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Chapter 1

Overview

Water is the most abundant fluid on Earth and a prerequisite for life on this planet. Water as a
solvent plays an essential role in assisting a broad range of nanometric machines in their func-
tions, proteins[1, 2] or nanocapacitors [3] to name a few. It is also a puzzling liquid presenting,
despite the simplicity of its molecule - two atoms of Hydrogen and one atom of Oxygen, many
anomalous properties. Its expansion on freezing and its density maximum at 4 °C are probably
the most famous. A network of Hydrogen bonds net structures the fluid. The strength of these
interactions and the cavities created by the spacial organization they generate is one of the
origins of these anomalous properties [4].

In this work, I focus on the dielectric properties of water at normal temperature and pressure.
The electrostatic interactions between weakly charged objects separated by tens of nanometers
can be described by the relative dielectric permittivity of water, ϵb ≈ 80. Still, things get more
complicated for highly charged objects separated by nanometric distances. At molecular scales,
water possesses peculiar dielectric properties that result from the hydrogen-bond network struc-
turing the fluid and correlating water dipole orientations over about one nanometer [5]. These
properties are encoded in the non-local (i.e. q-dependent) dielectric tensor ϵij(q⃗) - where q⃗ is the
wave number - which determines the response of the liquid to charges at distances characteristic
of the water surface. Moreover, under high electrostatic excitation, the polarization response of
water tends to saturate [6]. Water’s nonlocal and nonlinear dielectric properties are crucial to
describe interfacial aqueous systems. Note that nonlocal electrostatics for polar fluid is an old
field, and many questions have been developed in the seventies and eighties [7, 8, 9]. However,
interest in these approaches has waned, partly because of the lack of experimental results at
these scales and because the development of simulations of aqueous systems supplemented it.

The experimental study of confined electrolytic systems is currently expanding rapidly. In
the last decades, important experimental obstacles have been overcome, making it possible to
design a slab of water confined between surfaces with atomic precision for the slab thickness [10,
11, 12]. New spectroscopy methods now give access to the molecular orientation of water in such
systems [13, 14]. This has led to recent and unexpected results reporting anomalous structural
and dynamical properties of confined electrolyte systems. These results renewed interest in the
nonlocal electrostatic field that could be a simple analytical tool to analyze such experiments.
In recent years, I have developed functionals of polarizations for systems increasing complexity
to answer the questions: What governs electrostatic interactions at the nanoscale in aqueous
electrolytes? How does confinement affect the dielectric properties of these systems?

The manuscript is organized as follows. In the first chapter, I briefly present my scientific
career. In the second chapter, I focus on the description of bulk water as a linear correlated
medium. I describe the main features of the dielectric correlations in water and present func-
tionals of varying complexity that allow us to capture them. In the third chapter, I describe the
effects of the nonlinear dielectric properties of the fluid and show how to include them in a field
theory. In the fourth chapter, I describe the response of water to inclusion and focus on the
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4 CHAPTER 1. OVERVIEW

response to ions. The sixth chapter is devoted to describing the dielectric permittivity of bulk
electrolytes. In Chapter 7, I consider water and aqueous electrolytes confined between solid
surfaces and describe the coupling between structure and confinement. I present a perspective
of this work in chapter 9. In appendices, you can find my other topics of research, briefly
described; a complete list of publications; my supervision activities; my teaching activities; and
finally, my involvement in research organization.



Chapter 2

Scientific career

I did my PhD in the Department of Chemistry of Ecole Normale Supérieure in Paris, under
the supervision of Ludovic Jullien. I was co-supervised by Annie Lemarchand, a researcher in
the LPTMC - the lab of theoretical physics of condensed matter at the University of Sorbonne
Sciences University. One of our goals was to design new protocols to analyze complex reactive
mixtures. We considered a mixture of DNA strands of varying sequences. We proposed theoret-
ical methods to quantify a given couple characterized by its binding/unbinding rate constants,
and we validate this method experimentally [15, 16].

After my PhD, I did a one-year postdoctoral stay in Gulliver, ESPCI, in Paris, under the
supervision of Anthony C. Maggs. I worked on the Van der Waals interactions in atomic fluids.
Moreover, under the influence of Anthony, I started to be interested in the dielectric properties
of water[17]. Then, I spent two years in the Max Planck ’Physics of Complex Systems’ of
Dresden, Germany, under the supervision of Frank Jülicher. During this stay, I worked with
the biologists Jean-Léon Mâıtre and Carl-Philip Heisenberg on the impact of cell adhesion in
cell differentiation and cell sorting during development of embryos [18]. I also worked with
Guillaume Salbreux on the theoretical modeling of active surfaces. In particular, we studied
the deformation driven by active moments in cell shells [19].

In October 2011, I got a CNRS position as a ”chargée de recherche,” and I joined Annie
Lemarchand’s team at LPTMC, Sorbonne Sciences. After a few years and two maternity leaves
- Otto in 2014 and Camille in 2016 - I started to work on my own research project: the dielectric
properties of water and electrolytes at the nanoscale [20]. Thanks to a small CNRS grant, I
invited Alexei Kornyshev, professor at Imperial College, London, to a visit in Paris, and we
started to collaborate on the dielectric properties of confined water. At the same time, I was
awarded the Emergence Sorbonne Grant, and I hired a postdoctoral student, Geoffrey Monet,
whom I co-supervised with Alexei Kornyshev for 16 months [12, 21]. I currently co-supervise a
PhD student of Alexei Kornyshev, Jonathan Hedley, with whom I worked on hydration forces in
electrolytes [22]. I also collaborated with Ralf Blossey on modeling water under high electrostatic
fields [23]. In parallel, I started to work on active membranes. With Anne-Florence Bitbol, (
EPFL, Lausanne ) we modeled theoretically mithocondria membrane [24, 25]. I supervised two
interns (Nirbay Patil, M1 ENS) and Toni Mendes, M2 in this project. Today I supervise a PhD
student Yorgos Chatziantoniou on this topic (2023-2026).

In 2021-2022, I spent one sabbatical year in the group of Roland Netz, in the Freie Uni-
versitat, Berlin. A Humboldt experienced researcher grant financed this stay. I kept working
on the modelisation of electrolytes at the nanoscale, but I focused on the simulations of these
systems. I met there Marie-Laure Bocquet, with whom I work on a description of ion-surface
interaction [26].

In September 2022, back to Paris, I joined the lab of Gulliver as a permanent researcher, I
was awarded of the CNRS emergence grant and could hire Darka Lavavić as a postdoc to work
on the charge-surface interaction. I started to work with Vincent Démery, assistant professor
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6 CHAPTER 2. SCIENTIFIC CAREER

in Gulliver, on the transport of ions in aqueous electrolytes. We investigate the effects of water
structure on ion transport [27].



Chapter 3

Water as a continuous correlated
medium

3.1 Introduction

Because of its importance, water is the most studied liquid. This has led to a wide variety
of models for simulating this system. Always-more-sophisticated classical atomistic models
of water are developed, giving access to many microscopic details for the system. In this
manuscript, we use SPC/E and the family of TiPnP models [28]. They represent water molecules
as rigid bodies and describe electrostatic interactions between effective atomic point charges via
Coulomb potentials. The repulsive and dispersion interactions are modeled as Lennard-Jones
(LJ) potentials. The number, position, and values of the charges and LJ centers vary from one
model to another. There exists more complex classical models for water, including polarizability
and/or flexibility of the molecules, that we do not use or discuss here [29]. The rigid models
give very good results for bulk ambient water. However, they lead to an uncontrolled lack
of precision when modeling atoms as Lennard-Jones centers discarding its intimate electronic
structure. This could be of particular importance for interfacial water, which couples with
electronic degrees of freedom of the confining surface [30].

The ab initio molecular dynamics (AIMD) gives access to the electronic density of the
system. The most common approach in this context is the density functional theory (DFT)
with the Born-Oppenheimer approximation. The many-body particle problem can thus be
reformulated into a many-body electronic problem and expressed as the electronic density [31].
This approach necessitates important computational resources that could be lightened with the
use of machine learning algorithm [32]. As for classical simulations, these approaches give a
”brute force” solution to one specific problem and should be run again for a different one as
they do not furnish a ”master” equation governing the properties of an ensemble of systems.

Classical continuous models for water using density as an order parameter, based on Landau-
Ginzburg expansion of the energy [33] or writing the free energy as a density functional [34] have
brought an important contribution to the field of the physics of liquids, clarifying the structural
response of the fluid to microscopic and macroscopic inclusions by taking into account short
and long-range density fluctuations [35, 36, 37]. However, these models focus on density effects,
not electrostatic interactions. Thus, They are not the ideal starting point for developing a
continuous model for electrolytes.

Description of water as a continuous nonlocal dielectric medium was first envisaged by A.
Kornyshev and coworkers, which proposed a Landau-Ginzburg functional of the density and
the polarization for the energy of the fluid [7, 8, 38]. A decade later, Anthony Maggs focused
on polarization [39] and proposed a functional that catches the main features of the charge
structure factor of water. Finally, Borgis and coworkers are developing a functional of density
and polarization (MDFT) for the free energy of water but based on a numerical approach [40].
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8 CHAPTER 3. WATER AS A CONTINUOUS CORRELATED MEDIUM

This chapter aims to construct and characterize a platform of phenomenological Landau-
Ginzburg functionals of polarization and of the polarization and the density that describe the
dielectric properties of water at the nanoscale. We restrict the discussion in this chapter to the
Gaussian regime. These functionals are built with an increasing complexity but remain always
analytically tractable. The goal is to identify the essential blocks leading to a comprehensive
description of the structural properties of water at the nanoscale. They will be used in the
following as starting points to study the dielectric properties of more complex systems such as
electrolytes or confined water.

This chapter is organized as follows. After a quick reminder of electrostatics in a dielectric
medium, we present the seminal functional of the polarization that captures the key features of
water dielectric properties with as few parameters as possible [39]. Then, we introduce a second
model based only on the polarization, but we consider here two polarization fields associated
with different ranges of correlation lengths. Finally, we present a model considering both density
and polarization field. The last part is devoted to the conclusion.

3.2 Electrostatics in water

3.2.1 Electrostatics in a simple medium

We begin here with a quick reminder of the properties of linear dielectric media. In vacuum, a
punctual ion of charge e and located in r⃗ = 0, associated with the charge distribution ρ(r⃗) =
eδ(r⃗), generates a radial electrostatic field: E⃗ = e/4πϵ0r2u⃗r. In a dielectric material, the
electrostatic field induced by a charge can be written as:

E⃗ = D⃗

ϵ0
− P⃗

ϵ0
. (3.1)

The electrostatic displacement D⃗ is associated with the response of the vacuum, and the polar-
ization field P⃗ is associated with the response of the material. A local (non-correlated) linear
medium is characterized by a constant relative permittivity ϵb. In this case, the electrostatic
field generated by a punctual ion obeys: E⃗ = e/4πϵbϵ0r2u⃗r and the polarization P⃗ and the
excitation D⃗ are related via the following scalar response functions:

D⃗ = ϵ0ϵbE⃗ (3.2)
P⃗ = χD⃗ (3.3)

with χ the dielectric susceptibility of the medium:

χ = 1 − 1/ϵb. (3.4)

Gauss’ law gives the relation between these fields and the free (ionic) and bond (polar
solvent) charges in the medium as follows:

∇ · D⃗ = ρions,∇ · P⃗ = −ρb (3.5)

where ρions is the density of free charges and ρb the density of bond charges.
Most of the models we are going to introduce in this manuscript are based on a functional

of polarization. We thus briefly derive the widely used Poisson-Boltzmann equation and its
linearized form, the Debye-Hückel equation, as functions of the field P⃗ [41]. We write the three
coupled equations that correspond to the Poisson-Boltzmann equation, expressed as a function
of P⃗ :

ϵb
ϵb − 1∇P⃗ = ec, c = c0e

−βeϕ, P⃗ = −ϵ0(ϵb − 1)∇⃗ϕ (3.6)
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where c is the local volumic concentration of free charges, c0 its mean value, e the charge of a free
charge, β the inverse of the temperature. Linearizing the system, we obtain the Debye-Hückel
equation as follows:

ϵb∇⃗
(
∇ · P⃗

)
= βe2c0

ϵ0
P⃗ . (3.7)

For molecular media like liquid water, things get more complicated. Indeed, as the fluid is
associated via intermolecular interactions as strong as H-bond, the polarization response in a
point r⃗, P⃗ (r⃗), is not directly proportional to the excitation in this point D⃗(r⃗), but depends on
the excitation throughout the medium as follows:

P⃗ (r⃗) =
∫
dr⃗′χ(r⃗, r⃗′)D⃗(r⃗′). (3.8)

The susceptibility χ(r⃗, r⃗′) is a tensor, as P⃗ and D⃗ are vectors and depends on the two points
r⃗, r⃗′. It is possible to derive this tensor via experimental data or using MD simulations, as we
present in the next section.

3.2.2 Dielectric susceptibility of water

The dielectric properties of bulk water are thus encoded in the two-point susceptibility tensor.
It is related to the permittivity as follows: χ(r⃗, r⃗′) = δ(r⃗ − r⃗′) − ϵ−1(r⃗ − r⃗′), see Eq. (3.4).
This nonlocal kernel can be expressed through the correlations of the polarization P⃗ using the
classical approximation for the fluctuation-dissipation theorem1,

χ(r⃗, r⃗′) = ⟨P⃗ (r⃗)P⃗ (r⃗′)⟩
ϵ0kBT

. (3.9)

with kB the Boltzmann constant and T the temperature. The polarization can be decomposed
in a longitudinal part P⃗∥(r) and a transverse part P⃗⊥(r) defined as follows:

P⃗ = P⃗∥ + P⃗⊥, ∇ · P⃗⊥(r) = 0, ∇ × P⃗∥(r) = 0⃗. (3.10)

Using the translational invariance of the medium, the susceptibility can be decomposed in
Fourier space in a longitudinal part χ∥(q) and a transverse part χ⊥(q) as follows:

χij(q) = χ∥(q)qiqj

q2 + χ⊥(q)
(
δij − qiqj

q2

)
where (i, j) ∈ {x, y, z}2 . (3.11)

The longitudinal correlations ⟨P⃗ (r⃗)P⃗ (r⃗′)⟩ can be decomposed in terms of the experimentally
measured partial HH, OH, OO structure factors of water[43] under the assumption of simple
charge distribution in the molecule [5].

It is also possible to compute both the transverse and longitudinal correlation functions for
the polarization using classical molecular dynamics simulations of neat water [5, 38, 40, 44].
The figure 3.1 shows the longitudinal χ∥ and transverse χ⊥ susceptibility in Fourier space
(panel a and b, blue markers) derived from classical molecular dynamics (MD) simulations
with the 3 point charge water model TIP4p/ϵ [45]. The simulation methods are detailed in
ref. [46]. Note that this kernel has been computed for other rigid explicit models (SPC/E,
Tip3p, etc.), leading to qualitatively similar response functions. The q−dependence of the
susceptibility in Fourier space illustrates the nonlocal nature of water. The q = 0 susceptibility,
corresponding to long-range properties, is associated with the bulk permittivity ϵb as follows

1There is a more general formulation taking into account quantum corrections[42] that is not considered here
for due to the model simplicity.
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Figure 3.1: MD simulated susceptibilities for bulk water. (a) Longitudinal susceptibility
(b) transverse susceptibility in Fourier space with TIP4p/ϵ [45] model.

ϵb = 1/(1 − χ∥(0)). MD data show an ”overresponse” of the system, which corresponds to
χw

∥ (q) >1, around q=3 Å−1. This leads to a q-region associated with a negative permittivity
- as ϵ(q) obeys ϵ(q) = 1/(1 − χw

∥ (q)). This phenomenon is named ”overscreening” [5] and was
discussed for the first time about 30 years ago. It can be attributed to the H-bond network
structuring water at short range [38]. Two ions of the same/opposite charges separated by a
small distance could feel an attractive/repulsive force to reach a distance corresponding to a
non-disrupting H-bond network between them.

The transverse susceptibility (Fig. 3.1 (b)) shows a spectrum of simpler shape as it monotonously
decays.

3.3 Nonlocal electrostatic model for water

In collaboration with Anthony Maggs.

We have seen in the last sections that at the nanoscale, water is not a simple fluid characterized
by a constant permittivity but presents correlation modes that are going to play a role in
electrostatics at the nanoscale. We present here the seminal phenomenological model for water
that we are going to use as a reference in the rest of this manuscript. This model was first
introduced by Anthony C. Maggs and Ralf Evarers [39]. It encodes the polarization correlations
of water at the nanoscale and is analytically tractable.

We start by writing an electrostatic energy for the fluid as a functional of the polarization
as follows:

Uel[P⃗ ] = 1
2

∫
dr⃗dr⃗′ ∇ · P⃗ (r⃗)∇ · P⃗ (r⃗′)

4πϵ0|r⃗ − r⃗′|
+ Uconf [P⃗ ]. (3.12)

The first term corresponds to the bare Coulomb interaction between the partial charges −∇·P⃗ (r⃗)
and −∇ · P⃗ (r⃗′) of the fluid. The second term corresponds to the configurational energy of the
fluid. To model the nonlocal properties of water, we use a Landau-Ginzburg approach to give
an explicit expression of Uconf [P ] [39]. This functional contains only terms quadratic in P⃗ .
In the following, we will call it the ”Gaussian” model as the associated partition function is
Gaussian in P⃗ or ”linear” model, as the polarization response to a perturbation is proportional
to the perturbation (see Chapter 4 for examples). A Landau-Ginzburg expansion is based
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on a gradient expansion for the energy density. We first write a term quadratic in the field,
KP⃗ 2. Then, we include two terms quadratic in the first spatial derivative of the fields. We
write κl(∇ · P⃗ )2, which includes the derivative of the longitudinal contribution of the field and
κt(∇× P⃗ )2 which includes the derivative of the transverse contribution. The coefficients κl and
κt are named Landau-Ginzburg coefficients. They are homogeneous to [L2], and we thus see
that these terms introduce characteristic lengths in the model of the system. Finally, we add
a quadratic term in the second derivative of the longitudinal polarization, α(∇(∇ · P⃗ ))2. The
corresponding expression,

Uconf [P⃗ ] = 1
2ϵ0

∫
dr⃗
[
KP⃗ (r⃗)2 + κl(∇ · P⃗ (r⃗))2 + κt(∇ × P⃗ (r⃗))2 + α(∇(∇ · P⃗ (r⃗)))2

]
(3.13)

can capture the main features of dielectric properties of water at the nanoscale [17, 21]. The
polarization susceptibility χ, defined as follows

Uel[P⃗ ] = 1
2

∫
dr⃗

∫
dr⃗′P⃗ (r⃗) · χ−1(r⃗, r⃗′) · P⃗ (r⃗′), (3.14)

is obtained by inversion of Eq. (3.12) and can be decomposed in Fourier space in a longitudinal
χ∥ and a transverse χ⊥. Their expressions follow from Eq. (3.13) as

χ∥(q) = 1
1 +K + κlq2 + αq4 , χ⊥(q) = 1

K + κtq2 . (3.15)

As one sees, the susceptibilities are now functions of the wavenumber q, illustrating the nonlo-
cality of the modeled medium. For the longitudinal susceptibility, we consider the case (κl < 0,
α > 0), which is associated with a maximum as a function of q. The value of the parameters
K, κl, and α, are adjusted to fit the bulk value, χ∥(0), the position and the value of the max-
imum of χ∥(q) (q =3 Å−1) of the the MD simulated response. Note that the secondary peak
observed for q >4 Å−1 corresponds to intramolecular correlations and to length scales that are
not addressed in this study. The parameter κt is chosen to fit the decay of MD data. Fig. 3.2
shows the response functions given in Eq. (3.15) (panels a and b, black line) for the values of
the parameters given in the caption. The longitudinal susceptibility χ∥(q) is associated with
two correlation lengths: a longitudinal decay, λd, and an oscillation length λo, defined as the
imaginary and real part of the inverse of the poles of the function. The transverse susceptibility
χ⊥(q) is associated with a decay length λt, which is the inverse of its pole. We can express
these lengths as functions of the phenomenological parameters of the problem. Their expressions
obey:

λd = 2
√
α√

2
√
α(1 +K) + κl

, λt =
√
κt

K
, λo = 4π

√
α√

2
√
α(1 +K) − κl

. (3.16)

Using the estimated values of the parameters, we get a longitudinal decay length λd=4.7 Å, an
oscillating length λo=2.1 Å, and a transverse decay length, λt=1.05Å.

When comparing the MD data and the model in Fig. 3.2, one sees that they quantitatively
differ. However, the bulk permittivity and the ”overscreening” effects are well captured by field
theory. Note that a Landau-Ginzburg expansion of the electrostatic energy at larger order in
the polarization derivatives would allow for a better reproduction of MD data without bringing
any supplementary technical difficulties.

Using this framework, we can now derive an analytical expression for the correlations of
the polarizations. We use Eq. (3.9), and calculate the Fourier transform of the susceptibility
tensor. Details of the calculations are furnished in ref. ([17]). We write the longitudinal and
transverse correlation functions as follows:

⟨P (r)P (0)⟩∥ = 1
2πK(K + 1)r3

(
1 + h∥(r)

)
, ⟨P (r)P (0)⟩⊥ = − 1

4πK(K + 1)r3 (1 + h⊥(r)) .

(3.17)
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q [Å−1]

0

10

20

30

40

50

χ
w ‖

[-]

(a)

FT
MD

0.0 0.5 1.0 1.5 2.0

q [Å−1]
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Figure 3.2: Susceptibilities obtained with FT model. The parameter values of the FT
model are K= 1/76, κl= -0.218 Å2 , α=0.012 Å4 and κt=0.013 Å2.
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Figure 3.3: Longitudinal ⟨P (r)P (0)⟩∥ and transverse ⟨P (r)P (0)⟩⊥ correlation functions as func-
tions of r (nm). b. Longitudinal h∥(r) and transverse h⊥(r) short-range correlation terms as a
function of the distance r (nm). These functions are plotted for the set of parameters: α = 0.021
Å4, κl = −0.29 Å2, κt = 0.065 Å2, K = 1/70 [17]

The functions h∥(r) and h⊥(r) are functions encoding the correlation lengths of the water at
the nanoscale. Their expressions are given in ref. ([17]). For a local medium, the correlations
are obtained for hi(r) = 0.

Figure 3.3 shows the longitudinal and the transverse correlations and the functions hi,
(i=∥,⊥) for a fluid associated with λd=0.5 nm and λt=0.25 nm (The parameters are here
fitted on the MD simulated susceptibility for SPC/E water, in the same manner as described
previously). The functions h∥(r) and h⊥(r) are oscillating and decaying. The oscillations
correspond to the molecular nature of the material and the typical distance between charges
at the molecular scale. This structure appears over a few λd, the correlation range of the
fluid. After this range, a local description is recovered (hi(r) ≈ 0). Note that experiments and
simulations indicate that for water, the correlations extend on a range of 1 nm [47].

The figure 3.4 (b) compares the longitudinal dipolar correlations obtained from MD simula-
tions and the ones computed using the Gaussian model (Eq. (3.12-3.13)). They can be written
as ⟨µ(0)µ(r)⟩F T = ⟨P (0)P (r)⟩∥/µ

2
Dρ

2
0, with µD the dipole moment of water ρ0 its density. The

inset shows the results for a parameterization of the susceptibility as indicated in Fig. (3.2).
We see an overestimation of the correlation range. The model does not reproduce the charge
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Figure 3.4: (a) Dipolar correlation function. The red cross is the result of molecular dynamics
simulations that are reproduced by Zhang C. et al., J. Chem. Phys. 141, 084504 2014. The
black curve is plotted using the expression ⟨µ(0)µ(r)⟩F T = ⟨P (0)P (r)⟩∥/µ

2
Dρ

2
0, with µD=2.2 D,

ρ0=0.033 Å−3 and the parameters given in Fig. 2. The insert represents the dipolar correlation
obtained for parameters K=1/70, κl = −0.22 Å2, α = 0.012 Å4 corresponding to a reproduc-
tion of the SPC/E susceptibility. (b) Longitudinal susceptibility was derived with molecular
dynamics simulations and field theory model. The simulated response is obtained for a dipolar
model constructed from SPC/E water simulations (see ref. ([48]). The susceptibility is obtained
from the Field theory framework for K = 1/70, κl = −0.36 Å2, α = 0.034 Å4.

layering around a reference point as the extrema of the correlation functions are shifted when
compared to the MD data.

The FT susceptibility possesses a peak at 3 Å−1, which is more narrow than the MD sim-
ulated system as seen in Fig. (3.2) (a). This narrow ”overresponse” zone corresponds to a
medium correlated over a larger scale than the simulated one, and this explains the observed
discrepancy in the inset of 3.4 (b). This can be improved by adjusting the fitting procedure for
the determination of (α, κl, K)...

To solve this problem, . we perform simulations of SPC/E water that we treat as a dipolar
fluid. Fig. 3.4 (a) shows the corresponding susceptibility (red markers) and the FT one con-
structed from this input (black line). Details are given in ref. [48]. The correlations for this
model are plotted in the main plot of Fig. 3.4. The agreement with MD data is much better.

However, the projection on a simpler molecular model (here a dipole) is not necessary to
get a quantitative agreement for correlation lengths between MD simulations and field theory
calculations. In another work [21], we have fitted the aspect ratio of the peak at q=3 Å−1 - it
i.e. its broadness at half height. We have shown that, in this case, the correlation lengths agree
with MD data. We detail this case in Chapter 7.

As a brief conclusion of this section, we have shown that nonlocal electrostatics can furnish
an analytically tractable framework to describe the polarization correlations in water at the
nanoscale.

3.4 Two polarization field model

In collaboration with A. Kornyshev and J. Hedley.

This section focuses on the low-q behavior of the longitudinal dielectric susceptibility. This
regime is fundamental as it encodes the correlation of water at a long range. It plays a central
role in the description of the electrostatic interactions between macroscopic objects separated
by a few nanometers. The model discussed in the last section reproduces the ”overscreening”
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phenomenon in water but fails to reproduce the behavior at low q. Figure 3.5 represents the
simulated susceptibility (top) and the permittivity (bottom) for SPC/E water (blue markers and
red plot). In both cases, the inset zooms on the low-q behavior and shows a constant (or going
throw a minimum?) susceptibility and a decaying permittivity. This behavior is not reproduced
by the model given in Eq. 3.13, which leads to an increasing χ∥(q) at low q. This section briefly
shows how to modify the initial model to capture these properties. We consider the polarization
P⃗ purely longitudinal as we focus on χ∥. In the spirit of Ref.[38], we here assume that the
polarisation P⃗ is a sum of three contributions, P⃗ = P⃗1 + P⃗2 + P∗. where P⃗1 and P⃗2 describe
contributions from the reorientation of water molecules, and P∗ describes contributions from
the polarisability of the molecules themselves. Introducing a three-component model allows
us to account for the different possible modes and spatial scales of polarisation fluctuations.
The intramolecular modes (P∗) include contributions such as fluctuations of electron density
and intramolecular vibrations. However, we assume here that these modes give purely local
polarisability, independent of the wavevector, q, and so we do not include them in our model
functional. The other orientational modes could correspond to reorientation of molecules that
results in rearrangements of the hydrogen-bonding network, or oscillations about an average
position preserving the hydrogen bond network. We avoid specifically assigning these modes
here, and instead consider a model described by two different orientational modes P⃗1 and P⃗2,
one of which (P⃗1) we expand to the second derivative term in the Landau-Ginzburg expansion,
and the other (P⃗2) to just the first derivative also known as the ‘Lorentzian approximation,’

Uconf [P⃗1, P⃗2] =
∫

V

dr⃗

2ϵ0

{
K11P⃗

2
1 +K12

(
∇ · P⃗1

)2
+K13

(
∇(∇ · P⃗1

)
)2
}

+
∫

V

dr⃗

2ϵ0

{
K21P⃗

2
2 +K22

(
∇ · P⃗2

)2
}
, (3.18)

where the set of phenomenological model parameters is given by {Kij}. This two-polarisation
model allows us to build up a kernel that mimics the simulated nonlocal dielectric properties of
bulk water at low q. This model of two orientational polarisation modes, correlated differently
in space, one, P⃗1, of higher wavenumber with decaying oscillations (described in the last section)
and the other one, P⃗2, of lower wavenumber that decays exponentially, is also phenomenologic.
It matches some simulation data [?] as well as several consequences of the nonlocal dielectric
response of water [49, 50]. This concept has been discussed in detail in [49] in the context of the
interplay between temporal and spatial correlations of polarization fluctuations. This splitting
of the polarisation density reminds the attempts to fit the time-frequency Debye spectrum of
the frequency-dependent dielectric permittivity of water with two different relaxation times
[51, 52, 53, 54, 55], one fast and one slow. These two times are often associated with librations
of individual molecules and reorientations of their larger clusters, respectively. However, this
does not mean that water should literally be considered as a coupled system of two liquids, each
with its own relaxation processes, although new arguments have been put forward to validate
such a picture [56, 57] in the context of the recently discussed ”low” and ”high” density clusters
in water. But all these should better be interpreted in the language of collective modes [58, 49].
The dielectric susceptibility associated with the model given in Eq. (3.18) can be computed
(see ref. [22]) and parameterized to reproduce the low-q behavior of water. This is shown in
Fig. (3.5). The top panel presents the susceptibility and the bottom panel the permittivity,
obtained via the relation: ϵ(q) = 1/(1 − χ∥(q)).

The relevance of this model will be highlighted when we consider confined systems in a later
chapter.
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Figure 3.5: Dielectric response function (a) and dielectric function (b) of bulk water. Insets are
computed from SPC/E simulations of water. Main Curves have been calculated from Eqs. and with
K11 = 0.140125, K12 = −0.207118 Å2, K13 = 0.01129 Å4, K21 = 0.015908, K22 = 2.00394 Å2.
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3.5 Functional of density and polarization

Until now, we have considered polarization as a unique, relevant field to describe electrostatics
in water. This approach goes against the history of liquid theory, which has primarily developed
density functionals for the energy, or free energy, of the system [34]. And, indeed MD simulations
of water have shown that density and polarization fluctuations are coupled [44]. A perturbation
of the water density induces a variation in the polarization. For example, the solvation of
a neutral atom (modeled as a Lennard-Jones sphere) produces a perturbation of the density
field around it, but also a mean polarisation for the solvent. This suggests that a complete
description of the dielectric properties of water must include a density term.

In this section, we construct a phenomenological Gaussian model of two coupled fields, the
density, and the polarization, that we apply to study water [59].

Density correlations in water

The density of the fluid, ρ(r), is written as the sum of its mean density ρ0 and of a fluctuation
field δρ(r) as follows: ρ(r) = ρ0 + δρ(r). In the present Gaussian limit, we assume the density
fluctuations are small, δρ/ρ0 ≪ 1. We consider water in normal temperature and pressure
conditions, which sets ρ0 =0.033 Å−3. The spatial correlations of the fluctuation of the density
are characterized by the structure factor S(q) of the fluid as follows: S(q) = ⟨δρ(q)δρ(−q)⟩/ρ0.
Figure 3.6 shows the structure factor in Fourier space measured experimentally using x-ray
spectroscopy [60]. We focus here on the low q part of the spectrum q ≪ 4 Å−1 as we target
the properties of water at a nanometric and larger scale and not its atomic description. The
structure factor in q=0, S(0), is associated with the macroscopic compressibility of water as
follows S(0) = χT /χ

0
T , where χT is the compressibility of fluid and χ0

T = 1/kBTρ0 is the
compressibility of a perfect gas of density ρ0. In real space, the fluctuations of the density are
characterized by the well-known pair distribution function through the relation:

g(r) = 1 + ⟨δρ(r)δρ(0)⟩
ρ2

0
. (3.19)

We now write the energy of the fluid as a Gaussian model of two coupled fields δρ and P⃗ . As
one field is a scalar field and the second one a vectorial field, we couple either ∇δρ and P⃗ or
δρ and ∇ · P⃗ . Both are equivalent to infinite bulk systems. Note that for symmetry reasons,
the coupling affects only the longitudinal part of the polarization field. We thus propose for the
energy:

U [δρ, P⃗ ] = Uel[P⃗ ] + kBT

2ρ0

∫
dr⃗dr⃗′δρ(r⃗)χ−1

ρ (r⃗, r⃗′)δρ(r⃗′) + c
kBT

µ0ρ0

∫
dr⃗∇δρ(r⃗) · P⃗ (r⃗). (3.20)

The first term of the energy, Uel[P⃗ ], is the electrostatic energy, a functional of P⃗ that we already
discussed. Here, we take the expression given in Eqs. (3.12,3.13). The second term corresponds
to the energy of excess density introduced in this form by D. Chandler [33] and involves the
structure factor S(q) as the kernel for the density correlations. We propose here an explicit
expression for the density term using a Landay-Ginzburg expansion:∫

dr⃗dr⃗′δρ(r⃗)χ−1
ρ (r⃗ − r⃗′)δρ(r⃗′) =

∫
dr⃗
[
Kρδρ(r⃗)2 + λ (∇δρ(r⃗))2 + ν (∇ · ∇δρ(r⃗))2

]
.

The parameters Kρ ([−]), λ ([L2]) and ν ([L4]) are Landau-Ginzburg parameters. We first
choose the parameter values such that χρ(q) reproduces the bulk properties of S(q = 0) and
possesses a peak around q=3 Å−1 which mimics roughly the low q behavior of the structure
factor S(q) shown in Fig. 3.6. Finally, the last term in Eq. (3.20) c kBT

µ0ρ0

∫
d3r∇δρ(r) · P⃗ (r)

encodes the coupling. µ0 is the permanent dipole of water, c is the coupling constant, and has
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Figure 3.6: Structure factor of water. We reproduce the x-ray structure factor of water
given in ref. [60]. It has been measured under ambient conditions

the dimension of a length. The total energy of the system can be written in Fourier space as
follows:

U [δρ, P⃗ ] = 1
2

∫
dq⃗
(
δρ(q), P⃗ (q)

)
χ−1

c (q)
(
δρ(−q)
P⃗ (−q)

)
. (3.21)

The susceptibility of the system, χc(q) is a 4x4 antisymmetric matrix obtained by inversion
of Eq.(3.20). Its analytical expression is given in ref. [59]. It is a function of c2 and does not
depend on the sign of the coupling constant. The coupling effect is investigated by increasing
the value of c2: it enhances the range of the correlations for P⃗ and δρ. We choose the free
parameters of this model (α, κl, ν, λ, c) so that we can reproduce the positions and values of
the maxima of the SPC/E water susceptibilities. The results are plotted in Fig. 3.7.

It presents the structure factor (a), the longitudinal susceptibility (b), and the coupled
susceptibility (c) obtained via MD simulations (dashed lines) or adjusted field theory (black
line). The agreement between the two remains qualitative. However, the coupled Hamiltonian
presented in Eq .(3.21) gives an analytically tractable framework to estimate the coupled density
and polarization response to inclusion in water.

3.6 Conclusion

In this chapter, I have presented three Gaussian models to describe the correlations of the po-
larization in water. I started with the minimal functional of the polarization that can describe
the ”over-screening” property of water, see Eq. (3.13). The second and third models illustrate
how we can easily adjust this framework to reproduce other interesting properties of the fluid.
We built a model based on two polarization fields, Eq. (3.18), which could be thought of as two
distinct reorientation modes of water. It can better reproduce the low-q region of the longitu-
dinal susceptibility, which encodes the correlations at a scale larger than a few molecular sizes.
Finally, we build a coupled model of the density and the polarization, Eq. (3.20), that quali-
tatively reproduces the simulated response function water and takes into account the interplay
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Figure 3.7: Response functions for a water model compared to response functions of SPC/E
water. a. Density susceptibility χρ(q) (solid line) and density susceptibility of SPC/E water
(dashed line) as a function of q . b. Dielectric susceptibility χP (q) (solid line) and dielectric
susceptibility of SPC/E water (dashed line) as a function of q. c. Cross susceptibility χρ,P (q)
(solid line) as a function of q and cross susceptibility of SPC/E water (dashed line). The
values of the parameters are given ref. [59]. The molecular dynamics results are reproduced and
adapted with permission from ref[40, 44].
.

between mass and charge density. However, these three examples developed here remain in the
linear response regime. In the next chapter, we show how to overcome this limit.



Chapter 4

Nonlinear dielectric effects in water

4.1 Introduction

The last section presents phenomenological nonlocal Gaussian polarisation functionals that
capture the dielectric properties of water at the molecular scale. While the qualitative behavior
obtained with these models is in general agreement with the results of MD simulations, the
amplitude of the structuring effects is often overestimated in the linear models.

Water polarizes in response to an electrostatic field by increasing its density and accumulat-
ing molecules around the source of the field - an electrode, a charged molecule; moreover, the
molecular polarization of one molecule increases by deforming its electronic cloud. However,
both of these mechanisms are bounded. Finally, the response of the fluid to a high electro-
static field saturates. The polarization stays constant for a field of increasing strength. This
saturation corresponds to a vanishing permittivity.

The permittivity of water submitted to a constant static electrostatic field has been measured
with MD simulations (see the sketch in the inset of Fig. 4.1). Figure 4.1 shows the permittivity
as a function |E⃗| obtained for different water models. As one sees, the permittivity decays with
an increase of |E⃗|, illustrating this saturation effect. It is divided by 2 for |E⃗| ≈0.05 V.Å−1.
The electrostatic field generated by a monovalent ion is larger than this value over a sphere of
r ≈15 Å, in vacuum and over a sphere of r ≈2 Å in a medium associated with ϵb=80. The first
estimation overestimates the size of the nonresponsing shell as water starts to screen the ion
field. The second underestimates it, as the first shell cannot screen the field as efficiently as the
bulk. In this chapter, we build tools to model and quantify the nonlocal nonlinear response of
water to high fields.

We consider functionals for the energy and the free energy of the system that include non-
Gaussian terms [61, 39, 62, 63]. In contrast to non-local models, which have been developed
phenomenologically, one can construct nonlinear functionals for the free energy of polar fluids
starting from microscopic models [62, 64]. We start by briefly discussing these models and
present their properties. We then explain how we implement nonlinear properties in the nonlocal
models presented in the previous chapter. We characterize the properties of such models. The
last part is devoted to the conclusion.

4.2 Microscopic models of polar fluids

In collaboration with Ralf Blossey

In this section, we present two generalized continuum models for water electrostatics that were
developed by Henri Orland, David Andelman and coworkers [62, 64, 65, 63]. They are based
on a microscopic description of water: a punctual dipole represents a molecule of the fluid (see
sketch in Fig 4.2).

19
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Figure 4.1: Permittivity of water under constant electrostatic field measured with MD simula-
tions. This figure is a reproduction of Fig. 11 of Yeh I.-C. et al., J. Chem. Phys. 110 7935-7942,
1999. presenting the permittivity for different explicit water models.

Figure 4.2: Microscopic models for water as a dipolar system. a) the dipole Poisson model (D)
is a gas of punctual dipoles. b) the dipolar Poisson Langevin model (DL) is made of punctual
dipoles on a lattice [62].
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Water is composed of N dipoles. In the first model, which we name here the dipolar Poisson
model (D), molecules are modeled as a gas of dipoles -see sketch (a) of Fig. (4.2). In the
second model, named dipolar Poisson Langevin (DL), the dipoles are placed on a lattice - see
sketch (b) of Fig. (4.2). Note that these models are refereed in the literature under the name of
dipolar-Poisson–Boltzmann–(Langevin) models as they are used to study electrolytes, but since
we focus here on neat water, we suppress the ”Poisson–Boltzmann” notion clarity.

The charge density for the system thus writes as follows: ρdipole = ∑
i −p0 ·∇δ(r⃗− r⃗i), where

p0 is the dipole moment, and ri the position of the vector i. In both cases, the dipoles are
interacting via the Coulomb potential. The partition function and the free energy of the system
can be written by taking into account the degrees of freedom of the dipoles. For the D model,
the position and rotation of the dipole vary as the density of the dipole is not constrained. For
the DL model, the dipoles are pinned on a grid, the system is incompressible, and only the
dipole orientations vary. One can compute analytically the free energies Ui (i=D, DL). They
can be written as nonlinear functionnals of the electrostatic potential, ϕ, and of microscopic
variables of the system p0, the dipole moment of one molecule, and 1/a3 the density of dipoles.
Note that for the DL model a is the size of the mesh of the lattice. The free energy expressions
are derived in refs. [62, 63]. One gets for the D model:

UD =
∫
d3r

[
−ϵ0

2 (∇ϕ)2 − 1
βa3

sinh(βp0|∇ϕ|)
βp0|∇ϕ|)

]
+ 1
βa3 , (4.1)

and for the DL model:

UDL =
∫
d3r

[
−ϵ0

2 (∇ϕ)2 − 1
βa3 log

(sinh(βp0|∇ϕ|)
βp0|∇ϕ|

)]
. (4.2)

These models introduce the molecular nature of the solvent at the microscopic scale and
describe systems associated with a nonlinear response regime. In the D model, the local density
of dipoles can increase without any energetic cost„ and the dipole orientation aligns with the
external field. The DL model is incompressible, and once all the dipoles are perfectly aligned
on an external field, the system stops responding.

These models have a few disadvantages. The free energy density is a local function of ∇ϕ.
Nonlocal terms could expand it as in the models previously discussed. But, the polarization P⃗
corresponds to the material response, and the Landau-Ginzburg terms in ∇ · P⃗ that we have
introduced for nonlocality can be seen as a local organization of the molecules. It is more
difficult to give a molecular interpretation of a Landau-Ginzburg expansion of the energy of the
system with −∇ϕ as an order parameter. Moreover, the energy density is a concave function
of −∇ϕ (i.e. it goes through a maximum and not a minimum), and a nonlocal configurational
expansion would have to be convex, making the use of such combined functionals more difficult
as discussed in refs. [66, 67].

4.3 D- and DL- model in P-space

In this section, we will characterize these models as functionals of the polarization fields. We
discuss the behavior of the D and DL models in the limits of low and high polarization. MD
simulations for an SPC/E-water slab in the presence of an external field allows us to parameterize
the Dipolar-Langevin model quantitatively .reductionist nature.

Our starting point is the free energy for the two systems expressed as functionals of the
electrostatic field E⃗ that is obtained from the functionals of the electrostatic potentials (see
Eqs.(4.1-4.2)) by introducing the excitation field D⃗ as a Lagrange multiplier as follows :

Ui =
∫
dr⃗

[
−ϵ0

2 E⃗
2 − hi(E⃗) + D⃗ · (∇ϕ− E⃗)

]
, (4.3)
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where hi(E⃗) abbreviates: with

hDL(E⃗) = 1
βa3 log

(sinh(βp0|E|)
βp0|E|

)
, hD(E⃗) = 1

βa3
sinh(βp0|E|)
βp0|E|

. (4.4)

We perform a Legendre transform to express these energies as functionals of P⃗ . We introduce
h̃i(P⃗ ) the Legendre transformation [66, 67] of h(E⃗) defined as

h̃i(P⃗ ) = P⃗ · E⃗ − hi(E⃗), and P⃗ = dhi(E⃗)
dE⃗

(4.5)

to express the free energy of the system as a functional of the conjugated field P⃗ . It gives, for
i = (D,DL),

Ui =
∫
d3r
[

− ϵ0
2 E⃗

2 + h̃i(P⃗ ) − ϕ∇ · D⃗ + E⃗ · (D⃗ − P⃗ )
]
. (4.6)

Varying Ui depending on the electrostatic field E⃗ leads to the relation D⃗ = ϵ0E⃗ + P⃗ and thus
identifies P⃗ as the polarization field. By replacing E⃗ by its mean-field value ϵ0E⃗ = D⃗ − P⃗ , we
obtain the functional in the P -space:

Ũi =
∫
d3r

[
(D⃗ − P⃗ )2

2ϵ0
+ h̃i(P⃗ ) − ϕ∇ · D⃗

]
. (4.7)

In the following, we consider only excitations D⃗ that satisfy the Gauss relation (∇ · D⃗ = 0 in
the absence of free charge) and therefore drop the term ∼ ϕ in the free energy density.

The nonlinear Dipolar-Langevin (DL) and Dipolar (D) models can thus be studied in either
E- and P -space and we now investigate their properties in these spaces. We first compare the
two E- and P -functionals with the corresponding linear continuum dielectric medium. To do so,
we expand the dipole energy densities hi (i = D, DL), Eq.(4.3)) to second order in E⃗, Using Eq.
(4.5), one obtains the quadratic Hamiltonian in the P -space [23]. The harmonic approximations
of the free energy densities in E-space, fi(E⃗) = −ϵ0E⃗2/2 − hi,2(E⃗), and in P -space, f̃i(P⃗ ) =
P⃗ 2/2ϵ0 + h̃i,2(P⃗ ), can be written as functions of the macroscopic response functions, -ϵ0ϵbE⃗2/2,
where ϵb is the relative dielectric permittivity and P 2/2ϵ0χ. By identification, one obtains the
expressions

ϵb ≡ 1 + βp2
0

3ϵ0a3 , 1 + ϵ0
3a3

βp2
0

≡ 1
χ

(4.8)

as functions of the microscopic variables (p0, a) of the D- and DL-models. We note particularly
that the relations hi,2(E⃗) and h̃i,2(P⃗ ) are not only dual in the field variables E⃗ and P⃗ , but also
in the model parameters, in the temperature dependence β−1 and in ϵ0.

In Fig.(4.3), the functions −hDL(E⃗) (dashed black curve) and −hD(E⃗) (green curve) and
their harmonic approximation −hDL,2(E⃗) (blue curve) are plotted in panel a. The corresponding
functions for P -space are represented in panel b. As parameter set to reproduce the properties
of water were used: p0 = 1.8 D corresponds to the dipole moment of one molecule and a = 0.17
nm is adjusted to fix the relative dielectric permittivity ϵb to 78 corresponding to water. We
note that it differs from the mesh size giving rise to the density of water which is given by aw =
0.3 nm. As one sees, for both the D- and DL-model the functions are concave in E⃗ and convex
in P⃗ . We compare the value of the dipole energy density for the harmonic approximation in E-
and P - space. In the DL model, h̃DL(P⃗ ) increases faster than the quadratic expansion in the
P -space and saturates for large values of P⃗ . On the contrary, hDL(E⃗) decreases more slowly
than hDL,2(E⃗). We observe the opposite trend for the Dipolar model (green curve). A given
excitation, D⃗0, imposed on a medium described by the DL-functional will thus induce an under-
response in P and an over-response in E compared to the corresponding linear medium. On the
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Figure 4.3: Free energy of the dipoles for the Dipolar and Dipolar Langevin models in E- (a)
and P -space (b). The dimensionless functions hD(P⃗ )βa3 and hDL(P⃗ )βa3 are plotted using Eq.
(4.5). The parameter values are a = 0.17 nm, p0 = 1.8 D, T = 300 K.

contrary, a medium described with the D-functional over-responds in P and under-responds in
E.

These observations can be understood using the constitutive relation of electrostatics D⃗ =
ϵ0E⃗+ P⃗ , which imposes that beyond the linear regime an over-response in P or E to an external
field D0 will be compensated by the saturation of E or P .

We focus here on the DL model in P -space because it seems to be the most suitable for
modeling water. We derive expanded expressions the polarization in response to low or high
electrostatic field to obtain an analytical expression of the response to an ion field over the full
spatial range. For the sake of simplicity, we drop the vectorial notations for the fields.

Using Eqs.(4.2), the polarization as a function of the electrostatic field can be written as

P (E) = p0
a3

(
coth(βp0E) − 1

βp0E

)
. (4.9)

This expression can be expanded as a polynomial of E2 in the low-field regime, around E = 0.
It can also be expanded in the large-field regime, where the polarization is almost constant
and saturated. For this regime the coth-function in Eq.(4.9) can be replaced by 1. The range
of validity of the second regime can be estimated by considering e−βp0|E| = 0.01eβp0|E|, i.e.,
E ≥ 1/2βp0 log(100) = 1.4 V.nm−1 for water (p0 = 1.8 D).

We start with the low-field regime and expand Eq.(4.9) around E = 0. We have derived the
dipolar free energy density h̃DL,4(P ) to fourth order in the polarization [23] and obtained

h̃DL,4(P ) = 1
2ϵ0

1
ϵb − 1P

2 + 9
20p0β

(
a3

p0

)3

P 4. (4.10)

The correction in P 4 induces an increase of the free energy density for a given polarization P
compared to the linear model.

In the high-field regime, the expression of P as a function of E is simply obtained by
approximating the coth-function by 1 in Eq.(4.9) so that

Psat(E) = p0
a3 − 1

a3Eβ
, (4.11)

The polarization saturates to the value psat = p0/a
3, which is obtained when all the dipoles p0
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are aligned with the field. The dipole energy density in this regime h̃sat(P ) is written as

h̃sat(P ) = 1
βa3

(
log

(
2p0/a

3

p0/a3 − P

)
− 1

)
. (4.12)

The linear and saturated regimes in response to an excitation are included in the Dipolar-
Langevin model which could be a good candidate to model the dielectric properties of water
over a wide range of excitation amplitude. The question we address now is whether we can
propose a parameterization for the microscopic values (p0, a) that reproduces quantitatively
these behaviors for simulated water.

4.3.1 MD simulation-fit of the model

To enable an independent parameterization of the model, we performed molecular dynamics
simulations of water confined between two graphene sheets in a slab geometry as illustrated
by the simulation snapshot in Fig.(4.4) a. The slab walls are perpendicular to the z-direction
and are made up of carbon atoms. The atoms are frozen, neutral and arranged in a hexagonal
lattice. The two walls are separated by L =5 nm. We use the SPC/E model for water. It is
associated with a relative permittivity of 71. A z-directed excitation field D⃗MD,0 = DMD,0E⃗z is
applied between the two surfaces. The details of the simulations are given in ref. [23].

We measure the response of the system for increasing amplitude of the excitation from 0
V.nm−1 to 64 V.nm−1. The symmetry of the system imposes a z-directed response, P⃗MD =
PMDE⃗z, with

PMD(z) =
∫ z

−L/2
ρc,MD(z) (4.13)

where ρc,MD(z) is the charge density of the fluid. In Fig.(4.4) b., the water mass density
ρMD(z) (top panel) and the polarization, PMD(z) (bottom panel) are plotted for different values
of DMD,0. For small excitations (up to 32V.nm−1), ρMD(z) reaches the bulk density and PMD(z)
a constant value on a distance of the range of the correlation length of water (1.5 nm). For
large DMD,0, density and polarization oscillate with a period corresponding to the width of one
molecule. This corresponds to an alignment to the Oxygen atoms in (xy) plane that could be
induced by the surfaces. We estimate the spatial mean of the polarization Pm in the bulk, i.e.
excluding the interfacial water of width li = 1.5 nm [68], as

Pm = 1/(L− 2li)
∫ L/2−li

−L/2+li

PMD(z)dz. (4.14)

In Fig.(4.4) c., Pm is plotted as a function of D0 and one sees that the polarization is a linear
function of D0 at small values and reaches a plateau at large excitations. This highlights the
linear and saturated regime of the dielectric properties of SPC/E water.

The linear and the saturated behaviors are captured by the DL-model. We fit the values
of microscopic parameters a and p0 so that the DL model quantitatively reproduces MD by
measuring the slope χMD of the linear part of Pm(D0) its saturation value psat,MD. We obtain
adjusted values of p0 = 9.62 D and a = 0.51nm. By comparison, an SPC/E water molecule
with pSPC/E = 2.3 D is associated with a mesh size aw = aSPC/E =0.3 nm where a3 is defined
as the mean volume occupied by a water molecule.

Thus, the dipolar fluid reproducing the bulk permittivity and the saturation polarization of
SPC/E water is composed of point dipoles with dipole moments 4 × larger and a density 7 ×
lower than SPC/E water.

Using this parameterization, the asymptotic free energy densities h̃4(P ) (low polarization,
pink plot) and h̃sat (high polarization, yellow plot) are plotted in Fig.(4.5). They are compared
to the exact model h̃DL(P ) (dashed black curve) and to the quadratic expansion h̃2(P ) (blue
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Figure 4.4: Molecular dynamics simulations of SPC/E water under exciation field. a. Snapshot
of the system composed of water molecules between two graphene sheets. Mass density (b.) and
polarization (c.) for three different excitation fields D0/ϵ0 = 0 V.nm−1 (blue plot), D0/ϵ0 = 16
V.nm−1 (yellow plot), D0/ϵ0 = 32 V.nm−1 (green plot). d. Polarization response as a function
of the excitation field: MD simulations (black points); exact DL model (red plot); linear regime
(dashed grey line), P = χMDD0; saturation polarization (horizontal dashed grey line) P = psat.

curve). The fourth-order expansion in the polarization and the high-field expansion allow us
to cover the whole range of field values with very good precision. For the low-fields regime,
the fourth-order expansion brings a quantitative improvement when compared to the harmonic
expansion that catches qualitatively the trend of the exact functional. For the high-field regimes,
the polynomial expansions move away from h̃DL(P ), and the harmonic functional cannot be
seen as a valid approximation anymore.

To conclude this section, we have studied a nonlinear functional of the polarization repro-
ducing dielectric properties of water when submitted to a constant excitation. This functional
derives from a microscopic model that allows to express the coefficients of the polarization
expansion - Eq. (4.10) - as functions of the molecular properties.

4.4 Nonlocal non Gaussian functional for water

In collaboration with Fabien Paillusson

In this section, we complete the nonlocal model given in Eq. (3.12) by nonlinear terms to get
a better description of the dielectric properties of water at the nanoscale. The term

∫
dr⃗(P⃗ 2)2

is the first nonlinear contribution to be considered as we just saw.
Thus, we write a non Gaussian nonlocal functional of P⃗ as follows:

U [P⃗ ] = 1
2ϵ0

∫
dr⃗
[
γ(P⃗ (r⃗))4 +K(P⃗ (r⃗))2 + κl(∇ · P⃗ (r⃗))2 + κt(∇ × P⃗ (r⃗))2

+α(∇∇ · P⃗ (r⃗)))2
]

+ 1
2ϵ0

∫
dr⃗dr⃗′ ∇ · P⃗ (r⃗)∇ · P⃗ (r⃗′)

4π|r⃗ − r⃗′|
. (4.15)

For γ ̸= 0, the term scaling like P⃗ 4 in the configurational energy in Eq. (4.15) will induce
nonlinear response of the medium. When submitted to a strong electrostatic field E⃗, the
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Figure 4.5: Dipolar free energy density in the low- and high-field regime for the DL-model. The
fourth-order expression h̃4,DL(P ) (Eq. (4.10), pink curve)) and the large polarization expansion
h̃sat,DL(P ) (Eq. (4.12), yellow curve) of the dipolar free energy density are compared to the
exact density h̃(P ) (dashed black curve) and its harmonic expansion (blue curve). The cusp
in P = 0 for h̃sat,DL(P ) is outside of the validity zone of the expansion and has no physical
meaning. The parameters used are obtained from SPC/E water simulations: p0 = 9.62 D, a =
0.51 nm.

polarization no longer scales linearly with E⃗ but as E⃗1/3 [69, 70, 65, 20]. Such a functional can
reproduce the response of water under strong fields [20] and presents a threshold saturation,
P0 =

√
K/2γ, between a linear response (|P⃗ | ≪ P0) and a saturation response (|P⃗ | ≫ P0)

regime. The parameter γ remains the only degree of freedom tuning the saturation threshold.
It can be expressed as a functions of microscopic details of the medium using the work done in
the last section. See Eq.( 4.10).

We now want to characterize the nonlinear effects owing to the Hamiltonian in Eq. (4.15).
We consider a stationary external field D⃗0 of the form D⃗0(r⃗) = D0 cos(qx)ux, with x a Cartesian
coordinate and ux the associated unit vector and q a given wavenumber. In the linear regime,
the response polarization of the form P⃗ = P (x)ux satisfying

P (x) =
∫
dx′ χ∥(x− x′)D0 cos(qx′)

= χ∥(q)D0 cos(qx), (4.16)

with the susceptibility χ∥ is given in Eq. (3.15). We generalise the definition of the susceptibility
to nonlinear nonlocal medium by defining the Fourier transform of an effective longitudinal
susceptibility χ∥ eff

associated to a general polarisation P⃗ [D0 cos(qx)]:

χeff (q,D0) ≡ ∂P (x)
∂D0

∣∣∣∣
x=0

(4.17)

The nonlinear polarization P (x), response to a static oscillating field D0 cos(qx), can be
expressed as an expansion in D0. In the third order, we get:

P (x, q) = D0χ∥(q) cos(qx) − cnl(γ,K)D3
0

(
3χ∥(q)4 cos(qx) + χ∥(q)3χ∥(3q) cos(3qx)

)
. (4.18)

The response is thus the sum of the linear response and a corrective term proportional scaling
in D3

0. The nonlinear coefficient introduced here cnl(γ,K) is a positive function of K and γ.
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The expression is given in ref. ([20]). The nonlinear correction thus decreases the value of the
response for any wavenumber excited. The corresponding effective susceptibility can readily
be obtained from Eq. (4.17). It is plotted in fig. (4.6) for two different excitation -blue and
red curves - with a comparison with the Gaussian susceptibility given -dashed gray plot. The
model reproduces qualitatively the results obtained with molecular dynamics simulations by
Kornyshev and coworkers with the BJH model of water [71, 61].

The first effect of saturation effects appearing at low excitation concerns the wavenumbers
associated with the susceptibility maximum. The peak is flattened reducing the nonlocal char-
acter of the medium and this effect increases with the amplitude the excitation of as illustrated
in Fig. (4.6) a. The Figure 4.6. b. shows the bulk permittivity as a function of the field for MD
simulations [6] and with the theoretical model presented here :

ϵb(E0) = 1/(1 − χeff (0, ϵ0E0)). (4.19)

The plots are obtained for increasing of γ from blue to purple. As one sees in Fig. 4.6. b), the
functional reproduces qualitatively the simulation results.

4.5 Conclusion

In this chapter, we have gone beyond pure Gaussian models for the dielectric properties of
water. Saturation of the dielectric response of water occurs for excitations in the range of fields
generated by monovalent ions. A model for electrolytes must therefore include this aspect. We
have first considered a microscopic model - the DL model - that ignores the nonlocal correla-
tions between particles but has the advantange to be associated with an analytical expression
of the free energy as a functional of ∇ϕ. We studied the different regimes of this model in
the polarization P -space and showed that it reproduces the behavior of simulated water for
effective microscopic parameters. We have then studied a nonlocal nonlinear model for water
by introducing the lowest nonlinear term P 4. We have shown that the perturbative nonlinear
nonlocal response function for this model can reproduce MD results.
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Figure 4.6: a. Susceptibility and effective response of a nonlinear dielectric medium. The dashed
plot represents the susceptibility in the absence of an electrostatic field (Eq. (3.15)). The blue
and the red curves represent the effective response given in Eq. (4.17) of a medium submitted
to a small excitation, E0, for parameters given in ref. [20]. b. Dielectric permittivity under
constant field, ϵb(E0) (Eq. (4.19)), for increasing values of γ compared to results obtained with
Molecular Dynamics using SPC/E model for water (grey points and error bars). The molecular
dynamics results are reproduced from Fig. 11 of Yeh I.-C. et al., J. Chem. Phys. 110 7935-
7942, 1999.



Chapter 5

Inclusion in water

5.1 Introduction

In the last few chapters we have introduced continuous models based on field functionals that
describe the structure of water at the nanoscale. We have shown that, depending on the
building blocks we use, we can describe the fluctuations of density and/or polarisation with
tuned precision. We can also include non-linear effects in the response function of water. These
models have been parameterised using MD simulations and microscopic models.

This chapter aims to study the perturbation of the solvent structure induced by the solvation
of a punctal inclusion, which may be neutral or charged. Water is rarely pure and contains
solutes that affect its properties. The modeling of the interaction between a solute and the
liquid is therefore an important point in the description of aqueous solutions.

In this chapter, we study the density and polarization response given by the nonlocal Gaus-
sian framework presented in Eq. (3.20). We then focus on the polarization response to a mono-
valent ion. Using a simple local model DL Eq. (4.7), we estimate the structure of the solvation
zone that we decompose in a zone of saturated constant polarization, in a zone of nonlinear
polarization where P⃗ scales as D⃗1/3 and a linear regime. Finally, we study the polarization
response of an ion described by a nonlinear nonlocal model given in Eq. (4.15). The last section
is devoted to the conclusion.

5.2 Polarization and density response for a linear model

In this section, we consider a punctual inclusion solvated in water in r⃗ = 0⃗. The inclusion is
modeled using two ’excitation’ fields that are going to perturb the fluid, ϕn(r) a Lennard-Jones
potential and E⃗(r) an electrostatic field,

ϕn(r) = 4ϵ
(
σ12

r12 − σ6

r6

)
(5.1)

E⃗(r) = −∇ϕ(r), with ϕ(r) = Q

4πϵ0r
, (5.2)

where ϵ and σ are Lennard-Jones parameters characterizing the inclusion. Q is associated with
its charge. The mean polarization and density induced in water by an inclusion will be obtained
by minimizing the energy:

Upart = U +
∫
d3rρ(r)ϕn(r) −

∫
d3rP⃗ (r)E⃗(r), (5.3)

where the energy for bulk water U can be constructed using the examples we have described in
Chapter 3. We consider here the coupled two-field (δρ, P ) model which is given in Eq. (3.20).

29
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The density and polarization response functions are presented in Fig. 5.1 to a chlorine atom
(σcl = 3.6 Å, ϵcl = 9, 6.10−22 J, Qcl=0 C). The Lennard-Jones potential is represented in panel
A. of the figure. The response of the medium to a chlorine atom (σcl = 3.6 Å, ϵcl = 9, 6.10−22 J,
Qcl=0 C) and a chloride (σcl− = 3.6 Å, ϵcl− = 9, 6.10−22 J, Qcl− = 1, 6.10−19 C) are presented in
Fig.5.1 Figure 5.1 Ba. represents the radial distribution function gcl(r) = 1+ δρn(r)

ρ0
, the density

response of the medium to an atom of chlorine, while the figure 5.1 b. represents the distribution
of polarization Pn(r)/µ0ρ0, the polarization response of the medium to a chlorine atom. The
dashed part of the plots corresponds to r < σcl. Both response functions show a structuration of
the fluid around the inclusion associated with a period of about 2. 5 Åand decaying over one nm.
The qualitative aspects of the responses are in agreement with the molecular dynamics results
but the amplitude of the radial is overestimated. Moreover, the amplitude of the polarization
response is similar to the molecular dynamics results given in ref. [44]. The Figure 5.1 B c and
d. represents the response to a chloride ion associated with (σcl− = 3.6 Å, ϵcl− = 9, 6.10−22 J,
Qcl− = 1, 6.10−19 C). The associated electrostatic potential is presented in the panel A (right
plot). The plot 5.1 B c. shows the density response gcl− = 1 + δρn(r)+δρe(r)

ρ0
. The plot 5.1 B d

shows the polarization response (Pn(r) + Pe(r))/µ0ρ0. We observe the structuration that was
already visible for a neutral inclusion.

The density response is overestimated both in range and amplitude. We can mention several
arguments to justify the poor results for the density response. The fitting of the structure factor
is unsatisfactory (see Fig. 3.7); the density susceptibility is sharper than the ones of water. We
do not take into account the excluded volume generated by inclusions embedded in the fluid
that will affect the polarization and the density modes of the system. This could be taken
into account in a Gaussian model[72, 73, 74]. Moreover, the density response also saturates
as the polarization one and this is not included in a Gaussian model. The minimal Landau-
Ginzburg model we introduced in Eq. (3.20) could be extended to include some of these effects.
Landau-Ginzburg approach is not well developed to describe density in liquids and for a good
reason. Determination of the density profile in a liquid is often approached using classical
Density Functional Theory [34]. These functionals have been extensively developed in the last
decade. The Molecular Density Functional Theory (MDFT) gives now good results for the
solvation of non-charged, non-polar systems [40]. The structuration of water around polar or
charged systems remains challenging for continuous methods such as DFT. Field theories as
presented in this manuscript offer an alternative to address these questions. From now on, we
will no longer consider the density response. We focus solely on the water polarization response
induced by an ion.

5.3 Hydration shell of an ion for a nonlinear model of water

We have seen that a linear model overestimates the polarization response to a charge (section
5.2) In this section, we use the Dipole Langevin (DL) model (See for Eq. (4.7)- dipoles on
a lattice, sketched in Fig.4.2 b. - presented in the Chapter 4. We study the response in
the solvation shell calculated by this model and describe how the polarization scales with the
excitation when approaching the ion, from linear scaling to saturation. For the moment, we do
not consider the nonlocal nature of the material.

As in the previous section, we consider an inclusion, here a punctual ion in r⃗ = 0, that
generates an excitation field D⃗0 = e/4πr2u⃗r. The electrostatic energy of the system can be
written as

Ũion,DL = ŨDL − 1
ϵ0

∫
d3r D⃗0(r)P⃗ and δŨion,DL

δP
[Pion] = 0 (5.4)

where UDL is given in Eq. (4.7). The mean polarization induced in water Pion,DL(r) is purely
radial and is obtained by minimizing the energy of the system Ũion,DL. It gives the right equation
in Eq. (5.4). We can also obtain the polarization Pion,i corresponding to the ith expansion of
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0.97

0.98

0.99

1.00

1.01

1.02

1.03

P
i/
P
D
L

i = 2

i = 4

i = sat

Figure 5.2: Rescaled polarization response to a monovalent ion calculated for low and high field
regimes of the DL model. The rescaled linear polarization Pion,2/Pion,DL (Eq. (5.4)) is plotted
in blue, the rescaled fourth-order polarization Pion,4/Pion,DL is plotted in pink and the rescaled
saturated polarization Pion,sat/Pion,DL is plotted in yellow. The parameters used are given in
Fig. 4.4.

the DL model functional as detailed in the last chapter. We have shown in Eq. (4.11) that the
polarization in the solvation shell of the ion, for low r and high excitation, saturates towards
Psat = p0/a

3. At large r and low excitation, the response of the medium is homogeneous and
linear and equal to P2(r) = χbe/4πr2. Between these two regimes, for intermediate distance r,
we can estimate the polarization by using the expansion of the free energy of the lattice model
up to P 4 given in Eq. (4.10). The solution Pion,4(r) is analytic and its expression is given in
ref. ([23]).

The Figure (5.2) shows the polarization as a function of the distance r around an ion ob-
tained for different approximations rescaled by the exact polarization given by the DL-model,
Pion,DL(r), solution of Eq. (5.4). The linear regime is plotted in blue the 4th-order expansion
response is plotted in pink and the saturation polarization is in yellow. We use the param-
eter values for the DL model estimated in the previous chapter to reproduce SPC/E water
polarization under excitation - p0 = 9.62 D and a = 0.51nm. As one sees, the linear model
overestimates the response of the fluid for r ≤ 5 Å. The fourth-order expansion brings a gain in
the 3-5 Årange but fails to reproduce the first solvation shell. The saturation model succeeds
in this range (r≤ 3 Å) but is irrelevant outside of this zone. Note that the range of validity of
the different expansions depends on the charge of the ion. Roughly, the size of the saturation
shell can be estimated as the radius for which the linear response Pion,2(r) equals the saturation
polarization psat giving rsat = Q1/2 × (ea3/4πp0)1/2, with Q the valence of the ion. This shell
possesses a 2.3 Å radius for a monovalent ion and 4 Å radius for a trivalent ion.

In this shell, the polarization of water is ”frozen”, we can say that it is a layer of ”electroni-
cally dead” water [64, 12]. Whatever extra excitation is applied to the medium, the polarization
of this shell will remain constant. This corresponds to a vanishing permittivity/susceptibility.
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5.4 Hydration shell of an ion for a nonlocal nonlinear medium

We have estimated the size of saturated polarization shell, attenuated polarization shell, and
linear response regime around an ion. We now consider the nonlinear and nonlocal model for
water presented in the last chapter ( Eq. 4.15) and compute the polarization response to the
excitation field generated by an ion in this case. We replace in Eq. (5.4) the electrostatic energy
UDL by a nonlocal non Gaussian functional given in Eq. (4.15). We perform a functional deriva-
tive of the energy and obtain a nonlinear differential equation that can be solved numerically
to obtain the nonlocal polarization P (r).

We define a characteristic distance l =
√
eχb/4πPm defining the radius of the shell in which

the response of water is attenuated (nonlinear regime). The polarization Pm ≈ P0
1 is thus a

threshold value distinguishing a regime of linear response and a regime of saturation extending
over a length l around the ion.

The figure 5.3 shows the polarization obtained for boundary conditions adjusted on MD data
published in ref.([44]). The Fig. 5.3 a. represents the results obtained with molecular dynamics
simulations (red points ) with a SPC/E model for water and a charged Lennard-Jones sphere
for the chloride (see [44] for all the parameters), the local linear polarisation P2(r) = χbe/4πr2

(dashed gray line) and the nonlocal nonlinear solution P (r) for an attenuated shell of l=3.5 Å.
It presents an oscillating decay over 1 nm before converging to the local polarisation P2(r). The
model presented here reproduces both the oscillations and the range of the decay computed
with MD simulations. Note that the nonlocal model is here parameterized to reproduce the
χ∥(q) of SPC/E.

The figure 5.3 b represents the polarization around the ion for increasing values of l. Close to
the ion (r small) the polarization oscillates, indicating the arrangement of molecules in organized
hydration layers. Far from the ion (r≥ 1 nm) the medium responds as a homogeneous linear
material characterized by its bulk susceptibility χb. The structuration propagates less for media
associated with a large l, i.e. which saturates at low polarization. In this case, the response of
the medium tends to the superposition of a saturated constant response at low r and a linear
response at larger r. We have already noticed that these two regimes catch the response of
simulated water in fig. (4.4).

We conclude this chapter by discussing the dielectric permittivity in the vicinity of the ion.
As shown in the last chapter, the permittivity of water decreases under a strong electrostatic
field (see Fig. 4.6). The static dielectric constant of an electrolyte is known to be a decreasing
function of the salt concentration [75]. The intuitive comprehension of this phenomenon is that
each ion generates a shell of vanishing permittivity around it [76]. Here, we consider an ion
solvated in water and its polarizing given by P (r) that we just discussed (Fig. 5.3). We perturb
this system by submitting it to a radial constant static excitation D0 that superposes to the
ion field. We compute numerically the induced polarization P (r,D0). The response function is
defined as follows:

χion(r) = ∂PD0(r)
∂D0

∣∣∣∣
D0=0

. (5.5)

The figure 5.4 shows in blue the dielectric susceptibility in the solvation shell of a monovalent ion.
It shows in gray the susceptibility for nonlinear local medium described by a P 4 configurational
energy (κl = α = 0 in Eq. 4.15)) and in red the constant susceptibility associated with a
linear nonlocal medium. The susceptibility depends on the distance r to the ion whereas the
applied excitation is constant D0. This is because the ”degree” of saturation decreases with
the field generated by the ion and thus with the distance r. For r ≪ l, χion(r) behaves as
the susceptibility of a nonlinear local medium. The ion is surrounded by a zone of vanishing
susceptibility indicating that the solvent molecules located in the first hydration shell of the ion
are ’frozen’ i. e. that they interact electrostatically only with the ion and do not respond to an

1Pm = ±P0
√

1 + 1/(2γP 2
0 )
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Figure 5.3: Polarisation response to the electrostatic field generated by a monovalent anion.
(a.) The plain curve represents P (r) as a function of r, for the set of parameters 2γP 2

m = 1.01,
κl = −0.22 Å2, α = 0.012 Å4 and l = 0.35 nm. The local polarisation P2 is represented by
the gray dashed line and the molecular dynamics results are indicated with the red points,
reproduced from Fig 11. of Jeanmairet, G. et al., J. Phys: Condens. Matter 28. (2016) 244005.
( b.). Polarisation response P (r) (C.Å−2) as a function of r, for increasing values of l.
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Figure 5.4: Susceptibility for a nonlinear nonlocal medium around an ion. The blue solid
line represents χi(r) (relative to the bulk value) given in Eq. (5.5) for a monovalent ion and
Pm = 0.31 C. Å−2, l = 0.2 nm. The dotted line represents the susceptibility around an ion
for a nonlinear local medium - see ref. ([20]) for detailed derivation - and the red dashed line
represents the bulk susceptibility, χb ≡ χ∥(q = 0).

external field. For a nonlinear local medium, as one moves away from the ion, the molecules see
a homogeneous medium associated with a given bulk dielectric susceptibility. For a nonlocal
nonlinear medium, we observe an oscillating behavior of over-responses and under-responses
around the bulk value due to the nonlocality of the medium. However the oscillations are weak
and one distinguishes two zones, an ”electronically dead” zone and a zone associated with the
bulk permittivity.

5.5 Conclusion

In this chapter, we have computed the response of water to inclusions and focused on the polar-
ization in response to an ion. We characterized the dielectric properties of the solvation shell of
an ion and identified three zones. The first layer presents a saturation response, associated with
a constant polarization and a vanishing permittivity/susceptibility. The second layer is associ-
ated with an attenuated response scaling in the excitation to the power 1/3, associated with a
susceptibility lower than the bulk and showing the structural behavior of the fluid. Finally, at
a large distance from the ion, water behaves as a linear local medium. We have studied and
parameterized a nonlinear nonlocal functional of P (Eq. 4.15) reproducing the attenuated and
linear zone observed in MD simulations. We continue this work by now considering electrolytes
in the next chapter.
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Chapter 6

Bulk electrolytes

In collaboration with Dominique Mouhanna, Douwe Bonthuis and Roland Netz

6.1 Introduction

The study of electrolytes at the nanoscale is exciting both for their ubiquity and for the theoreti-
cal challenge they bring [77, 78, 79]. The nanometer scale is the typical confinement size of tech-
nological and biological devices, the screening length of medium-concentrated ionic solutions,
as well as the range at which water starts to behave as a discrete molecular medium [80, 12, 21].
In the Poisson-Boltzmann equation, water is described as a linear dielectric medium and its per-
mittivity ϵb is wavenumber independent. This model cannot capture the complexity of water-ion
interaction at the nanoscale.

As we have seen in Chapter 3, at the molecular scale, water is a correlated dielectric medium.
This can be characterized by the wavenumber dependence of the susceptibility tensor χ(q). The
figure (3.1) shows the longitudinal and transverse part of the tensor in Fourier space, simulated
with Tip4pϵ [45].

The description of the nonlocal dielectric properties of electrolytes has been the subject of
many experimental [81, 13, 82, 83] and simulation works [84, 85]. However, the qualitative effect
of the salt on water structure, i.e. on the H-bond network is still discussed. Is it reinforcing or
destroying the network? Contradictory trends have recently been published.

The coarse-grained theories that we have presented until now can provide a useful framework
to describe correlated fluids [86, 87, 88, 39]. Nonlocal electrostatics functionals for a correlated
fluid associated with a unique length (in the same framework as Eq. (3.12)) have been used
to study the coupling between the correlation length of the fluid and the Debye length. by
deriving a nonlocal linear PB equation [41, 89]. Recently, a general theory for electrolytes
including electrostatic and structural interactions for the solvent has been derived [90, 91, 92].
However, a nonlocal field theory for aqueous electrolytes elucidating water-salt interaction at
the nanoscale and validated by MD simulations is missing. In this chapter, we compute the
Gibbs free energy and the nonlocal dielectric susceptibility of an aqueous electrolyte for which
water is modeled in the Gaussian limit - Eq. (3.13). We perform MD simulations and compare
the Gaussian model to a simulated system. We include nonlinear effects - Eq. (4.15). We
determine the dependence of the bulk permittivity, and the longitudinal and transverse water
correlations with the salt concentration. Finally, we identify the essential building blocks to
construct a field theory modeling electrolytes at the nanoscale and reproducing MD simulations

37
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Figure 6.1: Sketch of the system under study. Water is described as a nonlocal nonlinear
continuous dielectric medium and ions as point charges. We evaluate the ionic-strength effect on
the water longitudinal P∥ (red arrow) and transverse P⊥ (blue arrow) polarization correlations
and compare it with simulated response functions.

6.2 Model for an electrolyte

In this chapter, we write the electrostatic energy of the solvent as follows:

Uel[P ] = 1
2

∫
dr⃗dr⃗′ ∇ · P(r⃗)∇ · P(r⃗′)

4πϵ0|r⃗ − r⃗′|
+ Uconf [P ]. (6.1)

As previously explained, the first term corresponds to the bare Coulomb interactions between the
partial charges −∇·P(r⃗) of the fluid and the second term to a phenomenological configurational
energy of the fluid [39]. We write the configurational energy as follows:

Uconf [P ] = 1
2ϵ0

∫
dr⃗
[
γP(r⃗)4 +KP(r⃗)2 + κl(∇ · P(r⃗))2

+ κt(∇ × P(r⃗))2 + α(∇(∇ · P(r⃗)))2
]
. (6.2)

We thus recover the Gaussian limit given in Eq. (3.13) and studied in chapter 3 for γ = 0 and
the nonlinear model presented in chapter 4 - Eq. (4.15) - for γ ̸= 0.

6.3 Gaussian linear model

We consider an electrolyte with N+ punctual cations of charge e and N− punctual anions of
charge −e solvated in water modeled with Eq. (3.13). The ionic charge density reads ρ(r⃗) =
ΣN+

i=1eδ(r⃗− r⃗+
i )−ΣN−

j=1eδ(r⃗− r⃗−
j ). In the canonical ensemble, the partition function of the system

can be written as

Z = 1
N+!

1
N−!

[
N+∏
i=1

∫
dr⃗+

i

]N−∏
j=1

∫
dr⃗−

j

×
∫

D[P ]e−βUconf [P]e− β
2

∫
dr⃗dr⃗′ρtot(r⃗)v(r⃗−r⃗′)ρtot(r⃗′) (6.3)
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Figure 6.2: Dielectric susceptibility for electrolytes. (a) Longitudinal susceptibility χ∥ - Eq. (6.6)
- as a function of q for water and solutions of increasing salt concentration. The arrow indicates
the increase of the peak maximum with an increase of the concentration. The inset presents
a zoom on the low q part of the plot. The inset zooms on the low q part of the plot. (b)
Transverse susceptibility χ⊥ = χw

⊥ given by Eq (3.15) as a function of q, which is identical for
water and electrolytic solutions. The parameter values of the FT model given in Eq. (3.13) are
K= 1/76, κl= -0.218 Å2, α=0.012 Å4 and κt=0.013 Å2.

with ρtot(r⃗) = ρ(r⃗) − ∇ · P(r⃗) and v(r⃗) = 1/4πϵ0|r⃗|. ZG includes the configurational degrees
of freedom of the solvent and the Coulomb interactions between free and partial charges. Note
that here the field P is the thermally fluctuating polarization. Its mean value is written P⃗
consistently with the previous chapters. The figure 6.1 presents a schematic illustration of the
system we are considering in this chapter.

Following the work of Orland and co-workers [64], we perform a Hubbard-Stratonivich trans-
formation for ZG to get rid of the long-range potential v and we switch to the grand canonical
ensemble for a more tractable expression of the partition function. The grand-canonical ensem-
ble partition function,

Ξ =
∫

D[P ] D[Ψ]e−βF G
u [P,Ψ] (6.4)

takes a simple expression as a function of the action Fu[P ,Ψ], a functional of P and of the
electrostatic potential Ψ [64]. Assuming a 1:1 electrolyte and an ionic density n, we find:

Fu[P ,Ψ] = Uconf [P ] −
∫
dr⃗
(ϵ0

2 (∇Ψ)2 − Ψ∇ · P − 2n
β

cosh(βΨe)
)
. (6.5)

Details of the calculations are given in the supplementary material of ref ([46]). The associated
susceptibility is calculated by from second functional derivatives of FG

u [P ,Ψ] and evaluated it
in the mean-field point (P⃗ , ψ). The longitudinal polarization susceptibility is written in Fourier
space as

χG
∥ (q) =

ϵb

λ2
D

+ q2(
ϵb

λ2
D

+ q2
)

(K + κlq2 + αq4) + q2
. (6.6)

λD is the Debye length and obeys λD =
√
ϵ0ϵb/2βne2.
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Fig. (??) a) shows χ∥(q) for increasing salt concentration c = n/Na, where Na is the Avo-
gadro number. The Gaussian model predicts an enhancement of the water ordering with an
increase of c, as indicated by the magnitude increase of the peak at q=3 Å−1. This can be
understood as follows. In the nonlocal Gaussian framework, an ion, located in r = 0 generates
the electrostatic potential, 1/4πϵ0ϵbr, and an extra potential oscillating in an exponentially de-
caying envelope over about one nanometer, as shown in Fig (5.1) [48]. This oscillating landscape
leads to the organization of the charges and to longer-range correlations that increase with the
salt concentration until a nonphysical crystallization of the system occurs, corresponding to a
divergence of χ∥(q).

In contrast, for a very diluted solution λD → ∞, the longitudinal susceptibility can be
approximated as the sum of two contributions:

χ∥(q) ≈
ϵb

λ2
D

+ q2

K ϵb

λ2
D
q2 + q2 + χw

∥ (q). (6.7)

The first term corresponds to the response of a local electrolyte associated with a Debye length
λD and the second term is the unperturbed water spectrum given in Eq. (3.15). The green plot
in Fig 6.2 (a). shows this very diluted regime: at low q, we see a decay corresponding to the
Debye wavenumber 1/λD (see inset of Fig. 6.2 (a)), for q >2 Å the spectrum superposes with the
pure water one. The transverse susceptibility χ⊥(q) of electrolytes is unaffected by the presence
of salt and obeys χ⊥(q)=χw(q). Indeed, the coupling between the salt and the solvent occurs via
the Coulomb interactions and involves only the longitudinal part of the polarization as seen in
Eq. (6.3). Finally, we note that the Gaussian model predicts that the dielectric bulk properties
of electrolyte solutions χ∥(0) = χ⊥(0) = 1/K are independent of the salt concentration.

6.4 MD simulated response functions for electrolytes

To check the validity of the Gaussian model, we compare its predictions with the dielec-
tric properties of simulated solutions of NaCl in TIP4p/ϵ water for concentrations c up to
1.5 mol.L−1 [45, 93]. We simulate a cubic water box of side size L=6.5 nm composed of Nw

water molecules, Nw going from 9033 to 8527 for increasing salt concentration. See a snapshot
of the simulated system in Fig. 6.3. The 0.15 mol.l−1 solution contains 25 ion pairs, the 0.75
mol.l−1 solution contains 124 ion pairs and the 1.5 mol.l−1 solution, 248 ion pairs. We perform
simulations with TIP4p/ϵ ([45]) Production runs are performed in the NVT ensemble for 20 ns.

Bulk permittivity is calculated from the fluctuations of the total system dipole moment [94].
The longitudinal susceptibility is computed from the charge structure factor [46] and the trans-
verse one following the method detailed in ref. [49]. For the longitudinal and transverse suscepti-
bility, the error bars are derived following the reblocking method [95]. For the bulk permittivity,
we cut the trajectory in 5 statistically independent blocks, compute the bulk permittivity of
each block, estimate the sample variance σ2 and define the error bar as

√
σ2/5.

We compute the bulk permittivity and plot ϵ(c) in Fig. 6.4 (a). We observe a linear decay,
which is not described by the Gaussian model that predicts a constant bulk (q=0) permittivity.
The susceptibilities χMD

⊥ (q) and χMD
∥ (q) are shown in Fig 6.4 (b) and (c) for c=0.15 mol.L−1 -

λD=7.8 Å-, c=0.75 mol.L−1 - λD=3.5 Å-, and c=1.5 mol.L−1 - λD=2.5 Å. The blue markers
show the response for pure water. We observe a decay of the bulk value χMD

⊥ (0) for an increasing
concentration, which is not captured by the Gaussian model. The longitudinal susceptibility
plot, χMD

∥ (q), shows a decay at low q ( q ≤2 Å−1) corresponding to the Debye wavenumber
and shows the spectrum of water (q >2 Å−1), which remains almost unperturbed. At high
salt concentration, the peak at q ≈3 Å−1 slightly increases and is flattened. The MD results
indicate thus an effect of the salt opposite to the Gaussian model predictions that appear at a
much higher concentration.
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Figure 6.3: Snapshot of a simulation box of electrolytes. Red and white sticks represent TIP4p/ϵ
water molecules, purple spheres chloride Cl− ions and green spheres sodium Na+ ions. This
picture corresponds to a 0.75 mol.l−1 solution. Side size of the box: L=6.5 nm.

A Nonlinear model for the solvent - To get a better agreement between FT and MD sim-
ulations, we consider the nonlinear configuration energy Uconf with γ ̸= 0. The grand partition
function obeys Ξ =

∫
D[P ] D[Ψ]e−βFu[P,Ψ]. The action contains here a non-quadratic term, γP4

and its effect on response functions can be estimated by using a loop expansion. This method
allows to go beyond Gaussian partition functions. It is based on a systematic expansion of
the action around the mean field [96] that we perform here at the first order, named one loop
expansion [65]. The action Fu is expanded up to the second order in (P ,Ψ) around the mean
field solution, Fu[P ,Ψ] ≈ Fu[P , ψ]+1/2

∫
dr⃗dr⃗′(δP⃗ (r⃗), δψ(r⃗))·F (2)

u (P , ψ)·(δP⃗ (r⃗′), δψ(r⃗′)), with
F

(2)
u the second functional derivative of Fu with respect to (P ,Ψ) and δP⃗ = P −P , δψ = Ψ−ψ.

The mean fields (P⃗ , ψ), are vanishing. The partition function thus follows as

Ξ ≈ exp
{

−βFu[P⃗ , ψ] − 1
2 ln

[
detβF (2)

u (P , ψ)
]}

(6.8)

and the free energy is then written as F ≈ Fu[P , ψ] + Trln(βF (2)
u [P , ψ])/β. The inverse sus-

ceptibility follows as χ−1(r⃗1 − r⃗2) = χ−1(r⃗1 − r⃗2) + χ−1,1(r⃗1 − r⃗2), with the one-loop correction
term χ−1,1(r⃗1 − r⃗2) defined as:

χ−1,1
i,j (r⃗1 − r⃗2) = 1

2β
δ2Tr ln βF (2)

u

δPi(r⃗1)δPj(r⃗2)(P , ψ). (6.9)

χ−1 is the inverse of the susceptibility in the Gaussian limit given in Eq. (6.6). Performing the
field derivatives and calculating the trace in Eq. (6.9), one obtains

χ−1,1
i,j (r⃗1 − r⃗2) = δKδ(r⃗1 − r⃗2)δij with

δK = 20γϵ0
3β

(
χ∥(r = 0) + 2χ⊥(r = 0)

)
. (6.10)

The derivation of χ−1,1
i,j is detailed in the supplementary material of the ref.([46]). Note that

here χ∥ and χ⊥ are expressed in real space as Fourier transform of Eq. (6.6) and taken in r = 0.
The first-order correction of the susceptibility is purely local and proportional to γ, which tunes
the saturation regime of the model. More importantly, Eq. (6.10) shows that the correction
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δK depends now on the salt concentration c. Indeed, δK is a function of χ∥ which depends on
λ2

D (see Eq. (6.6)) and thus of c. δK is expanded linearly in c as δK(c) = δKw + δKcc+ τ(c2),
where δKw is the one-loop expanded correction to K for pure water and δKcc is the one induced
by the salt. Their analytical expressions are derived in ref.([46]). The corrected permittivity,
ϵ = 1+1/(K+δK) is now salt concentration dependent. Setting δKw to zero as it is included in
the fitted value of K, and performing a linear expansion in c of ϵ(c), we find for the permittivity:

ϵ(c) = ϵb − δKc

K2 c. (6.11)

Figure 6.4 (a) shows ϵ(c) for a value of δKc adjusted to reproduce the MD data and given in
the caption of Fig 6.4. The one loop expansion of a nonlinear polarization functional can thus
reproduce the decrement of the bulk permittivity of electrolytes observed in MD simulations [64].

6.5 Susceptibility kernels for electrolytes

We now compare the simulated q-dependent susceptibilities with the nonlinear FT model ones,
obtained by replacing K by K + δKcc in Eq. (6.6) for χ∥ and in Eq. (3.15) for χ⊥. The one-loop
corrected transverse response,

χFT
⊥ (q) = 1

K + δKcc+ κtq2 , (6.12)

is plotted in Fig. 6.4 (b) for c=0, 0.15, 0.75, 1.5 mol.L−1 and shows very good agreement with
simulations. The one-loop corrected longitudinal response is plotted in Fig. 6.5. Similarly to
the Gaussian limits, it foresees an enhancement of the longitudinal correlations and thus fails
to reproduce MD data.

We thus propose an ad hoc longitudinal susceptibility based on the one of very diluted
electrolytes given in Eq. (6.7). Taking into account the quasi-invariance of the water spectrum
observed in the MD data, we write χFT

∥ as the sum of two decoupled terms as follows:

χFT
∥ (q) =

ϵb

λ2
D

+ q2

(K + δKcc)( ϵb

λ2
D

+ q2) + q2

+ 1
1 +K + δKcc+ κlq2 + αq4 . (6.13)

The first term corresponds to the susceptibility of a local electrolyte associated with the cor-
rected permittivity ϵ(c) given in Eq. (6.11). The second term corresponds to the nonlocal
susceptibility of pure water associated with this corrected permittivity. We plot χFT

∥ (q) for
c=0, 0.15, 0.75, 1.5 mol.L−1 in Fig. 6.4 (d). It reproduces well the decay at low q and the
flattening of the peak at q=3 Å−1 with an increase of the salt concentration. It thus catches
the main effect of the salt on water correlation modes.

6.6 Interaction between the filaments in electrolytes at the nanoscale

In collaboration with Anne-Florence Bitbol, Serges Reynaud and Paolo Maia Neto.

Now that we have described the electrostatic correlations in electrolytes, we study briefly the
interactions between objects solvated in electrolytes. The fluctuations of the electromagnetic
field are responsible for an interaction between them called van der Waals or Casimir force
depending on the system. It is broadly assumed that these interactions are short-ranged for
objects immersed in electrolytes due to Debye screening. However, in the last section, we have
shown that transverse electrostatic modes remain unscreened by salt.
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q [Å−1]

20

40

60

80

χ
⊥

[-]

(b)

0.0 2.5 5.0

q [Å−1]
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Figure 6.4: Comparison of FT-derived and MD simulated response functions of electrolytes.
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χ∥(q) given in Eq. (6.12), for increasing concentration with δKc=0.028 mol−1.L.

In independent works, the Casimir interaction was recently shown to be stronger and of
longer range than previously expected. This interaction was computed between two dielectric
spheres and measured experimentally for colloids immersed in electrolytes, confirming the long
range of the force. However, for the system considered, the interaction remains significantly
lower than the thermal energy and could not play a structural role for such systems. As the
filamentous structures are ubiquitous in cells, we compute here the Casimir interactions for such
systems.

Cytoskeletal filaments, in particular actin filaments and microtubules, play crucial parts in
maintaining the integrity of eukaryotic cell shape, in its deformations, as well as in multiple sub-
cellular processes, by actively generating forces with the help of motor proteins [97, 98, 99]. Actin
filaments form bundles, where filaments are cross-linked by specific proteins into parallel arrays.
Microtubules, which are thicker and more rigid than actin filaments, also form bundles cross-
linked by microtubule-associated proteins [100]. Both in the case of actin filaments [101, 102]
and in that of microtubules [103, 104, 105], bundles of parallel filaments have been shown to
form in vitro in the absence of cross-linkers under certain experimental conditions. Beyond the
cytoskeleton, several enzymes form filaments in cells, with important biological functions, and
these filaments also often self-assemble into larger assemblies, especially bundles [106].

To investigate whether a long-range Casimir interaction could play a role in the formation
of these bundles, we first calculate the dielectric response for an electrolyte that mimics the
cytosol. We have simulated a solution with a concentration of 0.2 mole per liter of potassium
bromide (KBr) This is in the range of typical cytoplasmic concentrations and is thus relevant for
our applications to bundles of biological filaments below. In agreement with the results shown
in Fig. (6.4), we find that the longitudinal modes of the electrostatic polarization are screened
whereas transverse modes remain unaffected.

We derive the Casimir free energy by using the scattering method. A detailed derivation is
given in refs. ([107, 108]). We show that its magnitude largely exceeds the thermal energy scale
for a large parameter range. This includes length scales relevant for actin filaments as shown
in Fig. (6.6) and microtubule bundles in cells. Therefore, it could have important implications
in the self-assembly and cohesion of bundles of filaments at the cell scale [99].
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Figure 6.6: Casimir binding free energy between actin filaments. The Casimir binding
free energy |F| = −F is shown versus the separation distance d (nm) for two parallel actin
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Cross-linkers are shown in red.
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6.7 Conclusion

In this chapter, we have analyzed how polarization correlations in water are affected by the
addition of salt. To do so, we have compared susceptibilities calculated from a FT model
including nonlocal and nonlinear behavior of water and with MD-derived ones, and identified
the key effects of the salt on water organization. For the longitudinal modes, we highlight two
length scales that do not couple to each other: for small q, q ≤2 Å−1, the medium can be
described with a q-independent permittivity ϵ(c). This corresponds to long-range interactions
for which the Debye screening occurs. At larger q, the water longitudinal susceptibility is similar
to the one of pure water but associated with a corrected permittivity ϵ(c). These two decoupled
q-domains could indicate two ”types” of water molecules that are spatially separated: the one
solvating ions are frozen in response to the ionic field, creating an ”electrically dead” solvation
shell [64]. Outside of this shell, the molecular water organization is remarkably unaffected by
the ions [23, 82]. Moreover, our work reveals the absence of coupling between salt screening
and transverse polarization modes of water. We have thus shown that the non-coupling with
transverse modes could have important consequences on the interactions between filaments in
biological cell electrolytes [107, 108].

This study gives us a clear picture of the nature and the range effect of the salt on water
organization at the nanoscale for unconfined solutions. In the next chapter, we will discuss the
properties of confined solutions, first neat water and then electrolytes.



Chapter 7

Nanoconfined aqueous solutions

7.1 Introduction

In this chapter, we show through 3 examples that the structure of water at the nanoscale has
a strong impact on the properties of confined systems.

We first consider the permittivity of confined water. Interest in the dielectric properties of
confined water has been boosted by the remarked measurement of the dielectric permittivity of
nanometric water layer confined between hydrophobic surfaces [12]. Fumagali et al. reported
an anomalously low dielectric constant in the direction perpendicular to the surface. [109] Wa-
ter permittivity in the vicinity of a surface is inhomogeneous[47, 110] leading to a significant
increase of the electrostatic interactions, as postulated in the 1950’s by Schellman,[111] and ob-
served experimentally and in simulations [112, 113, 114]. The stability of emulsions and colloidal
solutions [115, 116], ion transport and reactivity in channels of proteins,[117], in subsystems of
geological interest [118] or in nanotechnological devices [119] are strongly influenced by elec-
trostatic properties of confined water. However, a fundamental analytic theory connecting the
dielectric response to the properties of the confining surfaces, namely chemical composition,
degree and geometry of confinement, is still outstanding.[120] We use the nonlocal electrostatic
energy for water coupled to a surface interaction to study the dielectric properties of the inter-
face. We define the size of the ”interfacial water layer” and show how its dielectric properties are
encoded both by bulk correlations and surface properties. This framework compares favorably
to experiments and simulations and is versatile.

In the second part of this chapter, we study the interfacial properties of electrolytes. We in-
vestigate how the nonlocal dielectric properties of water at the nanoscale affect the ion profile in
the electrical double layer by developing a nonlocal Poisson-Boltzmann equation which includes
the effect of the ionic size. We observe an ion layering at the surface, which is in agreement
with recent experiments characterizing these systems [121, 122].

Finally, we consider the forces mediated by water between macroscopic surfaces [123]. These
hydration forces have been extensively studied experimentally. In this part of the manuscript, we
explore the consequences of an extended phenomenological Landau-Ginzburg energy model for
the nonlocal correlations in water. We show that this approach describes consistently the non-
monotonic, oscillatory decay in the forces measured between molecularly smooth surfaces [124]
and the quasi-exponential, monotonous decay between rough surfaces [125].

The last part of the chapter is devoted to the conclusion.

7.2 Dielectric properties of confined water

In collaboration with Geoffrey Monet, Fernando Bresme and Alexei Kornyshev

In this section, we use nonlocal electrostatics to describe the dielectric properties of a nanometric

47



48 CHAPTER 7. NANOCONFINED AQUEOUS SOLUTIONS

water slab.

7.2.1 Field theory description

We consider water delimited by a planar interface infinite in the xy plane and located at z = 0
(See Fig. 7.1a). A static homogeneous external field D⃗0 = D0u⃗z is applied in the z-direction.
According to the symmetry of the problem, this field excites exclusively the longitudinal polar-
ization that depends on z: P⃗ (r⃗) = P (z)u⃗z. We write the energy of the system per unit area
U [P,D0] = Ubulk + Us, the sum of the bulk-determined term, Ubulk, derived from (Eq. 3.13),
and a surface term Us as:

Ubulk =
∫ ∞

z=0

dz

2ϵ0

[
(D0 − P )2 +KP 2 + κlṖ

2 + αP̈ 2
]

Us = kP

2 (P (0) − P0))2 + kρ

2 (ρ(0) − ρ0))2 (7.1)

where the upper dot stands for the spatial derivation along z. In the spirit of the Landau-
Ginzburg development used to express the electrostatic energy (Eq. (3.13)), Us is written as
an expansion of elastic energies[126, 127] depending on the polarization field and its derivative
Ṗ (z), equal to minus the bound charge, ρ(z).[128] The major contribution promotes a surface
polarization P0 and the corrective second term favors a water charge density ρ0 at the inter-
face. The stiffness kP and kρ quantify the strength of the boundary conditions. In the strong
interaction limit (kP , kρ) → ∞, the surface fixes both polarization and charge density at the
interface.

The partition function of the system, Z[D0] =
∫
D[Pz] exp [− (Ubulk[P,D0] + Us) /kBT ], can

be split in the form

Z[D0] =
∫
dP̄dρ̄ exp

[
− 1
kBT

(
kP

2 (P̄ − P0)2 + kρ

2 (ρ̄− ρ0)2
)] ∫ P (z→∞)=0

Ṗ (z→∞)=0
P (0)=P̄

Ṗ (0)=−ρ̄

D[P ] exp
[
− 1
kBT

Ubulk[P,D0]
]
.

(7.2)
This includes a partition of the fields P (z) satisfying the boundary conditions (right integral),
then a sampling of the z = 0 boundary conditions (P̄ , ρ̄) (left integral). We find the mean field
solution, P (z), by first minimizing Ubulk[P,D0] with respect to P (z) leading to:

P (z) = D0
1 +K

(
1 − e

− z
λd

(
cos(qoz) + qd

qo
sin(qoz)

))
+ e

− z
λd

(
P̄

(
cos(qoz) + qd

qo
sin(qoz)

)
− ρ̄

q0
sin(qoz)

)
.(7.3)

with qo = 2π/λo and qd = 1/λd, the wavenumbers of the bulk correlations. Second, we ex-
tremalize the total energy of the system, U = Ubulk +Us, with respect to (P̄ , ρ̄). U(P̄ , ρ̄) admits
a minimum for strong enough stiffness kP and kρ. A weak coupling leads to a nonphysical
diverging polarization at the interface. The zone of interest (finite polarization) is defined for
dimensionless stiffness k̄P and k̄ρ and is represented in Fig. 7.1b. Details are given in ref. ([21]).

To study the dielectric properties of interfacial water, we introduce the real space suscepti-
bility, χ(z) = dP (z)/dD0. It quantifies the response to a homogeneous external field D0 and is
constant and equal to χb = χ̂(0) for bulk water. Fig. 7.1c, d show typical mean field polarization
P (z) and susceptibility χ(z) in the interfacial water. We observe a nonvanishing polarization
and a nonconstant χ(z) that are oscillating functions of period λo in an exponentially decay-
ing envelope of range λd. The surface induces a layering of the fluid that extends over about
1 nm, a length scale consistent with many previous simulations of interfacial water[47, 80]. The
susceptibility shows alternation of ”underresponding” (χ(z) ≪ χb) and ”overresponding” layers
(χ(z) ≫ χb), typical for ”overscreening” effect. Whereas the amplitude of the polarization is a
non-trivial function of the bulk properties, the four parameters of the surface interaction and
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Figure 7.1: Dielectric properties of water in the vicinity of a surface. a. Sketch of the system.
b. Diagram presenting the zone of finite minimum (dotted zone) as a function of k̃P and k̃ρ.
Profile of the polarization P (z) (c) and the normalized susceptibility χ(z) (d) computed for
(k̃P = 9, k̃ρ = 1) and (P0 = −10 V/nm, ρ0/qo = −10 V/nm). e. Susceptibility normalized to
the bulk susceptibility with different values of k̃ρ.
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D0, the amplitude of χ(z) does not depend on (P0, ρ0, D0). The interface affects the dielectric
properties of water only through the stiffnesses (k̃P , k̃ρ).

The amplitude of χ(z)k̃ρ=0 decreases with k̃m and tends to a finite value for k̃P ≫ 1. This
case is represented in Fig. 7.1e (blue/dark curve).1. Then we consider the corrective effect of
k̃ρ in the limit of a large k̃P . An increasing k̃ρ induces a dephasing and an amplitude decrease
up to a factor 2 of χ(z) (See 7.1e). The behavior of χ(z) as a function of (k̃P , k̃ρ) illustrates
that different surfaces, having a stronger or weaker influence on polarization and partial charge,
induce different dielectric properties of interfacial water.

7.2.2 Comparison with MD simulations

We performed MD simulations of pure water confined in a slab geometry using the GROMACS
MD simulation package.[129] Water molecules are described with the SPC/E model and the
walls are made up of atoms of frozen positions. We considered graphene and hBN surfaces
(Simulation method is described in ref. ([21]).

We analyze the polarization, PMD(z) = −
∫ z

0 dzρMD(z)dz, with ρMD the charge density of
water, and the susceptibility χMD(z) = (PMD(z,D0 + δD0) − PMD(z,D0))/δD0 [47] with δD0
= 0.5V/nm, in the vicinity of the surfaces. The profiles are similar for both surfaces (Fig. 7.4):
first, a vacuum layer (PMD(z) = 0, χMD(z) = 0) between the surface and the liquid, due to
the repulsive part of the surface-fluid Lennard-Jones (LJ) interaction, then decaying oscillations
over about 1 nm before reaching the bulk value. Figure 7.3 shows log of the polarization for the
two strategies we have considered to fit the longitudinal dielectric susceptibility of bulk water
with a 4 order model given in Eq. (3.15), compared to the MD results (black curve). The first
one aims at fitting the maximum of the susceptibility while the second one focuses on fitting
the width of the susceptibility normalized to 1 (the aspect ratio) bearing in mind that in both
cases χ̂∥(q = 0) is set by the value of the relative dielectric permittivity of the water SPC/E
ϵb = (1 − χ̂∥(q = 0))−1 ∼ 71. The corresponding susceptibilities are plotted in Fig. 7.2.

1Note that the diverging value k̃m = 1 corresponds to the boundary of the stability region of the phase space
parameter (see Fig. 7.1b)
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Figure 7.2: Susceptibility χ(q) (a) -labeled here χ̂(q) - and normalized susceptibility χ(q)/χmax

(b) computed from pure SPC/E water molecular dynamic simulation (black curve). The blue
curve arises from the fit of the maximum of the first component of the susceptibility while the
orange curve shows the result of the fit of the aspect ratio.
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Figure 7.3: The black curve is the polarisation field computed from MD simulation of water in
the vicinity of graphene layer at vanishing D0. Color curves have the equation P (z) = Ae−qdz

where qd is computed from the fitting of the bulk susceptibility χ̂(q). The blue one arises from
the fit of the maximum of the first component of the susceptibility while the orange curve shows
the result of the fit of the aspect ratio. The parameter A is chosen to match the back curve.

Fig. 7.3 confirms that fitting the aspect ratio gives quantitative agreement between MD and
field theory for evaluating the correlation lengths.

Indeed, Fig. 7.4 shows that the theoretical decay λd and the period λo are in very good
agreement with the simulated ones. In MD simulations, the position of the interfaces is not as
clear-cut as in theory due to thermal capillary fluctuations and the non-infinitely sharp repulsion
of the surface-fluid LJ interaction.[130] This is taken into account by applying a smearing to the
theoretical predictions to get a polarization labeled as P̃ . The hBN surface is characterized by a
deeper LJ potential and consequently a smaller smearing than the graphene. Correspondingly,
PMD(z) amplitude is smaller in interfacial water for graphene than for hBN (see Figs. 7.4a-b).

We validate the theoretical model in three steps. First, we adjust the simulated susceptibili-
ties with the smeared, theoretically computed χ̃(z). If we choose (k̃m ≫ 1, k̃ρ = 0) for graphene
and (k̃P ≫ 1, k̃ρ = 0.2) for hBN, we obtain a good agreement between the calculated and the
simulated value of the susceptibilities as shown in figures 7.4c-d. Next, we fit the simulated
polarization for graphene surface with P̃ (z) by fixing P0, the single left unknown parameter for
graphene as k̃ρ = 0. Finally, we fit the simulated polarization for a hBN surface. Taking the
surface polarization P0 previously determined in the case of graphene, we fix ρ0. The compar-
ison between theoretical and simulated polarization is presented in Figs. 7.4a-b. The dotted
part of the simulated curves corresponds to the vacuum gap and the contribution of hydrogen
located in z < z0. The theoretical model describes this zone as a vacuum gap.

Graphene and hBN surfaces are parameterized by k̃P ≫ 1, thus both surfaces freeze the
interfacial polarization to P (z0) = P0 which doesn’t respond to D0. At the microscopic scale,
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Figure 7.4: Comparison between model (in orange/light grey) and MD simulations (in black)
for a graphene layer (left panels) and a hBN layer (right panels). Top (respectively bottom)
panels show the polarization (respectively the susceptibility). Simulation curves for z ≤ z0 are
represented with dotted lines.
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Figure 7.5: Effective dielectric permittivity ϵeff of water nanoconfined in a channel of width L.
Comparison between experimental measurements reproduced from [12] and theoretical model.

this result can be interpreted as the effect of the vacuum gap on the organization in the first
layer of water which optimizes the number of H-bonds [131]. Most likely, k̃P is very large for a
wide variety of surfaces, both hydrophobic and hydrophilic, as they impose a layout in the first
hydration layer.[47, 132]. For a non-vanishing corrective term k̃ρ, the surface has an effect on
the interfacial charge, ρs(z0), and its variation under D0.

We investigate the microscopic origin of this effect by performing MD simulations for ar-
tificial surfaces associated with hybrid properties between graphene and hBN surfaces. The
simulations are presented in ref. [21]. We find out that it is induced by a large mean depth
of the LJ minimum. A non-vanishing k̃ρ is related to important variations of the interaction
energy between the surface and a water molecule in the (xy) plane for z = z0 that constrains
the position of water molecules in this plane.

7.2.3 Nanoconfined water

We use now this theoretical model to derive the dielectric properties of a confined water layer.
The experimental measurements report an effective dielectric permittivity up to ϵeff = 2 for a
channel of about 1 nm [12] (reported on Fig. 7.5). The authors suggest the existence in the
channel of three water layers of homogeneous dielectric properties: two interfacial layers (ϵ = 2.1,
thickness: 0.7 nm) and a layer of bulk water (ϵ = 78). We compute the effective permittivity
ϵeff = L/

∫ L
0 (1−χ(z))dz as a function of L for two graphene surfaces. Our model can be seen as

two vacuum gaps and an inhomogeneous water layer. This inhomogeneity is not implemented ad
hoc but is the signature of the nonlocal dielectric properties of water, revealed by the boundary
conditions. The results are presented in Fig. 7.5. The model reproduces the experimental
measures and catches in particular a non-homogeneous behavior of the permittivity as a function
of L for small L as shown in the insert that cannot be described by a three homogeneous layer
model.[133, 12, 110]

7.3 Distribution of ions near surfaces

In collaboration with Jonathan Hedley and Alexei Kornyshev

As seen in the last section, interfacial water presents a structured dielectric response alternating
layers of high susceptibility and low one, even for a non-charged confining surface. See fig. (7.4).
This inhomogeneous profile raises the question of the non-homogeneous distribution of ions at
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an interface. There is currently much debate on how water structuring could influence ion
distribution near the interface. The interest in this question however has a long history, based
either on the earlier exploration of nonlocal electrostatic effects described within the concept
of Lorentzian correlations [134] which explains how this structuring of water will influence the
way ions are distributed close to the surface.

Nonlocal electrostatics furnishes a convenient platform to study this question provided that
the interaction between ions and water is appropriately modeled. We have shown in the last
chapter that a nonlocal linear model for water and punctual ions interacting via Coulomb
interactions fails to reproduce the behavior of bulk electrolytes. Nonlinear effects have to be
included. In the last chapter, we have considered an attenuated response of water to high fields.
Here, we are going to take into account another source of nonlinearity. We describe water as
a nonlocal linear ”overscreening” medium for water - described using the double polarization
functional given in Eq. (3.18) and consider the electrostatic interactions with the ions. We do
not model the ions as punctual charges but take into account their spacial expansion. This
approach is often referred to as Poisson-Fermi due to the Fermi-Dirac-like nature of the ion
distributions and has been implemented several times in the past for electrolyte / ionic liquid
systems [135, 136, 137, 138]. The full approach corresponds to a nonlocal nonlinear (induced
by nonvanishing ion size) Poisson-Boltzmann formalism.

We compute at the mean-field level the electrostatic potential and the ion concentration in
the vicinity of a charged surface. The results are plotted in Fig. 7.6. Note that all Hamiltonians
and technical details for mean field derivation are given in ref. ([22]). The Figure 7.6 shows the
concentration profile of anions (blue curve) and cations (red curves) close a surface positively
charged. We consider varying boundary conditions given by the polarization value at the surface
(one column per condition: P̄0) and two distinct concentrations (1 mMol first row of plot, 10
mMol second row of plot). All insets show the convergence to Gouy-Chapman behavior - dashed
lines - at long distances. The last line of the plot (b) indicates the electrostatic potential ϕ for
both conditions of concentrations. We see in Fig. 7.6 that even in a very diluted electrolyte,
ions do get trapped in the potential wells created by the ”overscreening” dielectric response of
water to the charge of the electrode, known also as the layering of water molecules, as we see in
the first row of panels in Fig. 5. Such ‘water wells’ are deep enough to keep ions in, against the
entropic drive to spread them around. Moreover, ions do not follow the potential profiles due
to pure water literally, as their presence disturbs their corresponding potential wells, albeit not
much. Ion concentration in the wells is limited by the effect of ‘excluded volume’ (finite ion size),
so that the first 3-4 wells have the same maximum possible concentrations of cations or anions,
as seen by the plateauing profiles in Fig. 5a. We thus cannot see the effect of concentration of
ions in the bulk, as the occupation of the wells is very much close to the limit determined by
the excluded volume of ions

Recently, the Garcia group [139], which uses the 3D-AFM experimental techniques studies
the structuration of diluted electrolytes (down to 10 mM concentration) in contact with mica
surfaces. Even at such a low concentration, they show evidence of distinct layers of water
(hydration layers) and cations in the normal direction to the surface. This is in line with the
results we have obtained for a sharp interface (Fig. 7.6).

As a conclusion of this part, we have shown that nonlocal dielectric properties could affect
the ion distribution in the double layer. Layering of the ions appears for atomically flat surfaces.
This prediction is in agreement with experimental observation.

7.4 The hydration Force

The last section of this manuscript is devoted to the consequence of the dielectric nanometric
structure of the fluid on macroscopic observable i.e. the hydration force. Hydration forces have
had a long history since their first experimental discovery [123, 140]. These forces have been
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Figure 7.6: Double layer structure and electrostatic potential profiles from an ideally sharp surface.
In all plots, the surface charge density σ̄0 = +10 µC/cm2, and the lattice gas cell length a =
0.8 nm. (a) shows the ion distributions from the positively charged surface with the indicated bulk
concentrations, and the mean polarisation density of water at the surface, P̄0. Greater values of
P̄0 indicate stronger water structuring at the surface, and hence deeper potential wells. All insets
show the convergence to Gouy-Chapman behaviour at long distances, but very different behaviours
near the surface. It is also seen that counterions (anions here) tend to reside at the maxima of the
electrostatic potential profiles that would have been seen in pure water, whereas co-ions (cations)
tend to sit in the minima of those profiles, as demonstrated in (b). For easy comparison, the potential
profiles for pure water are plotted between two oppositely charged surfaces at a distance of L = 15
nm.
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experimentally and numerically studied between soft [141] and solid surfaces [123, 142], and
even between macromolecules such as polysaccharides, collagen, and DNA [125, 143]. Between
solid surfaces, these force measurements were initially based on Surface Force Apparatus (SFA)
[144], and later, Atomic Force Microscopes (AFM) [145] were also used to measure forces rather
than just for drawing surface landscapes. The general understanding of the origin of hydration
forces was that hydrophilic surfaces perturb the structure of water or affect its polarization at
the boundaries and that these perturbations propagate from one surface to another through
the correlations of the perturbed quantities in water. Thus, beyond their typical correlation
lengths, such forces should vanish. Since many of the studied surfaces are charged, hydration
forces are usually perceived as an additional force emerging at short distances on top of the
forces described by DLVO theory – the force determined by the repulsion of electrical double
layers (the so-called electrostatic force) and Van der Waals attractions [146].

The mathematical description of such a liquid-mediated force was pioneered by Marčelja
and Radić [147]. They postulated a simple gradient expansion of a free energy functional of the
liquid (water), quadratic in the ‘order parameter’ (often interpreted as the orientation of the
molecules), where the coefficients determine the correlation length.

In the ‘primitive’ gradient expansions representing the Landau free-energy functional of bulk
water, the hydration forces were always exponentially decaying with the distance. However,
experimental crossed-cylinder SFA measurements of the forces between ideally smooth mica
surfaces have shown sharp decaying oscillations, with a period on the order of the diameter of
a water molecule [124, 148]. These oscillating patterns have to be described by going beyond
the simple gradient expansion of the free energy, or by using resonance-containing forms of the
nonlocal dielectric function [149]. However, for atomically rough surfaces, these oscillations
disappear [150, 151]. Including the resonance alone does not explain why for some interacting
surfaces the forces in the experiments decay exponentially, whereas for many others we see these
oscillations. Wisely, it was suggested that smearing of the interfaces due to surface roughness
leads to oscillation dysphasia, eliminating these oscillations. The question remained open, how
large must the smearing be for this, and what would remain of the force after such smearing?

In the spirit of Marčelja-Radic̀ [147], we calculate the indirect solvent contribution to the
hydration force by finding the derivative of the energy obtained from the configurational energy
we have detailed in Chapter 3. In particular, we consider the simplest functional capturing the
”overscreening” effect in water, given in Eq. (3.13), and the more complex functional introducing
two polarizations and focusing on the low-q/long-range structure of water given in Eq. (3.18).
We model the roughness of the surface by a Gaussian probability distribution for the interface
position. Details of the calculations are given in ref. ([22]).

The computed hydration force profile and the effect of smearing the force is shown in Fig. 7.7
for the model of two polarizations given in Eq. (3.18). For sharp interfaces, we see an oscillatory
force profile - blue plots -, but when the surface is smeared, the oscillations rapidly disappear
- red plots. A surface roughness corresponding to the size of a water molecule (2δ ≈ 2.5 Å) is
enough to completely remove oscillations from the profile, leaving only an exponentially decaying
force. This reproduces thus the experimental “force oscillation-non-oscillation” observations.

Interestingly, the computed hydration force with Eq. (3.13) shows oscillations for vanishing
smearing but vanishes for rough surfaces.

As a summary of this section: we have used two nonlocal models - Eq(3.13), purely resonant
and Eq. (3.18) - to compute hydration forces between flat and rough surfaces. Explanation of
experimental observations appears only possible for the second model. This two modes of
polarization model for water - Eq. (3.18) - is consistent with the low-q behavior of the response
function. It is constant at small and resonance-like at higher wavenumbers as shown in Fig (3.5).
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Figure 7.7: Hydration force profiles as a function of surface roughness. We see suppression of
oscillations in the profile leading to a fully repulsive, exponential force as the surface roughness is
increased. A roughness of 2δ ≈ 2.5 Å is required to fully suppress oscillations, corresponding to the
diameter of a water molecule. Inset shows the comparison between the pure Lorentzian mode of
decay for hydration forces historically proposed by Marčelja-Radic̀ [147] with what is left of the force
after smearing in our 2-polarisation hybrid model; inset axes are the same as in the full picture.



7.5. CONCLUSION 59

7.5 Conclusion

In this last chapter we have considered examples of confined water and electrolytes and have
studied the dielectric properties of the interfacial layer and the macroscopic properties of the
system. To do this, we have proposed an interfacial energy equation (7.1) in the spirit of the
Landau-Ginzburg functionals for the bulk energy. We have validated our approach by comparing
our results with simulations and/or experiments. The developed model provides a framework
that can be tailored to any type of confinement characterised by its geometry and surface
physicochemical properties. Thus, it can be used to consider different confinement conditions,
such as soft interfaces.
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Chapter 8

Perspectives

I have presented a versatile framework for studying the dielectric properties of confined water
and electrolytes at the nanoscale. However, this framework is still incomplete. Soon, I will be
working on two missing pieces of the static description of these systems: (i) a complete theory
for the bulk electrolyte response, (ii) a study of the ion-surface interaction. In the meantime, I
will work on the description of charge transport in structured electrolytes. In the more distant
future, I will use these methods to study the transport of ions in in cellulo compartments,
focusing on the description of the powerhouse of the cell: the mitochondrion. I describe this
research perspective in this chapter.

8.1 Bulk electrolytes

In collaboration with Jonathan Hedley and Alexey Kornyshev

As shown in Chapter 6, the response function of electrolytes cannot be captured by Gaussian
theory for water nonlocality. We have proposed an ad-hoc expression for the longitudinal sus-
ceptibility (Eq. (6.13) that reproduces qualitatively the MD simulations. However, a consistent
description of ions and ion-water interaction leading to such a result is still missing. The work
in section 7.3 shows that a model taking into account nonlocality of water and spacial extension
of the ions reproduces the ion layering along the confining surface observed experimentally for
very diluted electrolytes.

8.1.1 Effect of the finite size of the ions - ion-ion interaction

In future work, we will study more in detail how to couple the size of ions and nonlocality of
water to describe bulk electrolytes. We first consider the electrostatic interaction between two
ions. We use a charge distribution taking into account the finite size of an ion: we can consider
a Born sphere and a smeared Born sphere ([70]). The Fourier transform of the ion density for
two models can be written as follows:

ρBS(q) = e
sin(qa)
qa

, ρSBS = e

1 + (ζ/a)2(2 − e−a/ζ)

(
sin(qa)
qa

1
ζ2q2 + ζ2

a2
(2 cos(qa) − e−a/ζ)

(1 + ζ2q2)2

)
.

(8.1)
For the Born sphere (BS) model, the charge ρBS is uniformly distributed over a sphere of radius
a which is the ion radius. The first distribution may lead to an overestimation of the water
response which could be corrected by the second distribution. For the Smeared Born sphere
model, the charge density is radially inhomogeneous and has a maximum at a distance a from
the center of the sphere; from this distance, it decreases exponentially (both outside and inside
the sphere) with decay length ζ. In the limit of ζ → 0, it reduces to the Born sphere distribution.
This model is thus characterized by 2 length scales instead of one for the BS model.
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We will start this work by characterizing the polarization induced in a nonlocal medium
by these charge distributions and the related charge-charge interaction as done in ref. ([48])
for punctual charges. The relevant characteristic sizes of this system are not clear. Is it only
the size of the ion modeled as a Lennard-Jones sphere? or the size of the ion and the first
water layer? It could depend on the chemical nature of the ion. The theoretical results will be
compared to MD simulated charge-charge interactions that we will perform. For weak charges
- MD simulations allow partial charges for ions - the linear response of water will be a good
approximation. For higher charges, we will introduce nonlinear terms and discuss the threshold
between the linear and nonlinear regimes.

8.1.2 Effect of the finite size of the ions - bulk electrolytes

After the characterization of the effect of the ion size on electrostatic interactions in water, we
will consider the response of bulk electrolytes. We will rederive the partition function as in
Eq. (6.3), the free energy of the system and the response function for an updated ion-water
interaction and taking into ion size effect. We will compare the results to MD simulations.

8.2 Solvated ion-surface interaction

In textbooks on electrostatics, the surface-charge interaction is treated by the ”image charge”
method. It consists of replacing the surface by a fictitious ion generating in water the same
potential as the surface. The charge carried by the ion is deduced from the continuity of the
electrostatic and excitation field at the interface. This framework has been extended for nonlocal
media [152, 88, 153]. However, for ”overscreening” media, such as water, this method leads to
an nonphysical diverging response of the medium [154, 26]. The potential mean force of an
ion interacting with a graphene surface was lately addressed with MD simulations[155]. In this
case, the atoms of the surface are described as LJ spheres and their electronic response is not
included. It was recently shown that the coupling between water and electron modes could
drastically influence the response of the system [30]. The results of such simulations have to
be questioned. The problem of charges in confinement can be addressed mainly with heavy
numerical simulations based on the Born Oppenheimer approximation of the electrons [156].
In addition, sophisticated classical MD simulation methods are being developed to bridge the
gap between pure classical and full quantum description at reasonable computational cost [157].
The minimal ingredients to add to a nonlocal ”image charge” description to get a good precision
on electrostatic interactions is still an open question.

8.2.1 Dielectric properties of water including electronic degrees of freedom

In collaboration with Darka Labavic̀, Roland Netz and Marie-Laure Bocquet

We will start this part of the project by characterizing the dielectric properties of pure
water simulated using the electronic Density functional theory (DFT) [158]. We will calculate
the charge structure factor for electronic densities including the electrons and obtain information
on the dielectric spectrum at high q. We remember that for classical MD simulations, the high-
q part of the spectrum is irrelevant as the atoms are described as LJ spheres. We will use
this result as an input for a three polarization field P1, P2, Pel, in the spirit of Eq. (3.18)
but including electronic degrees of freedom. We will first quantify the coupling between the
”resonant” polarization field P1, the polarization field associated with a nanometric decaying
length P2 and the electronic structure captured by Pel in bulk water. In a second time, we
will consider the polarization in water induced by a confinement between two plates - using the
framework presented in section 7.1. We will compare the response obtained for a field theory
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Figure 8.1: (left) Schematic description of a solvated charge-graphene interaction. (right) Table
presenting an increase of the complexity of the theoretical model addressing this problem.

parameterized with classical MD simulations and electronic DFT. We will focus on the response
at a small scale - 0.5 nm - that should differ for the two approaches. We will discuss the role of
nonbonding lone electron pairs of the system in surface hydration.

8.2.2 Image charge

Then we extend the textbook ”image charge” framework to this ”electronic-water” nonlocal
medium plus a confining medium interacting with a harmonic surface energy as introduced in
Chapter 7. See sketch in Fig 8.1. With this approach, we could compute the surface charge
in the solid material for different types of interface energies. This can be done by varying the
spring constants kP and kρ encoding the stiffness of the water/surface interaction. For the
confining medium, we consider graphene and we will describe using a Thomas-Fermi model.
More complex and realistic descriptions for the graphene [26, 159], nonlinear response of water
or coupling with the density could be envisaged in the second time. See the table in Fig 8.1.

To discuss the validity of such a framework, we will compare the analytical results to simu-
lations. As already mentioned, Classical MD simulations are irrelevant for these questions and
we will perform ab initio simulations [160, 156].

8.3 Ion transport

In collaboration with Vincent Demery

Until now, we have considered exclusively static properties of electrolytes. In the future, I
will use the tools developed in this manuscript to study charge transport in complex dielectric
media.

Ion transport in confined systems is a key process for energy production both in technological
devices such as supercapacitors or batteries and in biological organelles such as mitochondria.
With Vincent Demery, we plan to study the transport of ions in a structured dielectric medium
such as water. To do so, we use the stochastic Density Functional Theory (sDFT) [27]. We
consider a 1:1 electrolyte composed of cations of density ρ+ and anions of density ρ−. In this
framework, the dynamic of the cation density ρ+ is governed by a the stochastic equation as
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follows:

∂tρ+ = −∇ · j⃗+ (8.2)
j⃗+ = −kBTκ+∇ρ+ + κ+ρ+f⃗+ + (κ+ρ+)1/2η⃗+ (8.3)

κ+ is the mobility of cations, η⃗+ is a white noise. The force f⃗+ is the force generated by an
external potential and the interactions between ions. The conductivity of such a system when
submitted to a constant electric field has been studied for ideal electrolytes,i.e a local medium
associated with a q-independent permittivity, responding linearly to the field and punctual ions.
This framework reproduces the Wien effect which is the increase of the conductivity under a
high electric field. Indeed the electric field kills out the Debye screening between the ions that
thus behave as independent charge carriers.

We plan to modify the description of the solvent in this equation to get closer to real systems.
In the first time, we start by considering the saturation of water permittivity under a constant
field using the DL model for water, which we have described earlier (see sketch 4.1, and 4.2). In
this case, the application of an electric field both decorates the ions by killing off the screening
and re-correlates them by decreasing the permittivity of the solvent. We discuss the dominant
effect. We will compare the analytical results for the conductivity with MD simulations. In the
second, we will consider the effect of the water structure on the conductivity of an ionic solution
using nonlocal electrostatics for a q-dependent description of the permittivity...

8.4 Electrolytes in vivo: transport in mitochondria

I finish this perspective chapter by presenting a long-term objective of the present work on
the properties of confined electrolytes. It is the study of the charge transport in nanoconfined
biological systems. I focus on the description of mitochondria.

Mitochondrion organelle is named the ”powerhouse” of the living cell as it is the place of
ATP synthesis. It is formed of numerous nanometric tubular membrane invaginations named
the cristae - see Fig. (8.2) for a representation of the organelle - that are the location of this
synthesis. The energy needed to synthesize ATP is furnished by a proton flux along these
membrane tubes established by transmembrane proteins. The respiratory complex plays the
role of proton source and the ATPsynthaze consumes H+ to synthetize ATP. The description
of this energy supply is important to understand the efficiency of this organelle and also its
dysfunction which is responsible for numerous diseases. The existing models describing driving
force are based on macroscopic descriptions of the components of the system [161].

The confinement properties, the nonlocal dielectric properties of water, and the ion current
are intimately coupled. The pH flux is assumed to be localized along the surface by the non-
local dielectric properties of water [162, 163], this flux affects the protonation state of the lipid
membrane and thus modifies its surface charges and its mechanical properties. In turn, this
mechanical modification affects the tension and bending forces exerted by the membrane on the
transmembrane proteins and modifies their rate of proton injections. In previous works [24, 25],
I focused on the membrane mechanics and described the pH flux as a constant input. I will now
work on a more precise description of the ion distribution in the mitochondria cristae taking into
account the dielectric properties of water at small scales. I will take into account the effect of
surface charge on the membrane on its mechanical properties and introduce a coupling between
the rates of proton injection and consumption by the proteins and the local membrane shape to
get a description of the system at the nanoscale and derive its efficiency. Part of these questions
will be addressed during the PhD of Yorgos Chatziantoniou.
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Figure 8.2: Reproduction from ref. [164] of a graphical scheme of a mitochondron. The tubes
represent the crista of the organelle. The yellow points are the ATPsynthaze. scale bar =100 nm.

8.5 Conclusion

The first perspective of this work is to model at negligible computer cost and with a precision
comparable to quantum simulations of liquid/solid and interfaces prototyping aqueous elec-
trolytes. I will also work on the transport properties of these systems. In the longer term, I will
apply these tools to biological systems.
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Heisenberg, La mecanique de l’adhesion cellulaire dans la gastrulation du poisson zebre,
Medecine sciences, 29, 147-150 (2013).
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Appendix D

Miscellaneous research topics

Active surfaces applied to mitochondria membranes

Many cellular organelles are membrane-bound structures with complex membrane composition
and shape. Their shapes have been observed to depend on the metabolic state of the organelle,
and the mechanisms that couple biochemical pathways and membrane shape are still actively
investigated. We propose and study Helfrich models for inhomogeneous membrane and show a
rich phase diagram of inhomogeneity induced shapes that are consistent with in vivo orgnelle
shape. We apply this model to describe the shape change of mitochondria membrane. This or-
ganelle is named the power house of the cell as it is the place of ATP synthesis Cristae membrane
changes shape with the metabolic state and we show that this can be modeled by a coupling
between the mechanical properties of the membrane and a surface pH flux established by the
transmembrane proteins of the organelle (publications 1 and 7 of the list ). In the previous
works, we modeled the pH gradient as an input generated the proteins which are unaffected
by the mechanical shape of the membrane. We will introduce a coupling between the rates of
proton injection and consumption by the proteins and the local membrane shape. This cou-
pling has been measured in in vitro system and coud explain the interplay between shape and
function for this organelle.

Analytical chemistry

This is a new work started one year ago in collaboration with L. Messio (LPTMC), and Robba
Moumné (LBM). Dynamic combinational chemistry is an efficient way to synthetize peptides
via grafting aminoacids (AA) on a well-ordered backbones. However, it can be difficult to
determine the composition of the reactive mixture as its complexity overtakes the performances
of analysis methods available in labs. Here, we are developing a method based on statistical
physics to describe the reactive mixture. The backbones are modeled as grids, the AA are spins
associated with self energy and coupling energy between two sites. The energy of all the possible
peptides can be expressed as a function of a limited number of parameters which are inferred
to reproduce partial analysis data furnished by experimentalists. The preliminary results are
encouraging.
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MOTS CLÉS

Electrostatique aux échelles nanométriques - Eau et électrolytes - Théorie statistique des champs

RÉSUMÉ

Ce mémoire d’habilitation à diriger les recherches présente un cadre de théorie statistique des champs pour étudier les
propriétés diélectriques de l’eau et des électrolytes à petite échelle. Le nanomètre est la taille de confinement typique des
dispositifs technologiques et biologiques, la longueur de Debye des solutions ioniques faiblement concentrées, ainsi que
l’échelle à laquelle l’eau commence à se comporter comme un milieu moléculaire. Les simulations sont souvent utilisées
pour étudier ces systèmes, mais elles ne fournissent pas ”l’équation maı̂tresse” qui les gouverne. Nous décrivons ici
l’eau comme un milieu diélectrique corrélé. Nous développons des fonctionnelles de la polarisation pour modéliser la
structure moléculaire du fluide et nous construisons un cadre analytique minimal pour étudier les propriétés des solutions
aqueuses. Nous incluons une modélisation du confinement et nous identifions les éléments qui gouvernent l’interaction
entre la structure des électrolytes et les propriétés de la surface de confinement. Nous proposons ainsi une approche
systématique pour étudier les électrolytes à l’échelle nanométrique.

ABSTRACT

This habilitation manuscript presents a framework based on statistical field theory to study the dielectric properties of
water and electrolytes at small scale. The nanometer scale is the typical confinement size of technological and biological
devices, the screening length of low-concentrated ionic solutions, as well as the range at which water starts to behave
as a discrete molecular medium. Simulations are often used to study these systems, but they do not provide the ”master
equation” that governs them. Here, we describe water as a correlated dielectric medium. We develop functionals of the
polarization to capture the molecular structure of the fluid and build a minimal analytical framework to study the properties
of aqueous solutions. We include a modelization of the confinement and identify the key elements that govern the interplay
between the structure of the electrolytes and the properties of the confining surface. We thus provide a versatile approach
to studying electrolytes at the nanoscale.
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Electrostatics at the nanoscale - Water and electrolytes - Statistical field theory
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