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RÉSUMÉ

L’intégration de l’intelligence artificielle (IA) dans l’informatique en périphérie (EC) et
les dispositifs portables présente des défis importants en raison des contraintes strictes
en matière de puissance de calcul et de consommation d’énergie. L’informatique neuro-
morphique, inspirée par la conception économe en énergie du cerveau et ses capacités
d’apprentissage continu, offre une solution prometteuse pour ces applications. Cette thèse
propose un cadre flexible de co-conception algorithme-circuit qui aborde à la fois le dé-
veloppement des algorithmes et la conception matérielle, facilitant ainsi le déploiement
efficace de l’IA sur du matériel spécialisé à ultra-basse consommation d’énergie.

La première partie se concentre sur le développement d’algorithmes et introduit la plasti-
cité synaptique dépendante de la tension (VDSP), une règle d’apprentissage non supervisée
inspirée du cerveau. Le VDSP vise à mettre en œuvre en ligne le mécanisme de plasticité
de Hebb en utilisant des synapses memristives à l’échelle nanométrique. Ces dispositifs
imitent les synapses biologiques en ajustant leur résistance en fonction de l’activité élec-
trique passée, permettant ainsi un apprentissage en ligne efficace. Le VDSP met à jour
la conductance synaptique en fonction du potentiel de membrane du neurone, éliminant
ainsi le besoin de mémoire supplémentaire pour stocker les timings des pics d’activité.
Cette approche permet un apprentissage en ligne sans les circuits de formage d’impul-
sions complexes habituellement requis pour la plasticité dépendante du timing des pics
(STDP) avec des memristors. Nous montrons comment le VDSP peut être avantageuse-
ment adapté à trois types de dispositifs memristifs (synapses à filament d’oxyde métallique
et jonctions tunnel ferroélectriques) avec des caractéristiques de commutation analogiques
distinctives. Les simulations au niveau du système de réseaux neuronaux à impulsions
utilisant ces dispositifs ont validé leurs performances sur des tâches de reconnaissance de
motifs sur MNIST, atteignant jusqu’à 90 % de précision avec une meilleure adaptabilité et
une réduction du réglage des hyperparamètres par rapport au STDP. De plus, nous avons
évalué la variabilité des dispositifs et proposé des stratégies d’atténuation pour améliorer
la robustesse.

Dans la deuxième partie, nous implémentons un neurone analogique de type LIF, ac-
compagné d’un régulateur de tension et d’un atténuateur de courant, afin d’interfacer
sans heurts les neurones CMOS avec des synapses memristives. La conception du neurone
inclut une fuite double, facilitant l’apprentissage local via le VDSP. Nous proposons égale-
ment un mécanisme d’adaptation configurable qui permet de reconfigurer les neurones LIF
adaptatifs en temps réel. Ces circuits polyvalents peuvent s’interfacer avec une gamme de
dispositifs synaptiques, permettant ainsi le traitement de signaux avec une variété de dyna-
miques temporelles. En intégrant ces neurones dans un réseau, nous présentons un bloc de
construction neuronal auto-apprenant CMOS-memristor (NBB), composé de circuits ana-
logiques pour la lecture en croix et de neurones LIF, ainsi que de circuits numériques pour
basculer entre les modes d’inférence et d’apprentissage. Des réseaux neuronaux compacts,
capables de s’adapter eux-mêmes, d’apprendre en temps réel et de traiter des données
environnementales, lorsqu’ils sont réalisés sur du matériel à ultra-basse consommation
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d’énergie, ouvrent de nouvelles perspectives pour l’IA dans l’informatique en périphérie.
Les avancées à la fois en matériel (circuits) et en algorithmes (apprentissage en ligne)
accéléreront considérablement le déploiement des applications d’IA en exploitant l’infor-
matique analogique et les technologies de mémoire à l’échelle nanométrique.

Mots-clés : Neuromorphic engineering, Synaptic learning, In-memory computing, Mem-
ristors, On-chip learning, Spiking neural networks



ABSTRACT

"Somewhere, Something Incredible Is Waiting To Be Known" - Carl Sagan

Integrating artificial intelligence (AI) into edge computing (EC) and portable devices
presents significant challenges due to stringent constraints on computational power and
energy consumption. Neuromorphic computing, inspired by the brain’s energy-efficient de-
sign and continuous learning capabilities, offers a promising solution for these applications.
This thesis proposes a flexible algorithm-circuit co-design framework that addresses both
unsupervised online learning algorithm development and hardware design, facilitating the
efficient deployment of AI on specialized, ultra-low-power high-density hardware.

The first part focuses on algorithm development and introduces voltage-dependent synap-
tic plasticity (VDSP), a brain-inspired unsupervised learning rule. VDSP is aimed at
the online implementation of Hebb’s plasticity mechanism using nanoscale memristive
synapses. These devices mimic biological synapses by adjusting their resistance based
on past electrical activity, enabling efficient online learning. VDSP updates synaptic
conductance based on the membrane potential of the neuron, eliminating the need for ad-
ditional memory to store spike timings. This approach allows for online learning without
the complex pulse-shaping circuits typically required for spike-timing-dependent plasticity
(STDP) with memristors. We show how VDSP can be advantageously adapted to three
types of memristive devices (metal-oxide filamentary synapses, and ferroelectric tunnel
junctions) with distinctive analog switching characteristics. System-level simulations of
spiking neural networks using these devices validated their performance on MNIST pattern
recognition tasks, achieving up to 90% accuracy with improved adaptability and reduced
hyperparameter tuning compared to STDP. Additionally, we evaluated device variability
and proposed mitigation strategies to enhance robustness.

In the second part, we implement an analog leaky integrate-and-fire (LIF) neuron, ac-
companied by a voltage regulator and current attenuator, to seamlessly interface CMOS
neurons with memristive synapses. The neuron design features dual leakage, facilitat-
ing local learning through VDSP. We also propose a configurable adaptation mechanism
that allows adaptive LIF neurons to be reconfigured in run-time. These versatile circuits
can interface with a range of synaptic devices, allowing the processing of signals with a
variety of temporal dynamics. Integrating these neurons into a network, we present a
CMOS-memristor self-learning neural building block (NBB), consisting of analog circuits
for crossbar reading and LIF neurons, along with digital circuits for switching between
inference and learning modes. Compact neural networks that can self-adapt, learn in real
time, and process environmental data, when realized on ultra-low-power hardware, open
new possibilities for AI in edge computing. Advances in both hardware (circuits) and
algorithms (online learning) will greatly accelerate the deployment of AI applications by
leveraging analog computing and nanoscale memory technologies.

Keywords: Neuromorphic engineering, Synaptic learning, In-memory computing, Mem-
ristors, On-chip learning, Spiking neural networks
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CHAPTER 1

Introduction

"All truths are easy to understand once they are discovered; the point is to discover them.

The challenge in science is not just in understanding, but in finding the right questions

to ask. Once the right question is asked, the path to discovery becomes clearer, and what

once seemed impossible becomes within reach. " – Galileo Galilei
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1.1 Context

Cloud
Thousands

Edge
Billions

FOG
Millions

Security | Autonomy | Real-time control

Computational power   | Centralized | Energy budget

Figure 1.1 Different level of deployment from cloud to end devices. Constraint
of security, energy budget, latency, and closed loop optimizations

During the past few decades, the exponential growth in the Internet of Things (IoT)

devices, the expansion of memory device storage capacity, and significant advances in

computing architectures have collectively paved the way for the development of Artificial

Intelligence (AI) models capable of executing highly complex pattern recognition tasks.

AI models are increasingly being integrated into edge computing (EC) devices, includ-

ing wearable fitness sensors, autonomous robotic systems, and assistive technologies, to

perform a wide range of tasks, from pattern recognition to advanced decision-making and

adaptive learning, often in real-time [1]. These applications, however, face critical con-

straints due to limited power budgets and the need for rapid processing, and each EC

application also has its own specific requirements, such as the nature of the data and

the core computing tasks involved [2]. In traditional software-based machine learning ap-

proaches, these challenges are typically addressed by designing application-specific neural

networks.

While the architecture of neural networks often remains consistent across applications,

hardware designs may still require specialization to address specific constraints such as

energy efficiency, latency, or memory bandwidth. For example, edge devices for IoT ap-

plications prioritize ultra-low-power operation, whereas autonomous systems may require

high-throughput processing for real-time decision-making. Additionally, differences in the

nature of data, such as temporal variability or sparsity, can further require specialized
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hardware configurations to optimize performance. A promising direction is to consider

the efficiency of biological systems such as the human brain. For example, while the human

brain operates with a power consumption of approximately 20 watts to support around

1011 neurons and 1015 synapses [3], this efficiency is several orders of magnitude greater

than what is achievable with modern computing technologies [4].

As a result, AI hardware must cope with processing unstructured natural data, such

as images, audio, and sensor signals, which require sophisticated processing techniques [5].

These data often exhibit strong temporal variability, meaning they change dynamically

over time and necessitate models capable of understanding these patterns. Additionally,

edge applications frequently operate with limited training examples, challenging stan-

dard neural networks that typically require large labeled datasets to generalize effectively

[6]. These challenges are a) the norm in edge computing environments, where devices

must handle diverse and evolving data streams under resource constraints. Moreover, b)

standard neural networks struggle in these settings due to their high computational

and energy demands, difficulty in modeling temporal dependencies without specialized

architectures, and poor generalization when trained on limited data. Developing energy-

efficient hardware that can meet these demands remains a significant challenge for edge

computing applications.

Neuroscience has profoundly influenced the field of AI, particularly through the devel-

opment of Artificial Neural Network (ANN)s, which have driven the evolution of

machine intelligence over the past several decades [7]. Early milestones in AI include the

creation of the perceptron in 1960 [8], the introduction of layered neural networks in 1987

[9], the development of deep belief networks in 2006 [10], and the advancement of deep

multilayer networks in 2015 [11]. These advances were accompanied by significant algo-

rithmic innovations, such as layer-wise training methods [10] and optimization strategies

like backpropagation [12].

One of the earliest applications of these networks was in artificial pattern recognition,

demonstrated in the analysis of ECG signals as early as 1962 [13]. Similarly, the progress

in AI has been tightly coupled with advancements in computing hardware. The ability

to train large-scale networks has been substantially improved by parallel computing archi-

tectures, such as Graphics Processing Unit (GPU)s and Tensor Processing Unit (TPU)s,

which have significantly accelerated model training times and enabled the development of

ultra-large-scale models like those used in modern large language models, including Chat-

GPT. The process of model training, which involves optimizing network weights using

large datasets, has benefited immensely from increased storage capacity and computing
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power, enabled by aggressive semiconductor scaling following Moore’s Law. However, this

exponential growth in computing power has also led to significant energy consumption. For

instance, training OpenAI’s GPT-3, with 175 billion parameters, required 10,000 GPUs,

cost $100,000 and consumed 936 megawatt-hours of energy during its training [14].

This growing energy demand highlights the need to rethink AI hardware, taking inspira-

tion from the energy-efficient mechanisms of the human brain [15]. Unlike power-intensive

computational paradigms that rely on stacking thousands of processors, the brain operates

in a compact, energy-efficient manner, which is crucial for the development of portable,

low-power AI systems, especially in edge computing applications. Furthermore, reliance

on digital memory and processing technology, which serves as the backbone of contem-

porary computing systems, is increasingly being challenged. As a result, there has been

a growing interest in exploring alternative approaches. The emerging field of neuro-

morphic computing and engineering has been an area of active research for more

than three decades [16, 17]. This field has revealed how AI algorithms, circuits, and elec-

tronic devices can be designed to emulate the architectural and operational principles of

the biological brain. A closer examination of these principles indicates that natural in-

telligence operates differently from modern general-purpose computers. Specifically, the

biological brain benefits from the asynchronization of instruction operations and the co-

location of processing and memory units, which has led to the development of specialized

asynchronous and in-memory computing chips in artificial systems.

By mimicking the brain’s ability to perform computation and memory storage in

the same location and processing information in an event-driven fashion, neuro-

morphic engineering aims to develop more energy-efficient and scalable AI systems. A

paradigm shift is required not only in operating principles and architecture but also in the

computing substrate. Emerging nonvolatile memory technologies, including memris-

tive devices, emulate various properties of biological synapses and enable ultradense and

energy-efficient neuromorphic hardware utilizing physical mechanisms [18]. In addi-

tion, Integrated Circuit (IC) chips featuring co-integrated Complementary Metal-Oxide-

Semiconductor (CMOS) computing circuits and emerging nanoscale non-volatile memory

devices have been recognized as ultra-efficient solutions for executing complex comput-

ing tasks [19]. Among these emerging technologies, memristors stand out as particularly

promising for the realization of in-memory computing hardware due to their nanoscale

footprint, which allows for a high degree of integration, their analog programming

capabilities, and their compatibility with CMOS processes for fabrication and integration.
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The integration density, throughput, and speed of these systems are significantly improved

by utilizing analog in-memory computing principles with memristors. This enhancement

is particularly important for brain-inspired Spiking Neural Network (SNN)-based

AI circuit implementations, which require extensive memory access, parallel processing

architectures, and efficient non-linear transformations. The superior power efficiency of

SNNs arises from their event-based sensing and computing paradigm. Unlike conventional

systems driven by clock cycles, SNNs are activated by changes in environmental conditions,

enabling more energy-efficient processing. Additionally, computation within SNNs takes

place in the analog domain at the level of neurons, while communication between neurons

is facilitated through digital spike events. This hybrid approach combines the best aspects

of analog and digital processing, contributing to the overall efficiency of the system.

1.2 Challenges

One of the characteristic features of SNNs is the incorporation of a temporal dimension

into their data processing. Unlike conventional ANNs, which operate on static activa-

tions, SNNs utilize discrete spike events whose timing encodes information, enabling them

to process data that evolve dynamically over time. This temporal aspect makes SNNs par-

ticularly suitable for processing time series data and applications requiring real-time

adaptability. However, it also presents significant challenges in training these networks.

Specifically, the non-differentiable nature of spike events complicates the application

of gradient-based optimization methods commonly used in ANNs, such as backpropagation

[20]. Furthermore, the temporal dependencies inherent in spike-based communication

require specialized learning rules to effectively assign credit over time, a problem not

present in static ANN architectures [21]. Consequently, the added complexity of time-

based data representation in SNNs makes it difficult to directly apply conventional

ANN training strategies, necessitating the development of novel algorithms tailored to the

unique dynamics of spiking neurons.

The realization of SNNs through custom hardware, leveraging in-memory computing

architectures, analog circuits and emerging memristive devices, offers significant improve-

ments in hardware utilization. These improvements are achieved by harnessing the physical

laws of computing, leading to more efficient and compact systems. However, this approach

also introduces specific constraints in the system’s design. Custom hardware systems for

SNNs often have fixed topologies, predefined computational building blocks, and limited

resolution of both voltage levels in computational blocks and resistive states in synaptic

devices [22, 23]. Although power-efficient operation is a key advantage, achieved through

low-voltage operations, this also makes systems more susceptible to noise, an issue that
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is less significant in digital systems due to quantization. Furthermore, the finite resolu-

tion of semiconductor patterning processes introduces variability, reducing the repeatable

precision achievable with nanoscale memristive synapses. This variability makes precise

programming of memristive synapses challenging, as the stochastic nature of switching

behavior leads to variability in switching voltage and conductance range. Although high-

precision programming circuits have been proposed [24], the circuit overhead for learning

and interfacing must be minimized to ensure that the scalability benefits of such hardware

are not compromised.

For deployment of AI applications through such custom SNN hardware, the typical

approach involves labeling a sample of population data and using it to optimize the weights

of the SNN topology through gradient-based learning techniques. However, this approach

may limit the generalization capabilities of the system in specific scenarios, such as those

involving small or biased training datasets. While deep neural networks are inherently

designed for generalizability, their performance can degrade in the presence of insufficient

or poorly representative training data, particularly in edge applications with constrained

resources. Moreover, once deployed, such systems often lack the ability to learn from

out-of-sample data, which hinders their adaptability in real-world scenarios where envi-

ronmental conditions and device characteristics may change over time.

To address these limitations, online learning, lifelong learning, or always on learn-

ing systems are emerging as promising approaches to create AI systems that continuously

adapt to new data and device imperfections. However, implementing gradient-based learn-

ing in an online setting poses significant challenges. The non-linear nature of SNNs, the

requirement for weight transposition, the bidirectional signal propagation, and the tempo-

ral credit assignment problem inherent in time-evolving SNNs complicate the deployment

of such learning methods [25]. In addition, the energy costs associated with error prop-

agation and credit assignment-based learning are substantial, as these processes require

transmitting complex learning signals across different parts of the chip. To fully exploit

the area-energy advantages offered by neuromorphic in-memory computing architectures

and memristive device technology, online learning must be designed to account for local

variables and be implementable with minimal silicon overhead.

Although biologically plausible local Hebbian learning rules have been proposed for SNNs

and memristive synapses, realizing a scalable on-chip implementation remains an

algorithm-circuit-device engineering challenge. Developing an integrated system that

combines spiking neurons, memristive synapses, and online learning capabilities could be
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vital to create practical AI solutions capable of solving real-world pattern recognition

problems.

1.3 Research question and objectives

Neuromorphic computing principles should provide the direction towards building low-

power intelligible systems for edge-AI deployment. These principles are derived from

millions of years of biological evolution and subsequent neuroscience research that have

uncovered the unique architectural and operational characteristics that contribute to the

efficiency of the human brain. However, electronic systems have also evolved significantly

in the past century, leading to breakthrough discoveries such as CMOS-based integrated

circuits and nanoscale emerging memory devices. These CMOS and memory devices offer

ultra-compact integration density, and with a new logic-memory integrated architecture,

the energy gap between the biological brain and electronic systems can be bridged. In

this thesis, we propose to bridge this energy gap by leveraging the principles of analog

computing hardware and online learning, focusing on the following research question:

How to translate neural learning principles to analog electronic devices and

systems?

Neuromorphic learning principles, such as Hebbian plasticity, are appealing for hardware

implementation because they offer: (i) online processing, (ii) the ability to operate with-

out supervision or the need for correct labels, and (iii) localized updates based on the

state variables of pre- and post-synaptic neurons, avoiding the necessity for global error

propagation from the classification layer. Analog electronic devices include a combination

of Complementary Metal-Oxide-Semiconductor (CMOS) transistors integrated on silicon

and memristive non-volatile nanoscale memory devices co-integrated to CMOS ASIC. The

first question we explore is how to adapt neural learning principles for real-time synap-

tic weight learning in hardware. Specifically, which key events (triggers)—derived from

Hebbian learning—initiate the learning process, and which local variables of the neuron

(such as spike timing and membrane potential) dictate the polarity and magnitude of the

learning?

Thus, the first objective (OB1) is to realize a hardware-friendly local learning

algorithm within the SNN simulation framework, enabling the evaluation of its efficiency

for unsupervised pattern classification and benchmarking it against state-of-the-art algo-

rithms like Spike-Timing Dependent Plasticity (STDP).
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1.3.1 On device learning

Nanoscale memristive devices hold significant promise due to their nonvolatile memory,

programmable conductance levels, and compatibility with CMOS technology, making them

ideal candidates for high-density memory blocks in AI hardware. The second set of ques-

tions to explore includes how the behavior of memristive devices influences learning, how

the programming signal impacts network performance when integrated with synaptic de-

vices operating on different principles such as oxidation or ferroelectricity, and how analog

programming can be adjusted to account for known device behaviors like variability.

The second objective (OB2) is to develop a memristive programming strategy that

leverages the analog properties of memristive devices by translating the online learning rule

into hardware. Supported by characterization, modeling, and system-level simulations,

this strategy aims to benchmark resistive and ferroelectric devices and implement efficient

learning for real-world tasks, addressing the non-idealities and accuracy limitations of

analog computing.

1.3.2 Circuits

Circuit realization is crucial for the experimental validation of CMOS circuits and hardware-

implemented online learning, especially given the complexities of modeling CMOS circuits

in the sub-threshold region and memristive devices, where device dimension mismatches

arise from the finite resolution of semiconductor patterning. This challenge intensifies

when scaling a microscopic physics-based model to an entire spiking neural network, as

managing the computational overhead of solving all governing differential equations and

their interactions becomes essential. These issues raise the key question: what circuits

and functionalities are needed to interface with synaptic devices and generate learning

signals? Furthermore, how much flexibility can be achieved to accommodate different

synaptic devices, network architectures (scale/application), and the time scales of the

signals involved?

The third objective (OB3) is to develop computation circuits using biomimetic

analog neurons fabricated in CMOS technology. Beyond computing, these circuits must

interface with the memristive synapse to ensure impedance matching and spike

transmission without altering the memristive state.

Finally, by integrating analog and digital circuit components, an architecture for real-time

learning and prediction is proposed. The fourth objective (OB4) is to develop and

verify mixed-signal circuits for analog computation, while implementing communication
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and control through asynchronous digital logic, ultimately achieving a low-power real-time

SNN prototype.

1.4 Organization of thesis
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Figure 1.2 Voltage Dependent Synaptic Plasticity (VDSP) for online unsuper-
vised local learning with memristive synapses. a Schematic representation of VDSP

based learning based on membrane potential of pre-synaptic neuron. b The images of hand-

written digits were input into an SNN topology comprising two layers of spiking neurons, fully

interconnected via memristive synapses (top), and the learned receptive fields post-training

with the MNIST dataset (bottom). c (top) cross-section of a TiO2 memristor [26]. Quasi-

DC current-voltage (I-V) characteristics of the memristive device and multi-level switching

behavior achieved via pulse programming (middle). (bottom) A dedicated pulse-based char-

acterization method is used to validate VDSP-based learning through simulations.

1.4.1 Background

From a brief historical perspective of the development of neuroscience, electronic devices,

and computing, Chapter 2 introduces the background and state of the art. Specifically,

first, neuromorphic principles are introduced, emphasizing the unique representation of

time and memory in spiking neural networks. Next, the mechanism of learning or plastic-

ity is examined, particularly highlighting unsupervised, local, and online learning methods,

followed by an analysis of circuits to implement such learning in hardware. Third, the hard-

ware implementation of SNNs is elaborated, with the motivations behind choosing analog

in-memory computing hardware systems using memristive synapses. Finally, the current

engineering challenges and scientific knowledge gaps in the literature in implementing

online learning on memristive hardware are presented.



10 CHAPTER 1. INTRODUCTION

1.4.2 Voltage dependent synaptic plasticity

Chapter 3 centers on OB1 and presents VDSP for hardware-oriented implementation of

Hebbian learning. Starting from the challenges associated with hardware implementa-

tion of STDP, this chapter introduces the philosophy of estimating a neuron’s spike time

through its membrane potential. (Figure 1.2a) The above argument is supported by math-

ematical derivation and the conditions for an accurate or stochastic estimation of the spike

time are presented. The learning rule was modeled in the SNN simulation framework, and

the learning performance was evaluated using unsupervised handwritten digit recognition

(Figure 1.2b). Important hyperparameters such as learning rate are discussed, followed by

comparing performances with the ones reported in the literature. Next, advantages with

respect to STDP are elaborated through comparative benchmarking. Finally, the impact

of noise on SNN performance is evaluated.

1.4.3 Learning with memristive synapses

Chapter 4 focuses on OB2, examining the interaction between the designed VDSP learn-

ing rule and the switching behavior of memristive devices. This learning avoids the com-

plex pulse shaping circuitry required for STDP implementation. We provide the first

demonstration of neuron state-based online learning with memristive devices, characteriz-

ing and modeling the distinct switching behaviors of two resistive devices based on T iO2

(Figure 1.2c (top)) and HfO2 based valence change memory and a ferroelectric tunnel

junction based memristive device. Previous studies [26] have evaluated quasi-DC (Fig-

ure 1.2c(middle)) and LTP/LTD multi-level programming by applying sequence short

pulse of fixed voltage first to induce potentiation in steps followed by depression. The

voltage-dependent switching was characterized by a dedicated electrical measurement pro-

tocol using random voltage pulses (Figure 1.2c). Subsequently, a parametric model was

developed to represent resistive switching dependent on applied voltage magnitude and

the device’s resistance state, capturing key memristive properties such as non-linearity

and switching threshold. The model allows for system-level analysis of learning efficiency

across various deviations in the behavior of the devices. The simulation of mismatch allows

to fine-tune the learning-circuit parameters to match characteristics of device under con-

sideration like threshold, non-linearity, variability, and resistance range. The study also

demonstrates the resilience of the learning efficiency to variations in device parameters,

suggesting the potential for engineering efficient circuits and systems with stochastic but

scalable memristive devices.
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1.4.4 CMOS neuron for memristor integrated neuromorphic cir-
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Figure 1.3 Computing circuit and SNN architecture. a Probe testing of synaptic

reading and on-chip Leaky Integrate and Fire (LIF) neuron (top), measurement results of

neuron membrane potential and output spikes in response to periodic excitation through input

spikes (bottom).b Architecture for on-chip learning managed by specific Bit Line (BL), Word

Line (WL), and Source Line (SL) decoders (mixed-signal circuits) within a 1T1R crossbar and

LIF neurons. c Simplified diagram of the fabricated Application Specific Integrated Circuit

(ASIC), comprising two banks of analog spiking neurons interconnected by a memristive

crossbar synaptic array (top) and packaged chip through wire-bonding (bottom).

Toward OB3, Chapter 5, an analog LIF neuron is presented, highlighting the sub-blocks

for interaction with the memristive synapse through a voltage regulator and a current

attenuator implemented for stable reading of the memristor. The LIF neuron features a

dual leak mechanism on the biological time scale to enable implementation of VDSP based

online learning. Additionally, configurability through bias voltage is engineered to make

the neuron suitable for a wide range of applications. In addition, a novel connection scheme

is proposed to dynamically reconfigure the first-order LIF neuron to an adaptive neuron

for homeostasis. The circuits were implemented using CMOS technology, and extensive

electrical characterization was performed (Figure 1.3a) to validate critical functionalities

such as sensitivity to synaptic resistance and modulation of neuron characteristics such as

threshold, refractory period, and leak rate.
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1.4.5 Neural building block for 3D integrated CMOS-RRAM SNNs

Chapter 6 towards OB4 elaborates the architecture and circuits of the analog and mixed-

signal CMOS-Resistive Random Access Memory (RRAM) neural building block for im-

plementing on-chip online learning. The circuits for data-path composed of two layers of

spiking neurons interconnected by 1T1R memristive synaptic array are presented. Next,

the control architecture (Figure 1.3b) and digital circuit elements composed of the con-

figuration registers are described to switch between the inference and learning phases. In

addition, a mechanism for implementing winner-takes-all-based lateral inhibition is pre-

sented.

The fabricated ASIC (Figure 1.3c) was packaged and characterized using a custom Field

Programmable Gate Array (FPGA) controlled test Printed Circuit Board (PCB). The

digital circuits on the chip were measured to demonstrate online learning, and timing

diagrams of the measurements are elaborated to validate the control logic. Finally, the

results of the characterization of all neurons implemented in the SNN are compared to

showcase the impact of device mismatch in analog CMOS circuits.

1.4.6 Conclusion and Perspective

In conclusion, (i) we propose a dedicated online learning rule and demonstrate the pro-

gramming strategy with memristive devices. (ii) We develop and validate CMOS circuits

for computing, interfacing, and learning with memristor. These circuits are analog and

digital: for computing, utilizing physical principles of charge integration and Ohm’s law

and leveraging high-speed, low-power digital circuits and architecture to control and in-

terface analog computing blocks.



CHAPTER 2

Background

“We are like dwarfs sitting on the shoulders of giants. Our glance can thus take in more

things and reach farther than theirs. It is not because our sight is sharper nor our height

greater than theirs; it is that we are carried and elevated by the high stature of the giants.”

– Bernard de Chartres
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2.1 Outline

Subsequent to a historical summary of development in the computing, neuroscience, and

electronic domain, this chapter first outlines the key distinctive principles of neuromorphic

engineering: computing in the time domain and the memory hierarchy in section 2.3. The

process of memory formation or learning is discussed in the second section section 2.4,

including theories of unsupervised, online, and local learning. Third, the development in

hardware paradigms is discussed, with a special focus on analog domain computation, in-

memory processing architectures, and emerging nanoscale memory devices in section 2.5.

2.2 History

Over the past century, the fields of electronic devices, computing systems, and neuro-

science have advanced significantly. These three areas form the basis for current comput-

ing hardware and cutting-edge artificial intelligence applications, including ChatGPT [27],

self-driving cars [28], and wearable healthcare monitoring [29].

Early computers, like the ENIAC (Electronic Numerical Integrator and Computer), were called

"fixed-program computers" because they needed physical rewiring for different tasks [30]. In

1945 , John von Neumann introduced the "stored-program computer" concept, allowing data

and instructions to be stored in the same memory, simplifying reprogramming [31]. This was

first realized with the EDVAC (Electronic Discrete Variable Automatic Computer) in 1949 [32],

while the Manchester Baby, running its first stored program in 1948 , is recognized as the earliest

practical example. The Manchester Mark 1 in 1949 further showcased the potential of von Neu-

mann’s architecture [33]. Around 1955 , the development of the Central Processing Unit (CPU)

centralized instruction execution, boosting efficiency, and advances in transistor technology led to

the first microprocessors, such as the Intel 4004 in 1971 [34] and Intel 8080 in 1974 [35]. Along-

side CPUs, specialized processors like the GPU (1980s), initially for graphics, found broader use

with parallel processing capabilities [36]. Google’s TPU, introduced in 2015 , further advanced

machine learning tasks [37].

The field of neuroscience has advanced through key discoveries, beginning with Cajal’s estab-

lishment of the neuron doctrine in 1887 , which identified neurons as discrete units of the nervous

system [38]. Significant progress followed in 1939 when Hodgkin and Huxley recorded the first

action potential [39]. In 1949 , Donald Hebb introduced the Hebbian theory, explaining synaptic

strengthening through simultaneous neuronal activity, fundamental to learning and memory [40].

The 1970s brought further insights into neural plasticity, including the discovery of Long-Term

Potentiation (LTP), key for synaptic strengthening, by Bliss and Lomo in 1973 [41]. In the

late 1990s, Bi and Poo uncovered STDP, showing that spike timing determines the direction of
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synaptic changes [42]. Recent research emphasizes the role of astrocytes in synaptic function and

plasticity, adding complexity to our understanding of neural networks [43].

The development of electronic devices began with the invention of vacuum tubes in 1905 , the

first components capable of amplifying signals [44]. Electronic current control was proposed in

1930 [45] and realized in 1948 with the invention of the transistor by Bardeen, Brattain, and

Shockley [46], revolutionizing electronics. This led to the development of CMOS technology in

1959 [47] and integrated circuits, driving Moore’s law, which predicted exponential increases in

transistor count. The introduction of FinFET in 1998 [48] addressed short-channel effects as

transistor sizes shrank. Innovations continued with carbon nanotube transistors in 2002 [49],

gate-all-around MOSFETs in 2008 [50], and the 3D FinFET in 2012 [51], further improving

performance and efficiency.

2.3 Neuromorphic computing principles
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Figure 2.1 Neuromorphic computing: The salient features of the human-brain
worth taking inspiration for intelligent machines a Event-based sensing. b co-location

of computation and memory. c evolving temporal dynamics. d synaptic plasticity based on

local variables

Although the term neuromorphic engineering was first introduced by Carver Mead in

the 1990s to describe the use of CMOS transistors operating in the weak-inversion region

to emulate neurons’ ion channels [16], the field has expanded significantly over the last

three decades. Neuromorphic computing now encompasses a broader range of technologies

and concepts inspired by the architecture and function of the brain. The key features of

the brain that serve as inspiration are illustrated in Figure 2.1.
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First, asynchronous event-based sensing and processing, unlike the traditional clock-based

paradigm, processes information only when an event occurs. This approach drastically

reduces power consumption, particularly for always-on, sparsely activated applications.

Second, the brain’s architecture integrates memory and processing in a co-located man-

ner, with neurons and synapses densely interconnected, in contrast to the separate CPU

and RAM in traditional von Neumann architectures. This integration allows for more

efficient data processing and storage. Third, the brain’s ability to exhibit time-evolving

neural dynamics and continuous adaptation in response to environmental stimuli provides

a powerful model for developing systems that can learn and adapt in real time. These

principles are foundational to the development of neuromorphic computing technologies

and could be grouped into time-domain computing and unique memory characteristics.

2.3.1 Time-domain computing

In general-purpose computing processors, a centralized clock serves as the primary mech-

anism for coordinating instruction execution, ensuring that all operations occur in a syn-

chronized manner. However, neuromorphic systems fundamentally differ by relying on

the timing, order, or density of spike events to convey information, closely mimicking bi-

ological neural processes. Different processes evolve at vastly different time scales, and

the sequence of occurrence of an event is used to encode, process, retain, and transmit

information.

At the sensor level, neuromorphic systems utilize an event-based spike encoding paradigm,

as seen in Dynamic Vision Sensor (DVS) cameras [52]. Here, the instantaneous intensity

value is compared with the last recorded value, and if it exceeds a certain threshold, a

spike is emitted. This allows for temporal resolutions on the order of microseconds to

milliseconds. Similarly, in dynamic audio sensors [53], which are inspired by the biological

cochlea, the input is filtered into different frequency bands, each representing sub-signals

evolving at different time scales ranging from 20 Hz to 20 kHz.

Next, the leaky integrate-and-fire (LIF) neuron model [54] integrates incoming spikes and

emits a spike when the accumulated charge surpasses a predefined threshold. The leak

rate of such neurons typically operates on the order of hundreds of milliseconds. More

biologically accurate neuron models, such as those described by Izhikevich [55], exhibit

homeostasis or adaptation mechanisms. These models include additional state variables,

analogous to calcium ion concentration in biological neurons, which adjust the spiking

threshold to regulate neural activity over time, with dynamics occurring on the scale of

seconds. Lastly, learning is carried out with eligibility traces [56], which tag the synapses

upon the occurrence of special events and are utilized for updating weights upon the arrival
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of a reward. These processes occur over a time scale ranging from one to several hundred

seconds.

The asynchronous and event-driven nature of neuromorphic systems contrasts sharply with

conventional clock-driven processors, where all subsystems operate on the same clock cy-

cle. This approach fails to account for the varied time scales of different neural processes,

leading to inefficiencies. In neuromorphic systems, the timing hierarchy—from rapidly

responding to input changes, to the slow dynamics of neuron state variables, to the rare

communication of spikes, and finally, to the long-term processes of learning and mem-

ory—requires each function to operate at its respective speed. This makes deployment of

such system on conventional processor inefficient due to the energy overhead associated

with unnecessary clock cycles and the constant refreshing of dynamic memory.

2.3.2 Memory
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Figure 2.2 Memory transfer bottleneck in neural networks and computing ar-
chitecture: a The weights and bias for inference in a neural network are stored in memory.

The computation however takes place in processor requiring massive data transfer. A large

fraction of energy is spent in shuttling data between memory and processor. b There exists a

bottleneck due to the difference between required throughput and data transfer capabilities of

communication architecture (top). The bottleneck is illustrated through AI generated image

(bottom). c 3-D integration of memory and computing logic to overcome the memory transfer

bottleneck.

The different temporal processes of neural dynamics translate into a hierarchy of memory

creation. In second-generation neural networks, synaptic weights account for the memory

overhead. To compute the network’s decision, the sensed data are effectively multiplied

and accumulated with the stored weights, as depicted in Figure 2.2. Modern comput-
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ing architectures also feature hierarchical memory, organized based on physical distance

from the processor: several levels of caches, dynamic and static Random Access Mem-

ory (RAM), and stored memory in hard disks. However, as model sizes have grown,

particularly the size of all weights needed for inference, they often exceed the capacity of

fast caches and must be fetched from RAM. This memory retrieval process accounts for a

significant portion of the latency and energy overhead in modern computing systems.

Spiking neural networks, being stateful machines, exacerbate this memory bottleneck. In

these networks, two levels of memory retrieval are required: first, for updating the state of

evolving variables (neurons), where the value from the last time step is used; and second,

for accessing the synaptic weights used to calculate the weighted sum of dendritic spikes.

Additionally, more complex neuron models are multi-compartmental [57], meaning they

have several state variables that need to be stored, fetched, and updated. Neurons in

these models are highly parameterized [58, 59], with unique parameters such as spiking

thresholds and leak rates, which also contribute to the memory overhead. Furthermore,

activity traces [60] are stored over extended periods to calculate weight updates, adding

another layer of memory requirements.

This combination of frequent state updates, complex parameter management, and long-

term storage needs makes memory management in SNNs far more challenging than in

traditional computing architectures, highlighting the need for specialized memory systems

capable of efficiently handling the dynamic, high-dimensional data typical of spiking neural

networks.

2.4 Learning and adaptation

The process of memory formation occurs as the result of processes called plasticity [61] in

the biological brain and as network training in artificial neural networks. The following

section discusses different approaches for such learning and adaptation.

The minimization of errors through gradient descent and backpropagation [12] in training

the weights of deep neural networks [11] has been shown to be highly efficient for learning

various types of patterns [62]. However, when applied to SNNs, this approach encoun-

ters significant challenges due to the recurrent nature of SNNs and the discontinuity in

their transfer functions caused by spike-based representations. While backpropagation-

through-time is the standard method for training recurrent neural networks (RNNs), the

recurrent connections in SNNs are further complicated by their inherent temporal dynam-

ics and discrete spike events. The recurrent behavior in SNNs arises because the current

state of a neuron depends not only on the present stimuli but also on its previous state,
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necessitating advanced algorithms like backpropagation-through-time. Additionally, the

non-differentiable nature of spike generation in SNNs introduces discontinuities that hinder

the direct application of gradient-based optimization. To address this, surrogate gradient

methods [20] have been developed, which approximate the derivative of the spiking func-

tion, thereby enabling the use of gradient-based techniques. Although strategies such as

eligibility traces [56] and surrogate gradients have been proposed to mitigate issues like

vanishing gradients, the feasibility of real-time online learning during deployment remains

uncertain. Thus, conventional gradient-based optimization does not translate directly to

online learning in SNNs, necessitating the exploration of alternative learning paradigms

tailored to the unique characteristics of spiking neurons.

Furthermore, gradient-based training typically relies on the calculation of error signals,

which are not readily available in autonomous systems before human annotation, underly-

ing the importance of unsupervised learning. Biological neural systems exhibit homeostasis

or adaptation to changing environments, a trait that has been emulated in artificial SNNs

to enhance their performance [63]. Local learning rules, which do not require the trans-

mission of error signals across the layers of a deep network, are particularly attractive for

hardware implementation. This is especially relevant in memristive in-memory comput-

ing architectures, where such transmission could negate the benefits of compute-memory

co-location. Thus, three important features that contribute to efficient learning in SNNs

are online adaptation, unsupervised learning, and locality. The following sections will first

explore these aspects from an algorithmic perspective, followed by a discussion of their

implications for hardware design and deployment.
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2.4.1 Online
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Figure 2.3 Offline learning and cloud computing a In the offline learning model,
data captured by IoT devices is transmitted to cloud servers for processing. The processed
results are then relayed back to the originating devices. As data accumulates from various
devices, it is annotated by experts, creating labeled datasets that are subsequently used for
supervised training of the network’s parameters. b Limited generalization capabilities of
offline unsupervised learning to the training sample. The Venn diagram illustrates the fact
that, in many problem settings, only a small fraction of the available population is used as
training data, which can limit the generalization of gradient-based supervised learning. Note
that in certain scenarios where the training data is representative of the overall population,
this limitation may be less pronounced.

Continuous adaptation in response to environmental stimuli and rewards / punishment in

response to action is a key feature of natural intelligence. However, machine intelligence

deviates significantly from this and is heavily based on offline learning, as shown in Fig-

ure 2.3. In the offline learning paradigm, the signals sensed by IoT devices are transferred

to cloud computing servers where they are processed, and inference output is sent back

to the end device. Upon accumulation of data from all the devices, experts annotate the

samples which are, in turn, used for supervised learning of network parameters. However,

the quality and quantity of labeled samples strongly influence the network’s performance.

On-line learning, on the other hand, circumvents the above limitation by empowering the

sensor itself to learn from out-of-training sample data, thus dramatically enhancing the

generalization capabilities of the deployed algorithm throughout the agent’s lifetime. This

mechanism is inspired by natural intelligence and has been demonstrated first by Adaptive

Resonance Theory (ART) [64]. Moreover, online learning can also help circumvent the

variability associated with analog hardware [65]. Although reinforcement learning shares

some similarities with this paradigm, it requires rewards and penalties for adaptation,

which might not be readily available.
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2.4.2 Unsupervised

Machine learning algorithms [66] can be broadly classified into supervised, unsupervised [67],

and reinforcement learning [68]. Although supervised learning uses the annotation of train-

ing examples by a human expert to quickly converge the model parameters, it requires the

annotation of every training example, which can be resource intensive. Techniques such as

data augmentation and semi-supervised learning, which leverage partially labeled datasets

or synthetically generated examples, help mitigate the need for exhaustive annotation to

some extent. However, the dependence on data annotation becomes a critical bottleneck

in online learning scenarios where optimization is performed at the same time as system

deployment, as discussed in the previous subsection. Moreover, state-of-the-art neural

networks are massive in size, and with the growing amount of training data available, this

size is not expected to decrease. There is a need for a self-adaptive AI inference system

that does not require human-assisted annotation of all sensed signals.

Unsupervised learning in the machine learning domain attracted interest in clustering in

1998 with the ART1 computer [69]. The k-means clustering [70] has been widely used in

several Natural Language Processing (NLP) applications. Moreover, dimensionality engi-

neering algorithms such as Principal Component Analysis (PCA) [71, 72] and Independent

Component Analysis (ICA) [73] can also be grouped under unsupervised learning and are

critical for the extraction of features from raw environmental signals. More recently, un-

supervised Locally Competitive Algorithm (LCA) [74] has been shown to be effective for

sparse encoding and dictionary learning.

In the context of neural networks, Hopfield Networks [75], inspired by ferromagnetism [76],

introduced unsupervised learning by converging to stable patterns as Content Addressable

Memory (CAM). Restricted Boltzmann Machine (RBM) [77] expanded on this by sam-

pling neuron states probabilistically, improving unsupervised inference. Moreover, deep

belief networks [78], also known as autoencoders, combine several RBMs for unsupervised

feature learning. In addition, Helmholtz machines [79], a precursor to the popular vari-

ational autoencoders [80], effectively encode input data into probabilistic distributions,

refining the ability to infer hidden causes through the unsupervised wake-sleep algorithm

by Hinton [81]. Finally, Self-Organizing maps [82] based neural networks have been proven

useful for unsupervised feature learning, and have had strong influenced recurrent SNNs

for sequence learning [83].

However, for implementing such learning in hardware in real-time, one important bottle-

neck is shuttling the data between different physical locations on the hardware. To this

end, the philosophy of local learning is discussed in the following subsection.
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2.4.3 Local

ActivityLearning
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Figure 2.4 Non local vs local learning: a Backpropagation of error requires the
transmission of learning signals, specifically the derivative of the loss with respect to the
output of a given layer, to compute weight updates for inner layers. On a physical chip, this
involves transmitting these derivatives to far-apart locations within the network. b In local
learning algorithms, only local variables—such as the activity (membrane voltage and spike
times) of pre-synaptic and post-synaptic neurons—are responsible for learning.

For online learning in state-of-the-art deep neural networks, high-dimensional learning

signals are needed to be transmitted from the last layer to intermediate layers, as shown

in Figure 2.4. Local learning algorithms use locally accessible state variables associated

with the immediate neuron, i.e. presynaptic and postsynaptic neuron. The state variable

could be, for instance, the spike time or the spike rate, which translates to various STDP

and Spike-Rate Dependent Plasticity (SRDP) based learning rules.
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Table 2.1 Spike-based local synaptic plasticity rules: comparative table (Repro-
duced with permission from [84])

Plastic-

ity rule
Local variables

Spikes

inter-

action

Update trig-

ger (spike)
Synaptic weights Stop-

learning

LTD LTP Type
Bista-

bility Bounds

STDP

[85]

Pre- and

post-synaptic

spike traces
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spike
Pre Post Analog No Hard No

T-STDP

[86]

Pre-synaptic spike

trace + 2

post-synaptic

spike traces

(different time

constants)

Nearest

spike /

all-to-

all

Pre Post Analog No Hard No

SDSP

[87]

Post-synaptic

membrane voltage

+ post-synaptic

spike trace

All-to-

all
Pre Binary∗ Yes Hard Yes1

V-STDP

[88]

Pre-synaptic spike

trace +

post-synaptic

membrane voltage

+ 2 post-synaptic

membrane voltage

traces

All-to-

all
Pre

Contin-

uous
Analog No Hard Yes2

C-STDP

[89]

One synaptic spike

trace updated by

both pre- and

post-synaptic

spikes

All-to-

all
Continuous Analog Yes Soft Yes3

SBCM

[90]

Pre- and

post-synaptic

spike traces

All-to-

all
Continuous Analog No Hard No

MPDP

[91]

Pre-synaptic spike

trace +

post-synaptic

membrane voltage

All-to-

all
Continuous Analog No Hard Yes4

Continued on next page
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Table 2.1 Spike-based local synaptic plasticity rules: comparative table (contin-
ued)

Plastic-

ity rule
Local variables

Spikes

inter-

action

Update trig-

ger (spike)
Synaptic weights Stop-

learning

LTD LTP Type
Bista-

bility Bounds

DPSS

[92]

Pre-synaptic spike

trace +

post-synaptic

dendritic voltage

+ post-synaptic

somatic spike

All-to-

all
Continuous Analog No Hard No

RDSP

[93]

Pre-synaptic spike

trace

All-to-

all
Post Analog No Soft No

H-MPDP

[94]

Pre-synaptic spike

trace +

post-synaptic

membrane voltage

All-to-

all
Continuous Analog No Hard Yes5

C-MPDP

[95]

Post-synaptic

membrane voltage

+ post-synaptic

spike trace

All-to-

all
Pre Analog No Hard No

BDSP

[96]

Pre-synaptic spike

trace +

post-synaptic

event trace +

post-synaptic

burst trace

All-to-

all

Post

(event)

Post

(burst)
Analog No Hard No

∗ Binary with analog internal variable. 1 At low and high activities of post-neuron (post-synaptic spike

trace). 2 At low low-pass filtered post-synaptic membrane voltage (post-synaptic membrane voltage

trace). 3 At low activity of pre- and post-neurons merged (synaptic spike trace). 4 At medium

(between two thresholds) internal update trace. 5 At medium (between two thresholds) post-synaptic

membrane voltage.

In context of STDP, there are different variations proposed in past, from the simplest pair-

based model which only considers the nearest spike interaction [85] to Triplet-based STDP

(T-STDP), which considers triplets of spike proposed in [86] which can also explain the

frequency dependence in synaptic plasticity observed in neural cells. Moreover, Calcium-

based STDP (C-STDP) [89] also incorporates the calcium variable of the postsynaptic

neuron to calculate the weight update to improve learning performance.
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These plasticity rules, along with the local variables used, the learning triggers, and the

stop learning mechanism, are summarized in Table 2.1. Spike-based local synaptic plas-

ticity rules use various local variables, such as pre- and post-synaptic spike traces and

membrane voltages, to govern changes in synaptic strength. Spike interactions can either

be nearest-spike or all-to-all, influencing the update mechanism for LTP and Long-Term

Depression (LTD), which are typically triggered by the timing of pre- and post-synaptic

spikes. These rules differ in how they update synaptic weights, which can be either analog

or binary, with some models supporting bistability, allowing the synapse to stabilize in two

distinct states. Synaptic weight bounds can be hard or soft, affecting the degree of flexibil-

ity in weight changes. Additionally, many models incorporate stop-learning mechanisms

that halt further synaptic updates once certain stability conditions are met, allowing the

network to consolidate learning effectively.

In addition to spike time, plasticity can depend on the firing rate of the neuron as described

in Spiking BCM (SBCM) [90] and Rate Dependent Synaptic Plasticity (RDSP) [93]. An-

other class of learning rule like Spike-Driven Synaptic Plasticity (SDSP) [87], Membrane

Potential Dependent Plasticity (MPDP) [91], Calcium-based MPDP (C-MPDP) [95],

Homeostatic MPDP (H-MPDP) [94], and Voltage-based STDP (V-STDP) [88] are based

on the membrane potential of the neuron. This learning simplifies the circuit by avoiding

the storage of spike time in the form of an activity trace. However, the spike trace of one

neuron, referred to as the calcium variable, is still used to calculate the weight update

in some rules. More recently, Burst-Dependent Synaptic Plasticity (BDSP) [96] also in-

corporates high-frequency neuron bursts to enable learning in hirerchal networks, where

bursts in pyrimidal neurons coordinate plasticity in lower layers.

Although STDP and other Hebbian local learning rules are biologically plausible and

hardware friendly for online learning, they suffer from a scalability challenge when deployed

on large-scale multilayer networks to solve complex problems as they do not guarantee error

minimization. Moreover, in biological and artificial neural networks, updating the weights

on every spike event would be energetically inefficient [97] and there is a strong possibility

of a third factor acting as a neuromodulator to trigger Hebbian learning. For example,

in Dendritic Prediction of Somatic Spiking (DPSS) [92], dendritic potential serves as the

third factor. In biological systems [98, 99], molecules such as dopamine, noradrenaline,

and acetylcholine regulate synaptic plasticity, which is triggered by novelty (or surprise)

or reward (or punishment) [100]. However, in the context of artificial SNNs, such learning

signals should essentially assign spatio-temporal credit based on neuron activity and global
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reward [101]. The added temporal dimension demands a mechanism to assign a reward to

individual synapses based on the activity in the past that resulted in the reward.

2.4.4 Circuits for learning

Table 2.2 Neuromorphic circuits for spike-based local synaptic plasticity mod-
els. (Produced with permission from Khasef et al. [84])

Rule Paper Difference with the model Implementation

STDP

[102]1 / 0.6 µm Fabricated

[103] All-to-all spike interaction + bistable weights 1.5 µm Fabricated

[104] / 0.6 µm Fabricated

[105] Anti-STDP + Non-exponential spike trace 0.35 µm Fabricated

[106] Bistable weights 1.6 µm Fabricated

[107]2 All-to-all interaction + binary weights 0.25 µm Fabricated

[108] Soft bounds 0.6 µm Fabricated

[109]
All-to-all spike interaction + asymmetric bounds

(soft lower bound + hard upper bound)
0.35 µm Fabricated

[110] / 0.25 µm Fabricated

[111] All-to-all spike interaction 0.35 µm Fabricated

[112]
All-to-all spike interaction + asymmetric bounds

(soft lower bound + hard upper bound)
0.35 µm Fabricated

[113] / 0.15 µm Simulated

T-STDP

[114] / Simulated

[115] / 0.35 µm Simulated

[116] / 0.35 µm Fabricated

SDSP

[117]
No post-synaptic spike trace + no stop-learning

mechanism
1.2 µm Fabricated

[118]
No post-synaptic spike trace + no stop-learning

mechanism
0.6 µm Fabricated

[119]
No post-synaptic spike trace + no stop-learning

mechanism
0.6 µm Fabricated

[120] Analog weights 0.35 µm Fabricated

[121] Analog weights 0.35 µm Fabricated

[122] Analog weights 0.35 µm Fabricated

C-STDP [123] Hard bounds 0.18 µm Fabricated

RDSP

[124]
Nearest spike interaction + reset of pre-synaptic

spike trace at post-spike + very small soft bounds
2 µm Fabricated

[125]
Nearest spike interaction + asymmetric bounds

(soft lower bound + hard upper bound)
0.35 µm Fabricated

1 Potentiation and depression triggers done with digital logic gates.
2 Weight storage in digital SRAM.
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In the last two decades, neuromorphic Very Large Scale Integration (VLSI) circuits have

been proposed with incremental complexity, focused on addressing the challenges of scal-

ability, efficiency, and functional integration. Table 2.2 summarizes the proposed circuit

implementations of unsupervised local learning rules. The proposed circuits try to repro-

duce a biological variant of the local learning rule (STDP, T-STDP, SDSP, C-STDP, and

RDSP), with some modifications implied by the circuit and devices, such as hard/soft

bounds, weight resolution (binary/analog), and stop learning mechanisms.

The first work by Hafliger et al. [124] in 1996 introduced RDSP circuit using a 2 µm

technology node. This study focused on basic spike processing with a single-neuron circuit,

laying the foundation for more complex designs.

Bistability of synapses In 2000, Fusi et al. [117] implemented SDSP in a 1.2 µm node,

with synaptic circuit composed of 18 transistors. This study demonstrated that silicon-

implied on-line learning is robust to variations in transistors, due to continuous adaptation

of binary synaptic weights. Chicca et al. [118] and Bofill et al. [102] in 2001 explored

SDSP and STDP using smaller technology nodes (0.6 µm). Chicca’s work focused on

stable learning models with stochasticity driven by neuron using a test chip composing

21 neurons, while Bofill emphasized precision in temporal asymmetry learning. By 2002,

Indiveri [103] demonstrated stable synaptic learning in a 1.5 µm node, focusing on long-

term bi-stability properties, essential for engineering synapses with smaller area footprint.

Arthur et al. [107] in 2005, impleted learning models with binary weight STDP using a

0.25 µm node, demonstrating learning with more than 1000 on-chip neurons, emphasizing

robustness to variability in spike times.

Complexity and Adaptation The work of Chicca et al. [119] on SDSP further inte-

grated long-term memory capabilities into VLSI circuits, employing a recurrent network on

a 0.6 µm node. Indiveri et al. [126] in 2006 implemented STDP in a 1.6 µm node, with test

chip comprising 32 neurons and 256 synapses. In particular, the neuron was low power,

configurable, exhibited homeostasis through spike frequency adaptation, and the digital

Address Event Representation (AER) based communication protocol was implemented.

Power efficiency through non-volatile synapse Liu & Möckel [109] in 2008, intro-

duced floating-gate STDP in a 0.35 µm node, focusing on non-volatility of weight, long

time scale operation upto seconds, and conditional weight update circuit which was acti-

vated only on detection of corelated spike pairs. Ramakrishnan et al. [125] demonstrated
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effective STDP and stable long-term learning with floating gate synapses using 0.35 µm

nodes with 20,000 synapses.

Scalability and Integration Chicca et al. [127] further advanced the field by integrat-

ing cognitive abilities into multifunctional VLSI circuits, supporting 128 neurons and 4096

synapses. Gopalakrishnan et al. [116] introduced T-STDP for robust memory retention,

while Huayaney et al. [123] implemented C-STDP using a 0.18 µm node to ensure stable

synaptic plasticity.

Applications Cameron et al. [105] demonstrated the learning efficiency for the visual

pattern recognition task. Furthermore, Koickal et al. [108] in 2007 expanded the appli-

cation domain by developing an adaptive mechanism for real-time olfaction response in a

sensory array. Tanaka et al. [110] demonstrated STDP for retrival of associative memory

using the recurrent Hopfield network topology implemented in 0.25 µm node.

The following section presents entire hardware systems, highlighting the key differences

with respect to conventional computing architecture.

2.5 Neuromorphic hardware systems

Modern processors leverage the fast-switching capabilities of advanced, scaled transistors,

such as those in the 2nm range, to execute complex tasks with remarkable speed and

energy efficiency. By breaking down tasks into multiple instructions that are executed

sequentially at GHz clock speeds [128], these digital processors can achieve billions of

instructions per second. In contrast, neuromorphic systems, designed to mimic the brain’s

architecture, solve equations for all neurons and synapses simultaneously and in real-time,

providing highly efficient processing for complex tasks. However, the nature of spiking

neurons, which operate along a temporal dimension and often exhibit recurrent behavior,

challenges the conventional divide-and-conquer approach typical of pipelined hardware

[129]. Therefore, a hybrid approach combining serial and parallel processing is crucial:

while sparse spikes are effectively handled in a serial manner over time, operations such

as multiply and accumulate are more efficiently processed in parallel.

Moreover, SNNs operate fundamentally differently from traditional digital processors, as

they rely on event-driven neural spikes for communication between neurons, rather than

the continuous fetch-and-execute cycles of digital computation. This shift requires spe-

cialized hardware, as the precision in SNNs is encoded in the timing or density of spikes

rather than in traditional numerical representations. Given that spikes are sparse and
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occur infrequently, using high-speed clocks typical of digital processors is inefficient. How-

ever, to accurately capture temporally clustered spikes, such as bursts [130], it is crucial

to avoid missing these events. Consequently, asynchronous operation becomes essential

for SNN hardware, allowing the system to respond dynamically to spikes as they occur

rather than being tied to a fixed clock rate.

The journey toward neural processors began with Intel’s ETANN 80170NX in the 1980s,

which used analog circuits for neural functions [131]. This was followed by digital chips

like the Nestor/Intel Ni1000 [132] and the exploration of FPGA-based accelerators for

neural networks in the 1990s [133] [134].

Table 2.3 Neuromorphic hardware systems using digital circuits

Name Ref Year Node

(nm)

Area

(mm2)

Mapped

topology

On-chip

learning

Task

(dataset)

Accuracy

(%)

E/sample Throughput

[sam-

ples/s]

SpiNNaker [135] 2013 130 88.4 784-500-

500-10

Flexible MNIST 95 6mJ 50

SpiNN. 2 [136] 2021 22 9 390-256-

256-29

Flexible Keyword

spotting

93.80 7.1µJ 1k

Loihi [137] 2018 14 60 390-256-

256-29

Flexible Keyword

spotting

93.80 270 µJ 296

MorphIC [138] 2019 65 2.86 4x (196-

500-10)

Stoch.

SDSP

MNIST 95.90 21.8 µJ 250

Chen et

al.

[139] 2018 10 1.72 236-20 STDP MNIST 88 1 µJ 6.25k

Seo et al. [140] 2011 45 0.78 256-256 Stoch.

STDP

Pattern

recall

N.A. N.A. N.A.

ODIN [141] 2018 28 0.086 256-256 SDSP EMG

gesture

53.60 7.4µJ 42.5

Knag et

al.

[142] 2015 65 3.06 4x64 SAILnet Custom N/A 109nJ 62.5k

Kim et al. [143] 2015 65 1.8 4x64 SGD (last

layer)

MNIST 90 27nJ 9.9M

Park et

al.

[144] 2019 65 10.1 784-200-

200-10

Mod. segr.

dendrites

MNIST 97.80 236nJ 100k

One of the first digital neuromorphic systems were the SpiNNaker SNN simulation plat-

form, introduced in 2013 [135], and IBM’s TrueNorth processor, released in 2014 [145].

Intel followed with its Loihi chip in 2017 [137]. Each of these systems has since evolved,

and successors have emerged in subsequent years. SpiNNaker 2 [136], Loihi 2 [146], and

IBM’s NorthPole processor [147]. It is important to note that the SpiNNaker platform
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stands apart from the other two chips in its design philosophy, aiming to achieve very

large-scale neural simulations without stringent energy constraints, primarily through the

use of stacked ARM cores. Other notable designs from various research groups are sum-

marized in Table 2.3, detailing their CMOS technology node, area, mapped topology, and

demonstration capabilities.

However, digital systems face challenges due to the overhead of signal domain con-

version and the significant differences with respect to the requirements of neuromorphic

signal processing, which is arguably more similar to analog computing.

2.5.1 Analog domain

"The digital computers considered in the last section may be classified amongst the ‘discrete state ma-

chines’. These are the machines which move by sudden jumps or clicks from one quite definite state to

another. These states are sufficiently different for the possibility of confusion between them to be ignored.

Strictly speaking there are no such machines. Everything really moves continuously. But there are many

kinds of machine which can profitably be thought of as being discrete state machines. For instance in

considering the switches for a lighting system it is a convenient fiction that each switch must be definitely

on or definitely off."– Alan turing in [148].

Figure 2.5 Analog to digital domain conversion. Natural signals are analog, and
are continuous in amplitude and time. These are captured at regular time intervals to create
sampled signals. Thereafter, the amplitude of the signals is quantized to produce digital
signals for storage and processing.

Digital circuits primarily use transistors as switches and are often limited by challenges

such as charge leakage in DRAM and capacitive charging in inverters, which can constrain

ultra-fast instruction execution. Interestingly, neuromorphic systems efficiently exploit

these same phenomena for time-based operations, turning what are constraints in digital

systems into advantages in analog computing. This is especially beneficial since natural

signals are inherently analog, allowing analog computing to avoid the overhead associated

with domain conversion. Modern spiking neural networks use binary-like spike signals

to reduce noise, thereby enhancing the reliability of inherently noisy analog hardware

[149]. These unique properties of neuromorphic engineering help overcome the historical

challenges of noise and variability in analog computing [150].
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The concept of analog neuromorphic systems dates back to the 1990s, beginning with

pioneers such as Carver Mead, Misha Mahowald, and Rodney Douglas [151]. Significant

platforms like the wafer-scale BrainScales [152, 153], developed as part of the Human Brain

Project, and Stanford’s Neurogrid [154] and Braindrop [155] followed. The major analog

neuromorphic hardware platforms are tabulated in Table 2.4.

Table 2.4 Overview of analog neuromorphic systems.

Name Ref Year Node

(nm)

Area

(mm2)

Mapped

topology

On-chip

learning

Task

(dataset)

Time Scale

DYNAPs [156] 2017 180 38.6 8-192-3 N/A EMG

Ges-

ture

Real-time

Brink et al. [157] 2012 350 21.7 300-10 STDP N.A. Biological

Mayr et al. [158] 2015 28 0.36 128-64 SDSP N.A. Biological

ROLLS [159] 2015 180 44 256-256 SDSP 2-

class

Cal-

tech101

Real-time

HICANN [152] 2010 180 49 2x (224)-

256

STDP 5-

class

MNIST

Accelerated

HICANN-

X

[160] 2022 65 27.9 256-512 Flexible MNISTAccelerated

Neurogrid [154] 2014 180 168 1M - - Real-time

BrainDrop [155] 2018 28 0.65 4096 neu-

rons

- - Real-time

Wafer-scale, accelerated time In 2010, the HICANN (High Input Count Analog Neu-

ral Network) chip [152] was launched under the FACETS project for accelerated neural

simulations, resulting in wafer-scale analog computing platform: BrainScales. 325 HI-

CANN chips are placed on 20cm wafer, and several of the wafer can be further connected.

The succesor, BrainScales2 system made up of the HICANN-X chip [160], was launched

in 2019. The system was implemented in 65nm CMOS technology and thus integrated

more circuits as compared to the 180nm first version. A dedicated digital co-processor for

deployed to supporting plasticity in accelerated neural system, allowing implementation
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of online learning in complex neuron networks. This is made possible by a high degree

of configurability with its programmable synapses and flexible neuron models. However,

these accelerated wafer-scale analog computing systems are meant for simulating large-

scale network models, and thus depart from the design philosophy of small-scale systems

meant for real-time deployment on edge computing devices.

Real-time, modular, analog and mixed-signal In 2014, Neurogrid [154] introduced

a large-scale analog and mixed-signal system designed for real-time neural simulations,

featuring multi-chip integration. The key innovation was architectures with shared or mul-

tiplexed components to allow flexible architectures, and increasing the size of deployable

network. The system’s multi-chip communication employed a tree-like routing architec-

ture for efficient data transmission, and it explored four different architectures with various

levels of multiplexing, incorporating shared axon, dendrite, and synapse cells to optimize

neural network simulations. In terms of computation, the system used custom biophysical

neuron models that allow real-time simulation of millions of neurons on multiple chips.

Neurogrid’s hybrid analog and mixed-signal architecture combined the compactness of

analog computing with the deterministic communication of digital systems.

The second-generation chip, BrainDrop [155], introduced in 2017, further innovated by

offering a higher level of abstraction for easier application deployment. Users define the

non-linear dynamic system, which is implemented via the Neural engineering framework

(NEF) [161] on analog circuits. This mapping is crucial given the challenges posed by

mismatches in scaled transistors operating in the sub-threshold regime, where small bias

currents are used to minimize power consumption.

Learning enabled systems Brink et al. [157] in 2012, introduced a learning-enabled

neuron array designed for biological realism with high synapse resolution, allowing for de-

tailed simulations of neurons and their connections that closely mimic biological processes.

Although the system supported learning mechanisms, its primary focus was not real-time

learning or adaptability, but rather on improving biological accuracy. The high synapse

resolution provided fine control over neural connections, making it highly suitable for rep-

resenting complex neural networks. This system was intended for researchers to study

biologically realistic neural circuits, focusing on fixed simulations rather than real-time

adaptability or dynamic reconfiguration.

In 2015, ROLLS [159] was introduced for real-time on-chip learning with a configuration

of 256 neurons and 128K synapses. This system allowed for dynamic reconfiguration,
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enabling the network to be adapted in real time for different application purposes, making

it highly versatile. Online learning in synapses was implemented through SDSP rule [87],

and the neurons exhibited homeostasis through Adaptive exponential integrate-and-fire

(AdExpIF) neurons. In ROLLS, more than 90% of the silicon area was occupied by synapse

and less than 1% by neurons. This points to the fact that significant optimizations have

already been made with respect to the area and energy consumption of the

analog neuron. The emerging challenge to engineer large scale system lies in efficient

communication between neural cores and scaling down the memory.

The primary scaling limitation in these systems arises from the complex and costly task of

routing spikes to different neurons. Biologically inspired neural networks have a high fan-

in, where each neuron receives inputs from thousands of others. Additionally, the neuron

models and populations are often hard-wired, making it difficult to deploy different archi-

tectures such as CNNs and RNNs. Another significant constraint is the power consumed

in fetching weights and transmitting spikes to subsequent layers, a process central to both

network operation and online learning. Furthermore, capacitive memories implemented in

CMOS occupy the majority of the silicon area and are challenging to scale due to physical

limitations. These issues underscore the need for memory-centered architectures, which

are discussed in the following section.

2.5.2 Memory centered architectures

Neuromorphic systems require efficient weight-fetch operations for online learning, address-

ing memory access challenges through near-memory and in-memory processing. These

approaches enhance performance and efficiency by minimizing data transfer delays, mak-

ing efficient memory access critical for realizing large-scale neural systems that operate in

real-time with low power consumption. It is important to note that data shuttling between

memory and the processor accounts for the majority of the energy budget in embedded

AI systems. Innovations in near-memory and in-memory computing have been pivotal in

reducing the memory-processor bottleneck, effectively coupling memory and computation

similarly to how the brain’s neuron synapses operate, thereby improving overall system ef-

ficiency. Moreover, for plasticity in such systems, the model weights must be fetched from

the memory to processor to calculate the weight update. In-memory learning proposes to

solve the latency and energy limitations by updating the weights directly in memory with

local learning signals during inference.

Heterogeneous memory structure In 2017, DYNAP-SE [156] introduced low-power,

scalable processors for real-time processing using LIF neurons with bio-mimetic dynamics.
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The chip featured hybrid mesh and tree routing structures to optimize circuit overheads

and latency through two levels of memory: Static Random Access Memory (SRAM) and

CAM based on 8-T NOR memory cell. The second generation, DYNAP-SE2 [162], im-

proved upon the original design, which featured 256-neuron cores with basic integrate-

and-fire models. SE2 introduced more advanced models like the AdExpIF neuron, en-

abling biologically realistic behaviors such as spike-frequency adaptation and firing rate

homeostasis, supporting dynamic real-time learning. While the first iteration used linear

synapses, SE2 enhanced short-term plasticity and added synaptic filters mimicking NMDA

and AMPA receptors, improving spiking network simulations. Additionally, SE2’s local

connectivity architecture evolved into a hierarchical 2D-grid routing system, allowing for

low-latency communication across multiple chips, making it ideal for larger, more complex

SNNs.

2.5.3 Emerging devices for the post-Moore era

Apart from the architecture point of view, there is a physical limitation for technology

node scaling. Semiconductor manufacturing could be broken down into 3 basic processes,

deposition, lithography, and etching. In this case, lithography is basically the pattern-

ing of computationally designed structures to metal/insulator stacks. The resolution of

patterning decides the feature size of different electronic devices such as transistors and

resistors. Until the last decade, aggressive scaling of CMOS nodes happened in agreement

with Moore’s law [163] and Dennar’s MOSFET scaling law [164]. However, the latest 2nm

node is very close to the thickness of a single layer of atoms; moreover, as transistor sizes

continued to decrease, process variations became a significant challenge, particularly for

sub-32nm nodes, as detailed in the 2011 study by Kuhn [165], limiting integrated circuit

dependability.

To overcome the limitations of CMOS scaling, 3D NAND flash memory has been devel-

oped, achieving a projected memory area density of 10 Gb/mm2 or 1 kb/ µm2, compared

to 1 Gb/mm2 or 100 b/µm2 for its 2D counterpart (15nm) in 2016 [166]. For DRAM cells,

predictions for 2019 indicated that a 16nm pitch could yield a density of 46 GB/cm2.

More recently, novel device technologies such as emerging non-volatile resistive memory

with nanoscale footprints have become promising alternatives to overcome CMOS scaling

limitations. Memristive devices, which were first proposed as a fourth circuit element

[167] and later realized [168], are particularly noteworthy. These devices can be scaled to

achieve memory densities as high as 460 GB/cm2 [169] and can be fabricated with dimen-

sions as small as 2nm [170]. With analog switching characteristics, memristive devices
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closely resemble human synaptic models [171], making them highly suitable for synaptic

realization in hardware-implemented neural networks [19].

In-memory computing using memristive devices in a memory crossbar architecture can be

realized through Ohm’s and Kirchhoff’s laws to implement Vector Matrix Multiplication

(VMM), a key operation in artificial neural networks for computing neuron activations

[172, 173]. In the context of SNNs, the vectors represent the spikes transmitted by input

neurons, while the weights correspond to the synaptic conductance of individual memory

devices. The 3D stackability of memristive devices [174] enables high-density network

integration by leveraging physical principles such as redox reactions, ferroelectricity and

magnetism, providing energy-efficient computation.

2.5.4 Demonstrations with Crossbar Arrays

Offline Learning Valentian et al. [175] developed a fully integrated spiking neural

network with analog neurons and RRAM synapses in a 13.5k array. Their use of offline

gradient descent and quantization learning methods, combined with the analog imple-

mentation, supported significant accuracy on the MNIST dataset, facilitated by the high

density of 1T1R synapses. Wan et al. [176] utilized RRAM in a 256 × 256 array, im-

plementing an Integrate-and-Fire neuron model in CMOS. Their approach achieved good

efficiency in offline learning, particularly for probabilistic graphical models (PGMs) in the

MNIST reconstruction task.

Gradient-based Online Learning In the work by Burr et al. [177], supervised learning

using Phase Change Memory (PCM) with a 500 × 661 array was demonstrated within

a multi-layer perceptron topology. Their gradient-descent and backpropagation learning

schemes, controlled via software, achieved strong training performance on the MNIST

dataset. Furthermore, in optimizing RRAM devices for neuromorphic systems, Wu et

al. [178] applied this technology to a 1Kb array with differential weight topology. Their

implementation of online gradient descent learning with CMOS-based integrate and fire

(I&F) neurons demonstrated effective learning performance on the YaleFace dataset.

Crossbar in Loop Learning and CNN Integration In [179], demonstration with

artificial 4x4 pattern with STDP and 1T1R-based synapse has been demonstrated. For

simple patterns, the binary states of RRAM were sufficient to achieve 100% recogni-

tion accuracy. Importantly, the functionality of the neuron is emulated with an off-chip

microcontroller. The implementation of off-chip neuron and learning requires signal con-

version, and Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC)
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account for more than 90% of the energy expenditure [180]. The study was extended to

another simulation-based study [181], where the models fitted from [179] were used to

perform MNIST classification with a 784x50000x10 fully connected network topology. The

synapses between the 1st and 2nd layers were trained with STDP, while those between

the 2nd and 3rd layers of neurons were trained using supervised learning. The recognition

rate on the test set was 92%. Interestingly, noise in the input layer was optimized to

enhance STDP learning performance.

In [182], semi-supervised learning was proposed in a hybrid Convolutional Neural Network

(CNN)-FC architecture. CNN weights were trained through supervised learning, and

STDP was used for unsupervised training of the fully connected layer. Ten 8x8-size arrays

were used to implement CNN kernels. An external ADC was used to read the CNN state

and feed spikes to the fully connected network crossbar. CNN is implemented using 20x20

filters in front-end-of-line integrated memories for VMM. The weights of the convolutional

layer are trained through gradient descent. The VMM outputs were processed by FPGA

with neurons and sent to another 8x8 crossbar for classification. STDP-based learning

was implemented in the classification layer.

On-Chip SNN and Mixed-Signal Implementation In [183], learning on chip was

demonstrated through pulse overlapping of rectangular pulses for 2-layer SNN. A dual

core chip with LIF neurons and 6T2R synapses was manufactured for a signed multi-bit

weight representation. The restricted Boltzmann machine and event-driven contrastive

divergence were used with STDP to perform the MNIST classification.

In [184], RRAM based SNN for MNIST recognition on 256x32 2T2R crossbar, 32 digital

neurons, routing logic, IV converters, and learning circuit on 2.25mm2 180nm CMOS

integrated circuit was reported with energy consumption of 12.5 pJ/synaptic opera-

tion, static power consumption of 6.4 uW and accuracy of 98.3%. The synaptic weight

update rule is Precise-spike-driven (PSD) rule [185, 186]. The weight update occurs

at every teacher neuron spike or output neuron spike, the polarity of the weight update

is based on the sign of error between the output neuron spike and the teacher spike, and

the magnitude is dependent on the membrane potential of the post-synaptic neuron. The

neurons are digital and communicate with a crossbar with the peripheral circuit to read

analog currents and feed spikes to input layer neurons. The energy consumption of the

digital circuit was 14.09mW, the RRAM crossbar was 6.4 uW with a write voltage of

0.2V and 12.17 mW for analog circuits, including ADC, IV converters, and switches.

It is unclear whether the results are from post-layout simulations or taped-out chips, as
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memory integration is not discussed. Interestingly, a phase-based input encoding scheme

was used to generate at most one spike per sample.

Table 2.5 Summary of memristive crossbar based physical implementation of
neuromorphic systems comparing array size, learning algorithm, and neuron
model.

Ref Device Array

Size

Topology Learning Neuron

model

Neuron

Imple-

menta-

tion

Syna-

pse

Spiki-

ng

Dataset Source of

Learning

Signal

[176] RRAM 256x256 RBM PGMs, Of-

fline

I&F CMOS

(Analog)

1T1R Yes MNIST

recon-

struction

Hardware

(In-

hardware)

[175] RRAM 13.5k 144x10 Offline gradi-

ent descent,

quantization

LIF CMOS

(Analog)

1T1R Yes MNIST Software

[182] RRAM 20x20 CNN

and FC

Gradient-

descent,

STDP, On-

line

SFA FPGA 1T1R Yes CIFAR-

10

Software

(FPGA)

[183] PCM 692 k/-

core

832x832

RBM

STDP, eCD,

Online

I&F CMOS

(Analog)

6T2R Yes MNIST Hardware

(On-chip)

[187] PCM 256x256 256x256 STDP, On-

line

I&F CMOS

(Analog)

2T1R Yes Custom

patterns

Software

[177] PCM 500x661 528x250

x125x10

Gradient-

descent,

Backprop,

Offline

Non-

spiking

Software 1T1R No MNIST Software

[178] RRAM 1Kb 320x3 Online Gra-

dient Descent

(only sign),

Online

Non-

spiking

CMOS

(Digital)

1T1R

Differ-

ential

No YaleFace Software

Current-Controlled Switching In [187], PCM-based synapses are programmed using

STDP with pulse overlapping. Current controlled switching was proposed, and the

pulse shape was generated off-chip. Custom patterns were used to demonstrate learning.

The STDP time scale and neuron leak constant are in the sub millisecond range. In [188],

a single memristor was connected to two neurons implemented through CMOS circuits.

The neurons are engineered to generate a bi-triangular pulse, and the weight update was

performed on a single synapse using the pulse overlapping technique. [189] implements

the pulse engineering circuit to implement STDP on memristors in 28nm Fully Depleted

Silicon On Insulator (FD-SOI). The area occupied by a pulse generator was 703 µm2 to

generate a pulse between 8 µs and 100 ms.
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Table 2.5 provides a summary of the hardware and on-chip crossbar-in-loop learning

demonstrations, highlighting aspects such as neuron implementation (software/FPGA/ASIC),

synapse architecture, dataset, and learning methods.

2.6 Conclusion

Neuromorphic computing for designing energy-efficient intelligent embedded

systems. The brain-inspired computing paradigm shows promise for developing uncon-

ventional computing systems. These specialized systems incorporate bio-inspiration in

memory and time-domain to create asynchronous parallel computing systems. The tem-

poral dimension is well-suited for real-time computing in devices with limited power bud-

gets. Energy consumption is reduced through analog computing and devices that use the

physical phenomenon of electronics to emulate complex non-linear dynamics in real-time.

Additionally, the in-memory computing architecture further reduces energy consumption

and increases integration density with nanoscale memory devices. Memristive devices can

be used for 3D stacking. However, the challenges of 3D stacking and vertical integration,

such as the significant heat generated by densely packed transistors, emphasize the need

for low-power, analog operation. High-speed digital switching, which involves millions of

transistors toggling between ON and OFF states multiple times per millisecond, requires

advanced cooling technologies that are difficult to implement in 3D architectures. There-

fore, low-power and analog operations are not just optional features, but necessities in

modern computing hardware. Important features which make neuromorphic engineering

efficient: distinctions in time representation: temporal domain computing, and memory.

Memory and learning Memory is a critical component of AI hardware, as neural

networks are data-intensive, with millions of weights and streaming input signals. The

memory storage process is essentially learning. Online learning is essential for contin-

uous learning during the agent’s life cycle. For online learning, unsupervised and local

learning is critical because expert annotation is not available in real time. Implement-

ing complex learning physically across chips poses a challenge in meeting the real-time

computing-learning requirement. Hebbian learning is an attractive option for online local

unsupervised learning, and different model circuits have been proposed.

However, we emphasize that such unsupervised learning algorithms are a new and active

area of research for improvement, as digit recognition using gradient descent was first

demonstrated in the early 1990s, while a similar counterpart to STDP and SNN only

emerged in the 2010s. The increasing use of unannotated raw environmental signals and

the growing collection of IoT data in the current decade seem to align very well. Unsuper-
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vised online learning holds promise for improving the generalization capabilities of neural

networks in real-world deployment and usage of raw signals [190].

Hardware realization Hardware implementation is required due to the previously men-

tioned differences in memory and time. Digital systems have been proposed in the past,

but face challenge due to the energy-delay overhead of signal domain conversion. Analog

domain computing has greater similarities with neuromorphic models and utilizes physical

principles like Ohm’s law and charge integration for performing multiply and accumulate

operations.

Architecture and device More recently, memory-centric architecture and specialized

devices have been introduced for scalable real-time learning and computing. Memristive

devices are nanoscale, nonvolatile memory devices programmed by using physical conduc-

tance change mechanisms such as redox reactions, phase change, and ferroelectric domain

switching. STDP-based learning has been proposed and validated on various memristive

devices, including HfO2 based memristors [191, 192, 193, 194], nano-composite memristive

devices (ON/OFF ratio > 1000)[188], STOx based resistive memories [195], ferroelectric

memories [196, 197, 198], FeFET (industrial node 28nm) [199], and STT-MRAM [200].

Most of the proposed approaches first realize the physical implementation of a single

synapse and then analyze the learning performance at the system level through simula-

tions with the model fitted from device experiments [199].

Circuit-algorithm co-engineering challenge. Several studies have explored various

learning strategies for neural hardware, including offline learning with weight transfer

for inference hardware, online learning using gradient descent for ANN implementations,

and crossbar-in-loop learning with STDP. Online learning is particularly beneficial for

memristive devices as it helps mitigate non-idealities inherent in these systems. However,

in simulation-based studies, there is a trade-off between the scalability and model accuracy

of CMOS and RRAM models. Moreover, implementing neurons and peripheral circuits

on separate silicon chips presents scalability challenges due to the limited number of I/O

connections. This separation also leads to significant inefficiencies, as signal conversion

and transfer account for more than 90% of the system’s power consumption [180]. Thus,

while some unsupervised learning mechanisms have already been demonstrated on discrete

memristive elements, they still require implementation and validation at the network level

to effectively assess their overall effectiveness.
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It is important to emphasize that even the simplest version of Hebbian learning, such as

STDP, is challenging to implement in hardware, as accurate spike times, needed to calcu-

late the weight update, may not be readily available. Previous studies have used neuron

activity traces to address this challenge, necessitating additional hardware overhead, such

as capacitors for charge storage, digital registers, and update logic. Developing hardware

for spiking neural networks that can perform analog in-memory computing with online

learning remains an algorithm-circuit co-design challenge. This thesis aims to tackle this

challenge by first creating an unsupervised learning rule specifically for memristive devices.

The next step will be to design an analog spiking neuron and then develop a mixed sig-

nal computing chip that integrates analog neurons, memristive devices, and a specialized

architecture to enable unsupervised online learning.
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Voltage-dependent synaptic plasticity: Unsu-

pervised probabilistic Hebbian plasticity rule

based on neurons membrane potential

"The brain is the organ of destiny. It holds within its humming mechanism secrets that

will determine the future of the human race." — Wildor Hollingworth
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3.1 Preface

Contribution to document

The following chapter (journal article) represents the first step towards the objective of this

thesis: integrating learning into memristive neuromorphic systems. Hebbian principles

are appealing for hardware-based learning as they are unsupervised and rely on local

variables. In the widely used Hebbian learning rule, Spike-Timing Dependent Plasticity

(STDP), the local variable is the timing of spikes from presynaptic and postsynaptic

neurons. However, spike times are not inherently stored, which creates additional overhead

in tracking activity traces to compute effective weight updates. To address this, we propose

a Voltage Dependent Synaptic Plasticity (VDSP)-based learning approach.

Through mathematical derivation, we showed that it is possible to accurately determine

when a neuron fires based on its membrane voltage. This model was implemented in

Nengo’s Spiking Neural Network (SNN) simulation framework. We evaluated the perfor-

mance of unsupervised learning by training the network to recognize handwritten digits

using SNN simulations. The recognition rate achieved with VDSP learning was similar

to previous studies using STDP. However, VDSP simplifies hyperparameter tuning by

eliminating the need to adjust the temporal sensitivity window, which is a requirement in

STDP. The temporal response of VDSP learning depends on the input neuron’s behavior

and remains robust to variations in the firing rates of input pixels, whereas STDP performs

optimally only when the temporal windows align with the input frequency.

The VDSP learning approach uses the spiking activity of the postsynaptic neuron to

trigger the weight update, while the membrane potential of the presynaptic neuron

determines the polarity and magnitude of the update. These trigger and state variables

provide the essential framework for implementing the learning rule in circuits, as discussed

later in Chapter 6. This article lays the basis for simulations based on memristive devices,

which will be explored in Chapter 4. Furthermore, neuronal characteristics—particularly

bidirectional leakage—motivate the design of the neuron circuit described in Chapter 5.
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Résumé

Cette étude propose la plasticité synaptique dépendante du voltage (VDSP), une nou-

velle règle d’apprentissage local non supervisé inspirée du cerveau pour la mise en œuvre

en ligne du mécanisme de plasticité de Hebb sur le matériel neuromorphique. La règle

d’apprentissage VDSP proposée met à jour la conductance synaptique sur le pic du neu-

rone postsynaptique uniquement, ce qui réduit d’un facteur deux le nombre de mises à

jour par rapport à la plasticité dépendante du timing du pic standard (STDP). Cette mise

à jour dépend du potentiel de membrane du neurone présynaptique, qui est facilement

disponible dans le cadre de la mise en œuvre du neurone et ne nécessite donc pas de mé-

moire supplémentaire pour le stockage. De plus, la mise à jour est également régularisée

sur le poids synaptique et empêche l’explosion ou la disparition des poids lors de stim-
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ulations répétées. Une analyse mathématique rigoureuse est effectuée pour établir une

équivalence entre VDSP et STDP. Pour valider les performances au niveau du système de

VDSP, nous formons un réseau neuronal à pics monocouche (SNN) pour la reconnaissance

des chiffres manuscrits. Nous rapportons une précision de 85,01 ± 0,76 % (moyenne ±

écart type) pour un réseau de 100 neurones de sortie sur l’ensemble de données MNIST. Les

performances s’améliorent lorsque la taille du réseau est mise à l’échelle (89,93 ± 0,41 %

pour 400 neurones de sortie, 90,56 ± 0,27 pour 500 neurones), ce qui valide l’applicabilité

de la règle d’apprentissage proposée pour les tâches de reconnaissance de formes spatiales.

Les travaux futurs porteront sur des tâches plus complexes. Il est intéressant de noter que

la règle d’apprentissage s’adapte mieux que STDP à la fréquence du signal d’entrée et ne

nécessite pas de réglage manuel des hyperparamètres.

Abstract

This study proposes voltage-dependent-synaptic plasticity (VDSP), a novel brain-inspired

unsupervised local learning rule for the online implementation of Hebb’s plasticity mecha-

nism on neuromorphic hardware. The proposed VDSP learning rule updates the synaptic

conductance on the spike of the postsynaptic neuron only, which reduces by a factor of two

the number of updates with respect to standard spike timing dependent plasticity (STDP).

This update is dependent on the membrane potential of the presynaptic neuron, which is

readily available as part of neuron implementation and hence does not require additional

memory for storage. Moreover, the update is also regularized on synaptic weight and pre-

vents explosion or vanishing of weights on repeated stimulation. Rigorous mathematical

analysis is performed to draw an equivalence between VDSP and STDP. To validate the

system-level performance of VDSP, we train a single-layer spiking neural network (SNN)

for the recognition of handwritten digits. We report 85.01 ± 0.76% (Mean ± SD) accuracy

for a network of 100 output neurons on the MNIST dataset. The performance improves

when scaling the network size (89.93 ± 0.41% for 400 output neurons, 90.56 ± 0.27 for 500

neurons), which validates the applicability of the proposed learning rule for spatial pat-

tern recognition tasks. Future work will consider more complicated tasks. Interestingly,

the learning rule better adapts than STDP to the frequency of input signal and does not

require hand-tuning of hyperparameters.

3.2 Introduction

The amount of data generated in our modern society is growing dramatically, and Ar-

tificial Intelligence (AI) appears as a highly effective option to process this information.

However, AI still faces the major challenge of data labeling: machine learning algorithms
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associated with supervised learning can bring AI at human-level performance, but they

require costly manual labeling of the datasets. A highly desirable alternative would be to

deploy unsupervised learning strategies that do not require data pre-processing. Neuro-

morphic engineering and computing, which aims to replicate bio-realistic circuits and al-

gorithms through a spike-based representation of data, relies heavily on such unsupervised

learning strategies. Spike timing dependent plasticity (STDP) is a popular unsupervised

learning rule used in this context, where the relative time difference between the pre-and

post-synaptic neuron spikes defines synaptic plasticity [87, 202, 203]. STDP is a spiking

version of the traditional Hebbian learning concept [40, 204, 42], where a synaptic connec-

tion is modified depending only on the local activity correlations between its presynaptic

and postsynaptic neurons.

In addition to its intrinsic unsupervised characteristic, STDP is also very attractive due

to the locality of its synaptic learning. Such a feature could dramatically reduce hardware

constraints of SNN by avoiding complex data exchange at the network level. However,

STDP retains a major challenge: it requires precise spike times/traces to be stored in

memory and fetched at every update to the processor. In most implementations [85,

205], decaying spike traces are used to compute synaptic weight update, adding extra

state variables to store and update. In digital neuromorphic systems [206, 207, 208, 209],

implementing STDP comes with an added cost of memory requirement for storing spike

times/traces for every neuron and energy expenditure for fetching these variables during

weight update. For analog hardware implementation [210, 211, 212, 213], circuit area and

power are spent in storing spike traces on capacitors, thus raising design challenges. In-

memory computing approaches have been strongly considered for STDP implementation to

mitigate memory bandwidth requirements. The utilization of non-volatile memory-based

synapses, or memristors, has been primarily considered [214, 215, 216, 189]. The seminal

idea is to convert the time distance between pre- post-signals into a voltage applied across

a single resistive memory element. The key advantage is to compute the STDP function

directly on the memory device and to store the resulting synaptic weight permanently. This

approach limits data movement and ensures the compactness of the hardware design (single

memristor crosspoints may feature footprints below 100 nm). Further similar hardware

propositions for STDP implementation have been discussed in the literature [217, 218].

Nevertheless, in all these approaches, time-to-voltage conversion requires a complex pulse

shape (pulse duration should be in the order of STDP window and pulse amplitude should

reflect the shape of STDP function), thus requiring complex circuit overhead and limiting

the energy benefit of low power memory devices.
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Moreover, STDP has the constraint of a fixed time window. As STDP is a function of

the spike time difference between a post and a presynaptic neurons, the time window is

the region in which the spike time difference must fall to update the weight significantly.

The region of the time windows must be optimized to the temporal dynamics of spike-

based signals to achieve good performances with STDP. This latter point raises additional

issues at both the computational level (i.e., how to choose the appropriate STDP time

window) and hardware level (i.e., how to design circuits with this level of flexibility). In

other words, the challenge for deploying unsupervised strategies in neuromorphic SNN is

two-sided: the concept of STDP needs to be further developed to allow for robust learning

performances, and hardware implementations opportunities need to be considered in the

meantime to ensure large scale neuromorphic system development.

In this work, we propose Voltage-Dependent Synaptic Plasticity (VDSP), an alternative

approach to STDP that addresses these two limitations of STDP: VDSP does not require

a fixed scale of spike time difference to update the weights significantly and can be easily

integrated on in-memory computing hardware by preserving local computing. Our ap-

proach uses the membrane potential of a pre-synaptic neuron instead of its spike timing to

evaluate pre/post neurons correlation. For a Leaky Integrate-and-Fire (LIF) neuron [54],

membrane potential exhibits exponential decay and captures essential information about

the neuron’s spike time; intuitively, a high membrane potential could be associated with

a neuron that is about to fire while low membrane potential reflects a neuron that has

recently fired. A post-synaptic neuron spike event is used to trigger the weight update

based on the state of the pre-synaptic neuron. The rule leads to a biologically coherent

temporal difference. We validate the applicability of this unsupervised learning mecha-

nism to solve a classic computer vision problem. We tested a network of spiking neurons

connected by such synapses to perform recognition of handwritten digits and report sim-

ilar performance to other single-layer networks trained in unsupervised fashion with the

STDP learning rule. Remarkably, we show that the learning rule is resilient to the tem-

poral dynamics of the input signal and eliminates the need to tune the hyperparameters

for input signals of different frequency range. This approach could be implemented in

neuromorphic hardware with little logic overhead, memory requirement and enable larger

networks to be deployed in constrained hardware implementations.

Past studies have investigated the role of membrane potential in the plasticity of the

mammalian cortex [219]. The in-vivo voltage dependence of synaptic plasticity has been

demonstrated in [220]. In [221], bidirectional connectivity formulation in the cortex has

been demonstrated as a resultant of voltage-dependent Hebbian-like plasticity. In [222],
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a voltage-based Hebbian learning rule was used to program memristive synapses in a

recurrent bidirectional network. A presynaptic spike led to a weight update dependent on

the membrane potential of postsynaptic neurons. The membrane potential was compared

with a threshold voltage. If the membrane potential exceeded this threshold, long-term

potentiation (LTP) was applied by applying a fixed voltage pulse on the memristor, while,

for low membrane potential, long-term depression (LTD) took place. However, in their

case, the weight update is independent of the magnitude of the membrane potential, and

hence the effect of precise spike time difference cannot be captured. Lastly, these past

studies have never reported handwritten digit recognition and benchmark against STDP

counterparts.

In the following sections, we first describe the spiking neuron model and investigate the

relation between spike time and neuron membrane potential. Second, we describe the

proposed plasticity algorithm, its rationale, and its governing equations. Third, the hand-

written digit recognition task is described with SNN topology, neuron parameters and

learning procedure. In the results section, we report the network’s performance for hand-

written digit recognition. Next, we demonstrate the frequency normalization capabilities

of VDSP as opposed to STDP by trying widely different firing frequencies for the in-

put neurons in the handwritten digit recognition task without adapting the parameters.

Finally, the hyperparameter tuning and scalability of the network are discussed.

3.3 Materials and methods

3.3.1 Neuron modeling

LIF neurons [54] are simplified version of biological neurons, hence easy to simulate in

an SNN simulator. This neuron model was used for the pre-synaptic neuron layers. The

governing equation is

⌧m
dv

dt
= −v + I + b (3.1)

where ⌧m is the membrane leak time constant, v is the membrane potential, which leaks to

resting potential (vrest), I is the injected current, and b is a bias. Whenever the membrane

potential exceeds a threshold potential (vth), the neuron emits a spike. Then, it becomes

insensitive to any input for the refractory period (tref ) and the neuron potential is reset

to voltage (vreset).

An adaptation mechanism is added to the post neurons to prevent instability due to

excessive firing. In the resulting adaptive leaky integrate-and-fire (ALIF) neuron, a second
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state variable is added. This state variable n is increased by incn whenever a spike occurs,

and the value of n is subtracted from the input current. This causes the neuron to reduce

its firing rate over time when submitted to strong input currents [223]. The state variable

n decays by ⌧n :

⌧n
dn

dt
= −n (3.2)

3.3.2 Relation between spike time and membrane potential

Hebbian-based STDP can be defined as the relation between ∆w ∈ R, the change in the

conductance of a weight, and ∆t = tpost − tpre, the time interval between a presynaptic

spike at time tpre and a postsynaptic spike at time tpost with ∆t, tpre, tpost ∈ R
+. This

relation can be modeled as

∆w ∝

8

<

:

exp
⇣

−∆t

τ+
STDP

⌘

, tpre < tpost

− exp
⇣

∆t

τ−
STDP

⌘

, otherwise.
(3.3)

with ⌧STDP being the time constants for potentiation (+) and depression (−). This model

is commonly computed during both the pre and postsynaptic neuron spikes, e.g., with the

two traces model [85]. For VDSP, we seek to compute a similar ∆w, but as a function of

only V (tpost), the membrane potential of a presynaptic neuron at the time of a postsynaptic

spike.

Fortunately, when the presynaptic LIF neuron is only fed by a constant positive current

I ∈ R
+, the spiking dynamics can be predicted. Solving the presynaptic LIF neuron’s

differential equation for the membrane potential with no bias (Equation 3.1 with b = 0)

during subthreshold behavior yields

v(t) = I + c · exp

✓

−t

⌧m

◆

, (3.4)

where c is the integration constant. Solving Equation 3.4 for tpre and tpost allows us to

define a new relation for tpost − tpre:

tpost − tpre = ⌧m ln

✓

v(tpre)− I

v(tpost)− I

◆

. (3.5)
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with v(tpre) and v(tpost) equal to the membrane potential of the presynaptic neuron at

the moment of a presynaptic spike and postsynaptic spike, respectively. Assuming I is

sufficient to make the presynaptic neuron spike in a finite amount of time, i.e., I > vth,

then v(tpre − ✏) = vth and v(tpre + ✏) = vreset, with ✏ representing an infinitesimal number.

Conceptually, v(tpre − ✏) represents a spike that is about to happen and v(tpre + ✏) a

spike that has happened in the recent past, when there is no refractory period (tref = 0).

Assuming ✏ → 0, we obtain:

∆t = ⌧m ln

✓

vth − I

v(tpost)− I

◆

(3.6)

if the presynaptic neuron is about to spike or

∆t = ⌧m ln

✓

vreset − I

v(tpost)− I

◆

(3.7)

if the presynaptic neuron recently spiked. To select between one of these values, we must

obtain the smallest ∆t, as to form a pair of tpre and tpost that are closest in time. These

two equations can be combined into:

|∆t| = ⌧m ·min

⇢�

�

�

�

ln

✓

vth − I

v(tpost)− I

◆�

�

�

�

,

�

�

�

�

ln

✓

vreset − I

v(tpost)− I

◆�

�

�

�

�

(3.8)

By using ∆t as a function of v(tpost) from Equation 3.8, with vth = 1, vreset = −1 and

knowing vreset ≤ v(tpost) < vth, then equation 1 can be rearranged to:

∆w ∝

8

>

<

>

:

⇣

v(tpost)−I

−1−I

⌘
τm

τ
+

STDP , I −
√
I2 − 1 > v(tpost)

−
⇣

1−I
v(tpost)−I

⌘
τm

τ
−

STDP , otherwise.
(3.9)

This final result proves that, when the presynaptic neuron is driven by constant current,

Hebbian STDP can be precisely modeled using only v(tpost), the membrane potential of

a presynaptic neuron at the time of a postsynaptic spike. Note that such generalization

cannot be done in the case of Poisson-like input signals. Figure 3.1A,B demonstrate

experimentally the relation between the membrane potential and |∆t| from Equation 3.8.

The condition I −
√
I2 − 1 > v(tpost) can be inferred from Equation 3.8, to select the

minimal parameter, since
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Figure 3.1 Schematic representation of the VDSP learning rule implemented
between a pre- and postsynaptic spiking neuron. In (A), the membrane potential of

a LIF neuron is shown evolving through time when fed with a constant current. In (B), the

absolute time difference between the post and presynaptic spikes is computed analytically as

a function of the membrane potential from (A). It is trivial, once the spike time difference is

computed, to determine the STDP window as a function of membrane potential. (C,F) Show

the spiking event of the presynaptic neuron (vertical black line) along with its membrane

potential (colored curve). (D,G) Show the spike event of the postsynaptic neuron. The weight

update (E,H) happens whenever the post-synaptic neuron fires. The update is dependent on

the membrane potential of pre-synaptic neuron. If the pre-synaptic neuron fired in the recent

past (tpre < tpost), the membrane potential of the presynaptic neuron is lesser than zero, and

we observe potentiation of synaptic weight (C–E). Whereas if the pre-synaptic neuron is about

to fire (tpost < tpre), the membrane potential of the pre-synaptic neuron is greater than zero

and we observe depression of synaptic weight (F–H).

min{a, b} =

8

<

:

a, if a ≤ b

b, otherwise.
(3.10)

Moreover, as Equation 3.8 shows, the neuron parameters, namely the membrane reset

and threshold potentials, are implicitly used to calculate the potentiation and depression

windows. For example, the condition I −
p

(I2 − 1) > v(tpost) of Equation 3.9 can be

simplified to v(tpost) < 0 if vreset =
I

vth−I
instead of −1. Both vth and vreset can be modified

to tune the balance between potentiation and depression. Supplementary Figure 3.4 high-

lights the empirical effect of changing the value of vth and vreset on the ∆w = VDSP(∆t)

window between two neurons with a fixed initial weight w = 0.5.
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3.3.3 Proposed plasticity algorithm

The proposed implementation of synaptic plasticity depends on the postsynaptic neuron

spike time and the presynaptic neuron’s membrane potential. This version of Hebbian

plasticity in which the weight is updated on either postsynaptic or presynaptic spikes is

also known as single spike synaptic plasticity [214]. In real world applications, the presy-

naptic input current I is often not known and not constant, which would be mandatory

for reproducing STDP perfectly as demonstrated in Equation 3.9. The less information is

known about the input current, the more our plasticity rule converge into a probabilistic

model. A low membrane potential suggests that the presynaptic neuron has fired recently,

leading to synaptic potentiation (Figure 3.1C–E). A high presynaptic membrane potential

suggests that the pre-synaptic neuron might fire shortly in the future and leads to depres-

sion (Figure 3.1F–H). A different resting state potential and reset potential is essential to

discriminate inactive neurons and neurons that spiked recently.

Hebbian plasticity mechanisms can be grouped into additive or multiplicative types. In the

additive versions of plasticity, the magnitude of weight update is independent of the current

weight, but weight clipping must be implemented to restrict the values of weight between

bounds [87]. Although the weight is not present in weight change computation equation

directly, the present weight must be fetched for applying clipping. In neurophysiology

experiments [224], it is also demonstrated that the weight update depends on the current

synaptic weight in addition to the temporal correlation of spikes and is responsible for

stable learning. The weight dependence is often referred to as multiplicative Hebbian

learning as opposed to its additive counterpart and leads to stable learning and log-normal

distribution of firing rates which are coherent with biological system recording [225].

VDSP relies on the multiplicative plasticity rule that considers the present weight value

for computing the weight update magnitude. During potentiation, the weight update is

proportional to (Wmax − W ), and during the depression phase, the weight update mag-

nitude is proportional to W , where W is the current weight, and Wmax is the maximum

weight. Multiplicative weight dependence is a crucial feature of VDSP, and no hardbound

is needed as typically used with additive plasticity rules. A detailed discussion is presented

in the discussion section and Figure 3.2.

The functional dependence of weight update on the membrane potential of the presynaptic

neuron and the current synaptic weight is presented in Figure 3.2A,B. The weight or

synaptic conductance varies between zero and one. The weight update is modeled as:
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Figure 3.2 (A) The weight update (dW) is plotted as a function of the membrane potential

of pre-synaptic neuron, with the color code representing the initial weight. (B) The dW is

linearly dependent on (1-W) for potentiation and on (W) for depression. The learning rate is

set to 0.001 in both (A,B). (C–E) A pair of pre-synaptic neuron and post-synaptic neuron is

simulated along with their synaptic weight evolution. The weight update occurs at every post-

synaptic neuron spike event and is negative if the pre-synaptic neuron membrane potential is

greater than zero (shown in red dotted lines). The weight update is positive (green dotted

lines) if the pre-synaptic neuron voltage is lesser than zero.

where dW is the change in weight, Vpre is the membrane potential of the presynaptic

neuron, tpost is the time of postsynaptic neuron spike event, W is the current weight of

the synapse, Wmax is the maximum weight and is set to one, t is the current time, and lr

is the learning rate.

To illustrate the weight update in the SNN simulator, a pair of neurons (Figure 3.2C,D)

were connected through a synapse (Figure 3.2E) implementing the VDSP learning rule.

The presynaptic and postsynaptic neurons were forced to spike at specific times. To

potentiation and depression for tpost > tpre and tpost < tpre are shown with green and red

dotted lines, respectively.

3.3.4 MNIST classification network

To benchmark the learning efficiency of the proposed learning rule for pattern recognition,

we perform recognition of handwritten digits. One advantage of this task is that the

weights of the trained networks can be interpreted to evaluate the network’s learning.

We use the modified national institute of standards and technology database (MNIST)

dataset [226] for training and evaluation, which is composed of 70,000 (60,000 for training

and 10,000 for evaluation) 28×28 grayscale images. The SNNs were simulated using the

Nengo python simulation tool [227], which provide numerical solutions to the differential
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equations of both LIF and ALIF neurons. The timestep for simulation was set to 5 ms,

which is equal to the chosen refractory period for the neurons.

The input layer is composed of 784 (28×28) LIF neurons (Figure 3.3). The pixel intensity is

encoded with frequency coding, where the spiking frequency of the neuron is proportional

to the pixel value. It is essential, when using VDSP, to use different vrest and vreset values

to discriminate inactive neurons and neurons that spiked recently (Figure 3.2C,D). In our

work, vrest is set to zero volt, and vreset is set to -1 V.
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Figure 3.3 Representation of the SNN implementation used in this study to
benchmark the VDSP learning rule with the MNIST classification task. (A) The

response of the LIF neuron used in this study is plotted for input current of magnitude 0

(black pixel), 0.4 (gray pixel), and 1 (white pixel) for a duration of 100 ms. In (B), 28 ×

28 grayscale image is rate encoded with the help of 784 input LIF neurons. Each sample is

presented for 350 ms. The input neurons are fully connected to the ALIF output neurons

connected in Winner Takes All (WTA) topology for lateral inhibition. (C) The weight matrix

for each of the 10 output neurons.

Property Input layer Output layer
Refractory period 5 ms 5 ms
Leak time constant 30 ms 30 ms
Reset voltage -1 V 0 V
Rest voltage 0 V 0 V
Threshold 1 V 1 V
Bias 0.5 0
Adaptation increment - 0.01
Adaptation leak time constant - 1 s
WTA time constant - 10 ms

Table 3.1 In order to reproduce the results of this study, the same can be used
in conjunction with proposed equations of the VDSP rule with a learning rate
equal to 5× 10−2.
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The output layer is modeled as ALIF neurons connected in a Winner Takes All (WTA)

topology: on any output neuron spike occurrence, the membrane potential of all other

neurons is clamped to zero for 10 ms. All the input neurons are connected to all the out-

put neurons through synapses implementing the VDSP learning rule. The initial weights

of these synapses were initialized randomly, with a uniform distribution between the min-

imum (0) and maximum (1) weight values. Each image from the MNIST database was

presented for 350 ms with no wait time between images. The neuron parameters of input

and output neurons used in this study are summarized in Table 1.

Once trained, the weights were fixed, and the network was presented again with the

samples from the training set, and all the output neurons were assigned a class based

on activity during the presentation of digits of a different class. The 10,000 images from

the test set of the MNIST database were presented to the trained network for testing

the network. Based on the class of neuron with the highest number of spikes during

sample presentation time, the predicted class was assigned. The accuracy was computed

by comparing it with the true class. For larger networks, the cumulative spikes of all the

neurons for a particular class were compared to evaluate the network’s decision. The above

could be easily realized in hardware with simple connections to the output layer neurons.

More sophisticated machine learning classifiers like Support Vector Machines (SVMs) or

another layer of spiking neurons can also be employed for readout to improve performance

[228].

3.4 Results and discussion

On training a network composed of 10 output neurons for a single epoch, with 60,000

training images of the MNIST database, we observe distinct receptive fields for all the ten

digits (Figure 3.3C). Note that the true labels are not used in the training procedure with

the VDSP learning rule, and hence the learning is unsupervised. We report classification

accuracy of 61.4±0.78% (Mean ± S.D.) based on results obtained from five different initial

conditions.

3.4.1 Presynaptic firing frequency dependence of VDSP

As stated previously, the VDSP rule does not use the presynaptic input current to compute

∆w. Therefore, as the presynaptic input current changes, e.g., in between the samples

of the MNIST dataset, the change in weight conductance, ∆w, is affected. Figure 3.4A

presents the relation between the presynaptic firing frequency when the input current is

changed and the ∆w = VDSP (∆t) window between two neurons with a fixed initial weight

w=0.5. As the current gets larger, the presynaptic firing frequency is increased, and the
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window shortens. This has a normalizing effect on the learning mechanism of VDSP when

subjected to different spiking frequency regimes.

Figure 3.4 Presynaptic firing frequency dependence of VDSP and STDP. Sub-

figure (A) shows the effect of scaling the presynaptic neuron input current on the VDSP

update window for fixed weight w = 0.5 in a two neurons configuration. As the input cur-

rent changes, the presynaptic neuron fires at various frequencies indicated by the line color.

Higher presynaptic spiking frequencies result in smaller time windows. The plateau between

∆t ∈ [0,2] ms is an artifact of the refractory period of 2 ms, where the membrane potential

is kept at a reset value throughout. In (B), similar scaling is applied to the values of the

pixels being fed to the presynaptic neurons during the MNIST classification task using the

WTA architecture. Each point in (B) results from running the task 5 times with different

random seeds using 10 output neurons, with standard deviation shown with the light-colored

area under the curve. No adaptation mechanism was used for (B) to provide an unbiased

comparison between classical STDP and VDSP in different spiking frequency regimes. No

frequency-specific optimization was done during these experiments.

In Figure 3.4B, we recreated a simplified version of the MNIST classification task using

the WTA presented in the previous sections. Notably, there is no adaptation mechanism

in the output layer, and the duration of the images is dynamically computed to have a

maximum of ten spikes per pixel per image. These changes were made to specifically show

the dependence of the input frequency on the accuracy, but they also affect the maximum

reached accuracy in the case of VDSP. We ran the network with ten output neurons for

one epoch with both VDSP and STDP with constant parameters. As expected, VDSP

is much more resilient to the change in spiking input frequency. This effect is beneficial

since the same learning rule can be used in hardware, and the learning can be accelerated

by simply scaling the input currents. We note that neither the VDSP nor the STDP’s

parameters are maximized for absolute performance in this experiment, and we used the

same weight normalizing function as [93] for STDP.
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3.4.2 Impact of network size and training time on VDSP

To investigate the impact of the number of output neurons and epochs on classification

accuracy, the two-layer network for MNIST classification is trained for up to five epochs

and five hundred output neurons. The resulting accuracy for the different number of epochs

and number of output neurons is shown in Figure 3.5. Note that network hyperparameters

were not re-optimized for these experiments (i.e., hyperparameters were optimized for a

50 output neuron topology only). Key performance numbers are tabulated in Table 2 and

compared to the state-of-the-art accuracy reported in the literature. We observe equivalent

or higher performance than the networks trained with the pair-based STDP in software

simulations [93] and hardware-aware simulations [215, 217, 218] for most network sizes.

This result validates the efficiency of the VDSP learning rule for solving computer vision

pattern recognition tasks.

Figure 3.5 A spiking neural network with 784 input neurons and N output
neurons was trained on the training set (60,000 images) of the MNIST dataset
for different numbers of epochs. The accuracy was computed on the test set
(10,000) unseen images of the MNIST dataset. Networks with the number of
output neurons ranging from 10 to 500 were trained for the number of epochs
ranging from 1 to 5. Each experiment was conducted for five different initial
conditions. The mean accuracy for five trials is plotted in the figure, with the
error bar indicating the standard deviation.

The performances of the network trained with VDSP are well aligned with hardware aware

software simulations (Table 3.2) for simplified STDP and memristor simulation [215],

resistive memory-based synapse simulation [218], PCM based synapse simulation [217].

VDSP has lower accuracies with respect to [229] in their 50 and 200 neuron simulations,

which can be explained by the different number of learning epoch and encoding strategy

of the MNIST digits.

The comparable performance of VDSP with standard STDP can be attributed to the

fact that the membrane potential is a good indicator of the history of input received by
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This work Past studies
Neurons Epochs Accuracy (%) Neurons Epochs Accuracy (%) Ref.

(µ± �)
10 1 61.4 ± 0.78 10 1 60 [215]
50 1 78.84 ± 1.28 50 1 76.8 [218]
50 3 81.3 ± 1.76 50 3 77.2 [217]

50 1 78.55 [188]
50 3 81 [215]
50 - 83.03 [229]

100 3 84.74 ± 1.08 100 3 82.9 [93]
100 1 89.15 [188]
200 17 91.63 [229]

300 3 89.08 ± 0.49 300 3 93.5 [215]
400 3 89.26 ± 0.54 400 3 87 [93]
500 5 90.56 ± 0.27
Table 3.2 The performance achieved by training SNN with the VDSP rule
is tabulated for various network sizes (number of output neurons) and epochs.
Each experiment was repeated with five different initial conditions, and the accu-
racies are reported as (Mean ± S.D.). Compared with the hardware-independent
approach of pair based STDP, we achieved 84.74 ± 1.08% for a network of 100
output neurons trained over three epochs. For a network of 400 output neurons
trained over three epochs, we achieved 89.26 ± 0.54%.

neurons and not just the last spike. In addition, the weight update in VDSP depends

on the current weight, which regularizes the weight update and prevents the explosion or

dying of weights. As in Supplementary Figure 3.1, we observe a bimodal distribution of

weights and clear receptive fields for a network of 50 output neurons. When this weight

dependence is removed and clipping of weights between 0 and 1 is used, most weights

become either zero or one, and receptive fields are not clear with current parameters

(Supplementary Figure 3.2).

3.4.3 VDSP parameters optimization

Convergence of the VDSP learning was possible with additional parameters optimization.

Firstly, clear receptive fields require to decrease the weight of inactive pixels correspond-

ing to the background. To penalize these background pixels, which do not contribute to

the firing of the output neuron, we introduce a positive bias voltage in the input neurons

of the MNIST classification SNN. This bias leads to a positive membrane potential of

background neurons but does not induce firing. Consequently, the weight values are de-

pressed according to the VDSP plasticity rule. Depressing the background neuron weight

also balances the potentiation of foreground pixels and keeps in check the total weights
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contribution of an output neuron, thus preventing single neurons from always “winning”

the competition. To validate the above hypothesis, we experimented training with zero

bias voltage Supplementary Figure 3.3 and observed poor receptive fields.

The learning rate is a crucial parameter for regulating the granularity of weight updates.

To study the impact of learning rate and the number of epochs on the performance, we

train networks with learning rates ranging from 10−5 to 1 for up to five epochs. The

resulting performance for five different runs is plotted for ten output neurons and 50

output neurons in Figure 3.6. For a single epoch, we observe the optimal performance for

ten output neurons at a learning rate of 5 × 10−3. For 50 output neurons and a single

epoch, the optimal learning rate was 1 × 10−2. This result is indicative of the fact that

the optimal learning rate increases for a greater number of neurons. Conventional STDP,

on the other hand, has a minimum of two configurable parameters: learning rate and

temporal sensitivity window for potentiation and depression. These are to be optimized

to the dynamics of the input signal. VDSP has just one parameter and can be optimized

based on the number of output neurons and training data size or the number of epochs,

as discussed. There are many additional hyperparameters in a spiking neural network

(SNN), such as time constant, thresholds, bias, and gain of the neurons, which can affect

network performances. The neuron and simulation parameters tabulated in Table 1 were

optimized with grid search performed on a network comprising 50 output neurons trained

over a single epoch.

(A) (B)

Figure 3.6 Dependence of the performance on learning rate and number of
epochs for different network sizes. In (A), a network with 10 output neurons was

trained on the MNIST dataset for different numbers of epochs and learning rates. Networks

with learning rates ranging from 10−5 to 1 were trained for the number of epochs ranging

from 1 to 5. Each experiment was conducted for five different initial conditions. The mean

accuracy for five trials is plotted in the figure, with the error bar indicating the standard

deviation. In (B), the experiments are repeated for 50 output neurons. As depicted, the

optimum learning rate for a single epoch and 10 neurons is 5×10−4. Whereas, for 50 output

neurons, the optimum learning rate for a single epoch is 10−3.
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3.4.4 Hardware choices for VDSP

In the past, voltage dependent plasticity rules proposed triggering weight update on presy-

naptic neuron spike [87, 230]. Updating on presynaptic neuron spike is also an intuitive

choice considering the forward directional computation graph for SNN. However, in the

specific case of the output layer of multi-layer feedforward networks with WTA-based

lateral inhibition, at most, one output neuron spikes at a time, and the output spike fre-

quency would be significantly lower than the input spike frequency, reducing the frequency

of weight updates required. Moreover, in multi-layer feedforward networks, activity in lay-

ers close to the output layer corresponds to the recognition of higher-level features and

is a more attractive choice to synchronize the weight update. In addition, in networks

for classification tasks, a convergence of layer size occurs from a large number of input

neurons (for achieving high spatial resolution in neuromorphic sensors like DVS cameras,

for instance) to a few neurons in the output layer. In hardware, a lower weight update

frequency would imply lesser power consumption required in learning and a reduction in

the learning time, thus providing greater flexibility with bandwidth available for inference.

The locality of the learning rule could be dependent on the hardware architecture. In

the specific case of in-memory computing based neuromorphic hardware implementations,

the synapse is physically connected to both postsynaptic and presynaptic neurons. State

variables like the membrane potential of these neighboring neurons are readily available

to the connecting synapse. Moreover, for memristive synapses, the dependence of weight

change on initial weight is an inherent property of device switching. The proposed learning

rule is attractive for implementing local learning in such systems.

For lateral inhibition in the output layer, the membrane potential of all the other output

neurons is clamped to zero for 10 ms upon firing of any output neurons. This choice is

inspired by the similar approach employed in [215, 229, 188]. One alternative is using an

equal number of inhibitory spiking neurons in the output layer [93]. However, using an

equal number of inhibitory output neurons doubles the number of neurons, leading to the

consumption of a significant silicon area when implemented on a neuromorphic chip. On

the other hand, clamping the membrane potential does not require substantial circuit area

and is a more viable option for hardware implementations.

We also evaluated the impact of injected Gaussian noise on neuron response for different

input currents and noise distributions (Supplementary Figure 3.5). Gaussian noise cen-

tered around zero with different deviations was injected into the input neurons. While

the membrane potential is substantially noisy in the case of mid-level noise injection, we

do not observe a significant drop in performance. This feature makes VDSP an attractive
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choice of learning rule to be deployed on noisy analog circuits and nanodevices with high

variability.

We also tested the applicability of the method for a network receiving random Poisson-

sampled input spike patterns to drive the input layer. To elucidate this, a network of 10

output neurons was trained by feeding Poisson sampled spike trains to the input neuron

with the frequency being proportional to the pixel value. The plots of membrane potential

and neuron spike for different input values are presented in Supplementary Figure 3.6A–C.

The network was trained for one epoch and recognition accuracy of 58% was obtained on

the test set. The resulting weight plots are shown in Supplementary Figure 3.6D. Stable

learning is observed and a small performance drop of 3% occurred as compared to constant

input current.

3.5 Conclusion and future scope

In this work, we presented a novel learning rule for unsupervised learning in SNNs. VDSP

is solving some of the limitations of STDP for future deployment of unsupervised learning

in SNN. Firstly, as plasticity is derived from the membrane potential of the pre-synaptic

neuron, VDSP on hardware would reduce memory requirement for storing spike traces

for STDP based learning. Hence, larger and more complex networks can be deployed on

neuromorphic hardware. Secondly, we observe that the temporal window adapts to the

input spike frequencies. This property solves the complexity of STDP implementation,

which requires STDP time window adjustment to the spiking frequency. This intrinsic

time window adjustment of VDSP could be exploited to build hierarchical neural net-

works with adaptive temporal receptive fields [231, 232]. Thirdly, the frequency of weight

update is significantly lower than the STDP, as we do not perform weight updates on

both presynaptic and postsynaptic neuron spike events. This decrease in weight updates

frequency by a factor of two is of direct interest for increasing the learning speed of SNN

simulation and operation. Furthermore, this improvement is obtained without trading

off classification performances on the MNIST dataset, thus validating the applicability of

VDSP rule in pattern recognition. The impact of hyperparameters (learning rate, network

size, and the number of epochs) is discussed in detail with the help of simulation results.

In the future, we will investigate the implementation of VDSP in neuromorphic hardware

based on emerging memories. Also, future work should consider investigating the proposed

learning rule for multi-layer feed-forward networks and advanced network topologies like

Convolutional Neural Networks (CNNs) [233, 203] and Recurrent Neural Networks (RNNs)
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[234]. Finally, using this unsupervised learning rule in conjunction with gradient-based

supervised learning is an appealing aspect to be explored in future works.
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3.6 Supplementary material

Receptive fields for 50 output neurons

Increasing the number of neurons in the output layer makes multiple neurons learn different

representations of each class.

(A) (B)

Supplementary Fig. 3.1 A network of 784 input neurons and 50 output neurons
was trained with 60,000 images from the training subset of the MNIST dataset
over three epochs. The weight map from each of the 50 neurons is shown in (A)
where each image represents 784 synaptic weights for each output neuron. The
histogram of the synaptic weights is plotted in (B). A bimodal distribution can
be observed.

Importance of weight dependence of weight update function

(A) (B)

Supplementary Fig. 3.2 Weight plots and histogram for additive VDSP. The
change in weight (dW) is independent of the current weight (W). After training a
network of 10 output neurons with 60,000 training images, the obtained weights
for each of the output neuron is plotted in (A). The histogram of all the network
weights is plotted in (B). It can be observed that the weights are set to either
zero or one as in the histogram.
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Importance of penalization of background pixels with bias

Supplementary Fig. 3.3 Weights of the network when the bias of input neuron
was set to zero. A bias of zero leads to membrane potential of input neurons
representing background pixel to remain at zero. Hence, the weights of input
neurons that were inactive were not depotentiated. The neuron to fire first after
presentation of one image has a higher probability of firing even for other digits
as some pixels overlap.

Sensitivity of the temporal VDSP window on LIF neuron’s param-

eters

Supplementary Fig. 3.4 Impact of the presynaptic LIF neuron’s parameters on
the shape of VDSP. In (A), the presynaptic neuron’s reset potential is changed between -

0.10 and -2, as indicated by the line colour with a fixed presynaptic neuron potential threshold

of 1. This change impacts the potentiation part of the window (tpost − tpre > 0). In (B),

the presynaptic neuron’s potential threshold is changed between 0.10 and 2.0 as indicated

by the line colour, with a fixed presynaptic neuron reset value of -1. This change impacts

the depression part of the window (tpost− tpre < 0). Modifying these two values allows the

tuning of the VDSP learning rule to a desired balance between potentiation and depression.

I.e., for more potentiation, one should decrease the value of vreset and for more depression,

one should increase the value of vth.
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Impact of additive gaussian noise on network performance for 50

output neurons

Low noise Mid noise High noise

(A) (B) (C)

Supplementary Fig. 3.5 In (A), the neuron is excited by the constant input of
magnitude 0, 0.4, and 1 to the input neuron of the MNIST classification network.
Low magnitude noise of gaussian distribution centred around zero is injected to
the input neuron in (A) for a network composed of 50 output neurons. In (B),
the noise of mid-intensity is injected into the input neurons. Similarly, in (C),
the noise of high intensity is injected into the input neurons. All accuracies are
in format Mean ± S.D. resulting from five trials.
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Impact of Poisson sampled input current on network performance

for 10 output neurons

(A) (B) (C)

(D)

Supplementary Fig. 3.6 In (A-C), a LIF neuron was stimulated by Poisson-
sampled spike trains of 0.01, 0.1, and 1 kHz, with constant weight of 0.1 and
bias b. (D) Poisson spikes with a frequency proportional to the pixel intensity of
MNIST images and bias to penalize background pixels were fed to input neurons
of SNN. The network with 10 output neurons was trained with 60,000 training
images from the MNIST database with a maximum input spike frequency of
1kHz corresponding to a white pixel (intensity of 256). In (D), the weight of the
individual output neuron is plotted to visualize the receptive fields at the end
of training with Poisson spikes.
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CHAPTER 4

Learning with memristive synapses

"All models are wrong, but some are useful" – George Box
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4.1 Preface

Contribution to document

The objective of this chapter is to translate the plasticity rule outlined in Chapter 3 into

a practical synaptic device programming strategy. Memristive devices are particularly

appealing as physical synaptic elements due to their non-volatile memory and scalability.

Their scalability is further enhanced when a single device can store multiple resistance

states or weights. Recent advances in memristive technologies, such as valence-change

mechanisms (e.g., Ti and Hf oxide switching layers) and ferroelectric tunneling mech-

anisms, have enabled the demonstration of analog conductance programming in these

devices, allowing for finer control of synaptic weights.

Different switching mechanisms lead to distinct electrical behaviors, such as threshold,

asymmetry, non-linearities, and variability. In this chapter, we present a characterization

and modeling technique to measure programming voltage and state-dependent switch-

ing in response to fixed-width (sub-microsecond) programming pulses. This technique

provides a detailed understanding of how memristive states evolve under rapid electrical

stimuli, which is critical for accurate simulation models. A phenomenological memristor

model is proposed and fitted to enable system-level simulations incorporating the switch-

ing characteristics observed in electrical measurements. Using the model and system-level

simulations that account for variability and parametric analysis, we assess key factors

for learning, particularly the learning rate in SNNs trained with Hebbian learning. This

learning process faces unique challenges due to the interaction of parameters such as spike

timing, pulse amplitude, width, and the frequency of weight updates. To address these

complexities, we propose a scaling factor-based mapping from simulation to hardware.

Additionally, we examine the trade-off between gradual learning, achieved with a low scal-

ing factor (resulting in smaller updates per sample) and learning with higher threshold

mismatch, highlighting the balance between precision and robustness.

The findings of this chapter, particularly the role of the scaling factor and its impact on

the effective learning rate of the network, form the basis for the circuit design of the VDSP

amplifier presented in Chapter 6. When taking into account device-to-device variations in

memristive parameters, the ideal characteristics and programming conditions for synaptic

devices can vary. In the following chapter, we aim to address the key question of how to

fine-tune the parameters of computing and programming circuits based on the modeled

characteristics of memristive devices, such as switching thresholds and asymmetry.
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Résumé

Dans cette étude, nous présentons la plasticité synaptique dépendante du voltage (VDSP)

comme une approche efficace pour l’apprentissage non supervisé et local dans les synapses

memristives basée sur les principes hebbiens. Cette méthode permet l’apprentissage en

ligne sans nécessiter de circuits de mise en forme d’impulsions complexes généralement

nécessaires pour la plasticité dépendante du timing des pics (STDP). Nous montrons com-

ment la VDSP peut être avantageusement adaptée à trois types de dispositifs memristifs



70 CHAPTER 4. LEARNING WITH MEMRISTIVE SYNAPSES

(synapses filamentaires à base d’oxyde métallique à base de TiO2, HfO2 et jonctions tun-

nel ferroélectriques (FTJ) à base de HfZrO4) avec des caractéristiques de commutation

distinctives. Des simulations au niveau système de réseaux neuronaux à pics incorporant

ces dispositifs ont été réalisées pour valider l’apprentissage non supervisé sur des tâches

de reconnaissance de formes basées sur MNIST, obtenant des performances de pointe. Les

résultats ont démontré une précision de plus de 83% sur tous les dispositifs utilisant 200

neurones. De plus, nous avons évalué l’impact de la variabilité des appareils, tels que les

seuils de commutation et les niveaux HRS/LRS, et proposé des stratégies d’atténuation

pour améliorer la robustesse.

Abstract

In this study, we introduce voltage-dependent synaptic plasticity (VDSP) as an efficient

approach for unsupervised and local learning in memristive synapses based on Hebbian

principles. This method enables online learning without requiring complex pulse-shaping

circuits typically necessary for spike-timing-dependent plasticity (STDP). We show how

VDSP can be advantageously adapted to three types of memristive devices (TiO2,HfO2-

based metal-oxide filamentary synapses, and HfZrO4-based ferroelectric tunnel junctions

(FTJ)) with disctinctive switching characteristics—. System-level simulations of spiking

neural networks incorporating these devices were conducted to validate unsupervised learn-

ing on MNIST-based pattern recognition tasks, achieving state-of-the-art performance.

The results demonstrated over 83% accuracy across all devices using 200 neurons. Ad-

ditionally, we assessed the impact of device variability, such as switching thresholds and

HRS/LRS levels, and proposed mitigation strategies to enhance robustness.

Keywords: Neuromorphic, Memristor, Learning, Unsupervised, In-memory computing,

Pattern recognition.

4.2 Introduction

Deploying artificial intelligence (AI) applications on edge computing devices is raising the

challenge of implementing intelligent algorithms with sever constraints on energy consump-

tion, challenge that cannot be fulfilled by conventional technologies such as modern GPU.

One strategy toward this goal is relying on the neuromorphic engineering and computing

framework, which proposes the physical implementation of algorithms with specialized

hardware designed to emulate the human brain’s structure and function. Among the dif-

ferent propositions of neuromorphic devices and circuits, memristors [167, 168] —resistive

devices with programmable conductance— have been considered as emerging memory

devices used to create electronic synapses [235] in AI hardware systems. In neuromor-
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phic architectures, memristors enable the realization of the Vector Matrix Multiplication

function physically through Ohm’s and Kirchoff‘s laws, which reduces significantly en-

ergy consumption and latency of the intensive VMM operation. In addition, memristor

have generated a large interest to implement physically the different learning algorithms

required during training of neuromorphic systems. Learning algorithms used for conven-

tional artificial neural networks (ANNs) mostly rely on backpropagation and have been

widely considered in the context of in-memory computing with memristor with severe con-

straints on memristors’ accuracy (i.e. number of states available during programming),

linearity (i.e. linear change of conductance on the entire resistive range) and variability

[236, 237, 238, 177]. In neuromorphic approaches, and in particular in spiking neural net-

works (SNNs) [21], learning algorithms rely deeply on bio-inspiration and memristors could

offer the additional advantage of local learning by implementing Hebbian principles. For

instance, Spike timing-dependent plasticity (STDP) [42] have been found to be responsible

for plasticity in biological synapses and worth adapting to hardware systems [107]. In such

learning algorithms, change of states of the synaptic conductance depends only on the pre

and post neuron activity and doesn’t require the propagation of global error signals across

the entire network, thus limiting data movement and the associated energy consumption.

Various STDP implementations have considered memristor to implement online learning

in SNN but (i) translation of pre- and post-neuron activity into actual signals promoting

the change of resistance (i.e. learning) is impacting the overall network performances and

(ii) the impact of memristive devices non-idealities is not straightforward to extract and

still largely unexplored with respect to the large variety of memristive devices that could

be considered based on physical mechanisms such as heating [239], oxidation [240, 241],

phase change [242, 243], and ferroelectric domain [244] switching.

In this paper, we propose (i) to adapt a recent extension of STDP to memristive devices

and to evaluate its performances on a relevant classification task. We consider for this

study Voltage Dependent Synaptic Plasticity (VDSP), which uses spike timing and neu-

ron membrane potential as a representation of pre and post neuron activities. Such local

learning algorithm has been proposed recently as an interesting solution to solve the strong

dependency of STDP to the range of frequency in SNNs and to ease the physical imple-

mentation by reducing the number of local parameters to be stored. (ii) We further analyse

the impact of memristive devices properties on the performances and resilience of VDSP.

We consider three distinctive technologies with different switching dynamics associated to

different physical mechanisms originating the change of resistance. TiO2 and CMO-HfO2

are representative of valence change memory devices where oxygen vacancies are responsi-

ble for resistive switching and HZO represents the more recent class of ferroelectric tunnel
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junctions where ferroelectric domains are defining the resistive states. These choice of the

device stack was motivated by their CMOS-compatible fabrication process [26, 245, 246]

for back end of line (BEOL) integration. All three device can present analog change of

resistance that could be advantageously used for online learning implementation, but with

different relationship in between driving signals and devices’ response (i.e. voltage driven

resistive change in our case). We show in this paper how VDSP parameters can be adjusted

to each technology by combining electrical characterization of the different technologies

and electrical modeling. While individual technologies evaluation is often reported and

can limit the generalization of the impact of device non-idealities on learning, we show

here for three technologies how important switching characteristics such as variation in

switching threshold and range of resistance changes can affect the performances of VDSP.

Several works have proposed implementation of STDP with memristive devices [247].

In these approaches, temporal correlation in between pre- and post- neuron events can

be advantageously translated into voltage with pulse overlapping technique [214]. This

technique enables the implementation of online learning in various memristive device tech-

nologies and has been proven efficient for unsupervised pattern learning and circumventing

known issues of variability and stochasticity in memristive devices [215, 248]. Nevertheless,

such pulse-overlapping method for temporal correlation detection faces challenges since the

duration of the programming pulse is directly related to the time window for detecting

the correlated spikes. When implemented into circuits, long pulses come with trade-offs

such as reduced analog control, increased energy consumption for programming, and lower

throughput. Additionally, if complex pulses (i.e. with exponential decaying function) can

translate time distance in between the pre and post events into a large range of voltages,

such pulses engineering is associated to complex voltage sources design that need to be

adapted to each different learning algorithm and memristive technology, thus preventing

a general circuit design approach.

From a system level perspective, conventional STDP requires to store locally at the pre

and post neuron level the timing of the last emitted spike (note that pulse overlapping

techniques are circumventing this issue by storing the pulse timing into the synaptic pro-

gramming voltage). Strategies to reduce the local memory requirement have been proposed

with neuron-state-dependent synaptic plasticity for CMOS synapses [121]. These learning

rules, known as spike-driven synaptic plasticity (SDSP) [249], or single-spike STDP, use

the membrane potential of the post-synaptic neuron and an extra calcium concentration

variable associated with the rate of spike of the post-neuron to modulate the synaptic

weight during a pre-synaptic spike, thus reproducing Hebbian learning concept. VDSP
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[201, 250] employ a similar strategy by extracting the probability of pre-neuron firing

from the neuron membrane potential. This approach further reduces the memory re-

quirement by removing the calcium concentration memory block, while still maintaining a

high-performing network, as demonstrated through recognition rates of handwritten digits

obtained through unsupervised learning.

In the following, we first introduce the theoretical framework for implementing VDSP in

analog memristive synapses. We propose a device characterization approach that models

the programming behavior as a function of the applied voltage and the current device

state. This behavior is used to fit a standard memristor model, allowing us to quantify key

switching properties such as the switching threshold and nonlinear characteristics. Next,

we discuss the mapping from device characteristics to simulation and outline the SNN

simulation setup. Performance is incrementally evaluated based on key factors, including

the number of output neurons, training samples, and learning epochs. Finally, we examine

the impact of device variation and present hardware strategies to mitigate performance

degradation, showing improvements by a significant margin.



74 CHAPTER 4. LEARNING WITH MEMRISTIVE SYNAPSES

4.3 Results

4.3.1 Voltage-dependent switching of memristors
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Figure 4.1 Schematic representation of the VDSP learning rule implemented
in a memristive synapse between a pre- and postsynaptic spiking neuron. a

Theoretical framework of VDSP in determining the causality of pre- and post-neuron spike

events. The synapse is potentiated when the post-neuron spikes after the pre-neuron, and is

depressed when the pre-neuron spikes following the post-neuron spike event. b Cumulative

long term potentiation/depression (LTP/LTD) plot obtained with the response by pulses of

positive polarity to show LTP and fixed magnitude followed by ones with negative polarity

to induce LTD. DC sweeps (I-V) characteristics loops for all three devices is shown below.

c Regions for long-term potentiation (LTP), long-term depression (LTD), and no update

(NU) are based on voltage-regulated, threshold-dependent memristor switching. Schematic

representation of VDSP for memristor programming. d Circuit-level depiction of VDSP on

a single memristive synapse. The output from the post-synaptic neuron controls the switch

between the inference and weight update phases. In, Mem, and Out represent the input

terminal, membrane potential, and output terminal respectively for pre- and post-synaptic

neuron.

Synaptic memory, based on Hebbian learning principles, captures the history of causal and

anti-causal spike pairs between the pre-neuron and post-neuron. Using voltage-dependent

synaptic plasticity (VDSP), the recent activity of the pre-neuron can be inferred from

the neuron’s membrane potential. A low membrane potential corresponds to a recent

firing event, while a high membrane potential signals an imminent spike, as illustrated
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in Figure 4.1a. This learning mechanism is translated into the programming strategy for

memristors, where synaptic conductance modulation is stored as a function of the history

of applied voltages during successive spiking events.

In memristive devices, switching is primarily controlled by the programming voltage ampli-

tude and duration. The distinctive current-voltage (I-V) characteristics (pinched hysteresis

loop) of the three devices are shown in Figure 4.1b (top panels). In bipolar memristive

devices, the hysteresis loop evidences the High Resistance State (HRS) and Low Resis-

tance State (LRS) achieved after applying a voltage of opposite polarity. HRS and LRS

define the switching range of the device in its binary regime. All three devices show very

distinctive I-V hysteresis signatures that are linked to the physical mechanisms involved

during switching. In oxide-based memristive devices, such behavior is intimately linked

to the balance between drift and diffusion [251] and results in different voltage-resistance

dependencies. In ferroelectric devices, switching dependency is associated with nucleation

mechanisms in ferroelectric domains that govern the resistance states of the tunnel junc-

tion [244, 252].

Figure 4.1b (bottom) illustrates how switching can be controlled in an analog way when

the programming voltage is applied as a sequence of pulses. The gradual change of con-

ductance during the increase of resistance (LTD) and decrease of resistance (LTP) can be

advantageously used to implement online learning. In this example, LTP and LTD are ob-

tained with constant amplitude pulses, and the transitions evidence the cumulative effects

that can be obtained by adjusting only the pulse duration. This scenario (i.e., gradual

switching through cumulative effects of identical pulses) is the most straightforward way to

implement learning in ANNs and SNNs, as each learning event can be associated with the

application of a single pulse without adapting the pulse shape, and actual learning results

from the repetition of the same learning signal. More complex situations occur when both

pulse amplitude and pulse duration can be modulated during the learning signal, with the

benefit of a larger dynamic range of programming and a higher number of states available

[24].

From Figure 4.1b (bottom), all three technologies present different signatures in their

analog regimes that can be further analyzed in terms of the number of states available,

linearity of the transition, and min/max resistance states. For instance, implementing

online learning in ANNs would favor the highest number of states between the HRS and

LRS, the most linear transition, and the least variability between the HRS and LRS of

different devices to map the backpropagated error signal with the highest accuracy. In the

context of SNNs, the impact of these parameters is less clear and needs to be evaluated for
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each learning scenario. For example, conventional STDP could translate the magnitude

of the LTP/LTD into different pulse durations [253] or a combination of pulse duration

and pulse amplitude [254].

VDSP relies on the internal membrane voltage parameters as a probability of a spike

being correlated or anti-correlated. The magnitude of the pre-neuron membrane voltage

potential is directly associated with the magnitude of the learning signal when a post-

synaptic spike is emitted. Figure 4.1c illustrates how the membrane voltage potential of

the neuron can be translated into a programming voltage of the memristor. The neuron’s

membrane potential, which lies between the threshold (Vth) and reset potential (Vrst),

can be mapped to the min/max voltage applied to the memristor, respectively. Such

mapping results in a non-switching region for small voltages (when events are not strongly

correlated) and LTD/LTP events when the voltage is above/below the switching threshold

of the memristor.

This solution greatly simplifies the programming scenario and offers two main advantages

for online learning implementation: (i) The membrane potential of the neuron can be

converted into sub-microsecond pulses for memristor programming while capturing spike

coincidences over millisecond-long windows based on the membrane potential time con-

stant. Using short pulses allows for more precise analog control of memristor conductance

switching and reduces energy consumption. (ii) Since the neuron’s membrane potential

provides a range of programming voltages, it can fully utilize the entire conductance range

of the devices. This contrasts with fixed voltage pulse programming, where the ON/OFF

ratio is often compromised to achieve gradual conductance modulation.
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4.3.2 Electrical characterization

a

b

d

c

Figure 4.2 Device characterization protocol, stack, and switching behavior. a

The characterization protocol involves applying write pulses of random amplitude with a

constant pulse width, followed by read pulses. b The device stack for the three characterized

devices includes metal top and bottom electrodes and switching oxide layers in between. c

Weight change (∆W ) in relation to the applied programming pulse (Vpulse) and the initial

weight (W0) for the three device stacks: T iO2, HZO, and CMO-HfO2, from left to right. d

Final weight (Wf ) as a function of the applied voltage (Vpulse) and initial weight across the

investigated device stacks. Histograms in (c) and (d) represent the change of weight and final

weight, respectively, for the entire pulse protocol.

A specialized electrical characterization protocol was developed to characterize and model

the voltage-dependent switching behavior. The dynamics of this switching were evaluated

by applying short pulses (200ns or 1µs) at different voltage levels randomly distributed

between Vmin and Vmax. Between each write pulse, the device’s resistance was measured

with a low-magnitude reading pulse. Using a random sequence helps to explore simulta-

neously the contribution of voltage amplitude and the impact of the initial state, as initial

states are, in principle, randomly generated during the overall sequence. The weight

change (∆W ) is plotted as a function of the applied voltage (Vpulse) and the initial weight

(Wo) for the three device stacks (Figure 4.2c). The weight (w) represents the normalized

conductance of the device and is calculated as follows:
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w =
g − gmin

gmax − gmin

(4.1)

Where gmin and gmax represent the conductance in the HRS and LRS, respectively. His-

tograms in Figure 4.2c show the cumulative count of ∆W over the entire experiment.

For the three devices, the highest probability of ∆W is centered around 0, which can

be attributed to the absence of switching when voltages are below the SET and RESET

threshold voltages (i.e., dead zone). Here SET refers to the process of switching the mem-

ristor to a low-resistance state (w=1), while RESET switches it to a high-resistance state

(w=0). TiO2 memories exhibit a more uniform distribution of weight change values com-

pared to HZO and CMO-HfO2, highlighting that this technology presents a more gradual

switching for the given pulse amplitude and pulse duration chosen during the protocol

(i.e., HZO and CMO-HfO2 could present a more gradual switching if these parameters

are modified, as evident in Figure 4.1b). In this work, we fixed the protocol for the three

technologies to favor different device responses, which will be evaluated using the VDSP

learning algorithm.

Asymmetries in the histograms also reveal that LTP and LTD are not equivalent, and that

HZO shows a more gradual RESET transition while CMO-HfO2 shows a more gradual

SET transition. This effect is captured by the steepness of the transition below/above the

negative/positive threshold in the heat map representation.

Figure 4.2d presents the final weight reached after a write pulse programming event, and

the histograms present the cumulative count of the final weight. TiO2 shows an overall

homogeneous distribution of weight achievable during the protocol, while HZO and CMO-

HfO2 show a more asymmetric distribution. HZO tends to reach the LRS more often,

while CMO-HfO2 tends to reach the HRS more frequently. This is consistent with the

asymmetry in ∆W observed in Figure 4.2c.
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4.3.3 Device modeling

a

b dc

LTP LTD

Figure 4.3 Model fitting. a 3D visualization of the modeled ∆W is shown as a surface

plot against the applied voltage (Vpulse) and the initial weight (W0). Characterization points

for the T iO2, HZO, and CMO-HfO2 devices are also presented. b The impact of fitting

parameters θ (left) and α (right) illustrates the variation in memristive switching threshold

and curvature, respectively. Both plots show the change in weight as a result of a single

voltage pulse, with W0 = 0.5. c Cumulative potentiation/depression plot obtained from 50

pulses of positive polarity (LTP) followed by pulses of negative polarity (LTD). The resultant

curve of final weight with respect to three values of γ is shown to illustrate the non-linearity

fitting. d Fitted model parameters for the three device stacks.

We subsequently model the voltage-driven modification of the memristor’s weight for var-

ious initial conditions and programming pulse magnitude. The alteration in weight (∆W )

is represented as the product of a switching rate function f dependent on the applied

voltage v and a window function g dependent on the weight W :

∆W = f(v) · g(W ) (4.2)

f(v) =

8

<

:

e−αp·(v−θp) − 1 if v < ✓p

eαd·(v−θd) − 1 if v > ✓d

(4.3)

Where ↵p and ↵d are exponential curvature fitting parameters for potentiation and depres-

sion, v is the applied voltage, and ✓p and ✓d are the threshold voltages for memristive device

switching for potentiation and depression, respectively. The window function Equation 4.4
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describes the dependence of the weight change on the initial state (w) and is responsible

for the multiplicative effect during cumulative switching events.

g(W ) =

8

<

:

(1− w)γp if v < ✓p

wγd if v > ✓d

(4.4)

Where �p and �d are the non-linear fitting parameters for potentiation and depression.

This non-linearity implies that a particular voltage pulse has a diminished impact on the

device’s conductance when applied multiple times.

The model parameters for different resistive and ferroelectric memristive devices are com-

pared in Figure 4.3d and presented in Table 4.1. The 3D representation with data points

from the characterization and model is compared in Figure 4.3a to depict the model’s

accuracy (a 2D representation of model behavior on characterization points is shown in

Supplementary Figure 4.1). The model effectively captures device behavior and allows for

quantitative metrics such as threshold, curvature, and state dependence. The effect of ✓

and ↵ on ∆W is shown for Wo = 0.5 in Figure 4.4b.

Next, to examine the state dependence, programming was performed using 50 LTP pulses

of +1V followed by LTD pulses of -1V, as illustrated for three values of �. Note that

all the center lines in the three plots correspond to the fitted parameters for TiO2. In

Figure 4.4d and Table 4.1, all parameters (✓, ↵, �) are compared for the TiO2, HZO, and

CMO-HfO2 devices.

Device ↵p ↵d vthp vthd �p �d HRS (Ω) LRS (Ω) RMSE scpd
TiO2 0.678 0.762 1.432 1.563 1.68 1.583 15k 2k 0.047 1.057
HZO 1.159 0.549 0.411 0.387 1.067 1.684 45M 17M 0.041 1.2

CMO-HfO2 0.96 1.27 0.8 0.85 1.017 0.5 4k 1k 0.0141 1

Table 4.1 Model parameters for TiO2, HZO, and CMO-HfO2 devices along
with the high resistance state (HRS) and low resistance state (LRS). Addition-
ally, the table presents the root mean square error (RMSE) of ∆W , comparing
characterization data with model predictions.

In particular, the TiO2 device has the highest ✓, implying a high switching threshold.

This suggests a wide dead zone and a high SET/RESET voltage requirement. The ↵p

is, however, the lowest, implying a gradual dependence on weight change by increasing

the SET voltage. The ↵d is lower, pointing toward the fact that RESET is better con-

trolled by voltage than SET. Finally, the �, or state-dependent non-linearity, is highest in
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these devices. Previous studies have reported these behaviors [255], and they can also be

observed in Figure 4.1b.

HZO exhibits the lowest ↵d, implying that LTD is most gradual with respect to volt-

age (slightest curvature). The ↵p is, however, twice the value of ↵d, signifying a strong

asymmetry in voltage-dependent switching. Finally, �d shows a strong asymmetry: state-

dependent non-linearity is more evident in LTD. Such behaviors can also be observed in

the IV sweep and LTP/LTD plots shown in Figure 4.1b, highlighting that the memris-

tive device model strongly correlates with the known device behaviors. For CMO-HfO2

devices, � is the lowest compared to the other two devices, signifying linear multi-level

programming, which is also evident in Figure 4.1b. The ↵ has a higher LTD value than

LTP, similar to TiO2: gradual weight change occurs with increasing reset voltage. �d is

smaller than �p, indicating that RESET is more linear than SET. However, it is important

to note in this parametric model that different sets of parameters could explain the same

switching response for a device. For instance, as per Equation 4.3, ↵ and ✓ have an inverse

relationship, where a higher value of ↵ can still fit the data points with a low error rate if

✓ is lowered accordingly.
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4.3.4 SNN benchmark
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Figure 4.4 MNIST benchmark and simulation-device mapping in SNN. a The

input LIF neurons integrate a constant input current based on pixel values to implement rate-

encoding. b Each neuron receives input from the individual pixels of a 28x28 image and is fully

connected to N output neurons through memristive synapses. c A raster plot for a network

comprising 10 neurons illustrates the response to 10 sample inputs. The red-dotted vertical

line distinguishes between different samples. d (left) The LIF neuron’s membrane potential

and spikes under constant stimulation input. (right) Weight change (∆W ) versus applied

voltage. The scaling factor (sf) and switching thresholds (θ) are used to map the neuron

membrane potential to the memristive device programming window. Long-term potentiation

(LTP), long-term depression (LTD), and no update (NU) can be adapted to the memristive

device requirements.

In order to assess learning capabilities, we conducted training on a Spiking Neural Net-

work (SNN) using the MNIST dataset to recognize handwritten digits. In this method, we

supplied the input pixels as constant currents to the encoding layer (refer to Figure 4.4a),

where the Leaky Integrate-and-Fire (LIF) neurons convert the image’s pixels into spike

trains with frequencies proportional to their respective intensities. Additionally, we intro-

duced Gaussian noise into the input pixels to induce stochastic sampling of the membrane

potential (and thus programming voltage) during weight update events. This means that

pixels receiving active input undergo different degrees of weight update magnitude. This
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enhances the realism of the evaluation by accounting for environmental noise and fluctu-

ations in process temperature in encoding circuits, and also replicates the stochasticity

observed in biological systems (Poisson distributed spikes).

These spikes are weighted by the memristive synapse (Figure 4.4b) and integrated by

neurons in the output layer. The neurons in the output layer are connected through a

winner-take-all (WTA) topology, which leads to only one active output neuron at a given

instance, corresponding to the network’s decision, as shown in Figure 4.4c. A detailed

description of the neuron model, training/evaluation procedure, and hyper-parameters is

provided in the Methods section.

A scaling factor (sf) is used to tune the actual voltage applied to the memristor so that it

matches the operational range of the memristive device. This factor essentially translates

the computing signals (in the form of membrane potential) into the appropriate voltage

levels that a memristor requires for switching. The relationship between these parameters

can be expressed as follows:

Vprog = V mem · sf · ✓ (4.5)

In this equation, the programming voltage (Vprog) is the product of the neuron membrane

potential (Vmem), the memristor’s fitted threshold value (✓), and the scaling factor (sf).

Figure 4.4d captures the impact of the memristive threshold and scaling factor on the

temporal response sensitivity of VDSP, i.e., the time window in which a post-synaptic

spike could occur for the synaptic weight to change. In particular, if a postsynaptic spike

occurs between tpre1 and tpre1+⌧pot, the synapse will experience potentiation. On the other

hand, a postsynaptic spike that occurs between tpre2 and tpre2−⌧dep will lead to depression.

These areas of LTP and LTD depend on whether the programming voltage would be able

to surpass the memristive switching threshold. Since the programming voltage depends on

the membrane potential, ✓, and scaling factor (shown in Equation 4.5), the scaling factor

directly influences the regions of LTP and LTD, thereby affecting the temporal sensitivity

window of VDSP. For instance, a lower scaling factor would necessitate a higher membrane

potential for the programming voltage to exceed the memristive switching threshold. As a

result, the pre-neuron must be closer to firing, leading to a shorter time difference required

between the pre- and post-neuron spikes to induce a weight change.

In the case of VDSP, the degree of change in weight in response to a single training sample

depends on (i) the number of update instances, which depends on the spiking frequency

of the output neuron, (ii) how many update instances fall into the LTP/LTD regions, and
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(iii) the magnitude of weight change defined by the fitted parameters of the memristive

model. The first is tunable by changing sample presentation duration, leak rate, and the

threshold of output neurons, i.e., the network hyper-parameters. The second and third

depend on the scaling factor and the fitted parameters or physical switching characteristics

of the memristive devices. Thus, it is essential to adjust the scaling factor for both the

memristive device and the classification problem.

a b

c

Figure 4.5 MNIST benchmark results. a The test accuracy is shown as a function

of the network size, indicated by the number of output neurons, for all three devices. The

network was trained with three epochs of the MNIST dataset, and the average and standard

deviation from five experiments with different initial weights are represented as error bars.

b Performance evolution of the network based on the number of training samples used, for

networks with 10, 50, and 500 neurons. The results correspond to the T iO2 fitted model.

c The weight plots and histogram after training are displayed for a network comprising 50

neurons.

The training subset of the MNIST database was used to perform unsupervised learning

and evaluation for SNN for up to three epochs. Figure 4.5a illustrates the resulting per-

formance for networks with 10 to 500 output neurons, trained with three epochs of 60,000

MNIST samples. For a network of 10 output neurons, the recognition rate was 60%,

which increased to more than 88% for a network of 500 neurons. In addition, to evaluate

incremental learning, a network of 10, 50, and 200 output neurons was trained up to a

single epoch, and the labels were assigned by presenting 10,000 unseen digits from the

remaining dataset. The experiments were carried out for five different initial conditions

(weights), and the average and standard deviation are shown as error bars in Figure 4.5b.
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A similar analysis for incremental learning with HZO and CMO-HfO2 device parameters

is illustrated in Supplementary Figure 4.4 and Supplementary Figure 4.5.

Larger networks allow for the learning of receptive field areas (inspired by neuron selectivity

in neural cells [256]) or distinct features for each class [93]. In other words, non-overlapping

representations are essential to distinguish numbers with overlapping characteristics, such

as the vertical line of one and nine. For example, the learned weights of a network of 50

output neurons are shown in Figure 4.5c, where complementary representations of each

class can be seen. Competitive learning [257] was implemented using the winner-take-

all (WTA) mechanism in the neurons of the output layer to learn such complementary

features. In addition, the histogram of the network’s weights at the end of training shows a

bimodal distribution (Figure 4.5c), resulting from soft clipping due to the state-dependent

multiplicative component of the VDSP update function. This clipping, a known non-

linearity [258] of the memristive transition during repeated LTP/LTD programming, as

shown in Figure 4.1b and is beneficial for online learning as it promotes stable learning

without forgetting previously learned patterns [259].

Table 4.2 compares the performance with previously reported works, showing that HZO

exhibits the highest performance, followed by TiO2 and CMO-HfO2. In sum, the learn-

ing efficiency of VDSP for all three devices is equivalent to or superior to their STDP

counterparts. All the network parameters, such as the degree of noise, leak rate of input

neurons, threshold, and output neurons, were optimized through the TiO2 device model

for a network of 10 output neurons. Only the scaling factor for LTP and LTD was opti-

mized through grid search (sfp, sfpd) for the three devices and number of samples in the

incremental training experiment, with the optimized values plotted in Supplementary Fig-

ure 4.2. The sf plays a similar role to the learning rate in ANNs as it regulates the degree

of weight change.

It is essential to highlight that, unlike classical machine learning optimizations and gradient-

based learning in ANNs, the notion of learning rate is not trivial in SNNs, specifically in

cases of unsupervised local online learning where there is no batch processing. The magni-

tude of the weight change depends on the difference in spike times between the presynaptic

and postsynaptic neurons. The choice of learning rate is critical to avoid local minima or

continuous oscillations, as a sub-optimal rate slows learning and hinders convergence. On

the other hand, a higher learning rate can cause instability in weights, lead to forgetting

previously learned information, and make convergence difficult.
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4.3.5 Impact of device variations

b c

d

a

Figure 4.6 Impact of device-to-device variability in switching threshold. a The

switching thresholds (θ) for the 784x200 synapses are sampled from a normal distribution

centered on the fitted model parameter. The relative standard dispersion, represented as σ

µ
,

varies and is noted as RSDθ. b The resulting accuracy is shown for three distinct values of sf

for T iO2 device parameters. (Note that the other two devices follow a similar trend, as illus-

trated in Supplementary Figure 4.4 and Supplementary Figure 4.5. c A detailed grid search

of sf and RSDθ was conducted, and the resulting average accuracy over ten experiments is

displayed as a 2-D heatmap. d Plots of device characteristics depicting ∆W versus Vpulse to

demonstrate the variability effects for three σ

µ
levels: 0.1, 0.2, and 0.5 (arranged from left to

right).

The SET/RESET voltage or the switching threshold of memristive devices varies from

device to device, particularly in the case of analog switching. The corresponding memris-

tor model parameter (✓) is sampled from a normal distribution, with the mean centered

around the fitted parameter and a relative standard deviation (RSD) that was incremen-

tally changed to study its impact on the device’s behavior. RSD is defined as the ratio of

the standard deviation to the arithmetic mean of a normal distribution (σ
µ
). A histogram

of sampled threshold distribution for different values of RSD is shown in Supplemen-

tary Figure 4.3. Figure 4.6a illustrates how network performance is affected by different

degrees of threshold variability for a neural network with 200 output neurons using model

parameters from three different devices. As the RSD increases, the performance of the

network degrades. For the TiO2 device, with 20% variability in the switching threshold,

the performance of 82% drops to 56%. The corresponding fitted parameter (✓) threshold

of these devices was 1.4V and 1.5V for LTP and LTD, respectively. A similar analysis

was conducted for the HZO device (see Supplementary Figure 4.4), and its performance
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dropped to 68%. These FTJs have the lowest thresholds, around 0.4V, but the highest ↵

or curvature. The achievable conductance range in ferroelectric devices is strongly corre-

lated with the magnitude of the programming voltage. Therefore, a greater scaling factor

could be used, as detailed in Supplementary Figure 4.2. The low switching threshold

makes STDP implementation with pulse overlapping challenging. The pulse overlapping

technique requires transmitting spikes through sub-threshold pulses for non-destructive

reading; thus, the maximum programming voltage for LTP/LTD is limited to twice this

threshold.

The scaling factor is a crucial parameter that determines the probability of switching

in memory devices. A baseline value of 1.05 prevents devices with a higher threshold

from switching, limiting the number of devices that can synapse to learn. To accommo-

date threshold variations and increase the number of such devices, a larger scaling factor

should be used. In Figure 4.6b, it is demonstrated that a high scaling factor of 1.2 keeps

performance stable, with only a slight decrease from 71% to 68% when the variability is

20%. On the other hand, a scaling factor of 1.05 achieves a performance of over 82%

without considering device mismatch. However, when variability is introduced, the per-

formance drops to less than 60%. This highlights the importance of selecting the right

scaling factor to maintain strong performance, especially in the presence of variability.

The use of a high scaling factor can help reduce performance drops caused by variability,

but it can also hinder generalized learning that utilizes the entire dataset. This creates

a trade-off between stability and learning precision. A high scaling factor increases the

magnitude of the programming voltage, leading to a greater weight change magnitude for

each update. However, when training with a dataset like MNIST, the goal is to gener-

alize over all the training samples and learn incrementally from each sample. Therefore,

it is crucial to regulate the impact of each training sample on the weights, which can be

achieved by reducing the scaling factor. A parametric sweep between RSD and sf, shown

in Figure 4.6c, further illustrates how different scaling factors impact device performance.

Additionally, Figure 4.5d plots the influence of threshold mismatch on the switching func-

tion of the devices for different variabilities in switching parameters. These results are

based on the TiO2 model parameters, with similar trends observed for the other two

device stacks (CMO-HfO2 and HZO), as shown in Supplementary Figure 4.4 and Supple-

mentary Figure 4.5. This consistency across different materials highlights a generalizable

behavior of the scaling factor for accommodating the threshold mismatches across multiple

resistive memory devices. In summary, even with 50% variability, the performance across

all three devices remains above 45%.
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a b c

Figure 4.7 Impact of device-to-device variability in HRS and LRS levels. a The

HRS and LRS for the 784x200 synapses are sampled from a normal distribution, centered on

the fitted model parameter. The relative standard dispersion, represented as σ

µ
, varies and is

noted as RSDθ. The resulting accuracy is shown for three devices. b The impact of HRS is

isolated and evaluated. c The impact of LRS is isolated and evaluated. Each experiment was

repeated with ten different initial conditions, with the lines and shades depicting the mean

and standard deviation of measured accuracy.

The impact of variations in both the low resistance state (LRS) and high resistance state

(HRS) on a 784x200 synaptic network was analyzed (Figure 4.7). Device-to-device vari-

ability was simulated by sampling the HRS and LRS of each synapse from a normal distri-

bution centered around the measured device values. The standard deviation (RSDHRS or

RSDLRS) of these distributions was adjusted to investigate its effect on the network’s recog-

nition accuracy. Both HRS and LRS were sampled simultaneously from their respective

distributions (Figure 4.7a). To further differentiate the effects of HRS and LRS individu-

ally, Figure 4.7b presents the impact of variability in HRS, while Figure 4.7c presents the

effects of LRS mismatch (RSDLRS) on the network’s performance.

TiO2-based memories demonstrated the highest resilience to variations in both high and

low resistance states, as illustrated in Figure 4.7a, followed by CMO-HfO2 and HZO.

This resilience trend aligns with their measured resistance ranges (Table 4.1), where TiO2

exhibits the highest ON/OFF ratio of 7, followed by CMO-HfO2 and HZO, with their

corresponding ratios being 4 and 3, respectively. TiO2 and CMO-HfO2 appear unaffected

by HRS variations (Figure 4.7b), likely due to their larger ON/OFF ratios. In these

devices, the HRS states (with weight parameter w = 0) have minimal influence on the

activity of the subsequent layer, which reduces performance sensitivity. However, when the

HRS approaches the LRS, the HRS can affect the output neuron’s activity, a critical factor

in weight updates for VDSP. As such, significant HRS variability can degrade performance

in devices with smaller resistance ranges. Lastly, Figure 4.7c reveals that all three devices

are equally affected by variations in LRS. However, the maximum accuracy drop with

20% variation in LRS is less than 10%, underscoring the system’s robustness against
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device mismatch. This demonstrates the relative insensitivity of LRS variations compared

to HRS, particularly in devices with larger resistance ranges.

Ref Device Circuit Architecture Plasticity Accuracy
[217] PCM 8-R Multicell 784x50 STDP 70%
[260] PCM 2-R Differential 784x350x10 Supervised 80%
[261] MTJ 1-R 784x[100]100 Stochastic STDP 70%
[218] HfOx/TaOy 1T1R 784x50 STDP 75%
[262] 2D h-BN 1R 784x500 STDP 68%
[263] PCM 6T2R 724x500 STDP 73.6%
[264] Ag/Si ECM 1R 784x50 Simplified STDP 80%

This work TiO2 1R 784x50 VDSP 79%
This work HZO 1R 784x50 VDSP 81%
This work CMO-HfO2 1R 784x50 VDSP 78%

Table 4.2 Comparison of the current study with previous memristive-based
online learning benchmarks with MNIST. Different device technologies, includ-
ing Phase change (PCM), Magnetic tunnel junction (MTJ), and electrochem-
ical metallization (ECM) with circuit configurations, are tabulated for classic,
stochastic, and simplified versions of STDP with respective network architec-
tures.

4.4 Discussion

4.4.1 Device-Specific Switching Dynamics

There are two types of switching that we observe. The first type involves a pulse of

the same magnitude and pulse width that causes the device to transition between differ-

ent conductance states. This is also known as cumulative switching, and it is exploited

by STDP for online learning. The transition is non-linear, and the magnitude of weight

change reduces when moving to the boundary. The second mechanism shows that the con-

ductance state strongly depends on the switching voltage or pulse width. By adjusting the

programming voltage level, we can expand the boundaries of switching voltage. The three

devices exhibit different degrees of cumulative or voltage-dependent switching in LTP or

LTD, depending on the dynamics of underlying mechanisms like oxidation, filament rup-

ture, or ferroelectric domain switching. Some processes are self-limiting, allowing robust

control, while others are not and lead to abrupt behaviors. For instance, (i) in TiO2,

the SET process involves slower drift of oxygen vacancies [265] and is more gradual or

cumulative in comparison to the RESET process which involves conductive filament melt-

ing. These resistive devices often experience noisy switching due to variability in oxygen

vacancy migration [266, 267]. They have a high ON/OFF ratio, so the learning is resilient

to variations in the ratio. (ii) In HZO-based FTJs, the SET process tends to be more
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abrupt compared to the RESET process, which is typically gradual and exhibits better

linearity [268]. (iii) CMO-HfO2 devices often display variability in resistance states (HRS

and LRS) due to random oxygen vacancy movements, and exhibits more granularity in

potentiation over depression [251]. VDSP-based learning effectively mitigates differences

in device parameters, leading to similar MNIST test-set recognition rates despite the dis-

tinct parameter combinations exhibited by the devices due to different underlying physical

mechanisms of switching. Scaling factors and the asymmetry in the scaling factor can be

tuned with respect to the device threshold and asymmetry in switching dynamics. This

scaling factor is a important determinant of network’s learning rate. There exists a trade-

off between gradual weight updates with a low scaling factor and abrupt updates with

a higher scaling factor. While high scaling factor improve resilience to variations in the

device’s switching threshold, gradual updates help the model generalize better by learning

incrementally from each sample.

4.4.2 Programming Strategy and Variability

Resistive memories exhibit significant variability when scaled down due to the resolution

limits of semiconductor patterning techniques and variations in fabrication parameters.

This variability causes each device to exhibit slight differences in performance. These

variations pose particular challenges in analog computing, complicating precise and accu-

rate programming. In the case of SNNs with memristive weights, this variability directly

affects the synaptic learning process, as different devices may exhibit different switching

thresholds and ON/OFF states. This inconsistency makes it difficult to reliably program

the desired resistance states across all devices, ultimately impacting the overall perfor-

mance and accuracy of the network. One approach is to map the device’s switching

characteristics onto the learning algorithm, including its threshold voltages and asym-

metric response to programming pulses. This requires selecting an appropriate learning

rate to adjust synaptic weight updates, compensating for device variations. Fine-tuning

network hyperparameters, such as the scaling factor that links neuron membrane po-

tential to memristive programming voltage, ensures robust learning. By adapting these

scaling factors to account for different switching thresholds, we show that the network

can maintain reliable performance despite device variability. This robustness is driven

by two key factors: the application of online learning and the advantages provided by

VDSP. Firstly, it is well-established that the challenges posed by variability and noise in

memristive devices can be mitigated through online learning strategies [248]. Through

continual adaptation, online learning enables the system to overcome fluctuations and in-

consistencies inherent to the hardware. Device behaviors like gradual switching, which

allows for fine-grained adjustments to synaptic weights, can mitigate the effects of vari-
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ability. Additionally, devices with a broader range of conductance states can support more

precise weight changes, reducing the impact of any single variation. For instance, memris-

tors with cumulative switching, where the conductance increases gradually with repeated

pulses, tend to be more resilient to slight variations in pulse width or amplitude, providing

a built-in mechanism for error correction. Secondly, and perhaps more crucially, VDSP

principles enhance resilience against device mismatch. In traditional STDP implementa-

tions that use pulse overlapping techniques, the amplitude and width of the programming

pulses must be carefully adjusted based on the characteristics of the synaptic device. Fur-

thermore, the programming pulse width is tailored to meet the specific requirements of

the Hebbian learning window, ensuring that spike correlations occur within the window to

induce synaptic changes. However, VDSP simplifies this process by utilizing a continuous

physical quantity—namely, the neuron membrane potential—amplified and directly ap-

plied for synaptic programming. A higher-than-necessary amplification factor ensures that

even mismatched memristors with high switching thresholds are programmed successfully.

Additionally, noise originating from the input layer—whether from the encoding circuit

or environmental sources—contributes to the membrane potential and, consequently, the

programming voltage. This added noise, combined with variability among memristors, in-

troduces a stochastic element into the learning process. This randomness allows for finer

weight adjustments, which can smooth out inconsistencies due to device mismatch and

improve learning accuracy.

4.4.3 Conclusion

This article addresses designing and tuning computing circuits based on memristive de-

vice characteristics and demonstrates neuron state-based online learning with VDSP. This

method is local in space and time, as it requires the application of the instantaneous

analog membrane potential of the pre-synaptic neuron. The learning process does not

require complex pulse-shaping circuitry and models the classical exponential dependence

of weight change on the difference in spike time between pre- and post-synaptic neurons.

The slow neuron dynamics enable the memristive device to adapt its conductance based

on the frequency and timing of spikes, responding to changes in membrane potential. This

coupling is essential for enabling long-term potentiation and depression (LTP and LTD)

in a bio-realistic manner. By combining the slow dynamics of neurons (voltage over time)

with the voltage-dependent switching of memristors, we can achieve learning with a bio-

realistic time scale using sub-microsecond programming pulses. Using short pulses saves

power, increases endurance, and improves learning due to controlled switching. Limiting

the pulse width reduces the energy consumed during each programming event, partic-

ularly in large-scale neuromorphic systems where energy efficiency is critical. Shorter
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pulses also decrease wear on the devices, enhance their endurance, and offer more precise

control over weight updates. We characterized and modeled two resistive devices and a

ferroelectric memristive device, each exhibiting distinctive switching behaviors. The char-

acterization of voltage-dependent switching behavior was achieved by applying pulses of

random voltage magnitude. Different devices exhibit properties such as switching thresh-

old, non-linearity, and variability. A generalized model was proposed to describe resistive

switching as dependent on the magnitude of the applied voltage and the resistance state

of the device, with the fitted model closely resembling the characteristics of the tested

devices. The model parameters accounted for fundamental memristive properties such

as threshold, non-linearity, and asymmetry, enabling the validation of learning efficiency

across a spectrum of device behavior deviations. Moreover, immunity to deviations in

model parameters was observed by sampling the device model parameters from a distribu-

tion with varying spreads. Importantly, performance deterioration due to variability can

be mitigated by tuning the scaling factor.

The proposed plasticity, implemented with simple CMOS circuits [269], allows large-scale

systems with limited energy and space constraints to carry out online learning for real-

world pattern recognition applications. In future work, we plan to expand this approach

to more complex patterns by using current-limited switching through 1T1R devices and

investigating the relationship between the device’s material stack and the resulting in-

termediate conductance states. The VDSP-based programming provides high-resolution

memristive learning, effectively linking neuron dynamics with memristive properties to

detect and respond to long-term and temporal patterns. However, because model param-

eters are heavily influenced by programming conditions, attributing performance solely to

the device stack is speculative, and further research is required to fully understand these

interactions.

4.5 Methods

4.5.1 Device Fabrication

The fabrication recipe for the T iO2 devices used in this study can be found in [26], and the

same for the HZO and CMO −HfO2 devices is detailed in [245] and [246], respectively.

4.5.2 Characterization setup

Electrical measurements were performed on an Agilent B1500A semiconductor analyzer

and with a B1530A waveform generator/fast measurement unit (WGFMU). Write pulses

were generated by a remote-sense and switch unit (RSU) module close to the probe and

applied to the top electrode while the bottom electrode was grounded. The resistance of
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the device was measured at V = +/-100 mV with a high resolution source measurement

unit (SMU) on the top electrode, while the bottom electrode was grounded.

4.5.3 Model fitting

The Levenberg-Marquardt least squares fitting algorithm (lmfit) [270] was used to fit the

model parameters to the characterization data.

4.5.4 SNN simulations

Leaky Integrate-and-Fire (LIF) neurons [54], are simplified models of biological neurons,

making them efficient to simulate within a SNN simulator. This neuron model was used

for the presynaptic neuron layers. The corresponding equation is

⌧m
dv

dt
= −v + I + b (4.6)

where ⌧m denotes the membrane leak time constant, v represents the membrane potential,

which decays to the resting potential (vrest), I is the injected current, and b is a bias term.

When the membrane potential exceeds a threshold level (vth), the neuron fires a spike.

Subsequently, it becomes unresponsive to any input during the refractory period (tref )

and the neuron potential is reset to the voltage (vreset).

In the output layer, an adaptive leaky integrate and fire (ALIF) neuron model was used,

which has an additional state variable n, which increases by incn with each spike, and its

value is deduced from the input current. This leads the neuron to decrease its firing rate

over time when exposed to high input currents [223]. The state variable n decays with a

time constant ⌧n :

⌧n
dn

dt
= −n (4.7)

Gaussian noise was used to induce stochasticity in the input layer, which creates a jitter

in pixels and samples the learned features at each output spike. Bias current was applied

to background pixels to penalize inactive pixels and is essential for regularization and

preventing one neuron not to learn all digits (equal amount of de-potentiation of nonactive

pixels for learning distinguishing features). Each image was presented for 40 ms, resulting

in at most 3 spikes in the input layer per sample. Hard Winner takes all based lateral

inhibition was applied in output layer, in which, all neurons were inhibited for a period

of ⌧wta on firing event of any neuron. The network parameters were tuned using genetic

search with Optuna [271] package for 1000 experiments for the parameters of the TiO2
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device. Afterwards, all network parameters were the same for all network sizes, epochs,

and three devices. The training was performed without using labels, and at the end of

training, the weights were fixed, and the last 10,000 samples were used for assigning the

class to each output neuron. Subsequently, the samples from the MNIST dataset’s test

set were used to evaluate the recognition rate.
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4.6 Supplementary Information

Supplementary Fig. 4.1 The fitted model’s prediction on characterization data
points displays the weight change (∆W ) and final weight (Wf ) in relation to the
applied voltage (Vpulse) and initial weight (W0) for T iO2, HZO, and CMO-HfO2

measurement points (from left to right).

a b c

Supplementary Fig. 4.2 Scaling factor based on the number of training samples.
The optimal scaling factors for LTP (sfp) and LTD (sfd) are depicted as a
function of the number of training samples for a network consisting of 500 output
neurons. The plots are presented for three devices: T iO2, HZO, and CMO-HfO2

device parameters (from left to right).
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Supplementary Fig. 4.3 Probability distribution function of ✓ for T iO2, show-
ing variability in the form of relative standard dispersion (σ

µ
).

c

e

d

a b

Supplementary Fig. 4.4 MNIST benchmark results for HZO device. a Evolution

of test performance in response to iterative training through examples from the MNIST dataset

for 10, 50, and 500 output neurons. b Dependence of testing accuracy on the number of output

neurons and training epochs. Each experiment was repeated five times with different initial

weights, and the error bars show the standard deviation. c Impact of variability in switching

threshold (θ) plotted for three different scaling factors. d A detailed grid search of sf and

RSDθ was conducted, and the resulting average accuracy over ten experiments is displayed

as a 2-D heatmap. e Impact of varying degrees of variation in θ on the device switching

characteristics.
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e

c d

a
c

b

Supplementary Fig. 4.5 MNIST benchmark results for CMO-HfO2 device. a

Test performance progression observed during iterative training using MNIST dataset exam-

ples with 10, 50, and 500 output neurons. b Relationship between testing accuracy and the

number of output neurons and training epochs. Each experiment was repeated five times

with different initial weights, with error bars indicating the standard deviation. c The effect

of variability in the switching threshold (θ) plotted for three distinct scaling factors. d A

detailed grid search of sf and RSDθ was conducted, and the resulting average accuracy over

ten experiments is displayed as a 2-D heatmap. e Effect of varying the degree of θ variation

on device switching characteristics.
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CHAPTER 5

Versatile CMOS Analog LIF Neuron for Memristor-

Integrated Neuromorphic Circuits

"Listen to the technology; find out what it’s telling you." — Carver Mead
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5.1 Preface

Contribution to document

Toward our objective of implementing learning with analog memristive circuits, we have so

far outlined the learning rule, Voltage Dependent Synaptic Plasticity (VDSP) in Chapter 3,

and in Chapter 4, benchmarked it with memristive synaptic models. In the previous

chapter, we emphasized the importance of adapting the network parameters of input and

output neurons to accommodate a range of synaptic behaviors resulting from various

gradual and abrupt SET/RESET transitions. It is crucial that the resting state and the

reset potential of a neuron are distinct to accurately estimate the spike times from its

membrane voltage. This distinction enables us to differentiate between neurons that have

just fired and those that have been recently inactive. However, these differences in reset

and resting potentials cause upward leakage (from reset to resting state) after a spike.

Moreover, the rate of this membrane potential leakage directly influences the temporal

window for VDSP-based learning. Thus, a configurable and bidirectional leak mechanism

is essential for LIF neurons when interfacing with memristive synapses to support VDSP-

based learning.

The following chapter (conference paper) introduces the first set of analog circuits aimed at

building the self-learning Neural Building Block (NBB). This includes (1) a Low Dropout

regulator (LDO) for stable reading of memristive resistance, (2) a Current Attenuator (CA)

to downscale the read current for integration on a small, low-footprint capacitance in the

neuron, and (3) an analog Leaky Integrate and Fire (LIF) neuron with a configurable

bi-directional leak rate. The circuits were designed using a 130nm CMOS technology

node and subsequently fabricated. The test structures, including the signal chain, were

integrated into the primary chip, with 25 scribe lines placed on the last metal layer for

probe testing. Synaptic reading was measured across a wide range of input resistances,

from 1kΩ to 1MΩ, to establish the compatibility range for integrating memristive devices

in the full NBB presented in Chapter 6. Additionally, the tunability of neuron behavior

was demonstrated by adjusting bias voltages to modulate key parameters such as pulse

width, threshold, and leak rates, allowing for flexible control over the neuron’s response

characteristics.
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Résumé

Les systèmes hétérogènes avec des circuits CMOS analogiques intégrés à des dispositifs

memristifs à l’échelle nanométrique permettent un déploiement efficace de réseaux neu-

ronaux sur du matériel neuromorphique. Les neurones CMOS à faible encombrement peu-

vent émuler une dynamique temporelle lente en fonctionnant avec des niveaux de courant

extrêmement faibles. Néanmoins, le courant lu à partir des synapses memristives peut être

supérieur de plusieurs ordres de grandeur, et il est obligatoire d’effectuer une adaptation

d’impédance entre les neurones et les synapses. Dans cet article, nous mettons en œuvre

un neurone analogique à fuite intégrée et à déclenchement (LIF) avec un régulateur de

tension et un atténuateur de courant pour interfacer les neurones CMOS avec les synapses

memristives. De plus, la conception du neurone propose une double fuite qui pourrait per-

mettre la mise en œuvre de règles d’apprentissage locales telles que la plasticité synaptique



102 CHAPTER 5. VERSATILE CMOS ANALOG LIF NEURON

dépendante de la tension. Nous proposons également un schéma de connexion pour mettre

en œuvre des neurones LIF adaptatifs basés sur l’interaction à deux neurones. Les circuits

proposés peuvent être utilisés pour s’interfacer avec une variété de dispositifs synaptiques

et traiter des signaux de dynamiques temporelles diverses.

Abstract

Heterogeneous systems with analog CMOS circuits integrated with nanoscale memristive

devices enable efficient deployment of neural networks on neuromorphic hardware. CMOS

Neuron with low footprint can emulate slow temporal dynamics by operating with ex-

tremely low current levels. Nevertheless, the current read from the memristive synapses

can be higher by several orders of magnitude, and performing impedance matching be-

tween neurons and synapses is mandatory. In this paper, we implement an analog leaky

integrate and fire (LIF) neuron with a voltage regulator and current attenuator for in-

terfacing CMOS neurons with memristive synapses. In addition, the neuron design pro-

poses a dual leakage that could enable the implementation of local learning rules such as

voltage-dependent synaptic plasticity. We also propose a connection scheme to implement

adaptive LIF neurons based on two-neuron interaction. The proposed circuits can be used

to interface with a variety of synaptic devices and process signals of diverse temporal

dynamics.

Keywords: Neuromorphic computing, Analog circuits, In-memory computing, memris-

tors, ASIC

5.2 Introduction

Analog circuits and devices can efficiently emulate neural dynamics in real-time by uti-

lizing physical mechanisms such as Kirchoff’s law through memristive synapses for signal

transmission and capacitive charging on CMOS devices for temporal integration of current

[272]. Such strategies are inherited from the seminal work of C. Mead [273] to implement

silicon neurons with rich temporal dynamics at low power. More recently, nanoscale non-

volatile memristive devices have been considered for synaptic function implementation

and offer several interesting features, such as non-volatile synaptic weight storage, analog

programming, and low-power operation. Such devices are also CMOS compatible and

could allow 3D integration [174] for high-density synaptic arrays to implement in-memory

computing architectures [274]. The development of spiking neural networks based on these

technologies still needs to address several challenges, such as synapses/neuron impedance

matching and operation stability validation.
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Figure 5.1 Proposed architectures and approach. (A) Optical micrograph of
the realized "UNICO" ASIC with an arrow denoting the signal chain from IO
pad to neurons of the input layer (LIFin) through a resistive synaptic column
and then to output layer (LIFout) through a memristive synaptic array. (B)
The signal chain for spike transmission consists of a synaptic resistance, a low
dropout regulator (LDO) for regulating the voltage at other synaptic terminals,
and a current attenuator for down-scaling the current by a factor of ’K’. The
leaky integrate and fire (LIF) neuron integrates the read current. The neu-
ron membrane potential tracks the neuron state and is reset when crossing a
threshold voltage level. Consequently, a spike is transmitted to the next layer of
neurons through the synaptic array. (C) Test structures with connection pads
probed for electrical characterization of implemented circuit blocks.

This study presents an architecture and circuits that enable stable reading of the mem-

ristive synapse into an analog ‘spiking neuron circuit. These circuit blocks, including a

low-dropout regulator (LDO) and current attenuator, were implemented alongside a LIF

neuron in a 130nm CMOS integrated circuit (IC). The measurement results demonstrate

the sensitivity of the neuron’s activity for a range of synaptic resistance, excitation voltage

levels, and pulse widths representative of the memristive synapse operation. The modula-

tion of threshold, leak rate, and refractory period showcase the configurability of neuron

dynamics that could be adapted to match different synaptic array sizes, device conduc-

tance range, and the time scale of the deployed application. Finally, an architecture to

configure generic memristive LIF neurons to an adaptive variant is proposed.

Neurons with slow leak rates and long-time-scale dynamics can be critical for emulating

bio-realistic dynamics in real time. Specialized low-pass filtering circuits ([122], [275]) are

often used to implement such slow dynamics with small capacitance. We implemented such

an integrator circuit with modifications to realize controllable bi-directional leakage for

local learning with voltage-dependent synaptic plasticity (VDSP) [201, 250]. In contrast to

previous studies [276, 277], the interfacing between the integrator operating at low-current
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levels and the memristive device was enabled by a current attenuator implemented in the

signal chain. VDSP-based synaptic plasticity can further exploit such dynamics to detect

spike patterns in longer time windows and enable efficient local learning.

The manuscript is organized as follows. The Methods section details the realized ASIC

architecture with key circuit blocks to illustrate the signal chain. The results section

presents the electrical characterization of the neuron subject to various input synaptic

currents. The membrane threshold level, and refractory period impact on spiking activity

is further evaluated. Next, the characterization results in response to spike-based (pulsed)

stimuli are presented with an analysis of leak rate modulation. In the end, a connection

topology for the dynamic configuration of generic LIF neurons to adaptive LIF neurons is

presented, and hardware overheads for different circuit functionalities are discussed.

5.3 Materials and Methods

5.3.1 Implemented Design

The application-specific integrated circuit (ASIC) was realized for hardware implementa-

tion of SNN on a monolithic chip through CMOS analog neurons and back end of the

line (BEOL) integrated memristive [26] synaptic devices (Figure 5.1(A). The memristive

devices are integrated in this design in a 1T1R configuration. In such a configuration,

the output terminal of the pre-neuron sends voltage spikes (pulses) to the gate of the

1T1R downstream synaptic array that will enable input current to the post-neurons. The

signal chain of the synapse and neuron is illustrated in Figure 5.1(B). For neuron charac-

terization, the presynaptic input is a voltage applied to the resistor’s first terminal (IN),

emulating the memristive synapse. LDO clamps the second terminal at Vref , and the Isyn

current weighted by the resistance Rsyn is scaled by a factor of K by the current atten-

uator. The LIF neuron membrane voltage performs temporal integration of the current

and resets to Vreset when Vmem is higher than the Vth threshold voltage. Test structures

with connection pads implemented on the ASIC were probed for testing (Figure 5.1C).

The analog bias voltages and input signals were generated through an FPGA-controlled

PCB, and signals from ASIC were measured through an oscilloscope.

The full SNN integrates two layers of neurons in which the output spike is transmitted

to the gates of all the downstream synapses of the memristive array. The output of the

synaptic array is connected to the second layer of LIF neurons, which present again the

successive blocks of LDO and current attenuator.
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5.3.2 Circuits
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Figure 5.2 Key circuit blocks. (A) This schematic shows the synaptic resis-
tance, Low Dropout Regulator (LDO), and current attenuator arranged to read
the synaptic current to the neuron. (B) The LIF neuron is depicted as com-
prising a leaky integrator, fire and reset block, and buffer. (C) The schematic
displays the synaptic array architecture on the left, and on the right, a micro-
graph of the realized chip is zoomed in around the signal chain from the synaptic
array to the neuron.

The circuit schematics of LDO and current mirror are shown in Figure 5.2(A). External

Input voltage (Vin) is applied to the first terminal of the synaptic resistance (Rsyn). The

other terminal of the synapse is connected to the (+) input terminal of the operational

amplifier (OPAMP) in LDO. The other terminal (-) of OPAMP is connected to Vref .

Whenever a voltage greater than Vref is applied on IN, the output of OPAMP rises, and

transistor M1 is turned on. The current read from Rsyn is transmitted via the feedback

branch, and the voltage at the positive input of OPAMP is pulled to Vref . The output

current of LDO is the accumulation of weighted current from all upstream synapses, which

is fed to the downstream current attenuator.
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The current attenuator is implemented with a cascoded current mirror. This topology

is beneficial for a wide swing [278] across the resistance range of upstream memristive

synapse. The attenuation factor was tuned by adjusting the W/L ratio of each transistor

pair (e.g., M1 and M2, M3 and M4, etc.). Additionally, the sizing was performed to ensure

a constant attenuation factor of 500 throughout the read current range. Such topology

of LDO and current mirror is also referred to as active current mirror in previous studies

[279].

The LIF neuron (Figure 5.2B) performs temporal integration of signals from the current

attenuator and consists of a low pass filtering based on difference pair integrator (DPI)

circuit [275] for implementing the integration of synaptic current on the capacitor (C1).

The resting state potential bias voltage controls the level to which the membrane potential

leaks (Vrest) and was set higher than the reset potential (0V). A transistor (M3) was added

to the DPI circuit to realize bi-directional leakage of membrane potential, and the leak

rate is controlled by Vtaup and Vtaun bias voltages.

The fire and reset block is composed of a comparator for membrane voltage threshold

crossing detection with an externally supplied threshold level (Vthr). This block is biased

by Vbiascomp. The neuron’s pulse width and refractory period are configured by modulating

the discharging rate of capacitance C2 through bias voltage Vpw. A reset transistor (M8)

discharges the membrane capacitor to the ground on a spike event, and the generated

spike is transmitted to the downstream synapse through a buffer. As the reset transistor is

activated throughout the spike generation period, Vpw also controls the neuron’s refractory

period.

The architecture of the memristive synaptic array is shown in Figure 5.2(C)(left). The

neurons in the input layer (LIFI1 to LIFI16) transmit a generated spike to the next layer

by applying the spike output to the transistor’s gate of the 1T1R synaptic cell. The

spike amplitude is set to Vdd to minimize the voltage drop access transistor during spike

transmission. All the synaptic cells in a column are connected to the corresponding output

neuron through LDO and the current attenuator. The circuits were implemented in 130nm

CMOS technology, and a picture from a microscope is shown to visualize the layout of

the signal chain in Figure 5.2(C)(right). The typical values and short descriptions of bias

voltages are summarized in Table 5.1.
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Table 5.1 Bias voltages used in circuits

Name Typical (V) Purpose
Vdd 3.3 Power supply
Vref 2.4 LDO reference
Vopa 2.4 OPAMP bias (LDO)
Vgain 2.1 Gain modulation
Vtaun 1.2 Leak rate (Down)
Vtaup 1.2 Leak rate (UP)
Vrest 0.6 Resting potential
Vthr 1.2 Neuron threshold level
Vbcomp 2.4 Bias for COMP (LIF)
Vpw 1 Pulse width modulation

5.4 Results and Discussion

5.4.1 Synaptic resistance reading

(B) (C)(A)

Figure 5.3 Characterization of neuron’s sensitivity to synaptic resistance. (A)
Measured output spike rate of neuron with respect to Rsyn for different Vread

levels between 100mV and 400mV. The respective Vread was applied for 1s for
each experiment, and the neuron’s response was recorded. Comparison of neu-
ron’s membrane voltage and output response is shown for Rsyn of 10kΩ (B) and
50kΩ (C) with read voltage (Vread) of 250mV.

For characterizing the synaptic resistance reading, an external resistor (Rext) was con-

nected in series with the on-chip resistor of 10kΩ (RIC) to emulate a synaptic resistance,

resulting in read current Isyn = (Vin−Vref )/(Rext+RIC), where Vref , the reference voltage

supplied to LDO, was set to 1V, and Rext + RIC represents the net synaptic resistance

(Rsyn). The relationship between the measured output spike rate and input resistance

(Rsyn) is shown in Figure 5.3(A). The input resistance was varied from 10kΩ to 1MΩ,

and experiments were repeated for five different read voltages ranging between 100mV

and 400mV. Such resistance range matches the one observed in our memristive devices.
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The applied voltage is also compatible with the read voltage range from the memristive

synapses (i.e., read without weight disturbance).

To illustrate the temporal response of the neuron, the measured membrane voltage and

output of the neuron are compared in Figure 5.3(B-C) for synaptic resistance of 10kΩ and

50kΩ and read voltage (Vread) of 250mV.

Sensitivity to the large range of synaptic resistance makes the neuron suitable for various

memristive technologies. In the above experiments, the output spike rate was observed to

vary between 8Hz and 25kHz. The ability to read and differentiate between low resistances

(with high firing rates) can enable reading from several presynaptic resistances in parallel.

5.4.2 Neuron transfer characteristics

(A)

(D)

(B)

(E)

(C)

B
Tpw

OUT MEM Vthr
0.8V
1.2V
1.8V

OUT MEM Vthr
0.8V
1.2V
1.8VC

Figure 5.4 Characterization of neuron’s transfer function with DC excitation.
(A) Measured spike rate of neuron with respect to input current (Isyn) and spik-
ing threshold bias level (Vthr). Comparison of the measured temporal response
of membrane voltage and output for different threshold levels obtained with Isyn
of 10µA (B) and 40µA (C). (D) Neuron’s spike rate with respect to input cur-
rent for different Vpw bias levels. (E) Pulse width (Tpw) of the generated output
spike plotted with respect to Vpw bias voltage.

To characterize the excitation of neurons for a range of synaptic currents and bias voltages,

the excitation current was varied from 10µA to 200µA. The read voltage was applied

through an on-chip resistor of 10kΩ for a long duration (100ms). The rate of output spikes

generated by the neuron is plotted with respect to the injected current, and the neuron’s

threshold voltage level (Vthr) is shown in Figure 5.4(A). For the threshold level of 1.8V,

the spike rate was 419Hz and 59kHz for input current of 10µA and 200µA, respectively.
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Similarly, for a threshold level of 0.8V, the spike rate varied between 800Hz and 68kHz.

The measured membrane voltage and output spike are compared for different threshold

voltages and input currents of 10µA (B) and 40µA (C).

The threshold impacts the range of firing rate (activity) that could be observed with

respect to input current. A lower threshold could increase the sensitivity to low current

(high synaptic resistance), but the spike rate saturate early. Conversely, a high threshold

led to lower firing rates for small excitation currents, and a variation in spike rate could

be observed even for high input currents. The maximum spike rate of the neuron is

limited by the output pulse width or refractory period controlled by Vpw bias level. The

neuron’s response(rate) to different (Vpw) is shown in Figure 5.4(D). The maximum firing

rate was 20kHz and 92kHz for (Vpw) of 0.8V and 1.1V, respectively. The Vpw bias voltage

modulates the output spike’s pulse width and the neuron’s refractory period by controlling

the discharging rate of the C2 capacitor in Figure 5.2(C). The pulse width was measured

as the time difference between the crossing of OUT and Vdd/2 and is plotted for Vpw in

Figure 5.4(E). The resultant pulse width of the output spike varied between 20ms and

10µs for Vpw of 0.45V and 1V, respectively.

5.4.3 Temporal dynamics

Vrest

Vthr

t2-dt

Out

Vmem

t1+dt

t1 t2

Vreset

Figure 5.5 Illustrative plot to show the behavior of a neuron with bi-directional
leakage. The downward and upward leakage occurs when membrane voltage is
greater or less than resting state potential (Vrest), respectively. A leak in the
upward direction occurs when the neuron is reset after the spike event (t1) and
enables estimation of time elapsed (in blue). Similarly, the occurrence of a spike
event in the near future (t2) can be predicted through a high value of membrane
voltage (in red).
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(D)

(A) (B) (C)

(E)

Figure 5.6 Characterization of temporal dynamics. (A) Input pulses of width
10µs were applied at 100Hz, with the neuron’s membrane potential and output
shown across time. (B) The input pulse width was varied between experiments
(7µs and 15µs), comparing the charging events of membrane voltage. (C) The
experiment varied Vtaun across experiments to compare the neuron’s membrane
voltage evolution across time. In (A-C), the Isyn for each pulse was of magnitude
40µA. (D) A single input pulse was applied to charge the membrane voltage close
to the neuron’s threshold, and the downward leak rate is controlled by Vtaun bias
level and varied across experiments. (E) The magnitude of the applied spike was
increased to induce neuron firing. The leakage in the upward direction (from
Vreset to Vrest) is compared by varying Vtaup bias level between experiments.

The neuron was characterized by applying short pulses at frequent intervals to access

charging with respect to input pulse width and dynamics in the absence of excitation.

Spikes of magnitude 40µA and width 10µs were fed to the neuron by applying voltage

pulses (Vread=400mV) across the 10kΩ on-chip resistor at the rate of 100Hz. The measured

response of the neuron membrane voltage and output spikes is plotted in Figure 5.6(A)

and results in a neuron spike rate of 8Hz. The above experiment was repeated for different

pulse widths of input spikes between 5µs to 15µs. The measured response of the neuron’s

membrane voltage across time is plotted in Figure 5.6(B) to compare the magnitude of

the increment in membrane voltage for every charging event. A pulse of 7µs led to a small

increment in membrane voltage at every spike event, resulting in a firing rate of 2Hz.

Whereas a 15µs input pulse could fully charge the neuron with 5 input spikes, resulting

in an output spike rate of 18Hz. Since the pulse width influences the number of spikes,

the postsynaptic neuron integrates before firing the pulse width of the presynaptic neuron

spikes, which can be adapted for the crossbar size. For example, suppose a neuron in

the postsynaptic layer is expected to integrate signals from four times input neurons in

parallel. In that case, the pulse width of input neurons should be accordingly reduced by
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increasing the Vpw bias level to maintain similar temporal dynamics in the output layer. A

shorter pulse also leads to a granular increment in membrane voltage, allowing down-sizing

of the membrane capacitance. In the absence of input current, the membrane voltage leaks

to a resting state potential (Vrest). Since the reset level was set to 0V, the neuron exhibits

leakage in upward direction after the refractory phase to Vrest (set to 600mV). This bi-

directional mechanism was implemented to differentiate between idle neurons and those

in the refractory period, as shown in Figure 5.5, and is beneficial for implementing local

synaptic learning.

An important aspect of memristive synapses / CMOS neuron co-integration for SNN is to

allow local learning based on the activity of the adjacent neurons [215]. In local learning

rules such as Spike Timing Dependent Plasticity (STDP), the spike time difference between

the pre and post-neurons is converted into a programming voltage by overlapping of slow

decaying voltage pulses [280]; however, this approach can consume a significant fraction

of area-energy budget [216] and implementing pulses with complex shapes can become

challenging. More recently, Voltage-dependent synaptic plasticity (VDSP) [201, 250] was

proposed to implement learning efficiently in hardware without requiring pulse shaping

circuits. In this approach, the recent pre neuron’s activity can be estimated through the

neuron membrane potential (i.e., low membrane potential being associated with a recent

firing event and high membrane potential associated with an imminent spiking event).

Mapping of this concept to memristive devices programming requires the implementation

of more complex membrane dynamics. In this study, we present a neuron circuit with

bi-directional leakage to enable learning of memristive weights through VDSP.

For characterizing the tunability of leak rate in the downward direction, spikes of magni-

tude 40µA and width 10µs were fed to the neuron at 100Hz, and Vtaun was varied between

experiments. The measured membrane voltage response is compared in Figure 5.6(C). For

Vtaun of 1.2V (typical), the output spike rate was 8Hz, which could be increased to 12Hz

by lowering the leak rate. Conversely, increasing the leak rate could decrease the output

spike rate to 2Hz.

For evaluation of Vtaun, the neuron was excited by a single input pulse of higher magnitude

to charge the membrane voltage to just below the spiking threshold, and the response was

recorded for 2s. The membrane voltage is compared for values of Vtaun between 1V and

1.35V in Figure 5.6(D) for time intervals of 2s and 200ms. The neuron could fully leak

from the threshold level to resting state potential in 8 ms for a high leak rate. Lowering

the leak rate could modulate this duration to more than 2s.
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The leak rate impacts the neuron’s memory window and can be adjusted to match the

dynamics of the input signals. For instance, in scenarios where the neuron receives sparse

spikes at a low frequency, reducing the leak rate can help preserve the neuron’s memory

over a large temporal window. Conversely, increasing the leak rate when processing high-

frequency input signals can regulate the neuron’s output firing rate.

Next, we characterized the upward modulation of the leak rate. The neuron was stimulated

with a single high-magnitude spike to trigger an output spike event, and its membrane

potential subsequently leaked from Vreset to Vrest, as illustrated in Figure 5.6(E). The

biasing voltage (Vtaup) was adjusted between 1.1V and 1.6V. We monitored the membrane

voltage over 2-second periods to assess the upward leak rate. The ability to tune the

upward leak rate and the resting state voltage is beneficial for adjusting the learning

dynamics by modifying the probabilities of potentiation and depression.

5.4.4 Configurability to adaptive neuron

(A) (C)(B)

Figure 5.7 (A) Connection scheme to realize an adaptive LIF neuron with a
pair of LIF neurons. The regulator neuron integrates the output signals of the
primary neuron, and its membrane voltage (MEMreg) is used as the threshold of
the primary neuron. (B) The primary neuron was stimulated at a 1kHz rate and
connected to a regulator neuron. The membrane potentials of both neurons and
the output of the primary neuron are plotted using results from a SPICE circuit
simulation. (C) Single regulator neuron (Nreg) shared by a sub-population of
generic LIF neurons (N1, ..., Nm).

The spiking neurons’ information processing and memory capacity can be further enhanced

through threshold adaptation [281, 282, 283]. The designed neuron block can be used as

a regulator neuron to monitor the spiking activity of a primary neuron. As depicted in

Figure 5.7(A), the output of the primary neuron (OUT) is connected to the input terminal

of the regulator neuron (INreg). This connection tracks the neuron activity through the



5.4. RESULTS AND DISCUSSION 113

membrane potential of the regulator neuron (MEMreg), which in turn sets the threshold

(THR) for the primary neuron.

The designed circuit blocks, connected as described in Figure 5.7, were simulated in SPICE.

The primary neuron, excited by 1 kHz pulses, and the corresponding changes in membrane

potential for both the primary and regulator neurons are depicted in Figure 5.7(B). During

this simulation, the threshold voltage of the primary neuron (MEMreg) increased from

600mV to 2V, resulting in the inter-spike interval of the output spikes increasing from

2ms to 5ms. A chain consisting of a 10kΩ synaptic resistance, followed by an LDO and a

current attenuator, was used to transmit output voltage pulses from the primary to the

regulator neuron. Alternatively, this synaptic resistance can be replaced with a memristor,

which can be programmed to introduce an additional level of plasticity at the neuron level.

Additionally, a sub population of neurons (N1, N2, . . . , Nm) could share a common regu-

lator neuron (Nreg), as illustrated in Figure 5.7(C). Having a pool of LIF with the same

regulator neuron can improve the system’s scalability by sharing resources. This architec-

ture can configure a fully analog LIF neuron chip to an arbitrary population of LIF and

ALIF neurons in runtime. Such a heterogeneous population has been shown to enhance

the learning capabilities of SNNs [284, 63, 285]. Furthermore, monitoring neuron activ-

ity over time through traces can also enhance local learning [121], providing a dynamic

feedback mechanism to improve performance and adaptability.

5.4.5 Overhead of different functionalities

The power consumption of the implemented LDO and current attenuator was estimated

through SPICE simulations of implemented circuits. The static power consumption, mea-

sured when no signal was present at the input, was 10µW for the LDO and 10pW for

the current attenuator. During the operation of reading from the resistive synapse, the

dynamic power consumption was estimated to be 18µW for the LDO and 20 µW for the

current attenuator. The static power dissipation of LDO can be accounted for leakage

due to the high biasing current used to obtain fast response time and high output current

levels (up to 200µA). This quick activation is necessary when using short-reading pulses

(neuron output spikes). As discussed in the earlier section, short pulses lead to gradual

charging of (post-synaptic) neurons, thus helpful for scaling up crossbar size or the number

of pre-synaptic neurons. Moreover, power dissipation through the memristive device dur-

ing reading can be lower with short-read pulses. As these circuits are shared by synapses

in a row or column, energy utilization can be balanced.
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The LIF neuron’s static energy and energy per spike were estimated to be 5µW and 200

pJ/spike. The high static power can be attributed to leakage due to biasing the com-

parator. With a lower bias current, the static power can be reduced to 17nW, but the

energy per spike increases to 7nJ. This trade-off occurs because a slow comparator can

lead to high leakage during the firing phase. Feedback mechanisms [286] can potentially

reduce the energy per spike of the neuron with a low comparator bias current. Overheads

associated with reading memristive states are also present in hardware Artificial Neural

Network (ANN) implementations, where trans-impedance amplifiers and analog-to-digital

converters (ADCs) sense the current from the synaptic column for subsequent compu-

tational processing and account for a major fraction of energy consumption. However,

analog neurons are more suitable for interacting with analog memristive synapses. SNNs

benefit from events’ sparse activity, and gating the power supply [287] of synapse reading

blocks around spike events can reduce static power dissipation through leakage.

5.5 Conclusion

We propose a versatile CMOS circuit to integrate memristive synapses into the signal

chain of analog neuromorphic circuits. This integration pathway includes a Low-Dropout

Regulator (LDO), a current attenuator, and an analog Leaky Integrate-and-Fire (LIF)

neuron. The circuit blocks were implemented on a 130nm CMOS ASIC. The chip features

multiple instances of these blocks alongside a synaptic array composed of 1T1R cells,

facilitating the integration of memristive synaptic devices. The circuit building blocks

of the signal chain in the implemented ASIC were characterized. We demonstrated the

neuron’s sensitivity to the synaptic state by testing resistances ranging from 10kΩ to

1MΩ. As a result, the neuron’s firing rate was observed to vary between 8 Hz and 25

kHz. Additionally, the neuron’s activity was characterized across a range of applied read

voltages. By increasing the spiking threshold and pulse width of the neuron, the neuron can

be fine-tuned to lower and higher firing rates, respectively. Excitation with a sparse train

of pulses was used to measure the neuron’s temporal response. The neuron’s charging was

controllable by changing the input pulse width. Consequently, the presynaptic neuron

spike’s width can be adjusted per the postsynaptic neuron’s fan-in characteristics. In

the absence of an input signal, the neuron retains its memory through leakage, with

an adjustable leak time constant. The bi-directional leakage enables the estimation of

neurons’ recent activity and should benefit online learning through local synaptic learning.

We experimentally validated the modulation of the leak rate across short and long-term

intervals, which can be helpful in processing signals with various temporal dynamics. The

topology of pair neurons for configuration with adaptive neurons could further enhance
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the capabilities of the implemented neuron. Future work will detail the architecture and

characterization of the integrated CMOS-RRAM ASIC with in-situ learning.
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CHAPTER 6

Neural building block

"The brain is imagination and that was exciting to me. I wanted to build a chip that could

imagine something" – Misha Mahowald

TABLE OF CONTENTS

6.1 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.1 Data path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.2 Crossbar block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4.3 Input block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.4 Top Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5.1 Configuring the chip . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5.2 Neuron bank characterization . . . . . . . . . . . . . . . . . . . . . 142

6.5.3 VDSP based learning . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.6.1 Back end of the line (BEOL) Integration . . . . . . . . . . . . . . . 146

6.6.2 Demonstration of learning . . . . . . . . . . . . . . . . . . . . . . . 148

6.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

117



118 CHAPTER 6. NEURAL BUILDING BLOCK

6.1 Résumé

L’intégration de l’apprentissage en ligne avec une synapse mémristive peut aider à at-

ténuer la variabilité et le bruit, permettant ainsi au système de s’adapter en fonction de

ses actions. Les circuits analogiques CMOS sont essentiels pour des calculs à faible con-

sommation d’énergie et à haut débit en tirant parti des similitudes entre les composants.

La mise en œuvre de l’apprentissage en ligne dans un tel système nécessite une architecture

dédiée capable de passer sans interruption entre les phases d’inférence et de mise à jour

des poids. Ce chapitre présente la conception d’un bloc de construction neuronal CMOS-

RRAM (NBB), qui intègre des neurones analogiques, conçus avec des circuits CMOS, et

des réseaux mémristifs Back-End-of-Line (BEOL) contrôlés par des circuits numériques.

L’architecture proposée garantit la compatibilité entre les circuits analogiques, discutés

précédemment, et la communication numérique asynchrone, jetant ainsi les bases de sys-

tèmes neuromorphiques évolutifs. Dans des travaux futurs, la conception proposée sera

utilisée pour démontrer l’apprentissage en ligne avec le réseau synaptique mémristif intégré

en BEOL, montrant la capacité du système à s’adapter continuellement en réponse à de

nouvelles données.

6.2 Abstract

Incorporating online learning with memristive synapses can mitigate variability and noise,

enabling systems to adapt dynamically based on their interactions. Analog CMOS circuits

play a vital role in achieving low-energy, high-throughput computation by capitalizing on

the inherent similarities of their components. Implementing online learning in such sys-

tems requires a specialized architecture that can seamlessly alternate between inference

and weight update phases. This chapter presents the design of a CMOS-RRAM Neural

Building Block (NBB), which integrates analog neurons, realized through CMOS circuits,

with Back-End-of-Line (BEOL) memristive arrays controlled by digital circuits. The pro-

posed architecture ensures compatibility between analog circuits and asynchronous digital

communication, forming the foundation for scalable neuromorphic systems. Future work

will demonstrate online learning using the BEOL-integrated memristive synaptic array,

showcasing the system’s continuous adaptability to new data inputs.

6.3 Introduction

This chapter introduces the digital logic required for scanning out spikes generated by the

LIF neuron, as detailed in Chapter 5. The crossbar reading circuit, which includes the

LDO, CA, and LIF, is integrated into the chip for each row and column of the spiking

neural network (SNN) with a 16x16 configuration. This results in 32 neurons (16 rows
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+ 16 columns) connected by 256 (16x16) 1T1R memory cells. Given the large number

of memory cells, assigning a dedicated I/O pad to each cell is impractical. To address

this, addressing logic was implemented to route selected cells to the limited I/O pads on

the chip. This addressing logic is user-configurable through a hardware-software design

running on the Zynq System on a chip (SoC) platform, referred to as Lotus throughout

this chapter.
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Figure 6.1 NBB Overview a Micrograph of Neural Building Block (NBB) with anno-

tated signal path from input pads to output neuron bank. b Architecture of neuron and

synaptic array illustrated through a 2x2 example. The memristive synapse is implemented in

the Back end of the line (BEOL). c The full chip features 84 I/O connections and implements

a 16x16 fully connected network (top). Packaged sample of a single NBB mounted to a carrier

(bottom).

The NBB comprises 32 neurons and 256 synapses. The neurons emulate a biological

spiking neuron model, specifically the LIF neuron, and are implemented using CMOS

transistors operating in the sub-threshold region through analog Differential Pair Integra-

tor (DPI) circuits [275]. These neurons process input signals by integrating them over

time, generating spikes when the membrane potential crosses a certain threshold. The

synaptic weights are realized with 1T1R BEOL integrated non-volatile memory devices,

which offer multiple stable states, enabling flexible control over the strength of connections

between neurons.

The layout and architecture of the NBB are depicted in Figure 6.1a, which outlines the

chip’s signal path from input pads to output neuron banks. The architecture is further

illustrated in Figure 6.1b with a 2x2 neuron and synapse array example, where memristive
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synapses are implemented in the Back end of the line (BEOL) layer. This configuration

allows the NBB to dynamically adjust synaptic weights via VDSP, an analog conductance

programming technique, facilitating real-time learning. Figure 6.1c highlights the full

chip’s 84 I/O connections, demonstrating its implementation of a 16x16 fully connected

network (top), with a packaged sample of a single NBB mounted to a carrier (bottom).

To enable real-time configuration and spike data scanning, the Lotus PCB integrates the

Zynq SoC, which contains both Analog to Digital Converter (ADC) and Digital to Analog

Converter (DAC) components. These components provide bias voltages and excitation

signals to the neurons. The Zynq SoC combines an FPGA for digital circuit execution

and an ARM core for managing real-time configurations, including triggering the FPGA

circuits. The system is controlled via a custom Graphical user interface (GUI), which

allows the user to configure various operational modes, such as (i) serial electro-forming,

reading, and writing of individual synaptic devices, (ii) implementing Winner-Take-All

(WTA) in neurons, and (iii) scanning membrane potentials and output spikes. These

operations are efficiently managed through shift registers to optimize data handling.

Characterization of the neurons was conducted to assess the impact of process-voltage-

temperature (PVT) variations, as the DPI circuit operates in the sub-threshold region,

making it sensitive to even small variations. To mitigate these effects, on-chip amplifi-

cation of the membrane potential was implemented to generate accurate programming

voltages for VDSP-based learning. A mixed-signal circuit was also designed to compute

the polarity and magnitude of the programming voltage, ensuring proper functionality of

the memristive devices during weight updates. This precise control over synaptic plasticity

is crucial for enabling real-time learning in the neuromorphic system.
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6.4 Materials and Methods

6.4.1 Data path
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Figure 6.2 Data path of NBB and modes of operation. a The signal path starts

from the input pads (IN 1 to 16), followed by the synaptic reading circuit, which includes

the LDO and CA, and the input LIF neurons. The signal then passes through the 16x16

1T1R synaptic array, leading to a second layer of synaptic reading circuits and neurons. b

In characterization mode, the IO pads (BLC/WLC/SLC) address the selected crossbar cell

for forming, reading, and writing operations. c In inference mode, the output spike from

the presynaptic LIF neuron is fed to the gate (WL) of the synaptic cell. The cell’s source

is connected to the resistance reading and LIF blocks in the postsynaptic neuron bank. d

In learning mode, a single synaptic cell is programmed by connecting the BL and SL to the

on-chip amplifier, while the corresponding row is connected to the WLC IO pad to provide

compliance current during the programming operation (externally).

The signal chain or data path (Figure 6.2a) follows a similar architecture to the one

presented in the previous chapter, extending through the first layer of LIF neurons. The

spikes from this layer are transmitted to the second layer, where they are weighted by a

16x16 1T1R synaptic array. Additionally, an external stimulation mechanism has been

integrated for output neurons to support online learning.
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The crossbar operates in three distinct modes: characterization, inference, and learning.

In the characterization phase (Figure 6.2b), a single 1T1R cell is selected and accessed

via the bit line, word line, and source line characterization pads (BLC/WLC/SLC). This

configuration is crucial for memristor forming, programming, and reading the state of

individual cells.

In the inference mode (Figure 6.2c), the synapses and neurons are interconnected to

compute the network’s decision in response to inputs provided to the presynaptic neuron.

The output spikes from the presynaptic neurons are applied to the gate of the respective

1T1R cells, while the source line is connected to the postsynaptic neuron input terminal.

Lastly, during the learning phase (Figure 6.2d), the on-chip amplifier supplies the pro-

gramming voltage to the bit line (BL) and source line (SL). The compliance current for

programming is set externally by applying voltage to the word line characterization pad

(WLC).

The architecture is designed with two key motivations:

1. Neuron-gate connection to the 1T1R cell: In this architecture, the output of

the neuron is connected to the gate of the 1T1R cell. When a neuron spike event

occurs, it activates all memory cells in that row. The neuron only draws a small

amount of current from each connected memory cell, while most of the read current

is pulled from the bit line. This configuration eases the load on the neuron’s output

block, enhancing the system’s scalability.

2. Efficiency in charging: The bit line (BL) remains continuously charged, and only

the word line (WL) is charged during spike transmission. This provides both energy

and latency benefits, improving overall system efficiency.
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6.4.2 Crossbar block
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Figure 6.3 Crossbar addressing circuits and logic. a A single cell of the crossbar

block with controlling logic, which includes a 32-bit shift register for addressing the BL, SL,

and WL. Each row or column is controlled by two bits from the shift register, which are

decoded into four bits by the decoder and level shifter (DLS) block. b D-Q flip-flop-based

serial-in-parallel-out shift register. c Configuration of on-chip shift registers.

Figure 6.3a illustrates the circuit for controlling a single cell in the crossbar block. The

design incorporates three 32-bit shift registers to address the bit, word, and source line.
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Each row or column is controlled by two dedicated configuration bits, which are decoded

through a 2:4 decoder to generate four output bits, with only one bit enabled at any

given time. A level shifter also converts the 1.2V digital signals to 3.3V. These decoded

bits control the transmission gates, which then switch the corresponding row or column

to connect in one of three modes: inference, characterization, or learning. The array of

transmission gates behave like an analog multiplexer for selecting and routing specific

memory cells within the matrix. These gates are controlled by a digital shift register, as

illustrated in Figure 6.3b.

The serial-in-parallel-out shift registers allow for greater control over analog circuits de-

spite having a limited number of external IO pads. In the NBB, a total of five 32-bit

configuration bits and two 16-bit bits are used to establish the addresses for the charac-

terization IO pads (WLC/BLC/SLC), neuron input pads (IN1 to IN16), and to enable

switching between different configurations. These registers are constructed using DQ flip-

flops, which are sequential logic devices that store a single bit of data. They operate by

capturing the value of the input (D) at the rising edge of the clock signal and holding it

until the next clock cycle. The circuit diagram illustrating four of these flip-flops connected

to form a shift register is shown in Figure 6.3b. The value stored by each flip-flop (Q1 to

Q4) can be used to drive switches Transmission Gate (TGATE) used to configure the chip.

A level shifter was implemented on the chip to convert the 1.2V external programming

signals to the 3.3V level required to control the transmission gates. This ensures proper

signal compatibility between digital circuits or programming inputs and on-chip analog

circuitry operating at a higher voltage.

The shift registers are programmed externally through serial input (SIN) and enable (EN)

signals, in conjunction with shared clock and reset signals to ensure synchronized control

(see Figure 6.3c). This setup allows for a precise and efficient configuration of the crossbar

by serially transmitting data to control the selection of memory cells. The combination

of analog and digital control mechanisms offers a flexible and scalable solution, ensuring

seamless integration and adaptability within the neuromorphic system.



6.4. MATERIALS AND METHODS 125

16

Vprogp

Vprogd

16

SR clk

SR reset

SR BL enable

SR BL in

SR WL out

SR BL out

SR SL out

16 x16
array

Transmission gates

16

Transmission gates

16

Transmission
gates

16

Shift register
(WL)

(32 bits)

Shift register
(BL)

(32 bits)

Shift register
(SL)

(32 bits)

Neuron
out

(Block B)

To Block D (Output neuronbank)

gnd

WLC

gnd

BLC

SLCgnd

SR WL enable

SR WL in

SR SL enable

SR SL in

VDSP Amplifier

Vmem
(Block B)

Vmid

Vbiascomp Vbiasopamp

Vref
prog

Vprogp

Vprogd

Vmem
(ext)

Vmid

Vbiascomp

Vbiasopamp

Vref
prog

Vmem
(ext)

Block C

Figure 6.4 Top Schematic Diagram of Block C (Crossbar Block). Around the
16x16 1T1R array, banks of transmission gates are serially configured by shift
registers. This configuration is controlled via digital I/O pads located on the
right side of the diagram (SR WL/BL/SL). Each row and column can be con-
nected to the neuron bank, characterization pad, ground plane, or the VDSP
amplifier, depending on the configuration. The VDSP amplifier receives bias
voltages supplied through external analog I/O pads, which are highlighted in
red.

The block diagram of the crossbar block, which comprises the 1T1R array and its con-

trol/communication logic, is shown in Figure 6.4. Each shift register has dedicated pads

for the IN, EN, and Out signals, while the clk and reset signals are shared across all

registers to ensure synchronized operation throughout the system. The BLC, WLC, and SLC

pads serve as the characterization I/O for the NBB, while external bias voltages, such as

Vbiascomp, Vbiasopamp, Vrefprog, and Vmid, are supplied to the VDSP amplifier block
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through analog I/O pads. The output from the crossbar block, consisting of 16 source

lines, is then routed to the output neuron bank (Block D).
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Figure 6.5 Circuits in the programming block (VDSP amplifier). a Top-level

schematic of the programming block, consisting of a subtract-and-multiply block along with

multiple transmission gates (TGATEs). b On-chip comparator circuit. c The subtract-and-

multiply block.

The programming voltage generator block, shown in Figure 6.5, generates the BL and SL

programming voltages based on the neuron membrane potential. The unipolar nature of

the membrane potential determines whether potentiation or depression occurs, depending

on whether the membrane potential is greater than or less than VMID. The VMID value

corresponds to the resting state potential of the LIF neuron with bidirectional leakage.

Figure 6.5a illustrates the overall circuit, which includes the subtract-and-multiply block.

This block is composed of an operational amplifier and resistors, as detailed in Figure 6.5c.

The transfer function for the VDSP amplifier block is:

VBL =

8

<

:

(Vmid − Vmem)× 3 if Vmem < Vmid

0 otherwise
(6.1)

VSL =

8

<

:

(Vmem − Vmid)× 3 if Vmem > Vmid

0 otherwise
(6.2)

This topology utilizes a differential operational amplifier to subtract voltages, as described

in [288]. The amplification factor is set to 3, determined by the ratio of the feedback
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resistances (R4/R1). This amplification factor is crucial in defining the scaling factor

discussed in Chapter 4.

For increased configurability, the resistances R1 and R4 can be replaced with a memristive

block, allowing dynamic adjustment of the amplification factor. Additionally, multiple

parallel fixed shunt resistances could be incorporated to fine-tune the scaling factor with

higher precision.

6.4.3 Input block
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Figure 6.6 Schematic block diagram of Block (A-B). a This block comprises 16

instances of (i) fixed on-chip resistances, (ii) Low Dropout regulator (LDO), and (iii) Current

Attenuator (CA). b The input neuron bank consists of 16 neurons, along with two Shift

Register (SR)s for configuring the leak mode (freeze/typical/WTA) and addressing neurons

to probe the membrane potential via the VMEM I/O pad and the VDSP amplifier.

Figure 6.6 represents the input block comprising Blocks A and B. This block consists of

fixed resistances, an LDO (low-dropout regulator), a current attenuator, and an input

neuron bank. The neuron bank is composed of 16 neurons and two Shift Register (SR)s:

LEAKIN and VMEM. The 32-bit LEAKIN shift register controls the selection of the bias
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voltages Vleakp (upward leakage) and Vleakn (downward leakage), which are connected to

the transistor gates in the DPI block (Chapter 5). These voltages regulate leakage in three

operational modes: typical, freeze (no leakage), and WTA (winner-take-all, maximum

leakage).

In typical mode, Vleakp and Vleakn are connected to the Vleakp In and Vleakn In

analog I/O pads on the NBB, respectively. In freeze mode, Vleakn is connected to the

NeuronLeakGnd pad, tied to gnd, while Vleakp is routed to the NeuronLeakVdd pad, which

is supplied with a 3.3V bias, disabling both upward and downward leakage. In WTA mode,

the connections are reversed: Vleakn is tied to 3.3V, and Vleakp is connected to gnd.

The second shift register in Block B is VMEM, a 16-bit register where only one bit is set high,

representing the index of the input neuron whose membrane potential is connected to the

VMEM signal. This VMEM signal is routed to the programming block in Block C and can

be monitored via the NBB’s VMEM_ext analog I/O pad using the on-chip voltage follower

circuit.
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Figure 6.7 Schematic diagram of Block D: Output neuron bank, consisting of
16 LIF neurons and shift registers for (i) configuring the leak rate, (ii) selecting
the output neuron index for stimulation, and (iii) asynchronously scanning out
neuron activity.

The output neuron bank, or Block D, is shown in Figure 6.7. It has two inputs: LEAKOUT

(32-bit) and STIM (16-bit), along with an output connected to scanner shift registers. The

LEAKOUT shift register operates similarly to the LEAKIN register in the input neuron bank,

allowing each neuron to be configured in one of three leak modes: freeze (minimum leak-

age), inference (typical leakage), and WTA (maximum leakage). This configuration pro-

vides independent control over each neuron’s behavior across different operational modes.

The STIM shift register determines whether the respective source line is connected to

the common STIM analog I/O pad, which interfaces with the downstream signal chain,

including the LDO, current attenuator, and neurons. The STIM pad is connected through

a 10kΩ fixed resistor, implemented in CMOS. This stimulation mechanism aids the VDSP

learning process by externally exciting the correct output neuron, based on the label,

to facilitate learning. This teaching mechanism is particularly useful for initializing the
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learning process from a subset of labeled samples, helping to establish preliminary receptive

fields. These receptive fields can later be refined through fully unsupervised learning.

The final register, the scanner output register, is responsible for capturing the output

generated by the neuron bank and will be described in more detail in the next section.

Figure 6.8 Output block timing diagram illustrating the scanning logic for clk,
FIRE, and SOUT signals. a Timing when neuron 2 fires. b Timing when neuron 9 fires. c

Timing when neurons 3 and 9 fire simultaneously.

The spikes from the output neuron bank are transmitted through asynchronous digital

logic. When any of the 16 neurons generates a spike, the outputs of all neurons are

captured in flip-flops, and the FIRE signal is activated, as shown in Figure 6.8. Once the

spikes are captured, the 16 bits are serially shifted out through the SOUT pad on each

falling edge of the externally supplied clock signal, continuing until all active bits are

transmitted. For example, Figure 6.8a illustrates the output waveform when the second

neuron fires, and Figure 6.8b shows the waveform for the ninth neuron. When all active

bits have been shifted out, the FIRE signal is reset to zero, allowing the digital logic

to resume monitoring the output neuron bank. In the case where multiple neurons fire

simultaneously, the respective bits are shifted out, as demonstrated in Figure 6.8c.

The architecture implements a handshaking protocol to synchronize the capture and trans-

fer of data between input signals and internal registers. The process begins with the acti-

vation of the capture signal. When capture = ’1’ and a rising clock edge (clk_edge =

’1’) is detected, the incoming data bit (din) is stored in the input_value register at the
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position indexed by the counter. After each data capture, the counter is decremented

to ensure proper bit ordering.

Once the capture signal transitions from ’1’ to ’0’, the system acknowledges the comple-

tion of data capture by setting the done signal to ’1’. At this point, the captured data

is transferred to the value register, and both the input_value register and the counter

are reset to their initial states. The entire process is synchronized to the clock, ensuring

reliable data transfer. The done signal is cleared as soon as the clock edge is no longer

active.
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6.4.4 Top Architecture
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Figure 6.9 Schematic block diagram of NBB. The diagram consists of four modules:

Block (A-D). Analog I/O pads are highlighted in red, and digital I/O pads are shown in blue.

Additionally, power supply pads (in yellow) are provided for GND, VDDL, and VDDH to

supply power to various circuits. The analog I/O pads (in red) include crossbar characteriza-

tion pads and bias voltages for (i) regulators (LDO), (ii) input neurons, (iii) output neurons,

and (iv) the programming block. VMEM and STIM pads are used for monitoring membrane

potential and stimulating the input and output neuron banks, respectively.

The top schematic diagram is shown in Figure 6.9. The design operates at two power

levels: VDDH (3.3V) and VDDL (1.2V). A higher voltage of up to 3.3V is necessary to form
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memristive devices, which is why the addressing and interface circuits are powered by VDDH.

In contrast, the digital control logic is powered by VDDL to minimize energy consumption

during communication, reduce programming power consumption, and lower latency.

Shift Register Bit Width

BL (Bit Line) 32-bit

WL (Word Line) 32-bit

SL (Source Line) 32-bit

STIM 32-bit

VMEM (Membrane Voltage) 16-bit

LEAKIN 32-bit

LEAKOUT 32-bit

Table 6.1 Configuration Shift Registers and their Bit Widths in NBB

In total, there are seven configuration shift registers in the NBB, as shown in Table 6.1.

The 32-bit registers assign two bits per row or column, managing the configuration of the

respective row or column. In contrast, the 16-bit registers, such as STIM and VMEM, have

only a single bit corresponding to the input neuron or output neuron index, respectively.

Register Mode Control code (2-bit)

LEAK

Freeze 00

Inference 01

Winner-Take-All 11

BL

Grounded 00

Inference 01

Characterization 01

SL

Grounded 00

Inference 10

Characterization 11

WL

Grounded 00

Inference 01

Characterization 11

Table 6.2 Configuration codes and Descriptions for various operating modes

The two-bit control code for each row or column is listed in Table 6.2. The 32-bit value used

to program the register consists of 16 concatenated control codes, which are programmed

serially through the shift registers.
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Name IO (Analog) ID Name IO (Analog/Digital) ID

BLC A4 Neuron_IN_6 A28

WLC A5 Neuron_IN_7 A29

SLC A6 Neuron_IN_8 A30

VMEM A7 Neuron_IN_9 A31

STIM A8 Neuron_IN_10 A32

Neuron_IN_1 A23 Neuron_IN_11 D18

Neuron_IN_2 A24 Neuron_IN_12 D19

Neuron_IN_3 A25 Neuron_IN_13 D20

Neuron_IN_4 A26 Neuron_IN_14 D21

Neuron_IN_5 A27 Neuron_IN_15 D22

Neuron_IN_16 D23

Table 6.3 Input and output pads with Analog and Digital Input/Output (IO)
signals assigned to IDs of Lotus for IN1 to IN16, BLC, WLC, SLC, VMEM, and STIM.

Table 6.3 presents the assignment of analog input and monitoring pads, along with their

corresponding Analog or Digital Input/Output (IO) identifiers (IDs), for key signals in the

NBB data path. The BLC pad provides access to the crossbar’s bit line during individual

read and write operations, while WLC and SLC represent the word line and source line

characterization pads for memory access.

The VMEM pad is used to access the membrane voltage of one selected neuron out of the 16

input neurons. A voltage follower ensures that probing this signal does not compromise

the integrity of the data path. The neuron is addressed through the 16-bit VMEM shift

register. The STIM pad is used for neuron stimulation, providing input to one or more

output neuron banks. Since there is a single analog input signal, it is shared among

multiple neurons, and multiple bits in the 16-bit STIM shift register can be set to ’1’ to

stimulate several neurons simultaneously.

The signals Neuron_IN_1 to Neuron_IN_16 represent the input channels for the neuron

data path, allowing the system to receive data from external sources. The first ten input

channels are assigned to a dedicated Analog pulse measurement unit (APMU), while the

remaining six are routed through digital General-Purpose Input/Output (GPIO) pins on

the Lotus platform.
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Bias Voltage IO (Analog) ID Inference Mode (V) Learning /freeze Mode (V)

Vref_in A1 0.8 0.8

Vref_out A2 1 1

Vbiasopamp A3 2.4 2.4

Vbiasopamp_shared A9 2.4 2.4

Vbiascomp A10 1 2.4

Vbulk_neuron A11 1.2 3.3

Vleak_neuron A12 0.6 0.6

Vth_input A13 1.2 1.2

Vgain_input A14 2.1 2.1

Vtaun_input A15 1.2 0

Vbtaup_input A16 0 0

Vpw_input A17 1 1

Vth_output A18 1.2 1.2

Vgain_output A19 2.1 2.1

Vtaun_output A20 1.2 0

Vbtaup_output A21 0 0

Vpw_output A22 1 1

Table 6.4 Bias Voltages (Names in schematics) with identification and Analog
and Digital IO signals for Inference and Freeze (Learning) Modes.

Table 6.4 lists the analog bias voltages and their corresponding APMU IDs for both

inference and learning modes. These signals provide flexibility in modulating the behavior

of the neuron and synaptic reading circuits.

– Vref_in and Vref_out: Supply the reference input and output voltages for the 10k

fixed synaptic input resistance or the respective column.

– Vbiasopamp and Vbiasopamp_shared: Set the bias for the operational amplifiers

used in the LDO and voltage follower for VMEM monitoring.

– Vbiascomp: Controls the bias of the neuron comparator, shifting from 1V in in-

ference mode to 2.4V in freeze mode to prevent spike generation during crossbar

programming.

– Vbulk_neuron: Modulates the bulk voltage for the neuron bank, adjusting the up-

ward leak rate. It is set to 1.2V for the typical leak rate in inference mode and 3.3V

in freeze mode for online learning.

– Vleak_neuron: Manages the neuron’s resting state potential, which remains at 0.6V

across both modes.

– Vth_input and Vgain_input: Control the threshold and gain of the input neuron

bank, fixed at 1.2V and 2.1V, respectively, in both modes.
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– Vtaun_input: Defines the time constant for downward (negative) leakage, set to

1.2V in inference mode and 0V in freeze mode.

– Vbtaup_input: Maintains a bias level of 0V across both modes.

– Vpw_input: Controls the pulse width for the input.

For the output neuron bank:

– Vth_output and Vgain_output: Regulate the threshold and gain, independent of

the input neuron bank.

– Vtaun_output and Vbtaup_output: Behave similarly to the input neurons, control-

ling time constants.

– Vpw_output: Sets the pulse width for the output neuron bank.

It is important to individually configure the input/output pulse width levels, as the spikes

generated by the input neurons are applied to the gates of the synaptic cells, while the

output spikes are captured by the activity-sensing logic in the output neuron bank, which

uses a 16-bit shift register for scanning.
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6.5 Results

6.5.1 Configuring the chip

Host (User)

FPGA (PL)ARM
(PS)

SR controlAXI
User registers
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Output spikes

Lotus PCB
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Neural building block

DAC [1:32]DAC [1:32]

ADC [1:32]ADC [1:32]
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d

Figure 6.10 Communication and control path from the PC to the UNICO chip
via the Lotus system a The host communicates with Lotus through a LAN interface and a

Graphical user interface (GUI). b Simplified schematic (top) and photograph (bottom) of the

Lotus platform comprising the Zynq SoC, ADCs, and DACs. c (top) The digital signals (blue)

and analog signals (red) are sent/received from Lotus to the ASIC. (bottom) The daughter

board for routing IO signals. d (top) Schematic representation of the packaged chip with 84

IO pads (Digital/Analog/Power). Wire-bonded die (middle) to the carrier PCB (bottom).

Figure 6.10 outlines the user interface to the NBB through LAN and the Lotus board. The

programming was performed via a custom HDL module implemented in the programmable

logic (PL) of the Zynq SoC, located on the Lotus characterization board, which supports

32 channels of analog and 32 channels of digital I/O. The signals are routed from the Lotus

PCB to the UNICO chip through a mezzanine routing PCB, as shown in Figure 6.10. The

mezzanine board connects the digital and analog signals to the ASIC. The chip is wire-

bonded to the carrier PCB, facilitating the proper routing of I/O signals between the

UNICO chip and the Lotus system for testing and characterization.
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Shift Register Digital Pin IO (Digital)

BL
SIN D9

EN D10

WL
SIN D11

EN D12

SL
SIN D13

EN D14

LEAKIN
SIN D3

EN D4

LEAKOUT
SIN D5

EN D6

STIM
SIN D15

EN D16

VMEM
SIN D7

EN D8

clk Clock Signal D2

reset Reset Signal D1

GF Global Freeze D17

Table 6.5 Digital IO Pin Assignments for Each Shift Register and Control
Signals

Table 6.5 lists the digital pin assignments for each shift register along with the corre-

sponding GPIO connections. Each shift register—BL, WL, SL, LEAKIN, LEAKOUT, STIM, and

VMEM—has associated signals SIN and EN, which are connected to specific GPIO pins. For

example, BL shift register uses GPIO pin 9 for SIN and pin 10 for EN, while WL uses pins

11 and 12, respectively. The table also specifies global control signals, including the clock

signal (clk) assigned to GPIO pin 2, the reset signal (reset) to pin 1, and the global

freeze (GF) to pin 17. These assignments allow for the control and serial programming of

the on-chip shift registers through the digital pins and GPIO connections of the FPGA in

the Lotus PCB.
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ID Name Width Description

0 clock_div 16-bit Set the clock divider

1 reset 1-bit Set the reset signal

2 BL (Bit Line) 32-bit Set the Bit Line (BL) value

3 WL (Word Line) 32-bit Set the Word Line (WL) value

4 SL (Source Line) 32-bit Set the Source Line (SL) value

5 LEAKIN 32-bit Set the LEAKIN value

6 LEAKOUT 32-bit Set the LEAKOUT value

7 VMEM (Membrane Voltage) 16-bit Set the Membrane Voltage (VMEM) value

8 STIM 16-bit Set the STIM value

9 program_triggers 4-bit Set the program trigger signals (CB, LEAK, VMEM,

STIM)

10 freeze_value 1-bit Read the freeze value (write zero to reset)

11 freeze_APMU 32-bit Set which APMU trigger is forced to zero when freeze

signal is active

12 freeze_enable 1-bit Enable freezing

26 program_done 5-bit Read the program done signal (CB, LEAK, VMEM, STIM,

program_done)

28 readreg_output 16-bit Read the output data from readreg

50 fifo_spikes 32-bit Read the number of spikes in the FIFO

51 fifo_timestamp_sec 32-bit Read the next value in the FIFO (timestamp sec-

onds)

52 fifo_timestamp_frac 32-bit Read the next value in the FIFO (timestamp frac-

tional part and neuron number) (28-bit fractional,

4-bit neuron number)

Table 6.6 AXI Slave Registers: ID, Name, Width, and Description

The AXI registers in Zynq SoC facilitate the communication between programmable sys-

tem (PS) composed of ARM CPU core and programmable logic (PL) implemented through

FPGA. Table 6.6 briefly describes these AXI registers in user space. The user (linux host

on PS) can interact or modify these registers which set and trigger the on-chip shift reg-

isters of NBB. Each register is identified by its ID, and the table details the Name, Width,

and Description of the corresponding registers. For instance, clock_div (ID 0) is a

16-bit register used to set the clock divider, while the reset register (ID 1) is a 1-bit

register for controlling the reset signal. Registers like BL (Bit Line), WL (Word Line), and

SL (Source Line) are 32-bit wide and allow users to set values for their respective shift

registers. Other registers include VMEM (ID 7) and STIM (ID 8), both 16-bit registers, which

control the membrane voltage and stimulation shift registers, respectively.
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The program_triggers register (ID 9) is 4-bit wide and is used to set program trigger

signals for different components such as CB, LEAK, VMEM, and STIM.

Upon detecting the program trigger from the PS, the FPGA module serially transmits

the value stored in the respective user register. The global freeze (GF) is set to low

throughout the configuration operation to ensure all the signals are connected to ground

during shifting of bits. Upon successful serialization of all 16/32 bits, the FPGA module

generates a program_done signal. This program_done in-turn de-freeze the chip by setting

GF to one, enabling all the level shifters on chip, and thus applying the configuration.

The table also includes registers for handling freeze control, such as freeze_value (ID

10), freeze_APMU (ID 11), and freeze_enable (ID 12), which manage freezing mecha-

nisms in the system. User registers also exist for interfacing with the FIFO, capturing

output neuron bank activity as tuples of neuron index and timestamp. For instance,

fifo_spikes (ID 50) reads the spike count in the FIFO, while fifo_timestamp_sec (ID

51) and fifo_timestamp_frac (ID 52) stores timestamps corresponding to neuron num-

bers.

prog trigger prog done

Figure 6.11 Configuring on-chip shift registers. (left) Graphical user interface
(GUI) for custom configuration by user.

The shift registers on the chip were programmed using a custom value entered by the user

in a dedicated GUI, as shown in Figure 6.11.
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The clock_divider argument sets the frequency of the clock signal that is generated in

the FPGA to control the chip. By default, this frequency is set to 1 MHz (see Figure 6.11).

Additionally, the reset signal is an active-high signal, provided from the FPGA to the chip

for resetting the system.

Once the next step button is pressed on the GUI (Figure 6.11(right)), the program trigger

signal is set high from the PS. The HDL module on the FPGA, upon receiving the trigger,

reads all the respective user registers corresponding to values to be programmed (entered

via the GUI) and shifts them out through serial input (SIN) and enable (EN) signals, as

shown in Figure 6.11(left). The EN signal remains low for 16 clock cycles (for STIM and

VMEM) or 32 clock cycles (for WL, BL, SL, LEAKIN, LEAKOUT), depending on the width of the

shift register.

The global freeze (GF) signal remains low throughout the programming operation. The GF

signal is used to enable the level shifters, which convert the shift register bits to 3.3V to

enable the selected transmission gates, as shown in Figure 6.3. During the programming

operation, the register values are not stable as they are shifting with each clock cycle.

Therefore, the shift register bits are only applied once all EN signals for SR programming

are set high (indicating that programming of all registers is complete).

In freeze mode (when the GF signal is low), a 0 (low) is applied to all transmission gates,

selecting the first configuration, which connects all the crossbar lines to the ground plane.

Neuron_SOUT and FIRE are signals from the chip, read by the FPGA. These correspond to

signals from the on-chip neuron activity scanner, which will be discussed in the following

sections.
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6.5.2 Neuron bank characterization

Figure 6.12 Characterization results of the output neuron bank (left) and GUI
parameters for the parametric sweep of the output neuron bank (right).

The 16 output neurons on the chip were characterized by individually stimulating them

via the STIM pad, which connects to each neuron through a fixed 10kΩ on-chip resistor.

The activity of the output neuron bank was measured using asynchronous digital logic

implemented through a shift register. When an output neuron becomes active, the states

of all 16 output neurons are captured in flip-flops. The FIRE signal is then triggered, and

the captured bits are transmitted serially with each clock cycle until all active neuron

states have been transmitted.

Variations in the firing rate of each neuron were observed (see Figure 6.12), primarily due

to delays introduced by the handshaking logic. This occurs because the ARM core on the

Zynq FPGA manages several functions, leading to variability in handling the interrupts

generated by the FPGA. This variability is represented by error bars in the plot.

A second source of variation arises from transistor dimension mismatches, caused by the

finite resolution of the semiconductor patterning processes. Additionally, the resistance

of metal interconnect lines becomes significant when operating at very low excitation
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currents, resulting in a trend of increasing minimum firing rates from neurons 1 through

16.

6.5.3 VDSP based learning

Algorithm 1: Memory Programming and Inference Process
Data: Neuron index (8-bit), digital control signals, analog input signals

Result: Memory programmed and system returns to inference mode

1 STIM register (8-bit) is configured with the neuron index. The LEAK SR register (digital) is set to

inference mode;

2 STIM signal (analog) is applied through APMU, triggering a neuron firing event that activates the FIRE

signal (digital);

3 Upon FIRE activation, the GF signal (digital) is set to low, and LEAK SR is configured to freeze all

input neurons;

4 The SOUT signal (digital) is sampled at each clock cycle to detect the active neuron index (i, 8-bit);

5 Lateral inhibition is activated by configuring the LEAKOUT SR (digital) of all other neurons to WTA

mode for 10 ms;

6 The BL and SL SR registers (digital) are shifted to set column i to programming mode, grounding all

other columns (GND);

7 for each row from 1 to 16 do

8 Set the WL and VMEM SR registers (digital) to activate the current row;

9 The membrane voltage (analog) sets the programming voltage for BL and SL (analog);

10 A 200 ns pulse is applied through the WLC signal (analog) to set the compliance current for

programming;

11 After programming the 16th row, deactivate the freeze mode and return the GF signal (digital) to

inference mode;

The algorithm summarized above outlines the memory programming process in the NBB

system. It involves configuring the shift registers, stimulating a neuron via the STIM signal,

and performing lateral inhibition in conjunction with programming the synaptic columns.

The synapses of each row are updated serially. Once the programming is complete, the

system returns to inference mode by resetting the global freeze signal.
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Set stimulus to i

Cell (1,i)

freeze 
for VDSP

neuron
spike event (i)

Cell (16,i)

To inference
mode

LTP
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LTD

a
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Figure 6.13 VDSP programming results. a Response of the VDSP amplifier cir-

cuit in the programming block (obtained through SPICE simulations). The Vmem and Vmid

(threshold for LTP/LTD) signals are applied as inputs, generating the VBL and VSL signals.

b Timing diagram obtained by characterizing the learning operation. A neuron spike event

triggers the freeze (GF=0), followed by the serial update sequence of each row. The address-

ing of each row is highlighted, and between the addressing operations, LTP/LTD occurs by

applying the output of the programming amplifier to the crossbar cell.

The SPICE simulation output of the LTD amplifier block is shown in Figure 6.13a. How-

ever, direct probing of VLTP and VLTD is not possible, as no dedicated I/O pads are
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available for these signals. In the event of circuit malfunction, the Analog to Digital Con-

verter (ADC), Digital to Analog Converter (DAC), and a user program running on the

processing system (PS) of the Zynq platform can be used in conjunction with the Lotus

board to create a custom scaling factor. This scaling factor can then be provided as a

parameter in the GUI, enabling users to fine-tune the amplification factor based on the

behavior of the integrated memristive devices in future implementations.

Furthermore, Figure 6.13b shows the measurement results that illustrate the VDSP pro-

gramming sequence. The diagram shows the sequence of events triggered by a spike in the

output neuron bank, followed by the freeze operation and serial update of each synaptic

row. In addition, it highlights how learning operations, such as LTP and LTD, are ap-

plied through the programming amplifier during the row addressing phase, completing the

synaptic update cycle.

Name Value Name Value

stim_index 1 amp_threshold 0.6 (V)

stim_voltage 1.1 (V) VBL_read 1.2 (V)

duration_read 1 (s) VSL_read 1 (V)

duration_WTA 1e-4 (s) VWL_read 3.3 (V)

amp_factor_ltp 3 VWL_LTP 3.3 (V)

amp_factor_ltd 3 VWL_LTD 3.3 (V)

Vbiascomp 2.4 (V) Vref_out 1 (V)

Vbiasopamp 2.4 (V) Vbiasopamp_shared 2.4 (V)

Vbulk_neuron 1.2 (V) Vleak_neuron 0.6 (V)

Vth_output 1.2 (V) Vgain_output 2.1 (V)

Vtaun_output 1.2 (V) Vbtaup_output 0 (V)

Vpw_output 1.6 (V)

Table 6.7 Characterization of VDSP learning experiment: GUI parameters for
stimulating a single neuron (crossbar column) to trigger the update sequence.

Table 6.7 summarizes key parameters for characterizing the learning process, with some

voltages previously defined in Table 6.4. The parameter stim_index refers to the stimulus

index, set to 1, and stim_voltage defines the applied stimulus voltage, set at 1.1V. The

durations of the read and Winner-Takes-All (WTA) phases are denoted by duration_read

and duration_WTA, with values of 1 second and 1× 10−4 seconds, respectively.

The amplification factors for Long-Term Potentiation (LTP) and Long-Term Depres-

sion (LTD) are controlled by amp_factor_ltp and amp_factor_ltd, both set to 3, with

a threshold voltage amp_threshold of 0.6V. The bit line, source line, and word line read
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voltages (VBL_read, VSL_read, and VWL_read) are 1.2V, 1V, and 3.3V, respectively. Sim-

ilarly, VWL_LTP and VWL_LTD remain constant at 3.3V during LTP and LTD operations.

Additional parameters such as Vbiascomp, Vref_out, Vbiasopamp, Vbiasopamp_shared,

and neuron-specific voltages like Vbulk_neuron and Vleak_neuron retain the values pre-

viously listed in Table 6.4.

6.6 Discussion

6.6.1 Back end of the line (BEOL) Integration
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Figure 6.14 UNICO ASIC for Back end of the line (BEOL) integration of
synaptic memories through 1T1R architecture a Bare silicon dies received from the

foundry. b A single die wire-bonded to a carrier (package). c Annotated micrograph of the

ASIC comprising (i) CMOS test blocks, (ii) 8x8 parallel access Ferroelectric Tunnel Junction

(FTJ) and Resistive Random Access Memory (RRAM), (iii) 32x32 RRAM serial access, (iv)

32x32 serial access FTJ, and a neural building block in the center. d Stack (side view) of the

integrated chip, comprising a CMOS substrate, followed by 8 levels of metal interconnects,

and Bottom Electrode (BE)/Oxide/Top Electrode (TE) of the BEOL-integrated memory. e

Placement of vias on the last metal layer (top view) for connecting the bottom and top metal

electrodes of the memristor.

The entire UNICO chip consists of three main blocks: the NBB (Neural Building Block),

the MCC (Memory/RRAM Characterization Cell), and the Neuron Test Block & CMOS

Test Structures. The Neural Building Block is the core of the design, serving as the

modular, self-sufficient, and lifelong learning component of the CMOS-RRAM integrated
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neuromorphic system-on-chip. This block comprises neurons implemented with CMOS

transistors, synapses realized as BEOL-integrated memristive devices, logic for plasticity,

and peripheral circuits to manage the input response and readout system.

For the integration of TiO2 and HfO2-based memristors in the back-end-of-line, vias were

placed on the eighth (last) metal layer of the fabricated CMOS ASIC. In addition to the

NBB, the full chip includes several 8x8 and 32x32 1T1R arrays for extensive character-

ization. Beyond the TiO2 and HfO2 devices used in the NBB, HZO-based ferroelectric

devices will also be integrated into the CMOS ASIC. An annotated micrograph of the

entire chip is shown in Figure 6.14. More details on pin mapping of all characteriza-

tion arrays and NBB are provided in Appendix A. Although the fabrication process and

memristor measurements are beyond the scope of this thesis, detailed information on the

fabrication recipe and measurement results will be published by the group in future work.
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6.6.2 Demonstration of learning

In the future, following the BEOL integration of synaptic devices, the following demon-

strations can be conducted to showcase learning with 2x1, 9x9, and 16x16 networks.
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Figure 6.15 Associative learning demonstration. a Schematic of a 2x1 network. The

input neuron feeds into the gate of the 1T1R synapse, and the output neuron is connected

to the bottom electrode of the memristor. b In the initial phase (i), the bell is stimulated,

but there is no activity in the saliva output neuron, as the initial synaptic weight is set to

0 (high resistance state, HRS). (ii) In the next phase, the food is activated, causing spikes

in the output neuron. (iii) Next, both food and bell are activated together, leading to LTP

in the weight between bell and saliva. Finally, in (iv), only the bell is activated, causing the

saliva neuron to fire, confirming successful association. (Results correspond to simulations of

VDSP.)

A simple demonstration of associative learning can be performed using a classical condi-

tioning experiment (simulation shown in Figure 6.15). In this setup, two input neurons

represent food (I1) and a bell (I2), while one output neuron (O1) represents saliva. The

synaptic weight between the food and saliva neurons is fixed at 1 (low resistance state,
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LRS), while the synapse between the bell and saliva is trained using the VDSP learning

rule. When I1 and I2 are stimulated simultaneously, the weight between the bell and

saliva neurons undergoes potentiation. As a result, when only the bell neuron is activated,

the output neuron responds, demonstrating successful associative learning.
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Figure 6.16 Pattern learning demonstration a 4 3x3 patterns (i-iv), processed by 9x4

network. b 4x4 patterns, to be processed by 16x4 network. c Rate coding and flattening.

As a next step, synthetic patterns will be used to evaluate learning in hardware, as depicted

in Figure 6.16. Initially, 3x3 patterns (see Figure 6.16), consisting of 4 distinct classes, will

be used. Each pixel in the pattern is flattened and mapped to the corresponding input

neuron. These patterns consist of black and white pixels, where white represents a value

of 0 (no excitation to the neuron, resulting in no spike), and black represents maximum

excitation, corresponding to the highest spike frequency (see Figure 6.16c). This setup

enables rate encoding, where the intensity of the pixels is converted to spike frequency,

simulating neural coding.

After validating the learning behavior with 3x3 patterns, more complex 4x4 patterns will

be introduced to assess the system’s ability to learn and recognize digits (see Figure 6.16b).

Following this, further experiments will be conducted to evaluate the system’s long-term

learning and adaptation capabilities. This involves continuously training the system over

extended periods to observe how well it adapts to changes in input patterns, as well as its

ability to retain memory and adjust to new patterns without catastrophic forgetting. Such
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tests will help determine how well the system can handle dynamic environments, further

validating its learning flexibility and robustness.

Name Value Name Value

index_active_neurons [1, 2, 3] amp_factor_ltp 3

excitation_voltage_min 1.2 amp_factor_ltd 3

excitation_voltage_max 3.3 amp_threshold 0.6

excitation_voltage_off 1.1 VBL_read 1.2

VBL_inference 1.1 VSL_read 1

duration_neuron_excitation 10 VWL_read 3.3

duration_monitoring 1 VWL_LTP 3.3

vmem_index 1 VWL_LTD 3.3

enable_learning True duration_read 1e-6

duration_WTA 1e-3 duration_write 1e-6

bank OUT duration_gap 1e-6

duration_read_vmem 1e-6

Table 6.8 User parameters for performing demonstration of online learning.

Several parameters can be configured by the user through the GUI. Table 6.8 outlines the

parameters for conducting a learning demonstration, with various voltages and settings

already defined in Table 6.4 and Table 6.7.

The index_active_neurons parameter specifies the indices of the active neurons, which

are set to [1, 2, 3]. The excitation voltage is controlled by excitation_voltage_min and

excitation_voltage_max, set to 1.2V and 3.3V, respectively, while excitation_voltage_off

defines the voltage when excitation is disabled, set to 1.1V.

During inference, VBL_inference is set to 1.1V. The neuron excitation duration, repre-

sented by duration_neuron_excitation, is set to 10 units, while the monitoring duration,

duration_monitoring, is set to 1 unit.

The vmem_index parameter specifies the memory index used for reading the membrane

voltage, with a value of 1. Learning is enabled through the enable_learning parameter,

which is set to True. The duration of the Winner-Takes-All (WTA) phase is 1 × 10−3

seconds, as defined by duration_WTA.

The amplification factors for LTP and LTD are controlled by amp_factor_ltp and amp_factor_ltd,

both set to 3, with an amplification threshold amp_threshold of 0.6V. The read voltages

for the bit line, source line, and word line (VBL_read, VSL_read, and VWL_read) are set

to 1.2V, 1V, and 3.3V, respectively, as described in Table 6.7.
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During LTP and LTD operations, the word line voltages (VWL_LTP and VWL_LTD) remain

at 3.3V. The timing parameters for the read, write, and gap phases (duration_read,

duration_write, and duration_gap) are all set to 1 × 10−6, as is the read duration for

the membrane voltage (duration_read_vmem).

6.6.3 Conclusion

This chapter consolidates the algorithms, circuits, and device considerations from the pre-

vious sections to develop a mixed-signal, self-learning neural building block. The VDSP

algorithm from Chapter 3, the scaling factor for mapping memristive device characteris-

tics from Chapter 4, and the neuron circuit from Chapter 5 are integrated to form the

core of the architecture, which supports configurable modes for inference, learning, and

device characterization. The analog circuitry consists of input and output neuron banks,

interfaced with synaptic reading circuits via voltage regulation and current attenuation.

Between these neuron layers is a 16x16 1T1R synaptic crossbar array with BEOL integra-

tion, featuring an addressing circuit that uses analog switches and configuration registers

to connect individual bit, word, and source lines to either the neuron bank, the VDSP

amplifier, or analog I/O pads. The VDSP amplifier transforms the membrane potential

of the neurons, applying it to the bit or source line to induce potentiation or depression,

thereby enabling efficient synaptic learning.

The full chip consists of the NBB and memory characterization cells, which include TiO2,

HfO2-based VCM, and HZO-based FTJs. Several 8x8 parallel access and 32x32 (1024)

serial access cells enable large-scale demonstrations, statistical modeling, and system sim-

ulations through extensive measurements. After BEOL integration of the memories, three

experiments are proposed to validate the learning capabilities of the NBB, focusing on

associative learning and unsupervised learning with 3x3 and 4x4 pattern sets. In these

experiments, pixel intensities are converted into spike rates by the input layer of LIF neu-

rons, while the output neuron bank implements a winner-take-all (WTA) mechanism to

make network decisions.

Realizing this hardware implementation of a self-learning building block is essential be-

cause many aspects of the system—such as device variability, noise, and interfacing chal-

lenges between computing and memory—cannot be fully captured through simulations

alone. Accurate modeling of electronic components at scale presents significant challenges,

and addressing the inherent variations and issues that arise in real-world scenarios requires

physical hardware validation. This step is necessary to ensure reliable performance and

functionality in practical applications.
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CHAPTER 7

Conclusion

"The important thing is not to stop questioning. Curiosity has its own reason for existing."

– Albert Einstein
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With the proliferation of IoT devices and the rise of big data, vast amounts of data are

available for training machine learning algorithms. However, much of this data is unla-

beled, limiting the effectiveness of state-of-the-art supervised learning methods. Continual

learning through new experiences is arguably a fundamental element behind the superior-

ity of natural intelligence. In this thesis, we investigate the following question: How can

neuromorphic learning principles be translated into analog electronic devices

and systems? We propose that online learning is a key component in the overall pro-

cess of physically implementing artificial intelligence on specialized electronic hardware.

Such hardware is necessary for the deployment of efficient AI algorithms on edge devices

that operate with limited power budgets and computational resources.

The objectives outlined in Chapter 1 are briefly reviewed in relation to the key outcomes

of this project in the following sub-sections.

1. To implement a hardware-friendly local learning algorithm within the SNN

simulation framework, enabling the evaluation of its efficiency for unsupervised pat-

tern classification and benchmarking it against state-of-the-art algorithms like STDP.

2. Outline a memristive programming strategy that leverages the analog prop-

erties of memristive devices by translating the online learning rule into hardware,

supported by characterization, modeling, and system-level simulations to

benchmark different device technologies, including resistive and ferroelectric devices.

3. Implement computation circuits using biomimetic analog neurons fabricated in

CMOS technology, while also ensuring interface with the memristive synapse

for impedance matching and spike transmission without altering the memristive

state.

4. Develop and validate mixed-signal circuits for analog computation, while im-

plementing communication and control via asynchronous digital logic, to achieve a

low-power, real-time SNN prototype.

7.1 Local learning algorithm

As described in chapter 1, we set out to address key questions about modifying neural

learning principles for real-time synaptic weight learning on the hardware. Specifically, our

goal was to identify key events (triggers) that initiate the learning process and determine

which local variables of the neuron, such as spike timing and membrane potential, define

the polarity and magnitude of learning.
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Although Hebbian-based approaches like Spike-Timing-Dependent Plasticity (STDP) have

demonstrated strong performance, the deployment of them on neuromorphic hardware re-

mains challenging. These challenges are due to the overhead of storing precise spike-timing

information or activity traces, as well as the substantial burden posed by peripheral cir-

cuitry. To overcome these limitations, we proposed a local unsupervised learning rule:

Voltage Dependent Synaptic Plasticity (VDSP), introduced in Chapter 3. The algorithm

focuses on simplifying hardware implementation while retaining the core principles of un-

supervised Hebbian learning. The key to this simplification is to take advantage of the

membrane voltage to estimate the timing of the spike, reducing the need to store pre-

cise timing information. Through rigorous mathematical analysis and simulations, we

demonstrated that the proposed learning rule aligns with Hebb’s plasticity principles.

This simplification reduces the complexity of on-chip learning circuits, making real-time

learning on neuromorphic hardware a more viable option. In [201], we showed that unsu-

pervised learning with the VDSP rule significantly improves recognition rates in pattern

classification tasks using simple SNNs, achieving greater accuracy than 90% in handwrit-

ten digit recognition. Furthermore, the learning rule demonstrated robustness against

injected noise, making it suitable for analog and digital neuromorphic hardware.

This efficiency was further validated in convolutional neural networks (CNN) [250], where

the rule proved to be effective for visual and audio pattern learning. The ability to utilize

unannotated raw data for training AI algorithms is particularly advantageous, especially

given the exponential growth in IoT devices and the recorded signals they generate. As

such, VDSP offers a compelling solution for deploying unsupervised learning in state-of-

the-art SNN topologies, enabling efficient training on unlabeled data in real-world appli-

cations.

7.2 Learning with memristive synapses

Memristors are excellent synaptic devices because of their nanoscale footprint and com-

patibility with the CMOS process integration. Recently, devices exhibiting multi-level

switching within a single memory cell have been proposed. However, two key challenges

remain: (i) Translating a learning algorithm into a practical programming strategy re-

quires converting learning signals, such as spike timing in STDP or neuron membrane

potential in VDSP, into voltage pulses through circuits; (ii) Unique switching character-

istics of memristors, such as non-linearity, asymmetry, and variability, must be accounted

for.
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In Chapter 4, the VDSP learning algorithm was translated into a memristor programming

strategy. To achieve this, three devices were examined: TiO2 and HfO2-based Valence

Change Memory (VCM) and HfZrO4-based Ferroelectric Tunnel Junction (FTJ). The

voltage-dependent switching behavior of these devices was characterized using a dedicated

electrical measurement protocol, which was then used to fit a simplified memristor model

for system-level simulations. Our results demonstrate the effectiveness of VDSP-driven

online learning in both resistive and ferroelectric memristive devices. The learning al-

gorithm showed resilience to variations in key device parameters, such as ON and OFF

resistance and switching thresholds. In addition, we proposed strategies to adapt the pro-

gramming approach based on the known degree of variability, enabling the effective use

of stochastic nanoscale devices. Overall, online learning presents a promising method for

adapting these nanoscale, ultra-scalable devices to practical neuromorphic applications.

Moreover, unsupervised learning based on VDSP leads to the generation of explainable

receptive fields. This method not only furthers the goal of explainable AI, but also im-

proves the robustness of learning against adversarial attacks and the quantization limita-

tions imposed by the restricted resolution of synaptic devices. Our initial results in [289]

demonstrate the resilience of this learning method to drift in PCM-based memristors.

7.3 Analog circuits for computing with memristor

We revisit the questions outlined in Chapter 1: What circuits and functionalities are re-

quired to interact with synaptic devices and generate learning signals, and how much flexi-

bility can be achieved to support various synaptic devices, network architectures (scale/ap-

plication), and signal time scales?

Integrating memristors into analog neuromorphic circuits presents two key challenges:

(i) Interfacing nanodevices exhibiting non-trivial properties, such as non-linearity and

variability, with low-power CMOS transistors. The analog nature of information transfer

increases the importance of signal integrity in this context. (ii) Implementing circuits that

support local learning through optimized circuit elements. The simplicity of this additional

circuit block is essential to achieve the scalability promised by memristive technology.

To address these challenges, in Chapter 5, we present a versatile CMOS circuit designed

to integrate memristive synapses into the signal processing chain of analog neuromorphic

systems. A biomimetic LIF neuron was developed, fabricated, and tested, validating three

key characteristics: compatibility with memristive synapses, long-term memory retention,

and configurability.
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First, the neuron demonstrated sensitivity to a wide range of memristive conductance

values, confirming its applicability across various memristive technologies and device di-

mensions. Secondly, a dedicated regulator and current attenuator circuit enabled a reduc-

tion in neuron capacitance while maintaining biologically realistic time scales on the order

of seconds. This advancement bridges the fields of analog neuromorphic electronics and

memristive in-memory computing. Third, the neuron exhibited extreme configurability

in parameters such as leak rate and pulse width, covering an order of magnitude. This

flexibility allows the proposed circuits to support various SNN topologies and application

scenarios. Lastly, we introduced a simple yet innovative connection scheme that enables

real-time reconfiguration of an arbitrary subset of LIF neurons into an adaptive variant,

maximizing hardware utilization and leveraging established homeostasis (learning) models.

7.4 Mixed-signal in-memory computing and learning

architecture

In Chapter 6, we outlay the architecture of mixed-signal neural building block for SNN

implementation on analog CMOS-RRAM hardware. Digital circuit blocks on the chip

enabled configuring between operating modes for (i) serial (row/column) electrical mea-

surement (form/read/write) of 1T1R crossbar cell, (ii) inference through connecting the

ouput terminals of the first layer of on-chip LIF neurons to the synaptic reading signal

chain of the second layer (composed of Low Dropout regulator (LDO), Current Attenua-

tor (CA), and LIF neurons), and learning mode to implement VDSP based programming

through the membrane voltage of the neuron in first layer. The activity of the second

layer was scanned through digital shift registers, which operated asynchronously and seri-

ally shifted the spike events.

The digital control circuit also enabled modulating the leak rate of analog LIF neurons

on chip (16 input + 16 output) to one of three states to (i) freeze the membrane leakage

during weight update or memory programming operations, (ii) typical leak rate set by

the analog IO bias voltage, or (iii) maximum leak to selectively inhibit set of neurons to

implement Winner-Take-All (WTA). Finally to assist learning, stimulation mechanism is

built in the output neuron bank, through which the correct output neuron (corresponding

to labeled class of presented sample) can be excited externally to accelerate initial learning.

The 1T1R array architecture along with analog switches, and digital registers enables

transitioning between different configurations to implement online learning through VDSP.

Analog circuit block for amplifying the neuron membrane voltage to levels above the

switching threshold is presented. Moreover, mixed-signal circuit for computing polarity of
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weight update is implemented, and thus the amplified voltage is applied to either top or

bottom electrode for potentiation or depression.

A hardware-software design was needed for controlling the NBB. The FPGA and ARM

core of Zynq Soc based measurement system was programmed through HDL and firmware

modules. The user, through GUI can carry different experiment through modifying differ-

ent parameters. The Zynq SoC also controls DACs/ADCs on Lotus PCB to supply bias

voltages and scan signals from NBB.

Through electrical measurement, the digital control logic on the chip was simulated to

verify the chip’s configurability. In addition, the transfer characteristics of all 16 neurons

were analyzed, highlighting the impact of transistor mismatch and line resistance.

The back-end-of-line integration of the memristor is currently underway, with future work

set to demonstrate online learning with fully integrated synapses. This hardware imple-

mentation of online learning is an important milestone to reach for the future development

of AI applications based on SNNs.

7.5 Summary

Through this thesis, we propose a flexible, algorithm-circuit-based hardware solution for

the deployment of small-scale neural networks in EC environments. (i) At the hard-

ware level, we developed various circuit blocks with key components that are suitable for

memristor-based in-memory computing architectures and neuromorphic computing prin-

ciples. Ultimately, this work culminates in a mixed-signal CMOS-RRAM neural building

block for spiking neural networks (SNNs), which can be interconnected through advanced

packaging technologies to form larger networks. (ii) At the software level, we created

hardware-aware behavioral models of memristive devices and spiking neurons, along with

a framework for evaluating the learning efficiency of unsupervised SNNs. This framework

was crucial in validating custom online learning rules and memristor programming strate-

gies. Broadly, the objective of this project was to design ultra-low-power hardware for

edge computing applications, with the aim of creating a versatile system that could be

embedded in a wide range of applications.

The software, models, and firmware developed to reproduce the results would be made

available at:

– https://github.com/nikhil-garg

– https://github.com/3it-inpaqt
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7.7 Future works

7.7.1 Multi-core architecture
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Figure 7.1 Multi-core architecture with plastic interconnects. (Adapted with
permission from [290]) a Multicore architecture composed of multiple CMOS-RRAM neu-

ral building blocks, interconnected by a programmable router. b The programmable router

consists of an array of Organic Electrochemical Transistor (OECT)s (top). 2D microelectrode

arrays with dendrititic connections (bottom). c Between the source and drain, there is a

PEDOT:PSS polymer (top), which transforms into conducting interconnects upon electrical

stimulation (bottom). d In a hardware-mapped 3D network, through learning connections

with structural plasticity, each node connects to its nearest neighbors.
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The first promising avenue for future work is scaling the NBB to multi-core platform.

For instance, in Figure 7.1a, a multi-core architecture composed of multiple neural build-

ing blocks is illustrated. The blocks are integrated with a programmable router which

can potentially be realized using an array of Organic Electrochemical Transistor (OECT)

[292] acting as reservoirs (see Figure 7.1b). A key feature of this system is its use of

wet-computing with PEDOT polymer-based interconnects, where the strength of the con-

nections is modulated by the history of applied electrical signals (Figure 7.1c). These

programmable interconnects enable the system to dynamically adjust through an on-line

learning mechanism, where connections between nodes (such as OECTs) can "grow" in

response to specific application demands. This flexibility is further enhanced by hardware-

programmable interconnects that take advantage of dendritic computing and structural

plasticity, allowing the creation of adaptive routing mechanisms [290].

This approach enables the system to independently refine its routing framework in re-

sponse to learning demands, significantly improving scalability and adaptability across

various tasks. Furthermore, memristor-based routers, as investigated in previous studies

[293], offer a complementary solution to develop programmable routing networks. These

routers further enhance scalability and adaptability, expanding the system’s ability to

handle diverse tasks. However, the key challenge remains to design an effective routing

architecture that seamlessly integrates these technologies and fully leverages their poten-

tial.

Our approach involves creating a flexible toolbox of elementary SNNs or neural building

blocks, which are designed as a modular Lego-inspired CMOS-RRAM system, to be as-

sembled into application-specific systems. By integrating these NBBs with digital circuits

on configurable FPGA logic, the system can scale through advanced packaging techniques

such as die-wafer bonding and chiplet-based architectures [294]. These approaches are es-

sential for achieving higher density and performance in neuromorphic systems. Flip-chip

integration onto an interposer with high-density interconnects provides a solution to the

growing need for compact, scalable hardware platforms that can handle the increasing com-

plexity of applications. However, challenges remain in interconnect design as the systems

scale up. The 3D co-integration of different technologies, such as CMOS, memristors, and

organic materials, poses significant difficulties. This requires optimizing the process flow

to ensure signal integrity and compatibility with standard CMOS manufacturing [294].

7.7.2 Neuron circuit

The current design prioritizes compatibility with memristive synapses and flexibility in

parameters such as threshold and leak rate. However, a key issue for future designs is the
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area and energy overhead of the neuron circuit. To mitigate these concerns, the following

optimizations are recommended:

– Integrating a low power comparator circuit within the neuron to reduce dynamic

energy expenditure (energy per spike)

– Migrating the design from the 130nm technology node to a more advanced node,

such as 7nm.

– Adjusting the power supply level from 3.3V to lower conventional levels, such as

1.2V, to achieve greater energy efficiency

In terms of area overhead, the primary limiting factor is the size of the membrane ca-

pacitance, which integrates inputs over time. This capacitor occupies the majority of the

neuron area, as a large capacitance is necessary to support slow leakage and bio-plausible

temporal dynamics. To address this, future designs could explore replacing the large

capacitance with nanodevices such as:

– Materials such as Mott insulators and NbO2/VO2 devices exhibit volatile memory

that inherently diminishes over time. Such properties enable the substitution of

significant capacitors in neuronal circuits, thereby decreasing spatial demands [295,

296, 297].

– Non-volatile resistive [298] or capacitive [299] elements.

The neuron circuit proposed in Chapter 5 relies on several DC bias voltages to set its

operating parameters. One promising approach for future designs is the use of memristive

circuits in a voltage divider configuration to generate these bias voltages [300], eliminating

the need for external bias generators. Neuron state variables are also used to generate

learning signals for synaptic learning. Additionally, neuron dynamics can be modulated

by adjusting parameters such as the leak time constant and threshold. In pure CMOS

circuit implementations, this modulation is achieved by altering the bias voltage or current

supplied to neurons. However, this strategy faces scalability challenges, as it requires

precise voltage control for each neuron. To address this, previous designs have incorporated

memristors, which offer extreme scalability and reduce area and power constraints.

Although memristive devices often exhibit variability, this characteristic can be advan-

tageous for capturing a range of spatiotemporal patterns. In a hybrid CMOS-RRAM

neuron, the memristor’s conductance can be programmed to manage both learning and

variability. Known as meta-plasticity, this flexibility permits neuron dynamics to directly

shape synaptic learning. Additionally, there is potential to embed plasticity within the

homeostasis and adaptation mechanisms of neuron thresholds, as elaborated earlier in
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Chapter 5. The proposed framework redefines the memristive synapse and LIF neuron

to function as a regulator, facilitating real-time adjustments to the thresholds or homeo-

static properties of other neurons or groups. By employing a memristor to regulate the

synaptic resistance of this control neuron, the network can adjust and learn over time,

enabling more adaptable runtime modifications. However, incorporating these advanced

oxide-based devices into CMOS technology presents a challenging yet rewarding endeavor.

7.7.3 Device engineering and learning models

The UNICO chip, with its more than 4k memories, serves as a test vehicle for extensive

device characterization. A key avenue for future work involves material optimization with

emerging memristive device concepts, such as HZO ferroelectric tunnel junctions [301],

which hold the potential to overcome current limitations in size and energy consumption.

However, challenges related to integration and scaling remain, largely due to low current

density, and ongoing material research aims to address these issues [302, 303, 304]. The

material stack of oxides can be co-optimized through system-level simulations of learning

scenarios, with optimization depending on factors like network scale, the nature of the

classification problem, and the learning rule. While the first step may involve optimizing

device dimensions, more profound improvements may come from rethinking the material

stack itself. The UNICO chip offers a unique opportunity to investigate interactions with

the copper interconnect layer, going beyond previous work on passive devices. Further-

more, integrating transistors for compliance current control allows exploration of advanced

programming strategies, which are crucial for improving device endurance.

In addition to material optimization, the UNICO chip’s 1T1R arrays can be leveraged for

on-device learning demonstrations with algorithms beyond VDSP. As discussed in Chap-

ter 2, various Hebbian learning approaches that have not yet been explored with mem-

ristive devices offer promising opportunities. This is crucial because accurately modeling

memristive devices, especially at the array scale, is inherently challenging. Although single

devices can be effectively modeled with physics-based approaches, scaling these models to

evaluate performance with large datasets remains difficult. The proposed VDSP learn-

ing rule represents an initial step towards simplifying Hebbian learning for memristive

synapses. Building on this fully unsupervised model, a promising next step would be the

introduction of a third factor [100]. This third factor, in the form of a reward or surprise

signal, could help the system better leverage labeled datasets for faster optimization. It

would also enable more efficient learning in complex neural network topologies, such as

multi-layer and recurrent networks.
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Furthermore, the scaling factor described in Chapter 4 is crucial for tuning the program-

ming circuit based on the characterized response of the target memristive device. In

Chapter 6, the programming circuit employs the ratio of two resistances connected via

an Operational Amplifier (OpAmp). These resistances can be replaced with memristor-

based programmable devices, which allows for dynamic adjustments. By programming the

memristor in the circuit, the VDSP-based learning can be fine-tuned through a learning

mechanism, enabling the system to adapt the learning rate in real-time.

7.7.4 Interfacing with biology

Silicon 
Neural networks

Electronic - ionic Interface Biological 
Neural networks

a

time

c

Figure 7.2 Interfacing silicon and biological neural networks. a The multi-core

architecture, made of CMOS-RRAM NBB, functions as electronic hardware that structurally

and functionally emulates bio-mimetic neural networks. b Multi-electrode array of Organic

Electrochemical Transistor (OECT)s (top) and dendritic polymer for interconnects between

nodes in the MEA array (bottom). (Reproduced with permission from [291]) c Network

of neural cells in a petri dish transmitting information through ion channels. Spike raster

illustrating binary activation of neurons. The network could be derived from rodent (rat) or

human cells, either in-vivo or in-vitro.

An exciting avenue for further research involves using the created hardware to process sig-

nals and identify patterns from biological neurons, with the output of silicon-implemented

SNNs potentially serving as stimuli for neural cells and facilitating the exploration of neu-

romodulation. The hardware developed during this project, as illustrated in Figure 7.2a,

offers significant benefits for this type of interface because it closely resembles neural cells.
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For example, it mirrors the time scale in processing and the creation of discrete spike

events. This interface introduces new opportunities beyond those available in current

technologies.

In a recent study, we utilized OECTs [292] as reservoirs [291] to process spike-encoded

EMG signals [305]. Future work may involve linking the OECT reservoir to the UNICO

chip, facilitating seamless integration for biosignal processing. In fact, OECTs can be

co-integrated to develop a unified sensing and processing system, as shown in Figure 7.2b.

Additionally, the hardware-friendly VDSP rule can be explored within the framework of

structural plasticity to acquire sparse connections [290]. This system could potentially

communicate with networks of neural cells, either in-vivo or in-vitro (Figure 7.2c), for

applications such as neural prosthetics and brain-computer interfaces. This could poten-

tially improve the adaptability of neuromorphic systems in biological signal processing.

Naturally, this involves various challenges related to micro-fabrication and integration of

electronic while maintaining compatibility with both semiconductor fabrication processes

and neural cells.

A compelling recent study titled "Neuronal Cultures Playing Pong: Initial Steps Toward

Advanced Screening and Biological Computing" [306] demonstrated early signs of intel-

ligence in organoids (in vitro neuron cultures). In the long term, integrating biosignal

analysis into compact, ultra-low power hardware could revolutionize neural interfaces by

enabling localized computing near the recording site. This would minimize heat dis-

sipation, reduce data transfer, and significantly lower power consumption, making the

technology more efficient for real-time applications [307]. The relationship between neu-

roscience and computing fosters a cycle of innovation: brain-inspired computing drives

advancements in hardware, while computing-driven brain research uncovers deeper in-

sights into neural processes. Recent breakthroughs in computing hardware have enabled

the simulation of large-scale brain models, contributing to our understanding of brain

dynamics, degenerative diseases, and potential treatments. Imaging technologies such as

Electroencephalography (EEG) and Electrocorticography (ECoG) continue to play a criti-

cal role in uncovering the mechanisms of human cognition. These insights, in turn, inform

the development of new computing hardware and artificial intelligence, creating a closed

feedback loop of symbiotic innovation.

7.7.5 Summary

Our approach focuses on the development of plastic building blocks with self-adaptive

capabilities, which address key challenges in edge computing applications. Using unsu-

pervised learning through brain-inspired SNNs, we can efficiently extract features from
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temporal data, significantly reducing the dependency on large training datasets. Further-

more, our work advances the field of neural networks by adapting plasticity mechanisms

and threshold modulation techniques to meet hardware constraints, while fostering new

advancements in analog SNNs for next-generation electronic devices. These innovations

form the basis for future research on the deployment of SNNs in EC environments. The

hybrid hardware/software framework developed through this effort will act as a crucial tool

to drive further application-focused advancements and innovation. Below is a summary

of potential avenues for future research:

1. Our results are encouraging and should be validated through a larger hardware im-

plementation, ideally with a multi-core architecture. We propose structural plasticity

using organic transistors and polyimide-based sparse 3D interconnects as a potential

strategy for bottom-up scaling of the proposed neural building block.

2. Future research should explore the integration of memristors directly within the

neuron circuit to add a layer of plasticity to key neuron parameters such as the

threshold and leak rate. These weights would be non-volatile, reducing the need for

analog bias signals for each NBB and thereby improving scalability.

3. More research is required to assess the impact of mismatch and variability in memris-

tive devices, focusing on array-level characterization and robust statistical modeling.

Additionally, the integration of innovative material stacks presents a challenging yet

promising avenue for future research, offering the potential to improve key per-

formance metrics such as device footprint, current range, and CMOS-compatible

programming voltages.

4. An important open question for future research is how to enhance the efficiency of

fully unsupervised plasticity, allowing the system to learn and adapt to complex

patterns more quickly and accurately. One promising approach could be the in-

corporation of a third factor, such as a reward or reinforcement signal, to guide

the plasticity process. This additional signal could help the network prioritize rel-

evant features, improve the synaptic update mechanism, and ultimately accelerate

convergence.

5. The developed hardware mimics the structural and operational principles of bio-

logical neural systems, enhancing its capabilities for real-time neural sensing and

modulation. Future low-power AI hardware should aim to integrate computing di-

rectly into sensors, pushing the boundaries of efficiency.
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7.8 Perspective

As AI becomes increasingly integrated into our daily lives, significant challenges arise,

particularly in the area of energy efficiency. The deployment of AI at the edge, where

devices must operate with minimal power, underscores energy as a critical bottleneck.

This problem extends beyond mere technical challenges and has become a worldwide is-

sue, as the carbon emissions from AI datacenters are on par with those of entire countries.

Although centralized processing has enabled the wide-scale deployment of AI, it raises se-

rious sustainability concerns. Moreover, the high energy consumption in AI systems leads

to heating in semiconductors, which poses challenges to the 3D stackability of electronic

devices, a crucial factor for the future of electronics.

The future of computing is unlikely to rely on a single technology. The limitations of

purely CMOS-based systems highlight the need for integration of new materials, such

as graphene-based 2D materials [308, 309] and organic materials [310] for bio-interfacing.

This shift calls for a multidisciplinary approach that combines fabrication, modeling, char-

acterization, simulation, and design to develop the next generation of computing systems.

In this context, heterogeneous architectures are expected to drive innovation. Technologies

like analog computing, memristors, and FPGAs, long overshadowed by the deterministic

scaling of Moore’s law, are anticipated to gain prominence as we move beyond this era.

Flexible and tailored computing solutions, such as the idea of Lego-like chiplets [311, 312],

illustrate this movement.

One promising direction is neuromorphic technology, which utilizes analog circuits and

memristive devices. While it remains uncertain whether neuromorphic technology com-

prising a spiking neural network implemented with analog CMOS and integrated mem-

ristive synapses will lead to a breakthrough in machine intelligence, the approach of

algorithm-circuit co-design presents a significant opportunity. This approach opens new

avenues for emerging fields like quantum computing, photonics, and nanotechnology, all of

which have the potential to revolutionize our comprehension and application of artificial

intelligence.

A notable advancement in this field of neuromorphic engineering is the concept of online

learning, which provides significant benefits. Online learning improves the generalizability

of AI systems, enabling them to perform beyond the limitations of their initial training

data. Similar to the human brain, these systems are capable of continuously acquir-

ing knowledge and adjusting to new experiences, thus developing with each encountered

challenge. Adaptability is especially important for addressing the inherent constraints of

hardware, such as fixed topology, limited resolution, analog computing noise, and variabil-
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ity in memristive devices. In the end, I would like to quote Alan Turing, one of the first

visionaries to propose the concept of artificial intelligence.

“Instead of trying to produce a programme to simulate the adult mind, why not rather try

to produce one which simulates the child’s? If this were then subjected to an appropriate

course of education one would obtain the adult brain. Presumably the child-brain is some-

thing like a note-book as one buys it from the stationers. Rather little mechanism, and lots

of blank sheets.” - Alan Turing
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Conclusion en français

Avec la prolifération des dispositifs IoT et l’essor du big data, d’énormes quantités de don-

nées sont disponibles pour l’entraînement des algorithmes d’apprentissage automatique.

Cependant, une grande partie de ces données n’est pas étiquetée, limitant l’efficacité des

méthodes d’apprentissage supervisé les plus avancées. L’apprentissage continu à travers

de nouvelles expériences est sans doute un élément fondamental derrière la supérior-

ité de l’intelligence naturelle. Dans cette thèse, nous examinons la question suivante

: Comment les principes d’apprentissage neuromorphique peuvent-ils être

traduits en dispositifs et systèmes électroniques analogiques ? Nous proposons

que l’apprentissage en ligne est un composant clé dans le processus global de mise

en œuvre physique de l’intelligence artificielle sur un matériel électronique spécialisé. Un

tel matériel est nécessaire pour le déploiement d’algorithmes IA efficaces sur des disposi-

tifs périphériques fonctionnant avec des budgets d’énergie et des ressources informatiques

limités.

Les objectifs décrits dans Chapter 1 sont brièvement révisés en relation avec les résultats

clés de ce projet dans les sous-sections suivantes.

1. Mettre en œuvre un algorithme d’apprentissage local adapté au matériel

dans le cadre de simulation SNN, permettant l’évaluation de son efficacité pour la

classification de motifs non supervisés et le comparant à des algorithmes de pointe

comme le STDP.

2. Décrire une stratégie de programmation memristive qui tire parti des propri

étés analogiques des dispositifs memristifs en traduisant la règle d’apprentissage en

ligne en matériel, soutenue par la caractérisation, la modélisation et les simu-

lations au niveau système pour évaluer différentes technologies de dispositifs, y

compris les dispositifs résistifs et ferroélectriques.

3. Implémenter des circuits de calcul utilisant des neurones biomimétiques analogiques

fabriqués en technologie CMOS, tout en assurant également l’interface avec la

synapse memristive pour une adaptation d’impédance et une transmission de

spike sans altérer l’état memristif.
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4. Développer et valider des circuits mixtes pour le calcul analogique, tout en mettant

en œuvre la communication et le contrôle via une logique numérique asynchrone,

pour atteindre un prototype de SNN en temps réel à faible puissance.

À travers cette thèse, nous proposons une solution matérielle flexible, basée sur des

algorithmes-circuits, pour le déploiement de réseaux neuronaux à petite échelle dans des

environnements EC. (i) Au niveau du matériel, nous avons développé divers blocs de

circuits avec des composants clés adaptés aux architectures de calcul en mémoire basées

sur les memristors et aux principes de calcul neuromorphique. Finalement, ce travail

aboutit à un bloc de construction neural CMOS-RRAM mixte pour les réseaux neuronaux

à impulsions (SNNs), qui peut être interconnecté grâce à des technologies d’encapsulation

avancées pour former des réseaux plus grands. (ii) Au niveau du logiciel, nous avons créé

des modèles comportementaux conscients du matériel de dispositifs memristifs et de neu-

rones à impulsions, accompagnés d’un cadre pour évaluer l’efficacité d’apprentissage des

SNNs non supervisés. Ce cadre était crucial pour valider les règles d’apprentissage en ligne

personnalisées et les stratégies de programmation des memristors. Largement, l’objectif

de ce projet était de concevoir un matériel ultra-basse consommation pour des applica-

tions de calcul en périphérie, avec l’ambition de créer un système polyvalent pouvant être

intégré dans une large gamme d’applications.

8.1 Travaux futurs

Notre approche se concentre sur le développement de blocs de construction plastiques

avec des capacités auto-adaptatives, qui répondent aux défis clés dans les applications

de calcul en périphérie. En utilisant un apprentissage non supervisé à travers des SNNs

inspirés du cerveau, nous pouvons extraire efficacement des caractéristiques à partir de

données temporelles, réduisant considérablement la dépendance à de grands ensembles

de données d’entraînement. De plus, notre travail fait avancer le domaine des réseaux

neuronaux en adaptant les mécanismes de plasticité et les techniques de modulation de

seuil pour répondre aux contraintes matérielles, tout en favorisant de nouvelles avancées

dans les SNNs analogiques pour les dispositifs électroniques de nouvelle génération. Ces

innovations constituent la base de futures recherches sur le déploiement de SNNs dans des

environnements EC. Le cadre matériel/logiciel hybride développé à travers cet effort agira

comme un outil crucial pour stimuler davantage de progrès orientés vers des applications

et des innovations.

1. Nos résultats sont encourageants et devraient être validés à travers une mise en œuvre

matérielle plus large, idéalement avec une architecture multicœur. Nous proposons
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la plasticité structurelle en utilisant des transistors organiques et des interconnex-

ions 3D sparses basées sur des nanopolyimides comme stratégie potentielle pour le

dimensionnement ascendant du bloc de construction neuronal proposé.

2. Les recherches futures devraient explorer l’intégration de memristors directement

au sein du circuit neuronique pour ajouter une couche de plasticité aux paramètres

clés du neurone tels que le seuil et le taux de fuite. Ces poids seraient non-volatils,

réduisant la nécessité de signaux de polarisation analogiques pour chaque NBB et

améliorant ainsi l’évolutivité.

3. Il est nécessaire de mener davantage de recherches pour évaluer l’impact des dis-

cordances et de la variabilité dans les dispositifs memristifs, en se concentrant sur

la caractérisation au niveau des réseaux et la modélisation statistique robuste. De

plus, l’intégration de piles de matériaux innovantes présente une voie difficile mais

prometteuse pour de futures recherches, offrant le potentiel d’améliorer des métriques

de performance clés telles que l’empreinte du dispositif, la plage de courant et les

tensions de programmation compatibles avec les CMOS.

4. Une question importante pour les recherches futures est comment améliorer l’efficacité

de la plasticité totalement non supervisée, permettant au système d’apprendre et de

s’adapter à des motifs complexes plus rapidement et avec plus de précision. Une

approche prometteuse pourrait être l’incorporation d’un troisième facteur, tel qu’un

signal de récompense ou de renforcement, pour guider le processus de plasticité. Ce

signal supplémentaire pourrait aider le réseau à prioriser les caractéristiques perti-

nentes, améliorer le mécanisme de mise à jour synaptique, et accélérer ultimement

la convergence.

5. Le matériel développé imite les principes structurels et opérationnels des systèmes

neuronaux biologiques, améliorant ses capacités pour la détection et la modulation

neurales en temps réel. Le futur matériel IA à faible puissance devrait viser à intégrer

le calcul directement dans les capteurs, repoussant les limites de l’efficacité.
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APPENDIX A

UNICO ASIC

Characterization cells

Figure A.1 Single 1T1R cell composed of 4 characterization pads: gate, source,
top-electrode, and bulk of transistor.

Figure A.2 2x2 representation of 8x8 parallel memory characterization array
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Figure A.3 8x8 parallel memory characterization cell with parallel access of
BL, WL, SL through 25 scribes.

Pin No. Name Pin No. Name
1 BL<7> 14 SL<2>
2 BL<6> 15 SL<1>
3 BL<5> 16 SL<0>
4 BL<4> 17 WL<0>
5 BL<3> 18 WL<1>
6 BL<2> 19 WL<2>
7 BL<1> 20 WL<3>
8 BL<0> 21 WL<4>
9 SL<7> 22 WL<5>
10 SL<6> 23 WL<6>
11 SL<5> 24 WL<7>
12 SL<4> 25 gnd
13 SL<3>

Table A.1 8x8 Parallel characterization cell: Pin Number and Name.

Table A.1 provides the pin assignments for the parallel interface, listing the bit line (BL),
source line (SL), and word line (WL) connections. Pins 1 through 8 are associated with the
bit lines BL<0> to BL<7>, while pins 9 through 16 correspond to the source lines SL<0>

to SL<7>. The word line connections are covered by pins 17 through 24, which represent
WL<0> to WL<7>.

Pin 25 for ground (gnd), shared by the bulk terminals of all transistors of the 8x8 1T1R
array.
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Figure A.4 32x32 memory characterization cell with serial acess through 25
analog and digital IO signals.

Figure A.5 Shift register for addressing a single row or column of 32x32 crossbar
array
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Pin No. Name A/D/P I/O
1 - - -
2 - - -
3 IN_SR_LS_BL<31> D O
4 SIN_BL D I
5 EN_SR_BL D I
6 RESET_BL D I
7 CLK_BL D I
8 VBL A IO
9 EN_LS D I
10 - -
11 gnd P I
12 VSL A IO
13 IN_SR_LS_WL<31> D O
14 SIN_WL D I
15 EN_SR_WL D I
16 RESET_WL D I
17 CLK_WL D I
18 VDDL P I
19 VWL A IO
20 VDDH P I
21 CLK_SL D I
22 RESET_SL D I
23 SIN_SL D I
24 EN_SR_SL D I
25 IN_SR_LS_SL<31> D IO

Table A.2 HZO Serial: Pin Number, Name, A/D/P, and I/O

Table A.2 details the pin assignments for the HZO serial interface, specifying the pin num-
bers, names, analog/digital/power (A/D/P) classification, and input/output (I/O) func-
tionality.

Most of the pins are used for digital signal control, such as SIN_BL, EN_SR_BL, RESET_BL,
and CLK_BL for bit line management, and similarly for the word line and source line control
with corresponding pins like SIN_WL, SIN_SL, and their associated enable (EN_SR), reset
(RESET), and clock (CLK) signals.

Pin 8 (VBL), pin 12 (VSL), and pin 19 (VWL) are designated for analog input/output,
controlling the bit line, source line, and word line voltages, respectively. Pins 11 (gnd),
18 (VDDL), and 20 (VDDH) are power-related and are used to supply ground and operating
voltages.

Several pins, such as pin 3 (IN_SR_LS_BL<31>) and pin 25 (IN_SR_LS_SL<31>), handle
data output for the least significant bit of the shift registers associated with the bit line
and source line, respectively. Pins 1, 2, and 10 are unused and marked with a dash.
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