
HAL Id: tel-04808780
https://hal.science/tel-04808780v1

Submitted on 28 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Privacy Preserving and fully-Distributed Identity
Management Systems

Mathieu Gestin

To cite this version:
Mathieu Gestin. Privacy Preserving and fully-Distributed Identity Management Systems. Computer
Science [cs]. Universite de rennes 1, 2024. English. �NNT : �. �tel-04808780�

https://hal.science/tel-04808780v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : INFO

Par

Mathieu Gestin
Privacy Preserving and fully Distributed
Identity Management Systems

Thèse présentée et soutenue à Rennes, le 18 Décembre 2024
Unité de recherche : Inria

Rapporteurs avant soutenance :

Pascal FELBER Full professor, Université de Neuchâtel
Maurice HERLIHY Full professor, Brown University

Composition du Jury :
Attention, en cas d’absence d’un des membres du Jury le jour de la soutenance, la composition du jury doit être revue
pour s’assurer qu’elle est conforme et devra être répercutée sur la couverture de thèse

Président : (à préciser après la soutenance)
Examinateurs : Olivier BARAIS Professeur, Université de Rennes

Silvia BONOMI Associate Professor, Saapienza University di Roma
Dir. de thèse : Davide FREY Chargé de recherche, Centre Inria de l’université de Rennes

“Le point idéal de la pénalité aujourd’hui serait la discipline indéfinie : un interrogatoire qui
n’aurait pas de terme, une enquête qui se prolongerait sans limite dans une observation

minutieuse et toujours plus analytique, un jugement qui serait en même temps la constitution
d’un dossier jamais clos, la douceur calculée d’une peine qui serait entrelacée à la curiosité

acharnée d’un examen, une procédure qui serait à la fois la mesure permanente d’un écart par
rapport à une norme inaccessible et le mouvement asymptotique qui contraint à la rejoindre à

l’infini.”
Surveiller et Punir, Michel Foucault.

“[. . .] Nous avions le sentiment que nous avions le devoir de faire quelque chose, alors qu’en
réalité il n’y avait plus rien que nous puissions faire [. . .].”

Hommage à la Catalogne, George Orwell.

III

IV

ACKNOWLEDGEMENT

Cette thèse est le fruit de l’ensemble des travaux que j’ai pu réaliser durant les quatre an-
nées passées à l’Inria. Elle n’aurait pas été possible sans la collaboration de mon directeur de
Thèse, Davide Frey, que je remercie particulièrement. Je remercie aussi mes deux co-doctorants,
Timothé Albouy et Arthur Rauch, avec qui nous avons traversé cette épreuve. Les discussions
que nous avons eues, scientifiques ou non, ont permit d’aboutir au présent document. Je re-
mercie aussi mes co-autheurs, François Taïani, pour sa précisions, Michel Raynal, pour son
savoir, Guillaume Piolle et Daniel Bosk, pour m’avoir mis sur la voie. Sans oublier Emmanuelle
Anceaume, Antonio Fernandez Anto, Chryssis Georgiou, Nicolas Nicolaou et Julang Wang. Je
souhaite bonne chance à tous les doctorants de l’équipe WIDE, pour lesquels ce sera bientôt
leur tour. Et j’adresse également ma reconnaissance aux autres membres de l’équipe, Virginie, et
tous les autres membres, permanent ou non, avec qui j’ai partagé tout ou partie de mon temps.
Je tiens aussi à remercier tous les membres de l’équipe Crypto de Bern, pour leur accueil à l’été
2023.

Ces quatre ans de travail n’auraient pas été possibles sans le soutien de ma famille, Hervé,
Catherine, Juliette, Danielle et Madeleine. Je remercie particulièrement Aïcha, sans qui la ré-
daction de ce manuscrit aurait été laborieuse. Enfin, je n’oublie pas tous mes amis, de Quimper
de Brest ou de Rennes, qui ont fait des temps durs des moments de bonheur.

V

VI

TABLE OF CONTENTS

Résumé en Français XIII

Publications XXXIII

1 Introduction 1
1.1 Authorisation and authentication . 1
1.2 Digital Identity Management System . 3

1.2.1 Components of a Privacy Preserving fully Distributed Identity Manage-
ment Systems . 8

1.2.2 The U-Port case and the use of distributed ledger as the unique source of
distribution . 11

1.3 Contributions . 12
1.4 Description of the chapters . 16

2 Main components of a Privacy Preserving Identity Management System 19
2.1 Privacy Preserving signature scheme . 19
2.2 Informationnal features . 21

2.2.1 Information published by an issuer . 21
2.2.2 Information published by a verifier . 21

2.3 Key management features . 22
2.4 Strong and versatile authentication features . 22
2.5 Revocation features . 23
2.6 DID-capable ledger and naming system . 23
2.7 Accountability feature . 24

3 State of the art 25
3.1 The early days of Identity Management . 25
3.2 The rise of Self Sovereign Identity . 29
3.3 Digital identity and the blockchain scam era . 32
3.4 The 193 DID methods . 33
3.5 Our contributions: Privacy Preserving and fully-Distributed Identity Management

Systems . 36

VII

TABLE OF CONTENTS

4 Model and building blocks 37
4.1 Distributed-Systems Notions and Definitions . 37

4.1.1 Shared memory model . 37
4.1.2 Message passing model . 39

4.2 Distributed building blocks . 40
4.2.1 Consensus . 40
4.2.2 Byzantine Reliable Broadcast . 41

4.3 Cryptographic Notions and Definitions . 41
4.4 Notations . 46

5 A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential 47
5.1 introduction . 47
5.2 Problem Statement . 49
5.3 Related Work . 50
5.4 Overview . 52
5.5 Notations . 53
5.6 Formal Definitions . 53

5.6.1 Hidden Issuer Anonymous Credential . 53
5.6.2 Aggregator . 57

5.7 Instantiation . 59
5.7.1 Non-Interactive HIAC . 59
5.7.2 Interactive HIAC . 63

5.8 Deployment . 65
5.8.1 Credential and Aggregator Management 65
5.8.2 Issuer Selection . 66
5.8.3 Issuer Acting as a Verifier . 67

5.9 Efficiency . 67
5.9.1 Runtime Comparison . 67
5.9.2 Communication Cost . 73

5.10 Qualitative Comparison . 74
5.11 Conclusion and evolutions . 75

6 Synchronization requirements for revocation, access control, and multi-device
capability 77
6.1 Introduction . 77
6.2 Related Works . 80
6.3 Model . 80

VIII

TABLE OF CONTENTS

6.4 The AllowList and DenyList objects: Definition 81
6.5 PROOF-LIST object specification . 83
6.6 The consensus number of the AllowList object 86
6.7 The consensus number of the DenyList object . 88

6.7.1 Lower bound . 88
6.7.2 Upper bound . 90

6.8 Variations on the listed-values array . 95
6.8.1 One-process only . 95
6.8.2 Multi-process . 96

6.9 Discussion . 96
6.9.1 Revocation of a verifiable credential . 97
6.9.2 Distributed e-vote systems . 97

6.10 Conclusion . 97

7 From Zooko’s trilemma to the Namespace object: how to allocate scarce
names in a distributed system 99
7.1 Introduction . 99
7.2 Identifiers, resources and namespaces . 100
7.3 The Namespace object . 101
7.4 The Zooko’s triangle problem . 102
7.5 Formal proof of the Zooko’s impossibility . 104
7.6 The edges of the triangle . 105
7.7 The consensus number of the edges . 106

7.7.1 Consensus number of the Namespace object 106
7.7.2 Consensus requirements in practice . 108

7.8 The difference between the Namespace object specification and the renaming
problem . 109

7.9 Identifier systems - Circumventing Zooko’s impossibility 110
7.9.1 The Identifier System Object . 111
7.9.2 Zooko’s properties for an identifier system 112

7.10 Conclusion . 113

8 A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction 115
8.1 Introduction . 115
8.2 Related work . 118
8.3 Model . 119
8.4 Context-Adaptive Cooperation: Definition . 120

IX

TABLE OF CONTENTS

8.4.1 Definition . 120
8.4.2 Termination of the CAC abstraction . 121
8.4.3 CAC with proof of acceptance . 122

8.5 CAC: a simple, sub-optimal implementation . 123
8.5.1 A simple CAC algorithm . 123
8.5.2 Proof of the algorithm . 125

8.6 CAC: An Optimal Implementation . 134
8.6.1 An optimal implementation of the CAC abstraction 134
8.6.2 witness phase . 135
8.6.3 ready phase . 136
8.6.4 Fast-path . 136
8.6.5 Proof of the algorithm . 137

8.7 CAC in Action: Solving Low Contention Problems 145
8.7.1 The fault-tolerant asynchronous short-naming problem 145
8.7.2 A “synchronize only when needed” CAC-based consensus algorithm: Cas-

cading Consensus . 152
8.7.3 Cascading Consensus: proof . 161

8.8 Conclusion . 162

9 An efficient solution to the multi-device authorization problem: the Anony-
mous Agreement Proof 165
9.1 Introduction . 165
9.2 System model . 167
9.3 Problem statement . 168
9.4 Data model and authorization mechanism . 172
9.5 Anonymous Agreement Proof: an abstraction to efficiently prove ledger-agreed data173
9.6 Implementation of the AAP abstraction using threshold anonymous credential

scheme . 178
9.6.1 Cryptographic tools . 178
9.6.2 Communication primitives . 180
9.6.3 Implementation . 181
9.6.4 Proof of the AAP algorithm . 187

9.7 AAP to enable the multi-device authorization feature for PPfDIMSs 194
9.8 Discussions . 200

9.8.1 The alternative usages of the multi-device authorization scheme for PPfDIMS200
9.8.2 Potential improvments of Section 9.6’s implementation 201
9.8.3 Improved view synchronization when the size of P is small 202

9.9 Conclusion . 203

X

TABLE OF CONTENTS

10 A privacy preserving fully distributed IMS framework with (almost) no con-
sensus 205
10.1 Model . 205
10.2 Building blocks . 205
10.3 PPfDIMS Implementation . 212
10.4 Conclusion . 215

11 A step back on political and philosophical implications of PPfDIMSs 221

Conclusion 225

Bibliography 229

A E-vote system implementation using a DenyList object 247

B Possible Additional Properties to the HIAC scheme 251
B.1 Non Transferable Signature . 251
B.2 Signature on Commitments and One-Show Credential 252

C HIAC’s Proofs 253
C.1 Assumptions . 253
C.2 Aggregator Correctness . 253
C.3 Aggregator Collision-Freedom . 254

C.3.1 Representation of the Elements . 254
C.3.2 Proof that (W)′∗(l) is a Combination of Different (W)i i ∈ {1, · · · , k} . . . 256
C.3.3 Proof that (W)′∗(l) is Composed of Only One (W)i i ∈ {1, · · · , k} 258
C.3.4 Proof of Theorem 5.2 . 259

C.4 Proof of Element-Indistinguishability . 260
C.5 Signature Correctness . 261
C.6 EUF-CMA Proof . 262
C.7 Issuer-Indistinguishability proof . 275
C.8 Interactive Protocol . 280

C.8.1 Correctness . 280
C.8.2 Collision Freedom . 281
C.8.3 Indistinguishability of the Signature with Commitment Reveal Exchange 282

XI

RÉSUMÉ EN FRANÇAIS

Cette thèse porte sur les systèmes de gestion d’identités numériques distribués et respectant
la vie privée. Elle s’inscrit dans un contexte de forte demande de respect de la vie privée des
personnes en général, et plus précisément, dans le contexte des méthodes d’autorisation et d’au-
thentification. Cette demande provient aussi bien des citoyens que des états eux-mêmes (ou des
unions d’états).

Autorisation et authentification

Un système de gestion d’identité, qu’il soit numérique ou non, a deux buts : l’authentification
et l’autorisation. Ces deux mécanismes, l’autorisation et l’authentification, sont à la base de tout
système de contrôle d’accès.

L’autorisation est un processus en deux phases. La première consiste à définir une liste de
caractéristiques qu’une entité, le sujet, doit posséder pour permettre à une seconde entité, le
porteur, d’accéder à un service. La seconde consiste à vérifier que le sujet possède en effet ces
caractéristiques avant de permettre au porteur d’accéder au service. L’entité qui maintient ce
processus d’autorisation est appelée le fournisseur de service.

Le sujet peut être un individu, un ordinateur, un objet, une organisation, une entreprise, ou
toute autre entité qui peut être définie par ses caractéristiques propres. Le rôle du porteur peut
lui aussi être assuré par plusieurs types d’entités : un individu, le représentant d’une entreprise,
d’un état, d’une organisation, un ordinateur, un processus, etc...

Pour permettre l’autorisation, le porteur doit prouver au fournisseur de service que le sujet
est bien défini par une caractéristique donnée. Par exemple, un club d’escalade n’autorise que
les personnes sachant assurer un grimpeur à accéder à un mur d’escalade dont ils ont la gestion.
Le sujet (qui est aussi le porteur dans notre cas) que nous nommerons Alice, affirme qu’elle
est capable d’assurer un grimpeur en toute sécurité. Elle devra prouver cette affirmation en
assurant un grimpeur du club devant une des personnes de ce même club. Elle va donc prouver
sa capacité à assurer à un membre du club, Marc. Par extension, étant donné que les membres
se font confiance entre eux, Alice prouvera sa capacité à assurer à l’ensemble des membres du
club. Nous voyons ici apparaître une notion cruciale pour tout système de gestion d’identité,
la confiance. Quand un porteur apporte une preuve d’une caractéristique à un fournisseur de
service M , il va affirmer qu’un sujet possède cette caractéristique, et que quelqu’un auquel M
fait confiance a certifié que le sujet possède bien cette caractéristique. En d’autres termes, le

XIII

Résumé en Français

porteur affirme quelque chose, mais le fournisseur de service n’acceptera cette affirmation que
si une tierce partie auquel il fait confiance a vérifié que le sujet en question est bien décrit par
cette caractéristique. Nous appelons cette tierce partie le fournisseur d’identité, ou l’émetteur
d’identité (ou simplement l’émetteur). Dans notre exemple, Marc est l’émetteur. 1 Il se fait
confiance à lui-même. Il sait donc qu’Alice peut assurer un grimpeur. Par transitivité, tous les
autres membres du club qui font confiance à Marc et qui savent que Marc a vérifié les capacités
d’Alice savent que le sujet est en capacité d’assurer un grimpeur.

Un problème persiste tout de même. Admettons que Marc et Alice n’étaient que deux quand
Marc a vérifié la capacité d’Alice à assurer un grimpeur. Dans ce cas, Marc doit certifier auprès
des autres membres du club qu’Alice a cette capacité. Pour ce faire, Marc peut utiliser deux
méthodes. Soit il présente Alice à tous les autres membres du club en personne. Sinon, il trouve
une méthode pour notifier à l’ensemble des membres du groupe qu’Alice peut assurer un grim-
peur. Cette méthode peut être par l’envoie d’un message à tous les membres du club, ou par
l’émission d’un document certifiant la capacité d’Alice. Dans ce cas, les autres membres, quand
ils vont voir Alice, vont devoir vérifier que la personne qui se présente pour accéder à la salle est
bien la Alice dont Marc à certifier les capacités. C’est le problème de l’authentification.

L’authentification est donc le fait de vérifier qu’un porteur est légitime à prouver qu’un sujet
possède des caractéristiques spécifiques. Dis autrement, l’authentification est l’action de vérifier
un lien entre le porteur et le sujet. Si le porteur et le sujet sont confondus, alors l’authenti-
fication est l’action de vérifier que le sujet est bien celui qu’il affirme être, et que les preuves
des caractéristiques qu’il prétend posséder lui sont bien associées. L’authentification peut être
réalisée de différentes manières. En utilisant une carte d’identité française, l’authentification est
réalisée en comparant les informations de la carte d’identité (âge, taille, couleurs d’yeux, photo)
au porteur.

Dans notre exemple, l’authentification peut être réalisée de différentes manières. La première
a déjà été exposée. Marc peut être présent pour authentifier Alice auprès des autres membres du
club. La seconde méthode consiste pour Marc à signer un document attestant que la personne
qui porte ce papier est Alice. Une troisième méthode serait de laisser Marc divulguer un secret
à Alice. Quand Alice se présente au club sans Marc, elle révèle ce secret aux membres du club
présents à cet instant. Tous ces exemples ont des limites. Le premier implique que Marc doit
présenter Alice à tous les membres du groupe, le second implique qu’Alice peut prêter ce papier
à quelqu’un d’autre, voire qu’Alice peut le photocopier et le distribuer à toutes ses amies, et le
dernier implique qu’Alice peut divulguer publiquement le secret.

Dans la suite de cette thèse, nous utilisons des méthodes de cryptographie à clé publique pour
résoudre le problème de l’authentification. Marc annonce à tous les membres du club qu’Alice
sait assurer un grimpeur, et que sa clé publique est pk. Quand Alice se présente au club ensuite,

1. Dans l’exemple, Marc est à la fois émetteur et fournisseur de service.

XIV

Résumé en Français

elle s’authentifie en prouvant sa connaissance de la clé secrète sk associée à pk.

Une chose reste à spécifier ici, nous avons vu qu’en fonction du contexte, une entité peut
changer de rôle. Notamment, le fournisseur de service et l’émetteur peuvent se confondre. De
plus, en continuant d’utiliser notre exemple, dans le futur, quand Alice sera une membre respectée
du groupe, elle pourra elle-même certifier qu’un nouvel adhérent sait assurer un grimpeur. Dans
ce cas, Alice sera à la fois sujet, fournisseuse de service et émettrice.

En revanche, nous n’avons pas expliqué pourquoi nous avions besoin de séparer le sujet du
porteur. Il peut être nécessaire qu’une autorisation dépende d’un sujet qui n’est pas le porteur.
Dans notre exemple, Alice aurait pu prouver qu’elle est membre du club car elle possède la
signature de Marc. Néanmoins, si certaines personnes ne connaissent pas Marc, alors Alice peut
utiliser le certificat qui certifie que Marc est membre du club pour prouver qu’Alice à bien une
signature provenant d’un membre. Dans ce cas, Alice utilise un certificat dont le sujet est Marc.
Elle est donc la porteuse du certificat de Marc.

Dans la suite, nous utiliserons la notion d’élément d’identité en lieu et place du qualificatif
“caractéristique”. Un élément d’identité étant la description d’une particularité (caractéristique)
d’un individu qui permet de le distinguer d’autres individus d’un groupe donné. De plus, nous
utiliserons aussi le terme de porteur et d’“utilisateur” de façon identique. En effet, le but du
porteur d’identité est d’accéder à un service afin de l’utiliser.

Un autre point important qui reviendra dans la suite de cette thèse est le fait qu’une d’identité
dépend d’un contexte. Un porteur pourra changer d’élément d’identité, ou de type d’élément
d’identité utilisé en fonction du contexte dans lequel il évolue. Dans notre exemple, si Alice va
dans un nouveau club d’escalade, le certificat que Marc lui a émis certifiant qu’elle sait assurer
n’aura pas de valeur si les personnes de ce nouveau club ne connaissent pas Marc. Dans ce cas,
elle devra prouver à nouveau ses capacités d’assurage à une personne de ce nouveau club, disons
Jeanne. Dans ce nouveau club, c’est le certificat délivré par Jeanne qui sera considéré. De plus,
en fonction du contexte, les identités peuvent changer. Par exemple, Alice peut être connue sous
un pseudonyme dans un premier club et sous un autre pseudonyme dans un second club.

Nous avons donc vu les acteurs principaux d’un système de gestion d’identité : l’émetteur,
le porteur, le sujet, et le fournisseur de service. Nous avons aussi exploré les deux mécanismes
principaux de l’identification : l’autorisation et l’authentification. Enfin, nous avons vu deux
notions clés, l’affirmation de possession d’un élément d’identité, et la preuve de possession de ce
même élément d’identité.

Nous allons maintenant nous intéresser aux méthodes utilisées pour créer un système de
gestion de l’identité numérique répondant à différentes contraintes de versatilité, de confiance,
et de respect de la vie privée.

XV

Résumé en Français

Systèmes de gestion de l’identité numérique

Comme nous le verrons dans le chapitre 3, la philosophie des systèmes de gestion de l’identité
numérique a évolué en même temps que l’évolution de l’informatique. Nous différencions ici la
philosophie d’un système de gestion d’identité des techniques utilisées pour l’implémenter. La
philosophie donne les buts à atteindre pour un système de gestion de l’identité. Les techniques
mises en oeuvre ne sont là que pour remplir au mieux les critères définis par la philosophie sous
jacente.

Cette séparation entre philosophie de gestion de l’identité et technique de gestion de l’identité
est propre à cette thèse. Comme nous allons le voir par la suite, cette terminologie permet de
classifier avec précision, et donc de comparer, les différentes propositions et implémentations.
D’après nos recherches, nous sommes les seuls à faire cette différence.

Cette thèse s’intéresse à la plus récente des philosophies concernant les systèmes de gestion
de l’identité : les identités auto-souveraines, ou Self Sovereign Identity (SSI) comme elles ont été
nommées en premier lieu. Cette dénomination a été popularisée par Cristopher Allen en 2016
[1]. Dans cet article, l’auteur revient sur les différentes philosophies qui ont été proposées jusqu’à
2016, en proposant une classification. Il les définit de la manière suivante, en partant de la plus
ancienne, et moins versatile, à la plus récente :

— Le modèle en silo. Cette philosophie prédate toutes les autres [2]. Un utilisateur se
présente à un fournisseur de service. Il crée un compte chez ce fournisseur. Si des in-
formations supplémentaires sont nécessaires, le fournisseur va les vérifier lui-même (par
exemple, via la vérification de la carte d’identité de l’utilisateur pour certifier son nom,
sa date de naissance et son lieu de naissance). Quand l’utilisateur réutilise le service, il
utilise les informations qui lui permettent de s’authentifier comme le propriétaire de ce
compte (en général, en utilisant un nom d’utilisateur et un mot de passe). Si l’utilisateur
se présente à un nouveau fournisseur de service, il devra réitérer tout le processus.
Les limites de cette philosophie sont évidentes. Premièrement, un compte et les autorisa-
tions associées, ne sont valides que pour un service donné. Cela implique qu’un porteur
devra prouver son identité à une multitude de services. Chaque service stockera ces in-
formations. Cela augmente la surface de fuites de données et d’attaque. De plus, cela
implique que l’utilisateur doit faire confiance à ces différents services pour sécuriser suf-
fisamment leurs serveurs et pour ne pas partager ces informations. De plus, l’utilisateur
doit mémoriser un ensemble de paires (mot de passe, nom d’utilisateur). Ce qui est com-
pliqué si chaque mot de passe est différent, ou propice à des attaques avec un fort impact
si tous les mots de passes sont identiques.

— Le modèle fédéré. Cette philosophie est une évolution du modèle en silo. Comme
pour le précédent modèle, l’utilisateur s’enregistre chez une entité, qui joue ici le rôle de
fournisseur d’identité. L’utilisateur enregistre aussi ses éléments d’identité. La différence

XVI

Résumé en Français

étant que le compte créé peut être utilisé pour s’authentifier et accéder à différents services
mis en place par une entité dépendant du fournisseur de service. Cette philosophie permet
à l’utilisateur de créer moins de comptes, et donc de limiter les problèmes listés plus haut.
En revanche, ces problèmes existent toujours. En effet, un compte n’est valable que pour
une entité fédérée donnée qui gère différents services. De plus, le fournisseur de service
gagne en pouvoir de nuisance. Il obtient plus d’information sur l’utilisateur, qui aura plus
de mal à cacher son activité s’il utilise un unique compte sur différents services.

— Le modèle centré sur l’utilisateur. Le modèle centré sur l’utilisateur ressemble beau-
coup au modèle fédéré. De la même manière, l’utilisateur crée un compte chez un four-
nisseur d’identité. Il associe à ce compte des éléments d’identités qui peuvent être vérifiés
par le fournisseur d’identité. La seule différence avec le modèle présenté précédemment
est que ces éléments d’identité peuvent être utilisés pour s’authentifier et être autorisé
par un fournisseur de service qui ne dépend pas du fournisseur d’identité. Pour ce faire, le
fournisseur de service doit simplement faire confiance au fournisseur d’identité (et mettre
en place un outil permettant aux deux services de communiquer). Comparé au modèle
précédent, ce modèle permet à l’utilisateur de réduire grandement le nombre de comptes
qu’il crée. Par exemple, si tous les services que l’utilisateur utilise sont gérés par des four-
nisseurs de service qui font confiance à un unique fournisseur d’identité, alors l’utilisateur
pourra ne créer qu’un seul compte chez ce fournisseur d’identité. Cela permet de réduire
grandement le nombre de comptes que l’utilisateur doit créer, la surface d’attaque d’un
potentiel attaquant, et le nombre de fournisseur de service auxquels l’utilisateur doit faire
confiance.
En revanche, les limites du modèle fédéré sont exacerbées dans le modèle centré sur
l’utilisateur. Si le fournisseur d’identité par lequel passe l’utilisateur cesse de fonctionner,
tous les services qui lui sont associés et que l’utilisateur utilisait lui seront dorénavant
inaccessibles. De plus, si le fournisseur d’identité veut tracer l’activité d’un utilisateur, il
aura d’autant plus de pouvoir que toutes les authentifications de cet utilisateur passeront
par lui.
Dans la suite de cette thèse, nous ne différencierons pas le modèle fédéré du modèle centré
sur l’utilisateur, en cela que leur fonctionnement est proche, et que les limites de ces deux
modèles sont similaires. La seule différence étant le degré avec lequel ces limites peuvent
impacter l’utilisateur.

— Le modèle d’Identités Auto Souveraine. Cette philosophie à pour but de donner à
l’utilisateur le contrôle de ses éléments d’identité et des preuves de ces éléments. L’idée
est de se rapprocher du modèle de la preuve d’identité physique tel que celui de la
carte d’identité. Une carte d’identité est donnée à son porteur/sujet par un fournisseur
d’identité (en général un état). L’utilisateur n’aura ensuite plus besoin d’interagir avec

XVII

Résumé en Français

le fournisseur d’identité jusqu’à l’expiration de sa carte. Il stocke lui-même ses éléments
d’identité dans son portefeuille. Il peut choisir de la présenter ou non à un fournisseur de
service, et il sait que le fournisseur d’identité ne peut pas utiliser ses éléments d’identités
sans son consentement étant donné qu’il ne possède pas de copie de la carte. L’identité
auto-souveraines est la transposition de ce modèle au monde numérique. L’utilisateur
doit être à tout moment en contrôle de ses éléments d’identité. Il doit consentir de façon
éclairée pour que ces derniers soient utilisés. Il doit aussi pouvoir présenter des preuves
d’élément d’identité à tout moment, et donc ne pas dépendre d’une entité unique qui
pourrait cesser son activité (pour des raisons économiques, techniques, de censure etc...).
Plus précisément, Cristopher Allen [1] présente dix points que n’importe quel système
de gestion d’identité devrait maximiser pour pouvoir atteindre le statut d’“identité auto-
souveraine”.

1. Existence. Les éléments d’identité et les preuves d’identités des utilisateurs doivent
avoir une existence indépendante. Cela implique qu’ils ne doivent pas dépendre d’un
unique système, d’une unique norme ou d’une unique implémentation technique. Le
système de gestion d’identité ne doit pas être limitant pour l’utilisateur.

2. Contrôle. L’utilisateur doit contrôler ses éléments d’identité. Ils sont les seuls à pouvoir
demander l’émission de preuve à propos de leur identité, à pouvoir les mettre à jour,
à pouvoir les présenter. Ils peuvent aussi choisir de ne pas les révéler. De plus, ils
doivent être tenus au courant de tout traitement relatif à leurs éléments d’identité.

3. Accès. Les utilisateurs doivent avoir accès à leurs éléments d’identité. Ils ne peuvent
dépendre d’un acteur qui pourrait potentiellement cesser son activité. Ils doivent
pouvoir à tout moment récupérer ces éléments. Cela implique aussi qu’ils doivent
avoir connaissance de toutes les affirmations et les preuves concernant leurs identités.

4. Transparence. Les algorithmes et les systèmes implémentant des systèmes de ges-
tion de l’identité doivent être transparents. C’est-à-dire que les implémentations tech-
niques, aussi bien que la gestion de ces systèmes doivent pouvoir être analysé par tous
les acteurs les utilisant. Les décisions prisent doivent l’être selon une politique définie
à l’avance. Les résultats de ces décisions doivent être publics. Les algorithmes et les
systèmes utilisés doivent être accessibles à tous, leurs sources doivent être publiques.

5. Persistance. Les identités des utilisateurs doivent être utilisables dans la durée, et dans
l’idéal tout le long de la vie de l’utilisateur. Cela implique à nouveau que ces identités,
et les éléments d’identité attenants ne doivent pas être dépendants d’une entité qui
pourrait cesser son activité, ni d’une technologie donnée qui pourrait évoluer ou ne
plus être utilisée. De plus, les contraintes de sécurités évoluant au rythme de l’évolu-
tion du matériel informatique, les systèmes permettant de sécuriser et de prouver les

XVIII

Résumé en Français

éléments d’identité d’un utilisateur doivent pouvoir être mis à jour, notamment les
outils cryptographiques utilisés, et la taille des clés permettant leur sécurisation.

6. Transportabilité. Les éléments d’identités et preuves d’identités d’un porteur doivent
être transportables. Ils ne doivent pas être seulement valides s’ils sont stockés chez
une unique entité, ou s’ils sont utilisés dans le contexte d’un système unique.

7. Interoperabilité. Les éléments et preuves d’identités doivent être utilisables dans le plus
grand nombre de contextes possibles. Aucune barrière ne devrait exister, qu’elle soit
technologique, administrative, ou politique, justifiant le fait qu’une preuve d’identité
soit valide dans un contexte mais pas dans un autre. Cette propriété implique donc
une coopération des différents acteurs de l’écosystème, aussi bien au niveau technique
que politique et organisationnel. 2

8. Consentement. Les utilisateurs doivent consentir à la présentation et à l’utilisation
de leurs éléments d’identité. Premièrement, cela implique que l’utilisateur doit être
tenu informé des différentes utilisations de ses éléments d’identités. Deuxièmement,
ce consentement doit être éclairé. C’est à dire que l’utilisateur doit comprendre les
implications de la divulgation d’éléments d’identités à un fournisseur de service. Il
ne suffit donc pas de demander à un utilisateur de signer un contrat dont le but est
l’obfuscation des volontés réelles du fournisseur de service pour valider le consentement
de l’utilisateur.

9. Minimisation. La présentation d’éléments d’identité concernant un utilisateur doit
être réduite à leur strict minimum. Quand un utilisateur accède à un service, il ne doit
révéler que les informations absolument nécessaires au fonctionnement de ce service.
Cela implique aussi que les solutions techniques utilisées pour prouver un élément
d’identité ne devraient pas révéler plus d’information que nécessaire (c.f. chapitre 5).
Par exemple, si un utilisateur veut prouver qu’il a plus de 18 ans, alors, le fournisseur
de service ne doit apprendre que cette information. L’âge exact de l’utilisateur ne doit
pas être révélé.

10. Protection. Les droits des utilisateurs doivent être protégés. Les algorithmes utilisés,
aussi bien que les politiques de vie privée implémentées par ces algorithmes doivent
protéger l’utilisateur.

Ces dix points à maximiser sont le résultat de discussions qui commencèrent au début des

2. Ce dernier point doit néanmoins être limité par la notion de confiance et de souveraineté nationale. On
ne peut pas demander à un acteur local d’accepter une preuve venant d’un autre acteur local à l’autre bout du
monde, si ce dernier ne possède pas une certification de son état qu’il est en capacité d’émettre une telle preuve.
De plus, dans certains contextes, seule une preuve venant d’un pays spécifique peut être prise en compte. Par
exemple, pour certifier des capacités d’un individu à réaliser une tâche, nous utilisons des diplômes. Or, tous les
diplômes ne se valent pas. Il n’est pas possible de forcer un état A à accepter un diplôme émit par un état B alors
que les conditions d’obtention de ce dernier sont moins contraignantes dans le pays B que dans le pays A.

XIX

Résumé en Français

années 2000 (c.f. chapitre 3). Cette classification est globalement consensuelle. Certaines
évolutions ont été proposées [3], mais l’essence des identités auto-souveraines reste la
même au travers des définitions.

Plusieurs solutions techniques ont été proposées afin de créer un système de gestion d’identité
respectant les principes des identités auto-souveraines. Elles reposent toutes sur un principe
fondamental, la distribution. Le but de la distribution est de proposer des solutions techniques
permettant de respecter les principes des identités auto-souveraines tout en ne dépendant pas
d’une unique entité ou d’un ou d’un petit nombre d’entités.

Nous considérons ici deux grandes familles. Chacune de ces familles à ses avantages et ses
défauts, mais elles permettent toutes les deux de répondre aux attentes édictées par Allen. La
différence entre ces deux familles repose sur la façon de gérer les propriétés annexes des systèmes
de gestion d’identité, c’est-à-dire les propriétés n’étant pas le cœur de l’autorisation.

En effet, la distribution vient de l’utilisation d’un mécanisme distribué pour l’émission, le sto-
ckage et la présentation des preuves d’identité. En revanche, rien n’empêche d’utiliser un serveur
central jouant le rôle de tierce partie de confiance pour tous les besoins annexes. C’est le fonc-
tionnement des systèmes de gestion d’identité partiellement distribués. Les systèmes de gestion
d’identité totalement distribués, en revanche, ne repose sur aucune tierce partie de confiance.

Plus formellement, et comme nous le disions précédemment, la première famille est la fa-
mille des systèmes de gestion d’identité partiellement distribués. Ces systèmes ne requièrent
pas l’interaction avec l’émetteur d’identité lors de la présentation d’une preuve d’identité par
l’utilisateur. En revanche, certaines fonctionnalités du système peuvent dysfonctionner suite à
la cessation d’activité d’une ou d’un petit nombre d’entités. Ces fonctionnalités peuvent être
l’authentification, la révocation d’un certificat, ou le récupération de clés après une perte ou un
vol.

La seconde famille est la famille des systèmes de gestion d’identité totallement distribués.
Comme les précédents, ces systèmes ne requièrent pas d’interaction avec l’émetteur lors de la pré-
sentation d’une preuve d’identité par l’utilisateur. En revanche, la continuité du fonctionnement
des fonctionnalités ne doit pas dépendre d’une unique entité ou d’un petit nombre d’entités. Plus
précisément, un système de gestion d’identité totalement distribué est défini pour un paramètre
t tel que le fonctionnement du système n’est pas impacté par l’arrêt de l’activité de t entités.

Cette définition implique que le fonctionnement des différents composants du système doit
être distribué entre différents processus ou ordinateurs, mais il implique aussi que ces composants
doivent être distribués entre différentes entités indépendantes. Nous ne considérons pas, par
exemple, qu’une entreprise qui gère n ordinateurs et implémente un système de gestion d’identité
distribué qui est résiliant à t fautes parmi ces n ordinateurs soit un système totalement distribué.
En effet, si l’entreprise fait faillite, le système ne sera plus opérationnel. Une seule entité failli
et le système n’est plus utilisable.

XX

Résumé en Français

Un point important qui va guider les différentes propositions de cette thèse et de tout système
se réclamant des SSIs est la minimalisation. Cette propriété de la philosophie de Allen implique
que, lors d’une présentation d’un élément d’identité, l’utilisateur ne doit révéler d’autres infor-
mations que celles escomptées. Parmi les informations auxiliaires que l’utilisateur doit protéger,
nous devons considérer les identifiants uniques. Parmi eux, il y a les adresses IP, les clés pu-
bliques, les différentes URIs nécessaire à l’authentification. De plus, les signatures utilisées ne
peuvent être uniques. En effet, l’utilisation répétée d’une même signature, identifiable et inchan-
gée, permet de tracer les différents usages de l’utilisateur. Ce traçage permettrait à un adversaire
d’obtenir des informations supplémentaires sur les habitudes de l’utilisateur. Il permettrait aussi
de réaliser des timing attacks. Des inférences sur l’identité d’une personne réalisées en recoupant
différentes opérations, et leurs proximités temporelles.

Pour respecter la minimalisation, les systèmes doivent donc limiter, ou supprimer ce type
d’identifiants. Pour cette raison, nous rajoutons le qualificatif de “respect de la vie privée” aux
systèmes se réclamant des SSIs.

Dans la suite de cette thèse, nous nous intéresserons principalement aux systèmes de gestion
d’identité totalement distribués, bien que certains des résultats que nous présentons s’appliquent
aussi aux systèmes partiellement distribués.

Les composants d’un système de gestion d’identité respectant la vie privée
totalement distribué

Nous présentons ici les différents outils techniques utilisés pour permettre d’implémenter un
système de gestion d’identité totalement distribué respectant la vie privée. Ces outils, s’ils sont
utilisés correctement, permettent de se rapprocher de la philosophie de Allen. En revanche, il est
important de se rendre compte que ces considérations techniques (qui sont le sujet de cette thèse)
ne respectent pas à eux seuls les caractéristiques d’une SSI. Une SSI dépend à la fois d’outils
techniques et de considérations organisationnelles. Ce commentaire est la raison principale qui
nous a conduits à marquer une différence entre la philosophie que nous voulons suivre (SSI),
et le système technique que nous explorons (système de gestion d’identité totalement distribué
respectant la vie privée).

Les outils que nous présentons s’inscrivent dans un modèle théorique construit en couche à la
manière du modèle Open Systems Interconnection (OSI) : c’est le modèle Trust over IP (ToIP)
[4]. Ce modèle est constitué de quatre couches. La première couche est un registre public appelé
Distributed IDentity (DID) network. Cette couche sert à stocker publiquement les informations
nécessaires au fonctionnement des couches supérieures. Ces informations sont représentées sous
la forme de documents appelés DID documents. Ils sont identifiés à l’aide d’URIs appelés DID.
La seconde couche est un protocole de communication sur réseau hautement asynchrone entre
processus qui peuvent se déconnecter, ce protocole est appelé DIDComm. Il fait usage des

XXI

Résumé en Français

DID et DID documents pour permettre l’échange de messages. La troisième couche est le cœur
du système de gestion d’identité. C’est le mécanisme d’authentification et d’autorisation. La
quatrième et dernière couche est une couche organisationnelle, la couche de gouvernance. Son
but est de définir les buts du système de gestion d’identité, d’auditer les implémentations des
couches inférieures, et d’en certifier les composant. Dans cette thèse, nous nous intéresserons
principalement à la première et à la troisième couche.

Explorons d’abord le premier prérequis d’un système de gestion d’identité respectant la vie
privée : l’autorisation. C’est l’élément le plus important de la troisième couche ToIP, et de tout
système de gestion d’identité distribué. Pour permettre l’autorisation, un système de gestion
d’identité distribué doit permettre à l’utilisateur d’exprimer et de présenter des affirmations sur
son identité à plusieurs vérificateurs. Ces affirmations et ces preuves doivent être stockées par
l’utilisateur lui-même pour permettre de respecter au mieux les propriétés de contrôle, d’accès
et de consentement. De plus, les vérificateurs avec lesquels l’utilisateur peut interagir ne sont pas
prédéfinis. Les affirmations et les preuves stockées par l’utilisateur ne peuvent donc pas dépendre
des vérificateurs qui vont les vérifier. Malgré tout, les vérificateurs doivent faire confiance à la
preuve soutenant l’affirmation, ou, plus précisément, ils doivent faire confiance à l’entité qui a
créé cette preuve. Ils doivent aussi être assurés que la preuve (et le sujet de la preuve) n’a pas
été modifiée entre le moment de son émission et le moment de sa présentation. Finalement, le
dernier point important est le respect de la minimalisation. Les affirmations concernant l’iden-
tité d’un utilisateur doivent être limitées au strict minimum nécessaire au fonctionnement du
service. L’utilisateur doit donc soit avoir une preuve par affirmation potentielle (par exemple,
pour la date de naissance de l’utilisateur, une preuve qu’il a plus de 16 ans, une preuve qu’il a
plus de 18 ans, une preuve qu’il a plus de 21 ans etc. . .), ou il doit pouvoir dériver des preuves
restreintes à partir d’une preuve globale (pour l’exemple de l’âge, l’utilisateur n’aurait besoin
que d’une preuve de sa date de naissance de laquelle il pourrait dériver toutes les autres preuves
nécessaires). De plus, et comme exprimé précédemment, un identifiant traçable lors de plusieurs
présentations peut compromettre la minimisation. Les preuves des affirmations d’identités ne
peuvent donc pas contenir ce genre d’identifiants (ou ils ne doivent pas être révélés au vérifica-
teur). De plus, les preuves en elles-mêmes ne doivent pas constituer un identifiant unique, elles
doivent don être modifiables, ou plus précisément, “aléatoirisables” (nous utiliserons l’anglicisme
“randomisable”). De façon générale, nous appelons certificat vérifiable (ou Verifiable Credential,
VC) une preuve (associée à une affirmation) qui remplie ces prérequis. 3

Un outil remplissant tous ces prérequis existe, il s’agit des certificats anonymes (ou Ano-
nymous Credentials, AC). Un certificat anonyme est un type de signature cryptographique,
introduit par David Chaum en 1985 [6], qui, en plus des propriétés de signatures, doit vérifier

3. Les prérequis présentés ici sont plus contraignants que les prérequis des VCs tels que standardisés par la
W3C [5]. Nous préférons notre définition car elle permet de plus se rapprocher de la vision de Allen.

XXII

Résumé en Français

trois propriétés supplémentaires : signatures à l’aveugle, randomisabilité, et preuve à divulga-
tion nulle de connaissance de signature. Une signature à l’aveugle est un schéma de signature
qui permet à l’émetteur (le signataire) de signer un message qu’il ne connaît pas. Il signe un
engagement cryptographique envers le message final. Le receveur de la signature peut ensuite
“ouvrir” l’engagement, se retrouvant alors avec une signature valide du message original. Ce
faisant, l’utilisateur peut utiliser la signature sans qu’une éventuelle entente entre l’émetteur et
le vérificateur de cette signature ne permette d’apporter des informations supplémentaires sur
l’utilisateur. La randomisabilité est le fait de pouvoir ajouter des nombres aléatoires à la signa-
ture sans en modifier le contenu ni la validité. Cela permet de rendre les différentes présentations
d’une même signature non-chainable. C’est-à-dire qu’un vérificateur qui reçoit plusieurs signa-
tures sur le même message ne peut pas déterminer si elles proviennent du même utilisateur ou
de différents utilisateurs ayant reçu une signature sur le même attribut. En d’autres termes, tous
les utilisateurs recevant une signature sur le même attribut et par le même émetteur constituent
un ensemble d’anonymat pour cet attribut particulier. La présentation de leur attribut les rend
indistinguable parmi l’ensemble des individus qui ont un certificat signé par le même émetteur
et sur le même attribut.

Nous devons nous arrêter un moment sur un point important. La distribution des systèmes
de gestion d’identités distribués vient principalement de ces certificats anonymes. En effet, l’uti-
lisation de certificats anonymes permet à un utilisateur d’affirmer et de prouver des éléments
d’identités sans interagir avec l’émetteur. Tous ces éléments d’identité et leurs preuves associées
sont stockés directement par l’utilisateur. Aucun service centralisateur n’est nécessaire pour réa-
liser ces actions. Ce point a parfois été mal compris par certains, notamment U-Port [7], sur
lequel nous reviendrons plus tard. Une blockchain ou tout autre registre distribué n’est donc pas
nécessaire à la création d’un système de gestion d’identité distribué respectant la vie privée. Tout
du moins, ce type de registre n’est pas nécessaire pour créer un système de gestion d’identité
partiellement distribué respectant la vie privée. Les registres distribués peuvent néanmoins être
nécessaires pour permettre d’implémenter certaines fonctionnalités annexes de façon distribuée.
Les plus importantes de ces fonctionnalités sont les suivantes : l’authentification forte de diffé-
rents appareils, l’authentification des émetteurs et des vérificateurs, la découverte de schémas
de certificats ou la révocation de certificats.

Ces fonctionnalités annexes ne sont donc pas strictement nécessaires pour prouver les élé-
ments d’identité d’un utilisateur. Elles le sont en revanche pour résoudre des problèmes de
confiance et d’utilisabilité. Par exemple, l’authentification d’un certificat peut se faire à l’aide
d’une paire clé publique/clé secrète intégré à tous les certificats anonymes d’un utilisateur. La
preuve de la connaissance de la clé secrète permet de s’assurer que la personne qui utilise le
certificat est bien la personne à qui il a été délivré. En revanche, pour l’utilisateur, cela implique
que chaque certificat doit partager la même clé secrète. Si cette clé secrète est perdue, l’utili-

XXIII

Résumé en Français

sateur perd alors l’accès à tous ses certificats, il doit donc demander une réémissions à tous les
fournisseurs d’identité qui lui avaient émis des certificats. De plus, si l’utilisateur veut pouvoir
utiliser ses certificats depuis plusieurs appareils (par exemple, depuis son smartphone et son
ordinateur personnel), il doit partager sa clé secrète avec ses différents appareils. Ce partage est
généralement considéré comme étant une mauvaise pratique en termes de sécurité. Il faut donc
un système permettant d’autoriser différents appareils pour un utilisateur donné. Étant donné
que nous nous intéressons aux systèmes de gestion d’identités totallement distribués, ce système
permettant les fonctionnalités annexes d’un système de gestion d’identité ne peut dépendre
d’une entité ou d’un petit nombre d’entités (c.f. définition d’un système de gestion d’identité
totallement distribué). Nous devons donc utiliser un type de registre distribué pour implémenter
ces fonctionnalités. 4

Ce registre distribué doit permettre aux différents acteurs de publier les éléments nécessaires
aux fonctionnalités annexes du système de gestion d’identité. 5 Étant donné qu’il n’existe pas
d’entité centralisatrice dans le système, chaque entité publie ses propres informations. Chaque
entité à donc un “espace réservé” sur le registre. Cet espace est appelé DID document, et est
référencé à l’aide d’un Distributed IDentifier (DID). Le format du DID et du DID document
est standardisé par la W3C [8]. Le DID est un URI qui peut être résolu en son DID document.
Théoriquement, l’association entre un DID et son DID document doit être unique. Le DID est
au format suivant : did :[method] :[identifier]. La méthode [method] est l’identifiant du registre
qui permet la résolution du DID, et l’identifiant [identifier] est l’identifiant particulier du DID
document dans le contexte du registre [method]. Une méthode doit spécifer comment créer,
mettre à jour, supprimer, et lire un DID document (le CRUD). Au moment de l’écriture de
cette thèse, la W3C avait enregistré 193 méthodes de résolution de DID [9].

Le DID document est notamment utilisé durant la présentation d’une preuve d’identité
pour l’authentification de l’appareil utilisant le certificat, pour vérifier la non-révocation du
certificat, et pour permettre à l’utilisateur d’authentifier le vérificateur. Cette utilisation ne doit
généralement pas modifier le registre. Lors d’une présentation, le registre est utilisé en lecture
seule, et les preuves sur ce registre sont conduites entre l’utilisateur et le vérificateur. Cela permet
de respecter la propriété de minimalisation. Si une présentation laisse une trace sur le registre,
il est alors possible pour des acteurs malveillants de tracer l’activité de l’utilisateur.

Le troisième composant d’un système de gestion d’identité distribué respectant la vie privée
est le système de communication pair à pair. Un standard de la W3C se basant sur les DIDs et

4. La caractérisation de ces registres est l’une des contribution de cette thèse. Nous reviendrons dessus dans
la suite de ce document.

5. Il est important de voir que, pour permettre au système de respecter la vie privée, et parce que le registre
doit être publiquement accessible, aucune information personnelle, ni aucune information permettant d’inférer des
informations personnelles à propos d’un individu ne doit être publiée sur le registre ! Cette remarque ne s’applique
pas aux entreprises, états, organisation etc. . . Car nous ne considérons la protection des données personnelles que
pour les individus.

XXIV

Résumé en Français

les DID documents a été proposé en ce sens, le protocole DIDComm [10]. Nous ne reviendrons
pas en détail sur ce protocole, étant donné que nos contributions font l’hypothèse qu’un tel
protocole de communication existe et qu’il respecte la vie privée. C’est-à-dire qu’il ne révèle pas
d’information supplémentaire sur l’identité de l’utilisateur, ou sur son activité.

Le cas U-Port et l’utilisation de registres distribués comme unique facteur de
distribution

Une question qui est longtemps restée en suspens concernant les systèmes de gestion de
l’identité distribué respectant la vie privée est la question de la nécessité d’une Blockchain.
Certains ont cru que la blockchain pouvait être suffisante pour permettre d’implémenter un
système de gestion d’identités distribué. Le cas le plus notable est celui de U-Port [7]. L’idée de
ce système était de stocker tous les éléments d’identité et preuves d’identités sur la blockchain
(Ethereum dans leur cas), ou en utilisant un service IPFS. Les éléments d’identités et leurs
preuves associées pouvaient être chiffrés. Ce modèle pose un problème en termes de vie privée.
Les informations publiées sur la blockchain ou sur le système IPFS sont publiques, bien qu’elles
soient chiffrées. Chaque participant au système peut inspecter les différentes émissions d’éléments
d’identité concernant un utilisateur. Cet attaquant ne peut pas nécessairement découvrir quels
sont les éléments d’identité de l’utilisateur, mais il peut obtenir des méta-informations sur les
usages et habitudes de ce dernier. Avec des connaissances auxiliaires, le système proposé par
U-Port permettait donc des attaques à fort impact, par exemple en utilisant des timing attacks.

Suivant ces critiques, la proposition de U-Port n’est plus supportée aujourd’hui. Les res-
sources ont été redirigées vers un nouveau projet, Veramo [11], qui est un environnement plus
classique permettant d’implémenter un système de gestion d’identité distribué agnostique du
registre distribué utilisé.

Plus généralement, la question de l’utilité d’une blockchain a fait couler beaucoup d’encre
depuis 2017. Les premiers à réfléchir à l’utilité d’un registre distribué sont les personnes tra-
vaillant sur le projet Sovrin [12]. Sovrin est un projet de registre distribué servant à supporter
des systèmes de gestion d’identités totalement distribués. Dans un document [12], ils décrivent
les différents usages qu’ils réservent à leur registre distribué. Ils attestent notamment que le
registre ne devrait contenir aucunes informations personnelles concernant les individus, qu’elles
soient chiffrées ou non.

Un second article intéressant sur le sujet a été publié par Jolocom en 2021 [13]. Cet article
revient sur ce qui fait la base de la décentralisation dans les systèmes de gestion d’identité distri-
buée (l’utilisation de VCs possédés par l’utilisateur). De façon étonnante, cet article n’est plus
disponible sur le site de Jolocom, mais nous pouvons encore le lire en utilisant web archive.
Finalement, un article de 2022 revient lui aussi sur la différence entre système de gestion d’iden-
tité distribué et blockchains [14]. L’une des contributions de cet article est que l’auteur revient

XXV

Résumé en Français

sur une dizaine d’implémentations de système de gestion d’identité distribué et analyse leur
utilisation de la blockchain. De façon intéressante, on se rend compte que la plupart des projets
utilisant une blockchain comme unique facteur de distribution ont cessé d’être développés.

Une des contributions importantes de cette thèse est la caractérisation des besoins minimums
qu’un registre distribué doit remplir afin de faire fonctionner un système de gestion d’identité
distribué. Plutôt que de se demander si une blockchain” est nécessaire, nous allons plus loin et
nous caractérisons de façon fine les besoins en synchronisation de tels registres. Comme nous
le verrons ensuite, bien qu’un registre soit nécessaire, il n’a pas nécessairement besoin d’être
distribué (dans le cas d’un système de gestion d’identité partiellement distribué). Si le registre
est en effet distribué, les contraintes quand à la synchronisation du système sont bien moins fortes
que celles offertes par une blockchain. En effet, une blockchain ordonne totalement toutes les
opérations du système. Cela à un coût très important en termes de latence, de calcul de fonctions
cryptographique, etc... Un système de gestion de l’identité distribué à besoin de garanties de
synchronicité assez faible, que nous caractérisons précisément dans les chapitres 6 et 7. De
fait, si un registre distribué est la technologie choisie pour implémenter un système de gestion
d’identité, ce registre peut être implémenté de façon économe. Une abstraction optimale pour
ce genre de cas d’usages est présentée en chapitre 8. L’abstraction présentée dans ce chapitre
peut être utilisée pour d’autres cas d’usage dont les besoins de synchronicité sont faibles. Il est
intéressant de remarquer que c’est le cas de la majorité des applications distribuées, que ce soit
pour les services de nommage, le contrôle d’accès, le transfert d’actif, etc...

Contributions

D’un point de vue général, dans cette thèse, nous nous intéressons aux différents outils
permettant de créer un système de gestion d’identité totalement distribué respectant la vie
privée. Nous nous intéressons donc aux techniques distribuées permettant de maximiser la vie
privée des utilisateurs, tout en améliorant la facilité d’usage de ces techniques.

Le but est de répondre à la question suivante : quels sont les outils permettant d’implémenter
un système de gestion d’identité totalement distribué et respectant totalement la vie privée
requérant le minimum de synchronisation entre les participants du système.

Les contributions de cette thèse sont décomposées en deux grands thèmes. La contribution
du premier thème se concentre sur la couche 3 du modèle ToIP, et plus spécifiquement une
amélioration de l’état de l’art concernant le respect de la vie privée des certificats anonymes.

Les contributions du deuxième thème se concentrent sur la couche une et trois (sur l’in-
teraction entre ces deux couches) du modèle ToIP. Ces contributions sont des analyses et des
propositions de systèmes interagissant avec le registre distribué de la couche une et le mécanisme
de présentation de certificats anonymes de la couche trois. Le but de ces contributions est de

XXVI

Résumé en Français

comprendre formellement le fonctionnement d’un registre distribué servant à implémenter un
système de gestion de l’identité respectant la vie privée totalement distribuée et d’utiliser ces
analyses pour proposer des implémentations efficaces qui répondent aux défis spécifiques liés aux
systèmes de gestion de l’identité.

La contribution du premier thème est présentée dans le chapitre 5. Cette contribution prend
comme point de départ une constatation simple, bien que les constructions de certificats ano-
nymes se targuent de respecter le principe de minimalisation, la connaissance, pour le vérifi-
cateur, de la clé publique de l’émetteur d’un certificat révèle des informations supplémentaires
sur l’utilisateur. En effet, la connaissance de la clé publique de l’émetteur est nécessaire pour
tout schéma de signature cryptographique. Or, la connaissance de cette clé publique implique
la connaissance de l’identité de l’émetteur. Cette connaissance peut révéler des informations
supplémentaires sur l’utilisateur. Nous donnons deux exemples pour motiver cette affirmation
Tout d’abord, un émetteur est souvent une entité locale (en terme géographique). Un utilisateur
requérant l’émission de certificats concernant son état civil se tournera vers la mairie de son
lieu de résidence. Dans ce cas, quand le vérificateur vérifie un élément d’identité relatif à l’état
civil de l’utilisateur, il apprendra aussi son lieu de résidence, qui est (avec une grande probabi-
lité) la commune émettrice du certificat. De façon plus dérangeante encore, si un vérificateur et
un émetteur entrent échangent des informations, et si le vérificateur possède des informations
complémentaires sur l’utilisateur 6, ces informations complémentaires peuvent permettre d’iden-
tifier de façon unique l’utilisateur dans la base de données de l’émetteur. Cela implique qu’il est
possible pour l’émetteur et le vérificateur de tracer les usages de l’utilisateur, mais aussi que le
vérificateur peut obtenir toutes les informations que l’émetteur possède à propos de l’utilisateur.

Au-delà de l’atteinte à la vie privée de l’utilisateur et à la propriété de minimalisation, ce
genre d’attaque à un impact plus grand lié à la méconnaissance des utilisateurs. En effet, un uti-
lisateur se pensant protégé par les propriétés du certificat anonyme fera peu attention et révélera
plus d’information le concernant qu’un utilisateur n’utilisant pas de certificats anonymes.

Afin d’empêcher ce type d’attaque, nous proposons un schéma de certificat anonyme dont
l’émetteur du certificat est caché au vérificateur. Plus précisément, avant une vérification, le
vérificateur publie la liste des émetteurs auxquels il fait confiance. L’utilisateur va ensuite utiliser
cette liste pour randomiser la clé publique de l’émetteur de son certificat, tout en construisant une
preuve que la clé originale (non randomisée) à laquelle est associée la clé randomisée appartient
bien à un émetteur présent dans la liste des émetteurs de confiance du vérificateur. L’utilisateur
présente ensuite cette clé randomisée, son certificat randomisé et la preuve décrite précédemment
au vérificateur. Le vérificateur peut donc vérifier qu’il fait confiance à l’émetteur du certificat, et
que cet émetteur a bien signé le certificat, sans apprendre l’identité exacte de cet émetteur. Ce

6. Ces informations complémentaires peuvent être obtenues facilement dans le cadre d’une vérification “dans
la vie réelle”. Dans ce cas, le vérificateur peut simplement enregistrer les caractéristiques physiques de l’utilisateur
et les comparer à celles enregistrées dans la base de données de l’émetteur.

XXVII

Résumé en Français

type de certificat anonyme permet donc de garder les propriétés de confiances liées aux certificats
anonymes classiques, tout en évitant les attaques présentées précédemment. Ce travail a été
publié à la conférence Privacy Enhancing Technologies 2022 (PETs) [15].

Le deuxième thème regroupe quatre contributions, deux contributions majeures et deux
contributions mineures.

La première contribution mineure, présentée dans le chapitre 7, est une analyse du problème
de nommage, central dans les systèmes de gestion d’identités. Cette analyse revient sur le pro-
blème du triangle de Zooko [16]. Ce problème est la conjecture d’un trilemme. Zooko, dans un
poste de blog de 2001, réfléchit à l’attribution de noms dans un espace de nom (namespace)
donné. Nous considérons ici un nom comme étant une chaîne de caractères. Zooko établit trois
propriétés désirables pour un nom, la sécurité, la distribution et la compréhensibilité pour un
humain. La propriété de sécurité est informellement définie comme le fait qu’un nom ne peut
être utilisé que par son possesseur légitime. Nous utilisons ici le terme utilisé comme le fait de
prouver la possession du nom. Dans le contexte des systèmes de gestion de l’identité distribués,
l’utilisation serait le fait de pouvoir modifier un DID document associé à un DID.

La distribution est le fait pour différent processus de partager la même association entre
un nom et une ressource. En d’autres termes, un nom caractérise la même chose pour tous les
membres d’un système donné.

La propriété de compréhensibilité pour un humain est la plus complexe à définir. Sa définition
originelle était le fait que le nom pouvait facilement être manipulé par un être humain. Nous lui
préférons la définition de humainement choisissable. C’est-à-dire que le système laisse le choix
aux utilisateurs de choisir le nom qu’ils veulent utiliser. Le trilemme de Zooko conjecture que
les trois propriétés ne peuvent être atteintes en même temps.

Beaucoup d’incompréhensions autour de ce trilemme sont apparues après qu’il a été exprimé.
Par exemple, la page Wikipedia relative à ce problème dit qu’il existe des implémentations
réfutant la conjecture. De la même manière, un article de blog parut en 2011 et écrit par
Aaron Swartz [17] montre comment le trilemme de Zooko peut être résolu. Comme nous le
verrons, ces différentes propositions ne résolvent pas le problème, mais le contournent. Elles le
font en associant deux types de noms, des pointeurs et des surnoms. Nous revenons plus en
détail sur ce type de solutions dans le chapitre 7. Finalement, nous explorons aussi un dernier
point intéressant. Dans un papier de Mühle, Grüner, Gayvoronskaya et Meinel [18], il est dit
qu’une blockchain est nécessaire pour pouvoir contourner le trilemme de Zooko. Nous proposons
d’explorer ce point et d’y répondre formellement.

Notre contribution est en deux parties. Nous formalisons le problème du triangle de Zooko et
prouvons formellement l’impossibilité qui n’était jusque la qu’une conjecture. Nous formalisons
ensuite les différentes manières de contourner le problème, et nous analysons leurs besoins en
termes de synchronisation. Cette dernière analyse permet de répondre à la question du besoin

XXVIII

Résumé en Français

ou non d’une blockchain (ou plus généralement d’un algorithme de consensus) pour implémenter
un tel système de nommage.

La seconde contribution mineure, présentée en chapitre 9, est la proposition d’une solution
au problème d’autorisation d’utilisation d’un même VC depuis différents appareils. En effet, ce
problème est encore non résolu à ce jour dans le contexte des systèmes de gestion d’identité
distribué. Ce système d’autorisation doit répondre à différentes contraintes. Premièrement, il
doit permettre à un utilisateur, le porteur d’un VC, d’utiliser ce VC depuis différents appareils
qu’il contrôle. Par exemple, son ordinateur de bureau et son téléphone portable. De plus, bien que
le VC en lui-même doive être partageable entre ces différents appareils, les éléments nécessaires
à l’autorisation de cet appareil ne devraient pas être copiés et partagés. Plus précisément, si
cette autorisation passe par la connaissance d’une clé secrète, alors cette clé secrète doit être
unique à chaque appareil. Enfin, toutes ces opérations doivent respecter la minimalisation. En
d’autres termes, ils doivent cacher l’identité de l’utilisateur. Nous reviendrons plus en détail
sur les solutions proposées dans l’état de l’art lié à ce problème, mais jusqu’à aujourd’hui, une
seule solution remplis en effet ces critères. Cette solution est celle proposée par Hyperledger
Aries [19]. Le problème de cette solution est qu’aucun document finalisé n’a été publié. Seul un
brouillon existe. De plus, ce brouillon laisse à penser que la solution proposée utilise des méthodes
cryptographiques coûteuses, dures à implémenter, et dont la validité est complexe à vérifier en
l’état. Nous proposons donc une solution à ce problème, basé sur des techniques simples à mettre
en œuvre et éprouvées, notamment des preuves à divulgation nulles de connaissance simple (en
termes de complexité des propositions prouvées) et un schéma de certificat anonyme à seuil
[20]. Nous utilisons ces outils pour construire un nouveau système d’authentification distribué
appelé Anonymous Agreement Proof. Nous présentons cette solution en chapitre 9, expliquons
comment elle doit être utilisée, et nous prouvons sa validité.

La première contribution majeure du deuxième thème, présentée en chapitre 6, étudie le
pouvoir de synchronisation de deux types objets distribués : les AllowLists et les DenyLists.
Cette étude est conduite au regard de la hiérarchie du consensus de Herlihy. Ces objets sont
d’abord formalisés sous la forme d’objets distribués. Cette formalisation sous cette forme est,
selon nous, la première de ce type. Bien que les deux objets aient des spécifications proches,
leurs consensus number sont foncièrement différents. L’AllowList peut être implémentée sans
consensus parmi les processus du système (son consensus number est de 1) alors que la DenyList
requiert un consensus parmi un sous-ensemble spécifique des processus.

Ces objets permettent d’implémenter différentes fonctionnalités des systèmes de gestion
d’identité distribués respectant la vie privée. Notamment, ces objets permettent de modéliser le
processus de preuve de non-révocation d’un certificat anonyme et le processus de gestion de mul-
tiples appareils présenté au paragraphe précédent. Ces deux processus étant les deux principaux
algorithmes distribués nécessaires au bon fonctionnement d’un système de gestion de l’identité

XXIX

Résumé en Français

distribué. Ces résultats nous permettent donc d’en apprendre plus sur le besoin en synchroni-
sation des systèmes de gestion de l’identité distribué en général. Plus précisément, cette partie
de l’étude permet de définir que la présentation d’un certificat ne nécessite de synchronisation
que entre l’utilisateur et le vérificateur. Les processus maintenant le registre distribué n’ont pas
besoin de se synchroniser pour cette étape. De plus, la même étude nous permet de définir que
seuls les appareils aillant le droit de modifier un DID document donné ont besoin de se syn-
chroniser pour réaliser cette modification. En conclusion, pour implémenter les propriétés que
nous avons mise en évidence dans cette introduction, et à l’exclusion du problème du nommage,
cette étude nous permet de dire qu’un système de gestion d’identité distribué n’a jamais besoin
de consensus au niveau de tous les processus du système, mais seulement des consensus locaux
entre des sous-ensembles du système. Ce travail a été présenté dans la conférence DISC 2023
[21].

La seconde et dernière contribution majeure présentée en chapitre 8 est la proposition d’un
algorithme de coopération permettant de réaliser des consensus locaux de façon efficace, en ré-
duisant au maximum les besoins de synchronisation des processus. Ce travail est basé sur d’une
nouvelle abstraction : la Coopération Adaptée au Contexte (Context Adaptive Cooperation en
anglais, CAC). Cette nouvelle abstraction cherche à se rapprocher de la frontière de la calcu-
labilité du consensus, sans la franchir. En effet, un résultat bien connu [22] prouve qu’il est
impossible de résoudre le problème du consensus distribué de façon déterministe dans un réseau
asynchrone. Dans ce contexte, le CAC est une abstraction à la lisière entre le Broadcast Fiable
Byzantin (Byzatine Reliable Broadcast en anglais, BRB) et le consensus.

Ces deux abstractions, tout comme le CAC, permettent à un ou plusieurs processus de
proposer des valeurs, c’est-à-dire de les distribuer aux autres processus du système. Ensuite, ces
valeurs peuvent être acceptées par les autres processus du système en fonction de conditions sur
le type d’accord entre les processus qui est recherché. Dans tous les cas, une valeur acceptée par
un processus correct sera acceptée par tous les processus corrects du système.

Comme le BRB, le CAC permet à des processus de se mettre d’accord sur les valeurs pro-
posées par les processus du système. Tous les processus acceptent les mêmes valeurs mais pas
nécessairement dans le même ordre. Si un processus ne suit pas le protocole, alors la (ou les)
valeur qu’il propose ne sera pas prise en compte par les processus du système. En revanche, le
BRB ne permet pas aux processus de proposer des valeurs concurrentes. Il est possible de voir
cette proposition de deux manières différentes. La première est de dire que le BRB ne permet
qu’à un seul processus de proposer une valeur. Ce processus est prédéterminé par l’abstraction.
Dans ce cas, il est possible d’utiliser des numéros de séquence pour chaque valeur proposés,
permettant de les ordonner totalement et pour tous les processus corrects du système. De fait,
les valeurs proposées ne peuvent entrer en concurrence car elles sont ordonnées. Le second est
de dire que le BRB ne peut qu’implémenter des objets distribués dont la validité ne dépend pas

XXX

Résumé en Français

de l’ordre des opérations. C’est par exemple le cas des systèmes de transfert d’actif aux comptes
non partagés [23, 24].

Au contraire, le CAC permet, comme le consensus, à différents processus de proposer des
valeurs concurrentes. Toutes les valeurs ne sont pas nécessairement acceptées par les processus
corrects. L’abstraction garantie seulement que, si un processus correct propose une valeur, alors
au moins une valeur sera acceptée. Les valeurs sont acceptées séquentiellement par les processus
du système, mais chaque processus accepte les valeurs dans un ordre différent. De plus, l’abs-
traction propose un oracle imparfait à chaque processus. Cet oracle informe le processus sur les
valeurs qu’il pourra accepter dans le futur. L’oracle est imparfait dans le sens qu’il peut prédire
de façon erronée qu’une valeur sera acceptée alors qu’elle ne le sera jamais. En revanche, une
valeur non prédite par l’oracle ne pourra jamais être délivrée. En ce sens, l’imperfection de cet
oracle est la différence majeure entre le consensus et le CAC. En effet, et de façon triviale, un
oracle parfait permettrait d’implémenter le consensus, et impliquerait l’utilisation d’une certaine
forme de synchronie pour notre système. En revanche, nous proposons une implémentation du
CAC dans un système parfaitement asynchrone et en présence de fautes Byzantines.

Nous montrerons que malgré cette imperfection, le CAC permet d’implémenter de façon
efficace des objets distribués utile pour les systèmes de gestion de l’identité distribuée. Notam-
ment, un algorithme de consensus n’ayant besoin que de la synchronisation d’un sous-ensemble
de processus du système, et un système de nommage permettant de réduire l’entropie des noms
attribués comparés aux autres systèmes de nommage asynchrone. Ce travail est en cours de
soumission.

Finalement, dans le chapitre 10, nous utilisons les différents outils présentés dans cette thèse
pour proposer un modèle de système de gestion de l’identité totalement distribué qui respecte
totalement la vie privée et qui requière un minimum de synchronisation parmi ses participants
malgré la présence de fautes Byzantines.

XXXI

Résumé en Français

XXXII

PUBLICATIONS

This chapter lists the different papers that have been published or are currently being pub-
lished during this thesis. Published papers have been published in peer-reviewed international
conferences. 7

Published papers
— Daniel Bosk, Davide Frey, Mathieu Gestin, and Guillaume. Hidden issuer

anonymous credential. Proceedings on Privacy Enhancing Technologies, 2022,
vol. 2022, p. 571-607.

— Davide Frey, Mathieu Gestin, and Michel Raynal. The Synchronization Power
(Consensus Number) of Access-Control Objects: the Case of AllowList and
DenyList. In : 37th International Symposium on Distributed Computing.
2023.

Papers in submition
— Thimothé Albouy, Davide Frey, Mathieu Gestin, Michel Raynal, and François

Taïani. Context Adaptive Cooperation.
arXiv preprint arXiv:2311.08776, 2023.

— Thimothé Albouy, Emmanuelle Anceaume, Davide Frey, Mathieu Gestin, Michel Raynal,
and François Taïani. Asynchronous BFT Asset Transfer: Quasi-Anonymous, Light, and
Consensus-Free. arXiv preprint arXiv:2405.18072, 2024.

— Thimothé Albouy, Antonio Fernández Anta, Chryssis Georgiou, Mathieu Gestin, Nicolas
Nicolaou, and Junlang Wang. AMECOS: A Modular Event-based Framework for Con-
current Object Specification. arXiv preprint arXiv:2405.10057, 2024.

— Jayamine Alupotha, Mathieu Gestin, and Christian Cachin. Nopenena Untraceable Pay-
ments: Defeating Graph Analysis with Small Decoy Sets. Cryptology ePrint Archive,
2024.

7. Papers that are referred to in this thesis are highlighted in bold.

XXXIII

Publications

XXXIV

Chapter 1

INTRODUCTION

This thesis is about Privacy Preserving Distributed Identity Management Systems (PPDIMSs).
This subject is of particular interest as privacy preservation becomes a popular subject. The pri-
vacy requirements of Identity Management Systems (IMSs) is particularly important as identity
is related to sensitive information. The need for PPDIMS solutions comes from citizens as well
as from states.

1.1 Authorisation and authentication

An IMS, be it digital or not, has two goals: authentication and authorization. These two
mechanisms are the common ground for any access control mechanism.

The authorization is a two-phase mechanism. The first phase defines a set of attributes that
must define an entity, the subject, in order for a second entity, the holder, to access a service. The
second phase consists of verifying that these attributes indeed define the subject before letting
the holder access the service. The entity that maintains and manages this mechanism is called
the service provider. The subject can be an individual, a computer, an object, an organization,
a company, or any other entity that can be defined by its own characteristics. The holder role
can also be taken by different entities: an individual, the legal representative of a company, a
state, a computer, etc...

To be authorized, the holder must prove to the service provider that the subject is indeed
defined by specific attributes. For example, a rock climbing club only accepts new members if
they know how to belay. Let Alice be the subject in this example (Alice is also the holder in
this case). Alice claims that she can belay a climber. She needs to prove this claim to the club
members by belaying a climber in front of Marc, a club member. Therefore, these members
will validate Alice’s ability to belay. Club members trust themselves. Hence, when Alice proves
to Marc that she can belay, she also proves to other members that she knows how to belay.
This notion of trust is central to any IMS. When a holder proves an attribute of a subject to
a service provider M , she will claim that this attribute indeed describes the subject and that
someone who M trusts certified this claim. In other words, the holder produces a claim about
subject’s attributes, but the service provider only trusts it if a trusted third party certifies that
these attributes define the subject. We call this third party the identity provider or the issuer.

1

Chapter 1 – Introduction

In our example, the issuer is Marc. 1 He trusts himself. Therefore, he knows Alice can belay. By
transitivity, all the members of the club who trust Marc and know that Marc verified Alice’s
ability to belay know that Alice has this ability.

An issue still needs to be addressed in our example. If we assume Marc and Alice were alone
when Marc verified Alice’s ability to belay, then Marc must find a way to notify the other club
members that Alice has this ability. In this case, Marc must notify the other club members of
Alice’s ability. To do so, Marc can use one of two methods. He can either introduce Alice in
person to all the other members of the club, or he can find a way to notify the other members
that Alice has the ability to belay. For example, he can send a message to the club members or
issue a document that certifies that he has verified Alice’s ability to belay. In this case, when the
other club members meet Alice, they must verify that the person in front of them is the person
Marc was talking about. This is the authentication problem.

Authentication is the process of verifying that a holder is allowed to prove that a subject
possesses specific characteristics. Put differently, authentication is the action of verifying a link
between the holder and the subject. If the subject is also the holder, then authentication is the
action of verifying that the subject is indeed who they claim to be. Authentication can be carried
out in various ways. For instance, when using a national identity card, authentication is done
by comparing the information on the card (age, height, eye color, photo) with the holder.

In our example, authentication can be performed in several ways. The first method has
already been presented. Marc can be present to authenticate Alice to other members of the
club. A second method is for Marc to sign a document attesting that the person who carries
this document is Alice. A third method would be for Marc to share a secret with Alice. When
Alice shows up at the club without Marc, she reveals this secret to the present club members.
Each example has specific limitations. The first method requires Marc to introduce Alice to all
the group members. The second method implies that Alice could lend this paper to someone
else or even copy it and distribute it to her friends. The third method implies that Alice could
publicly reveal the secret.

In the remainder of this thesis, we use public-key cryptography methods to address the
authentication problem. Marc announces to the club members that Alice knows how to belay a
climber and that her public key is pk. When Alice shows up at the club later, she authenticates
by proving her knowledge of the secret key sk associated with pk.

One thing remains to be specified here: depending on the context, the role of an entity may
change. Specifically, the service provider and the issuer may be the same. Additionally, with our
example, in the future, when Alice becomes a respected member of the group, she may certify
that a new member knows how to belay a climber. In this case, Alice will be at the same time
a subject, a service provider, and an issuer.

1. In the example, Marc is at the same time issuer and service provider.

2

1.2. Digital Identity Management System

Furthermore, we did not explain why we needed to distinguish between the subject and the
holder. It may be necessary for a holder to prove attributes about a third party. In our example,
Alice could prove she is a club member because Marc certified it. However, if some club members
do not know Marc, then Alice can use the certificate that certifies that Marc is a club member to
prove that she indeed has a signature from a club member. In this case, Alice uses a certificate
where Marc is the subject. She is, therefore, the holder of Marc’s certificate. However, she is not
the subject of this certificate.

In the remainder of this work, we will also use the term “identity element” to refer to an
“attribute” of an individual. An identity element is the description of an individual’s particular
feature (attribute) that allows them to be distinguished from others in a given group. Further-
more, we will also use the terms “holder” and “user"” interchangeably. Indeed, the holder’s goal
is to access a service to use it.

Another critical point revisited throughout this thesis is that identity is contextual. The
identity elements of a user may change depending on the context in which they are operating.
In our example, if Alice joins a new climbing club, the certificate issued by Marc certifying that
she knows how to belay will not be valid for the members of the new club who do not know
Marc. In this case, Alice will have to prove her belaying skills again to a person from the new
club. Let us call this person Jeanne. In this new club, the certificate issued by Jeanne will be
considered.

We have thus seen the main actors of an IMS: the issuer, the holder, the subject, and the
service provider. We have also explored the core mechanisms of identification: authorization and
authentication. Finally, we have covered two key concepts: the claim of possession of an identity
element and the proof certifying that this identity element describes the subject. We will now
focus on the methods used to create digital IMSs that meet various constraints of versatility,
trust, and privacy preservation.

1.2 Digital Identity Management System

As we will see in Chapter 3, the philosophy of digital identity management systems has
evolved alongside the evolution of computer science. Here, we differentiate between the philoso-
phy of an identity management system and the techniques used to implement it. The philosophy
defines the philosophical goals an identity management system needs to achieve, whereas the
implementation techniques are meant to fit the criteria defined by the underlying philosophy.

This separation between identity management philosophy and identity management tech-
niques is unique to this thesis. As we will see later, this terminology allows us to classify pre-
cisely and, therefore, formally compare different types of implementations. To the best of our
knowledge, we are the only ones making this distinction.

3

Chapter 1 – Introduction

This thesis focuses on the most recent philosophy concerning identity management systems:
Self-Sovereign Identities (SSI). This terminology was popularized by Christopher Allen in 2016
[1]. In his article, the author reviews the different philosophies that had been proposed until
2016, offering a classification. He defines them as follows, starting with the oldest and least
versatile to the most recent:

— The siloed model. This philosophy predates all others [2]. A user presents himself
to a service provider and creates an account in that provider’s database. If additional
information is required, the provider verifies it themselves (for example, by checking the
user’s identity card to certify their name, date of birth, and place of birth). When the
user reuses the service, they use a credential to authenticate themselves as the account
owner (usually using a username and password). When accessing a new service, the user
must repeat the entire process.
The limitations of this philosophy are obvious. First, an account and associated per-
missions are only valid for a given service. Hence, the user has to prove their identity to
multiple services. Each service stores this information, increasing the risk of data breaches
and attacks. Moreover, the user must trust these different services to adequately secure
their servers and not share sensitive information with third parties. Additionally, the
user must remember a set of pairs (username, password) for each account created. It can
either be cumbersome if each password is different or prone to high-impact attacks if all
the passwords are the same.

— The federated model. This philosophy is an evolution of the siloed model. As in the pre-
vious model, the user registers with an entity, playing the role of an identity provider. The
user also registers their identity elements. Unlike the siloed model, the created account
can be used to authenticate and access various services provided by an entity dependent
on the identity provider. This philosophy allows the user to create fewer accounts, thus
limiting the problems mentioned earlier. However, these problems still exist. Indeed, an
account is only valid for a given federated entity that manages different services. Addi-
tionally, the identity provider gains more influence, acquiring more information about the
user. Hence, the identity provider can easily trace the user’s activity.

— The user-centric model. The user-centric model is close to the federated model. Sim-
ilarly, the user creates an account with an identity provider. They associate identity
elements to this account by providing proofs to the identity provider. The only difference
with the previously presented model is that these identity elements can be used by the
user to authenticate and to be authorized to a service provider that does not depend
on the identity provider. However, similarly to the federated model, the service provider
must communicate with the identity provider to authorize and authenticate the user.
To do this, the service provider must trust the identity provider (and implement a tool

4

1.2. Digital Identity Management System

that allows the two services to communicate). Compared to the previous model, the user-
centric model allows users to reduce the number of accounts they create significantly. For
example, suppose all the services the user utilizes are managed by service providers that
trust a single identity provider. In that case, the user may only need to create one account
with that identity provider. This greatly reduces the number of accounts the user must
create, the potential attack surface, and the number of service providers the user must
trust.
However, the limitations of the federated model are exacerbated in the user-centric model.
If the user relies on a service provider that ceases its activity, all the associated services
the user was using will now become inaccessible. Additionally, if the identity provider
wishes to track a user’s activity, they will have even more control since all the user’s
authentications will go through them.
In the remainder of this thesis, we will not differentiate between the federated and user-
centric models, as they work similarly. Therefore, the limitations of both models affect
users in similar ways. The only difference is the degree to which these limitations can
impact the user.

— The Self-Sovereign Identity model. This philosophy aims to give the user control
over their identity elements and the proofs of these elements. The idea is to get closer to
the physical identity proof model, such as an identity card. An identity card is issued to its
holder by an identity provider (usually a government). The user will not need to interact
with the identity provider again until the card expires. They store their identity elements
in their wallet. They can choose whether to present them to a service provider, knowing
that the identity provider cannot use their identity proofs without their consent as they
do not hold a copy of the card. Self-sovereign identities are the digital transposition of
this model. The user must always be in control of their identity elements, consent to
their use in an informed manner, and be able to present proofs of identity elements at
any time, meaning they do not depend on a single entity that could cease operations
(for economic, technical, or censorship reasons). More precisely, Christopher Allen [1]
presents ten points that any identity management system should maximize to achieve
“self-sovereign identity” status:

1. Existence. Users’ identity elements and proofs of identity must have an independent
existence. This implies that they should not depend on a single system, standard, or
technical implementation.

2. Control. The user must control their identity elements and the proofs of their identity
elements. They is the only one who can request the issuance of proofs about their
identity, update them, or present them. They can also choose not to reveal them. Fur-
thermore, they must be informed of any processing related to their identity elements.

5

Chapter 1 – Introduction

3. Access. Users must have access to their identity elements. They cannot depend on a
provider that could potentially go out of business. They should be able to retrieve
these elements at any time. This also implies they must know all assertions and proofs
concerning their identities.

4. Transparency. The algorithms and systems implementing the IMS must be transpar-
ent. This means that the technical implementations and the management of these
systems must be open to analysis by all stakeholders. Decisions made must follow
predefined policies, and the outcomes of these decisions should be public. The algo-
rithms and systems used should be accessible to everyone, with their sources being
made public.

5. Persistence. Users’ identity element and proof of identity elements must be usable
over time, ideally throughout the user’s lifetime. This implies again that these identity
elements and the associated proofs should not depend on an entity that could cease its
activities or on a given technology that may evolve or become obsolete. Additionally,
as security constraints evolve with computing advancements, systems that secure and
prove the user’s identity elements must be upgradable, especially the cryptographic
tools used and the key sizes employed to secure them.

6. Portability. A user’s identity elements and proofs of identity must be portable. They
should not only be valid if stored by a single entity or used within the context of a
unique system.

7. Interoperability. Identity elements and proofs must be usable in as many contexts
as possible. There should be no technological, administrative, or political barriers
justifying that an identity element’s proof is valid in one context but not in another.
This property thus implies cooperation among various actors in the ecosystem, both
technically, politically and organizationally. 2

8. Consent. Users must consent to the presentation and use of their identity elements.
First, this implies that the user must be informed of the various uses of their iden-
tity elements. Second, this consent must be informed, meaning that the user must
understand the implications of disclosing identity elements to a service provider.

9. Minimalization. The presentation of the identity elements of a user must be reduced
to a strict minimum. Users should reveal only the information strictly necessary for a

2. This last point, however, must be limited by the concept of trust and national sovereignty. A local actor
cannot be expected to accept a proof from another local actor on the other side of the world if the latter does not
possess certification from its own country that it is authorized to issue such proof. Additionally, in some contexts,
only proof from a specific country may be accepted. For example, we use diplomas when certifying an individual’s
ability to perform a task. However, not all diplomas are equivalent. One cannot force a country A to accept a
diploma issued by country B if the conditions for obtaining the diploma in country B are less restrictive than in
country A.

6

1.2. Digital Identity Management System

service to work when they access it. This also implies that the technical solutions used
to prove an identity element should not reveal more information than necessary (see
chapter 5). For example, if a user wants to prove they are over 18, the service provider
should only learn that information. The user’s exact age should not be revealed.

10. Protection. Users’ rights must be protected. The algorithms used and the privacy
policies implemented by these algorithms must protect the user.

These ten points to maximize results from discussions that began in the early 2000s (see
chapter 3). This classification is largely consensual. Some evolutions have been proposed
[3], but the essence of self-sovereign identities remains the same across definitions.

Multiple technical solutions have been proposed to create an IMS that respects the principles
of self-sovereign identities. All of them are based on a fundamental principle: distribution. The
goal of the distribution is to propose technical solutions that respect the principles of self-
sovereign identities while avoiding reliance on a single entity or a small number of entities.

This thesis considers two main families of Distributed IMS (DIMS): partially distributed IMS
and fully distributed IMS. Each of these families has its own advantages and drawbacks. However,
both of them achieve the principles stated by Allen. The difference between these two families
lies in how they handle the auxiliary features of identity management systems, i.e., properties
that are not the core of authorization.

Indeed, the distribution of a DIMS mainly comes from the use of a distributed mechanism
to issue, store, and present identity claims and proofs. However, nothing prevents the use of
a central server acting as a trusted third party for auxiliary features. This is how partially
distributed IMS work. In contrast, fully distributed IMS do not rely on any trusted third party.

More formally„ the first family is the family of partially distributed IMS (pDIMS). These
systems do not require interaction with the issuer when the user presents proofs of their iden-
tity elements. However, some system functionalities may cease to work if one or a few entities
stop operating. These functionalities may include authentication, certificate revocation, or key
recovery after a loss or a theft.

The second family is the family of fully distributed IMS (fDIMS). Similarly to the previous
family, this family does not require interaction with the issuer when the user presents proof of
their identity elements. However, the continuity of system functionalities should not depend on a
single entity or a small number of entities. More specifically, a fDIMS is defined for a parameter
t, such that the system’s operation is not impacted by the cessation of activity of t entities.

This definition implies that various system components must be distributed across different
processes or computers. It also implies that these components must be distributed among differ-
ent independent entities. For example, we do not consider a company managing n computers and
implementing a DIMS resilient to t failures among these n computers to be a fully distributed
system. Indeed, if the company goes bankrupt, the system will no longer work. If a single entity

7

Chapter 1 – Introduction

fails, the system becomes unusable.
An important point that will guide the various proposals of this thesis and any system claim-

ing to be based on SSIs is minimalization. This property, central to Allen’s philosophy, implies
that when presenting an identity element, the user should not reveal any unexpected information.
Among the auxiliary information that the user must protect, we must consider unique identifiers.
These include IP addresses, public keys, and various URIs required for authentication. Addition-
ally, the signatures used to prove an identity element should not be unique. Reusing the same
identifiable and unchanged signature allows for tracking the different activities of a user. This
tracking could enable an adversary to gather additional information about the user’s habits and
even carry out timing attacks—making inferences about a person’s identity by cross-referencing
different operations and their temporal proximity. To respect minimalization, systems must,
therefore, eliminate such identifiers. For this reason, we add the qualifier “privacy-preserving”
to implementations claiming to be SSIs. In the following sections, we refer to Privacy Preserving
fully distributed Identity Management Systems (PPfDIMS) when discussing this kind of system.

In the rest of this thesis, we will mainly focus on PPfDIMSs, although some of the results
we present also apply to pDIMS.

1.2.1 Components of a Privacy Preserving fully Distributed Identity Man-
agement Systems

This section presents the various technical tools used to implement a PPfDIMS. When used
accordingly, these tools can implement a system that aligns closely with Allen’s philosophy.
However, it is crucial to recognize that these technical considerations (the focus of this the-
sis) only partially ensure compliance with the Self-Sovereign Identity (SSI) philosophy. An SSI
depends on both technical tools and organizational considerations. This distinction is why we
differentiate between the philosophy we aim to follow (SSI) and the technical system we are
exploring (PPfDIMS).

The tools we present can be classified into layers, similarly to the Open Systems Intercon-
nection (OSI) model for networks. This is the Trust over IP (ToIP) model [4], which consists
of four layers. The first layer is a public registry called a Distributed IDentity (DID) network,
which stores the necessary information for the higher layers. This information is represented as
documents known as DID documents, identified by URIs called Distributed IDentifiers (DIDs).
The second layer is a communication protocol for highly asynchronous network with processes
that can disconnect. This protocol is called DIDComm. It uses DIDs and DID documents to
exchange messages. The third layer is the core of the identity management system; it represents
the authentication and authorization mechanisms. The fourth and final layer is an organizational
layer: the governance layer. Its role is to define the identity management system’s goals, audit
the lower layers’ implementations, and certify their components. This thesis mainly focuses on

8

1.2. Digital Identity Management System

the first and third layers.
The first component of a PPfDIMS explored is the authorization mechanism. This is the

most important mechanism of the third layer of the ToIP model and of any IMS. To enable
authorization, a DIMS must allow users to present claims and proofs about their identity to
multiple verifiers. The user should store these claims and proofs, thus ensuring the control,
access, and consent properties of Allen’s philosophy. Moreover, the verifiers with whom the user
interacts are not defined before the issuance of the proofs of identity. Hence, the assertions and
proofs stored by the user cannot depend on the verifiers that will verify them. Nevertheless,
verifiers must trust the proofs handed by the users. More precisely, the verifiers must trust the
entities that created the proofs. They must also be assured that the proof (and the claim certified
by the proof) has not been altered between its issuance and presentation. Finally, it is essential
to respect minimalization. Claims regarding a user’s identity elements must be limited to the
minimum information necessary for the service to function. The user should either have a proof
for each potential assertion (for example, a proof that they are over 16, over 18, over 21, etc.), or
they should be able to derive restricted statements from a global proof (such as proving different
ages based on a proof of their date of birth). Additionally, as previously mentioned, a traceable
identifier across multiple presentations can compromise minimalization. Therefore, the proofs
must not contain such identifiers (or they must not be revealed to the verifiers). Moreover, the
proofs themselves must not be unique identifiers. They must be modifiable, or more precisely,
“randomizable.” In general, we refer to a proof (associated with an assertion) that meets these
requirements as a Verifiable Credential (VC). 3

A tool that satisfies each requirement already exists: anonymous credential (AC). An anony-
mous credential is a type of cryptographic signature introduced by David Chaum in 1985 [6],
that, in addition to digital signature properties, must verify three additional properties: blind
signatures, randomizability, and zero-knowledge proof of knowledge of a signature. A blind sig-
nature is a scheme where the issuer (the signer) signs a message they do not know. They sign
a cryptographic commitment to the final message. The signature recipient can then “open” the
commitment, resulting in a valid signature on the original message. This allows the user to
use the signature without enabling potential collusion between the issuer and verifier to gather
additional information about the user. Randomizability is the ability to add random values to
the signature without altering its content or validity. This makes different presentations of the
same signature unlinkable. In other words, a verifier receiving multiple signatures on the same
message cannot determine whether they come from the same user or different users who received
signatures on the same attributes. All users receiving a signature on the same attribute from the
same issuer thus form an anonymity set for that specific attribute. Presenting their attribute

3. The requirements presented here are more restrictive than those for VCs as standardized by the W3C [5].
We prefer our definition as it aligns more closely with Allen’s vision.

9

Chapter 1 – Introduction

makes them indistinguishable from those with a certificate signed by the same issuer on the
same attribute. Zero-knowledge proof of knowledge of a signature makes it possible for the user
to prove they know the message signed by an AC without revealing it. The proof can then be
re-used to prove additional statements. For example, if the user has an AC certifying their date
of birth, they can hide this information while convincing the verifier that they are at least 18
years old.

It is essential to emphasize an important point relative to the distribution of DIMSs. The
distribution of a DIMS mainly arises from these anonymous credentials. The use of anonymous
credentials allows a user to claim and prove identity elements without interacting with the issuer.
All identity elements and associated proofs are stored directly by the user. No central service
is required to perform these actions (the issuance, the presentation, and the verification). This
point has sometimes been misunderstood, this is the case for U-Port [7], which we will revisit
later. A blockchain or any other distributed ledger is not necessary to create a PPDIMS, or at
least not for a privacy-preserving partially distributed IMS. However, distributed ledgers, i.e., a
distributed algorithm that makes it possible to publish data with specific coherence properties,
may be required to implement certain auxiliary features in a distributed manner. Among those
functionalities, we can cite: multi-device authorization, strong user authentication, issuer and
verifier authentication, certificate scheme discovery, and credential revocation.

Therefore, these auxiliary features are optional to prove a user’s identity elements. However,
they are essential for addressing trust and usability issues. For instance, a certificate can be
authenticated using a public/private key pair embedded in each user’s anonymous credential.
Proving knowledge of the private key ensures that the person using the certificate is the one
to whom it was issued. However, it implies that each credential must share the same private
key. If this private key is lost, the user loses access to all their credentials and must request
the reissuance of each of them. Furthermore, suppose the user wants to use their credentials
across multiple devices (e.g., a smartphone and a personal computer). In that case, they must
share their private key between devices, which is generally considered poor security practice.
Therefore, a system allowing the authorization of different devices for a given user is needed.
Since we are interested in fully distributed identity management systems, this system cannot
depend on a single entity or a small number of entities (per our definition of a fully distributed
identity management system). Therefore, and as we show in Chapter 6, we must use some kind
of distributed ledger to implement these functionalities. 4

This distributed ledger must allow different actors to publish the elements necessary to enable
the auxiliary features of the PPfDIMS. 5 Since there is no centralizing entity in the system, each

4. Characterizing these ledgers is one of the contributions of this thesis.
5. It is important to note that, to ensure privacy and because the registry must be publicly accessible, no

personal information or any information that could be used to infer personal details about an individual should be
published on the registry! This remark does not apply to businesses, governments, organizations, etc., as we only

10

1.2. Digital Identity Management System

entity publishes its own information. Each entity thus has access to a “reserved space” on the
ledger, called a DID document, referenced by a Distributed IDentifier (DID). The format of
DIDs and DID documents is standardized by the W3C [8]. A DID is a URI that can be resolved
into its DID document. In theory, the association between a DID and its DID document must be
unique. A DID has the format: did:[method]:[identifier]. The [method] field is the identifier of the
ledger that allows DID resolution, and [identifier] is the specific identifier of the DID document
within the context of the [method] ledger. A method must specify how to create, update, delete,
and read a DID document (CRUD operations). At the time of writing, the W3C had registered
193 DID resolution methods [9].

DID documents are used during the presentation of identity proofs to authenticate the device
from which the user connects, verify that the credential has not been revoked, and allow the
user to authenticate the verifier. Generally, this usage does not modify the ledger. During a
presentation, the ledger is used in a read-only mode. This ensures the minimization property.
Malicious actors could track the user’s activity if a presentation leaves a trace on the ledger.

A peer-to-peer communication system is the third component of a privacy-respecting dis-
tributed identity management system. A W3C standard based on DIDs and DID documents has
been proposed for this purpose: the DIDComm protocol [10]. We will not discuss this protocol
in detail, as our contributions assume that such a communication protocol exists and respects
privacy. In other words, it does not reveal additional information about the user’s identity or
activity.

1.2.2 The U-Port case and the use of distributed ledger as the unique source
of distribution

The question of whether a blockchain is required to implement a PPfDIMS has long been
debated. Some believed that blockchain could be sufficient as the unique distribution factor to
implement PPfDIMSs. U-Port [7] is the most notable example of this belief. The idea behind this
system was to store all identity elements and identity proofs on a blockchain (Ethereum in this
case) or using an IPFS service. Identity elements and their associated proofs could be encrypted.
However, this model raises privacy concerns. Information published on the blockchain or the
IPFS system is public, even if encrypted. Any participant in the system can inspect the various
identity element emissions related to a user. While the attacker may not necessarily discover the
user’s identity elements, they can obtain metadata about their usage and habits. With additional
auxiliary knowledge, timing attacks could be performed, allowing for high-impact attacks.

Following these criticisms, U-Port’s proposal is no longer supported. Resources have been
redirected toward a new project, Veramo [11]. Veramo is a more conventional framework that
allows implementing a distributed identity management system agnostic to the distributed ledger

consider personal data protection for individuals.

11

Chapter 1 – Introduction

used.
More generally, the usefulness of blockchain has generated significant debate since 2017. The

first to reflect on the utility of a distributed ledger were people working on the Sovrin project
[12]. Sovrin is a distributed ledger project designed to support PPfDIMS. In a document [12],
they describe the various uses they envision for their distributed ledger. Notably, they assert
that the ledger should not contain any personal information, whether encrypted or not.

Another interesting article on the subject was published by Jolocom in 2021 [13]. This article
revisits the foundations of distribution in DIMSs. They assess the fact that PPDIMSs should not
necessarly use a Distributed ledger. Finally, a 2022 article also revisits the difference between
DIMSs and blockchains [14]. One of the contributions of this article is that the author reviews
ten implementations of DIMS and analyzes their use of blockchain. Interestingly, most projects
relying on blockchain as their unique distribution factor have ceased development.

One of the key contributions of this thesis is the characterization of the minimum require-
ments that a distributed ledger must meet to operate a PPfDIMS. Instead of asking whether a
blockchain is “necessary”, we go further by precisely characterizing the synchronization require-
ments of such ledgers. As we will see later, while a ledger is necessary, it does not necessarily
need to be distributed (in the case of a partially distributed identity management system). If
the ledger is indeed distributed, the synchronization constraints of the system are much weaker
than those offered by a blockchain. A blockchain completely orders all system operations, which
has a high cost in terms of latency, cryptographic function computation, etc. In contrast, we
prove that a PPfDIMS only requires weak synchronization guarantees, which we characterize in
detail in Chapters 6 and 7. Therefore, if a distributed ledger is chosen to implement an iden-
tity management system, it can be implemented economically. Chapter 8 presents an optimal
abstraction for such use cases. The abstraction presented in this chapter can be used for other
use cases where synchronization requirements are low. Interestingly, this applies to most dis-
tributed applications, such as naming services, access control, and asset transfers. Finally, an
implementation based on those results is presented in Chapter 10.

1.3 Contributions

In this thesis, we explore the various tools required to create a PPfDIMS. We focus on
distributed techniques aimed at maximizing user privacy while enhancing the usability of these
systems. The goal is to answer the following question: What tools enable the implementation of a
fully decentralized IMS that fully preserves user’s privacy while minimizing the synchronization
required between system participants? The contributions of this thesis are divided into two main
themes. The contribution of the first theme focuses on Layer 3 of the ToIP model. Specifically,
this contribution is an improvement to the state-of-the-art concerning privacy guarantees of

12

1.3. Contributions

anonymous credentials. The contributions of the second theme focus on the interactions between
layers 1 and 3 of the ToIP model. These contributions include analyses and proposals for systems
that interact with the distributed ledger of Layer 1 and the anonymous credential presentation
mechanism of Layer 3. The goal is to formally understand how a distributed ledger can be used
to implement a PPfDIMS and to use these analyses to propose efficient implementations that
address specific challenges related to identity management systems.

The contribution of the first theme is presented in Chapter 5. This contribution starts from
a simple observation: while anonymous credentials schemes claim to enforce the principle of
minimalization, the verifier’s knowledge of the public key of the issuer of a credential reveals
non-expected additional information about the user. Indeed, knowledge of the issuer’s public
key is necessary for any cryptographic signature scheme. However, knowing this public key
implies knowing the identity of the issuer, which can disclose additional information about the
user. We provide two examples to illustrate this point. First, an issuer is often a local entity
(geographically). A user requesting the issuance of a credential related to their civil status will
ask the town hall of their place of residence. In this case, when the verifier checks an identity
element related to the user’s civil status, they will also learn the user’s place of residence, which is
(with high probability) the same as the municipality issuing the certificate. Even more troubling,
if the verifier and issuer collude, and if the verifier possesses additional information about the
user, 6 then this additional information can allow the verifier to uniquely identify the user in the
issuer’s database. This implies that both the issuer and the verifier can track the user’s activities.
Beyond the privacy violation and the breach of the minimalization principle, such an attack has
a greater impact due to the users’ ignorance. Indeed, a user who believes the properties of an
anonymous credential protect them will be less cautious and reveal more information about
themselves than a user who does not use an anonymous credential.

To prevent this attack, we propose an anonymous credential scheme where the issuer is
hidden from the verifier. More precisely, before verification, the verifier publishes a list of trusted
issuers. The user then uses this list to randomize the public key of their credential issuer while
constructing a proof that the original (non-randomized) key associated with the randomized key
belongs to an issuer in the verifier’s list of trusted issuers. The user then presents this randomized
key, their randomized credential, and the aforementioned proof to the verifier. The verifier can
thus verify that they trust the issuer of the credential and that the issuer has indeed signed
the credential. However, the verifier does not learn the exact identity of the issuer. This type
of anonymous credential exhibits the trust properties of classic anonymous credentials while
avoiding the attacks previously mentioned. This work was published at the Privacy Enhancing
Technologies 2022 conference (PETs) [15].

6. This additional information can be easily obtained in the context of “real-life” verifications. In this case, the
verifier can record the user’s physical characteristics and compare them to those stored in the issuer’s database.

13

Chapter 1 – Introduction

The contributions of the second theme encompass four contributions, two major and two
minor.

The first minor contribution, presented in Chapter 7, analyzes the naming problem. The
naming problem is a central issue for PPfDIMSs. This analysis revisits the Zooko’s Triangle
problem [16]. In a 2001 blog post, Zooko analyzed the assignment of names within a given
namespace, where a name is considered as a string of characters. Zooko identifies three desir-
able properties for a name: security, decentralization, and human-meaningfulness. The security
property is informally defined as the ability for a name to be used exclusively by its legitimate
owner, where “used” refers to proving ownership of the name. In the context of decentralized
identity management systems, this means being able to modify a DID document associated with
a DID. The decentralization property refers to different processes sharing the same association
between a name and a resource. In other words, a name characterizes the same entity for all
members of a given system. The human-meaningful property is the most complex to define. Its
original definition implies that a human could easily manipulate the name. We prefer the defini-
tion of “humanly-choosable”, meaning the system allows users to choose the name they wish to
use. Zooko’s trilemma conjectures that these three properties cannot be achieved simultaneously.
Confusion arose regarding this trilemma since it was first presented. For example, the Wikipedia
page on the subject claims that there are implementations that refute the conjecture. Similarly,
a 2011 blog post by Aaron Swartz [17] claims that it is possible to solve Zooko’s trilemma. How-
ever, as we show, these proposed solutions do not resolve the problem but rather circumvent it
by associating two types of names: pointers and nicknames. We discuss these solutions in more
detail in Chapter 7. Lastly, we explore an interesting point raised in a paper by Mühle, Grüner,
Gayvoronskaya, and Meinel [18], which suggests that a blockchain is necessary to circumvent
Zooko’s trilemma. We propose to formally explore and address this claim.

Our contribution is twofold. First, we formalize the Zooko Triangle problem and provide a
formal proof of the impossibility, which was previously only a conjecture. We then formalize
the different methods for circumventing the problem and analyze their synchronization require-
ments. This analysis allows us to answer whether a blockchain (or, more generally, a consensus
algorithm) is needed to implement such a naming system.

The second minor contribution, presented in Chapter 9, proposes a solution to the problem
of authorizing the use of the same Verifiable Credential (VC) across different devices. This issue
remains unresolved in the context of PPfDIMSs. The multi-device authorization system must
satisfy several constraints. First, it must allow a user, the holder of a VC, to use it across multiple
devices he controls, such as a desktop computer and a mobile phone. Additionally, although the
VC itself must be shareable across these devices, the elements necessary to authenticate a device
should not be copied and shared. Specifically, if the authorization relies on a secret key, that key
must be unique to each device. Finally, all these operations must comply with the principle of

14

1.3. Contributions

minimalization, meaning they should hide the user’s identity.

We review the existing state-of-the-art solutions related to this problem. To this day, only one
solution appears to meet these criteria: the one proposed by Hyperledger Aries [19]. However, the
problem with this solution is that no finalized document has been published, only a draft exists.
Moreover, this draft suggests that the proposed solution relies on computationally expensive
cryptographic methods, which are difficult to implement and whose validity is complex to verify
in their current form. Therefore, we propose a solution to this problem based on simple, well-
established techniques, including zero-knowledge proofs and a threshold anonymous credential
scheme [20]. We designed a new distributed authentication system called Anonymous Agreement
Proof using these tools. We present this solution in Chapter 9, explain how it should be used,
and provide a proof of its validity.

The first major contribution of the second theme, presented in Chapter 6, investigates the
synchronization power of two types of distributed objects: AllowLists and DenyLists. This study
is conducted under the lens of Herlihy’s consensus number hierarchy. These objects are first
formalized as distributed objects. Although the specifications of both objects are closely related,
their consensus numbers are fundamentally different. The AllowList can be implemented without
requiring consensus among the system’s processes (its consensus number is 1), whereas the
DenyList requires consensus among a specific subset of processes.

These objects enable the implementation of various features of PPfDIMSs. Notably, they
can be used to model the revocation of an anonymous credential or the multi-device authoriza-
tion mechanism discussed in the previous paragraphs. Allowlists and Denylists are the main
distributed components of a PPfDIMS. Hence, our findings provide greater insight into the syn-
chronization requirements of such systems. More specifically, this study reveals that presenting a
credential only requires synchronization between the user and the verifier. The processes main-
taining the distributed ledger do not need to synchronize for this step. Additionally, the study
shows that only devices authorized to modify a given DID document need to synchronize to make
such changes. In conclusion, excluding the naming problem, this study allows us to assert that a
PPfDIMS never requires consensus among all processes but only a localized consensus between
a subset of processes in the system. This work was presented at the DISC 2023 conference [21].

The second and final major contribution, presented in Chapter 8, proposes a cooperation
algorithm that can be used to achieve efficient local consensuses while minimizing synchroniza-
tion requirements. This work is based on a new abstraction: the Context Adaptive Cooperation
(CAC). This abstraction aims to approach the boundary of consensus computability without
crossing it. Indeed, a well-known result [22] proves that it is impossible to deterministically
solve the distributed consensus problem in an asynchronous network. In this context, CAC is
an abstraction at the edge between Byzantine Reliable Broadcast (BRB) [25] and consensus.
Like BRB, this abstraction can be implemented in a fully asynchronous network, albeit the pres-

15

Chapter 1 – Introduction

ence of faults. However, like consensus and unlike BRB, this abstraction allows the processes to
propose conflicting values. However, unlike consensus, values are accepted sequentially by the
system’s processes, but each process may accept them in a different order. Additionally, CAC
provides each process with an imperfect oracle. This oracle informs the processes about values
they may accept in the future. The oracle is imperfect because it may incorrectly predict that
a value will be accepted. However, a value not predicted by the oracle will never be accepted.
In this sense, the imperfection of this oracle is the main difference between consensus and CAC.
A perfect oracle would trivially implement consensus, requiring some form of synchrony in the
system. In contrast, we propose a CAC implementation in a fully asynchronous system with
Byzantine faults. Despite this imperfection, we show that CAC allows for efficient implementa-
tion of distributed algorithms that are useful for PPfDIMSs. Specifically, it enables a consensus
algorithm that only requires synchronization of a subset of the system’s processes, as well as a
naming algorithm that reduces the entropy of assigned names compared to other asynchronous
naming systems. This work is currently under submission.

1.4 Description of the chapters

The remainder of this thesis is as follows. Chapter 2 presents the main components required
to build a functional PPfDIMS from a high-level point of view. This chapter also characterizes
those components.

Chapter 3 presents the state of the art in terms of digital Identity Management Systems.
This chapter uses a historical approach. It begins in the 80s with the advent of the siloed model
and ends with the latest developments in terms of PPfDIMS.

Chapter 4 presents the different distributed models used throughout the thesis and the main
cryptographic and distributed algorithm considered or used in this document.

Chapter 5 presents the Hidden Issuer Anonymous Credential scheme. The chapter presents
the motivation for this new anonymous credential scheme, a formal definition of the scheme, an
instantiation of the algorithms, and a comparison to a concurrent scheme [26].

Chapter 6 studies access control in distributed systems from a formal point of view. AllowList
and DenyList, two access control objects, are formally defined. Then, their consensus number is
studied [27]. Finally, the knowledge of the consensus number of those objects is used to analyze
the theoretical need for a PPfDIMS in terms of synchronization between the different processes
of the system.

Chapter 7 analyzes a second important distributed feature of PPfDIMS: naming algorithms.
Naming algorithms are used to associate a resource with a name. In PPfDIMSs, those algorithms
are of particular interest as they are used to create DIDs and DID documents. This chapter
studies the consensus number of those algorithms. Furthermore, it formally proves Zooko’s im-

16

1.4. Description of the chapters

possibility, which states that a name cannot simultaneously be secure, distributed, and human-
meaningful. This proof leads to categorizing the different types of names used in a distributed
system.

Chapter 8 presents the Context Adaptive Cooperation (CAC) abstraction, a distributed
abstraction that can be used as a building block to solve low contetion problems. This abstraction
is used in the remainder of this thesis as problems relative to identity management have low
contention probability. Hence, this abstraction, which can be implemented deterministically in a
fully asynchronous system, can help improve the efficiency of PPfDIMSs. In Chapter 8, the CAC
abstraction is formally defined, two algorithms that implement the abstraction are presented,
and examples of usages of the abstraction in low contention problems are provided. The first
proposed example is a naming algorithm, and the second is a consensus algorithm that reduces
the synchronization requirements between processes of the system.

In Chapter 9, a solution to the multi-device authorization problem is presented. This problem
can be stated as follows: In a fully distributed system, how can a user be authorized to prove
their identity from multiple devices while maintaining a high level of security, privacy, and
usability? It is based on the analysis of AllowList and DenyList conducted in Chapter 6 and
on a specific type of anonymous credentials, threshold anonymous credentials. In this chapter,
the problem of multi-device authorization is formally defined. Then, the Anonymous Agreement
Proof abstraction is formally presented and used to solve the multi-device authorization problem.

Chapter 10 summarizes the technical developments of the thesis. It uses the results of chapters
5 to 9 to propose a high-level implementation of a PPfDIMS. The idea of this section is to
provide a guideline for future work to develop a fully distributed and fully privacy-preserving
implementation of a PPfDIMS that has minimal synchronization requirements between the
different processes of the system. It considers each requirement exposed in Chapter 2.

Chapter 11 presents a personal point of view of the political and philosophical impacts that
the large-scale deployment of a PPfDIMS such as the one presented in Chapter 10 could have
on individuals.

Finally, Chapter 11 concludes this thesis. It presents possible evolutions of the different works
presented in this thesis. Furthermore, it assesses subjects not addressed by this thesis relative
to PPfDIMS.

17

Chapter 1 – Introduction

18

Chapter 2

MAIN COMPONENTS OF A PRIVACY

PRESERVING IDENTITY MANAGEMENT

SYSTEM

This chapter summarizes the different components required to build a fully functional and
usable Privacy-Preserving and fully-Distributed Identity Management System (PPfDIMS). The
first and most important component is a signature scheme respecting user privacy. As explained
in Chapter 1, a distributed identity management system could be implemented only using such
a signature scheme. However, many auxiliary features are required to make this scheme fully
functional and usable. Those features are required to hope that, someday, individuals choose to
use DIMSs as a day-to-day identification mechanism.

Each contribution of this thesis tackles one or multiple features presented in this chapter.
They mainly focus on the computational requirements and the efficiency of those features. In
Chapter 10, we use the different developments of this thesis to propose a high-level implementa-
tion guideline for a full-fledged PPfDIMS that proposes all the features listed in this chapter.

2.1 Privacy Preserving signature scheme

The most important component of a PPfDIMS is a way for an identity provider to issue
proof that a specific identity element describes a user. As explained in Chapter 1, this proof is
called a Verifiable Credential (VC). To fulfill the requirements of a DIMS, VCs must comply
with different requirements. First, VCs must be stored by the user, and a VC’s presentation to
a service provider should not require interaction with its issuer. Second, the system’s evolution
must not impact VC’s validity. If an actor enters or leaves the system after the VC’s issuance,
this VC should still be valid. Third, the VC should be linked to its issuer. Indeed, if it is not,
a self-issued credential would have the same value as a credential issued by a state. Hence, the
verification of a VC should only be valid if a trusted issuer issued it. Third, a VC must be linked
to the claimed identity element. It is to say that the VC’s holder should not be able to make
a verifier believe that a VC certifying a claim c certifies a claim c′ 6= c. Finally, the proof must

19

Chapter 2 – Main components of a Privacy Preserving Identity Management System

preserve the user’s privacy. Using the minimalization definition, privacy preservation implies
that the issuance, storage, and presentation of a VC do not leak information not intended by
the user. Therefore, the VC must not constitute a unique identifier that could be used to track
the user across multiple presentations. This property is called unlinkability. Furthermore, the
user must be able to selectively disclose information. When a user is required to prove a specific
identity element, they should not prove anything else. For example, if they want to prove they
are over 18, they should not give their date of birth. These two properties, unlinkability and
selective, disclosure make it possible for a VC to respect the minimalization property stated by
Allen [1]. An additional privacy property can be required; it is the issuer indistinguishability
property. When a user presents a VC to a verifier, disclosing the issuer’s identity can leak extra
information, thus breaking the minimalization property. For example, suppose a VC proving the
date of birth of a user is only issued by the town authority in which they lives. In that case, the
disclosure of the identity of the issuer discloses unintended information about the user’s place
of residence. Issuer indistinguishability can, in this case, enforce minimalization.

There exists one type of cryptographic signature scheme that meets all the requirements
stated above, anonymous credentials (ACs) [6]. Extended details about this scheme and its dif-
ferent flavors and properties are presented in Chapter 5. An Anonymous Credential scheme is
a signature scheme with additional properties. First, it is randomizable. Random numbers can
be added to a signature to enable unlinkability. Second, like any other secure cryptographic
signature scheme, it supports the Existential Unforgeability under the Chosen Message Attack
(EUF-CMA) property. This property means that the content of a signature cannot be modified
by the signature’s holder, even if this holder can choose signed messages. Most AC schemes pro-
vide Zero Knowledge Proof (ZKP) of signature, meaning that the holder of a signature can prove
statements about signed messages without revealing the actual message, thus enabling selective
disclosure. Furthermore, AC does not require the issuer’s participation during a signature pre-
sentation, and the validity of the signature does not depend on the existing issuers or verifiers of
the system (unlike other signature schemes such as ring signatures [28] or group signatures [29]).
Like other signature schemes, the verification of the signature requires the use of the issuer’s
public key, thus ensuring that the signature originates from him. Therefore, an AC scheme meets
all the requirements stated in the previous paragraph, except for the issuer indistinguishability
property. Chapter 5 presents an AC scheme that provides this additional property while main-
taining the “trusted issuer” property (the fact that the verifier knows they trusts the issuer of
the credential). Other researchers have explored the same problem concurrently, it is the case of
Bobolz et al. [26], Connolly et al. [30] and Sanders and Traore [31].

20

2.2. Informationnal features

2.2 Informationnal features

Actors of an IMS need to publicly share information about their own identity. In this section,
we give a list of the information that may be required to be published. This list is not exhaustive.
Furthermore, the information published can consist of identifying data. Hence, and due to the
minimalization property, this feature should not be used to publish information about a user
whose privacy must be protected. This section, therefore, applies only to actors that assume the
issuer or the verifier role.

2.2.1 Information published by an issuer

First, an issuer can publish information about the information it certifies. This publication
has several goals. For users, it allows them to automatically detect which issuer can certify a
specific identity element, thus allowing them to directly contact the right issuers. It provides the
same information for the verifier as for the user, allowing them to identify the issuers they can
trust to certify specific identity elements. It also makes it possible for verifiers to identify some
fraud attempts. Indeed, suppose an adversary steals or gains control over an issuer’s secret key
and tries to issue a credential about an identity element it is not supposed to. In that case, this
malicious behavior can be automatically detected.

Second, the issuer can publish its service endpoints. This information is used to know how to
contact the issuer. It will usually be an Ip address, or a URL, but depending on the network layer,
it can be another address that makes it possible to contact the issuer reliably. A unique issuer
may publish different endpoints for different services. For example, one specific endpoint can be
used for each type of credential issued. Furthermore, some issuers may propose specific services,
like automatic refresh of credentials as explained in the W3C draft [5]. Specific endpoints may
identify those services.

Third, issuers may need to publish important information, such as the protocols they use
and the cryptographic primitives they support. This information helps users determine whether
they can transact with the issuer. For the verifier, it is also helpful to know which issuers they
trust use which cryptographic primitive, thus allowing them to update their verification methods
accordingly.

2.2.2 Information published by a verifier

The information published by a verifier is similar to that published by an issuer. First, a
verifier can publish service endpoints. Similarly to the issuer, a verifier may publish different
endpoints for each service it maintains. They can also publish the protocols they support and
the cryptographic algorithms they accept. This information is used to help the user determine
whether they can perform a presentation with this verifier.

21

Chapter 2 – Main components of a Privacy Preserving Identity Management System

The only difference between an issuer and a verifier is that a verifier may publish the list of
issuers it trusts. This list can be augmented with which type of credential is accepted from which
issuer. This information lets the user know if they have the required credentials to prove their
identity to the verifier. If they do not, the user knows to whom they can request the issuance of
a new credential.

2.3 Key management features

Key management is one of the main requirements of any public key-based protocol. First,
and because PPfDIMS are supposed to be used by many individuals, it is highly probable that
some of them will lose their secret keys at some point. Therefore, a key recovery mechanism
must exist. This mechanism can take multiple forms, but it should not contradict the control,
access, and consent properties stated by Allen [1] (cf Chapter 1). Furthermore, a key loss should
not revoke access to the user’s credentials or DIDs. Otherwise, usability would be decreased as
some credential issuance may require heavy administrative formalities. Hence, the key recovery
mechanism must be built to give the user back control over all its proofs of identity elements
while ensuring that no adversary can abuse this mechanism to gain unintended control over
one’s credentials.

A second important key management feature is the key rotation mechanism. This mechanism
is widely adopted as a best practice to undermine cryptanalysis attempts [32]. Like the key
recovery mechanism, this key rotation mechanism should not impact usability. A key rotation
should not revoke a user their access to their proofs of identity elements nor their DIDs and
DID documents.

We analyse the theory behind these problems in Chapter 6. Then, we propose an implemen-
tation of a PPfDIMS that implements these key management features in Chapter 10.

2.4 Strong and versatile authentication features

The main authorization mechanism of a PPfDIMS is its AC scheme. However, it is not
enough for an individual to prove the possession of an AC to prove that this AC was issued
to him. Indeed, an AC can be stolen. The most obvious way of doing this is using a verifier
that stores a credential and uses it as its own. Therefore, a PPfDIMS needs to provide a strong
authentication method. By strong, we mean that the authentication mechanism must, with high
probability, prove that a credential holder is its rightful owner. Furthermore, this authentication
mechanism should not impact usability. That is, it should not restrict legitimate usages. One
legitimate usage is that a user should be able to use its VCs from different devices. For example,
let us assume a user owns a computer and a cellphone; then, it should be able to use its VCs from

22

2.5. Revocation features

both of them. However, it is generally considered a bad practice to share a key among different
devices. Hence, each device should possess its own authentication means. Furthermore, using the
requirements exposed in Section 2.3, a key loss or a key rotation should impact user access to its
VCs. Hence, the authentication mechanism cannot be directly linked to an element “hard-coded”
in a VC. For example, the linked data type authentication method proposed by the AnonCred
project [33] does not respect the usability requirements exposed in this section. We propose in
Chapter 9 the first efficient, strong, and versatile authentication method for PPfDIMS.

The authorized devices should be revocable for this mechanism to be interoperable with the
key management feature. A manager for a specific VC should be able to grant or revoke the
right to present a VC at any time.

2.5 Revocation features

In Section 2.3, we tackled the problem of a user’s losing control over their secret keys. In
this section, we add a new requirement: how to deal with a loss of control over a VC. In this
case, VCs must be revoked. A revoked credential cannot be used in an authorization process.
Revocation can emanate from the VC’s holder and the VC’s issuer.

VC holders may want to revoke their credentials in multiple cases. The first case is if a
credential gets stolen or the user gets evidence that their VC is misused. The second case is if
the user’s identity evolves; for example, if they change their place of residence, then they may
want to revoke older and outdated credentials.

On the issuer’s side, if it gets evidence that a user misuses a credential it issued, it must be
able to revoke it. Furthermore, if an issuer loses control of one of its issuing secret keys, it may
want to revoke all the credentials issued with this key (in addition to other countermeasures).
The theory of revocation in distributed systems is conducted in Chapter 6 and these results are
used to implement a PPfDIMS with revocation capabilities in Chapter 10.

2.6 DID-capable ledger and naming system

Except for the Anonymous Credential scheme, all the requirements exposed in the previous
sections require some form of publication of information. The information published must be
highly available even if one actor has a technical issue. For example, if the services of an issuer
go down for a short period, then, in a PPfDIMS, its revocation list should still be available. 1

Hence, there should exist some form of ledger capable of implementing each feature stated in
this chapter. We assume in this thesis that this ledger mainly stores DIDs and DID documents
[8]. As we can see, most of the additional features a PPfDIMS requires depend on a specific

1. This statement may not be true with a partially distributed identity management system, see the different
definitions given in Chapter 1.

23

Chapter 2 – Main components of a Privacy Preserving Identity Management System

actor. Actors mainly publish information about themselves. Therefore, DID documents, which
belong to and describe individual entities, can be used for most of these features. The additional
requirements are summarized in Chapter 10.

Furthermore, DID-capable ledgers need to allow actors to create DIDs. Therefore, we must
study how individuals can create DIDs and the associated DID documents. This study is con-
ducted in Chapter 7.

Hence, a DID-capable ledger is enough to implement all the requirements stated in this
chapter. However, the DID standard is broad. A DID-capable ledger can take many forms. In
section Chapter 10, we use results from Chapters 6, 7, 8, and 9 to characterize this ledger.

2.7 Accountability feature

In this chapter, we proposed features to address misusage, theft, or loss of control over a
secret key or a VC. However, we did not say how to identify these misusages. Even though we do
not study this feature in this thesis, it may be required to be implemented. State authorities will
likely require this feature. This accountability feature should enable authorized actors to detect
malicious behaviors and de-anonymize the actor who acted maliciously. This feature may be
required to allow actors to build proof that some individuals behaved fraudulently. Therefore, it
may be necessary to hold this individual responsible in court. However, this feature also directly
contradicts Allen’s minimalization property. Furthermore, if a malicious actor is able to use this
accountability feature to decrease users’ privacy, then individuals will no longer trust the system
and will not use it.

This thesis is about privacy preserving IMS, hence, we do not interest ourselves in the
accountability feature, which could reduce privacy guarantees given to system users. However,
other works [34, 35] have already tackled this point. We invite the interested reader to refer to
them for a more in-depth comprehension of the topic.

24

Chapter 3

STATE OF THE ART

This chapter provides an understanding of the historical developments of privacy-preserving
Distributed Identity Management Systems (PPDIMSs) and the latest developments in this do-
main. This study of state-of-the-art focuses on two different but complementary sets of works:
academic works published in conferences, articles, and workshops, and non-academic works, such
as industry developments, whitepapers, blog posts, standards, and documentation of frameworks.

This thesis is not a historical thesis. Hence, the method used is not historical and has to be
taken as it is. It is to say, as an overview of the historical development of digital IMSs. We do
not claim to be exhaustive. This section is based on the work of Allen [1] that paved the way for
a new paradigm in the Identity Management Systems world.

State of the art related to each topic studied in this thesis are incorporated in the relevant
chapters; namely, we study developments related to anonymous credentials in Chapter 5, and
state-of-the-art distributed ledger technologies in Chapter 6 and Chapter 8. We also focus on the
state-of-the-art authorization methods related to DIMS in Chapter 9.

3.1 The early days of Identity Management

Access control is highly correlated with the creation of computers. The first type of iden-
tity management system was developed to access shared computers. With the creation of the
Compatible Time-Sharing System [2], each user had an account created by the manager. This
account was used to access shared computer resources. This identification mechanism is a simple
siloed example where an issuer (the manager) provides proof (an account) to access a service
(computer’s resources). This model was then reused in many other use cases. On the Internet,
the primary authentication method for accessing websites is by registering a username and pass-
word. The problem with this method is its high impracticality for large-scale usage. First, the
user has to remember multiple account information for the different services they access. Second,
each user has to prove their identity to the service provider (which is also the identity provider
in this case). Suppose the user has to prove an extra identity element. For example, if the user
is a university student, they have to prove they are a student to each new service provider
requiring this information. They must find a way to present their physical credentials, proving
they are a university student. The service provider, on the other hand, has to verify each user’s

25

Chapter 3 – State of the art

credentials. This protocol is slow and error-prone. Moreover, this method increases the surface
of potential attacks. User’s identity elements are scattered and stored throughout the different
service providers. Hence, it is a considerable threat to user’s privacy. Finally, with this type of
siloed identity management model, users have no control over their identity elements. They do
not know what information is stored by the service provider. When the service provider verifies
the user’s credentials, it could just store the important information, such as the fact that the
user is a university student. However, it could also store extra personal information related to
the user and written on the user’s credentials.

In 1988, some of these issues were addressed with the first X.500 standard [36]. This standard
aimed to provide a unified way to implement directory services. The important section of this
specification, which is still used nowadays, is the X.509 standard. It was first created to securely
authenticate clients who accessed the directory. It is based on public key cryptography for
authentication, where an X.509 certificate is issued by a trusted party to a user, and this user
then proves it knows a secret key associated with the public key presented in the certificate.
The certificate holder is identified by a Distinguished Name (DN), which is supposed to identify
this subject uniquely. This standard was later used to authenticate any service provider or user
online. The interesting point is that this standard makes it possible to transfer trust. An identity
provider can issue an X.509 certificate whose DN is x to someone. Then, suppose this person
presents this credential to a third party that trusts the certificate’s issuer. In that case, this third
party will know that x identifies the user because it trusts the issuer in verifying this property
of the user.

A second trust-based authentication means was developed in the meantime, Pretty Good
Privacy (PGP) [37]. It was first released in 1991. It is an encryption mechanism that also
provides authentication. This mechanism uses e-mail addresses as identifiers. PGP, like X.509,
also makes it possible to transfer trust. Alice can prove she trusts Bob by signing his PGP public
key. Hence, if Charlie, who trusts Alice, receives a signature from Bob, and Alice signs Bob’s
public key, then Charlie can be confident that Bob is indeed who he claims to be. This trust
transitivity mechanism comes with a confidence level. This confidence level allows Alice to state
to what point she is confident in the fact that Bob is who he claims to be.

These mechanisms (X.509 and PGP) can be considered authentication methods. Though it
is important to highlight them as the two first authentication methods that provide trust transi-
tivity, they do not imply any identity management philosophy. They can be used to implement
siloed, federated, or distributed Identity Management Systems.

In 1997 [38], Ellison was the first to question the nature of online identities and how to prove
one’s identity claim. Ellison’s paper reviews the existing solutions of the time, i.e., PGP and
the X.500 family, and assesses their limitations. Ellison’s paper proposes several use cases and
protocols to identify a subject online. However, the most interesting part of Ellison’s work is the

26

3.1. The early days of Identity Management

reflection given by the author about identity and the definition of an entity on the Internet. He
also comes back to a notion that we will explore later in this thesis: the notion of subjectivity of
identifiers. He assesses the fact that an identifier is only valid in a given namespace. He further
links the contextuality of names to the contextuality of the subjects’ identities. Indeed, identity
is a contextual concept, and a given subject may have multiple identities depending on the
context. For example, Alice can be known under her name for her employer, but on a forum,
she can be known under a pseudonym.

Ellison’s paper seems to have had little influence on the domain until Kim Cameron wrote the
“The laws of identity” in 2005 [39]. Nonetheless, from 1997 to 2005, some developments have been
made regarding IMSs. We can talk about the Microsoft Passport initiative, an IMS developed
in 1999 by Microsoft to allow users to authenticate and be authorized on multiple websites with
a single identity provider. It was the first federated IMS under Allen’s classification [1]. This
IMS was even used by non-Microsoft-related companies such as eBay. However, the system was
shut down in 2005 because of its several flaws. Among them was the tremendous control of
Microsoft over user identity elements and the lack of interoperability with other systems and
service providers [40, 41]. This initiative has to be noticed as the first IMS to associate accounts
with services rather than with people.

In the early 2000s, multiple groups were created to question identification on the Internet.
These groups elaborated the first works that later paved the way for Allen’s Self-Sovereign
Identity [1]. The first group to be created around this question is the Liberty Alliance, in response
to Microsoft Passport’s initiative [42]. Sun Microsystems created this consortium. It grouped
multiple companies 1 that aimed at building a truly federated IMS. This consortium also focused
on user privacy and security. Their main achievement is the creation of interoperable standards
for Single-Sign-Ons (SSOs) that are still used nowadays, for example, the SAML standard.

A second initiative of the time is XNS.org’s proposal [43]. Even though we are left with little
information about this initiative, it seems the goal was to provide an interoperable single sign-on
service for federated identity.

A third interesting initiative at the time was the Augmented Social Network report [44]. It
is the first notion of a trust layer for the Internet. The notions explored in this work are really
interesting, as they are the basis of modern PPDIMSs: interoperability, persistence, control, and
self-organization (or distribution). Interestingly, the authors of this work assess the contextual
aspect of identities and trust. Unlike previous works, they also assess that identity management
is not only about commercial relationships. As we will see in the following sections, this is a
major consideration when discussing IMS. Furthermore, this paper criticizes the Liberty Alliance
and Microsoft Passport, as they are built by and for private companies to increase commercial

1. For example, Apache Software Group, NTT DoCoMo, Nokia, VISA, RSA Security, Real Networks,
BankAmerica, Vodaphone, ...

27

Chapter 3 – State of the art

growth, thus, going away from the Internet’s original spirit, which was to bring people together
on an equal and open basis. The paper also assesses a problem the EU’s GDPR will address
later. If public authorities do not control how private companies manage personal data, then
these private companies have the liberty to use (and abuse) their prominent position. We will
raise this question again in Chapter 11. Even with privacy guarantees, any IMS can be misused
if users are unaware of privacy risks and if the public authority does not regulate (and verifies)
the usage of this IMS. However, this work has some issues. The “persistence” notion the work
relied on was based on a unique global identifier. The goal was to efficiently identify people
and share knowledge with them. However, this implies that individuals are uniquely identifiable
across multiple domains, thus greatly reducing their privacy. Nowadays, when we talk about
persistence, we mean that the IMS can still work if one or more actors cease their activity or
have technical issues.

In 2005, following the Liberty Alliance initiative, the OpenId standard [45, 46] was developed.
This standard is now used as one of the main technologies to build federated IMS. For example,
the latest evolution of this standard, OpenId Connect, is used by the French state’s Single Sign
On service, FranceConnect [47].

The first step toward the “Self-Sovereign Identity” philosophy, which is now considered the
best practice in terms of IMS, was formalized in 2005 by Kim Cameron through two papers, one
published under his name and the second under Microsoft’s name. Cameron was responsible for
Microsoft’s IMS and was against the passport initiative as it removed control of subjects over
their identity elements. The first paper [39] aims to provide objective “laws of identities”. The
idea, which can be criticized, is to express identity through axioms. Those axioms should enable
the creation of an identity metasystem, i.e., a trust layer on the Internet, or, in other words, a set
of standards and interoperable technologies that make it possible to build multiple IMSs that can
work together. The axioms proposed in this paper are user control and consent over its identity
elements, minimal disclosure, only justifiable parties can access identity elements, unlinkability
of identity elements, pluralism of operators and technologies, and human-centric designs. As we
can see, those axioms will later be used by Allen to build its ten laws of Self-Sovereign Identity.
The only flaw of those axioms is that they are not minimal, e.g., the justifiable parties and
the minimal disclosure axioms are very similar. On the other hand, this work is the first to
clearly introduce a subject’s identity as a set of claims about its individuality, claims that can
be evaluated and certified by third parties.

The second paper written by Cameron [48] is the vision of Microsoft related to the “laws
of identity”, or how they aim to implement such an identity metasystem. The answer to this
challenge will be the discontinuation of Microsoft Passport, and the creation of InfoCard [49], a
federated identity system aiming to enhance user control and consent. The idea was for users to
possess ID cards on their personal computers. When requesting the presentation of an identity

28

3.2. The rise of Self Sovereign Identity

element, users should have been able to choose between different ID cards depending on the
context. Unlike Passport, Microsoft was not supposed to be the only identity provider with
InfoCard, thus qualifying as a true federated IMS. This system stopped working in 2010 and
was replaced by the development of U-Port, a blockchain-based IMS (whose development has
also stopped).

The early IMS developments presented in this section have one point in common: they all
propose some form of federation in terms of identity management. None of them proposed the
implementation of an actual distributed IMS philosophy, even though the work on the augmented
social network [44] and the work of Kim Cameron [39, 48] was the first step towards SSI.

Those early works related to federated identities culminated in Europe in 2014 with the
electronic IDentification And Digital Services (eIDAS) 1.0 regulation [50]. The regulation aimed
to propose digital identification as a means of interaction between European governments (or
private companies acting on behalf of European governments) and European citizens. This dig-
ital identification service aimed to facilitate administrative work for citizens and let them use a
unique identification system in their own country and other European countries. This regulation
has already laid the basis for digital IMS. However, decentralization and privacy were not cen-
tral in this early proposal. The main point of this regulation was the regulation of identification
technologies used by each country. The two most interesting points in this regulation regarding
our subject is the identification of three “levels of assurance” (LoA) 2. Where a higher level of
assurance means that the claimed identity element is more likely to describe the user, or, more
precisely, the probability of fraud is reduced. The second point is the interest of the regulation
for interoperability of IMSs. The regulation proposed multiple tools for adopting interoperable
IMS; namely, they made it mandatory for states to accept identification means proposed by other
states of the European Union. The regulation also assesses the need for accountability, revoca-
tion, transparency (regarding the technology used and requirements), technological neutrality,
and standardization. France connect [47] can be seen as an heir of this regulation.

However, as stated earlier, the eIDAS 1.0 regulation did not consider decentralization and
user privacy. Furthermore, the regulation mainly focused on administrative services, thus reduc-
ing the overall adoption of the proposed IMSs. A new regulation, eIDAS 2.0, is currently being
developed to tackle these issues.

3.2 The rise of Self Sovereign Identity

Until 2010, most IMS propositions focused on improving users’ control over their identity
elements. Although this is an important topic, it is not sufficient to see a wide adoption of digital
IMS. One of the most important issues to address when managing identity elements is providing

2. Level of Assurance was already a recommendation of the NIST before 2009 [51]

29

Chapter 3 – State of the art

users with privacy. This becomes even more important as the amount of information shared
increases. Academic research and industry propositions have slowly assessed and addressed this
problem.

The first evolution of IMSs came with U-Port [7]. This proposal is interesting as it is the first
IMS proposal that escaped the federated model. The idea behind U-Port is to use blockchains
to store and certify identity claims. As we will see later, this way of storing and proving claims
threatens user privacy. It is even worse than the federated model. In the federated model, some
identity providers have extra information and control over the subject’s information. Meanwhile,
with U-Port, all the system’s actors have information about the issuance of credentials, the
information in the credentials, etc. Hence, even though U-Port was an interesting experiment, the
idea was intrinsectingly flawed. Due to those restrictions, the U-Port development has stopped.

The actual evolution of IMSs was around the middle of the 2010s with the creation of
Sovrin and the formalization of Self-Sovereign Identity by Allen [1]. The latter has already been
described in this thesis. It is, without a doubt, the most cited article about PPDIMS. Most
works in this area now base their development around the ten laws of identity exposed in the
introduction of this thesis. As we saw in this chapter, those ten laws were not “invented” by
Allen. They were an (excellent) synthesis of more than 15 years of reflections on the identity
problem on the Internet.

Davie et al. proposed one of the most important formalizations of PPDIMSs in 2019 [4]. We
already talked about this proposal in the introduction of this thesis. The purpose of Davie et al.’s
paper is to formalize the existence of four independent layers that make it possible to implement
a DIMS. The first layer is the DID network layer. It is used to share public information about
the actors of the scheme, e.g., public keys, revocation lists, authorization lists. As explained in
the introduction, the goal of this layer is to provide auxiliary information to the layers on top of
it. It makes it possible to implement highly asynchronous peer-to-peer communication methods
(layer 2) and to provide efficient authorization and revocation methods for the presentation of
credentials (layer 3). The fourth layer is an organizational layer. The idea is that layers 1 to 3 are
technical layers. However, identity and, by extension, identity verification is a highly subjective,
non-technical concept. Hence, layer 4’s goal is to ensure that implementations of layers 1 to 3
actually fulfill their goals. However, the goal of layer 4 is also political. It has to ensure that the
IMSs implemented do not harm users by censuring them or by revealing their identity elements
in a non-informed way to malicious actors.

This Trust over IP stack is still the paradigm used nowadays. For example, initiatives like
Hyperledger separate their work following this formalization (layer 1 is managed by Hyperledger
Aries, and layer 3 is managed by AnonCred). In the same way, the recommendations of the W3C
also follow this paradigm. They proposed three different standards that focus each on a different
layer (layer 1: DID standard [8], layer 2: DIDComm standard [10], layer 3: VC standard [5]).

30

3.2. The rise of Self Sovereign Identity

On the technical side, in the early days of PPfDIMS, one of the most important project was
Sovrin [52]. It seems to be the first project to understand that the distribution in a DIMS comes
from anonymous credentials and that the distributed ledger should only be used for auxiliary
functionalities [12].

The Hyperledger foundation [53] provides tools for blockchain technologies. Some of those
tools are focused on DIMS. Among them, we can cite Fabric, a general-purpose distributed
ledger, AnonCred, a Verifiable Credential implementation that is compatible with most of the
privacy requirements stated by Allen, Aries, which is used to manage the interface between layers
1 and 3 of the ToIp stack. Finally, hyperledger recently promoted a new project, Identitus, whose
goal is to integrate the other identity-related projects of Hyperledger to provide a complete
toolbox for developers. Hyperledger has been present in the PPDIMS ecosystem from its early
days and has, without a doubt, influenced the trajectory of standards and beliefs of the industry
toward a more privacy-preserving and distributed paradigm.

In the same way as in the precedent section, this new identity management paradigm is now
being assessed by multiple laws and regulations. We can talk about the swiss regulation [54].
Furthermore, a new regulation, eIDAS 2.0 [55], is currently being developed at the European
level. The main improvement of this regulation compared to eIDAS 1.0 is to propose to European
citizens a digital wallet that will make it possible to store verifiable claims that are presentable
online and offline. This tends to suggest that anonymous credentials will be used. Therefore, it
is possible that eIDAS 2.0 will lead to systems that fulfill (to some extent) Allen’s principles.

Non-governmental efforts have been made to improve the interoperability of DIMS, thus cre-
ating a step toward the global adoption of DIMSs. Those efforts have been supported through
the W3C organization. Three standards have been proposed. The first standard concerns Dis-
tributed IDentifiers (DIDs) [8]. A DID is a unique identifier that links an individual to its VCs.
It also enables many distributed and privacy-preserving features, such as multi-device capabil-
ities, credential revocation, actor identification, actor endpoint identification, user unicity, and
accountability. To enable those features, each DID is associated with a DID document. The
format of a DID is “did:[method]:[identifier]”, where “[method]” is the way the DID must be
resolved into its DID document. The documentation of a method must also describe how a DID
document can be created, destroyed and modified. “[identifier]” is the specific identifier of a DID
document in the context of the method. Ideally, each identifier should be unique in the context
of a specific method.

The second standard proposed by the W3C is a standard about Verifiable credentials [5]. It
enumerates the different requirements of verifiable credentials, the format of the signed messages,
and the format of the signatures. This standard also provides several use cases and best practices
for security/privacy regarding identity verification.

The third and last standard proposed by the W3C concerns the DIDComm protocol [10]. It

31

Chapter 3 – State of the art

is a two-party communication protocol that makes it possible to route identification messages
in a secure and anonymous way using ledgers and DIDs.

To the best of our knowledge, there exists no standardization effort in terms of a distributed
ledger. This domain evolves fast as new theoretical research and implementations are proposed
monthly. In this thesis, we clarify theoretical requirements regarding distributed ledgers for
PPfDIMSs.

3.3 Digital identity and the blockchain scam era

In the previous sections, we discussed papers and industrial projects that proposed new ideas
and frameworks for PPfDIMSs. However, this ecosystem is also filled with short-lived speculation
projects. This section presents some of those projects and uses them as one of the motivations
of this thesis.

After the advent of Bitcoin in 2009 [56], many actors tried to legitimate their blockchains
by adding specific properties or goals to their algorithms. Some of those blockchains brought
new perspectives, such as the case of Ethereum [57], or other protocols like Zerocash [58], which
is an anonymous asset transfer protocol built on top of the Bitcoin blockchain. However, most
of them bring little to no advantages compared to other protocols. We can find thousands of
cryptocurrencies by looking at any cryptocurrency ranking website (e.g., [59]). Thus, actors
used other sources of distinction to become noticeable in this jungle. We can talk about the
Non-Fungible Token trend, but to some extent, digital identity also suffered from this gold rush.
We can cite projects like Jolocom [60] (ceased activity in 2020), SelfKey [61], which seems to
only use their distributed ledger for a cryptocurrency that is used to incentivize actors, EverId
[62], which also ceased its activity, and promoted a distributed currency. As we can see, many
of those projects were built around a cryptocurrency rather than to provide a PPDIMS. The
existence of a cryptocurrency associated with a DIMS project provides an easy way to analyze
its utility. If a DIMS project proposes a cryptocurrency along with its core features, it means
(with high probability) that it is built to speculate and will not last. To dig deeper in this
direction, we could ask ourselves why a DIMS framework would need its own cryptocurrency.
First, a cryptocurrency is not a money. Using Marx’s [63] definition of money, for an asset to
become money, it needs to fulfill three properties: it must be a unit of account, a store of value,
and a medium of exchange. To the best of our knowledge, most cryptocurrencies (if not all) do
not fulfill any of these properties. Furthermore, according to David Graeber [64], a money only
exists and is valuable if an individual can pay taxes with it. Therefore, a cryptocurrency cannot
be considered as a money. It has to be considered as an asset. Thus, using cryptocurrency
to build a DIMS can only lead to one pitfall: speculation. Moreover, even though expenses
will necessarily be associated with the maintenance of a DIMS, the retribution can be done

32

3.4. The 193 DID methods

using sovereign currencies. 3 Thus ensuring stability of prices and ease of access for all actors to
liquidity. Therefore, even though this may not be a general rule if a DIMS project creates its
own cryptocurrency, it should be considered with maximum precautions.

3.4 The 193 DID methods

Blockchains and consensus-based ledgers provide strong guarantees, at the cost of a high
latency, high computation overhead, and high space and message complexity. Hence, this tool
should be used only when strictly required. As an answer to this statement, some DIMS frame-
works proposed identification methods without requiring consensus algorithms. We study them
to see how they balance utility and efficiency.

A good method to have an overview of the DIMS ecosystem, and to understand how quickly it
evolved is to look at the W3C’s DID specification document [9]. It lists all known DID methods
that have been registered to the W3C. Each DID method listed in the W3C’s list does not
necessarly corespond to one project, but the association is close. This list has 193 entries. The
goal of this section is not an exhaustive exploration of all of them. But we will discuss here some
interesting ones.

The list of DID methods gives information that is of particular interest: the registry used
by each DID method. However, as we will see by analyzing those different methods, not all
are used to implement DIMSs. Some only use the possibilities offered by the DID standard to
solve other problems, e.g., key sharing. Most of the other methods use blockchain or full-fledged
consensus for all their on-ledger operations. On June 4, 2024, we counted 161 out of 193 methods
that explicitly require a blockchain or a consensus-based ledger to work. Some of these methods
build their own blockchains, and others use existing ones (most of them use Bitcoin, Hyperledger
Fabric, or Ethereum). Among the methods that do not explicitly require blockchain, we identified
five different categories. 4

1. Server-based methods. The first category groups the four methods that use a central
server as the ledger. These methods are comparable to blockchain-based methods as they
provide total ordering and strong consistency.

2. Ledger-free methods. The second category does not require a ledger at all. This cate-
gory comprises the methods whose DID only represents the public key of a secret/public

3. By sovereign, we mean a money printed and managed by a state, or a union of states, with a monetary
policy.

4. An interesting DID method we do not discuss in this list is the did:snail method [65]. This method is built
as a joke. The resolution of a DID document using this method is done through (IRL) mail. The DID is basically
the address where the subject lives. Hence, to resolve the document, one has to send a request to this individual
using a stamped envelope. The subject of the DID answers the request similarly, posting the DID document in
a mailbox. Aside from the joke, this method tackles a concern that we formulate in Chapter 11. Why use digital
IMSs in the first place, and do they empower individuals?

33

Chapter 3 – State of the art

key cryptosystem. For example, the did:key method takes the DID itself as a crypto-
graphic public key, e.g., if the did is “did:key:abcdefghij”, then the did document is
considered to be “abcdefghij”, where this string is considered as a public key. Other
methods have a similar purpose, e.g., “did:jwk”, “did:pkh”, “did:self”. This category is
interesting as the DID document is self-contained in the DID. However, these methods
are comparable to a key exchange and do not provide authentication and authorization
means.

Several methods are similar to this category but add interesting features. The first one is
the “did:peer” method [66]. This method does not require a ledger and has multiple usages
or setups. Two setups, method 0 and method 2, are equivalent to did:key. 5 Two other
setups, method 1 and method 3, reference the signature (or the hash of a signature for
method 3) of a DID document to authenticate it. The final setup, method 4, uses a method
3 DID and associates it with a second DID, which represents an encoding of the whole
DID document. Hence, this fourth method provides a self-contained DID. Compared to
the other “did:key”-like methods, the “did:peer” method provides more versatility, as
it makes it possible to share a DID document. However, this added versatility can be
achieved with the “did:key” method by signing a DID document using the key associated
with the DID. Hence, it does not provide additional features in terms of authorization or
authentication.

The second method that is similar to the “did:key”-like methods is the “did:keri” method,
and its KERI protocol [67]. This method resolves a specific type of cryptographic key, Key
Event Receipt Infrastructure (KERI). The KERI protocol is used to create and derive
public keys. Compared to previous protocols, it is possible to rotate keys deterministi-
cally using a specific derivation algorithm. This method was initially proposed to provide
a cryptographic scheme that makes it possible to unite the DID methods, thus creating
a link between DID methods rather than adding an additional one. However, this is the
only extra feature that this method provides. Furthermore, let us assume k1 is the first
key created by an actor, and k2 is its second key, derived from k1. Then, when k2 is used,
k1 must be revoked. Otherwise, impersonation or double-spending-like attacks could be
conducted. Furthermore, this revocation requires synchronization between the verifica-
tion processes (c.f. Chapter 6), which the “did:keri” method does not provide. Hence,
this protocol should be backed by a revocation-capable ledger to be fully functional. The
protocol is still a good solution to the key loss and key rotation problems. This problem
must be assessed in any public-key-based cryptographic scheme, and it is often a bot-
tleneck in many distributed systems where no central authority can help a user recover

5. A DID “did:key:azeaz” can be translated to “did:peer:0azeaz” where 0 is the method identifier, and “azeaz”
is the public key.

34

3.4. The 193 DID methods

from a key loss.

3. DNS-based methods. The third category contains the methods that resolve DIDs using
a DNS-like network. These methods resolve DIDs without using distributed ledgers. The
“did:web” method resolves a DID directly using the DNS. The DID is, therefore, a domain
name or a web address, that should point to a DID document. Other methods work
similarly, the “did:psqr”, “did:dns”, “did:onion” and “did:webs” methods. These methods
are similar to the “did:web” method, but they add additional features. For example,
the “did:onion” method resolves the DIDs as an onion address over the Tor network.
Another method that must be cited in this category is the “did:gns” method, which is
part of the GNU Name System (GNS) [68]. GNS aims to provide a privacy-preserving
and distributed DNS-like resolver. To this end, the “did:gns” method is used to identify
entities in the network. The resolution is done through a Distributed Hash Table [69].
Hence, this method is not part of a DIMS but of a naming service. Furthermore, their
names are not human-choosable (c.f., Chapter 7), thus making it possible to implement
it without consensus. Similarly, the “did:ssb” method [70] uses the secure scuttlebutt
network, a fault-tolerant, eventually consistent ledger for social media. The “did:ssb”
method is used to identify feeds of a given user. The resolution of the DID will, therefore,
output the feed, which is considered to be the DID document. We consider it a DNS-like
method as it uses an existing resolution method, but it uses the DID as a new type of
identifier for the given resource.

4. IPFS-based methods. The fifth category comprises Inter Planetary File System-based
(IPFS) [71] methods. In the same way as with the previous category, the projects solely
based on IPFS (e.g., “did:schema”) do not provide auxiliary features. On the other hand,
some of these methods (e.g., “did:ipid”) use or propose to use a blockchain anchor to
provide additional security and usability features.

5. The Holochain method. The fourth category comprises only one method, the “did:holo”
method, used by the Holochain DIMS [72]. The idea of this category is to provide a com-
plete DIMS without the use of consensus nor strongly consistent ledgers (such as Byzan-
tine Reliable Broadcast (BRB) based ledgers [73]). Even though documentation about
this scheme is scarce, we can say that they do not require consensus for their DIMS.
However, they do not propose auxiliary features such as credential revocation, account
recovery, or multi-device capabilities. They associate each person’s identity with a unique
device, thus reducing all the synchronization problems we will study in the following of
this thesis to a local problem. However, as stated before, this DIMS lacks essential fea-
tures to be usable. Holochain’s documentation assesses these problems. However, as we
will see in the following, they may be unable to overcome them without an in-depth
modification of their protocol.

35

Chapter 3 – State of the art

Most existing DIMSs that propose auxiliary features (revocation, multi-device capabilities,
identification of actors, etc.) use consensus-based blockchains or central servers as their main
storage framework. We highlighted some protocols that try to free themselves from blockchain
tyranny. However, to the best of our knowledge, all of them solve the problem by removing
features from their systems and, thus, by reducing usability. The problem with these initiatives
is that they don’t base their constructions on a solid theoretical basis. This assessment leads to
the following question: Can a privacy-preserving, fully distributed identity management system
be implemented without using a consensus algorithm as the main communication primitive while
keeping all required auxiliary features? This is one of the two questions answered in this thesis
by thoroughly studying the different blocks required to build a DIMS and by providing tools to
solve open questions.

3.5 Our contributions: Privacy Preserving and fully-Distributed
Identity Management Systems

From the overview we presented, the reader can see that we lack important theoretical basis
to build efficient PPfDIMSs. First, most implemented frameworks do not respect privacy, as
they use JSON Web Token (JWT) rather than Anonymous Credentials. Furthermore, even
implementations that use ACs do not use their more privacy-preserving versions: Hidden Issuer
Anonymous Credential. This type of AC, presented in Chapter 5, aims to completely protect user
privacy when presenting ACs. Indeed, the implemented frameworks reveal a lot of information
about users when they present their identity element. These privacy issues are explored and
solved in Chapter 5. On the other hand, and as stated in the previous section, almost all DIMS
projects use blockchains. Blockchains, and more precisely, consensus algorithms, have several
flaws. They have huge storage overhead (linear with the number of transactions for most of the
blockchains), require synchronization between their participants, have high latencies, and usually
restrict parallel processing of operations. To the best of our knowledge, this thesis is the first to
thoroughly study the need for synchronization in DIMSs and propose techniques to reduce this
need to its minimum. Thus increasing efficiency in terms of storage, message complexity, and
latency. These works are explored in Chapter 6, Chapter 7, Chapter 8, and Chapter 9. Those
different contributions are then summarized in Chapter 10.

36

Chapter 4

MODEL AND BUILDING BLOCKS

This chapter presents the different models considered in the different chapters of this thesis.
This thesis is comprised of two parts, the first part is relative to Anonymous Credentials, and

uses a cryptographic approach.
The second part studies the requirements of PPfDIMSs in term of distributed systems along

with new techniques to reach those requirements while minimizing synchronization between pro-
cesses. The study of the requirements of a PPfDIMS (Chapter 6 and Chapter 7) foccusses on
synchronization needs between processes of the system. Hence, the main metric we will use is the
consensus number [27] of the different objects used to build a PPfDIMS. The consensus number
of a distributed object is formally defined in a shared memory model. However, the goal of this
thesis is to present a theoretical framework for PPfDIMS in the message passing model. Hence,
in this chapter, we present those two different model.

4.1 Distributed-Systems Notions and Definitions

A distributed system is a set of processes that communicate using a medium, either shared
memory or message passing. In this thesis, we use two different distributed system models,
the shared memory model is used to study the consensus number (i.e., the synchronization
requirements) of access control in distributed systems, and the message passing model is used
to propose new ways to build efficient distributed ledgers in the context of PPfDIMS.

4.1.1 Shared memory model

Let Π be a set of n asynchronous sequential crash-prone processes p1, · · · , pn. Sequential
means that each process invokes one operation of its own algorithm at a time. We assume the
local processing time to be instantaneous, but the system is asynchronous. This means that
non-local operations can take a finite but arbitrarily long time and that the relative speeds
between the clocks of the different processes are unknown. Finally, processes are crash-prone:
any number of processes can prematurely and definitely halt their executions. A process that
crashes is called faulty. Otherwise, it is called correct. The system is eponymous: a unique positive
integer identifies each process, and this identifier is known to all other processes.

37

Chapter 4 – Model and building blocks

Communication Processes communicate via shared objects of type T . Each operation on a
shared object is associated with two events: an invocation and a response. An object type T is
defined by a tuple (Q,Q0, O,R,∆), where Q is a set of states, Q0 ⊆ Q is the set of initial states,
O is the set of operations a process can use to access this object, R is the set of responses to
these operations, and ∆ ⊆ Π×Q×O×R×Q is the transition function defining how a process
can access and modify an object.

Histories and Linearizability A history [74] is a sequence of invocations and responses in
the execution of an algorithm.

An invocation with no matching response in a history, H, is called a pending invocation.
A sequential history is one where the first event is an invocation, and each invocation—except
possibly the last one—is immediately followed by the associated response. A sub-history is a
sub-sequence of events in a history. A process sub-historyH|pi of a historyH is a sub-sequence of
all the events in H whose associated process is pi. Given an object x, we can similarly define the
object sub-history H|x. Two histories H and H ′ are equivalent if H|pi = H ′|pi, ∀i ∈ {1, · · · , n}.

In Chapters 6 and 7, we define the specification of a shared object, x, as the set of all the
allowed sub-histories, H|x. We talk about a sequential specification if all the histories in this
set are sequential. A legal history is a history H in which, for all objects xi of this history, H|xi
belongs to the specification of xi. The completion H̄ of a history H is obtained by extending
all the pending invocations in H with the associated matching responses. A history H induces
an irreflexive partial order <H on operations, i.e., op0 <H op1 if the response to the operation
op0 precedes the invocation of operation op1. A history is sequential if <H is a total order. The
algorithm executed by a correct process is wait-free if it always terminates after a finite number
of steps. A history H is linearizable if a completion H̄ of H is equivalent to some legal sequential
history S and <H⊆<S .

Consensus number The consensus number of an object of type T (noted cons(T)) is the
largest n such that it is possible to wait-free implement a consensus object from atomic read/write
registers and objects of type T in a system of n processes. If an object of type T makes it possible
to wait-free implement a consensus object in a system of any number of processes, we say the
consensus number of this object is ∞. Herlihy [27] proved the following well-known theorem.

Theorem 4.1. Let X and Y be two atomic objects type such that cons(X) = m and
cons(Y) = n, and m < n. There is no wait-free implementation of an object of type Y from
objects of type X and read/write registers in a system of more than m processes.

In Chapter 6 and Chapter 7, we will determine the consensus number of the distributed
objects using Atomic Snapshot objects and consensus objects in a set of k processes. A Single
Writer Multi Reader (SWMR) [75] Atomic Snapshot object is an array of fixed size, which

38

4.1. Distributed-Systems Notions and Definitions

supports two operations: Snapshot and Update. The Snapshot() operation allows a process pi
to read the whole array in one atomic operation. The Update(v, i) operation allows a process
pi to write the value v in the i-th position of the array. Afek et al. showed that a SWMR
Snapshot object can be wait-free implemented from read/write registers [75], i.e., this object
type has consensus number 1. In this thesis, we assume that all Atomic Snapshot objects used
are SWMR. A consensus object provides processes with a single one-shot operation Propose.
When a process pi invokes Propose(v) it proposes v. This invocation returns a decided value
such that the following three properties are satisfied.

— Validity. If a correct process decides value v, then v was proposed by some process;
— Agreement. No two correct processes decide differently; and
— Termination. Every correct process eventually decides.

A k-consensus object is a consensus object accessed by at most k processes. From the k + 1th
time it is accessed, it returns ⊥.

4.1.2 Message passing model

The message passing model is the main model considered throughout this thesis. We refine
the model for the specific needs of PPfDIMSs. More precisely, we consider two different type of
processes. Processes in a set Π who maintain a distributed ledger and which will be refered as
nodes, and processes who use the ledger as clients. The second type of processes are either users,
issuers or verifiers. Moreover, from section Chapter 9 onward, we consider that a user may own
multiple devices. Hence, we do not consider users as single processes.

We consider an asynchronous message-passing system, where processes communicates using
authenticated, asynchronous, reliable, point to point channels. “Authenticated” means that a
process that receives a message knows its sender, and no malicious adversary can impersonate
a correct sender. “Asynchronous” means that each message can be delayed an arbitrary finite
long time, and that processes can take an arbitrary but finite long time to process an incoming
message. “Reliable” means that no message is dropped, nor modified after it is sent.

We consider a distributed ledger L that is implemented by a set Π of processes that run a
distributed algorithm. Some processes in Π may be Byzantine, i.e., they can arbitrarily deviate
from their prescribed algorithm. We consider t to be the maximum number of Byzantine pro-
cesses in Π, where t < n. Generally, we consider n ≥ 3t+ 1. In specific cases, we will adjust this
threshold for efficiency gains.

We also consider a set of issuers I and a set of verifiers V. Each verifier v ∈ V is associated
to a finite set of trusted issuers Tv ∈ Ikv , where kv is an arbitrary integer. Finally, we consider
a set of devices D.

We consider that each device d ∈ D is associated to a secret key skd ∈ SKD, and each issuer
I ∈ I is associated to a secret key skI ∈ SKI . Secret keys are assumed to be known only by the

39

Chapter 4 – Model and building blocks

process it is associated to, and never shared. Each secret key is associated to a public key. Unlike
secret keys, public keys can be widely shared. Processes in Π (and their public keys) are known
by all the other processes in the system, whereas processes in I,V or D may not be known. For
simplicity sake, we assume a public/secret key of any actor can be used for any cryptographic
scheme. In reality, each actor should possess a secret/public key pair for each cryptographic
protocol.

In this thesis, the word message refers to messages sent by the algorithm on the network level
to implement an abstraction, they are sent and received. The word value, on the other hand,
refers to the payloads disseminated at the user level by the abstractions, they are proposed and
accepted (or decided in the case of consensus).

Finally, the CAC abstraction (presented in Chapter 8) uses a best-effort (unreliable) broad-
cast abstraction, noted be_broadcast, as an underlying communication primitive. An invocation
of be_broadcast msg by a correct process pi sends the same message msg to all processes in Π.
We say that messages are “be-broadcast” and “received”.

4.2 Distributed building blocks

In the followings, we will refer to two classical distribute abstractions: the consensus abstrac-
tion [22] and the Byzantine Reliable Broadcast abstraction [73]. We present both abstractions
in this section.

4.2.1 Consensus

Consensus is a cooperation abstraction that allows a set of processes to agree on one of the
values proposed by one of them (or a default value in some specific scenarios). Consensus offers
one operation Propose and one callback Decide and is defined by the following four properties.

— Termination. If all processes are correct and a process decides a value v, then v was
proposed by some process.

— Agreement. No two correct processes decide different values.
— Integrity. A correct process decides at most one value.
— Termination. If a correct process proposes a value v, then all correct processes eventually

decide some value (not necessarily v).
Note that the termination property differs slightly from the usual definition of consensus: we

do not always guarantee termination, only when some correct process proposes a value.
This problem is well known to be unsolvable in an asynchronous system in the presence of

faulty processes [22]. Algorithms that do solve consensus need to circumvent this impossibility,
either by assuming some sort of synchronization, or by reducing weakening the termination
property, such that the correct processes decide only with high probability.

40

4.3. Cryptographic Notions and Definitions

4.2.2 Byzantine Reliable Broadcast

The Byzantine Reliable Broadcast (BRB) abstraction [73] is a broadcast abstraction. If a
correct process broadacst a value, then this value is delivered by all the other correct processes.
If a Byzantine process proposes a value, then, either this value is not delivered by the correct
processes, or it is delivered by all the correct processes. Importantly, processes deliver values in
different order. Hence, this abstraction is strictly less powerfull than the consensus abstraction.
Formally, the BRB abstraction has one operation Broadcast and one callback Deliver, they fulfill
the following properties [24]:

— Validity. If a correct process pi delivers a message from a correct process pj , then pj

broadcast it;
— Integrity. A correct process pi delivers at most one message from sender pj .
— Termination-1. If a correct process broadcasts a message, it delivers it.
— Termination-2. If a correct process delivers a message from a (correct or faulty) process

pj , then all correct processes deliver it.

4.3 Cryptographic Notions and Definitions

This section introduces some notation and the definitions of the main cryptographic building
blocks used in this thesis.

— Let G be a group. We note by 〈g〉 = G the fact that g is the generator of G, and we note
1G the neutral element of G.

— Let Z be a set, we note by a←$Z the fact that a is chosen uniformly at random in the
set Z.

Hash Function The different works of this thesis rely on cryptographic hash functions [76].

Definition 4.1. A hash function is a map H which takes an element of arbitrary size A ∈ Z
and outputs an element B of fixed size p. A cryptographic hash function has two additional
properties:

— Pre-image resistance. given a = H(b), no probabilistic polynomial time (PPT) adversary
can find b with non-negligible probability; and

— Collision resistance. no PPT adversary can find, with non-negligible probability, x ∈ Z
and y ∈ Z such that H(x) = H(y) and x 6= y.

Bilinear Pairing This thesis (namely Chapter 5) uses bilinear pairings for some of its devel-
opements.

Definition 4.2. Let G1 = 〈g1〉, G2 = 〈g2〉, GT = 〈gT 〉, three groups of prime order p. A
bilinear pairing is a map e : G1 × G2 → GT that has the bilinearity property. This means that

41

Chapter 4 – Model and building blocks

e(ga1 , g2) = e(g1, g2)a = e(g1, g
a
2), for all a ∈ {0, · · · , p− 1};

To be efficiently used in cryptography we also require this map to be non-degenerate and
efficiently computable:

— Non degeneracy ∀A ∈ G1, A 6= 1G1 ,∃B ∈ G2 such that e(A,B) 6= 1GT and ∀B ∈ G2, B 6=
1G2 ,∃A ∈ G1 such that e(A,B) 6= 1GT ;

— Efficient computability. there is an efficient algorithm to compute e.
Furthermore, we can classify bilinear pairings in three types [77]. In our construction, we

will use a type-3 bilinear pairing. Type-3 bilinear pairings are pairings where G1 6= G2 6= GT

and there is no efficiently computable morphism ψ1 : G2 → G1 or ψ2 : G1 → G2.

Zero-Knowledge Proof To protect the privacy of their data, the actors of an IMS often
need to prove knowledge of values, while keeping them secret. A Zero-Knowledge Proof (ZKP)
system is a tool that matches this requirement by allowing a prover to prove to a verifier that
it knows a secret statement, without revealing it.

A Zero Knowledge Proof (ZKP) system is an interactive protocol —i.e., multiple messages
must be exchanged between the prover and the verifier — that allows a prover to prove some
boolean statement about a value x to a verifier without leaking any information about x. For-
mally, let L be a language in the complexity class NP, and let (x,w) be a tuple. There exist
a polynomial time algorithm A such that if x ∈ L, then A(x,w) = 1. A outputs 0 otherwise.
We call w the witness. A ZKP system is a system of five algorithms that allows a prover to
provide a proof π. π proves that a value x fulfills the relation x ∈ L, where L is a language of
the complexity class NP. Furthermore, π is indistinguishable from another valid proof π∗ built
using an unbounded algorithm S that does not takes x as input. In other words, the verifier can
verify that the Prover knows a value in L, but it cannot learn this value. We note ZKPL the
set of possible ZKP which refers to the language L.

In this thesis, we will use the convenient notation of ZKP protocols introduced by Camenisch
and Stadler [78]. The aim of the notation is to explain what is proven, and what is hidden, in a
compact way. For example, the notation for a ZKP about the knowledge of the exponent α in
the expression y = gα is

ZKPoK{(α) : y = gα} (4.1)

Where the elements between parentheses (α) are the elements known only by the prover, and
the equations on the right explain how the prover commits to those elements. The letters on
the left define what proof is being conducted. Here, ZKPoK means Zero Knowledge Proof of
Knowledge, which explains that the prover will prove knowledge of an element. We will also use
ZKPoE, which is a Zero Knowledge Proof of Equality. The goal of a ZKPoE is to prove that
different elements have the same exponent. Chaum and Pedersen presented a version with only
two elements in 1993 [79], but this construction can be generalized to any number of elements.

42

4.3. Cryptographic Notions and Definitions

We will use the prefix “NI-” to refer to non-interactive proofs. An instantiation of NI-ZKPoK in
the random oracle model was described by Fiat and Shamir [80], and later modified and proved
secure by Bernhard, Pereira, and Warinschi [81].

Signature Scheme A digital signature [76] can be seen as a proof that a given message m
was certified by an issuer. Here, we give a formal definition for a digital signature scheme:

Definition 4.3. A digital signature scheme Σ is defined as a tuple of four algorithms
(Setup, KeyGen, Sign, Verify).

1. (pp) ← Setup(λ) : On input of a security parameter λ, the algorithm outputs pp, a
description of public parameters whose security level depends on λ;

2. (sk, pk) ← KeyGen(pp): on input of a setup parameter pp, the algorithm computes a
secret/public key pair (sk, pk);

3. (σ)← Sign(pp,m, sk): on input of a setup parameter pp, a message m, and a secret key
sk, the algorithm outputs a signature σ; and

4. {0, 1} ← Verify(pp,m, pk, σ): on input of a setup parameter pp, a message m, a public
key pk, and a signature σ, the algorithm outputs 1 if σ is a valid signature on the
message m by the secret key associated with pk, and 0 otherwise.

Security Notion: A signature is secure if no adversary can create a signature in the name
of some other issuer, and if no adversary can modify the previously signed message without
invalidating the signature. The standard security notion for a signature scheme is the Existential
Unforgeability under Chosen Message Attack (EUF-CMA) [82]. This notion states that the
scheme is resistant against an adversary that can make an arbitrary number of queries to a
signing oracle.

Blind signatures A blind signature [83] is a digital signature that make it possible to for
the recipient of the signature to hide to the issuer the message m it signs using a commitment.
The issuer signs the commitment and, when the recipient received the signature, it can open
the commitment, thus ending up with a signature on the message m that can be verified with
the classical Verify algorithm. A blind signature scheme is a digital signature scheme with three
additional operations, CommitMessage,SignCommitment and UncommitSig which are defined as:

— (C) ← CommitMessage(pp,m): on input of public parameters pp, and a message m, the
algorithm, executed by the recipient of a signature, outputs C a commitment to the
message m.

— σ ← SignCommitment(pp, C, sk): on input of public parameters pp, a commitment to a
message C, and a secret key sk, the algorithm outputs a signature σ;

43

Chapter 4 – Model and building blocks

— σ′ ← UncommitSig(pp, σ,m,C, pk): on input of public parameters pp, a message m, a
commitment C to m, a public key pk and a signature on C σ, the algorithm executed by
the recipient of a signature, outputs σ′, a signature on the message m.

A signature on a commitment is equivalent to a signature on the actual message, i.e.,

Verify(pp,m, pk,UncommitSig(pp, SignCommitment(pp,

CommitMessage(pp,m, pk), sk),m,C, pk)) = Verify(pp,m, pk,Sign(pp,m, sk),m,C, pk)).

Unlinkable signatures Informally, the unlinkability property states that, when a user
presents multiple randomized credentials to a verifier, the latter cannot tell whether they come
from the same original signature or from two different signatures. Signature schemes that provide
unlinkability are equipped with one additional algorithm Randomize.

— σ′ ← Randomize(pp,m, sk, σ): on input of a setup parameter pp, a message m, a secret
key sk, and a signature σ, the algorithm outputs a randomized signature σ′.

A randomized signature can be verified using the same verifying algorithm:

Verify(pp,m, pk,Randomize(σ)) = Verify(pp,m, pk, σ).

The unlinkability property can be stated as follows:
Unlinkability: Let b be a random bit, i.e., b←$ {0, 1}. Let pp = Setup(1λ) and (pk, sk) ←

Keygen(pp). We choose a message m and compute the signature σ = Sign(pp,m, sk). Further-
more, σ′ is Sign(pp,m, sk) if b = 0 and Randomize(pp,m, sk, σ) if b = 1. A signature scheme is
unlinkable if, for any PPT adversary A which knows m, pp, pk, σ and σ′, the probability for A
to output b′ = b is lesser than 1

2 + ε, where ε is negligible.

Signature on vector of messages and zero knowledge proof of knowledge of signature
It is often required to prove statement about signed messages, without revealing them. A zero
knowledge proof of signature makes it possible to prove that the recipient of a signature knows
a message m in a signature, without revealing the message. It can then compose this proof of
knowledge with another statement. For example, it can prove that it knows the message m of
a signature, and the value of m is greater than another value. We note a ZKP of signature on
a message m as follows (using our simplified Camenisch Stadler notation). In this notation, we
also prove that the message m respect some condition represented by the function f .

NI − ZKP{(m) : Verify(pp,m, σ, pk) = 1 ∧ f(m) = 1}.

44

4.3. Cryptographic Notions and Definitions

Furthermore, it is also interesting to prove that multiple messages are signed by the same
entity, and that those messages are linked. To do so, it is often required to have signatures on
vector of messages. Hence, the recipient of a signature can prove that it knows a signature on
a message m1 and a message m2, and that the signatures on those messages were produced at
the same time.

Anonymous Credentials An anonymous credential (AC) scheme [84, 85, 86, 6] is a crypto-
graphic signature scheme with three additional properties. Namely, unlinkability, zero knowledge
proof of signature and signature on commitments (or blind signatures). Furthermore, most AC
schemes makes it possible to sign vector of messages.

Issuer-indistinguishable threshold anonymous credential A specific type of anonymous
credential scheme is the threshold anonymous credential scheme. It combines properties of
threshold signatures [87] with properties of anonymous credentials. This scheme works as follows.
Signers produce fragments of signature and send them to a recipient. The recipient wait until
it receives ` distinct fragments σ1, . . . , σ` and aggregates them into one signature σ. This aggre-
gated signature proves that the recipient knows ` signatures on a message m—or on a vector
of messages M—from ` different issuers out of n authorized issuers. A verifier can verify that,
indeed, σ is an aggregation of ` signatures from distinct issuers. However, the verifier cannot
learn the identity of the issuers of the signatures that constitute σ, i.e., it cannot know if the sig-
nature of a specific issuer was used to produce σ. In addition, a threshold anonymous credential
scheme incorporates all the properties of an anonymous credential scheme, i.e., unlinkability,
zero knowledge proof of signature and blind signatures.

To achieve this goal, one must add two operations to a classical Anonymous Credential
scheme, the AggKey and the AggCred operations. The AggKey is used to build a group key that
will be used to verify the aggregated signature, and the AggCred operation is used to aggregate
the credentials.

We say that a signature scheme is a (t, n)-threshold anonymous credential scheme if it fulfils
the Anonymous Credential properties and two additional properties:

— (t, n)-aggregation. Let AggKey = AggKey(pk1, . . . , pkn) be the aggregation of n keys,
and let Agg-σ be a signature. If Verify(pp,m,AggKey,Agg-σ) = 1, then with high
probability, Agg-σ = AggCred(σ1, . . . , σl), where, ∀ σi, σj ∈ {σ1, . . . , σl},∃pka, pkb ∈
{pk1, . . . , pkn}, Verify(pp,m, σi, pka) = 1 and Verify(pp,m, σj , pkb) = 1 and pka 6= pkb.

— Issuer-indistinguishability. Let an adversary A who is given {sk1, . . . , skn} a set of
secret keys, {pk1, . . . , pkn} their associated public keys, a set of l signatures {σ1, . . . , σl}
such that ∀i ∈ {1, . . . , l},∃pka ∈ {pk1, . . . , pkn},Verify(pp,m, σi, pka) = 1, an aggregated
key AggKey = AggKey(pk1, . . . , pkn), and an aggregated signature AggCred such that

45

Chapter 4 – Model and building blocks

Verify(pp,m,AggKey,Agg-σ). The probability for A to determine if AggCred is the ag-
gregation of {σ1, . . . , σl} is negligible.

There exists one scheme that achieve those additionnal properties, Coconut [20]. To achieve
this goal, Coconut combines the Pointcheval-Sanders signature scheme [84] with techniques
inherited from the Shamir Secret Sharing [88].

Assumptions The signature scheme presented in Chapter 5 relies on several computationnal
complexity assumptions. The first is the Discrete Logarithm (DL) assumption [89]. The Dl
assumption is defined as:

Definition 4.4. Discrete Logarithm assumption Let G = 〈g〉 be group of prime order n,
let a ∈ Zn be a scalar and A = ga. Let A be a PPT adversary. The DL assumption holds if the
probability for A to compute a given A and g is lesser or equal to ε, where epsilon is negligible.

The second assumption is the Computational Diffie Hellman Assumption (CDH) [89], whose
definition is:

Definition 4.5. Computationnal Diffie Hellman assumption Let G = 〈g〉 be group of
prime order n, let a, b ∈ Zn be two scalars and A = ga, B = gb. Let A be a PPT adversary. The
CDH assumption holds if the probability for A to compute C = gab given A,B and g is lesser
or equal to ε, where epsilon is negligible.

The third assumption is the Decisional Diffie Hellman (DDH) assumption [89] defined as:

Definition 4.6. Decisional Diffie Hellman assumption Let G = 〈g〉 be group of prime
order n, let a, b ∈ Zn be two scalars and A = ga, B = gb. Let A be a PPT adversary. Let
s←$ {0, 1}, if s = 0, then C = gab and if s = 1 then C←$G. The DDH assumption holds if the
probability for A to output s′ such that s′ = s given A,B,C and g is lesser or equal to 1

2 + ε,
where epsilon is negligible.

We also assume that there exists a type-3 bilinear pairing, e, defined on elliptic curves over
a finite field and a cryptographic hash function, H.

4.4 Notations

We denote by 〈v1, ..., vk〉 the k-tuple containing the sequence of k values v1 to vk. The ?
symbol is used as the wildcard symbol (any value can be matched).

46

Chapter 5

A PRIVACY PRESERVING ANONYMOUS

CREDENTIAL SCHEME FOR DIMS:
HIDDEN ISSUER ANONYMOUS

CREDENTIAL

This chapter introduces the notion of hidden issuer anonymous credentials. It formally defines
the problem of an Anonymous Credential scheme that respects the issuer-indistinguishabilty and
the trusted issuer properties. Then, it proposes an implementation of the scheme based on a
new cryptographic primitive: the Aggregator. Finally, a comparison with the state-of-the-art is
conducted. It was written in collaboration with Daniel Bosk, Davide Frey and Guillaume Piolle.
It was published in the Privacy Enhancing Technologies conference in 2022 [15].

5.1 introduction

Self Sovereign Identity (SSI) aims to provide users with a privacy-preserving manner to prove
their identities.

In this chapter, we focus on two of the ten principles defined by Allen [1]: consent and
minimization. Consent states that users must remain in control of their identities by agreeing
to their usage by third parties. Minimization states that the system must only disclose minimal
information about a user’s identity, effectively protecting their privacy. SSI frameworks allow
for versatile, user-centric, privacy-preserving IMSs. Many SSI implementations have appeared
in recent years, from EL PASSO [90] to the more decentralized Sovrin implementation [52, 91].
Most of them protect privacy by relying on Anonymous Credential (AC).

An AC scheme, introduced by Chaum [6] in 1985, allows a user to prove his/her identity
elements without disclosing any information other than the one he/she intends to disclose. It
relies on the presence of three groups of actors: users, identity providers (or issuers), and service
providers (or verifiers) as defined in Chapter 1. In this section, we use the following running
example to explain our contributions: a user wants to access a bar. However, they need to prove

47

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

that they have received their Covid-19 vaccines and that they are of legal age to buy alcohol. If
the bar organizes a concert, the user will also have to present a ticket.

The separation between issuers and verifiers is a key factor for privacy preservation in AC
schemes. Establishing a proof of identity most likely requires access to numerous information
items. For example, a user that wants to prove to be over 18 years old will typically provide an
ID card with a picture, which is then verified in person or by matching the ID to a video or a
photograph. An AC scheme allows the user to disclose all extra information (picture, date of
birth, name or all other elements on the id card) only to the issuer. The issuer then provides
the user with a certification of an identity attribute [92] (being over 18). This takes the form of
a digital signature that the user can employ as a credential with the verifier in order to access
its services.

However, the separation between the issuer and the verifier is not complete. A verifier can
only accept a credential if it trusts the corresponding issuer, and by using a key produced by
the issuer itself. This raises important privacy concerns. In the previous Covid-19 example, a
verifier may exploit the identity of the issuer (a vaccination center in this case) to infer where
the user lives. Similarly, in the case of a certificate stating that a user is 18 years old, knowledge
of the issuer may help the verifier infer where the user was born. These pieces of information
constitute partial identifiers, which, when combined, may lead to the full identification of a user.
This situation can be even worse if the verifier and the issuer collude. Let us assume that a
covid-19 vaccination certificate states the place and date of vaccination. If the user is the only
person vaccinated at that time on that date, verifier and issuer together can easily identify the
user. These privacy concerns can undermine the very objective of SSIs, violating minimization
and consent.

When we wrote this paper before its publication at PETs, none of the existing existing
implementations [52, 90, 93, 60], nor the AC instantiations [94, 95, 84, 34, 85] offered protection
against these vulnerabilities in the absence of a trusted setup. A paper [26] that appeared
concurrently with the preparation of our own proposes a scheme addressing the same goal in the
presence of a trusted setup. We discuss this scheme and provide a comparison in Sections 5.9
and 5.3.

In this chapter, we take a different approach. We formalize the key features of hidden-issuer
anonymous credentials into a novel cryptographic primitive and instantiate it into a solution
that does not require a trusted setup. In doing so, we make four main contributions.

— We introduce the cryptographic aggregator, a new primitive that makes it possible to
prove the set-membership of an element, without revealing it, and while only knowing a
commitment to it. We formally define this new primitive and give a concrete instantiation
that works in the absence of a trusted setup.

— We propose a novel credential scheme that provides issuer indistinguishability from the

48

5.2. Problem Statement

verifier’s point of view with an instantiation that does not require a trusted setup. Our
scheme uses aggregators to hide the issuer of a given credential among a set of issuers
that are trusted by the verifier. This allows the verifier to trust the information in the
credential even if it does not know its precise issuer. This new scheme ensures that verifiers
cannot use a credential to infer personal information that it does not already disclose.
Our scheme supports non-transferable signatures and signatures-on-committed-message.

— We prove the security of our scheme. Specifically, we prove its soundness under the
Computational Diffie-Hellman assumption, in the Random Oracle model. We also prove
the indistinguishability of the issuer among the whole set of issuers trusted by one verifier
under the Decisional Diffie-Hellman assumption.

— We provide an open-source implementation of our scheme in Rust and evaluate its per-
formance.

5.2 Problem Statement

We aim to provide an AC that hides not only the identity of the user, but also that of the
issuer, thereby reducing the associated privacy risks. In the rest of this section, we define the
properties we seek for our Hidden-Issuer Anonymous-Credential scheme, before describing our
adversary model.

Properties We focus on two of the principles enunciated by Allen [1]: minimization and con-
sent. Existing credential schemes satisfy these principles only partially because, as we discussed,
knowledge of the issuer can reveal personal information about the user. Specifically, they provide
minimization and consent (i) by sharing only the identity elements that were selected by the
user, (ii) by providing unlinkability, i.e., by ensuring that multiple uses of the same credential
cannot be linked together, and (iii) by providing a way for the issuer to sign committed message,
i.e., the issuer is able to sign a message without learning the actual content of this message.

In order to hide the identity of the issuer from the verifier, we introduce two additional
properties:

— Issuer indistinguishability states that, given two credentials certifying the same types
of messages, a verifier should not be able to say if the issuers of these credential are
distinct or not.

— Trusted issuer states that the verifier should be certain that the credential it accepts
has been issued by an issuer it trusts. This would be trivial in a classic Anonymous
Credential scheme, but becomes relevant once we hide the identity of the issuer.

The credential should satisfy these properties while being used an arbitrary number of times
(multi-show) and with an arbitrary number of different verifiers (multi-verifier). It should also

49

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

have an optional non-transferable-credential feature. To ensure usability, it should be efficiently
computable with low-end modern computers for its three types of actors. Finally, the scheme
should not require a trusted setup as this would either introduce a trusted third party or require
complex distributed synchronization protocols [96, 97].

Need for a Decentralized Solution At first glance, it might appear that the above prop-
erties could be provided by a central anonymizer—possibly chosen by a decentralized leader-
election algorithm—to which issuers would delegate the signature of all credentials. However,
this solution would defeat the very point of a decentralized IMS, adding the (strong) hypothesis
that all issuers and verifiers trust the same anonymizer, creating a single point of failure. A veri-
fier would not be able to choose specific trusted issuers and would need to trust all the issuers the
anonymizer represents. A centralized anonymizer would also complicate the issuance workflow.
Let us consider a bar that verifies tickets for an event it organizes. The bar can trust multiple
ticket resellers but it can also sell tickets directly to its clients. With a central anonymizer, the
bar would thus need to register to the anonymizer responsible for ticket sales. This would cre-
ate unnecessary overhead, particularly if the bar sells tickets only occasionally. Moreover, if the
central anonymizer is responsible for a specific population, e.g., a region or a country, its usage
would still leak information about this region. A decentralized IMS using AC should instead
(i) give verifiers the freedom to trust their preferred issuers, and (ii) give users the freedom to
choose verifiers based on the issuers they trust.

Adversary Model We consider two adversaries: 1) A malicious verifier colludes with a subset
or all of its trusted issuers. It has access to their secret keys, and to all previously issued
credentials. It tries to reveal the identity of the owner or of the issuer of a credential. 2) A
malicious user tries to use credentials on messages not signed by any trusted issuers. He can
request multiple signatures from the signing oracles of each trusted issuer, and obtain all their
public keys.

Colluding parties can share any information with each other. We consider the security of our
system in an isolated world. The only potential flaws considered here are the ones within the
scheme. We provide a formal adversary model in Section 5.6.1.

5.3 Related Work

Anonymous Credentials (AC) have been a well studied topic since they were introduced by
Chaum [6] in 1985. This first work defines them as signatures certifying that an element was
issued by a given entity, while ensuring unlinkability between each use of this signature by a
user. The first efficient implementation is due to Camenisch and Lysyanskaya in 2001 [34]. This

50

5.3. Related Work

work offers a cryptographic basis to build an efficiently computable signature, with the proper-
ties listed by Chaum. It also adds properties, in particular non transferability. Several papers
enhanced this first implementation of Chaum’s principles with more efficient schemes, including
one from the same authors, in 2002 [98]. The first two ACs we cited above are based on RSA
groups. Later evolution made it possible to work on elliptic-curve-based groups with bilinear pair-
ings. These include the 2004 Camenisch and Lysyanskaya article [94], and the 2016 Pointcheval
Sanders (PS) Short Randomizable Signature [84]. The latter raised our interest because, it con-
tains few elements, and it does not contain trap-doors. Even though the AC schemes presented
here require a third-party issuer, it is important to notice that, in some particular cases, such
issuers are not needed. Decentralized anonymous credentials [99] propose an efficient scheme for
cases such as the mitigation of sybil attacks or Direct Anonymous Attestation.

Other interesting signatures have been developed in the meantime, in particular, ring sig-
natures [28], and ad hoc group signatures [100]. These signatures do not disclose the identity
of the issuer of a credential. This property comes from the fact that the issuer is able to hide
among a group of other potential issuers. To create such a signature, the issuer chooses a set
of issuers. It signs a message using these issuers’ public keys and its own secret key. It is then
computationally impossible to find the original issuer. However, only the issuer can create such a
ring, which makes ring signatures impractical for the user, who wants to be able to use their cre-
dential with numerous different verifiers, who do not trust the same set of issuers. An answer to
this problem can be found in oblivious signatures [101], and more precisely in the Universal ring
Signature (US) scheme [102]. The latter makes it possible for a user to recreate a ring signature
from a simple signature, without knowledge of any secret key. Although this signature seems to
meet our issuer indistinguishability requirement, it presents major drawbacks with respect to
HIAC. First, it does not provide unlinkability: the signature in the US scheme is given to the
verifier without randomization. Secondly, the US scheme does not offer collusion resistance: a
verifier colluding with the issuer of a given credential can directly find the real issuer inside the
produced ring, by making a comparison between the elements in the ring and the previously
signed elements. Finally, the US scheme always exhibits linear complexity both in verification
and in the ring-generation process that effectively hides the identity of the issuer. On the other
hand, HIAC always runs verification in constant time, and only exhibits linear-time complexity
for hiding the public key of the issuer when a user interacts with a given verifier for the first
time.

During the writing of this paper, a new AC scheme was proposed by Bobolz et al. [26].
Their paper also offers an AC scheme with issuer indistinguishability. As shown in Table 5.10,
their scheme provides anonymity and credential revocation by means of a revocation authority.
However, it uses an aggregator-like construct that is less efficient than our own (VerifierSetup
and IntegrityVerification lines of Table 5.4) and it employs Groth’s signature scheme [103],

51

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

which requires a trusted setup—the value Y in the signature.

This construction has one advantage over the implementation proposed in this chapter, it
provides efficient Zero Knowledge Proof of Knowledge of signatures. Because both our solution
and theirs use bilinear pairings, and because our aggregator is more efficient, but their signature
offers more properties, it seems interesting to explore the perspective of a HIAC scheme built
using their signature scheme and our aggregator.

Our new aggregator primitive makes it possible to prove the set-membership of a value,
without revealing it, and while knowing only a commitment to it. The state of the art in the
domain of set-membership uses two different approaches. The first one is based on cryptographic
accumulators [104, 105, 98, 106, 107]. These objects enable the aggregation of multiple elements
in one object and the proof that a given element was indeed accumulated. The second way is
more direct, without accumulators [108]. However, all these approaches require the prover to
know the value it proves set-membership of. Our aggregator removes this need: the prover only
needs to know a commitment to the value.

5.4 Overview

We propose a novel Anonymous Credential scheme that does not disclose the identity of a
credential’s issuer. Our scheme introduces a randomization process, run by the user, that hides
the issuer of a credential among the set of issuers trusted by the verifier. To make this possible,
each verifier publishes the list of its trusted issuers in the form of a set, represented by an
aggregator, a new primitive, central to an HIAC scheme. The aggregator allows a user to prove
that a randomized issuer’s public key belongs to a given set, while not knowing the associated
secret key, and while being able to use this key in a subsequent signature-verification process.
This aggregator is independent from the rest of the signature scheme. The only interface between
the aggregator and the signature is the randomized issuer’s public key.

When the user wants to use a credential received from an issuer, they randomize the issuer’s
public key, while providing a proof that the issuer’s key belongs to the verifier’s aggregator.
This randomize-and-prove process hides the identity of the issuer, while allowing the verifier to
ensure that it belongs to its trusted list.

Our Hidden Issuer Anonymous Credential (HIAC) scheme combines a modified Pointcheval
Sanders (PS) signature [84], and two Aggregator instances, one for each secret key used by PS.
We use PS because it does not require a trusted setup, and it is trapdoor-free.

52

5.5. Notations

Notation Correspondence Set
G1,G2,GT Three groups of prime order p linked by a bilinear pairing e, such that e : G1 ×G2 → GT

g1, g2, gT Generator of the groups G1,G2, and GT respectively
p Prime order of the groups G1,G2, and GT P
e Bilinear pairing e : G1 ×G2 → GT

H Collision-free one-way hash function H : Z→ {0, · · · , k}

Table 5.1 – General notations

5.5 Notations

We give a summary of the notations used in the aggregator scheme, and the hIAC scheme. A
general notation table is given in Table 5.1, a summary of the notations used for the aggregator
is given in Table 5.2, and a summary of the notations used in the HIAC scheme is given in
Table 5.3.

Notation Correspondence Value Set
xi Secret values aggregated in the aggregator Z∗p
S Set of values aggregated in the aggregator {g

1
x1
1 , · · · , g

1
xk
1 } (Z∗p)k

C Commitment to one element s ∈ S gxs2 G2
sk Secret set-membership verifcation key Z∗p

W Aggregator set-membership set of witnesses {g
sk 1
xj

1 }kj=1 G1

(W)(j) j-th element of W g
sk 1
xj

1 G1
β Aggregator integrity verification proof NI-ZKPoE{(sk) :∧k

j=1(W)(j) = (Wp)sk
(j)}

r1, r2 Two randomizing elements used by the user Z∗p
to hide the values he commits to

C ′ Randomized commitment to one element s ∈ S gxsr12 G2
πs Proof that C ′ belongs to the set Scomm ((W)′(l) = (W)r2(l), h = gr1r21) (G1,G2)

Table 5.2 – Aggregator notations

5.6 Formal Definitions

5.6.1 Hidden Issuer Anonymous Credential

A Hidden Issuer Anonymous Credential (HIAC) is an Anonymous Credential with the issuer-
indistinguishability and trusted-issuer properties.

Definition 5.1. A Hidden Issuer Anonymous Credential scheme Σ is defined as a tuple
of six algorithms (Setup, IssuerKeygen, Sign, VerifierSetup, Randomize, VerifyRan-
domized) defined as follows:

1. (pp) ← Setup(λ): On input of a security parameter λ, the algorithm outputs pp, a
description of public parameters whose security level depend on λ;

53

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

Notation Correspondence Value Set
iski i-th issuer secret key (xi, yi) (Z∗p)2

ipki i-th issuer public key (X(i) = gxi2 , X̄
(i)
1 = g

1
xi
1 , Y

(i)
1 = gyi1 , (G2 ×G1

¯
Y

(i)
1 = g

1
yi
1 , Y

(i)
2 = gyi2) ×G1 ×G1

×G2)
m Message certified by a credential Z∗p
Ry User’s random secret element used to enhance Z∗p

issuer indistinguishability property of a
credential. Used with only one credential.

R User’s secret random element used to hide Ry Z∗p
in the issuance protocol

u1 User commitment to the i-th issuer key Y (i)
1 (Y (i)

1)RygR1 G1

u2 User commitment to the i-th issuer key Y (i)
1 (Y (i)

2)Ry G2
φ Proof of knowledge of Ry and R in u1 NI-ZKPoK{(Ry, R) :

u1 = (Y (i)
1)RygR1 }

(r(I,1), r(I,2)) I-th issuer’s random secret elements used to (Z∗p)2

enhance the security of the VerifyRandomized
algorithm. Used only once.

σ∆ Outputted value by the issuer I after running the (h1 = g
r(I,1)
1 , h2 = g

r(I,2)
1 , (G1)4

Sign algorithm. Depends on R. σ∆
1 = g

r(I,1)(xI+H(m)(yI+R))
1 ,

σ∆
2 = g

r(I,2)(xI+H(H(m))(yI+R))
1)

σ User final credential. Does not depend on R. (h1 = g
r(I,1)
1 , h2 = g

r(I,2)
1 , (G1)4

σ1 = g
r(I,1)(xI+H(m)yI)
1 ,

σ∆
2 = g

r(I,2)(xI+H(H(m))yI)
1)

Aggx Verifier’s aggregator referring to the x values of
the issuer’s secret keys

Aggy Verifier’s aggregator referring to the y values of
the issuer’s secret keys

auxx Verifier’s aggregator’s auxiliary values associated
to Aggx

auxy Verifier’s aggregator’s auxiliary values associated
to Aggy

Table 5.3 – Hidden issuer Anonymous Credential scheme notations

2. (isk, ipk)← IssuerKeyGen(pp): on input of pp, an issuer computes a secret/public key
pair (isk, ipk);

3. (σ)← Sign(pp,m, isk): on input of pp, of a message m, and of its issuer secret key isk,
an issuer outputs a signature σ;

4. (S, auxS)← VerifierSetup(pp,S ′): on input of pp, and of a set of k′ issuers S ′, a verifier
outputs S a selection of k ≤ k′ trusted issuers in S ′. The algorithm also outputs auxiliary
information auxS = (vpk, vsk), about S; where vpk is public and vsk is secret.

5. (ipk′, πipk′ , σ′)← Randomize(pp, ipk, vpk, S, σ): on input of pp, of a signature σ, of a
public key ipk of the issuer of σ, of a set of issuers S, and of public auxiliary information
vpk, a user:

(a) Checks that vpk is built using elements from S;

54

5.6. Formal Definitions

(b) Produces ipk′, a randomized version of ipk;

(c) Produces a proof πipk′ that ipk′ is an element of S, using vpk;

(d) Produces a randomized signature σ′ using σ, ipk′, and πipk′ .

The algorithm outputs ipk′, πipk′ , and σ′.

6. {0, 1} ← VerifyRandomized(pp, vsk, ipk′, πipk′ , σ′, m): on input of pp, of verifier
secret auxiliary information vsk, of a randomized issuer key ipk′, of a proof πipk′ , of a
randomized signature σ′, and of a message m, a verifier outputs 1 if the proof πipk′ is
valid, and if σ′ is a valid signature on message m, signed with the secret key associated
with ipk′. The algorithm outputs 0 otherwise.

Security notions: We define three security notions: correctness, issuer indistinguishabil-
ity, and trusted issuer. Issuer indistinguishability extends the unlinkability property of classical
Anonymous Credential schemes.

Definition 5.2. (Correctness) A HIAC scheme is correct, if for any honestly built tuple
(pp, vsk, ipk′, πipk′ ,
σ′,m), VerifyRandomized(pp, vsk, ipk′, πipk′ , σ′,m) always outputs 1.

Definition 5.3. (Issuer Indistinguishability)
We define the IssuerIndistinguishGame(A, C), for a challenger C that represents a user,

and the actions preformed by the issuers, and an adversary A that represents a malicious verifier
colluding with all its trusted issuers 1:

— Setup: First, C runs the HIAC Setup algorithm, and two rounds of the Keygen algo-
rithm to obtain two issuer key pairs ({ipk1, ipk2}, {isk1, isk2}). Second, A runs Verifier-
Setup to build a set S with the two issuers, and the associated auxiliary information
(vpk, vsk). Third, C computes σ1 = Sign(pp, isk1,m) and σ2 = Sign(pp, isk2,m) on the
same message m←$Zp. A is given (pp, {ipk1, ipk2}, {isk1, isk2}, σ1, σ2,m,S, vpk, vsk).
Finally, C chooses a random number I←$ {0, 1}.

— Queries: A adaptively requests a finite number of randomized signatures. C answers each
query by returning (ipk′I , πipk′I , σ

′
I)← Randomize(pp, ipkI , vpk, S, σI).

— Output: A eventually outputs I ′ ∈ {0, 1}. The game outputs 1 if I ′ = I. The game
outputs 0 otherwise.

A HIAC scheme is said to be Issuer-Indistinguishable iff, for a negligible ε, the probability for a
PPT Adversary A to win the IssuerIndistinguishGame against a challenger C is:

Pr[IssuerIndistinguishGame(A, C) = 1] ≤ 1
2 + ε

1. The formal definition of the adversary model only takes into account two trusted issuers. However, the
privacy of the users relies on the size of the underlying anonymity set. Therefore, the size of a verifier’s trusted
issuer set should be large enough to hide the users.

55

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

Definition 5.4. (Trusted issuer) We define the TrustedIssuerGame(A, C), for a chal-
lenger C that represents a verifier and its trusted issuers, and an adversary A that represents a
malicious user:

— Setup: C runs HIAC’s Setup, IssuerKeygen, and VerifierSetup algorithms to obtain
public parameters pp, k issuers’ key pairs {(iski, ipki)}ki=1 and one verifier’s information
pair (S, auxS). A is given {(ipki)}ki=1, S, and public information vpk.

— Queries: A adaptively requests signatures on at most n messages m1, ...,mn to the k
issuers. C answers each query by returning for each issuer {σ(i,j) ← Sign(iskj ,mi)}ni=1.

— Output:A eventually outputs a randomized message-signature pair (m∗, (ipk∗, π∗ipk, σ∗)).
The game outputs 1 if VerifyRandomized(pp, vsk, ipk∗, π∗ipk, m∗) = 1∧ ipk∗ 6= S, and
0 otherwise.

An HIAC scheme is said to have the trusted-issuer property if, for a negligible value, ε, the prob-
ability for a Probabilistic Polynomial Time (PPT) Adversary A to win TrustedIssuerGame
against a challenger C is:

Pr[TrustedIssuerGame(A, C) = 1] ≤ ε

Definition 5.5. (Existential Unforgeability Against Chosen Message Attack) We define
the EUFCMAGame (A, C), for a challenger C that represents a verifier and its trusted issuers,
and an adversary A that represents a malicious user:

— Setup: C runs the HIAC’s Setup, IssuerKeygen, and VerifierSetup algorithms to
obtain the public parameters pp, k issuers’ key pairs {(iski, ipki)}ki=1 and one verifier’s
information pair (S, auxS). A is given {(ipki)}ki=1, S, and vpk.

— Queries: A adaptively requests signatures on at most n messages m1, ...,mn from
the k issuers. C answers each query by returning, for each issuer, {{σ(i,j) ←
Sign(iskj ,mi)}ni=1}kj=1.

— Output:A eventually outputs a randomized message-signature pair (m∗, (ipk∗, π∗ipk, σ∗)).
The game outputs 1 if VerifyRandomized(pp, vsk, ipk∗, π∗ipk, m∗) = 1 ∧m∗ 6= mi ∀i,
and 0 otherwise.

An HIAC scheme is said to have the EUF-CMA property if for a negligible value, ε, and M the
space of possible messages, the probability for a PPT Adversary A to win the EUFCMAGame
against a challenger C is:

Pr[EUFCMAGame(A, C) = 1] ≤ 1
M

+ ε

Definition 5.6. A Hidden Issuer Anonymous credential scheme is secure iff it achieves
correctness, EUF-CMA, issuer indistinguishability, and trusted issuer.

56

5.6. Formal Definitions

5.6.2 Aggregator

To instantiate an HIAC scheme, we need an object which allows a verifier to commit to
a set of values, and which offers a way for a user to prove that some value is indeed in the
commitment set, without revealing this value, and while only knowing a commitment to this
value. State-of-the-art primitives do not offer such a possibility. We therefore introduce a novel
cryptographic object: the aggregator. In our HIAC scheme, the verifier builds the aggregator and
uses it as a commitment to a set of trusted issuers. But we conjecture that other designs for an
HIAC scheme would also need an aggregator or a similar object. An aggregator provides one
witness for each trusted issuer. Each such witness can be used to prove that a specific issuer’s
public key (or a commitment to an issuer’s secret key) is accumulated in the aggregator. The
verifier is the only actor able to verify this set-membership proof. The user can further make
this proof element indistinguishable by adding random elements to the witness and the issuer
key. An aggregator is defined by the five following algorithms:

Definition 5.7. — (pp) ← Setup(λ): on input of setup parameter λ, the algorithm
outputs pp, a description of public parameters whose security depends on λ;

— (Agg, aux, sk)←Gen(pp,S): on input of pp and of a set S, the algorithm outputs aggre-
gator Agg, auxiliary information aux, and a secret verification key sk;

— {0, 1} ← IntegrityVerification(pp,S,Agg, aux): on input of pp, a set S, aggregator Agg,
and auxiliary parameters aux, the algorithm outputs 1 if Agg is valid, and if it aggregates
all the elements in S. The algorithm outputs 0 otherwise;

— (C ′, πs) ←WitCreate(pp, Agg, aux, C): on input of pp, aggregator Agg, auxiliary pa-
rameters aux, and a cryptographic commitment C to an element s ∈ S, the algorithm
outputs C ′ a new commitment to s, and a proof πs which proves that C ′ is a commitment
to an element aggregated in Agg.

— {0, 1} ← Verify(pp,Agg, aux, sk, C ′, πs): on input of pp, aggregator Agg, auxiliary param-
eters aux, a cryptographic commitment C ′ to an element s ∈ S, a secret verification key
sk, and a witness Ws, the algorithm outputs 1 if πs is valid and 0 otherwise.

Security notions for a secure aggregator can be derived from the needs expressed in the HIAC
formal definition. The first, Collision-freedom, states that the probability for an adversary to
find a proof of set-membership for a non accumulated element is negligible. The trusted issuer
property of the formal HIAC definition is derived from the collision-freedom property of its
aggregator.

Definition 5.8. (Collision Freedom) We define the CollisionFreedomGame(A, C),
for a challenger C that represents a verifier and its trusted issuers, and an adversary A that
represents a malicious user:

— Setup: C runs the aggregator Setup algorithm, chooses a set S, runs the Gen algo-

57

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

rithm to build a commitment to S, and the associated verification key. A is given the
aggregator’s public information.

— Output: A outputs C∗ a commitment to s∗ and π∗s . The game outputs 1 if s∗ /∈ S, and
Verify(pp,Agg, aux, sk, C∗, π∗s) = 1, or 0 otherwise.

An Aggregator is said to be element-indistinguishable if for a negligible ε, the probability for a
PPT Adversary A can to win the CollisionfreedomGame is:

Pr[CollisionfreedomGame(A, C) = 1] ≤ ε

The second security notion, Element Indistinguishabity states that, while the verifier running
the Verify algorithm knows that commitment C ′ is associated with one of the elements of S,
it cannot learn the actual element committed to. The issuer-indistinguishability property of
the HIAC definition is partially derived from the element-indistinguishability property of its
aggregator.

Definition 5.9. (Element indistinguishability) We define the ElementIndistin-
guishGame(A, C), for a challenger C that represents a user, and the actions preformed by
the issuers, and an adversary A that represents a malicious verifier:

— Setup: C runs the aggregator Setup algorithm, and chooses a set S with at least 2
elements. Then, A runs the Gen algorithm to build a commitment to the set S, and the
associated verification key. Finally, C chooses s ∈ S. A is given the set of secret values
aggregated in the aggregator, the commitment to the issuer set, and the secret verification
key.

— Queries: A adaptively requests q randomized commitments to elements of S, and
the associated proofs. C answers each query by returning (C ′, πs) ← WitCre-
ate(pp,Agg, aux, C) a commitment to s ∈ S.

— Output: A eventually outputs s′ ∈ S. The game outputs 1 if s′ = s. The game outputs
0 otherwise.

An Aggregator is said to be element-indistinguishable if for a negligible value, ε, and k trusted
issuers, the probability for a PPT AdversaryA to win the ElementIndistinguishGame against
a challenger C is:

Pr[ElementIndistinguishGame(A, C) = 1] ≤ 1
k

+ ε

The last security notion is correctness:

Definition 5.10. An aggregator scheme is correct iff, for any honestly built tuple
(pp,Agg, aux, sk, C ′, πs), the Verify algorithm always outputs 1.

Definition 5.11. An Aggregator is secure iff it achieves correctness, collision-freedom, and

58

5.7. Instantiation

element indistinguishability.

If this aggregator is embedded correctly into a Hidden Issuer Anonymous Credential scheme,
then the Trusted Issuer property relies entirely on the aggregator’s Collision Freedom property.

5.7 Instantiation

Next, we instantiate our aggregator object and our HIAC scheme. We start by describing a
non-interactive version of our scheme. Then, we present our final, interactive version.

Our setup is trust free. None of the actors needs to trust the constructions made by the other
actors. The integrity of the elements published by each actor can be verified algorithmically. In
this section, we assume all issuers of the system issue the same types of messages. We explain
how to verify this assumption in Section 5.8.2.

5.7.1 Non-Interactive HIAC

Aggregator

Our aggregator consists of five algorithms: Setup, Gen, IntegrityVerification, WitCre-
ate, and Verify. Unlike in the formal definition of Section 5.6.2, we pass the random values r1

and r2 to WitCreate. This makes it possible to map elements of the set-membership proof to
the actual randomized signature in the instantiation of our HIAC scheme. As we mentioned, the
aggregator is independent from the HIAC scheme, and can be used with other signature schemes
based on bilinear pairings to provide issuer indistinguishability.

Protocol 5.1. 1. (pp)←Setup(λ): on input of a security parameter λ, the algorithm
chooses three prime-order p groups with the associated generators G1 = 〈g1〉, G2 = 〈g2〉,
and GT = 〈gT 〉. The algorithm then chooses a type 3 bilinear pairing e such that e :
G1×G2 → GT . The algorithm outputs public parameters pp = (p,G1, g1,G2, g2,Gt, gT , e).

2. (Agg, aux, sk, T1) ←Gen(pp,S): on input of pp and of a set S = {g
1
x1
1 , · · · , g

1
xk
1 }, xi ∈

Zp, ∀i ∈ Z∗p, k ≥ 2, the algorithm computes a secret key sk←$Zp, an aggregator Agg =

(S,W), with witness set W = {(W)(j) = g
sk 1
xj

1 }kj=1. The algorithm also computes some
auxiliary information aux = β, with β = NI− ZKPoE{(sk) : ∧ki=1(W)(i) = (S)sk

(i)}. The
algorithm finally outputs (Agg, aux, sk);

3. {0, 1} ←IntegrityVerification(pp,SComm,Agg, aux): on input of pp, of a set SComm =
{gx1

2 , · · · , gxk2 }, xi ∈ Zp, ∀i ∈ {1, · · · , k}, of an aggregator Agg = (S,W), and of the
auxiliary parameter β, the algorithm outputs 1 if β is valid and 0 otherwise;

4. (C ′, πs) ←WitCreate(pp, Agg, aux, C, r1, r2): on input of pp, of an aggregator
Agg = (S,W), of auxiliary parameters aux, of a cryptographic commitment C = gxl2 , l ∈

59

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

{1, · · · , k}, and of two randomly chosen numbers r1, r2, the algorithm computes C ′ = Cr1 ,
and a proof πs = ((W)′(l), h), with (W)′(l) = (W)r2(l) and h = gr1r22 ; the algorithm outputs
(C ′, πs).

5. {0, 1} ←Verify(pp, sk, C ′, πs): on input of pp, of the secret aggregator’s verification key
sk, of a randomized commitment C ′, and of a proof πs = ((W)′(l), h), the algorithm
outputs 1 if: e((W)′(l), C ′)

?= e(gsk
1 , h); and 0 otherwise.

Security Analysis

Theorem 5.1. The aggregator presented by Protocol 5.1 is correct.

Proof sketch 5.1. The proof of this theorem, in Appendix C.2, uses a correctly built
element e((W)′(i), C ′) to prove that it is equivalent to e(gskT , h).

Theorem 5.2. (Collision Freedom) The aggregator presented by Protocol 5.1 is colli-
sion free, under the CDH assumption (Definition 5.8). 2

Remark In anticipation of the Hidden Issuer Anonymous Credential (HIAC) protocol, we
will prove Theorem 5.2 with an extended version of the adversary model, in which the adversary
has access to the extra values gxi1 ,∀i ∈ {1, · · · , k}. Indeed, these values are accessible to the user
in our instantiation of HIAC.

Proof sketch 5.2. The proof of Theorem 5.2, in Appendix C.3, shows that under the
CDH assumption the secret value sk used in e(gsk

T , h) forces the adversary to use exactly one
witness to build its (W)′l. Then it shows that C∗ contains exactly one xi. 3

Remark The collision-freedom proof uses the fact that the value gsk
1 is known only to the

verifier. But, if a given Aggregator was used multiple times, it would be possible for a malicious
Issuer I to compute and publish the value gsk

1 = (W)xI(I). For this reason, the non-interactive
HIAC scheme computes a new aggregator at every transaction (cfr. Section 5.7.1).

Theorem 5.3. The scheme presented here is Element Indistinguishable (Definition 5.9).

Proof sketch 5.3. The proof of the Theorem 5.3, in Appendix C.4, proceeds by analyzing
the elements the adversary is given. Either there is no linear relationship between these elements
(which, under the DDH assumption, means that no adversary can decide which element is being
proven to be in S) or the elements are symmetrical (and thus they do not depend on the variables,
or they are distributed uniformly at random in the group).

2. The collision-freedom proof uses the fact that the value gsk
1 is known only to the verifier. But, if a given

Aggregator was used multiple times, it would be possible for a malicious Issuer I to compute and publish the value
gsk

1 = (W)xI(I). For this reason, the non-interactive HIAC scheme computes a new aggregator at every transaction
(cfr. Section 5.7.1).

3. In anticipation of the Hidden Issuer Anonymous Credential (HIAC) protocol, we will prove Theorem 5.2
with an extended version of the adversary model, in which the adversary has access to the extra values gxi1 , ∀i ∈
{1, · · · , k}.

60

5.7. Instantiation

Signature Scheme

Our Hidden Issuer Anonymous Credential (HIAC) scheme relies on a modified Pointcheval
Sanders (PS) scheme [84] and uses six algorithms. The first three come from a classical signature
scheme, namely Setup which produces the shared material, IssuerKeygen which allows an
issuer to build a key pair, and Sign which allows an issuer to sign a credential. The three
others provide the issuer-indistinguishability and trusted-issuer properties. The verifier runs the
VerifierSetup algorithm to select a set of trusted issuers and generate the aggregator. In this
non-interactive version of HIAC, the verifier needs to do this before each transaction to prevent
malicious issuers from extracting the verifier’s private key from the aggregator. Once it has
the aggregator, the user runs the Randomize algorithm to randomize the credential and the
associated issuer’s key, and to create the associated proof of set-membership. Finally, the verifier
runs VerifyRandomized to verify the proof and the authenticity of the randomized credential.

Protocol 5.2. 1. (pp)← Setup(λ): on input of a security parameter λ , the algorithm
chooses three prime-order p groups with the associated generators G1 = 〈g1〉, G2 = 〈g2〉,
and GT = 〈gT 〉. The algorithm then chooses a type 3 bilinear pairing e such that e :
G1 × G2 → GT . Finally, it chooses a cryptographic hash function H : Z → Zp. The
algorithm outputs pp = (p,G1, g1,G2, g2,Gt, gT , e,H).

2. (iskI , ipkI) ← IssuerKeygen(pp): on input of pp, an issuer I computes a secret key
iskI = (xI , yI), with xI , yI ←$Z∗p and the associated public key ipkI = (X(I), X̄

(I)
1 , Y

(I)
1 ,

Ȳ
(I)

1 , Y
(I)

2) = (gxI2 , g
1
xI
1 , gyI1 , g

1
yI
1 , gyI2). 4 The algorithm outputs (iskI , ipkI).

3. (σ,Ry)← Sign(pp,m, iskI , u, φ): on input of pp, of a message m, of an issuer’s secret key
iskI = (xI , yI), of a value given by the user u = (Y (I)

1)Ry · gR1 , where Ry and R are secret
random values, and of φ, a ZKPoK of u, φ :NI-ZKPoK{(RyR) : u = (Y (I)

1)Ry · gR1 }, the
issuer initially outputs a signature σ∆ = (h1, h2, σ

∆
1 , σ

∆
2), where h1 = g

r(I,1)
1 , h2 = g

r(I,2)
1 ,

σ∆
1 = (gxI1 · uH(m))r(I,1) , σ∆

2 = (gxI1 · uH(H(m)))r(I,2) , with r(I,1), r(I,2)←$Z∗p. Then the user
transforms the signature σ∆ into σ = (h1, h2, σ1 = σ∆

1 · h
−RH(m)
1 , σ2 = σ∆

2 · h
−RH(H(m))
2).

The user stores σ and Ry.

4. (vpk, vsk) ← VerifierSetup(pp, {ipki}ki=1): on input of pp and of trusted issuers’
public keys {ipki}ki=1, the verifier commits to the issuer’s secret keys x by build-
ing a new aggregator (Aggx, skx, auxx) = Aggregator·Gen(pp,Sx). Symmetrically, the
verifier also commits to the issuer’s secret key y by building another aggregator
(Aggy, sky, auxy) = Aggregator·Gen(pp,Sy). The algorithm outputs vsk = (skx, sky) and
vpk = (Aggx, auxx,Aggy, auxy).

4. In the PS version of the signature, g
1
xI
1 and g

1
yI
1 are not disclosed. We show in the proof section that, thanks

to the CDH assumption, this modification does not impact the security of the signature.

61

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

5. (X(I)′ , Y
(I)′

2 , πx, πy, σ
′) ← Randomize(pp, ipk, vpk, S, σ,Ry): on input of pp, of a sig-

nature σ = (h1, h2, σ1, σ2), of a verifier public key vpk = (Aggx, auxx,Aggy, auxy), and of
a secret value Ry generated by the user in step 3, and associated with σ, this algorithm,
run by a user:

(a) Verifies if:

Aggregator·IntegrityVerification(

pp, {X(j)}kj=1,Aggx, auxx) ?= 1

Aggregator·IntegrityVerification(

pp, {Y (j)
2 }kj=1,Aggy, auxy)

?= 1

Otherwise, it aborts.

(b) Chooses ru, r′u, r′′u, r(u,x), r(u,y)←$Z∗p
(c) Computes :

(X(I)′ , πx) =Aggregator ·WitCreate(

pp,Aggx, auxx, ru, r(u,x))

(Y (I)′ , πy) =Aggregator ·WitCreate(

pp,Aggy, auxy, ruRy, r(u,y))

(d) Computes σ′ = (h′1 = h
r′u
1 , h

′
2 = h

r′′u
2 , σ

′
1 = σ

rur′u
1 , σ′2 = σ

rur′′u
2)

The algorithm outputs (X(I)′ , Y
(I)′

2 , πx, πy, σ
′).

6. {0, 1} ← VerifyRandomized(pp, σ′, X(I)′ , Y (I)′
2 , πx, πy, m, vsk): 5 on input of pp, of

commitments to an issuer’s keys X(I)′ , Y
(I)′

2 , of two proofs of set-membership πx, πy, of a
randomized signature σ′ = (h′1, h′2, σ′1,σ′2), of a verifier secret key vsk = (skx, sky), and of
a message m, a verifier, outputs 1 if the proof of set-membership is honestly built, i.e.,
if:
Aggregator ·Verify(pp,Aggx, auxx, skx, X(I)′ , πx) ?= 1,
Aggregator ·Verify(pp,Aggy, auxy, sky, Y

(I)′
2 , πy)

?= 1,
and the signature is correct, i.e.,
— e(h′1, X(i)′Y

(i)′H(m)
2) ?= e(σ′1, g2)

— e(h′2, X(i)′Y
(i)′H(H(m))

2) ?= e(σ′2, g2)

5. The user can verify the integrity of the signature – without using VerifyRandomized – by verifying that
e(σ1, g2) ?= e(h1, X

(I)(Y (I)
2)RyH(m)), e(σ2, g2) ?= e(h2, X

(I)(Y (I)
2)RyH(H(m))), and h1 6= 1G1 , h2 6= 1G1

62

5.7. Instantiation

— h′1 6= 1G1 , h
′
2 6= 1G1 , σ

′
1 6= 1G1 , σ

′
2 6= 1G1 ;

the verifier outputs 0 otherwise.

Security Analysis The formal definition of HIAC gives us 4 security notions that our instan-
tiation must achieve: EUF-CMA, unlinkability, issuer indistinguishability, trusted issuer. The
trusted-issuer property comes from the collision freedom of the aggregator and is already proven.

Theorem 5.4. The VerifyRandomized algorithm is correct, i.e., any honestly built
signature will be accepted by the VerifyRandomized algorithm.

Proof sketch 5.4. The proof, in Appendix C.5, shows that a correctly built signature is
equivalent to e(h′1, X(i)′Y

(i)′H(m)
2).

Theorem 5.5. The signature presented here has the EUF-CMA property.

Proof sketch 5.5. The proof, in Appendix C.6, shows that, under the CDH assumption,
the user cannot find a way to inject malicious material into Y ′(I)2 , σ1 and σ2. First, the malicious
user would need to know g

r(I,a)yI
1 , a ∈ {1, 2} to be able to modify the message a credential refers

to. However, under the CDH assumption, this value cannot be found by the adversary. Second,
the malicious user would need to tweak the commitment to Y (I)

2 . However, tweaking these values,
so that they validate both of the signature’s verification equations at the same time would imply
inverting a hash function. This shows that the signature has the EUF-CMA property, under the
CDH assumption, in the Random Oracle Model.

The random elements added by the user in Randomize ensure that the verifier cannot
compare the commitment’s elements with actual elements of its own key, and the elements of
the signature with the formerly issued credentials. This provides issuer indistinguishability.

Theorem 5.6. The Hidden Issuer Anonymous Credential scheme presented here is issuer
indistinguishable.

Proof sketch 5.6. The proof, in Appendix C.7 extends the one for Theorem 5.3: it com-
pares two randomized signatures issued by two different issuers and shows that the differences
between them are hidden by the random elements added by the user in the Randomize algo-
rithm. Under the DDH assumption, the malicious verifier has no way to compare the signature
it is given with any other signature as all its elements are hidden by a random number that is
unknown to the verifier.

5.7.2 Interactive HIAC

The interactive version of our scheme removes the need for the verifier to run VerifierSetup
and for the user to run Aggregator·IntegrityVerification as part of Randomize at each
transaction. To achieve this, it relies on an interactive version of the aggregator instantiation.

63

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

Aggregator

Our interactive aggregator version modifies the Gen, and WitCreate algorithms in Proto-
col 5.1. It modifies the witnesses making sure that no malicious issuer can output the verifier’s
private key by computing (W(l))xl = gsk

1 . This implies that the user needs to interact with the
verifier to randomize a witness, hence the interactive nature of the protocol.

— (Agg, aux, sk, T1) ←Gen’(pp,S): on input of pp and of a set S = {g
1
x1
1 , · · · , g

1
xk
1 }, xi ∈

Zp,∀i ∈ Z∗p, k ≥ 2, the algorithm computes a secret key sk←$Zp, an aggregator Agg =

(S,W), with W = {(W)(j) = g
sk(1+ 1

xj
)

1 }kj=1. The algorithm also computes some auxiliary
information aux = β, with:β = NI− ZKPoE{(sk) : ∧ki=1(W)(i) = ((S)(i) · g1)sk} The
algorithm finally outputs (Agg, aux, sk);

— (C ′, πs)←WitCreate’(pp, Agg, aux, C, r1, r2): on input of pp, of an aggregator Agg =
(S,W), of auxiliary parameters aux, of a commitment C = gxl2 , l ∈ {1, · · · , k}, and of two
random numbers r1, r2, the algorithm computes C ′ = Cr1 , and a proof πs = ((W)′(l), h),
with (W)′(l) =CommitRevealExchange((W)(l)) and h = gr1r22 ; the algorithm outputs
(C ′, πs). The result of CommitRevealExchange is sent to the verifier.

The algorithms use the CommitRevealExchange function in Figure 5.1. On input of a
witness, the function allows user and verifier to compute a randomized witness interactively. We
stress that this does not limit applicability as the presentation of a user’s credential to a verifier
is generally an interactive operation. We discuss the efficiency trade-off between interactive and
non-interactive variants in Section 5.9.1.

User(pp, σ, pk) Verifier(pp, sk)
ra, rb, rc←$Z∗p; (Comm′(s), πs, r2) = Randomize(σ, pk) rd←$Z∗p
(W)′′I = (W)r2

I g
ra
1 ; C1 = gr2rb

1 ; C2 = grarc1

φ1 = NI − ZKPoK{(r2rb, rarc) : C1 = gr2rb
1 ∧ C2 = grarc1 } (σ′,(W)′′I ,C1,C2,φ1)−−−−−−−−−−−−−→VerifyZKP(φ1)

C ′1 = Cskrd
1 ;C ′2 = Crd2

φ2 = NI − ZKPoK{(sk, rd) :

VerifyZKP(φ2) (C′1,C
′
2,φ2)−−−−−−−→ C ′1 = Cskrd

1 ∧ C ′2 = Crd2 }

C ′′1 = (C ′1)
1
rb (C ′2)

1
rc

C′′1−−→ (W)′I = (W)′′I (C ′′1)−
1
rd

Figure 5.1 – Commitment reveal exchange

Signature Scheme

The interactive aggregator can be directly used in the signature instantiation by replacing Ag-
gregator.Gen and Aggregator.WitCreate by Aggregator.Gen’ and Aggregator.WitCreate’.
Thanks to these modifications, the verifier only needs to run VerifierSetup when its set of
trusted issuers changes. Similarly, the user only needs to run Aggregator·IntegrityVerification

64

5.8. Deployment

as part of the Randomize algorithm when interacting with a given verifier for the first time or
when the verifier’s aggregators or keys change.

Security Analysis All we need to show is that the interactive aggregator respects the same
properties as the non-interactive one.

Lemma 5.1. The interactive version of the aggregator is collision-free, correct, and ele-
ment indistinguishable.

Proof sketch 5.7. The proof, in appendix C.8, uses the original aggregator proofs pre-
sented in Appendix C.3 and Appendix C.4, and shows that the protocol presented in Figure 5.1
does not affect their validity.

5.8 Deployment

The protocols described in the previous sections fulfill the adversary model, and can be
instantiated in real-world use cases. But an Identity Management System does not depend only
on its signature scheme as trust between real-life actors cannot be enforced only by algorithms.
In this section, we discuss how organizational solutions could improve the security of our scheme
by ensuring that its assumptions are satisfied. It is important to note that these solutions are
not trivial to implement, and that the privacy impact of an insecure implementation could be
significant. A user that trusts the system to protect his/her privacy will tend to leak more
information when the system’s assumptions are not satisfied than a user who is aware of being
in a “known-issuer” setup.

5.8.1 Credential and Aggregator Management

The formal definition of the issuer-indistinguishability property (Definition 5.3) assumes that
all the verifier’s trusted issuers issue credentials on the same types of messages. But in many
cases, including in our concert-bar example, the verifier needs to verify multiple credential types.
This can easily be solved by having multiple credentials(e.g. one for the ticket, one for the Covid-
19 vaccine, and one for the legal age). The user can obtain these credentials either from the same
issuer or from different issuers. In either case, each credential will be associated with a specific
anonymity set when matched against a verifier’s aggregator. To this end, the verifier—the bar
in our example—should build a specific aggregator for each credential type. Note that a given
issuer may well appear into multiple such aggregators if it issues credentials of multiple types.

65

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

5.8.2 Issuer Selection

Clearly, issuer indistinguishability only holds within a specific anonymity set. If the set is
too small, or if the set contains issuers that do not issue credentials of the right type, the verifier
may be able to associate a credential with a specific issuer. 6 To limit this kinds of attacks, the
user’s SSI client can integrate a conformity checker. The user should be able to input a desired
security policy. The conformity checker can then verify that a verifier’s aggregator contains a
large enough number of issuers of the right type that satisfy the policy. The security policy
can, for example, specify the geographical distribution of issuers or the organization running the
issuing servers.

The checker should be able to access the relevant information for verifying the policy. Most
SSI frameworks use a ledger that allows actors to register Decentralized IDentifier (DID) Doc-
uments [8]. These documents describe some characteristics of the actors of the framework, and
are accessible by every one of them. To this end, the verifier provides the user with the public
keys of the issuers aggregated in its aggregator. The conformity checker can verify that these
keys correspond to those referenced in the aggregator. It can use them to retrieve the DIDs of
the issuers from the ledger and use those to verify the security policy. If the checker detects
that a verifier’s aggregator does not satisfy the policy, it aborts the transaction and informs
the user with a message similar to the one displayed by browsers in the event of an expired
HTTPS certificate. 7 If an advanced user understands the associated risks, they can resume the
transaction. If the checker detects that a verifier’s aggregator does not Furthermore, the checker
can detect more elaborated attacks. For example, a verifier could link multiple presentations
from the same user via a side channel. In this case, the verifier could adapt its trusted-issuer set,
by presenting a set from which it removes one new issuer at each new presentation. Eventually,
the removed issuer will be the user’s issuer. To detect and counter this attack, the checker can
consider the trusted-issuer sets of all the transactions between its owner and the verifier in a
specified time window, and check the validity of their intersection rather than the validity of the
latest of them. The checker can then warn the user and block the transaction as soon as this
intersection becomes too small.

This scheme does not require a central authority, but if one exists, the checker can report
misbehaviors to it. For example, legislative power can produce norms involving sanctions if
not respected by verifiers. Other central authorities can emerge in decentralized settings. For
example, the SSI project Sovrin [52] is decentralized but uses a permissioned blockchain. In this
case a central authority consisting of the permissioned nodes of the blockchain can, for instance,

6. We need to emphasize the fact that not only does the verifier need to build a consistent set of trusted
issuers, but these issuers must also agree on credential templates and curve parameters.

7. The design and implementation of messages informing the user about privacy risks is out of the scope of this
chapter. These messages will have a important role, as they will allow users to understand and mitigate privacy
risks.

66

5.9. Efficiency

revoke the verifying rights of a misbehaving verifier by publishing a revocation list. A variety of
other solutions are possible but their discussion is outside the scope of this chapter.

5.8.3 Issuer Acting as a Verifier

It is interesting to consider the case in which the verifier is also the issuer of a user’s credential.
In this case, issuer and verifier are automatically colluding. This makes the identity-inference
threats highlighted in the introduction a lot more likely. In this case, Classical AC schemes only
provide credential-multi-usage unlinkability. The issuer/verifier can identify whether it was the
one that issued a given user’s credential. This places the user in a relatively small anonymity
set corresponding to all the users that received a credential from the issuer/verifier.

With our solution, the issuer/verifier cannot know whether a given credential originates from
itself. This enlarges the user’s anonymity set to all the users that received credentials from any
of the issuers trusted by the issuer/verifier. Our scheme therefore increases user privacy even in
this particularly challenging case.

5.9 Efficiency

We evaluate the efficiency of our implementation and compare it with that of other sig-
nature schemes. We first present a runtime-complexity analysis and compare our scheme with
the Pointcheval-Sanders (PS) signature [84]. Then, we compare the asymptotic complexity of
our scheme with that of PS and that of the Issuer-Hidden-Attribute-Based-Credential scheme
(IHABC) [26]. Finally, we estimate the communication cost of our scheme.

5.9.1 Runtime Comparison

We start by comparing the runtime cost of our scheme with that of PS, highlighting the over-
head resulting from the issuer-indistinguishability property. As both schemes are implemented
using the same tools, this is the most accurate manner to identify the overhead of our scheme,
regardless of implementation details. We start by comparing the non-interactive and interac-
tive variants. Then we analyze the cost of each operation: issuer-key generation, verifier-key
generation, signature issuance, and signature presentation.

We base our comparisons on an implementation in Rust (at: https://gitlab.inria.fr/
mgestin/rust_hidden_issuer_signature). We use the BLS12-381 curve [109], a widely used
curve for pairing-based cryptography with efficient computation time. BLS is a type-3-pairing-
friendly curve with 256-bit-prime group size. This group size gives us a 128-bit AES security
level. We ran our experiments on an i7-1185G7, 3.0 GHz CPU, with no multi-processor opti-
mizations.
Non-Interactive vs Interactive Version. Section 5.7 presented two versions of our scheme: a

67

https://gitlab.inria.fr/mgestin/rust_hidden_issuer_signature
https://gitlab.inria.fr/mgestin/rust_hidden_issuer_signature

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

Figure 5.2 – Number of issuers beyond which the interactive scheme is more efficient than the
non-interactive one based on the available bandwidth. The hatched areas represent the area
where the interactive protocol is more efficient than the non-interactive one. The red curve and
hatching from bottom left to top right consider a first-time interaction: both variants needs to
verify the verifier’s keys. The blue curve and hatching from top left to bottom right considers
a subsequent transaction with the same verifier without a change in the aggregator or key: the
interactive scheme does not need to verify the verifier’s keys and aggregators as they are already
present on the user’s device.

non-interactive and an interactive one. The non-interactive version requires repeating Verifier-
Setup and IntegrityVerification at each credential-presentation transaction, which involves
sending two aggregators whose size depends on the number of issuers. As a result, the interac-
tive version becomes more and more interesting as the number of issuers in these aggregators
increases. Figure 5.2 depicts, for a given value of available upload bandwidth, the number of
issuers beyond which the interactive version is more efficient than the non-interactive one. For
non-first-time interactions (in blue) the interactive protocol turns out to be more efficient as
soon as there are more than a few issuers in the aggregator (7 issuers for 40 kbps of upload
bandwidth). For first-time interactions (in red), the interactive protocol remains more efficient
as long as the upload bandwidth is reasonable albeit for a slightly larger number of issuers
(beyond 13 issuers for 40 kbps).

In scenarios where the presentation of credentials cannot be done interactively, it is necessary
to run VerifierSetup and IntegrityVerification at each transaction. But even then, our
experiments show that the running time of each of these two operations remains under 250 ms

68

5.9. Efficiency

Figure 5.3 – Average time to build one verifier commitment (VerifierSetup) with the HIAC
scheme as a function of the number of trusted issuers added to the aggregator.

with 100 trusted issuers. Moreover, in SSI systems the presentation of credentials is generally
an interactive process, so using the interactive protocol appears natural. For this reasons, we
concentrate on the interactive protocol in the following.

Issuer-Key Generation. The generation of an issuer key (IssuerKeyGen) takes approx-
imately twice as long in our scheme (average: 4.17 ms) as in PS (average: 2.17 ms). This is
because our scheme needs to compute 3 more elements: two to build a verifier key, and one to
issue a signature. However, key generation is run only once in a long period of time. Therefore
this difference is not a major drawback for our scheme.

Verifier-Key Generation. The verifier-key-generation algorithm is unique to the HIAC
scheme. It is run by the verifier after all trusted issuers have created their keys and its per-
formance depends on the number of issuers that are being added to the aggregator. Figure 5.3
shows that this relationship is linear. Nonetheless, in the interactive version of our scheme, this
algorithm only needs to be run when the verifier’s secret keys, sk, change. Moreover, since the
dependence is on the number of added issuers, this update can actually be very efficient in a
number of use cases.

Signature Issuance. The HIAC signature-issuance protocol is equivalent to that of PS. How-
ever, our scheme requires issuing the equivalent of two PS signatures, thus taking approximately
twice as long to run (average: 9.7 ms) as in PS (average: 4.67 ms) on the issuer’s side. In ad-
dition, our scheme requires the user to compute 6 exponentiations during the issuance process.
This takes 4.91 ms on average on the user’s side. In most of the use cases, a user only requests

69

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

Figure 5.4 – Comparison of the running time to randomize a PS signature, and a HIAC Signature
as a function of the number of issuers.

a few credentials, and thus this additional computation time remains negligible.

Signature Presentation. During the presentation of a signature, on the user side, both
schemes run a randomization process. In the PS scheme, this randomization has a constant time
complexity. With our scheme, there are two different cases. The first time the user interacts
with the verifier, they must verify the integrity of the verifier’s key. This verification has a linear
time complexity. Each new transaction with the same verifier will rely on the first integrity
verification, so new transactions only experience a constant time complexity for the user. Both
scenarios depend on the available bandwidth to run the interactive protocol. Figure 5.4 compares
these different cases with the PS randomization process.

On the verifier side, the verifier needs to compute the VerifyRandomized algorithm. The
running time of this algorithm depends on network bandwidth. The comparison of the veri-
fication times of the PS scheme and of the HIAC scheme is presented in Figure 5.5. With a
bandwidth of at least 2, 5 Mb/s, our verification algorithm is four times slower than that of PS.

General Remarks. The above analysis highlights that while the running time of most of
the algorithms is longer than that of an equivalent Anonymous Credential scheme, interactive
algorithms still exhibit efficient running times. In particular, the issuance and presentation of
a credential only take tenths of milliseconds.

The only concern on the user side lies in the verification of the verifier’s key and aggregator,
which is linear in the number of trusted issuers, and which must be conducted with each unknown
verifier. However, a verification of a subset of the verifier’s aggregator may be sufficient if it is

70

5.9. Efficiency

Figure 5.5 – Time to verify one credential with the PS scheme and the HIAC scheme, as a
function of the Bandwidth.

enough to fulfill the requirements of the conformity checker discussed in Section 5.8.
From the point of view of issuers and verifiers, the overhead with respect to the PS scheme

is lower (at most 5 times less efficient with a 2500 kb/s bandwidth). Thus the practicality of our
scheme will depend on usage. If the verifier (respectively, issuer) needs to verify (respectively,
issue) as many credentials per second as possible, the overhead becomes significant, but we expect
our scheme to be used mostly in interactions that involve humans, which are less sensitive to
slightly higher latency. Furthermore, in an SSI, the overall throughput in terms of transactions
per second increases with the number of verifiers, unlike in centralized or blockchain-based
services. In particular, with a bandwidth of 2500 kb/s, each new verifier added to the network
adds a capacity of 38 transaction per second to the infrastructure. A service provider can thus
easily add a server to augment its verification capacity.

Asymptotic Comparison

Table 5.4 8 presents an asymptotic comparison of our signature scheme, with two other
schemes. As mentioned, PS constitutes the basis which our scheme builds upon. The dif-
ferences between our scheme and this building block highlight the real cost of issuer-
indistinguishability. The recent Issuer-Hidden Attribute-Based Credential (IHABC) [26] achieves
issuer-indistinguishability in a trusted-setup setting, using bilinear pairings, and Groth [103] sig-
natures.

Table 5.4 compares the number of exponentiations and pairings required by our scheme, PS,

8. The BLS12-381 implementation we use gives us: 1 exponentiation in G2 ≈ 2 exponentiation in G1 and 1
pairing operation ≈ 1.12 exponentiation in G2.

71

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

HIAC IHABC PS
IssuerKeyGen 3G1 + 2G2 1G2 2G2

Sign (User Side) 6G1 ∅ ∅
Sign (Issuer Side) 10G1 4G1 + 1G2 3G1

VerifierSetup 4kG1 (1 + k)G1 + 4kG2 ∅
IntegrityVerification 4kG1 6k Pairing ∅

Randomize 26G1 + 2G2 10G1 + 6G2 + 6 Pairing 2G1
VerifyRandomize 20G1 + 2G2 + 8 Pairing 4G1 + 2G2 + 12 Pairing 1G2 + 2 Pairing

Table 5.4 – Comparison of the number of exponentiations in G1, G2 and number of pairings
required to run our scheme (HIAC)[26], the Issuer Hidden Attribute Based Credential (IHABC)
without ZKP of knowledge signature, and the Pointcheval Sanders Signature Scheme (PS) [84],
with k being the number of trusted issuers.

HIAC IHABC
IssuerKeyGen 9 2

Sign (Issuer Side) 10 6
VerifierSetup 40 90

IntegrityVerification 40 134.4
Randomize 30 35.44

VerifyRandomize 41.92 34.88

Table 5.5 – Comparison of the number of operations to run our scheme (HIAC), the Issuer
Hidden Attribute Based Credential [26] (IHABC) without ZKP of signature. Operations in G2
and pairings operations are converted to G1. With 10 trusted issuers.

and IHABC, for the various operations. Table 5.5 expresses the asymptotic efficiency of our
scheme, and the IHABC scheme in G1 equivalent operation, based on the approximation : 1
exponentiation in G2 ≈ 2 exponentiation in G1 and 1 paring operation ≈ 1.12 exponentiation
in G2.

The comparison with PS confirms the observations we made in Section 5.9.1 with respect to
our implementation. The one with IHABC depends on whether we analyze the user, the verifer,
or the issuer. On the user’s side, the most frequent operations is Randomize. Albeit short,
its running time is 15% faster for our scheme for 10 trusted issuers. Even if less frequent, the
IntegrityVerification operation runs 3 times faster in our scheme than in IHABC.

On the verifier’s side, the most frequent operation is VerifyRandomized. The IHABC
implementation of this algorithm is 20% more efficient. In the interactive version we are consid-
ering, VerifierSetup is executed relatively rarely but it runs 4 times faster in our scheme than
in IHABC. Finally, on the issuer’s side, Sign runs twice as fast in IHABC as in our scheme, while
IssuerKeyGen runs four times faster in IHABC. However, both operations are very quick to
execute, so the difference remains very low in absolute value. Moreover, IssuerKeyGen is run
only when the issuer starts or changes its keys. To conclude, our scheme offers better perfor-

72

5.9. Efficiency

mance for the user, and comparable or slightly worse performance for verifiers and issuers, but
without requiring a trusted setup.

5.9.2 Communication Cost

This section studies the size and communication costs of our protocol, compared to the state
of the art. The size of the data structures of our scheme are given in Table 5.6. With the BLS12-
381 configuration 9, the elements of our signature scheme are relatively small. Except from the
verifier key, they are comparable to a high or very-high strength RSA key (2048 - 4096 bits).
The only large element to transfer is the verifier key, which contains multiple issuer keys, and
the associated aggregator. However, if this key is static, users will save it in their device, and will
only need to request it to a the verifier once. The size of the elements of the IHABC scheme are
equivalent in most of the cases, except for the issuer public key, which is smaller in their case.
Table 5.7 completes the picture by expressing the size of the elements of each signature scheme
in bits, using the fact that, in BLS12-381 configuration, the size of the element are : Zp : 256
bits, G1 : 384 bits, and G2 : 768 bits. Table 5.8 uses the data from previous tables to estimate
the communication costs of operations. This table is the source for Table 5.9.

HIAC IHABC PS
Issuer public key 3G1 + 2G2 1G2 2G2
Issuer secret key 2Zp 1Zp 2Zp
Verifier public key 2kZk + 4kG1 (k + 1)G1 ∅

+3kG2
Verifier secret key 2Zp 1Zp ∅

Signature 1Zp + 4G1 2G1 + 1G2 2G1
Randomized signature 6G1 + 4G2 6Zp + 3G1 2G1

+4G2

Table 5.6 – Asymptotic size of the keys and signatures of the HIAC scheme, PS scheme, and
IHABC scheme.

Finally, we study the communication cost of our approach. Table 5.9 presents the communi-
cation costs expressed using the BLS12-381 group elements’ size. The most expensive commu-
nication is related to the integrity-verification operation, in which the verifier needs to transfer
its aggregators for verification by the user’s device. Yet, the table shows that with 100 verifiers,
this cost totals to only 25 kB. All other operations exhibit very low communication costs of less
than 1 kB per transaction.

9. In the BLS12-381 configuration, the size of the element are : Zp : 256 bits, G1 : 384 bits, and G2 : 768 bits.

73

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

HIAC IHABC PS
(bits) (bits) (bits)

Issuer public key 2688 768 1536
Issuer secret key 512 256 512
Verifier public key 256× 2k 384× (k + 1) ∅

+384× 6k +768× 3k
Verifier secret key 512 256 ∅

Signature 1792 1536 768
Randomized signature 4608 5760 768

Table 5.7 – Size of the keys and signatures of the HIAC scheme, PS scheme, and IHABC scheme,
using BLS12-381 setup, with compressed elements.

Issuer User Verifier
Sign 4G1 2G1 ∅

VerifierSetup 4G1 ∅ ∅
IntegrityVerification ∅ ∅ 2kZp + 4kG1

Credential Presentation ∅ 12G1 + 4G2 4G1

Table 5.8 – Communication costs of each operation of the interactive HIAC scheme, for each is-
suers, users, and verifiers. Only upload costs are considerated. Credential presentation operation
takes into account the transmission of the user’s randomized credential and the commitment
reveal exchange.

Issuer User Verifier
Sign 1536 768 ∅

VerifierSetup 1536 ∅ ∅
IntegrityVerification ∅ ∅ 2k × 256 + 4k × 384

Credential Presentation ∅ 7680 1536

Table 5.9 – Communication costs of each operation of the interactive HIAC scheme, for each
issuer, user, and verifier, expressed in bits, with k being the number of trusted issuers. Only
upload costs are considerated, round trip times are not taken into account. The Credential
Presentation operation takes into account the transmission of the user’s randomized credential
and the commitment reveal exchange.

5.10 Qualitative Comparison

We now consider the security properties of HIAC in comparison with those of other schemes
as summarized in Table 5.10. The first property is issuer indistinguishability (hidden issuer).
Apart from our scheme, only one other achieves it, Issuer Hidden Attribute Based Credential
[26], but using a trusted setup. The second property is the non-transferability of credentials. Our
scheme achieves it with the transformation presented in Appendix B. Camenisch and Lysyan-
skaya (CL01) [34] also propose a signature scheme with such a property. The third property to

74

5.11. Conclusion and evolutions

analyze is the ability to sign a committed message (One-show). Our scheme achieves it in the
same way as the PS scheme. Numerous signature schemes, like CL01 or CL04 [94], also have
this property.

The fourth property relates to the fact that most AC signature schemes offer a way to
prove the possession of a credential without revealing the associated message. Our scheme could
implement this by adapting the zero-knowledge proof of a signature used by PS. However, the
prover would need to prove a relationship between a message and its hash. Whereas this can
be proven in zero knowledge, any implementation would be inefficient, because hash functions
are based on boolean circuits, for which zero knowledge proofs are known to be inefficient. To
achieve this property efficiently, we could replace the hash function with a low-degree polynomial
fulfilling some conditions. We leave this as future work. Another way to achieve this property
would be to use Groth’s signature like IHABC, but this would come at the cost of a trusted
setup as discussed in Section 5.3.

HIAC CL01 CL04 PS IHABC
Hidden issuer X X

Non transferable X X
One-show X X X

ZKP of signature X X X X
Revocation X X

Table 5.10 – Qualitative comparison of different Anonymous Credential scheme. (HIAC: Hidden
Issuer Anonymous Credential; CL01: hidden size group based Anonymous Credential scheme
[34] ; CL04: bilinear pairing based Anonymous Credential scheme [94]; PS: Short randomizable
Anonymous Credential scheme [84]; IHABC: Issuer Hidden Attribute Based Credential [26])

The fifth and last property often implemented by AC schemes is credential revocation. De-
signing a revocation mechanism while keeping issuer indistinguishability is non trivial. The most
efficient way to achieve it in our scheme would be for the issuers to regularly publish a revocation
accumulator, accumulating all revoked credentials. Users would later leverage this accumulator
to prove that their credentials do not appear in the revocation list, as suggested by Camenisch
et al. [110]. However, this can be rather complicated to achieve in a hidden-issuer context, and
should be the subject of further research.

5.11 Conclusion and evolutions

In this chapter, we provided a formal definition of an Anonymous Credential scheme that
hides the issuer of a credential inside the set of issuers trusted by a verifier. We gave an instan-
tiation of this scheme, based on a new primitive called aggregator, and a modified Pointcheval
Sanders signature scheme. This new Hidden Issuer Anonymous Credential (HIAC) enhances the

75

Chapter 5 – A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer
Anonymous Credential

minimization principle of SSIs, and it improves the collusion resistance of Anonymous Credential
schemes. It achieves EUF-CMA, unlinkability, issuer indistinguishability, and the trusted-issuer
property; and it does not require a trusted-setup. The aggregator primitive can be used in other
issuer-indistinguishable signature schemes, and its instantiation is interoperable with state-of-
the-art signatures.

The work presented in this chapter was published in 2022, and since then, it has led to mul-
tiple evolutions that proposed more efficient schemes to enable the issuer’s indistinguishability
property. We can cite a work by Mir et al. [111] and a work by Sanders and Traoré [31]. When we
studied the issuer indistinguishability property for Anonymous Credentials and published this
paper at PETs 2022, we were the first (concurrently with IHABC [26]) to tackle this problem.
Therefore, many efficiency problems were not addressed by our work nor by the work of Bobolz
et al. [26]. If an implementer needs the issuer’s indistinguishability property, we encourage them
to choose one of the schemes that was proposed later. In that sense, the scheme proposed by
Sanders and Traoré is particularly interesting as it also uses the PS signature scheme. The differ-
ence with the work presented in the present chapter is that their scheme modifies the PS scheme
in a more controlled way, thus leading to a more efficient HIAC scheme where the size of the
scheme’s elements is significantly decreased. Moreover, unlike the scheme presented here or the
IHABC scheme [26], the Sanders and Traoré scheme does not require the use of Zero Knowledge
Proofs. Not only does it improve efficiency, but it also makes it possible to prove the security of
their scheme in the standard model rather than in the Random Oracle Model.

To conclude, the issuer’s indistinguishability property is essential for building a PPfDIMS.
We presented the first (concurrently with Bobolz et al. [26]) scheme anonymous credential
scheme that supports issuer indistinguishability. This work inspired others to build more ef-
ficient schemes. In Chapter 10, we use one of these evolutions proposed by Sanders and Traoré
[31].

76

Chapter 6

SYNCHRONIZATION REQUIREMENTS FOR

REVOCATION, ACCESS CONTROL, AND

MULTI-DEVICE CAPABILITY

This chapter formally studies AllowLists and DenyLists as distributed objects. In this chapter,
those two objects are defined in the shared memory model. Then, their consensus number is
analyzed. Those objects are the core of auxiliary features of PPfDIMSs. Hence, this analyses is
used in Chapters 9 and 10 to build theoretically optimal (in term of synchronization requirements)
auxiliary features for PPfDIMSs. It was written in collaboration with Davide Frey and Michel
Raynal. It was published in the international Symposium on Distributed Computing (DISC)
conference in 2023 [21].

6.1 Introduction

Chapter 3 studied different implementations of DIMSs. As we saw, most of them use a
consensus algorithm or a blockchain as their main distributed component. However, this use of
the blockchain as a swiss-army knife that can solve numerous distributed problems highlights
a lack of understanding of the actual requirements of those problems. Because of these poor
specifications, implementations of these applications are often sub-optimal.

This chapter thoroughly studies a class of problems widely used in distributed applications
and provides a guideline to implement them with reasonable but sufficient tools.

Differently from the previous approaches, it aims to understand the amount of synchro-
nization required between processes of a system to implement specific distributed objects. To
achieve this goal it studies such objects under the lens of Herlihy’s consensus number [27]. This
parameter is inherently associated to shared memory distributed objects, and has no direct corre-
spondence in the message passing environment. However, in some specific cases, this information
is enough to provide a better understanding of the objects analyzed, and thus, to gain efficiency
in the message passing implementations. For example, recent papers [112, 24] have shown that
cryptocurrencies can be implemented without consensus and therefore without a blockchain. In

77

Chapter 6 – Synchronization requirements for revocation, access control, and multi-device
capability

particular, Guerraoui et al. [112] show that k-asset transfer has a consensus number k where k
is the number of processes that can withdraw currency from the same account [27]. Similarly,
Alpos et al. [113] have studied the synchronization properties of ERC20 token smart contracts
and shown that their consensus number varies over time as a result of changes in the set of pro-
cesses that are approved to send tokens from the same account. These two results consider two
forms of asset transfer: the classical one and the one implemented by the ERC20 token, which
allows processes to dynamically authorize other processes. The consensus number of those ob-
jects depends on specific and well identified processes. From this study, it is possible to conclude
that the consensus algorithms only need to be performed between those processes. Therefore,
in these specific cases, the knowledge of the consensus number of an object can be directly used
to implement more efficient message passing applications. Furthermore, even if this study uses
a shared memory model, with crash prone processes, its results can be used to implement more
efficient Byzantine resilient algorithm, in a message passing environment. This chapter proposes
to extend this knowledge to a broader class of applications.

Indeed, the transfer of assets, be them cryptocurrencies or non-fungible tokens, does not con-
stitute the only application in the Blockchain ecosystem. In particular, as previously indicated,
a number of applications like e-voting [114], naming [115, 116], or Identity Management [52,
7] use Blockchain as a tool to implement some form of access control. This is often achieved
by implementing two general-purpose objects: AllowLists and DenyLists. An AllowList provides
an opt-in mechanism. A set of managers can maintain a list of authorized parties, namely the
AllowList. To access a resource, a party (user) must prove the presence of an element associated
with its identity in the AllowList. A DenyList provides instead an opt-out mechanism. In this
case, the managers maintain a list of revoked elements, the DenyList. To access a resource, a
party (user) must prove that no corresponding element has been added to the DenyList. In other
words, AllowList and DenyList support, respectively, set-membership and set-non-membership
proofs on a list of elements.

The proofs carried out by AllowList and DenyList objects often need to offer privacy guar-
antees. For example, the Sovrin privacy preserving Decentralized Identity-Management System
(DIMS) [52] associates an AllowList 1 with each verifiable credential that contains the identifiers
of the devices that can use this verifiable credential. When a device uses a credential with a
verifier, it needs to prove that the identifier associated with it belongs to the AllowList. This
proof must be done in zero knowledge, otherwise the verifier would learn the identity of the
device, which in turn could serve as a pseudo-identifier for the user. For this reason, AllowList
and DenyList objects support respectively a zero-knowledge proof of set membership or a zero-
knowledge proof of set non-membership.

Albeit similar, the AllowList and DenyList objects differ significantly in the way they handle

1. In reality this is a variant that mixes AllowList and DenyList which we discuss in section 6.8.

78

6.1. Introduction

the proving mechanism. In the case of an AllowList, no security risk appears if access to a resource
is prohibited to a process, even if a manager did grant this right. As a result, a transient period
in which a user is first allowed, then denied, and then allowed again to access a resource poses
no problem. On the contrary, with a DenyList, being allowed access to a resource after being
denied poses serious security problems. Hence, the DenyList object is defined with an additional
anti-flickering property prohibiting those transient periods. This property is the main difference
between an AllowList and a DenyList object and is the reason for their distinct consensus
numbers.

Existing systems [114, 115, 116, 52, 7] that employ AllowList and DenyList objects implement
them on top of a heavy blockchain infrastructure, thereby requiring network-level consensus to
modify their content. As already said, this chapter studies this difference under the lens of
the consensus number [27]. It shows that (i) the consensus number of an AllowList object is
1, which means that an AllowList can be implemented without consensus; and that (ii) the
consensus number of a DenyList is instead equal to the number of processes that can conduct
prove operations on the DenyList, and that only these processes need to synchronize. Both data
structures can therefore be implemented without relying on the network-level consensus provided
by a blockchain, which opens the door to more efficient implementations of applications based
on these data structures.

To summarize, this chapter presents the following three contributions.

1. It formally defines and studies AllowList and DenyList as distributed objects (Sec-
tion 6.4).

2. It analyses the consensus number of these objects: it shows that the AllowList does not
require synchronization between processes (Section 6.6), while the DenyList requires the
synchronization of all the verifiers of its set-non-membership proofs (Section 6.7).

3. It uses these theoretical results to give intuitions on their optimal implementations.
Namely the implementation of a DIMS, as well as of an e-vote system and an anony-
mous asset-transfer protocol (Section 6.9).

Allow/Deny List Object
(Section 5)

E-Voting
(Section 5.e and 5.g.iii)

Asset Transfer
(Section 5.g.ii)

DIMS
(Section 5.g.i)

79

Chapter 6 – Synchronization requirements for revocation, access control, and multi-device
capability

6.2 Related Works

Even though distributed consensus algorithms were already largely studied [117, 118, 119,
25], the rise of Ethereum—and the possibilities offered by its versatile smart contracts—led to
new ideas to decentralized already known applications. Among those, e-vote and DIMS [91] are
two examples.

Blockchains increased the interest in distributed versions of already existing algorithms.
However, these systems are usually developed with little concern for the underlying theoretical
basis they rely on. A great example is trustless money transfer protocols or crypto money.
The underlying distributed asset-transfer object was never studied until recently. A theoretical
study proved that a secure asset-transfer protocol does not need synchronicity between network
nodes [112]. Prior to this work, all proposed schemes used a consensus protocol, which cannot be
deterministically implemented in an asynchronous network [22]. The result is that many existing
protocols could be replaced by more efficient, Bizantine Reliable Broadcast [25] based algorithms.
This work leads to more efficient implementation proposal for money transfer protocol [24]. Alpos
et al. then extended this study to the Ethereum ERC20 smart contracts [113]. This last paper
focuses on the asset-transfer capability of smart contracts. Furthermore, the object described
has a dynamic consensus number, which depends on the processes authorized to transfer money
from a given account. Furthermore, this work and the one from Guerraoui et al. [112] both
analyze a specific object that is not meant to be used to find the consensus number of other
applications. In contrast, our work aims to be used as a generic tool to find the consensus number
of numerous systems.

A recent paper published after the present work was presented at DISC 2023 studies the
consensus number of Auditable Read/Write register objects. Those objects have a behavior
similar to one of the DenyList objects, and their consensus number is the same. However, it
is unclear how those two objects are related, and further evaluation should be conducted to
determine what similarities exist and to what extent those objects can be formalized in an even
more general object.

6.3 Model

The communication model used in this chapter is the shared memory model presented in
Section 4.1.1.

In the following, it is also assumed there exists dynamic accumulators Acc that supports effi-
cient ZKP of set-membership and set-non-membership. Such ZKP systems have been proposed
for proof of set-membership and proof of set-non-membership [120].

80

6.4. The AllowList and DenyList objects: Definition

6.4 The AllowList and DenyList objects: Definition

Distributed AllowList and DenyList object types are the type of objects that allow a set of
managers to control access to a resource. The term “resource” is used here to describe the goal a
user wants to achieve and which is protected by an access control policy. A user is granted access
to the resource if it succeeds in proving that it is authorized to access it. First, we describe the
AllowList object type. Then we consider the DenyList object type.

The AllowList object type is one of the two most common access control mechanisms. To
access a resource, a process p ∈ ΠV needs to prove it knows some element v previously authorized
by a process pM ∈ ΠM , where ΠM ⊆ Π is the set of managers, and ΠV ⊆ Π is the set of processes
authorized to conduct proofs. We call verifiers the processes in ΠV . The sets ΠV and ΠM are
predefined and static. They are parameters of the object. Depending on the usage of the object,
these subset can either be small, or they can contain all the processes in Π.

A process p ∈ ΠV proves that v was previously authorized by invoking a Prove(v) operation.
This operation is said to be valid if some manager in ΠM previously invoked an Append(v)
operation. Intuitively, we can see the invocation of the Append(v) operation as the action of
authorizing some process to access the resource. On the other hand, the Prove(v) operation,
performed by a prover process, p ∈ ΠV , proves to the other processes in ΠV that they are
authorized. However, this proof is not enough in itself. The verifiers of a proof must be able
to verify that a valid Prove operation has been invoked. To this end, the AllowList object type
is also equipped with a Read() operation. This operation can be invoked by any process in Π
and returns all the valid Prove operations invoked, along with the identity of the processes that
invoked them. The list returned by the Read operation can be any arbitrary permutation of the
list of Prove operations. All processes in Π can invoke the Read operation. 2

An optional anonymity property can be added to the AllowList object to enable privacy-
preserving implementations. This property ensures that other processes cannot learn the value
v proven by a Prove(v) operation.

The AllowList object type is formally defined as a sequential object, where each invocation
is immediately followed by a response. Hence, the sequence of operations defines a total order,
and each operation can be identified by its place in the sequence.

Definition 6.1. The AllowList object type supports three operations: Append, Prove, and
Read. These operations appear as if executed in a sequence Seq such that:

— Termination. A Prove, an Append, or a Read operation invoked by a correct process
always returns.

— Append Validity. The invocation of Append(x) by a process p is valid if:

2. Usually, AllowList objects are implemented in a message-passing setting. In these cases, the Read operation
is implicit. Each process knows a local state of the distributed object, and can inspect it any time. In the shared-
memory setting, we need to make this Read operation explicit.

81

Chapter 6 – Synchronization requirements for revocation, access control, and multi-device
capability

— p ∈ ΠM ⊆ Π; and
— x ∈ S, where S is a predefined set.
Otherwise, the operation is invalid.

— Prove Validity. If the invocation of op = Prove(x) by a process p is valid, then:
— p ∈ ΠV ⊆ Π; and
— A valid Append(x) operation appears before op in Seq.
Otherwise, the invocation is invalid.

— Progress. If a valid Append(x) operation is invoked, then there exists a point in Seq such
that any Prove(x) operation invoked after this point by any process p ∈ ΠV will be valid.

— Read Validity. The invocation of op = Read() by a process p ∈ ΠV returns the list of valid
invocations of Prove that appears before op in Seq along with the names of the processes
that invoked each operation.

— Optional - Anonymity. Let us assume the process p invokes a Prove(v) operation. If the
process p′ invokes a Read() operation, then p′ cannot learn the value v unless p leaks
additional information. 3

The AllowList object is defined in an append-only manner. This definition makes it possible
to use it to build all use cases explored in this chapter. However, some use cases could need an
DenyList with an additional Remove operation. This variation is studied in Section 6.8.

The DenyList object type can be informally presented as an access policy where, contrary
to the AllowList object type, all users are authorized to access the resource in the first place.
The managers are here to revoke this authorization. A manager revokes a user by invoking the
Append(v) operation. A user uses the Prove(v) operation to prove that it was not revoked. A
Prove(v) invocation is invalid only if a manager previously revoked the value v.

All the processes in Π can verify the validity of a Prove operation by invoking a Read ()
operation. This operation is similar to the AllowList’s Read operation. It returns the list of valid
Prove invocations along with the name of the processes that invoked it.

There is one significant difference between the DenyList and the AllowList object types.
With an AllowList, if a user cannot access a resource immediately after its authorization, no
malicious behavior can harm the system—the system’s state is equivalent to its previous state.
However, with a DenyList, a revocation not taken into account can let a malicious user access
the resource and harm the system. In other words, access to the resource in the DenyList case
must take into account the ”most up to date” available revocation list.

To this end, the DenyList object type is defined with an additional property. The anti-

3. The Anonymity property only protects the value v. The system considered is eponymous. Hence, the identity
of the processes is already known. However, the anonymity of v makes it possible to hide other information. For
example, the identity of a client that issues a request to a process of the system. These example are discussed in
Section 6.9. Thereby, the anonymity property does not contravene the Read validity property, which only discloses
the process identity.

82

6.5. PROOF-LIST object specification

flickering property ensures that if an Append operation is taken into account by one Prove
operation, it will be taken into account by every subsequent Prove operation. Along with the
progress property, the anti-flickering property ensures that the revocation mechanism is as im-
mediate as possible. The DenyList object is formally defined as a sequential object, where each
invocation is immediately followed by a response. Hence, the sequence of operations define a
total order, and each operation can be identified by its place in the sequence.

Definition 6.2. The DenyList object type supports three operations: Append, Prove, and
Read. These operations appear as if executed in a sequence Seq such that:

— Termination. A Prove, an Append, or a Read operation invoked by a correct process
always returns.

— Append Validity. The invocation of Append(x) by a process p is valid if:
— p ∈ ΠM ⊆ Π; and
— x ∈ S, where S is a predefined set.
Otherwise, the operation is invalid.

— Prove Validity. If the invocation of a op = Prove(x) by a correct process p is not valid,
then:
— p /∈ ΠV ⊆ Π; or
— A valid Append(x) appears before opP in Seq.
Otherwise, the operation is valid.

— Prove Anti-Flickering. If the invocation of a operation op = Prove(x) by a correct process
p ∈ ΠV is invalid, then any Prove(x) operation that appears after op in Seq is invalid. 4

— Read Validity. The invocation of op = Read() by a process p ∈ ΠV returns the list of valid
invocations of Prove that appears before op in Seq along with the names of the processes
that invoked each operation.

— Optional - Anonymity. Let us assume the process p invokes a Prove(v) operation. If the
process p′ invokes a Read() operation, then p′ cannot learn the value v unless p leaks
additional information.

6.5 PROOF-LIST object specification

Section 6.6 and Section 6.7 propose an analysis of the synchronization power of the AllowList
and the DenyList object types using the notion of consensus number. Both objects share many
similarities. Indeed, the only difference is the type of proof performed by the user and the

4. The only difference between the AllowList and the DenyList object types is this anti-flickering property.
As it is shown in Section 6.6 and in Section 6.7, the AllowList object has consensus number 1, and the DenyList
object has consensus number k = |ΠV |. Hence, this difference in term of consensus number is due solely to the
anti-flickering property. It is an open question whether a variation of this property could transform any consensus
number 1 object into a consensus number k object.

83

Chapter 6 – Synchronization requirements for revocation, access control, and multi-device
capability

Process Operation Initial state Res- Final state Conditions
ponse

pi ∈ ΠM Append(y) (listed-values = {x ∈ S}, true (listed-values ∪ {y}, y ∈ S
proofs = ({(pj ∈ Π, Ŝ ⊆ S,P ∈ PL

Ŝ
)})) proofs)

pi Append(y) (listed-values = {x ∈ S}, false (listed-values, proofs) pi /∈ ΠM ∨ y /∈ S
proofs = ({(pj ∈ Π, Ŝ ⊆ S,P ∈ PL

Ŝ
)}))

pi ∈ ΠV Prove(y) (listed-values = {x ∈ S}, (A,P) (listed-values, ∀y ∈ LA ∧ A ⊆ listed-values
proofs = ({(pj ∈ Π, Ŝ ⊆ S,P ∈ PL

Ŝ
)})) proofs ∪ {(pi,A,P)}) ∧∀P ∈ PLA ∧ C(y, Ŝ) = 1

pi Prove(y) (listed-values = {x ∈ S}, false (listed-values, proofs) ∀y /∈ LA ∨ A 6⊆ listed-values
proofs = ({(pj ∈ Π, Ŝ ⊆ S,P ∈ PL

Ŝ
)})) ∨ ∀P /∈ PLA ∨ ∀pi /∈ ΠV

∨ C(y, Ŝ) = 0
pi ∈ Π Read() (listed-values = {x ∈ S}, proofs (listed-values, proofs)

proofs = ({(pj ∈ Π, Ŝ ⊆ S,P ∈ PL
Ŝ
)}))

Table 6.1 – Transition function ∆ for the PROOF-LIST object.

non-flickering properties. Therefore, this section defines the formal specification of the PROOF-
LIST object type, a new generic object that can be instantiated to describe the AllowList or the
DenyList object type.

The PROOF-LIST object type is a distributed object type whose state is a pair of arrays
(listed-values, proofs). The first array, listed-values, represents the list of authorized/revoked
elements. It is an array of objects in a set S, where S is the universe of potential elements. The
second array, proofs, is a list of assertions about the listed-values array. Given a set of managers
ΠM ⊆ Π and a set of verifiers ΠV ⊆ Π, the PROOF-LIST object supports three operations. First,
the Append(v) operation appends a value v ∈ S to the listed-values array. Any process in the
manager’s set can invoke this operation. Second, the Prove(v) operation appends a valid proof
about the element v ∈ S relative to the listed-values array to the proofs array. This operation
can be invoked by any process p ∈ ΠV . Third, the Read() operation returns the proofs array.

The sets ΠV and ΠM are static, predefined subsets of Π. There is no restriction on their com-
positions. The choice of these sets only depends on the usage of the AllowList or the DenyList.
Depending on the usage, they can either contain a small subset of processes in Π or they can
contain the whole set of processes of the system.

To express the proofs produced by a process p, we use an abstract language LA of the
complexity class NP, which depends on a set A. This language will be specified for the AllowList
and the DenyList objects in Section 6.6 and Section 6.7. The idea is that p produces a proof π
about a value v ∈ S. A Prove invocation by a process p is valid only if the proof π added to the
proofs array is valid. The proof π is valid if v ∈ LA—i.e., v is a solution to the instance of the
problem expressed by LA, where LA is a language of the complexity class NP 5 which depends
on a subset A of the listed-values array (A ⊆ S). We note PLA the set of valid proofs relative
to the language LA. PLA can either represent Zero Knowledge Proofs or explicit proofs.

5. In this article, LA can be one of the following languages: a value v belongs to A (AllowList), or a value v
does not belongs to A (DenyList).

84

6.5. PROOF-LIST object specification

If a proof π is valid, then the Prove operation returns (A,Acc.P rove(v,A)), where
Acc.P rove(v,A) is the proof generated by the operation, and where A is a subset of values
in listed-values on which the proof was applied. Otherwise, the Prove operation returns “false”.
Furthermore, the proofs array also stores the name of the processes that invoked Prove opera-
tions.

Formally, the PROOF-LIST object type is defined by the tuple (Q, Q0, O, R, ∆), where:

— The set of valid state is Q = (listed-values = {x ∈ S}, proofs = {(p ∈ Π, Ŝ ⊆ S,P ∈
PL
Ŝ
)}), where listed-values is a subset of S and proofs is a set of tuples. Each tuple in

proofs consists of a proof associated with the set it applies to and to the identifier of the
process that issued the proof;

— The set of valid initial states is Q0 = (∅, ∅), the state where the listed-values and the
proofs arrays are empty;

— The set of possible operation is O = {Append(x), Prove(y), Read()}, with x, y ∈ S;

— The set of possible responses is R =
{

true, false, (Ŝ ⊆ S,P ∈ PL
Ŝ
), {(p ∈ Π, Ŝ ′ ⊆

S,P′ ∈ PL
Ŝ
)}
}
, where true is the response to a successful Append operation, (Ŝ,P)

is the response to a successful Prove operation, {(p, Ŝ ′,P′)} is the response to a Read
operation, and false is the response to a failed operation; and

— The transition function is ∆. The PROOF-LIST object type supports 5 possible transi-
tions. We define the 5 possible transitions of ∆ in Table 6.1.

The first transition of the ∆ function models a valid Append invocation, a value y ∈ S is
added to the listed-values array by a process in the managers’ set ΠM . The second transition
of the ∆ function represents a failed Append invocation. Either the process pi that invokes this
function is not authorized to modify the listed-values array, i.e., pi /∈ ΠM , or the value it tries
to append is invalid, i.e., y /∈ S. The third transition of the ∆ function captures a valid Prove
operation, where a valid proof is added to the proofs array. The function C will be used to
express the anti-flickering property of the DenyList implementation. It is a boolean function
that outputs either 0 or 1.The fourth transition of the ∆ function represents an invalid Prove
invocation. Either the proof is invalid, or the set on which the proof is issued is not a subset of
the listed-values array. Finally, the fifth transition represents a Read operation. It returns the
proofs array and does not modify the object’s state.

The language LA does not directly depend on the listed-values array. Hence, the validity of
a Prove operation will depend on the choice of the set A.

85

Chapter 6 – Synchronization requirements for revocation, access control, and multi-device
capability

6.6 The consensus number of the AllowList object

This section provides an AllowList object specification based on the PROOF-LIST object.
The specification is then used to analyze the consensus number of the object type.

We provide a specification of the AllowList object defined as a PROOF-LIST object, where
C(y, Ŝ) = 1 and

∀y ∈ S, y ∈ LA ⇔ (A ⊆ S ∧ y ∈ A). (6.1)

In other words, y belongs to a set A. Using the third transition of the ∆ function, we can see
that A should also be a subset of the listed-values array. Hence, this specification supports proofs
of set-membership in listed-values. A PROOF-LIST object defined for such language follows the
specification of the AllowList. To support this statement, we provide an implementation of the
object.

To implement the AllowList object, Algorithm 1 uses two Atomic Snapshot objects. The
first one represents the listed-values array, and the second represents the proofs array. These
objects are arrays of N entries. Furthermore, we use a function “Proof” that on input of a set
S and an element y outputs a proof that y ∈ listed-values. This function is used as a black box,
and can either output an explicit proof—an explicit proof can be the tuple (y,A), where A ⊆
listed-values—or a Zero Knowledge Proof.

Shared variables
AS-LV ← N -dimensions Atomic-Snapshot

object, initially {∅}N ;
AS-PROOF ← N -dimensions Atomic-Snapshot

object, initially {∅}N ;
Operation Append(v) is
1: If (v ∈ S) ∧ (p ∈ ΠM) then
2: local-values ← AS-LV.Snapshot()[p];
3: AS-LV.Update(local-values ∪ v, p);
4: Return true;
5: Else return false;
Operation Read () is
6: Return AS-PROOF.Snapshot();

Operation Prove(v) is
7: If p /∈ ΠV then
8: Return false;
9: A ← AS-LV.Snapshot();

10: If v ∈ A then
11: πset−memb ← Proof(v ∈ A);
12: proofs ← AS-PROOF.Snapshot()[p];
13: AS-PROOF.Update(proofs

∪ (p,A, πset−memb), p);
14: Return (A, πset−memb);
15: Else return false.

Algorithm 1: Implementation of an AllowList object using Atomic-Snapshot objects

Theorem 6.1. Algorithm 1 wait-free implements an AllowList object.

Proof. Let us fix an execution E of the algorithm presented in algorithm 1. Each invocation

86

6.6. The consensus number of the AllowList object

is a sequence of a finite number of local operations and Atomic-Snapshot accesses. Because
the Atomic Snapshot primitive can be wait-free implemented in the read-write shared memory
model, each correct process terminates each invocation in a finite number of its own steps.

Let H be the history of the execution E. We define H̄, the completed history of H. Any
invocation in H can be completed in H̄. We give the completed history H̄ of H:

— Any invocation of the Append operation that did not reach line 3 can be completed with
the line “Return false”;

— Any invocation of the Prove operation that did not reach line 13 can be completed with
the line “Return false”;

— Any invocation of the Append operation that reached line 3 can be completed with line
4; and

— Any invocation of the Prove operation that reached line 13 can be completed with line
14.

The linearization points of the Append, Prove and Read operations are respectively line 3, line
13 and line 6. For convenience, We call any operation in H̄ that returns “false” an invalid
operation. We verify that each operation in H̄ respects the specification:

— Any operation in H̄ run by a process p that is invalid is an operation that only modifies
the internal state of p and that was invoked by a faulty process or that was invoked by
a process without the write to invoke the operation. Therefore, these invalid operations
do not impact the validity and the progress properties of the AllowList object.

— If an Append operation invoked by a process p in H̄ returns “true”, it implies that p
reached line 3. Therefore p appended a value v to the array listed-values at the index p.
Process p is the only process able to write at this index. Because the Update operation
is atomic, and because p is the only process able to write in AS-LV[p], the listed-values
array append-only property is preserved. Furthermore, the element added to listed-value
belongs to the set S, and the process that appends the value belongs to the set of managers
ΠM . Therefore, any invocation of the Append operation in H̄ that returns “true” fulfills
the Append validity property. Hence, any Append invocation in H̄ follows the AllowList
specification.

— If an invocation of the Prove operation by a process p in H̄ returns (A, π), then p ∈ ΠV

reached line 13. Therefore, p appended a proof π to the proofs array at the index p, and the
proof is a valid proof that v ∈ A. Process p is the only process allowed to modify the proofs
array at this index. There is no concurrency on the write operation. Furthermore, the
set A, is a subset of the AS-LV array (line 9). Because the only way to add an element
to the AS-LV array is via an Append operation, because we consider the linearization
point of the Prove operation to be at line 13, the Prove validity property is ensured. The
progress property is ensured thanks to the atomicity of the Atomic Snapshot object. If

87

Chapter 6 – Synchronization requirements for revocation, access control, and multi-device
capability

some process executes line 3 of the Append operation at time t1, then any correct process
that reaches line 8 of the Prove(x) operation at time t2 > t1 will be valid. Hence, any
Prove invocation in H̄ follows the AllowList specification.

— A Read operation always returns the values of the AS-PROOF array that were linearized
before the execution of line 6, thanks to the atomicity of the Atomic Snapshot object. Fur-
thermore, the returned value is always a set of successful Prove operations (AS-PROOF).
This set ois compounded of proofs associated to the name of the process that invoked the
operation. Therefore, the Read validity property is ensured. Hence, any Read invocation
in H̄ follows the AllowList specification.

All operations in H̄ follow the AllowList specification. Thus, H̄ is a legal history of the AllowList
object type, and H is linearizable. To conclude, the algorithm presented in algorithm 1 is a wait-
free implementation of the AllowList object type.

Corollary 6.1. The consensus number of the AllowList object type is 1.

6.7 The consensus number of the DenyList object

In the following, we propose two wait-free implementations establishing the consensus number
of the DenyList object type. In this section and in the following, we refer to a DenyList with
|ΠV | = k as a k-DenyList object. This analysis of this parameter k is the core of the study
conducted here. Because it is a statically defined parameter, the knowledge of this parameter
can improve efficiency of DenyList implementation by reducing the number of processes that
need to synchronize in order to conduct a proof.

6.7.1 Lower bound

Algorithm 2 presents an implementation of a k-consensus object using a k-DenyList object
with ΠM = ΠV = Π, and |Π| = k. It uses an Atomic Snapshot object, AS-LIST, to allow
processes to propose values. AS-LIST serves as a helping mechanism [121]. In addition, the
algorithm uses the progress and the anti-flickering properties of the Prove operation of the k-
DenyList to enforce the k-consensus agreement property. The Propose operation operates as
follows. First, a process p tries to prove that the element 0 is not revoked by invoking Prove(0).
Then, if the previous operation succeeds, p revokes the element 0 by invoking Append(0). Then,
p waits for the Append to be effective. This verification is done by invoking multiple Prove
operations until one is invalid. This behavior is ensured by the progress property of the k-
DenyList object. Once the progress has occurred, p is sure that no other process will be able to
invoke a valid Prove(0) operation. Hence, p is sure that the set returned by the Read operation
can no longer grow. Indeed, the Read operation returns the set of valid Prove operation that

88

6.7. The consensus number of the DenyList object

occurred prior to its invocation. If no valid Prove(0) operation can be invoked, the set returned
by the Read operation is fixed (with regard to the element 0). Furthermore, all the processes in
Π share the same view of this set.

Finally, p invokes Read() to obtain the set of processes that invoked a valid Prove(0) operation.
The response to the Read operation will include all the processes that invoked a valid Prove
operation, and this set will be the same for all the processes in Π that invoke the Propose
operation. Therefore, up to line 7, the algorithm solved the set-consensus problem. To solve
consensus, we use an additional deterministic function fi : Πi → Π, which takes as input any
set of size i and outputs a single value from this set.

To simplify the representation of the algorithm, we also use the separator() function, which,
on input of a set of proofs ({(p ∈ Π, {Ŝ ⊆ S,P ∈ PLS)}), outputs processes, the set of processes
which conducted the proofs, i.e. the first component of each tuple.

Shared variables
k-dlist ← k-DenyList object;
AS-LIST ← Atomic Snapshot object, initially {∅}k

Operation Propose(v) is
1: AS-LIST.Update(v, p);
2: k-dlist.Prove(0);
3: k-dlist.Append(0);
4: Do
5: ret ← k-dlist.Prove(0);
6: Until (ret 6= false);
7: processes ← separator(k-dlist.Read());
8: Return AS-LIST.Snapshot()[f|processes|(processes)].

Algorithm 2: Implementation of a k-consensus object using one k-DenyList object and
one Atomic Snapshot

Theorem 6.2. Algorithm 2 wait-free implements a k-consensus object.

Proof. Let us fix an execution E of the algorithm presented in Algorithm 2. The progress prop-
erty of the k-DenyList object ensures that the while loop in line 4 consists of a finite number of
iterations—an Append(0) is invoked prior to the loop, hence, the Prove(0) operation will eventu-
ally be invalid. Each invocation of the Propose operation is a sequence of a finite number of local
operations, Atomic Snapshot object accesses and k-DenyList object accesses which are assumed
atomic. Therefore, each process terminates the Propose operation in a finite number of its own
steps. Let H be the history of E. We define H̄ the completed history of H, where an invocation
of Propose which did not reach line 8 is completed with a line “return false”. Line 8 is the

89

Chapter 6 – Synchronization requirements for revocation, access control, and multi-device
capability

linearization point of the algorithm. For convenience, any Propose invocation that returns false

is called an failed invocation. Otherwise, it is called a successful invocation.
We now prove that all operations in H̄ follow the k-consensus specification:
— The process p that invoked a failed Propose operation in H̄ is faulty—by definition, the

process prematurely stopped before line 8. Therefore, the fact that p cannot decide does
not impact the termination nor the agreement properties of the k-consensus object.

— A successful Propose operation returns AS-LIST.Snapshot()[f|processes|(processes)]. Fur-
thermore, a process proposed this value in line 1. All the processes that invoke Propose
conduct an Append(0) operation, and wait for this operation to be effective using the
while loop at line 4 to 6. Thanks to the anti-flickering property of the k-DenyList object,
when the Append operation is effective for one process—i.e. the Progress happens, in
other words,a Prove(0) operation is invalid—, then it is effective for any other process
that would invoke the Prove(0) operation. Hence, thanks to the anti-flickering property,
when a process obtains an invalid response from the Propose(0) operation at line 5, it
knows that no other process can invoke a valid Prove(0) operation. This implies that the
Read operation conducted at line 7 will return a fix set of processes, and all the processes
that reach this line will see the same set. Furthermore, because each process invokes a
Propose(0) before the Append(0) at line 3, at least one valid Propose(0) operation was
invoked. Therefore, the processes set is not empty. Because each process ends up with the
same set processes, and thanks to the determinism of the function fi, all correct processes
output the same value v (Agreement property and non-trivial value). The value v comes
from the Atomic Snapshot object, composed of values proposed by authorized processes
(Validity property). Hence a successful Propose operation follows the k-consensus object
specification.

All operations in H̄ follow the k-consensus specification. To conclude, the algorithm presented
in algorithm 2 is a wait-free implementation of the k-consensus object type.

Corollary 6.2. The consensus number of the k-DenyList object type is at least k.

6.7.2 Upper bound

This section provides a DenyList object specification based on the PROOF-LIST object. The
specification is then used to analyze the upper bound on the consensus number of the object
type.

We provide an instantiation of the DenyList object defined as a PROOF-LIST object, where:

∀y ∈ S, y ∈ LA ⇔ (A ⊆ S ∧ y /∈ A).

90

6.7. The consensus number of the DenyList object

And where :

C(y, Ŝ) =

1, if ∀A′ ∈ Ŝ, y /∈ A′

0, otherwise.

In other words, the first equation ensures that y does not belong to a set A, while the second
equation ensures that the object fulfills the anti-flickering property. Hence, this instantiation
supports proofs of set-non-membership in listed-values. A PROOF-LIST object defined for such
language follows the specification of the DenyList. To support this statement, we provide an
implementation of the object.

To build a k-DenyList object which can fulfill the anonymity property, it is required to build
an efficient helping mechanism that preserves anonymity. It is impossible to disclose directly
the value proven without disclosing the user’s identity. Therefore, we assume that a process p
that invokes the Prove(v) operation can deterministically build a cryptographic commitment to
the value v. Let Cv be the commitment to the value v. Then, any process p′ 6= p that invokes
Prove(v) can infer that Cv was built using the value v. However, a process that does not invoke
Prove(v) cannot discover to which value Cv is linked. If the targeted application does not require
the user’s anonymity, it is possible to use the plaintext v as the helping value.

Algorithm 3 presents an implementation of a k-DenyList object using k-consensus objects and
Atomic Snapshots. The Append and the Read operations are analogous to those of Algorithm 1.

On the other hand, the Prove operation must implement the anti-flickering property. To this
end, a set of k-consensus objects and a helping mechanism based on commitments are used.

When a process invokes the Prove(v) operation, it publishes Cv, the cryptographic com-
mitment to v, using an atomic snapshot object. This commitment is published along with a
timestamp [122] defined as follow. A local timestamp (p, c) is constituted of a process identifier
p and a local counter value c. The counter c is always incremented before being reused. There-
fore, each timestamp is unique. Furthermore, we build the strict total order relation R such that
(p, c)R(p′, c′)⇔ (c < c′) ∨ ((c = c′) ∧ (p < p′)). The timestamp is used in coordination with the
helping value Cv to ensure termination. A process p that invokes the Prove(v) operation must
parse all the values proposed by the other processes. If a Prove(v′) operation was invoked by
a process p′ earlier than the one invoked by p—under the relation R—, then p must affect a
set “val” for the Prove operation of p′ via the consensus object. The set “val” is obtained by
reading the AS-LV object. The AS-LV object is append-only—no operation removes elements
from the object. Furthermore, the sets “val” are attributed via the consensus object. Therefore,
this mechanism ensures that the sets on which the Prove operations are applied always grow.

Furthermore, processes sequentially parse the CONS-ARR using the counterp variable. This
behavior, in collaboration with the properties of the consensus, ensures that all the process see
the same tuples (winner, val) in the same order.

Finally, if a process p observes that a Prove operation conducted by a process p′ 6= p is

91

Chapter 6 – Synchronization requirements for revocation, access control, and multi-device
capability

associated to a commitment Cv equivalent to the one proposed by p, then p produces the proof
of set-non-membership relative to v and the set “val” affected to p′ in its name. We consider
that a valid Prove operation is linearized when this proof of set-non-membership is added to
AS-PROOF in line 19. Hence, when p produces its own proof—or if another process produces
the proof in its name—it is sure that all the Prove operations that are relative to v and that
have a lower index in CONS-ARR compared to its own are already published in the AS-PROOF
Atomic Snapshot object. Therefore, the anti-flickering property is ensured. Indeed, because the
affected sets “val” are always growing and because of the total order induced by the CONS-ARR
array, if p reaches line 25, it previously added a proof to AS-PROOF in the name of each process
p′ 6= p that invoked a Prove (v) operation and that was attributed a set at a lower index than p
in CONS-ARR. Hence, the operation of p′ was linearized prior to the operation of p.

A Prove operation can always be identified by its published timestamp. Furthermore, when
a proof is added to the AS-PROOF object, it is always added to the index counterpw . Therefore,
if multiple processes execute line 19 for the Prove operation labeled counterpw , the AS-PROOF
object will only register a unique value.

Furthermore, we use a function Proof that on input of a set S and an element x outputs
a proof that x /∈ S. This function is used as a black box, and can either output an explicit
proof—an explicit proof can be the tuple (x,S)—, or a Zero Knowledge Proof.

Theorem 6.3. Algorithm 3 wait-free implements a k-DenyList object.

Proof. Let us fix an execution E of the algorithm presented in Algorithm 3. The strict order
relation R used to prioritize accesses to the CONS-ARR array implies that each process that
enters the while loop in line 12 will only iterate a finite number of times. Furthermore, we assume
that k-consensus objects and atomic-snapshot objects are atomic. Therefore, each process returns
from a Prove, an Append, or a Read operation in a finite number of its own steps.

Let H be the history of E. We define H̄, the completed history of H. We associate a specific
response with all pending invocations in H. The associated responses are:

— Any invocation of the Append operation that did not reach line 3 can be completed with
the line “Return false”.

— Any invocation of the Prove operation that did not reach line 10 can be completed with
the line “Return false”.

— Any pending invocation of the Prove operation by the process p that reached line 10
is completed with the line “Return (val, πSNM);” if (p, value, πSNM , winner) is in the
AS-PROOF array, and the value added by process p in line 10 is “winner”. Otherwise,
the operation is completed with the line “Return false”.

— Any pending invocation of the Append operation that reached line 3 can be completed
with line 4.

92

6.7. The consensus number of the DenyList object

Shared variables
AS-LV ← N -dimensions Atomic-Snapshot object, initially {∅}N ;
AS-Queue ← N -dimensions Atomic-Snapshot object, initially {∅}N ;
CONS-ARRp ← an array of k-consensus objects of size l > 0;
AS-PROOF ← l-dimensions Atomic-Snapshot object, initially {∅}l;

Local variables
For each p ∈ ΠV :
evaluatedp ← an array of size l > 0, initially {∅}l;
counterp ← a positive integer, initially 0;

Operation Append(v) is
1: If (v ∈ S) ∧ (p ∈ ΠM) then
2: local-values ← AS-LV.Snapshot()[p];
3: AS-LV.Update(local-values ∪ v, p);
4: Return true;
5: Else return false;
Operation Prove(v) is
6: If p /∈ ΠV then
7: Return false;
8: Cv ← Commit(v); 9: cnt ← counterp;

10: AS-Queue.Update(((cnt, p), Cv), p);
11: queue ← AS-Queue.Snapshot() \ evaluatedp;
12: While (cnt, p) ∈ queue do
13: oldest ← the smallest clock value in queue under R;
14: prop ← (oldest, AS-LV.Snapshot());
15: (winner, val) ← CONS-ARR[counterp].Propose(prop);
16: ((counterpw , pw), C∗)← winner;
17: If C∗ = Cv ∧ v /∈ val then
18: πSNM ← Proof(v /∈ val);
19: AS-PROOF.Update((pw, val, πSNM , winner), counterpw);
20: evaluatedp ← evaluatedp ∪ winner;
21: queue ← queue \ winner;
22: counterp ← counterp + 1;
23: If v /∈ val then
24: Return (val, πSNM);
25: Else return false;
Operation Read() is
26: Return AS-PROOF.Snapshot();

Algorithm 3: k-DenyList object type implementation using k-consensus objects and
Atomic Snapshot objects.

93

Chapter 6 – Synchronization requirements for revocation, access control, and multi-device
capability

The linearization point of the Append and Read operations are respectively at line 3 and 26. Let
us consider a valid Prove operation invoked by a process p that is attributed a tuple (winner,
val) at the index counterpw of the CONS-ARR array. We say this operation is linearized when
the first AS-PROOF.Update labeled with counterpw in line 19 is executed by any process.

For convenience, we call operations that return false invalid operations. The consensus
objects in CONS-ARR are accessed at most once by each process. There are only k = |ΠV |
processes allowed to access these objects. Therefore, the k-consensus objects in the array always
return a value different from ∅. We now prove that all operations in H̄ follow the DenyList
specification:

— An invalid Append operation in H̄ only modifies the internal state of the process. This
operation does not modify the state of the shared object. It is either invoked by an
unauthorized process which fails in line 1, or by a faulty process. This operation follows
the specification;

— An invalid Prove operation in H̄ is an operation that returns false in line 7 or 25. In
the first case, the process was not authorized to propose a proof. In the second case, the
value v used by the process is already inside the set “val” the process was attributed by
the consensus in line 15. This set is produced from the values added to the AS-LV object.
This object begins as an empty set, and values inside this set can only be added using
the Append operation. Therefore, the Prove validity property is ensured.

— If an invocation of the Append operation in H̄ returns true, it implies that process
p appended a value v to the listed-values array, at the index p at line 3. Because the
WRITE operation is atomic, and because p is the only process able to write in AS-
ACC[p], the listed-values array append-only property is preserved. Hence a successful
Append operation follows the specification.

— If an invocation of the Prove operation in H̄ returns true, it implies that: 1) process p
was attributed a k-consensual set “val” on line 15, 2) from line 17, v /∈ val, and 3) a proof
that v /∈ “val” was added to the AS-PROOF object, either by p or by another process
performing the helping mechanism. First, to prove the progress property, we assume a
history where first, a process p′ obtains a positive response from an Append(v) operation.
Afterward, a process p invokes a Prove(v) operation. Therefore, the value v will already
be included in the AS-LV object at this time because p′ received a positive response
from its invocation. Any process that executes the line 14 of the Prove operation after
the invocation of p will propose a set where v is included. Therefore, the set “val” that
will be affected to p by the consensus on line 15 will include v. The Prove(v) operation
invoked by p will be invalid. The progress property is ensured.
Second, the anti-flickering property is ensured by the helping mechanism and the k-
consensus objects used from line 10 to 22. The processes in ΠV that invoke the Prove(v)

94

6.8. Variations on the listed-values array

operation will sequentially attribute a set “val” to each proving process, using the set
of k-consensus objects. Furthermore, this sequential attribution takes into account the
evolution of the AS-LV object. Therefore, the set associated with the object CONS-
ARR[i− 1] is always included in the set associated with the object CONS-ARR[i].
Furthermore, the CONS-ARR array is browsed sequentially by each process invoking
the Prove operation. Therefore, if a process p that invokes a Prove(v) operation with a
timestamp t, and this invocation is not valid in the end, p will nonetheless linearize all
the Prove(v) operations that have a lower timestamp than t before returning from the
operation. Hence, all the valid Prove(v) operations will be linearized before the response of
p’s invocation, and any invocation of a Prove(v) operation that occurs after the response
of p’s invocation will fail.
Third, the Prove validity property directly follows from point (2) and the anti-flickering
property. Hence a successful Prove operation follows the specification.

— A Read operation always returns, and thanks to the atomicity of the Atomic Snapshot
object, it always returns the most up-to-date version of the AS-PROOF array.

All operations in H̄ follow the k-DenyList specification. Therefore the algorithm presented in
Algorithm 3 is a wait-free implementation of the k-DenyList object type.

The following corollary follows from Theorem 6.2 and Theorem 6.3.

Corollary 6.3. The k-DenyList object type has consensus number k.

6.8 Variations on the listed-values array

In the previous sections, we assumed the listed-values array was append-only. Some use cases
might need to use a different configuration for this array. In this section, we want to explore the
case where the listed-values array is no longer append-only.

6.8.1 One-process only

We will first explore a limited scenario where the processes can only remove values they
wrote themselves on the listed-values array. In this case, there are no conflicts on the append
and remove operations. The listed-values array can be seen as an array of |ΠV | values. A process
pi can write the i-th index of the listed-values array. It is the only process that modifies this
array. Therefore, there are no conflicts upon writing. We would need to add a Remove operation
to the AllowList and DenyList object. Because of this Remove operation, the AllowList could
act as a DenyList. Indeed, let us assume the managers adds all elements of the universe of
the possible identifiers to the AllowList in the first place. Then, this AllowList can implement
a DenyList object, where the Remove operation of the AllowList is equivalent to the Append

95

Chapter 6 – Synchronization requirements for revocation, access control, and multi-device
capability

operation of the DenyList. Hence, the AllowList object would need an anti-flickering property
to prevent concurrent Prove operations from yielding conflicting results. This implies that an
AllowList object implemented with a Remove operation is equivalent to a DenyList object and
has consensus number k, where k is the number of processes in ΠV .

6.8.2 Multi-process

The generalization of the previous single-write-remove listed-values array is a listed-values
array where kAR (AR for Append/Remove) processes can remove a value appended by process pi.
We assume each process p is authorized to conduct Append and Remove operations on its “own”
register. Furthermore, each process pi has a predefined authorization set Ai ⊆ ΠM , defining
which processes can Append or Remove on pi’s register. We always have pi ∈ Ai. If pj ∈ Ai, then
pj is allowed to ”overwrite” (remove) anything pi wrote. In this case, all authorized processes
need to synchronize in order to write a value on the listed-values array. More precisely, we can
highlight two cases.

The first case is the ”totally shared array” case, where all processes share the same Ai = ΠM .
Any modifications on the listed-values array by one process pi can be in competition with any
other process pj ∈ ΠM . Therefore, there must be a total synchronization among all the processes
of the managers’ set to modify the listed-values array. When such behaviour is needed, both
AllowList and DenyList require solving consensus among at least |ΠM | processes to implement
the Append and Remove operations.

The second case is the ”cluster” case: a subset of processes share a sub-array, which they can
write. In this case, each process in a given cluster must synchronize before writing (or removing)
a value. The synchronization required is only between this cluster’s kAR authorized process. This
corresponds to some extent to a sharded network [123].

6.9 Discussion

This section presents several applications where the AllowList and the k-DenyList can be
used to determine consensus number of more elaborate objects. More importantly, the analysis of
the consensus of these use cases makes it possible to determine if actual implementations achieve
optimal efficiency in terms of synchronization. If not, we use the knowledge of the consensus
number of the AllowList and DenyList objects to give intuitions on how to build more practical
implementations. More precisely, the fact that consensus numbers of AllowList and DenyList
objects are (in most cases) smaller than n implies that most implementations can reduce the
number of processes that need to synchronize in order to implement such distributed objects. The
liveness of many consensus protocols is only ensured when the network reaches a synchronous
period. Therefore, reducing the number of processes that need to synchronize can increase the

96

6.10. Conclusion

system’s probability of reaching such synchronous periods. Thus, it can increase the effectiveness
of such protocols.

6.9.1 Revocation of a verifiable credential

We begin by analyzing Sovrin’s Verifiable-Credential revocation method using the DenyList
object [52]. Sovrin is a privacy-preserving Distributed Identity Management System (DIMS). In
this system, users own credentials issued by entities called issuers. A user can employ one such
credential to prove to a verifier they have certain characteristics. An issuer may want to revoke
a user’s credential prematurely. To do so, the issuer maintains an append-only list of revoked
credentials. When a user wants to prove that their credential is valid, they must provide to the
verifier a valid ZKP of set-non-membership proving that their credential is not revoked, i.e. not
in the DenyList. In this application, the set of managers ΠM consists solely of the credential’s
issuer. Hence, the proof concerns solely the verifier and the user. The way Sovrin implements
this verification interaction is by creating an ad-hoc peer-to-peer consensus instance between the
user and the verifier for each interaction. Even if the resulting DenyList has consensus number
2, Sovrin implements the Append operation using an SWMR stored on a blockchain-backed
ledger (which requires synchronizing the N processes of the system). Our results suggest instead
that Sovrin’s revocation mechanism could be implemented without a blockchain. The Append
operation could be implemented using FIFO reliable broadcast, and the Prove operation could
be implemented using pairwise consensus between users and verifiers. We show in Chapter 10
how to use efficient distributed algorithm to reach this lower bound with a system similar to the
one implemented by Sovrin. We also extend this application to the multi-device authorization
problem that is studied in Chapter 9.

6.9.2 Distributed e-vote systems

Finally, another direct application of the DenyList object is the blind-signature-based e-vote
system with consensus number k, k being the number of voting servers, which we present in
Appendix A. Most distributed implementations of such systems also use blockchains, whereas
only a subset of the processes involved actually require synchronization.

6.10 Conclusion

This chapter presented the first formal definition of distributed AllowList and DenyList
object types. These definitions made it possible to analyze their consensus number. This analysis
concludes that no consensus is required to implement an AllowList object. On the other hand,
with a DenyList object, all the processes that can propose a set-non-membership proof must
synchronize, which makes the implementation of a DenyList more resource intensive.

97

Chapter 6 – Synchronization requirements for revocation, access control, and multi-device
capability

The definition of AllowList and DenyList as distributed objects made it possible to thor-
oughly study other distributed objects that can use AllowList and DenyList as building blocks.
Importantly, we discussed the use of DenyList to implement revocation lists for PPfDIMSs.
We will also use the result presented in this chapter to implement a multi-device feature for
PPfDIMS. This implementation is presented in Chapter 9. Overall, AllowList and DenyList are
one of the main tools of PPfDIMS. Therefore, the thorough study conducted in this chapter will
allow us to determine the optimality of PPfDIMSs in term of synchronization requirements.

98

Chapter 7

FROM ZOOKO’S TRILEMMA TO THE

NAMESPACE OBJECT: HOW TO

ALLOCATE SCARCE NAMES IN A

DISTRIBUTED SYSTEM

This chapter studies the problem of attributing names to resources in a distributed system.
It analyzes Zooko’s trilemma as well as the consensus number of the naming problem. Those
analyses are used to find the lowest synchronization requirements when creating DID documents
in PPfDIMSs. Those results are used in Chapter 8 to build a new asynchronous naming algo-
rithm and in Chapter 10 to create DIDs and DID documents in the context of PPfDIMS. Many
developments presented here arose from discussions with Timothé Albouy.

7.1 Introduction

One of the main components of a PPfDIMS is a DID and DID document-capable ledger. DID
documents are used to enable auxiliary features of PPfDIMSs. We discussed some of the dis-
tributed problems related to these auxiliary features and, thus, to the usage of DID documents
in Chapter 6. However, when an entity creates a DID document, it has to name it. In other
words, it must create a unique DID that refers to this DID document. Two different versions of
this problem have been studied. The first type of study was conducted in the shared-memory
model and is called the renaming problem [124, 125]. The setting of this problem is the fol-
lowing: processes have names at initialization, which are drawn from a large set N . They must
rename themselves so that each process has a name from a second set M, and the size of M
is significantly smaller than N . Furthermore, no two processes can share the same name, and
each (correct) process must be able to learn the names of the other processes. Importantly, in
the renaming problem, processes cannot choose their names. The second type of study looks at
the names and the forms they can take in distributed systems. Whereas the first type of study
is formally defined and provides proof of what is possible to do or not, it does not directly apply

99

Chapter 7 – From Zooko’s trilemma to the Namespace object: how to allocate scarce names in
a distributed system

to most use cases. Specifically, it does not apply to creating DID and DID documents. In this
chapter, we are interested in the second type of problem.

In 2001, Wilcox Zooko published a blog article [16] presenting its thoughts on the problem of
name allocation in distributed systems. The outcome of this article is the following conjecture: In
a distributed system, it is impossible to identify a process with a name that is at the same time
secure and human-meaningful. This chapter aims to formally define the different objects and
properties at stake in this problem and prove Zooko’s statement. To the best of our knowledge,
this is the first attempt to provide such formal proof of Zooko’s trilemma.

Interestingly, multiple systems achieve these three properties (distributed, human-
meaningful, and secure). The most famous one is DNSSec [126], which associates each name
with an IP address and adds security through the use of digital signatures. Thus, only the
owner of a domain name can modify its IP address. Another well-known system is the Ethereum
Name Service (ENS) [115], which allocates domain names using the Ethereum blockchain [127].
Namecoin [116] is the predecessor of ENS and works similarly.

These few examples show a disconnection between state-of-the-art implementations and
Zooko’s statement. This chapter will show that these systems circumvent the problem rather
than solve it. To do so, they associate multiple (often two) identifiers. One provides human
meaningfulness and distribution, while the other provides security and distribution.

When we know how to circumvent the problem, it is interesting to understand what is
required to build a “Zooko’s circumventing” naming system. We will explore the cryptographic
minimal requirements of such systems and the distributed-system theory that applies to this
problem. To the best of our knowledge, this is the first time such an explicit analysis has been
conducted.

In this chapter, we will explain Zooko’s triangle problem. Then, we will explain how dis-
tributed systems circumvent this problem. Afterward, we will explore the distributed system’s
notion of naming problem. Finally, we will map the naming problem to Zooko’s triangle problem
and identify the minimal requirements in term of synchronization necessary to build a naming
system.

7.2 Identifiers, resources and namespaces

A naming system aims to associate an identifier with a resource. We define an identifier as a
unique and finite string of bits. Identifiers can be augmented with additional properties. These
properties are exposed in Section 7.4. Formally:

Definition 7.1. Identifier. An identifier is an arbitrary finite string of bits.

A resource, on the other hand, is any object that an identifier can identify. Intentionally, we
keep the definition of a resource vague. Formally:

100

7.3. The Namespace object

Definition 7.2. Resource. A resource is an object (either physical or digital) that can
be uniquely identified and distinguished from other objects.

The goal of an identifier is to identify a resource. A resource, whether a physical or a digital
object, does not have a name by itself. A name is only a cultural construction that has a meaning
in a specific environment. We call this environment a namespace:

Definition 7.3. Namespace. A namespace N is defined for a set of processes Π as a
dictionary that associates a resource with an identifier. Each identifier must be unique in a
given namespace.

Interestingly, this definition of a namespace does not imply any properties. For example,
an identifier can be arbitrarily long. Furthermore, this definition does not imply any security
property. For example, with this definition, any process could impersonate another.

7.3 The Namespace object

This section proposes a formal definition of a distributed Namespace object. The specifica-
tion’s goal is to formalize Zooko’s statement so that we can formally prove its properties.

We provide a sequential definition of a Namespace object (NO) for a unique resource. This
specification describes how an identifier is associated with a resource. This definition is based
on a bijective function fsec that will be used to define the security property of an identifier.

Definition 7.4. Namespace object. A Namespace object NO is defined for a set of
resources R, a set of identifiers ID, where id ∈ ID is a unique arbitrary string of bits,
an arbitrary set A and a bijective function fsec : A → ID by a set of three operations
{NO.Associate,NO.Read,NO.ProvePossession}. The operations NO.ProvePossession(a, res)
and NO.Associate(a, res) both have two inputs, a ∈ A, an element in A, and res ∈ R, a
resource. The operation NO.Read(res) takes one argument, a resource res ∈ R. We give a def-
inition of the properties of a Namespace object where each operation appears as in a sequence
seq.

— Termination. the invocation of the operations NO.Associate, NO.Read and
NO.ProvePossession terminate.

— NO.Associate validity. The operation NO.Associate(x, res) invoked by the process pi is
valid if x ∈ A, res ∈ R and no valid NO.Associate(?, res) operation appears before in
the sequence seq.

— NO.Read validity. The operation NO.Read(res) invoked by the process pi is always valid.
It eventually returns fsec(x) if a valid NO.Associate(x, res) operation appears before in
seq. Otherwise, it returns ⊥.

— NO.ProvePossession validity. The operation NO.ProvePossession(x, res) invoked by pro-

101

Chapter 7 – From Zooko’s trilemma to the Namespace object: how to allocate scarce names in
a distributed system

cess pi is valid if NO.Read(res) = id and f−1
sec (id) = x, where f−1

sec is the inverse function
of fsec.

— Identifier unicity. Two different invocation of an NO.Associate(x, ?) operations cannot
appear in seq.

As we can see, the operation NO.Associate(a, res) is used to associate an identifier with
a ressource. However, the element a ∈ A used in the operation is not necessarily the actual
identifier as it appears to the other processes of the system. Processes that did not invoke the
valid NO.Associate(a, res) operation can only see the identifier associated with the resource res
by invoking the operation NO.Read(res). This operation does not return a, it returns fsec(a).
Hence, fsec(a) is the actual identifier as it appears to the system. This remark will be necessary
to define the security of a Namespace object formally.

Notably, the only information processes have access to with a Namespace object is this
fsec(a) value. If the processes have access to any additional value, then the object would not
fulfill the Namespace specification, as we are interested in objects where a resource is associated
to a unique identifier, i.e., a unique string of bits. We study resources associated with multiple
identifiers in Section 7.9.

7.4 The Zooko’s triangle problem

The Zooko’s triangle problem, or Zooko’s trilema, is a problem informally introduced by
Wilcox Zooko in 2001 [16] in a blog post. In this blog article, Zooko tackles the problem of
building a distributed Namespace object that is simultaneously human-meaningful (e.g., which
does not consist of a random long string of characters) and cannot be impersonated. Zooko
stated that a unique identifier could not fulfill the three requirements (distributed, secure, and
human-meaningful) at the same time.

Zooko’s problem isolates three desirable identifier properties: decentralization, security, and
human-meaningfulness. A name is decentralized if the system consists of more than one process,
if there is no trusted third party, and if all the correct processes agree on the associations
identifier↔resource. An identifier id associated with a resource res and belonging to a process
pi is secure if no process pj 6= pi can modify (or prove the possession of) the resource associated
to id even if pj is Byzantine. Finally, the human-meaningful property is the hardest to describe.
It is a property related to a human’s ease of remembering and reusing an identifier. Multiple
definitions can be proposed to describe this notion. A popular one is the bus test. If an identifier
id is written on the side of a bus, and this bus stays less than 3 seconds in the eyesight of an
observer, then this observer should be able to recall this name a few minutes later. We prefer to
use the “human-choosable” definition. This definition states that a name is human-meaningful
if it consists of a string of characters, and each character, along with the length of the string, is

102

7.4. The Zooko’s triangle problem

Figure 7.1 – The Zooko’s triangle

chosen by the user controlling the process pi. This second definition also has the advantage of
capturing the scarcity of names. Multiple processes might choose the same name, and there are
few human-choosable names compared to the space of possible identifiers.

These properties are often represented as a triangle, where each corner represents one prop-
erty. The sides of the triangles represent names with two properties, and the center of the triangle
is the identifier that implements every property. This triangle is represented in Figure 7.1.

It is easy to understand Zooko’s statement—which is the title of his blog post—“Names:
Decentralized, Secure, Human-meaningful: choose two”. In other words, no identifier can fulfill
the three properties at the same time. Let us explain this statement.

First, let us place ourselves in a distributed system without trusted third parties. Therefore,
the identifiers must fulfill the decentralized property, i.e., every process in the system must
agree on which identifier is associated with which process. Let us add human-meaningfulness.
Using the human-choosable definition, the identifier must be a string of characters whose size
and content are chosen by a human. Now, we add security. No Byzantine process should be
able to impersonate another, i.e., no Byzantine process should be able to act using an identifier
it does not own. The only known technique to achieve this goal is to associate the identifier
with a secret. This secret can be the one of an asymmetric cryptographic systems such as a
signature scheme or zero-knowledge proof of knowledge of a secret. However, Zooko’s triangle
problem is defined for a unique identifier, i.e., for a unique string of bits. 1 Furthermore, a secure
asymmetric cryptographic scheme is based on the randomness of the secret used, and thus, the
resulting public identifier has to be random too.

The two last points directly indicate that the security and human-meaningful properties
cannot be fulfilled simultaneously. Zooko conjectured this impossibility in its article. In the fol-
lowing, we formally prove this impossibility by formalizing the three properties of the trilemma.

The human-choosable property ensures that a process can choose the name it associates with
a resource.

1. We will discuss in the following how to circumvent Zooko’s triangle problem by mapping multiple identifiers

103

Chapter 7 – From Zooko’s trilemma to the Namespace object: how to allocate scarce names in
a distributed system

Definition 7.5. Human-choosable. A Namespace object fulfills the human-choosable
property if any process pi has access to an efficiently computable and deterministic algorithm x←
choose(id) such that if it invokes a valid NO.Associate(x, res) operation, then NO.Read(res)
eventually outputs id.

In other words, the human-choosable property states that a process can invert the fsec

function. The idea is that the user wants to claim the identifier id. However, processes can only
use the NO.Associate operation to associate a name to an identifier. Furthermore, the processes
that invoke this operation only choose x ∈ A the pre-image of id relative to fsec. Thus, the
choose algorithm is necessary for the process to be able to choose its identifier. The bijectivity
of the fsec function implies that the choose function is also bijective. Hence, only one choose
function exists. Furthermore, it is assumed that each process can associate a resource to any
identifier. Therefore, all processes have access to the same choose function that can be used to
invert the fsec for all the identifiers in ID.

The decentralized property ensures that all the correct processes in the network see the same
identifiers associated with a resource. In other words, this property ensures an agreement on the
association between a resource and an identifier.

Definition 7.6. Decentralized. Let |Π| = n > 1. Let pi ∈ Π be a correct process. Let
pi invoke a valid NO.Associate(x, res) operation. A Namsepace Object is decentralized if the
invocation of NO.Read(res) by a correct process pj , ∀j ∈ {1, . . . , n} eventually returns fsec(x).

Finally, the secure property states that a process must know the secret used to claim the
identifier id to invoke a valid NO.ProvePossetion(?, res) operation. Hence, the process that
invokes a valid NO.ProvePossetion operation proves that it is the rightful owner of the resource
res.

Definition 7.7. Secure. A Namespace object is secure if, given id = NO.Read(res), the
probability for a process pi to invoke a valid NO.Prove(?, res) operation is lower than ε, where
ε is a security parameter.

This definition also implies that the implementation of the object hides the value of f−1
sec (id).

Otherwise, the security property could be trivially broken.

7.5 Formal proof of the Zooko’s impossibility

Wilcox Zooko stated in his blog article that no identifier (i.e., Namespace object) can fulfill
the human-choosable, secure, and decentralized properties at the same time. This section pro-
vides a formal proof of this statement. We recall that this proof considers Namespace objects,
i.e., objects where resources are identified by a unique identifier. Hence, the security property
must be solely fulfilled by this unique identifier. Any additional information would change the

104

7.6. The edges of the triangle

Figure 7.2 – Edges of the Zooko’s triangle

object to an Identifier System object. We study Identifier System objects in Section 7.9. However,
here we interest ourselves to Namespace objects.

Theorem 7.1. Zooko’s triangle problem. A Namespace object cannot fulfill the
human-choosable property, the decentralized property, and the secure properties at the same
time.

Proof. This proof is a proof by contradiction. We will assume that a Namespace object can fulfill
the three properties.

First, let a process pi invoke a valid NO.Associate(x, res) operation. Using the human-
choosable property, we know that pi has access to a function choose such that it can choose an
identifier id and use x = choose(id) in its invocation of NO.Associate(x, res). Second, using the
decentralized property, we know that there are at least two processes in the system and that they
are eventually able to discover id, the identifier associated with res, by invoking NO.Read(res).
Third, the Human-choosable property states that any process has access to the algorithm choose
and that this algorithm is deterministic. In other words, every process in the system knows id and
choose(id) = f−1

sec (id). Hence, each process can compute x = f−1
sec (Id). Therefore, any process in

the system will eventually be able to invoke a valid NO.Prove(x, res) operation. Hence breaking
the security property.

Therefore, a Namespace object cannot simultaneously fulfill the Human-choosable property,
the Decentralized property, and the Security property without leading to a contradiction. Hence,
Zooko’s triangle impossibility is proven.

7.6 The edges of the triangle

In Section 7.5, we showed that a Namespace object cannot fulfill all three properties of an
identifier at the same time. However, an identifier can fulfill two of them. These are the edges of

105

Chapter 7 – From Zooko’s trilemma to the Namespace object: how to allocate scarce names in
a distributed system

Zooko’s triangle, each with specific properties and usages. Each type of identifier is highlighted
in Figure 7.2. They can be defined as:

— Petname. A petname is a secure and human-meaningful identifier. A petname is an
identifier used on a unique computer or server, i.e., there is no decentralization. There is
only one process in the system. Therefore, the process considered is correct. This process
can associate an identifier with any resource in its own memory without worrying about
security. Therefore, any string of characters chosen by the user will be secure. It directly
follows that the human-choosable property is also ensured.

— Nickname. A nickname is a decentralized and human-meaningful identifier. A nickname
can be easily implemented in a system without Byzantine processes. A user only has
to choose an identifier. Then, the process communicates the association between the
identifier and the resource the user owns. With this type of identifier, however, a unique
Byzantine process could impersonate each identifier.

— Pointer. A pointer is a secure and decentralized identifier. A pointer is a public key of
some asymmetric cryptographic scheme. This public key must allow the associated secret
key holder to prove he or she is (probabilistically) the rightful owner of the identifier and,
thus, of the resource. This key can be disseminated among the processes. When a process
needs to access a resource, it needs to produce a context-dependent proof that it knows
the secret key associated with the identifier.

7.7 The consensus number of the edges

This section analyses the consensus number of a Namespace object and applies this result
to the different types of identifiers.

7.7.1 Consensus number of the Namespace object

To prove the consensus number of a distributed object, we use the shared memory model
presented in Section 4.1.1. Knowledge of the consensus number of a distributed object can be
used to determine whether a consensus algorithm is required to implement the same object in a
message-passing system. More precisely, if the consensus number of an object is strictly greater
than 1, then its implementation in the message passing model requires the use of a consensus
algorithm and, therefore, some degree of synchronization [128].

In this section, we prove that the consensus number of the Namespace object is∞. The proof
is a proof by reduction. Algorithm 4 is an algorithm that implements a consensus object using
only a Namespace object and Atomic Snapshot objects. The algorithm lets processes that want
to propose a value v add it to the AS-VALUES array. This array is used as a helping mechanism
[121]. Then, processes advertise which resource they will name thanks to the AS-RES array.

106

7.7. The consensus number of the edges

Afterward, they elect a leader by naming their resource with a predefined identifier, in our case,
the identifier 0. Only one process can succeed thanks to the identifier unicity property of the
Namespace object. This process is the leader; the value that it added to the AS-VALUES array
is chosen as the result of the consensus.

Shared variables
NO ← Namespace object;
AS-VALUES ← Atomic Snapshot object, initially {∅}n;
AS-RES ← Atomic Snapshot object, initially {∅}n;

Local variables
resi ← a resource, unique for each process in Π;

Operation Propose(v) is
1: AS-VALUES.Update(v, i);
2: AS-RES.Update(resi, i);
3: NO.Associate(0, resi);
4: id← ⊥;
5: While id = ⊥ do:
6: resources ← AS-RES.Snapshot();
7: for j ∈ {1, . . . , n} do
8: If NO.Read(ressources[j]) 6= ⊥
9: id← NO.Read(ressources[j]);

10: winner ← j;
11: Return AS-LIST.Snapshot()[winner].

Algorithm 4: Implementation of a consensus object using one Namespace object and
one Atomic Snapshot, code for process pi

Lemma 7.1. If p is correct, the loop from line 5 to 10 eventually terminates at process p.

Proof. The NO.Associate validity property ensures that if one or multiple correct processes
invoke the NO.Associate(x, ?) operation, then at least one will be valid. The identifier unic-
ity property does not contradict this statement, as this property only avoids a second valid
NO.Associate(x, ?) operation when another valid one has already been invoked. Furthermore,
the NO.Read validity property states that, if a valid NO.Associate(?, res) operation is invoked,
then eventually, the NO.Read(?, res) operation outputs a value different from ⊥. Hence, be-
cause p invokes NO.Associate at line 3, and because the NO.Read operation is invoked on all
the possible resources of the system, then the NO.Read operation at line 8 eventually outputs
a value different from ⊥ and the condition at line 5 is no longer fulfilled. Thus, the loop from
line 5 to 10 eventually terminates at process p.

107

Chapter 7 – From Zooko’s trilemma to the Namespace object: how to allocate scarce names in
a distributed system

Theorem 7.2. Algorithm 4 is a wait-free implementation of a consensus object as defined
in Section 4.1.1, for any number of processes.

Proof. Let us fix an execution E of the algorithm presented in Algorithm 4. Using Lemma 7.1,
we know that each process terminates the Propose operation in a finite number of its own steps.
Let H be the history of E. We define H̄ the completed history of H, where an invocation
of Propose which did not reach line 3 is completed with a line “return false”. Line 3 is the
linearization point of the algorithm. Any invocation of propose in H̄ which reached line 3 and
did not terminate is completed with the lines 4 to 11. For convenience, any Propose invocation
that returns false is called a failed invocation. Otherwise, it is called a successful invocation.

We now prove that all operations in H̄ follow the consensus specification:
— The process p that invoked a failed Propose operation in H̄ is faulty—by definition, the

process prematurely stopped before line 3. Therefore, the fact that p cannot decide does
not impact the termination nor the agreement properties of the consensus object.

— Because the loop from line 5 to 10 terminates (c.f. Lemma 7.1), a successful Propose
operation returns AS-LIST.Snapshot()[winner]. winner is the identifier of the only process
that could associate the identifier 0 to a resource. Thanks to the identifier unicity property,
we know that no other process can do so. Furthermore, this process added a value to AS-
VALUES beforehand (line 1). Hence, even if this process crashes after the linearization
point, all other correct processes will output its proposed value. Therefore, the value this
process added to AS-VALUES will be the value output by all the correct processes, thus
ensuring the validity, agreement, and non-triviality properties.

All operations in H̄ follow the consensus object specification. To conclude, the algorithm pre-
sented in algorithm 4 is a wait-free implementation of the consensus object type.

Corollary 7.1. The consensus number of the Namespace object is ∞.

7.7.2 Consensus requirements in practice

The consensus number of the Namespace object gives information about how a naming
system can be implemented. Using the results of Section 7.7.1, we know that implementing a
Namespace object in a message-passing system requires a consensus. However, in practice, the
probability that two processes associate the same identifier to two different resources with a
pointer-based namespace object is negligible. Hence, a pointer-based namespace object can be
implemented without consensus. This section aims to give a high-level understanding of this
statement. A formal proof of the statement can be found in Section 8.7.1, where we implement
a pointer-based Identifier System object (c.f. Section 7.9) without consensus.

To understand this fact, we must cope with the scarcity of names. Indeed, and as pointed out
by Kalodner et al. [116], if individuals can freely choose their names, then the “interesting” names

108

7.8. The difference between the Namespace object specification and the renaming problem

will be scarce. Therefore, the set of nicknames is small compared to the amount of resources
that must be identified and cannot be extended. Due to this scarcity, there is a high probability
that two processes try to associate the same name with two different resources.

On the other hand, in the case of a pointer, processes cannot choose their identifiers. They
usually draw them uniformly at random in a large set. 2 This set can be chosen arbitrarily large
so that it is always much greater than the number of resources to identify. More precisely, the
set can be designed such that the probability of collision (the probability that two processes
draw the same name) is negligible. A low probability of collision is the basis of any asymmetric
cryptographic scheme.

Hence, the problem of allocating a name to a resource can be seen as a consensus problem,
where different processes can associate a specific resource with an identifier, and the system’s
processes have to choose which resource will be associated with this identifier. Hence, each
existing identifier can be seen as a consensus object. To associate a name with an identifier,
processes must propose a resource for this specific identifier. Therefore, the consensus number of
any Namespace object should be∞. However, with a pointer, the probability that two processes
choose the same name, i.e., the probability that, given a consensus instance, there exists more
than one proposition, is negligible. Hence, and with high probability, a pointer can be imple-
mented without consensus, whereas a nickname has to be implemented using consensus. Finally,
the petname is not a distributed problem; it is considered that only one process exists in the
system. Hence, we cannot talk about its consensus number, as this notion has no meaning in
this case.

Therefore, only implementing a Namespace object based on nicknames requires consensus.
We present in Chapter 8 an implementation of a pointer-based Namespace object that does not
require consensus. This implementation uses an assumption encapsulating the low probability
of collision of two pointers: no two processes can draw and propose the same identifier.

7.8 The difference between the Namespace object specification
and the renaming problem

One subject we did not tackle in the previous sections is the relation between the Namespace
object and the renaming problem [124, 125]. The renaming problem is well-studied in the shared-
memory model. It assumes a set of n processes named with identifiers drawn from a large set
(for example, their names are in the set {1, . . . , N}, where N is much greater than n). The goal
of the processes is to rename themselves, such that the space of new names must be drawn in
a smaller set {1, . . . ,M}, where M is smaller than N , and no two processes share the same
name. In this setting, the resources identified are the processes themselves. Furthermore and

2. In fact, they draw the secret associated with the identifier.

109

Chapter 7 – From Zooko’s trilemma to the Namespace object: how to allocate scarce names in
a distributed system

importantly, with the renaming problem, processes cannot choose their names.
This setting is different from the one we studied with the Namespace object. With the

Namespace object, we do not aim at naming all the resources, e.g., with the DID example, there
exists an infinite number of possible DID documents, as the information a DID document can
contain is unbounded (at least in theory, in practice, it can be bounded by the system that
implements the PPfDIMS, but this bound can be large). Hence, the number of resources is
considered unknown. Meanwhile, with the renaming problem, the number of resources is known
in advance, and all the resources must be identified.

The consensus number of the renaming problem depends on the number of available names
(i.e., on the number M); Attiya et al. [124] proved that, if M ≥ 2n − 1, then the renaming
problem can be solved only using read/write registers. Hence, its consensus number is 1. On
the other hand, Castenada et al. [125] proved that the renaming problem with M < 2n− 1 has
consensus number 2. However, unlike the object presented in Chapter 6, this consensus number
does not concern specific processes. To implement a consensus number 2 perfect renaming ob-
ject 3 from read/write registers and 2-consensus objects, it is required to use a bounded number
of “splitters”, mutual-exclusion-like objects. The process that is granted the equivalent of the
critical section of a given splitter is granted the name associated with it.

A good intuition to understand why the renaming problem is different from the Namespace
object is to think about cooperation. The goal of the renaming problem is for all processes to
cooperate to assign a predefined number of identifiers to each process. Furthermore, there are
always more (or the same number of) identifiers than resources to identify. Meanwhile, with
the Namespace object, processes compete to claim the most interesting names. The number of
interesting names is statistically less than the number of resources to identify.

7.9 Identifier systems - Circumventing Zooko’s impossibility

Section 7.5 proves that a Namespace object cannot be simultaneously human-choosable,
secure, and decentralized. We presented in Section 7.6 the three types of identifiers that can
be implemented. These three types of identifiers are widely used. However, some use cases may
require the achievement of the three properties simultaneously. For example, with a PPfDIMS,
an individual may be required to identify and communicate with a service provider using its
DID. Hence, this DID needs to be secure to prevent impersonation, distributed because we are in
a fully distributed IMS, and human-choosable to allow humans to handle and remember names,
thus reducing attacks such as phishing attacks. Therefore, we need a way to circumvent Zooko’s
impossibility.

3. A perfect renaming is a specific instance of the renaming problem where M = n, the number of processes
in the system.

110

7.9. Identifier systems - Circumventing Zooko’s impossibility

The usual—and only—way to circumvent Zooko’s triangle impossibility is to use an identifier
system. An identifier system associates multiple identifiers to a unique resource. Usually, it is
sufficient to associate two identifiers to obtain all three properties.

Two identifier systems are usually used. The petname systems [129], and the nickname
systems.

The petname system was proposed to improve PKI-based security. It can be challenging
for a human to see the difference between a legitimate website name and a fraudulent one.
For example, someone could not spot the difference between “google.com” and “goog1e.com”.
However, credential-based security is sometimes insufficient to protect users against this attack.
The petname system is a countermeasure that proposes a user to locally associate the public
key of a website to a name chosen by the user—a petname in this case. The petname is local,
human-meaningful, and secure. However, it cannot be shared. This identifier allows the user to
spot fraudulent websites and to abort phishing attempts.

On the other hand, the identifier system that will interest us in the following of this thesis
is the nickname system. To the best of our knowledge, a nickname system is a widely used
identifier system that has never been characterized as such. The idea is that each process is
identified by all other processes in the system using a pointer, i.e., the public key of some
asymmetric cryptographic scheme. This pointer is then associated with a nickname. Thus, the
pointer provides security, while the nickname provides human-choosability. The nickname system
is the naming system used by PKI-based certificates (where a name is associated with a public
key) [36], by the DNSSec system [126] and by the DID specification of the W3C [8].

7.9.1 The Identifier System Object

We provide a sequential definition of an Identifier System Object (ISO). This specification
generalizes the Namespace object definition, where one resource is associated with multiple
names, each unique in the namespace. The number of identifiers of an ISO object is denoted k
and written as a subscript. Hence, ISO2 consists of two identifiers.

Definition 7.8. Identifier System Object. An Identifier System Object ISOk is de-
fined for a set of resources R, k sets of identifiers {ID1, . . . , IDk}, k different arbitrary sets
{A1, . . . , Ak} and a set of k bijective functions {f (1)

sec : A1 → ID1, . . . , f
(k)
sec : Ak → IDk} by

a set of three operations {ISOk.Associate, ISOk.Read, ISOk.ProvePossession}. We define the
properties of the ISOk object as if they appear in a sequence seq:

— Termination. the invocation of the operations ISOk.Associate, ISOk.Read and
ISOk.ProvePossession terminate.

— ISOk.Associate validity. The operation ISOk.Associate({x1, . . . , xk}, res) invoked by
the process pi is valid if ∀i ∈ {1, . . . , k}, xi ∈ A(i), res ∈ R and no valid
ISOk.Associate(?, res) operation appears before in seq.

111

Chapter 7 – From Zooko’s trilemma to the Namespace object: how to allocate scarce names in
a distributed system

— (ISO(i)
k .Read validity.) The operation ISOk.Read(res) invoked by the process

pi is always valid. It eventually returns {f (1)
sec (x1), . . . , f (k)

sec (xk)} if a valid
ISOk.Associate({x1, . . . , xk}, res) operation appears before in the sequence seq. Oth-
erwise, it returns ⊥.

— (ISO(i)
k .ProvePossession validity.) The operation ISOk.ProvePossession({x1, . . . , xk}, res)

invoked by process pi is valid if ∀i ∈ {1, . . . , k}, ISOk.Read(res) = {id1, . . . , idk} and
(f (i)

sec)−1(idi) = xi, where (f (i)
sec)−1 is the inverse function of f (i)

sec.
— Identifier unicity. Let NO.Associate({x1, . . . , xk}, ?) and NO.Associate({y1, . . . , yk}, ?)

be two valid NO.Associate operations. Then, x1 6= y1, . . . , xk 6= yk

7.9.2 Zooko’s properties for an identifier system

With the definition of the Identifier System object, it is necessary to redefine the three prop-
erties of an identifier. The main difference is the Decentralized property. Whereas the human-
choosable and the secure properties stand if only one identifier fulfills the property, the decentral-
ization property only stands if all the identifiers of the Identifier System fulfill the decentralized
property. As stated, the decentralized property ensures an agreement on the association between
a resource and its identifiers. Thus, this agreement cannot be fulfilled if at least one identifier is
not decentralized.

The human-choosable property states that a user can invert one of the f (i)
sec functions. It may

be able to invert only one of the f (i)
sec or multiple ones.

Definition 7.9. Human-choosable. An ISOk object fulfills the human-choosable
property if any correct process pi has access to at least one efficiently computable and
deterministic algorithm xi ← choosei(idi) (where i ∈ {1, . . . , k}) such that, if it in-
vokes a valid ISOk.Associate({?, . . . , xi, . . . , ?}, res) operation, then ISOk.Read(res) outputs
{?, . . . , idi, . . . , ?}.

The secure property of an ISO object is similar to that of a NO object, at the difference that
the ISO.ProvePossession operation requires the adversary to find the secrets associated with
each identifier.

Definition 7.10. Secure. A Namespace object is secure if, given only {id1, . . . , idk} =
ISOk.Read(res), the probability for a process pi to invoke a valid ISOk.ProvePossession(?, res)
operation is lower than ε, where ε is a negligible value that depends on a security parameter.

The decentralized property ensures that all the correct processes in the network see the
same identifiers associated with a given resource. The system processes must agree on all the
identifiers associated with this resource.

Definition 7.11. Decentralized. Let |Π| = n > 1. Let pi ∈ Π be a correct process.
Let pi invoke a valid ISOk.Associate({x1, . . . , xk}, res) operation. An Identifier System object

112

7.10. Conclusion

is decentralized if the invocation of ISOk.Read(res) by a correct process pj ,∀j ∈ {1, . . . , n}
eventually returns {f (1)

sec (x1), . . . , f (k)
sec (xk)}.

Unlike the Namespace object, an Identifier System object can be implemented with these
three properties. As stated earlier, the nickname system is the most used identifier system, which
associates a pointer with a nickname to achieve the three properties simultaneously. On the other
hand, the petname system [129] that we presented earlier does not fulfill the three properties.
This is due to the use of a petname, which is not decentralized. Because of the decentralized
property of the Identifier System object, we know that if one of the identifiers used is not
decentralized, then the whole Identifier System object does not fulfill the decentralized property.

In this thesis, we propose two implementations of a nickname system. The first is presented
in Chapter 10 and is a classical nickname system object, which uses a pointer and a nickname
to achieve all three properties. The second is presented in Section 8.7.1 and is a special type
of nickname system without the human-choosable property. However, it is interesting as it can
be implemented without a consensus algorithm in a fully asynchronous system. Its goal is to
reduce the entropy of names attributed to processes when contention is low. Rather than being
identified by a public key, resources are identified by substrings of these keys. Thus, even if
names are not human-choosable, they are easier for humans to handle than public keys.

7.10 Conclusion

In this chapter, we proposed a formalization of the naming problem where names are scarce
and resources to identify are potentially infinite. We identified two types of objects. The Names-
pace object aims to identify a resource with only one identifier, i.e., with only one string of bits.
In contrast, the Identifier System object uses multiple identifiers to identify a unique resource.
We formally proved that it is impossible to implement a Namespace object that is simultaneously
secure, decentralized, and human-choosable. On the other hand, an Identifier System object can
be implemented with these three properties.

In this chapter, we also proved that the Namespace object (and, by extension, the Identifier
System object) has an infinite consensus number. However, pointers (identifiers that are long
random strings of bits) can be probabilistically implemented with an object of consensus number
1 if the probability of collision between two pointers is sufficiently small. We use this result
in Section 8.7.1 to implement a new identifier system based on the CAC abstraction. This
implementation makes building a specific kind of nickname system possible without consensus.

Identifier systems are one of the main components of Identity Management Systems. They
are used to identify resources linked to an individual that may evolve, such as revocation lists
or lists of devices authorized to use the verifiable credentials of a given individual.

113

Chapter 7 – From Zooko’s trilemma to the Namespace object: how to allocate scarce names in
a distributed system

114

Chapter 8

A COOPERATION ABSTRACTION WHEN

CONTENTION IS UNLIKELY: THE

CONTEXT ADAPTIVE COOPERATION

ABSTRACTION

This chapter presents CAC, a new cooperation abstraction that reduce synchronization re-
quirements between processes when contention is low. This abstraction is then used to build two
algorithms: a consensus algorithm and a naming algorithm. It was written in collaboration with
Timothé Albouy, Davide Frey, Michel Raynal and François Taïani. It is currently in a submission
process. A version of the paper can be found on arXiv [130].

8.1 Introduction

On distributed abstractions Distributed computing is the science of algorithm-based co-
operation. It consists in defining (using precise specifications) and implementing distributed
abstractions (distributed objects) that allow a set of computing entities (denoted processes,
nodes, peers, actors, etc.) to cooperate to reach a common goal. Considering asynchronous n-
process message-passing systems, this chapter is on cooperation abstractions that have to cope
with Byzantine processes (i.e., processes that may behave arbitrarily, as defined in [131, 132]).

Using Lamport’s Paxos terminology [133] when building a cooperation abstraction, all the
processes are acceptors, and some processes are proposers. A proposer contributes to launching
a cooperation abstraction instance (e.g., by broadcasting a message), while an acceptor locally
(partially or fully) terminates this instance by accepting/deciding/delivering a value.

Due to the very nature of distributed computing, many cooperation abstractions have been
proposed, each defining a specific distributed object (see, for example, the textbooks [134, 135,
136] where many of them are described). Two of these cooperation abstractions are particularly
important: reliable broadcast [73, 25] and consensus [22, 132] (c.f., Chapter 4).

— In Byzantine Reliable Broadcast (BRB for short), a single process acts as a proposer

115

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

while all processes are acceptors. BRB is, therefore, a one-to-all cooperation abstraction
in which the non-Byzantine processes must agree on the same value, and if the proposer
is not Byzantine, that value is the one proposed by the proposer. It is shown in [73, 25]
that BRB can be implemented in an n-process system in the presence of asynchrony and
up to t < n/3 Byzantine processes. Moreover, this bound on t is tight.

— In the consensus cooperation abstraction, every process is both a proposer and an accep-
tor. Each process is assumed to propose a value, and the non-Byzantine processes must
accept/decide/deliver the very same value (that must satisfy some properties involving
the values proposed by the non-Byzantine processes). Despite its practical interest in im-
plementing many fault-tolerant applications (e.g., distributed state machines), consensus
is impossible to solve deterministically in the presence of asynchrony if only one process
may crash [22]. Due to the practical interest of consensus, several approaches have been
proposed to circumvent this impossibility. One such approach enriches the system with
randomization (e.g., [137]). Another one extends the system with synchrony assumptions
that are as weak as possible (e.g., [138]). A third strategy adds minimal information
regarding failures (this is the failure-detector-based approach introduced in [139]).

Crucially, in both BRB and consensus, a non-Byzantine process locally accepts/decides/delivers
only one value, which is the same for all the non-Byzantine processes.

Content of this chapter BRB and consensus can be seen as two abstractions that lie at
the two ends of a spectrum of cooperation abstractions. This article presents an intermediary
cooperation abstraction denoted Context-Adaptive Cooperation (CAC), which is formally defined
in Section 8.4. Adopting an operational approach, we give below an informal presentation for
the reader to get an intuition of it.

— Within a CAC instance, some arbitrary number d (where 1 ≤ d ≤ n) of processes
propose a value. The number d of actual proposers within a CAC instance is unknown
to participating processes, it depends on the run.

— In the course of a CAC execution, each non-Byzantine process accepts pairs 〈v, i〉 (where
v is the value proposed by pi) so that, eventually, they all accept the same set of ` pairs,
where 1 ≤ ` ≤ d. A process accepts values one after the other in some arbitrary order,
which may vary from one process to another process.

As no process knows d and `, a process can never conclude it has accepted the ` pairs
composing the final set of accepted pairs (except in some specific cases that will be discussed
later). Actually, the values d and ` depend on the run (unknown number of proposers, asynchrony
and behavior of Byzantine processes). Nevertheless, the reader can see that (1) a CAC instance
in which a single process proposes a value boils down to BRB, and (2) a CAC instance in which

116

8.1. Introduction

Abstraction Implementation Byzantine resilience Asynchronous rounds

BRB Bracha [73] n > 3t 3
Imbs-Raynal [140] n > 5t 2

CAC
Section 8.5 n > 4t 3

Section 8.6 n > 3t 3
n > 5t 2

Table 8.1 – Good-case latency of sig-free BRB and sig-based CAC w.r.t Byzantine resilience.

all correct processes propose the same value boils down to a particular consensus-like instance. 1

Interestingly, in addition to eventually providing the same set of ` pairs 〈v, i〉 to non-
Byzantine processes, the CAC abstraction provides each process with an imperfect oracle that
provides information about the set of pairs that might get accepted in the future. In some
particular circumstances, this second set allows processes to know that they have converged to
the final set of accepted pairs, and that they will not accept any other pair. CAC thus falls
in an intermediate class of cooperation abstractions that dynamically adapts to the number of
proposers and their proposed values.

After formally presenting the CAC abstraction, this chapter presents two implementations.
One that is easy to implement but sub-optimal (Section 8.5), and a second one that finishes in
three asynchronous rounds when n > 3t and finishes in two asynchronous rounds in the best
cases if n > 5t (Section 8.6). Hence, this implementation has the same implementation cost as
signature-free BRB [73, 140] (see Section 8.1, where “sig” stands for “signature”). This cost is
obtained with the help of signatures 2, but without considering other assumptions on synchrony
or failures.

The CAC abstraction to address low contention problems The CAC abstraction aims
at solving distributed problems with limited contention efficiently. More precisely, we consider
objects whose state depends on the order of the operations executed, but only a subset of the
operations actually needs to be ordered. The former solution to those problems was using a
full-fledged consensus algorithm, thus requiring additional computability power (e.g., partial
synchrony or randomization).

When the probability of contention is low, it is more interesting to rely on a lightweight asyn-
chronous cooperation abstraction in good cases, and fall back to consensus only when needed.
The CAC abstraction is tailored for such scenarios: thanks to the information provided by the
abstraction about the values that might be accepted in the future, processes know if there is
contention and which processes are competing. Hence, if there is no contention, they can decide
whether or not they can stop prematurely, and if there is contention, they can resolve it by only

1. It is important to notice that this abstraction is less powerful than the consensus, namely, it can be deter-
ministically implemented in failure-prone asynchronous systems [73], while consensus cannot [22].

2. Which is limited in poly(κ), where κ is a security parameter.

117

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

communicating with the other processes involved in the conflict, thus improving efficiency. Fur-
thermore, and unlike other optimistically terminating consensus algorithms [141, 142, 143, 144,
145], the use of CAC makes it possible to terminate optimistically even if multiple (different)
values are proposed (see Section 8.7).

Interestingly, when there exists a deterministic back-off strategy that can be implemented
without consensus, then the CAC abstraction makes it possible to implement fully asynchronous
agreement algorithms without synchronization, whereas other solutions would have required the
use of consensus. Section 8.7.1 illustrates such an usage of the CAC abstraction. It provides
a CAC-based solution to the novel short-naming problem in asynchronous networks, where
processes seek to get names with the lowest possible information-theoretic entropy.

Finally, the distributed objects presented in Chapter 6 require synchronization between spe-
cific processes. Therefore, the CAC abstraction is particularly interesting to implement them as
it makes it possible to determine “on-the-fly” when synchronization is required or not. This be-
havior of the CAC abstraction is used in Chapter 9 and Chapter 10 to decrease synchronization
requirements of PPfDIMS and to increase algorithms efficiency.

Roadmap This chapter consists of 8 sections. Section 8.2 presents the related works, Sec-
tion 8.3 defines the computing model and Section 8.4 gives a property-based definition of the
CAC cooperation abstraction. Then, on the feasibility side, Section 8.5 presents a relatively sim-
ple implementation of the CAC abstraction that assumes t < n/4. Section 8.6 presents a more
efficient implementation that can exhibit optimal Byzantine resilience (n ≥ 3t+ 1) or that can
lower the Byzantine resilience for better efficiency. Section 8.7 presents an efficient CAC-based
solution of the Cascading Consensus problem. Finally, Section 8.8 concludes the article.

8.2 Related work

The work described in this chapter places itself in the context of fast/adaptive cooperation
distributed algorithms where an arbitrary, a priori unknown subset of processes try to modify
a shared object. These algorithms seek to terminate as rapidly as possible in favorable circum-
stances (e.g., no or few faults, no or little contention) and with as little as possible actions from
non-participating processes while maintaining strong safety guarantees in the general case. Such
algorithms have been investigated in earlier works.

At the very beginning: mutex algorithms in failure-free systems As far as we know,
the notion of fast concurrent algorithm was introduced by Lamport [146] in the context of
mutual exclusion in failure-free read/write shared memory systems. The idea was to have a
complexity (in term of shared memory accesses) depending on the number of processes that
actually compete to enter the critical section, rather than a complexity linear in the total number

118

8.3. Model

of processes in the system. More precisely, the previously cited paper presents a mutex algorithm
that requires only seven accesses to the shared memory when a call to the critical section occurs
in a competition-free context. This notion was then generalized so that the number of memory
accesses depends on the number of processes that are concurrently competing to access the
critical section. A theoretical foundation of this approach is presented in [147]. Considering
shared memory systems, the reader will find more developments of this approach in [148, 149].

Fast/adaptive consensus algorithms in message-passing asynchronous crash-
prone/Byzantine systems As stated in [133] (which introduces the fast Paxos algorithm),
the notion of fast consensus algorithm in crash-prone message-passing asynchronous system
was introduced in [150]. This algorithm was then extended to Byzantine asynchronous sys-
tems in [142]. Many efficiency-oriented Byzantine consensus algorithms have since been designed
(e.g., [141, 151, 152, 145, 153] to cite a few).

Structuring the space of weak agreement problems The algorithms just discussed are
specific to a single problem. In [154], Attiya and Welch go one step further and introduce a new
problem termed Multivalued Connected Consensus, which captures a range of weak agreement
problems such as crusader agreement [155], graded broadcast [156] and adopt-commit agree-
ment [157]. Differently from consensus, these agreement problems can be solved without requir-
ing additional computational power such as synchrony constraints [138], randomization [158], or
failure detectors [139].

Interestingly, the decision space of these weak agreement problems can be represented as a
spider graph. Such a graph has a central clique (which can be a single vertex) and a set of |V |
paths (where V is a finite set of totally ordered values) of length R. Two asynchronous message-
passing algorithms that solve Multivalued Connected Consensus are described in [154]. Let n be
the number of processes and t the maximal number of processes that can fail. The first algorithm
considers crash failures and assumes t < n/2, and the second considers Byzantine failures and
assumes t < n/5. For both of them, the instance with R = 1 solves crusader agreement, and the
instance R = 2 solves graded broadcast and adopt-commit.

8.3 Model

The model used in this chapter is the message passing model presented in Section 4.1.2. We
consider one difference compared to this model. In this chapter, we only interest ourselves in the
distributed algorithms maintained by processes in Π. We do not interest ourselves in the issuers,
the verifiers, or the users. Furthermore, unlike in Chapter 5, in this section, we consider perfect
cryptographic primitives that cannot be forged; namely, we assume an unforgeable signature
scheme resistant against chosen message attacks.

119

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

candidatesi

acceptedi

Figure 8.1 – During an execution, the acceptedi
and candidatesi sets of a correct process pi mono-
tonically grows and shrinks, respectively.

candidatesi

candidatesj candidatesk
accepted

Figure 8.2 – After the execution, the
accepted set is the same for all correct pro-
cesses and is contained in the intersection
of their candidates sets.

8.4 Context-Adaptive Cooperation: Definition

8.4.1 Definition

The Context Adaptive Cooperation (CAC) object provides each process pi with (1) an oper-
ation denoted cac_propose that allows it to propose a value and (2) two sets denoted acceptedi

and candidatesi. When a process pi invokes cac_propose(v), we say that “pi cac-proposes (in
short “proposes”) the value v” (for clarity sometimes we also say that “pi cac-proposes the pair
〈v, i〉”). When a pair 〈v, j〉 is added to the set acceptedi of a process pi, we say that “pi cac-
accepts (in short “accepts”) 〈v, j〉”. For the sake of simplicity, when a pair 〈v, j〉 is cac-accepted,
a cac_accept(v, j) callback is triggered.

— The set acceptedi is initially empty. It then grows monotonically, progressively adding
a pair 〈v, j〉 for each value v that is cac-accepted by pi from pj . Eventually, acceptedi

contains all the pairs 〈v, j〉 accepted by the CAC abstraction (and only them).
— The set candidatesi is initialized to >, where > is defined as a symbolic value representing

the identity element of the ∩ operation. 3 Then, candidatesi shrinks monotonically, and
contains a dynamic estimation of the pairs 〈v, j〉 that have been or will be cac-accepted
by process pi. Hence, acceptedi ⊆ candidatesi always holds. More concretely, candidatesi
contains all the pairs 〈v, j〉 that have been already added to the acceptedi set locally by pi
along with some pairs 〈v, k〉 that may (or may not) be added to the set acceptedi later on.
Formally, if τ1 and τ2 are two arbitrary time points in the execution of pi (in no particular
order, i.e., with either τ1 ≤ τ2 or τ1 ≥ τ2) and xτki represents the value of variable xi at
time τk, then candidatesi verifies acceptedτ2i ⊆ candidatesτ1i . As a result, if a pair 〈v, k〉
is not in candidatesi at some point, pi will never cac-accept this pair. Furthermore, if
at some point τ , pi observes acceptedτi = candidatesτi , then pi knows it has cac-accepted
all values for this CAC instance. Let us notice that this case may never happen (see
Section 8.4.2). The behavior of both types of sets is summarized in Figures 8.1 and 8.2.

3. That is to say, for any set S, S ∩ > = > ∩ S = S, and the statement S ⊆ > is always true.

120

8.4. Context-Adaptive Cooperation: Definition

CAC specification Given a correct process pi and its associated candidatesi and acceptedi

sets, the following properties define the CAC abstraction. 4

— CAC-Validity. If pi and pj are correct, candidatesi 6= > and 〈v, j〉 ∈ candidatesi, then
pj cac-proposed value v.

— CAC-Prediction. For any correct process pi and for any process identity k, if, at
some point of pi’s execution, 〈v, k〉 6∈ candidatesi, then pi never cac-accepts 〈v, k〉 (i.e.,
〈v, k〉 6∈ acceptedi holds forever).

— CAC-Non-triviality. For any correct process pi, acceptedi 6= ∅ implies candidatesi 6=
>.

— CAC-Local-termination. If a correct process pi invokes cac_propose(v), its set
acceptedi eventually contains a pair 〈v′, ?〉 (note that v′ is not necessarily v).

— CAC-Global-termination. If pi is a correct process and 〈v, j〉 ∈ acceptedi , eventually
〈v, j〉 ∈ acceptedk at every correct process pk.

The CAC-Validity property states that, if a correct process cac-accepts a pair 〈v, j〉 from
a correct process pj , then pj cac-proposed value v, i.e., there is no identity theft for correct
processes. The CAC-Prediction property states that, if a correct process pi cac-accepts a pair
〈v, j〉, then 〈v, j〉 was present in candidatesi from the start of pi’s execution. In other words,
candidatesi provides information about the pairs that might be accepted by pi in the future. In
particular, if, at some point of pi’s execution, some pair 〈v′, k〉 is no longer in candidatesi, then
pi will never accept 〈v′, k〉. (However, the converse is generally not true; the prediction provided
by candidatesi is, as such, imperfect.) This property is at the core of the cooperation provided
by a CAC object. The CAC-Non-triviality property ensures that a trivial implementation
that never updates candidatesi is excluded. As soon as some process pi has accepted some pair
〈v, k〉, its candidatesi set must contain some explicit information about the pairs that might get
accepted in the future. 5

The CAC-Local-termination property states that if a correct process cac-proposes a
value v, its acceptedi set will not remain empty. Notice that this does not mean that the pair
〈v, i〉 will ever be added to acceptedi . Finally, the CAC-Global-termination property states
that eventually, the accepted sets of all correct processes are equal. Let us notice that, in general,
no process pi can know when no more pairs will be added to its set acceptedi .

8.4.2 Termination of the CAC abstraction

It follows from the definition that, for some correct process pi, if candidatesi = acceptedi ,
then pi will not cac-accept any new pair 〈v, j〉. If we use the notations from Section 8.1, we see

4. We present in the following a single-shot version of the CAC abstraction in which a process can propose
at most one value. It can easily be extended to a multi-shot version using execution identifiers such as sequence
numbers.

5. Ignoring the symbolic value >, acceptedi and candidatesi remain finite sets throughout pi’s execution.

121

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

that d = ` = |candidatesi| = |acceptedi |. In this specific case, pi can detect without ambiguity
that the CAC execution has terminated. We say that pi knows it terminated.

The most obvious example of “known termination” is when only one process cac-proposes (or
is perceived to cac-propose) a value. In this case, by CAC-Validity, |candidatesi| eventually
equals 1. In this specific setting, the CAC abstraction boils down to the BRB abstraction.

However, in the general case, there might be runs where |candidatesi| > |acceptedi | during the
whole execution of the abstraction. In this case, pi will not be able to know if it has terminated
or if new pairs might be added to the acceptedi set. This is an inherent property of the CAC
abstraction, but, as we will see in Section 8.7, this does not prevent the abstraction from being
appropriate to solve complex coordination problems.

Another side effect of the abstraction is that, it is possible for a correct process pj to know
it terminated because candidatesi = acceptedi , while some other correct process pj might never
detect its own termination, because |candidatesj | > |acceptedj | during the whole run.

8.4.3 CAC with proof of acceptance

The properties of the CAC abstraction imply that processes cac-accept pairs asynchronously
and in different orders. In some applications, correct processes must prove to others that they
have legitimately cac-accepted some pair 〈v, j〉. To support such use cases, the CAC definition
can be enriched with transferable proofs of acceptance that a process can use to convince others
that the underlying algorithm has been respected.

When using proofs of acceptance, the elements in the acceptedi sets become triplets 〈v, j, πv〉,
where πv is a cryptographic construct that serves as proof that 〈v, j〉 was added to acceptedi
while following the prescribed algorithm. We say that πv is valid if there exists a function Verify
such that, for any value v and any proof of acceptance πv pertaining to v, the following property
holds:

Verify(v, πv) = true ⇐⇒ ∃ pi correct such that, eventually, 〈v, ?, πv〉 ∈ acceptedi .

When Verify(v, πv) = true, we say that πv is valid, and by extension that the triplet 〈v, j, πv〉
is valid. When using proofs of acceptance, all properties of the CAC abstraction are modified to
use 〈v, j, πm〉 triplets. In this case, the accepted sets contain triplets (the cac_propose operation
and the candidates sets remain unchanged).

122

8.5. CAC: a simple, sub-optimal implementation

8.5 CAC: a simple, sub-optimal implementation

8.5.1 A simple CAC algorithm

This section presents an implementation of the CAC abstraction for n > 4t. Although this
implementation is sub-optimal from a resilience perspective, its goal is to convince the reader
that the CAC abstraction can be implemented in an easy-to-understand manner. 6

Algorithm 5 works in two phases (the witness phase and the ready phase) which each use a
specific type of signature (witSig and readySig). During the witness phase, pi disseminates
witSig(pi, 〈v, j〉) to acknowledge that a value v was cac-proposed by process pj . As it is signed
by pi, it cannot be forged. During the ready phase, processes exchange readySig signatures
to collect information about potential competing values that have been cac-proposed simulta-
neously, in order to ensure the CAC-Prediction property. A readySig(pi,Mi) signature by
pi embeds a set Mi containing a critical mass of witSig signatures. Correct processes need to
gather enough readySig signatures in order to construct their candidates and accepted sets.

The algorithm works as follows. When a process pi invokes cac_propose(v), it first verifies
that it has not not already cac-proposed a value, or that it did not already be_broadcast any
witSig (line 3). If this verification passes, pi produces a witSig for the pair 〈v, i〉, and be-
broadcasts it in a bundle message. This type of message can simultaneously carry witSig
and readySig. As a result, each correct process disseminates its complete current knowledge
whenever it be-broadcasts a bundle message. Eventually, this witSig will be received by all
the correct processes.

Let us consider a correct process pj that receives the bundle message, which contains the
signature witSig(pi, 〈v, i〉). Firstly, pj saves all the valid signatures into the sigsj variable. Sec-
ondly, if pj did not already sign (and be-broadcast) a witSig, it produces a witSig for the pair
〈v, i〉 and be-broadcasts it (lines 10-12). If there are multiple signatures on 〈v, ?〉 in sigsj , line 11
imposes that the pj chooses and signs only one of those pairs. Thirdly, pj checks whether it can
sign and send a readySig. When it receives witSig signatures from more than n− t processes,
pj produces a readySig on a set of messages Mj and disseminates it (lines 13-16). Mj contains
all the witSig received by pj . This readySig is added to the sigsj set and be-broadcast in a
bundle message. Hence, the information about the witSigs known by pj will be received by
every correct process along with the readySig, thus ensuring the CAC-Global-termination
property.

Finally, pi verifies if it can cac-accept a value. To this end, it waits for readySig signatures
from n−t processes, then it cac-accepts all values that are present in at least 2t+1 setsM (lines
17-21). The 2t + 1 bound ensures that, if pi cac-accepts a value later on, then it has already

6. A CAC algorithm that is optimal in terms both of Byzantine resilience and round complexity is presented
in Section 8.6. This second algorithm also fulfills the proof of acceptance property.

123

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

1 init: sigsi ← ∅; candidatesi ← >; acceptedi ← ∅; Mi ← ∅.
2 operation cac_propose(v) is
3 if there are no signature by pi in sigsi then
4 sigsi ← sigsi ∪ {witSig(pi, 〈v, i〉)}; Bpi signs 〈v, i〉 using a witSig signature
5 be_broadcast bundle(sigsi).

6 when bundle(sigs) is received do
7 validi ← {all valid signatures in sigs};
8 if ∃ pk, k : witSig(?, 〈vk, k〉) ∈ validi ∧witSig(pk, 〈vk, k〉) 6∈ validi then return ;
9 sigsi ← sigsi ∪ validi;

10 if ∃ pj : witSig(pj , 〈v, j〉) ∈ sigsi ∧ witSig(pi, 〈?, ?〉) /∈ sigsi then
11 sigsi ← sigsi ∪ {witSig(pi, choice({〈v′, k〉 | witSig(pk, 〈v′, k〉) ∈ sigsi}))} ;

Bchoice chooses one of the elements in the set given as argument.
12 be_broadcast bundle(sigsi);
13 if |{j | witSig(pj , 〈?, ?〉) ∈ sigsi}| ≥ n− t ∧ readyMsg(pi, ?) /∈ sigsi then
14 Mi ← {witSig(?, 〈?, ?〉) ∈ sigsi};
15 sigsi ← sigsi ∪ {readySig(pi,Mi)}; Bpi signs Mi using a readySig signature
16 be_broadcast bundle(sigsi);
17 if |{j | readySig(?, pj) ∈ sigsi}| ≥ n− t then
18 be_broadcast bundle(sigsi);
19 if candidatesi = > then Bfirst time a value is accepted
20 candidatesi ←

{
〈v, k〉 | ∃ M : readySig(?,M) ∈ sigsi ∧witSig(?, 〈v, k〉) ∈M

}
;

21 acceptedi ←

〈v, k〉 ∈ candidatesi

∣∣∣∣∣∣∣
2t+ 1 distinct processes ps have signed
readySig(?,Ms) in sigsi such that
witSig(?, 〈v, k〉) ∈Ms

;

22 for all pairs 〈v, k〉 that have just been added to acceptedi do cac_accept(v, k).

Algorithm 5: One-shot sig-based CAC implementation assuming n > 4t (code for pi)

124

8.5. CAC: a simple, sub-optimal implementation

been added to the candidatesi set, thus ensuring the CAC-Prediction property. A cac_accept
callback is triggered at this point, it is used by algorithms that builds upon CAC to know when
new values are added to the candidates set.

8.5.2 Proof of the algorithm

The proof that Algorithm 5 is a signature-based implementation of the CAC abstraction
under the assumption n > 4t follows from the following lemmas.

In the following, varτx denotes the value of variable var at process px at time point τ . In
particular,

— sigsτj , candidatesτj and acceptedτj are the values of sigsj , candidatesj and acceptedj at time
τ ,

— sigsτi is the value of sigsi at time τ .

Lemma 8.1 (CAC-Validity). If pi and pj are correct processes, candidatesi 6= > and
〈v, j〉 ∈ candidatesi, then pj cac-propose value v.

Proof. Let pi and pj be two correct processes. If candidatesi 6= >, it implies pi executed the line
20. Furthermore, if a tuple 〈v, j〉 is still in the candidatesi set after the execution of line 20 by pi,
it means that there exists a witSig(pj , 〈v, j〉) in sigsi thanks to line 8. We assume pj is correct.
Hence, due to the unforgeability assumption of cryptographic signatures, the only process able
to produce such a signature is pj itself. The only place in the algorithm where a correct process
can produce such a signature is during a cac_propose(v) invocation.

Lemma 8.2. For any two correct processes pi and pj , a process pk (possibly Byzantine),
and a value vk, if sigsi contains readySig(?,Ms) signatures, s ∈ {1, . . . , n}, from 2t+ 1 distinct
processes with witSig(?, 〈vk, k〉) ∈Ms for all s, then 〈vk, k〉 ∈ candidatesj from the start of pj ’s
execution.

Proof. Let pi and pj be two correct processes, pk a process (possibly Byzantine), and vk a value.
Assume that at some point τ of pi’s execution sigsi contains readySig(?,Ms) signatures from
2t+ 1 distinct processes such that witSig(?, 〈v, k〉) ∈Ms for all s, i.e.

∣∣{ps ∣∣readySig(ps,Ms) ∈ sigsτi : witSig(?, 〈vk, k〉) ∈Ms
}∣∣ ≥ 2t+ 1. (8.1)

Let 〈v`, `〉 be the first value cac-accepted by pj at line 21. The proof considers two cases according
to two time periods: the period before pj accepts 〈v`, `〉 (Case 1), and the period after (Case 2).

— Case 1. In this case, before pj executes lines 20 and 21 for 〈v`, `〉, candidatesj retains its
initial value, namely >, and by definition of >, 〈vk, k〉 ∈ candidatesj , the lemma holds.

125

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

— Case 2. Let’s now turn to the value of candidatesj after pj has accepted 〈v`, `〉. Let τ` be
the time when pj adds 〈v`, `〉 to acceptedj . We show that 〈vk, k〉 ∈ candidatesτ`j when pj
accepts 〈v`, `〉. The proof considers two sets of processes, noted A and B.
— A is the set of processes whose readySig signatures are known to pj at time point

τ`. Because of the condition at line 17, to add 〈v`, `〉 to acceptedτ`j , A must contain at
least n− t processes.

— B is the set of processes ps that have signed a readySig(ps,Ms) signature with
witSig(?, 〈vk, k〉) ∈ Ms, so that this readySig signature is known to pi at time
point τ . From eq. (8.1), B contains at least 2t+ 1 distinct processes.

We have |A ∩B| = |A|+ |B| − |A ∪B| ≥ (n− t) + (2t+ 1)− n = t+ 1 processes, which
means that there is at least one correct process pr ∈ A∩B. Because pr ∈ A, pr has signed
readySig(Mr, r) which was received by pj by time τ`, hence readySig(Mr, r) ∈ sigsτ`j .
Furthermore, because pj is correct, and because 〈v`, `〉 was the first value cac-accepted by
pj , candidatesj was updated at time τ` at line 20, from which point onward the following
holds: {

〈v, s〉
∣∣ witSig(?, 〈v, s〉) ∈Mr

}
⊆ candidatesj . (8.2)

Because pr ∈ B, pr has signed readySig(pr,M ′r) which was received by pi by time
τ and where witSig(?, 〈vk, k〉) ∈ M ′r. Because pr is correct, due to the condition at
line 13, it only produces at most one readySig(pr, ?) signature, therefore Mr = M ′r,
and witSig(?, 〈vk, k〉) ∈ Mr. By eq. (8.2), 〈vk, k〉 ∈ candidatesτ`j . Due to the condition
at line 19, candidatesj is only updated once, when 〈v`, `〉 is accepted by pj , as a result
〈vk, k〉 ∈ candidatesj after pj accepts 〈v`, `〉, which concludes the lemma.

Lemma 8.3 (Extended Prediction). For any two correct processes pi and pj , if 〈v, k〉 ∈
acceptedi then 〈v, k〉 ∈ candidatesj from the start of pj ’s execution.

Proof. Let pi and pj be two correct processes. Assume that 〈vk, k〉 ∈ acceptedi . Consider the set of
processes S = {ps} that have signed a readySig(?,Ms) signature with witSig(?, 〈vk, k〉) ∈Ms,
so that this readySig signature is known to pi when it accepts 〈vk, k〉. By construction of
acceptedi at line 21, S contains at least 2t+ 1 distinct processes. lemma 8.2 applies, concluding
the proof.

Corollary 8.1 (CAC-Prediction). For any correct process pi and for any process iden-
tity k, if, at some point of its execution, 〈v, k〉 /∈ candidatesi, then pi never cac-accepts 〈v, k〉
(i.e., 〈v, k〉 6∈ acceptedi holds forever).

Proof. The corollary follows from the contrapositive of Lemma 8.3 when pj = pi.

126

8.5. CAC: a simple, sub-optimal implementation

Lemma 8.4 (CAC-Non-triviality). If process pi is correct, acceptedi 6= ∅ implies
candidatesi 6= >.

Proof. This is an immediate consequence of lines 20-21 where, if candidatesi = >, it is set to a
non-> value before that acceptedi is updated.

Lemma 8.5. If a correct process pi cac-proposes a value v, then each correct process pj
— broadcasts its own witSig(pj , 〈?, ?〉) signature in a bundle message at line 5 or 12;
— broadcasts its own readySig(pj ,Mj) signature in a bundle message, with |Mj | ≥ n− t,

at line 16;
— eventually receives readySig signatures from at least n− t distinct processes.

Proof. Suppose pi has cac-proposed a value v. In that case, it has necessarily broadcast a
bundle(sigsi) message, where sigsi contains a signature witSig(pi, 〈?, ?〉), either during the
invocation of cac_propose(v) at line 5 (if it has not done it previously) or during the handling of
a received bundle message at line 12. All correct processes will therefore broadcast a bundle
message containing their own witSig(?, 〈?, ?〉) signature, either because they have received pi’s
bundle(sigsi) message, because they have received the bundle message of another process, or
because they invoked the cac_propose operation themselves before receiving any valid bundle
message. As all c ≥ n − t correct processes broadcast their own witSig(?, 〈?, ?〉) signature in
a bundle message, all correct processes eventually receive these messages (thanks to the best
effort broadcast properties and since the network is reliable) and pass the condition at line 13.
This implies that all correct processes sign and broadcast their own readySig(?,M) signature
in a bundle message (at lines 15 and 16). M contains the whole list of witSig received so
far, due to condition at line 13, |M | ≥ n − t. As with witSig signatures, these messages are
eventually received by all correct processes, which eventually receive readySig signatures from
at least n− t distinct processes and pass the condition at line 17.

Lemma 8.6. Let C be a set such that |C| ≤ c (with c > 0), where c ≥ 3t + 1. Let
S = {S1, . . . ,Sc} be a set of c subsets of C that each contain at least c − t elements, i.e.
∀i ∈ {1, . . . , c}, |Si| ≥ c − t. Then, there is at least one element e ∈ C that appears in at least
2t+ 1 sets Si, i.e.

∃ e ∈ C : |{Si | e ∈ Si}| ≥ 2t+ 1.

Proof. We prove Lemma 8.6 by contradiction. Let us assume there are no element e ∈ C that
appears in at least 2t+ 1 sets Si. This implies that, in the best case, each element of C appears

127

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

at most in 2t of the sets in S = {S1, . . . ,Sc}, i.e.

∀ e ∈ C :|{Si | e ∈ Si}| ≤ 2t,

∀ e ∈ C :
∑

Si∈S
1Si(e) ≤ 2t, (8.3)

where 1Si is the indicator function for the set Si, i.e.

1Si(e) =
{

1 if e ∈ Si,
0 otherwise.

(8.4)

For each Si ∈ S, we further have Si ⊆ C and therefore

|Si| =
∑
e∈C

1Si(e). (8.5)

Combining eq. (8.5) and eq. (8.3) yields

∑
Si∈S
|Si| =

∑
Si∈S

∑
e∈C

1Si(e) =
∑
e∈C

∑
Si∈S

1Si(e) (8.6)

(by inverting the sums)

≤
∑
e∈C

2t (8.7)

(using eq. (8.3))

≤ c× 2t (as |C| ≤ c by assumption.)

However, by lemma assumption c ≥ 3t+ 1 and ∀Si ∈ S, |Si| ≥ c− t. As a result,

∑
Si∈S
|Si| ≥ c(c− t) ≥ c× (2t+ 1).

As c > 0, the two last inequalities contradict each other, proving Lemma 8.6.

Lemma 8.7 (CAC-Local-termination). If a correct process pi cac-proposes a value v,
then its set acceptedi eventually contains a pair 〈v′, ?〉. (Note that v′ can be different from v.)

Proof. Consider a correct process pi that cac-proposes a value v. lemma 8.5 applies. As each
correct process signs and sends a readySig signature using a bundle message, and as bundle
messages are disseminated using best effort broadcast, pi eventually receives the readySig
of each correct process, and by extension, it receives each of their Mj sets. Without loss of
generality, we assume there are c correct processes, with n ≥ c ≥ n− t, and their identifiers goes
from 1 to c, i.e., p1, . . . , pc are correct processes.

128

8.5. CAC: a simple, sub-optimal implementation

By conditions at line 13 and 14, each Mj set sent by a correct process contains at least
n − t witSig, and out of those n − t witSig, at least c − t ≥ n − 2t are witSig signed
by correct processes. Let Sj be the set of witSig in Mj signed by correct processes, i.e.,
Sj = {witSig(pk, 〈?, ?〉) | ∀pk correct ,witSig(pk, 〈?, ?〉) ∈ Mj}, therefore, |Sj | ≥ c − t,∀j ∈
{1, . . . , c}. We note S = {S1, . . . ,Sc} the set of Sj sets sent by correct processes. Finaly, we note
C = ⋃c

k=1 Sk the set of witSig signed by correct processes and sent in the Mj sets by correct
processes. As each correct process only produces one witSig signature during an execution,
|C| = |⋃ck=1 Sk| ≤ c. Hence, Lemma 8.6 can be applied.

Therefore, among the c sets Sj that pi eventually receives, at least one witSig signature
is present in 2t + 1 of those sets. Therefore, the pair associated to this witSig will eventually
verify condition at line 21 at pi. Thus, pi will add this pair to its acceptedi set.

Lemma 8.8 (CAC-Global-termination). If, for a correct process pi, 〈v, j〉 ∈ acceptedi,
then eventually 〈v, j〉 ∈ acceptedk at each correct process pk.

This proof is an extended version of the proof of CAC-Global-termination presented in
Section 8.5.2

Proof. Consider two correct processes pi and pk. Assume pi adds 〈v, j〉 to acceptedi. By con-
struction of line 21, pi has saved the readySig signatures of 2t+ 1 processes

{readySig(pi1 ,M1),readySig(pi2 ,M2), ...,readySig(pi2t+1 ,M2t+1)}

where witSig(p`k , 〈v, `k〉) ∈ Mik , for some {`1, `2, ...`2t+1} ⊆ [1..n]. pi be-broadcasts all these
signatures at line 18. Let us note Rvji this set of readySig signatures.

Observation 8.1. pk will eventually receive the 2t+ 1 signatures in Rvji .

Proof. This trivially follows from the best effort broadcast properties and network’s reliability.

Observation 8.2. pk will eventually receive at least n− t readySig signatures.

Proof. As Rvji contains the signatures of 2t+1 distinct processes (line 21), t+1 of these processes
must be correct. W.l.o.g, assume pi1 is correct. pi1 has signed readySig(pi1 ,M1) at line 15 with
witSig(p`1 , 〈v, `1〉) ∈Mi1 . As a result, at line 14,

witSig(p`1 , 〈v, `1〉) ∈ sigsi1 , (8.8)

which implies that pi1 be-broadcasts witSig(p`)1, 〈v, `1〉) at line 16. As the network is reliable,
all correct processes will eventually receive witSig(p`1 , 〈v, `1〉), and if they have not done so
already will produce a witSig signature at line 11 and be-broadcast it at line 12. As there

129

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

Variable Meaning
sigsi set of valid signatures known by pi

sigcounti sequence number of the signatures generated by pi

Table 8.2 – CAC algorithm parameters and variables

are at least n − t correct processes, all correct processes will eventually receive n − t witSig
signatures, rendering the first part of line 13 true. If they have not done so already, all correct
processes will therefore produce a readySig signature at line 15, and be-broadcast it at line 16.
As a result pk will eventually receive at least n− t readySig signatures

Observation 8.3. There exists some ` ∈ [1...n] and some set M` of witSig signatures
such that

— eventually, readySig(p`,M`) ∈ sigsk;
— and witSig(pj , 〈v, j〉) ∈M`.

Proof. When pi accepts 〈v, j〉, line 21 implies that 〈v, j〉 ∈ candidatesi, and therefore because
of line 20 that ∃ p`,M` : readySig(p`,M`) ∈ sigsi ∧ witSig(pj , 〈v, j〉) ∈ M`. Because pi be-
broadcasts sigsi at line 18, pk will eventually receive the signatures contained in sigsi, and add
then to its own sigsk at line 9, including readySig(p`,M`).

Observation 8.4. Eventually, 〈v, j〉 ∈ acceptedk.

Proof. The previous observations have shown the following:
— By observation 8.2, the condition of line 17 eventually becomes true at pk.
— By observation 8.3, sigsk eventually contains readySig(p`,M`) ∈ for some ` ∈ [1...n]

such that witSig(pj , 〈v, j〉) ∈M`.
— By observation 8.1, pk eventually receives the 2t+ 1 signatures in Rvji .

When the last of these three events occurs, pk passes through the condition at line 17, then
line 20 leads to

〈v, j〉 ∈ candidatesk, (8.9)

and by Observation 8.1, the selection criteria at line 21 is true for v, which, with Equation (8.9),
implies that 〈v, j〉 ∈ acceptedk, concluding the proof of the Lemma.

130

8.6. CAC: An Optimal Implementation

1 init: acceptedi ← ∅; candidatesi ← >; sigsi ← ∅; blacklisti ← ∅; sigcounti ← 0.

2 function wit_count(〈v, j〉) is
3 S ←

{
k : witSig(pk, 〈v, j〉, ?) ∈ sigsi

}
; Bpk has backed 〈v, j〉.

4 return |S|.

5 operation cac_propose(v) is
6 if no witnessMsg(?) or readyMsg(?) already be-broadcast by pi then
7 sigsi ← sigsi ∪

{
witSig(pi, 〈v, i〉, sigcounti)

}
; sigcounti++;

8 be_broadcast witnessMsg(sigsi).

Algorithm 6: One-shot signature-based CAC implementation (code for pi) (Part I)

WITNESSMSG(sigs)
received

Verify Signatures

Have I signed any
WITSIG or READYSIG?

Broadcast WITNESSMSG(sigs)

Not Ok

Ok

No

Abort

Yes

Broadcast READYMSG (sigsi)

is there a (v,j) that
reached the fastpath

threshold?

candidatesi=(v,j)
ACCEPT (v,j)

End

Yes

No

are there
WITSIG’s from processes

in sigsi?

Yes
No

Did we receive WITSIG’s from
n-t processes and never sent

READY?
No

Is there a pair (v,j) whose
number of WITSIG’s exceeds

an unlock threshold?

Yes

Broadcast WITNESS(sigsi)

READY Threshold

Unlock Threshold

Fast-Path Threshold

Yes

No

sigsi=sigsi U sigs

<latexit sha1_base64="hCPeoE0MPD362Z3JUU+tE/TZ4n4=">AAACDnicbVDLSsNAFJ3UV62vqEs3g6UgFEpSpLosunFZwT6gCWUynbRDJzNxZiKUkC9w46+4caGIW9fu/BunbRbaelaHc+7l3nOCmFGlHefbKqytb2xuFbdLO7t7+wf24VFHiURi0saCCdkLkCKMctLWVDPSiyVBUcBIN5hcz/zuA5GKCn6npzHxIzTiNKQYaSMN7Io3IvfQYyETQkIvlAinvKqztJ5BTy7Uqjuwy07NmQOuEjcnZZCjNbC/vKHASUS4xgwp1XedWPspkppiRrKSlygSIzxBI9I3lKOIKD+dx8lgxShDGJrLoeAaztXfGymKlJpGgZmMkB6rZW8m/uf1Ex1e+inlcaIJx4tDYcKgFnDWDRxSSbBmU0MQltT8CvEYmUq0abBkSnCXI6+STr3mNmqN2/Ny8yqvowhOwCk4Ay64AE1wA1qgDTB4BM/gFbxZT9aL9W59LEYLVr5zDP7A+vwBRYubng==</latexit>

� bn + t

2
c + 1

Is there (v,j)
with wit_count(v,j)>=2t+k

and no READYSIG sent for (v,j)

Figure 8.3 – Flowchart of the CAC implementation; workflow to process witnessMsg messages
for process pi.

131

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

9 when witnessMsg(sigs) is received do Binvalid messages are ignored
10 sigsi ← sigsi ∪ sigs;
11 if pi has not signed any witSig or readySig statement yet then
12 〈v, j〉 ← choice(sigsi); Bchoice chooses one of the elements in sigsi
13 sigsi ← sigsi ∪ {witSig(pi, 〈v, j〉, sigcounti)}; sigcounti++;
14 be_broadcast witnessMsg(sigsi);
15 if there are witSig from at least bn+t

2 c+ 1 processes in sigsi then
16 for all 〈v, j〉 such that wit_count(〈v, j〉) ≥ 2t+ k do
17 if readySig(pi, 〈v, j〉, ?) /∈ sigsi then
18 sigsi ← sigsi ∪ {readySig(pi, 〈v, j〉, sigcounti)}; sigcounti++;
19 be_broadcast readyMsg(sigsi);

20 if ∃ 〈v, j〉 : wit_count(〈v, j〉) ≥ n− t and ∀ 〈v′, j′〉 6= 〈v, j〉,wit_count(〈v′, j′〉) = 0 and n > 5t
then

21 if 〈v, j〉 has not been accepted yet then
22 candidatesi ← 〈v, j〉 ; acceptedi ← {〈v, j, sigsi〉};
23 cac_accept(v, j) ; BFast-path, no other pair 〈v′, j′〉 6= 〈v, j〉 will be accepted.

24 P ←
{
j | witSig(pj , 〈?, ?〉, ?) ∈ sigsi

}
;

25 if |P | ≥ n− t and readyMsg(?) not already broadcast by pi then
26 if n > 5t and ∃ 〈v, j〉 : wit_count(〈v, j〉) ≥ |P | − 2t then
27 if witSig(pi, 〈v, j〉, ?) /∈ sigsi then
28 sigsi ← sigsi ∪

{
witSig(pi, 〈v, j〉, sigcounti)

}
;

29 sigcounti++; be_broadcast witnessMsg(sigsi);
30 else
31 M ←

{
〈v, j〉 | witSig(?, 〈v, j〉, ?) ∈ sigsi

}
;

32 T ←
{
〈v, j〉 | wit_count(〈v, j〉) ≥ max(n− (|M |+ 1)t, 1)};

33 for all 〈v, j〉 ∈ T such that witSig
(
pi, 〈v, j〉, ?

)
/∈ sigsi do

34 sigsi ← sigsi ∪ {witSig(pi, 〈v, j〉, sigcounti)};
35 sigcounti++; be_broadcast witnessMsg(sigsi).

36 when readyMsg(sigs) is received do Binvalid messages are ignored
37 if ∃ 〈v′, k〉 such that wit_count(〈v′, k〉) ≥ 2t+ k then
38 sigsi ← sigsi ∪ {sigs};
39 for all 〈v, j〉 such that wit_count(〈v, j〉) ≥ 2t+ k do
40 if readySig(pi, 〈v, j〉, ?) /∈ sigsi then
41 sigsi ← sigsi ∪ {readySig(pi, 〈v, j〉, sigcounti)}; sigcounti++;
42 be_broadcast readyMsg(sigsi);

43 candidatesi ← candidatesi ∩
{
〈v, j〉 : wit_count(〈v, j〉) ≥ k

}
;

44 for all 〈v, j〉 ∈ candidatesi such that
∣∣{j : readySig(pj , 〈v, j〉, ?) ∈ sigsi

}∣∣ ≥ n− t do
45 acceptedi ← acceptedi ∪ {〈v, j, sigsi〉}; cac_accept(v, j).

Algorithm 7: One-shot optimal signature-based CAC implementation (code for pi) (Part
II).

132

8.6. CAC: An Optimal Implementation

READY(sigs)
received

Verify Signatures
Not Ok

Ok
Abort

Have I sent a
READY for (v,j)?

Broadcast READY(sigsi)

For all (v,j) such that
wit_count(v,j)>=2t+k

Are there more (v,j) such that
wit_count(v,j)>=2t+k

Yes

restrain candidatesi to the (v,j) with
wit_count(v,j)>=k

Is there any unaccepted (v,j)
with at least n-t READYSIG’sACCEPT(v,j)

Have I accepted all (v,j) in
candidatesi?

No

Yes

No

Yes

No

No

End

Yes

Figure 8.4 – Flowchart of the CAC implementation; workflow to process readyMsg messages
for process pi.

133

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

8.6 CAC: An Optimal Implementation

8.6.1 An optimal implementation of the CAC abstraction

Algorithm 6 and Algorithm 7 are the two parts of a signature-based algorithm that imple-
ments the CAC abstraction with optimal Byzantine resilience. Furthermore, the implementation
has a good case latency of 2 asynchronous rounds when n > 5t and 3 asynchronous rounds when
n > 3t. Those best-case latencies are optimal as we analyze in Section 8.6.5. The algorithm
also respects the proof of acceptance as proven by Lemma 8.15. This optional property comes
without additional cost in our implementation. Table 8.2 summarizes the parameters and vari-
ables of the implementation and Figure 8.3 and Figure 8.4 is a flow-chart visually describing the
algorithm.

In the first part of the description of the algorithm, we omit the “fast-path” mechanism (lines
20 to 22 and lines 26 to 29). Those are totally optional, for example, if n < 5t they are never
executed.

The algorithm works in two phases: witness and ready. During each of these phases,
correct processes sign and propagate two types of “statements” (witSig statements during
the witness phase, and readySig statements during the ready phase), using two types of
messages (witnessMsg messages and readyMsg messages). Those statements are signatures
of pairs 〈v, j〉, where v is a value and j is the identifier of the process that initially cac-propose
v (if pj is correct).

The signed statements produced by a node pi are uniquely identified through a local sequence
number sigcounti, which is incremented every time pi signs a new statement (at lines 7, 13, 18,
34, and 41). When communicating with other processes, a correct process always propagates all
the signed statements it has observed or produced so far. (These statements are stored in the
variable sigsi.) To limit the power of Byzantine nodes, correct nodes only accept messages that
present no “holes” in the sequence of statements they contain, i.e., if a message xxMsg contains
a statement signed by pj with sequence number k, then xxMsg must contain one statement
by pj for all earlier sequence numbers k′ ∈ {0, · · · , k − 1} to be considered valid. Furthermore,
a valid xxMsg contains a signature of the pair 〈v, j〉 by pj , the process that cac-proposed the
value. Similarly, a valid message can only contain valid signatures. Invalid messages are silently
dropped by correct processes (not shown in the pseudo-code for clarity).

In the first phase, processes exchange witnessMsgs to accumulate votes on potential pairs to
accept. A vote for a pair takes the form of a cryptographic signature on the message, which we re-
fer to as witSig. Each witnessMsg can thus contain one or more witSigs. In the second phase,
processes use readyMsgs to propagate cryptographic proofs that certain pairs have received
enough support/votes. We refer to one such proof as readySig. Receiving a sufficient number
of readySigs triggers the cac-acceptance. In Algorithm 7, the notation witSig

(
pi, 〈v, j〉, si

)
134

8.6. CAC: An Optimal Implementation

stands for a witness statement signed by the process pi with sequence number si of value v
proposed by the process pj . Similarly, the notation readySig

(
pi, 〈v, j〉, si

)
denotes a ready

statement signed by the process pi with sequence number si of value v initiated by the process
pj .

The algorithm relies on a parameter, k, which determines which pairs should enter the
candidatesi set. Specifically, a process adds a pair 〈v, j〉 to candidatesi only if it has received at
least k witSigs in favor of 〈v, j〉 from k different processes. The value of k strikes a balance
between utility and fault tolerance. In particular, for k = 1, any two distinct pairs generated
during an execution have a chance of being cac-accepted and thus enter the candidatesi set, thus
decreasing the probability of “known” termination for pi, see Section 8.4.2. But in general, only
pairs that k distinct processes have witnessed can enter the candidatesi set. In either case, the
algorithm works for n ≥ 3t+ k. Therefore, k must be chosen by the algorithm’s implementer to
balance Byzantine resilience and known termination probability.

In the following, we begin by describing each of the two phases of the algorithm without the
fast-path, while referencing the pseudocode in Algorithm 7. Then, we describe the specificity of
the fast path.

8.6.2 witness phase

Let us consider a correct process pi that cac-proposes value v. If pi has not yet witnessed
any earlier value, it signs 〈v, i〉 and propagates the resulting witSig to all the participants in a
witnessMsg (lines 6-8). We refer to process pi as the initiator of value v.

When pi receives a witnessMsg, it accumulates the witSigs the message contains into its
local signature set sigsi (line 10). The process then checks whether it has already witnessed an
earlier pair (line 11). If it has not, it selects one of the witSigs is in its local signature set sigsi,
and signs a new witSig for the corresponding pair. It then broadcasts a new witnessMsg
containing all witSigs it has observed or produced so far (lines 11 to 14). Because channels
are reliable, this behavior ensures that all correct processes eventually witness some pair, which
they propagate to the rest.

Once a process has received witSigs from a majority of correct processes (line 15), the
majority is ensured by the threshold bn+t

2 c + 1), it enters the ready phase of the algorithm.
More precisely, it sends—if it has not done so already—a readyMsg for each of the pairs that
have collected a quorum of 2t+k witSigs in their favor (lines 16-19). The readyMsg contains
a readySig for the considered pair, and each of the witSigs received so far. Intuitively, this
ready phase ensures that correct processes discover all the pairs that can potentially be accepted
before accepting their first pair. (We discuss this phase in detail just below.)

However, receiving witnessMsgs from a majority of processes does not guarantee the pres-
ence of a pair with 2t+k witSigs. Indeed, up to this point, each correct process was only allowed

135

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

to vote once. For example, each correct process can vote for its own value it cac-proposes. Hence,
a correct process may even receive n − t witnessMsg without reaching the quorum of 2t + k

witnessMsg for any pair. When this happens, we say that the algorithm has reached a locked
state, which can be resolved using an unlocking mechanism (lines 25 to 35).

The first unlocking mechanism (from lines 26 to 29) is used when the fast path may have
been used and will be described in Section 8.6.4. The second unlocking mechanism ensures that
at least one pair reaches the 2t+k threshold at line 16 or 39. Once a process enters the unlocking
mechanism, it sends a witnessMsg for each pair that received at least max

(
n− (|M |+ 1)t, 1

)
witSigs in their favor. This threshold ensures that at least one pair reaches 2t + k witSigs.
Thanks to this mechanism, all correct processes eventually broadcast at least one readyMsg.

8.6.3 ready phase

The ready phase starts by sending a readyMsg at line 19. When a correct process, pi,
receives a readyMsg, it first checks that it indeed contains at least 2t+ k valid signatures for
a given pair (line 37). If not, the message was sent by a malicious process and is thus ignored.
After this verification step, pi signs and broadcasts a readyMsg for all the pairs with at least
2t + k witSigs. This ensures that all correct processes eventually share the same knowledge
about potentially acceptable values.

Then, process pi computes its current candidatesi set by only keeping the values that are
backed by at least k witSigs. Then, process pi cac-accepts all the pairs in the candidatesi set
that have received at least n− t witSigs.

8.6.4 Fast-path

We now detail the optimization of the CAC algorithm that introduces an optimal latency
path that can be followed by a process pi when n ≥ 5t+ 1 and all the witSigs that pi receives
are in favor of a unique value. This fast-path can be seen from lines 20 to 22 in Algorithm 7.

The optimization requires an additional condition to the algorithm. If a process uses the fast-
path for a pair 〈v, j〉, its candidatesi set only contains 〈v, j〉 (line 22). Hence, no pair different
from 〈v, j〉 can be accepted by any correct process to satisfy the CAC-Global-termination
and CAC-Prediction properties. Thereby, the unlocking mechanism of the algorithm is also
modified. Namely, a condition to send new witnessMsgs is added to the algorithm to ensure
that, if a process could have taken the fast-path, then all the correct processes only send witSigs
in favor of this pair.

This mechanism (the condition at line 26) is used if a process may have taken the fast-path,
whereas the original mechanism at line 33 is used in all other cases. If a process pi 6= pk uses
the fast-path, then n ≥ 5t+ 1 and it received n− t signatures in favor of one pair, for example,
〈v, j〉, and no signatures in favor of v′. Therefore, pk receives a minimum of n−2t messages from

136

8.6. CAC: An Optimal Implementation

the same processes as pi, among which t can have been sent by Byzantine processes. Hence,
pk receives at least n − 3t messages in favor of v, and t in favor of v′ among the first n − t
witnessMsgs it receives. Furthermore, if pk received t messages from Byzantine processes, it
means that it can still receive messages from t correct processes. If pi did use the fast-path,
those new messages will back v. Therefore, if at least n − 3t ≤ |P | − 2t ≤ n − 2t—where |P |
is the number of unique processes from which pi received witSigs—witnessMsg received by
pk are in favor of a unique pair 〈v, j〉, then another correct process pi may have taken the fast
path. Furthermore, when a correct process does use the fast-path for a pair 〈v, j〉, it accepts
it along with a candidates set containing only the pair 〈v, j〉. In other words, if a process did
use the fast-path, then no other pair should be accepted. Therefore, if a correct process is in a
locked state, and if it detects that a process might have taken the fast-path for a pair 〈v, j〉, it
should only send new witSigs in favor of 〈v, j〉. If every correct process detects that a process
might have taken the fast path, then every process that did not vote in favor of 〈v, j〉 will do so.
Therefore, each correct process will receive at least 2t+ k witSigs in favor of v and will send a
readyMsg in its favor, and no other pair will reach the 2t+ k threshold.

8.6.5 Proof of the algorithm

We now prove that Algorithm 7 is a valid implementation of the CAC abstraction. The
algorithm is proven for n ≥ 3t+ k ≥ 3t+ 1.

The different lemmas used to prove Algorithm 7 use the following notations: Let sigsτi be the
set sigsi of the process pi at time τ . Let acceptedτi be the state of the set acceptedi at time τ . Let
candidatesτ be the state of the set candidatesi at time τ . Let witSig(sigsτi , v) be the witSigs
relative to v in sigsτi , and let readySig(sigsτi , v) be the readySigs relative to v in sigsτi . Let
max(sigsτi , pj) be the readySig or witSig with the greatest sigcount from process pj in sigsτi .

Lemma 8.9 (CAC-Validity). If pi and pj are correct, candidatesi 6= > and 〈v, j〉 ∈
candidatesi, then pj cac-proposed value v.

Proof. Let pi and pj be two correct processes pi and let 〈vj , j〉 ∈ candidatesτi for some time τ .
Furthermore, let us assume candidatesi 6= >. Hence, candidatesi has been modified by pi. There
are only two lines in Algorithm 7 where pi can modify candidatesi. Either it did it at line 43 and
it received k witSigs backing 〈vj , j〉, or it modified it at line 22, and n > 5t and pi received at
least n− t witSigs backing 〈vj , j〉 and no witSig backing another pair (line 20).

In both cases, pi considers the pair 〈vj , j〉 to be valid only if witSig(pj , 〈vj , j〉, ?) ∈ sigsi 7,
i.e., there exist a witSig in sigsi from the proposer of the value. In both cases, there is a signature
of 〈vj , j〉 by pj in sigsi. Hence, at time t, pi received a witSig from pj . Furthermore, we assume

7. This condition is an implicit condition stated in the description of the algorithm and assumed by the
comment at lines 9 and 36.

137

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

that pj is correct and that cryptographic signatures cannot be impersonated. Therefore, the only
process able to sign a value using pj ’s secret key is pj itself. Hence, pj did cac-propose value vj
in both cases.

Lemma 8.10. For any two correct processes pi and pj , if 〈v, f, ?〉 ∈ acceptedi and
〈v′, o, ?〉 ∈ acceptedj , then 〈v, k〉, 〈v′, `〉 ∈

(
candidatesi ∩ candidatesj

)
.

Proof. Let pi and pj be two correct processes, and let 〈v, f, ?〉 ∈ acceptedi and 〈v′, o, ?〉 ∈
acceptedj . We note τv the time 〈v, f, ?〉 is added to acceptedi and we note acceptedτvi , candidatesτvi
the state of the sets acceptedi and candidatesi at this time. Using the CAC-Global-
termination property, we know that pi will eventually cac-accept v′.

With this setup, pi cannot cac-accept one of these tuples using the fast path—if pi uses
the fast path for 〈v, f, ?〉, there can only be a maximum of 2t witSigs in favor of 〈v′, o, ?〉, no
correct process will send a readySig in favor of 〈v′, o, ?〉. Hence, both 〈v, f, ?〉 and 〈v′, o, ?〉 are
cac-accepted at line 45.

The following uses a proof by contradiction, we assume 〈v, f, ?〉 is cac-accepted first and
〈v′, o, ?〉 /∈ candidatesτvi .

Furthermore, we use the following notations: Let witness(sigsti, 〈v, f〉) be the witSig signa-
tures for the pair 〈v, f〉 in sigsτi , and let ready(sigsτi , 〈v, f〉) be the readySigs relative to the
pair 〈v, f〉 in sigsti. Let max(sigsti, pj) be the readySig or witSig with the greatest sigcount
from process pj in sigsti.

At τv, due to the condition at line 44, |ready(sigsτvi , 〈v, f〉)| ≥ n − t. However, 〈v′, o〉 /∈
candidatesτvi by assumption. Hence, |witness(sigstvi , 〈v′, o〉)| < k (lines 43 and 44). In the follow-
ing, we use two characteristics of the algorithm:

1. A correct process does not send a witnessMsg if it already sent a readyMsg (lines 11
and 36); and

2. A correct process only accepts complete sequences of messages, i.e., signature received
from correct processes can be assumed FIFO. 8

Among the readySigs in ready(sigsτvi , 〈v, f〉), at least n−2t are sent by correct processes. Using
the second point of the previous remark, we know that if pl is correct and given k = max(sigsτi , pl),
we received all messages from pl with sigcount lesser than k. Furthermore, if there exists a
readySig from pl in sigstvi and if pl is correct, using the first point of the previous remark, we
know that there are no witSigs from pl in sigsτi that are not in sigsτvi , for all τ ≥ τv.

Hence, the only witSigs in witness(sigsτi , 〈v′, o〉) that are not in witness(sigsτvi , 〈v′, o〉) for
τ > τv are the one sent by correct processes whose readySigs weren’t in ready(sigsτvi , 〈v, f〉)—
we call them the set of missed processes—or the one sent by Byzantine processes. Because

8. This condition is implicitly stated in the description of the algorithm and assumed by the comment at
lines 9 and 36.

138

8.6. CAC: An Optimal Implementation

ready(sigsτvi , 〈v, f〉) contains the signature from at least n − t processes, we know that the
set of missed processes is lesser or equal to t. Hence, a maximum of 2t additional witSigs
can be received by pi after τv. (Up to t from correct processes whose readySigs weren’t in
ready(sigsτvi , 〈v, f〉), and up to t from Byzantine processes that do not respect this constraint.)
Therefore, pi can receive up to |witness(sigsτvi , 〈v′, o〉)| + 2t witSig in favour of 〈v′, o〉 during
the whole execution of the algorithm. However, we said that |witness(sigsτvi , 〈v′, o〉)| < k. Hence,
|witness(sigsτvi , 〈v′, o〉)|+ 2t < 2t+ k

Therefore, 〈v′, o〉 will never reach the 2t + k threshold (line 16 or 44) and 〈v′, o, ?〉 can-
not be cac-accepted by a correct process, hence contradicting the assumption. Therefore,
〈v, ?, ?〉, 〈v′, ?, ?〉 ∈ candidatesi ∩ candidatesj .

Corollary 8.2 (CAC-Prediction). For any correct process pi and for any process iden-
tity k, if, at some point of pi’s execution, 〈v, k〉 6∈ candidatesi, then pi never cac-accepts 〈v, k〉
(i.e., 〈v, k〉 6∈ acceptedi holds forever).

Proof. The corollary follows from the contrapositive of lemma 8.10 when pj = pi.

Lemma 8.11 (CAC-Non-triviality). For any correct process pi, acceptedi 6= ∅ ⇒
candidatesi 6= >.

Proof. This property is directly verified. When a process cac-accepts a value, it first intersects
its candidatesi set with a finite set. Hence, at this point in time, candidatesi 6= >.

Lemma 8.12. If a correct process broadcasts a witnessMsg at line 8 or 14, then even-
tually we have |{j : witSig(pj , 〈?, ?〉, ?) ∈ sigsi}| ≥ n− t.

Proof. If a correct process broadcasts a witnessMsg at line 8 or 14, it is sure all the correct pro-
cesses will eventually receive this witnessMsg (thanks to the best effort broadcast properties).
Hence, each correct process pj will answer with a witnessMsg containing a witSig(pj , 〈?, ?〉, ?)
if they did not already do so (lines 11 to 14). Therefore, if pi broadcasts a witnessMsg, it is
sure that eventually, |{j : witSig(pj , 〈?, ?〉, ?) ∈ sigsi}| ≥ n− t.

Lemma 8.13 (CAC-Local-termination). If a correct process pi invokes
cac_propose(v), its set acceptedi eventually contains a pair 〈v′, ?〉 (note that v′ is not
necessarily v).

Proof. Let a correct process pi cac-proposes a value v. To prove the CAC-Local-termination
property, three different cases must be explored.

— In the first case, pi signs and be-broadcasts a witSig in favour of 〈v, i〉. It eventually
receives n− t witSigs (Lemma 8.12) among which at least 2t+ k witSigs are in favour
of a unique pair 〈v′, j〉 (either 〈v′, j〉 = 〈v, i〉 or 〈v′, j〉 6= 〈v, i〉), i.e., ∃τ such that |{l :

139

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

witSig(pl, 〈v′, j〉, ?) ∈ sigsτi }| ≥ 2t+ k. Hence, 〈v′, j〉 satisfies the condition line 16 or 39
and pi will broadcast a readyMsg along with sigsτi . Thanks to the best effort broadcast
properties and because pi is correct, the n − t correct processes will eventually receive
sigsτi .
Let pκ be a correct process that receives the readyMsg from pi and sigsτi at time
τ ′. It will add all the signatures from sigsτi to sigsτ ′κ (line 38). Therefore, |{l :
witSig(pl, 〈v′, j〉, ?) ∈ sigsτ ′κ }| ≥ 2t + k and v′ satisfies the condition at line 39. Pro-
cess pκ will eventually send a readyMsg at line 42 along with its set sigsκ where
readySig(pκ, 〈v′, j〉, ?) ∈ sigsκ (lines 41 and 42). Each correct process will eventually
send such readyMsg. Hence, eventually, pi will receive readySig(?, 〈v′, j〉, ?) from the
n− t correct processes. Hence, the condition at line 44 will eventually be verified, and pi
will cac-accept 〈v′, j〉.

— In the second case, pi signs and be-broadcasts a witnessMsg in favour of 〈v, i〉, and
among the n− t responses it receives (Lemma 8.12), there are less than 2t+ k witSigs
messages in favour of 〈v, i〉 or any other 〈v′, j〉, i.e., |{j | witSig(pj , 〈?, ?〉, ?) ∈ sigsτi }| ≥
n − t and 6 ∃ 〈v′, j〉, such that |{witSig(?, 〈v′, j〉, ?) ∈ sigsτi }| ≥ 2t + k. In this case, pi
is stuck. It cannot send a readyMsg or cac-accept a value, but it cannot wait for new
witnessMsg either, because all the Byzantine processes could act as if they crashed. 9

It must use one of the unlocking mechanisms implemented from lines 25 to 35.
We analyze the two possible unlocking mechanisms:
— The first unlocking mechanism (from line 26 to 29) is used by pi if a

correct process pj might have used the fast-path. If pj might have used
the fast-path at time τ , |{witSig(?, 〈vf , f〉, ?) ∈ sigsτ ′j }| ≥ n − t and
|{witSig(?, 〈vo, o〉, ?) ∈ sigsτ ′j }| = 0,∀〈vf , f〉 6= 〈vo, o〉. Let |P | be the number of
processes from which pi received witSigs, i.e., P =

{
j | witSig(pj , 〈?, ?〉, ?) ∈ sigsi

}
,

and |P | ≥ n − t. We consider the worst case scenario where T τ
′

j =
{witSigt, · · · ,witSig2t · · · ,witSign} is the set of witSigs received by pj at time τ ′,
where {witSigt, · · · ,witSig2t} are messages sent by Byzantine processes and T τi =
{witSig1, · · · ,witSigt−1,witSigt′ , · · · ,witSig2t′ ,witSig2t+1, · · · ,witSig|P |} is
the set of witSigs received by pi at time τ where {witSigt′ , · · · ,witSig2t′} are
messages sent by Byzantine processes, witSigi 6= witSigi′ ,∀i ∈ {t, · · · , 2t}. We have
|T τi ∩ T τ

′
j | ≥ |P | − 2t ≥ n− 3t.

Therefore, if ∃〈vf , f〉 such that |witSig(?, 〈vf , f〉, ?) ∈ sigsτi | ≥ |P |−2t, pj might have
used the fast-path (this condition is verified by line 26). In this case, processes send a
new witnessMsg only in favor of 〈vf , f〉 (if they did not already do so). Eventually,

9. Let us recall that, except for the unlocking mechanisms from line 25 to 35, a correct process can only
produce one witSig during the execution of the algorithm.

140

8.6. CAC: An Optimal Implementation

pi will receive all the witnessMsg sent by the correct processes. Therefore, if n− 2t
correct processes sent a witnessMsg message in favor of 〈vf , f〉, then the t correct
processes that did not vote for this pair in the first place will send a new witnessMsg
in its favor. Therefore, the correct processes will eventually receive n − t ≥ 2t + k

witnessMsg messages in favor of 〈vf , f〉, and they will send a readyMsg in favor of
this pair. Hence, each correct process will receive n− t readySig in favor of 〈vf , f〉,
and will cac-accept it (line 45). Otherwise, if there are less than n−2t correct processes
that sent witSigs in favor of 〈vf , f〉 in the first place, pi will eventually receive the
messages from the t correct processes that it missed, the condition at line 26 will no
longer be true and pi will resume to the second unlocking mechanism.

— With the second unlocking mechanism, a correct process sends a new witnessMsg
only if it received at least max

(
n−(|M |+1)t, 1

)
witSigs (line 33) whereM = {〈v′, κ〉 :

witSig
(
?, 〈v′, κ〉, ?

)
∈ sigsi}. First, let us prove that either a correct process pj sends

a readyMsg message after receiving the first messages of the n− t correct processes,
or a pair 〈v′, κ〉 eventually satisfies the following condition at all correct processes:
{witSig(?, 〈v′, κ〉, ?) ∈ sigsl} ≥ max

(
n− (|M |+ 1)t, 1

)
,∀pl, a correct process.

Let us assume that the previous assumption is wrong, i.e., no correct process sends
a readyMsg message after receiving the first witnessMsg from the n − t cor-
rect processes, and there is a process pl such that {witSig(?, 〈v′, κ〉, ?) ∈ sigsl} <
max

(
n − (|M | + 1)t, 1

)
. The first part of the assumption implies that ∀ 〈v′, κ〉,

{witSig(?, 〈v′, κ〉, ?) ∈ sigsl} < 2t + k, for all pl correct. We know (thanks to the
best effort broadcast properties) that each correct process will eventually receive the
first n − t witSig sent by correct processes, let sigstot be this set. Furthermore, the
worst case scenario is when each pair in sigstot is backed by a minimal number of wit-
Sigs, i.e., the scenario where each pair in sigstot is backed by n−t

|M | witSigs—otherwise,
by the pigeonhole argument, we have one pair that is backed by more signatures and
which is more likely to reach the max

(
n−(|M |+1)t, 1

)
threshold. Hence, ∀〈v′, κ〉 such

that bn−t|M | c|+ 1 ≥ |{witSig(?, 〈v′, κ〉, ?) ∈ sigstot}| ≥ bn−t|M | c. Furthermore, we see that
bn−t|M | c ≥ max(n− (|M |+ 1)t, 1). Hence, the hypothesis is contradicted. We know that
either a correct process pj sends a readyMsg while receiving the first value of the
n− t correct processes, or a value v′ eventually satisfies the following condition at all
correct processes: {witSig(?, 〈v′, κ〉, ?) ∈ sigsl} ≥ max

(
n− (|M |+ 1)t, 1

)
, ∀pl correct

processes.
In both cases, each correct process will eventually send a readyMsg along with the
2t+k witSigs they received in favor of a unique pair, hence falling back to the first case.

— The third case occurs when no witnessMsg in support of 〈v, i〉 is sent by pi

to the other processes—another witnessMsg was already broadcast (line 6)—i.e.,

141

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

witSig(pi, 〈v, i〉, ?) /∈ sigsτi for any time τ of the execution. However, even if pi does
not broadcast a witnessMsg in favor of 〈v, i〉 (due to the condition at line 6), it has
already sent a witnessMsg in favor of some pair 〈v′, j〉 (again, because of the condition
at line 6), thus falling back to the first or the second case.

Therefore, if a correct process pi cac-proposes a value, it will always cac-accept at least one
pair.

Lemma 8.14 (CAC-Global-termination). If pi is a correct process and 〈v, j〉 ∈
acceptedi , eventually 〈v, j〉 ∈ acceptedk at every correct process pk.

Proof. Let pi and pj be two correct processes. Let pi cac-accept a tuple 〈v, j, ?〉, but pj does not.
Two cases can be highlighted:

— In the first case, pi received n− t readySig in favour of 〈v, j〉 (line 44). The readyMsg
that is used to send those signatures contains 2t+ k witSig in favor of 〈v, j〉 (thanks to
the verification at line 37). Furthermore, it did not satisfy the condition line 20.

— In the second case, n > 5t, and pi received more than n − t witSig in favour of 〈v, j〉
and no signatures in favour of another pair (line 20).

In both cases, pi broadcasts a readyMsg in favour of 〈v, j〉 (line 19 or 42). Each readyMsg
in favor of 〈v, j〉 sent by a correct process contains at least 2t+ k valid witSig in favor of 〈v, j〉
(lines 16 and 39). Process pi is correct, therefore each correct process will eventually receive at
least one readyMsg associated with the proof that 2t + k witSig in favour of 〈v, j〉 exists.
Hence, 〈v, j〉 will eventually reach the 2t+ k threshold at each correct process. When a correct
process receives 2t+k witnessMsg in favor of a pair, it sends a readyMsg in its favor (line 19
or 42). Therefore, each correct process will send a readyMsg relative to 〈v, j〉 at line 42. Because
there are n− t correct processes, each correct process will receive n− t readyMsg in favor of
〈v, j〉, and pj will eventually cac-accept 〈v, j〉 (line 45).

Theorem 8.1. If n ≥ 3t+k ≥ 3t+ 1, then Algorithm 7 implements the CAC abstraction.

Proof. Using Lemma 8.9, Corollary 8.2, Lemma 8.11, Lemma 8.13, and Lemma 8.14, Algorithm 7
implements the CAC abstraction.

Lemma 8.15 (Proof of acceptance). There exists a function Verify such that, for any proof
of acceptance πv, the following property holds

Verify(v, πv) = true ⇐⇒ ∃ pi correct such that, eventually, 〈v, ?, πv〉 ∈ acceptedi .

Proof. Let πv be a candidate proof of cac-acceptance. Let the function Verify(πv, v) return true if
and only if πv contains valid readySigs on the value v from at least n− t processes in Π. Hence,

142

8.6. CAC: An Optimal Implementation

at least n − 2t ≥ t + k correct processes signed readySigs in favor of v. Furthermore, correct
processes only propagate their signatures via a readyMsg, which is a best-effort broadcast.
Therefore, all the correct processes eventually receive those n− 2t readySigs. Furthermore, a
readyMsg from a correct process contains at least 2t + k witSigs (line 16 or 39). Hence, all
the correct processes will receive 2t+k witSig backing v, and all the correct processes will send
a readyMsg backing v, and they will eventually cac-accept v. In other words, Verify(πv, v) =
true⇒ ∃pi correct such that pi cac-accepts 〈v, ?, πv〉.

Let a correct process p cac-accept a tuple 〈v, ?, πv = sigsi〉. Then sigsi contains all the
signatures p sent and received before the cac-acceptance. To cac-accept a value v, sigsi must
contain at least n− t readySigs in its favor (line 44). Hence Verify(sigsi, v) = true. Therefore,
Verify(πv) = true⇔ ∃ pi correct such that pi cac-accepts 〈v, ?, πv〉.

Optimality of the best case latency

This section explores the theoretical best-case latency of the abstraction. More precisely,
it proves that the optimized Algorithm 7 reaches the lower bound with respect to Byzantine
resilience when fast-path is enabled.

Theorem 8.2. If a CAC algorithm allows processes to cac-accept after all the correct
processes have only broadcast one message, then n ≥ 5t+ 1.

Proof. Let T1, T2, T3, T4 be partitions of Π. Let |T1| = |T2| = |T3| = t. Let n ≤ 5t. We consider
p1 ∈ T1 and p2 ∈ T2 two processes. Two values v and v′ are cac-proposed by two correct processes
pv and pv′ respectively. The assumption is that p1 cac-accepts a value v after all correct processes
broadcast one message. In the best case, p1 received messages from processes that only received
the broadcast from pv.

In the first execution, processes in T2 are Byzantine, and act as if they crashed. Processes
in T1, T3 and T4 back value v. The second execution is an execution where processes in T3 are
Byzantine; they send votes in favor of v to the processes in T1 and votes in favor of v′ to the
processes in T2. Processes in T2 vote back v′, and processes in T4 vote back v. In the third
execution, processes in T1 are Byzantine and act as if they crashed. Processes in T2 and in T3

both vote in favor of v′ while processes in T4 vote in favor of v.
Because of the asynchrony of the network, from p1’s point of view, the first two executions

are indistinguishable if it receives messages from T1, T3 and T4 first. In both of them, it has to
accept a value. Thus, in both of them, it cac-accepts the value v in one round because it only
received messages about v.

Furthermore, and because of the asynchrony of the network, from p2’s point of view, the
second and the third executions are indistinguishable if it receives messages from T2, T3 and T4

first. In both of them, it sees 2t votes for v and 2t votes for v′. Thus, whether v or v′ should be

143

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

cac-accepted is undetermined, and processes must send new messages to decide. A second round
of communication is necessary, and both values could eventually be accepted.

However, the assumption was that p cac-accepts in one round, i.e., it can participate in the
second round of communication, but the result should not impact the fact that only v is cac-
accepted. However, v′ can also be cac-accepted, hence contradicting the CAC-Prediction and
CAC-Global-termination property. Therefore, the proportion of Byzantine processes for a
best-case latency of one round is at least n ≥ 5t+ 1.

Corollary 8.3. The fast-path proposed by Algorithm 7 is optimal with respect to Byzan-
tine resilience.

Proof of the latency of Algorithm 7

This section analyzes the latency properties of our algorithm.

Theorem 8.3. Let x values be cac-proposed by x processes. In the worst case, processes
that implement Algorithm 7 exchange 2 × x × n2 messages and cac-decide after four rounds of
best-effort broadcast.

Proof. Let x values be cac-proposed by x processes. Each process will broadcast an initial wit-
nessMsg—one best effort broadcast round, and x× n messages. After the reception, the n− x
processes that did not broadcast answer those broadcasts with new witnessMsg—a second
best effort broadcast round, and n(n− x) messages. Because of the conflict, the processes have
to use the unlocking mechanism for each of the values they did not already witness —third
best effort broadcast round and (x − 1)n2 messages. Finally, each process sends a readyMsg
in favor of each value and cac-accepts—fourth best effort broadcast round and xn2 messages.
Therefore, in the worst case, the values are cac-accepted after four best-effort broadcast rounds,
and xn+ n(n− x) + (x− 1)n2 + xn2 = 2xn2 messages are exchanged.

Theorem 8.4. The best case latency of the Algorithm 7 when n < 5t + 1 is three asyn-
chronous rounds.

Proof. When n < 5t+1, processes cannot use the fast path. The best case for the implementation
is when there are no conflicts. In this case, a process pi broadcasts an initial witnessMsg in favor
of value v—first asynchronous round. Then, each process broadcasts its own witnessMsg in
favor of v—second asynchronous round. Finally, each process broadcasts a readyMsg message,
and cac-decides—third asynchronous round. The correct processes cac-accept a value after three
asynchronous rounds.

Theorem 8.5. The best case latency for a correct process in Algorithm 7 is two asyn-
chronous rounds when n ≥ 5t+ 1.

144

8.7. CAC in Action: Solving Low Contention Problems

Proof. Let a correct process pi be the unique process to cac-propose value v. Let n ≥ 5t + 1.
First, it broadcasts a witnessMsg in favor of v—first asynchronous round. Then, each correct
process broadcasts a witnessMsg in favor of v—second asynchronous round. When pi receives
the n − t witnessMsg of the correct processes, it uses the fast path and accepts v. Thus,
the best-case latency of the optimized version of the CAC implementation is two asynchronous
rounds.

8.7 CAC in Action: Solving Low Contention Problems

The CAC object can solve cooperation problems by combining optimistic conflict avoidance
with a deterministic back-off strategy when conflicts occur. This section thoroughly explores two
of these applications. The first one is a solution to a new naming problem, called short naming.
The naming problem makes it possible for processes to claim new names, and to associate them
with a public key. Short naming is a variant of the naming problem where the new names
attributed to processes have low entropy. The CAC abstraction is, to the best of our knowledge,
the only abstraction that makes it possible to solve this problem in the presence of faulty
processes and asynchrony.

The second application studied is the well known distributed consensus problem. We explore
a CAC-based solution to this problem denoted Cascading Consensus, a new optimistically termi-
nating consensus algorithm that ensures an early decision in favorable circumstances. Moreover,
this algorithm uses information provided by the CAC abstraction to reduce synchronization and
communication complexity in case of contention. More precisely, this algorithm uses the CAC
abstraction to disseminate values. If contention occurs, i.e.,, if termination is not guaranteed,
then only the processes that proposed a value participate in the conflict resolution. This behav-
ior is made possible thanks to the information given by the candidates set. In that sense, this
algorithm goes beyond similar existing solutions [141, 151, 152, 145, 153], and, to the best of
our knowledge, the CAC abstraction is the only existing abstraction that makes it possible to
implement an algorithm with such a behavior. These examples could be extended to many other
distributed applications, e.g., shared account asset-transfer protocols, access control, naming
services, etc.

8.7.1 The fault-tolerant asynchronous short-naming problem

Problem presentation

The algorithm presented in this section uses the CAC abstraction to implement a consensus-
free naming algorithm. The idea is to allow clients to claim a name as theirs. To do so, they
associate a name with a public key and prove that they know the associated secret key. However,

145

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

if clients can choose the name they want to claim, multiple clients can claim the same name
simultaneously, creating a conflict.

Existing solutions To this day, only two methods are known to solve this problem.
— The first method uses a consensus algorithm. Each client can choose its name, and, in

case of contention, the consensus algorithm decides which process wins in a first-come,
first-served manner. The problem of this method is that consensus should be used as
the main communication primitive, whereas the probability of contention is low. Fur-
thermore, consensus requires additional computability power (e.g., partial synchrony or
randomization).

— The second method prevents processes from actually choosing their names and relies on
the entropy of random numbers to avoid collisions. It does not require the use of consensus
algorithms as processes use their public keys as names. If the underlying cryptography
is perfectly secure and secret keys are only known by their legitimate user, then the as-
sociated public keys are unique, and no conflict can occur because no two clients can
claim the same name. The problem with this method is that public keys consist of long
chains of random characters, making them hard for humans to remember. Techniques
exist to circumvent this issue. Most of them use functions to map a random string to
something that humans can remember: petname systems [129], tripphrases [159], or Pro-
quint IDs [160]. However, those techniques do not reduce the entropy of the identifier,
and they are mainly used to prevent identity theft (e.g., phishing).

An efficient CAC-based approach Assuming perfect public/private keys, the CAC prim-
itive makes it possible to propose a new consensus-free naming algorithm that reduces the size
(and the entropy) of the claimed names, thus making them easier to remember for humans. The
idea is to let clients claim sub-strings of their public keys. For example, let a client c have a
public key “abcdefghij”. It will first claim the name “a” using one instance of the CAC prim-
itive. If there is no conflict, i.e., if the size of the candidates set is 1 after the first acceptance,
then the name “a” belongs to c and is associated with its public key. On the other hand, if
there is a conflict, i.e., another process claimed the name “a” and the size of the candidate set
is strictly greater than 1 after the first acceptance, then c claims the name “ab”. This procedure
ensures that a client can always obtain a name. Indeed, because we assume perfect cryptographic
primitives, only one client knows the secret key associated with its public key. Therefore, if c
conflicts with all its claims on the subsets of its public key, it will eventually claim the name
“abcdefghij”. No other process can claim the same name and prove it knows the associated
secret key.

146

8.7. CAC in Action: Solving Low Contention Problems

Short naming: formal definition

The short naming cooperation abstraction provides each process with one operation
Short_Naming.Claim(pk, π) that allows it to claim a name that is a sub-string of the public
key pk. Furthermore, π is the proof of knowledge of the secret key associated with pk. Moreover,
the object provides each process with an (initially empty) set Namesi, which associates names
with public keys. A Namesi set is composed of triples 〈n, pk, π〉 where n is the attributed name,
pk is the associated public key, and π is the proof of knowledge of the secret key associated to
the public key. A short naming object provides the following properties.

— Unicity. Given a correct process pi, ∀ 〈Namesj , pkj , πj〉, 〈nk, pkk, πk〉 ∈ Namesi, either
nj 6= nk or j = k.

— Short-names. 10 If all processes are correct, and given one correct process pi, eventually
we have ∀ 〈nj , pkj , ?〉, 〈nk, pkk, ?〉 ∈ Namesi:
If |Max_Common_Prefix(pkj , pkk)| ≥ |Max_Common_Prefix(pkj , pk`)|, ∀ 〈?, pk`, ?〉 ∈
Namesi then |Max_Common_Prefix(pkj , pkk)|+ 1 ≥ |nj |.

— Agreement. Let pi and pj be two correct processes. If 〈n, pk, π〉 ∈ Namesi and if the process
that invoked Short_Naming.Claim(pk, π) is correct, then eventually 〈n, pk, π〉 ∈ Namesj .

— Termination. If a correct process pi invokes Short_Naming.Claim(pk, π), then eventually
〈?, pk, ?〉 ∈ Namesi.

The Short-names property captures the fact that the names given to the processes are the
smallest possible. If there are no Byzantine processes, each name should be the smallest possi-
ble, when comparing it to other attributed names. The property only considers this difference
eventually, i.e., while a process might have successfully claimed a name, it may take a long time
for the process it was concurring with to get its own name.

A CAC-based short-naming algorithm

Given a character string s, we denote by s[i] the prefix of s of length i, e.g.
“abcdefghijk”[3] = “abc”.

Algorithm 8 implements the short naming abstraction presented in Section 8.7.1. This im-
plementation uses two steps: a claiming phase and a commitment phase. The claiming phase
verifies (and proves) that no other process tries to claim the same name. The commitment
phase is used to actually associate a name with a public key, once this association has been
successfully claimed. The claiming phase uses multiple CAC instances. Each instance is associ-
ated with a name. If the CAC instance cac-accepts the value cac-proposed by a process pi and
|candidatesi| = 1, it means that there is no contention on the attribution of the name. If pi is the
only process claiming this name, then it can commit to this name; otherwise, there is a conflict.

10. The function Max_Common_Prefix() outputs the longest common prefix between two string,
e.g., Max_Common_Prefix(“abcdefg”, “abcfed”) = “abc”.

147

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

In the latter case, the invoking processes will claim a new name by adding one character from its
public key to the old name. The CAC instances for the claiming phase are stored in a dynamic
dictionary, Claim_dict. This dictionary dynamically associates a CAC instance to a name. It
is initiated as an empty dictionary, and whenever a process invokes the cac_propose operation
on a specific name—i.e., when a process executes Claim_dict[name].cac_propose(pk)—or when
the first CAC value for a specific name is received, the dictionary dynamically allocate a new
CAC object.

The commitment phase uses a new set of CAC instances. Similarly to the claiming phase,
Algorithm 8 uses one CAC instance per name. However, unlike the claiming phase, there is
one CAC instance per name and per process. When a process knows it successfully claimed
a name, i.e., no contention was detected, it informs the other processes by disseminating its
public key using its CAC instance associated with the claimed name. Processes can verify that
the commitment does not conflict with another process, because they accepted the associated
name in the associated CAC instance. However, if a Byzantine process p claimed the same name,
it could commit to the name even though the system did not accept its claim. In this case, the
commitment would be rejected by correct processes, as the Byzantine process cannot provide a
valid proof of acceptance of the claim. The only case where multiple processes can commit to the
same name is if they are all Byzantine, and all their claims are cac-accepted. In this case, they
could all commit to the same name, which does not violate the specification and the Agreement
property. In other words, Byzantine processes can share the same names if it does not impact
correct processes. Similarly to the claiming phase, CAC instances used during the commitment
phase are stored in a dynamic dictionary.

We further assume the CAC instances only accept valid pairs, i.e., for a pair 〈pk, π〉 and the
instance Commit_dict[name] or Claim_dict[name], name is a sub-string of pkand π is a valid
proof of knowledge of the secret key associated to pk.

This algorithm uses a VerifySig(pk, π) algorithm. This algorithm returns “true” if and only
if π is a valid cryptographic signature by the public key pk.

Proof of the algorithm

The proof that Algorithm 8 implements the Short Naming abstraction defined in Section 8.7.1
follows from the subsequent lemmas.

Lemma 8.16 (Unicity). Given a correct process pi, ∀ 〈Namesj , pkj , πj〉, 〈nk, pkk, πk〉 ∈
Namesi, either nj 6= nk or j = k.

Proof. Let pi be a correct process such that ∃ 〈nj , pkj , πj〉, 〈nk, pkk, πk〉 ∈ Namesi and nj = nk,
j 6= k.

The only place in the algorithm where pi updates Namesi is at line 23. To reach this line,

148

8.7. CAC in Action: Solving Low Contention Problems

1 init: Namesi ← ∅; Claim_dict ← dynamic dictionary of CAC objects;
2 Commit_dicti ← dynamic dictionary of CAC objects; propi ← ∅.

3 operation Short_Naming.Claim(pk, π) is
4 if VerifySig(pk, π) = false then return ;
5 Choose_Name(1, pk, π). BQueries an unused name, starting with pk[1].

6 internal operation Choose_Name(`, pk, π) is
7 curr_name ← pk[`];
8 while 〈curr_name, ?〉 ∈ Namesi do BLooks for the first unused name.
9 `← `+ 1;

10 if ` > |pk| then return ;
11 curr_name ← pk[`];
12 propi ← propi ∪ 〈curr_name, pk, π, `〉;
13 Claim_dict[curr_name].cac_propose(〈pk, π〉). BClaims curr_name.

14 when Claim_dict[name].cac_accept(〈pk, π〉, j) do
15 if VerifySig(pk, π) = false or name is a sub-string of pk then return ;
16 if 〈name, pk′, π′, `〉 ∈ propi then BIf name was claimed by pi.
17 propi ← propi \ 〈name, pk′, π′, `〉;
18 if |Claim_dict[name].candidatesi| = 1 and π′ = π then

Commit_dicti[name].cac_propose(〈pk′, π′〉); BIf no conflict, commit to name.
19 else Choose_Name(`+ 1, pk, π′). Bpi claims a name with more digits (back-off

strategy).

20 when Commit_dictj [name].cac_accept(〈pk, π〉, j) do
21 if VerifySig(pk, π) = false or name is a sub-string of pk then return ;
22 wait

(
〈pk, π〉 ∈ Claim_dict[name].acceptedi

)
;

23 if 〈name, ?, ?〉 /∈ Namesi then Namesi ← Namesi ∪ {〈name, pk, π〉}.
BThe association between name and pk is committed by pi.

Algorithm 8: Short naming algorithm implementation (code for pi)

149

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

pi must verify the condition 〈name, ?, ?〉 /∈ Namesi at line 23. However, this condition can only
be valid once per name. Hence, pi will only update Namesi once per name, and two different
tuples 〈nj , pkj , πj〉, 〈nk, pkk, πk〉 cannot be present in Namesi if j 6= k. Hence, either nj 6= nk, or
j = k

Lemma 8.17 (Agreement). Let pi and pj be two correct processes. If 〈n, pk, π〉 ∈
Namei and if the process that invoked Short_Naming.Claim(pk, π) is correct, then eventually
〈n, pk, π〉 ∈ Namej .

Proof. Let pi, pj and pk be three correct processes. Let pk invoke Short_Naming.Claim(pk, π).
Let 〈n, pk, π〉 ∈ Namesi, where 〈n, pk, π〉 /∈ Namesj during the whole execution.

If 〈n, pk, π〉 ∈ Namesi, then it means that pi updated Namesi at line 23.
This implies that Commit_dictk[n].cac_accept(〈pk, π〉, ?) was triggered at pi. Thanks
to the CAC-Global-termination property of the CAC abstraction, we know that
Commit_dictk[n].cac_accept(〈pk, π〉, ?) will also eventually be triggered at pj . Because pi added
〈n, pk, π〉 to Namesi, we know that the conditions at lines 21 and 22 are verified at pj . However,
the condition 〈name, ?, ?) /∈ Namesi at line 23 may not be verified at pj . However, because
pk is correct, when it invokes Commit_dictk[n].cac_propose(〈pk, π〉) at line 18, it first verified
the condition |Claim_dict[n].candidatesi| = 1 at line 18. Hence, only one cac_accept occurs
for the name n at all correct processes, thanks to the CAC-Prediction and CAC-Global-
termination properties of the CAC abstraction. Therefore, only one tuple can pass the wait
instruction at line 22: 〈pk, π〉, at the index n of Claim_dict. Hence, all conditions from line 21
to 23 will eventually be verified at pj and, eventually, 〈n, pk, π〉 ∈ Namesj . This contradicts the
hypothesis; thus, the Agreement property is verified.

Lemma 8.18 (Short-names). If all processes are correct, and given one correct process
pi, eventually we have ∀ 〈nj , pkj , ?〉, 〈nk, pkk, ?〉 ∈ Namesi:
If |Max_Common_Prefix(pkj , pkk)| ≥ |Max_Common_Prefix(pkj , pk`)|, ∀ 〈?, pk`, ?〉 ∈ Namesi
then |Max_Common_Prefix(pkj , pkk)|+ 1 ≥ |nj |.

Proof. We prove Lemma 8.18 by contradiction. Let all the processes be correct, and let pi be
one of them. We assume that ∃ 〈nj , pkj , ?〉, 〈nk, pkk, ?〉 ∈ Namesi,∀ 〈nl, pkl, ?〉 ∈ Namesi:

|Max_Common_Prefix(pkj , pkk)| ≥ |Max_Common_Prefix(pkj , pkl)|, and

|Max_Common_Prefix(pkj , pkk)|+ 1 < |nj |.

Let us call pj the correct process that executed Short_Naming.Claim(pkj , ?). The only place
where Namesi is modified is at line 23. To execute this update, pi verifies with the condition
at line 22 that the tuple 〈pkj , ?〉 was cac-accepted at the index nj of Claim_dict. The validity

150

8.7. CAC in Action: Solving Low Contention Problems

property of the CAC abstraction ensures that pj cac-proposed 〈pkj , ?〉. Here, we assume that,
because pj is the only process that knows the secret key associated with pkj , it is the only
process able to execute cac_propose(pkj , ?). The only place where pj can cac-propose at index
nj of Claim_dict is at line 13. Furthermore, correct processes try all the sub-strings of their
public keys sequentially, beginning with the first digit of the key. Hence, to cac-propose at
index nj of Claim_dict, it implies that, either pj already added the name nj [|nj |−1] to Namesj
associated to a public key pkκ, where κ 6= j, or that a process p cac-proposed at index nj [|nj |−1]
of Claim_dict, and the candidatesj set of this CAC instance contained 〈pkκ, ?〉, where κ 6= j.
In the first case, |Max_Common_Prefix(pkκ, pkj)| ≥ |nj | − 1. By the Termination property of
short naming (Lemma 8.20), we know that, eventually, 〈nj [|nj | − 1], pkκ, ?〉 ∈ Namesi, which
violates the assumption. Because pκ is correct, in the second case, it will eventually add an name
whose size is greater or equal to |nj | with pkκ as a public key to Namesκ (Termination). By the
Agreement property of short naming (Lemma 8.17), this name will be added to Namesi. Hence,
eventually, |Max_Common_Prefix(pkj , pkκ)|+1 ≥ |nj |, and 〈?, pki, ?〉, 〈?, pkκ, ?〉 ∈ Namesi, thus
violating the assumption and concluding the proof.

Lemma 8.19. If a correct process pi executes Choose_Name(j, pk, π), ∀ j ∈ {1, · · · , |pk|},
then either it eventually invokes Claim_dict[?].cac_propose(〈pk, π〉), or 〈?, pk, ?〉 ∈ Namesi.

Proof. Assuming pi is correct and 〈?, pk, ?〉 /∈ Namesi, let pi execute Choose_Name(j, pk, π),
∀ j ∈ {1, · · · , |pk|} and pi does not invoke Claim_dict[?].cac_propose(〈pk, π〉). Then, the process
must have returned at line 10, and the condition at line 10 must be verified, i.e., i > |pk|. Hence,
all the names from pk[i] to pk[|pk|] were already attributed to public keys different from pk.
Hence, there exists a tuple 〈pk, pk′, π〉 ∈ Namesi where pk 6= pk′. If Namesi is updated, then
line 23 has necessarily been executed, and the condition at line 21 was verified. Therefore, using
the perfect cryptography assumption, we have pk = pk′.

Lemma 8.20 (Termination). If a correct process pi invokes Short_Naming.Claim(pk, π),
then eventually 〈?, pk, ?〉 ∈ Namesi.

Proof. Let pi be a correct process that invokes Short_Naming.Claim(pk, π). Then, it will ex-
ecute Choose_Name(1, pk, π). Using Lemma 8.19, we know that either 〈?, pk, ?〉 ∈ Namesi,
or pi invoked Claim_dict[name].cac_propose(〈pk, π〉). In the first case, Lemma 8.20 is triv-
ially verified. In the second case, the CAC-Local-termination property of the CAC primi-
tive ensures that Claim_dict[name].cac_accept(〈pk′, ?〉, ?) will be triggered at line 14. Again,
two cases can arise. In the first case, pi invokes Claim_dict[name].cac_propose(〈pk′, π′〉) at
line 18. In the second case, |Claim_dict[name].candidatesi| > 1 and Choose_Name(i + 1, pk)
is executed. Let us study the second case first. Multiple recursions might occur between the
Choose_Name function and the Claim_dict[name].cac_accept(〈pk′, ?〉, ?) callback. However,

151

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

either we will end up in the first case and a cac-propose will be invoked by pi at line 18,
or Choose_Name will be eventually executed with i = |pk|. Using the same reasoning as in
Lemma 8.19, we know that pi only receives Claim_dict[name].cac_accept(〈pk′, ?〉, ?) if name
is a sub-string of pk′. Hence, when Claim_dict[pk].cac_accept(〈pk′, ?〉, ?) is triggered, pk = pk′.
Therefore, pi cac-proposes Commit_dicti[name].cac_propose(〈pk, π〉) at line 18. More pre-
cisely, we know that, if pi invokes Short_Naming.Claim(pk, π), then pi will eventually invoke
Commit_dicti[name].cac_propose(〈pk, π〉) or 〈?, pk, ?〉 ∈ Namesi.

When Commit_dicti[name].cac_propose(〈pk, π〉) is invoked by pi, and because pi is correct,
we know that Commit_dicti[name].cac_accept(〈pk, π〉, ?) will be triggered. Because pi is correct,
name is a sub-string of pk. Furthermore, the only place where pi can cac-propose such value is
at line 18. Hence, before this proposition, pi accepted Claim_dict[name].cac_accept(〈pk, π〉, ?).
Thus, at this time, condition line 22 is always verified. Hence, 〈name, pk, π〉 is added to Namesi.

Therefore, when a correct process executes Short_Naming.Claim(pk, π), eventually 〈?, pk, ?〉
is added to Namesi.

8.7.2 A “synchronize only when needed” CAC-based consensus algorithm:
Cascading Consensus

This section present the Cascading Consensus algorithm, a CAC-based consensus algorithm
(c.f. Section 4.2.1) with reduces synchronization requirements.

A CAC-based cascading consensus algorithm

Cascading Consensus (CC) builds upon the CAC abstraction to provide an optimistic
context-adaptive algorithm in the sense that, in favorable circumstances, processes that do not
propose a value do not need to synchronize with other participants. 11 Unlike other optimistally
terminating consensus algorithms [141, 151, 152, 145, 153], CC achieves low latency by using in-
formation about contention (namely the candidates set of CAC), even when the most optimistic
conditions are not met. This algorithm can be seen as an evolution of earlier optimistically ter-
minating consensus algorithms [141, 142, 143, 144, 145]. Compared to existing solutions, using
the CAC abstraction makes it possible to weaken synchronization assumptions and deal with
contention more efficiently. Indeed, state-of-the-art fast consensus algorithms use a “slow-path”
as soon as several different values are proposed. By contrast, the fast consensus algorithm pro-
posed below leverages the optimal CAC implementation from Section 8.6, which provides a
parameter k that balances between the size of the candidates set (and thus the contention) and
Byzantine resilience. 12 When optimistic conditions are not met and under low contention, only

11. Differently from other consensus definitions, it is not assumed that all correct processes propose a value.
12. More precisely, the algorithm presented in Section 8.6 requires n ≥ 3t + k, and, all things being equal, a

higher value of k reduces the number of pairs in the candidates sets.

152

8.7. CAC in Action: Solving Low Contention Problems

a few processes need to interact to resolve possible conflicts. Restricting the algorithm to small
subsets of processes has two advantages. (i) These few processes are more likely to experience
synchronous network phases (which are required to guarantee that a deterministic consensus
algorithm terminates [161, 162, 138]), and (ii) these “restricted” synchronous phases tend to
exhibit smaller network delays, leading to overall heightened efficiency.

In a nutshell, CC disseminate messages over the entire system using the CAC implementation
of Section 8.6 extended with proofs of acceptance (cf. Section 8.4.3) and exploits a Restrained
Consensus algorithm (see Section 8.7.2). Both the CAC and Restrained Consensus algorithms are
fully asynchronous, i.e., they do not require any (partial) synchrony assumptions. CC combines
Restrained Consensus with timers to resolve conflicts rapidly among a small subset of processes
during favorable synchronous phases. When circumstances are unfavorable (e.g. when network
delays exceeds timeouts, or under Byzantine failures), CC falls back to a slow-path mode, which
guarantees safety properties in all cases, and terminates (albeit more slowly) provided the overall
system remains partially synchronous [163, 164, 162].

CC uses four sub-algorithms (two CAC instances, an instance of Restrained Consensus, and
an instance of a standard consensus, which is used as fallback). It works in four steps, each step
being associated with a termination condition that is more likely to be met than the previous
one.

Once a process pi has proposed a value using the first CAC instance, if there is no contention
(context-adaptiveness) i.e., the candidatesi set of the first CAC instance has size 1, pi can
terminate: the value proposed by pi becomes the decided value. Otherwise, if the size of the
candidatesi set is greater than 1 after cac-accepting the value proposed by pi, pi must resolve the
conflict with the other processes that proposed a value, whose pairs are in candidatesi (context-
adaptiveness). Conflicting processes do so by using an instance of the Restrained Consensus (RC)
algorithm presented in Section 8.7.2. If the conflicting processes are correct and benefit from
stable network delays, the RC algorithm is guaranteed to succeed. In this case, the concerned
processes disseminate the result of this step to the whole system using the second CAC instance.
If, on the other hand, some of the processes participating in the RC algorithm are Byzantine,
or if messages from correct processes are delayed too much, the RC algorithm fails. This failure
is detected by the second CAC instance, which returns candidates sets with more than 1 pair
(context-adaptiveness). In this case, the Cascading Consensus algorithm hands the final decision
to its final building block, made up of a Global Consensus (GC), i.e., any consensus algorithm
based on additional assumptions such as partial synchrony [138, 161, 162], randomization [158,
165], or information on failures [139]. The implementation of GC can be chosen without any
constraint. However, if an asynchronous consensus algorithm is chosen to instantiate GC, then
CC implements consensus under fully asynchronous assumptions.

Table 8.4 summarizes the termination conditions of the CC algorithm and their associated

153

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

Abstraction Operations Communication model Nb of participants
Context-Adaptive
Cooperation (CAC)

cac_propose(v)
cac_accept(v, i) Asynchronous n

Cascading
Consensus (CC)

ccons_propose(v)
ccons_decide(v)

Async. for whole system
Sync. for RC n

Restrained
Consensus (RC)

rcons_propose(v)
rcons_decide(E,Se, Sr)

rcons_no_decision()
Synchronous `

(where `� n)

Global
Consensus (GC)

gcons_propose(v)
gcons_decide(v) Any n

Table 8.3 – Notations for the different abstractions used in this section.

Condition
Assumption

needed
Execution path

Nb of system-
wide rounds

Nb of
RC rounds

No conflict n > 5t CAC1 (fast path) 1 N/A
No conflict (slow path) n > 3t CAC1 (slow path) 2 N/A

All procs of RC correct and sync. n > 5t CAC1; RC; CAC2 (fast path) 3 1
All procs of RC correct and sync. n > 3t CAC1; RC; CAC2 (slow path) 4 1
≥ 1 Byzantine proc. in RC

or async. period
n > 3t CAC1; RC; CAC2; GC 4 + GC round 1

Table 8.4 – Summary of the “progressively degrading” conditions of Cascading Consensus (in-
stantiated with the optimal CAC algorithm of Section 8.6), and their associated round complex-
ity.

round complexity. The table considers two types of rounds: the fourth column counts system-
wide rounds—i.e., for one asynchronous round, each process has to send n messages. The final
column counts the asynchronous rounds executed by RC—i.e., for RC round, the ` processes
that execute RC have to send a message to all other `−1 involved processes. With fewer processes
involved, the asynchronous rounds of RC will typically be faster (measured in wall-clock time)
than those of the whole network. The “execution path” column details where in the algorithm
a process terminates by listing the sub-algorithm instances (noted CAC1, RC, CAC2, and GC)
that intervene in a process execution. For instance, the first row describes the most favorable
scenario in which a correct process terminates after the first round of the first CAC instance.

In the following, we first detail the workings of the Restrained Consensus algorithm (RC)
(Section 8.7.2), before diving into the operations of Cascading Consensus (Line 16).

Restrained consensus (RC)

Restrained Consensus (RC) is an abstraction used uniquely as a building block of CC. It
consists of a weakened consensus algorithm in which only a subset Π′ of the processes in Π
interact. It aims to resolve a conflict between the processes that proposed a value in the first CAC
instance of a the CC algorithm. When all participating processes are correct and enjoy favorable

154

8.7. CAC in Action: Solving Low Contention Problems

network conditions, Restrained Consensus terminates with a decision. However, in the presence
of asynchrony or Byzantine faults, it may fail to agree on a proposed value. This behavior
allows Cascading Consensus to resolve a conflict efficiently in good cases while falling back
to full-fledged consensus when the restrained-consensus algorithm fails. Formally, Restrained
Consensus has one operation rcons_propose(C, π), where C is a set of tuples 〈v, i〉—with v a
value and i the identifier of a process in Π—and π is a proof of acceptance of one of the pairs
in C obtained after the first CAC instance (which uses proofs of acceptance). It proves that the
process that invokes rcons_propose() is legitimate to do so, as processes can only participate in
the Restrained Consensus algorithm if they cac-proposed a value in the first CAC instance, and
if this value was cac-accepted.

RC is parameterized by a timeout parameter δRC and is defined for two sets Π and Π′ of
processes, such that Π′ ⊆ Π. A correct process pi ∈ Π is in Π′ if it invokes the rcons_propose
operation with a valid proof of acceptance π, or if it is in the candidates set of a process that
invoked the rcons_propose operation.

RC has two callbacks: rcons_no_decision() and rcons_decide(E, endorse_sigs, retract_sigs),
where E is a set of tuples 〈v, i〉 with v a value and i a process identifier; endorse_sigs is a set of
signatures on E by all the processes pi in E; and retract_sigs is a set of signatures of the string
“RETRACT”. Restrained Consensus is defined by the following properties. 13

— Weak validity. If all the processes in Π′ are correct, the network delays between the
processes of Π′ are less than or equal to δRC , and a process invokes rcons_propose, then at
least one process pi executes the callback rcons_decide(E, endorse_sigs, retract_sigs) and
endorse_sigs ∪ retract_sigs contains a signature from each process in Π′. Furthermore,
E is a subset of the values proposed by pi.

— Weak agreement. If all the processes in Π′ are correct and if a process pi executes the
callback rcons_decide(E, endorse_sigs, retract_sigs) and a process pj executes the call-
back rcons_decide(E′, endorse_sigs′, retract_sigs′), then E = E′ and endorse_sigs =
endorse_sigs′.

— Integrity. A correct process pi invokes at most once either rcons_decide(?, ?, ?) or
rcons_no_decision() (but not both in the same execution).

— Termination. Any correct process in Π′ eventually invokes rcons_no_decision() or
rcons_decide().

Restrained consensus: algorithm

Algorithm 9 implements the Restrained Consensus abstraction. It is designed to be used
as a component of a Cascading Consensus algorithm. In particular, it relies on the presence of
a correct proof of acceptance π to identify the processes in Π′ that invoke the rcons_propose

13. An implementation of Restrained Consensus is presented in Section 8.7.2, along with its proof.

155

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

operation. The implementation is based on signatures. The goal of a process that participates in
the algorithm is to gather one signature from each process in Π′. The algorithm uses two types
of messages, rcons-sig and rcons-retract. The rcons-sig message is used as the primary
mechanism to propagate and gather signatures. For a correct process to send a rcons-sig,
it must possess the proof of acceptance of one of its own messages. When a correct process
receives a rcons-sig message, it has to immediately respond with another rcons-sig message
if it possesses a proof of acceptance for one of its values. Otherwise, it has to answer with
a rcons-retract message. The rcons-retract message type proves that the process that
sends it does not participate in the Restrained Consensus.

The algorithm relies on a timer TRC that must be chosen to allow correct processes in Π′

to terminate their operations if they are in a synchronous period. If this condition holds, the
algorithm can terminate in two synchronous periods. The first is the time it takes for the initial
broadcast to reach all participants, and the second is the time to respond to this initial broadcast.
Therefore, the duration of TRC can be chosen as two times the expected latency of the network
δRC composed of the processes in Π′, i.e., TRC = 2× δRC .

Restrained consensus: proof

The proof that Algorithm 9 implements the Restrained Consensus abstraction defined in
Section 8.7.2 follows from the following lemmas.

Lemma 8.21 (Weak validity). If all the processes in Π′ are correct, the network delays
between the processes of Π′ are lesser or equal to δRC , and a process invokes rcons_propose,
then at least one process pi executes the callback rcons_decide(E, endorse_sigs, retract_sigs)
and endorse_sigs ∪ retract_sigs contains a signature from each process in Π′.

Proof. If all the processes in Π′ are correct the network delays between the processes of Π′

are lesser or equal to δRC , and a process invokes rcons_propose, then at least one process pi
verifies the condition at line 3. This process broadcasts a rcons-sig message to all the pro-
cesses in Π′. All the processes in Π′ are correct and synchronous. Therefore, they will answer
this message either with a rcons-retract message or with another rcons-sig message be-
fore the timer TRC of pi runs out. Hence, pi receives a signature from all the processes in Π′

before TRC runs out. Either the received signatures are in endorse_sigsi (i.e., the process an-
swered with a rcons-sig message) or in retract_sigsi (i.e., the process answers with a rcons-
retract message). In any cases, the condition at line 11 is verified at pi, and pi executes
rcons_decide(E, endorse_sigsi, retract_sigsi), where endorse_sigsi ∪ retract_sigsi contains the
signatures of all the processes in Π′. Furthermore, the values in E are intersections with the
original value proposed by pi (lines 4 and 20). Hence, E is a subset of the values proposed by
pi.

156

8.7. CAC in Action: Solving Low Contention Problems

1 init: retracti ← false; power_Ci ← ∅; endorse_sigsi ← ∅; retract_sigsi ← ∅; πi ← ∅.

2 operation rcons_propose(C, π) is
3 if retracti = false and pi has not already rcons-proposed and π is valid then
4 power_Ci ← P(C); BP denotes the powerset function
5 endorse_sigsi ← endorse_sigsi ∪ {signature by pi for each element in power_Ci};
6 πi ← {π};
7 be_broadcast rcons-sig(endorse_sigsi, power_Ci, πi);
8 TRC .start().

9 internal operation check_decision() is
10 if endorse_sigsi contains the signatures of all the processes of the largest element E

in power_Ci and rcons_decide or rcons_no_decision have not already been invoked
then

11 rcons_decide(E, endorse_sigsi, retract_sigsi).

12 when rcons-sig(endorse_sigs, power_C, π) is received do
13 if π is invalid or a signature in endorse_sigs has no proof or a value with a proof in π

is not in C or a signature in endorse_sigs is invalid then rcons_no_decision();
14 πi ← πi ∪ π; endorse_sigsi ← endorse_sigsi ∪ endorse_sigs;
15 if pi has not rcons-proposed before and retracti = false then
16 retracti ← true;
17 power_Ci ← power_C;
18 be_broadcast rcons-retract({sig. of “RETRACT” by pi});
19 if TRC has not been started then TRC .start().
20 power_Ci ← power_Ci ∩ power_C;
21 check_decision();

22 when rcons-retract(retract_sigs) is received do
23 power_Ci ←

power_Ci \ {value in power_Ci associated to the process that signed retract_sigs};
24 retract_sigsi ← retract_sigsi ∪ {retract_sigs};
25 check_decision().

26 when TRC .end() do rcons_no_decision().
Algorithm 9: Restrained consensus implementation (code for pi).

157

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

Lemma 8.22 (Weak agreement). If all the processes in Π′ are correct and if a process
pi executes the callback rcons_decide(E, endorse_sigs, retract_sigs) and a process pj executes
the callback rcons_decide(E′, endorse_sigs′, retract_sigs′), then E = E′ and endorse_sigs =
endorse_sigs′.

Proof. Let all the processes in Π′ be correct and synchronous. Let R =
{p1, · · · , pr} be the set of processes that executed the callback rcons_decide. Let
{〈E1, endorse_sigs1, retract_sigs1〉, · · · , 〈Er, endorse_sigsr, retract_sigsr〉} be the tuples re-
turned to {p1, · · · , pr} respectively. All the processes in R invoked the operation rcons_propose,
and they verified the condition at line 3. Therefore, they all broadcast their signatures on all
the possible sub-elements of C. Furthermore, the only processes able to broadcast a rcons-sig
message are the processes with a proof that their value is valid. By assumption, these processes
are included in all the candidates set of all the participating processes. Hence, all the processes
in R will receive the signatures of all the other processes in R. Furthermore, they will all receive
the same set of power_C sets. Therefore, ∀ i, j ∈ {1, · · · , r} : endorse_sigsi = endorse_sigsj
and Ei = Ej .

Lemma 8.23 (Integrity). A correct process pi can invoke at most once either
rcons_decide(?, ?, ?) or rcons_no_decision (but not both in the same execution).

Proof. This lemma is trivially verified by the condition line 10. This condition ensures that
rcons_decide callback can only be triggered once, and cannot be triggered if rcons_no_decision
has already been triggered. Furthermore, the timer TRC is only started once (lines 3 and 19),
hence, the callback rcons_no_decision can only be triggered once.

Lemma 8.24 (Termination). Any correct process in Π′ eventually executes
rcons_no_decision or rcons_decide.

Proof. A process in Π′ is a process that executed the rcons_propose operation without receiving
any prior message, or that received a rcons-sig message before executing the rcons_propose
operation. In the first case, the process will start TRC at line 8. In the second case, the process
does not meet the condition at line 15. Therefore, it start TRC at line 19. These two cases
are mutually exclusive. Once a process starts TRC , it cannot start it again (lines 3 and 19).
Finally, when the timer expires, it executes the callback rcons_no_decision. Therefore, any
correct process in Π′ will terminate.

158

8.7. CAC in Action: Solving Low Contention Problems

1 init: πi ← ∅.
2 operation ccons_propose(v) is CAC1.cac_propose(v).
3 when CAC1.cac_accept(v, j, π) do
4 πi ← πi ∪ {π};
5 if (|CAC1.candidatesi| = 1 or all values in CAC1.candidatesi are the same) and

ccons_decide has not already been triggered then ccons_decide(v);
6 else if j = i then rcons_propose(cac1.candidatesi, π) ;
7 else TCC .start(). Bstart timer with a duration of 2× δRC + δCC

8 when RC.rcons_decide(E, endorse_sigs, retract_sigs) do
9 CAC2.cac_propose(〈E, endorse_sigs, retract_sigs, πi〉).

10 when RC.rcons_no_decision() is invoked or TCC .end() do
11 CAC2.cac_propose(〈CAC1.acceptedi,∅,∅, πi〉).

12 when CAC2.cac_accept(〈E, ?, ?, ?〉, j, π) do
13 if (|CAC2.candidatesi| = 1 or all values in CAC1.candidatesi are the same) and

ccons_decide has not already been triggered then ccons_decide(choice(E));
14 else if pi has not already ccons-proposed a value then

GC.gcons_propose(〈CAC2.candidatesi, π〉).

15 when GC.gcons_decide(〈E, ?〉) do
16 if ccons_decide has not already been triggered then ccons_decide(choice(E)).

Algorithm 10: Cascading Consensus implementation (code for pi).

Context-adaptive Cascading Consensus: implementation

Algorithm 10 presents the Cascading Consensus algorithm. It relies on two instances of
the CAC abstraction, CAC1 and CAC2, one instance of Restrained Consensus (RC) and one
instance of Global Consensus (GC) (as all the processes in Π participate in it). The list of
all different abstractions is summarized in Table 8.3 (where endorse_sigs and retract_sigs are
respectively replaced by Se and Sr).

When a process pi cac-accepts a tuple from one of the CAC instances, it can fall into either
of the following two cases.

1. |candidatesi| = 1: pi detects there is no conflict, so it knows that other correct processes
cannot cac-accept any other value, and it can immediately decide the value it received. 14

2. |candidatesi| > 1: pi detects multiple candidate values, so it must continue the algorithm
to resolve the conflict.

A conflict in CAC1 leads to the execution of Restrained Consensus (RC) among the par-

14. Multiple processes can propose the same value, while being detected by the CAC abstraction as conflicting
propositions. Therefore, if |candidatesi| > 1, but all the proposed values are the same, e.g., v, then v is immediately
decided.

159

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

ticipants involved in the conflict (line 6). A conflict in CAC2 leads to the execution of Global
Consensus (GC) among all the system participants (line 14).

In CAC2, the set of values cac-accepted in the prior steps are proposed. To simplify the
presentation of the algorithm, the pseudo-code omits some implementation details. In particular,
CAC2 verifies the proofs associated with the proposed values. A correct process pi considers a set
of values E cac-proposed by a process pj in CAC2 only if either one of the following conditions
holds:

— pj did not propose one of the values in E during CAC1—i.e., it did not participate in
RC—and each value in E is associated with a valid proof of acceptance.

— pj proposed one of the values in E during CAC1—i.e., it participates in RC—and E is
signed by all the processes that proposed values in E. Furthermore, each process whose
value proposed in CAC1 is eventually accepted signed the string “RETRACT”.

Similarly, the values proposed in the Global Consensus are also associated with a proof of ac-
ceptance from the second instance of the CAC algorithm. We assume that the Global Consensus
implementation cannot decide a value not associated with a valid proof of acceptance.

Note that, if a correct process pi cac-accepts a value with |candidatesi| = 1, it does not
necessarily imply that other correct processes will have the same candidates set. The processes
that detect a conflict execute one of the consensuses, restrained or global. However, the algorithm
ensures, using acceptance proofs, that only a value that has been cac-accepted in a previous
step can be proposed for the next step. Hence, if a correct process pi cac-accepts a value v with
candidatesi = {〈v, ?〉}, the other processes will not be able to propose v′ 6= v in the following
steps of the algorithm—by the prediction property of the CAC abstraction. In other words, some
correct processes may terminate faster than others, but this early termination does not impact
the agreement of the protocol.

Like the RC algorithm described in Section 8.7.2, the Cascading Consensus algorithm uses
a timer, TCC . This timer provides the operation TCC .start() to start the timer, and the callback
TCC .end(), which is invoked once the time has elapsed. The duration of TCC should be long
enough to allow the processes participating in Restrained Consensus to terminate if they are in
a synchronous period. Subject to this condition, the algorithm can terminate in 2 synchronous
periods for Restrained Consensus plus 1 synchronous period to initiate the second instance of
the CAC abstraction. Therefore, the duration of TCC should ideally equal 2× δRC + δCC , where
δRC is the likely latency of the sub-network of all participants of Restrained Consensus and δCC
is the likely latency of the network composed of all the processes in Π. However, if TCC is chosen
too small, the safety and liveness properties of CC are still ensured.

160

8.7. CAC in Action: Solving Low Contention Problems

8.7.3 Cascading Consensus: proof

The proof of correctness that the Cascading Consensus algorithm presented in Algorithm 10
implements consensus follows from the subsequent lemmas.

Lemma 8.25 (Validity). If all processes are correct and a process decides a value v, then
v was proposed by some process.

Proof. By exhaustion, we explore the three following cases.
— If a value is decided at line 5, then it is the result of the first CAC instance. Thanks to

the CAC-Validity property, we know that a process in Π proposed this value.
— If a value is decided at line 13, then it is the result of CAC2. The only values cac-proposed

using CAC2 are a set of values cac-accepted from CAC1, either they are cac-proposed by
a process that participated in rcons or not. Thanks to the CAC-Validity property, we
know that a process in Π proposed this value.

— If a value is decided at line 16 then the value was decided by the GC instance. However,
the values proposed to GC are values accepted by CAC2. Thanks to the Validity of GC
and CAC-Validity of CAC1 and CAC2, we know that a process in Π proposed this
value.

Lemma 8.26 (Agreement). No two correct processes decide different values.

Proof. A correct process that participates in the Cascading Consensus can decide at different
points of the execution of the algorithm: lines 5, 13 or 16. However, if a correct process decides
at line 5 or 13, not all correct processes will necessarly do so.

Nonetheless, the CAC-Global-termination property ensure that if a correct process de-
cides before the others, all the correct processes will decide the same value.

Let us assume that a correct process pi decides a value v at line 5. This implies that CAC1

outputs a CAC1.candidatesi set of size 1 or all the values in CAC1.candidatesi are the same for pi
after the first cac-acceptance. Using the CAC-Prediction and CAC-Global-termination,
we know that pi will not cac-accept any value different from v with the CAC1 instance. Further-
more, using CAC-Global-termination, we know that no other correct process can cac-accept
a value v′ 6= v. Otherwise, pi would also cac-accept it, contradicting the CAC-Prediction prop-
erty. Therefore, if pi decides v at line 5, all correct processes that do not ccons-decide at this
point will only cac-accept v with CAC1. Furthermore, the values cac-proposed in CAC2 are
those that were cac-accepted by CAC1. Therefore, v is the only value that is cac-proposed in
CAC2. Using the CAC-Global-termination and CAC-Prediction property, we know that
all the correct processes will ccons-decide v at line 13.

Similar reasoning can be applied if a correct process decides at line 13 whereas others do
not. The only values that can be gcons-proposed are those cac-accepted in CAC2. Therefore,

161

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

using the CAC-Global-termination and CAC-Prediction properties of CAC, we know
that if a correct process ccons-decided a value v at line 13, then all correct processes that did
not ccons-decide at this point will ccons-decide v at line 16.

Finally, if no process decides at line 5 or 13, then the Agreement property of consensus
ensures that all the processes ccons-decide the same value at line 16.

Lemma 8.27 (Integrity). A correct process decides at most one value.

Proof. This lemma is trivially verified. All the lines where a process can decide (lines 5, 13 and
16) are preceded by a condition that can only be verified if the process did not already triggered
ccons_decide. Hence the Integrity property is verified.

Lemma 8.28 (Termination). If a correct process proposes value v, then all correct pro-
cesses eventually decide some value (not necessarily v).

Proof. All the sub-algorithms used in Cascading Consensus (CAC, RC, and GC) terminate.
Furthermore, each algorithm is executed sequentially if the previous one did not decide a value.
The only algorithm that may not be triggered is RC if CAC1 terminates with a candidatesi set
whose size is greater than 1 at pi, and if pi did not cac-proposed one of the values in candidatesi.
However, we observe that processes not participating in the RC algorithm set a timer TCC

when CAC1 returns. Once this timer expires, these processes cac-propose a value using CAC2.
Therefore, any correct process that participates in the Cascading Consensus terminates.

8.8 Conclusion

This chapter introduced a new cooperation abstraction denoted “Context-Adaptive Cooper-
ation” (CAC). This abstraction allows multiple processes to propose values while multiple value
acceptances are triggered. Furthermore, each acceptance comes with information about other
acceptances that can possibly occur. Two implementations of CAC have been presented. The
first one is a simple algorithm that works in asynchronous networks when n > 4t. The second is
a latency and Byzantine resilient optimal implementation, which uses fine-tuned thresholds to
improve efficiency and reduce the probability of contention. This second implementation works
in three asynchronous rounds if n > 3t and in two asynchronous rounds in favorable cases when
n > 5t.

This new cooperation abstraction can be used in low-contention distributed applications to
improve efficiency or remove the need for synchronization. This chapter proposed two such ex-
amples, where the CAC abstraction can be used to build distributed algorithms. The first is an
optimistically terminating consensus algorithm denoted Cascading Consensus. This algorithm
(as some other consensus algorithms, e.g., [150, 144]), can optimistically terminate when there is

162

8.8. Conclusion

no contention or the inputs satisfy specific patterns. However, differently from other algorithms
that do not use the CAC abstraction, Cascading Consensus is the first to use information about
contention to restrain synchronization to the processes that actually proposed a value. Further-
more, and unlike other optimistically terminating consensus algorithms, cascading consensus
terminates optimistically even if multiple processes propose different values. The second exam-
ple is a short-naming algorithm, which works deterministically in fully asynchronous networks.
It allows processes to claim names based on their public keys. However, contrary to other asyn-
chronous naming algorithms, the claimed name is a sub-string of the public key, thus reducing
the size of the name space, making it easier for humans to handle.

Both example can be used to improve PPfDIMS efficiency. In the following (Chapters 9
and 10), we use the cascading consensus abstraction as our main communication abstraction.
Furthermore, we use the short-naming algorithm to create DIDs when the Human-Choosable
property is not required (c.f. Chapter 7), i.e., when the actor that creates the DID is an individual
that will not act as an identity provider or a service provider.

163

Chapter 8 – A cooperation abstraction when contention is unlikely: the Context Adaptive
Cooperation abstraction

164

Chapter 9

AN EFFICIENT SOLUTION TO THE

MULTI-DEVICE AUTHORIZATION

PROBLEM: THE ANONYMOUS

AGREEMENT PROOF

This chapter uses the results from Chapter 6 to build a multi-device authorization framework
for PPfDIMS. This multi-device authorization framework is a new solution to an important
problem in the PPfDIMS ecosystem. It uses a new abstraction, the Anonymous Agreement Proof
(AAP) abstraction. The AAP abstraction is formally defined, and an implementation based on
Threshold Anonymous Credentials is proposed. Then, the AAP abstraction is used to build a
multi-device authorization framework for PPfDIMS.

9.1 Introduction

In the DIMS world, there is a consensus building [13, 12, 14] on the fact that distributed
ledgers should only be used to enable auxiliary features. More precisely, the authorization mech-
anism should be a bipartite protocol between a holder and a verifier. It should not require the
intervention of any third party, be it an issuer, a trusted third party, or a distributed ledger. It
should be conducted through the creation and the exchange of a Verifiable Presentation (VP)
from a Verifiable Credential (VC) [5].

However, a credential’s presentation cannot, in itself, provide authentication or other aux-
iliary features. Among the features that require the intervention of a third party, we can cite
the identification of schemas used in the VP, the verification of the revocation of the credentials
used to build the VP, and the non-transferability of a credential [166] while enabling multi-device
authorization capabilities [19]. In this section, we focus on the latter.

Non-transferability is the ability to link a credential to a specific individual. We only want
the legitimate holder of a credential to be able to build VPs from it. Non-transferability is often
required by IMSs as presenting a stolen (or shared) credential that do not implement the non-

165

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

transferability property can authorize the wrong person to access a potentially sensitive service
or information. For example, article 441-1 of the French penal code states that the forgery
of a document (which includes the usage of a stolen document) is condemned by 3 years of
imprisonment and a 45000€ penalty. However, non-transferability can conflict with usability.
If non-transferability is enforced by linking a credential to a device, 1 then the usage of this
credential is limited. For example, if the credential is linked to a phone, then if the phone is lost
or damaged, the credential holder must request a new issuance for the same credential. To avoid
those problems, PPfDIMSs must provide multi-device authorization capability. The multi-device
authorization capability authorizes multiple devices to use a credential while maintaining strong
authentication capabilities, i.e., credentials cannot be transferred to non-authorized devices.

Non-transferability and multi-device authorization capability can be seen as two contradic-
tory properties. The first one tries to limit the possibilities of presenting a credential, whereas the
second one tries to make it possible to share a credential between a limited number of predefined
devices. Another challenge is to provide such properties while preserving user’s privacy. Privacy
requirements directly discard approaches based on unique identifiers revealed to the verifiers,
e.g., a method consisting of linking a credential to a DID and explicitly presenting this DID to
a verifier to prove that a device is authorized for this DID is therefore discarded.

In the early days of anonymous credentials, only two approaches existed to enable non-
transferability. Both worked in the same way. Verifiable Credentials are represented as a signa-
ture on a vector of messages. One of these messages is a secret identifier. When presenting the
credential, the holder produces a ZKP of knowledge of this identifier without revealing its exact
value. Then, the first approach is the biometrically enforced non-transferability [167, 168]. This
method consists of building the secret identifier using biometric hardware. Therefore, the cre-
dential can only be used by a specific biometric feature holder. We will not explore this approach
in the rest of this thesis, as it requires specific hardware and additional security assumptions.
The second approach is the PKI-assured-non-transferability. With this approach, the identifier
is a secret whose associated public key is registered at a trusted third party (the PKI). Proving
knowledge of the secret at the PKI makes it possible to access valuable assets like sensitive
information or a large amount of money. An evolution of this scheme is the all-or-nothing non
transferability [34], where knowledge of one secret implies knowledge of all the potential secrets
of an individual.

In 2019, the Hyperledger Aries group proposed a new way of enabling non-transferability and
multi-device authorization capabilities [19]. This method relies on the existence of a DID-capable
ledger. The idea is to associate each device owned by an individual with a specific public/secret
key pair. The public keys are registered in the user’s DID document. Those public keys identify
the devices allowed to use VCs associated with this DID. Each user’s credential embeds the

1. This is the method used by AnonCred [33]. This link is created through an element called a linked secret.

166

9.2. System model

DID identifier. When the user presents a credential, he also provides a (zero knowledge) proof
that the secret key they know is associated with the DID embedded in the credential. The issue
with the solution proposed by Hyperledger is that it relies on heavy cryptographic primitives:
multiple commitment schemes, multiple Zero Knowledge Proof of Knowledge, and multiple Zero
Knowledge Proof of Set Membership. Furthermore, only a draft of the protocol exists. Therefore,
analyzing its security, performance, and privacy properties is challenging. Finally, their have been
no update since 2019 about their multi-device authorization framework. Thus it is probable that
they no longer consider it a viable solution.

Interestingly, the DIF Wallet Security working group [169], created in 2023, is currently
working on a new Distributed Key Management System (DKMS) standard. This standard uses
the Hyperledger Aries DKMS [19] as one of its building blocks. Furthermore, the problem of
multi-device authorization has been assessed in a recent paper [170] about challenges for Self
Sovereign Identity. Therefore, we may see interesting new developments in the near future con-
cerning non-transferability and multi-device authorization capabilities for PPDIMSs.

Because of the lack of usable propositions to solve the multi-device authorization problem,
we propose in this chapter a new way to provide non-transferability and multi-device authoriza-
tion capabilities for PPfDIMSs. This proposal is based on embedded valuable secrets and uses
DIDs like the Hyperledger Aries proposal. Unlike the Hyperledger Aries proposal, we provide
a new way to efficiently authenticate a device and prove it is authorized. This method uses a
threshold anonymous credential scheme (whose only representant to this day is the Coconut
threshold anonymous credential scheme [20]), along with the access control management policy
formerly used by Hyperledger Aries Distributed Key Management System [19]. The threshold
AC scheme makes it possible to have as much flexibility as Hyperledger Aries’ DKMS, without
the heavy cryptographic computations and storage overhead. This new way of anonymously
proving information stored in a distributed ledger is formalized as a new distributed abstraction
called the Anonymous Agreement Proof (AAP) abstraction.

The contributions of this chapter are the following:
— We formalize the need for a multi-device authorization scheme with non-transferability;
— We formalize the new AAP abstraction;
— We propose an implementation of the AAP abstraction in message-passing, and we prove

it implements the AAP abstraction; and
— We use the AAP abstraction to build a PPfDIMS with the multi-device authorization

capability and the non-transferability property.

9.2 System model

We consider a message-passing model as defined in Section 4.1.2.

167

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

Furthermore, we assume we have access to a theoretical Verifiable Credential (VC)
scheme which consists of three algorithms Issue,Present and Verify. The algorithm vc ←
Issue(att, skI , pkd, aux) is invoked by an issuer I ∈ I. It takes as input a set of attributes
att ⊆ AT T , where AT T is the set of all potential attributes that can exist, the public key
pkd of a device d ∈ D, the secret key skI ∈ SK of the issuer I and some auxiliary inputs aux. It
outputs vc ∈ VC a Verifiable Credential that certifies that I has verified that the device holder
d is characterized by the identity elements att.

The algorithm (vp, πI)← Present(vc, skd, Tv, aux) takes as input a verifiable credential vc ∈
VC, a device’s secret key skd, a set of issuers Tv and some auxilary information aux. It outputs a
verifiable presentation vp ∈ VP, where VP is the set of all potential verifiable presentations. vp
is a curated version of vc, where some identity elements in att may be hidden, and others may
be used to perform zero-knowledge proofs. Furthermore, as discussed in the rest of this chapter,
vp must contain proof that the device that produced it is authorized to do so. The operation
also returns πI , a proof that vc was issued by one of the issuers in TV .

Finally, the algorithm {0, 1} ← Verify(vp, Tv, πI , aux) takes as input a verifiable presentation
vp ∈ VP, a set of trusted issuers Tv, a proof πI that proves that the issuer I that issued the
verifiable credential vc that was used to construct vp is in Tv and some auxiliary information
aux. It outputs 1 if the verifiable presentation vp is valid, I is the issuer of vc, and vc was used
to build vp. It outputs 0 otherwise.

A Verifiable Credential scheme fulfills the correctness, trusted issuer, and Existential Un-
forgeability Against Chosen Message Attack properties defined in Chapter 5. Additionally, it
can fulfill the issuer-indistinguishability property.

9.3 Problem statement

A PPfDIMS must fulfill multiple requirements to enable the multi-device authorization capa-
bility while maintaining strong authentication properties. These requirements can be separated
into a usability requirement, two security requirements, and a privacy requirement. This section
defines those requirements.

First, the usability requirement states that the PPfDIMS must enable the multi-device au-
thorization capability. A user who owns a VC must be able to share it with its different devices.
The user must be able to authorize those devices, and the user must be able to build veri-
fiable presentations from each authorized device. The authorization process is done using the
Authorize(vc, pk, sk, aux) operation. This operation takes as input a verifiable credential vc ∈ VC,
the public key pk of the device da that is being authorized, the secret key sk of the device that
authorizes da and some auxiliary information aux. Furthermore, the user needs to be able to
revoke devices. The revocation is conducted through the Revoke(vc, pk, sk, aux) operation, where

168

9.3. Problem statement

vc is a verifiable credential, pk is the public key of the revoked device dr, sk is the secret key of
the device that revokes dr and aux is a variable containing auxiliary information. Formally, the
usability property can be stated as follows:

Definition 9.1. Multi-device authorization capability. Let d1 ∈ D, d2 ∈ D, da ∈ D
and dr ∈ D be four devices, let skd1 , skd2 , skda and skdr be their secret keys respectively and
let pkd1 , pkd2 , pkda and pkdr be their public keys respectively. Let I ∈ I be an issuer, and let
skI be its secret key. Let att be a set of attributes. The issuer computes the verifiable credential
vc = Issue(att, skI , pkd1 , ?) and sends it to d1. We assume d2 and dr are able to build a verifiable
presentation (vpi, πi) = Present(vc, skdi , Tv, ?), ∀i ∈ {2, 4} such that Verify(vpi, Tv, πi, ?) = 1. A
PPfDIMS fulfills the multi-device authorization capability property if:

— There exists an operation Authorize such that, if d2 invokes Authorize(vc, pkda , skd2 , aux),
then da is authorized to build verifiable presentations from vc, i.e., if (vp′, π′I) =
Present(vc, skd3 , Tv, ?) then Verify(vp′, Tv, π′I , ?) = 1.

— There exists a Revoke operation, such that if d2 invokes Revoke(vc, pkdr , skd2 , aux),
then dr is no longer able to build verifiable presentations from vc, i.e., (vp′′, π′′I) =
Present(vc, skdr , Tv, ?) then Verify(vp′′, Tv, π′′I , ?) = 0.

This definition does not describe how d2 itself is authorized to invoke the Authorize operation
nor the Revoke operation. This is intentional; we define how transitivity makes it possible to
authorize devices later. We do not want the device that originally receives the credential to be
the only device able to invoke the Authorize or the Revoke operation. Otherwise, if this device
is lost, the credentials that were issued to this device will become unusable after some time.
Therefore, we consider that any device authorized to present a credential can also authorize
other devices to present it. 2

In order to present the security requirements, we need to analyze an execution of a PPfDIMS
where multiple Authorize and Revoke operations are invoked in a sequence. In this case, two
consecutive Authorize(vc, pk, sk, aux) followed by a Revoke(vc, pk, sk, aux) are different from an
Authorize(vc, pk, sk, aux) operation, followed by a Revoke(vc, pk, sk, aux) operation, itself followed
by a final Authorize(vc, pk, sk, aux) operation. In the first case, the device d associated with pk
is authorized by the first Authorize operation, the second Authorize operation has no effect, and
the Revoke operation revokes d. Ultimately, d is not authorized to build verifiable presentations
for vc. In the second case, however, d is first authorized, then revoked, and finally re-authorized.
In the end, d is authorized. Hence, Authorize and Revoke operations are not commutative for a
given verifiable credential. Thus, a PPfDIMS with multi-device authorization and authentication
capabilities must implement a total order on the Authorize and Revoke operations of a given VC:

2. In Section 9.7, we restrict this statement. We differentiate the list of devices allowed to present credentials
from those allowed to authorize and revoke other devices. This separation was originally proposed by the Hyper-
ledger Aries project [19] and makes it possible to have better control over authorization policies. However, the
formal definition presented here mixes the access control role with the presentation role for simplicity.

169

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

Definition 9.2. Authorize and Revoke order. For a given VC vc, the Authorize and Revoke
operations appear to all the correct processes in Π as in a sequence seqvc. The order of the
operations is seqvc are the same for each correct process in vc.

The first security requirements restrict the use of a VC to authorized devices. A device d ∈ D
is authorized to present a VC vc if the credential was directly issued to d (i.e., a VC vc is issued
to d if the issuer I whose secret key is skI invoked the operation vc = Issue(?, skI , pkd, ?)),
or if an authorized device invoked the Authorize operation in favor of d, and no consequent
Revoke operation was invoked against d. Therefore, this security property defines a transitive
relation of authorized devices. We call this property the strong authorization property. Before
formally defining the strong authorization property, we define the concept of an authorized
device. Informally, an authorized device is a device that can build a valid, verifiable presentation
from a verifiable credential.

Definition 9.3. Authorized device. Let I be an issuer, and skI be its secret key. A
device d ∈ D, whose secret key is skd and whose public key is pkd is said to be an authorized
device at time τ of seqvc for the verifiable credential vc = Issue(?, skI , ?, ?) if, given any verifier
v ∈ V and its set of trusted issuers Tv where I ∈ Tv, the invocation of Verify(vp, Tv, πI , ?)
outputs 1 at time τ in seqvc, where (vp, πI) = Present(vc, skd, Tv, ?).

Using the authorized device definition, we can formally define the strong authorization prop-
erty:

Definition 9.4. Strong authorization for PPfDIMS. Let d ∈ D be a device, let skd
be its secret key, and let pkd be its public key. Let I ∈ I be an issuer, and let skI be its secret
key. Let vc be a verifiable credential such that vc = Issue(?, skI , pkd′ , ?), where d′ ∈ D. The
device d is an authorized device at time τ of seqvc for the credential vc if d = d′ or if another
device d′′ whose secret key is skd′′ is an authorized device for vc at time τ ′ ≤ τ of seqvc and d′′

invoked the Authorize(vc, pkd, skd′′ , ?) operation at time τ ′. Furthermore, no Revoke(vc, pkd, ?, ?)
operation appears in seqvc before time τ .

The definition of the strong authorization property implicitly implies that a process that
is not authorized by the issuer (through the Issue operation) or by another authorized device
(through the Authorize operation) cannot create a verifiable presentation from vc. However, the
authorized device definition does not restrict some non-authorized devices from having a non-
negligible probability of succeeding in a the creation of a verifiable presentation from vc. As
this would be equivalent to identity theft, we need a second security property to restrict this
behavior. This property is called theft resistance and can be seen as an authentication property.
The theft resistance property is defined as follows:

Definition 9.5. Theft resistance. Let d ∈ D be a device, let skd be its secret key, and
let pkd be its public key. Let I ∈ I be an issuer, and let skI be its secret key. Let att be a set

170

9.3. Problem statement

of attributes. Let vc be a verifiable credential such that vc = Issue(att, skI , pkd, ?). At time τ in
seqvc, vc is the only VC that any issuer in I has issued. Let auth be a set of authorized devices
for the verifiable credential vc at time τ . Let A be an adversary with access to vc, to all the
issuers’ public keys, and to all the public and secret keys in the system, except the secret keys of
the devices in auth and the issuer’s secret keys. Furthermore, A controls the Byzantine processes
in Π. A PPfDIMS fulfills the theft resistance property if the probability for A to output a tuple
(vp∗, π∗I) such that Verify(vp∗, ?, π∗I , ?) = 1 at time τ is negligible.

The last property required to build a multi-device authorization mechanism for a PPfDIMS
is one that preserves users’ privacy during the presentation of a VC. The privacy requirement
comes from the minimalization property stated by Allen [1]. This implies that the multi-device
authorization capability must not impact the user’s privacy. Therefore, the multi-device autho-
rization method cannot rely on explicitly revealing uniquely identifying identifiers or revealing
extra information about the user rather than the information required to be revealed to be au-
thorized by the verifier. This privacy requirement assumes that all the issuers, all the processes
implementing the distributed ledger, and all the verifiers can collude and act in an honest but
curious manner. Furthermore, Byzantine processes that implement the distributed ledger can
exhibit malicious behavior. The definition of this property is expressed with an adversary and a
challenger. Each actor’s role is similar to the role of the challenger and the adversary presented
in Chapter 5. The adversary tries to identify a user, while the challenger is a ubiquitous actor
that provides elements to the adversary. The privacy property defines the indistinguishability
between two verifiable presentations after the multi-device authorization capability has been
activated. It is formalized as follows:

Definition 9.6. Privacy preserving multi-device authorization capability. Let
I ∈ I be an issuer whose secret key is skI and whose public key is pkI . Let d1, d2, d

′
1, d
′
2 ∈ D

be four devices whose secret keys are skd1 , skd2 , skd′1 and skd′2 respectively and whose pub-
lic keys are pkd1 , pkd2 , pkd′1 and pkd′2 respectively. Let v ∈ V be a verifier whose set of
trusted issuers is Tv. Let I ∈ Tv. We assume an adversary A that controls all the issuers
in I, all the Byzantine processes in Π, and the verifier v. A knows all the secret keys ex-
isting in the system except skd1 , skd2 , skd′1 and skd′2 . All processes can act maliciously except
the correct processes in Π that act in an honest but curious manner. The challenger con-
trols d1, d2, d

′
1 and d′2. Let att be a set of attributes. I issues two credentials vc and vc′

such that vc = Issue(att, skI , pkd1 , ?) and vc′ = Issue(att, skI , pkd′1 , ?). The challenger invokes
Authorize(vc, pkd2 , skd1 , ?) and Authorize(vc′, pkd′2 , skd′1 , ?). No other Authorize nor Revoke opera-
tion are invoked during the execution. The challenger tosses a uniformly random bit b←$ {0, 1}.
If b = 0, then the Challenger computes (vp, πI) = Present(vc, skd2 , Tv, ?). Otherwise it com-
putes (vp, πI) = Present(vc′, skd′2 , Tv, ?). The challenger transfers vp and πI to A. The adversary
outputs b′, a bit in {0, 1}. We say that a PPfDIMS enables privacy-preserving multi-device au-

171

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

thorization capability if the probability for the adversary to output b = b′ is lesser or equal to
1
2 + ε, where ε is a negligible value.

9.4 Data model and authorization mechanism

The solution proposed for the multi-device authorization problem in this chapter uses the
same data model as the one proposed by Hyperledger Aries’ Distributed Key Management Sys-
tem (DKMS) [171]. This model uses DID and DID documents for their authorization mechanism.
In this model, VCs are linked to DIDs. To prove that a device is authorized to present a VC vc,
a device must prove that it knows a secret key associated with one of the public keys listed in
the DID document associated to the DID.

When a user enters the system, he creates a DID and a DID document. He creates it using
a public key and a secret key. The public key is stored by the ledger in the DID document, and
the secret key is stored on the user’s device. This device becomes the only authorized device
for this DID. The data model exhibits two different roles associated with two different types of
authorizations. The first role is the prover role. A device (the public/secret key pair associated
with a device) with this role is allowed to build verifiable presentations from any credential that
is associated with the DID. The second role is the manager role. A device with the manager role
can grant or revoke authorizations to other devices. This separation of roles improves security,
as a device with a high probability of getting corrupted can still be used to present credentials.
However, if it gets stolen, the thief cannot revoke access to other devices.

As stated earlier, this data model assumes that credentials are not linked to devices but to
DIDs (in a privacy-preserving manner that we will describe later). Hence, and unlike the formal
definition we gave in Section 9.3, one cannot authorize a device for a given credential but for
all the credentials associated with a DID. DID-based authorization simplifies the access control
policies, thus improving usability.

The authorization mechanism works as follows. Any verifiable credential can be associated
with a DID (in a way we will describe later). When a device presents this credential, it builds a
proof that the device’s public key is associated with the credential’s DID (with the prover role).
Furthermore, the device proves it knows the secret key associated with the public key. Thus, the
verifier knows the device is authorized to use the credential. This behavior is equivalent to an
AllowList that implements the Append and the Remove operations.

172

9.5. Anonymous Agreement Proof: an abstraction to efficiently prove ledger-agreed data

9.5 Anonymous Agreement Proof: an abstraction to efficiently
prove ledger-agreed data

This section defines the Anonymous Agreement Proof (AAP) abstraction. It is a new ab-
straction that lets a process p from a set of processes P prove to the other processes in P that
another set of processes Π agreed on the state s of an object in a privacy-preserving manner.
Privacy is the main constraint in this setting. It is the reason why numerous previous works
failed to propose a usable solution to the multi-device authorization problem. The only previous
solution proposed (the Hyperledger Aries draft [19]) did so by letting the ledger processes build
a table of each relations between a device’s public key and a DID. With this solution, the ledger
processes must maintain multiple accumulators representing those relations. Furthermore, the
prover and the verifier have to agree on the state of those accumulators. Finally, the prover has
to build multiple zero-knowledge proofs of set membership to prove that they know the secret
key associated with one of the public keys authorized for a given DID in the list of relations. This
implies heavy computation for the verifier and the prover and heavy computation and storage
cost for the ledger.

The solution proposed in this section circumvents the problem. Rather than proving that
there exist a link between a public key and a DID registered by the ledger among all the links
registered by the DID, our solution is to prove the state of a DID document off-ledger. We do
this by letting processes in Π build a proof of the state of a given DID document. This proof is
non-interactive, i.e., its verification does not requires the participation of the processes of the
ledger. The ledger computes this proof in a privacy preserving manner. The proof is then stored
by each DID owner. To verify the state of a DID document, processes only have to verify that
the proof of the state of a DID document is valid, i.e., it has been produced by processes in Π.
However, this proof of the state of a DID document only informs the verifier that this is a state
that existed, not that it is the current state of the DID document. Hence, the prover and the
verifier have to synchronize their views on the list of up-to-date DID documents of the ledger,
and the prover must prove that the state whose validity was proven is in the set of up-to-date
DID documents. They could only synchronize their view on the specific DID document used
by the prover, but this would make the identification of the user trivial; thus, they have to
synchronize their view on the state of all DID documents. The processes in Π only stores the
updated states and proofs it issued.

Therefore, when a device wants to present a credential to a verifier, it only has to prove that
it is authorized to do so using the non-interactive proof issued by the ledger and by proving
that this proof is associated with one of the up-to-date states as seen by processes in Π. This
last proof is a proof of set-membership. As stated in Chapter 6, techniques exist to build such
proofs in Zero Knowledge. Thus, if the non-interactive proof provided by the ledger preserves

173

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

the user’s privacy, the scheme we propose trivially preserves the user’s privacy.
This section formalizes the Anonymous Agreement Proof (AAP) abstraction. This dis-

tributed abstraction makes it possible to prove to a set of processes P that some other processes
Π agreed on the state s of an object and that this state is not outdated. The AAP abstraction
is the privacy-preserving version of the Agreement Proof (AP) abstraction, which has been for-
malized by Albouy et al. [172]. On the other hand, even though it has not been formalized as
such, ZEF [173], an anonymous asset transfer protocol, also uses a weaker form of Anonymous
Agreement Proof.

We define the AAP abstraction for objects identified by identifiers. Identifiers are DIDs in
the context of this thesis. However, they can be generalized to other identifiers, e.g., a coin in
an anonymous asset transfer protocol (c.f., ZEF anonymous asset transfer protocol [173]). The
AAP defines an access control policy where the last updated document (in the case of a DID
document) is the only valid document. Thus, the abstraction can be seen as a specific type of
Append/Remove AllowList, where the manager set is Π, and the prover set is P.

Definition 9.7. The AAP abstraction has two operations, Update and Prove, and three
callbacks Updated, Authorized and NotAuthorized. It is defined for a set of objects identified by
identifiers in the set ID. Furthermore, we define the set S of all valid states of the system’s
objects. We also define the set Π of nΠ processes p1, . . . , pnΠ that participate in any Update
operation and the set P of nP processes ρ1, . . . , ρnP that participate in any Prove operation.
Both sets do not have to be disjoint. We define a threshold tΠ < nπ on the maximum number
of Byzantine processes in Π, and a threshold tP < nP on the maximum number of Byzantine
processes in P. For each object, we define the setM(s)

Id ⊆ Π of managers for a given state s of
the object with identifier Id and a set Ψ(s)

Id ⊆ P of provers for a given state s of the object with
identifier Id.

The Update(Id, πUpdateAuth, s, aux) operation is invoked by a correct process p ∈ Π. It takes
as input Id the identifier of the object modified, πUpdateAuth, a proof that p is authorized to
modify the object identified with Id (a proof that p is in the setM(s′)

Id of managers, where s′ is
the previous state of the object identified by Id), s ∈ S the new state of the object, and some
auxiliary parameters aux. The proof πUpdateAuth must be context-aware, i.e., it must be resistant
against replay attacks. The Updated(Id, πUpdateAuth, σ, s) is eventually trigerred at all correct
processes in Π if an Update(id, πUpdateAuth, s, aux) operation was invoked, and if πUpdateAuth, s
and aux are valid. The σ value returned is a proof of agreement of the processes in Π on the
updated state s of the object Id.

The Prove(s, σ, nonce, πauth, aux) operation is invoked by an authorized device ρ ∈ P. It takes
as input s the state of an object, σ an agreement proof that s is an up-to-date state of an object,
πauth a context-aware proof that ρ is authorized to invoke the Prove operation (a proof that ρ
is in the set Ψ(s′)

Id of provers, where s′ is the previous state of the object identified by Id), nonce

174

9.5. Anonymous Agreement Proof: an abstraction to efficiently prove ledger-agreed data

is an identifier that (anonymously) links the Prove operation to subsequent operations invoked
by p 3 and some auxiliary parameters aux.

The Authorized(Cs, nonce) callback is triggered at all processes in the set of verifiers P after
a valid Prove operation is invoked. It returns nonce, an identifier that (anonymously) identifies
the process ρi that invoked the Prove operation, and Cs, a commitment to the state of an object.
The NotAuthorized(s, nonce) callback, on the other hand, is triggered at all the correct processes
if the state s is not the most up-to-date state (a new Updated(Id, ?, s′, ?) callback has been
triggered at a correct process).

The operations and callbacks must fulfill the following properties:
— Update termination. If a correct process p ∈ Π invokes Update(Id, πUpdateAuth, s, ?) with

Id ∈ ID, s ∈ S and πUpdateAuth is a correct context-aware proof that p ∈M(s′)
Id where s′

is the previous state of the object identified by Id, then a callback Updated(Id, ?, ?, ?) is
eventually trigerred at p.

— Update validity. If the callback Updated(Id, πUpdateAuth, ?, s) is triggered at a correct
process p ∈ Π, then πUpdateAuth is a valid context-aware proof of authorization that the
process that built the proof is in M(s′)

Id , where s′ is the previous state of the object
identified by Id.

— Update agreement. If the callback Updated(Id, πUpdateAuth, σ, s) is trigerred at a correct
process p ∈ Π, then it is eventually trigerred at each the correct processes p′ ∈ Π.

— State agreement. For an object identified by the identifier Id, Updated callbacks are
triggered in the same order at all correct processes p ∈ Π.

— Prove validity. If the callback Authorized(Cs, ?) is trigerred at a correct process ρ ∈ P,
where Cs is a commitment to a state s ∈ S, then the callback Updated(?, ?, ?, s) was
trigerred at at least one correct process p′ ∈ Π.

— Prove agreement. If the callback Authorized(Cs, nonce) is trigerred at a correct process
ρ ∈ P, then it is eventually trigerred at all the correct processes ρ′ ∈ P.

— Local Append/Remove antiflickering. If an Authorized(Cs, nonce) callback is triggered
at a correct process ρ ∈ P at time τ1 of its local clock and then, the invocation of
Prove(s, ?, nonce, ?, ?) by ρ triggers the NotAuthorized(nonce) callback at time τ2 > τ1 of
the local clock of ρ, then no Authorized(C ′s, ?) can be trigerred at ρ after τ2, where Cs
and C ′s are commitments to the state s.

— Progress. Let an Updated(Id, ?, ?, s) callback be triggered at a correct process p ∈ Π at
time τ1 of its local clock, and an Updated(Id, ?, ?, s′) callback be triggered at p at time
τ2 > τ1 of its local clock. No other Updated(Id, ?, ?, ?) operation is triggered at p during
the algorithm’s execution. Let ρ1 ∈ P. Then, eventually no Authorized(Cs, ?) callback can

3. nonce can be the public key of a secret/public key pair or the hash of a statement that will be proven later
if ρ is authorized.

175

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

be triggerred at ρ1 where Cs is a commitment to s.
Furthermore let ρ2 ∈ P be a correct process such that ρ2 /∈ Ψs

Id and ρ2 ∈ Ψs′
Id. If

other processes in P are correct and do not invoke Prove operations, then, eventually,
a Prove(s′, σ, nonce, πAuth, ?) operation invoked by ρ2 triggers an Authorized(Cs′ , nonce)
callback where Cs′ is a commitment to s′ if πAuth is a correct context-aware proof that
ρ2 ∈ Ψ(s′)

Id and σ is a valid proof that the Updated(?, ?, ?, s′) callback was triggered at a
correct process in Π.

— Anonymity. Let p be a process controlled by a PPT adversaryA.A also controls Byzantine
processes in P and Π. When the callback Authorized(Cs, nonce) is triggered at p, where
Cs is the state of an object identified by Id, then the probability for p to output Id or s
is negligible.

The AAP abstraction can be seen as a specific case of privacy preserving AllowList, which
supports the Remove operation. In this case, the Update operation is an atomic Remove and
Append operation, where the old document’s state is revoked, and the new one is authorized
atomically.

The Update termination property ensures that if a correct process p invokes the
Update(Id, ?, s, ?) operation with valid arguments, then the Updated callback will eventually
be triggered. However, this property does not ensure that the new state of the Id updated by
p will be s. A concurrent Update operation may occur and modify Id differently. On the other
hand, the Update validity property ensures that if the Updated callback is triggered at a correct
process, then valid arguments are used to trigger this callback. In other words, if the invoking
process of the Update operation is correct, it uses valid arguments. If the process is Byzantine,
it acts similarly to a correct process.

The Update agreement and the state agreement properties are used to ensure that correct
processes in Π agree on the evolution of the states of an object Id. They have to see the same
state and in the same order for a given object. Those properties thus ensure that the result of
the Prove operations are consistent among different processes.

The Prove validity property ensures that an Authorized callback can only be triggered at a
correct process if the process that invoked the Prove operation dit it with valid arguments, or
the invoking process is Byzantine, however, it acted similarly to a correct process.

The Prove agreement property ensures consistency on the Authorized callbacks. All the pro-
cesses in P must receive the same authorized callbacks. This property is the translation in
message passing of the READ validity property defined in Chapter 6.

The Append/Remove antiflickering property is the translation in message passing of the
antiflickering property defined in Chapter 6. It has been modified to cope with Append and
Remove operations used in the AAP abstraction. It ensures that an Authorized callback cannot
be triggered for a commitment to a state s that has already been seen as outdated by the

176

9.5. Anonymous Agreement Proof: an abstraction to efficiently prove ledger-agreed data

processes in P. In other words, no process can force the processes in P to accept an outdated
state.

The progress property is also similar to the progress property defined in Chapter 6. The
property defined in this chapter considers the progress property of an AllowList and the progress
property of a DenyList. This behavior is necessary as the AAP object behaves as a combination
of an AllowList and DenyList (an AllowList with Append and Remove operations). The negative
part of the property (the part corresponding to the DenyList’s progress property) is equivalent to
the one defined in Chapter 6, and eventually, an Update operation will be taken into account by
the processes in P for the Prove operations. On the other hand, the positive part of the property
(the part corresponding to the AllowList’s progress property) is less restrictive than the one
defined in Chapter 6. Due to concurrency, it is not possible to guarantee that a Prove(s, ?, ?, ?)
operation will result in a Authorized(Cs, ?) callback (where Cs is a commitment to s). Therefore,
the property only copes for progress if there is no concurrency. This trade-off have been made due
to the difference between the shared memory model and the message passing model. However,
this behavior does not impact security as the most important property for security is the negative
part of the property.

Finally, the anonymity property ensures that a Prove(s, ?, star, ?) operation does not reveal
information about the state s nor the identifier Id of the object defined by this state.

The AAP abstraction is designed to work in a client/node model. This model copes with
the reality of distributed algorithms. Because consensus algorithms require heavy assumptions
for processes, i.e., processes cannot disconnect and they have a high computational burden, it
is likely that many individuals will not possess a process that can participate in the system.
Therefore, the client/node model assumes that there are few processes in Π, i.e., processes that
maintain the system. On the other hand, the system users can query the processes in Π and
benefit from the distributed algorithm they implement. The owners of the objects are, therefore,
those clients, whereas the nodes, i.e., the processes in Π, are here only to maintain the system.
Therefore, we use proofs of authorization (the proofs πUpdateAuth) rather than authorizing specific
processes in Π to modify a specific object to cope with this specific setting.

On the other hand, the set P can be composed of the clients directly. Indeed, in our use case,
this set will generally only consist in two processes, the prover and the verifier. Thus, ad hoc P
sets can be built for each new relationship between a prover and a verifier. More formally, this
case that will be explored in Section 9.7 can be seen as a set of ` AAP objects, where ` is the
number of different potential prover/verifier pairs. The set Π and the state of the objects (i.e.,
the Updated callbacks) are shared for each AAP object. However, the ` sets P and the associated
Authorized callbacks are unique for each AAP object.

177

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

9.6 Implementation of the AAP abstraction using threshold
anonymous credential scheme

This section presents an algorithm that implements the Anonymous Agreement Proof ab-
straction. This implementation is based on two main components: a distributed ledger main-
tained by the processes in Π and a proving mechanism of the state of the objects as seen by
the processes of this distributed ledger. The distributed ledger is used to implement the Update
operations. Processes in Π verify each update of the state of an object by verifying that the
process that invokes the operation is authorized to do so using the πUpdateAuth proof. On the
other hand, the Prove operation is handled by other processes that may be different from the
processes in Π. Similarly to the Agreement Proof implementation proposed by Albouy et al.
[172], our implementation is based on an “off-line” proof that correct processes agreed on the
state s of an object identified with Id. Furthermore, we need a way to prove that this state s is
up to date, i.e., no Update(Id, ?, ?, ?) was invoked in the meantime.

9.6.1 Cryptographic tools

The Update operation must let the processes in Π issue to the process that requested its
invocation an “off-line” proof of agreement. This proof of agreement must prove that processes
in Π agreed on the state s of an object Id and that this proof is up to date to be usable in a
Prove operation. The first part of this problem can be solved by proving that at least one correct
process did agree on the state s of the object. Indeed, the Update agreement property ensures
that if one correct process agrees on a state, all correct processes will eventually agree. A tool to
provide such an agreement proof is to use cryptographic signatures. However, a cryptographic
signature does not fulfill the anonymity property of the abstraction by default. Indeed, several
problems arise. First, a signature that is not randomizable acts as a unique identifier. An AAP
scheme may require multiple presentations of proof of agreement. Thus, the signature must be
randomizable. Furthermore, if the adversary can be one of the signers, which is the case in our
threat model, the verifier’s knowledge of the signed message may identify the user. Therefore,
ZKP of signatures are required. Finally, Byzantine processes may try to identify the Id of an
object during a verification by acting maliciously. An example of such behavior is a Byzantine
process that only signs one agreement proof during the whole execution of the protocol. If it sees
its signature in a verification afterward (if it has to use its own public key to verify it), it knows
which invocation of the Update operation led to the creation of this signature. Therefore, we need
a scheme that solves those three problems at the same time. The two first problems can be solved
using anonymous credentials (c.f., Chapter 5). However, a classical anonymous credential scheme
does not solve the third challenge. A modified version of a hidden issuer anonymous credential
scheme could be a solution. However, our first explorations in this direction led to impractical,

178

9.6. Implementation of the AAP abstraction using threshold anonymous credential scheme

computational-heavy, and storage-heavy solutions. A second solution that only tackles the third
challenge is using threshold signatures [87]. In a system of n processes, a threshold signature
makes it possible, given signatures from t processes, to build a unique signature that proves that
t processes signed a message without revealing their identity. However, a threshold signature
scheme in itself does not solve the two first requirements. Interestingly, a paper by Danezis et
al. proposed an implementation of a threshold anonymous credential [20]. This scheme solves
the abovementioned three points by modifying the Pointcheval Sanders [84] signature scheme
to add threshold signature capabilities. In the rest of this section, we assume the existence
of such threshold anonymous credential scheme noted TAC. As stated in Chapter 4, this AC
scheme has two additional algorithms in comparison with a classical AC scheme, TAC.AggKey
that is used to create the public key of the system used to verify an aggregated signature and
TAC.AggCred that is used to aggregate signatures. We write pksystem, the public key used to
verify an aggregated signature from the processes in Π.

Our AAP implementation requires two additional cryptographic schemes. Those schemes can
be implemented in numerous ways. Therefore, we only give a high-level description of their inputs
and outputs. We also give ways of implementing those schemes without choosing a specific one.
First, we need an authentication protocol. The goal of this protocol is for a process p to prove that
it is authorized to perform an action. This proving mechanism is done using any signature scheme
or ZKP scheme. In both cases, p signs a challenge built by the processes in Π (or a challenge built
from the context of the Update operation) to authenticate itself and then sends this signature to
the processes that need to authenticate p. This protocol is secure assuming that no process shares
its secret keys (except Byzantine processes, but the abstraction properties are not guaranteed for
them). The public and secret keys are created with the algorithm sk, pk← Auth.KeyGen(). The
proof of knowledge of the secret key is created with an algorithm πauth ← Auth.Prove(sk, pk).
This proof is verified with the algorithm {0, 1} ← Auth.Verify(pk, πauth) that outputs 1 only
if πauth is a valid proof of knowledge of the secret key sk associated to the public key pk.
Alternatively, pk can be a randomizable Pedersen commitment. Thus, the verifier does not learn
the actual value of pk when it invokes Auth.Verify. This additional feature will be necessary to
fulfill the anonymity property for the Prove operation.

The second cryptographic tool required is a Zero Knowledge Proof system for Set Member-
ship (ZKPoSM). This is used to ensure that the state of an object is up-to-date without revealing
the identifier or the precise state of the object. As stated in Chapter 6, such schemes exist and can
be efficiently computed [120]. A ZKPoSM has two operations π ← ZKPoSM.Prove(value, set)
which proves that the value value is in the set set and {0, 1} ← ZKPoSM.Verify(π, set) which
outputs 1 if π is a valid proof of set membership of a value in the set set. The proof π does not
reveal any information about the value value used to compute it.

179

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

9.6.2 Communication primitives

Our AAP implementation uses two communication primitives. The main primitive is a
unicast/best-effort broadcast primitive. This type of primitive is used when no ordering of mes-
sages is required. The second type of communication primitive used is a consensus algorithm.
This type of communication primitive is used when ordering is necessary, i.e., to fulfill the lo-
cal Append/Remove antiflickering and the state agreement properties of the AAP specification.
We use the Cascading Consensus algorithm presented in Chapter 8 for efficiency reasons. This
algorithm makes it possible to be optimal in terms of synchronization requirements. However,
we must carefully partition the Cascading Consensus instances to avoid unnecessary contention.
To do so, each object modified by the Update operation is associated with its own Cascading
Consensus instance. Each Prove operation is also associated with its own Cascading Consensus.
Furthermore, the abstraction authorizes multiple Update and Prove operations to be invoked se-
quentially. Therefore, we need multi-shot consensus algorithms. To achieve this goal, we slightly
modify the parameters of the Cascading Consensus primitives. The Cascading Consensus used
during an Update operation is augmented with the identifier of the modified object and the se-
quence number of this modification. This sequence number starts at 0 and monotonically grows.
Each sequence number is unique for each identifier. The updated parameters of the Update’s
Cascading Consensus are ccons_proposeUpdate(Id, sn, value) where Id is the object’s identifier,
sn is the sequence number, and value is the value of the message. Each unique (Id, sn) pair con-
stitute a unique Cascading Consensus instance. This consensus is conducted among the processes
in Π. For a Prove operation, we only use a sequence number written Seq_Prove. This sequence
number starts at 0 and monotonically grows. The Seq_Prove counter needs to be shared for the
different object’s proofs as the anonymity property prevents the use of an object’s identifier, i.e.,
Seq_Prove grows with each new Prove operations, even if those operations are not related to
the same object. The parameters of the Cascading Consensus used during a Prove operation are
ccons_proposeProve(Seq_Prove, value). Each unique sequence number Seq_Prove constitute a
unique Cascading Consensus instance.

The AAP implementation uses an additional tool, the RequestObjValue(Π) operation. This
operation, invoked by a process in P, requests to a process, or to processes in Π, their current
view on the state of the objects in the system (their Obji variable, c.f. Section 9.6.3) along with
the TAC signatures of those states. This operation is necessary as processes in P need to know
the result of the Update operations whereas, if they are not in Π, they do not receive the Updated
callbacks. This operation can be implemented in three different ways. The first method can be
applied in the special case where the invoking process p ∈ P is also in Π; it only needs to use
its local value. The second method can be applied if the invoking process p ∈ P trusts at least
one process in Π, then it only needs to request this process that is assumed correct and uses its
response. Finally, if the invoking process p ∈ P does not trust any process in Π, it can request at

180

9.6. Implementation of the AAP abstraction using threshold anonymous credential scheme

least tΠ + 1 processes in Π and uses the most up-to-date version of each object’s state. p verifies
the signatures of each response, and then, for each object Id, it uses the most up-to-date state.
Thus, it knows it has the most up-to-date view of those tΠ + 1 processes. Furthermore, verifying
the TAC signatures ensures that the chosen states were signed using at least one correct process.
Moreover, because there can only be tΠ Byzantine processes in Π, p knows one of the responses
came from a correct process. This implies that Byzantine processes cannot break the progress
property by answering the RequestObjValue(Π) operation with outdated versions of the objects
on purpose.

9.6.3 Implementation

The working of our Anonymous Agreement Proof algorithm is the following. Each object
identified by the identifier Id ∈ ID is associated with a set of managers’ public keysM(s)

Id and a
set of provers’ public keys Ψ(s)

Id . Those sets are encapsulated in the object itself for simplicity. A
process p whose secret key is skp and public key pkp ∈M

(s)
Id has control over an object identified

by the identifier Id, i.e., it can invoke the Update operations on this object. For simplicity’s
sake, we assume each object exists at initialization. This assumption can be relaxed using an
Identifier System object (c.f., Chapters 7 and 10). Each object consists of four fields:

— the set of managers’ public keysMId, initiated with one public key, it defines the processes
authorized to invoke Update operations;

— the set of provers’ public keys ΨId, initialized at ∅, it defines the processes authorized to
invoke Prove operations;

— a sequence number snId which identifies the version of the object, it is initialized at 0
and monotonically grows;

— a random identifer rId initialized at 0. It changes with each Update and consists of the
public key of a public/secret key pair and is used to conduct the ZKPoSM; and

— the object description, that is initialized at ∅ and that depends on the implemented object
itself.

To update an object Id (to invoke a valid Update operation), an authorized process first
needs to draw a new secret/public key pair. The public key r′Id is used as the new random
identifier for the object, whereas the secret key is used to avoid impersonation attacks. Then, p
shares with processes in Π the new state s′ of the object, the new random identifier r′Id, and πr′Id
the proof of knowledge of the secret key associated to r′Id. This dissemination is operated with
a Cascading Consensus instance cconsUpdate. Using a consensus algorithm makes it possible to
ensure the state agreement property. Once the dissemination ends, each process signs the new
state s′ of the object and its sequence number r′Idp using the threshold anonymous credential
signature scheme and broadcasts its share to all the processes in Π. Processes in Π store the new
state s′ of the object Id. Processes aggregate tΠ + 1 shares of TAC signatures, where tΠ is the

181

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

maximum number of Byzantine processes in Π. This threshold ensures that at least one correct
process agreeed on the new state of the object. Thus, all correct processes will eventually agree
on this state. The aggregated signature is stored by processes in Π, along with the new state
of the object. The aux variable is used during an Update operation to store πr′

Id
the proof of

knowledge of the secret key associated with r′Id.
Importantly, we assume a value v can be ccons_decideUpdate at line 9 of Algorithm 11 only

if it passes conditions lines 3 and 7 pass. This assumption can be fulfilled if the cconsUpdate

algorithm is modified to only accept values that passes those conditions.
The Prove operation consists of proving that an aggregated signature σ is a valid proof of

agreement of correct processes in the system, that the associated state s of the object Id is not
outdated, and that the process that invokes the operation is authorized to invoke it, i.e., that
it knows a secret key associated to one of the public keys in ΨId. Additionally, this operation
cannot reveal s nor Id. The algorithm’s main part consists of synchronizing the processes’ views
in P concerning the state of each object ∀Id ∈ ID. To do so, the invoking process p ∈ P sends
a ProveReq message. This message is used as a request to the other processes to share their
view on the states of the objects. The ProveReq message is associated with a sequence number
Seq_Prove. This sequence number is used to enforce the antiflickering property. Only one Prove
operation can succeed for each Seq_Prove. After receiving a ProveReq message, processes will
update their view of the objects by using the RequestObjValue operation (c.f. Section 9.6.2).
They compare the operation result with their local view of the states of the objects, and, for
each Id, they only keep the state with the greatest sequence number sn (the most up-to-date
state). Finally, they send the resulting set to p with a ProveAns message and a signature of
the set. 4 p gathers at least nP − tP of those signatures and for each Id, it selects the state
with the greatest sequence number sn (the most up-to-date state). The resulting set is called
Prove_Obj. Then, if s ∈ Prove_Obj, p builds a ZKP of set membership for s. It sends this
set membership proof to the other processes in V using the ccons_proposeProve operation. The
consensus algorithm enables the antiflickering property (see Chapter 6). Additionally, p needs
to prove that Prove_Obj is a set of states that were the result of the Updated callback and that
they are the most up-to-date sets as seen by the nP − tP processes in P that sent a ProveAns
message. This is done by sharing the signatures of those nP−tP processes and their local view of
the states of the objects. When processes receive the ccons_decide(SeqProve, ?) callback, they
verify each signature and they verify that the Prove_Obj set received is the most up-to-date
version of each state for each Id as seen by the nP − tP that signed messages with a sequence
number SeqProve. Once this verification is complete, processes only have to verify the different
ZKPs, and they can trigger the Accepted callback.

4. Processes sign the set along with the sequence number Seq_Prove. This additional element is used to
mitigate replay attacks.

182

9.6. Implementation of the AAP abstraction using threshold anonymous credential scheme

However, s may no longer belong to Prove_Obj when p receives the nP − tP ProveAns mes-
sages. In this case, p needs to inform the other processes in the system to ensure the antiflickering
property. Therefore, it only sends the curated set Prove_Obj along with the signatures of the
processes that sent ProveAns messages. Therefore, processes in P can update their local view of
the states of the objects and trigger the NotAuthorized callback, thus enforcing the antiflickering
property.

The protocol is presented in Algorithms 11, 12 and 13.

1 operation Update(Id, πUpdateAuth, s, auxUpdate) is
2 if Obji[Id].sn ≥ s.sn then return ; BUpdate already registered.
3 if Obji[Id].sn 6= 0 then
4 Wait until Updated(Id, ?, ?,old_s) is triggerred and old_s.sn = s.sn− 1
5 old_M, old_sn, old_r ← Obji[Id].M, Obji[Id].sn,Obji[Id].r;
6 pk, πr ← auxUpdate;
7 if not (pk ∈old_M and Auth.Verify(pk, πUpdateAuth) and Auth.Verify(πr, s.r)) then return ;
8 Propose ccons_proposeUpdate(Id, s.sn, (pk, πUpdateAuth, s, πr)) to processes in Π .

9 when ccons_decideUpdate(Id, sn, (pk, πUpdateAuth, s, πr)) is received do
10 if Obji[Id].sn ≥ s.sn or sn 6= s.sn then return ; BUpdate already registered.
11 if Obji[Id].sn 6= 0 then
12 Wait until Updated(Id, ?, ?,old_s) is triggerred and old_s.sn = sn− 1
13 old_M, old_sn, old_r ← Obji[Id].M, Obji[Id].sn,Obji[Id].r;
14 if not (pk ∈old_M and Auth.Verify(pk, πUpdateAuth) and Auth.Verify(πr, s.r)) then
15 Obji[Id].sn← Obji[Id].sn+ 1; Bsn increment to prevent deadlock of object Id.
16 return
17 Pending_Obji[Id][sn]← s;
18 σfrag ← TAC.Sign(s, skpi);
19 be_broadcast (UpdateAns(Id, sn, (πUpdateAuth, σfrag))) to processes in Π .

20 when UpdateAns(Id, sn, (πUpdateAuth, σfrag)) is received from pj do
21 if Obji[Id].sn 6= 0 then
22 Wait until Updated(Id, ?, ?,old_s) is triggerred and old_s.sn = s.sn− 1
23 if An UpdateAns for Id and sn has already been received from pj then return ;
24 if not TAC.Verify(σfrag, pkpj , P ending_Obji[Id][sn]) then return ; BThe signature received is

invalid
25 New_Statei[Id][sn]← New_Statei[Id][sn] ∪ σfrag;
26 if |New_Statei[Id][sn]| > tΠ and Updated has not been triggerred for Id and sn then
27 Obji[Id]← Pending_Obji[Id][sn];
28 σ = TAC.Aggregate(NewState[Id][sn]);
29 σ_Listi[Id]← σ;
30 Trigger Updated(Id, πUpdateAuth, σ,Obji[Id]).

Algorithm 11: Update operation of the Anonymous Agreement Proof algorithm (code
for pi).

183

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

Variable Purpose Initial Value
TAC A threshold anonymous credential scheme

pksystem The system public key of the threshold anonymous pksystem ← AggKey({ . . . , pkp1pkpnΠ
})

credential scheme where the threshold is setted up
at tΠ + 1 out of nΠ processes

Obji A dictionnary of objects, stores the states of the objects Obji[Id].M,∀ Id ∈ ID
is initiated with the initially

authorized process’ public key,
all other elements are initialized to ∅

σ_Listi A dictionnary of signatures, stores the last up-to-date σ_Listi[Id]← ∅,
aggregated signature of each object ∀ Id ∈ ID

Pending_Obji A dictionnary, stores the object that won the consensus Pending_Obji[Id][sn]← ∅,
during an Update operation for a given Id and sn ∀ Id ∈ ID, ∀ sn ∈ Z

New_Statei A dictionnary, stores signature fragments of the TAC scheme New_Statei[Id][sn]← ∅,
before they reach the tΠ + 1 threshold ∀ Id ∈ ID, ∀ sn ∈ Z

Seq_Provei A counter, stores the sequence number of the Seq_Provei ← 0
last ccons_decideProve received.

V aluesi A dictionnary, stores values of a Prove V aluesi[nonce]← ∅,
operation during the synchronization of the AllowList ∀ nonce ∈ Z

Process_Obji A dictionnary, stores the most up-to-date version of Obj_Listi[j][Id]← ∅,
the object Id as seen by each process in P ∀ Id ∈ ID, ∀ j ∈ {1, . . . , nΠ}

σ_Process_Obji A dictionnary, stores the signature of the most up-to-date Obj_Listi[j][Id]← ∅,
version of the object Id as seen by each process in P ∀ Id ∈ ID, ∀ j ∈ {1, . . . , nΠ}

Prove_Obji A dictionnary, stores the most up-to-date version Prove_Obj_Listi[Id]← ∅
of the object Id as seen by the local process pi ∀ Id ∈ ID

σ_Prove_Obji A dictionnary, stores the signature of the most up-to-date σ_Prove_Obj_Listi[Id]← ∅
version of an object Id as seen by the local process pi ∀ Id ∈ ID

πUpdateAuth A proof of authentication given as an input of the
Update(Id, ?, ?, ?) operation computed as Auth.Prove(pk, sk)

where sk is the secret key associated to pk ∈M(?)
Id

πSetMem A ZKP of set-membership computed as
ZKPoSM.Prove(s.r, {Prove_Obji[Id].r}∀Id∈ID)

where s is a state in Prove_Obji after
view synchronization of processes in P.

πr A proof of knowledge of the secret skr associated to r
where πr ← Auth.Prove(r, skr)

auxUpdate Auxiliary values given as parameters of
update operations, contains pk the public key
of the device that request the operation and πr

a proof of knowledge of the secret key associated to r
auxProve Auxiliary values given as parameters of

update operations, not used in our algorithm

Table 9.1 – Variables used by Algorithm 11, Algorithm 12 and Algorithm 13 to implement the
Anonymous Agreement Proof protocol.

184

9.6. Implementation of the AAP abstraction using threshold anonymous credential scheme

31 operation Prove(s, σ, nonce, πAuth, auxProve) is
32 if not (TAC.Verify(σ,Commit(s), pksystem)) then return ;
33 V aluesi[nonce]← (s, σ, πAuth);
34 be_broadcast(ProveReq(Seq_Provei, nonce))) to processes in P;
35 when ProveReq(Seq_Prove, σ_List, nonce) is received from pj do
36 Wait until ccons_decideProve(Seq_Prove− 1, ?) is received;
37 Obj, σ_List← RequestObjValue(Π) ;
38 Tmp_Obj ← Obj ;
39 Tmp_σ_List← σ_List;
40 for Id ∈ ID do
41 if Prove_Obji[Id].sn > Obj[Id].sn then
42 Tmp_Obj[Id]← Prove_Obji[Id];
43 Tmp_σ_List[Id]← σ_Prove_Obji[Id]

44 σ ← Sign((Tmp_Obj, Seq_Prove);
45 if no ProveAns message was sent by pi to pj for Seq_Prove then
46 Send ProveAns(Seq_Prove, Tmp_Obj, σ, skpi), σ_List, nonce) to pj .

47 when ProveAns(Seq_Prove,Obj, σ_Obj, σ_List, nonce) is received from pj do
48 if A ProveReq message from pj was already received for SeqProve then return ;
49 if V aluesi[nonce] 6= ∅ then Bpi initiated the operation.
50 if not (∀Id ∈ ID, TAC.Verify(σ_List[Id], Obj[Id], pksystem) and

VerifySig(σ_Obj, (Obj, SeqProve), pj)) then return ;
51 σ_Process_Obji[Seq_Prove][j]← σ_Obj;
52 Process_Obji[Seq_Prove][j]← Obj;
53 for Id ∈ ID do
54 if Obj[Id].sn > Prove_Obji[ID].sn then
55 σ_Prove_Obji[Id]← σ_List[Id];
56 Prove_Obji[Id]← Obj[Id];

57 if ProveReq(Seq_Prove, ?, ?, ?, nonce) messages were received from at least than nP − tP
processes then

58 s, σ, πAuth ← V aluesi[nonce];
59 if s.r /∈ {Prove_Obji[Id].r}∀Id∈ID then Bs is outdated.
60 ccons_proposeProve(Seq_Prove, (Prove_Obji, σ_Prove_Obji,

P rocess_Obji[Seq_Prove], σ_Process_Obji[Seq_Prove], ∅, ∅, ∅, ∅))
61 else
62 σ′ ← TAC.Randomize(σ);
63 πSetMem ← ZKPoSM.Prove(s.r, {Prove_Obji[Id].r}∀Id∈ID);
64 Cs ← Commit(s);
65 ccons_proposeProve(Seq_Prove, (Prove_Obji, σ_Prove_Obji,

P rocess_Obji[Seq_Prove], σ_Process_Obji[Seq_Prove], Cs, σ′, πAuth, πSetMem)).

Algorithm 12: Prove operation of the Anonymous Agreement Proof algorithm (code for
ρi) (Part I).

185

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

66 when ccons_decideProve(Seq_Prove, (nonce, Prove_Obj, σ_Prove_Obj, Process_Obj,
σ_Process_Obj, Cs, σ, πAuth, πSetMem)) is received do

67 if Seq_Prove 6= 0 then Wait until ccons_decide(Seq_Prove− 1, ?) is received;
68 Seq_Provei ← Seq_Prove+ 1;
69 if |σ_Process_Obj| < nP − tP then return ;
70 if not TAC.Verify(σ_Prove_Obj[Id], P rove_Obj[Id], pksystem),∀ Id ∈ ID then
71 return
72 if ∀ k ∈ P, not VerifySig(σ_Process_Obj[k], (Process_Obj[k], Seq_Prove), pkpk), then

return ;
73 if not (∀Id ∈ ID, P rove_Obj[Id] ∈ {Process_Obj[k][Id]}∀k∈P) then return ;
74 if ∀ k ∈ V,∀ Id ∈ ID at least one sequence number Process_Obj[k][Id].sn is greater than

Prove_Obj[Id].sn then return ; BThe invoking process is Byzantine and tries to break
progress

75 if Cs = ∅ or σ = ∅ or πAuth = ∅ or πSetMem = ∅ then
76 Prove_Obji ← Prove_Obj ; BUpdates the list of up-to-date states.
77 σ_Prove_Obji ← σ_Prove_Obj ; BUpdates the list of signatures of up-to-date states.
78 Trigger NotAuthorized(nonce).
79 else
80 if not (TAC.Verify(σ,Cs, pksystem) then return ;
81 if not (ZKPoSM.Verify(πSetMem, Cs, {Prove_Obj[Id].r}∀ Id∈ID) and

Auth.Verify(πauth, Cs)) then return ; BVerifies that Cs is a commitment to one of the s
values Prove_Obj

82 Prove_Obji ← Prove_Obj ; BUpdates the list of up-to-date states.
83 σ_Prove_Obji ← σ_Prove_Obj ; BUpdates the list of of up-to-date signatures.
84 Trigger Authorized(Cs, nonce).

Algorithm 13: Prove operation of the Anonymous Agreement Proof algorithm (code for
ρi) (Part II).

186

9.6. Implementation of the AAP abstraction using threshold anonymous credential scheme

9.6.4 Proof of the AAP algorithm

This section proves that Algorithms 11, 12, and 13 implement the AAP abstraction. The
proof uses the assumptions that nπ ≥ 3tπ + 1 and nP ≥ 3tP + 1. Those assumptions are
mandatory for the Cascading Consensus algorithms to work. In the following, we write var(τ,p)

the state of a variable var at time τ as seen by the process p.
We begin by proving the Update termination property in a more restrictive form. We guar-

antee the property if the operation is called with the right parameters, i.e., the invoking process
provides a valid proof of knowledge of the secret associated with s.r and the sequence number
s.sn of the new state is a successor of the sequence number of the actual state of the object. The
difference between the abstraction and the implementation is due to implementation details,
where extra verifications are conducted to fulfill the other properties, whereas that verification
cannot be added to the abstraction as they consist of implementation-specific details.

Lemma 9.1. Algorithms 11, 12 and 13 fulfill the Update termination property, i.e., if a
correct process p ∈ Π invokes Update(Id, πUpdateAuth, s, aux) with Id ∈ ID, s ∈ S, πUpdateAuth

is a correct context-aware proof that p is one of the processes inM(s′)
Id where s′ is the previous

state of the object identified by Id, aux = (pk, πr), where πr is a correct proof of knowledge
of the secret associated to s.r, and an Updated(Id, ?, ?, old_s) with old_s.sn = s.sn − 1 is
eventually triggerred at p, then a callback Updated(Id, ?, ?, s′) is eventually trigerred at p, where
s′.sn = s.sn.

Proof. We prove Lemma 9.1 by contradiction. Let us assume a correct process p ∈ Π invokes
Update(Id, πUpdateAuth, s, aux) such that Id ∈ ID, s ∈ S, πUpdateAuth is a correct context-aware
proof that p is one of the processes inM(s)

Id where s′ is the previous state of the object identified
by Id, aux = (pk, πr), where πr is a correct proof of knowledge of the secret associated to s.r
and an Updated(Id, ?, ?, old_s) with old_s.sn = s.sn− 1 is eventually triggerred at p. However,
no Updated(Id, ?, ?, s′) is trigerred at p during the execution of the algorithm with s′.sn = s.sn.

By assumption, verifications lines 3 and 7 pass. The only verification that may not pass during
the invocation is conducted at line 2. However, if this verification does not pass, and because
Obji is only updated at line 27, it implies that the Updated callback has been triggered at p at
line 30. Therefore, if the condition is not fulfilled, the Updated(Id, ?, ?, s′) with s′.sn = s.sn has
already been triggered. On the other hand, if the condition line 2 passes, then p will eventually
invoke the ccons_propose operation at line 8.

Thanks to the termination and agreement properties of the Cascading Consensus algorithm,
we know that all the correct processes in Π will eventually receive the ccons_decide(Id, sn, ?)
callback. Because of the assumption that the ccons_decideUpdate callback can only be triggered if
conditions at lines 11 and 14 are verified, we know that those verifications will pass. Furthermore,
as in the previous paragraph, if the condition line 10 does not pass, the termination property is

187

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

verified. Therefore, all the correct processes will eventually broadcast an UpdateAns(Id, sn, ?)
message at line 19. Therefore, p will eventually receive an UpdateAns(Id, sn, ?) from each cor-
rect process. Using the assumption nπ ≥ 3tπ + 1, eventually p receives σfrag from strictly
more than tΠ processes. Therefore, the condition at line 26 eventually passes. Hence, an
Updated(Id, πUpdateAuth, σ, s

′) callback is eventually triggerred and s′.sn = s.sn. Thus contra-
dicting the hypothesis and proving Lemma 9.1.

Lemma 9.2. Algorithms 11, 12 and 13 fulfill the Update validity property, i.e., if the
callback Updated(Id, πUpdateAuth, ?, s) is triggered at a correct process p ∈ Π, then πUpdateAuth

is a valid context-aware proof of authorization that the process that built the proof is inM(s′)
Id ,

where s′ is the previous state of the object identified by Id.

Proof. Let p ∈ Π be a correct process. We prove Lemma 9.2 by contraction, i.e., assuming
that the callback Updated(Id, πUpdateAuth, ?, s) is triggered at a correct process p ∈ Π and that
πUpdateAuth is not a valid context-aware proof of authorization that the process that built the
proof is inM(s′)

Id , where s′ is the previous state of the object identified by Id.
The Updated(Id, πUpdateAuth, ?, s) can only be trigerred at line 30 of Algorithm 12. If this line

is triggered, it means that p received UpdateAns messages from tΠ + 1 different processes (lines
23 and 26). The previous implication implies that at least one correct process p′ did broadcast
an UpdateAns message. p′ can only broadcast this message at line 19. To reach this line, the
condition at line 14 must be fulfilled at p′. Thus the process that invoked the operation provided
a proof πUpdateAuth such that Auth.Verify(πUpdateAuth,old_M) outputs 1. By construction of
the authentication protocol, this means that the invoking process proved it knows a secret key
associated with one of the public keys listed inM(s′)

Id , where s′ is the previous state of the object
identified by Id. Thus contradicting the hypothesis and proving the Update validity property.

Lemma 9.3. Algorithms 11, 12 and 13 fulfill the Update agreement property, i.e., if the
callback Updated(Id, πUpdateAuth, σ, s) is trigerred at a correct process p ∈ Π, then it is eventually
trigerred at each the correct processes p′ ∈ Π.

Proof. We prove Lemma 9.3 by contradiction. Let us assume the callback
Updated(Id, πUpdateAuth, σ, s) is trigerred at a correct process p ∈ Π. However, the call-
back is never triggered at a second correct process p′ ∈ Π.

If the callback Updated(Id, πUpdateAuth, σ, s) is triggered at a correct process p ∈ Π,
it implies that p received UpdateAns messages from tΠ + 1 different processes (lines 23
and 26). The previous implication implies that at least one correct process p′′ did broad-
cast an UpdateAns message. p′′ can only broadcast this message at line 19. To reach this
line, p′′ must have received a ccons_decideUpdate(Id, sn, (πUpdateAuth, s, ?)), where s.sn =
sn. Thanks to the termination and agreement properties of the Cascading Consensus,

188

9.6. Implementation of the AAP abstraction using threshold anonymous credential scheme

we know that ccons_decideUpdate(Id, sn, (πUpdateAuth, s, ?)) will be triggered at all the cor-
rect processes. Because conditions at lines 10, 11 and 14 passed at p′′, they will pass at
all the other correct processes. Hence, each correct process will best-effort broadcast an
UpdateAns(Id, sn, (πUpdateAuth, σfrag)) message. Those messages are sent by correct processes.
Therefore, they are eventually received by p′. Furthermore, because the senders are correct, con-
ditions lines 23 and 24 will pass at p′. Additionally, there are nΠ− tΠ ≥ 2tπ + 1 ≥ tπ + 1 correct
processes, hence, condition at line 26 eventually passes at p′. Hence, p′ eventually reaches line
30. Therefore, Updated(Id, πUpdateAuth, σ, s) is eventually trigerred at p′, thus contradicting the
hypothesis and proving Lemma 9.3.

Lemma 9.4. Algorithms 11, 12 and 13 fulfill the state agreement property, i.e., for an
object Id, Updated callbacks are triggered in the same order at all correct processes p ∈ Π.

Proof. Lemma 9.4 is trivially verified by construction. The conditions at line 11 and 21 ensure
that the callback Updated(Id, ?, ?, s) cannot be triggerred at a correct process p ∈ Π if the
callback Updated(Id, ?, ?, old_s) has not been triggerred, with s.sn−1 = old_s.sn. Furthermore,
thanks to the agreement property of the Cascading Consensus, processes only receive one state
for each pair of object’s identifier Id and object’s sequence number sn.

Lemma 9.5. Algorithms 11, 12 and 13 fulfill the Prove validity property, i.e., if the callback
Authorized(Cs, ?) is trigerred at a correct process p ∈ P, where Cs is a commitment to a state
s ∈ S, then the callback Updated(?, ?, ?, s) was trigerred at at least one correct process p ∈ Π.

Proof. We prove Lemma 9.5 by contradiction. We assume the callback Authorized(Cs, ?) is trig-
gered at a correct process p ∈ P, where Cs is a commitment to a state s ∈ S, and no callback
Updated(?, ?, ?, s) is triggered at any correct process p′ ∈ Π during the whole execution.

If the callback Authorized(Cs, ?) is triggerred at p, it is at line 84. Therefore, the condition
at line 80 passed at p. This condition verifies that TAC.Verify(σ,Cs, pksystem) = 1. For this
statement to be true, and by definition of the TAC scheme, it implies that tΠ + 1 different
processes in Π signed the state s, where Cs is a commitment to s. Because there are at most
tΠ Byzantine processes in Π, it implies that at least one correct process pc ∈ Π signed the state
s. The only line where pc can sign this state is at line 18. This line can be reach by pc only
if it received a ccons_decideUpdate(?, ?, ?, s, ?)) message. Using the termination and agreement
properties of the Cascading Consensus, we know that ccons_decideUpdate(Id, sn, ?, s, ?)) will be
triggered at all the correct processes in Π, for Id some object identifier and sn a sequence number.
Because conditions at lines 10, 11 and 14 passed at pc, they will pass at all the other correct
processes. Hence, each correct process best-effort broadcasts an UpdateAns(Id, sn, ?, σfrag))
message where σfrag is a TAC signature of the state s. Hence, pc eventually receives n − tπ ≥
2tΠ + 1 ≥ tΠ + 1 UpdateAns(Id, sn, ?, ?) messages from correct processes. Therefore, conditions

189

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

lines 23, 24 and 26 eventually pass at pc. Therefore, the Updated(?, ?, ?, s) callback is eventually
triggerred at pc at line 30. Thus contradicting the hypothesis and proving Lemma 9.5

Lemma 9.6. Algorithms 11, 12 and 13 fulfill the Prove agreement property, i.e., if the
callback Authorized(Cs, nonce) is triggered at a correct process p ∈ P, then it is eventually
triggered at all the correct processes p′ ∈ P.

Proof. Let us prove Lemma 9.6 by contradiction. We assume there exists a process p′ ∈ P such
that the callback Authorized(Cs, nonce) is triggered at a correct process p ∈ P and not at p′.

If the callback Authorized(Cs, ?) is triggerred at p, it is at line 84. It implies that p re-
ceived a ccons_decideProve(Seq_Prove, (Prove_Obj, σ_Prove_Obj,Obj_List, σ_Obj_List,
Cs, σ, πAuth, πSetMem)) message. Using the termination and agreement properties of the Cascad-
ing Consensus, we know that p′ eventually receives the same ccons_decideProve. The condition at
line 67 is trivially verified if Seq_Prove = 0. In any other cases, because the condition passed at
p, it means p received a ccons_decideProve(Seq_Prove, ?) message. Using the termination and
agreement properties of the Cascading Consensus, we know that p′ eventually receives this mes-
sage and that the condition at line 67 eventually passes at p′. Conditions from line 69 to 74 ans
conditions lines 80 and 81 also passed at p. Therefore, they will also pass at p′. Furthermore, p
entered the Else condition at line 79; thus, p′ will also enter this condition. Hence, p′ eventually
reaches line 84. Thus, the Authorized callback is eventually triggered at p′, contradicting the
hypothesis and proving Lemma 9.6.

Lemma 9.7. Let Updated(Id, ?, ?, s) and Updated(Id, ?, ?, s′) be two callbacks triggerred
at a correct process p′ ∈ Π. Then s 6= s′.

Proof. This lemma is verified by the construction of Algorithm 11. Indeed, thanks to the use of
the Cascading Consensus (and thanks to the agreement property of this abstraction), only one
state can be accepted for a specific identifier Id and sequence number sn at line 30. Furthermore,
the sequence number of a state is embedded in this state. Thus, two different states of a given
object Id are necessarily different.

Lemma 9.8. Let two consecutive Authorized callbacks (or an Authorized and a
NotAuthorized callback) be triggered at a correct process p1 ∈ P. The first callback is trig-
gered at time τ of the local clock of p1, and the second is triggered at time τ ′ of the local clock
of p1 with τ < τ ′. Let Prove_Obj(τ,p1)

1 be the state of the Prove_Obj1 variable at line 84 at
time τ , and let σ_Prove_Obj(τ,p1)

1 be the state of σ_Prove_Obj1 at line 84 at time τ . Then,
∀Id ∈ ID, P rove_Obj(τ ′,p1)

1 [Id].sn ≥ Prove_Obj(τ,p1)
1 [Id].sn.

Proof. The condition at line 73 ensures that the states in Prove_Obj(τ,p1)
1 are chosen in

Process_Obj(τ,p1), and that the states in Prove_Obj(τ ′,p1)
1 are chosen in Process_Obj(τ ′,p1).

190

9.6. Implementation of the AAP abstraction using threshold anonymous credential scheme

Because of condition line 69, we know that Process_Obj(τ ′,p1) consists of at least nP− tP differ-
ent sets sent by nP − tP different processes. Thus, at least nP − 2tP ≥ tP + 1 of those sets have
been sent by correct processes. Let pc be one of those correct processes that participated in the
construction of Process_Obj(τ ′,p). If it did so, it shared its local view of the Tmp_Obj variable
at line 46. The Tmp_Obj variable is built from lines 38 to 43. Those lines build Tmp_Obj as
the most up-to-date version of each object between the Obj and Prove_Objc variables. The
Prove_Objc can only be modified at line 76, 82 or 56. Thanks to the agreement property
of the Cascading Consensus abstraction, we know that Prove_Obj(τ,pc)

c = Prove_Obj(τ,p1)
1 . 5

Hence, the Process_Obj(τ ′, p1) variable contains pc’s Tmp_Obj variable. pc’s Tmp_Obj either
contains the same states as the one used at time τ or states with bigger sequence numbers.
As stated earlier, Process_Obj(τ ′, p1) consists in at least tP + 1 of those states. The veri-
fications at line 74 ensures that Prove_Obj(τ ′,p1)

1 consists in the most up to date states in
Process_Obj(τ ′, p1). Therefore, and using the previous argument, sequence numbers of the
objects in Prove_Obj(τ ′,p1)

1 are greater or equal to the sequence number of the objects in
Prove_Obj(τ,p1)

1 .

Lemma 9.9. Algorithms 11, 12 and 13 fulfill the local Append/Remove antiflickering
property, i.e., if an Authorized(Cs, nonce) callback is triggered at a correct process p ∈ P at
time τ1 of its local clock and then, the invocation of Prove(s, ?, nonce, ?, ?) by p triggers the
NotAuthorized(nonce) callback at time τ2 > τ1 of the local clock of p, then no Authorized(C ′s, ?)
can be trigerred at p after τ2, where Cs and C ′s are commitments to the state s.

Proof. We prove Lemma 9.9 by contradiction. We assume that an Authorized(Cs, nonce) callback
is triggered at a correct process p ∈ P at time τ1 of its local clock and then, the invocation of
Prove(s, ?, nonce, ?, ?) by p triggers the NotAuthorized(nonce) callback at time τ2 > τ1 of the
local clock of p. However, an Authorized(C ′s, ?) callback is triggerred at p at time τ3 > τ2, where
Cs and C ′s are commitments to the state s.

Let an Authorized(Cs, ?) callback be triggerred at p at time τ1. Thanks to the verifica-
tion at line 81, we know that, if Cs is a commitment to s, then s ∈ Prove_Obj(τ1,p). Sec-
ond, let the NotAuthorized(nonce) callback be triggerred at time τ2 at p after it invokes the
Prove(s, ?, nonce, ?, ?) operation. The only way this callback can be triggered at p is if it sets
Cs, σ

′, πAuth and πSetMem at ∅ at line 60. This line is reached if s.r /∈ {Prove_Obji[Id].r}∀Id∈ID
(line 59). In other words, s /∈ Prove_Obj(τ2,p). Therefore, using Lemma 9.8 and Lemma 9.7, we
know that ∀τ3 > τ2, s /∈ Prove_Obj(τ3,p). Therefore, after time τ2, the condition line 81 cannot
be verified at p for a commitment C ′s to the state s. Therefore, no Authorized(C ′s, ?) callback is
triggerred at p at time τ3 > τ2. Thus contradicting the hypothesis and proving Lemma 9.9.

5. This is a simplification as there is no common time reference between p1 and pc. We should have written
that, when reaching line 76 or 82 after receiving the same ccons_decide(Seq_Prove, ?) message, the variable
Prove_Objc as seen by pc is the same as the variable Prove_Obj1 as seen by p1.

191

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

Lemma 9.10. Algorithms 11, 12 and 13 fulfill the local progress property, i.e., let an
Updated(Id, ?, ?, s) callback be triggered at a correct process p ∈ Π at time τ1 of its local
clock, and an Updated(Id, ?, ?, s′) callback be triggered at p at time τ2 > τ1 of its local clock.
No other Updated(Id, ?, ?, ?) operation is triggered at p during the algorithm’s execution. Let
p1 ∈ P. Then, eventually no Authorized(Cs, ?) callback can be triggerred at p1 where Cs is a
commitment to s.

Furthermore let p2 ∈ P be a correct process such that p2 /∈ Ψs
Id and p2 ∈ Ψs′

Id. If
other processes in P are correct and do not invoke Prove operations, then, eventually, a
Prove(s′, σ, nonce, πAuth, ?) operation invoked by p2 triggers an Authorized(Cs′ , nonce) callback
where Cs′ is a commitment to s′ if πAuth is a correct context-aware proof that p2 ∈ Ψ(s′)

Id and σ
is a valid proof that the Updated(?, ?, ?, s′) callback was triggered at a correct process in Π.

Proof. We prove the two parts of Lemma 9.10 by contradiction. First, we focus on the first
part of the lemma. We prove that the following statement leads to a contradiction. Let an
Updated(Id, ?, ?, s) callback be triggered at a correct process p ∈ Π at time τ1 of its local clock,
and an Updated(Id, ?, ?, s′) callback be triggered at p at time τ2 > τ1 of its local clock. No other
Updated(Id, ?, ?, ?) operation is triggered at p during the algorithm’s execution. Let p1 ∈ P be
a process such that p1 ∈ Ψs

Id and p1 /∈ Ψs′
Id. Let τ3 be a time at the local clock of p1, τ3 can be

chosen as large as we want. Then, the Authorized(Cs, ?) callback is triggerred at p1 at time τ2.
The Authorized(Cs, ?) callback is triggerred at p1 at time τ3. This callback can only be

triggered at line 84. At line 81, it is verified that Cs is a commitment to a state s, such that
s ∈ Prove_Obj(τ3,p1)

1 . Using the condition at line 73, we know that Prove_Obj(τ3,p1)
1 is built

from elements in the sets Process_Obj[k](τ3,p1),∀k ∈ P. Furthermore, the condition at line
74 verifies that each object identified by Id ∈ ID in Prove_Obj(τ3,p1) is chosen as the most
up-to-date (in term of sequence number) element in {Process_Obj[k][Id](τ3,p1)}∀k∈P . Moreover,
using condition line 69, we know that Process_Obj(τ3,p1) consists of at least nP − tP ≥ 2tP + 1
sets. For all k ∈ P, the set Process_Obj[k] along with the Seq_Prove variable is signed by the
process k (line 72). Out of the 2tP + 1 processes that signed sets in Process_Obj[k](τ3,p1), at
least tP + 1 are correct.

Let pc be a correct process that signed a set in Process_Obj[k](τ3,p1). This process signed
this set at line 46. It signed at its local time τc the set Tmp_Obj(τc,pc). Using lines 38 to 43, we
see that for each Id ∈ ID, Tmp_Obj[Id](τc,pc) is the most recent state of the object Id between
the variable Prove_Obji[Id](τc,pc) and the variable Obj(τc,pc). The variable Obj(τc,pc) gets its
value from the RequestObjValue(Π) operation. By construction, this operation returns the most
up-to-date version of the state of each object Id, ∀Id ∈ ID (the Obji variable) of some correct
process pΠ ∈ Π. Using the Update agreement property, we know that the Updated(Id, ?, ?, s′)
callback is eventually triggerred at pΠ. Let us note τΠ the time this callback is triggered at pΠ

at its local clock.

192

9.6. Implementation of the AAP abstraction using threshold anonymous credential scheme

τc is causaly before τ3. Furthermore, τ3 can be chosen as large as we want. Therefore, τc
can also be chosen as large as we want. Hence, we choose τc to be causally after τΠ. Therefore,
and because no other Updated(Id, ?, ?, ?) callback is triggerred at pΠ, Tmp_Obj[Id](τc,pc) = s′.
Hence, s /∈ Tmp_Obj[Id](τc,pc), s /∈ Prove_Obj(τ3,p1)

1 . Therefore, the condition at line 81 cannot
pass for Cs a commitment to s. Therefore, the Authorized(Cs, ?) callback cannot be triggerred
at p1 at time τ3. Thus contradiction the hypothesis and proving the first part of Lemma 9.10.

To prove the second part of Lemma 9.10, we prove that the following statement leads to
a contradiction. Let an Updated(Id, ?, ?, s) callback be triggered at a correct process p ∈ Π at
time τ1 of its local clock, and an Updated(Id, ?, ?, s′) callback be triggered at p at time τ2 > τ1

of its local clock. No other Updated(Id, ?, ?, ?) operation is triggered at p during the algorithm’s
execution. Let p2 ∈ P be a correct process such that p2 /∈ Ψs

Id and p2 ∈ Ψs′
Id. Other processes

in P are correct and do not invoke Prove operations. However, no Prove(s′, ?, ?, ?, ?) operation
invoked by p2 triggers an Authorized(Cs′ , nonce) callback.

Let p2 invoke the Prove(s′, σ, nonce, πAuth, ?) operation at time τ4 of the local clock of p2.
σ is a valid TAC signature of the state s′ and πauth is a valid proof that p2 knows a secret in
Ψ(s′)
Id . τ4 can be chosen as big as we want. By assumption, condition at line 32 passes. Hence, p2

broadcasts a ProveReq(Seq_Prove(τ4,p2)
i , nonce) message at line 34.

All the correct processes in P receive this message. Let us consider pc ∈ P as one of those
correct processes that receive the ProveReq message. Because p2 is correct, Seq_Provei was
updated at line 68 after receiving the ccons_decideProve(Seq_Prove, ?) callback. This callback
is received at all the correct processes (agreement property of the Cascading Consensus ab-
straction). Hence, eventually, Seq_Provec ≥ Seq_Prove(τ4,p2)

2 . Hence, the condition at line
36 eventually passes at pc. Then, pc reaches line 37 at time τc. τ4 can be chosen as big as
we want; hence, τc, which is causally after τ4, can also be chosen as large as required. We
choose τc to be causally after that all the correct processes that are contacted by pc during the
RequestObjValue(Π) operation receive the Updated(Id, ?, ?, s′) callback (this eventually happens
due to the Update agreement property). No other Updated(Id, ?, ?, ?) callback is triggered at
those processes. Therefore, and by construction of the RequestObjValue operation, the Obj(τc,pc)

contains s′. Lines 38 to 43 do not modify the s′ value in Obj(τc,pc) as no more recent value for
s′ may exist. Therefore, at line 46, pc sends ProveAns(SeqProve, Tmp_Obj, ?, ?, nonce) to p2

with s′ ∈ Tmp_Obj. We choose τ4 large enough such that all other correct processes in P do
the same.

No Updated(Id, ?, ?, ?) is triggerred at a correct process in Π after Updated(Id, ?, ?, s′) has
been triggerred. Hence, no state exists that is more recent than s′ for the object Id. More pre-
cisely, there exists no such state that can pass the condition at line 50. Furthermore, p2 waits
messages from at least nP − 2tP ≥ 1 correct processes before it reaches line 65. Those pro-
cesses send ProveAns(SeqProve, Tmp_Obj, ?, ?, nonce) messages with s′ ∈ Tmp_Obj. There-

193

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

fore, the lines 51 to 56 add s′ to Prove_Obj2 but do not remove it. Hence, when reaching
line 65 the p2’s Prove_Obj2 variable contains s′. We know that p2 is the only process to in-
voke the Prove operation, and there are no Byzantine processes in the system. Hence, when
p2 invokes the ccons_proposeProve(Seq_Prove, (Prove_Obj2, ?, ?, ?, Cs′ , ?, ?, ?)) operation, the
ccons_decideProve(Seq_Prove, (Prove_Obj2, ?, ?, ?, Cs′ , ?, ?, ?)) is eventually triggered at all the
correct processes in P (using validity agreement and termination properties of the Cascading
Consensus abstraction) with s′ ∈ Prove_Obj2.

Because p2 is correct, verifications line 67 to 74 pass. Furthermore, s′ ∈ Prove_Obj2, there-
fore, Cs 6= ∅ and σ 6= ∅ and πAuth 6= ∅ and πSetMem 6= ∅. Thus, conditions line 80 and 81 will
be successfully verified. Therefore, the Authorized(Cs′ , nonce) callback is eventually triggered
at each correct process. Hence contradicting the hypothesis and proving the second part of
Lemma 9.10

Lemma 9.11. Algorithms 11, 12 and 13 fulfill the anonymity property, i.e., let p be a
process controlled by a PPT adversary A. A also controls Byzantine processes in P and Π.
When the callback Authorized(Cs, nonce) is triggered at p, where Cs is the state of an object
identified by Id, then the probability for p to output Id or s is negligible.

Proof. Lemma 9.11 is proved by analyzing the elements given to processes during a Prove op-
eration. The only elements shared with the other processes (and therefore with the adversary)
are Cs a commitment to the state s, σ a TAC signature of s by tΠ + 1 processes in Π, πAuth

and πSetMem two ZKPs. By construction, none of those elements reveal any information that can
lead to the identification of s or Id. Therefore Lemma 9.11 is proven.

Theorem 9.1. Algorithms 11, 12 and 13 implement the AAP abstraction

Proof. Theorem 9.1 is proven by Lemma 9.2, Lemma 9.1, Lemma 9.3, Lemma 9.4, Lemma 9.5,
Lemma 9.6, Lemma 9.9, Lemma 9.10 and Lemma 9.11.

9.7 AAP to enable the multi-device authorization feature for
PPfDIMSs

The AAP abstraction makes it possible to implement the multi-device authorization capa-
bility for a PPfDIMS efficiently. As stated in Section 9.2 and Section 9.3, a PPfDIMS which
supports the multi-device authorization capability must implement the Issue, Present and Verify
operations along with the Authorize and the Revoke operations. This section assumes we have
access to an AAP implementation AAP . The set of processes Π of the AAP implementation is
the same as the set Π of the PPfDIMS. It is a set of always-connected processes (except for the

194

9.7. AAP to enable the multi-device authorization feature for PPfDIMSs

Byzantine ones) that maintain a distributed ledger. Devices in D can request these processes to
modify the ledger if they are authorized.

On the other hand, the set P of the AAP abstraction cannot be used as it is for the PPfDIMS.
This section will use the modification explained at the end of Section 9.5. The PPfDIMS consists
of multiple ad hoc P sets. Each set corresponds to a relationship between a user and a verifier.
Additionally, if a user wants to increase its privacy, it can create a new ad hoc set P for each
new connection with the same verifier. In this case, the user must hide their IP address for
each connection. To do so, he can use the onion routing protocol, for example. As stated in
Section 9.5, the Update operations conducted by the processes in Π impacts all the sets P. We
can formalize this by saying that the PPfDIMS uses multiple AAP objects; each AAP object
shares the same set Π but is associated with a specific set P. Update operations atomically
modify all the AAT objects, whereas Prove operations are specific to each set P. Therefore,
processes in Π only store once the state of each object Id. Furthermore, they do not need to act
during a Prove operation. They only need to answer the RequestObjValue requests. Hence, they
do not need to store information for any P set.

We build our authorization mechanism on DIDs and DID documents. Each user owns a
DID document, which is identified by a DID. Each DID document is associated initially with
a manager’s public key, which the user owns. In Chapter 10, we modify this claim such that
no DID document exists at the initialization, and users create their document using naming
algorithms (c.f. Chapter 7).

Each object in the system is a DID document, and the identifier Id ∈ ID of the DID
document is under the form of a DID. The DID document data model is equivalent to the AAP
implementation data model, i.e., DID documents must contain the following fields:

— A managers field: this field is a set of managers’ public keysMId, for each DID document
Id this field is initialliazed with one public key, it defines the processes authorized to
invoke an Authorize and Revoke operations;

— A provers field: the set of provers’ public keys ΨId, initialliazed at ∅, it defines the
processes authorized to invoke a Present operation;

— A sequence number: snId identifies the version of the object, it is initialized at 0 and
monotonically grows; and

— A random identifer: rId is initialized at 0. It changes with each Authorize or Revoke
operation and consists of the public key of a public/secret key pair.

The DID document can contain additional fields for other features, e.g., a field for revoked
credentials.

First, we define the Authorize and Revoke operations. As stated in Section 9.4, we do not
authorize devices for specific verifiable credentials. We authorize them for DIDs, and DIDs
themselves are associated with verifiable credentials. Hence, an authorized device for a DID is

195

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

authorized for all the VCs associated with this DID. We refer to a specific DID as Id ∈ ID,
where ID is the set of identifiers of all the valid DIDs Therefore, we modify the parameters of the
Authorize and Revoke operations. The Authorize(Id, pkdA , skdM , aux) is an operation invoked by a
device dM associated to the key skdm which has the manager’s right on Id. The operation autho-
rizes the device associated with the public key pkdA to invoke Present operations for the verifiable
credentials associated with Id. Similarly, the Revoke(Id, pkdA , skdM , aux) operation revokes this
right. Additionally, we can define two operations AuthorizeManager and RevokeManager whose
arguments are similar to those of the Authorize and Revoke operations. These operations are used
to grant and revoke the manager’s rights. In the following, the device dM is assumed to be a
manager of Id, i.e., pkDM ∈MId. The Authorize, Revoke, AuthorizeManager and RevokeManager
use the RequestObjValue operation as defined in Section 9.6.

The Authorize, Revoke, AuthorizeManager and RevokeManager operations are described in
Algorithm 14 and Algorithm 15. The algorithm is divided into two parts. The first part (Algo-
rithm 14) describes the operations invoked by the devices. They consist, for a device d ∈ D, of
modifying the state of the DID document to add or remove a public key from the list of autho-
rized public keys (either for the prover or the manager role). Furthermore, these operations are
used to build the proofs necessary for the AAP.Update operation. The result is sent to at least
one correct process in Π using the UpdateRequest message, such that this process can inform
other processes in Π that the state of the object Id is modified. For d to be sure that a correct
process in Π is reached, d has two options: either it trusts a process in Π to be correct, or it does
not. In the first case, the UpdateRequest message can be sent to the trusted process. Otherwise,
d has to send the UpdateRequest message to tΠ + 1 processes. By assumption, using the second
method, d knows at least one correct process will receive its request. When a correct process
p ∈ Π receives an UpdateRequest message, it verifies the validity of the proofs and invokes the
AAP.Update operation. If the update is successful, the process p sends a ResultUpdate(Id, res)
message to d with res = true. In this case, d triggers an UpdateSuccess() callback. Due to
potential contention, the AAP.Update operation may not be considered by processes in Π. This
can occur when two different modifications of the same object Id are requested. In this case, p
sends a ResultUpdate(Id, res) message to d with res = false and d triggers an UpdateFailure()
callback. d can then request a new update if it has not been revoked.

To define the operations Issue, Present and Verify, we assume we have access to a Hidden Issuer
Anonymous CredentialHIAC scheme as defined in Chapter 5. This scheme implements the func-
tions HIAC.Setup, HIAC.IssuerKeygen, HIAC.Sign, HIAC.VerifierSetup, HIAC.Randomize
and HIAC.VerifyRandomized. HIAC is assumed to fulfill the EUF-CMA and issuer indistin-
guishability properties. In this chapter, we only provide a high-level definition of the operations
Issue, Present and Verify. A more detailed version of the algorithms is given in Chapter 10. This
chapter also integrates additional features to the scheme, such as DID document creation, cre-

196

9.7. AAP to enable the multi-device authorization feature for PPfDIMSs

1 operation AuthorizeProverDevice(Id, pkA, skM , pkM) is
2 s ← RequestObjValue(Π)[Id];
3 s.ΨId ← s.ΨId ∪ pkA; BAdds pkA to the list of authorized prover devices.
4 PrepareUpdate(Id, s, skM , pkM);

5 operation RevokeProverDevice(Id, pkA, skM , pkM) is
6 s ← RequestObjValue(Π)[Id];
7 s.ΨId ← s.ΨId \ pkA; BRemoves pkA from the list of authorized prover devices.
8 PrepareUpdate(Id, s, skM , pkM);

9 operation AuthorizeManagerDevice(Id, pkA, skM , pkM) is
10 s ← RequestObjValue(Π)[Id];
11 s.MId ← s.MId ∪ pkA; BAdds pkA to the list of authorized manager devices.
12 PrepareUpdate(Id, s, skM , pkM);

13 operation RevokeManagerDevice(Id, pkA, skM , pkM) is
14 s ← RequestObjValue(Π)[Id];
15 s.MId ← s.MId \ pkA; BRemoves pkA from the list of authorized manager devices.
16 PrepareUpdate(Id, s, skM , pkM);

17 internal operation PrepareUpdate(Id, s, skM , pkM) is
18 if not pkM ∈ s.MId then return ;
19 r, skr ← Auth.Keygen();
20 s.r ← r;
21 πr ← Auth.Prove(r, skr);
22 πUpdateAuth ← Auth.Prove(pkM , skM);
23 Send UpdateRequest(Id, πUpdateAuth, s, pkM , πr) to a trusted correct process in Π or to tΠ + 1

processes in Π;
24 when ResultUpdate(Id, res) is received do
25 if res = true then Trigger UpdateSuccess();
26 else
27 Trigger UpdateFailure()

Algorithm 14: Authorize, Revoke, AuthorizeManager and RevokeManager operations of a
PPfDIMS (code for device di /∈ Π).

197

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

28 init: To_Updatei ← A set initialized at ∅;
29 Obji ← a dictionary of states initialized with the initial value of each DID document;

30 when UpdateRequest(Id, πUpdateAuth, s, pk, πr) is received do
31 if not (Auth.Verify(pk, πUpdateAuth) and pk ∈ Obji[Id].MId and Auth.Verify(πr, s.r))

then return ;
32 To_Updatei ← To_Updatei ∪ (Id, s, πUpdateAuth, (pk, πr));
33 AAP.Update(Id, πUpdateAuth, s, (pk, πr));

34 when AAP.Updated(Id, πUpdateAuth, σ, s) is received do
35 Obji[Id]← s;
36 if (Id, π′UpdateAuth, s

′, (pk′, π′r)) ∈ To_Updatei then
37 if s′ = s then
38 To_Updatei ← To_Update \ (Id, s, π′UpdateAuth, (pk′, π′r), pj);
39 Send a ResultUpdate(Id, true, σ, s) message to pj ;
40 else
41 if s.sn = s′.sn then
42 To_Updatei ← To_Update \ (Id, s, π′UpdateAuth, (pk′, π′r), pj);
43 Send a ResultUpdate(Id, false, ∅, ∅) message to pj ; BThe AAP.Update operation

was not successfull due to concurrency.

Algorithm 15: Algorithm of a PPfDIMS enabling the multi-device authorization, code
for pi ∈ Π.

198

9.7. AAP to enable the multi-device authorization feature for PPfDIMSs

dential revocation, or key rotation. We define the Issue, Present and Verify operations of the VC
scheme such that:

— The Issue operation associates the issued credential to a DID. The value of the DID is,
therefore, one of the attributes in att when the Issue(att, skI , pkd, aux) is invoked. However,
the device’s public key pkd does not need to be filled, as the authorized devices depend
on the DID document’s provers field.

— The Present(vc, skd, Tv, aux) operation is invoked by an authorized device d whose secret
key is skd and where Tv is the set of trusted issuers of the verifier v ∈ V. The verifiable
credential vc is associated with the DID document identified by Id, i.e., one of the
attributes of vc is Id. d is assumed to know a valid proof of agreement σ on the state s of
its DID document. The device d is an authorized prover for the DID Id, hence its public
key pkd is in ΨId. d builds vp by computing the following elements:
— πauth = Auth.Prove(pkd, skd), the proof that d knows the secret key skd associated to

pkd;
— cvc is a curated version of vc, where some attributes are left as commitments to the

signed values and some other attributes are revealed in clear text. Importantly, the
attribute Id associated with the DID linked to vc is left as a commitment in cvc.

— (cvc′, πI) = HIAC.Randomize(cvc), where cvc′ is the randomized version of cvc that
also hides the identity of the vc’s issuer and πI is the proof that the issuer of vc is in
Tv, i.e., πI is the proof that the verifier v trusts the issuer of vc;

— πatt, a zero-knowledge proof of the validity of a statement that uses the attributes of
cvc′ as inputs. For example, this ZKP can be used to prove that the user is over 18
without revealing their date of birth;

— πequal, a ZKP that the attribute Id in cvc is equal to the DID attribute in σ; and
— nonce = H(cvc′||πatt||πequal||πI), the hash of the proofs that the verifier will verify.
d sets vp = (cvc′, πauth, πI , πatt, πequal), the verifiable presentation that will be trans-
ferred to the verifier v. Then, it proves it is authorized to build presentations for
vc by invoking the AAP.Prove(s, σ, nonce, πauth, aux) operation. When it receives the
Authorized(Cs, nonce) callback, it can send vp to the verifier. If the verifier is correct, the
Authorized(Cs, nonce) callback is eventually triggered at p. Indeed, in our model, the ver-
ifier should not invoke Prove operations unless it is Byzantine. In this case, p can detect
the verifier’s faulty behavior and interrupt the exchange.

— The Verify(vp, Tv, πI , aux) operation is invoked by a verifier v ∈ P with vp =
(cvc′, πauth, πI , πatt, πequal). First, v waits until it receives the Authorized(Cs, nonce)
callback. Then, it verifies that nonce = H(cvc′||πatt||πequal||πI), meaning that the
proving process is authorized and that the Authorized(Cs, nonce) callback is related
to the proof being verified, thus preventing replay attacks. Then, v verifies that

199

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

HIAC.VerifyRandomized(?, skv, Tv, cvc′, πI) = 1 and that πatt, πequal and πatt are valid
zero knowledge proofs. If the tests pass, v outputs 1. Otherwise, it outputs 0.

The multi-device authorization scheme presented in this section fulfills the properties stated
in Section 9.3. The multi-device authorization capability property is fulfilled thanks to the
progress, the Update validity, and the Update termination properties of the AAP abstraction.
The Authorize and Revoke order property is fulfilled thanks to the state agreement property
of the AAP abstraction. The strong authorization property of the multi-device authorization
mechanism is fulfilled thanks to the Update termination, the Append/Remove anti-flickering,
and the progress properties of the AAP abstraction. The theft resistance of the multi-device
authorization mechanism is fulfilled thanks to the construction of the verifiable presentation.
To build a verifiable presentation, a device needs to know an authorized prover’s secret key
(thanks to the update validity and the Prove validity properties). However, by assumption,
the adversary does not know such a secret key. Finally, the privacy-preserving multi-device
authorization capability is fulfilled thanks to the anonymity property of the AAP abstraction.

9.8 Discussions

In this chapter, we proposed a multi-device authorization framework for PPfDIMS based on
a new abstraction: the Anonymous Agreement Proof abstraction. However, some details were
left aside. This section discusses those details. Among them, we will discuss the other usages
of the multi-device authorization framework proposed, solutions to potential privacy leaks of
the AAP scheme, and different efficiency improvements that can be brought to enhance the
implementation of the AAP scheme presented in Section 9.6.

9.8.1 The alternative usages of the multi-device authorization scheme for
PPfDIMS

As explained in Section 9.4, the multi-device authorization framework proposed in Section 9.7
is based on a data model initially proposed by Hyperledger Aries’ team [19]. This data model
was proposed not only to enable multi-device authorization but also for device revocation and
key recovery. The device revocation mechanism is already proposed in our framework through
the Revoke operation. However, we did not discuss the key recovery mechanism that can benefit
from our multi-device authorization mechanism.

A key recovery mechanism must allow users to regain control over their verifiable credentials
if they lose all their authorized devices. Generally, it is done through a recovery secret/public
key pair. The public key is registered as the recovery key, and the secret key is kept in a safe
place. In general, it is advised to use a mechanism such as Shamir secret sharing [88] to divide
the recovery secret key into multiple shares and to store each share in a safe place, e.g., a

200

9.8. Discussions

piece of paper in a safe, a hard drive, a friend’s device. The interesting part of such a recovery
mechanism is that it can be implemented in our multi-device authorization mechanism without
modifications. Indeed, a recovery key in the context of the multi-device authorization scheme
presented in Section 9.7 is a secret key associated with a public key listed in the manager set
MId. The only additional requirement is for the recovery key to be used solely for this purpose
and to be stored in a dedicated and secure way.

Additionally, our multi-device authorization mechanism enables easy key rotations. We recall
that key rotation is an important mechanism that enhances the security of any public key-based
cryptographic protocol. Therefore, this mechanism must be implemented for a PPfDIMS to be
deployed in a large-scale context. To rotate a key with our multi-device authorization mechanism,
a user only has to create a new secret/public key pair on their device, then they add the new
public key to the list of authorized provers using its manager’s secret key, and it revokes the old
public key.

Those alternative usages are represented as operations of a fully functional PPfDIMS in
Chapter 10.

9.8.2 Potential improvments of Section 9.6’s implementation

Potential anonymity leaks and proposed solutions

A potential privacy leak of the AAP implementation presented in Section 9.6 was left aside.
This leak could break the anonymity property of the AAP abstraction or at least decrease the
user’s privacy if it is not considered. This leak occurs if the proofs of agreement σ do not contain
the same number of attributes for different DID documents. In this case, processes in Π know
the number of attributes of each DID document. Therefore, they know the number of signed
attributes for a given DID document identified by Id. Thus, if a DID document is the only one
to have x elements, the invocation of a AAP.Prove(?, σ, ?, ?, ?) operation where σ is a signature
of x attributes identifies the DID document Id as the document used to produce the proof σ.
Differences in the number of signed attributes can appear due to different numbers of authorized
devices per DID document.

We propose two different methods to mitigate this flaw. Both methods are based on the fact
that the user will only reveal a subset of the attributes in σ. Indeed, if multiple devices are
authorized for a given DID, the user will only prove knowledge of the secret key of the device it
is currently using.

The first method is to set a fixed number of signed attributes. In this case, all the proofs σ
are signatures of the same number of elements. A null value must be defined if this method is
used to fill unused attributes. Furthermore, when proving a statement from any attribute in σ,
the prover must also prove that the value of this attribute is not the null value. Such inequality
proofs can be conducted in zero knowledge using Camenisch and Schoup Zero Knowledge Proof

201

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

of inequality of discrete logarithm [174]. This method has two main impracticalities: it limits the
maximum number of attributes of a DID Document, and it relies on additional Zero Knowledge
Proofs that may decrease the efficiency of the AAP.Prove operation.

The second method is to divide the proof of agreement σ in as many signatures as there are
attributes in a DID document, i.e., for a DID document with ` attributes, σ is divided in ` shares
σ = {σ1, . . . , σ`}. Each share σi,∀i ∈ {1, . . . , `} is a TAC signature of one of the attributes of
the DID document, the identifier of this document (the DID) and the sequence number of the
document. Therefore, the user can prove that all the shares are linked to a unique DID document
using a Zero Knowledge Proof of equality of exponents (c.f. Chapter 5). This prevents attackers
from forging access to verifiable credentials by combining shares from different DID documents
or different versions of the same DID document. The main disadvantage of this method is that
it forces the user and the verifier to perform additional zero-knowledge proof computations, thus
increasing communication and computation complexity. However, it is more versatile than the
first solution as it does not limit the number of attributes of a DID document.

9.8.3 Improved view synchronization when the size of P is small

The view synchronization of the state of the on-ledger objects for the Prove operation as
presented in Section 9.6 requires each process in P to share its entire local view of the objects
along with signatures of each state. This design choice was used to simplify the description of
the algorithm. However, it leads to a significant message size complexity overhead. We propose
several solutions to reduce this complexity. Each solution proposed here reduces the message
size complexity but increases the number of messages. Therefore, we expose a tradeoff between
those two parameters.

The first solution is to share only the sequence numbers and the random identifiers of each
state in the ProveAns message, along with a signature of those parameters by the sender of the
ProveAns message. This solution greatly reduces the size of the ProveAns messages. However,
the recipient of those messages still needs to request to processes in P the agreement proofs σ
for the states it did not receive with the RequestObjValue operation. Therefore, a second request
must be sent to those processes after the recipient of the ProveAns messages received nV − tV
such messages. Thus, this solution increases the latency by two asynchronous rounds.

The second solution is used when the set P comprises only two processes. This is the case
for PPfDIMS, where P comprises a prover and a verifier. In this case, we can further reduce the
size of messages by using techniques such as hash trees [175] to detect which states are outdated
in the view of each process (the verifier and the prover). Processes represent their local view of
the DID documents’ state under a binary hash tree. Then, they only send the tree’s root to the
other process. If the roots of the two processes differ, they also share the two children of the
root, and so on. Thus, if their views match, the two processes must only share one hashed value

202

9.9. Conclusion

to synchronize. Otherwise, if only one element differs, then the two processes only need to share
log(|ID|) elements to synchronize their views, where ID is the set of all identifiers in use.

Yet another method is to modify the RequestObjValue function such that the x last Update
operations are also returned. Therefore, processes in P can only share those x values along with
the hash of the Obj set. With high probability and if the parameter x is chosen accordingly, the
local view of the processes in P will differ by less than those x Update. Hence, they only have
to share x values to detect which states are outdated in each process’ view and to synchronize
their views.

9.9 Conclusion

In this chapter, we presented the problem of the multi-device authorization capability ap-
plied to PPfDIMSs. This problem is an open problem in the PPfDIMS community, as the only
solution proposed to solve it without loss of privacy or security was published as a draft and
was not studied for five years [19]. We proposed a novel solution to this problem based on a
new abstraction, the Anonymous Agreement Proof abstraction. The AAP abstraction makes it
possible for a process p ∈ P to prove to other processes in the set P that a second set of pro-
cesses Π agreed on the state of an object Id. This proving mechanism implemented by the AAP
abstraction additionally hides any identifying information about the object Id, thus preserving
the privacy of the processes. We proposed an implementation of the multi-device authorization
mechanism for PPfDIMS based on the AAP abstraction. This implementation can also be used
to rotate keys and to create backup keys that make it possible to recover the right to create
verifiable presentations in case of key loss.

The AAP abstraction is used in Chapter 10 to build a fully functional PPfDIMS.

203

Chapter 9 – An efficient solution to the multi-device authorization problem: the Anonymous
Agreement Proof

204

Chapter 10

A PRIVACY PRESERVING FULLY

DISTRIBUTED IMS FRAMEWORK WITH

(ALMOST) NO CONSENSUS

This chapter summarizes the contributions of this thesis. It uses them as building blocks of a
theoretical PPfDIMS framework. It explains how the main features of a PPfDIMS presented in
Chapter 2 can be implemented efficiently, with high privacy preservation guarantees and minimal
synchronization requirements. It uses the same tools as the one used in Section 9.7.

10.1 Model

The model considered in this chapter is the message passing model presented in Section 4.1.2.

10.2 Building blocks

This section presents the main building blocks used to build a PPfDIMS. Each building
block is made implementation independent on purpose. Multiple design choices can be made
to implement them. In the following, it is assumed that each system actor (user, issuer, and
verifier) owns a DID document identified by a DID. However, DID documents are not created
at initialisation.

General purpose Zero Knowledge Proof system In this chapter, we use general purpose
zero knowledge proof systems as defined in Chapter 4

The ZKP system has two functions, ZKP.Prove(st) and ZKP.Verify(π, st). The
ZKP.Prove(st) function takes as input a statement st expressed, for ease of comprehension,
with the Camenisch and Stadler notation [78]. This notation is as follows:

ZKP{(s) : st}.

Values between parenthesis (here, s) are hidden values that the verifier does not learn, and the

205

Chapter 10 – A privacy preserving fully distributed IMS framework with (almost) no consensus

statement after the semicolon (here, st) is the statement proven. The ZKP.Verify(π, st) function
takes as input a proof π and a statement st. The function outputs 1 if the proof π is a valid
proof of knowledge of the statement st. It outputs 0 otherwise.

The way this ZKP framework is implemented depends on the usage. Each proof can either
be an ad hoc Schnorr like ZKP [176] or a more elaborated zk-SNARKs [177].

Anonymous Credential The main component of any PPDIMS is a signature scheme. Indeed,
the distribution of a PPDIMS, be it fully distributed or partially distributed, comes from the
fact that users can present verifiable identity elements to service providers without interacting
with the identity provider. Once the signature is issued—and as long as it is valid—users can
present it as many times as they want without requiring the action of another party.

Hence, the signature scheme is the most critical building block of any PPfDIMS. Furthermore,
it is also the main privacy-sensible part of the system. Information signed is the identity element
of users. Therefore, the signature scheme should be designed and chosen carefully.

The requirements exposed in Chapter 2, as well as the study of Hidden Issuer Anony-
mous Credentials tend to show that anonymous credentials—with or without the issuer-
indistinguishability property—present all the properties required to build a PPfDIMS. Such
an anonymous credential scheme can implement a fully functional PPfDIMS. For example, the
Pointcheval Sanders scheme [84] can be used if issuer-indistinguishability is not required, or the
HIAC scheme (c.f. Chapter 5) or its evolution, the Sanders Traoré scheme [31] can be used if
this property is required.

However, any anonymous credential must contain two specific attributes to enable the cre-
dential revocation and the multi-device feature. The first attribute is a DID Id. This attribute
links a credential to its DID, as explained in Chapter 9. The DID can later be linked to devices’
public keys. The user can compute a ZKP during the presentation of the credential to prove that
the credential is linked to a specific DID and that the device used by the user is an authorized
prover for this DID (c.f. Section 9.7). Therefore, the Id attribute in a credential can be used
to enable the multi-device capability and should always be one of the attributes signed by an
issuer when issuing an anonymous credential.

The second necessary attribute is a random identifier rrevoc chosen by the issuer and known
to the user. This identifier is meant always to stay hidden, i.e., when the user builds a verifiable
presentation, rrevoc is left as a commitment. This identifier is only used to revoke credentials.
When the issuer or the user wants to revoke a credential, rrevoc is added to the issuer’s revocation
list or the user’s revocation list. The implementation of this revocation list is described in
Section 10.3. When a user presents a credential, he proves that rrevoc is not in either of the two
revocation lists.

In the following, we use an abstract anonymous credential scheme that supports the trusted

206

10.2. Building blocks

issuer and the issuer’s indistinguishability properties as defined in Chapter 5. The scheme ex-
hibits the following algorithms:

1. (pp) ← AC.Setup(λ): On input of a security parameter λ, outputs pp, a description of
public parameters whose security level depend on λ;

2. (isk, ipk)← AC.IssuerKeyGen(pp): on input of pp, an issuer computes a secret/public key
pair (isk, ipk);

3. (S, auxS) ← AC.VerifierSetup(pp,S ′): on input of pp and a set of ` issuers S ′, a verifier
outputs S a selection of ` ≤ `′ trusted issuers in S ′. The algorithm also outputs auxiliary
information auxS ;

4. (σ) ← AC.Sign(pp,M,C, isk): on input of pp, a set of k messages M = {m1, . . . ,mk}, a
set of commitments to messages C = {ck+1, . . . , ck′}, k′ ≥ k, and an issuer secret key isk,
an issuer outputs a signature σ;

5. (σ′) ← AC.Uncommit(pp,M,C, σ, ipk): on input of pp, a set of k messages M =
{m1, . . . ,mk,mk+1, . . . ,mk′}, a set of commitments to messages C = {ck+1, . . . , ck′},
a signature σ and an issuer public key ipk, the algorithm outputs σ′, a signature on the
set of messages M , where values {mk+1, . . . ,mk′} are uncommitted.

6. (ipk′, πipk′ , σ′, πσ′) ← AC.Randomize(pp, ipk, S, σ, auxS ,M, st, r, c): on input of pp, a
signature σ on the setM of k messages, a public key ipk of the issuer of σ, a set of issuers
S, public auxiliary information auxS , a statement s and two vectors r, c ∈ {0, 1}k, a user:

(a) Produces ipk′, a randomized version of ipk;

(b) Produces a proof πipk′ that ipk′ is an element of S;

(c) Produces a randomized signature σ′ where if ri = 1, then mi ∈M is revealed, other-
wise, if ri = 0, then mi ∈M is left as a commitment;

(d) Produces πσ′ a proof of knowledge of signature for the messages mi ∀i ∈ {1, . . . , k}
such that ci = 1. This ZKP is composed of the statement st, such that the committed
messages mi can be used to prove other statements.

The algorithm outputs ipk′, πipk′ , and σ′.

7. {0, 1} ← AC.VerifyRandomized(pp, auxS , ipk′, πipk′ , σ′, M , πσ′ , st): on input of pp, veri-
fier’s auxiliary information auxS , a randomized issuer key ipk′, a proof πipk′ , a randomized
signature σ′, a set of messages M , a proof πσ′ and a statement st, a verifier outputs 1
if the proof πipk′ is valid, if σ′ is a valid signature on the set of messages M signed with
the secret key associated with ipk′, and if πσ′ is a valid proof of the statement st relative
to elements in M and to elements left as commitments in σ′. The algorithm outputs 0
otherwise.

207

Chapter 10 – A privacy preserving fully distributed IMS framework with (almost) no consensus

Cryptographic authentication mechanism The third cryptographic building block re-
quired is a cryptographic authentication mechanism. This mechanism is the same as the one
presented in Section 9.6.1 and can be implemented in numerous ways, e.g., using classical cryp-
tographic signatures or zero-knowledge proofs. Similarly to Section 9.6.1, the authentication
mechanism has 3 algorithms, Auth.KeyGen, Auth.Prove and Auth.Verify. The public and secret
keys are created with the algorithm sk, pk ← Auth.KeyGen(). The proof of knowledge of the
secret key is created with an algorithm πauth ← Auth.Prove(sk, pk). This proof is verified with
the algorithm {0, 1} ← Auth.Verify(pk, πauth) that outputs 1 only if πauth is a valid proof of
knowledge of the secret key sk associated with the public key pk. Alternatively, pk can be a
randomizable Pedersen commitment. Thus, the verifier does not learn the actual value of pk
when it invokes Auth.Verify.

Ledger The fourth building block required to build a PPfDIMS is a DID-capable distributed
ledger. This ledger enables the auxiliary features of a PPfDIMS, namely the revocation of cre-
dentials, the multi-device feature, and the key recovery feature. Additionally, a distributed ledger
can be used to publish information, i.e., the list of trusted issuers and the type of credentials
accepted for a verifier, the type of credentials issued for an issuer, or the type of cryptographic
primitives supported.

This ledger is implemented by a message-passing distributed algorithm maintained by pro-
cesses in Π as defined in Section 4.1.2.

Processes in Π have access to an algorithm AAP implementing the AAP abstraction as
defined in Section 9.5. The algorithm is assumed to be implemented using abstractions with
low synchronization requirements, such as the Cascading Consensus abstraction. For example,
the implementation proposed in Section 9.6 uses solely the Cascading Consensus abstraction
and the send/receive primitive. As defined in Section 9.5, the AAP abstraction has two oper-
ations, AAP.Update and AAP.Prove, and three callbacks AAP.Updated, AAP.Authorized and
NotAuthorized. As explained in Section 9.7, we use a specific version of the AAP abstraction
where the AAP.Prove operations concern only two processes, a device d and a verifier V . Those
pairs create ad hoc P sets. We add this as a parameter of the AAP.Prove operation. We note
AAP.ProveP the AAP.Prove operation applied to the set P. Similarly, we note AAP.AuthorizedP
the AAP.Authorized callbacks applied to the set P. On the other hand, the AAP.Update opera-
tions are always invoked and managed by the same set of processes Π. Those operations impact
all the potential P sets in an atomic manner.

Additionally, the AAP.AuthorizedP returns the set of states processes in P agreed upon. More
specifically, the callback is AAP.AuthorizedP(Cs, nonce, Prove_Obj), where the Prove_Obj
variable is the set of states of each DID document as seen by the user and the verifier in P
for this specific callback. Using the implementation in Section 9.6, this modification to the ab-

208

10.2. Building blocks

straction comes for free, as any correct process computes the Prove_Obj variable before the
AAP.AuthorizedP callback is triggerred.

Each client (users, issuers, and verifiers) can request the invocation of operations on the
ledger— i.e., modify the ledger—by sending requests to any node p ∈ Π. Correct processes in Π
are assumed to always propagate requests according to their prescribed algorithm. However, the
threat model we use assumes that there may exist Byzantine processes that do not propagate
the requests. Therefore, each client can disseminate its request through each node of the system.
Hence, an updated list of all existing nodes is available to the clients. It is also assumed that
the clients sign any request they issue. Therefore, no Byzantine node can tamper with a client’s
request.

Furthermore, clients have access to the RequestObjValue(Π) operation. This operation can
be seen as a read operation for clients. Its behavior is defined in Section 9.6.2. This operation
returns the state of the ledger to the querying client. Validity of the result is ensured thanks to
the assumption on correct processes, either because the querying client trusts a process in Π, or
because it requests t+ 1 processes.

DID and DID document The authentication mechanism, along with the revocation mech-
anism of our PPfDIMS, is based on DID documents identified by DIDs as specified by the W3C
standard [8]. A DID document is used to enable auxiliary features of a PPfDIMS. A DID method
(the specification of a DID document and its DID) must specify how an actor can create, read,
update, and delete a DID document. In the followings, we do not specify the format of DIDs
considered. We assume each DID follows the W3C standard. DID documents can be separated
into user DID documents and issuer/verifier DID documents. Each user DID document contains
the following fields:

— A DID field DID: links the document to its identifier.
— A type field T : identifies the DID document as a user document.
— A manager’s keys field MId: this field is a set of managers’ public keys. For each DID

document Id, this field is initialized with one public key; it defines the devices authorized
to modify the DID document.

— A prover’s keys field ΨId: this field is a set of provers’ public keys. It is initialized at ∅. It
defines the processes authorized to invoke a Present operation for the verifiable credentials
associated with this DID;

— A sequence number snId: identifies the version of the object, it is initialized at 0 and
monotonically grows.

— A random identifer rId: initialized at 0. It changes with each Authorize or Revoke operation
and consists of the public key of a public/secret key pair.

— A revoked credentials field RC: a set of credentials revoked by the user, initialized as an

209

Chapter 10 – A privacy preserving fully distributed IMS framework with (almost) no consensus

empty set.
— An information field AI: this field is initialized as an empty set; it contains all the

additional information the other system actors may need.
An issuer/verifier DID document contains the following fields:

— A DID field DID: links the document to its identifier.
— A type field T : identifies the DID document as an issuer/verifier document.
— A manager’s keys fieldMId: this field is a set of managers’ public keys. For each DID doc-

ument Id, this field is initialized with one public key, which defines the devices authorized
to modify the DID document.

— A sequence number snId: identifies the version of the object, it is initialized at 0 and
monotonically grows.

— A revoked credentials field RC: a set of credentials revoked by an issuer, initialized as an
empty set.

— An information field AI: this field is initialized as an empty set; it contains all the
additional information the other system actors may need. For example, this field can
be used to publish service endpoints, type of credentials issued, type of cryptographic
schemes supported, type of credential verified, a set of trusted issuers for a specific type
of credential, etc.

In the following, we use the AAP abstraction (c.f. Chapter 9) to implement the ledger used
to maintain DID documents. Hence, the issuer/verifier DID has a random identifier field and a
prover’s key field for compatibility. However, those fields are unused and can be discarded by
processes in Π.

Naming Algorithm To create DIDs, it is required to have access to a distributed naming
algorithm. Two types of naming algorithms can be used: algorithms with the human-choosable
property and algorithms without this property. As explained in Chapter 7 and in Section 8.7.1,
depending on the properties required, synchronization may or may not be required. More pre-
cisely, if the human-choosable property is required, then the naming algorithm requires synchro-
nization, whereas if this property is unnecessary, then the short-naming algorithm can be used.
This algorithm does not require synchronization.

The naming algorithm associates a name to a public key. In the followings, when the naming
operation is succesfull, the name becomes the DID field of a new DID document, and the public
key becomes the only public key in the manager’s field of the DID document.

The non-human-chossable naming abstraction used in the followings is the short-
naming abstraction Short_Naming (c.f. Section 8.7.1). This abstraction is executed by
processes in Π. It has one operation, Short_Naming.Claim(pk, π), and one callback,
Short_Naming.Success(n, pk, π). The Short_Naming.Claim(pk, π) operation is used to create

210

10.2. Building blocks

a new DID document, whose DID is a substring of pk. The Success(n, pk, π) callback is triggerred
when the DID document is created after the invocation of the Short_Naming.Claim(pk, π) op-
eration, and where n is the name attributed to this DID document. 1 The Short_Naming
algorithm fulfills the Unicity, Short-names, Agreement and Termination properties as defined
in Section 8.7.1.

Additionnaly, we use in the followings a human-choosable naming abstraction
HC_Naming. This abstraction has one operation HC_Naming.Claim(n, pk, π) and one call-
back HC_Naming.Success(n, pk, π). The abstraction fulfills the following properties:

— Validity. Let a correct p ∈ Π receive the callback HC_Naming.Success(n, pk, π), then π
is a valid proof of knowledge of the secret key associated to pk.

— Unicity. A correct process p ∈ Π receives at most one callback
HC_Naming.Success(n, ?, ?) for each name n.

— Termination. Let a correct process p ∈ Π invoke the HC_Naming.Claim(n, pk, π) op-
eration, with π a valid proof of knowledge of the secret key associated to pk. Then the
HC_Naming.Success(n, pk′, π′) callback is eventually received at p. 2

— Agreement. If a correct process p ∈ Π receives the callback
HC_Naming.Success(n, pk, π), then the callback HC_Naming.Success(n, pk, π) is
triggerred at all correct processes in Π.

We propose an implementation of the HC_Naming abstraction based on the Cascading
Consensus abstraction. This implementation uses a dictionnary of cascading consensus algo-
rithms. The dictionnary CasCons contains one cascading consensus for each potential name
that may be claimed. We seperate each instance of the naming algorithm such that they can
run in parallel. Hence increasing the efficiency of the scheme. The algorithm is presented in
Algorithm 16.

1 operation HC_Naming.Claim(n, pk, π) is
2 if Auth.VerifySig(pk, π) = false then return ;
3 if HC_Naming.Success(n, ?, ?) as already been received then return ;
4 CasCons[n].ccons_propose(pk, π).

5 when CasCons[n].ccons_decide(pk, π) do
6 if VerifySig(pk, π) = false then return ;
7 Trigger HC_Naming.Success(n, pk, π).

Algorithm 16: Human-choosable naming algorithm implementation based on the cas-
cading consensus abstraction (code for pi)

1. The specification of the short-naming abstraction in Section 8.7.1 does not provide such a callback. However,
it is easy to modfiy the scheme such that, when 〈n, pk, π〉 is added to Namesi, then the callback is triggerred at
pi.

2. Note that pk′ ad π′ may be different from pk and π respectively.

211

Chapter 10 – A privacy preserving fully distributed IMS framework with (almost) no consensus

DIDComm and anonymous two parties communications The last building block is
a privacy preserving two party communication protocol. The presentation of a credential re-
quires two-party communication between a user and a verifier. This protocol must be conducted
anonymously, i.e., this communication should not reveal the user’s identity.

To do so, the DIDcomm [10] standard proposes a way to encapsulate messages and use infor-
mation available in the DID documents of a DIMS to conduct two-party communications. The
idea is for the verifier to be constantly connected and available through a publicly known end-
point. In contrast, the user may disconnect and uses privacy-preserving endpoints, i.e., endpoints
used only once per presentation. Furthermore, the client should only connect through privacy-
preserving networks such as onion routing. The design of such a protocol is out of the scope of
this thesis. The interested reader can refer to the W3C standard [10] for more information.

10.3 PPfDIMS Implementation

This section presents an implementation of the main operations necessary to build a
PPfDIMS. This implementation considers Allen’s minimalization principle: no identifying in-
formation related to the user leaks during the presentation of a credential. Furthermore, during
a presentation, the user does not reveal any extra information besides the statement they want
to prove. This implementation also respects the fully distributed definition stated in Chapter 1.
If different entities manage processes in Π, then up to t < n

3 processes can crash or act in a
Byzantine way, and the system will not be impacted.

We present the PPfDIMS’s main operations and explain how to implement them in a privacy-
preserving manner while minimalizing the synchronization requirements between large sets of
processes. The operations that are required to be implemented are the following:

— CreateDID: This operation, invoked by a user, an issuer, or a verifier, creates a new DID
and its associated DID document. The operation takes as input a public key pk and the
associated secret key sk. The public key becomes the first authorized device with the man-
ager’s right for this DID. This operation can be invoked in two ways. For an issuer or a ver-
ifier, the human-choosable property can be used (c.f. Chapter 7); for a user, it should not
be used. The operation is associated with a callback DIDCreated(DID, pk). The callback
is eventually triggered at any correct process that invokes CreateDID(pk, sk) for the non-
human-choosable naming algorithm. Conversely, with the human-choosable algorithm
opted-in, the callback is only triggered at a correct process that invokes CreateDID(n, pk)
if there is no contention on the name n. If there is contention on the name n, then the
name n is attributed to one of the processes that claimed it, and the other process receives
the DIDCreationFailure(n, pk) callback. This operation is presented in Algorithm 17 and
18 for a device acting as a user and in Algorithm 19 for a device acting as an issuer or a

212

10.3. PPfDIMS Implementation

verifier.
— AuthorizeProverDevice: This operation authorizes a new device, identified by its public

key, to build a verifiable presentation for verifiable credentials associated with a specific
DID. The operation takes as input a DID, the public key of the newly authorized device,
and proof of knowledge of one of the secret keys associated with one of the manager’s
public keys of the DID. If the operation is successful, a UpdateSucess callback is triggered
at the invoking process. Otherwise, a UpdateFailure callback is triggered at the invoking
process. This operation is presented in Algorithm 17 and 18 for a device acting as a user.

— AuthorizeManagerDevice: This operation gives the manager’s right to a new device, iden-
tified by its public key, for a specific DID. The operation takes as input a DID, the public
key of the newly authorized device, and proof of knowledge of one of the secret keys as-
sociated with one of the manager’s public keys of the DID. If the operation is successful,
a UpdateSucess callback is triggered at the invoking process. Otherwise, a UpdateFailure
callback is triggered at the invoking process. This operation is presented in Algorithm 17
and 18 for a device acting as a user and in Algorithm 19 for a device acting as an issuer
or a verifier.

— RevokeProverDevice: This operation revokes the right from a device, identified by its public
key, to build a verifiable presentation for verifiable credentials associated with a specific
DID. The operation takes as input a DID, the public key of the newly authorized device,
and proof of knowledge of one of the secret keys associated with one of the manager’s
public keys of the DID. If the operation is successful, a UpdateSucess callback is triggered
at the invoking process. Otherwise, a UpdateFailure callback is triggered at the invoking
process. This operation is presented in Algorithm 17 and 18 for a device acting as a user.

— RevokeManagerDevice: This operation revokes the manager’s right from a device, identified
by its public key, for a specific DID. The operation takes as input a DID, the public
key of the newly authorized device, and proof of knowledge of one of the secret keys
associated with one of the manager’s public keys of the DID. If the operation is successful,
a UpdateSucess callback is triggered at the invoking process. Otherwise, a UpdateFailure
callback is triggered at the invoking process. This operation is presented in Algorithm 17
and 18 for a device acting as a user and in Algorithm 19 for a device acting as an issuer
or a verifier.

— RotateManagerKey: This operation rotates the manager key of a device for a specific DID.
The operation takes as input the new public key, the old public key, and the associated
old secret key. If the operation is successful, a UpdateSucess callback is triggered at the
invoking process. Otherwise, a UpdateFailure callback is triggered at the invoking process.
This operation is presented in Algorithm 17 and 18 for a device acting as a user and in
Algorithm 19 for a device acting as an issuer or a verifier.

213

Chapter 10 – A privacy preserving fully distributed IMS framework with (almost) no consensus

— RotateProverKey: This operation rotates the prover key of a device for a specific DID. It
takes as input a proof of knowledge of a manager’s secret key. If the operation is successful,
a UpdateSucess callback is triggered at the invoking process. Otherwise, a UpdateFailure
callback is triggered at the invoking process. This operation is presented in Algorithm 17
and 18 for a device acting as a user.

— RevokeCred: revokes a credential based on its random revocation number. A revoked
credential can no longer be used to build verifiable presentations. If the operation is
successful, a UpdateSucess callback is triggered at the invoking process. Otherwise, a
UpdateFailure callback is triggered at the invoking process. This operation is presented
in Algorithm 17 and 18 for a device acting as a user and in Algorithm 19 for a device
acting as an issuer or a verifier. 3

— Issue: an operation invoked by an issuer, in collaboration with a user, issues a credential to
this user based on the verification of its identity elements. This process links the issued
credential to an identifier of the user, its DID, and a random number rrevoc used for
credential revocation. The operation takes as input a DID DID, a set of attributes M
and commitments to attributes C, and a proof π that the user requesting the issuance of
a credential has the required attributes. The proof π can either be digital (e.g., another
anonymous credential) or a physical proof (e.g., an Identity card). The operation outputs
vc, a verifiable credential, and rrevoc. We assume the issuer draws a new random number
for each new credential issued. This operation is presented in Algorithm 21.

— Present: an operation invoked by an user’s device d. Creates a verifiable presentation from
a verifiable credential. It takes as input:
— a verifier V ;
— An anonymous credential vc;
— The set M of messages signed in vc;
— The DID DID associated to vc;
— The revocation number rrevoc of vc;
— The public key pkI of the issuer of the credential;
— The set TV of trusted issuers of a verifier;
— Auxilary information relative to TV ; 4

— A statement st to be proven in zero knowledge;

3. The RevokeCred operation is implemented in Algorithms 18 and 19 using the PrepareUpdate function. This
function sends an UpdateRequest message to some processes in Π. This update is then shared with the other
processes via the Cascading Consensus algorithm. However, the revocation of a credential can be seen as a DenyList
which only supports the Append operation. Hence, and as shown in Chapter 6, this RevokeCred operation, which
is the equivalent of the Append operation of a DenyList, could have been implemented without using a consensus
algorithm. However, we preferred not to add new specificities to the algorithms, as they are already long enough,
and because the Cascading Consensus algorithm acts as a BRB algorithm when there is no contention.

4. In the case of the Hidden Issuer Anonymous Credential scheme presented in Chapter 5, the auxiliary
information is the verifier’s public key vpk.

214

10.4. Conclusion

— A vector r defining the values of M that are revealed to the verifier;
— A vector c defining the values of M that are left as commitment but which are used

to prove s;
— The state s of the DID document DID
— A valid proof σ of anonymous agreement on the state s of the DID document DID

(c.f., Section 9.5);
The main goals of this operation are to enforce unlinkability, to hide the issuer of the
verifiable credential if the issuer-indistinguishability property was opted in, to enforce
selective disclosure, to prove that the credential (or the credentials) used is not revoked,
and to authenticate the device used to invoke the operation. It outputs vp, a verifiable
presentation. This operation uses a ListRevocation function. This function takes as input
a list of DID documents and outputs a set of all revocated credentials that concatenates
each revocation list of each DID document. This operation is presented in Algorithm 22.

— Verify: this operation, invoked by a verifier, is used to verify that a verifiable presentation
is a valid certificate of attributes specified by the verifier, that the verifier trusts the
issuer that issued the credential, that the device that built the verifiable presentation
is authenticated for this verifiable credential, and that the credential is not revoked.
This operation uses the ListRevocation function as defined for the Present operation. This
operation is presented in Algorithm 23

The different operations necessary to build a functionnal PPfDIMS are presented in Algo-
rithms 17, 18, 19, 21, 22, and 23. The functions relative to the communication between devices
and processes in Π are also given in Algorithm 20.

10.4 Conclusion

This chapter presented a guideline for implementing a fully functional PPfDIMS. The build-
ing blocks proposed for the implementation are the main contributions of this thesis. They make
it possible to implement a PPfDIMS with all the features that the user, the identity provider, and
the service provider may require. Furthermore, the different contributions of this thesis were fo-
cused on user privacy and low synchronization requirements. Therefore, the resulting framework
also exposes low synchronization requirements, with high privacy and security guarantees.

This framework is a guideline for developers. The goal of this thesis is for them to use
all or parts of the techniques presented here to propose new PPfDIMS implementations. This
implementation effort is ongoing in the WIDE team, where we aim to propose our own fully
functional PPfDIMS with low synchronization requirements based on the Rust language.

215

Chapter 10 – A privacy preserving fully distributed IMS framework with (almost) no consensus

1 operation CreateDID(pk, sk) is
2 π ← Auth.Prove(pk, sk);
3 Send a message RequestCreateNHCDID(pk, π) to a trusted correct process in Π or to tΠ + 1

processes in Π;
4 operation AuthorizeProverDevice(DID, pkA, skM , pkM) is
5 s ← RequestObjValue(Π)[Id];
6 if not pkM ∈ s.M then return ;
7 s.Ψ← s.Ψ ∪ pkA; BAdds pkA to the list of authorized prover devices.
8 PrepareUpdate(DID, s, skM , pkM);
9 operation RevokeProverDevice(DID, pkA, skM , pkM) is

10 s ← RequestObjValue(Π)[Id];
11 if not pkM ∈ s.M then return ;
12 s.Ψ← s.Ψ \ pkA; BRemoves pkA from the list of authorized prover devices.
13 PrepareUpdate(DID, s, skM , pkM);
14 operation AuthorizeManagerDevice(DID, pkA, skM , pkM) is
15 s ← RequestObjValue(Π)[Id];
16 if not pkM ∈ s.MDID then return ;
17 s.M← s.M∪ pkA; BAdds pkA to the list of authorized manager devices.
18 PrepareUpdate(DID, s, skM , pkM);
19 operation RevokeManagerDevice(DID, pkA, skM , pkM) is
20 s ← RequestObjValue(Π)[Id];
21 s.M← s.M\ pkA; BRemoves pkA from the list of authorized manager devices.
22 PrepareUpdate(DID, s, skM , pkM);
23 operation RotateProverKey(DID, pknew, pkold, pkM , skM) is
24 s ← RequestObjValue(Π)[Id];
25 s.Ψ← s.Ψ ∪ pknew \ pkold; BReplaces pkold with pknew in the list of authorized prover devices.
26 PrepareUpdate(DID, s, skM , pkM);
27 operation RotateManagerKey(DID, pknew, pkold, skM) is
28 s ← RequestObjValue(Π)[Id];
29 s.M← s.M∪ pknew \ pkold; BReplaces pkold with pknew in the list of authorized manager

devices.
30 PrepareUpdate(DID, s, skM , pkM);

Algorithm 17: Ledger operations of a PPfDIMS (code for a device di /∈ Π acting as a
user) (PART I).

216

10.4. Conclusion

31 internal operation PrepareUpdate(DID, s, skM , pkM) is
32 if not pkM ∈ s.M then return ;
33 r, skr ← Auth.Keygen();
34 s.r ← r;
35 πr ← Auth.Prove(r, skr);
36 πUpdateAuth ← Auth.Prove(pkM , skM);
37 Send UpdateRequest(DID, πUpdateAuth, s, pkM , πr) to a trusted correct process in Π or to

t+ 1 processes in Π;
38 operation RevokeCredential(DID, skM , pkM , rrevoc) is
39 s ← RequestObjValue(Π)[Id];
40 s.RC ← s.RC ∪ rrevoc; BAdds the rrevoc element to the list of revoked credentials.
41 PrepareUpdate(DID, s, skM , pkM);
42 when ResultUpdate(DID, res) is received do
43 if res = true then Trigger UpdateSuccess();
44 else
45 Trigger UpdateFailure()

46 when DIDCreated(DID, pk) is received do
47 Trigger DIDCreated(DID, pk).

Algorithm 18: Ledger operations of a PPfDIMS (code for a device di /∈ Π acting as a
user) (PART II).

217

Chapter 10 – A privacy preserving fully distributed IMS framework with (almost) no consensus

48 operation CreateDID(n, pk, sk) is
49 π ← Auth.Prove(pk, sk);
50 Send a message RequestCreateHCDID(n, pk, π) to a trusted correct process in Π or to tΠ + 1

processes in Π;
51 operation AuthorizeManagerDevice(DID, pkA, skM , pkM) is
52 s ← RequestObjValue(Π)[Id];
53 if not pkM ∈ s.M then return ;
54 s.M← s.M∪ pkA; BAdds pkA to the list of authorized manager devices.
55 PrepareUpdate(DID, s, skM , pkM);
56 operation RevokeManagerDevice(DID, pkA, skM , pkM) is
57 s ← RequestObjValue(Π)[Id];
58 s.M← s.M\ pkA; BRemoves pkA from the list of authorized manager devices.
59 PrepareUpdate(DID, s, skM , pkM);
60 operation RotateManagerKey(DID, pknew, pkold, skM) is
61 s ← RequestObjValue(Π)[Id];
62 s.M← s.M∪ pknew \ pkold; BReplaces pkold with pknew in the list of authorized manager

devices.
63 PrepareUpdate(DID, s, skM , pkM);
64 operation RevokeCredential(DID, skM , pkM , rrevoc)) is
65 s ← RequestObjValue(Π)[Id];
66 s.RC ← s.RC ∪ rrevoc; BAdds the rrevoc element to the list of revoked credentials.
67 PrepareUpdate(DID, s, skM , pkM);
68 internal operation PrepareUpdate(DID, s, skM , pkM) is
69 if not pkM ∈ s.MDID then return ;
70 r, skr ← Auth.Keygen();
71 s.r ← r;
72 πr ← Auth.Prove(r, skr);
73 πUpdateAuth ← Auth.Prove(pkM , skM);
74 Send UpdateRequest(DID, πUpdateAuth, s, pkM , πr) to a trusted correct process in Π or to t

processes in Π;
75 when ResultUpdate(DID, res, σ, s) is received do
76 if res = true then Trigger UpdateSuccess(σ, s);
77 else
78 Trigger UpdateFailure()

79 when DIDCreated(DID, pk) is received do
80 Trigger DIDCreated(DID, pk)
81 when DIDCreationFailure(n, pk) is received do
82 Trigger DIDCreationFailure(DID, pk).

Algorithm 19: Ledger operations of a PPfDIMS (code for a device di /∈ Π acting as an
issuer or a verifier).

218

10.4. Conclusion

83 init: Obji ← a dictionnary that records the different Updated callbacks, initially empty;
84 To_Updatei ← A set initialized at ∅;
85 Pending_Namesi ← A set initialized at emptyset.;
86 when UpdateRequest(DID, πUpdateAuth, s, pk, πr) is received from pj do
87 Wait until Short_Naming.Success(DID, ?, ?) or HC_Naming.Success(DID, ?, ?) is

received ;
88 if not (Auth.Verify(pk, πUpdateAuth) and pk ∈ Obji[DID].MDID and Auth.Verify(πr, s.r))

then return ;
89 To_Updatei ← To_Updatei ∪ (DID, s, πUpdateAuth, (pk, πr), pj);
90 AAP.Update(DID, πUpdateAuth, s, (pk, πr));
91 when AAP.Updated(DID, πUpdateAuth, σ, s) is received do
92 Obji[DID]← s;
93 if (DID, π′UpdateAuth, s

′, (pk′, π′r), pj) ∈ To_Update then
94 if s′ = s then
95 To_Updatei ← To_Update \ (DID, s, π′UpdateAuth, (pk′, π′r), pj);
96 Send a ResultUpdate(DID, true, σ, s) message to pj ;
97 else
98 if s.sn = s′.sn then
99 To_Updatei ← To_Update \ (DID, s, π′UpdateAuth, (pk′, π′r), pj);

100 Send a ResultUpdate(DID, false, ∅, ∅) message to pj ; BThe AAP.Update opration was
not successfull due to concurrency.

101 when RequestCreateNHCDID(pk, π) is received from pj do
102 if not Auth.Verify(pk, π) then return ;
103 Pending_Namesi ← Pending_Namesi ∪ (pk, π, pj);
104 Short_Naming.Claim(pk, π)
105 when Short_Naming.Success(n, pk, π) is received do
106 Obji[n]← CreateDocument(n, pk);
107 if (pk, π, pj) ∈ Pending_Namesi then
108 Pending_Namesi ← Pending_Namesi \ (pk, π, pj);
109 Send a DIDCreated(n, pk) message to pj ;

110 when RequestCreateHCDID(n, pk, π) is received from pj do
111 if not Auth.Verify(pk, π) then return ;
112 Pending_Namesi ← Pending_Namesi ∪ (n, pk, π, pj);
113 HC_Naming.Claim(n, pk, π)
114 when HC_Naming.Success(n, pk, π) is received do
115 Obji[n]← CreateDocument(n, pk);
116 if (n, pk′, π′, pj) ∈ Pending_Namesi then
117 Pending_Namesi ← Pending_Namesi \ (n, pk′, π′, pj);
118 if pk′ = pk and π′ = π then
119 Send a DIDCreated(n, pk) message to pj ;
120 else
121 Send a DIDCreationFailure(n, pk) message to pj .

Algorithm 20: Ledger operations of a PPfDIMS, code for pi ∈ Π.

219

Chapter 10 – A privacy preserving fully distributed IMS framework with (almost) no consensus

122 operation Issue(M,C,DID, π) is
123 if π is not valid then return ;
124 rrevoc←$Z;
125 vc← AC.Sign(pp, (M ∪ {DID, rrevoc}), C, skI);
126 return (vc, rrevoc).

Algorithm 21: Credential operations for an issuer I.

127 operation Present(V, vc,M,DID, rrevoc, pkI , TV , auxTV , st, r, c, s, σ) is
128 (pk′I , πpk′

I
, vc′, πvc′)← AC.Randomize(pp, pkI , TV , σ, auxS ,M, s, r, c); BRandomizes the

credential to enable unlinkability, selective disclosure and issuer indistinguishability.
129 CDID ← Commit(DID);
130 Crrevoc ← Commit(rrevoc);
131 πauth = Auth.Prove(pkd, skd) nonce = H(vc′||πvc′ ||CDID||Crrevoc ||πEqualAndRev||πauth||st);
132 AAP.Prove{V,d}(s, σ, nonce, πauth, aux);
133 Wait until AAP.Authorized{V,d}(Cs, nonce, Prove_Obj) is received; BProves authentication

and waits for the verifier to receive the notification.
134 rev_List← ListRevocation(Prove_Obj);
135 πEqualAndRev ← ZKP.Prove({(rrevoc, DID) : Crrevoc = Commit(rrevoc) ∧ CDID =

Commit(DID) ∧ rrevoc ∈M ∧ CDID ∈M ∧ rrevoc /∈ rev_List}); BProves that the
commitment given are commitments to the DID and the revoking number associated to the
credential, and that the credential is not revoked.

136 return vp = (vc′, pk′I , πpk′
I
, πvc′ , CDID, Crrevoc , πEqualAndRev, πauth, st).

Algorithm 22: Credential operations for a user’s device d.

137 operation Verify(vp) is
138 (vc′, ipk′, πipk′ , πvc′ , CDID, Crrevoc , πEqualAndRev, πauth, st) = vp;
139 nonce = H(vc′||πvc′ ||CDID||Crrevoc ||πEqualAndRev||πauth||st);
140 Wait until AAP.Authorized{V,d}(Cs, nonce, Prove_Obj) is received; BVerifies

authentication.
141 if not Auth.verify(πauth) then return 0;
142 if not AC.Verify(pp, auxTV , pk′I , πpk′

I
, vc′,M, πvc′ , st) then return 0;

143 rev_List← ListRevocation(Prove_Obj);
144 if not ZKP.Verify(πEqualAndRev, st) then return 0;
145 return 1.

Algorithm 23: Credential operations for a verifier V .

220

Chapter 11

A STEP BACK ON POLITICAL AND

PHILOSOPHICAL IMPLICATIONS OF

PPFDIMSS

This chapter aims to take a step back on Identity Management Systems from a political and
philosophical perspective. It results from personal reflection and does not reflect the thoughts of
the co-authors who participated in this thesis or the organisms that financed it.

This thesis provides numerous tools to implement privacy-preserving and fully distributed
IMS. However, an IMS is more than just a technical construction. It aims at providing a tool for
individuals to prove their identity elements. This type of tool does not need to be digitalized to
work. In our everyday lives, we already use national identity cards, passports, or driving licenses
to prove our identity. Therefore, the question arises: Why should we use a digitalized IMS?

The answer to this question can seem simple: We want to efficiently and securely prove our
identity on the Internet. However, this answer needs to be completed, as many IMSs also aim to
prove an individual’s identity in the real world. We have seen this in Europe with the COVID-19
vaccine certificate. This use case will also be extended by the eIDAS 2.0 regulation [178]. The
problem with online and offline authentication of individuals is that it uses highly sensitive data.
This data can be used for mass surveillance and/or targeted surveillance of citizens. Therefore,
special considerations must be taken when managing individuals’ identity elements.

The first obvious concern with digital identity is that it increases the potential surface of
attacks on individual identity. Indeed, like any other digital system, implementations are always
flawed to some extent. A security breach may exist that can be exploited to harm the system.
In our context, and if digitalized IMSs are widely spread among citizens, a single breach may
harm a large proportion of the population. Unlike other systems, however, IMSs already exist
in a non-digitalized form. Therefore, this new paradigm will inevitably create new breaches for
an already existing service. Hence, this digitalized form of IMS must be well-defined and limited
to reduce the potential surface of attack. Furthermore, PPfDIMSs use many assumptions, like
anonymous peer-to-peer communications. If those assumptions are not met or flawed, the user’s
privacy is at risk. Side channel reidentification attacks are a concern for any PPfDIMS, and it

221

Chapter 11 – A step back on political and philosophical implications of PPfDIMSs

is not sure that this issue can be addressed in a real-world and widely spread implementation.

The second concern is the difference between the privacy guarantees of a system advertised
by a regulator and the actual privacy guarantees provided by the system. Even if we assume
implementations are perfect, privacy preservation may not be perfect. Indeed, privacy clashes
with some aspects that regulators, legislators, or private companies may require. For example,
one of the aspects of PPfDIMSs we did not tackle in this thesis is accountability. Indeed, an
organization may need to be able to revoke the privacy of individuals in specific cases. If such
an accountability feature is implemented in the system, then privacy is no longer guaranteed by
technical aspects but by organizational aspects. Therefore, individuals who think their privacy
is preserved can act without consideration. It will lead them to present information they would
not have presented if they did not think their privacy was at risk. Therefore, a PPfIMS may
be more impactful than a non-privacy preserving system. Furthermore, some organizations will
likely advertise that they use highly privacy-preserving technologies, e.g., hidden issuer anony-
mous credentials, while they only use them for limited use cases. In the same way, as with
accountability, users will think their privacy is preserved, whereas it is not. Therefore, they will
disclose information they did not intend to and would not have disclosed if they did not think
their privacy was preserved.

The third concern is related to the rebound effect. If an efficient and easy-to-use IMS is
deployed, services and individuals will be more likely to use it. They may use it more than a
non-digitalized IMS (national identity card, passport). Therefore, even if the IMS protects the
user’s privacy, this user will use it more than a regular, non-digitalized IMS. Thus, its personal
information can be recorded at more services. Therefore, each user’s fingerprint may increase.
Related to the previous point, if users think their privacy is preserved, they may increase this
phenomenon. Therefore, even if we assume high privacy guarantees for each presentation, the
user’s presentation will become easier to intersect, ultimately leading to reidentification attacks
that may have a tremendous impact.

The fourth concern is a direct continuation of the previous one. As stated, if an efficient
digital IMS is released and regulatory power passes legislation to encourage its usage, it does
not mean individuals will benefit from using it. It is even possible that people will not want to use
it. However, it can be a real advantage for public and private services, as it may reduce the time
to verify an individual’s identity. Therefore, we may see a wide adoption of those technologies
at the benefit of the services and the detriment of the individuals. Thus, each security and
privacy concern raised in this chapter may be inevitable for individuals who may disagree with
their usage. Furthermore, the added privacy (that may not be that high, as explained before)
does not provide the user with additional liberty or political power. We can use one of Berlan’s
statements [179], which says there has been a shift in the definition of liberty between ancient
Greece and modern democracies. He says that modern democracies’ definition of liberty is the

222

privacy preservation of individuals in their private spaces. In contrast, liberty in ancient Greek
democracies was about the ability to choose the rules for the city. With this definition, the privacy
brought by PPfDIMS slightly increases individuals’ liberty but does not increase its possibility of
ruling. In fact, and as we discussed in the previous paragraphs, it even decreases one’s ability to
influence political decisions by increasing the ability of the state to control individual behaviors
and by requesting more identity element presentations than what is required with regular IMSs.
Furthermore, and due to potential privacy leaks that we already discussed, PPfDIMs may reduce
privacy, liberty, and influence on political decisions at the same time. Thus, a non-regulated
or badly-regulated PPfDIMS adoption would only negatively impact individuals. This fourth
concern can be summarized by a quote from the preface to the third edition of “La société
du spectacle” [180] : “C’est cette volonté de modernisation et d’unification du spectacle, liée à
tous les autres aspects de la simplification de la société, qui a conduit en 1989 la bureaucratie
russe à se convertir soudain, comme un seul homme, à la présente idéologie de la démocratie
: c’est à dire la liberté dictatoriale du Marché, tempérée par la reconnaissance des Droits de
l’homme spectateur.” The quote implies that individuals become spectators of a show they have
no impact on, where simplification of the society, or “frictionless” systems, are adopted to reduce
the burden of administrative work for citizens, at the cost of their political power.

A fifth concern is the accessibility of the deployed system. There will inevitably be indi-
viduals who will not be able to access a digitalized identity. Be it because they do not have
a powerful enough smartphone, their condition prevents them from requesting the issuance of
new digitalized credentials, or because they do not understand how to use their smartphone or
computers. This concern is already a problem with digitalizing public and private services. In
France, around 15% of the population do not have access to or do not know how to use the
Internet [181]. Digitalization of identities will increase the boundary between those who can
use the Internet and those who cannot. Even if interoperability is proposed between digitalized
and regular IMSs, digitalization often reduces the regular access to services for those who do
not know how to use the Internet. For example, in France, the digitalization of public services
reduced the ease of access to public services for people who do not know how to use the In-
ternet [182]. Therefore, we have to be careful when deploying a PPfDIMS. Hence, a PPfDIMS
respecting Allen’s recommendation, namely the access property, may reduce the accessibility to
the system for specific individuals.

None of these concerns (except the first one) can be solved using technical solutions. There
are internal issues that any digitalized IMS incorporates. Modifying how we present and prove
our identity will inevitably impact society overall. To conclude, even if we exposed many points
against the widespread of digitalized IMSs in this section, such systems may be interesting in
specific, chosen, and well-delimited cases. Therefore, any implementation and deployment of such
technology should be regulated by a democratic power. Indeed, and as stated earlier, a state or

223

Chapter 11 – A step back on political and philosophical implications of PPfDIMSs

a private company will always tend to abuse its power. Therefore, such deployment should be
managed by an independent entity without interest in global or individual surveillance. To this
end, the new eIDAS 2.0 regulation [178] and its application in national laws should be carefully
studied to limit the weaknesses a digitalized IMS will inevitably bring.

224

CONCLUSION

This thesis formalized tools and algorithms to build Privacy Preserving fully Distributed
Identity Management Systems (PPfDIMS), a new paradigm in Identity Management Systems
(IMS) that focuses on user privacy and availability. An IMS aims to provide authorization and
authentication means to users. Authorization is when a user presents proof of their identity to
a verifier. Authentication is the process of proving that an identity proof describes a given user.
A PPfDIMS aims to provide authorization and authentication while respecting principles stated
by Christopher Allen [1]. To summarize those principles, an IMS should focus on user consent,
privacy, and control over its identity elements.

In this thesis, we presented PPfDIMSs and the different problems that have to be solved to
implement such a system, namely: a scheme to certify one’s identity elements while preserving
privacy, a way to publish information in a distributed manner, a distributed key management
mechanism, a mechanism to authorize multiple devices to use credentials while enabling strong
authentication guarantees, a revocation mechanism, and a naming algorithm.

We studied those problems formally. First, we highlighted a weakness in state-of-the-art
anonymous credential schemes. Prior to our work (and concurrently with Bobolz et al. paper
[26]), anonymous credential schemes made it mandatory to reveal the issuer of a credential for
the verification process to be computable. We proposed a new scheme, Hidden Issuer Anonymous
Credential, that makes it possible to hide the issuer of a credential while convincing the verifier
that it trusts this issuer. This work was presented in Chapter 5. In this chapter, we presented a
formal definition of this new type of anonymous credential, proposed an implementation of this
scheme, and compared this scheme to the state of the art, theoretically and experimentally.

We then focussed on the distributed system part of PPfDIMSs. First, in Chapters 6 and 7
we formally defined the three main distributed objects used in PPfDIMSs and analyzed their
consensus number: the AllowList, the DenyList, and the Namespace object (or Identifier System
object). This analysis led to the following results. An AllowList does not need synchronization
to be implemented, the Namespace object needs total synchronization of the processes of the
system, and a DenyList needs synchronization between subset of the processes of the system
to be implemented. We also highlighted special cases, like AllowList which support the Remove
operation and which behave like a DenyList. Furthermore, Namespace objects that do not pro-
vide a specific property, namely the human-choosable property, probabilistically do not require
synchronization to be implemented.

This formal study of the distributed objects used in PPfDIMSs was then used to build a

225

PPfDIMS with minimal synchronization requirements. We showed that the revocation of cre-
dentials of a PPfDIMS can be implemented using a DenyList. Therefore, processes that invoke
the Append operation or revoke credentials do not have to use a consensus algorithm. Further-
more, other auxiliary features of a PPfDIMS that we highlighted can be implemented using
an AllowList that supports the Append and the Remove operation. However, only authorized
processes for a specific DID document can invoke such operations. A DID Document can only be
modified by the devices of the individual who owns it. Moreover, two DID documents can be con-
currently modified. Hence, only the devices belonging to a specific individual must synchronize
to modify on-ledger DID documents.

In Chapter 8, we proposed a new consensus algorithm, the Cascading Consensus, built specif-
ically for this purpose. This algorithm, based on the Context Adaptive Cooperation (CAC)
abstraction, detects if concurrent operations are invoked and lets processes that invoke those
operations synchronize and solve the contention. We also designed two naming algorithms based
on the CAC abstraction. The first algorithm is meant for individuals who would likely not share
their DIDs. This algorithm does not provide the human-choosable property and is solely based
on the CAC abstraction. Contrary to other non-human-choosable naming algorithms, this algo-
rithm makes it possible to reduce the entropy of names. The second is based on the Cascading
Consensus algorithm and is used when the human-choosable property is desirable.

This thesis’s developments are summarized in Chapter 10 in which we give a high-level
implementation of a PPfDIMS that completely preserves users’ privacy and proposes all the
desirable properties that such a system should implement.

Perspectives and ongoing works

In this thesis, we focused on analyzing the different properties of a PPfDIMS and propos-
ing solutions to implement them in a privacy-preserving manner with minimal synchronization
requirements. However, some issues still need to be addressed.

First, in Chapter 5, we highlighted a weakness inherent to Hidden Issuer Anonymous Cre-
dential schemes. Indeed, the choice of the set of trusted issuers for a verifier can impact the
privacy guarantees of such schemes. To solve this problem, we proposed a new framework, the
checker, that would inform the user of the potential privacy risks by analyzing the set of trusted
issuers of a verifier. The design and implementation of this checker is a research problem that
requires in-depth analysis. This is an ongoing work.

Second, we proposed in Chapter 10 a high-level implementation of a PPfDIMS, but we did
not implement it. It would be interesting to have an implementation of this framework to analyze
its efficiency and to verify that the proposed framework is usable by individuals. Furthermore,
except for the Hidden Issuer Anonymous Credential scheme, we did not implement the tools

226

presented in this thesis. This would be an interesting work validating the claimed efficiency
gains and usability of the algorithms. This is an ongoing work.

Third, as stated in Chapter 2, we did not tackle the accountability problem. Accountability
is the possibility for an authority to revoke a user’s privacy in case of legitimate suspicions that
this user misbehaved. We can see that this property of a PPfDIMS is in direct contradiction
with privacy preservation, as an actor, usually a state, can revoke this property. Papers that
addressed the trade-off between accountability have already been published [183, 35]. Thus, we
preferred to focus on privacy preservation rather than accountability in this thesis. However,
implementing a PPfDIMS that allows users to access state services would likely require such a
feature.

Fourth, we did not consider biometrics as an authentication means. Indeed, biometrics fea-
tures can be seen as the best authentication means, as they are transportable and directly related
to the user. For example, if we need a recovery mechanism, then the multi-device framework
presented in Chapter 9 would still be necessary. Furthermore, Biometric based identification
requires special hardaware and is based on additional security assumptions. Finally, the two
approaches can be complementary. A PPfDIMS can compose asymmetric cryptography-based
authentication with biometric-based authentication, thus improving security.

Finally, a real impact study on the wide use of PPfDIMS is necessary before such a system is
deployed. Indeed, we pointed out several points in Chapter 11 that may not be solvable, as they
arise from the use of any identity management system. Hence, a sociological, philosophical, and
political study should be conducted to know if the trade-off between the benefits of a PPfDIMS
and the risks it creates is sufficiently secure for wide adoption of such systems. A recent paper
[184] assesses the issues discussed in Chapter 11. They also study the reaction of users to “Self-
Sovereign Identity” solutions. They conclude that PPfDIMS do not provide more control to
users. Using this type of technology even seems to decrease the sensation of control for users.

227

228

BIBLIOGRAPHY

[1] C. Allen, The Path To Self Sovereign Identity, Publication Title: Physical Review Volume:
91, Apr. 2016.

[2] Compatible Time-Sharing System, en, Page Version ID: 1211080905, Feb. 2024, url:
https://en.wikipedia.org/w/index.php?title=Compatible_Time- Sharing_

System&oldid=1211080905 (visited on 03/21/2024).

[3] MD Sadek Ferdous, Farida Chowdhury, and Madini O. Alassafi, In Search of Self-
Sovereign Identity Leveraging Blockchain Technology, 2019, url: https://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=8776589 (visited on 04/09/2024).

[4] Matthew Davie, Dan Gisolfi, Daniel Hardman, John Jordan, Darrell O’Donnell, and
Drummond Reed, « The Trust over IP Stack », in: IEEE Communications Standards
Magazine 3.4 (Dec. 2019), Conference Name: IEEE Communications Standards Maga-
zine, pp. 46–51, issn: 2471-2833, doi: 10.1109/MCOMSTD.001.1900029, url: https:
//ieeexplore.ieee.org/document/9031548 (visited on 03/11/2024).

[5] W3C, Verifiable Credentials Data Model v1.1, 2022.

[6] David Chaum, « Security without Identification: Transaction Systems to Make Big
Brother Obsolete », in: Commun. ACM 28.10 (Oct. 1985), pp. 1030–1044, issn: 0001-
0782, doi: 10.1145/4372.4373.

[7] Christian Lundkvist, Rouven Heck, Joel Torstensson, Zac Mitton, and Michael Sena,
« Uport: A platform for self-sovereign identity », in: URL: https://whitepaper. uport.
me/uPort_ whitepaper_DRAFT20170221. pdf 128 (2017), p. 214.

[8] W3C Decentralized Identifier Working Group, Decentralized Identifiers (DIDs)
v1.0 Core architecture, data model, and representation, tech. rep., Published:
(https://www.w3.org/TR/did-core/), Aug. 2021.

[9] DID Specification Registries, url: https://w3c.github.io/did-spec-registries/
#did-methods (visited on 06/04/2024).

[10] W3C, DIDComm Messaging v2.1 Editor’s Draft, 2023.

[11] Veramo - A JavaScript Framework for Verifiable Data | Performant and modular APIs
for Verifiable Data and SSI, en, url: https://veramo.io/ (visited on 06/05/2024).

[12] Andrew Tobin, « Sovrin: What Goes on the Ledger? », en, in: (2018).

229

https://en.wikipedia.org/w/index.php?title=Compatible_Time-Sharing_System&oldid=1211080905
https://en.wikipedia.org/w/index.php?title=Compatible_Time-Sharing_System&oldid=1211080905
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8776589
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8776589
https://doi.org/10.1109/MCOMSTD.001.1900029
https://ieeexplore.ieee.org/document/9031548
https://ieeexplore.ieee.org/document/9031548
https://doi.org/10.1145/4372.4373
https://w3c.github.io/did-spec-registries/#did-methods
https://w3c.github.io/did-spec-registries/#did-methods
https://veramo.io/

[13] Jolocom, Self Sovereign Identity \ne Blockchain, Dec. 2021, url: https : / / web .

archive . org / web / 20231210204245 / https : / / jolocom . io / blog / dezentrale -

identitaten-not-blockchain-2/ (visited on 03/19/2024).

[14] SSI-on-Blockchain is Objectively a Bad Thing, en, July 2022, url: https://weh.wtf/
ssi.html (visited on 03/19/2024).

[15] Daniel Bosk, Davide Frey, Mathieu Gestin, and Guillaume Piolle, « Hidden Issuer Anony-
mous Credential », in: Proc. Priv. Enhancing Technol. 2022.4 (2022), pp. 571–607.

[16] Wilcox Zooko, Names: Decentralized, Secure, Human-Meaningful: Choose Two, 2001,
url: https : / / pestilenz . org / ~bauerm / names / distnames . html (visited on
04/16/2024).

[17] Aaron Swartz, Squaring the Triangle: Secure, Decentralized, Human-Readable Names
(Aaron Swartz’s Raw Thought), 2011, url: http : / / www . aaronsw . com / weblog /

squarezooko (visited on 04/16/2024).

[18] Alexander Mühle, Andreas Grüner, Tatiana Gayvoronskaya, and Christoph Meinel, « A
survey on essential components of a self-sovereign identity », in: Computer Science Review
30 (Nov. 2018), pp. 80–86, doi: 10.1016/j.cosrev.2018.10.002.

[19] Hyperledger, Aries DKMS, en, 2019, url: https://github.com/hyperledger/aries-
rfcs/blob/main/concepts/0051-dkms/dkms-v4.md (visited on 03/19/2024).

[20] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and George
Danezis, « Coconut: Threshold Issuance Selective Disclosure Credentials with Applica-
tions to Distributed Ledgers », in: NDSS, The Internet Society, 2019.

[21] Davide Frey, Matthieu Gestin, and Michel Raynal, « The Synchronization Power (Con-
sensus Number) of Access-Control Objects: the Case of AllowList and DenyList », in:
Proc. 37th Int’l Symposium on Distributed Computing (DISC’23), vol. 281, LIPICs, 2023,
21:1–21:23.

[22] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson, « Impossibility of Dis-
tributed Consensus with One Faulty Process », in: J. ACM 32 (1985), pp. 374–382.

[23] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and Dragos-Adrian
Seredinschi, « The Consensus Number of a Cryptocurrency », in: Distributed Computing
35 (2022), pp. 1–15.

[24] Alex Auvolat, Davide Frey, Michel Raynal, and François Taïani, « Money Transfer Made
Simple: a Specification, a Generic Algorithm, and its Proof », in: Bulletin of EATCS 132
(2020), pp. 22–43.

[25] Gabriel Bracha and Sam Toueg, « Asynchronous Consensus and Broadcast Protocols »,
in: J. ACM 32.4 (1985), pp. 824–840.

230

https://web.archive.org/web/20231210204245/https://jolocom.io/blog/dezentrale-identitaten-not-blockchain-2/
https://web.archive.org/web/20231210204245/https://jolocom.io/blog/dezentrale-identitaten-not-blockchain-2/
https://web.archive.org/web/20231210204245/https://jolocom.io/blog/dezentrale-identitaten-not-blockchain-2/
https://weh.wtf/ssi.html
https://weh.wtf/ssi.html
https://pestilenz.org/~bauerm/names/distnames.html
http://www.aaronsw.com/weblog/squarezooko
http://www.aaronsw.com/weblog/squarezooko
https://doi.org/10.1016/j.cosrev.2018.10.002
https://github.com/hyperledger/aries-rfcs/blob/main/concepts/0051-dkms/dkms-v4.md
https://github.com/hyperledger/aries-rfcs/blob/main/concepts/0051-dkms/dkms-v4.md

[26] Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai Samelin,
« Issuer-Hiding Attribute-Based Credentials », in: Cryptology and Network Security, ed.
by Mauro Conti, Marc Stevens, and Stephan Krenn, Cham: Springer International Pub-
lishing, 2021, pp. 158–178, isbn: 978-3-030-92548-2.

[27] Maurice Herlihy, « Wait-Free Synchronization », in: ACM Trans. Program. Lang. Syst.
13.1 (1991), pp. 124–149.

[28] Ronald L. Rivest, Adi Shamir, and Yael Tauman, « How to Leak a Secret », in: Advances
in Cryptology — ASIACRYPT 2001, ed. by Colin Boyd, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 552–565.

[29] David Chaum and Eugène van Heyst, « Group Signatures », en, in: Advances in Cryptol-
ogy — EUROCRYPT ’91, ed. by Donald W. Davies, Berlin, Heidelberg: Springer, 1991,
pp. 257–265, isbn: 978-3-540-46416-7, doi: 10.1007/3-540-46416-6_22.

[30] Aisling Connolly, Pascal Lafourcade, and Octavio Perez Kempner, « Improved Construc-
tions of Anonymous Credentials from Structure-Preserving Signatures on Equivalence
Classes », en, in: Public-Key Cryptography – PKC 2022, ed. by Goichiro Hanaoka, Junji
Shikata, and Yohei Watanabe, Cham: Springer International Publishing, 2022, pp. 409–
438, isbn: 978-3-030-97121-2, doi: 10.1007/978-3-030-97121-2_15.

[31] Olivier Sanders and Jacques Traoré, « Compact Issuer-Hiding Authentication, Appli-
cation to Anonymous Credential », in: Proceedings on Privacy Enhancing Technologies
(2024), issn: 2299-0984, url: https://petsymposium.org/popets/2024/popets-
2024-0097.php (visited on 07/02/2024).

[32] Elaine Barker, Recommendation for Key Management: Part 1 – General, en, tech. rep.
NIST Special Publication (SP) 800-57 Part 1 Rev. 5, National Institute of Standards and
Technology, May 2020, doi: 10.6028/NIST.SP.800-57pt1r5, url: https://csrc.
nist.gov/pubs/sp/800/57/pt1/r5/final (visited on 06/26/2024).

[33] AnonCred, AnonCreds Specification, url: https : / / hyperledger . github . io /

anoncreds - spec / #requirements - notation - and - conventions (visited on
03/19/2024).

[34] Jan Camenisch and Anna Lysyanskaya, « An Efficient System for Non-transferable
Anonymous Credentials with Optional Anonymity Revocation », in: Advances in Cryptol-
ogy — EUROCRYPT 2001, ed. by Birgit Pfitzmann, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 93–118.

231

https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-030-97121-2_15
https://petsymposium.org/popets/2024/popets-2024-0097.php
https://petsymposium.org/popets/2024/popets-2024-0097.php
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final
https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final
https://hyperledger.github.io/anoncreds-spec/#requirements-notation-and-conventions
https://hyperledger.github.io/anoncreds-spec/#requirements-notation-and-conventions

[35] Joakim Brorsson, Bernardo David, Lorenzo Gentile, Elena Pagnin, and Paul Stankovski
Wagner, « PAPR: Publicly Auditable Privacy Revocation for Anonymous Credentials »,
en, in: Topics in Cryptology – CT-RSA 2023, ed. by Mike Rosulek, Cham: Springer
International Publishing, 2023, pp. 163–190, isbn: 978-3-031-30872-7, doi: 10.1007/978-
3-031-30872-7_7.

[36] D W Chadwick, « Understanding X.500 », in: (1994), url: https://sec.cs.kent.ac.
uk/x500book/ (visited on 03/14/2024).

[37] The GNU Privacy Handbook, url: https://www.gnupg.org/gph/en/manual.html#
AEN385 (visited on 03/18/2024).

[38] Carl M. Ellison, « Establishing identity without certification authorities », in: 6th
USENIX security symposium (1996), url: https : / / www . usenix . org / legacy /

publications/library/proceedings/sec96/full_papers/ellison/index.html

(visited on 03/13/2024).

[39] Kim Cameron, « The laws of identity », in: Microsoft Corp 12 (2005), pp. 8–11.

[40] Andrew Orlowski, Do Androids Dream of Electric Single Sign-Ons?, en, 2001, url:
https://www.theregister.com/2001/10/24/do_androids_dream_of_electric/

(visited on 03/18/2024).

[41] John Markoff, « TECHNOLOGY; Microsoft Has Quietly Shelved Its Internet ’Persona’
Service », en-US, in: The New York Times (Apr. 2002), issn: 0362-4331, url: https:
//www.nytimes.com/2002/04/11/business/technology-microsoft-has-quietly-

shelved-its-internet-persona-service.html (visited on 03/18/2024).

[42] Mansour Alsaleh and Carlisle Adams, « Enhancing Consumer Privacy in the Liberty
Alliance Identity Federation and Web Services Frameworks », en, in: Privacy Enhancing
Technologies, ed. by George Danezis and Philippe Golle, Berlin, Heidelberg: Springer,
2006, pp. 59–77, isbn: 978-3-540-68793-1, doi: 10.1007/11957454_4.

[43] Marc Le maitre, « The identity web », in: (2002).

[44] Ken Jordan, Jan Hauser, and Steven Foster, « The Augmented Social Network: Building
identity and trust into the next-generation Internet », en, in: First Monday 8.8 (Aug.
2003), issn: 13960466, doi: 10.5210/fm.v8i8.1068, url: http://journals.uic.edu/
ojs/index.php/fm/article/view/1068 (visited on 03/18/2024).

[45] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and M. Chuck, OpenID Connect Core
1.0, tech. rep., Nov. 2014, url: https://openid.net/specs/openid-connect-core-
1_0.html#toc.

[46] OpenID, en, Page Version ID: 1221433932, Apr. 2024, url: https://en.wikipedia.
org/w/index.php?title=OpenID&oldid=1221433932 (visited on 06/06/2024).

232

https://doi.org/10.1007/978-3-031-30872-7_7
https://doi.org/10.1007/978-3-031-30872-7_7
https://sec.cs.kent.ac.uk/x500book/
https://sec.cs.kent.ac.uk/x500book/
https://www.gnupg.org/gph/en/manual.html#AEN385
https://www.gnupg.org/gph/en/manual.html#AEN385
https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/ellison/index.html
https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/ellison/index.html
https://www.theregister.com/2001/10/24/do_androids_dream_of_electric/
https://www.nytimes.com/2002/04/11/business/technology-microsoft-has-quietly-shelved-its-internet-persona-service.html
https://www.nytimes.com/2002/04/11/business/technology-microsoft-has-quietly-shelved-its-internet-persona-service.html
https://www.nytimes.com/2002/04/11/business/technology-microsoft-has-quietly-shelved-its-internet-persona-service.html
https://doi.org/10.1007/11957454_4
https://doi.org/10.5210/fm.v8i8.1068
http://journals.uic.edu/ojs/index.php/fm/article/view/1068
http://journals.uic.edu/ojs/index.php/fm/article/view/1068
https://openid.net/specs/openid-connect-core-1_0.html#toc
https://openid.net/specs/openid-connect-core-1_0.html#toc
https://en.wikipedia.org/w/index.php?title=OpenID&oldid=1221433932
https://en.wikipedia.org/w/index.php?title=OpenID&oldid=1221433932

[47] Cyrille CHAUSSON, France Connect: an ID federation system to simplify administrative
processes, 2015.

[48] Microsoft Corporation, Microsoft’s Vision for an Identity Metasystem, en-us, 2005, url:
https://learn.microsoft.com/en- us/previous- versions/dotnet/articles/

ms996422(v=msdn.10) (visited on 03/11/2024).

[49] kexugit, Security Briefs: A First Look at InfoCard, en-us, Oct. 2006, url: https://
learn.microsoft.com/en- us/archive/msdn- magazine/2006/april/security-

briefs-a-first-look-at-infocard (visited on 06/06/2024).

[50] eIDAS regulation, 2016.

[51] David W. Chadwick, « Federated Identity Management », en, in: Foundations of Security
Analysis and Design V: FOSAD 2007/2008/2009 Tutorial Lectures, ed. by Alessandro
Aldini, Gilles Barthe, and Roberto Gorrieri, Berlin, Heidelberg: Springer, 2009, pp. 96–
120, isbn: 978-3-642-03829-7, doi: 10.1007/978- 3- 642- 03829- 7_3, url: https:
//doi.org/10.1007/978-3-642-03829-7_3 (visited on 06/03/2024).

[52] Drummond Reed, Jason Law, and Daniel Hardman, « The Technical Foundations of
Sovrin », en, in: (2016).

[53] Michael Boyd, Hyperledger Indy Plenum’s overview, Published: (https://hyperledger-
indy.readthedocs.io/projects/plenum/en/latest/main.html), Nov. 2018.

[54] Swiss digital identity law approved by parliament lower house | Biometric Update, en-
US, Mar. 2024, url: https://www.biometricupdate.com/202403/swiss-digital-
identity-law-approved-by-parliament-lower-house (visited on 03/20/2024).

[55] Proposition de RÈGLEMENT DU PARLEMENT EUROPÉEN ET DU CONSEIL mod-
ifiant le règlement (UE) nº 910/2014 en ce qui concerne l’établissement d’un cadre eu-
ropéen relatif à une identité numérique, fr, 2021, url: https://eur-lex.europa.eu/
legal-content/FR/TXT/?uri=CELEX%3A52021PC0281 (visited on 06/03/2024).

[56] Satoshi Nakamoto, Bitcoin: A Peer-toPeer Electronic Cash System, tech. rep., Mar. 2009,
url: https://bitcoin.org/bitcoin.pdf.

[57] Vitalik Buterin, Ethereum: A Next-Generation Smart Contract and Decentralized Appli-
cation Platform. 2014.

[58] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza, « Zerocash: Decentralized Anonymous Payments from Bit-
coin », in: 2014 IEEE Symposium on Security and Privacy, ISSN: 2375-1207, May 2014,
pp. 459–474, doi: 10.1109/SP.2014.36.

233

https://learn.microsoft.com/en-us/previous-versions/dotnet/articles/ms996422(v=msdn.10)
https://learn.microsoft.com/en-us/previous-versions/dotnet/articles/ms996422(v=msdn.10)
https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/april/security-briefs-a-first-look-at-infocard
https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/april/security-briefs-a-first-look-at-infocard
https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/april/security-briefs-a-first-look-at-infocard
https://doi.org/10.1007/978-3-642-03829-7_3
https://doi.org/10.1007/978-3-642-03829-7_3
https://doi.org/10.1007/978-3-642-03829-7_3
https://www.biometricupdate.com/202403/swiss-digital-identity-law-approved-by-parliament-lower-house
https://www.biometricupdate.com/202403/swiss-digital-identity-law-approved-by-parliament-lower-house
https://eur-lex.europa.eu/legal-content/FR/TXT/?uri=CELEX%3A52021PC0281
https://eur-lex.europa.eu/legal-content/FR/TXT/?uri=CELEX%3A52021PC0281
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/SP.2014.36

[59] All cryptocurrencies - Coin Market Capitalization list of all Crypto Currencies and prices
| CryptoRank.io, en, url: https://cryptorank.io/all-coins-list?page=25 (visited
on 06/04/2024).

[60] Jolocom white paper v2.1, A Decentralized, Open Soure Solution For Digital Identity and
Access Management, tech. rep., Dec. 2019.

[61] Self-Sovereign Identity for more Freedom and Privacy, en-US, url: https://selfkey.
org/ (visited on 06/04/2024).

[62] Bob Reid, EverID Whitepaper, 2018.

[63] Karl Marx, Das Kapital. Kritik der politischen Ökonomie. Buch I: Der Produktionsprocess
des Kapitals. Otto Meissner, 1867.

[64] David Graeber, Debt: The first five thousand years, 2011.

[65] SnailMail DID method Specification, url: https://xn-- 3n8h.amy.gy/ (visited on
06/05/2024).

[66] Peer DID Method Specification, url: https : / / identity . foundation / peer - did -
method-spec/index.html (visited on 06/05/2024).

[67] Papers/whitepapers/KERI_WP_2.x.web.pdf at master · SmithSamuelM/Papers, en,
url: https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_
WP_2.x.web.pdf (visited on 06/04/2024).

[68] GNUnet, url: https://www.gnunet.org/en/gns.html (visited on 06/04/2024).

[69] Distributed hash table, en, Page Version ID: 1222986598, May 2024, url: https://en.
wikipedia.org/w/index.php?title=Distributed_hash_table&oldid=1222986598

(visited on 06/05/2024).

[70] SSB DID Method (did:ssb) v0.1, url: https : / / viewer . scuttlebot .

io / &5Bne / slGKH / i1361qemVlNBElWInSUfntlWvMXaD4M4 = .sha256 ? hl =

zQmdh4Ya6WasmjnS4UMn5ot6k5tbCypy1oyhhdJ6yB6MjfT (visited on 06/05/2024).

[71] InterPlanetary File System, en, Page Version ID: 1224580830, May 2024, url: https:
//en.wikipedia.org/w/index.php?title=InterPlanetary_File_System&oldid=

1224580830 (visited on 06/04/2024).

[72] Holochain | Distributed app framework with P2P networking, en, url: https : / /

holochain.org/ (visited on 06/04/2024).

[73] Gabriel Bracha, « Asynchronous Byzantine agreement protocols », in: Information and
Computation 75 (1987), pp. 130–143.

234

https://cryptorank.io/all-coins-list?page=25
https://selfkey.org/
https://selfkey.org/
https://xn--3n8h.amy.gy/
https://identity.foundation/peer-did-method-spec/index.html
https://identity.foundation/peer-did-method-spec/index.html
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_WP_2.x.web.pdf
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_WP_2.x.web.pdf
https://www.gnunet.org/en/gns.html
https://en.wikipedia.org/w/index.php?title=Distributed_hash_table&oldid=1222986598
https://en.wikipedia.org/w/index.php?title=Distributed_hash_table&oldid=1222986598
https://viewer.scuttlebot.io/&5Bne/slGKH/i1361qemVlNBElWInSUfntlWvMXaD4M4=.sha256?hl=zQmdh4Ya6WasmjnS4UMn5ot6k5tbCypy1oyhhdJ6yB6MjfT
https://viewer.scuttlebot.io/&5Bne/slGKH/i1361qemVlNBElWInSUfntlWvMXaD4M4=.sha256?hl=zQmdh4Ya6WasmjnS4UMn5ot6k5tbCypy1oyhhdJ6yB6MjfT
https://viewer.scuttlebot.io/&5Bne/slGKH/i1361qemVlNBElWInSUfntlWvMXaD4M4=.sha256?hl=zQmdh4Ya6WasmjnS4UMn5ot6k5tbCypy1oyhhdJ6yB6MjfT
https://en.wikipedia.org/w/index.php?title=InterPlanetary_File_System&oldid=1224580830
https://en.wikipedia.org/w/index.php?title=InterPlanetary_File_System&oldid=1224580830
https://en.wikipedia.org/w/index.php?title=InterPlanetary_File_System&oldid=1224580830
https://holochain.org/
https://holochain.org/

[74] Maurice P Herlihy and Jeannette M Wing, « Linearizability: A correctness condition for
concurrent objects », in: ACM Transactions on Programming Languages and Systems
12.3 (1990), pp. 463–492.

[75] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit,
« Atomic Snapshots of Shared Memory », in: JACM 40.4 (Sept. 1993), pp. 873–890, issn:
0004-5411, doi: 10.1145/153724.153741, url: https://doi.org/10.1145/153724.
153741.

[76] Steven D. Galbraith, Mathematics of Public Key Cryptography, Cambridge University
Press, 2012, doi: 10.1017/CBO9781139012843.

[77] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart, « Pairings for cryptogra-
phers », in: Discrete Applied Mathematics 156.16 (2008), pp. 3113–3121, issn: 0166-218X.

[78] Jan Camenisch and Markus Stadler, « Efficient group signature schemes for large
groups », in: Advances in Cryptology — CRYPTO ’97, ed. by Burton S. Kaliski, Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 410–424.

[79] David Chaum and Torben Pryds Pedersen, « Wallet Databases with Observers », in:
Advances in Cryptology — CRYPTO’ 92, ed. by Ernest F. Brickell, Berlin, Heidelberg:
Springer Berlin Heidelberg, 1993, pp. 89–105, isbn: 978-3-540-48071-6.

[80] Amos Fiat and Adi Shamir, « How To Prove Yourself: Practical Solutions to Identification
and Signature Problems », in: Advances in Cryptology — CRYPTO’ 86, ed. by Andrew
M. Odlyzko, Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 186–194.

[81] David Bernhard, Olivier Pereira, and Bogdan Warinschi, « How Not to Prove Yourself:
Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios », in: Advances in Cryp-
tology – ASIACRYPT 2012, ed. by Xiaoyun Wang and Kazue Sako, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 626–643.

[82] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest, « A Digital Signature Scheme
Secure Against Adaptive Chosen Message Attack », in: Discrete Algorithms and Com-
plexity, ed. by David S. Johnson, Takao Nishizeki, Akihiro Nozaki, and Herbert S. Wilf,
Academic Press, 1987, pp. 287–310, isbn: 978-0-12-386870-1.

[83] David Chaum, « Blind Signatures for Untraceable Payments », in: Advances in Cryptol-
ogy, 1983, pp. 199–203, isbn: 978-1-4757-0602-4.

[84] David Pointcheval and Olivier Sanders, « Short Randomizable Signatures », in: Topics in
Cryptology - CT-RSA 2016, ed. by Kazue Sako, Cham: Springer International Publishing,
2016, pp. 111–126, isbn: 978-3-319-29485-8.

[85] Jan Camenisch and Anna Lysyanskaya, « A Signature Scheme with Efficient Protocols »,
in: SCN, vol. 2576, Lecture Notes in Computer Science, Springer, 2002, pp. 268–289.

235

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/153724.153741
https://doi.org/10.1017/CBO9781139012843

[86] Jens Groth and Amit Sahai, « Efficient Non-interactive Proof Systems for Bilinear
Groups », in: Electron. Colloquium Comput. Complex. TR07-053 (2007).

[87] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung, « How to share a function
securely », in: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of
Computing, STOC ’94, event-place: Montreal, Quebec, Canada, New York, NY, USA:
Association for Computing Machinery, 1994, pp. 522–533, isbn: 0-89791-663-8, doi: 10.
1145/195058.195405, url: https://doi.org/10.1145/195058.195405.

[88] Adi Shamir, « How to Share a Secret », in: Commun. ACM 22.11 (Nov. 1979), Place:
New York, NY, USA Publisher: Association for Computing Machinery, pp. 612–613, issn:
0001-0782, doi: 10.1145/359168.359176, url: https://doi.org/10.1145/359168.
359176.

[89] Fré Vercauteren, Benger, Bernhard, Catalano, Charlemagne, Conti, Cubaleska, Fernando,
Fiore, Galbraith, Galindo, Hermans, Iovino Vincenzo, Jager, Kohlweiss, Libert, Lindner,
Loehr, Lynch, Moloney, Ouafi, Pinkas, Polach, Di Raimondo, Rückert, Schneider, Singh,
Smart, Stam, Vercauteren, Villar Santos, and Williams, Final Report on Main Compu-
tational Assumptions in Cryptography, tech. rep., Jan. 2013.

[90] Zhiyi Zhang, Michał Król, Alberto Sonnino, Lixia Zhang, and Etienne Rivière, « EL
PASSO: Efficient and Lightweight Privacy-preserving Single Sign On », in: Proceedings
on Privacy Enhancing Technologies, vol. 2, 2021, pp. 70–87, doi: 10.2478/popets-
2021-0018.

[91] The Sovrin foundation, Sovrin: A Protocol and Token for Self-Sovereign Identity and
Decentralized Trust, tech. rep., Jan. 2018.

[92] Md. Sadek Ferdous, Gethin Norman, and Ron Poet, « Mathematical Modelling of Iden-
tity, Identity Management and Other Related Topics », in: Proceedings of the 7th In-
ternational Conference on Security of Information and Networks, SIN ’14, event-place:
Glasgow, Scotland, UK, New York, NY, USA: Association for Computing Machinery,
2014, pp. 9–16, isbn: 978-1-4503-3033-6, doi: 10.1145/2659651.2659729, url: https:
//doi.org/10.1145/2659651.2659729.

[93] SelfKey white paper, tech. rep., Sept. 2017.

[94] Jan Camenisch and Anna Lysyanskaya, « Signature Schemes and Anonymous Credentials
from Bilinear Maps », in: Advances in Cryptology – CRYPTO 2004, ed. by Matt Franklin,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 56–72, isbn: 978-3-540-28628-8.

[95] Foteini Baldimtsi and Anna Lysyanskaya, « Anonymous credentials light », in: Proceed-
ings of the ACM Conference on Computer and Communications Security, Nov. 2013,
pp. 1087–1098, doi: 10.1145/2508859.2516687.

236

https://doi.org/10.1145/195058.195405
https://doi.org/10.1145/195058.195405
https://doi.org/10.1145/195058.195405
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.2478/popets-2021-0018
https://doi.org/10.2478/popets-2021-0018
https://doi.org/10.1145/2659651.2659729
https://doi.org/10.1145/2659651.2659729
https://doi.org/10.1145/2659651.2659729
https://doi.org/10.1145/2508859.2516687

[96] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser,
Ismail Khoffi, Michael J. Fischer, and Bryan Ford, « Scalable Bias-Resistant Distributed
Randomness », in: 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp. 444–
460, doi: 10.1109/SP.2017.45.

[97] Serguei Popov, « On a decentralized trustless pseudo-random number generation algo-
rithm », in: Journal of Mathematical Cryptology 11.1 (2017), pp. 37–43, doi: doi:10.
1515/jmc-2016-0019, url: https://doi.org/10.1515/jmc-2016-0019.

[98] Jan Camenisch and Anna Lysyanskaya, « Dynamic Accumulators and Application to Ef-
ficient Revocation of Anonymous Credentials », in: Advances in Cryptology — CRYPTO
2002, ed. by Moti Yung, Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 61–76,
isbn: 978-3-540-45708-4.

[99] Christina Garman, Matthew Green, and Ian Miers, Decentralized Anonymous Credentials,
Published: Cryptology ePrint Archive, Report 2013/622, 2013.

[100] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup, « Anonymous
Identification in Ad Hoc Groups », in: Advances in Cryptology - EUROCRYPT 2004,
ed. by Christian Cachin and Jan L. Camenisch, Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2004, pp. 609–626, isbn: 978-3-540-24676-3.

[101] Lidong Chen, « Oblivious signatures », in: Computer Security — ESORICS 94, ed. by
Dieter Gollmann, Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 161–172, isbn:
978-3-540-49034-0.

[102] Raylin Tso, « A new way to generate a ring: Universal ring signature », in: Computers
and Mathematics with Applications 65.9 (2013), pp. 1350–1359, issn: 0898-1221.

[103] Jens Groth, « Efficient Fully Structure-Preserving Signatures for Large Messages », in:
Advances in Cryptology – ASIACRYPT 2015, ed. by Tetsu Iwata and Jung Hee Cheon,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 239–259, isbn: 978-3-662-48797-
6.

[104] Josh Benaloh and Michael de Mare, « One-Way Accumulators: A Decentralized Alterna-
tive to Digital Signatures », in: EUROCRYPT ’93, 1994, pp. 274–285, isbn: 978-3-540-
48285-7.

[105] Niko Barić and Birgit Pfitzmann, « Collision-Free Accumulators and Fail-Stop Signa-
ture Schemes Without Trees », in: Advances in Cryptology — EUROCRYPT ’97, ed. by
Walter Fumy, Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 480–494, isbn:
978-3-540-69053-5.

237

https://doi.org/10.1109/SP.2017.45
https://doi.org/doi:10.1515/jmc-2016-0019
https://doi.org/doi:10.1515/jmc-2016-0019
https://doi.org/10.1515/jmc-2016-0019

[106] Lan Nguyen, « Accumulators from Bilinear Pairings and Applications », in: Topics in
Cryptology – CT-RSA 2005, ed. by Alfred Menezes, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 275–292, isbn: 978-3-540-30574-3.

[107] Daniel Benarroch, Matteo Campanelli, Dario Fiore, and Dimitris Kolonelos, « Zero-
Knowledge Proofs for Set Membership: Efficient, Succinct, Modular », in: IACR Cryptol.
ePrint Arch. 2019 (2019), p. 1255.

[108] Jan Camenisch, Rafik Chaabouni, and abhi shelat abhi, « Efficient Protocols for Set
Membership and Range Proofs », in: Advances in Cryptology - ASIACRYPT 2008, ed.
by Josef Pieprzyk, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 234–252,
isbn: 978-3-540-89255-7.

[109] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott, « Constructing Elliptic Curves
with Prescribed Embedding Degrees », in: Security in Communication Networks, ed. by
Stelvio Cimato, Giuseppe Persiano, and Clemente Galdi, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 257–267, isbn: 978-3-540-36413-9.

[110] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente, « An Accumulator Based on
Bilinear Maps and Efficient Revocation for Anonymous Credentials », in: Public Key
Cryptography – PKC 2009, ed. by Stanis\law Jarecki and Gene Tsudik, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 481–500, isbn: 978-3-642-00468-1.

[111] Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig,
« Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority
Anonymous Credentials », in: Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’23, New York, NY, USA: Association
for Computing Machinery, Nov. 2023, pp. 30–44, isbn: 9798400700507, doi: 10.1145/
3576915.3623203, url: https://doi.org/10.1145/3576915.3623203 (visited on
07/02/2024).

[112] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and Dragos-Adrian
Seredinschi, « The Consensus Number of a Cryptocurrency », in: PODC ’19, 2019,
pp. 307–316, isbn: 978-1-4503-6217-7, doi: 10.1145/3293611.3331589, url: https:
//doi.org/10.1145/3293611.3331589.

[113] Orestis Alpos, Christian Cachin, Giorgia Azzurra Marson, and Luca Zanolini, « On the
Synchronization Power of Token Smart Contracts », in: Proc. 41st IEEE Int’l Conference
on Distributed Computing Systems (ICDCS’21), IEEE, 2021, pp. 640–651.

[114] Gaby G. Dagher, Praneeth Babu Marella, Matea Milojkovic, and Jordan Mohler, « Bron-
coVote: Secure Voting System using Ethereum’s Blockchain », in: ICISSP, 2018.

238

https://doi.org/10.1145/3576915.3623203
https://doi.org/10.1145/3576915.3623203
https://doi.org/10.1145/3576915.3623203
https://doi.org/10.1145/3293611.3331589
https://doi.org/10.1145/3293611.3331589
https://doi.org/10.1145/3293611.3331589

[115] Nick Johnson, Shayan Escandari, and Brantly Millegan, Ethereum Name Service Docu-
mentation, Published: (https://docs.ens.domains/).

[116] Harry A. Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau, and Arvind
Narayanan, « An Empirical Study of Namecoin and Lessons for Decentralized Namespace
Design », in: Workshop on the Economics of Information Security, 2015.

[117] Miguel Castro and Barbara Liskov, « Practical Byzantine Fault Tolerance », in: OSDI
’99 also ACM TOCS 2002, Place: New Orleans, Louisiana, USA, 1999, pp. 173–186, isbn:
1-880446-39-1.

[118] Leslie Lamport, « The Part-Time Parliament », in: ACM Trans. Comput. Syst. 16.2
(1998), pp. 133–169.

[119] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma, « RBFT: Redundant Byzan-
tine Fault Tolerance », in: IEEE 33rd International Conference on Distributed Computing
Systems, 2013, pp. 297–306, doi: 10.1109/ICDCS.2013.53.

[120] Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolone-
los, « Zero-Knowledge Proofs for Set Membership: Efficient, Succinct, Modular », in:
Financial Cryptography and Data Security, Springer Berlin Heidelberg, 2021.

[121] Keren Censor-Hillel, Erez Petrank, and Shahar Timnat, « Help! », in: PODC ’15, 2015,
pp. 241–250, isbn: 978-1-4503-3617-8, doi: 10.1145/2767386.2767415, url: https:
//doi.org/10.1145/2767386.2767415.

[122] Leslie Lamport, « Time, Clocks and the Ordering of Events in a Distributed System »,
in: Communications of the ACM 21, (7), 558-565 (July 1978), url: https://www.
microsoft.com/en-us/research/publication/time-clocks-ordering-events-

distributed-system/.

[123] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han, « SoK: Sharding on
Blockchain », in: Proceedings of the 1st ACM Conference on Advances in Financial Tech-
nologies, 2019, pp. 41–61, isbn: 978-1-4503-6732-5, doi: 10.1145/3318041.3355457.

[124] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reischuk, « Re-
naming in an asynchronous environment », in: Journal of the ACM (JACM) 37.3 (1990),
Publisher: ACM New York, NY, USA, pp. 524–548.

[125] Armando Castañeda and Michel Raynal, « On the Consensus Number of Non-adaptive
Perfect Renaming », in: Networked Systems: First International Conference, NETYS
2013, Marrakech, Morocco, May 2-4, 2013, Revised Selected Papers, Springer, 2013, pp. 1–
12.

239

https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1145/2767386.2767415
https://doi.org/10.1145/2767386.2767415
https://doi.org/10.1145/2767386.2767415
https://www.microsoft.com/en-us/research/publication/time-clocks-ordering-events-distributed-system/
https://www.microsoft.com/en-us/research/publication/time-clocks-ordering-events-distributed-system/
https://www.microsoft.com/en-us/research/publication/time-clocks-ordering-events-distributed-system/
https://doi.org/10.1145/3318041.3355457

[126] Domain Name System Security Extensions, en, Page Version ID: 1226085388, May 2024,
url: https://en.wikipedia.org/w/index.php?title=Domain_Name_System_
Security_Extensions&oldid=1226085388 (visited on 06/12/2024).

[127] Buterin Vitalic and Gavin Wood, Ethereum whitepaper, 2014.

[128] Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui, « (Almost) All Ob-
jects Are Universal in Message Passing Systems », en, in: Distributed Computing, ed.
by Pierre Fraigniaud, Berlin, Heidelberg: Springer, 2005, pp. 184–198, isbn: 978-3-540-
32075-3, doi: 10.1007/11561927_15.

[129] Md Sadek Ferdous, Audun Jøsang, Kuldeep Singh, and Ravishankar Borgaonkar, « Secu-
rity Usability of Petname Systems », in: Identity and Privacy in the Internet Age, 2009,
pp. 44–59.

[130] Timothé Albouy, Davide Frey, Mathieu Gestin, Michel Raynal, and François Taïani,
Context Adaptive Cooperation, _eprint: 2311.08776, 2023, url: https://arxiv.org/
abs/2311.08776.

[131] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease, « The Byzantine Generals
Problem », in: ACM Trans. Program. Lang. Syst. 4.3 (1982), pp. 382–401.

[132] Marshall Pease, Robert Shostak, and Leslie Lamport, « Reaching Agreement in the Pres-
ence of Faults », in: J. ACM 27 (1980), pp. 228–234.

[133] Leslie Lamport, « Fast Paxos », in: Distributed Computing 19 (2006), pp. 79–103.

[134] Hagit Attiya and Jennifer L. Welch, Distributed computing - fundamentals, simulations,
and advanced topics, 2nd ed., Wiley, 2004.

[135] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues, Reliable and secure distributed
programming, 1st ed., Springer, 2011.

[136] Michel Raynal, Fault-tolerant message-passing distributed systems: an algorithmic ap-
proach, Springer, 2018.

[137] Bracha and Toueg, « Resilient Consensus Protocols », in: Proc. 2nd ACM Symposium on
Principles of Distributed Computing (PODC’83), 1983, pp. 12–26.

[138] Z. Bouzid, A. Mostéfaoui, and M. Raynal, « Minimal Synchrony for Byzantine Con-
sensus », in: Proc. 34th ACM Symposium on Principles of Distributed Computing
(PODC’15), ACM, 2015, pp. 461–470.

[139] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg, « The Weakest Failure
Detector for Solving Consensus », in: J. ACM 43.4 (1996), pp. 685–722.

240

https://en.wikipedia.org/w/index.php?title=Domain_Name_System_Security_Extensions&oldid=1226085388
https://en.wikipedia.org/w/index.php?title=Domain_Name_System_Security_Extensions&oldid=1226085388
https://doi.org/10.1007/11561927_15
https://arxiv.org/abs/2311.08776
https://arxiv.org/abs/2311.08776

[140] Damien Imbs and Michel Raynal, « Trading off \empht-Resilience for Efficiency in Asyn-
chronous Byzantine Reliable Broadcast », in: Parallel Processing Letters 26 (2016),
1650017:1–1650017:8.

[141] Achour Mostéfaoui and Michel Raynal, « Low cost consensus-based Atomic Broad-
cast », in: Proc. 2000 Pacific Rim International Symposium on Dependable Computing
(PRDC’00), IEEE Computer Society, 2000, pp. 45–52.

[142] Yee Jiun Song and Robbert van Renesse, « Bosco: One-Step Byzantine Asynchronous
Consensus », in: Proc. 22nd Int’l Symposium on Distributed Computing (DISC’08),
vol. 5218, Lecture Notes in Computer Science, Springer, 2008, pp. 438–450.

[143] Piotr Zielinski, « Optimistically Terminating Consensus: All Asynchronous Consensus
Protocols in One Framework », in: Proc. 5th Int’l Symposium on Parallel and Distributed
Computing (ISPDC’06), IEEE Computer Society, 2006, pp. 24–33.

[144] Jakub Sliwinski, Yann Vonlanthen, and Roger Wattenhofer, « Consensus on Demand »,
in: Proc. 24th Int’l Symposium on Stabilization, Safety, and Security of Distributed Sys-
tems (SSS’22), vol. 13751, 2022, pp. 299–313.

[145] Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis, « Cuttlefish: Expres-
sive Fast Path Blockchains with FastUnlock », in: CoRR abs/2309.12715 (2023), arXiv:
2309.12715, doi: 10.48550/ARXIV.2309.12715, url: https://doi.org/10.48550/
arXiv.2309.12715.

[146] Leslie Lamport, « A Fast Mutual Exclusion Algorithm », in: ACM Trans. Comput. Syst.
5.1 (1987), pp. 1–11.

[147] Gadi Taubenfeld, « Contention-sensitive data structures and algorithms », in: Theor.
Comput. Sci. 677 (2017), pp. 41–55.

[148] Michel Raynal, Concurrent programming: Algorithms, principles and foundations,
Springer, 2013.

[149] Gadi Taubenfeld, Synchronization algorithms and concurrent programming, Pearson Ed-
ucation/Prentice Hall, 2006.

[150] Francisco Vilar Brasileiro, Fabíola Greve, Achour Mostéfaoui, and Michel Raynal, « Con-
sensus in One Communication Step », in: Proc. 6th International Conference on Paral-
lel Computing Technologies (PaCT’01), vol. 2127, Lecture Notes in Computer Science,
Springer, 2001, pp. 42–50.

[151] Jean-Philippe Martin and Lorenzo Alvisi, « Fast Byzantine Consensus », in: IEEE Trans.
Dependable Secur. Comput. 3.3 (2006), pp. 202–215.

[152] Fernando Pedone and André Schiper, « Optimistic atomic broadcast: a pragmatic view-
point », in: Theor. Comput. Sci. 291.1 (2003), pp. 79–101.

241

https://doi.org/10.48550/ARXIV.2309.12715
https://doi.org/10.48550/arXiv.2309.12715
https://doi.org/10.48550/arXiv.2309.12715

[153] Petr Kuznetsov, Andrei Tonkin, and Yan Zang, « Revisiting optimal resilience of fast
Byzantine consensus », in: Proc. 40th ACM Symposium on Principles of Distributed Com-
puting (PODC’21), 2021, pp. 343–353.

[154] H. Attiya and J. L. Welch, « Brief Announcement: Multi-Valued Connected Consensus:
A New Perspective on Crusader Agreement and Adopt-Commit », in: DISC’23, Lipics,
vol. 281, 2023, 36:1–36:7.

[155] Danny Dolev, « The Byzantine Generals Strike Again », in: J. Algorithms 3.1 (1982),
pp. 14–30.

[156] Pesech Feldman and Silvio Micali, « An Optimal Probabilistic Protocol for Synchronous
Byzantine Agreement », in: SIAM J. Comput. 26.4 (1997), pp. 873–933.

[157] Eli Gafni, « Round-by-Round Fault Detectors: Unifying Synchrony and Asynchrony (Ex-
tended Abstract) », in: Proc. 17th ACM Symposium on Principles of Distributed Com-
puting (PODC’98), ACM, 1998, pp. 143–152.

[158] Michael Ben-Or, « Another Advantage of Free Choice (Extended Abstract): Completely
Asynchronous Agreement Protocols », in: Proc. 2nd ACM Symposium on Principles of
Distributed Computing (PODC’83), 1983, pp. 27–30.

[159] Bret Victor, Tripphrases, 2008, url: http://worrydream.com/tripphrase/.

[160] Daniel Shawcross Wilkerson, « A Proposal for Proquints: Identifiers that are Readable,
Spellable, and Pronounceable », in: CoRR abs/0901.4016 (2009), arXiv: 0901.4016, url:
http://arxiv.org/abs/09011.4016.

[161] Danny Dolev, Cynthia Dwork, and Larry J. Stockmeyer, « On the minimal synchronism
needed for distributed consensus », in: J. ACM 34.1 (1987), pp. 77–97.

[162] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer, « Consensus in the presence
of partial synchrony », in: J. ACM 35.2 (1988), pp. 288–323, doi: 10.1145/42282.42283,
url: https://doi.org/10.1145/42282.42283.

[163] Rachid Guerraoui, « Indulgent algorithms », in: Proc. 19th Int’l Symposium on Dis-
tributed Computing (DISC’00), vol. 281, ACM Press, 2000, pp. 298–298.

[164] Rachid Guerraoui and Michel Raynal, « The alpha of indulgent consensus », in: The
Computer Journal, vol. 50, 2007, pp. 53–67.

[165] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal, « Signature-Free Asyn-
chronous Binary Byzantine Consensus with t>n/3, O(N2) Messages, and O(1) Expected
Time », in: J. ACM (2015).

242

http://worrydream.com/tripphrase/
http://arxiv.org/abs/09011.4016
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283

[166] Sebastian Pape, « A Survey on Non-transferable Anonymous Credentials », en, in: The
Future of Identity in the Information Society, ed. by Vashek Matyáš, Simone Fischer-
Hübner, Daniel Cvrček, and Petr Švenda, Berlin, Heidelberg: Springer, 2009, pp. 107–
118, isbn: 978-3-642-03315-5, doi: 10.1007/978-3-642-03315-5_8.

[167] Russell Impagliazzo and Sara Miner More, « Anonymous credentials with biometrically-
enforced non-transferability », in: Proceedings of the 2003 ACM workshop on Privacy
in the electronic society, WPES ’03, New York, NY, USA: Association for Computing
Machinery, Oct. 2003, pp. 60–71, isbn: 978-1-58113-776-7, doi: 10 . 1145 / 1005140 .
1005150, url: https://dl.acm.org/doi/10.1145/1005140.1005150 (visited on
03/19/2024).

[168] Marina Blanton and William M. P. Hudelson, « Biometric-Based Non-transferable
Anonymous Credentials », en, in: Information and Communications Security, ed. by Si-
han Qing, Chris J. Mitchell, and Guilin Wang, Berlin, Heidelberg: Springer, 2009, pp. 165–
180, isbn: 978-3-642-11145-7, doi: 10.1007/978-3-642-11145-7_14.

[169] DIF Wallet Security WG, en, 2023, url: https : / / github . com / decentralized -

identity / org / blob / master / Org % 20documents / WG % 20documents / DIF _ Wallet _

Security_WG_Charter_20210616.pdf (visited on 03/19/2024).

[170] Abylay Satybaldy, Md. Sadek Ferdous, and Mariusz Nowostawski, « A Taxonomy of
Challenges for Self-Sovereign Identity Systems », in: IEEE Access 12 (2024), Conference
Name: IEEE Access, pp. 16151–16177, issn: 2169-3536, doi: 10.1109/ACCESS.2024.
3357940, url: https://ieeexplore.ieee.org/abstract/document/10413448 (visited
on 03/13/2024).

[171] Hyperledger Aries Distributed Key Management System, 2019.

[172] Timothé Albouy, Emmanuelle Anceaume, Davide Frey, Mathieu Gestin, Arthur Rauch,
Michel Raynal, and François Taïani, Asynchronous BFT Asset Transfer: Quasi-
Anonymous, Light, and Consensus-Free, _eprint: 2405.18072, 2024, url: https : / /

arxiv.org/abs/2405.18072.

[173] Mathieu Baudet, Alberto Sonnino, Mahimna Kelkar, and George Danezis, « Zef: Low-
latency, Scalable, Private Payments », in: CoRR abs/2201.05671 (2022).

[174] Jan Camenisch and Victor Shoup, « Practical Verifiable Encryption and Decryption of
Discrete Logarithms », en, in: Advances in Cryptology - CRYPTO 2003, ed. by Gerhard
Goos, Juris Hartmanis, Jan Van Leeuwen, and Dan Boneh, vol. 2729, Series Title: Lecture
Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 126–
144, isbn: 978-3-540-40674-7 978-3-540-45146-4, doi: 10.1007/978-3-540-45146-4_8,
url: http://link.springer.com/10.1007/978- 3- 540- 45146- 4_8 (visited on
09/03/2024).

243

https://doi.org/10.1007/978-3-642-03315-5_8
https://doi.org/10.1145/1005140.1005150
https://doi.org/10.1145/1005140.1005150
https://dl.acm.org/doi/10.1145/1005140.1005150
https://doi.org/10.1007/978-3-642-11145-7_14
https://github.com/decentralized-identity/org/blob/master/Org%20documents/WG%20documents/DIF_Wallet_Security_WG_Charter_20210616.pdf
https://github.com/decentralized-identity/org/blob/master/Org%20documents/WG%20documents/DIF_Wallet_Security_WG_Charter_20210616.pdf
https://github.com/decentralized-identity/org/blob/master/Org%20documents/WG%20documents/DIF_Wallet_Security_WG_Charter_20210616.pdf
https://doi.org/10.1109/ACCESS.2024.3357940
https://doi.org/10.1109/ACCESS.2024.3357940
https://ieeexplore.ieee.org/abstract/document/10413448
https://arxiv.org/abs/2405.18072
https://arxiv.org/abs/2405.18072
https://doi.org/10.1007/978-3-540-45146-4_8
http://link.springer.com/10.1007/978-3-540-45146-4_8

[175] Ralph C. Merkle, « A Digital Signature Based on a Conventional Encryption Function »,
in: Advances in Cryptology — CRYPTO ’87, ed. by Carl Pomerance, Berlin, Heidelberg:
Springer Berlin Heidelberg, 1988, pp. 369–378.

[176] C. P. Schnorr, « Efficient Identification and Signatures for Smart Cards », in: Advances in
Cryptology — CRYPTO’ 89 Proceedings, ed. by Gilles Brassard, New York, NY: Springer
New York, 1990, pp. 239–252.

[177] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer, « From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again »,
in: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS
’12, New York, NY, USA: Association for Computing Machinery, Jan. 2012, pp. 326–349,
isbn: 978-1-4503-1115-1, doi: 10.1145/2090236.2090263, url: https://dl.acm.org/
doi/10.1145/2090236.2090263 (visited on 09/12/2024).

[178] Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL amending Regulation (EU) No 910/2014 as regards establishing a framework
for a European Digital Identity, en, 2021, url: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX:52021PC0281 (visited on 07/17/2024).

[179] Aurelien Berlan, Terre et liberté. La quête d’autonomie contre le fantasme de délivrance -
Aurélien Berlan, fr, 2021, url: https://www.decitre.fr/livres/terre-et-liberte-
9791095432302.html (visited on 07/17/2024).

[180] Guy Debord, La société du spectacle, fr, troisième édition, 1992.

[181] Fracture numérique : l’illectronisme touche plus de 15% de la population | vie-publique.fr,
fr, June 2023, url: https://www.vie-publique.fr/en-bref/290057-fracture-
numerique- lillectronisme- touche- plus- de- 15- de- la- population (visited on
07/18/2024).

[182] Cours des comptes, L’accès aux services publics dans les territoires ruraux, fr, 2019.

[183] Michael Backes, Jan Camenisch, and Dieter Sommer, « Anonymous yet accountable ac-
cess control », in: Proceedings of the 2005 ACM workshop on Privacy in the electronic
society, WPES ’05, New York, NY, USA: Association for Computing Machinery, Nov.
2005, pp. 40–46, isbn: 978-1-59593-228-0, doi: 10.1145/1102199.1102208, url: https:
//dl.acm.org/doi/10.1145/1102199.1102208 (visited on 10/02/2024).

[184] Nicholas Martin and Frederik Metzger, « The chimera of control: Self-sovereign identity,
data control, and user perceptions », in: Human Technology 20 (Sept. 2024), pp. 183–223,
doi: 10.14254/1795-6889.2024.20-2.1.

244

https://doi.org/10.1145/2090236.2090263
https://dl.acm.org/doi/10.1145/2090236.2090263
https://dl.acm.org/doi/10.1145/2090236.2090263
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0281
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0281
https://www.decitre.fr/livres/terre-et-liberte-9791095432302.html
https://www.decitre.fr/livres/terre-et-liberte-9791095432302.html
https://www.vie-publique.fr/en-bref/290057-fracture-numerique-lillectronisme-touche-plus-de-15-de-la-population
https://www.vie-publique.fr/en-bref/290057-fracture-numerique-lillectronisme-touche-plus-de-15-de-la-population
https://doi.org/10.1145/1102199.1102208
https://dl.acm.org/doi/10.1145/1102199.1102208
https://dl.acm.org/doi/10.1145/1102199.1102208
https://doi.org/10.14254/1795-6889.2024.20-2.1

[185] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf, « Pseudonym Sys-
tems », in: Selected Areas in Cryptography, ed. by Howard Heys and Carlisle Adams,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 184–199, isbn: 978-3-540-46513-
3.

[186] Torben P. Pedersen, « Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing », in: CRYPTO, vol. 576, Lecture Notes in Computer Science, Springer, 1991,
pp. 129–140.

245

246

Appendix A

E-VOTE SYSTEM IMPLEMENTATION

USING A DENYLIST OBJECT

In this section, we show that DenyList objects can provide upper bounds on the consensus
number of a complex objects. As an example, we study an e-vote system. An e-vote system
must comply with the same properties as an ”in-person” voting. An ”in-person” voting system
must ensure four security properties, two for the organizers and two for the voters. First, the
organizers of the vote must ensure that each person who votes has the right to do so. Second,
each voter must vote only once. Third, a voter must verify that their vote is considered in the
final count. Fourth, an optional property is voter anonymity. Depending on the type of vote, the
voter may want to hide their identity.

We want to design a distributed e-vote system, where a voter can submit their vote to multiple
different voting servers—while ensuring the unicity of their vote. We assume each server is a
process of the distributed infrastructure. The voters act as clients, submitting vote requests to
the servers. We assume the ”right to vote” property is ensured using tokens. The Token is a
one-time-used pseudonym that links a vote to a voter. Users obtains their Tokens from an issuer.
All the voting servers trust this issuer. Neither the voters nor the issuer has access to the e-vote
object—except if one of the actors assumes multiple roles. Using these specifications, we define
the e-vote object type as follows:

Definition A.1. The e-vote object type supports two operations: Vote(Token, v) and
VoteCount(). Token is the voter’s identifier, and v is the ballot. Moreover, these operations
support three mandatory properties and one optional property:

1. (Vote Validity) A Vote(Token, v) invoked at time t is valid if:
— Token is a valid token issued by an issuer trusted by the voting servers; and
— No valid Vote(Token, v′) operation was invoked at time t′ < t, where v′ 6= v.

2. (VoteCount validity) A VoteCount() operation returns the set of valid Vote operations
invoked.

3. (optional - Anonymity) A Token does not link a vote to its voter identity, even if the
voting servers and the issuers can collude.

247

In the following, we analyze an e-vote system based on signatures. The issuer issues a signa-
ture to the voter. The message of the signature is a nonce. The tuple (signature, nonce) is used
as a token. When a voter issues a vote request, the server verifies the signature’s validity and
proceeds to vote if the signature is valid.

Adding anonymity to a signature-based e-vote system can be easily achieved using blind
signatures [83]. A blind signature algorithm is a digital signature scheme where the issuer does
not learn the value it signs. Because the signed value is usually a nonce, the issuer does not need
to verify the value—a value chosen maliciously will not grant the voter more privileges than
expected.

Formally, a Blind signature algorithm is defined by the tuple (Setup, Commit, Sign, Un-
commit, Verify), where Setup creates the common values of the scheme (generators, shared
randomness, etc...) and secret/public key pairs for all issuers. The public keys are shared with
all the participants in the system. Commit is a commitment scheme that is hiding and bind-
ing; it outputs a commitment to a value—the nonce—randomly chosen by the user. The Sign
algorithm takes as input a commitment to a nonce and the secret key of an issuer. It outputs a
signature on the commitment. The Uncommit algorithm takes a signature on a commitment and
the issuer’s public key as input and outputs the same signature on the uncommitted message
(the original message). Finally, the Verify algorithm outputs 1 if the uncommitted signature is
a valid signature by an issuer on the message m.

Algorithm 24 provides a wait-free implementation of an e-vote system using any signature
scheme, one k-DenyList object, and one SWMR atomic snapshot object. Here, the value of k
corresponds to the number of voting servers, and k=|ΠV | = |ΠM |. The idea of the algorithm
is to use the Append operation to state that a token has already been used to cast a vote. In
order to obtain a wait-free implementation, we use a helper value [121] stored in the Atomic
Snapshot object AS-prevote. The vote operation is conducted as follows: the voting server V
communicates the vote it will cast in the AS-prevote object. Then, V conducts a Prove(Token)
operation to prove that the Token has not yet been used. Then, V invokes an Append(Token)
operation and waits until the Append is effective—the do-while loop in line 8 to 10. Finally, V
uses the Read operation to verify that it is the only process that proposed a vote for this specific
Token. If it is the case, the vote is added to the vote array—the AS-vote array. Otherwise,
the vote is added to the vote array only if the other servers that voted using the same Token
proposed the same ballot in line 4.

Other implementations can be proposed in the case of two concurrent transactions requested
by the same voter—to different servers—with different values. For example, it is possible to
modify the algorithm presented in Algorithm 24 using a deterministic function to choose one
value among all the potential votes. This modification does not impact the properties of this
implementation.

248

We now provide an informal proof of the linearizability of this implementation. The anti-
flickering property of the k-DenyList object ensures the termination of the while loop. Therefore,
the implementation is wait-free. The same property ensures that the vote-values variables are
the same for all voters with the same Token, thus ensuring the unicity of the vote. The proof
of authorization of the vote is ensured by the signature verification in line 1. The anonymity
property is also fulfilled if a blind signature scheme is used. Therefore, the use of anonymous
DenyList objects is not required. Hence, we can conclude that the consensus number of the
k-DenyList object type is an upper bound on the consensus number of an e-vote system.

Shared variables:
k-dlist ← k-DenyList object;
AS-prevote ← Atomic Snapshot object, initially {∅}k

AS-vote ← Atomic Snapshot object, initially {∅}k

Operation Vote((signature, pk, token, v) is:
1: If Verify(signature, token, pk) 6= 1 then:
2: Return false;
3: AS-prevote.Update((token, v), p);
4: ret ← k-dlist.Prove(token)
5: If ret = false then:
6: Return false;
7: k-dlist.Append(token);
8: Do:
9: ret ← k-dlist.Prove(token);

10: While ret 6= false; 11: votes ← k-dlist.Read();
12: client-votes ← all values in votes where token is token;
13: voters ← all processes in client-votes;
14: vote-values ← all values in AS-prevote

‘ where token is token and processes that added the value are in voters;
15: If vote-values = {v}l,∀ l ≥ 1 then:
16: previous-votes ← AS-vote.SNAPSHOT()[p];
17: AS-vote.Update(previous-votes ∪ (token, v, voters), p);
18: Return true;
19: Else return false;
Operation VoteCount() is:
20: votes ← all values in AS-vote.Snapshot().

Only one occurrence of each tuple (token, v, voters) is kept;
21: Return votes;

Algorithm 24: Implementation of an e-vote object using one k-DenyList object and
Atomic Snapshots

249

It is also possible to build a wait-free implementation of a k-consensus object using one e-vote
object. This implementation is presented in Algorithm 25. The idea of this algorithm is that
each process will try to vote with the same Token. Because only one vote can be accepted, the
e-vote object will only consider the first voter. Ultimately, every process will see the same value
in the vote object. This value is the result of the consensus.

Each invocation is a sequence of a finite number of local operations and e-vote object accesses,
which are assumed atomic. Therefore, each process terminates the PROPOSE operation in a
finite number of its own steps. A vote can only be taken into account if it was proposed by some
process, which enforces the validity property. The agreement property comes from the unicity of
the vote. Finally, the non-trivial property of the consensus object is ensured because the decided
value is any value v chosen by the winning process.

Shared variables:
vote-obj ← e-vote object where the only authorized token is 0;
σ ← signature on 0 by a trusted issuer;

Operation Propose(v) is:
1: vote-obj.Vote((σ, 0), v);
2: {(winner-token, value)} ← vote-obj.VoteCount();
3: Return value;

Algorithm 25: Implementation of a k-consensus object using one e-vote object

The consensus number of a blind-signature-based e-vote system is bounded on one side by
the consensus number of a k-consensus object and the other side by the consensus number of
a k-DenyList object. Hence, the blind-signature-based e-vote object type has consensus number
k.

250

Appendix B

POSSIBLE ADDITIONAL PROPERTIES TO

THE HIAC SCHEME

We presented the general hidden issuer Anonymous Credential scheme in 5.7.1. in this section
we will present alternative properties we can achieve with the same signature, by modifying it
slightly.

B.1 Non Transferable Signature

It can be useful for the verifier to ensure that a given credential was actually issued to the
user who is using it, and not to someone else. Because of the unlinkability property, this cannot
be straightforward. For example, the easiest way to obtain this property consists in adding an
element in the message that is linked to its user. However, this would break the unlinkability
property. We offer a way to make our signature non transferable without this drawback.

The idea consists in discouraging transfers by relying on an external escrow where the user
stores some valuable item, or money. Sharing a credential would also imply sharing the valuable
in the escrow. This is called PKI-assured non-transferability [185].

We propose to adapt this property to our scheme. The user will put something valuable
inside an escrow, and lock it in place with a private key. The user then uses this private key
instead of the random value Ry in step 4 (Sign algorithm). He then proves to the issuer, that
the value he gives to it (which in our protocol was named u = Y

Ry
1 gR1) is a commitment to a

key that can open the escrow. The value of this escrow will depend on the requirements of the
issuer. Afterward, the process is the same, except for the protocol VerifyRandomized. We add
an interactive ZKP verification to the original algorithm:

ZKPoK{(Ryrur(u,y)) : hy = g
Ryrur(u,y)
2 }

This allows the verifier to ensure that the user knows the blinding elements, in particular
the non-transferable element Ry. If all the issuers follow the requirements of the verifier, then
the credentials are non transferable. This technique can also be used to link credentials between
themselves. A verifier can verify that different credentials embed the same Ry’s values. It proves

251

that they were issued to the same user.
This modification can be added to the PS signature scheme to enable non-transferability

property.

B.2 Signature on Commitments and One-Show Credential

An interesting feature to have in a credential scheme is optional one-show property. In this
configuration, a credential can only be used once. It can be particularly useful in e-vote systems
for example.

To enhance this property, the easiest way is for the issuer to sign committed message. If the
issuer’s key is used for this purpose only, the message can represent a nonce, that will identify the
credential. Before showing the credential, the user will un-commit the message, while keeping
the signature structure. Thus, the verifier will see the nonce, and will be able to add it to a
shared ledger. Any message with a nonce already added to the ledger is thus revoked. With this
protocol, the user gets one-show property, without loosing any other security properties.

To adapt this principle to our scheme, we use a modified PS signature on committed message
protocol. In fact, to achieve this property we only modify the Sign algorithm:

Sign(pp, iskI , u, u′, φ): on input of a setup parameter pp„ an issuer’s secret key iskI =
(xI , yI), two values given by the user u = (Y (I)

1)H(m)Ry · gR1 and u′ = (Y (I)
1)H(H(m))Ry · gR1 ,

where Ry and R are secret random values, and m is the message, and φ a ZKPoK of u, φ :
NI −ZKPoK{(H(m)Ry, R) : u = Y

(I)H(m)Ry
1 · gR1 ∧u′ = Y

(I)H(H(m))Ry
1 · gR1 }. Initially, the issuer

outputs a signature σ∆ = (h1, h2, σ
∆
1 , σ

∆
2), where h1 = g

r(I,1)
1 , h2 = g

r(I,2)
1 , σ∆

1 = (gxI1 · u)r(I,1) ,
σ∆

2 = (gxI1 · u′)r(I,2) , with r(I,1), r(I,2)←$Z∗p. The user then uncommits the signature σ∆ into
σ = (h1, h2, σ1 = σ∆

1 · h−R1 , σ2 = σ∆
2 · h−R2). The user stores σ and Ry.

With this transformation, the other parts of the protocol are not modified, and the issuer
does not learn the message signed.

252

Appendix C

HIAC’S PROOFS

C.1 Assumptions

Our signature scheme relies on several complexity assumptions:

Definition C.1. [Discrete Logarithm (DL) assumption] Given h ∈ G, with G a group
generated by g, no PPT adversary can find x such that h = gx with non negligible probability.

Definition C.2. [Computational Diffie Hellman (CDH) Assumption] Given (g, gx, gy) ∈
G, with G a group generated by g, no PPT adversary can find gxy with non negligible probability.

Definition C.3. [Bilinear Diffie Hellman(BDH) Assumption] Given a type 3 bilinear map
e : G1×G2 → GT , with 〈g1〉 = G1, 〈g2〉 = G2 and (gai , gbj , gck), ∀i, j, k ∈ {1, 2}, no PPT adversary
can find e(g1, g2)abc with non negligible probability.

Definition C.4. [Decisional Diffie Hellman (DDH) Assumption] Given (g, gx, gy, h) ∈ G,
with G a group generated by g, no PPT adversary can decide with non negligible probability if
h = gxy .

C.2 Aggregator Correctness

We prove in this subsection that the aggregator presented in Section 5.7.1 is correct.

Proof. We prove the correctness of the aggregator by developing the verification equation with
values produced following the entire protocol:

e((W)′(i), C ′) = e

(
g

sk r2
1
xl

1 , gxlr12

)
= e(g1, g2)sk r2 r1

= e
(
gsk

1 , g
r1 r2
2

)
= e(gsk1 , h)

253

C.3 Aggregator Collision-Freedom

We want to prove that the aggregator scheme proposed in 5.7.1 is collision-free. We restate
Theorem 5.2:

Theorem 5.2. CollisionFreedomGame(A, C), for a challenger C, and an adversary A :
— Setup: C runs the aggregator Setup algorithm, chooses a set S, runs the Gen algorithm

to build a commitment to S, and the associated verification key. A is given the aggregator’s
public information.

— Output: A outputs C∗ a commitment to s∗ and π∗s . The game outputs 1 if s∗ /∈ S, and
Verify(pp,Agg, aux, sk, C∗, π∗s) = 1, or 0 otherwise.

An Aggregator is said to be element-indistinguishable if for a negligible ε, the probability for a
PPT Adversary A can to win the CollisionfreedomGame is:

Pr[CollisionfreedomGame(A, C) = 1] ≤ ε

We will prove Theorem 5.2 by contradiction, i.e., we assume the adversary is able to find a
tuple (C∗, π∗s = ((W)′∗(l), h∗)) such that:

e((W)′∗(l), C∗) = e(gsk
1 , h

∗))

We will process as follow:

1. Representation of the elements;

2. Proof that (W)′∗(l) is a combination of different (W)i i ∈ {1, · · · , k};

3. Proof that (W)′∗(l) is composed on only one (W)i i ∈ {1, · · · , k}; and

4. Proof of Theorem 5.2.

C.3.1 Representation of the Elements

Figure C.1 is a game representation of Theorem 5.2.

Remark C.1. Probability of success of a game i is written as Pr[Si]. Success is obtained
when a game returns 1. the adversary has a negligible advantage in Game1A if Pr[S1] ≤ ε, where
ε is negligible.

For the ease of the proof, we set a notation for each element produced by the adversary :

C∗ =gsx2

254

Theorem− 6−Game1A

1 : (x1, ..., xk)←$ (Z∗p)k;
2 : PK1 = (X(1)

1 , ..., X
(k)
1) = (gx1

1 , ..., gxk1)
3 : PK2 = (X(1)

2 , ..., X
(k)
2) = (gx1

2 , ..., gxk2)
4 : P̄K1 = (X̄(1)

1 , · · · , X̄(k)
1) = (g

1
x1
1 , · · · , g

1
xk
1)

5 : (W, sk)←$Gen(PK1, PK2, P̄K1)
6 : (h∗, C∗, (W)′∗(l), η)←$A(PK1,PK2, P̄K1,W);
7 : a1 := e((Wy)I∗,Comm(s∗))
8 : a2 := e(gsk

1 , h
∗)

9 : If a1 = a2 ∧X(I)∗
2 6= gxlη2 ,∀i ∈ {1, ..., k}:

10 : return 1;
11 : Else:
12 : return 0;

Figure C.1 – Theorem 5.2 game representation. PK1 is the set of aggregated values in G1 and
PK2 is the set of aggregated values in G2. η is a randomizing value, known by the adversary.

π∗s =((W)′∗(l), h∗)

=(gsw1 , gsh2) (C.1)

We develop the pairings a1 and a2 from Figure C.1, using notation from Equation (C.1).

a1 =e((W)∗(l), C∗)

=e(gsw1 , gsx2)

=gswsxT (C.2)

a2 =e(gsk
1 , h

∗)

=e(gsk
1 , g

sh
2)

=gshsk
T (C.3)

From the Equation a1 = a2, the Equation (C.2) and the Equation (C.3), we can write:

a1 = a2

⇔ gsxswT = gshsk
T

⇒ sxsw ≡ shsk (mod p− 1) (C.4)

We rewrite Game1A, using Equation (C.4) development. This game is presented in Figure C.2

255

Theorem− 6−Game2A

1 : (x1, ..., xk)←$ (Z∗p)k;
2 : PK1 = (X(1)

1 , ..., X
(k)
1) = (gx1

1 , ..., gxk1)
3 : PK2 = (X(1)

2 , ..., X
(k)
2) = (gx1

2 , ..., gxk2)
4 : P̄K1 = (X̄(1)

1 , · · · , X̄(k)
1) = (g

1
x1
1 , · · · , g

1
xk
1)

5 : (W, sk)←$Gen(PK1, PK2, P̄K1)
6 : (gsh2 , gsw1 , gsx2 , η)←$A(PK1,PK2, P̄K1,W);
7 : a′1 := swsx

8 : a′2 := shsk
9 : If a′1 ≡ a′2 (mod p− 1)∧gsx2 6= gxiη2 ,∀i ∈ {1, ..., k}:
10 : return 1;
11 : Else:
12 : return 0;

Figure C.2 – Theorem 5.2 game - notation modifications

Game1A and Game2A are exactly the same games, with notation modification, this implies
that Pr[S1] = Pr[S2].

C.3.2 Proof that (W)′∗(l) is a Combination of Different (W)i i ∈ {1, · · · , k}

The goal is to prove that (W)′∗(l) is a composition of (W)i. Informally, it is possible to
understand this statement as the fact that the adversary needs to output an element in G1

containing sk. Under CDH assumption, the only way he can achieve this is by using a combination
of (W)i.

First, we state that under type-3 bilinear pairing assumption, finding a morphism from G2

to G1 is as hard as solving the DL problem [89]. Then, from the equation a′1 = a′2, we know that
swsx depends on sk. And sk is only disclosed as an exponent in G1. Thus, under DL assumption,
the adversary has to include sk inside sw. In other words sw = skζ for some ζ. Because sk is only
known to the adversary in (W)i, under CDH assumption we can deduct that (W)′∗(l) is a linear
combination of (W)i values.

From the above discussion, sw is composed of W values. Therefore, we can represent sw as
follow:

sw = sk
k∑
i=1

(
bi
xi

)
(C.5)

Where the bi ∈ Zp, 1 ≤ i ≤ k, are factors known and chosen by the adversary, and
k∑
i=1

(|bi|) ≥

1.
Furthermore, we know that swsx

sh
= sk. Let us assume x1, · · · , xk = sk. In this case, deg(sw) =

256

Theorem− 6−Game3A

1 : (x1, ..., xk)←$ (Z∗p)k;
2 : PK1 = (X(1)

1 , ..., X
(k)
1) = (gx1

1 , ..., gxk1)
3 : PK2 = (X(1)

2 , ..., X
(k)
2) = (gx1

2 , ..., gxk2)
4 : P̄K1 = (X̄(1)

1 , · · · , X̄(k)
1) = (g

1
x1
1 , · · · , g

1
xk
1)

5 : (W, sk)←$Gen(PK1, PK2, P̄K1)

6 : (gsh2 , g
sk
∑k

i=1

(
bi
xi

)
1

7 : , gsx2 , η)←$A(PK1,PK2, P̄K1,W);

8 : a′1 :=sxsk
∑k
i=1

(
bi
xi

)
9 : a′2 := shsk
10 : If a′1 = a′2 ∧ g

sy
2 6= gxiη2 ,∀i ∈ {1, ..., k}:

11 : return 1;
12 : Else:
13 : return 0;

Figure C.3 – sw representation game

0 in term of values unknown by the adversary, i.e., sk, x1, · · · , xk (from Equation (C.5)). We
thus face an easier problem : sx

sh
= sk. Solving the first problem implies being able to solve

the second one. Furthermore, sx and sh are outputed by the adversary in G2, this mean that
they are buil using (g2, g

sk
2). From the equation sx

sh
= sk we know that sh should be of degree

0, or lower. However, getting deg(sh) < 0 is directly equivalent to the Diffie Hellman inversion
problem in this case, which is equivalent to CDH problem [76]. Thus deg(sh) = 0, in other world,
the adversary knows the discrete logarithm of gsh2 . We can thus conclude that deg(sx) = 1.

According to this discussion, we write a new game, presented in Figure C.3. We call this new
game: Game3A.

The transition between Game3A and Game2A is a failure based transition, where the failure
event is the probability for the adversary to find a solution to the CDH problem or the DL
problem. This means :

|Pr[S3]− Pr[S2] | ≤ εCDH + εDL

257

C.3.3 Proof that (W)′∗(l) is Composed of Only One (W)i i ∈ {1, · · · , k}

If we rewrite the equation a′1 = a′2 from Game3A, we obtain:

sxsk
k∑
i=1

(
bi
xi

)
= shsk

⇔sx
k∑
i=1

(
bi
xi

)
= sh

We need to study the value sx
sh
. We want to prove that no adversary can output sx

sh
=

1∑k

i=1

(
bi
xi

) unless bi = 0 for (k− 1) i’s. Or, in other words, that sx
sh

= xI
bI
, 1 ≤ I ≤ k, and bI ∈ Z∗p.

Another way to explain this expression is to say that the Adversary has to use exactly one
witness to build the (W)∗I value.

Lemma C.1. Given (g2, g
x1
2 , ..., gxk2), no adversary can output, with non negligible prob-

ability, gsx2 and gsh2 such that sx
sh

= 1∑k

i=1

(
bi
xi

) , and more than one bi 6= 0, ∀i ∈ {1, ..., k}.

We will prove Lemma C.1 by contradiction, proving that finding such values gsh2 and gsx2 is
at least as hard as solving the CDH problem.

Proof. Hypothesis 1 : Given (g2, g
x1
2 , ..., gxk2), an adversary can output, with non negligible prob-

ability, gsx2 and gsh2 such that sx
sh

= 1∑k

i=1

(
bi
xi

) , and more than one bi 6= 0, ∀i ∈ {1, · · · , k}.

We know from the previous step of the proof that deg(sh) = 0, thus, we only study the
values taken by sx, assuming sh is a value known by the adversary, independent of the variables
xi, ∀i ∈ {1, · · · , k}.

We study the case where they are only two variables, i.e., we give to the adversary
(g2, g

x1
2 , gx2

2). We will prove that CDH problem can be reduced to this simplified version of
the problem. We write the restricted version of the game:

Game C.1. Let G2 be a group, let g2 be a generator of this group, and let x1, x2 be two
elements in Z∗p. Given (g2, g

x1
2 , gx2

2), output g
x1x2

x1b2+x2b1
2 , for some b1, b2 ∈ Z∗p.

Remark C.2. It is easy to reduce Lemma C.1 to Game C.1, by adding ad hoc values
x3 = 1, · · · ,= xk = 1 to the construction of Game C.1.

If the adversary has a non negligible probability of success in Game C.1, then he has access
to an algorithm A, that given (g, gx1 , gx2), outputs with non negligible probability g

x1x2
x1b1+x2b2 , for

any values b1, b2, independent from x1 and x2. Given this algorithm, the adversary can query:
A(g, g1+x1 , g1−x1) = g

(1+x1)(1−x1)
(1+x1)+(1−x1) = g

1−x2
1

2 . Lets call this value a. Then, the adversary is able
to extract gx2 = a−2 · g. Thus, the algorithm A can solve the Diffie Hellman squaring problem,
which is equivalent to CDH problem [76]. Therefore, under CDH assumption, no PPT adversary

258

Theorem− 6−Game5A

1 : (x1, ..., xk)←$ (Z∗p)k;
2 : PK1 = (X(1)

1 , ..., X
(k)
1) = (gx1

1 , ..., gxk1)
3 : PK2 = (X(1)

2 , ..., X
(k)
2) = (gx1

2 , ..., gxk2)
4 : P̄K1 = (X̄(1)

1 , · · · , X̄(k)
1) = (g

1
x1
1 , · · · , g

1
xk
1)

5 : (W, sk)←$Gen(PK1, PK2, P̄K1)

6 : (gsh2 , I, g
sk bIxI
1

7 : , gsx2 , η)←$A(PK1,PK2, P̄K1,W);
8 : a′1 :=sksxbI bIxI
9 : a′2 := sksh
10 : If a′1 = a′2 ∧ g

sx
2 6= gxiη2 ,∀i ∈ {1, · · · , k}:

11 : return 1;
12 : Else:
13 : return 0;

Figure C.4 – Theorem 5.2 game with reduction of the sw value

can solve Game C.1 with probability greater than εCDH, with εCDH the probability to solve the
CDH problem. By extension, hypothesis 1 is contradicted. Thus Lemma C.1 is proven.

C.3.4 Proof of Theorem 5.2

We have sx
sh

= xI
bI
, 1 ≤ I ≤ k, and bI ∈ Z∗p.

We rewrite Game3A using Lemma C.1. This new game is provided in Figure C.4. We call
this new game: Game4A.

The transition between Game4A and Game3A is a failure based transition, where the failure
event is the probability for the adversary to find a solution to the CDH problem. This means :

|Pr[S4]− Pr[S3] | ≤ F

≤ εCDH

We develop again a′1 = a′2 with values from Game5A:

sksx
bI
xI

= sksh
k∏
j=1

(xj)

⇔sx = xI
sh
bI

259

Theorem− 6−Game6A

1 : (x1, ..., xk)←$ (Z∗p)k;
2 : PK1 = (X(1)

1 , ..., X
(k)
1) = (gx1

1 , ..., gxk1)
3 : PK2 = (X(1)

2 , ..., X
(k)
2) = (gx1

2 , ..., gxk2)
4 : P̄K1 = (X̄(1)

1 , · · · , X̄(k)
1) = (g

1
x1
1 , · · · , g

1
xk
1)

5 : (W, sk)←$Gen(PK1, PK2, P̄K1)
6 : (gsx2 , η′)←$A(PK1,PK2, P̄K1,W);
7 : If gsx2 = gxIη

′

2 ,∀I ∈ {1, ..., k}
8 : ∧gsx2 6= gxIη

′

2 ,∀I ∈ {1, ..., k}:
9 : return 1;
10 : Else:
11 : return 0;

Figure C.5 – Theorem 5.2 game with develloped a′1 and a′2

We write a final game, directly developing a′1 and a′2, with sh
bI

= η′. This game is presented
in Figure C.5

This last transition is a notation modification, thus Pr[S5] = Pr[S4].
And the probability of success of Game6A is obviously 0, as the condition of success is a

contradiction.
Now we can evaluate probability of success of Game1A:

|Pr[S5]− Pr[S1] | ≤ 2 · εCDH + εDL

And, as Pr[S5] = 0:

Pr[S1] ≤ 2 · εCDH + εDL (C.6)

Probability of success of Game1A is negligible. Therefore our aggregator construction is
collision free.

C.4 Proof of Element-Indistinguishability

Theorem 5.3. The aggregator scheme presented in Section 5.7.1 is element indistinguishable.
Given an aggregator Aggx, the set of secret values accumulated in the aggregator (x1, · · · , xk},
k ≥ 2, a set-membership proof πs, and a randomized commitment C ′ to an element of the set S,
no PPT adversary can find with non negligible probability the element s the user committed to.

260

The element indistinguishable property states that no malicious verifier can, with non neg-
ligible probability, decide which elements the user commits to. In order to prove this statement,
we need a preliminary lemma:

Lemma C.2. Given (g, gx1 , · · · , gxn) ∈ Znp . Under DDH assumption, no PPT adversary is
able to distinguish between non linear expression of the variables with non negligible probability.

Proof. We will prove Lemma C.2 by contradiction.
We assume that, given (g, gx1 , · · · , gxn , h), the adversary (malicious verifier) is able to decide

with non negligible probability if h ?= gx1+···+xixj+···+xn , for i, j ∈ {1, · · · , n}. If we set xk =
0,∀k 6= {i, j}, then this decision the adversary is able to make is equivalent to find, with
non negligible probability, a solution to the DDH problem. Under DDH assumption, this has
negligible probability to occur. This implies that Lemma C.2 is true.

Given this lemma, it is possible to prove Theorem 5.3:

Proof. Let define element indistinguishability with two elements x1 and x2. With the bi-
linear map e, and the elements he is given, the adversary is able to compute the tuple
(gT , gr1aT , gr2bT , gr1r2T , gr1r2abT). He must decide, with non negligible probability whether (a =
x1 ∧ b = x2) ∨ (a = x2 ∧ b = x1).

The order of G1,G2 and GT is prime, thus every element of these groups is a generator,
except from the neutral element. Therefore, every elements presented in Table C.2 will be seen,
from the adversary point of view, as elements chosen uniformly at random in one of these groups.

Furthermore the value gr1r2abT is symmetrical. The adversary knows this value, but cannot
use it in any way to distinguish between a and b. And gr1r2T does not depend on a nor b.

Therefore, the adversary has to combine and compare the different element he is given to be
able to distinguish between a and b.

However, we can argue, using Lemma C.2, that the adversary is not able to combine the
values (gT , gr1aT , gr2bT , gr1r2T) to take its decision.

Thus the adversary is not able to decide whether (a = x1∧ b = x2)∨ (a = x2∧ b = x1) under
DDH assumption. Thus our aggregator implementation is element indistinguishable.

C.5 Signature Correctness

We prove in this subsection that the signature presented in Section 5.7.1 is correct.

Proof. First, the aggregator is correct, thus, the verification of an honestly built aggregator will
always output 1. Then, let σ′ = (h′1, h′2, σ′1, σ′2) be a randomized signature built following the

261

above protocol, let (X(I)′ , Y
(I)′

2) be commitments to trusted issuer’s keys, and let vsk = (skx, sky)
be a secret verifier key. We can verify that the signature is correct:

e(h′1, X(i)′Y
(i)′H(m)

2)

= e(grI,1r
′
u

1 , g
xIru+ruyIRyH(m)
2)

= e(g1, g2)r(I,1)r
′
uru(xI+yIRyH(m))

= e(gr(I,1)r
′
uru(xI+yIRyH(m))

1 , g2)

= e(σ′1, g2)

e(h′2, X(i)′Y
(i)′H(H(m))

2)

= e(gr(I,2)r
′′
u

1 , g
xIru+ruyIRyH(H(m))
2)

= e(g1, g2)r(I,2)r
′′
u ru(xI+yIRyH(H(m)))

= e(gr(I,2)r
′′
u ru(xI+yIRyH(H(m)))

1 , g2)

= e(σ′2, g2)

C.6 EUF-CMA Proof

We prove that the signature scheme presented in Section 5.7.1 has the EUF-CMA property.
Here is a summary of the steps of the proof:

1. We use Appendix C.3 proof to represent the commitment the adversary makes to the
issuer’s keys;

2. We present the elements of the signature as polynomials, as a function of the elements
published by the verifier and the issuers;

3. We reduce these polynomials; and

4. We analyze the reduced polynomials, and we prove that if the adversary is able to output
such signature, either he is also able to invert a hash funcion, or he is using an already
queried signature.

As a preliminary, we give the notations we will use to discuss a forged signature. This notation
is used for a potential σ∗ value, which is a forged signature on a message m∗ never queried to
one of the verifier’s trusted issuer’s signing oracle. We note this signature:

262

EUF − CMA1A

1 : (sk, pk)←$ KeyGen(1λ);
2 : (m∗, σ∗)←$AOSign(sk,•)(pk);
3 : If Verify(pk,m∗, σ∗) = 1 and m∗ /∈M :
4 : return 1;
5 : Else:
6 : return 0;

Figure C.6 – EUF-CMA game. M represents the already queried messages.

σ∗ = (h∗1, h∗2, σ∗1, σ∗2)

= (gs11 , g
s2
1 , g

sσ1
1 , g

sσ2
1) (C.7)

Theorem C.1. Given the tuple (g1, Y1, Y2, X, X̄1, Ȳ1), and given access to a signing oracle,
that can sign messages on behalf of all issuers, no adversary can output, with non negligible
probability, a signature (h∗1, h∗2, σ∗1, σ∗2, X(I1)∗, Y

(I2)∗
2) that was not queried to the signing oracle,

and that verifies:

e(h∗1, X(I1)∗(Y (I2)∗
2)H(m∗)) = e(σ∗1, g2)

e(h∗2, X(I1)∗(Y (I2)∗
2)H(H(m∗))) = e(σ∗2, g2)

Remark C.3. Theorem C.1 represents commitment to x and y issuer’s keys as indepen-
dent. Indeed, the two aggregator, and therefore the two associated set-membership proofs are
independent. At this point of the proof, we can not know if I1 and I2 are equal or different. We
will see later that they are indeed equal.

Proof. We will prove Theorem C.1 by contradiction.
We present in Figure C.6 the EUF-CMA property as a game, for a generic signature scheme.

We define M as the set of messages already queried to the oracle. OSign(sk, •) represents the
access to the signing oracle. Any query to the oracle outputs k different signature, issued by the
k different trusted issuers.

The advantage of the adversary in the EUF-CMA game is:

Adveufcma
Σ (A) = |Pr[S1]− (p− 1)−1| (C.8)

Where Pr[Si] = PriA = 1.

263

EUF − CMA2A

1 : SKx = (x1, ..., xk)←$ (Z∗p)k;
2 : SKy = (y1, ..., yk)←$ (Z∗p)k;
3 : X = (X(1), · · · , X(k)) = (gx1

2 , · · · , gxk2)
4 : Y1 = (Y (1)

1 , · · · , Y (k)
1) = (gy1

1 , · · · , gyk1)
5 : Y2 = (Y (1)

2 , · · · , Y (k)
2) = (gy1

2 , · · · , gyk2)
6 : X̄1 = (X̄(1)

1 , · · · , X̄(k)
1) = (g

1
x1
1 , · · · , g

1
xk
1)

7 : Ȳ1 = (Ȳ (1)
1 , · · · , Ȳ (k)

1) = (g
1
y1
1 , · · · , g

1
yk
1)

8 : PK = {X, X̄1, Y1, Ȳ1, Y2}
9 : (m∗, h∗1, h∗2, σ∗1 , σ∗2 ,
10 : X(I1)∗, Y (I2)∗)←$AOSign(SKx,SKy,•)(PK);
11 : a1 = e(h∗1, X(I1)∗(Y (I2)∗

2)H(m)∗)
12 : a2 = e(σ∗1 , g2)
13 : a3 = e(h∗2, X(I1)∗(Y (I2)∗

2)H(H(m))∗))
14 : a4 = e(σ∗2 , g2)
15 : If a1 = a2 ∧ a3 = a4 ∧m∗ /∈M :
16 : return 1;
17 : Else:
18 : return 0;

Figure C.7 – EUF-CMA game - notation modifications. M represents the already queried mes-
sages.

We modify the generic game presented in Figure C.6 with the values of our protocol. The
new game is presented in Figure C.7.

We rewrite this game, using the result of Theorem 5.2, i.e., X(I1)∗ = g
xI1ηx
2 and Y

(I2)∗
2 =

g
yI2ηy
2 . Where I1 and I2 represent two verifier’s trusted issuers, and ηx and ηy represent two
random values known by the adversary. We also use the notations from Equation (C.7). We
assume the adversary makes n queries to the Signing Oracles. This new game is represented in
Figure C.8.

The difference between probability of success of the game EUF− CMA3A and the game
EUF− CMA2A is the probability for the Adversary to solve the problem defined in Theorem 5.2:

|Pr[S3]− Pr[S2] | ≤ 2 · εCDH + εDL

We develop the equations in line 13 from the game EUF− CMA3A. The goal is to represent
these equations as polynomials as a function of public values given to the adversary. With
h∗ = H(m∗):

264

EUF − CMA3A

1 : SKx = (x1, ..., xk)←$ (Z∗p)k;
2 : SKy = (y1, ..., yk)←$ (Z∗p)k;
3 : X = (X(1), ..., X(k)) = (gx1

2 , ..., gxk2)
4 : Y1 = (Y (1)

1 , · · · , Y (k)
1) = (gy1

1 , · · · , gyk1)
5 : Y2 = (Y (1)

2 , · · · , Y (k)
2) = (gy1

2 , · · · , gyk2)
6 : X̄1 = (X̄(1)

1 , · · · , X̄(k)
1) = (g

1
x1
1 , · · · , g

1
xk
1)

7 : Ȳ1 = (Ȳ (1)
1 , · · · , Ȳ (k)

1) = (g
1
y1
1 , · · · , g

1
yk
1)

8 : PK = {X, X̄1, Y1, Ȳ1, Y2}
9 : (m∗, gs1

1 , g
s2
1 , g

sσ1
1 , g

sσ1
1 , X(I1)∗ = g

xI1ηx
2 ,

10 : Y (I2)∗ = g
yI2ηy
2 , ηx, ηy,)←$AOSign(SKx,SKy,•)(PK);

11 : a1 = e(gs1
1 , g

xI1ηx
2 g

H(m∗)yI2ηy
2)

12 : a2 = e(gsσ1
1 , g2)

13 : a3 = e(gs2
1 , g

xI1ηx
2 g

yI2 H(H(m∗))ηy
2)

14 : a4 = e(gsσ2
1 , g2)

15 : If a1 = a2 ∧ a3 = a4 ∧m∗ /∈M :
16 : return 1;
17 : Else:
18 : return 0;

Figure C.8 – EUF-CMA game - Theorem 5.2 modifications

265

a1 = a2

a3 = a4

⇔

e(g
s1
1 , g

xI1ηx
2 g

h∗yI2ηy
2) = e(gsσ1

1 , g2)

e(gs21 , g
xI1ηx
2 g

yI2H(h∗)ηy
2) = e(gsσ2

1 , g2)

⇔

g
s1(xI1ηx+h∗yI2ηy)
T = g

sσ1
T

g
s2(xI1ηx+yI2H(h∗)ηy)
T = g

sσ2
T

⇒

sσ1 = s1(xI1ηx + yI2h
∗ηy) (mod p− 1)

sσ2 = s2(xI1ηx + yI2H(h∗)ηy) (mod p− 1)
(C.9)

The adversary outputs gs11 , g
sσ1
1 , gs21 , g

sσ2
1 in G1. Thus these elements must be computed using

element in G1 – because there is no efficiently computable morphism from G2 to G1 and from
GT to G1, under type-3 pairing assumption. The elements known to the adversary in G1 after
n queries to the Signing Oracles, are:

E =
(
g1, Y1, X̄1, Ȳ1, {g

(r(Ij ,1))j
1 }nj=1, {g

(rIj ,2)j
1 }nj=1,{

g
rIj ,1(xIj+hjyIj (Ry)j)
1

}n
j=1

,{
g
rIj ,2(xIj+H(hj)yIj (Ry)j)
1

}n
j=1

)
.

In our case we want to express s1, s2, sσ1 and sσ2 as polynomials, as a function of the values
unknown to the adversary. First, we represent an ad hoc element gzα1 in the form of a polynomial
as a function of the values unknown to the adversary under DL assumption.

We then represent each signature’s elements (i.e., s1, s2, sσ1 , sσ2) in the same way as we did
with the ad hock element gzα1 .

We assume the adversary makes n queries to the Signing Oracles. Therefore, he receives
n signatures from the issuer I1, and n signatures from the issuer I2. The variable’s factors
potentially added by the adversary are represented by a 11 × n matrix α, and an additional
factor wα.

266

Here is the representation of gzα1 :

gzα1 =gwα1 ·
k∏
j=1

(
(X̄(j)

1)α(1,j) · (Ȳ (j)
1)α(2,j) · (Y (j)

1)α(3,j)

)

·
n∏
i=1

(
h(1,I1))

α(4,i)
i · (h(1,I2))

α(5,i)
i · (h(2,I1))

α(6,i)
i

· (h(2,I2))
α(7,i)
i · (σ(1,I1))

α(8,i)
i · (σ(2,I1))

α(9,i)
i

· (σ(1,I2))
α(10,i)
i · (σ(2,I2))

α(11,i)
i

)

⇒ zα =wα +
k∑
j=1

(
α(1,j)

1
xj

+ α(1,j)
1
yj

+ α(3,j)yj

)

+
n∑
i=1

(
(r(I1,1))iα(4,i) + (r(I2,1))iα(5,i)

+ (r(I1,2))iα(6,i) + (r(I2,2))iα(7,i)

+ (r(I1,2))iα(8,i)(xI1 +RyyI1hi)

+ (r(I1,2))iα(9,i)(xI1 +RyyI1H(hi))

+ (r(I2,1))iα(10,i)(xI2 +RyyI2hi)

+ (r(I2,2))iα(11,i)(xI2 +RyyI2H(hi))
)

(mod p− 1) (C.10)

Remark C.4. If n > k, columns 1 to 3 of matrix α are shorter than the other columns.
We assume these columns are filed with zeroes to match the size of the matrix. If k > n then it
is the columns from 4 to 11 which are filled with zeroes.

Furthermore, we assume that all Ry values are similar. This does not change the validity of
the proof, and it simplifies the notations.

Lemma C.3. The probability for the adversary to output an element in G1 different from
the zα representation is inferior or equal to the probability of winning in one instance of the
CDH game.

Proof. We prove this lemma by contradiction. We assume the adversary is able to out-
put something different from representation presented in Equation (C.10). This is equiva-
lent to say the adversary has access to an Oracle O(g1, g

z1
1 , ..., g

z3k
1 , g

z3k+1
1 , ..., g

z3k+1+8n
1). With

267

zi, i ∈ {1, ..., 3k+ 1 + 8n}, the variables unknown to the adversary. This oracle outputs with non
negligible probability an element gzα+zazb

1 , where a, b ∈ {1, ..., 3k + 1 + 8n}. This oracle allows
the adversary to output gzaf(zb)

1 , with f a polynomial function, and deg f(zb) 6= 0. Thus, for any
given CDH problem (g1, g

za
1 , g

zb
1), an adversary with such an oracle can set all variables to 0,

except za and zb, and the oracle solves an instance of the CDH problem.

We represents s1, s2, sσ1 , and sσ2 in the same way we represented zα in Equation (C.10).
Then, we replace s1, s2, sσ1 , and sσ2 in Equation (C.9) with this new representation.

Factor matrices of s1, s2, sσ1 , and sσ2 representations (i.e., the αmatrices in Equation (C.10))
will be written respectively a, b, c and d. To simplify this discussion, we will assume the transfor-
mations applied to the first part of Equation (C.9) can be applied symmetrically to the second
part of the equation.

Let us take:
sσ1 = s1(xI1ηx + yI2h

∗ηy) (C.11)

If sσ1 and s1 validates Equation (C.11), then either sσ1 = 0 and s1 = 0, or sσ1 and s1 de-
pends on the variables xI1 , xI2 , yI1 , yI2 , (r(I1,1))i, (r(I1,2))i, (r(I2,1))i, and (r(I2,2))i, ∀i ∈ {1, · · · , n}.
However sσ1 = 0 or s1 = 0 is a rejecting condition, thus sσ1 and s1 depends on the variables
of the equation. Under DL and CDH assumptions, the adversary has a negligible probability to
output a value a, b, c or d that depends on these variables. Therefore, we can reduce sσ1 and s1

to:

s1 =
n∑
i=1

(
(r(I1,1))ia(4,i) + (r(I2,1))ia(5,i)

+ (r(I1,2))ia(6,i) + (r(I2,2))ia(7,i)

)
(C.12)

sσ1 =
n∑
i=1

(
(r(I1,1))ic(8,i)(xI1 +RyyI1hi)

+ (r(I1,2))ic(9,i)(xI1 +RyyI1H(hi))

+ (r(I2,1))ic(10,i)(xI2 +RyyI2hi)

+ (r(I2,2))ic(11,i)(xI2 +RyyI2H(hi))
)

(C.13)

Now that we simplified representations of s1 and sσ1 we want to study the possibility for I1 and
I2 to represent two distinct issuers.
We see that right side of Equation (C.11) contains elements (r(I1,1))i and (r(I1,2))i multiplied by

268

yI2 . At the same time, there are also elements (r(I2,1))i and (r(I2,2))i multiplied by xI1 . These
terms does not exist on the left side of the equation (in sσ1). We can deduce that, either the
whole equation is reduced to zero, which is impossible since gs11 6= 1G1 , or, I1 = I2 = I. This
means that all elements come from only one issuer.

We represent Equation (C.11) with these new representations of sσ1 and s1.

Remark C.5. In the Equation (C.14), c′1 is the concatenation of c8 and c10, c′1 =
(c8
c10

)
.

c′2 is the concatenation of row c9 and row c11, c′2 =
(c9
c11

)
. a′1 is the concatenation of row a4 and

row a5, a′1 =
(a4
a5

)
. And a′2 is the concatenation of row a6 and row a7, a′2 =

(a6
a7

)
.

2n∑
i=1

(
(r(I,1))ic′(1,i)(xI +RyyIhi)

+ (r(I,2))ic′(2,i)(xI +RyyI1H(hi))
)

=
2n∑
i=1

(
(r(I,1))ia′(1,i)

+ (r(I,2))ia′(2,i)
)

(xIηx + yIh
∗ηy)

⇔
2n∑
i=1

(
xI((r(I,1))i(c′(1,i) − a′(1,i)ηx)

+ (r(I,2))i(c′(2,i) − a′(2,i)ηx))

+ yI((r(I,1))i(Ryc′(1,i)hi − a′(1,i)ηyh∗)

+ (r(I,2))i(Ryc′(2,i)H(hi)− a′(2,i)ηyh∗)
)

= 0 (C.14)

In Equation (C.14), factors a′ and c′ have negligible probability to be function of the variables
(i.e., r, x and y), as this would imply the adversary is able to break DL or CDH problem, from
the Lemma C.3 result. This directly implies that each part of the above sum is independently
equal to zero.

We obtain the system of equations:

269



c′(1,1) − a
′
(1,1)ηx = 0

. . .

c′(1,2n) − a
′
(1,2n)ηx = 0

c′(2,1) − a
′
(2,1)ηx = 0

. . .

c′(2,2n) − a
′
(2,2n)ηx = 0

Ryc
′
(1,1)h1 − a′(1,1)ηyh

∗ = 0

. . .

Ryc
′
(1,2n)h2n − a′(1,2n)ηyh

∗ = 0

Ryc
′
(2,1)H(h1)− a′(2,1)ηyh

∗ = 0

. . .

RI,y,2nc
′
2,2nH(h2n)− a′2,2nηyh∗ = 0

(C.15)

We write : A′1 =

 a′(1,1) ... 0

. . .
0 ... a′(1,2n)

; A′2 =

 a′(2,1) ... 0

. . .
0 ... a′(2,2n)

; C ′1 =

 c′(1,1) ... 0

. . .
0 ... c′(1,2n)

; C ′2 =

 c′(2,1) ... 0

. . .
0 ... c′(2,2n)

; D′1 =

 d′(1,1) ... 0

. . .
0 ... d′(1,2n)

; D′2 =

 d′(2,1) ... 0

. . .
0 ... d′(2,2n)

; Ry =

Ry ... 0
. . .

0 ... Ry

; H =

(
h1 ... 0

. . .
0 ... h2n

)
; and H(H) =

 H(h1) ... 0
. . .

0 ... H(h2n)

.

We only use diagonal matrices, thus, each matrix is inversible, and the product between two
matrices is commutative. We now have the linear system:

270



C ′1 −A′1ηx = 0

C ′2 −A′2ηx = 0

RyC
′
1H −A′1ηyh∗ = 0

RyC
′
2H(H)−A′2ηyh∗ = 0

(C.16)

⇔



C ′1 = A′1ηx

C ′2 = A′2ηx

RyC
′
1H = A′1ηyh

∗

RyC
′
2H(H) = A′2ηyh

∗

(C.17)

⇔



1
ηx
C ′1 = A′1

1
ηx
C ′2 = A′2

RyC
′
1H = 1

ηx
C ′1ηyh

∗

RyC
′
2H(H) = 1

ηx
C ′2ηyh

∗

(C.18)

We assume all elements on the diagonal of C ′1 and C ′2 are different from 0:

⇔



1
ηx
C ′1 = A′1

1
ηx
C ′2 = A′2

RyH = 1
ηx
ηyh
∗I

RyH(H) = 1
ηx
ηyh
∗I

⇔



1
ηx
C ′1 = A′1

1
ηx
C ′2 = A′2

ηx
ηy
RyH = h∗I

ηx
ηy
RyH(H) = h∗I

⇔H(H) = H (C.19)

This last equation is impossible with a collision resistant hash function. This means that our
hypothesis, is wrong, i.e., C ′1 = 0 or C ′2 = 0.

Remark C.6. We proved here that there is at least one element equal to 0 in C ′1 or C ′2,
but we can then reduce the matrices to be of size 2n − 1 × 2n − 1, and have the same result,
until C ′1 or C ′2 is totally reduced to 0.

Remark C.7. From Theorem 5.2, we know that ηx and ηy are different from zero. This
implies that (C ′1 = 0)⇒ (A′1 = 0), and (C ′2 = 0)⇒ (A′2 = 0). From this, we deduce that C ′1 and
C ′2 can’t be reduced to 0 at the same time, as this would imply that s1 = 0, which is a rejecting
condition for the verifier.

Symmetrically, we deduce the same thing from second line of Equation (C.9):

271



1
ηx
D′1 = B′1

1
ηx
D′2 = B′2

RyD
′
1H = 1

ηx
D′1ηyH(h∗I)

RyD
′
2H(H) = 1

ηx
D′2ηyH(h∗I)

(C.20)

(C.21)

Thus D′1 = 0 or D′2 = 0, and D′1 and D′2 cannot be both reduced to 0 at the same time.
There are four cases to study: (C ′1, D′1) = (0, 0), (C ′1, D′2) = (0, 0), (C ′2, D′1) = (0, 0), and

(C ′2, D′2) = (0, 0).
First, (C ′1, D′1) = (0, 0) and (C ′2, D′2) = (0, 0) lead back to H = H(H), which is impossible.
Then, case (C ′2, D′1) = (0, 0) gives us the system:


ηx
ηy
RyH = h∗I

ηx
ηy
RyH(H) = H(h∗I)

(C.22)

If we apply the hash function, we obtain:

H
(ηx
ηy
RyH

)
= ηx
ηy
RyH(H)

There are two cases:

1. ηy
ηx

= Ry

2. ηy
ηx
6= Ry

Case 1 tells us that h∗I = H. In this case, the signature is a signature on an already
signed message. Case 2 implies that the adversary is able to find a collision in a collision
resistant hash function. In the Random Oracle Model, this has a negligible probability to occure.

Finally, case (C ′1, D′2) = (0, 0) gives us the system:


ηx
ηy
RyH(H) = h∗I

ηx
ηy
RyH = H(h∗)I

(C.23)

If we apply the hash function, we obtain:

272

EUF − CMA4A

1 : (x1, ..., xk)←$ (Z∗p)k;
2 : (y1, ..., yk)←$ (Z∗p)k;
3 : X = (X(1), ..., X(k)) = (gx1

2 , ..., gxk2)
4 : Y1 = (Y (1)

1 , · · · , Y (k)
1) = (gy1

1 , · · · , gyk1)
5 : Y2 = (Y (1)

2 , · · · , Y (k)
2) = (gy1

2 , · · · , gyk2)
6 : X̄1 = (X̄(1)

1 , · · · , X̄(k)
1) = (g

1
x1
1 , · · · , g

1
xk
1)

7 : Ȳ1 = (Ȳ (1)
1 , · · · , Ȳ (k)

1) = (g
1
y1
1 , · · · , g

1
yk
1)

8 : PK = {X, X̄1, Y1, Ȳ1, Y2}
9 : (ηx, ηy, Ry, h∗, H) ←$A(PK);
10 : t1 = ηx

ηy
RyH

11 : t2 = etax
ηy

RyH(H)

12 : t3 = H(ηxηyRyH(H))

13 : t4 = H(ηxηyRyH)
14 : t5 = H(H)
15 : If (t1 = t3 ∨ t2 = t4 ∨H = t5 ∨H = h∗I) ∧m∗ /∈M :
16 : return 1;
17 : Else:
18 : return 0;

Figure C.9 – EUF-CMA game - reduction

H
(ηx
ηy
RyH(H)

)
= ηx
ηy
RyH

This is equivalent for adversary to find a collision in a collision resistant hash function.

The study of the four cases imply that succeeding in (EUF− CMA3A) implies that either
the adversary is able to find a collision in a collision resistant hash function, or the message
signed was already queried to the singing oracle. We represent this as a new game transition.
This transition is represented in Figure C.9.

The transition between EUF− CMA3A and EUF− CMA4A is a failure based transition, where
the failure is equivalent to the probability for the adversary to break Lemma C.3.

|Pr[S3]− Pr[S2] | ≤ F

≤ εCDH

273

EUF − CMA5A

1 : (x1, ..., xk)←$ (Z∗p)k;
2 : (y1, ..., yk)←$ (Z∗p)k;
3 : X = (X1, ..., Xk) = (gx1

2 , ..., gxk2)
4 : Y1 = (Y (1)

1 , · · · , Y (k)
1) = (gy1

1 , · · · , gyk1)
5 : Y2 = (Y (1)

2 , · · · , Y (k)
2) = (gy1

2 , · · · , gyk2)
6 : X̄1 = (X̄(1)

1 , · · · , X̄(k)
1) = (g

1
x1
1 , · · · , g

1
xk
1)

7 : Ȳ1 = (Ȳ (1)
1 , · · · , Ȳ (k)

1) = (g
1
y1
1 , · · · , g

1
yk
1)

8 : PK = {X, X̄1, Y1, Ȳ1, Y2}
9 : (ηx, ηy, Ry, h∗, H) ←$A(PK);
10 : t1 = ηx

ηy
RyH

11 : t2 = etax
ηy

RyH(H)
12 : t3←$ {1, · · · , p− 1}
13 : t4←$ {1, · · · , p− 1}
14 : t5←$ {1, · · · , p− 1}
15 : If (t1 = t3 ∨ t2 = t4 ∨H = t5 ∨H = h∗I) ∧m∗ /∈M :
16 : return 1;
17 : Else:
18 : return 0;

Figure C.10 – EUF-CMA game - Random Oracle Model

In the Random Oracle Model, we represent the hash function as a Random Oracle. We build
a new transition presented in Figure C.10. The new game is called EUF− CMA5A.

This transition is a representation of EUF− CMA4A in the Random Oracle model. Thus
Pr[S5] = Pr[S4].

We develop the success condition of the game presented in Figure C.10:

(t1 = t3 ∨ t2 = t4 ∨H = t5 ∨H = h∗I) ∧ h∗ /∈M

⇔(t1 = t3 ∧ h∗ /∈M) ∨ (t2 = t4 ∧ h∗ /∈M)

∨ (H = t5 ∧ h∗ /∈M) ∨ (H = h∗I ∧ h∗ /∈M) (C.24)

We need to analyze each condition individually. The first three conditions are true if the values t1
or t2 chosen by the adversary are equal to a number, chosen uniformly at random in {1, · · · , p−1}.
The probability for this condition to be true is (p−1)−1. Furthermore, the last condition is clearly
a contradiction. It asks h∗ to be at the same time different and equal to some previously signed
message. We can represent the condition presented in Equation (C.24) as:

274

⇔((p− 1)−1) ∨ ((p− 1)−1) ∨ ((p− 1)−1) ∨ (0)

We can deduce that, the probability for an adversary to succeed in Game4A is 3 · p−1. Now,
we can deduce the probability for a PPT adversary to forges the signature scheme:

|Pr[S5]− Pr[S1] | = |Pr[S4]− Pr[S3] |+ |Pr[S3]− Pr[S2] |

+ |Pr[S2]− Pr[S1] |

≤ 3 · εCDH + εDL

And Pr[S5] = 3 · (p− 1)−1. Thus :

Pr[S1] ≤ 3 · (p− 1)−1 + 3 · εCDH + εDL

Finally, we deduce that :

Adveufcma
Σ (A) = |Pr[S1]− (p− 1)−1|

≤ 2 · (p− 1)−1 + 3 · εCDH + εDL

If the order p is sufficiently large, this value is negligible. Therefore, the adversary has a
negligible probability of forging this scheme, even with multiple access to the signing oracles. In
conclusion, our signature scheme has EUF-CMA property.

C.7 Issuer-Indistinguishability proof

In this section, we will prove that the issuer of a randomized signature is indistinguishable
among the set of trusted issuers of a malicious verifier. We assume the adversary (in this case,
the Malicious Verifier) keeps track of multiple VerifyRandomized transactions. We also
assume the adversary can collude with all the issuers, and therefore knows all their private
keys, and all (non randomized) issued signatures.

We define an issuer Indistinguishability game, represented in Figure C.11. The adversary
succeeds in this game if he is able to distinguish between a re-randomized signature, issued by
the issuer I1, and a signature issued different issuer I2.

275

HiddenIssuerGame1A

1 : pp←$ C(1λ)
2 : (skI1 , pkI1) =IssuerKeygen(pp)
3 : (skI2 , pkI2) =IssuerKeygen(pp)
4 : (vpk, vsk)←$ VerifierSetup(pp, {I1, I2})
5 : m←$Z∗p
6 : u←$Z∗p
7 : σ1 = Sign(pp,m, skI1 , u)
8 : σ2 = Sign(pp,m, skI2 , u)
9 : a1 = (X(I1)′ , Y (I1)′ , πx, πy, σ

′
1) =

10 : RandomizeR(pp, pkI1 , vpk,

11 : {I1, I2}, σ1, u)
12 : a2 = (X(I1)′′ , Y (I1)′′ , π′x, π

′
y, σ
′′
1) =

13 : Randomize′R(pp, pkI1 , vpk,

14 : {I1, I2}, σ1, u)
15 : b←$ {0, 1}
16 : if b = 1:
17 : a2 = (X(I1)′′′ , Y (I1)′′′ , π′′x , π

′′
y , σ

′′′
1) =

18 : Randomize′R(pp, pkI2 , vpk,

19 : {I1, I2}, σ2, u)
20 : c←$A(m, a1, a2, skI1 , skI2 , pkI1 , pkI2 , vpk, vsk, σ1, σ2)
21 : If c = b:
22 : return 1;
23 : Else:
24 : return 0;

Figure C.11 – Issuer indistinguishability game, where the randomize algorithm uses as random
values the R given in subscript.

Remark C.8. The R subscript is here to allows us to fix the random variables of the
algorithm Randomize. This concerns the values ru, r′u, r′′u, r(u,x), and r(u,y).

Theorem 5.6. The signature scheme presented in 5.7.1 is issuer indistinguishable. No PPT
adversary can win the game presented in Figure C.11 with probability greater than 1

2 + ε, where
ε is a negligible value.

The game presented in Figure C.11 can be modified to represent the signature built for the
second issuer as a modification of the first signature. This modification is given in Figure C.12.
The transition between these two games is a notation difference. Indeed, the resulting elements
are the same in both cases. Therefore, the probability of success of the second game is the same
as the probability of success of the first game.

276

HiddenIssuerGame2A

1 : pp←$ C(1λ)
2 : (skI1 , pkI1) =IssuerKeygen(pp)
3 : (skI2 , pkI2) =IssuerKeygen(pp)
4 : (vpk, vsk)←$ VerifierSetup(pp, {I1, I2})
5 : m←$Z∗p
6 : u←$Z∗p
7 : σ1 = Sign(pp,m, skI1 , u)
8 : σ2 = Sign(pp,m, skI2 , u)
9 : a1 = (X(I1)′ , Y (I1)′ , πx, πy, σ

′
1) =

10 : RandomizeR(pp, pkI1 , vpk,

11 : {I1, I2}, σ1, u)
12 : a2 = (X(I1)′′ , Y (I1)′′ , π′x, π

′
y, σ
′′
1 , σ

′′
2) =

13 : Randomize′R(pp, pkI1 , vpk,

14 : {I1, I2}, σ1, u)
15 : b←$ {0, 1}
16 : if b = 1 :
17 : a2 = ((X(I1)′′)

x2
x1 , (Y (I1)′′))

y2
y1 , (Wx)

′′ x1
x2

I1
, (Wy)

′′ y1
y2

I1
,

18 : h′′x, h
′′
y , σ

′′ x2+y2Rym
x1+y1Rym

1 , σ
′′ x2+y2RyH(m)
x1+y1RyH(m)

2 , h′′1 , h
′′
2)

19 : c←$A(m, a1, a2, skI1 , skI2 , pkI1 , pkI2 , vpk, vsk, σ1, σ2)
20 : If c = b:
21 : return 1;
22 : Else:
23 : return 0;

Figure C.12 – Issuer indistinguishability game, where the randomize algorithm uses as random
values the R given in subscript

277

The difference between the two possible signatures given to the adversary only depends on
x1, y1, x2, y2, m, Ry, and the random elements added by the user.

We want to compare the re-randomized signature (case b = 0), which we will call σ0, and
the signature with the modified issuer (case b = 1), which we will call σ1.

σ0 and σ1 are exclusively composed of elements expressed in G1 and in G2. This means that
the adversary can combine them using the bilinear pairing e. Therefore, from one randomized
signature, the adversary is able to compute 40 different combinations in GT . We represent all
these combinations in Table C.1 and in Table C.2. These combinations are represented in term
of variables (random elements added by the user), and in term of distinguishing elements. It
is to say the elements that distinguish a message signed by one issuer, and the other. These
variables and distinguishing elements are ru, r′u, r′′u, r(u,x), r(u,y), x1, y1, x2, y2, m, R, and Ry.

g2 hx hy X(1) Y (1)

g1 1 ruru,x Ryruru,y ru Ryru
h1 r′u rur

′
uru,x Ryrur

′
uru,y rur

′
u Ryrur

′
u

h2 r′′u rur
′′
uru,x Ryrur

′′
uru,y rur

′′
u Ryrur

′′
u

Wx ru,x rur
2
u,x Ryruru,xru,y ruru,x Ryruru,x

Wy ru,y ruru,xru,y Ryrur
2
u,y ruru,y Ryruru,y

σ1 rur
′
u r2

ur
′
uru,x Ryr

2
ur
′
uru,y r2

ur
′
u Ryr

2
ur
′
u

σ2 rur
′′
u r2

ur
′′
uru,x Ryr

2
ur
′′
uru,y r2

ur
′′
u Ryr

2
ur
′′
u

u (Ry +R) ruru,x(Ry +R) Ryruru,y(Ry +R) ru(Ry +R) Ryru(Ry +R)

Table C.1 – Resulting elements of the rerandomized signature σ0 after application of the bilinear
pairing.

The order of G1,G2 and GT is prime, thus every element of these groups is a generator,
except from the neutral element. Therefore, every elements presented in Table C.2 will be seen,
from the adversary point of view, as elements chosen uniformly at random in one of these groups.
This implies, under DL assumption, that a single element cannot be used by an adversary to
decide whether the issuer of a credential is I1 or I2. Therefore, the only way an adversary could
identify the issuer of a signature would be by comparing elements of the signature.

We can distinguish two types of elements in Table C.1 and in Table C.2: the elements which
are function of the variables x1, y1, x2, y2, and the elements which are not. These variables are
the one that the adversary can use to identify the actual issuer of the signature. Using only
elements without variables would not allow him to distinguish the issuer, as these elements are
equivalent in σ0 and in σ1.

In the 40 elements list characterizing the re-randomized signature σ0, we can see that there
are two cells of the tabular that matches with two other cells. These are the elements e(g1, hx) =
e(Wx, X

(1)) and e(g1, hy) = e(Wy, Y
(1)). In the σ1 representation, these matching elements

does not depend on the distinguishing variables, and are represented in the same way in σ0.

278

g2 hx hy

g1 1 ruru,x Ryruru,y
h1 r′u rur

′
uru,x Ryrur

′
uru,y

h2 r′′u rur
′′
uru,x Ryrur

′′
uru,y

Wx ru,x
x1
x2

rur
2
u,x

x1
x2

Ryruru,xru,y
x1
x2

Wy ru,y
y1
y2

ruru,xru,y
y1
y2

Ryrur
2
u,y

y1
y2

σ1 rur
′
u
x2+Ryy2m
x1+Ryy1m

r2
ur
′
uru,x

x2+Ryy2m
x1+Ryy1m

Ryr
2
ur
′
uru,y

x2+Ryy2m
x1+Ryy1m

σ2 rur
′′
u
x2+Ryy2H(m)
x1+Ryy1H(m) r2

ur
′′
uru,x

x2+Ryy2H(m)
x1+Ryy1H(m) Ryr

2
ur
′′
uru,y

x2+Ryy2H(m)
x1+Ryy1H(m)

u (Ry +R) ruru,x(Ry +R) Ryruru,y(Ry +R)
X(1) Y (1)

g1 ru
x2
x1

Ryru
y2
y1

h1 rur
′
u
x2
x1

Ryrur
′
u
y2
y1

h2 rur
′′
u
x2
x1

Ryrur
′′
u
y2
y1

Wx ruru,x Ryruru,x
y2
y1
x1
x2

Wy ruru,y
x2
x1

y1
y2

Ryruru,y

σ1 r2
ur
′
u
x2
x1

x2+Ryy2m
x1+Ryy1m

Ryr
2
ur
′
u
y2
y1

x2+Ryy2m
x1+Ryy1m

σ2 r2
ur
′′
u
x2
x1

x2+Ryy2H(m)
x1+Ryy1H(m) Ryr

2
ur
′′
u
y2
y1

x2+Ryy2H(m)
x1+Ryy1H(m)

u ru(Ry +R)x2
x1

Ryru(Ry +R)y2
y1

Table C.2 – Resulting elements of the signature with modified issuer σ1 after application of the
bilinear pairing.

Furthermore, the aggregator’s integrity verification algorithm ensures that the different values
e((Wx)i, X(i)),∀i ∈ {1, · · · , k} are equal. This means that the adversary cannot distinguish the
issuer using this method.

In these tables, there are two other matching expressions. These are the one that are supposed
to match in the VerifyRandomized algorithm. But these equations are symmetrical in term
of distinguishing values, thus they do not distinguish σ0 and σ1. We could think, from the
representation we made in Table C.1, that e(σ1, g2) should match with e(h1, X

(I)), but σ1 is
factor of an element not represented here for clarity. This element is (x1 +Ryy1m). Indeed, the
values match, but the adversary would still need to use the value e(h1, Y

(I)) to be able to decide
anything.

We can verify, with an algorithm, that each element the adversary as access to in GT is
distinct from every other one, by at least one random secret element. Or more precisely, there
are no linear relationship that links the different element given to the adversary. The only
exception are the four cases discussed above, and they do not allow the adversary to distinguish
between both cases (i.e., I1 issued the credential or I2 issued the credential).

All elements given to the adversary are disjoint in term of the random elements
(Ry, ru,x, ru,y, ru, r′u, r′′u, Ry + R). (Ry + R) is the element given to the adversary during the

279

Sign algorithm. This element can be seen as random in Zp because of the addition of R which
is only used once. It is a Pedersen commitment, which is totally hiding [186].

We know that the adversary can only distinguish between linear expression of the given
elements (Lemma C.2). All the elements the adversary has access to are chosen uniformally at
random from the adversary point of view, and one by one disjoint in term of random variables.
This means that all linear expression of these elements are function of at least one random
element. This implies that the adversary cannot distinguish the variation induced by the modi-
fication of the issuer unless he is able to break DL assumption or DDH assumption.

Therefore, the adversary is not able to distinguish between σ0 and σ1, under DL assumption
and DDH assumption. Our scheme is issuer indistinguishable.

Remark C.9. The adversary model takes into account potential replay attack. However
two randomized signatures use two set of newly generated random elements. From the above
proof, we know that a replay attack would give to the adversary elements that would not help
the adversary to build linear relationships between the elements. Thus the scheme is also secure
against replay attacks.

C.8 Interactive Protocol

In this section, we give proofs of correctness, collision freedom, and element indistinguisha-
bility for the interactive version of HIAC discussed in Section 5.7.2.

C.8.1 Correctness

Lemma C.4. The interactive version of the aggregator presented in Section 5.7.2 keeps it
correct.

Proof. We want to prove that the value output (W)′I of the interactive protocol Commitment
reveal exchange in Figure 5.1 is the same as the one outputted by the original Randomize

280

algorithm, i.e (W)′I = g
r1sk(1

XI
)

1 . We have:

(W)′I = (W)′′I · (C
′′
1)−

1
rd

= (W)′′I ·
(
(C ′1)

1
rb · (C ′2)

1
rc
)− 1

rd

= (W)′′I ·
(
(C1)sk 1

rb
rd · (C2)

1
rc
rd
)− 1

rd

= (W)′′I · (C1)−sk 1
rb · (C2)−

1
rc

= (W)′′I · g
−r1rbsk 1

rb
1 · g

−rcra 1
rc

1

= (W)′′I · g
−r1sk
1 · g−ra1

= (W)r1I · g
ra
1 · g

−r1sk
1 · g−ra1

= g
r1sk(1+ 1

XI
)

1 · gra1 · g
−r1sk
1 · g−ra1

= g
r1sk(1

XI
)

1

C.8.2 Collision Freedom

Lemma C.5. The interactive version of the aggregator presented in Section 5.7.2 keeps it
collision free.

Proof. The goal is to show that the secret sk value keeps the scheme unforgeable, even if the
scheme is modified accordingly to Section 5.7.2. To do so, we will analyze a modified version
of Theorem 5.2, and use the result of the original theorem, along with the proof that the
transformation does not give an advantage to the adversary (in this case, malicious user).

We represent Lemma C.5 as a game, presented in Figure C.13.
This new game is ultimately equivalent to the game used in Theorem 5.2. Indeed, there is

the same number of unknown (potentially harmful) elements. And the success condition is also
equivalent. We only need to analyze the resulting (W)∗I(C∗1)

′′−(1
rd

) value.
Firstly, thanks to the proof of knowledge of the elements (C1)∗ and (C2)∗, we know that these

elements cannot contain any of the given (Agg, X1, X2) under DL assumption. Secondly, under
CDH assumption, and because of the rd value used by the verifier at the end of the protocol, C ′′1
must be a linear combination of C ′1 and C ′2. Otherwise, the resulting value would depend on rd,
and this value did not even exist when the adversary computed the values (Comm′(s)(W)′′I , πs).
Thus if (W)∗I(C∗1)

′′−(1
rd

) depends on rd then the probability for the verification algorithm to
output 1 is negligible (in fact, this probability is p−1). Always under CDH assumption, C ′′1
only contains sk, rc and elements known to the adversary. This means that we can represent

281

Game1A

1 : (x1, ..., xk)←$ (Z∗p)k;
2 : X1 = (X(1)

1 , ..., X
(k)
1) = (gx1

1 , ..., gxk1)
3 : X2 = (X(1), ..., X(k)) = (gx1

2 , ..., gxk2)
4 : X̄1 = (X̄(1)

1 , · · · , X̄(k)
1) = (g

1
x1
1 , · · · , g

1
xk
1)

5 : (W, sk)←$Gen(X1, X2, X̄1)
6 : C∗σ = ((C∗1), (C∗2),
7 : h∗, (W)∗I , X

(I)∗
2) ←$A(X1, X2, X̄1,W);

8 : rc←$Z∗p
9 : (C∗1)′ = (C∗1)rcsk

y

10 : (C∗2)′ = (C∗2)rcy
11 : (C∗1)′′ ← A(C∗σ, pg, X1, X2, (C∗2)′, (C∗1)′)
12 : If e((W)∗I(C∗1)

′′−(1
rd

)
, X

(I)∗
2)=e(T sk

1 , h
∗)∧

13 : X
(I)∗
2 6= gxlη2 ,∀i ∈ {1, ..., k}:

14 : return 1;
15 : Else:
16 : return 0;

Figure C.13 – Collision freedom game for the interactive protocol of Section 5.7.2

(W)∗I(C∗1)
′′−(1

rd
) as gsw1 gs1sk

1 gs21 , with s1 and s2 value known to the adversary.
We use the same idea as in Appendix C.3, we know that gsw1 gs1sk

1 gs21 = gskγ
1 , for some γ

independent from sk. At this point, the only difference between the game presented in Figure C.13
and Appendix C.3’s proof is that the adversary is given the extra values gskrd1 and grd1 . We use
Appendix C.3 proof again and more precisely Appendix C.3.2 proof. The setup we have here is
exactly the same as the one used in the simplified game of this proof. Thus the conclusion is the
same, i.e., γ is a composition of (W)i values.

We can resume Appendix C.3’s proof without further modification, we will get the same
result, i.e., X(I)∗

2 = gxlη2 .

C.8.3 Indistinguishability of the Signature with Commitment Reveal Ex-
change

Lemma C.6. The interactive version of the aggregator presented in Section 5.7.2 keeps it
element indistinguishable.

Proof. We want to prove that the indistinguishability property is not affected by the modification
made in Section 5.7.2. This transformation can be proven to keep issuer indistinguishability
property and unlinkability property, using the theorem proved in Appendix C.7.

282

Indeed, the transformation makes the user share three more values, C1, C2, and C ′′1 . We will
prove these values indistinguishable in the same way we did in Appendix C.7. We know that
C1 = gr1rb1 and C2 = grarc1 . From the ZKP φ2 , we also know that C ′1 = Cs11 and C ′2 = Cs22 , for

some unknown values s1 and s2. This implies that C ′′1 = C
1
rb
s1

1 C
1
rc
s2

2 = g
r(u,x)s1+ras2
1 . Any new

request from the adversary would lead to a new commitment value, with new random values.
This implies that the adversary has no advantage in requesting multiple commitments.

The values disclosed by C1 and C2 are randomized with elements used only once. The ad-
versary cannot extract any information from them. The value disclosed by C ′′1 can be considered
as a value chosen uniformly at random in G1 because of the addition of ra, used only there.
Thus, C ′′1 does not disclose information about the issuer nor the user. There is no linear rela-
tionship between C1, C2, C

′′
1 and the other values of the scheme. Thus the modification made in

Section 5.7.2 keeps the indistinguishability property.

283

[]

286

Titre : Systèmes de Gestion de l’Identité totalement distribués et respectant la vie privée

Mot clés : Cryptographie, Systèmes Distribués, Respect de la vie privée, Identité Auto Souve-
raine

Résumé : Dans cette thèse, nous nous inté-
ressons aux systèmes de gestion d’identité to-
talement distribués respectant la vie privée.
Ces systèmes ont pour but de permettre à
un utilisateur de s’authentifier et d’être auto-
risé par un fournisseur de services, tout en ne
lui révélant que les informations strictement
nécessaires. De plus, ces systèmes doivent
être résilients à la présence de processus mal-
veillant. Dans ce contexte, nous nous inté-
ressons à deux points. D’abord, aux certifi-
cats anonymes et à leur propriétés de respect
de la vie privée. Nous identifions un manque
qui réduit cette propriété dans l’état de l’art,
et nous le corrigeons grâce à un nouveau
type de signature : les certificats anonymes

à émetteurs cachés. Ensuite, nous nous in-
téressons aux algorithmes distribués utilisés
pour les propriétés annexes des systèmes
de gestion d’identité distribués, notamment
pour la révocation de certificats, ou la gestion
de clés publiques. Nous analysons formel-
lement ces problèmes, notamment du point
de vue de leur consensus number. Ces ana-
lyses nous permettent finalement de propo-
ser des algorithmes pour implémenter un sys-
tème de gestion de l’identité totalement distri-
bué qui nécessite une synchronisation réduite.
En d’autres termes, un système où l’utilisation
d’algorithmes de consensus est réduite au mi-
nimum.

Title: Privacy Preserving and fully Distributed Identity Management Systems

Keywords: Cryptography, Distributed Systems, Privacy, Self-Sovereign Identity

Abstract: This thesis focuses on privacy pre-
serving and fully distributed identity manage-
ment systems. These systems aim to allow
a user to authenticate and be authorized by
a service provider while only revealing strictly
necessary information. In addition, these sys-
tems must be resilient to the presence of ma-
licious processes. In this context, we are in-
terested in two points. Firstly, anonymous cre-
dentials and their privacy properties. We iden-
tify a shortcoming that reduces this property in
state of the art, and we correct it with a new
type of signature: hidden issuer anonymous

credentials. Next, we look at the distributed al-
gorithms used for the auxiliary properties of
distributed identity management systems, in
particular for certificate revocation and public
key management. We analyze these problems
formally, particularly from the point of view of
their consensus number. Finally, these anal-
yses allow us to propose algorithms for im-
plementing a fully distributed identity manage-
ment system that requires reduced synchro-
nization. In other words, a system where the
use of consensus algorithms is reduced to a
minimum.

	Résumé en Français
	Publications
	Introduction
	Authorisation and authentication
	Digital Identity Management System
	Components of a Privacy Preserving fully Distributed Identity Management Systems
	The U-Port case and the use of distributed ledger as the unique source of distribution

	Contributions
	Description of the chapters

	Main components of a Privacy Preserving Identity Management System
	Privacy Preserving signature scheme
	Informationnal features
	Information published by an issuer
	Information published by a verifier

	Key management features
	Strong and versatile authentication features
	Revocation features
	DID-capable ledger and naming system
	Accountability feature

	State of the art
	The early days of Identity Management
	The rise of Self Sovereign Identity
	Digital identity and the blockchain scam era
	The 193 DID methods
	Our contributions: Privacy Preserving and fully-Distributed Identity Management Systems

	Model and building blocks
	Distributed-Systems Notions and Definitions
	Shared memory model
	Message passing model

	Distributed building blocks
	Consensus
	Byzantine Reliable Broadcast

	Cryptographic Notions and Definitions
	Notations

	A privacy preserving Anonymous Credential scheme for DIMS: Hidden Issuer Anonymous Credential
	introduction
	Problem Statement
	Related Work
	Overview
	Notations
	Formal Definitions
	Hidden Issuer Anonymous Credential
	Aggregator

	Instantiation
	Non-Interactive HIAC
	Interactive HIAC

	Deployment
	Credential and Aggregator Management
	Issuer Selection
	Issuer Acting as a Verifier

	Efficiency
	Runtime Comparison
	Communication Cost

	Qualitative Comparison
	Conclusion and evolutions

	Synchronization requirements for revocation, access control, and multi-device capability
	Introduction
	Related Works
	Model
	The AllowList and DenyList objects: Definition
	PROOF-LIST object specification
	The consensus number of the AllowList object
	The consensus number of the DenyList object
	Lower bound
	Upper bound

	Variations on the listed-values array
	One-process only
	Multi-process

	Discussion
	Revocation of a verifiable credential
	Distributed e-vote systems

	Conclusion

	From Zooko's trilemma to the Namespace object: how to allocate scarce names in a distributed system
	Introduction
	Identifiers, resources and namespaces
	The Namespace object
	The Zooko's triangle problem
	Formal proof of the Zooko's impossibility
	The edges of the triangle
	The consensus number of the edges
	Consensus number of the Namespace object
	Consensus requirements in practice

	The difference between the Namespace object specification and the renaming problem
	Identifier systems - Circumventing Zooko's impossibility
	The Identifier System Object
	Zooko's properties for an identifier system

	Conclusion

	A cooperation abstraction when contention is unlikely: the Context Adaptive Cooperation abstraction
	Introduction
	Related work
	Model
	Context-Adaptive Cooperation: Definition
	Definition
	Termination of the CAC abstraction
	CAC with proof of acceptance

	CAC: a simple, sub-optimal implementation
	A simple CAC algorithm
	Proof of the algorithm

	CAC: An Optimal Implementation
	An optimal implementation of the CAC abstraction
	witness phase
	ready phase
	Fast-path
	Proof of the algorithm

	CAC in Action: Solving Low Contention Problems
	The fault-tolerant asynchronous short-naming problem
	A ``synchronize only when needed'' CAC-based consensus algorithm: Cascading Consensus
	Cascading Consensus: proof

	Conclusion

	An efficient solution to the multi-device authorization problem: the Anonymous Agreement Proof
	Introduction
	System model
	Problem statement
	Data model and authorization mechanism
	Anonymous Agreement Proof: an abstraction to efficiently prove ledger-agreed data
	Implementation of the AAP abstraction using threshold anonymous credential scheme
	Cryptographic tools
	Communication primitives
	Implementation
	Proof of the AAP algorithm

	AAP to enable the multi-device authorization feature for PPfDIMSs
	Discussions
	The alternative usages of the multi-device authorization scheme for PPfDIMS
	Potential improvments of sec:aap:impl's implementation
	Improved view synchronization when the size of P is small

	Conclusion

	A privacy preserving fully distributed IMS framework with (almost) no consensus
	Model
	Building blocks
	PPfDIMS Implementation
	Conclusion

	A step back on political and philosophical implications of PPfDIMSs
	Conclusion
	Bibliography
	E-vote system implementation using a DenyList object
	Possible Additional Properties to the HIAC scheme
	Non Transferable Signature
	Signature on Commitments and One-Show Credential

	HIAC's Proofs
	Assumptions
	Aggregator Correctness
	Aggregator Collision-Freedom
	Representation of the Elements
	Proof that (W)'*(l) is a Combination of Different (W)i i{1,@let@token ,k}
	Proof that (W)'*(l) is Composed of Only One (W)i i{1,@let@token ,k}
	Proof of th: collision freedom

	Proof of Element-Indistinguishability
	Signature Correctness
	EUF-CMA Proof
	Issuer-Indistinguishability proof
	Interactive Protocol
	Correctness
	Collision Freedom
	Indistinguishability of the Signature with Commitment Reveal Exchange

