
HAL Id: tel-04808841
https://hal.science/tel-04808841v1

Submitted on 28 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting Health Care Frauds In Attributed Graphs
Using Explainable Methods.

Bastien Giles

To cite this version:
Bastien Giles. Detecting Health Care Frauds In Attributed Graphs Using Explainable Methods..
Artificial Intelligence [cs.AI]. Université jean Monnet - Saint-Etienne, 2024. English. �NNT : �. �tel-
04808841�

https://hal.science/tel-04808841v1
https://hal.archives-ouvertes.fr

N° d’ordre NNT :

THÈSE de DOCTORAT
DE L’UNIVERSITÉ JEAN MONNET SAINT-ÉTIENNE

Membre de l’Université de Lyon

Ecole Doctorale N°488
SIS - Sciences Ingénierie Santé

Spécialité de doctorat : Informatique

Soutenue publiquement le 25 novembre 2024, par :

Bastien GILES

Détection de fraude à l'assurance maladie à l'aide de modèles
d'apprentissage automatique et de fouille de données explicables

et interprétables.

Devant le jury composé de :

Cécile BOTHOREL, Maître de conférences HDR, IMT Atlantique Rapporteure

Vincent LABATUT, Maîtresse de conférences HDR, Université d'avignon Rapporteur

Osmar ZAIANE, Professeur des universités, University of Alberta Examinateur

Robardet CELINE, Professeur des universités, INSA Lyon Examinatrice

Christine LARGERON LETENO, Professeur des universités, Université Jean Monnet
Saint-Etienne

Directrice de thèse

Baptiste JEUDY, Maître de conférences, Laboratoire Hubert Curien Co-encadrant de thèse

Damien Saboul, Docteur, Invité

Contents

Introduction 7
Application Case . 7
Scientific Context . 11
Contributions . 14
Thesis Structure . 15

List of Publications 17

1 Detecting Anomalies in Attributed Networks 18
1.1 State of the Art . 19

1.1.1 Graph Outlier Detection 19
1.1.2 Network Representation 20
1.1.3 Vectorial Anomaly Detection 24
1.1.4 Graph Neural Networks (GNN) 26
1.1.5 Graph Datasets for Anomaly Detection 32
1.1.6 Deep Graph Anomaly Detection 36
1.1.7 Unsupervised Anomaly Detection 37
1.1.8 Semi-Supervised Anomaly Detection 45

1.2 Suspicious . 53
1.2.1 Problem Formalization 53
1.2.2 Principle Behind Suspicious 54
1.2.3 Architecture of Suspicious 55
1.2.4 Calculation of Reconstruction Errors 56

1.3 Experiments . 58
1.3.1 Datasets . 58
1.3.2 Settings for Suspicious and Baselines 62
1.3.3 Evaluation Parameters and Metrics 63
1.3.4 Experimental Results 65

1

1.3.5 Ablation Study . 67
1.3.6 Impact of the Mislabeling Errors 69
1.3.7 Impact of a Varying R 70
1.3.8 Impact of a Varying α 72

1.4 Conclusion . 73

2 Explaining Graph Auto-encoders 75
2.1 Explainable Artificial Intelligence 75

2.1.1 Explainability . 76
2.1.2 Explaining Machine Learning Models 77
2.1.3 Explaining GNN . 79
2.1.4 Gradient Based Explainers 80
2.1.5 Perturbation-Based Methods 82
2.1.6 Surrogate Based Methods 87
2.1.7 Measuring Explainability 90
2.1.8 Generating Explanation Ground Truth 93

2.2 Explaining Auto-encoders . 95
2.3 Definitions and Problem Formalization 96
2.4 Generating Explanation from the Reconstruction Errors of

Graph Auto-encoders . 99
2.4.1 Intuition . 99
2.4.2 Importance Vectors . 100
2.4.3 From Importance Vectors to Explanations 102

2.5 Experimental Protocol . 104
2.5.1 Metrics . 104
2.5.2 Datasets . 106
2.5.3 Baselines . 108

2.6 Experimental Results . 109
2.6.1 Precision, Recall, and GEA on Synthetic Datasets . . . 109
2.6.2 Time Efficiency . 111
2.6.3 Average Necessity, and Sufficiency on all Datasets . . . 112

2.7 Conclusion . 114

3 Application Case 119
3.1 Application Case Presentation 119

3.1.1 Dataset Creation . 121
3.2 Experiments . 123

3.2.1 Detecting Known Frauds 124

2

3.2.2 Detecting New Frauds 125
3.3 Conclusion . 128

Conclusion 130

3

List of Figures

1.1 Timeline of Graph Anomaly Detection 19
1.2 Overview of DeepWalk . 21
1.3 Illustration of the random walk procedure in Node2Vec. 22
1.4 Multilayer Perceptron (MLP) diagram with four hidden layers. 27
1.5 Visual illustration of the GraphSAGE 29
1.6 Illustration of a GAT . 32
1.7 An outlier example in a subgraph of the Amazon co-purchased

network . 33
1.8 Illustration of Dominant . 38
1.9 Illustration of GUIDE . 40
1.10 Illustration of Cola, part 1 . 43
1.11 Illustration of Cola, part 2 . 44
1.12 Illustration of PC-GNN . 51
1.13 Illustration of H2F . 52
1.14 Architecture of Suspicious. 55
1.15 Architecture of an auto-encoder. 56
1.16 Illustration of the sets used to model labeling error. 61
1.17 Average gain using Suspicious versus using only Norm or Susp 68
1.18 Impact of mislabeling errors on rare anomaly datasets 70
1.19 Impact of mislabeling errors on synthetic anomaly datasets . . 71
1.20 Evolution of average AUC score of Ours-GCN in function of R. 72
1.21 Evolution of average AUC score of Ours-GCN in function of α. 73

2.1 Evolution of the number of total publications referring to the
field of XAI . 77

2.2 The general pipeline of perturbation-based methods. 83
2.3 An illustration of SubGraphX 85
2.4 The architecture of PGM-Explainer. 89
2.5 Overview of ShapeGGen graph dataset generation 93

4

2.6 Overview of BA-Shapes graph dataset generation. 95
2.7 Example of a graph generated by ShapeGGen 98
2.8 Example of a reconstruction a graph by a GAE 100
2.9 GEA@k of explainers on ShapeHouse 110
2.10 Precision@k of explainers on ShapeHouse 111
2.11 Explainers execution time . 116
2.12 Average fid+@k (left), and fid−@k (right) on features 117
2.13 Average fid+@k (left), and fid−@k (right) on edges 118

3.1 Interactions graph for a care. 120
3.2 Homogeneous graph modelization. 122
3.3 Heterogeneous graph modelization. 123

5

List of Tables

1.1 Characteristics of the datasets. 59
1.2 Rare class evaluation . 65
1.3 Synthetic and organic class evaluation 66

2.1 Characteristics of some explainers. 78
2.2 Characteristics of gradient-based explainers. 81
2.3 Characteristics of perturbation-based explainers. 82
2.4 Characteristics of PGM-Explainer. 87
2.5 Characteristics of the datasets. 108

3.1 Average AUC±SD(%) on known frauds 124

6

Introduction

In 2019, the Commission des Affaires Sociales du Sénat estimated that health-

care fraud losses amounted to around 1 billion euros during its inquiry at the

request of La Cour des Comptes [20]. Fraud has also affected private in-

surance. Be-ys Group, a health data management and processing specialist

for 20 years, provides health insurance fraud detection services to mutual

insurance companies. These fraud detection solutions rely on a deep under-

standing of health professions and the availability of very large volumes of

digital transactions.

Despite the effectiveness of existing systems, the constantly evolving tac-

tics of fraudsters require continuous innovation. This thesis addresses this

critical need by developing a novel system that not only detects new, previ-

ously unidentified fraud patterns but does so through explainable methods,

thereby enhancing both the accuracy and transparency of fraud detection

and providing actionable insights for domain experts.

Application Case

Use-case

This thesis will concentrate on a dataset for the optical specialty, but its

findings are applicable to many other applications. Each insurance claim

requires three actors: a healthcare provider, a prescriber, and a beneficiary

7

(the patient).

As a health data management and processing specialist, Be-ys is respon-

sible for the automatisation of care payments for health insurance companies.

This includes the detection of fraudulent claims. If we follow the example of

optical care, we get the following actions:

• An insurance beneficiary needs glasses or lenses and goes to his oph-

thalmologist (Prescriber).

• The ophthalmologist details the correction needed for the equipment in

a prescription that the beneficiary then brings to his optician (Provider).

• The optician follows the prescription and proposes various options, such

as frames, to the beneficiary.

• This creates an insurance claim sent to the insurer for review.

• Be-ys receives this claim detailing the care selected and must validate

it if it is legitimate or block it if it is detected as fraudulent.

In our case, only the domain expert can decide what constitutes fraud,

but here are a few examples of the rules created for the expert system:

Rule 48: Block claim for tinted glasses for a provider that presents an

excess of tinted glasses compared to their peers.

Rule 11: claim for glasses for all family members under the same con-

tract but on different days in the same week.

R48 describes the over-occurrence of a rare phenomenon. R11 describes

an uncommon behavior, as the family members under the same contract are

almost always the children of the contractor. The normal behavior is to bring

every household member on the same day and not one by one each day.

8

Current Detection System

Currently, the company uses an expert system to detect health insurance

fraud. An expert system uses a knowledge base containing facts and rules.

In our system, the facts are represented by the care request (claim), and

the rules are patterns of fraud that non-IT fraud detection experts have

identified. The second part of an expert system is an inference engine that

applies these rules to the facts to make deductions. This system was selected

for legal purposes, with domain experts legally validating the rules, producing

an efficient and consistent solution where the same input always leads to the

same decision.

Health Insurance Fraud

Although there are many research works on healthcare fraud insurance world-

wide, notably through the Medicare dataset made available by the US gov-

ernment, these works report many types of fraud. Notable examples include

”Uninsured individual using Medicare/Medicaid ID card of someone else to

obtain services and items” [15, 21]. Still, due to differences in social policy

between our countries, those frauds are almost non-existent in France [12].

Providers in France are responsible for more than 70% of the detected fraud.

To better illustrate that difference, the main focus of the French report is

audiologists, which are healthcare providers who require a prescription from

a physician to provide care. At the same time, the main concern expressed

in the US article [15] is a 98% increase in opioid drug diversion, which makes

the works on those datasets hardly transferable due to the many differences

between the two healthcare systems.

Data

Our only data source is the insurance claims filed by the providers, which

contain identifiers for its actors and details on the care provided, such as

9

detailed price distributions and specifications on what the care entails. For

R11 and R48, we need information not directly present in the care, such

as other claims from the same contract for R11 and statistical information

about the provider’s peers for R48. This information is contained in other

claims and aggregated in the database so that it can be added to the facts of

the expert system. However, this is only possible since these patterns have

already been identified before the task; classical tabular data would not allow

our methods to identify these patterns without having already identified and

added this information. To overcome this, we propose using relational data,

i.e., graphs that can represent each claim and the relations induced by their

actors with other claims.

New Frauds

In our introduction, we use the term ”new frauds,” this term does designate

new types of frauds that result from the adaptations of fraudsters to new

fraud detection methods, which would correspond to the definition of novelty:

Novelty detection is the task of classifying test data that differ in some

respect from the data available during training. [57]

The meaning of ”new” in our application is simply a fraud not yet covered

by a rule in our expert system. Thus, we will not be dealing with novelties

but will need to detect elements not yet labeled as ”frauds”.

This also means that we are not interested in a system that can only

re-detect already-identified frauds, complexifying both the identification and

evaluation process.

10

Explainability

To allow the company to use the results of our models, we need to give the

domain experts enough information on the elements detected so that they

can derive a new rule to block this fraud. This gives us a bit more space

compared to producing information that would be directly used for legal

justifications, as it allows human intervention to interpret the results. This

gives us a degree of freedom in what constitutes our explanation and also

allows us a bit more leeway with false positives compared to direct blockage.

However, since we are looking for unidentified frauds, we will not be able to

use evaluation metrics that require full labeling. This explanation will be the

only basis for the expertise that will constitute our evaluation process.

Additional Information

Additionally, to what has been presented before, we benefit from another

system put in place to guide the domain expert. Our company is currently

using a clustering algorithm on the aggregated statistical information of the

provider, which yields a good identification of fraudsters; however, we cur-

rently encounter many troubles in identifying the exact fraud patterns they

employ to block them accurately. We attribute this to the following hypothe-

sis: ”All fraudsters commit fraud for financial gain, leading to relatively easy

identification, but they do not obtain this gain in the same way.”

We plan to use this information as the label information to guide our

model.

Scientific Context

Machine Learning

Machine learning involves training models to recognize patterns in data, en-

abling predictions or classifications. Two key approaches are supervised and

11

unsupervised learning, both of which are crucial in anomaly detection, espe-

cially in the context of healthcare fraud detection.

Supervised Learning

In supervised learning, models are trained on labeled data, where each ex-

ample includes a known label. The model learns to predict these labels for

new, unseen data. This approach works well when there is a substantial

amount of labeled data, such as known cases of fraud. However, in fraud

detection, labeled examples are often scarce, and new types of fraud may

emerge, requiring the model to be frequently updated.

Semi-supervised Learning

There are various branches of supervised learning, such as semi-supervised

learning a paradigm in which only a small portion of the output is known

to the model for training purposes—and self-supervised learning. In this

machine-learning process, the model trains itself to learn one part of the

input from another part of the input.

Unsupervised Learning

Unsupervised learning, in contrast, deals with data that has no labels. The

model identifies patterns and detects anomalies based on deviations from

these patterns. This method is useful for discovering new or emerging fraud

patterns, but it can be challenging to assess the model’s accuracy since there

are no labels against which to verify.

Label Availability

In our use case, supervised learning would require us to determine whether

or not a claim is a new fraud. By definition, and as stated above, the new

12

fraud is unknown. As such, this creates a situation where we either have

no information or simply intuitions derived from expertise or other models,

leading us to deal with mislabeling, i.e., normal claims labeled as frauds and

frauds labeled as normal. This limited portion of known information leaves us

the choice only between unsupervised learning and semi-supervised learning.

Anomaly Detection

Anomalies are often referred to as outliers, i.e., observations or data points

that deviate significantly from the expected pattern or the majority of the

data within a dataset. However, the concept of what constitutes an anomaly

has evolved over time. Initially, anomalies were primarily viewed as simple

statistical outliers, but today, the term encompasses a broader range of phe-

nomena, including errors, genuine rarity, uniqueness in the data, and, most

critically, fraudulent activities.

In the context of healthcare fraud detection, anomalies are typically in-

dicative of suspicious or aberrant behavior that may signal fraudulent actions.

For example, a claim that significantly deviates from standard medical prac-

tices or contains unusual patterns may be flagged as an anomaly. Given

that fraud is inherently rare and hidden within large volumes of legitimate

transactions, anomalies in this domain are particularly challenging to detect.

Anomalies are, by their nature, rare occurrences. They represent devia-

tions from the norm, which is defined by the majority of data points in a given

dataset. This rarity introduces a significant challenge in anomaly detection,

as it results in a severe class imbalance where the anomalous instances are

vastly outnumbered by normal instances. This imbalance complicates the

detection process, making it difficult for traditional methods to accurately

identify these rare cases.

The distinctions between outliers, anomalies, and frauds are nuanced.

Chapter 1 will explore these nuances, along with their implications for anomaly

detection methods, in greater detail.

13

Graph

While graphs allow the representation of relationships by links between ver-

tices corresponding to entities, attributed graphs provide, in addition, an

attribute matrix that contains characteristics or features of the nodes. For

example, in the case of a social network, the attributed graph describes the

interactions between the users, but also the profile of each user (age, gender,

center of interest, etc.) [35].

Contributions

This thesis presents several key contributions to the field of anomaly detec-

tion in graph-based machine learning. Each contribution is rigorously eval-

uated through extensive experiments and compared against state-of-the-art

methods.

Anomaly Detection with Defective Labeling

We introduce Suspicious, a novel reconstruction-based weakly semi-supervised

framework for anomaly detection in attributed graphs. This framework is

designed to be robust against mislabeling in the training set, making it par-

ticularly effective in real-world scenarios where labeling errors are common.

Extensive experiments demonstrate that Suspicious not only outperforms

existing methods on classical graph anomaly benchmarks but also exhibits

superior robustness in the presence of defective labeling.

A Simple Explanation of Graph Autoencoders (GAEs)

We propose an original explanation method based on reconstruction error

that generates explanations in the same format as other state-of-the-art graph

neural network explainers. This method simplifies the interpretation of graph

autoencoders, making them more accessible for practical applications. Our

14

approach has been thoroughly evaluated and shown to rival, and in some

cases exceed, the performance of more complex explainability techniques in

extensive experiments.

Case Study: Real-World Application in Healthcare Fraud Detec-

tion

We apply the proposed methods in a real-world case study focused on health-

care fraud detection within the French healthcare system. This case study

highlights the practical utility and effectiveness of our contributions in de-

tecting both known and novel fraud patterns. The results obtained were

compared with those from state-of-the-art methods, demonstrating the su-

periority of our approaches in realistic, complex environments.

Thesis Structure

Chapter 1 begins by reviewing the evolution of the concept of anomaly

within graph-based machine learning. It covers the various methodologies

employed for anomaly detection, starting with traditional unsupervised graph

outlier detection, progressing to deep unsupervised anomaly detection tech-

niques, and concluding with semi-supervised methods specifically designed

for fraud detection. This chapter also introduces our work on Suspicious, a

reconstruction-based weakly semi-supervised framework for anomaly detec-

tion in graphs, followed by a comprehensive evaluation of its effectiveness

through extensive experiments. This work was published in a national con-

ference [26] and an international conference [25]

Chapter 2 focuses on the explainability of graph neural networks (GNNs).

It provides an overview of state-of-the-art explainability techniques. It intro-

duces a novel method to generate explanations from the reconstruction error

of graph autoencoders, using a format consistent with other leading GNN

explainers. The chapter includes a thorough evaluation of these methods,

15

adapted from graph classification tasks to anomaly detection scenarios. This

work is currently submitted to the IEEE Transactions on Knowledge and

Data Engineering journal.

Chapter 3 applies the theoretical concepts and methods discussed in the

previous chapters to a real-world case study in fraud detection within the

French healthcare system. This chapter details the processes involved in cre-

ating the datasets. It presents the results of applying the proposed methods

to detect both known and novel fraud patterns in a practical, real-world

setting.

16

List of Publications

Bastien Giles, Baptiste Jeudy, Christine Largeron and Damien Saboul, ”Re-

construction Errors: a Simple yet Efficient Explanation for Graph Auto-

encoder Anomaly Detection,” Submitted in IEEE Transactions on Knowl-

edge and Data Engineering (TKDE), 2024

Bastien Giles, Baptiste Jeudy, Christine Largeron and Damien Saboul,

”Suspicious: a Resilient Semi-Supervised Framework for Graph Fraud De-

tection,” 2023 IEEE 35th International Conference on Tools with Artificial

Intelligence (ICTAI), Atlanta, GA, USA, 2023, pp. 212-220, [25]

Bastien Giles, Baptiste Jeudy, Christine Largeron, Damien Saboul, ”Un

cadre semi-supervisé résilient pour la détection d’anomalie sur graphe at-

tribué.” In Extraction et Gestion des Connaissances (EGC) 2022, pp.55-66,

[26]

17

Chapter 1

Detecting Anomalies in

Attributed Networks

In this chapter, we will explore various approaches and methodologies for

detecting anomalies in attributed networks. The chapter begins by provid-

ing an overview of the state-of-the-art techniques, discussing the evolution

of unsupervised graph anomaly detection from early methods to more so-

phisticated approaches involving network representation. Following this, we

delve into specific graph deep learning backbones, including graph convo-

lutional networks (GCNs), graph attention networks (GATs), and autoen-

coders, each designed to handle the complexities of graph-structured data.

The chapter also covers the integration of these methods with anomaly detec-

tion tasks, presenting both unsupervised and semi-supervised strategies. We

will then introduce a novel framework, ”Suspicious,” which leverages dual

auto-encoders to enhance the detection of anomalies, even in the presence of

labeling errors in the training data. This chapter concludes with experimen-

tal evaluations, comparing the effectiveness of various methods on multiple

datasets and demonstrating the resilience and efficiency of the proposed ap-

proach.

18

1.1 State of the Art

When considering graph data, the definition of what we will call an anomaly

has evolved alongside the various models, tasks, and datasets available. Fig-

ure 1.1 illustrates the timeline presented in the survey on unsupervised graph

anomaly detection [49]. However, one constant property defines this domain:

the rarity of anomalies in the dataset induces a class imbalance.

Figure 1.1: Timeline of Graph Anomaly Detection and Reviewed Techniques
[49].

1.1.1 Graph Outlier Detection

The first methods to emerge were unsupervised ones designed exclusively

for unattributed graphs, as most of the available datasets only contained

relational data. An unattributed graph is defined as a graph G = (V, E),
where V = {v1, v2, . . . , vn} is the set of nodes, and E ⊆ V × V is the set of

edges represented by a symmetric adjacency matrix A where ai,j = 1 if there

is an edge between nodes i and j and ai,j = 0 otherwise. Each edge Ei,j has
an associated weight value Wi,j ∈ R.

19

At this point in time, anomalies were mostly referred to as outliers, and

their definition was heavily influenced by expert knowledge specific to the

application domain, primarily social networks.

SCAN

In SCAN [81], outliers are defined as:

Vertices that have only a weak association with a particular cluster of

nodes.

The method detects outliers by clustering nodes based on their common

neighbors in the graph, assigning two nodes to the same cluster if they share

many neighbors. This definition of outliers and the clustering method are

both heavily influenced by the structures of social communities.

Although this method is efficient for those applications, it does not func-

tion well for other types of outliers or for attributed graphs. Subsequent

efforts [56, 2] focused on extracting feature matrices from these graphs, al-

lowing classical vectorial anomaly detection methods to be applied.

1.1.2 Network Representation

Following these initial methods, application cases diversified, necessitating

the detection of outliers as they were defined in tabular data:

An outlier is an observation that differs so much from other observa-

tions as to arouse suspicion that a different mechanism generated it.

[31]

To detect these outliers, most state-of-the-art methods follow the same

concept: using relational information to create a latent vectorial represen-

tation of the graph, reducing anomaly detection to a downstream task on

20

which vectorial anomaly detection methods can be applied.

DeepWalk

The DeepWalk [56] algorithm uses the SkipGram [51]. SkipGram is a lan-

guage model that creates a latent word representation by maximizing the

probability of co-occurrence among words that appear within a certain dis-

tance in a sentence. To adapt this model, which typically takes word se-

quences as input, to graph data, DeepWalk uses random walks from each

node as the input sequence for SkipGram, as shown in Figure 1.2.

Figure 1.2: Overview of DeepWalk [56].

Node2Vec

Node2Vec [28] improves DeepWalk by introducing a search bias α that allows

the user to control the random path through two parameters p and q. These

parameters control how quickly the walk explores and leaves the neighbor-

hood of the starting node. Consider a random walk that just traversed the

edge (t, v) and now resides at node v as illustrated in Figure 1.3. The walk

needs to decide on the next step through edges (v, x) leading from v. The

21

unnormalized transition probability used to guide the choice is:

αpq(v, x) =


1
p

if dtx = 0

1 if dtx = 1

1
q

if dtx = 2

(1.1)

where dtx denotes the shortest path distance between nodes t and X. In this

way, p controls the likelihood of immediately revisiting a node. A high p (i.e.,

p > max(q, 1)) ensures that we are less likely to revisit a node, while a low

p (i.e., p < min(q, 1)) would lead the walk backward, keeping the walk near

the original node. Similarly, a high q (i.e., q > max(p, 1)) tends to keep the

walk local around the original node, while a low q (i.e., q < min(p, 1)) would

lead the walk outward.

Figure 1.3: Illustration of the random walk procedure in Node2Vec. The
walk transitions from node t to node v and evaluates its next step from node
v. Edge labels indicate search biases α [28].

OddBall

OddBall [2] focuses on unattributed graphs. It proposes to take the ego-net

of each node vi, i.e., all nodes that are linked to vi by an edge, to produce a

feature vector whose components correspond to:

22

• |N (vi)|: the number of direct neighbors of vi, i.e., nodes directly linked

to vi,

• |EN (vi)|: the number of edges in the ego-net,

• Wvi : the sum of all weights in the ego-net,

• λw,i: the principal eigenvalue of the weighted adjacency matrix in the

ego-net.

The authors then use the Egonet Weight Power Law (EWPL), Egonet λw

Power Law (ELWPL), Egonet Rank Power Law (ERPL), and Egonet Density

Power Law (EDPL), a series of power laws that state each of these features

is linked to the others by a power law. To compute an anomaly score that

compares the egonet properties to the established power law, they define y as

the value of one of these features of a node vi (denoted as yi), and similarly,

let xi denote the value of another of those features for node vi. Given the

power law equation ŷi = Cxθi that links the particular pair of features X and

y, they define the outlierness score of node vi to be:

out-line(i) =
max

(
yi, Cx

θ
i

)
min

(
yi, Cxθi

) · log
(
|yi − Cxθi |+ 1

)
(1.2)

The equation above measures the deviation of feature yi observed for node vi

from its expected value given by the power law with regard to its feature xi,

giving us a score proportional to the outlierness of a node, with the minimum

being 0.

In addition, they combine this score with the score obtained by using the

Local Outlier Factor defined in Equation 1.5, on this feature vector to obtain

a final anomaly score.

23

Takeaway

The development of network representation methods like DeepWalk and

Node2Vec marked a significant advancement in graph mining. By lever-

aging relational information to create latent vectorial representations, these

methods allowed traditional anomaly detection techniques to be applied to

graphs.

1.1.3 Vectorial Anomaly Detection

Once the latent representations have been obtained, those vectorial represen-

tations are fed as input to methods designed for tabular anomaly detection

such as local outlier factor.

Local Outlier Factor

The Local Outlier Factor (LOF) [11] is a vectorial density-based score that

detects data points that are far from all other data points by defining the

k-distance, Reachability Density (rd), and Local Reachability Density (lrd).

The k-distance kdist of an element is the distance of an element to its kth

nearest neighbor. The choice of the distance metric D depends on the spe-

cific problem at hand (Euclidean, Manhattan, etc.).

The reachability density between an element i and an element j is defined

as:

rd(i, j) = max(kdist(j), D(i, j)) (1.3)

Where and D(i, j) is a distance between i and j.

The local reachability density of an element i is defined as the inverse of

24

the average reachability distance to its neighbors:

lrd(i) =

 1

|Nk(i)|
∑

j∈Nk(i)

rd(i, j)

−1

(1.4)

where Nk(i) is the set of its k nearest neighbors of i. This density measures

how far a point is from the nearest cluster of points. Low values of lrd imply

that the closest cluster is far from the point.

The LOF of an element i is the average ratio of the local reachability

density of i to the local reachability density of its k-nearest neighbors:

LOF(i) =

∑
j∈Nk(i)

lrd(j)

|Nk(i)|
× 1

lrd(i)
(1.5)

If the point is normal, the ratio of the average lrd of neighbors is approx-

imately equal to the lrd of a point (because the density of a point and its

neighbors are roughly equal), giving a LOF score roughly equal to 1. Gen-

erally, a LOF score above 1 is considered an outlier, but that is not always

true.

Isolation Forest

Isolation Forest (IF) [43] is an ensemble-based unsupervised anomaly detec-

tion algorithm. It isolates anomalies by randomly splitting the data points

along randomly chosen features. The number of splits required to isolate a

data point is considered its anomaly score. Anomalies, by definition, tend to

have fewer splits needed for isolation compared to regular data points due to

their inherent deviation from the majority.

The combination of these vectorial methods applied to the latent rep-

resentation produced by methods in the previous section has shown great

performance for many tasks. However, they have since been outperformed

on most of those tasks by methods utilizing new neural networks designed

25

specifically for relational data.

Takeaway

Vectorial anomaly detection methods like LOF and IF, when applied to latent

representations of graph data, offered robust performance in many tasks.

However, their reliance on traditional tabular data processing limited their

effectiveness in dealing with the inherent relational properties of graphs that

are not fully captured by those latent representations. This performance

gap paved the way for adopting graph neural networks (GNNs) that are

specifically designed to handle graph-structured data.

1.1.4 Graph Neural Networks (GNN)

Recently, Graph Neural Networks (GNNs), deep neural network architectures

developed directly for tasks on relational data, have emerged based on the

same general architecture:

General Architecture

Let G = (V , E ,X) be an attributed network defined by the set of nodes

V = {v1, . . . , vn}, the set of edges E represented by a symmetric adjacency

matrix A where ai,j = 1 if there is an edge between nodes i and j and ai,j = 0

otherwise, and the attribute matrix X ∈ R(n×d) which ith row xi represents

the attribute vector of vi. In the same way, ai denotes the ith row of A.

Most GNNs will follow the same two steps:

• Neighbor Aggregation: The first step is aggregating the information of

a node with the information of its neighbors.

• Feature Update: After aggregating the neighbors’ information, the

model applies a multilayer perceptron (MLP) to learn patterns.

26

By stacking l layers of this architecture, the model can learn the representa-

tion of the l-hop neighborhood of each node.

A Multilayer Perceptron (MLP) [16] consists of an input layer, multi-

ple hidden layers with interconnected neurons, and an output layer as shown

in Figure 1.4. Information propagates forward, undergoing linear transfor-

mations and non-linear activation functions in each layer.

Figure 1.4: Multilayer Perceptron (MLP) diagram with four hidden layers.
One neuron is the result of applying the nonlinear transformations of linear
combinations (xi, wi, and biases b). [16]

Graph Convolutional Network

Graph Convolutional Network (GCN) [36] is one of the first GNNs to be de-

veloped. It proposes to aggregate the attributes of a node with the attributes

27

of its neighbors through a convolution. The core idea is to perform convolu-

tions directly on the graph, leveraging its structure to propagate information

between nodes. The graph convolutional layer can be defined as follows:

H(l+1) = σ

(
D̃

− 1
2 ÃD̃

− 1
2H(l)W(l)

)
(1.6)

where H(l) is the latent representation of the layer l. = A+ I with I as the

identity matrix, and D̃i,i =
∑

j Ãi,j, W
(l) is the learned weight matrix, and

σ is an activation function, i.e., a function applied to each neuron’s output to

introduce non-linearity into the model. The initial input is X, the attribute

matrix.

H(0) = X (1.7)

The pooling method D̃
− 1

2 ÃD̃
− 1

2X essentially replaces the feature of a

node with the mean feature in its own egonet.

GraphSAGE

GraphSAGE [30] is a framework for inductive representation learning on large

graphs. Unlike traditional graph convolutional networks that aggregate the

attributes of all neighboring nodes, GraphSAGE samples a fixed-size set of

neighbors for each node and then aggregates their attributes through an

aggregation function such as mean, LSTM, or pooling. Specifically, Graph-

SAGE performs the following steps, as shown in Figure 1.5, for each node in

the graph:

• Neighbor Sampling: For each node, a fixed-size set of neighbors is

sampled. This ensures computational efficiency and allows the method

to scale to large graphs.

• Feature Aggregation: The sampled neighbors’ attributes are aggregated

using a neural network. The aggregation function can be mean, LSTM,

or pooling-based.

28

• Embedding Update: The node’s embedding is updated by combining

its current embedding with the aggregated neighbor information.

Formally, the embedding Hi for a node vi at layer k + 1 is expressed as:

Hk+1
i = σ

(
W k · AGGREGATE

({
hku,∀u ∈ N(vi)

}))
(1.8)

where Hk
i is the embedding of node i at layer k, N(vi) is the set of neighbors

sampled for node vi, W
k is the weight matrix for layer k, σ is a non-linear

activation function, such as ReLU, and AGGREGATE is the aggregation

function.

Figure 1.5: Visual illustration of the GraphSAGE sample and aggregate
approach [30].

Graph Isomorphism Network

Graph Isomorphism Network (GIN) [80] is a powerful neural network archi-

tecture designed for graph representation learning. GIN is inspired by the

Weisfeiler-Lehman (WL) graph isomorphism test, which is a method used

to determine if two graphs are structurally identical. GIN leverages this

concept to achieve better expressive power in distinguishing different graph

structures.

29

The key components of GIN are as follows:

• Neighbor Aggregation: GIN aggregates the features of the neighbors

of a node. Unlike traditional graph neural networks that use weighted

sums or means, GIN uses sum aggregation, which theoretically provides

maximum discriminative power.

• Feature Update: After aggregating the neighbors’ features, GIN up-

dates the node’s features by applying an MLP. This process ensures

that the node features are sufficiently transformed and can capture

complex patterns.

Formally, the embedding Hi for a node vi at layer k + 1 is computed as:

Hk+1
i = MLP(k)

(1 + ϵ(k)) ·H(k)
i +

∑
u∈N (vi)

H(k)
u

 (1.9)

In this equation, H
(k)
i is the embedding of node vi at layer k, ϵ

(k) is a learnable

or fixed scalar that allows the model to learn the importance of the node’s

own features, and MLP(k) is a multilayer perceptron applied at layer k.

Graph Attention Network

Graph Attention Networks (GAT) [74] introduce the attention mechanism to

graph neural networks, allowing dynamic weights in the aggregation process

based on the importance of neighboring nodes. GATs have been shown to be

effective in various graph-based tasks due to their ability to assign different

importance to different nodes in a neighborhood.

The core idea of GAT is to compute the attention coefficients, which

determine the importance of a node’s neighbors, as shown in Figure 1.6.

This process involves the following steps:

• Attention Mechanism: GAT computes attention coefficients for each

edge, indicating the importance of neighboring nodes. This is achieved

30

using a shared attention mechanism that calculates the coefficients

based on the features of the nodes involved.

• Feature Aggregation: The node features are aggregated using the at-

tention coefficients to produce a new feature representation for each

node.

Formally, the node embedding h
(l+1)
i for a node vi at layer l+1 is computed

as:

h
(l+1)
i = σ

 ∑
vu∈N (vi)

α
(l)
iuW

(l)h(l)u

 (1.10)

The attention coefficients α
(l)
iu are computed as:

α
(l)
iu =

exp
(
ReLU

(
a(l)T [W (l)h

(l)
i ||W (l)h

(l)
u]

))
∑

vk∈N (vi)
exp

(
ReLU

(
a(l)T [W (l)h

(l)
i ||W (l)h

(l)
k]

)) (1.11)

In these equations, h
(l)
i and h

(l)
u represent the embeddings vectors of nodes vi

and vu at layer l, α
(l)
iu is the attention coefficient indicating the importance

of node vu’s features to node vi, a
(l) is a learnable weight vector used in

computing the attention coefficients, || denotes the concatenation operation,

and ReLU is the activation function applied to the concatenated features.

Takeaway

The introduction of Graph Neural Networks (GNNs), including GCN, Graph-

SAGE, GIN, and GAT, changed the whole domain of graph mining, including

anomaly detection on attributed networks. These models capture structural

and attribute information through advanced aggregation and feature update

mechanisms and are used as backbones by many techniques, creating the

domain of deep graph anomaly detection.

31

Figure 1.6: Left: The attention mechanism a(Whi
,Whj

) employed by the
model, parametrized by a weight vector a ∈ R2F , applying a ReLU activa-
tion. Right: An illustration of multihead attention (with K = 3 heads) by
node 1 on its neighborhood. Different arrow styles and colors denote inde-
pendent attention computations. The aggregated features from each head
are concatenated or averaged to obtain h′

1 [74].

1.1.5 Graph Datasets for Anomaly Detection

The arrival of these new models coincides with the arrival of new relational

datasets with labels representing real-world anomalies:

• Disney [54] is an Amazon co-purchase network that contains only Dis-

ney DVDs that are linked by an edge if they are often bought together

(124 nodes with 334 edges). The 30 attributes per node are the ex-

tracted product information (e.g., product prices, different rating ra-

tios, product reviews). The existing graph clusters correspond to sim-

ilar Disney films, such as Disney Pixar films or Disney classics. The

ground truth was obtained from a user experiment. Outliers have been

labeled by a class of high school students as domain experts for the se-

lected subgraph. Each co-purchased group was shown to the students

as a product list, and they had to label one or two items that they con-

32

sidered deviating from the others in the group. For the ground truth,

all products that have been labeled as outlying by at least 50% of the

students are considered outliers. The dataset is illustrated in Figure

1.7.

Figure 1.7: An outlier example in a subgraph of the Amazon co-purchased
network [54].

• Tencent-Weibo dataset [88] is a user-posts-hashtag graph from a Chi-

nese social media platform, i.e., users, posts, and hashtags are the

nodes. A user is linked by an edge to the posts they participated in.

Posts are linked by an edge to the hashtags they contain. It includes

8,405 users and 61,964 hashtags. Users were labeled based on temporal

information. The algorithm assumed that posting two messages within

specific intervals, such as 10, 15, 30, 45, and 60 seconds, constitutes

a suspicious event. Users who made at least 5 suspicious events were

labeled as suspicious users, while those with no suspicious events were

labeled as benign users. Consequently, there are 868 suspicious users

and 7,537 benign users. Since the ground truth was derived from time

information, timestamps were not used to create raw user features.

Thus, the raw feature vector comprises two parts: a one-hot vector

33

representing user posts and a bag-of-words feature.

• Reddit [39] is a graph representing the relationship between users and

subreddits on the social media platform, Reddit. Users and subreddits

are nodes, and there is a link between a user and a subreddit if the

user participates in it. This publicly available dataset includes one

month of user posts on subreddits. The dataset comprises the 1,000

most active subreddits and the 10,000 most active users, represented

as subreddit nodes and user nodes, respectively. This results in a total

of 168,016 interactions. Each user is assigned a binary label indicating

whether they have been banned by the platform. Banned users are

considered anomalies compared to regular Reddit users. The text of

each post is transformed into a feature vector, and the features of users

and subreddits are obtained by summing the features of their respective

posts.

• Books [63] is an Amazon co-purchase network, where each node is

a book sold by Amazon, and two products are linked by an edge if

they are often bought together. The feature vectors are derived from

the product information (21 attributes). In this dataset, the labels

were acquired through an ’Amazon fail’ tag, a system that enabled all

Amazon users to report issues. It is evident that the reasons for this

tag can be highly diverse, as there are no specific guidelines provided

to users on when to use it. A book is deemed anomalous if it has been

tagged by 20 people.

• DGraph [34] is a large-scale attributed graph containing 3 million

nodes, 4 million dynamic edges, and 1 million ground truth nodes. The

nodes correspond to user accounts in a financial company that offers

personal loan services, and an edge between two nodes indicates that

one account has added another as an emergency contact. For accounts

with at least one borrowing record, anomalies are those with overdue

34

histories, while normal nodes are those without. Additionally, there

are 2 million accounts/nodes with no borrowing records at all. The 17

node features are derived from user profile information such as age and

gender.

In those cases, an anomaly is simply what human operators decide is not

normal. That means that there can be many definitions of what constitutes

an anomaly, and there is no guarantee that two experts will always agree that

the same pattern is anomalous. This makes the task much more complex,

as, unlike previous understandings, no predefined pattern can be found.

To expand their benchmarks, a new protocol to inject anomalies in a

real-world dataset was formalized by [45]. These anomalies are defined as:

• Contextual anomalies: To inject a total of o contextual outliers, first,

sample o nodes from the node-set V without replacement; these are the

nodes whose attributes we aim to modify to turn them into contextual

outliers. We denote the set of these o nodes as Vc (so that o = |Vc|),
and refer to the remaining nodes Vr = V \ Vc as the “reference” set.

For each node i ∈ Vc, q nodes are chosen at random from the reference

set Vr. Among these q reference nodes chosen, we find the one whose

attributes deviate the most (in terms of Euclidean distance) from those

of node i. We then change the attributes of node i to be the same as

those of this most dissimilar reference node found.

• Structural anomalies: The basic strategy is to create n non-overlapping

densely connected groups of nodes, where each group has exactly m

nodes (so that there are a total of m× n structural outliers injected).

To do this, for each i = 1, . . . , n, we randomly sample m nodes to form

the i-th group (these m nodes are sampled uniformly at random from

nodes that have not been previously chosen to form a group); for these

m nodes, we first make them fully connected and then drop each edge

independently with probability p.

35

The injected anomalies presented are similar to the outliers that were

already identified, that is, nodes different from their neighbors. This corre-

spond to the homophily property, which describes a graph where nodes with

similar features or the same class labels are likely to be neighbors, i.e., nodes

linked together. Contrary to heterophily which occurs when nodes have dis-

similar features and different class labels from their neighbors. However,

many real-world anomaly datasets do not fit that description, meaning the

homophily property might have been given disproportionate importance in

the previous methods.

Takeaway

With these new datasets, the notion of an outlier as previously defined

does not encompass the anomalies presented, leading to a new definition

of anomaly based on the notion of normality, a vague concept that changes

depending on the application case.

Anomalies are patterns in data that do not conform to a well-defined

notion of normal. [13]

1.1.6 Deep Graph Anomaly Detection

With the advent of GNNs and the appearance of those new datasets, we saw

a substantial increase in publications for the graph anomaly task, as seen

in Figure 1.1 from Section 1.1. In the following sections, we will now focus

only on the methods applied for the node anomaly detection task on the

attributed network where the anomalous element that needs to be found is

a node.

36

1.1.7 Unsupervised Anomaly Detection

Currently, the most efficient unsupervised anomaly detection methods are

led by reconstruction-based techniques [45] that aim to exploit the structure

of the graph and the attributes of the nodes to detect anomalies [41, 55, 17,

19, 8]. They create an approximation of the original graph and then consider

the distance of each node to its reconstruction as an anomaly score.

Anomalous

Anomalous [55] is based on the CUR decomposition, which states that for

any matrix M, there exist three matrices:

• C ∈ Rd×m: A submatrix containing m columns of M ,

• R ∈ Rr×n: A submatrix containing r rows of M ,

• U ∈ Rm×r: A small matrix that mathematically combines the informa-

tion from C and R,

such that the product of these three matrices CUR is an approximation of

M . In Anomalous, The authors use the structure of the graph to select the

rows and columns of X that will be used in C and R. Once the approxi-

mation of X is obtained, they apply residual analysis, which aims to study

the distance between true data and estimated data to spot anomalies since

anomalies usually have large residual errors caused by significant deviations

from most reference instances in patterns [73].

In this category, Graph Auto Encoders (GAE) have gained popularity in

recent years due to their performance [45, 49, 36, 8]. These models use GCN

to create an encoder that generates a low-dimensional vector representation

of the nodes using both the attribute matrix and the adjacency matrix, before

feeding this representation to another GCN to reconstruct the original graph

from the latent representation.

37

Dominant

Dominant [17] is one of the first works that leverages GCN and AE for

detecting outlier nodes. It uses a 3-layer encoder to encode both structural

and attribute information into a single latent representation that is then

used by two decoders to reconstruct the attribute matrix and the adjacency

matrix, respectively, as shown in Figure 1.8.

Figure 1.8: The overall framework of Dominant for deep anomaly detection
on attributed networks [17].

Encoder: The attributed network auto-encoder 3-layer GCN uses ReLu

as the activation function, giving us the following attribute encoder:

H(1) = Relu
(
D̃− 1

2 ÃD̃− 1
2XW (0)

)
(1.12)

H(2) = Relu
(
D̃− 1

2 ÃD̃− 1
2H(1)W (1)

)
(1.13)

Z = H(3) = Relu
(
D̃− 1

2 ÃD̃− 1
2H(2)W (2)

)
(1.14)

After applying three layers of convolution, the input attributed network can

be transferred to the latent representations Z.

Attribute Decoder: The attribute reconstruction decoder leverages an-

other graph convolutional layer to predict the original nodal attributes as

follows:

X̂ = Relu
(
D̃− 1

2 ÃD̃− 1
2ZW (3)

)
(1.15)

38

Structure Decoder: The decoder takes the latent representations as

input and predicts whether there is a link between each pair of nodes:

Â = sigmoid(ZZT) (1.16)

Anomaly Score: To jointly learn the reconstruction errors, the loss

function to minimize includes both structural and node attribute errors:

L = (1− α)RS + αRA = (1− α)∥A− Â∥2F + α∥X − X̂∥2F (1.17)

where α is a balance parameter to control the relative importance of attribute

information over structural information, ∥·∥F denotes the Frobenius norm of

a matrix, and ∥·∥2 the l2 norm of a vector. Finally, the reconstruction error is

computed from both higher-order structures and node attribute perspectives

to calculate the anomaly score of each node:

score(vi) = (1− α)∥ai − âi∥2F + α∥xi − x̂i∥2F (1.18)

giving a score such that a higher value indicates a higher probability of being

an abnormal node.

AnomalyDAE

In AnomalyDAE [19], the authors use the same architecture as Dominant

while replacing GCN with GAT layers and adding two hyper-parameters to

the loss, θ and η, which are masks that allow the user to impose a greater

penalty on the reconstruction error of the non-zero elements. This loss func-

tion L is defined by:

L = α∥(A− Â)⊙ θ∥2F + (1− α)∥(X − X̂)⊙ η∥2F (1.19)

where ⊙ denotes the Hadamard product, and α is a trade-off parameter.

39

GUIDE

In GUIDE [86], the authors propose an architecture with two auto-encoders,

one for attributes and one for structure, as illustrated in Figure 1.9. Only the

attribute encoder is based on the GCN architecture presented in Dominant,

while the structure encoder is based on a GAT architecture.

Figure 1.9: The framework of GUIDE [86].

Attribute Auto-encoder: The attribute auto-encoder network layers

are the same as Dominant, with a 2-layer encoder that creates ZA, the at-

tribute latent representation, that is only used by the 1-layer attribute de-

coder to produce X̂:

X̂ = Relu
(
D̃− 1

2 ÃD̃− 1
2ZAW (3)

)
(1.20)

Structure Auto-encoder: Unlike Dominant, GUIDE’s structural en-

coder uses a GAT-based autoencoder, following the equations presented in

1.1.4. It consists of a 2-layer encoder that generates ZS, the structural latent

representation, which is then fed into a 1-layer decoder to produce Ŝ, the

reconstructed structure.

40

Ŝ = graph decoder(ZS) (1.21)

Once both reconstruction errors have been obtained, they are used in the

same way as the reconstruction errors presented in Dominant.

However, recent benchmarks [45] have shown that while these meth-

ods perform well on datasets with injected anomalies, they often perform

poorly on real-world anomaly datasets. This limitation arises from the rigid-

ity in how unsupervised methods define ”normal” behavior, which is often

based solely on patterns learned from the majority of the data. In real-

world scenarios, normal behavior can be more diverse and extremely context-

dependent. This observation could explain the trend from unsupervised to

semi-supervised/supervised methods in recent years.

Contrastive Learning for Anomaly Detection in Graphs

CoLA [47] addresses the anomaly detection problem in large graphs through

the use of contrastive learning. Contrastive learning is a self-supervised learn-

ing approach where a model learns to differentiate between similar and dis-

similar data points without explicit labels. Cola specifically relies on creating

”node vs local neighborhood” pairs. A positive pair is created from a node

embedding, and the subgraph embedding is from the subgraph that contains

that node. In contrast, a negative pair is composed of a node embedding with

a subgraph embedding that does not contain the node. This method is en-

tirely built on the hypothesis that anomaly nodes have a mismatch between

their near neighbors.

Subgraph sampling : For each node, a local subgraph is defined by

a random walk starting from the target node. In this local subgraph, the

attribute vector of the target node is replaced by a zero vector to hide it from

the later contrastive learning. Then, for each target node, both a positive

pair is created by taking this subgraph, and a negative pair is created by

taking another node subgraph. The pairs are then added to a corresponding

41

sample pool, as shown in Figure 1.10. The corresponding instance pair Pi is

denoted as:

Pi = (vi, Gi, yi) (1.22)

where vi is the target node, Gi is the local subgraph containing ni and yi the

pair label with yi = 1 if the pair is positive and yi = 0 if the pair is negative.

42

Figure 1.10: The sampling process of contrastive instance pairs. Here, the

node v6 is selected as the example of the target node. The initial nodes for

subgraph sampling are marked in green. The blue-white stripe means the

embedding of the corresponding node is masked with a zero vector. Figure

from [47].

Then, as shown in Figure 1.11, the learning model is split into 3 parts: a

GNN embedding module, a readout module, and a discriminator module.

43

Figure 1.11: The overall framework of CoLA. The framework is composed of

three components: instance pair sampling, GNN-based contrastive learning

model, and anomaly score computation. Node v3 is an anomaly since it has

corrupted attributes, and the rest of the nodes are normal nodes. Figure

from [47].

The GNN embedding module functions in the exact same way as the

encoder seen in 1.1.7 to create etni , the target node embedding of the node

vi. Cola then uses these node embeddings to create a subgraph embedding

vector elgi for the local subgraph Gi with an average pooling function:

elgi = Readout(Ei) =
1

ni

ni∑
k=1

(etnk) (1.23)

Finally, the Discriminator, the contrastive part of the learning model,

contrasts the embedding of the local subgraph elgi with the embedding of the

target node etni given by the encoder and outputs the pair predicted score by

applying a bilinear scoring function:

si = Discriminator(elgi , e
tn
i) = σ

(
elgi Wetn⊤i

)
(1.24)

Put together, these three modules produce a binary classification model

to predict the labels of contrastive instance pairs, trained with a binary cross

44

entropy loss:

L = −
N∑
i=1

[yi log(si) + (1− yi) log(1− si)] (1.25)

Finally, an anomaly score is computed by using both s
(+)
i and s

(−)
i respec-

tively the positive and negative pair scores:

f(vi) = s
(−)
i − s

(+)
i (1.26)

Takeaway

GAE-based techniques have proven effective and seen many iterations such

as Dominant, AnomalyDAE, and GUIDE. These iterations show minor pro-

gression but keep a relative lead over other unsupervised techniques [45].

Cola differentiated itself by using contrastive learning, reaching good perfor-

mance on injected anomalies but performing particularly poorly on real-world

datasets [47, 45]. These limitations have led to a growing interest in explor-

ing semi-supervised approaches that can leverage even limited labeled data

to improve detection accuracy.

1.1.8 Semi-Supervised Anomaly Detection

While unsupervised methods have proven effective, they often struggle with

real-world anomalies. To address this, recent approaches have shifted toward

semi-supervised methods, which leverage limited labeled data to improve

detection accuracy. By combining labeled and unlabeled data, these methods

enhance performance, particularly in complex anomaly scenarios.

Many models fully dedicated to anomaly detection have emerged, such

as those presented in the following section.

45

Beta Wavelet Graph Neural Network

The Beta Wavelet Graph Neural Network (BWGNN) [72] is a backbone GNN

designed to address the problem of anomaly detection in attributed networks.

The authors identify a ’right-shift’ phenomenon, where the spectral energy

distribution of a graph with anomalies shifts towards higher frequencies. This

motivates the need for spectral localized band-pass filters to detect anomalies

effectively. The BWGNN starts with an original wavelet ψ and employs a

group of wavelets as bases W = (Wψ1 ,Wψ2 , ...) in a Beta wavelet transform

applied on a graph signal x, the attribute matrix X in our context, this

transformation can be defined as:

Wψi
(x) = Ugi(Λ)U

Tx (1.27)

where gi(·) is a kernel function in the spectral domain, and U and Λ are the

eigenvectors and eigenvalues of the graph Laplacian L. The beta wavelet

transform is expressed as:

Wp,q = Uβ∗
p,q(Λ)U

T = β∗
p,q(L) =

(L/2)p(I − L/2)q

2B(p+ 1, q + 1)
(1.28)

where β∗
p,q(w) is a Beta distribution, p and q are parameters controlling the

wavelet shape, and B(p + 1, q + 1) is the Beta function. This transform

ensures that the BWGNN can capture high-frequency anomalies through

flexible, localized, and band-pass filters.

Semi-supervised GNN

In this contribution [38], the authors propose a method for semi-supervised

anomaly detection, leveraging the Graph Convolutional Network (GCN) en-

coder architecture. However, unlike traditional approaches, they focus on

identifying anomalies directly within the latent space generated by the en-

coder.

46

The anomaly score for each node is defined as the squared Euclidean

distance between the node’s embedding and a center c, which represents the

average of the embeddings of the normally labeled nodes from the training

set:

a(vi) = ∥hi − c∥2, (1.29)

where hi is the embedding of node vi.

The objective function they introduce consists of two main components:

• Mean Squared Distance of Normal Nodes: This term minimizes

the average squared distance between the embeddings of normal nodes

and the center, effectively clustering these nodes around the center in

the latent space:

Lnor(θ) =
1

|Vn|
∑
n∈Vn

∥hn − c∥2, (1.30)

where Vn is the set of nodes labeled as normal.

• AUC Regularization Term: This term is a differential approxima-

tion of the Area Under the Curve (AUC) and ensures that the em-

beddings of anomalous nodes are far from the center. The function

sigmoid(x) is the sigmoid function, which helps in differentiating the

anomalies from the normal nodes:

RAUC(θ) =
1

|Va||Vn|
∑
n∈Va

∑
m∈Vn

sigmoid(a(vn)− a(vm)), (1.31)

where Va is the set of nodes labeled as anomalous.

The final objective function to be minimized is a combination of these

two terms:

L(θ) = Lnor(θ)− λRAUC(θ), (1.32)

47

Where λ is a hyperparameter that controls the influence of the AUC

loss. By including the AUC regularizer, this method is able to learn more

sophisticated node embeddings, improving its ability to detect anomalies

accurately.

These methods actively call themselves anomaly detection methods. How-

ever, many supervised works prefer the term fraud detection. Although some

works [18, 40, 18] use both terms interchangeably, many consider a different

task with a stronger emphasis on identifying anomalous patterns.

In this work, we use the following fraud definition:

Frauds are the result of intentional illegitimate behavior or actions.

If we consider legitimate actions to be one of the possible notions of

normality in our last definition of an anomaly, we can also consider that

frauds are a subset of anomalies.

Fraud Detection

A significant number of works [40, 46, 18, 24, 67] take on a more application-

based form, using graphs with heterogeneous edges. A heterogeneous graph

contains either several types of entities as nodes or several types of relations

as edges, contrary to a homogeneous graph contains only one type of entity

as nodes and only one type of relation as edges. However these studies

are generally limiting their experimentation to only two of those real-world

graphs:

• Amazon Fraud [50] is a dataset that includes product reviews from

the Musical Instruments category. This dataset is used for fraud de-

tection tasks involving user reviews. The nodes in this dataset are in-

dividual users, each represented by 25 handcrafted features. The label

is given by Amazon and represents fake reviews. The dataset includes

three types of relationships between users:

48

– U-P-U: This relation connects users who have reviewed at least

one common product.

– U-S-U: This relation connects users who have given at least one

common star rating within one week.

– U-V-U: This relation connects users who have the top 5% mutual

review text similarities (measured by TF-IDF) among all users.

The dataset contains a total of 11,944 nodes (users), with 6.87% labeled

as fraudulent. It has 351,216 edges for the U-P-U relation, 7,132,958

edges for the U-S-U relation, and 2,073,474 edges for the U-V-U rela-

tion.

• YelpChi [60] consists of hotel and restaurant reviews that have been

filtered (spam) and recommended (legitimate) by Yelp. This dataset is

used to conduct spam review detection tasks. The nodes in this dataset

are individual reviews, each represented by 32 handcrafted features.

The dataset includes three types of relationships between reviews:

– R-U-R: This relation connects reviews posted by the same user.

– R-S-R: This relation connects reviews under the same product

(hotel or restaurant) that have the same star rating.

– R-T-R: This relation connects reviews under the same product

that were posted in the same month.

The dataset contains a total of 45,954 nodes (reviews), with 14.53%

labeled as fraudulent (spam). It has 98,630 edges for the R-U-R rela-

tion, 1,147,232 edges for the R-T-R relation, and 6,805,486 edges for

the R-S-R relation.

49

Most of these methods use a node classifier architecture [77, 32, 58, 46, 18,

24, 67], using a classical cross-entropy loss to train their GNN model:

L = −
N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (1.33)

where yi is the true label of sample i (0 or 1), and pi is the predicted proba-

bility of sample i being in class 1.

Most methods focus on trying to learn a representation in ways that allow

the models to understand complex relationships [46, 18, 24, 67].

Pick and Choose GNN

Pick and Choose GNN (PC-GNN) [46] uses a label-balanced sampler to pick

nodes and edges for sub-graph training using the sampling probability:

P (v) ∝ ∥Â(:, vi)∥2
LF (C(vi))

(1.34)

where LF (C(vi)) is the label frequency of the class of vi, Â = D̃− 1
2 ÃD̃− 1

2

and Â(:, vi) is the column vi of Â.

It then uses a neighborhood sampler that over-samples the neighborhood

of the fraud class and under-samples the neighborhood of the normal class.

This structure is then fed to a classical GNN classifier, such as the one

described in Section 1.1.4, to obtain a final binary classification as either

fraud or benign, as illustrated in Figure 1.12.

H2-FDetector

H2-FDetector [67], illustrated in Figure 1.13, includes multilayer convolution

and each layer adds two components:

• Connection identification: A one-layer MLP m is applied on each edge

(u,v) to determine whether they are homophilic or heterophilic. m

50

Figure 1.12: The figure demonstrates the l-th layer of PC-GNN framework
on an example graph. The solid and dashed lines represent two kinds of
relations among these nodes. The nodes in gray are fraudulent ones, and the
white ones are benign. Figure from [46]

takes the embedding of both nodes after the convolution at the layer l

as input:

m(l)
uv = tanh(W (l)

c [h̄(l)u ∥h̄(l)v ∥(h̄(l)u − h̄(l)v)]) (1.35)

According to [10], the sum of neighborhood representations makes the

representations similar, which is suitable for homophilic connections.

At the same time, the difference between node features and neighbor-

hood features makes the representations become discriminative, which

suits heterophilic connections. Once the MLP has classified the edge,

they determine cuv. If the nodes are homophilic cuv = 1, if they are

heterophilic cuv = −1:

c(l)uv = SIGN(m(l)
uv) (1.36)

• Connection aggregation: Follows the classical attention mechanism

51

Figure 1.13: The Aggregation Process of Proposed H2-FDetector at the
Training Phase. Figure from [67]

shown in GAT while adding cuv in the attention computation:

α(l)
vu =

exp
(
ReLU

(
a(l)T [W (l)h

(l)
v ||c(l)uvW (l)h

(l)
u]

))
∑

k∈N (vv)
exp

(
ReLU

(
a(l)T [W (l)h

(l)
v ||c(l)uvW (l)h

(l)
k]

)) (1.37)

• Final Classification: After multiple layers of aggregation, the model

generates a final node embedding for each node. These embeddings are

then fed in a last GAT layer used as a binary classifier. The model’s

ability to distinguish between homophilic and heterophilic neighbors

allows it to adapt to the underlying graph structure more effectively,

improving classification performance on both types of graphs.

Takeaway

Contrary to the previous sections, with the exception of some rare works such

as GAD-Bench [71], which compare these models with a single methodology,

these works tend to remain isolated in this one setup while not comparing

52

themselves with other anomaly detection methods, making it difficult to per-

fectly know the current state of general anomaly detection.

1.2 Suspicious

Most of these works do not take into account the real constraints that come

with the task, such as:

• The rarity of labeled data. Identifying anomalies is a complex and

time-consuming task for humans, making the production of the labeled

datasets a costly endeavor.

• The reliability of labeled data. For the same reason as listed above,

the humans producing those labels are subject to both biases and can

make mistakes.

In practice, most of these methods need a large part of the dataset to be

labeled and do not take into account the presence of mislabeled nodes (i.e.,

normal nodes labeled as frauds and conversely) within the training dataset

that would seriously degrade the quality of classification between normal and

fraudulent nodes.

To overcome this, we propose Suspicious [25], a semi-supervised method-

ological framework based on GAEs for identifying anomalies in an attributed

graph, requiring only a small labeled sample and resilient to the labeling er-

rors of the training sample.

1.2.1 Problem Formalization

Let G = (V , E ,X) be an attributed network defined by the set of nodes

V = {v1, . . . , vn}, the set of edges E represented by a symmetric adjacency

matrix A where ai,j = 1 if there is an edge between nodes i and j and ai,j = 0

53

otherwise, and the attribute matrix X ∈ R(n×d) which ith row xi represents

the attribute vector of vi. In the same way, ai denotes the ith row of A. It is

assumed that there is a labeled subset of nodes, Vl ⊂ V . It is itself composed

of two disjoint subsets, Vs and Vn, containing nodes identified, respectively,

as fraudulent and normal, possibly with mislabeling errors: Vl = Vs∪Vn and

Vs ∩ Vn = ∅. This mislabeling, relatively frequent in practice, even when

the labeling is done by experts, leads to anomalies being present in Vn and

normal nodes in Vs. We denote Va ⊂ V the set of the nodes that are truly

anomalous, i.e., the ground truth that is not available in real applications.

The problem we seek to solve can be expressed as follows: Given the

attributed network G = (V , E ,X) and the two labeled subsets Vs and Vn, the
goal is to compute an anomaly score for the unlabeled nodes such that the

true fraudulent nodes have a higher score than the true normal ones.

1.2.2 Principle Behind Suspicious

To solve this task, Suspicious uses two graph auto-encoders, Susp and Norm,

as shown in Figure 1.14. The auto-encoder Norm tries to reconstruct G

such that the normal nodes are better reconstructed than the fraudulent

ones, while Susp does the opposite and tries to reconstruct G in a way that

anomalies are better reconstructed than normal nodes. For each unlabeled

node, we then obtain a reconstruction error (i.e., score) from Norm and

another one from Susp, and, finally, these errors are combined in a ranking

score. The formal definition of this score is given in the following section,

but, informally, these two scores categorize the nodes as follows:

• A low reconstruction error by Norm and a high one by Susp: both

models agree that this is a normal node which should result in a final

score among the lowest.

• A high reconstruction error by Norm and a low one in Susp: both

models agree that the node is fraudulent. This means that the node

54

corresponds to a relevant fraud and, therefore, it should result in a final

score among the highest.

• In other cases, the combination of the two scores allows our model to

better identify the anomalies belonging to Vs than each auto-encoder

individually, as confirmed by the ablation study presented in Section

1.3.5.

Norm

Susp

 V2

V1

 V4
 V5

 V6

 V3

error

Norm

error
 Norm

error
 Susp

V2

V5

V3

V6

V1

V4

Final ranking

 error
Susp

 V2

 V1

 V4 V5

 V6
 V3

 V2

 V1

 V4
 V5

 V6
 V3

Figure 1.14: Architecture of Suspicious. Norm and Susp are auto-encoders
similar to those shown in Figure 1.15. Green nodes are normal, red nodes
are anomalous, orange nodes are poorly reconstructed, and blue nodes are
well-reconstructed.

1.2.3 Architecture of Suspicious

The architecture of both auto-encoders used in Suspicious is illustrated in

Figure 1.15 in which the colors correspond to the types of nodes: green for

normal nodes, red for anomalies, orange for poorly reconstructed nodes, and

blue for well-reconstructed nodes. The encoder (ENC in Equation 1.38) is

a GCN [36] that computes an embedding Z of the nodes in G. Then the

attribute decoder DEC (another GCN) and the adjacency matrix decoder

55

 V2

V3

V1

 V4 V5

 V6

Encoder
(ENC)

 Z
V1

V2

V3

V4

V5

V6

Attribute
decoder
(DEC)

Structural
decoder A

Autoencoder

X

 V2

V3

 V1

 V4

 V5

 V6

^

^

Figure 1.15: Architecture of an auto-encoder. Green nodes are normal, red
nodes are anomalies, orange nodes are poorly reconstructed, and blue nodes
are well-reconstructed.

are used to recreate, from Z, the approximations X̂ and Â of X and A,

respectively:

Z = ENC(A,X,Θ1); X̂ = DEC(A,Z,Θ2); Â = (ZtZ). (1.38)

Both auto-encoders, Susp and Norm, use this architecture with different

learnable parameters sets: Θs
1 and Θs

2 for Susp and Θn
1 and Θn

2 for Norm.

We can notice that each auto-encoder has the same architecture as Dom-

inant [17], but our model uses two of them and does not use the same loss

function as Dominant, as explained in the next section. Furthermore, our

framework is not limited to GCNs and can be used with other graph em-

bedding models. We also implemented versions1 of our framework in which

ENC and DEC are GraphSAGE [30] or SGC [78] instead of the GCN.

1.2.4 Calculation of Reconstruction Errors

For each node vi and each auto-encoder AE, which can be either Susp or

Norm, we define the node reconstruction error as:

1Codes available on https://src.koda.cnrs.fr/labhc/code4publications/2023-ICTAI-
suspicious

56

errAE(vi) = (1− α)∥ai − âi∥2 + α∥xi − x̂i∥2. (1.39)

where α is a parameter that allows one to weight the importance given to

each type of reconstruction error, on the structure, and on the attributes.

During training, Suspicious tries to minimize the reconstruction error of

each auto-encoder on one of the samples (Vs or Vn) while maximizing the

error on the other. This leads to the definition of two loss functions, one for

Norm and one for Susp:

LNorm =

∑
vi∈Vn

errNorm(vi)∑
vi∈Vs

errNorm(vi)
, LSusp =

∑
vi∈Vs

errSusp(vi)∑
vi∈Vn

errSusp(vi)
. (1.40)

Thus, both auto-encoders Susp and Norm use Vn and Vs but in a different

way: nodes that are similar to the majority of the nodes in their respective

sample get lower scores while nodes that are less represented in the sample

get higher scores. The loss functions are minimized during training using

gradient descent, as explained in the next section. As previously stated,

the main difference between Suspicious and Dominant lies not only in its

architecture. Suspicious is based on two auto-encoders, as shown in Figure

1.15, while Dominant has only one, but also in the calculation of the loss

function. While Dominant tries to reconstruct the whole graph with minimal

error, in our model, each encoder tries to minimize its own reconstruction

error.

Final Score and Decision Criterion

The reconstruction errors of the nodes for each auto-encoder are normalized

in [0, 1], where AE is either Susp or Norm:

EnAE(vi) =
errAE(vi)−Minvj∈V(errAE(vj))

Maxvj∈V(errAE(vj))−Minvj∈V(errAE(vj))
. (1.41)

57

The final ranking score is then:

Rankingscore(vi) =
EnNorm(vi)

EnSusp(vi)
. (1.42)

Therefore, high scores in EnNorm with low scores in EnSusp produce a

high Rankingscore corresponding to nodes classified as anomalous, which is

in line with the principle behind Suspicious, described previously.

1.3 Experiments

This section details the experimental evaluation of our framework, Suspi-

cious, and its comparison with state-of-the-art methods. It also includes

an ablation study showing the interest in combining the two auto-encoders,

Norm and Susp, as well as an analysis of the impact of labeling errors in the

training sample, confirming the resilience of our method.

1.3.1 Datasets

The experiments are conducted on six real-world datasets:

• Cora and PubMed are popular public network datasets [65]. In these

graphs, each node is a scientific publication, and the edge represents

the citation of another publication. The attributes correspond to the

content of the publications represented as a bag-of-words vector.

• In Photo and Computers, each node is a product, and an edge exists

if two products are often purchased together. The attributes are also

bag-of-words vectors.

In Reddit and Books, described in more detail in Section 1.1.5, the label

information (anomalous/normal) has been obtained through human

expertise and requires no additional modification. However, as it results

58

Table 1.1: Characteristics of the datasets.

Dataset #Nodes #Edges #Attributes #Anomalies |Va| Anomaly Rate |Va|
|V|

|V| |E| d dataR dataS dataR dataS
Cora 2708 5278 1433 180 280 0.066 0.1
PubMed 19717 44338 500 4141 1971 0.208 0.1
Photo 7487 119043 745 331 748 0.043 0.1
Computers 13381 245778 767 291 1338 0.021 0.1

Books 1418 3695 21 28 0.020
Reddit 10984 168016 64 366 0.033

from human decisions, it can contain mislabeling. Thus, this ground

truth is not fully reliable for an experimental evaluation.

The evaluation of Suspicious requires datasets including anomalous ele-

ments. We consider three types of anomalies. In addition to organic anoma-

lies provided by humans, we follow the experimental protocols introduced

by Kumagai et al. [38] and Liu et al. [45] to define, respectively, rare class

anomalies and synthetic anomalies for the first four previous datasets (Cora,

PubMed, Photo and Computer). Thus, two versions have been generated for

each dataset data denoted respectively by dataR and dataS. The character-

istics of our datasets are summarized in Table 1.1: number of nodes (|V|),
edges (|E|), attributes (d), anomalies (|Va|) and anomaly rate (|Va|

|V|).

Anomaly Types

Rare class anomalies: Each of the datasets, Cora, PubMed, Photo, and

Computer, contains several classes of nodes. Following the protocol of [38],

rare class anomalies can be defined by relabeling the elements of the small-

est class as anomalies, while all the nodes of the other classes are considered

normal. In this way, a dataset named dataR, suitable for binary classification

with class imbalance, is created.

59

Synthetic anomalies: The same datasets, Cora, PubMed, Photo, and

Computers, are also modified to obtain contextual and structural anomalies

following the methodology proposed in [45] and fully detailed in Section 1.1.5:

• Contextual anomalies are created by replacing the attribute vector

of a node with the most different node attribute vector out of a range

of randomly selected nodes.

• Structural anomalies are created by adding edges to the graph to

create k cliques of k nodes with k =
√

0.05× |V |.

The ratio of created anomalous nodes is 5% for each type of anomaly, re-

sulting in a total of 10% of anomalous nodes of both types, contextual and

structural, as indicated in Table 1.1 (Anomaly rate) and resulting in the

dataset called dataS.

Introducing Labeling Errors

Each model as access to the whole graph G, but only to a limited set of

labels for training Vl, while the performances are evaluated on V \ Vl. In a

realistic fraud detection application, the number of available labeled nodes

would be low, and the labels could be erroneous. To reflect these hypotheses,

we propose the following protocol:

As illustrated in Figure 1.16, the set of labeled nodes Vl is randomly

sampled from V . To create Vl, V is sampled according to a rate R equal to

10% by taking R × |Va| anomalous nodes, where Va ⊂ V is the set of the

nodes that are truly anomalous, and R× |V \ Va| normal nodes.

As a reminder, Vl is split into two disjoint subsets, Vs and Vn, containing
nodes identified, respectively, as fraudulent and normal, when there are no

labeling errors Vn = Vl \ Va and Vs = Vl ∩ Va. To evaluate the resilience of

the methods, we then introduce errors in labels: the label of some nodes in

60

Va

Vs Vn

V

Vl

Miss

Figure 1.16: Illustration of the sets used to model labeling error. With
Va (red) the set anomalous nodes, the labeled set Vl (blue) split into two
subsets, Vs (orange) and Vn (green) containing nodes labeled respectively as
anomalies and normal, and Miss (yellow) the normal nodes mislabeled as
anomalies in Vs

61

Vl is swapped. The proportion of normal nodes wrongly labeled fraudulent

is denoted Miss, whereas the proportion of anomalous nodes labeled normal

is Misn:

Misn =
|Va ∩ Vn|

|Vn|
, and Miss =

|Vs \ Va|
|Vs|

. (1.43)

Due to our task, the data is imbalanced: the number of normal nodes |Vn|
is much larger than the number of frauds |Va|. Thus, Misn (which is upper

bounded by |Va|/|Vn|) is always small and can be neglected. Therefore, in

the experiments, it is taken as equal to 0, which also decreases the number

of parameters to test. The proportion Miss takes values varying between 0

and 0.5 in the experiments.

Finally, 10 training/test samples are produced for each dataset and each

mislabeling rate Miss. All reported results in the following sections are

averages (with standard deviation SD) over these 10 samples.

1.3.2 Settings for Suspicious and Baselines

Our methodological framework, Suspicious, is evaluated in three settings

depending on the version of the auto-encoder (AE) used: ENC and DEC in

Equation 1.38 can be: GCN [36], GraphSage [74] or SGC [78]. This leads to

three variants, respectively denoted Ours-GCN, Ours-Sage, and Ours-SGC,

in the following sections. They are compared with the following unsupervised

(u) and semi-supervised (s) state-of-the-art methods:

• Kumagai et al. (s): detailed in Section 1.1.8, is a semi-supervised

graph embedding method that uses the AUC regularizer as part of the

loss to minimize the volume of a hypersphere that encompasses labeled

normal nodes [38]. As Kumagai has been shown to outperform OCGNN

[76], OSVM [64], Doc-N [61], Deep Walk [56], and ImVerde [79] on these

datasets, we do not consider these methods as additional baselines since

by outperforming Kumagai et al., Suspicious will also outperform them.

62

• GNN classifiers (s): detailed in Section 1.1.4, are three graph neural

networks, GCN [36], GIN [80] and GAT [74] used as node classifiers.

• BWGNN (s): described in Section 1.1.8, is a graph neural network

designed for anomaly detection [72].

• Dominant (u): detailed in Section 1.1.7, is an unsupervised method

of graph reconstruction based on an auto-encoder which calculates

anomaly scores as the sum of the reconstruction errors made on the

attributes and the graph structure [17].

• AnomalyDAE (u): detailed in Section 1.1.7, is an improved version

of Dominant [19]. It has been empirically demonstrated in [45] that

AnomalyDAE consistently outperforms LOF [11] and IF [44]. For this

reason, we do not integrate them into our evaluation.

• Anomalous (u): detailed in Section 1.1.7, is a method that uses CUR

decomposition and residual analysis for computing a final score defined

by the norm of its reconstruction residual [55].

• CoLA (u): detailed in Section 1.1.7, is a method that produces an

embedding of the graph through a GNN and then uses contrastive

learning to compute an anomaly score [47]. Moreover, as CoLA is

based on the same approach as [89] and provides equivalent results,

this last one is not included.

1.3.3 Evaluation Parameters and Metrics

An implementation of the method from Kumagai2 was used with the param-

eters published in [38]: an embedding of dimension 4 for Books since it has

fewer attributes, and 32 for the other datasets, a maximum of 500 repetitions

with an early stopping mechanism, and the center C defined as the average

2https://github.com/tuananh0305/GCN ANOMALY DETECTION

63

of the embeddings of the nodes labeled as normal after the first layer of the

model.

For Dominant, AnomalyDAE, CoLA, and Anomalous, the pygod imple-

mentation from BOND [45] was used with the publication settings, a two-

layer GCN as an encoder and a one-layer GCN as an attribute decoder, an

embedding dimension of 32, 100 repetitions, and α = 0.5 for AnomalyDAE

and Dominant.

For Anomalous, the gradient descent is used instead of closed-form op-

timization provided in the official implementation to help it perform better

and faster in our task. For the GNN classifiers, the implementation bench-

mark [48] was used and modified to include mislabeling errors and a training

set with the same size as ours.

Our framework was implemented using parts of the Dominant implemen-

tation and models from PyTorch Geometric[22]; the code and datasets are

publicly available3.

The implementations of Suspicious use the same parameters as our base-

lines: an embedding dimension of 4 for Books and 32 for the others, a dropout

rate of 0.5 for both auto-encoders, 100 repetitions, and a learning rate of

0.005.

As in the literature, results are evaluated using AUC (Area Under the

ROC curve) scores on the unlabeled nodes. ROC AUC is especially useful in

anomaly detection because it avoids the need to set a fixed threshold for clas-

sification, which can be difficult to determine in imbalanced datasets where

anomalies are rare. It measures how well the model distinguishes between

true positives (anomalies) and false positives across all possible thresholds.

AUC values range from 0.5 (random guessing) to 1 (perfect classification),

with higher values indicating better anomaly detection performance.

For each dataset and each error rate Miss ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5},
we randomly select 10 train samples Vt and report the average AUC, with

3https://src.koda.cnrs.fr/labhc/code4publications/2023-ICTAI-suspicious

64

standard deviation, computed on the corresponding 10 test samples V \ Vt.

1.3.4 Experimental Results

The results obtained by the different methods for the datasets described in

Table 1.1 are presented in Tables 1.2-1.3.

Rare Class Datasets

Table 1.2: Average AUC±SD(%) on rare class datasets.

PhotoR ComputersR CoraR PubMedR
Ours-GCN(s) 93.9± 0.2 99.6±0.1 98.1±0.5 95.2± 0.2
Ours-Sage(s) 97.1±0.9 99.5± 0.1 95.6± 0.9 95.3±0.2
Ours-SGC(s) 97.3±0.6 99.6±0.2 95.7± 1.4 95.5±0.3

BWGNN(s) 92.1± 4.6 72.5± 10.5 48.4± 12.4 88.8± 0.3
GIN(s) 68.0± 18.9 93.1± 1.2 88.3± 0.1 89.0± 0.1
GAT(s) 96.8± 0.2 98.4± 0.2 97.0± 0.5 91.7± 0.4
GCN(s) 95.6± 0.2 98.5± 0.0 98.0±0.0 92.5± 0.0
Kumagai(s) 94.4± 1.8 97.2± 5.5 94.5± 1.8 94.3± 0.3

AnomalyDAE(u) 51.8± 0.1 56.4± 0.1 47.9± 0.4 61.8± 0.2
Dominant(u) 51.5± 0.0 46.3± 0.0 48.7± 0.4 51.0± 0.0
Anomalous(u) 54.1± 6.8 49.1± 3.4 53.0± 1.2 58.9± 1.9
CoLA(u) 55.8± 3.1 66.2± 1.2 38.3± 7.3 39.2± 3.3

Table 1.2 shows the results obtained for the rare class datasets in the

case of a perfectly labeled training sample i.e. when Miss equals 0. Our

framework obtains the best results across all datasets. However, most semi-

supervised methods accurately detect the anomalies and obtain relatively

equivalent results to ours, while the unsupervised methods designed for syn-

thetic anomalies completely fail to detect the rare class anomalies.

65

Table 1.3: Average AUC±SD(%) on synthetic and organic datasets.
PhotoS ComputersS CoraS PubmedS Reddit Books

Ours-GCN(s) 76.5± 2.3 80.1±4.0 78.85±3.7 84.3±2.6 64.3±1.7 58.0± 8.0
Ours-Sage(s) 72.3± 1.0 73.7± 0.4 75.8± 2.5 71.1± 1.0 63.5±2.8 60.9±5.1
Ours-SGC(s) 70.7± 1.8 71.8± 1.1 76.4± 2.7 69.1± 0.6 62.5±4.8 58.1±7.3

BWGNN(s) 55.3±8.3 64.0± 1.9 66.3± 1.2 69.5± 0.5 55.8± 2.1 54.2± 3.6
GIN(s) 51.2± 3.9 59.1± 3.6 32.3± 0.0 70.9± 6.4 48.9± 7.3 50.0± 0.0
GAT(s) 53.6± 0.8 70.3± 3.3 66.7± 0.9 72.0± 4.5 59.7± 3.7 50.0± 0.0
GCN(s) 57.0± 0.3 65.3± 0.3 40.0± 0.2 73.9± 0.7 62.0± 0.1 50.0± 0.0
Kumagai(s) 50.2± 2.3 53.2± 1.9 67.9± 2.8 57.0± 1.3 52.7± 0.7 43.4± 1.8

AnomalyDAE(u) 77.5±0.0 75.5± 0.0 77.5± 0.0 75.7± 0.1 48.6± 3.7 55.2± 6.7
Dominant(u) 63.6± 0.0 65.3± 0.0 83.9±0.0 81.2± 0.0 56.1± 0.0 38.9± 1.2
Anomalous(u) 48.5± 2.7 49.3± 0.08 33.6± 0.9 37.0± 0.02 53.0± 0.0 47.3± 3.1
CoLA(u) 58.5± 1.6 56.6± 0.08 67.0± 1.8 73.6± 2.3 53.0± 1.3 50.0± 0.0

Synthetic Class Datasets

The results obtained on the synthetic class datasets with perfectly labeled

training samples (Miss = 0) are summarized in Table 1.3. AnomalyDAE

gets the best results on PhotoS, and only our framework, Suspicious, reaches

equivalent results. Dominant provides the best result on CoraS, while our

framework arrives second, before AnomalyDAE, with significantly better per-

formances than all the other methods. Finally, Ours-GCN obtains the best

results on PubmedS and ComputerS.

We can observe that semi-supervised methods struggle to reach perfor-

mances equivalent to those of the unsupervised methods specifically designed

for these types of anomalies. However, Suspicious, which does not belong to

this family of methods, still manages to achieve performances equivalent to

the best-performing method, AnomalyDAE.

66

Organic Datasets

Finally, the results obtained on the organic datasets are also presented in Ta-

ble 1.3. All of our methods obtain the best results on both Books and Reddit.

While the GCN reaches equivalent performances on the Reddit dataset, all

the other methods fail to find the anomalies in Books.

The poor global results on these datasets can be explained by the nature of

the anomalies, as they are the result of human decisions. Indeed, the ground

truth itself can contain mislabeling [87], and the labels can be inconsistent

due to the diversity of the annotators.

However, since our method can identify a portion of those anomalies, it

shows to be more appropriate for reproducing human reasoning than the

other state-of-the-art methods, supervised or not. Nevertheless, we exclude

those datasets from the complementary studies related to the impact of the

parameter α and mislabeling rate Miss since it is not pertinent to conduct

them on datasets with poor results.

1.3.5 Ablation Study

The aim of this ablation study is to check the interest of combining both

auto-encoders Norm and Susp to identify the fraudulent elements. To that

aim, we calculate a gain defined as the difference of performances, in terms

of AUC score, obtained with Suspicious versus only one auto-encoder AE

that can be Norm or Susp (Equation 1.44). To compute the performances

of an AE, we calculate its AUC score using its reconstruction error errAE.

Gain = AUC(Suspicious)− AUC(AE) (1.44)

A positive difference corresponds to a gain and confirms the interest of

using two auto-encoders instead of only one. Figure 1.17 shows these dif-

ferences between the average AUC score calculated with Norm (in red) and

67

A : CoraR E : CoraS
B : ComputerR F : ComputerS
C : PhotoR G : PhotoS
D : PubmedR H : PubmedS

Figure 1.17: Average gain using Suspicious versus using only Norm (red) or
Susp (blue) on the different datasets for the settings Ours-GCN (top left),
Ours-Sage (top right) and Ours-SGC(bottom).

Susp (in blue) on the different datasets for the three settings (Ours-GCN

top left, Ours-Sage top right and Ours-SGC bottom).

Ours-GCN

With Ours-GCN, the use of both auto-encoders improves the detection of

rare class anomalies, comparatively to Susp and Norm, but it degrades the

performances of Norm for synthetic anomalies on PubMedS, CoraS and, to

a lesser extent, on PhotoS. This can be explained by the GCN’s tendency

to discard node information that is too different from its neighbors, creating

a bias that makes it unable to reconstruct contextual anomalies that are

part of synthetic anomalies. By incorporating two auto-encoders, this bias

68

can be corrected, allowing for better detection of rare class anomalies at

the expense of reduced performance for contextual anomalies. It should be

noted, however, that this results in an efficient and versatile model with good

performance in both scenarios.

Ours-Sage and Ours-SGC

Concerning Ours-Sage and Ours-SGC, the results show that using both auto-

encoders provides almost always a consistent advantage, and when it is not

the case, for CoraR and PhotoS, the loss remains low while the gain can be

very significant, such as for ComputerS. In conclusion, with an improvement

in 42 of 48 cases (Figure 1.17), this experiment confirms the interest of com-

bining both auto-encoders as in Suspicious. This allows all our models to

gain versatility and detect both kinds of anomalies on every dataset.

1.3.6 Impact of the Mislabeling Errors

This set of experiments aims to evaluate the resilience of suspicious to mis-

labeling errors, which are frequent in practice due to the difficulty experts

have in identifying frauds. It consists of studying the variation of the AUC

score in function of Miss, defined in Equation 1.43. The results obtained on

rare anomaly datasets are presented in Figure 1.18, while those obtained on

the synthetic anomaly datasets are presented in Figure 1.19.

Since unsupervised methods cannot be affected by labeling errors, their

results are included only for information. The Kumagai method has been

excluded from this study due to its extremely long execution time, as well

as CoLA due to its low performance. In Figure 1.18, we can observe that

our models remain among the best-performing methods, no matter the value

of Miss on rare type anomaly datasets. In Figure 1.19, we notice that,

except for Ours-GCN, our framework remains stable no matter the value of

Miss. It is important to note that Ours-GCN only seems to be affected by

69

0.0 0.1 0.2 0.3 0.4 0.5
Mis s

40

60

80

100

Av
er

ag
e

AU
C

sc
or

e

CoraR

0.0 0.1 0.2 0.3 0.4 0.5
Mis s

50

60

70

80

90

Av
er

ag
e

AU
C

sc
or

e

PhotoR

0.0 0.1 0.2 0.3 0.4 0.5
Mis s

50

60

70

80

90

Av
er

ag
e

AU
C

sc
or

e

PubMedR

0.0 0.1 0.2 0.3 0.4 0.5
Mis s

60

80

100

Av
er

ag
e

AU
C

sc
or

e

ComputersR

Figure 1.18: Evolution of average AUC score in function of Miss on rare
anomaly datasets.

Miss when it outperforms the other models and never truly falls below their

already satisfying results.

These figures show that our model is not impacted by errors occurring

in the subset Vs of Vt used for its training as long as the labeling error rate

remains below 40%, and even for higher rates, it outperforms most semi-

supervised methods.

1.3.7 Impact of a Varying R

These experiments aim to understand the impact of R, the size of the labeled

sample used for training, on the performances of our framework. Figure 1.20

70

0.0 0.1 0.2 0.3 0.4 0.5
Mis s

40

50

60

70

80

Av
er

ag
e

AU
C

sc
or

e
CoraS

0.0 0.1 0.2 0.3 0.4 0.5
Mis s

50

60

70

Av
er

ag
e

AU
C

sc
or

e

PhotoS

0.0 0.1 0.2 0.3 0.4 0.5
Mis s

40

50

60

70

80

Av
er

ag
e

AU
C

sc
or

e

PubMedS

0.0 0.1 0.2 0.3 0.4 0.5
Mis s

50

60

70

80

Av
er

ag
e

AU
C

sc
or

e

ComputersS

Figure 1.19: Evolution of average AUC score in function ofMiss on synthetic
anomaly datasets.

shows the variation in the average AUC-score, with standard deviation, in

function of R. A lower R generally results in lower performance, but most

datasets reach a competitive average AUC score with a fairly low value for R.

However, a higher value is needed to stabilize the standard deviation. Thus,

it seems that R mainly impacts the stability of the results, but it should be

noted that a value of 3% for R is sufficient to make our framework one of the

best-performing methods on all datasets.

71

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
R

50

60

70

80

90

100

Av
er

ag
e

AU
C

sc
or

e

CoraS
CoraR
ComputersS
ComputersR
PhotoS
PhotoR
PubMedS
PubMedR
reddit
Books

Figure 1.20: Evolution of average AUC score of Ours-GCN in function of R.

1.3.8 Impact of a Varying α

Finally, we also studied the impact of α on the results. This parameter allows

the weighting of the importance given to each type of reconstruction error

done either on the structure or on the attributes. Figure 1.21 presents the

average AUC score of Ours-GCN for all non-organic datasets in function of α.

For rare class anomalies (DataR), α has a very low impact unless it is equal

to 0 or 1. For synthetic anomalies (DataS), there are lower AUC and more

variations both in value and in SD (especially ComputersS and PhotoS). All

in all, a value around 0.5 generally achieves good results and low SD. The

stability of the results on DataR is another advantage of Suspicious over

other methods, as this parameter α has an important impact on the final

results of Dominant [17] and AnomalyDAE [19].

72

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

50

60

70

80

90

100

Av
er

ag
e

AU
C

sc
or

e

CoraS
CoraR
PhotoS
PhotoR
PubMedS
PubMedR
ComputersS
ComputersR

Figure 1.21: Evolution of average AUC score of Ours-GCN in function of α.

1.4 Conclusion

In this chapter, we introduced Suspicious, a novel semi-supervised framework

designed for anomaly detection in attributed networks. Our work addresses

critical limitations in existing methods, particularly the challenges posed by

the rarity and potential mislabeling of anomalies. Unlike previous approaches

that either struggle with high-dimensional graph data or require extensive

labeled datasets, Suspicious leverages dual auto-encoders to enhance the de-

tection of anomalies by focusing on both normal and fraudulent patterns.

The architecture of Suspicious distinguishes itself by employing two graph

auto-encoders: Norm and Susp. The Norm auto-encoder reconstructs the

graph to prioritize normal nodes, while Susp focuses on identifying and ac-

curately reconstructing fraudulent nodes. This dual approach allows us to

more effectively discriminate between normal and anomalous nodes, even in

the presence of labeling errors. The final anomaly score is derived from the

reconstruction errors of both auto-encoders, ensuring a robust and resilient

detection mechanism that adapts to varying anomaly definitions.

73

Our extensive experimental evaluation demonstrated that Suspicious out-

performs state-of-the-art methods across diverse datasets, including those

with rare-class, synthetic, and organic anomalies. We also showed that Sus-

picious maintains high performance even when the labeled data is sparse or

contains mislabeling, a common challenge in real-world applications. This

resilience to labeling errors underscores the practicality of Suspicious in op-

erational settings where accurate and consistent labeling can be difficult to

achieve.

Moreover, our framework is flexible and can be easily adapted to various

types of graph neural networks (GNNs), making it a versatile tool for anomaly

detection across different domains. The ability of Suspicious to handle dif-

ferent types of anomalies with a unified approach while remaining robust in

the face of labeling inconsistencies represents a significant advancement in

the field of graph anomaly detection.

In conclusion, Suspicious offers a powerful, adaptable, and resilient solu-

tion to the complex problem of anomaly detection in attributed networks.

Our contributions pave the way for future research that can further enhance

the detection accuracy and applicability of graph-based anomaly detection

methods, particularly in environments where data labeling is challenging or

unreliable.

However, while achieving detection robust performance is crucial, it is

equally important to ensure that these powerful models are explainable to

human experts, particularly in high-stakes domains where trust and trans-

parency are paramount.

74

Chapter 2

Explaining Graph

Auto-encoders

2.1 Explainable Artificial Intelligence

Artificial intelligence (AI) has progressed significantly in the past decade,

leading to widespread adoption in various fields such as healthcare, security,

and finance. However, the increasing complexity of AI models presents chal-

lenges related to transparency and trust. Since most of those models are

”black-box,” i.e., their inner workings are not interpretable by their users.

Explainable AI (XAI) has emerged as a critical field to make AI systems

understandable to humans. XAI helps the users by providing insights into

the decision-making processes of AI models. XAI is particularly important

in high-stakes applications where understanding the reasoning behind model

decisions is crucial. XAI includes a range of techniques, from simple model

introspection to sophisticated methods that clarify the underlying mecha-

nisms of complex models.

75

2.1.1 Explainability

Explainability is a relatively recent concept [9], as shown in Figure 2.1. This

illustrates both the global increase in the number of published works using the

terms interpretable, XAI, or explainable and the recent tendency to replace

the older term interpretability with the newer explainability. Interpretability

and explainability are often used interchangeably [62, 4], leading to confusion.

But some authors insist on separating them accordingly[9]:

Interpretability: Defined as the ability to explain or provide the

meaning of the model’s function in terms that are comprehensible to

a human.

Explainability: The notion of explanation as an interface between

humans and a decision-maker, serving as both an accurate proxy of

the decision-maker and comprehensible to humans.

Interpretability is a passive attribute of a model that indicates how un-

derstandable the decisions of a model are to a human observer. In contrast,

explainability requires additional actions or methods to elucidate or describe

the predictions done by a model.

While the importance of explainability in AI is clear, the challenge lies

in developing reliable methods to uncover these explanations, especially in

complex models like Graph Neural Networks (GNNs). In the next section, we

explore different approaches to explainability in machine learning, focusing

on how explanations can be derived from various model architectures.

76

Figure 2.1: Evolution of the number of total publications whose title, ab-
stract, and/or keywords refer to the field of XAI in recent years. Figure from
[9].

2.1.2 Explaining Machine Learning Models

Explanations Taxonomy

The various interpretations of what an explanation is and how it is obtained

have led to a great variety of models to generate them. The general taxonomy

proposed by [52] and followed by [53, 5, 1] is defined as:

• Intrinsic or post hoc: Intrinsic explainability refers to machine learn-

ing models that are inherently interpretable, such as short decision trees

or sparse linear models. Post hoc explainability involves applying ex-

planation methods after the model has been trained.

• Model-specific or model-agnostic: Model-specific explanation tools

are tailored to specific types of models. For instance, tools that work

exclusively with neural networks are model-specific. Model-agnostic

tools can be applied to any machine-learning model and are used after

77

the model has been trained.

• Local or global: Local explanation methods focus on elucidating in-

dividual predictions, whereas global explanations aim to clarify the

overall behavior of the model.

When explaining a GNN, it is important to add the elements of the graph

that are used as explanations to our taxonomy:

• Element of explanation: Graph explainers vary in which elements

of the graph they identify as part of the explanation; this can include

any combination of nodes V , edges E , and features X.

Explainer Model-specific/ Element of Method
agnostic explanations

Integrated Gradients [69] Model-specific V/X Gradient
Grad [70] Model-specific V/X Gradient

GuidedBP [7] Model-specific V/X Gradient
GNNExplainer [83] Model-agnostic V/E/X Perturbation
SubGraphX [85] Model-agnostic V/E Perturbation
GraphLIME [33] Model-agnostic X Surrogate

PGM-Explainer [75] Model-agnostic V Surrogate

Table 2.1: Characteristics of some explainers.

Following the established general framework for understanding explain-

ability, we now turn our attention to Graph Neural Networks (GNNs). GNNs

present unique challenges and opportunities for explainability due to their

ability to model graph-structured data, where both the structure and at-

tributes play crucial roles in predictions. In the next section, we focus on

explainability methods tailored to GNNs, particularly those used in node and

graph classification tasks.

78

2.1.3 Explaining GNN

Explainability in Graph Neural Networks (GNNs) is significantly constrained

by the availability of datasets with explainable ground truth [84, 5, 1]. Con-

sequently, the limited existing works focus either on the node or graph clas-

sification tasks, with no substantial focus on the anomaly detection task.

We will concentrate on the node classification task as it is the nearest task

available with already existing literature.

Definitions and Problem Formalization

Let G = (V , E ,X) be an attributed network defined by the set of nodes V =

{v1, . . . , vn}, the set of edges E represented by a symmetric adjacency matrix

A = (ai,j) ∈ {0, 1}n×n where ai,j = 1 if there is an edge between the nodes

i and j and ai,j = 0 otherwise, and the attribute matrix X = (xi,j) ∈ Rn×d

which ith row xi represents the attribute vector of vi. In the same way, ai

denotes the ith row of A. In the following, bold upper case letters denote

matrices, and bold lower case letters denote vectors.

Given a model f which produces a prediction ŷ = f(vi, G) for a node vi, in

the more general case, an explanation of this prediction is a vector Imp(f, vi)

which contains an importance weight for each node, edge, and attribute of

the graph. Higher weights are associated with the most important elements

for the prediction f(vi, G).

However, these importance weights for f(vi, G) are generally limited to

elements (edges, nodes, and their attributes) located in the h-hop neighbor-

hood subgraph of the node vi. The h-hop neighborhood subgraph is the

induced subgraph of G by all the nodes that are at a distance less or equal

to h from vi. The notion of distance in a graph is based on paths between

nodes; by only traveling through edges, how many edges must be crossed to

79

reach the destination nodes. It is denoted as:

SUB(vi, h) = (VSUB(vi, h), ESUB(vi, h), XSUB(vi, h)). (2.1)

Also, we split the importance weights into three vectors: ImpV(f, vi) is the

importance vector with one weight for each node of SUB(vi, h), ImpE(f, vi)

the weights for the edges of SUB(vi, h) and ImpX(f, vi) the weights for the

attributes of node vi. In the following, we will drop h and f from the nota-

tions for simplicity.

Most GNN explainers are model-agnostic and post-hoc models adapted

from image-based tasks. These can be categorized into three primary groups:

gradient-based, perturbation-based, and surrogate-based.

2.1.4 Gradient Based Explainers

Employing gradients [69, 70, 7, 23] to explain deep models is the most

straightforward solution as it directly uses the learned weights of a neural

network to provide explanations for its predictions. This approach is widely

used in image and text tasks. The key idea is to use the gradients of the

output with respect to the input features as the approximations of input

importance. Intuitively, the gradient measures how much a small change

in the input affects the output, highlighting which parts of the input have

the most significant impact on the model’s predictions, with larger gradients

indicating higher importance. Since these methods are simple and general,

they can be easily extended to the graph domain by only considering the

feature matrix.

All explanations of these methods are limited to feature explanation and

node explanation when we aggregate the weight of a node’s features but do

not take into account the structure of the graph.

80

Explainer Model-specific/ Element of Method
agnostic explanations

Integrated Gradients [69] Model-specific V/X Gradient
Grad [70] Model-specific V/X Gradient

GuidedBP [7] Model-specific V/X Gradient

Table 2.2: Characteristics of gradient-based explainers. Extract from Table
2.1

Grad

Grad [70] is one such method; it measures node importance as the square

values of gradients directly through back-propagation, assuming that higher

absolute gradients indicate more important corresponding input features.

Integrated Gradients

Integrated gradients (IGrad) [69], initially designed for images, uses a fully

black image as a neutral state to initialize the gradient. It then measures

how predictions change when the image is interpolated with the image be-

ing explained and generates importance scores by accumulating the gradient

effect from the baseline to the actual features. For the graph adaptation of

this method, the baseline graph is a copy of the graph being explained, with

all features replaced by the value 1. Then IGrad measures how predictions

change with feature changes and generates importance scores by accumulat-

ing the gradient effect along a path from the baseline to the actual features.

Guided Back Propagation

Guided Back Propagation (GuidedBP) [7] employs the values of positive gra-

dients as the importance scores of different input features. Positive gradients

indicate how much increasing the value of the feature would contribute to

the output, aligning with the desired prediction. GuidedBP aims to provide

a clearer picture of the features that influence the model’s decision-making

81

by eliminating negative influences.

Gradient-Based Explainer Evaluation

The few works comparing those methods to other state-of-the-art methods

[5, 1] reach the same conclusion: those methods are the most efficient. Even

though they may have lower explanation performances compared to the best

methods described below, they require much less time and memory resources.

In general, these three gradient-based methods are relatively equivalent.

2.1.5 Perturbation-Based Methods

Perturbation-based methods [85, 83] often explain deep image models by

studying output variations with different input perturbations. Image-based

perturbation methods learn a generator to create a mask to select necessary

input pixels to explain deep image models. However, such methods cannot

be directly applied to graph models. Contrary to gradient-based methods

that took already functioning models from other domains, perturbation-

based methods required new dedicated methods. For GNNs, as shown in

Figure 2.2, most methods use the already trained GNN and give it masked

information (perturbation) to see how it affects the model prediction. Mask-

ing important information should impact the prediction, while unimportant

ones should leave it unaffected.

Explainer Model-specific/ Elements of Method
agnostic explanations

GNNExplainer [83] Model-agnostic V/E/X Perturbation
SubGraphX [85] Model-agnostic V/E Perturbation

Table 2.3: Characteristics of perturbation-based explainers. Extract from
Table 2.1

82

Figure 2.2: The general pipeline of perturbation-based methods. Figure from
[84]

SubGraphX

SubGraphX [85] seeks to identify important subgraphs by measuring the im-

pact on prediction when the subgraph is deleted. This creates explanation

masks for both edges and nodes in deep graph models. It uses the Monte

Carlo Tree Search (MCTS) algorithm [68] to explore and select the sub-

graph, a heuristic search method from game theory. It randomly explores

the graph, adding nodes, testing the usefulness of each node, and pruning

the unhelpful ones, as shown at the bottom of Figure 2.3.

This method relies heavily on the score function used to evaluate the

nodes. SubGraphX uses Shapley values for this purpose.

Shapley values:

Shapley values originate from cooperative game theory [66]. In a game

that requires the cooperation of several players to win, Shapley values offer

a fair approach to distributing gains among players based on their contribu-

tions to the overall success of the coalition. In the realm of explainable AI,

the features of a model are viewed as players in a cooperative game, with

the prediction serving as the total payoff. These values are the only way to

83

guarantee all the following properties at the same time: efficiency (ensuring

full distribution of the total gain), symmetry (granting equal value to equal

contributions), dummy player (assigning zero value to non-contributing play-

ers), and additivity (ensuring that the value in combined games is the sum

of values in individual games).

In the context of graph model explanation tasks, we can consider the

prediction of a GNN as the game gain and the various graph structures as the

players. By identifying the players that make the greatest contributions to

the gain, we can determine the most important subgraph for the prediction.

For a graph G with n nodes and a trained GNN f(·), the Shapley value

for a subgraph Gi with k nodes is computed as:

ϕ(Gi) =
∑

S⊆P\{Gi}

|S|!(|P | − |S| − 1)!

|P |!
m(S,Gi), (2.2)

m(S,Gi) = f(S ∪ {Gi})− f(S), (2.3)

where S is a possible coalition set of players, P is the set of players, and

m(S,Gi) represents the contribution of Gi given S.

Computing Shapley values directly is time-consuming because it requires

evaluating every possible coalition of nodes and edges in the graph. To ad-

dress this, SubGraphX approximates Shapley values using the GNN architec-

ture. Only nodes within L-hops are considered for aggregation. Monte Carlo

sampling is used to compute ϕ(Gi). For each sampling step i, a coalition

set Si is sampled from P \ {Gi}, and its contribution m(Si, Gi) is calculated.

ϕ(Gi) is obtained using the average contribution score over multiple samples:

ϕ(Gi) =
1

T

T∑
t=1

(f(Si ∪ {Gi})− f(Si)), (2.4)

Where T is the total number of sampling steps. Nodes not in the coalition

84

Figure 2.3: An illustration of SubGraphX [85]

or subgraph have their features set to zero, and the graph is fed to the GNN

to get the predicted probability. This process is repeated to approximate the

Shapley value efficiently, as shown in the top of Figure 2.3.

GNNExplainer

GNNExplainer (GNNEx) [83] is designed to identify the important elements

of a graph, nodes, edges, and attributes by measuring the impact of delet-

ing these elements on the predictions made by the original GNN. Unlike

SubGraphX, which tests every possible combination, GNNExplainer trains

a model to predict which elements are important. To do so, it functions in

three steps:

Subgraph Identification: The selection of the subgraph is based on

optimizing a mutual information criterion to ensure the subgraph contains

the most informative elements.

For a given node vi, GNNExplainer aims to find a subgraph GS ⊆
SUB(vi, l), where l is the number of layers in the target GNN, along with the

associated features XS = {xj | vj ∈ GS} that are crucial for the GNN’s pre-

85

diction ŷi. The authors assume that XS is a small subset of X. Importance

is formalized using mutual information (MI), and the GNNExplainer model

is formulated accordingly:

max
GS

MI(ŷi, (GS,XS)) = H(ŷi)−H(ŷi | G = GS,X = XS) (2.5)

Here, H represents entropy, a measure of uncertainty or randomness in a

random variable, and ŷi represents the prediction of the GNN for the node

vi. Specifically, ŷi denotes the class label predicted by the GNN for the

node vi. For each node vi, the Mutual Information (MI) measures how much

the likelihood of predicting ŷ = f(SUB(vi, l),XSUB(vi,l)) changes when the

computation graph of vi is restricted to the explanation subgraph GS and its

node features are restricted to XS.

The explanation for prediction ŷi is a subgraph GS that minimizes the

uncertainty of f(vi, GS) when the Graph Neural Network (GNN) computa-

tion is limited to GS. To create a concise explanation, the authors constrain

the size of GS to have at most KM nodes, denoted as ∥GS∥ ≤ KM . GNNEx-

plainer aims to filter SUB(vi, l) by selecting KM edges that have the highest

mutual information with the prediction.

Feature Masking: GNNExplainer determines the importance of each

feature within the nodes of this subgraph. To determine which node features

are most important for predicting ŷi, GNNExplainer trains a feature selector

F for nodes in the explanation GS. Instead of including all node features

in XS (i.e., XS = {xj | vj ∈ GS}), GNNExplainer defines XF
S as a subset

of features of nodes in GS. This subset is determined by a binary feature

selector F ∈ {0, 1}d:

XF
S = {xFj | vj ∈ GS}, xFj = [xj,t1 , . . . , xj,tk] for each Fti = 1 (2.6)

86

Optimization: The explanations (GS,X
F
S) are then jointly optimized to

maximize the mutual information objective:

max
GS ,F

MI(ŷi, (GS,X
F
S)) = H(ŷi)−H(ŷi | G = GS,X = XF

S) (2.7)

This optimization ensures that the selected subgraph GS and feature sub-

set XF
S retain the most significant information for the prediction, providing

a compact and informative explanation. The method’s ability to focus on

a small, informative subgraph and relevant features makes GNNExplainer a

powerful tool for interpreting the decisions of Graph Neural Networks.

Perturbation-based methods evaluation

When comparing performances, previous works [5, 1] found that SubGraphX

produced the best results compared to all other methods. However, it also

requires the longest execution time and does not consider the feature matrix.

GNN explainer produced the second-best overall result, requiring a consider-

able amount of time but still less than SubGraphX. It covers every element

of a graph and is currently considered the best method in the state-of-the-art

for attributed graphs.

2.1.6 Surrogate Based Methods

Surrogate methods are utilized to approximate the model and explain it with

a simpler, more interpretable model. The explanation from the simpler model

is considered an approximation of the explanation of the original model.

Explainer Model-specific/ Element of Method
agnostic explanations

PGM-Explainer [75] Model-agnostic V Surrogate

Table 2.4: Characteristics of PGM-Explainer. Extract from Table 2.1

87

PGM-Explainer

PGM-Explainer (Probabilistic Graphical Model Explainer) [75] is a perturbation-

based method designed to provide interpretable node explanations for the

predictions made by Graph Neural Networks (GNNs). As shown in Figure

2.4, PGM-Explainer generates perturbed graphs and records GNN’s predic-

tions on those graphs in the data generation step. The variable selection

step eliminates unimportant explained features in this data and forwards

the filtered data. Those steps are similar to the methods detailed in the

perturbation-based methods. Finally, a Bayesian Network, a type of inter-

pretable Probabilistic Graphical Model (PGM), is generated to model the

dependencies between the input features and the model’s output.

Bayesian Network Construction: PGM-Explainer constructs a Bayesian

Network to capture the relationships between node features, edges, and the

GNN’s predictions. This model is used to understand how different elements

of the input graph influence the output. The Bayesian Network is inter-

pretable because it represents the conditional dependencies between variables

in a clear and structured manner, allowing users to see how changes in one

variable might affect others.

For a given node vi, PGM-Explainer aims to construct a Bayesian Net-

work P that models the joint distribution of the nodes V and the GNN’s pre-

diction ŷi. The objective is to find the most informative nodes that explain

the prediction. The dependencies are formalized using conditional probabil-

ities.

Node Importance: PGM-Explainer determines the importance of each

node by analyzing their conditional probabilities given the prediction ŷi. This

is done by calculating the influence of each node on the prediction using the

constructed Bayesian Network.

Optimization and Inference: The explanation is generated by identi-

fying the most significant nodes that maximize the likelihood of the GNN’s

prediction. The process involves optimizing the conditional probability distri-

88

Figure 2.4: The architecture of PGM-Explainer. Figure from [75]

bution to ensure that the selected nodes provide a high-fidelity explanation.

The core optimization problem is formulated as follows:

max
VS

P (ŷi | VS) = max
VS

∏
j

P (ŷi | vj ∈ VS) (2.8)

Here, P (ŷi | VS) represents the conditional probability of the prediction

given the subgraph VS. The goal is to maximize this probability to ensure

that the selected nodes provide the best explanation for the prediction.

Subgraph Selection: The final step involves selecting the subgraph VS
that has the highest impact on the prediction. This is done by evaluating the

influence of different combinations of nodes using the constructed Bayesian

Network.

VS = argmax
V ′

P (ŷi | V ′) (2.9)

Surrogate evaluation

When this method is compared to the rest of the state-of-the-art [5, 1], it

reached lower or equivalent performances to gradient-based methods while

still taking around as much time and resources as GNN-explainer and only

explaining one type of elements.

89

2.1.7 Measuring Explainability

Measuring explainability involves evaluating how well explanation techniques

can identify the most important input features influencing the model’s de-

cisions. This section explores various metrics used to assess the quality of

explanations. Among these metrics are fidelity, which examines the impact of

removing important features on model performance, and precision and recall,

which are used to compare explanations against known ground truths in syn-

thetic datasets. Each metric offers a unique perspective on the explainability

of GNNs, contributing to a comprehensive evaluation framework.

Fidelity

Explanations should identify input features important in the decision making

process of the model. The necessity and sufficiency metrics, often referred to

as fidelity+ and fidelity- respectively, were recently proposed to evaluate ex-

planations [42] and then later adapted to the graph domain [84, 5]. Necessity

refers to the difference in model performance, prediction accuracy, or prob-

ability prediction when important input features identified by explanation

techniques are removed. If these features are truly influential, the model’s

predictions should change significantly after their removal [42, 83, 85].

Given a model f , that outputs a probability class vector of size j, ŷi

denotes argmaxj(f(vi, G)) the class prediction of f for a node vi, i.e., the

predicted label of vi calculated from graph data G = (V , E ,X). Given an

explanation mask Exp(vi) derived from the importance vector Imp(vi), G \
Exp(vi) denotes the graphG where all the edges and attributes corresponding

to a 1 in Exp(vi) are hidden (replaced by 0 in the feature and adjacency

matrix). We also denote G ∩ Exp(vi) as the graph where the only available

information is the edges and attributes corresponding to a 1 in Exp(vi) (all

other edges and attributes are replaced by 0 in the feature and adjacency

matrix).

90

Then the necessity, more commonly referred to as fidelity+ and denoted

as fid+, measures the change in the prediction, when the only information

available to f is G \ Exp(vi), and sufficiency, referred to as fidelity- and

denoted as fid−, measures the change when the only information available

to f is G ∩ Exp(vi):

fid+acc(vi) = 1(ŷi = yi)−1(ŷi = ŷ
\Exp
i) with ŷ

\Exp
i = argmaxj(f(vi, G\Exp(vi))),

(2.10)

fid−acc(vi) = 1(ŷi = yi)−1(ŷi = ŷExpi) with ŷExpi = argmaxj(f(vi, G∩Exp(vi))).
(2.11)

Where 1 is an indicator function that returns 1 if both predictions match,

and 0 otherwise. fid+acc tracks the change in predicted accuracy for the

original class label yi, with higher values indicating better explanation results.

Lower values for fid-acc indicate that less important information is removed,

suggesting better explanation results, for clarity, sufficiency is often reported

as 1−fid− so that higher scores indicate better explanation for both metrics.

To function properly, these metrics only need to evaluate the change in

an expression of the performance of the model. Depending on the output of

the model, fidelity can also be evaluated based on the class probability for

regression tasks as they are only based on the predicted probabilities [5]:

fid+prob(vi) = (Pŷi − P
ŷ
\Exp
i

) with P
ŷ
\Exp
i

= f(vi, G \ Exp(vi))[yi], (2.12)

fid−prob(vi) = (Pŷi − PŷExp
i

) with PŷExp
i

= f(vi, G ∩ Exp(vi))[yi]. (2.13)

91

Similarly, fid+prob tracks the change in predicted probabilities for the

original class label yi, where higher values indicate better explanation results.

Lower values for fid−prob suggest that less critical information is removed,

and as with fid−acc, it’s common to report 1−fid−prob so that higher scores

reflect better explanation quality for both metrics.

In both cases, fidelity fundamentally measures the same concept: the

impact of explanatory features on model performance.

fid+acc and fid−acc assess the change in prediction accuracy when ex-

planatory information is removed or focused upon while fid+prob and fid−prob

measure the change in class probabilities. These metrics are adapted to the

specific way a model’s performance is measured, whether through accuracy

for classification tasks or probabilities for regression tasks. Despite these

variations, the underlying goal remains consistent: tracking how the model’s

performance shifts in response to the provided explanations.

Precision and Recall

These metrics are proposed for synthetic datasets [82]. In synthetic datasets,

although it is unknown whether the GNNs make predictions in the expected

way, the rules for constructing these datasets, such as graph motifs, can serve

as reasonable approximations for ground truth explanations. For any input

graph, we can compare explanations with these ground truth explanations,

which represent the reasons why we attribute the classification ground truth

and what the model should detect to fulfill the task properly. Common

metrics for such comparisons include precision, recall, general accuracy, F1

score, and ROC-AUC score. Higher values for these metrics indicate that the

explanations are closer to the ground truths and can be considered better

results, but these metrics cannot be applied to real-world datasets due to the

lack of ground truth explanations.

To create datasets with an explanation ground truth, dedicated graph

92

Figure 2.5: Overview of ShapeGGen graph dataset generation from [1]

generator were introduced in [83, 1].

2.1.8 Generating Explanation Ground Truth

ShapeGGen

ShapeGGen is a graph generator proposed in [1], that we will use in our

experiments to create an attributed graph with a ground truth explanation

that allows us to measure the performances of explainers. ShapeGGen starts

by creating a set of small subgraphs (motifs) M = {M1, ...,MN} with a

specific structure. These subgraphs are then connected using a preferential

attachment algorithm, adding nodes that connect to existing ones. Each

node in the generated graph is labeled based on the number of motifs in its

1-hop neighborhood: label 1 if there is 0 or 1 motif, and label 2 if there are

more. A latent variable model [29] is then used to create two kinds of node

features for each node: informative features correlated to the node’s label

and random non-informative features independent of the label.

In addition to providing the ground truth labels for classification, ShapeGGen

generates ground truth explanations for all graph nodes. This information

is represented by two binary masks GtE(vi) and GtX(vi) for each anomalous

node vi. These are the ground truth vectors corresponding to explanation

vectors ExpE(vi) and ExpX(vi).

93

Let the motifs within SUB(vi, 1), the 1-hop neighborhood of vi be:

Mvi = (VMvi
, EMvi

,XMvi
) =M ∩ SUB(vi, 1). (2.14)

Using this notation, the authors define ground truth explanation masks:

• Node explanation mask GtV (vi): nodes in SUB(Vi) are labeled as 1 if

they belong to Mvi and 0 if they don’t.

• Feature explanation mask GtX(vi): each feature in xi is labeled 1 if it

represents an informative1 feature, 0 if it does not, producing GtX(vi) ∈
{0, 1}d;

• Edge explanation mask GtE(vi): each edge e = (vj, vk) ∈ ESUB(vi) is

labeled 1 if both vj and vk belong to (VMvi
∪ {vi}) and 0 otherwise,

producing GtE(vi) ∈ {0, 1}|ESUB(vi)|.

BA-Shapes

BA-Shapes is a synthetic graph data generator used for node classification

tasks, introduced in [83]. As shown in Figure 2.6, the process begins with

creating a Barabasi-Albert (BA) [3] graph consisting of n nodes. A BA

graph is a type of scale-free network where nodes are added sequentially,

and new nodes are preferentially connected to existing nodes with higher

degrees, resulting in a network with a power-law degree distribution. This

BA graph serves as the base structure. To this base graph, we attach several

five-node ”house”-shaped motifs. Specifically, K house motifs are randomly

attached to nodes in the base graph. Finally, random edges are added to the

graph to add variability. In the resulting graph, nodes are classified into two

categories: nodes that are part of a house motif are labeled as class 1, while

nodes that are not part of any house motif are labeled as class 0.

1I.e., the classification label is perfectly dependent on the feature.

94

Figure 2.6: Overview of BA-Shapes graph dataset generation. it starts by
generating the graph structure in black, then it add the motif in red, and
finally adds random edges in green.

Real World Dataset

In [5], the authors propose that since the fidelity metric does not need any

ground truth to function, it can be used to integrate real-world datasets

compatible with the task being studied.

2.2 Explaining Auto-encoders

While many explainers for GNNs focus on node or graph classification tasks,

graph auto-encoders (GAEs) used for anomaly detection present unique chal-

lenges. In this work, we aim to bridge this gap by formalizing the problem

of explaining anomaly detection in GAEs and introducing methods that use

reconstruction errors as explanations.

Some recent works [6, 27] have applied reconstruction errors as an expla-

nation mechanism to guide experts in decision-making processes. However,

these approaches lack a framework for comparison with other state-of-the-

art explanation methods. To the best of our knowledge, no prior work has

formally compared explainers derived directly from reconstruction errors to

other explainability methods. Moreover, existing surveys on auto-encoder

explainability [59, 14] primarily rely on model-agnostic explainers without

95

leveraging the reconstruction error as a source of explanation.

In this chapter, our key contributions are:

• We formalize the problem of explaining anomaly detection in GAEs, a

previously unexplored area.

• We propose a novel method that leverages the reconstruction errors

produced by GAEs to generate intuitive and interpretable explanations

for anomalous nodes.

• We conduct a thorough comparison between our approach and state-of-

the-art explainers, demonstrating the efficacy of reconstruction errors

as a natural explainer for GAEs.

2.3 Definitions and Problem Formalization

As formalized in Section 2.1.3, we consider G = (V , E ,X) an attributed

network defined by the set of nodes V = {v1, . . . , vn}, the set of edges E
represented by a symmetric adjacency matrix A = (ai,j) ∈ {0, 1}n×n where

ai,j = 1 if there is an edge between the nodes i and j and ai,j = 0 otherwise,

and the attribute matrix X = (xi,j) ∈ Rn×d which ith row xi represents the

attribute vector of vi. In the same way, ai denotes the ith row of A. In

the following, bold upper case letters denote matrices, and bold lower case

letters denote vectors.

Given a model f which produces a prediction ŷ = f(vi, G) for a node vi, in

the more general case, an explanation of this prediction is a vector Imp(f, vi)

which contains an importance weight for each node, edge, and attribute of

the graph. Higher weights are associated with the most important elements

for the prediction f(vi, G).

However, these importance weights for f(vi) are generally limited to ele-

ments (edges, nodes, and their attributes) located in the h-hop neighborhood

96

subgraph of the node vi. This is the induced subgraph of G by all the nodes

at a distance less or equal to h from vi. It is denoted as:

SUB(vi, h) = (VSUB(vi, h), ESUB(vi, h), XSUB(vi, h)). (2.15)

Also, we split the importance weights into three vectors: ImpV(f, vi) is the

importance vector with one weight for each node of SUB(vi, h), ImpE(f, vi)

the weights for the edges of SUB(vi, h) and ImpX(f, vi) the weights for the

attributes of node vi. In the following, for simplicity, we will drop h and f

from the notations.

We extend this problem formalization to a graph auto-encoder GAE (Fig-

ure 1.15) that takes as input the attribute and adjacency matrices X and A

of an attributed graph G, compresses them into an embedding and then tries

to reconstruct them, outputting the reconstructed matrices X̂ and Â. The

reconstruction error of each node is computed as follows:

error(vi) = (1− α)∥ai − âi∥2F + α∥xi − x̂i∥2F . (2.16)

Nodes that obtain a high reconstruction error are considered anomalies.

The problem we seek to solve is to produce an explanation for each node

identified as anomalous by a given graph auto-encoder.

Example: In a graph generated by ShapeGGen, nodes are assigned to one

of two classes based on the number of specific subgraph structures, called mo-

tifs, within their 1-hop neighborhood. A node is labeled as normal (class 0)

if it has at most one motif in its neighborhood and as anomalous (class 1)

if it has more than one motif. Additionally, each node is given an attribute

vector composed of several features. Among these, a few are considered infor-

mative, meaning they encode information specific to the node’s class through

distinct distributions. Both normal and anomalous nodes share the same in-

formative features, but these features have different distributions depending

97

on the node’s class, with a parameter that controls how much overlap there

is between each distribution. The remaining features in the attribute vector

are non-informative and do not contribute to the class distinction.

When the graph is analyzed, an effective explanation for why a node vi

is considered anomalous would be represented by two element masks, as des-

ignated by ShapeGGen. The first is an edge mask, which highlights all the

edges within the motifs in vi’s 1-hop neighborhood, emphasizing the unusual

presence of multiple motifs. The second is an attribute mask, which iden-

tifies the informative features whose distribution makes vi stand out as an

anomaly. These masks provide a clear and concise explanation by focusing

on both the structural complexity and the distinct feature distributions that

characterize the anomaly.

Figure 2.7: Example of a graph generated by ShapeGGen using houses as

the motifs with three anomalies circled in red

In the graph presented in Figure 2.7, the edge explanation mask for v1

would contain the edges: E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11,

98

E12, E16. The attribute explanation mask would be 0, 1, 0, 0, designating

the informative feature.

2.4 Generating Explanation from the Recon-

struction Errors of Graph Auto-encoders

2.4.1 Intuition

Our goal is to extract an explanation when an auto-encoder classifies a node

as an anomaly. Most explanation mechanisms try to extract the weight of

each feature from the model. In the case of auto-encoders, the detection

mechanism is based on the reconstruction error, which is used to calculate

the final score. The perfect explanation for such a model would be the expla-

nation of why the elements are badly reconstructed. However, we hypoth-

esize that taking the individual error of each component is already a good

approximation of the contribution of those components to the classification,

providing us with an already available explanation for the anomaly class.

99

Figure 2.8: Example of a reconstruction of the graph from Figure 2.7 by a

GAE

2.4.2 Importance Vectors

We propose a method to extract an explanation from the reconstruction

error. We start by generating the error matrices A′ = (a′i,j) and X′ = (x′i,j):

a′i,j = (ai,j − âi,j)
2, x′i,j = (xi,j − x̂i,j)

2. (2.17)

We can now use the reconstruction vectors x′
i and a′

i to create importance

vectors, as they represent the contributions to the final classification. We can

thus compute the feature importance vector ImpX and the edge importance

vector ImpE as:

ImpX(vi) = x′
i, ImpE(vi) = (a′j,k, (vj, vk) ∈ ESUB(vi)), (2.18)

with ImpX(vi) ∈ Rd and ImpE(vi) ∈ R|ESUB(vi)|.

100

Example: When an auto-encoder processes this graph, it tries to recon-

struct each node’s connections and attributes. Since the majority of nodes

are normal (connected to at most one motif), the auto-encoder is good at re-

constructing them. However, for the anomalous nodes with multiple motifs,

the auto-encoder struggles, leading to higher reconstruction errors. These er-

rors occur because the model defaults to reconstructing nodes as if they were

normal, failing to capture the complexities of the anomalies.

If we consider a node vi identified by our GAE. To explain why vi was

classified as anomalous, we examine the reconstruction error vectors:

• The edge importance vector ImpE(vi) shows which edges in vi’s

neighborhood were inaccurately reconstructed. In our example, the edges

linking vi to the multiple motifs should have high importance values as

the model would try to reconstruct the node as connected to only one

motif.

• The attribute importance vector ImpX(vi) would highlight the in-

formative features of vi, as they would be reconstructed as the majority

class.

For node v1 in Figure 2.8, its edge importance vector would highlight the

missing edge E16 the most, as the auto-encoder failed to reconstruct it. Its

1-hop edge importance vector could look like:

ImpE(v1) = {E1 : 0.15, E4 : 0.12, E5 : 0.11, E16 : 0.96}
Additionally, the attribute importance vector would look like this:

ImpX(v1) = {x1 : 0.12, x2 : 1.25, x3 : 0.34, x4 : 0.23}
With the highest value on the second attribute, which was incorrectly re-

constructed for the normal distribution, the anomaly arose due to the differ-

ence in its true class distribution.

101

2.4.3 From Importance Vectors to Explanations

Most evaluation methods will require the transformation of importance vec-

tors into binary explanation vectors such that ExpV(vi) ∈ {0, 1}|VSUB(vi)|,

ExpE(vi) ∈ {0, 1}|ESUB(vi)| and ExpX(vi) ∈ {0, 1}d. In the protocol of [1], a

fixed threshold of 0.8 × max(Imp(vi)) is used, where Imp(vi) is an impor-

tance vector generated by the explainer (it can be either ImpV(vi), ImpE(vi)

or ImpX(vi)), max(Imp(vi)) corresponds to its maximum component and

Exp(vi)[j] =

0, if Imp(vi)[j] < 0.8×max(Imp(vi))

1, if Imp(vi)[j] ≥ 0.8×max(Imp(vi))
. (2.19)

Example: Consider node v1 from the previous example, where the edge

importance vector was:

ImpE(v1) = {E1 : 0.15, E4 : 0.12, E5 : 0.11, E16 : 0.96}
Here, the maximum value in the vector is 0.96 for edge E16. Using the

threshold of 0.8 × 0.96 = 0.768, we transform the importance vector into a

binary explanation vector:

ExpE(v1) = {E1 : 0, E4 : 0, E5 : 0, E16 : 1}
This binary explanation vector highlights that only edge E16 has an im-

portance value above the threshold and is therefore considered part of the

explanation.

Similarly, for the attribute importance vector:

ImpX(v1) = {x1 : 0.12, x2 : 1.25, x3 : 0.34, x4 : 0.23}
The maximum value is 1.25 for attribute x2. Using a threshold of 0.8 ×

1.25 = 1.0, the binary attribute explanation vector becomes:

102

ExpX(v1) = {x1 : 0, x2 : 1, x3 : 0, x4 : 0}
Thus, the explanation for v1 shows that attribute x2 and edge E16 are the

most important components that contributed to the node being classified as

anomalous.

However, this method is arbitrary, allowing each explainer to give expla-

nations of varying sizes (the size of an explanation is the number of 1 in Exp)

while effectively, we would want explainers to give the correct size. This leads

to difficulty in evaluating those explainers.

Indeed, some metrics, such as fid+ and fid-, are sensitive to the size of an

explanation because an explanation of maximal size will always yield the best

performances possible. Since these metrics evaluate the importance of ele-

ments based on their presence or absence, for fid+, the metric measures the

change in the model’s prediction when the important elements are removed.

Removing all elements will result in a significant change in the model predic-

tion, thus maximizing the fid+ score. Similarly, for fid-, the metric assesses

the change in the model’s prediction when only the important elements are

retained and the rest are removed. If the explanation includes all elements,

retaining these elements will preserve the model performance, thus maximiz-

ing the fid- score. As the explanation size grows, it becomes more probable

that essential elements are included.

For this reason, and following the approach of [5], we propose to use the

topk function that outputs the indices of the top k values in its input on the

importance vector Imp(vi):

Exp(vi)[j] =

0, ifj /∈ topk(Imp(vi))

1, ifj ∈ topk(Imp(vi))
(2.20)

103

Moreover, in anomaly detection, we are primarily interested in explaining

the abnormality, as normality is often only implicitly defined by the absence

of abnormal elements. Instead, focusing on anomalies and identifying what

deviates from expected behavior, is the most efficient way to capture what

constitutes normality. For this reason, we will compute those metrics only

for anomalies.

2.5 Experimental Protocol

In this section, we describe the experimental protocol that we followed to

evaluate the interest of the approach described in the previous sections to

explain GAE anomaly detection using reconstruction errors.

2.5.1 Metrics

GEA, precision, and recall can be used to compare the explanation mask

and the ground truth mask when this last one is available, whereas necessity

and sufficiency can be used otherwise. These metrics are defined below by

considering that Exp denotes an explanation vector produced by an explainer,

and Gt is the corresponding ground truth. They all take a value between 0

and 1, with 1 being the best possible outcome and 0 the worst.

The Graph Explanation Accuracy (GEA) is defined in [1] as the Jaccard

index between the ground truth mask and the explanation mask.

GEA(Gt,Exp) =
TP (Gt,Exp)

TP (Gt,Exp) + FP (Gt,Exp) + FN(Gt,Exp)
, (2.21)

where TP (True Positive) is the number of indices that contain a one in both

Gt and Exp, FP (False Positive) is the number of indices that contain a one

in Exp and a 0 in Gt, FN (False negative) the number of indices that contain

a one in Gt and a 0 in Exp.

We can also measure performances in terms of precision and recall:

104

Precision(Gt,Exp) =
TP (Gt,Exp)

TP (Gt,Exp) + FP (Gt,Exp)
, (2.22)

Recall(Gt,Exp) =
TP (Gt,Exp)

TP (Gt,Exp) + FN(Gt,Exp)
, (2.23)

The previous metrics can only be used for the synthetic datasets where a

ground truth explanation is generated.

For most of the datasets where a ground truth explanation is not available,

we follow the protocol introduced in [5], which defines a good explanation

as both necessary and sufficient by using, respectively, the fidelity+ (fid+)

and fidelity- (fid−) metrics.

Given a model f , ŷvi = f(vi, G) is the prediction of f for a node vi

i.e. the probability that vi is an anomaly calculated from graph data G =

(V , E ,X). Given an explanation mask Exp(vi), G\Exp(vi) denotes the graph
G where all the edges and attributes corresponding to a 1 in Exp(vi) are

hidden (replaced by 0). We also denote G ∩ Exp(vi), the graph where the

only available information is the edges and attributes corresponding to a 1

in Exp(vi) (all other edges and attributes are replaced by 0).

Then the necessity (fid+) measures the change in the prediction when

the only information available to f is G \Exp(vi) and the sufficiency (fid−)

the change when the only information available to f is G∩Exp(vi). To adapt

these metrics to the output of our models we extend both Equations 2.12 and

2.13 as:

fid+ = (ŷvi − ŷ\Expvi
) with ŷ\Expvi

= f(vi, G \ Exp(vi)), (2.24)

fid− = 1− (ŷvi − ŷExpvi
) with ŷExpvi

= f(vi, G ∩ Exp(vi)). (2.25)

Although these two metrics seem relatively straightforward, they require

some adaptation to GAE. The output of a GAE is not a probability or a

class but an anomaly score. While [37] proposes to normalize the score to

105

this aim, we claim that what is really important is the variation of the rank

of each score and not the variation in the score itself. We use rank, so that

the performance metric fits the metrics used for the evaluation of the model,

that is, the AUC score, recall@k, precision@k, all based on rank and not on

the score itself. Thus, we propose to use:

ŷvi =
Rank(error(vi))

|V |
(2.26)

where Rank is a function that associates a node with its position in the

ordered list depending on its anomaly score error(vi) such that the lowest

score has rank 1 and the highest has rank |V |.

2.5.2 Datasets

The experiments are conducted on six real-world datasets and three gener-

ated datasets:

• Cora and Citeseer are popular public network datasets [65]. In these

graphs, each node is a scientific publication, and an edge represents

the citation of another publication. The attributes correspond to the

content of the publication, represented as a bag-of-words binary vector.

• In Photo, each node is a product, and an edge exists between two

products if they are often purchased together. The attributes are also

bag-of-words vectors.

• Datasets generated using ShapeGGen the generator described in 2.1.8.

These datasets fall into two categories, and their characteristics are given

in Table 2.5.

Real world datasets with injected anomalies (I): Cora, Citeseer,

and Photo are modified to obtain contextual and structural anomalies follow-

ing the methodology proposed in [45]. Specifically, contextual anomalies are

106

created by replacing the attribute vector of a node with the most different

node attribute vector out of a range of randomly selected nodes. Struc-

tural anomalies are created by adding edges to the graph to create cliques

of size c. We create two versions of each dataset, each with only one type of

anomaly being introduced, leading respectively to Data-con, including con-

textual anomalies, and Data-str, including structural anomalies. We inject

100 anomalies in each version, as indicated in Table 2.5.

Synthetic Dataset (S): We also use ShapeGGen with the following

parameters: 100 for the number of features, 10 for the number of informative

features di, 0.0022 for the probability of connection, and 15 for the class

separation, creating two distributions with almost no overlap.

We then consider the nodes connected to two or more motifs as anoma-

lous. The low probability of connection makes the anomalous nodes rare,

and the high-class separation makes the informative attributes very salient

between the two classes.

We use three graph motifs from [1] to create the Shape-datasets: ShapeCir-

cle, ShapeHouse, and ShapeFlag. These motifs are defined as follows:

• Circle: This motif consists of four nodes arranged in a cyclic structure,

where each node is connected to two others, forming a closed loop.

• House: This motif consists of five nodes. Two nodes form the base,

and three additional nodes connect to form a triangular roof and a

supporting structure resembling a house shape.

• Flag: This motif consists of six nodes. Four nodes form a linear ”pole”

connected sequentially, and two additional nodes branch out horizon-

tally from the third and fourth nodes in the sequence, resembling a flag

structure.

These motifs form the basis of the corresponding Shape-datasets.

107

Dataset Nodes Edges Attributes Anomalies Anomaly Rate
Cora-con/str(I) 2708 5278 1433 100 0.04
Citeseer-con/str(I) 3312 4732 500 100 0.03
Photo-con/str(I) 7487 119043 745 100 0.01

ShapeCircle(S) ∼ 1000 ∼ 2500 10 ∼ 100 0.1
ShapeHouse(S) ∼ 1000 ∼ 2500 10 ∼ 100 0.1
ShapeFlag(S) ∼ 1000 ∼ 2500 10 ∼ 100 0.1

Table 2.5: Characteristics of the datasets.

2.5.3 Baselines

A second aim of the experiments that we have carried out is to compare the

performances in terms of explainability and time of the approach based on

error reconstruction that we propose to those of the state-of-the-art meth-

ods. To do this, we consider the following classical explainers, whose general

characteristics are given in Table 2.1.

SubGraphX (SubGx): SubGraphX iteratively removes the nodes and

edges from the larger graph and observes the impact on the prediction. The

nodes and edges that cause significant changes in the prediction are consid-

ered crucial and are retained in the final explanation subgraph [85].

GNNExplainer (GNNEx): GNNExplainer trains a model to predict

fid+ and fid− when removing nodes and edges. Features that significantly

affect the prediction when removed or modified are considered important and

are included in the explanation [83].

Integrated Gradients (IGEx): Define a baseline graph that represents

a ”neutral” state with minimal information. It then measures how predic-

tions change with feature changes and then generates importance scores by

accumulating the gradient effect along a path from the baseline to the actual

features [69].

Gradients (GradEx): Measures node importance as the weight of each

node after computing the output gradient with respect to the node feature

[70].

108

GuidedBP: Focuses solely on the features that have an important effect

on the output. Positive gradients indicate how much increasing the value of

the feature would contribute to the output, aligning with the desired predic-

tion. By eliminating negative influences, GuidedBP aims to provide a clearer

picture of the features that influence the decision-making of the model [7].

Random Explainer (RandEx): In addition, we consider a trivial base-

line where importance vectors are randomly generated (each value in the

vector is iid).

These methods form the baselines against which the performance of our

proposed method using the reconstruction error and denoted Reconstruc-

tion error (ours) is compared.

We use the implementations of explainers from [1] and Dominant to detect

the anomalies, as it is the simplest graph auto-encoder (with the implemen-

tation of [45]). These explainers are designed to take the output of the last

layer from a classification model as input. However, for GAE, the output is

the reconstruction, and thus, we have to adapt the explainers for GAE.

2.6 Experimental Results

As the results obtained for the different datasets are very similar, we report

only those corresponding to one dataset for each category. The other results

are provided in the appendix.

2.6.1 Precision, Recall, and GEA on Synthetic Datasets

Feature Explanations: The average results, with standard deviations,

computed over five runs in terms of GEA@k, Precision@k, and recall@k

for feature explanations obtained on ShapeHouse are displayed in Figure

2.9. These results show that the proposed method (Ours), despite its sim-

plicity, significantly outperforms all the baselines for explaining the model’s

predictions according to the three evaluation metrics on the three datasets

109

Figure 2.9: Average (+/- std) GEA@k (top), Precision@k (left), Recall@k
(right) on features of ShapeHouse.

(cf. appendix for ShapeCircle and ShapeFlag). Integrated Gradients (IGEx)

achieves the second-best score, performing similarly to our method for lower

values of k but falling behind for higher values of k, providing only partial

explanations. Grad (GradEx) shows performance equivalent to that of IGEx

on ShapeFlag, but it had significantly lower performance on the two other

datasets. Finally, the GNNExplainer is only slightly better than the random

explainer (RandEx) for all metrics.

Edge Explanations: Figure 2.10 presents the average results, with

standard deviations, computed over three runs according to GEA@k, Pre-

cision@k, and Recall@k for edge explanations on the ShapeHouse dataset.

110

Figure 2.10: Average (+/- std) GEA@k (top), Precision@k (left) and Re-
call@k (right) on edges of ShapeHouse.

In this figure, we can observe that Ours, GNNEx, and SubGraphX achieve

similar performances in terms of GEA@k and Recall@k and for k > 2 in

terms of Precision@k.

2.6.2 Time Efficiency

The total time to compute all explanation masks for all anomalies on the

three ShapeDatasets is presented in Figure 2.11 top (average and standard

deviation over 10 runs). We can observe that SubGx takes considerably

longer than all other explainers to generate those explanations. While every

other method execution time is mostly influenced by the size of the sample

111

to explain, SubGx is also influenced by the number of elements in SUB(vi, h)

where vi is the node to explain. Due to this, SubGx was excluded from the

experiments on real-world datasets as they have a lot more edges, and its

execution time increased to more than 10 minutes per node.

Similarly, Figure 2.11 (bottom) presents the total time for the real-world

datasets. In this figure, we can observe that GradEx is the fastest method,

with an average time of 12 seconds, followed by Ours with 18 seconds. How-

ever, this time difference can be attributed to the generation of edge expla-

nations that GradEx does not produce. Afterward comes GuidedBp with

around 25 seconds, followed by GNNex with an average of 32 seconds and a

high standard deviation, and lastly IGEx with an average execution time of

57 seconds.

2.6.3 Average Necessity, and Sufficiency on all Datasets

Synthetic Datasets Figure 2.12 contains the average fid+ (left) and av-

erage fid− (right) of the feature explanations computed over three runs on

ShapeFlag. On this figure, we can see that using reconstruction error vec-

tors as an explanation gives the best result on all three datasets and for

both metrics (see appendix for ShapeHouse and ShapeCircle). Although

only half of the performance of our proposed method was achieved, GradEx

obtained the second-best results on all datasets. It is superior to all other

explainers for both ShapeFlag and ShapeHouse and equivalent to GuidedBP

for ShapeCircle (see appendix). GuidedBp and IGEx obtain relatively sim-

ilar results. GNNExplainer shows the worst results in all tests while still

performing better than the random explainer.

Figure 2.13 (top) contains the average fid− and fid+ on edge explanation

computed over three runs on ShapeCircle, and we report only one dataset, as

the models behave exactly the same way across all datasets. We can observe

that contrary to the previous figures, all explainers obtain the same results,

an average fid−@0 of 1 and an average fid+@0 of 0. The fid−@0 of 1

112

means that the prediction without any edge is the same as with the edges.

Thus, this shows that there are no necessary edges, meaning that the model

does not use the structure at all, only the node attributes, for the predictions.

We have seen that IGex performed well in terms of GEA, Precision, and

Recall. However, those results did not translate well in terms of necessity, and

they fell behind those of GuidedBP, which previously outperformed IGex ac-

cording to the previous metrics. This shows that the ground truth generated

might be different from what the model actually detects. This observation

is accentuated by the treatment of edges for those same datasets found in

the top part of Figure 2.13, while most of the explainers showed great per-

formance in terms of GEA, Precision, and Recall, fid− and fid+ indicated

that edges did not matter to the GEA. For edge explanation, the conclu-

sion is the same and even worse as shown in Figure 2.13 (top): while the

different models obtain good performances for edge explanation in terms of

GEA, Precision, and Recall, it is not the case in terms of fid− and fid+

which indicates that edges did not matter to the GAE. This divergence of the

results according to the metrics demonstrates why it is important to capture

different aspects of explainability: the reason why the node is an anomaly

with GEA, Precision, and recall and why a model detects it as an anomaly

with fid− and fid+.

Real World Datasets with Injected Anomalies

Concerning the real-world datasets, we observed the same results for each

type of anomaly, regardless of the original dataset. Thus, we will report the

results over only one dataset for each type of anomaly. All the other results

are available in the appendix.

Structural Anomalies. We report the average fid−@k and fid+@k ob-

tained on Cora-str for the explanations of edges in Figure 2.12 (middle), and

features in Figure 2.12 (middle). We observe a similar phenomenon as with

113

edge explanations for ShapeDatasets. Here, the features are likely not used

by the models. Furthermore, while our method exceeds GNNEx in fid−
when explaining edges, all explanation methods achieve results inferior to

RandEx. This signifies that currently, no method can successfully explain

the decision of the model regarding this type of anomaly.

Contextual Anomalies. We report the average fid−@k and fid+@k on

Citeseer-con for both edge explanations in Figure 2.13 (bottom) and feature

explanations in Figure 2.12 (right). Since fid−@0 is not at 1 in both figures,

we can conclude that for contextual anomalies, both edges and features hold

value in explaining the model. For feature explanations, GradEx, GuidedBP,

and Ours obtain equivalent results that are largely superior to other explain-

ers with fid− and fid+. GNNEx successfully obtains results that are better

than those of RandEx, but it seems very unstable (high variance). IGex

obtains poor performances that are equivalent to those of the random ex-

plainer. For edge explanation, all explainers obtain performance equivalent

to the random explainer.

2.7 Conclusion

In this chapter, we introduced a comprehensive framework to evaluate ex-

plainability methods in the context of graph-based anomaly detection using

GAEs (Graph Auto-Encoders). We adapted various state-of-the-art explain-

ers from GNNs (Graph Neural Networks) to the GAE architecture and pro-

posed a novel method to derive explanations directly from the reconstruc-

tion error vectors of GAEs. Extensive experiments on both synthetic and

real-world datasets demonstrated that our proposed method of using recon-

struction errors provides superior feature explanations, achieving the best or

comparable performance across all six datasets according to the five met-

rics considered. For edge explanations, our method achieved results that

114

were equivalent to those of other explainers. Still, it highlighted a significant

gap in current methodologies: the inability to provide complete and robust

explanations for GAE-based anomaly detection consistently.

Our research indicates that using reconstruction errors as an explainer for

GAEs is a promising approach but leaves significant room for improvement in

the field of explainable AI for GAEs. Existing methods, including our own,

performed poorly on real-world datasets when providing explanations for

edge cases. The performance was similar to that of a random explainer. This

emphasizes the need for future research to develop more effective explainers

specifically designed to address the anomaly detection task in graph auto-

encoder models.

In this chapter, we have focused on classical GAE models to explore

the potential of reconstruction errors as explainers for anomaly detection,

highlighting both their promise and limitations. In the next chapter, we shift

our focus to Suspicious, our detection model introduced in Chapter 1, and

apply it to a real-world application case. Additionally, we will demonstrate

how our explainability approach can be effectively applied to this model,

addressing the challenges of explaining its classification.

115

Figure 2.11: Average (+/- std) time to generate the explanation masks for
ShapeDatasets (top) and real-world datasets (bottom).

116

Figure 2.12: Average (+/- std) fid+@k (left), and fid−@k (right) on fea-
tures of ShapeFlag (top), Cora-str (middle), Citeseer-con (bottom).

117

Figure 2.13: Average (+/- std) fid+@k (left), and fid−@k (right) on edges
of ShapeCircle (top), Cora-str (middle), and Citeseer-con (bottom).

118

Chapter 3

Application Case

3.1 Application Case Presentation

This chapter delves into the specific application case of French health insur-

ance reimbursement demands for glasses and lenses. This study focuses on

detecting new and emerging patterns of insurance fraud within this dataset,

a critical issue in the French healthcare system. Each reimbursement demand

involves four key actors: the prescriber, the care provider, the beneficiary,

and the insurer, as shown in Figure 3.1.

This study only concentrates on the optical specialty, i.e., glasses and

lenses. The pipeline is as follows: when an insurance beneficiary needs glasses

or lenses, he goes to his ophthalmologist (Prescriber). The ophthalmologist

details the correction needed for the equipment in a prescription that the

beneficiary then brings to his Optician (Provider). The optician follows the

prescription and proposes various options, such as frames, to the beneficiary.

This creates an insurance claim that is sent to the insurer for review. Be-

ys, the company financing this thesis, receives this claim detailing the care

selected and must validate it if it is legitimate or block it if it is detected as

fraudulent. Our work represents the interaction with the insurer.

As detailed in the introduction, the company currently uses an expert

119

Insurer

Beneficiary

Provider

Prescriber

Care
Prescribes

Provides

Receives

Pays

Figure 3.1: Interactions graph for a care.

system to detect fraud patterns identified by human experts. However, hu-

man experts cannot study the whole flux due to its size. By analyzing the

interactions and data associated with these actors, we aim to identify known

fraudulent activities and uncover new forms of fraud that may not have been

previously detected. Here, new fraud refers to undiscovered fraudulent ac-

tivities not yet identified by the current expert system, which models fraud

patterns based on human expert insights.

We create detailed graphs from the dataset to encapsulate the relational

information essential to this task. These graphs model the connections and

interactions between the prescriber, care provider, and beneficiary, highlight-

ing patterns that may indicate both known and novel fraudulent behavior.

By leveraging graph mining in conjunction with real-world data, we aim to

uncover novel fraud patterns, thereby enhancing the overall integrity of the

healthcare reimbursement system.

120

3.1.1 Dataset Creation

Data Selection

Our only data source is the insurance claims filed by the provider, which

contain identifiers for its actors and details on the care provided, such as

detailed price distributions and specifications on what the care entails. In

this work, we limit ourselves to optical claims. Even then, the company

deals with a substantial number of health insurance claims annually. We

focus on claims originating from Paris during April 2024 to create a man-

ageable dataset. This selection results in 125,378 claims, each described by

69 attributes, including quantitative and qualitative features. Key attributes

include the price of the glasses or lenses, the specific corrections prescribed,

the prescriber’s identification, the provider’s details, and the beneficiary’s

demographic information.

Data Cleaning

Unlike publicly available datasets previously used, our dataset contains nu-

merous errors due to poorly filled claims by the performers. The most com-

mon issues are unfilled attributes and duplicate claims. Addressing these is-

sues involves a thorough data cleaning process, combining automated scripts

and manual reviews to identify and rectify missing information and eliminate

duplicate entries. Tools such as Python’s pandas library are used for data

manipulation and cleaning, ensuring the dataset’s accuracy and reliability.

Graph Dataset

We created two versions of the graph dataset: First, a homogeneous graph

containing only the claims and second, a heterogeneous graph containing

nodes that can also represent providers, prescribers, and performers. Our

work models the actions and interactions of other actors from the perspec-

tive of the insurer. As such, the insurer does not appear as a node in the

121

graphs.

Homogeneous graph: The first version is a homogeneous graph where

each node represents a health insurance claim for a given care. The edges are

established between two claims if they share a common actor: beneficiary,

performer, or prescriber. The attribute matrix of this graph simply contains

all the information of each claim as illustrated in Figure 3.2. This graph

consists of 128,375 nodes, over 1 million edges, and 69 attributes. However,

the various methods applied to this graph performed poorly, as detailed in

section 3.2.1, which led us to develop a heterogeneous version.

C1

C2

C3

X0 X1 X2 X3 X4 X5

C1 1 1 1 0 0 0

C2 1 1 0 0 0 0

C3 1 1 0 0 0 0

Figure 3.2: Homogeneous graph modelization with an example of an attribute

matrix. Claims are linked to other claims when they share an actor.

Heterogeneous graph: In the second version, we created a heteroge-

neous graph by incorporating new types of nodes to represent prescribers

and performers. The feature vectors for these new nodes are derived from

their yearly statistical aggregation, as used by the expert system. This gives

us a larger attribute matrix where each column describes features of only

122

B1

Pro1

Presc1

C1

B2

C2

Pro2

Presc2

C3

X0 X1 X2 X3 X4 X5

C1 1 1 0 0 0 0

C2 1 1 0 0 0 0

C3 1 1 0 0 0 0

B1 0 0 1 0 0 0

B2 0 0 1 0 0 0

Pro1 0 0 0 1 0 0

Pro2 0 0 0 1 0 0

Presc1 0 0 0 0 1 1

Presc2 0 0 0 0 1 1

Figure 3.3: Heterogeneous graph modelization with an example of an at-
tribute matrix where the color designates the type of nodes and the column
that contains their respective attributes. Red corresponds to claims, yellow
to beneficiaries, green to providers, and blue to prescribers.

one node type. Each node contains its corresponding features, with zeros

in all other features unrelated to its type. Each claim node is linked to its

respective prescriber node, provider node, and beneficiary node, as shown in

Figure 3.3. This produces a graph with 193,254 nodes, 382,125 edges, and

89 features.

3.2 Experiments

Our experiments are designed to evaluate the effectiveness of our models in

detecting fraud through two primary approaches:

123

Methods AUC±SD(%)
GAT classifiers(S) 89.5± 3.2
GCN classifiers(S) 82.9± 3.5
Kumagai(S) 75.6± 2.4
Dominant(U) 49.7± 0.1
AnomalyDAE(U) 49.7± 0.1
Anomalous(U) 52.3± 0.0
Suspicious(S) 83.4± 4.2

Table 3.1: Average AUC±SD(%) over 10 runs obtained when we tried to use
known frauds as the labels. The best score is 100, random is 50. Unsupervised
method are denoted as U and supervised/semi-supervised methods as S

3.2.1 Detecting Known Frauds

Experimental Setup:

In the first approach, we use known fraud cases as labels for the supervised

methods. We only use known frauds, i.e., detected by the expert system, as

detection targets; for the supervised and semi-supervised methods, we pro-

vide 10% of the dataset as training, 10% as validation, and 80% as a test.

Experimental Results

We assessed how well our models could identify known fraud results for both

types of graphs:

Homogeneous graph: In the case of the homogeneous graph, all meth-

ods, previously presented failed in this task, with all models stagnating

around a 50% AUC score and no method reaching over 55%. The only

types of fraud identified were those that could also be detected using only

tabular data, such as:

Claim with a very strong sight correction for a young child.

124

However, those fraud patterns are easily identifiable, which makes them

rare. This suggests that this modelization does not allow the models to ac-

curately capture the relationships in the graph, likely due to the extremely

connected nature of the graph, where each node has an average of 14 neigh-

bors, which is quite high compared to the graphs used in the experiments

described in Chapter 1, where the average is around 3. Based on these re-

sults, we excluded this dataset from our future experiments.

Heterogeneous graph: The results for the heterogeneous graph are

shown in Table 3.1. Most supervised methods such as GNN classifiers and

Suspicious performed well, achieving an AUC score of around 80%. How-

ever, the elements detected by the unsupervised models performed nearly

randomly, with a 50% AUC score.

While evaluating this approach is straightforward, it does not correspond

to our task. We aim to uncover new and previously undiscovered frauds.

3.2.2 Detecting New Frauds

The second approach explores the model’s ability to detect new and previ-

ously undiscovered fraud cases. Searching for undiscovered patterns means

that no labels are available, and a fully human evaluation is required.

Experimental Setup:

In this second experiment, we do not have any labels as we aim to find

undiscovered frauds.

To evaluate the results, we had to present the results of each model to

our company’s human experts. Due to the limited availability of experts, the

process was split into two phases. In the first phase, we analyzed the model’s

output to present a small coherent ensemble of suspected frauds with the

features that might have led to their categorization. In the second phase, the

125

experts investigated this ensemble to give the final verdict.

However, since this evaluation process is entirely human-led, it is prone

to human error, making the evaluation long and challenging, greatly limiting

the number of possible evaluations for each model.

Despite these challenges, we applied the best-performing methods used

in previous sections to this new task and provided a detailed account of our

findings in the following sections.

Unsupervised learning

The unsupervised method, Dominant [17], was the first contender we stud-

ied. As these methods do not use label information, we could use it directly

on our datasets. Using this method on the heterogeneous graphs, we found

already-known patterns corresponding to the notion of outliers. In the first

version of these experiments, the top scores mostly corresponded to errors

with abnormally filled fields such as the birth year, leading to extremely old

beneficiaries (100 years old). This helped us better clean the dataset but

did not provide insight into frauds. Once those instances were deleted and

the model retrained on the new data, frauds such as overly priced glasses

and late execution on prescriptions appeared as the top scores. These indeed

corresponded to frauds, but the expert system had already identified these

frauds. Deleting these instances and retraining the model did not lead to

any new fraudulent or distinguishable pattern. This meant that while these

models were still interesting, as they managed to identify known frauds with-

out prior input, they failed to uncover any new fraudulent patterns. Other

GAE methods, such as AnomalyDAE [19] or GUIDE [86], led to almost fully

identical rankings and conclusions.

126

Supervised learning

We need labels to use semi-supervised learning methods. As shown in Section

3.2.1, providing already existing fraud leads the model to identify the same

type of pattern, which does not allow us to identify new frauds. To provide

the model with labels corresponding to new frauds, we used another learning

model of the company that allows us to identify fraudsters, i.e., providers

that commit fraud. Using this information, we used all of the claims from

those suspects as the fraud learning sample for the model. The majority of

the claims of these suspected providers are non-fraudulent since fraudsters

do provide real cares. This method creates a very small sample that contains

many non-fraudulent claims, with the new anomalies mixed into them. Using

this, we hoped to find only the anomalies disproportionately present in the

suspicious sample.

Through these methods, using supervised (e.g., GAT [74] and GCN [36]

classifiers) and semi-supervised methods (e.g., Kumagai [38]), we did not find

any evident patterns during step 1, even with the use of explanation meth-

ods. Experts could not distinguish any fraud in the proposed claims without

this prior analysis.

Suspicious

Our method, Suspicious, identified three new fraud patterns. These pat-

terns could be linked to already identified fraud patterns, but these specific

instances were previously undetected by existing models. The first pattern

was linked to familial fraud, i.e., false invoices for other family members of a

recent client. Here, we observed a repeated fixed price that was not very high

but always the same. Our explanation model based on reconstruction error

accurately highlighted the specific price as the explanation for this fraud,

showing an identifiable pattern previously unnoticed but not very widely

used. The other two patterns identified by Suspicious were:

127

• Instant distant collaboration: This pattern involved distant collabora-

tion where a provider sold glasses to several beneficiaries who had been

prescribed glasses on the same day by a prescriber who worked 600 km

away. Our model accurately highlighted both the distance and the date

as the explanation for this pattern.

• Price optimization: A very frequent and already known pattern where

the provider uses different techniques to try and find the maximal reim-

bursement sum to fix the price accordingly. In this instance, our model

highlighted a yet undiscovered way those providers got this information

that we will not disclose here, for confidentiality reasons.

The identification of these patterns by Suspicious demonstrates the model’s

ability to uncover new fraud schemes that were previously undetected. These

findings have significant implications for improving fraud detection strategies

and refining the expert system’s models. However, the process is still chal-

lenging and requires extensive validation and continuous refinement to ensure

the accuracy and reliability of the identified patterns. Additionally, GAE-

based methods (Suspicious and Dominant) have shown the best results. How-

ever, the need for a dense adjacency matrix representation combined with

a high number of claims requires a heavy amount of memory to function:

around 24Go of RAM against the 4Go required by other methods. This lim-

its the size of the dataset on which we can apply our method, forcing us to

reduce it through restrictions in both the geographical sense (only Paris) and

the duration (only a month). In comparison, the current expert system can

cover the whole country with a 24-month history.

3.3 Conclusion

In this chapter, we presented a comprehensive analysis of French health insur-

ance reimbursement demands for glasses and lenses, focusing on the detection

128

of both known and new fraud patterns. We detailed the dataset, including

data selection, cleaning, and graph creation, and developed models to iden-

tify fraudulent activities. Our experiments employed both supervised and

unsupervised learning methods to evaluate the effectiveness of these models.

Using existing fraud cases as labels, we found that semi-supervised and su-

pervised learning techniques achieved high AUC scores, demonstrating strong

performance in identifying known frauds. However, unsupervised methods

failed to identify these existing frauds, underscoring the challenge of detecting

new fraud patterns without labeled data.

However, to address the challenge of detecting new frauds, we employed

a novel approach with our method, Suspicious, which successfully identified

three new fraud patterns previously undetected by existing models. These

patterns, including familial fraud, instant distant collaboration, and price

optimization, highlight the potential of advanced graph-based models in un-

covering sophisticated fraud schemes.

Despite the successes, the process of detecting new frauds remains com-

plex and time-consuming due to the need for human evaluation. This human

involvement is necessary because fraud cases often involve subtle patterns

and evolving tactics that automated models may not fully capture. Our

study’s findings also emphasize the importance of continuous refinement and

validation of fraud detection models to ensure their accuracy and reliability.

Overall, this study contributes to developing more robust and efficient

fraud prevention strategies within the French healthcare reimbursement sys-

tem, paving the way for future research and improvements in fraud detection

methodologies.

129

Conclusion

This thesis explored the development and application of auto-encoder-based

models on graph data to detect anomalies and fraudulent activities, partic-

ularly within the context of the French healthcare system’s insurance reim-

bursement demands for glasses and lenses. The research aimed to address

the challenges posed by the complexity and scale of real-world data, such as

few labeled samples available and mislabeling errors, as well as the need for

explainable and effective detection methods, it did so in three axis:

Suspicious

In the first part of this thesis, we introduced the graph anomaly detection

task. We then proposed Suspicious, a comprehensive semi-supervised frame-

work using GAEs. It was developed to detect anomalies in a more realistic

setting, requiring very few examples and being resilient to mislabeling mis-

takes in that small sample. While Suspicious performed exceptionally well

in these more challenging settings, it also showed strong results in classical

cases, demonstrating its versatility. Experiments revealed that the concept

of outliers used in unsupervised settings was too restrictive for real-world

anomalies and that semi-supervised methods could not perform appropriately

when we introduced mislabeling errors in the training sample. Suspicious,

our proposed method overcame these restrictions.

130

Explaining Anomalies in Graphs

In the second chapter, we introduced an explanation method based on recon-

struction errors, specifically designed to evaluate the explainability of GAEs

in detecting anomalies. We compared this method with various other ex-

plainability techniques. The results showed that, while gradient-based meth-

ods are efficient, they often fail to provide complete explanations compared

to advanced perturbation-based approaches. Our proposed method bridges

this gap by offering explanations that are as high-quality as those provided

by perturbation-based methods, while maintaining the time efficiency of

gradient-based approaches. This research underscores that, although GAEs

are powerful tools for anomaly detection, their explainability remains a sig-

nificant challenge that must be addressed to enhance trust and transparency

in AI systems.

Application to Real-World Fraud Detection

In the third chapter, we applied the Suspicious method and our reconstruction-

error explainer to a real-world fraud detection case within the French health-

care system. We explored all previously presented fraud detection tech-

niques by constructing detailed graph datasets that modeled the interactions

between beneficiaries, prescribers, and providers. The results were varied:

while supervised methods effectively identified known fraud patterns, unsu-

pervised methods encountered difficulties. However, our Suspicious method

successfully uncovered previously undetected fraud patterns, showcasing the

potential of advanced graph-based models for real-world applications.

131

Contributions and Implications

This research makes several important contributions to the field of anomaly

detection and fraud detection using graph-based models:

• Suspicious: A novel semi-supervised GAE-based framework for anomaly

detection that outperforms other methods in both experimental and re-

alistic settings.

• An Explanation Method for GAEs: An explainer that uses GAE’s

reconstruction errors to explain anomalousness.

• Framework for Explainable GAEs: The development of a compre-

hensive framework for evaluating the explainability of GAEs. Which

provides a foundation for future research on making AI models more

transparent and trustworthy.

• Code Availability: The full code for Suspicious, the explanation

method, and the GAE framework is provided.

• Identification of New Fraud Patterns: The application of the Sus-

picious method to real-world data successfully uncovered new fraud

patterns, highlighting the potential of graph-based models in opera-

tional settings. This achievement has practical implications for im-

proving fraud detection strategies within the French healthcare system

and other sectors.

• Challenges and Limitations: The study also highlighted several

challenges, particularly the scalability of graph-based models and the

need for more effective methods for detecting and explaining complex

anomalies. These findings point to important directions for future re-

search.

132

Future Works

• Scalability and Efficiency: Future work should focus on improving

the scalability of graph-based models to handle larger datasets and

longer time frames, enabling their application to broader and more

complex real-world problems.

• Enhanced Explainability: There is a critical need to develop more

sophisticated methods for explaining anomalies detected by GAEs,

particularly in real-world datasets where the complexity of the data

presents significant challenges.

• Integration of Multi-Domain Data: Expanding the application of

graph-based models to incorporate data from multiple domains, such as

other healthcare specialties, could provide more comprehensive insights

and improve the effectiveness of fraud detection strategies.

• Humans in Fraud Detection: Reducing reliance on human evalu-

ation by developing more automated tools could significantly enhance

the efficiency and accuracy of fraud detection processes.

133

Acknowledgement

First and foremost, I would like to express my sincere thanks to Christine

and Baptiste for their guidance and support throughout these past three

years. Christine’s broad vision and deep expertise in the field, along with

her structured and rigorous approach, have been instrumental in shaping my

research. Her expertise and clear direction were invaluable in helping me

stay on track.

Baptiste provided crucial technical help, always willing to dive into the

finer details and offer practical solutions. His assistance with the technical

challenges we faced was instrumental in moving the work forward.

I am grateful to both Christine and Baptiste for their mentorship and

collaboration during this journey.

I would also like to extend my gratitude to Damien, who provided con-

stant guidance and support, particularly in navigating the application do-

main of my work. His insights were invaluable, and his encouragement

throughout the process made a significant difference.

I am deeply grateful to Olivier for granting me the opportunity to embark

on this thesis. His trust and support in the early stages were crucial in setting

me on this path.

I would also like to extend my sincere thanks to the Hubert Curien Labo-

ratory for providing an excellent research environment throughout my thesis.

Their support and resources greatly contributed to the success of this work.

I am equally grateful to Be-ys Research for financing this thesis and for their

134

trust in my work.

And finally, I would like to express my heartfelt gratitude to my friends

and family for their unwavering emotional support and encouragement through-

out this journey. Their presence and understanding were invaluable, provid-

ing me with the strength and balance needed to complete this work.

135

Bibliography

[1] Agarwal, C., Queen, O., Lakkaraju, H., Zitnik, M.: Evaluating explain-

ability for graph neural networks. Scientific Data 10(1), 144 (Mar 2023)

[2] Akoglu, L., McGlohon, M., Faloutsos, C.: Oddball: Spotting anomalies

in weighted graphs. In: PAKDD. pp. 410–421 (07 2010)

[3] Albert, R., Barabási, A.L.: Statistical mechanics of com-

plex networks. Rev. Mod. Phys. 74, 47–97 (Jan 2002).

https://doi.org/10.1103/RevModPhys.74.47, https : / / link . aps .

org/doi/10.1103/RevModPhys.74.47

[4] Allen, G.I., Gan, L., Zheng, L.: Interpretable machine learning

for discovery: Statistical challenges and opportunities. Annual Re-

view of Statistics and Its Application 11(Volume 11, 2024), 97–

121 (2024). https://doi.org/https://doi.org/10.1146/annurev-statistics-

040120-030919

[5] Amara, K., Ying, Z., Zhang, Z., Han, Z., Zhao, Y., Shan, Y., Brandes,

U., Schemm, S., Zhang, C.: Graphframex: Towards systematic evalua-

tion of explainability methods for graph neural networks. In: Rieck, B.,

Pascanu, R. (eds.) Learning on Graphs Conference, LoG 2022. Proceed-

ings of Machine Learning Research, vol. 198, p. 44. PMLR (2022)

[6] Assaf, R., Giurgiu, I., Pfefferle, J., Monney, S., Pozidis, H., Schumann,

A.: An anomaly detection and explainability framework using convo-

136

lutional autoencoders for data storage systems. In: Proceedings of the

Twenty-Ninth International Conference on International Joint Confer-

ences on Artificial Intelligence. pp. 5228–5230 (2021)

[7] Baldassarre, F., Azizpour, H.: Explainability techniques for graph con-

volutional networks. CoRR abs/1905.13686 (2019)

[8] Bandyopadhyay, S., N, L., Vivek, S.V., Murty, M.N.: Outlier resistant

unsupervised deep architectures for attributed network embedding. In:

Proceedings of the 13th International Conference on Web Search and

Data Mining. p. 25–33. WSDM ’20, New York, NY, USA (2020)

[9] Barredo Arrieta, A., Dı́az-Rodŕıguez, N., Del Ser, J., Bennetot, A.,

Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Ben-

jamins, R., Chatila, R., Herrera, F.: Explainable artificial intelligence

(xai): Concepts, taxonomies, opportunities and challenges toward re-

sponsible ai. Information Fusion (2020)

[10] Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information

in graph convolutional networks. Proceedings of the AAAI Conference

on Artificial Intelligence 35(5), 3950–3957 (May 2021)

[11] Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying

density-based local outliers. In: ACM SIGMOD. pp. 93–104. ACM Press

(2000)

[12] CAF: Bilan 2023 de la lutte contre les fraudes, https://www.

assurance-maladie.ameli.fr/presse/2024-03-28-dp-lcf

[13] Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey.

ACM Comput. Surv. 41 (07 2009)

[14] Charte, D., Charte, F., del Jesus, M.J., Herrera, F.: An analysis on the

use of autoencoders for representation learning: Fundamentals, learning

137

task case studies, explainability and challenges. Neurocomputing 404,

93–107 (2020)

[15] Chen, Z.X., Hohmann, L., Banjara, B., Zhao, Y., Diggs, K., Westrick,

S.C.: Recommendations to protect patients and health care practices

from Medicare and Medicaid fraud. J Am Pharm Assoc (2003) 60(6),

60–65 (2020)

[16] Cybenko, G.V.: Approximation by superpositions of a sigmoidal func-

tion. Mathematics of Control, Signals and Systems 2, 303–314 (1989)

[17] Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on

attributed networks. In: SIAM ICDM. pp. 594–602 (2019)

[18] Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S.: Enhancing graph

neural network-based fraud detectors against camouflaged fraudsters.

In: Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining. pp. 315–324. ACM (2020)

[19] Fan, H., Zhang, F., Li, Z.: Anomalydae: Dual autoencoder for anomaly

detection on attributed networks. In: ICASSP. pp. 5685–5689 (2020)

[20] FBI: https://www.ccomptes.fr/fr/publications/la- lutte-

contre-les-fraudes-aux-prestations-sociales

[21] FBI: https://www.fbi.gov/investigate/white-collar-crime/

health-care-fraud

[22] Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch

geometric. ICLR (Workshop) (2019)

[23] Funke, T., Khosla, M., Anand, A.: Hard masking for explaining

graph neural networks (2021), https://openreview.net/forum?id=

uDN8pRAdsoC

138

[24] Gao, Y., Wang, X., He, X., Liu, Z., Feng, H., Zhang, Y.: Addressing het-

erophily in graph anomaly detection: A perspective of graph spectrum.

In: Proceedings of the ACM Web Conference 2023 (2023)

[25] Giles, B., Jeudy, B., Largeron, C., Saboul, D.: Suspicious: a resilient

semi-supervised framework for graph fraud detection. In: International

Conference on Tools with Artificial Intelligence (ICTAI). pp. 212–220.

Los Alamitos, CA, USA (nov 2023)

[26] Giles, B., Jeudy, B., Largeron, C., Saboul, D.: Un cadre semi-supervisé

résilient pour la détection d’anomalie sur graphe attribué. In: Faron, C.,

Loudcher, S. (eds.) Extraction et Gestion des Connaissances, EGC 2023,

Lyon, France, 16 - 20 janvier 2023. RNTI, vol. E-39, pp. 55–66. Editions

RNTI (2023), http://editions-rnti.fr/?inprocid=1002810

[27] Gorman, M., Ding, X., Maguire, L., Coyle, D.: Anomaly detection in

batch manufacturing processes using localized reconstruction errors from

1-d convolutional autoencoders. IEEE Transactions on Semiconductor

Manufacturing 36(1), 147–150 (2023)

[28] Grover, A., Leskovec, J.: node2vec: Scalable feature learning for net-

works. In: ACM SIGKDD. p. 855–864. Association for Computing Ma-

chinery, New York, NY, USA (2016)

[29] Guyon, I., Gunn, S., Hur, A.B., Dror, G.: Design and analysis of the

nips2003 challenge. In: Feature Extraction: Foundations and Applica-

tions, pp. 237–263. Springer, Berlin, Heidelberg (2006)

[30] Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning

on large graphs. In: NeurIPS. p. 1025–1035 (2017)

[31] Hawkins, D.M.: Identification of outliers. Monographs on applied prob-

ability and statistics, Chapman and Hall, London [u.a.] (1980)

139

[32] Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.:

Fraudar: Bounding graph fraud in the face of camouflage. In: SIGKDD.

p. 895–904. KDD ’16, Association for Computing Machinery, New York,

NY, USA (2016)

[33] Huang, Q., Yamada, M., Tian, Y., Singh, D., Chang, Y.: Graphlime:

Local interpretable model explanations for graph neural networks. IEEE

Transactions on Knowledge and Data Engineering 35(7), 6968–6972

(2023). https://doi.org/10.1109/TKDE.2022.3187455

[34] Huang, X., Yang, Y., Wang, Y., Wang, C., Zhang, Z., Xu, J., Chen,

L., Vazirgiannis, M.: Dgraph: A large-scale financial dataset for graph

anomaly detection. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave,

D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing

Systems. vol. 35, pp. 22765–22777. Curran Associates, Inc. (2022)

[35] Interdonato, R., Atzmueller, M., Gaito, S., Kanawati, R., Largeron,

C., Sala, A.: Feature-rich networks: going beyond complex network

topologies. Appl. Netw. Sci. pp. 4:1–4:13 (2019)

[36] Kipf, T.N., Welling, M.: Semi-supervised classification with graph con-

volutional networks. In: ICLR (2017)

[37] Kriegel, H.P., Kroger, P., Schubert, E., Zimek, A.: Interpreting and uni-

fying outlier scores. In: SIAM International Conference on Data Mining.

pp. 13–24 (Apr 2011)

[38] Kumagai, A., Iwata, T., Fujiwara, Y.: Semi-supervised Anomaly Detec-

tion on Attributed Graphs. In: IJCNN. pp. 1–8 (2021)

[39] Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding tra-

jectory in temporal interaction networks. In: Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery &

140

Data Mining. p. 1269–1278. KDD ’19, Association for Computing Ma-

chinery, New York, NY, USA (2019)

[40] Li, A., Qin, Z., Liu, R., Yang, Y., Li, D.: Spam review detection with

graph convolutional networks. In: Proceedings of the 28th ACM Inter-

national Conference on Information and Knowledge Management. pp.

2703–2711. ACM (2019)

[41] Li, J., Dani, H., Hu, X., Liu, H.: Radar: Residual analysis for anomaly

detection in attributed networks. In: IJCAI. pp. 2152–2158 (2017)

[42] Lin, S.S., Jain, S., Wallace, B.C., Durrett, G.: Fidelity+ metric for

evaluating the faithfulness of attention in natural language inference.

In: Proceedings of the 16th Conference of the European Chapter of the

Association for Computational Linguistics: Main Volume. pp. 2555–

2568 (2021)

[43] Liu, F.T., Ting, K., Zhou, Z.H.: Isolation-based anomaly detection.

ACM Transactions on Knowledge Discovery From Data - TKDD 6, 1–

39 (03 2012)

[44] Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth

IEEE International Conference on Data Mining. pp. 413–422 (2008)

[45] Liu, K., Dou, Y., Zhao, Y., Ding, X., Hu, X., Zhang, R., Ding, K., Chen,

C., Peng, H., Shu, K., Sun, L., Li, J., Chen, G.H., Jia, Z., Yu, P.S.:

Benchmarking node outlier detection on graphs. In: NeurIPS (2022)

[46] Liu, Y., Ao, X., Qin, Z., Chi, J., Feng, J., Yang, H., He, Q.: Pick and

choose: A gnn-based imbalanced learning approach for fraud detection.

In: Proceedings of the Web Conference 2021. pp. 316–327 (2021)

[47] Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly

detection on attributed networks via contrastive self-supervised learning.

IEEE TNNLS 33(6), 2378–2392 (2022)

141

[48] Liu, Z., Cao, C., Sun, J.: Mul-gad: a semi-supervised graph anomaly

detection framework via aggregating multi-view information. arXiv

2212.05478 (2022)

[49] Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q.Z., Xiong, H.,

Akoglu, L.: A comprehensive survey on graph anomaly detection with

deep learning. IEEE TKDE (2021)

[50] McAuley, J., Leskovec, J.: From amateurs to connoisseurs: Modeling

the evolution of user expertise through online reviews. WWW 2013 -

Proceedings of the 22nd International Conference on World Wide Web

(03 2013)

[51] Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of

word representations in vector space. Proceedings of Workshop at ICLR

2013 (01 2013)

[52] Miller, T.: Explanation in artificial intelligence: Insights from the social

sciences. Artificial Intelligence 267, 1–38 (2019)

[53] Molnar, C.: Interpretable Machine Learning. ., 2 edn. (2022)

[54] Muller, E., Sanchez, P., Mulle, Y., Bohm, K.: Ranking outlier nodes in

subspaces of attributed graphs. In: ICDE. pp. 216–222 (04 2013)

[55] Peng, Z., Luo, M., Li, J., Liu, H., Zheng, Q.: Anomalous: A joint

modeling approach for anomaly detection on attributed networks. In:

IJCAI. pp. 3513–3519 (2018)

[56] Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social

representations. In: SIGKDD. p. 701–710 (2014)

[57] Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A re-

view of novelty detection. Signal Processing 99, 215–249 (2014).

142

https://doi.org/https://doi.org/10.1016/j.sigpro.2013.12.026, https://

www.sciencedirect.com/science/article/pii/S016516841300515X

[58] Pourhabibi, T., Ong, K.L., Kam, B.H., Boo, Y.L.: Fraud detection:

A systematic literature review of graph-based anomaly detection ap-

proaches. Decision Support Systems (2020)

[59] Ravi, A., Yu, X., Santelices, I., Karray, F., Fidan, B.: General frame-

works for anomaly detection explainability: comparative study. In: 2021

IEEE International Conference on Autonomous Systems (ICAS). pp. 1–

5. IEEE (2021)

[60] Rayana, S., Akoglu, L.: Collective opinion spam detection: Bridg-

ing review networks and metadata. In: Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining. p. 985–994. KDD ’15, Association for Computing Machinery,

New York, NY, USA (2015)

[61] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A.,

Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In:

ICML. vol. 80, pp. 4393–4402 (Jul 2018)

[62] Saeed, W., Omlin, C.: Explainable ai (xai): A systematic meta-survey of

current challenges and future opportunities. Knowledge-Based Systems

263, 110273 (01 2023). https://doi.org/10.1016/j.knosys.2023.110273

[63] Sanchez, P., Muller, E., Laforet, F., Keller, F., Bohm, K.: Statistical se-

lection of congruent subspaces for mining attributed graphs. In: ICDM.

pp. 647–656 (12 2013)

[64] Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson,

R.C.: Estimating the support of a high-dimensional distribution. Neural

Comput. 13(7), 1443–1471 (2001)

143

[65] Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad,

T.: Collective classification in network data. AI Magazine 29(3), 93

(2008)

[66] Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker,

A.W. (eds.) Contributions to the Theory of Games II, pp. 307–317.

Princeton University Press, Princeton (1953)

[67] Shi, F., Cao, Y., Shang, Y., Zhou, Y., Wu, J., Zhou, C.: H2-fdetector: A

gnn-based fraud detector with homophilic and heterophilic interactions.

In: Proceedings of the ACMWeb Conference 2022. pp. 1486–1494 (2022)

[68] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,

Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap,

T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., Hassabis, D.:

Mastering the game of go without human knowledge. Nature 550(7676),

354—359 (October 2017). https://doi.org/10.1038/nature24270

[69] Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional

networks: Visualising image classification models and saliency maps.

In: ICLR (2014)

[70] Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional

networks: Visualising image classification models and saliency maps.

In: ICLR (2014)

[71] Tang, J., Hua, F., Gao, Z., Zhao, P., Li, J.: Gadbench: Revisiting

and benchmarking supervised graph anomaly detection. In: Oh, A.,

Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. (eds.)

Advances in Neural Information Processing Systems. vol. 36, pp. 29628–

29653. Curran Associates, Inc. (2023)

[72] Tang, J., Li, J., Gao, Z., Li, J.: Rethinking graph neural networks for

anomaly detection. In: ICML. vol. 162, pp. 21076–21089 (2022)

144

[73] Tong, H., Lin, C.Y.: Non-negative residual matrix factorization with

application to graph anomaly detection. In: SDM (2011)

[74] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio,

Y.: Graph attention networks. ICLR (Poster) (2018)

[75] Vu, M.N., Thai, M.T.: Pgm-explainer: probabilistic graphical model

explanations for graph neural networks. In: Proceedings of the 34th In-

ternational Conference on Neural Information Processing Systems. NIPS

’20, Curran Associates Inc., Red Hook, NY, USA (2020)

[76] Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph

neural networks for anomaly detection in attributed networks. Neural

Computing and Applications 33(18), 12073–12085 (2021)

[77] Wang, Y., Zhang, J., Guo, S., Yin, H., Li, C., Chen, H.: Decoupling

representation learning and classification for gnn-based anomaly detec-

tion. In: Proceedings of the 44th International ACM SIGIR Conference

on Research and Development in Information Retrieval. pp. 1239–1248.

ACM (2021)

[78] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Sim-

plifying graph convolutional networks. In: International Conference on

Machine Learning. pp. 6861–6871. PMLR (2019)

[79] Wu, J., He, J., Liu, Y.: Imverde: Vertex-diminished random walk for

learning imbalanced network representation. In: IEEE International

Conference on Big Data (2018)

[80] Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural

networks? In: ICLR (2019)

[81] Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural

clustering algorithm for networks. In: SIGKDD. pp. 824–833 (2007)

145

[82] Ying, R.Y., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: Gnnex-

plainer: Generating explanations for graph neural networks. In: Ad-

vances in neural information processing systems. vol. 32, pp. 9240–9251

(2019)

[83] Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: Gnnexplainer:

Generating explanations for graph neural networks. In: Advances in

Neural Information Processing Systems. vol. 32 (2019)

[84] Yuan, H., Yu, H., Gui, S., Ji, S.: Explainability in graph neu-

ral networks: A taxonomic survey. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 45(5), 5782–5799 (2023).

https://doi.org/10.1109/TPAMI.2022.3204236

[85] Yuan, H., Yu, H., Wang, J., Li, K., Ji, S.: On explainability of graph

neural networks via subgraph explorations. In: ICML (2021)

[86] Yuan, X., Zhou, N., Yu, S., Huang, H., Chen, Z., Xia, F.: Higher-

order structure based anomaly detection on attributed networks. In:

International Conference on Big Data (Big Data). pp. 2691–2700 (12

2021)

[87] Zeni, M., Zhang, W., Bignotti, E., Passerini, A., Giunchiglia, F.: Fixing

mislabeling by human annotators leveraging conflict resolution and prior

knowledge. Association for Computing Machinery 3(1) (2019)

[88] Zhao, T., Deng, C., Yu, K., Jiang, T., Wang, D., Jiang, M.: Error-

bounded graph anomaly loss for gnns. In: CIKM 2020. pp. 1873–1882

(10 2020)

[89] Zheng, Y., Jin, M., Liu, Y., Chi, L., Phan, K.T., Pan, S., Chen, Y.P.P.:

From unsupervised to few-shot graph anomaly detection: A multi-scale

contrastive learning approach. arXiv 2202.05525 (2022)

146

	Détection de fraude à l'assurance maladie à l'aide de modèles d'apprentissage automatique et de fouille de données explicables et interprétables.

