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Abstract

We present three works on Interacting Particle Systems where some form of non-linearity arises.

In the context of the description of Non-Equilibrium Steady States (NESS), we formulate a Matrix

Product Ansatz in order to describe the NESS of a process defined on the lattice ΛN = {1, . . . ,N},

evolving as the SSEP in {2, . . . ,N − 1} and coupled with two-site reaction-diffusion processes at the

boundaries, acting on the pairs of sites {1,2} and {N − 1,N}. These pairs of sites can take four different

states each, leading to 12 possible transitions between them. We derive a set of constraints where

the underlying quadratic algebra is consistent, which are related with the correlation of the reservoirs,

present the representation of the objects in the formulation, and provide examples of rates satisfying

these constraints.

In the second work, our focus is in generalizing the Porous Media Model (PMM), associated with the

hydrodynamic equation ∂tρ = ∂2
uρ
m for m ∈ N+, into a universal exclusion family parametrized by m ∈ R,

and, in particular, representing the transition from the slow diffusion regime (m > 1) to the fast diffusion

regime (m < 1). We successfully treat the case m ∈ (0,2), encompassing the phase transition m = 1, in

this manner deriving the Porous Media Equation in the range m ∈ (1,2), and the Fast Diffusion Equation

for m > 0.

Next, we generalize the PMM in another direction: constructing the diffusion coefficient D(ρ) = ρn(1−

ρ)k with n, k ∈ N+. The generalized PMM that we introduce is a gradient model that inherits theoretical

properties from PMM, as, for instance, the presence of mobile clusters and blocked configurations. The

construction of the model is indirect and delicate, in order to maintain the gradient property. We then

generalize this into a long-range dynamics inheriting the gradient property. The long-range generalization

of the dynamics is simple and can be applied to any exclusion process.
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Resumo

Apresentamos três trabalhos em Sistemas de Particulas em Interação com natureza não-linear.

No contexto da descrição de estados estáveis fora do equilíbrio, reformulamos um Matrix Product

Ansatz de modo a descrever um processo definido no reticulado ΛN = {1, . . . ,N}, evoluindo como o

SSEP em {2, . . . ,N} e acoplado com processos de reação-difusão que atuam em dois pares de sítios na

fronteira, {1,2} e {N − 1,N}. Esses pares de sítios podem estar em quatro estados cada, num total

de 12 possíveis transições entre eles. Derivamos um conjunto de restrições onde a algebra subjacente é

consistente, que estão relacionadas com a correlação dos reservatórios, apresentamos a representação dos

objetos na formulação, e damos exemplos de taxas que satisfazem essas restrições.

No segundo trabalho o nosso foco é em generalizar o Modelo em Meios Porosos (MMP), associado

à equação hidrodinâmica ∂tρ = ∂2
uρ
m com m ∈ N+, para uma família de processos de exclusão universal,

parametrizada por m ∈ R, e, em particular, representar a transição entre o regime de difusão lenta (m > 1)

e o de difusão rápida (m < 1). Fomos bem sucedidos para m ∈ (0,2), incluindo assim a mudança de fase

m = 1, e desta forma derivando a Equação em Meios Porosos, para m ∈ (1,2), e a Equação de Difusão

Rápida para m > 0.

Posteriormente, generalizamos o MMP noutra direção, construindo o coeficiente de difusão D(ρ) =

ρn(1 − ρ)k com n, k ∈ N+. O MMP generalizado que introduzimos é um modelo gradiente que herda

propriedades teóricas do MMP, como a presença de ”mobile clusters" e configurações bloqueadas. A

construção do modelo é indireta e delicada, de modo a manter a propriedade gradiente. Generalizamos

então esse modelo para uma dinâmica de saltos longos herdando a propriedade gradiente. A generalização

para saltos longos é simples e pode ser aplicada a qualquer processo de exclusão.

Palavras Chave

Matrix Ansatz, Limite Hidrodinâmico, Difusão não-linear, Modelos Gradiente, Modelo em Meios

Porosos

iii





Para a minha Mãe, o meu Pai e a minha Namorida.





Acknowledgments

I would like to thank my supervisor, Patrícia Gonçalves, for this experience over the last six years,

since my MSc. For the mentorship, trust, and interest in my work, but above all, for her dedication to

me. I am grateful for having been her student and for learning so much about mathematics and research

from her. Her insights and discussions were essential for the development of this manuscript.

I would like to acknowledge my sincere appreciation to my co-supervisor, Marielle Simon, for her

support both personally and academically, for her many suggestions in all the works throughout my

Ph.D., and specially for dedicating her time. In particular, I am grateful for all the in-person discussions,

and I would like to express special thanks for the insights shared regarding the work in Chapter 4.

I want to express my thanks to Gunter Schütz for both meeting and working with him. His collabo-

ration on the work in Chapter 2 was crucial for its development and personally very rewarding. I learned

greatly, and his attitude towards research influenced all the subsequent works in this thesis.

A special thanks to the organization of SPSAS 2022, which not only provided an excellent academic

experience but also a wonderful personal one, allowing me to reconnect with old friends and visit my

home country. With no doubt, it is a memory I will keep.

To the Department of Mathematics, Instituto Superior Técnico, and all of its faculty and staff. It is

interesting to look back and realize that I spent a decade here. I would like to tell the once struggling

"freshman" that he will endure, teach and pursue a doctorate – he would probably laugh in my face! I

am very grateful for having been formed by this department, for having had the opportunity to be a

student of founding professors, and for the dedication of the faculty in shaping mathematicians. I extend

my gratitude to the Statistics group, also for the opportunity to teach.

Additionally, I want to thank deeply my parents, Simone and Otaviano for their immense support,

Sara and Bárbara to which I also extend this gratitude; and finally to Hugo and André for the friendship

and many Pokémon games.

As a final acknowledgment, I want to thank the members of the jury for accepting to referee this

dissertation, and for their dedicated commitment of time.

I have also been very fortunate regarding funding. I want to thank the Lismath program, and

consequently, FCT/Portugal, for funding my Ph.D. and for the meetings with my co-supervisor. The

latter was also made possible thanks to Programa PESSOA cotutelas. I also acknowledge funding from

Lismath and CAMGSD for attending and presenting my work in multiple national and international

conferences. Additionally, I thank inria Lille for the funding in the final stages of my Ph.D.

vii





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Scientific context and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Matrix Product Ansatz for the SSEP with extended boundary. 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Statement of the results and general strategy . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 SSEP with generalized boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Well-posedness of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Matrix Product formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Change of basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Consistency conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.5 Fixing the inner products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Characterization of the consistency relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Family L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Family F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.3 Family H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Density and reservoirs correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 From exclusion to slow and fast diffusion 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Main result and strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Microscopic models and Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 The interpolating model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Characterization of the interpolating family . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Properties on the rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.4 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Proof of Theorem 3.2.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



3.3.1 Tightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Characterization of limit points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Energy Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Generalized Porous Media Model 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.1 Main result and strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.2 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Microscopic Models and Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Generalized Porous Media Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.2 Simplification of h(n,k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.3 Comments on the Hydrodynamic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Long-range dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.1 Long-range basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 The fractional process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Conclusions and Future Work 113

A Matrix Product Ansatz for the SSEP with extended boundary. 117

A.1 Coefficients in the boundary algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2 Product Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.3 Computing ϕN(1,2) from the stationary equations . . . . . . . . . . . . . . . . . . . . . . . 120

A.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.4.1 Family N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.4.1.A Full dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.4.1.B No annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.4.1.C No Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.4.2 Family L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.4.2.A Model I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.4.2.B Model II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.5 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B From exclusion to slow and fast diffusion 132

B.1 Replacement Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.1.1 Replacement Lemmas for m ∈ (1,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.1.2 Replacement Lemmas for m ∈ (0,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.2 PDE results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.2.1 Slow diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.2.2 Fast diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.3 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

x



C Generalized Porous Media Model 149

C.1 Case n, k = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.1.1 Linear system characterizing the gradient property. . . . . . . . . . . . . . . . . . . . 156

C.1.2 Linear system characterizing the potential’s invariance. . . . . . . . . . . . . . . . . 157

C.2 Regularity of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.3 Convergence of the fractional operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Bibliography 167

xi





List of Figures

1.1 SSEP transition rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 PMM transition rates for m = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 PMM(2) valid local configurations for which a particle swaps positions in the edge {0,1}. 50

3.2 PMM(1) transition rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 PMM(1) transition rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Configuration with a(τnη)s(k)j (τnη) = a(τn+1η)s(k)j−1(τn+1η) = 1 and p fixed. . . . . . . . . . 56

3.5 Configuration belonging to Ω2,4
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Evolution of c̃N(x0, x1,m) for `N = 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Plot of Dn,k(ρ) for different values of n, k ∈ N+. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 PMM(2,2) transition rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Configuration corresponding to the maximum rate, for the PMM(2,1). . . . . . . . . . . . 82

4.4 Long-range extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 From nearest-neighbour to long-range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 PMM2(2,1) rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.1 ` = 0 ∶ Construction of the map ψ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.2 ` = 1: Construction of the map ψ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

C.3 Plot of V (⋅, y) with y fixed and n = 2, k = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

C.4 Plot of V (x, ⋅) with x fixed and n = 2, k = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xiii





List of Tables

1.1 Two-site reaction-diffusion on the bods {1,2} and {N − 1,N} and their respective rates. 4

2.1 Left-boundary dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Right-boundary dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Two-site reaction-diffusion on the pairs of sites {1,2} and {N − 1,N} and their rates. . . . 10

4.1 Windows where the constraints are imposed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Sets corresponding to the sites with flipped occupation (η−j+Pij ). . . . . . . . . . . . . . . . 89

C.1 Windows where the constraints are imposed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.2 Sets corresponding to the sites with flipped occupation (η−j+Pij ). . . . . . . . . . . . . . . . 150

C.3 ` = 0: Sets generated by {−j + [Mj/Pij] ⊔Q`ijq}(i,j)∈I`×J,1≤q≤(k`). . . . . . . . . . . . . . . . . 151

C.4 ` = 0: Sets resulting from the multiplication with η(0). . . . . . . . . . . . . . . . . . . . . . 151

C.5 ` = 0: Sets resulting from the multiplication with η(1). . . . . . . . . . . . . . . . . . . . . . 151

C.6 ` = 0: Sets resulting from the removal of the first layer of translations, each associated with

multiplying by η(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.7 ` = 0: Sets resulting from the removal of the first layer of translations, each associated with

multiplying by η(0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.8 ` = 0: Sets associated with the multiplication by η(0) translated to the origin. . . . . . . . 152

C.9 ` = 0: Sets associated with the multiplication by η(1) translated to the origin. . . . . . . . 152

C.10 ` = 0: Equivalence classes of indexes and the corresponding "A−set". . . . . . . . . . . . . . 153

C.11 ` = 1: Sets resulting from the multiplication with η(0). . . . . . . . . . . . . . . . . . . . . . 154

C.12 ` = 1: Sets resulting from the multiplication with η(1). . . . . . . . . . . . . . . . . . . . . . 154

C.13 ` = 1: Sets resulting from the removal of the first layer of translations, each associated with

multiplying by η(0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.14 ` = 1: Sets resulting from the removal of the first layer of translations, each associated with

multiplying by η(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.15 ` = 1: Sets associated with the multiplication by η(0) translated to the origin. . . . . . . . 155

C.16 ` = 1: Sets associated with the multiplication by η(1) translated to the origin. . . . . . . . 155

C.17 ` = 1: Equivalence classes of indexes and the corresponding "A−set". . . . . . . . . . . . . . 155

C.18 n, k = 2: Particular solution of the extended system. . . . . . . . . . . . . . . . . . . . . . . . 159

xv





1
Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Scientific context and contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3

1



1.1 Motivation

This thesis is a collection of three works in the context of Interacting Particle Systems, where technical

difficulties arise due to various forms of non-linearity. In order to present our results, serving also as a

brief introduction, it is convenient to introduce a seminal model, the Symmetric Simple Exclusion Process

(often shortened as SSEP), that is related either directly, or indirectly, to all the models that will be

introduced in the following chapters.

Let N+ be the set of positive natural numbers and fix a natural number N ≫ 1. We denote by TN
the one dimensional discrete torus, that is, TN = {1, . . . ,N} with the identification 0 ≡ N . Each element

x ∈ TN is called a site, and each unordered pair {x, y} ⊂ TN is called a bond. For a configuration η and

a site x, we denote by η(x) the occupation at site x. For the SSEP and the models that will be studied

throughout this thesis, η(x) ∈ {0,1} and we interpret η(x) = 1 as the site x being occupied by a particle,

while η(x) = 0 as the site x being empty. The property that at each site the occupation is at most one is

called in the literature as the exclusion constraint.

The SSEP, as well as all forthcoming models, are Markov Processes. In simple terms, they are

stochastic processes that model a ”goldfish memory" – where the probability of observing a future state

depends solely on the present state. Formally, to each bond comprised by two neighboring sites, say

{x,x + 1}, a Poisson process is associated to it with parameter η(x)(1 − η(x + 1)) + η(x + 1)(1 − η(x)),

where for each bond the Poisson processes are independent. These independent Poisson processes are

named Poisson Clocks, and the probability of two clocks ringing at the same time, with respect to the

Lebesgue measure, is zero due to the continuity of the exponential random variable and independence

of the clocks. These Poisson processes dictate the stochastic evolution in the following way. Writing ηt
for the configuration at time t > 0, if a clock at {x,x + 1} rings at time t and ηt(x) + ηt(x + 1) = 1, the

occupations at the sites x and x + 1 exchange (ηt+(x) = ηt(x + 1), ηt+(x + 1) = ηt(x)); otherwise, which

is the case when both sites x and x + 1 are either occupied or empty, nothing happens. In this way, this

simple process is symmetric (there is no bias in the direction of the jump – left or right) and satisfies the

exclusion constraint. This dynamics is illustrated in Figure 1.1.
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Figure 1.1: SSEP transition rates.

This process was first introduced in [35] as a mathematical model in the field of statistical mechanics, in

the 70s, by Spitzer, as a particular case of a more general family of interacting particle systems. Concrete

applications of the previously described (and other models) can be easily found in the literature. We

refer the reader to [33] for the presentation of the SSEP as a model for the motion of a polymer chain,

and applications of its asymmetric version and other lattice gas models.

Since the introduction of the SSEP there has been a large variety of works on this model, and many
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other related processes, each exhibiting particular features of interest. The spectrum of models is re-

markably diverse, being present in the literature dynamics that span from short to long-range interaction

[7, 25], the occupation number may be discrete unbounded (as in the classical Zero Range model intro-

duced in [35] and reviewed, for instance, in [26]), bounded (as in the SSEP(α), where the dynamics is

similar to the SSEP but the occupation is constrained to be no larger than a fixed α ∈ N+) continuous

[15, 18, 37], and one can consider creation and annihilation of particles through Glauber processes or

varied types of boundary dynamics [1, 3, 5, 17, 29]. The fundamental question of interest is how critical

phenomena arise from the collective behaviour of a large number of interacting agents. A few classical

books on the subject related to the work in this manuscript are [26, 36]. The former is focused on an

analytical approach based on the differential entropy which describes, besides many other methodologies,

the entropy method (introduced in [23]) that we are going to apply in Chapters 3 and 4 of this thesis.

The book [36] focuses on the phenomenology of the models and is very physics oriented. We highlight

that the work presented in Chapter 4 of this thesis is reminiscent of the exposition in the brief subsection

on the gradient condition, [36, Subsection 2.4]. We shall now discuss briefly the scientific context of the

results in this thesis. A more formal and detailed presentation will be given as an introduction to each

of the subsequent chapters.

1.2 Scientific context and contributions

The work in Chapter 2 lives in the context of describing Non-Equilibrium Steady States (NESS),

which are states of a system far from equilibrium but where a stable state is maintained through a

constant flow of information. We investigate the applicability of the Matrix Product Ansatz (MPA) on

the description of the open boundary SSEP coupled with generalized reservoirs. The MPA was first

introduced in the context of Interacting Particle Systems in [11], where the authors provide exact results

regarding the steady state of the open boundary, one dimensional Totally Asymmetric Exclusion Process,

discuss generalizations for the ASEP (see [4, Section 3] for a complete study) and the case of second-class

particles (see also [4, Section 7]). Beyond the previously referenced review article, we also direct the

reader to [33, Chapter 1] for an introduction to exactly solvable models.

Avoiding a rigorous mathematical introduction on the subject, the formulation corresponds to a

natural generalization of a product measure – the probability of observing any specific configuration in

the stationary regime is formulated involving an ordered product of matrices, each corresponding to the

occupation at a specific site. Precisely, writing µssN for the stationary measure, the starting point is that

there exists a column and a line vector, ∣V ⟩ and ⟨W ∣, respectively, and matrices Di,Ei for i ∈ ΛN , such

that

µssN (η) = Z−1
N ⟨W ∣

N

∏
i=1
[Diη(i) +Ei(1 − η(i))] ∣V ⟩ , (1.1)

where ZN is a normalization constant. These matrices, that can be of infinite dimension, belong to

an algebra induced by the dynamics. In [28] the authors prove that in one dimension, under nearest-

neighbour interactions in the bulk, and reservoirs acting only on the first and the last site this formulation

is not an ansatz and the stationary state can always be written in that way. For different dynamics, one
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must justify that the objects, satisfying the corresponding algebra, do exist. The goal is to study quantities

of interest of the system (as the current, correlation functions, etc . . . ), however, a representation of the

matrices may not be straightforwardly obtainable, or might be too complex to compute any quantity in

a simple way. None of these issues hold for the description of the SSEP defined on the lattice ΛN ∶=

{1, . . . ,N} coupled with reservoirs at the boundary (sites 1 and N) that create and annihilate particles.

A study is presented in [10, Section 6], and it turns out that the underlying algebra is simple enough to

compute physical quantities without resorting to a specific representation (we will be more concrete about

this in Chapter 2). These reservoirs are, in some sense, a natural continuation of the bulk dynamics.

When the reservoirs act on more than one site at each boundary the picture changes non-trivially. We

consider reservoirs acting on two sites at each boundary. At the those sites, reaction-diffusion processes

dictate the dynamics, leading to 12 positive transition rates, presented in Figure 1.1.

Left-boundary Process Rate
Diffusion 1→ 2 ∣10→ ∣01 a23
Diffusion 2→ 1 ∣01→ ∣10 a32
Pair annihilation ∣11→ ∣00 a14
Pair creation ∣00→ ∣11 a41
Fusion on 1 ∣11→ ∣10 a34
Fusion on 2 ∣11→ ∣01 a24
Branching to 1 ∣01→ ∣11 a42
Branching to 2 ∣10→ ∣11 a43
Death on 1 ∣10→ ∣00 a13
Death on 2 ∣01→ ∣00 a12
Birth on 1 ∣00→ ∣10 a31
Birth on 2 ∣00→ ∣01 a21

Right-boundary Process Rate
Diffusion N → N − 1 01∣ → 10∣ b23
Diffusion N − 1→ N 10∣ → 01∣ b32
Pair annihilation 11∣ → 00∣ b14
Pair creation 00∣ → 11∣ b41
Fusion on N 11∣ → 01∣ b34
Fusion on N − 1 11∣ → 10∣ b24
Branching to N 10∣ → 11∣ b42
Branching to N − 1 01∣ → 11∣ b43
Death on N 01∣ → 00∣ b13
Death on N − 1 10∣ → 00∣ b12
Birth on N 00∣ → 01∣ b31
Birth on N − 1 00∣ → 10∣ b21

Figure 1.1: Two-site reaction-diffusion on the bods {1,2} and {N − 1,N} and their respective rates.

In the previous figure, the second column of each table represents the transition between two local

configurations at a specific boundary: the ”∣ ⋅ ⋅” (resp ”⋅ ⋅ ∣”) represents the left-boundary (resp. right-

boundary), and the subsequent binary numbers represent the occupation value of the sites 1 and 2 (resp.

N − 1 and N). For example, ∣11 → ∣10 corresponds to a fusion into the site 1, that occurs with expected

rate a34 ≥ 0.

The presence of these two-site reaction-diffusion processes only at the boundary is a novelty – in [34]

the author introduced and studied in detail the dynamics comprised by these processes acting on the

whole lattice. Motivated by the same aforementioned work, we classify the boundary dynamics as linear

and non-linear, depending on whether the rates satisfy specific equations or not (see Definition 2.2.5 and

the discussion just before it). To be concrete, we say that the left-boundary is linear if the rates satisfy

the equations

a13 + a23 + a31 + a41 = a14 + a24 + a32 + a42,

a21 + a32 + a41 + a12 = a14 + a23 + a34 + a43,

and we refer to it as non-linear otherwise. These conditions arise in the equation for the stationary

density, and lead to the cancellation of the non-linear terms, thus closing the equation. It turns out that

this notion of linearity is related to the representation of the model, as we shall explain shortly. We also
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note that a matrix approach for models where the reservoirs act on a pair of sites (as the bulk dynamics) is

a novelty. In [27] the authors provided examples for the ”opposite" case, when the local nearest neighbour

dynamics depends on the occupation value of one site more than the boundary dynamics.

The formulation for the 1−site boundary case (corresponding to the homogeneous choice Di =D and

Ei = E for any i as in (1.1)) case does not encapsulate enough information of the dynamics in order to be

applicable to our 2−site case. The reason for this is that it indirectly assumes that the expected current

either in a node in the bulk or at the boundary is the same. We consider specific matrices associated

with the sites 1 and N and obtain a system of non-linear equations characterizing the consistency of the

underlying algebra. We analyse this set of constraints, and relate them with the correlation-function of

the boundary reservoirs. Our emphasis lies in investigating if the underlying algebra is well-defined, and

understanding the resulting constraints. No information about the representation, beyond the invertibility

of a specific infinite matrix throughout some parts of our analysis, is assumed. The entries of the

aforementioned inverse matrix are provided in terms of a system of recurrence relations, that we could

not solve explicitly.

The works in Chapter 3 and 4 are intertwined, although not in an obvious way. We focus now

on Chapter 3. A typical question in the field of statistical mechanics is related to the derivation of

the macroscopic evolution equations from the stochastic dynamical interaction of microscopic particles.

Coincidentally, this is at the heart of the aforementioned "description of the collective behaviour of a large

number of agents". There has been a remarkable progress in the derivation of these equations, which

are partial differential equations (PDEs), governing the space-time evolution of the conserved quantities

of the microscopic system. These equations are referred to as Hydrodynamic Equations, obtained as

Hydrodynamic Limits, i.e., scaling limits in which the system of particles behave as a continuous "fluid"

– thus justifying the terminology.

An equation which has received a lot of attention in the last years in the PDE’s community is the

following equation, that we pose for every (t, u) ∈ R+ ×T where T is the one-dimensional torus [0,1) with

0 ≡ 1: it is given, for m ∈ R/{0}, by

∂tρ = ∂2
u(ρm), (t, u) ∈ R+ ×T. (1.2)

This is a parabolic equation, with diffusion coefficient given by D(ρ) = mρm−1. For m > 1, (1.2) is the

porous medium equation, referred to as PME; for m = 1 it is the heat equation (HE), while for m < 1 it

belongs to the class of fast diffusion equations, and in this case we will refer to it as FDE. The rigorous

analysis of (1.2) has attracted a lot of interest in the past decades, we refer the reader to [38] for a review

on this subject.

From the particle systems’ point of view, the rigorous derivation of (1.2) has been successfully achieved

for particular values of m, in several different ways. The HE has been obtained as the hydrodynamic limit

of the local empirical average of particles evolving according to the SSEP (see, for example, [26, Chapter

4]). In [21], the authors derived the PME, for any integer value of m ≥ 2, by considering an exclusion

process with degenerate rates. More precisely, particles evolve on the discrete torus TN according to

the exclusion rule, but the jump rate depends on the number of particles in the vicinity of the edge
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where the jump occurs. To be concrete, if, for example, m = 2, then the jump rate from a site x to

the site x + 1 is given by η(x)(1 − η(x + 1))(η(x − 1) + η(x + 2)) and the rate from x + 1 to x is given

by η(x + 1)(1 − η(x))(η(x − 1) + η(x + 2)). This means that for a jump from x to x + 1 to happen, one

imposes to have at least one particle in the vicinity {x − 1, x + 2}, as in Figure 1.2. We note that this

requirement does not characterize completely the rate – as the rate can be positive but taking different

values depending on the local configuration. In fact, these particular rates were constructed in a way

that makes the process being of gradient type, which is something we will explore in detail in Chapter 4.
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Figure 1.2: PMM transition rates for m = 2.

It is simple to compute the microscopic instantaneous current of the system, i.e. the difference between

the jump rate from x to x+1 and the jump rate from x+1 to x, which is equal to (η(x)−η(x+1))(η(x−1)+

η(x+ 2)). This microscopic current can be rewritten as a discrete gradient of some function h(η), which

in general is referred to in the literature [36, Subsection 2.4] as the gradient property. In fact, the choice

for those specific rates was made in order to have this property, so that classical methods can be explored

without too many complications, see [26, Chapters 5 and 6]. Since particles only swap positions on the

torus, the number of particles is conserved by the dynamics. The PME (1.2) with m = 2 has then been

obtained as the hydrodynamic limit of the empirical density of particles. This rationale was extended

to any integer m ≥ 2, and the resulting microscopic system is now called the porous medium model, that

we denote by PMM(m − 1). Later in [5], the same PME for any integer m ≥ 2 has been obtained on

the interval [0,1], with different types of boundary conditions (Dirichlet, Robin and Neumann), again

as the hydrodynamic limit of the same constrained exclusion process, but in contact with stochastic

reservoirs, which inject and destroy particles at the two extremities with some rate which is regulated by

a parameter, giving rise to the aforementioned boundary conditions.

Another approach had previously been developed in [15, 18, 37]. The porous medium equation, when

m = 2 was derived in [15, 37] from a model in which the occupation number is a continuous variable

(therefore belonging to another class of models). More precisely, the model consists of configurations of

"sticks" or "energies"; the configurations evolve randomly through exchanges of stick portions between

nearest-neighbours through a zero-range pressure mechanism, and the conservation law is the total stick-

length. Later in [18] the authors extended the derivation of the hydrodynamic limit from the previous

model, and obtained the PME for all range m > 1.

Concerning the fast diffusion case, few results are available in the literature. In [24] the FDE, with

m = −1, has been derived as the hydrodynamic limit of a zero-range process (the number of particles per

site can be any non-negative integer) evolving on the discrete torus, with a jump rate function adjusted to

observe frequently a large number of particles, with a specific "weight" associated with each particle. The

formalization of the hydrodynamic limit was achieved by using Yau’s relative entropy method (introduced
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in [39] but also presented in [26]) with some adaptations including spectral gap estimates. The derivation

of the FDE for general m < 1 was left there as an open problem, that we partially solve for m ∈ (0,1) in

the exclusion context.

Here, we address two questions: first, how can we generalize the family of PMMs, namely exclusion

processes, to m not being an integer? Second, due to the different nature of the interacting particle

systems constructed to derive (1.2) under the slow-diffusion regime and the fast-diffusion regime, is there

a single family parameterized by m that interpolates between the slow and the fast diffusion? The first

question regards the construction of a non-integer power starting from a finite, discrete scheme; while

the second allow illustrating a phase transition between the fast and slow diffusion regimes. We give

some answers in the direction of the first question, and a positive answer regarding the second. To be

precise, the construction of our model is an application of the Generalized Binomial Theorem. As a

consequence, the resulting family of models interpolates continuously in m between the SSEP and the

PMM (for m = 2), while also going further into the fast-diffusion regime in the so-called good exponent

range [38], that is m ∈ (0,1), coinciding with the range where the potential ρm is finite at all times.

We now explain the contents of Chapter 4. In this chapter we focus only on the construction of models,

and our goal is again twofold. First, we want to have a better understanding on how to construct gradient

models systematically; next, we want to understand how to generalize a nearest-neighbour dynamics into

a long-jumps dynamics, while maintaining the gradient property of the model. Regarding the first goal,

we aimed at generalizing the PMM into a family of two-parameter, gradient models. Concretely, for each

n, k ∈ N+ we will construct a model referred to as PMM(n, k), that generalizes the PMM(n) in the sense

that PMM(n,0)=PMM(n), while also maintaining relevant properties of the one-parameter PMM family.

In particular, the corresponding hydrodynamic equation for the density is

∂tρ = ∂u(Dn,k(ρ)∂uρ) with Dn,k(ρ) = ρn(1 − ρ)k.

The choice of the PMM family as a starting point was not made without deliberate consideration: as

already mentioned, in Chapter 3 we extend the PMM into a continuous family for the parameter in the

range (0,2), but an extension for (2,+∞) requires the definition of a model associated with the diffusion

coefficient Dn,k(ρ); moreover, we want to understand "how far one can go with gradient models", or to

be precise, our main goal is to construct a family of constraints analogue to the Bernstein polynomial

basis, which would allow deriving the differential equation ∂tρ = ∂2
uH(ρ) for a large class of functions

H ∶ T → R. With this in mind, we introduce in the literature a simple toy model for non-linear, not

monotonic diffusion, and with relevant theoretical properties. We conclude the presentation of the model

with a discussion of the proof of the hydrodynamic limit for the empirical measure.

Regarding the second goal, long-jumps dynamics have been used as a basis for deriving fractional

operators [3, 7, 25]. However, it is not clear how one can start from a nearest-neighbour (n.n) dynamics

and generalize it into a long-range (l.r.) in a "robust" way. To our knowledge the long-range porous media

model introduced in [7] is one of the few examples of a l.r. exclusion dynamics in the IPS literature where

the rate depends on a local configuration around the bond where an exchange is to be performed, and

such that the l.r. dynamics is related to the n.n. one. There are two technical issues with the procedure
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used in [7], when applied to other models: (1) it does not necessarily inherits the gradient property from

its n.n. counterpart; (2) the l.r. rates, when restricted to jumps of length one, do not always coincide with

the original n.n. rates. The first one evidences a gap in the literature regarding a "robust" extension of a

n.n. dynamics; while the second is more of "philosophical" nature, as we want to generalize the dynamics.

We note that (2) was already discussed in [7], being the case for the l.r. version of the PMM(1) but not

the case for any other PMM(n) with 2 ≤ n ∈ N+. Regarding (1), it is indeed the case when extending the

PMM(n, k).

In this manner, we present in Section 4.3 a very simple map to generalize any symmetric, exclusion n.n.

dynamics where the l.r. version inherits the gradient property from the n.n. one, while also interpolating

the n.n. dynamics in the sense previously explained. This map is a consequence of the simple realization

that the gradient property should be lattice-invariant, and for that reason a l.r. dynamics can be seen as

a n.n. dynamics in a stretched lattice. To conclude, we define the fractional Laplacian on the torus and

analyze the correct scaling of its microscopic "version", which elucidates the discontinuity of the time-scale

with respect to γ already known in the literature. We do not present the proof of the hydrodynamic

limit, and focus only on the construction of models.

In Chapter 5, we gather the conclusions from the previously presented works, and discuss both future

projects and those currently in development.
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2.1 Introduction
2.1.1 Statement of the results and general strategy

We formulate a matrix-product state representation of the stationary probability vector of the open-

boundary SSEP, coupled with reservoirs that act on two sites at each boundary. Fixed N ∈ N+, we

consider the discrete lattice ΛN = {1, . . . ,N} and the state space ΩN = {0,1}ΛN . A configuration of

particles in the system will be denoted by η ∈ ΩN , and η(x) ∈ {0,1} will denote the occupation of the

site x ∈ ΛN . We consider a Markov process, that we write as {ηt}t≥0, evolving according to the SSEP

in the bulk {2, . . . ,N − 1}, and evolving at the boundary sites {1,2} and {N − 1,N} with no constraints

beyond the exclusion, in the sense that to each local configuration at {1,2} (resp. {N − 1,N}) there is a

positive rate associated with the transition from one local configuration to any other local configuration

at the same boundary. This dynamics was illustrated in Figure 1.1 and explained in the discussion just

after it, in Chapter 1, yet we recall it for convenience in the next figure.

Left-boundary Process Rate
Diffusion 1→ 2 ∣10→ ∣01 a23
Diffusion 2→ 1 ∣01→ ∣10 a32
Pair annihilation ∣11→ ∣00 a14
Pair creation ∣00→ ∣11 a41
Fusion on 1 ∣11→ ∣10 a34
Fusion on 2 ∣11→ ∣01 a24
Branching to 1 ∣01→ ∣11 a42
Branching to 2 ∣10→ ∣11 a43
Death on 1 ∣10→ ∣00 a13
Death on 2 ∣01→ ∣00 a12
Birth on 1 ∣00→ ∣10 a31
Birth on 2 ∣00→ ∣01 a21

Figure 2.1: Left-boundary dynamics.

Right-boundary Process Rate
Diffusion N → N − 1 01∣ → 10∣ b23
Diffusion N − 1→ N 10∣ → 01∣ b32
Pair annihilation 11∣ → 00∣ b14
Pair creation 00∣ → 11∣ b41
Fusion on N 11∣ → 01∣ b34
Fusion on N − 1 11∣ → 10∣ b24
Branching to N 10∣ → 11∣ b42
Branching to N − 1 01∣ → 11∣ b43
Death on N 01∣ → 00∣ b13
Death on N − 1 10∣ → 00∣ b12
Birth on N 00∣ → 01∣ b31
Birth on N − 1 00∣ → 10∣ b21

Figure 2.2: Right-boundary dynamics

Figure 2.3: Two-site reaction-diffusion on the pairs of sites {1,2} and {N − 1,N} and their rates.

Above, the notation ”∣ ⋅ ⋅" represents a particular configuration at the left-boundary, while ”⋅ ⋅ ∣"

represents a particular configuration at the right-boundary. The third column on each of the two tables

above corresponds to the transition rate between two specific local configurations.

We show that the standard approach imposes heavy constraints in the boundary parameters, that

can be relaxed with the following formulation of the stationary measure, that we write as µssN ,

µssN (η) =
1
ZN
⟨W ∣ (D−η(1) +E−(1 − η(1)))×

×
N−1
∏
x=2
[Dη(x) +E(1 − η(x))]×

× (D+η(N) +E+(1 − η(N))) ∣V ⟩ , (2.1)

and where D,E,D±,E± are matrices and ⟨W ∣ , ∣V ⟩ vectors. The original approach [11] can be recovered

by assuming that D± = D and E± = E. These matrices belong to a particular algebra encoding the

dynamics. The reason for considering specific boundary matrices is that the expected current flowing in

{1,2} or {N −1,N} is different than the one flowing in a node {x,x+1} ⊂ {2, . . . ,N −1}, in the bulk. This
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is not encapsulated into the algebra induced by the process with Glauber dynamics acting only on the

sites 1 and N , as in [11]. The relations involving D,E,D± and E± arise from the strategy to guarantee

that the measure µssN is stationary. More concretely, under some assumptions on the rates, that we write

for future reference as

H0 ∶= (H−0 ) ∨ (H+0 ), (H0)

and that can be found just after (2.17), where (H−0 ) (resp. (H+0 )) corresponds to left-boundary (resp.

right-boundary) constraints on the boundary parameters, we show that one obtains the bulk relation

[D,E] =D +E, the left-boundary algebra

⟨W ∣D−C = ⟨W ∣d−1C−C + d−2C− + d−3D−, (R−1 )

⟨W ∣C−D = ⟨W ∣ q−1C−C + q−2C− + q−3D−, (R−2 )

⟨W ∣D−D = ⟨W ∣ f−1 C−C + f−2 C− + f−3 D−, (R−12)

and the right-boundary algebra

CD+ ∣V ⟩ = d+1CC+ − d+2C+ − d+3D+ ∣V ⟩ ,

DC+ ∣V ⟩ = q+1CC+ − q+2C+ − q+3D+ ∣V ⟩ ,

DD+ ∣V ⟩ = f+1 CC+ − f+2 C+ − f+3 D+ ∣V ⟩ ,

where C = D + E and C± = D± + E±. The coefficients above, d±i , q±i , f±i with i = 1,2,3, depend in a

non-linear way on the boundary rates and can be found in Appendix A.1. For the reader to have a more

concrete picture in mind, the assumption (H0) leads to the possibility of expressing the expectation value

of products of occupation variables in terms of the bulk-current of the system defined on smaller latices,

that is, {⟨j(η)⟩i}i=4,...,N , with j(η) being the current and ⟨⋅⟩i the expectation with respect to µssi . For

more details, see (2.17) and Appendix A.3, specifically (A.4).

It is not clear if this boundary algebra is well-defined. Precisely, let us focus on the left-boundary

algebra, that we write as A− = {(R−1 ), (R−2 ), (R−12)}. Introducing the vectors ⟨W0∣ = ⟨W ∣E− and ⟨W1∣ =

⟨W ∣D− we see that, fixing a representation for the matrices D and E satisfying the bulk relation, one

obtains three left-boundary relations to be solved for two vectors, and identical for the right-boundary.

We show that there exists a manifold for the rates where the algebra is free from "contradictions", that

is, when computing any probability weight by applying any sequence of identities always leads to the

same result. We refer to this "contradiction free" property of the algebra as the algebra being consistent.

Determining this set is the cornerstone of this work.

We are interested in the out-of-equilibrium behavior, and for that reason one needs to introduce an

additional set of technical constraints,

T = {H0, q
−
1 ≠ q+1},

corresponding to the manifold where the parameters satisfy the aforementioned hypothesis (H0) and

also such that the coefficients q−1 and q+1 are not equal. The latter corresponds to the density of the
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reservoirs at the sites 2 and N − 1 not being equal, and guarantees that the system is out-of-equilibrium

(see Appendix A.2). In this thesis we investigate only the cases where T is satisfied.

Regarding the consistency of the algebra, we focus again on the left-boundary only. We show in

Proposition 2.3.4 that it is possible to derive the identity

⟨W ∣D−DC = ⟨W ∣ [C−C2s0 +C−Cs1 +C−s2 +D−s3] (2.3)

+ ⟨W ∣D−Dd−3

from the identities (R−1 ),(R−2 ) and (R0) – that is, without invoking (R−12) – and where the coefficients si,

for i = 0,1,2,3, are quite long and are presented in (2.20). With this information, we show in Lemma

2.3.3 that if the set of constraints

f−1 = d−1q−1 ,

f−2 + d−1f−3 = q−1 (d−2 + d−1d−3) + d−1(q−2 + d−1q−3 ),

(q−1d−3 + q−2 + d−1q−3 − f−3 )(d−2 + d−1d−3) = −d−2 ,

q−3 (d−2 + d−1d−3) = −d−3

(C1)

or

f−1 = d−1q−1 ,

f−2 + d−1f−3 = d−1(q−2 + d−1q−3 ),

0 = d−2 + d−1d−3

(C2)

are satisfied, then (R−12) satisfies the identity (2.3). This leads to the content of Proposition 2.3.4, that

can be summarized as follows: under (C2), the subalgebra A−/{(R−12)} generates A−; and under (C1), if

C−1d−3 is right-invertible, one can "drop" the identity (R−12), or, in other words, one can derive (R−12) from

the (enlarged) algebra composed by (R−1 ),(R−2 ) and the bulk relation (R0) with C − 1d−3 right-invertible.

Analogous results hold for the right-boundary, but where one should now ask for C + 1d+3 to be left-

invertible. This result allow one to "exchange" a boundary relation, per boundary, by the invertibility of

the aforementioned objects, in this way leading to two boundary relations per boundary. While we do

not present an explicit representation, this is discussed in Appendix A.5.

The analysis just presented does not directly imply that the formulation (2.1) is valid, as one should

prove that, in general, ZN ≠ 0. In this vein, we show that the normalization constant is defined by the

system of recurrence relations

⎛
⎜
⎝ −d+1
−d−1

(q−1 − q+1 )

0
1
0

1
0
0⎞
⎟
⎠

⎛
⎜
⎝⟨η(N)⟩wN
⟨η(1)⟩wN
ZN ⎞

⎟
⎠
=
⎛
⎜
⎝ −d+2

d−2

N − 3 − (q−2 + q+2 )

0
d−3

−q−3

−d+3
0
−q+3⎞
⎟
⎠

⎛
⎜
⎝⟨η(N − 1)⟩wN−1

⟨η(1)⟩wN−1

ZN−1 ⎞
⎟
⎠
,

where ⟨η(i)⟩wk ∶= Zk⟨η(i)⟩k, for each k ∈ N+. This leads to the need of fixing the initial conditions of

the recurrence relations in the previous display. These initial conditions involve the inner product of the

boundary vectors, and these issues are solved in Subsection 2.3.5.

Next, we aim for a better understanding of the consistency conditions (C1) and (C2), as they are

expressed in a very complex way involving the boundary rates. It turns out that the set of models

satisfying them can be split into families with very particular properties (see Definition 2.4.2). The
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models can be linear (family L); non-linear (family N); the stationary measure factorizes at the boundary

(family F); or the choice D± = D and E± = E, the original MPA formulation, is sufficient (family

H). In Proposition 2.5.2 we also perform a link between these constraints and the behaviour of the

correlation of the boundary reservoirs. Precisely, short-writing ϕN(1,2) = ⟨η(1)η(2)⟩N − ⟨η(1)⟩N ⟨η(2)⟩N
and j2(η) = η(2) − η(3), we show that for linear models the constraints are equivalent to

ϕN(1,2) = ⟨η(1) − d−1⟩N ⟨j2(η)⟩N + o(1/N2) = O(1/N2),

while for non-linear models they are equivalent to the previous two equalities plus

lim
N→+∞

⟨−j2(η)⟩N
⟨η(2) − q−1 ⟩N

= 1.

As a final note, we use our formulation to compute the macroscopic density, which turns out to be a

discontinuous function if d±1 ≠ q±1 :

ρ(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d−1 , u = 0,
q−1 (1 − u) + q+1u, u ∈ (0,1),
d+1 , u = 1.

We present a non-exhaustive set of models satisfying (C1) and (C2) in Appendix A.4.

2.1.2 Outline of the chapter

The present work is organized as follows. Section 2.2 is devoted to introducing the SSEP with

generalized boundary (that we refer to as SSEP(2,2)) and presenting the classical MPA approach to

compute the stationary probability vector for the particular case of the classical 1−site boundary open

SSEP [11] (that we refer to as SSEP(1,1)); particularly, in Subsection 2.2.1 we split the boundary rates

of the SSEP(2,2) into two classes – one where the corresponding models are termed linear, and another

one where they are termed non-linear ; in Section 2.3, we adapt the MPA approach to the SSEP(2,2) and

investigate under what conditions this yields a well-posed problem. The latter requires several steps: in

Subsection 2.3.2 we manipulate conveniently the algebra induced by the MPA by performing a specific

change of basis that allow deriving, in a simple manner, in Subsection 2.3.3, the maximal set of constraints

acting on the boundary rates under which the representation problem has a solution. Some technical

aspects arise, and in Subsection 2.3.4 we derive a system of recurrence relations involving the boundary

density, correlation and normalizing factor; and in Subsection 2.3.5 we compute the initial conditions of

the aforementioned system of recurrence relations for both linear or non-linear models.

Next, we completely characterize the set of constraints and discuss a matrix representation for the

algebra: in Section 2.4 we split further the set of constraints into four classes, which we term: non-linear

(N), linear (L), factorizable (F) and homogenous (H). Each of the last three classes are the object

of study in Subsections 2.4.1, 2.4.2 and 2.4.3, respectively, where we see that for non-linear models a

representation is not guaranteed from the existence of representations for the SSEP(1,1). In Appendix

A.5 we then provide a tridiagonal matrix representation of the objects D and E satisfying the relation

[D,E] = D + E, present the entries of the resulting boundary vectors and discuss the invertibility of

C ± d±3 .
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We conclude the chapter with an alternative characterization of the set of constraints. Section 2.5 is

devoted to computing the correlation between the two left-boundary reservoirs using the induced algebra

and then using solely the stationary equations. Naturally, it is not possible to completely compute the

correlation function directly from the stationary equations, but rewriting these equations conveniently

and comparing with the expressions derived from the algebra allow us to characterize the set of constraints

in terms of the behaviour of the correlation between the left-boundary reservoirs.

In the appendix is where we present the coefficients of the boundary algebra (Appendix A.1), con-

centrate long but straightforward computations (Appendix A.3), present the equilibrium case, where the

stationary probability vector follows a (product) Bernoulli distribution (Appendix A.2) and, in Appendix

A.4, a non-exhaustive set of models satisfying the aforementioned constraints.

2.2 Model

We consider the open SSEP defined on {2, . . . ,N−1} coupled with two-site reaction-diffusion processes

acting on the pairs of sites 1,2 and N − 1,N . There is a total of 12 rates per boundary, each associated

with a particular configuration at the corresponding boundary. In order to present a precise definition we

need to introduce some notation. Let ΛN = {1, . . . ,N} be the extended lattice, denote by ΩN = {0,1}ΛN

the state space of the aforementioned process. We shall recurrently denote a configuration by the greek

letters ξ, η ∈ ΩN and the sites by the latin letters x, y, z ∈ ΛN . Furthermore, let η(x) ∈ {0,1} be the

occupation of a site x ∈ ΛN .

Definition 2.2.1 (Exchange of occupation variables). For any x, y, z ∈ ΛN let us consider the exchange

of occupation variables η ↦ ηx,y given by

ηx,y(z) = 1z=y η(x) + 1z=x η(y) + 1z≠x,y η(z),

and for any set A ⊆ ΛN the flip η ↦ ηA given by

ηA(x) = 1x∈A(1 − η(x)) + 1x∉Aη(x).

We can now introduce the model that we are going to study in this chapter.

Definition 2.2.2 (SSEP with extended boundary). Introduce the infinitesimal generator

L = L− + L0 + L+, (2.4)

where L0 corresponds to the bulk dynamics and L− , L+ corresponds to the left and right boundary

dynamics, respectively. Specifically,

L− = L1 + L1,2 + L2, and L+ = LN−1 + LN−1,N + LN ,

with the subscripts in the right-hand side corresponding to the sites where the operator "acts". We can

express each generator, acting on functions f ∶ ΩN → R, as

(L0f)(η) =
N−2
∑
x=2

wx,x+1(η) (f(ηx,x+1) − f(η)) ,
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(Lxf)(η) = w′x(η) (f(η{x}) − f(η)) , for x ∈ {1,2,N − 1,N},

(Lx,yf)(η) = w′x,y(η) (f(η{x,y}) − f(η)) , for (x, y) ∈ {(1,2), (N − 1,N)},

where, given some configuration η, the occupation at site x flips with rate w′x(η); the occupation of both

sites x, y flip with rate w′x,y(η); and the hopping in the bulk occurs with rate wx,x+1(η). These rates are

further expressed as

⎛
⎜
⎝w′12(η)
w′2(η)
w′1(η) ⎞

⎟
⎠
=
⎛
⎜
⎝a41

a21

a31

a32

a12

a42

a23

a43

a13

a14

a34

a24⎞
⎟
⎠

⎛
⎜⎜⎜
⎝ η(1)η(2)

η(1)(1 − η(2))
(1 − η(1))η(2)

(1 − η(1))(1 − η(2))⎞
⎟⎟⎟
⎠
, aij ≥ 0,

for the right boundary

⎛
⎜
⎝w′N−2,N−1(η)

w′N−1(η)
w′N(η) ⎞

⎟
⎠
=
⎛
⎜
⎝b41

b21

b31

b32

b12

b42

b23

b43

b13

b14

b34

b24⎞
⎟
⎠

⎛
⎜⎜⎜
⎝ η(N − 1)η(N)
(1 − η(N − 1))η(N)
η(N − 1)(1 − η(N))

(1 − η(N − 1))(1 − η(N))⎞
⎟⎟⎟
⎠
, bij ≥ 0,

and for the bulk,

wx,x+1(η) = (1 − η(x))η(x + 1) + η(x)(1 − η(x + 1)), x ∈ {2,N − 2}.

Example 2.2.3 (SSEP(1,1)). The 1−site reservoir case corresponds to the particular choice of rates

⎛
⎜
⎝a41

a21

a31

a32

a12

a42

a23

a43

a13

a14

a34

a24⎞
⎟
⎠
=
⎛
⎜
⎝ 0

0
a31

1
0
a31

1
0
a13

0
0
a13⎞
⎟
⎠

,
⎛
⎜
⎝b41

b21

b31

b32

b12

b42

b23

b43

b13

b14

b34

b24⎞
⎟
⎠
=
⎛
⎜
⎝ 0

0
b31

1
0
b31

1
0
b13

0
0
b13⎞
⎟
⎠
.

In other words, for the left-boundary, if the site 1 is empty, creation occurs at rate a31 independently

of the occupation at site 2; if the site 1 is full, annihilation occurs at rate a13 also independently of the

occupation of the site 2; the hopping dynamics takes place on any pair {x,x+ 1} with x ∈ {1,N − 1}. For

the right-boundary the dynamics is analogous, with aij replaced by bij and the site 1 replaced by the site

N . Regarding the description of the stationary states of the SSEP with 1−reservoir per boundary, it is

straightforward to check that if both reservoirs are fixed at the same density, that is, if

ρ = a31
a13 + a31

= b31
b13 + b31

, (2.5)

then the Bernoulli product measure parameterized by this density

νNρ (η) =
N

∏
x=1
[ρη(x) + (1 − ρ)(1 − η(x))] (2.6)

is invariant. In general, the stationary weights have the following factorization in one dimension

µssN (η) =
1

⟨W ∣ (D +E)N ∣V ⟩
⟨W ∣

N

∏
x=1
[Dη(x) +E(1 − η(x))] ∣V ⟩ , (2.7)

with the objects D,E being specific matrices satisfying some algebraic relations, not necessarily finite

nor commuting, ⟨W ∣ and ∣V ⟩ vectors and transposed vectors, respectively, and ⟨W ∣ (D +E)N ∣V ⟩ =∶ ZN
a normalizing factor. The approach to see this can be succinctly summarized with the tensor product

formalism, now very present in the literature. Under an appropriate basis, the vector of stationary

probabilities equals

∣P ⟩ = 1
ZN
(⟨W ∣D
⟨W ∣E) ⊗ (

D
E)
⊗N−2

⊗ (
D ∣V ⟩
E ∣V ⟩ ) .
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The stationary condition can be written in vector form, H ∣P ⟩ = 0, where H corresponds to the generator

written in matrix form. To be precise, H =H− +H0 +H+ where

H− = B1 ⊗ 1⊗N−1, H0 =
N

∑
x=1

1⊗x−1 ⊗M ⊗ 1⊗L−(x+1), H+ = 1⊗N−1 ⊗BN ,

and the intensity matrices are, with respect to the one and two sites ordered basis {E,D} and {EE,ED,DE,DD},

equal to

B1 = ( a31

−a31
−a13

a13 ) , M =
⎛
⎜⎜⎜
⎝0

0
0
0

0
1
−1
0

0
−1
1
0

0
0
0
0⎞
⎟⎟⎟
⎠
, BN = ( b31

−b31
−b13

b13 ) .

Moreover, 1 is the identity matrix, with the convention a⊗0 = 1. The stationary condition can be recast

as

0 = [B1 (⟨W ∣D
⟨W ∣E)] ⊗ (

D ∣V ⟩
E ∣V ⟩ )

⊗N−1

+
N

∑
x=1
⟨W ∣ (⟨W ∣D

⟨W ∣E)
⊗x−1

⊗ [M (
D
E) ⊗ (

D
E)] ⊗ (

D ∣V ⟩
E ∣V ⟩ )

⊗L−(x+1)

+ (⟨W ∣D
⟨W ∣E)

⊗N−1

⊗ [BN (D ∣V ⟩
E ∣V ⟩ )]

and the algebraic relations for the matrices D,E arise by assuming the existence of auxiliary matrices

X1,X2 leading to the telescopic relations

M (
D
E) ⊗ (

D
E) = (

D
E) ⊗ (

X2

X1) − (
X2

X1) ⊗ (
D
E) (2.8)

B1 (⟨W ∣D
⟨W ∣E) = (⟨W ∣X2

⟨W ∣X1)

BN (D ∣V ⟩
E ∣V ⟩ ) = −(

D ∣V ⟩
E ∣V ⟩ )

which guarantee stationarity. For X1+X2 = 0 with X2 = κ1 and κ ∈ R, this leads to the quadratic algebra

[D,E] = κ(D +E),

⟨W ∣ (a31E − a13D) = κ ⟨W ∣1,

(b31E − b13D) ∣V ⟩ = −κ1 ∣V ⟩ .

It can be checked that the choice κ = 0 corresponds to the equilibrium constraint (2.5) in order for this

algebra to be consistent. This allows for a constant choice ρ− = D = 1 − E, which leads to (2.7) being

identified with the Bernoulli product measure. If κ ≠ 0 then it follows that one needs to prove that

matrices and vectors satisfying these relations exist.

Remark 2.2.4 (about the values of κ). Note that one can fix, without loss of generalization, κ = 1, by

considering the parameterized matrices Dκ =D/κ and Eκ = E/κ which then satisfy [Dκ,Eκ] =Dκ +Eκ.

Using the quadratic algebra, it is possible to express any probability weight as a combination of the

current over systems of equal of smaller size, {Ji}i=0,...,N , where

JN =
ZN−1
ZN

.
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The current can be computed exactly. To that end, it is convenient to introduce the matrix C = D +E,

allowing to rewrite the algebra as

⟨W ∣D = ⟨W ∣ ( a31
a13 + a31

C − 1
a13 + a31

) , [D,C] = C, D ∣V ⟩ = ( b31
b13 + b31

C + 1
b13 + b31

) ∣V ⟩ . (2.9)

The boundary densities can then be read from the algebra

⟨η(1)⟩N =
a31

a13 + a31
− 1
a13 + a31

JN , ⟨η(N)⟩N =
b31

b13 + b31
− b31
b13 + b31

JN .

The bulk relation implies

DCn = CnD + nC,

which can be used to compute the normalization

ZN (
a31

a13 + a31
− b31
b13 + b31

) = ZN−1 (N − 1 + 1
a13 + a31

+ 1
b13 + b31

) .

Since the normalization follows a first order recurrence relation one can fix without loss of generalization,

the inner product ⟨W ∣V ⟩ = 1.

The existence of bulk matrices D,E satisfying the bulk relation [D,E] = D + E is well known [11].

Fixing a representation, the boundary relations allows one to solve system of linear recurrence relations for

the entries of the boundary vectors ⟨W ∣ and ∣V ⟩. It is worth mentioning that only infinite representations

for these objects are known.

2.2.1 SSEP with generalized boundary

It turns out that the process given in (2.4) is in equilibrium when the densities of the reservoirs at

site 2 and N − 1 are equal plus some minor constraints on the rates (see Appendix A.2, specifically (A.2)

for more details). In this case, the Bernoulli product measure parametrized by this density is invariant.

Contrarily to the SSEP(1,1), the stationary density cannot be computed directly from taking expectations

with respect to the stationary measure. We focus on the left-boundary. To see this introduce

A1 = a31 + a41

B1 = a32 + a42 − (a31 + a41)

C1 = a13 + a23 + a31 + a41

D1 = C1 − a32 − a42 − a14 − a24

A2 = a21 + a41

B2 = a23 + a43 − (a21 + a41)

C2 = a12 + a32 + a21 + a41

D2 = C2 − a23 − a43 − a14 − a34.

(2.10)

One finds that

L(η(x)) =
⎧⎪⎪⎨⎪⎪⎩

A1 +B1η(2) −C1η(1) +D1η(1)η(2), x = 1,
A2 +B2η(1) −C2η(2) +D2η(1)η(2) + (η(3) − η(2)), x = 2.

(2.11)
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Definition 2.2.5 (Linearity). We call the models left-linear if D1 =D2 = 0, that is,

a13 + a23 + a31 + a41 = a14 + a24 + a32 + a42

a21 + a32 + a41 + a12 = a14 + a23 + a34 + a43

and right-linear if the equalities above hold with aij replaced by bij . If both the left and right boundaries

are linear, we call the model linear.

Only for linear models the system {⟨Lη(x)⟩N = 0}x=1,N is sufficient to compute ⟨η(x)⟩N . For non-

linear models, computing the action of the generator on the correlation term η(1)η(2) provides some

insight on the macroscopic behaviour of the interacting reservoirs. Introduce

B3 = a42 − a41,

C3 = a41 − a43,

D3 = a41 − (a14 + a24 + a34 + a42 + a43).

It follows that

L(η(1)η(2)) = η(1)η(2)D3 − η(1)C3 + η(2)B3 + a41 − η(1)j2(η)

where we defined j2(η) = η(2) − η(3). For x, y = {1, . . . ,N} with x ≠ y consider the 2−point correlation

function

ϕN(x, y) ∶= ⟨η(x)η(y)⟩N − ⟨η(x)⟩N ⟨η(y)⟩N

and for f ∶ ΛN ×ΛN → R introduce the forward difference operator acting on the second variable,

(∇+2f)(x, y) = f(x, y + 1) − f(x, y).

We compute the correlation between the left-boundary reservoirs in Appendix A.3 (and perform an

analysis in Section 2.5), where we see that this quantity can be rewritten as

ϕN(1,2) = (f−1 − d−1q−1 ) (2.12)

+ ⟨j2(η)⟩N (f−2 + d−1f−3 − q−1 (d−2 + d−1d−3) − d−1(q−2 + d−1q−3 ))

+ ⟨j2(η)⟩2N(d−2 + d−1d−3)(
f−3 − q−1d−3 − d−1q−3
1 − d−3⟨j2(η)⟩N

− q−2 − d−1q−3)

+ ⟨j2(η)⟩3N
d−2 + d−1d−3

1 − d−3⟨j2(η)⟩N
(q−3 (d−2 + d−1d−3) + d−2(q−2 + d−1q−3 ))

+ ⟨j2(η)⟩4Nd−3q−3 (d−2 + d−1d−3)2
1

(1 − d−3⟨j2(η)⟩N)2

− (∇
+
2ϕN)(1,2)

1 − d−3⟨j2(η)⟩N
(f−3 − q−1d−3 − d−1q−3 )

− (∇
+
2ϕN)(1,2)⟨j2(η)⟩N
1 − d−3⟨j2(η)⟩N

(q−3 (d−2 + d−1d−3) + d−3(q−2 + d−1q−3 ))

−
(∇+2ϕN)(1,2)⟨j2(η)⟩2N
(1 − d−3⟨j2(η)⟩N)2

(d−2 + d−1d−3)2(1 +
d−3q

−
3

1 − d−3⟨j2(η)⟩N
)

+ ((∇
+
2ϕN)(1,2))2

(1 − d−3⟨j2(η)⟩N)2
d−3q

−
3
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where the coefficients are defined through

⎛
⎜
⎝f−1
q−1

d−1

f−2

q−2

d−2

f−3

q−3

d−3⎞
⎟
⎠
∶=
⎛
⎜
⎝ C3

−B2

C1

−B3

C2

−B1

−D3

−D2

−D1⎞
⎟
⎠

−1
⎛
⎜
⎝a41

A2

A1

0
−1
0

1
0
0⎞
⎟
⎠

(2.13)

assuming invertibility of the first matrix on the right-hand side of the previous display. Analyzing each

term above, we see that different models may be characterized by boundary correlations of different order.

For example, if f1 = d1q1, then it can be shown that limN→+∞Nϕ(1,2) < ∞. The equation f1 = d1q1

defines a particular class of models, as for arbitrary rates we can have f1 ≠ d1q1. We elaborate on this in

Section 2.5.

2.3 Well-posedness of the problem
2.3.1 Matrix Product formulation

Approaching the description of the stationary measure through the Matrix Product Ansatz introduces

a series of technicalities that require an adjustment of the initial formulation (2.7). Following the same

procedure as in Subsection 2.2.3, it can be checked that the equality

⟨W ∣ [D,E] = ⟨W ∣ (D +E)

is valid only under heavy constraints on the boundary rates (this is further investigated in Subsection

2.4.3). The reason for this is that the current inside the reservoirs can be different from the bulk current.

To circumvent this problem, opposed to (2.7), we consider matrices D±,E± specific to the boundaries

and make the ansatz

µssN (η) = Z−1
N ⟨W ∣ (D−η(1) +E−(1 − η(1)))

N−1
∏
i=2
[Dη(i) +E(1 − η(i))] (D+η(N) +E+(1 − η(N))) ∣V ⟩ ,

now leading to the normalization ZN = ⟨W ∣C−CN−2C+ ∣V ⟩, and where C± ∶= D± + E± ≠ C. With this

formulation, the probability vector is given by

∣P ⟩ = 1
ZN
(⟨W ∣D−
⟨W ∣E−) ⊗ (

D
E)
⊗N−2

⊗ (
D+ ∣V ⟩
E+ ∣V ⟩ )

and stationary condition can be cast in vector form as

(B− ⊗ 1⊗N−2 +
N−2
∑
x=2

1⊗x−1 ⊗M ⊗ 1⊗L−(x+1) + 1⊗N−2 ⊗B+) ∣P ⟩ = 0,

where the bulk intensity matrix M is as in (2.8), while the boundary intensity matrices B− and B+ are

expressed as

B− =
⎛
⎜⎜⎜
⎝ a41

a31

a21

−(a21 + a31 + a41)

a42

a32

−(a12 + a32 + a42)
a12

a43

−(a13 + a23 + a43)
a23

a13

−(a14 + a24 + a34)
a34

a24

a14 ⎞
⎟⎟⎟
⎠
,

B+ =
⎛
⎜⎜⎜
⎝ b41

b21

b31

−(b31 + b21 + b41)

b43

b23

−(b13 + b23 + b43)
b13

b42

−(b12 + b32 + b42)
b32

b12

−(b14 + b24 + b34)
b24

b34

b14 ⎞
⎟⎟⎟
⎠
,

with respect to the basis:
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• left-boundary (B−): {E−E,E−D,D−E,D−D};

• right-boundary (B+): {EE+,ED+,DE+,DD+};

• bulk (M): {EE,ED,DE,DD}.

The telescopic relations, which guarantee stationarity, become

M (
D
E) ⊗ (

D
E) = (

D
E) ⊗ (

X2

X1) − (
X2

X1) ⊗ (
D
E) ,

B− (⟨W ∣D−
⟨W ∣E−) ⊗ (

D
E) = (⟨W ∣D−

⟨W ∣E−) ⊗ (
X2

X1) ,

B+ (
D
E) ⊗ (

D+ ∣V ⟩
E+ ∣V ⟩ ) = −(

X2

X1) ⊗ (
D+ ∣V ⟩
E+ ∣V ⟩ ) .

Because the bulk dynamics is still the SSEP, we fix X1 +X2 = κ1 and let κ = 1, which guarantees that

⟨j2(η)⟩N = O(1/N) and allow us to compute, in principle, any quantity using only the algebra. We end

up with the following boundary relations.

⎛
⎜⎜⎜
⎝ a41

a31

a21

−(a21 + a31 + a41)

a42

a32

−(a12 + a32 + a42)
a12

a43

−(a13 + a23 + a43)
a23

a13

−(a14 + a24 + a34)
a34

a24

a14

0
0
−1
1

−1
1
0
0 ⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝ ⟨W ∣D−
⟨W ∣E−
⟨W ∣D−D
⟨W ∣D−E
⟨W ∣E−D
⟨W ∣E−E⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0

⎛
⎜⎜⎜
⎝ b41

b21

b31

−(b31 + b21 + b41)

b43

b23

−(b13 + b23 + b43)
b13

b42

−(b12 + b32 + b42)
b32

b12

−(b14 + b24 + b34)
b24

b34

b14

0
−1
0
1

−1
0
1
0 ⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝−D+ ∣V ⟩
−E+ ∣V ⟩
DD+ ∣V ⟩
DE+ ∣V ⟩
ED+ ∣V ⟩
EE+ ∣V ⟩ ⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0.

(2.14)

These boundary relations impose another difficulty. We first realize that since the sum of each column

vanishes, one line must be linearly dependent of the remaining, thus we have three boundary rules per

boundary. Introduce the boundary vectors

⟨W0∣ ∶= ⟨W ∣E−, ∣V0⟩ ∶= E+ ∣V ⟩ , (2.15)

⟨W1∣ ∶= ⟨W ∣D−, ∣V1⟩ ∶=D+ ∣V ⟩ .

Fixing a representation for D,E satisfying the bulk relation [D,E] = D + E, one still needs to fix the

boundary vectors. Since there are two vectors and three equations per boundary, it is not clear if

the representation problem is well-posed. On the following sections we show that there exists a set of

constraints where the algebra "makes sense", and further characterize this set both microscopically and

through the macroscopic behaviour of the reservoirs.

Remark 2.3.1. Note that we did not index the right-boundary parameters according to their matrix

entries in B+, as opposed to the left-boundary. Instead, we associated the left-boundary dynamics with

the right-boundary dynamics. For example, a12 corresponds to the annihilation of a particle in the second

site with respect to the left-boundary (site 2), when the first site (site 1) is empty (∣ ED ↦∣ EE); while

b12 corresponds to the annihilation at the second site with respect to the right-boundary (site N − 1),

when the first site (site N) is empty (DE ∣↦ EE ∣).
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This will be convenient in order to work with only the left-boundary, then deduce the results to the

right-boundary by simply replacing aij by bij and κ by −κ.

2.3.2 Change of basis

We rewrite the boundary algebra analogously to (2.9). This allow us identify the density of each

reservoir and their correlation in terms of the current. This facilitates substantially the study of the

consistency of the boundary algebra. Recall (2.14), and denote the left-boundary matrix of coefficients

there with its fourth line removed by B−, that is,

B− =
⎛
⎜
⎝ a31

a21

−(a21 + a31 + a41)

a32

−(a12 + a32 + a42)
a12

−(a13 + a23 + a43)
a23

a13

a34

a24

a14

0
−1
1

1
0
0⎞
⎟
⎠
.

It holds that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝ D−
E−
D−D
D−E
E−D
E−E⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= V−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝ D−

C−
D−D
[D,E]−
D−C
C−C ⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

with V− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝0

0
0
0
0
1

0
0
0
1
1
−2

0
0
0
0
−1
1

0
0
1
−1
−1
1

0
1
0
0
0
0

1
−1
0
0
0
0 ⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where we defined [D,E]− ∶=D−E −E−D; and rewriting

B−V−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝ ⟨W ∣D−
⟨W ∣C−
⟨W ∣D−D
⟨W ∣ [D,E]−
⟨W ∣D−C
⟨W ∣C−C ⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0⇔A−1
⎛
⎜
⎝ ⟨W ∣D−D
⟨W ∣ [D,E]−1
⟨W ∣D−C ⎞

⎟
⎠
= A−2

⎛
⎜
⎝ ⟨W ∣D−
⟨W ∣C−
⟨W ∣C−C⎞

⎟
⎠
, (2.16)

with

A−1 =
⎛
⎜
⎝−a13 − a23 − 2a31 + a32 − a43

−a12 − 2a21 + a23 − a32 − a42

a12 + a13 + 2(a21 + a31 + a41)

a31 − a32

a12 + a21 + a32 + a42

−a12 − a21 − a31 − a41

a13 + a23 + a31 − a32 + a34 + a43

a12 + a21 − a23 + a24 + a32 + a42

−a12 − a13 + a14 − a21 − a31 − a41⎞
⎟
⎠

(2.17)

A−2 = −
⎛
⎜
⎝ a31

a21

−a21 − a31 − a41

0
−1
1

1
1
−1⎞
⎟
⎠
,

Assuming that the rates are such that

det(A−1) ≠ 0 (H−0 )

then A−1 can be inverted. In particular, under (H0) we introduce

A− ∶= (A−1)−1A−2 =
⎛
⎜
⎝f−1
t−1

d−1

f−2

t−2

d−2

f−3

t−3

d−3⎞
⎟
⎠

where the entries of A− are presented in Appendix A.1 and coincide with the coefficients in (2.13). One

then arrives at the following three boundary relations

⟨W ∣D−C = ⟨W ∣d−1C−C + d−2C− + d−3D− (2.18)

⟨W ∣ [D,E]− = ⟨W ∣ t−1C−C + t−2C− + t−3D−
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⟨W ∣D−D = ⟨W ∣ f−1 C−C + f−2 C− + f−3 D−.

Note that we can extract the "density at the second site" from the equality CD− = D−C − [D,E]−.

Introducing for i ∈ {1,2,3} the coefficient

q−i ∶= d−i − t−i (2.19)

we fix once and for all our left boundary algebra under the assumption (H−0 ) as

⟨W ∣D−C = ⟨W ∣d−1C−C + d−2C− + d−3D− (R−1 )

⟨W ∣C−D = ⟨W ∣ q−1C−C + q−2C− + q−3D− (R−2 )

⟨W ∣D−D = ⟨W ∣ f−1 C−C + f−2 C− + f−3 D−. (R−12)

Moreover, we refer to the bulk relation by (R0),

[D,C] = C, (R0)

and refer to the algebra composed by the left-boundary and bulk relations as

A− = {(R−1 ), (R−2 ), (R−12)} ∪ {(R0)}.

Analogous computations for the right-boundary yield

CD+ ∣V ⟩ = d+1CC+ − d+2C+ − d+3D+ ∣V ⟩ (R+1 )

DC+ ∣V ⟩ = q+1CC+ − q+2C+ − q+3D+ ∣V ⟩ (R+2 )

DD+ ∣V ⟩ = f+1 CC+ − f+2 C+ − f+3 D+ ∣V ⟩ (R+12)

under the hypothesis

det(A+1) ≠ 0, (H+0 )

where for i = 1,2,3 the coefficients d+i , q+i , f+i are obtained by replacing {aij}1≤i,j≤4, i≠j by {bij}1≤i,j≤4, i≠j

in d−i , q
−
i , f

−
i , respectively; and A+1 obtained from A−1 by the same substitution. We refer to the algebra

composed by the right-boundary and bulk relations as A+ = {(R+1 ), (R+2 ), (R+12)}∪{(R0)}, and the complete

algebra as

A = A− ∪A+.

2.3.3 Consistency conditions

The idea underlying idea to obtain the set of constraints for the rates is that the expectation

⟨η(1)η(2)⟩N may take formally two values: by either computing ⟨η(1)η(2)⟩N using the rules (R−1 ),(R−2 )

and (R0), or using (R−1 ),(R−2 ),(R−12) and (R0). Since these values must match we extract, under (H−0 ),

the two following set of constraints for κ ≠ 0:

f−1 = d−1q−1 ,

f−2 + d−1f−3 = q−1 (d−2 + d−1d−3) + d−1(q−2 + d−1q−3 ),

(q−1d−3 + q−2 + d−1q−3 − f−3 )(d−2 + d−1d−3) = −d−2 ,

q−3 (d−2 + d−1d−3) = −d−3

(C1)
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or
f−1 = d−1q−1 ,

f−2 + d−1f−3 = d−1(q−2 + d−1q−3 ),

0 = d−2 + d−1d−3

(C2)

where we recall again that the coefficients d−, q−, f− can be found in Appendix A.1. If κ = 0 we obtain
simply

f±1 = d±1q±1

which, as it can be seen in Appendix A.2, corresponds to the equilibrium condition

q−1 = q+1 . (H1)

Although these constraints are quite complex, they can be interpreted in a simpler manner from the

macroscopic scale (Section 2.5). We remark that the non-linearity of the models can be identified from

these constraints. Focus on the fourth condition in (C1). Note that q−3 = 0 Ô⇒ d−3 = 0. From the

expressions of the coefficients q−3 , d−3 it can be checked that

q−3 = d−3 = 0⇔D1 =D2 = 0

in this way characterizing the left-linear class of models, as in Definition 2.2.5.

The goal now is to obtain a set of constraints where the algebra is well-defined. To do so, we compare

A− with A−/{(R−12)}.

Lemma 2.3.2. The identities (R−1 ),(R−2 ) and (R0) imply the identity

⟨W ∣D−DC = ⟨W ∣ [C−C2s0 +C−Cs1 +C−s2 +D−s3] (R−′12)

+ ⟨W ∣D−Dd−3 ,

with coefficients

s0 = d−1q−1

s1 = d−1(q−2 + d−1q−3 ) + d−2q−1

s2 = pd−2 + d−2(d−1q−3 + q−2 )

s3 = q−3 (d−2 + d−1d−3) + pd−3 .

(2.20)

Proof. Using (R0) we compute

⟨W ∣D−DC = ⟨W ∣D−(CD +C) (2.21)

= ⟨W ∣d−1C−CD + d−2C−D + d−3D−D + d−1C−C + d−2C− + d−3D−

= ⟨W ∣d−1C−CD +C−C + (d−2q−1 + d−1) +C− (d−2 + d−2q−2 ) +D− (d−2q−3 + d−3)

+ ⟨W ∣d−3D−D.

Computing

⟨W ∣C−CD = ⟨W ∣C− (DC −C)

= ⟨W ∣C−C2q−1 +C−C (q−2 + d−1q−3 − 1) +C−d−2q−3 +D−d−3q−3

and replacing this into (2.21) we obtain the identity appearing in the statement of the lemma.
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Lemma 2.3.3. Identity (R−12) satisfies (R−′12) if, and only if, (C1) or (C2) are satisfied.

Proof. Replace (R−12) on both sides of (R−′12) to obtain

⟨W ∣ f−1 C−C2 + f−2 C−C + f−3 D−C = ⟨W ∣C−C2s0 +C−Cs1 +C−s2 +D−s3

+ ⟨W ∣d−3f−1 C−C + d−3f−2 C− + d−3f−3 D−.

This can be rearranged into

f−3 ⟨W ∣D−C = ⟨W ∣C−C2(s0 − f−1 )

+ ⟨W ∣C−C(s1 + d−3f−1 − f−2 )

+ ⟨W ∣C−(s2 + d−3f−2 )

+ ⟨W ∣D−(s3 + d−3f−3 ).

(2.22)

Recalling (R−1 ), if one imposes that

f−1 = s0,

f−3 d
−
1 = s1 + d−3f−1 − f−2 ,

f−3 d
−
2 = s2 + d−3f−2 ,

0 = s3,

then (2.22) is reduced to (R−1 ). These four conditions can be reduced to (C1). Otherwise, replacing the

right-hand side of (R−1 ) into the left-hand side of (2.22) we see that the equality

⟨W ∣ f−3 d−1C−C + f−3 d−2C− + f−3 d−3D− = ⟨W ∣ [C−C2(s0 − f−1 ) +C−C(s1 + d−3f−1 − f−2 ) +C−(s2 + d−3f−2 )]

+ ⟨W ∣D−(s3 + d−3f−3 )

must hold. The previous equality can be rearranged into

0 = ⟨W ∣C−C2 [f−1 − s0]

+ ⟨W ∣C−C [f−3 d−1 − (s1 + d−3f−1 − f−2 )]

+ ⟨W ∣C− [f−3 d−2 − (s2 + d−3f−2 )]

+ ⟨W ∣D− [−s3] .

(2.23)

We show that this is true if, and only if, the requirements of (C2) are met. Suppose that s3 = 0. This

implies that the normalization satisfies

0 = (f−1 − s0)ZN + [f−3 d−1 − (s1 + d−3f−1 − f−2 )]ZN−1 + [f−3 d−2 − (s2 + d−3f−2 )]ZN−2.

The normalization satisfies the recurrence relation that will be presented in (2.27), therefore not satisfying

the above unless the remaining coefficients all equal to zero, leading to (C1).

Let then s3 ≠ 0 and introduce the coefficients

u0 = (f−1 − s0) /s3,

u1 = (f−3 d−1 − (s1 + d−3f−1 − f−2 )) /s3,
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u2 = (f−3 d−2 − (s2 + d−3f−2 )) /s3.

Equation (2.23) becomes

⟨W ∣D− = ⟨W ∣u0C
−C2 + u1C

−C + u2C
−. (2.24)

Replacing (2.24) on both sides of (R−1 ) leads to

0 = ⟨W ∣ [C−C3u0 +C−C2(u1 − d3u0) +C−C(u2 − d−1 − d3u1) −C−(d−2 + d−3u2)] ,

inducing a normalization which must be compatible with (2.27). Since this is not the case, there is the

need to impose

0 = u0,

0 = u1 − d3u0,

0 = u2 − d−1 − d3u1,

0 = d−2 + d−3u2,

and this is the same as (C2).

As mentioned in the introduction, the main difficulty in finding a matrix representation for the algebra

A is that it has three boundary relations for two boundary vectors, per boundary. With this in mind, let

us focus on the identity (R−′12). Assuming that C − 1d−3 is right-invertible, then (R−′12) is equivalent to

⟨W ∣D−D = ⟨W ∣ (C−C2s0 +C−Cs1 +C−s2 +D−s3)(C − 1d−3)−1.

We want to argue that the right-hand side above coincides with the right-hand side of (R−12), that is,

⟨W ∣ (f−1 C−C + f−2 C− + f−3 D−) = ⟨W ∣ (C−C2s0 +C−Cs1 +C−s2 +D−s3)(C − 1d−3)−1.

We cannot do this by means of "derivations" since we do not have any identity involving (C − 1d−3)−1,

therefore we multiply by (C−1d−3) through the right on both sides of the equation in the previous display

and reorganize the resulting equation, yielding 0 = 0 by invoking the constraints on the parameters (we

shall perform this computation carefully in the proof of the next proposition). For (C − 1d−3) right-

invertible, this means that one must have (under the aforementioned constraints) that

⟨W ∣D−D = ⟨W ∣ (C−C2s0 +C−Cs1 +C−s2 +D−s3)(C − 1d−3)−1 (2.25)

= ⟨W ∣ (f−1 C−C + f−2 C− + f−3 D−).

In this manner, we cannot derive the relation (R−12) from the subalgebra A−/{(R−12)}, yet it is true that

if we enlarge the algebra A−/{(R−12)} with the object A such that (C − 1d−3)A = 1 then (R−12) is satisfied

(under the constraints on the rates). This can be thought of as "exchanging" the relation (R−12) by the

invertibility of the aforementioned matrix. In this way, we are considering an alternative algebra with a

larger set of objects, but one that still leads to the same stationary probability vector and, importantly,

one that might be easier to argue that a matrix representation exists.

All of this could be avoided if one could compute any probability using two out of the three boundary

relations, per boundary. As a consequence, no invertibility of any object would be required and it would
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be enough to consider then a boundary subalgebra with those two identities, which has to generate the

same probability vector. Moreover, finding a matrix representation for this subalgebra could also be,

in principle, a simpler problem than for the original algebra A, since one would have two identities per

boundary. It turns out that to do so one needs to compute ⟨W ∣D−D⋯DD+ ∣V ⟩ and for that having either

(R−12) or its analogous right-boundary counterpart (R+12) is essential. In this vein, there are the following

possible subalgebras that have an identity involving either ⟨W ∣D−D or DD+ ∣V ⟩ but not both:

S0 ∶= A/{(R−1 )(R+12)}, S1 ∶= A/{(R−2 )(R+12)}, S2 ∶= A/{(R−12)(R+1 )}, S3 ∶= A/{(R−12)(R+2 )}.

It is important now to be specific regarding what "computing" a probability is meant to be understood.

In the next section we are going to derive a recurrence relation characterizing the normalization ZN ,

which can be solved in terms the initial conditions ⟨W ∣D−CD+ ∣V ⟩, ⟨W ∣D−DD+ ∣V ⟩, ⟨W ∣C−DC+ ∣V ⟩,

⟨W ∣C−DD+ ∣V ⟩, ⟨W ∣D−DC+ ∣V ⟩, and ⟨W ∣C−C+ ∣V ⟩. Since any sequence of D,E (resp. D±,E±) can

be expressed as combination of C,D (resp. C±,D±) matrices, in order to obtain the exact value of

some probability it is enough to express the probability weights in terms of C,D,D±,C±, then use the

identities we can in order to have C,C± matrices only and the aforementioned initial conditions. One

then should be able to fix the aforementioned "initial conditions", obtaining then the exact value of the

probability, with no unknown quantities. The problem with this subalgebra approach is that for each Si,

with i = 0,1,2,3, there is a single weight that simply cannot be expressed in terms of the initial conditions

or the normalization.

• S0: cannot compute ⟨W ∣D−C⋯CC+ ∣V ⟩;

• S1: cannot express ZN in terms of the initial conditions (see subsection 2.3.4);

• S2: cannot compute ⟨W ∣C−C⋯CD+ ∣V ⟩;

• S3: cannot express ZN in terms of the initial conditions.

This means that no relation can be removed from the original algebra A while being able to compute,

without resorting to a specific representation, any probability weight. From this analysis we can extract

the following possibilities for guaranteeing the representation of an algebra that generates the same

probability vector:

1. Enlarge A with the right-inverse (resp. left-inverse) of C − d−3 (resp. C − d+3);

2. Fix a representation for A with C − d−3 (resp. C − d+3) not right-invertible (resp. left-invertible) and

then check if the representation satisfies (R−12) and (R+12).

Note that the approach 1. guarantees that a representation must satisfy (R−12),(R+12) because the sec-

ond equality in (2.25) holds, which is the case due to the left/right invertibility of the aforementioned

objects. If the left-boundary is left-linear (resp. right-linear) then d−3 = 0 (resp. d+3 = 0), reducing to the

invertibility of C. We stress that, although no representation for A was found, Lemma 2.3.3 together

with the computations in Subsection 2.3.5, show that A is free from contradictions, that is, computing

any probability weight by applying any sequence of identities always leads to the same result.
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Proposition 2.3.4. Depending on whether the rates satisfy (C1) or (C2) the following holds:

1. Under (C2), the subalgebra A−/{(R−12)} generates A−.

2. Under (C1) with C − 1d−3 right-invertible it holds that

⟨W ∣D−D = ⟨W ∣ (C−C2s0 +C−Cs1 +C−s2 +D−s3)(C − 1d−3)−1

= ⟨W ∣ (f−1 C−C + f−2 C− + f−3 D−);

Proof. We start with the case 1. Under (C2) the identity (2.24) is reduced to

⟨W ∣D−C = u2 ⟨W ∣C−C

and the equalities in (C2) imply that u2 = d−1 . One can check that it is sufficient to consider the identity

⟨W ∣D− = d−1 ⟨W ∣C− (2.26)

instead of (R−1 ) by computing ⟨W ∣DD using (2.26), then comparing with (R−12) using the constraints.

We now focus on 2., that is A− under (C1). Recall that in Lemma 2.3.2 we derived

⟨W ∣D−DC = ⟨W ∣C−C2s0 +C−Cs1 +C−s2 +D−s3 +D−Dd−3

from A−/(R−12). Assuming the right-invertibility of C − 1d−3 , to show that this identity is equivalent to

(R−12), that is, that

⟨W ∣D−D = ⟨W ∣ (C−C2s0 +C−Cs1 +C−s2 +D−s3)(C − 1d−3)−1

= ⟨W ∣ (f−1 C−C + f−2 C− + f−3 D−),

we verify

⟨W ∣ (C−C2s0 +C−Cs1 +C−s2 +D−s3) = ⟨W ∣ (f−1 C−C + f−2 C− + f−3 D−)(C − 1d−3),

which can be rearranged into

0 = ⟨W ∣C−C2(s0 − f−1 )

+ ⟨W ∣C−C(s1 − (f−2 + d−1f−3 − d−3f−1 ))

+ ⟨W ∣C−(s2 − (d−2f−1 − d−3f−2 ))

+ ⟨W ∣D−s3.

Specifically under (C1) this reads 0 = 0.

2.3.4 Normalization

At this point it is still not clear that ZN ≠ 0. Checking this from the representation becomes quickly

intractable, while studying from the algebra point of view is much simpler. We first derive a system of

recurrence relations for ZN , which shows the need of investigating the specific value of the inner products

of the boundary vectors. Consider the weights

⟨η⟩wN ∶= ZN ⟨η⟩N .
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Analogously to the particular case of the SSEP(1,1), (2.9), the bulk relation leads to

⟨η(2)⟩wN = ⟨η(N − 1)⟩wN − (N − 3)ZN−1.

From the boundary algebra it holds that

⟨η(2)⟩wN = q−1ZN + q−2ZN−1 + q−3 ⟨η(1)⟩wN−1

⟨η(N − 1)⟩wN = q+1ZN − q+2ZN−1 − q+3 ⟨η(N − 1)⟩wN−1

and we obtain the system

⎛
⎜
⎝ −d+1
−d−1

(q−1 − q+1 )

0
1
0

1
0
0⎞
⎟
⎠

⎛
⎜
⎝⟨η(N)⟩wN
⟨η(1)⟩wN
ZN ⎞

⎟
⎠
=
⎛
⎜
⎝ −d+2

d−2

N − 3 − (q−2 + q+2 )

0
d−3

−q−3

−d+3
0
−q+3⎞
⎟
⎠

⎛
⎜
⎝⟨η(N − 1)⟩wN−1

⟨η(1)⟩wN−1

ZN−1 ⎞
⎟
⎠
. (2.27)

This can be equivalently expressed in terms of the boundary densities and current, however, this

leads to the same following problem. Define the vector ZN = (ZN , ⟨η(1)⟩wN , ⟨η(N)⟩wN)†. Under (C1)

with d±3 = q±3 = 0 or under (C2) we see that ZN follows a first order recurrence relation and there are no

initial conditions on (2.27) to be fixed. On the remaining cases, we need to fix the initial condition Z2.

More precisely, if Z2 = 0 then ZN = 0. We will show that Z2 ≠ 0 and that the inner products can be fixed

without invoking a particular representation. Our approach will be to exploit the freedom we have to

compute quantities in different ways, using either the left or right-boundary relations.

We stress that ⟨η(1)⟩w2 /Z2, ⟨η(2)⟩w2 /Z2 should not be understood as the density at sites 1,2 for a

system with length N = 2, since our dynamics is only defined for N ≥ 4.

2.3.5 Fixing the inner products

A straightforward way to fix Z2 is to try and solve the discrete equation ⟨Lf(η)⟩N = 0 for specific

functions f and N small. Unfortunately, this is not possible for non-linear models. To better present our

argument we introduce some notation.

Notation 2.3.5. We denote by ⟨W ∣X (resp. X ∣V ⟩) if we use a left (resp. right) boundary relation to

compute the local configuration X.

To have a well-defined algebra we must have

0 = ⟨W ∣D−CD+ ∣V ⟩ − ⟨W ∣D−CD+ ∣V ⟩

0 = ⟨W ∣D−DD+ ∣V ⟩ − ⟨W ∣D−DD+ ∣V ⟩

0 = ⟨W ∣C−DC+ ∣V ⟩ − ⟨W ∣C−DC+ ∣V ⟩

0 = ⟨W ∣C−DD+ ∣V ⟩ − ⟨W ∣C−DD+ ∣V ⟩

0 = ⟨W ∣D−DC+ ∣V ⟩ − ⟨W ∣D−DC+ ∣V ⟩

Computing the right-hand sides above will lead to a linear system involving Z2.

1. ⟨W ∣D−CD+ ∣V ⟩ − ⟨W ∣D−CD+ ∣V ⟩ = 0 ∶

⟨W ∣D−CD+ ∣V ⟩ = d−1 ⟨W ∣C−CD+ ∣V ⟩ + d−2 ⟨W ∣C−D+ ∣V ⟩ + d−3 ⟨W ∣D−D+ ∣V ⟩

≡ d−1 ⟨W ∣C−CD+ ∣V ⟩ + d−2 ⟨W ∣C−D+ ∣V ⟩ + d−3 ⟨W ∣D−D+ ∣V ⟩
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= d−1 (⟨W ∣C−CC+ ∣V ⟩d+1 − ⟨W ∣C−C+ ∣V ⟩d+2 − ⟨W ∣C−D+ ∣V ⟩d+3)

+ d−2 ⟨W ∣C−D+ ∣V ⟩ + d−3 ⟨W ∣D−D+ ∣V ⟩

= ⟨W ∣C−CC+ ∣V ⟩d−1d+1

+ ⟨W ∣C−C+ ∣V ⟩ , (−d−1d+2)

+ ⟨W ∣D−D+ ∣V ⟩d−3

+ ⟨W ∣D−C+ ∣V ⟩0

+ ⟨W ∣C−D+ ∣V ⟩ (−d−1d+3 + d−2)

and

⟨W ∣D−CD+ ∣V ⟩ = ⟨W ∣D−CC+ ∣V ⟩d+1 − ⟨W ∣D−C+ ∣V ⟩d+2 − ⟨W ∣D−D+ ∣V ⟩d+3

≡ ⟨W ∣D−CC+ ∣V ⟩d+1 − ⟨W ∣D−C+ ∣V ⟩d+2 − ⟨W ∣D−D+ ∣V ⟩d+3

= d+1 (d−1 ⟨W ∣C−CC+ ∣V ⟩ + d−2 ⟨W ∣C−C+ ∣V ⟩ + d−3 ⟨W ∣D−C+ ∣V ⟩)

− ⟨W ∣D−C+ ∣V ⟩d+2 − ⟨W ∣D−D+ ∣V ⟩d+3

= ⟨W ∣C−CC+ ∣V ⟩d−1d+1

+ ⟨W ∣C−C+ ∣V ⟩ (d+1d−2)

+ ⟨W ∣D−D+ ∣V ⟩ (−d+3)

+ ⟨W ∣D−C+ ∣V ⟩ (d+1d−3 − d+2)

+ ⟨W ∣C−D+ ∣V ⟩0.

We conclude that

0 = ⟨W ∣C−C+ ∣V ⟩ (d−2d+1 + d+2d−1)

+ ⟨W ∣D−D+ ∣V ⟩ (−d+3 − d−3)

+ ⟨W ∣D−C+ ∣V ⟩ (d−3d+1 − d+2)

⟨W ∣C−D+ ∣V ⟩ (d+3d−1 − d−2) .

Remark 2.3.6. Note that we are assuming that computing ⟨W ∣C−CD+ ∣V ⟩ and ⟨W ∣D−CC+ ∣V ⟩

on different ways lead to the same value. This is not a problem and we will see why shortly.

2. ⟨W ∣D−DD+ ∣V ⟩ − ⟨W ∣D−DD+ ∣V ⟩ = 0 ∶

⟨W ∣D−DD+ ∣V ⟩ = f−1 ⟨W ∣C−CD+ ∣V ⟩ + f−2 ⟨W ∣C−D+ ∣V ⟩ + f−3 ⟨W ∣D−D+ ∣V ⟩

= f−1 (⟨W ∣C−CC+ ∣V ⟩d+1 − ⟨W ∣C−C+ ∣V ⟩d+2 − ⟨W ∣C−D+ ∣V ⟩d+3)

+ f−2 ⟨W ∣C−D+ ∣V ⟩ + f−3 ⟨W ∣D−D+ ∣V ⟩

= ⟨W ∣C−CC+ ∣V ⟩ f−1 d+1

+ ⟨W ∣C−C+ ∣V ⟩ (−d+2f−1 )

+ ⟨W ∣D−D+ ∣V ⟩ f−3

+ ⟨W ∣D−C+ ∣V ⟩0

+ ⟨W ∣C−D+ ∣V ⟩ (−f−1 d+3 + f−2 ),
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and

⟨W ∣D−DD+ ∣V ⟩ = ⟨W ∣D−CC+ ∣V ⟩ f+1 − ⟨W ∣D−C+ ∣V ⟩ f+2 − ⟨W ∣D−D+ ∣V ⟩ f+3

= f+1 (⟨W ∣C−CC+ ∣V ⟩d−1 + ⟨W ∣C−C+ ∣V ⟩d−2 + ⟨W ∣D−C+ ∣V ⟩d−3)

− ⟨W ∣D−C+ ∣V ⟩ f+2 − ⟨W ∣D−D+ ∣V ⟩ f+3

= ⟨W ∣C−CC+ ∣V ⟩ f+1 d−1

+ ⟨W ∣C−C+ ∣V ⟩ (d−2f+1 )

+ ⟨W ∣D−D+ ∣V ⟩ (−f+3 )

+ ⟨W ∣D−C+ ∣V ⟩ (f+1 d−3 − f+2 )

+ ⟨W ∣C−D+ ∣V ⟩0,

and we need

0 = ⟨W ∣C−CC+ ∣V ⟩ (d−1f+1 − d+1f−1 )

+ ⟨W ∣C−C+ ∣V ⟩ (d−2f+1 + d+2f−1 )

+ ⟨W ∣D−D+ ∣V ⟩ (−f+3 − f−3 )

+ ⟨W ∣D−C+ ∣V ⟩ (−f+2 + d−3f+1 )

+ ⟨W ∣C−D+ ∣V ⟩ (−f−2 + d+3f−1 ) .

3. ⟨W ∣C−DC+ ∣V ⟩ − ⟨W ∣C−DC+ ∣V ⟩ = 0 ∶

⟨W ∣C−DC+ ∣V ⟩ = q−1 ⟨W ∣C−CCl + q−2 ⟨W ∣C−C+ ∣V ⟩ + q−3 ⟨W ∣D−C+ ∣V ⟩ , (2.28)

while

⟨W ∣C−DC+ ∣V ⟩ = ⟨W ∣C−CC+ ∣V ⟩ q+1 − ⟨W ∣C−CC+ ∣V ⟩ q+2 − ⟨W ∣C−D+ ∣V ⟩ q+3 ,

which implies

0 = ⟨W ∣C−CC+ ∣V ⟩ (q−1 − q+1 ) (2.29)

+ ⟨W ∣C−C+ ∣V ⟩ (q−2 + q+2 )

+ ⟨W ∣D−C+ ∣V ⟩ (q−3 )

+ ⟨W ∣C−D+ ∣V ⟩ (q+3 ) .

4. ⟨W ∣C−DD+ ∣V ⟩ − ⟨W ∣C−DD+ ∣V ⟩ = 0 ∶

⟨W ∣C−DD+ ∣V ⟩ = q−1 ⟨W ∣C−CD+ ∣V ⟩ + q−2 ⟨W ∣C−D+ ∣V ⟩ + q−3 ⟨W ∣D−D+ ∣V ⟩

= q−1 ⟨W ∣C−(d+1CC+ ∣V ⟩ − d+2C+ ∣V ⟩ − d+3D+ ∣V ⟩)

+ q−2 ⟨W ∣C−D+ ∣V ⟩ + q−3 ⟨W ∣D−D+ ∣V ⟩

= ⟨W ∣C−CC+ ∣V ⟩d+1q−1

+ ⟨W ∣C−C+ ∣V ⟩ (−d+2q−1 )

+ ⟨W ∣D−D+ ∣V ⟩ q−3

+ ⟨W ∣C−D+ ∣V ⟩ (−d+3q−1 + q−2 ),
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while

⟨W ∣C−DD+ ∣V ⟩ = f+1 ⟨W ∣C−CC+ ∣V ⟩ − f+2 ⟨W ∣C−C+ ∣V ⟩ − f+3 ⟨W ∣C−D+ ∣V ⟩

leading to

0 = ⟨W ∣C−CC+ ∣V ⟩ (f+1 − d+1q−1 )

+ ⟨W ∣C−C+ ∣V ⟩ (−f+2 + d+2q−1 )

+ ⟨W ∣D−D+ ∣V ⟩ (−q−3 )

+ ⟨W ∣C−D+ ∣V ⟩ (−f+3 + d+3q−1 − q−2 )

5. ⟨W ∣D−DC+ ∣V ⟩ − ⟨W ∣D−DC+ ∣V ⟩ = 0 ∶

⟨W ∣D−DC+ ∣V ⟩ = f−1 ⟨W ∣C−CC+ ∣V ⟩ + f−2 ⟨W ∣C−C+ ∣V ⟩ + f−3 ⟨W ∣D−C+ ∣V ⟩

and

⟨W ∣D−DC+ ∣V ⟩ = q+1 ⟨W ∣D−CC+ ∣V ⟩ − q+2 ⟨W ∣D−C+ ∣V ⟩ − q+3 ⟨W ∣D−D+ ∣V ⟩

= q+1 (d−1 ⟨W ∣C−C + d−2 ⟨W ∣C− + d−3 ⟨W ∣D−)C+ ∣V ⟩

− q+2 ⟨W ∣D−C+ ∣V ⟩ − q+3 ⟨W ∣D−D+ ∣V ⟩

= ⟨W ∣C−CC+ ∣V ⟩ (d−1q+1 )

+ ⟨W ∣C−C+ ∣V ⟩ (d−2q+1 )

+ ⟨W ∣D−D+ ∣V ⟩ (−q+3 )

+ ⟨W ∣D−C+ ∣V ⟩ (d−3q+1 − q+2 ),

and so

0 = ⟨W ∣C−CC+ ∣V ⟩ (f−1 − d−1q+1 )

+ ⟨W ∣C−C+ ∣V ⟩ (f−2 − d−2q+1 )

+ ⟨W ∣D−D+ ∣V ⟩ q+3

+ ⟨W ∣D−C+ ∣V ⟩ (f−3 − d−3q+1 + q+2 ).

Regarding Remark 2.3.6, the only other way to compute (for example) ⟨W ∣D−CC+ ∣V ⟩ is to "send" the

D− matrix from one boundary to the other. For that, we note that ⟨W ∣D−C = ⟨W ∣C−D + ⟨W ∣ [D,C]−,

where [D,C]− =D−C−C−D (see (2.16)), and since [D,C]− = [D,E]− we may look directly at the algebra

where (R−2 ) is replaced by

⟨W ∣ [D,C]− = ⟨W ∣ t−1C−C + t−2C− + t−3D−.

This leads to

⟨W ∣D−CC+ ∣V ⟩ = ⟨W ∣C−DC+ ∣V ⟩ + [D,C]1C+ ∣V ⟩

= ⟨W ∣C−DC+ ∣V ⟩ + t−1 ⟨W ∣C−CC+ ∣V ⟩ + t−2 ⟨W ∣C−C+ ∣V ⟩ + t−3 ⟨W ∣D−D+ ∣V ⟩ ,

and so ⟨W ∣D−CC+ ∣V ⟩ = ⟨W ∣D−CC+ ∣V ⟩ is equivalent to
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d−1 ⟨W ∣C−CC+ ∣V ⟩ + d−2 ⟨W ∣C−C+ ∣V ⟩ + d−3 ⟨W ∣D−C+ ∣V ⟩

= ⟨W ∣C−DC+ ∣V ⟩ + t−1 ⟨W ∣C−CC+ ∣V ⟩ + t−2 ⟨W ∣C−C+ ∣V ⟩ + t−3 ⟨W ∣D−D+ ∣V ⟩

that is,

⟨W ∣C−DC+ ∣V ⟩ = (d−1 − t−1) ⟨W ∣C−CCl + (d−2 − t−2) ⟨W ∣C−C+ ∣V ⟩ + (d−3 − t−3) ⟨W ∣D−C+ ∣V ⟩ .

Recalling from (2.19) that q−i ≡ d−i − t−i for i ∈ {1,2,3}, the equation above is the same as (2.28). The

same procedure for ⟨W ∣C−CD+ ∣V ⟩ leads to

⟨W ∣C−DC+ ∣V ⟩ = (d+1 − t+1) ⟨W ∣C−CC+ ∣V ⟩ − (d+2 − t+2) ⟨W ∣C−C+ ∣V ⟩ − (d+3 − t+3) ⟨W ∣D−C+ ∣V ⟩ .

Equating the last two expressions yields again (2.29).

We find that this is equivalent to the kernel problem

⎛
⎜⎜⎜⎜⎜
⎝ d−1q

+
1 − f−1

f+1 − d+1q−1
q+1 − q−1

d−1f
+
1 − d+1f−1

0

−f−2 + d−2q+1
−f+2 + d+2q−1
−q−2 − q+2

d−2f
+
1 + d+2f−1

d−2d
+
1 + d+2d−1

−q+3
−q−3
0

−f+3 − f−3
−d+3 − d−3

−f−3 + d−3q+1 − q+2
0
−q−3

−f+2 + d−3f+1
d−3d

+
1 − d+2

0
−f+3 + d+3q−1 − q−2

−q+3
−f−2 + d+3f−1
d+3d

−
1 − d−2 ⎞

⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝ ⟨η(2)⟩w2
⟨η(1)⟩w2
⟨η(1)η(2)⟩w2

Z2

Z3 ⎞
⎟⎟⎟⎟⎟
⎠

= 0. (2.30)

Denote the matrix on the left-hand side above by I. For I to have a non-trivial kernel we need

det(I) = 0

Example 2.3.7 (Linear models). If d±3 = q±3 = 0 and d±2 ≠ 0, then set of constraints (C1) simplifies to

f±1 = d±1q±1 , f±2 = −d±1 + d±2q±1 , f±3 = 1 + q±2 ,

and the system (2.30) has the unique solution

Z2
Z3
= q
+
1 − q−1
q−2 + q+2

,

⟨η(1)⟩2 = d−1 + d−2
q+1 − q−1

q−2 + q+2 + 1
,

⟨η(2)⟩2 = d+1 + d+2
q−1 − q+1

q−2 + q+2 + 1
,

⟨η(1)η(2)⟩2 = d−1d+1 − d−1
d+2(q+1 − q−1 )
q−2 + q+2 + 1

+ d
−
2(q+1 − q−1 )
q−2 + q+2 + 1

(d+1 −
d+2(q+1 − q−1 )
q−2 + q+2 + 2

) .

We note that

⟨η(1)η(2)⟩2 = ⟨η(1)⟩2⟨η(2)⟩2 +
d−2d

+
2

q−2 + q+2 + 2
( q−1 − q+1
q−2 + q+2 + 1

)
2

.

Example 2.3.8 (Non-linear models). For (C1) with q±3 ≠ 0 it is convenient to perform the substitutions

f±1 = d±1q±1 ,

f±2 = q±1d±2 − d±1(1 + d±1q±3 ),

f±3 = q±1d±3 + 2d±1q±3 + q±2 + 1,

d±2 = −
d±3
q±3
− d±1d±3 .
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It can be checked that this yields the unique solution

Z2
Z3
= 1
z0
d−3 (q−1 − q+1 )

2 (−d−1q−3 − d+1q+3 + d+3(q−1 − q+1 ) − q−2 − q+2 − 2)

+ 1
z0
(q−1 − q+1 ) (d−1q−3 + d+1q+3 + q−2 + q+2 + 2) (−d−1q−3 − d+1q+3 + d+3(q−1 − q+1 ) − q−2 − q+2 − 1) ,

⟨η(1)η(2)⟩2 = −
1
z12

d−1q
−
3 (d−1q−3 + d+1q+3 + q−2 + q+2 + 2) [d+1q+3 (d−1q−3 + d+1q+3 + q−2 + q+2 + 1) − d+3(d+1q+3 + 1)(q−1 − q+1 )]

+ 1
z12

d−3 (d−1q−3 + 1) (q−1 − q+1 ) [d+3(d+1q+3 + 1)(q−1 − q+1 ) − d+1q+3 (d−1q−3 + d+1q+3 + q−2 + q+2 + 2)] ,

⟨η(1)⟩2 = −
1
z1
d−1q

−
3 (d−1q−3 + d+1q+3 + q−2 + q+2 + 2) [d−1q−3 + d+1q+3 + d+3(q+1 − q−1 ) + q−2 + q+2 + 1]

+ 1
z1
d−3(d−1q−3 + 1)(q−1 − q+1 ) [−d−1q−3 − d+1q+3 + d+3(q−1 − q+1 ) − q−2 − q+2 − 2] ,

⟨η(2)⟩2 = −
1
z2
d+1q

+
3 (d−1q−3 + d+1q+3 + q−2 + q+2 + 2) [d−1q−3 + d+1q+3 + d−3(q−1 − q+1 ) + q−2 + q+2 + 1]

+ 1
z2
d+3 (d+1q+3 + 1) (q+1 − q−1 ) [−d−1q−3 − d+1q+3 + d−3(q+1 − q−1 ) − q−2 − q+2 − 2] ,

where

z0 = −d−3 (q−1 − q+1 ) (d−1q−3 + d+1q+3 + q−2 + q+2 + 2) [−d−1q−3 − d+1q+3 + d+3(q−1 − q+1 ) − q−2 − q+2 − 1]

− (d−1q−3 + d+1q+3 + q−2 + q+2 + 2) (d−1q−3 + d+1q+3 + q−2 + q+2 + 1) [−d−1q−3 − d+1q+3 + d+3(q−1 − q+1 ) − q−2 − q+2 ] ,

z12 = d−3q−3 q+3 (q−1 − q+1 ) [−d−1q−3 − d+1q+3 + d+3(q−1 − q+1 ) − q−2 − q+2 − 2]

+ q−3 q+3 (d−1q−3 + d+1q+3 + q−2 + q+2 + 2) [−d−1q−3 − d+1q+3 + d+3(q−1 − q+1 ) − q−2 − q+2 − 1] ,

z1 = d−3q−3 (q−1 − q+1 ) [−d−1q−3 − d+1q+3 + d+3(q−1 − q+1 ) − q−2 − q+2 − 2]

+ q−3 (d−1q−3 + d+1q+3 + q−2 + q+2 + 2) [−d−1q−3 − d+1q+3 + d+3(q−1 − q+1 ) − q−2 − q+2 − 1] ,

z2 = d−3q+3 (q−1 − q+1 ) [−d−1q−3 − d+1q+3 + d+3(q−1 − q+1 ) − q−2 − q+2 − 2]

+ q+3 (d−1q−3 + d+1q+3 + q−2 + q+2 + 2) [−d−1q−3 − d+1q+3 + d+3(q−1 − q+1 ) − q−2 − q+2 − 1] .

We do not prove that the denominators z⋅, in the two previous examples, are not zero in general.

However, it can be checked that for the examples that we provide in Appendix A.4 this is, indeed, the

case.

2.4 Characterization of the consistency relations

The goal of this section is to have some better understanding of the constraints imposed by the

algebra. To simplify the presentation we introduce some notation.

Definition 2.4.1. Denote by a and b the collection of the left and right boundary parameters, respec-

tively:

a = {aij}i,j=1,...,4
i≠j

and b = {bij}i,j=1,...,4
i≠j

.

Denote also the set of parameters such that (C1) is satisfied for the left-boundary (resp. right-boundary)

by C−1 (resp. C+1 ) and the set of parameters satisfying (C2) by C−2 (resp. C+2 ). With this notation, we say

that a fixed choice of boundary rates a satisfies (C1) by writing a ∈ C−1 . For the other set of constraints

and boundary we write analogously.
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For each boundary the full set of constraints C±1 ∪ C±2 can be split into three families. Again, we focus

on the left-boundary. For the right-boundary one needs only to replace the superscript − by +.

Recall the conditions (C1) and (C2) under (H−0 ). It is straightforward to check that {d−2 , d−3 = 0}∩C1 ⊂

C2, while {d−2 , d−3 = 0}c ∩C1 /⊂ C2 and so C−1 and C−2 have a non-empty intersection only if d−2 = d−3 = 0. This

also trivially splits the set C1 into two non-intersecting sets

C1 = (C1 ∩ {d−2 , d−3 = 0}) ∪ (C1 ∩ {d−2 , d−3 = 0}c).

Let us now focus on the last equation in (C1). Note that

d−3 = 0 Ô⇒ (d−2 = 0 ∨ q−3 = 0) and q−3 = 0 Ô⇒ d−3 = 0,

and so we can perform the decomposition

C1 ∩ {d−2 , d−3 = 0}c = (C1 ∩ {d−2 ≠ 0}) ∪ (C1 ∩ {d−3 ≠ 0})

= [(C1 ∩ {d−2 ≠ 0, d−3 = 0}) ∪ (C1 ∩ {d−2 , d−3 ≠ 0})]⋃(C1 ∩ {d−3 , q−3 ≠ 0})

= (C1 ∩ {d−2 ≠ 0, d−3 , q−3 = 0})⋃(C1 ∩ {d−2 , d−3 , q−3 ≠ 0})⋃(C1 ∩ {d−3 , q−3 ≠ 0})

= (C1 ∩ {d−2 ≠ 0, d−3 , q−3 = 0})⋃(C1 ∩ {d−3 , q−3 ≠ 0}).

This motivates the introduction of the following families.

Definition 2.4.2. Define for the left-boundary

• Family F−: models a ∈ C−2 ;

• Family L−: models a ∈ C−1 ∩ {d−2 ≠ 0, d−3 , q−3 = 0};

• Family N−: models a ∈ C−1 ∩ {d−3 , q−3 ≠ 0};

• Subfamily H−: models a ∈ (C−1 ∩ {t1 = 0, t2 = 1, t3 = 0}) ∪ (C−2 ∩ {t1 = 0, t2 + d1t3 = 1})

where we recall from (2.19) that q−i ∶= d−i − t−i . For the right-boundary we introduce analogous families by

simply replacing the superscript − by + and a by b. We introduce also the models with both boundaries

in the same family:

F ∶= F− × F+, L ∶= L− ×L+, N ∶=N− ×N+, H ∶= H− ×H+.

We highlight that from the expression for the coefficients on Appendix A.1 we see that

d−3 = 0, d−2 = 0⇔
⎧⎪⎪⎨⎪⎪⎩

a24 + a14 = a13 + a23,

a42 + a32 = a31 + a41.

d−3 = 0, q−3 = 0⇔
⎧⎪⎪⎨⎪⎪⎩

a13 + a23 + a31 + a41 = a14 + a24 + a32 + a42,

a21 + a32 + a41 + a12 = a14 + a23 + a34 + a43.

It turns out that for each of the previous families the stationary measure has a different structure.

• For the family F− the stationary measure factorizes at site 1 and the reservoirs are uncorrelated;

• For the family L− the models are left-linear but the measure does not factorize at the left-boundary;
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• The family N− corresponds to non-linear models where the measure also does not factorize at the

left-boundary;

• The subfamily H− corresponds to models where the boundary matrices can be taken as being the

same as the bulk ones (see Subsection 2.4.3). The corresponding models can be of linear or non-

linear nature, and the stationary measure can be factorized at the boundary or not.

For both F and L a representation for the algebra can be guaranteed from the representation of the

SSEP(1,1). We note that there are models in F− whose left-boundary is also non-linear in the sense

of the Definition 2.2.5 (see Appendix A.4). Studying these families in detail is the content of the next

subsections. Some examples of models are given in Appendix A.4 although they are far from exhaustive.

2.4.1 Family L

Recall from (2.15) the boundary vectors

⟨W0∣ ∶= ⟨W ∣E−, ∣V0⟩ ∶= E+ ∣V ⟩ , ⟨W1∣ ∶= ⟨W ∣D−, ∣V1⟩ ∶=D+ ∣V ⟩ (2.31)

and introduce

⟨A∣ ∶= ⟨W0∣ + ⟨W1∣ , ∣B⟩ = ∣V0⟩ + ∣V1⟩ .

With this notation the boundary algebra, assuming the right-invertibility (resp. left) of C −1d−3 (resp.

C − 1d+3) and therefore without (R−12), can be rewritten as

⟨W1∣C = ⟨A∣ (d−1C + d−2), D ∣V1⟩ = d−1C − d−2 ∣B⟩ , (2.32)

⟨A∣D = ⟨A∣ (q−1C − (−q−2 )1), D ∣B⟩ = q−1C + (−q−2 )1 ∣B⟩ .

Note that the last line is the boundary algebra for the open SSEP with boundary vectors ⟨A∣ and ∣B⟩:

⟨A∣D = ⟨A∣C α

α + γ
− 1
α + γ

1, D ∣B⟩ = C β

β + δ
+ 1
β + δ

1 ∣B⟩

under the identification α = q−1
−q−2

, γ = 1−q−1
−q−2

and similar for the right-boundary. From the representation for

the SSEP(1,1) it is guaranteed the existence of vectors ⟨A∣ , ∣B⟩ and matricesD,E satisfying [D,E] =D+E

and the boundary relations in the second line of (2.32). These objects can then be plugged into the rest

of the boundary algebra to construct the vectors ⟨W1∣ and ∣V1⟩.

2.4.2 Family F

We already saw in Proposition 2.3.4 and in (2.26) that it is enough to consider the following subalgebra

for the left-boundary

⟨W ∣D− = ⟨W ∣d−1C−,

⟨W ∣C−D = ⟨W ∣ q−1C−C + q−2C− + q−3D−.

It will be convenient to simplify this algebra. Recalling the boundary vectors (2.31), we rewrite

⟨W ∣ (D− − d−1C−) = 0⇔ (1 − d−1) ⟨W1∣ = d−1 ⟨W0∣ .
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For d−1 = 0, we have ⟨W1∣ = 0, and the relation (R−2 ) becomes

⟨W0∣D = ⟨W0∣ (Cq−1 + 1q−2 ),

while for d−1 ≠ 0 we have

(⟨W0∣ + ⟨W1∣)D = (⟨W0∣ + ⟨W1∣)(Cq−1 + 1q−2 ) + q−3 ⟨W1∣

⇔ d−1(⟨W0∣ + ⟨W1∣)D = d−1(⟨W0∣ + ⟨W1∣)(Cq−1 + 1q−2 ) + d−1q−3 ⟨W1∣ ,

⇔ ⟨W1∣D = ⟨W1∣Cq−1 + (d−1q−3 + q−2 )1.

This way, if both the left and right boundaries are in this family, (a, b) ∈ F, the complete boundary

algebra reduces to

⟨W0∣d−1 = ⟨W1∣ (1 − d−1)

⟨W1∣D = ⟨W1∣ q−1C + (d−1q−3 + q−2 )1, d−1 ≠ 0,

⟨W0∣D = ⟨W0∣Cq−1 + q−2 1, d−1 = 0

d+1 ∣V0⟩ = (1 − d+1) ∣V1⟩ ,

D ∣V1⟩ = q+1C − (d+1q+3 + q+2 )1 ∣V1⟩ , d+1 ≠ 0,

D ∣V0⟩ = Cq+1 − q+2 1 ∣V0⟩ , d+1 = 0.

Proposition 2.4.3. For models in F the stationary measure µssN factorizes at the boundary in the fol-

lowing sense:

µssN (η) = ν1
d−1
(η(1))µb(η(2), . . . , η(N − 1))ν1

d+1
(η(N)), (2.34)

where we recall from (2.6) that for x ∈ Λ and ρ ∈ [0,1] one has

νρ(η(x)) = ρη(x)(1 − ρ)1−η(x),

and µb is the stationary measure of the open SSEP defined in {2, . . . ,N −1} with injection (resp. removal)

rate α (resp. γ) at the site 2, and injection (resp. removal) rate β (resp. δ) at the site N − 1, with the

identification
⎧⎪⎪⎨⎪⎪⎩

α = q−1
κ−

γ = 1−q−1
κ−

and
⎧⎪⎪⎨⎪⎪⎩

β = q+1
κ+

δ = 1−q+1
κ+

,
with κ± = −(d±1q±3 + q±2 ) ≠ 0.

As a consequence, the boundary matrices can be taken as multiples of the identity satisfying the relations

0 = d±1E± − (1 − d±1)D±.

The reciprocal is also true: if ∃ρ± ∈ [0,1] such that the stationary measure is factorized as

µssN (η) = νρ−(η(1))µb(η(2), . . . , η(N − 1))νρ+(η(N))

where µb is the stationary measure of the open SSEP with with injection (resp. removal) rate α (resp. γ)

at the first site, and injection (resp. removal) rate β (resp. δ) at the last site, then
⎧⎪⎪⎨⎪⎪⎩

α = q−1
κ−

γ = 1−q−1
κ−

,

⎧⎪⎪⎨⎪⎪⎩

β = q+1
κ+

δ = 1−q+1
κ+

,
with κ± = −(d±1q±3 + q±2 ) ≠ 0

and also ρ± = d±1 with (a, b) ∈ F.
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Proof. We show the result for d±1 ≠ 0 only since for the remaining cases the procedure is analogous. From

the boundary algebra

⟨W ∣η(1)D− + (1 − η(1))E− = (d−1η(1) + (1 − d−1)(1 − η(1)))
1
d−1
⟨W1∣ .

Similarly, since

⟨W ∣D− +E− ≡ ⟨W1 +W0∣ = (
1 − d−1
d−1

+ 1) ⟨W1∣ =
1
d−1
⟨W1∣ ,

we can introduce

ZN = ⟨W ∣C−CN−2C+ ∣V ⟩ = 1
d−1
⟨W1∣CN−2 ∣V1⟩

1
d+1
=∶ 1
d−1
Z̃N−2

1
d+1
.

Analogous computations for the right boundary then ends the proof for the factorization. Defining κ±

as in the statement of the current proposition, the identification with the SSEP algebra comes from the

identities

⟨W1∣D = ⟨W1∣ q−1C − κ−1, D ∣V1⟩ = q+1C + κ+1 ∣V1⟩ , [D,C] = pC.

Since the stationary measure factorizes into a Bernoulli measure at the boundaries, it is clear that we

can take the boundary matrices to be multiples of the identity. More precisely, letting them be as such,

we have

d−1 ⟨W0∣ = (1 − d−1) ⟨W1∣ ⇔ [d−1E− − (1 − d−1)D−] ⟨W ∣1 = 0

and we need only to impose d−1E− − (1 − d−1)D− = 0.

Now we prove the converse. The measure µb is completely described (see [11]) by the quadratic algebra

⟨W ∣αE − γD = ⟨W ∣ , [D,E] =D +E, βE − δD ∣V ⟩ = − ∣V ⟩

and in particular

µb(η) =
1

⟨W ∣CN−2 ∣V ⟩
⟨W ∣

N−1
∏
x=2
[Dη(x) +E(1 − η(x))] ∣V ⟩ .

Checking the stationary condition for µssN the operators acting on µb will lead to the telescopic relations

and what remains can be identified with the algebra A where D±,E± are multiples of the identity. The

requirement for this algebra, with such choices of boundary matrices, to be well-defined is that (a, b) ∈ F.

2.4.3 Family H

We characterize the models where the boundary matrices can be the same as in the bulk, D± = D

and E± = E. For these models the algebra for 1−site boundary is completely enough to characterize the

stationary measure.

Recall from (2.18) that we can express the three left-boundary relation as

⎛
⎜
⎝ ⟨W ∣D−D
⟨W ∣ [D,E]−
⟨W ∣D−C ⎞

⎟
⎠
=
⎛
⎜
⎝f−1
t−1

d−1

f−2

t−2

d−2

f−3

t−3

d−3⎞
⎟
⎠

⎛
⎜
⎝ ⟨W ∣D−
⟨W ∣C−
⟨W ∣C−C⎞

⎟
⎠
, [D,E]− ∶=D−E −E−D.
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If D− =D and E− = E then

⟨W ∣C = ⟨W ∣ [D,E] = ⟨W ∣ [D,E]− = ⟨W ∣ t−1C−C + t−2C− + t−3D− = ⟨W ∣ t−1C2 + t−2C + t−3D.

This motivates the following.

Proposition 2.4.4. The boundary specific matrices D−,E− can be fixed as D−,E− =D,E if and only if

a ∈ (C−1 ∩ {t1 = 0, t2 = 1, t3 = 0}) ∪ (C−2 ∩ {t1 = 0, t2 + d1t3 = 1}) . (2.35)

Proof. Suppose that D− =D and E− = E. Then we must have

⟨W ∣C = ⟨W ∣ [D,E] = ⟨W ∣ t−1C2 + t−2C + t−3D.

The constraints t−3 = 0, t−1 = 0, t−2 = 1 are enough to guarantee that [D,E] = C at the boundary, that is,

⟨W ∣C = ⟨W ∣ [D,E]. In particular, we have q−3 = d−3 because t− = d− − q− and we can have d−3 , q−3 ≠ 0;

moreover d−2 + d−1d−3 also does not need to be zero. This way, the corresponding models can be on either

(C1) or (C2).

If t−3 ≠ 0 we can write

⟨W ∣D = ⟨W ∣ − t
−
1
t−3
C2 + 1 − t−2

t−3
C

and compare with (R−1 ),

⟨W ∣ − t
−
1
t−3
C3 + 1 − t−2

t−3
C2 = ⟨W ∣d−1C2 + d−2C + d−3 (−

t−1
t−3
C2 + 1 − t−2

t−3
C) . (2.36)

That is,

0 = ⟨W ∣C3 t
−
1
t−3
+C2 (d−1 −

1 − t−2
t−3
− d−3

t−1
t−3
) +C (d−3

1 − t−2
t−3
+ d−2) .

From the same argument for the normalization, on Lemma 2.3.3, we see that we need to set the coefficients

to zero, which can be expressed as

0 = t−1 , 1 = t−2 + d−1 t−3 , 0 = d−2 + d−1d−3 , 0 ≠ t−3 . (2.37)

Since d−2 + d−1d−3 = 0, the full set of constraints is a subset of C−2 . Moreover, we end up with the single

boundary relation

⟨W ∣D = ⟨W ∣ − t
−
1
t−3
C2 + 1 − t−2

t−3
C = ⟨W ∣d−1C

because both (R−2 ) and (R−12) can be derived from the identity in the previous display plus (R0).

For t−3 = 0 it follows that C−2 ∩ {t1 = 0, t2 = 1, t3 = 0} ⊂ C−2 ∩ {t1 = 0, t2 + d1t3 = 1}, and we end up with

the two constraints on (2.35).

Reciprocally, suppose the constraints (2.35) are satisfied. If t−1 = 0, t−2 = 1, t−3 = 0 then

⟨W ∣D−E −E−D = ⟨W ∣C−.

Otherwise, we need

⟨W ∣C− = ⟨W ∣ t−1C−C + t−2C− + t−3D−⇔ ⟨W ∣D− = ⟨W ∣
1 − t−2
t−3

C− − t
−
1
t−3
C−C. (2.38)
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We compare the previous relation with (R−1 ). Multiplying both sides of the previous display by C through

the right and reorganizing the terms yields

⟨W ∣D−C = ⟨W ∣ 1 − t
−
2

t−3
C−C − t

−
1
t−3
C−C2, (2.39)

which should be equivalent to (R−1 ). In particular, replacing (2.38) and (2.39) into (R−1 ), that we recall

to be

⟨W ∣D−C = ⟨W ∣d−1C−C + d−2C− + d−3D,

and reorganizing the terms yields

⟨W ∣ 1 − t
−
2

t−3
C−C − t

−
1
t−3
C−C2 = ⟨W ∣ [d−1C2 + d−2C− + d−3 (

1 − t−2
t−3

C− − t
−
1
t−3
C−C)] ,

analogously to (2.36). The previous normalization argument imposes (2.37).

2.5 Density and reservoirs correlation

We focus on the left-boundary, specifically on models satisfying constraints (C1), that is, in either of

the families L− or N−. Regarding family F− (see Subsection 2.4.2), the stationary measure has the fac-

torization given in (2.34), therefore the boundary reservoirs are uncorrelated and the correlation function

for particles in the bulk behaves as in the SSEP(1,1).

We will compute the density and correlation between the left-boundary reservoirs using the algebra,

then compare this with the expression for ϕN(1,2) obtained in (2.12) from the stationary equations

⟨Lf(η)⟩N = 0. From the boundary algebra,

⟨η(1) − d−1⟩N = (d−2 + d−1d−3)JN + d−3⟨η(1) − d−1⟩N−1JN

and by iteration

⟨η(1) − d−1⟩N = JN(d−2 + d−1d−3) + (d−2 + d−1d−3)
N−3
∑
n=1
(d−3)n

n

∏
i=0
jL−i + (d−3)N−2⟨(η(1) − d−1)⟩3

N−3
∏
i=0

jL−i,

which can be replaced into the right-hand side of

⟨η(2) − q−1 ⟩N = (q−2 + d−1q−3 )JN + q−3JN ⟨η(1) − d−1⟩N−1,

⟨η(1)η(2)⟩N = f−1 + (f−1 + d−1f−3 )JN + f−3 JN ⟨η(1) − d−1⟩N−1.

At this point we should compute the current. From (2.27) we have that

JN (N − 3 − q+2 − q−2 − q+3 ⟨η(N − 1)⟩N−1 − q−3 ⟨η(1)⟩N−1) = q−1 − q+1 ,

where JN = ZN−1/ZN , and therefore

JN =
1
N

q−1 − q+1
1 +O(1/N)

.

With this, we can show that

⟨η(1)⟩N = d−1 + JN(d−2 + d−1d−3) + JNJN−1d
−
3(d−2 + d−1d−3) +O (1/N3) ,

⟨η(2)⟩N = q−1 + JN(q−2 + d−1q−3 ) + JNJN−1q
−
3 (d−2 + d−1d−3) +O (1/N3) ,

⟨η(1)η(2)⟩N = f−1 + JN(f−2 + d−1f−3 ) + JNJN−1f
−
3 (d−2 + d−1d−3) +O (1/N3) .

(2.40)
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The bulk relation implies that for any x ∈ {2, . . . ,N − 1} it holds that

⟨η(x)⟩N = ⟨η(2)⟩N − (x − 2)JN ,

which leads to

⟨η(x)⟩N =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d−1 + JN(d−2 + d−1d−3) +O(1/N2), x = 1,
q−1 + JN(q−2 + d−1q−3 − (x − 2)) +O(1/N2), 2 ≤ x ≤ N − 1,
d+1 − JN(d+2 + d+1d+3) +O(1/N2), x = N.

Performing the limit N → +∞ we write u ∶= limN→+∞N
−1x and ρ(u) ∶= limN→+∞⟨η(x)⟩N , obtaining the

linear profile

ρ(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d−1 , u = 0,
q−1 (1 − u) + q+1u, u ∈ (0,1),
d+1 , u = 1.

We highlight that for d±1 ≠ q±1 , that is, t±1 ≠ 0, the density is not continuous at the boundary. In the case

d−1 = q−1 the boundary derivatives are well defined. Concretely,

∂uρ(0) = lim
N→+∞

N(⟨η(1)⟩N − ⟨η(2)⟩N) = (d−2 + d−1d−3 − (q−2 + d−1q−3 )) lim
N→+∞

NJN

∂uρ(1) = lim
N→+∞

N(⟨η(N − 1)⟩N − ⟨η(N)⟩N) = (−d+2 − d+1d+3 + q+2 + d+1q+3 ) lim
N→+∞

NJN ,

where limN→+∞NJN = q−1 − q+1 = d−1 − d+1 .

For the correlation function, similarly,

ϕN(1,2) = f−1 − d−1q−1

+ JN (f−2 + d−1f−3 − d−1(q−2 + d−1q−3 ) − q−1 (d−2 + d−1d−3))

− (JN)2(d−2 + d−1d−3)(q−2 + d−1q−3 )

+ JNJN−1(d−2 + d−1d−3)(f−3 − d−1q−3 − d−3q−1 ) +O(1/N3).

The algebra constraints (C1) and (C2) imply that the first two lines on the right-hand side equal zero,

hence

lim
N→+∞

N2ϕN(1,2) = (q−1 − q+1 )2(d−2 + d−1d−3) (f−3 − d−1q−3 − d−3q−1 − (q−2 + d−1q−3 )) .

For d−2 + d−1d−3 ≠ 0 we can see that

f−3 − d−1q−3 − d−3q−1 − (q−2 + d−1q−3 ) = 1. (2.41)

To prove this, note that

(d−2 + d−1d−3)(f−3 − d−1q−3 − d−3q−1 − (q−2 + d−1q−3 )) = −(q−1d−3 + q−2 + d−1q−3 − f−3 )(d−2 + d−1d−3)

− d−1q−3 (d−2 + d−1d−3)

= d−2 − d−1q−3 (d−2 + d−1d−3)

= d−2 + d−1d−3
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with the second equality in the previous display being a consequence of the fourth condition in (C1). As

such, we conclude that

lim
N→+∞

N2ϕN(1,2) = (q−1 − q+1 )2(d−2 + d−1d−3). (2.42)

This is in contrast with ϕN(2,3), which should be scaled by a factor N : we can approximate this

quantity with the same reasoning.

⟨η(2)η(3)⟩N = q−1 ⟨η(3)⟩N + q−2 ⟨η(2)⟩N−1JN + q−3 ⟨η(1)η(2)⟩N−1JN ,

⟨η(3)⟩N = ⟨η(2)⟩N − JN

and so

ϕN(2,3) = q−1 ⟨η(3)⟩N + q−2 ⟨η(2)⟩N−1JN + q−3 ⟨η(1)η(2)⟩N−1JN − ⟨η(2)⟩N(⟨η(2)⟩N − JN)

= −⟨η(2)⟩N(⟨η(2)⟩N − q−1 ) + JN (⟨η(2)⟩N − q−1 + q−2 ⟨η(2)⟩N−1 + q−3 ⟨η(1)η(2)⟩N−1)

= −(q−1 +O(1/N)) ((q−2 + d−1q−3 )JN +O(1/N(N − 1)))

+ JN (q−1 +O(1/N) − q−1 + q−2 (q−1 +O(1/N − 1)) + q−3 (f−1 +O(1/N − 1)))

= q−1 (q−2 + d−1q−3 )JN + JN(q−1 q−2 + f−1 q−3 ) +O(1/N(N − 1))

Since f−1 = d−1q−1 this can be rearranged into

ϕN(2,3) = 2q−1 (q−2 + d1q3)JN +O(1/N(N − 1)).

Notation 2.5.1. Hereafter we are going to use the following notation g = o(f(N)) ⇔ g/f(N) N→+∞ÐÐÐÐ→ 0.

Proposition 2.5.2. If the boundary parameters are such that (H−0 ) and (H1) are satisfied, then for

left-linear models (a ∈ L−) the constraints (C1) are equivalent to

ϕN(1,2) = ⟨(η(1) − d−1)⟩N ⟨j2(η)⟩N + o(1/N2) = O(1/N2),

while for left-non-linear models (a ∈N−) they are equivalent to the previous two equalities plus

lim
N→+∞

⟨j2(η)⟩N
⟨η(2) − q−1 ⟩N

= −1. (2.43)

Proof. We compute in Appendix A.3, solely from the equations ⟨Lη(1)⟩N = ⟨Lη(2)⟩N = ⟨Lη(1)η(2)⟩N = 0,

the correlation

ϕN(1,2) = (f−1 − d−1q−1 ) + ⟨j2(η)⟩N (f−2 + d−1f−3 − q−1 (d−2 + d−1d−3) − d−1(q−2 + d−1q−3 ))

+ ⟨j2(η)⟩2N(d−2 + d−1d−3)(
f−3 − q−1d−3 − d−1q−3
1 − d−3⟨j2(η)⟩N

− q−2 − d−1q−3)

+ ⟨j2(η)⟩3N
d−2 + d−1d−3

1 − d−3⟨j2(η)⟩N
(q−3 (d−2 + d−1d−3) + d−2(q−2 + d−1q−3 ))

+ ⟨j2(η)⟩4Nd−3q−3 (d−2 + d−1d−3)2
1

(1 − d−3⟨j2(η)⟩N)2

− (∇
+
2ϕN)(1,2)

1 − d−3⟨j2(η)⟩N
(f−3 − q−1d−3 − d−1q−3 )

− (∇
+
2ϕN)(1,2)⟨j2(η)⟩N
1 − d−3⟨j2(η)⟩N

(q−3 (d−2 + d−1d−3) + d−3(q−2 + d−1q−3 ))
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−
(∇+2ϕN)(1,2)⟨j2(η)⟩2N
(1 − d−3⟨j2(η)⟩N)2

(d−2 + d−1d−3)2(1 +
d−3q

−
3

1 − d−3⟨j2(η)⟩N
)

+ ((∇
+
2ϕN)(1,2))2

(1 − d−3⟨j2(η)⟩N)2
d−3q

−
3 ,

where we recall that (∇+2ϕN)(1,2) = ϕN(1,3) −ϕN(1,2). The right-hand side of previous display is very

general, with no constraints except (H−0 ) and with no algebra involved. The key quantity to focus on is

the forward difference

(∇+2ϕN)(1,2) =
1
N
(N∇+2ϕ)(1,2).

We can either have limN→+∞(N∇+2ϕ)(1,2) finite or infinite. We suppose the former. This being fi-

nite means that there exists the partial derivative at the boundary, since N∇+2 should converge to

the partial derivative operator acting on the second variable (which we write as ∂2). In other words,

limN→+∞ ϕN(1,2) should be right-continuous at the macroscopic point (u, v) = (0,0). In this case, we

have

NϕN(1,2) = N(f−1 − d−1q−1 ) +N⟨j2(η)⟩N (f−2 + d−1f−3 − q−1 (d−2 + d−1d−3) − d−1(q−2 + d−1q−3 )) +O(1/N).

This means that we can consider the cases

0 ≠f−1 − d−1q−1 Ô⇒ ϕN(1,2) = O(1),

0 =f−1 − d−1q−1 ≠ f−2 + d−1f−3 − q−1 (d−2 + d−1d−3) − d−1(q−2 + d−1q−3 ) Ô⇒ ϕN(1,2) = O(1/N),

and

0 =f−1 − d−1q−1 = f−2 + d−1f−3 − q−1 (d−2 + d−1d−3) − d−1(q−2 + d−1q−3 ). (2.44)

We focus on the last case above, and highlight that the first two constraints in (C1) correspond to the

two constraints in (2.44).

Let us further suppose that (∇+2ϕN)(1,2) ≤ O(1/N2). Then

lim
N→+∞

N2ϕN(1,2) = J2(d−2 + d−1d−3) (f−3 − q−1d−3 − d−1q−3 − q−2 − d−1q−3 ) , J = lim
N→+∞

N⟨j2(η)⟩N .

Imposing (2.41) also, one obtains the same as in (2.42), from the MPA. Since

⟨(η(1) − d−1)j2(η)⟩N = ⟨(η(1) − d−1)⟩N ⟨j2(η)⟩N − (∇+2ϕN)(1,2),

from (2.40) the constraint (2.41) can be encapsulated into

lim
N→+∞

N2ϕN(1,2) = J2(d−2 + d−1d−3) = lim
N→+∞

N2⟨(η(1) − d−1)⟩N ⟨j2(η)⟩N = lim
N→+∞

N2⟨(η(1) − d−1)j2(η)⟩N .

We highlight that from the MPA we can compute

ϕN(1,3) = ϕN(1,2) + (d−2 + d−1d−3)JN(JN − JN−1) +O(1/N4),

and so (∇+2ϕN)(1,2) = O(1/N3) assuming (C1), since we already saw that the consistency of the algebra

implies that ϕN(1,2) = O(1/N2).

42



To see that the last constraint, q3(d2 + d1d3) = −d3, can be encapsulated into (2.43), from (A.5) and

(A.7) it holds that

⟨η(1) − d−1⟩N = (d−2 + d−1d−3)⟨j2(η)⟩N + d−3(d−2 + d−1d−3)⟨j2(η)⟩2N
1

1 − d−3⟨j2(η)⟩N
− (∇+2ϕN)(1,2)

1
1 − d−3⟨j2(η)⟩N

(2.45)

hence

d2 + d1d3 = lim
N→+∞

⟨η(1) − d−1⟩N
⟨j2(η)⟩N

and d3
q3
= ⟨η(1) − d

−
1⟩N − (d2 + d1d3)⟨j2(η)⟩N

⟨η(2) − q−1 ⟩N − (q2 + d1q3)⟨j2(η)⟩N
= lim
N→+∞

⟨(η(1) − d−1)⟩N
⟨η(2) − q−1 ⟩N

.

Since d−2 + d−1d−3 ≠ 0 by hypothesis, from (2.45) and again (A.5) we obtain (2.43).
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3.1 Introduction
3.1.1 Main result and strategy

We construct a family of exclusion processes parametrized by m ∈ (0,2] and evolving on the one-

dimensional (discrete) torus TN and we prove that their hydrodynamic limit is given by

∂tρ = ∂2
u(ρm), (t, u) ∈ R+ ×T.

The motivation for the definition of our models comes from the analysis of the diffusion coefficient

D(ρ) = mρm−1 and the generalized binomial theorem (Proposition 3.2.7 below). As a consequence, the

resulting family of models interpolates continuously in m between the SSEP and the so-called PMM(1).

For the reader to have a better picture of the processes that will interplay in this chapter present the

constraints for the occupation exchange in the node {0,1} of the relevant processes. The SSEP and the

PMM(k), for any k ∈ N+, are defined, for each η ∈ ΩN , through the rates

a(η) ∶= η(0)(1 − η(1)) + (1 − η(0))η(1) and r(k)(η) ∶= a(η)
k+1
∑
j=1

j

∏
i=−(k+1)+j

i≠0,1

η(i),

respectively. In particular, the rate of the PMM(1) is given by r(1) = (η(−1)+η(2))a(η). The rates acting

in a generic node {x,x + 1} are obtained by a translation of the maps just introduced. For the moment,

let us refer to the rate of the interpolating model simply by r
(m−1)
N , for m ∈ (0,2) and N ≫1 a fixed

natural number. The interpolating family is presented in (3.2) below and, more detailed, in Definition

3.2.8; the PMM is presented in Definition 3.2.3 and the interpolating property presented in Proposition

3.2.12.

The starting point is to represent the diffusion coefficient D(ρ) = m(1 − (1 − ρ))m−1 in terms of the

series

D(ρ) = ∑
k≥1
(m
k
)(−1)k−1k(1 − ρ)k−1, (3.1)

where (m
k
) is the generalized binomial coefficient (see (3.7) for the definition). The diffusion coefficient

kρk−1 is associated with the PMM(k), and for this reason the family {PMM(k)}k⩾0 can be seen as a

“polynomial basis”. To be precise, to generate a discrete version of (3.1) we consider as basis the family

of processes PMM, corresponding to the PMM constraints with holes and particles exchanged; and since

the lattice is finite, the series is truncated at a step `N ≤ N with `N
N→+∞ÐÐÐÐ→ +∞.

The porous medium models {PMM(k)}k∈N (first considered in [21]) are of gradient type, and the

Bernoulli product measures with constant parameter are invariant for each PMM(k). In this way, the

interpolating model keeps both properties, and moreover it becomes irreducible, in the sense that every

particle configuration can be changed into any other configuration with the same number of particles

through successive jumps that happen with positive probability. We note that this irreducibility property

was not verified for the original PMM(k), and in our case is consequence of the interpolating process

being "closer" to the SSEP than the PMM(1) is.

We denote by {ηt}t⩾0 the Markov process on the lattice ΩN = {0,1}TN , which is univocally defined

through its infinitesimal generator, denoted below by Lm−1
N , which is an operator acting on functions
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defined on ΩN . In order to give a precise definition, we first need to introduce the infinitesimal gener-

ators related to the basis mentioned above: let LPMM(k)
N be the generator of a process defined as the

PMM(k), but with the constraints acting on empty sites, instead of particles, as previously mentioned.

The infinitesimal generator of the interpolating model, which is a linear combination of the latter, is

defined for any m ∈ (0,2] by

L(m−1)
N =

`N

∑
k=1
(m
k
)(−1)k−1LPMM(k−1)

N , where 2 ≤ `N ÐÐÐÐ→
N→+∞

+∞. (3.2)

The treatment of a linear combination of nearest neighbour models with `N → +∞ as N → +∞ is one of the

novelties of this work. It is also worth pointing out that although (1.2) only has local interactions, it is not

required that `N = o(N), and it can be of any order, as long as N ⩾ `N → +∞. In fact, several difficulties

arise from maintaining `N with no order restrictions. To achieve this, some new ideas and properties of

the family {PMM(k)}k≥0 are explored. The interpolating property invoked above is a consequence of the

definition of the generalized binomial coefficients. Concretely, for any fixed configuration η and fixed N

it holds that

lim
m↗1

r
(m−1)
N (η) = a(η) = lim

m↘1
r
(m−1)
N (η) and lim

m↗2
r
(m−1)
N (η) = r(1)(η).

To better visualize how these rates can deform the SSEP into a slow or fast diffusion model we refer the

reader to Figure 3.5 and to the discussion just before it.

We remark that the sign of the generalized binomial coefficients (m
k
) changes according to the values

of m and k. This oscillating nature is the reason why one may find rates for which (3.2) is not well-defined

for m > 2. For m ∈ (0,2), the sign of these coefficients lead to an interpretation of the resulting models as

the SSEP with either a penalization or reinforcement given by porous medium models (with constraints

on the empty sites), as explained in (3.10), and this also explains why the interpolating model becomes

irreducible. This is presented in more details in Proposition 3.2.10.

Proving a hydrodynamic limit is, in plain terms, a law of large numbers for a specific quantity of the

system – in our case the density of particles, which is also a conserved quantity since we will work in the

torus. Concretely, the (time accelerated) empirical measure associated with the particle density at time

t > 0 is defined for any η ∈ ΩN , as follows

πNt (η,du) =
1
N
∑
x∈TN

ηN2t(x)δx/N(du).

In other words πNt (η,du) is a random measure on the continuous torus T and performs the link between

the microscopic and macroscopic space scales, via the space scaling x↦ N−1x and the so-called diffusive

time scaling t ↦ N2t. Our main result states that starting from a local equilibrium distribution (see

Definition 3.2.23), this random empirical measure converges in probability as N → +∞, to a deterministic

measure ρt(u)du, where ρt(u) is the unique weak solution of the hydrodynamic equation (1.2) for m ∈

(0,2).

Our proof follows the entropy method introduced by [23], which highly relies on the fact that the

microscopic model of particles is gradient and has the irreducibility property. The overall strategy can

be split into three steps: (i) prove tightness of the sequence of measures induced by the density empirical
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measure; (ii) obtain an energy estimate which gives information on the regularity of the density profile,

which is crucial for the proof of uniqueness of weak solutions; (iii) characterize uniquely the limiting

points. Different technical problems arise for both slow (m > 1) and fast (m < 1) regimes. In plain terms,

a particularly delicate and crucial step is showing that the occupation variables can be approximated

by local (empirical) averages, which is done in several steps. The main difficulty, in our case, lies in

that we have a large product of occupation variables, which is where the "nonlinearity" of the dynamics

arises. This approximation scheme is known in the literature as the replacement lemmas. In particular,

the replacement lemmas are specific to each regime (see Lemmas B.1.3, B.1.5 for the slow regime and

Lemmas B.1.6, B.1.7 for the fast regime). Fundamental to the proof of those lemmas is the energy

lower bound (Proposition 3.4.2) which compares the Dirichlet form of our process with the “Carré-du-

Champ" operator, and the results of Subsection 3.2.1, where we derive some new properties of the family

{PMM(k)}k≥0. In the fast regime, it is surprising that the tightness step requires the replacement Lemma

B.1.6, due to the supremum of the rates being unbounded as N → +∞. The characterization of the limit

points is the most technical part, and also uses several replacement lemmas.

The application of those replacement lemmas involves some novelties due to the summation with

binomial coefficients in the definition of L(m−1). The replacement lemmas link the microscopic and

macroscopic scales by approximating the product of k occupation variables by k empirical averages

over independent boxes – first by microscopic boxes (“one-block estimate”), then by approximating the

microscopic boxes by mesoscopic boxes (“two-blocks estimate”). Here, it is important to adjust the size

of these boxes dynamically with k for the series of errors to vanish in the limit N → +∞. However, this

dynamical argument alone would require to impose assumptions on the explosion of `N . To avoid this, it

is fundamental to first slow down the explosion by replacing `N by (`N)n with 0 < n < 1. This argument

depends on the order of the tail of the series ∑k≥1 ∣(mk )∣. The treatment of this series also requires a sharp

non-asymptotic estimate on the binomial coefficients which, surprisingly, was absent in the literature (see

Lemma B.3.1) and can be of independent interest.

There were also some technical issues regarding the energy estimate, precisely when showing that the

(weak) solution of (1.2) (Definition 3.2.22) belongs to the target Sobolev space. The weak differentiability

of specific functions of ρ is needed to prove uniqueness, giving us that the whole sequence of measures

converges thanks to tightness. Specifically, if ρm belongs to the target Sobolev space (which is the case

for m ∈ (1,2)), uniqueness follows by simple energy arguments (see Lemma B.2.3), while if ρ only belongs

to the target Sobolev space (which is the case when m ∈ (0,1)), then the proof is more involved (see

Lemma B.2.5), and it is an adaptation of the argument for very weak solutions in [38].

3.1.2 Outline of the chapter

The present chapter is organized as follows: Section 3.2 is devoted to introducing the family of porous

medium models which will be the building blocks to construct our new models and used to prove some

of the important properties of the latter; particularly, in Subsection 3.2.1 we construct the interpolating

models, prove that they are well-defined, and in Subsection 3.2.2 we study some of their monotonicity

properties and present our main result. Then we prove the convergence towards the hydrodynamic limit
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in Section 3.3. In Section 3.4 we obtain the energy estimates for the different regimes.

Appendix B.1 is devoted to the statement and proof of the so-called replacement Lemmas, which are

in the heart of the proof of the hydrodynamic limit. We concentrate the PDE’s results in Appendix

B.2: uniqueness and regularity of the weak solution of the hydrodynamic equations. In Appendix B.3

we prove the auxiliary results regarding the generalized binomial coefficients and a quantity arising from

the gradient condition.

3.2 Microscopic models and Main Result

The microscopic dynamics at the core of this subsection is a system of particles which evolves according

to a Markov process, satisfying the exclusion rule and situated on the discrete torus TN . A particle

configuration η is an element of ΩN = {0,1}TN , namely η(x) ∈ {0,1} for any x ∈ TN . Particles can

jump to nearest-neighbour sites only, providing the latter are not already occupied. Before defining the

generator of the dynamics, let us introduce some operators and recall others from the beginning of the

previous chapter.

Definition 3.2.1 (Exchange of occupation variables). For any x, y, z ∈ TN let us consider the exchange

of occupation variables η ↦ ηx,y given by

ηx,y(z) = 1z≠x,y η(z) + 1z=x η(y) + 1z=y η(x).

We define the operator ∇x,y associated with the occupation exchange, given on any f ∶ ΩN → R by

∇x,yf(η) = f(ηx,y) − f(η).

Finally, for any x ∈ TN , define the translation τxη(y) = η(x + y) for y ∈ TN , and extend it to functions

f ∶ ΩN → R by τxf(η) = f(τxη).

Let us now introduce rigorously the known models which will come into play.

Definition 3.2.2 (Symmetric Simple Exclusion Process). We denote by SSEP on TN the Markov process

with state space ΩN generated by the following operator LSSEP
N , which acts on f ∶ ΩN → R, for any η ∈ ΩN ,

as:

(LSSEP
N f)(η) = ∑

x∈TN
ax,x+1(η)(∇x,x+1f)(η),

where a0,1(η) = η(0)(1−η(1))+η(1)(1−η(0)) and ax,x+1(η) = ax+1,x(η) = τxa0,1(η). Due to the symmetry

of the rates we will short-write a ∶= a0,1 = a1,0.

Definition 3.2.3 (Porous Medium Model for any integer k ≥ 1, [21]). For any k ∈ N+ let us denote by

PMM(k) the porous medium model on TN with parameter k, as the Markov process with state space ΩN
generated by the following operator LPMM(k)

N , which acts on f ∶ ΩN → R, for any η ∈ ΩN , as:

(LPMM(k)
N f)(η) = ∑

x∈TN
r(k)x,x+1(η)ax,x+1(η)(∇x,x+1f)(η) with r(k)x,x+1(η) = c(k)x,x+1(η)ax,x+1(η) (3.3)
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and where c(k)x,x+1(η) = τxc(k)0,1 (η) with

c(k)0,1 (η) =
k+1
∑
j=1

s(k)j (η) and s(k)j (η) =
j

∏
i=−(k+1)+j

i≠0,1

η(i). (3.4)

The quantity c(k)x,x+1(η) is the constraint to be satisfied for the jump to happen. Again due to the

symmetry of the rate and constraint, we short-write c(k)(η) ≡ c(k)0,1 (η) and r(k)(η) ≡ r(k)0,1 (η). As it can be

seen from (3.4) and Figure 3.1, a jump crossing the bond {x,x+1} is allowed only if at least k consecutive

particles out of the edge {x,x + 1} are situated in the box Jx − k, x + (k + 1)K/{x,x + 1}, where for any

a, b ∈ N such that a < b we short-write {a, . . . , b} = Ja, bK.

-3 43210-1-2

Figure 3.1: PMM(2) valid local configurations for which a particle swaps positions in the edge {0,1}.

An illustration of the dynamics for k = 1 is also provided in Figure 3.2. We remark that the observable

value of the constraint just described equals the number of fully occupied ”windows" of the collection

{Jx−(k+1)+j, x+jK/{x,x+1}}j=1,...,k+1, with x ∈ TN fixed. This constraint was delicately constructed so

that the dynamics satisfies the gradient property (that we will explore and further reference throughout

this chapter and its subsequent). Limiting the consideration to the indicator function of having at least

one fully occupied window, without reinforcement dependent on the specific number of occupied windows,

results in a non-gradient model with very few results in the existing literature [30] .

Remark 3.2.4 (k = 0). Note that for k = 0, c(0)(η) ≡ 1 and therefore r(0)(η) = a(η), which corresponds

to the exchange rate in SSEP. It will be useful to interpret PMM(0) = SSEP.

Definition 3.2.5 (Flipped configuration). For any η ∈ ΩN , let η ↦ η be the map that flips holes with

particles, namely: for any x ∈ TN , η(x) = 1 − η(x).

We are now ready to introduce the flipped porous medium model.

Definition 3.2.6. For any k ∈ N+, let us denote by PMM(k) the flipped porous medium model with

parameter k with dynamical constraints on the vacant sites, as the Markov process on ΩN generated by

the following operator LPMM(k)
N , which acts on functions f ∶ ΩN → R, for any η ∈ ΩN , as

(LPMM(k)
N f)(η) = ∑

x∈TN
c(k)x,x+1(η)ax,x+1(η)(∇x,x+1f)(η). (3.5)

Note that the process above can be interpreted as the empty sites following the same constraint as in

PMM(k): a jump crossing the bond {x,x+1} is allowed only if at least k “consecutive" empty sites out of

the edge {x,x+ 1} are situated in the box Jx− k, x+ (k + 1)K. An illustration of the dynamics is provided
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in Figure 3.3. We also highlight that the parameter k in the PMM(k) corresponds to the exponent of the

diffusion coefficient, D(ρ) = (k + 1)ρk, hence to the equation (1.2) with m = k + 1.

1 8765432

121 0 0 0

0

Figure 3.2: PMM(1) transition rates.

1 8765432

101 2 2 2

0

Figure 3.3: PMM(1) transition rates.

3.2.1 The interpolating model

Recall Remark 3.2.4, where we made the observation that SSEP=PMM(0). The construction of

the interpolating model will be based on two main ingredients: the generalized binomial theorem and

the fact that the family {PMM(k)}k≥0 can be seen as a "polynomial basis" for the diffusion coefficient

D(ρ) =mρm−1. We base our analysis in the next identity: for any ρ ∈ (0,1)

mρm−1 =m(1 − (1 − ρ))m−1 =m∑
k≥0
(m − 1

k
)(−1)k(1 − ρ)k = ∑

k≥1
(m
k
)(−1)k−1k(1 − ρ)k−1 (3.6)

where the generalized binomial coefficient is given by the formula

(c
k
) = (c)k

k!
= c(c − 1)⋯(c − (k − 1))

k!
, c ∈ R (3.7)

and therefore we have the identity m(m−1
k
) = (k + 1)( m

k+1). This is a particular case of the generalized

binomial expansion for real coefficients:

Proposition 3.2.7 (Generalized Binomial Theorem). For any x, y, c ∈ R such that ∣x∣ > ∣y∣ we have that

(x + y)c =
∞
∑
k=0
(c
k
)xc−kyk,

where (c
k
) has been defined in (3.7).

Proof. The proof is standard and as such we only outline the main steps. Without loss of generalization

let x ≠ 0. Writing z = y/x we have (x + y)c = xc(1 + z)c. Let f(z) = (1 + z)c be defined for ∣z∣ < 1. Then,

by induction we see that dkf
dzk
(z) = (c)k(1 + z)c−k for any k ≥ 1 integer. To conclude we recall the Taylor

expansion of f and apply Lemma B.3.1 stated below, which guarantees the convergence.

Proposition 3.2.7 implies the convergence of the series appearing in (3.6) for any ρ ∈ (0,1). For

ρ ∈ {0,1} and m ∈ (1,2) or ρ = 1 and m ∈ (0,1) one can also easily guarantee the convergence by replacing

ρ by 1 or 0 in each term of the series as written in (3.6). For m ∈ (0,1) and ρ = 0 the series is divergent.

This will not be a problem, since due to the gradient property of the model we shall see that the object

of study will be ρm and not ρm−1.

Definition 3.2.8 (Interpolating model). Let m ∈ [0,2], N ∈ N+ and `N ∈ N, with `N ≥ 2. We define the

generator

L(m−1)
N ∶=

`N

∑
k=1
(m
k
)(−1)k−1LPMM(k−1)

N (3.8)
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where LPMM(k)
N has been defined in (3.5). More precisely, this generator acts on functions f ∶ ΩN → R as

(L(m−1)
N f)(η) = ∑

x∈TN
c
(m−1)
N (τxη)ax,x+1(η)(∇x,x+1f)(η),

where

c
(m−1)
N (η) =

`N

∑
k=1
(m
k
)(−1)k−1c(k−1)(η) (3.9)

and we shorten the rate r(m−1)
N (η) = c(m−1)

N (η) a(η). We call non integer porous medium model (resp. fast

diffusion model), and we denote it by PMM(m − 1) (resp. by FDM(m − 1)), the Markov process whose

infinitesimal generator is given by (3.8) with m ∈ (1,2) (resp. m ∈ (0,1)).

Remark 3.2.9 (About the restrictions on `N ). Although there is no particular assumption on the order

at which `N → +∞, note that if `N > N then for N ≤ k ≤ `N we have that r(k)(η) ≠ 0 if, and only if, every

site is occupied except one at the node {0,1}. Due to the mass conservation, this would be achievable only

by starting from a configuration with one empty site only, and we would see no macroscopic evolution of

the local density. This is a particular technical consequence of working on the torus, therefore we assume

throughout this work that `N ≤ N .

The goal now is to show that the model is well-defined. In other words, we are going to prove that

the map η ↦ c
(m−1)
N (η) is non-negative. The key argument is the following remark about the sign of

(−1)k−1(m
k
). By definition,

• if m ∈ (0,1), then (−1)k−1(m
k
) > 0 for any k ≥ 1,

• if m ∈ (1,2), then

(−1)k−1(m
k
) > 0 if k = 1, and (−1)k−1(m

k
) < 0 if k ≥ 2.

Therefore we can rewrite

L(m−1)
N =mLSSEP

N − sign(m − 1)
`N

∑
k=2
∣(m
k
)∣LPMM(k−1)

N , m ∈ (0,2)/{1}. (3.10)

We also need non-asymptotic bounds for the generalized binomial coefficients: from Lemma B.3.1 one

can extract that for m ∈ R and k ≥ 2

1
(k + 1)m

≲ ∣(m − 1
k
)∣ ≲ 1

km
. (3.11)

The notation f(k) ≲ g(k) shortens that there exists C > 0, such that for all k ∈ N, ∣f(k)∣ ≤ C ∣g(k)∣.

Now we state and prove the main technical result of this section, which contains two estimates: the

lower bounds show that the generators are well-defined and permit to prove an energy bound (given in

Proposition 3.4.2), which is essential to the proof of the forthcoming replacement lemmas; the upper

bounds reflect the boundedness of the rates as N → +∞.

Proposition 3.2.10. If `N ≫ 1, then for any η ∈ ΩN ,

r
(m−1)
N (η) ≥

⎧⎪⎪⎨⎪⎪⎩

m r(0)(η), m ∈ (0,1),
mδN r(0)(η) + (m2 ) r(1)(η), m ∈ (1,2),

and r
(m−1)
N (η) ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

`N

∑
k=1
∣(m
k
)∣k, m ∈ (0,1),

mr(0)(η), m ∈ (1,2),
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where (`N + 1)−(m−1) ≲ δN = ∑k≥`N ∣(
m−1
k
)∣ ≲ (`N)−(m−1). Moreover, when m ∈ (0,1),

`N

∑
k=1
∣(m
k
)∣k = max

η∈ΩN
r
(m−1)
N (η) ÐÐÐÐ→

N→+∞
+∞.

Proof. We start with the case m ∈ (1,2). From (3.10), we rewrite

r
(m−1)
N (η) =m −

`N

∑
k=2
∣(m
k
)∣k +

`N

∑
k=2
∣(m
k
)∣(k − r(k−1)(η)) ≥m −

`N

∑
k=2
∣(m
k
)∣k + (m

2
)(2 − r(1)(η)),

where for the last inequality we used the fact that, by definition, c(k−1)(η) ≤ k, and we bounded from

below all but the first term of the second summation in k by zero. Then, since the alternating sum of

the binomial coefficients vanishes, we obtain, for any `N ∈ N+, that

m −
`N

∑
k=2
∣(m
k
)∣k =m(1 −

`N−1
∑
k=1
∣(m − 1

k
)∣) >m(1 −

+∞
∑
k=1
∣(m − 1

k
)∣) = 0 (3.12)

and therefore we get that r(m−1)
N > 0. To conclude, we note that 2 − c(1)(η) = c(1)(η) and we set

δN ∶= 1 −
`N−1
∑
k=1
∣(m − 1

k
)∣ = ∑

k≥`N
∣(m − 1

k
)∣ > 0.

Recalling (3.11), we are reduced to estimate the tail of the m−series:

c

(m − 1)(`N + 1)m−1 ≤ ∑
k≥`N+1

1
km
≤ C

(m − 1)(`N)m−1

with c,C > 0 being constants independent of N . Putting the inequalities together, the proof of the lower

bound follows. To prove the upper bound, we only keep the first term in the definition (3.9) of r(m−1)
N ,

since the other ones are negative.

The case m ∈ (0,1) is straightforward from (3.10). To conclude, we see that the maximum is obtained

when r(k−1)(η) = k, that is, when the window J−`N +1, `N K/{0,1} is completely empty and η(0)+η(1) = 1.

The lower bound for the binomial coefficients in (3.11) then shows that this maximum tends to infinity

as N → +∞.

Remark 3.2.11 (On the sharpness of the bounds in Proposition 3.2.10). The estimates of Proposition

3.2.10 are not sharp. Instead, the goal of the lower bound for m ∈ (1,2) is to relate our process with the

simpler process induced by the generator

mδNLPMM(0)
N + m(m−1)

2 LPMM(1)
N ,

which is very close to the one studied in [21], where the porous medium model is perturbed by a "small"

SSEP dynamics.

The lower bound for m ∈ (0,1) is here to emphasize that the transition rates will always be greater

than those of the SSEP (modulo a multiplicative constant), as expected, since under this regime the

macroscopic diffusion is faster than the one of the heat equation (m = 1). This will be useful, in particular,

for the proof of the replacement Lemma B.1.7.

Finally, let us highlight that the divergence maxη∈ΩN r
(m−1)
N (η) → +∞ as N → +∞ gives us an extra

difficulty in the proof of tightness (see in particular (3.27)) and makes it impossible to argue, as for

m ∈ (1,2), that ρm is weak differentiable (see the last step in the proof of Proposition 3.4.9).
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3.2.2 Characterization of the interpolating family

In this subsection we present further properties of the interpolating model. We start by explaining

how this model interpolates between the SSEP and the PMM(1).

Proposition 3.2.12 (Interpolation property). For m ∈ (1,2), N ∈ N and `N ≥ 2 fixed, the process L(m−1)
N

interpolates between LPMM(0)
N and LPMM(1)

N in the following sense: for all η ∈ ΩN ,

lim
m↗1

r
(m−1)
N (η) = rPMM(0)(η) = lim

m↘1
r
(m−1)
N (η) and lim

m↗2
r
(m−1)
N (η) = rPMM(1)(η).

Proof. The limit to SSEP as m→ 1 from either above or below is a direct consequence of the interpolation

property of the binomial coefficients, while the limit to PMM(1) is both consequence of this, but also of

some rearrangement in the summation which defines the rates, and which implies 2 − c(1)(η) = c(1)(η),

see also (3.18) below.

From [21], or a simple computation, the grand-canonical invariant measures for the PMM(k) (and

therefore for the PMM(k)) are the Bernoulli product measures νNρ of parameter ρ ∈ [0,1], namely, their

marginal is given on x ∈ TN by

νNρ (η ∈ ΩN ∶ η(x) = 1) = ρ. (3.13)

The next lemma gives information on the invariant measures of our models.

Lemma 3.2.13 (Invariant measures and irreducibility). Let m ∈ (0,2). For any ρ ∈ [0,1], the Bernoulli

product measure νNρ defined in (3.13) is invariant for the Markov process generated by L(m−1)
N . Moreover,

for any k ∈ {0, . . . ,N}, the hyperplane

HN,k = {η ∈ ΩN ∶ ∑
x∈TN

η(x) = k}

is irreducible under the Markov process generated by L(m−1)
N .

Proof. The irreducibility of the process on the above hyperplanes is consequence of the fact that c(m−1)
N (η) >

0 for any η ∈ ΩN , as shown in Proposition 3.2.10, and so the exclusion rule is the only constraint. We

already know from [21] that the product measure νNρ is invariant for PMM(k), for any k ∈ N+, hence also

for PMM(k). In particular, it is also invariant for linear combinations of such models.

For a good understanding of the interpolating model it is important to describe some properties of the

integer family {PMM(k)}k∈N, which is what we do in the following Lemma 3.2.16 and Proposition 3.2.18.

Moreover we explain how to identify the macroscopic diffusion coefficient (due to νNρ being invariant for

0 ≤ ρ ≤ 1). More precisely, let us introduce the following operator:

Definition 3.2.14 (Translation operators). Let 1 be the identity function on ΩN , and consider the

operators ∇± associated with the translation operator given by ∇+ = τ1 − 1 and ∇− = 1 − τ−1, that is, for

any function f ∶ ΩN → R, we define (∇+f)(η) = f(τ1η) − f(η), (∇−f)(η) = f(η) − f(τ−1η), and for any

x ∈ TN consider (∇±xf)(η) = (∇±f)(τxη).
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It is straightforward to check that, for any x ∈ TN ,

LPMM(k)
N (η(x)) = ∇− (c(k)(τxη)∇+η(x)) . (3.14)

Therefore, the microscopic density current for PMM(k) between sites x and x + 1, is equal to

−c(k)(τxη)∇+η(x) =∶ j(k){x,x+1}(η).

It turns out that this quantity is itself a discrete gradient, namely

j(k){x,x+1}(η) = −∇
+h(k)(η),

where h(k) is given in Lemma 3.2.15. We highlight that although this gradient property was already

known (see [9] for instance), the expression (3.15) for h(k) is new (we give the original expression of h(k)

in the appendix, see (B.11)). Then, note that the expectation of c(k)(τxη) under the invariant measure

νNρ is

∫ c(k)(τxη)dνNρ (η) = (k + 1)ρk =D(ρ)

which is the diffusion coefficient of the PME(k) (1.2), i.e., for m = k + 1 ∈ N+. Similarly, since η(1) −

η(0) = −(η(1) − η(0)), the gradient property is also true for PMM(k). One can readily check that the

expected diffusion equation associated with the microscopic dynamics of PMM(k) has diffusion coefficient

D(ρ) = (k + 1)(1 − ρ)k.

Let us now state more precisely the aforementioned gradient property, which will be proved in Ap-

pendix B.3. We recall the definition of s(k)j in (3.4).

Lemma 3.2.15 (Gradient property). For any k ∈ N, PMM(k) is a gradient model. Precisely, for any

η ∈ ΩN we have that c(k)(η)∇+η(0) = ∇+h(k)(η), where

h(k)(η) =
k

∏
i=0
η(i)−

k

∑
j=1

k−j
∑
n=0
(∇+η)(n)s(k)j (τnη). (3.15)

Now, for the interpolating model generated by L(m−1)
N , similarly to (3.14), a straightforward compu-

tation gives for all x ∈ TN

L(m−1)(η(x)) = ∇− (c(m−1)
N (τxη)∇+η(x)) ,

and we can easily deduce from the previous lemma that

c
(m−1)
N (η)∇+η(0) = ∇+h(m−1)

N (η), where h
(m−1)
N (η) =

`N

∑
k=1
(m
k
)(−1)kh(k−1)(η). (3.16)

3.2.3 Properties on the rates

We start by stating and proving two important properties of the basis family {PMM(k)}k∈N. The first

one (Lemma 3.2.16) will be used later in Propositions 3.3.1, 3.4.2 and Lemma B.1.6, while the second

one (Proposition 3.2.17) will provide some interesting monotonicity property of the rates for both the

integer and non-integer families, see Propositions 3.2.18 and 3.2.19 at the end of this section. Recall the

definition of r(k) from (3.3).
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pn + 2n + 1n−(k + 1) + p

⋯ ⋯

Figure 3.4: Configuration with a(τnη)s(k)j (τnη) = a(τn+1η)s(k)j−1(τn+1η) = 1 and p fixed.

Lemma 3.2.16 (Bound on the rates). For all `, k ∈ N+ such that ` ≥ k and any η ∈ ΩN we have that
`

∑
n=1

r(k)(τnη) ≤ 2(` + k).

Proof. Note that
`

∑
n=1

r(k)(τnη) =
`

∑
n=1

a(τnη)
k+1
∑
j=1

s(k)j (τnη) =
`+k+1
∑
p=2

`

∑
n=1

k+1
∑
j=1

a(τnη)s(k)j (τnη)1{j+n=p} ≤
`+k+1
∑
p=2

2 = 2(` + k).

The inequality can be justified as follows. Fixed p, the quantity s(k)j (τnη) depends on the occupation of

the sites

J−(k + 1) + j + n, j + nK/{n,n + 1} = J−(k + 1) + p, pK/{n,n + 1}.

Because 1 ≤ j ≤ k+1, then {n,n+1} ∈ J−(k+1)+p, pK for sure. There are a number of pairs (j, n) such that

j + n = p, but for all of those pairs the box J−(k + 1) + p, pK is the same. Thus, for each p fixed, there are

at most two pairs (n, j), (n′, j′) such that p = n + j = n′ + j′ and a(τnη)s(k)j (τnη) = a(τn′η)s(k)j′ (τn′η) = 1.

Specifically, if (n, j) is as previously, then (n′, j′) = (n + 1, j − 1) or (n′, j′) = (n − 1, j + 1).

Now we state a monotonicity property. The following proposition is used right after in Proposition

3.2.19 to prove an analogous property for the interpolating model.

Proposition 3.2.17. For any η ∈ ΩN , the sequence { 1
k

c(k−1)(η)}
k≥1 is non-increasing.

Proof. In order to prove the result, it is enough to show that

uk(η) ∶=
k + 1
k

c(k−1)(η) − c(k)(η) ⩾ 0, (3.17)

for any η ∈ ΩN . It turns out that this expression can we rewritten in terms of the products s(k)j defined

in (3.4), after flipping some of the configuration values η(x). Let us be more precise.

To simplify the presentation let us introduce some notation: for any A ⊆ TN define the flip η ↦ ηA as

ηA(x) = η(x)1x∈A + η(x)1x∉A. Straightforward computations show that

uk(η) =
k+1
∑
j=1
{k − (j − 1)

k
s(k)j (η

{−(k+1)+j}) + j − 1
k

s(k)j (η
{j})}. (3.18)

Indeed, this is a consequence of the fact that

• for any j ∈ J1, kK it holds

s(k)j (η
{−(k+1)+j}) = η(−(k + 1) + j)s(k−1)

j (η) = s(k−1)
j (η) − s(k)j (η)

• and for any j ∈ J2, k + 1K we have

s(k)j (η
{j}) = s(k−1)

j−1 (η)η(j) = s(k−1)
j−1 (η) − s(k)j (η).
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Two changes of variables in the two terms of the summation in (3.18) then lead to the desired result:

c(k−1,1)(η) =
k

∑
j=1

k − (j − 1)
k

(s(k−1)
j (η) − s(k)j (η)) +

k

∑
j=1

j

k
(s(k−1)
j (η) − s(k)j+1(η))

= k + 1
k

c(k−1)(η) −
k

∑
j=1
(k − (j − 1)

k
s(k)j (η) +

j

k
s(k)j+1(η)) .

From another change of variables, the summation term above equals
k−1
∑
j=0

k − j
k

s(k)j+1(η) +
k

∑
j=1

j

k
s(k)j+1(η) = s(k)1 (η) + s(k)k+1(η) +

k−1
∑
j=1

s(k)j+1(η) (
k − j
k
+ j
k
) = c(k)(η).

Due to the analytical nature of the generalized binomial coefficients, a combinatorial interpretation

of the whole model is not appropriate, as opposed to the integer case. Additionally, the problem of

quantifying how, fixed some configuration, the rates change by varying m is not easy since the rates

depend in a complex manner on m and the behaviour of the rate (with respect to m) is different for

distinct configurations. Instead of doing an extensive study of the form of the rates, we gather information

about some simple monotonicity aspects of the model. We show that the reinforcement/penalization of

the SSEP given in (3.10) is non-increasing in k; then we derive a property of the interpolating family

analogous to Proposition 3.2.17; and finally we plot in Figure 3.5 the rates in some equivalence classes of

configurations which cover the values of c(m−1)
N (η). This is, to our mind, a satisfying solution to observe

the continuous deformation of the SSEP into a slow or fast diffusion model.

Proposition 3.2.18. Fixed any η ∈ ΩN and m ∈ [0,2] the sequence {∣(m
k
)∣c(k−1)(η)}k≥2 is decreasing up

to the smallest k such that c(k−1)(η) = 0.

Proof. Recall that we proved in Proposition 3.2.17 that for any η ∈ ΩN the sequence { 1
k

c(k−1)(η)}
k≥1 is

non-increasing. From the definition of the binomial coefficients, for m ∈ (0,2) the sequence {k∣(m
k
)∣}

k≥2

is decreasing, since

(k + 1)∣( m

k + 1
)∣ = k∣(m

k
)∣ ∣m − k∣

k
,

and whenever k ≥ 2 and m ∈ (0,2) we have ∣m − k∣ = k −m < k.

Before stating the monotonicity property, note that we have the following limit

lim
m↘0

1
m
c
(m−1)
N (η) =

`N−1
∑
k=0

c(k)(η)
k + 1

.

Proposition 3.2.19. For any η ∈ ΩN the sequence { 1
m
c
(m−1)
N (η)}m∈[0,2] is non-increasing.

Proof. From Proposition 3.2.10 we can extract that 1
m
c
(m−1)
N ≥ c(0) for m ∈ (0,1), and c(0) ≥ 1

m
c
(m−1)
N for

m ∈ (1,2). It remains to see the monotonicity of the sequence in the statement according to the values

of m ∈ [0,2]/{1}. Assuming that the aforementioned sequence is non-increasing, since the binomial

coefficients are continuous functions of m the interpolation property allows us to take the limit m → 2

and as such we only need to focus on m ∈ [0,2)/{1}. Rewrite

1
m
c
(m−1)
N (η) = 1{m∈(0,1)}

`N−1
∑
k=0
∣(m − 1

k
)∣c

(k)(η)
k + 1

+ 1{m∈(1,2)} (1 −
`N−1
∑
k=1
∣(m − 1

k
)∣c

(k)(η)
k + 1

) .
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For any k ≥ 2 we compute

d
dm
∣(m − 1)k ∣ = −∣(m − 1)k ∣fk(m) where fk(m) ∶=

k

∑
j=1

1
j −m

.

This means that

d
dm
( 1
m
c
(m−1)
N (η)) = −1

2
c(1)(η) + sign(m − 1)

`N−1
∑
k=2
∣(m − 1

k
)∣fk(m)

c(k)(η)
k + 1

. (3.19)

If m ∈ [0,1) then fk(m) > 0 which concludes the proof. For m ∈ (1,2) we need some extra work. We

claim that differentiating with respect to m both sides of

0 = 1 −
+∞
∑
k=1
∣(m − 1

k
)∣ one obtains that 1 =

+∞
∑
k=2
∣(m − 1

k
)∣fk(m).

For m ∈ [ 3
2 ,2) we have fk(m) > 0 for all k ≥ 2 since f2(m) > 0 and fk(m) is increasing in k. If m ∈ (1, 3

2)

then for each m there must be some k0 > 2 such that fk > 0 for all k ≥ k0 so that the second summation

on the previous display is equal to one. Let `N be large enough so that k0 < `N (otherwise the result is

obvious). Then we can bound (3.19) from above by taking the limit `N → +∞. Since the sequence of

maps { 1
k+1 c(k)}k≥0 is non-increasing, for any j ≤ k0 ≤ i we have

1
i + 1

c(i) ≤ 1
k0 + 1

c(k0) ≤ 1
j + 1

c(j).

Then we can bound

d
dm
( 1
m
c
(m−1)
N (η)) ≤ −1

2
c(1)(η) +

k0−1
∑
k=2
∣(m − 1

k
)∣fk(m)

c(k0)(η)
k0 + 1

+ ∑
k≥k0

∣(m − 1
k
)∣fk(m)

c(k0)(η)
k0 + 1

= −c(1)(η)
2

+ c(k0)(η)
k0 + 1

≤ 0.

To conclude the proof, it is enough to show that the sequence (an)n≥2 given by 0 < an ∶= ∑nk=2 ∣(
m−1
k
)∣fk(m)

is uniformly bounded. Since f1(m) < 0, we first bound fk(m) by the corresponding integral for k ≥ 2:

fk(m) ≲ log(k −m) − log(2 −m).

Recall the inequality logx ≤ 1
s
xs for any x, s ∈ R+. From this and (3.11) it holds

n

∑
k=2
∣(m − 1

k
)∣fk(m) ≲

n

∑
k=2

1
(k −m)m−s

− log(2 −m)
n

∑
k=2
∣(m − 1

k
)∣.

Setting 0 < s such that m − s > 1, observing that the quantity on the right-hand side of the previous

display is increasing in n and taking n→ +∞ we end the proof.

We now plot the evolution of c(m−1)
N (η) with respect to m (for a fixed configuration η). To that aim,

let us start with the following remark: for any k ≥ 1 the value of c(k)(η) is uniquely determined by the

positions of the first particle to the left of 0 and the first particle to the right of 1. More precisely, for

any x0, x1 ∈ TN consider the set

Ωx0,x1
N = {η ∈ ΩN ∶ η(−x0) = η(x1) = 1, η(x) = 0, for all x ∈ J−x0 + 1, x1 − 1K/{0,1}}.
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−x0 x13210−1

......

Figure 3.5: Configuration belonging to Ω2,4
N .

It is simple to see that if η0, η1 ∈ Ωx0,x1
N then r(k)(η0) = r(k)(η1) for all k ≥ 1. Therefore we obtain

c
(m−1)
N (η0) = c(m−1)

N (η1), and for every η ∈ Ωx0,x1
N one can plot c(m)N (η) as a function of m, as in Figure

3.5. To that end, for each m,`N , x0 and x1 fixed and ξ ∈ Ωx0,x1
N we introduce c̃N(x0, x1,m) ≡ c(m−1)

N (ξ) .

m = 0.25 m = 0.5 m = 0.75

m = 1 m = 1.25 m = 1.5

m = 1.75 m = 2

Figure 3.5: Evolution of c̃N(x0, x1,m) for `N = 40

We stress that the previous figure presents the value of the constraint c(m−1)
N (η) (equivalently, the

rate r(m−1)
N (η) when η(0) + η(1) = 1) fixed x0, x1 and a representative η ∈ Ωx0,x1

N , that is, a configuration
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with the first particle to the left of the site 0 located at the site −x0, and the first particle to the right

of the site 1 located at the site x1. Note the symmetry of the plots with respect to x0 = x1, which

is consequence of the symmetry of the jumps. Fixed m and `N , varying x0 and x1 allow us to see all

the possible values of the constraints. For example, for m = 1 the rate is equal to 1 independently of

x0, x1, hence the sub-figure, in this case, has the same colour for all x0, x1 ≤ 40. For m = 2 the rate

is non-zero if and only if there is at least one particle located at the site −1 or at the site 2. In other

words, c(1)(η) = η(−1)+η(2). Therefore, we obtain in the respective sub-figure the horizontal and vertical

orange lines, where c(1)(η) = 1 for any η ∈ Ω1,x1
N ∪ Ωx0,2

N with x0 ≥ 2 and x1 ≥ 3 and c(1) = 0 otherwise;

while at x0 = 1 and x1 = 2 the constraint attains its largest value, i.e., c(1)(η) = 2 for all η ∈ Ω1,2
N . In the

fast-diffusion regime, we see a "continuous" increase of the rates as x0, x1 increase, while the opposite in

the slow-diffusion regime. This is a clear consequence of the penalization/reinforcement terms, as seen

in (3.10).

3.2.4 Main result

To expose our main result about the hydrodynamic limit of the interpolating model we first introduce

some definitions. Let us fix a finite time horizon [0, T ], let µN be a probability measure on ΩN , and let

{ηN2t}t≥0 be the Markov process generated by N2L(m−1)
N for m ∈ (0,2)/{1}, given in (3.8).

Definition 3.2.20 (Empirical measure). For any η ∈ ΩN define the empirical measure πN(η,du) on the

continuous torus T by

πN(η,du) = 1
N
∑
x∈TN

η(x)δx/N(du)

where δx/N is the Dirac measure at the macroscopic point x/N . Moreover, we define its time evolution in

the diffusive time scale by πNt (η,du) = πN(ηN2t,du). For any function G ∶ T → R, we define the integral

of G with respect to the empirical measure as

⟨πNt ,G⟩ = ∫T
G(u)πNt (η,du) =

1
N
∑
x∈TN

G( x
N
)ηN2t(x). (3.20)

LetM+ be the space of positive measures on [0,1] with total mass no larger than 1 and endowed with

the weak topology. Let D([0, T ],ΩN) be the Skorokhod space of trajectories induced by {ηN2t}t∈[0,T ]
with initial measure µN . Denote by PµN the induced probability measure on the space of trajectories

D([0, T ],ΩN) and by QN = PµN ○(πN)−1 the probability measure onD([0, T ],M+) induced by {πNt }t∈[0,T ]
and µN .

Now we introduce the notion of weak solutions to equation (1.2) for m ∈ (0,2). For that purpose, for

n ∈ N+ ∪{∞} let Cn(T) be the set of n times continuously differentiable, real-valued functions defined on

T; and let Cn,p([0, T ] × T) be the set of all real-valued functions defined on [0, T ] × T that are n times

differentiable on the first variable and p times differentiable on the second variable and with continuous

derivatives. Finally, for two functions f, g ∈ L2(T), ⟨f, g⟩ denotes their standard euclidean product in

L2(T) and ∥ ⋅ ∥L2(T) is the associated norm. We remark that we use the notation ⟨⋅, ⋅⟩ twice, for the

inner-product just introduced, and also in (3.20), although their difference will be clear from the context.
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Definition 3.2.21 (Sobolev space). The semi inner-product ⟨⋅, ⋅⟩1 on the set C∞(T) is given on G,H ∈

C∞(T) by ⟨G,H⟩1 = ⟨∂uG,∂uH⟩ = ∫T ∂uG(u)∂uH(u)du, and the associated semi-norm is denoted by

∥⋅∥1. Let H1(T) be the Sobolev space on T, defined as the completion of C∞(T) for the norm ∥⋅∥2H1(T) =

∥⋅∥2L2 + ∥⋅∥21, and let L2([0, T ];H1(T)) be the set of measurable functions f ∶ [0, T ] → H1(T) such that

∫
T

0 ∥fs∥
2
H1(T)ds < ∞.

Definition 3.2.22 (Weak solutions to (1.2)). Let ρini ∶ T→ [0,1] be a measurable function. We say that

ρ ∶ [0, T ] ×T↦ [0,1] is a weak solution of the FDE (resp. PME) with m ∈ (0,1) (resp. m ∈ (1,2)) if

1. (a) For m ∈ (0,1) it holds ρ ∈ L2([0, T ];H1(T)),

(b) For m ∈ (1,2) it holds ρm ∈ L2([0, T ];H1(T)).

2. For any t ∈ [0, T ] and G ∈ C1,2([0, T ] ×T) it holds that

F (ρini, ρ,G, t) ∶= ⟨ρt,Gt⟩ − ⟨ρini,G0⟩ − ∫
t

0
{⟨ρs, ∂sGs⟩ + ⟨(ρs)m, ∂2

uGs⟩}ds ≡ 0. (3.21)

In the appendix, Lemmas B.2.5 and B.2.3, we will show that the weak solution given by last definition

is unique, for m ∈ (0,1) and m ∈ (1,2), respectively.

One can also extract from the weak differentiability of ρ and ρm that the solution ρ is 1
2−Hölder

continuous, for m ∈ (0,1), and 1
4−Hölder continuous, for m ∈ (1,2). This is proved in Proposition B.2.4

and Corollary B.2.2, respectively. Although we were able to avoid needing these regularity results, we

found them interesting by themselves as an additional characterization of the solution; and as seen in

[5] there is the need to show some regularity of the solution in order to study the system with open

boundaries, in this way also preparing future work.

Definition 3.2.23 (Local equilibrium distribution). Let {µN}N≥1 be a sequence of probability measures

on ΩN , and let f ∶ T → [0,1] be a measurable function. If for any continuous function G ∶ T → R and

every δ > 0 it holds

lim
N→+∞

µN (η ∈ ΩN ∶ ∣⟨πN ,G⟩ − ⟨f,G⟩∣ > δ) = 0,

we say that the sequence {µN}N≥1 is a local equilibrium measure associated with the profile f .

Example 3.2.24. An example of a measure satisfying Definition 3.2.23 is the product Bernoulli measure,

given on x ∈ TN by

νNρini(⋅)(η ∈ ΩN ∶ η(x) = 1) = ρini( x
N
),

where ρini ∶ T → [0,1] is a measurable Lipschitz profile. Then νNρini(⋅) is a local equilibrium measure

associated with ρini.

We are now ready to state the main result of this paper:

Theorem 3.2.25 (Hydrodynamic limit). Let ρini ∶ T→ [0,1] be a measurable function and let {µN}N≥1

be a local equilibrium measure associated with it. Then, for any t ∈ [0, T ], δ > 0 and N ∋ `N → ∞ such

that 2 ≤ `N ≤ N , it holds

lim
N→+∞

PµN (∣⟨π
N
t ,G⟩ − ⟨ρt,G⟩∣ > δ) = 0,

where ρ is the unique weak solution of (1.2) in the sense of Definition 3.2.22, with initial condition ρini.
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3.3 Proof of Theorem 3.2.25

We first outline the proof. As previously mentioned, to prove the hydrodynamic limit we use the

classical entropy method introduced in [23]. The general scheme is the following: we prove that the

sequence of empirical measures is tight (as proved in Subsection 3.3.1), which implies the existence of

weakly convergent subsequences; and then we prove that the limiting measure is concentrated on paths of

absolutely continuous measures with respect to the Lebesgue measure, whose density is a weak solution

to the hydrodynamic equation (1.2) (proved in Section 3.3.2). To do so we shall need an energy estimate

(Appendix 3.4), which gives us some regularity of the solution to the PDE, and replacement lemmas

(Section B.1) whose role is to close the equations for the limiting profile at the microscopic level. Proving

uniqueness of weak solutions (see Appendix B.2), we see that the limit of the sequence of measures is

then unique and we can conclude that the whole sequence converges to that limit.

We introduce some discrete operators that will be important in what follows. Let us extend Definition

3.2.14 to functions defined on TN , instead of ΩN . Without loss of generality, we adopt the same notation.

Namely, if f ∶ TN → R then its gradients are ∇+f = (τ1 − 1)f and ∇−f = (1 − τ−1)f , where 1 is now the

identity function defined on TN . Finally, for any N ∈ N+, we also define the rescaled gradients on TN as

∇±,N = N∇±, and the rescaled Laplacian as ∆N = ∇+,N ○ ∇−,N = ∇−,N ○ ∇+,N .

3.3.1 Tightness

Let us start by exploiting the gradient property of our model. Recall that we consider the evolution

in the diffusive time scale tN2, that is, given by the generator L ∶= N2L(m−1)
N . From Dynkin’s formula

[26, Appendix 1, Lemma 5.1], we know that for any G ∈ C1,2([0, T ] ×T)

MN
t (G) ∶= ⟨πNt ,Gt⟩ − ⟨πN0 ,G0⟩ − ∫

t

0
(∂s + L)⟨πNs ,Gs⟩ds (3.22)

is a martingale with respect to the natural filtration of the process. From Lemma 3.2.15 and two sum-

mations by parts we see that

MN
t (G) = ⟨πNt ,Gt⟩ − ⟨πN0 ,G0⟩ − ∫

t

0
⟨πNs , ∂sGs⟩ds

− ∫
t

0

1
N
∑
x∈TN

∆NGs( xN )
`N

∑
k=1
(m
k
)(−1)kh(k−1)

s (τxη)ds,
(3.23)

where we defined for any k ∈ N and any s ∈ [0, t] the time evolution h(k−1)
s (η) = h(k−1)(ηN2s).

Proposition 3.3.1 (Tightness). The sequence of probability measures (QN)N∈N is tight with respect to

the Skorokhod topology of D([0, T ],M+).

Proof. To prove tightness we resort to Aldous’ conditions (see, for instance, [22, proof of Proposition 4.1]

or, equivalently, [5, Proposition 3.3] for more details). Since the occupation variable is bounded by 1, it

is enough to show that for all ε > 0

lim sup
α→0

lim sup
N→+∞

PµN
⎛
⎝

sup
∣t−s∣≤α

∣⟨πNt ,G⟩ − ⟨πNs ,G⟩∣ > ε
⎞
⎠
,
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where G is a time-independent function belonging to a dense subset of C([0,1]) with respect to the

uniform topology (for the details regarding the reduction of the space of test functions see, for instance,

[6]). From the fact that MN
t (G) is a martingale (with respect to the natural filtration of the process), the

previous condition can be reduced to the study of the quadratic variation of (3.22) and the boundedness

of the generator, i.e., it is enough to prove that

lim
α→0

lim sup
N→+∞

⎧⎪⎪⎨⎪⎪⎩
PµN
⎛
⎝

sup
∣t−s∣≤α

∣MN
t (G) −MN

s (G)∣ >
ε

2
⎞
⎠
+ PµN

⎛
⎝

sup
∣t−s∣≤α

∣ ∫
t

s
L⟨πNs ,G⟩ds∣ >

ε

2
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
= 0. (3.24)

We apply the triangular, Jensen and Doob’s inequalities in the first term above, and Proposition B.1.2

in the second term, reducing to the treatment of

lim sup
N→+∞

EµN [(M
N
T (G))

2]
1
2 = 0 and lim

α→0
lim sup
N→+∞

EµN [∣∫
t

s
L⟨πNs ,G⟩ds∣] = 0, (3.25)

where ∣t − s∣ ≤ α in the second expectation, that we omit further references in the next computations.

Recalling from [26, Appendix A, Lemma 5.1] the expression for the quadratic variation of the martingale,

we have that the first expectation in (3.25) equals

EµN [∫
T

0
FNs (G)ds] , where FNs (G) = N2 (L(m−1)

N ⟨πNs ,G⟩2 − 2⟨πNs ,G⟩L
(m−1)
N ⟨πNs ,G⟩) .

Since our transition rates are symmetric, we get

FNs (G) =
1
N2 ∑

x∈TN
c
(m−1)
N (τxηN2s) (ηN2s(x + 1) − ηN2s(x))

2 (∇+,NG( x
N
))2

≲ 1
N2 ∥∂uG∥

2
L∞(T)

`N

∑
k=1
∣(m
k
)∣ ∑
x∈TN

r(k−1)(τxηN2s)≲
1
N
∥∂uG∥2L∞(T),

where we used Lemma 3.2.16 for the last inequality. This concludes the proof of the first condition in

(3.25). For the second, we split the proof in two cases m ∈ (0,1) and m ∈ (1,2).

● Assume first that m ∈ (1,2). From (3.15) (or more obviously (B.11)) we have that ∣h(k−1)(η)∣ ≤ k.

Therefore, using the inequality (3.12), the integrand in the second limit in (3.25) can be bounded from

above by

1
N
∑
x∈TN

∣∆NGs( xN )∣
`N

∑
k=1
∣(m
k
)∣k ≲ ∥∂2

uG∥L1(T) +
1
N
,

which implies the second requirement in (3.25). This finishes the proof in the case m ∈ (1,2).

● For m ∈ (0,1) we need some extra work. Recalling that in the fast diffusion case the generator can

be rewritten as in (3.10), we see that the second expectation in (3.25) equals

EµN [∣∫
t

s

1
N
∑
x∈TN

∆NG( xN )
`N

∑
k=1
∣(m
k
)∣τxh(k−1)(ηN2s)ds∣]. (3.26)

It will be fundamental to identify h(k−1) as a function of the constraints c(k−1), as in (3.15). From the

triangular inequality we bound the expectation (3.26) from above by

EµN [∣∫
t

s

1
N
∑
x∈TN

∆NG( xN )
`N

∑
k=1
∣(m
k
)∣
k−1
∏
j=0

ηN2s(x + j)ds∣]

+ 1
N
∑
x∈TN

∣∆NG( xN )∣EµN [∣∫
t

s

`N

∑
k=1
∣(m
k
)∣τx
⎧⎪⎪⎨⎪⎪⎩

k−1
∑
j=1

k−1−j
∑
n=0
(∇+ηN2s)(n)s

(k−1)
j (τnηN2s)

⎫⎪⎪⎬⎪⎪⎭
ds∣] (3.27)
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where, by convention, ∑∅ ≡ 0. Since m ∈ (0,1) and the process is of exclusion type, we have

`N

∑
k=1
∣(m
k
)∣
k−1
∏
j=0

ηN2s(x + j) ≤
`N

∑
k=1
∣(m
k
)∣ < 1

and due to the regularity of the test function the first expectation in (3.27) can be bounded as:

EµN [∣∫
t

s

1
N
∑
x∈TN

∆NG( xN )
`N

∑
k=1
∣(m
k
)∣
k−1
∏
j=0

ηN2s(x + j)ds∣] ≲ ∣t − s∣ (∥∂2
uG∥L1(T) +

1
N
) .

The treatment of the second expectation in (3.27) is more demanding. Concretely, since m ∈ (0,1) the

tail of the series ∑k≥1 ∣(mk )∣ is too heavy to either argue directly via Lemma B.1.7 or slow down the speed

of explosion of `N (as we shall do in a different context shortly), while maintaining `N with no particular

order of explosion. One then needs to invoke the forthcoming replacement Lemma B.1.6 instead, which

takes advantage of the particular expression of h(k−1) in (3.15). In this way, applying Lemma B.1.6 for

each term of the summation over x ∈ TN we obtain the final upper bound

1
B
+ σB (`N)

1−m

N
.

Recalling that `N ≤ N and 1−m ∈ (0,1), taking the limit N → +∞ and then B → +∞ we finish the proof.

3.3.2 Characterization of limit points

The goal of this subsection is to show that the limiting points of (QN)N∈N, which we know to exist

as a consequence of the results of the previous section, are concentrated on trajectories of absolutely

continuous measures with respect to the Lebesgue measure, whose density is a weak solution to either

the FDE or the PME, depending on the value of m. Showing the aforementioned absolute continuity is

simple since we deal with an exclusion process, and its proof can be found (modulo small adaptations) for

instance in [26, page 57]. From this and the previous proposition, we know (without loss of generality)

that for any t ∈ [0, T ], the sequence (πNt (η,du))N∈N converges weakly with respect to QN to an absolutely

continuous measure π⋅(du) = ρ⋅(u)du. In the next result we obtain information about the profile ρ.

Proposition 3.3.2. Let a(m) = 1m∈(0,1) +m1m∈(1,2). For any limit point Q of (QN)N∈N it holds

Q(π ∈ D([0, T ],M+) ∶ ∀t ∈ [0, T ], πt(du) = ρt(u)du, where ρa(m) ∈ L2([0, T ];H1(T)),

and for all G ∈ C1,2([0, T ] ×T), F (ρini, ρ,G, t) = 0) = 1,

where F (ρini, ρ,G, t) is given in (3.21).

Before showing Proposition 3.3.2, we introduce some definitions and technical results.

Definition 3.3.3. For any x ∈ TN and ` ∈ N consider the following microscopic box of size `, and the

empirical average over it, given by

Λ`x = Jx,x + ` − 1K, and η`(x) = 1
`
∑
y∈Λ`x

η(y).

Moreover, for ε > 0 and u, v ∈ T, let ιuε (v) = 1
ε
1v∈[u,u+ε).
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The starting rationale for the law of large numbers for the empirical measure is that one expects

the solution ρ to be "close" to a local average a.e.. Formally, one expects that ρs(u) ∼ 1
ε ∫

u+ε
u ρs(u)dv

for a.e. (s, u) ∈ [0, T ] × T with ε > 0 arbitrarily small. Since ρs(⋅) is integrable with respect to the

Lebesgue measure (recall that ρ is a density defined on T), the previous approximation is justified from

Lebesgue’s differentiation theorem. In our case, we have two additional technical problems: ● for k ≥ 2

the PME(k) describes non-linear diffusion, as opposed to k = 1; ● for m ∈ (0,1) the series ∑k≥1 ∣(mk )∣k

is divergent. Those two technical "features" ramify into the methodology, and a more detailed study

than what is present in the literature must be performed in order to guarantee the aforementioned local

approximation, and also so that the errors due to the forthcoming replacement lemmas vanish in the

limit. With that in mind, next lemma solves the first issue.

Lemma 3.3.4. Let m ∈ (0,2)/{1} and ε > 0 be fixed, and consider some sequence 0 < (εk)k≥1 where for

any k it holds that εk → 0 as ε→ 0. Then, for any k ∈ N+, a.e. u ∈ T and s ∈ [0, T ] it holds that

lim sup
ε→0

∣ ∑
k≥2
(m
k
)(−1)k(1 − ρs(u))k − ∑

k≥2
(m
k
)(−1)k

k−1
∏
j=0
(1 − ⟨πs, ιu+jεkεk

⟩) ∣ = 0.

Proof. Fixed A ∈ N, because for any u ∈ T, s ∈ [0, T ] it holds ρs(u) ≤ 1. Then from Lemma B.3.1

∑
k≥2
(m
k
)(−1)k(1 − ρs(u))k =

A

∑
k=2
(m
k
)(−1)k(1 − ρs(u))k +O(1/Am).

For any a0, b0, a1, b1 one can rewrite a0a1 = a0(a1 − b1) + (a0 − b0)b1 + b0b1. With this rationale,

(1 − ρs(u))k =
k−1
∏
j=0
(1 − ⟨πs, ιu+jεkεk

⟩) + δk,s(u), with δk,s(u) ≤
k−1
∑
i=0
∣ρs(u) − ⟨πs, ιu+iεkεk

⟩∣

since also ⟨πs, ιu+iεkεk
⟩ ≤ 1. Without invoking any type of regularity of the density ρ it is not obvious that

Lebesgue’s differentiation theorem implies that ∣ρs(u) − ⟨πs, ιu+iεkεk
⟩∣ → 0 as ε → 0. To see this one can

estimate as follows.

∣ρs(u) − ⟨πs, ιu+iεε ⟩∣ = ∣ρ(u) − 1
ε
∫

u+(i+1)ε

u+iε
ρs(v)dv∣

≤ ∣ρ(u) − 1
(i + 1)ε ∫

u+(i+1)ε

u
ρs(v)dv∣ + ∣

1
(i + 1)ε ∫

u+(i+1)ε

u
ρs(v)dv −

1
ε
∫

u+(i+1)ε

u+iε
ρs(v)dv∣.

Now focus on the second term on the right-hand side, which equals

∣ 1
(i + 1)ε ∫

u+(i+1)ε

u
ρs(v)dv − (

i + 1
(i + 1)ε ∫

u+(i+1)ε

u
ρs(v)dv −

i

iε
∫

u+iε

u
ρs(v)dv)∣

= i∣ 1
(i + 1)ε ∫

u+(i+1)ε

u
ρs(v)dv −

1
iε
∫

u+iε

u
ρs(v)dv∣

≤ i∣ρs(u) −
1

(i + 1)ε ∫
u+(i+1)ε

u
ρs(v)dv∣ + i∣ρs(u) −

1
iε
∫

u+iε

u
ρs(v)dv∣.

For i fixed, since iε→ 0 as ε→ 0, Lebesgue’s differentiation theorem concludes that Fi(ε, s, u) → 0 for

any s, u, i, fixed as ε→ 0. However, in our case i is not fixed and so we need some extra care. Introducing

Fi(ε, s, u) = ∣ρs(u) −
1
iε
∫

u+iε

u
ρs(v)dv∣,
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from the previous computations we can compare

RRRRRRRRRRR

A

∑
k=2
(m
k
)(−1)k

⎧⎪⎪⎨⎪⎪⎩
(1 − ρs(u))k −

k−1
∏
j=0
(1 − ⟨πs, ιu+jεkεk

⟩)
⎫⎪⎪⎬⎪⎪⎭

RRRRRRRRRRR
≤

A

∑
k=2
∣(m
k
)∣
k−1
∑
i=0
{(i + 1)Fi+1(εk, s, u) + iFi(εk, s, u)}

≲
A

∑
k=2
∣(m
k
)∣k2 sup

0≤i≤A
Fi(εk, s, u)

≲ A2

Am
sup

0≤i≤A
Fi(εk, s, u).

Although A2/Am → +∞ as A → +∞, we first take the limit ε → 0 and then A → +∞ to conclude the

proof.

The largest issue now is how to handle the products of occupation variables in the martingale de-

composition (3.23). The final goal is to close the equation, relating the correlation terms with the power

terms in the weak formulation (3.21). The idea behind the forthcoming approach is to replace a product

of ρ′s by a product of empirical averages with respect to different, non-intersecting boxes. This last

requirement avoids the correlations between the occupation variables on these microscopic boxes.

In order to prove the Proposition 3.3.2 we will make use of several replacement lemmas, whose

statements and proofs will be given in Section B.1. The fact that the limiting measure Q concentrates

on absolute continuous trajectories of measures that have a density in the right Sobolev space is also

provided by Proposition 3.4.8, proved in Section 3.4.

In what follows, consider the sequence (εk)k≥1 introduced in Lemma 3.3.4 to be defined, for each k,

as

εk = (
1
k3 1m∈(0,1) +

1
k

1m∈(1,2)) ε and 0 < n < 1
4 −m

1m∈(0,1) +
2 −m
3 −m

1m∈(1,2) < 1. (3.28)

The role of the two elements just introduced is intertwined. The sequence (εk)k≥1 is chosen such that

the series of errors from the discrete approximations vanish. This introduces constraints on the rate

of explosion of `N , which are then corrected through n as above. To be concrete, because the series

∑k≥1 ∣(mk )∣ has a very light tail, we can reduce the study of the next summations over 0 ≤ k ≤ `N to

0 ≤ k ≤ (`N)n. In this way, modulo some technicalities, one can impose explosion constraints on (`N)n

which can then be encapsulated into n.

Proof of Proposition 3.3.2. From Proposition 3.4.8 we know that if m ∈ (0,1) then ρ ∈ L2([0, T ];H1(T)),

while if m ∈ (1,2) then ρm ∈ L2([0, T ];H1(T)). Recalling that a(m) = 1m∈(0,1) +m1m∈(1,2), if Q is a

limit point of (QN)N∈N then

Q(for any t ∈ [0, T ], πt(du) = ρt(u)du, where ρa(m) ∈ L2([0, T ];H1(T))) = 1.

In the weak formulation (3.21), let us replace ρm by its binomial expansion as in (3.6). Since we are on

the torus we have ⟨∂2
uG,1⟩ = 0, and therefore the binomial series starts from the second term. Otherwise,

this would lead to boundary conditions. In this way, it is enough to show that for any δ > 0 it holds

Q
⎛
⎝

sup
t∈[0,T ]

∣⟨Gt, ρt⟩ − ⟨G0, ρ
ini⟩ − ∫

t

0
⟨ρs, ∂sGs⟩ds − ∫

t

0
⟨∂2
uGs,∑

k≥1
(m
k
)(−1)k(1 − ρs)kds⟩∣ > δ

⎞
⎠
= 0.
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Last probability is bounded from above by

Q
⎛
⎝

sup
t∈[0,T ]

∣⟨Gt, ρt⟩ − ⟨G0, ρ0⟩ − ∫
t

0
⟨ρs, ∂sGs⟩ds +m∫

t

0
⟨∂2
uGs,1 − ρs⟩ds

− ∫
t

0
∑
k≥2
(m
k
)(−1)k⟨∂2

uGs,
k−1
∏
j=0
⟨1 − πs, ι⋅+jεkεk

⟩⟩ds∣ > δ

22
⎞
⎠

(3.29)

+Q
⎛
⎝

sup
t∈[0,T ]

∣ ∫
t

0
∑
k≥2
(m
k
)(−1)k⟨∂2

uGs, (1 − ρs)k −
k−1
∏
j=0
⟨1 − πs, ι⋅ +jεkεk

⟩⟩ds∣ > δ
2
⎞
⎠

(3.30)

+Q(∣⟨G0, ρ0 − ρini⟩∣ > δ

22 ) , (3.31)

with (εk)k≥0 as in 3.28. Observe that the third probability (3.31) is equal to zero since the initial

probability measure µN is a local equilibrium measure associated with the profile ρini. From Markov’s

inequality and Lemma 3.3.4, the second probability (3.30) vanishes as ε→ 0, reducing us to treat the first

probability (3.29).

We now want to apply Portmanteau’s Theorem, and relate the micro and macro scales. For that

purpose we need to argue that the whole function of our trajectories is continuous with respect to the

Skorokhod topology, thus preserving the open sets. Although this is not the case due to the cutoff

functions ιε, it is standard in the literature to approximate these functions by continuous functions.

Additionally, one has to relate the weak formulation with the martingale (3.23), which involves a finite

sum. We first treat the truncation problem, then the continuity. Let us fix 1 < `1/ε ÐÐ→
ε→0

+∞. Since for

any bounded sequence (ak)k≥1 we have

∣ ∑
k≥2
(m
k
)(−1)kak −

`1/ε

∑
k=2
(m
k
)(−1)kak∣ ≲

1
(`1/ε)m

,

we truncate the sum in some `1/ε step. To approximate the required functions by continuous functions

it is important to analyze the case m ∈ (0,1) because in this case the series ∑k≥11 ∣(mk )∣k diverges. We

consider the following approximation of the indicator function, from [6, Proposition 4.3.3]. For each ε > 0

and u ∈ T let ζuε ∈ C(T) be defined as

ζuε (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v/ε2, v ∈ u + [0, ε2],
1, v ∈ u + (ε2, ε − ε2],
1/ε − v/ε2, v ∈ u + (ε − ε2, ε],
0, otherwise.

It is simple to see that ∥1[0,ε) − ζ0
ε ∥1 = ε

2, therefore by translation ∥ιuε − 1
ε
ζuε ∥1 = ε for any u ∈ T. In

particular,

∣⟨ρs, ι⋅+jεkεk
− 1
ε
ζ ⋅+jεkεk

⟩∣ ≤ ∥ι⋅+jεkεk
− 1
εk
ζ ⋅+jεkεk

∥
1
= εk (3.32)

and one can replace ι⋅+jεkεk
by its continuous approximation with total error of the order of

∑
k≥1
∣(m
k
)∣kεk ≲ ε

thanks to (3.28). From [19, Proposition A.3] it is enough to show the continuity, with respect to the

Skorokhod weak topology, of the map

π ↦ sup
t∈[0,T ]

∣ ∫
t

0

`1/ε

∑
k=2
(m
k
)(−1)k⟨∂2

uGs,
k−1
∏
j=0
⟨1 − πs,

1
εk
ζ ⋅ +jεkεk

⟩⟩ds∣,
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which can be done using the definition of the Skorokhod metric and is also consequence of our definition

of the sequence (εk)k≥1. It is now possible to apply Portmanteau’s Theorem and then replace back the

approximated functions with a vanishing error, as ε→ 0. We are then reduced to treat

lim inf
N→+∞

QN( sup
t∈[0,T ]

∣⟨πNt ,Gt⟩ − ⟨G0, ρ0⟩ − ∫
t

0
⟨πNs , ∂sGs⟩ds +m∫

t

0
⟨∂2
uGs,1 − πNs ⟩ds

− ∫
t

0

`1/ε

∑
k=2
(m
k
)(−1)k⟨∂2

uGs,
k−1
∏
j=0
⟨1 − πNs ,

1
εk
ζ ⋅ +jεkεk

⟩⟩ds∣ > δ

24 ).
(3.33)

We stress that, although for small ε > 0 we can have `1/ε > N , for N fixed, the sum

`1/ε

∑
k=2
(m
k
)(−1)k

k

∏
j=0
⟨1 − πNs ,

1
εk
ζ ⋅ u+jεkεk

⟩

is indeed well-defined for any u ∈ T and one obtains, for k large enough, repeated terms in the product

above. Now we can replace back ⟨πNs , 1
εk
ζ ⋅ +jεkεk

⟩ by ⟨πNs , ι⋅ +jεkεk
⟩ with the previous rationale. Fixed N ,

since the martingale (3.23) involves a sum up to `N , we compare again

RRRRRRRRRRRR

`N

∑
k=2
(m
k
)(−1)kak −

`1/ε

∑
k=2
(m
k
)(−1)kak

RRRRRRRRRRRR
≲ ∣(`1/ε)−m − (`N)−m∣. (3.34)

Summing and subtracting the appropriate terms, and recalling (3.23), the first probability (3.29), after

the aforementioned replacements, is no larger than the sum of terms of order ε, (`1/ε)−m, (`N)−m, plus

lim inf
N→+∞

QN
⎛
⎝

sup
t∈[0,T ]

RRRRRRRRRRR
MN
t (G) +

`N

∑
k=2
(m
k
)(−1)k ∫

t

0

1
N
∑
x∈TN

∆NGs( xN )h
(k−1)
s (τxη)ds

+
`N

∑
k=2
(m
k
)(−1)k ∫

t

0
⟨∂2
uGs,

k−1
∏
j=0
⟨1 − πNs , ι⋅+jεkεk

⟩⟩ds
RRRRRRRRRRR
> δ

26
⎞
⎠

≤ PµN
⎛
⎝

sup
t∈[0,T ]

RRRRRRRRRRR

`N

∑
k=2
(m
k
)(−1)k ∫

t

0
⟨∂2
uGs −∆NGs,

k−1
∏
j=0
⟨1 − πNs , ι⋅+jεkεk

⟩⟩ds
RRRRRRRRRRR
> δ

3 × 26
⎞
⎠

+ PµN
⎛
⎝

sup
t∈[0,T ]

RRRRRRRRRRR

`N

∑
k=2
(m
k
)(−1)k ∫

t

0

1
N
∑
x∈TN

∆NGs( xN )[
k−1
∏
j=0
⟨1 − πNs , ι

x
N +jεk
εk ⟩ − h(k−1)

s (τxη)]ds
RRRRRRRRRRR
> δ

3 × 26
⎞
⎠

+ PµN
⎛
⎝

sup
t∈[0,T ]

∣MN
t (G)∣ >

δ

3 × 26
⎞
⎠
.

Note that the linear term ⟨∂2
uGs,1−πNs ⟩ in (3.33) was absorbed into the martingale MN

t (G), and so the

challenge is to treat the non-linear terms. The first probability on the right-hand side above vanishes

as N → +∞ since Gs ∈ C2(T) for all s ∈ [0, t]; the second probability is treated using the replacement

lemmas with a scheme that we present shortly; the third with Doob’s inequality and the proof of the

first condition in (3.25). Let us give more details for the second one. Recall the expression of h(k) as in

Lemma 3.2.15. We split the second probability on the right-hand side of last display into

PµN
⎛
⎝

sup
t∈[0,T ]

RRRRRRRRRRR

`N

∑
k=2
(m
k
)(−1)k ∫

t

0

1
N
∑
x∈TN

∆NGs( xN )× (3.35)

×τx
⎧⎪⎪⎨⎪⎪⎩

k−1
∑
j=1

k−1−j
∑
n=0
(∇+ηN2s)(n)s

(k−1)
j (τnηN2s)

⎫⎪⎪⎬⎪⎪⎭
ds
RRRRRRRRRRR
> δ

3 × 27
⎞
⎠
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+ PµN
⎛
⎝

sup
t∈[0,T ]

RRRRRRRRRRR

`N

∑
k=2
(m
k
)(−1)k ∫

t

0

1
N
∑
x∈TN

∆NGs( xN )[
k−1
∏
j=0
⟨1 − πNs , ι

x
N +jεk
εk ⟩ −

k−1
∏
i=0

ηN2s(x + i)]ds
RRRRRRRRRRR
> δ

3 × 27
⎞
⎠
.

Focus on the first probability in the previous display. We apply Proposition B.1.2 and triangle’s inequality

and then pass the summation over x to outside the expectation. For m ∈ (0,1), since the summation

starts at k = 2, the resulting quantity is treated using both Lemma B.1.6 and Lemma B.1.7 (to introduce

the term corresponding to k = 1) for each term of the summation over x, estimating it by

1
B
+ TB (`N)

1−m

N
,

for any B > 0, which will be taken to infinity after N → +∞.

For m ∈ (1,2) we could either prove an analogue of Lemma B.1.6 for the slow regime, or take advantage

of the tail of the sum of the binomial coefficients being just light enough, in this regime, to slow down

the explosion of `N , avoiding further restrictions. We present the second alternative, and in this way let

n be as in (3.28).

Since ∣h(k)(η)∣ ≤ k for any configuration η, from Lemma (3.2.15) and the fact that η(0)⋯η(k) ≤ 1 we

see that
RRRRRRRRRRR

k−1
∑
j=1

k−1−j
∑
n=0
(∇+η)(n)s(k−1)

j (τnη)
RRRRRRRRRRR
≤ k

and we can estimate
`N

∑
k=(`N )n+1

(m
k
)(−1)k 1

N
∑
x∈TN

∆NGs( xN )τx
⎧⎪⎪⎨⎪⎪⎩

k−1
∑
j=1

k−1−j
∑
n=0
(∇+ηN2s)(n)s

(k−1)
j (τnηN2s)

⎫⎪⎪⎬⎪⎪⎭

≤ 1
N
∑
x∈TN

∣∆NGs( xN )∣
`N

∑
k=(`N )n

∣(m
k
)∣k

≲ 1
N
∑
x∈TN

∣∆NGs( xN )∣ (
1

(`N)n(m−1) −
1

(`N)m−1 ) ,

which vanishes by taking the limit N → +∞. This means that we can replace the summation up to `N
by a summation up to (`N)n. In this way, from Proposition B.1.2, the previous truncation at (`N)n and

triangle’s inequalities, we are then reduced to treating

(`N )n

∑
k=2
∣(m
k
)∣
k−1
∑
j=1

k−1−j
∑
n=0

1
N
∑
x∈TN

EµN [∣∫
t

0
∆NGs( xN )τx {(∇

+ηN2s)(n)s
(k−1)
j (τnηN2s)}ds∣] .

Applying the replacement Lemma B.1.3 to each term of the sum over j with ϕ(s, η) =∆NGs( xN )s
(k−1)
j (τn+xη)

we obtain an upper bound of the order of

(`N )n

∑
k=2
∣(m
k
)∣k2 ( 1

Bk
+ TBk

(`N)m−1

N
) .

Let Bk = kB > 0. Then last display is bounded from above by some constant times

1
B

(`N )n

∑
k=2

1
km
+ TB (`N)

m−1

N

(`N )n

∑
k=2

1
km−2 ≲

1
B
+ TB (`N)

m−1+n(3−m)

N
,

and the right-hand side converges to zero as N → +∞ and B → +∞ since by the definition of n in (3.28)

we have m − 1 + n(3 −m) < 1.
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Now the main goal is to estimate for m ∈ (0,2)/{1} the quantity
`N

∑
k=2
∣(m
k
)∣ EµN

⎡⎢⎢⎢⎣
∣∫

t

0

1
N
∑
x∈TN

∆NGs( xN )(
k−1
∏
j=0
(1 − ⟨πNs , ι

x
N +jεk
εk ⟩) −

k−1
∏
i=0

ηN2s(x + i))ds∣
⎤⎥⎥⎥⎦

(3.36)

where, again, we applied Proposition B.1.2. It will be important to slow down the explosion `N → +∞ for

m ∈ (0,1) too before applying repeatedly the replacement lemmas. Consider the sequence (ak)k≥1 with

ak ≡ ak(t,G, η) defined by

ak = ∣∫
t

0

1
N
∑
x∈TN

∆NGs( xN )(
k−1
∏
j=0
(1 − ⟨πNs , ι

x
N +jεk
εk ⟩) −

k−1
∏
i=0

ηN2s(x + i))ds∣.

From the triangle inequality and the fact that Gs ∈ C2(T) it is simple to see that the sequence (ak)k is

uniformly bounded by ∫
t

0 N
−1∑x∈TN ∣∆

NGs( xN )∣ds which tends to ∥∂2
uG∥L1([0,T ]×T) < ∞ as N → ∞. In

particular,
RRRRRRRRRRR

`N

∑
k=2
∣(m
k
)∣ak −

(`N )n

∑
k=2
∣(m
k
)∣ak
RRRRRRRRRRR
=

`N

∑
k=(`N )n+1

∣(m
k
)∣ak ≲ (`N)−nm − (`N)−m ÐÐÐÐ→

N→+∞
0.

In this way, the treatment of (3.36) gives place to the treatment of
(`N )n

∑
k=2
∣(m
k
)∣ 1
N
∑
x∈TN

EµN
⎡⎢⎢⎢⎣
∣∫

t

0
∆NGs( xN )(

k−1
∏
j=0
(1 − ⟨πNs , ι

x
N +jεk
εk ⟩) −

k−1
∏
i=0

ηN2s(x + i))ds∣
⎤⎥⎥⎥⎦
. (3.37)

To treat (3.37) we now split into the slow and fast diffusion cases. In what follows, for each k ≥ 1 let

Lk =
1
k
(`N)p with p = n + 1

2
(2 −m), m ∈ (1,2). (3.38)

As we argued that ρs(u) is approximated locally by an average (Lemma 3.3.4), we continued further into

the discrete scale by approximating the local average by its correspondent in the mesoscopic scale, with

the average over "small macroscopic" boxes. Now we proceed similarly into the microscopic scale, with

the average over "large microscopic" boxes, which is then shown to be close to the occupation variable,

akin to a discrete version of Lebesgue’s differentiation theorem. The sequence (Lk)k≥1 is precisely the

length of the microscopic boxes for the replacements associated with a power k of the density.

● Slow-diffusion, m ∈ (1,2): We follow a simplified version of the scheme in [5, Subsection 5.2].

The forthcoming lemmas will be applied to each term of the summation over x ∈ TN .

1. Rearrangements: rewrite

k−1
∏
j=0

η(jLk) −
k−1
∏
j=0

η(j) =
k−1
∑
i=1
(η(iLk) − η(i)) ϕ̃(1)i (η) (3.39)

where for each i ∈ {1, . . . , k − 1} we defined ϕ̃
(1)
i (η) = ∏

i−1
j=0 η(j)∏

k−1
j=i+1 η(jLk). The random variable

ϕ
(1)
i (s, η) ≡ ∆NGs( xN )ϕ̃

(1)
i (τxη) is independent of the occupation variables at sites Ji, iLkK and, fixed x

and applying the triangle inequality we treat each term of the summation over i in (3.39) with Lemma

B.1.3. For any B > 0 we obtain an upper bound of the order of
(`N )n

∑
k=2
∣(m
k
)∣
k−1
∑
i=1
{ 1
B
+ TBiLk

(`N)m−1

N
} ≲

(`N )n

∑
k=2

1
km
{ 1
B
+ (`N)

m−1

N
TBLkk}

≲ 1
B
+ TB (`N)

m−1+p

N
.

(3.40)

Since m − 1 + p < 1⇔ n < 1 which is indeed satisfied, one can take the limit N → +∞ and then B → +∞

in the previous display;
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2. One-block estimates: rewrite

k−1
∏
j=0

ηLk(jLk) −
k−1
∏
j=0

η(jLk) =
k−1
∑
i=0
(ηLk(iLk) − η(iLk)) ϕ̃(2)i (η) (3.41)

where for every i ∈ {1, . . . , k − 1} we defined ϕ̃
(2)
i (η) = ∏

i−1
j=0 η

L
k (jLk)∏

k−1
j=i+1 η(jLk). The random variable

ϕ
(2)
i (s, η) ≡ ∆NGs( xN )ϕ̃

(2)
i (τxη) is independent of the occupation variables at sites JiLk, (i + 1)Lk − 1K

and, fixed x and applying the triangle inequality we treat each term of the summation over i in (3.41)

with Corollary B.1.4. We obtain an upper bound of the order of
(`N )n

∑
k=2
∣(m
k
)∣
k−1
∑
i=0
{ 1
B
+ TBLk

(`N)m−1

N
} .

This quantity is no larger than the quantity on the left-hand side of (3.40), therefore the same rationale

used there guarantees that these errors vanish by taking the limits;

3. Two-block estimates: rewrite

k−1
∏
j=0

η⌊Nεk⌋(j⌊Nεk⌋) −
k−1
∏
j=0

ηLk(jLk) =
k−1
∑
i=0
(η⌊Nεk⌋(i⌊Nεk⌋) − ηLk(iLk)) ϕ̃(3)i (η) (3.42)

where for every i ∈ {1, k − 1} we defined ϕ̃
(3)
i (η) = ∏

i−1
j=0 η

Lk(jLk)∏k−1
j=i+1 η

⌊Nεk⌋(j⌊Nεk⌋). The random

variable ϕ(3)i (s, η) ≡∆NGs( xN )ϕ̃
(3)
i (τxη) is independent of the occupation variables at sites contained in

JiLk, (i + 1)⌊Nεk⌋ − 1K ∪ JiLk, iLk + ⌊Nεk⌋ − 1K

provided ⌊Nεk⌋ ≥ Lk, that is, ⌊Nε⌋ ≥ L, which is true for N large enough from (3.38). Fixed x and

applying the triangle inequality we treat each term of the summation over i in (3.42) with Lemma B.1.5,

leading to an upper bound of the order of

(`N )n

∑
k=2
∣(m
k
)∣
k−1
∑
i=0
{ 1
B
+ T [ 1

Lk
+B (Lk(`N)

m−1

N
+ iLk
N
+ εk(i + 1))]}

≲
(`N )n

∑
k=2

1
Bkm

+ T
(`N )n

∑
k=2

1
Lkkm

+ T (`N)
m−1

N

(`N )n

∑
k=2

BLk
km
+ T

(`N )n

∑
k=2

B

km−1 (
Lk
N
+ εk)

≲ 1
B
+ T (`N)

n(2−m)

L
+ TB (`N)

m−1L

N
+ TB L

N
+ TBε.

Since L = (`N)p with n(2 −m) − p < 0, m − 1 + p < 1 and p < 1 the right-hand side above vanishes taking

the appropriate limits;

4. Conclusion: rewrite

k−1
∏
j=0
(1 − ⟨πN , ιjεkεk ⟩) −

k−1
∏
j=0
(1 − η⌊Nεk⌋(j⌊Nεk⌋))

=
k−1
∑
i=0

⎧⎪⎪⎨⎪⎪⎩
[
i−1
∏
j=1

1 − η⌊Nεk⌋(j⌊Nεk⌋)] (η⌊Nεk⌋(i⌊Nεk⌋) − ⟨πN , ιiεkεk ⟩) [
k−1
∏
j=i+1

1 − ⟨πN , ιjεkεk ⟩]
⎫⎪⎪⎬⎪⎪⎭
, (3.43)

and since ∣ ⟨πNs , ι
x
N
ε ⟩ − η⌊Nε⌋N2s

(x) ∣≤ ⌊Nε⌋−1, previous display is no larger than k⌊Nε⌋−1. This way, we need

to bound from above
(`N )n

∑
k=2
∣(m
k
)∣ k

⌊Nεk⌋
≲ 1
⌊Nε⌋

(`N )n

∑
k=2

k

km
≲ (`N)

n(2−m)

⌊Nε⌋
.
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Since by the definition of n in (3.28) it holds that n < 1, to conclude the proof it is enough to recall that

`N ≤ N , and then take the limit N → +∞ and ε→ 0 and then B → +∞.

● Fast-diffusion, m ∈ (0,1): Recall that the goal is to treat (3.37). The strategy now is similar but

simpler than for the slow diffusion case. The specific maps ϕ ∶ ΩN → R in the statement of the replacement

lemmas in Subsection B.1.6 can be introduced analogously to the slow-diffusion case, therefore we omit

their definition.

1. Rearrangements: rewrite

k−1
∏
j=0

η(j⌊Nεk⌋) −
k−1
∏
j=0

η(j) =
k−1
∑
i=1
[
i−1
∏
j=0

η(j)] (η(i⌊Nεk⌋) − η(i)) [
k−1
∏
j=i+1

η(j⌊Nεk⌋)]

and apply Lemma B.1.7 to each term of the summation in i. Recalling that in this regime εk = ε/k3, as

in (3.28), one obtains an error of the order of

(`N )n

∑
k=2
∣(m
k
)∣
k−1
∑
i=1
{ 1
Bk
+ TBk

i(⌊Nεk⌋ − 1)
N

} ≲
(`N )n

∑
k=2
{ 1
Bkkm

+ εTBkk2 1/k3

k1+m} ≲
1
B
+ TBε,

where we fixed Bk = Bk > 0 with B > 0, guaranteeing the convergence of the series as N → +∞.

2. One-block and two-blocks estimates: rewrite

k−1
∏
j=0

η⌊Nεk⌋(j⌊Nεk⌋) −
k−1
∏
j=0

η(j⌊Nεk⌋)

=
k−1
∑
i=0
[
i−1
∏
j=0

η⌊Nεk⌋(j⌊Nεk⌋)] (η⌊Nεk⌋(i⌊Nεk⌋) − η(i⌊Nεk⌋)) [
k−1
∏
j=i+1

η(j⌊Nεk⌋)]

and apply Lemma B.1.7 to each term of the summation in i, leading to an upper bound of the order of

(`N )n

∑
k=2
∣(m
k
)∣
k−1
∑
i=0
{ 1
Bk
+ TBk

1
⌊Nεk⌋

∑
y∈Λ⌊Nεk⌋

i⌊Nεk⌋

∣i⌊Nεk⌋ − y∣
N

} ≲
(`N )n

∑
k=2

1
k1+m (

k

Bk
+ TBεk2 1

k3 ) ≲
1
B
+ TBε

where we chose Bk = Bk > 0 with B > 0 in order to guarantee the convergence as N → +∞.

3. Conclusion: rewrite

k−1
∏
j=0
(1 − ⟨πN , ιjεkεk ⟩) −

k−1
∏
j=0
(1 − η⌊Nεk⌋(j⌊Nεk⌋))

=
k−1
∑
i=0
[
i−1
∏
j=1

1 − η⌊Nεk⌋(j⌊Nεk⌋)] (η⌊Nεk⌋(i⌊Nεk⌋) − ⟨πN , ιiεkεk ⟩) [
k−1
∏
j=i+1

1 − ⟨πN , ιjεkεk ⟩],

and proceed as in (3.43), leading to an upper bound of the order of

(`N )n

∑
k=2
∣(m
k
)∣ k

⌊Nεk⌋
≲ 1
⌊Nε⌋

(`N )n

∑
k=2

1
km−3 ≲

1
⌊Nε⌋

(`N)n(4−m).

It is then enough to fix 0 < n < 1 such that n(4 −m) < 1. To conclude one takes the corresponding limits

as previously.
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3.4 Energy Estimate

Before studying the differentiability of quantities related to the solution we need to introduce some

objects that will play an important role both in the present section and in the proof of the replacement

lemmas in Appendix B.1.

Definition 3.4.1 (Dirichlet Form and Carré du Champ). For a probability measure µ on ΩN and

f ∶ ΩN → R density with respect to µ, we define the Dirichlet form for any m ∈ (0,2] as

E(m−1)
N (f, µ) = ⟨f, ( − L(m−1)

N )f⟩µ = ∫
ΩN

f(η) ∑
x∈TN

( − r(m−1)
N (τxη))(∇x,x+1f)(η)µ(dη)

and the non-negative quadratic form

Γ(m−1)
N (f, µ) = ∫

ΩN
∑
x∈TN

r
(m−1)
N (τxη) [(∇x,x+1f) (η)]2 µ(dη),

where we recall the introduction of the rate r(m−1)
N in Definition 3.2.8.

We remark that rewriting −a(b − a) = (a − b)2/2 + (a2 − b2)/2, one obtains the identity

1
2

Γ(m−1)
N (

√
f, µ) = E(m−1)

N (
√
f, µ) + 1

2
⟨L(m−1)

N f⟩
µ
. (3.44)

The key observation in order to proceed similarly to [5] is the following proposition.

Proposition 3.4.2 (Energy lower bound). Let νNα be the Bernoulli product measure on ΩN where α ∶

[0,1] → (0,1) is either a Lipschitz function or constant, and let f be a density with respect to νNα . For

any m ∈ (0,2)/{1} and any N ∈ N+ such that `N ≥ 2 it holds

E(m−1)
N (

√
f, νNα ) ≥ 1{m∈(1,2)}

m

4
(δNΓ(0)N (

√
f, νNα ) +

m − 1
2

Γ(1)N (
√
f, νNα ))

+ 1{m∈(0,1)}
1
4

Γ(0)N (
√
f, µ) − cα

4N

(3.45)

where cα > 0 if α is Lipschitz non-constant, or cα = 0 if α is constant.

Remark 3.4.3. We highlight that throughout the rest of this chapter we will fix νNα , with α(⋅) ≡ α ∈ (0,1)

a constant function as reference measure. We chose to present the previous result with α(⋅) also not being

constant since it is necessary in order to extend the present model to the open boundary setting.

We recall some classical results that we will invoke throughout this section. Let H be a Hilbert space

with corresponding norm ∥⋅∥H and f ∶ H → R a linear functional. The (dual) norm of the linear functional

f is defined as

∣∣∣f ∣∣∣ = sup
∥x∥

H
≤1,x∈H

∣f(x)∣.

We know that (see for instance [31, Proposition A.1.1.]) if there exists K0 > 0 and a positive real number

κ such that supx∈H {f(x) − κ∥x∥
2
H} ≤K0, then f is bounded. Let us now introduce:

Definition 3.4.4. Let L2([0, T ] × T) be the (Hilbert) space of measurable functions G ∶ [0, T ] × T → R

such that

∫
T

0
∥Gs∥2L2(T)ds < ∞,

73



endowed with the scalar product ⟪G,H⟫ defined by

⟪G,H⟫ = ∫
T

0
⟨Gs,Hs⟩ds.

For any r ∈ R+ fixed, define the linear functional `(r) on C0,1 ([0, T ] ×T) by `(r)ρ (G) = ⟪∂uG,ρr⟫.

An important result is the following:

Lemma 3.4.5. [31, Lemma A.1.9]. If ξ ∈ L2([0, T ] × T) is such that there exists a function ∂ξ ∈

L2([0, T ] ×T) satisfying for all G ∈ C0,1([0, T ] ×T) the identity

⟪∂uG, ξ⟫ = −⟪G,∂ξ⟫,

then ξ ∈ L2([0, T ];H1(T)).

Definition 3.4.6. For G ∈ C0,1([0, T ] ×T), r, κ ∈ R+ define E(m)G,κ ∶ D([0, T ],M+) → R ∪ {∞} by

E(r)G,κ(π) =
⎧⎪⎪⎨⎪⎪⎩

`(r)(G) − κ∥G∥22, if π ∈ D([0, T ],M+),
+∞, otherwise,

and the energy functional E(r)κ ∶ D([0, T ],M+) → R ∪ {∞} by

E(r)κ (π) = sup
G∈C0,1([0,T ]×T)

E(r)G,κ(π).

Remark 3.4.7. Note that E(r)κ (π) ≥ 0. To see this it is enough to take G = 0.

Recall that the measure Q is the weak limit of a subsequence of QN as N → +∞, where QN is the

measure induced by the empirical measure in the Skorokhod space of trajectories D([0, T ],ΩN). Recall

also the definition of the target Sobolev space (Definition 3.2.21). The main goal of this section is to

prove the next proposition.

Proposition 3.4.8. The measure Q is concentrated on trajectories of absolutely continuous measures

with respect to the Lebesgue measure, π⋅(du) = ρ⋅(u)du, such that ρm ∈ L2([0, T ];H1(T)), for m ∈ (1,2),

and ρ ∈ L2([0, T ],H1(T)), for m ∈ (0,1).

This will be shown to be a consequence of existing positive real numbers κ0, κ1,K0 and K1 such that:

for m ∈ (0,1) holds EQ [E(1)κ0 (π)] ≤K0, and for m ∈ (1,2) holds EQ [E(m)κ1 (π)] ≤K1, where EQ denotes the

expectation with respect to Q. This will be proved in Proposition 3.4.10 and 3.4.9, respectively. Recall

(3.16). For the slow diffusion case, the argument is analogous to [5, Section 6] but we make evident that

this argument works due to the fact that the rates are uniformly bounded by a constant independent

of N and the fact that the model is gradient. In particular, the argument is suited to show that the

"macroscopic" quantity

ρm = lim
N→+∞∫ h

(m−1)
N (η)νNρ (dη)

lives in the target Sobolev space, where ρ(⋅) ∈ (0,1) is a constant function. As in [5], the argument does

not allow us to show that ρ has a weak derivative, the reason being that ρm ≤ ρ.
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For m ∈ (0,1) we have the opposite problem. Without imposing any restriction on the initial profile,

we cannot show that ρm ∈ L2([0, T ],H1(T)), the reason being that (see Remark 3.2.11)

lim
N→+∞

sup
η∈ΩN

r
(m−1)
N (η) = +∞.

This is the discrete analogous to ρm−1 → +∞ as ρ → 0. Yet, we can show that ρ ∈ L2([0, T ];H1(T))

because the transition rates, in this case, are larger than the ones for the SSEP (analogous to ρ ≤ ρm in

this case), which is again a gradient model.

Proof of Proposition 3.4.8. Recall that up to this point we have proved that the measure Q is a Dirac

measure, namely Q = δπ with π⋅ the trajectory of absolutely continuous measures π⋅(du) = ρ⋅(u)du, where

ρ is integrable and its time evolution is described by the equation (3.21), that is,

⟨ρt,Gt⟩ = ⟨ρini,G0⟩ + ∫
t

0
{⟨ρs, ∂sGs⟩ + ⟨(ρs)m, ∂2

uGs⟩}ds

with G ∈ C1,2([0, T ] × T) a test function. For m ∈ (1,2), from Proposition 3.4.9 the functional `(m) is

bounded Q−a.s. Since C0,1([0, T ]×T) is dense in L2([0, T ]×T), we can extend `(m) to a Q−a.s. bounded

functional in L2([0, T ] × T). One can thus invoke Riesz’s representation Theorem and conclude that for

any m ∈ (1,2) there exists a function ∂ρm ∈ L2([0, T ] ×T) such that

`(m)ρ (G) = −⟪G,∂ρm⟫.

To finish the proof, since ρm ∈ L2([0, T ] ×T), one invokes Lemma 3.4.5.

For m ∈ (0,1) the same argument leads to ρ ∈ L2([0, T ],H1(T)) but now one should invoke instead

Proposition 3.4.10 which states that the functional `(1) is bounded.

Proposition 3.4.9. For any m ∈ (1,2) there are finite constants κ,K > 0 independent of N such that

EQ [E(m)κ (π)] ≤K.

Proof. Recall that from the binomial theorem we can expand

ρm = ∑
k≥0
(m
k
)(−1)k(1 − ρ)k,

and since we are on the torus we can treat

EQ

⎡⎢⎢⎢⎣
sup

G∈C0,1([0,T ]×TN )
{ ∑
k≥1
(m
k
)(−1)k⟪(1 − ρ)k, ∂uG⟫ − κ1∥G∥22}

⎤⎥⎥⎥⎦
.

For the open boundary case it is enough to focus on showing the (weak) differentiability of the quantity

ρm − 1, that implies the differentiability of ρm. Recalling that C0,1 ([0, T ] ×T) is separable with respect

to the norm ∥⋅∥H1(T), consider a countable dense subset, {Gp}p∈N, in C0,1 ([0, T ] ×T). An application of

the monotone convergence theorem then reduces the problem to that of treating

lim
`→+∞

EQ[max
Gp
p≤`

{EGp(π)} ].
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Fixed Gp, Lemma 3.3.4 allow us to replace (1 − ρ)k by ∏k−1
j=0 (1 − ⟨π, ι⋅+jεkεk

⟩), with the sequence (εk)k≥0

depending on the regime of m, leaving us with

EQ[max
Gp
p≤`

{EGp(π)} ] ≤ EQ[max
Gp
p≤`

⎧⎪⎪⎨⎪⎪⎩
∑
k≥1
(m
k
)(−1)k⟪

k−1
∏
j=0
(1 − ⟨π, ι⋅+jεkεk

⟩) , ∂uGp⟫ − κ1∥Gp∥22
⎫⎪⎪⎬⎪⎪⎭
].

Note that we need to take the lim supε→0 outside of the expectation, since otherwise we get from the

reverse of Fatou’s lemma that EQ lim sup ≥ lim supEQ. And so, we further reduce the problem to the

study of

lim
`→+∞

lim sup
ε→0

EQ[max
Gp
p≤`

⎧⎪⎪⎨⎪⎪⎩
∑
k≥1
(m
k
)(−1)k⟪

k−1
∏
j=0
(1 − ⟨π, ι⋅+jεkεk

⟩) , ∂uGp⟫ − κ1∥Gp∥22
⎫⎪⎪⎬⎪⎪⎭
].

To make the link between the microscopic system and the macroscopic PDE we want to express Q as the

limit of a subsequence of (QN)N≥0, thus replacing π by πN and then recovering the occupation variables

from the application of replacement lemmas. To do this, as previously, one wants to argue that the map

π ↦ Ψ(π) =max
Gp
p≤`

⎧⎪⎪⎨⎪⎪⎩
∑
k≥1
(m
k
)(−1)k⟪

k−1
∏
j=0
(1 − ⟨π, ι⋅+jεkεk

⟩) , ∂uGp⟫ − κ1∥G∥22
⎫⎪⎪⎬⎪⎪⎭

is continuous with respect to the Skorokhod topology, hence lower semicontinuous and therefore Ψ(π) ≤

lim infN→+∞Ψ(πN). Although this is not the case, one can first truncate the series at an `1/ε step, then

replace ι⋅+jεkεk
by a continuous approximation as in (3.32), and then argue by lower semicontinuity. Next,

we replace the sum up to `1/ε by a sum up to `N , as in (3.34), and finally we replace back ⟨πN , 1
εk
ζ ⋅+jεkεk

⟩

by ⟨πN , ι⋅+jεkεk
⟩. In this way, we have to treat

lim
`→+∞

lim sup
ε→0

EQN [ lim inf
N→+∞

max
Gp
p≤`

⎧⎪⎪⎨⎪⎪⎩

`N

∑
k=1
(m
k
)(−1)k⟪

k−1
∏
j=0
(1 − ⟨πN , ι⋅+jεkεk

⟩) , ∂uGp⟫ − κ1∥Gp∥22
⎫⎪⎪⎬⎪⎪⎭
],

where we recall again that Q is a Dirac measure. Now we apply Fatou’s lemma to exchange the expectation

and the lim inf. Hence, it is enough to show that there exists some constant K1 independent of {Gp}p≤`
for any ` ∈ N such that

EµN [max
Gp
p≤`

⎧⎪⎪⎨⎪⎪⎩

`N

∑
k=1
(m
k
)(−1)k⟪

k−1
∏
j=0
(1 − ⟨πN , ι⋅+jεkεk

⟩) , ∂uGp⟫ − κ1∥Gp∥22
⎫⎪⎪⎬⎪⎪⎭
] ≤K1.

Because ∂uGp is bounded in L1 and the products involving the empirical measure are bounded by 1, we

can replace `N by (`N)n with n as in (3.28). Now we are able to proceed backwards in the replacement

lemmas’ scheme (from (3.39) to (3.43)), approximating the space integral by the Riemann sum along the

way. At this point we have to estimate

EµN [max
Gp
p≤`

⎧⎪⎪⎨⎪⎪⎩
∫

T

0
( 1
N
∑
x∈TN

(`N )n

∑
k=1
(m
k
)(−1)k

k−1
∏
j=0

ηN2s(x + j)∂uGp(s, xN ) − κ1∥Gp(s, ⋅)∥22)ds
⎫⎪⎪⎬⎪⎪⎭
],

where we recall that (`N)n can be replaced back by `N since the terms involving η are bounded and

∂uGp is bounded in L1. We are able to introduce

τx

⎧⎪⎪⎨⎪⎪⎩

k−1
∑
j=1

k−1−j
∑
n=0
(∇+η)(n)s(k−1)

j (τnη)
⎫⎪⎪⎬⎪⎪⎭
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inside the summations over x and k (see the treatment of the first probability in (3.35) and Definition

3.2.3 for the expression for s(k−1)
j ). This is important because now we have

EµN [max
Gp
p≤`

⎧⎪⎪⎨⎪⎪⎩
∫

T

0
( 1
N
∑
x∈TN

h
(m−1)
N (τxηN2s)∂uGp(s, xN ) − κ1∥Gp(s, ⋅)∥22)ds

⎫⎪⎪⎬⎪⎪⎭
]

which will be used to exploit the gradient property of the model. Analogously to the replacement lemmas,

and with the same choice of a constant profile α(⋅) ∈ (0,1) we obtain the upper bound

cα + ∫
T

0
sup
f

⎧⎪⎪⎨⎪⎪⎩
⟨ 1
N
∑
x∈TN

h
(m−1)
N (τxη)∂uGp(s, xN ), f⟩

νNα

− κ1∥Gp(s, ⋅)∥22 −NE
(m−1)
N (

√
f, νNα )

⎫⎪⎪⎬⎪⎪⎭
ds(3.46)

where cα > 0 is a constant. Let us now focus on the inner product above, specifically on

1
N
∑
x∈TN

∂uGp(s, xN ) ∑
η∈ΩN

h
(m−1)
N (τxη)f(η)νNα (η).

One can replace the space derivative by its discrete version with a cost

1
N
∑
x∈TN

∣(∂u −N∇+)Gp(s, xN )∣ ∑
η∈ΩN

h
(m−1)
N (τxη)f(η)νNα (η) ≤ ∥(∂u −N∇+)Gp(s, ⋅)∥∞ sup

η∈ΩN
h
(m−1)
N (η).

This vanishes on the limit N → +∞ since ∥(∂u −N∇+)Gp(s, ⋅)∥∞ ≲
1
N

and, since h(k) ≤ k, we have that

h
(m−1)
N (η) ≲ 1 (recall that m ∈ (1,2)).

At this point the discrete derivative can be passed to h
(m−1)
N by performing a summation by parts,

which puts us in place to use the gradient property of the model:

∑
x∈TN

∇+Gp(s, xN ) ∑
η∈ΩN

h
(m−1)
N (τxη)f(η)νNα (η) = − ∑

x∈TN
Gp(s, x+1

N
) ∑
η∈ΩN

c
(m−1)
N (η)∇+η(x)f(η)νNα (η).

From Lemma B.1.1,

∑
η∈ΩN

c
(m−1)
N (τxη)∇+η(x)f(η)νNα (η) = −

1
2 ∑η∈ΩN

c
(m−1)
N (τxη)∇+η(x)∇x,x+1f(η)νNα (η).

and we are left with

1
2 ∑x∈TN

Gp(s, x+1
N
) ∑
η∈ΩN

c
(m−1)
N (τxη)∇+η(x)∇x,x+1f(η)νNα (η)

≤ 1
4A ∑

x∈TN
∑
η∈ΩN

c
(m−1)
N (τxη) (Gp(s, x+1

N
))2 (
√
f(η) +

√
f(ηx,x+1))

2
νNα (η)

+ A
4 ∑x∈TN

∑
η∈ΩN

c
(m−1)
N (τxη) (∇+η(x))

2 ((∇x,x+1
√
f)(η))

2
νNα (η)

≤ 1
A

sup
η∈ΩN
{c(m−1)
N (η)} ∑

x∈TN
(Gp(s, x+1

N
))2 + A

4
Γ(m−1)
N (

√
f, νNα ).

Recalling that supη∈ΩN {c
(m−1)
N (η)} ≤ m, fixing A = N and replacing all this into (3.46), then taking the

corresponding limits we finish the proof.

Proposition 3.4.10. For any m ∈ (0,1) there are finite constants κ,K > 0 such that

EQ [E(1)κ (π)] ≤K.
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Proof. The proof is almost identical to the one for the SSEP (see for example [17, Proposition B.1]).

Besides the fact that there the authors have a boundary term, the differences lie in that we apply the

replacement lemmas in the present text, and that in the final step we need to invoke Proposition 3.4.2.

We outline the main steps. The treatment of the expectation in the statement can be reduced to the

treatment of

sup
f

⎧⎪⎪⎨⎪⎪⎩
⟨ 1
N
∑
x∈TN

ηεN(x)∂uGp(s, xN ) − κ0∥Gp(s, ⋅)∥22, f⟩
νNα

−NE(m−1)
N (

√
f, νNα )

⎫⎪⎪⎬⎪⎪⎭
. (3.47)

Above, the sup is taken over the set of densities with respect to νNα , and {Gp}p∈N is a countable dense

subset in C0,1([0, T ] × T). Exchanging the continuous derivative by a discrete one, then performing a

summation by parts we end up having to treat

sup
f

⎧⎪⎪⎨⎪⎪⎩
⟨− ∑

x∈TN
∇+ηεN(x)Gp(s, xN ) − κ0∥Gp(s, ⋅)∥22, f⟩

νNα

−NE(m−1)
N (

√
f, νNα )

⎫⎪⎪⎬⎪⎪⎭
.

Then again, from Lemma B.1.1 we have that

∫
ΩN
∇+ηεN(x)f(η)νNα (dη) =

1
2εN ∑

i∈ΛεN
N

∫
ΩN
(η(x + i + 1) − η(x + i)) (f(η) − f(ηx+i,x+i+1))νNα (dη).

Taking our function Gp back into consideration and recalling that the process is of exclusion type we

have that

∑
x∈TN

Gp(s, xN )
1

2εN ∑
i∈ΛεN

N

∫
ΩN
(η(x + i + 1) − η(x + i)) (f(η) − f(ηx+i,x+i+1))νNα (dη)

≤ 1
4A ∑

x∈TN
(Gp(s, xN ))

2
∑
i∈ΛεN

N

∫
ΩN
(
√
f(η) +

√
f(ηx+i,x+i+1))

2
νNα (dη) +

A

4
Γ(0)N (

√
f, νNα ).

Since f is a density and α is constant, last display is no larger than

1
2A ∑

x∈TN
(Gp(s, xN ))

2 + A
4

Γ(0)N (
√
f, νNα ).

Plugging this into the first term inside the sup in (3.47), we obtain

sup
f

⎧⎪⎪⎨⎪⎪⎩

1
2A ∑

x∈TN
(Gp(s, xN ))

2 − κ∥Gp(s, ⋅)∥22 +
A

4
Γ(0)N (

√
f, νNα ) −NE

(m−1)
N (

√
f, νNα )

⎫⎪⎪⎬⎪⎪⎭
.

Applying the lower bound for E(m−1)
N (

√
f, νNα ) from Proposition 3.4.2 and hence setting A = 4N and

κ = 1/8, to conclude it is enough to perform the limit N → +∞.
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4.1 Introduction
4.1.1 Main result and strategy

This chapter is split into three parts. In the first part, we construct a family of exclusion processes

parameterized by (n, k) ∈ N×N, evolving in the same setting as in the previous chapter, in order to model

the equation

∂tρ = ∂u(Dn,k(ρ)∂uρ) with Dn,k(ρ) = ρn(1 − ρ)k. (4.1)

Before advancing with specific details, we make some observations regarding the diffusion coefficient

Dn,k(ρ). For (n, k) = (1,0) or (n, k) = (0,1) the function Dn,k is linear ; if n ≥ 2, k = 0 (resp. n = 0, k ≥ 2)

then it is non-linear but monotonic increasing (resp. decreasing), and its maximum is attained at the

boundary, at ρ = 1 (resp. ρ = 0); while for n ≥ 2, k ≥ 1 (resp. n ≥ 1, k ≥ 2), the function Dn,k is non-linear

and not monotonic. Concretely, it attains its maximum in the interval (0,1), and it can be checked that

max
ρ∈[0,1]

Dn,k(ρ) = (
n

n + k
)
n

(1 − n

n + k
)
k

.

Note that for any n, k ≥ 1 there is no diffusion when ρ = 0 or ρ = 1, and as n, k increases so does the

multiplicity of the roots of the polynomial Dn,k(ρ). All of this is represented in Figure 4.1.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ρ

D
n
,k
(ρ
)

(n, k) = (1,0)
(n, k) = (2,0)
(n, k) = (2,1)
(n, k) = (2,2)

Figure 4.1: Plot of Dn,k(ρ) for different values of n, k ∈ N+.

The differential equation (4.1) can be alternatively recast as

∂tρ = (∂2
uHn,k)(ρ), with (∂2

uHn,k)(ρ) = ∂u(Dn,k(ρ)∂uρ),

where we note that Hn,k can be identified as a primitive of Dn,k. We will often refer to both the map

Hn,k and its discrete version (to be introduced shortly) as a potential. Precisely, from (4.1) one derives

the continuity equation J(ρ) +Dn,k(ρ)∂uρ = 0, with

J = −∂uHn,k (4.2)

the current, and as such the current is a potential gradient, associated with the potential Hn,k. The

quantity Hn,k(ρ) has no "simple" expression in terms of elementary functions, and can be computed
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invoking the Binomial Theorem,

Hn,k(ρ) =
k

∑
`=0
(−1)`(k

`
) 1
n + ` + 1

ρn+`+1.

As explained previously, the gradient property can be seen as (4.2) being satisfied at a discrete level.

Our discrete set-up will also be the same as in the previous chapter: consider the one-dimensional

torus, TN ∶= R/NZ, where 1≪ N ∈ N is a fixed number; the state-space is the set ΩN = {0,1}TN and we

recurrently denote the configurations by the Greek letters η and ξ.

The problem of defining a microscopic model for ρn(1 − ρ)k turns out to be a very delicate task if

one aims to maintain the gradient property. Our approach is to characterize the gradient condition in

terms of a linear system, which is performed in Subsection 4.2.1. The underlying idea is that products of

occupation variables over specific sites can be seen as functions on the state space applied to a set. This

translates the verification of the gradient property to a series of simple combinatorial problems: given

some kinetic constraint c, we identify sets that are going to be associated with c(η)η(1) as translations of

sets associated with c(η)η(0). Because translations are "gradient invariant", in the sense that 1 = −∇++τ1

(see more details throughout this chapter), the identification of the aforementioned sets will induce a linear

system. In this way, each (exclusion) gradient model is related to a particular solution of an underlying

linear system that characterizes the gradient condition.

Our starting point is to consider the PMM mechanism, already discussed in the previous chapter,

where for an exchange of occupations between the sites 0 and 1 to happen at least one of the ”windows"

{J−k − 1 + j, jK/{0,1}}j=1,...,k+1, for k ∈ N+ fixed, must be completely occupied (recall the discussion just

before Figure 3.1). The extension of this model is realized by associating, to each local configuration with

exactly n particles in the window

Wj ∶= J−j,−j + n + k + 1K/{0,1},

for each 0 ≤ j ≤ n + k, a non-negative weight, as in Definition 4.2.4. The normalized weights can be seen

as the probability distribution of the position of the n particles with respect to each window Wj . One can

then show that the corresponding model will satisfy the gradient condition if these weights are solution

to a linear system. This is the content of Proposition 4.2.11, with the linear system as in (4.13). As a

consequence (see Corollary 4.2.12), we discover, for each 0 ≤ ` ≤ k, a family of gradient models associated

with the diffusion coefficient (n + ` + 1)Dn+`,0(ρ). This family is associated with the aforementioned

weights being a solution of a reduced linear system (presented in (4.21)), which the PMM is a particular

solution to.

The linear system (4.13) is expressed in terms of different maps, and its solution seems to be not

unique for general n, k ∈ N+. In Appendix C.1 we present the linear system for the particular case of

n, k = 2. In the general case, we study throughout this chapter a particular (uniform) solution, presented

in Proposition 4.2.13, that permits to solve some problems which arise in the following section through

combinatoric arguments. This solution corresponds to the following very simple kinetic constraint for

the exchange of the occupations between the sites 0 and 1: the number of windows {Wj}0≤j≤k such

that the density of particles in it is n/(n + k), then normalized by a factor (n+k
k
)
−1

. Formally, writing
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⟨η⟩A = 1
∣A∣ ∑z∈A η(z) for any A ⊆ TN , we define the constraint

c(n,k)(η) = 1
(n+k
k
)

n+k
∑
j=0

1{⟨η⟩Wj =
n

n + k
} ,

which is related to the diffusion coefficient (n + k + 1)ρn(1 − ρ)k. The constraint in the previous display

is valid for any n, k ∈ N+, and the generality of n and k will indeed be our focus. The model induced by

the constraint c(n,k) will be named PMM(n, k) (see Definition 4.2.14).

1 87654320 9

1/3

Figure 4.2: PMM(2,2) transition rates.

In the previous figure, the windows Wj , for 0 ≤ j ≤ 4, are represented as the rectangles containing

segments of the configuration of particles, in light gray. The family {PMM(n, k)}n,k∈N+ enjoys of several

properties:

• If η ∈ ΩN is such that there are less than n particles on each of the windows {Wj}0≤j≤k, then

c(n,k)(η) = 0, in this way PMM(n, k) is a kinetically constrained model;

• It can be checked that maxη c(n,k)(η) = (n+k+1)/(n+k
k
). In other words, there is a local configuration

such that ⟨η⟩Wj
= n
n+k for each 0 ≤ j ≤ n + k. An example of such configuration is given in the next

figure:

1 87654320 9

4/3

Figure 4.3: Configuration corresponding to the maximum rate, for the PMM(2,1).
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• The minimum number of particles required on the whole window W = ∪kj=0Wj that guarantees a

positive rate is 2(n − 1) + 1;

• Fixed L ∈ N+ such that L < N , there is a sequence of normalizing factors ZL,n > 0 such that

LSSEP
N =

L

∑
n=0

1
ZL,n

L(n,L−n)N

where L(n,L−n)N is the infinitesimal generator of the process we are just describing, the PMM(n,L−n),

as is introduced in Definition 4.2.14. In other words, the rescaled constraints { 1
ZL,n c(n,L−n)}0≤n≤L

forms a partition of the unity in ΩN (Proposition 4.2.15);

• There are blocked configurations depending on the number of particles in the system. A simple

example is the configuration where each particle is at a distance larger than n+ k from each other;

• There exists mobile clusters. Specifically, if ⟨η⟩Wj = n
n+k for some 0 ≤ j ≤ k, then the local configu-

ration η∣Wj (that is, the configuration η restricted to the window Wj) is a mobile cluster.

In the second part of this chapter, Section 4.3, we extend the previous model to a long-range dynamics.

This extension is performed, again, on the discrete torus, although it is straightforward to adapt it to

some other lattices. The main result of this section is the introduction of an operator acting on any

nearest neighbour (that we short-write n.n.) constraints that defines a jump of arbitrary length r ∈ N+
and such that the corresponding long-range (that we short-write l.r.) constraint satisfies the gradient

condition. The operator is introduced in Definition 4.3.3, and the proof of the gradient property is given

in Proposition 4.3.4. The idea behind the definition is quite simple and can be explained with the diagram

in Figure 4.4

Nearest-neighbour (TN) Nearest-neighbour (rTN)

Long-range (TN)

lift

embedding

Figure 4.4: Long-range extension.

In other words, given some n.n. constraint c defined on TN , we can define a n.n. constraint on the

lattice rTN , for any r ∈ N+ fixed, which we can write as cr. This, in turn, defines a jump of length r

on the original lattice TN . Because cr satisfies the gradient condition on rTN , it will also satisfy this

condition in TN . We then introduce the long-range version of the PMM(n, k) for each jump of range r

in Definition 4.3.5, which we refer to as PMMr(n, k). From its definition, it holds naturally that

PMM1(n, k) = PMM(n, k).

We then use the family {PMMr(n, k)}1≤r≤⌊N/2⌋ as a basis to introduce what we call Fractional Porous

Media Model, in Definition 4.3.14, and refer to as PMMγ(n, k), where γ > 0 is a parameter that will be

associated with the fractional Laplacian ∆γ/2, if γ ∈ (0,2), and the classical Laplacian if γ ≥ 2.
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4.1.2 Outline of the chapter

Now we explain the content of the next sections in a more technical level. We found appropriate to

present an example in order to motivate our subsequent proofs, and in this manner the present subsection

deviates, in length and amount of detail, from the corresponding subsection of the previous chapters.

Section 4.2 is devoted to deriving the aforementioned linear system (Subsection 4.2.1), and expressing

the potential associated with the microscopic current in a convenient manner (Subsection 4.2.2). We focus

now on the content of Subsection 4.2.1. The main result is Proposition 4.2.11, with the linear system as

in (4.13). The approach to obtain the linear system can be succinctly presented in the following example

for the case n, k = 1, although it does not reveal all the technical difficulties.

Example 4.1.1. For each (j, i) ∈ {0,1,2}×{1,2} let a = {aij}(j,i)∈{0,1,2}×{1,2} be a family of non-negative

constants and introduce the following (symmetric) constraint for the occupation exchange of the sites 0

and 1

c(η) = a10η(2)η(3) + a20η(2)η(3)

+ a11η(−1)η(2) + a21η(−1)η(2)

+ a12η(−2)η(−1) + a22η(−2)η(−1).

(4.3)

Distributing the products and multiplying by (∇+η)(0) yields

c(η)(∇+η)(0) = a10η(1)η(3) + (a20 + a11)η(1)η(2) + (a21 + a12)η(−1)η(1) + a22η(−2)η(1) (4.4)

− a10η(0)η(3) − (a20 + a11)η(0)η(2) − (a21 + a12)η(−1)η(0) − a22η(−2)η(0)

− (a0η(2)η(3) + a1η(−1)η(2) + a2η(−2)η(−1)) (∇+η)(0)

where we shortened aj = a1j + a2j for j = 0,1,2. It is simple to show that the third line in the previous

display is the gradient of some function if aj1 = aj2 for any j1, j2 ∈ {0,1,2}. Considering the normalized

weights aj = 1 for every j as previously, the aforementioned quantity equals (∇+h(2))(η), with h(2) as in

(3.15). We now focus on the first two lines of the previous display. The first one can be expressed as

(a10 + a21 + a12)η(0)η(2) + (a20 + a11)η(0)η(1) + a22η(0)η(3)

+ a10(τ1 − 1)η(0)η(2) + (a20 + a11)(τ1 − 1)η(0)η(1)

+ (a21 + a12)(τ−1 − 1)η(0)η(2) + a22(τ−2 − 1)η(0)η(3).

(4.5)

It is clear that the quantities in the last two lines of the previous display are (discrete) gradients of some

quantity. Repeating the same procedure for the quantity in the second line of (4.4) leads to

−a10η(0)η(3) − (a20 + a11 + a22)η(0)η(2) − (a21 + a12)η(0)η(1)

plus the discrete gradient of some function of the configurations. Comparing the terms in the first line of

(4.5) with the ones in the previous display, we see that c(η)(∇+η)(0) satisfies the gradient condition if

0 = η(0)η(1) [a20 + a11 − a21 − a12] + η(0)η(3) [a22 − a10]

+ η(0)η(2) [(a21 + a12 − a20 − a11) + (a10 − a22)] .
(4.6)
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One must then solve the system a20 +a11 −a21 −a12 = a22 −a10 = 0, and aj = 1, with j = 0,1,2 (recall (4.4)

and the discussion just after it). This system is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a10 = a22,

a20 = a12,

a11 = a21 = 1/2,
a10 + a20 = 1.

⇔

⎛
⎜⎜⎜⎜⎜
⎝1

0
0
0
1

1
0
0
1
0

0
0
1
0
0

0
1
0
0
0

0
0
0
0
−1

0
0
0
−1
0 ⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝a12

a22

a21

a11

a20

a10⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝ 1

1/2
1/2
0
0 ⎞
⎟⎟⎟⎟⎟
⎠

(4.7)

and it does not have a unique solution.

Note that, in the previous example, the particular choice (a10, a20) = (0,1) , (a11, a21) = (1/2,1/2)

and (a12, a22) = (1,0) corresponds to the quantity uk(η) in (3.17) with k = 2. Indeed, our motivation

for considering as starting point (4.3) was the next rearrangement. Fixed k ∈ N+ and defining, for each

η ∈ ΩN , the constraint

c(k−1,1)(η) ∶= k + 1
k

c(k−1)(η) − c(k)(η) =
k

∑
j=0
{k − j

k
s(k)j+1(η

{−k+j}) + j
k

s(k)j+1(η
{j+1})}, (4.8)

we expect that to the model induced by c(1,k−1) corresponds the diffusion coefficient (k + 1)Dk−1,1(ρ).

For k = 2 we observe an empirical average

c(1,1)(η) = η(−2)η(−1) + η(−1)η(2) + η(−1)η(2)
2

+ η(2)η(3),

while for k = 3 a weighted sum:

c(2,1)(η) = η(−3)η(−2)η(−1) + η(−2)η(−1)η(2)
3

+ 2η(−2)η(−1)η(2)
3

+ 2η(−1)η(2)η(3)
3

+ η(−1)η(2)η(3)
3

+ η(2)η(3)η(4),

in this way successfully generalizing the integer porous medium model in a specific direction. While it

is not clear for us the reason why the quantity in the right-hand side of the previous display follows a

"combinatoric" reasoning, this is encapsulated in the forthcoming linear system (as it is encapsulated into

(4.7) for the case n = 1 and k = 1). The reason why (4.8) can be taken as constraints (c(k−1,1) ≥ 0) can be

shown to be "independent" of the rearrangement (4.8) and consequence of the sequence { 1
k+1 c(k)(η)}k≥0

being non-increasing, for every η ∈ ΩN , to which the aforementioned rearrangement is a consequence

thereof. It turns out that the rationale to define c(k−1,1) in (4.8) does not generalize in the most natural

way: defining c(k−1,2) ∶= 1
k+1 c(k−1,1)− 1

k+2 c(k,1), in analogy with the binomial expansion of ρk−1(1−ρ)2 as a

polynomial in ρ, leads to possible negative rates because the sequence { 1
k+ic

(k+i−1,1)}i∈N is not monotone.

One can identify in Example 4.1.1 three main steps:

1. Distribution of the products of flipped occupation variables, as in (4.4);

2. Translation of each product to start at zero, as in (4.5);

3. The terms translated to zero associated with a multiplication by η(1) are compared with the terms

translated to zero associated with a multiplication by η(0), as in (4.6).
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Those are also the main steps in the proof of Proposition 4.2.11. However, performing these computa-

tions for general n and k and proving that the resulting linear system admits a solution is much more

demanding, and needs to be done in an organized way. With this in mind, one needs to keep track of

the sets of sites that need to be flipped and the indexes of the weights associated with them, when the

translations of these sets are going to be performed. In order to do so, we work with equivalence classes

over sets and their indexes (see Definitions 4.2.3 and 4.2.6). The aforementioned step (1) is encapsulated

into Lemma 4.2.5; step (2) is performed in two sub-steps: first we shift each window Wj , with 0 ≤ j ≤ k, to

the origin, identifying a first gradient quantity, and then we shift each product of occupation variables to

the origin. This allows us to identify a quantity which is also present in the potential associated with the

PMM (namely, h(n,k;a)
0 , as in (4.14)), and which vanishes in the limit N → +∞. Step (3) is encapsulated

into Lemma 4.2.7 and its Corollary 4.2.8.

After the proof of Proposition 4.2.11, we focus on a particular solution of the system (4.13), the

uniform solution presented in Proposition 4.2.13, where all the weights equal (n+k
k
)
−1

, and prove some

properties of the resulting model, namely, the partition of the unity, in Proposition 4.2.15. We also

provide a very precise upper-bound for the sum of the rates over a discrete interval, in Lemma 4.2.16.

The latter, as seen in the previous chapter (Lemma 3.2.16), is an important ingredient for considering

linear combinations of models in the same family. Only when referring to the case where the uniform

solution is chosen, the superscript (n, k;a) will be replaced by (n, k). The potential arising from the

gradient property, h(n,k;a), is in general the sum of two quantities (h(n,k;a) = h(n,k;a)
0 + h(n,k;a)

1 ), as in

(4.14). The quantity h(n,k;a)
1 is the one that "survives" in the limit N → +∞, however, it is not presented

in the most convenient way, as it depends notably on the particular choice of labels of the sets that

dictate the flips, the equivalence classes of those sets and of their indexes. Subsection 4.2.2 is devoted to

its simplification for the case of the uniform solution and for the case of a particular subclass of solutions

of (4.13). For that purpose, one needs a complete characterization of the above mentioned equivalence

classes, which is the content of the series of Lemmas 4.2.17, 4.2.19, 4.2.20 and 4.2.21. We then perform

several simplifications of h(n,k;a) for the uniform choice a = (n+k
k
)
−1

, in which case we drop the dependence

on a from the notation. Concretely, it holds that

h(n,k) =H(n,k)(η) + ∇+g(n,k) + f (n,k)(η),

with g(n,k) as in (4.26), f (n,k) = h(n,k)0 +H(n,k)0 with the terms as in (4.30) and (4.14).

In Proposition 4.2.23 we also show that if an extended linear system is satisfied, then it holds the

"invariance principle" h(n,k;a)
1 = h(n,k)1 . This concludes the content of Subsection 4.2.1.

As explained in the introduction, the main result of Section 4.3 is Proposition (4.3.4), where we show

that the long-range extension is a gradient model. In Definition 4.3.14 we introduce a (time re-scaled)

linear combination of long-range versions of the PMM(n, k) that can be used in order to obtain the

fractional Laplacian (−∆)γ/2, for γ ∈ (0,2). We direct the reader to the two detailed PhD thesis [6, 32]

on long-range dynamics and the papers [2, 7] for a proof of the hydrodynamic limit for the empirical

measure, as we derive solely the correct time-scale and prove the convergence and interpolation of the

relevant operators. We also prove in appendix C.2 a regularity result of independent importance, which
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is also crucial for studying the open-boundary case.

4.2 Microscopic Models and Linear System
4.2.1 Generalized Porous Media Model

Our first goal is to define a specific constraint such that the diffusion coefficient of the corresponding

hydrodynamic equation of the process induced by it is given by Dn,k(ρ) = ρn(1 − ρ)k, for n, k ∈ N+; and,

importantly, such that the induced model has the gradient property. The models that we are going to

introduce are derived from two main mechanisms. To present them we need to introduce some notation.

Notation 4.2.1. .

• For A = TN we write η(A) ≡ ∏i∈A η(i). If A = ∅ it is defined by convention that ∏∅ ≡ 1;

• For A ⊆ TN we write ηA as the configuration where for any x ∈ TN it holds ηA(x) = (1− η(x))1{x ∈

A} + η(x)1{x ∉ A};

• Given two sets A,B ⊂ TN such that A ∩B = ∅ we denote by A ⊔B their disjoint union;

• For any x ∈ TN we write x +A = {x + a ∶ a ∈ A};

• For any r ∈ N+ and A ⊆ TN we write rA = {ra ∶ a ∈ A}.

The first mechanism is the symmetry that makes the PMM a family of gradient models. We recall

its introduction in Definition 3.2.3. Fixed k ∈ N+ one can think of the PMM(k) as a model generated by

translations of sets around the node {0,1}. With the previous notation, one can express the constraint

c(k) as

c(k)(η) =
k

∑
j=0
(τ−jη)(J0, k + 1K/{j, j + 1}).

The second mechanism regards on how to obtain "mixed powers", of the form ρn(1−ρ)k for any n, k ∈ N+.

The constraint of Example (4.8), for n, k = 1, can be recast as

k

∑
j=0

2
∑
i=1
aijη

−j+Pi(−j + J0, k + 1K/{j, j + 1}),

where for each j ∈ J0, kK we have

aij =
⎧⎪⎪⎨⎪⎪⎩

j
k
, i = 1,

k−j
k
, i = 2

and Pi =
⎧⎪⎪⎨⎪⎪⎩

{0}, i = 1,
{k + 1}, i = 2.

This suggests that there might be different "P−sets", hence weights a = {aij}0≤j≤k ,i=1,2, such that the

resulting constraint still satisfies the gradient condition. In this way, we start with the "prototype" model

in Definition 4.2.4 and we introduce some more definitions and notation.

Definition 4.2.2. Let k ∈ N and A ⊆ TN be a set of size k. We denote the family of subsets of A with

size ` ≤ k by

P`(A) = {A′ ∶ A′ ⊆ A , ∣A′∣ = `}.
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We now introduce some notation that will simplify the presentation of the next results.

Definition 4.2.3. Hereafter we fix 1≪ N ∈ N and n, k ∈ N+ such that n + k ≤ N . For each 0 ≤ j ≤ n + k

and 0 ≤ ` ≤ k fixed we consider the set of indexes I` × J where

I` = {1, . . . ,(
n + k
k − `

)} and J = {0, . . . , n + k}.

If ` = 0 we write I ≡ I0.

Let us introduce the following auxiliary sets, that will provide the basis for the construction of the

family of constraints and their respective study:

• M = J0, n + k + 1K;

• Mj =M/{j, j + 1}, for each j ∈ J ;

• Pn+`ij , for 0 ≤ ` ≤ k and (i, j) ∈ I` × J : which are such that Pn+`(Mj) = {Pn+`ij }i∈I` ;

• Pij , for each (i, j) ∈ I ×J : fixed some label for the elements of Pk(Mj) we write Pk(Mj) = {Pij}i∈I ;

• Q`ijq, with (i, j) ∈ I × J, 0 ≤ ` ≤ k, 1 ≤ q ≤ (k
`
): fixed (i, j) ∈ I` × J , we write P`(Pij) = {Q`ijq}1≤q≤(k`).

Note that if n+` = k we can have Pn+`ij = Pij with an appropriate choice of indexes. Finally, fixed 0 ≤ ` ≤ k,

we shorten for each (i, j) ∈ I` × J and x = 0,1,

p`,xij =min{Pn+`ij ⊔ {j + x}} ≥ 0 and An+`,xij = −p`,xij + (P
n+`
ij ⊔ {j + x}).

Although all the previously defined sets depend on n and k, we do not make that dependence always

explicit in order to simplify the presentation. The reader should have in mind, however, that n, k ∈ N+
are fixed. We remark that, for each ` and j as previously, the set I` corresponds to the indexes of the

elements of Pn+`(Mj), and the set J corresponds to the indexes of the window Mj .

We are going to associate, for each j ∈ J and every element of Pk(Mj) = {Pij}i∈I a non-negative

weight.

Definition 4.2.4. Fix a family of non-negative constants a = {aij}(i,j)∈I×J where for each j ∈ J there

exists at least one i ∈ I such that aij > 0, and define the maps s(n,k;a)
j ,c(n,k;a) ∶ ΩN → R+ ∪ {0} through

c(n,k;a) =
n+k
∑
j=0

s(n,k;a)
j where s(n,k;a)

j (η) = ∑
i∈I
aijη

−j+Pij(−j +Mj).

We define the Markov process induced by the infinitesimal generator L(n,k;a)
N acting on functions

f ∶ ΩN → R as

(L(n,k;a)
N f)(η) = ∑

x∈TN
c(n,k;a)(τxη)(∇x,x+1f)(η).

In the next two figures we present the sets of interest in the previous definition, for the particular case

of n, k = 2.
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j −j +Mj

0 {2,3,4,5}
1 {−1,2,3,4}
2 {−2,−1,2,3}
3 {−3,−2,−1,2}
4 {−4,−3,−2,−1}

Figure 4.1: Windows where
the constraints are imposed.

−j + Pij
i/j 0 1 2 3 4
1 {2,3} {−1,2} {−2,−1} {−3,−2} {−4,−3}
2 {2,4} {−1,3} {−2,2} {−3,−1} {−4,−2}
3 {2,5} {−1,4} {−2,3} {−3,2} {−4,−1}
4 {3,4} {2,3} {−1,2} {−2,−1} {−3,−2}
5 {3,5} {2,4} {−1,3} {−2,2} {−3,−1}
6 {4,5} {3,4} {2,3} {−1,2} {−2,−1}

Figure 4.2: Sets corresponding to the sites with flipped
occupation (η−j+Pij ).

Before characterizing the weights a such that c(n,k,a) satisfies the gradient property we need to present

several technical results regarding the sets introduced in Definition 4.2.3. The next lemma will be used at

the start of the proof of Proposition 4.2.11, in order to group the common terms as in (4.4), arising from

an application of the distributive rule to the products of flipped occupation variables (related to η−j+Pij

in the previous definition); and in Proposition 4.2.13, providing the existence of a particular solution to

the aforementioned linear system characterizing the gradient condition.

Lemma 4.2.5. For each j ∈ J and 0 ≤ ` ≤ k there is a non-injective but surjective map ψj,` ∶ I×J1, (k
`
)K→

I` such that for each (i, q) ∈ I × {1, . . . , (k
`
)} there exists i′ ∈ I` such that

[Mj/Pij] ⊔Q`ijq = Pn+`i′j where ψj,`(i, q) = i′.

Moreover, for any (i′, j) ∈ I` × J it holds that ∣(ψj,`)−1(i′)∣ = (n+`
`
).

Proof. Let 0 ≤ ` ≤ k be fixed and introduce the set M ′ = J0, n + k − 1K. We write Pk(M ′) = {Pi}i∈I and

P`(Pi) = {Q`iq}1≤q≤(k`). For each j ∈ J , introduce also the map Φj through

Φj(A) = {a ∈ A ∶ a < j} ⊔ {a + 2 ∶ a ∈ A, a ≥ j}, where A ⊆ TN . (4.9)

Note that ∣Φj(A)∣ = ∣A∣ and that Mj = Φj(M ′), Pij = Φj(Pi), Q`ijq = Φj(Q`iq) and Pn+`ij = Φj(Pn+`i ), for

any 0 ≤ ` ≤ k, (i, j) ∈ I` × J .

It is clear that

Pn+`(M ′) ⊆ {[M ′/Pi] ⊔Q`iq}(i,q)∈I×{1,...,(k`)}

where, for ` ≠ k, since ∣Pn+`(Mj)∣ < (k`)∣I ∣ the right-hand-side above must have "repeated terms". Let then

ψ` be the map such that [M ′/Pi]⊔Q`iq = Pn+`i′ ⇔ ψ`(i, q) = i′ for some i′ ∈ I`. Then to compute ∣(ψ`)−1(i′)∣

for any particular i′ ∈ I` one needs to count the number of pairs (P,Q) such that P ∈ Pk(M ′),Q ∈ P`(P )

and

(M ′/P ) ⊔Q = Pn+`i′

In order to do so, we can pick any ` elements of Pn+`i′ and construct Q, existing some set A ⊆ M ′ such

that P ′/Q = A. In particular, there exists a unique P ∈ Pk(M ′) such that A =M ′/P , that is, P =M ′/A.

To see that Q ⊆ P it is enough to note that M ′/P = P ′/Q and so Q ⊄ M ′/P , hence Q ⊆ P . Since there

are (n+`
`
) ways to choose ` elements of Pn+`i′ , we conclude that ∣(ψ`)−1(i′)∣ = (n+`

`
).
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In particular, it also holds that (Φj(M ′)/Φj(P )) ⊔Φj(Q) = Pn+`i′j and one can define ψj,` ∶= ψ`, where

now ψj,`(i, q) = i′ ⇔ (Φj(M ′)/Φj(Pi)) ⊔ Φj(Q`iq) = Pn+`i′j . Since Φj(M) = Mj and there is exactly one

i ∈ I such that Φj(P ) = Pij and Φj(Q`iq) = Q`ijq, and Φj(M ′/Pi) = Φj(M ′)/Φj(Pi), it is simple to see that

[Mj/Pij] ⊔Q`ijq = Pn+`i′j ⇔ [M ′/Pi] ⊔Q`iq = Pn+`i′

which concludes the proof.

The arguments for the main result of this section revolve around translating appropriate sets in

Definition 4.2.3, organizing them in a specific manner. But to do so, we need to keep track of their

respective indexes or, to be precise, of particular equivalence classes of indexes.

Definition 4.2.6. Define over the set composed by all the non-empty subsets of TN the equivalence

relation ≡ through

A ≡ B⇔∃a ∈ Z ∶ A = a +B, A,B ⊂ TN .

For each 0 ≤ ` ≤ k and x = 0,1, define the equivalence relation `,x∼ over I` × J as

(i, j) `,x∼ (i′, j′) ⇔ Pn+`ij ⊔ {j + x} ≡ Pn+`i′j′ ⊔ {j′ + x}.

We shorten C`,x = I` × JÒ`,x∼ .

The next lemma provides the essential ingredient for constructing a gradient model, starting from the

PMM mechanism. It will be invoked in the proof of the main result of this section, Proposition 4.2.11.

Lemma 4.2.7. For each 0 ≤ ` ≤ k and (i, j) ∈ I` × J there exists (i′, j′) ∈ I` × J such that

Pn+`ij ⊔ {j + 1} ≡ Pn+`i′j′ ⊔ {j′}.

Similarly, the converse also holds: for each 0 ≤ ` ≤ k and (i, j) ∈ I` × J there exists (i′, j′) ∈ I` × J such

that

Pn+`ij ⊔ {j} ≡ Pn+`i′j′ ⊔ {j′ + 1}.

Proof. It is convenient to see the "P−sets" as binary strings. For each A ⊆ TN , let us consider the

configuration ξA ∈ ΩN where ξA(y) = 1{y ∈ A}.

Let us start by fixing ` = k and j ∈ J . Note that in this case ∣I`∣ = 1 and Pn+`1j =M/{j, j + 1}, where

we recall from Definition 4.2.3 that M = J0, n + k + 1K. Then

ξPn+`1,j ⊔{j+1} =
⎧⎪⎪⎨⎪⎪⎩

τ−1ξPn+`1,n+`⊔{n+`}
, j = 0,

ξPn+`1,j−1⊔{j−1}, j ≠ 0.

For ` ≤ k − 1 the rationale is analogous. Fixed (i, j) ∈ I` × J , if ξPn+`ij
consists of n + ` consecutive

particles inside the box M with ξPn+`ij
(n+k+1) = 1, that is, ξPn+`ij

(Jk+1−`, n+k+1K) = 1, and j+1 = k−`,

then

ξPn+`
i,k−1−`⊔{k−`}

= τ−1ξPn+`
i′,n+k+1⊔{n+k+1}
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where Pn+`i′,n+k+1 corresponds to ξPn+`
i′,n+k+1

(Jk − `, n + k − 1K) = 1. If j + 1 ≠ k − ` or if we do not have n + `

consecutive particles, then there exists a local configuration of the form (1,0) in the window M . Let us

then say that we have (1,0) at {j′, j′ + 1} for some j′ ∈ J0, n + kK. Since {P ,n+`
ĩj̃
}ĩ∈I` = Pn+`(Mj̃) for all

(̃i, j̃) ∈ I` × J , there is also some i′ ∈ I` such that

θj′,j+1ξPn+`ij
= ξPn+`

i′j′
.

For any x, y ∈ TN , let θx,y be the operator acting on ΩN that exchanges the occupations at x, y and let

Fx be the operator that flips the occupation at x. In this case, specifically, holds that Fj+1 = Fj′θj′,j+1,

that is,

ξPn+`ij ⊔{j+1} = Fj+1ξPn+`ij
= Fj′θj′,j+1ξPn+`ij

= ξPn+`
i′j′
⊔{j′}.

This rationale is represented in the following commutative diagram.

j+1jj’+1j’

⋯

j+1jj’+1j’

⋯

j+1jj’+1j’

⋯θj′,j+1ξPn+`ij

Fj′ξPn+`
i′j′Fj+1ξPn+`ij

The converse is analogous.

The previous lemma has the following simple, but important corollary, which can be seen as the

analogue of the previous lemma in terms of the indexes.

Corollary 4.2.8. For each 0 ≤ ` ≤ k there exists a permutation φ` on the set of indexes (i, j) ∈ I` × J

such that

−p`,1ij + P
n+`
ij ⊔ {j + 1} = −p`,0j′i′ + P

n+`
i′j′ ⊔ {j′} where φ`(i, j) = (i′, j′). (4.10)

In particular, it holds that for each c ∈ C`,1

∣c∣ = ∣φ`(c)∣. (4.11)

Proof. The equality (4.10) is a consequence of shifting the equivalent sets (with respect to the equivalence

relation ≡) to the origin; while the equality (4.11) holds because from Lemma 4.2.7 each set of the form

Pn+`ij ⊔{j+1}, with (i, j) ∈ I`×J , can be seen as a translation of some set Pn+`i′j′ ⊔{j′}, for some (i′, j′) ∈ I`×J

(and, naturally, vice-versa). As such, the respective classes of those sets (therefore the classes of their

indexes) must be of equal size.

Notation 4.2.9. Fixed x ∈ {0,1} and 0 ≤ ` ≤ k, given any c ∈ C`,x we shall write as Ac one set

representative of the class c, that is, such that Ac = An+`,xij for every (i, j) ∈ c.
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Remark 4.2.10. We remark that, from Corollary 4.2.8, for any c1 ∈ C`,1 there is a corresponding c0 ∈ C`,0
such that c0 = φ`(c1), and the converse is also true since φ` is a bijection. In this way, C`,0 = φ`(C`,1),

and in particular Ac1 = Aφ`(c1).

We are now ready to present the main result of this section. Recall Definition 4.2.4. The next

proposition gives us necessary conditions over a such that the Markov process induced by the constraint

c(n,k;a) satisfies the gradient property. As we shall see in the proof below (and as we saw in Example 4.1.1),

the idea is that the distributive property allows us to develop the products in s1 ∶= {s(n,k;a)
j (η)η(1)}j∈J ,

generating a linear combination of products of occupation variables, where each product can be associated

with a set that is equivalent, with respect to ≡, to the sets "generated" by s0 ∶= {s(n,k;a)
j η(0)}j∈J . Since

translations can be seen as "gradient preserving operations", in the sense that 1± τ1 = τ1 −∇+, identifying

correctly the terms generated by s1 with the terms generated by s0 induces a linear system for the weights

a characterizing a dynamics of gradient type. We provide in Appendix C.1 a detailed example for the

case n, k = 2, that we encourage the reader to follow through the next proof. Although this particular

case is still quite involved in terms of computations, it is the simplest case that exhibits all the novelties,

with respect to the PMM, and difficulties that we are going to face while studying the general case (as

in the next proposition), and also gives some intuition regarding the results for the present and next

sections. In what follows recall Definition 4.2.3.

Proposition 4.2.11. For each (i, j) ∈ I` × J with 0 ≤ ` ≤ k fixed, consider the quantity

b`ij = ∑
(i′,q)∈(ψj,`)−1(i)

ai′j . (4.12)

If the family a is such that the linear system

⎧⎪⎪⎨⎪⎪⎩
∑
(i,j)∈c

b`ij = ∑
(i,j)∈φ`(c)

b`ij

⎫⎪⎪⎬⎪⎪⎭0≤`≤k−1, c ∈ C`,1

∧ {∑
i∈I
aij = 1}

j∈J
(4.13)

has a solution, then the generator L(n,k;a)
N induces a gradient model. Specifically, in this case, it holds

that c(n,k;a)(η)(∇+η)(0) = (∇+h(n,k;a))(η) with the potential h(n,k,a) = h(n,k,a)0 + h(n,k,a)1 where

h(n,k;a)
0 =

n+k
∑
j=0

j

∑
y=1
(∇+τ−yη)(j)s(n,k;a)

j (τ−yη)

h(n,k;a)
1 =

k

∑
`=0
(−1)` ∑

c∈C`,1
∑
(i,j)∈c

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b`ij

p`,1ij −1

∑
y=0
(τyη)(Ac) − b`φ`(i,j)

p`,0
φ`(i,j)

−1

∑
y=0

(τyη)(Ac)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(4.14)

Proof. As a first step, we use the distributive property to expand the constraints into a linear combination

of "pure occupation variables", with no flips. Recall from Definition 4.2.3 that for each (i, j) ∈ I × J we

write {Q`ijq}1≤q≤(k`) = P`(Pij). We develop

c(n,k;a)(η) = ∑
(i,j)∈I×J

aij(τ−jη)(Mj/Pij)τ−j
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)kη(Pij) +

k−1
∑
`=0

(k`)
∑
q=1
(−1)`η(Q`ijq)

⎫⎪⎪⎪⎬⎪⎪⎪⎭

= (−1)k∑
j∈J
(τ−jη)(Mj)∑

i∈I
aij +

k−1
∑
`=0

∑
(i,j)∈I×J

aij

(k`)
∑
q=1
(−1)`(τ−jη)([Mj/Pij] ⊔Q`ijq). (4.15)
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We are going to multiply the quantity above by (∇+η)(0), but before that note the following. If ∑i∈I aij =

∑i∈I aij′ for every j, j′ ∈ J , then the term associated with the first summation in the second line of the

previous display is identified with a multiple of the PMM(n + k) constraint, c(n+k)(η), and in this case

(−1)k∑j∈J(τ−jη)(Mj)∑i∈I aij = (−1)k∑i∈I aij∇+h(n+k)(η). In this way, we consider without loss of

generalization the normalized weights

∑
i∈I
aij = 1, ∀j ∈ J. (4.16)

Fixed ` in (4.15), there are repeated elements in {[Mj/Pij] ⊔ Q`ijq}(i,j)∈I×J,1≤q≤(k`). We want to

group the coefficients associated with these repeated sets. Recalling Lemma 4.2.5 and Definition 4.2.6,

introducing, for each (i, j) ∈ I × J and 0 ≤ ` ≤ k, the new weights

b`ij = ∑
(i′,q)∈(ψj,`)−1(i)

ai′j

we can rewrite (4.15) as

k

∑
`=0
(−1)` ∑

(i,j)∈I`×J
b`ij(τ−jη)(Pn+`ij ).

We will now focus on the quantity c(n,k;a)(η)(∇+η)(0), that is,

∑
x=0,1
(−1)x−1

k

∑
`=0
(−1)` ∑

(i,j)∈I`×J
b`ij(τ−jη)(Pn+`ij ⊔ {j + x}).

We want to remove the translations τ−j , having then to work only with subsets of Mj =M/{j, j + 1}, for

each j ∈ J . Since 1− τ−j = ∇+ ○∑jy=1 τ−y, summing and subtracting the appropriate terms in the quantity

in the previous display we obtain

(∇+h(n,k;a)
0 )(η) + ∑

x=0,1
(−1)x−1

k

∑
`=0
(−1)` ∑

(i,j)∈I`×J
b`ijη(Pn+`ij ⊔ {j + x}) (4.17)

with

h(n,k;a)
0 (η) = ∑

x=0,1
(−1)x−1

k

∑
`=0
(−1)` ∑

(i,j)∈I×J
aij

(k`)
∑
q=1

j

∑
y=1
(τ−yη)([Mj/Pij] ⊔Q`ijq ⊔ {j + x}).

= ∑
(i,j)∈I×J

aij

(k`)
∑
q=1

j

∑
y=1
∇+(τ−yη)(j)(τ−yη)(Mj/Pij)

k

∑
`=0
(−1)`(τ−yη)(Q`ijq)

= ∑
(i,j)∈I×J

aij
j

∑
y=1
∇+(τ−yη)(j)(τ−yηPij)(Mj),

where in the last equality we applied the distributive rule.

At this point, for each x fixed in the second term in (4.17) we want to translate every set to the

origin, in this way facilitating the comparison between the terms associated with x = 0 with the terms

associated with x = 1. Recall then from Definition 4.2.3 that for every (i, j) ∈ I`×J , 0 ≤ ` ≤ k and x = 0,1

we short-write

p`,xij =min{Pn+`ij ⊔ {j + x}} ≥ 0 and An+`,xij = −p`,xij + (P
n+`
ij ⊔ {j + x}).
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Naturally, for all the indexes i, j, `, x it holds that p`,xij ≥ 0 and 0 ∈ An+`,xij . With this, we can rewrite the

second term in (4.17) as

(∇+h(n,k,a)1 )(η) + ∑
x=0,1
(−1)x−1

k

∑
`=0
(−1)` ∑

(i,j)∈I`×J
b`ijη(A

n+`,x
ij ) (4.18)

where, recalling Notation 4.2.9,

h(n,k,a)1 (η) =
k

∑
`=0
(−1)` ∑

c1∈C`,1
∑

(i,j)∈c1

b`ij

p`,1ij −1

∑
y=0
(τyη)(Ac1) − ∑

c0∈C`,0
∑

(i,j)∈c0

b`ij

p`,0ij −1

∑
y=0
(τyη)(Ac0) (4.19)

and where we used that τp − 1 = ∇+ ○ ∑p−1
y=0 τy for any p ∈ N. We stress that ∑∅ ∶= 0 and in the previous

display one has p`,xij > 0 for all i, j, `, x, as we only translate the sets that do not start at the origin. Due

to the shifting of the sets Pn+`ij ⊔ {j + x} for all the indexes i, j, for each x and ` fixed the collection

{An+`,xij }(i,j)∈I`×J may have repeated elements. Grouping the repeated sets we can rewrite the second

term in (4.18) as

∑
x=0,1
(−1)x−1

k

∑
`=0
(−1)` ∑

cx∈C`,x
η(Acx) ∑

(i,j)∈cx
b`ij (4.20)

where Acx is the set representative of the class cx, that is, such that Acx = A
n+`,x
ij for all (i, j) ∈ cx with

x = 0 and x = 1.

The final step consists in invoking Lemma 4.2.7, which provides, through its Corollary 4.2.8, the

existence, for each `, of a permutation, φ`, over the set of indexes, (i, j) ∈ I` × J , such that

φ`(j, i) = (j′, i′) where − p`,1ij + (P
n+`
ij ⊔ {j + 1}) = −p`,0j′,i′ + (P

j′,n+`
i′ ⊔ {j′}).

With this, it is clear that a sufficient condition for the model to have the gradient property is

⎧⎪⎪⎨⎪⎪⎩
∑

(i,j)∈c1

b`ij = ∑
(i,j)∈φ`(c1)

b`ij

⎫⎪⎪⎬⎪⎪⎭0≤`≤k, c1∈C`,1

,

since it leads to the quantity (4.20) being equal to zero. Note that for ` = k we simply have (4.16).

The map φ` allows us to rewrite (4.19) as

h(n,k;a)
1 =

k

∑
`=0
(−1)` ∑

c∈C`,1
∑
(i,j)∈c

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b`ij

p`,1ij −1

∑
y=0
(τyη)(Ac) − b`φ`(i,j)

p`,0
φ`(i,j)

−1

∑
y=0

(τyη)(Ac)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

as a consequence of the following. For (i, j) ∈ I`×J it holds that An+`,1ij = An+`,1
φ`(i,j) = Ac where (i, j) ∈ c ∈ C`,1;

and since φ` is a permutation over the indexes induced by a bijection between the classes, for each c0 ∈ C`,0
there exists one c1 ∈ C`,1 such that c0 = φ`(c1). Therefore, one can replace the summation over C`,0 by a

summation over C`,1 and apply the map φ` to the indexes:

∑
c0∈C`,0

∑
(i,j)∈c0

b`ij

p`,0ij −1

∑
y=0
(τyη)(Ac0) = ∑

c1∈C`,1
∑

(i,j)∈c1

b`φ`(i,j)

p`,0
φ`(i,j)

−1

∑
y=0

(τyη)(Ac1).
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As a corollary we see that for each fixed 0 ≤ ` ≤ k the linear system
⎧⎪⎪⎨⎪⎪⎩
∑
(i,j)∈c

b`ij = ∑
(i,j)∈φ`(c)

b`ij

⎫⎪⎪⎬⎪⎪⎭c∈C`,1
(4.21)

is associated with a gradient model, in the following sense.

Corollary 4.2.12. For each 0 ≤ ` ≤ k introduce the constraint

c(n+`;a)(η) =
n+k
∑
j=0

(n+kk−`)
∑
i=1

b`ij(τ−jη)(Pn+`ij )

with b`ij ≡ b`ij(a) as in Proposition 4.2.11. Then, if the linear system (4.21) is satisfied, c(n+`) satisfies

the gradient condition.

We recall from the proof of the previous proposition that the linear system above reduces, for ` = k,

to ∑i∈I aij = 1 and c(n+k;a) is identified with the PMM(n + k) constraint. It is also simple to see that for

each 0 ≤ ` ≤ k there is a solution to the system (4.21) such that c(n+`;a) = c(n+`), given by b`ij = 1{Pn+`ij =

J0, n+ `+ 1K/{j, j + 1}}. Moreover, for each 0 ≤ ` ≤ k, following the techniques in the previous chapter, or

arguing with the relative entropy method as in [21] we expect that the renormalized constraint

1
zn,k(`)

c(n+`;a), with zn,k(`) = (
k

`
)n + k + 1
n + ` + 1

leads to the diffusion coefficient (n + ` + 1)Dn+`,0(ρ) = (n + ` + 1)ρn+`. In this manner, we can see the

integer Porous Media Model as a particular example of the large class of models corresponding to each

solution of (4.21), with adjusted constraints as in the previous display. We recall that the linear systems

when n, k = 2 and 0 ≤ ` ≤ 2 can be found in Appendix C.1, specifically, in (C.3).

For general n, k ∈ N+ the uniform choice of the weights corresponds to a solution of (4.13). This choice

leads to a series of technical challenges in the study of the potential h(n,k;a), but the resulting model

is simple enough to argue via combinatoric arguments. In the present subsection we are going to prove

some properties of the dynamics induced by the uniform choice; simplify the expression for h(n,k;a) in

(4.14) and characterize each of its constituents in order to provide a solid basis for future works.

Proposition 4.2.13. For any fixed n, k ∈ N+, the uniform weights aij = 1
∣I ∣ = (

n+k
k
)
−1

for (i, j) ∈ I × J is

a solution of the system (4.13).

Proof. From Lemma 4.2.5 we know that for every (i, j) ∈ I`×J the quantity ∣(ψj,`)−1(i)∣ depends only on

k and `. This, coupled with the existence of a particular permutation on (i, j) ∈ I` ×J , for each 0 ≤ ` ≤ k,

as in Corollary 4.2.8, allow us to readily extract as a solution the uniform choice:

aij =
1
∣I ∣
= (n + k

k
)
−1
, ∀(i, j) ∈ I × J.

The uniform choice for the weights has the particularity that for each 0 ≤ j ≤ n + k the process

only looks at the density of particles in the window Wj = −j +Mj (recall Definition 4.2.3); while for

a non-uniform solution of (4.13) the constraints depend also on the distribution of vacant sites in the
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aforementioned window. For the latter case, this leads further to, for each j as previously, the weights

{aij}i∈I being interpreted as a probability distribution of the vacant sites inside the window Wj , since

the weights can be normalized (∑i∈I aij = 1 for any j ∈ J). To be precise, let us introduce for each A ⊆ TN
the map η ↦ ⟨η⟩A = 1

∣A∣ ∑z∈A η(z). Then, for the uniform choice, we can express

c(n,k a)(η) = 1
(n+k
k
)

n+k
∑
j=0

1{⟨η⟩Wj
= n

n + k
} ,

while in general

c(n,k a)(η) =
n+k
∑
j=0

1{⟨η⟩Wj =
n

n + k
}
(n+kk )
∑
i=1

1{η(Pij) = 1}aij .

Note that for k = 0 one obtains the PMM(n) constraint, which can be recast as ∑nj=0 1{⟨η⟩Wj
= 1}, where

we remind the reader that Wj also depends on n and k.

We fix once and for all the weights, extending the {PMM (n)}n∈N+ family to a 2−parameter family.

Definition 4.2.14 (Generalized PMM). For each n, k ∈ N fixed, let a = {aij}(i,j)∈I×J with aij = (n+kk )
−1

.

We short-write c(n,k) ≡ c(n,k;a), s(n,k)j ≡ s(n,k;a)
j and L(n,k)N ≡ L(n,k;a)

N , with the previous quantities as in

Definition 4.2.4. We refer to the Markov process defined through the infinitesimal generator L(n,k)N as

PMM(n, k).

We stress that if any other solution of (4.13) exists, it should lead to the same continuous diffusion

coefficient – yet with a different discrete dynamics.

The first property of the previously defined family that we are going to show is a link with the SSEP,

which is a microscopic version of the identity 1 = ∑Ln=0 (
L
n
)ρn(1 − ρ)L−n for any L ∈ N+.

Proposition 4.2.15. Fixed L ∈ N+ such that L < N , the family of rescaled constraints { 1
ZL,n c(n,L−n)}0≤n≤L,

with ZL,n = (L + 1)/(L
n
), is a partition of the unity in ΩN . In other words,

LSSEP
N =

L

∑
n=0

1
ZL,n

L(n,L−n)N

and in this way the SSEP can be seen as a superposition of porous media models.

Proof. Simply note that for any η ∈ ΩN fixed it holds that

L

∑
n=0

1
ZL,n

c(n,L−n)(η) = 1
L + 1

L

∑
j=0
(
L

∑
n=0

1{⟨η⟩Wj =
n

L
}) = 1.

The second equality is justified with the simple observation that for any fixed η and 0 ≤ j ≤ L (hence,

fixed a window Wj), there is exactly one density ρj ∈ {0,1/L,2/L, . . . ,1} such that ⟨Wj⟩ = ρj . In this

way, for each j, the summation over n in the previous display equals one.

As an observation, note that the extended PMM family has the following discrete interpolation

property, relating the PMM and the PMM families, with the latter defined through the constraints

{c(n) ○ FTN }n,k∈N+ , as in Definition 3.2.6:

PMM(0,0)=SSEP, PMM(n,0)=PMM(n) and PMM(0, k)= PMM(k).
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Lemma 4.2.16. Let c(n,k) be the constraint produced by the uniform choice of weights a. For any

n, k, ` ∈ N such that `, n + k + 1 ≤ N , it holds that

`

∑
x=0

c(n,k)(τxη)a(τxη) ≤
1 + 2k
(n+k
k
)
(` + n + k + 1).

Proof. Fix η ∈ ΩN and consider the set Bη = {x ∈ J0, `K ∶ η(x) + η(x + 1) = 1}. One can then express

`

∑
x=0

c(n,k)(τxη)a(τxη) =
1
(n+k
k
)

`

∑
p=−(n+k)

n+k
∑
j=0
∑
x∈Bη

1{⟨η⟩M ′

p/{x,x+1} =
n

n + k
}1{x = j + p}, (4.22)

where M ′
p = Jp,n+k+1+pK. Fixed −n−k ≤ p ≤ `, there are a number of pairs (x, j) ∈ J0, `K× J0, n+k+1K

such that p = x − j, but we are interested only on the pairs such that x ∈ Bη. In this manner, we can

bound

∑
x∈Bη

1{⟨η⟩M ′

p/{x,x+1} =
n

n + k
}
n+k
∑
j=0

1{x = j + p} ≤ 2(1 + k)

with the following reasoning. Suppose ⟨η⟩M ′

p/{x,x+1} = n
n+k , for some p and x. Thus, there exists exactly

k empty sites in the window M ′
p. Note also that, trivially, fixed x and p, there exists a unique j such that

x = j + p. The upper bound in the previous display is then obtained by maximizing the number of local

configurations (1,0) and (0,1) in the window M ′
p taking into account that one has exactly k holes, that

is, where each empty site is followed by a particle and vice-versa. Plugging the previous upper bound in

the right-hand side of (4.22) finishes the proof.

Note that for k = 0 the upper bound in the previous lemma corresponds to the upper bound in Lemma

3.2.16.

4.2.2 Simplification of h(n,k).

The present subsection is devoted to the simplification of the expression for the potential introduced

in (4.14) for the particular case of the uniform solution (the map h(n,k)), as in Proposition 4.2.13. The

aforementioned map is composed by two parts, h(n,k)0 and h(n,k)1 . The term h(n,k)0 can be shown to vanish

in the limit N → +∞ in probability, while the second is expected to converge to a primitive of the diffusion

coefficient (n + k + 1)ρn(1 − ρ)k. For the uniform solution one can "remove", in h(n,k)1 , the dependence

over the particular choice of the labels of the elements of {Pk(−j +M)}j∈J . Note that this dependence

is made implicit through the objects φ`, p`ij , c ∈ C`,1. Instead, we have the expression in (4.26), which is

much simpler than the one in (4.14). This expression is itself the sum of two terms, ∇+g(n,k) and H(n,k).

Both of them do not depend on the labelling of the aforementioned sets, and are linear combinations of

{η({0} ⊔A)}A∈Pn+`(M/{0,n+k+1}), with coefficients involving a quantity sM(A) that expresses how much

"space" the set A occupies in M (see Definition 4.2.22). This is all proved in Proposition 4.2.23, which

invokes all the lemmas of the present section. We also show that if the weights a are not uniform but

satisfy both the linear system (4.13) and some extra equations, then h(n,k;a)
0 = h(n,k)0 – this is part of

the content of Proposition 4.2.23. In Appendix C.1.2 we present a particular, non-uniform, solution of

the linear system extended with these extra equations, for the particular case of n, k = 2. We chose to

present the simplest solution we could find, as the system has many solutions. We remark again that we
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did not prove that for general n and k a non-uniform solution to the system (4.13) exists, but only for

the particular case n = k = 2, and in this manner the content of Proposition 4.2.23 regarding the extended

system is in fact currently verified only for n = k = 2.

The forthcoming Lemma 4.2.17 will be invoked in Lemmas 4.2.19 and 4.2.20, as it allows us to identify

all the sets equal to either Pn+`ij ⊔ {j + 1} or Pn+`ij ⊔ {j}, for any fixed 0 ≤ ` ≤ k and (i, j) ∈ I` × J , by

analysing their particular structure. This identification, in turn, facilitates the study of the numbers

{p`,xij }(i,j)∈I`×J, x=0,1 (see Lemma 4.2.20) and a better understanding of the classes in C`,x, for x = 0,1,

which will be important to express the potential as in Proposition 4.2.23.

Lemma 4.2.17. Fixed 0 ≤ ` ≤ k and (i, j) ∈ I` × J , for each integer 0 ≤ w ≤ n + k such that w ∉

Pn+`ij ⊔ {j + 1} ∋ w + 1 there exists i′ ∈ I` such that Pn+`i′w ⊔ {w + 1} = Pn+`ij ⊔ {j + 1}.

Analogously, for each integer 0 ≤ w ≤ n + k such that w + 1 ∉ Pn+`ij ⊔ {j + 1} ∋ w there exists i′ ∈ I` such

that it holds Pn+`i′w ⊔ {w} = Pn+`ij ⊔ {j}.

Proof. Let 0 ≤ w ≤ n + k be such that w ∉ Pn+`ij ⊔ {j + 1} ∋ w + 1. It is enough to note that because

Pn+`ij ⊔ {j + 1} = [(Pn+`ij ⊔ {j + 1})/{w + 1}] ⊔ {w + 1}

and since (Pn+`ij ⊔ {j + 1})/{w + 1} ∈ Pn+`(Mw), there is a unique i′ ∈ I` such that

(Pn+`ij ⊔ {j + 1})/{w + 1} = Pn+`i′w .

To see the second assertion in the statement the proof is analogous.

The goal now is to characterize the sets associated with a fixed equivalence class of the indexes.

Definition 4.2.18. For each j ∈ J, 0 ≤ ` ≤ k fixed and x = 0,1 introduce the families of sets P`,x =

{P`,xj }j∈J , where P`,xj ∶= {{j + x} ⊔A ∶ A ∈ Pn+`(M/{j, j + 1})}.

Note that if P ∈ P`,xj for some j, `, x as in the previous definition, then there exists i ∈ I` such that

P = Pn+`ij ⊔ {j + x}. Moreover, note that {0, . . . , n + `} ∉ P`,1 and {k + 1 − `, . . . , n + k + 1} ∉ P`,0.

We are going to show that fixed some ` and given some set Pn+`ij with index (i, j) ∈ cx ∈ C`,x with

x = 0 or x = 1, if Pn+`ij ⊔ {j + x} ≢ {0, . . . , n + `} then all the sets corresponding to translations of

Pn+`ij ⊔ {j + 1} inside M are of the form Pn+`i′j′ ⊔ {j′ + x} where the index (i′, j′) is in the same class cx;

while if Pn+`ij ⊔ {j + x} ≡ {0, . . . , n + `} then one has all the translations except a particular one for x = 0

and another one for x = 1. This will be important for the proof of Lemmas 4.2.20 and 4.2.21.

Lemma 4.2.19. Let 0 ≤ ` ≤ k and x ∈ {0,1} be fixed, and consider some class cx ∈ C`,x.

1. If Pn+`ij ⊔ {j + x} ≡ {0, . . . , n + `} then for each z ∈ Z/{0} such that

z + (Pn+`ij ⊔ {j + x}) ⊂M and z ≠
⎧⎪⎪⎨⎪⎪⎩

−min(P ), x = 1,
n + k + 1 −max(P ), x = 0,

there exists (i′, j′) ∈ cx such that z + Pn+`ij = Pn+`i′j′ .

2. If Pn+`ij ⊔ {j + x} ≢ {0, . . . , n + `} then for each z ∈ Z/{0} such that z + (Pn+`ij ⊔ {j + x}) ⊂M , there

exists (i′, j′) ∈ cx such that z + Pn+`ij = Pn+`i′j′ .
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Proof. The proof is split in several cases. Let x = 1 and take some set P ∈ P`,1. Assume first that P is

not a translation of {0, . . . , n + `}. There is some j ∈ J such that P ∈ P1
j = {j + 1} ⊔ Pn+`(M/{j}). Let

z be as in the statement and note that z + P ∈ {z + j + 1} ⊔ Pn+`(z +M/{j}). Then there is some set

Q1 ∈ Pn+`(z+M/{j}) with the property that {z+ j +1}⊔Q1 ⊆M . Therefore, we want to show that there

exists some j′ ∈ J such that Q1
z ∶= {z + j + 1} ⊔Q1 ∈ P`,1j′ . From Lemma 4.2.17 such j′ exists as long as

there is some q ≥ 0 such that q ∉ Q1
z ∋ q+1 ≤ n+k+1, and in that case it is then enough to fix j′ = q. Since

P ∈ P1 and P ≢ {0, . . . , n + `}, there exists 0 ≤ p ∉ P ∋ p + 1 ≠min(P ) and as such we can fix q = z + p = j′.

If P is a translation of {0, . . . , n + `}, then the previous argument holds for all z such that z + P ⊂M

except for z = −min(P ), since −min(P ) + P = {0, . . . , n + `} ∉ P`,1.

For x = 0 the argument is identical and as such we provide only the main steps. If P is not a translation

of {k + 1 − `, . . . , n + k + 1}, letting z be as in the statement, one needs to argue that there is some j′ ∈ J

such that Q0
z ∶= {z + j}⊔Q0 ∈ P`,0j′ , where Q0 ∈ Pn+`(z +M/{j + 1}). It is then enough to show that there

is some q + 1 ∉ Q0
z ∋ q with q + 1 ≤ n + k + 1 ≠ max(P ), which is done as previously, and invoking Lemma

4.2.17. If P is a translation of {k + 1 − `, . . . , n + k}, then the previous argument holds for all z in the

statement except for z = n+k+1−max(P ), since (n+k+1−max(P ))+P = {k+1−`, . . . , n+k} ∉ P`,0.

In order to simplify the quantities arising from the gradient property it will be important to char-

acterize the set {p`,xij }(i,j)∈I`×J, x=0,1 which will, in turn, allows us to fix the map φ` conveniently, with

respect to each class. We note that for any i, j, `, x as previously, p`,xij ∈ {0, . . . , n + k + 1 −max(A`,xij )},

with A`,xij as in Definition 4.2.3.

Lemma 4.2.20. Let 0 ≤ ` ≤ k and c ∈ C`,1 be fixed. If max(Ac) ≠ n + k + 1 then:

(1) For any p ≠ 0, n + k + 1 −max(Ac) it holds that ∣{(i, j) ∈ c ∶ p`,1ij = p}∣ = ∣{(i, j) ∈ φ`(c) ∶ p
`,0
ij = p}∣;

(2) ∣{(i, j) ∈ c ∶ p`,1ij = 0}∣ = ∣{(i, j) ∈ φ`(c) ∶ p`,0ij = 0}∣ − 1;

(3) ∣{(i, j) ∈ c ∶ p`,1ij = n + k + 1 −max(Ac)}∣ = ∣{(i, j) ∈ φ`(c) ∶ p`,0ij = n + k + 1 −max(Ac)}∣ + 1.

Proof. In order to show (1) we will follow a "diagonal" argument. Let c be a fixed class as in the statement

of the current lemma. We start by showing that for each (i, j) ∈ c such that p`,1ij ≥ 1 there is some (i′, j′) ∈

φ`(c) such that p`,1ij −1 = p`,0i′j′ ; and its converse. Next, we show that for any 1 ≤ p ≤ n+k+1−max(Ac)−1

it holds that

{(i, j) ∈ c ∶ p`,1ij = p} = {(i, j) ∈ c ∶ p
`,1
ij = p + 1}. (4.23)

This directly implies the property (1). In particular, it also implies that

∣{(i, j) ∈ c ∶ p`,1ij = 0}∣ = ∣{(i, j) ∈ φ`(c) ∶ p`,0ij = n + k + 1 −max(Ac)}∣,

which will then be used to show (2) and (3).

In this way, recall Definition 4.2.18. If p`,1ij +A
n+`,1
ij = Pn+`ij ⊔{j+1} ∈ P1

j , then P ′ ∶= (p`,1ij −1)+An+`,1ij ∈ P0

since one can take j′ = max(P ′) and in this way n + k + 1 ≥ j′ + 1 ∉ P ′ ∋ j′ ≥ 0 and from Lemma 4.2.17

there is some i′ ∈ I` such that P ′ = p`,0i′j′ +A
n+`,0
i′j′ (note that (i′, j′) ∈ φ`(c)). The argument to show the
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converse: that for each (i, j) ∈ φ`(c) there is one (i′, j′) ∈ c such that p`,0ij + 1 = p`,1i′j′ is identical and so we

omit it.

We now aim to show (4.23), which is consequence of Lemma 4.2.19. Fix 1 ≤ p ≤ n+k+1−max(An+`,1c )−1.

If p`,1ij = p then p + An+`,1ij ∈ P1
j and from the aforementioned lemma, (p + 1) + An+`,1ij ∈ P1

j , because

p + 1 ≤ n + k + 1 −max(An+`,1c ). Likewise, if p`,1ij = p + 1 then (p + 1) + An+`,1ij ∈ P1
j and p + An+`,1ij ∈ P1

j

because p ≥ 1. This concludes the proof of (4.23).

As previously explained, this reduces the proof of (2) to that of

∣{(i, j) ∈ φ`(c) ∶ p`,0ij = n + k + 1 −max(Ac)}∣ = ∣{(i, j) ∈ φ`(c) ∶ p`,0ij = 0}∣ − 1.

This is also consequence of Lemma 4.2.19. Suppose that p`,0ij = n + k + 1 −max(Ac) where (i, j) ∈ φ`(c)

and c is such that An+`,1ij ≡ {0, . . . , n + `}. Since p`,0ij +A
n+`,0
ij ∈ P0

j and all the translations of p`,0ij +A
n+`,0
ij

inside M correspond to sets whose index is in the same class φ`(c), for each (i, j) ∈ φ`(c) such that

p`,0ij = n + k + 1 − max(Ac) there is one (i′, j′) ∈ φ`(c) such that p`,0i′j′ = 0. The only set without this

correspondence is the set (n+k+1−(n+`))+{0, . . . , n+`}. To see (3) the argument is also analogous.

Now we are going to characterize the sets associated with each element of C`,1.

Lemma 4.2.21. It holds that

{Ac}c∈C`,1 = {{0} ⊔ P ∶ P ∈ Pn+`(M/{0})} . (4.24)

Proof. Clearly the collection on the left-hand side is contained on the collection in the right-hand side.

To see the converse, it is enough to note that any particular set of the collection on the right-hand

side of (4.24) that can be translated (non-trivially) inside M corresponds to a set in P`,1 (introduced

in Definition 4.2.18), since for any particular P ∈ Pn+`(M/{0}) with max(P ) ≠ n + k + 1 it holds that

z − 1 ∉ z + ({0} ⊔ P ) ∋ z for z ∈ N+ and such that z + ({0} ⊔ P ) ⊆ M . In this way, each {0} ⊔ P that

can be translated inside M can be seen as a shift to the origin of some set in P`,1, and as such for each

P ∈ Pn+`(M/{0}) with max(P ) ≠ n + k + 1 there is some class c ∈ C`,1 such that {0} ⊔ P = An+`+1
c .

To conclude the proof, we see that if P ′ ∈ {{0} ⊔ P ∶ P ∈ Pn+`(M/{0}), max(P ) = n + k + 1} then

P ′ ∈ {Ac}c∈C`,1 also, since ∃z ∈ M such that z ∉ {0} ⊔ P ∋ z + 1 (recall that 0 ≤ ` ≤ k), and as such the

proof is done by invoking Lemma 4.2.17.

We now introduce a key map that quantifies how "spread" are the elements of any given subset of M .

Definition 4.2.22. For each A ⊆M = J0, n+ k + 1K introduce s(A) =max(A) −min(A) and the quantity

sM(A) = 1 − s(A)
n + k + 1

.

With the previous results and definitions we are finally able to remove the dependence of any particular

choice of labels for the elements of {Pk(Mj)}j∈J , in the expression for h(n,k)1 (η) (for the uniform case),

and in the expression for h(n,k;a)
1 (η), if a is solution to an additional linear system. The latter is proved

in Proposition C.1.1. Note that for the uniform case the labels of the aforementioned sets do not appear

in the expression for the quantity h(n,k)0 (η) (in (4.14)), since for any j ∈ J the quantity s(n,k)j (η) depends

only on the density at the window −j +Mj .
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Proposition 4.2.23. It holds that

h(n,k)1 = ∇+g(n,k) +V(n,k) (4.25)

with

g(n,k)(η) = (n + k + 1)
k

∑
`=0
(−1)`

(n+`
`
)

(n+k
k
)
×

× ∑
A∈Pn+`(M/{0,n+k+1})

n+k−max(A)
∑
y=1

(sM({0} ⊔A) −
y

n + k + 1
) (τy−1η)({0} ⊔A),

V(n,k)(η) = (n + k + 1)
k

∑
`=0
(−1)`

(n+`
`
)

(n+k
k
)

∑
A∈Pn+`(M/{0,n+k+1})

sM({0} ⊔A)η({0} ⊔A).

(4.26)

Proof. For the uniform choice the expression for h(n,k;a)
1 (η) in (4.14) simplifies to

h(n,k)1 = 1
(n+k
k
)

k

∑
`=0
(−1)`(n + `

`
) ∑
c∈C`,1

∑
(i,j)∈c

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p`,1ij −1

∑
y=0
(τyη)(Ac) −

p`,0
φ`(i,j)

−1

∑
y=0

(τyη)(Ac)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Fixed ` and c ∈ C`,1, from the property (1) in Lemma 4.2.20 the summation over (i, j) ∈ c in the previous

display can be expressed as

n+k+1−max(Ac)−1

∑
y=0

(τyη)(Ac)×

×
⎧⎪⎪⎨⎪⎪⎩
∑
(i,j)∈c

1{p`,1ij = n + k + 1 −max(Ac) ≠ 0} − ∑
(i,j)∈c

1{p`,0
φ`(i,j) = n + k + 1 −max(Ac) ≠ 0}

⎫⎪⎪⎬⎪⎪⎭
.

We stress that we can apply Lemma 4.2.20 since for any c ∈ C`,1 in the summations above it holds that

max(Ac) ≠ n+ k + 1, since otherwise p`,1ij = 0 for any (i, j) ∈ c, and these elements are not present in those

summations, as explained just after (4.19). Now we apply Lemma 4.2.20 again, concretely, property (3),

obtaining that

h(n,k)1 (η) =
k

∑
`=0
(−1)`

(n+`
`
)

(n+k
k
)
∑
c∈C`,1

n+k−max(Ac)

∑
y=0

(τyη)(Ac), (4.27)

and from Lemma 4.2.21,

h(n,k)1 (η) =
k

∑
`=0
(−1)`

(n+`
`
)

(n+k
k
)

∑
A∈Pn+`(M/{0,n+k+1})

n+k−max(A)
∑
y=0

(τyη)({0} ⊔A). (4.28)

Above, we have the set M/{0, n+ k + 1} instead of M/{0} as in Lemma 4.2.21 because in (4.27) are only

present the indexes such that p`,1ij , p
`,0
ij ≠ 0; or, equivalently, if max(Ac) = n + k + 1 in (4.27) then the

summation over y in the previous display is empty.

Using the fact that for any w ∈ N+ it holds that
w

∑
y=0

τy = (w + 1)1 +∇+ ○
w

∑
y=1
(w + 1 − y)τy−1

and n+k−max(A) = (n+k+1)sM({0}⊔A)−1, with A as in (4.28), we can recast h(n,k)1 (η) = (∇+g(n,k))(η)+

V(n,k)(η) with g and V(n,k) as in the statement of the current lemma.
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In the previous chapter (specifically, in the proof of tightness, Proposition 3.3.1) it was shown that

a requirement for studying the model defined by the superposition of Porous Media Model is a precise

upper bound on the potential arising from the gradient condition. The next proposition has the goal

of both paving the way for such study, while also elucidating the difficulties one might encounter. In

particular, it relates V(n,k) with a surprisingly difficult combinatorial problem, with the Taylor expansion

of the exponential function, and also the Harmonic series.

Proposition 4.2.24. Fixed n, k ∈ N+ and η ∈ ΩN , if ⟨η⟩M < n
n+k+1 or η(0) = 0 then V(n,k) = 0. Otherwise,

let 0 ≤ `⋆ ≤ k be the largest integer such that there is some A⋆ ∈ Pn+`⋆(M/{0, n+ k + 1}) where η(A⋆) = 1.

Then

(n+k
k
)

n + k + 1
V(n,k)(η) = ∑

A∈Pn(A⋆)
sM({0} ⊔A)

`⋆

∑
`=0

(−1)`
`!
− 1
n + k + 1

`⋆

∑
`=0
(−1)`(n + `

`
)

n+`
∑
i=n+1

1
i
.

Before proceeding with the proof we make some comments. It is simple to see that the summation

∑`
⋆

`=0(−1)`(n+`
`
)∑n+`i=n+1

1
i

takes positive values for `⋆ even, negative values for `⋆ odd, and is divergent

in the limit `⋆ → +∞ when restricted to either `⋆ even or odd. In this way, for 0 ≤ `⋆ ≤ k, it attains

its minimum when `⋆ = k with k even. Moreover, the alternating sum ∑`
⋆

`=0(−1)`(n+`
`
) has no simple

closed-form expression, and is the "alternating version" of the well-known Hockey-Stick Identity, that can

be expressed as
`⋆

∑
`=0
(n + `

`
) = (n + `

⋆ + 1
`⋆

).

Proof of Proposition 4.2.24. The cases where V(n,k)(η) = 0 as mentioned in the statement are very simple

to see and so we omit the proof. For the remaining, we start by deriving a recurrence relation for the

sequence (c`(η))0≤`≤`⋆ , where

c`(η) = ∑
A∈Pn+`(M/{0})

η({0} ⊔A)sM({0, n + k + 1} ⊔A).

Fixed some η ∈ ΩN , which leads to some `⋆ and A⋆, the former set generates a simple hierarchy that will

be exploited bellow, by noticing that ∀S ⊂ A⋆ it holds that η(S) = 1.

We then have that c`⋆(η) = sM({0} ⊔A⋆), while for `⋆ − 1 ≥ 0 we have

c`⋆−1(η) = ∑
A∈Pn+`⋆−1(A⋆)

sM({0} ⊔A)η({0} ⊔A) = (n + `⋆ − 1)sM({0} ⊔A⋆) + (1 −
max{A⋆} − 1
n + k + 1

).

The number n + `⋆ − 1 is associated with each set resulting of removing one element of A⋆ that is not

max{A⋆}, while 1 − max{A⋆}−1
n+k+1 is associated with removing max{A⋆}. Therefore,

c`⋆−1 = (n + `⋆)c`⋆ +
1

n + k + 1
.

In particular, solving the recurrence relation above yields, for any 0 ≤ ` ≤ `⋆, the formula

c` = c0
n!

(` + n)!
− 1
n + k + 1

n+`
∑
i=n+1

1
i
.

To conclude, we replace this into (4.26) and simplify the resulting expression.

102



The expression for V(n,k) in (4.26) is to us very satisfying: independent of the labels of the sets in

the definition of the model; involving a quantification of the "space" a subset of M occupies (through the

map sM ); making evident the constant (n+k+1) that will appear multiplied in the macroscopic diffusion

coefficient D(ρ) = (n+k + 1)ρn(1−ρ)k; suggesting the multiplication of the polynomial ρn(1−ρ)k by the

binomial coefficient (n+k
k
) as in the Bernstein Polynomial Basis; and its value involves an approximation

of an irrational number (∑`
⋆

`=0
(−1)`
`! ≈ e

−1), the truncated Harmonic series (∑n+`i=n+1
1
i
); and an alternating

version of a known identity related to Pascal’s triangle (Hockey-Stick Identity). While this is enough to

prove the hydrodynamic limit for the PMM(n, k), it will be very useful to make evident the identification

of V(n,k) with a primitive of D(ρ), which is the content of the next and last proposition.

Lemma 4.2.25. For any n, k ∈ N+ and 0 ≤ ` ≤ k fixed it holds that

∑
A∈Pn+`(M/{0,n+k+1})

sM({0} ⊔A) =
1

n + ` + 1
(n + k
n + `

) (4.29)

and, in particular, V(n,k) =H(n,k)0 +H(n,k), where

H(n,k)(η) =
k

∑
`=0
(−1)`(k

`
)n + k + 1
n + ` + 1

η(J0, n + `K) (4.30)

H(n,k)0 (η) = n + k + 1
(n+k
k
)

k

∑
`=0
(−1)`(n + `

`
)η(0) ∑

A∈Pn+`(M/{0,n+k+1})
A={a1,...,an+`}
a1<⋅⋅⋅<an+`

sM({0} ⊔A)
n+`
∑
y=1
(η(ay) − η(y))ϕ`y,A(η).

and with

ϕ`y,A(η) = [
y−1
∏
i=1

η(i)]
⎡⎢⎢⎢⎣

n+`
∏
j=y+1

η(aj)
⎤⎥⎥⎥⎦
.

Proof. From the definition of the rates it holds that Eνρ[h(n,k)(η)] = (n+k+1)ρn(1−ρ)k, for ρ a constant

profile, while for ρ ∈ C1(T),

ρn(1 − ρ)kρ′ = (
k

∑
`=0
(−1)`(k

`
) 1
n + ` + 1

ρn+`+1)
′

,

leading directly to

1
(n+k
k
)
(n + `

`
) ∑
A∈Pn+`(M/{0})

sM({0, n + k + 1} ⊔A) = (k
`
) 1
n + ` + 1

which can be reorganized into (4.29).

Now let A ∈ Pn+`(M/{0, n + k + 1}) and write its elements as {a1, . . . , an+`}, with ai < ai+1 for any

1 ≤ i ≤ n + ` − 1. We can rewrite

η(A) = η(J1, n + `K) +
n+`
∑
y=1
[
y−1
∏
i=1

η(i)] (η(ay) − η(y))
⎡⎢⎢⎢⎣

n+`
∏
j=y+1

η(aj)
⎤⎥⎥⎥⎦
.

Replacing the above and (4.29) into V(n,k) yields (4.30).

With all of this, introducing f (n,k) ∶= h(n,k)0 +H(n,k)0 , we conclude that

h(n,k) =H(n,k)(η) + ∇+g(n,k) + f (n,k)(η), (4.31)
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where we recall the definition of g(n,k) in (4.26). The reason for the distinction between all of the terms

of h(n,k), is that one can show that both f (n,k) and ∇+g(n,k) vanish in the limit N → +∞ – the former by

arguing via replacement lemmas, the latter through an appropriate summation by parts and continuity

argument – while H(n,k) approximates a primitive of the diffusion coefficient.

4.2.3 Comments on the Hydrodynamic Limit

Regarding a proof of the hydrodynamic limit for the empirical measure (recall its introduction in

Definition 3.2.20), one can study the macroscopic behaviour of the empirical measure induced by the

perturbed PMM(n, k), defined through the generator L = N2LN , where

LN = N−aLSSEP
N + L(n,k)N and a ∈ (0,1), (4.32)

by following the very same scheme presented in detail in Chapter 3. We now explain the technical

differences arising in the entropy method. The proof in Chapter 3, involving a superposition of Porous

Media Models is, in fact, more evolved than the proof for a single, perturbed, PMM, which is technically

very similar to the perturbed PMM(n, k). We recall that the difficulties in Chapter 3 were, in a large

part, a consequence of considering a linear combination of models up to `N , with `N
N→+∞ÐÐÐÐ→ +∞, that led

to difficulties in the proof of the replacement lemmas and in the convergence of the errors introduced by

these lemmas. Since for L there is no linear combination of models (beyond the perturbation in (4.32)), all

these issues are absent. For the PMM(n, k), one should follow the proof in the previous chapter, regarding

the slow-diffusion regime. In this regime, the rates are bounded above by a constant independent of N ,

and for this reason no replacement lemmas are required to prove the tightness step (Subsection 3.3.1).

Regarding the characterization of the limit points, Lemma 3.3.4 simplifies substantially: there is no need

of fixing a sequence (εk)k≥1 since the ”series" presented there now only has one term. In fact, technical

differences should only arise in the application and proof of the replacement lemmas. In the previous

chapter, we invoked recurrently Proposition 3.4.2 in the proof of the replacement lemmas. We recall that

this proposition compares the Dirichlet form of the PMM(m − 1), for m ∈ (1,2), with that of the process

δNLSSEP
N + m−1

2 L
(1)
N , which was required for treating the linear combination of models. This is not needed

for the perturbed PMM(n, k) and, except for the two-blocks estimate, one should be able to prove the

replacements in the same fashion. Regarding the two-blocks estimate, the difference lies in the "path

argument" in Lemma B.1.5. Precisely, for the PMM(n, k), the mobile clusters have a different structure

than the mobile clusters of the PMM(1) – yet the main argument is analogous: instead of conditioning

that there are at least 3 particles in the specific boxes of length L presented there (see (B.3)), in order

to construct a mobile cluster and perform the transportation of mass in the system, for the PMM(n, k)

one needs n particles and k holes to construct a mobile cluster, and in this manner one should condition

to the presence of n+ 1 particles and k holes, and then repeat the argument presented there. The role of

the SSEP perturbation is to mix the configuration in order to construct a mobile cluster. Naturally, the

length L of the boxes needs to be adjusted accordingly.

Regarding the uniqueness of weak solutions (see Lemma B.2.3), the attentive reader can see that

the expression for the potential in the previous chapter (that we recall to be ρm) plays no particular
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role in the proof, and one only needs for it to be regular enough, which in that case meant that ρm ∈

L2([0, T ];H1(T)). Indeed, it can be shown through an adaptation of the proof of Proposition 3.4.9,

in Section 3.4, that for the (perturbed) PMM(n, k) it holds that Hn,k(ρ) ∈ L2([0, T ];H1(T)), which is

enough to prove the uniqueness of solutions. We recall that the properties of the model used in the

proof of Proposition 3.4.9 were the gradient property and the fact that the rates are bounded above

independently of N . The weak formulation of the hydrodynamic equation is as follows.

Definition 4.2.26. Let ρini ∶ T → [0,1] be a measurable function and γ > 0 be fixed. We say that

ρ ∶ [0, T ] ×T→ [0,1] is a weak solution of the differential equation

⎧⎪⎪⎨⎪⎪⎩

∂tρt(u) = ∂2
uHn,k(ρt(u)), (t, u) ∈ [0, T ] ×T,

ρ0(u) = ρini(u), u ∈ T,

if

1. Hn,k(ρ) ∈ L2([0, T ];H1(T));

2. For any t ∈ [0, T ] and G ∈ C1,2([0, T ] ×T) it holds that

Fγ(ρini, ρ,G, t) ∶= ⟨ρt,Gt⟩ − ⟨ρini,G0⟩ − ∫
t

0
{⟨ρs, ∂sGs⟩ + ⟨H(ρs), ∂2

uGs⟩ds} ≡ 0.

The main novelty, and largest difficulty, is in fact the further characterization of the regularity of

the solution ρ, that is required for both an open-boundary study [8] and a slow-barrier [6]. We showed

in Corollary B.2.2 of Proposition B.2.1 that the macroscopic density associated with the PMM(m − 1)

is 1
4−Hölder continuous, for m ∈ (1,2), through an adaptation of the proof in [5, Lemma 6.2]. For the

PMM(n, k), the argument presented in Proposition B.2.1 seems too challenging to apply, since it was

based on the explicit expression of the potential ρm, which for the PMM(n, k) is Hn,k(ρ) and much more

difficult to treat algebrically:

Hn,k(ρ) =
k

∑
`=0
(−1)`(k

`
) 1
n + ` + 1

ρn+`+1.

For this reason, we present in Appendix C.2 a generalization of the argument that can be adapted to

other functions (see Lemma C.2.1 and the discussion just before it), which can be of independent interest.

In particular, we prove in Corollary C.2.3 that for the PMM(n, k) it holds that ρ, as in Definition 4.2.26,

is 1
2(n+k+1)−Hölder continuous.

4.3 Long-range dynamics
4.3.1 Long-range basis

The goal of this section is to extend the PMM(n, k) into a long-jumps dynamics. Our approach

will be different than the one in [7], used for generalizing the PMM(n) for any n ∈ N+, and for that

reason we review briefly how it was there constructed. One starts, for example, with the PMM(1),

where c(1)(τxη) = η(x − 1) + η(x + 2). This defines the rate for the exchange of occupations between

the sites x,x + 1. Noticing that x + 2 = (x + 1) + 1, one can define an exchange between x and y as

c(1)x,y(η) = η(x − 1) + η(y + 1). Note, however, that r(1)x,y ≠ r(1)y,x. Therefore, in order to maintain the
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symmetry of the jumps, one can define the constraint r(1)x,y = c(1)x,y + c(1)y,x. This reasoning is then extended

to any PMM(n), yielding for each n ∈ N+ a well-defined long-jumps version of the PMM(n). As it can be

seen there, for each n as previously the model does satisfy the gradient condition. There is a technical

subtlety regarding its relationship with its nearest-neighbour version, as explained in [7], which is that

r(1)x,x+1 ≠ c(1) ○ τx, and it turns out that the model induced by r(1)x,x+1 is irreducible. Precisely,

r(1)(η) = η(x − 1) + (η(x) + η(x + 1)) + η(x + 2).

The previous approach for extending the PMM to a long-range dynamics, in our case, does not lead

necessarily to a gradient model. In fact, repeating the arguments of the previous section, one obtains

a different linear system characterizing the gradient condition and all the combinatoric arguments need

to be adapted, since the sets arising after the application of the distributive rule, in the first step of the

proof of Proposition 4.2.11, will have a different structure than the ones studied here.

In order to extend this nearest neighbour dynamics to a long-jumps dynamics we shall focus instead

on the "distance of the jump", and not on the particular positions of the sites where the exchange of

occupations will be performed. For the occupations of the sites x, y ∈ TN to exchange, we are going to

define a map cr, where r is the length of the shortest path between x, y. This map defines an occupation

exchange of distance r, between the sites 0 and r, which is then translated into a reference point, either

x or y, and the exchange is performed.

Definition 4.3.1. Define the distance d̃ on the torus as, for each x, y ∈ TN

d̃(x, y) =min{∣y − x∣,N − x ∨ y + x ∧ y}.

Moreover, define the map (x, y) ↦ x∧̃y as

x∧̃y =
⎧⎪⎪⎨⎪⎪⎩

x ∧ y, ∣y − x∣ ≤ ⌊N/2⌋,
x ∨ y, otherwise.

In this way, for each x, y ∈ TN we want to construct a non-negative map cx,y ∶ ΩN → R+∪{0} that must

be symmetric, in the sense that cx,y = cy,x, and such that cx,x+1 = c ○ τx. Parametrizing the constraint

by d̃(⋅, ⋅), one has no option but to consider

cx,y ∶= cd̃(x,y) ○ τx∧̃y,

where for each r ∈ N+ the map cr ∶ Ω → R+ ∪ {0} is to be defined. The necessity of introducing ∧̃ is

motivated by reducing the problem to that of defining an exchange of "range" d̃. Concretely, it holds

that d̃(N − 1,1) = 2, therefore, we want to apply an exchange with range 2: we fix N − 1, and perform an

exchange with two sites "next" to it: N − 1←→ N − 1+ 2 ≡ 1. In this way, there is no fixed orientation on

the torus, and a "jump" from N − 1 to 1 does not have length N − 2. Exchanges with a range larger then

half the length of the torus do not formally occur, since there is a shorter path, with length no larger

than ⌊N/2⌋, between the two sites. As such, there is no ambiguity between the direction of the jump.

We now explain our construction of cr. Consider the pair (c1,TN), corresponding to the nearest

neighbour constraint, and the corresponding lattice where it is defined. Then one can define a nearest
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neighbour constraint in rTN , considering the pair (cr, rTN), where cr is simply c1 but defined in the

lattice rTN , that we define as rTN = {rx ∶ x ∈ TN}. Algebrically, the constraint in the new lattice

corresponds to a constraint in the original lattice TN with the transformation η(x) → η(rx) applied to

each occupation variable. This rationale is represented in following diagram.

Nearest-neighbour (TN) Nearest-neighbour (rTN)

Long-range (TN)

lift

embedding

Figure 4.5: From nearest-neighbour to long-range.

Because each occupation variable is applied to a multiple r of the original site, each set involved in

the constraint has the same structure – with its elements a multiple r of the original. In this way the

gradient condition is naturally preserved (see Proposition 4.3.4).

This approach has the subtlety that if x ∈ TN then rx ∈ TN also. Note that this is also preserved in

the lattice Z. It is not the case, for example, for the lattice Σ = J1,NK. In this case, one can define jumps

"out of Σ" (see [32]), necessarily introducing artificial reservoirs.

One can formalize all this in the following way.

For any X ∈ P(TN) let eX ∶ ΩN → {0,1} be the dual map defined through

eX(η) = η(X).

It is simple to see that the collection {eX}X∈P(TN ) forms a basis for the space of functions from ΩN to

R, and in this manner there are real constants {aX}X∈P(TN ) such that

c = ∑
X∈P(TN )

aXeX .

Notation 4.3.2. For each r ∈ N+ we write ∇±r = ±(τ±r − 1) and ∇−r ○ ∇+r = ∆r. If r = 1 we omit

the subscript. We also perform an abuse of notation and write, for any u, v ∈ T and G ∶ T → T,

∆vG(u) = G(u + v) − 2G(u) +G(u − v), analogously to the discrete case.

Note that the operators ∇±r can be seen as the operators ∇± defined on rTN , then embedded into TN .

Definition 4.3.3. For each r ∈ N+, define the linear operator υr ∈ L(ΩN ;R) through its action on the

basis {eX}X∈P(TN ) as

υreX = erX ,

and define the map cr ∶= υrc, where

υrc = ∑
X∈P(TN )

aXerX .

Proposition 4.3.4. If there exists h ∶ ΩN → R such that c(η)(∇+η)(0) = (∇+h)(η) then for every r ∈ N+
it holds that

cr(η)(∇+rη)(0) = (∇+rυrh)(η).
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Proof. To make the presentation more succinct, let us fix some label for the elements of P(TN) and define

the vector ∣e⟩, whose i–th entry is given by eX for some specific X ∈ P(TN) which can be identified from

the choice of the labels. Define also the vector ∣υr(e)⟩ ∶= υr ∣e⟩, which corresponds to the application of

υr to each element of ∣e⟩.

It holds that

cr(η)(η(r) − η(0)) = ∑
X∈P(TN )

aX(erX∪{r} − erX∪{0}). (4.33)

Likewise, because 1 +X ∈ P(TN), there are constants {hX}X∈P(TN ) and {ghX}X∈P(TN ) such that

∇+h = ∑
X∈P(TN )

hX(e1+X − eX) = ∑
X∈P(TN )

ghXeX =∶ Gh ∣e⟩

and because X ∪ {x} ∈ P(TN), for any x ∈ N, one can also construct a matrix B such that

B ∣e⟩ = ∑
X∈P(TN )

aX(eX∪{1} − eX∪{0}) = ∑
X∈P(TN )

bXeX .

Note that there is a correspondence with bX and a linear combination of aX coefficients induced by

the identification of X ∪ {0},X ∪ {1} with elements of P(TN). In other words, there exists a non-

necessarly invertible matrix L such that LA = B. This is akin to the "b−coefficients" being related to the

"a−coefficients", in Proposition 4.2.11. In particular,

LA = Gh.

Having in mind that there is a one-to-one correspondence between X and rX given by the scalar

multiplication r, one can express

(∇+rυrh)(η) = ∑
X∈P(TN )

hX(er(1+X) − erX) = ∑
X∈P(TN )

ghXerX = Gh ∣υr(e)⟩ .

As such,

Gh ∣υr(e)⟩ = LA ∣υr(e)⟩ = ∑
X∈P(TN )

aX(er(X∪{1}) − er(X∪{0}))

which equals (4.33).

We have now all the ingredients to define the long-jump version of a nearest neighbour dynamics, in

such a way that it inherits the gradient property.

Definition 4.3.5 (Long-Range PMM(n, k)). For n, k ∈ N+ fixed, define, for all x, y ∈ N, the constraint

c(n,k)x,y = υd̃(x,y)c(n,k) ○ τx∧̃y.

For each 1 ≤ r ≤ ⌊N/2⌋ define the Markov generator L(n,k)∶rN , as acting on functions f ∶ ΩN → R through

L(n,k)∶rN f(η) = ∑
x,y∈TN

1{d̃(x,y)=r}
1
2

c(n,k)x,y (η)(∇x,yf)(η). (4.34)

For each r as previously we refer to this process as PMM of range r, or PMMr(n, k).
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Note, in the previous definition, the factor 1/2. This is due to each exchange being counted twice:

for example, a jump from 0 → r and from r → 0. It is also very convenient to recast (4.34) in a different

form. Introduce the jump "backwards" of length r, that is,

υ−rc(n,k) ∶= υrc(n,k) ○ τ−2r

and from now on short-write c(n,k)r ≡ υrc(n,k). Then one can write

(L(n,k)∶rN f)(η) = 1
2 ∑x∈TN

c(n,k)−r (τxη)(∇x,x−rf)(η) +
1
2 ∑x∈TN

c(n,k)r (τxη)(∇x,x+rf)(η).

-3 43210-1-2-4 5 6 7 8

1

Figure 4.6: PMM2(2,1) rate.

In the previous figure, the rectangles correspond to the windows 2 ×Wj , for j = 0,1,2.

4.3.2 The fractional process

The "long-jumps version" of a nearest-neighbour exclusion process can be seen as a basis for fractional

operators, in the sense that we explain shortly. Given that we presented in the previous section an

general extension of a symmetric, exclusion nearest-neighbour dynamics into a long range dynamics,

we take the opportunity to explain how one can consider linear combinations or long-range symmetric

exclusion processes in the torus in order to derive a fractional partial differential equation. We first

introduce a fractional Sobolev space and Laplacian on T, in the same spirit of [14] (where it was defined

in R), and understand the scaling limit of the family of Markov chains associated to it. We start with

some motivation. If Lr is the Markov generator induced by a symmetric long-range constraint cr that

defines a jump of length r and satisfies the gradient condition, as in Definition 4.3.3, then one finds that

(Lrη)(0) = (∆rh)(η) + (∆−rh)(η)

with ∆±r as in Notation 4.3.2. We now introduce a key operator.

Definition 4.3.6. Let γ ≥ 0 and introduce the operator Lγ,N acting on functions G ∶ T→ R defined as

Lγ,N =
⌊N/2⌋
∑
∣r∣=1

1
∣r∣1+γ

∆ r
N
.
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Considering the process given by the (rescaled) superposition of long-range dynamics
⌊N/2⌋
∑
r=1

1
r1+γ L

r
N ,

from the gradient property one finds that

LrN ⟨πN(η),G⟩ = ⟨Lγ,NG,h(η)⟩,

with h the potential associated with the nearest-neighbour dynamics, arising as consequence of the

gradient property. In this way, identifying the correct time-scale Θγ(N) and the correct space of test

functions, for ∥h∥∞ < c with c > 0 a constant independent of N one should be able to argue that

Θγ(N)Lγ,N
N→+∞ÐÐÐÐ→ Lγ in a sense that we will explain shortly, and where Lγ is an operator acting on

functions in T.

Definition 4.3.7. We extend the distance d̃ on TN , in Definition 4.3.1, to the continuous torus T. We

will use the same notation and differentiate between them whenever it is not clear from the context.

Concretely, for any u, v ∈ T let

d̃(u, v) =min{∣u − v∣ , 1 − u ∨ v + u ∧ v}.

If v = 0 we write simply ∣u∣T = d̃(u,0).

Definition 4.3.8 (Fractional Sobolev space Hγ/2(T)). Fixed 0 < γ < 2 define the Hilbert space

Hγ/2(T) = {G ∈ L2(T) ∶ ∫
T
∫
T

∣G(u) −G(v)∣2

d̃(u, v)1+γ
dudv < ∞} ,

endowed with the norm ∥⋅∥γ/2 defined as

∥G∥2Hγ/2 ∶= ∥G∥
2
2 + [G]

2
γ/2 where [G]2γ/2 = ∫T ∫T

∣G(u) −G(v)∣2

d̃(u, v)1+γ
dudv.

The space Hγ/2 can be extended to γ ≥ 2, in that case coinciding with functions in H⌊γ/2⌋ whose

⌊γ/2⌋−th order distributional derivative belongs to Hγ/2−⌊γ/2⌋. Other properties of this space, as Sobolev

embeddings and dense subspaces can be found in [14, Section 2]. Its definition is closely related to a

fractional Laplacian operator, as in the next definition.

Definition 4.3.9. For each γ ∈ (0,2) define the fractional Laplacian operator Lγ ∶= −(−∆)γ/2 acting on

functions G ∶ T→ R as

LγG(u) ∶=
1
cγ
∫
T

G(u + v) − 2G(u) +G(u − v)
∣v∣1+γT

dv where cγ = 2 lim
N→+∞

Nγ

N2

N

∑
r=1

r

rγ
> 0

whenever ∥LγG∥∞ < ∞.

Modulo the space where it is defined and the multiplicative constant cγ , the fractional Laplacian in

the previous definition can be shown to be equivalent to the one in [14, Section 3] through the equality

lim
ε→0∫(Bε(u))c

G(v) −G(u)
d̃(v, u)1+γ

dv = 1
2 ∫T

1
∣v∣T

∆vG(u)dv

which can be proved through an adaptation of the proof of [14, Lemma 3.2]. The constant cγ was

chosen so that the interpolation property in Proposition 4.3.11 is satisfied. This has consequences in the

particular scaling limit of the Markov chains that we are going to define next.
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Definition 4.3.10. For each γ > 0 introduce the scaling Θγ ≡ Θγ(N) given by

Θγ(N) ∶=
1
2

1
∑Nr=1 r

−(γ−1)
N2.

Proposition 4.3.11. Let G ∶ T→ R and x ∈ TN be arbitrary. It holds that

(1) limN→+∞ ∣Θγ(N)Lγ,NG( xN ) −LγG(
x
N
)∣ = 0 for 0 < γ < 2 and G ∈ C1(T) such that ∥LγG∥∞ < ∞;

(2) limN→+∞ ∣Θγ(N)Lγ,NG( xN ) −G
′′( x

N
)∣∞ = 0, for γ ≥ 2 and G ∈ C2(T).

The proof of the previous proposition can be found in Appendix C.3. As a corollary, one can show

the next continuity result.

Corollary 4.3.12. For any G ∶ T→ R such that G ∈ C2(T) and ∥LγG∥∞ < ∞, for any u ∈ T it holds that

lim
γ→2−

∣LγG(u) −G′′(u)∣ = 0.

Proof. It is enough to estimate

∣LγG(u) −G′′(u)∣ ≤ ∣LγG(u) −ΘγLγ,NG(u)∣ + ∣ΘγLγ,NG(u) −Θ2L2,NG(u)∣ + ∣Θ2L2,NG(u) −G′′(u)∣.

The first term in the right-hand side is estimated as in the case 0 < γ < 2 in the previous proposition,

then one takes the limit γ → 2− and N → +∞. For the second one, since N is fixed it is enough to take

the limit γ → 2−. The third one is consequence of the previous proposition.

Remark 4.3.13 (On the scaling). The results available in the literature (see for example [2, 7, 25]

and references therein) present the scaling Nγ10<γ<2 + N2

log(N)1γ=2 +N21γ>2, which shows a discontinuity

in γ = 2. As seen in the proof of the previous proposition, our scaling Θγ is equivalent to the one just

presented, in the sense that Θγ(N) = O(Nγ)10<γ<2+O(N2/ log(N))1γ=2+O(N2)1γ>2. The reason for this

subtle difference originates from the definition of Lγ – specifically, with the multiplicative constant 1/cγ .

We believe that the scaling Θγ is the most natural one that guarantees the interpolation property relating

Lγ and ∂2
u, while providing a clear explanation of the time-scale commonly provided in the literature.

We find also worth noting that the multiplicative factor 2 in the constant cγ (see Definition 4.3.9) is

consequence of our imposition that the jumps can have (formally) length up to ⌊N/2⌋, microscopically,

or 1/2, macroscopically. Indeed, it is simple to see that

∫
T

∆vG(u)
∣v∣1+γT

dv = 2∫
T∩[0, 12 ]

∆vG(u)
∣v∣1+γ

dv.

It is also interesting to note that if one considers the summation over r up to some `N such that `N = o(N),

then
`N

∑
∣r∣=1

1
∣r∣1+γ

∆ r
N
G( x

N
) = G′′( x

N
) 1
N2

`N

∑
∣r∣=1

1
∣r∣γ−1 +O (

1
`γN
(`N
N
)

4
) ,

and for this reason the time-scale N2/∑`N∣r∣=1 ∣r∣
−(γ−1) should be the correct scale in order to derive the

classical Laplacian, for any γ > 0.
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We conclude this chapter with a last definition. As explained previously, in order to "construct"

the operator Lγ,N starting from the collection {PMMr(n, k)}r one should consider the process defined

through the next generator.

Definition 4.3.14. We call fractional porous media model the process defined through the generator

⌊N/2⌋
∑
r=1

1
r1+γ L

(n,k)∶r
N .

We expect this process to lead, under the Θγ(N)−time scale, to the hydrodynamic equation

⎧⎪⎪⎨⎪⎪⎩

∂tρ = LγHn,k(ρ), 0 < γ < 2,
∂tρ = ∂2

uHn,k(ρ), γ ≥ 2.
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5
Conclusions and Future Work
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The works presented in this thesis open a few questions, some of which are currently in development.

Regarding Chapter 2, it is not clear if when the assumption (H0) is not satisfied it is still possible to

construct a matrix representation, or even if in this case the resulting models are interesting in some

sense. We recall that (H0) arises in two different settings, yet related to the same goal: (1) In the matrix

formulation, so that we can express the relations in terms of ⟨W ∣D−C , ⟨W ∣C−D and ⟨W ∣D−D, in this

way obtaining indirectly equations involving the density in the first and second sites and the correlation

between the reservoirs. As we saw, this facilitates the study of the consistency of the algebra in an

intuitive way; (2) and in the stationary equations, so that we can express those very same quantities in

terms of the current, obtaining, in particular, an equation for the correlation that allows us to better

understand the consistency constraints. Very recently, we were able to consider a general change of basis

that allows for introducing more parameters into the formulation, with a particular choice corresponding

to the one presented in this thesis. We are currently trying to understand if this approach relaxes the

constraints. With this same goal of reducing the constraints, it is natural to ask if considering different

matrices at more sites would lead to better results. We expect that not to be true since the expected

(stationary) current in the bulk is node-independent, and for that reason any relation involving bulk

matrices must also hold at all the bulk sites. This suggests that one should look for a different bulk

algebra. For the moment, it is not clear if the identity [D,E] = D + E is the unique "solution" to

the telescopic relations, or if a different cancellation mechanism (in order to guarantee the stationarity

condition) should be formulated.

Regarding direct applications of our formulation, one can follow a similar path as that for the open

SSEP with the classical reservoirs [12, 13], and study the effect of the reaction-diffusion processes on the

stationary density large deviations’ when coupled with slow/fast reservoirs. By slow/fast reservoirs we

mean that the boundary rates are scaled by a factor 1/Nθ with θ ∈ R – in this way being slow when θ > 0

and fast when θ < 0. In our case, however, this scaling must be made with some care due to the non-

linearity of the constraints (C1) and (C2). To be precise, multiplying all the rates by the aforementioned

factor leads to the constraints being dependent of N , and for that reason one should consider instead

a particular factor 1/Nθij associated with each rate aij , and then find the values for θij so that the

constraints becomes independent of N . We note that no aspect of our formulation needs to be adapted

in this case.

We focus now on Chapter 3. As already mentioned throughout this manuscript, the extension of the

model to m > 2 requires the modelling of the diffusion coefficient in Chapter 4. To finally be concrete

with respect to this extension, the starting point is the binomial expansion

ρm−1 = ∑
k≥0
(m − ⌊m⌋

k
)(−1)kρ⌊m−1⌋(1 − ρ)k,

and for this reason there is the need to model the diffusion coefficient D⌊m⌋,k(ρ) = ρ⌊m⌋(1 − ρ)k. Indeed,

the nearest-neighbour model introduced in Chapter 4 will allow us to model D⌊m⌋,k(ρ) and to derive the

PME for any m > 2, with the proof being very similar to the case m ∈ (1,2). It is important to note

that the resulting model will interpolate between the PMM(⌊m⌋) and PMM(⌈m⌉), consequently being not

irreducible and a perturbation must be added in order to follow the entropy method – or, alternatively,

114



one can impose that the initial data ρini does not equal 0 or 1 anywhere, and since a L1 contraction

principle holds for the PME with m > 2, one can follow the relative entropy method as in [21]. Regarding

future works related Chapter 3, in a collaboration with Pedro Cardoso we are currently in the final stages

of adapting the ideas of that chapter to the long-range setting in the lattice Z, with a slow barrier at the

origin (in the same spirit as in [6]), but considering instead a linear combination of Porous Media Models

with general coefficients that can differ from the generalized binomials presented here.

An open problem is that of deriving the complete fast diffusion regime m < 0. A well-defined model

can be constructed using both the geometric series and the generalized binomial expansion, but because

in this case the diffusion coefficient can be infinite and the solution of the hydrodynamic equation blows-

up in finite time, several problems arise in the entropy method, which cannot be resolved by specifying

the order of the explosion `N . We believe that in this case the relative entropy method might be more

appropriate, specifically adapting the approach in [24] to the exclusion setting, but for the moment we

are not sure and more work needs to be done.

Regarding the work in Chapter 4, there is a technical subtlety in the definition of the model that

suggests that the uniform solution does not lead to the "true" generalization of the PMM to m > 2,

which is that the resulting model will lose the monotonicity property stated in Proposition 3.2.19 due

to the sequence { 1
n+k+1c

(n,k)}k≥1 not being monotone decreasing for n ≥ 1. We find this property to be

important to have, since it corresponds to the microscopic version of {ρn(1−ρ)k}k≥1 being decreasing (for

ρ ≠ 0,1). In order to maintain this monotonicity, one should look for a specific non-uniform solution of

the linear system (4.13). Ideally, this solution should be general in some form, with the weights following

some specific recurrence relation involving n and k, but the model might not be algebrically as simple

as the one presented in this thesis. Our starting point is to look for non-uniform solutions in the class

presented in Proposition 4.2.23, where even though the solution is non-uniform, the potential is expressed

as in the uniform case. This work is currently in development.

Another, already mentioned, application of the work in Chapter 4 is the construction of a (microscopic)

analogue of the Bernstein polynomial basis:

LN ∶=
1

`N + 1

`N

∑
n=0

βn(
`N
n
)L(n,`N−n)N (5.1)

where {βn}n≥0 are the Bézier coefficients. The constraints resulting from the generator (`N
n
)L(n,`N−n)N

satisfy some interesting properties of the Bernstein basis, such as symmetry and partition of the unit

(which was already proved in Proposition 4.2.15), but it does not satisfy its characteristic recurrence

relation. The reason for this is that the normalized constraints p(n,k) ∶= 1
n+k+1 c(n,k) do not satisfy

p(n,k+1) + p(n+1,k) = p(n,k).

We are confident that the proper generalization of the PMM that maintains the aforementioned mono-

tonicity property should satisfy the recurrence above, which serves as a motivation for our guess that the

desired particular non-uniform solution of (4.13) should follow some general recurrence relation. Never-

theless, even without the satisfaction of this recurrence relation, a proof of the hydrodynamic limit for

the empirical measure induced by (5.1) is very challenging, with most of the difficulties arising due to the
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complexity of the potential h(n,k), as expressed in (4.31):

h(n,k) =H(n,k)(η) + ∇+g(n,k) + f (n,k)(η).

Above, the dominating term is H(n,k), and the remaining terms converge to zero in probability, in the limit

N → +∞. Considering linear combinations of the potential, as in (5.1), adds another layer of difficulty

compared to the work in Chapter 3 because both g(n,k) and f (n,k) are expressed as an alternating sum

that is not absolutely convergent, hence the approximation errors (as in the replacement lemmas) do

not converge either. Because the expressions of those quantities are too complex to be studied through

combinatorial means, this requires not only very sharp estimates but possibly new tools.

The works in Chapter 4 and 3 were developed on the one dimensional torus, hence the total number of

particles is a conserved quantity of the system. It is possible to extend our results to the open boundary

setting, with appropriate boundary dynamics. In fact, the work in Chapter 3 was developed with this in

mind, as we provided all the necessary ingredients with respect to the bulk dynamics for such an extension

to be performed. Following [5, 17], it is possible to derive Robin, Dirichlet and Neumann boundary

conditions in the slow-diffusion range m ∈ (1,2), while Robin and Neumann in the fast-diffusion range

m ∈ (0,1). In the fast diffusion regime, since the rates can blow-up as N → +∞, the standard procedure in

the literature does not allow us to derive Dirichlet boundary conditions. This turns out to be, in nature,

a problem very similar to the derivation of Dirichlet boundary conditions for the case of K ≥ 2 in [17].

There, the authors couple the SSEP with boundary dynamics inspired by [29], and where a particle is

created in the first empty site and removed from the first occupied site, in a window of length K at the

boundary. For K ≥ 2 the choice of a Lipschitz reference profile is not enough to argue that the occupation

at the boundary is approximately constant, and the analysis of some correlation terms are required. This

led to the work developed in [16], where the authors use very different tools, involving the study of the

2−point correlation field and duality arguments to treat solely the non-linear case K = 2. However, our

model is too different in nature to argue as in [16] and a simple dual process is not available, and for that

reason a different approach must be taken.

Unfortunately, we had to leave this and many other interesting problems for future works, as there is

a lot to do but time, existing, seems to run quite fast.
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A.1 Coefficients in the boundary algebra

We consider the left-boundary coefficients only. For the right-boundary one needs to replace the

superscript − by + and aij by bij . Let i = 1,2,3. Recall that q−i = d−i − t−i . We have

d−i =
d̃−i

det(A−1)
, t−i =

t̃−i
det(A−1)

, f−i =
f̃−i

det(A−1)
,

with A−1 is as in (2.16):

A−1 =
⎛
⎜
⎝−a13 − a23 − 2a31 + a32 − a43

−a12 − 2a21 + a23 − a32 − a42

a12 + a13 + 2(a21 + a31 + a41)

a31 − a32

a12 + a21 + a32 + a42

−a12 − a21 − a31 − a41

a13 + a23 + a31 − a32 + a34 + a43

a12 + a21 − a23 + a24 + a32 + a42

−a12 − a13 + a14 − a21 − a31 − a41⎞
⎟
⎠
.

The numerators are given by

d̃−1 = (a13 + a24 + a34 + a43)a32a41 + (a14 + a23 + a34 + a43)a31a42

+ (a14 + a24 + a34 + a43)(a31(a12 + a32) + a21a32) + (a13 + a23 + a34 + a43)(a41(a12 + a42) + a21a42),

d̃−2 = (−a13 + a14 − a23 + a24)(a42 − a41) + (a31 − a32 + a41 − a42)(a14 + a24 + a34 + a43),

d̃−3 = (−a13 + a14 − a23 + a24)(a12 + a21 + a32 + a41) − (a31 − a32 + a41 − a42)(a14 + a23 + a34 + a43),

t̃−1 = a14 {a31(a12 − a23 + a32 + a42) − a21(a13 + a23 − a32 + a43)}

+ a24 {a31(a12 + a13) − (a21 + a31 + a41)(a13 + a23 − a32 + a43)}

+ a34 {(a21 + a31 + a41)(a12 − a23 + a32 + a42) − a21(a12 + a13)} ,

t̃−2 = (a14 + a24 + a34 + a41)(a13 + a23 + 2a31 − a32 + a43) − (a31 − a34)(2a41 − a42 − a43),

t̃−3 = (a14 + a24 + a31 + a41)(a12 − 2a14 − a23 + a32 − 2a34 − a43)

− (a14 + a21 + a34 + a41)(a13 − 2a14 + a23 − 2a24 − a32 − a42),

f̃−1 = a12(a41(a13 + a23) + a43(a31 + a41)) + a13(a42(a21 + a41) + a32a41)

+ (a21 + a31 + a41)(a23a42 + a43(a32 + a42)),

f̃−2 = (a41 − a42)(a13 + a23 + a32 + a43) − (a31 − a32)(a42 − a43),

f̃−3 = (a12 + a23 + a32 + a43)(−a31 + a32 − a41 + a42) − (a12 + a21 + a32 + a41)(a13 + a23 + a32 + a42).

Regarding the denominator, one finds that

det(A1) = d̃−1 + (a12 + a21 + a32 + a41)a13a24 + (a12 + a21 + a31 + a42)a14a23

+ (a12 + a21 + a31 + a41)(a23(a24 + a34) + a24a43)

+ (a12 + a21 + a32 + a42)(a13(a14 + a34) + a14a43).

It can also be checked by substitution that the coefficients associated with the reservoirs’ correlation,

f−1 , f
−
2 and f−3 , can be recast as linear combinations of the remaining coefficients of the algebra

f−1 α0 = d−1(a43 − a41) + q−1 (a42 − a41) + a41,

f−2 α0 = d−2(a43 − a41) + q−2 (a42 − a41),

f−3 α0 = d−3(a43 − a41) + q−3 (a42 − a41) − 1,

(A.1)
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where

α0 = a14 + a24 + a34 + a42 + a43 − a41.

Additionally, the remaining coefficients can be expressed in terms of the coefficients Ai,Bi,Ci,Di with

i = 1,2 as in (2.10). Specifically, for linear models (as introduced in Definition 2.4.2), one sees that

d−1 =
A1
C1
+ B1
C1

q−1 and d−2 =
B1
C1

q−2 ,

where we recall that in this case q−3 , d−3 = 0; while for non-linear models (also as in Definition 2.4.2),

d−1α1 = (
A1
D1
− A2
D2
) + q−1α2, d−2α1 = (

1
D2
) + q−2α2 and d−3α1 = q−3α2

where

α1 =
C1
D1
+ B2
D2

and α2 =
C2
D2
+ B1
D1

.

A.2 Product Measures

It is expected that letting x = 0, the MPA formulation expresses the equilibrium state. This is indeed

the case: for x = 0 the bulk relation is [D,E] = 0, and it can be checked that the constraints (C1) and

(C2) both reduce to

f±1 = d±1q±1 . (A.2)

Moreover, [D,E] = 0 leads to ⟨η(2)⟩wN = ⟨η(N − 1)⟩wN , that is,

q−1 = q+1 .

The probability of observing a fixed configuration can be computed. Fix the length of the system,

N ≥ 4, and let η be any configuration with n ≥ 0 particles in the bulk. Since D and E commute,

µssN (η) =
1
ZN
⟨W ∣ (D−η(1) +E−(1 − η(1)))DnEN−2−n (D+η(N) +E+(1 − η(N))) ∣V ⟩

= 1
ZN

N−2−n
∑
j=0

(L − 2 − n
j

)(−1)j×

× ⟨W ∣ (D−η(1) +E−(1 − η(1)))Dn+jCN−2−n−j (D+η(N) +E+(1 − η(N))) ∣V ⟩ .

From the boundary relations, that for x = 0 reduce to

⟨W ∣D−C = ⟨W ∣d−1C−C, ⟨W ∣C−D = ⟨W ∣ q−1C−C, ⟨W ∣D−D = ⟨W ∣ f−1 C−C

and

CD+ ∣V ⟩ = d+1CC+ ∣V ⟩ , DC+ ∣V ⟩ = q+1CC+ ∣V ⟩ , DD+ ∣V ⟩ = f+1 CC+ ∣V ⟩ ,

we see that

µssN (η) = (q−1 )n
N−2−n
∑
j=0

(N − 2 − n
j

)(−1)j(q−1 )j (η(1)η(N)d−1d+1 + η(1)(1 − η(N))d−1(1 − d+1)

+(1 − η(1))η(N)(1 − d−1)d+1 + (1 − η(1))(1 − η(N))(1 − d−1)(1 − d+1))
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= (d−1)η(1)(1 − d−1)1−η(1)(q−1 )n(1 − q−1 )N−2−n(d+1)η(N)(1 − d+1)1−η(N).

In other words,

µssN = ν1
d−1
⊗ νN−2

q−1
⊗ ν1

d+1
.

A.3 Computing ϕN(1, 2) from the stationary equations

Recall that j2(η) ≡ η(2) − η(3). We compute

L(η(1)η(2)) = η(1)η(2)(a41 − (a14 + a24 + a34 + a42 + a43))

+ η(1)(a43 − a41) + η(2)(a42 − a41) + a41 − η(1)j2(η).
(A.3)

Introduce the coefficients

B3 = a42 − a41,

C3 = −(a43 − a41),

D3 = a41 − (a14 + a24 + a34 + a42 + a43).

Taking the expectation with respect to the stationary measure on (A.3), together with (2.11) we obtain

the system

D1⟨η(1)η(2)⟩N = −A1 −B1⟨η(2)⟩N +C1⟨η(1)⟩N ,

D2⟨η(1)η(2)⟩N = −A2 −B2⟨η(1)⟩N +C2⟨η(2)⟩N + ⟨j2⟩N ,

D3⟨η(1)η(2)⟩N = −a41 −B3⟨η(2)⟩N +C3⟨η(1)⟩N + ⟨η(1)j2⟩N ,

with Ai,Bi and Di, for i = 1,2, as in (2.10). Equivalently,

⎛
⎜
⎝ C3

−B2

C1

−B3

C2

−B1

−D3

−D2

−D1⎞
⎟
⎠

⎛
⎜
⎝⟨η(1)η(2)⟩N
⟨η(2)⟩N
⟨η(1)⟩N ⎞

⎟
⎠
=
⎛
⎜
⎝a41

A2

A1

0
−1
0

1
0
0⎞
⎟
⎠

⎛
⎜
⎝⟨η(1)j2⟩N
⟨j2⟩N

1 ⎞
⎟
⎠
.

Introducing

Ã1 =
⎛
⎜
⎝ C3

−B2

C1

−B3

C2

−B1

−D3

−D2

−D1⎞
⎟
⎠
, Ã2 =

⎛
⎜
⎝a41

A2

A1

0
−1
0

1
0
0⎞
⎟
⎠

one can check that det(Ã1) = det(A1) with A1 given in (2.17). Moreover,

(Ã1)−1Ã2 =
⎛
⎜
⎝f−1
q−1

d−1

f−2

q−2

d−2

f−3

q−3

d−3⎞
⎟
⎠

with the coefficients d−, q−, f− as previously. In this way, under (H−0 ) we have that

⎛
⎜
⎝⟨η(1)η(2)⟩N
⟨η(2)⟩N
⟨η(1)⟩N ⎞

⎟
⎠
=
⎛
⎜
⎝f−1
q−1

d−1

f−2

q−2

d−2

f−3

q−3

d−3⎞
⎟
⎠

⎛
⎜
⎝⟨η(1)j2⟩N
⟨j2⟩N

1 ⎞
⎟
⎠

(A.4)

in complete analogy to the boundary algebra {(R−1 ), (R−2 ), (R−12)}. We short-write, for any x ∈ ΛN ,

ϕN(1, x) = ⟨η(1)η(x)⟩N − ⟨η(1)⟩N ⟨η(x)⟩N
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and rewrite the first two equations in (A.4) as

⟨η(1) − d−1⟩N = (d−2 + d−1d−3)⟨j2⟩N + d−3⟨(η(1) − d−1)j2⟩N , (A.5)

⟨η(2) − q−1 ⟩N = (q−2 + d−1q−3 )⟨j2⟩N + q−3 ⟨(η(1) − d−1)j2⟩N .

Consequently,

⟨η(1) − d−1⟩N ⟨η(2) − q−1 ⟩N = ⟨j2⟩2N(d−2 + d−1d−3)

+ ⟨j2⟩N ⟨(η(1) − d−1)j2⟩N (q−3 (d−2 + d−1d−3) + d−3(q−2 + d−1q−3 ))

+ ⟨(η(1) − d−1)j2⟩2Nd−3q−3 ,

and since

⟨η(1)⟩N ⟨η(2)⟩N = d−1q−1 + ⟨η(1) − d−1⟩N ⟨η(2) − q−1 ⟩N

+ ⟨j2⟩N (q−1 (d−2 + d−1d−3) + d−1(q−2 + d−1q−3 ))

+ ⟨(η(1) − d−1)j2⟩N(q−1d−3 + d−1q−3 ),

we find that
ϕN(1,2) = f−1 − d−1q−1

+ ⟨j2⟩N (f−2 + d−1f−3 − q−1 (d−2 + d−1d−3) − d−1(q−2 + d−1q−3 ))

− ⟨j2⟩2N(d−2 + d−1d−3)(q−2 + d−1q−3 )

+ ⟨(η(1) − d−1)j2⟩N(f−3 − q−1d−3 − d−1q−3 )

+ ⟨(η(1) − d−1)j2⟩N ⟨j2⟩N (q−3 (d−2 + d−1d−3) + d−3(q−2 + d−1q−3 ))

+ ⟨(η(1) − d−1)j2⟩2Nd−3q−3 .

(A.6)

Some computations yield

⟨(η(1) − d−1)j2⟩N = ⟨η(1) − d−1⟩N ⟨j2⟩N − (∇+2ϕN)(1,2)

= (d−2 + d−1d−3)⟨j2⟩2N + d−3⟨(η(1) − d−1)j2⟩N ⟨j2⟩N − (∇+2ϕN)(1,2).

By successive iterations it follows that

⟨(η(1) − d−1)j2⟩N = (d−2 + d−1d−3)
n

∑
i=2
(d−3)i−2⟨j2⟩iN

+ (d−3)n−1⟨η(1) − d−1⟩N ⟨j2⟩nN − (∇+2ϕN)(1,2)
n−1
∑
i=0
(d−3⟨j2⟩N)i.

Since ⟨j2⟩N = O(1/L), taking the limit n→ +∞ and using the geometric series one obtains

⟨(η(1) − d−1)j2⟩N = (d−2 + d−1d−3)⟨j2⟩2N
1

1 − d−3⟨j2⟩N
− (∇+2ϕN)(1,2)

1
1 − d−3⟨j2⟩N

. (A.7)

Note that this is valid also for d−3 = 0. Replacing this into (A.6) and rearranging the terms leads to (2.12).

A.4 Models

In order to facilitate solving the constraints in terms of the rates with the assistance of a computer,

it turns out to be convenient to consider the following factorization of the boundary rates

aij ≡
1
p−
aij and bij ≡

1
p+
bij , p± > 0. (A.8)
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Doing so, it is straightforward to see that the last two constraints in (C1) take the form of

(q−1d−3 + q−2 + d−1q−3 − f−3 )(d−2 + d−1d−3) = −d−2/p−,

q−3 (d−2 + d−1d−3) = −d−3/p−,

while the factor p− does not appear in (C2) nor in the remaining constraints of (C1). We note that for

p− = p+ equal to some p > 0, one can interpret p as the hopping rate in the bulk, instead of a factor of the

boundary rates as in (A.8). In what follows, we present admissible left-boundary rates only. Specifically,

we present particular solutions of the constraints in terms of the rates, and present the algebra coefficients

d−i , q
−
i for i = 1,2,3. The coefficients f−i with i = 1,2,3 can be deduced from (A.1), and the right-boundary

rates with the same dynamics as the left-boundary ones can be obtained by replacing directly aij by bij
and p− by p+.

A.4.1 Family N

As seen in Section 2.4, this family is defined as N ∶= C±1 ∩ {d±3 , q±3 ≠ 0} and corresponds to non-linear

models (in the sense of Definition 2.2.5) such that the stationary measure does not factorize at the

boundary. The subfamily N ∩ {t±1 = 0, t±2 = 1/p±, t±3 = 0} ⊂ H corresponds to non-linear models where the

stationary measure can be described by the homogenous choice of matrices D± =D and E± = E.

In what follows recall (A.8).

A.4.1.A Full dynamics

The following model is the simplest one we could find where no rate is zero.

a31 = a32,

a32 + a21
2

= a43 = a42 = a41 = a14 = a13,

a34 = a12 + a13 − a14,

a23 =
a32(a12 + 2a13) + a13(a32 − 2a24)

a12 + a13
,

p− = a12 + 3a13
a13(a24 − a32)

(a12(a13 + a32) + a13(a13 + 2a32 − a24)),

and the algebra coefficients equal to

d−1 =
1
2
,

d−2 =0,

d−3 =
(a24 − a32)/2

(a12 + a13)(a13 + a32) + a13(a32 − a24)
,

q−1 =
2a13

a12 + 3a13
,

q−2 =
−1

a12 + 3a13
,

q−3 =
−2a13(a24 − a32)

(a12 + 3a13)(a12 + a13)(a13 + a32) + a13(a32 − a24)
.

The model is well-defined when all the rates are non-negative. It is simple to obtain a sufficient

condition for this. From (a32+a21)/2 = a13 we need 2a13−a32 ≥ 0 and from a34 we need a12+a13−a14 ≥ 0.
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The expression for p− can be rewritten as

p− = (3 + a12/a13)(
(1 + a12/a13)(1 + a32/a13)

a24 − a32
− 1)

and to obtain p > 0 it is enough to impose 0 < a24 − a31 ≤ 1. Similarly, from a23 it is enough to let

a32 − 2a24 ≥ 0. We conclude that a sufficient condition for the model to be well-defined is

2a31 < 2a24 ≤ a32 ≤ 2a13 ∧ a24 ≤ 1 + a31 ∧ a14 < a12 + a13.

If we consider the right-boundary with the same dynamics, then the nonequilibrium condition q−1 ≠ q+1
translates to

2a13
a12 + 3a13

≠ 2b13
b12 + 3b13

.

Moreover, it can be checked that

t−1 =
a12 − a13

2a12 + 6a13
,

t−2 − 1/p− =
a2

12(a13 + a32) + a12a13(a32 − a24) − a13 (a2
13 − a13a24 + 2a13a32 + 2a24 − 2a32)

2(a12 + 3a13)(a12(a13 + a32) + a13(a13 − a24 + 2a32))
,

t−3 =
(a12 + 7a13)(a24 − a32)

2(a12 + 3a13)(a12(a13 + a32) + a13(a13 − a24 + 2a32))
.

It is straightforward to see that imposing t−1 = 0 (that is, a12 = a13), for the remaining homogeneity

conditions to be satisfied one needs also to impose a24 = a32, which is not possible due to the expression

for p. This means that the homogeneity conditions cannot be imposed on the dynamics

A.4.1.B No annihilation

We provide the two models with the simplest expressions for the rates that we could find.

• No annihilation I:

a34 = a24 = a14 = a13 = a12 = 0,

a21 =
a31(a43 − a41 − (a31 − a32)) + (a41 − a42)(a23 − (a31 − a32) − (a41 − a42))

a31 − a32 + a41 − a42
,

p− = (a23a42 + a43(a32 + a42))
a43(a31 − a32) + (a23 + a43)(a41 − a42)

a23(a32a41 − a31a42)
,

and the algebra coefficients reduce to

d−1 = 1,

d−2 =
a31 − a32 + a41 − a42
a23a42 + a43(a32 + a42)

,

d−3 = −
a23 + a31 − a32 + a41 − a42
a23a42 + a43(a32 + a42)

,

q−1 = 1,

q−2 = −
(a31 − a32 + a41 − a42)(a42(a23 + a31 + a43) + a32(a43 − a41))

(a23a42 + a43(a32 + a42))(a23(a41 − a42) + a43(a31 − a32 + a41 − a42))
,

q−3 =
(a31a42 − a32a41)(a23 + a31 − a32 + a41 − a42)

(a23a42 + a43(a32 + a42))(a23(a41 − a42) + a43(a31 − a32 + a41 − a42))
..
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It is straightforward to see that a sufficient condition for the model to be well-defined is

0 ≤ a31 − a32 ≤ a43 − a41 ∧ 0 ≤ a41 − a42 ∧ (a41 − a42) + (a31 − a32) ≤ a23 ∧ 0 < a32a41 − a31a42.

There are two particular cases of interest. We have that

t−1 = 0,

t−2 − 1/p− = a23a31(a41 + a42) + a23a41(−2a32 + a41 − a42) + (a31 − a32 + a41 − a42)(a31(a42 + a43) − a32a41 + a41a43)
(a23a42 + a43(a32 + a42))(a23(a41 − a42) + a43(a31 − a32 + a41 − a42))

,

t−3 = −
(a23 + a31 − a32 + a41 − a42)(a23(a41 − a42) + a31a42 + a31a43 − a32(a41 + a43) + a41a43 − a42a43)

(a23a42 + a43(a32 + a42))(a23(a41 − a42) + a43(a31 − a32 + a41 − a42))
,

and further imposing the constraints

a23 =
a32 + a42

2
and a43 =

a42(−2a31 − a41 + a42) + a32(a41 + a42)
2(a31 − a32 + a41 − a42)

,

the resulting model belongs to H and the SSEP(1,1) algebra can describe the stationary measure.

Another particular case is to impose a42 = a23 + a31 − a32 + a41, that results in a linear model, where

a21 and p− take the form of

a21 = a23 − a32 − a41 + a43,

p− =
(a23 + a31 − a32 + a43) (a2

23 + a23(a31 − a32 + a41 + a43) + a43(a31 + a41))
a23a31 + (a31 − a32)(a31 + a41)

.

• No annihilation II:

The choice of rates

a34 = a24 = a14 = a13 = a12 = 0,

a41 = a42,

a31 = a32,

p− = (a21 + a32 + a42)(a23a42 + a43(a32 + a42))
a21(a32 + a42) + a42(−a23 + a42 − a43) + a2

32 + a32(2a42 − a43)
,

leads to the algebra coefficients

d−1 = 1,

d−2 = 0,

d−3 = −
a23

a23a42 + a43(a32 + a42)
,

q−1 = 1,

q−2 = −
1

a21 + a32 + a42
,

q−3 =
−a21(a32 + a42) + a42(a23 − a42 + a43) − a2

32 + a32(a43 − 2a42)
(a21 + a32 + a42)(a23a42 + a43(a32 + a42))

..

The model is well-defined, for example, for

a42 ≥ a23 + a43.
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It can be checked that there is no particular choice of rates that leads to a linear model. Regarding

the homogeneous choice of matrices,

t−1 = 0,

t−2 − 1/p− = −a21(a32 + a42) + a42(−2a23 + a42 − 2a43) + a2
32 + 2a32(a42 − a43)

(a21 + a32 + a42)(a23a42 + a43(a32 + a42))
,

t−3 =
a21(−a23 + a32 + a42) − a23(a32 + 2a42) + (a32 + a42)(a32 + a42 − a43)

(a21 + a32 + a42)(a23a42 + a43(a32 + a42))
,

and fixing also

a23 =
a32 + a42

2
and a43 =

a21 + a32
2

leads to a model in H.

A.4.1.C No Creation

The complementary dynamics to the previous two models also satisfies the consistency conditions.

Precisely, exchanging

(a21, a31, a41, a42, a43, a23) by (a34, a24, a14, a13, a12, a32)

in the models "No annihilation I" and "No annihilation II" gives, respectively, the complementary "No

creation I" and "No creation II" below, suggesting a particle-hole symmetry.

• No creation I

The choice

a21 = a31 = a41 = a42 = a43 = 0,

a34 =
a24(a12 − a14 − (a24 − a23)) + (a14 − a13)(a32 − (a24 − a23) − (a14 − a13))

a24 − a23 + a14 − a13
,

p− = (a32a13 + a12(a23 + a13))
a12(a24 − a23) + (a32 + a12)(a14 − a13)

a32(a23a14 − a24a13)
,

leads to well-defined rates when, for example,

0 ≤ a24 − a23 ≤ a12 − a14 ∧ 0 ≤ a14 − a13 ∧ (a14 − a13) + (a24 − a23) ≤ a32 ∧ 0 < a23a14 − a24a13.

The algebra coefficients reduce to

d−1 = 0,

d−2 = −
a32

a12(a13 + a23) + a13a32
,

d−3 =
−a13 + a14 − a23 + a24 + a32
a12(a13 + a23) + a13a32

,

q−1 = 0

q−2 = −
a13 + a23

a12(a13 + a23) + a13a32
,

q−3 = −
(a14a23 − a13a24)(−a13 + a14 − a23 + a24 + a32)

(a12(a13 + a23) + a13a32)(a12(a13 − a14 + a23 − a24) + a32(a13 − a14))
.
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In particular,

t−1 = 0,

t−2 − 1/p− =
a12(a13 + a23 − a32)(a13 − a14 + a23 − a24) + a32 (a2

13 − a13(a14 − a23 + a24 + a32) + a14a32)
(a12(a13 + a23) + a13a32)(a12(a13 − a14 + a23 − a24) + a32(a13 − a14))

,

t−3 =
(a13 − a14 + a23 − a24 − a32)(a12(−a13 + a14 − a23 + a24) + a13(a24 − a32) + a14(a32 − a23))

(a12(a13 + a23) + a13a32)(a12(a13 − a14 + a23 − a24) + a32(a13 − a14))
,

and imposing additionally

a32 =
a23 + a13

2
and a12 =

a32(a13 + a14) − a13(a14 + a24)
a14 + a24 − 2a32

leads to a model in H; while the choice

a13 = a32 + a14 + a24 − a23

leads to a model in L.

• No creation II

a21 = a31 = a41 = a42 = a43 = 0,

a14 = a13,

a24 = a23,

p− = (a34 + a23 + a13)(a32a13 + a12(a23 + a13))
a34(a23 + a13) + a13(−a32 + a13 − a12) + a2

23 + a23(2a13 − a12)
.

The model is well-defined when, for example,

a13 ≥ a32 + a12.

The algebra coefficients are equal to

d−1 = 0,

d−2 = −
a32

a12(a13 + a23) + a13a32
,

d−3 =
a32

a12(a13 + a23) + a13a32
,

q−1 = 0,

q−2 = −
a13 + a23

a12(a13 + a23) + a13a32
,

q−3 =
−a12(a13 + a23) + a2

13 + a13(2a23 − a32 + a34) + a23(a23 + a34)
(a13 + a23 + a34)(a12(a13 + a23) + a13a32)

,

and the particular choice

a32 =
a13 + a23

2
and a12 =

a34 + a23
2

leads to a model in H, while there is no particular choice in L.

A.4.2 Family L

The linear family is defined as L ∶= C±1 ∩ {d±2 ≠ 0, d±3 , q±3 = 0} and every model satisfies the linear

condition (2.2.5), while the stationary measure still does not factorize at the boundary (condition d±2 ≠

0). Models of this family can also be described by the SSEP(1,1) algebra whenever it is also satisfied

t±1 = 0, t±2 = 1/p± and t±3 = 0.
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A.4.2.A Model I

The choice

a32 = a31 = a34,

a14 = a21 = a41 = 0,

a13 =
(2a34 − a12)(a34 + a12)

a12 + 2a34
,

a43 =
a12
4a34

a2
12 + 4a2

34
a12 + 2a34

,

a42 =
(2a34 − a12)(a34 + a12)

4a34
,

a23 =
a12
4a34

(2a34 + a12)(2a34 − a12) + 4a12a34
a12 + 2a34

,

a24 =
1
4
(a12 + 2a34),

p− = 8a2
34(a12 + a34)

(2a34 − a12)(2a34 + a12)
,

leads to the algebra coefficients

d−1 =
1
2
, ,

d−2 =
a12 − 2a34

8a2
34

, ,

d−3 =0,

q−1 =
a12

2(a12 + a34)
, ,

q−2 =
(a12 − 4a34)(a12 + 2a34)

8a2
34(a12 + a34)

, ,

q−3 =0.

Non-negativity of the rates is achieved if and only if

2a34 − a12 > 0.

Note that d−1 ≠ q−1 and we cannot choose a34 = 0 (see, for example, the expression for a42), meaning that

the model above cannot be represented by the homogeneous choice of matrices D±,E± =D,E. Moreover,

one cannot have d−2 = 0 due to the expression for p−, and as such there is no particular choice of rates

where the model belongs to F either.

The conditions a41 = 0 and a32 = a34 = a31 can be relaxed. However, the resulting expressions for the

rates are much longer and the study of their non-negativity becomes much more involved.

A.4.2.B Model II

Fixing

a13 = a42,

a43 = a24 + a34 − a42,

a21 = a34,
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a41 = a14,

a23 = a32,

a31 = a24,

a12 = a24 + a34 − a42,

p− = (a24 + a34) (a14(a24 + 2a32 + a34) + a24(a24 + a32 + a34 − a42) + a34(a32 + a42))
a24a42 − a14a32

,

the rates are well-defined if, for example,

a14a32 < a24a42 and a42 ≤ a24 + a32 + a34.

The algebra coefficients are equal to

d−1 =
1
2
,

d−2 =
a14 + a24 − a32 − a42

2 (a14(a24 + 2a32 + a34) + a2
24 + a24(a32 + a34 − a42) + a34(a32 + a42))

,

d−3 = 0,

q−1 =
1
2
,

q−2 = −
a14 + a24 + a32 + a42

2 (a14(a24 + 2a32 + a34) + a2
24 + a24(a32 + a34 − a42) + a34(a32 + a42))

,

q−3 = 0,

and we have that

t−1 = 0,

t−2 − 1/p− = a14(a24 + a32 + a34) + a24(a24 + a34 − a42)
(a24 + a34) (a14(a24 + 2a32 + a34) + a2

24 + a24(a32 + a34 − a42) + a34(a32 + a42))
,

t−3 = 0.

The particular choice

a42 = a34 + a24 and a14 = 0

leads to a model in H, while

a32 + a42 = a14 + a24

leads to a model in F.

A.5 Representation

We present in Lemma A.5.1 a system of recurrence relations characterizing the entries of the left-

boundary row vectors ⟨W0∣ = ⟨W ∣E and ⟨W1∣ = ⟨W ∣D, provided that the matrices D and E satisfying the

relation [D,E] =D+E are tridiagonal and infinite. In Proposition A.5.2 we consider a particular family of

representations where the right-inverse of C −1d−3 is lower triangular. For the right-boundary the results

can be deduced by analogous arguments. This proves the expression of the stationary probabilities as in

(2.1).
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In what follows, for each k ∈ N+ we refer to the entries of the infinite row vectors ⟨W0∣ and ⟨W1∣ as

w0
k = ⟨W0∣k⟩ and w1

k = ⟨W1∣k⟩, respectively, where (∣k⟩)i = δk,i, for i ≥ 1, and δk,i equals one if k = i, and

zero otherwise. Consider, additionally, the sequence of column vectors (∣Uk⟩)k≥1, where ∣Uk⟩ ∶= ∣w0
k,w

1
k⟩.

Lemma A.5.1. Let D and E be infinite tridiagonal matrices with entries (D)ij = dij(δi−1,j +δi,j +δi+1,j)

and (E)ij = eij(δi−1,j + δi,j + δi+1,j), for i, j ≥ 1, and such that [D,E] =D +E. In matrix form,

D =

⎛
⎜⎜⎜⎜⎜
⎝ ⋮

0
0
d21

d11

⋮
0
d32

d22

d12

⋮
d43

d33

d23

0

⋮
d4,4

d34

0
0

⋱
⋱
⋯
⋯
⋯⎞
⎟⎟⎟⎟⎟
⎠

and E =

⎛
⎜⎜⎜⎜⎜
⎝ ⋮

0
0
e21

e11

⋮
0
e32

e22

e12

⋮
e43

e33

e23

0

⋮
e4,4

e34

0
0

⋱
⋱
⋯
⋯
⋯⎞
⎟⎟⎟⎟⎟
⎠

.

The row vectors ⟨W0∣ and ⟨W1∣ satisfy the boundary equations (R−1 ) and (R−2 ) if the following recurrence

relation is satisfied:
⎧⎪⎪⎨⎪⎪⎩

0 = Ak ∣Uk+1⟩ +Bk ∣Uk⟩ +Ck ∣Uk−1⟩ , k ≥ 2,
0 = A1 ∣U2⟩ +B1 ∣U1⟩ , k = 1,

(A.9)

with coefficient matrices

Ak = (q−1 ck+1k − dk+1k

d−1ck+1k
q−1 ck+1k − dk+1k

(d−1 − 1)ck+1k ) , (A.10)

Bk = (q−1 ckk − dkk + q−2
d−1ckk + d−2

q−1 ckk − dkk + q−2 + q−3
(d−1 − 1)ckk + d−3 ) ,

Ck = (q−1 ck−1k − dk−1k

d−1ck−1k
q−1 ck−1k − dk−1k

(d−1 − 1)ck−1k ) ,

where cij = dij + eij for i, j ≥ 1.

Proof. The recurrence relation (A.9) is obtained by replacing the specific tridiagonal representations of

D and C =D +E in the boundary relations, then reorganizing the terms.

Note that if D′ and E′ are matrices such that [D′,E′] =D′ +E′, then the matrices parameterized by

λ ∈ R, that we write as Dλ and Eλ and which are given by

Dλ = (1 + λ)D′ + λE′ and Eλ = (1 − λ)E′ − λD′

also satisfy [Dλ,Eλ] =Dλ +Eλ.

With this observation in mind, let (uk)k≥0 by any real sequence with uk ≠ 0 for any k ≥ 0. The

bidiagonal matrices D′ and E′ given by

(D′)ij = δi,j(i − 1 + d) + δi+1,jiui−1 and (E′)ij = δi−1,j
i − 2 + d + e

ui−2
+ δi,j(i − 1 + e),

or, in matrix form

D′ =

⎛
⎜⎜⎜⎜
⎝

d u0 0 0 . . .
0 1 + d 2u1 0 . . .
0 0 2 + d 3u2 . . .
0 0 0 3 + d
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟
⎠

and E′ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

e 0 0 0 . . .
d+e
u0

1 + e 0 0 . . .

0 1+d+e
u1

2 + e 0 . . .

0 0 2+d+e
u2

3 + e
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

satisfy the commuting relation [D′,E′] =D′+E′. In particular, for any λ ∈ R the parameterized matrices

Dλ and Eλ are tridiagonal and satisfy the same relation.
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Proposition A.5.2. Let λ, d, e ∈ R be fixed such that λ ≠ q−1 , and such that for each k ∈ N it holds

d+ e+k − 1 ≠ 0. A particular representation of the algebra {(R−1 ), (R−2 ), (R0)} is given by D =Dλ, E = Eλ
and row vectors ⟨W0∣ and ⟨W1∣, defined through a sequence (∣Uk⟩)k≥1, where ∣Uk⟩ = ∣w0

k,w
1
k⟩, satisfying

the following second-order recurrence relation:

∣Uk+1⟩ = −A−1
k Bk ∣Uk⟩ −A−1

k Ck ∣Uk−1⟩ , for k ≥ 2,

with initial conditions
⎧⎪⎪⎨⎪⎪⎩

∣U2⟩ = −A−1
1 B1 ∣U1⟩ ,

∣U1⟩ ≠ 0,

and with coefficients, for each k ∈ N+, given by

Ak =
d + e + k − 1

uk−1
(
q−1 − λ
d−1

q−1 − λ
d−1 − 1) ,

Bk = 2(k − 1)((q−1 − λ) − 1/2
d−1

(q−1 − λ) − 1/2
d−1 − 1 ) + ((q−1 − λ)(d + e) − d + q−2

d−1(d + e) + d−2
(q−1 − λ)(d + e) − d + q−2 + q−3
(d−1 − 1)(d + e) + d−3 ) ,

Ck = (k − 1)uk−2 (q−1 − (1 + λ)
d−1

q−1 − (1 + λ)
d−1 − 1 ) .

In particular, there exists a right-inverse of C − 1d−3 , that we write as A, which is an infinite lower-

triangular matrix with entries equal to zero at the diagonal. Concretely, the entries of A, that we write

as aij = (A)ij for i, j ≥ 1, satisfy the second-order, non-homogeneous recurrence relation

ai+1,jiui−1 + ai,j(2(i − 1) + d + e − d−3) + ai−1,j
i − 2 + d + e

ui−2
= δi,j , for i, j ≥ 1, (A.11)

with boundary conditions

⎧⎪⎪⎨⎪⎪⎩

a0,j ∶= 0, j ≥ 1,
a1,j = 0, j ≥ 1.

Proof. The recurrence relation defining the sequence (∣Uk⟩)k≥1, in the statement of the current propo-

sition, is obtained through (A.9) by imposing that Ak is invertible for every k. From the particular

representation of the matrices D and E, that we recall to be both parameterized by λ, this condition

is verified for (d + e + k − 1)(q−1 − λ) ≠ 0. The particular coefficients Ak,Bk,Ck are obtained by direct

substitution of the entries of the matrices D and E in the expressions for the coefficients in (A.10).

Regarding the existence of a matrix A such that (C−1d−3)A = 1, let C ′ ∶= C−1d−3 and denote its entries

by c′i,j , for i, j ≥ 1. Because C ′ is a tridiagonal matrix, the equality C ′A = 1 is translated, entry-wise, to

⎧⎪⎪⎨⎪⎪⎩

c′1,1a1,1 + c′1,2a2,1 = 1,
c′1,1a1,j + c′1,2a2,j = 0, j ≠ 1,

and
⎧⎪⎪⎨⎪⎪⎩

c′i,i−1ai−1,i + c′i,iai,i + c′i,i+1ai+1,i = 1, i ≠ 1,
c′i,i−1ai−1,j + c′i,iai,j + c′i,i+1ai+1,j = 0, i ≠ 1, j ≠ i,

which can be succinctly presented as in (A.11). We now iterate the recurrence for the initial values of

i ∈ N+. Precisely, fixed j ≥ 1, for i = 1,2,3, respectively,

c′1,1a1,j + c′1,2a2,j = δj,1,

c′2,1a1,j + c′2,2a2,j + c′2,3a3,j = δj,2,

c′3,2a2,j + c′3,3a3,j + c′3,4a4,j = δj,3.
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Therefore,

a2,j = −
c′1,1

c′1,2
a1,j +

1
c′1,2

δj,1,

a3,j = a1,j (
c′2,2

c′2,3

c′1,1

c′1,2
−
c′2,1

c′2,3
) − 1

c′1,2

c′2,2

c′2,3
δj,1 +

1
c′2,3

δj,2,

a4,j = a1,j (
c′2,1

c′2,3

c′3,3

c′3,4
−
c′2,2

c′2,3

c′1,1

c′1,2

c′3,3

c′3,4
+
c′1,1

c′1,2

c′3,2

c′3,4
) + δj,1

1
c′3,4
(
c′3,3

c′1,2

c′2,2

c′2,3
−
c′3,2

c′1,2
) − δj,2

1
c′3,1

c′3,3

c′2,3
+ δj,3

1
c′3,4

,

and so on. Fixing each entry of the first line of A as equal to zero (a1,j = 0 for all j ≥ 1) makes A a

lower-triangular matrix with entries equal to zero at the diagonal.
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B.1 Replacement Lemmas

Proof of Proposition 3.4.2. Recalling the identity (3.44), let us focus on the rightmost term there. Note

that b − a =
√
a(
√
b −
√
a) +
√
b(
√
b −
√
a), thus

⟨L(m−1)
N f⟩

νNα
= ∑
x∈TN

∫
η∈ΩN

r
(m−1)
N (τxη)

√
f(η) (∇x,x+1

√
f) (η)νNα (dη)

+ ∑
x∈TN

∫
η∈ΩN

r
(m−1)
N (τxη)

√
f(ηx,x+1) (∇x,x+1

√
f) (η)νNα (dη).

Performing the change of variables η ↦ ηx,x+1 on the second term above and using the symmetry of the

rates, r(m−1)
N (τxηx,x+1) = r(m−1)

N (τxη), we obtain

⟨L(m−1)
N f⟩

νNα
= ∑
x∈TN

∑
η∈ΩN

r
(m−1)
N (τxη)

√
f(η) (∇x,x+1

√
f) (η)(1 − ν

N
α (ηx,x+1)
νNα (η)

)νNα (η).

Note that the previous quantity equals zero if α(⋅) is constant. Otherwise, applying Young’s inequality

with A > 0,

√
f(η) (∇x,x+1

√
f) (η)(1 − ν

N
α (ηx,x+1)
νNα (η)

) ≤ 1
2A
∣(∇x,x+1

√
f) (η)∣

2
+ A

2
f(η)∣1 − ν

N
α (ηx,x+1)
νNα (η)

∣
2

and therefore

⟨L(m−1)
N f⟩

νNα
≤ 1

2A
Γ(m−1)
N (

√
f, νNα ) +

A

2 ∑x∈TN
∑
η∈ΩN

r
(m−1)
N (τxη)∣1 −

νNα (ηx,x+1)
νNα (η)

∣
2

f(η)νNα (η),

where ∣1−νNα (ηx,x+1)/νNα (η)∣
2 ≤ cαN−2 with cα > 0 for α(⋅) a Lipschitz function. From Lemma 3.2.16 we

can bound

∑
x∈TN

r
(m−1)
N (τxη) ≤

`N

∑
k=1
∣(m
k
)∣ ∑
x∈TN

r(k−1)(τxη) ≤ 2
`N

∑
k=1
∣(m
k
)∣(N + k − 1) ≲ N.

In this way, recalling that f is a density with respect to νNα , we obtain the upper bound

⟨L(m−1)
N f⟩

νNα
≤ 1

2A
Γ(m−1)
N (

√
f, νNα ) +

A

2
cα
N
.

Plugging this upper bound into identity (3.44) with the choice A = 1 we obtain

E(m−1)
N ≥ 1

4
Γ(m−1)
N (

√
f, µ) − cα

4N
.

To finish the proof, we see that the lower bounds in Proposition 3.2.10 imply that

Γ(m−1)
N (

√
f, µ) ≥ 1m∈(1,2)m [δNΓ(0)N (

√
f, µ) + m − 1

2
Γ(1)N (

√
f, µ)] + 1m∈(0,1)Γ(0)N (

√
f, µ).

The next two technical results are standard but will be invoked in the proof of the replacement lemmas

and in their applications.

Lemma B.1.1. Consider x, y ∈ T and let ϕ ∶ [0, T ] × ΩN → R be invariant for the map η ↦ ηx,y.

Moreover, consider the measure νNα with α(⋅) ∈ (0,1) a constant function and let f ∶ ΩN → R. For all

s ∈ [0, T ] it holds that

∫
ΩN

ϕ(s, η)(η(x) − η(y))f(η)νNα (dη) =
1
2 ∫ΩN

ϕ(s, η)(η(y) − η(x))(f(ηx,y) − f(η))νNα (dη)
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Proof. Summing and subtracting the appropriate term we have

∫
ΩN

ϕ(s, η)(η(x) − η(y))f(η)νNα (dη) =
1
2 ∫ΩN

ϕ(s, η)(η(x) − η(y))(f(η) − f(ηx,y))νNα (dη)

+ 1
2 ∫ΩN

ϕ(s, η)(η(x) − η(y))(f(η) + f(ηx,y))νNα (dη).

To see that the second term in the right-hand side equals zero, simply note that performing the change

of variables η ↦ ηx,y and using that ϕ(s, ηx,y) = ϕ(s, η) and νNα (ηx,y) = νNα (η) we obtain

∫
ΩN

ϕ(s, η)(η(x) − η(y))f(ηx,y)νNα (dη) = −∫ΩN
ϕ(s, η)(η(x) − η(y))f(η)νNα (dη).

The next proposition is applied in the second term in (3.24) and in (3.35)

Proposition B.1.2. [6, Lemma 4.3.2]. Assume there exists a family F of functions FN,ε ∶ [0, T ] ×

D([0, T ],Ω) → R satisfying

sup
ε∈(0,1),N≥1

s∈[0,T ],η⋅∈D([0,T ],Ω)

∣FN,ε(s, η⋅)∣ ≤M < ∞.

Above, the interval for (0,1) for ε is arbitrary. We also assume that for all t ∈ [0, T ],

lim sup
ε→0+

lim sup
N→+∞

EµN [∣∫
t

0
FN,ε(s, ηs)ds∣] = 0.

Then we have for all δ > 0,

lim sup
ε→0+

lim sup
N→+∞

PµN
⎛
⎝

sup
t∈[0,T ]

∣∫
t

0
FN,ε(s, ηs)ds∣ > δ

⎞
⎠
= 0.

B.1.1 Replacement Lemmas for m ∈ (1, 2)

Lemma B.1.3. Consider x, y ∈ TN . Let ϕ ∶ [0, T ] ×ΩN → R be such that ∥ϕ∥L∞([0,T ]×ΩN ) ≤ cϕ < ∞ and

invariant for the map η ↦ ηz,z+1 with z ∈ Jx, y − 1K. Then for all B > 0 and for all t ∈ [0, T ]

EµN [∣∫
t

0
ϕ(s, ηN2s)(ηN2s(x) − ηN2s(y))ds∣] ≲

1
B
+ TB∣y − x∣ (`N)

m−1

N
.

Proof. From the entropy inequality (see [26, Appendix 1, Chapter 8]) with νNα as reference measure and

Feynman Kac’s formula (see [1, page 14] for instance), we bound the previous expectation from above by

cα
B
+ ∫

T

0
sup
f
{∣⟨ϕ(s, η)(η(x) − η(y)), f⟩νNα ∣ −

N

B
E(m−1)
N (

√
f, νNα )}ds, (B.1)

where the supremum is over densities with respect to νNα . Rewriting η(x) − η(y) = ∑y−1
z=x η(z) − η(z + 1),

from Lemma B.1.1 the first term inside the supremum in (B.1) can be rewritten as

1
2 ∫ΩN

y−1
∑
z=x

ϕ(s, η)(η(z) − η(z + 1))(f(η) − f(ηz,z+1))νNα (dη).

From Young’s inequality we bound this from above by cϕ times

1
4A ∫ΩN

y−1
∑
z=x
(
√
f(ηz,z+1) +

√
f(η))

2
νNα (dη) +

A

4 ∫ΩN

y−1
∑
z=x
(∇z,z+1

√
f(η))

2
νNα (dη)
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≤ ∣y − x∣
2A

+ A
2

Γ(0)N (
√
f, νNα ),

where we performed a change of variables on the first term. Summarizing, applying Proposition 3.4.2 on

(B.1) we bound (B.1) from above by

cα
B
+ T (1

2
Γ(0)N (

√
f, νNα ) (

cϕ

4
A − N

B
δN) + cϕ

∣y − x∣
2A

) .

Fixing A = 4NδN /cϕB and recalling from Proposition 3.2.10 that 0 < δN = ∑k≥`N ∣(
m−1
k
)∣ ≲ (`N)−(m−1),

the proof is concluded.

Corollary B.1.4. Fixed N , for any i ∈ N+ and L ∈ N+ such that L < N , let ϕ ∶ [0, T ] ×ΩN → R be such

that ∥ϕ∥L∞([0,T ]×ΩN ) ≤ cϕ < ∞ and invariant for the map η ↦ ηz,z+1 with z ∈ JiL, (i + 1)L − 2K. Then, for

all B > 0 and for all t ∈ [0, T ] it holds

EµN [∣∫
t

0
ϕ(s, ηN2s) (ηN2s(iL) − ηLN2s(iL))ds∣] ≲ 1

B
+ TB (L + 1)(`N)m−1

N
.

Proof. Observing that η(0)−ηL(0) = 1
L ∑y∈ΛL0 (η(0) − η(y)), from Lemma B.1.3 we can bound from above

the expectation in the statement of the corollary by a constant times

1
L
∑
y∈ΛL0

1
B
+ TBy (`N)

m−1

N
≲ 1
B
+ TB (L + 1)(`N)m−1

N
.

Let us now state the two-blocks estimate:

Lemma B.1.5. Fix ε > 0 and N ∈ N. For i ∈ N and L < εN fixed, let ϕ ∶ [0, T ] ×ΩN → R+ be such that

∥ϕ∥L∞([0,T ]×ΩN ) ≤ cϕ < ∞ and invariant for the map η ↦ ηz,z+1 with z ∈ JiL, iL + ⌊Nε⌋ − 1K. Then for all

B > 0 and for all t ∈ [0, T ] it holds that

EµN [∣∫
t

0
ϕ(s, ηN2s) (η

⌊Nε⌋
N2s
(i⌊Nε⌋) − ηLN2s(iL))ds∣] ≲ 1

B
+ T [ 1

L
+B(L(`N)

m−1

N
+ i L
N
+ ε(i + 1))] .

Before proving this lemma, let us comment on the proof: we will follow closely the path argument in [5],

although with some warm up before its application and some minor adjustments. Although for m ∈ (1,2)

the state-space is irreducible, the exclusion rates are not fast enough to travel along ⌊Nε⌋–distances for

every configuration, which would avoid the use of the path argument below (as it is the case for m ∈ (0,1)).

A simple way to see this quantitatively is to take ∣y − x∣ = εN in Lemma B.1.3. The main reason for the

resulting blow up is that the rate decreases as inf{k ∈ J1, `N K ∶ r(k)(η) = 0} increases, and so for certain

configurations the jumping rate can be as small as δN ≲ (`N)−(m−1) (see Proposition 3.2.10).

In order not to use the path argument we would need to replace the lower bound (3.45) by κΓ(0)N (
√
f, νNα ),

for some constant κ > 0 independent of N , which cannot be done because there is no such constant such

that infη∈ΩN c
(m−1)
N (η) ≥ κ. Then again, we cannot relate the function inside the expectation in the

statement of the two-blocks estimate solely with Γ(1)N , since this would require an initial shuffling of the

configuration in order to move the particles with the PMM(1), hence there is the need to compare it with

a SSEP term as well. In this way, we are restricted to finding some useful lower bound, such as (3.45).

This introduces a second issue: in [5], the replacement scheme relies on the treatment of

EµN [∣∫
t

0
ηLN2s(−L) (η

⌊Nε⌋
N2s
(0) − ηLN2s(0))ds∣] ,
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analogously to (3.42). There, the authors start by conditioning on the number of particles in ηLN2s(−L),

which allows them to introduce the PMM(1) rates via Young’s inequality. In our case however, we have

ηLN2s(0), meaning that we must condition on the number of holes instead. Controlling the holes does not

allow us to introduce the PMM(1) rates, but the PMM(1) rates instead, which are incompatible with the

lower bound (3.45). To avoid this, one could distribute the products of empirical averages in (3.42), but

doing so would necessarily lead to restrictions on the explosion rate of `N . The simple workaround is to

replace directly η
⌊Nε⌋
N2s
(0) by ηLN2s(0) with the conditioning happening inside either the ⌊Nε⌋ or L–boxes

and not outside, and at the final step of the proof invoke Proposition 3.4.2.

Let us now go into the proof.

Proof of Lemma B.1.5. Analogously to the previous replacement lemmas, the expectation in the state-

ment of the lemma can be estimated by some constant times

cα
B
+ ∫

t

0
sup
f
{∣⟨ϕ(s, η) (η⌊Nε⌋(i⌊Nε⌋) − ηL(iL)) , f⟩

νNα
∣ − N

B
E(m−1)
N (

√
f, νNα )}ds, (B.2)

where the supremum is over densities with respect to νNα and α(⋅) ∈ (0,1) is a constant function. Now

we break the box Λ⌊Nε⌋0 into K smaller L−sized boxes:

J0, ⌊Nε⌋ − 1K = J0,KL − 1K =
K

⋃
j=1

J(j − 1)L, jL − 1K, K = ⌊Nε⌋
L

,

leading to

η⌊Nε⌋(i⌊Nε⌋) − ηL(iL) = 1
K

K

∑
j=1
(ηL(i⌊Nε⌋ + (j − 1)L) − ηL(iL)) .

Note that we can do this only if ⌊Nε⌋ > L, which is the case given that L/N < ε. Moreover, K might not

be an integer. Nevertheless, since for any bounded function ψ ∶ ΩN → R we have

1
⌈K⌉

⌈K⌉

∑
j=1

ψ(τjη) −
1
⌊K⌋

⌊K⌋

∑
j=1

ψ(τjη) ≲
1
⌈K⌉

+ (1 − ⌊K⌋
⌈K⌉
) K→+∞ÐÐÐÐ→ 0

we proceed as if K ∈ N+.

For each j ∈ {1, . . . ,K} consider the event

Xj = {η ∈ ΩN ∶ ηL(iL) ≥
3
L
}⋃{η ∈ ΩN ∶ ηL(i⌊Nε⌋ + (j − 1)L) ≥ 3

L
} , (B.3)

meaning that there are at least 3 particles in at least one of the boxes

ΛLiL = JiL, (i + 1)L − 1K or ΛLi⌊Nε⌋+(j−1)L = Ji⌊Nε⌋ + (j − 1)L, i⌊Nε⌋ + jL − 1K.

The integral, over (Xj)c, of the first term in the variational formula (B.2) is of order L−1, therefore we

can bound from above the first term in the aforementioned variational formula by a term of order L−1

plus

1
2KL

K

∑
j=1
∑
z∈ΛL
∣∫
Xj
ϕ(s, η) (η(z + i⌊Nε⌋ + (j − 1)L) − η(z + iL)) (f(η) − f(ηz+i⌊Nε⌋+(j−1)L,z+iL))νNα (dη)∣ ,

(B.4)
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where we used Lemma B.1.1. To estimate the quantity in the previous display, we use a path argument

in the same spirit as in [5, Lemma 5.8], we claim that we can decompose

f(η) − f(ηz+i⌊Nε⌋+(j−1)L,z+iL) = ∑
n∈JPMM(0)

(f(η(n−1)) − f(η(n))) + ∑
n∈JPMM(1)

(f(η(n−1)) − f(η(n)))(B.5)

where

• η(0) = η, η(n+1) = (η(n))x(n),x(n)+1;

• (x(n))n=0,...,N(x1) is a sequence of moves (following the procedure to be described shortly) taking

values in the set {x1, . . . , z+i⌊Nε⌋+(j−1)L}, with N(x1) the number of nodes we have to exchange;

• JPMM(0), JPMM(1) are the sets of indexes that count the nodes used with the PMM(0) and PMM(1)

dynamics, respectively, and are such that

∣JPMM(0)∣ ≤ J0L and ∣JPMM(1)∣ ≤ J1(iL + jL + i⌊Nε⌋)

for some finite constants J0, J1 > 0;

• for each n ∈ JPMM(1) we have c(1)(τx(n−1)η
(n−1)) > 0.

Assuming all this, for i ∈ {0,1} and j ∈ {1, . . . ,K} we have that

∑
n∈JPMM(i)

∫
Xj
∣f(η(n−1)) − f(η(n))∣νNα (dη)

= ∑
n∈JPMM(i)

∫
Xj
∣
√
f(η(n−1)) −

√
f(η(n))∣∣

√
f(η(n−1)) +

√
f(η(n))∣νNα (dη)

≤ Ai
2 ∑

n∈JPMM(i)
∫
Xj

r(i)(τx(n−1)η
(n−1))∣

√
f(η(n−1)) −

√
f(η(n))∣

2
νNα (dη)

+ 1
2Ai

∑
n∈JPMM(i)

∫
Xj

1
r(i)(τx(n−1)η(n−1))

∣
√
f(η(n−1)) +

√
f(η(n))∣

2
νNα (dη)

(B.6)

for any Ai > 0. The inequality requires some justification. Fix some n ∈ JPMM(0) ∪ JPMM(1) and let us

write ξ = η(n−1). Then

f(η(n−1)) − f(η(n)) = 1{η∈ΩN ∶ ηx(n−1)+ηx(n−1)+1=1}(ξ) (f(ξ) − f(ξx(n−1),x(n−1)+1))

= r(0)(τx(n−1)ξ) (f(ξ) − f(ξx(n−1),x(n−1)+1)) .

If n ∈ JPMM(0) we are done. Otherwise, since n ∈ JPMM(1), we have ξx(n−1)−1 + ξx(n−1)+2 > 0. Consider

the set Ω(1)x = {η ∈ ΩN ∶ c(1)(τxη) > 0}. Then f(ξ) = f(ξ)1{Ω(2)
x(n−1)}

(ξ), and since the constraints are

independent of the occupation at the sites x(n−1), x(n−1)+1 we also have that ξx(n−1),x(n−1)+1 ∈ Ω(1)
x(n−1).

As such,

f(η(n−1)) − f(η(n)) = r(0)(τx(n−1)ξ) (f(ξ)1Ω(1)
x(n−1)

(ξ) − f(ξx(n−1),x(n−1)+1)1Ω(1)
x(n−1)

(ξx(n−1),x(n−1)+1)) .

And since the change of variables ξ ↦ ξx(n−1),x(n−1)+1 ∈ Ω(1)
x(n−1) is a bijection of Ω(1)

x(n−1), we conclude that

f(η(n−1)) − f(η(n)) = 1Ω(1)
x(n−1)

(ξ)r(0)(τx(n−1)ξ) (f(ξ) − f(ξx(n−1),x(n−1)+1))
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and the rates for the PMM(1) can be introduced by using Young’s inequality.

We treat the integral on the first term on the right-hand side of (B.6). Recall that ξ = η(n−1). For

i ∈ {0,1} and j ∈ {1, . . . ,K},

∑
η∈Xj

r(i)(τx(n−1)ξ)∣
√
f(ξ) −

√
f(ξx(n−1),x(n−1)+1)∣

2
νNα (η)

≤ ∑
η∈ΩN

r(i)(τx(n−1)ξ)∣
√
f(ξ) −

√
f(ξx(n−1),x(n−1)+1)∣

2
νNα (ξ).

Since η ∈ ΩN ⇔ ξ = η(n−1) ∈ ΩN , rearranging the first summation in the previous display and relabelling

the terms yields

∑
η∈ΩN

r(i)(τx(n−1)η)∣
√
f(η) −

√
f(ηx(n−1),x(n−1)+1)∣

2
νNα (η).

Consequently, the first term on the right-hand side of (B.6) can be bounded from above byAiΓ(i)N (
√
f, νNα ),

while the second can be bounded from above by

1
Ai

∑
n∈JPMM(i)

∫
ΩN
(f(η(n−1)) + f(η(n)))νNα (dη) =

2
Ai
∣JPMM(i)∣.

In this way, (B.4) is no larger than

1
2
A0Γ(0)N (

√
f, νNα ) +

1
2
A1Γ(1)N (

√
f, νNα ) + J0

L

A0
+ J1 (

iL + i⌊Nε⌋
A1

+ KL
A1
) .

Recalling Proposition 3.4.2, the quantity (B.2) is overestimated by

cα
B
+ T sup

f
{3cϕ

L
+ J0

L

A0
+ J1

iL + (i + 1)⌊Nε⌋
A1

+1
2

Γ(0)N (
√
f, νNα ) (A0 −

N

B

m

2
δN) +

1
2

Γ(1)N (
√
f, νNα ) (A1 −

N

B

m − 1
4
)} ,

where we recall that KL = ⌊Nε⌋. Setting

A0 = δN
N

B

m

2
and A1 =

N

B

m − 1
4

we obtain an upper bound of the order of

1
B
+ T [ 1

L
+B(L(`N)

m−1

N
+ i L
N
+ ε(i + 1))] .

Now we prove our claim with the path argument. The goal is to exchange the occupation variables of

the sites

zi,ε,L ∶= z + i⌊Nε⌋ + (j − 1)L and zi,L ∶= z + iL, z ∈ J0 , L − 1K.

Recall that there are at least three particles either in ΛLiL or in ΛLi⌊Nε⌋+(j−1)L. We outline the argument

only for the case of at least three particles in ΛLiL since the other one is analogous and leads to an

equivalent estimate. It is sufficient to consider configurations in (B.4) such that η(zi,ε,L) + η(zi,L) = 1.

The decomposition (B.5) illustrates a path on the state-space starting from the configuration η and ending

at ηzi,ε,L,zi,L . Note that we can consider without loss of generalization that η(zi,L) = 1, since if η(zi,L) = 0

then we construct an analogous path starting from ηzi,ε,L,zi,L and ending at η.
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Recall that a mobile cluster with respect to the PMM(1) is a local configuration which can be trans-

lated on the lattice by a sequence of jumps dictated by the PMM(1). For example, the smallest mobile

cluster for the PMM(1) corresponds to a local configuration where η(x)+η(x+1)+η(x+2) = 2, for some

x ∈ TN .

Since η(z + iL) = 1, there are at least two other particles in ΛLiL. Pick the two closest to the site z + iL

and label them as P1 and P2. Let us also denote the particle at site zi,L by Pzi,L . We use the SSEP

dynamics to move P1 and P2 to the vicinity of Pzi,L , forming a "mobile cluster". This can be done with

a number of steps of order L. We arrive at one of the following three local configurations.

P1 P2 Pzi,L

zi,L

P1 Pzi,L P2

zi,L

Pzi,L P1 P2

zi,L

Note that we still need an empty site in the vicinity of these three particles to construct a mobile

cluster. Nevertheless, if this is not the case we can assume that they are part of a larger mobile cluster.

Moreover, we can relabel the particles and use the SSEP dynamics to have the local configuration (for

example) as in the first case of the previous figure. Now we move this mobile cluster to the left of the

(empty) site zi,ε,L with the PMM(1) dynamics.

P2 Pzi,L

zi,L

P1 Pzi,L

zi,L

P1 P2

zi,L

↦

↦

P1 P2

Pzi,LP1 P2

zi,L

Pzi,L

↦

The number of steps can be crudely bounded above by a term of order L + (i⌊Nε⌋ + (j − 1)L). By

hypothesis, η(zi,ε,L) = 0 and so we leave Pzi,L at site zi,ε,L using either the SSEP or the PMM(1) dynamics,

and transport the hole to the site zi,L with the PMM(1) dynamics.

P1 P2 Pzi,L

zi,ε,L

P1 P2 Pzi,L

zi,ε,L

↦

If the site to the left of P1 is either empty or occupied, we can perform the following transport with

either the PMM(1) or a relabelling in the last step.

P1 P2

zi,ε,L

P1 P2

zi,ε,L

P1 P2

zi,ε,L

↦ ↦

If the aforementioned site was occupied, we can exchange the hole and the particle at site z + i⌊Nε⌋ +

(j−1)L−4 with the PMM(1) dynamics, otherwise there is nothing to do and we relabel the hole, obtaining
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P1 P2

zi,ε,L

This procedure is repeated at most an order of L+(i⌊Nε⌋+(j −1)L) steps, moving the mobile cluster

to the vicinity of the site zi,L. The SSEP dynamics is then used to shuffle the configuration restricted to

the box ΛLiL, moving P1 and P2 to their original sites with a cost of at most an order of L steps.

B.1.2 Replacement Lemmas for m ∈ (0, 1)

Lemma B.1.6. For all B > 0 and T ⊆ [0, T ] it holds that

EµN
⎡⎢⎢⎢⎣

RRRRRRRRRRR
∫
T

`N

∑
k=1
∣(m
k
)∣
k−1
∑
j=1

k−1−j
∑
n=0
(∇+ηN2s)(n)s

(k−1)
j (τnηN2s)ds

RRRRRRRRRRR

⎤⎥⎥⎥⎦
≲ 1
B
+ ∣T ∣B (`N)

1−m

N
.

Proof. Proceeding as previously, we have to estimate

cα
B
+ ∫

T
sup
f

⎧⎪⎪⎨⎪⎪⎩

RRRRRRRRRRR

`N

∑
k=1
∣(m
k
)∣⟨

k−1
∑
j=1

k−1−j
∑
n=0
(∇+η)(n)s(k−1)

j (τnη), f⟩νNα
RRRRRRRRRRR
− N
B
E(m−1)
N (

√
f, νNα )

⎫⎪⎪⎬⎪⎪⎭
ds. (B.7)

Note that we have the following inequality

k−1
∑
j=1

k−1−j
∑
n=0
(∇+η)(n)s(k−1)

j (τnη) ≤
k−1
∑
j=1

k−1
∑
n=0
∣(∇+η)(n)∣s(k−1)

j (τnη) ≤
k−1
∑
n=1

r(k−1)(τnη).

Since s(k−1)
j (τnη) is invariant for the map η ↦ ηn,n+1, from Lemma B.1.1, Young’s inequality and the

inequality in the previous display we can bound from above the summation over j in (B.7) by:

1
4A ∫ΩN

k−1
∑
n=1

r(k−1)(τnη) (
√
f(ηn,n+1) +

√
f(η))

2
νNα (dη)

+ A
4 ∫ΩN

k−1
∑
n=1

r(k−1)(τnη) (∇n,n+1
√
f(η))

2
νNα (dη).

Taking the binomial coefficients into consideration, we bound from above

∫
ΩN

`N

∑
k=1
∣(m
k
)∣
k−1
∑
n=1

r(k−1)(τnη) (∇n,n+1
√
f(η))

2
νNα (dη) ≤ Γ(m−1)

N (
√
f, νNα ).

We have the following upper bounds

∫
ΩN

`N

∑
k=1
∣(m
k
)∣
k−1
∑
n=1

r(k−1)(τnη) (
√
f(ηn,n+1) +

√
f(η))

2
νNα (dη)

≤ 2∫
ΩN

`N

∑
k=1
∣(m
k
)∣
k−1
∑
n=1

r(k−1)(τnη) (f(ηn,n+1) + f(η))νNα (dη)

=4∫
ΩN

`N

∑
k=1
∣(m
k
)∣
k−1
∑
n=1

r(k−1)(τnη)f(η)νNα (dη)

≤ 16
`N

∑
k=1
∣(m
k
)∣k∫

ΩN
f(η)νNα (dη) ≤ c(`N)1−m

where c > 0 is some constant independent of N . The previous inequalities follow, respectively, from

Young’s inequality, the fact that the profile α is constant, Lemma 3.2.16, the fact of f being a density
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and then Lemma B.3.1 and an integral comparison. With all this, we obtain the following estimate for

(B.7)

cα
B
+ ∣T ∣ ( c

4
(`N)1−m

A
+ Γ(m−1)

N (
√
f, νNα ) (

1
4
A − N

B
)) .

Fixing A = 4N/B concludes the proof.

Lemma B.1.7. Consider x, y ∈ TN . Let ϕ ∶ [0, T ]×ΩN → R such that ∥ϕ∥L∞([0,T ]×ΩN ) < ∞ and invariant

for the map η ↦ ηz,z+1 with z ∈ Jx, y − 1K. Then, for all B > 0 and for all t ∈ [0, T ] it holds

EµN [∣∫
t

0
ϕ(s, ηN2s)(ηN2s(x) − ηN2s(y))ds∣] ≲

1
B
+ TB ∣y − x∣

N
.

Proof. Repeating the computations in the proof of Lemma B.1.3, there exist constants c0, c1, c2 > 0 such

that we can overestimate the expectation by

c0
B
+ T sup

f
{c1AΓ(0)N (

√
f, νNα ) + c2

∣y − x∣
A
− N
B
E(m−1)
N (

√
f, νNα )} .

Recalling the lower bound for the Dirichlet form in Proposition 3.4.2 we can choose A =mN/c1B.

B.2 PDE results
B.2.1 Slow diffusion

The following result extends [5, Lemma 6.2] to the case m ∈ (1,2).

Proposition B.2.1. Let f, g ∈ [0,1] with f ≠ g. If m ∈ (1,2) then, for all A > 0 we have

∣f − g∣ ≤ ∣(f)
m − (g)m∣

V (m)(f, g) +A
+A 2

m(m − 1)
.

where

0 < V (m)(f, g) = ∑
k≥1
(m
k
)(−1)k+1vk(1 − f,1 − g) < ∞

and

vk(f, g) = 1k=1 + 1k=2(f + g) + 1k≥3 (fk−1 + gk−1 +
k−2
∑
i=1

gifk−1−i) .

Proof. We start with f, g ∈ (0,1).

(f)m − (g)m = ∑
k≥1
(m
k
)(−1)k ((1 − f)k − (1 − g)k) .

One can rewrite, for any k ∈ N+,

ak − bk = (a − b) [1k=1 + 1k=2(a + b) + 1k≥3 (ak−1 + bk−1 +
k−2
∑
i=1

biak−1−i)] = (a − b)vk(a, b). (B.8)

In this way,

(f)m − (g)m = (f − g) ∑
k≥1
(m
k
)(−1)k+1vk(1 − f,1 − g) = (f − g)V (m)(f, g).

141



We show that V (m)(f, g) > 0. Assume f, g ∈ (0,1) with f > g. Then, fm − gm > 0 implies V (m)(f, g) > 0.

Similarly, if f < g then fm − gm < 0 Ô⇒ V (m)(f, g) > 0. With this in mind, we can rewrite

(f)m − (g)m = (f − g) (V (m)(f, g) ±A) ⇔ f − g = (f)
m − (g)m

V (m)(f, g) +A
+A f − g

V (m)(f, g) +A
, for any A > 0.

Now we will treat the second term on the right-hand side of last display. Note that

V (m)(f, g) =m∑
k≥0
(m − 1

k
)(−1)k vk+1(1 − f,1 − g)

k + 1
.

Since m ∈ (1,2) and v1(1 − f,1 − g) = 1, then

V (m)(f, g) =m(1 − ∑
k≥1
∣(m − 1

k
)∣vk+1(1 − f,1 − g)

k + 1
) =m∑

k≥1
∣(m − 1

k
)∣ (1 − vk+1(1 − f,1 − g)

k + 1
) ,

where we note that

1 − ∑
k≥1
∣(m − 1

k
)∣ = 0.

Since f, g ∈ (0,1) we also have 0 < vk+1(1−f,1−g)
k+1 < 1, and so let us introduce

W (m)(f, g) =m∑
k≥2
∣(m − 1

k
)∣ (1 − vk+1(1 − f,1 − g)

k + 1
) > 0.

In this way, we can write

V (m)(f, g) =m(m − 1)(1 − v2(1 − f,1 − g)
2

) +W (m)(f, g) =mm − 1
2
(f + g) +W (m)(f, g).

Now back to our main problem,

A
∣f − g∣

V (m)(f, g) +A
= A ∣f − g∣

mm−1
2 (f + g) +W (m)(f, g) +A

≤ A 2
m(m − 1)

∣f − g∣
f + g

≤ A 2
m(m − 1)

.

If f = 1 we can write 1 − (g)m = (1 − g)V (1, g), while if f = 0, we use instead that 0 = ∑k≥0 (mk )(−1)k.

For either f ∈ {0,1}, the rest of the proof is analogous.

To check that V (m) is bounded is enough to bound from above vk ≤ k and use the estimate for the

binomial coefficients from Lemma B.3.1.

Corollary B.2.2 ( 1
4−Hölder continuity). If ρm ∈ L2([0, T ];H1(T)), with m ∈ (1,2), then for any t ∈ [0, T ]

∣ρt(u) − ρt(v)∣ ≤ ∣v − u∣
1
4 ( 2

m(m − 1)
+ ∥∂u(ρmt )∥L2(T)) a.e. u, v ∈ T.

Proof. Since ρm is in the target Sobolev space, we have a weak derivative of ρ and can write a.e., from

the previous proposition

∣ρt(u) − ρt(v)∣ ≤ ∫
v
u ∂w(ρ

m
t )dw

V (m)(ρt(u), ρt(v)) +A
+ 2A
m(m − 1)

≤ 1
A
∫

v

u
∂w(ρmt )dw +

2A
m(m − 1)

.

We now apply Cauchy-Schwarz’s inequality and set A = ∣v − u∣
1
4 .

Lemma B.2.3 (Uniqueness of weak solutions). For ρini ∶ T→ [0,1] a measurable initial profile the weak

solution of (1.2), in the sense of Definition 3.2.22, is unique.
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Proof. The proof relies on the same choice of test function as in [24, Lemma 6.3], there for solutions

of the FDE with m = −1. Note that for m ∈ (1,2) holds ρm ∈ L2([0, T ];H1(T)). A solution ρ of (1.2)

satisfies then the formulation (3.21) or, equivalently,

0 = ⟨ρt,Gt⟩ − ⟨ρini,G0⟩ − ∫
t

0
⟨ρs, ∂sGs⟩ds + ∫

t

0
⟨∂u(ρs)m, ∂uGs⟩ds

for any G ∈ C1,2([0, T ] × T). In particular, one can consider the alternative formulation where the

regularity of G above is reduced to G ∈ L2([0, T ];H1(T)) and ∂tG ∈ L2([0, T ];L2[0,1]) (satisfying the

equality on the previous display), and then show the equivalence of formulations by approximating G by

a sequence of functions in C1,2([0, T ] × T). Assume that ρ(1), ρ(2) are two solutions starting from the

same profile ρini and write w = ρ(1) − ρ(2). Then w satisfies the equality

⟨wt,Gt⟩ = ∫
t

0
⟨ws(u), ∂sGs⟩ds − ∫

t

0
⟨∂u ((ρ(1)s )m − (ρ(2)s )m) , ∂uGs⟩ds.

With the choice of test function

Gs(u) = ∫
t

s
(ρ(1)r (u))m − (ρ(2)r (u))mdr,

we obtain

⟨wt,Gt⟩ = 0 = −∫
t

0
⟨ws, ((ρ(1)s )m − (ρ(2)s )m)⟩ds −

1
2
∥∫

t

0
∂u ((ρ(1)r )m − (ρ(2)r )m)dr∥

2

2
.

It is simple to see that ws(u) (ρm1 (s, u) − ρm2 (s, u)) ≥ 0 for a.e. u ∈ T, implying w = 0 almost everywhere.

B.2.2 Fast diffusion

Proposition B.2.4 ( 1
2−Hölder continuity). If ρ ∈ L2([0, T ];H1(T)) then for any t ∈ [0, T ] it holds that

∣ρt(u) − ρt(v)∣ ≤ ∣u − v∣
1
2 ∥∂ρt∥L2(T) a.e. u, v∈ T

Proof. This is a simple consequence of Cauchy-Schwarz’s inequality.

Lemma B.2.5 (Uniqueness of weak solutions). For ρini ∶ T→ [0,1] a measurable initial profile the weak

solution of (1.2) in the sense of Definition 3.2.22 is unique.

Proof. For m ∈ (0,1) our weak formulation can be shown to be equivalent to

⟨ρt,Gt⟩ − ⟨ρini,G0⟩ = ∫
t

0
{⟨ρs, ∂sGs⟩ + ⟨(ρs)m, ∂uuGs⟩}ds, ∀t ∈ (0, T ],

where G ∈ C1,2([0, T ] × T). Recall also that we already showed, in Proposition 3.4.8, that there exists

a solution ρ ∈ L2([0, T ];H1(T)). Let ρ(1), ρ(2) be two solutions starting from the same initial data and

write w = ρ(1) − ρ(2). Then we have the following equation

⟨wt,Gt⟩ = ∫
t

0
{⟨ws, ∂sGs⟩ + ⟨(ρ(1)s )m − (ρ(2)s )m, ∂uuGs⟩}ds = 0.

We will write (ρ(1))m −(ρ(2))m as a function of w. To do so, we consider the binomial expansion of these

powers. Since m ∈ (0,1) we have

(ρ(1))m − (ρ(2))m = ∑
k≥1
∣(m
k
)∣ ((1 − ρ(2))k − (1 − ρ(1))k) .

143



It is important to truncate now the series at some step ` which will be taken to infinity later on. Let

` ∈ N+. Then

∑
k≥`+1

∣(m
k
)∣ ((1 − ρ(2))k − (1 − ρ(1))k) ≤ ∑

k≥`+1
∣(m
k
)∣ = O (`−m) .

As such, from (B.8)

`

∑
k=1
∣(m
k
)∣ ((1 − ρ(2))k − (1 − ρ(1))k) = w

`

∑
k=1
∣(m
k
)∣vk(1 − ρ(2),1 − ρ(1)) =∶ wV `

where we shorten V `s (u) ≡ V `(ρ
(1)
s (u), ρ(2)s (u)) and vk(s, u) ≡ vk(1 − ρ(1)s (u),1 − ρ(2)s (u)). Note that for

each ` fixed we have the crude upper bound

V `s (u) ≤
`

∑
k=1
∣(m
k
)∣k = O (`1−m) .

This truncation allows us to obtain

∫
t

0
⟨(ρ1

s)m − (ρ2
s)m, ∂uuGs⟩ds ≲ ∫

t

0
⟨wsV `s , ∂uuGs⟩ds +

1
`m
∫

t

0
∫
T
∣∂uuGs(u)∣duds.

Because for each fixed ` we have V ` ∈ Lp([0, t] × T), for any 1 ≤ p ≤ ∞, one can approximate V ` by a

sequence of functions in C∞([0, t];L∞(T)), with t ∈ [0, T ], and with respect to the Lp([0, t] × T) norm.

Let ϕ be some positive mollifier and define ϕε = ε−1ϕ(ε−1 ⋅) for ε > 0. Define

V `,ε⋅ (u) = V `⋅ (u) ⋆ ϕε.

Note that V `,ε ∈ Lp([0, T ]×T) for any 1 ≤ p ≤ ∞ because V ` is uniformly bounded in both time and space.

Denote by f̂ the Fourier transformation of a function f defined on [0, t]. From Parseval-Plancherel’s

identity we have the isometry

∥V `,ε⋅ (u) − V `⋅ (u)∥L2([0,t]) = ∥V̂
`,ε
⋅ (u) − V̂ `⋅ (u)∥

L2([0,t])
= [∫

t

0
∣V̂ `⋅ (u)(ξ)∣

2
∣1 − ϕ̂ε(ξ)∣2dξ]

1
2

.

Because the mollifier is normalized and positive,

∣1 − ϕ̂ε(ξ)∣ ≤ ∫
Bε(0)

ϕε(v)∣(1 − e−ivξ)∣dv,

where Bε(0) is the open ball in T centred in zero and with radius ε > 0. Since e−x ≥ 1−x we can see that

sup
v∈Bε(0)

∣(1 − e−ivξ)∣ ≤ sup
v∈Bε(0)

∣ivξ∣ ≤ ε∣ξ∣.

With this we obtain the estimate

∥V `,ε⋅ (u) − V `⋅ (u)∥L2([0,t]) ≤ ε [∫
t

0
∣V̂ `⋅ (u)(ξ)∣

2
∣ξ∣2dξ]

1
2

≤ tε [∫
t

0
∣V̂ `⋅ (u)(ξ)∣

2
dξ]

1
2

= tε∥V `⋅ (u)∥L2([0,t])

and the right-hand side of the previous display is no larger than a constant times t 3
2 ε`1−m. In particular,

from Cauchy-Schwarz’s inequality

∫
t

0
⟨wsV `s , ∂uuGs⟩ds ≤ ∫

t

0
⟨wsV `,εs , ∂uuGs⟩ds

+ ∫
T
[∫

t

0
∣V `s (u) − V `,εs (u)∣

2ds]
1
2

[∫
t

0
∣∂uuGs(u)∣2ds]

1
2

du.
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From the previous computations and again from the Cauchy-Schwarz’s inequality, the second line in last

display is bounded above by t 3
2 ε`1−m∥∂uuG∥L2([0,t]×T). We just showed that

⟨wt,Gt⟩ ≲ ∫
t

0
∫
T
ws(u){∂sGs(u) + V `,εs (u)∂uuGs(u)}duds + t 1

2 `−m (1 + εt`) ∥∂uuG∥L2([0,t]×T).

We want to fix G as a solution to the backwards problem

⎧⎪⎪⎨⎪⎪⎩

∂sf + λ∂uuf = 0, (s, u) ∈ [0, t) ×T,
f(t, u) = φ(u), u ∈ T,

(B.9)

with φ to be chosen suitably later on. This is a well-posed problem and has a solution f ∈ C1,2([0, t]×T)

given some conditions on φ and λ: under the new time τ = t− s a solution to this problem is equivalently

a solution to
⎧⎪⎪⎨⎪⎪⎩

∂τg = λ∂uug, (τ, u) ∈ (0, t] ×T,
g(0, u) = φ(u), u ∈ T.

According to [20, Thm. 4.5, Ch. 6, Sec. 4], for λ positive and bounded uniformly in [0, t] ×T, continuous

with respect to time (uniformly in T) and α−Hölder continuous with respect to the space variable; and

φ a continuous function, there exists a solution to this Cauchy problem in C1,2([0, t] × T). Note that

we have already checked that V `,ε satisfies all the requirements for λ above (for ` fixed) except the

Hölder continuity condition. Noting that ρ(1), ρ(2) is 1
2−Hölder so is Vε. To see this we sum and subtract

appropriate terms and use the triangle inequality to estimate

∣vk(s, x) − vk(s, y)∣ ≤ ∣ρ(1)s (y) − ρ(1)s (x)∣
k−1
∑
i=0

vi(1 − ρ(1)s (x),1 − ρ(1)s (y))(1 − ρ(2)s (x))k−1−i

+ ∣ρ(2)s (y) − ρ(2)s (x)∣
k−1
∑
i=0

vk−1−i(1 − ρ(2)s (x),1 − ρ(2)s (y))(1 − ρ(1)s (x))i ≲ k2∣x − y∣
1
2 .

In this way,

∣(vk(⋅, x) − vk(⋅, y)) ⋆ ϕε(s)∣ = ∫
t

0
ϕε(s − r)(vk(r, x) − vk(r, y))dr ≤ k2∣x − y∣

1
2 ∫

t

0
ϕε(s − r)dr.

Recalling that the integral on the right-hand side equals one, we see that

∣V `,εs (x) − V `,εs (y)∣ ≤
`

∑
k=1
∣(m
k
)∣∣vk(⋅, x) − vk(⋅, y) ⋆ ϕε(s)∣ ≲ ∣x − y∣

1
2 `2−m.

In this way, fixing our test function as G = f with λ = V `,ε we see that

⟨wt, φ⟩ ≲ t
1
2 `−m(1 + εt`)∥∂uuG∥L2([0,t]×T)

and we need to estimate the integral on the right-hand side above.

Let us multiply both sides of (B.9) by ∂uuG and integrate once in space and time, obtaining

0 = ∫
t

0
∫
T
∂sG∂uuGduds + ∫

t

0
∫
T
V `,ε∣∂uuG∣2duds.

An integration by parts on the first integral on the right-hand side above yields

−∫
t

0
∫
T
∂u(∂sG)∂uGduds = − 1

2 ∫
t

0
∫
T
∂s (∂uG)2 duds
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= − 1
2 ∫T

{(∂uGt(u))2 − (∂uG0(u))2}du.

Using the terminal condition and bounding from below (∂uG0(u))2 ≥ 0 and V `ε >m we conclude that

∫
t

0
∫
T
∣∂uuG∣2duds ≤ 1

2m
∥φ′∥2L2(T).

With this, and fixing ε = 1/` we obtain

⟨wt, φ⟩ ≲ t
1
2 `−m(1 + t)∥φ′∥L2(T). (B.10)

Denoting by w± the positive/negative part of w, we want to fix φ(⋅) = 1{u∈T∶ wt(u)≥0}(t, ⋅), obtaining that

ρ(1) ≤ ρ(2) a.e., and analogously take φ(⋅) = 1{u∈T∶ wt(u)≤0}(t, ⋅), obtaining instead ρ(1) ≥ ρ(2) and leading

to ρ(1) = ρ(2) a.e. To do so we need to consider in (B.10) a sequence (φn)n ⊂ C(T) converging to φ at

least in L2 and such that ∥φ′n∥L2(T) < ∞ for all n > 0. Regarding the convergence, since φ ∈ L2(T) and

C(T) is dense in Lp(T) for all 1 ≤ p < ∞, there is a sequence of continuous functions (φn)n approximating

φ in L2(T). This sequence of continuous functions can be approximated (in L2) by a sequence of smooth

functions (φn,k)k via mollification. We fix one of these smooth representatives as the terminal condition

on the problem (B.9). Taking the limit ` → +∞ in (B.10) and then the limits on n and k, and recalling

that t ∈ [0, T ] is arbitrary concludes the proof.

B.3 Auxiliary results

Lemma B.3.1. For any m ∈ R+ and any k ∈ N+ such that k ≥ 2, it holds

Γ(m)∣sin(π(k −m))∣
π(k + 1)m

< ∣(m − 1
k
)∣ < Γ(m)∣sin(π(k −m))∣

π(k −m)m
≲ 1
km

,

where the Γ−function is defined, for any z ∈ C such that Re(z) > 0, as

Γ(z) = ∫
+∞

0
uz−1e−udu.

Proof. The binomial coefficients have the following classical representation in terms of the Γ−function

(m − 1
k
) = Γ(m)

Γ(k + 1)Γ(m − k)
.

From the reflection formula

Γ(m − k)Γ(k + 1 −m) = π

sin(π(m − k))
,

we can rewrite

(m − 1
k
) = sin(π(m − k))

π

Γ(m)Γ(k + 1 −m)
Γ(k + 1)

.

Recall now the B−function, defined on z,w ∈ C ∶ Re(z),Re(w) > 0, as

B(z,w) = ∫
1

0
vz−1(1 − v)w−1dv = ∫

+∞

0

sw−1

(s + 1)w+z
ds,
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where the equality of the representations above can be checked by performing the change of variables

v = s/(s+1) on the first integral. From the definition of Γ, one can show the following classical relationship

between the Γ and B functions, for all z,w ∈ C ∶ Re(z),Re(w) > 0:

B(z,w) = Γ(z)Γ(w)
Γ(z +w)

.

In this way, we can rewrite

(m − 1
k
) = sin(π(m − k))

π
B(m,k + 1 −m).

Recall that for k ≥ 2 holds (m − 1)k = (−1)k−⌊m⌋∣(m − 1)k ∣. Noticing that B(m,k + 1 −m) > 0, we then

have that sin(π(m − k)) = (−1)k−⌊m⌋∣sin(π(m − k))∣ and we need only to find an upper and lower bound

for the B−function. From the inequality ex ≥ 1+ x, valid for x ∈ R, the rescaling v = u/(w − 1) with w > 1

on

Γ(z) = ∫
+∞

0
uz−1e−udu = (w − 1)z ∫

+∞

0
vz−1e−(w−1)vdv > (w − 1)zB(z,w),

and from the rescaling v = u/(z +w)z,

Γ(z) = ∫
+∞

0
uz−1e−udu = (z +w)z ∫

+∞

0
vz−1e−(w−1)vdv < (z +w)zB(z,w).

We conclude that

Γ(m)
(k + 1)m

< B(m,k + 1 −m) < Γ(m)
(k −m)m

.

We now prove Lemma 3.2.15.

Proof. From [9] we have the following expression

h(k)(η) =
k+1
∑
j=1

j−1
∏

i=j−(k+1)
η(i) −

k

∑
j=1

j

∏
i=−(k+1)+j

i≠0

η(i). (B.11)

Expression (3.15) is a consequence of a rearrangement which turns out to be fundamental for maintaining

`N with no restrictions. Indeed, we can rewrite

k+1
∑
j=1

j−1
∏

i=j−(k+1)
η(i) −

k

∑
j=1

j

∏
i=−(k+1)+j

i≠0

η(i) =
k

∏
i=0
η(i) +

k

∑
j=1
(η(0) − η(j))

j−1
∏

i=−(k+1)+j
i≠0

η(i).

Note that

(η(0) − η(j))
j−1
∏

i=−(k+1)+j
i≠0

η(i) =
j−1
∏

i=−(k+1)+j
η(i) −

j

∏
i=−(k+1)+j

i≠0

η(i).

Now we reorganize the products on the second term above. For n ∈ J−(k + 1) + j, j − 1K we have

j

∏
i=−(k+1)+j
i≠n+1

η(i) = (η(n) − η(n + 1))
j

∏
i=−(k+1)+j
i≠n,n+1

η(i) +
j

∏
i=−(k+1)+j

i≠n

η(i).
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Observing that a change of variables yields

j

∏
i=−(k+1)+j
i≠n,n+1

η(i) =
j−n
∏

i=−(k+1)+j−n
i≠0,1

η(i + n) = s(k)j−n(τnη),

by iteration we see that

j

∏
i=−(k+1)+j

i≠0

η(i) =
j

∏
i=−(k+1)+j

i≠j

η(i) −
j−1
∑
i=0
(η(i) − η(i + 1))s(k)j−i(τiη).

Exchanging the summations and performing a change of variables,

k

∑
j=1

j−1
∑
i=0
(η(i) − η(i + 1))s(k)j−i(τiη) =

k−1
∑
i=0
(η(i) − η(i + 1))

k−i
∑
j=1

s(k)j (τiη),

which ends the proof.
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C.1 Case n, k = 2

Here we exemplify, for the case n = 2 and k = 2, the approach to derive the linear system characterizing

the gradient condition, (4.13). For the convenience of the reader, we recall from 4.2.4 that our kinetic

constraints take, in general, the form of

c(n,k;a)(η) =
n+k
∑
j=0
∑
i∈I
aijη

−j+Pij(−j +Mj), (C.1)

and that for the particular case of n, k = 2 the sets in the previous display are given by

j −j +Mj

0 {2,3,4,5}
1 {−1,2,3,4}
2 {−2,−1,2,3}
3 {−3,−2,−1,2}
4 {−4,−3,−2,−1}

Figure C.1: Windows where
the constraints are imposed.

−j + Pij
i/j 0 1 2 3 4
1 {2,3} {−1,2} {−2,−1} {−3,−2} {−4,−3}
2 {2,4} {−1,3} {−2,2} {−3,−1} {−4,−2}
3 {2,5} {−1,4} {−2,3} {−3,2} {−4,−1}
4 {3,4} {2,3} {−1,2} {−2,−1} {−3,−2}
5 {3,5} {2,4} {−1,3} {−2,2} {−3,−1}
6 {4,5} {3,4} {2,3} {−1,2} {−2,−1}

Figure C.2: Sets corresponding to the sites with flipped
occupation (η−j+Pij ).

We also find worth recalling Definition 4.2.3 and Lemma 4.2.5. With the aid of the two previous tables

we can see, for example, that for (i, j) = (1,0) we have ηP10(−0 +M0) = (1 − η(2))(1 − η(3))η(4)η(5).

The starting point is to distribute the products of functions of the occupation variables in (C.1). This

leads, in general, to

c(n,k)(η) = 1
(n+k
k
)

k

∑
`=0

∑
(i,j)∈I×J

(k`)
∑
q=1
(−1)`(τ−jη)([Mj/Pij] ⊔Q`ijq),

with the sets of the form Q`ijq as in Definition 4.2.3. We will focus on each term of the summation

over ` separately. The first goal is to identify each set of the form [Mj/Pij] ⊔ Q`ijq as an element of

Pn+`(Mj). In order to do so, recalling the introduction of the map Φ in (4.9), it is enough to consider

the sets M = Φ−1
j (Mj), Pi = Φ−1

j (Pij) and Qiq = Φ−1
j (Qijq) and to identify [M/Pi] ⊔Q`iq as an element

of Pn+`(M). This will induce a map ψ` defined through ψ`(i, q) = i′⇔ [M/Pi] ⊔Q`iq = Pn+`i′ ∈ Pn+`(M).

The rationale is the following

Pi → Q`iq ∈ P`(Pi) → Pn+`i′ = [M/Pi] ⊔Q`iq ∈ Pn+`(M) → ψ`(i, q) = i′. (C.2)

One can then "introduce" the j−th window by an application of the map Φj . Concretely, by observing

that

[M/Pi] ⊔Q`iq = Pn+`i′ ∈ Pn+`(M) ⇔ [Mj/Pij] ⊔Q`ijq = Pn+`i′j ∈ Pn+`(Mj),

where Pn+`i′j = Φj(Pn+`i ), and as such one can extend the map ψ` by defining ψj,`(i, q) = ψ`(i, q) = i′.

• Term ` = 0:
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Because ` = 0 we have that P`(Pi) = {∅} and as consequence every "Q−set" is identified with ∅, hence

M/Pi is simply the complement of Pi in M . One then needs only to fix some index for the elements of

Pn+`(M). The rationale in (C.2) is presented in the next figure.

P1 = {0,1} Q1,1 = {∅} Pn+0
6 = {2,3} ψ0(1,1) = 6

P2 = {0,2} Q2,1 = {∅} Pn+0
5 = {1,3} ψ0(2,1) = 5

P3 = {0,3} Q3,1 = {∅} Pn+0
4 = {1,2} ψ0(3,1) = 4

P4 = {1,2} Q4,1 = {∅} Pn+0
3 = {0,3} ψ0(4,1) = 3

P5 = {1,3} Q5,1 = {∅} Pn+0
2 = {0,2} ψ0(5,1) = 2

P6 = {2,3} Q6,1 = {∅} Pn+0
1 = {0,1} ψ0(6,1) = 1

Figure C.1: ` = 0 ∶ Construction of the map ψ0.

Identifying the map ψj,` leads to the sets in the next figure.

−j + Pn+0
ij

i/j 0 1 2 3 4
1 {2,3} {−1,2} {−2,−1,} {−3,−2,} {−4,−3,}
2 {2,4} {−1,3} {−2,2} {−3,−1,} {−4,−2,}
3 {2,5} {−1,4} {−2,3} {−3,2} {−4,−1,}
4 {3,4} {2,3} {−1,2} {−2,−1,} {−3,−2,}
5 {3,5} {2,4} {−1,3} {−2,2} {−3,−1,}
6 {4,5} {3,4} {2,3} {−1,2} {−2,−1,}

Figure C.3: ` = 0: Sets generated by {−j + [Mj/Pij] ⊔Q
`
ijq}

(i,j)∈I`×J,1≤q≤(k
`
)
.

A multiplication of the rates by η(1) − η(0) leads then to the sets in the next two figures.

[−j + Pn+0
ij ] ⊔ {0} = −j + (Pn+0

ij ⊔ {j})
i/j 0 1 2 3 4
1 {0,2,3} {−1,0,2} {−2,−1,0} {−3,−2,0} {−4,−3,0}
2 {0,2,4} {−1,0,3} {−2,0,2} {−3,−1,0} {−4,−2,0}
3 {0,2,5} {−1,0,4} {−2,0,3} {−3,0,2} {−4,−1,0}
4 {0,3,4} {0,2,3} {−1,0,2} {−2,−1,0} {−3,−2,0}
5 {0,3,5} {0,2,4} {−1,0,3} {−2,0,2} {−3,−1,0}
6 {0,4,5} {0,3,4} {0,2,3} {−1,0,2} {−2,−1,0}

Figure C.4: ` = 0: Sets resulting from the multiplication with η(0).

[−j + Pn+0
ij ] ⊔ {1}

i/j 0 1 2 3 4
1 {1,2,3} {−1,1,2} {−2,−1,1} {−3,−2,1} {−4,−3,1}
2 {1,2,4} {−1,1,3} {−2,1,2} {−3,−1,1} {−4,−2,1}
3 {1,2,5} {−1,1,4} {−2,1,3} {−3,1,2} {−4,−1,1}
4 {1,3,4} {1,2,3} {−1,1,2} {−2,−1,1} {−3,−2,1}
5 {1,3,5} {1,2,4} {−1,1,3} {−2,1,2} {−3,−1,1}
6 {1,4,5} {1,3,4} {1,2,3} {−1,1,2} {−2,−1,1}

Figure C.5: ` = 0: Sets resulting from the multiplication with η(1).

The first layer of translations corresponds to translating each window (with its respective constraints)
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to the origin. With this, one obtains the sets in the next two figures.

Pn+0
ij ⊔ {j + 1}

i/j 0 1 2 3 4
1 {1,2,3} {0,2,3} {0,1,3} {0,1,4} {0,1,5}
2 {1,2,4} {0,2,4} {0,3,4} {0,2,4} {0,2,5}
3 {1,2,5} {0,2,5} {0,3,5} {0,4,5} {0,3,5}
4 {1,3,4} {2,3,4} {1,3,4} {1,2,4} {1,2,5}
5 {1,3,5} {2,3,5} {1,3,5} {1,4,5} {1,3,5}
6 {1,4,5} {2,4,5} {3,4,5} {2,4,5} {2,3,5}

Figure C.6: ` = 0: Sets resulting from the removal of the first layer of translations, each associated with
multiplying by η(1).

Pn+0
ij ⊔ {j}

i/j 0 1 2 3 4
1 {0,2,3} {0,1,3} {0,1,2} {0,1,3} {0,1,4}
2 {0,2,4} {0,1,4} {0,2,4} {0,2,3} {0,2,4}
3 {0,2,5} {0,1,5} {0,2,5} {0,3,5} {0,3,4}
4 {0,3,4} {1,3,4} {1,2,4} {1,2,3} {1,2,4}
5 {0,3,5} {1,3,5} {1,2,5} {1,3,5} {1,3,4}
6 {0,4,5} {1,4,5} {2,4,5} {2,3,5} {2,3,4}

Figure C.7: ` = 0: Sets resulting from the removal of the first layer of translations, each associated with
multiplying by η(0).

The second layer of translations corresponds to translating to the origin each set in the previous two

figures. This leads to the sets in the next two figures.

An+0,0
ij

i/j 0 1 2 3 4
1 {0,2,3} {0,1,3} {0,1,2} {0,1,3} {0,1,4}
2 {0,2,4} {0,1,4} {0,2,4} {0,2,3} {0,2,4}
3 {0,2,5} {0,1,5} {0,2,5} {0,3,5} {0,3,4}
4 {0,3,4} {0,2,3} {0,1,3} {0,1,2} {0,1,3}
5 {0,3,5} {0,2,4} {0,1,4} {0,2,4} {0,2,3}
6 {0,4,5} {0,3,4} {0,2,3} {0,1,3} {0,1,2}

Figure C.8: ` = 0: Sets associated with the multiplication by η(0) translated to the origin.

An+0,1
ij

i/j 0 1 2 3 4
1 {0,1,2} {0,2,3} {0,1,3} {0,1,4} {0,1,5}
2 {0,1,3} {0,2,4} {0,3,4} {0,2,4} {0,2,5}
3 {0,1,4} {0,2,5} {0,3,5} {0,4,5} {0,3,5}
4 {0,2,3} {0,1,2} {0,2,3} {0,1,3} {0,1,4}
5 {0,2,4} {0,1,3} {0,2,4} {0,3,4} {0,2,4}
6 {0,3,4} {0,2,3} {0,1,2} {0,2,3} {0,1,3}

Figure C.9: ` = 0: Sets associated with the multiplication by η(1) translated to the origin.

In the next table, the first column corresponds to all the unique sets in Figures C.9 and C.8; the

second (resp. third) column corresponds to the indexes (i, j) ∈ I` × J of the sets in Figure C.8 (resp.

Figure C.9) associated with the set in the first column. A concrete example is the following. Consider
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x = 0, (i, j) = (3,0) and the set An+0,x
ij = An+0,0

3,0 = {0,2,5}, presented in Figure C.8. For x = 0 still, we

also have that (i, j) = (3,2) corresponds to An+0,0
3,2 = {0,2,5} and so the indexes (i, j) ∈ {(3,0), (3,2)} all

correspond to the set {0,2,5}, for x = 0, and in this way they belong to the same class in the quotient

space C`,0. For x = 1 we have that (i, j) ∈ {(3,1), (2,4)} is also associated with the set {0,2,5} (see Figure

C.9).

A` C`,0 C`,1
{0,2,3} {(1,0), (4,1), (6,2), (2,3), (5,4)} {(4,0), (1,1), (6,1), (4,2), (6,3)}
{0,2,4} {(2,0), (5,1), (2,2), (5,3), (2,4)} {(5,0), (2,1), (5,2), (2,3), (5,4)}
{0,2,5} {(3,0), (3,2)} {(3,1), (2,4)}
{0,3,4} {(4,0), (6,1), (3,4)} {(6,0), (2,2), (5,3)}
{0,3,5} {(5,0), (3,3)} {(3,2), (3,4)}
{0,4,5} {(6,0)} {(3,3)}
{0,1,3} {(1,1), (4,2), (1,3), (6,3), (4,4)} {(2,0), (5,1), (1,2), (4,3), (6,4)}
{0,1,4} {(2,1), (5,2), (1,4)} {(3,0), (1,3), (4,4)}
{0,1,5} {(3,1)} {(1,4)}
{0,1,2} {(1,2), (4,3), (6,4)} {(1,0), (4,1), (6,2)}

Figure C.10: ` = 0: Equivalence classes of indexes and the corresponding "A−set".

In conclusion, in the second (resp. third) column above we have the equivalence classes of the indexes

that originate from multiplying the constraints by η(0) (resp. η(1)); in the first column the unique sets

that are obtained by translating every element of Pn+0(Mj), for each 0 ≤ j ≤ n + k = 4, to the origin;

and the correspondence between the second and third columns provides a bijection between C`,0 and C`,1,

which can be extended into a permutation φ` over I` × J .

• Term ` = 1:

Following the same procedure, the rationale in (C.2) provides the map ψ` which, in turn, provides ψj,`.

153



Q1,1 = {0}

P1 = {0,1}

Q1,2 = {1}

Q2,1 = {0} Pn+1
1 = {0,1,2} ψ1({(3,1), (5,1), (6,1)}) = {1}

P2 = {0,2}

Q2,2 = {2}

Q3,1 = {0}

P3 = {0,3} Pn+1
2 = {0,1,3} ψ1({(2,1), (4,1), (6,2)}) = {2}

Q3,2 = {3}

Q4,1 = {1}

P4 = {1,2}

Q4,2 = {2} Pn+1
3 = {0,2,3} ψ1({(1,1), (4,2), (5,2)}) = {3}

Q5,1 = {1}

P5 = {1,3}

Q5,2 = {3}

Q6,1 = {2} Pn+1
4 = {1,2,3} ψ1({(1,2), (2,4), (3,4)}) = {4}

P6 = {2,3}

Q6,2 = {3}

Figure C.2: ` = 1: Construction of the map ψ1.

The sets appearing in the product c(n,k;a)(η)(η(1) − η(0)) are presented in the next two figures.

[−j + Pn+1
ij ] ⊔ {0}

i/j 0 1 2 3 4
1 {0,2,3,4} {−1,0,2,3} {−2,−1,0,2} {−3,−2,−1,0} {−4,−3,−2,0}
2 {0,2,3,5} {−1,0,2,4} {−2,−1,0,3} {−3,−2,0,2} {−4,−3,−1,0}
3 {0,2,4,5} {−1,0,3,4} {−2,0,2,3} {−3,−1,0,2} {−4,−2,−1,0}
4 {0,3,4,5} {0,2,3,4} {−1,0,2,3} {−2,−1,0,2} {−3,−2,−1,0}

Figure C.11: ` = 1: Sets resulting from the multiplication with η(0).

[−j + Pn+1
ij ] ⊔ {1}

i/j 0 1 2 3 4
1 {1,2,3,4} {−1,1,2,3} {−2,−1,1,2} {−3,−2,−1,1} {−4,−3,−2,1}
2 {1,2,3,5} {−1,1,2,4} {−2,−1,1,3} {−3,−2,1,2} {−4,−3,−1,1}
3 {1,2,4,5} {−1,1,3,4} {−2,1,2,3} {−3,−1,1,2} {−4,−2,−1,1}
4 {1,3,4,5} {1,2,3,4} {−1,1,2,3} {−2,−1,1,2} {−3,−2,−1,1}

Figure C.12: ` = 1: Sets resulting from the multiplication with η(1).

The first layer of translations leads to the following.
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Pn+1
ij ⊔ {j}

i/j 0 1 2 3 4
1 {0,2,3,4} {0,1,3,4} {0,1,2,4} {0,1,2,3} {0,1,2,4}
2 {0,2,3,5} {0,1,3,5} {0,1,2,5} {0,1,3,5} {0,1,3,4}
3 {0,2,4,5} {0,1,4,5} {0,2,4,5} {0,2,3,5} {0,2,3,4}
4 {0,3,4,5} {1,3,4,5} {1,2,4,5} {1,2,3,5} {1,2,3,4}

Figure C.13: ` = 1: Sets resulting from the removal of the first layer of translations, each associated with
multiplying by η(0).

Pn+1
ij ⊔ {j + 1}

i/j 0 1 2 3 4
1 {1,2,3,4} {0,2,3,4} {0,1,3,4} {0,1,2,4} {0,1,2,5}
2 {1,2,3,5} {0,2,3,5} {0,1,3,5} {0,1,4,5} {0,1,3,5}
3 {1,2,4,5} {0,2,4,5} {0,3,4,5} {0,2,4,5} {0,2,3,5}
4 {1,3,4,5} {2,3,4,5} {1,3,4,5} {1,2,4,5} {1,2,3,5}

Figure C.14: ` = 1: Sets resulting from the removal of the first layer of translations, each associated with
multiplying by η(1).

The "A−sets" corresponding to the second layer of translations are presented in the next two figures.

An+1,0
ij

i/j 0 1 2 3 4
1 {0,2,3,4} {0,1,3,4} {0,1,2,4} {0,1,2,3} {0,1,2,4}
2 {0,2,3,5} {0,1,3,5} {0,1,2,5} {0,1,3,5} {0,1,3,4}
3 {0,2,4,5} {0,1,4,5} {0,2,4,5} {0,2,3,5} {0,2,3,4}
4 {0,3,4,5} {0,2,3,4} {0,1,3,4} {0,1,2,4} {0,1,2,3}

Figure C.15: ` = 1: Sets associated with the multiplication by η(0) translated to the origin.

An+1,1
ij

i/j 0 1 2 3 4
1 {0,1,2,3} {0,2,3,4} {0,1,3,4} {0,1,2,4} {0,1,2,5}
2 {0,1,2,4} {0,2,3,5} {0,1,3,5} {0,1,4,5} {0,1,3,5}
3 {0,1,3,4} {0,2,4,5} {0,3,4,5} {0,2,4,5} {0,2,3,5}
4 {0,2,3,4} {0,1,2,3} {0,2,3,4} {0,1,3,4} {0,1,2,4}

Figure C.16: ` = 1: Sets associated with the multiplication by η(1) translated to the origin.

Comparing the previous two figures leads to the identification of the equivalence classes of the indexes.

Ac C`,0 C`,1
{0,1,2,3} {(1,3), (4,4)} {(1,0), (4,1)}
{0,1,2,4} {(1,2), (1,4), (4,3)} {(2,0), (1,3), (4,4)}
{0,1,2,5} {(2,2)} {(1,4)}
{0,1,3,4} {(1,1), (2,4), (4,2)} {(1,2), (3,0), (4,3)}
{0,1,3,5} {(2,1), (2,3)} {(2,2), (2,4)}
{0,1,4,5} {(3,1)} {(2,3)}
{0,2,3,4} {(1,0), (4,1), (3,4)} {(1,1), (4,0), (4,2)}
{0,2,3,5} {(2,0), (3,3)} {(2,1), (3,4)}
{0,2,4,5} {(3,0), (3,2)} {(3,1), (3,3)}
{0,3,4,5} {(4,0)} {(3,2)}

Figure C.17: ` = 1: Equivalence classes of indexes and the corresponding "A−set".
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C.1.1 Linear system characterizing the gradient property.

The correspondence between the equivalence classes in Figure C.10 and C.17 provide a linear system

for the "b−coefficients" (as in (4.12)). From the map ψj,`, for each j ∈ J, 0 ≤ ` ≤ n + k, the original

"a−coefficients" (as in Definition 4.2.4) can be recovered, yielding the following linear system, where we

remark that the last line corresponds to the equations for the case ` = 2, which in turn corresponds simply

to the PMM(4), as explained just before (4.16).

a1,2 + a2,4 + a3,1 + a5,3 + a6,0 = a1,1 + a1,3 + a3,0 + a3,2 + a6,1

a2,1 + a2,3 + a5,0 + a5,2 + a5,4 = a2,0 + a2,2 + a2,4 + a5,1 + a5,3

a4,0 + a4,2 = a4,1 + a5,4

a1,1 + a3,0 + a4,4 = a1,0 + a2,3 + a5,2

a2,0 + a4,3 = a4,2 + a4,4

a1,0 = a4,3

a1,3 + a3,2 + a3,4 + a6,1 + a6,3 = a1,4 + a2,1 + a3,3 + a5,0 + a6,2

a2,2 + a5,1 + a6,4 = a3,4 + a4,0 + a6,3

a4,1 = a6,4

a1,4 + a3,3 + a6,2 = a1,2 + a3,1 + a6,0

a1,1 + a1,4 + a2,1 + a3,0 + a3,1 + a4,4 + a5,0 + a5,4 + a6,0 = a1,0 + a1,2 + a2,0 + a2,2 + a3,0 + a3,1 + a3,2 + a5,1 + a6,1

a1,3 + a2,0 + a4,0 + a4,3 + a5,3 + a6,0 = a1,4 + a2,1 + a4,1 + a4,4 + a5,4 + a6,1

a1,0 + a1,2 + a4,0 + a4,2 + a5,0 + a5,2 = a1,1 + a1,3 + a4,1 + a4,3 + a5,1 + a5,3

a1,0 + a2,0 + a3,0 = a1,2 + a4,2 + a5,2

a1,2 + a2,2 + a2,4 + a3,1 + a3,2 + a4,4 + a5,1 + a6,1 + a6,4 = a1,0 + a1,3 + a2,3 + a3,2 + a3,3 + a4,0 + a5,0 + a5,2 + a6,2

a2,1 + a2,3 + a4,1 + a4,3 + a6,1 + a6,3 = a2,2 + a2,4 + a4,2 + a4,4 + a6,2 + a6,4

a1,1 + a4,1 + a5,1 = a2,3 + a4,3 + a6,3

a1,3 + a2,3 + a3,2 + a3,3 + a3,4 + a5,2 + a5,4 + a6,2 + a6,4 = a1,4 + a2,0 + a2,4 + a3,3 + a3,4 + a4,0 + a5,3 + a6,0 + a6,3

a2,2 + a4,2 + a6,2 = a3,4 + a5,4 + a6,4

a1,4 + a2,4 + a3,3 + a3,4 + a5,3 + a6,3 = a1,1 + a2,1 + a3,0 + a3,1 + a5,0 + a6,0

∑
i∈I
aij = 1, ∀j ∈ J
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Above, the first 10 equations correspond to ` = 0; the equations ∑i∈I aij = 1 for all j ∈ J correspond to
` = 2; while the rest to ` = 1. The previous system can then be reduced to

a1,0 + a2,3 = a1,1 + a1,2

a1,0 + a2,0 + a2,2 + a2,4 = 2a1,1 + a1,3 + a2,1

2a1,2 + a3,1 = a1,1 + a1,3 + a1,4

a1,0 + a1,2 + a2,0 + a2,2 + a3,0 + a3,2 = 2a1,1 + 2a1,4 + 2a2,1

a3,4 + a4,0 = a1,2 + a2,2

a4,3 = a1,0

a4,2 + a4,4 = a1,0 + a2,0

a1,0 + 2a1,2 + a2,0 + a2,2 + a3,0 + a3,3 + a5,0 = 3a1,1 + 2a1,3 + a1,4 + a2,1 + a3,4

a1,2 + a4,2 + a5,2 = a1,0 + a2,0 + a3,0

a1,2 + a3,3 + a4,1 + a5,1 + a5,3 = 2a1,1 + a1,3 + a1,4 + a2,1

a3,4 + a4,1 + a5,4 = a1,2 + a2,2 + a4,2

a1,1 + a1,3 + a6,0 = 2a1,2 + a3,3

a4,1 + a5,1 + a6,1 = a1,1 + a1,2 + a1,3

a6,2 = a1,2

a1,2 + a6,3 = a4,1 + a5,1

a6,4 = a4,1

(C.3)

C.1.2 Linear system characterizing the potential’s invariance.

In this subsection we: prove Proposition C.1.1, where we derive an additional set of conditions on

the weights a so that the potential h(n,k;a) is related with the potential corresponding to the uniform

choice, h(n,k); and show that the linear system characterizing the gradient condition (see 4.13), when

extended with the aforementioned conditions, has a non-uniform solution for the particular case n, k = 2.

We developed a Mathematica routine in order to obtain and help us solve these linear systems for any

value of n and k, and we were able to obtain multiple non-uniform solutions for varied values of n and k.

However, we were not able to prove this rigorously. For that reason, Proposition C.1.1 is not empty for

n, k = 2 only, as we provide an example, yet we are confident that non-uniform solutions exist for every

value of n and k.

Proposition C.1.1. If, for each 0 ≤ ` ≤ k and c ∈ C`,1 such that max(Ac) ≠ n + k + 1, the following

equations are satisfied, for 1 ≤ p ≤ n + k −max(Ac),

∑
(i,j)∈c

1{p`,1ij = p}b
`
ij = ∑

(i,j)∈c
1{p`,0

φ`(i,j) = p}b
`
φ`(i,j)

∑
(i,j)∈c

1{p`,1ij = n + k + 1 −max(Ac)}b`ij =
(n+`
`
)

(n+k
k
)
+ ∑
(i,j)∈c

1{p`,0
φ`(i,j) = n + k + 1 −max(Ac)}b`ij ,

(C.4)

then h(n,k;a)
1 = h(n,k)1 , with h(n,k)1 as in (4.25).
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Proof. Recalling the expression for h(n,k;a)
1 (η) from (4.14),

h(n,k;a)
1 (η) =

k

∑
`=0
(−1)` ∑

c∈C`,1
∑
(i,j)∈c

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b`ij

p`,1ij −1

∑
y=0
(τyη)(Ac) − b`φ`(i,j)

p`,0
φ`(i,j)

−1

∑
y=0

(τyη)(Ac)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (C.5)

fixed ` and c ∈ C`,1, from the property (1) in Lemma 4.2.20 the summation over (i, j) ∈ c in h(n,k;a)
1 (η)

can be expressed as

n+k−max(Ac)

∑
p=1

p−1
∑
y=0
(τyη)(Ac)

⎧⎪⎪⎨⎪⎪⎩
∑
(i,j)∈c

1{p`,1ij = p}b
`
ij − ∑

(i,j)∈c
1{p`,0

φ`(i,j) = p}b
`
φ`(i,j)

⎫⎪⎪⎬⎪⎪⎭

+
n+k+1−max(Ac)−1

∑
y=0

(τyη)(Ac) ×

×
⎧⎪⎪⎨⎪⎪⎩
∑
(i,j)∈c

1{p`,1ij = n + k + 1 −max(Ac) ≠ 0}b`ij − ∑
(i,j)∈c

1{p`,0
φ`(i,j) = n + k + 1 −max(Ac) ≠ 0}b`φ`(i,j)

⎫⎪⎪⎬⎪⎪⎭
.

If the weights a are such that (C.4) is satisfied, one obtains that (C.5) equals (4.27), which concludes the

proof.

We now present the additional linear system in Proposition C.1.1 for the case n, k = 2. We omit the

case ` = 2 as it is associated with the PMM(4). The equations in the first line of (C.4) are, in this case,

a2,4 + a3,1 = a3,0 + a3,2

a3,2 + a3,4 = a3,3 + a5,0

a1,4 + a3,3 = a3,1 + a6,0

a1,4 + a2,4 + a3,4 = a3,0 + a5,0 + a6,0,

(C.6)

with the first 3 equations corresponding to ` = 0 and the last to ` = 1. The equations in the second line
in (C.4) are

1/6 + a1,2 = a1,1 + a1,3

1/6 + a2,1 + a2,3 = a2,0 + a2,2 + a2,4

1/6 + a1,1 = a1,0 + a2,3

1/6 + a1,3 = a1,4 + a2,1

1/6 + a2,2 = a3,4 + a4,0

1/6 = a1,2

1/2 + a1,1 + a2,1 + a3,1 = a1,0 + a1,2 + a2,0 + a2,2 + a3,0 + a3,2

1/2 + a1,2 + a2,2 + a3,2 = a1,0 + a1,3 + a2,3 + a3,3 + a4,0 + a5,0

1/2 + a1,3 + a2,3 + a3,3 = a1,4 + a2,0 + a2,4 + a3,4 + a4,0 + a6,0

1/2 = a1,1 + a2,1 + a3,1

(C.7)

and the first 6 equations correspond to ` = 0. The extended system composed by the equations in
(C.3),(C.6) and (C.7) can be reduced to

a3,1 = a1,4

a4,3 = a1,0
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a6,0 = a3,3

a6,4 = a4,1

a4,2 + a4,4 = a1,0 + a2,0

a1,2 = 1/6

a6,2 = 1/6

a1,0 + a2,3 = 1/6 + a1,1

a3,4 + a4,0 = 1/6 + a2,2

a4,1 + a5,1 = 1/6 + a6,3

a1,0 + a2,0 + a3,0 = 1/6 + a4,2 + a5,2

a3,4 + a4,1 + a5,4 = 1/6 + a2,2 + a4,2

a1,1 + a1,3 = 1/3

a1,1 + a1,4 + a2,1 = 1/2

a4,1 + a5,1 + a6,1 = 1/2

a3,3 + a4,1 + a5,1 + a5,3 = 2/3

a1,0 + a1,4 + a2,0 + a2,2 + a2,4 = 5/6

a1,0 + a2,0 + a2,2 + a3,0 + a3,2 = 5/6

a1,0 + a2,0 + a2,2 + a3,0 + a3,3 + a5,0 = 5/6 + a3,4.

A particular solution is

aij
i/j 0 1 2 3 4
1 0 0 1/6 1/3 0
2 0 1/2 0 1/6 5/6
3 1/6 0 2/3 0 0
4 1/6 0 0 0 0
5 2/3 1/2 0 1/6 1/6
6 0 0 1/6 1/3 0

Figure C.18: n, k = 2: Particular solution of the extended system.

C.2 Regularity of the solution

Let H ∈ C2([0,1]) be an increasing non-negative function (in particular, H ′ is non-negative). Our

goal is to deduce the regularity of ρ from the regularity of H(ρ). Consider the map V defined for any

x, y ∈ [0,1] through

V (x, y) = H(x) −H(y)
x − y

. (C.8)

Note that V (x,x) is well-defined because H is differentiable. Later on, the points x, y will represent

ρ(u), ρ(v), respectively, with u, v ∈ T. In this way, in order to obtain an upper bound for ∣x − y∣ it is

159



enough to obtain a lower bound for V (x, y). The main argument seems to be in the same spirit as in

[8, Lemma 7.0.2.], where H(x) = xm and m ∈ N+ with m ≥ 3. For m ≤ 2 the proof is much simpler than

for m ≥ 3, and we recall that our proof of Proposition B.2.1 was based on it. In both of the previously

mentioned manuscripts, the expression for V is simple enough for the authors to be able to bound it

from below algebricaly. In our case, as presented in (C.10), the expression is quite complex and obtaining

a lower bound algebricaly seems intractable. We will first study some general properties of (C.8), then

particularize to our case and proceed with monotony arguments.

Because H is differentiable, V coincides with H ′ at the diagonal. Precisely, for any x ∈ [0,1] it holds

that

0. V (x,x) =H(x).

One finds that the map V enjoys the following properties, for any x, y ∈ [0,1] arbitrary:

1. Symmetry: V (x, y) = V (y, x);

2. Non-negativity: V (x, y) > 0 for any x ≠ y;

3. Zeroes: V (x, y) = 0⇔ (x, y) ∈ {(r, r) ∶ H ′(r) = 0}.

Regarding the monotonicity of V in any direction, the partial derivatives provide important infor-

mation. Since V is symmetric and equals H ′ at the diagonal, let us consider only the region below the

diagonal,

{(x, y) ∈ [0,1]2 ∶ x > y}.

Fixed y ∈ [0,1] it holds that

∂xV (x, y) =
H ′(x) − V (x, y)

x − y
and ∂2

xV (x, y) =
H ′′(x) − 2∂xV (x, y)

x − y
. (C.9)

In this way, we see that

4. The critical points of V (⋅, y) are the points where V (⋅, y) intersects the graph of H ′;

5. V (⋅, y) is increasing if and only if V (⋅, y) is below the graph of H ′;

6. Let x = p be a critical point.

(a) If H ′′(p) > 0 then V (p, y) is a minimum;

(b) If H ′′(p) < 0 then V (p, y) is a maximum;

(c) If H ′′(p) = 0 then H ′(p) = H ′(y). This is consequence of ∂yV (p, y) = 0 and property (7) that

we will state shortly.

Regarding the y–axis direction, fixed x ∈ [0,1] it holds that

∂yV (x, y) =
V (x, y) −H ′(y)

x − y
and ∂2

yV (x, y) =
2∂yV (x, y) −H ′′(y)

x − y
,

which provide us directly with the following information.
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7. The critical points of V (x, ⋅) are the points where V (x, ⋅) intersects the graph of H ′;

8. V (x, ⋅) is increasing if and only if V (x, ⋅) is above the graph of H ′;

9. Let y = p be a critical point.

(a) If H ′′(p) > 0 then V (p, y) is a maximum;

(b) If H ′′(p) < 0 then V (p, y) is a minimum;

(c) If H ′′(p) = 0 then H ′(p) =H ′(x). This is consequence of ∂xV (x, p) = 0 and property (4).

The previous properties gives us a full picture of the surface V on any fixed direction. We will now

particularize to our specific case of H =Hn,k where

Hn,k(x) = ∫
x

0
un(1 − u)kdu and V (x, y) =

k

∑
`=0
(−1)k(k

`
) 1
n + ` + 1

n+`
∑
i=0

xiy(n+`−i). (C.10)

The expression for the map V is consequence of the equality xa−ya = (x−y)∑a−1
i=0 x

aya−1−i for any a ∈ N+.

Let us fix V as in the previous display and write ρ ≡ n/(n+k). We represent the behaviour of V (x, y),

that we are now going to prove, in Figure C.3 in the x–axis, and in Figure C.4 in the y–axis direction.

Let us fix y ∈ [0,1) and focus on the region {0 ≤ y < x ≤ 1}. As x↘ y then V (x, y) → V (y, y) because

V (⋅, y) is continuous. Note that y = x is a critical point and from (C.9) we should consider two cases:

y < ρ or y ≥ ρ.

Lemma C.2.1. Consider the region {(x, y) ∈ [0,1]2 ∶ x > y} and fix y ∈ [0,1).

• If y < ρ then there exists a unique critical point x = x0 > ρ, V (⋅, y) is increasing in (y, x0) and

V (⋅, y) is decreasing in (x0,1];

• If y ≥ ρ then V (⋅, y) is decreasing in (y,1].

Fixed x ∈ (0,1], it holds the following.

• If x < ρ then V (x, ⋅) is increasing in (0, x);

• If x ≥ ρ then there exists a unique critical point y = y0 < ρ, V (x, ⋅) is increasing in [0, y0) and

decreasing in (y0, x).

Proof. We start with the following case.

• y < ρ, region {0 ≤ y < x ≤ ρ ≤ 1} ∪ {0 ≤ y < ρ < x ≤ 1}.

In this case, V (⋅, y) is concave up at x = y, hence V (y, y) is a local minimum. In particular V (x, y) is

increasing for values of x close to y, and V (x, y) is below the graph of H ′, that is, V (x, y) <H ′(x).

The graph of H ′ is an "arc", with H ′(0) = H ′(1) = 0 and H ′(w) increasing for w ∈ [0, ρ), where

H ′(ρ) = maxx∈[0,1]H ′(x), and decreasing for w ∈ (ρ,1]. For this reason, since V (⋅, y) is increasing

there must be some x0 such that V (x0, y) = H ′(x0). Note that x0 ≥ ρ, because if y < x0 < ρ then

V (⋅, y) is also concave up at x = x0, just as in x = y, which is not possible. Since x ≠ y, it must

be the case that x0 > ρ: if x0 = ρ then from property 6(c) it holds that H ′(y) = H ′(ρ) which is

equivalent to y = ρ. Thus, V (⋅, y) must be decreasing in (x0,1]. There are no more critical points

because x > ρ.
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• y > ρ, region {ρ < y < x ≤ 1}.

As x ↘ y then V (x, y) → V (y, y) and x = y is a critical point larger than ρ, so V (⋅, y) is concave

down at x = y, hence V (⋅, y) is decreasing. Arguing as previously, since y > ρ, there is no x0 such

that V (x0, y) =H ′(x0).

ρ x0 10
x

V (x, y)
H ′(x)

y = 0

y ρ x0 10
x

V (x, y)
H ′(x)

y = ρ/2

ρ 10
x

V (x, y)
H ′(x)

y = ρ

ρ y 10
x

V (x, y)
H ′(x)

y = ρ + (1 − ρ)/2

Figure C.3: Plot of V (⋅, y) with y fixed and n = 2, k = 3.

Now we fix x and consider {0 ≤ y < x ≤ 1}. As y ↗ x then V (x, y) → V (y, y) and y = x is a critical point.

Again, we split into two cases. The arguments will be identical to the case of x varying, and for that

reason we explain the main steps only.

• x < ρ, region {0 ≤ y < x < ρ}.

Since x < ρ then V (x, ⋅) concave down at V (x,x), hence V (x, ⋅) is increasing in 0 ≤ y < x < ρ. Note

that there can be no y0 < x such that V (x, y0) =H ′(y0).

• x ≥ ρ, region {0 ≤ y < ρ ≤ x ≤ 1} ∪ {0 < ρ ≤ y < x ≤ 1}.

We focus on {0 < ρ ≤ y < x ≤ 1}, with y decreasing up to entering the region {0 ≤ y < ρ ≤ x ≤ 1}.

In this way, we see that V (x, ⋅) is concave up at y = x since x > ρ. Then as y decreases, V (x, y)

increases. It must also be the case that there is some y0 such that V (x, y0) = H ′(y0), and we can

show that 0 ≤ y0 < ρ for x ≠ 0, and y0 = ρ for x = ρ. For y ∈ [0, y0), because V (x, ⋅) is decreasing if

and only if is below the graph of H ′, we see that V (x, ⋅) must be increasing.
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H ′(y)

x = 1

Figure C.4: Plot of V (x, ⋅) with x fixed and n = 2, k = 3.

With the previous analysis we can show the following key result.

Lemma C.2.2. For any x, y ∈ [0,1] and any ε > 0 it holds that

∣x − y∣ ≤ 4ε + 1
n + k + 1

ε−(n+k)∣Hn,k(x) −Hn,k(y)∣.

Proof. Note that if x = y the inequality is trivially true. Due to the symmetry of V , it is enough to

consider again only the region below the diagonal. Let then x > y and split

x − y = (x − y) (1{y < x < ρ} + 1{y ≤ ρ < x} + 1{ρ ≤ y < x}) .

Consider the following regions

• A0 = {y < x < ρ} ∩ {x, y < ε} = {y < x < ε < ρ};

• A1 = {y < x < ρ} ∩ {x, y < ε}c = {y < ε ≤ x < ρ};

• B0 = {ρ ≤ y < x} ∩ {1 − x,1 − y < ε} = {ρ < 1 − ε < y < x ≤ 1};

• B1 = {ρ ≤ y < x} ∩ {1 − x,1 − y < ε}c = {ρ < y ≤ 1 − ε < x ≤ 1}.

It is clear that (x − y)(1A0 + 1B0) < 4ε. Now we study V when restricted to A1. Fixed y < ρ, the map

V (⋅, y) is increasing in [ε, ρ) and V (ε, ⋅) is increasing in [0, ε) since ε < ρ. In this way,

V (x, y)1A1 > V (ε, y) > V (ε,0) =
1
ε
∫

ε

0
un(1 − u)kdu > 1

ε
∫

ε

0
un+kdu = 1

n + k + 1
εn+k
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where we used that u < ε implies 1 − u > ε > u.

Restricted to B1, the map V (⋅, y) is decreasing in (1 − ε,1] and V (1, ⋅) is decreasing in (ρ,1 − ε]. In

this way,

V (x, y)1B1 > V (1, y) > V (1,1 − ε) =
1
ε
∫

1−ε

1
un(1 − u)kdu > 1

ε
∫

1

1−ε
(1 − u)n+kdu = 1

n + k + 1
εn+k.

Now it remains to study the region {y ≤ ρ < x}. In this case, V (⋅, y) is increasing in (ρ, x0] but

decreasing in (x0,1] and so

V (x, y)1{y ≤ ρ < x} >min{V (1, y), V (ρ, y)}1{y ≤ ρ < x}.

The map V (1, ⋅) is increasing in [0, y0) and decreasing in (y0, ρ], thus in this case V (1, y) >min{V (1,0), V (1, ρ)}.

Similarly, V (ρ, ⋅) is increasing in [0, ρ) and V (ρ, y) > V (ρ,0). We conclude that

V (x, y)1{y ≤ ρ < x} >min{V (1, ρ), V (1,0), V (ρ,0)} =∶ V > 0.

Note that since V is a fixed positive constant independent of ε, then V > εn+k/(n + k + 1) for ε > 0 small

enough. To conclude, one gathers the lower bounds in the previous analysis.

As consequence of the previous lemma we obtain the regularity of ρ from that of Hn,k.

Corollary C.2.3. If Hn+k(ρ) ∈ H1(T) , then ρ is 1
2(n+k+1)−Hölder continuous. Precisely,

∣ρ(u) − ρ(v)∣ ≤ (4 + 1
n + k + 1

∥Hn+k(ρ)∥L2(T)) ∣u − v∣
1

2(n+k+1) .

Proof. From Lemma C.2.2, the regularity of H and Cauchy-Schwarz’ inequality, for any u, v ∈ T it holds

that

∣ρ(u) − ρ(v)∣ ≤ 4ε + 1
n + k + 1

∣u − v∣
1
2

εn+k
∥Hn+k(ρ)∥L2(T).

Fixing ε = ∣u − v∣
1

2(n+k+1) leads to the upper bound in the statement.

As a final remark, our case is in fact the basis for proving the previous result for any H ∈ C2([0,1])

monotonic with H ′ ≥ 0: the essential ingredient is the description of V , in some fixed direction, restricted

to where the graph of H ′ is an "arc". In our case, H ′(0) = H ′(1) and there is a global maximum at ρ,

but for general H ′ one can split the domain [0,1] = ∪i[xi, xi+1) where xi, xi+1 are two consecutive local

minimizers. Then, the description of V (x, ⋅) or V (⋅, y) restricted to [xi, xi+1) will be identical to the case

in Lemma C.2.1. Regarding Lemma C.2.2, one should focus on the sets where xi and/or xi+1 are zeroes

of H ′. The argument is analogous: for each zero of H ′, one fixes two points very close to it and analyse

V when at least one of those points are farther away from the zero. As in our case, when at least one

point is far from the zero, V (x, y) must be larger than when the two are close to the zero. In our case,

this argument lead to some technical issues – one must split the domain into intervals containing only

one zero of H ′ so that when we focus on one zero of H ′ the minimum value of V does not "escape" to

another one which provides the trivial lower bound V ≥ 0. This is the same difficulty for general H and

is solved with the same approach, where instead of considering values of x or y larger or smaller than
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ρ, one replaces ρ by the local maximizer, between the two local minimizers xi, xi+1. This provides the

following lower bound

V (x, y) > min
r∶H′(r)=0

{1
ε
∫

r

r−ε
H ′(u)du , 1

ε
∫

r+ε

r
H ′(u)du} ,

which can be studied, for example, with residue techniques. In order to present the arguments in a clear

way and directly related to the work in this chapter we chose to consider H =Hn,k, but the general case

will be presented by necessity in a forthcoming work.

C.3 Convergence of the fractional operators

Proof of Proposition 4.3.11. .

(1) 0 < γ < 2:

Because Nγ 1
N2 ∑⌊N/2⌋∣r∣=1

∣r∣
∣r∣γ

N→+∞ÐÐÐÐ→ cγ it is enough to study

RRRRRRRRRRRR
∫
T

∆vG( xN )
∣v∣1+γT

dv −Nγ
N−1
∑
r=1

∆ r
N
G( x

N
)

∣r∣1+γTN

RRRRRRRRRRRR
. (C.11)

One can write

∫
T

∆vG( xN )
∣v∣1+γT

dv =
N−1
∑
r=1
∫

r+1
N

r
N

∆vG( xN )
∣v∣1+γT

dv + ∫
1
N

0

∆vG( xN )
v1+γ dv

with the second integral on the right-hand side vanishing in the limit N → +∞ uniformly:
RRRRRRRRRRRR
∫

1
N

0

∆vG( xN )
v1+γ dv

RRRRRRRRRRRR
≲ ∫

1
N

0

v2

v1+γ dv = ∫
1
N

0
v1−γdv = 1

2 − γ
[v2−γ]v=

1
N

v=0 ≲
1

N2−γ .

In this way, the treatment of (C.11) is reduced to the treatment of

N−1
∑
r=1

RRRRRRRRRRRRR
∫

r+1
N

r
N

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆vG( xN )
∣v∣1+γT

−
∆ r
N
G( x

N
)

∣ r
N
∣1+γT

⎫⎪⎪⎪⎬⎪⎪⎪⎭
dv
RRRRRRRRRRRRR
.

Introducing ϕ(v) = ∣v∣−(1+γ)T ∆vG( xN ), we see that

∣ϕ′(v)∣ =
RRRRRRRRRRR

∆vG( xN )
∣v∣1+γT

−
∆vG( xN )
(1 + γ)∣v∣2+γT

RRRRRRRRRRR
≲ 1
∣v∣1+γT

and from the Mean-Value Theorem,
RRRRRRRRRRRRR

∆vG( xN )
∣v∣1+γT

−
∆ r
N
G( x

N
)

∣ r
N
∣1+γT

RRRRRRRRRRRRR
≲
∣v − r

N
∣

∣v∣1+γT
.

In this way, (C.11) is no larger than a positive constant times

N−1
∑
r=1
∫

r+1
N

r
N

∣v − r
N
∣

∣v∣1+γT
dv ≤

N−1
∑
r=1
∫

r+1
N

r
N

1
N

∣ r
N
∣1+γT

dv = N
γ

N

N−1
∑
r=1

1
∣r∣1+γTN

≲ 1
N
.

Considering the scaling Θγ and taking the limit N → +∞ concludes the proof.

(2) γ = 2:
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We want to analyse the cases when r = o(N) or not, and for that we split the summation over r into

∣r∣ ≤ εN and ∣r∣ > εN for ε > 0 and N ≫ 1. For r < εN , from the fact that G ∈ C2(T) it holds that

εN

∑
∣r∣=1

∣ r
N
∣2

∣r∣3
1
∣ r
N
∣2

∆ r
N
G( x

N
) = G′′( x

N
) 1
N2

εN

∑
∣r∣=1

∣r∣
∣r∣2
+O
⎛
⎝

1
N4

εN

∑
∣r∣=1

∣r∣3

∣r∣2
⎞
⎠

where

1
N2

εN

∑
∣r∣=1

∣r∣
∣r∣2
= O ( log(εN)

N2 ) and 1
N4

εN

∑
∣r∣=1

∣r∣3

∣r∣2
= O ( ε

2

N2 ) ,

and in particular

1
N4 ∑εN∣r∣=1

∣r∣3

∣r∣2

1
N2 ∑εN∣r∣=1

∣r∣
∣r∣2
= O ( ε2

log(εN)
) .

For ∣r∣ > εN , one obtains

⌊N/2⌋
∑

∣r∣=εN+1

1
∣r∣3

∆ r
N
G( x

N
) ≤ 4∥G∥∞

⌊N/2⌋
∑

∣r∣=εN+1

1
∣r∣3
≲ 1
(εN)2

.

Considering the scaling Θγ then taking the limit N → +∞ and then ε→ 0 concludes the proof.

(3) γ > 2:

In the same vein as in the previous case, for ∣r∣ ≤ εN

εN

∑
∣r∣=1

∣ r
N
∣2

∣r∣1+γ
1
∣ r
N
∣2

∆ r
N
G( x

N
) = G′′( x

N
) 1
N2

εN

∑
∣r∣=1

∣r∣
∣r∣γ
+O (ε

4−γ

Nγ
)

where now the series ∑r≥1 r
−(γ−1) is convergent since γ > 2.

For ∣r∣ > εN one obtains

⌊N/2⌋
∑

∣r∣=εN+1

1
∣r∣1+γ

∆ r
N
G( x

N
) ≤ 4∥G∥∞

⌊N/2⌋
∑

∣r∣=εN+1

1
∣r∣1+γ

≲ 1
(εN)γ

and as such one multiplies by Θγ and take the appropriate limits.
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