
HAL Id: tel-04818568
https://hal.science/tel-04818568v1

Submitted on 4 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Haplotype assembly from long reads
Roland Faure

To cite this version:
Roland Faure. Haplotype assembly from long reads. Bioinformatics [q-bio.QM]. Université de Rennes;
Université Libre de Bruxelles, 2024. English. �NNT : �. �tel-04818568�

https://hal.science/tel-04818568v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Informatique

Par

Roland FAURE
Haplotype assembly from long reads

Thèse présentée et soutenue à Rennes, le 27 novembre 2024
Unité de recherche : IRISA, UMR 6074

Rapporteurs avant soutenance :

Christopher QUINCE Group leader, Earlham Institute
Alexander DITHLEY Professor, Heinrich Heine Universität

Composition du Jury :

Président : Rayan CHIKHI Group leader, Institut Pasteur
Examinateurs : Paola BONIZZONI Professeur à l’Università degli Studi di Milano-Bicocca

Thomas DERRIEN Chargé de recherche au CNRS
Simon DELLICOUR Professeur à l’Université libre de Bruxelles

Dir. de thèse : Dominique LAVENIER Directeur de recherche au CNRS
Jean-François FLOT Professeur, Université libre de Bruxelles

ACKNOWLEDGEMENT

I want to begin my acknowledgments by thanking the jury members for accepting to
read my thesis. Now that it is done, you can save some time and skip over all the rest
of the acknowledgments, since you still have 150 pages to read. More generally, I found
in the community and at conferences many people who took the time to understand and
discuss my work, who were pivotal to lead the best research I could.

I spent three wonderful years while working on this Ph.D. This is thanks to all of the
people I have been and worked with, so here go my heartfelt thanks.

D’immenses remerciements vont à Jean-François et Dominique pour avoir rendu cette
thèse possible. Je ne le réalisais pas complètement à l’époque, mais vous vous êtes tous
les deux vraiment adaptés pour construire avec moi un sujet de thèse qui me motivait, et
qui m’a motivé pendant trois ans. Pendant les trois années suivantes, je me suis toujours
senti encouragé, soutenu et bien conseillé dans mes directions de recherche. Finalement,
vous m’avez donné le gout à la recherche et l’envie de continuer ma carrière académique.

Quand je suis arrivé à Rennes en Juin 2021, pendant le troisième confinement, je
ne pouvais qu’éspérer trouver un groupe comme Symbiose. Merci évidemment à mes co-
thésards de notre année à Symbiose, a.k.a l’équipe de tournage de Patatogène, un film qui
restera dans les annales du cinéma moderne. Merci aussi aux thésards qui m’ont précédés
et suivis, Victor E., Lucas, Nicolas, Matthieu, Garance, Camille, Arnaud, Kevin, Guil-
laume, Olivier D., Téo, Meven et aussi à Olivier B., Julien, Victor M., Pierre M., Gaétan
et Konogan pour ce qu’on a partagé à l’IRISA et en dehors. Et bien sûr Corentin, Yaël
et Thomas qui ont partagé mon bureau. Merci aussi à tous les ingénieurs et chercheurs
permanents qui ont beaucoup contribué à me donner le sourire en allant au travail tous
les jours, Pierre, Karel, Jacques, Emeline, Riccardo, Olivier, Jeanne, Stéphanie, Yann,
Catherine, François C., François M., Emmanuelle, Yann, Matéo, Florian, Samuel et fi-
nalement Claire et Fabrice, pour avoir partagé aussi des parties de badminton. Finale-
ment, merci Marie d’être la meilleure et de m’avoir beaucoup aidé dans les démarches
administratives.

After having known all of the Brussels people via Zoom for two years, I finally got to
know you in person in September 2023. I discovered a great crew, Hugo, Alice, Claire, So-

3

phie, Mohammed, Dina, Stephen and I also discovered that Stephen actually was French-
speaking from the start. After having conquered a new office, it was very nice settling
in with my fellow newcomers Olivier C. (again! that’s the fourth one in my acknowledg-
ments), Helena and Felipe and Olivier de T. (damn it! are the Olivier going to stop for
one second). All these aperos and times at the Montmartre were a lot of fun. The bad-
minton with Antoine H., Hugo and all my badminton partners were a lot of fun too, in a
different style. A special thanks to Claire and Florence for trying to teach me lab work,
an ambitious endeavour doomed to fail. It want also to thank all the EBE members with
whom I shared meals and drinks.

I had the chance to collaborate with great people during my Ph.D. I will start with
Nadège, even though we technically collaborated more before the Ph.D. than during
the Ph.D., you taught me a lot on how to ground bioinformatics problems in biological
questions and also how to manage a Ph.D. The strainMiner project was completed thanks
to the hard work of Tam and Rumen, and the help from Victor and Riccardo. It taught
me much on optimisation, a field I was not familiar with. The conference in Rome in
winter was nice too. I participated in the Ph.D. project of Alessandro from which I will
retain not only the scientific discussion but also the friendship.

Merci aussi à Emmanuelle, Olivier D. et Vonnick pour m’avoir permis de découvrir ce
qu’était l’enseignement dans d’excellentes conditions.

Je ne peux oublier ici tous mes amis que je n’ai pas encore cité, à commencer par mes
colocataires. D’abord Nicolas, qui m’a fort sympathiquement permis d’aller en conférence
en expliquant aux voisins ce qu’était cette huile sur leur balcon. Puis Sixtine, avec qui
nous avons notamment exploré Hyrule. Arthur, avec qui j’ai découvert Bruxelles et fab-
riqué une bien belle brique. Enfin Elvira, avec qui on a partagé de nombreuses soirées, à
l’appartement et ailleurs. En plus de ceux cités ici, tous mes amis m’ont permis de vivre
cette thèse dans d’excellentes conditions et qui sont bien sûr invités en mai prochain à
Montautre.

Pour finir par le plus important, merci à ma famille, à Louise, Ulysse, Arthur, maman
et papa, j’ai toujours hâte de venir passer du temps avec vous. À mes grands-mères, qui
sont un repère dans ma vie. Merci aussi à Serge pour son coaching intensif en vulgarisation
et à Catherine pour veiller à entretenir mon acuité mentale tous les hivers.

Finalement, une mention spéciale pour Alice, qui n’est pas que le nom de mon assem-
bleur. Vive Yelle.

4

TABLE OF CONTENTS

Introduction 9
0.1 Sequencing and assembling a genome . 10

0.1.1 Genomes . 10
0.1.2 DNA extraction . 11
0.1.3 DNA sequencing . 12
0.1.4 Genome assembly . 14
0.1.5 Finishing an assembly . 18

0.2 Challenges of metagenome assembly and outline of the thesis 20
0.2.1 Metagenome assembly . 20
0.2.2 Assembling haplotypes with erroneous reads 21
0.2.3 Assembling haplotypes with highly precise reads 22
0.2.4 Finishing a multi-haplotype assembly 23

1 Evaluating and improving assembly graphs 25
1.1 Evaluating assembly graphs . 25
1.2 Improving metagenome assemblies . 27
1.3 GenomeTailor . 28
1.4 Results . 31

1.4.1 Datasets . 31
1.4.2 Metrics . 31
1.4.3 Benchmark results . 32
1.4.4 Completing a Debaryomyces hansenii assembly 33

1.5 Discussion . 35

2 Recovering haplotypes using noisy long reads 37
HairSplitter: first algorithm . 38
HairSplitter: haplotype assembly from long, noisy reads 47
strainMiner: combining ILP and data mining for strain-level assembly 64

5

TABLE OF CONTENTS

3 Assembling high-fidelity reads 87
3.1 Mapping-friendly Sequence Reductions as a sketching technique for assembly 88

3.1.1 Objective . 88
3.1.2 Definition of Mapping-friendly Sequence Reductions 88
3.1.3 Performing assembly with reduced sequences 91
3.1.4 Designing a good MSR sketch . 93
3.1.5 Why are MSRs interesting? . 97

3.2 Alice: fast and accurate assembly of high-fidelity reads based on MSR
sketching . 98
3.2.1 Introduction . 98
3.2.2 Methods . 100
3.2.3 Results . 102
3.2.4 Discussion . 107

4 Using Hi-C to untangle assembly graphs 109
4.1 Context . 109
4.2 Introduction . 109
4.3 Methods . 111

4.3.1 Input . 111
4.3.2 Multiplicity of contigs . 113
4.3.3 Knots . 113
4.3.4 Paths . 114
4.3.5 Output . 115
4.3.6 Haploid assembly . 115

4.4 Results . 115
4.4.1 Datasets . 115
4.4.2 Protocol . 116
4.4.3 Collapsed haploid assembly: results 116
4.4.4 Diploid assembly: results . 117
4.4.5 Performance . 120

4.5 Untangling the graph with long reads . 120
4.6 Extending to metagenomes . 121
4.7 Conclusion . 121
4.8 Availability . 122

6

TABLE OF CONTENTS

5 Conclusion 123

Conclusion 123
5.1 Practical contribution . 123
5.2 Methodological contributions and perspectives 125
5.3 Future applications . 126

Bibliography 129

7

INTRODUCTION

Large eukaryotic organisms such as plants and animals have been the subject of scien-
tific study for centuries, with their physiology, behavior, and ecosystems well-documented
[1]. In contrast, the study of microorganisms has been historically challenging due to
their small size and wide diversity. Their very existence was only confirmed in 1676, when
Antonie van Leeuwenhoek observed them through his homemade microscope [2].

Progress in understanding the roles of microorganisms was slow, with their involvement
in fermentation and disease only established in the 19th century [3, 4]. The development
of techniques to culture microorganisms in the laboratory expanded the range of possible
experiments and led to significant advances in the field of microbiology [5, 6].

At the turn of the 20th century, scientists discovered that microorganisms are ubiqui-
tous in natural environments and exist in complex ecosystems called microbiomes, which
are composed of bacteria, eukaryotes, archaea, and viruses [7, 8]. Despite the growing
number and diversity of described microorganisms, the study of microbiomes as ecosys-
tems remained embryonic throughout the 20th century. The scientific methods did not
allow even to determine the composition of a microbiome, as many microorganisms are
indistinguishable under a microscope and cannot be cultured in the laboratory [9]. A ma-
jor breakthrough in the study of microbiomes came with the advent of genomic studies in
the early 21st century. These techniques enable biologists to analyze the DNA contained
in a sample, which can then be used to identify the organisms present and their functions
[10].

As genomic techniques improve, we are now slowly beginning to understand micro-
biomes and realising their importance in ecosystems. The most widely known example
is the human gut microbiome, whose composition impacts greatly our health [11]. Mi-
crobiomes have also been shown to play key roles in biogeochemical cycles [12, 13], crop
growth [14], and some food chains [15].

The objective of my Ph.D. is to enhance the software used in genomic pipelines,
with the aim of providing biologists with new and highly precise tools for the study of
microbiomes. I hope this, in turn, will contribute to a deeper understanding of biology
and ecology.

9

Introduction

0.1 Sequencing and assembling a genome

0.1.1 Genomes

Deoxyribonucleic acid (DNA) [16] is a vital molecule found in all living organisms,
responsible for encoding the genetic instructions necessary for their growth, development,
and function. The DNA molecule is composed of two complementary strands that twist
around each other to form a double helix, held together by hydrogen bonds. Each strand
is made up of a long chain of four basic nucleotides - adenine (A), cytosine (C), guanine
(G), and thymine (T) - connected by covalent bonds. The structure of DNA is such that
the sequence of nucleotides on one strand is the reverse complement of the other - A and
T are always paired and C and G are always paired. Combined with the fact that the
two strands of DNA are oriented in opposite direction, this entails that the sequence of
nucleotides of one strand, for example, “ATCG,” is the reverse-complementary sequence
on the other strand, “CGAT”.

Information can be encoded in the sequence of nucleotides of the DNA strands. The
set of all the DNA sequences present in each cell represent the genome of an organism.
The early days of molecular biology revealed that some regions of the genome encode the
design of proteins, the primary workers of the cell [17]. However, the role of the genome
is not limited to this. It can also encode non-translated RNA molecules, such as riboso-
mal RNAs (rRNAs), regulate the transcription of different RNAs in different conditions
through promoter and enhancer sequences, regulate translation through microRNAs [18–
20]... In other words, the genome contains most information needed by the cell to func-
tion, specialize and adapt to different conditions. It is worth noting that the genome may
not contain all the information concerning the behavior of the cell. Epigenetic modifica-
tions, such as DNA methylation and histone modification, can alter gene expression and
cellular function without changing the underlying DNA sequence [21]. Other less studied
mechanisms such as the conformation of proteins can also theoretically carry information
[22]. Nevertheless, knowing a genome is an invaluable source of information to identify an
organism and understand its biology.

Quite remarkably, all known organisms use DNA to carry the information necessary
for the functioning of their cells 1. The reason for the ubiquity of DNA as a carrier of ge-
netic information is not fully understood, but two properties of DNA make it well-suited
for this role. Firstly, it is a highly stable, as evidenced by the successful sequencing of

1. except if RNA viruses, such as coronaviruses, count as organisms, but they do not have cells

10

Introduction

mammoth DNA thousands of years after the death of the cells [23]. Secondly, the infor-
mation in DNA is stored twice, on two complementary strands, which provides a built-in
mechanism for error-checking and repair during DNA replication [24]. Though it would
not be impossible theoretically that some living organisms carry their genome on another
molecule (or molecules), modern biology is exclusively focused on DNA-centered cells.

A central protocol of biology today thus consists in recovering the genomes of organ-
isms. In the context of microbiome analysis, we call the set of genomes a metagenome
and this approach is particularly precious, as microbiomes cannot be easily observed and
cultured. Observing the genomes contained in a sample can give a precise view of the
composition of the microbiome and the behaviour of its different species [25, 26].

The protocol to obtain the (meta)genome of a sample can be broken down in three
main steps. The first is to extract the DNA molecules from a sample and discard the other
molecules contained in the sample (DNA extraction). The second is to obtain the sequence
of the molecules from the purified DNA (DNA sequencing). The final step and main focus
of my Ph.D. is to transform informatically the output of the sequencing machine into full
genomes (genome assembly).

0.1.2 DNA extraction

DNA extraction is a process used to isolate DNA molecules from cells. This involves
breaking open the cells and, if necessary, the nuclei, using chemical, mechanical, or en-
zymatic methods. For example, detergents can be used to dissolve cell membranes, while
liquid nitrogen freezing can be used to physically break open the cells. Proteases, which
are enzymes that break down proteins, can also be used to remove proteins and other
contaminants from the sample [27].

Once the cells and nuclei have been broken open and the contaminants removed,
the DNA molecules can be isolated from the rest of the solution. This is often done
by exploiting the chemical properties of DNA, such as its ability to precipitate out of
solution when mixed with alcohol. Alternatively, DNA can be isolated by using its negative
charge to make it bind to positively charged beads of silica, which can then be physically
separated from the rest of the solution [27].

The first DNA extraction was published by Friedrich Miescher in 1871, where the
isolated substance was called nuclein [28]. While the process of DNA extraction has been
known for a long time, it still poses many practical challenges to biologists today. Different

11

Introduction

types of cells can react differently to the same protocol, and molecules within the cells can
interact with the chemicals used for extraction, leading to unexpected results. In practice,
protocols often have to be adapted and optimized for the specific experiment and type
of cells being used. I myself failed a fungi DNA extraction twice despite having followed
scrupulously two different protocols.

0.1.3 DNA sequencing

The first DNA sequencing method appeared almost a century after the first isolation
of DNA, in 1970 [29]. In 1977, Frederick Sanger published the first widely used method for
DNA sequencing [30], for which he obtained a second Nobel prize. The method, known
as Sanger sequencing, involves duplicating in vitro many fragments of the DNA to be
sequenced using a DNA polymerase enzyme. Sanger’s key innovation was to introduce
modified fluorescent nucleotides into the solution, which are incorporated into the newly
synthesised DNA sequence by the polymerase. The color of the fluorescence can be used
to distinguish the four nucleotides and determine the DNA sequence.

Sanger sequencing was the prominent method of sequencing until the mid-2000s [31].
It was used to obtain the first genome of a virus in 1977 [32]. However, Sanger sequencing
is limited in its throughput: all regions of a few hundred basepairs need to be separately
amplified and sequenced. Because of this, it took almost twenty years to produce the
first non-viral complete genome, Hemophilus influenza in 1995 [33]. The Human Genome
Project was completed in 2001 [34], after 13 years of effort and approximately $3 billion
[35, 36].

During the Human Genome Project, a central question arose regarding the order in
which to sequence the DNA. Two competing strategies emerged [37, 38]. On one side,
the main effort of the National Institutes of Health (NIH) methodically sequenced precise
locations of the genome. On the other side, Craig Venter and the Celera company con-
ducted shotgun sequencing, which involves sequencing random fragments of the genome.
Shotgun sequencing results in a significant amount of redundant sequencing (in order to
have the whole genome sequenced at least once) and requires extensive bioinformatics
effort to reorder the fragments. However, it eliminates the need for laborious lab work
to isolate specific regions of the genome. Both projects were eventually completed and
published one day apart [39, 40], but shotgun sequencing emerged as the more efficient
and popular strategy. With the exponential decrease in sequencing and computing costs,
shotgun sequencing has become hegemonic.

12

Introduction

Figure 1 – Evolution of the estimated sequencing cost of a human genome. Source: NIH

Since then, the arrival of second generation sequencers has radically changed the field
of genomics. The initially tremendous cost of sequencing has been brought down drasti-
cally, outrunning Moore’s law by a large margin (see Figure 1). Many technologies emerged
simultaneously, such as 454 pyrosequencing [41], Ion Torrent [42], SOLiD [43] and Solexa
[44], which have in common the fact that they massively parallelize the sequencing process.
Of these, the Solexa technology, which has been bought by Illumina and rebranded, has
emerged as the most widely used second-generation sequencing method. This approach
involves synthesising the reverse-complement strand of the sequenced DNA by the sequen-
tial addition of fluorescently tagged nucleotides. Though this idea bears resemblance with
Sanger sequencing, the main breakthrough consisted in filming the fluorescence in real
time and sequencing thousands of DNA strands in parallel. These technologies produce
a massive amount of “reads” (i.e. fragments of DNA sequence) of relatively short length
(typically between 100 and 500bp) and high accuracy (below 1% errors today).

Second generation sequencing divided the cost of sequencing a thousand fold in just
five years between 2006 and 2011, democratising DNA sequencing (Fig. 1). However, the
short length of the reads produced by these technologies imposed important limitations
to biologists and bioinformaticians. Indeed, almost all genomes, and especially the human
genome, contain many repeated sequences whose lengths exceed the lengths of the reads
[45]. This entails that a single read can represent the sequence of several distinct positions
in the genome. This hinders many genomic analyses, among which genome assembly (see
section 0.1.4).

In 2011, a new generation of sequencing technology known as long-read or third-
generation sequencing was introduced by the company Pacific Biosciences (PacBio). This

13

Introduction

new technology, named single-molecule real-time sequencing (SMRT), was still based
on fluorescent nucleotides but accelerated tremendously DNA extension. Concurrently,
Oxford Nanopore Technologies (ONT) commercialized in 2014 a radically new sequenc-
ing method that involves measuring the electric resistance of nanoscopic pores as DNA
molecules pass through, each base entailing a different resistance [46]. These technologies
were a breakthrough, as they could produce reads two orders of magnitude longer than
those produced by Illumina sequencers [47]. However, the initial versions of PacBio SMRT
and ONT sequencing had a high error rate, up to 15%, greatly complicating downstream
analyses. Improving the error rate has been the main focus of development of the two
technologies since then.

Today, the error rate of third-generation sequencing is plummeting. PacBio released
a high-fidelity technology (PacBio HiFi), capable of generating reads of 5kb with an
error rate of less than 0.5% [48]. Oxford Nanopore has more recently introduced duplex
reads, which they claim could provide reads of similar quality [49]. In both cases the
drastic improvement in quality relies on sequencing several time the same sequence and
generating a high-quality consensus. Both technologies are still in their infancy and pose
difficulties regarding their cost and reliability. Nevertheless, we can expect in the following
years a shift towards these new accurate long reads.

0.1.4 Genome assembly

(Meta)genome assembly aims at reconstituting the genome(s) of the organism(s) present
from the set of randomly sequenced reads. As reads are extract of genomes, reconstitut-
ing the genomes can be seen as a one-dimensional puzzle, where the reads are the pieces
and several pieces can originate from the same position in the genome. A major diffi-
culty is that a given set of reads may ambiguously be reconstructed into several distinct
genomes (see Figure 2), among which only one is the actual sequenced genome. Therefore,
genome assemblers generally output their results as “assembly graphs,” representing a set
of potential genomes. In these graphs, nodes represent contiguous nucleotide sequences
(contigs) and the possible genome sequences are paths through the graph.

Throughout this thesis, we will encounter various methods that ignore the edges be-
tween the contigs and treat the contigs as disconnected entities. This practice has historical
roots; although assemblers naturally produce graphs (see below), many have traditionally
outputted only the contigs for simplicity, discarding the connecting edges. Consequently,
there is sometimes ambiguity regarding whether assemblies should be considered as graphs

14

Introduction

ACACACA

GTGTGTG
GGGGGGG

AGAGAGAG

CTCTCTCT

b.

c.

ACACACAGGGGG

GTGTGTGGGGG
GGGGGAGAGAGAG
GGGGGCTCTCTCT

a.

Figure 2 – Assembly graphs. a) Sequencing reads. b) An assembly graph which repre-
sent several potential genomes. Here, the genome could be {ACACACAGGGGGGGAGAGAGAG,
GTGTGTGGGGGGGGCTCTCTCT} or {ACACACAGGGGGGGCTCTCTCT, GTGTGTGGGGGGGGAGAGAGAG}
or the combination of both. It is impossible to disambiguate from the reads. c) Because
sequences are generally very long in assembly graphs, a convention is to replace them by
rectangles of color.

or merely as sets of contigs. Following the trend in the community, this thesis will consider
assemblies as graphs.

Perfect assemblies represent each chromosome of the sample as a single sequence. Good
assemblies are complete, i.e. represent all the genome(s) of the sample, accurate, i.e. do
not represent non-existing contigs, and contiguous, i.e. with the longest possible contigs
and the simplest possible graph (discussed further in Chapter 1).

Described assemblers can be categorized in three groups of algorithms: greedy, De
Bruijn Graphs (DBG) and Overlap-Layout-Consensus (OLC).

Greedy assemblers Greedy assemblers were the first type of genome assembly algo-
rithm to be developed and were used to assemble the first bacterial genomes [50]. These
assemblers are based on the assumption that repeated sequences are unlikely to occur in

15

Introduction

a genome. Therefore, if two reads contain a long common sequence, or overlap, they must
originate from the same position in the genome and can be merged to form a longer “super-
read.” Greedy assemblers iteratively extend these super-reads with the longest available
overlaps until no overlaps are left.

It turns out that the assumption behind greedy assemblers - that repeated sequences
are unlikely to occur in a genome - seemed true for the first viral and bacterial genomes
analysed, but is completely inaccurate for many genomes, including genomes of eukary-
otes. As a consequence, two reads sharing a large overlap may not come from the same
location at all, and greedy assemblers generally fail to produce accurate genomes.

De Bruijn Graph assemblers De Bruijn graphs were described for the first time
by Camille Flye Sainte-Marie in 1894 [51], but bear the name of Nicolaas Govert de
Bruijn, who described them in 1946 [52]. Nodes of De Bruijn graphs represent all existing
sequences of length k over a given alphabet (A,C,G,T for us). In the context of genome
assembly, we will call these sequences of length k k-mers. In DBGs, there is a directed
edge between k-mer a and k-mer b if and only if the k − 1 suffix of k-mer a is equal to
the k − 1 prefix of k-mer b. DBG assemblers do not build the full De Bruijn graph but
only a subgraph containing only the k-mers present in the reads. Additionally, k-mers
that are present less than c times in the reads are discarded to keep only k-mers that are
confidently present in the genome. For convenience, the obtained subgraph will also be
called “De Bruijn Graph”, even though it is not, mathematically. Under the assumption
that all k-mers of the genome are present at least c times in the reads, this graph contains
the genome. The graph then gets simplified to improve the contiguity of the assembly.
Typically, this involves trimming short dead ends and collapsing “bubbles” of the graph,
which have been empirically identified as typical artefacts of sequencing errors. See Figure
3 for an example.

In the past two decades, highly efficient DBG assemblers have been developed, lead-
ing to their widespread use and popularity in the field of genomics. Examples of such
assemblers that are commonly used today include SPAdes [53], MEGAHIT [54], minia
[55], and mDBG [56]. However, the main limitation of DBG assemblers is their reliance
on the assumption that all k-mers of the genome are present at least c times in the reads.
This assumption can be difficult to meet when working with highly erroneous reads, as
most of the sequenced k-mers may contain errors. As a result, DBG assemblers fell slightly

16

Introduction

CAGCATGGACGGATTA

CAGC AGCA GCAT CATG ATGG TGGA

GGAC GACG ACGG CGGA

GGAT GATT ATTA

CATA ATAG

AGCT GCTT CTTG TTGG

GCATGGACGGATTA

CAGCATGGACGGAT
CAGCATGGACGGATTA
CAGCATGG
CGGATTA
CAGCTTGGACGG

GCATAG

CAGCATAG

GCAT,CATA,ATAG

CAGC,AGCA,GCAT,CATG,ATGG,TGGA,GGAC,GACG,ACGG,CGGA,GGAT

CAGC,AGCA,GCAT,CATG,ATGG,TGGA,GGAC,GACG,ACGG,CGGA,GGAT,GATT,ATTA

CAGC,AGCA,GCAT,CATG,ATGG

CGGA,GGAT,GATT,ATTA

CAGC,AGCT,GCTT,CTTG,TTGG,TGGA,GGAC,GACG,ACGG

GCAT,CATG,ATGG,TGGA,GGAC,GACG,ACGG,CGGA,GGAT,GATT,ATTA

CAGC,AGCA,GCAT,CATA,ATAG

Reads k-mers

5

1 1 1 1

4 5

2 2

4 4 4

3 4 4 4

4 3 3

Figure 3 – De Bruijn Graph assembly with k=4. Depicted is the De Bruijn subgraph
containing strictly the k-mers seen in the reads. The number associated with each node
represent the number of times it is seen in the reads. Assemblers typically discard all the
k-mers seen below a threshold c and short dead ends in the graph as sequencing errors
(in red here). Most assemblers also choose to collapse bubbles, which would mean here
discarding the orange arrow.

out of favor with the rise of long, error-prone reads. However, as the error rate of long
reads is decreasing, DBG assemblers may become once again the prime choice for genome
assembly.

Overlap-Layout-Consensus assemblers The Overlap-Layout-Consensus (OLC) ap-
proach for genome assembly was first introduced by Rodger Staden in 1979 [57]. As the
name suggest, this method follows a three-step strategy. In the overlap step, the algo-
rithm identifies overlaps between all the reads that meet a certain quality threshold and
constructs a directed graph. The nodes in the graph represent the reads, and the edges
represent the overlaps between them. The layout step removes any redundant edges in
the graph that can be inferred from other edges. The graph can also be simplified by
trimming dead ends and collapsing bubbles. Finally, the consensus step transforms the
overlap graph into an assembly graph by merging the reads into contigs (longer stretches

17

Introduction

of DNA sequence) by selecting the most consensual base at each position among all the
reads. See Figure 4 for an example.

OLC assemblers are generally less computationally efficient than DBG assemblers be-
cause they require the expensive computation of inexact overlaps between reads. However,
OLC assemblers are well-suited for handling high error rates and low sequencing depth.
The first human genome was assembled using the OLC assembler Celera [59], and OLC
assemblers have become increasingly popular with the advent of long-read sequencing
technologies. Some of the most widely used OLC assemblers today include Raven [60],
miniasm [61], Canu [62], and hifiasm [63].

0.1.5 Finishing an assembly

The ideal genome assembly contains exactly one contig per chromosome, but this is
rarely achieved in practice. The main obstacle is not the assembly method itself, but the
information contained in the sequencing reads. If a genome contains a repeated region
that is longer than the length of the reads, it becomes impossible for the assembler to
determine which sequence before the repeated region corresponds to which sequence after
the repeated region (see Figure 2).

The introduction of long reads has mitigated this problem. While obtaining perfectly
contiguous assemblies was possible only for viruses a few years ago [32], single-contig
circular bacterial genomes are now routinely assembled [64]. Yet reads have not improved
enough in length to provide contiguous eukaryote or metagenomic assemblies, for two
reasons. The first is that eukaryote genomes can contain very long repeats on a single
chromosome, especially in telomeric and centrometric regions [65]. The second is the
presence of several haplotypes in these (meta)genomes. The term haplotype is a contraction
of “haploid genotype” [66] and designates a single set of non-homologous chromosomes in a
sample. For example, a single bacterial genome contains one haplotype, a human genome
two (the maternal and the paternal) and a mix of ten bacterial strains ten. Different
haplotypes can share long identical regions, making it impossible to obtain a perfectly
contiguous final assembly.

If the length of sequencing reads is still insufficient to resolve repetitive regions in a
(meta)genome, other technologies have been developed to provide additional information
about the long-range structure of the genome. These technologies, such as mate pairs,
genetic maps, optical mapping, linked reads and proximity ligation cannot be used to
assemble a genome on their own, but can be used in conjunction with sequencing reads to

18

Introduction

Figure 4 – Overlap-Layout-Consensus assembly as illustrated by Nadège Guiglielmoni
[58]. The overlap graph is built with all overlaps of at least 5 bases with a tolerance of 1
mismatch. The layout step removes overlaps that can be inferred from other overlaps. The
consensus step then optionnaly simplifies the graph and generates the contigs. The edge
between reads “TATATTAA” and “ATTATAT” was here discarded during the consensus
step by the assembler to simplify the graph.

19

Introduction

improve the contiguity of the assembly [67]. Interestingly, long reads themselves sometimes
fill this purpose, when their quality is not judged sufficient to assemble a genome - for
example when ultra-long nanopore reads are used only to improve a high-fidelity reads
assembly (e.g. [68]). The most widely used technology, proximity ligation, inventories pairs
of sequences which touch physically in the nucleus [69]. Leveraging the fact that sequences
that are far on the linear strand are less likely to physically touch than sequences close
on the linear strand, this data can be exploited to reconstruct entire chromosomes [70].

These long range data are sometimes directly integrated in assembly software [63,
71] but more often are used in specific programs named scaffolders. Scaffolders order
and orient contigs to produce new assemblies composed of long “scaffolds”, which are
series of contigs stitched together, with unknown sequences between them. We will focus
exclusively in this thesis on improving the contiguity of assemblies with proximity ligation
data and long reads.

0.2 Challenges of metagenome assembly and outline
of the thesis

0.2.1 Metagenome assembly

Historically, researchers have first focused on retrieving the genome of single organisms.
A reason for this focus is that, at the time massive sequencing developed, the central role
of microbiomes in ecosystems was not as well established as today.

As a consequence, genome assemblers have not historically been designed to assemble
a collection of genomes but single organisms only. When they were applied on metage-
nomic samples, it became evident that they would not work out of the box. Indeed,
single-organisms assemblers can safely assume that all regions of the genome are approx-
imately sequenced in the same amount. Because of this, they can confidently reject rare
sequences as sequencing errors and confidently decide if a region is repeated or unique.
This assumption crumbles when strains are present in different amounts in a metagenome.
A rare sequence might then represent either a rare strain or a frequent sequencing error. A
shallowly covered contig, constructed with few reads, might exist in ten different strains,
while an abundantly covered contig, constructed with many reads, might be unique in the
metagenome.

This led to the design of specialized metagenome assembly software, often building

20

Introduction

on previously existing single-organisms software - metaSPAdes [72] based on SPAdes,
metaMDBG [73] based on MDBG, hifiasm-meta [74] based on hifiasm, metaFlye [75]
based on Flye... In practice, adapting an assembler to perform metagenome assembly
generally means being more careful in the overlap graph or De Bruijn graph simplification.
While these assemblers are quite successful when dealing with a diverse collection of
genomes, they all struggle on one difficulty: the presence of several highly similar strains
(or haplotypes) in a sample.

Metagenomic samples can contain multiple strains of the same species, with highly sim-
ilar genomes but distinct functions. It is thus essential to differentiate between conspecific
strains in order to understand the behavior of a microbiome, including its pathogenic-
ity. A well-known example is the pathogenic and non-pathogenic strains of the bacteria
Escherichia coli that can coexist in the human gut. In fact, we know that the very first
isolation of E. coli by Theodor Escherich in 1886 was from a multi-strain gut sample:
although he correctly identified E. coli as the cause of many childhood diarrhea cases,
he actually isolated and accused a non-pathogenic strain of his sample [76, 77]. Though
this is amusing in retrospective, an assembly of the same sample sequenced with ONT
today would make the same mistake! Assemblers are unable to distinguish close strains,
and would produce an assembly of the most abundant strain only.

In Chapter 1, I will define what constitutes a high-quality assembly and present an
approach to enhance the quality of assembly graphs by correcting structural errors in-
troduced by assemblers, implemented in a software named GenomeTailor. While this
approach can be applied to any assembly, it is particularly valuable for assembling highly
similar strains, which often contain numerous misassemblies.

0.2.2 Assembling haplotypes with erroneous reads

Assembly tools designed for error-prone long reads, whether they are based on Overlap-
Layout-Consensus (OLC) (e.g., [60, 61]) or approximate De Bruijn Graphs (e.g., [78, 79]),
begin by identifying overlaps between all reads. When dealing with erroneous reads, these
tools must allow for some discrepancies in the overlaps; otherwise, no overlaps would be
detected. As a result, reads from highly similar haplotypes are often considered overlap-
ping because the biological differences between them are obscured by sequencing errors.
This leads to the collapse and merging of haplotypes into a single consensus sequence,
typically representing the most abundant haplotype.

Various solutions have been developed that cater to diploid or even polyploid cases,

21

Introduction

e.g. [80–83]. These methods rely on the assumption that there is a known number of
haplotypes, often two, with similar abundances in the data. However, this assumption
does not translate well to metagenomics. In a metagenome, the number of haplotypes for
a given sequence is not known beforehand and varies across the different species of the
sample. Additionally, the abundance of these haplotypes is not balanced. Some haplotypes
may be very rare, making them difficult to detect and assemble accurately.

Many metagenomic assemblers choose to simplify the problem by assuming that there
are no highly similar strains to assemble in a sample - “metaSPAdes focuses on recon-
structing a consensus backbone of a strain mixture” [72] ; metaMDBG “simplifies graph
regions [...] caused by strain variability”[73]. Other assemblers do not mention the diffi-
culty (such as MEGAHIT [54]). Lastly, some assemblers try assemble strains separately
(such as metaFlye [75]), but no assembler show a convincing example of highly similar
strain separation.

In response to these challenges, several software tools have been developed to separate
strains from a draft assembly and a set of reads. Notable examples include Strainberry
[84], iGDA [85], stRainy [86], and for viral haplotypes Strainline [87] and HaploDMF
[88]. However, as we will discuss in Chapter 2, these tools have limitations in handling
the complexity of metagenomes. To overcome these limitations, I propose a two-step
strategy for the precise assembly of complex metagenomes. In Chapter 2, I will introduce
a novel statistical approach to detect single-nucleotide differences between strains (Single
Nucleotide Polymorphisms - SNPs), which has been successfully implemented as a software
named HairSplitter and tested on mixtures of up to ten strains and unbalanced datasets.

0.2.3 Assembling haplotypes with highly precise reads

High-fidelity (HiFi) read assemblers can significantly outperform their erroneous reads
counterparts in strain assembly due to the much lower error rate of the reads, making it
easier to distinguish noise from signal. However, we will see in Chapter 3 that even hifiasm
[63], the most widely used HiFi assemblers, still faces difficulties when assembling highly
similar strains and could benefit from significant acceleration. Inspired by MDBG [56],
an extremely fast assembly method, I will propose in Chapter 3 a new sketching method,
implemented in the proof-of-concept assembler Alice, that excels at distinguishing strains
while being significantly faster than state-of-the-art assemblers.

22

Introduction

0.2.4 Finishing a multi-haplotype assembly

Numerous scaffolders have been developed over the years, including Lachesis [89],
3D-dna [90], and YaHS [91], although many are limited to scaffolding haploid genomes.
More recently, tools such as ALLHiC [92], Greenhill [93], and hapHiC [94] have been
introduced to handle diploid and polyploid assemblies. The work presented in Chapter
4 began with the observation that these scaffolders process assemblies as unconnected
sets of contigs and do not use assembly graphs during the scaffolding process. In the
context of multi-haplotype assemblies, where highly similar contigs are present and the
assembly is often fragmented, we hypothesized that the topology of the assembly graph
could provide valuable information to improve scaffolding. I will introduce the concept of
untangling an assembly graph and implement it in a software tool named GraphUnzip. I
will demonstrate that combining untangling with classical scaffolding methods improves
the quality of the final scaffolds.

In metagenomics, proximity ligation has been employed to bin contigs from different
species [95, 96]. However, to the best of my knowledge, there is currently no metagenomic
scaffolder capable of dealing with highly similar strains. This problem is complex, and as
we will see, GraphUnzip does not yet effectively extend to metagenomes. Nevertheless, I
believe that future metagenomic scaffolders designed to handle highly similar strains will
untangle assembly graphs.

23

Chapter 1

EVALUATING AND IMPROVING ASSEMBLY

GRAPHS

Abstract: This chapter explores the character-
istics of a high-quality assembly graph and de-
fines the concepts of correctness, completeness,
and contiguity to evaluate assembly graphs. The
motivation for this chapter stems from the ob-
servation that metagenomic assembly graphs
are often incomplete and incorrect. We intro-
duce a new method to improve assembly graphs
using sequencing reads alone, implemented in
a software named GenomeTailor. GenomeTailor

focuses on correcting structural (large-scale) er-
rors, leaving base-level errors to be addressed
by other tools such as HairSplitter (Chapter
2). Tested on both simulated and real data,
GenomeTailor significantly improves the quality
of metagenomic assemblies. Though it has been
developed for metagenomics, it can be used on
any assembly and successfully improved a yeast
assembly.

1.1 Evaluating assembly graphs

Assemblers produce assembly graphs, where each path through the graph represents a
potential sequence of the sequenced genome(s). Among these paths, some correspond to
the actual sequences of the sequenced genome(s). Assemblies are typically evaluated based
on their correctness, completeness, and contiguity, using concepts originally developed for
assemblies represented as sets of contigs. We will briefly discuss these three notions in the
context of assembly graphs.

An assembly is deemed correct if all contigs in the graph are present in the genome(s)
[97–101]. Conversely, an incorrect contig is one that does not exist in the genome(s). An
assembly is generally considered complete if the genome(s) can be fully covered by the
contigs [102] or if all k-mers of the genome(s) are present in the assembly [103, 104].
However, we believe these definitions of correctness and completeness are insufficient to
assess the completeness of an assembly graph – so-called “correct and complete” assemblies
may still fail to accurately represent the actual genome(s). For example, see Figure 1.1. To
address this, we propose that an assembly graph be considered complete if all chromosomes

25

Chapter 1 – Evaluating and improving assembly graphs

A B
C

D
E F G

A B C E F G

A B D E F G
Genome

A B C

D

E F G
a.

b.

Figure 1.1 – Two different assembly graphs aiming to represent the same genome. The
genome consists of two haplotypes, with two heterozygous regions (C and D) and one
inverted region, F. Assembly a contains several issues. First, contig A is incorrect, as
the sequence (gray and blue) is not present in the original genome. Although the other
contigs are correct, the graph can be considered incomplete: no contiguous path through
the graph can include contig D or correctly represent the inversion of F. On the contrary,
b is a complete assembly graph.

are represented by the assembly graph (i.e. are a single path in the graph).
The final feature evaluated to assess the quality of an assembly graph is its contiguity.

Traditionally, contiguity is measured using the distribution of contig lengths in the as-
sembly, with metrics such as the N50. The N50 is the maximum size of contigs such that
more than half of the assembly is contained in contigs of this size or larger. Having fewer,
longer contigs is generally preferred over having many short contigs, as it provides a more
precise representation of the sequenced genomes. However, in the context of assembly
graphs, this definition of contiguity is unsatisfactory. As illustrated in Figure 1.2b and c,
two assembly graphs can have very different N50 values yet be completely equivalent.

To address this, we propose a broader definition of contiguity within the context of
assembly graphs: a contiguous assembly graph represents a small diversity of potential
genomes. Measuring this diversity with a simple metric is challenging, particularly when

26

1.2. Improving metagenome assemblies

Figure 1.2 – Assembly graphs which illustrate the concept of contiguity we propose. Rect-
angles of color represent long sequences. Assembly a is a correct and complete assembly of
any genomic dataset, but is impractical because it represents a huge number of potential
genomes. Despite having a different distribution of length of contigs, assemblies b and c
are obviously equivalent, thus should in our opinion be considered as having the same
contiguity. Reciprocally, even though their contigs are of the same length, we propose
that assembly e be considered more contiguous than assembly d because it represents a
smaller diversity of potential genomes.

the completeness of the graph is uncertain. Consequently, despite acknowledging that N50
is not an ideal metric for assembly graphs, we will still use N50 as a measure of contiguity
due to its simplicity.

1.2 Improving metagenome assemblies

Metagenomic assemblers typically make two main types of errors when highly similar
strains are present in a sample. We have addressed both of these problems separately. The
first problem involves structural errors. When haplotypes contain structural variations,
assemblers often retain only one allele, either completely discarding the alternative hap-
lotype or detaching it from the assembly graph. In these cases, the structural variation is
lost in the assembly graph. This problem can also occur in multiploid genomes or even
in repeated regions of haploid genomes [105]. In this chapter, we will propose a solution
to this problem. The second problem is that assemblers generally collapse highly similar
sequences into a single sequence, discarding SNPs and small indels. This second problem
will be addressed in Chapter 2.

Numerous methods have been developed to identify structural errors, or misassemblies,

27

Chapter 1 – Evaluating and improving assembly graphs

in genome assemblies using long reads. Notable tools for long reads include Inspector [98],
CRAQ [99], GAEP [100], and klumpy [101]. These tools inspect the alignment of reads
on the final assembly to detect patterns characteristic of assembly errors. However, they
primarily focus on improving the correctness of individual contigs and not the complete-
ness of the assembly graph. Inspector offers error correction, but it does so through local
reassembly without considering the other contigs in the graph. Additionally, Inspector,
CRAQ, and GAEP are designed to work exclusively with haploid or diploid genomes.

In this chapter, we introduce GenomeTailor, a software designed to work natively
with assembly graphs to enhance both the correctness and completeness of these graphs.
The concept behind GenomeTailor is to take an initial assembly and perform a series of
cuts, stitches, and gap-filling operations to produce corrected and completed assemblies,
“tailored” to the sequencing reads. GenomeTailor focuses on correcting large structural
errors, while leaving base-level polishing to specialized polishing tools.

1.3 GenomeTailor

The GenomeTailor procedure is illustrated Figure 1.3.

Blunting the graph Later in the process, GenomeTailor aligns reads to the graph us-
ing minigraph [106]. However, minigraph does not handle overlaps in assembly graphs. As
an initial step, the assembly graph is therefore “blunted.” We attempted to use specialised
tools such as GetBlunted [107] and gimbricate/seqwish [108], but both were challenging
to install and resulted in numerous extremely short contigs. Consequently, GenomeTailor
introduces a native python script to remove overlaps in a GFA graph. This module itera-
tively and greedily deletes and detaches the ends of contigs to eliminate overlaps, ensuring
that the graph remains valid at all times (i.e., a graph where overlaps are shorter than
the contigs). This module is slightly less robust than specialized software and may fail to
completely blunt the graph in rare cases. In practice, it successfully removed all overlaps
in the miniasm assemblies we tested. To deal with all cases, the module cuts links with
remaining overlaps.

Assembling missing sequences GenomeTailor aligns all reads to the blunted assem-
bly graph using minigraph [106] with default parameters, retaining only primary align-
ments. Since all reads are assumed to be fragments of the sequenced genome, they are

28

1.3. GenomeTailor

Identify bridges

0

100

0 0

Build bridges

Realign reads

Input assembly

Output assembly

Until no new bridges

Align reads

Assemble unaligned reads

unaligned
reads

Figure 1.3 – The GenomeTailor procedure. Black lines represent reads. Red crosses repre-
sent the end of the bridges and the associated number indicates the length of the bridge.
In this examples, bridges are considered valid if they are supported by at least two reads.

29

Chapter 1 – Evaluating and improving assembly graphs

expected to align entirely on the graph. GenomeTailor identifies all unaligned regions of
reads longer than one kilobase and reassembles them using Raven [60], aiming to recover
any non-assembled regions of the genomes. The new contigs are added to the original
assembly and reads that were not completely aligned in the first iteration are re-aligned
to the new assembly graph. As a side effect, the alignment of the reads on the assembly
allows GenomeTailor to recompute the coverage of the contigs.

Identifying misassemblies GenomeTailor operates on the principle that, in a correctly
assembled genome, all reads should align from end to end on the assembly graph, except
for chimeric reads and contamination. Therefore, locations where reads abruptly stop
aligning often pinpoint misassemblies.

Next, GenomeTailor identifies misaligned reads, which are reads that do not align
from end to end (with a 1 kbp tolerance for the ends) in a single run on the graph. It
then analyzes each misaligned read to categorize the misassemblies into three types. False
simplex reads are a typical artefact of Nanopore sequencing, where a read and its reverse-
complement are concatenated: these misaligned reads do not reflect a misassemblies and
are not considered further. Bridges are errors where a read stops aligning, jumps to another
location, and starts aligning again. They are characterized by two loci (the ends of the
bridge) and an unaligned sequence in between (the bridge itself). Piers are errors where
a read stops aligning, and the remaining portion of the read does not align anywhere else
on the assembly graph. They are characterized by a loci and an unaligned sequence.

After identifying all bridges and piers, GenomeTailor aggregates them into solid bridges
and solid piers based on user-defined parameters. Two piers are considered equivalent and
aggregated in a solid bridge if their loci are within the aggregative distance (1kbp by
default). Two bridges are considered equivalent and aggregated in a solid bridge if both
their loci are within the aggregative distance and their unaligned sequences are of coherent
length, allowing for a leeway of the aggregative length.

Only solid bridges and piers supported by a minimum number of reads (default: 5)
are retained. Those with fewer supporting reads are considered potential artifacts due to
chimeric reads or alignment errors and are discarded.

Building bridges For each solid bridge, the following steps are performed:
— Polishing: one of the bridge sequences is polished with the others using Racon [109].
— Local Realignment: the polished sequence is locally realigned near the bridge ends

30

1.4. Results

to precisely determine the ends, aiming to create the shortest possible bridge.
— Insertion in the graph: if the bridge length is 0, a link is added to the graph; if

the bridge is longer, a new contig is created based on the polished sequence and
inserted into the graph.

For solid piers, a similar procedure was followed, but in real-data tests, it often re-
sulted in dead ends in the assembly that did not appear to correspond to reliable genome
sequences. We attribute this to a combination of difficult-to-sequence regions, noisy reads
and suboptimal aligner parametrisation and would merit further investigation.

Iterative correction of the graph GenomeTailor iteratively aligns reads, build bridges
and realigns reads until no bridges are found. In practice, reads that were already aligned
end-to-end do not need to be realigned between two iterations.

1.4 Results

1.4.1 Datasets

We evaluated GenomeTailor using both real and simulated datasets. Instead of arti-
ficially introducing errors into correct assemblies, which would not accurately represent
the unknown error patterns of different assemblers, we opted to start with sequencing
reads from three datasets provided in [110]. The first dataset consists of Nanopore reads
simulated from a mixture of 10 strains of Escherichia coli. The other two datasets are
sequencing of the Zymobiomics Gut Microbiome Standard mock community generated
using two different generations of Nanopore flowcells, R9.4.1 (Q9 kit) and R10.4.1 (Q20+
kit). The mock community contains 5 strains of Escherichia coli. We assembled these
datasets using Flye [78] and miniasm [61]. We chose to test two different assemblers, as
different assemblers tend to produce different types of assembly errors. Miniasm could
not assemble the Q9 sequencing because it filled the memory of the server on which it
ran. We then ran GenomeTailor on these assemblies and used our knowledge of the true
genomes to assess its performance.

1.4.2 Metrics

A well-constructed assembly graph should be correct (i.e., no contigs represent non-
existing sequences), complete (i.e., chromosomes are ideally represented as a single path

31

Chapter 1 – Evaluating and improving assembly graphs

0

50

100

150

200

250

m
e

ta
Q

U
A

S
T

 m
is

as
-

se
m

b
lie

s

Before GenomeTailor

After GenomeTailor

0

50

100

150

200

250

M
is

si
n

g
 e

d
g

es

10
 E

. c
oli

 m
et

aF
lye

10
 E

. c
oli

 m
ini

as
m

Zym
ob

iom
ics

 Q
9

m
et

aF
lye

Zym
ob

iom
ics

 Q
20

 m
et

aF
lye

Zym
ob

iom
ics

 Q
20

 m
ini

as
m

1E-06

1E-05

0.0001

0.001

0.01

0.1

M
is

si
n

g
 s

e
qu

e
n

ce

10
 E

. c
oli

 m
et

aF
lye

10
 E

. c
oli

 m
ini

as
m

Zym
ob

iom
ics

 Q
9

m
et

aF
lye

Zym
ob

iom
ics

 Q
20

 m
et

aF
lye

Zym
ob

iom
ics

 Q
20

 m
ini

as
m

0

0.05

0.1

0.15

0.2

0.25

N
A

5
0

(M
B

)

Figure 1.4 – Metrics of the different assemblies before and after GenomeTailor. Note that
the scale measuring the proportion of missing sequences is logarithmic.

through the graph), and contiguous (i.e., the assembly graph represents as few poten-
tial genomes as possible). To assess correctness, we use the misassemblies metric from
metaQUAST [97]. For completeness, we align the solution genomes to the assembly graph
using minigraph. From this alignment, we define and measure two metrics: missing se-
quence, which is the proportion of the reference sequence that does not align on the graph
(ideally near 0), and missing edges, which is the number of non-contiguous alignments of
the reference on the graph minus one (ideally near 0). As explained above, contiguity is
evaluated using the classical NA50 metric, which indicates the largest size of contigs such
that more than half the assembly is contained in non-misassembled contigs of this size or
larger.

1.4.3 Benchmark results

The metrics before and after applying GenomeTailor on the five assemblies are pre-
sented Figure 1.4.

GenomeTailor decreases significantly the number of misassemblies and the edge com-

32

1.4. Results

pleteness in the Flye assemblies, and reconstructs almost all missing sequences. This comes
at the price of many contigs being cut in several chunks, hence a significantly lower NA50.
Compared to the Flye assemblies, GenomeTailor edited less the miniasm assemblies, with
less impact on correctness, completeness and contiguity.

The sometimes numerous remaining metaQUAST misassemblies (140 in the simulated
10 Escherichia experiment) are mostly translocations between strains. These misassem-
blies occur when the sequence of a contig is composed of the sequences of two different
strains. Most often, the misassembly results from the collapse of several strains together,
where different strains dominate the consensus of the final sequences at different loca-
tions. As long as the reads from all strains align on the contig, GenomeTailor considers
that there is no structural error and does not attempt to reconstruct the strains. These
misassemblies can then be solved using HairSplitter (see Chapter 2).

Although the number of missing edges decreased in all cases, a careful examination
of the results reveals a flaw in the current GenomeTailor algorithm. When certain re-
gions of the genome are duplicated in the assembly, all reads can map from end to end
on the assembly, yet the assembly may still be incomplete. This issue is illustrated in
Figure 1.5. Addressing this problem is non-trivial, as it involves merging contigs that the
assembler initially chose not to merge. We leave this challenge for future development of
GenomeTailor.

1.4.4 Completing a Debaryomyces hansenii assembly

GenomeTailor was developed for multiple haplotype assembly but can be used to im-
prove the completeness of any assembly. It was applied to an assembly of Debaryomyces
hansenii, a yeast sampled near Chernobyl and sequenced using Nanopore technology dur-
ing an EMBO training course. We wish to credit Eugene Tukalenko, Anton Lavrinienko,
Janne Koskimäki and the Academy of Finland for the yet-unpublished data. Although the
initial Flye assembly appeared highly contiguous and seemingly complete (>99% BUSCO
completeness), a closer examination revealed a significant issue. A search for DNA en-
coding ribosomal RNA using barrnap [111] showed that the assembly contained almost
no ribosomal DNA. Biologically, this indicates that the assembled genome was not func-
tional. This is a common problem in eukaryotic assemblies, as ribosomal DNA consists of
highly repetitive regions that often pose challenges to assemblers [112].

Consequently, we ran GenomeTailor on the assembly to attempt to recover the missing
ribosomal DNA. The initial reassembly step using Raven did not recover the missing

33

Chapter 1 – Evaluating and improving assembly graphs

Figure 1.5 – An incomplete graph composed of two contigs is produced. The underlined
sequences highlight a sequence of the genome that is present on both contigs. Although
a link is missing between the two contigs, GenomeTailor is incapable of completing it, as
all reads align from end to end on the assembly.

34

1.5. Discussion

Figure 1.6 – Screenshot of the same region of the Debaryomyces hansenii assembly a
before and b after GenomeTailor. The length and coverage of the nodes are indicated.
Colourised regions correspond to ribosomal genes, as identified by barrnap. Visualised
with Bandage [113].

DNA, as Raven, like Flye, struggles to assemble ribosomal DNA de novo. However, the
iterative bridge-building procedure integrated several contigs into the assembly, within
which barrnap detected complete 18S, 28S, and 5.8S ribosomal genes. Figure 1.6 visually
illustrates the integrated contigs. GenomeTailor not only incorporated the ribosomal genes
but also revealed the presence of three slightly different repeats of these genes. The only
remaining challenge is to determine the order of the repeats, but the length of the reads
did not allow for the complete resolution of the region.

1.5 Discussion

GenomeTailor is a software tool designed to complete assembly graphs. While sepa-
rate tools already exist for detecting misassemblies, filling precise gaps, and scaffolding
contigs, GenomeTailor performs all three tasks simultaneously and outputs a completed
assembly graph. It enhances the correctness and completeness of assembly graphs and
has successfully improved the assembly of a multi-haplotype sample and ribosomal DNA.
When integrated into HairSplitter, it delivers metagenomes of unparalleled completeness
and precision (see Chapter 2). However, the current version of GenomeTailor employs a

35

Chapter 1 – Evaluating and improving assembly graphs

basic strategy that does not detect all missing edges, as observed when applying it to
miniasm assemblies. This could be significantly improved by drawing inspiration from
more advanced misassembly detection algorithms such as klumpy or GAEP.

Another potential application of GenomeTailor is to update a pangenome graph us-
ing raw reads alone. Currently, the standard pipeline for updating a pangenome graph
with a new dataset involves assembling the dataset and then adding the assembly to the
pangenome graph [114]. However, the assembly process introduces biases, typically the
collapse of haplotypes. GenomeTailor could offer a method to update a pangenome graph
directly with the reads, bypassing the assembly step entirely. This remains to be tested
and GenomeTailor adapted to this specific task.

36

Chapter 2

RECOVERING HAPLOTYPES USING NOISY

LONG READS

Abstract: This chapter presents complete
pipelines to transform a collapsed assembly into
a haplotype-aware assembly using long, erro-
neous reads. The first pipeline, HairSplitter,
first corrects structural errors with GenomeTai-
lor. It then recovers small variants using a novel
statistical method. We demonstrate that Hair-
Splitter significantly outperforms state-of-the-
art methods in recovering collapsed strains, par-

ticularly in complex metagenomes. To further
enhance this pipeline, we formalize the problem
as an optimization problem and propose an In-
teger Linear Programming (ILP) solution, im-
plemented in a module called strainMiner. This
formalisation paves the way for future improve-
ments from other fields of computer science and
maths.

The most commonly used assemblers for assembling highly erroneous reads start by
calculating pairwise overlaps between reads (e.g. [61, 78, 79]). To account for sequencing
errors, pairwise overlaps must be computed tolerating sequencing errors. However, two
reads from very similar haplotypes overlap very well: when the overlaps are computed,
the differences between the haplotypes are largely drowned out by sequencing errors.
The assemblers, whether based on the OLC or the DBG paradigm, then assemble the
haplotypes into a single contig based on this overlap information. The final assembled
contig is a consensus of the different haplotypes, effectively discarding small SNPs and
indels that characterise each haplotype.

The only effective way to prevent assemblers from collapsing haplotypes is to remove
overlaps between reads from different haplotypes. hifiasm [63] and HiCanu [115] implement
this strategy by first correcting reads in a haplotype-aware manner and then allowing
only perfect overlaps, but are limited to high fidelity reads. [116] proposes a solution to
correct highly erroneous reads in a haplotype-aware manner, but the presented mutliploid
assemblies are far from complete.

This thesis implements a different strategy, which is to correct a (partially) collapsed
assembly post-hoc. Three papers detailing this work have been reviewed and accepted:

37

Chapter 2 – Recovering haplotypes using noisy long reads

— The first paper has been accepted at the proceeding-conference JOBIM2023 [117].
It presents for the first time a comprehensive pipeline designed to generate a phased
assembly from a draft assembly and raw reads, named HairSplitter. This paper is
the most detailed regarding the proposed algorithm (for example, it is the only one
that details the rationale behind cutting input contigs in windows). However, the
results are based only on simulated datasets.

— The main paper is soon to be recommended in PCI Mathematical and Computa-
tional Biology [110]: HairSplitter has been improved compared to the first paper,
adding to the pipeline GenomeTailor to deal with the structural errors of the in-
put assembly (the first versions of GenomeTailor were developed specifically for
HairSplitter). The statistics behind HairSplitter are clearly explained. The main
contribution of this article is to present a state-of-the art software which signif-
icantly improves the completeness of multi-strain metagenomic assemblies, with
tests on both simulated and real data.

— Another paper was acepted for the BIOSTEC 2024 conference in Rome [118]. This
paper formalises the core algorithm of HairSplitter and proposes an alternative
Integer Linear Programming (ILP) solution. This ILP approach is implemented in
a module named strainMiner, which initially diminished considerably the memory
footprint of the pipeline. In response, the latest versions of HairSplitter were op-
timised for RAM consumptions and the comparisons provided in the article are
already out of date. The conference suggested we produce a journal version of the
paper, which is the one presented here. In my opinion, the main contribution of this
article is to provide a formalisation of the haplotyping problem as a matrix tiling
problem, paving the way for future improvements coming from the optimisation or
graph theory fields.

38

RESEARCH ARTICLE
Open Access
Open Peer-Review
Open Data
Open Code

Cite as:
xxx

Correspondence:
roland.faure@irisa.fr

Recommender:
FirstName FamilyName

Reviewers:
FirstName FamilyName and
two anonymous reviewers

HairSplitter: haplotype assemblyfrom long, noisy reads
Roland Faure 1,2, Dominique Lavenier1 & Jean-François Flot2,3
1 Univ. Rennes, INRIA RBA, CNRS UMR 6074, Rennes, France
2 Service Evolution Biologique et Ecologie, Université libre de Bruxelles (ULB), Brussels,
Belgium
3 Interuniversity Institute of Bioinformatics in Brussels – (IB)2, Brussels, Belgium

This version of the article has not yet been peer-reviewed by
Peer Community In Mathematical and Computational Biology

(https://doi.org/xxx/xxx)

Abstract
Motivation: Long-read assemblers face challenges in discerning closely related viral or
bacterial strains, often collapsing similar strains in a single sequence. This limitation has
been hamperingmetagenome analysis, where diverse strainsmay harbor crucial functional
distinctions.
Results: We introduce a novel software, HairSplitter, designed to retrieve strains from a
strain-oblivious assembly and long reads. The method uses a custom variant calling pro-
cess to operate with erroneous long reads and introduces a new read clustering algorithm
to recover an a priori unknown number of strains. On noisy long reads, HairSplitter can
recover more strains while being faster than state-of-the-art tools, both in the viral and the
bacterial case.
Availability: HairSplitter is freely available on GitHub at
github.com/RolandFaure/HairSplitter.
Contact: roland.faure@irisa.fr
Keywords: Metagenomes; Metaviromes; Haplotyping; Genome assembly; Strain separation

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

Introduction1

Microbiomes play a crucial roles in many ecosystems, such as soils or human guts, in turn impacting hu-2

man health (Conlon and Bird, 2014) and soil fertility (Coban et al., 2022). Microbiomes typically contain sets3

of organisms with highly similar genomes, the sequences of which are called haplotypes (short for “haploid4

genotypes” (Ceppellini et al., 1967)). Distinguishing these lineages is an important challenge, as small genomic5

differences between haplotypes can lead to significant phenotypic changes. For instance, some strains of6

Escherichia coli can be pathogenic or commensal while having an Average Nucleotide Identity (ANI) (Konstan-7

tinidis and Tiedje, 2005) of more than 98.5% (Frank et al., 2011). A few mutations also became famous for8

altering significantly the infectiousness of some coronaviruses lineages (Magazine et al., 2022).9

10

De novo sequencing and assembling is a central method to characterize microbial communities. Unlike pre-11

viousmethods, it allows to analyse the composition of ametagenomewithout culturing the strains, enabling a12

wide range of analyses (Ward, 2006). While existing genome assemblers proficiently reconstruct genomes of13

abundant species, they struggle to distinguish viral or bacterial haplotypes. Themain difficulty for assemblers14

lies in the unknown number of haplotypes in a sample and their uneven coverage (Ghurye et al., 2016).15

16

Many tools have been developed to overcome this problem in the context of short-read assemblies, such17

as OPERA-MS (Bertrand et al., 2019), Constrains (C Luo et al., 2015), STRONG (Quince et al., 2020), StrainXpress18

(Kang et al., 2022) and VStrains (R Luo and Lin, 2023). However, these methods are not designed for long-read19

sequencing and do not exploit the long-range information contained in long reads.20

21

Long reads with low error rate, such as PacBio HiFi reads, may in the long term be a solution to finely dis-22

tinguish strains. Specialized software such as hifiasm (Cheng et al., 2021), metamDBG (Benoit et al., 2024)23

and stRainy (Kazantseva et al., 2023) have proved successful at distinguishing strains. However, HiFi remains24

expensive and comes with serious limitations regarding the quantity of DNA needed for sequencing.25

26

Several methods have been implemented to deal with haplotype separation for long reads with high er-27

ror rates. While the viral and bacterial haplotype assembly problems are identical in their formulation, the28

characteristics of the input data vary significantly: the genomes are generally much shorter and much more29

deeply sequenced in the viral case. This has led to the emergence of software specialized in either of the30

two problems. In the context of bacterial strain separation, Vicedomini et al., 2021 showed that mainstream31

assemblers such asmetaFlye (Kolmogorov et al., 2020) and Canu (Koren et al., 2017) failed to distinguish close32

bacterial haplotypes and proposed a new tool, called Strainberry, to reconstruct strains. In the context of33

viral strain separation, Strainline (X Luo et al., 2022) and HaploDMF (Cai et al., 2022) were presented to tackle34

specifically the viral haplotype reconstruction problem and need very high depth of sequencing to work. The35

method iGDA (Z Feng et al., 2021) was proposed as a general approach to phaseminor variants while handling36

high error rates and could theoretically assemble both bacterial and viral haplotypes. The main shortcomings37

of all of these methods is that they struggle to recover haplotypes of low abundance. Additionally, most of38

these tools are very computationally intensive.39

40

We present HairSplitter, an efficient pipeline for separating haplotypes in the viral and bacterial context41

using potentially error-prone long reads. HairSplitter first calls variants using a custom process to distinguish42

actual variants from alignment or sequencing artefacts, clusters the reads into an unspecified number of hap-43

lotypes, creates the new separated contigs and finally untangles the assembly graph. HairSplitter can be used44

for either metaviromes or bacterial metagenomes.45

46

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

Methods47

Overview of the pipeline48

The HairSplitter pipeline is depicted on Figure 1 and comprises five steps: 1) correcting the assembly, 2)49

calling variants on each contig, 3) separating the reads by haplotype on each contig, 4) reassembling the50

strain-specific contigs and 5) scaffolding.51

Assembly correction52

Initially, the reads are aligned to the assembly using minigraph (Li et al., 2020, and the assembly is subse-53

quently examined for breakpoints. Breakpoints represent locations in a contig where a significant number54

of reads stop aligning, typically signalling that all the collapsed strains in the contig do not contain the entire55

sequence of the contig. These contigs are potential sources of misassemblies, thus HairSplitter breaks the56

contigs at these breakpoints. Additionally, links are added in the graph between ends of contigs when there57

is sufficient read support. The process is illustrated in Figure 1a.58

The refined assembly resulting from this process is used throughout the subsequent stages of the pipeline.59

Mathematical model behind variant calling60

To sort reads into haplotypes, the intuitive method of clustering reads based on the similarity of their full61

sequence proves ineffective due to the dominance of sequencing and alignment errors, obscuring strain differ-62

ences. HairSplitter first identifies variants positions, pinpointing loci where strains exhibit actual differences.63

The reads are then separated based only on these loci. We did not find any variant caller suitable for our64

specific challenge - calling variants with noisy long reads in a metagenomic context including potentially low-65

abundance strains while maintaining high computational efficiency. Thus, we devised our own variant calling66

procedure, based on an idea already explored in (Z Feng et al., 2021).67

68

The naivest procedure to identify polymorphic loci consists in going through the pileup of the reads on the69

assembly and identifying loci where at least a proportion p of reads have an alternative allele. However, this70

approach falls short when using error-prone reads. For instance, in the case of a strain representing only 1%71

of the total of the reads, p needs to be less than 0.01 to detect variant positions corresponding to this strain,72

resulting in the selection of many artefactual positions if the reads have an error rate > 1%.73

74

The key lies in taking several loci into account simultaneously. HairSplitter leverages the assumption that75

alignment artifacts occur randomly in the pileup, whereas genomic variant are expected to be correlated76

along the alignment. Consequently, pileups at polymorphic loci exhibit strong correlation, contrary to pileups77

at non-polymorphic loci. This allows HairSplitter to detect even rare strains, as illustrated below.78

79

Consider a complete pileup of n reads overm positions, which we will model as a matrix of letters. Let us80

assume that errors occur independently on all reads and at all positions with a probability ≤ e and that all81

errors on a given column are identical (worst-case scenario). We aim to estimate the probability that there82

exist a reads that share errors at b different loci. In other words, the probability that there exist a submatrix83

of size a ∗ b containing only errors in the pileup, defined by selecting a rows (reads) and b columns (loci).84

There exist (na)(mb) submatrices of size a ∗ b. Each of these submatrix has probability lower than eab to con-85

tain only errors. Therefore, given that the expectation is linear (DeGroot and Schervish, 2002), the expectation86

E of the number of submatrices of size a ∗ b containing only errors in the pileup is lower than (
n
a

)(
m
b

)
∗ eab.87

Now, to obtain the probability that there exist no submatrix of size a ∗ b containing only errors, we can use88

Markov’s inequality, according to which the probability that a positive random variable be higher than 1 is89

always smaller than the expectation of this variable (DeGroot and Schervish, 2002). Here, it tells us that the90

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

a. assembly correction

b. variant calling

c. read separation
d. reassembly

e. scaffolding

Figure 1. Illustration of the five steps of the HairSplitter pipeline. Colored rectangles represent contigs, thickblue lines are links in the assembly graph and black lines represent the reads aligned on the assembly. Orangeshapes on reads and contigs indicate variant positions compared to the original sequence.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

Figure 2. In this pileup of reads, does the submatrix of variants highlighted in red vouch for the presence oftwo strains? The probability that there exist 3 reads having alternative allele at 3 loci if we estimate e = 0.1 isless than 0.02: the variants are thus likely not independent and probably underline the presence of at leasttwo different strains.

probability that there exist a submatrix containing only errors is smaller thanE. In other terms, the probability91

that there exist somewhere in the pileup a reads sharing errors at b different loci is lower than (
n
a

)(
m
b

)
∗ eab.92

Now, let us consider a pileup with n = 1000 reads acrossm = 5000 positions and e = 0.1. The probability93

that there exist a = 10 reads sharing errors at b = 10 different loci is lower than (
n
a

)(
m
b

)
∗ eab = 9.10−44.94

Therefore, if the error rate is of 10% or less and the pileup indicates 10 reads (1% coverage) sharing an alter-95

native allele at 10 loci (divergence of 0.2%), we can confidently assume that these are not errors, suggesting96

these reads originate from the same strain, and the loci are polymorphic sites.97

98

Despite its simplified nature, this model underscores the statistical power gained by examining multiple99

loci simultaneously, enabling the detection of low-abundance, highly similar strains even in the presence of100

very noisy long reads. The idea behind the model is illustrated in Figure 2.101

102

Variant calling103

The approach to identifying polymorphic loci capitalizes on the statistical power underlined above. Specifi-104

cally, HairSplitter aims to identify clusters of positions featuring alternative alleles on the same reads.105

106

To generate the pileup, all reads are aligned to the assembly using minimap2 (Li, 2018) using default set-107

tings. HairSplitter then traverses the pileup, determining, for each position, the majority allele and the main108

alternative allele. Only positions with a minimum of five reads carrying alternative alleles are considered po-109

tential polymorphic sites to ensure statistical robustness (cf. model above). HairSplitter compares each new110

position to previously observed positions. If the set of reads with alternative alleles at this position and at a111

previously encountered position share more than 90% reads, the new position is clustered with the old one.112

113

After all positions have been considered, clusters withmore than five positions are deemed robust, and the114

corresponding positions are outputted as polymorphic sites. Once again, the threshold is imposed to avoid115

the inadvertent selection of artifact-prone positions.116

117

Read binning118

The contig is divided into windows with a default size of w (2000 bases by default). Reads are binned by119

haplotypes sequentially on the windows of a contig. Only reads spanning the entirety of the window are con-120

sidered for binning. To cluster reads, HairSplitter operates on the premise that reads originating from the121

same haplotype should be identical at all polymorphic loci. Nevertheless, inherent sequencing and variant-122

calling errors might introduce unintended discrepancies among reads from a single haplotype. To address123

this, HairSplitter adopts a three-step strategy.124

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

dataset species # strains strain coverages ANI divergence sequencing technology
HBV-2 hepatitis B 2 4000x, 9900x 10% Nanopore R.9.4.1Norovirus-7 Norovirus 7 50, 350, 450, 700, 900, 1150, 1400x 1-3.9 % Nanopore R.9.4.1V. fluvialis Vagococcus fluvialis 5 90x, 136x, 172x, 182x, 206x 0.01-1.51% Nanopore R9.4.1Zymo-GMS Q9 Escherichia coli 5 90x, 90x, 90x, 90x, 90x 0.37-1.51% Nanopore R9.4.1Zymo-GMS Q20 Escherichia coli 5 25x, 25x, 25x, 25x, 25x 0.37-1.51% Nanopore R10.4.1Zymo-GMS HiFi Escherichia coli 5 41x, 41x, 41x, 41x, 41x 0.37-1.51% PacBio HiFi

Table 1. Characteristics of the different datasets used for benchmarking on real data.

125

Step one is to correct errors at polymorphic loci. HairSplitter corrects the errors at polymorphic loci by126

performing a k-nearest-neighbour imputation (Fix and Hodges, 1989), with k = 5. The distance between two127

reads is defined as the number of different alleles at polymorphic positions. Each base of the pileup is consid-128

ered and changed to the most frequent base among the k nearest neighbours on all reads and all positions129

until convergence.130

131

Step two is to form clusters of reads, clustering reads together if and only if they exhibit no differences at132

any polymorphic loci.133

134

In the third step, a last check is run to rescue small clusters that can arise from errors in Step 1. HairSplitter135

constructs a graph linking each read to its k closest neighbours, including links between all pairs of reads136

differing on one position or less. The graph is then clustered using the Chinese Whispers algorithm (Biemann,137

2006), initialising the clustering with the clusters obtained in the second step. The Chinese Whispers algo-138

rithm always converge toward a stable solution, i.e. a clustering where all reads are in the same group as at139

least half of their neighbors. There exist many stable clusterings but the algorithm is likely to converge to a so-140

lution close to the initialization: the clusters obtained in the second step are unlikely to be significantly altered.141

142

Reassembly143

Across all windows on every contig, the original sequence undergoes repolishing using the haplotype-144

specific groups of reads previously identified. The polishing can be executed with either Racon (Fang and145

Wang, 2022) or Medaka (Medaka 2018), with the latter being more precise but considerably slower in our146

experience. By default, HairSplitter uses Medaka exclusively for short genomes (≤ 1 Mb).147

The resulting assembly comprises contigs of lengthw that can easily be stitched into longer contigs. For this148

purpose, a straightforward algorithm is employed, derived from Faure et al.(Faure et al., 2021) and depicted in149

Figure 1e. Let us call a contig exhibiting multiple outgoing links with other contigs at one end a “knot”. Knots150

generally represent collapsed contigs. All reads are initially aligned on the assembly graph. Subsequently,151

knots are iteratively assessed. If more than three reads traverse a neighbor of the knot (called A), then traverse152

the knot, and traverse another neighbor at the opposite end of the knot (called B), the knot is duplicated to153

create a new contig which will have as unique neighbors A and B. The links from A and B to the original knot154

are deleted, preserving only the links to the copy of the contig. This process is repeated until no further knots155

can be duplicated.156

Results157

Datasets158

The datasets used in this article are described in Table 1. The accession numbers of the data on public159

repositories can be found in section* “Reproducibility and data availablility".160

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

Bacterial datasets161

We used the Zymobiotics Gut Microbiome Standard (abbreviated to Zymo-GMS) and a Vagococcus fluvialis162

dataset (Rodriguez Jimenez et al., 2022) to compare the performance of different algorithms designed to sepa-163

rate bacterial haplotypes in ametagenomic context. Zymo-GMS is amixture of bacteria, archaea and yeast, 21164

different strains in total, dosed to mimic the composition of the human gut microbiome. These 21 strains in-165

clude five Escherichia coli strains, which we used to evaluate the strain-separation ability of various programs.166

Three Zymo-GMS sequencing were used, respectively from a Nanopore R9.4.1 run, a Nanopore 10.4.1 run167

and a PacBio HiFi run. The Vagococcus fluvialis dataset consists of a mix of five Vagococcus fluvialis strains that168

were sequenced together using barcoded reads, each barcode corresponding to a strain. We did not use the169

barcode information for the assemblies, reserving them for validation. Among the five strains, three had an170

ANI over 99.99%. metaFlye is used to assemble the reads, as it yielded better assemblies compared to Canu171

according to Vicedomini et al. (Vicedomini et al., 2021).172

In addition, we simulated datasets to assess the impact of the number of strains, coverage and divergence173

on the assemblies. These experiments were directly inspired by the protocol of Vicedomini et al. (Vicedomini174

et al., 2021). The genomes of ten strains of Escherichia coli were downloaded from the SRA, namely 12009175

(GCA_000010745.1), IAI1 (GCA_000026265.1), F11 (GCA_018734065.1), S88 (GCA_000026285.2), Sakai (GCA_176

003028755.1), SE15 (GCA_000010485.1), Shigella flexneri (GCF_000006925.2), UMN026 (GCA_000026325.2), HS177

(GCA_ 000017765.1), and K12 (GCF_009832885.1). These strains were chosen to be representative of the diver-178

sity of E. coli.WesimulatedNanopore sequencing usingBadread (RWick, 2019)with the setting “Nanopore2023"179

to simulate 50x of R10.4.1 reads. Between 2 and 10 strains were mixed to assess how many strains the soft-180

ware could separate. From the 10-strain mix, the 12009 strain was downsampled to 30x, 20x, 10x and 5x181

to assess the impact of the coverage on strain separation. Finally, to assess the impact of the divergence182

of sequences on strain separation, 50x of reads were simulated for strain K12 and for strains of decreasing183

divergence with K12; assemblies of K12 with each of these strain was evaluated for separation.184

Viral datasets185

Two datasets were used to benchmark the performance of the programs tested at separating viral haplo-186

types, a 2-strain hepatitis B Virus (HBV) mix from (McNaughton et al., 2019) and an in-silicomix of the sequenc-187

ing of seven strains of Norovirus from Cai et al. (Flint et al., 2021). These datasets were directly taken from188

the paper of HaploDMF (Cai et al., 2022). The reference genomes to run reference-based tools were taken as189

the reference genome in the GenBank database, GCF_000861825.2 for HBV and MW661279.1 for Norovirus.190

Performance evaluation191

We used MetaQUAST (Mikheenko et al., 2015) to measure assembly features such as assembly length,192

NG50, misassemblies, mismatches, indels and completeness. MetaQUAST was run with the –unique-mapping193

and –reuse-combined-alignments options to prevent a sequence, whether a contig or part of it, from being194

mapped to multiple distinct reference locations.195

To assess if strains are well represented, the most important metric is the completeness of the resulting196

assembly. We chose to assess MetaQUAST completeness but also 27-mer completeness. MetaQUAST com-197

pleteness measures the percentage of the solution on which the assembly aligns, while 27-mer completeness198

measures the percentage of the 27-mers of the solution that are effectively found in the assembly. Collapsed199

homozygous contigs typically impact negatively MetaQUAST completeness but not 27-mer completeness.200

Evaluated software201

In addition of HairSplitter, we chose to evaluate the software stRainy (Kazantseva et al., 2023) and Strain-202

berry (Vicedomini et al., 2021), which have been introduced specifically as bacterial strain separationmethods,203

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

V. fluvialis Zymo-GMS Q9 Zymo-GMS Q20 Zymo-GMS HiFi
0.75

0.8

0.85

0.9

0.95

1

metaFlye

metaFlye+iGDA

metaFlye+Strainberry

metaFlye+HairSplitter

metaFlye+stRainy

hifiasm

27
-m

er
 c

om
pl

et
en

es
s

V. fluvialis Zymo-GMS Q9 Zymo-GMS Q20 Zymo-GMS HiFi
0

10

20

30

40

50

60

70

80

90

100

metaFlye

metaFlye+iGDA

metaFlye+Strainberry

metaFlye+HairSplitter

metaFlye+stRainy

hifiasm

M
et

aQ
ua

st
 c

om
pl

et
en

es
s

metaFlye

metaFlye+iGDA

metaFlye+Strainberry

metaFlye+HairSplitter

metaFlye+stRainy

hifiasm

V. fluvialis Zymo-GMS Q9 Zymo-GMS Q20 Zymo-GMS HiFi
10000

100000

1000000

10000000

metaFlye

metaFlye+iGDA

metaFlye+Strainberry

metaFlye+HairSplitter

metaFlye+stRainy

hifiasm

R
un

-t
im

e
(s

ec
on

ds
)

Figure 3. 27-mer completeness, MetaQUAST completeness and run-time of different software on the threeZymo-GMSdataset. The run-times are the run-times of the full assembly pipeline (assembly+strain separation)and are represented in log scale.

hifiasm-meta (X Feng et al., 2022), which is the most popular assembler for direct HiFi assembly, Strainline (X204

Luo et al., 2022) and HaploDMF (Cai et al., 2022), which have been introduced as viral strain separation meth-205

ods and finally iGDA (Z Feng et al., 2021), which can perform both.206

We have tried using all these software on all datasets. Strainline and HaploDMF failed to run in reasonable207

time on non-viral datasets and were automatically killed after 15 days of processing. Strainline failed to per-208

form strain separation on the HBV-2 dataset within its allowed RAM limit of 50G, probably because of the high209

coverage. We tried downsampling the dataset but the problem remained.210

The reference-based virus phasing tools were run with the same reference genome as in (Cai et al., 2022),211

MT622522.1 for hepatitis B and MW661279.1 for Norovirus.212

Benchmarking evaluation213

Bacterial haplotypes214

The benchmark results on the Zymo-GMS and V. fluvialis datasets are illustrated in Figure 3 and detailed in215

Supplementary Table 2. HairSplitter performed better separation of the conspecific strains compared to the216

original metaFlye assemblies, delivering more comprehensive and accurate assemblies than Strainberry and217

iGDA. Particularly with Nanopore data, HairSplitter produced the most complete assemblies. On HiFi reads,218

all assemblies depicted a high duplication ratio but no evidence of erroneous contigs. This could be caused by219

the presence of small intra-specific variation unrepresented in the reference and would merit further inves-220

tigation. The direct assembly of reads with hifiasm seems to yield the best results in terms of completeness221

and contiguity. In several assemblies, 27-mer completeness remains high while MetaQUAST completeness222

is notably lower. This discrepancy arises when repeated genomic regions are not duplicated to their correct223

multiplicity. Typically, the three almost identical V. fluvialis strains were assembled as one.224

The completeness of assemblies in the simulated benchmark is presented in Figure 4, with a detailed evalu-225

ation in Supplementary Table 3. The evaluation of iGDA is not depicted because iGDA inexplicably decreased226

the completeness of the original metaFlye assemblies. Simulations indicated that HairSplitter significantly227

outperformed Strainberry, particularly in scenarios involving a high number of strains in the metagenome.228

The relatively high completeness of the 8-strains Strainberry assembly can be attributed to its high duplica-229

tion ratio. The completeness of HairSplitter assemblies decreased with the depth of coverage and similarity230

of the strains, especially below 20x coverage and 1% divergence. Interestingly, the decline in MetaQUAST231

completeness with coverage and divergence was more pronounced than the decline in 27-mer completeness,232

highlighting HairSplitter’s effectiveness in separating divergent regions and its difficulties in duplicating ho-233

mozygous regions. This corresponds to the results observed in the Zymo-GMS datasets, wheremany pairwise234

divergences of strains were < 1%.235

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

Figure 4. MetaQUAST completeness of assemblies of simulated metagenomes of E. coli. On the left, mix of 2to 10 strains sequenced with 50x coverage were assembled. In the middle, strain 12009 was downsampled inthe 10-strains metagenome and completeness of the 12009 strain is measured. On the right, reads of strainsof decreasing divergence were mixed with K-12 reads and assembled.

Figure 5. 27-mer completeness, MetaQUAST completeness and run-time of different software on the twoviral datasets. Note that the run-time is shown in log scale. The Strainline assembly of HBV-2 is not shownbecause Strainline could not finish on this dataset.

Viral haplotypes236

The completeness results of the benchmark on the viral datasets are depicted Figure 5 andmore complete237

evaluation of assemblies are available in Supplementary Table 5.238

HaploDMF and HairSplitter managed to separate completely the HBV strains according to MetaQUAST.239

iGDA failed to recover the strains, while Strainberry outputted four different haplotypes instead of two (see240

supplementary Table 5). We checked that HaploDMF and HairSplitter separated the reads adequately, thus241

the slight differences in 27-mers completeness stem from polishing errors.242

HairSplitter stoodout as the sole software capable of successfully recovering all seven strains in theNorovirus243

mix, even capturing the least abundant strain comprising only 1% of themix. To assess the sensitivity limits of244

HairSplitter in the viral context, we conducted two additional experiments within theNorovirusmix. In the first245

experiment, we decreased the relative abundance of the rarest strain to 0.1%, while maintaining 50x cover-246

age by uniformly increasing the coverage of the other strains. Remarkably, HairSplitter still achieved complete247

recovery (99.99% MetaQUAST completeness) of the rarest strain. The limited amount of data prevented us248

to further reduce the strain’s relative abundance. In the second experiment, we uniformly diminished the249

coverage of all strains. The rarest strain was entirely recovered (99.99%MetaQUAST completeness) when cov-250

ered at ≥40x, only the most divergent part of the virus was recovered (26.4% MetaQUAST completeness) at251

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

coverage 20x and 30x, and the strain was not recovered at all at 10x coverage. The primary determinant of252

HairSplitter’s sensitivity thus seems to be absolute coverage rather than the strain’s relative coverage.253

Discussion254

In this manuscript, we introduce HairSplitter, a pipeline to assemble haplotypes separately using an input255

assembly and long reads. The pipeline includes two main novelties, an assembly correction program and a256

read separation procedure. HairSplitter proved useful whendealingwith noisy data (≥ 1%error rate), whereas257

specialised software such as hifiasm seemed to be better indicated to assemble HiFi reads. We show that Hair-258

Splitter can effectively separate several similar strains in both bacterial and viral contexts. Compared to the259

state of the art, HairSplitter can deal with a high number of strains and with low relative abundances, while260

maintaining a low computational cost.261

262

HairSplitter faces a significant limitation when strains are highly similar, resulting in two distinct challenges.263

Firstly, the tool requires reads to span at least five polymorphic loci for effective separation into haplotype264

groups, posing difficulties in highly similar regions. Secondly, even with optimal read separation, homozygous265

regions present a challenge, as reads cannot be binned into haplotype groups within these regions. Conse-266

quently, full strain recovery necessitates the duplication of homozygous regions to their correct multiplicity.267

Although an immediate solution to the first problem is not apparent, the results obtained using HiFi data sug-268

gest progress could be made concerning homozygous region duplication. Indeed, stRainy achieved a 27-mer269

completeness comparable to HairSplitter, suggesting that the separation of reads was not significantly finer.270

However, stRainy outperformed HairSplitter in MetaQUAST completeness, indicating more effective duplica-271

tion of homozygous regions in the assembly process.272

273

A direction for future work would also be to generalize the assembly correction module. The idea of the274

module is to make sure all reads align end-to-end onto the assembly graph. We believe such a module could275

be useful to improvemany assemblies. However, the version implemented for now in HairSplitter is very basic276

and does not performwell in repeated, complicated regions of the graph. Amore sophisticatedmodule could277

involve local reassembly and iterative graph correction.278

279

Since HairSplitter is already successful at separating both bacterial and viral haplotypes, we expect to be280

able to extend this work naturally towards the phasing of polyploid organisms, including highly heterozygous281

non-model organisms, which remains an open problem (Guiglielmoni et al., 2021). For this particular case,282

some extra information could be leveraged to improve the HairSplitter pipeline, such as the fact that all hap-283

lotypes are expected to be equally abundant and that the total number of haplotype is usually known.284

Reproducibility and data availablility285

The HairSplitter code can be found on github at https://github.com/rolandfaure/hairsplitter.286

The experimentswere runwith Flye 2.9.2-b1786, hifiasmHairSplitter v1.6.10, HaploDMF commit a07d082c3,287

Strainline commit 8d26341, iGDA commit 54ecec9, Strainberry v1.1, stRainy commit 34573cd, hifiasm-meta288

v0.3-r063.2, minimap2 v2.26-r1175 and Quast v5.2.0.289

HBV sequencing reads can be found under accession number ERR3253560 in SRA. The sevenNorovirus sets290

of reads can be found under accession numbers SRR13951181, SRR13951181, SRR13951186, SRR13951185,291

SRR13951184, SRR13951165 and SRR13951160. The Vagococcus fluvialis data are accessible under project292

PRJNA755170 in SRA. The Zymo-GMS sequencing data can be found under accession numbers SRR17913200,293

SRR17913199 and SRR13128013.294

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

All the assemblies, simulated data and command lines used are available on Zenodo, DOI 10.5281/zen-295

odo.10495033, https://zenodo.org/records/10495033.296

Acknowledgments297

We thankUlysse Faure for hismathematical help. Alexandros Vasilikopoulos, AndrewWoodruff andAlessan-298

dro Derzelle tested HairSplitter and kindly helped debugging.299

We acknowledge the GenOuest bioinformatics core facility (https://www.genouest.org) for providing the300

computing infrastructure. The programs Tablet (Milne et al., 2013) and Bandage (RR Wick et al., 2015) were301

used to visualize data while developing HairSplitter.302

For the purpose of Open Access, a CC-BY public copyright licence has been applied by the authors to the303

present document andwill be applied to all subsequent versions up to the Author AcceptedManuscript arising304

from this submission305

Fundings306

This work was funded by a Ph.D. AMX grant.307

Conflict of interest disclosure308

The authors declare that they comply with the PCI rule of having no financial conflicts of interest in relation309

to the content of the article. The authors declare the following non-financial conflict of interest: Jean-François310

Flot is a recommender of PCI Genomics.311

References312

Benoit G, S Raguideau, R James, A Phillippy, R Chikhi, and C Quince (Jan. 2024). High-quality metagenome313

assembly from long accurate reads with metaMDBG. Nature Biotechnology, 1–6. https://doi.org/10.1038/314

s41587-023-01983-6.315

Bertrand D, J Shaw, M Kalathiyappan, AHQ Ng, MS Kumar, C Li, M Dvornicic, JP Soldo, JY Koh, C Tong, OT Ng,316

T Barkham, B Young, K Marimuthu, KR Chng, M Sikic, and N Nagarajan (Aug. 2019). Hybrid metagenomic317

assembly enables high-resolution analysis of resistance determinants and mobile elements in human mi-318

crobiomes. en. Nature Biotechnology 37, 937–944. ISSN: 1087-0156, 1546-1696. https://doi.org/10.1038/319

s41587-019-0191-2.320

Biemann C (July 2006). Chinese whispers: An efficient graph clustering algorithm and its application to natural321

language processing problems. Proceedings of TextGraphs, 73–80.322

Cai D, J Shang, and Y Sun (Oct. 2022). HaploDMF: viral Haplotype reconstruction from long reads via Deep323

Matrix Factorization. Bioinformatics 38. https://doi.org/10.1093/bioinformatics/btac708.324

Ceppellini R, E Curtoni, P Mattiuz, V Miggiano, G Scudeller, and A Serra (1967). Genetics of leukocyte antigens:325

a family study of segregation and linkage. In: Report of Histocompatibility testing 1967. Ed. by Curtoni E.S.326

Mattiuz P.L. TR.327

Cheng H, G Concepcion, X Feng, H Zhang, and H Li (Feb. 2021). Haplotype-resolved de novo assembly using328

phased assembly graphs with hifiasm. Nature Methods 18, 1–6. https : / /doi .org/10 .1038/s41592- 020-329

01056-5.330

CobanO, G Deyn, andMPloeg (Mar. 2022). Soil microbiota as game-changers in restoration of degraded lands.331

Science 375, abe0725. https://doi.org/10.1126/science.abe0725.332

Conlon M and A Bird (Dec. 2014). The Impact of Diet and Lifestyle on Gut Microbiota and Human Health.333

Nutrients 7, 17–44. https://doi.org/10.3390/nu7010017.334

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

DeGroot M and M Schervish (Jan. 2002). Probability and Statistics. Pearson. ISBN: ISBN 978-0-321-50046-5.335

Fang L and K Wang (June 2022). Polishing high-quality genome assemblies. en. Nature Methods 19, 649–650.336

ISSN: 1548-7091, 1548-7105. https://doi.org/10.1038/s41592-022-01515-1.337

Faure R, N Guiglielmoni, and JF Flot (Feb. 2021). GraphUnzip: unzipping assembly graphs with long reads and338

Hi-C. bioRxiv. https://doi.org/10.1101/2021.01.29.428779.339

Feng X, H Cheng, D Portik, and H Li (June 2022). Metagenome assembly of high-fidelity long reads with hifiasm-340

meta. Nature Methods 19, 1–4. https://doi.org/10.1038/s41592-022-01478-3.341

Feng Z, J Clemente, B Wong, and E Schadt (May 2021). Detecting and phasing minor single-nucleotide variants342

from long-read sequencing data. Nature Communications 12, 3032. https://doi.org/10.1038/s41467-021-343

23289-4.344

Fix E and JL Hodges (1989). Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties.345

International Statistical Review 57, 238–247. ISSN: 03067734, 17515823.346

Flint A, S Reaume, J Harlow, E Hoover, K Weedmark, and N Nasheri (Sept. 2021). Genomic Analysis of Human347

Noroviruses Using Combined Illumina-Nanopore Data. Virus Evolution 7. https : / /doi . org /10 .1093 /ve /348

veab079.349

Frank C, D Werber, JP Cramer, M Askar, M Faber, M an der Heiden, H Bernard, A Fruth, R Prager, A Spode,350

M Wadl, A Zoufaly, S Jordan, MJ Kemper, P Follin, L Müller, LA King, B Rosner, U Buchholz, K Stark, and G351

Krause (2011). Epidemic Profile of Shiga-Toxin–Producing Escherichia coli O104:H4 Outbreak in Germany.352

New England Journal of Medicine 365, 1771–1780. https://doi.org/10.1056/NEJMoa1106483.353

Ghurye J, V Cepeda-Espinoza, and M Pop (Sept. 2016). Metagenomic Assembly: Overview, Challenges and354

Applications. The Yale Journal of Biology and Medicine 89, 353–362.355

Guiglielmoni N, A Houtain, A Derzelle, K Doninck, and JF Flot (June 2021). Overcoming uncollapsed haplotypes356

in long-read assemblies of non-model organisms. BMC Bioinformatics 22. https://doi.org/10.1186/s12859-357

021-04118-3.358

Kang X, X Luo, and A Schönhuth (Sept. 2022). StrainXpress: strain aware metagenome assembly from short359

reads. en. Nucleic Acids Research 50, e101–e101. ISSN: 0305-1048, 1362-4962. https://doi.org/10.1093/nar/360

gkac543.361

Kazantseva E, A Donmez, M Pop, and M Kolmogorov (Feb. 2023). stRainy: assembly-based metagenomic strain362

phasing using long reads. en. preprint. Bioinformatics. https://doi.org/10.1101/2023.01.31.526521.363

Kolmogorov M, DM Bickhart, B Behsaz, A Gurevich, M Rayko, SB Shin, K Kuhn, J Yuan, E Polevikov, TPL Smith,364

and PA Pevzner (Nov. 2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. en.365

Nature Methods 17, 1103–1110. ISSN: 1548-7091, 1548-7105. https://doi.org/10.1038/s41592-020-00971-x.366

Konstantinidis K and J Tiedje (Mar. 2005). Genomic insights that advance the species definition for prokaryotes.367

Proceedings of the National Academy of Sciences of the United States of America 102, 2567–72. https://doi.org/368

10.1073/pnas.0409727102.369

Koren S, BPWalenz, K Berlin, JR Miller, NH Bergman, and AM Phillippy (May 2017). Canu: scalable and accurate370

long-read assembly via adaptive k -mer weighting and repeat separation. en. Genome Research 27, 722–371

736. ISSN: 1088-9051, 1549-5469. https://doi.org/10.1101/gr.215087.116.372

Li H (Sept. 2018). Minimap2: pairwise alignment for nucleotide sequences. en. Bioinformatics 34. Ed. by Birol I,373

3094–3100. ISSN: 1367-4803, 1367-4811. https://doi.org/10.1093/bioinformatics/bty191.374

Li H, X Feng, and C Chu (Oct. 2020). The design and construction of reference pangenome graphs with mini-375

graph. Genome Biology 21, 265. https://doi.org/10.1186/s13059-020-02168-z.376

Luo C, R Knight, H Siljander, M Knip, R Xavier, and D Gevers (Sept. 2015). ConStrains identifies microbial strains377

in metagenomic datasets. Nature biotechnology 33. https://doi.org/10.1038/nbt.3319.378

Luo R and Y Lin (2023). VStrains: De Novo Reconstruction of Viral Strains via Iterative Path Extraction from As-379

sembly Graphs. In: Research in Computational Molecular Biology. Ed. by Tang H. Cham: Springer Nature380

Switzerland, pp. 3–20. ISBN: 978-3-031-29119-7.381

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

Luo X, X Kang, and A Schönhuth (Jan. 2022). Strainline: full-length de novo viral haplotype reconstruction from382

noisy long reads. Genome Biology 23. https://doi.org/10.1186/s13059-021-02587-6.383

Magazine N, T Zhang, Y Wu, M McGee, G Veggiani, and W Huang (Mar. 2022). Mutations and Evolution of the384

SARS-CoV-2 Spike Protein. Viruses 14, 640. https://doi.org/10.3390/v14030640.385

McNaughton A, H Roberts, D Bonsall, Md Cesare, J Mokaya, S Lumley, T Golubchik, P Piazza, J Martin, C Lara,386

A Brown, M Ansari, R Bowden, E Barnes, and P Matthews (May 2019). Illumina and Nanopore methods for387

whole genome sequencing of hepatitis B virus (HBV). Scientific Reports 9. https://doi.org/10.1038/s41598-388

019-43524-9.389

Medaka (2018). github.com/nanoporetech/medaka.390

Mikheenko A, V Saveliev, and A Gurevich (Nov. 2015). MetaQUAST: Evaluation of metagenome assemblies.391

Bioinformatics 32, btv697. https://doi.org/10.1093/bioinformatics/btv697.392

Milne I, G Stephen, M Bayer, PJA Cock, L Pritchard, L Cardle, PD Shaw, and DMarshall (Mar. 2013). Using Tablet393

for visual exploration of second-generation sequencing data. en. Briefings in Bioinformatics 14, 193–202.394

ISSN: 1467-5463, 1477-4054. https://doi.org/10.1093/bib/bbs012.395

Quince C, S Nurk, S Raguideau, R James, OS Soyer, JK Summers, A Limasset, AM Eren, R Chikhi, and AE Darling396

(Sept. 2020). Metagenomics Strain Resolution on Assembly Graphs. en. preprint. Bioinformatics. https://doi.397

org/10.1101/2020.09.06.284828.398

Rodriguez Jimenez A, N Guiglielmoni, L Goetghebuer, E Dechamps, I George, and JF Flot (Aug. 2022). Com-399

parative genome analysis of Vagococcus fluvialis reveals abundance of mobile genetic elements in sponge-400

isolated strains. BMC Genomics 23. https://doi.org/10.1186/s12864-022-08842-9.401

Vicedomini R, C Quince, AE Darling, and R Chikhi (July 2021). Strainberry: automated strain separation in low-402

complexity metagenomes using long reads. en. Nature Communications 12, 4485. ISSN: 2041-1723. https:403

//doi.org/10.1038/s41467-021-24515-9.404

Ward N (Apr. 2006). New directions and interactions in metagenomics research. FEMS microbiology ecology 55,405

331–8. https://doi.org/10.1111/j.1574-6941.2005.00055.x.406

Wick R (Apr. 2019). Badread: simulation of error-prone long reads. Journal of Open Source Software 4, 1316.407

ISSN: 2475-9066. https://doi.org/10.21105/joss.01316.408

Wick RR, MB Schultz, J Zobel, and KE Holt (Oct. 2015). Bandage: interactive visualization of de novo genome409

assemblies. en. Bioinformatics 31, 3350–3352. ISSN: 1367-4811, 1367-4803. https : / / doi . org / 10 . 1093 /410

bioinformatics/btv383.411

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

Supplementary material412

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

GenomeFraction (%) Duplicationratio NGA50 #misassemblies # mismatchesper 100 kbp # indelsper 100 kbp
Vagococcus fluvialis metaFlye 26.90 1.097 - 40 340.14 383.57metaFlye + iGDA 44.530 1.151 1313 2 115.57 391.70metaFlye + Strainberry 33.112 1.119 - 45 77.71 510.25metaFlye + HairSplitter 59.668 1.137 31944 73 31944 355.52
Zymo-GMS Q9* metaFlye 28.365 1.048 - 66 286.86 38.80metaFlye + iGDA 61.293 1.489 12450 21 225.67 41.30metaFlye + Strainberry 23.166 1.072 - 45 191.51 51.65metaFlye + HairSplitter 67.642 1.131 15357 89 93.44 30.94
Zymo-GMS Q20* metaFlye 28.742 1.051 - 62 300.25 34.41metaFlye + iGDA 39.650 1.118 - 8 181.55 28.23metaFlye + Strainberry 59.197 1.138 28421 66 193.55 42.42metaFlye + HairSplitter 61.291 1.033 5264 12 34.77 11.97
Zymo-GMS HiFi* metaFlye 66.064 1.076 79832 39 92.55 6.65metaFlye + iGDA 42.996 1.515 17104 15 102.70 9.96metaFlye + Strainberry 72.016 1.142 53249 46 57.53 6.92metaFlye + HairSplitter 87.906 1.582 45942 56 62.30 10.53metaFlye + stRainy 97.078 1.737 41195 47 44.15 12.26hifiasm 98.732 1.911 288422 82 30.07 4.99

Table 2. metaQuast metrics of the bacterial assemblies obtained from experimental data.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

GenomeFraction (%) Duplicationratio NGA50 #misassemblies # mismatchesper 100 kbp # indelsper 100 kbp
strains2 metaFlye 57.137 1.043 61559 22 216.18 216.53metaFlye + Strainberry 99.268 1.074 701492 11 24.83 64.73metaFlye + HairSplitter 98.696 1.063 194764 7 11.54 47.264 metaFlye 40.666 1.071 - 50 562.91 268.83metaFlye + Strainberry 95.631 1.148 251144 39 93.07 81.88metaFlye + HairSplitter 94.217 1.077 25068 6 14.21 46.396 metaFlye 28.949 1.087 - 63 585.20 264.89metaFlye + Strainberry 47.430 1.108 8151 90 289.19 92.23metaFlye + HairSplitter 95.505 1.099 37869 35 39.62 46.658 metaFlye 27.599 1.051 - 76 527.44 277.85metaFlye + Strainberry 90.438 1.533 83755 157 179.31 172.25metaFlye + HairSplitter 94.079 1.157 32914 71 48.11 53.6210 metaFlye 23.130 1.036 - 79 469.27 277.71metaFlye + Strainberry 34.207 1.095 - 175 363.06 137.01metaFlye + HairSplitter 91.626 1.159 27528 78 51.29 47.10
coverage30x* metaFlye 30.618 1.032 - 1 719.80 55.27metaFlye + Strainberry 28.188 1.085 - 2 347.21 127.06metaFlye + HairSplitter 87.322 1.134 28641 0 60.09 35.2320x* metaFlye 29.522 1.018 - 6 859.11 76.03metaFlye + Strainberry 20.562 1.037 - 3 274.86 102.01metaFlye + HairSplitter 81.232 1.138 28700 1 94.37 37.1310x* metaFlye 18.201 1.005 - 1 498.17 85.10metaFlye + Strainberry 16.178 1.007 - 1 347.06 181.70metaFlye + HairSplitter 54.665 1.111 11999 5 120.35 53.815x* metaFlye 12.020 1.010 - 2 849.88 201.29metaFlye + Strainberry 9.807 1.013 - 2 422.61 273.49metaFlye + HairSplitter 25.052 1.042 - 2 311.52 166.26
divergenceH5 metaFlye 54.246 1.002 19206 22 324.97 29.23(1.09%) metaFlye + Strainberry 98.157 1.001 652572 2 324.97 1.35metaFlye + HairSplitter 99.666 1.042 196697 2 1.33 7.74AMSCJX03 metaFlye 54.783 1.001 18675 17 254.48 28.42(0.91%) metaFlye + Strainberry 93.390 1.003 279448 3 0.73 1.98metaFlye + HairSplitter 92.249 1.003 18001 0 3.09 4.17RM74721 metaFlye 54.254 1.000 19360 19 132.60 11.73(0.57%) metaFlye + Strainberry 92.256 1.006 380826 1 2.97 8.57metaFlye + HairSplitter 85.936 1.006 10000 0 3.56 4.98EC590 metaFlye 54.132 1.000 17337 10 117.79 12.85(0.45%) metaFlye + Strainberry 71.749 1.003 156627 10 9.29 1.72metaFlye + HairSplitter 78.957 1.005 6001 6 8.48 5.10Y5 metaFlye 54.736 1.002 22104 21 63.85 9.38(0.38%) metaFlye + Strainberry 72.758 1.006 181387 13 8.64 3.28metaFlye + HairSplitter 75.774 1.009 6000 1 1.68 1.89LD27-1 metaFlye 53.295 1.001 19411 8 43.83 5.33(0.27%) metaFlye + Strainberry 62.101 1.004 112749 13 7.41 3.53metaFlye + HairSplitter 65.674 1.007 4000 0 3.54 2.80ME8067 metaFlye 50.820 1.000 47356 8 10.29 3.19(0.07%) metaFlye + Strainberry 50.820 1.000 47356 8 10.29 3.19metaFlye + HairSplitter 63.628 1.002 4000 0 1.57 1.02
Table 3. metaQuast metrics of the bacterial assemblies obtained from simulated Nanopore R10.4.1 data. *The metrics displayed for the downsampled datasets are the metrics computed with respect to the downsam-pled strain, and not with respect to the complete 10 strains.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

GenomeFraction (%) Duplicationratio NGA50 #misassemblies # mismatchesper 100 kbp # indelsper 100 kbp
HBV-2 Strainberry 99.984 2.174 4504 3 881.59 1562.50iGDA 54.174 1.001 1081 0 201.15 229.89StrainlineHaploDMF 99.984 1.000 3207 0 15.58 93.46HairSplitter 99.953 1.001 3209 0 46.72 109.02
norovirus Strainberry 14.283 1.000 - 0 52.97 13.24iGDA 69.514 1.548 2838 0 112.55 15.83Strainline 29.659 5.787 7541 0 479.44 136.67HaploDMF 85.702 1.000 7549 0 165.60 26.50HairSplitter 100.000 1.038 7550 0 107.57 35.96

Table 4. metaQuast metrics of the viral assemblies.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580067doi: bioRxiv preprint

strainMiner: Combining Integer Programming1

and Data Mining Techniques for Strain-level2

Metagenome Assembly3

Roland Faure1,2*†, Tam Khac Minh Truong1†, Victor Epain3,4

Riccardo Vicedomini1, Rumen Andonov1*5

1GenScale, Univ. Rennes, Inria RBA, CNRS UMR 6074, Rennes, France.6

2Service Evolution Biologique et Ecologie, Université libre de Bruxelles7

(ULB), Brussels, Belgium.8

3Unaffiliated, independent researcher, Lorient, France.9

*Corresponding author(s). E-mail(s): roland.faure@irisa.fr;10

rumen.andonov@irisa.fr;11

†These authors contributed equally to this work.12

Abstract13

Metagenomic assembly is crucial for understanding microbial communities, but14

standard tools often struggle to differentiate bacterial strains of the same species,15

especially with low-accuracy reads from technologies like PacBio CLR and Oxford16

Nanopore. Current de novo assembly methods typically reconstruct bacterial17

genomes at the species level but fall short in distinguishing individual strain18

genomes. Our study presents a novel approach by reformulating the haplotyping19

problem as a matrix partitioning problem. We address this using Integer Linear20

Programming (ILP) combined with data mining techniques to improve computa-21

tional efficiency. We introduce strainMiner, a strain-separation module integrated22

into an established pipeline to produce strain-separated assemblies. On real and23

simulated datasets with error rates ranging from 2.5% to 12%, strainMiner com-24

pares favorably to state-of-the-art methods in terms of assembly quality and25

strain reconstruction while significantly reducing computational requirements.26

Keywords: Metagenomics, Strain-level assembly, Haplotype phasing, Integer Linear27

Programming, Hierarchical Cluster Analysis28

1

1 Introduction29

Metagenomics is a fairly new research field that consists of the analysis of sequencing30

data characterizing a mixture of microorganisms within an environment of interest [1].31

One of the steps for accomplishing this task is through the precise identification of32

the organisms that are present in such an environment. This problem often requires33

reconstructing the genomes of the sequenced species, a problem called metagenome34

assembly. Reconstructing and identifying bacterial genomes within a metagenome from35

sequencing data is an extremely challenging task due to the need of distinguishing and36

assembling DNA fragments of distinct microorganisms [2]. Furthermore, genomes may37

also exhibit widely distinct levels of abundance and relatedness, making it difficult38

to discern sequence variability from errors [3]. For example, conspecific strains (i.e.,39

strains of the same species) could share sequence identity above 99% and, in practice,40

are often assembled into species-level consensus sequences which hide strain variabil-41

ity [4]. Being able to precisely identify distinct strains is nevertheless important for42

studying a microbial environment at a functional level, due to the high phenotypic43

variability exhibited by conspecific strains [5]. A classical example is Escherichia coli44

which could be found as a probiotic [6] or pathogenic [7] strain.45

The challenge posed by the “strain separation” problem, as outlined in [4], arises46

from two primary factors: (i) the unknown number of strains and (ii) the variable47

abundance within a sample. Moreover, the precise characterization of what constitutes48

a “strain” is also not always clear. In this study, we will define a strain as a bacterial49

haplotype, i.e. a contiguous sequence of nucleotides observed jointly and in sufficient50

abundance by sequencing reads, in accordance with previous works [4]. Furthermore,51

we will use the terms strain and haplotype interchangeably.52

In the last decade the strain separation problem has been extensively studied, either53

without (de novo) or with the availability of a reference sequence. Previous works54

attempted to tackle the de novo problem exploiting data from different sequencing55

technologies such as short reads [8–11], long reads [4, 12–14], or a combination of the56

two [15].57

The increased accessibility of long-read sequencing (Oxford Nanopore and PacBio)58

for metagenomic data allows nowadays to accurately reconstruct complete genomes of59

bacterial species even from complex environments [16], especially using the low-error-60

rate PacBio HiFi technology [17–19]. At the same time, long reads are able to span61

far-apart strain-specific variants, offering the possibility to identify and reconstruct62

bacterial genomes even at the strain level.63

Several methods have been recently proposed for the de novo strain-level assembly64

with long-read metagenomic data, namely Strainberry [4], stRainy [12], Floria [13], and65

HairSplitter [14]. These approaches take as input a “reference” species-level assembly66

(e.g., built with a standard metagenome assembly tool) along with a set of long reads.67

A read alignment against the input assembly is then used to identify single-nucleotide68

polymorphisms (SNPs) which allow to partition reads likely belonging to the same69

haplotype. Strain-resolved and unphased sequences are finally represented within a70

graph in order to output more contiguous strain-resolved sequences.71

Strainberry [4] was the first long-read-based tool proposed for the reconstruction72

of individual strains at the scale of a full metagenome. It exploits HapCUT2 [20] (a73

2

diploid phasing tool based on likelihood optimization through graph-cuts) which is74

applied iteratively until no more strains need to be separated. While Strainberry does75

not require long reads from a specific technology, it is mainly limited to low-complexity76

metagenomes, i.e. containing no more than five conspecific strains.77

stRainy [12] constructs a “connection” graph that encodes overlapping reads, shar-78

ing and agreeing on SNPs. Then, it recursively clusters reads using a community79

detection algorithm [21] with increased sensitivity. As opposed to the other approaches,80

stRainy has been mainly evaluated on long reads with fairly low error rates (i.e.,81

PacBio HiFi, Nanopore R10, simulated reads with error rate up to 3%).82

Floria [13] is based on the Minimum Error Correction (MEC) model, typically83

applied to (genomic) polyploid haplotype phasing. However, it uses an heuristic84

method on overlapping windows to locally identify strain counts and read partitions.85

A directed acyclic graph is then constructed from such partitions in order to solve a86

flow problem whose solution is then used to extract vertex-disjoint paths representing87

haplotypes.88

HairSplitter [14] introduces a novel statistical approach to distinguish sequencing89

errors from SNPs, making it suitable for all long-read technologies. In order to cluster90

reads, HairSplitter runs over non-overlapping windows and implements a k-nearest-91

neighbour algorithm to correct reads at SNP loci. It finally clusters the reads using92

the Chinese Whispers algorithm [22] in order to identify (and assemble) haplotypes.93

The local clustering of reads in strain-specific partitions is at the core of methods94

for the strain separation problem. In this article, we introduce and study an original95

mathematical formulation for this specific task. More precisely, we model the prob-96

lem as a tiling problem on a binary matrix defined over a set of SNP positions. The97

rationale is to identify high (or low) density sub-matrices representing SNPs in which98

reads share the same nucleotides (within a given tolerance for errors). We formalize99

this problem as an Integer Linear Programming (ILP) problem and we integrate it100

within HairSplitter [14], which implements a complete strain-level metagenome assem-101

bly pipeline. We named the resulting method strainMiner. This article completes and102

extends a previously published conference paper [23].103

We evaluated strainMiner on mock communities (based on real and simulated data)104

in which it either improved or compared favorably with respect to competing tools to105

recover strain-specific sequences from long read sequencing data, while being either106

an order of magnitude faster or more memory-efficient.107

2 Methods108

2.1 Pipeline overview109

The strainMiner pipeline takes in input a reference sequence (a draft assembly or a110

reference genome) and a set of long reads. It then mirrors the four main stages of111

HairSplitter [14] (see Figure 1). These stages include: (i) aligning the reads to the112

draft assembly or reference genome, (ii) identifying putative SNPs and partitioning113

the reads, (iii) producing haplotype assemblies from the read partitions, and (iv)114

enhancing assembly contiguity through scaffolding. Our contribution lies in an original115

method to tackle the second step of the pipeline, that is separating aligned reads by116

3

(i) Alignment Reads

Assembly

(ii) Separation

windows

(iii) Re-assembly Reassembled
contigs

(iv) Scaffolding New
assembly

Read groups

Fig. 1 The strainMiner pipeline [23]: (i) Reads are aligned on the reference or draft assembly, (ii)
on each window of the assembly, reads are separated by haplotype of origin - only three windows are
shown here, (iii) all groups of reads are locally reassembled and (iv) the locally reassembled contigs
are scaffolded to produce longer contigs.

haplotype of origin. The other steps of the pipeline are the same ones implemented in117

HairSplitter [14] (version 1.6.10).118

The problem we are tackling can be defined as follows: given a set of reads aligned119

to a reference sequence, the goal is to separate the reads into groups based on their hap-120

lotype of origin. Ideally, all reads originating from the same strain would be grouped121

together. However, this level of separation across the entire genome is not always122

achievable. It is impossible to phase two consecutive variants if they are too far apart123

to be covered by at least one read. Therefore, our objective is to partition reads locally.124

Specifically, we consider the input reference in non-overlapping windows of length w,125

where w should be smaller than the average read length (we set w to 5000 by default).126

2.2 Statistical signal127

The intuition behind strainMiner is similar to the one behind HairSplitter [14], origi-128

nally introduced in [24]. The idea is to consider multiple loci simultaneously in order129

to group reads by their haplotypes of origin. Considering only one locus is not suffi-130

cient, as alignment artifacts and error rates can introduce errors at a single locus that131

cannot be distinguished from alternative alleles, especially when the alternative alle-132

les are rare. On the contrary, by exploiting the correlation between several columns,133

it is possible to differentiate errors from true polymorphisms.134

For instance, consider a hypothetical scenario involving a mixture of two strains,135

where strain A constitutes 99% of the mix and strain B a mere 1%. Consider also a136

collection of a thousand reads spanning two polymorphic sites, denoted as a and b.137

4

In an ideal, error-free pileup, conducting a chi-square test for independence with one138

degree of freedom between the two loci yields a p-value smaller than 10−215.139

The presence of errors can greatly decrease the statistical power of detecting cor-140

relations between loci. In our simulations, we incorporated random substitution errors141

with a probability of p = 0.1 for all bases across 10,000 simulations. Despite this,142

the p-value for the correlation between loci a and b remained low, with an average143

of 10−16 and a maximum of 10−6 in the worst-case scenario. However, it is crucial144

to note that thousands of non-polymorphic positions may potentially exhibit correla-145

tions with locus a in a single pileup. Furthermore, alignment artifacts can introduce146

more complex errors with locally higher error rates, which can further decrease the147

statistical power of detecting correlations.148

Including more loci unequivocally eliminates the risk of spurious correlations stem-149

ming from artifacts. In this same example, we introduced a third locus, denoted as c,150

while maintaining the 0.1 error rate. We applied the one-degree of freedom chi-square151

test to assess the relationship between the three positions. This time, the probabil-152

ity of encountering three non-polymorphic positions with correlations as strong as153

those observed between a, b, and c by chance was found to be below 10−200 in all154

10,000 simulations. While this example simplifies the complexities of pileup errors, it155

emphasizes two fundamental aspects of the method: a) the joint observation of multi-156

ple loci significantly enhances the statistical power to distinguish between errors and157

polymorphism, and b) even low-abundance strains can be reliably identified.158

2.3 Reference windows as binary matrices159

In each window, strainMiner considers only reads that span at least 60% of the win-160

dow’s length. Subsequently, strainMiner transforms the read alignment pileup into a161

binary matrix, where each row corresponds to a read, each column corresponds to a162

position, and cell (i, j) contains the number one if the base at position j of read i163

matches the dominant base at that position, the number zero if it matches the second164

most frequent base, and remains empty otherwise. Empty cells can occur if a read165

does not cover a position or if the base in a read at a given position is not among the166

two most common bases at that position.167

Next, columns are filtered to retain only those where the most common base con-168

stitutes at most a proportion p of the aligned reads. By default, strainMiner sets p169

to 0.95, striking a balance between computational efficiency and precision. However,170

users aiming to recover low-abundance strains can set p to a higher value.171

To populate the empty cells, strainMiner implements the well-known K-nearest-172

neighbor imputation strategy [25], used for example in [26]. It identifies for each read173

its “nearest neighbors” which, in this context, are the reads with the smallest Hamming174

distance. Then, for each empty cell in a row, strainMiner uses a majority vote from175

the five closest neighbors that have non-empty cells at that position to decide whether176

the missing value is a 0 or a 1.177

The result is a binary matrix A = (aij) of size |R| × |L|, where the set of rows R178

corresponds to the reads, the set of columns L corresponds to the retained polymorphic179

loci/positions within the window, and aij ∈ {0, 1} for all 1 ≤ i ≤ |R|, 1 ≤ j ≤ |L|.180

5

strainMiner aims to identify groups of highly similar columns in this matrix, which181

statistically can only represent true SNPs if the group is sufficiently large. Reads will182

then be separated into groups based on their alleles at these positions.183

2.4 Definitions and problem formulation184

In this section, we translate the statistical signal observed above in a formal problem185

on the binary matrix.186

Quasi-bicluster of ones and zeros187

To begin, we first introduce some preliminary definitions. The density dens(A) of a188

binary matrix A is defined as the total number of ones divided by the total number189

of elements or, more formally,190

dens(A) =

∑
i∈R

∑
j∈L aij

|R| × |L| .

Furthermore, given a threshold γ ∈ (0.5, 1], a γ-bicluster of ones (or quasi-bicluster191

of ones) is any sub-matrix M of A such that dens(M) ≥ γ holds. When γ is chosen to192

be close to 1, the corresponding matrix is called dense, i.e. a matrix mostly containing193

ones and tolerating only a small proportion of zeros to account for various sequencing194

errors. Conversely, a (1− γ)-bicluster of zeros (or quasi-bicluster of zeros) is a sparse195

binary matrix, i.e. characterized by low density (close to 0).196

The quasi-bicluster dimensions are constrained by a minimum number of columns197

(width) and by a minimum number of rows (height), in order to ensure the significance198

of the statistical signal captured by the quasi-bicluster.199

Tiling formulation200

We approach the strain separation problem as a specific tiling problem: given the201

binary matrix A constructed as described in the previous section, we aim to permute202

and partition its columns into vertical bands, also referred to as strips (see Figure 2a).203

A strip is a group of columns where the rows can be divided into two groups — one204

with the dominant allele forming a bicluster of ones and the other with alternative205

alleles forming a bicluster of zeroes. Each strip partitions the reads into a group with206

the dominant allele and a group with the alternative allele.207

By design, a strip groups multiple positions that are highly correlated. Larger208

strips include a greater number of correlated positions and likely witness the presence209

of actual SNPs in a multi-haplotype region. On the other hand, narrow strips (i.e.,210

characterized by a number of columns below the width threshold for biclustering)211

are excluded because they lack sufficient statistical significance to confirm that their212

columns represent actual SNPs.213

Read characteristic vectors214

Given a set of strips it is then possible to characterize each read with a binary vector215

whose size is equal to the number of strips. If the i-th strip of a read is a quasi-bicluster216

6

(a) (b)

Fig. 2 Separation of the domain into four vertical strips. (a) Each strip is a bipartition of
rows. Quasi-biclusters of ones (resp. of zeros) are shown in gray (resp. white). Columns in strip 5 (St5)
are not considered because the width of this strip is below the specified threshold. (b) Characteristic
vectors of the five reads/rows highlighted with a dashed line in the left figure. The comparison of the
characteristic vectors results in three strains respectively labelled by a blue square, an orange triangle
and a purple circle: the first strain contains r1 and r5, the second r2 and r4 and the third only r3.

of ones, the i-th coefficient of this binary vector is set to 1; if not, it is set to 0. This217

vector is referred to as the characteristic vector of the corresponding read. Reads218

having identical characteristic vectors are grouped together as belonging to the same219

strain - in biological terms, this corresponds to grouping reads that are identical at all220

identified polymorphic loci. In practice, and as outlined in section 2.6.2, strains with221

a small number of reads are not considered, and their reads are possibly re-assigned222

to other strains.223

Figure 2b provides an example of the characteristic vectors for a subset of five224

reads highlighted in Figure 2a. Among these reads, we observe three strains: r1 and225

r5 compose the first one, r2 and r4 the second, and the third strain only contains r5.226

Problem objective227

Given three parameters corresponding to the desirable density γ (and sparsity (1−γ)),228

and two thresholds to indicate the minimum bicluster width and height, our strategy229

attempts to cover a maximum width of matrix A with strips.230

2.5 A hybrid approach for finding strips231

In order to find strips in the matrix, we have developed an Integer Linear Programming232

approach (denoted here as ILP-QBC), which will be detailed in later. In practice,233

however, the ILP-QBC does not scale well for large matrices. To overcome this issue, we234

decided to combine ILP-QBC with a preprocessing step, Hierarchical Cluster Analysis235

(HCA), a well-known technique frequently used in data mining, to reduce the size of236

the problem. Figure 3 explains the pipeline.237

7

2.5.1 Strip identification with hierarchical clustering238

The search of strips consists of the following two steps:239

1. Hierarchical clustering of columns;240

2. Checking if groups of columns are strips;241

Hierarchical clustering of columns.242

We utilize a standard hierarchical clustering to group columns and identify candidate243

strips. Specifically, we employ the Hamming distance and a complete-linkage strat-244

egy. Complete linkage defines the distance between two sub-matrices as the distance245

between their most distant columns (one from each sub-matrix). Groups of columns246

are iteratively merged until all groups have more than 35% divergence with all others.247

Groups of columns that do not satisfy the minimum required number of columns (5248

by default) are not further processed by strainMiner.249

Checking if groups of columns are strips250

For each group of columns identified in the previous step, we apply HCA to partition251

the reads (rows) into two groups. In the best-case scenario, the group of columns is252

“unambiguous” and form a strip: the groups form a (1 − γ)-bicluster of zeros and a253

γ-bicluster of ones. The identified strips are outputted and removed from the matrix,254

while the remaining “ambiguous” columns are provided as input to the ILP-QBC255

(Figure 3). The rationale behind this approach is that HCA very efficiently identifies256

“easy-to-spot” strips, reducing the size of the problem that needs to be solved by257

ILP-QBC.258

Unambiguous

ILP-QBC

Ambiguous

(a)

(b)

(c)

HCA HCA + ILP-QBC strips

Fig. 3 Hybrid strip search HCA + ILP-QBC. In each of the sub-figure, the colored areas are
dense binary sub-matrices. (a) The initial matrix with the groups of columns found via HCA. The
first one (grey areas) is not a strip, as the bipartitioning does not respect γ. The other three (blue
tiles) are strips. (b) The remaining matrix is sent to ILP-QBC to find strips respecting γ. In this
example, ILP-QBC finds two strips (orange tiles). (c) The final set of strips is composed of the HCA-
based strips and the ones found by ILP-QBC.

8

(a) Initial binary
matrix

(b) Find the largest
bicluster of ones (c) Find the largest

bicluster of zeros under
the first bicluster

(d) Alternate the search
for bicluster of ones and
zeros until all the reads
are bipartitioned (e) The first strip is found, repeat

from (b) until no columns remain

Columns awaiting strip search

Quasi-bicluster of ones

Quasi-bicluster of zeros

Continue the strip
search on this
binary sub-matrix

First strip

Fig. 4 The ILP-QBC strip iterative search strategy [23].

2.5.2 Strip identification with Integer Linear Programming259

Our method, Integer Linear Programming for Quasi-Bicliques identification (ILP-260

QBC) iteratively identifies strips until all columns of the input matrix have been261

processed (see Figure 4).262

We address the problem of identifying a strip heuristically and iteratively as follows:263

1. The largest quasi-bicluster of ones in the matrix is found (Figure 4b);264

2. Consider the sub-matrix restricted to the columns of the found quasi-bicluster265

but consisting of the reads that are not included in it (see the gray sub-matrix266

highlighted in Figure 4b);. Find the largest quasi-bicluster of zeros (Figure 4c);267

3. Restrict the matrix and repeat steps from 2 alternating the search of quasi-bicluster268

of ones and zeros until no reads remain to be partitioned (Figure 4d).269

4. Stop when no further quasi-bicluster can be found (given γ and the minimum height270

and width)271

For the strip under consideration, if the number of remaining reads is below a272

certain threshold (5 in our case), the strip is considered valid – the remaining reads273

corresponding to particularly noisy reads. Each remaining read is assigned to the274

quasi-bicluster of ones if it has a majority of ones; otherwise, it is assigned to the275

quasi-bicluster of zeros. The columns retained in the last iteration define the width of276

the strip (Figure 4e). They are removed from the matrix and the search for another277

strip begins.278

If the number of remaining columns is above the threshold, it means that no279

wide enough strip could be found in the matrix, and the search for strips stops. The280

remaining columns often correspond to loci that are not polymorphic but particularly281

prone to sequencing errors (e.g. homopolymers).282

To find quasi-bicluster of ones or of zeros, we employ an Integer Linear Program-283

ming (ILP) model.284

9

ILP model285

Given a binary matrix, the purpose of our ILP model is to select a group of rows and286

columns that maximizes the count of a specific value (either zeros or ones) respecting287

the γ parameter. For a given matrix A ∈ Z|R|×|L|
2 and a threshold γ, we use binary288

variables xij , ui and vj to denote the selection (value equals 1) or non-selection (value289

equals 0) of a cell, row, and column, respectively. The following ILP searches for a290

quasi-bicluster of ones:291

max
∑

i∈R

∑

j∈L

aijxij (1)

xij ≤ ui, ∀i ∈ R,∀j ∈ L (2)

xij ≤ vj , ∀i ∈ R,∀j ∈ L (3)

xij ≥ ui + vj − 1, ∀i ∈ R,∀j ∈ L (4)
∑

i∈R

∑

j∈L

(1− aij)xij ≤ (1− γ)×
∑

i∈R

∑

j∈L

xij (5)

ui, vj ∈ {0, 1}, xij ∈ {0, 1} ∀i ∈ R, ∀j ∈ L (6)

The function to maximize (1), counts for the number of ones in a sub-matrix292

determined by the binary variables having value 1. Constraints (2), (3), (4) mean that293

cell (i, j) is selected into the solution (i.e., xij = 1) if and only if both its corresponding294

row i and column j are also included into the solution (i.e., ui = 1 and vj = 1).295

The coefficient aij represents the value of the cell at position i and j. It is directly296

used when searching for occurrences of 1s in the matrix. When the search is for 0s,297

however, the coefficient is reversed to (1− aij) as follows:298

max
∑

i∈R

∑

j∈L

(1− aij)xij (7)

Constraint (5) ensures that the sub-matrix contains at least a proportion γ of ones.299

This constraint can also be reversed when necessary to ensure a minimum proportion300

of zeros:301

∑

i∈R

∑

j∈L

aijxij ≤ (1− γ)×
∑

i∈R

∑

j∈L

xij (8)

Complexity analysis302

Biclustering is closely related to bipartite graph partitioning. If we consider reads303

and positions as vertices of a graph and our binary matrix as the adjacency matrix304

of this graph, finding a submatrix of ones in the adjacency matrix is equivalent to305

finding a biclique in a bipartite graph. Finding the maximum biclique is an NP-hard306

problem [27]. Our problem is even more challenging, as we allow a proportion γ of307

non-existing links, effectively searching for a maximum quasi-biclique.308

10

2.6 From strips to strain groups309

2.6.1 Read characteristic vectors310

The final strip set contains the strips generated both from HCA and ILP-QBC. Each311

strip corresponds to a biclustering of the rows: a row is either labelled one or zero.312

We associate a binary characteristic vector to each read, where the vector’s length313

corresponds to the number of strips (see Figure 2).314

2.6.2 Definition of strain groups315

Two reads participate in the same strain group if they have identical characteristic316

vectors - biologically, this means that these reads are identical at all polymorphic317

positions. In practice, however, some groups have fewer reads than a specified threshold318

(5 in our case). These orphan reads generally correspond to noisy reads that have319

been erroneously grouped in some strips. They are rescued by being reassigned them320

to bigger groups.321

Reassigning orphan reads322

To reassign reads, we consider the binary sub-matrix induced by the reads of each big323

group. The process can be summarized as follows:324

1. Compute the representative binary row-vector Vg of each big group g. The j-th325

column of the row-vector equals to:326

Vg[j] =

⌊∑
0≤i<m Ag[ij]

m

⌉

where Ag ∈ Zm×|L|
2 is the binary matrix induced by group g with m reads, and ⌊x⌉327

rounds x to its nearest integer.328

2. Compute the Hamming distance between all the orphan reads and all the329

representatives Vg.330

3. For each orphan read and its Hamming-distance-closest-group g:331

• if the Hamming distance is less than a given threshold (here 0.1), assign the read332

to group g;333

• otherwise, do not assign the read to any group.334

2.7 Producing a strain-level assembly335

At this point, reads are partitioned into strain groups on all windows.336

Merging windows337

To simplify the assembly process, consecutive identical windows are combined. Specif-338

ically, two consecutive windows are deemed identical if they partition the reads into339

the same groups. In practical terms, two groups are considered identical if more than340

11

70% of the reads from the group in the first window are also found in a correspond-341

ing group in the second window, and vice versa (considering only the reads present in342

both windows). These identical windows are then merged to create longer windows.343

Reconstructing the sequences344

In each window, a new contig is generated for each group of reads. These contigs are345

computed using Racon [28] to polish the corresponding (strain-oblivious) reference346

sequence towards the strain-specific sequence the group of reads represents. Conse-347

quently, each original contig from the draft assembly can be divided into multiple348

windows, and each window can contain several strain-specific contigs (one for each349

strain). Finally, the resulting contig graph is processed through GraphUnzip [29] to350

resolve repeats and generate a more contiguous final set of contigs.351

3 Results352

3.1 Datasets353

We decided to evaluate strain-level assembly methods on mock communities based on354

real and simulated datasets of varying complexity in terms of error rate, number of355

strains, and level of abundance. This approach allows us to estimate the performance356

of the methods in a controlled scenario where the sequences of the ideal output are357

known a priori.358

The first dataset we considered is a mixture of five Vagococcus fluvialis strains359

barcoded and sequenced in [30]. These genomes were sequenced with barcodes using a360

R9.4.1 Nanopore flowcell. By ignoring the barcodes, we obtain a simple mock commu-361

nity containing five different strains of roughly the same abundance. Specifically, this362

dataset is characterized by three strains whose genomes are almost identical, likely363

turning the problem into the distinction of three V. fluvialis strains, one of which is364

dominant.365

The second dataset is the Zymobiomics gut microbiome standard, a mock commu-366

nity sequenced independently with Nanopore 10.4.1 (error rate of 2.5%) and Nanopore367

R9.4.1 (error rate of 5%) flowcells. These two samples are available in the European368

Nucleotide Archive (ENA) with accession numbers SRR17913199 and SRR17913200,369

respectively. This community consists of 21 genomes of bacteria, archea and yeast,370

with high variability in terms of abundance. Among the bacteria there are five different371

strains of Escherichia coli characterized by equal abundance, making these samples an372

ideal dataset for comparing strain separation techniques with two different error rates.373

The third type of dataset is simulated and aims to evaluate strainMiner not374

only with respect to a higher number of strains but also in presence of a strain375

present at different levels of abundance. More precisely, we adopted a protocol sim-376

ilar to the one outlined in [4] and [14]. We thus simulated a mock community377

based on 10 strains of Escherichia coli to investigate the impact of strain cover-378

age on the ability to recover strain genomes. The E. coli strains are the same as379

those previously employed to evaluate HairSplitter [14] and their complete refer-380

ence sequences were retrieved from NCBI. More precisely, these include the strains381

12009 (GCA 000010745.1), IAI1 (GCA 000026265.1), F11 (GCA 018734065.1), S88382

12

(GCA 000026285.2), Sakai (GCA 003028755.1), SE15 (GCA 000010485.1), UMN026383

(GCA 000026325.2), HS (GCA 000017765.1), K12 (GCF 009832885.1), and Shigella384

flexneri (GCF 000006925.2). Then, for each reference sequence, we simulated a 50X385

depth of coverage of Nanopore reads with 5% error rate. Reads were generated with386

Badreads [31] using the “nanopore2023” model. All the set of simulated reads were387

then merged into a single mixture. In order to evaluate the influence of coverage on388

assembly completeness, we created four additional 10-strain mixures by downsam-389

pling exclusively the 12009 strain at 30X, 20X, 10X, and 5X. All simulated reads are390

available at https://zenodo.org/records/10362565.391

3.2 Assembly of the datasets392

All datasets were assembled using metaFlye (v2.9.2-b1786) with parameters --meta393

and --nano-raw. We chose metaFlye as it is the only long-read metagenome assembler394

thought to work with Oxford Nanopore reads. The obtained (species-level) assembly395

was used as input for all the strain-aware assemblers we evaluated. Moreover, an396

alignment of the reads against the input assembly was produced with Minimap2 [32]397

(parameter -x map-ont) for the software that required it.398

We ran the latest available versions of Strainberry (v1.1), Floria (v0.0.1), Hair-399

Splitter (v1.9.4), and strainMiner (v1.6.10) with default parameters. Since Strainberry400

and Floria have been designed to phase no more than 5 strains by default, when run-401

ning on the 10-strain E. coli datasets, we additionally provided the parameters -n 10402

and -p 10, respectively, to increase this limit.403

It is important to note that Floria does not perform any SNP calling nor does it404

output a base-level assembly, but rather provides a collection of haplotype-resolved405

read clusters. SNP calling was carried out using Longshot [33] (v1.0.0). Base-level406

assemblies of each read cluster were, instead, produced with wtdbg2 [34] (v2.5) follow-407

ing the assembly pipeline suggested in Floria’s documentation. The set of assembled408

haplotypes was finally complemented with the metaFlye contigs that were not phased409

(i.e., not part of Floria’s output).410

3.3 Evaluation Metrics411

Evaluating metagenome assemblies is a complex task, specifically in a strain-aware412

context, due to the limited knowledge of the organisms within a metagenomic sample.413

Standard qualitative metrics should in fact be treated with caution as they might414

be the result of strain differences rather than errors. For this reason, we assessed415

the performance of the strain-aware assembly methods on real and simulated mock416

communities for which we precisely know the sequences of the strains we aim to417

reconstruct.418

For each generated assembly, we computed the following metrics: assembly size,419

N50, reference fraction percentage, duplication ratio, number of misassemblies, number420

of mismatches, and number of indels. The assembly size and N50 (i.e., the length421

such that all contigs of that length or longer cover at least half of the assembly size)422

provide a quantitative view of the assembly. The other metrics, instead, provide a423

more qualitative assessment.424

13

Table 1 MetaQUAST metrics on the real and simulated datasets. For each assembly we
report the following metrics: assembly size (Total size), N50, reference fraction, duplication ratio (Dup.
ratio), number of misasseblies (# Mis.), number of mismatches per 100 kb, and number of indels per
100 kb. The best values among of the four strain-separated assemblies is in bold font.

Assembler
Total size

(Mb)
N50
(kb)

Reference
frac. (%)

Dup.
ratio

#
Mis.

Mismatches
/100 kb

Indels
/100 kb

V. fluvialis metaFlye 4.57 151 26.9 1.036 40 360.12 406.10
(14 Mb) Strainberry 5.71 104 33.1 1.112 45 78.19 513.38

Floria 8.03 142 47.7 1.117 20 102.61 636.40
HairSplitter 9.34 74 58.2 1.066 31 102.49 410.95
strainMiner 8.84 30 54.5 1.080 48 50.80 340.26

Zymo Q9 metaFlye 65.9 1797 63.0 1.001 136 96.97 58.52
(78 Mb) Strainberry 79.9 224 61.2 1.170 122 133.31 110.07

Floria 76.0 64 58.6 1.212 114 230.67 245.47
HairSplitter 94.6 33 76.7 1.179 114 115.38 76.49
strainMiner 76.7 220 73.4 1.044 95 69.90 55.46

Zymo Q20 metaFlye 60.4 388 60.2 1.007 142 115.86 76.49
(78 Mb) Strainberry 69.4 117 69.4 1.037 141 109.49 67.46

Floria 71.0 59 70.7 1.050 117 80.41 79.81
HairSplitter 69.2 68 70.9 1.013 113 69.17 66.36
strainMiner 69.5 51 70.8 1.022 109 67.98 65.14

E. coli metaFlye 14.0 70 25.2 1.029 94 477.68 310.42
10 strains Strainberry 19.6 63 34.2 1.082 175 367.48 138.68
(48 Mb) Floria 35.3 50 60.3 1.155 147 171.95 104.12

HairSplitter 54.8 44 93.6 1.182 311 87.12 52.30
strainMiner 50.1 56 91.1 1.127 335 81.73 72.80

These metrics were obtained with MetaQUAST [35] (v5.2.0) with the option425

--unique-mapping to ensure that each assembled sequence (a contig or part of it)426

is mapped exclusively to the best location among the reference sequences. This is427

crucial because MetaQUAST, which relies on sequence alignment, may suffer from428

sub-optimal mappings on very similar references, such as strains of the same species.429

For this reason, we complemented MetaQUAST’s evaluation metrics by computing the430

k-mer completeness (k = 27) with KAT [36] (v2.4.2). This metric represents the per-431

centage of k-mers in the reference genomes that are also present within an assembly432

and provides a more accurate view on the strain-specific content that was successfully433

recovered.434

3.4 Assembly evaluation435

Table 1 summarizes the MetaQUASTmetrics computed for each strain-level assem-436

bly tool on each of the evaluated datasets. To manage the size of the table, in the437

case of the 10-strain E. coli datasets, we display only the one in which all strains438

have the same abundance. The downsampling experiments, however, exhibited similar439

statistics.440

On the V. fluvialis dataset, strainMiner is able to yield the lowest amount of441

mismatches and indels, while HairSplitter is able to achieve the best results in terms442

14

of assembly size, reference fraction, and duplication ratio. strainMiner however is on443

par with HairSplitter with respect to these metrics. Floria on the other hand is able to444

provide the most contiguous assembly (N50 equal to 142 kbp) and the lowest number445

of misassemblies at the expense of a more duplicated and less accurate assembly. While446

displaying an average performance on most the evaluation metrics, Strainberry was447

only able to recover the 33% of the reference sequences. The high reference fraction of448

both strainMiner and HairSplitter, compared to the other tools, is also confirmed by449

the highest k-mer completeness (Figure 5).450

On the Q9 and Q20+ versions of Zymobiomics datasets, results follow the same451

trend as for the V. fluvialis dataset. Specifically, strainMiner generates the most accu-452

rate assembly, as witnessed by the lowest number of misassemblies, mismatches, and453

indels. In terms of contiguity, Strainberry achieves the highest N50 but also at the454

expense of a high number of misassemblies. There are however some key differences455

for the assemblies generated with the Q9 and Q20+ Nanopore reads. In the first case,456

strain-level assemblers are characterized by a lower reference fraction and higher dupli-457

cation ratio. The only exception is strainMiner, which is able to provide comparable458

results, thus proving to be more tolerant to lower error rates. As for the V. fluvialis,459

the k-mer completeness is consistent with the highest reference fraction of strainMiner460

and HairSplitter for both the Q9 and Q20+ datasets (Figure 5).461

The simulated 10-strain E. coli dataset offered a more challenging scenario due462

to the presence of a higher number of closely related genomes. Table 1 shows that463

strainMiner and HairSplitter are the only two tools able to achieve a high reference464

fraction (> 90%), thus recovering almost completely the 10 different strains. They are465

also the two tools with the lowest number of mismatches and indels (as for the other466

datasets). Strainberry and Floria, on the other hand, display a much lower reference467

coverage (34.2% and 60% respectively) and seem to struggle with high numbers of468

conspecific strains.469

Finally, the right-hand side of Figure 5 shows the k-mer completeness of the 10-470

strain dataset in which the E. coli 12009 strain is characterized by different level471

of abundance. As expected, strainMiner and HairSplitter exhibit a better ability to472

retrieve strains with low coverage, even when it is as low as 5X (representing only 1.1%473

of the total mix), and displayed a k-mer completeness always higher than 0.9. Never-474

theless, a positive correlation between the coverage and completeness is noticeable for475

all the evaluated methods.476

Overall, there is no tool that outperforms the others with respect to all evalua-477

tion metrics on the different datasets. All the evaluated tools offer different trade-offs478

between contiguity and accuracy. Floria, for example, is able to achieve higher conti-479

guity and a comparable number of misassemblies at the expense of a lower base-level480

accuracy and reference coverage. On the other hand, when looking at qualitative met-481

rics, strainMiner generates more accurate assemblies (or comparable with the other482

competing tools) and a low amount of duplicated sequences, especially with higher483

error rates.484

485

15

Fig. 5 Assembly k-mer completeness. On the left-hand side, the 27-mer completeness of
assemblies obtained from real sequencing data is depicted. The level of completeness in the Zymo
communities is based exclusively on the E. coli genomes within the samples. On the right-hand side,
the 27-mer completeness of the 12009 strain is shown for the 10-strain simulated E. coli datasets.
The analysis was performed for varying depth of coverage of the 12009 strain (x-axis), while the other
nine strains were consistently kept at 50X.

Fig. 6 CPU time and maximum memory usage. Comparison of Strainberry, Floria, HairSplit-
ter, and strainMiner on the three real datasets in terms of CPU time (left) and maximum memory
usage (right). The legend applies to both the plots.

3.5 Resource usage486

All results were obtained on a server housing 16 Intel Xeon CPUs with four cores each,487

running at 2.7 GHz. 3.1 TB of RAM was available.488

Although strainMiner, like the other competing tools, is trivially parallel, we ran489

it on a single thread due to limitations imposed by the Gurobi license. For this reason490

we decided to simply report CPU times.491

Across all datasets, strainMiner consistently exhibited a processing speed more492

than tenfold faster than Strainberry, while its runtime was approximately on par with493

that of HairSplitter (Figures 6).494

On the real sequencing data, strainMiner used between 7 and 30 times less peak495

memory than HairSplitter (Figure 6).496

As a whole, strainMiner significantly diminishes the memory usage of the Hair-497

Splitter pipeline without impacting negatively on its speed and arguably improving498

the quality of the assembly.499

16

4 Discussion500

In this work we introduced strainMiner, a method to assemble individual strain501

genomes from metagenomic sequencing data. Unlike other metagenome assembly502

methods, strainMiner is based on a novel formulation of the “strain separation” prob-503

lem as a tiling problem on a binary matrix. We proposed and implemented an Integer504

Linear Programming (ILP) model in order to efficiently partition such a matrix and505

to cluster sequences (reads) that likely belong to the same haplotype. The ILP-based506

formulation allows us to exploit a well-established and highly optimized solver such as507

Gurobi. This, along with the use of heuristics inspired from data mining, allow strain-508

Miner to require considerably less time and memory compared to other competing509

software.510

In order to assess its capability to distinguish and reconstruct strains, strainMiner511

is implemented as a fork of HairSplitter (a previously developed tool for strain-level512

metagenome assembly), from which we replaced the read-clustering step with our513

approach. On both real and simulated datasets, strainMiner compared favorably to514

state-of-the-art methods in terms of strain recovery and base-level accuracy. We also515

showed that strainMiner’s output is less affected by reads with high error rates or516

metagenomes characterized by a high number of distinct strains. At the same time,517

strainMiner is able to recover strains with a depth of coverage as low as 5X.518

Nevertheless, the assemblies obtained with strainMiner had often much lower con-519

tiguity compared to the one obtained with HairSplitter. This could be due to the fact520

that strainMiner is based on the version 1.6.10 of HairSplitter, while in our compari-521

son we used the latest available version (1.9.4). Upgrading strainMiner to this version522

might further improve output’s contiguity. Moreover, it is also possible that the prop-523

erties of the read clusters computed by strainMiner could be quite different compared524

to those obtained with HairSplitter. A tailored scaffolding step could thus improve525

contiguity and would merit further investigation. A possible approach would be to con-526

sider overlapping fixed-length windows. As a matter of fact, the use of non-overlapping527

windows generates clean input matrices for the ILP solver but completely relies on528

the GraphUnzip module of HairSplitter to improve assembly contiguity. Considering529

overlapping windows, however, could better take advantage of the co-occurrence of530

strain-specific nucleotides, allowing to identify longer haplotypes beforehand.531

Finally, one additional limitation is the use of the Gurobi solver: an academic532

license is free but limited to three instances of Gurobi running at the same time.533

Attempts to use the free CBC solver showed a decrease in performance.534

Software availability535

strainMiner is open source and available online with the GPL3 licence. The strain-536

Miner used to generate the results is available at https://github.com/rolandfaure/537

strainminer. A more recent version, under development, is available at https://gitlab.538

com/haplotype-tiling/strainminer-py.539

17

Acknowledgements540

We wish to thank Dominique Lavenier, who formulated the first version of the541

optimization problem.542

We acknowledge the GenOuest bioinformatics core facility https://www.genouest.543

org for providing the computing infrastructure.544

References545

[1] Ghurye, J. S., Cepeda-Espinoza, V. & Pop, M. Metagenomic assembly: Overview,546

challenges and applications. The Yale journal of biology and medicine 89, 353–362547

(2016).548

[2] Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human549

gut microbiome. Nature biotechnology 39, 105–114 (2021).550

[3] Olson, N. D. et al. Metagenomic assembly through the lens of validation: recent551

advances in assessing and improving the quality of genomes assembled from552

metagenomes. Briefings in bioinformatics 20, 1140–1150 (2019).553

[4] Vicedomini, R., Quince, C., Darling, A. E. & Chikhi, R. Strainberry: auto-554

mated strain separation in low-complexity metagenomes using long reads. Nature555

Communications 12, 4485 (2021). URL https://www.nature.com/articles/556

s41467-021-24515-9.557

[5] Albanese, D. & Donati, C. Strain profiling and epidemiology of bacterial species558

from metagenomic sequencing. Nature communications 8, 2260 (2017).559

[6] Sonnenborn, U. Escherichia coli strain nissle 1917—from bench to bedside and560

back: history of a special escherichia coli strain with probiotic properties. FEMS561

microbiology letters 363, fnw212 (2016).562

[7] Frank, C. et al. Epidemic profile of shiga-toxin–producing escherichia coli o104:h4563

outbreak in germany. New England Journal of Medicine 365, 1771–1780 (2011).564

URL https://doi.org/10.1056/NEJMoa1106483. PMID: 21696328.565

[8] Quince, C. et al. DESMAN: a new tool for de novo extraction of strains from566

metagenomes. Genome Biology 18, 181 (2017). URL http://genomebiology.567

biomedcentral.com/articles/10.1186/s13059-017-1309-9.568

[9] Quince, C. et al. Metagenomics Strain Resolution on Assembly Graphs. preprint,569

Bioinformatics (2020). URL http://biorxiv.org/lookup/doi/10.1101/2020.09.06.570

284828.571

[10] Baaijens, J., Aabidine, A., Rivals, E. & Schönhuth, A. De novo assembly of viral572

quasispecies using overlap graphs. Genome Research (2017).573

18

[11] Kang, X., Luo, X. & Schönhuth, A. StrainXpress: strain aware metagenome574

assembly from short reads. Nucleic Acids Research 50, e101–e101 (2022). URL575

https://academic.oup.com/nar/article/50/17/e101/6625806.576

[12] Kazantseva, E., Donmez, A., Pop, M. & Kolmogorov, M. stRainy: assembly-based577

metagenomic strain phasing using long reads. preprint, Bioinformatics (2023).578

URL http://biorxiv.org/lookup/doi/10.1101/2023.01.31.526521.579

[13] Shaw, J., Gounot, J.-S., Chen, H., Nagarajan, N. & Yu, Y. W. Floria: Fast and580

accurate strain haplotyping in metagenomes. Bioinformatics 40, i30–i38 (2024).581

[14] Faure, R., Lavenier, D. & Flot, J.-F. Hairsplitter: haplotype assembly from long,582

noisy reads. bioRxiv (2024). URL https://www.biorxiv.org/content/early/2024/583

06/14/2024.02.13.580067.584

[15] Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution anal-585

ysis of resistance determinants and mobile elements in human microbiomes.586

Nature Biotechnology 37, 937–944 (2019). URL http://www.nature.com/articles/587

s41587-019-0191-2.588

[16] Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using589

repeat graphs. Nature Methods 17, 1103–1110 (2020). URL https://www.nature.590

com/articles/s41592-020-00971-x.591

[17] Bickhart, D. M. et al. Generating lineage-resolved, complete metagenome-592

assembled genomes from complex microbial communities. Nature biotechnology593

40, 711–719 (2022).594

[18] Feng, X., Cheng, H., Portik, D. & Li, H. Metagenome assembly of high-fidelity595

long reads with hifiasm-meta. Nature Methods 19, 1–4 (2022).596

[19] Benoit, G. et al. High-quality metagenome assembly from long accurate reads597

with metamdbg. Nature Biotechnology 1–6 (2024).598

[20] Bansal, V. Hapcut2: A method for phasing genomes using experimental sequence599

data. Methods in molecular biology 2590, 139–147 (2022).600

[21] Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect601

community structures in large-scale networks. Physical Review E—Statistical,602

Nonlinear, and Soft Matter Physics 76, 036106 (2007).603

[22] Biemann, C. Chinese whispers: An efficient graph clustering algorithm and its604

application to natural language processing problems. Proceedings of TextGraphs605

73–80 (2006).606

19

[23] Truong, T. K. M., Faure, R. & Andonov, R. Assembling close strains in607

metagenome assemblies using discrete optimization, 15th International Confer-608

ence on Bioinformatics Models, Methods and Algorithms, BIOINFORMATICS,609

February 21-23, 2024, Rome, Italy. URL https://bioinformatics.scitevents.org.610

[24] Feng, Z., Clemente, J., Wong, B. & Schadt, E. Detecting and phasing minor single-611

nucleotide variants from long-read sequencing data. Nature Communications 12,612

3032 (2021).613

[25] Fix, E. & Hodges, J. L. Discriminatory analysis. nonparametric discrimination:614

Consistency properties. International Statistical Review / Revue Internationale615

de Statistique 57, 238–247 (1989). URL http://www.jstor.org/stable/1403797.616

[26] Troyanskaya, O. et al. Missing value estimation methods for dna microar-617

rays. Bioinformatics 17, 520–525 (2001). URL https://doi.org/10.1093/618

bioinformatics/17.6.520.619

[27] Peeters, R. The maximum edge biclique problem is NP-complete. Discrete Applied620

Mathematics 131, 651–654 (2003).621

[28] Fang, L. & Wang, K. Polishing high-quality genome assemblies. Nature Methods622

19, 649–650 (2022). URL https://www.nature.com/articles/s41592-022-01515-1.623

[29] Faure, R., Guiglielmoni, N. & Flot, J.-F. Graphunzip: unzipping assembly graphs624

with long reads and hi-c. bioRxiv 2021–01 (2021).625

[30] Rodriguez Jimenez, A. et al. Comparative genome analysis of vagococcus fluvialis626

reveals abundance of mobile genetic elements in sponge-isolated strains. BMC627

Genomics 23 (2022).628

[31] Wick, R. Badread: simulation of error-prone long reads. Journal of Open Source629

Software 4, 1316 (2019). URL http://joss.theoj.org/papers/10.21105/joss.01316.630

[32] Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics631

34, 3094–3100 (2018). URL https://academic.oup.com/bioinformatics/article/632

34/18/3094/4994778.633

[33] Edge, P. & Bansal, V. Longshot enables accurate variant calling in diploid634

genomes from single-molecule long read sequencing. Nature communications 10,635

4660 (2019).636

[34] Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nature637

methods 17, 155–158 (2020).638

[35] Mikheenko, A., Saveliev, V. & Gurevich, A. Metaquast: Evaluation of639

metagenome assemblies. Bioinformatics 32, btv697 (2015).640

20

[36] Mapleson, D., Accinelli, G., Kettleborough, G., Wright, J. & Clavijo, B. Kat:641

A k-mer analysis toolkit to quality control ngs datasets and genome assemblies.642

Bioinformatics (Oxford, England) 33 (2016).643

21

Conclusion

The three articles highlight the extensive process behind the development of Hair-
Splitter. In my opinion, the main practical contribution of this work is the HairSplitter
software itself, while the main theoretical contribution is the statistical test proposed for
variant calling in the PCI article. HairSplitter is an efficient tool that significantly im-
proves upon the state of the art. The variant calling procedure is innovative and robust,
handling uneven coverage, a high number of strains, and varying error rates effectively. As
a software, the strainMiner version of HairSplitter does not offer significant advantages
over HairSplitter, especially since I have continuously improved HairSplitter whenever
strainMiner outperformed it. Consequently, the results presented in the strainMiner arti-
cle are already outdated, as the memory footprint of HairSplitter has been considerably
reduced since those measurements were taken.

85

Chapter 3

ASSEMBLING HIGH-FIDELITY READS

Abstract: This chapter focuses on the assem-
bly of high-fidelity long reads (HiFi reads). It in-
troduces a new sketching method derived from
a published family of sequence transformations
known as Mapping-friendly Sequence Reduc-
tions (MSRs). The chapter explores the proper-
ties of MSRs as a sketching technique and how
they can be parameterized to enhance genome
assembly. The main advantage of MSRs sketches

in the context of this thesis is their ability to rep-
resent the small differences between haplotypes,
compared to other sketching methods that in-
voluntarily collapse haplotypes. We present a
proof-of-concept assembler called Alice, based
on these sketches. Alice is very fast and per-
forms well in distinguishing the haplotypes of
five strains of Escherichia coli in a sequencing
of a mock dataset.

In 2019, scientists from Pacific Biosciences introduced a new sequencing technique with
a median error rate of 0.1% [48]. This technique, called High-Fidelity (HiFi) sequencing,
did not involve any major changes to the chemistry of existing PacBio sequencing methods.
Instead, it combined PacBio sequencing with a technique previously experimented on short
reads, called Consensus Circular Sequencing (CCS) [119, 120]. CCS involves circularizing
a DNA molecule and sequencing it multiple times, generating several subreads that all
sequence the same region. The consensus of all the subreads yields a high-quality read,
despite the high error rate in each individual subread. This new sequencing technique
quickly gained popularity and became known as PacBio HiFi sequencing.

Nowadays, the accuracy of ONT reads is improving to error rates around and below
1% and the definition of a “high-fidelity” (HiFi) read can be debated. For the purposes
of this section, we will align with the PacBio HiFi standard and consider reads to be of
high fidelity if they contain significantly less than 1% errors. We will use the term “HiFi”
to refer to all types of long reads with this level of precision.

It may seem unnecessary to develop specific assemblers for HiFi reads: since they
are shorter and more precise than traditional long reads, previously developed long read
assemblers work without modifications. However, while noisy read assemblers tend to
collapse highly similar regions to avoid mistaking a sequencing error for a SNP, HiFi-
specific assemblers can take advantage of the low error rate to finely distinguish these

87

Chapter 3 – Assembling high-fidelity reads

regions. The first HiFi-specific assemblers, HiCanu [115] and hifiasm [63], demonstrated
improved contiguity and haplotype resolution compared to previous methods. As a result,
HiFi sequencing has become the preferred method for producing high-quality genome
assemblies [121, 122].

In recent years, numerous HiFi assemblers have been developed [123], but none have
fully addressed the challenges of metagenome assembly. We will see that despite the high
accuracy of HiFi reads, it remains difficult to distinguish and correctly assemble closely
related strains and that, additionally, assemblers have room for improvement regarding
computational efficiency.

This chapter will introduce a new approach for HiFi read assembly that aims to ad-
dress both precision and efficiency issues. The radical novelty of the approach is to use
a new sketching method, Mapping-friendly Sequence Reductions (MSRs), to compress
sequencing reads and perform efficient assembly without sacrificing accuracy. The first
part of the chapter will be a discussion on the properties of MSRs as a sketching method
and the second part will present a new assembler, Alice.

3.1 Mapping-friendly Sequence Reductions as a sketch-
ing technique for assembly

3.1.1 Objective

Our objective in this section is to propose a new sketching method. Following the
definition in [124], a sketch is a “compact data structure that approximates a data set.”
The challenge in creating a sketch is to maximize the compression of the original data
while retaining as much biologically relevant information as possible. In our case, we will
demonstrate that Mapping-friendly Sequence Reductions can be used to create reduced
sequences that represent longer sequences, specifically HiFi reads, while preserving useful
properties for alignment and assembly.

3.1.2 Definition of Mapping-friendly Sequence Reductions

The original motivation for the development of MSRs was to generalize the concept of
homopolymer compression. Homopolymer compression involves compressing input reads
by deleting consecutive identical bases (CGAATTC → CGATC), and then performing

88

3.1. Mapping-friendly Sequence Reductions as a sketching technique for assembly

alignment or assembly on the compressed reads. A challenge with this procedure is that
the results are also outputted as compressed sequences, which need to be inflated back
to obtain the final result (CGATC → CGAATTC), which is non-trivial. Despite this
difficulty, the method has gained popularity because long-reads typically contain errors
at repeated bases, hence compressed reads have a lower error rate than the original reads.
The authors of [125] observed that other compression/decompression procedures could
be applied to the reads and set out to generalise homopolymer compression to further
improve alignment.

[125] defined Streaming Sequence Reductions as functions that transform a sequence
of characters into a new sequence. It is defined by an alphabet (in this case, the DNA
alphabet {A, C, G, T}), an order l (a positive integer), and a transforming function g that
maps a sequence of length l, or l-mer, to either a character in the alphabet or a special
“empty” character ϵ.

SSRs work by taking the input sequence and breaking it down into successive overlap-
ping l-mers . l-mers are passed in a streaming fashion through the function g. If g returns
a character, that character is added to the new sequence. If g returns the empty character
ϵ, nothing is added to the new sequence. The pseudocode for this process is provided in
Algorithm 1. Homopolymer compression can be seen as a particular SSR with l = 2 1.

Algorithm 1 Streaming Sequence Reductions
Function MSR(seq, l, g)
new_seq =“”
for i = 0 to len(seq) − l do

lmer = seq[i : i + l]
new_char = g(lmer)
if new_char ̸= ϵ then

new_seq = new_seq + char
end if

end for
return new_seq

By design, if the length l is not too large, two highly similar sequences will share many
l-mers in the same order, resulting in highly similar reduced sequences. Consequently, the
reduced versions of two sequences that align have a high probability of aligning as well; we

1. To correctly describe homopolymer compression, a SSR would also need to add the l − 1 first bases
of the original sequence to the beginning of the compressed sequence. The original definition of the SSRs
took this into account. However, this adds unwanted complexity in our case and we will work with a
simplified definition that does not account for the first l − 1 bases.

89

Chapter 3 – Assembling high-fidelity reads

Σ = {A,C,G,T}

l = 3

g : {A,C,G,T}3 → {A,C,G,T,ε}
AGT G↦
ACT C↦
ATT T↦
AAT A↦
CAG A↦
CCG C↦
CGG G↦
CTG T↦
other ↦ ε

CCCGCGATTGCATTAATGACGA

MSR_1

seq

MSR_1(seq) _C____T____T__A_____

Figure 3.1 – Example of a mapping-friendly sequence reduction named MSR_1. Applied
on sequence CCCGCGATTGCATTAATGACGA, MSR_1 yields the reduced sequence
CTTA. The colors of the arrows on the right panel are there to help distinguish them and
do not carry meaning.

refer to this property of the reduction as mapping-friendliness. To ensure that a Sequence
Sketch Reduction (SSR) is mapping-friendly in the context of bioinformatics, where a se-
quence and its reverse complement must be considered identical, an additional constraint
must be imposed on the function g: the image of two reverse complement l-mers must
also be reverse complement. These mapping-friendly SSRs are called Mapping-friendly
Sequence Reductions (MSRs). We observe that this mapping-friendly property also pre-
serves assembly: the assembly of reduced reads is equivalent to the reduced assembly
of the original reads (excluding assembly errors). Reduced reads can thus be used as
sketches of their non-reduced counterparts, preserving some alignment properties while
being potentially much shorter. Figures 3.1 shows an example of a MSR being applied on
a read.

90

3.1. Mapping-friendly Sequence Reductions as a sketching technique for assembly

3.1.3 Performing assembly with reduced sequences

One of the most interesting property of MSR sketching is that reads that have been
reduced using an MSR can be easily aligned and assembled using traditional assembly
methods. The assembly of reduced reads is then equivalent to the reduced assembly. To
complete our assembly pipeline, we need an inverse MSR function to convert our assembly
of reduced reads into the final assembly. The process is illustrated Figure 3.2. However,
multiple sequences can yield the same reduction, making the inverse function not well-
defined.

For example, in the case of homopolymer compression, the sequence “ACGT” in the
compressed assembly may correspond to either “AAACGT” or “ACCCGT” in the final
assembly. The necessary information to accurately decompress the reduced assembly is
present in the original sequencing reads. For instance, Shasta [126] solves this problem by
keeping track of which reduced sequence corresponds to which inflated sequence through-
out the entire assembly process, but this requires significant bookkeeping to generalize to
other MSRs. We will propose a simpler method to address this issue.

Our method consists of three main steps to compute the inverse MSR func. First, we
create an inventory of k-mers that tile the compressed assembly, using a k-mer size of, for
example, k=31. For instance, two 3-mers that tile the sequence “ACCGTT” are “ACC”
and “GTT”. In the second step, we run the MSR on all original reads again and each time
a tiling k-mer is produced, we record the corresponding uncompressed sequence. Finally,
the full assembly can be reconstructed by concatenating the uncompressed sequences of
the tiling k-mers.

The method we propose guarantees that the resulting assembly is a patchwork of
sequencing reads. However, it does not guarantee that the final assembly is accurate. A
major difficulty occurs when a tiling k-mer corresponds to several uncompressed sequences.
This occurs frequently in homopolymer compression: if both “ACCTG” and “ACCCTG”
are observed in the reads, which one should be associated with the reduced “ACTG”?
The current solution is to make a majority choice, but this may lead to errors as both
sequences may actually exist. An extreme example would be an MSR that only outputs
“A”s, resulting in all reads being reduced to stretches of “A”s and the assembly being a
long stretch of “A”s. In this case, a tiling k-mer made of a stretch of “A”s would correspond
to many different valid uncompressed sequences, making it impossible to accurately inflate
the reduced assembly. Therefore, carefully designing the MSR is crucial in order to avoid
this problem. We will discuss this in the following section.

91

Chapter 3 – Assembling high-fidelity reads

CCCGCGATTGCATTAATGACGA
AGTCGAAGTACCCGCGATTGCAT

Full sequences Reduced sequences

CCCGCGATTGCATTAATGACGA
AGTCGAAGTACCCGCGATTGCAT

GGCT
CTTA

Alignment Alignment

GGCT
CTTA

Assembly

AGTCGAAGTACCCGCGATTGCATTAATGACGA

Assembly

GGCTTA

MSR_1

MSR_1

MSR_1

Inv_MSR_1

Figure 3.2 – Example showing the mapping-friendly properties of MSR_1 (defined in
Figure 3.1). The compression of two overlapping reads yield overlapping reads. The com-
pression of the assembly yields the assembly of the compressed reads. Assembly can be
performed by reducing reads, assembling reduced reads and performing the inverse func-
tion of the MSR, highlighted in red. The difficulty lies in the fact that the inverse function
is not easy to compute.

92

3.1. Mapping-friendly Sequence Reductions as a sketching technique for assembly

3.1.4 Designing a good MSR sketch

Portrait of an ideal sketch

The goal of sketches is to represent original data in a smaller space while still retaining
enough useful information to accurately perform specific tasks. Since sketches, including
MSRs, contain less information than the original reads, they cannot fully represent all
the information contained in the original data. As explained above, this translates in our
case in difficulties inflating the reduced assembly. The key to a good sketch is to strike a
balance between reducing the size of the data and preserving enough relevant information
for the task at hand. In our case, the sketches need to carry enough information to 1)
perform assembly on the sketches, and 2) recover the original assembly from the result.

The first important factor to consider when creating a MSR is thus the compression
factor. In order to significantly increase assembly speed and decrease memory consump-
tion, the MSR must significantly reduce the size of the input reads. The compression
factor of an MSR will be defined as the inverse of the proportion of l-mers that are not
mapped to the empty character. For example, in Figure 3.1, eight 3-mers out of 64 are
not mapped to the empty character, resulting in a compression factor of 64/8=8. This
compression factor corresponds to the ratio of sizes between the input sequence and the
sketch in the case of a random infinite input sequence. Our goal will be to compress the
data as much as possible to speed up the assembly process.

The second factor to consider when designing an MSR is the collision rate of the com-
pression. Collisions occur when two distinct sequences get reduced to the same sketch. The
number of collisions between all the sequences represented in the reads should generally be
minimised, as collisions make it difficult to accurately inflate the reduced assembly. Yet,
in some cases, collisions can be intentionally exploited to improve the quality of the reads.
For example, in homopolymer compression, sequences that differ by a homopolymer re-
peat are purposefully collided because they are suspected to represent the same sequence
in the genome. [125] explored all order-2 MSRs and found several that actually improved
alignment quality, which can be interpreted as the collisions filtering out sequencing noise
and/or difficult regions. The collision rate also impacts the maximum achievable compres-
sion factor. An infinite compression factor would result in reads of length 0, which would
be extremely efficient to assemble but the resulting assembly of length 0 would be quite
challenging to inflate. To sum up, it is important to avoid reducing two sequences that
must be distinct in the final assembly to the same sequence.

93

Chapter 3 – Assembling high-fidelity reads

The final important factor to consider when designing an MSR is the mapping-
friendliness property. It is straightforward to see that two identical sub-sequences will be
reduced to identical sub-sequences and align if they are long enough. However, achieving
mapping-friendliness becomes much more challenging when the original sequences differ.
As we will discuss in section 3.1.4, reduced sequences can potentially be more divergent
than the original sequences, meaning that reduced sequences may not align as well as
the original sequences. This can be a significant obstacle when working with error-prone
reads, but can also be viewed as a desirable property for high fidelity reads, as it prevents
collapsing haplotypes. Therefore, there is no one-size-fits-all MSR, and an MSR should
be designed based on the data it will reduce and how the reduced sequences will be used.

Practical guide to design a MSR

Upper limit on the compression factor c The choice of compression factor is im-
portant as it can impact the efficiency of downstream analyses. A higher compression
factor can lead to more efficient analyses, but there is a risk of compressing too much
and creating collisions between unrelated sequences. For instance, if Illumina reads are
reduced by a factor of 100, the resulting reads will be only a few base pairs long and will
not contain enough information to accurately map them to a genome or assemble them.

Lower limit on the order l All compression factor are not achievable with a given
order. Indeed, an order-1 MSR can only achieve a maximum compression factor of 2 (by
deleting all A/T or all C/G). This limit can be generalised: since MSR functions must
output at least two different characters, the compression factor is mathematically limited
to 4l

2 for even l and 4l

4 for odd l (to maintain the reverse-complement property). In other
words, high compression cannot be achieved with too low l.

Tune the error rate of the sketches The parameters l and c influence the error
rate of the sketches. Consider two sequences that differ by n edits. When reducing these
sequences, there will be at least n different l-mers fed into the MSR function. If the
edits are more than l bases apart, there will be approximately l · n sequence-specific
l-mers, grouped into n stretches of l consecutive l-mers. Consequently, on average, a
difference between two sequences will result in l ·c consecutive differences in their reduced
counterparts. This is illustrated in Figure 3.3a. This is a double-edged property.

On one hand, sequencing errors are amplified by MSRs. To illustrate this, we measured

94

3.1. Mapping-friendly Sequence Reductions as a sketching technique for assembly

CCCGCGCTTGCATTAATGACGA

G__CC_GCG___C_TG_

CCCGCGATTGCATTAATGACGA

GTG___ACG___C_TG_

(a) (b)

MSR, l=6, c=2

MSR, l=6, c=2

Figure 3.3 – Divergence of reduced sequences compared to divergence of the original
sequences. (a) Two sequences differing by one base (out of 24 bases) are reduced by a
MSR with an order of 6 and a compression factor of 2. The reduced sequences diverge by
3 bases out of 9, and these bases are grouped. (b) Reads were simulated with different
error rates and reduced with c = 8 and different l. The reducing function of the MSR
was pseudo-random. All the error rates are computed with samtools stats. The error rate
of 0 on the bottom right corner of the graph correspond to a situation were correct and
erroneous sequences could not be aligned because the error rate was too high. As expected,
the error rate increase approximately linearly with l.

95

Chapter 3 – Assembling high-fidelity reads

the error rates of MSRs of various orders compared to the original reads using samtools
[127], as shown in Figure 3.3b. As expected, we observed an increase in the error rate of
the reduced reads with increasing l. Decreasing c reduces the size of the sketches and the
size of the stretches of errors but increases the density of these error stretches. Therefore,
minimizing the error rate of the sketches involves performing minimal compression and
using a small l. Homopolymer compression meets these requirements and further reduces
the error rate of the sketches by estimating which l-mers are likely to be erroneous. How-
ever, it seems difficult to use highly compressive MSRs on erroneous reads, e.g. Nanopore
reads.

On the other hand, increasing the divergence between similar sequences can be a
desirable property to reduce the collision rate of similar sequences. Genomes often contain
repeats, and choosing high l and low c values can ensure that two similar repeats are
not reduced to the same sequence. This can be helpful, for example, in distinguishing
haplotypes. This is the strategy we implement in our assembler.

Example of the choice of l and c Let us discuss how we chose default parameters
for our strain-aware HiFi DBG assembler, described in section 3.2. We set the default
compression factor c to 20, to obtain reduced reads with a length of a few hundred bases,
enough for performing assembly but much shorter than the original reads. We choose
a default value of l = 101 to allow us to differentiate between highly similar strains.
Assuming an average error rate of 0.1% in the input reads, the resulting reduced reads
would have an error rate of less than 10%, with the errors distributed in stretches of l/c = 5
bases on average. To perform DBG assembly with a k-mer size of 31, error-free k-mers
are required. With these parameters, error-free reduced k-mers correspond to error-free
non-reduced sequences of k ∗ c + l = 731 bp on average, which are common in reads with
an error rate of 0.1%.

Choose the transforming function There exist many transforming functions given
an order and a compression factor: should AAC be transformed in T or in C? [125] showed
that the choice of the function had a great impact on the downstream analysis. Indeed,
not all l-mers are equivalent given a sequencing technology: typically, l-mers containing
homopolymers will be more prone to errors. Moreover, all l-mers are not equivalent given
a genome. For instance, the 4-mer composition of a sequence can be exploited to separate
sequences originating from different species [128].

96

3.1. Mapping-friendly Sequence Reductions as a sketching technique for assembly

It is not feasible to explore all possible MSR functions to select the best one, as the
number of functions increases combinatorially with l. A more efficient approach would be
to use heuristics, such as evolutionary algorithms, to search the vast space of available
functions. However, there is a risk that the resulting function may overfit the training
dataset (the genome(s) and/or the sequencing technology). In our assembler, we leave
this discussion for later and opt for a “random” function based on a pseudo-random hash.
Tailoring MSR functions to specific needs is in our opinion a promising lead for future
improvement.

3.1.5 Why are MSRs interesting?

An often crucial piece of information to preserve for many applications, e.g. genome as-
sembly, is the structural information of the input sequences, i.e., the order of the sequence.
However, many sketching methods achieve high compression by cutting input sequences
into k-mers and losing the ordering information [129, 130]. In contrast, Mapping-friendly
Sequence Reductions (MSR) is one of the few methods, along with the k-min-mer tech-
nique [56] and the seed-chain technique [131], that preserve this structural information.

A second interesting property of MSRs is that they sketch the input sequences quite
uniformly. In contrast, k-min-mers and seed-based sketching methods preserve much in-
formation at the sites of the sampled k-mers but retain little information elsewhere. This
is because each kept k-mer outputs 2 · k bits of information, necessitating that the sketch
keep few k-mers to remain compact. MSRs, on the other hand, spread the preserved
information more evenly along the input sequence, as a kept input k-mer only outputs
a base, i.e., 2 bits of information. Therefore, for the same size of the resulting sketch,
MSRs conserve many more k-mers, including numerous overlapping k-mers, albeit with
much less information for each. In practice, imagine we want to search for a small se-
quence within the sketches: there is a much higher probability that this sequence will
fall between sampled minimizers rather than being reduced to an empty sequence by the
MSR. Conversely, if the sequence falls on a minimizer, that minimizer will contain more
information to confirm the match, whereas the MSR will have sampled that region less
intensively in comparison.

Sketches used in bioinformatics typically require specific software for interpreting them
[124]. In contrast, Mapping-friendly Sequence Reductions (MSRs) provide sketches of
sequences in the form of shorter sequences. These MSR sketches can be stored using the
standard FASTA format and can be aligned, assembled, and indexed much like regular

97

Chapter 3 – Assembling high-fidelity reads

sequences using existing software. Although this does not guarantee that every software
will work seamlessly—for example, we observed that all MSRs are not well-suited for
sketching noisy reads—this compatibility is in my opinion one of the most appealing
properties of MSR sketches, as they can be integrated into existing software with minimal
effort.

We will demonstrate that these three properties of MSRs can be exploited to easily
design an HiFi assembler.

3.2 Alice: fast and accurate assembly of high-fidelity
reads based on MSR sketching

3.2.1 Introduction

With the rise of high-throughput sequencing, genomic experiments have been produc-
ing vast amounts of data, far outpacing the growth of computing power as predicted by
Moore’s law [132]. It is now common for a single experiment to generate dozens or even
hundreds of gigabytes of genomic data. To address this challenge, researchers have been
developing efficient algorithms for storing, mapping, comparing and assembling reads and
genomes over the past few decades.

Handling such big amount of data involves compressing it to fit within hardware limi-
tation [133]. Several spectacular lossless data compression schemes have been designed to
solve bioinformatic problems, e.g. exploiting the repetitions within a genome [134], organ-
ising k-mers in a tree [135] or using phylogeny to exploit redundancies between species
[136]. However, lossless algorithm remain limited by, precisely, the fact that they are loss-
less. Lossy compression schemes have the potential to provide much higher compression
rates. For example, Bloom filters are extensively used to compress the representation of
sets of k-mers, but at the price of only keeping a presence/absence imperfect information
[137, 138].

A popular technique to diminish the size of the computations is to sketch (or sample, we
will not make a difference here) the input data. This consists in building a reduced, approx-
imate representation of the input data and performing computation on these sketches. The
difficulty of this approach is to build a representation on which meaningful computations
can be efficiently performed. An example is the Seed-Chain-Extend paradigm, ubiquitous
in long-read alignment, where reads are reduced to a small set of k-mers (seeds) which

98

3.2. Alice: fast and accurate assembly of high-fidelity reads based on MSR sketching

are then aligned (chained). Another example is Mash [129], which compares datasets by
comparing a subset of their kmers.

In the field of genome assembly, sketching has been used to generate all-versus-all read
mapping [61] but not until recently and the advent of High Fidelity (HiFi) sequencing
has it been decisively introduced in De Bruijn Graphs assemblers. Building on ideas
from wtdbg2 [79], shasta [126] and Peregrine [139], mDBG [56] introduced the idea of
reducing reads to a small chain of k-mers sampled with a hash function, assembling all
chains of sampled k-mers and finally transforming back the final chain of k-mers to a
genomic sequence. This approach proved extremely efficient, providing a human assembly
in minutes on a personal computer. It was extended as a metagenomic assembler in
metaMDBG [73]. However, this sketching approach faces some serious limits.

Sketching strategies generally need to strike a balance between compressing the data
and obtaining accurate results. To provide accurate genome assemblies, sketches must
represent the small differences between genomic repetitions and slightly different haplo-
types. When (meta)mDBG sketch the reads as a chain of k-mer, all diversity that falls
between the sampled k-mers is lost. As a consequence, the two mDBG-based assemblers
are not able to distinguish similar haplotypes.

In this work, we introduce a new assembler, Alice. The main novelty of this assembler
is to employ Mapping-friendly Sequence Reductions (MSR) as a sketching technique for
HiFi genome assembly. MSR was originally introduced in [125] to enhance read mapping
quality, but its potential as a sketching technique was not explored. The original article
examined a limited number of MSRs. In our approach, we use different MSRs to sketch
HiFi reads, resulting in a computationally efficient solution that addresses many of the
challenges faced by (meta)mDBG. The name of the assembler draws its inspiration from
the book Alice in Wonderland [140], in which Alice uses a “drink-me potion” to go through
a small door and a “eat-me” cake to inflate back to her original size 2. By analogy, the small
door would represent an assembler of limited capacity, and the potion MSR sketching.

We applied Alice to the sequencing of a mock community containing five strains of
Escherichia coli. We demonstrate that Alice assembles the reads faster than state-of-
the-art assemblers, such as hifiasm_meta [74] and metaMDBG [73], while improving the
assembly of the five E. coli strains.

2. at least that is her intention, things then go awry for Alice

99

Chapter 3 – Assembling high-fidelity reads

3.2.2 Methods

The assembly procedure is illustrated Figure 3.4.

Reducing input reads

All reads are initially reduced using a Mapping-friendly Sequence Reduction (MSR)
provided by Alice. The MSR allows the user to select the order l (default value of 101)
and the compression factor c (default value of 20). The l-mers of the reads are processed
through a function g. This function takes an l-mer as input and outputs either a single
base, which is appended to the growing reduced read, or an “empty” base ϵ, which is not
appended to the growing reduced read.

The function g of the MSR is designed as follows. The l-mer is converted into its
canonical form, which is either the original l-mer or its reverse complement if the reverse
complement is lexicographically smaller. g then applies to the canonical l-mer a pseudo-
random hash function yielding a hash between 0 and 1 [141]. It distinguishes five case:

— if the hash is smaller than 1/2c and the original l-mer is canonical, an A is outputted
— if the hash is smaller than 1/2c and the original l-mer is not canonical, a T is

outputted
— if the hash is between 1/2c and 1/c and the original l-mer is canonical, a C is

outputted
— if the hash is between 1/2c and 1/c and the original l-mer is not canonical, a G is

outputted
— if the hash is between 1/c and 1, ϵ is outputted

Assembling reduced reads

Many existing short-read and long-read assemblers were tested to assemble reduced
reads, but they did not yield very convincing results, especially to separate haplotypes.
We believe this is due to reduced reads having slightly different properties compared to
regular sequencing reads of equivalent length. For example, errors tend to cluster when
c · l >> 1. Most assemblers did not manage to assemble at all the reduced reads.

To address this issue, we developed a simple custom assembler that consists of three
steps.

1. Generate an unitig graph with a k-mer length of 31, discarding all k-mers seen
only once. This is done with BCALM2 [142] (Figure 3.4a)

100

3.2. Alice: fast and accurate assembly of high-fidelity reads based on MSR sketching

High-fidelity reads

1. Reduce reads

2a. Generate unitig

2b. Trim tips

2c. Align reads

2d. Untangle graph

3. Uncompress

Final assembly

Figure 3.4 – Assembly process of Alice

101

Chapter 3 – Assembling high-fidelity reads

2. Simplify the graph by removing tips and bubbles composed of k-mers seen fewer
than five times, a classic procedure in assemblers, as used for example in [56]
(Figure 3.4b)

3. The final step is to untangle the graph to improve contiguity and duplicates unitigs
that are present multiple times in the genome. To this end, all reads are aligned on
the graph (Figure 3.4ac). All contigs are then iteratively assessed. If the alignment
of the reads on the graph suggest that the contig is present in two different paths,
the contig is duplicated (Figure 3.4d).

Recovering the uncompressed assembly

The compressed assembly represents the reduced version of the final assembly. Inflating
this reduced version back to the full assembly is not straightforward, as the MSR reduction
function is not invertible.

Our method involves three steps:
— Create an inventory of k-mers that tile the compressed assembly, using a k-mer

size of 31 by default. For example, two 3-mers that tile the sequence “ACCGTT”
are “ACC” and “GTT”.

— Rerun the MSR on all original reads, and each time a tiling k-mer is produced,
record the corresponding uncompressed sequence.

— Reconstruct the full assembly by concatenating the uncompressed sequences of the
tiling k-mers.

3.2.3 Results

Zymobiomics Gut Microbiome Standard

We used the Zymobiomics Gut Microbiome Standard to evaluate Alice. This standard
is a commercial blend of 19 bacterial strains and two yeast strains, designed to replicate
the composition of the gut microbiome. A HiFi sequencing was available on the Sequence
Read Archive (SRA) under the accession number SRR13128013. The proportions of each
organism in the mix and their genomes are known. We selected this dataset because it
includes five strains of Escherichia coli, which are difficult to assemble separately.

We compared Alice against metaFlye [75], hifiasm_meta [74] and metaMDBG [73],
which are the leading assemblers in the field of metagenomic HiFi assembly. Alice was
used with its default parameters, i.e. a compression factor of 20 and an order of 101. In

102

3.2. Alice: fast and accurate assembly of high-fidelity reads based on MSR sketching

section 3.2.3, we discuss this choice and test other parameters. We used metaQuast [97]
to evaluate the assemblies. The completeness and duplication ratio are shown in Table
3.1, and the contiguities in Table 3.2.

Alice performed assembly in two hours of CPU time, compared to four and a half hour
for hifiasm_meta, sixteen hours for metaMDBG and four days for metaFlye. In terms of
memory, Alice used a maximum of 3.5G RAM, more than the 2G of metaMDBG but
much less than the 102G of hifiasm_meta and the 474G consumed by metaFlye. The
goal, using MSR sketches to build a fast and memory-efficient assembler, is thus achieved.

The tested assemblers exhibited different behaviors when assembling the five E. coli
strains. metaMDBG and metaFlye fully assembled only one strain and partially assembled
the other four, as indicated by the low metaQUAST completenesses in Table 3.1. A 27-
mer analysis revealed that 20% and 10% of strain-specific E. coli 27-mers were missing in
the final assemblies, respectively. In contrast, hifiasm_meta and Alice assembled all the
strains with high completeness, with only 4.5% and 3% of strain-specific E. coli 27-mers
missing, respectively. While hifiasm_meta’s assembly achieved higher completeness than
Alice, it did so at the cost of a high duplication ratio. The relatively lower metaQUAST
completeness of the Alice assembly can likely be explained by the “untangling” of the
assembly graph, where certain regions need to be duplicated to their correct multiplicity.
At this stage, Alice does not duplicate all such regions to their right multiplicity.

All assemblers achieved similar levels of completeness for the other genomes. metaMDBG
appeared to be slightly better at recovering low-abundance genomes. Additionally, metaMDBG
produced the most contiguous assemblies with fewer over-replicated regions. The lower
contiguity and higher duplication ratio of Alice’s assemblies can be attributed to the pres-
ence of some remaining bubbles in the final assembly graph. It is not clear yet if these
bubbles represent actual diversity or simply artefacts.

The final aspect we wanted to verify was whether Alice produced misassemblies, par-
ticularly in comparison to hifiasm_meta when assembling the separate E. coli strains.
metaQUAST detected 30 misassemblies in the Alice assembly of the E. coli strains, com-
pared to 81 misassemblies in the hifiasm_meta assembly. However, Alice produced 37
misassemblies in the B. fragilis assembly, fewer than the 61 produced by hifiasm_meta
but significantly more than metaFlye and metaMDBG, which produced one and four mis-
assemblies, respectively. We hypothesize that this discrepancy is due to diversity present
in the sample but not represented in the reference, which could also explain the extremely
high duplication ratio of the hifiasm_meta assembly of B. fragilis (15). This hypothesis

103

Chapter 3 – Assembling high-fidelity reads

would need to be confirmed.
In conclusion, Alice was able to produce an assembly of high quality of the Zymo-

biomics Gut Microbiome Standard in low time and memory. The successful assembly of
the five E. coli strains proves that MSR can be used as a sketching method capable of
distinguishing highly similar sequences.

Genomes coverage metaFlye hifiasm_meta metaMDBG Alice
A. muciniphila 133 1.0 / 1.0 1.0 / 1.6 1.0 / 1.0 1.0 / 1.0
B. fragilis 700 1.0 / 1.0 1.0 / 15 1.0 / 1.0 1.0 / 1.0
B. adolescentis 750 1.0 / 1.0 1.0 / 2.5 1.0 / 1.0 1.0 / 1.0
C. albicans 28 0.72 / 1.0 0.68 / 1.2 0.81 / 1.0 0.65 / 1.2
C. difficile 91 1.0 / 1.0 0.91 / 1.3 1.0 / 1.0 1.0 / 1.0
C. perfringens 1 0 / - 0 / - 0 / - 0 / -
E. faecalis 0 0 / - 0 / - 0 / - 0 / -
E. coli B1109 148 0.60 / 1.1 0.99 / 2.1 0.78 / 1.0 0.88 / 1.1
E. coli B3008 152 0.83 / 1.0 1.0 / 1.6 0.36 / 1.0 1.0 / 1.0
E. coli B766 140 0.95 / 1.0 0.96 / 1.5 0.96 / 1.0 0.96 / 1.0
E. coli JM109 152 0.44 / 1.1 1.0 / 2.1 0.38 / 1.0 0.90 / 1.1
E. coli b2207 140 0.47 / 1.0 0.99 / 2.2 0.37 / 1.0 0.92 / 1.5
F. prausnitzii 1250 1.0 / 1.0 1.0 / 28 1.0 / 1.0 1.0 / 1.0
F. nucleatum 625 1.0 / 1.0 1.0 / 5.9 1.0 / 1.0 1.0 / 1.0
L. fermentum 789 1.0 / 1.0 1.0 / 1.4 1.0 / 1.0 1.0 / 1.0
M. smithii 14 1.0 / 1.0 1.0 / 1.0 1.0 / 1.0 1.0 / 1.0
P. corporis 517 1.0 / 1.0 1.0 / 10 1.0 / 1.0 1.0 / 1.1
R. hominis 1206 1.0 / 1.0 1.0 / 2.3 1.0 / 1.0 1.0 / 1.0
S. cerevisiae 27 0.80 / 1.0 0.73 / 1.2 0.89 / 1.0 0.70 / 1.3
S. enterica 1 0.02 / 1 0.12 / 1.0 0.24 / 1.0 0.14 / 1.0
V. rogosae 1667 1.0 / 1.0 1.0 / 49 1.0 / 1.0 1.0 / 1.1

Table 3.1 – Completeness / duplication ratios of the metaFlye, hifiasm_meta, metaMDBG
and Alice assemblies with respect to all the genomes of the mix, computed by
metaQUAST. Completeness values below 0.9 and duplication values above 1.2 correspond
to perfectible assemblies and are highlighted in red.

Influence of different parameters

We experimented with different parameter choices for the compression factor and the
order of reduction on the Zymobiomics Gut Microbiome Standard dataset to understand
how these parameters influence the final assembly.

104

3.2. Alice: fast and accurate assembly of high-fidelity reads based on MSR sketching

Assemblies metaFlye hifiasm_meta metaMDBG Alice
Akkermansia muciniphila 2.85 2.85 2.85 2.32
Bacteroides fragilis 5.15 5.63 4.31 0.57
Bifidobacterium adolescentis 2.03 2.03 2.03 1.59
Candida albicans 0.003 0.003 0.004 0.002
Clostridioides difficile 4.21 4.21 4.21 4.21
Clostridium perfringens - - - -
Enterococcus faecalis - - - -
Escherichia coli B1109 0.02 0.15 0.45 0.09
Escherichia coli B3008 0.02 2.58 - 4.84
Escherichia coli B766 - 0.39 0.39 0.22
Escherichia coli JM109 0.02 0.18 - 0.081
Escherichia coli b2207 0.02 0.23 - 0.02
Faecalibacterium prausnitzii 2.9 0.02 2.9 2.9
Fusobacterium nucleatum 2.44 2.03 2.44 2.44
Lactobacillus fermentum 1.91 1.79 0.17 1.51
Methanobrevibacter smithii 1.43 1.43 1.21 0.17
Prevotella corporis 2.50 2.12 2.50 0.21
Roseburia hominis 3.46 3.46 3.46 3.46
Saccharomyces cerevisiae 0.05 0.07 0.11 0.01
Salmonella enterica - - - -
Veillonella rogosae 2.16 0.03 2.15 0.44

Table 3.2 – NGA50 of the genomes reconstructed by the different assemblers, measured
with the metaQUAST. All the figures are in Mbp. Empty cells correspond to genomes
that were not at least 50% covered. The best values are highlighted in bold.

We conducted two experiments: one to assess the effects of the order and another to
assess the effect of the compression factor. First, we tested compression factors of 100, 50,
20, 10, and 5 with an order of 101. Second, we tested orders of 11, 21, 51, 101, and 201
with a compression factor of 10.

The variation of these parameters primarily impacted the completeness of the resulting
assemblies and the run-times of the pipelines, while their accuracy, duplication ratio, and
contiguity remained equivalent.

As expected, the run-time increases with the compression factor, as there is more data
to assemble. This is illustrated in Figure 3.5.

Compressing the data more also has a positive impact on the completeness and conti-
guity of the five highly similar E. coli strains (Figure 3.5). When investigating the 27-mer

105

Chapter 3 – Assembling high-fidelity reads

Figure 3.5 – Variation of resource usage and metaQUAST completeness with different
compression factor and orders. “Rare strains” refer to C. albicans, S. cerevisiae, and S.
enterica. The completeness displayed are arithmetic means of the completeness of the
different genomes of the categories.

completeness (not shown), it turns out that all assemblies had a similar amount of miss-
ing 27-mers. Hence, the main difference explaining the difference in completeness is that
repeated regions are more shrunk when the data is compressed more, which helps to as-
semble repeated regions closer to their true multiplicity and thereby improving contiguity.

However, the results represented in Figure 3.5 show that compression negatively im-
pacts the completeness of the C. albicans, S. cerevisiae, and S. enterica genomes, which
have relatively low coverage (see Figure 3.1 for the coverages). This is because the assem-
bly algorithm requires a sufficient number of error-free 31-mers in the compressed reads to
produce a complete assembly. An error-free compressed 31-mer corresponds to an error-
free uncompressed sequence of average length 31 ∗ c + l without errors. Therefore, as the
compression factor c increases, the number of correct 31-mers in the reads decreases. For
genomes with low coverage, high compression can result in the loss of important 31-mers,
leading to insufficient coverage of some regions, hindering their assembly.

The order was found to have relatively little impact on the resulting assemblies. The
only significant effect observed was when the order decreased to 11 and 5, where l/c

approached or fell below 1. In these cases, the assembler began collapsing highly similar
sequences, leading to a decrease in the completeness of the five E. coli strains. Despite
the fact that the error rate scales approximately linearly with l, increasing l did not have
a significant negative impact on the completeness of the assemblies. This is because the
errors in the compressed reads cluster in increasingly large clusters, but the error-free
regions between these clusters diminish in size only slowly with l.

106

3.2. Alice: fast and accurate assembly of high-fidelity reads based on MSR sketching

3.2.4 Discussion

In this work, we propose accelerating HiFi assembly by using Mapping-friendly Se-
quence Reductions to sketch input reads and assembling them. We implemented this
method in a software named Alice, which we tested on the sequencing of a challenging
mock community containing five conspecific strains of Escherichia coli. Alice proved to
be an order of magnitude faster than metaMDBG and metaFlye, and required an or-
der of magnitude less RAM than hifiasm_meta and metaFlye. Unlike metaMDBG and
metaFlye, Alice was capable of assembling the five E. coli strains separately. While the
Alice assembly exhibited a lower contiguity compared to the hifiasm_meta assembly, it
was much less over-replicated. Overall, Alice is already a competitive HiFi assembler on
this dataset, though the assembly could still be improved. The next step would be to test
Alice further on different datasets.

In terms of implementation, Alice still has room for improvement. Compared to
mDBG, it currently takes 10 times longer to reduce reads and inflate the assembly for
a comparable task. The assembly procedure between these two steps is relatively basic
and could likely be significantly improved. To explore this idea, we tried to use many
short-reads assemblers out of the box and, though SPAdes [53] and minia [55] performed
reasonably well, none was able to improve Alice.

A very promising, but also vast, avenue to improve the assembler would be to modify
the MSR function, which we designed to be pseudo-random. For example, guarantees
could be introduced to ensure that at least one base is outputted for all windows of
length w. Another idea would be to introduce an equivalence between synonymous codons
in the MSR transformation. The authors of [125] have shown that changing the function
can significantly improve results when aligning reads reduced with an MSR of order 2,
suggesting that the choice of the MSR function has significant impact on the downstream
results. The challenge, however, lies in the extremely high number of MSR functions to
explore.

In this work, we applied MSR sketching to assembly, but there is potential to extend
this technique to other problems. The most immediate application seems to be sequence
alignment, although it is unclear how it would integrate with seed-chain-extend meth-
ods and how it would handle imperfect matches. Another potential application could be
indexing assembled genomes, given their expected low error rate.

We also observe an interesting side result. Efficiently building De Bruijn Graphs for
large k is somewhat of an open problem. The authors of [143] note that it takes “pro-

107

Chapter 3 – Assembling high-fidelity reads

hibitively large time/memory” and propose a complex solution based on building a disjoint
graph to efficiently construct De Bruijn Graphs with large k. In the future, building a
compressed graph with smaller k and then decompressing it may offer another solution,
although the problem does not translate completely trivially.

108

Chapter 4

USING HI-C TO UNTANGLE ASSEMBLY

GRAPHS

Abstract: This chapter focuses on enhancing
the contiguity of an assembly using Hi-C data.
It introduces the concept of untangling an as-
sembly graph with Hi-C or long reads prior
to scaffolding. Implemented in a software tool
named GraphUnzip, we demonstrate that this
strategy improves the Hi-C scaffolded assem-

blies of both haploid and multiploid genomes.
While GraphUnzip is not (yet) applicable to im-
proving metagenomic assemblies with Hi-C, its
long-read version is suitable for metagenomes
and has been integrated in HairSplitter (Chap-
ter 2).

4.1 Context

Metagenomic Hi-C can be used to separate species within an assembly [95, 96]. How-
ever, to the best of my knowledge, there is currently no specialized software aimed at
improving the contiguity of metagenomic assemblies with Hi-C. This can be explained by
the fact that, with long reads, bacterial genomes generally do not need Hi-C to achieve
high contiguity. This chapter will hence not focus on metagenomes but rather on improv-
ing the contiguity of diploid and multiploid species with Hi-C.

In practice, I will propose an implementation of an untangling software named Gra-
phUnzip. GraphUnzip is designed to improve the contiguity of multiploid assemblies and
is also applicable to haploid assemblies. Towards the end of the chapter, I will explain
how part of this work has been extended to metagenomes to improve the contiguity of
bacterial assemblies with low-quality ultra-long reads.

4.2 Introduction

The advances of sequencing technologies and of software provide assemblies of un-
precedented completeness. Despite these advances, assemblers often fail to produce one

109

Chapter 4 – Using Hi-C to untangle assembly graphs

contig per chromosome, even when long or ultra-long reads are available.
The main difficulty stems from the presence of similar regions across eukaryotic genomes.

Similar regions include segmental duplications, paralogous genes but also homozygous
zones, where the same information is present on several chromosomes. Assemblers will
tend to merge all reads coming from these regions together in one contig - when the
homozygosity is perfect, even HairSplitter (Chapter 2) cannot separate the haplotypes.
Repeated contigs typically overlap two or more contigs at each of their end, thus cannot
be merged unambiguously with their neighbors. Many assemblers therefore output assem-
bly graphs that contain the sequences of the contigs as well as all overlaps between the
different contigs. The sequences of the chromosomes are unknown paths traversing these
graphs.

Chromosome conformation capture approaches, such as Hi-C [69], measure physical
interactions in the nucleus of the cell and provide the missing key information to finish as-
sembly: the ability to know which contigs are close to each other on the chromosomes, with
a signal that spans even the longest repeated regions. Given a draft assembly and Hi-C
sequencing data, scaffolders order and orient all the contigs to obtain chromosome-length
scaffolds. Consecutive contigs in a scaffold are separated by stretches of Ns, i.e., unspeci-
fied bases. The most widely used Hi-C scaffolders focus on providing haploid genomes and
include SALSA2 [144], YaHS [91], pin-hic [145], instaGRAAL [146] and scaffHiC [147].
To reconstruct multiploid genomes, the most popular scaffolders include GreenHill [93]
(focused on the diploid case only), AllHiC [92] and HapHiC [94].

All scaffolders today still face two issues: 1) they struggle to place small contigs with
few Hi-C contacts, 2) they leave gaps of unknown sequence and unspecified length be-
tween stitched contigs. As a result, most chromosome-scale assemblies produced today still
contain gaps and unplaced contigs. We propose to exploit the rich information contained
in assembly graphs to fill these gaps (literally). So far, only SALSA2 uses the assembly
graph, but only to orient contigs, not exploiting the fact that assembly graphs specify the
relative position and orientation of all the contigs.

We introduce the concept of untangling an assembly graph. Untangling simplifies a
graph by generating a new assembly graph. More formally, the set of potential genomes
represented by the new assembly graph must be a subset of the potential genomes depicted
by the original graph. The goal of untangling, similar to scaffolding, is to enhance the
contiguity of the assembly. However, unlike scaffolding, which assumes that any contig
could potentially be adjacent to any other contig, untangling only considers linking contigs

110

4.3. Methods

that are already connected in the assembly graph. As such, untangling is much easier than
scaffolding, as contigs typically have a limited number of neighbors in the graph.

Since each chromosomes is theoretically a single path in the graph, untangling could
be sufficient to produce telomere-to-telomere assemblies. Moreover, there is no need to
introduce stretches of Ns between linked contigs, as their exact overlap is known in the
graph. Nonetheless, scaffolding remains useful in practice, since assembly graphs generally
have missing links. Untangling and scaffolding can therefore be complementary: once
untangling is finished and the number of contigs much diminished, scaffolding comes in
and find the remaining links that were not present in the assembly graph.

We present GraphUnzip, a module that untangles an assembly graph. It takes as
input an assembly graph and either Hi-C data or ultra-long reads and untangles the
assembly graph, yielding an assembly with improved contiguity and completeness. Its
naive approach makes no assumption on ploidy, making it fit to untangle haploid and
polyploid assemblies as well as genomic repeats.

To prove the usefulness of untangling, we inserted GraphUnzip in four assembly
pipelines, including two diploid assemblies. Each time, GraphUnzip provides improve-
ment compared to the pipelines without GraphUnzip. In particular, GraphUnzip rescues
many small contigs that do not have sufficient Hi-C signal to be directly scaffolded. For
diploid assemblies the value of untangling is striking, as GraphUnzip is able to deduce
from the graph which contigs need to be duplicated to be present twice (or more) in the
final assembly, unlike scaffolders. We think that untangling may become a standard step
in future assembly pipelines.

4.3 Methods

The algorithm behind GraphUnzip is inspired by the one inside Unicycler [148]. It is
illustrated figure 4.1.

4.3.1 Input

GraphUnzip takes two inputs: the assembly in GFA format and the Hi-C reads mapped
to the assembly.

111

Chapter 4 – Using Hi-C to untangle assembly graphs

1x 1x

1x

1x1x

1x

1x

2x 1x
2x3x2x

1x
1x

1x

1x
1x

1x

1x

2x 2x 2x3x2x

1. Estimate multiplicity

2. Correct multiplicity with propagation

3. Identify knots

knot 1

4. Match border contigs

5. Determine the paths between border contigs

6. Extract the paths

contig_1

contig_2
contig_3

contig_4

contig_5

contig_6

contig_7 contig_8

contig_9

contig_10
contig_11

contig_12

contig_1

contig_2
contig_3

contig_4

contig_5

contig_6

contig_7

contig_8’

contig_9

contig_10
contig_11

contig_12

contig_8

contig_7’

contig_5’ contig_8’’ contig_10’

Figure 4.1 – Illustration of the main steps of the GraphUnzip algorithm. 1. Single-copy
contigs are identified based on coverage depth 2. Multiplicity is propagated to have coher-
ent multiplicities through the graph. 3. The graph is separated into knots, i.e. sub-graphs
which only exits are through single-copy contigs, called border contigs 4. In each knot,
border contigs are matched pairwise based on their Hi-C interactions. 5. Paths are drawn
between border contigs based on the contigs’ coverage and Hi-C contacts. 6. Paths are
extracted from the graph

112

4.3. Methods

4.3.2 Multiplicity of contigs

The first step of the algorithm is to determine the multiplicity of each contig of the
assembly graph, i.e. the number of times the contig is repeated in the genome. Typically,
homozygous contigs will have a multiplicity of 2 in an assembly of a diploid genome: they
are present two times in the genome, once on each haplotype, but have been assembled
in only one copy, as both copies are identical.

GraphUnzip first computes the haploid coverage, corresponding to the expected read
coverage of contigs that are present only once in the genome. Which contigs are present
only once in the genome is generally unknown: as a proxy, GraphUnzip considers haploid
all the contigs that have only a single neighboring contig at both their ends. The average
read coverage of this list of haploid contigs is considered the haploid coverage. Alterna-
tively, the user can provide the size of the genome, from which the haploid coverage can
be inferred.

Knowing the haploid coverage, GraphUnzip gives an estimation of the multiplicity of
all contigs of the graph based on their coverage.

Multiplicity is then propagated through the graph: if a contig is the only neighbour
of two single-copy contigs, then its multiplicity must be 2. This very simple propagation
rule is applied to all parts of the graph. This operation ensures that the multiplicities of
all the contigs of the graph are coherent. In some cases, however, it is not possible to find
totally coherent multiplicities. In those case, the coverage-based multiplicity is kept.

4.3.3 Knots

The assembly graph is then partitioned in knots. A knot is a connected region of
the graph delimited by contigs of multiplicity one. Knots contained in other knots are
discarded so that the set of all knots effectively partitions the graph. Border contigs are
defined as the contigs delimiting the knots.

Based on the idea of Unicycler, GraphUnzip connects pair of contigs of multiplicity
one. More specifically, it connects pairs of border contigs. In each knot, GraphUnzip
finds the pairwise matching of border contigs that maximize the Hi-C interactions. The
underlying statistical fact behind that procedure is that two contigs sharing many Hi-C
links are probably close on the DNA strand. Sometimes it is impossible to match the
haploid contigs, if Hi-C signal is too weak or when there are an uneven number of border
contigs in the knot (which should not theoretically happen). In those cases, GraphUnzip

113

Chapter 4 – Using Hi-C to untangle assembly graphs

leaves the knot as it is.

4.3.4 Paths

Sometimes, matching contigs are connected by a single unanmbiguous path. Some-
times, matching border contigs may be connected through multiple paths. Finding the
right paths in this case is generally a hard task, as there can easily be a huge number
of possible paths between two border contigs, especially if there are loops in the knot.
GraphUnzip proceeds in two steps to determine the right paths:

— The multiplicity of each intermediate contig of the knot (i.e. not a border contig) is
already known. Given the multiplicity, the situation of the contig in the knot and
its Hi-C contacts, GraphUnzip determines m(c; b1 −b2), i.e. the number of copies of
contig c that is expected between border contigs b1 and b2. For example, the con-
tig_7 of Figure 4.1 has multiplicity two and probably has many Hi-C contacts with
border contigs 1, 3, 9 and 11 but relatively few with border contigs 4 and 12. Thus
m(contig_7; contig_1 − contig_9) = 1, m(contig_7; contig_3 − contig_11) = 1
and m(contig_7; contig_4 − contig_12) = 0. Note that this is only an estimation.

— For each pair of border contigs, GraphUnzip will explore the possible paths linking
them. A simple score s is devised for each path, where l(c) is the length of contig
c and n(c; p) the number of copies of contig c that is on path p:

s =
∑

c

|n(c, p) − m(c; b1 − b2)| ∗ l(c)

The path minimizing the score is found through a systematic exploration of the
paths of the knot.

The assembly is then updated to represent paths between border contigs as a single,
unambiguous path in the assembly graph. This involves duplicating some intermediate
contigs and changing links in the knot.

When all knots have been looked at, the process of determining knots and finding
bridges starts again, as solving some knots may help solve others, until no more knots can
be solved.

114

4.4. Results

4.3.5 Output

GraphUnzip outputs an untangled assembly in gfa and/or fasta format, as well as an
agp file, in the style of other scaffolders, to indicate what contigs have been duplicated
and merged.

4.3.6 Haploid assembly

Many assembly pipelines today aim to provide a haploid assembly. In such cases, dupli-
cating homozygous contigs, as GraphUnzip does, is undesirable. Therefore, GraphUnzip
includes a special haploid option for these scenarios. When this option is used, GraphUn-
zip operates mostly as usual, with an additional step after determining the multiplicity
of all contigs to determine the ploidy of the assembly. The ploidy is determined as the
highest degree of multiplicity that represents more than 10% of the assembly. For ex-
ample, if 50% of the assembly has a multiplicity of 4 and 2% has a higher multiplicity,
GraphUnzip infers that the ploidy is 4. Border contigs are then selected from contigs with
a multiplicity of 4. The paths between border contigs will necessarily be approximate, as
several equivalent haplotypes can be used to construct a haploid assembly.

4.4 Results

We introduced GraphUnzip in four assembly processes to show how it improves the
quality of the resulting assemblies.

4.4.1 Datasets

Puccina triticina

This diploid fungus (more specifically strain Pt76) was sequenced with HiFi (SRR14424683)
and Hi-C (SRR14386306) in [149]. This data is particularly interesting because the phys-
ical separation of the haplotypes in the nucleus of Puccina triticina allowed the authors
to provide a high-quality phased assembly. The length of the diploid assembly is approx-
imately 250Mb.

115

Chapter 4 – Using Hi-C to untangle assembly graphs

Adineta vaga

We will assemble this allotetrapoloid genome, sequenced with Nanopore (SRR13348928)
and Hi-C (SRR13348925) by [150]. [150] also used Illumina sequencing, providing high-
quality sequencing reads to compute 31-mer completeness. The haploid size of the refer-
ence assembly proposed by the authors in this paper, and confirmed by flow cytometry,
is 100Mb.

4.4.2 Protocol

We insert GraphUnzip in two distinct protocols - one for haploid assembly, one for
phased assembly - to show that untangling the graph is generally a helpful process. The
assembly and scaffolding software were chosen among the most standard in assembly
pipelines today, and they were run with the options recommended by their documentation.

For each dataset, we tried to produce a haploid assembly, i.e. with only one out of
the haplotypes, and an assembly with the haplotypes fully reconstituted. The P. triticina
HiFi reads were assembled using hifiasm [63]. The A. vaga Nanopore reads were assembled
using Flye [78], using the keep-haplotypes option and HairSplitter [110] to recover all
haplotypes. After assembly, we introduced the GraphUnzip step with the haploid option
in the relevant cases, where the graph was untangled, yielding a new assembly. For haploid
assemblies, the assembly was then run through purge_haplotigs [151] and scaffolded using
both Salsa2 [144] and YaHS [91]. The diploid P. triticina assembly was untangled using
either GraphUnzip or the Hi-C option of hifiasm [152] (since they are incompatible)
and yielded assemblies that did not need scaffolding. The phased A. vaga assembly was
scaffolded by HapHiC [94] and Greenhill [93].

4.4.3 Collapsed haploid assembly: results

To assess the quality of the assemblies with or without GraphUnzip, we chose to
measure the N50 (a measure of contiguity of the assembly), the number of stretches of
N that the scaffolders introduced in the scaffolds and the corresponding “gapless N50”,
corresponding to the N50 where the scaffolds have been split at each stretch of N.

In addition to these absolute metrics, the scaffolded assembly obtained using GraphUn-
zip was compared to the assembly using the same protocol but without GraphUnzip. We
observed the differences in the order and orientation of the contigs proposed by the two
protocols. We observed three scenarios where the two assemblies diverged: most often, a

116

4.4. Results

GraphUnzip scaffold contained an extra contig compared to the other assembly ; more
rarely, a GraphUnzip scaffold had a contig missing in a scaffold compared to the other
assembly ; even more rarely, a contig was placed completely differently in the two assem-
blies. These three phenomenons are quantified as “length of missing contigs”, “length of
wrongly inserted contigs” and “number of misplaced contigs” in Table 4.1. Note that these
metrics only compare the two assemblies: no missing contigs just means that an assembly
has no missing contigs compared to the other assembly.

To know which assembly was correct, the sequencing reads were mapped on the junc-
tion of the contigs that were specific to an assembly. For instance, if an assembly proposed
the scaffold contig1-contig2 and the other assembly proposed contig1-contig3-contig2,
the sequencing reads were mapped on the junctions contig1-contig2, contig1-contig3 and
contig3-contig2. If many reads map on junction contig1-contig2 and none map on the
other two junctions, it means that the first scaffold is more coherent with sequencing
data. The reads systematically supported the junctions proposed by GraphUnzip. Almost
every time, no reads mapped on the alternative junctions proposed by the scaffolders
alone. In one case, reads mapped on both junctions, thus we left this case out of the
analysis (though the GraphUnzip version was the only one coherent with the assembly
graph).

The results are summarized in Table 4.1. The results show clearly that inserting Gra-
phUnzip in the pipeline improves the quality of the scaffolding. The most blatant effect is
on “missing contigs”: these are generally small contigs that have few Hi-C contacts with
other contigs. They are thus very hard to place using only Hi-C information. However,
they are usually already inserted at a specific place in the graph and thus can be very
accurately placed with untangling. We also noted that some of these missing contigs had
actually been suppressed while purging the raw assembly, while they had been kept when
purging after GraphUnzip incorporated them in larger contigs. Using GraphUnzip also
decreases significantly the N gaps in the scaffolds: in many places, the actual overlap be-
tween two contigs is actually contained in the graph, and this can be used in place of an
arbitrary stretch of Ns.

4.4.4 Diploid assembly: results

Our first concern was to make sure that GraphUnzip proposed a correct phasing. We
could check and confirm that the phasing proposed by GraphUnzip was coherent with the
reference in the P. triticina assembly, i.e. that two contigs linked by GraphUnzip were on

117

Chapter 4 – Using Hi-C to untangle assembly graphs

N50
(Mb)

Number
of N gaps

Gapless
N50 (Mb)

length of
missing
contigs

length of
wrongly inserted

contigs

of misplaced
contigs

P. triticina Salsa2 4.4 180 1.4 1,793,541 0 0
GU+Salsa2 7.0 29 6.5 0 0 0

YaHS 5.3 160 1.3 8,146,570 0 0
GU+YaHS 7.7 31 6.5 0 0 0

A. vaga Salsa2 13.2 177 1.5 876,069 0 4
GU+Salsa2 13.9 98 4.5 0 0 0

YaHS 15.0 164 1.5 626,952 35,830 1
GU+YaHS 14.4 78 4.5 0 0 0

Table 4.1 – Comparison of the scaffolded haploid assemblies with and without using
GraphUnzip (GU). Note that the missing, wrongly inserted and misplaced contigs are not
an absolute evaluation of the assembly, but a comparison between the assemblies using
or not GraphUnzip. These columns cannot be used to compare YaHS and Salsa2, for
example.

the same haplotype in the reference. This confirms the ability of GraphUnzip to effectively
phase the contigs with Hi-C.

Untangling improved the contiguity of both A. vaga and P. triticina assemblies. For
Adineta vaga, the N50 rose from 0.37Mb to 1.38Mb, knowing that the chromosomes of
A. vaga have sizes between 13 and 18Mb. For the Puccina triticina assembly, the N50
rose from 848kb to an impressive 5.9Mb, to compare to the size of the chromosomes that
ranges from 4 to 10Mb.

By far the most popular pipeline to assembly diploid genomes from HiFi and Hi-C
data is to use the Hi-C option of hifiasm [152]. Hifiasm actually untangles the assembly
graph “under the hood” using a different algorithm than GraphUnzip. With the high-
quality reference of the P. triticina genome, we compared the performance of the hifiasm
algorithm and the GraphUnzip algorithm using QUAST [102]. Both performed similarly,
GraphUnzip yielding a more contiguous and complete but slightly less precise assembly
(see table 4.2). However, GraphUnzip has the great advantage of being usable with any
assembler and with any kind of long read sequencing data.

We do not have access to a reliably phased reference for Adineta vaga and therefore
must rely on reference-free methods to evaluate the quality of the scaffolds. The impact
of GraphUnzip on the scaffolds of the phased assemblies was significantly greater than
its impact on the scaffolds of the haploid assemblies. Consequently, we were unable to

118

4.4. Results

Genome
fraction

N50
(Mb) misassemblies #mismatches

per 100kbp
#indels

per 100kbp
hifiasm (no untangling) 0.952 0.85 1364 16.89 13.76
hifiasm-Hi-C 0.927 3.02 1112 16.63 10.76
hifiasm-GraphUnzip 0.951 5.86 1390 17.42 14.02

Table 4.2 – Comparison of the performance of the untangling algorithm of hifiasm using Hi-
C option (hifiasm-Hi-C) and GraphUnzip (hifiasm-GraphUnzip) on the hifiasm assembly
of Puccina triticina

N50
(Mb)

Number
of N gaps

Gapless
N50 (Mb)

Structural
misassemblies

31-mer
completeness (%)

A. vaga Original assembly 0.37 0 0.37 164 90.0
GU only 1.38 0 1.38 232 89.6

Greenhill 95.7 5929 0.16 462 80.4
GU+Greenhill 108.0 578 0.94 362 83.6

HapHiC 18.7 1093 0.37 424 90.0
GU+HapHiC 30.8 338 1.38 285 90.0

Table 4.3 – Comparison of the scaffolded phased Adineta vaga assemblies with and without
using GraphUnzip (GU). “Structural misassemblies” are identified as such by Inspector
and include missing contigs. Unlike in Table 4.1, the metrics presented here are absolute
and can be used to compare Greenhill and HapHiC.

individually verify all phasing differences between the scaffolds with and without Gra-
phUnzip. To address this, we chose to use the tool Inspector [98] to detect “structural
misassemblies,” which correspond to loci where the alignment of reads indicates a mis-
assembly, including missing contigs and scaffolding errors. Additionally, we estimate the
31-mer completeness as the percentage of 31-mers present more than five times in an
Illumina sequencing of the same sample that are present in the final assembly. Results are
presented in Table 4.3.

Integrating GraphUnzip in the scaffolding pipeline is clearly beneficial to the quality
of the final scaffolds. Final scaffolds have less gaps and structural misassemblies when
GraphUnzip has been integrated in the pipeline. The measure of the N50 must be taken
with scepticism: the 12 chromosomes of the 200Mb genome of Adineta have relatively
balanced length, meaning that the true N50 of the genome is expected around 30Mb - the
scaffolds proposed by Greenhill are artificially long, probably because several chromosomes
have been erroneously merged. The plain Greenhill scaffolds are significantly less complete
than its GraphUnzip+Greenhill counterpart because Greenhill struggled to place small

119

Chapter 4 – Using Hi-C to untangle assembly graphs

contigs and eventually discarded them, while GraphUnzip integrated them into longer
contigs using the assembly graph.

4.4.5 Performance

Overall, GraphUnzip adds negligible extra time in the global assembly pipeline.
The untangling steps of GraphUnzip are extremely fast (less than 1 minutes on all the

examples presented here). The bottleneck in terms of time is mapping the Hi-C reads to
the assembly, an operation that must in any case be performed for the scaffolding step. By
changing the graph, GraphUnzip changes the names of the contigs, but there is no need
to run the alignment procedure again, the original alignment file is edited by GraphUnzip
to produce an alignment file corresponding to the untangled assembly. There is a little
overhead in editing the bam file but it is orders of magnitude faster than mapping the
reads.

4.5 Untangling the graph with long reads

In some cases, long reads are available to help to improve the contiguity of the assembly
graphs. When the reads have been used to produce the assembly using an OLC assembler,
all of the information contained in the reads generally has already been exploited by the
assembler. However, when the reads have been assembled following a DBG paradigm,
or when the assembly was produced using shorter and more precise reads, long reads
can span several contigs and provide useful information to improve the contiguity of the
assembly graph.

The GraphUnzip algorithm can be readily adapted to untangle the graph using long
reads. First, reads are aligned to the assembly graph minigraph [106] or GraphAligner
[153]. Then, haploid contigs and knots are identified in the graph following the same
procedure as with Hi-C data. The algorithm finds the best paths to link the haploid
contigs. When using long reads, this process is actually simpler compared to the Hi-C
procedure, as the long reads directly align along the path between two haploid contigs.
Once the paths have been identified, they are extracted, similar to the Hi-C procedure.

The information contained in long reads is much more local compared to the infor-
mation contained in Hi-C data and can only be effectively used to resolve “small” knots,
where the distance between haploid contigs does not exceed the length of the reads.

120

4.6. Extending to metagenomes

4.6 Extending to metagenomes

The challenge of extending the GraphUnzip procedure to metagenomes lies in de-
termining the multiplicity of all contigs. Since genomes have uneven coverage, utilizing
coverage information becomes much more complex. Further work is needed to deduce the
multiplicity of all contigs from the assembly graph, coverage information, Hi-C data, and
potentially user-provided information.

However, we have found a workaround when GraphUnzip uses long reads to untangle
the graph. In this case, determining the multiplicity of all contigs is not necessary; only
haploid contigs need to be identified. As a substitute for haploid contigs, GraphUnzip
identifies pseudo-haploid contigs. For each contig, GraphUnzip examines the paths on the
graph of all contigs aligning there. If all the paths are consensual (i.e., they can all be seen
as extracts of one “consensus path” on the graph), the contig is labeled as pseudo-haploid.
GraphUnzip then proceeds normally. These contigs are considered “pseudo-haploid” be-
cause there is no guarantee that they are truly haploid, but a path can still be safely
extracted between two pseudo-haploid contigs.

This untangling has been implemented in the Alice assembler, to untangle an unitig
graph with full-length reads and in HairSplitter to improve the contiguity of the Hair-
Splitter assembly once new contigs have been reconstructed.

4.7 Conclusion

We introduce a novel concept called "untangling an assembly graph," which involves
simplifying an assembly graph using long-range data to enhance contiguity. Unlike tradi-
tional scaffolding, untangling leverages the assembly graph extensively but cannot recover
links missed by the assembler. We argue that the optimal strategy combines both untan-
gling and scaffolding. We present a method to untangle assembly graphs using Hi-C or
long reads, implemented in the software GraphUnzip. In the case of haploid and phased
assemblies of Puccina triticina and Adineta vaga, untangling graphs before scaffolding
results in more accurate and contiguous scaffolds with fewer gaps compared to plain scaf-
folding. This improvement was observed across the four scaffolders tested, leading us to
hypothesize that all Hi-C scaffolders would benefit from being combined with GraphUn-
zip.

The strategy presented in this work involves distinctly separating the untangling and

121

Chapter 4 – Using Hi-C to untangle assembly graphs

scaffolding procedures. This approach allows us to provide software that can be easily inte-
grated with all Hi-C scaffolders and will directly benefit from advancements in scaffolding
techniques. However, there is no compelling reason to believe that separating untangling
and scaffolding is the optimal strategy for achieving contiguous assemblies. In fact, the
missing links in the assembly graph can lead to errors in untangling, which could be mit-
igated by modifying the assembly graph. We propose that the best strategy is to develop
strongly graph-guided scaffolders, which we leave for future work.

4.8 Availability

GraphUnzip is freely available on github, at github.com/nadegeguiglielmoni/graphunzip.

122

Chapter 5

CONCLUSION

5.1 Practical contribution

Over the course of this Ph.D., I have endeavoured to propose solutions to bioinfor-
matics challenges that stood in the way of multi-haplotype assembly. Though the initial
goal of the Ph.D. was to improve the assembly of polyploid non-model genomes, over
time the focus of the Ph.D. broadened to include metagenomics. I have focused on what
I believe will be the key techniques for genome assembly in the coming years, namely
affordable long reads sequencing such as Nanopore, high-fidelity sequencing and Hi-C to
finish assemblies. I present Figure 5.1 a graphical summary of how my different software
can be integrated in an assembly pipeline.

The tools proposed in this manuscript all improve the assembly of multiple haplotypes.
GenomeTailor and GraphUnzip focus on improving the large-scale quality of assemblies by
reducing structural errors and ensuring that all genomes are represented as paths through
the assembly graph with few missing contigs and phasing errors. In contrast, HairSplitter
and Alice concentrate on base-level accuracy by recovering SNPs and small indels that
may have been lost during the assembly process. Since the speed of assembly is rarely the
bottleneck in sequencing pipelines, I have not emphasized the speed of these tools (except
for Alice). Nevertheless, I have endeavored to make all these tools efficient, and they do
not significantly increase the time required for assembly compared to equivalent software.

Moreover, the development of haplotype assembly methods led to unexpected applica-
tions. While designed to improve the quality of multi-haplotype assemblies, GenomeTailor
and GraphUnzip also enhanced the quality of haploid assemblies—respectively for Debary-
omyces hansenii and for Puccina triticina and Adineta vaga. Additionally, HairSplitter
proved useful in an unexpected context: amplicon sequencing. Amplicons are markers
(typically genes, such as 16S for bacteria or 28S for eukaryotes) found in all species of a
kingdom and amplified by PCR to detect and distinguish species in a sample. However,
highly similar species have similar genes, making them challenging to differentiate with

123

Multi-haplotype sample

Erroneous long reads
High fidelity long

reads

Collapsed assembly
graph

Completed assembly
graph

Haplotype-separated
assembly

Haplotype-separated
scaffolded assembly

GraphUnzip

GenomeTailor

HairSplitter
(strainMiner)

Alice

Hi-C*

Data collection

Figure 5.1 – Illustration of the organisation of the different software I introduced in this
Ph.D. thesis, with their respective name in bold font. *Hi-C can only be exploited by
GraphUnzip in the context in single-genome assemblies

124

Nanopore sequencing. To address this, amplicons are often sequenced using the more ex-
pensive and labor-intensive Sanger sequencing. We successfully applied HairSplitter to
Nanopore-sequenced Stylophora amplicons and demonstrated (by comparing to Sanger
sequencing) that HairSplitter reliably recovered the amplicon diversity.

5.2 Methodological contributions and perspectives

I hope to have convincingly demonstrated that all my software improves upon the
current state of the art on some aspects. Still, none of them definitively solve all prob-
lems of genome assembly. Assemblies produced by GenomeTailor, HairSplitter, Alice, and
GraphUnzip may still contain errors and be fragmented and incomplete. However, they
are less incomplete, less incorrect and less fragmented that state-of-the art assemblies.
I anticipate (and hope) that most of these tools will be surpassed in the coming years.
Nevertheless, this thesis introduces several new methods that I hope will inspire future
work, which I will now list in the order of their appearance in the manuscript.

Completing assembly graphs GenomeTailor introduces the concept of completing an
assembly graph, which consists in adding links and creating new contigs to try to align all
reads from end-to-end on the assembly graph. Even with the crude strategy implemented
in GenomeTailor, this procedure significantly improves the quality of (multi-haplotype)
assemblies. I hope that in the future, more sophisticated programs will be developed to
correct and complete assembly graphs more effectively than GenomeTailor.

Metagenomic variant calling HairSplitter proposes a new statistical test for variant
calling in the challenging context of metagenomic assembly. The test is robust to unbal-
anced coverages and arbitrary numbers of strains. While the intuition behind this test -
testing correlation across multiple loci - was already presented in [85], the mathematical
formulation proposed here is new and much easier to use compared to the one in [85].
In the strainMiner paper, this test is used to transform the metagenomic variant calling
problem into a well-defined optimisation problem. These results can easily be used as a
basis for future work, even if the error rate of the reads decrease significantly.

MSR sketching My personal favorite idea presented in this manuscript is the use of
Mapping-friendly Sequence Reductions (MSRs) as a sketching technique. MSRs generate

125

sketches in the form of short sequences, which are easy to manipulate. These sketches
have unique properties that make them particularly well-suited for haplotype-aware as-
sembly. Predicting the potential applications of MSR sketching is challenging, as I have
explored only a small fraction of the wide range of existing MSRs. Beyond the presented
application in assembly and its natural extension to alignment, I envision MSRs being
used to sketch large collections of assembled genomes. Such collections could, for example,
enhance taxonomic assignment, which is currently limited by the size of databases — the
largest Kraken2 database is 684 GB [135].

Graph untangling The main methodological contribution of GraphUnzip is its at-
tempt to fully exploit assembly graphs during the scaffolding process. GraphUnzip can be
conveniently integrated with any existing scaffolder. While I am not sure that all future
scaffolders will adopt the two-step strategy of untangling followed by scaffolding, I believe
that they will make much greater use of the information contained in assembly graphs
than their current counterparts, especially when scaffolding multi-haplotype assemblies.

5.3 Future applications

Assembling genomes is rarely the final objective of a study, but merely an important
step to answer a biological question.

Many studies today are limited by the production of haploid genomes. For example,
Nature published in 2020 a study revealing structural rearrangements between several
wheat strains and their impact on a disease resistance [154]. In this study, the assemblies
produced and compared by the authors were all collapsed version of the hexaploid wheat
genomes. As such, the differences identified by the authors between the strains could also
have been present, undetected, between the haplotypes of a single strain 1. In the future,
haplotype-separated assemblies will allow finer comparisons between genomes.

A very promising avenue for understanding microbiomes today is the deduction of
metabolisms and community-scale functional networks directly from the metagenome.
This field of research is very active, with practical applications such as understanding bio-
chemical cycles [155], diabetes [156], and nutrition [157]. However, current limitations in
metagenome assemblies prevent existing software from accounting for conspecific strains,

1. In practice, haplotypes are probably highly similar, as the strains are highly inbred. I am certainly
not questioning the scientific validity of the study.

126

even though the coexistence of such strains likely influences the behavior of microbiomes
[158]. The advent of haplotype-specific assemblies will likely enhance the ability of these
tools to understand the dynamics of microbiomes.

Improving the scaffolding of diploid and polyploid genomes is necessary to improve
our understanding of the evolution of large genomes, which is tightly linked with het-
erozygosity. For example, a 2013 study of the asexual animal Adineta vaga published in
Nature [159] observed that “allelic regions [were] rearranged and sometimes even found
on the same chromosome”, which led the authors to believe that “such structure [did] not
allow meiotic pairing”. While the question of meiotic pairing in A. vaga remains open, fur-
ther study by the same group revealed that this observation was the result of scaffolding
errors [160]. Current research on A. vaga includes GraphUnzip to provide a new telomere-
to-telomere phased assembly which will hopefully help solve the mystery shrouding the
asexual evolution of this species.

127

BIBLIOGRAPHY

1. Magner, L. N., A History of the Life Sciences, Revised and Expanded (CRC Press,
2002).

2. Lane, N., The unseen World: Reflections on Leeuwenhoek (1677) ‘Concerning little
animals’, Philosophical Transactions of The Royal Society B Biological Sciences
370 (Apr. 2015).

3. Pasteur, L., Mémoire sur la fermentation appelée lactique, Ann. Chim. Phys. Ser.
52, 404–418 (Jan. 1858).

4. Koch, R., Verfahren zur Untersuchung, zum Konservieren und Photographieren der
Bakterien, Beiträge zur Biologie der Pflanzen 2, 399–434 (1877).

5. Gradmann, C. & Koch, R., Die Ätiologie Der Tuberkulose (1882), Robert Koch:
Zentrale Texte, 113–131 (2018).

6. Madigan, M. & Martinko, J., Brock Biology of Microorganisms (13th ed.) (ed Ed-
ucation, P.) isbn: 978-0-321-73551-5 (2006).

7. Hiltner, L., Die Keimungsverhältnisse der Leguminosensamen und ihre Beeinflus-
sung durch Organismenwirkung, Arb Biol Abt Land u Forstw K Gsndhtsamt (eds
P, P. & (Eds.), S. J.) 1–545 (1902).

8. Berg, G. et al., Microbiome definition re-visited: old concepts and new challenges,
Microbiome 8 (Dec. 2020).

9. Wade, W., Unculturable bacteria - The uncharacterized organisms that cause oral
infections, Journal of the Royal Society of Medicine 95, 81–3 (Mar. 2002).

10. Yen, S. & Johnson, J., Metagenomics: a path to understanding the gut microbiome,
Mammalian Genome 32 (Aug. 2021).

11. Wilson, D., Binford, L. & Hickson, S., The gut microbiome and mental health,
Journal of Holistic Nursing 42, 79–87 (1 2023).

12. Birnbaum, C. & Trevathan-Tackett, S., Aiding coastal wetland restoration via the
belowground soil microbiome: an overview, Restoration Ecology 31 (7 2022).

129

13. Jiao, S., Chen, W. & Wei, G., Core microbiota drive functional stability of soil
microbiome in reforestation ecosystems, Global Change Biology 28, 1038–1047 (3
2021).

14. Jacoby, R. P., Peukert, M., Succurro, A., Kopřivová, A. & Kopriva, S., The role
of soil microorganisms in plant mineral nutrition—current knowledge and future
directions, Frontiers in Plant Science 8 (2017).

15. Dick, G., The microbiomes of deep-sea hydrothermal vents: distributed globally,
shaped locally, Nature Reviews Microbiology 17 (Mar. 2019).

16. https://en.wikipedia.org/wiki/DNA.

17. Crick, F., On Protein Synthesis, Symposia of the Society for Experimental Biology,
Number XII: The Biological Replication of Macromolecules (ed Press, C. U.) 138–
163 (1958).

18. Pinkard, O., McFarland, S., Sweet, T. & Coller, J., Quantitative tRNA-sequencing
uncovers metazoan tissue-specific tRNA regulation, Nature Communications 11,
4104 (Aug. 2020).

19. Lau, N., Lim, L., Weinstein, E. & Bartel, D., Lau, N. C., Lim, L. P., Weinstein, E.
G. , Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles
in C. elegans. Science 294, 858-862, Science (New York, N.Y.) 294, 858–62 (Nov.
2001).

20. Yang, J. & Hansen, A., Enhancer selectivity in space and time: from enhancer–promoter
interactions to promoter activation, Nature Reviews Molecular Cell Biology 25 (Feb.
2024).

21. Dupont, C., Armant, D. & Brenner, C., Epigenetics: Definition, Mechanisms and
Clinical Perspective, Seminars in reproductive medicine 27, 351–7 (Oct. 2009).

22. Schörner, M., Beyer, S., Southall, J., Cogdell, R. & Köhler, J., Conformational
Memory of a Protein Revealed by Single-Molecule Spectroscopy, The Journal of
Physical Chemistry B 119, 150929213049000 (Sept. 2015).

23. Callaway, E., Million-year-old mammoth genomes shatter record for oldest ancient
DNA, Nature 590 (Feb. 2021).

24. Watson, J. D. & Crick, F. H., The structure of DNA in Cold Spring Harbor symposia
on quantitative biology 18 (1953), 123–131.

130

https://en.wikipedia.org/wiki/DNA

25. Belcour, A. et al., Metage2Metabo, microbiota-scale metabolic complementarity for
the identication of key species, eLife 9 (Dec. 2020).

26. Pavlopoulos, G. et al., Unraveling the functional dark matter through global metage-
nomics, Nature 622 (Oct. 2023).

27. Dairawan, M. & Shetty, P. J., The evolution of DNA extraction methods, Am. J.
Biomed. Sci. Res 8, 39–45 (2020).

28. Dahm, R., Discovering DNA: Friedrich Miescher and the early years of nucleic acid
research, Human genetics 122, 565–81 (Feb. 2008).

29. Wu, R., Nucleotide sequence analysis of DNA. I. Partial sequence of the cohesive
ends of bacteriophage λ and 186 DNA, Journal of molecular biology 51, 501–21
(Sept. 1970).

30. Sanger, F., Nicklen, S. & Coulson, A., DNA Sequencing With Chain Terminating
Inhibitors, Proceedings of the National Academy of Sciences of the United States of
America 74, 5463–7 (Jan. 1978).

31. Shendure, J. et al., DNA sequencing at 40: Past, present and future, Nature 550
(Oct. 2017).

32. Fiers, W. et al., Complete nucleotide sequence of bacteriophage MS2 RNA: primary
and secondary structure of the replicase gene, Nature 260, 500–7 (May 1976).

33. Fleischmann, R. et al., Whole-Genome Random Sequencing and Assembly of Haemophilus
Influenzae Rd, Science (New York, N.Y.) 269, 496–512 (Aug. 1995).

34. Venter, J. C. et al., The Sequence of the Human Genome, Science 291, 1304–1351
(2001).

35. https://www.genome.gov/about-genomics/educational-resources/fact-
sheets/human-genome-project.

36. International Human Genome Sequencing Consortium and others, Initial sequenc-
ing and analysis of the human genome, Nature 409, 860–921 (2001).

37. Green, P., Against a whole-genome shotgun, Genome Research 7, 410–417 (1997).

38. Venter, J. C. et al., Shotgun sequencing of the human genome, Science 280, 1540–
1542 (1998).

39. Lancet, D., Consortium, H. G. S., et al., Initial sequencing and analysis of the
human genome, Nature 409, 860–921 (2001).

131

https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project
https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project

40. Venter, J. C. et al., The sequence of the human genome, science 291, 1304–1351
(2001).

41. Margulies, M. et al., Genome sequencing in microfabricated high-density picolitre
reactors, Nature 437, 376–380, issn: 00280836 (2005).

42. Rothberg, J. M. et al., An integrated semiconductor device enabling non-optical
genome sequencing, Nature 475, 348–352, issn: 00280836 (2011).

43. McKernan, K. J. et al., Sequence and structural variation in a human genome
uncovered by short-read, massively parallel ligation sequencing using two-base en-
coding, Genome Research 19, 1527–1541, issn: 10889051 (2009).

44. Bentley, D. R. et al., Accurate whole human genome sequencing using reversible
terminator chemistry, Nature 456, 53–59, issn: 00280836 (2008).

45. Vollger, M. et al., Segmental duplications and their variation in a complete human
genome, Science (New York, N.Y.) 376, eabj6965 (Apr. 2022).

46. MacKenzie, M. & Argyropoulos, C., An Introduction to Nanopore Sequencing:
Past, Present, and Future Considerations, Micromachines 14, 459 (Feb. 2023).

47. Hu, T., Chitnis, N., Monos, D. & Dinh, A., Next-generation sequencing technolo-
gies: An overview, Human Immunology 82 (Mar. 2021).

48. Wenger, A. M. et al., Accurate circular consensus long-read sequencing improves
variant detection and assembly of a human genome, Nature biotechnology 37, 1155–
1162 (2019).

49. Stoeck, T., Katzenmeier, S., Breiner, H.-W. & Rubel, V., Nanopore duplex sequenc-
ing as an alternative to Illumina MiSeq sequencing for eDNA-based biomonitoring
of coastal aquaculture impacts, Metabarcoding and Metagenomics 8 (May 2024).

50. Sutton, Granger and White, Owen and Adams, Mark D. and Kerlavage, Anthony
R., TIGR Assembler: A new Tool for Assembling Large Shotgun Projects, Genome
Science and Technology 1, 9–19 (1995).

51. Flye Sainte-Marie, C., 48, L’Intermédiaire des Mathématiciens 1, 107–110 (1894).

52. De Bruijn, N. G., A combinatorial problem, Koninklijke Nederlandse Akademie v.
Wetenschappen 49 (1946).

132

53. Bankevich, A. et al., SPAdes: A new genome assembly algorithm and its appli-
cations to single-cell sequencing, Journal of Computational Biology 19, 455–477,
issn: 10665277 (2012).

54. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W., MEGAHIT: An ultra-fast
single-node solution for large and complex metagenomics assembly via succinct de
Bruijn graph, Bioinformatics (Oxford, England) 31 (Sept. 2014).

55. Chikhi, R. & Rizk, G., Space-efficient and exact de Bruijn graph representation
based on a Bloom filter, Algorithms for Molecular Biology logo Algorithms for
Molecular Biology 8 (2013).

56. Ekim, B., Berger, B. & Chikhi, R., Minimizer-space de Bruijn graphs: Whole-
genome assembly of long reads in minutes on a personal computer, Cell Systems
12 (Sept. 2021).

57. Staden, R., A strategy of DNA sequencing employing computer programs, Nucleic
Acids Research 6, 2601–2610 (1979).

58. Guiglielmoni, N., Improving genome assemblies of non-model non-vertebrate an-
imals with long reads and Hi-C Available at https://difusion.ulb.ac.be/
vufind/Record/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/331242/Holdings,
PhD thesis (Université Libre de Bruxelles, Brussels, Belgium, June 2021).

59. Denisov, G. et al., Consensus generation and variant detection by Celera Assembler,
Bioinformatics 24, 1035–1040, issn: 13674803 (2008).

60. Vaser, R. & Šikić, M., Time-and memory-efficient genome assembly with Raven,
Nature Computational Science 1, 332–336 (2021).

61. Li, H., Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences, Bioinformatics 32, 2103–2110 (2016).

62. Koren, S. et al., Canu: scalable and accurate long-read assembly via adaptive k-
mer weighting and repeat separation, Genome Research 25, 1–11, eprint: 071282
(2017).

63. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H., Haplotype-resolved
de novo assembly using phased assembly graphs with hifiasm, Nature Methods, 1–6
(2021).

133

https://difusion.ulb.ac.be/vufind/Record/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/331242/Holdings
https://difusion.ulb.ac.be/vufind/Record/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/331242/Holdings
071282

64. Wick, R. R., Judd, L. M. & Holt, K. E., Assembling the perfect bacterial genome
using Oxford Nanopore and Illumina sequencing, PLOS Computational Biology 19,
e1010905 (2023).

65. Makałowski, W., The human genome structure and organization. Acta Biochimica
Polonica 48, 587–598 (2001).

66. Ceppellini, R. et al., Genetics of leukocyte antigens: a family study of segregation
and linkage. in Report of Histocompatibility testing 1967 (ed Curtoni E.S. Mattiuz
P.L., T. R.) (1967).

67. Rice, E. S. & Green, R. E., New approaches for genome assembly and scaffolding,
Annual review of animal biosciences 7, 17–40 (2019).

68. Boetzer, M. & Pirovano, W., SSPACE-LongRead: scaffolding bacterial draft genomes
using long read sequence information, BMC bioinformatics 15, 1–9 (2014).

69. Lieberman-Aiden, E. et al., Comprehensive mapping of long-range interactions re-
veals folding principles of the human genome, science 326, 289–293 (2009).

70. Burton, J. N. et al., Chromosome-scale scaffolding of de novo genome assemblies
based on chromatin interactions, Nature biotechnology 31, 1119–1125 (2013).

71. Rautiainen, M. et al., Telomere-to-telomere assembly of diploid chromosomes with
Verkko, Nature Biotechnology 41, 1474–1482 (2023).

72. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P., MetaSPAdes: A new
versatile metagenomic assembler, Genome Research 27, gr.213959.116 (Mar. 2017).

73. Benoit, G. et al., High-quality metagenome assembly from long accurate reads with
metaMDBG, Nature Biotechnology, 1–6 (Jan. 2024).

74. Feng, X., Cheng, H., Portik, D. & Li, H., Metagenome assembly of high-fidelity
long reads with hifiasm-meta, Nature Methods 19, 1–4 (June 2022).

75. Kolmogorov, M. et al., metaFlye: scalable long-read metagenome assembly using
repeat graphs, Nature Methods 17, 1–8 (Nov. 2020).

76. Friedmann, H., Escherich and Escherichia, EcoSal Plus 6, 1–34 (May 2014).

77. Méric, G., Hitchings, M., Pascoe, B. & Sheppard, S., From Escherich to the Es-
cherichia coli genome, The Lancet Infectious Diseases 16, 634–636 (June 2016).

78. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A., Assembly of long, error-prone
reads using repeat graphs, Nature Biotechnology 37, 540–546 (2019).

134

79. Ruan, J. & Li, H., Fast and accurate long-read assembly with wtdbg2, en, Nature
Methods 17, 155–158, issn: 1548-7105 (2020).

80. Edge, P., Bafna, V. & Bansal, V., HapCUT2: robust and accurate haplotype as-
sembly for diverse sequencing technologies, Genome research 27, 801–812 (2017).

81. Martin, M. et al., WhatsHap: fast and accurate read-based phasing, BioRxiv,
085050 (2016).

82. Schrinner, S. D. et al., Haplotype threading: accurate polyploid phasing from long
reads, Genome biology 21, 1–22 (2020).

83. Luo, X., Kang, X. & Schönhuth, A., Phasebook: haplotype-aware de novo assembly
of diploid genomes from long reads, Genome biology 22, 1–26 (2021).

84. Vicedomini, R., Quince, C., Darling, A. E. & Chikhi, R., Strainberry: automated
strain separation in low-complexity metagenomes using long reads, en, Nature Com-
munications 12, 4485, issn: 2041-1723 (July 2021).

85. Feng, Z., Clemente, J., Wong, B. & Schadt, E., Detecting and phasing minor single-
nucleotide variants from long-read sequencing data, Nature Communications 12,
3032 (May 2021).

86. Kazantseva, E., Donmez, A., Pop, M. & Kolmogorov, M., stRainy: assembly-based
metagenomic strain phasing using long reads en, preprint (Bioinformatics, Feb.
2023).

87. Luo, X., Kang, X. & Schönhuth, A., Strainline: full-length de novo viral haplotype
reconstruction from noisy long reads, Genome Biology 23 (Jan. 2022).

88. Cai, D., Shang, J. & Sun, Y., HaploDMF: viral Haplotype reconstruction from long
reads via Deep Matrix Factorization, Bioinformatics 38 (Oct. 2022).

89. Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C.-S., Scaffolding of long read
assemblies using long range contact information, BMC genomics 18, 1–11 (2017).

90. Dudchenko, O. et al., De novo assembly of the Aedes aegypti genome using Hi-C
yields chromosome-length scaffolds, Science 356, 92–95 (2017).

91. Zhou, C., McCarthy, S. A. & Durbin, R., YaHS: yet another Hi-C scaffolding tool,
Bioinformatics 39, btac808 (2023).

135

92. Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H., Assembly of allele-aware,
chromosomal-scale autopolyploid genomes based on Hi-C data, Nature plants 5,
833–845 (2019).

93. Ouchi, S., Kajitani, R. & Itoh, T., GreenHill: a de novo chromosome-level scaffolding
and phasing tool using Hi-C, Genome Biology 24, 162 (2023).

94. Zeng, X. et al., Chromosome-level scaffolding of haplotype-resolved assemblies using
Hi-C data without reference genomes, Nature Plants, 1–17 (2024).

95. Baudry, L., Foutel-Rodier, T., Thierry, A., Koszul, R. & Marbouty, M., MetaTOR: a
computational pipeline to recover high-quality metagenomic bins from mammalian
gut proximity-ligation (meta3C) libraries, Frontiers in genetics 10, 753 (2019).

96. Du, Y. & Sun, F., MetaCC allows scalable and integrative analyses of both long-
read and short-read metagenomic Hi-C data, Nature Communications 14, 6231
(2023).

97. Mikheenko, A., Saveliev, V. & Gurevich, A., MetaQUAST: evaluation of metagenome
assemblies, Bioinformatics 32, 1088–1090 (2016).

98. Chen, Y., Zhang, Y., Wang, A. Y., Gao, M. & Chong, Z., Accurate long-read de
novo assembly evaluation with Inspector, Genome Biology 22, 1–21 (2021).

99. Li, K., Xu, P., Wang, J., Yi, X. & Jiao, Y., Identification of errors in draft genome
assemblies at single-nucleotide resolution for quality assessment and improvement,
Nature Communications 14, 6556 (2023).

100. Zhang, Y., Lu, H.-W. & Ruan, J., GAEP: a comprehensive genome assembly eval-
uating pipeline, Journal of Genetics and Genomics 50, 747–754 (2023).

101. Madrigal, G., Minhas, B. F. & Catchen, J., Klumpy: A tool to evaluate the integrity
of long-read genome assemblies and illusive sequence motifs, Molecular Ecology
Resources, e13982 (2024).

102. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G., QUAST: Quality assessment
tool for genome assemblies, Bioinformatics (Oxford, England) 29 (Feb. 2013).

103. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M., Merqury: reference-free qual-
ity, completeness, and phasing assessment for genome assemblies, Genome biology
21, 1–27 (2020).

136

104. Mapleson, D., Accinelli, G., Kettleborough, G., Wright, J. & Clavijo, B., KAT: A
K-mer Analysis Toolkit to quality control NGS datasets and genome assemblies,
Bioinformatics (Oxford, England) 33 (Oct. 2016).

105. Asalone, K. C. et al., Regional sequence expansion or collapse in heterozygous
genome assemblies, PLoS computational biology 16, e1008104 (2020).

106. Li, H., Feng, X. & Chu, C., The design and construction of reference pangenome
graphs with minigraph, Genome biology 21, 1–19 (2020).

107. Eizenga, J. M., Lorig-Roach, R., Meredith, M. M. & Paten, B., Walk-preserving
transformation of overlapped sequence graphs into blunt sequence graphs with Get-
Blunted in Conference on Computability in Europe (2021), 169–177.

108. Garrison, E. & Guarracino, A., Unbiased pangenome graphs, Bioinformatics 39,
btac743 (2023).

109. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M., Fast and accurate de novo genome
assembly from long uncorrected reads, Genome research 27, 737–746 (2017).

110. Faure, R., Lavenier, D. & Flot, J.-F., HairSplitter: haplotype assembly from long,
noisy reads, bioRxiv, 2024–02 (2024).

111. Seemann, T. & Booth, T., Barrnap: basic rapid ribosomal RNA predictor, GitHub
repository (2018).

112. Long, E. O. & Dawid, I. B., Repeated genes in eukaryotes, Annual review of bio-
chemistry 49, 727–764 (1980).

113. Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E., Bandage: interactive visual-
ization of de novo genome assemblies, Bioinformatics 31, 3350–3352 (2015).

114. Hickey, G. et al., Pangenome graph construction from genome alignments with
Minigraph-Cactus, Nature biotechnology 42, 663–673 (2024).

115. Nurk, S. et al., HiCanu: accurate assembly of segmental duplications, satellites,
and allelic variants from high-fidelity long reads, Genome research 30, 1291–1305
(2020).

116. Luo, X., Kang, X. & Schönhuth, A., VeChat: correcting errors in long reads using
variation graphs, Nature communications 13, 6657 (2022).

117. Faure, R., Flot, J.-F. & Lavenier, D., HairSplitter: separating strains in metagenome
assemblies with long reads in Proc. JOBIM (2023).

137

118. Truong, T. K. M., Faure, R. & Andonov, R., Assembling close strains in metagenome
assemblies using discrete optimization in Proceedings of the 15th International Con-
ference on Bioinformatics Models, Methods and Algorithms (Feb. 2024), https:
//bioinformatics.scitevents.org.

119. Travers, K. J., Chin, C.-S., Rank, D. R., Eid, J. S. & Turner, S. W., A flexible
and efficient template format for circular consensus sequencing and SNP detection,
Nucleic acids research 38, e159–e159 (2010).

120. Loomis, E. W. et al., Sequencing the unsequenceable: expanded CGG-repeat alleles
of the fragile X gene, Genome research 23, 121–128 (2013).

121. Li, H. & Durbin, R., Genome assembly in the telomere-to-telomere era, Nature
Reviews Genetics, 1–13 (2024).

122. Logsdon, G. A., Vollger, M. R. & Eichler, E. E., Long-read human genome sequenc-
ing and its applications, Nature Reviews Genetics 21, 597–614 (2020).

123. Yu, W. et al., Comprehensive Assessment of Eleven de novo HiFi Assemblers on
Complex Eukaryotic Genomes and Metagenomes, bioRxiv, 2023–06 (2023).

124. Rowe, W. P., When the levee breaks: a practical guide to sketching algorithms for
processing the flood of genomic data, Genome biology 20, 1–12 (2019).

125. Blassel, L., Medvedev, P. & Chikhi, R., Mapping-friendly sequence reductions: Go-
ing beyond homopolymer compression, Iscience 25 (2022).

126. Shafin, K. et al., Nanopore sequencing and the Shasta toolkit enable efficient
de novo assembly of eleven human genomes, Nature biotechnology 38, 1044–1053
(2020).

127. Li, H. et al., The sequence alignment/map format and SAMtools, bioinformatics
25, 2078–2079 (2009).

128. Teeling, H., Waldmann, J., Lombardot, T., Bauer, M. & Glöckner, F. O., TETRA: a
web-service and a stand-alone program for the analysis and comparison of tetranu-
cleotide usage patterns in DNA sequences, BMC bioinformatics 5, 1–7 (2004).

129. Ondov, B. D. et al., Mash: fast genome and metagenome distance estimation using
MinHash, Genome biology 17, 1–14 (2016).

138

https://bioinformatics.scitevents.org
https://bioinformatics.scitevents.org

130. Bradley, P., Den Bakker, H. C., Rocha, E. P., McVean, G. & Iqbal, Z., Ultrafast
search of all deposited bacterial and viral genomic data, Nature biotechnology 37,
152–159 (2019).

131. Li, H., Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics 34,
3094–3100 (2018).

132. ENA, ENA statistics https://www.ebi.ac.uk/ena/browser/about/statistics
(2024).

133. Loh, P.-R., Baym, M. & Berger, B., Compressive genomics, Nature biotechnology
30, 627–630 (2012).

134. Burrows, M. & Wheeler, D., A Block-Sorting Lossless Data Compression Algorithm,
Digital Systems Research Center Research Reports 1 (July 1995).

135. Wood, D. E. & Salzberg, S. L., Kraken: ultrafast metagenomic sequence classifica-
tion using exact alignments, Genome biology 15, 1–12 (2014).

136. Břinda, K. et al., Efficient and Robust Search of Microbial Genomes via Phyloge-
netic Compression, bioRxiv, 2023–04 (2023).

137. Chikhi, R., Holub, J. & Medvedev, P., Data structures to represent a set of k-long
DNA sequences, ACM Computing Surveys (CSUR) 54, 1–22 (2021).

138. Salikhov, K., Sacomoto, G. & Kucherov, G., Using cascading Bloom filters to im-
prove the memory usage for de Brujin graphs, Algorithms for Molecular Biology 9,
1–10 (2014).

139. Chin, C.-S. & Khalak, A., Human genome assembly in 100 minutes, BioRxiv, 705616
(2019).

140. Carroll, L., Alice’s Adventures in Wonderland (Macmillan and Co., London, 1865).

141. Kazemi, P. et al., ntHash2: recursive spaced seed hashing for nucleotide sequences,
Bioinformatics 38, 4812–4813 (2022).

142. Chikhi, R., Limasset, A. & Medvedev, P., Compacting de Bruijn graphs from se-
quencing data quickly and in low memory, Bioinformatics 32, i201–i208 (2016).

143. Bankevich, A., Bzikadze, A. V., Kolmogorov, M., Antipov, D. & Pevzner, P. A.,
Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads,
Nature biotechnology 40, 1075–1081 (2022).

139

https://www.ebi.ac.uk/ena/browser/about/statistics

144. Ghurye, J. et al., Integrating Hi-C links with assembly graphs for chromosome-
scale assembly, en, PLOS Computational Biology 15, Number: 8 Publisher: Public
Library of Science, e1007273, issn: 1553-7358, https://journals.plos.org/
ploscompbiol/article?id=10.1371/journal.pcbi.1007273 (2021) (Aug. 2019).

145. Guan, D., McCarthy, S., Ning, Z., Wang, G. & Wang, Y., Efficient iterative Hi-C
scaffolder based on N-best neighbors, BMC Bioinformatics 22 (Nov. 2021).

146. Baudry, L. et al., instaGRAAL: chromosome-level quality scaffolding of genomes
using a proximity ligation-based scaffolder, Genome Biology 21, 1–22 (2020).

147. Sur, A., Noble, W. S. & Myler, P. J., A benchmark of Hi-C scaffolders using refer-
ence genomes and de novo assemblies en, preprint (Genomics, Apr. 2022), http:
//biorxiv.org/lookup/doi/10.1101/2022.04.20.488415 (2022).

148. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E., Unicycler: Resolving bacterial
genome assemblies from short and long sequencing reads, en, PLOS Computational
Biology 13, Publisher: Public Library of Science, e1005595, issn: 1553-7358, https:
//journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.
1005595 (2021) (June 2017).

149. Duan, H. et al., Physical separation of haplotypes in dikaryons allows benchmarking
of phasing accuracy in Nanopore and HiFi assemblies with Hi-C data, Genome
Biology 23, 84, issn: 1474-760X, https://doi.org/10.1186/s13059- 022-
02658-2 (2022) (Mar. 2022).

150. Simion, P. et al., Chromosome-level genome assembly reveals homologous chro-
mosomes and recombination in asexual rotifer Adineta vaga, Science Advances 7,
eabg4216, issn: 2375-2548, https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC8494291/ (2022).

151. Roach, M., Schmidt, S. & Borneman, A., Purge Haplotigs: Allelic contig reassign-
ment for third-gen diploid genome assemblies, BMC Bioinformatics 19 (Nov. 2018).

152. Cheng, H. et al., Haplotype-resolved assembly of diploid genomes without parental
data, en, Nature Biotechnology 40, Number: 9 Publisher: Nature Publishing Group,
1332–1335, issn: 1546-1696, https://www.nature.com/articles/s41587-022-
01261-x (2022) (Sept. 2022).

153. Rautiainen, M. & Marschall, T., GraphAligner: rapid and versatile sequence-to-
graph alignment, Genome biology 21, 253 (2020).

140

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007273
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007273
http://biorxiv.org/lookup/doi/10.1101/2022.04.20.488415
http://biorxiv.org/lookup/doi/10.1101/2022.04.20.488415
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005595
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005595
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005595
https://doi.org/10.1186/s13059-022-02658-2
https://doi.org/10.1186/s13059-022-02658-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494291/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494291/
https://www.nature.com/articles/s41587-022-01261-x
https://www.nature.com/articles/s41587-022-01261-x

154. Walkowiak, S. et al., Multiple wheat genomes reveal global variation in modern
breeding, Nature 588, 277–283 (2020).

155. Zhou, Z. et al., METABOLIC: high-throughput profiling of microbial genomes
for functional traits, metabolism, biogeochemistry, and community-scale functional
networks, Microbiome 10, 33 (2022).

156. Belcour, A. et al., Metage2Metabo, microbiota-scale metabolic complementarity for
the identification of key species, Elife 9, e61968 (2020).

157. Zorrilla, F., Buric, F., Patil, K. R. & Zelezniak, A., metaGEM: reconstruction of
genome scale metabolic models directly from metagenomes, Nucleic Acids Research
49, e126–e126 (2021).

158. Zhu, A., Sunagawa, S., Mende, D. R. & Bork, P., Inter-individual differences in the
gene content of human gut bacterial species, Genome biology 16, 1–13 (2015).

159. Flot, J.-F. et al., Genomic evidence for ameiotic evolution in the bdelloid rotifer
Adineta vaga, Nature 500, 453–457 (2013).

160. Simion, P. et al., Chromosome-level genome assembly reveals homologous chro-
mosomes and recombination in asexual rotifer Adineta vaga, Science Advances 7,
eabg4216 (2021).

141

RÉSUMÉ EN FRANÇAIS

Note to non-French-speaking readers: This 5-page summary of the thesis in French is
a requisite for French universities. It does not contain any original information.

Introduction

Si l’étude des grands organismes eucaryotes est historiquement bien documentée, on ne
peut en dire autant de celle des microorganismes, qui représentent pourtant l’écrasante
majorité de la biodiversité. Leur petite taille et leur diversité rend leur observation et
leur compréhension complexe et, des avis subjectifs que j’ai pu recueillir, ennuyeuse. Je
m’en étouffe d’indignation. Historiquement, des microorganismes ont été observés pour la
première fois en 1676. Au XIXème siècle, on découvre leur rôle dans la fermentation et les
maladies. Au XXème siècle, on découvre que les microorganismes forment des écosystèmes
invisibles. Grace aux techniques de génomique du XXIème siècle, on a découvert que ces
écosystèmes, qu’on appelle microbiomes, ont en fait une importance primordiale sur notre
santé, à travers notre intestin. Depuis, les découvertes s’accumulent. Par exemple, les
microbiomes joueraient un rôle central dans les cycles biogéochimiques, dans la croissance
des cultures et dans certaines chaînes alimentaires. L’étendue des découvertes dans à venir
dans ce domaine est par essence difficile à estimer, mais à mon avis immense. L’objectif de
ma thèse est d’améliorer les méthodes informatiques utilisées en génomique et de fournir
aux biologistes de nouveaux outils permettant l’étude des microbiomes.

Le séquençage de l’ADN est la technique centrale de l’étude des microbiomes. Le
premier séquençage a été publié en 1970 et en 1977 Frederick Sanger publie la première
méthode utilisée à grande échelle, ce qui lui rapportera un deuxième prix Nobel. La
méthode proposée par Sanger est chère pour les longs génomes - la première bactérie n’est
séquencée qu’en 1995 et le premier génome humain en 2001, pour la modique somme de 3
milliards d’euros. Depuis, des séquenceurs de deuxième puis de troisième génération sont
apparus, ce qui a permis de diviser par plus d’un million le prix du séquençage.

Les protocoles de séquençage actuels produisent de nombreux fragments d’ADN, ap-
pelés “lectures” et qui sont des extraits des génomes de l’échantillon. Dans cette thèse,

143

BIBLIOGRAPHY

ACACACA

GTGTGTG
GGGGGGG

AGAGAGAG

CTCTCTCT

b.

c.

ACACACAGGGGG

GTGTGTGGGGG
GGGGGAGAGAGAG
GGGGGCTCTCTCT

a.

Figure 5.2 – Graphes d’assemblages. a) Lectures b) Un graphe d’assemblage qui
représente plusieurs génomes. Les génomes pourraient être {ACACACAGGGGGGGAGAGAGAG,
GTGTGTGGGGGGGGCTCTCTCT} ou {ACACACAGGGGGGGCTCTCTCT, GTGTGTGGGGGGGGAGAGAGAG}
ou les deux à la fois. c) Une convention est de remplacer des séquences par des rectangles
de couleur.

je vais me concentrer sur la technologie des “lectures longues”, qui produit des lectures
de quelques milliers de bases. “Longues” est un qualificatif tout relatif, sachant que les
chromosomes humains mesurent plusieurs centaines de millions de bases. Ces lectures ont
donc besoin d’être assemblées par des logiciels appelés assembleurs pour reconstruire les
génomes entiers. Les assembleurs produisent des graphes d’assemblage, comme illustré
Figure 5.2. Ces graphes sont composés de contigs, qui sont des séquences, et d’arêtes
entre ces contigs. Chaque chromosome des génomes peut être représenté par un chemin
dans ce graphe.

Un problème majeur des assemblages d’aujourd’hui est la présence de plusieurs séquences
très proches, ou haplotypes, dans un génome. Typiquement, plusieurs bactéries très sem-
blables peuvent cohabiter dans un microbiome mais avoir des fonctions très différentes.
Bien qu’il soit important de réussir à les distinguer, la tâche est rendue ardue par le taux
d’erreurs parfois élevé des lectures. Les assembleurs confondent prennent les différences

144

BIBLIOGRAPHY

les souches bactériennes pour des erreurs de séquençage et produisent un assemblage qui
ne représente le génome que d’une des souches, ce qui ne peut que laisser un goût amer
dans la bouche du bioinformaticien consciencieux, sans même parler du goût laissé dans
la bouche du biologiste minutieux. Cette thèse s’attaque à ce problème.

Complétion et correction des graphes d’assemblage

La notion de complétude d’un assemblage est centrale dans l’évaluation de sa qual-
ité – cela mesure si le génome a été entièrement reconstitué par l’assembleur. Je pro-
pose de généraliser les définitions habituelles de la complétude et de définir un graphe
d’assemblage complet si tous les chromosomes sont représentés par un chemin dans le
graphe d’assemblage. Malheureusement, en pratique, les graphes d’assemblages sont rarement
complets. En particulier, quand plusieurs haplotypes sont présents, les assembleurs ont
tendance à faire de nombreuses erreurs. Voir Figure 5.3 pour un exemple de graphe
d’assemblage complet et incomplet.

Cette thèse introduit une nouvelle méthode, implémentée dans le logiciel GenomeTai-
lor, qui permet de corriger et de compléter les graphes d’assemblage. Nous montrons sur
plusieurs exemples que GenomeTailor améliore la qualité des assemblages. Si le coeur de
notre réflexion porte sur les assemblages compliqués de souches bactériennes proches, nous
avons également réussi à améliorer un assemblage de levure et obtenu un assemblage de
Debaryomyces hansenii d’une qualité exceptionnelle.

Assemblage à partir de lectures bruitées

Le sujet d’origine, et sans doute le plus gros travail de cette thèse, a porté sur
l’obtention d’un assemblage phasé à partir de lectures bruitées. La stratégie adoptée a
été de partir d’un premier assemblage et d’essayer d’en récupérer les différents haplo-
types. Dans une première étape, le graphe d’assemblage est corrigé avec GenomeTailor,
ce qui permet de représenter les différences structurales entre les haplotypes. En revanche,
les petites différences entres les haplotypes (par exemples les SNPs, des différences d’une
seule base) sont beaucoup plus difficiles à détecter. En effet, il est facile de constater
qu’une lecture diffère de l’assemblage en un point. Il est par contre beaucoup plus dur
de dire si cette différence est due à une erreur de séquençage ou à la présence de deux
souches proches qui ne diffèrent que d’une base.

145

BIBLIOGRAPHY

A B
C

D
E F G

A B C E F G

A B D E F G
Genome

A B C

D

E F G
a.

b.

Figure 5.3 – Deux graphes d’assemblage différents visant à représenter le même génome. Le
génome est composé de deux haplotypes, avec deux régions hétérozygotes (C et D) et une
région inversée, F. L’assemblage a contient plusieurs problèmes. Tout d’abord, le contig A
est incorrect, car la séquence (grise et bleue) n’est pas présente dans le génome d’origine.
Bien que les autres contigs soient corrects, le graphe est incomplet : aucun chemin continu
à travers le graphe ne peut inclure le contig D ou représenter correctement l’inversion de
F. En revanche, b est un graphe d’assemblage complet

146

BIBLIOGRAPHY

La thèse propose une nouvelle méthode statistique pour différencier les erreurs de
séquençage des différences entre les souches bactériennes. L’astuce principale consiste à
considérer simultanément plusieurs positions proches dans l’assemblage. Les erreurs de
séquençage ne sont pas corrélées le long d’un assemblage. La détection d’une corrélation
le long de l’assemblage est alors une signature forte de la présence de plusieurs souches.
Nous proposons un test statistique simple et robuste pour tester cette corrélation.

Nous avons implémenté un logiciel, HairSplitter, qui exploite ce test statistique pour
produire un assemblage phasé en détectant les souches perdues lors de l’assemblage. Hair-
Splitter aligne les lectures sur l’assemblage de départ, détecte les éventuelles souches
perdues, identifie les lectures qui proviennent de ces souches et reconstruit un assemblage
complet. Nous avons testé HairSplitter sur des jeux de données réels et simulés, et mon-
trons que ce logiciel améliore significativement l’état de l’art dans le cas où de nombreuses
souches sont présentes dans un microbiome, tout en prenant moins de temps.

Finalement, nous avons décrit le problème de séparation des haplotypes comme un
problème d’optimisation. L’implémentation de HairSplitter de manière modulaire permet
de facilement intégrer des nouvelles idées d’optimisation dans le logiciel.

Obtenir un assemblage phasé à partir de lectures pré-
cises

Le taux d’erreurs de séquençage est en train de fortement diminuer. Dans les dernières
années, il est apparu dans le paysage des technologies de séquençages des séquenceurs
“haute fidélité” (HiFi), qui produisent des lectures dont le taux d’erreur ne dépasse pas
le demi pourcent. Bien que ces lectures restent chères et compliquées à obtenir, il est
possible qu’elles deviennent hégémoniques dans les années à venir.

Le faible taux d’erreurs des lectures simplifie considérablement les problèmes d’assemblage,
et notamment l’assemblage de plusieurs haplotypes. Malheureusement, les assembleurs
spécifiques developpés au cours des dernières années ne parviennent pas à assembler des
mélanges de souches de manière satisfaisante. Nous proposons ici une nouvelle méthode
d’assemblage, qui consiste à faire des “sketchs” des lectures en se basant sur la technique
des “Mapping-friendly Sequence Reductions” (MSRs). Dit autrement, les lectures sont
représentées par de plus courtes séquences qui sont assemblées. L’assemblage final est
ensuite déduit de l’assemblage réduit. Cette technique a le double avantage d’être très
efficace computationnellement parlant et de pouvoir produire des assemblages de mélange

147

BIBLIOGRAPHY

CCCGCGATTGCATTAATGACGA
AGTCGAAGTACCCGCGATTGCAT

Full sequences Reduced sequences

CCCGCGATTGCATTAATGACGA
AGTCGAAGTACCCGCGATTGCAT

GGCT
CTTA

Alignment Alignment

GGCT
CTTA

Assembly

AGTCGAAGTACCCGCGATTGCATTAATGACGA

Assembly

GGCTTA

MSR_1

MSR_1

MSR_1

Inv_MSR_1

Figure 5.4 – Un exemple d’assemblage qui utilise un sketch nommé MSR_1. Appliqué
sur CCCGCGATTGCATTAATGACGA, MSR_1 donne la séquence réduite CTTA. Les
séquences réduites peuvent être assemblées puis décompressées à l’aide de la fonction
Inv_MSR_1 pour obtenir l’assemblage désiré.

de souches de haute qualité. L’assembleur est décrit Figure 5.4.

Amélioration du scaffolding des génomes

Le dernier travail de cette thèse a porté sur le scaffolding de génomes. Quel que
soit l’assembleur, les lectures de séquençage ne comportent généralement pas suffisament
d’information pour reconstruire entièrement les génomes - c’est pourquoi les assembleurs
ne reconstituent que des graphes (voir Figure 5.2). Le but d’un scaffoldeur est d’utiliser
des technologies auxiliaires, typiquement celle appelée Hi-C, pour améliorer la contigu-
ité d’un assemblage, c’est à dire augmenter la longueurs des contigs, idéalement jusqu’à
n’avoir qu’un contig par chromosome.

Si de nombreux scaffoldeurs existent pour les génomes haploïdes et multiploïdes, ils
exploitent très peu l’information représentée par les arêtes des graphes d’assemblage. Nous
proposons une nouvelle méthode pour scaffolder des assemblages, qui consiste d’abord à

148

BIBLIOGRAPHY

démêler le graphe d’assemblage puis à faire un scaffoldage classique. Cette méthode permet
d’exploiter pleinement les graphes d’assemblage. Implémenté dans le logiciel GraphUnzip,
nous avons largement amélioré les scaffoldages d’assemblages haploïdes et multiploïdes.
GraphUnzip est compatible avec tous les scaffoldeurs actuels et pourrait y être aisément
intégré.

149

Titre : Assemblage d’haplotypes à partir de lectures longues

Mot clés : Assemblage de génome, metagénomique, haplotypage, séquençage de troisième

génération (TGS)

Résumé : Cette thèse propose des solutions
pour améliorer l’assemblage des génomes
à partir de lectures de séquençage de troi-
sième génération (lectures longues). Plus pré-
cisément, elle se concentre sur l’amélioration
de l’assemblage des (méta)génomes conte-
nant plusieurs haplotypes, comme des gé-
nomes polyploïdes ou des souches bacté-
riennes proches. Les assembleurs actuels ont
du mal à séparer les haplotypes très simi-
laires, et fusionnent généralement des (par-
ties d’)haplotypes, ce qui entraîne la perte de
polymorphismes et d’hétérozygotie dans l’as-
semblage final. Ce travail présente une sé-
rie de méthodes et de logiciels pour obte-
nir des assemblages contenant des haplo-

types bien séparés. Plus précisément, Geno-
meTailor et HairSplitter transforment un as-
semblage obtenu avec des lectures longues
erronées en un assemblage phasé, amélio-
rant considérablement l’état de l’art lorsque de
nombreuses souches sont présentes. Le logi-
ciel Alice propose une nouvelle méthode, ba-
sée sur des nouveaux sketchs “MSR”, pour
assembler efficacement plusieurs haplotypes
séquencés avec des lectures de haute fidélité.
Enfin, cette thèse propose une nouvelle stra-
tégie de scaffolding Hi-C basée sur le démê-
lage des graphes d’assemblage qui améliore
considérablement les assemblages finaux, en
particulier lorsque plusieurs haplotypes sont
présents.

Title: Haplotype assembly from long reads

Keywords: Genome assembly, metagenomics, haplotyping, Third Generation Sequencing (TGS)

Abstract: This thesis presents solutions to im-
prove genome assembly from third-generation
sequencing reads, with a specific focus on im-
proving the assembly of (meta)genomes con-
taining multiple haplotypes, such as polyploid
genomes or close bacterial strains. Current
assemblers struggle to separate highly sim-
ilar haplotypes, often collapsing all or parts
of the haplotypes into one, thereby discard-
ing polymorphisms and heterozygosity. This
work introduces a series of methods and
software tools to achieve haplotype-separated
assemblies. Specifically, GenomeTailor and

HairSplitter transform a collapsed assembly
obtained with erroneous long reads into a
phased assembly, significantly improving on
the state of the art when numerous strains
are present. The software Alice introduces a
new method based on the new “MSR” sketch-
ing technique for efficiently assembling mul-
tiple haplotypes sequenced with high-fidelity
reads. Additionally, this thesis proposes a new
Hi-C scaffolding strategy that involves untan-
gling assembly graphs which significantly im-
proves final assemblies, particularly when sev-
eral haplotypes are present.

	Introduction
	Sequencing and assembling a genome
	Genomes
	DNA extraction
	DNA sequencing
	Genome assembly
	Finishing an assembly

	Challenges of metagenome assembly and outline of the thesis
	Metagenome assembly
	Assembling haplotypes with erroneous reads
	Assembling haplotypes with highly precise reads
	Finishing a multi-haplotype assembly

	Evaluating and improving assembly graphs
	Evaluating assembly graphs
	Improving metagenome assemblies
	GenomeTailor
	Results
	Datasets
	Metrics
	Benchmark results
	Completing a Debaryomyces hansenii assembly

	Discussion

	Recovering haplotypes using noisy long reads
	HairSplitter: first algorithm
	HairSplitter: haplotype assembly from long, noisy reads
	strainMiner: combining ILP and data mining for strain-level assembly

	Assembling high-fidelity reads
	Mapping-friendly Sequence Reductions as a sketching technique for assembly
	Objective
	Definition of Mapping-friendly Sequence Reductions
	Performing assembly with reduced sequences
	Designing a good MSR sketch
	Why are MSRs interesting?

	Alice: fast and accurate assembly of high-fidelity reads based on MSR sketching
	Introduction
	Methods
	Results
	Discussion

	Using Hi-C to untangle assembly graphs
	Context
	Introduction
	Methods
	Input
	Multiplicity of contigs
	Knots
	Paths
	Output
	Haploid assembly

	Results
	Datasets
	Protocol
	Collapsed haploid assembly: results
	Diploid assembly: results
	Performance

	Untangling the graph with long reads
	Extending to metagenomes
	Conclusion
	Availability

	Conclusion
	Conclusion
	Practical contribution
	Methodological contributions and perspectives
	Future applications

	Bibliography

