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EPIGRAPH

Creativity is seeing what others see and thinking what no one else ever thought.

Albert Einstein

Artificial intelligence is not a substitute for human intelligence; it is a tool to amplify human
creativity and ingenuity.

Fei-Fei Li
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ABSTRACT OF THE DISSERTATION

Co-Creativity and AI Ethics

by

Vignesh Gokul

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Manmohan Chandraker, Co-Chair
Professor Shlomo Dubnov, Co-Chair

With the development of intelligent chatbots, humans have found a method to communicate

with artificial digital assistants. However, human beings are able to communicate an enormous

amount of information without ever saying a word, eg gestures and music. My research objective

is to enable non-verbal communication between humans and artificial agents, a problem I call

co-creativity. My work explores controlling generative models that can intelligently interact with

data such as gestures (videos) and music (audio).

Another area of my research focuses on ethical issues stemming from using data to train

such machine learning models. We investigate ways to protect the privacy of the data owner and
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prevent unauthorized usage/ leakage of private information during training machine learning

models. We then propose a method to create unlearnable audio datasets to prevent unauthorized

usage of data for model training.
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Introduction

Over the recent years, generative models have shown tremendous capability to generate

videos, audios and other forms of multimedia such as deepfakes. This includes solving tasks

such as continuing video generation from a single image, video in-painting, audio generation

given lyrics. With the development of intelligent chatbots, humans have found a method to

communicate with artificial digital assistants. However, human beings are able to communicate

an enormous amount of information without ever saying a word. The expressions on our faces, the

way we stand, and the gestures we use are all forms of non-verbal communication that can often

express information better and faster than anything we say. In fact, non-verbal communication

is such an important and integral part of conveying the true meaning of verbal communication

that any interaction with a virtual person will not seem natural or human without it. We also

communicate and express ourselves with other forms of expressions such as music, art and dance.

We introduce a different type of generative problem: modelling interaction strategy between two

processes.

My research objective is to enable a non-verbal communication between humans and

artificial agents, a problem I call co-creativity. For instance, in the problem of music improvisation,

two expert musicians communicate with each other via their music. Similarly, we have other art

forms of expression such as dance. Can we simulate such interactive non-verbal communication

amongst humans and learning systems? My work also spans to deploying such creative agents

for real-time use cases.

While generative models have been deployed for impressive applications, training models

such as Large Language Models (LLMs) and other transformer architectures require high
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compute and large amounts of data. To overcome this, we leverage existing pre-trained models.

Pre-trained models are trained on large amounts of data and provide a strong representation that

reflects the underlying structure of the data. Now any co-creativity problem such as music/gesture

improvisation boils down to: controlling pre-trained models meaningfully based on an input

control signal.

Recent deep learning models also depend on large datasets which might be hard to obtain.

Usually, model developers scrape the internet for data to be cleaned later. Often this includes

blogs, news articles and other content on social media. There are two main ethical issues that

stem from such practices: 1) Data scraped from the web such as images/ transactional data might

contain sensitive private information. 2) Training models on data sourced from online content

might lead to copyright infringement as the model is trained on unauthorized data without the

permission of the content owner.

To solve the first problem, I introduce DPD-InfoGAN, a framework to train generative

models on private sensitve data in a safe way with privacy guarantees. Using our framework, it is

not possible for the trained model to leak private information from the training dataset. To protect

unauthorized model training from data scraped online, I introduce PosCUDA, a framework to

create unlearnable audio datasets. Such unlearnable datasets are robust to any architecture and

feature processing. This means that if an attacker scrapes the protected data online and train a

model, the model would not generalize to any data as it would not learn useful features from the

protected training dataset.

0.0.1 Dissertation Organization

In this dissertation, I provide an overview of my work on Co-creativity and AI ethics.

Chapters 1,2 and 3 discusses my research on co-creativity applications such as gesture bot and

musical improvisation systems, while chapters 4,5 and 6 discusses ethical issues from training

machine learning systems and solutions to ethically train such models.

In Chapter 1, I discuss learning interaction strategies for co-creativity applications in
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dance. I elaborate more on the algorithm used (Variable Markov Oracle) and discuss a gesture

bot application.

In Chapter 2, I provide a high level overview of musical improvisation systems, the

different types of reduced representation to use to represent complex musical signals meaningfully

in low-dimensional space. I also discuss a general template architecture for musical improvisation

systems.

In Chapter 3, I extend the co-creativity problem to music improvisation. How can we

select meaningful musical responses to an input musical prompt? I provide an overview of our

measure based on transfer entropy and methods to estimate the transfer entropy between two

processes.

In Chapter 4, I discuss methods to train generative models on sensitive/private data. In

Chapter 5, I discuss ethical issues that arise from training generative models on distributed

setting. I also discuss my work on overcoming such problems and train generative models that

are safe for deployment.

Finally in Chapter 6, I discuss PosCUDA, my work on unlearnable audio datasets. Using

PosCUDA, I demonstrate how we can achieve unlearnablity for audio classification tasks.
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Chapter 1

Semantic Interaction with Human Motion
Using Query-Based Recombinant Video
Synthesis.

The ability of a machine to understand the motion and behaviour of a particular actor

is a very important task in machine vision. This problem has so many possible applications

in domains such as motion retargeting, robot navigation, healthcare, psychology, augmented

reality applications such as games etc.In this chapter we demonstrate a human-robot interaction

system based on a gestural query, where the computer response is a computer generated video of

another human movement. This work differs from other recent video retargeting systems since it

is not meant to modify the target video as such, but rather query a video database for the most

responsive segment through gestural interpretation process. For this purpose we developed a

generative video system capable of extracting the latent representation of free movements such

as dance and expressive gesture, and querying and re-editing multiple found video segments in

response to an input movement query. One of the main challenges in this approach is finding

the ”units” of continuous movement input so that both the style of the target video and the

relevant aspect of the query video would be related in a meaningful way. In this chapter we

describe a gestural motif extraction system that combines deep feature learning with structural

similarity analysis to allow such query based human-computer motion interaction. With the

surge of deep learning, many models have been proposed to deal with the problem of Learning

4



from Demonstrations or Imitation Learning. The main idea of this work is to have an agent

mimic movement of humans in order to create a meaningful response to a user’s gesture. This is

a difficult problem to solve as there are complex dynamics that need to be captured by the model.

Moreover, we are interested in free or abstract movements, such as dance and expressive gestures,

in which case the ”meaning” of the gestures can not be predetermined. Moreover, the meaning

itself can be self-referential, such as repeated movements in dance or idiomatic gesticulations,

or emergent from interaction between two people, in which case each of the participants needs

to be able to perceive and interpret the gestures of the other. Several existing works propose

features that can be used to model human body, such as PoseNet [124] provides a representation

of the skeletal structure. These features are useful in motion re-targeting and this can be done

simply by superimposing an image model of the agent body onto the skeleton that is extracted

from the input video. However, such techniques are not sufficient for our purpose as our goal is

not motion re-targeting, but rather a chat bot like interaction. A problem with using pose net

features for our purpose is that it does not take into account the style of the agent or its relation

to the input movement. One of the main challenges of our work is finding the ”units” of gesture,

so that both the style of the target will be preserved, and that the relevant segments of the input

gesture would be used to trigger the agent response in a meaningful way so as to establish a sort

of dialog or call-and-response action. In such setting, the freedom in the agent can vary between

mirroring and improvisation by controlling the level of imitation versus autonomy.

Deep Neural Networks[96, 52] have showed enormous potential in learning representations

of data in a lower dimensional manifold. In this chapter, we use feature learning and sequence

modeling to effectively represent human figure and the style of its movement in a video, and

efficiently query and retrieve segments (motifs) of video frames from a database to create a

new video sequence that mimics the query. Our results show that our system learns deep

features that enable the agent to perform almost similar actions to the query. The Autoencoder

encodes the images into an embedding space such that it’s motion semantics are encaptured. The

Variable Markov Oracle (VMO) uses a Viterbi-like dynamic programming algorithm to efficiently
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choose sub-sequences of action and hence performs guided video synthesis. Modeling complex

movement dynamics requires both feature learning and sequential analysis. Consequently, our

query-based retrieval system consists of the following modules:

• A feature learning module - to represent the character in each frame in a lower dimensional

embedding space such that the motion features are captured.

• A motif extraction module - to represent salient repetitive segments in the target database,

based on a distance measure that describes how close two images are in the feature space.

• A querying mechanism - to query and retrieve segments of target movement from the

database based on input video.

1.1 Methodology

The feature extractor is the most important module in the system and a failure in extraction

of meaningful features will lead to a collapse in detection of motifs and the query mechanism. It

is very crucial to train a feature extractor capable of learning robust features that can be used to

describe human postures and gestures. The dataset has no supervision and manually labeling

frames that are similar to each other in terms of gesture or motion is a cumbersome process.

A feasible solution to this problem is to use an unsupervised learning technique to generate

meaningful video embeddings.

We trained a Convolutional Autoencoder to extract features by performing pixel-wise

reconstruction of the input. The network is shown below (fig. 1.1). The encoder has an

architecture similar to that of AlexNet[66] with a 1x1 convolution at the end that outputs

675-dimensional latent space (a 15×15×3 image) which will serve as a meaningful representation

of the data in a lower dimensional manifold. The decoder mirrors the encoder except that it

uses fractionally-strided convolutions. To improve the training process, we use an objective that

enforces matching between all the encoding and decoding layers.
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Figure 1.1. The architecture of the network.
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j=1
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(pi, jinput − pi, jrecon)
2 (1.1)

In the objective given above, pi, j is the pixel corresponding to the kth convolution

and deconvolution or the input and reconstruction(recon) layers shown in the architecture

below(fig. 1.1). The values of i and j ranges from 1,1 to m,n depending on the feature map

corresponding to the value of k (convk and deconvk).

The network was trained on a dataset comprising of images of spiderman dancing, with

the background completely green. Since a large portion of pixels in the image are green, the

autoencoder learns to reconstruct the background around the person in the frame. Thus the

reconstruction is an image with a similar green background but a blurred black outline of the

character in the frame. The autoencoder does not focus on the pixel-wise reconstruction of the

character, rather learns to capture the semantics of the character’s posture. The query before

being passed into the encoder needs to be processed in a way such that it is similar to the images

in the training data, i.e., needs a green background. For this purpose, a semantic segmentation

network[89] trained on the PascalVOC dataset is used to extract the pixels of the foreground

character and every other pixel in the image is converted to green.

After the image has been processed, it is fed into the encoder, features extracted and

queried using the algorithms described below.
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Greedy Method

We initially experimented with a greedy matching technique that chooses the best frame

for every frame in the query based on the euclidean distance between the extracted features. To

quantitatively see the quality of the video generated we visualize the similarity matrix between

the features of our query video and our database video. If the output of the query is continuous,

the entry with the lowest values must lie close to a diagonal. Running the greedy algorithm on

one of our query videos gave us the similarity matrix shown below (fig. 1.2). The best match for

the query frame (rows), is the frame number corresponding to the column associated with the

white box in that row. The large similarity matrix shows patches of yellow and white boxes and

they are not continuous (thin red lines passing horizontally) and have jumps (vertical lines). The

two sections of the similarity matrix that’s been zoomed in (10×10 frames) are frames in the

query that are very close to each other (distance along y-axis). The circles must be close to each

other (distance along x-axis) and the fact that they are not shows that the output is discontinuous.

Even within the 10×10 grids, we can see that there are only one or two white boxes, indicating

discontinuity. The algorithm we describe in the next section takes care of continuity by creating

a data structure based on closeness of frames in the feature space.

Sequence Query using Self-Attention

Our Variable Markov Oracle model can be visualized as a self attention mechanism.

Attention[68] has been proposed as a mechanism to facilitate learning of long sequences and

is typically used in sequence-to-sequence models. Our query mechanism can be considered

as a encoder-decoder architecture, if we have paired corpora. Since our problem is totally

unsupervised, we start with the simple ”mirror game” setting. In problems involving complex

gestures such as dance or sports, there are long repetitions that need to be modelled and

recombined in order to generate plausible movement responses. The pipeline we propose requires

two steps: 1) Instantaneous features are extracted using an autoencoder on individual frames. 2)

VMO is used to create time embeddings based on clustering similar sub-sequences according
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Figure 1.2. Cross-similarity Matrix Visualization between query and database

to common suffix structures. Symbolization of the time-series data is performed by searching

over different thresholds of similarity between frames. This is done by capturing self-similarity

structures(fig. 1.3) and representing it as a graph of suffix links pointing to locations that are

similar upto a certain threshold. This threshold is learned adaptively by maximizing mutual

information between each entry on the data sequence and its past [31].

We use the features that are extracted by our feature extraction modules to build an oracle

of our dataset that creates suffix links (s f x) for every state possible. The oracle are built based

on the euclidean distance between the features. The oracle structure is made up of two kinds of

linkages - the forward links (normal arrows) and the suffix links (dashed arrows). The suffix link

is a backward pointer that links the state st with the state sk, where t > k, and is useful for finding

the longest repeated suffix links (lrs). Forward links are of two types - internal, that connects

state st with the state st+1 and external, that connects state st with the state st+k.
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Figure 1.3. The SSM of the original data(left) vs that after the VMO has been created(right)
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Figure 1.4. The VMO data structure

The result for finding repeated patterns in one of the video samples generated is displayed

below (fig. 1.5). The y-axis indicates the pattern index of repeated motifs of a signal sampled at

discrete times shown along the x-axis. The lines represent repeated motifs, and the long lines

show us that the VMO is able to learn motifs accross long intervals of time.

The query matching algorithm (Alg. 2) takes in the query R and matches it to the oracle

O (discussed above), formed by the features extracted from the spiderman video (time series

data). The algorithm returns a cost, a corresponding recombination path and the frame index

where the query ended. The cost is the reconstruction error between the query and the best

match from O given a metric on a frame-by-frame basis. The recombination path corresponds
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Figure 1.5. Motifs learnt by VMO. The y-axis represents the pattern index. The x-axis represents
the frame indices.

Algorithm 1. Distance Greedy (Dgreedy)

Require: Target signal in VMO, Oracle(Q = q1,q2, . . . ,qT ,O = O[1],O[2], . . . ,O[T ]), query
frame for time step n R[N]

1: Initialize dmin = ∞, dist
2: for n = 1 : T do
3: dist← Euclidean distance between R[n]

and O[n]
4: if dist < dmin then
5: dmin← dist
6: end if
7: end for
8: return dmin

to the sequence of indices that will reconstruct a new sequence from O that best resembles the

query. More details regarding the algorithm can be found in [20, 19]. The problem with this

algorithm is that as the length of the query increases there is a higher chance for the response

to be repetitive (as it minimizes the recombination cost which corresponds to jump between

frames). To overcome this, a break out is initiated from the query if the recombination cost

exceeds a certain threshold (Cthreshold). The breaking out is completed if the reconstruction error

from VMO (for that particular frame where the breakout was initiated) is more than the best

distance for that frame with the entire database, obtained using a greedy approach. Once it breaks

out of the VMO a new query is started from the query frame where the previous query broke

out. If the break out is not successful (reconstruction error from VMO is equal to best distance

from greedy) then we continue with the same query. In other words, we keep appending the

path obtained from Alg. 2, check if the index where the VMO broke out is lesser than the length
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Algorithm 2. Query matching
Require: Target signal in VMO, Oracle(Q = q1,q2, . . . ,qT ,O = O[1],O[2], . . . ,O[T ]), query

time series R = R[1],R[2], . . . ,R[N] and Cthreshold
1: Get the number of clusters, M← |Σ|
2: Initialize cost vector C ∈ RM and path matrix P ∈ RM×N .
3: for m = 1 : M do
4: Pm,1← Find the state, t, in the mth list from Σ with

the least distance, dm,1, to R[1]
5: Cm← dm,1
6: end for
7: Initialize i = 2
8: for n = i : N do
9: for m = 1 : M do

10: Pm,n← Find the state t, in clusters (
and ) corresponding to forward links
from state Pm,n−1 with the least distance,
dm,n to R[n]

11: Cm += dm,n
12: if Cm >Cthreshold then
13: if Dgreedy(R[n])< min(dm,n) then
14: return P[(C)], min(C), n
15: end if
16: end if
17: end for
18: end for
19: return P[(C)], min(C), n

Algorithm 3. Restart mechanism
Require: Target signal in VMO, Oracle(Q = q1,q2, . . . ,qT ,O = O[1],O[2], . . . ,O[T ]) and query

time series R = R[1],R[2], . . . ,R[N]
1: Initialize path list P ∈ RN .
2: start = 0
3: while start < N do
4: q = R[start],R[start +1], . . . ,R[N]
5: Ptemp,c,end← Query matching (O, q)
6: P[start],P[start +1], . . . ,P[start + end]←

Ptemp[0],Ptemp[1], . . . ,Ptemp[end]
7: start = end
8: end while
9: return P
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of query, if it is then we restart a new query from that index until we have traversed the entire

length of the query. Another problem is that the VMO outputs frames that are not a meaningful

response to the query. To fix this, we have to increase the search space and not limit the vmo to

just look at the forward links. Choosing the forward links gives a smooth output but not the best

match. So we leverage the clustering behaviour of the VMO to choose frames that are similar to

the best forward link. This results in a smooth and continuous output. If the Cthreshold is high it

results in the output being smooth and continuous and if Cthreshold is low then this results in the

output trying to imitate the query but with a loss in continuity or smoothness of transition.

Figure 1.6. Qualitative results on Hulk (bottom) to Spiderman (top)

Figure 1.7. Qualitative results on Human (bottom) to Spiderman (top)

1.2 Results

For training our model we used a video of spiderman dancing [103], with a green

screen background, and consists of approximately 3400 frames. Before training, the video is
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resized to 227× 227× 3 and the Autoencoder is trained to extract meaningful features. We

train the autoencoder for 20 epochs to make sure that the autoencoder does not learn pixel-wise

reconstruction of the spiderman in the video, rather focuses on the background and generating a

silhouette. For testing our system we used videos of other superheroes [103] dancing to different

songs. We also recorded a few videos of one of our team mates dancing similar to spiderman

which we used for testing. Querying with the basic greedy approach gave us results that are

great matches in terms of the posture of the character but there was a lack of continuity when

recombined into a video. Using VMO, the results were better in terms of continuity. Figures 1.6

and 1.7 shows the results that we obtained from our query mechanism.

We experimented with various thresholds and chose the one that resulted in very

meaningful gestures. Sometimes, we see that the agent (spiderman) stops at a particular gesture,

when it cannot find a response. This is because our system feels that for that particular query

segment, jumping to any other gesture would make the cost too high. Since our model is a

trade-off between a dynamic programming method and a greedy method, the model chooses to

make the same gesture to try to reduce the overall cost.

Inorder to see this more clearly, we experiment with the thresholds. When the threshold

is set to infinity, the model just uses VMO and when set to zero, it uses a greedy approach. If we

do not have the trade-off, then the model outputs less meaningful outputs (see fig 7)

Another observation was that our model manages to achieve both continuity and meaningful

responses to query, when compared to using plain VMO method. As we see in Figure 10, the

top two row shows the results obtained when using VMO and the bottom two rows demonstrate

the results of our model. We take three consecutive frames of the query (hulk) and observe the

responses of the model (spiderman). It is clear our model makes a continuous prediction, while

at the same time choosing the best possible output for the corresponding query frame.
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Figure 1.8. Left: Results using plain VMO, Right: Results using our model

1.3 Conclusion

In this chapter, we propose a method to perform motif detection and use those motifs to

perform a ”call-and -response game” using an autoencoder to learn deep features and a Variable

Markov Oracle to act as a self attention mechanism for querying. We show qualitative results of

our model by using animated characters, demonstrating that recombinant query-based human

movement video synthesis is possible.
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Chapter 2

Creative Improvised Interaction with
Generative Musical Systems

In our previous studies we developed SOTA generative music models, with focus on

interactive machine improvisation that can learn musical style from live or off-line examples and

then produce ‘more of the same” [5]. This “same” was interesting in improvisation settings, since

the variations maintained resemblance to the immediate expressions of the musician on stage, but

were distinct enough to create interest and inspire new interaction. The problem in this setting

was that it was the human who found interest in the machine imitation and changed his playing

strategies by being inspired by the new machine generated materials, while the artificial agent’s

generation was oblivious to the musician. In order to allow for more interactivity, special tools

were introduced, such as query-based improvisation that biased the choices of the artificial music

generator towards materials that had more coherence with the human musician (finding hot spots

in the model memory, query-matching, a-priori scenarios and more, see [88] ). Nonetheless, these

modifications to the generation policy of the artificial agent that were hard-wired, are largely

insufficient to capture the complexity or the subtle expressive inflections in joint multi-musician

improvisations. Experiments with multiple artificial musical agents that are capable of listening

or influencing each other showed that varying interaction regimes has an important effect on

creating interest and prolonging the interaction into a meaningful musical form [56].

The research objective of this inter-disciplinary project is to model and enhance co-creativity
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as it arises in improvised musical interactions between human and artificial agents, in a

spectrum of practices spanning from interacting with software agents to mixed reality involving

instrumental physicality and embodiment. Such creative interaction strongly involves co-improvisation,

as a mixture of more or less predictable events, reactive and planned behaviors, discovery and

action phases, states of volition or idleness. Improvisation is thus at the core of this project

and indeed a fundamental constituent of co-creative musicianship, as well as a fascinating

anthropological lever to human interactions in general. The outline of the project unfolds as

follows:

• Understanding, modelling, implementing music generative and improvised interaction

as a general template for symbiotic interaction between humans and digital systems

(cyber-human systems)

• Creating the scientific and technological conditions for mixed reality musical systems,

based on the interrelation of creative agents and active control in physical systems.

• Achieving distributed co-creativity through complex temporal adaptation of creative agents

in live cyber-human systems, articulated to field experiment in musical social sciences.

This project exploring co-creativity in many dimensions of interaction, learning and generativity

is notably linked to the European REACH (Raising Co-creativity in Cyber-human Musicianship)

project involving the authors.

2.1 On Co-Creativity

The psychologist Margaret Boden has given much attention to the many relations between

creativity and machines [12] For her, creativity is the ability to find new, surprising and socially

valuable ideas or artifacts, and can occur in three main ways: it can be combinatorial (new

configurations of known materials), exploratory (discovering new paths in conceptual / mental

spaces) or transformative (when the space itself is disrupted giving way to ideas that were
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properly inconceivable before). But what is the situation when part of the creativity is delegated

to machines, when manifestations of co-creativity emerge from symbolic interactions between

human and artificial agents?

In addition to the novelty / effectiveness criteria, cyber-human co-creativity is strongly

felt when two features of improvisation linked to emergence [13] and non-linear dynamics [81]

are identified: (1) emergence of cohesive behaviors that are not reducible to, nor explainable

by the mere individual processes of agents; (2) apparition of non-linear regimes of structure

formation, leading to rich musical co-evolution of forms. In our work with jazz improvisers,

Bernard Lubat mentions the machine seems, in his words, to “liberate” him, perhaps from specific

habits or automatisms. In other words, our inner atlases can be roamed and even modified by

creative thinking, in order for the “unthought” (or the yet unthinkable) to find its way.

By producing emergent information structures as a result of cyber-human interaction,

we might achieve an epistemological leap [7] beyond the difficulty of conceding creativity to

artificial systems, and assess that creativity is not a state anyway, but rather a dynamical effect

of interaction in a complex system, showing radical novelty as a marker of emergence [22]. By

building on this epistemological boost, one would be able to model deep interactions that in turn

will trigger co-creative behaviors.

2.2 Architecture of Improvising Musical Agents

The architecture of an agent in the improvisation system that we develop is shown in

figure 2.1 The different elements of the system comprise of the following:

• Musical signal : stream of audio or multimedia content

• Symbolic signal : stream of quantized units (audio descriptors, musical vocabulary, latent

representations

• Informed listening : the more the structures are learned, the more powerful the predictions

become to help machine listening recognize musical units
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Figure 2.1. The flow of information between listen, learn and interact modules and the diverse
data and control feed-backs channels in an agent

• Learn : statistical / deep modelling of musical structure and dynamics, reinforcement

learning of interactive musical behaviour

• Memory model : variety of generative models for symbolic and audio signals, associated

to activation states assessing the influence of the live environment on future predictions

and their adequacy to musical input

• Interaction : the agent behaviour model; receive policies from the learning module ; queries

the memory for generative content; assess influence from the external environment and

weights on activation state of the memory; sends reinforcement signals to the learning

module, follows or generate scenarios

This agent architecture can be replicated in a significant number of units in a multi-agent system,

producing interaction between artificial agents as well as between agents and humans. Only

musical and control signals are exchanged, with multiple cross-feedback loops (when agent A

listens to agent B who listens to agent A etc.) that will promote and sustain emergence phases,
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such as in the Bayesian belief propagation scheme followed in [59]. Signal-symbol quantization

[15], constitutes a critical part of the system as the symbolic signal constitute the main vector of

information in the internal agent mechanism. Another important part is the capacity for an agent

to not only ”follow” the musical input from the context, but also to respect user defined scenario,

and in more extreme cases, to incrementally generate scenarios by itself as in [14], where a

LSTM with bottleneck encoder - decoder and teacher forcing algorithm is used to predict the

next N chords of the harmony.

2.3 Reduced Representation

Studies of human cognition suggest Rate–Distortion as a way of extracting useful or

meaningful information from noisy signals [95]. The idea of reduced representation also has

been recently explored in the context of representation learning in deep neural networks using a

framework known as Information Bottleneck [107]. In deep learning some attempts to consider

predictive information through use of a bottleneck or noisy representation in temporal models

such as RNNs have recently appeared in the literature[4],[26]. Accordingly, in order to achieve

a better interaction between the human and the machine, we are seeking two types of data

reduction:

• lossy representation of the signal (audio or midi) that effectively reduce the dimensionality

of the latent representation and allow for better generalization

• symbolization of the lossy encoding to allow for better temporal representation by using

language modeling with variable memory length

Learning music representation with auto-encoder, a schematic representation of the

noise induced by bit-reduction is given by Figure 2.2. Performing finite bit-size encoding and

transmission of the quantized latent values from encoder Ze to decoder Zd is not required, since

we are interested in gating and biasing the original signal towards the prior distribution by

20



Figure 2.2. Noisy channel between encoder and decoder

encoding it at a limited bit-rate, which is given by the following optimal channel [11]

Q(zd|ze) = Normal(µd,σ
2
d ) (2.1)

µd = ze +2−2R(µe− ze) (2.2)

σ
2
d = 2−4R(22R−1)σ2

e (2.3)

To illustrate the effect of reduced data representation on predictive properties of music, we

performed quantization at different rate for a monophonic encoding of music using a disentangled

VAE training for a dataset of 14 two-part inventions composed by Johann Sebastian Bach. The

MIDI files are collected from the Complete Bach MIDI Index1. Mutual information neural

estimation (MINE) [10] was used to analyze the relations in time and across voices from their

reduced latent representations.

From the results, we conclude that the mutual information values between conditional

latent variables and predictive latent variables depend on the level of reduced representation.

We find that reducing bit-allocation can effectively improve the mutual information between

conditional latent variables and predictive latent variables for each scenario. For more details of

1http://www.bachcentral.com/midiindexcomplete.html
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Table 2.1. The experiment results of controlling the rate to measure the mutual information
between the conditional latent variables and the predictive latent variables. The first column
shows different predictive scenarios. The left columns show the mutual information with different
rates.

Scenario R=10 R=100 R=1000 R=10000 Original
past-future 67.142 132.422 73.089 83.012 75.120

1st voice-2nd voice. 36.963 148.054 93.637 77.848 126.631
2nd voice-1st voice 61.643 91.893 104.920 91.821 82.037

this and other polyphonic and audio experiments we refer the readers to [28].

Musical Information Dynamics Assuming the music signal X = x[n] is encoded into a

sequence of latent representations Z = z[n], with n denoting discrete time step n. We would like

to algorithmically discover the sequential structure of Z, and be able to present the structures

quantitatively. Music Information Dynamics (MID)[3, 30, 90] provides a theoretical framework

that utilizes mutual information between past and present observations to model the predictability

of the signal. The advantage of adopting MID is that it optimizes or calculates an information

theoretic measurements on the input sequence Z and is agnostic of specific sequence related

applications, such as motifs discovery or structure segmentation. MID was shown to be important

for understanding human perception of music in terms of anticipation and predictability [3, 30].

An efficient formal method for studying MID for sequence Z[n] is the Information

Rate (IR) that considers the relation between the present measurement Z = z[n] and it’s past
←−
Z = z[1],z[2], . . . ,z[n], . . . ,z[N], formally defined as the maximum of mutual information over

different quantized level of the sequence S = Q(Z)

IR(Z) = max
Q:S=Q(Z)

I(Q(Z),Q
←−
(Z)) (2.4)

= H(S)−H(S|←−S ) (2.5)

According to this measure, the maximal value of IR is obtained when the difference
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between the uncertainty of H(S) and predictability H(S|←−S ) is at its greatest, meaning that there

is a balance between variation and predictability. Quantization Q(Z) is needed due to the need

to detect inexact repetitions in the sequence Z, which in turn signifies the allowed level of

similarities between observations in Z, or the amount of signal detail that is significant when

comparing the present to the past.

2.4 Symbolization and Music Analysis using VMO

Variable Markov Oracle (VMO) [112] accepts a representation Z = z[1],z[2], . . . ,z[N]

and turns it into a symbolic sequence S = s[1],s[2], . . . ,s[n], . . . ,s[N], with M states over a finite

alphabet Σ. The labels are formed by finding suffixes in a graph structure constructed by the

VMO algorithm. The VMO graph can be further used for generating new content by recombining

motifs of variables length that are connected by the suffix links. Such recombination strategy

assure that novel sequences have smooth transitions as they reproduce continuations that appear

in the original data. One of the advantages of VMO as improvisation method is that it can be

constructed quickly online during performance and does not require extensive training. Due to

space consideration, we leave out the VMO construction and refer the readers to [32, 114]. The

essential step in symbolization is finding a threshold with the highest MID value. The threshold

θ partitions the space of features into categories that capture and represent the different sound

elements by determining if the incoming z[n] is similar to one of the frames following previous

instances in the sequence pointed to be a suffix link from n−1. VMO symbolization step assigns

two frames z[i] and z[ j] the same label s[i] = s[ j] ∈ Σ if ||z[i]− z[ j]|| ≤ θ . In extreme cases,

setting θ too low leads to VMO assigning different labels to every frame in Z and setting θ too

high leads to VMO assigning the same label to every frame in Z. As a result, both extreme cases

are incapable of capturing any temporal structures (repeated suffixes) of the time series. To find

the optimal threshold θ , MID measure can be estimated by any predictive compression algorithm

C(·). The compression gain over blocks of symbols is used to replace the the entropy term H(·)
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as our measure of complexity[71]

IR(Z) = max
θ ,s[n]∈Σθ

[C(s[n])−C(s[n]|←−S )]. (2.6)

It should be noted that the alphabet out of the quantization is constructed dynamically, as

new labels can be added when an input sample cannot be assigned to one of the existing clusters

of samples already labeled by existing labels.

As an example of the effect of different levels of symbolization on discovery of the motif

structure in different musical styles, we performed comparative analysis of several works for the

flute [29] using human engineered (Chroma and MFCC) and machine learned representations

(VAE). We provide a partial example of the finding in the figure 2.3. It can be seen that the

Dongxiao music is characterized by much shorter motifs, which were found at much finer

threshold value compared to Telemann that is characterized by longer motifs that required a

coarse quantization. In a different work, a VMO based MID estimator was used to evaluate

the performance of generative recurrent latent models for MIDI data. The results showed that

Variational encoding, which added randomization into the latent representation of the generative

model, resulted in an improved motif structure of musical generation output as it better resembled

the motif statistics found in the original data compared to RNN methods that tend to overly

reproduce repetitions having looping sub-sequences[38].
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Figure 2.3. Motifs found in different flute pieces using the best VMO for VAEsel f , Chroma
features, and MFCCs.
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Chapter 3

Switching Machine Improvisation Models
by Latent Transfer Entropy Criteria

Music improvisation is the ability of musical generative systems to interact with either

another music agent or a human improviser. This is a challenging task, as it is not trivial to define

a quantitative measure that evaluates the creativity of the musical agent. It is also not feasible to

create huge paired corpora of agents interacting with each other to train a critic system. In this

chapter we consider the problem of controlling machine improvisation by switching between

several pre-trained models by finding the best match to an external control signal. We introduce

a measure SymTE that searches for the best transfer entropy between representations of the

generated and control signals over multiple generative models.

Learning generative models of complex temporal data is a formidable problem in Machine

Learning. In domains such as music, speech or video, deep latent-variable models manage today

to generate realistic outputs by sampling from predictive models over a structured latent semantic

space. The problem is often further complicated by the need to sample from non-stationary data

where the latent features and its statistics change over time. Such situations often occur in music

and audio generation, since musical structure and the type or characteristics of musical sounds

change during the musical piece. Moreover, in interactive systems the outputs need to be altered

so as to fit user specifications, or to match another signal that comes from the environment, which

provides the context or constraint for the type of desired outcome produced by the generative
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system at every instance. In such cases generation by conditional sampling might be impossible

due to lack of labeled training data and the need to retrain the models for each case.

We call this problem Improvisation Modeling, since it is often encountered in musical

interaction with artificial musical agents that need to balance their own artificial ”creativity”

with responsiveness to the overall musical context in order to create a meaningful interaction

with other musicians. The ability of the artificial musical agent to make decisions and switch

its responses by listening to a human improviser is important for establishing the conditions for

man-machine co-creation. We consider this as a problem of controlling machine improvisation

by switching between several pre-trained models by finding the best match to an external context

signal. Since the match can be partially found in different generative domains, we search for

best transfer entropy between reduced representations of the generated and context signals

across multiple models. The added step of matching in the reduced latent space is one of the

innovations of the proposed method, also motivated by theories of cognition that suggest mental

representation as lossy data encoding.

In order to allow quantitative analysis of what is happening in the “musical mind”,

we base our work on an information theoretic music analysis method of Music Information

Dynamics (MID). MID performs structural analysis of music by considering the predictive

aspects of music data, quantified by the amount of information passing from past to present in

a sound recording or symbolic musical score. We extend the MID idea to include the relation

between the generated and context signals and their latent representations, amounting to a total

of five factors: the signal past X with its latent encoding Z, the signal present sample Y, a context

signal C and its encoding into latent features T. Assuming Markov chain relations between

Z-X-Y, we are looking for the smallest latent representation Z that predicts the present Y, while

at the same time having maximal mutual information to the latent features T of the constraint

signal. For each model we compute transfer entropy between the generated and context latent

variables Z and T, respectively, and the present sample Y. It should be noted that our notion of

Transfer Entropy is different from the standard definition of directed information between two
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random variables, since transfer entropy is estimated in the latent space of the generative model

and the context signal.

We propose the use of a new metric called Symmetric Transfer Entropy (SymTE) to

switch between multiple pre-trained generative models. This means that given any audio context

signal, we can use SymTE to effectively switch between multiple outputs of generative models.

In the chapter we will present the theory and some experimental results of switching pre-trained

models according to second musical improvisation input. An important aspect of our model is

eliminating the need to re-train the temporal model at each compression rate of Z since estimation

of I(Y,Z) is not needed for model selection. Our assumption is that we have several pre-trained

generative models(or random generators), each providing one of multiple options for improvised

generation. The best model is chosen according to criteria of highest latent transfer entropy by

search for the optimal reduced rate for every model, balancing between the quality of signal

prediction (predicting Y from full rate Z) and matching between the past latent representation of

Z and the latent representation T of the context signal for that model.

3.0.1 Causal Information

The problem of inferring causal interactions from data was formalized in terms of

linear autoregression by Granger [47]. The information-theoretic notion of transfer entropy

was formulated by Schreiber [101] not in terms of prediction, like in the Granger case, but in

terms of reduction of uncertainty, where transfer entropy from Y to X is the degree to which Y

reduced the residual uncertaintly about the future of X after the past of X was already taken into

consideration. It can be shown that Granger Causality and Transfer Entropy Are Equivalent for

Gaussian Variables [8] Causal entropy ΣT
t=1H(Yt |X1:t ,Y1:t−1) measures the uncertainty present in

the conditioned distribution of the Y variable sequence given the preceding partial X variable

sequence [91].

It can be interpreted as the expected number of bits needed to encode the sequence

Y1:t given the sequentially revealed previous Y variables and side information, X1:t . Causal
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information (also known as the directed information) is a measure of the shared information

between sequences of variables when the variables are revealed sequentially ΣT
t=1I(Yt ;X1:t |Y1:t−1)

[78]. Transfer Entropy is closely related to Causal information, except for considering the

influence on Y from past of X only, not including the present instance t. Moreover, in some

instances the past of X is considered for shorter past, or even just a single previous sample.

Understanding causality is important for man-machine co-creativity, especially in improvisational

settings, since creating a meaningful interaction also requires answering the question of how

does the human mind go beyond the data to create an experience [67]. In a way, the current work

goes beyond the predictive brain hypothesis [21] to address issues of average predictability and

of reduced representation of sensations as “hidden causes” or “distal causes” that maximize the

communication between human and a machine in improvisational setting.

3.0.2 Estimating Transfer Entropy

Several tools and methods have been proposed to estimate transfer entropy. Refs. [97, 41]

use entropy estimates based on k-nearest neighbours instead of conventional methods such as

binnings to estimate mutual information. This can be extended to estimating transfer entropy, as

transfer entropy can also be expressed as conditional mutual information. Similarly, methods

based on Bayesian estimators [105] and Maximum Likelihood Estimation [116, 76] proposed a

method to estimate transfer entropy based on Copula Entropy.

Methods using neural networks have also been proposed to estimate mutual information.

Mutual Information Neural Estimator (MINE) [9] estimate mutual information by performing

gradient descent on neural networks. Intrinsic Transfer Entropy Neural Estimator (ITENE) [123]

proposes a two-sample neural network classifiers to estimate transfer entropy. Their method is

based on variational bound on KL-divergence and pathwise estimator of Monte Carlo gradients.

Several toolboxes and plugins such as Java Information Dynamics Toolkit (JIDT) [75]

provide implementations of the above mentioned methods. However, most of them have not

been tested on complex high-dimensional data such as music. To our best knowledge, we are
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the first to propose a transfer entropy estimation method on complex data such as music and

demonstrate results on tasks such as music generation.

3.1 Methodology

The main objective of our work is to calculate a metric based on transfer entropy to

switch between outputs of different generative processes ( say X1,X2, ...XN), so that the output is

semantically meaningful to a context signal (C). For a given Xi, we denote the past by X̄i and

similarly we denote the past of C as C̄.

Transfer Entropy between two sequences is the amount of information passing from the

past of one sequence to another, when the dependencies of the past of the other sequence (the

sequence own dynamcis) have been already taken into account. In the case of C and model’s i

data Xi we have T EC→Xi = I(X ;C̄|X̄) Similarly T EX→C = I(C; X̄ |C̄). Writing mutual information

in terms of entropy

I(C; X̄i) = H(C)−H(C|X̄i)

I(C; X̄i|C̄) = H(C|C̄)−H(C|X̄i,C̄)

Adding and subtracting H(C):

I(C; X̄i|C̄) = H(C|C̄)−H(C|X̄i,C̄)−H(C)+H(C) = I(C; X̄i,C̄)− I(C;C̄) (3.1)

Also:

I(Xi;C|X̄i) = I(Xi;C̄, X̄i)− I(Xi; X̄i) (3.2)

We consider a sum of (1) and (2), let’s call it symmetrical transfer entropy(SymTE):

SymT E = I(C; X̄i|C̄)+ I(Xi;C̄|X̄i) (3.3)
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SymT E = I(C; X̄ |C̄)+ I(Xi;C̄|X̄)

equals to

SymT E = I((C,X);(C,X))− I(C;X |(C,X))+ I(C,X)− I(Xi, X̄)− I(C,C̄) ,

where we used a notation for past of the joint pair (C̄, X̄i) = (C,Xi)

Using the relation

I(X;—) = H(X—)-H(X—) = H(X—) - H(X) + H(X) - H(X—) = I(X;) - I(X,)

and similarily

I(C; X̄ |C̄) = I(C; X̄C̄)− I(C,C̄)

We consider a sum of both, let’s call it symmetrical TE:

SymT E =I(C; X̄ |C̄)+ I(X ;C̄|X̄) = I(C; X̄C̄)− I(C;C̄)+ I(X ; X̄C̄)− I(X ; X̄)

= I(C; X̄C̄)+ I(X ; X̄C̄)− I(C;C̄)− I(X ; X̄)
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continuing the derivation

I(C;X) = H(C)+H(X)−H(C,X)

I(C; X̄C̄) = H(C)−H(C|X̄C̄)

I(X ; X̄C̄) = H(X)−H(X |X̄C̄)

I(CX ; X̄C̄) = H(C,X)−H(C,X |X̄C̄) =−I(C,X)+H(C)+H(X)−H(C,X |X̄C̄)

=−I(C,X)+H(C)+H(X)−H(C,X |X̄C̄)−H(C|X̄C̄)+H(C|X̄C̄)−H(X |X̄C̄)+H(X |X̄C̄)

=−I(C,X)+H(C)−H(C|X̄C̄)+H(X)−H(X |X̄C̄)−H(C,X |X̄C̄)+H(C|X̄C̄)+H(X |X̄C̄)

=−I(C,X)+ I(C, X̄C̄)+ I(X , X̄C̄)+ I(C,X |X̄C̄)

this gives general equality:

I(C, X̄C̄)+ I(X , X̄C̄) = I(CX , X̄C̄)− I(C,X |X̄C̄)+ I(C,X)

plugging back to SymTE:

SymT E =I(C, X̄ |C̄)+ I(X ,C̄|X̄)

=I(C, X̄C̄)+ I(X , X̄C̄)− I(C,C̄)− I(X , X̄)

=I(CX , X̄C̄)− I(C,X |X̄C̄)+ I(C,X)− I(C,C̄)− I(X , X̄)

One can derive the following equivalent expression

SymT E = I((C,Xi);(C,Xi))− I(C;Xi|(C,Xi))+ I(C,Xi)− I(Xi, X̄i)− I(C,C̄) , (3.4)

where we used a notation for past of the joint pair (C̄, X̄i) = (C,Xi).

The measure of mutual information between the present and the past of a signal, known

as information rate (IR), will be explained in the next section. IR is commonly used in analysis

of Music Information Dynamics (MID) that captures the amount of average surprisal in music
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signals when the next sound event is anticipated from its past. If we assume that the generation

of Xi is independent of C given their joint past (C,Xi), then I(C;Xi|(C,Xi)) = 0, resulting in

SymT E ≈ I((C,Xi);(C,Xi))− I(Xi, X̄i)− I(C,C̄)+ I(C,Xi) , (3.5)

which is a sum of IR of the joint pair (C,Xi) and the mutual information between C and Xi

regardless of time, minus IR of the separate stream. In other words, the Symmetrical TE is a

measure of surprisal present in the joint stream minus the surprisal of each of its component, plus

the mutual information (lack of independence) between the individual components. In a way this

captures the difference between predictive surprisal when listening to a compound stream versus

surprisal when listening separately, with added component of mutual information between the

voices regardless of time.

This process is schematically represented in Figure 3.1 as a combination of Information

Rate and Mutual Information estimates for two musical melodies

-0cm

C

IR(C,X) + I(C, X) - IR(X) - IR(C)

SymTE  = 

IR(X) = I (X, X̅)

IR(C) = I (C, C̅)

IR(C,X) = I ((C, X) ; (C,X))

X

I(C, X)

Figure 3.1. Estimate of SymTE as a combination of Information Rate IR and Mutual Information
I estimates from a generated X and control signal C

3.1.1 Predictive Surprisal Using VMO

The essential step in estimating the predictive surprisal is building a model called Variable

Markov Oracle (VMO). Based on Factor Oracle (FO) string matching algorithm VMO was

decveloped to allow generative improvisation for real-valued scalar or vector data, such as
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sequences of audio feature vectors, or data vectors extracted from human poses during dance

movements. VMO uses suffix data structure for query-guided audio content generation [113]

and multimedia query-matching [114, 44]. VMO operates on multivariate time serie data,

VMO symbolizing a signal X sampled at time t, X = x1,x2, . . . ,xt , . . . ,xT , into a sequence

S = s1,s2, . . . ,st , . . . ,sT , having T states and observation frame xt labeled by st . The labels are

formed by following suffix links along the states in an oracle structure, whose value is one of the

symbols in a finite sized alphabet Σ.

Predictive surprisal is estimated by constructing an FO automata for different threshold

when search for suffix links. At each threshold value, a different oracle graph is created, and for

each such oracle, a compression method of Compror (Compression Oracle) [71] algorithm C is

used as an approximation to predictive information I(X ,Y ) = H(Y )−H(Y |X)≈C(Y )−C(Y |X).

Here the entropy H is approximated by a compression algorithm C, and C(Y ) = log2(|S|) is

taken as the number of encoding bits for individual symbols over alphabet S, and C(Y |X) is the

number of bits in a block-wise encoding that recursively points to repeated sub-sequences [114].

As mentioned in the introduction, one of the advantages of using VMO for mutual

information estimation is that it allows instantaneous time-varying estimates of IR based on the

local information gain of encoding a signal based on linking it to its similar past. This differs

from other methods of mutual information estimation like MINE that averages over the whole

signal.

3.1.2 Border Cases

If C = X , and since H(X ,X) = H(X), we get I((X ,X);(X ,X)) = IR(X) and SymTe =

I(X ,X)− IR(X) = H(X)−H(X)+H(X |X̄) = H(X |X̄), which is the conditional entropy of X

given its past. So TE of a pair of identical streams is its entropy rate.

If C and X are independent, SymT E = 0. This is based on the ideal case of IR estimator

of the joint sequence I((C,Xi);(C,Xi)) being able to reveal the IR of the individual sequences,

and additionally capture any new emerging structure resulting from their joint occurrence.
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In theory, if C and X are independent, H(C,X) = H(C)+H(X), and H(C,X |(C,X)) =

H(C|C̄) + H(X |X̄), so I((C,Xi);(C,Xi)) = I(Xi, X̄i) + I(C,C̄). Thus, a combination of two

streams may add additional information, but in practice it could be that VMO will not be

able to find sufficient motifs or additional temporal structure when a mix is done. In such a case

it can be that SymT E estimate will become negative.

3.2 Representation Using VQ-VAE

Computing Information Rate and Mutual information for raw audio signals is an extremely

challenging and computationally expensive task. We need some form of dimensionality reduction

that preserves the semantic meaning of audio (style, musical rules, composer attributes etc) in

the latent space. Then, we can estimate IR and MI in the lower dimensional space, quite easily.

For our framework, we use a pre-trained Jukebox’s Vector Quantized-Variational Autoencoder

(VQ-VAE) [24, 109] to encode raw audio files to low-dimensional vectors. VQ-VAE is a type

of variational autoencoder that encodes data into a discrete latent space. These discrete codes

correspond to continuous vectors in a codebook. Using this, we transform our data into 8192

64-dimensional latent vectors.

3.3 Switching between Generative Models

In this section, we explain the overall workflow of our method Figure 3.2. The main

objective of our method is to switch between N different generative models to match a given

query C. Given training data points (musical sequences), D1,D2, ...,DN , we compute latent

representations/embeddings of each data point to get E1,E2, ...,EN . For our method, we use

the embeddings of a pretrained VQ-VAE encoder from Jukebox. We construct each generative

model i as follows: 1) First we convert the query musical signal to the same latent space using

Jukebox’s VQ-VAE. 2) We create a V MOi for datapoint i (in our case, we assume each datapoint

represents a different composer). 3) Finally, we get the output of generative model i by querying
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V MOi with embeddings of C to get Xi, algorithm provided in [113].

-0cm

Figure 3.2. Our Methodology. Given music embeddings, we construct a VMO for each composer.
For a control signal C, we query each composer’s VMO to get Xi. We switch to the output Xi for
a control singal C, if SymT E(C,Xi) is maximum for i.

In order to choose the best output for a given query C, we calculate SymT E(Xi,C) for all

i ∈ 1, ...,N. To calculate SymT E(C,Xi), we need to calculate the individual terms of Equation

5, I(C,C̄), I(X , X̄), I(C,Xi) and I((C,Xi);(C,Xi)). To calculate I(C,C̄), I(X , X̄), we use VMO

algorithm to create an oracle based on Xi and another oracle for C to retrieve the information

rate. To calculate I(C,Xi), we use MINE to calculate the mutual information between C and Xi.

To calculate I((C,Xi);(C,Xi)), we propose two methods, we combine both Xi and C to create a

mixture, based on two methods concatenation and addition of the respective latent vectors. Then,

we create an oracle for the combined (C,Xi) to calculate the IR.

3.4 Experiments and Results

We show the advantage of our method compared to other baselines by running simulations

on the Labrosa APT dataset [92]. We construct a dataset with audio wav files of 4 different

composers (Bach, Albeniz, Borodin, Mozart). We convert each audio file to the corresponding
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embeddings from a pre-trained Jukebox VQVAE [24, 109]. For Xi, we create a VMO for each

composer, that can synthesize a sequence of embeddings for a given query/context signal C. For

our simulations, we construct C as a segment of music (not included in the VMO construction)

from any of the composers. Ideally, our SymTE measure should be high for the Xi (VMO) of the

same composer C.

Table 3.1. Comparison of Accuracy and F1-Score of our methods and baselines.

Method Accuracy F1-Score

Random 0.22 0.17

Distance-based 0.27 0.17

Our Method (concat) 0.44 0.28

Our Method (avg) 0.36 0.21

We evaluate the effectiveness of SymTE by measuring the accuracy and F1 score. We

conducted 20 trials for all the experiments. Each trial consisted of 20 query/context signals,

randomly sampled from either of the 4 composers. For our baselines, we choose a random

baseline and another baseline based on the euclidean distance of the embeddings, i.e choose

the composer i’s output, for which the euclidean distance between the embeddings of C and

embeddings of Xi is the minimum. Table 3.1 shows the results of our methods and the baselines.

We compare both averaging(avg) and concatenating (concat) the sequences in our experiments.We

observe that our concat method achieves the best accuracy and F1-Score compared to all our

baselines.

3.5 Discussion and Future Work

The methods presented in the chapter use sequence of latent vectors coming from

pre-trained neural models of audio. We use VQ-VAE’s embeddings and not the quantized codes,

so there is only one quantization happening in this work, which is the VMO’s. The reason why
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we chose VQ-VAE over other models is that we need strong pre-trained models and the best one

currently is considered to be jukebox’s VQ-VAE. Other neural models can be explored as well,

as the representation is important for estimation of TE. Our query signals are 256 dimensional

(≈0.71 s). Our method should work for longer queries, but the main bottleneck is the complexity

of the generative model. We plan to extend this work with more elaborate results with a bigger

data set and query size. We also plan to test the framework in terms of computational time, so as

to enable real-time switching for music improvisation.
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Chapter 4

DPD-InfoGAN: Differentially Private
Distributed InfoGAN

Generative Adversarial Networks (GANs) are deep learning architectures capable of

generating synthetic datasets. Despite producing high-quality synthetic images, the default

GAN has no control over the kinds of images it generates. The Information Maximizing GAN

(InfoGAN) is a variant of the default GAN that introduces feature-control variables that are

automatically learned by the framework, hence providing greater control over the different kinds

of images produced. Due to the high model complexity of InfoGAN, the generative distribution

tends to be concentrated around the training data points. This is a critical problem as the models

may inadvertently expose the sensitive and private information present in the dataset. To address

this problem, we propose a differentially private version of InfoGAN (DP-InfoGAN). We also

extend our framework to a distributed setting (DPD-InfoGAN) to allow clients to learn different

attributes present in other clients’ datasets in a privacy-preserving manner. In our experiments,

we show that both DP-InfoGAN and DPD-InfoGAN can synthesize high-quality images with

flexible control over image attributes while preserving privacy.

4.1 Introduction

Deep Neural Networks can be used to train high-quality models with state-of-the-art

performance in a myriad of applications, including medical image analysis, health informatics,
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language representation, and many more. However, building such models is not an easy task as

it requires access to a large amount of high-quality data. Sharing private data is not an option in

many scenarios due to regulations such as GDPR [111].

GANs [46], a class of Generative models [94, 73, 77], can be used to alleviate this

arduous data-collection problem. GANs can learn the distribution of training data and generate

high-quality fake data samples that have a distribution similar to the original distribution. Ideally,

GANs can be used to protect the privacy of individuals in the dataset as they reveal only the

distribution and not the sensitive private data of individuals. Despite this property, GANs may

potentially expose the private information of training samples as they don’t provide guarantees

on what information the fake data may reveal about the sensitive training data. Machine learning

models, including GAN models, are susceptible to a multitude of attacks including reconstruction

and membership inference attacks [102, 86, 79, 49], demonstrating that additional privacy is

required in the form of protecting model parameters. These attacks can be addressed through the

use of differential privacy [36].

Differential privacy is the state-of-the-art model for protecting the privacy of individuals

in a statistical dataset. It ensures that an adversary cannot infer if a particular individual’s record

is included in the dataset, hence providing the necessary guarantees to train privacy-preserving

models on sensitive data. In recent times there have been studies on differentially private GANs

[108, 57, 16, 42, 118]. However, most of these methods are focused on generating fixed synthetic

data (with or without labels) and do not provide flexibility in controlling attributes of the synthetic

data. For example, synthesizing images with different attributes (e.g. thickness, rotation, pose,

etc.) involve separately training a new model with a new dataset in a private manner, which is

expensive. Instead, we leverage InfoGAN [17] to facilitate control over the generated images,

while preserving the privacy of the generator.

In this chapter, we propose a differentially private framework for InfoGAN and evaluate

it on the MNIST dataset [69]. Our experiments show that our framework can synthesize

high-quality images with strong privacy guarantees. We also analyze the trade-off between
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privacy and quality of control over the generated images.

Also, we propose a distributed InfoGAN (DPD-InfoGAN) with a shared Q network to

capture various attributes of images owned by different clients in a privacy-preserving manner.

This allows clients with limited training data to learn intricate features present in the datasets

of other clients. For example, if different clients own a subset of MNIST data, then each of the

clients would not be exposed to all the variances in the images (e.g. all possible rotation angles,

thickness factors, etc) but will still learn to synthesize such characteristics. Aggregating such

models using federated learning [62] would be an expensive process as large model parameters

have to be shared and aggregated every round. To overcome this problem, our approach uses a

shared Q network in a distributed setting to decrease the number of parameters exchanged and

henceforth reducing communication costs.

We show that our paradigm of training distributed InfoGANs enables each client to

learn rich and varied feature representations (controlling attributes of generated images) when

compared with a single client setting with the same number of images.

4.2 Background

4.2.1 InfoGAN

Generative Adversarial Networks involve training two networks simultaneously: a

discriminator D and a generator G. The generator maps a latent space (p(z)) to a fake distribution.

The discriminator tries to discriminate between real data (p(x)) and the fake distribution. The

two networks compete with each other in an adversarial setup, i.e., the generator tries to fool

the discriminator into classifying its distribution as real data, while the discriminator aims to

correctly classify fake and real images. This leads to a minimax game as follows:

min
G

max
D

V (D,G) = Ex∼p(x)[log(D(x))]+

Ez∼p(z)[log(1−D(G(x))]
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InfoGAN proposes a framework to disentangle the latent space of GANs in an unsupervised

manner. The goal is to disentangle the latent space such that meaningful semantics of the data

distribution are captured. The input to the generator is split into two components: noise and latent

codes (from prior p(c)). The latent codes can be discrete or continuous. The latent codes are

made meaningful by maximizing the mutual information between the generated data points and

the codes. The authors of [17] use an auxiliary distribution Q(c|x) to approximate the posterior,

modifying the minimax game as follows:

min
G,Q

max
D

VIn f oGAN(D,G,Q) =V (D,G)−λLI(G,Q), (4.1)

where LI(G,Q) is given by

LI(G,Q) = Ec∼p(c),x∼G(z,c)[logQ(c|x)]+H(c), (4.2)

where H(c) is the entropy of the prior and is treated as constant, and λ is a hyperparameter and is

set to 1. We choose p(c) as the Gaussian Distribution with zero mean and unit standard deviation.

We also include continuous codes in p(c) from a uniform distribution between [−1,1]. p(x) refers

to the real data distribution and G(z,c) refers to the output distribution of the generator G.

4.2.2 Differential Privacy

Differential privacy [36, 37] is a notion of privacy that ensures that statistical analysis does

not compromise privacy by requiring that two datasets that are differing by a single individual

should be statistically indistinguishable.

Definition 1. ((ε,δ )-Differential Privacy) A randomized mechanism M satisfies (ε,δ )-differential

privacy ((ε,δ )-DP) when there exists ε > 0, δ > 0, such that

Pr [M (D1) ∈ S]≤ eεPr [M (D2) ∈ S]+δ (4.3)

43



holds for every S⊆ Range(M ) and for all neighboring datasets D1 and D2.

Lemma 1. [118] In order to guarantee (ε,δ )-Differential privacy for the discriminator, we assign

the following value to the noise scale σn :

σn =
2p

√
Idlog( 1

δ
)

ε
, (4.4)

where the sampling probability p = n
N (n represents the batch size, N represents the

dataset size), Id is the number of discriminator iterations for every generator iteration, ε is the

privacy-loss parameter, and δ is the privacy violation parameter.

4.3 Our Approach

Figure 4.1. Framework for 1 Round
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The details of our method to achieve a privacy-preserving InfoGAN are shown in

Algorithm 4. After computing the gradients of the discriminator (line 4-7), we clip them

with clipping parameter Cp (line 8) to bound the gradients. We set Id = 1 in Equation 4.4

and compute noise scale σn. We add noise to the gradients and then update the discriminator

weights using the Adam optimizer [61] (line 10). The NLL in line 12 refers to the Negative

Log-Likelihood loss.

The training of the Q network is differentially private due to the post-processing property

[37], as the Q network operates on top of the discriminator. Similarly, the generator satisfies

differential privacy, as the generator receives updates from the discriminator and the Q network

which are trained in a differentially private manner. We can also keep track of the privacy budget

spent in our algorithm by using Moment Accountant [1] or Renyi DP accountant [80].

In the distributed setting (Figure 4.1), a similar method is used for N clients, where each

client consists of a generator and a discriminator. All the clients make use of a single auxiliary

network Q. As explained in Algorithm 5, the Q network is updated sequentially by each client

in a given round. That is, in the same round, each client accesses the Q network that had been

updated by the previous client. A single Q network is responsible for providing estimates of

codes for all the clients. This reduces the communication cost as we only share the outputs

of the discriminator (from client to Q-network) and the Q network (from Q-network to client),

rather than sending the entire models of the generator, discriminator, and Q network as in the

case of federated learning. Hence the communication load is massively reduced and therefore

cost-efficient than FL.

4.4 Experiments

We ran experiments on the MNIST dataset to analyze the trade-off between privacy and

the quality and semantics of generated images. The total number of training rounds R was set to

50, and each client is trained for one epoch each round. The batch size was set to 64, the number
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Algorithm 4. Differentially Private InfoGAN (DP-InfoGAN)
Clipping parameter for gradients Cp, Noise Scale σn, Discriminator D, Generator G, Auxiliary

network providing estimate of the code Q, Real data points X = (x1,x2, . . . ,xM), Batch size m,

Noise prior p(z), Latent code prior p(c), Learning Rate α Differentially Private Generator θg

Sample batch x = {xi}m
i=1 from real data points X

Sample noise z = {zi}m
i=1 from noise prior p(z)

Sample codes c = {ci}m
i=1 from prior p(c)

Compute batch loss for discriminator

for i = 1 to m do Dloss(xi,zi,ci) := log(D(xi))+ log(1−D(G(zi,ci)))

Calculate gradients with respect to discriminator weights gradd(xi,zi,ci) :=

∇θd Dloss(xi,zi,ci)

Clip gradients to bound them gradd(x,z,c) := gradd(x,z,c)/max(1.0, ||gradd(x,z,c)||2/Cp)

Compute average gradient for batch gradd(x,z,c) = (1/m)∗Σm
i=1gradd(xi,zi,ci)

Add noise to make discriminator differentially private gradd(x,z,c) := gradd(x,z,c) +

(1/m)∗N(0,σ2
nC2I)

Update weights of the discriminator using Adam optimizer θdnew := θd −
α.ADAM(gradd(x,z,c),θd)

Calculate estimate of codes from Q Qlogits,mean,variance = Q(D(G(z,c)))

Compute the Negative Log Likelihood of target codes and estimate Qloss =

NLL(c,mean,variance,Qlogits)

Compute loss and gradients for generator Gloss := D(1− log(D(G(z,c))))+Qloss

gradg,gradq := ∇θgGloss,∇θqGloss

θgnew := θg−α.ADAM(gradg,θg)

θqnew := θq−α.ADAM(gradq,θq)

return θgnew,θdnew,θqnew

Algorithm 5. Differentially Private Distributed InfoGAN (DPD-InfoGAN)
Clients C = (C1,C2, . . . ,CN), where Ci = (Gi,Di), Auxiliary network providing estimate of the

code Q, Total number of rounds per client R Differentially Private Generator Gi

for r = 1 to R do

for i = 1 to N do Train Ci using Algorithm 4 θgnew,θdnew,θqnew = Algorithm1(Gi, Di, Q)

Update Q weights Q.weights = θqnew

return C, Q
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of epochs to 50, and δ to 10−5. We fix the learning rate for the Adam optimizer to 0.0002,

and sample two continuous codes from a uniform distribution between [−1,1]. The clipping

parameter Cp is set to 1.0. We use three fractionally-strided convolutions for the generator and

three convolutions for the discriminator. The Q network consists of four convolutional layers.

Batch normalization is applied in all the layers. LeakyReLU is used in discriminator and Q

network, while the generator uses ReLU activation.

(a) InfoGAN (b) DP-InfoGAN (ε = 1)

(c) DP-InfoGAN (ε =
0.1)

Figure 4.2. Rotation of digits

We mainly employ qualitative evaluation as approaches such as Inception Score [99] and

Frechnet Inception Distance [50] do not reflect the quality of rotation or thickness factors. First,

we compare the results obtained from InfoGAN and DP-InfoGAN on a single client model. In

Figure 4.3, we see that with privacy guarantees, the model has trouble differentiating between

close digits (such as 3 and 5 in Figure 4.3b) but still is able to generate high-quality images.

In addition, as shown in Figure 5.3b, DP-InfoGAN faces minor issues disentangling the latent

space (i.e.) the results display changes in both thickness and rotation while we try to preserve
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only rotation of digits. Therefore, DP-InfoGAN preserves the quality of the images to an extent,

but starts losing control over the attributes of images. For smaller values of ε , it becomes harder

to facilitate this control. We see that in Figure 5.3c, the thickness and rotation of the digits get

more entangled when compared to Figures 5.3a, 5.3b.

(a) InfoGAN (b) DP-InfoGAN (ε = 1)

Figure 4.3. Identity of Numbers

In the distributed setting (DPD-InfoGAN), we use the same configuration and simulate

experiments with each client having a subset of the MNIST data (non-overlapping). To validate

our algorithm and prove that a shared Q-network can capture all possible variances in images, we

run experiments with 10 clients (each having 6000 images) in a distributed setting and compare it

with a single client having 6000 images. We observe that, in the distributed setting, the generated

images display a varied change in thickness and rotation when compared to the non-distributed

setting. In Figures 4.4b, 4.5b, we see more variety in rotation and thickness when compared

to a single client setting as shown in Figures 4.4a, 4.5a. For example, digits 1 and 8 in Figure

4.4b have more variations in rotations than in Figure 4.4a. This indicates that even when a client

does not have variations in its training images, it can still generate those variations as the shared

Q-network is continuously updated on the clients’ datasets in a privacy-preserving manner and

captures all possible feature variances present in the datasets of other clients.

We ran experiments on the FashionMNIST dataset using the same setup as used for the

MNIST dataset. Since the data points in the FashionMNIST dataset do not vary for rotation, we

demonstrate the results for the thickness factor. In the non-distributed setting (DP-InfoGAN),
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(a) Number of Clients : 1 (b) Number of Clients : 10

Figure 4.4. Rotation of digits (ε = 10)

we again find that as the value of epsilon decreases (more privacy), the model has trouble

differentiating between objects like shoes and shirts. The amount of thickness variation also

reduces as the privacy guarantees increase, as shown in Figure 4.7.

(a) Number of Clients : 1 (b) Number of Clients : 10

Figure 4.5. Thickness of digits (ε = 10)

In the distributed setting (Figures 4.6a, 4.6b), we again find that with an increase in the

number of clients, the shared Q-network helps in learning more variations for the thickness

factor, when compared to a single client with the same number of images.
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(a) Number of Clients : 1
(b) Number of Clients :
10

Figure 4.6. Variation in thickness of images for varying number of clients (ε = 0.1)

We mainly employ qualitative evalution as approaches such as Inception Score [99] and

Frechnet Inception Distance [50] do not reflect the quality of rotation or thickness factors. These

measures reflect the quality of the generated images and are not the best methods to use in our

approach, as we have to evaluate the amount of rotation and thickness in addition to the quality

of the images. Hence, we employ qualitative evaluation.

(a) DP-InfoGAN(ε = 10) (b) DP-InfoGAN (ε = 1)

(c) DP-InfoGAN (ε =
0.1)

Figure 4.7. Variation in thickness of images for varying ε
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4.5 Conclusion and Future Work

In this chapter, we propose a privacy-preserving version of InfoGAN (DP-InfoGAN) that

guarantees the privacy of the training data samples. Our results show that DP-InfoGAN can

synthesize high-quality images with control on image attributes. Our framework can keep track of

the privacy budget spent by using Moment Accountant or Renyi DP accountant. We also extend

the framework to a distributed setting (DPD-InfoGAN) by using a shared Q network. We show

that our training paradigm in the distributed setting captures varied image characteristics even

when each client has limited data. As part of future work, we plan to explore privacy-preserving

and distributed/federated versions of CycleGANs, BigGANs, etc.
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Chapter 5

Bias-Free FedGAN: A Federated Approach
to Generate Bias-Free Datasets

Federated Generative Adversarial Network (FedGAN) is an approach to train a GAN

across distributed clients without clients having to share their sensitive training data. In this

chapter, we propose a federated approach to generate audio samples (FedSpecGAN). We

experimentally show that FedGAN and FedSpecGAN generates biased data samples under

non-independent-and-identically-distributed (non-iid) settings. Also, we propose Bias-Free

FedGAN and Bias-Free FedSpecGAN to generate synthetic datasets without bias. Our approach

generates metadata at the aggregator using the models received from clients and retrains the

federated model to achieve bias-free results for audio and image synthesis. Experimental results

on audio (SC09 and MiniSpeechCommands) and image datasets (MNIST, CIFAR-10, and

FairFace) validate our claims.

5.1 Introduction

Generative adversarial networks (GANs) [46], a class of generative models [94, 73], are

used to generate synthetic datasets that are similar to the datasets in which they were trained

on. Application of GANs include generating video from images, synthesizing audio and music,

style transfer [6], improving resolution of pictures [70], creating deepfake videos with audio

[64], etc. High-quality GANs are trained on large datasets. However, in most cases, data is
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distributed across different sources. Sharing sensitive data is not an option due to regulations such

as GDPR , CCPA, and HIPPA. Hence, to train the entire population, a distributed GAN approach

is required. [48] proposed a system that has a single generator and distributed discriminators.

The discriminators exchange their model parameters to avoid overfitting. A distributed training

paradigm using GANs that automatically learns feature-control variables was proposed by [82].

However, these approaches work only for iid data sources. The system proposed by [121][85]

works for non-iid data sources. In their algorithm, individual discriminators are trained and they

update a centralized generator. However, their work faced numerous communication challenges.

To solve this problem, FedGAN (Federated GAN) was proposed by [93]. In FedGAN, multiple

clients collaboratively train a model (generator and discriminator pair) without sharing their

raw data; they share their local model weights with a trusted aggregator during each round

of training; the aggregator updates the global model (generator and discriminator pair) using

these weights. This process repeats for a pre-defined number of rounds or until convergence is

achieved. However, the approach proposed by [93] works only for images. In this chapter, we

propose a novel approach (FedSpecGAN) to generate audio samples in a federated manner. Our

approach is similar to FedGAN, however, in the last federated round, the mean and standard

deviation of each client’s data are sent to the central aggregator for denormalization.

In addition, despite proving convergence and producing high-quality results, FedGAN

generates biased data in multiple scenarios. FedGAN does not address this major issue. Though

there is a myriad of solutions for addressing fairness and bias in GANs under the local setting

[100, 119, 106, 55], no solutions have been proposed for solving this problem in the federated

setting.

One of the main features of Federated Learning is the heterogeneity of the clients’ data.

This also causes biases in the results, as it is not possible to manually evaluate the bias or

access the images of the clients. Some approaches [120, 54, 2] have been proposed to mitigate

biases in federated learning. [2] use local and global reweighing and propose a fairness-aware

regularization term in the training objective. [54] propose a double momentum gradient method
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and a weighting strategy based on the frequency of participation in the training process. However,

these approaches do not provide a solution for federated/distributed GANs.

We consider an example scenario to emphasize the importance of this problem. Let us

consider the task of speech synthesis in a federated setting. The goal of the generative model is

to synthesize realistic audio that mimics the training dataset. In a federated setting, each client is

unaware of the other clients’ data. For example, let the first client have a training dataset that has

audio samples of a female speaker. Let the other clients have datapoints of male speakers. We

demonstrate that federated models trained under such settings can propagate bias and ignore the

minority class data points while synthesizing audio samples. Similarly, this scenario can also be

extended to facial image synthesis, where a particular client could have images of black people

while other clients have images of people belonging to a different race. This is a serious issue as

these models can perform poorly and unethically for minority classes.

In this chapter, we propose Bias-Free FedGAN and Bias-Free FedSpecGAN to eliminate

bias in federated models. In our methods, the aggregator generates a new dataset (metadata) from

each of the incoming client models and retrains the federated model. We show experimental

results that the combination of averaging weights of client models and retraining on metadata

helps achieve bias-free results in image synthesis.

In summary, our contributions are as follows:

• We demonstrate that FedGAN produces biased results under non-iid scenarios.

• We introduce FedSpecGAN, a federated framework for audio synthesis and show that it

produces biased results for audio synthesis under non-iid scenarios

• We propose Bias-Free FedGAN and Bias-Free FedSpecGAN, frameworks to train FedGAN

and FedSpecGAN in an unbiased manner to produce bias-free outputs.

• We validate our claims by running experiments on the MNIST [69], FashionMNIST [117],

CIFAR-10 [65], FairFace [58], SC09, and MiniSpeechCommands [115] datasets.
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Figure 5.1. A Representative Round in Bias-Free FedGAN

5.2 Background

5.2.1 Generative Adversarial Networks

Generative Adversarial Networks employ two networks that train simultaneously together.

A generator network G upsamples a latent space p(z) to an image, while a discriminator D tries

to predict if a given image is from the generator or the real data distribution p(x). This leads to a

minmax game as follows:

min
G

max
D

V (D,G) = Ex∼p(x)[log(D(x))]+

Ez∼p(z)[log(1−D(G(x))]

As training progresses, the generator synthesizes images that are closely similar to the real

dataset.
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5.2.2 SpecGAN

SpecGAN [25] is a spectrogram-based generative model for audio synthesis. Raw audio

is converted into a spectrogram using a short-time Fourier transform. The resultant spectrogram’s

magnitude is scaled logarithmically to align with human perception. Each frequency bin is

normalized to have zero mean and unit variance. The final spectra are clipped to 3 standard

deviations and rescaled to [-1,1]. SpecGAN uses the DCGAN algorithm to train the final model.

5.2.3 FedGAN

The FedGAN framework was proposed by [93]. FedGAN is used to train a GAN across

non-independent-and-identically-distributed data sources. Their system uses an aggregator for

averaging and broadcasting the model parameters of the generator and discriminator. In addition,

the authors also prove that FedGAN has a similar performance to the general distributed GAN

while reducing communication complexity.

5.3 Federated SpecGAN

In this section, we propose Federated SpecGAN (FedSpecGAN), an approach to train

SpecGAN in a distributed non-iid setting. Every round, each client trains a SpecGAN and sends

its model parameters to the central aggregator. In SpecGAN, each spectrogram is normalized to

zero mean and unit variance before training and denormalized during inference. The aggregator

does not have any data to compute the mean and standard deviation to denormalize during

inference. Hence, each client sends the mean and standard deviation of their respective data to

the aggregator. The aggregator computes the average of the means and standard deviations it

receives from clients to denormalize during inference.

5.4 Bias-Free FedGAN and Bias-Free FedSpecGAN

In this section, we present the Bias-Free FedGAN and Bias-FreeSpecGAN algorithms in

Algorithm 7. We consider M clients 1, 2, ..., M and n denote the index time. Each client i has a
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Algorithm 6. FedSpecGAN
Number of training rounds N. Initialize local generator and discriminator for each client i:
α i

0 = α ′ and β
i
0 = β

′, ∀i ∈ 1,2, ...,M. Learning rates of discriminator and generator, η1 and η2.
Noise seed, z.

for n = 1 to N do Each client i computes local gradient gi(α i
n,β

i
n) from Di and hi(α i

n,β
i
n) from

Di and synthetic data generated by the local generator.
Each client i updates its local model in parallel to other clients via

α
i
n = α

i
n−1 +η1gi(α i

n−1,β
i
n−1) (5.1)

β
i
n = β

i
n−1 +η2hi(α i

n−1,β
i
n−1) (5.2)

Each client i sends model parameters α i
n and β i

n to aggregator
Aggregator computes global generator α

g
n and global discriminator β

g
n

α
g
n =

1
M

M

∑
j=1

α
j

n ;β
g
n =

1
M

M

∑
j=1

β
j

n (5.3)

Aggregator sends α
g
n and β

g
n to clients and clients update

α
i
n = α

g
n ;β

i
n = β

g
n ,∀i ∈ 1,2, ...,M (5.4)

Each client i sends local mean (µi) and standard deviation (σi) to aggregator. Aggregator
computes mean(µn) and standard deviation (σn) for the federated model using:

µn =
1
M

M

∑
j=1

µ j;σn =
1
M

M

∑
j=1

σ j (5.5)

Aggregator denormalizes generator’s (αg
n ) outputs using µn and σn

local dataset Di, generator α i
n, and discriminator β

i
n. η1 and η2 denote the learning rate for the

generator and discriminator respectively.

Each client runs the ADAM optimizer to train their local generators and discriminators

on their datasets. Clients send their generator and discriminator model parameters to a central

aggregator.

In Bias-Free FedGAN, the aggregator generates combined metadata (MDn) using the

generators received from the clients. For example, MDn can be collected by sampling 10000

images from each client’s generator. The aggregator averages α i
n and β

i
n across i. Then, the
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aggregator trains the averaged model on MD. The aggregator sends the final generator α
g
n and

discriminator β
g
n parameters to the clients. This process repeats for N rounds. To generate

high-quality metadata, we start the metadata generation and training processes after a few initial

rounds.

In Bias-Free FedSpecGAN, the aggregator generates and trains on metadata only during

the last round to improve efficiency. Each client sends their respective mean and standard

deviation to the aggregator. The aggregator computes metadata by denormalizing the outputs of

each generator. Then, the aggregator normalizes the entire metadata for training using SpecGAN.

5.4.1 Why our approach works ?

We leverage the fact that each client’s generator consists of an approximation of the real

data distribution. We assume that each client has unbiased data. Since the aggregator has access

to all the clients’ trained generators, it also has access to an approximation of all the clients’

data and can create metadata. The metadata consists of an equal number of images from all the

generators. We retrain the federated model on a collection of all the generators’ outputs to obtain

a bias-free model. This process continues for each federated round.

For example, consider the scenario where client 0 has class A and clients 1 and 2 have

class B (as shown in Figure ??). The outputs of the FedGAN model would be biased towards

class B. In Bias-Free FedGAN, there is an additional training step in the aggregator. The

aggregator generates the metadata which would be a collection of images both belonging to

class B and A in this case. The federated model is fine-tuned on the metadata before sending the

model back to the clients. As the training progresses, the quality of the metadata improves and

the Bias-Free FedGAN framework produces unbiased results without compromising the quality

of images.

5.5 Experiments and Analysis

In this section, we show how FedGAN generates biased results under non-iid settings

and how Bias-Free FedGAN and Bias-Free FedSpecGAN solve this problem. We demonstrate
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Algorithm 7. Bias-Free FedGAN and
Bias-Free FedSpecGAN
Number of training rounds N. Initialize local generator and discriminator for each client i:
α i

0 = α ′ and β
i
0 = β

′, ∀i ∈ 1,2, ...,M. Learning rates of discriminator and generator, η1 and η2.
Noise seed, z.

for n = 1 to N do Each client i computes local gradient gi(α i
n,β

i
n) from Di and hi(α i

n,β
i
n) from

Di and synthetic data generated by the local generator.
Each client i updates its local model in parallel to other clients via

α
i
n = α

i
n−1 +η1gi(α i

n−1,β
i
n−1)

β
i
n = β

i
n−1 +η2hi(α i

n−1,β
i
n−1)

Each client i sends model parameters α i
n and β i

n to aggregator
Aggregator computes global generator α

g
n and global discriminator β

g
n

α
g
n =

1
M

M

∑
j=1

α
j

n ;β
g
n =

1
M

M

∑
j=1

β
j

n

Bias-Free FedGAN Aggregator generates metadata MDn :

MDn = [MD0
n,MD1

n,MD2
n, . . . ,MDM

n ]

MDi
n = α

i
n(z)

Aggregator trains α
g
n and β

g
n on metadata MDn

Clients update:
α

i
n = α

g
n ;β

i
n = β

g
n ,∀i ∈ 1,2, ...,M

Bias-Free FedSpecGAN Each client i sends local mean (µi) and standard deviation (σi) to
aggregator. Aggregator computes mean(µn) and standard deviation (σn) for the federated model
using:

µn =
1
M

M

∑
j=1

µ j;σn =
1
M

M

∑
j=1

σ j

Aggregator generates metadata MDn :

MDn = [MD0
n,MD1

n,MD2
n, . . . ,MDM

n ]

MDi
n = Denorm(α i

n(z),µi,σi)

Aggregator trains SpecGAN α
g
n and β

g
n on metadata MDn
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(a) (b) (c) (d)

Figure 5.2. (a)FedGAN with F2 setting on MNIST; (b,c) FedGAN with F1 setting on Fashion
MNIST and CIFAR-10 ; (d) FedGAN with F3 setting on MNIST

this by running experiments in a simulated setting. We use SC09, Mini Speech Commands for

audio synthesis and MNIST, FashionMNIST, Cifar10, and FairFace for image synthesis. For

results of FedSpecGAN, please listent to the audio samples here: https://github.com/GV1028/

Bias-FreeFedGAN/

5.5.1 Inducing Bias in Client’s Datasets

For all our experiments, we simulate a biased setting across 3 clients. We mainly focus

on two classes for all datasets. The first client has data belonging to class 0 and all other clients

have data from class 1. Every client has an equal number of data points. We denote this setting

as F1.

In order to demonstrate that FedGAN in an iid setting does not generate biased results,

we consider a setting, F2, where each client has an even and a balanced split of the training

dataset.

In addition, we consider setting F3, where multiple minority classes exist. A single client

has data points from classes 0 and 1, while other clients have images belonging to classes 2-9.

5.5.2 FedGAN and FedSpecGAN

Firstly, we show that FedGAN does not induce bias under the iid setting (F2). As shown

in Figure 5.2a, we see that FedGAN generates all the classes in an iid setting for MNIST.
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(a) (b) (c) (d)

Figure 5.3. (a)FedGAN with F2 setting on MNIST; (b,c) FedGAN with F1 setting on Fashion
MNIST and CIFAR-10 ; (d) FedGAN with F3 setting on MNIST

Secondly, we analyze the federated setting F1. Figures 5.2b and 5.2c show that the output of

FedGAN consists of images only from the majority class (’shirt’ in Fashion MNIST and ’car’ in

CIFAR-10). That is, the aggregated model is heavily biased towards the majority class. Similarly,

for FedSpecGAN, we find that the aggregated model synthesizes audio samples of only the

majority class: ”eight” for SC09 and ”up” for Mini Speech Commands.

In addition, in F3, we see that FedGAN (Figure 5.2d) omits classes 0 and 1 and is heavily

biased towards the majority classes as it synthesizes all digits except for 0 and 1 in MNIST.

From prior experiments, we show that FedGAN and FedSpecGAN can be biased towards

the majority class under non-iid settings. Referring back to the speech synthesis and face

generation task, there is a high possibility that a federated model would generate male voices

and white faces while ignoring minority classes.

5.5.3 Bias-Free FedGAN and FedSpecGAN

Finally, we show that Bias-Free FedGAN and Bias-Free FedSpecGAN produce unbiased

results under the federated setting. For images, after each client shares the model parameters

with the aggregator, the latter generates 10000 images from each client’s generator to construct

metadata of 50000 images. The aggregator trains an averaged model on the metadata for 100

epochs and sends the global model back to each client. In the case of audio, the aggregator

generates metadata of 3000 samples only during the final round of training.

61



Despite the class imbalance across clients in setting F1, Bias-Free FedGAN and Bias-Free

FedSpecGAN produce results that are not biased towards a particular class. Figures 5.3a,5.3b

and 5.3c show the output of Bias-Free FedGAN. We see that the outputs of Bias-Free FedGAN

contain data from the minority classes (number 0, class trousers, and black people). We also run

experiments with multiple minority classes (classes 0 and 1) and as shown in Figure 5.3d, we

can see that our solution has images from both classes 0 and 1, while FedGAN’s output (Figures

5.2d) are biased towards the majority class.

5.6 Conclusion

In this chapter, we show that FedGAN generates biased outcomes under non-iid settings

and provide solutions, Bias-Free FedGAN and Bias-Free FedSpecGAN, to address the same.

To demonstrate the ability of our proposed solutions, we conduct experiments on the MNIST,

FashionMNIST, CIFAR10, FairFace, SC09, and MiniSpeechCommands datasets. Our experiments

show that Bias-Free FedGAN and Bias-Free FedSpecGAN produce fair results under non-iid

settings.
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Chapter 6

PosCUDA: Position based Convolution for
Unlearnable Audio Datasets

Deep learning models require large amounts of clean data to acheive good performance.

To avoid the cost of expensive data acquisition, researchers use the abundant data available on

the internet. This raises significant privacy concerns on the potential misuse of personal data

for model training without authorisation. Recent works such as CUDA propose solutions to

this problem by adding class-wise blurs to make datasets unlearnable, i.e a model can never

use the acquired dataset for learning. However these methods often reduce the quality of the

data making it useless for practical applications. We introduce PosCUDA, a position based

convolution for creating unlearnable audio datasets. PosCUDA uses class-wise convolutions

on small patches of audio. The location of the patches are based on a private key for each

class, hence the model learns the relations between positional blurs and labels, while failing to

generalize. We empirically show that PosCUDA can achieve unlearnability while maintaining

the quality of the original audio datasets. Our proposed method is also robust to different audio

feature representations such as MFCC, raw audio and different architectures such as transformers,

convolutional networks etc.
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6.1 Introduction

With the advent of large deep learning models, there is a huge need for massive clean

datasets. To offset the expensive cost of data collection, researchers use the widely abundant

data available on the internet. This includes image, text and audio data that individual users

have uploaded to the internet. This raises an important problem on unauthorized usage of

private personal data for model training. For instance, recently image generation models have

been trained on facial images, artistic content etc that are available on the internet without the

consent of the owners [51]. Similarly, musical audio samples of different content creators have

been used for training both classification and generative models [27, 104]. All these incidents

emphasize the need to create unlearnable datasets that can be uploaded by content creators

while being protected from being consumed by learning models. One approach to solve this

issue is by creating unlearnable datasets[40, 53, 122], i.e datasets that tamper any model’s

capability to learn from them. If an attacker builds a model using unlearnable datasets, the

performance of such a model should be similar to a random baseline. There are three important

characterstics of unlearnable datasets: 1) creation of unlearnable datasets should be fast and

3) the quality of unlearnable datasets should be as close as possible to the original data for

practical purposes. Recent works such as REM [43] and CUDA [98] try to learn unlearnable

datasets that satisfy all the three criteria. However REM has been shown to be vulnerable in

the presence of data augmentation and CUDA affects the quality of the data by a huge factor.

Moreover, all the above methods focus on image datasets and are not applicable for audio data.

Audio unlearnable datasets present a unique challenge as the quality of audio can be easily

detoriarated with additive noises. Furthermore, machine learning models for audio use a variety

of input representations such as MFCC, spectrograms, raw audio etc that can easily break any

pre-programmed unlearnability in the dataset. It is important for audio unlearnable datasets to be

robust to any feature representation derived from the original dataset and data augmentations,

while preserving the quality of the original audio as much as possible.
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To address the above limitations, we propose PosCUDA, a method to create unlearnable

datasets for audio. PosCUDA uses positional class-wise filters to help model learn relationships

between labels and data, failing to generalize on new data. We apply class-wise blurs to a

patch location of a sample based on a private key for each class. This means that instead of

applying noise/blur over the entire data, only a small portion of the data is blurred, preserving

the overall quality of the original sample. PosCUDA is fast, robust to any feature representation

and minimally affects the quality of data making it applicable for practical use.

6.2 Related Work

Adversarial Poisoning: Poisoning attacks[18, 72, 74, 87] introduce some form of noise

in the training process to make the model fail or mislabel classes intentionally during testing.

Adversarial Poisoning has been widely used to create unlearnable datasets. However, these

attacks works only for examples that have noise/trigger patterns in them. This means that during

test time, the data has to have the appropriate noise and trigger patterns for adversarial poisoning

to work.

Data Privacy: Data privacy methods [35, 1] preserve the model from leaking data that has been

used for training[84]. Often this includes setups where multiple parties train models together

sharing private data. Unlearnable datasets differ from privacy protection, as the task is to make

the dataset non-usable by any model.

Unlearnable Datasets: There have been significant research in developing methods to create

unlearnable datasets. [53] introduced an error-minimizing noise that reduces the training error

of a class to zero, which prevents the model from learning useful features from those examples.

Targeted Adversarial Poisoning (TAP) [40] use error-maximizing noises as data poisons to attack

the model. Neural Tangent Generalization Attacks [122] generates label attacks to detoriorate

the generarlization capability of models trained on such data. Robust Error Minmization (REM)

[43] is a method to produce unlearnable datasets that are robust to adversarial training. REM
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uses a model to generate noise directly for the adversarial examples, rather than clean data.

CUDA [98] applies a class-wise noise in the fourier domain for all the samples based on a private

key for each class. This tricks the model to not learn any useful information and hence affects

generalization. [39] propose a method to train a robust surrogate model and use it to generate

noise for unlearnable datasets.

6.2.1 Limitations of existing works

Important characterstics of unlearnable datasets include robustness to adversarial training,

high data quality and low time and compute for creation. CUDA addresses an important problem

of expensive time compute needed in previous unlearnable dataset creation methods such as

REM. However, due to convolving noise over the entire data sample makes CUDA not applicable

for practical purposes.

Moreover, existing methods focus dominantly on image datasets. To our best knowledge,

we are the first to extend the concept of unlearnability to audio datasets. Methods such as CUDA

do not work well in case of temporal data, as applying noise over audio heavily corrupts the

data. For example, when an user uploads an audio/music sample on the internet, they would not

want to upload a noisy/jittery audio and would like to preserve the quality of the audio/music

sample as much as possible. CUDA blurs out the entire audio sample leading to extremely

incomprehensible audio samples.

6.3 PosCUDA

We formally motivate the problem of PosCUDA in the context of N-class classification

problem.

Problem: Given a clean training dataset DT = {xi,yi}n
i=1 and a clean testing dataset Dte,

a performance objective Pθ (DT ) denoting the performance of a classification model with

parameters θ on dataset DT , our goal is to create an unlearnable dataset D̂T = {x̂i,yi}n
i=1.

The attacker trains a model with parameters θ̂ on D̂T . The objective of PosCUDA is to ensure
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Figure 6.1. PosCUDA for Audio data: For each of the classes i,j, different patches of audio
are passed through a low-pass filter unique to each class. This embeds a small class dependent
positional noise in each data sample in the training set. The model learns to map these positional
blurs to the labels, failing to generalize in the absence of blurs in the test dataset.

that P
θ̂
(Dte)≪ Pθ (Dte) and F(D̂T ,DT )≃ 0 is satisfied, where F(D̂T ,DT ) is a similarity score

between the two datasets.

6.3.1 PosCUDA: Algorithm

In this section, we formally explain the PosCUDA algorithm to create unlearnable

datasets. PosCUDA applies positional blurs to each data sample. The position of the blur and

the filter is determined by a private key for each class. This means that only a small region of

the data sample is affected by the blur and majority of the original quality is retained, making it

usable for practical purposes. Moreover, there are multiple relationships to the label embedded

in the data i.e both the noise and the position of the noise. Hence, adding a very small amount of

noise should be sufficient.

For a given audio data sample belonging to class i, we first extract a small patch of the

audio of patch size p. The location of the patch is specified by a parameter pos(i) denoting
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the position to extract patch for each class i. PosCUDA uses 1-D convolutional filters fi of

size k for each class i. These filters are randomly generated for each class based on a private

key. We generate these filters from U(0,b) where b is the blur factor. These filters act like

low-pass filters for the audio sample. The main assumption is same as that in CUDA, these keys

should not be leaked. These filters are applied at the extracted patches for each data sample. We

convolve 1D filters to apply these blur filters over the patch. For instance, consider an audio

sample xi = a1,a2, . . . ,aN belonging to class i. Let’s assume the location of the patch for class

i is pos(i) = 100, patch size p = 80, then we first extract the patch of size 1× 80 starting at

position 100, i.e a100,a101, . . . ,a180 of the sample xi. This means that only a small portion of the

audio, in this case, a small patch of 1×80 gets blurred, while the remaining of the image retains

the original quality.

Understanding PosCUDA: The main motivation behind PosCUDA is that majority of the machine

learning models such as LSTM, Transformers or CNNs learn spatio-temporal relationships in

the data. After injecting positional noise, these models are easily able to map the different

blurs/noises applied at different positions to the label immediately, failing to generalize to unseen

data.

Table 6.1. Test Accuracy and FAD scores of PosCUDA on SpeechCommands and FSDD
datasets.

Dataset Architecture Clean
Ours(w/ pos) Ours FAD

b = 0.01 b = 0.3 b = 0.01 b = 0.3 b = 0.01 b = 0.3
CNN 90.52 82.30 67.33 7.14 7.30

SpeechCommands LSTM 90.74 84.63 12.95 18.32 12.12 5.61×10−4 5.65×10−4

Transformer 66.80 62.29 13.50 60.77 32.29
CNN 90.89 47.10 29.80 15.51 10.04

FSDD LSTM 96.00 45.67 42.11 32.44 22.78 2.21×10−5 2.25×10−5

Transformer 91.83 72.67 53.89 62.78 48.11

6.4 Experiments

In this section, we first demonstrate the effectiveness of PosCUDA on different audio

datasets and various input representations. We also validate PosCUDA empirically on different

68



classification models. We then conduct analysis on the quality of the unlearnable datasets we

generate using our method. Finally, we also prove the robustness of PosCUDA under different

data augmentation settings.

Datasets: We use two main datasets for our experiments:

• Speech Commands: SpeechCommands dataset consists of over 100,000 audio samples

belonging to 35 classes. Each sample has approximately one second of audio.

• Free Spoken Digit Dataset: FSDD datasets consists of 6 speakers and over 3000 samples.

Each samples belongs to one class between (0-9).

Architecture: It is important to test the robustness of PosCUDA across multiple

architecture choices for audio classification. We also experiment with different input representations

such as using raw audio or MFCC co-efficients to validate the robustness of our approach. We

run experiments with the following architectures:

• M5: We use the M5 CNN architecture from [23] as one of the networks for audio

classification. The M5 architecture consists of a series of 1D convolutions with batch

normalization and max pooling. The model takes in raw audio waveform as input.

• LSTM: For the LSTM architecture, we extract the MFCC co-efficients for the audio. We

use a one layer LSTM with 128 hidden units for our analysis.

• Transformer: We use a sequence of Encoder blocks from [110]. For our audio classification

task, we use one encoder block with 8 heads and an embedding dimension of 256.

Evaluation: We evaluate the effectiveness of PosCUDA primarily on two aspects: 1) Accuracy

and 2) Frechet Audio Distance (FAD)[60]. The FAD score is similar to Frechet Inception Distance

[50] for images. First embeddings of both the clean audio dataset and PosCUDA’s polluted

dataset is computed using a pretrained model. We use PANN [63] to calculate embeddings. FAD

is computed by estimating the Fréchet distance between multivariate Gaussians estimated on
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these embeddings. The lower the FAD score, the more close the polluted dataset is to the clean

dataset, with a score of 0 meaning both the datasets are identical.

Baselines: To our best knowledge, we are the first to introduce the concept of unlearnability for

audio datasets. We introduce another variant of our method without the positional blurs, i.e the

low-pass filter operates on the entire data sample. This helps in higlighting the importance of

positional blurs.

Implementational Details: We run every experiment for 100 epochs. We use filter size k = 80

and a patch size of p = 240 for all our experiments. The blur parameter is a hyperparemeter that

can be tuned. We experiment with two settings: a low blur parameter of b = 0.01 and a high blur

parameter of b = 0.3 for both the datasets. We pollute only the training set for all datasets and

keep the test dataset unpolluted. We set the batch size to 128 and learning rate to 0.01.

6.4.1 Analysis

Table 6.1 shows the performance of PosCUDA compared to other baselines. PosCUDA

achieves a low test score on the clean test dataset by a large margin compared to without

position variant and the unpolluted dataset. For instance, PosCUDA(b = 0.01) achieves a test

accuracy of 7.12% while the clean test accuracy is 90.52 while not using positional blur achieves

82.30%. We also see that PosCUDA achieves a low test performance across a wide variety of

model architectures such as CNN, LSTM and Transformers, while also being robust to different

audio representations such as raw waveforms and MFCCs. An interesting observation is that

Transformer architecture performs better compared to other architectures on unlearnable datasets.

For example, on the FSDD dataset, the transformer architecture achieves a test accuracy of

48.11% using PosCUDA(b = 0.3) polluted train set, while CNN and LSTM architectures achieve

only 10.04% and 22.78% respectively. Transformer architectures also perform slightly better

when using the without positional blur variant on the SpeechCommands dataset. Table 6.1 also

shows the FAD score to compare the quality of the audio samples. As we can see, PosCUDA

retains the maximum quality and achieves a very low FAD score of 2.2x10−7 (close to 0). This
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suggests that PosCUDA provides a very strong unlearnable dataset while maintaining the quality

as identical to the original dataset, making it useful for practical purposes.The FAD score also

slightly increases when the blur factor is increased to b = 0.3 but this increase is negligible

(0.01× 10−5), again validating the importance of positional blurs. Additionally, we observe

that the unlearnability efffect increases with increase in the blur parameter. For instance in

both the variants, the test accuracy for FSDD decreases as the blur parameter is increased to

0.3. However, PosCUDA achieves a lower test accuracy due to the positional filters. With the

same blur parameter of 0.3, PosCUDA achieves a 10.04% accuracy for CNN architecture, while

non-positional variant achieves 29.80%.

Inorder to validate the hypothesis that PosCUDA maps both the position and the noise to the label,

we construct a polluted test dataset for both FSDD and SpeechCommands. The polluted test

dataset is constructed in the same manner as the polluted training set, i.e the same positional blurs

are applied to each data sample in the test set according to its class. We observe that PosCUDA

achieves a 99.8% in the test dataset under the CNN architecture. This shows that the model has

succesfully learnt the mapping between the positional blurs and the corresponding classes. We

also try to mix the positional blurs for each class, i.e use the positional blur corresponding to

class 1 for class 2 and so on. On such a polluted dataset, the model fails again with a very low

test accuracy. This further validates our claims and proves the robustness of PosCUDA. It is not

easy for an attacker to randomly add noise at any position and break the unlearnability effect.

6.5 Threats

Unlearnable datasets face attacks from malicious attackers by attempting to bypass

the preotection mechanisms. In this section, we discuss different threat models/scenarios for

PosCUDA.

Attack 1. Attacker figures out locations of noise in the data. The attacker can then perturb

data during inference at the same locations.
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Defense: PosCUDA entangles both the position of the noise and the noise’s private key to the

label. Since we use a very small blur factor of 0.01, it is not trivial to exactly find the location

of the noise. Even if the attacker figures out the location, it is not easy to replicate the original

noise used. We simulated an experiment where the attacker hypothetically figures out the exact

locations of the noise for each class and adds random noise to the data, but the model did not

perform well on the test dataset.

Attack 2. Attacker collects the original unprotected dataset and the protected datasets to

train a conditional generative model to recover the position and the noise.

Defense: It its important for the defender to delete or store the original dataset in a safe place

in order to prevent access to the original data. Another strategy can be to regularly change the

protection mechanism (different locations and private keys) in case the original dataset is leaked.

Attack 3: Attacker applies random blur/noise to the data to try mimic the protection of

PosCUDA

Defense: Unless the attacker obtains the private key of the noise and the locations of the noise

for each class label, it is not possible to mimic the protected dataset. We run experiments with

random noise added to the test dataset and the model performed poorly on the test dataset.

6.6 Limitations and Future Work

While PosCUDA provides strong robust unlearnable audio datasets, the algorithm has

a few limitations. PosCUDA is not ideal for long audio/musical signals, as the attacker can

remove the region of noise and use the remaining data for training models. PosCUDA also

works only for supervised discriminative models and the effect on unsupervised models is a

good future direction to pursue. Another interesting direction would be to extend PosCUDA to

generative models. Since most of the generative models such as GANs depend on some form of

discriminative models, methods such as PosCUDA can be a good tool to achieve unlearnability.
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distance: A reference-free metric for evaluating music enhancement algorithms. In
INTERSPEECH, pages 2350–2354, 2019.

[61] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.
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