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Abstract

According to the statistic of World Health Organization, over 5% of the world’s population,
i.e., 360 million people, has disabling hearing loss (328 million adults and 32 million children).
Hearing aids are quite successfully used for the partially deafened people. Traditional hearing
aids, while effective for partial hearing loss, often fall short for individuals with severe deafness.
In such cases, cochlear implant surgery emerges as a preferable solution. Traditional manual
implantation, however, grapples with the complexities of human anatomy and procedural in-
tricacies. Among the primary challenges are the risks of damaging sensitive structures like
the facial nerve and the propensity of the electrode array to bend within the cochlea, impeding
complete implantation. Despite precision in manual techniques, the limited visibility and heavy
reliance on the surgeon’s steadiness and expertise inherently carry risks.

Robot-assisted cochlear implant surgery signifies a major breakthrough in otolaryngology,
aiming to heighten the precision and effectiveness of these procedures. This innovative ap-
proach, featuring an active electrode array, addresses the limitations of traditional surgery.
The distinguishing aspect of active cochlear implants is their self-adjusting electrode array,
which adapts during implantation to align perfectly with the cochlea’s complex spiral path.
This feature not only boosts implant efficacy but also minimizes potential complications.

Present research in cochlear implant technology concentrates on refining mechanical models
and improving control systems for implantation. Conventional finite element models, while
standard for simulating cochlear implant mechanics, struggle with real-time simulation and
responsive control due to their high-dimensional complexity. Accurately determining physical
parameters is another major challenge, affecting both the precision of simulations and the
effectiveness of control methods. Therefore, there is a pressing need for models that are both
precise and computationally efficient, alongside advanced control systems capable of adapting
to the dynamic nature of implantation.

This thesis contributes significantly in three areas. First, it introduces a novel electronic
and mechanical model for the cochlear implant’s electrode array, employing Cosserat rod the-
ory. This model, in contrast to traditional finite element models, offers similar accuracy with
reduced complexity, thereby enabling real-time simulation and control during implantation.
Its reduced computational demands make it more viable for clinical application, and its ef-
fectiveness has been corroborated through detailed simulations and experiments. Second, the
study innovates in parameter identification by integrating a visual system to measure actuator
curvature, thereby deriving physical parameters through a novel nonlinear electro-mechanical
coupling model. Lastly, the thesis’s crowning achievement is the development of an optimal
control system based on the new electro-mechanical model. This system, founded on contact
mechanics models, enables advanced multi-drive coupled trajectory tracking control. Rigorous
testing through experiments and simulations confirms its robustness and reliability, marking a
step forward in enhancing precision and safety in cochlear implant procedures.
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Nomenclature

Symbol Unit Definition
. — Derivative with respect to time
′ — Derivative with respect to spacê — Mapping from R6 to se(3)˜ — Mapping from R3 to so(3)
⊗ — Kronecker tensor product
∥ · ∥ — Euclidean norm of a vector or matrix
∨ — Mapping from a matrix to a vector
s m ∈ [0, L] ⊂ R Abscissa along the electrode array or soft lender rod

β —
∈ [0, 2π] ⊂ R the rotation angle in radians of the contact point
around the center point

t s ⊂ R Time
R — ∈ SO(3) Orientation matrix

d(s, β) m
Local distance between the midline of soft slender rod
and the contact point

p m ∈ R3 Position vector

g(s) —
=

(
R p
0⊤ 1

)
∈ SE(3)

Homogeneous transformation matrix

g0(s, t) —
The transformation matrix from the soft slender rod’s base frame
to the inertial frame

gc(s, t) — The configuration tensor of contact frame

gbc(s, t) —
the configuration tensor of contact frame with
respect to body frame

gd(s, t) — The configuration tensor of slave contact frame.

gcd(s, t) —
the configuration tensor of slave contact frame with respect
to master contact frame

κ(s) 1/m ∈ R3 Angular strain in the body frame
ϵ(s) — ∈ R3 Linear strain in the body frame
w(s) 1/s ∈ R3 Angular velocity in the body frame
v(s) m/s ∈ R3 Linear velocity in the body frame

ξ̂(X) —
=

(
κ̃ ϵ
0⊤ 0

)
∈ se(3)

: Strain twist matrix

ξ(s) — =
(
κ⊤, ϵ⊤

)⊤ ∈ R6 Strain twist

Continued on next page
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Table 1 – continued from previous page
Symbol Unit Definition

η̂(X) —
=

(
w̃ v
0⊤ 0

)
∈ se(3)

: Velocity twist matrix

η(s) — =
(
w⊤,v⊤

)⊤ ∈ R6 Velocity twist

adξ(s) —
=

(
κ̃ 03×3

ϵ̃ κ̃

)
∈ R6×6

: Adjoint representation of the strain twist

Adg(s) —
=

(
R 03×3

p̃R R

)
∈ R6×6

: The matrix transforming the velocity or acceleration twist
from body frame to inertial frame

Ad∗g(s) —
=

(
R p̃R

03×3 R

)
∈ R6×6

: The matrix transforming the wrench from body frame
to inertial frame

adη(s) —
=

(
w̃ 03×3

ṽ w̃

)
∈ R6×6

: Adjoint representation of the velocity twist
ds m Infinitesimal material element
ρ kg/m3 Material density

R(s) m Cross-sectional radius
A(s) m2 Cross-sectional area
E Pa Young’s modulus
ν — Poisson ratio
G Pa Shear modulus (For the isotropic material, G = E/(2(1 + ν)))
µe Pa · s Viscosity modulus

I(s) m4 =

 Ix 0 0
0 Iy 0
0 0 Iz

 ∈ R3×3 (Iy(s) and Iz(s) about the

y-axis and z-axis, the polar area moment Ix(s) about the x-axis.
I3 — 3× 3 identity matrix

M(s) — =

(
ρI(s) 0
0 ρI3A(s)

)
∈ R6×6 : Cross-sectional mass matrix

Γ N Internal force in the body frame
Ω N ·m Internal torque in the body frame
Λ — Internal wrench in the body frame
Λa — Actuation wrench in the body frame

Ktb(s) N ·m2 =

 G 0 0
0 E 0
0 0 E

I(s) ∈ R3×3

: Stiffness matrix of the cross section at s for torsion and bending

Kes(s) N ·m2 =

 E 0 0
0 G 0
0 0 G

A(s) ∈ R3×3

: Stiffness matrix of the cross section at s for elongation and shear

Continued on next page
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Table 1 – continued from previous page
Symbol Unit Definition

Dtb(s) N ·m2 · s =

 µ 0 0
0 3µ 0
0 0 3µ

I(s) ∈ R3×3

: Damping matrix of the cross section at s for torsion and bending

Des(s) N · s =

 3µ 0 0
0 µ 0
0 0 µ

A(s) ∈ R3×3

: Damping matrix of the cross section at s for elongation and shear

G — ∈ R6 : Gravitational acceleration twist in inertial frame

θ(t) — =
[
ξ
⊤
0 ξ

⊤
1 · · · ξ⊤n

]⊤
∈ R6(N+1) : Generalized strain vector of

piecewise linear approximation
α(t) — Parameter vector of g0
q(t) — Generalized coordinates

J(q, s) — ∈ R6×6(N+1) Body Jacobian matrix
n — Number of sections divided for strain field
m — Number of sections divided for contact field

δn(s, t) m Normal gap of contact in contact frame
vt(s, t) m Relative tangent velocity of contact in contact frame
Λn(s, t) N/m Normal contact load of collision in contact frame
Λt(s, t) N/m Tangent contact load of collision in contact frame
Λc(s, t) N/m Contact load of collision in contact frame
Λa(s, t) N/m Contact load of articulated constraint in contact frame
un(t) — Slack variable of normal contact constraint
ut(t) — Slack variable of tangent contact constraint
u(t) — Slack variable of contact constraint
λc(t) — Assembly vector of slack variable u
λf (t) — Assembly vector of contact force of articulated constraints
λa(t) — Assembly vector of contact force of fixed constraints
Gc(t) — Collision contact constraints
Gf (t) — Fixed contact constraints
Ga(t) — Articulated contact constraints

Table 1: Acronyms and glossary for the thesis.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 The Origin of Cochlear Implants

The origin of cochlear implants can be traced back to the early experiments with electrical
stimulation of the auditory system. Alessandro Volta [1], who developed the electric battery,
provided the first account of such stimulation in the early 1800s. Volta described his experience
as a “jolt in the head” followed by a sound resembling crackling or bubbling after inserting
metal probes connected to a battery into his ear canals. Later, in 1855, Duchenne de Boulogne
stimulated the cochlea with alternating current and experienced sensations of buzzing, hissing,
and ringing [2]. This line of experimentation continued, and in 1930, Wever and Bray [3]
recorded electrical potentials in the cochlea that followed the waveform of the sound stimulus,
suggesting the possibility of restoring lost or absent hearing through electrical replication.

A significant milestone in the development of cochlear implants was achieved by Andre
Djourno and Charles Eyriès in 1957 [4]. They performed the first direct electrical stimulation of
the human auditory system on a patient who had only the stump of the auditory nerve remaining
after previous surgeries. Although this initial effort by Djourno and Eyriès in Paris was quickly
abandoned, the publication of their results had far-reaching effects. For instance, it inspired
Dr. William F. House in Los Angeles to develop an auditory prosthesis for deaf persons that
could be used reliably over many years [5]. In 1961, House, in collaboration with neurosurgeon
Dr. John Doyle, implanted the first patients in Los Angeles [6]. These initial implants, though
promising in providing basic frequency discrimination and word identification in small closed
sets, faced challenges such as insufficient biocompatibility, leading to complications and limited
long-term testing. Despite these setbacks, House continued his work and, in partnership with
electrical engineer Jack Urban, developed the first cochlear implant system that could be used
outside of the laboratory and for many years by patients [7], as shown in Fig. 1.1. This
achievement marked a landmark in cochlear implant history, with House being widely regarded
as a pioneering figure in this field.

The pioneering work in the development of cochlear implants, spearheaded by figures like
Alessandro Volta, Andre Djourno, Charles Eyriès, and notably Dr. William F. House, represents
a seminal turning point in auditory science and medical technology. Their groundbreaking
experiments and innovations laid the foundational groundwork for modern cochlear implant
technology, revolutionizing the approach to auditory rehabilitation. These early efforts not
only demonstrated the feasibility of electrical stimulation of the auditory system for hearing

13



(a) (b)

Figure 1.1: (a) Dr. William Fouts House (December 1, 1923 – December 7, 2012), Inventor of
cochlear implant. (b) The 3M Cochlear implant system developed by House in 1973 [8].

restoration but also paved the way for the evolution of sophisticated, biocompatible cochlear
implants. Today, these implants stand as a testament to human ingenuity, profoundly impacting
the lives of countless individuals with hearing impairments, offering them a transformative
opportunity to experience the world of sound.

In the following section, we will first explore the mechanisms of auditory perception and the
underlying causes of hearing loss. This understanding is crucial to appreciate the pivotal role
cochlear implants play in restoring hearing in patients.

1.1.2 Auditory Perception and Hearing Loss

The auditory perception is a complex biological process that begins with the capture of sound
waves by the external ear and extends to signal processing in the brain. This process involves
the coordinated efforts of multiple structures within the ear, with each structure playing a
crucial role in the formation of auditory perception [9].

As shown in Fig. 1.2.(a), firstly, sound waves are captured by the pinna (outer ear) and
directed into the ear canal. The unique shape of the pinna helps collect sound waves from the
surrounding air, while the ear canal slightly amplifies specific frequencies of sound to enhance
speech reception. Subsequently, the sound waves reach the eardrum, causing it to vibrate. This
step is crucial as it transforms sound waves into mechanical vibrations. The vibration of the
eardrum is then transmitted to the three small bones of the middle ear—the hammer, anvil,
and stirrup bones. These bones not only amplify the sound but also transmit it to the inner
ear.

The cochlea, a spiral-shaped, fluid-filled structure in the inner ear, plays a pivotal role in
sensing sound [11]. As shown in Fig. 1.2.(b), it comprises three parallel canals: the scala
vestibuli (SV), scala media (SM), and scala tympani (ST), each filled with fluids crucial for
sound transmission. The scala vestibuli and scala tympani contain perilymph, which transmits
sound vibrations from the middle ear into the cochlea. These vibrations travel through the
scala vestibuli, reach the cochlear apex, and then journey back via the scala tympani. Central
to this system is the scala media, or cochlear duct, filled with endolymph and separated from
the scala vestibuli by the vestibular membrane and from the scala tympani by the basilar

14



Figure 1.2: (a) The primary structures of the human ear include the outer ear, middle ear, and
inner ear. (b) An anatomical diagram of the cochlea and the process of sound wave transmission
within the cochlea. [10]

membrane. The basilar membrane’s unique sensitivity to different sound frequencies enables
the cochlea to distinguish various pitches. Resting on this membrane are the hair cells, the
auditory system’s sensory receptors. These cells, topped with tiny hair-like projections called
stereocilia, bend in response to the basilar membrane’s vibrations. This bending opens ion
channels, creating electrical signals that are then transmitted to the brain. Above the hair cells
lies the tectorial membrane, a gel-like structure that enhances the bending of the stereocilia,
thus amplifying the electrical signal production. This sophisticated process, beginning with
sound waves entering the cochlea and culminating in the conversion of mechanical energy into
electrical signals, exemplifies the remarkable sensitivity and frequency discrimination of human
hearing.

According to the statistic of World Health Organization, over 5% of the world’s population,
i.e., 360 million people, has disabling hearing loss (328 million adults and 32 million children).
Hearing impairment or loss can occur at any stage of the previously introduced process [12].
Damage to the external and middle ear, such as infections or perforated eardrums, can disrupt
the effective transmission of sound, resulting in conductive hearing loss. Damage to the cochlea
or its hair cells, often caused by noise exposure, aging, or medication toxicity, can lead to
sensorineural hearing loss [13, 14]. Once hair cells are damaged, they typically cannot repair
themselves. Issues with the auditory nerve, such as the presence of tumors, can interfere with
signal transmission to the brain. Lastly, damage to the brain’s regions responsible for processing
auditory signals, as seen in cases of stroke or brain injury, can also affect hearing [15].

1.1.3 The Working Mechanism of Cochlear Implants

Cochlear implants (CIs), ingeniously designed to simulate the natural hearing process, become
essential in cases where the cochlea’s hair cells are impaired, rendering them ineffective in
transducing sound into neural signals. In a normal ear, sound waves are transformed into
mechanical vibrations by the cochlea, with the basilar membrane playing a pivotal role and
hair cells converting these vibrations into electrical signals for the brain to interpret as sound.
However, when these hair cells are damaged, this process is disrupted.

A cochlear implant ingeniously bypasses this damaged mechanism by directly stimulating

15



Figure 1.3: (a) The external and component of cochlea implant. (b) The internal component
of cochlea implant. The electrode array typically consists of multiple electrode contacts dis-
tributed along its length. Each electrode contact can independently transmit electrical signals,
simulating the perception of sounds at different frequencies, akin to the natural auditory pro-
cess.

the auditory nerve fibers, eliminating the need for functional hair cells [16]. As shown in Fig.
1.3, comprising an external microphone, a speech processor, a transmitter, and an internal
receiver equipped with an electrode array (EA), the cochlear implant functions by capturing
sound through the microphone, which is then processed into electrical signals by the speech
processor. These signals are wirelessly transmitted to the internal receiver implanted under the
skin.

Fig. 1.4 illustrates the detailed functioning of the cochlear implant. The EA [17], a key
component of the implant, is inserted into the cochlea, where it directly stimulates the auditory
nerve fibers. This array’s placement is meticulously designed to mirror the cochlea’s tonotopic
organization, ensuring that different parts are stimulated in correspondence with the pitch of
the incoming sound. The array targets the spiral ganglion neurons located in the modiolus, the
cochlea’s central core. These neurons are crucial for transmitting auditory information from
the cochlea to the brain. By stimulating these neurons, cochlear implants effectively bypass
damaged hair cells, transmitting auditory information directly to the brain and enabling sound
perception.

This technological marvel, while not repairing the damaged cochlea, creates an alternative
pathway for sound signal transduction directly to the auditory nerve. It represents a signifi-
cant advancement in auditory prosthetics, offering individuals with severe hearing loss a new
dimension of hearing and profoundly impacting their interaction with the world .

1.1.4 Types of Electrode Array

In the realm of cochlear implant (CI) surgeries, the concept of passive cochlear implants has
emerged alongside the development of various electrode arrays (EAs), namely the ”straight”
and ”precurved” types [18]. Each of these EAs comes with its set of advantages and challenges,
particularly concerning intracochlear trauma and hearing outcomes.

The evolution of EAs began with single wire electrodes and has since progressed to incorpo-
rate multiple stimulation sites and advanced materials like silicone. This progression maintains
the fundamental design of a flexible carrier equipped with electrode contacts. Overall, tradi-
tional EAs can be classified into the following two types:

� Straight EAs, designed to curve upon contact with the cochlea’s lateral wall opposite the
modiolus, typically align along this wall in both active and passive systems [19–21].
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Figure 1.4: (a) The various components of the cochlear implant capture sounds and convert
them into electrical signals. (b) The electrode array inside the cochlea. (c) These electrical
signals are sent through a small electrode inserted into the cochlea. The electrode stimulates
the spiral ganglion neurons located in the modiolus, and the information is sent to the brain
through the auditory nerve for interpretation.

� The “Advanced-Off-Stylet” (AOS) technique, developed to minimize intracochlear trauma
caused by the stylet’s stiffness, is particularly relevant for passive CIs [22, 23]. Here, the
stylet stays in place until the carrier reaches the basal turn, at which point the surgeon
advances the silicone carrier while holding the stylet steady. This approach allows for a
gradual curvature increase during insertion, ideally preventing contact with the lateral
wall.

1.1.5 Cochlear Implant Surgery

Cochlear implant surgery, pivotal in treating severe to profound hearing loss, has seen remark-
able advancements in recent years.

As shown in Fig. 1.5, initially, traditional manual cochlear implant surgery begins with
a detailed assessment of the patient’s anatomical structure through imaging techniques. The
surgeon then performs a mastoidectomy, where part of the mastoid bone behind the ear is
carefully removed. This step is crucial for gaining access to the middle and inner ear structures
[24].

Following this, a posterior tympanotomy is performed. This involves creating a small open-
ing to access the middle ear, enabling the surgeon to reach the cochlea. The delicate nature
of this procedure requires precise maneuvering to avoid damaging sensitive structures like the
facial nerve [25].

The core of the surgery involves the insertion of the electrode array into the cochlea. The
surgeon makes a minute opening in the cochlea and carefully inserts the electrode. This process
demands high precision to ensure that the implant is positioned correctly for optimal auditory
results. Over the years, the traditional manual technique has seen significant advancements.
Surgeons have refined their skills and techniques, leading to improved outcomes and reduced
complication rates. Innovations in imaging and surgical tools have further augmented the
precision of this surgery. One of the critical developments in this area has been the improvement
in electrode design. Modern electrodes are designed to preserve the cochlear structure and

17



Figure 1.5: Schematic diagram of cochlear implant surgery and surgical equipment and tools.

minimize trauma, leading to better preservation of residual hearing. This advancement has been
instrumental in enhancing the effectiveness of cochlear implants for a broader range of hearing
impairments. Furthermore, there has been a shift towards minimally invasive approaches.
These techniques aim to reduce the size of the incisions and the extent of bone removal, thereby
speeding up recovery times and reducing postoperative discomfort.

Traditional manual cochlear implant surgery, while effective, faces certain limitations, pri-
marily stemming from the intricacies of human anatomy and the complexity of the surgical
procedure [26,27]. One of the main challenges is the risk of damaging delicate inner ear struc-
tures, such as the facial nerve. Even with the utmost precision, the manual approach carries
inherent risks due to the limited field of view and the surgeon’s reliance on hand stability and
experience [28]. Another limitation is the variability in surgical outcomes. The success of man-
ual cochlear implant surgery heavily depends on the surgeon’s skill and experience, leading to
variability in patient outcomes. Additionally, the invasiveness of the procedure often results in
longer recovery times and a higher risk of complications, such as infections or bleeding [29].

1.1.6 Issues of Cochlear Implantation

As shown in Fig. 1.6, sound waves of different frequencies (20 Hz-20000 Hz) stimulate different
parts of the cochlear basilar membrane. High-frequency sounds peak near the base of the
cochlea (close to the oval window), while low-frequency sounds peak at the top (the apex of
the spiral). This spatial arrangement allows for the separation and analysis of different sound
frequencies. Hence, in order to endow patients with a comprehensive auditory bandwidth, it’s
imperative to meticulously align the cochlear implant’s electrode array. This alignment spans
from the region of the cochlea attuned to higher frequencies to the area responsive to lower
frequencies. Essentially, this involves the complete insertion of the electrode array into the
cochlea’s interior.
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(a) (b)

Figure 1.6: Perception of sound wave frequencies at different locations inside the cochlea. [30]

However, several critical issues can arise during the insertion of the implant, each with the
potential to significantly impact the surgical outcome and the patient’s auditory perception.

1. Firstly, the mechanical stress and deformation of the EA during implantation pose sig-
nificant risks,as shown in Fig. 1.7. Key complications include the following aspects:

Figure 1.7: Various instances of cochlear damage [10]: (a) Relocation of the EA from the
scala tympani (ST) to the scala vestibuli (SV), (b) Folding over of the EA’s tip, where the
most distal section reverses upon itself, (c) Scratching or scraping of the EA’s tip against the
cochlear lateral wall, resulting in harm, and (d) The EA’s internal buckling within the cochlea,
hindering further insertion and impacting its final intracochlear position. In this particular
case, the buckling event led to the fracture of the osseous spiral lamina. [10]

� Translocation [31], where the EA ruptures the basilar membrane, transitioning from
the scala tympani to scala vestibuli. This displacement disrupts the usual hearing
pathway, often resulting in a complete loss of residual hearing.

� Tip fold-over [32], another complication, occurs when the apical section of the EA
bends back on itself, rendering the involved electrode contacts ineffective due to
incorrect orientation or interference.

� Tip scraping [33], where the EA tip damages the cochlea’s lateral wall, can harm
structures critical for residual hearing.
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� Buckling of the EA [34], either inside the cochlea, potentially damaging structures
like the spiral lamina, or outside in the middle ear space, leads to a discontinuity in
curvature and a shallow angular insertion depth.

The potential for cochlear damage is a paramount concern. Translocation and tip scrap-
ing directly affect the delicate inner structures of the cochlea, risking irreversible damage
and loss of residual hearing. Buckling inside the cochlea can lead to trauma to critical
inner ear structures. The success rate of EA implantation depends on avoiding these com-
plications. Advanced surgical techniques, improved electrode design, robotic assistance,
and enhanced imaging methods are pivotal in enhancing precision and reducing risks.

2. Depth of implantation is also a crucial factor for optimal hearing outcomes, yet deeper
insertion heightens the risk of complications like translocation and buckling. Controlled
insertion speeds and specially designed electrode arrays are strategies employed to miti-
gate these risks.

3. Accuracy in the placement of the EA is essential for effective auditory nerve stimulation.
Complications like tip fold-over and buckling can severely impair the correct positioning of
electrode contacts. Implementing continuous monitoring of insertion forces and utilizing
real-time imaging can significantly aid in achieving accurate placement.

1.1.7 Robot-Assisted Cochlear Implantation

The development of robot-assisted cochlear implant surgery marks a significant advancement
in the field of otolaryngology, aiming to enhance precision and outcomes in cochlear implant
procedures [35]. This advancement is attributable to the concerted efforts of researchers and
clinicians dedicated to improving surgical techniques and patient-specific outcomes. Robotic
assistance systems are typically comprised of visual sensors, multi-degree-of-freedom mechanical
arms, and cochlear implant clamping fixtures, as shown in Fig. 1.8.

One of the foundational aspects of robot-assisted surgery is path planning. Ferrarini et al.
developed an autonomous virtual mobile robot for exploring three-dimensional medical images,
planning electrode implantation paths, and estimating cochlear dimensions [39]. However, the
application of this virtual robot to actual surgery was limited due to factors like robot size
and operating environment constraints. Zhang and his colleagues made notable contributions
by developing a new type of steerable electrode array and a cochlear implant parallel robot
system, presenting an optimal path planning method for robot-assisted cochlear implant surgery
[40]. The ”steerable” is achieved by pulling the embedded thread within the electrode array,
leading to the bending of array. However, this purely mechanical driving structure has certain
drawbacks. Firstly, embedding a movable thread within such a small-sized space of the electrode
array is challenging. Secondly, the degree of bending is limited, making it difficult to embed
more threads to increase the flexibility of bending.

The transition to minimally invasive approaches has been a key development, with Maj-
dani and his team pioneering a robot-guided minimally invasive approach for cochlear implant
surgery [41]. Their work laid the groundwork for more advanced techniques, including virtual
cochlear electrode insertion and patient-specific planning.

In the realm of automated insertion and force sensing, significant advancements have been
made by researchers [37, 42,43]. They designed tools integrating force sensing with automated
insertion, comparing traditional and advanced off-stylet techniques.

Recent clinical reports and studies, such as those by Torres and Vittoria [44], have focused on
optimizing robot-based techniques for cochlear implantation to reduce array insertion trauma
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Figure 1.8: (a) Surgeons are utilizing robot-assisted devices for cochlear implant surgeries. (b)
A fully automated robotic device for cochlear implant insertion. (c) The implant’s clamping
mechanism (right), along with the mechanical arm used for insertion. (d) A novel type of
parallel mechanical arm designed specifically for cochlear implant surgeries. [36–38]

and assist in middle ear surgeries. Their work provides the first clinical reports on robot-based
assistance in these surgeries.

While there has been notable progress in the realm of robot-assisted research, significant
challenges and obstacles persist. The creation of a high-efficiency, controllable electrode array
remains an area in need of development. This endeavor is accompanied by the necessity for
advanced modeling and control mechanisms for such controllable electrode arrays. A compre-
hensive and systematic effort in designing, modeling, and controlling these electrode arrays is
essential and must be diligently pursued.

The ROBOCOP project, a collobrative project between Inria, Inserm, LPPI, IEMN and
Oticon Medical, represents a groundbreaking advancement in cochlear implantation technology.
This multidisciplinary initiative is for the purpose of developing an innovative ”smart” active
cochlear implant (ACI) equipped with micro-actuators, enhancing precision and success rates
in surgeries [45, 46]. These micro-actuators not only allow for controlled implant deformation
during insertion but also function as shape sensors, facilitating real-time shape estimation and
feedback control. This project signifies a major leap forward in otological surgery, promising
improved outcomes and expanded treatment possibilities in cochlear implantation.

In conclusion, robotic assistance in surgical procedures offers a higher degree of stability
in the implantation of electrode arrays compared to manual methods employed by doctors.
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This advancement significantly enhances the overall smoothness, safety, and reliability of the
implantation process. Nonetheless, a challenge persists in controlling the interaction between
the electrode array and the interior of the cochlea when using external robotic systems. The
forthcoming discussion on active cochlear implants presents a promising solution to this intricate
issue.

1.1.8 Active Cochlea Implant

In traditional cochlear implants, a significant challenge arises during the implantation process,
where controlling the interaction between the electrode array and the cochlea’s inner wall proves
difficult. This issue manifests in several critical implantation problems, notably the inability
to precisely manage the force of contact and the prevention of buckling, a deformation phe-
nomenon. It’s in this context that active cochlear implants emerged, innovatively designed to
overcome these specific limitations inherent in their traditional counterparts.

The ingenuity of active cochlear implants lies in their core feature: an electrode array capa-
ble of autonomous deformation during the implantation process. This adaptability ensures that
the array aligns seamlessly with the intricate spiral trajectory of the cochlea, thus enhancing
the implant’s effectiveness and reducing potential complications. To achieve this remarkable
functionality, the electrode array incorporates cutting-edge materials. Depending on the actu-
ation mechanism, these include shape-memory polymers, which can return to a predetermined
shape after deformation; electric polymers, known for their insulating properties and ability
to change shape under an electric field. Based on the principles of deformation, autonomous
cochlear implants are mainly categorized into the following types:

� Self-Shaping Cochlear Implants represent a significant innovation in the treatment of sen-
sorineural hearing loss, offering a notable departure from traditional cochlear implants.
These advanced implants utilize shape memory polymers (SMPs), a biocompatible ma-
terial that can recover its original shape in response to body temperature [47]. This
unique feature allows the SMP electrode array (EA) to transition from a straight shape
outside the body to the curved shape of the cochlea in a controlled manner when inserted,
significantly reducing trauma during the surgical process, as shown in Fig. 1.9.

Figure 1.9: The anticipated functioning of the self-shaping cochlear implant during the insertion
process. The color of the implant represents changes in temperature. [47]

The primary distinction of self-shaping CI from traditional models lies in their ability to
curl actively into the cochlea, leveraging body temperature as a trigger. This capability
circumvents the need for additional external mechanisms required by conventional pre-
curved CI, which often pose a risk to hearing preservation due to their rigidity and more
complex insertion requirements. Nevertheless, this active deformation approach presents
inherent limitations. Precisely and sensitively manipulating the deformation of EA using
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the body’s internal temperature proves to be a complex task. Moreover, achieving local-
ized deformation control of the EA through its material memory properties is a significant
challenge. Consequently, the versatility of this deformation mechanism across the varied
size spectrum of the cochlea is restricted.

� Another novel concept for automated cochlear implant insertion is using tubular manip-
ulators [48], as shown in Fig. 1.10. The approach aimed to reduce trauma risks during
surgery and automate the electrode insertion process. This proposed solution involved
a tubular manipulator, comprising an inner wire within a helically shaped tube, inte-
grated into the electrode array. However, integrating such a structure within the small
dimensions of the electrode array is challenging. The concentric tubes will increase the
radius of the electrode array, thereby enlarging its volume. Additionally, the actuating
device required to rotate the concentric tubes also needs to be integrated into the cochlear
implant, which further increases its structural volume and complexity.

Figure 1.10: A controllable electrode array consisting of a spiral tube (colored in red) and a
wire (colored in blue) enclosed within a guiding channel designed for insertion into the scala
tympani. [48]

� Confronting this challenge, the implementation of an active EA driven by micro actua-
tors emerges as an effective solution. This variant of EA boasts two significant strengths:
its compact size facilitates seamless integration, and it features a straightforward driving
mechanism. The attributes of this EA form the cornerstone of the research explored in
this thesis. These novel implants incorporate microfabricated EAs that are capable of ac-
tively conforming to the unique contours of the cochlea, a feature that significantly reduces
surgical complexity and potential trauma. This type of implants use EAs integrated with
electronic conducting polymer (ECP) [46] based micro-actuators, which enable them to
actively reshape under low electrical voltage stimulation, as shown in Fig. 1.11. This dy-
namic capability offers a level of flexibility and adaptability previously unseen in cochlear
implants.

Figure 1.11: PEDOT:PSS-PEO based micro-actuators.

The smart electrode array, a key component of these implants, is designed with reduced
stiffness and is functionalized with PEDOT:PSS-PEO based micro-actuators, sandwiched
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Figure 1.12: The anticipated functioning of the active cochlear implant during the insertion
process. When implant is inserted in the cochlea, the actuators are activated.

between layers of nitrile butadiene rubber/poly(ethylene oxide) (NBR-PEO) [49]. This
design significantly reduces the friction against the cochlear walls during insertion, mini-
mizing the likelihood of trauma. The flexibility of these EAs is further enhanced by using
materials like Polydimethylsiloxane (PDMS), which allow the array to bend and adapt
during the surgical process.

Future research in this field aims to further optimize these implants, focusing on the recovery
forces during insertion, determining the most effective insertion trajectories, and exploring the
integration of robotic assistance for more precise and controlled implantation. These advance-
ments will involve developing more refined self-shaping CI prototypes and specialized robotic
systems, paving the way for more realistic testing scenarios. In essence, active cochlear im-
plants represent a promising evolution in cochlear implant technology, offering more adaptable,
less traumatic, and potentially more effective solutions for individuals with severe hearing loss.
This technological advancement underscores a significant shift towards a more tailored and
patient-centric approach in auditory prosthetics.

The advent of active cochlear implant technology heralds a multitude of challenges spanning
academic and technical domains. These encompass the intricate structural design of active EA,
their detailed modeling, the seamless integration of drive systems, and the nuanced control
required during implantation. In this doctoral project, our emphasis will be primarily on the
modeling and control dimensions of this technology. The forthcoming section will comprehen-
sively explore and elucidate the various challenges associated with these critical facets.

1.2 Scientific Challenges

Expanding on the previous discourse, we can delineate the challenges encountered by cochlear
implants in the realm of robotic surgery into two predominant domains: the need for precise
physical simulation modeling of the insertion process, and the necessity for effective control
mechanisms during the surgical procedure. These challenges are crucial for enhancing the
efficacy of cochlear implant surgeries and driving the evolution of robotic assistance in these
procedures.

1.2.1 Modeling Challenges in Cochlear Implants

The first category, which is modeling, encompasses several critical aspects:

� The mechanical modeling of the electrode array is essential in predicting how the array
will behave during surgery. This involves understanding the forces at play when the
electrode array, pre-formed into a spiral shape, is confined and then gradually restored

24



to its original state during implantation. This modeling is crucial for reducing the risk
of complications such as translocation, tip fold-over, and buckling, which can severely
impact the surgery’s success and the patient’s residual hearing.

� Modeling of micro actuators, integral to the precise control of the electrode array, is
another significant challenge. These actuators are responsible for the delicate movement
and positioning of the electrode array, and their accurate modeling ensures that the array
can navigate the unique anatomy of each patient’s cochlea without causing damage.

� Furthermore, modeling the interaction between the active electrode array and the cochlear
wall is vital. This interaction needs to be well-understood to minimize trauma during
implantation and ensure optimal placement of the electrode array. The mechanical stress
and deformation during the implantation process, and the subsequent potential damage to
the cochlea, necessitate advanced computational models and simulations for preoperative
planning and assessment.

1.2.2 Control Challenges in Cochlear Implants

The second category, which is control, encompasses the establishment of control objectives, the
strategic planning of robotic insertion paths, and the management of the deformation of active
cochlear implants. Setting clear control objectives is critical for the success of the surgery, as it
dictates the parameters within which the robotic system operates. This includes the following
critical aspects:

� Establishing the depth of insertion and the exact positioning of the electrode array to
maximize auditory outcomes while minimizing damage.

� Robotic path planning is pivotal in navigating the complex inner structures of the ear.
Advanced algorithms and surgical simulation technologies are required to adapt to the
unique cochlear anatomy of each patient, enhancing the precision and reducing the risks
associated with manual insertion.

� Controlling the deformation of active cochlear implants during insertion is a complex
challenge. It requires an intricate balance of mechanical force and precise manipulation
to avoid complications like buckling or damage to the cochlea’s delicate structures. This
control is increasingly being achieved through the use of robotic systems, which offer
greater precision and stability compared to manual techniques.

The complexities of mechanical modeling and the precision required in robotic control high-
light the need for continued research and innovation. Addressing these challenges will not only
improve the success rates of cochlear implant surgeries but will also pave the way for more
advanced, automated, and patient-specific surgical techniques in the future.

1.3 State of the Art

In addressing the diverse set of challenges highlighted in the preceding section, scholars in the
field have achieved notable advancements in the modeling and control of cochlear implants. In
this section, we aim to present an overview of the state-of-the-art developments in this dynamic
area of research.
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1.3.1 Modeling of Cochlea Implant

The mechanical modeling of cochlear implants, particularly the electrode array, is a sophis-
ticated field that intersects with the principles of continuum mechanics, often applied in the
realm of soft robotics. The electrode array of a cochlear implant can be conceptualized as a
continuum beam structure, similar to slender robotic elements, and thus modeled using sim-
ilar theoretical frameworks. This approach has profound implications for improving cochlear
implant design and surgical techniques.

The finite element method (FEM), widely used in engineering practices, finds relevance in
modeling the complex geometries of cochlear implant electrode arrays. This method has been
employed in various soft robotic applications, analogous to the electrode array’s slender and
flexible nature [50]. Given the slender geometry of cochlear implants, their degrees of freedom
are subject to simplification. In this context, FEM proves to be relatively less efficient for
modeling. Beam models, on the other hand, adeptly resolve this challenge, making them a
more suitable choice for such applications, as shown in Fig. 1.13. Beam/rod theory, a subset
of continuum mechanics, is particularly applicable to the electrode array of cochlear implants.
Classical Euler-Bernoulli beam theory, for instance, provides a foundation for modeling the
mechanical behavior of these slender structures. Olson et al.’s study using a quasi-static bending
model based on Euler-Bernoulli formulation exemplifies this approach, offering insights relevant
to cochlear implant design [51]. Beyond the Euler-Bernoulli model, the Timoshenko beam
model, which accounts for shear strain, offers an enhanced perspective on the electrode array’s
mechanics [52, 53]. The Kirchhoff rod model extends this analysis by considering torsional
strain, applicable in scenarios where the electrode array experiences complex deformations [54].

In cases of large deformations, geometrically nonlinear classical rod theory is often utilized.
For instance, the pseudo-rigid body (PRB) 3R model, developed for analyzing flexible beams
under tip loading, has demonstrated high computational efficiency and can be adapted for
modeling the electrode array’s behavior during implantation [55, 56]. Huang et al. further
extended this model to three-dimensional applications, relevant for the complex geometries
encountered in cochlear implant electrode arrays [57].

For large deformations, constant curvature (CC) assumptions are frequently employed, lead-
ing to the utilization of generalized elastic models like Cosserat rod theory. This theory, a gen-
eralization of Timoshenko-Reissner beams, is capable of simulating bending, torsion, shear, and
tension, all of which are relevant to the electrode array’s mechanics [58–60]. A comprehensive
review of Cosserat-based slender elastic rod models, as presented by Till et al., offers valuable
insights that can be translated to cochlear implant modeling [61]. Building upon this foun-
dation, new methods for solving Cosserat partial differential equations (PDEs) in continuous
space have been proposed in [62] based on Newton-Euler dynamics.

In the context of soft slender rod, the work in [63] introduces a Cosserat-based piecewise
constant strain model where the PDEs are transformed into an approximate weak form ex-
pressed as ordinary differential equations (ODEs). Another approach, presented in [64], utilizes
a Cosserat discrete solution method based on strain nonlinear parameterization and Lagrangian
dynamics. However, this technique can become computationally complex when modeling in-
volves complex deformations like buckling behavior and local strain variations due to contact.
To address this challenge,this thesis will employ a piecewise local approximation of the strain
field in our work. In specific engineering scenarios, the Cosserat model has been applied to sim-
ulate dynamic structures, which can be analogous to the dynamic requirements of the electrode
array during surgery [65, 66]. This model’s practical applications in soft robotics demonstrate
its potential utility in cochlear implant technology.

The mechanical modeling of the electrode array of cochlear implants, drawing from the field
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(a) FEM model of EA (b) Beam/rod model of EA

Figure 1.13: In FEM (Finite Element Method), the geometric structure of an object is deter-
mined by the position of each point on the mesh. However, in beam/rod models, the geometry
of the rod is determined by slices along its centerline via rotation matrix and position.

of soft robotics and continuum mechanics, encompasses a range of sophisticated theoretical
frameworks. From Euler-Bernoulli and Timoshenko beam theories to more complex models
like the Kirchhoff rod and Cosserat rod theories, these approaches provide crucial insights
into the mechanical behavior of the electrode array. Such modeling is essential for advancing
cochlear implant technology, enhancing surgical precision, and improving patient outcomes.

1.3.2 Modeling of Interaction during Implantation

1.3.2.1 Interaction with Cochlea

The interaction between the electrode array of cochlear implants and the cochlea can be viewed
through the lens of soft robotics, a field fundamentally concerned with how these flexible and
deformable machines interact with and adapt to their environments [67]. The electrode array,
akin to a soft robot, is composed of flexible materials, allowing for a unique set of interactions
with the delicate structures of the cochlea. This resemblance positions the study of cochlear
implant electrode arrays within the broader context of soft robot-environment interaction re-
search.

(a) (b) (c)

Figure 1.14: (a) Virtual-reality training simulator for cochlear implant surgery. (b) Cochlear
implant simulation in SOFA using beam model. (c) Cochlear implant simulation using FEM
method.

At present, simulations of artificial cochlear implantation utilizing contact mechanics prin-
ciples have been explored by various scholars, as illustrated in the accompanying Fig. 1.14. [68]
introduces a novel mechanical simulation tool for cochlear implant surgery via SOFA frame-
work, employing patient-specific data to model the implant’s 3D insertion and potentially aiding
in future advancements like virtual planning and robot-assisted procedures. [56] introduces a
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virtual-reality (VR) simulator designed to realistically model electrode behavior during cochlear
implant surgery, aiming to enhance training for surgical trainees by allowing repeated practice
of electrode insertions in a safe, controlled, and cost-effective environment

However, the interaction of soft robotics, including the electrode array of cochlear implants,
faces several challenges, particularly in contact modeling [69]. The modeling complexities arise
from the flexible and deformable structures, which require intricate models to predict inter-
actions accurately. Unlike rigid robots, soft robots such as cochlear implant electrode arrays
demand more complex models to account for deformations upon contact, force distributions,
and frictional effects. These models are critical in applications involving grasping, manipulation,
and in the case of cochlear implants, precise insertion and navigation within the cochlea.

1.3.2.2 Frictional contact

The solution to contact problems in continuum mechanics has been a subject of considerable
interest in recent decades, with a wide range of contact models being employed in engineering
fields. However, solving the problem of multiple frictional contacts with large deformations
remains challenging [70]. Although contact research for flexible systems has made advancements
[71], the development of efficient and robust frictional contact algorithms still present open
challenges.

The penalty function method is widely used in computational contact mechanics due to
its simplicity and directness [72]. However, stiffness and stability issues persist despite re-
cent progress [73]. Numerical optimization-based contact solution methods often involve linear
complementary programming (LCP) or nonlinear complementary programming (NCP) formu-
lations, which offer higher accuracy at the cost of increased computational complexity and the
use of frictional approximations [74,75]. LCP can be solved using relaxation methods like pro-
jected Gauss-Seidel (PGS) or direct methods such as Dantzig’s pivoting algorithm or Lemke’s
algorithm. In the work of Stewart and Trinkle [76], the Coulomb friction cone is linearized,
and Lemke’s method is used to solve the resulting polygonal pyramid LCP, handling nonlinear
forces. Subsequently, [77] proposed a method based on the Gaussian Seidel iterative inverse
solution to LCP, which introduced a solution framework to the field of deformable solids [78,79].
[80] introduced a contact model for asynchronously handling deformable solids by discretizing
the contact barrier potential. For a comprehensive review of numerical methods for linear
complementarity problems, we refer to [81].

In addition to LCP formulations, another common approach to solve contact problems
is through Newton-type methods, which typically utilize the generalized projection operator
and augmented Lagrangian to address contact constraints [82–84]. Recent works have applied
these methods in various applications [85–87]. The complementarity problem in these works is
addressed using non-smooth functions and solved from the perspective of a common Newton’s
method. This Newton-type optimization ensures quadratic convergence, although the number
of iterations is typically higher compared to relaxation methods. For a comprehensive review
of non-smooth methods applied to dynamics problems, we refer to [88].

1.3.3 Conducting Polymer Actuator

Typical conducting polymer actuators are ionic polymer–metal composites and ionic electroac-
tive polymer (IEAP). They have specific characteristics that allow them to be now used for
various applications, whether in applications requiring actuation and/or sensing mode. The
main advantage of these polymers based actuator is their soft nature, good stability, suffi-
ciently high electric conductivity [89], bio-compatibility [90], large work density, low operating
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voltages (typically ⩽3V) [91] that attracted a lot of attention over recent years for the real-
ization of artificial muscles [92]. Moreover, their good electromagnetic compatibility, noise-free
operation, low cost, light weight, their long life cycle [93] without degradation make these actu-
ators a promising technology for microelectromechanical systems (MEMS). In addition, these
polymers can be used as linear [94] or flexural micro-actuators [95], operating in solution [92]
or in ambient air conditions [96]. Due to these advantages, they are implemented in a wide
range of applications in robotics [97] or biomedical applications [91]. The work of this thesis on
this topic will focuses on a typical actuator based on IEAP as the conducting polymer, which
contains its nonlinear modeling, parameter estimation and control.

Precisely, the IEAP based trilayer micro-actuator was micro-fabricated according to the
method described in [95]. The upper and lower layers are made of electronically conducting
polymers (CP) material basically poly polystyrene sulfonate as reported in [98]. The middle
layer is considered as an ion reservoir providing the system with ionic conductivity and mechan-
ical properties [98]. This middle layer is formed with a semi-interpenetrated polymer network
(IPN) composed of two polymers: poly ethylene oxide (PEO) and linear nitrile butadiene rub-
ber (NBR) network. When a potential difference is applied to these two CP layers, one of the
layers will undergo an oxidation reaction and the other one has a reduction reaction. It results
in a corresponding increase or decrease in the charge density of the two layers. The change
in ionic charge density will cause the two electrodes to produce opposite strains, which will
cause one layer to expand and one layer to shrink. The expansion and contraction effect can
be regarded as the bending of the actuator caused by the equivalent moment of force exerted
on it. It should be noted that, the bending direction is occurring toward the anode [99].

Figure 1.15: Trilayer actuator with two CP layers at the top and bottomand an ionically
conductive separator in between before (a) and after (b) actuation.

Usually, an RC circuit model to describe the charge change process in the two electrode
layers is used, and then the internal stress and strain are analyzed to obtain the curvature of
the actuator. At present, some equivalent RC circuit models have been proposed [100, 101].
These models usually use isolated RC combinations or limited RC grid circuits to equivalent
charge change processes. Although these models are efficient, their disadvantage is that they
do not take into account the nonlinear changes of physical parameters in the actuator. The
research of [102] shows that the resistivity and volumetric capacitance will both have greater
nonlinearity during the charging process. The change interval affects the corresponding time
of the actuator, so the nonlinear characteristics of the material are a consideration that can
not be ignored in the modeling. [103] has proposed a finite nonlinear 2D-RC model, where this
model takes into account the nonlinear characteristics of material properties following changes in
charge density. In the work of Nishida [104], the infinite RC circuit was used to approximate the
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real system and finite difference method was adopted to get the numerical solution. However,
the methods mentioned above struggle to achieve a balance between the dimensionality and
accuracy of the model.

The second part of modeling for conducting polymer actuator is calculating its deformation.
It is noticed that if the charging time is enough long to reach the equilibrium charge state, the
deformation will be uniform along the polymer, leading to the uniform curvature, which has
been calculated by several studies [100, 105]. In fact, it usually takes a long time to reach
the equilibrium charge state, thus the local deformation is necessary to study. [104] and [106]
proposed the Timoshenko model to predict the deformation of conducting polymer actuator
with the assumption of small deformation of 2 degrees of freedom. Meanwhile, in most cases
the conducting polymer actuator does not work alone but interacts with the environment, such
as external forces applying on it or multi conducting polymer actuators being connected in
series.

Another difficulty related to the nonlinear model lies in the measurement of electronic model
parameters. The nonlinear changing of various physical parameters of materials requires a large
amount of experimental data to construct. At the same time, it is difficult to realize the control
of a single variable during the experiment due to the excessive change of material parameters,
which affects the accuracy of the experimental results. This process is often cumbersome and
is limited by measurement accuracy, resulting in error stacking.

In terms of drive control, [107] designed PID and adaptive robust controller for controlling
the displacement of conducting polymer actuator. However, the above-mentioned controller
design is only based on the system model after the end point displacement is identified, which
does not include the actuator curvature and bending moment information, thus this simplified
model makes it difficult to further meet the control requirements of the actuator, such as
actuator rotation angle control and multi-drive coupling control.

1.3.4 Control of Implantation via Robot Assistance

In the rapidly advancing field of robot-assisted cochlear implant surgery, significant strides have
been made towards enhancing surgical precision and safety. Research has indicated that certain
variables, such as the speed of insertion [108] and subtle manual movements during the insertion
process [42], have the potential to cause added tissue trauma. In light of these considerations,
an entirely navigation-controlled robotic system is a potential solution to align an insertion tool
along an ideal axis and execute precise insertions, mitigating these factors [36,109].

One pioneering study, conducted at the German Cancer Research Center in Heidelberg,
Germany, explored the feasibility of robot-guided drilling for a minimally invasive cochlear im-
plant approach [41]. This research underscored the potential of robotic assistance in cochlear
implant surgery while emphasizing the need for further enhancements before its clinical applica-
tion becomes viable. The primary focus was on mitigating the risks associated with traditional
manual methods, especially when working near delicate structures like the facial nerve. In their
work, Labadie R. F. and the collaborator proposed a manual insertion mechanism for percuta-
neous cochlear implantation. This innovation was part of an ongoing effort to refine cochlear
implantation techniques. Their research played a pivotal role in demonstrating the feasibility
of manual insertion mechanisms in conjunction with robotic assistance, opening avenues for
more refined and controlled surgical procedures. Another noteworthy contribution came from
Venail F and his colleagues, who explored the manual insertion of electrode arrays through a
robot-assisted minimally invasive cochleostomy [110]. This study compared two different elec-
trode array subtypes, revealing valuable insights into the practicality and comparative efficacy
of robotic assistance in cochlear implant surgeries.
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A novel advancement in the field was the introduction of a bone-attached parallel robot
[38], renowned for its high stiffness and accuracy. This innovation offered distinct advantages
over traditional serial industrial robots, particularly in reducing obtrusiveness in the operating
room and eliminating the need for head fixation or optical tracking. The study highlighted the
potential of parallel robots in achieving high precision in cochlear implant surgeries. In their
research, Wimmer and his collaborators focused on semi-automatic cochleostomy target and
trajectory planning for minimally invasive cochlear implantation. This approach marked a sig-
nificant step towards fully robotic cochlear implantation. By automating parts of the surgical
planning process, this research aimed to enhance the accuracy and safety of the implantation
procedure. Labadie R. F. et al. contributed to the field through the clinical validation of percu-
taneous cochlear implant surgery [111]. Utilizing customized drill guides based on image-guided
surgical technology, this study aimed to validate the practicality and effectiveness of percuta-
neous approaches in cochlear implant surgeries. Their research was crucial in demonstrating
the clinical applicability of image-guided, robot-assisted surgical techniques.

Another notable advancement was the development of path planning software, specifically
designed for robotic surgery [112]. This type of software was instrumental in automating the
computation of the milling path, integrating considerations such as cutting velocity and drill
angle. The work in [41] combined a robot, a surgical drill, and an Image-Guided Surgery (IGS)
system in a closed-loop setup for cochlear implant surgery, where the robot-guided drill followed
a preplanned trajectory to create the approach.

Lastly, in the research of Miroir et al., the friction forces were measured during cochlear im-
plant surgery [113]. This measurement was integral to the design of a force-controlled insertion
tool, aiming to enhance the precision and safety of the implantation process. The research aims
to understand the influence of contact forces during surgery and how they can be optimally
managed through robotic assistance.

1.4 Contributions

1.4.1 Contributions and Outline of the Thesis

The field of cochlear implant technology has witnessed remarkable advancements in recent
years, especially in mechanical modeling, simulation, and control. However, as explained in the
above sections, existing approaches still face significant challenges, particularly in computational
complexity and accuracy in simulations. The mechanical modeling and control of CI are critical
for improve the effectiveness and safety of implantation. However, traditional approaches,
including finite element models, often grapple with high computational demands and limited
real-time application capabilities. Moreover, the intricate nature of the cochlear environment
and the interaction of implants with this environment pose significant challenges for accurate
modeling and control.

Current research in cochlear implant technology primarily revolves around improving the
fidelity of mechanical models and enhancing control systems for implantation. Finite element
models have been the mainstay in simulating the mechanical behavior of cochlear implants.
However, these models suffer from high-dimensional complexity, making real-time simulation
and responsive control during implantation challenging. Furthermore, the identification of
accurate physical parameters remains a significant hurdle, affecting the precision of simulations
and the effectiveness of control methods. The need for robust and computationally efficient
models is evident, as is the necessity for advanced control systems that can adapt to the dynamic
conditions during implantation. Addressing these challenges, in this theis, our contributions
are mainly summarized as follows:
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1. Development of a generalized electronic and mechanical model: This research introduced
a novel approach by adopting the Cosserat rod theory for the beam model of cochlear
implants’ electrode array. The model’s reduced dimensions, as opposed to the traditional
finite element models, maintain comparable accuracy. This advancement facilitates real-
time simulation and control during cochlear implantation, overcoming the limitations of
computational complexity and enhancing the practical application of these models in
clinical settings.

2. Innovative parameter identification method: The study also pioneered a parameter iden-
tification method based on a nonlinear electro-mechanical coupling model. This method,
incorporating a visual identification system to measure the curvature of the actuator,
represents a substantial improvement in determining precise physical parameters. Such
accuracy is vital for the reliability and effectiveness of cochlear implants.

3. Optimal controller design for implantation: Another significant contribution is the de-
velopment of an optimal controller based on the proposed electro-mechanic model. This
controller sets the stage for future advancements in multi-drive coupling trajectory track-
ing control. It has been validated through rigorous experimental and simulation meth-
ods, underscoring its robustness and reliability. This development marks a milestone in
cochlear implant control systems, offering greater precision and safety in the implantation
process.

In summary, this thesis is structured as follows: Chapter 1 begins with a comprehensive intro-
duction to the background of Cochlear Implants (CI), encompassing the scientific challenges and
advancements in this field. Chapter 2 introduces a Cosserat-based model for Active Cochlear
Implant (ACI). This chapter delves into the mechanical modeling of the electrode array and
the electro-mechanical behavior of the conducting polymer actuator, as well as their integrated
coupling model. Following this, Chapter 3 explores the interaction between the CI and the
cochlea, underpinned by model validation through experimental data. Chapter 4 is dedicated
to the design of control strategies for CI implantation, encompassing both experimental findings
and simulation results. Finally, Chapter 5 concludes the thesis, summarizing the key insights
and outlining future perspectives in this field.

1.4.2 Publications and Patents

The following lists my publications during my Ph.D. study.

Journal articles:

1. Lingxiao Xun, Gang Zheng and Alexandre Kruszewski, “Cosserat-Rod Based Dynamic
Modeling of Soft Slender Robot Interacting with Environment,” in IEEE Transactions on
Robotics, vol. 40, pp. 2811-2830, 2024, doi: 10.1109/TRO.2024.3386393.
Paper Video

2. Lingxiao Xun, Gang Zheng, Sofiane Ghenna, Alexandre Kruszewski, Eric Cattan, Christian
Duriez and Sebastien Grondel, “Modeling and Control of Conducting Polymer Actuator,”
in IEEE/ASME Transactions on Mechatronics, vol. 28, no. 1, pp. 495-506, Feb. 2023, doi:
10.1109/TMECH.2022.3211091.
Paper Video
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Chapter 2

Modeling of Active Cochlear
Implant

2.1 Introduction

Building on the foundation laid in the first chapter, where we explored the evolution of cochlear
implants and introduced the concept of active cochlear implants. We delved into the technical
challenges inherent in these devices, particularly in the realms of modeling and control. This
groundwork leads us directly into the specific focus of this chapter. As highlighted in our
comprehensive review in the preceding chapter, the existing Finite Element Method (FEM)
models are characterized by their high dimensionality, rendering them impractical for control
applications. To facilitate effective model-based control of active cochlear implants, it becomes
imperative to identify an efficient model with reduced dimensionality that can precisely depict
the mechanical properties of the cochlear implant electrode array. In this chapter, we are
dedicated to developing a refined model for the cochlear implant electrode array, leveraging
the principles of Cosserat rod theory. This approach is strategically aimed at minimizing the
complexity and dimensionality of the model.

Precisely, the primary objective of Chapter 2 is to delve deeper into our research on cochlear
implant modeling. In this chapter, our research is concentrated on two key areas. Firstly, we
have developed a mechanical model for the Electrode Array (EA), incorporating the Lie group
to define EA’s configuration. This creates a parameterized strain field that closely represents
the actual system while simplifying its complexity. The model, using Cosserat rod theory,
addresses nonlinearities in EA’s deformations across six degrees of freedom, especially during
environmental interactions. Secondly, we have created a model for the Electronic Conducting
Polymer (ECP). This model helps us control the ECP’s movements more accurately. We also
introduce a new method for identifying uncertain parameters in these systems. This method
uses a visual tool to measure the shape of actuators, making experiments simpler. Finally, we
combine these models into a comprehensive system for active cochlear implants. This integrated
model is crucial for controlling these implants effectively.
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2.2 Modeling of Electrode Array Based on Cosserat Rod
theory

2.2.1 Geometric description of EA

Figure 2.1: The structure of the cochlear implant electrode array and its geometric description
under Cosserat rod theory.

In general, the electrode array of the cochlear implant consists of a slender electrode array,
internal wires, and an outer casing, as shown in the Fig. 2.1. Due to its slender structure, it
can be considered as a whole, akin to a single beam. To establish the dynamics equations for
the single beam, we first need to establish its geometric representation. This involves describing
the position and strain of each slice along the centerline of the cochlear implant electrode array.
For this, we initially establish, we establish the overall geometric representation of this beam
in space using the arc length s, as shown in Fig. 2.1. The spatial pose is defined as a mapping
function relative to s, where s signifies the rod’s arc length without deformation. Assuming
the cross-sectional shape remains constant during implantation, obtaining the 3D position of
any point along the centerline and the 3D rotational pose of the cross-section passing through
that point enables the representation of the entire geometric configuration of the rod-shaped
implant.

In the realm of soft robotics, Lie groups and Lie algebras serve as indispensable mathematical
tools for describing the intricate deformations and kinematic characteristics of these flexible and
deformable robots. Soft robots exhibit substantial changes in shape and structure based on task
requirements and environmental conditions. Within this context, Lie groups and Lie algebras
provide an elegant framework for representing the deformations and deformities of soft robots,
enabling analysis within the overall state space. This includes a mathematical representation
of deformations such as bending, twisting, and stretching. Furthermore, the application of Lie
groups and Lie algebras proves beneficial in the control of soft robots, particularly in adjusting
posture and shape. This mathematical framework is practically significant in soft robot path
planning, optimization, and modeling within non-Euclidean state spaces. Overall, Lie groups
and Lie algebras offer powerful tools for the field of soft robotics, aiding researchers in a better
understanding and manipulation of the kinematic behaviors of soft robots. Consequently, in all
our subsequent work, we will describe the geometric configuration of cochlear implants within
the framework of Lie groups and Lie algebras.

The centerline of a cochlear implant is described by the 3D coordinates of each point, denoted
as p(s) ∈ R3, as shown in Fig. 2.1, where s represents the parameter along the centerline.
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This vector is expressed in the global frame, providing a comprehensive representation of the
implant’s spatial configuration. Additionally, the orientation of the cross-section at each point
along the centerline is characterized by the rotation matrixR(s) ∈ SO(3). This matrix captures
the rotational aspects of the implant’s geometry, ensuring a thorough representation of its
orientation in three-dimensional space. Together, these descriptions in terms of position vectors
and rotation matrices offer a comprehensive and precise depiction of the cochlear implant’s
geometric configuration.

For computational simplicity, we utilize the tensor g to denote the pose of each cross-
section, as shown in Fig. 2.1. The tensor g combines the rotation matrix R and position vector
p, defined as follows:
For s ∈ [0, L],

g(s) =

[
R(s) p(s)
0⊤ 1

]
∈ SE(3)

Upon completing the geometric characterization of the electrode array, the mechanical mod-
eling of the cochlear implant’s electrode array will unfold in a structured manner, as follows:

1. Kinematic model of the electrode array based on Cosserat rod theory

2. Constitutive equations of elasticity for the electrode array

3. Combining 1 and 2 to establish the dynamics equations of the electrode array based on
Cosserat rod theory

4. Seeking approximate solutions to the dynamics equations: This includes spatial discretiza-
tion of the Cosserat rod and establishing the weak form of the final dynamics equations.

In the subsequent sections, we will follow this outlined structure to progressively introduce
the mechanics model of the electrode array based on Cosserat rod theory.

2.2.2 Kinematics

By taking the derivative of the tensor g along the arc length direction, we obtain the strain of
the implant with respect to the body frame:

ξ = (g−1g′)∨ = [κ⊤ ϵ⊤]⊤ ∈ R6

where κ stands for the angular strain and ϵ represents the linear strain with respect to body
frame.

Similarly, by taking the derivative of this tensor with respect to time, we can obtain the
velocity of the cross-section with respect to the body frame as follows:

η = (g−1ġ)∨ = [w⊤ v⊤]⊤ ∈ R6

where w stands for the angular velocity and v represents the linear velocity expressed in the
body frame. After defining strain and velocity, we now seek their differential relationship, which
determines the kinematic expression of the Cosserat rod. Based on the definitions of ξ and η,
we can get the following differential equations:

g′ = gξ̂ (2.1)

ġ = gη̂ (2.2)
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The mixed partial derivatives of g are independent of the order of differentiation. Therefore,
(ġ)′ = ˙(g′), we can then deduce the following equation:

η′ = ξ̇ − adξ η (2.3)

The above expression represents the relationship between the rate of change of strain with
respect to time and velocity. The operator ad means the adjoint map, which holds the following
structure:

adξ =

[
κ̂ 0
ϵ̂ κ̂

]
And as we continue to differentiate (2.3) with respect to time, we obtain the following expression:

η̇′ = ξ̈ − adξ̇ η − adξ η̇ (2.4)

which is about the acceleration.

2.2.3 Dynamics

As mentioned in [62], the Newton–Euler dynamics of the Cosserat rod can be expressed by the
following equations:

Iẇ +w × Iw = Γ′ + ϵ×Ω+ Γ̄e (2.5)

mv̇ +w ×mv = Ω′ + Ω̄e (2.6)

where Γ ∈ R3 means the inertial moment in body frame and Ω ∈ R3 means the inertial force
in body frame. Γ̄e ∈ R3 means the distributed external moment and Ω̄e ∈ R3 means the
distributed external force in body frame. I ∈ R3×3 denotes the moment of inertia matrix in
body frame as I = diag(Ix, Iy, Iz), where Ix, Iy, Iz are the moment of inertia about the x-axis,
y-axis, and z-axis, respectively, for the beam cross-section. m ∈ R3×3 denotes the mass matrix
as m = diag(A,A,A)ρ, where A is the section area and ρ is mass density.

For the sake of brevity, we can write the above equations in the more compact form below:

Mη̇ − ad⊤ηMη = Λ′
i − ad⊤ξ Λi + Λ̄e (2.7)

satisfying the following boundary conditions:

Λi(0, t) = −Λ0(t), Λi(L, t) = ΛL(t) (2.8)

where M ∈ R6×6 is the compact tensor of mass linear density along central axis as M =
diag(I,m). Λi ∈ R6 is the elastic internal wrench which is defined as Λi = [Γ⊤,Ω⊤]⊤.
Λe ∈ R6 are the distributed external wrench along central axis defined as Λe = [Γ⊤

e ,Ω
⊤
e ]

⊤.
As for the external load Λe, the contribution from gravity is given by Λe = MAd−1

g G,
where the inverse of adjoint representation of the Lie group is used to transform twists from
the global frame to the body frame. G is the gravity acceleration twist w.r.t. the global frame
G = [01×5 − 9.81]⊤.

2.2.4 Constitutive Equation

The internal wrench of the soft slender rod is determined by strain and time rate of strain. Its
constitutive equation based on Kelvin-Voigt model is as follows:

Λi = K(ξ − ξ0) +Dξ̇ (2.9)

with K = diag{GIx, EIy, EIz, EA,GA,GA} ∈ R6×6, the stiffness matrix of the entire elec-
trodes plus polymer layers, where G represents the shear modulus and E represents the Young’s
modulus. D = diag{µeIx, 3µeIy, 3µeIz, 3µeA,µeA,µeA} ∈ R6×6, represents the viscosity ma-
trices[114]. ξ0 = [0 0 0 1 0 0]⊤, represents the initial strain of the rod.
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2.2.5 Discretization

In the preceding section, we successfully formulated the dynamic equations for the electrode
array, framed as boundary value problems of nonlinear partial differential equations. Given the
infeasibility of obtaining analytical solutions for these equations, we are compelled to employ
discretization techniques to approximate their analytical solutions. Within the realm of finite
element theory, the Galerkin-Ritz method stands as a prevalent approach for resolving the
dynamics equations of systems characterized by partial differential equations and has been
recently introduced in soft slender robot via Cosserat in [115]. This technique necessitates an
initial spatial parameterization (discretization) of the equations, followed by employing a set
of weak forms to approximate the original equations accurately. In this context, we intend
to adopt this methodology to derive the weak form approximate solutions for the dynamic
equations of the electrode array. The initial step involves the spatial parameterization of the
electrode array, encompassing both its geometric and dynamic models.

As we have introduced in Section 2.2.1, the configuration of the EA’s cross section can be
represented by the tensor g. Here, we define the continuous configuration space of the EA as
follows:

U = {g : s ∈ [0, L] 7→ g(s, t) ∈ SE(3)}

Then the geometric model (2.1) revealed the differential relationship between configuration
space and strain field, as shown in the following equation:

g′ = gξ̂ (2.10)

with initial condition g(0) = g0. If the initial configuration g0 and the overall strain space ξ(s)
of the soft slender rod (EA) are known for an instant, the configuration space of the soft slender
rod can be constructed by solving (2.1). Consequently, the configuration space U of the soft
slender rod can be totally defined by a set of {g0, ξ(s)}, defined as follows:

U = SE(3)× S (2.11)

where SE(3) denotes the configuration space of g(0) and S denotes the strain field, with S =
{ξ : s ∈ [0, 1] 7→ ξ ∈ R6}. Therefore, the geometric parameterization of cochlear implants
is divided into two parts: the parameterization of the head configuration tensor g0 and the
parameterization of the strain field. In the subsequent discussion, we propose a redefinition of
the EA’s configuration space by parameterizing g0(t) and ξ(s, t).

2.2.5.1 Parameterization of head configuration tensor g0

As mentioned in Section 2.2.1, g0 is composed of a rotation matrix R0 and a position vector
p0. In our approach, we use the exponential map to define the rotation matrix R0 by a vector
ϕ ∈ R3:

R0(t) = exp ϕ̃(t) , ϕ(t) ∈ R3 (2.12)

Thus the configuration matrix g0(t) is parameterized by the vector ϕ(t) and p0(t). We use
vector α(t) ∈ R6 to denote their combination, i.e., α(t) = [ϕ⊤(t) , p⊤0 (t)]

⊤.

2.2.5.2 Parameterization of strain field

After representing the head configuration g0 of the Electrode Array (EA) via a vector, the
configuration of the remaining part of the EA will then be approximated. This approximation is
achieved by parametrizing the rod’s configuration in terms of its strains, which are subsequently
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condensed using the Ritz basis function. Precisely, the strain field can be predefined as the
function of a set of parameter θ ∈ Rn:

ξ(s) = ξ0 +Φ(s)θ (2.13)

where Φ(s) ∈ R6×n is the Ritz basis function, and ξ0 represents the initial strain of soft slender
rod. By the approach above, the total deformation of rod is determined by the parameter θ.

In the Ritz method, the selection of appropriate basis functions is crucial. These basis
functions are utilized to expand the solution of the problem, and the approximate solution is
obtained by minimizing the residual.

Figure 2.2: Schematic illustration of the PLS Cosserat model: soft slender rod divided into
several sections.

Piecewise functions are favored as finite element basis functions due to their adaptability
to represent complex and discontinuous shapes or behaviors in real-world problems. Their
local adaptability allows for accurate representation of specific characteristics in different re-
gions, making them well-suited for handling variations and abrupt changes in physical sys-
tems. This adaptability simplifies computations and facilitates convergence in finite element
methods, making piecewise functions a practical choice for approximating solutions. In finite
element analysis, the use of piecewise functions is driven by their ability to offer a simple and
efficient representation of physical phenomena. Their capacity to capture local characteristics
and handle discontinuities allows for a more accurate depiction of complex geometries or mate-
rial properties. The ease of integration, simplicity in representation, and favorable convergence
properties contribute to the effectiveness of piecewise functions in accurately modeling diverse
and intricate systems.

Based on the above idea, we interpolate the strain field of Cosserat rod by using piecewise
linear strain (PLS) interpolation methods. As shown in Fig. 2.2, in the PLS approach, the
rod is discretized into sections. The points between sections are referred to as nodes, whose
arc length coordinate are {0, l1, l2, . . . , l}. Furthermore, we utilize the strain at these nodes to
interpolate the entire strain field. In this case, the vector θ contains the strain of all the nodes:

θ =
[
ξ⊤(0) ξ⊤(l1) ξ⊤(l2) . . . ξ⊤(l)

]⊤
The interpolation posits a linear variation of strain within each section, yielding a continuous
and coherent representation of the strain field. This approach not only enhances accuracy but
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also streamlines computational processes, proving particularly advantageous in situations char-
acterized by sudden or localized strain variations. The basis function of PLS can be represented
by the following definition:

Φ(s) =
[
Φ0(s)I6×6 . . . Φn(s)I6×6

]
∈ R6×6(n+1), ∀ s ∈ [0, l] (2.14)

Φi(s) =



li − s

li − li−1
for s ∈ [li−1, li)

s− li
li+1 − li

for s ∈ [li, li+1]

0 for s /∈ [li−1, li+1]

2.2.5.3 Generalized coordinates of cochlea implant

After parameterizing the head configuration tensor and the strain space, we obtained the gen-
eralized coordinates for the discretization of the cochlear implant space, represented by the
vector as q = [α⊤,θ⊤]⊤.

2.2.5.4 Computing of configuration space with generalized coordinates

By employing the aforementioned parameterization, the entire configuration space of soft rod
is now reconstructed in the following form:

Ud = R6 × R6(n+1) (2.15)

Subsequently, the geometric model of the EA in the PLS can be characterized via the following
equations:

g0 =

[
exp ϕ̃ p0
0 1

]
(2.16)

ξ(s) = ξ0 +Φ(s)θ (2.17)

g′ = gξ̂ (2.18)

If we know the generalized coordinates q which comprise θ and α, we can first employ (2.16)
to compute the spatial initial configuration matrix g0 and the use (2.17) to compute the strain
field. Subsequently, we can determine the configuration field by solving the differential equation
(2.18). However, obtaining an analytical solution for (2.18) is not feasible due to the variable
nature of ξ with respect to s. Hence, we make an assumption that ξ remains constant within
a very small segment ∆s and use this approach to approximate the overall strain field of the
PLS, as depicted in Fig. 2.3. Then, for each small segment, we can get the analytical solution
from its one tip at s to another tip at s+∆s:

g(s+∆s) = g(s) exp ξ̃(s)∆s (2.19)

Ultimately, we calculate (2.18) by numerically integrating (2.19) within SE(3). The geometric
model of the rod can then be represented by the following equation:

g(s, t) = g0(t)

(
k−1∏
i=1

expξ̂(si, t)∆s)

)
(2.20)

where s = k∆s.
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Figure 2.3: Any section subdivided into quite a few segments for numerical integration.

2.2.6 Discrete Kinematics

2.2.6.1 Jacobian matrix of soft slender rod

In the kinematics of robotics, the Jacobian matrix has consistently been a pivotal mathematical
tool, primarily employed to describe the relationship between the end-effector velocity of rigid-
body chain and the joint velocities. This forms the foundation for inverse kinematics problems,
trajectory planning, and robot motion control. However, in the field of the modeling of soft
slender rod, where the rod exhibit flexibility and deformable characteristics, the application of
the Jacobian matrix requires a more profound and flexible consideration.

The distinctive nature of EA involves the description of the deformation, differing signifi-
cantly from rigid-body structure. In soft slender rod, the Jacobian matrix is applied to depict
the relationship between local displacement and global deformation. For EA, we will use the
same way to establish this relationship, as it can be regarded as a soft slender rod. By con-
sidering the mechanical properties of EA, we can establish Jacobian matrices for deformations
and displacements, thereby allowing their application in the realm of EA. Specifically, jacobian
matrix is defined to map the generalized coordinates q(t) ∈ R6(n+2) to velocity field η(s, t) ∈ R6

via the following form:

η(s, t) = J(s, t)q̇(t) (2.21)

The Jacobian matrix is determined by the geometric configuration of EA and can be computed
from the strain field. Since the strain expression involves variables of arc length s and time t,
here we also represent the Jacobian matrix as a function of arc length and time.

2.2.6.2 Analytical solution of Jacobian matrix

As q contains both α and θ, for ease of computation, we split the Jacobian matrix into two
parts: the Jacobian matrix with respect to α and the Jacobian matrix with respect to θ, as
shown in the following equation:

η(s, t) =
[
Jα(s, t) Jθ(s, t)

]︸ ︷︷ ︸
J(s,t)∈R6×6(p+2)

q̇(t) (2.22)
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where Jα(s, t) ∈ R6×6 and Jθ(s, t) ∈ R6×6(p+1) are two Jacobian matrices respectively related
with α(t) and θ(t). Here, we recall the continuous kinematic differential equations of the
Cosserat rod, as follows:

η′ = ξ̇ − adξ η (2.23)

For s ∈ [0, L], this equation describes the differential relationship between the strain field and
the velocity field in this continuous space. By substituting (2.22) into (2.23), one can get:

J ′
αα̇+ J ′

θθ̇ = Φθ̇ − adξ(Jαα̇+ Jθθ̇) (2.24)

Note that the above equation holds for any α̇ and θ̇, thus the following two equations stand:

J ′
θ = − adξ Jθ +Φ (2.25)

J ′
α = − adξ Jα (2.26)

Taking derivative of the two equations above with respect to time one can get:

J̇
′
θ = − adξ̇ Jθ − adξ J̇θ (2.27)

J̇
′
α = − adξ̇ Jα − adξ J̇α (2.28)

Then, the Jacobian matrices and their time derivatives can be computed by numerical integra-
tion along arc space s ∈ [0, 1] through (2.25)-(2.28) respectively starting from the initial value
of Jα(0, t) and Jθ(0, t). It is obvious that for s = 0 the velocity η(0, t) only depends on the
base parameter α(t), i.e., η(0, t) = Jα(0, t)α̇, thus we can directly deduce Jθ(0, t) = 0 and
J̇θ(0, t) = 0. For the Jacobian with respect to α(t) at the initial position, i.e., Jα(0, t), it can
be derived from the derivation of exponential map.

For the exponential map of rotation matrix, the following differential relationship stands:

Ṙ0(ϕ)R
⊤
0 (ϕ) =

˜(
J l(ϕ)ϕ̇(t)

)
(2.29)

where (̃·) denotes the mapping from R3 to SO(3). J l is the left Jacobian of group SO(3), with
the definition as below:

J l(ϕ) = I+
1− cosϕ

ϕ2
ϕ̃+

ϕ− sinϕ

ϕ3
ϕ̃

2

Using (2.29), the angular velocity of initial position with respect to body frame can be deduced:

w̃(0, t) = R⊤
0 Ṙ0 = R⊤

0 (J̃ lϕ̇)R0

Notice that for any vector x ∈ R3 and matrix R ∈ SO(3), one holds: R⊤x̃R = (R̃⊤x). Thus
one can get

w(0, t) = R⊤
0 (ϕ)J l(ϕ)ϕ̇ (2.30)

The linear velocity of initial position with respect to body frame is

v(0, t) = R⊤
0 (ϕ)ṗ0

We can finally deduce the map from time derivation of vector α to velocity twist of initial
position with respect to body frame:

η(0, t) =

[
R⊤

0 (ϕ)J l(ϕ) 0

0 R⊤
0 (ϕ)

]
α̇(t) (2.31)

where the matrix mapping α̇(t) to η(0, t) stands for the Jacobian Jα(0, t).
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2.2.7 Weak Form of Dynamics

The unknown variables in the PDE (2.7) formed by the continuous dynamics encompass the
initial pose tensor g0 at the starting end and the strain field ξ(s). In order to facilitate the
solution of this partial differential equation, we aim to derive its corresponding weak form. By
introducing suitable trial functions Φ(s), the weak form of the equations can be expressed as
the integration through the backbone of soft slender robot.∫ L

0

Φ(Mη̇ − ad⊤ηMη −Λ′
i + ad⊤ξ Λi − Λ̄e)ds = 0 (2.32)

Applying discretization techniques, the above integral equations of weak form are further ap-
proximated which allows transforming the weak form into ODE system about the generalized
coordinates q.

In our work, we choose the transpose of virtual displacement as the trial function. The
transpose of virtual displacement can be got from the Jacobian matrix:

Φ = (Jδq)⊤

Then, taking ϕ and the discrete kinematics (2.22) as well into (2.32), one can get:

δq⊤
∫ L

0

J⊤(MJq̈ +MJ̇q − ad⊤ηMJq̇ −Λ′
i + ad⊤ξ Λi − Λ̄e)ds = 0 (2.33)

2.2.8 ODE of Dynamics

Taking the generalized coordinates q and its time derivatives q̇ outside the integral, we can
express the weak form mentioned above in the following shortened form:

Mq̈ +Cq̇ + F i = F e (2.34)

where M is the mass matrix defined as follows:

M(q) =

∫ L

0

J⊤MJds ∈ R6(n+1)×6(n+1)

C is the Coriolis matrix:

C(q, q̇) =

∫ L

0

J⊤(MJ̇ − ad⊤Jq̇MJ)ds ∈ R6(n+1)×6(n+1)

F e denotes the contribution of the external force:

F e =

∫ L

0

J⊤Λ̄eds ∈ R6(n+1)

F i denotes the contribution of the internal force:

F i =

∫ L

0

J⊤(−Λ′
i + ad⊤ξ Λi)ds ∈ R6(n+1) (2.35)

then (2.35) can be simplified by integration by parts:

F i = −(J⊤Λi)|L0 +

∫ L

0

J⊤′Λi + J
⊤ ad⊤ξ Λids (2.36)
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To further simplify (2.36), we first define the augmented basis function as Φ̄ = [06×6,Φ].
Subsequently, we modify (2.13) to:

ξ(s) = ξ0 + Φ̄(s)q (2.37)

Similarly, we update (2.25) as follows:

J ′ = − adξ J + Φ̄ (2.38)

Consequently, (2.36) can be simplified by incorporating (2.38):

F i = −(J⊤Λi)|L0 +

∫ L

0

Φ̄
⊤
Λids (2.39)

Considering the constitutive relationship between stress and strain, i.e.,

Λi = K(ξ − ξ0) +Dξ̇ = KΦ̄q +DΦ̄q̇

we can further simplify the internal force vector (2.39):

F i = −J⊤Λi|L0 +

∫ L

0

Φ̄
⊤KΦ̄dsq +

∫ L

0

Φ̄
⊤DΦ̄dsq̇ = −J⊤Λi|L0 +Kq +Dq̇ (2.40)

where matrix K is the stiffness matrix, defined as:

K =

∫ L

0

Φ̄
⊤KΦ̄ds

Matrix D is the damping matrix, defined as

D =

∫ L

0

Φ̄
⊤DΦ̄ds

The term −(J⊤Λi)|L0 in (2.40) represents the contribution of the internal force exerted by the
two tips of the rod. By incorporating the boundary conditions specified in Equation (2.8) into
this term, we obtain the following result:

−(J⊤Λi)|L0 = J⊤
0 Λ0 + J

⊤
1 ΛL

where J0 and J1 denote the kinematic Jacobian of two tips respectively, Λ0 and Λ1 denote the
external force applied on the two tips respectively. Consequently, we are able to transfer the
term −(J⊤Λi)|L0 from the contribution of internal force to the contribution of external force.
In light of this adjustment, the expressions for F i and F e are revised:

F i =Kq +Dq̇, F e =

∫ L

0

J⊤Λ̄eds + J
⊤
0 Λ0 + J

⊤
1 ΛL

Following the aforementioned simplification, we arrive at the final form of the dynamic equation
for the EA, which is articulated as follows:

Mq̈ + (C +D)q̇ +Kq = F e (2.41)
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2.3 Modeling of Conducting Polymer Actuator

In the preceding sections, we explored the modeling process of the electrode array. For active
electrode arrays, which incorporate an internal drive mechanism, this thesis utilizes Electronic
Conducting Polymers (ECP) as micro actuators. As such, developing both the electrical and
mechanical models of this actuator is crucial. This foundational work paves the way for con-
structing the comprehensive model of the active Electrode Array (EA), encompassing the cou-
pled dynamics of the EA and its actuator. In the sections that follow, we will delve into the
detailed electrical and mechanical modeling of the ECP. The approach mirrors the modeling
framework established for the EA and will proceed in the following order:

1. Formulation of the electrical dynamic equations (partial differential equations).

2. Spatial discretization of these equations and the pursuit of their weak form approximate
solutions.

3. Creation of mechanical equations grounded in Cosserat rod theory, akin to the mechanical
model of the EA.

4. Finalization of the electromechanical coupling model of the ECP.

Based on this structure, in the following sections, we will separately introduce the electrical
and mechanical models of the ECP.

2.3.1 Nonlinear Model

As mentioned above, the modeling task of conducting polymer can be mainly divided into two
parts: the electronic model and the mechanic model. Noting that the working state of IEAP
actuator depends on the actuation frequency [116] , it can be classified into two cases:

1. When the actuation frequency is below the mechanical resonance frequency of the actu-
ator, the deformation is quasi-static.

2. When the actuation frequency is greater than the mechanical resonance frequency, the
deformation varies mainly due to inertial mass effects. Thus the dynamics in mechanic
model is necessary.

Based on the above two different cases, the following investigates different types of models:
a nonlinear electronic dynamic model in Section 2.3.2, a mechanic quasi-static model for case
1 and a mechanic dynamic model for case 2 in Section 2.3.4. The final coupling model is then
deduced in Section 2.3.5.

2.3.2 Electronic Model

In this part we will first build the continuous electronic model which describes the dynamic
evolution of charge along actuator. Then the discrete model is built by discretization of the
continuous model.

2.3.2.1 Strong form of electronic dynamics

Denote the total length of polymer as L where two electrode layers outside wrap the middle
ion reservoir membrane. When the polymer is charged, the research in [116] shows that the
process of charge can be regarded as an infinity RC circuit grid (see Fig. 2.4(a)). Let us
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Figure 2.4: 2D-RC infinite grid for electronic model.

consider an infinitesimal element dx, and denote ∆Re1 and ∆Re2 as the electric resistance of
outer layers and ∆Ri as the ionic resistance of middle layer, ∆C1 and ∆C2 as the corresponding
capacitances of outer layers, which satisfy the following equations according to its definition:

∆Re1 =
dx

ωe1bhe
, ∆Re2 =

dx

ωe2bhe
, ∆Ri =

hi
ωibdx

∆C1 = Cv1bhedx , ∆C2 = Cv2bhedx,

where b represents the width of polymer, he is the thickness of the CP layer, Cv1 and Cv2 are
the volumetric capacitance of the top CP layer and the bottom CP layer , ωe1 and ωe2 are
the volumetric conductivity of the top CP layer and the under CP layer, ωi is the volumetric
conductivity of the separator layer. For each RC grid element depicted in Fig. 2.4(a), its scheme
can be simplified as Fig. 2.4(b), where

∆Ri =
hi

ωibdx
= ri

dx

∆Re = ∆Re1 +∆Re2 = ( dx
ωe1bhe

+ dx
ωe2bhe

)dx = redx

∆C = ∆C1 +∆C2 = (Cv1bhe + Cv2bhe)dx = cedx

(2.42)

Without loss of generality, it is assumed that the electric resistances and ionic resistance are
not constant. In fact, this electronic nonlinear characteristic has been observed in [103], which
implies that the values of those resistances depend on the local charge.

As shown in Fig. 2.4(b), for the RC grid element located at x with dx length, denote v
as the voltage of capacity ∆C, ∆q as the charge of ∆C, i1 and i2 as the currents of the two
branches, λ as the linear charge density at x, then v, i1 and i2 can be represented by λ(x, t)
via the following equations:

v(x, t) =
λ

ce
, i1(x, t) =

∂λ

∂t
ds, i2(x, t) =

∫ l

x

∂λ

∂t
ds. (2.43)

For each grid as Fig. 2.4(b), according to Kirchhoff laws (i.e.,
∑
U = 0), we have

i2(x, t)∆Re+
λ(x+dx,t)

ce
+ i1(x+ dx, t)∆Ri − i1(x, t)∆Ri − λ(x,t)

ce
= 0,

With (2.42) and (2.43), we can then get the strong form of electronic dynamics from the above
equation:

re(λ)

∫ L

x

∂λ

∂t
ds +

1

ce

∂λ

∂x
+ ri(λ)

∂2λ

∂x∂t
= 0, (2.44)
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which is a partial differential equation (PDE) describing the charge density along the polymer,
satisfying the following boundary conditions:

λ(x, 0) = 0,
λ(0, t)

ce
+ ri(λ(0, t))

∂λ(0, t)

∂t
− Vin = 0, (2.45)

where Vin is the tension input applied on the two CP layers.

Remark 1. Due to the balance of charge in the charging process, the charge along actuator
will tend to become stable when time tends to infinity, which means ∂λ

∂t = 0, thus ∂λ
∂x = 0

according to (2.44). Consequently, the distribution of charge along actuator at the equilibrium
point will become geometrically uniform.

Up to now, we have built the continuous equation of charge density as PDE (2.44), and
with (2.45) they compose a BVP (Boundary Value Problem). However, analytically solving
such a highly nonlinear BVP is quite complicated or even impossible. In the following, we
derive its weak form by applying Galerkin method to approximate the solution via spatially
parameterizing the charge field.

2.3.2.2 Weak form of electronic dynamics

In order to simplify the writing of (2.44) and (2.45), we use prime in place of ∂
∂x and dot in

place of ∂
∂t . Thus (2.44) and (2.45) can be written as follows:

re(λ)

∫ L

x

λ̇ds + ce
−1(λ)λ′ + ri(λ)λ̇

′ = 0, (2.46)

with the boundary condition:

ce
−1(λ(0, t))λ(0, t) + ri(λ(0, t))λ̇(0, t)− Vin(t) = 0. (2.47)

Now we can define the ”virtual charge displacement” δλ of each micro RC grid, then the energy
balance equation of conducting polymer might be deduced, which corresponds to the weak form
of PDE (2.46) as follows:
∀x ∈ [0, L] 7→ δλ(x) ∈ R,∫ L

0

δλT (x)

{
re

∫ L

x

λ̇dr + ce
−1λ′ + riλ̇

′

}
dx = 0. (2.48)

To obtain the complete weak form, we need to discretize the parameterization of the charge
field. This process will be explained in the subsequent subsection.

2.3.2.3 Parameterization charge field

Note that the solution of (2.48) is defined in an infinite set. To discretize the system and find
the numerical solution, we consider that the field of charge can be approximated by a set with
limited degrees of freedom. To generically handle this kind of approximation, the field of charge
λ is defined by the product of basis function and coefficients. i.e.,

λ(x, t) := ψ(x)λ(t), x ∈ [0, L], (2.49)

where ψ(x) = [ψ0, ψ1, . . . , ψm] ∈ R1×m is the basis function and λ = [λ0, λ1, . . . , λm]T ∈
Rm×1 is the coefficients. In order to globally parameterize the charge field without losing
physical meaning, the basis function ψ(x) is chosen by these two assumptions below:
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Assumption 1: The conducting polymer can be divided into several sections and for each
section the charge density is distributed linearly.

Assumption 2: All the physical parameters are homogeneous in each section.

Based on the piece-wise linear assumption 1, basis function ψ(x) holds the following struc-
ture:

ψ =



[
l−s
l ,

x
l , 0, . . . , 0

]
, 0 ⩽ x < l

...
...[

0, . . . , 0, kl−x
l , x−(k−1)l

l , 0, . . . , 0
]
, (k − 1)l ⩽ x < kl

...
...[

0, . . . , 0, nl−x
l , x−(n−1)l

l

]
, (n− 1)l ⩽ x < nl

As a result, (2.49) leads to two relations:

δλ(x) = ψδλ, λ(x)′ = ψ′λ. (2.50)

2.3.2.4 Discrete electronic model

Note that the weak form (2.48) is equivalent to (2.44). This weak form holds the advantage
of realizing the approximation from the continuous dynamics of electronic model to discrete
dynamics. Concretely, by substituting (2.49)-(2.50) into (2.48), one can get:

δλT

∫ L

0

ψT

{
re

∫ L

x

ψλ̇dr + ce
−1ψ′λ+ riψ

′λ̇

}
dx = 0.

The equation above should hold for any δλ, thus after removing δλT and adding the boundary
condition (2.47), we obtain the following succinct ODE representation of the electronic model:

(Re

[
0
P

]
+Ri

[
W
Q

]
)λ̇+Ce

−1

[
W
Q

]
λ =

[
Vin

0

]
, (2.51)

with

W =
[
1 0 . . . 0

]
∈ Rm+1,

P =

∫ L

0

ψT (x)

∫ L

x

ψ(s)dsdx, Q =

∫ L

0

ψT (x)ψ′(x)dx,

Re = diag{re(λ0), re(
λ0 + λ1

2
), . . . , re(

λm−1 + λm

2
)},

Ri = diag{ri(λ0), ri(
λ0 + λ1

2
), . . . , ri(

λm−1 + λm
2

)},

Ce = diag{ce(λ0), ce(
λ0 + λ1

2
), . . . , ce(

λm−1 + λm
2

)}.

After having established the discrete dynamic equation (2.51) of electronic model to describe
the evolution of charge density along actuator, the next step is to show how the charge density
of each section can create the deformation of polymer.
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2.3.3 From Electric Charge to Actuation Moment

Consider now one element of 3-layer polymer depicted in Fig. 2.5 with Ee and Ei being the
Young’s modulus of the CP layer and the separator layer respectively. Denote α as the strain-
to-charge ratio of the CP layers, and λ as the linear charge density of CP layers. Obviously,
the values of charge density for these two CP layers should be opposite due to the balance of
charge. Thus we define the linear charge density of the upper CP layer as λ, so that of the
bottom CP layer should be −λ. As shown in Fig. 2.5, for a micro element of the actuator, the
stress on its cross section S is comprised with two parts (see Fig. 2.5): the elastic stress σe
and the redox stress σr. Since the redox strain is proportional with charge density [102], the
equivalent redox stress can be calculated as follows:

σr(y) =


−Ee

αλ
bhe

, hi

2 < y ⩽ hi

2 + he
0, −hi

2 ⩽ y ⩽ hi

2

Ee
αλ
bhe

, −hi

2 − he ⩽ y < −hi

2

Consequently, for any cross section we can compute its actuated force defined in the local frame

Figure 2.5: The equivalent redox stress distribution on the cross section S of polymer based
actuator.

of cross section. It can be deduced directly that the total contribution of the electric stress is
a moment while the forces of the two CP layers counteract with each other:

Fa =

∫∫
S

σrdS = u1

∫∫
S

σrdS =

∫
u1

∫ hi
2 +he

−hi
2 −he

σrdydz,

where vector u1 is the identical direction vector of σr (i.e., u1 =
[
1 0 0

]T
). The integral

part
∫ hi

2 +he

−hi
2 −he

σrdy = 0, which yields Fa =
[
0 0 0

]T
,

Ma =

∫∫
S

y × σrdS =

∫∫
S

u2 × u1σrydS

=

∫ b

0

u

∫ hi
2 +he

−hi
2 −he

σrydydz = u

∫ b

0

Eeα(he + hi)λ

b
dz

= uEeα(he + hi)λ = uβλ =
[
0 0 βλ

]T
,

(2.52)

where u2 is the identical direction vector of y (i.e., u2 =
[
0 1 0

]T
), u = u2 × u1 =[

0 0 −1
]T

, γ = Eeα(he +hi)λ. For ease of expression, we use an actuation wrench Λa ∈ R6
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to represent Fa and Ma:

Λa =
[
Ma

T Fa
T
]T

=
[
0 0 γλ 0 0 0

]
= Pγλ (2.53)

where P =
[
0 0 1 0 0 0

]T
.

Once we deduced the actuation moment of polymer actuator, the dynamic state of polymer
actuator can be then analyzed, which will be detailed in the following sections.

2.3.4 Mechanic Model

In the aspect of mechanic analysis, it is natural that the polymer actuator can be regarded
as a slender beam because of its high length -width ratio . The accumulation of local charge
within the polymer induces internal stress, leading to the deformation of the actuator. In
this subsection, we will first establish a relationship between the internal force and the local
charge. Subsequently, we will delve into the dynamics of the polymer actuator in the ensuing
subsections. Here, the actuator will be conceptualized as a Cosserat beam, influenced by both
actuation and external forces. This approach is consistent with the model previously introduced
in subsection 2.2, ensuring continuity and coherence in our analysis.

2.3.4.1 Strong form of dynamics

To analyze the mechanic behavior of beam such as polymer actuator, the Cosserat based strong
form of dynamic model can be represented as the following PDE:

Mη̇ − adTηMη = Λ′
i − adTξ Λi −Λ′

a + adTξ Λa +Λe, (2.54)

satisfying the following boundary conditions:

Λi(L)−Λa(L) = Λe(L), (2.55)

2.3.4.2 Weak form of dynamics

Mirroring the approach for establish the weak form of EA, we apply the Lagrange–d’Alembert
principle to define the virtual displacement of each disc along the polymer actuator, denoted as
δr(x). Utilizing this definition, we can express the virtual work done by the polymer actuator,
which subsequently yields the weak form of equation (2.54) as outlined below:
∀x ∈ [0, L] 7→ δr(x) ∈ R6,∫ L

0

δrT (x)(Mη̇ − adTηMη −Λ′
i + adTξ Λi +Λ′

a − adTξ Λa −Λe)dx = 0 (2.56)

2.3.4.3 Parameterization strain field

The strain field of CPA is interpolated as follows:

ξ(x) := ξ0 +Φ(x)q, x ∈ [0, L], (2.57)

where Ψ(x) = [Ψ0, Ψ1, . . . , Ψn] ∈ R6×n is the basis function of piecewise linear interpolation,
which we firstly introduced earlier as (2.14). q = [ξ0, ξ1, . . . , ξn]

T ∈ Rn×1 is the coefficients.
ξ0 stands the initial value of ξ.
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2.3.4.4 Discrete mechanic model

The mechanical modeling of the CPA shares the same methodology as our previous mechanical
modeling of the EA. As a result, the matrix structure in the dynamical equations is identical
for both. However, unlike the EA’s mechanical model, the CPA incorporates a driving force,
adding an additional actuation term to its dynamical equations. In this context, We will derive
this term here.

Based on the weak form as presented in equation (2.56), the general actuation force Fa of
dynamics can be represented as follows:

Fa =

∫ L

0

(J⊤Λa)
′ − (− adξ J +Ψ)⊤Λa − J⊤ ad⊤ξ Λadx

=

∫ L

0

(J⊤Λa)
′ −Ψ⊤Λadx = J⊤Λa|L0 −

∫ L

0

Ψ⊤Λadx.

The piecewise linear charge assumption and (2.53) leads to Λa = Pγλ = Pγψλ. As a result,
Fa can be simplified as follows:

Fa = −J⊤(L)Pγψ(L)λ+

∫ L

0

ΦTPψdxγλ =Hz (2.58)

Here, we transfer the input variable λ to z with z = γλ. The actuation matrix H is defined
as follows:

H =

∫ L

0

ΦTPψdx− J⊤(L)Pψ(L)

After deducing Fa, the final mechanic model can be rewritten as follows:

Mq̈ + (C +D)q̇ +Kq = F e +Hz (2.59)

2.3.5 Whole coupling model of single CPA

After having deduced the electric model and the mechanical model of polymer, we can then
gather these two models together to describe the whole dynamics of input tension and the
corresponding deformation by the combination of the deduced electric system:

(Q1Σ1 +Q2Σ2)ż +Q3Σ2z = UVin, (2.60)

with

Q1 =
1

γ
Re, Q2 =

1

γ
Ri, Q3 =

1

γ
Ce

−1,

Σ1 =

[
0
P

]
, Σ2 =

[
W
Q

]
, U =

[
1
0

]
,

and the obtained mechanic system:

Mq̈ +Cq̇ +Kq =Hz + P . (2.61)

If the actuator works in quasi-static state, one can obtain its static model by just removing the
first two terms Mq̈ and Cq̇ of (2.61).
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2.3.6 Parameters Identification

In the case of polymer actuator, the parameters of electric system are normally hard to measure
directly, thus an identification work is necessary via which we can estimate the parameters
from the data that are easily to measure. The electric model (2.60) deduced in the above
section is nonlinear and contains unknown matrix Q1, Q2, Q3 which are nonlinear function
of z. Therefore, a parameter identification procedure is presented in this section to reveal the
nonlinearlity of those parameters.

From the definition of Re, Ri and Ce, we define:

Q1 = diag{q1(z0), q1(
z0 + z1

2
), q1(

z1 + z2
2

), . . . , q1(
zm−1 + zm

2
)},

Q2 = diag{q2(z0), q2(
z0 + z1

2
), q2(

z1 + z2
2

), . . . , q2(
zm−1 + zm

2
)},

Q3 = diag{q3(z0), q3(
z0 + z1

2
), q3(

z1 + z2
2

), . . . , q3(
zm−1 + zm

2
)}.

It is assumed that these nonlinearlities of function q can be approximated by polynomials with
certain order k, i.e.,

q1(s) =

k∑
i=0

ais
i , q2(s) =

k∑
i=0

bis
i , q3(s) =

k∑
i=0

cis
i. (2.62)

By noting a =
[
a0, . . . , ak

]
, b =

[
b0, . . . , bk

]
, c =

[
c0, . . . , ck

]
and

Π =
[
I diag(z) diag2(z) . . . diagk(z)

]
, the matrix Q1, Q2 and Q3 can be represented as: Q1 = Πa⊤,Q2 = Πb⊤,Q3 = Πc⊤. Set

θs =
[
a b c

]⊤
and concatenate the following values at different time from t1 to tnp with

np > m where m is the dimension of z:

Ξ =

 Σ1Π(t1)ż(t1) Σ2Π(t1)ż(t1) Σ2Π(t1)z(t1)
...

...
...

Σ1Π(tnp
)ż(tnp

) Σ2Π(tnp
)ż(tnp

) Σ2Π(tnp
)z(tnp

)


System (2.60) can be written into the following algebraic form: Ξθs = Ψ, where

Ψ =
[
UTVin(t1), · · · , UTVin(tnp

)
]⊤

. It is clear that, if all the z can be measurable and Ξ is full row rank, then θs can be identified
by using classical least square method.

2.3.7 Nonlinear Model Validation

2.3.7.1 Experimental setup

As shown in Fig. 2.6, our platform contains the polymer actuator which is connected to Arduino
card and a camera (Microscope USB Dino-Lite) which enables us to catch the deformation of
actuator with 20 fps. Specific image processing program has been developed by us to track the
shape of polymer actuator in real time and compute the corresponding curvatures and its time

53
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Figure 2.6: Experiment device. The actuator is fixed on the workbench and charged by micro-
controller (MakeBlock MegaPi). A Dino-Lite micro camera on the right side is installed for
observing the deformation of actuator.

Table 2.1: Measured parameters

Length L Width b Thickness h

5.87 mm 1.37 mm 0.035 mm

Strain to stress ratio α Mean Young’s modulus E Mass density ρ

7.31×10−10m3/C 2.53 GPa 2.42×103 kg/m3

derivatives for each divided segment, which will be detailed in the next subsection. Tab.2.1
shows the measured parameters of the tested actuator.

In order to identify the unknown parameters (q1, q2, q3), we use a ramp signal Vin = at with
a = 0.01 V/s as the excitation input signal to deform the polymer. In the work of Section 2.3.6,
the variable z is calculated from the curvature of actuator, which can be measured directly by
our designed visual system. Since the actuation speed is very low, the actuator can be regarded
as quasi-static state. Since there is no external force applied on the actuator, the internal force
equals to the actuation one, i.e., for s ∈ [0, L], Λi(s) = Λa(s), which means:

κ(s, t) =
γλ(s, t)

EIz
=
z(s, t)

EIz
, (2.63)

where κ is the curvature along axis z of polymer actuator. Thus z can be calculated by observing
κ:

z(s, t) = EIzκ(s, t). (2.64)

Based on the image captured by the rapid camera, the shape of actuator can be extracted, from
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which we can compute the curvature along actuator and its derivative of time. An algorithm

(a) (b)

Figure 2.7: The image recognition algorithm is capable of autonomously identifying and ex-
tracting the central line of the conducting polymer actuator. It then proceeds to segment this
line into equal-length sections, as illustrated in (b). The points of division are marked in green
for clear visualization.

of image binarization, inter-frame difference [117] and skeleton extraction [118] is applied via
Matlab for obtaining the center skeleton of actuator, as shown in Fig. 2.7. Then the curvature
could be calculated by the following equation:

κ =
y′′

(1 + y′2)3/2
, κ̇ =

∂κ

∂t
. (2.65)

However, it is inconvenient to compute the curvature and its derivative directly by the point
data set of skeleton, due to the repeated calculation and discontinuity of data. To overcome this
problem a polynomial curve fitting method is used here to get the curve function of actuator
in real time which is of the following form:

y =

w∑
i=0

pix
i. (2.66)

The analytical expression of the curvature and its derivative can be obtained directly by taking
(2.66) into (2.65):

κ =

∑w
i=0 i(i− 1)pix

i−2

(1 + (
∑w

i=0 ipix
i−1)2)3/2

, κ̇ =
∂κ

∂t
. (2.67)

Based on the methods above, we got the curvature and its derivative of all sections as shown in
Fig. 2.8. From the figure we can observe that the overall derivative of curvature of the actuator
shows a trend of increasing first and then becoming steady. This is because the charge inside
actuator gradually reaches saturation from the near power end (section 1) to the far power end
(section 10).
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Figure 2.8: Curvature and its derivative measured under input u = 0.01t.

From the physical analysis about the micro structure of conducting polymer actuator [103],
the resistance of the inter-layer is little varied by the charge density. Thus it is reasonable to
suppose that q2 in our model is constant, which mostly corresponds to the ionic mass transport.
On the contrary, there exists a variation of conductivity and volumetric capacitance of the
electrode which can not be ignored during the procedure of charge [103]. Indeed the electrical
conductivity of the conducting polymer is a nonlinear function of redox level and the volumetric
capacitance changes with the oxidation state. Hence, in the identification process, we finally
adopt the following 5-order polynomial to represent the nonlinearity of q1, and q3:

q1(s) =

5∑
i=0

ais
i , q2(s) = b0 , q3(s) =

5∑
i=0

cis
i.

The identified values are given in Tab. 2.2.

Table 2.2: Identified result of q1, q2, q3

i 0 1 2 3 4 5

ai 526 249 −6.814 0.111 −6.9e−4 1.4e−6

b 0.0275 - - - - -

ci 0.0110 −5.9e−5 −2.4e−7 6.1e−9 2.8e−11 4.2e−14
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Figure 2.9: The evolution of the curvature for each segment of the actuator.

In order to show the deduced model is reliable, we simulate our model with the identified
nonlinearity of q1, q2 and q3, and compare the deformation result with experimental measure-
ments. Fig. 2.9 shows the evolution of the curvature for the 1st section, the 5th section and
the 10th section, indicating the fitting level between the experiment and the deduced model
with the parameter fitting function of 4 order and 5 order. The error percentage of average
curvature of the latter is less than 5% which is acceptable in our study.

Fig. 2.10 shows the coincidence level of the deformation of actuator with time between the
experiment and the simulation via quasi-static model and dynamic model, under a ramp input
voltage u = 0.0075t and a step input voltage of amplitude 1.5V respectively.

Figure 2.10: (a). Deformation of the polymer actuator under the ramp input comparing with
mechanical static model; (b). Deformation of the polymer actuator under the step input com-
paring with mechanical dynamic model.

An experiment with external load is also carried out. As shown in Fig. 2.11, a payload
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mass of 63mg is fixed on the tip of actuator. In this case, the mechanical dynamics of system
is as follows:

Mq̈ + (C +D)q̇ +Kq = J⊤(L)Λe(L) +Hz (2.68)

Mpη̇L − ad⊤ηL
MpηL = −Λe(L)−Ad−1

gL
MpG (2.69)

where (2.69) is the mechanical dynamics of the payload. Mp is the inertial matrix of payload
and AdgL

is the transformation matrix. The comparison between simulation and experiment
is shown in Fig. 2.11 under the step input voltage of amplitude 1.5V and 0.1Hz.

For the deduced model (2.60) and (2.61), the corresponding control has been developed
and validated in [119]. In this section, we successfully developed a model for individual CPAs.
Moving forward, the subsequent section will delve into the architecture of an active EA en-
compassing multiple CPAs. Additionally, we will elaborate on the associated coupled model
tailored for this configuration.

Figure 2.11: Displacement of tip of the polymer actuator with external load under the step
input voltage of amplitude 1.5V and 0.1Hz comparing with mechanic dynamic model.

2.4 Coupling Model of Implant and Multi-Actuator

The new type of active cochlear implant consists of three components: an electrode array, a
actuator array, and a flexible casing. Among these, the electrode array and the driver array
are positioned in parallel, enclosed by the silicone carrier, creating an overall sandwich-like
structure, as depicted in Fig. 2.12.

2.4.1 Electric model of actuator array

Similar to the conducting polymer actuator, the implant coupling model also includes electrical
and mechanical components. The electrical model consists of a series of conducting polymer
actuator models. In this subsection, we will introduce the series electrical model of the con-
ducting polymer actuator. If N conducting polymer actuators are connected in series, the series
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Figure 2.12: The sandwich structure of the active artificial cochlear implant consists of an
electrode array comprising rigid electrodes and flexible wires, a driver array consisting of con-
ducting polymer actuators and flexible wires, all enclosed within a flexible silicone casing.

model is as follows:


A1

A2

. . .

AN


︸ ︷︷ ︸

A


ż1
ż2
...
żN


︸ ︷︷ ︸

ż

+


B1

B2

. . .

BN


︸ ︷︷ ︸

B


z1
z2
...
zN


︸ ︷︷ ︸

z

=


U1

U2

. . .

UN


︸ ︷︷ ︸

U


Vin1
Vin2
...

VinN


︸ ︷︷ ︸

V in

(2.70)

where zi denotes the electric charge state of the ith conducting polymer actuator. Vin1 is the
input voltage of the ith conducting polymer actuator. The matrix Ai and Bi are defined as
follows:

Ai = (Q1Σ1 +Q2Σ2)i, Bi = (Q3Σ2)i

2.4.2 Mechanical model

Upon establishing the electrical model of the implant, we now turn our focus in this subsection
to the development of the implant’s mechanical model. Initially, given that conducting polymer
actuators are distributed throughout the implant, we introduce an actuation field function. This
function is designed to pinpoint the locations of the conducting polymer actuators within the
implant, effectively indicating the specific areas where the actuation force originates.

As shown in Fig.2.13, assuming there are N conducting polymer actuators within the im-
plant, each located along the implant’s axial direction at [l1−, l1+], [l2−, l2+], ..., [lN−, lN+], the
actuation field function is defined as: ψ = [ψ1, . . . ,ψN ],
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Figure 2.13: Schematic of active implant coupling model. Conducting polymer actuator, elec-
trode array, and wires, along with the casing, are conceptualized as integral beams. The
coupling model for this monolithic beam simulates the structure of the entire active implant by
defining stiffness distribution and drive force field parameters for the monolithic beam.

where for x ∈ {[li−, li+]|i = 1, . . . , N}, if j = i,

ψj =



[
l−x
l , xl , 0, . . . , 0

]
, li− ⩽ x < li− + l

...
...[

0, . . . , 0, kl−x
l , x−(k−1)l

l , 0, . . . , 0
]
, li− + (k − 1)l ⩽ x < li− + kl

...
...[

0, . . . , 0, nl−x
l , x−(n−1)l

l

]
, li− + (n− 1)l ⩽ x < li− + nl

if j ̸= i, ψj = 01×n

for x /∈ {[li−, li+]|i = 1, . . . , N}, ψj = 01×n.
Taking the actuation field function into (2.58) one can get the actuation matrix:

H =

∫ L

0

Φ̄
TPψds ∈ Rn×m

where Φ̄ is the Ritz base function of EA, P is the matrix defined in (2.53). The entire electric-
mechanic coupling equation for the active implant is as follows:

Aż +Bz = UV in (2.71)

Mq̈ + (C +D)q̇ +Kq = F e +Hz (2.72)

Up to this point, we have derived the electrical and mechanical equations for the active electrode
array, which constitute a set of ordinary differential equations. Finding an analytical solution
to these equations is extremely complex and often impossible. In the simulation of complex
system dynamics, numerical methods are typically employed to compute the numerical solutions
of ordinary differential equations. In the following section, we will introduce the numerical
solution methods for the ordinary differential equations of the dynamics of the active electrode
array.
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2.5 Numerical Implementation

As previously discussed, deriving analytical solutions for nonlinear ordinary differential equa-
tions is often a complex task, leading to the necessity of employing numerical methods to
ascertain numerical solutions. Within the realm of finite element dynamics simulation, Euler
methods are extensively utilized, encompassing both the explicit and implicit variants. The
subsequent sections will provide a basic overview of each of these methods in turn.

2.5.1 Explicit Euler methods

The explicit Euler method is a common and fundamental numerical technique for solving non-
linear ordinary differential equations (ODEs). Its basic principle involves discretizing the con-
tinuous time axis into small steps and iteratively approximating the solution to the differential
equation. The method is called “explicit” because all the necessary information for updating
the solution is directly visible.

In the explicit Euler method, the first step is to calculate the derivative of the differential
equation at the current time point. This derivative value represents the rate of change of the
system in the current state. Subsequently, by multiplying the derivative value by the time
step, we obtain the change in the solution within this small step. Adding this change to the
current solution gives us the solution at the next time step. This process iterates continuously,
progressively approaching the solution to the differential equation.

One of the advantages of the explicit Euler method is its intuitive and easily understandable
nature. Its calculations are relatively simple, making it suitable for initial numerical simulations
or educational purposes. However, like many numerical methods, the explicit Euler method
has limitations. Due to its first-order nature, it may lack stability, especially when dealing with
systems exhibiting stiffness or requiring higher numerical accuracy.

2.5.2 Implicit Euler methods

The Implicit Euler method, a variant of the backward differentiation formula, is frequently
employed in computations to solve the differential equations governing system dynamics. This
method stands in contrast to the explicit Euler method. In the explicit version, solutions are
directly calculated using the derivative values at the current time point, multiplied by the time
step. However, the implicit Euler method adopts a different approach. It iteratively solves
an algebraic equation that includes the solution for the subsequent time step. This method
offers increased flexibility and has shown superior performance, especially when dealing with
stiff systems. The process of calculation proceeds as follows:
1. Formulation of the differential equation: Begin by formulating the differential equation
governing the system dynamics. In our case, the system dynamic differential equations is given
by (2.72):

Mq̈ + C̄q̇ +Kq = F e (2.73)

where C̄ denotes C +D.
2. Discretization in time: The Implicit Euler method requires time discretization. Divide
the time interval of interest into small steps, ∆t.
3. Implicit Euler scheme: The method uses the following scheme for integration:

qk+1 = qk +∆tq̇k+1

q̇k+1 = q̇k +∆tq̈k+1
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Here, qk+1 and q̇k+1 are the displacement and velocity at time tk+1 = tk ++∆t, respectively.
4. Rearranging the equation: Substitute the expressions for qk+1 and q̇k+1 into the dynamic
equation and express q̈k+1 in terms of known quantities at time tk.
5. Assembly of system equations: Formulate the system of equations at each time step.
This results in a set of algebraic equations. One can reformulate (2.73) to the following equations
at each time step to the following algebraic equations:

(M +∆tC̄)q̇k+1 −∆tMq̇k +∆tKqk+1 −∆tF e = 0 (2.74)

qk+1 − qk −∆tq̇k+1 = 0 (2.75)

6. Solving the equations: In the equation under discussion, the matrices M and C̄, as
well as the external force term F e, functionally depend on qk+1 and q̇k+1, thus constituting a
nonlinear system of equations. A common strategy for resolving this involves linearization to
simplify the problem. This process typically entails performing a Taylor series expansion of the
equations in the vicinity of the solution at the current time step, specifically by determining
the partial derivatives of M , C̄ and F e with respect to qk+1 and q̇k+1. However, computing
these partial derivatives can often be intricate and time-intensive. In practical scenarios, we
approximate these matrices as constants within each time step, effectively using the matrices
at time tk to approximate those at the current time tk+1. When we arrive at a linearized
equation set, selecting an appropriate numerical solver becomes crucial. Direct solvers, like
Gaussian elimination, are suited for medium and small-scale systems, while iterative solvers,
such as the conjugate gradient method, are ideal for large, sparse systems. An alternative
method for tackling these equations is the Newton-Raphson technique or its variants, which
involve iterative resolution of the nonlinear equation set. Fundamentally, this first approach is
essentially the initial phase in the nonlinear iterative solving process.
7. Updating the solution: Once the unknowns at tk+1 are computed, update the state of
the system (configuration, strain, velocity).
8. Iteration: Repeat steps 2 to 7 for each time step until the end of the time interval is
reached.

The steps outlined above summarize the process of using the implicit Euler method to
solve the dynamics equations of a cochlear implant. One notable advantage of the implicit
Euler method is its improved numerical stability. Since the implicit method involves solving
an algebraic equation at each time step, which includes information about the future solution,
it exhibits enhanced stability, especially when addressing stiff systems. Explicit methods may
require very small time steps to ensure numerical stability, whereas implicit methods often
maintain stability even with larger time steps, reducing computational complexity.

Another significant advantage is the suitability of the implicit Euler method for addressing
problems with more complex physical structures. In certain scenarios, explicit methods may
incur higher computational costs due to the necessity of smaller time steps. Implicit methods,
on the other hand, tend to offer advantages, especially when dealing with systems exhibiting
multiscale behavior or strong nonlinearity.

2.6 Simulation

In the preceding section, we discussed various numerical solution methods for dynamic systems.
This section will concentrate on the simulation of active electrode arrays, specifically utilizing
the implicit Euler numerical solution method. It includes a thorough validation of the proposed
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Cosserat model and presents simulation results depicting the deformation of active electrode
sequences under various loads and inputs.

2.6.1 Model validation

FEM can be regarded as a reliable tool (and reference) to verify the modeling result by selecting
finer mesh, since it discretizes the space in a very generic manner without introducing restrictive
assumptions. Hence, we used the FEM approach as an alternative of the real soft slender rod. In
short, the main idea of FEM is to discretize the geometric shape of the rod by employing finite
number of finer elements. The geometric model of the rod is established in the SolidWorks,
we then use the FEM in Comsol which is a general FEM software to obtain the equilibrium
position of the cantilever rod.

(a)

(b) (c)

Figure 2.14: Simulation comparison of three different modeling methods for the cantilever rod
before and after deformation. (a) FEM. (b) PCS and PLS Cosserat models in MATLAB. (c)
Configuration of the soft manipulator under gravity in three-dimensional space.

Specifically, in terms of spatial discretization of the studied cantilever rod, quadrilateral
mesh elements are used, and the rod is spatially discretized into 650 elements along the X-axis
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regarding the trade-off between the accuracy and computation expense. The mesh average
element quality, equals to 0.8033, indicates the high discretization accuracy of the model. The
simulation result by our proposed PLS method is compared with piecewise constant strain
method (PCS)[120] and FEM.

The rod modeled by PLS is divided into three sections, and the length of each section is
separately 9 × 10−2 m, 7 × 10−2 m and 4 × 10−2 m from base to tip. For a more specific
comparison and evaluation, the material and geometric parameters for the discrete Cosserat
models with the same sections in MATLAB are in accordance with those of the FEM. From
the simulation results, the equilibrium position of the end-effector of the cantilever rod via
FEM under gravity is ue = [5.8479, 0,−17.8395]⊤, as shown in Fig. 2.14(a). It took around 14
seconds to complete one simulation because the FEM for large deformations always requires
heavy computation. Likewise, we can derive the positions of the end-effector of the discrete
Cosserat static models by using the Newton method. From the perspective of computation
time of discrete Cosserat static models, we observe that the systems can converge in less than 2
seconds (i.e., 1.3 s for PCS, and 1.2 s for PLS) mainly due to the use of the basic idea of model-
order reduction. To intuitively demonstrate the whole shape accuracy of the soft rod modeled
by different modeling methods, the spatial configurations of the models under gravity have been
depicted in Fig. 2.14(c) which highlights the high deformation similarity of the PLS and FEM.
Comprehensively considering the comparison results among them illustrated in Table 2.3 and
Fig. 2.14, we come to a conclusion that, compared to the PCS, the model via the PLS Cosserat
modeling approach fits much better the results obtained by the FEM, with the relative error
of the end-effector position less than 5%. In other words, the PLS Cosserat static model is
essentially comparable to the FEM in terms of accuracy, which can be further verified by the
purple PLS configuration tendency plotted in Fig. 2.14(b)-(c), almost the same as the FEM in
Fig. 2.14(a). Logically, this can be explained by the fact that the piecewise linear interpolation
technique applied to all cross sections of the proposed PLS Cosserat model allows to precisely
approximate the deformation behavior of the soft slender rod in the real scenario. In this

Table 2.3: Comparison results of PCS and PLS Cosserat static models w.r.t. FEM under
gravity in terms of end-effector position and its relative error

Modeling
method

Position of end-effector
(Unit:cm)

Relative error of end-
effector position w.r.t.

FEM (Unit: %)
ux uy uz ex ey ez

FEM 5.8479 0.0000 -17.8395 × × ×
PCS [120] 5.3450 0.0000 -17.1693 -8.60 0.00 -16.88

PLS 5.7787 0.0000 -17.8394 -1.18 0.00 -0.01

section, we conducted a thorough comparison between the PLS model and the FEM model for
general soft slender rods. This comparison has effectively validated the precision of the PLS
approach in slender rod modeling. Moving forward, the next chapter will pivot towards active
electrode arrays. We will examine their deformational responses under a range of external forces
and diverse actuation voltages, further expanding our understanding of their behavior in varied
conditions.
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2.6.2 Passive Electrode Array

2.6.2.1 Geometric dimensions

The geometric dimensions of the EA of cochlea implant are as follows: the radius at the wider
end is 0.5mm and the radius at the narrower end is 0.3mm. The electrode array is composed
of 12 electrodes. The total length is 30mm, the length of electrode is 1mm and the electrode
spacing is 1mm, as shown in Fig. 2.15(a). The Young’s modulus of the soft part of the EA is
set as 25 MPa.

(a) (b)

Figure 2.15: (a) The dimension of EA. (b)The 3D geometry setting of electrode array.

2.6.2.2 Soft-rigid coupling

As shown in Fig. 2.15(b), the EA includes internal electrodes and an external shell. The
electrodes can be considered rigid bodies, while the non-electrode parts can be considered
flexible bodies. Therefore, the corresponding cosserat beam for the implant is a rigid-flexible
coupled beam. We achieve rigid-flexible coupling by setting the stiffness distribution function.
The red region represents areas with higher stiffness, corresponding to the rigid electrode, and
the blue region represents areas with lower stiffness, corresponding to the flexible body.

2.6.2.3 Simulation with tip load

Simulation 1: We applied a torque load along the y-axis at the end of the implant. The
magnitude of the torque ranged from 0mN to 120mN. The static simulation results are shown
in Fig. 2.16(a).
Simulation 2: We applied a force load along the z-axis at the end of the implant. The
force magnitude ranged from 0mN to 30mN. The static simulation results are presented in Fig.
2.16(b).

Through simulation, we can observe that when different forces and torques are applied to
the end point of the EA, it undergoes deformation. As the magnitude of the force or torque
gradually increases, the bending degree of the EA also increases. Additionally, it can be seen
from the figures that the bending always occurs in the flexible part of the EA, while the section
containing the rigid electrodes remains undeformed.
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(a) (b)

Figure 2.16: (a) The deformation of the implant when a torque load is applied to its tip. (b)
The deformation of the implant when a force load is applied to its tip.

2.6.3 Active implant

The simulation parameters for the active implant are as follows: the total length is 26mm,
with diameters of 0.6mm at one end and 0.4mm at the other. The Young’s modulus is 30
MPa. The three conducting polymer actuators each have a length of 7mm, and their other
physical parameters are determined from the identification process mentioned in the previous
section. These three conducting polymer actuators are positioned at distances of 3mm, 11mm,
and 19mm from the left end of the implant. At the same time, the stiffness of the wires used
to power the actuators is considered. We achieve the variation of wire stiffness along the axis
of the implant by setting the stiffness function.

The evolution of input voltage over time is depicted in Fig. 2.17, following a linear change
with time. The sequential activation order of the three actuators from right to left is achieved
through a temporal offset in the voltages. Thus, simulating the process of the implant entering
the cochlea in a spiral manner.
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Figure 2.17: The input voltage of three actuators in active cochlear implant.

Fig. 2.18 illustrates the simulated deformation results of the active implant under this
evolving voltage. The simulation results reveal that when the CPAs within the EA are powered
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sequentially, they are activated in order. Consequently, the front part of the EA bends first,
followed by the middle section, and finally the tail end. This mimics the curvature change of
the EA when it is implanted into the cochlea, with the curvature varying from the front end to
the tail end along the cochlear’s spiral trajectory.

(a) The first conducting polymer actuator has been activated

(b) The second conducting polymer actuator has been activated

(c) The third conducting polymer actuator has been activated

Figure 2.18: When subjected to the applied voltage, the three CPAs were sequentially activated,
resulting in the bending of the active electrode array.
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2.7 Conclusion

In this chapter, we represents an earnest effort in advancing the field of Active Cochlear Im-
plants, particularly in modeling of ACI systems. Our research has focused on overcoming
existing limitations in CI studies, leading to substantial advancements in both the functionality
and effectiveness of these implants.

Our first major accomplishment is the development of a generalized mechanical model for
the Electrode Array. By integrating the Lie group and leveraging the Cosserat rod theory,
we have created a parameterized strain field that accurately represents the real system with
reduced dimensionality. This model excels in handling the nonlinearities associated with large
deformations of EA and is notable for its balance between accuracy, robustness, and computa-
tional efficiency. It sets a new standard for real-time simulation and control applications in the
field.

The second notable achievement is the formulation of a generalized electronic-mechanic
model for the Electronic Conducting Polymer. Similar to the EA model, this model reduces
complexity through parameterization and precisely manages nonlinear deformations using the
Cosserat rod theory. It stands out for its ability to balance dimensionality, accuracy, and
computational feasibility, laying a solid foundation for future simulations and control projects
in CI technology.

Addressing the challenges of unknown or imprecise physical parameters, we introduced an
innovative parameter identification method based on a nonlinear electro-mechanical coupling
model. The development of a bespoke visual identification system has simplified the experi-
mental process, enhancing the practicality of our approach.

The culmination of our work is the introduction of a comprehensive coupling model that
integrates both EA and ECP for active cochlear implants. This groundbreaking model serves
as a fundamental framework for model-based control of active cochlear implants, representing
a significant leap in our understanding and manipulation of these complex systems.

Overall, the methodologies and findings presented in this chapter paves the way for more
advanced, efficient, and effective model of CIs, laid the foundation for a theoretical model for
subsequent research work.

Up to now, we’ve developed a dynamic model for EA to predict its deformation under
external forces. Given our goal to simulate the entire cochlear implantation process of the
EA, it’s crucial to go beyond this isolated dynamic model. We need to explore the interaction
between the EA and the cochlea during implantation. The next chapter will focus on building
a contact model between the EA and the cochlea, leveraging the foundations laid by the EA’s
dynamic model we have established.
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Chapter 3

Modeling of the Interaction
between Implant and Cochlea

3.1 Introduction

In Chapter 2, we delved into the complex modeling of active electrode arrays for cochlear
implants. This encompassed the mechanical model of the electrode array, the electromechanical
coupling model of the ECP actuator, and the integrative model of the active electrode array.
A critical aspect during the implantation process of the electrode array is its continual contact
with the cochlea’s inner wall. As previously discussed in Chapter One, this contact can lead
to various complications during implantation, such as folding over, scratching, and buckling.
These issues arise from the interaction between the electrode array and the cochlea’s inner
wall, underscoring the importance of developing a comprehensive contact model. This model
is essential for predicting and analyzing potential implantation issues.

In this chapter, we build upon the mechanical model of the electrode array introduced in
Chapter Two. We extend the Cosserat model to encompass contact phenomena, establishing
a detailed contact model between the electrode array and the cochlear wall. This development
includes identifying instances of contact, analyzing contact and frictional forces, all intricately
integrated with the Cosserat beam model. These elements will be thoroughly examined and
analyzed in Chapter Three, providing a deeper understanding of the electrode array’s behavior
during implantation.

Building upon the Cosserat model for cochlear implants, this chapter delves into the incor-
poration of frictional contact constraints and the facilitation of rapid simulations by converting
these constraints into equality conditions. We introduce an innovative formulation for resolv-
ing dynamics in systems with frictional contact constraints. This approach diverges from the
conventional nonsmooth LCP or NCP methods by employing smooth NCP functions for recon-
structing contact constraints, an extension we apply to the domain of cochlear implant. This
formulation, amenable to solution via standard direct Newtonian methods, adeptly navigates
the complexities of nonlinear friction models.

This chapter seeks to address several pivotal questions:

1. How can we construct a contact problem with a reduced number of degrees of freedom,
including the geometric model of the cochlea and the establishment of contact pairs?

2. How can contact dynamics be expressed using a mathematical model, including dynamical
equations and contact constraints?
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3. How can contact constraints in dynamics be managed efficiently and effectively?
Through answering these questions, we endeavor to shed new light on modeling and simu-

lation techniques in the realm of contact mechanics for cochlear implant, with a special focus
on applications like cochlear implants that have far-reaching implications in the medical field.

3.2 Geometric Description of Cochlea

In order to develop a contact model between the electrode array and the cochlea, our initial step
involves determining if contact has occurred between them. Following this, we set up contact
constraints and formulate the forces involved in the contact. This process necessitates first
acquiring the three-dimensional geometric models of both the electrode array and the cochlea,
crucial for assessing contact instances.

In many Finite Element Method (FEM) models, the geometric depiction of 3D objects is
often defined by a mesh model, where the object’s surface is segmented into numerous small
polygons. For precise geometric representation, this could entail utilizing thousands of polygons.
However, employing these polygons for contact detection significantly elevates the system’s
dimensionality, consequently impeding the computational efficiency of the model.

In Chapter Two, we crafted the geometric model of the electrode array. It is defined compre-
hensively along its central backbone. The overall deformation of the array is depicted through
the positions of each cross-sectional slice along this central line. This method of geometric di-
vision, in contrast to traditional polygonal meshes, capitalizes on the inherent geometric prop-
erties of slender rod-like structures, markedly reducing the geometric dimensions and curbing
the need for superfluous computations.

Regarding the three-dimensional geometric modeling of the cochlea, which shares a similar
tubular structure, we can employ a methodology akin to that used for the electrode array.
We envision the cochlea as a series of closed loops encircling its central line. These loops, as
they sweep along this central line, create a surface that effectively and efficiently represents the
cochlea’s three-dimensional form.

3.2.1 Center-line of cochlea

The trajectory of the cochlea is defined as the centerline of the cochlea, which is a three-
dimensional line segment in the Cartesian coordinate system. To define the centerline, we used
a parameterized equation, employing a B-spline definition of the curve equation to achieve a
smoother fit.

The B-spline of order k+1 is essentially a segmented polynomial function, where the degree
of each segment is k, and the variable of interest is s. This concept was discussed by Prautzsch
in their work on Bezier and B-spline techniques [121]. The foundational elements of a B-spline
are its basis functions, denoted as Bi,k(s) , and a set of control points ri, i = 0, . . . , p. The
transition points between these polynomial segments are called knots. These knots, represented
as {s0, s1, s2, . . . , sk+p}, are arranged in a nondecreasing sequence. The comprehensive expres-
sion of a b-spline, C , as defined through these parameters, is formulated based on these basis
functions and control points:

C(s) = Σi=p
i=0Bi,k(s)ri

where basis function Bi,k(s) is calculated from Bi,0(s) to Bi,k(s) by the recursive formula below:
for d = 0 and 0 ≤ i ≤ k + p ,

Bi,0(s) =

{
1 if si < s < si+1

0 else
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(a) (b)

Figure 3.1: A three-dimensional scan mesh depicting the cochlea and its B-spline based center-
line.

for d > 0 and 0 ≤ i ≤ k + p− d ,

Bi,d(s) =
s− si

si+d−1 − si
Bi,d−1(s) +

si+d − s

si+d − si+1
Bi+1,d−1(s)

In this subsection, we employed B-spline curves to delineate the spiral central line of the
cochlea. As we have earlier discussed, the geometric portrayal of the cochlea is defined as a
surface created by sweeping a series of closed loops along this spiral central line. To put it more
clearly, the comprehensive geometric characterization of the cochlea ought to be represented
as a tubular structure. This representation should encompass not only the central positions of
any given cross-sectional area along the tubular structure but also account for the rotational
aspect of these cross-sections. At present, our model is limited to merely defining positional
information. Consequently, there is a need to develop a more advanced tubular structure model
that incorporates considerations of the cross-sectional rotations, thereby fitting the cochlea’s
central line more accurately. We will elaborate on the methodology for achieving this in the
subsequent sections.

3.2.2 Euler-Bernoulli tubular fitting

We conceptualize the overall geometrical structure of the cochlea using the Euler-Bernoulli
beam, whose configuration can be represented by the configuration matrix ge of each disc along
to beam, as shown in Fig. 3.2(b):

ge(se) =

[
Re(se) pe(se)
0⊤ 1

]
∈ SE(3), ∀se ∈ [0, Le]

where se is the arc length coordinate of Euler-Bernoulli beam, Le is the total length of this
beam.

Within this three-dimensional framework, the cochlea is subjected exclusively to bending
angular strains, while both torsional and linear strains are essentially non-existent. In other
words, the Euler-Bernoulli beam can be regarded as a Cosserat beam that only exhibits bending.
In this case, the strain with respect to its body frame can be expressed by the following formula:

ξe(se) =
[
0 κy(se) κz(se) 1 0 0

]⊤
, ∀se ∈ [0, Le] (3.1)

where κy and κz are two angular strains of bending, se is the arc length coordinate of Euler-
Bernoulli tubular, Le is the total length of this tubular.
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(a) B-spline (b) Euler-Bernoulli tubular

Figure 3.2: (a) The cochlear central line represented by B-spline, with the parameter coordinate
s. (b) The Euler-Bernoulli tubular cochlea corresponding to the B-spline, with the parameter
coordinate se. The red circles represent discs, and at each disc, there is an attached body frame,
determined by the matrix ge, which indicates the position and orientation of the disc.

Next, we use our PLS technique to interpolate (3.1) in the interval [0, Le]. Dividing this
tubular into M sections by the nodes {0, Le

M , 2Le

M , 3Le

M , . . . , Le}, the bending strain of all nodes
of all sections can written as a compact vector as follows:

R2(M+1) ∋ θe =
[
κy(0) κz(0) κy(

Le

M ) κz(
Le

M ) . . . κy(Le) κz(Le)
]⊤

(3.2)

Recalling the parameterization formula (2.13), (3.1) can be interpolated via the following for-
mula:

ξe(se) = ξ0 +BeΦe(se)θe (3.3)

where ξ0 = [0 0 0 1 0 0]⊤ is the initial strain, Φe is the Ritz basis function, Be is the strain
augmentation matrix, whose role is to expand the 2-dimensional strain to 6 dimensions. Their
definitions are given by the following formulas:

� Ritz basis function

Φ(se) =
[
Φ0(se)I2×2 . . . ΦM (se)I2×2

]
∈ R2×2(M+1), ∀ se ∈ [0, Le] (3.4)

with

Φi(se) =



iLe −Mse
iLe − (i− 1)Le

for se ∈ [(i− 1)
Le

M
, i
Le

M
)

Mse − iLe

(i+ 1)Le − iLe
for se ∈ [i

Le

M
, (i+ 1)

Le

M
]

0 for se /∈ [(i− 1)
Le

M
, (i+ 1)

Le

M
]

� Strain augmentation matrix

Be =

[
0 1 0 0 0 0
0 0 1 0 0 0

]⊤
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As mentioned in Chapter 2, the configuration of a beam is inferable from its strain field. This
implies that there is an equivalence between the strain field and the configuration of a tubular
cochlea. Specifically, for a tubular cochlea, it’s possible to determine the central position of
each individual disc by extracting data from the configuration matrix:

R3 ∋ pe(se) = PgeA, ∀se ∈ [0, Le] (3.5)

where pe(se) is the central position of disc of the tubular cochlea at se, P and A are two matrix
for picking up pe from ge, with:

P =

1 0 0 0
0 1 0 0
0 0 1 0

 , A =
[
0 0 0 1

]⊤
Our current objective, therefore, is to identify a series of interpolation points within the strain
field, i.e., θe, such that the central positions of the interpolation points on the tubular cochlea
accurately match the B-spline curve we defined in Subsection 3.2.1, as shown in Fig. 3.2. To
accomplish this, we are required to formulate and solve 3(M+1) nonlinear equations as follows:

pe(0) = C(s0), pe(
Le

M
) = C(s1), pe(2

Le

M
) = C(s2), . . . , pe(Le) = C(sM ) (3.6)

In the aforementioned set of nonlinear equations, the unknowns are the strain interpolation
vector θe ∈ R2(M+1) and the parameter coordinates {s0, s1, . . . , sM} corresponding to the B-
spline curve, thus we have also 3(M + 1) unknown variables. Given that we are aware of the
functional form of the aforementioned set of equations, they can be solved using a nonlinear
solver. This will ultimately yield the strain interpolation variable θe, which describes the
configuration of tubular cochlea.

In this subsection, we have utilized the Euler-Bernoulli beam to model the configuration of
the cochlea. As previously discussed, we conceptualize the geometry of the cochlea as a surface
formed by sweeping a sequence of closed loops along its spiraling central line. We already
possess the function describing this spiral central line and the rotational information for each
disc along it. What remains to be determined is the cross-section, i.e., the closed loop, for each
disc.

In the following discussion, we will detail the process for defining these closed loops. These
loops are critical as they constitute the cross-sectional profiles of the cochlea, arranged perpen-
dicularly to its central line.

3.2.3 Cross section of cochlea

Having modeled the cochlear central line with the Euler-Bernoulli beam approach, we’ve ac-
quired the position and orientation for each disc, essentially every body frame along this line.
However, our model is still incomplete as it doesn’t yet define the cochlear surface. To address
this, our next step involves defining the cross-sectional contours of the cochlea in relation to
each body frame.

To describe the coordinates for every point on the surface of cochlea, we introduce the second
coordinate β ∈ R. This new coordinate defines the position of a point on the disc relative to
its center. As illustrated in Fig. 3.3, β represents the rotation angle in radians of the contact
point around the center point in the direction of x-axis. By using the coordinate X = [se, β]

⊤,
we can precisely locate any point on the surface of the cochlea, which allows us to analyze the
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Figure 3.3: Defining the cross-sectional contours of cochlea in the body frame of Euler-Bernoulli
tubular.

contact situation during the interactions between EA and cochlea. For any point on the surface
of cochlea, its position can be given by:

pc(se, β) = pe(se) +Re(s)d(se, β) (3.7)

where d(se, β) is the local distance vector from the center-line of cochlea to the point on the
surface, which is defined in the body frame, describing the cross-sectional contours of cochlea.
Since we assume that the form of cross-section of cochlea never changes during the implantation,
this vector only depends on robot’s original geometries of the cochlea.

(a) (b)

Figure 3.4: The 3D geometric model of the cochlea, showcasing its B-spline based center-line
and the elliptical cross section.

Thus far, we have successfully established the geometric model for the surface of the cochlea.
The next step involves identifying contact points on this surface. In contact calculations between
two objects, the formation of contact is characterized by the emergence of pairs. This entails
pinpointing a set of potential contact points, each located on the surfaces of the interacting
objects. These points are collectively referred to as a contact pair. The procedure for finding
these potential contact pairs is known as collision detection. In the ensuing section, we will
delve into the methodology for performing collision detection.
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3.3 Collision Detection

3.3.1 Continuous Search of Contact Pair

To calculate the contact distance between the EA and the cochlea, we first need to obtain the
contact model of the implant and cochlea. Next, we define the contact object, which in our
work, consists of a contact pair composed of two contact points, located on the 3D geometric
models of the implant and cochlea respectively. A contact pair consists of two contact points,
including the master contact point and the slave contact point. The master contact point is
located on the centerline of the implant and is a predefined hypothetical point that is fixed and
does not change with the contact position. The slave contact point is located on the centerline
of the cochlea and changes as the master contact point moves.

Figure 3.5: The figure displays collision detection and contact pairs.

When the master contact point moves, the corresponding slave contact point is defined as
the contact point closest to the master contact point, i.e., the slave contact point is obtained
by minimizing the contact distance. The searching process is as follows:

� Step 1. Chose the master object and slave object

As shown in Fig. 3.5, we first determine the master object as electrode array and fix the
contact nods on the electrode array. The cochlea is chosen as slave object.

� Step 2. Search of contact cross-section in direction of length

As shown in Fig. 3.5, once the master contact point is fixed, we will first search the
cross-section of cochlea which pass through the master point. This equals to find a point
pe(se), namely the secondary slave point, on the center-line of cochlea which is closest
to the master contact point and the coordinate se of the point pe(se) determines the
targeted cross-section, as shown in Fig. 3.6(a). Denoting pm as the master point and
ds = pe(se)−pm, the search of cross-section could be realized by solving the minimization
as follows:

se = argmin Y1 =
1

2
d⊤s ds (3.8)

(3.8) could be solved by the following Newton iteration:

se,j+1 = se,j −H−1
se J

⊤
s ds (3.9)

where Js is the Jacobian of ds, i.e., Js = ∂pe

∂s . Hs is the Hessian matrix, which can be
approximated by Jacobian of ds as Hs = Js

⊤Js.
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(a) Searching the cross-section (b) Searching the contact point in the
cross-section

Figure 3.6: By employing a continuous search algorithm via Newton method to identify the
slave point closest to the master point at each moment.

� Step 3. Search of contact point on cross-section

Once the cross-section is found, i.e., one coordinate s of pc(s, β) is fixed, the slave contact
point pc on the cross section at s can be searched by the same idea of step 2, as shown in
Fig. 3.5(b). Denoting dβ = pc(s, β)−pm, it could be searched by solving the minimization
as follows:

β = argmin Y2 =
1

2
dβ

⊤dβ (3.10)

(3.10) could be solved by the following Newton iteration:

βj+1 = βj −H−1
β J⊤

β dβ (3.11)

where Jβ is the Jacobian of dβ with respect to β, i.e., Jβ = ∂p
∂β . Hβ is the Hessian

matrix, which can be approximated by Jacobian of dβ as Hβ = J⊤
β Jβ .

Through the outlined procedure, we can ultimately establish a set of coordinates (s, β)
which allows us to locate the slave contact point corresponding to the master contact point.
When the master contact point comes into contact with this slave contact point, contact forces
are generated at the contact point. Therefore, it is essential to determine the direction of these
contact forces, which includes both the normal contact force and the tangential contact force.
We have predefined that these contact forces will be generated at the slave contact point and
applied to the master contact point. In the subsequent subsections, we will establish a contact
frame for the slave contact point which helps us better represent the contact force.

3.3.2 Contact frame of contact pair

Once we find the slave contact point on the surface of cochlea, the contact frame at this
point can be represented by a contact plane which is tangent to the surface of cochlea, as
shown in Fig. 3.7. This plane, noted as Γ, can be defined by a pair of covariant tangent vectors
{τ 1, τ 2}, with:

τ 1 =
∂pc
∂se

=
∂p

∂se
+
∂R

∂se
d+R

∂d

∂s
= R(ϵ+ κ̃d+

∂d

∂se
)

τ 2 =
∂pc
∂β

=
∂d

∂β
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Figure 3.7: Coordinates of surface of cochlea and contact frame.

The unit normal vector of this tangent surface is then given by:

n =
τ 1 × τ 2

∥τ 1 × τ 2∥
(3.12)

Note that the basis {τ 1, τ 2,n} is not necessarily orthogonal in the deformed configuration, i.e.,
τ⊤
1 τ 2 ̸= 0, thus a new orthogonal basis can be defined from {τ 1, τ 2,n} by replacing τ 1 and τ 2

with:

e1 =
τ 1

∥τ 1∥
, e2 =

n× τ 1

n× ∥τ 1∥

We can finally use the orthogonal basis {e1, e2,n} to define the contact frame. Note that these
three unit vectors are all defined in the global frame, thus can be regarded as a rotation matrix
noted as Rc which transfers the contact frame to global frame:

Rc =
[
n e1 e2

]
Based on this matrix, we can then define a configuration tensor gc ∈ SE(3) which represents
the position and orientation of the contact frame with respect to the global frame:

gc =

[
Rc pc
0⊤ 1

]

3.3.3 Contact force

When objects come into contact with each other, contact forces are generated in the contact
region (contact point), and these contact forces contribute to the dynamics of the objects.
Therefore, we need to incorporate the contact forces into the dynamic equation, as shown
below:

Mη̇ − ad⊤ηMη = Λ′
i − ad⊤ξ Λi +Λe +Λ∗

c (3.13)

where Λ∗
c ∈ R6 denotes the contact wrench. Referring to Fig. 3.8, the contact frame clearly

defines the orientations of contact forces. Specifically, the n axis represents the direction of the
normal contact force, while the e1 and e2 axes correspond to the directions of tangential contact
forces (likewise for contact moments). Denote Λc represents the wrench generated by contact
expressed in contact frame. Nevertheless, it becomes necessary to transfer it into the body-fixed
coordinate system, as the dynamic equations for the electrode array are formulated in the body
frame. Then, we denote Λ∗

c as the equivalent wrench with respect to the body frame, which is
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generated by translating the distributed contact force onto the center of cross-section. There
exists the following relationship between Λc and Λ∗

c :

Λ∗
c = Ad∗gbc

Λc (3.14)

where the coadjoint representation of the Lie group Ad∗ allows changing the wrench from the
contact frame to the body frame, with gbc = g−1gc, being the configuration tensor of the
contact frame with respect to the body frame.

Figure 3.8: Transformation of contact load from contact frame to body frame.

After having discussed the contact frame and contact forces, we also need to consider the
corresponding contact constraints. In the following section, we will introduce various types of
contact constraints.

3.4 Contact Constraints

In the above sections, we have established the geometric model of the cochlea, defined the con-
tact frame, and introduced the contact force. We are now able to conceptualize the interaction
between the electrode array of a cochlear implant and the cochlea as a contact problem. Within
the context of contact dynamics, two key elements come into play. The first element is the con-
tact force, as discussed in the preceding sections. The second element is the contact constraint,
which necessitates the absence of penetration during contact and adherence to the principles of
friction. To enhance our understanding and investigate a broader spectrum of contact models,
the upcoming sections will be dedicated to introducing and elaborating on the contact model
for a general soft slender rod. In the culmination of this study, the final simulation section will
circle back to the specific scenario of the interaction between the cochlear implant electrode
array and the cochlea, applying our broader findings to this particular case.

As depicted in the Fig. 3.9, contact will be formulated as constrains in the deduced im-
plant dynamics. From a consideration of the geometric mechanism of contact, three potential
contact constraints may arise, include fixed constraints, articulated constraints, and collision
constraints. Among these, fixed constraints and articulated constraints can be represented us-
ing equalities and fall into the category of bilateral constraints. On the other hand, collision
constraints are typically expressed using inequalities and fall into the category of unilateral
constraints[122]. All contact constraints give rise to contact forces at the contact points. The
following will firstly introduce the bilateral contact constraint and secondly the unilateral con-
tact constraint.

3.4.1 Bilateral contact constrain

Bilateral constraints are mathematical representations of kinematic pairs, such as spherical,
or revolving joints. These constraints can be expressed as algebraic equations that impose
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Figure 3.9: Different contact constraints of soft slender rod.

restrictions on the relative positions of the two bodies.

3.4.1.1 Fixed constraint

In engineering applications or some simulation scenarios, some parts of the soft slender rod
will be totally fixed by the external environment. For example, the head section of the soft
slender rod is fixed on a mobile base or some of its parts are hinged to external objects like truss
system[123]. These persistent constraints can be regarded as bilateral constraints. Specifically,
the satisfaction of bilateral constraints can be realized by adding Lagrangian multipliers in the
system. For any points s ∈ [0, 1] along the centerline of the soft slender rod, if we want to
fix some sections of soft slender rod to the desired configuration, that is, given a constrained
configuration matrix gf (s), then the bilateral constraint can be expressed as:

R6 ∋ Gf (s) =
(
log(g−1

f g)
)∨

= 0

which is equivalent to the following bilateral constriant gf (s)− g(s) = 0, stated in the matrix
form.

3.4.1.2 Articulated constraint

Articulatd constraints in soft slender rods impose limitations on the translation of contact
points while permitting rotational freedom at the cross-sections of these points. Consequently,
only the three translational degrees of freedom are constrained by articulated constraints. For
s ∈ [0, 1], denoting the desired position of the joint as pa(s) with respect to the global frame,
the articulated constraint is given by the following equation:

R3 ∋ Ga(s) = pa −Ugc(s, β)A = 0

where U = [I3×3 01×3] and A = [0 0 0 1]⊤. Note that for the articulated constraint, the
joint can only generate the force but not the moment, which means that Λc is not fully filled.
Denoting the generated force as Λa ∈ R3, (3.14) should be rewritten as:

Λ∗
c = Ad∗gbc

B⊤Λa
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where B = [03×3 , I3×3].

3.4.2 Unilateral contact constrain

In the field of contact mechanics, the unilateral constraint refers to a mechanical constraint
that prohibits any form of penetration or interpenetration between two bodies, whether they
are rigid or flexible. This constraint ensures that the tangential contact forces between the
bodies adhere to the contact law, which governs the interaction between contacting surfaces.

For collision constraint, the generated force is composed by the normal contact force and
tangent friction force, i.e., Λc = [01×3,Λn,Λt1,Λt2]

⊤, where Λn, Λt1 and Λt2 denote respectively
the normal contact force in the direction of n, the friction force in the direction of e1 and e2.
Thus (3.14) should be rewritten as:

Λ∗
c = Ad∗gbc

(B⊤
nΛn +B⊤

t Λt) (3.15)

where Bn = [01×3, 1,01×2], Bt = [02×4, I2×2] and Λt = [Λt1,Λt2]
⊤.

In accordance with the problem statement, the collision constraints encompass a set of
inequalities that involve contact gaps and contact sliding velocities. Hence, our initial objective
is to elucidate how to define contact gaps and contact sliding velocities within the framework
of Cosserat rod theory.

Figure 3.10: Geometries of the contact pair.

As shown in Fig. 3.10, we designate the contact frame of the soft slender rod as gc, serving
as the master contact frame. We also denote a known slave contact frame gd, located on the
surface ∂D of another body D. These two frames constitute a contact pair. In order to represent
the relative position and orientation of slave contact frame on ∂D with respect to contact frame
gc on ∂C, we employ a tensor denoted as gcd = g−1

c gd.
The normal gap is the relative position vector projected on the opposite direction of normal

vector n and can be obtained from the relative configuration tensor of contact via the following
relation:.

δn = −PgcdA (3.16)

with P = [1 0 0 0] and A = [0 0 0 1]⊤.
The normal force and normal gap should always be non-negative, i.e., δn ≥ 0 , Λn ≥ 0.

This principle imposes a constraint on the occurrence of mutual penetration among objects in
contact, thereby prohibiting their ability to traverse another one. The magnitude of the normal
contact force is invariably non-negative, and contact forces are solely generated upon contact
establishment.
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The friction force is constrained within a convex set Cf corresponding to the friction cone,
such that Λt ∈ Cf . In our work we use the Coulomb’s law to model the friction, as illustrated
in Fig. 3.11. The section of the Coulomb’s friction cone, i.e., the disk D(µΛn) is defined by

D(µΛn) = {Λt|µΛn − Λt ≥ 0} (3.17)

with µ being the coefficient of friction.

Figure 3.11: Coulomb’s law of friction states that the reactionary force remains completely
within the cone during adhesion between objects, and it aligns with the perimeter of the cone
at the onset of slipping.

Denoting the velocity of backbone of soft slender rod with respect to the body frame as
η and supposing the velocity of the slave contact point on object D with respect to the slave
contact frame gd is ηd. The slip velocity is defined as the projection of the relative contact
velocity onto the tangential plane at the contact point. Thus, the relative velocity twist of
contact point with respect to contact frame gc of ∂C can be then given by:

ηc = Adgcb
η −Adgcd

ηd (3.18)

where gcb = g
−1
c g and the adjoint representation of the Lie group Adg−1

i gj
allows changing the

velocity twist from frame j to frame i. Consequently the slip tangent velocity vt ∈ R2 on ∂C
with respect to contact frame equals to:

vt = Btηc (3.19)

where Bt was defined in (3.15).
As shown in Fig.3.11, the Coulomb’s friction cone contains two different states (stick vt = 0

or slide vt ̸= 0) of a contact point which is given by:{
Stick : µΛn − ∥Λt∥ > 0 , vt = 0 (3.20a)

Silde : Λt = −µΛnT , vt ̸= 0 (3.20b)

Here T is an identity vector which indicates the tangential sliding direction with T = vt

∥vt∥ .

There are two main approaches to model the above unilateral constraints. The first is based
on the regularization of contact constraint such as penalty methods [124], while the second
is based on non-smooth contact dynamics [124], modeling the contact constraint as the exact
inequalities.

Within penalty methods, the constraint is characterized as soft, allowing for the possibility
of penetration between two contacting bodies. In the event of geometric penetration between
these bodies, a penalty potential energy term is incorporated into the studied system, wherein
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its magnitude is directly proportional to the degree of penetration. The penalty potential
will generate the resisted forces in normal and tangential directions. Penalty formulations in
constraint-based simulations offer the advantage of being unconstrained and relatively straight-
forward to simulate and differentiate. They are particularly useful when it comes to stability, as
implicit integration methods allow for stable simulations across a wide range of stiffness values.
However, one limitation of penalty methods is that they allow for small constraint violations.
While minor violations of normal constraints may not be visually apparent, softening the static
friction constraint can lead to undesirable artifacts in certain scenarios. For example, when sim-
ulating a heavy object resting on an inclined surface under static friction, if the simulation runs
for a long duration, the introduction of tangential slipping due to softened stick constraints can
eventually become visually noticeable. Therefore, in our work, we did not utilize this method,
but instead, we consistently treated contact as a hard constraint throughout, which will be
introduced in the next subsection.

3.4.3 NCP formulation of contact constraints

As discussed in the previous subsection, the precise approach involves formulating the contact as
a hard constraint. In the case of unilateral constraints, this formulation is commonly expressed
as nonlinear complementary problem (NCP), which will be detailed in the following subsections.
In such formulation, the unilateral constraints are decomposed into normal contact constraint
(for modeling the contact force between the contact surfaces) and tangential contact constraint
(for modeling the friction between the contact surfaces).

3.4.3.1 Normal contact constraint

In our work, the NCP of normal contact is modeled by the Signorini’s condition [124]:

0 ≤ δn ⊥ Λn ≥ 0 (3.21)

where the symbol “⊥” denotes that the product of δn and Λn equals to zero, where δn represents
the normal distance between the contact pairs in contact frame and Λn represents the contact
force in the normal direction in contact frame, both should be either positive or zero.

3.4.3.2 Tangential contact constraint

Concerning the tangential contact constraint which is used to determine the friction, between
the contact surfaces, let us first denote Λt ∈ R2 as the friction force of any contact point in
contact frame on the surface ∂C. vt ∈ R2 stands for the slip velocity. Then according to the
maximal dissipation principle [125], the instantaneous power of friction force at this contact
point given by Λ⊤

t vt should always takes the minimum within the limit of friction cone, i.e.,
Λt should satisfy the following minimization problem:

Λt = argmin Λ⊤
t vt

subject to µΛn − ∥Λt∥ ≥ 0

where µ is the coefficient of friction. The first order Karush-Kuhn-Tucker conditions of above
minimization problem can be then given by:

vt + λsl∇∥Λt∥ = 0 (3.22)

0 ≤ λsl ⊥ µΛn − ∥Λt∥ ≥ 0 (3.23)
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with λsl the Lagrange multiplier. In fact, the above two equations can be further simplified.
First, one can derive ∇∥Λt∥ = Λt/∥Λt∥. Subsequently, taking this equation into (3.22) we can
get vt = −λslΛt/∥Λt∥. Then taking the norm of both two sides derives λsl = ∥vt∥. Finally,
(3.22) and (3.23) are transferred to the following complementary conditions where the Lagrange
multiplier is eliminated:

∥Λt∥vt + ∥vt∥Λt = 0 (3.24)

0 ≤ ∥vt∥ ⊥ µΛn − ∥Λt∥ ≥ 0 (3.25)

However, it is clear that the coupling between normal and frictional complementarity is non-
convex and non-smooth. In the next section, we propose a smoothing method to solve this
issue. Mathematically, the nonlinear complementary constraint (3.21) can be linearized to
form a linear complementary problem (LCP). However, the tangential constraints (3.24) and
(3.25) cannot be directly formulated as an LCP due to the nonlinearity of the friction cone. A
common approach is to approximate the Coulomb’s friction cone with a pyramid. This allows
for the utilization of LCP solvers such as Lemke’s algorithm [76] and Gauss-Seidel method
[78]. Despite some advancements made in these methods specifically for simulating contact
dynamics, the computational efficiency remains a challenge. In order to ensure both accuracy
and efficiency, the following proposes propose a novel approach to reformulate the contact
constraint as a smooth equality constraint. This new formulation aims to strike a balance
between computational accuracy and efficiency.

3.4.4 NCP-function and slack variable

The idea of the proposed approach is to convert the NCP into a nonlinear function (NCP-
function) in order to formulate the NCP as the equality constraint. Since the work by Man-
gasarian [126] it has been well known that by means of a suitable function ϕ : R2 → R, the
complementary condition a ≥ 0, b ≥ 0, ab = 0 can be transferred to an equivalent nonlinear
equation: ϕ(a, b) = 0. This technique has drawn interest for solving complementary program-
ming in the field of mathematics in these years [127]. Our work is mainly based on this idea,
using a slack variable to define both a and b.

Denoting u ∈ R as the slack variable and D(u) as the Heaviside function with D(u) =
(sgn(u) + 1)/2. The complementary condition of a, b is equivalent to the following definition:

a = D(u)u , b = D∗(u)u (3.26)

with D∗(u) = −D(−u). It is evident that with the aforementioned definitions, the complemen-
tary condition holds for any u ∈ R. Consequently, the nonlinear complementary constraint can
be transformed into a manifold defined by (3.26) with respect to the slack variable u. With
this new transformation, we should revise the normal contact and tangential contact constraint
and transform them as well under this new framework, which will be discussed hereafter.

3.4.4.1 NCP-function of Normal Contact

Concerning the topic of normal contact, we can utilize a variable un ∈ R to represent both
the normal contact force Λn and the normal gap δn at each contact point as the following
definitions:

Λn = D(un)un , δn = D∗(un)un (3.27)
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3.4.4.2 NCP-function of Tangential contact

Concerning the equality constraint (3.24) which means that vt and Λt are always parallel and
opposite, hence it is possible to define them by the parametric equation. At this aim, we first
represent them in the polar coordinates, i.e., (3.24) equals to the following representation:

vt = ρ1

[
sin θ
cos θ

]
, Λt = −ρ2

[
sin θ
cos θ

]
(3.28)

where ρ1 ≥ 0 and ρ2 ≥ 0. Therefore, we can rewrite the complemantarity (3.25) as:

0 ≤ ρ1 ⊥ µΛn − ρ2 ≥ 0

which is equivalent to:

ρ1 = f(ut − µΛn) , ρ2 = µΛn − f(µΛn − ut) , ∀ut > 0 (3.29)

where function f(x) denotes D(x)x. Then by taking the above representation into (3.28) one
can get:

vt = f(1− µΛn

ut
)

[
ut sin θ
ut cos θ

]
, ∀ut > 0 (3.30)

Λt =

(
−µΛn

ut
+ f(

µΛn

ut
− 1)

)[
ut sin θ
ut cos θ

]
, ∀ut > 0 (3.31)

Note that the vector part
[
ut sin θ ut cos θ

]⊤
represents an arbitrary vector defined in the polar

coordinates, thus it can be rewritten in the Cartesian coordinates as ut ∈ R2 with ut = ∥ut∥.
By doing so, we can describe (3.30) and (3.31) again in the Cartesian coordinates:

Λt =W (ut)ut , vt =W ∗(ut)ut (3.32)

where

W (ut) = −µΛn

ut
+ f(

µΛn

ut
− 1) , W ∗(ut) = f(1− µΛn

ut
)

Remark 2. Note that (3.32) has no definition when ut = 02×1, thus we define W (0, 0) =
W ∗(0, 0) = 02×1 and ∇W (0, 0) = µΛn

l I2×2, ∇W ∗(0, 0) = 02×2 to avoid the singularity.

Following the above analysis, we can then define the slack vector u = [un u
⊤
t ]

⊤ to cover
both normal constraint and friction constraint. Based on the previous expression (3.15) of
tangential contact forces, we can finally establish the relationship between the relaxation vector
and contact forces using the following equation:

Λc = (B⊤
nDCn +B⊤

t WCt)u (3.33)

where Cn = [1 01×2] and Ct = [02×1 I2×2]. Bn and Bt have been defined in (3.15). Similarly,
the constraints of normal gap and the slip tangent velocity, written as:

δn = D∗Cnu , vt =W ∗Ctu (3.34)

By employing the NCP-function, we have successfully reformulated both the normal and tan-
gential contact constraints into a set of equality constraints. This reformulation allows us to
apply established methods tailored for equality constraints to manage the contact constraints
effectively. Nevertheless, a challenge arises due to the non-smooth nature of the Heaviside func-
tion we are utilizing, which leads to non-differentiable points during the process of addressing
contact constraints. In the following sections, we will present the smoothed versions of the
Heaviside function, which will be incorporated into the contact constraint framework.
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3.4.5 Smooth reformulation of NCP-function

As mentioned above, the aforementioned formulation includes the Heaviside function, which is
known to be discontinuous. Additionally, the function f(x) in (3.29) possesses C0 continuity,
meaning that it is only continuous but not necessarily to be smooth. As a consequence, during
the numerical solution process of dynamics, the presence of these functions leads to sudden
changes, requiring additional iterations to achieve a solution. To address this concern, we
propose a smooth approximation in our work, whereby the Heaviside function in (3.26) is
replaced by some well-known smooth functions[128], which will be discussed hereafter.
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Figure 3.12: Proposed function for the reformulation of complementary constraint.

3.4.5.1 Sigmoid function

The first smooth function we proposed is based on the sigmoid function defined as follows:

D(x) =
1

1 + e−cx
, c > 0 (3.35)

The parameter c plays a crucial role in determining the level of smoothing in (3.35). As c
approaches infinity, (3.35) progressively converges to the Heaviside function, as depicted in
Fig. 3.12. It is important to note that this approximation of complementarity is not perfectly
accurate in the vicinity of the critical state. In situations where c is chosen to be extremely
small, significant errors may occur when x approaches zero, potentially leading to penetrations
of contact. In addition, the friction behavior no longer adheres strictly to Coulomb’s friction
law. In practical simulation computations, it is essential to meticulously select the parameter
c to strike a balance between accuracy and the numerical robustness of the calculations.

3.4.5.2 Trigonometric function

As depicted in Fig. 3.12, the second smooth function we proposed is based on trigonometric
function as follows:

D(x) =


0 , x < 0

1− cos(wx)

2
, 0 ≤ x <

π

w

1 , x ≥ π

w

(3.36)

where w is a positive parameter.
In contrast to the sigmoid function, the function described by (3.36) rigorously fulfills the

complementarity condition. This is attributed to their positive definiteness in the positive half-
axis of x, while being identically zero in the negative half-axis of x. In this case, the parameter

85



w solely affects the robustness of numerical optimization but does not impact the dynamics of
the soft rod.

By utilizing the aforementioned function as a substitute for the impact function, we obtain
the smoothed contact constraints, as depicted in Fig. 3.13. At the critical state between
sticking and sliding, a sudden change in gradient can be observed in the left image of Fig. 3.13
which is non smooth, whereas the gradient in the right image of Fig. 3.13 exhibits a continuous
transition using trigonometric function.

Figure 3.13: The manifold of tangent velocity with respect of slack variable. The figure illus-
trates a comparison between the non-smooth case utilizing the Heaviside function (on the left)
and the smooth case employing a trigonometric function (on the right).

Having tackled the various types of contact constraints, we have now converted them into
smoothed equality constraints. With the contact force and constraints in hand, our next step
is to delve into the dynamics of soft slender rods, specifically the electrode array, under these
contact constraints. A comprehensive introduction to this topic will be provided in the following
section.

3.5 Contact dynamics

To incorporate the interactive forces, stemming from both bilateral and unilateral constraints,
into the dynamics of the cochlear implant, we need to first revisit the Cosserat rod dynamics
(3.13) delineated in Section 3.3.1. Subsequently, we will implement the linear discretization
scheme introduced in Section 3.5.2. This will lead us to derive the weak form of the dynamics
introduced in Section 3.5.3, which is suitable for real-time simulation and control design.

3.5.1 Strong form of dynamics

3.5.1.1 PDE

To account for the contact force during environmental interactions, the corresponding dynamic
model in the body frame can be rewritten as a set of partial differential equations (PDEs).

Mη̇ − ad⊤ηMη = Λ′
i − ad⊤ξ Λi +Λe +Ad∗gbc

Λc +Λf +Ad∗gbc
B⊤Λa (3.37)

satisfying the following boundary conditions:

Λi(0, t) = −Λ0(t) , or g(0, t) = g0(t)

Λi(L, t) = ΛL(t) , or g(L, t) = gL(t)
(3.38)
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where M ∈ R6×6 is the tensor of mass linear density along central axis, Λi ∈ R6 is the elastic
internal wrench, Λc ∈ R6 is the contact force produced by collision, Λf ∈ R6 is the contact
force produced by fixed constraints and Λa ∈ R3 is the contact force produced by articulated
constraints. Λe ∈ R6 are the distributed external wrench applied on the soft slender rod. One
contribution of Λe comes from the gravity which can be given by Λe = MAd−1

g G, where
the inverse of adjoint representation of the Lie group is used to transform twists from the
global frame to the body frame. G is the gravity acceleration twist w.r.t. the global frame
G = [01×5 − 9.81]⊤.

3.5.1.2 Constraints

Except the boundary condition (3.38) which should be satisfied by the revised strong form
(3.37), we need also to take into account the bilateral and unilateral constraints when investi-
gating the interaction between the cochlear implant ant the cochlea. In this case, if all contact
constraints introduced in Section 3.4.1 and 3.4.2 are considered, the dynamics must also satisfy
the following constraint conditions:

Gf = 0 (3.39)

Ga = 0 (3.40)

Λc − (B⊤
nDCn +B⊤

t WCt)u = 0 (3.41)

PgcdA+D∗Cnu = 0 (3.42)

Adgcb
η −Adgcd

ηd −W ∗Ctu = 0 (3.43)

where (3.39) and (3.40) contains all bilateral constraints and (3.41)-(3.43) denote the reformu-
lation of the unilateral constraint based on the slack variable. (3.41) represents the constraint
of contact force. (3.42) and (3.43) describe the constraint on normal contact gap and the
constraint on tangential sliding respectively. The unknown variables in the partial differential-
algebraic system formed by the dynamics and constraints discussed above encompass the initial
pose tensor g0(t) at the starting end, the strain field ξ(s, t), the contact force Λf (s, t), Λa(s, t)
and the contact field represented by slack variables u(s, t). In order to facilitate the solution
of this partial differential-algebraic system, we aim to derive its corresponding weak form. By
introducing suitable test functions Φξ(s) and Φu(s), the weak form of (3.37) can be expressed
as the integration through the backbone of EA:∫ L

0

Φ⊤
ξ (Mη̇ − ad⊤ηMη −Λ′

i + ad⊤ξ Λi −Λe −Ad∗gbc
Λc −Λf −Ad∗gbc

B⊤Λa)ds = 0 (3.44)

and the weak form of constraints (3.42) and (3.43) are given by:∫ L

0

Φ⊤
u

[
PgcdA−D∗Cnu

Adgcb
η −Adgcd

ηd −W ∗Ctu

]
ds = 0 (3.45)

As for the bilateral constrain (3.39) and (3.40), their weak forms retain the same representation
as the strong form since they are normally discretely located on the soft slender rod.

We have derived the weak form, wherein the virtual displacement must be expressed through
generalized variables. The spatial discretization of the strain field, denoted as Φξ , has been
adequately addressed in Section 2.2.7. However, a pertinent question arises: How should we
handle Φu , given its association with contact constraints? The treatment of this issue will be
thoroughly analyzed in the subsequent discussion.
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3.5.2 Spatial interpolation of contact field

It is clear that the distribution of contact forces depends on the arc length parameter s, thus
similar to the interpolation of the strain field, we employ the concept of piecewise linear interpo-
lation to approximate the distribution of contact forces through interpolating the corresponding
slack variable along the length of the center line. As shown in Fig. 3.14, by dividing the soft
slender rod into m sections along the s direction, denoted as [0, s1], [s1, s2], . . . , [sm−1, 1],
the entire contact field Λc(s) can be expressed as a linear combination of interpolation basis
functions Ψ(s) and a discrete set of slack variable λc:

Λc(s) = (B⊤
nDCn +B⊤

t WCt)Ψ(s)λc (3.46)

where λc = [u0 u1 . . . um]⊤ ∈ Rm+1 contains the slack variables of each node along centerline.
The interpolation basis functions Ψ(s) capture the linear variation of contact forces within each
section of the soft slender rod (EA), which are defined as follows:

Ψ(s) =
[
Ψ0I3×3 Ψ1I3×3 . . . ΨmI3×3

]
∈ R3×3(m+1)

where for i ∈ {0, 1, . . . ,m}

Ψi(s) =


ms− i for s ∈ [

i− 1

m
,
i

m
)

i+ 1−ms for s ∈ [
i

m
,
i+ 1

m
]

0 for s /∈ [
i− 1

m
,
i+ 1

m
]

As for the contact force produced by fixed constraints and articulated constraints, supposing

Figure 3.14: Linear interpolation of contact load along arc length.

that they are discretely located on the soft slender rod (EA) with quantities of mf and ma

respectively, we use two vectors to cover all of them:

λf = [Λ⊤
f,1 Λ⊤

f,2 . . . Λ⊤
f,mf

]⊤ ∈ R6mf

λa = [Λ⊤
a,1 Λ⊤

a,2 . . . Λ⊤
a,ma

]⊤ ∈ R6ma

It should be noted that when the contact area is notably narrow, the rate of change in the
contact load is significant, or the force is concentrated, the linearized contact force often requires
a finer level of discretization. We have now introduced spatial interpolation of contact field,
based on which we can then deduce the weak form of cochlear implant dynamics by taking into
account its interaction with cochlea.
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3.5.3 Weak form of dynamics

In order to deduce weak form, let us first introduce Φξ, as presented in Section 2.2.7. For
s ∈ [0, 1], by introducing the test function Φξ(s) as virtual displacement δ(s) = Jδq, the weak
form (3.44) is given by:

δq⊤
∫ 1

0

J⊤(Mη̇ − ad⊤ηMη −Λ′
i + ad⊤ξ Λi −Λe

−Ad∗gbc
Λc −Λf −Ad∗gbc

B⊤Λa)ds = 0

(3.47)

Similarly, following the linear interpolation technique presented in Section 2.2.7, by introducing
the test function Φu(s) as δu = Ψδλ for contact constrain (3.42) and (3.43) respectively, their
weak form (3.45) is deduced as follows:

δλ⊤
c

∫ 1

0

Ψ⊤
[

PgcdA+D∗CnΨλc

Adgcb
η −Adgcd

ηd −W ∗CtΨλc

]
ds = 0 (3.48)

Up to this point, we have obtained the weak form of the dynamics that takes into account
contact. After eliminating terms δq⊤ and δλ⊤

c (since they are assumed to be any value), we will
arrive at the corresponding Ordinary Differential Equations (ODE) for the dynamics model.
This will be elaborated in the upcoming subsection.

3.5.4 Dynamics equation

By reformulating the contact force using λn, λf and λa, along with the aforementioned def-
initions, we have successfully transformed the dynamics from the NCP form into a system of
DAEs (Differential-Algebraic Equations) solely composed of equality constraints:

Mq̈ +Cq̇ −Kq = P +Hcλc +Hfλf +Haλa (3.49)

Gc −Ecλc = 0 (3.50)

Gf = 0 (3.51)

Ga = 0 (3.52)

For ease of description, we define the following operators Vec to assemble discrete matrices
together:

N

Vec
i=1

(Xi) = [X⊤
1 X

⊤
2 . . . X⊤

N ]⊤

All the matrices of (3.49)-(3.52) are given by the following definitions:

• M(q) =
∫ L

0
J⊤MJds ∈ R6(n+1)×6(n+1), the mass matrix;

• C(q, q̇) =
∫ L

0
[J⊤(MJ̇ − ad⊤Jq̇MJ)−Φ⊤DΦ]ds ∈ R6(n+1)×6(n+1), the Coriolis and damp-

ing matrix;

• K =
∫ L

0
Φ̄

⊤KΦ̄ds + J⊤(L)Φ̄(L) ∈ R6(n+1)×6(n+1), the stiffness matrix;

• Hc(q) =
∫ L

0
J⊤Ad∗gbc

(B⊤
nDCn + B⊤

t WCt)Ψds ∈ R6(n+1)×3(m+1), the collision contact
force matrix;

• Hf (q) =
mf

Vec
i=1

(J i) ∈ R6(n+1)×6mf , the force matrix of fixed constraints;
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• Ha(q) =
ma

Vec
i=1

(J⊤
i Ad∗gbc,i

B⊤
i ) ∈ R6(n+1)×3ma , the force matrix of articulated constraints;

• P (q) =
∫ L

0
J⊤Λeds +

∫ 1

0
J⊤MAd−1

g dsG ∈ R6(n+1), the contribution of concentrated
external load and gravity.

• Gc(q, q̇) =
∫ L

0
Ψ⊤

[
PgcdA

Adgcb
η −Adgcd

ηd

]
ds ∈ R3(m+1), the tangent contact velocity ma-

trix;

• Gf (q) =
N

Vec
i=1

(
log(g−1

fc,igi)
)∨

∈ R6mf , the fixed constraint vector;

• Ga(q) =
N

Vec
i=1

(pa,i −Ugc,iA) ∈ R6ma , the articulated constraint vector;

• Ec(λc) =
∫ L

0
Ψ⊤

[
D∗Cn

−W ∗Ct

]
Ψds ∈ R3(m+1)×3(m+1), the collision contact constraint ma-

trix;

We have derived the dynamics of the EA considering contact, as delineated in equations
(3.49) to (3.52). This set of equations constitutes a DAE system. For simulation purposes, to
solve the aforementioned DAE system, it is necessary to discretize it in time domain. In the
following chapters, we will introduce the method of time stepping to solve this DAE system.

3.5.5 Time discretization

Time-stepping is a prevalent technique employed for the time discretization of dynamic sys-
tems. It has gained significant popularity in the field of robotics for simulation and control
purposes. Following the same framework of time discretization mentioned in in Section 2.5,
considering a time interval

[
tk−1, tk

]
and denoting h = tk − tk−1 as the time step, for the

explicit representation, the discritization of this time interval is given by:

qk = qk−1 + hq̇k−1 , q̇k = q̇k−1 + hq̈k−1

For the implicit representation, the discritization of this time interval is given by:

qk = qk−1 + hq̇k , q̇k = q̇k−1 + hq̈k

In our work, we use the implicit representation to ensure convergence of the solution. By taking

the implicit equations to (3.49) and using the abbreviation M̂ =M + hC, one can get:

L (q̇k, qk) = M̂q̇k −Mq̇k−1 − hKqk − hP

Denoting
F (qk,λc,λf ,λa) = P +Hcλc +Hfλf +Haλa

the implicit time discretization of (3.49)-(3.52) is replaced by the following nonlinear algebraic
equations: 

L (q̇k, qk)− hF (qk,λc,λf ,λa) = 0 (3.53a)

qk − hq̇k − qk−1 = 0 (3.53b)

Gc(qk, q̇k)−Ecλc = 0 (3.53c)

Gf (qk) = 0 (3.53d)

Ga(qk) = 0 (3.53e)
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The unknown variables in the algebraic equations (3.53) consist of qk, q̇k, λc, λf , and λa.
Notably, we directly define the normal contact force and friction force on the manifold of λn

and λt. An essential advantage of our method lies in the provision of a smooth system of
nonlinear algebraic equations. Consequently, these equations can be solved using widely used
techniques such as the gradient method or the Newton-Raphson method.

Integrating the collision detection algorithm from Section 3.3, once the potential contact
points are identified, we can establish the contact dynamics equations. Then, using the time
stepping method, we can compute the current state of the soft slender rod (EA), facilitating
the simulation. In the upcoming chapters, we will introduce the simulation aspect, including
a summary of the simulation algorithm, simulation results, parameter discussions, and model
validation.

3.6 Simulation

In this section, we have configured various simulation scenarios with the objective of comparing
our method to others and analyzing the influence of different model parameters on simulation
outcomes. All simulations were conducted within the Matlab environment with CPU Intel(R)
Core(TM) i7-7820HQ @2.90GHz.

3.6.1 Simulation Algorithm

The following steps outline the intricate process of simulating contact dynamics, from initializing
the system’s state to the iterative resolution of dynamics.

1. Initialization of system state: Define the initial conditions of the system, including the
initial general coordinates q and q̇, and external force Λe.

2. Time stepping: Decide on a time step for the simulation h.

3. Geometry and kinematics update: Update the Geometry and kinematics of soft slender
rod via the generalized coordinates (ϕ,θ) and (ϕ̇, θ̇), including its configuration, velocity
and Jacobian matrix of kinematics (Refer to Section 2.2.5.4 and Section 2.2.6.2).

� Update strain field:
ξ(s) = ξ0 + (s)θ, ∀s ∈ [0, L] (3.54)

� Update configuration field:

g0 =

[
exp ϕ̃ p0
0 1

]
(3.55)

g′(s) = g(s)ξ̂(s), ∀s ∈ [0, L] (3.56)

� Update Jacobian matrix:

Jα =

[
R⊤

0 (ϕ)J l(ϕ) 0

0 R⊤
0 (ϕ)

]
, J0 =

[
Jα 06×6(n+1)

]
(3.57)

J(s) = J0 +Ad−1
g(s)

∫ s

0

Adg(x)Φ(x)dx, ∀s ∈ [0, L] (3.58)

4. Collision detection: Detect potential collisions or contacts between objects in the simu-
lation. Refer to Section 3.3.1.
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5. Contact constrains: Formulate all contact constraints. Refer to Section 3.5.1.2.

6. Contact dynamics: Formulate the dynamics equations with contact constraints. Refer to
Section 3.5.4.

Gf = 0 (3.59)

Ga = 0 (3.60)

Λc − (B⊤
nDCn +B⊤

t WCt)u = 0 (3.61)

PgcdA+D∗Cnu = 0 (3.62)

Adgcb
η −Adgcd

ηd −W ∗Ctu = 0 (3.63)

7. Integration of contact dynamics: Formulate the contact dynamics as nonlinear equations
in each time step using the implicit Euler method. Refer to Section 3.5.5.

L (q̇k, qk)− hF (qk,λc,λf ,λa) = 0 (3.64)

qk − hq̇k − qk−1 = 0 (3.65)

Gc(qk, q̇k)−Ecλc = 0 (3.66)

Gf (qk) = 0 (3.67)

Ga(qk) = 0 (3.68)

8. Resolution: Using the nonlinear solver such as Newton method to solve the nonlinear
equations in step 7. After each iteration of nonlinear solver, repeat step 3 to 5 for updating.

9. Loop back: Get the states of system and return to step 3. Repeat the process for the next
time step until the end of the time interval is reached.

3.6.2 Influence of friction

3.6.2.1 Internal contact

In this test, we insert a soft rod (blue) of length L = 26mm inside a rigid tube (red) along
axis x. The diameter of soft rod is 0.3mm at tip and 0.2mm at end. The radius of curvature
of the tube is 3mm. The Young modulus of soft rod is 55MPa and Poisson ratio is 0.45. Fig.
3.15 shows the final state of insertion with different friction coefficients. The figure on the
right side shows that the soft rod fails to be inserted and sticks inside the tube due to the
large friction µ = 0.5, while the figure on left side shows the successful insertion with µ = 0.2.
Fig. 3.16 shows the evolution of the norm of the constrained force Λb at tip with respect of the
insertion displacement. The total insertion time is 70 seconds, while the simulation time is 156
seconds. We repeated this experiment in the Finite Element Method (FEM) software SOFA,
with a consistent time step, resulting in a computational time of 722 seconds. Compared to
the FEM algorithm, our method significantly accelerates computation speed due to its lower
system dimensionality.
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Figure 3.15: Fictional contact in a curved tube. Successful case(left) and buckling case(right).
Implicit time step of simulation dt = 0.05s. Number of sections: n = m = 26. The color shows
the contact of rods, which gradually increases from blue to red.
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Figure 3.16: The evolution of insertion force with different coefficient of friction.

3.6.2.2 External contact

In this test, we throw a soft rod (blue) towards a rigid obstacle (red). The soft rod is initially
positioned horizontally above the obstacle. The length of the soft rod is 30cm and its diameter
of two side of are 0.3cm and 0.2cm respectively. The Young modulus of soft rod is 55MPa
and Poisson ratio is 0.45. As shown in Fig. 3.17, we test the impact with different coefficient
of friction. When the coefficient of friction is small, the soft rod cannot stay on the rigid rod
after the collision occurs because there is not enough friction to resist the asymmetrical gravity.
Meanwhile, if we increase the coefficient of friction, the soft rod will not slide down.

3.6.3 Comparison with different modeling methods

In this experiment, a soft slender rod comes into contact with external obstacles and naturally
sags under the influence of gravity. The soft slender rod is 60cm long with Young’s modulus of
3×105Pa. We investigate the impact of different existing approaches in the literature on contact
behavior, comparing with our proposed method. We compare three discretization strategies:
Piecewise Constant Strain (PCS), Global Variable Strain (GVS), and the Piecewise Linear
Strain (PLS) that we are using in this work. Subsequently, we utilize Comsol, a general finite
element method (FEM) software, to determine the equilibrium position of the soft slender rod,
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Figure 3.17: Fictional contact under gravity. The configuration of soft rod is plotted every
0.15s. Number of sections: n = m = 30. (A). friction coefficient µ = 0; (B). friction coefficient
µ = 0.1; (C). friction coefficient µ = 0.2. Implicit time step of simulation dt = 0.005s. The
color shows the internal force of rods, which gradually increases from blue to red.

which is used as the reference. The spatial discretization in the Finite Element Method (FEM)
employs quadrilateral mesh elements, dividing the rod into 820 elements along the arc axis. The
contact algorithm in FEM is implemented using the augmented Lagrangian method. The FEM
simulation result is used as the position reference and PLS (divided into 30 sections) is used
as the strain reference, comparing with the outcomes of PLS (divided into 5 sections), PCS
(divided into 6 sections), and GVS (5th-order polynomial). Except of FEM, all simulations
were conducted using the same set of physical parameters and solver.

Table 3.1 presents the errors of different discretization strategies compared to the reference
(PLS with 30 sections). These errors encompass both strain (curvature along Y-axis) and
position discrepancies along the arc length, defined as follows:

eκY
=

1

L

∫ L

0

|κY (s)− κY ref (s)|ds, ep =
1

L

∫ L

0

∥p(s)− pref (s)∥ds

Table 3.1: Error of different discretization strategies

Modeling method DOF Strain error Position error

FEM (800 elements) 2460 - -

PCS (6 sections) 36 0.027 cm−2 0.721 cm

GVS (5 orders) 36 0.026 cm−2 0.941 cm

PLS (5 sections) 36 0.014 cm−2 0.262 cm

PLS (30 sections) 186 - 0.047 cm
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Figure 3.18: A soft rod naturally droops under the action of gravity and contacts with external
obstacles.The figure shows the static results obtained using different modeling methods: FEM,
PCS, GVS and PLS. The color shows the norm of strain of rods, which gradually increases
from blue to red.

The result distinctly reveals that, with an equal degree of freedom, PLS achieves the highest
accuracy. This is attributed to the superior local interpolation capabilities of linear interpola-
tion.

Fig. 3.18 showcases the deformation of the soft rod. Due to its constant curvature limi-
tation, PCS necessitates fine discretization for accurately capturing local deformation during
contact. Although polynomial interpolation offers continuous differentiability in strain, achiev-
ing precise fitting of the contact area’s deformation demands an increase in polynomial order.
However, high-order polynomials are susceptible to the Runge phenomenon, leading to localized
strain distortion and oscillation, thereby challenging the robustness of simulations. In regions
with significant local deformation and substantial strain variations, such as the left end of the
soft rod and areas in contact with external objects, PLS exhibits superior fitting capabilities.
Moreover, The computational results of PLS with 30 sections are closer to the FEM reference
compared to the PLS with 5 sections. This observation highlights that, with increasingly pre-
cise discretization, computational results converge toward the true values. Fig. 3.19 illustrates
the evolution of strain along the arc length of the soft rod for each test.

In summary, in contact scenarios, PLS demonstrates superior accuracy when compared to
PCS and GVS with an equivalent degree of freedom. Significantly, as the segmentation of PLS
becomes finer, computational results tend to converge, closely aligning with FEM outcomes.
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Figure 3.19: The evolution of strain along arc length of soft rod.

3.6.4 Influence of discritization

In this subsection, we compare and analyze the impact of different discretization strategies on
the computational results of our model. Specifically, we investigate the case of two intertwined
rods initially positioned in a crossed configuration. The rods are then simultaneously twisted,
resulting in mutual entanglement until a total twist angle of 540 degrees is reached, as shown in
Fig. 3.20. We conduct several tests to examine the effects of different discretization strategies.

Figure 3.20: Two rods entangled with each other. The color shows the internal force of rods,
which gradually increases from blue to red.

Specifically, we fix the number of discrete sections (m) for the contact field and vary the number
of discrete sections (n) for the strain field. As shown in Fig. 3.21, we compare the results
obtained from different discretization strategies on the contact load. This analysis allows us to
understand the trade-offs between accuracy and computational efficiency in our model. Through
this comparative analysis, we aim to identify the optimal discretization strategy that balances
computational efficiency with accurate representation of the physical phenomena involved in
the entanglement process. The insights gained from this analysis will contribute to refining our
model and enhancing its predictive capabilities.

From Fig. 3.21, it can be observed that when the number of contact points remains constant,
the discretization of the strain field affects the distribution of contact forces. With fewer sections
in the strain field, the distribution of contact forces exhibits larger fluctuations. As the strain
field is more finely discretized, the distribution of contact forces becomes smoother and the
results tend to converge. Therefore, further discretization is meaningless at this point.

Fig. 3.22 shows that when the number of sections in the strain field remains constant,
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Figure 3.21: The influence of different number of section for strain interpolation on the distri-
bution of contact load.
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Figure 3.22: The influence of different number of section for contact interpolation on the dis-
tribution of contact load.

increasing the number of section of contact field leads to smoother distribution of contact
forces and the results tend to converge.

Based on the above results, we can conclude that the ratio between the discretization of
the strain field and the contact field is a key factor influencing computational efficiency. When
the number of contact points remains constant, excessively fine discretization of the strain field
does not significantly affect the computed contact forces. Additionally, the strain field should
be discretized more finely than the contact field to ensure that the soft slender rod has enough
degrees of freedom to satisfy the contact constraints.

By considering these findings, we can optimize the discretization strategy for our model,
achieving a balance between computational efficiency and accuracy in predicting the contact
forces and capturing the overall behavior of the soft rod system.

3.6.5 Choice of smooth function

In Section 3.4.5, we mentioned that the Heaviside function used to construct the complementar-
ity conditions can be approximated or equivalently represented by other continuous or smooth
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functions. Through simulations, we will explore the influence of different approximation func-
tions on the solution results. Fig. 3.23 illustrates the case of a homogeneous tapered slender
rod placed on a plane. In the initial state, the left end of the slender rod is suspended and fixed
by a constraint force, while the right end contacts the ground under the influence of gravity.
The slender rod has a length of 30cm, density of 3× 103kg/m3, Young’s modulus of 1Mpa and
friction coefficient of 0.5. After the initial state, the left end of the slender rod is released and
starts to fall until it collides with the ground, reaching a final equilibrium state. Fig.3.23 shows
the steady states obtained using the impact function and different smoothing functions. In all
three test groups, the strain field of the slender rod is divided into 30 sections, as well as the
contact field. From the distribution of contact loads shown in Fig. 3.23, it can be observed

Figure 3.23: Final steady state calculated using different functions. The colors in the plot
represent the contact load distribution.

that for the Heaviside function and trigonometric function, which satisfy the complementarity
constraints exactly, although the slender rod is in a force-balanced state and remains station-
ary, not all contact points are activated but some contact points are in a critical state (virtual
contact). In this case, due to the discretization of the system, the solution of the mechanical
equation system is not unique. For the Heaviside function, as shown in Fig.3.24, the contact
force undergoes small jumps during the iteration process, which is also due to the presence of
virtual contacts. Since the slack variables associated with virtual contacts are zero, the Heavi-
side function is discontinuous, resulting in numerical jumps during the iteration. However, this
does not occur for the trigonometric function, which remains smooth and continuous. Among
the three simulations, the sigmoid function yields results closest to the real solution. As shown
in Fig. 3.23, the contact load is smoothly distributed and remains stable during the iteration
process. This is because the sigmoid function is an approximation of the complementarity con-
straint. In this case, there are no virtual contacts where both the contact gap and contact force
are zero, and therefore, all contact points are activated, yielding a unique solution.

Based on these findings, we conclude that approximating the impact function with trigono-
metric functions can address the issue of numerical jumps in critical states. However, in some
cases, non-uniqueness of solutions may arise. On the other hand, using the sigmoid function,
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although it cannot precisely satisfy the complementarity constraint in the vicinity of critical
states, offers better robustness.
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Figure 3.24: Evolution of contact loads over time step iterations. The point of contact is 6 cm
from the left end. The time step is set as 0.01s.

3.7 Experiment towards Cochlear Implantation

The primary aim of our model simulation is to forecast the deformation and contact forces
of the implant during the implantation procedure, with the goal of examining the impact of
various parameters on this process. To this end, our approach in this section is twofold:

1. Firstly, we validate the model’s accuracy via comparative experiments. We establish
experimental groups that involve inserting the cochlear implant at varying angles. The
deformation and contact forces of the implant are then monitored and compared across
both the experimental and simulation processes. This comparative analysis is crucial
for verifying the congruence between our simulation results and the actual experimental
outcomes.

2. Secondly, our analysis delves into the dynamics of the forces acting on the implant
throughout the simulation. We investigate the key factors influencing these forces to
gain a deeper understanding of the implantation process’s evolution laws. This compre-
hensive analysis not only reinforces the accuracy of our model but also provides valuable
insights into the mechanics of cochlear implantation.

3.7.1 Experiment setup

In the experimental phase of this study, we employed a scaled resin 3D model, provided by
OTICON Medical, as a substitute for the actual cochlea. The experimental setup, as depicted
in Fig. 3.25, comprised several key components: a model of the cochlea, a base for securing the
cochlea, a six-degree-of-freedom force sensor, a Collin implant robot, and the implant available
at Pasteur Institute.The parameters of implant are shown in Tab. 3.2.

During the implantation process, the implant is fixed on the probe of the robot end effector,
and the doctor manually controls the six degrees of freedom motion of the probe, including
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Table 3.2: Experimental parameters of cochlea implant

Length L 25mm End diameter 0.3mm

Young’s modulus 25.2Mpa Front diameter 0.4mm

rotation and translation, through a remote sensing device. The cochlea is fixed on the base,
and a six-degree-of-freedom force sensor (NANO17 - ATI Industrial Automatization) which
can resolve down to 0.318 gram-force is installed at the bottom of the cochlea placement. This
sensor is used to measure the force acting on the cochlea during the implantation process.

Figure 3.25: Experiment setup.

3.7.2 Insertion with different angles

Drawing upon a substantial corpus of clinical and experimental research, it has been estab-
lished that the efficacy of cochlear implants is significantly influenced by the implantation angle
[129][130]. This angle pertains to the orientation between the direction of implantation and the
cochlear entrance. To ascertain the precision of our model, we meticulously crafted a series of
simulations and experiments across various implantation angle scenarios. These scenarios were
systematically designed to comprehensively evaluate the model’s performance under different
conditions. The results of these simulations and experiments are illustrated in Fig. 3.26.

Figure 3.26: Insertion with different angles.

In our experimental setup, the movement of the implant’s substrate is constrained within the
transverse profile of the cochlea. The direction of its advancement is aligned with the insertion
angle, defined in relation to the cochlear entrance. The force applied by the actuator substrate

100



to the implant, directed along this insertion angle, is referred to as the insertion force. For our
experiments, we established three groups, each characterized by distinct insertion angles set at
0◦, 10◦, and 20◦ respectively.

This study primarily focuses on exploring how the insertion angle influences the cochlear
implantation process. To isolate the variable of insertion angle, we standardized the implant’s
advancing speed at 1mm/s across all experimental runs. The implant was pushed forward
consistently at this speed until it could no longer progress further inside the cochlea, at which
point the insertion process was concluded. Throughout this procedure, both the deformation
of the implant and the insertion force were meticulously monitored using a camera and a force
sensor. These empirical observations were then systematically compared with corresponding
model simulations to assess the model’s fidelity and reliability.

3.7.3 Experimental result

In this section, we will present the results of our experiments and provide an analysis of these
findings.The comparative diagrams of the implantation experiments and simulations at 0 de-
grees, 10 degrees, and 20 degrees are respectively shown in Fig. 3.27, Fig. 3.28, and Fig.
3.29.

3.7.3.1 Implantation process analysis

(a) t=0s phase A (b) t=10s phase B

(c) t=20s phase C (d) t=30s phase D

Figure 3.27: Insertion process of experiments and simulations of 0◦.

The implantation process can be roughly divided into four stages based on the contact
between the implant and the inner wall of the cochlea, as observed from both experiments and
simulations. In the first stage, there is no contact or virtual contact between the implant and
the inner wall of the cochlea, as shown in Fig. 3.27(a). During this stage, the contact force
between the implant and the cochlea is negligible.

In the second stage, there is point contact between the implant and the inner wall, as shown
in Fig. 3.27(b). As the implant is pushed forward, its tip touches the inner wall of the cochlea
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and slides along it. The implant undergoes deformation due to the contact, but it does not
conform to the wall. The contact between the implant and the inner wall is in the form of
discrete points.

When the implant deformation is sufficient to conform to the inner wall, the third stage
is entered, characterized by continuous line contact, as shown in Fig. 3.27(c). During this
stage, a portion of the implant comes into close contact with the inner wall, and the previous
point pressure is distributed as line pressure. The friction force also increases with the contact
area. As the implant continues to be pushed forward, the radius of the cochlea decreases,
leading to an increase in the elastic force, which requires a greater pushing force to maintain
the deformation of the implant. Additionally, as the contact area increases, the friction force
also gradually increases, leading to an increase in the resistance to pushing. These two factors
cause the pushing force to increase exponentially with the pushing distance.

When the cross-sectional stiffness of the implant is insufficient to support the pushing force,
buckling occurs, and the implant undergoes significant deformation and bending in the sus-
pended section. At the same time, the contact plane between the implant and the cochlea
and the angle between the contact plane and the pushing force change, causing some of the
frictional contact to enter a self-locking state. The contact portion of the implant is stuck and
cannot continue to move forward, and this is the fourth stage, as shown in Fig. 3.27(d).

The same process mentioned above can also be observed in experiments and simulations
with 10-degree and 20-degree implantations, as shown in Fig. 3.28 and Fig. 3.29.

3.7.3.2 Performance of the model

We assess the precision of our model from four key perspectives: the deformation of the implant,
the interaction between the implant and the cochlea’s inner wall, the magnitude of the pushing
force (which equates to the contact force), and the potential for buckling occurrences. The
experimental findings indicate a high degree of correlation between the model and actual im-
plantation procedures. Throughout the implantation process, the implant’s deformation in the
simulation closely mirrors that observed in physical experiments. Moreover, our model adeptly
captures the contact dynamics between the implant and the cochlea’s inner wall, accurately
replicating both the discrete point contact in phase B and the continuous line contact in phase
C.
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(a) t=0s phase A (b) t=10s phase B

(c) t=20s phase C (d) t=35s phase D

Figure 3.28: Insertion process of experiments and simulations of 10◦.

(a) t=0s phase A (b) t=10s phase B

(c) t=20s phase C (d) t=30s phase D

Figure 3.29: Insertion process of experiments and simulations of 20◦.

Significantly, the model demonstrates a precise ability to predict the onset of buckling
and accurately tracks the progression of this deformation (phase D). To quantify the model’s
accuracy regarding insertion force, we introduce the Integrated Mean Error (IME) as a metric,
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which measure is defined as follows:

IME =

∫ T

0

|Fepm − Fsml

Fepm
|dt

Fig. 3.30 shows that the simulated pushing force can fit well with the evolution of the real
pushing force in the experimental process, with IME < 20%.

Figure 3.30: The insertion force of experiments and simulations.

3.7.3.3 Influence of the insertion angle

Insights gleaned from both the experimental and simulation phases of our study reveal that
the insertion angle notably influences the timing at which the implant enters the locking phase
D. In the course of conducting our three experimental trials, we determined that an optimal
insertion angle of 10 degrees facilitates the deepest insertion depth. It is crucial to recognize
that the ideal insertion angle for cochlear implants varies. This variation is influenced by the
specific geometric structure of each cochlea and the physical properties of the implant, such as
its stiffness and size. Therefore, accurately identifying the most suitable insertion angle through
sophisticated simulation techniques before the actual implantation process is essential. These
simulations are key to optimizing the implantation procedure for individual cases and also for
optimizing the inertion control which will be discussed in Chapter 4.

3.8 Conclusion

In this chapter, we have developed an innovative contact dynamics model for EA and soft
slender rod as well, firmly grounded in the Cosserat theory. This model meticulously addresses
the complex geometric relationships, forces, and moments at the contact points, enabling a
comprehensive analysis of contact and frictional forces and their influence on the dynamics
of EA. This approach is particularly significant when considering the applications to cochlear
implants, where such detailed analysis is crucial for the success of implantation procedures.

The formulation of contact constraints has been a cornerstone of our model, accounting not
only for non-penetration and force equilibrium but also for the intricate frictional interactions at
contact interfaces. By reconstructing these constraints into equality constraints and smoothing
the non-smooth aspects, we have enabled the direct solution of the contact dynamics system
using general-purpose numerical methods like Newton’s method. This enhances the robustness
and applicability of our approach, especially in the context of cochlear implants, where precision
and reliability are paramount.

The integration of Cosserat theory into our model marks a significant advancement in un-
derstanding the contact interactions of soft robots, including cochlear implants. The proposed
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model for cochlear implant contact during implantation has been validated against experimental
results, demonstrating its accuracy and reliability. This is particularly beneficial for simulating
and analyzing the behavior of cochlear implants during the implantation process, leading to
improved design and control strategies for these delicate medical devices.

In summary, our contact dynamics model, based on Cosserat theory, offers an essential
framework for studying and simulating the contact interactions of EA during cochlear implan-
tation. This model is especially crucial for enhancing cochlear implant simulations and control
systems. It significantly aids in designing and operating these complex medical devices. Our
research paves new paths for cochlear implant technology and its various applications. Build-
ing on the simulated framework of the cochlear implantation, the next chapter will focus on
introducing a model-based control algorithm for the implantation process.
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Chapter 4

Control of Cochlear Implantation

4.1 Introduction

In Chapters 2 and 3, we provided detailed descriptions of all physical models related to the
implantation process of active cochlear implants. This includes the mechanical model of the
Electrode Array (EA), the electrical model of the Conducting Polymer Actuator (CPA), and
the contact model between the EA and the cochlea. With these models, we are now equipped
to simulate the entire implantation process and predict changes in physical quantities, including
the deformation of the EA, the implantation force at the base, and the contact force between
the EA and the cochlea. In the first chapter, we discussed some challenges that arise during
implantation, such as internal friction within the cochlea and incorrect implantation directions,
which can lead to failure or incomplete implantation. In this chapter, based on our constructed
models, we design control algorithms to overcome these issues. By controlling the implantation
trajectory of the base and utilizing the CPA to generate active deformations, we aim to achieve
a complete and successful implantation.

The cochlear implantation process, however, presents several technical challenges:

1. Placement Accuracy: Achieving the correct placement of the cochlear implant is essential.
Misplacement may lead to inadequate stimulation of the auditory nerves, culminating in
suboptimal hearing restoration.

2. Cochlear Integrity: The risk of mechanical damage to the cochlea during implantation is
a concern, with potential harm to delicate structures like the basilar membrane, which
could impair hearing outcomes.

3. Contact Force Management: The force exerted during implant insertion must be care-
fully controlled. Excessive force can cause trauma and damage to the cochlea’s sensitive
internal structures.

4. Implant Deformation: The risk of implant bending or deformation during insertion, po-
tentially causing additional cochlear damage and complicating electrode positioning.

5. Implantation Angle: The angle of implantation is a critical factor, influencing the forces
exerted on the cochlear walls. Improper angles can exacerbate mechanical trauma and
lead to postoperative complications.

This chapter transforms these clinical challenges into optimization problems, crafting op-
timal control solutions for various implant types. Through simulations and empirical studies,
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we demonstrate that these tailored control strategies effectively meet the outlined objectives,
mitigating the common challenges encountered during cochlear implantation.

4.2 Control Objective

In traditional cochlear implant surgeries, manual implantation methods often place high de-
mands on the surgical skills of the otologist. This not only requires the surgeon to have extensive
clinical experience but also introduces significant uncertainty in the success rate due to varia-
tions in cochlear dimensions among different patients. Using a robotic arm for assistance can
mitigate the impact of human factors; however, traditional robotic implantation typically in-
volves inserting the implant along a constant angle. Therefore, determining the implantation
angle becomes a crucial issue. In Section 3.6.2 and Section 3.7.3 of Chapter 3, we observed that
the success rate and depth of implantation are influenced by various factors, including the in-
sertion angle, cochlear dimensions, friction, and more. To address these challenges, introducing
control during the implantation process is necessary. In this section, we will firstly define the
control objectives for cochlear implantation:

The objective of the control is to improve the success rate of implantation, specifically by
increasing the depth of implantation. The main factor affecting implantation depth during the
procedure is the contact force between the implant and the cochlea. When this contact force
exceeds a threshold that causes the implant to buckle, further insertion becomes impossible.
Therefore, the essence of the control objectives is to ensure the advancement of the implant
during the procedure while avoiding a sudden increase in contact force. For this analysis, we
propose two control objectives:

1. The first objective is to minimize the contact force during the implantation process.

2. The second objective is to encourage the implant to advance along the spiral centerline
of the cochlea, thereby minimizing the distance between the implant and the cochlear
centerline.

It’s important to note that the emphasis of the control objectives depends on the variables we
can control. For passive implants, where there are no actuators within the implant, we can only
control the orientation of the implant base. Therefore, tracking the cochlear spiral trajectory
is not achievable, and the control objective is solely to reduce insertion force. Conversely, for
active implants, we can use actuators to control the shape of the implant and bring it closer
to the cochlear central spiral line. In this case, we can aim for both reducing insertion force
and tracking the cochlear spiral trajectory. In an extreme scenario where actuators can provide
enough torque to track the spiral trajectory perfectly, there would be minimal contact between
the implant and the cochlea. In the following chapters, we will discuss each of these scenarios
in detail.

4.3 Insertion Force Control (Passive Implant)

In cochlear implantation surgery, the precision of implant placement is paramount. Surgeons
typically maneuver the implant into the patient’s cochlea, a process requiring meticulous control
over the implant’s insertion direction. This careful insertion is crucial to minimize the contact
force between the implant and the cochlea’s inner wall, thereby reducing potential cochlear
tissue damage. However, this process is fraught with challenges. One significant obstacle is the
”self-locking” phenomenon, where the implant may cease to advance properly due to frictional
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forces, becoming stuck inside the cochlea. This occurs when the contact point fails to slide even
with increasing pushing force.

Complicating matters further, the implant’s low stiffness often leads to buckling, adding
complexity to the surgical procedure. In such instances, altering the current insertion direc-
tion becomes necessary to resolve buckling and facilitate the implant’s progression within the
cochlea. Typically, this delicate task is manually executed by the surgeon, often relying on
their experience and intuition, assisted by machinery. However, to mitigate human error and
increase the success rate of cochlear implantations, the adoption of automated, robot-assisted
devices has become increasingly prevalent. The principal benefit of such robotization lies in its
ability to follow a preprogrammed or real-time controlled implantation path. By strategically
designing this path, it becomes possible to effectively circumvent stick and buckling phenom-
ena, reducing the contact force exerted on the cochlear wall and thereby decreasing the risk of
tissue damage.

To achieve these objectives, we have established an optimal path for the robotic device,
focusing on two primary goals during the total insertion process:

1. Minimizing the contact force to protect the delicate cochlear structures.
2. Preventing self-locking phenomena, often caused by buckling and frictional forces.
The successful realization of these goals requires a nuanced understanding of the cochlear

implant’s mechanics. We have simplified the implant model into two primary components: the
external and internal structures of the cochlea. The external structure is akin to a fixed beam,
with one end anchored at the pushing base and the other hypothetically fixed at the cochlea’s
entrance. The internal structure, treated as a black box, responds to forces acting on the cross-
section at the cochlear entrance. However, our path planning primarily targets the external
structure, as the internal changes are inherently linked to it. Given the limited space within
the cochlea and the implant’s proximity to the inner wall, direct manipulation of the contact
force inside the cochlea via base control is challenging. Therefore, our research predominantly
focuses on the external structure, conceptualized as a beam with fixed ends, to optimize the
implantation path.

4.3.1 Control variable

As shown in Fig. 4.1, the path of insertion is defined as the configuration of the end-effector of
robot connecting the head of EA, which is defined by the configuration matrix g0, representing
the orientation and position. Our strategy is to change this configuration matrix during the
insertion in order to keep the insertion force in the forward direction as much as possible. To
facilitate the calculation of the optimal path of the configuration of base in subsequent steps,
we first need to parametrize the configuration matrix g0 using vector as the control variable.
As we introduced in Section 2.2.5.1, g0 is composed of a rotation matrix R0 and a position
vector p0:

g0 =

[
R0 p0
0⊤ 1

]
∈ SE(3)

In order to parameterize the configuration matrix g0 for controlling purpose, in our work, we
use the exponential map to define the rotation matrix R0 by a vector ϕ0 ∈ R3:

SO(3) ∋ R0 = exp ϕ̃0 , ϕ0 ∈ R3 (4.1)

Thus the configuration matrix g0 is parameterized by the vector ϕ0(t) and p0. We use vector
α ∈ R6 to denote their combination, i.e., α = [ϕ⊤

0 , p⊤0 ]
⊤. After defining the control variable

α, let us focus on the control objective of passive implantation.
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Figure 4.1: The configuration of base can be represented as a rotation matrix and a position
vector.

4.3.2 Control objective

In actual cochlear implant procedures, the propulsion force exerted on the Electrode Array
(EA) by the end-effector of the robotic arm can be measured. Due to the interactions involved,
this propulsion force intuitively reflects the force applied by the EA on the cochlea during
implantation. Therefore, in this section, our control objective is to reduce the magnitude of the
propulsion force by altering the moving direction of the end-effector. During the implantation,
the optimal configuration vector α(t) of the path should minimize the norm of insertion force
Λ0:

argmin
α(t)

H =
1

2
Λ⊤

0 (α)Λ0(α) (4.2)

subject to mechanical model and constraints, which will be introduce in the following subsec-
tions.

4.3.3 Control constraint

It’s noteworthy that the minimization problem defined above only sets the optimization goal,
which is to minimize the implantation force. Obviously, the strategy that minimizes the implan-
tation force is to stop advancing the implant; at this point, minimizing the implantation force
is in contradiction with advancement. Therefore, when formulating control strategies, we need
not only to minimize the implantation force but also to ensure that the implant is continuously
advancing. This requires us to add some constraints to the above minimization problem. In
order to find the α(t) satisfying the minimization (4.2) without losing forward insertion speed,
our method is as follows:

Firstly, we define point pa as the center of the cochlear entrance expressed in the global
frame (see Fig. 4.2). The velocity of the end-effector can be decomposed into a radial velocity
v∥ directed towards point pa and a tangential velocity v⊥ perpendicular to the line connecting
end-effector and pa, as shown in Fig. 4.2. Throughout the implantation, the radial velocity v∥
of the end-effector’s movement remains positive, i.e., v∥ ≥ 0. In this case, the distance between
pa and p0, denoting as da, can be computed by the radial velocity v∥:

da(t) = L− v∥t

where L is the initial distance between these two points, t represents the time.
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Figure 4.2: Throughout the implantation process, the orientation of the end-effector is metic-
ulously maintained so that it continuously points towards the center of the cochlear entrance.
The velocity of end-effector can be decomposed into a radial velocity vr directed towards point
pa and a tangential velocity v⊥ revolving around pa.

Throughout the implantation, the direction of the end-effector (the x-axis of body frame of
end-effector) always points towards the center of the cochlear entrance, the point pa, as shown
in Fig. 4.2 . We define a frame A at pa, which has the same rotation of the end-effector. As a
result, the configuration of this frame can be represented as follows:

ga =

[
R0 pa
0 1

]
In this case, the configuration g0 should satisfy the following equation:

g0 = ga


1 0 0 −da(t)
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

gr

(4.3)

where gr represents the transformation matrix from g0 to ga. (4.3) signifies the constraint
imposed on the end-effector. Throughout the implantation process, the configuration of the
end-effector must consistently adhere to (4.3), ensuring that the implantation can continuously
advance towards the entrance of the cochlea without any backward movement.

In the subsequent Section 4.3.4, we will be exploring the differential relationship between
configuration g0 and parameter variable ϕ0. This exploration is closely tied to the kinematic
model. To facilitate a clearer and more straightforward exposition, we will preemptively present
the kinematic model of the end-effector, specifically tailored to operate within the constraints
we have outlined. Once we fix the point pa, from (4.3) we can see that ga only depends on
the rotation matrix R0. As R0 is parameterized by the vector ϕ0, consequently, ga is now
parameterized by the vector ϕ0. Let us now deduce the kinematics of the end-effector with
respect to ϕ0 under constraint (4.3). Reviewing kinematics equation (2.30) in Section 2.2.6,
the angular velocity of frame A with respect to body frame can be deduced as follows:

wa = R⊤
0 J lϕ̇0 (4.4)
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where J l is the left Jacobian of R0 with respect to ϕ0, given by the following formula:

J l(ϕ0) = I3 +
1− cosϕ0

ϕ20
ϕ̃0 +

ϕ0 − sinϕ0
ϕ30

ϕ̃
2

0

Finally, we can deduce the velocity twist with respect to body frame of end-effector as the
following equation:

η0 = Jϕ0
ϕ̇0 (4.5)

where

Jϕ0 = Adgr

[
R⊤

0 J l

0

]
with Adgr

is the transformation matrix which transfer velocity twist from the frame A to the
body frame of end-effector. This formulation will be used in the following subsection to solve
the proposed optimization problem (4.6)-(4.9).

4.3.4 The mathematical problem of control

We’ve established the control objective and constraints. Next, we need to delve into the mechan-
ical equations of the EA under these control constraints, subsequently formulating the control
strategy based on the mechanical model. However, factoring in all the contact constraints and
forces of EA inside cochlea significantly complicates the computation. Their abundance not
only increases the number of variables but also adds complexity to the dimensions of the me-
chanical equations. Therefore, in our approach to constructing the control strategy, we simplify
the contact model by assuming that the Electrode Array (EA) is fixedly constrained at the first
contact point pc(sc), which can be determined via our collision detection algorithm in Section
3.3.1. Specifically, we suppose the case of minimization is that pa is fixed and v⊥ = 0, thus
that the movement of end-effector is constrained is a sphere whose center is pa and radial is
da, as illustrated in Fig. 4.3.

Figure 4.3: The left image shows the EA (Electrode Array) being implanted, while the right
image displays the corresponding simplified model at that moment. The simplified model is a
beam with fixed constraints at both ends, where the left end is fixed by the end-effector, and
the right end is fixed by the contact point in the cochlea.

Given the slow pace of the implantation process, we can assume that the EA remains in a
quasi-static state throughout. Now, we first establish the minimization problem by incorporat-
ing our objective function and all the control constraints:

argmin
ϕ0

H =
1

2
Λ⊤

0 Λ0 (4.6)
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subject to
Kq − J⊤

0 Λ0 − J⊤
c Λc = 0 (4.7)

g(0)− g0 = 0 (4.8)

g(sc)− gc = 0 (4.9)

where J0 and Jc are the Jacobian of kinematics at arc length s = 0 and s = sc. The Jacobian
of kinematics has been defined in (2.22), Section 2.2.6.2. The aforementioned equations (4.7)-
(4.9) delineate the relationship between the configurations of the two tips of the EA and the
respective constraint forces at these points. In essence, if we determine the configurations g0
and gc, we can deduce the constraint forces Λ0 and Λc by solving (4.7)-(4.9). If we know gc,
our control strategy is to find the best configuration g0, i.e., the best parameter ϕ of g0, which
can minimize the constrain force (i.e., insertion force) Λ0 satisfying (4.7)-(4.9).

To achieve this, wo need to know the gradient of Λ0 with respect to ϕ in order to introduce
the Newton method for minimizing the insertion force. In our work, we will find this gradient
dy making the variation of (4.7)-(4.9). The variation of (4.7) is as follows:

Kδq − J⊤
0 δΛ0 − J⊤

c δΛc = 0 (4.10)

Note that the variation of (4.8) and (4.9) are defined within SE(3) space, which is not con-
ducive to gradient determination. Therefore, we first need to find their the equivalent algebraic
formulation. Defining the following variation:

R6 ∋ δζ = (g−1δg)∨ = Jδq, ∀s ∈ [0, L]

where J is the Jacobian of kinematics. The variations of (4.8) and (4.9) are equivalent to the
following equations:

δg(0)− δg0 = 0 ⇐⇒ δζ(0)− δζ0 = J0δq − Jϕ0δϕ0 = 0 (4.11)

δg(sc) = 0 ⇐⇒ δζ(sc) = Jcδq = 0 (4.12)

Consequently, we are able to consolidate these two equations along with equation (4.10) into a
more compact formulation:K −J⊤

0 J⊤
c

J0 0 0
Jc 0 0


︸ ︷︷ ︸

W h

 δqδΛ0

δΛc

 =

 0
Jϕ0

0


︸ ︷︷ ︸

Jh

δϕ0 (4.13)

We can now find the relationship between δΛ0 and δϕ0:

δΛ0 = ChW
†
hJhδϕ0 (4.14)

where Ch = [06×N I6×6 06×6], with N being the dimension of q. The gradient of Λ0 with

respect to ϕ0 can be then deduced as ∂Λ0

∂ϕ0
= ChW

†
hJh. Consequently, the gradient of the

objective function in (4.6) is:

∂H

∂ϕ0

= Λ⊤
0

∂Λ0

∂ϕ0

= Λ⊤
0 ChW

†
hJh

After obtaining the gradient of the objective function with respect to the optimization variables
ϕ0, we can then employ common numerical minimization algorithms to solve for ϕ0, such as
the Newton’s method.
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Figure 4.4: In each control loop, the parameters ϕ0 of the optimal path at the current moment
is first calculated by the optimization algorithm, and then the implant is pushed forward at a
constant rate δd along this angle. This process is repeated for each subsequent loop.

In this subsection, we have established the minimization problem for optimizing the im-
plantation force when the point pa and the sphere of movement available to the end-effector is
specified. We also provided the analytical gradient for solving this minimization problem. This
allows us to iteratively use the analytical gradient to find the orientation of the end-effector
that corresponds to minimizing the implantation force. In the following subsection, we will
introduce the overall steps of the implantation process.

4.3.5 Insertion process

We divide the insertion process into two steps at each moment, as shown in Fig. 4.4:

1. The first step is to change the orientation of end-effector. The end-effector is constrained
on the spherical surface (the red dotted line in the figure) about the reference point pa
with radius da. The end-effector is then moved on this surface until finding the optimal
orientation which minimize the insertion force Λ0 by solving (4.6).

2. At the next step, holding the this orientation, the end-effector move forward by distance
δd, which equals to v∥δt (we set v∥ as constant). Then, the first step is repeated on the
new spherical surface followed by the second translation step.

These two steps alternate during the implantation until finishing the total insertion.
To conclude the control of passive implant, we first simplify the cochlear implant model to

a fixed-end beam model to focus on the external part of the cochlea. Next, we generate a force
model based on the mechanics of the cochlea and simulate the force distribution during the
implantation process. Based on this, we calculate the optimal path for the cochlear implant
by solving the minimization problem (4.6). The following sections will present the simulations
and experimental results.

4.3.6 Simulation and experiment

4.3.6.1 Initial state and parameter settings

For the numerical simulation of path planning, the material and geometric parameters of the
implant, as well as the geometric parameters of the cochlea, are kept consistent with the pa-
rameters mentioned in the model validation Section 3.7. As shown in the Fig. 4.5, the initial
position of the implant is set along the central axis at the entrance of the cochlea. Subsequently,
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the optimization algorithm starts iterating and calculating the optimal trajectory. The iterative
step size for the orientation angles of the end base of the implant is set to 0.01 rad, and the
step size for each forward advancement is set to 0.02 m. The initial angle of the optimal path
are set as 0◦, 10◦ and 20◦ respectively. With these settings, we obtained the optimal path by
our proposed method, as shown in Fig. 4.5.

Figure 4.5: Optimal path of simulation.

4.3.6.2 Analysis of the optimal path

The optimal path shown in Fig. 4.5 is characterized by three distinct stages:

1. Initially, the implant does not contact the cochlea, resulting in a zero-valued iterative
Jacobian matrix for orientation angles. During this phase, the implant’s base remains
static in terms of angle and moves forward linearly.

2. In the second stage, as the implant makes contact with the cochlea’s inner wall, constraint
forces emerge at its base, leading to changes in the Jacobian matrix and subsequent
variations in the orientation angles, following the gradient descent direction.

3. The final stage is marked by a point where adjusting the base angle no longer aligns the
constraint forces with the forward direction, indicating an onset of buckling and the limit
of advancement.

As our model is close to the real implantation, which has been confirmed in the model
validation Section 3.7, we believe that the optimal path computed form simulation can be used
directly for the real implantation and the accuracy of open-loop control is sufficient to meet
our requirements. The implementation of the deduced open-loop control will be presented in
the next subsection.

4.3.6.3 Experiment setup

In the experimental phase of this study, we employed a scaled resin 3D model, provided by
OTICON Medical, as a substitute for the actual cochlea. The experimental setup, as depicted
in Fig. 4.6, comprised several key components: a model of the cochlea, a base for securing the
cochlea, a six-degree-of-freedom force sensor, a Meca500 robot whose end-effector has 6 degrees
of freedom, and the implant.
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During the implantation process, the implant is fixed on the probe of the robot end effector.
The cochlea is fixed on the base, and a six-degree-of-freedom force sensor (NANO17 - ATI
Industrial Automatization) which can resolve down to 0.318 gram-force is installed at the
bottom of the cochlea placement. This sensor is used to measure the force acting on the
cochlea during the implantation process.

Figure 4.6: Experiment setup.

4.3.6.4 Experimental results

After implementing the optimal open-loop control sequences obtained from simulation, Fig. 4.7
presents the maximum insertion depths recorded for the implant, comparing the constant angle
approach with the optimal path. Each experimental group, repeated five times under identical
conditions, showed varying maximum insertion depths for different angles in the constant angle
approach. The deepest insertion, reaching up to 310 degrees, occurred at a zero-degree angle,
and the depth decreased as the angle increased.

Conversely, using the optimized path, the final maximum insertion depth consistently con-
verged to 310 degrees across all experimental groups, regardless of their initial angles. Moreover,
the insertion force followed a similar trend for different initial angles, which confirms the ro-
bustness of our method, as shown in Fig. 4.8.

In this section, we introduced the control objectives and methods for passive cochlear im-
plants. Both simulations and experiments suggest that the proposed methods can enhance the
implantation depth to some extent and adapt to the needs of various initial implantation angles.
In the following section, we will discuss the control methods for active cochlear implants.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Insertion result of constant direction and optimal path from different initial orien-
tation.
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Figure 4.8: The measured insertion force of different cases: the implantation start form different
initial angle.

4.4 Trajectory Tracking Control (Active Implant)

The previous section focused on the optimal control of passive cochlear implant. Now, we turn
our attention to active cochlear implants. As active implant has more degree of freedom for
control comparing with passive implant, the goal of this section is to explore optimal control
strategies for considering the active deformation of EA during implantation.

4.4.1 Control objective

First, we clarify the control objective here, which is to enable the implant to closely follow the
spiral centerline of the cochlea during the insertion process through active deformation. To
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define this objective, we evenly select several control points on the implant, and corresponding
follower reference points are chosen along the spiral trajectory. The controller should minimize
the distance between the control points on the implant and the follower reference points.

As shown in the Fig. 4.9, we select m control points {p1, . . . ,pm} on the implant, with the
distance {l1, . . . , lm} between them. Similarly, m follower reference points {pr1, . . . ,prm} are
placed on the spiral trajectory. During the implantation, we assume that the EA is inserted
by the end-effector of robot horizontally, with the constant insertion velocity v∥. The follower
points also move during the implantation. Specifically, they move forward along the center line
of cochlea at the movement rate same as v∥.

Figure 4.9: cochlear implant.

For the i-th control point located at si, its coordinates pi can be calculated using the
following formula:

pi =DgiE (4.15)

Here, gi is the configuration tensor of the disc of implant at length si. Matrices D and E are
used to extract position vectors from the configuration tensor, with

D =
[
I3×3 0

]
, E =

[
0 0 0 1

]⊤
For the i-th reference point pri, it moves on the center line of cochlea with the movement rate
as the end-effecter. In this case, The arc length corresponding to pri is sei = sei(0)+v∥t, where
sei(0) is its initial arc length, v∥ is the radial velocity of insertion, t is the insertion time.
Consequently, the position of pri at time t can be calculated as follows:

pri =Dge(sei)E (4.16)

wherege is the configuration tensor of cochlea, deduced in Section 3.2.2. Up to this point, we
can define the control objective for trajectory tracking:

argmin
V in(t)

H = Σi=m
i=1 wi

∫ tf

t0

∥pri(t)− pi(t)∥2dt (4.17)

This control objective illustrates that the EA should be close to the center line of the cochlea
as much as possible during the implantation. After defining the control objective, now we need
to consider the contact constraint in order to establish the complete minimization problem.

4.4.2 Control constraint

As we defined the control problem as a minimization issue in the above subsection, the system’s
model is considered a constraint for the minimization problem. Here, we recall the coupling
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model of the active cochlear implant, as deduced in Chapter 2, Section 2.4. First is the electrical
model, which involves the relationship between the input voltage to the Conducting Polymer
Actuator (CPA) and the driving torque generated by the CPA. The electrical model is as
follows:

Aż +Bz = UV in (4.18)

Here, z represents the moment generated by CPA, V in represents the input voltage. A, B and
U are the matrices of system, defined in Section 2.4.1.

As for mechanical model, we consider that the EA is at quasi-static state as the implantation
moves very slowly. We also ignore the contribution of gravity since it is very small compared
to the internal elastic force due to the small size of EA. Under this assumption, the mechanical
model is as follows:

Kq +Hz = 0 (4.19)

where K represents the stiffness matrix of EA, defined in Section 2.2.8, and H represents the
input matrix of EA, defined in Section 2.4.2.

4.4.3 Minimization problem

Having established the control objective and constraints, we are now in a position to define the
complete minimization problem as our control strategy:

argmin
V in(t)

H = Σi=m
i=1 wi

∫ tf

t0

∥pri(t)− pi(t)∥2dt (4.20)

Aż +Bz = UV in (4.21)

Kq +Hz = 0 (4.22)

pi =DgiE , i = 1, . . . ,m (4.23)

In this context, V in refers to the system’s input, whereas the charge variable z and the strain
variable q represent the system’s states. Furthermore, pi signifies the system’s output. wi

denotes the weight of each control point. The interval [t0, tf ] denotes the rolling time window
for optimization.

It is clear that the above optimization objective is defined as the trajectory error, while the
system model is established as the optimization constraints. To solve this optimization problem,
we first need to discretize the time window. Let’s define the time step as h = (tf − t0)/M , with
M being the discretization number of time interval [t0, tf ]. In this way, the time window can be
discretized into a sequence of time steps: [t0, t1, . . . , tM ], where tk = t0+kh, k = 0, . . . ,M , with
tM = tf . Within this time window, the system’s states, outputs, and inputs are also discretized
into sequences, with the variables in the sequence corresponding to each time point in the time
sequence.

After discretization, we can approximate the time integral in the optimization objective as
follows:

Hd = Σi=m
i=1 wiΣ

k=M
k=1 ∥pri(tk)− pi(tk)∥2h

The system’s model can also be rewritten in a discrete form over time. To ensure convergence,
we employ the implicit Euler method to discretize the differential equation (4.21) of system as
follows:

A(z(tk+1)− z(tk)) + hBz(tk+1) = hUV in(tk+1) (4.24)
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Therefore, the discretized optimal control problem can be written as follows:

argmin
V̄ in

Hd = Σi=m
i=1 wiΣ

k=M
k=1 ∥pri(tk)−Dgi(tk)E∥2h (4.25)

subject to

(A+ hB)z(tk+1)−Az(tk)− hUVin(tk+1) = 0 , k = 0, . . . ,M − 1 (4.26)

Kq(tk+1) +Hz(tk+1) = 0 , k = 1, . . . ,M − 1 (4.27)

pi(tk)−Dgi(tk)E = 0 , i = 1, . . . ,m , k = 1, . . . ,M (4.28)

V ina ≤ V in(tk) ≤ V inb , k = 1, . . . ,M (4.29)

where V̄ in is the input sequence as V̄ in = [V in(t1)
⊤, . . . ,V in(tM )⊤]⊤. V ina and V inb are the

lower and upper bounds of the input voltage.
To solve this problem, various strategies are available: for situations involving a fixed time

frame, optimal control is ideal, concentrating on identifying the best actions within this specified
duration. On the other hand, Model Predictive Control (MPC) excels in dynamic contexts,
employing a moving window approach to consistently revise control decisions in response to
evolving conditions. In our work, since the implantation is continuously moving on, we will
select a moving time window in order to implement MPC.

4.4.4 Shooting and multi-shooting method

In control theory, the above optimization problem falls under the category of optimal control
or Model Predictive Control (MPC). The core idea behind MPC is to find a sequence of input
commands that minimizes a cost function associated with the control problem [131]. The basic
approach to solving it is the shooting method. With knowledge of the initial state of the rolling
time window, we can start with an initial guess for the input sequence. We can then use the
system model (4.24) to propagate the system’s state at each moment within the rolling time
window. This allows us to compute the corresponding cost function value for the entire time
window. By finding the relationship between the cost function and the input sequence, i.e., by
calculating the Jacobian matrix between them, we can use gradient descent or Newton’s method
to determine the direction of iterations for the input sequence. Multiplying this direction by
an iteration step size provides a new input sequence. This process is repeated iteratively until
the extremum of the cost function is reached.

This method has the advantage of being straightforward because the optimization variable
is solely the input sequence [131]. The system state sequence can be derived from the input
sequence through the model. However, in many cases, this method’s robustness is limited, and
it can lead to issues with convergence, especially for highly nonlinear systems.

For nonlinear systems, a more stable alternative is the multi-shooting method. The multi-
shooting method is an enhanced approach to optimization, especially beneficial when dealing
with highly nonlinear systems. It divides the time window into smaller subintervals, optimizing
inputs within each one [132]. This method offers greater robustness, as it reduces convergence
issues, parallel processing capabilities for faster computations, and the ability to react to changes
in the system more rapidly. It’s well-suited for handling constraints and adapts to a wide
range of systems, making it a versatile choice for controlling complex systems. The difference
between this method and the shooting method lies in treating the state sequence within the
time window as unknown variables, to be solved together with the input sequence. To achieve
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this, we introduce an augmented variable that incorporates all the variables within the time
sequence. We define z̄ and q̄ as:

p̄ = [p(t1)
⊤, . . . ,p(tM )⊤]⊤ , z̄ = [z(t1)

⊤, . . . ,z(tM )⊤]⊤ , q̄ = [q(t1)
⊤, . . . , q(tM )⊤]⊤

Based on (4.24), the dynamic equation of electric model within the entire time window is as
follows:

(A+ hB)1
−A2 (A+ hB)2

. . .
. . .

−AM (A+ hB)M


︸ ︷︷ ︸

Ā


z(t1)
z(t2)
...

z(tM )

−

A1z(t0)


︸ ︷︷ ︸
z̄0

=


U

U
. . .

U


︸ ︷︷ ︸

Ū


V in(t1)
V in(t2)

...
V in(tM )


(4.30)

Based on (4.22), the static equation of mechanic model within the entire time window is:
K

K
. . .

K


︸ ︷︷ ︸

K̄


q(t1)
q(t2)
· · ·
q(tM )

+


H

H
. . .

H


︸ ︷︷ ︸

H̄


z(t1)
z(t2)
...

z(tM )

 = 0 (4.31)

The optimization problem associated with the multi-shooting method is as follows:

argmin
V̄ in,z̄,q̄

Hd = Σi=m
i=1 wiΣ

k=M
k=1 ∥pri(tk)−Dgi(tk)E∥2h (4.32)

subject to
Āz̄ − z̄0 − Ū V̄ in = 0 (4.33)

K̄q̄ + H̄z̄ = 0 (4.34)

V̄ ina ≤ V̄ in ≤ V̄ inb (4.35)

From a numerical computation perspective, the problem described above is a Nonlinear Pro-
gramming (NLP) problem. Due to the high degree of nonlinearity in both its objective function
and optimization constraints, solving it poses a challenge. In the following subsection, we will
introduce how to solve such problems by linearizing them via Sequence Quadratic Programming
method.

4.4.5 Sequence quadratic programming

Sequence Quadratic Programming (SQP) method is flexible and can handle both equality and
inequality constraints. It ensures that the updated solution satisfies the constraints within
specified tolerances. The core idea of SQP method is to decompose complex nonlinear opti-
mization problems into a sequence of quadratic programming subproblems. Each subproblem
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is obtained by linearizing the original problem near the current estimated solution using Taylor
series expansion, resulting in a quadratic objective function. SQP iteratively solves these sub-
problems to gradually approach the optimal solution of the original problem. It is a local search
method that provides a local approximation of the original problem and seeks better solutions
in the vicinity of the current solution. SQP has global convergence properties and can find the
global optimal solution when the problem has one. This method performs exceptionally well
in addressing nonlinear, constrained optimization problems, particularly in applications that
demand highly accurate numerical optimization [133].

We first transform the objective function (4.32) into a quadratic form:

Hd =
1

2
Σk=M

k=1 f
⊤
kQfk

where

fk =

 pr1(tk)−Dg1(tk)E...
prm(tk)−Dgm(tk)E

 , Q =

w1h
. . .

wmh


After the Taylor expansion, the quadratic programming (QP) subproblem for (4.32)-(4.35)
becomes [134]:

argmin
∆V̄ in,∆z̄,∆q̄

Hd = Σk=M
k=1 (f⊤

kQJk∆q̄ +
1

2
∆q̄⊤Hk∆q̄) (4.36)

subject to
Ā(z̄ +∆z̄)− z̄0 − Ū(V̄ in +∆V̄ in) = 0 (4.37)

K̄(q̄ +∆q̄) + H̄(z̄ +∆z̄) = 0 (4.38)

V̄ ina ≤ V̄ in +∆V̄ in ≤ V̄ inb (4.39)

where Jk denotes the Jacobian of fk with respect to q(tk) and Hk denotes the Hessian matrix
of 1

2f
⊤
kQfk with respect to q(tk). For the details of the derivation process of (4.36) from

Taylor expansion, we refer to [134]. To solve the aforementioned sub-QP, it is essential for us
to understand how to compute the Jacobian Jk and Hessian matrices Hk. We will delve into
the details of this in the upcoming subsections..

4.4.6 Computation of Jacobian matrix J and Hessian matrix H
First, we will describe how to compute the analytical solution for the Jacobian matrix J . For
any point p on the center line of implant, its velocity in global frame can be represented by the
equation below via the Jacobian matrix of kinematics:

ṗ = Rv =
[
03×3 R

]
η =

[
03×3 Ri

]
Jq̇

where R is the rotation matrix of disc at p. J is the Jacobian of kinematics at p.
Using the chain rule for differentiation, we can obtain an alternative expression for velocity:

ṗ =
∂p

∂q
q̇

Comparing the two expressions of ṗ, the following equation can be deduced:

∂p

∂q
q̇ =

[
03×3 Ri

]
Jq̇
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Accordingly, the partial derivative of p with respect to q is given by

∂p

∂q
=
[
03×3 R

]
J

Substituting this partial derivative into the definition of the Jacobian, we get:

Jk = −


∂(Dg1(tk)E)

∂qk

...
∂(Dgm(tk)E)

∂qk

 =


∂p1(tk)
∂qk

...
∂pm(tk)

∂qk

 = −


[
03×3 R1(tk)

]
J1(tk)

...[
03×3 Rm(tk)

]
Jm(tk)


Next, to simplify the computation, we can approximate the Hessian matrix using the deduced
Jacobian [134]:

Hk = J⊤
k Jk

Once we have the Jacobian and Hessian matrices in hand, we can outline the SQP loop
algorithm for minimizing the problem described by equations (4.32) through (4.35). The specific
steps for solving this problem are as follows:

1. Initialization: Start with an initial estimate for the solution to the optimization problem
(4.32)-(4.35).

2. Quadratic Programming Subproblem Construction: Linearize the nonlinear objective and
constraint functions around the current estimate of the solution using Taylor series expansion.
This results in a quadratic approximation to the problem in the form of a QP subproblem
(4.36)-(4.39).

3. Solve the QP Subproblem: Use a QP solver to find the solution to the quadratic programming
subproblem. This solution provides an updated estimate for the decision variables.

4. Update Variables: Update the decision variables with the solution obtained from the QP
subproblem.

V̄ in = V̄ in + c∆V̄ in , z̄ = z̄ + c∆z̄ , q̄ = q̄ + c∆q̄

where the parameter c is the step length, which can be determined by merit function.

5. Convergence Check: Check for convergence by examining criteria such as the change in
the objective function value or the satisfaction of constraint violations. If the convergence
criteria are met, the optimization process terminates. If not, return to step 2 and repeat the
process.

6. Termination Criteria: The optimization process continues until the termination criteria are
met, such as a predefined number of iterations or when the convergence criteria are satisfied.

7. Output: The final solution V̄ in, z̄, q̄, which is the optimal to the original nonlinear opti-
mization problem (4.32)-(4.35), is obtained after the SQP iterations are completed.
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Figure 4.10: Optimal control framework of cochlea implant.

4.4.7 Control Algorithm Summary

Based on the proposed SQP loop, the overall optimal control process is outlined as follows:

1. System Modeling: Establish the dynamic model of the active implant, covering both its
electrical and mechanical behaviors. (4.21)-(4.23)

2. Time Discretization: Split time into discrete intervals using a fixed time step h. (4.24)

3. Formulate the Optimization Problem: Define the optimization problem, consisting of the
rolling time window, an objective function and constraints that guide the system’s behavior.
(4.32)-(4.35)

4. Closed-Loop Control:

-Measurement: Measure the current system state, including electric charge z(t0) and strain
q(t0).

-Optimization: Use Sequential Quadratic Programming to optimize control inputs.

-Control Input Application: Apply the first value V in(t0) of the optimized input sequence
V̄ in.

-Iterate and Update: Repeat this process for each time window to ensure the implant tracking
the trajectory, as shown in Fig. 4.10.

In summary, to conclude the control of active implant, we initially defined an optimization
objective based on trajectory tracking. Subsequently, we revisited the coupled model of the
active cochlear implant discussed in Chapter 2, incorporating this model as an optimization
constraint. This led to the formulation of an optimization problem based on a rolling time
window, namely Model Predictive Control (MPC). We addressed the established optimization
problem using the multi-shooting method and ultimately solved it using Sequential Quadratic
Programming (SQP). In the following section, we will present the related simulation design and
the results of these simulations.

4.4.8 Simulation
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In this section, we will focus on the simulation aspect of control for active cochlear implants,
including an enumeration of different structural designs of active cochlear implants and an
analysis of the simulation results for each design. In order to investigate the impact of various
design structures on control tracking effectiveness, specifically the number, placement, and
length of the CPA, we have configured three sets of simulations, each involving the implant
with a different number of actuators and varying the number of control points. The details are
as follows:

Case 1. Two actuators and two control points

In the first simulation, we configure the implant to have a length of 26mm, consisting of two
conducting polymer actuators, with each actuator measuring 7mm in length. The geometric
structure of the active implant is depicted in Fig. 4.11.

Figure 4.11: Active implant with two actuators and two control points. The black section
symbolizes the EA, while the red section denotes the CPA. The red hollow circles indicate the
follower reference points, and the green dots represent the control points.

Case 2. Three actuators and three control points

In the second simulation, we configure the implant to have a length of 26mm, consisting
of three conducting polymer actuators, with each actuator measuring 7mm in length. The
geometric structure of the active implant is depicted in Fig. 4.12. The red regions in the
illustration indicate sections containing conducting polymer actuators. Charging initiates for
each actuator, starting from the extreme left.

Figure 4.12: Active implant with three actuators and three control points.

Case 3. Four actuators and five control points

In the last simulation, we configure the implant to have a length of 26mm, consisting of
four conducting polymer actuators, with each actuator measuring 5mm in length. The spacing
between control points gradually decreases from the left end to the right end of the implant.
The geometric structure of the active implant is depicted in Fig. 4.13.
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Figure 4.13: Active implant with four actuators and five control points.

For all simulations, the input voltage is limited to a range of ±3 volts, i.e., Vin ∈ [−3V, 3V].
The sampling time of discrete system is h = 0.1s. The implant advances at a speed of 0.1mm/s.
At each sampling instant,we retrieve the current optimal input voltage using the controller
algorithm developed in Section 4.4.7 and subsequently feed it into the simulation.

(a) t=130s (b) t=163s

Figure 4.14: Active implant optimal control tracking simulation of case 1.

Fig. 4.14, Fig. 4.15 and Fig. 4.16 respectively illustrate the optimal control simulation
process for cases 1, 2 and 3, including the geometric poses of the implant at various time points
and the evolution of input voltage over time. The reference trajectory followed by the implant
is the center line of cochlea, as indicated by the blue line in the diagram. Since our objective
is to test the trajectory tracking performance of the active cochlear implant relative to the
cochlear centerline, without involving the calculation of contact forces, we do not consider the
contact between the Electrode Array (EA) and the cochlea in any of our simulations.

The simulation results for Case 1 are presented in Fig. 4.14. It is clear that, due to the
limited degrees of freedom provided by the two actuators, notable discrepancies emerge in
the latter stages of the active implantation process. Specifically, there are significant errors
in the distance between the control points and the target points. Furthermore, a substantial
misalignment occurs between the shape of the implant and the cochlear centerline, resulting
in the implant breaching the inner walls of the cochlea, as vividly depicted in Fig. 4.14.(b).
Hence, the success of the active implant in effectively following the cochlear’s spiral centerline
largely hinges on the quantity of both actuators and control points. This means that having
an adequate number of these components plays a pivotal role in the implant’s performance. As
we observed, the greater the number of actuators and control points, the better the implant’s
ability to avoid contact with the cochlear walls and remain close to the spiral centerline, thereby
enhancing the overall implantation process.
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(a) t=130s (b) t=168s

(c) t=207s (d) t=243s

Figure 4.15: Active implant optimal control tracking simulation of case 2.

This challenging scenario is mitigated in Case 2 and Case 3, where the augmentation of
both the number of actuators and control points brings about a substantial improvement.
The simulation results demonstrate the successful insertion of both configurations of the active
implant into the cochlea without contacting its inner wall. In the case of three drivers and three
control points, occasional challenges arise in effectively tracking the target points. Moreover,
certain sections of the implant struggle to conform seamlessly to the cochlear centerline, as
portrayed in Fig. 4.15.(b) and Fig. 4.15.(d). However, this scenario sees improvement when
adopting four drivers and expanding the control points to five, as depicted in Fig. 4.16.(b)
and 4.16.(d). Despite having fewer degrees of freedom than the control points, the optimal
control algorithm minimizes the positional error of control points, ensuring a more precise fit of
the implant to the cochlear centerline. In essence, adopting the trajectory-tracking approach
during cochlear implantation proves advantageous as it effectively prevents any undesirable
contact between the active implant and the inner walls of the cochlea. This methodology not
only minimizes the force exerted during the procedure but also reduces the risk of cochlear
damage and the occurrence of buckling phenomena, contributing to an overall improvement in
the depth of implantation.

In scenarios with fewer actuators or control points, as seen in Fig. 4.14, the implant’s
shape deviates from the ideal path due to the limitations of controlling actuators, which may
not provide sufficient torque to conform to the cochlear’s intricate shape. This limitation is
particularly pronounced in the latter stages of the implantation process, as the implant reaches
regions with higher curvature. However, it’s essential to note that, under typical safe voltage
conditions, the electrically controlled polymer actuators can sometimes reach their voltage
constraints, as indicated in Fig. 4.17. The implant reaches a location along the cochlear
centerline where the curvature is particularly high, the voltage applied to the rearmost actuator
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(a) t=130s (b) t=168s

(c) t=207s (d) t=243s

Figure 4.16: Active implant optimal control tracking simulation of case 3.

escalates, reaching a critical threshold of 3 volts. By implementing voltage limit constraints in
the controller, we can effectively mitigate this issue, ensuring that the implant remains within
safe electrical boundaries. This observation underscores the importance of electrical safety
during the implantation procedure.

Furthermore, the spacing between the control points decreases progressively from the left
end to the right end of the implant. This arrangement is tailored to adapt to the cochlear’s
natural shape, where the cochlear’s curvature is more pronounced toward its center. Conse-
quently, having more control points towards the end of the implant accommodates the cochlear’s
increasing curvature, enabling more precise tracking of the spiral centerline. This adaptation
ensures that the implant’s shape closely adheres to the cochlear’s contour, particularly as it
approaches the highly curved regions, thereby minimizing the risk of contact with the cochlear
walls and improving the implant’s insertion depth.

However, it is crucial to acknowledge that this approach comes with its own set of challenges.
The requirement for multiple actuators to provide the necessary degrees of freedom can lead to
increased structural complexity, thereby elevating the difficulty in manufacturing. Moreover,
when operating within the constraints of safe electrical voltages for in vivo applications, elec-
trolytic polymer actuators often face inherent limitations. These limitations primarily manifest
as an inability to generate the required torque for the implant to bend into its desired state.
This restriction in torque delivery has a significant impact on the active implant’s performance.
In essence, it restricts the implant’s capacity to closely follow the cochlear centerline. Regard-
less of the effort and adjustments made in structure design, the limitations of the actuators
become a decisive factor.

To address these challenges, an alternative strategy involves utilizing fewer actuators and
incorporating a hybrid control method. This hybrid approach synergistically combines force
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Figure 4.17: Optimal input voltage of case 2.
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Figure 4.18: Optimal input voltage of case 3.

control, as discussed in Section 4.3, with trajectory control presented in Section 4.4. The
primary goal is to mitigate contact between the implant and the cochlea while concurrently
minimizing the thrust force applied during the implantation process.

This hybrid methodology introduces a novel dimension to cochlear implantation, aiming to
strike a balance between the intricacies of control precision and the practicality of implemen-
tation. The subsequent chapters will delve into the intricacies of this method.

4.5 Hybrid Control Considering Contact

Before delving into the contents of this subsection, it’s worth revisiting the control objectives
set out at the beginning of this chapter regarding cochlear implantation. As we move forward,
these objectives will lay the foundation for introducing the concept of hybrid control. For hybrid
control, our control objectives are as follows:

argmin
ϕ0,V in

H =

∫ T

0

waF(t) + wbDdt (4.40)

where F(t) is the insertion force during the insertion and D is the mean distance between
implant and the spiral centerline of the cochlea. wa and wb are two weighting coefficients. In
the hybrid control approach we’ve discussed in this chapter, the control variables consist of the
orientation of the end-effector (ϕ0), as well as the input voltage to the conducting polymer
actuators (V in).

To solve the aforementioned optimization problem (4.40), we have divided it into two se-
quential optimization steps. This technique has been widely employed in numerical computing
for multi-objective optimization [135]. We’ve devised a two-step approach to tackle this hybird
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optimization problem: optimizing the insertion force and tracking the trajectory. In the first
step, we focus on controlling the insertion force. This entails adjusting the position and orien-
tation of the implant base, leveraging the control method we discussed in the initial chapter.
Throughout this phase, we keep the input voltage to the actuators constant.

Once we’ve successfully completed the first step, we transition to the second phase. Here,
we maintain the position and orientation of the base in a fixed state while actively controlling
the input voltages. The objective in this phase is to ensure that the control points on the
implant closely adhere to the predetermined target trajectory.

It’s worth noting that the performance of the actuators may impose certain limitations.
As a result, during the actual implantation process, the implant might still come into contact
with the walls of the cochlea. Therefore, in the second step, we take this into account by
incorporating a the contact model presented in Chapter 3. We’ll delve into the specifics of the
control strategy for this scenario and highlight how it differs from what we discussed in the
previous Section 4.4.

The comprehensive framework for our hybrid control approach is depicted in Fig. 4.19.
This approach not only enhances the precision of the implantation process but also addresses
potential challenges posed by contact with the cochlear walls.

Figure 4.19: Framework of hybrid control considering contact. The hybrid control strategy is
executed in two phases. The first step involves controlling the end-effector to minimize the
implantation force. Once the position of the end-effector is stabilized, we proceed to the second
phase of model predictive control. Considering the contact between the EA and the cochlea,
we incorporate the contact forces obtained from simulations into our control model. We then
calculate the optimal input voltage to drive the CPA, inducing deformation in the EA so that
it conforms to the cochlear centerline.

4.5.1 Optimization Problem for the Second Control Step

In the above mentioned second control step, the introduced contact model will modify the
optimization problem (4.25) of the previous subsection in order to minimize the tracking error
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and control effort with respect to the target trajectory while considering the contact forces
between the active implant and the cochlear wall. The optimization problem can be formulated
as follows:

argmin
V in(t)

H = Σi=m
i=1 wi

∫ td

tf

∥2pri(t)− pi(t)∥dt (4.41)

subject to
Aż +Bz = UVin (4.42)

Kq +Hz +Hcλc = 0 (4.43)

Gc −Ecλc = 0 (4.44)

pi =DgiE , i = 1, . . . ,m (4.45)

where the item Hcλc in (4.43) denotes the contribution of contact force to the mechanic
model. (4.44) represents the contact constraint, as we introduced in Section 3.5.4. In this
optimization problem, we apply the same SQP-based solving approach as presented in Section
4.4. Consequently, we won’t delve into the details of the solution method here.

4.5.2 Simulation

In order to emphasize the necessity of the proposed control algorithm, we first conducted
simulation of the structure without any control mechanisms implemented. The average Young’s
modulus of the implant material was set at 30 MPa, and a friction coefficient of 0.25 was
considered in the simulation. The structural configuration used in these experiments is depicted
in the Fig. 4.20. The results showed that during the initial stages of the implantation process,
buckling occurred.

Figure 4.20: Bulking occurs during the insertion without control.

Fig. 4.21 illustrates the variation of insertion force over time during the implantation pro-
cess. As depicted in the Fig. 4.21, there is a sharp increase in insertion force at around 110
seconds, indicating the occurrence of buckling in the implant. This preliminary simulation serve
as the baseline, providing the motivation for the development of control strategies to overcome
the buckling and ensure successful implantation.
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Figure 4.21: Insertion force of buckling scenario.
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(a) t=110s (b) t=150s

(c) t=190s (d) t=230

Figure 4.22: Trajectory tracking control simulation in case of two actuator and two control
points.
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Figure 4.23: Insertion force of trajectory tracking control considering the contact.

As discussed in the simulation of Section 4.4, it became evident that when the implant’s
actuators lack the necessary performance, the implant struggles to accurately follow the cochlear
trajectory and might breach the cochlear wall, as observed in Case 1 of the simulation subsection
in Fig. 4.14. The control strategy proposed here has been developed to address precisely this
scenario.

In the following set of simulations, we maintain the same implant configuration as in Case
1 (Fig. 4.11), which includes two actuators and two control points. This choice allows us to
investigate how this control approach can mitigate the challenges posed by insufficient actuator
performance, such as avoiding the influence of undesirable penetrations while navigating the
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cochlear structure. The input voltage applied to the actuators is regulated within the range
of ±3 volts to prioritize safety when interacting with the human body. Additionally, there are
constraints on the orientation of the implant base. It must maintain an angle of less than thirty
degrees concerning the horizontal axis at the entrance to the cochlea. This specific constraint
is vital to ensure the implant’s ability to navigate effectively within the confined and sensitive
space at the cochlear entrance. These limitations and regulations collectively contribute to the
safety and feasibility of the implantation process.

(a) t=110s (b) t=150s

(c) t=190s (d) t=230

Figure 4.24: Hybrid control simulation in case of two actuator and two control points.

The initial simulation focuses exclusively on trajectory tracking control, while simultane-
ously maintaining a consistent angle of advancement for the implant base. A notable distinction
from the previous chapter is the inclusion of a contact model accounting for interactions be-
tween the implant and the cochlea. Fig. 4.22 provides a comprehensive visual representation of
the control simulation procedure, while Fig. 4.23 effectively portrays the dynamic fluctuations
in insertion force experienced throughout the implantation process.

Following the initial simulation, the second simulation incorporates hybrid control strategies.
In this scenario, trajectory tracking is seamlessly combined with optimization of the implant
base’s angular progression. Once again, we maintain the inclusion of the contact model, ac-
counting for the interactions between the implant and the cochlea. Fig. 4.24 provides a visual
representation of this integrated control simulation process, while Fig. 4.25 illustrates the
dynamic variations in insertion force during the implantation process.
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Figure 4.25: Insertion force.

4.6 Conclusion

In this chapter, we have meticulously designed and evaluated various optimal controllers tailored
to distinct control objectives for cochlear implantation. Our approach has been bifurcated based
on the type of cochlear implant: passive and active.

For passive cochlear implants, which lack internal actuators, we developed an optimal im-
plantation path controller. Empirical evidence from our experiments suggests that this path
planning significantly enhances implantation depth. By meticulously calculating the optimal
path, we have been able to guide the implant more deeply into the cochlea, potentially improv-
ing the auditory outcomes for recipients.

In contrast, for active cochlear implants equipped with actuators, we designed a controller
based on model predictive control. This advanced controller aims to achieve precise trajectory
tracking along the cochlear spiral’s central axis. Our simulations demonstrate that, with a
sufficient number of actuators, the controller can effectively guide the implant’s electrode array
along the desired path within the cochlea. This capability is crucial for avoiding contact between
the electrode sequence and the cochlear walls during implantation, thereby minimizing potential
damage and enhancing the safety and effectiveness of the procedure.

Furthermore, we combined the principles underlying these two approaches to create a hybrid
optimal controller that considers the contact model. This controller is particularly relevant
when the number of actuators is insufficient to ensure that the electrode sequence precisely
follows the cochlear spiral’s central axis. In such scenarios, inevitable contact with the cochlear
walls occurs. The hybrid controller, equipped with the contact model, adeptly manages both
the implantation path and actuator input voltages. This dual control mechanism significantly
reduces the contact force, thereby mitigating the risk of cochlear damage and optimizing the
implantation process.
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Chapter 5

Conclusion and Perspectives

5.1 Conclusion

In recent years, significant advancements have been made in cochlear implant technology, es-
pecially in mechanical modeling, simulation, and control. However, challenges such as compu-
tational complexity and simulation precision persist. This thesis, details substantial progress
in Active Cochlear Implants (ACI) technology.

In Chapter 2 of this thesis, we significantly advanced Active Cochlear Implants (ACI) by
enhancing their system modeling. Our primary achievement was developing a sophisticated me-
chanical model for the Electrode Array, blending Cosserat rod theory with Lie group integration.
This resulted in a model that accurately mirrors the actual system with reduced complexity
and excels in managing nonlinear dynamics. We also created an electronic-mechanical model
for the Electronic Conducting Polymer, simplifying complexities and precisely controlling de-
formations. An innovative parameter identification method and a custom visual identification
system were introduced to address uncertainties in physical parameters. The chapter culminates
with a comprehensive coupling model integrating both EA and ECP components, marking a
significant leap in model-based control for ACIs. These developments pave the way for more
refined, efficient, and effective cochlear implant models, setting the stage for future research in
this field.

Chapter 3 introduces a pioneering contact dynamics model for soft robots, based on Cosserat
theory. This model provides a detailed analysis of the complex geometrical relationships, forces,
and moments at contact points, crucial for understanding the dynamics of soft robots and par-
ticularly vital in cochlear implant technology. We have successfully established and refined
contact constraints, incorporating non-penetration, force balance, and frictional interactions.
These advancements enable direct resolution of the contact dynamics system, significantly en-
hancing the model’s accuracy and reliability, as validated against empirical results. This model
is not only critical for improving cochlear implant design and control strategies but also marks
a significant leap in the field of soft slender robotics. Looking forward, we aim to extend this
framework to include robots with integrated actuation mechanisms, such as cable, tendon, or
magnet-driven systems, thereby broadening the scope of our research in cochlear implant con-
trol and simulation. This work not only advances cochlear implant technology but also opens
new avenues in the application of soft robotics.

In Chapter 4 of our research, we have developed and evaluated various optimal controllers
for cochlear implantation, tailored to address specific requirements of both passive and ac-
tive cochlear implants. For passive implants, which lack internal actuators, we introduced an
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optimal path controller that significantly deepens the implantation, potentially enhancing au-
ditory outcomes. For active implants, equipped with actuators, we crafted a model predictive
control-based controller aimed at ensuring precise trajectory following within the cochlea. This
is crucial for preventing damage during implantation by avoiding contact with cochlear walls.
Additionally, recognizing scenarios where the number of actuators might be insufficient, we
innovated a hybrid optimal controller that combines both approaches and includes the contact
model. This hybrid system adeptly manages implantation path and actuator inputs, signifi-
cantly reducing contact force and thereby minimizing cochlear damage, optimizing the overall
implantation process. This chapter signifies a pivotal advancement in cochlear implant technol-
ogy, offering sophisticated control strategies to improve safety and efficacy in cochlear implant
procedures.

Overall, this thesis advances ACI technology, laying a foundation for future work and en-
hancing auditory experiences for CI recipients. The methodologies and insights from this study
pave the way for more refined, efficient, and effective CI models, contributing significantly to
the field.

5.2 Perspectives

5.2.1 Patient’s cochlea specific

In our current research endeavors, we focus on simulations and control strategies grounded
in the established 3D dimensions of the cochlea. It is essential to recognize, however, that
individual variations in cochlear size are significant, necessitating the acquisition of specific
3D measurements for each patient prior to cochlear implant surgery. Typically, this process
involves utilizing CT (Computed Tomography) scans to acquire detailed images of a patient’s
cochlear structure.

Figure 5.1: A curved structure representing the cochlear skeleton is derived (left). This skele-
ton is then used to parameterize cross-sections of the surface, resulting in a cochlear shape
description based on corresponding pseudo-landmarks (right). [30]

Our methodology commences with a high-resolution CT scan of the patient’s temporal
bone, encompassing the cochlea. These scans are adept at capturing the intricate details of
the inner ear’s anatomy, thus providing invaluable data for our research. Post-scan, we employ
sophisticated software to process these images. Through a combination of algorithms and image
processing techniques, we convert these two-dimensional slices into a comprehensive three-
dimensional model of the patient’s cochlea. It’s worth noting that recent advancements in
CT technology have facilitated the creation of algorithms robust against artifacts, specifically
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for automatic segmentation of the inner ear’s anatomy in post-cochlear-implantation scans
[136,137]. Once we have acquired the 3D spatial data of the cochlea, we can establish a three-
dimensional analytical model of the cochlea through data fitting. This can involve using spline
curves to fit the central axis of the cochlea as well as the cross-sectional profiles of the cochlea,
as shown in Fig. 5.1. After that, we can then use the proposed methods in Chapters 3 and 4
to model and control the implant implantation.

This 3D model is not merely instrumental for our simulation and control strategy develop-
ment, but it also serves as an essential preoperative tool for surgeons. It enables more precise
planning of cochlear implant procedures, tailored to each patient’s unique anatomical structure.
For example, understanding the exact dimensions and shape of the cochlea allows surgeons to
select the most suitable implant type and size, and strategize the insertion angle and depth
to minimize trauma while maximizing auditory outcomes. Moreover, employing CT scans in
cochlear implant surgery is crucial for examining the electro-neural interface in cochlear im-
plant users. This involves correlating CT scan results with electrode-modiolar distances and
patient outcomes, particularly in terms of auditory response thresholds and speech understand-
ing [138]. Such comprehensive assessments are vital in improving the effectiveness of cochlear
implant surgeries and ensuring optimal auditory rehabilitation for patients.

5.2.2 Modeling of anatomical structure of inner ear

In the field of cochlear implant surgery, our current research primarily focuses on the simulation
and control of the implantation process. However, our approach is based solely on the structure
of the cochlea itself, without taking into account the influence of surrounding ear structures.
This narrow focus overlooks a critical aspect of the surgical environment.

The inner ear, beyond the cochlea, comprises various anatomical structures, including blood
vessels, facial nerve and bones, as shown in Fig. 5.2. These elements pose significant constraints
during surgery, particularly affecting the movement and operational scope of the robotic tools
used in the procedure. The presence of these structures around the cochlea can significantly
limit the path of implantation. Therefore, avoiding any damage or interference with these
delicate tissues is crucial during the surgery.

Acknowledging the complexity of the inner ear environment is thus vital for the advancement
of cochlear implant surgeries. Future research and development in this field need to address
two key areas:

1. Development of a Comprehensive 3D Model: The creation of an intricate 3D geometric
model of the entire inner ear structure is essential. This model should not only detail
the cochlea but also include the surrounding tissues, vessels, and bones. The aim is to
establish a clear understanding of the available space for implantation, facilitating the
planning and execution of the surgery with greater precision.

2. Enhanced Path Planning for Implantation: Considering the potential contact between the
robotic end effector and the external structures of the cochlea, it becomes imperative to
integrate obstacle avoidance strategies in the surgical procedure. This involves formulat-
ing a new implantation pathway that minimizes the risk of tissue damage while ensuring
the effective placement of the cochlear implant.

By incorporating these elements into cochlear implant surgery, we can significantly improve the
safety, accuracy, and outcomes of the procedure. In future work, we can geometrically model
other external tissue structures of the cochlea and incorporate them as obstacle constraints in
the optimization problem to solve for the optimal implantation trajectory.
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(a) (b)

Figure 5.2: (a) Red coloration represents the cochlear segmentation, which is automatically
computed by the software. Green coloration indicates the bony overhang, also automatically
calculated by the software. The facial nerve is depicted with yellow coloration, while the external
ear canal is shown in dark blue. The ossicles are highlighted in pink, and the chorda tympani
is marked in orange. Lastly, the drill’s position along the automated trajectory is shown in
light blue shading. [139] (b) Cross-sectional view of the temporal bone, where the angle β in
the diagram indicates the range of motion of the implantation tool (end-effector) outside the
cochlear window. [140]

5.2.3 From simulation to clinic test

In future endeavors, it’s essential to move beyond the confines of modeling and controlling
cochlear implants in simulated environments to conducting clinical trials with real cochleae.
This transition is a critical step in validating and refining the theoretical models and control
systems we’ve developed for cochlear implants. To ensure the safety and effectiveness of these
implants, real-world testing is indispensable.

An ideal starting point for this transition would be animal studies. Testing on animal
cochleae allows us to closely examine the practical application and impact of the implants in a
living system, which can differ significantly from simulated environments. These animal trials
would provide invaluable insights into how the implants interact with biological tissues, the
nuances of implant positioning and control, and the overall biocompatibility of the devices.

In summary, integrating real cochleae testing, starting with animal studies, is a crucial step
in the advancement of cochlear implant technology. It bridges the gap between theoretical
models and practical application, paving the way for more effective, safe, and reliable cochlear
implants in the future.

5.2.4 From cochlear implantation to other applications

In our research, we have conducted extensive physical modeling of the electrode array in cochlear
implants, accurately simulated the 3D structure of the cochlea, and analyzed the mechanical
interactions between the electrode array and the cochlea. Based on these models, we further
designed an optimized control algorithm to enhance the precision and safety of the implantation
surgery. The innovation of these technologies lies not only in their significant implications for
cochlear implant surgery but also in their potential applications in other medical surgeries that
require precise modeling and control.

Specifically, our technology can be applied to the following types of surgeries:
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� Ventriculoscopic Surgery: This surgery utilizes a tube-like tool similar to an endoscope for
precise navigation within the brain’s ventricles. The operational precision required here
is similar to that in the placement of the electrode array in cochlear implant surgeries.

� Cardiac Catheterization Surgery: In this type of surgery, a slender catheter must be
accurately placed inside the heart, paralleling the complexity of implanting electrodes in
cochlear surgery and similarly relying on detailed vascular models.

� Minimally Invasive Neurosurgery: In this type of surgery, tiny tools are used to operate
within the brain or spinal cord, which may involve micro actuators, requiring the same
level of fine manipulation and accuracy as in the implantation of cochlear electrodes.

� Gastrointestinal Endoscopic Surgery: In these surgeries, a flexible tube-like endoscope
operates in the narrow spaces of the gastrointestinal tract, presenting technical challenges
similar to those encountered in navigating the narrow cochlear passages.

By applying our innovations in cochlear implant technology to these surgeries, we can not
only enhance their safety and efficacy but also bring new technological advancements and
therapeutic possibilities to these specific surgical fields.
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Appendix A

Theoretical Background for
Modeling

A.1 Rigid body Motions

To describe the configuration of the rigid body in 3D space, only the position and orientation
of the body frame with respect to the fixed frame need to be specified. The configuration of
the frame attached to the body with respect to a fixed reference frame can be expressed as a
4 × 4 matrix, which not only stands for the configuration of a frame, but can also be used to
translate and rotate a vector or a frame, and change the representation of a vector or a frame
from coordinates in one frame to ones in another frame.

The angular and linear velocities are combined together into a six-dimensional (6D) vector
called a twist, while torques and forces are packaged together into a 6D vector called a wrench.
The twist, wrench, and Newton-Euler formulation lay the foundation for the kinematic and
dynamic analysis of manipulators, and they allow a global description of rigid-body motion
without being affected by singularities due to the use of local coordinates. In the following, we
will briefly illustrate these concepts.

A.1.1 Rotation Matrices

There are nine entries in the rotation matrixR, however, only three can be chosen independently
due to the unit norm and orthogonality conditions. The set of 3 × 3 rotation matrices forms
the special orthogonal group SO(3), which can be defined as follows.

Definition 1. The special orthogonal group SO(3), known as the group of rotation matrices,
is the set of all 3× 3 real matrices R that satisfy

R⊤R = I3

and
detR = +1

where the additional constraint detR = +1 means that only right-handed frames are allowed.

A rotation matrix R aims at representing an orientation, changing the reference frame, and
rotating a vector or a frame.
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A.1.2 Angular Velocities

The rotation matrix R(t) describes the orientation of the body frame with respect to the fixed
frame at time t. ωA and ωB are defined as the vector representations of the same angular
velocity ω in inertial frame and body frame at time t, respectively. Thus, the time evolution
of rotation matrix can be obtained

Ṙ = ωA ×R = ω̃AR (A.1)

where ω̃A is a 3× 3 skew-symmetric matrix representation of ωA ∈ R3.

Definition 2. Given a vector a =
[
a1 a2 a3

]⊤
, define

ã =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


as a 3× 3 skew-symmetric matrix representation of a; that is,

ã = −ã⊤

The set of all 3× 3 real skew symmetric matrices is called so(3) which is the Lie algebra of
the special orthogonal group SO(3). A useful property involving rotation and skew symmetric
matrices is introduced as follows.

Proposition 1. Given any ω ∈ R3 and R ∈ SO(3), the following equality always holds:

Rω̃R⊤ = R̃ω

Post-multiplying both sides of (A.1) by R⊤ to obtain

ω̃A = ṘR⊤

To obtain the angular velocity ωB expressed in the body frame from ωA, we have

ωB = R⊤ωA,

which can also be expressed in skew-symmetric matrix representation using the Proposition 1
as follows

ω̃B = R⊤Ṙ

Finally, we discovered that pre-or post-multiplying Ṙ by R⊤ leads to a skew-symmetric
representation of the angular velocity vector, either in fixed- or body-frame.

A.1.3 Homogeneous Transformation Matrices

A natural choice of representations for the orientation and position of a rigid body is to use
a rotation matrix R ∈ SO(3) to describe the orientation of the body frame {B} in the fixed
frame {A} and a vector p ∈ R3 to stand for the origin of the body frame in the fixed frame.
They are packaged into a single matrix as follows.

Definition 3. The special Euclidean group SE(3), regarded as the group of homogeneous trans-
formation matrices, is the set of all 4× 4 real matrices T of the form:

T =

[
R p
0 1

]
where R ∈ SO(3) and p ∈ R3 is a column vector.

The same representation can also be used for a rigid body transformation between two
coordinate frames.
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A.1.4 Twists

The infinitesimal version of the screw motion is called a twist, which describes the instantaneous
velocity of a rigid body in terms of linear and angular components, and plays an important
role in formulation of the kinematics and dynamics of robotic mechanisms. The homogeneous
transformation matrix T represents the configuration of body frame as seen from the inertial
coordinate frame. To obtain the velocity twists in the moving frame and fixed frame, we will
calculate T−1Ṫ and Ṫ T−1, respectively. The calculation of T−1Ṫ yields

T−1Ṫ =

[
R⊤ −R⊤p
0 1

] [
Ṙ ṗ
0 0

]
=

[
R⊤Ṙ R⊤ṗ
0 0

]
=

[
ω̃B vB

0 0

]
where R⊤Ṙ = ω̃B is just the skew-symmetric matrix representation of the angular velocity
expressed in the body frame, ṗ represents the linear velocity of the origin of body frame ex-
pressed in the fixed frame, while vB is the linear velocity expressed in the body frame. The
angular and linear velocities are merged into a single 6D vector called body velocity twist, and
it is given by

ηB =

[
wB

vB

]
∈ R6

Just as a skew-symmetric matrix representation of an angular velocity vector, a matrix
representation of a twist can be formulated as

η̂B = T−1Ṫ =

[
ω̃B vB
0 0

]
∈ se(3)

where the symbol̂represents the isomorphism between the vector space R6 and se(3).

Next, the calculation of Ṫ T−1 is given by

Ṫ T−1 =

[
Ṙ ṗ
0 0

] [
R⊤ −R⊤p
0 1

]
=

[
ṘR⊤ ṗ− ṘR⊤p
0 0

]
=

[
w̃A vA

0 0

]
where ṘR⊤ = w̃A represents the angular velocity expressed in the fixed frame, and vA is the
instantaneous velocity of the point on this body expressed in the fixed frame. As we did above,
wA and vA are assembled into a 6D spatial velocity twist, and its matrix representation can
be expressed as

η̂A = Ṫ T−1 =

[
w̃A vA

0 0

]
∈ se(3)

Finally, we will find out the relationship of the velocity twists in the frames {A} and {B},
ηA from ηB is then given by

ηA = [T η̂BT
−1]∨ =

[
Rw̃BR

⊤ −Rw̃BR
⊤p+RvB

0 0

]∨
=

[
R 03×3

p̃R R

]
︸ ︷︷ ︸

AdT

ηB
(A.2)

where the symbol ∨ is an operator about mapping a matrix into a vector, and Ad represents
the Adjoint representation defined in Appendix B.

A.1.5 Exponential Coordinate Representation

Every rigid body motion can be realized by unifying a rotation about a fixed axis and a trans-
lation parallel to this axis [141]. Considering the above definition of the matrix representation
of the body velocity twist ηB , we have

Ṫ = T η̂B
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which is a differential equation on a Lie group. If η̂B is independent of time t, the analytical
solution of this equation can be formulated as

T (t) = T (0)eη̂Bt (A.3)

where T (0) is the initial configuration of a rigid body, and eη̂Bt maps an element of the Lie
algebra η̂B ∈ se(3) into an element of the Lie group T ∈ SE(3).

According to the Proposition 2.9 in [142], every rigid transformation T can be written
as the exponential of some twist. In (A.3), the exponential map can be viewed as a local
parameterization that provides solutions to a linear differential equation on a Lie group. The
exponential of a twist as a mapping from initial to final configurations is especially important
when we investigate the kinematics of robotic mechanisms in the following chapters.

A.1.6 Wrenches

A generalized force acting on a rigid body consists of a linear component (pure force) and
an angular component (pure torque). Just as the linear and angular components of velocities
merged as twists, we can also merge torques and forces into a single 6D vector called wrench as

F =

[
m
f

]
Recalling that the dot product of a force and a velocity is a power which is a coordinate-
independent quantity, therefore, we have

η⊤
BFB = η⊤

AFA (A.4)

where FA and FB represent the wrenches expressed in the frames {A} and {B}, respectively.
Substituting (A.2) into (A.4) yields

η⊤
BFB = (AdTηB)

⊤FA

which always holds for all ηB , and simplifies to

FB = Ad⊤TFA (A.5)

It can be seen from (A.5) that the relation of FA and FB is given by the Adjoint represen-
tation.

A.2 Newton–Euler Formulation

Typically, the dynamic equations for the robots are deduced by using one of two methods: by
means of Newton’s and Euler’s dynamic equations, known as the Newton–Euler formulation
for the rigid body, or by the Lagrangian dynamic formulation obtained from the kinetic and
potential energy of the robot.

The Lagrangian dynamics is extremely effective for robots with fewer DoFs, however, the
calculations will become cumbersome for the robots with more DoFs [143]. On the contrary,
the Newton–Euler formulation yields efficient recursive algorithms for the forward or inverse
dynamics which can also be assembled into closed-form analytical formulations.

It should be emphasized that the Newton–Euler formulation allows computationally efficient
implementation, especially for the robots with more DoFs, without the need for differentiation.
The resulting motion equations are the same as those derived by using the energy-based La-
grangian approach.
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A.2.1 Dynamics of A Rigid Body

A rigid body can be regarded as composing of a number of rigidly connected particles, where
the particle i has mass mi. The vector ri = [xi, yi, zi] is the fixed location of i in the body
frame, where the origin of this frame, called center of mass, is the point such that

∑
imiri = 0.

Assuming that the body is moving with a body twist ηB = (wB ,vB), and the vector pi is the
time-varying position of mi in the inertial frame, which is initially located at ri, we then have

ṗi = vB + ωB × pi

p̈i = v̇B + ω̇B × pi + ωB × (vB + ωB × pi)

Replacing pi on the right-hand side with ri and adopting the skew-symmetric notation yield

p̈i = v̇B + ˜̇ωBri + ω̃BvB + ω̃2
Bri

According to the statement of the Newton’s second law, the force acting on the particle i is
given by

f i = mi(v̇B + ˜̇ωBri + ω̃BvB + ω̃2
Bri)

and the torque is formulated as
mi = r̃if i

The total force and torque acting on the rigid body can be expressed as the wrench FB:

FB =

[
mB

fB

]
=

[∑
i mi∑
i f i

]
For any vector a, b ∈ R3, ã = −ã⊤, ãb = −b̃a, and ãb̃ = (b̃ã)⊤, the expressions for fB

and mB can be simplified. Recalling that
∑

imiri = 0, thus
∑

imir̃i = 0. In terms of the
linear dynamics (Newton’s equation), we have

fB =
∑
i

mi(v̇B + ˜̇ωBri + ω̃BvB + ω̃2
Bri)

=
∑
i

mi(v̇B + ω̃BvB)−
∑
i

mir̃iω̇B −
∑
i

mir̃iω̃BωB︸ ︷︷ ︸
0

= m(v̇B + ω̃BvB)

After that, focusing on the rotational dynamics (Euler’s equation), we can obtain

mB =
∑
i

mir̃i(v̇B + ˜̇ωBri + ω̃BvB + ω̃2
Bri)

=
∑
i

mir̃iv̇B +
∑
i

mir̃iω̃BvB︸ ︷︷ ︸
0

+
∑
i

mir̃i( ˜̇ωBri + ω̃2
Bri)

=
∑
i

mir̃i( ˜̇ωBri + ω̃2
Bri) =

∑
i

mi(−r̃2
i ω̇B − r̃T

i ω̃
T
B r̃iωB)

=
∑
i

mi(−r̃2
i ω̇B − ω̃B r̃

2
iωB) =

(
−
∑
i

mir̃
2
i

)
ω̇B + ω̃B

(
−
∑
i

mir̃
2
i

)
ωB

= IBω̇B + ω̃BIBωB

where IB = −
∑

imir̃
2
i ∈ R3×3 is the rotational inertia matrix of the rigid body, and it is

symmetric and positive definite matrix.
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A.2.2 Twist-Wrench Formulation of Rigid-body Dynamics

The above linear and the rotational dynamics can be written as the following combined form:[
mB

fB

]
=

[
IB 0
0 mI

] [
ω̇B

v̇B

]
−
[
ω̃B 0
ṽB ω̃B

]⊤ [IB 0
0 mI

] [
ωB

vB

]
And then, each term of the above formulation can be specified by using the following definition
and notation:

MB =

[
IB 0
0 mI

]
, adηB

≜

[
ω̃B 0
ṽB ω̃B

]
∈ R6×6

Therefore, the rigid-body dynamics in the body frame can be written as

FB = MBη̇B − ad⊤
ηB

MBηB (A.6)

This equation gives a global description of the motion equations for a rigid body subject to the
external wrench.
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Appendix B

Lie Group Framework

Definition 4. A group G is a set of elements g with a composition operation which satisfies the
group axioms involving associativity, the neutral element, the inverse element, and closure. A
Lie group G is a set that has compatible structures of a group and a smooth manifold. Compatible
means that the natural maps defined on the group are smooth i.e. the maps (f, h) 7→ fh and
f 7→ f−1 are smooth. The two requirements can be combined to the single requirement that the
mapping (f, h) 7→ f−1h be a smooth mapping of the product manifold into G.

Therefore, mathematically speaking, a Lie group is a smooth and differentiable manifold
equipped with a group structure such that the operations of group multiplication and inversion
are smooth. Not every Lie group is isomorphic to a matrix Lie group. In this context, however,
we have restricted our attention to matrix Lie groups for the purpose of minimizing prerequisites
and keeping the discussion as concrete as possible.

Definition 5. The Lie algebra g is the tangent space at the identity of a Lie group. A finite-
dimensional real or complex Lie algebra is a finite dimensional real or complex vector space g,
together with a map [·, ·] from g× g into g with the following properties:

1. Bilinearity: [aX + bY, Z] = a[X,Z] + b[Y,Z], [Z, aX + bY ] = a[Z,X] + b[Z, Y ], for all
X,Y, Z ∈ g.

2. The Alternating property: [X,X] = 0 for all X ∈ g.

3. Anticommutativity: [X,Y ] = −[Y,X] for all X,Y ∈ g.

where g is a Lie algebra with bracket operation given by

[X,Y ] = XY − Y X

Definition 6. If g is a Lie algebra and X is an element of g, define a linear map adX : g → g
by

adXY = [X,Y ]

The map X 7→ adX is the adjoint map or adjoint representation.
The adjoint representation (or adjoint action) of a Lie group G is a way of representing

the elements of the group as linear transformations of the group’s Lie algebra, considered as a
vector space. Let ψ : G → Aut(G) be the mapping g 7→ ψg, with Aut(G) the automorphism
group of G and ψg : G → G given by the inner automorphism (conjugation) ψg(h) = ghg−1.
This ψ is a Lie group homomorphism.
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Since g 7→ ψg is a Lie group homomorphism, g 7→ Adg is also a group homomorphism.
Hence, the map Ad : G → Aut(g), g 7→ Adg is a group representation called the adjoint
representation of G. Some properties of the adjoint representation is given by

(Adg)
−1

= Adg−1

Adg1g2 = Adg1Adg2

It is a typical feature of Lie theory of continuous groups to associate Lie algebra and Lie
groups by employing the matrix exponential map.
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Résumé

Selon les statistiques de l’Organisation Mondiale de la Santé, plus de 5% de la population
mondiale, soit 360 millions de personnes, souffrent d’une perte auditive invalidante (328 mil-
lions d’adultes et 32 millions d’enfants). Les aides auditives sont utilisées avec succès pour les
personnes partiellement malentendantes. Les aides auditives traditionnelles, bien qu’efficaces
pour la perte auditive partielle, sont souvent insuffisantes pour les individus souffrant de sur-
dité sévère. Dans de tels cas, la chirurgie d’implant cochléaire s’impose comme une solution
préférable. Cependant, l’implantation manuelle traditionnelle se heurte aux complexités de
l’anatomie humaine et aux subtilités des procédures. Parmi les principaux défis figurent les
risques de lésions des structures sensibles telles que le nerf facial et la propension de l’électrode
à se plier à l’intérieur de la cochlée, empêchant ainsi une implantation complète. Malgré la
précision des techniques manuelles, la visibilité limitée et la forte dépendance à la stabilité et à
l’expertise du chirurgien comportent intrinsèquement des risques.

Ces dernières années, des avancées significatives ont été réalisées dans la technologie des
implants cochléaires, notamment dans la modélisation mécanique, la simulation et le contrôle.
Cependant, des défis tels que la complexité computationnelle et la précision des simulations
persistent. Cette thèse détaille des progrès substantiels dans la technologie des Implants
Cochléaires Actifs (ICA).

Le Chapitre 1 de cette thèse offre une introduction approfondie au contexte du sujet étudié.
Il se concentre sur les implants cochléaires actifs, en détaillant l’origine et l’évolution des
implants cochléaires, leur principe de fonctionnement, ainsi que l’état actuel des techniques
chirurgicales utilisées pour leur implantation. Ce chapitre examine également les défis majeurs
auxquels cette technologie est confrontée, tels que les limitations techniques, les complications
chirurgicales et les variations des résultats chez les patients. En réponse à ces défis, nous pro-
posons des solutions innovantes et des stratégies de recherche visant à améliorer l’efficacité et
la fiabilité des implants cochléaires. Ainsi, ce chapitre pose les bases pour une compréhension
complète des enjeux et des avancées dans le domaine des implants cochléaires actifs, tout en
mettant en lumière les perspectives futures de cette technologie révolutionnaire.

Dans le chapitre 2 de cette thèse, nous avons considérablement avancé les Implants Cochléaires
Actifs en améliorant leur modélisation systémique. Notre principale réalisation a été le développement
d’un modèle mécanique sophistiqué pour l’Array d’Électrodes (EA), combinant la théorie des
tiges de Cosserat avec l’intégration de groupe de Lie. Cela a résulté en un modèle qui reflète
avec précision le système réel avec une complexité réduite et excelle dans la gestion des dy-
namiques non linéaires. Nous avons également créé un modèle électro-mécanique pour le
Polymère Conducteur Électronique (ECP), simplifiant les complexités et contrôlant précisément
les déformations. Une méthode innovante d’identification de paramètres et un système d’identification
visuelle personnalisé ont été introduits pour adresser les incertitudes des paramètres physiques.
Le chapitre se termine par un modèle de couplage complet intégrant les composants EA et
ECP, marquant un bond significatif dans le contrôle basé sur modèle pour les ICA. Ces
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développements ouvrent la voie à des modèles d’implants cochléaires plus raffinés, efficaces
et efficaces, préparant le terrain pour la recherche future dans ce domaine.

Le chapitre 3 présente un modèle pionnier de dynamique de contact pour les robots mous,
basé sur la théorie de Cosserat. Dans ce chapitre, nous nous appuyons sur le modèle mécanique
de l’array d’électrodes introduit dans le chapitre deux. Nous étendons le modèle de Cosserat
pour englober les phénomènes de contact, établissant un modèle de contact détaillé entre l’array
d’électrodes et la paroi cochléaire. Ce développement comprend l’identification des instances de
contact, l’analyse des forces de contact et de friction, le tout intégré de manière complexe avec le
modèle de poutre de Cosserat. Le modèle de contact fournit une analyse détaillée des relations
géométriques complexes, des forces et des moments aux points de contact, cruciaux pour com-
prendre la dynamique des robots mous et particulièrement vitaux dans la technologie des im-
plants cochléaires. Nous avons réussi à établir et à affiner les contraintes de contact, incorporant
la non-pénétration, l’équilibre des forces et les interactions frictionnelles. Ces avancées permet-
tent une résolution directe du système de dynamique de contact, améliorant considérablement
la précision et la fiabilité du modèle, comme validé contre des résultats empiriques. Ce modèle
est non seulement crucial pour améliorer la conception et les stratégies de contrôle des implants
cochléaires, mais marque également un progrès significatif dans le domaine des robots minces et
souples. À l’avenir, nous visons à étendre ce cadre pour inclure des robots avec des mécanismes
d’actuation intégrés, tels que les systèmes entrâınés par câble, tendon ou aimant, élargissant
ainsi le champ de notre recherche en contrôle et simulation d’implants cochléaires. Ce travail
fait non seulement progresser la technologie des implants cochléaires mais ouvre également de
nouvelles voies dans l’application de la robotique souple.

Dans le chapitre 4 de notre recherche, nous avons développé et évalué divers contrôleurs op-
timaux pour l’implantation cochléaire, adaptés aux besoins spécifiques des implants cochléaires
passifs et actifs. Pour les implants passifs, qui manquent d’actuateurs internes, nous avons
introduit un contrôleur de trajectoire optimal qui approfondit considérablement l’implantation,
améliorant potentiellement les résultats auditifs. Pour les implants actifs, équipés d’actuateurs,
nous avons élaboré un contrôleur basé sur la commande prédictive de modèle visant à garantir
un suivi de trajectoire précis dans la cochlée. Cela est crucial pour prévenir les dommages pen-
dant l’implantation en évitant le contact avec les parois cochléaires. De plus, reconnaissant les
scénarios où le nombre d’actuateurs pourrait être insuffisant, nous avons innové un contrôleur
optimal hybride qui combine les deux approches et inclut le modèle de contact. Ce système
hybride gère habilement le chemin d’implantation et les entrées des actuateurs, réduisant con-
sidérablement la force de contact et minimisant ainsi les dommages cochléaires, optimisant le
processus d’implantation dans son ensemble. Ce chapitre signifie un progrès pivot dans la tech-
nologie des implants cochléaires, offrant des stratégies de contrôle sophistiquées pour améliorer
la sécurité et l’efficacité des procédures d’implant cochléaire.

Le chapitre 5 constitue une conclusion et des perspectives, résumant les principales avancées
dans la technologie des implants cochléaires actifs et explorant les orientations futures de la
recherche. Dans les chapitres précédents, nous avons détaillé le modèle mécanique des implants
cochléaires, le modèle de dynamique de contact, ainsi que le développement de contrôleurs opti-
misés, des avancées qui visent à améliorer la performance et la sécurité des implants cochléaires.

La partie conclusion de ce chapitre revoit les progrès significatifs réalisés dans la technologie
des implants cochléaires, notamment en modélisation mécanique, simulation et contrôle, tout
en mentionnant les défis tels que la complexité computationnelle et la précision des simulations.
Ensuite, plusieurs directions de recherche futures sont proposées, incluant la création de modèles
tridimensionnels spécifiques à la cochlée des patients, qui aideraient à personnaliser les stratégies
chirurgicales, ainsi que la modélisation d’autres structures anatomiques de l’oreille interne,
cruciale pour la planification et la réalisation des interventions chirurgicales.
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De plus, nous prévoyons de transposer les résultats obtenus en environnement simulé à des
essais cliniques réels, notamment à travers des études sur des animaux afin de tester les nou-
velles technologies en conditions pratiques. Ces essais permettront de valider les améliorations
technologiques et d’évaluer leur impact sur le fonctionnement des implants cochléaires dans
des situations réelles. Enfin, ce chapitre explore également les applications potentielles de ces
technologies dans d’autres interventions médicales nécessitant une modélisation et un contrôle
précis. Parmi ces interventions figurent les chirurgies ventriculoscopiques, les interventions
de cathétérisation cardiaque, les chirurgies neurochirurgicales mini-invasives et les interven-
tions endoscopiques gastro-intestinales. L’extension de ces technologies à d’autres domaines
médicaux pourrait révolutionner les techniques chirurgicales et améliorer les résultats pour les
patients. En somme, ce chapitre ne se contente pas de récapituler les résultats de la recherche
sur la technologie des implants cochléaires, mais offre également des orientations claires et une
vision étendue pour les recherches et applications futures. Il met en lumière les perspectives
d’amélioration continue et les possibilités d’innovation dans le domaine des implants cochléaires
et au-delà.

Dans l’ensemble, cette thèse fait progresser la technologie ICA, jetant les bases pour des
travaux futurs et améliorant les expériences auditives pour les bénéficiaires de l’implant cochléaire.
Les méthodologies et les perspectives de cette étude ouvrent la voie à des modèles de l’implant
cochléaire plus raffinés, efficaces et efficaces, contribuant de manière significative au domaine.
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Modélisation et Commande de L’implant Cochléaire Active

Résumé en français

Selon les statistiques de l’Organisation Mondiale de la Santé, plus de 5% de la population
mondiale, soit 360 millions de personnes, souffre de pertes auditives invalidantes. Les aides au-
ditives traditionnelles ne sont généralement pas suffisantes pour ceux atteints de surdité sévère,
rendant la chirurgie d’implant cochléaire une meilleure solution. Cependant, l’implantation
manuelle traditionnelle est confrontée à des défis dus à la complexité de l’anatomie humaine
et aux détails procéduraux, tels que le risque de dommages au nerf facial et la tendance de
l’array d’électrodes à se courber dans la cochlée. Pour résoudre ces problèmes, cette thèse pro-
pose un nouveau modèle électronique et mécanique utilisant la théorie des tiges de Cosserat,
qui réduit la complexité et améliore la simulation et le contrôle en temps réel par rapport aux
modèles traditionnels à éléments finis. La recherche innove également dans l’identification des
paramètres en intégrant un système visuel pour mesurer la courbure de l’actuateur, dérivant
ainsi les paramètres physiques à travers un nouveau modèle de couplage électro-mécanique non
linéaire. De plus, nous développons un système de contrôle optimisé basé sur le nouveau modèle
électro-mécanique. Des tests rigoureux par des expériences et des simulations ont prouvé son
efficacité pour améliorer la précision et la sécurité des chirurgies d’implant cochléaire.

Mots-clefs: Chirurgie de l’implant cochléaire, l’array d’électrodes , théorie des tiges de Cosserat,
commande.

Summary in English

According to the World Health Organization’s statistics, over 5% of the global population,
or 360 million people, suffer from disabling hearing loss. Traditional hearing aids typically do
not suffice for those with severe deafness, making cochlear implant surgery a better solution.
However, traditional manual implantation faces challenges due to the complexities of human
anatomy and procedural details, such as the risk of damaging the facial nerve and the tendency
of the electrode array to bend within the cochlea. To address these issues, this thesis proposes
a new electronic and mechanical model using Cosserat rod theory, which reduces complexity
and improves real-time simulation and control compared to traditional finite element models.
The research also innovates in parameter identification by integrating a visual system to mea-
sure actuator curvature, thus deriving physical parameters through a novel nonlinear electro-
mechanical coupling model. Additionally, we develops an optimized control system based on
the new electro-mechanical model. Rigorous testing through experiments and simulations has
proven its effectiveness in enhancing the precision and safety of cochlear implant surgeries.

Keywords: Cochlear implant surgery, electrode array, Cosserat rod theory, control.
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