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CHAPTER 1

Overview

“La contrainte est un instrument pour aller plus loin.
La création naît souvent de là.”

Christian Lacroix

This manuscript outlines my approach to addressing issues related to waves propaga-
tion and their interaction with the surrounding environment. Some of the concepts dis-
cussed are common within the scientific community, where I exchange ideas and find in-
spiration. As a result, I am not the author of all the ideas presented here. However, my
goal is to offer a personal perspective on certain mathematical and numerical modeling
challenges. The descriptions provided are therefore selective and not exhaustive.

My research primarily focuses on the modeling and numerical resolution of free-
surface flows over large time and spatial scales. Although the Navier-Stokes model is
the cornerstone of fluid mechanics, at large scales, approximate models are often more
appropriate. These models can deliver faster and sometimes more accurate results due to
better-controlled numerical methods. In practice, numerous simulations are often required,
either to account for uncertainties in the model or data, as in ensemble forecasting, or to
optimize processes and devices. This makes it crucial to develop models that are both
well-suited to their objectives and computationally efficient.

For free-surface flow applications, the shallow water model is the most widely used.
It produces highly satisfactory results when estimating river current speeds or large-scale
ocean currents. However, this model fails to describe correctly the waves propagation. To
better capture the observed phenomena, additional processes like dispersion need to be
considered. Similarly, secondary currents, which can arise from localized forces such as
wind at the surface or friction at the bottom, require special treatment. My initial area of
research focuses on enhancing approximate models based on vertical integration, like the
shallow water model, to extend their validity across a broader range of flow conditions.
The resulting models, often dispersive in nature, remain poorly understood. Key questions
arise regarding their mathematical properties, particularly in relation to boundary condi-
tions and long-term behavior, as well as challenges in their numerical resolution. In the
first chapter of this manuscript, I will present these models as a hyperbolic system with a
source term, maintaining a duality with a specific subset of functions in which the solution
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will be sought. This formalism is commonly used for incompressible flows but is less
frequently applied to dispersive equations derived from water waves model. Nonetheless,
I believe it offers a promising framework for tackling several scientific challenges.

The second chapter focuses on some applications where approximate models for
free-surface flows are particularly relevant.
In the first section, I explore the interactions with floating objects, primarily in the context
of marine renewable energy. Mathematically, the presence of a structure above the flow
introduces an inequality that restricts the solution to a subset of admissible functions,
commonly referred to as a congestion constraint. In congested areas, free-surface flows,
which are inherently hyperbolic (where information travels at finite speed), degenerate
into an elliptic model (where information propagates infinitely fast). Furthermore, the
interface between congested and free surface flows is typically unknown, as it shifts with
the movement of the free surface. This necessitates the development of a robust numerical
method to handle both regimes. The chapter also addresses coupling the flow with the
dynamics of the floating object, as well as the behavior of potential air pockets trapped
beneath the structure, with a focus on practical rather than theoretical solutions.
The second section delves into the modeling of continental water flows. In the context
of climate change, managing water resources has become a critical societal challenge.
Simulating continental waters is complex, not only because the surface equations are
hyperbolic while the underground ones are parabolic, but also due to the difficulty of
modeling mass exchanges between these domains. Typically, water emerges from the
porous medium when it becomes fully (locally) saturated. This resurgence can be modeled
through a constraint that limits the maximum volume within the porous medium. Unlike
the congestion constraint, however, the excess water is transferred through exchange terms.

In general, these problems require the use of constraints to effectively model the phe-
nomena involved. From a modeling perspective, constraints are a critical tool for incor-
porating complex physical processes. However, analyzing problems with constraints is
inherently challenging. My focus has been on developing numerical solutions, primarily
for hyperbolic problems, that involve various types of constraints. Special care has been
taken to ensure these techniques are compatible with one another, allowing for example the
simulations of waves interacting with a boat over a sandbank see as a porous medium. The
Bassin of Arcachon is a very inspiring place.

1.1 About the geophysical context

The primary applications targeted by this work are free-surface flows over large time and
spatial scales. Specifically, we focus on free-surface flows where the characteristic vertical
length (typically the average water depth) is denoted by H and the characteristic horizontal
length by L, as illustrated in Figure 1.1. Depending on the modeling objectives, the char-
acteristic horizontal length can represent either the length of a boat or the distance between
two waves. Given the large spatial scales, we assume the shallowness number, defined as
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Figure 1.1: Characteristic values for free surface flows.

H2

L2 , is small. The models discussed here can therefore be justified as asymptotic approx-
imations of the water waves model, briefly outlined in §2.1.1, by neglecting terms of a
certain order relative to the shallowness number, as detailed in [Lan13].

To complete the description of the dimensionless parameters characterizing the flows,
we introduce the wave amplitude a and the amplitude of the bathymetry variations b, as
shown in Figure 1.1. The nonlinearity number is defined as a

H , and the bathymetry num-
ber as b

H . Significant simplifications of the approximate models can be achieved when
the nonlinearity number and/or the bathymetry number are small, as discussed in §2.2.2.3.
However, these simplifications compromise the structure of the equations, particularly af-
fecting energy conservation.

Energy conservation is one of the most fundamental principles in physics, asserting
that the total energy of an isolated system remains constant over time, even as it trans-
forms between different forms. When the energy can be divided into potential and kinetic
components, the model exhibits an Hamiltonian structure. In mathematical terms, physical
energy ats as the mathematical entropy in the models we study, serving as a critical tool for
analyzing the qualitative behavior of solutions, including stability, existence, uniqueness,
regularity, and asymptotic behavior. In numerical schemes, entropy dissipation is often
a reliable indicator of solution stability, helping to prevent non-physical phenomena. By
carefully controlling the dissipation of numerical energy, artificial dissipation introduced
by the discretization, it becomes possible to develop higher-order schemes or refine the
mesh in areas with high dissipation. Throughout my work, special attention has been paid
to the conservation or controlled dissipation of mechanical energy, both in the formulation
of models and their numerical resolution.

1.2 Description of the discrete notation

We recall discrete notations of finite volume method that will be used throughout this docu-
ment. Consider a tessellation T of the domain Ω⊂Rd , consisting of N = card(T) connexe
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Figure 1.2: Illustration of the discrete notations.

control volumes. For free-surface flow applications, the computational domain is typically
horizontal with d = 2. However, the proposed numerical strategies can be applied to other
frameworks, as mentioned later, and are not restricted to 1D or 2D cases. For any element
k ∈ T (referred to as a cell or control volume), let Fk represent the set of its faces, and mk

its surface area (or length if d = 1, surface area if d = 2, volume if d = 3, etc.). For any
face f ∈ F = ∪k∈TFk, we denote by m f its length (with m f = 1 by convention for d = 1).
The neighbor of k across face f is denoted by k f , such that k∪ k f = f . The unit normal
vector to the face f , pointing outward from cell k, is denoted by nk

f , see Figure 1.2. For
any k ∈ T, ψk represents the approximation of the average value of a variable ψ (whether
unknown or a parameter) within cell k. The set of these values across the tessellation is
written as φ⋆ = (φk)k∈T.

An adaptive time step δ n
t is used, where the unknown φ n approximates the value of φ

at time tn = tn−1 + δ
n−1
t . This time step is computed to satisfy the CFL condition, which

ensures the stability of the scheme by linking the maximum time step to the spatial step
of the mesh. In multi-dimensional meshes, defining the spatial step can be challenging.
To address this, we introduce the compactness, defined as the ratio of the cell surface area
to its perimeter:, i.e. dk =

mk
∑Fk

m f
. This length naturally appears in finit volume schemes

and is often well-suited to characterize the spatial step of the mesh. Additionally, the
distance between two cells, δ f , is useful for constructing discrete differential operators or
for variable reconstruction. This distance can be defined as the distance between the mass
centers of the cells, or as an average based on their compactness.



CHAPTER 2

Free surface flows

“Si vague est la question,
approximative sera la réponse.”

Jean Pierre Szymaniak
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Contributions related to the chapter

[AAGP18] Some shallow water type models describing the vertical profile of the hori-
zontal velocity with several degrees of freedom have been recently proposed. The
question addressed in the current work is the hyperbolicity of a shallow water model
with two velocities. The model is written in a nonconservative form and the analysis
of its eigenstructure shows the possibility that two eigenvalues coincide. A definition
of the nonconservative product is given which enables us to analyze the resonance
and coalescence of waves. Eventually, we prove the well-posedness of the two di-
mensional Riemann problem with initial condition constant by half-plane.

[FNPPSM18] In geophysics, the shallow water model is a good approximation of the
incompressible Navier-Stokes system with free surface and it is widely used for its
mathematical structure and its computational efficiency. However, applications of
this model are restricted by two approximations under which it was derived, namely
the hydrostatic pressure and the vertical averaging. Each approximation has been
addressed separately in the literature: the first one was overcome by taking into
account the hydrodynamic pressure (e.g. the non-hydrostatic or the Green-Naghdi
models); the second one by proposing a multilayer version of the shallow water
model. In the present paper, a hierarchy of new models is derived with a layerwise
approach incorporating non-hydrostatic effects to approximate the Euler equations.
To assess these models, we use a rigorous derivation process based on a Galerkin-
type approximation along the vertical axis of the velocity field and the pressure, it is
also proven that all of them satisfy an energy equality. In addition, we analyse the
linear dispersion relation of these models and prove that the latter relations converge
to the dispersion relation for the Euler equations when the number of layers goes to
infinity.

[Par19] This work is devoted to the numerical resolution in the multidimensional frame-
work of a hierarchy of reduced models of the water wave equations, such as the
Serre-Green-Naghdi model. A particular attention is paid to the dissipation of me-
chanical energy at the discrete level, which acts as a stability argument of the scheme,
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even with source terms such space and time variation of the bathymetry. In addition,
the analysis leads to a natural way to deal with dry areas without leakage of energy.
To illustrate the accuracy and the robustness of the strategy, several numerical ex-
periments are carried out. In particular, the strategy is capable of treating dry areas
without special treatment.

[NPT22] This work is devoted to the structure of the time-discrete Green–Naghdi equa-
tions including bathymetry. We use the projection structure of the equations to char-
acterize homogeneous and inhomogeneous boundary conditions for which the semi-
discrete equations are well-posed. This structure allows us to propose efficient and
robust numerical treatment of the boundary conditions that ensures entropy stability
of the scheme by construction. Numerical evidence is provided to illustrate that our
approach is suitable for situations of practical interest that are not covered by existing
theory.

[Par24b] The primary focus of this work is the coupling of dispersive free-surface flow
models through the utilization of a thick interface coupling technique. The initial
step involves introducing a comprehensive framework applicable to various disper-
sive models, demonstrating that classical weakly dispersive models are encompassed
within this framework. Next, a thick interface coupling technique, well-established
in hyperbolic framework, is applied. This technique enables the formulation of uni-
fied models across different subdomains, each corresponding to a specific dispersive
model. The unified model preserves the conservation of mechanical energy, pro-
vided it holds for each initial dispersive model. We propose a numerical scheme that
preserve the projection structure at the discrete level and as a consequence is entropy-
satisfying when the continuous model conserve the mechanical energy. We perform
a deep numerical analysis of the waves reflected by the interface. Finally, we illus-
trate the usefulness of the method with two applications known to pose problems for
dispersive models, namely the imposition of a time signal as a boundary condition
or the imposition of a transparent boundary condition, and wave propagation over a
discontinuous bathymetry.

[Par] Several dispersive models, such as the Benjamin-Bona-Mahony and Green-Naghdi
models, can be formulated as hyperbolic systems with a source term. In recent
decades, various numerical methods have been developed to construct schemes that
maintain equilibrium between the hyperbolic flow and the source term, known as
well-balanced schemes. The goal of this work is to adapt well-balanced hyperbolic
schemes for dispersive models. A key characteristic of the dispersive source term is
that it is not explicit but imposes a constraint on the velocity. Therefore, it is crucial
to propose a suitable discretization of this constraint. We demonstrate that this dis-
cretization corresponds to a symplectic scheme of the Bernoulli equation associated
with the dispersive model. Numerical experiments are conducted to illustrate the
scheme’s properties.
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This chapter invites readers to consider dispersive models, especially those derived
from simplifying the water wave model, as hyperbolic models whose solutions are sought
within a linear subspace. In §2.1, we propose a strategy to approximate the water wave
problem. Despite its crude formalism, this approach can recover several well-known mod-
els from the literature and ensures they share a consistent mathematical structure. §2.2
delves deeper into this mathematical structure and describe some tools that will be used
later in the book. This structure, which closely resembles that of incompressible flow mod-
els, can be understood as a projection onto a linear subspace of the L2 space. We establish
the connection to the classical form of the models and highlight a remark on boundary
conditions. In §2.3, we examine the discrete counterpart of the mathematical analysis
discussed in the previous section. Specifically, preserving the structure helps ensure the
stability of the numerical scheme according to certain criteria, such as entropy stability or
the stability of steady solutions. The final section, §2.4, explores several strategies that
utilize the projection structure to enhance the performance of numerical simulations.

2.1 Approximate models based on the projection structure

This section aims to present a modeling strategy for obtaining approximate models of the
water wave problem. It is not intended to be an exhaustive review of models or methods.
For a more comprehensive review of existing models, readers should refer to [Duc21]. The
proposed strategy is based on a weak formulation of the water wave problem, tested on a
space with a limited number of degrees of freedom. A rigorous derivation of most of the
models described below can be found in [Lan13, Chapter 5] in the shallow water regime
see §1.1.

2.1.1 Free surface incompressible Euler model

We will first outline the equations that will serve as a reference. These equations are es-
tablished to describe the evolution of a fluid influenced by gravity. Motivated by the fact
that gravity acts only along the vertical axis, we divide the frame between the horizontal
coordinates x ∈ Rd , with d ∈ {1,2}, and the vertical coordinate z ∈ R. The differential
operator ∇ refers to the horizontal spatial derivatives, i.e. ∇ = (∂xi)

⊺
i∈[[1,d]]. Due to gravity,

we assume that the fluid remains at all times contained between two single-valued surfaces
B(t,x) ≤ η (t,x), where the bottom B(t,x) is given and the free surface η (t,x) is an un-
known. The velocity is also divided into its horizontal component u(t,x,z) ∈ Rd and its
vertical component w(t,x,z) ∈ R. The flow is governed by the Euler equation, i.e.

∂tu + u ·∇u + w∂zu = −∇p
∂tw + u ·∇w + w∂zw = −∂z p−ρg

(2.1)

where ρ ∈R+ is the density of the fluid and g∈R+ is the gravity acceleration. The pressure
inside the fluid p(t,x,z) ∈R is a Lagrange multiplier associated with the incompressibility
constraint

∇ ·u+∂zw = 0. (2.2)
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At the bottom, we assume a non-penetration condition implying that the fluid cannot cross
the bottom B, i.e.

u|z=B ·∇B−w|z=B = 0. (2.3)

Similarly, the free surface is advected with the flow so that a kinematic condition is assumed
at the free surface, i.e.

∂tη +u|z=η
·∇η−w|z=η

= 0. (2.4)

Finally, the pressure at the free surface Pa ∈ R+ is given and, for reasons of readability, it
is assumed to be homogeneous. With the added curl free constraint, the (2.1), (2.2), (2.3)
and (2.4) model is generally referred to as the water waves problem.

Proposition 2.1 For sufficiently regular solutions of (2.1), (2.2), (2.3) and (2.4), the fol-
lowing mechanic energy conservation law holds

∂t (P +K )+∇ ·
(∫

η

B

(
gz+ p+

|u|2 +w2

2

)
udz

)
= 0.

with P = g(η−B)
(

3B+η

2

)
and K =

∫ η

B
|u|2+w2

2 dz.

In addition, it is well known that the phase velocity of the model is given by

cAIRY
p =

√
tanh(kD)

|kD|
√

gD (2.5)

with D is the mean depth and k the wave number see [Air45]. The phase velocity is repre-
sented in Figure 2.5 with that of other models.

2.1.2 Hydrostatic models

2.1.2.1 The shallow water model

Unfortunately, the free-surface incompressible Euler model cannot be used for large-scale
simulations, particularly for wave propagation, due to its complexity. One scientific chal-
lenge is to propose approximations of the free-surface incompressible Euler model that
are applicable for geophysical purposes while preserving as many properties of the Euler
model as possible. The most well-known approximate model derived from the free-surface
incompressible Euler model is the shallow water model [dSV71], which is expressed as

∂th + ∇ · (hu) = 0
∂t (hu) + ∇ · (hu⊗u) = −gh∇(B+h)

(2.6)

where h(t,x) = η (t,x)−B(x) represents the fluid depth, and u(t,x) = 1
h

∫ B+h
B u(t,x,z) dz

is the mean horizontal velocity. This model is based on two assumptions:

H p
yp) Assume that the pressure is predominantly hydrostatic, i.e., p = Pa +g(η− z).
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Hu
yp) Assume that the horizontal velocity is nearly uniform throughout the water column,

i.e., ∂zu = 0.

It is noteworthy that these assumptions can be justified in the case of viscous flows [GP01]
or by assuming a curl-free velocity field [Lan13] in the shallow water asymptotic regime,
where the vertical length scale is much larger compared to the horizontal length scale.
Additional source terms such as bottom friction, viscosity, and surface tension can also
be incorporated [Mar07]. A mathematical analysis of the shallow water model (2.6) can
be found for example in [GR96]. In one dimension, the model (2.6) is hyperbolic with
eigenvalues u−√gh, u and u+

√
gh. We refer to [BN07] for a more complete analysis of

the model.

Proposition 2.2 For sufficiently regular solutions of (2.6), the following mechanic energy
conservation law holds

∂t (P +K )+∇ ·
((

g(B+h)+
|u|2
2

)
hu

)
= 0.

with P = gh
(
B+ h

2

)
and K = h

2 |u|
2.

2.1.2.2 The depth averaged and moment equations

A natural way to eliminate the assumption Hu
yp) is to use a polynomial approximation

in the vertical direction for the horizontal velocity. This approach is known as the
Depth-Averaged and Moment Equations [SYC93]. In the simplest case, using a P1[z]-
approximation, the shallow water model with linear velocity profil is given by

∂th + ∇ · (hu) = 0
∂t (hu) + ∇ · (h(u⊗u+ ũ⊗ ũ)) = −gh∇(B+h)
∂t (hũ) + ∇ · (hũ⊗u)+hu ·∇ũ = 0

(2.7)

where the second component of the velocity can be interpreted as the oriented standard

deviation, defined as ũ(t,x) = 1
h

∫ h
2
− h

2
θ1
( z

h

)
u
(
t,x,z+B+ h

2

)
dz, with θ1 (z) = 2

√
3z. This

formulation recovers the bi-layer shallow water model (see §2.1.2.3) and in one dimension,
the shallow water model with enstrophy (defined as ũ

h ) [Tes07, RG12]. A mathematical
analysis of the Riemann problem for the shallow water model with two velocities (2.7) is
presented in [AAGP18]. Specifically, (2.7) is hyperbolic with eigenvalues u−

√
gh+3ũ2,

u−|ũ|, u, u+ |ũ| and u+
√

gh+3ũ2.

Proposition 2.3 For sufficiently regular solutions of (2.7), the following mechanic energy
conservation law holds

∂t (P +K )+∇ ·
((

g(B+h)+
|u|2 + |ũ|2

2

)
hu

)
= 0.

with P = gh
(
B+ h

2

)
and K = h

2

(
|u|2 + |ũ|2

)
.
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2.1.2.3 The layerwise shallow water model

Another approach is to assume a piecewise constant approximation of the horizontal veloc-
ity. Specifically, for a given number L > 0 of layers, we consider single-valued functions
ζi+1/2

(t,x) where ζ1/2
(t,x) = B(x), ζL+1/2

(t,x) = η (t,x) and ζ1/2
(t,x)< ζL+1/2

(t,x). Using
the Leibniz integral rule, we get

0 =
∫ ζi+1/2

ζi−1/2
(∇ ·u+∂zw) dz = ∂t

(
ζi+1/2

−ζi−1/2

)
+∇ ·

(∫
ζi+1/2

ζi−1/2

udz

)

−
(

∂tζi+1/2
+u|ζ

i+1/2

·∇ζi+1/2
−w|ζ

i+1/2

)

+

(
∂tζi−1/2

+u|ζ
i−1/2

·∇ζi−1/2
−w|ζ

i−1/2

)
.

Setting the unknowns hi (t,x) = ζi+1/2
(t,x)−ζi−1/2

(t,x), ui (t,x) = 1
hi

∫ ζi+1/2
ζi−1/2

u(t,x,z) dz and

Gi+1/2
= ∂tζi+1/2

+u|ζ
i+1/2

·∇ζi+1/2
−w|ζ

i+1/2

, we obtain the mass balance in each layer. That

is, for 1≤ i≤ L
∂thi +∇ · (hiui) = Gi+1/2

−Gi−1/2
. (2.8)

The new unknowns Gi+1/2
can be interpreted as the flux of material passing through the

interface ζi+1/2
. Using the non-penetration condition (2.3) and the kinematic condition

(2.4), we have G1/2
= 0 and GL+1/2

= 0. However, the system has too many unknowns
unless a specific definition of the interfaces is imposed. Several choices can be considered:

Imposing Interface Positions: In this case, all interfaces except the last one ζL+ 1
2
= η

are prescribed. This approach, proposed in [CC92, Ram11], resembles an Eulerian
vertical discretization. It is limited to small variations in the free surface.

Following Material Interfaces: Here, the interfaces move with the material, leading to
Gi+ 1

2
= 0. This approach, proposed in [Aud05], resembles a Lagrangian vertical dis-

cretization. However, for homogeneous fluids, the resulting model is not hyperbolic.
Even with variable density in well-stratified fluids, hyperbolicity is not guaranteed
[Duc16, Mon14, Mon15].

Following Free Surface Dynamics: In this case, the interfaces follow the free surface
such that the layer thickness hi = ℓih, where ℓi > 0 are weights satisfying ∑

L
i=1 ℓi =

1. This approach, introduced in [ABPSM11], can be viewed as an Arbitrary-
Lagrangian-Eulerian (ALE) vertical discretization. It has been shown that the bilayer
model is hyperbolic without additional conditions in [AAGP18]. However, extend-
ing this analysis to an arbitrary number of layers remains an open question.

Each approach has its advantages and limitations, depending on the specific characteristics
of the fluid and the desired numerical properties of the model. We turn our attention to
this last definition. By integrating the momentum equation across each layer, we derive the
evolution of the velocity ui, i.e.

∂t (ℓihui)+∇ · (ℓihui⊗ui) =−gℓih∇(B+h)+u|ζ
i+1/2

Gi+1/2
−u|ζ

i−1/2

Gi−1/2
. (2.9)
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The system remains incomplete because the velocities at the interfaces u|ζ
i−1/2

are not de-

termined solely from the model’s unknowns. In [ABPSM11], the authors propose a recon-
struction method at the interfaces based on velocities from adjacent layers. This method
can be understood as a Finite Volume scheme for vertical advection, specifically

u|ζ
i+1/2

=
ui +ui+1

2
+λ

ui+1−ui

2
sign

(
Gi+1/2

)
. (2.10)

Proposition 2.4 If λ ≥ 0 and for sufficiently smooth solutions of the model (2.8)-(2.9), the
following mechanic energy dissipation holds

∂t (P +K )+∇ ·
(

h
L

∑
i=1

((
g(B+h)+

|ui|2
2

)
ℓiui

))
≤ 0

with P = gh
(
B+ h

2

)
and K = h

2 ∑
L
i=1

(
ℓi |ui|2

)
. The equality holds when λ = 0.

One drawback of hydrostatic models is that the phase velocity of these models does not
depend on the wave number. Specifically, the phase velocity of all the hydrostatic models
presented here is

cSW
p =

√
gD (2.11)

The phase velocity is represented in Figure 2.5 with that of other models.

2.1.3 Hydrodynamic models

One (very formal) method of deriving approximate models from the equations presented
in §2.1.1 without assuming H p

yp) is based on the weak formulation of the Euler equa-
tions. To proceed, we introduce the space of divergence-free functions that satisfy the
non-penetration condition (2.3).

Aη =

{
(u,w) ∈

(
L2
(
Rd× [B;η ]

))d+1
∣∣∣∣

∇ ·u+∂zw = 0
u|z=B ·∇B−w|z=B = 0

}
.

It is worth noting that the kinematic condition (2.4) is not a constraint for the flow but rather
drives the dynamics of the free surface. We also introduce the hydrodynamic pressure
q, defined as the difference between the fluid pressure and the hydrostatic pressure, i.e.,
q = p− (Pa +ρg(η− z)). For any vector (u,w) ∈ Aη and any q ∈ L2

(
Rd× [B;η ]

)
such

that q|z=η
= 0, we have ⟨(u,w)⊺ ,(∇q,∂zq)

⊺⟩ = 0. Then, the weak formulation of (2.1),
(2.2), and (2.3) is to find (u,w) ∈ Aη such that for any (u,w) ∈ Aη , we have

∫

Rd

∫ B+h

B

(
u(∂tu+u ·∇u+w∂zu+g∇(B+h))

+w(∂tw+u ·∇w+w∂zw)
)

dzdx = 0.
(2.12)

Approximate models can be obtained by considering an "approximation" of the function
space Aη . It is important to note that this strategy does not guarantee that the approximation
is accurate, meaning that the solution of the approximate model may not remain close to
the solution of the equations in §2.1.1, even for a short period.
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2.1.3.1 The Green-Naghdi model

Let us approximate the function space Aη by

AGN
η =



(u,w) ∈

(
L2
(
Rd× [B;η ]

))d+1

∣∣∣∣∣∣

u(t,x,z) = u(t,x)
∇ ·u+∂zw = 0

u|z=B ·∇B−w|z=B = 0



 .

The first constraint in AGN
η still assumes that the horizontal velocity is constant along the

water column and is equivalent to Hu
yp). However, we assume that the divergence-free

condition is satisfied by the velocity fields, thereby removing the hydrostatic pressure as-
sumption H p

yp). Since u ∈ P0 [z], the divergence free conclude that w ∈ P1 [z], meaning
it can be defined by two functions of time and horizontal space. We choose to define
the vertical velocity from its mean horizontal value w(t,x) = 1

h

∫ h
0 w(t,x,z+B) dz and its

oriented standard deviation w̃(t,x) = 1
h

∫ h
2
− h

2
θ1
( z

h

)
w
(
t,x,z+B+ h

2

)
dz with θ1 (z) = 2

√
3z

with θ1 (z) = 2
√

3z. This choice is motivated by the link between the this variables and the
kinetic energy of the flow, i.e.

∫ B+h

B
w2 dz = h

(
w2 + w̃2) with w(t,x,z) = w(t,x)+θ1

(
z−B− h

2
h

)
w̃(t,x) .

It is worth noting that there is an isomorphism between the function space AGN
η and

ÃGN
h =

{
(u,w, w̃) ∈

(
L2
(
Rd ,h

))d+2
∣∣∣∣∣
w+ h

2 ∇ ·u−u ·∇B = 0
w̃+ h

2
√

3
∇ ·u = 0

}
.

Testing (2.12) with the function (u,w) = (1,0), (u,w) = (0,1) and (u,w) =(
0,θ1

(
z−B− h

2
h

))
, we get the equations of u, w and w̃ respectively. However, when writing

the strong formulation, it is important to include the elements of the dual space with respect
to the inner product ⟨•,•⟩h associated with the weighted space L2

(
Rd ,h

)
. We get

∂t (hu) + ∇ · (hu⊗u) = −gh∇(B+h)−hψ0

∂t (hw) + ∇ · (hu w) = −hψ1

∂t (hw̃) + ∇ · (hu w̃) = −hψ2

(2.13)

with the constraint

w+
h
2

∇ ·u−u ·∇B = 0 and w̃+
h

2
√

3
∇ ·u = 0 (2.14)

and ⟨(u,w, w̃)⊺ ,(ψ0,ψ1,ψ2)
⊺⟩h = 0 for any (u,w, w̃)⊺ satisfying (2.14).

It is worth noting that for physical relevance, it is possible to link the dispersive source
term Ψ to the hydrodynamic pressure q defined in §2.1.3. Specifically, by defining q(t,x)=
h
2

(
ψ1 +

ψ2√
3

)
and qB (t,x) = hψ1, we express the dispersive source term as follows

hψ0 = ∇(hq)+qB∇B , hψ1 = qB and hψ2 =
√

3(2q−qB) .
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Figure 2.1: §2.1.3.2 | Illustration of the depth averaged semi-discretization §2.1.3.2 in the
vertical plan. SW (2.6), GN (2.13) and GN(1) (2.16).

The unknown q is interpreted as the vertically averaged hydrodynamic pressure 1
h

∫ B+h
B qdz

and qB is interpreted as the hydrodynamic pressure at the bottom q|z=B . They act as the
Lagrange multipliers associated with the constraint (2.14).

It can be shown that the model (2.13) and (2.14) is simply another formulation of the
Green-Naghdi model [GN76]; see §2.2.2.2. A mathematical analysis of the Green-Naghdi
model is provided in [Isr11] and [Lan13, chapter 6]. It is worth noting that the model (2.13)
without the dispersive source term is hyperbolic, with eigenvalues u−√gh, u (three times)
and u+

√
gh.

Proposition 2.5 For sufficiently smooth solutions of the model (2.13), the following me-
chanic energy conservation law holds

∂t (P +K )+∇ ·
((

g(B+h)+q+
|u|2 +w2 + w̃2

2

)
hu

)
= 0.

with P = gh
(
B+ h

2

)
and K = h

2

(
|u|2 +w2 + w̃2

)
.

In addition, the phase velocity of the Green-Naghdi model (2.13) reads

cGN
p =

√
1

1+ 1
3 |gD|2

√
gD. (2.15)

The phase velocity is represented in Figure 2.5 with that of other models.

2.1.3.2 The depth averaged and moment dispersive model

To proceed further, we follow the strategy presented in §2.1.2.2 by approximating the func-
tion space Aη by

AGN(i)
η =



(u,w) ∈

(
L2
(
Rd× [B;η ]

))d+1

∣∣∣∣∣∣

u(t,x,z) ∈ Pi[z]
∇ ·u+∂zw = 0

u|z=B ·∇B−w|z=B = 0



 .
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The case of AGN(0)
η corresponds to the classical Green-Naghdi model (2.13). The case of

AGN(1)
η corresponds to a hydrodynamic version of (2.7). More precisely, we utilize the

Legendre normalized basis θi (z) ∈ Pi (z), and the horizontal velocity is expressed as

u(t,x,z) = u(t,x)+θ1

(
z−B− h

2
h

)
ũ(t,x)

as in the hydrostatic case. Since u∈P1[z], using the divergence-free condition, we conclude
that w ∈ P2[z]. Therefore,

w(t,x,z) = w(t,x)+θ1

(
z−B− h

2
h

)
w̃(t,x)+θ2

(
z−B− h

2
h

)
˜̃w(t,x) .

See Figure 2.1 for an illustration of the unknowns of the model (2.16). Now, testing (2.12)
with (u,w) = (1,0) and (u,w) = (θ1,0), (u,w) = (0,1), (u,w) = (0,θ1) and (u,w) =

(0,θ2), we obtain the equations to which we add the dispersive source term (ψi)0≤i≤4 ∈(
AGN(1)

η

)⊥
. Thus, we have

∂th + ∇ · (hu) = 0
∂t (hu) + ∇ · (h(u⊗u+ ũ⊗ ũ))+gh∇(B+h) = −hψ0

∂t (hũ) + ∇ · (hũ⊗u)+hu ·∇ũ = −hψ1

∂t (hw) + ∇ · (h(u w+ ũw̃)) = −hψ2

∂t (hw̃) + ∇ · (hw̃ u)+hũ ·∇
(

w+
2√
5
˜̃w
)
+

3√
5
˜̃w∇ · (hũ) = −hψ3

∂t
(
h˜̃w
)
+ ∇ ·

(
h
(

u ˜̃w+
2√
5

ũw̃
))
− 3√

5
w̃∇ · (hũ) = −hψ4

(2.16)

with the constraint

˜̃w+
h2

2
√

15
∇ ·
(

ũ
h

)
= 0 , w̃+

h
2
√

3
∇ ·u− ũ ·∇

(
B+

h
2

)
= 0

and w+
h
2

∇ ·u−u ·∇B− h2

2
√

3
∇ ·
(

ũ
h

)
−
√

3ũ ·∇
(

2B+
h
2

)
= 0

(2.17)

and
〈(

u, ũ,w, w̃, ˜̃w
)⊺

,(ψ0,ψ1,ψ2,ψ3,ψ4)
⊺
〉

h
= 0 for any

(
u, ũ,w, w̃, ˜̃w

)⊺
satisfying

(2.17).
The model (2.16) was initially proposed in [EFNGD+23] in a slightly different for-

mulation. The current formulation is intended to fit into the structure presented in §2.2.
More precisely, without the dispersive source term, the model (2.16) is hyperbolic with the
eigenvalues

u−
√

gh+3ũ2, u− 3√
5
|ũ| , u−|ũ| , u (twice), u+ |ũ| , u+

3√
5
|ũ| , u+

√
gh+3ũ2.
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Figure 2.2: §2.1.3.3 | Illustration of the layerwise semi-discretization §2.1.3.3 in the verti-
cal plan with L = 5.

Proposition 2.6 For sufficiently smooth solutions of the model (2.16), the following me-
chanic energy conservation law holds

∂t (P +K )+∇ ·
((

g(B+h)+q+
|u|2 + |ũ|2 + |w|2 + |w̃|2 +

∣∣˜̃w
∣∣2

2

)
hu+hq̃ũ

)
= 0.

with P = gh
(
B+ h

2

)
and K = h

2

(
|u|2 + |ũ|2 + |w|2 + |w̃|2 +

∣∣˜̃w
∣∣2
)

.

In addition, the phase velocity of the model (2.16) reads

cGN(1)
p =

√√√√√√√√

1

1+ |gD|2

12
(

1+ |gD|2
60

) + |gD|2

4


1+ |gD|2

12

(
1+ |gD|2

60

)




√
gD. (2.18)

The phase velocity is represented in Figure 2.5 with that of other models.
It is worth noting that a hydrodynamic version of the shallow water model with en-

strophy is proposed in [KR19a]. The model (2.16) differs from the model proposed in
[KR19a] in that it includes a dispersive source term ψ1 in the equation for enstrophy. The
model (2.16) could also be compared to the Green-Naghdi model with vorticity [CL14].

2.1.3.3 The layerwise Green-Naghdi model

We now examine the hydrodynamic version of the layerwise shallow water model (2.9), as
detailed in [FNPPSM18, Cas99]. More specifically, we approximate the function space Aη
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Figure 2.3: §2.1.3.3 | Simulations of the layerwise Green-Naghdi model (2.19) (dashed
line) and the non-hydrostatic model [SM11] (dotted line) with one (top line), six (middle
line) and eleven (bottom line) layers initialized by a Gaussian at rest.

by

AGN
η ,L =



(u,w) ∈

(
L2
(
Rd× [B;η ]

))d+1

∣∣∣∣∣∣

u(t,x,z) = ∑
L
i=1 ui (t,x)1Li (z)

∇ ·u+∂zw = 0
u|z=B ·∇B−w|z=B = 0



 .

See Figure 2.2 for an illustration of the unknowns of the layerwise model. The case
of AGN

η ,0 corresponds to the classical Green-Naghdi model (2.13). Testing (2.12) with the
function (u,w) = (1Li (z) ,0) yields the equation for ui, as in the case of (2.9), with an
additional source term for the hydrodynamic pressure. Next, testing (2.12) with (u,w) =

(0,1Li (z)) and (u,w)=

(
0,θ1

(
z
h −

ζi−1/2
+ζi+1/2
2h

)
1Li (z)

)
gives us the equations for wi and
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Figure 2.4: §2.1.3.3 | Comparison in L2-norm of the simulated solution of the layerwise
Green-Naghdi model (2.19) and the solitary wave of the Euler model (2.1) for several mesh
sizes (lines) and number of layers (columns).

w̃i respectively. More precisely, we write:

∂th + ∇ · (hui) =
1
ℓi
[G j]

j=i+1/2
j=i−1/2

∂t (hui) + ∇ · (hui⊗ui) = −gh∇(B+h)+
1
ℓi

[
u|ζ j

G j

] j=i+1/2

j=i−1/2
−hψ

u
i

∂t (hwi) + ∇ · (hui wi) =
1
ℓi

[
w|ζ j

G j

] j=i+1/2

j=i−1/2
−hψ

w
i

∂t (hw̃i) + ∇ · (hui w̃i) =
1
ℓi

(
w̃i+1/2⊖Gi+1/2

− w̃i−1/2⊕Gi−1/2

)
−hψ

w̃
i

(2.19)

where the horizontal velocity at the interface is described by (2.10). Similarly, the vertical
velocity at the interface is given by

w|ζ
i+1/2

=
wi +wi+1−

√
3(w̃i+1− w̃i)

2

+λ
wi+1−wi−

√
3(w̃i+1 + w̃i)

2
sign

(
Gi+1/2

)
,

w̃i+1/2⊖ =
√

3
(

w|ζ
i+1/2

−wi

)
− w̃i

and w̃i+1/2⊕ = −
√

3
(

w|ζ
i+1/2

−wi+1

)
− w̃i+1.

(2.20)

The constraint of the linear subspace, expressed in terms of the new unknowns, reads

wi = ui ·∇
(

B+
i−1

∑
j=1

ℓ jh

)
− ℓih

2
∇ ·ui−

i−1

∑
j=1

ℓ j∇ · (hu j)

and w̃i = −
ℓih

2
√

3
∇ ·ui.

(2.21)

The dispersive source term is an element of the dual space, defined by〈
(ui,wi, w̃i)

⊺
1≤i≤L ,

(
ψu

i ,ψ
w
i ,ψ

w̃
i

)⊺
1≤i≤L

〉
h
= 0 for any (ui,wi, w̃i)

⊺
1≤i≤L that satisfies (2.21).
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L PL (x) QL (x)

1 1 1+ x
3

2 1+ x
12 1+ 5x

12 +
7x2

576

3 1+ x
9 +

5x2

2916 1+ 4x
9 + 19x2

972 + 13x3

78732

4 1+ x
8 +

3x2

1024 +
7x3

442368 1+ 11x
24 + 37x2

1536 +
71x3

221184 +
97x4

84934656

Table 2.1: Phase velocity of (2.19) for a small number of layers

Proposition 2.7 If λ > 0, for sufficiently regular solutions of the model (2.19), the follow-
ing mechanic energy conservation law holds

∂t (P +K )+∇ ·
(

h
L

∑
i=1

((
g(B+h)+qi +

|ui|2 + |wi|2 + |w̃i|2
2

)
ℓiui

))
= 0.

with P = gh
(
B+ h

2

)
and K = h

2 ∑
L
i=1

(
ℓi

(
|ui|2 + |wi|2 + |w̃i|2

))
. The equality holds

when λ = 0.

Additionally, the phase velocity (for any λ ) of the model (2.19) is given by

cGNL
p =

√√√√√
PL

(
|gD|2

)

QL

(
|gD|2

)
√

gD (2.22)

with PL (x)∈ PL−1 and QL (x)∈ PL. Specifically, the polynomial for a small number of lay-
ers is provided in Table 2.1. We also demonstrate that the phase velocity (2.22) converges
to the Airy phase velocity (2.5) as the number of layers tends to infinity. The phase velocity
is represented in Figure 2.5 with that of other models. In [EFNGD+23], the authors pro-
pose a layerwise version of the model (2.16) with a linear approximation of the horizontal
velocity in each layer. Figure 2.3 shows the results of the layerwise Green-Naghdi model
(2.19) and the result of the non-hydrostatic model [SM11] using the numerical strategy pre-
sented in §2.3.1.1. In Figure 2.4, we compare the solution of the layerwise Green-Naghdi
model (2.19) to the Euler model (2.1) initialized with the solitary wave of the Euler model
given in [CD13].

2.2 The class of projected hyperbolic models

The dispersive models discussed in §2.1.3 all exhibit a common structure: they are hyper-
bolic models featuring a source term defined within the dual space of a linear subspace
constrained by a specific conditions. In this section, we aim to delve into this structural
similarity and establish connections with other established models.



16 Chapter 2. Free surface flows

0.0

0.2

0.4

0.6

0.8

1.0
cxx p gD

0 1 2 3 4 5 6
kD

10 10

10 8

10 6

10 4

10 2

100

|cxx p
cAi

ry
p

cAi
ry

p
|

Airy
SW

GN
GN(1)

HO(M)GN
GNL

Figure 2.5: §2.1 | Comparison of phase velocity and relative error compared to the Airy
phase velocity for different models:
- Red solid line: Airy model (2.5),
- Gray solid line: Hydrostatic models (2.11),
- Black solid line: Green-Naghdi model (2.15),
- Green solid line: Green-Naghdi model with linear velocity profile (2.18),
- Blue dashed line: Layerwise Green-Naghdi model (2.22), where the number on the curve
corresponds to the number of layers L,
- Orange dashed line: Green-Naghdi model with linear velocity profile (2.50), where the
number on the curve corresponds to the number of added velocities M.

2.2.1 Projected hyperbolic models of BBM-type

2.2.1.1 General description

We focus on models in the form, which we will later refer to as the projected hyperbolic
model of BBM-type

∂tU +A(U)∂xU =−Ψ(Q) (2.23)

where the state variable U (t,x) : R+×R 7→RdU and Q(t,x) : R+×R 7→RdQ with dQ < dU .
The square matrix A(U) : RdU 7→ MdU (R) is assumed to have real eigenvalues, ensuring
that, when the dispersive source term Ψ is omitted, the model remains hyperbolic. Addi-
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tionally, we assume there exists a flux G(U) : RdU 7→ RdU such that the relation

U⊺ ·A(U) = (∇U G)⊺ (2.24)

holds. This relation, known as the entropy-flux relation, is well-known in hyperbolic mod-
els for identifying an entropy for the system (see [Bou04]). In our case, the particularity
lies in the fact that the entropy is the L2-norm of the state variable U .

The right-hand side of (2.23), referred to as the dispersive source term Ψ(Q), is not
explicitly defined. However, it is constructed to ensure that the state variable satisfies the
constraint

L (U) = 0 (2.25)

for a given linear application L :
(
L2 (R)

)dU 7→
(
L2 (R)

)dQ . In other words, the dispersive
source term Ψ ensures that the state variable U lies in the kernel of L .

At this stage, the model is not yet fully defined since there are multiple ways to ensure
that U ∈ ker(L ). For example, setting Ψ =−A∂xU reduces the model to ∂tU = 0, which
ensures that U ∈ ker(L ) (assuming U (t = 0,x) ∈ ker(L )). However, this also implies
that the model is irrelevant. To properly define the system, the dispersive source term is
assumed to belong to the dual space (ker(L ))⊥ with respect to the L2 inner product. This
means that for any V ∈ ker(L ) and any Φ ∈ (ker(L ))⊥, we have

⟨V,Φ⟩=
∫

R
V ·Φdx = 0. (2.26)

Eventually, to fully define the solution of the model, the unknown Q(t,x) needs to be
identified. This unknown acts as a Lagrange multiplier to ensure the constraint (2.25).
To identify it, we need to ensure that the mapping Ψ :

(
L2 (R)

)dQ 7→ (ker(L ))⊥ is an
isomorphism. In this case, we have

Q = Ψ
−1 (∂tU +A(U)∂xU) .

The orthogonality relation (2.26) allows us to extend the entropy conservation law iden-
tified by the relation (2.24) to the projected hyperbolic model (2.23).

Proposition 2.8 For sufficiently regular solutions of (2.23), the L2-norm of the unknown
is preserved, i.e.

∂t ∥U∥2
2 = 0.

Some may wonder about a local formulation of entropy conservation Proposition 2.8. It
is worth noting that the flux of entropy is not solely given by the hyperbolic part G(U).
There could also be a contribution from the dispersive source term G (U,Q), such that
∂xG (U,Q) =U ·Ψ. More precisely, for sufficiently regular solutions, we can write

∂t

(
1
2
|U |2

)
+∂x (G(U)+G (U,Q)) = 0 (2.27)

with |U |2 =U ·U .
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Eventually, it is worth noting that the dual space (ker(L ))⊥ is, by definition, a linear
subspace of

(
L2 (R)

)dU . Hence, there exists a mapping R :
(
L2 (R)

)dU 7→
(
L2 (R)

)dU−dQ

such that (ker(L ))⊥ = ker(R). By applying this operator to (2.23), the right-hand side
vanishes, and we obtain an equation with only the state variable U as the unknown.

∂tR (U)+R (A(U)∂xU) = 0 (2.28)

Using the constraint (2.25), the equation can be reduced to a small number of unknowns
dU −dQ. It is often in this form that dispersive models are formulated and studied.

To summarize, the projected hyperbolic model is fully defined by the state variable U ,
the hyperbolic matrix A(U) and the constraint L (U).

2.2.1.2 Link with the incompressible Euler model

The projection structure discussed in the previous section draws strong inspiration from
the framework of incompressible flows. This observation allows us to leverage existing
results from incompressible flow theory, such as those found in [Lio13], when studying the
projected hyperbolic model (2.23). However, models like (2.13) have their own established
theories and analyses, such as those detailed in [Lan13], which are likely more tailored to
their specific characteristics. Despite this, numerical methods for solving dispersive models
remain relatively underdeveloped. Therefore, it is pertinent to draw insights from the well-
established methodologies within incompressible flow frameworks, as seen in works like
[RT06, Cho68, Tem68].

To illustrate the connection between the projected hyperbolic model and incompress-
ible flow, we can draw an analogy with the incompressible Euler equations discussed in
§2.1.1. The projected hyperbolic model (2.23) resembles the time evolution of velocity
(2.1), where the hyperbolic operator A(U) plays a role akin to the advection operator u ·∇u
in (2.1), and the dispersive source term Ψ acts similarly to the pressure gradient ∇p in
(2.1). The constraint (2.25) is analogous to the divergence-free condition (2.2). Further-
more, the L2-orthogonal Helmholtz decomposition [Hel58] plays a crucial role in incom-
pressible flows and shares similarities with the orthogonal constraint (2.26), which implies
L2 = ker(L )⊕ ker(R). Additionally, the operator R acts analogously to the curl opera-
tor, since R (Ψ) = 0, much like curl(∇p) = 0. Lastly, the reduced form of equation (2.28)
can be likened to the vorticity equation of the incompressible fluid mechanics, see [Lio13,
(4.6)].

The inherent similarity in projection structures between dispersive models and incom-
pressible flows is not unexpected, given that many dispersive models approximate water
wave models (discussed in §2.1.1), which inherently satisfy an incompressibility constraint.
Maintaining this structural analogy during modeling can be viewed as advantageous.
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Figure 2.6: §2.2.1.3 | Simulations of the BBM model (2.33) with positive and negative
transport velocity using the numerical strategy presented in §2.3.1.2.

2.2.1.3 The BBM model and its generalizations

To illustrate the presentation, we will provide some examples. Let’s begin with a straight-
forward case where U = (u,w)⊺ and

L (U) = w+α∂xu (2.29)

with α ∈ R. We will denote this constraint and the corresponding linear subspace in the
context of the BBM model, since, as we will demonstrate later, it aligns well with the well-
known Benjamin-Bona-Mahony (BBM) model [BBM97]. Let’s begin by identifying the
dual space (ker(L ))⊥, for any V = (v0,v1)

⊺ ∈ ker(L ) and any Φ= (φ0,φ1)∈ (ker(L ))⊥,
we have

0 = ⟨V,Φ⟩=
∫

R
(v0φ0 + v1φ1) dx =

∫

R
(v0φ0−αφ1∂xv0) dx =

∫

R
v0 (φ0 +α∂xφ1) dx.

This relation must be satisfied for any v0 ∈ L2 (R), hence, we conclude that (ker(L ))⊥ =

ker(R) with

R (V) = v0 +α∂xv1 for any V = (v0,v1)
⊺ ∈
(
L2 (R)

)2
. (2.30)

Now, let us estimate the contribution of the dispersive operator to the flux of energy. We
can express

V ·Φ = v0 (φ0 +α∂xφ1)−∂x (αφ1v0) .

We conclude that G (U,Q) = αφ1v0.

Now, let us consider the following hyperbolic operator

A(U) =

(
P0 (u) 0

0 P1 (w)

)
+

(
wg(u,w) −w f (u,w)
−ug(u,w) u f (u,w)

)
(2.31)
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Figure 2.7: §2.2.1.3 | Simulation of the Camassa-Holm model (2.34) using the numerical
strategy presented in §2.3.1.2 with non-conservative product §2.3.1.3.

where P0 (x)=∑
n0
i=0 a0,ixi and P1 (x)=∑

n1
i=0 a1,ixi are two polynomials with coefficients in R

and f :R2 7→R and g :R2 7→R are arbitrary nonsingular functions. It is clear that the matrix
satisfies the entropy-flux relation (2.24) with the flux G(U) = ∑

n0
i=0

a0,i
i+1 ui+1+∑

n1
i=0

a1,i
i+1 wi+1.

To ensure that the operator (2.31) is hyperbolic, we focus on the case g(x,y) f (x,y) = 0.
In such a case, the matrix is triangular and trivially has real eigenvalues, which we assume
to be distinct.

To obtain the reduced form of this model, we apply the operator R to (2.23), resulting
in

0 = ∂t (u+α∂xw)+(P0 (u)+wg(u,w))∂xu−w f (u,w)∂xw
+α∂x (−ug(u,w)∂xu+(P1 (w)+u f (u,w))∂xw)

then, using the constraint L (U) = 0, we obtain

(
I−α

2
∂

2
x
)

∂tu + (P0 (u)−αg(u,−α∂xu)∂xu)∂xu
− α∂x (ug(u,−α∂xu)∂xu)
− α

2 f (u,−α∂xu)∂xu∂
2
x u

− α
2
∂x
(
(P1 (−α∂xu)+u f (u,−α∂xu))∂

2
x u
)
= 0.

(2.32)

Corollary 1 For any polynomial functions P0 (x) and P1 (x), and any functions f (x,y) and
g(x,y), the sufficiently regular solutions of (2.23) with the constraint (2.29) and the hyper-
bolic operator (2.31) preserve the L2-norm of the unknown.

Let us examine some specific parameter settings:

• Let f = g = 0, P0 (x) = x and P1 (x) =
β

α2 . The model (2.32) reduces to the classical
form of the Burgers-KdV-BBM model [BBM97]

(
1−α

2
∂

2
x
)

∂tu+u∂xu−β∂
3
x u = 0. (2.33)
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Figure 2.8: §2.2.1.3 | Simulation of the potential parabolic BBM model (2.35) using the
numerical strategy presented in §2.3.1.2 with non-conservative product §2.3.1.3.

The traditional Burgers-BBM model is recovered when P1 (x) = 0. The KdV model
lies outside the scope of the projected hyperbolic model (2.23), as setting α = 0 only
results in recovering the hyperbolic Burgers model. Figure 2.6 shows the results of
the BBM model using the numerical strategy presented in §2.3.1.2. For explanations
on the dispersive oscillations, see [EH16].

• With P0 (x) = 3x+ 2κ where κ ∈ R, P1 (x) = 0, f (x,y) = γ

α2 , and g(x,y) = 0, the
model (2.32) reduces to the classical form of the Camassa-Holm model [CH93]

(
1−α

2
∂

2
x
)

∂tu+(3u+2κ)∂xu−2γ∂xu∂
2
x u− γu∂

3
x u = 0. (2.34)

Figure 2.7 shows the results of the Camassa-Holm model.

• Let P0 (x) = 1, P1 (x) =
β

α2 , f (x,y) = 0 and g(x,y) = γ

α
. In this case, the model (2.32)

reduces to the potential parabolic BBM model [AV18]

(
1−α

2
∂

2
x
)

∂tu+∂xu−2γ |∂xu|2− γu∂
2
x u−β∂

3
x u = 0. (2.35)

Figure 2.8 shows the results of the potential parabolic BBM.

2.2.1.4 The abcd-model and its modified version

Before concluding this section, let us introduce a slightly more complex model to illus-
trate the versatility of the projection structure. We will adjust the notation in this part
to align with well-known models. Let us consider a system with four state variables
U = (η ,u, η̃ , ũ)⊺ with two constraints, i.e.

L (U) =

(
η̃ +
√

b∂xη

ũ+
√

d∂xu

)
(2.36)
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with b > 0 and d > 0. We consider the following matrix

A(U) =




u 1+αη 0 0
1 u 0 0
0 0 0 − a√

bd
0 0 − c√

bd
0


 (2.37)

where (α,a,c) ∈ R3. Proceeding similarly to the BBM constraint (2.29), we find that
ker(L )⊥ = ker(R) with

R (V) =

(
v0 +
√

b∂xv2

v1 +
√

d∂xv3

)
.

Applying this operator to (2.23) and using L (U) = 0, we obtain first

0 = ∂t

(
η +
√

b∂xη̃

)
+u∂xη +(1+αη)∂xu− a√

d
∂

2
x ũ

=
(
1−b∂

2
x
)

∂tη +u∂xη +(1+αη)∂xu+a∂
3
x u

and secondly
0 = ∂t

(
u+
√

d∂xũ
)
+∂xη +u∂xu− c√

b
∂

2
x η̃

=
(
1−d∂

2
x
)

∂tu+∂xη +u∂xu+ c∂
3
x η .

This model with α = 1 is known as the abcd-model [BCS02]. However, this model does
not fit exactly into the structure presented in Section 2. More precisely, assuming η >−D

α

and ac≥ 0, the matrix A(U) has four real eigenvalues

u−
√

g(D+αη), −
√

ac
bd

,

√
ac
bd

, u+
√

g(D+αη).

Unfortunately, in general, it does not satisfy the entropy-flux condition (2.24), except in the
particular case where α = 1

2 and a = c. We get

U⊺ ·A(U) = ∇U

((
η +

η2

2
+

u2

3

)
u− a√

bd
η̃ ũ
)
.

Corollary 2 Let α = 1
2 . For any b > 0, d > 0 and a = c ∈ R, the sufficiently regular

solutions of (2.23) with the constraint (2.36) and the hyperbolic operator (2.37) preserve
the L2-norm of the unknown. (2.27).

2.2.2 Projected hyperbolic models of Boussinesq-type

2.2.2.1 General description

The main limitation of the framework described in §2.2.1.1 is that it restricts itself to L2-
stable equations with linear constraint. Although it can be extended easily to any Hilbert
space, the models described in §2.1 do not fit into this framework. It is important to note
that in these models, the dispersive operator acts only on unknowns representing velocity,
not all unknowns, and the constraint is linear with respect to the velocity unknowns. Given
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this observation, we divide the variables of the system into potential unknowns H (t,x) :
R+×Rd 7→ RdH and kinetic unknowns U (t,x) : R+×Rd 7→ RdU . The advantage of this
separation is that the potential unknowns H are treated as parameters in the projection
definition. In the subsequent sections, we expand the definition of projected hyperbolic
models to incorporate the potential unknown H as a parameter. The class of models that
we will refer to as the projected hyperbolic models of Boussinesq-type can be formulated
as

∂t

(
H
U

)
+

d

∑
i=1

Ai (H,U)∂xi

(
H
U

)
=−

(
0

ΨH (Q)

)
(2.38)

with Ai =

(
AHH

i AHU
i

AUH
i AUU

i

)
and Q(t,x) : R+×R 7→ RdQ with dQ < dU .

1 As in §2.2.1.1, the squared matrix Ai (H,U) : RdH ×RdU 7→ MdH+dU (R) is assumed to
have real eigenvalues, ensuring that, excluding the dispersive source term ΨH , the model
remains hyperbolic. We assume the existence of an entropy E (H,U) = P (H)+KH (U),
which can be decomposed into a potential part P (H), dependent only on the potential un-

known H, and a kinetic part KH (U) = ν (H) |U |
2

2 , with the weight function of the potential
unknown ν (H) : RdH 7→ R+. Additionally, there exists a flux G(H,U) : RdH ×RdU 7→ Rd

that satisfies the entropy-flux relation

(∇H,U E)⊺ ·Ai = (∇H,U Gi)
⊺ (2.39)

where Gi are the component of G. This form of entropy is common in many problems,
especially in physics. It can be directly linked to a Hamiltonian mechanics formalism
by considering the Lagrangian L(H,U) = KH (U)−P (H). The dispersive source term
ΨH (Q) in (2.38) is not explicitly defined, but it is constructed to ensure that the state
variable satisfies the constraint

LH (U) = 0 (2.40)

with a given operator LH :
(
L2 (R)

)dU 7→
(
L2 (R)

)dQ , which is linear with respect to the
kinetic unknown U and parameterized by the potential unknown H. In other words, the
dispersive source term ΨH acts in such a way that the state variable U lies in the kernel of
LH .

As for the projected hyperbolic models of BBM-type, the dispersive source term is
assumed to belong to the dual space (ker(LH))

⊥ with respect to ⟨•,•⟩H , the L2 (ν̃ (H))

inner product. That is, for any V ∈ ker(LH) and any Φ ∈ (ker(LH))
⊥, we have

⟨V,Φ⟩H =
∫

R
V ·Φ ν̃ (H) dx = 0. (2.41)

Note that, in order to recover certain models from the literature, see §2.2.2.3, we do not
assume that the weight ν̃ used in the inner product is the same as the weight ν associated
with the kinetic energy. However, the orthogonality relation (2.41) allows us to extend the
entropy conservation law, as identified by relation (2.39), to the projected hyperbolic model
(2.38) only when the weights are identical.
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Proposition 2.9 Assuming that the inner product ν̃ (H) is associated with the kinetic en-
ergy, i.e., ν̃ (H) = ν (H), the sufficiently regular solutions of (2.38) satisfy the following
energy conservation law

∂t

∫

R
E (H,U) dx = 0.

It is worth noting that the flux of entropy is not solely the flux of the hyperbolic part,
G(H,U). There may also be a contribution from the dispersive source term G (H,U,Q)

such that ∂xG (H,U,Q) = ν (H)U ·Ψ. More precisely, for sufficiently regular solutions,
we can express it as follows

∂tE (H,U)+∇ · (G(H,U)+G (H,U,Q)) = 0.

Additionally, the Lagrange multiplier Q(t,x) is selected so that the mapping ΨH :(
L2 (R)

)dQ 7→ (ker(LH))
⊥ is an isomorphism. This multiplier is defined by

Q = Ψ
−1
H

(
∂tU +

d

∑
i=1

(
AUH

i ∂xiH +AUU
i ∂xiU

)
)
.

Eventually, it is important to note that the dual space (ker(LH))
⊥ is, by definition,

a linear subspace of
(
L2 (R)

)dU . Hence, there exists a mapping RH :
(
L2 (R)

)dU 7→(
L2 (R)

)dU−dQ such that ker(RH) = (ker(LH))
⊥. Applying this operator to the equations

of U in (2.38), the right-hand side vanishes, and we obtain an equation with only the state
variable U as the unknown.

RH (∂tU)+
d

∑
i=1

(
RH

(
AUH

i ∂xiH
)
+RH

(
AUU

i ∂xiU
))

= 0 (2.42)

Utilizing the constraint (2.40), the equation can be reduced to a small number of unknowns,
specifically dU −dQ. It is typically in this form that dispersive models are known.

In summary, the projected hyperbolic model of Boussinesq-type is fully characterized
by the potential unknown H, the kinetic unknown U , the hyperbolic matrix Ai, and the
constraint LH (U) and the weight of the inner product ν̃ (H). A large class of dispersive
models can be written in this way, in particular those that address the problem of water
waves, see §2.1. However, it is clear that this structure is not common to all dispersive
models. In particular, it is not satisfied by the Euler-Korteweg model [BGDD07, NV14],
or by the Nwogu model [Oke93].

2.2.2.2 The Green-Naghdi model

In this section, we elaborate on the connection between the projected hyperbolic equations
(2.13) and one of the classical forms of the Green-Naghdi model [GN76]. The potential
unknown is represented as H = (h,B)⊺, the kinetic unknown is U =

(
(ui)1≤i≤d ,w, w̃

)⊺, and
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the hyperbolic matrices are

A1 =




u1 0 h 0 0 0
0 0 0 0 0 0
g g u1 0 0 0
0 0 0 u1 0 0
0 0 0 0 u1 0
0 0 0 0 0 u1




and A2 =




u2 0 0 h 0 0
0 0 0 0 0 0
0 0 u2 0 0 0
g g 0 u2 0 0
0 0 0 0 u2 0
0 0 0 0 0 u2




which satisfies the entropy-flux relation (2.39) with the entropy given in Proposition 2.5.
We deduce the weight ν (H)= h, and we set ν̃ (H)= ν (H). The constraint reads LH (U)=

L [h,B] (U), with

L [h,B] (V ) =




v1−
√

3v2−
(

v0

v1

)
·∇B

v2 +
h

2
√

3
∇ ·
(

v0

v1

)


 . (2.43)

Using the orthogonality relation (2.41), we conclude that the dual space ker(RH) with
RH (Φ) = R [h,B] (Φ) and

R [h,B] (Φ) = h
(

φ0

φ1

)
+∇

(
h2

2

(
φ2 +

φ3√
3

))
+hφ2∇B. (2.44)

Applying this operator to the equation for U in (2.38), we obtain (2.42). Letting u =

(u1,u2)
⊺ and using (2.40), we get

R [h,B] (∂tU) = h
(
(1+T [h,B])∂tu+ Q̃ [h,B] (∂th∇ ·u)

)

d

∑
i=1

R [h,B]
(
AUH

i ∂xiH
)
= gh∇(h+B)

d

∑
i=1

R [h,B]
(
AUU

i ∂xiU
)
= h

(
u ·∇u+Q [h] (u)+QB [h] (u)+ Q̃ [h,B] (∇ · (hu)∇ ·u)

)

with the operators

T [h,B] (V ) = αBV +
1
h
(∇(γh,B ·V )− γh,B∇ ·V )− 1

h
∇(ωh∇ ·V )

Q [h] (V ) = −1
h

∇

(
h3

3

(
V ·∇(∇ ·V )−|∇ ·V |2

))

QB [h] (V ) =
1
h

(
∇

(
h2

2
(V ·∇)2 B

)
− h2

2

(
V ·∇(∇ ·V )−|∇ ·V |2

)
∇B
)
+
(
(V ·∇)2 B

)
∇B

Q̃ [h,B] (v) = − 1
3h

∇
(
h2v
)
− v

2
∇B.

with αB = ∇B⊗∇B , γh,B =
h2

2
∇B and ωh =

h3

3
. (2.45)

Since Q̃ [h,B] (v) is linear with respect to V , and using mass conservation, we conclude
Q̃ [h,B] (∂th∇ ·u) + Q̃ [h,B] (∇ · (hu)∇ ·u) = 0. Assuming h is non-zero, we recover the
form of the Green-Naghdi model [Lan13, (5.11)], i.e.

(1+T [h,B])∂tu+g∇(h+B)+u ·∇u+Q [h] (u)+QB [h] (u) = 0.
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2.2.2.3 The Peregrine model

In the regime of weakly non-linear waves, where h(t,x) = D(x) +O(ε) with ε ≪ 1, it
can be advantageous to replace the water depth h(t,x) by the mean depth D(x) during the
projection step. This approach helps to reduce the computational cost of simulations. In
the framework of projected hyperbolic models, this substitution is achieved by imposing
the constraint LH (U) = L [D,B] (U), with the definition (2.43), and setting the weight of
the inner product ν̃ (H) = ν (D). It is important to note that the inner product is no longer
associated with kinetic energy. Consequently, Proposition 2.9 cannot be applied, and in
practice, the model does not conserve energy. Nevertheless, the dual space of ker(LH) is
ker(RH), where RH (U) = R [D,B] (U), as defined by (2.44). From (2.42) and assuming
D is non-zero, we obtain

(1+T [D,B])∂tu + g∇(h+B)+u ·∇u
+ Q [D] (u)+QB [D] (u)+ Q̃ [D,B] (∇ · (Du)∇ ·u) = 0.

(2.46)

It is not the classical Boussinesq-Peregrine model [Per67], which is given by

(1+T [D,B])∂tu+g∇(h+B)+u ·∇u = 0. (2.47)

However, the Boussinesq-Peregrine model (2.47) can be reformulated in the projected hy-
perbolic form by omitting the advection of the vertical velocity, i.e., utilizing the hyperbolic
operator

A1 =




u1 0 h 0 0 0
0 0 0 0 0 0
g g u1 0 0 0
0 0 0 u1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




and A2 =




u2 0 0 h 0 0
0 0 0 0 0 0
0 0 u2 0 0 0
g g 0 u2 0 0
0 0 0 0 0 0
0 0 0 0 0 0



. (2.48)

This operator simply omits the advection terms involving the vertical velocities w̃ and
˜̃w, which renders the model non-Galilean invariant even over a flat bottom. The same
simplification has been employed in fully nonlinear models like the Yamazaki model
[YKC09], which can be formulated as a projected hyperbolic model using the hyperbolic
operator (2.48), the constraint LH (U) = L [h,B] (U) defined by (2.43) and the weight
ν̃ (H) = ν (H). It is important to note that both models (2.46) and (2.47) are not well-
posed when the mean depth D(x) becomes negative, thus they are unable to handle dry
areas.

2.2.2.4 High order dispersive models

Now, we propose to extend the Green-Naghdi model by introducing additional unknowns
and constraints to improve its dispersion relation. For simplicity, we focus on the 1D case
with a flat bottom.

We define the projected hyperbolic model with the potential unknown H = h, and the
kinetic unknown U =

(
u,(wi)1≤i≤M

)
with M≥ 1. Here, u represents the horizontal velocity
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and (wi)1≤i≤M denote additional velocities. The hyperbolic operator is derived from the
shallow water model (2.6) with passive transport of these additional velocities. In other
words, 


u h 0
g u 0
0 0 uIM




and the constraint
LH (U) =

(
wi−αi (−h)i

∂
i
xu
)

1≤i≤M
. (2.49)

As a consequence of Proposition 2.9, the model preserved an entropy.

Proposition 2.10 For sufficiently smooth solutions of the high order dispersive model, the
following mechanic energy conservation law holds

∂t (P +K )+∂x

((
g(B+h)+q+

|u|2 +∑
M
i=1 w2

i

2

)
hu

)
= 0.

with P = gh
(
B+ h

2

)
and K = h

2

(
|u|2 +∑

M
i=1 w2

i

)
.

Now, computing the dispersion relation of the model (2.49), we obtain

vHO(M)GN
p =

√
1

1+∑
M
i=1 α2

i |kD|2i

√
gD (2.50)

By selecting the parameters αi to match the Taylor expansion of x
tanh(x) , we construct a high-

order dispersive model. It is important to note that the Taylor expansion of x
tanh(x) has a finite

radius of convergence, see Figure 2.5. In the case M = 2, following similar calculations as
those for the Green-Naghdi model in Section §2.2.2.2, we derive the high-order dispersive
fully nonlinear model described in [Mat15, KZI18] or the high-order dispersive weakly
nonlinear model described in [GK96, MS98] with the simplification presented in §2.2.2.3.

2.2.3 Boundary conditions of projected hyperbolic models

The current section addresses a remark on the boundary conditions for projected hyperbolic
models. The issue of boundary conditions in dispersive models is complex and has been
explored in only a few studies [Xue08, ADM09, Aud12, BELV16, BNS17, BMGN18,
LM18, KN20, LW20] This remark stems from the necessity to maintain the projection
structure onto a linear subspace when dealing with a bounded domain Ω. This requirement
parallels the literature on boundary conditions for incompressible flow equations [AKM89,
GHR12, KOS23]. We propose to focus on the auxiliary projection problem of the projected
hyperbolic model of BBM-type. Specifically, for a function U∗ ∈

(
L2 (Ω)

)2, we seek a
function U ∈ ker(L ) (defined in (2.29)) and Ψ ∈ (ker(L ))⊥ such that

U∗ =U +δtΨ (2.51)
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For a given δt > 0, the orthogonality relation (2.26) is modified for a bounded domain
Ω = [0,1] to

0 =
∫ 1

0
V ·Φdx =

∫ 1

0
v0 (φ0 +α∂xφ1) dx−α [v0φ1]

1
0

We conclude that, in addition to the duality between the kernel of L and the kernel of R,
the orthogonality property necessitates the condition for any x ∈ ∂Ω

v0 (x)φ1 (x) = 0. (2.52)

We conclude that to ensure the orthogonality property on a bounded domain (which ensures
control over the entropy), we need to decompose the boundary into two open sets (not
necessarily connected), Γu and Γψ , such that ∂Ω = Γu ∪Γψ and Γu ∩Γψ = ∅. Also we
consider the functions ů : Γu 7→R and ψ̊ : Γψ 7→R, and we seek a solution to the projection
problem (2.51) such that u = ů on Γu and ψ = ψ̊ on Γψ . It is worth noting that for any
V ∈ ker(L ), we have v0 ∈ H1, and similarly, for any Φ ∈ ker(R), we have φ1 ∈ H1,
ensuring their values at the boundary are well-defined.

2.2.3.1 Homogeneous boundary conditions

Let us first consider the homogeneous case where ů = 0 and ψ̊ = 0. We define the linear
subspaces

A0
Γu

=
{

V ∈ ker(L ) | v0|Γu
= 0
}

(
A0

Γψ

)⊥
=
{

Φ ∈ ker(L ) | φ1|Γψ
= 0
}
.

Thanks to the Hodge decomposition
(
L2 (Ω)

)2
= AΓu ⊕

(
AΓψ

)⊥, we conclude that the or-

thogonal projection ΠAΓu
:
(
L2 (Ω)

)2 7→AΓu is well-defined. This projection can be likened
to the Leray-Hopf projector of the incompressible fluid mechanics.

2.2.3.2 Inhomogeneous boundary conditions

Now we consider the inhomogeneous boundary conditions. We define the set of admissible
functions

AΓu =
{

V ∈ ker(L ) | v0|Γu
= ů
}

(
AΓψ

)⊥
=
{

Φ ∈ ker(L ) | φ1|Γψ
= ψ̊

}
.

It is worth noting that the spaces AΓu and
(
AΓψ

)⊥ are not vector spaces, hence, the
projection is not straightforward. However, if we take arbitrary functions Vr ∈ AΓu and
Φr ∈

(
AΓψ

)⊥, called reference functions, the difference between the solution and the ref-
erence functions lies in the linear subspaces and can be defined by

U−Vr = ΠAΓu
(U∗−Vr−δtΦr) and Ψ =

U∗−U
δt

.

It remains to show that the solution U and Ψ is unique and does not depend on the ref-
erence functions. Consider two solutions defined from two different reference functions.
By linearity, their difference is a solution of the projection problem (2.51) with V = 0 and
homogeneous boundary conditions. Hence, we conclude that the two solutions agree. It
follows that the auxiliary projection problem (2.51) is well-posed.
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2.2.3.3 Boundary condition for Boussinesq-type projected models

In [NPT22], we apply the same strategy to the Green-Naghdi model (2.13). We would
like to point out that in the case of projected models of the Boussinesq-type, the weight
of the inner product ν (H) can vanish in parts of the computational domain, i.e. the dray
areas. The domain where the projection is well-defined is only the support of the weight,
Ω = supp(ν). For the Green-Naghdi model, the boundary condition for orthogonality
(analogous to (2.52)) applied to the boundary of the wet area reads

hq u ·n= 0. (2.53)

Hence, the boundary is decomposed into three open sets Γh = {∂Ω | h = 0}, Γu ⊂ ∂Ω−Γh

and Γψ = ∂Ω−Γh−Γu. On Γh, no conditions can be imposed, on Γu the normal velocity
u ·n is fixed, and on Γψ the hydrodynamic pressure hq is fixed.

The main result, [NPT22, Theorem 6], states that assuming B ∈W 1,∞ (Ω), for any
U∗ ∈

(
L2 (Ω,h)

)d+2, any ů ∈ H−1/2 (∂Ω), and any ψ̊ ∈ H1/2
(
Γψ

)
, there exists a unique

solution to the auxiliary projection problem (2.51) with the constraint (2.14).

Additionally, note that the condition (2.52) (BBM-type) or (2.53) (Boussinesq-type) is
neither necessary nor sufficient to ensure that the projected hyperbolic model on a bounded
domain is well-posed. It is not necessary because it is likely possible to define bound-
ary conditions such that the projected hyperbolic model is well-posed without satisfying
a projection structure. It is not sufficient because the condition alone does not ensure that
the entire problem, particularly the hyperbolic operator, is well-defined without additional
boundary conditions. Specifically, in the case of the Green-Naghdi model (2.13), it is clear
that the vertical velocity w̃ (and the standard deviation ˜̃w, which are linked through the
constraint) must be defined where the flow is incoming, i.e., u ·n < 0. However, the con-
dition (2.52) (or (2.53)) has allowed us to define stable boundary conditions, at least for
the time-discrete problem. Boundary conditions used in practice are discussed in the fully
discrete framework in §2.3.1.2.

2.3 Structure-preserving schemes for projected hyperbolic
models

As presented in §2.2, the projected hyperbolic models have a structure similar to that of
incompressible flows. In this section, we adapt numerical strategies initially developed for
incompressible flow to our framework. It is conventional to classify numerical schemes for
incompressible flows into three main categories. The first category is based on the finite-
element method with elements satisfying a discrete counterpart of the Hodge decomposi-
tion, known as Raviart-Thomas elements [RT06], which ensures that the solution remains
in the linear subspace of admissible functions. Adapting this strategy to our framework is
not straightforward.

The second strategy, known as the projection scheme, involves splitting the process
into a prediction step, driven by the hyperbolic operator, and a projection step onto the
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linear subspace [Cho68]. This strategy is well-suited to our framework, as the numerical
resolution of the hyperbolic operator is well established [GR96, LeV02, Bou04, Tor99], as
is the projection at the discrete level.

The third strategy, called the pseudo-compressible scheme, also involves splitting the
process into a prediction step and a projection step. However, in this case, the projec-
tion is approximated using a relaxation operator [Tem68]. Several authors have proposed
numerical schemes based on a hyperbolization of the dispersive model [FG17, EDC19,
BBBD20, BBD20a, BDE+21, GKPT22, DD22, TGM23, DR24], which can be considered
an adaptation of the pseudo-compressible schemes to the dispersive framework.

Other discretisation techniques, still based on a splitting between the hydrostatic part
and a hydrodynamic correction, exist in the literature [Bar04, MN08, CLM10, MRN16,
BGL17, CFRB19, KR24] but their link with the projection structure is less obvious.

2.3.1 Entropy-satisfying scheme for projected hyperbolic models

2.3.1.1 General description of the projection scheme

We propose a projection scheme for the projected hyperbolic models. A review of
projection schemes for incompressible flows can be found in [Gue94, GMS06, BBD+20b].
For simplicity, we consider a projected hyperbolic model (2.38) with a conservative form,
i.e., there exists a flux F (W ) with W = (H,U)⊺ such that ∇W F (W ) = A(H,U). Note that
several hyperbolic operators presented in this document cannot be written in a conservative
form, such as (2.16), (2.19), and (2.31). These cases require particular attention, which
will be considered in §2.3.1.3.

Prediction step: The first step of the scheme is to solve the hyperbolic operator at the
discrete level. We use a classical finite volume discretization of the hyperbolic operator, as
described in [GR96, LeV02, Bou04, Tor99]. We set

W n∗
k =W n

k −
δ n

t

mk
∑

f∈Fk

F
(

W n
k ,W

n
k f

)
·nk

fm f (2.54)

where F (WL,WR) represents an approximate Riemann solver for the flux F , and W n∗
⋆ de-

notes an approximation of the solution that disregards the dispersive source term. The
explicit Godunov schemes exhibit stability subject to a CFL condition given by

δ
n
t ≤

min
(
dk,dk f

)

λ

(
W n

k ,W
n
k f

) (2.55)

where dk the compactness (see §1.2) and λ (WL,WR) represents an approximation of the
largest wave speeds which depends on the chosen Riemann solver. Assuming the hyper-
bolic scheme (2.54) satisfies the entropy condition implies the existence of a discretization
of the integral operator ⟨•⟩δ such that

⟨E (Hn∗
⋆ ,Un∗

⋆ )⟩δ ≤ ⟨E (Hn
⋆ ,U

n
⋆ )⟩δ
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on an unbounded or periodic domain. Specifically, this approach results in a discretization
of the inner product associated with the kinetic energy, namely

⟨KH⋆ (U⋆)⟩δ =

〈
ν (H⋆)

2
|U⋆|2

〉δ

=: ⟨U⋆,U⋆⟩δν(H⋆)

For low-order schemes, the discretization of the integral operator typically takes the form

⟨ f⋆⟩δ = ∑
k∈T

fkmk hence ⟨ f⋆,g⋆⟩δν⋆ = ∑
k∈T

fkgkνkmk. (2.56)

although other discretizations can be found. Several hyperbolic entropy-satisfying schemes
can be found in the literature, such as those described in [God59, HLL83, Sul90, PS01].

Correction step: The next step involves solving the projection problem (2.51) at the
discrete level. Firstly, it is important to note that since the dispersive operator does not
affect the potential unknown, we have Hn+1

⋆ =Hn∗
⋆ . We consider a discretization L δ

k,H⋆
(V⋆)

of the constraint LH (V ). Given that the discrete inner product is already determined by
the advection step, we define the discrete operator Rδ

k,H⋆
(V⋆) to preserve the orthogonality

property with respect to the discrete inner product ⟨•,•⟩δ
ν⋆

. The discrete projection problem
aims to find Un+1

⋆ ∈ RdU×N and Ψn+1
⋆ ∈ RdU×N such that

Un∗
k = Un+1

k +δ
n
t Ψ

n+1
k

with L δ

k,Hn+1
⋆

(
Un+1
⋆

)
= 0

and Rδ

k,Hn+1
⋆

(
Ψn+1

⋆

)
= 0.

(2.57)

On an unbounded domain, the discrete projection problem is clearly well-posed because
we construct the spaces ker

(
L δ

k,Hn+1
⋆

)
and ker

(
Rδ

k,Hn+1
⋆

)
to satisfy a Hodge decomposition.

Additionally, the projection problem remains linear, even if the initial problem is nonlinear.
Specifically, all nonlinear terms are handled in the prediction step.

The system (2.57) is commonly referred to as the mixed formulation of the projection
problem [GQ98, GS03]. It represents a sparse linear system with 2NdU unknowns. Im-
portantly, the number of unknowns in the system can be effectively reduced. Applying the
operator Rδ

k,Hn+1
⋆

to the first equation of (2.57), the kinetic unknown satisfies

Rδ

k,Hn+1
⋆

(
Un+1
⋆

)
= Rδ

k,Hn+1
⋆

(Un∗
⋆ ) (2.58)

and using the constraint L δ

k,Hn+1
⋆

(
Un+1
⋆

)
= 0, the system can be reduced to a sparse linear

system with N (dU −dQ) unknowns. This formulation is typically referred to as the velocity
correction formulation. The dispersive source term Ψn+1

⋆ can be computed using the first
equation of (2.57), i.e.

Ψ
n+1
k =

Un∗
k −Un+1

k
δ n

t
. (2.59)

As an alternative, by applying the operator L δ

k,Hn+1
⋆

to the first equation of (2.57), the
dispersive source term is found as the solution of

δ
n
t L δ

k,Hn+1
⋆

(
Ψ

n+1
⋆

)
= L δ

k,Hn+1
⋆

(Un∗
⋆ ) (2.60)
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and using the constraint Rδ

k,Hn+1
⋆

(
Ψn+1

⋆

)
= 0, the system can be reduced to a sparse lin-

ear system with NdQ unknowns. This formulation is typically referred to as the pressure
correction formulation. Then, the kinetic unknown is computed using the first equation of
(2.57), i.e.,

Un+1
k =Un∗

k −δ
n
t Ψ

n+1
k . (2.61)

For both formulations, the Lagrange multiplier Q⋆ can be chosen such that the discrete
application Ψk,H⋆ : RdQ×N 7→ ker

(
Rδ

k,H⋆

)
is invertible, and we set

Qn+1
k = Ψ

−1
k,Hn+1

⋆

(
Ψ

n+1
⋆

)
. (2.62)

For this scheme, neither the computation of the Lagrange multiplier nor the computation
of the dispersive source term in the case of velocity correction using (2.59) are necessary.

Proposition 2.11 Assuming the prediction scheme (2.54) is entropy-satisfying under the
CFL condition (2.55), then the full scheme, including the discrete projection problem
(2.54)-(2.57) (or (2.54)-(2.58) or (2.54)-(2.60)-(2.61)), is also entropy-satisfying under the
same CFL condition.

A number of techniques now exist for constructing an entropy-satisfying scheme for
hyperbolic equations [Bou03, BDS12, BLMP17, Abg18, BDF+19, AÖR22, BCDD+23,
ABD23].

It may be advantageous to choose one formulation over the other depending on the
sign of

(
dQ
dU
− 1

2

)
. However, the conditioning of the linear system is also an important

consideration. Specifically, when δ n
t ≪ 1, the pressure correction formulation tends to

become badly conditioned.

2.3.1.2 Application to the BBM equation

This section is devoted to the application of the numerical strategy described in §2.3.1.1 to
the case of the BBM equation (2.33) on [0,1]. The mesh is assumed to be Cartesian with a
step size of mk = δx, and it is numbered from left to right, T= [1,N]∩N. The conservative
form of its hyperbolic operator is given by

F
(

u
w

)
=

(
u2

2
cw

)
.

The hyperbolic scheme (2.54) provides the prediction Un∗ = (un∗,wn∗)⊺. It is worth noting
that, using for example the HLL approximate Riemann solver [HLL83], the hyperbolic
scheme (2.54) is entropy satisfying with the inner product (2.56) and the uniform weight
ν = 1, i.e. there exists a numerical flux G f such that

|un∗
k |2 + |wn∗

k |2 ≤ |un
k |2 + |wn

k |2−
δt

mk
∑

f∈Fk

G f ·nk
fm f

with BC being a term arising from the boundary conditions.
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Figure 2.9: §2.2.3 | Simulations with dry front of a wave overtopping a dike using the
shallow water model (2.6) (solid line), the non-hydrostatic model [SM11] (dotted line), and
the Green-Naghdi model (2.13) (dashed line). Figure taken from [Par19].
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Now, we turn our attention to the correction step. We propose to use a centered dis-
cretization approach. The discretization of the constraint (2.29) is given by

L δ
k (V⋆) = v1,k +α

v0,k+1− v0,k−1

2δx
(2.63)

with V⋆ = (v0,k,v1,k)
⊺
k∈T. Let Φ⋆ = (φ0,k,φ1,k)

⊺
k∈T be in the dual space of ker

(
L δ

⋆

)
. For any

V⋆ ∈ ker
(
L δ

⋆

)
, we have

0 =
N

∑
k=1

(v0,kφ0,k + v1,kφ1,k)δx =
N

∑
k=1

(
v0,kφ0,k−α

v0,k+1− v0,k−1

2δx
φ1,k

)
δx

=
N

∑
k=1

v0,k

(
φ0,k +α

φ1,k+1−φ1,k−1

2δx

)
δx

−α

2

[
v0, f+1/2

φ1, f−1/2
+ v0, f−1/2

φ1, f+1/2

] f=N+1/2

f=1/2
.

We conclude the discretization (2.30) of the operator R such that ker
(
Rδ

⋆

)
=
(
ker
(
L δ

⋆

))⊥
as follows

Rδ
k (Φ⋆) = φ0,k +α

φ1,k+1−φ1,k−1

2δx
. (2.64)

and the discrete counterpart of the boundary condition (2.52) is given by

v0, f+1/2
φ1, f−1/2

+ v0, f−1/2
φ1, f+1/2

= 0. (2.65)

It is worth noting that the discretization (2.64) and (2.65) strongly depend on the choice
of the discretization (2.63). For instance, the dual of the left-upwind scheme in (2.63)
corresponds to the right-upwind scheme in (2.64), and vice versa [CLR20].

Interior cells: The mixed formulation is given by (2.57).
The velocity correction is given by (2.58), and using the constraint (2.63), we have

un+1
k −α

2 un+1
k+2−2un+1

k +un+1
k−2

4δ 2
x

= Rδ
k (U

n∗
⋆ ) . (2.66)

Then wn+1
⋆ is computed explicitly using (2.63), and optionally Ψn+1

⋆ using (2.59).
The pressure correction is given by (2.60), and using the constraint (2.64), we have

ψ1,k−α
2 ψ1,k+2−2ψ1,k +ψ1,k−2

4δ 2
x

=
1

δ n
t
L δ

k (Un∗
⋆ ) . (2.67)

Then ψ
n+1
0,⋆ is computed explicitly using (2.64), and Un+1

⋆ using (2.61).
It is worth noting that both schemes (2.66) and (2.67) employ a discretization of the

Laplacian where a cell is connected not to its immediate neighbor but to the neighbor of the
neighbor. Such discretizations are known to have drawbacks, particularly the introduction
of chessboard modes. In the context of projected hyperbolic models, these modes are not
preserved by the prediction step (2.54) and thus are not a concern.
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Figure 2.10: §2.2.3 | Exact and approximate solutions for the solitary wave of the Green-
Naghdi model (2.13) incoming the computational domain by fixing the water depth and
velocity using various mesh sizes.
- Top line: Low nonlinear soliton.
- Bottom line: Strong nonlinear soliton.
Figure taken from [NPT22].

Boundary cells: In the scheme (2.66) or (2.67), the two nearest cells to the boundary
utilize ghost values. For example, at the left boundary, these values are un+1

0 and ψ
n+1
1,0 . For

the velocity correction scheme (2.66), we have

un+1
1 −αδ

n
t

ψ
n+1
1,2 −ψ

n+1
1,0

2δx
= un∗

1

un+1
2 −α

2 un+1
4 −2un+1

2 +un+1
0

4δ 2
x

= Rδ
2 (U

n∗
⋆ ) .

At the boundary conditions, we consider an inlet flow at the left and a fixed Lagrange
multiplier at the right. Specifically:

• At the left boundary we fixe u(t,0) = ů(t) > 0 and w(t,0) = ẘ(t). At the discrete
level, we set un

0+un
1

2 = ů(tn). Then using (2.65), we have ψn
1,0−ψn

1,1 = 0.



36 Chapter 2. Free surface flows

• At the right boundary we fixe ψ1 (t,1) = ψ̊ (t). At the discrete level, we set
ψn

1,0+ψn
1,1

2 = ψ̊ (tn). Then using (2.65), we have un
0−un

1 = 0.

To write the system focusing only on the velocity u for the velocity correction scheme
(2.66) (or alternatively only on the Lagrange multiplier ψ1 for the pressure correction
scheme (2.67)), we use the constraints (2.63) and (2.64). Specifically,

αδ
n
t

ψ
n+1
1,2 −ψ

n+1
1,0

2δx
= αδ

n
t

ψ
n+1
1,2 −ψ

n+1
1,1

2δx

= −α
wn+1

2 −wn+1
1

2δx
+α

wn∗
2 −wn∗

1
2δx

= α
2 un+1

3 −un+1
2 −un+1

1 +un+1
0

4δ 2
x

+α
wn∗

2 −wn∗
1

2δx
.

Hence, the scheme in the first cell is given by

un+1
1 −α

2 un+1
3 −un+1

2 −2un+1
1

4δ 2
x

= un∗
1 +α

wn∗
2 −wn∗

1
2δx

+α
2 ů
(
tn+1

)

2δ 2
x

and we apply a similar approach at the right boundary. It is worth noting that with the
discretization we used, imposing a Dirichlet condition on one variable leads to a Neumann
condition on the other. This artificial coupling can impact the numerical solution,
potentially causing it to be inconsistent with the continuous equations. However, this
strategy ensures a robust numerical scheme.

In [Par19], we apply the same strategy to propose an entropy-satisfying scheme for the
Green-Naghdi model (2.13). The boundary conditions are treated as discussed in [NPT22],
where two out of the three unknowns h, hu and hq are fixed at the boundary. Additionally,
the tangential horizontal velocity u · n⊥ and the vertical velocities w and w̃ are specified
where the flow is incoming, i.e., u · n|∂Ω

≤ 0 at the boundary of the wet domain, where n

represents the outward normal. In particular, the numerical strategy ensures the stability of
the numerical resolution in the following cases, where the index g refers to the ghost cell
and i to the interior cell closest to the boundary:

At dry fronts: where hn+1
k = 0, see Figure 2.9.

With wall boundary conditions: setting ∂xh|∂Ω
= 0 and u|∂Ω

· n = ů(t). At the discrete
level, we set hn+1

g = hn+1
i and un+1

g ·n = 2ů
(
tn+1

)
−un+1

i ·n. It follows that hgqg =

hiqi.

By fixing the water depth and velocity: setting h|∂Ω
= h̊(t) and u|∂Ω

· n = ů(t). At the
discrete level, we set hn+1

g = 2h̊
(
tn+1

)
−hn+1

i and un+1
g ·n = 2ů

(
tn+1

)
−un+1

i ·n. It
follows that hgqg = hiqi, see Figure 2.10. It is worth noting that the water depth or
the horizontal velocity can be fixed using the Riemann invariant of the shallow water
model, see [GR04], even if there is no mathematical reason other than coherence in
the hyperbolic regime.
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Figure 2.11: §2.2.3 | Simulations of the Green-Naghdi model (2.13) with incoming flows
by fixing the discharge and the pressure. Figure taken from [NPT22].

By fixing the discharge and the pressure: setting (hu ·n)|∂Ω
= m̊(t) and (hq)|∂Ω

= ψ̊ (t).
At the discrete level, we set hn+1

g un+1
g ·n= 2m̊

(
tn+1

)
−hn+1

i un+1
i ·n and hn+1

g qn+1
g =

2ψ̊
(
tn+1

)
−hn+1

i qn+1
i . It follows that un+1

g = un+1
i and then hn+1

g = 2
m̊(tn+1)
un+1

i ·n −hn+1
i ,

see Figure 2.11.

Open boundary conditions: at the discrete level, setting hn+1
g = hn+1

i and un+1
g ·n= un∗

i ·
n. It follows that hgqg = hiqi, see Figure 2.12.

2.3.1.3 Non-conservative products

The correction step (2.57) is valid for any model using the constraint (2.29), i.e., all
the models presented in §2.2.1.3. The difference between these models lies in the
prediction step and, therefore, in the computation of Un∗

⋆ . Several dispersive models can
be written under the projected hyperbolic form using non-conservative products, including
the Camassa-Holm model (2.34), the Green-Naghdi model with linear velocity profile
(2.16), and the layerwise Green-Naghdi model (2.19). The treatment of non-conservative
products is complex from both theoretical and numerical perspectives. Although
this question remains open, we can reference [DMLM95] for theoretical aspects and
[CMP01, Par06, CDCRFNP07, AK10, HHMM10, CFMP13, CFMP13, Cha20, GCDM21]
for numerical aspects. It is worth noting that, in the framework of projected hyperbolic
models, the projection onto a linear subspace generally increases the regularity of the
solution, which can aid in defining non-conservative products. For example, due to the
energy conservation (2.8) in BBM-type models (with the constraint (2.29)), we conclude
that the velocity u ∈ H1(R). Thus, the non-conservative products of the hyperbolic
operator (2.31) in the Camassa-Holm setting (see (2.34)) are well defined. Additionally, in
[AAGP18], we demonstrate that the non-conservative products of the shallow water model
with two velocities (2.7) are well-defined for any monotonous path, which can be extended
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Figure 2.12: §2.2.3 | Simulations of solitary waves in the Green-Naghdi model (2.13)
outcoming the computational domain with open boundary conditions using various mesh
sizes.
- Top line: Water Depth.
- Bottom line: Difference from the Exact Solution.
Figure taken from [NPT22].

to the Green-Naghdi model with linear velocity profile (2.16).

Here, we highlight the specific case of exchanges between layers in the layerwise mod-
els (2.9) and (2.19). This approach can be compared to directional splitting. A similar
strategy has been proposed for the kinetic solver in [ABD08], and is generalized here for
any hyperbolic solver. Specifically, we start by considering the model without vertical ex-
changes or dispersive source terms. Essentially, this model is the shallow water equation
with two passive transport models in each layer. Similar to the conservative case (2.54),
the solution in each layer is approached using classical finite volume methods, i.e.

W n(1)
i,k =W n

i,k−
δ n

t

mk
∑

f∈Fk

F
(

W n
i,k,W

n
i,k f

)
·nk

fm f (2.68)

where the state vector reads

W n
i,k =

(
hn

k ,h
n
kun

i,k
)⊺ and W n(1)

i,k =
(

hn(1)
i,k ,hn(1)

i,k un(1)
i,k

)⊺
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for the layerwise shallow water model (2.9) and

W n
i,k =

(
hn

k ,h
n
kun

i,k,h
n
kwn

i,k,h
n
kw̃n

i,k
)⊺ and W n(1)

i,k =
(

hn(1)
i,k ,hn(1)

i,k un(1)
i,k ,hn(1)

i,k wn(1)
i,k ,hn∗

i,kw̃n(1)
i,k

)⊺

for the layerwise Green-Naghdi model (2.19). In these last case, the two last unknown can
be advected using a upwind scheme with the mass flux as a passive pollutant as presented
in [Bou04, §2.7].

The total water depth at time tn is given by hn
k and hn(1)

i,k is an approximation of the
total water depth at time tn+1 assuming the entire water column is moving at speed un

i,k.
In the second step of the scheme, vertical exchanges are taken into account, and the mass
equation is given by

hn+1
k = hn(1)

i,k +δ
n
t

Gn+1
i+1/2,k

−Gn+1
i−1/2,k

ℓi
.

It is a linear system by column of water with the unknowns hn+1
k ,

(
Gn+1

i+1/2,k

)
1≤i<L

. The

solution is straightforwardly given by

hn+1
k =

L

∑
i=1

ℓih
n(1)
i,k and Gn+1

i+1/2,k
=

i

∑
j=1

ℓ j
hn+1

k −hn(1)
j,k

δ n
t

. (2.69)

Then, we use an upwind implicit scheme for the velocity, i.e.

hn+1
k un∗

i,k = hn(1)
i,k un(1)

i,k +
δ n

t

ℓi

(
un∗

i+1

[
Gn+1

i+1/2

]
+
−un∗

i

[
Gn+1

i+1/2

]
−

−
(

un∗
i

[
Gn+1

i−1/2

]
+
−un∗

i−1

[
Gn+1

i−1/2

]
−

)) (2.70)

with the positive and negative parts of the function defined by [φ ]± = |φ |±φ

2 ≥ 0. Other
advection schemes can be chosen, but this choice is motivated by the fact that the implicit
upwind scheme is unconditionally entropy-stable [Bou04]. Additionally, the matrix of the
system (2.70) is actually block triangular, allowing for explicit computation by processing
the layers in the correct order. This means there exists an order to compute the layers such
that either the flux is outward or the neighboring values are already known.

Proposition 2.12 Assuming the scheme (2.68) for one layer shallow water model is en-
tropy satisfying under a CFL condition (2.55). Then the scheme (2.68)-(2.69)-(2.70) for
the layerwise model (2.9) is entropy-satisfying under the same CFL condition.

The treatment of the vertical velocities wn∗
i,k and w̃n∗

i,k is slightly more complex since they
are coupled by the velocity at the interface (2.20). The unknowns of the vertical velocity
in each layer are given by

A
(

hn+1
i,k ,Gn+1

i−1/2,k
,Gn+1

i+1/2,k

)(wn∗
i,k

w̃n∗
i,k

)
= Bn(1)

i,k

with the matrix

A(H,Gd ,Gu) =

(
H +[Gd ]++[Gu]−

√
3
(
[Gu]−− [Gd ]+

)
√

3
(
[Gu]+− [Gd ]−

)
H +Gd +Gu +[Gd ]++[Gu]−

)
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and the right-hand side can be computed explicitly by iterating through the layers in the
correct order, similar to the horizontal velocity

Bn(1)
i,k =

(
hn(1)

i,k wn(1)
i,k

hn(1)
i,k w̃n(1)

i,k

)

+
δ n

t

ℓi

((
wn∗

i+1−
√

3w̃n∗
i+1

)[
Gn+1

i+1/2

]
+
+
(

wn∗
i−1 +

√
3w̃n∗

i−1

)[
Gn+1

i−1/2

]
−

)( 1√
3

)
.

Proposition 2.13 Assuming the scheme (2.68) for one layer shallow water model is en-
tropy satisfying under a CFL condition (2.55). Then the scheme (2.68)-(2.69)-(2.70) with
the correction step (2.57) for the layerwise model (2.19) is entropy-satisfying under the
same CFL condition.

It is worth noting that resolving the correction step involves coupling the velocities of
all layers together, which can make the scheme computationally expensive as the number
of layers increases.

2.3.2 Incremental scheme for projected hyperbolic models

2.3.2.1 First order incremental scheme

To address the drawback at small time steps, an incremental pressure method can be em-
ployed [God79, Gue99]. Specifically, we add to the prediction step with an explicit esti-
mation of the dispersive source term. This explicit estimation could be its value from the
previous time step, denoted as Ψn

⋆, but this choice can influence the final solution even for
larger time steps for the Boussinesq-type models. Another approach is to utilize the disper-
sive operator estimated with the Lagrange multiplier from the previous time step, denoted
as Ψk,Hn+1

⋆
(Qn

⋆). This choice is motivated by the fact that Ψk,Hn+1
⋆
∈ ker

(
Rδ

k,Hn+1
⋆

)
, meaning

that even if the estimation of the Lagrange multiplier is inaccurate, it does not significantly
impact the final result. The fact that the dispersive operator is estimated with Hn+1

⋆ poses
no issue since the dispersive source term does not affect the potential unknown. During the
first time step, the unknown nature of the Lagrange multiplier, since it is not provided by
the initial condition, is not problematic. Any initial condition for the Lagrange multiplier
can be chosen. (2.54) can be advantageously replaced by

W n∗
k =W n

k −
δ n

t

mk
∑

f∈Fk

F
(

W n
k ,W

n
k f

)
·nk

fm f −δ
n
t Ψk,Hn+1

⋆
(Qn

⋆) . (2.71)

Then the projection step is carried out using one of the formulations (2.57), (2.58), or
(2.60). However, in each case, the computed dispersive source term is adjusted based on
the deviation from the explicitly estimated dispersive operator. For instance, in the case of
velocity correction, (2.58) and (2.59) are replaced by

Rδ

k,Hn+1
⋆

(
Un+1
⋆

)
= Rδ

k,Hn+1
⋆

(Un∗
⋆ ) and δΨ

n+1
k =

Un∗
k −Un+1

k
δ n

t
. (2.72)
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Figure 2.13: §2.3.2.2 | (Top line) Exact and approximate solutions of steady solitary wave
of the Green-Naghdi model (2.13) with several mesh sizes. (Bottom line) Convergence
curves.
(A.1) Scheme witch does not satisfy the projection structure.
(GNδ ) Second order projection scheme §2.3.2.2.
Figure taken from [Par19].

Alternatively, in the case of pressure correction, (2.60) and (2.61) are replaced by

δ
n
t L δ

k,Hn+1
⋆

(
δΨ

n+1
⋆

)
= L δ

k,Hn+1
⋆

(Un∗
⋆ ) and Un+1

k =Un∗
k −δ

n
t δΨ

n+1
k . (2.73)

Also, for the computation of the Lagrange multiplier, (2.62) is replaced by

Qn+1
k = Qn

k +Ψ
−1
k,Hn+1

⋆

(
δΨ

n+1
⋆

)
. (2.74)

The entropy stability, as stated in Proposition 2.11, still holds with the incremental
correction scheme (2.71)-(2.72)-(2.74) (or (2.71)-(2.73)-(2.74)).

2.3.2.2 High-order incremental scheme

The progressive system can be utilized cleverly to propose high-order schemes without the
necessity of solving multiple linear systems. This strategy, well-established in the context
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of incompressible flow [vK86], can be adapted to projected hyperbolic models. It can be
employed with Backward Difference Formulas [CH52], although in the realm of hyperbolic
models, explicit Runge-Kutta methods [Run95] are more commonly used. The following
multi-step scheme for the prediction step is proposed

W n∗ = W n +δ
n
t

s

∑
i=1

biKn(s)

with Kn(i) = −A(W n)∇W n−δ
n
t ΨHn(i)

(
Q̃n (tn + ciδ

n
t )
)

W n(i) = W n +δ
n
t

i−1

∑
j=1

ai, jKn( j)

where s ≥ 1 is the order of the scheme, and ai, j, bi and ci are coefficients of the Butcher
tableau [But21]. The reconstructed Lagrange multiplier Q̃n (t) is a polynomial extrapola-
tion of order s− 2 of the Lagrange multiplier passing through the values at the previous
time step. That is, if s = 1 we set Q̃n = 0 (non-incremental, see §2.3.1.1) or Q̃n = Qn

(incremental §2.3.2.1). Otherwise

Q̃n (t) ∈ Ps−2 [t] and for any 0≤ j ≤ s−1, Q̃n (tn− j)= Qn− j.

Then a unique implicit correction step is performed (via (2.72) or (2.73)), and the Lagrange
multiplier at time tn+1 is given by

Qn+1 = Q̃n (tn+1)+Ψ
−1
Hn+1

(
δΨ

n+1) .

It remains to discuss the space discretization. Most high-order schemes are based
on approximation of the solution on each control volume using several degree of free-
dom, as the continuous [Red93] or discontinuous [PE12] Galerkin methods. Similar
to the first-order scheme discussed in §2.3.1.1, the prediction step consists of an en-
tropy satisfying scheme for the associated hyperbolic models. Recently, a few entropy-
satisfying high order schemes have been proposed in the context of hyperbolic mod-
els [GWK16, WWGK17, MÖR24]. These schemes involve high-order integration rules
and inner products that replace the approximation (2.56). Following the construction
of the first-order scheme, the next step is to propose a high-order discretization of the
constraint LH (V ) to fully define the scheme. By ensuring the orthogonality property
ker(RH) = (ker(RH))

⊥, Proposition 2.11 can be generalized to high-order schemes.
It is important to note that the inner product (2.56) and the centered discretization of the

constraint ((2.63) for BBM) are already second-order accurate. Therefore, by employing a
second-order MUSCL reconstruction for the prediction scheme, we can achieve a second-
order scheme for projected hyperbolic models. This strategy has been advantageously used
in the context of the Green-Naghdi equations to propose a second-order scheme, see Figure
2.13.

2.3.3 Well-balanced schemes for projected hyperbolic models

In recent decades, there has been considerable interest in developing numerical
schemes capable of discretizing particular solutions of hyperbolic models. Although
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not universally applicable, these solutions are typically characterized by a functional
of the state variable that remains constant across the entire domain. One of the
most classical examples is the preservation of the lake at rest equilibrium, character-
ized by ∇(B+h) = 0 and u = 0 for the shallow water model (2.6) [BV94, Gos00,
Bou04, PC04, ABB+04, XS06, GPC07, NXS07, CGLGP08, BEKP11, DLGP13].
Numerous studies have extended this concept to more complex equilibria and models
[XSN11, Xin14, DZBK16, BC16, MDBCF17, CN17, GdLP+18, BDF+19, CCH+19,
Bar19, BBBBC21, GBCP21, BBF+22, CTR23, GM24, BMD24]. The projected hyper-
bolic form appears well-suited to extend this concept to dispersive models. Here, we
outline a strategy for constructing a well-balanced numerical scheme for a one-dimensional
steady solution based on piecewise steady solution approximations [GBCP21], although
other strategies can likely be similarly extended.

Let us present the well-balanced scheme within the framework of projected hyperbolic
models of BBM-types §2.2.1.1 in a conservative form on a homogeneous mesh mk = δx.
Let Ũ (x) denote a steady solution of the projected hyperbolic models. Similar to hyperbolic
models, the steady states of the projected hyperbolic models satisfy the ODE

∂xF
(

Ũ
)
=−Ψ̃ with L

(
Ũ
)
= 0 and R

(
Ψ̃

)
= 0 (2.75)

where Ψ̃ represents the dispersive source term at equilibrium. Let us focus on the time-
discrete framework. The principle of the method is to handle the prediction step with the
dispersive source term at equilibrium. That is, we set

Un∗ =Un−δ
n
t

(
∂xF (Un)+ Ψ̃

n
)
=Un−δ

n
t ∂x

(
F (Un)−F

(
Ũn
))

and the correction step is given by

Un∗ =Un+1 +δ
n
t δΨ

n+1 with L
(
Un+1)= 0 and R

(
δΨ

n+1)= 0

with δΨn+1 = Ψn+1− Ψ̃n. It is evident that Ũ is a steady solution of the time-discrete
scheme. At the continuous spatial level, the projection step remains unaffected by the
scheme and is given by (2.72) or (2.73).

Now, consider the fully-discrete framework. We define

Un∗
k =Un

k −
δ n

t

δx

(
F
(

Ũn
k⊕,Ũ

n
k+1⊖

)
−F

(
Ũn

k−1⊕,Ũ
n
k⊖
)

−
(

F
(

Ũn
k⊕

)
−F

(
Ũn

k⊖

))) (2.76)

where Ũn
k± = Ũn

k

(
±1

2 δx
)

and Ũn
k (x) is the solution of the ODE (2.75) with the initial

value Ũn
k (0) = Un

k . Unfortunately, the solution of the ODE is typically not explicit. To
estimate the values of the unknown at the faces within a control volume, an implicit Euler
scheme for the ODE (2.75) is employed. This discretization of the ODE implies a specific
discretization of the constraint L WB

k such that the discrete steady state Ũn
⋆ (x)∈ ker

(
L WB

k

)
.

The correction scheme is then implemented using the constraint L WB
k .
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Let us provide an example with the BBM model (2.33). The ODE (2.75) is given by

∂x

(
ũ3

3
+

β

2α2 w̃2−α ũq̃
)
= 0

q̃+
β

α2 ∂xw̃ = 0

w̃+α∂xũ = 0.

where the first equation has been replaced by the energy conservation equation (2.27), and
we set Ũ = (ũ, w̃)⊺ and q̃ = ψ1 as the Lagrange multiplier. Then, the implicit scheme for
the ODE reads

ũ3
k±
3

+
β

2α2 w̃2
k±−α ũk±q̃k± = Kk

q̃±±
2β

α2
w̃k±−wk

δx
= 0

w̃k±±2α
ũk±−uk

δx
= 0.

(2.77)

with Kk =
u3

k
3 + β

2α2 w2
k −αukqk. It follows that the velocity ũk± is a root of a following

third-order polynomial. For sufficiently small δx, the polynomial has three real roots that
approach uk,0 and ±∞ as δx approaches zero. Due to the continuity of the steady state, the
correctly reconstructed velocity corresponds to the root that is consistent with uk. Then,
w̃k± is obtained using the second equation of (2.77).

It is now necessary to establish the discretization of the constraint L WB
k . The crucial

point is that the steady state of the prediction step lies in the kernel of L WB
k . At steady

state, the reconstructed values are identical on both sides of an interface, i.e., ũk⊕ = ũk+1⊖
and w̃k⊕ = w̃k+1⊖. Using the third equation of (2.77), we deduce that

L WB
k (U⋆) =

wk +wk+1

2
+α

uk+1−uk

δx
. (2.78)

Unfortunately, the constraint (2.78) is not well-suited for the inner product (2.56) and leads
to a non-sparse linear system when solving the correction step. To maintain the efficiency
of the scheme, we utilize the following inner product

⟨ f⋆,g⋆⟩WB = ∑
k∈T

(
f0,kg0,k +

f1,k−1/2
g1,k−1/2

+ f1,k+1/2
g1,k+1/2

2

)
δx. (2.79)

The resulting correction scheme is given by

un+1
k −α

2 un+1
k+1−2un+1

k +un+1
k−1

δ 2
x

= un∗
k +α

wn∗
k+1−wn∗

k−1

2δx
. (2.80)

Proposition 2.14 Let K ∈ R. The numerical scheme (2.76)-(2.80) preserves solutions sat-
isfying for any k ∈ T,

u3
k

3
+

β

2α2 w2
k−αukqk = K.
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It is important to note that since the prediction step is not inherently entropy-satisfying with
the inner product (2.79), the well-balanced scheme is not entropy satisfying. Also it can be
seen that the well-balanced scheme at steady state corresponds to a symplectic integrator
for the EDO (2.75). In particular, it preserved the flux of momentum which acts as the
energy for the EDO.

In Figure 2.14, we apply the previous strategy to the Green-Naghdi models (2.13) with
a non-flat bottom. It is noteworthy that even with a coarse mesh (top line), the amplitude
of the waves behind the bottom bump is well recovered.

2.4 A few steps further

We now consider the task of enhancing the projected hyperbolic models to increase their
efficiency or improve their ability to replicate the underlying physics.

2.4.1 Coupling of projected hyperbolic models

It can be advantageous to employ different projected hyperbolic models in distinct regions
of the computational domain. The primary goal here is to reduce computation time, as these
models form a hierarchy where the most expensive in term of computational resources is
needed only in a specific areas within the domain. For instance, it may be practical to utilize
the Peregrine model (2.47) in regions sufficiently distant from the shore. However, as
wave nonlinearity becomes more significant closer to shore, switching to the Green-Naghdi
model (2.13) could be more appropriate. The Green-Naghdi model (2.13) remains stable up
to the dry front, benefiting from boundary conditions proposed in §2.2.3.3. Nevertheless,
it does not account for breaking waves. To address this, some propose implementing the
shallow water model (2.6) in the surf zone to facilitate energy dissipation.

Another goal of the coupling is to enhance the robustness of the simulation. Specifi-
cally, dispersive models require a certain regularity in parameters to ensure well-posedness.
To address this challenge, it is feasible to switch to a more robust model locally in re-
gions where parameter regularity is insufficient. For example, it is well known that the
Green-Naghdi model (2.13) is not well-posed on an irregular bottom (see [Lan13, §6.1.2]).
Through coupling, the shallow water model (2.6) can be employed to solve locally around
discontinuities in the bottom profile, ensuring stability and accuracy in these challenging
areas, as illustrated in Figure 2.15. It is important to note that even the shallow water model
(2.6) is not well-defined over a discontinuous bottom, see [And05, DLDP13].

Lastly, coupling can be employed to enforce well-known boundary conditions from
a simpler model and then transfer the flow to a more complex model. For instance, at
the boundary of the computational domain, a thin layer of the shallow water model can
be utilized to apply established shallow water conditions [GR96] instead of the boundary
conditions of the Green-Naghdi model (2.13), as illustrated in Figure 2.16. This approach
can be likened to various studies where a boundary layer is employed, adjusting source
terms within the equations to correctly impose the desired propagating signals [Ber94,
WKS99, BGKN22].
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Figure 2.14: §2.3.3 | Simulations of the steady state of the Green-Naghdi model (2.13) are
compared using different numerical schemes and resolutions:
- Dashed blue line: Green-Naghdi model (2.13) with entropy-satisfying scheme §2.3.1.
- Solid blue line: Green-Naghdi model (2.13) with well-balanced scheme §2.3.3.
- Dotted red line: Solution of the ODE steady state of the Green-Naghdi model (2.75) using
Euler scheme.
- Dashed red line: Solution using second-order Runge-Kutta scheme.
- Solid red line: Solution using fourth-order Runge-Kutta scheme.
- Top line: Mesh size δx = 10−2.
- Middle line: Mesh size δx = 10−3.
- Bottom line: Bathymetry.

For simplicity, we focus on coupling two models with the same unknowns H and U and
the same hyperbolic operator A(H,U), but with different constraints L 0

H (U) and L 1
H (U).

The coupling is achieved using a thick interface technique [GM98, GR04, GTR05]. We
introduce a color function θ (t,x) ∈ [0,1], which serves as a parameter to switch between
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Figure 2.15: §2.4.1 | Simulations of a solitary wave over small discontinuity (top line) and
large discontinuity (bottom line) in the bottom profile at various time steps are shown.
- Solid blue line: Coupled model (2.81).
- Dashed red line: Shallow water model (2.6).
- Dashed green line: Green-Naghdi model (2.13).
Figure taken from [Par24b].

these constraints. The constraint of the unified model is expressed as

L θ
H (U) = (1−θ)L 0

H (U)+θL 1
H (U) . (2.81)

Thus, each model is respectively recovered when θ = 0 or θ = 1. Moreover, to couple
multiple models together, a similar strategy can be employed using a vector-valued color
function. Consequently, the dispersive source term of the model is taken from the dual
space of the set of functions that satisfy the constraint.

As an example, let us consider the coupling between the BBM equation (2.33) and
the Burgers equation [Bur48]. We focus on the projected hyperbolic model of BBM-type
(2.23) with U = (u,w) and the hyperbolic operator (2.31) where f = g = 0, P0 (x) = x and
P1 (x) = c. It is noteworthy that the Burgers equation is recovered by using the constraint
L 0 (U) = w, as this imposes no constraint on u, thereby causing the dispersive source term
ψ0 to vanish. Therefore, the constraint of the unified model (2.81) is expressed as

L θ (U) = w+θα∂xu.

Following the computations detailed in §2.2.1.3, the dispersive source term lies in the ker-
nel of

Rθ (U) = ψ0 +α∂x (θψ1)
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Figure 2.16: §2.4.1 | Simulations of a sinusoidal signal imposed at the left boundary with
an open boundary condition at the right boundary are presented.
- Top line: Short time, depicting the behavior before the waves exit the computational do-
main.
- Bottom line: Long time, showing the behavior after several waves have exited the com-
putational domain.
- Solid blue line: Coupled model (2.81).
- Dashed green line: Shallow water model (2.6).
- Dashed red line: Green-Naghdi model (2.13).
Figure taken from [Par24b].

and the reduced form of equation (2.28) reads

(
1−α

2
∂x (θ∂x•)

)
∂tu+u∂xu−α

2c∂x
(
θ∂

2
x u
)
= 0. (2.82)

One may wonder about the purpose of such coupling, rather than directly combining the
two models linearly, i.e.,

(
1−θα

2
∂

2
x
)

∂tu+u∂xu−θα
2c∂

3
x u = 0. (2.83)

The advantage of maintaining the projection structure is that for sufficiently smooth so-
lutions, the unified Burgers-BBM model (2.82) satisfies (by construction) the following
energy conservation

∂t

(
u2 +w2

2

)
+∂x

(
u3

3
+

c
2

w2
)
= ∂t

(
u2 + |θ∂xu|2

2

)
+∂x

(
u3

3
+

c
2
|θ∂xu|2

)
= 0
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unlike the averaged equation (2.83).

This coupling strategy is employed in [Par24b] for the coupling of the shallow water
model (2.6), the Green-Naghdi model (2.13), the Boussinesq-type model (2.46), and the
Peregrine model (2.47).

2.4.2 Adaptive projected hyperbolic models

The next step in the improvement process involves enhancing the ability of the numerical
strategy to select the appropriate model for each region. For instance, breaking criteria
[KDS14] are designed to identify when the shallow water model (2.6) should replace the
Green-Naghdi model (2.13) to dissipate wave energy, hence improving physical relevance.
Similarly, a criteria can be defined to reduce computation time by using the most efficient
model that stays within the initially chosen error range. Consider two projected hyperbolic
models: one fine model, for which we seek the solution with the constraint L 1

H , and a
coarse model, which approximates the first and is faster to compute, with its solution de-
noted as U0. We propose to base the criterion on the estimator L 1

H
(
U0
)
. The coupling is

achieved with the strategy presented in §2.4.1 by defining the color function as follows

θ (t,x) = max

(
0,min

(∣∣L 1
H
(
U0 (t,x)

)∣∣−Lmin

Lmax−Lmin
,1

))

with the two parameters Lmax > Lmin ≤ 0. Lmin is the tolerance within which the coarse
model is considered acceptable. Lmax is the distance from which the projection to the linear
subspace of the fine model occurs. Setting Lmax = τ will result in the estimator creating
two subdomains, each solved by its respective model. However, since the projection is not
local, this setting will lead to a significant error at the interface. Using a larger Lmax will
create a thick interface where the error gradually decreases, see Figure 2.17.

It is worth noting that this strategy requires the computation of the coarse model
throughout the entire domain. If the fully hyperbolic model, i.e., without projection, is
used as the coarse model, its calculation is necessary regardless, see §2.3.1. Additionally,
it may be beneficial to use an incremental pressure correction in the coarse model, see
§2.3.2.1 to reduce the error before the correction step.

2.4.3 Fully dispersive model

The projected hyperbolic models presented in §2.2 are based on the principle that the con-
straint of these models must be a linear application of the kinetic unknown U , with pa-
rameters potentially dependent on space (see §2.4.1), and also non-linearly dependent on
the potential unknown H. This insight allows us to modify the constraint of the model to
improve certain relationships without compromising energy conservation. Here, we focus
on adjusting the dispersion relation to be as close as desired to the Airy relation (2.5).

Consider the Green-Naghdi model (2.13) on a flat bottom (for simplicity) with the
modified constraint

LH (U) =

(
w+α (x,h)h∇ ·u
w̃+ γ (x,h)h∇ ·u

)
. (2.84)
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Figure 2.17: §2.4.2 | - Top line: Evolution of a Gaussian at rest with the Green-Naghdi
model (2.13), the shallow water model (2.6) and the adaptive model with several value of
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the domain where the projection occurs.

If (α,γ) =
(

1
2 ,

1
2
√

3

)
, we recover the constraint of the Green-Naghdi model (2.14). The

parameters α and γ can be functions of the water depth h, which does not affect energy
conservation Proposition 2.9, except through the definition of the energy. By computing
the dispersion relation of the model with the constraint (2.84), we obtain:

vGN
p,α2+γ2 =

√
1

1+((α(x,h))2 +(γ(x,h))2) |kD|2
√

gD. (2.85)

It follows that we can exactly match the Airy phase velocity by setting

(α (x,h))2 +(γ (x,h))2 = f
(

k̂ (x,h)
)

with f
(

k̂
)
=

k̂− tanh
(

k̂
)

k̂2 tanh
(

k̂
)

where k̂ : Rd ×L2
(
Rd
)
7→ R is the local wavenumber of the water depth h. To define the

parameters, we propose to maintain their ratio, i.e.

α (x,h) =

√
3
4

√
f
(

k̂ (x,h)
)

and γ (x,h) =
1√
4

√
f
(

k̂ (x,h)
)
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so that the model (2.84) corresponds to the Green-Naghdi model (2.14) in the small
wavenumber limit. The local wavenumber corresponds to the wavenumber of the
monochromatic signal that “best” fits the water depth h locally. Several definitions can
be given, and the phase velocity (2.85) matches the Airy phase velocity (2.5) if and only if
the local wavenumber corresponds to the wavenumber for a monochromatic input.

In practice, we propose to define the local wavenumber using a weighted Fourier trans-
form as the smallest wavenumber with the largest energy, i.e.

k̂ (x,h) = min

{∣∣∣∣∣argmax
k∈Rd

∣∣∣∣
∫

Rd
(h(x̃)−D(x̃))eikx̃

ν̂ (|x− x̃|) dx̃
∣∣∣∣
2
∣∣∣∣∣

}
(2.86)

where ν̂ (x) : Rd 7→ R+ is a weight with compact support see Figure 2.18. In practice, we
use a rectangular function or a truncated Gaussian. This strategy bears some similarity to
the fully dispersive Green-Naghdi model proposed in [DIT16, Eme21, DK22], where a
Fourier multiplier is used to obtain the Airy phase velocity (2.5). However, the strategy
described above only requires the estimation of parameters using the Fourier transform,
rather than employing a spectral method.

To test the fully dispersive model, we propose to compute numerically the phase ve-
locity. In a long channel, we generate a wave using a sinusoidal water depth boundary
condition, using the coupling strategy (2.4.1). After the signal has propagated, we record
it once at a given instant in a spatial window, and again at a fixed position along a temporal
window. Using a Fourier transform, the first signal allows us to obtain the wave number of
the signal and the second the angular frequency. In Figure 2.19, the results has been plot-
ted for the classical Green-Naghdi (2.13) (Red diamond points), the Green-Naghdi model
where the vectorial space parameters are tune to correspond to the water depth boundary
condition signal (Bleu circle points) and Green-Naghdi model where the vectorial space
parameters are automatically estimated using the local water number (2.86). The results
are in good agreement with the Airy phase velocity (2.5).

2.5 Perspectives

In this chapter, we present a general framework for the dispersive approximate models of
water waves, focusing on their formulation and structure. While this framework advances
our understanding, several significant questions remain open and, in my view, demand
further investigation to achieve a more comprehensive understanding of these models and
their practical utility.

First and foremost, establishing a clear and robust criterion for determining the well-
posedness of models within the projected hyperbolic framework (2.38) is essential. In
the literature, models such as the BBM model (2.33) and the Green-Naghdi model (2.13)
have undergone extensive analysis, with their well-posedness conditions clearly defined.
However, a generalization of this analysis, particularly one that leverages the projection
structure of the model, could provide deeper insights. By following similar methods used
for incompressible flow analysis, such as those found in the work of [Lio13], we might
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Figure 2.18: §2.4.3 | Wavenumber estimation (top line) depending on the size of the
support of the weight ν̂ , corresponding phase velocity (middle line), and error compared to
the Airy phase velocity (2.5) (bottom line).

extend these results to more complex models like the VAM model (2.16) or the layerwise
Green-Naghdi model (2.19). These inquiries could be addressed in both unbounded and
bounded domains by building on techniques developed for defining boundary conditions in
the incompressible Euler equations and adapting them to the projected hyperbolic models.

Another important area of research concerns the characterization of weak solutions
for dispersive models. In most cases, particularly with the Green-Naghdi model (2.13),
well-posedness is guaranteed only within a finite time frame. As non-linearities come into
play, the solutions tend to lose regularity over time, especially when the regularity is in-
sufficient to define the mechanical energy flux. At this point, the solution exits the domain
where all terms are well-defined, creating significant mathematical challenges. This issue
is not unique to dispersive models; it also arises in hyperbolic systems. In conservative
hyperbolic models, the Rankine-Hugoniot relation, combined with the Lax criterion, is
commonly employed to define weak solutions. This raises the question: Is it possible to
establish a similar criterion for dispersive models to characterize the solutions after they
lose regularity? Some pioneering work in this area [Yin04, GS22]. This question, although
theoretical, holds practical importance. Numerical simulations, especially those based
on the projection strategy (2.3.1), often provide solutions beyond the theoretical time of
existence, offering “computed solutions” even when regularity is lost. A key issue then
becomes understanding the relationship between these numerically computed solutions
and the actual solution of the model, and determining in what sense these computed
solutions approximate the true solutions. Additionally, if these solutions exhibit energy
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dissipation, could they serve as a means of modeling wave breaking, as is sometimes
the case with weak solutions in hydrostatic models? Energy dissipation processes in
dispersive models are especially important in this context for accurately modeling wave
breaking phenomena, as explored in works like [Zel91, KK92, MSS97b, MSS97a, SSM98,
KCKD00, RCK10, CBB10, SKH+12, KDS14, RG15, RDF18, KR18, KR19b, Bon23].

From a practical perspective, one of the main obstacles limiting the widespread appli-
cation of dispersive models is their computational expense. High-order numerical schemes
and adaptive mesh refinement are crucial in addressing this challenge. These methods
help ensure accuracy while reducing computational costs. Furthermore, model adaptation
techniques can be developed to minimize unnecessary computations, and better a priori
estimators than those presented in §2.4.2 could potentially be designed. Well-balanced
schemes are also of particular interest, as they minimize numerical diffusion, especially
around steady states. Yet, many real-world applications do not involve steady states or
trivial rest states, but rather configurations that can be viewed as compositions of solitary
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waves. Developing well-balanced schemes that preserve not just steady states, but also
analytical solutions, those that can be computed using simple ODE solvers, could be par-
ticularly valuable, as they would ensure the local preservation of solitary waves in a wide
range of applications.

Another interesting avenue for exploration involves the application of Thomas-Raviart-
type discretization methods. These methods, where the degrees of freedom naturally satisfy
the model constraints, could prove to be a powerful tool for improving the stability and effi-
ciency of numerical schemes. Such discretization approaches have the potential to enhance
both computational accuracy and stability by aligning the numerical degrees of freedom
with the underlying physical constraints. However, when dealing with Boussinesq-type
projected hyperbolic models (2.38), the challenge becomes more intricate. The Thomas-
Raviart basis in these models depends on potential unknowns H, adding an additional layer
of complexity and making the approach less straightforward. This dependency introduces
new challenges in implementation and requires further investigation to develop effective
numerical strategies.

In summary, while much progress has been made in the development and analysis
of dispersive approximate models for water waves, a number of important questions re-
main. Addressing these open questions will be crucial for advancing both the theoretical
understanding of these models and their practical application, especially in complex real
scenarios involving wave breaking, stiff forcing terms and formation of shear.
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Water within its surroundings

“Détrompez-vous.
Un bateau n’est pas plus grand ou plus petit,
selon qu’il se trouve au creux ou au sommet de la vague.”

Proverbe Breton
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Contributions related to the chapter

[GPZ14] This work is dedicated to the modeling of exchanges between a river and its
surrounding floodplains during floods overflowing its bed. Modeling flows in each
subdomain, that of the river and that of the floodplain, has been the subject of nu-
merous works for over 50 years and is now well understood. A coupling strategy is
considered in order to preserve the advantages of 1D and 2D models in their respec-
tive subdomains. In comparison with other transverse coupling strategies already
presented in the literature, we introduce a direct method, without overlapping the
models or introducing numerical parameters. This strategy is based on the resolution
of the Riemann 2D problem at the coupling interface (the bank) and requires the esti-
mation of the transverse velocity close to the interface. We propose a model of trans-
verse velocity using successive resolutions of Riemann problems. Then, we present
a numerical resolution of the coupling system, based on a finite volume method for
any Riemann solvers. Particular attention was given to the essential properties of the
model (conservation of mass, positivity of water depth, and well-balanced scheme).
Lastly, the precision and efficiency of the method are illustrated using examples of
simulations.

[PV16] This paper is devoted to a centered ImEx scheme in a multidimensional framework
for a wide class of multicomponent and isentropic flows. The proposed strategy is
based on a regularized model where the advection velocity is modified by the gradi-
ent of the potential of the conservative forces in both mass and momentum equations.
The stability of the scheme is ensured by the dissipation of mechanic energy, which
stands for a mathematical entropy, under an advective CFL condition. The main
physical properties, such as positivity, conservation of the total momentum, and con-
servation of the steady state at rest, are satisfied. In addition, asymptotic preserving
properties in the regimes (“incompressible” and “acoustic”) are analyzed. Finally,
several simulations are presented to illustrate our results in a simplified context of
oceanic flows in one dimension.

[GPSMW18] We are interested in the modeling and the numerical approximation of flows
in the presence of a roof, for example flows in sewers or under an ice floe. A shallow
water model with a supplementary congestion constraint describing the roof is de-
rived from the Navier-Stokes equations. The congestion constraint is a challenging
problem for the numerical resolution of hyperbolic equations. To overcome this diffi-
culty, we follow a pseudo-compressibility relaxation approach. Eventually, a numer-
ical scheme based on a finite volume method is proposed. The well-balanced prop-
erty and the dissipation of the mechanical energy, acting as a mathematical entropy,
are ensured under a non-restrictive condition on the time step in spite of the large
celerity of the potential waves in the congested areas. Simulations in one dimension
for transcritical steady flow are carried out and numerical solutions are compared to
several analytical (stationary and non-stationary) solutions for validation.

[GPSMW20] We consider the floating body problem in the vertical plane on a large space
scale. More precisely, we are interested in the numerical modeling of a body floating
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freely on the water such as icebergs or wave energy converters. The fluid-solid inter-
action is formulated using a congested shallow water model for the fluid and New-
ton’s second law of motion for the solid. We make a particular focus on the energy
transfer between the solid and the water since it is of major interest for energy pro-
duction. A numerical approximation based on the coupling of a finite volume scheme
for the fluid and a Newmark scheme for the solid is presented. An entropy correction
based on an adapted choice of discretization for the coupling terms is made in order
to ensure a dissipation law at the discrete level. Simulations are presented to verify
the method and to show the feasibility of extending it to more complex cases.

[ABP21] The present paper deals with the modeling and numerical approximation of bed
load transport under the action of water. A new shallow water type model is derived
from the stratified two-fluid Navier–Stokes equations. Its novelty lies in the magni-
tude of a viscosity term that leads to a momentum equation of elliptic type. The full
model, sediment and water, verifies a dissipative energy balance for smooth solu-
tions. The numerical resolution of the sediment layer is not trivial since the viscosity
introduces a non-local term in the model. Adding a transport threshold makes the
resolution even more challenging. A scheme based on a staggered discretization is
proposed for the full model, sediment and water.

[ACSE+21] In this paper, we analyze the relevance of the use of the shallow water model
and the Boussinesq model to simulate tsunamis generated by a landslide. In a first
part, we determine if the two models are able to reproduce waves generated by a
landslide. Each model has drawbacks but it seems that it is possible to use them
together to improve the simulations. In a second part we try to recover the landslide
displacement from the generated wave. This problem is formulated as a minimiza-
tion problem and we limit the number of parameters to determine assuming that the
bottom can be well described by an empirical law.

[Par23] This work is concerned with the modeling and numerical resolution in a multidi-
mensional framework of the interaction between the congested shallow water model
and a polytropic air pocket dynamics. A weak coupling strategy is used, and the
connectivity of the air pockets is obtained by comparing the horizontal support of
the pockets. The relevance of the model and the robustness of the numerical strategy
are illustrated by several numerical simulations in a one-dimensional framework. In
particular, the method seems well suited to the numerical study of the hydraulics of
underground rivers and coastal caves, such as the Cosquer Cave, and to the simula-
tion of marine energy converters, such as the oscillating water column.

[Par24a] The current study is dedicated to the formal derivation of a hierarchic of asymp-
totic models that approximate the groundwater waves problem within the Dupuit-
Forchheimer regime, over a regular, non-planar substratum. The derivation method-
ology employed bears resemblance to the techniques utilized in hierarchic of asymp-
totic models for approximating the water waves problem in the shallow water regime.
Mathematically speaking, the asymptotic models manifest as nonlinear, non-local
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diffusion equations. We identify an energy dissipation law inherent to these models,
thereby bolstering the physical validity and confidence in the proposed framework. A
numerical strategy is proposed that preserved at the discrete level the energy dissipa-
tion. Several simulations are conducted to discuss and validate the dynamic behavior
of the solution.

[CP] This paper addresses the modeling and numerical approximation of exchanges be-
tween surface water and groundwater flow at the scale of a drainage basin. For
large-scale simulations, approximate models are often employed for geophysical
flows such as rivers, lakes, or coastal areas. The shallow water model is commonly
used for surface flows, while the Dupuit-Forchheimer model is well-established for
groundwater flows. Due to the differing mathematical characteristics and the fact
that the flows overlap in the computational domain, coupling them is challenging.
We propose a unified model that simultaneously treats surface water and ground-
water. We demonstrate an energy dissipation law and present an entropy-satisfying
numerical scheme. Several simulations are performed to analyze and validate the
dynamic behavior of the solution.

[BBP] Wave energy is a promising and largely untapped source of clean energy. This pa-
per examines a novel approach to study how wave energy converters (WECs) interact
with ocean waves. Accurate models are needed to understand these interactions, but
there’s a balance between how detailed a model is and how much computing power it
needs. This research uses both detailed Navier-Stokes equations and simpler Boussi-
nesq models to create a combined approach. This method improves accuracy in
studying local wave-structure interactions while remaining efficient for larger areas.
The results can help improve the design and effectiveness of WECs, contributing to
the use of wave energy in addressing climate change and energy resource challenges.

[KLP] This article presents the development of a second-order numerical method for the
Shallow Water model specifically designed for the low-Froude regime. Numerical
schemes that are well-suited for the low-Froude regime are typically implicit at least
for some unknown and nonlinear, commonly referred to as ImEx schemes. High-
order time integration methods, such as Runge-Kutta, necessitate solving an implicit
nonlinear problem at each time sub iterations, which can limit their efficiency. In this
work, we propose a second-order scheme that requires only a single implicit solve
per time step. We demonstrate the method’s efficiency by comparing it to explicit
methods and other second-order ImEx schemes.
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This chapter concentrate on fluid dynamics within its surrounding environment. By
surroundings, we refer to structures that impose constraints, particularly on the flow
regime. Our focus remains on geophysical applications, characterized by large time and
space scales, which require approximated models of fluid dynamics, as presented in §2.
The primary applications discussed will include marine energy §3.1 and water resources
§3.2.

3.1 Fluid/structure interactions with vertical-averaged models

This section aims to propose models of wave/structure interactions to the simulation of
marine energy converters. A well-established model for describing fluid/structure interac-
tions is based on the Navier-Stokes equations, which govern fluid motion. This approach
is extensively applied in areas such as blood flow, particularly in simulations of aortic flow
[CPP13, QTV00]. Additionally, Navier-Stokes computational fluid dynamics simulations
are used for modeling the flow around objects like yachts, fish, and wave energy converters
[WT03, PQ05, AWvJ08, PEMPB13, YL13, BHI14, BI16]. At the interface between the
fluid and the solid, two primary methods are employed: a moving grid with front-tracking
techniques or a fixed mesh with a fictitious fluid domain. The moving grid method accu-
rately captures the interface but requires a dynamic mesh, whereas the fixed mesh approach
offers a stable mesh at the expense of precision in tracking the interface position. Despite
their advantages, the Navier-Stokes equations are computationally intensive and impracti-
cal for large space and time scales, making them unsuitable for long-term simulations, such
as assessing the operational efficiency of a marine energy converter farm over several days.

One of the first significant contributions to approximate models for Fluid/structure in-
teractions was made by Fritz John, who introduced a mathematical formulation of the prob-
lem [Joh49, Joh50]. In this model, the fluid is represented by a linear potential flow, with
the evolution of the free surface described by a linear model. The motion of the solid
is assumed to be of small amplitude, allowing the interface between the water and the
solid to remain constant over time. The surface pressure is then determined using the lin-
earized Bernoulli equation. Although this model is relatively simplified, linear potential
flow theory is still widely used in industrial applications due to its low computational cost
[MBB+12, BD15]. However, nonlinear terms play a significant role in wave propagation.
Advances have been made to incorporate time-dependent interfaces [Kas00] and nonlinear
effects using boundary element methods [HKP+17], though these improvements require
significantly higher computational resources.

Instead of relying on linear potential flow, it can be more appropriate to use a vertically-
integrated model (see §2) as the foundation for fluid dynamics. However, the presence of
a structure within the domain significantly alters the flow regime and the mathematical
structure of the equations, necessitating specialized numerical techniques. Some of these
techniques are described in the following sections.
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Figure 3.1: §3.1.1 | Illustration of the partially free surface problem and the unknown of
the congested shallow water model in the vertical plane.

3.1.1 Roof modeling in free surface flow

3.1.1.1 Congested models

Before addressing the case of a freely floating body, the initial step is to consider a flow
with a free surface constrained by an upper boundary, referred to as the roof, R(t,x) ≥
B(x) (see Figure 3.1 for an illustration of the problem). This type of flow is typically
observed in scenarios such as water movement in underground rivers or partially filled
pipes. Specifically, we consider the incompressible free surface Euler model (2.1)-(2.2)-
(2.3)-(2.4), with the additional unilateral non-penetration condition at the roof, defined as

∂tR+u|z=R ·∇R−w|z=R ≥ 0.

This condition is similar to the no-penetration condition (2.3) and serves to prevent the flow
from penetrating the roof. However, unlike the standard no-penetration condition (2.3), this
condition allows for the possibility of flow detachment from the roof, which is why it is
expressed as an inequality. In the specific case of a horizontal steady roof, the vertical
velocity at the roof cannot be positive, as this would imply penetration through the roof,
but it may be negative. This type of constraint is known as a unilateral condition and has
been previously proposed, particularly in the context of gas dynamics [BBCR00, Ber02,
BB03, PZ15].

To develop approximate models in the spirit of those described in §2.1, two approaches
can be considered. The first approach can be categorized as a coupling strategy between
the free surface and the pressurized regions [Kas00, Lan17]. The primary advantage of
this method lies in the ability to compute the surface pressure induced by the roof using
an elliptic equation. Additionally, this approach allows each sub-domain to be solved us-
ing the most appropriate numerical techniques. However, it requires the assumption of a
sufficiently smooth flow to establish transmission conditions at the coupling interface, an
assumption that is not always met (see Figure 3.6). Moreover, this strategy necessitates
the precise description of the interface position, which is a significant challenge since the
interface is closely tied to the flow dynamics. In most cases, this strategy is applied in
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scenarios where the interface between the free surface region and the pressurized region is
vertical, thereby fixing the position of the interface [BEKER19, Boc19, Boc20].

The second strategy involves the development of a unified model across the entire do-
main [TD90, Fua02, BG07, BG08, BEG12, BEG14, GPSMW18]. By applying the method
described in §2.1 to obtain approximate models for water waves, we derive approximate
models in the shallow water regime with an additional unknown variable, p(t,x), repre-
senting the pressure exerted by the roof, along with a congestion constraint. In the case of
the shallow water model with a roof, the equations can be expressed as

∂th + ∇ · (hu) = 0
∂t (hu) + ∇ · (hu⊗u) = −gh∇(B+h)−h∇p

(3.1)

with the congestion constraint
min

(
H−h, p

)
= 0 (3.2)

where H (t,x) = R(t,x)−B(x) is referred to as the opening. This strategy is advantageous
because it eliminates the need to describe the interface position or impose transmission
conditions at the interface. We also highlight the conservation of energy demonstrated in
[GPSMW18].

Proposition 3.1 The sufficiently regular solutions of (3.1) satisfy the following energy con-
servation law

∂t (P +K )+∇ ·
((

gh(B+h)+ p+
|u|2
2

)
hu

)
=−p∂tR

with P = gh
(
B+ h

2

)
and K = h

2 |u|
2.

The congestion constraint (3.2) ensures three conditions simultaneously: the water
depth remains less than or equal to the opening h≤ H, the roof reaction is positive p≥ 0,
and the support of the roof reaction is confined to the region where the water reaches the
roof, i.e., where p(t,x) > 0 we have h(t,x) = H (t,x). This implies that there is effec-
tively only one unknown in addition to the velocity, which is either the water depth in
the free surface region or the pressure in the congested region. For practical purposes,
it is useful to combine these into a single variable. The potential of conservative forces,
φ (t,x) = g(B(x)+h(t,x))+ p(t,x), can serve this role. The model (3.1) can be rewritten
as:

∂t
(
H
[
H,B

]
(φ)
)
+ ∇ ·

(
H
[
H,B

]
(φ)u

)
= 0

∂t
(
H
[
H,B

]
(φ)u

)
+ ∇ ·

(
H
[
H,B

]
(φ)u⊗u

)
= −H

[
H,B

]
(φ)∇φ

(3.3)

where H
[
H (t,x) ,B(x)

]
(φ (t,x)) represents the mapping that gives the water

depth as a function of the potential, i.e. h(t,x) = H
[
H (t,x) ,B(x)

]
(φ (t,x)) with

H
[
H,B

]
(φ) = min

(
φ

g −B,H
)

see Figure 3.2. The pressure can then be determined

as p(t,x) = P
[
H (t,x) ,B(x)

]
(φ (t,x)) with P

[
H,B

]
(φ) = φ −H

[
H,B

]
(φ). It is

important to note that the constraint (3.2) is inherently included in the definition of
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φ (h)

hH

H (φ)

φ

H

Figure 3.2: §3.1.1.1 | Illustration of the change of variables. (Left) Original variables and
multivalued potential. (Right) New variables.

the water depth function H
[
H,B

]
(φ). Thus, the model (3.3) no longer requires an ex-

plicit constraint but an additional non-linearity has been introduce through the function H .

The shallow water model with a roof is not the only model that incorporates a conges-
tion constraint. Several other models also address congestion in different contexts:

• A congested gas dynamics [BBCR00, Ber02, BB03, PZ15] is used in several context
for complexe rheology to flow in porous media [BC17] and §3.2. For a mathematical
analysis of the model in the viscous case, see [PZ15, Per18].

• In [DNBS10, MRCS10], a model of crowd motion with congestion is considered.

• Some bio-mathematical models use a congestion constraint for chemotaxis dynamics
[Per04] or tumor growth [DMC20].

• Various models of traffic flow incorporate congestion constraints, including those
discussed in [AR00, BGC03, CP05, BDLB+08, BDDR08, BB12].

A simplest congested model reads

∂tρ +∇ · (ρu) = S (t,x,ρ)
u = U (t,x,ρ)−κ∇(p(ρ)+ p)

min
(
R−ρ, p

)
= 0

with S is a growth rate, used for tumor growth, U (t,x) is the wanted velocity, used for
crowd motion and p(ρ) is a pressure used for porous media (Darcy law). Assuming p(ρ)
strictly increasing hence invertible, the density can be see as a function of the potential
φ = p(ρ)+ p as in the shallow water case. In the case without internal pressure p(ρ) = 0,
an auxiliary variable is required. We use σ = ρ + p as unknown, and we set ρ (t,x) =
R(σ (t,x)) with R(σ) = min

(
R,σ

)
and p(t,x) = P(σ (t,x)) with P(σ) = σ−R(σ). This

auxiliary variable can be see as the curvilinear coordinates of the curve φ as function of ρ .
The simplest congested model reads

∂t (R(σ))+∇ · ((R(σ))u) = S (t,x,R(σ))

u = U (t,x,R(σ))−κ∇(p(R(σ))+σ −R(σ)) .
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fluid dynamics §3.1.1.1

φ n

un φ n,q
δ

n,q+1
t ⇐ (3.7)

φ n,q+1⇐ (3.4)

convergence ?

un+1⇐ (3.6)

φ n+1

un+1q← 0

ξ n,0← 1
φ n,0← φ n

no

q← q+1

yes

Figure 3.3: §3.1.1.2 | Flowchart of a time steps of scheme (3.4)-(3.6).

3.1.1.2 Entropy-satisfying numerical scheme

Due to its unilateral nature, the space generated by the constraint (3.2) is not a linear sub-
space [MRCS10]. While prediction/correction methods, such as the projection strategy
employed in §2, can be used (see [MP17]), this approach is not straightforward. After
its reformulation in (3.3), the model becomes a nonlinear PDE system. However, in con-
gested areas, i.e. under structures, the flow behaves in an incompressible regime, analogous
to gas dynamics, while in free surface regions, the flow is compressible. In the specific
regime of incompressible flow, numerical schemes are designed as low-Mach schemes
in the literature, drawing further parallels with gas dynamics, and is well-documented,
see [CC92, Cas99, RM00, LG08, Del10, Rie11, HJL12, CDK12, GVV13, LG13, CGK13,
Cas14, PV14, HKL14, PV16, DJOR16, BEK+17, DLV17, CKS19, GLM20, BRMVCD21,
Bar21, BD22, BHL24]. In [GPSMW18], we propose a numerical scheme for floating body
simulations based on the low-Mach scheme developed in [PV16]. A similar strategy is also
employed in [BD23].

To avoid a restrictive CFL condition, we will implement an implicit scheme for the
potential unknown and an explicit scheme for the kinetic unknown. This type of scheme is
commonly known as an ImEx (Implicit-Explicit) scheme in the literature. There is also a
fully explicit version of the scheme, as described in [CDV17], which shares the same sta-
bility properties, such as being entropy-satisfying and asymptotic-preserving in low-Mach
regimes, but operates under a more restrictive CFL condition. To further generalize the
scheme for arbitrary potential forces, the flow is decomposed into advection and potential
force components. This approach is often referred to as the AUMS (Advection Upstream
Splitting Method) scheme in the literature [LSJ93].

Let us first focus on the mass conservation equation, which is discretized using a three-
point scheme. This scheme is implicit for the potential φ and explicit for the velocity u,
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and is represented as follows

H n+1
k

(
φ

n+1
k

)
= hn

k−
δ

n+1
t

mk
∑

f∈Fk

F n+1
f ·nk

fm f (3.4)

where H n
k (φ) = H

[
Hn

k ,Bk
]
(φ) and hn

k = H n
k

(
φ n

k

)
. The numerical mass flux
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δt ,




dL

HL

φL

uL


,




dR

HR

φR

uR





=

1
2

(
HLuL +HRuR− γδt

(
HL

dL
+

HR

dR

)
φR−φL

2
nL

f

)
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Here, dk represents the compactness of the cell, see §1.2. Next, the velocity is computed
explicitly using an upwind scheme for the advection term and a centered scheme for the
gradient of potential forces, as recommended in [Del10] for consistency with low-Mach
regimes
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k un+1
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)
m f

(3.6)

with the positive and negative parts of the function defined by [φ ]± = |φ |±φ

2 ≥ 0.
In [PV16], it is demonstrated that the numerical scheme (3.4)-(3.6) satisfies entropy

conditions under certain technical assumptions. The entropy-satisfying property is par-
ticularly noteworthy because it does not depend on the specific form of the potential of
conservative forces, φ (x,h), allowing the scheme to be applied to a wide variety of mod-
els. The key requirement for this property is the existence of a convex potential energy
function, P (x,h), such that ∂hP = φ and ∂hφ ≥ 0.

Proposition 3.2 Assume that the time step satisfies the following implicit CFL condition

δ
n+1
t ≤

min
(
dk,dk f

)

2ν f
with ν f =

∣∣∣∣
hn+1

k un
k+hn+1

k f
un

k f
2 ·nk
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k f

2

√
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4

∣∣∣φ n+1
k f
−φ

n+1
k

∣∣∣

min
(

hn+1
k ,hn+1

k f

) . (3.7)

Hence for any γ ≥ 1, the numerical scheme (3.4)-(3.6) is entropy-satisfying, i.e. there exists
a numerical flux G f (details in [PV16]) such that

Pn+1
k +K n+1

k +
δt

mk
∑

f∈Fk

G f ·nk
fm f ≤Pn

k +K n
k
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where Pn
k = P

(
xk,hn

k

)
and K n

k =
hn

k
2

∣∣un
k

∣∣2. Also, the numerical scheme is well-balanced
for steady state at rest, i.e. If there exist Φ ∈ R such that φ n

k = Φ and un
k = 0, then the

numerical scheme is steady, i.e. we have φ
n+1
k = Φ and un+1

k = 0.

The method does not require complex computations, such as the estimation of eigen-
values, and it can be adapted to a wide range of physical models. The only requirement
is the implementation of the water depth function H and its derivative, used in the fixed-
point method, which varies depending on the physical context. Since the CFL condition
in Proposition 3.2 is implicit, it must be verified after the computation. Additionally, be-
cause the first step of the scheme in (3.4) is non-linear and implicit, an iterative fixed-point
method is required for computation. Using a quasi-Newton fixed-point method, quadratic
convergence is typically observed in simulations without a roof. The numerical scheme
(3.4)-(3.6) is illustrated in Figure 3.3.

This scheme is employed in [PV16] for simulations of the multi-layer shallow water
model without exchanges (see §2.1.2.3 Following Material Interfaces), using five layers,
as shown in Figure 3.4. For large time steps, the scheme (3.4)-(3.6) exhibits significant
numerical diffusion at high frequencies, though the low frequencies are well-preserved.
For small time steps, the wave amplitudes are well-maintained, although a shift in the
wave position can be observed.

With the presence of a roof, the water depth function H is not differentiable, but hope-
fully only in a single point φ = g

(
B+H

)
. This is not a significant issue, and the numerical

method can still be applied; however, the convergence of the fixed-point method becomes
linear in this case. In Figure 3.5, the simulation of a flow transitioning to a supercritical
regime due to the roof is compared, in the steady state, with the analytical solution derived
from Bernoulli’s principle. The results show good agreement for both the water depth h
and velocity u. However, the original scheme struggles to accurately capture the pressure p
(Figure 3.5, curve λ = 0). There is an overestimation of the roof reaction p at the inlet the
flow, followed by an underestimation further downstream. For applications where pressure
is crucial, such as in the case of floating objects (see §3.1.2), this inaccurate pressure es-
timation makes the scheme unsuitable. To address this issue, a regularization of the water
depth function H is introduced. We define

H
[
H,B

]
(φ) = min

(
h̃ [B] (φ) ,

H +λ 2h̃ [B] (φ)
1+λ 2

)
with h̃ [B] (φ) =

φ

g
−B. (3.8)

Other regularization methods can also be applied. The parameter λ ≥ 0 can be interpreted
as the extent of water penetration into the roof. Numerical experiments suggest setting
λ 2 = dk. With this adjustment, the pressure p is well-recovered, as shown in Figure 3.5.

In Figure 3.6, the simulation of a hydraulic jump interacting with the roof is shown.
This simulation highlights the robustness of the scheme, as at the hydraulic jump, the water
depth, roof reaction, and energy are all discontinuous. The reference solution plotted in
Figure 3.6 corresponds to the steady-state solution without a roof, for both the water depth
and velocity. The reference pressure is determined to ensure the correct hydraulic head
under the roof. However, the exact location of the jump, is out of the reach of the classical
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Figure 3.4: §3.1.1.2 | Simulation of oscillating surfaces: Comparison between the scheme
(3.4)-(3.6) (CPR), classical Godunov schemes, and the asymptotic exacte solution of the
asymptotic regime of waves equations. Figure taken from [PV16].

theory, which is based on the Rankine-Hugoniot relation, due to the non-conservative term
h∇p. Nevertheless, we observe good agreement in both the water depth h and velocity u,
and the regularization method ensures a reliable estimation of the pressure p as well.

Lastly, it is important to note that the congestion constraint can be incorporated into
a more sophisticated fluid dynamics model. Specifically, the congested Green-Naghdi
model, i.e. (2.13) with the addition of the roof reaction term as in (3.1) and the congestion
constraint (3.2), can be effectively approximated using the numerical scheme (3.4)-(3.6)
with the two addition unknowns w and w̃ simply advected using the upwind scheme, and
finally projected using the scheme (2.72).

3.1.1.3 Second order numerical scheme for congested models

The scheme (3.4)-(3.6) can be easily enhanced to second order in space by employing a
MUSCL reconstruction in the upwind advection step [vL79]. However, improving the time
discretization is more complex due to the implicit-explicit (ImEx) strategy used. High-
order methods can be developed using two interconnected Butcher tableaux [DLMDV18,



3.1. Fluid/structure interactions with vertical-averaged models 67

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8
h
e
ig

h
t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

6

7

8

9

v
e
lo

c
it
y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

space

0

0.5

1

1.5

s
u
rf

a
c
e
 p

re
s
s
u
re

analytical solution

bottom and roof

simulation with =0

simulation with 2=
x

Figure 3.5: §3.1.1.2 | Steady flow passing into supercritical regime because of the roof.
Figure taken from [GPSMW18].

BDL+20, MDT21]. While this approach theoretically allows for arbitrary order accuracy, it
requires solving nonlinear systems like (3.4) multiple times per time step. For geophysical
applications, it is often more practical to use a scheme that achieves second-order accuracy
while minimizing the number of nonlinear systems that need to be solved. Our approach
relies on a Crank-Nicolson scheme with a time extrapolation of the velocity to balance
accuracy and computational efficiency. The implicit mass scheme reads

H n+1
k = hn

k−
δ

n+1
t

mk
∑

f∈Fk

F


δ

n+1
t ,

hn
kun

k +hn
k f

un
k f

2
,




dk

H
n+1/2

k

φ
n+1/2
k


 ,




dk f

H
n+1/2

k f

φ
n+1/2
k f





 ·n

k
fm f

(3.9)
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Figure 3.6: §3.1.1.2 | Steady flow with hydraulic jump hitting the roof. Figure taken from
[GPSMW18].

with H
n+1/2

k = H
[
Hn+1/2

k ,Bk

](
φ

n+1/2
k

)
and φ

n+1/2
k =

φ n
k +φ

n+1
k

2 . The numerical flux reads

F


δt ,Q,




dL

HL

φL

uL


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dR

HR

φR

uR


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
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2

(
HL

2dL
+

HR

2dR
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φR−φL

2

− δt

dL +dR

(
uL max

(
0,Q ·nk

f

)
+uR min

(
0,Q ·nk

f

))
.

Once the new potential and water depth is known, the velocity is computed with the same
type of scheme than (3.6), i.e.

hn+1
k un+1

k = hn
kun

k−
δ

n+1
t hn+1/2

k
mk

∑
f∈Fk

φ
n+1/2
k +φ

n+1/2
k f

2
m f

−δ
n+1
t

mk
∑

f∈Fk

(
ũn+1/2

k f
max

(
0,F n+1/2

f ·nk
f

)
+ ũn+1/2

k f f
min

(
0,F n+1/2

f ·nk
f

))
m f

(3.10)
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Figure 3.7: §3.1.1.3 | Simulation of the traveling vortex with the second order schemes
(3.9)-(3.10) (in red) and the explicit HLL-MUSCL-RK2 (in blue) compare to the analytical
solution (in black) for Fr = 1 and Fr = 10−3.
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un
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k
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D f
k the distance between the cell center and the face center and ∆k (U⋆) is the approximation

of the slope of U in the cell k see [EGH00].

To demonstrate the efficiency of the scheme, we simulate the test case of a traveling vor-
tex, with the analytical solution provided in [RB09]. For comparison, we also plot results
for the classical Runge-Kutta 2 (RK2) time scheme combined with the MUSCL recon-
struction and the HLL scheme. The results are illustrated in Figure 3.7, and the L1-errors
for h are shown in Figure 3.8. For a Froude number Fr = 1, both schemes produce results
that are in good agreement with the analytical solution. However, the scheme (3.9)-(3.10)
is noticeably less efficient. Specifically, the HLL-MUSCL-RK2 scheme is approximately
20 times faster on a 200x200 grid mesh. This efficiency gap arises from the implicit non-
linear components of the scheme, which make (3.9)-(3.10) (and similarly (3.4)-(3.6)) less
effective for large Froude numbers. Conversely, for a Froude number Fr = 10−3, despite
its second-order accuracy, the HLL-MUSCL-RK2 scheme is highly diffusive. In contrast,
the scheme (3.9)-(3.10) remains well-aligned with the analytical solution. Additionally, at
this low Froude number, the CPR scheme is approximately 20 times faster than the HLL
scheme on a 200x200 grid mesh. This efficiency difference is due to the CFL condition
(3.7), which is independent of the Froude number, unlike the CFL condition for Godunov-
type solvers (2.55).

3.1.2 On floating body

Floating structures are used in the marine environment for various purposes, including ad-
dressing stability issues for bridges or platforms, studying drift dynamics for icebergs or
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Figure 3.8: §3.1.1.3 | L1-errors for h of the explicit HLL-MUSCL-RK2 scheme and the
second order schemes (3.9)-(3.10) for traveling vortex for Fr = 1 and Fr = 10−3.

debris, and optimizing the movement of marine energy converters. These considerations
are essential for enhancing the performance and safety of floating structures in diverse ap-
plications. For large-scale applications, the congested shallow water model (3.1), when
coupled with body dynamics, provides an effective model for floating bodies. The numer-
ical coupling is explored in the 2D vertical plane in [GPSMW20]. While this approach
simplifies the body dynamics, it still necessitates careful attention to the challenges associ-
ated with such coupling.

3.1.2.1 Dynamics of floating body over shallow water flow

In the 2D vertical plane, the body’s position is described by three degrees of freedom
Λ = (χ,ζ ,θ)⊺, where χ (t) ∈ R represents the horizontal coordinate, ζ (t) ∈ R denotes
the vertical coordinate of the body’s center of mass, and θ (t) ∈ ]π,π] is its orientation in
the plane relative to a reference position, see Figure 3.9. The complete dynamics of the
body can thus be characterized by six degrees of freedom: Λ (position) and Λ̇ (speed).
For a given orientation θ , let B(θ) represent the set of coordinates (x,z) within the body,
and define the lower surface as S (x,θ) = min{z | (x,z) ∈ B(θ)}. In practice, the body
is described by its function S (x,θ) given. The lower surface for a body positioned at
Λ = (χ,ζ ,θ)⊺ is given by

R(x,χ,ζ ,θ) =
{

S (x−χ,θ)+ζ , if x−χ ∈ supp(S (•,θ))
Π , else

(3.11)

where Π is set sufficiently large to ensure it is never reached by the flow, typically Π= 1040.
We assume that this lower surface acts as a roof for the fluid dynamics, see §3.1.1.1. This
assumption implies that the flow does not pass over the surface, making this approach
suitable for relatively lightweight floating objects.
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Figure 3.9: §3.1.2.1 | Illustration of the unknowns of the floating body dynamics.

According to Newton’s laws of motion, the dynamics of a body with mass M =∫
X∈B ρ (X) dxdz and moment of inertia J =

∫
X∈B |XO|2 ρ (X) dxdz, subjected to a pressure

p on its lower surface and gravitational force, are given by

Mχ̈ =
∫

R
p∂χRdx

Mζ̈ =
∫

R
pdx−Mg

Jθ̈ =
∫

R
p∂θ Rdx.

(3.12)

The first two equations directly apply Newton’s laws. The third equation arises from the
fact that, for a rigid body, the motion of points on the body in its reference frame describes
concentric circles. It follows the relation of the point of a rigid body, see [KH12]

(x−χ)+(R−ζ )∂xR+∂θ R = 0. (3.13)

With this formulation, the conservation of energy can be readily established.

Proposition 3.3 On an infinite, periodic or closed domain, the regular enough solutions
of the coupled system (3.1)-(3.12) satisfies the following conservation of energy

∂t

(∫

R
(P (x,h(t,x))+K (h(t,x) ,u(t,x))) dx+E

(
Λ(t) , Λ̇(t)

))
= 0.

with P (x,h) = gh
(
B(x)+ h

2

)
, K (h,u) = h

2 |u|
2 and the energy in the solid E

(
Λ, Λ̇

)
=

Mgζ + M
2

(
χ̇2 + ζ̇ 2

)
+ J

2 θ̇ 2.

3.1.2.2 Entropy-satisfying numerical scheme

We now focus on the numerical resolution of the model (3.1)-(3.12), ensuring that the dis-
crete scheme preserves the stability of energy as described in Proposition 3.3. In §3.1.1.2,
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we previously proposed an entropy-satisfying scheme for the congested shallow water
model (3.1) see Proposition 3.2. Similarly, several entropy-satisfying schemes for body dy-
namics are available in the literature. Our coupling approach utilizes a Newmark scheme,
which is defined as follows:

Λ
n+1 = Λ

n +δ
n+1
t Λ̇

n +
δ

n+1
t

2
(
α0Λ̈

n+1 +(1−α0) Λ̈
n)

Λ̇
n+1 = Λ̇

n +δ
n+1
t

(
α1Λ̇

n+1 +(1−α1) Λ̇
n)

Mχ̈
n+1 =

∫

R

(
α2 pn+1 +(1−α2) pn)

∂
k
χ

(
Rn+1
⋆

)
dx

Mζ̈
n+1 =

∫

R

(
α2 pn+1 +(1−α2) pn) dx−Mg

Jθ̈
n+1 =

∫

R

(
α2 pn+1 +(1−α2) pn)

∂
k
θ

(
Rn+1
⋆

)
dx

(3.14)

where Rn+1
k = R

(
xk,χ

n+1,ζ n+1,θ n+1
)

and the discrete operators ∂ k
χ

(
Rn+1
⋆

)
and ∂ k

θ

(
Rn+1
⋆

)

are respectively the discrete counterparts of the spatial and orientation derivatives ∂χ and
∂θ in cell k between times tn and tn+1. Before defining the discrete derivatives, we highlight
the following property

Proposition 3.4 On an infinite, periodic, or closed domain, with the parameters
(α0,α1,α2) = (1,1,1) and assuming that the CFL condition (3.7) is satisfied, if the dis-
crete derivatives satisfy the following relation

(
χ
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n)

∂
k
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)
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then the scheme (3.4)-(3.6)-(3.14) is entropy satisfying, i.e. we have
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Figure 3.11: §3.1.2.2 | Buoy (black dotted line), water height (blue solid line), velocity
(filled surface in the water – blue<0<red) and surface pressure (green filled surface in the
buoy) at several times.
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To satisfy the assumptions of Proposition 3.4, we propose the following discrete operators

∂
k
χ

(
Rn+1
⋆

)
=





R
(
xk,χ

n+1,ζ n+1,θ n+1
)
−R

(
xk,χ

n,ζ n+1,θ n+1
)

χn+1−χn , if χ
n+1 ̸= χ

n

−Rn
k+1−Rn

k−1

2δk
, else

and ∂
k
θ (R⋆) =





R
(
xk,χ

n,ζ n,θ n+1
)
−R(xk,χ

n,ζ n,θ n)

θ n+1−θ n , if θ
n+1 ̸= θ

n

−(xk−χ
n)− (Rn

k−ζ
n)

Rn
k+1−Rn

k−1

2δx
, else.

The first case of the two derivatives uses secant approximation, which is consistent with
the continuous derivative as δ

n+1
t approaches zero. However, when the degrees of free-

dom remain unchanged, this formula can become ill-defined. For the horizontal derivative,
we employ a centered spatial discretization, noting that ∂χR = −∂xR. For the orientation
derivative, we use the relationship for points on a rigid body as described in (3.13).

The scheme (3.4)-(3.6)-(3.14) is non-linear and implicit with the unknowns φ ,Λ, Λ̇.
Treating all the unknowns simultaneously would result in a system with a large stencil,
because all the cells where water interacts with the body are connected through the body
dynamics. To simplify the implementation and avoid a full matrix, we use a weak coupling
within the iterative process. Specifically, we first compute the free surface assuming the
roof is steady, as detailed in §3.1.1.1, and then update the dynamics of the body. Con-
vergence issues can arise when the body moves through the water at high velocity, and if
the scheme does not converge after several iterations, we address this by reducing the time
step. This is done by employing an adaptive CFL parameter. The time step is defined as

δ
n,q+1
t = min

(
δ

n,q
t ,

ξ n,q min
(
dk,dk f

)

2ν f

)
(3.15)

with ν f defined in (3.7) and ξ n,q > 0 is decreasing while q increase with ξ n,0 = 1. The
flowchart of the scheme (3.4)-(3.6)-(3.14) is presented in Figure 3.10.

One of the advantages of the scheme (3.4)-(3.6)-(3.14) is that it does not require
estimating the subdomains as congested or free surface. This capability allows for
simulations where the topology of these subdomains changes dynamically, as illustrated
by the buoy throw example in Figure 3.11. Additionally, to demonstrate the consistency
of the scheme, we compare the computed solution to the analytical solution for return to
equilibrium established in [Lan17, Corollary 1]. This solution corresponds to the vertical
movement of a rectangular buoy, floating freely above initially still water with a flat
bottom B = 0. The comparison with the simulation results is shown in Figure 3.12. A
similar analytical solution within an axisymmetric framework is presented in [Boc19].

To conclude this section, we note that with the parameters (α0,α1,α2) =
(1

2 ,
1
2 ,

1
2

)
, the

Newmark scheme (3.14) achieves second-order accuracy. When coupled with the second-
order scheme (3.9)-(3.10), this setup is expected to yield a second-order accurate scheme
for floating bodies.
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Figure 3.12: §3.1.2.2 | Time evolution of the distance to the equilibrium position δG =

ζ −ζ0 for the analytical solution [Lan17, Corollary 1] and the numerical solutions.

3.1.3 Trapped air pockets modeling

The presence of a roof not only restricts water flow but also blocks air circulation. This can
lead to air pockets being trapped between the roof and the water surface, which can affect
the water level and potentially impact discharge rates in pipes. Such phenomena occur
in environments like underground rivers, submerged coastal caves [CBCC92], under ice
sheets, in sewers during floods [CSZ97], and in certain marine energy converter devices,
such as oscillating water columns [dOF10, §6]. Modeling air pockets above a free-surface
flow introduces a two-phase liquid-gas problem [CRT08, LZ07], which has been exten-
sively studied in both modeling and numerical simulation contexts [SMM13], particularly
in pipe flows. Paradoxically, air pocket modeling is essential to prevent the formation of
unrealistic "vacuum" pockets [GMCC13], especially when simulating pumping in deep
aquifers (see §3.2).

Depending on the application, two types of models are commonly used for air-water
interaction: the incompressible two-phase model [BHI14, Boy02, CPT01] and the com-
pressible two-phase model [CGHS02, KKKP04]. Due to the complexity of these models,
numerical simulations at large scales (several km3) become unfeasible. In geophysical
flows, simplified models like shallow water equations are typically employed [LB09]. Ver-
tical integrated models for incompressible flows have been explored in [AK09], but in our
case, the air phase cannot be treated as incompressible due to its variable domain. An
integrated incompressible/compressible model for liquid-gas interaction was proposed in
[BEG13], though it is well-posed only for small relative velocities between the phases, lim-
iting its robustness for broader applications. In [DH17, DBdM+19], a vertically integrated
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Figure 3.13: §3.1.3 | Illustration of the partially free surface problem and the unknown of
the congested shallow water with air pockets model (3.16)-(3.2)-(3.18)-(3.19)-(3.20) in the
vertical plane.

model with two fluids and two pressures is developed, highlighting the disparity in sound
speed between the air and water phases, which leads to time-scale issues. However, as our
focus is on the fluid dynamics, we assume the air pressure relaxation time is small enough
to treat the air dynamics as quasi-stationary. In [Par23], we proposed a polytropic model
for air pocket dynamics [PCC88], incorporating the merging and splitting of air pockets for
simulations that align with practical applications, thus improving the method’s robustness.

3.1.3.1 A quasi-steady pressure dynamics

Let us focus on the experiment conducted by Torricelli in 1643 and examine what the
congested shallow water model (3.1)-(3.2) lacks in order to replicate this phenomenon.
Torricelli immersed a glass tube, sealed at one end, into a container of mercury, filling it
completely. He then lifted the closed end of the tube, keeping the open end submerged
in the mercury. Initially, the mercury filled the tube above the mercury level in the con-
tainer. However, the mercury stopped rising after reaching a height of approximately 73
cm, leaving a vacuum at the top of the tube.

In the congested shallow water model (3.1)-(3.2), the roof reaction force, denoted as
p, is assumed to be positive. One could attempt to relax this assumption by considering p
as surface pressure, allowing it to become negative and causing the mercury level to rise.
However, this approach renders the model ill-posed, as it leads to two possible outcomes:
one where the fluid remains attached to the roof under negative pressure, and another where
the fluid detaches from the roof with zero pressure. Moreover, this method fails to capture
a key feature observed in Torricelli’s experiment, the presence of two distinct fluid levels
in separate regions at equilibrium.

As Giovanni Battista Baliani explained in 1630, the liquid doesn’t adhere to the roof but
is instead pushed upward by the external air pressure. This insight introduces an additional
unknown into the model: the air pressure, p̊(t,x)≥ 0. The congested shallow water model
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with air pockets can be expressed as follows

∂th + ∇ · (hu) = 0
∂t (hu) + ∇ · (hu⊗u) = −gh∇(B+h)−h∇(p+ p̊)

(3.16)

with the congestion constraint (3.2). The air pressure term, p̊(t,x), still needs to be
properly defined.

Assuming that the relaxation time of air pressure is much shorter than the characteristic
time of fluid dynamics, the air pressure p̊ can be treated as uniform within each air pocket.
By "pocket," we refer to a spatial region bounded by the contact between the fluid and the
roof. Thus, the air pressure p̊ is modeled as a piecewise constant function

p(t,x) =
Np(h̊)

∑
i=1

Pi (t)1Ωi(h̊) (x) with h̊(t,x) = H (t,x)−h(t,x) (3.17)

where Np

(
h̊
)
∈ N is the number of pockets, Ωi

(
h̊
)
⊂Ω represents the horizontal support

occupied by the ith pocket, and Pi (t) is the pressure inside the ith pocket, see Figure 3.13.
As long as pockets remain isolated and do not interact, the pressure changes only in

response to pocket deformation, particularly due to changes in volume. This follows a
polytropic relation

∂t

(
PiV d

i

)
= 0 (3.18)

where Vi

(
h̊
)
=
∫

Ωi(h̊) h̊dx is the volume of the ith pocket and d is the polytropic coefficient
of deformation. For slow enough deformations, due to thermal exchange with the fluid, the
process can be considered isothermal, leading to d = 1.

To advance the modeling, we must consider changes in the topology of the air support,
specifically the merging and splitting of air pockets. Let us begin with the case where a
pocket splits into several smaller pockets at a specific time τ . Since this process is instan-
taneous, the splitting is isochoric, meaning the total volume remains constant. Let Wi (τ)

denote the set of indices of the pockets that result from the splitting of pocket i. This
implies

∑
j∈Wi(τ)

Ω j (τ+) = Ωi (τ−) with τ± = lim
ε→0
ε>0

τ± ε.

We assume that the splitting process follows a polytropic relation, described as

∑
j∈Wi(τ)

Pj (τ+)
∣∣Vj (τ+)

∣∣s = Pi (τ−) |Vi (τ−)|s and ∑
j∈Wi(τ)

Vj (τ+) =Vi (τ−) . (3.19)

In most cases, the splitting process is considered isobaric, which simplifies the model by
setting s = 0.

Now, let us focus on the case where multiple pockets merge to form a new pocket at a
specific time τ . As with the splitting process, merging is considered instantaneous, making
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it isochoric, the total volume remains unchanged. Let V j (τ) represent the set of indices of
the pockets that merge to create the new pocket j. This relationship can be written as

Ω j (τ+) = ∑
i∈V j(τ)

Ωi (τ−) .

We assume that, similar to splitting, the merging process follows a polytropic relation
described by
∣∣Pj (τ+)

∣∣ 1
m Vj (τ+) = ∑

i∈V j(τ)

|Pi (τ−)|
1
m Vi (τ−) and Vj (τ+) = ∑

i∈V j(τ)

Vi (τ−) . (3.20)

Typically, the merging process is considered adiabatic, resulting in m = γ , where γ is the
adiabatic index, approximately 1.4 for air.

Lastly, we consider the formation of a vacuum pocket, a case that is physically
relevant, as demonstrated by Torricelli. If a new pocket forms in a region where no pocket
previously existed, the pressure inside this new pocket is set to zero.

The quasi-steady pressure model discussed in this section can be integrated with other
congested models. For instance, it can be applied to the congested Navier-Stokes model
with air pockets to serve as a simplified two-fluid model for phenomena such as bubble rise
in magmatic chambers. This approach allows for the simulation of complex fluid dynamics
involving both the liquid and gas phases, providing insights into behaviors such as bubble
dynamics and fluid interactions in various geological and industrial contexts.

3.1.3.2 Numerical resolution of quasi-steady pressure dynamics

We now address the numerical solution of the congested shallow water model with air
pockets, described by equations (3.16)-(3.2)-(3.18)-(3.19)-(3.20). The fluid dynamics are
approached using the numerical scheme outlined in §3.1.1.2, considering the air pres-
sure at the previous time step, and acting as the bathymetry see [Bou04, §4.12]. Specif-
ically, the scheme (3.4) is applied with the updated bathymetry function H n+1

k (φ) =

H
[
Hn+1

k ,Bk +
p̊n

k
g

]
(φ), utilizing the definition provided in (3.8).

Once the new water surface is determined, we can deduce the connexe supports Ω
n+1
i ,

the number of pockets Nn+1
p = card

(
Ω

n+1
i

)
, and the volume V n+1

i =∑i∈Ω
n+1
i

h̊mk of the new
pockets. With the support of the pockets at the previous iteration known, the next step is
to establish the connectivity between the pockets, i.e. identifying which pockets have split
or merged to form new pockets. This task is a classical problem in optimal transport, as
discussed in [PC18]. However, given that the time step δ

n+1
t is relatively small compared

to the motion of the pockets, we can infer the connectivity based on the overlap of the
pocket supports. Specifically, if an old pocket at time tn shares part of its support with a
new pocket at time tn+1, they are considered to be connected, see Figure 3.15. Using this
approach, we construct Wn+1

i , the set of new pockets connected to the old pocket i, and
Vn+1

j , the set of old pockets connected to the new pocket j. At each time step, this process
generates a bipartite graph representing the connections between the old and new pockets

([
1,Nn

p
]
∩N,

[
1,Nn+1

p
]
∩N,Wn+1

1≤i≤Nn
p
,Vn+1

1≤ j≤Nn+1
p

)
.
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Figure 3.14: §3.1.3.2 | Flowchart of a time steps of scheme (3.4)-(3.6)-(3.21).

To simplify the problem, we can analyze the connected subgraphs (or components) inde-
pendently. This results in a set of components

(
In+1

l ,On+1
l ,Wn+1

In+1
l

,Vn+1
On+1

l

)
.

Even if the total number of pockets in the domain is large, the number of pockets involved
in each connected subgraph is generally small (typically between 1 and 4) due to the small
time step.

The problem of pressure dynamics can be formulated as

Given the connected and bipartite graph of interactions (I,O,WI,VO), and the
following quantities: the volume V n

i∈I and pressure Pn
i∈I of the old pockets, and the volumes

V n+1
j∈O of the new pockets, determine the pressures Pn+1

j∈O in the new pockets based on the
physical processes described by equations (3.18), (3.20), and (3.19).

This problem is evidently ill-posed without additional assumptions. First, although
it’s possible for a pocket to split, deform, and re-merge without leaving any evidence, we
assume that such cases do not occur. Additionally, since the timing of splitting and merging
is unknown, we assume the dynamics of pockets at each time step can be divided into three
distinct steps, as illustrated in Figure 3.15

S1 Splitting Step: Splitting occurs only at the beginning of the time step and follows
(3.19) with τ = tn. Therefore, for any i ∈ I, we have

∑
j∈Wi

V n,1
i j =V n

i and for any j ∈Wi, Pn,1
i j

(
V n,1

i j

)s
= Pn

i (V
n
i )

s
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Figure 3.15: §3.1.3.2 | Illustration of the connectivity between the pockets and the sub-
steps of the pressure dynamics scheme. From left to right: Unaccepted splitting/merging,
typical deformation case, typical merging case, typical splitting case and general case with
splitting and merging.

where V n,1
i j and Pn,1

i j are the volume and pressure in the pocket after the splitting step
and before the deformation step.

S2 Deformation Step: Deformation occurs throughout the time step. Integrating (3.18)
over the time step gives us for any i ∈ I and j ∈Wi

Pn,2
i j

(
V n,2

i j

)d
= Pn,1

i j

(
V n,1

i j

)d

where V n,2
i j and Pn,2

i j are the volume and pressure in the pocket after the deformation
step and before the merging step.

S3 Merging Step: Merging occurs only at the end of the time step and follows (3.20)
with τ = tn+1. Therefore, for any j ∈O, we have

(
Pn+1

j

) 1
m

V n+1
j = ∑

i∈V j

(
Pn,2

i j

) 1
m

V n,2
i j and V n+1

j = ∑
i∈V j

V n,2
i j .

The model remains ill-posed because we lack information about the volume of pockets
after splitting and before merging. To address this issue, we propose the assumption that
all pockets within a connected subgraph grow at the same rate. Specifically, there exists
a constant Γ such that for all (i, j) ∈ I×O, the relation V n,1

i j = ΓV n,2
i j holds. While this

hypothesis lacks a physical basis, its impact is minimal due to the small number of pockets
involved in each connected subgraph. Nevertheless, using an optimal transport method
could potentially eliminate the need for this assumption.

Proposition 3.5 Assume there are no cycles in the interaction graph (I,O,WI,VO). Hence
the problem of pressure dynamics governed by the physical processes outlined in steps S1,
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Figure 3.16: §3.1.3.2 | Steady state with several water level of the congested shallow water
with air pockets model (3.16)-(3.2)-(3.18)-(3.19)-(3.20).

S2, and S3 has a unique solution. This solution is expressed as

Pn+1
j =

Γd−m
(

V n+1
j

)m

(
∑

i∈V j

(
PiV s

i

(
V n,1

i j

)m−s
) 1

m
)m

with Γ =
∑i∈IV n

i

∑ j∈OV n+1
j

(3.21)

and V n,1
i j is the solution to the well-posed linear system

for any i ∈ I , ∑
j∈Wi

V n,1
i j = V n

i

for any j ∈O , ∑
i∈V j

V n,1
i j = ΓV n+1

j .

The existence of cycles in the connected subgraphs can be easily detected if the follow-
ing algebraic condition is not satisfied

cardI+ cardO−1 = ∑
i∈I

cardWi. (3.22)

In a one-dimensional framework, cycles cannot exist by definition of the connectivity of
the pockets by their supports. Additionally, while the new pressures are well defined by
equation (3.21), they are not necessarily guaranteed to be positive. Furthermore, it is pos-
sible for an old pocket with non-zero pressure to not be connected to any new pockets,
i.e.

cardO= 0 and Pn
I ̸= 0. (3.23)
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Figure 3.17: §3.1.3.2 | Numerical Torricelli’s experiments with different velocity of the
piston (left column v = 1, middle column v = 5, right column v = 10) at several times.

Both of these scenarios are non-physical. If they occur, which is very rare, the time step is
reduced, and the free surface estimation step described in §3.1.1.1 is repeated, as illustrated
in Figure 3.14.

In practice, the new pressure p̊n+1 is not set to zero out of the supports of the pockets
as defined by (3.17). Due to weak coupling and pressure discontinuities, the water surface
struggles to detach from the roof. To address this issue, a regularization of the pressure p̊n+1

is applied. This regularization adjusts p̊n+1 without altering the total pressure, ensuring that
p̊n+1 + pn+1 remains constant.

Figure 3.16 illustrates the potential complex steady states at rest that can exist. The nu-
merical scheme defined by (3.4)-(3.6)-(3.21) is capable of reproducing these steady states.
For the illustration, pressure regulation has been exaggerated, though in practice, it can be
limited to just a few cells.

In Figure 3.17, we numerically reproduce Torricelli’s experiment with varying veloci-
ties v of the roof at the center of the domain. With a low velocity of v = 1 (left column),
the results align with the physical experiment: initially, the water level inside the chamber
rises, and then a vacuum forms above a height of 73 cm. With a higher velocity of v = 5
(middle column), the water level inside the chamber exceeds 73 cm due to inertia effects.
The system eventually returns to a steady state over time. At an even higher velocity of
v = 10 (right column), a vacuum pocket forms immediately because the fluid is unable
to keep up with the speed of the roof, again due to inertia. When examining the pertur-
bation of the free surface, we can distinguish two frequencies. The first, most visible in
the left column, is a high-frequency oscillation corresponding to the numerical time step.
This perturbation results from weak coupling and diminishes with smaller time steps. The
second frequency is slower and corresponds to a shockwave traveling from one part of the
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congested domain to the other. This signal remains visible with finer mesh resolutions.

3.1.4 Perspectives

In this section, we present a model for floating body dynamics along with its numerical
resolution. This model provides a foundation for understanding the interaction between
fluid and floating structures, which has a range of practical applications.

From an applied perspective, a natural progression of this work would be to extend the
model to account for more complex solid mechanics, such as deformable or articulated bod-
ies. These bodies are more realistic representations of many physical systems, especially
when considering the dynamic behavior of ships, floating platforms, or marine energy con-
vertors. Additionally, the extension of the model to two horizontal dimensions would al-
low for more accurate simulations of real-world scenarios, where fully three-dimensional
effects are significant. However, even though the physics governing deformable and artic-
ulated solids is well established, the primary challenge in advancing this model lies not in
the fundamental understanding of these physical processes, but rather in the implementa-
tion and code coupling required to efficiently simulate them. Particularly, the distribution
of computational resources becomes a critical factor when dealing with highly complex
geometries and multi-body interactions. While this challenge is significant and certainly
important for the practical execution of simulations, it is more a question of computational
strategy than of new model development or numerical approximation theory. Neverthe-
less, overcoming these challenges is essential for conducting both physical and numerical
experiments, which would enable the validation of the model and comparisons between
simulated and real-world results.

One of the major modeling challenges that emerges in this context is the consideration
of submerged objects within the fluid. Submerged (or partially submerged) bodies, such as
some marine energy convertors or infrastructure below the water surface, introduce com-
plex interactions between the object and the surrounding water. One potential approach
to address this issue is through the use of multi-layer models §2.1.2.3, where, in certain
regions, there are no exchanges between layers due to the presence of a submerged object,
while in the rest of the domain, such exchanges are allowed. However, implementing such
a model is far from straightforward, as the definition of these layers becomes intricately tied
to the position and movement of the submerged object. The geometry of the object com-
plicates the computational domain and requires dynamic adaptation of the layers, posing
significant difficulties in practice.

Further exploration of other congested models could also be highly beneficial, as men-
tioned in §3.1.1. For example, in bio-mathematical models, the influence of congestion
pressure on processes such as cell growth, death, or vascularization could be studied.

From a numerical standpoint, several important limitations remain. One significant
issue is the inability of the ImEx scheme (3.4)-(3.6) to be used at dry fronts, where the
water depth reaches zero. These dry fronts are regions where the fluid flow dynamics
change drastically, such as in the case of coastal regions during low tide, where parts of
the seabed become exposed. To address this, an alternative numerical scheme, such as
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Figure 3.18: §3.2 | Illustration of a water drainage basin. Grey areas are impermeable
soils, dotted areas are porous media and blue areas are saturated with water.

an approximate explicit Godunov scheme, can be employed in regions with small water
depth. Still, in cases where a floating object comes into contact with the bottom, like a boat
grounded during low tide, followed by a rising tide, there is no existing numerical scheme
that can handle the situation satisfactorily.

Another major numerical difficulty involves the application of congestion constraints
in (really) high-order numerical methods. High-order schemes are generally based on a
representation of the solution with several degrees of freedom per cell. It is not clear how
the congestion constraint affects the different degrees of freedom. Achieving a numerical
method that can maintain both high accuracy and respect for congestion constraints remains
a challenging and open area of research.

Finally, there are numerous unresolved questions in the mathematical analysis of con-
gested models. In the specific case of the congested shallow water model (3.1), one notable
issue is the presence of an indeterminate non-conservative product that occurs when the
fluid meets the roof at the top of a hydraulic jump. This phenomenon, illustrated in Fig-
ure 3.6, represents a critical challenge in understanding how fluid behaves in constrained
environments, particularly in pipes for hydraulic power stations.

3.2 Simulation of continental waters

This section focuses on modeling water flow at the drainage basin scale, over extended
periods ranging from days to decades. Given these long time frames, groundwater flow be-
comes a key factor. The primary application considered here involves water resource man-
agement and risk assessment for infrastructure related to continental water bodies, such
as bridges and dikes. Current models often rely on 3D simulations based on Darcy’s law
(3.24)-(3.27), which require substantial computational resources. These models are not
well-suited for exploring various scenarios impacted by climate change or shifts in pub-
lic policy. At the other end of the modeling spectrum is the Dupuit-Forchheimer model
[Dup63], which simplifies the problem to a 2D diffusion equation, making it significantly
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faster and easier to solve. However, while useful, the Dupuit-Forchheimer model has its
limitations [Bou65, vS65], especially in situations where vertical velocities are critical,
such as in infiltration or resurgence, or when the porous media morphology changes over
time.

We begin by outlining the reference model firstly introduced by Boussinesq in 1904
[Bou04], which is considered to accurately capture the physical processes across an entire
water drainage basin but is computationally prohibitive for large-scale applications. The
model describes the flow of an incompressible fluid through a porous medium. Let Θ(x,z)
represent the porosity of the medium, defined as the ratio of void space to total volume
within a given element of the medium. Additionally, let 0 ≤ θ (t,x,z) ≤ Θ(x,z) represent
the water content, i.e. the fraction of void space filled with fluid at any point in time and
space. The water content θ (t,x,z) is governed by the conservation equation

∂tθ +∇ · (θu)+∂z (θw) = 0 (3.24)

where u(t,x,z) ∈ Rd denotes the horizontal fluid velocity, and w(t,x,z) ∈ R represents the
vertical fluid velocity. The flow of both surface water and groundwater is modeled using
the congested Euler equations, which include drag forces to account for the interaction with
the porous medium

∂tu+u ·∇u+w∂zu = −∇(p(θ)+ p)− u
κ

∂tw+u ·∇w+w∂zw = −∂z (p(θ)+ p)−g− w
κ
.

(3.25)

Here, κ (x,z)> 0 denotes the hydraulic conductivity of the porous medium, p(θ)≥ 0 rep-
resents the capillary pressure, which is a given function of the water content, and p(t,x,z)
is the pore pressure, which enforces the congestion constraint min(Θ−θ , p) = 0, see
§3.1.1.1. We also assume the existence of a surface elevation S (x), referred to as the
bedrock, where a non-penetration condition holds, as described in (2.3)

u|z=S ·∇S−w|z=S = 0. (3.26)

One of the main challenges in modeling fluid flow through porous media is accurately char-
acterizing the pressure field p(θ), which depends on complex local factors such as grain
shape, connectivity, and fluid rheology. In large-scale simulations, these detailed effects
are often simplified or neglected using homogenization techniques to reduce computational
costs [Hor12].

A unique aspect of flow in a water drainage basin is that the flow regime varies signif-
icantly depending on the region being considered. Typically, a drainage basin is divided
into three distinct regions, separated by three surfaces, assumed to be mono-valued: the
substratum S (x) at the bottom of the domain, the bathymetry B(x) at the top of the porous
medium, and the unknown water table η (t,x), also referred to as the free surface, where
the flow beneath this surface is fully saturated. The water table can intersect with the
bathymetry, particularly in regions such as seas, lakes, and rivers, see Figure 3.18.
Above the surface B(x)< z: This region lies above the porous medium, where the flow

is unimpeded by the medium. Here, the parameters are set as Θ = 1 and κ→∞. The
dynamics of this flow are the focus of §2.
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The vadose zone η (t,x)< z≤ B(x): This region consists of the unsaturated part of the
porous medium, where θ < Θ and thus π = 0. Flow in this zone is primarily infiltra-
tion, moving vertically from the surface to the water table.

The aquifer S (x)< z≤ η (x): This region is the saturated part of the porous medium,
where θ = Θ and π ̸= 0. The flow here is mostly horizontal, constrained by the
substratum, and shares similarities with surface flow, see §3.2.1.

As illustrated in Figure 3.18, a water drainage basin may contain confined aquifers,
where the surface is constrained by an impermeable layer. When such an aquifer fills, air
pockets can become trapped beneath this layer. These situations are analogous to surface
flows confined by a roof, and the solutions discussed in §3.1 can be applied to groundwater
flows as well. The case of a perched water table or an underground river can also be mod-
eled by overlapping surface zones, vadose zones, and aquifers. However, these composite
cases remain perpectives at the moment. Additionally, we assume that the hydraulic con-
ductivity κ is sufficiently low in the porous medium. As a result, by applying a classical
Hilbert expansion, the Euler equations can be simplified to Darcy’s law [Dar56] below the
bathymetry

u = −κ∇(p(θ)+ p)
w = −κ∂z (p(θ)+ p+gz) .

(3.27)

Substituting these expressions into the continuity equation (3.24) leads to the Richards
equation (3.39) [Ric31]. A numerical solution of Richards equation is proposed in [CZ10].

3.2.1 Approximate models of groundwater table

In this section, we focus on modeling the evolution of the water table, assuming it remains
below the bathymetry, i.e. η (t,x) < B(x). The case where the water table or free surface
intersects the bathymetry will be addressed in §3.2.2. Consequently, it is concluded that
the subsurface flow beneath the water table follows a divergence-free condition, expressed
as

∇ · (Θu)+∂z (Θw) = 0. (3.28)

The water table itself satisfies a kinematic equation (2.4), with a source term arising from
the unsaturated flow above the water table, as discussed in §3.2.3. However, in this section,
we neglect the unsaturated flow. The dynamics of the water table, governed by equations
(2.4)-(3.26)-(3.27)-(3.28), are referred to in the literature as the groundwater waves prob-
lem. The similarities between this and the water waves problem discussed in §2.1.1 are
well recognized, as noted in [NAFP97]. It is important to note that Darcy’s law implies the
velocity field, more precisely κ−1 (u,w)⊺ is curl-free, without requiring additional assump-
tions. This naturally leads to the question of deriving approximate models in the regime of
small shallowness numbers, following the approach proposed in [Lan13] or discussed in
§2.1. In groundwater flow literature, the regime of small shallowness number is referred
to as the Dupuit-Forchheimer regime. Similar to the water waves problem, the accuracy
of these approximate models can be evaluated by two key properties of the groundwater
waves problem. First, the groundwater waves model satisfies an energy dissipation law
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Figure 3.19: §3.2.1.1 | Comparison of the linear normalized decay rate of several models:
- Black solid line: the groundwater waves model (3.29),
- Red dashed line: the Dupuit-Forchheimer model (3.30),
- Green dashed line: the Dagan model (3.31),
- Blue dashed line: the hydrodynamic Dupuit-Forchheimer model (3.32),

Proposition 3.6 For sufficiently regular solutions of the model (2.4)-(3.26)-(3.27)-(3.28),
the following potential energy dissipation law holds

∂tP +∇ ·
(∫ S+h

S
(gz+ p)Θudz

)
=−

∫ S+h

S

Θ

κ

(
|u|2 +w2

)
dz

where P (x,h) = g
∫ S+h

S Θzdz is the potential energy.

Second, it is possible to characterizes the time it takes for small perturbations in the ground-
water table to dissipate. More specifically, by linearizing the groundwater waves problem
around a steady state of rest h(t,x) =D and u= 0, with constant coefficients Θ(t,x,z) =Θ,
κ (t,x,z)κ , and S (x) = 0, we look for solutions under the form

h(t,x) = D+ ĥeik·xe−
gκλ̃

D t

where k is the wave number and λ̃ is the linear normalized decay rate. The linear normal-
ized decay rate of the groundwater waves problem is given by

λ̃ (kD) = kD tanh(kD) . (3.29)

This type of analysis resembles the dispersion relation used in water wave problems
[Air45]. Dispersion relations, such as the decay rate, are valuable for mathematical anal-
ysis, particularly in Fourier analysis, and for comparing and evaluating the accuracy of
approximate models. The decay rate of the groundwater waves model is illustrated in Fig-
ure 3.19, where it is compared with other models.

3.2.1.1 Approximate models in the Dupuit-Forchheimer regime

In this section, we assume that hydraulic conductivity and porosity depend solely on the
horizontal dimension, specifically Θ(x,z) = Θ(x) and κ (x,z) = κ (x). The simplest and
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most well-known approximate model is the Dupuit-Forchheimer model [Dup63], expressed
as

∂tV −∇ · (gκV ∇(h+S)) = 0 (3.30)

where V (x,h) = Θ(x)h represents the volume of water per unit of horizontal space. This
model is formally justified by assuming hydrostatic pressure, p = g(η− z), known in this
context as the Forchheimer assumption. This assumption is valid when the shallowness
number is sufficiently small, see §1.1. By integrating the groundwater model along the
vertical, we obtain the Dupuit-Forchheimer regime, for which the parallel can be drawn
with the shallow water regime for water waves, see §2.1.

Proposition 3.7 For sufficiently regular solutions of the Dupuit-Forchheimer model (3.30),
the following potential energy dissipation law holds

∂tP−∇ ·
(

g2κV
2

∇ |h+S|2
)
=−g2

κV |∇(h+S)|2

where the potential energy is given by P (x,h) = gΘ(x) h2

2 .

The linear normalized decay rate of the Dupuit-Forchheimer model (3.30) is given by
λ̃ (kD) = |kD|2. This decay rate is illustrated in Figure 3.19, alongside other models.
A key limitation of the Dupuit-Forchheimer model is evident: higher wave numbers are
attenuated more rapidly compared to the groundwater waves model.

To enhance the modeling of the groundwater table, Dagan [Dag67] proposed a modified
model that incorporates higher-order derivatives. This model is expressed as

∂tV −∇ ·
(

gκΘ

(
h∇(h+S)+∇

(
ωh

κΘ
∇ ·
(
κΘ∇(h+S)

))))
= 0 (3.31)

where ωh =
h3

3 . The model arises from a Hilbert expansion of the pressure term in Darcy’s
equation (3.27) with respect to the shallowness number. Its linear normalized decay rate is
given by |kD|2− |kD|4

3 , which represents a second-order Taylor expansion of the decay rate
of the groundwater waves model. While the Dagan model aims to improve the decay rate,
it sacrifices energy dissipation. Instead, it adheres to a balance law

∂tP−∇ ·
(
g2

κΘ
(
h2

∇h+(h∇(ωh∆h)−ωh∆h∇h)
))

=−g2
κΘ

(
h |∇h|2−ωh |∆h|2

)
.

A Fourier analysis reveals that the linearized Dagan model is ill-posed unless specific as-
sumptions are made regarding the spectrum of the initial conditions. As shown in Fig-
ure 3.19, the decay rate for sufficiently large wave numbers, where |kD| >

√
3, becomes

negative. This indicates that wave amplitudes increase, which is clearly unphysical, and
asymptotically, the very high frequencies blows-up instantaneously.

Following the derivation of the hydrodynamic models presented in §2.1, we propose
an approximate hydrodynamic model for groundwater waves in [Par24a]. The model is
formally justified using a Taylor expansion of the unknown function with respect to the
shallowness number, see §1.1. The model is expressed as follows

∂tV −∇ ·
(

gΘh
(

I+T
κ,Θ [h,S]

)−1
(κ∇(h+S))

)
= 0 (3.32)
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where the operator T
κ,Θ [h,B] (U) is defined as

T
κ,Θ [h,B] (U) = αBU +

κ

h
∇

(
γh,B

κ
·U
)
− γh,B

Θh
∇ ·
(
ΘU
)
− κ

h
∇

(
ωh

κΘ
∇ ·
(
ΘU
))

with the coefficients αB, γh,B and ωh defined by (2.45). This operator T
κ,Θ [h,B] (U)

generalizes the dispersive operator T [h,B] (U) defined in (2.45) and used in the disper-
sive model (2.13), accounting for the inhomogeneity of the porous medium. Specifically,
when ∇κ = ∇Θ = 0, we recover T

κ,Θ [h,B] (U) = T [h,B] (U). Weakly hydrodynamic
weakly non-linear models can also be derived by assuming small variations in water depth
h=D+O(ε) as for (2.47). This leads to the model (3.32) with the operator T

κ,Θ [D,B] (U)

instead of T
κ,Θ [h,B] (U). Similarly, models with small bathymetry variations can be ob-

tained, resulting in the model (3.32) with the operators T
κ,Θ [h,0] (U) or T

κ,Θ [D,0] (U)

instead of T
κ,Θ [h,B] (U) for the fully non-linear or weakly non linear hydrodynamic mod-

els, respectively.

Proposition 3.8 For sufficiently regular solutions of the fully hydrodynamic Dupuit-
Forchheimer model (3.32), the following potential energy dissipation law holds

∂tP +∇ ·
(
(g(h+S)+q)Θhu

)
=−Θh

κ

(
|u|2 +w2 +

w̃2

12

)

where the potential energy is given by P (x,h) = gΘ(x) h2

2 , the horizontal velocity
u(x,h) =−g(1+Th,S)

−1 (κ∇(h+S)), the vertical velocities are defined as

w = u ·∇S− h
2Θ

∇ ·
(
Θu
)

and w̃ =− h
Θ

∇ ·
(
Θu
)

and the hydrodynamic pressure is given by q = h(6w+w̃)
12κ

.

The weakly nonlinear model, using T
κ,Θ [D,B], does not satisfy an entropy dissipation law.

The linear normalized decay rate of the hydrodynamic Dupuit-Forchheimer models (3.32)
is given by

λ̃ (kD) =
|kD|2

1+ 1
3 |kD|2

as illustrated in Figure 3.19 alongside other models. The decay rate of the hydrodynamic
Dupuit-Forchheimer model closely approximates that of the groundwater waves model,
more so than either the Dupuit-Forchheimer or Dagan models. However, it is important to
note that as the wave number kD approaches infinity, the decay rate of the hydrodynamic
Dupuit-Forchheimer model converges to λ∞ = 3, while the decay rate of the groundwater
waves model tends toward infinity. This suggests that discontinuities are preserved, albeit
with reduced amplitudes, in the Dupuit-Forchheimer hydrodynamic model (3.32), unlike in
the traditional Dupuit-Forchheimer model (3.30) and the groundwater waves model, where
instantaneous regularization can be demonstrated. It is crucial to emphasize that discontin-
uous solutions fall outside the intended scope of the model. Thus, the hydrodynamic model
is applicable for scenarios where the water table is steep enough to render the hydrostatic
model inadequate, yet still flat enough to ensure that the shallowness number remains suf-
ficiently small.



90 Chapter 3. Water within its surroundings

3.2.1.2 Entropy-satisfying numerical scheme

From a mathematical point of view, the hydrodynamic Dupuit-Forchheimer model is a
nonlinear, non-local diffusion equation [AV10, BV+16, Váz17]. These models share sim-
ilarities with various existing frameworks in the scientific literature, including the Patlak-
Keller-Segel equations [Pat53, KS71], the Schurtz-Nicolai model [SNB00, GP11], the
Stokes-Brinkman model [Bri49, KLLS11], and the non-local Exner model [ABP21]. Nu-
merical approximations of non-local diffusion equations present significant mathemati-
cal challenges. One of the primary applications of models developed for the Dupuit-
Forchheimer regime is the estimation of the water table over long-term scenarios, rang-
ing from days to even decades. To carry out such simulations, it is essential to employ
an efficient numerical scheme that does not impose overly restrictive time-step conditions.
This necessity explains the widespread use of implicit schemes to solve the hydrostatic
Dupuit-Forchheimer model (3.30). We aim to develop a scheme that, in the limit of small
shallowness number, recovers an implicit scheme for the hydrostatic Dupuit-Forchheimer
model (3.30).

To solve the hydrodynamic Dupuit-Forchheimer model, we introduce the velocity
u =−g(1+Th,S)

−1 (κ∇(h+S)). Following the projection strategy presented in §2.3, the
following numerical scheme is proposed

hn+1
k = hn

k−
δt

Θk
∇

δ
k ·
(

Θ⋆

{
hn+θ
⋆

}
⋆

un+1−θ
⋆

)

un+1−θ

f +T f
κ⋆,Θ⋆

[
hn+θ
⋆ ,S⋆

](
un+1−θ
⋆

)
= −gκ f ∇

δ
f

(
hn+1−θ
⋆ +S⋆

)
.

(3.33)

Here, the water depth at intermediate time is defined as hn+θ
⋆ = θhn+1

⋆ +(1−θ)hn
⋆ for a

given θ ∈ [0, 1
2 ]. The discrete space differential operator is defined as

T f
h⋆,B⋆

(U⋆) =
κ f

{h⋆} f

{
h⋆

κ⋆Θ⋆

{
Θ⋆U⋆ ·∇δ

⋆B⋆

}
⋆

}

f
∇

δ
f B⋆

+
κ f

{h⋆} f


∇

δ
f

(
|h⋆|2

2κ⋆Θ⋆

{
Θ⋆U⋆ ·∇δ

⋆B⋆

}
⋆

)
−
{
|h⋆|2

2κ⋆Θ⋆

∇
δ
⋆ ·
(
Θ⋆U⋆

)
}

f

∇
δ
f B⋆




− κ f

{h⋆} f
∇

δ
f

(
|h⋆|3

3κ⋆Θ⋆

∇
δ
⋆ ·
(
Θ⋆U⋆

)
)
.

The discrete divergence and gradient operators are defined as

∇
δ
k ·U⋆ =

1
mk

∑
f∈Fk

U f ·nk f
k m f and ∇

δ
f φ⋆ =

φk f −φk

δ f
n

k f
k .

The reconstructions in the cells and at the faces are given by

{ψ⋆}k =
1
mk

∑
f∈Fk

ψ f
δ fm f

2
and {φ⋆} f =

φk f +φk

2
.

It is important to note that only the normal component of the velocity un+1
f · nk f

k is
considered a degree of freedom in this numerical scheme. This type of staggered grid,
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commonly referred to as a MAC grid for Cartesian grids, is widely utilized in fluid dynam-
ics, especially in the diffusive or low-Mach regime [Wes09, HKL14, Pat18, BHL24]. The
scheme achieves second-order accuracy in space using these differential operators. How-
ever, it is applicable only to sufficiently regular meshes, as discussed in [DO05, Her00].
The parameter θ ∈

[
0, 1

2

]
alters the characteristics of the time scheme. When θ = 0, the

scheme is implicit, linear, and first-order in time. Conversely, when θ = 1
2 , the scheme is

implicit, nonlinear, and is based on the Crank-Nicolson method, resulting in second-order
accuracy in time. While the nonlinear scheme provides enhanced accuracy, it is known to
lack monotonicity when applied to simple nonlinear diffusion equations.

To solve the implicit scheme (3.33) with separated unknowns, the water depth hn+1
k in

the second equation is substituted using the first equation. This substitution results in the
following system:

un+1−θ

f +T f
κ⋆,Θ⋆

[
hn+θ
⋆ ,S⋆

](
un+1−θ
⋆

)

−gκ f ∇
δ
f

(
(1−θ)

δt

Θ⋆

∇
δ
⋆ ·
(

Θ⋆

{
hn+θ
⋆

}
⋆

un+1−θ
⋆

))
= −gκ f ∇

δ
f (h

n
⋆+S⋆)

Once the velocity un+1
f ·nk f

k is determined, the water depth can be computed using the first
equation of (3.33).

The scheme (3.33) preserves the steady state, characterized by a constant water table
hn
⋆+S⋆. Furthermore, it satisfies the following entropy dissipation law

Proposition 3.9 Let hn
k be the solution of the numerical scheme (3.33). Then the following

dissipation law holds

Pk
(
hn+1

k

)
+δt∇k ·

(
G n+1−θ
⋆

)
≤Pk (hn

k)

−δt

({
Θ⋆

{
hn+θ
⋆

}
⋆

κ⋆

∣∣un+1−θ
⋆

∣∣2
}

k

+
Θkhn+θ

k
κk

(
∣∣wn+1−θ

k

∣∣2 +
∣∣w̃n+1−θ

k

∣∣2

12

))

where the discrete potential energy is given by Pk (h) = gΘkh
(h

2 +Sk
)
. The numerical

energy flux is defined as

G n+1−θ

f =

(
g
{

hn+θ
⋆

}
f

{
hn+1−θ
⋆ +S⋆

}
f
+
{

hn+θ
⋆ qn+1−θ

⋆

}
f

)
Θ f un+1−θ

f

+δ
2
f

Θ f

4
un+1−θ

f ·∇δ
f S⋆∇

δ
f qn+1−θ

S,⋆ .

The discrete vertical velocities are given by

wn+1−θ

k =
1

Θk

({
Θ⋆un+1−θ

⋆ ·∇δ
⋆S⋆
}

k
− hn+θ

k
2

∇
δ
k ·
(

Θ⋆un+1−θ
⋆

))

and w̃n+1−θ

k = −hn+θ

k

Θk
∇

δ
k ·
(

Θ⋆un+1−θ
⋆

)
.

The discrete hydrodynamic pressures are defined as

qn+1−θ

S,k =
hn+θ

k
κk

wn+1−θ

k and qn+1−θ

k =
hn+θ

k

(
6wn+1−θ

k + w̃n+1−θ

k

)

12κk
.
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Figure 3.20: §3.2.1.2 | Water table elevations obtained by the hydrostatic model (3.30) (red
lines) and the hydrodynamic model (3.32) (blue lines) for some initial conditions (black
lines).

We also emphasize that when the shallowness number is sufficiently small, the solu-
tion of the numerical scheme (3.33) converges to the following scheme of the hydrostatic
Dupuit-Forchheimer model (3.30)

hn+1
k − δt

Θk
∇

δ
k ·
(

gκ f Θ⋆

{
hn+θ
⋆

}
⋆

∇
δ
f

(
hn+1−θ
⋆ +S⋆

))
= hn

k . (3.34)

Despite the unconditional stability result presented in Proposition 3.9, the numerical
scheme (3.33) can exhibit instabilities when the time step is excessively large. The origins
of these instabilities are not fully understood. To investigate their emergence, it would
be necessary to explore alternative stability criteria, such as Total Variation Diminishing
(TVD) norms, solution monotonicity, or maximum principles. However, these approaches
present challenges at both the discrete and continuous levels. To mitigate these instabilities,
we implement an adaptive time-stepping strategy. Specifically, the time step is reduced
after several fixed-point iterations if convergence is not achieved. It seems that the time
step should be of the same order as the spatial step. Although this strategy may not be
optimal for practical applications, it offers a preliminary means to examine the behavior of
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Figure 3.21: §3.2.1.2 | Water table elevations obtained by the hydrostatic model (3.30) (red
line), the hydrodynamic model (3.32) fully non-linear and with large bathymetry variations
T

κ,Θ [h,S] (blue line), fully non-linear and with small bathymetry variations T
κ,Θ [h,0]

(green line), weakly non-linear and with large bathymetry variations T
κ,Θ [D,S] (orange

line) and weakly non-linear and with small bathymetry variations T
κ,Θ [D,S] (purple line)

over a bathymetry with large variations (top picture) and bathymetry with small variations
(bottom picture).

the solutions.
In Figure 3.20, the solutions of the hydrostatic model (3.30) and the hydrodynamic

model (3.32) are plotted for various initial conditions. When the initial condition is rel-
atively flat (third line), the solutions from both models are identical. However, for very
steep initial conditions, the solutions from the two models diverge significantly. These
differences can be explained by decay rate analysis, which demonstrates that steep gra-
dients are better preserved by the hydrodynamic model. Additionally, we observed that
discontinuities tend to shift toward the direction of the lower water table, likely due to the
nonlinearities inherent in the model.

In Figure 3.21, the solutions of the hydrostatic model (3.30) are compared with vari-
ous hydrodynamic models (3.32), both fully and weakly nonlinear, considering small and
large bathymetric variations. The results indicate that when bathymetric variations are sig-
nificant, simplified hydrodynamic models can diverge considerably from the full hydrody-
namic model. Specifically, models that neglect bathymetric variations in the hydrodynamic
terms exhibit non-monotonic behavior upstream of a steep slope (for x ∈ [4,5]), even with
a large water depth. Similarly, weakly nonlinear models also fail to maintain monotonicity,
and do not adhere to the maximum principle, downstream of the steep slope (around x = 6),
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where the water depth is shallow.

3.2.2 An approximate model of resurgence

As mentioned in §3.2, the water drainage basin consists of three regions: the surface, the
vadose zone, and the aquifer. To perform simulations across the entire drainage basin, a
numerical scheme capable of capturing the solution for all flow regimes is necessary. In
particular, the scheme based on equations (3.24)-(3.25) have to recover the asymptotic dif-
fusive regime described by (3.27). Asymptotic Preserving schemes in the diffusive regime
are well-documented in the literature, see [Jin99, CGK13, DMTB15, BBCM16, BT16,
BCT21].

When replacing the Euler equations with the asymptotic Richards equations (3.39) in
porous media, the coupling between groundwater and surface water is typically achieved
using the seepage boundary condition [SPPP17]. However, a scheme that discretizes the
3D equations (3.24)-(3.25) is not suitable for simulations at the scale of the water drainage
basin. To conduct effective simulations across the entire catchment, coupling between the
regions is essential. In this section, we focus on the scenario where the vadose zone can
be neglected, allowing for direct connection between surface flow and the aquifer through
a regular water table, see Figure 3.18. This situation is particularly relevant in coastal
regions, where continental and ocean waters merge. It is important to note that exchanges
can occur in both directions.

3.2.2.1 The Dupuit-Forchheimer/shallow water model

We propose to approximate the 3D model (3.24)-(3.25) using vertical integration meth-
ods based on the layerwise strategy outlined in §2.1.2.3, with imposed interface positions
defined by vertical discontinuities in hydraulic conductivity and porosity. We present
the simple case of two layers: the top layer represents the surface, while the bottom
layer represents the porous media. The interface is defined as the minimum between the
bathymetry and the water table, i.e. ζ3/2

(x,h) = min(B(x) ,S (x)+h). For notation, we set
ζ1/2

(x,h) = S (x) and ζ5/2
(x,h) = S (x)+ h. Next, we integrate the 3D model between the

substratum and the interface to obtain the equations governing flow in the porous media,
and similarly, we integrate the model between the interface and the water table to derive
the equations governing flow in the surface. Additional assumptions are necessary to close
the system, as discussed in §2.1 and §3.2.1. For simplicity, we present the results with
hydrostatic models, although hydrodynamic models can also be derived. We obtain the
bi-layer shallow water model with drag forces

∂tV1 + ∇ · (V1u1) = G
∂tV2 + ∇ · (V2u2) = −G

∂t (V1u1) + ∇ · (V1u1⊗u1) = −gV1∇(h+S)− V1u1

κ1
+u3/2

G

∂t (V2u2) + ∇ · (V2u2⊗u2) = −gV2∇(h+S)− V2u2

κ2
−u3/2

G

(3.35)
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Here, the volume of water and the effective conductivities in layer i are defined as

Vi (x,h) :=
∫

ζi+1/2
(x,h)

ζi−1/2
(x,h)

Θ(x,z) dz and κi (x,h) :=

(∫
ζi+1/2

(x,h)

ζi−1/2
(x,h)

Θ(x,z)
κ (x,z)

dz

)−1

Vi (x,h) .

By the definition of the interface ζ3/2
(x,h), the volume V1 is bounded by the free volume

in the porous medium V 1 (x) =
∫ B(x)

S(x) Θ(x,z) dz, and if it does not reach this bound, the
volume of water at the surface vanishes. We conclude with the complementarity constraint

min
(
V 1−V1,V2

)
= 0.

It is worth noting that while the complementarity constraint is written similarly to the con-
gestion constraint (3.2), it acts differently because it is associated with the exchanged mass
G, which influences the mass flux rather than acting as a force, as is the case with the roof
reaction. The velocity at the interface u3/2

is defined as in (2.1.2.3) by (2.10) to ensure
energy dissipation.

Proposition 3.10 If λ ≥ 0 and for sufficiently smooth solutions of the model (3.35), the
following mechanical energy dissipation law holds

∂t (P +K1 +K2)+∇ · (g(S+h)(V1u1 +V2u2)+K1u1 +K2u2)≤−
(

V1 |u1|2
κ1

+
V2 |u2|2

κ2

)

where P (x,h) = g
∫ S+h

S Θ(x,z)zdz and Ki =K (Vi,ui) with K (V,u) =V |u|
2

2 . The equal-
ity holds when λ = 0.

Finally, the Dupuit-Forchheimer/shallow water model is obtained by considering κ1≪
1 and κ2→ ∞. This allows us to recover the Dupuit-Forchheimer equation in the ground
layer, with the mass exchange represented on the right-hand side. By summing the mass
conservation equations of the two layers, we derive the Dupuit-Forchheimer/shallow water
model

∂tV +∇ · (V2u2−gκ1V1∇(S+h)) = 0
∂t (V2u2)+∇ · (V2u2⊗u2) =−gV2∇(S+h)+ [∇ · (gκ1V1∇(S+h))1h≥B]

λ

− u2
(3.36)

where V (x,h) = V1 (x,h)+V2 (x,h) and [φ ]λ− := φ−λ |φ |
2 . The last term in the momentum

equation represents the exchange of momentum between the two layers. Since the velocity
in the ground layer is negligible, this term appears as a friction term with a coefficient
[∇ · (gκ1V1∇(h+S))]λ+. It is important to note that this coefficient is unsigned when λ = 0.

Proposition 3.11 If λ ≥ 0 and for sufficiently smooth solutions of the Dupuit-
Forchheimer/shallow water model (3.36), the following mechanic energy dissipation law
holds

∂t (P +K2)+∇ ·
((

g(S+h)+
|u2|2

2

)
V2u2−

g2κ1V1

2
∇ |S+h|2

)
≤−g2

κ1V1 |∇(S+h)|2

where P (x,h) = g
∫ S+h

S Θ(x,z)zdz and K2 =V2
|u2|2

2 . The equality holds when λ = 0.
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3.2.2.2 Entropy-satisfying numerical scheme

The Dupuit-Forchheimer/shallow water model shares a similar formalism with the shal-
low water model with roof (3.3). Specifically, it is advantageous to use the potential of
conservative forces, φ = g(S+h), alongside the velocity u2 as numerical unknowns. This
ensures the conservation of steady states at rest and energy dissipation at the discrete level.
We propose to adapt the numerical scheme (3.4)-(3.6) as follows. The continuity equation
is discretized in this manner

Vk
(
φ

n+1
k

)
=V n

k −
δ

n+1
t

mk
∑

f∈Fk

(
F n+1

f −Dn+1
f

)
·nk

fm f (3.37)

where Vk (φ) = V
(

xk,
φ

g −Sk

)
and V n

k = Vk
(
φ n

k

)
. The numerical mass flux of the surface

flow is defined as

F n+1
f = FCPR
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
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with the numerical flux FCPR defined by (3.5) and the diffusion in the porous media

Dn+1
f = D
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with the flux
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where V n
1,k (φ) = min

(
V n

k (φ) ,V 1
)

is the volume of groundwater and V n
2,k (φ) =[

V n
k (φ)−V 1

]
+

is the volume of surface water. Here, dk represents the compactness of
the cell, see §1.2. Once the new potential is known, we compute the exchange of mass
between the layers as follows

Gn+1
k =

V n∗
2,k−V n+1

2,k

δ
n+1
t

where V n+1
2,k = V n+1

2,k

(
φ

n+1
k

)
and V n∗

2,k represents the volume of surface water without ac-
counting for the mass exchange

V n∗
2,k =V n

2,k−
δ

n+1
t

mk
∑

f∈Fk

F n+1
f ·nk

fm f .

We could try to determine the exchanges using the flow in the porous medium, by
− 1

mk
∑ f∈Fk

Dn+1
f · nk

fm f1hn+1
k ≥Bk

which aligns more closely with the continuous formula-
tion. However, this approach does not guarantee entropy stability, as shown in Proposition
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3.12. When the flow is above the bathymetry at times tn and tn+1, both formulations be-
come equivalent. Finally, the velocity is computed explicitly using an upwind scheme
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)
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(3.38)

Unlike the case of the layerwise shallow water model presented in §2.3.1.3, here the ex-
change are treated explicitly and potentially centered (when λ = 0). In §2.3.1.3, we opted
for an upwind implicit scheme to ensure stability with an explicit Godunov-type scheme
without requiring additional CFL conditions. However, thanks to the ImEx scheme (3.37)-
(3.38), the overall scheme remains entropy-satisfying.

Proposition 3.12 Under the same CFL condition as for the scheme (3.4)-(3.6), i.e.
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for any λ ≥ 0 and γ ≥ 1, the numerical scheme (3.37)-(3.38) is entropy-satisfying. That is,
there exists a numerical flux G f such that
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where Pn
k =P

(
xk,hn

k

)
and K n

2,k =
V n

2,k
2

∣∣∣un
2,k

∣∣∣
2
. Additionally, the numerical scheme is well-

balanced for the steady states at rest. Specifically, if there is Φ ∈ R such that φ n
k = Φ and

un
k = 0, then the numerical scheme remains steady, i.e., φ

n+1
k = Φ and un+1

k = 0.

Unfortunately, the CFL condition in Proposition 3.12 implies a zero time step when
the water volume at the surface vanishes. While it is possible to remove a face f from
the CFL condition if both surrounding cells are dry, the cells at the dry front still pose a
challenge. Many of the intended applications, such as modeling resurgences, involve dry
zones on the surface, and the model (3.36) was specifically designed to capture the water
table as it intersects with the bathymetry. As a result, the current numerical strategy is not
entirely satisfactory. In practice, however, resurgence cases, where groundwater emerges
from the porous medium to the surface, seem to work with a reasonably small time step.
In Figure 3.22, we illustrate a typical resurgence scenario. For reference, the minimum
time step is set to 10−5 while the mesh size is 10−3. The flow enters from the left side of
the porous medium through the boundary condition. Initially, the flow diffuses within the
porous medium (top right image), and after some time, the water reaches the surface. As the
flow fills the porous medium, this stage is not well captured by the model, as the surface
flow is limited and immediately infiltrates into the porous medium (bottom left image).
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Figure 3.22: §3.2.2 | Simulation of a resurgence. (top left) Initial condition. (top right)
Resurgence. (bottom left) Filling the porous media. (bottom right) Formation of an hy-
draulic jump.

This issue will be addressed in the next section §3.2.3. Eventually, the flow reaches the
right boundary, which is modeled as a wall. Notably, a smooth hydraulic jump forms at
the resurgence point (bottom right image). It is also worth mentioning that the congestion
constraint can still be incorporated into the numerical scheme. Figure 3.23 demonstrates
the ability to simulate seepage flooding under a dyke.

3.2.3 An approximate model of infiltration

This section focuses on modeling flow in porous media, accounting for both congested
(aquifer) and non-congested (vadose) zones. Assuming low hydraulic conductivity, flow in
porous media is typically described by the Richards equations (3.24)-(3.27), expressed as

∂tθ −∇ · (κθ∇(p(θ)+ p))−∂z (κθ∂z (p(θ)+ p+gz)) = 0 (3.39)

with the congestion constraint min(Θ−θ , p) = 0, as discussed in §3.1.1.1. Much
of the literature focuses on modeling capillary pressure p(θ) [vG80, JMN11], along
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Figure 3.23: §3.2.2 | Simulation of a seepage flooding under a dyke. (top left) Initial
condition. (top right) Filling the porous media. (bottom left) Resurgence (bottom right)
Flooding

with its mathematical analysis [ADB85, CW99, Mik10, CP12]. Numerous numeri-
cal methods have been employed to discretize the Richards equation since the 1980s
[MF04, DM05, SW05, FYL09, SK11, ORS+14, FO17, ZYZ+19, CGES21]. However, at
the scale of the drainage basin scale, over extended periods ranging from days to decades,
3D simulations of the Richards equations are not feasible.

3.2.3.1 The Dupuit-Forchheimer/Richards model

In the vadose zone, it is evident that flow cannot be considered primarily horizontal. On
the contrary, if the shallowness number, see §1.1 is sufficiently small, the flow is predomi-
nantly vertical, leading to a 1D vertical advection-reaction equation where horizontal flow
is negligible. This equation is given by

∂tθ −∂z (κθ∂z (p(θ)+gz)) =−γ (3.40)

with the boundary condition θ (t,x,B) = θB (t,x). This simplification allows us to solve
the vertical transport of water by column, which can be easily computed in parallel. One
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challenge in solving (3.40) is that the model is only valid in a moving, unknown domain,
specifically from the water table to the bathymetry z∈ [η (t,x) ,B(x)], where the water table
η is determined by the groundwater wave model or an approximation of it, see §3.2.1. To
address this, we propose extending (3.40) to the entire half-plane z ∈ ]−∞,B(x)], adding
the source term γ (t,x,z), which represents the mass exchange from the vadose zone to the
aquifer. This term ensures the complementarity constraint

min(Θ1z≥η −θ ,γ) = 0 with γ (t,x,z > η (t,x)) = 0 (3.41)

where the porosity Θ is assumed to be large enough not to be reached above the water
table. The mass lost by the vadose zone is added to the aquifer. In this section, we assume
that the hydrostatic Dupuit-Forchheimer model (3.30), with an additional source term for
the vadose zone’s contribution, is sufficiently accurate for the aquifer. However, more
sophisticated models can be considered, see §3.2.1.1. The governing equation is

∂tV −∇ · (gκV ∇(h+B)) =
∫ B

−∞

γ dz. (3.42)

It is clear that the strategy preserve the total mass of water
∫
R

(
V +

∫ B
−∞

θ dz
)

dx. From
a mathematical modeling point of view, in the previous model (3.39), the constraint was
imposed by forces as in §3.1.1.1, while in this new model, it is imposed by mass exchange
as in §3.2.2.

Proposition 3.13 Assume the capillary pressure be a regular increasing function that van-
ishes with the water content, i.e. p(0) = 0. For sufficiently smooth solutions of the Dupuit-
Forchheimer/Richards model (3.40)-(3.42), the following mechanic energy dissipation law
holds

∂t

(
P +

∫ B

−∞

Pv dz
)
−∇ ·

(
g2κV

2
∇ |S+h|2

)
=

(
κθ

2
∂z |p(θ)+gz|2

)

|z=B

−g2
κV |∇(S+h)|2 −

∫ B

−∞

κθ |∂z (p(θ)+gz)|2 dz

where P (x,h) = g
∫ S+h

S Θ(x,z)zdz and Pv (x,z,θ) satisfies ∂θ Pv = p(θ)+gz.

3.2.3.2 Entropy-satisfying numerical scheme

We now focus on the numerical solution of the Dupuit-Forchheimer/Richards model (3.40)-
(3.42). We propose a numerical strategy based on operator splitting, where the fluxes are
treated first without mass exchange, followed by a focus on the mass exchange in the
second step. This approach allows the horizontal Dupuit-Forchheimer model and the ver-
tical Richards equation to be solved in parallel, which significantly reduces computational
costs. Any numerical method that approximates both the Dupuit-Forchheimer model and
the Richards equation can be used. However, for efficiency, we employ a strategy that
imposes no restriction on the time step. For example, let ηn∗

k represent the solution of
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the scheme (3.34), which approximates the Dupuit-Forchheimer model without mass ex-
change. Similarly, the vertical Richards equation is solved without mass exchange using a
non-linear implicit centered scheme, i.e.

θ
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k, j−
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δ
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k, j

(
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)
= θ

n
k, j

(3.43)

where the vertical face reconstructions are computed as ψ j+1/2
=

ψ j+ψ j+1
2 for example. A

variable vertical step δ
z
k, j > 0 is used to adapt to the hydraulic conductivity, minimizing

numerical diffusion. Specifically, the step size is chosen such that δ
z
k, jκk, j remains ho-

mogeneous across the domain. Note that the vertical index is numbered downward, i.e.

zk, j+1 = zk, j− δ
z
k, j+1/2

, with zk,1 = Bk−
δ

z
k,1
2 . Finally, the unknowns at time tn+1, including

mass exchange, are computed as:
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(3.44)

where the index J is defined such that some properties hold.
Let

Jc = min
j

{
zk, j ≤ η

n+1
k

}
and Je = min

j∗≥Jc

{
∞

∑
j= j∗

(
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.

If J ≤ Je, then the discrete counterpart of the complementarity condition (3.41) holds.
Specifically, for any cell where zk, j ≤ η

n+1
k we have θ

n+1
k, j = 0, while θ

n+1
k,J−1 may be non-

zero. However, this condition alone is not sufficient to ensure entropy stability. The second
index Je addresses this limitation by ensuring that the center of mass of the exchanged
water remains above the water table, thereby decreasing the potential energy during the
exchange step.

Proposition 3.14 Assume the capillary pressure is a regular increasing function, and ne-
glect the inlet in the porous medium, i.e. θB = 0. If J ≤ Je, the numerical scheme (3.34)-
(3.43)-(3.44) is entropy-satisfying, meaning the following energy dissipation law holds
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.
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It is important to note that the condition J ≤ Je is not always achievable, particularly if
there is insufficient water above the water table. Also if the vertical variation of water
content is too stiff, this condition can imply that the vadose zone being emptied far from
the water table. In practice, the condition can almost always be achieved with just a few
cells above the surface. If it is not we simply set J = Jc. Additionally, it is worth noting
that the definitions of the indices Jc and Je may seem to conflict with the definitions of
the unknowns at time tn+1 in (3.44). However, by calculating the exchanges from the
bottom cell to the top cell and checking the conditions between each cell, it is relatively
straightforward to determine the indices Jc and Je. Finally, the infinite sums in the scheme
are theoretically used to avoid imposing boundary conditions in the scheme (3.43). In
practice, we implement a no-penetration condition few cells below the substratum, utilizing
an exponential mesh size.

3.2.4 Perspectives

In this section, our aim is to advance continental water models, with a particular focus on
improving predictions of water resources. The current work is preliminary, and several key
aspects need refinement before these models can be applied to realistic configurations and
scenarios.

The hydrodynamic models (3.32) we consider are non-local nonlinear diffusion
equations [AV10]. In the linear case, with for flat substratum, the maximum principle
can be demonstrated [GP11]. However, extending this analysis to more general, non-flat
substratum, while also considering the full nonlinearity of the equations, remains highly
challenging. This is despite the substantial body of literature on related models, see
[Váz17]. Among the various non-local diffusion models, the hydrodynamic model (3.32)
has a distinct structure, as it adheres to a projection framework. This structure can
potentially facilitate the analysis of the model. From a numerical standpoint, constructing
a scheme that preserves crucial stability properties, such as the maximum principle
or TVD-stability, is far from straightforward, even in the linear case. Ensuring these
additional stability conditions would prevent instabilities from emerging, particularly
when large time steps are used.

One of the important objectives for improving these models is to better represent com-
plex porous media, especially when addressing the presence of impermeable layers and
perched groundwater systems. This challenge is analogous to the issue of submerged ob-
jects in shallow water models, as discussed in §3.1.4, and could similarly be approached
through a layerwise vertical discretization method, as outlined in §2.1.2.3. However, in
the context of porous media, if inertia is neglected, the problem is significantly simplified
compared to shallow water dynamics.

The assumption of homogeneity in the vertical direction for porous media is another
unrealistic simplification in many practical cases. In hydrostatic models, vertical variations
in hydraulic conductivity and porosity typically lead to modifications in the effective hy-
draulic conductivity and porosity, which are then expressed as functions of the water head.
However, in hydrodynamic models, incorporating vertical dependence becomes more com-
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plex. A possible solution is the use of a layerwise approach, where hydraulic conductivity
and porosity are treated as constants within each layer. This strategy aligns well with
the reality that most porous media are naturally stratified due to successive sedimentary
deposition. This layered structure of the media could, therefore, be effectively captured
by such a model. Alternatively, a more sophisticated approach could be derived using a
Zakharov/Craig-Sulem formulation [Zak68], adapted to address groundwater flow prob-
lems. In this approach, since κ−1 (u,w)⊺ forms a curl-free field, even with vertical varia-
tions in coefficients, it may provide a robust method considering asymptotic models in the
Dupuit-Forchheimer regime even with vertical depend coefficients.

To generalize the treatment of the medium further, it is important to consider cases
where certain materials, such as clay or fractured rock, introduce anisotropy in hydraulic
conductivity. While accounting for anisotropy in the horizontal plane is relatively
straightforward, doing so in the vertical direction presents additional complexities. One
approach to address vertical anisotropy involves parameterizing the horizontal hydraulic
conductivity by the vertical coordinate, as explored in [GDRB18]. This strategy would
allow for a more accurate representation of the directional dependence of flow properties
in materials that exhibit anisotropic behavior.

Looking forward, coupling the hydrodynamic models with the dynamics of the porous
medium itself could represent a significant step forward. This could involve accounting for
variations in porosity and hydraulic conductivity as the porous medium undergoes phys-
ical changes, such as settling or swelling, due to prolonged droughts or heavy rainfall.
Such processes affect the hydrodynamic equilibrium, making the system far more complex
to study. Numerical schemes that can capture these dynamic changes while conserving
mass and energy are a substantial scientific challenge. Moreover, the geomorphological
evolution of the porous medium could be explored using a dynamic mesh that evolves in
response to forces generated by fluid flow. A dynamic Dupuit-Forchheimer/shallow wa-
ter model (3.36) that incorporates such changes in the porous medium could serve as an
alternative to the existing shallow water/Exner models [vWv07], offering a more refined
framework for studying geomorphological processes coupled with water flow.

In summary, improving continental water models requires addressing several interre-
lated challenges: handling complex porous media, accounting for vertical heterogeneity
and anisotropy, ensuring numerical stability in hydrodynamic models, and eventually cou-
pling with the dynamic evolution of the porous medium. These advancements are crucial
for developing more realistic and robust models capable of simulating water resource dy-
namics in various environments and under uncertain climate scenarios.
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Some modeling and computational aspects of water waves action

Abstract: This manuscript provides an overview of my research into wave propagation,
fluid-structure interactions, and groundwater flows, over large time and spatial scales with
an emphasis on the development of new models and numerical methods. The dynamics of
free-surface flows play a central role in many natural and engineering processes, and un-
derstanding these flows requires approximate models that capture both large-scale behavior
and the subtle interactions between waves and physical structures.

Free-surface flows are widely model using the shallow water-type models. Where dis-
persive effects are significant, there are a number of scientific challenges to be overcome
in order to make full use of these models. The first chapter of this manuscript, I introduce
a framework for dispersive models, inspired by the classical framework for incompressible
flows. I believe that this framework presents a promising foundation for tackling a number
of scientific challenges, many of which are only briefly touched upon in this manuscript
but represent exciting avenues for future research.

The second chapter delves deeper into the interaction of waves with their surround-
ing environment, specifically examining two key applications, renewable marine energy
and water ressources. In the case of floating bodies, such as those used in marine re-
newable energy, the presence of a structure above the fluid flow introduces a unilateral
constraint, commonly referred to as a congestion constraint. Additionally, the dynamics
of potential air pockets trapped beneath the floating object must be accounted for, as they
significantly influence the stability and behavior of the system. In the context of ground-
water flows, a critical issue is modeling the exchange of water between surface flows and
subsurface flows, which is essential for understanding processes such as aquifer recharge,
river-groundwater interaction.

Across all the scientific challenges addressed in this manuscript, the role of constraints
is fundamental for the modeling interest. However, these constraints introduce significant
complexity into both the analytical and numerical treatment of the problems. Analyzing
constrained problems is inherently difficult due to the mathematical intricacies involved.
For this reason, my work has primarily focused on the development of numerical solutions
for hyperbolic problems that involve a variety of constraints. These numerical methods are
designed to handle the specific challenges posed by the constraints while ensuring that the
solutions remain stable, accurate, and physically realistic.

Keywords: Free surface flows, Dispersive equations, Congested models, Waves/structure
interactions, Unified models, Layerwise models, Asymptotic preserving schemes, Entropy-
satisfying schemes, Coupling and adaptive schemes
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