. They represent a significant advancement in optimizing Design of Experiments
(DoE) processes for the simultaneous estimation of partial excursion sets in costly vector-
output simulation environments.

Study limitations and research perspectives

Several limitations were identified in our study. They are presented below, along with research
perspectives.

In our study, predictions from Gaussian process regression rely on the assumption that
the model is a realization of a stationary Gaussian process. However, this assumption is not
always met in practice, which can restrict the flexibility and accuracy of models. To over-
come this problem, it is possible to relax this assumption by using non-stationary Gaussian
processes (see for example [Paciorek and Schervish, 2003] and [Heinonen et al., 2016]). This
approach could improve the surrogate model, especially in scenarios where the relationships
between input and output variables change in a highly non-stationary manner.
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In Chapter 4, Alternating scalar strategy showed significant limitations, particularly when
one of the values of the threshold vector T is unsuitable with respect to the model values
of the corresponding output component. In such situations, this strategy fails to accurately
estimate partial excursion sets by assigning equal weights to both components, when the
partial excursion set associated with one of them is already fully determined. At present, we
see no clear prospects of improvement for this problem, unless we carefully check the threshold
vector against the model values on the initial DoE, or use the other two available strategies.

Although the separable correlation structure of the MOGP model simplifies calculations,
it reduces flexibility and accuracy by not capturing complex interactions between outputs
(see Section 1.7.3 of Chapter 1 on autokrigeability). This limitation can lead to a loss of
efficiency in certain scenarios where these interactions play a crucial role. We have also
observed that using a common range parameter for both output components restricts model
adaptability when the estimated range parameters for each component differ significantly (see
Section 5.5 of Chapter 5). To overcome these limitations of the separable model, exploring
more intricate and adaptive correlation structures could be beneficial. Such structures could
better capture interactions between different output components, thereby enhancing both the
accuracy and efficiency of the model (see Section 1.3 of Chapter 1). A study of combined
strategies, for example using a vector criterion combined with independent GPR models for
each component, would enable us to accurately determine the impact of the criterion and
model on the proposed vector strategy. An alternative approach to solving the problems
associated with MOGP model autokrigeability would be to use heterotopic data, where model
evaluation is not systematically performed for all output components. However, the use of
this method depends on the specific application context.

Another limitation encountered is the high computation time associated with Vector strat-
egy. This approach requires a considerably longer computation time for updating the surrogate
model (MOGP) and optimizing the enrichment criterion, making it less suitable for black box
functions with short evaluation times. To overcome this limitation, it would be beneficial to
develop more efficient algorithms for updating the MOGP surrogate model and optimizing
the enrichment criterion. This would reduce computation times and improve the performance
of Vector strategy, in the case of black box functions with short evaluation times.

All three strategies have been evaluated in scenarios involving two output components, but
they can theoretically be extended to a higher number of outputs. However, this extension
requires additional effort to formulate approaches that are simple to implement, particularly
for Vector strategy. One way forward would therefore be to develop formulations and algo-
rithms that facilitate this extension, enabling the strategies to be applied to more complex
problems with p > 2 output components.

In Chapter 5, we discussed the aforementioned limitations associated with the MOGP
model used. From an application point of view, it is also noteworthy that we did not have
access to real OMA data. instead, we used simulated vibration frequencies and deformation
modes to illustrate the methodologies developed in Chapter 4. In practice, incorporating
actual OMA data provided by wind experts would be crucial. Additionally, we restricted
ourselves to only two simulator input parameters, whereas practical applications often involve
up to six parameters for simulator calibration, thereby increasing the complexity of estimating
partial excursion sets.

Moreover, applying these methodologies to other industrial sectors such as healthcare,
automotive, or aerospace could introduce new perspectives and challenges, thereby enhancing
the impact of this research.
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[Azzimonti and Ginsbourger, 2018] Azzimonti, D. and Ginsbourger, D. (2018). Estimating
orthant probabilities of high-dimensional gaussian vectors with an application to set esti-
mation. Journal of Computational and Graphical Statistics, 27(2):255–267.

[Azzimonti, 2016] Azzimonti, D. F. (2016). Contributions to Bayesian set estimation rely-
ing on random field priors. PhD thesis, Philosophisch-naturwissenschaftliche Fakultät der
Universität Bern.

[Baillargeon, 2005] Baillargeon, S. (2005). Le krigeage: revue de la théorie et application à
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