
HAL Id: tel-04801888
https://hal.science/tel-04801888v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to the Analysis and Design of Parallel
Batched Bayesian Optimization Algorithms

Maxime Gobert

To cite this version:
Maxime Gobert. Contributions to the Analysis and Design of Parallel Batched Bayesian Optimization
Algorithms. Operations Research [math.OC]. Université de Mons (Belgique), 2024. English. �NNT :
�. �tel-04801888�

https://hal.science/tel-04801888v1
https://hal.archives-ouvertes.fr

Université de Mons - Faculté Polytechnique
Informatique et Gestion - Mathématique et Recherche Opérationnelle

Contributions to the Analysis and Design of Parallel

Batched Bayesian Optimization Algorithms

Thèse de doctorat

Presentée et soutenue par

Maxime GOBERT

le 21 juin 2024
Dans le cadre de l’obtention du grade de

Docteur en sciences de l’ingénieur et technologies

Sous la direction de :
Daniel TUYTTENS (Promoteur)

Nouredine MELAB (Co-promoteur)

Devant le jury composé de :

VALLEE François Professeur Président Université de Mons
TUYTTENS Daniel Professeur Promoteur Université de Mons
MELAB Nouredine Professeur Co-promoteur Université de Lille
DANOY Grégoire Chargé de Recherche, HDR Rapporteur Université du Luxembourg
SENS Pierre Professeur Rapporteur Sorbonne Université
MAHMOUDI Saïd Professeur Secrétaire Université de Mons
GMYS Jan Ingénieur de Recherche Membre Université de Lille

Remerciements

Par ces quelques lignes, je souhaite tout d’abord remercier mes promoteurs, Daniel Tuyttens,
Professeur et chef du service MARO à l’Université de Mons, et Nouredine Melab, Professeur à
l’Université de Lille et directeur de l’équipe BONUS (CRIStAL et Inria Lille), pour l’opportunité
qu’ils m’ont donnée mais aussi pour leur encadrement, leurs conseils et encouragements tout
au long de ce travail.

J’adresse des remerciements particuliers à Jan Gmys, Docteur et Ingénieur de recherche au
Mésocentre de Calcul Scientifique Intensif de l’Université de Lille, pour sa gentillesse et ses
conseils autant sur le plan scientifique et technique que pédagogique.

Je suis très reconnaissant envers les nombreuses personnes avec qui j’ai eu la chance de
collaborer durant ces années. Je remercie notamment Guillaume Briffoteaux, Chercheur à
l’Université de Newcastle (Australie) et anciennement Doctorant dans le service MARO pour
nos nombreux échanges et nos productions scientifiques. Un bon nombre des études com-
prenant des cas d’application ont pu être réalisées grâce à l’intervention de François Vallée,
Jean-François Toubeau, Pietro Favaro, respectivement Professeur, Chargé de Recherche et Doc-
torant au sein du service deGénie Electrique de l’Université deMons; Édouard Rivière-Lorphèvre,
François Ducobu, et Nithyaraaj Kugalur Palanisamy, respectivement Professeur, Professeur et
Docteur au sein du service Génie Mécanique; Romain Ragonnet, Chercheur à la Monash Uni-
versity de Melbourne; je les remercie tous vivement.

Je tiens à remercier François Vallée, Professeur à l’Université de Mons, d’avoir accepté de
présider le jury du comité d’accompagnement et de défense de thèse.

Je souhaite également remercier les rapporteurs Grégoire Danoy, Chercheur à l’Université
du Luxembourg, et Pierre Sens, Professeur à Sorbonne Université, pour leur évaluation des
travaux réalisés durant cette thèse.

Je remercie également tous les membres du comité d’accompagnement, qui ont sume guider
jusqu’à l’aboutissement de ce travail.

J’adresse également mes remerciements à tous les membres du service MARO et plus large-
ment à tous les collègues avec qui j’ai eu la chance de travailler, ainsi que les membres de
l’équipe BONUS avec qui j’ai eu l’occasion d’échanger.

Enfin, je veux remercier ma famille et mes amis pour leur présence et leur soutien au quoti-
dien. Je n’aurai pas la place de citer tout le monde ici, mais je suis certain qu’ils se reconnaîtront.

i

ii

Abstract

The optimization of computationally expensive black-box problems is a challenge faced inmany
application fields. Those problems are characterized by the lack of information about their land-
scape and their computational cost. For instance, in engineering design, the objective function
frequently results from complex numerical simulations and only its output is available. We in-
vestigate two major ways of dealing with such problems. First, we rely on Machine Learning
to build surrogate models that approximate the expensive objective function at a lower com-
putational cost. Second, we use parallel computing to reduce the computational burden of the
optimization process. The major research question addressed in this thesis is how surrogate
modeling and parallelism can help to efficiently and effectively sample the design space.

We distinguish two main approaches of using the surrogate model inside an optimization
process. In Surrogate-Driven Optimization (SDO), the surrogate model actively drives the pro-
cess through the definition of an Acquisition Function (AF) that evaluates the promisingness
of a candidate decision. This is typically the case in Bayesian Optimization (BO), where Gaus-
sian Process (GP) surrogate models are used. The Acquisition Process (AP) points out the most
valuable candidates through the optimization of the AF. Alternatively, Surrogate-Assisted Opti-
mization (SAO) uses the surrogate model to discard unpromising candidates and/or to partially
replace the objective function. In SAO, the candidates are generated by external operators and
filtered out using an Evolution Control (EC) based on the surrogate model.

In this thesis, we focus on the AP of BO Algorithms (BOAs) and its challenge of providing
a valuable batch of candidates to be exactly evaluate in parallel. Firstly, the scalability of BO is
limited when considering only the parallel evaluation of the candidates. Indeed, the sequential
parts of the algorithm tend to be also computationally expensive. Secondly, the effectiveness of
the batch acquisition is lesser compared to the sequential selection. An efficient use of parallel
computing necessitates an efficient AP and smartly allocating the overall time budget to the
AP (including the model fitting) and the simulations. We propose a new approach introducing
parallel computing into the AP by leveraging space partitioning. From this, we derive two
algorithms, namely Binary Space Partitioning Efficient Global Optimization (BSP-EGO) and
Local models BSP-EGO (ℓBSP-EGO). The first one uses a global model to guide the optimization
while the second one sets up multiple local models inside the sub-regions. The two developed
algorithms are confrontedwith recent state-of-the-art BOAs using very different APs (e.g., using
trust regions, multiple AFs, etc.). We demonstrate the better scalability and batch effectiveness
of the BSP-EGO-based algorithms compared to other BOAs.

We also compare the BO approach to other Surrogate-Based Optimization (SBO) algorithms,
more precisely to Surrogate-Assisted Evolutionary Algorithms (SAEAs). These latter are usu-
ally more time-efficient since the acquisition of the candidates does not require an expensive
surrogate model. The experimental protocol involves both benchmark functions and real-world
engineering problems. It is designed to identify which approach is the most suitable depending
on the operational constraints. The results indicate that BOAs are extremely sample-efficient,
providing good outcomes with a few simulations. However, they are generally hampered by
their expensive AP (including the model fitting). When the computational budget is higher, ei-
ther because the simulator is computationally cheap, or because the time frame is large enough,
SAEAs are to be preferred. We also demonstrate that both approaches can be combined into a
hybrid algorithm benefiting the sample-efficiency of BO and the time-efficiency of SAO.

iii

iv

Résumé

L’optimisation de problèmes coûteux en calculs de type boîte noire est un défi rencontré dans
de nombreux domaines. Ces problèmes sont caractérisés par le manque d’information dont
on dispose à propos de leur nature, et par leur coût en calculs. Par exemple, en ingénierie, la
fonction objectif résulte fréquemment de simulations numériques complexes dont seul le ré-
sultat final est accessible. Nous étudions deux moyens principaux permettant de traiter ces
problèmes. Dans un premier temps, nous nous appuyons sur des modèles de substitution issus
de l’Apprentissage Machine pour approximer la fonction objectif coûteuse en calculs par une
alternative à moindre coût. Dans un second temps, nous utilisons le calcul parallèle pour ac-
célérer le processus d’optimisation. La problématique majeure de cette thèse est d’identifier et
de développer les méthodes d’optimisation combinant calcul parallèle et modèles de substitu-
tion les plus efficaces pour échantillonner l’espace de recherche.

On distingue principalement deux approches dans lesquelles l’optimisation est basée sur un
modèle de substitution. L’optimisation guidée par modèle de substitution - Surrogate-Driven
Optimization (SDO) - emploie le modèle pour guider l’optimisation à travers la création d’une
fonction d’acquisition - Acquisition Function (AF). Cette dernière évalue la valeur d’un point
candidat. L’Optimisation Bayésienne - Bayesian Optimization (BO) - en est un exemple notable
dans lequel le modèle de substitution repose sur les Processus Gaussiens - Gaussian Process
(GP). La fonction d’acquisition est optimisée pour déterminer le meilleur point à évaluer. Cette
étape est appelée Processus d’Acquisition - Acquisition Process (AP). L’optimisation assistée

par modèle de substitution - Surrogate-Assisted Optimization (SAO) - est une alternative dans
laquelle le modèle est utilisé pour écarter les candidats les moins prometteurs et/ou pour rem-
placer partiellement la fonction objectif. Dans ces méthodes, les candidats sont générés par des
opérateurs externes puis sont filtrés par le Contrôle d’Evolution - Evolution Control (EC) - qui
s’appuie sur le modèle de substitution.

Dans cette thèse, nous nous intéressons particulièrement au processus d’acquisition des al-
gorithmes d’optimisation bayésienne et à son défi qui consiste à sélectionner simultanément le
meilleur ensemble de points à évaluer en parallèle. Premièrement, la scalabilité de l’optimisation
bayésienne est limitée lorsque l’on ne considère le calcul parallèle que pour évaluer les can-
didats. En effet, les parties séquentielles de l’algorithme peuvent devenir coûteuses en temps
également. Deuxièmement, la qualité de l’ensemble de points obtenus simultanément est moin-
dre comparée à une sélection séquentielle. Un usage efficace des ressources de calcul nécessite
un processus d’acquisition efficace et de qualité, et une allocation pertinente des moyens entre
l’acquisition de nouveaux candidats et leur évaluation. Nous proposons une nouvelle approche
qui introduit le calcul parallèle dans le processus d’acquisition grâce à un partitionnement de
l’espace de recherche. Cette approche est déclinée en deux algorithmes, nommés BSP-EGO et
ℓBSP-EGO. Le premier utilise un modèle de substitution global pour guider la recherche, tandis
que le second s’appuie sur plusieurs sous-modèles propres à chaque sous-domaine. Ces deux
algorithmes sont confrontés à plusieurs algorithmes d’optimisation bayésienne de l’état de l’art,
qui utilisent des processus d’acquisition très différents. Nous démontrons une meilleure scala-
bilité et qualité des points acquis grâce aux méthodes développées, en comparaison avec l’état
de l’art.

Nous comparons aussi ces methodes d’optimisation bayésienne à d’autres algorithmes basés
sur les modèles de substitution, et plus précisément aux Algorithmes Evolutionnaires Assistés

v

par modèle de Substitution - Surrogate-Assisted Evolutionary Algorithm (SAEA). Ces derniers
sont généralement plus efficaces en termes de temps d’exécution car l’acquisition des candidats
ne nécessite pas de modèle de substitution coûteux en temps. Le protocole expérimental con-
sidère à la fois des fonctions benchmark et des problèmes réels d’ingénierie. Il est établi afin
d’identifier l’approche la plus adéquate, compte tenu des contraintes opérationnelles. Les ré-
sultats indiquent que l’optimisation bayésienne est extrêmement efficace lorsque le budget est
très serré, permettant de fournir une bonne solution en peu d’évaluations. Néanmoins lorsque
le budget est plus important, soit parce que le coût en calcul du simulateur est plus faible, soit
car le temps alloué est suffisamment grand, les algorithmes évolutionnaires assistés par modèle
de substitution sont à privilégier. Nous démontrons également que les méthodes bayésiennes et
évolutionnaires peuvent être combinées pour bénéficier des atouts de chacune des approches.

vi

Contents

Remerciements i

Abstract iii

Résumé v

Table of contents ix

List of Acronyms ix

Introduction 1

I Parallel Bayesian Optimization: Background and Preliminary Analysis 9

1 Parallel Bayesian Optimization 11

1.1 Introduction to Bayesian Optimization . 13
1.1.1 Black-Box Global Optimization . 13
1.1.2 Surrogate-Based Optimization . 15
1.1.3 Bayesian Optimization . 18
1.1.4 Parallel Computing in Bayesian Optimization 19

1.2 Surrogate Modeling for Bayesian Optimization 19
1.2.1 Gaussian Process Regression . 20
1.2.2 The Covariance Kernel . 23
1.2.3 Considerations from some Observations on GPs 24

1.3 Acquisition Strategy and Parallel Computing . 27
1.3.1 Single-Point Strategies . 27
1.3.2 Multi-Point Acquisition Processes . 28

1.4 Chapter’s Conclusion . 31

2 Observations on Real-World Problems 33

2.1 Potential of EGO in Solving Expensive Simulation-Driven Problems 36
2.1.1 Inverse Identification in Mechanical Engineering 36
2.1.2 The Efficient Global Optimization Algorithm 40
2.1.3 Experimental Results . 42

2.2 Impact of the Batched Parallelism in EGO . 44
2.2.1 Optimal Commitment of Virtual Power Plants 44
2.2.2 Offline SAO versus qEGO . 47
2.2.3 Experimental Results . 49

2.3 qEGO versus Surrogate-Assisted EA . 52
2.3.1 Tuberculosis Transmission Control (TBTC) 52
2.3.2 Competing Approaches . 53
2.3.3 Experimental Results . 54

2.4 Chapter’s Conclusions . 58

vii

II Contribution to the Design and Analysis of Parallel Hybrid BOAs 61

3 BSP-EGO: a New Decomposition-based EGO 63

3.1 Improving the Scalability and the Batch Effectiveness 66
3.1.1 Multi-Criteria Algorithms . 66
3.1.2 Space Partitioning in Optimization . 69
3.1.3 A Taxonomy of Bayesian Optimization Algorithms 71

3.2 Binary Space Partitioning EGO (BSP-EGO) . 72
3.2.1 A New Acquisition Strategy for Large Batch Sizes 72
3.2.2 Global Model-based BSP-EGO . 74
3.2.3 Local Model-based BSP-EGO Variant . 75
3.2.4 Software Implementation and Packaging 76

3.3 Benchmarking BSP-EGO against state-of-the-art BOAs 78
3.3.1 Objective and Experimental Framework 78
3.3.2 Experimental Protocol . 79
3.3.3 Results and Analysis . 81
3.3.4 Discussion on Exploration and Exploitation 87
3.3.5 Conclusions and Recommendations . 90

3.4 Real-world Test Case: Optimal Scheduling of UPHES 92
3.4.1 Context and Motivation . 92
3.4.2 Underground Pumped Hydro-Energy Storage 93
3.4.3 Experimental Setup . 95
3.4.4 Results and Discussion . 96

3.5 Chapter’s Conclusions . 101

4 Bayesian versus/with Evolutionary Optimization 103

4.1 Towards Time-Efficient Algorithms . 106
4.1.1 Context and Motivations . 106
4.1.2 Surrogate-Assisted Evolutionary Optimization 107
4.1.3 The Investigated Algorithms . 108

4.2 BOAs versus SAEAs . 111
4.2.1 Experimental Protocol . 111
4.2.2 Determination of the Threshold . 114
4.2.3 Efficiency of the Acquisition Processes 117

4.3 Hybrid Methods Combining SAEA and BOA . 119
4.3.1 Threshold-based Hybrid Algorithm . 119
4.3.2 Validation Through Unseen Problems 121
4.3.3 Conclusions and Discussion . 122

4.4 Opening to Higher Dimensional Problems . 125
4.4.1 PHES Optimal Management Problem . 126
4.4.2 Experimental Protocol . 127
4.4.3 Experimental Results . 127
4.4.4 Conclusion and Discussion . 133

Conclusions and Perspectives 135

Bibliography 139

viii

List of Figures I

List of Tables III

List of Algorithms VII

Appendices XI

Appendix A Mathematics for Bayesian Optimization XIII

A.1 Notions of Probability and Statistics . XIII
A.2 Gaussian Process Regression . XIV

Appendix B Multi-Objective Optimization XVII

B.1 Multi-Objective Formulation . XVII
B.2 Multi-Objective Algorithms . XVIII

Appendix C Benchmarking Optimization Algorithms XXI

C.1 Usual Benchmark Functions . XXI
C.2 Additional Results of the Benchmark Analysis XXIII

ix

x

List of Acronyms

ℓBSP-EGO Local-model Binary Space Partitioning Efficient Global Optimization.

qEGO q-points Efficient Global Optimization.

qEI q-points Expected Improvement.

AF Acquisition Function.

AP Acquisition Process.

BO Bayesian Optimization.

BOA Bayesian Optimization Algorithm.

BSP-EGO Binary Space Partitioning Efficient Global Optimization.

CL Constant Liar.

EA Evolutionary Algorithm.

EC Evolution Control.

EGO Efficient Global Optimization.

EI Expected Improvement.

GA Genetic Algorithm.

GO Global Optimization.

GP Gaussian Process.

HPC High-Performance Computing.

KB Kriging Believer.

LCB Lower Confidence Bound.

LHS Latin Hypercube Sampling.

MACE Multi ACquisition Ensemble.

MIC-qEGO Multi-Infill Criteria qEGO.

MILP Mixed-Integer Linear Programming.

MLE Maximum Likelihood Estimation.

PBO Parallel Bayesian Optimization.

xi

PHES Pumped Hydro-Energy Storage.

PI Probability of Improvement.

PSO Particle Swarm Optimization.

SaaEF Surrogate as an Evaluator and a Filter.

SaaF Surrogate as a Filter.

SAEA Surrogate-Assisted Evolutionary Algorithm.

SAGA Surrogate-Assisted Genetic Algorithm.

SAO Surrogate-Assisted Optimization.

SAPSO Surrogate-Assisted Particle Swarm Optimization.

SBO Surrogate-Based Optimization.

SDO Surrogate-Driven Optimization.

TBTC Tuberculosis Transmission Control.

TS Thompson Sampling.

TuRBO TrUst Region Bayesian Optimization.

UPHES Underground Pumped Hydro-Energy Storage.

xii

General Introduction

Finding the optimal solution to a problem has always been a significant concern, particularly
in recent times where optimization has taken an important place in decision-making processes.
What is the best shape of an object for a given purpose? What is the best strategy to minimize
the impact of a disease on a population? Or even what is the best bidding decision for an actor
in the energy sector? To be optimized, the impact of the decision must be measured in some
way, and this is where numerical simulation steps in. Often, the information about the quality
of a decision comes with a cost that prevents from making many attempts. Actually, this cost
is essentially a time cost and in the manuscript, costly and time-consuming are employed as
synonyms. To tackle this kind of problem a popular choice is to resort to surrogate modeling
to approximate the outcome of the costly simulator [1–3] and to parallel computing to execute
several simulations at once and reduce the overall execution time.

Scope and Research Interest

In this thesis, we are interested in the synergy between the three following topics:

• Global Optimization of black-box functions
Global Optimization (GO) consists in the minimization of a real-valued cost function f
with respect to a vector of real values x ∈ Rd, d being the dimension of the considered
problem. In many applications, x is restricted to a sub-domain of Rd which is denoted as
Ω. In mathematical terms, we state this problem as:

min
x∈Ω

f(x) (1)

where f is defined as f : Rd → R; x 7→ y = f(x). In our context, f is the time-
consuming simulator mentioned earlier and the only information we dispose of is its
output y = f(x). The term time-consuming is rather ambiguous and will be discussed in
the following. Nevertheless, the fact remains that in such a situation, we might resort to
approximations of the objective function, namely surrogate models, or metamodels.

• Surrogate modeling
A surrogate model is a Machine Learningmodel dedicated to the approximation of a func-
tion. It constitutes an alternative to the objective function we can have access to at (al-
most) no cost compared to the black-box objective function. In this thesis, we are mostly
interested in the Gaussian Process- (GP-) based surrogate models [4]. Unlike many other
surrogate models, GPs have the capability of providing a measure of uncertainty over the
prediction of the objective value. We also refer to the prediction as the approximation,
while the exact evaluation is called simulation.

• High-Performance Computing (HPC)
Assuming the time-consuming simulation can be automated and performed autonomously
without human intervention, coupled with surrogate modeling, parallel computing is an
efficient asset in limiting the overall optimization time. Thus, the use of HPC platforms

1

such as Grid5000 [5] is a valuable advantage to address computationally intensive opti-
mization tasks.

Many real-world optimization problems require the use of the three precedent research
lines, including those considered in our works (energy storage, virus transmission control, etc.).
Within the scope of this thesis, we focus on Parallel Bayesian Optimization (PBO). Indeed, BO
Algorithms (BOAs) are particularly efficient in simulation-based optimization since they usu-
ally achieve good results using only a few simulations. BOAs manage to considerably reduce
the number of calls to the expensive simulator by carefully choosing which point is to be eval-
uated. The process of choosing the next point to evaluate is called Acquisition Process (AP), and
the suggested point is referred to as the candidate. It relies on a surrogate model to approxi-
mate the objective function and then uses the model to build a utility function that guides the
optimization process. GP models are generally assumed in BOAs and their purpose is to evalu-
ate the benefit of a candidate of the search space and give an indication of whether or not it is
worth sampling in the area.

Challenges and Objectives

To benefit from the computing power offered by HPC platforms, or even recent multi-core
workstations or laptops, the AP selects at each iteration of the BOA a batch of candidates to
be simulated instead of only one. However, this task is not straightforward since BO is an
intrinsically sequential process [6, 7]. The algorithm relies on an Acquisition Function (AF)
that evaluates the promisingness of a candidate. Many AFs for sequential BO have been defined
in the literature [2, 8–10], and the correct choice remains sensitive since it has been observed
that it depends on the objective function, or even on the stage of the optimization [11]. When
it comes to providing a batch of candidates to be exactly evaluated in parallel, the problem is
all the more complex. The batch acquisition incurs a significant overhead and the quality of
the batch is largely reduced compared to sequential selection [6, 12–15]. In fact, the time of
the batch acquisition might not be negligible compared to the simulation time. Increasing the
batch size to exploit parallel computing implies managing larger sets of data which can become
impractical considering that the GP modeling scales in O(n3), where n is the size of the data
set. The impact of increasing the amount of parallel resources is only scarcely investigated
in the literature [6]. In addition, the dimension of the tackled problem impacts the choice or
design of the algorithm (model, AF, etc.), and usually a large dimension implies dealing with
more data, coming back to the previous point [3]. Consequently, the objectives of this thesis
are the following:

• Analyze the state-of-the-art algorithms and identify their range of application and limi-
tations on real-world applications as well as the lever we can act on for improvement;

• Develop a new approach accounting for the previously observed limitations and investi-
gate its performances against the related state-of-the-art algorithms;

• Evaluate our BO methods and the state-of-the-art ones (not exclusively BOAs) on their
ability to scale with the computational power, and in regards of the effectiveness of the
batch selection;

2

• Derive some recommendations for the efficient design of PBO algorithms accounting for
the budget in terms of simulations or total computing time, the dimension of the problem,
and amount of computing resources.

Scientific Contributions

Themain contributions of this doctoral thesis can be decomposed into three parts, following the
structure of the present document. First, we analyze the suitability of some state-of-the-

art algorithms through different real-world test cases. These latter include the optimiza-
tion of a decision-making process in electrical engineering and medicine, and the calibration
of the model’s hyper-parameters in mechanical engineering. We demonstrate the relevance

of PBO on various real-world applications, but also emphasize strong limitations re-

garding the effectiveness of the parallel APs. The simulators used in these applications
have very different characteristics, in particular regarding their execution time. It is almost
consensual that BO performs very well on computationally expensive black-box problems [6].
For instance, it is not refuted by the mechanical engineering application, referred to as the in-
verse identification problem in Section 2.1, where the well-known Efficient Global Optimization
(EGO) (sequential) algorithm [1] is successfully applied. Actually, the simulator lasts about
40 minutes and is already exploiting parallel computing itself, making (non-parallel) BO per-
fectly fitted. We also demonstrate the good performance of PBO on real-world applications
with moderately expensive simulations by improving the profit of a virtual power plant optimal

commitment problem (see Section 2.2) using the parallel qEGO [16, 17] algorithm. Regarding the
medical application referred to as the tuberculosis transmission control problem in Section 2.3,
which is also a budget management problem with moderate time cost, we confront BOAs to
Surrogate-Assisted Evolutionary Algorithm (SAEA) and emphasize the computational cost of
the AP in the PBO framework. The dimension of those problems is at most 6, however, they
have objective functions with different computational costs. A common assumption is that the
surrogate part of the optimization is negligible with respect to the simulation time. Neverthe-
less, the range of applications of BO can be larger. For instance, the simulator associated with
the virtual power plant optimal commitment problem is considered time-consuming mainly
because operational constraints impose a short time frame for the optimization process.

In this context, the time dedicated to surrogate modeling can not be set aside. Indeed, in
this situation most PBO algorithms are limited in terms of parallelization because of their time-
consuming candidate selection, which can become excessive when a large batch of candidates
is required. Adding a large batch of candidates at each cycle makes the size of the data set grow
rapidly, increasing the time required for fitting the surrogate model. In addition to the poor
scalability, the analysis points out a limited effectiveness of the batch acquisition (compared to
sequential one) that decreases the efficiency of parallel algorithms.

Secondly, based on the latter observations, we derive a new PBO approach reducing

the overall execution time by leveraging design space decomposition. We use the de-

composition paradigm to introduce parallelism and diversification into the AP. From
this approach, we decline two new algorithms using a recursive binary decomposition of the
domain. They are named Binary Space Partitioning Efficient Global Optimization (BSP-EGO)
and Local BSP-EGO (ℓBSP-EGO). BSP-EGO uses a global model, trained over the whole data,

3

to perform local APs in the sub-regions while ℓBSP-EGO uses a local model inside each sub-
region that is trained on a subset of data. Both perform local searches for new candidates in
distinct sub-regions of the search space. As a consequence, each local AP can be executed inde-
pendently in parallel. Using parallel computing inside the AP offers a fast way of operating the
batch querying strategy. As a consequence, the proposed algorithms are suitable for optimizing
problems where the time budget is restricted. The two proposed algorithms are widely investi-
gated and compared with existing state-of-the-art methods in Section 3. The test suite includes
benchmark functions in dimensions 6 and 12, as well as a 12-dimensional real-world resource
management problem from electrical engineering, named Underground Pumped Hydro-Energy

Storage (UPHES) management problem hereafter. The experimental framework is designed to
challenge the new algorithms with state-of-the-art methods, and analyze their strengths and
weaknesses. The selected contestant algorithms employ various strategies, allowing us to ex-
amine their impact on the batch AP. Despite a faster candidate selection, BSP-EGO also faces the
fast-increasing time cost of surrogate modeling. When it comes to ℓBSP-EGO, the local models
are set up on subsets of data which makes the learning much faster. The fast candidate selec-
tion, the controlled learning time, and the enhanced intensification make ℓBSP-EGO one of the
best-performing algorithms of the study. This algorithm shows improved performances com-
pared to the state-of-the-art algorithms regarding benchmark functions in dimensions 6 and 12.
TrUst Region Bayesian Optimization (TuRBO) [18], another BOA dealing with the search space
also achieves good results, especially for 12-dimensional benchmark functions. This indicates
the effectiveness of partitioning and reducing the search space in BO. Resorting to multiple
AF also shows evident improvement compared to single AF methods. The investigation is am-
plified with the real-world UPHES management problem, involving 12 dimensions, where a
multi-criteria AP performs best. The main drawback of this analysis is that it does not really
account for the simulation time. Indeed, benchmark functions have a very low computational
cost, making fast acquisition a huge advantage that might not generalize to real-world condi-
tions. A legitimate question would be asking when each algorithm is more suited regarding the
execution conditions.

In the last part of contributions of the thesis, we attempt to provide elements of answers
to the previous question by better characterizing the condition of applicability of BOAs

with respect to the budget, the resources, etc. and in comparisonwith other Surrogate-

Based Optimization (SBO) algorithms. Consequently, we propose an experimental set-

up that accounts for the simulation time, the available computing resources, and the

time budget. Actually, depending on the time budget allocated to a problem, BOAs are not
always the most profitable choice. For black-box problems, we can also rely on the widespread
(surrogate-free) metaheuristics, such as Evolutionary Algorithms (EAs). Metaheuristics usu-
ally require a large number of simulations and thus are more suited to a computationally cheap
simulator. Their application can be extended to moderately time-consuming simulators by in-
tegrating surrogate modeling inside the optimization process and spare simulator calls. This is
typically the case in Surrogate-Assisted Optimization (SAO), where the surrogate model assists
the pre-existing algorithm. As for BOAs, they are part of the Surrogate-Driven Optimization
(SDO) family, where the surrogate model is used to build the AF. SDO algorithms put a larger
computational effort in the candidate selection and aremore fitted for computationally intensive
simulators. Surrogate-free and SBO algorithms are then complementary in their application.
Surrogate-driven algorithms, and more precisely BO ones, show large improvement with few
simulations and are more suitable for time-consuming problems. However, it might be difficult

4

to select the most suitable one given a particular context without quantifying precisely what
time-consuming means in the context of BO. In this analysis, we relate the operating condi-
tions, namely the budget, the simulation time, and computing resources, with the appropriate
choice of algorithm. We conduct an intensive investigation involving the best BOAs of this
study which we challenge with recent SAEAs [19] and EAs to identify their domain of perfor-
mance regarding the different contexts. We observe a threshold from which SAEAs are

outperforming all the BOAs, which can be used for selecting the best algorithm, but

also to design hybrid ones. We propose a hybrid algorithm that switch from a BOA to

a SAEA at some point defined by the threshold. This hybrid strategy is investigated and
compared with the best-performing methods of the test suite. It shows a good any-time perfor-
mance by combining the benefits of SAEAs and BOAs. Finally, the best-performing algorithms
are investigated on the Pumped Hydro-Energy Storage (PHES) problem involving 30 dimen-
sions. We demonstrate that BOAs can be efficient in higher-dimensional problems, considering
the appropriate acquisition strategy.

Along this work, the consideredmethods are investigated on both classical benchmark func-
tions to conduct extensive experiments, but also on challenging engineering problems with tan-
gible impact in their respective fields. From the analysis, we derive guidelines for developing
efficient algorithms adapted to the considered problem, and perspectives for the improvement
of existing algorithms.

Dissertation Structure

The manuscript is organized into two parts, containing two chapters each. Part I intends to give
the necessary theoretical background for SBO, and provides a first analysis of existing related
algorithms and their applications. Chapter 1 is dedicated to the state of the art in PBO. Important
features of PBO are given, with a focus on surrogate modeling and the AP. It offers an overview
of existing methods as well as a short theoretical background necessary to understand the lever
on which we can act to improve the optimization. Three real-world applications are tackled
in Chapter 2 using widespread algorithms. The algorithms are experimented on benchmark
problems, but not always on real-world ones. The objective of this chapter is to get familiar
with the concepts of BO and PBO, and to extract current limitations of the approaches in real-
world conditions.

Part II, including Chapter 3 and Chapter 4, builds on the observations of the previous chap-
ters to derive a novel BSP-based AP fitted for large-scale acquisition and improving the parallel
efficiency of current BOAs. Chapter 3 presents the new AP that responds to the limitations
pointed out above. The BSP-EGO and ℓBSP-EGO algorithms are detailed and confronted with
state-of-the-art algorithms in a benchmark analysis as well as in real-world conditions on the
UPHES problem. Finally, BOAs and SAEAs are opposed in Chapter 4 to identify the best choice
regarding the application conditions. A hybrid algorithm is designed to combine the strengths
of both classes and extend its applicability. The used algorithms are investigated for a higher
dimensional PHES problem in the last section.

5

The manuscript ends with a concluding chapter summarizing the contributions and guide-
lines derived from this work. We also give some future research directions and outline ongoing
works.

The supplementary material includes the lists of acronyms, figures, tables, and algorithms,
and three appendices. The four lists are found on pages ix, I, III, and VII respectively. Ap-
pendix A provides some mathematical concepts used in BO. Appendix B gives additional infor-
mation about multi-objective optimization. Finally, Appendix C reports additional results and
information about the conducted benchmark analysis.

Each chapter is preceded by a short introduction and the list of our publications related to
the chapter. The contributions of this thesis have been published in the following papers:

In academic journals:

• Briffoteaux, G., Gobert, M., Ragonnet, R., Gmys, J., et al. Parallel surrogate-assisted opti-
mization: Batched Bayesian Neural Network-assisted GA versus q-EGO. Swarm and Evo-

lutionary Computation 57, 100717. issn: 2210-6502. http://www.sciencedirect.
com/science/article/pii/S2210650220303709 (2020)

• Kugalur Palanisamy, N., Rivière Lorphèvre, E., Gobert, M., Briffoteaux, G., et al. Identi-
fication of the Parameter Values of the Constitutive and Friction Models in Machining
Using EGO Algorithm: Application to Ti6Al4V. Metals 12. issn: 2075-4701. https:
//www.mdpi.com/2075-4701/12/6/976 (2022)

• Gobert, M., Gmys, J., Toubeau, J.-F., Melab, N., Tuyttens, D. & Vallée, F. Batch Acquisi-
tion for Parallel Bayesian Optimization; Application to Hydro-Energy Storage Systems
Scheduling. Algorithms 15. issn: 1999-4893. https://www.mdpi.com/1999-
4893/15/12/446 (2022)

• Ducobu, F., Kugalur Palanisamy, N., Briffoteaux, G., Gobert, M., et al. Identification of the
Constitutive and Friction Models Parameters via a Multi-Objective Surrogate-Assisted
Algorithm for the Modeling of Machining - Application to ALE orthogonal cutting of
Ti6Al4V. Journal of Manufacturing Science and Engineering, 1–54. issn: 1087-1357. eprint:
https://asmedigitalcollection.asme.org/manufacturingscience/
article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf.
https://doi.org/10.1115/1.4065223 (2024)

• Gobert, M., Briffoteaux, G., Gmys, J., Melab, N. & Tuyttens, D. Observations in Applying
Bayesian versus Evolutionary approaches and their Hybrids in Parallel Time-constrained
Optimization, Currently under review in Engineering Applications of Artificial Intelli-

gence

• Favaro, P., Gobert, M. & Toubeau, J.-F. Multi-fidelity Optimization for Pumped Hydro
Energy Storage Participating in Energy and Reserve Markets, Currently under review
in Applied Energy

In conference proceedings, with peer review and oral presentation:

6

http://www.sciencedirect.com/science/article/pii/S2210650220303709
http://www.sciencedirect.com/science/article/pii/S2210650220303709
https://www.mdpi.com/2075-4701/12/6/976
https://www.mdpi.com/2075-4701/12/6/976
https://www.mdpi.com/1999-4893/15/12/446
https://www.mdpi.com/1999-4893/15/12/446
https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf
https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf
https://doi.org/10.1115/1.4065223

• Gobert, M., Gmys, J., Toubeau, J.-F., Vallée, F., Melab, N. & Tuyttens, D. Surrogate-Assisted
Optimization for Multi-stage Optimal Scheduling of Virtual Power Plants. in 2019 Inter-

national Conference on High Performance Computing Simulation (HPCS) (2019), 113–120

• Gobert, M., Gmys, J., Melab, N. & Tuyttens, D. Adaptive Space Partitioning for Parallel
Bayesian Optimization. in HPCS 2020 - The 18th International Conference on High Per-

formance Computing Simulation (Barcelona / Virtual, Spain, 2021). https://hal.
inria.fr/hal-03121209

• Gobert, M., Gmys, J., Toubeau, J.-F., Melab, N., Tuyttens, D. & Vallée, F. Parallel Bayesian
Optimization for Optimal Scheduling of Underground Pumped Hydro-Energy Storage
Systems. in 2022 IEEE International Parallel and Distributed Processing Symposium Work-

shops (IPDPSW) (2022), 790–797

And as short papers or abstracts:

• Filipič, B., Depolli, M., Zupančič, J., Gmys, J., et al. ECG Simulator Tuning: A Parallel
Multiobjective Optimization Approach. in Proceedings OLA’2018 International Workshop

on Optimization and Learning: Challenges and Applications (2018), 25–28

• Gobert, M., Gmys, J., Melab, N. & Tuyttens, D. Towards Adaptive Space Partitioning for
Large-scale Parallel Bayesian Optimization. inOLA’2020 - International Conference on Op-
timization and Learning (Cadix, Spain, 2020). https://hal.archives-ouvertes.
fr/hal-02898960

• Gobert, M., Gmys, J., Melab, N. & Tuyttens, D. Space Partitioning with multiple models
for Parallel Bayesian Optimization. in OLA 2021 - Optimization and Learning Algorithm

(Sicilia / Virtual, Italy, 2021). https://hal.archives-ouvertes.fr/hal-
03324642

7

https://hal.inria.fr/hal-03121209
https://hal.inria.fr/hal-03121209
https://hal.archives-ouvertes.fr/hal-02898960
https://hal.archives-ouvertes.fr/hal-02898960
https://hal.archives-ouvertes.fr/hal-03324642
https://hal.archives-ouvertes.fr/hal-03324642

8

Part I

Parallel Bayesian Optimization:

Background and Preliminary Analysis

9

Chapter 1

Parallel Bayesian Optimization

1.1 Introduction to Bayesian Optimization 13
1.1.1 Black-Box Global Optimization 13
1.1.2 Surrogate-Based Optimization 15
1.1.3 Bayesian Optimization . 18
1.1.4 Parallel Computing in Bayesian Optimization 19

1.2 Surrogate Modeling for Bayesian Optimization 19
1.2.1 Gaussian Process Regression 20
1.2.2 The Covariance Kernel . 23
1.2.3 Considerations from some Observations on GPs 24

1.3 Acquisition Strategy and Parallel Computing 27
1.3.1 Single-Point Strategies . 27
1.3.2 Multi-Point Acquisition Processes 28

1.4 Chapter’s Conclusion . 31

This chapter is organized as follows. Section 1.1 presents Parallel Bayesian Optimization
(PBO), which is part of the Surrogate-Based Optimization (SBO) framework, tackling Global
Optimization (GO) problems. We first introduce the important concepts of black-box GO to
progressively focus on Bayesian Optimization (BO) and its parallelization. In SBO, surrogate
models are used to approximate the time-consuming objective function and partially replace it
in order to limit the overall execution time of the algorithm. In this section, we clarify the dis-
tinction between Surrogate-Assisted Optimization (SAO) and Surrogate-Driven Optimization
(SDO). The first one requires an external mechanism (such as evolutionary operators) to gen-
erate candidates that are evaluated either using the objective function or the surrogate model.
As for the second, the model actively participates to the query of new candidates by the defini-
tion of an Acquisition Function (AF). The candidates are obtained by optimization of the latter,
and not by external operator independent from the surrogate model. BO is part of the SDO
framework, but uses probabilistic models such as Gaussian Process (GP) surrogate models that

11

Chapter 1

provide an uncertainty in addition to a prediction. Then, we expose the challenges arising from
the parallelization of BO.

The constitutive elements of a Bayesian Optimization Algorithm (BOA) are the surrogate
model and the Acquisition Process (AP). Section 1.2 presents the necessary theoretical back-
ground for Gaussian Process (GP) surrogate models, which are predominantly used in BOAs.
Section 1.3 presents a state-of-the-art in PBO and the current challenges regarding the acqui-
sition of new candidates. A BOA is a sequential process where a candidate is found through
an Acquisition Process (AP), exactly evaluated, and integrated into the data set. Once updated
with the new information, the surrogate is used to perform a new AP, and the process is re-
peated until the budget runs out. The AP usually consists of the optimization of the chosen AF,
which yields one candidate. However, in order to perform parallel evaluation of the objective
function, the AP must provide a batch of candidates. One big challenge consists in providing
a batch of candidates that brings as much information as if they were chosen sequentially. We
refer to this quality as the batch effectiveness. Different strategies have been proposed, gener-
alizing the single-point AFs to multi-point ones, resorting to single-point AF multiple times, or
resorting to multiple single-point ones.

12

Parallel Bayesian Optimization

1.1 Introduction to Bayesian Optimization

To better understand Bayesian Optimization (BO), we need to take a step back and look at the
more general definition of black-box Global Optimization (GO).

1.1.1 Black-Box Global Optimization

Black-box objective functions

The term optimization is employed in a very large spectrum of situations. As soon as we have
an objective, we optimize our actions to get the best result, whatever best means for us. We
often apply simple heuristic strategies, based on previous experiences or common knowledge
to find our optimal solution to a problem. However, when the task becomes more complex, we
need to define precisely what is the objective, what solutions are acceptable and what are the
constraints.

Then, we first define what best means, this is the definition of the objective function, also
called the cost or fitness function. It measures the value of a candidate solution, and allows
one to choose which ones are good compared to others. Of course, for a given problem it
exists different formulations of the objective function which can result in different optimal
solutions. The candidate solutions are characterized by their design variables, i.e. the variables
we are trying to tune to get the best possible outcome. In some situations, not all candidates
are admissible. It often happens that constraints limit the design space and thus the range of
the design variables. This aspect is only scarcely approached in the context of this work. In this
thesis, we address only optimization problems that have a finite number of decision variables,
are unconstrained (except for the design space), and target global solutions. They are often
gathered under the term Global Optimization (GO).

The objective function is assumed black-box since we do not know its analytical expression.
For any design vector x, we can evaluate y = f(x), and the couple (x, y) is the only available
informationwe can extract from the objective function. Without any other information than the
outcome, the objective function is generally called black-box. This scenario is often faced in
engineering when the value to optimize results from numerical simulations, possibly noisy, so
that the objective function is generally referred to as the simulator. The black-box framework
is presented in Figure 1.1, with input x and output y as previously defined.

Input
vector Black-Box Simulator Output

Figure 1.1: Black-box function representation

13

Chapter 1

Exploration and exploitation

The way candidates are generated and selected is responsible for the fundamental concepts of
exploration and exploitation (or diversification and intensification respectively). Exploration
favors the introduction of very different possible solutions (combinations of decision variables,
marked with crosses in Figure 1.2) while exploitation refines the existing ones. The whole
optimization process is a trade-off between exploration and exploitation. Figure 1.2 succinctly
illustrates this process. Let us assume the minimization of the objective function f : R → R.
The red ones mark the points for which we know the exact objective values, and we want to
optimize the unknown function given these points. We have a choice between exploring the
search space by evaluating, for example, the points marked with blue crosses, or exploiting the
region we know to be good (in terms of objective values) by evaluating the points located at
the green crosses.

Figure 1.2: Illustration of the exploration and exploitation processes

Based on the different strategies to which we will come later, a point (or a batch of points)
is selected to be evaluated hoping for an improved objective value. The optimization process
consists of a succession of three steps: generate the candidate points, evaluate them, and update
the best output. These steps are repeated until a stopping criterion is satisfied.

Global optimization

The classical approach in GO considers the minimization of a real-valued cost function f with
respect to a vector of design variables x ∈ Rd, where d is the dimension. The design vector x
is restricted to a sub-domain of Rd, denoted as Ω. Unless explicitly mentioned, minimization is
assumed all along this manuscript.

14

Parallel Bayesian Optimization

The optimization consists of choosing at each iteration some candidate points, that w e will
denote xnew, that might be better than the actual known minimum (since we consider mini-
mization). The way of choosing the new points to be evaluated is called Acquisition Process

(AP) or equivalently acquisition strategy and is subject to the nature of the objective function.
To deal with black-box objective functions, we might resort to heuristics or metaheuristics in
order to choose which points to evaluate (with the simulator) and lead the optimization process
through the exploration and exploitation of the design space. Metaheuristics will be useful all
along this manuscript, however since the methods are only used and not directly related to the
scope of this thesis, only the used methods will be described when needed. We refer to [32] for
exhaustive information on metaheuristics.

Even though it is a widespread approach for solving black-box optimization problems, it
often requires an extremely high number of simulations to get a good result. Hence, it might
not be suited when we deal with a time-consuming objective function. The meaning of time-

consuming will be further discussed in Section 2.

1.1.2 Surrogate-Based Optimization

Surrogate modeling for optimization

A surrogatemodel is a predictive model which, for any location x ∈ Rd, returns ŷ ∈ R. Other
denominations are often used andwill be used indifferently such asmetamodel or simplymodel.
In the following, the notationM is used to refer to unspecified model.

The surrogate model is designed to approximate the output y ∈ R of this function in order
to substitute the costly objective function f by a prediction ŷ that can be obtained at a much
lower computational cost. Figure 1.3 illustrates the setting up of a surrogate model alongside
the real objective function, providing a prediction ŷ of the candidate x, which is hopefully close
to the output of the simulator (|ŷ − y| < ϵ).

Surrogate Model

Prediction

Input
vector Black-Box Simulator Output

Figure 1.3: Surrogate model principle

In order to reduce the number of calls to the objective function and avoid its associated
computational cost, one may choose to substitute the exact evaluation by a prediction. The
surrogate model will be called instead and the cost of the real objective function evaluation is

15

Chapter 1

spared. In this way, optimization can be performed in a reduced time. As the optimization is
based on the surrogate model, it is called Surrogate-Based Optimization (SBO). Of course, not
all evaluations will be predictions. Different approaches exist to integrate surrogate modeling
into the optimization process. In the following, we refer to the output of the surrogate model
as the prediction or the approximation, and to the objective function as the exact evaluation or
simulation.

Integrating surrogate models into the optimization loops

Strategies for integrating the surrogate models into the optimization fall into twomain families:

• Surrogate-Assisted Optimization (SAO): the surrogate model replaces (at least par-
tially) the simulator, and classical optimization (e.g. metaheuristic such as an Evolution-
ary Algorithm (EA)) is performed. In that case, we have to make a choice whether to use
the surrogate model or the real objective function. This process is illustrated in Figure 1.4.
This is also referred to as the fitness replacement in evolutionary computation literature
[33, 34]. The initial state represents the set of exactly evaluated points, prior to the begin-
ning of the optimization loop, which starts with the creation of a metamodel. Afterward,
the algorithm proposes one or several candidate point(s) for evaluation. Then, two deci-
sions are considered: (i) filter the candidates according to the model and exactly evaluate
the most valuable ones; (ii) decide whether or not to trust the surrogate model for the
evaluation of each candidate. In the first case, referred to as Surrogate as a Filter (SaaF),
only exactly evaluated candidates supplement the data set. In the second case, referred
to as Surrogate as an Evaluator and a Filter (SaaEF), both simulated and predicted candi-
dates can join the data set. The obtained data is integrated in the total information, and
if the stopping criterion is not met, the loop starts over. Strategies regarding the decision
to call the simulator or the surrogate model are referred to as the Evolution Control (EC).
This will be shortly addressed in this work, but we refer to [19] for detailed information
about EC and the candidate generation process.

• Surrogate-Driven Optimization (SDO): the surrogate model is the driving force of the
algorithm. It does not replace the simulator but is exclusively used to propose new can-
didates to the simulator, and only the most valuable one(s) is/are exactly evaluated. The
value of a candidate is assessed with an Acquisition Function (AF), and the selection pro-
cess (based on the AF) is called the Acquisition Process (AP). Usually, the AP is also an
optimization problem, sometimes called inner optimization in opposition to the outer op-
timization, which is the initial problem. The SDO loop is detailed in Figure 1.5, where α
denotes the AF. A model is created based on initial data and is used in the AP to propose
valuable candidates. In that sense, the optimization is not only assisted but driven by the
surrogate model. Then the selected candidate(s) is/are exactly evaluated before being in-
tegrated into the data set. The meaning of valuable needs to be clarified, and will be in
Section 1.3.

In both cases, the main objective of using a surrogate model is to reduce the computational
burden associated to simulation by reducing the number of exact evaluations. Surrogate mod-
eling takes an important part of this work. More detailed information is given in Section 1.2

16

Parallel Bayesian Optimization

Initial state

Yes

NoCall simulator Predict value

Simulate value
Create model

)

Stopping Criterion
No Identify best solution

Yes

Returns

Generate point(s)

Figure 1.4: Surrogate-Assisted Optimization loop

Initial state Create model
)

Stopping
Criterion

No

Identify best solution

Yes

Returns

Acquisition Process Call simulator

Figure 1.5: Surrogate-Driven Optimization loop

17

Chapter 1

to define more precisely what is a surrogate model and what kind of surrogate models we are
interested in.

1.1.3 Bayesian Optimization

Bayesian Optimization (BO) is an optimization approach of the SDO family and thus operates
as previously explained in Figure 1.5. The distinctive aspect of BO is the model it uses for its
AP: as the Bayesian term stands for, BO uses Bayesian models, which are commonly Gaussian
Process (GP) regression models. A substantial feature of GP compared to non-bayesian models
is the ability to provide a measure of uncertainty around the prediction of the surrogate model.
This uncertainty is extremely valuable to assess the reliability of the predictive model, and
consequently, it is an insightful information that will be used in the AP.

As in SDO, the general idea of BO is to rely on a figure of merit (i.e. the AF), that provides
an indication of how desirable it is to sample a location x. The approach has been used for
a few decades and has proved to be very efficient in time-consuming black-box optimization
problems [2], [8], [1]. Basically, BO consists of a succession of what we call cycles in which a
metamodel - almost exclusively a GP model - is fitted with the data set (denoted as D) in order
to search for the best point to exactly evaluate next. This/these point(s) is/are chosen among all
candidates according to its/their AF value, the selection of candidates is then an optimization
problem itself with the objective of optimizing the AF value.

The pseudo-code of the standard BO loop is shown in Algorithm 1. Based on the known
data D, the model is trained to be used in the AP displayed in line 7. Afterward, the retained
candidate(s) is/are exactly evaluated using the simulator, and integrated into D. Algorithm 1

Algorithm 1 Bayesian Optimization
1: Input
2: f : objective function
3: Ω: design space
4: D = (X,y): known data
5: while budget available do
6: M = GP(D)
7: xnew = argmaxD(α(x))

8: ynew = f(xnew)

9: D = D ∪ (xnew, ynew)

10: end while

11: return miny D

introduces the notion of budget in line 5. The budget is defined by the user according to the
operational constraint. Usually, the budget is defined as the total number of simulations, or, less
frequently, as the total time dedicated to the optimization. At the end, the algorithm returns
the best-found decision according to the objective.

18

Parallel Bayesian Optimization

1.1.4 Parallel Computing in Bayesian Optimization

Parallel computing is a type of computation that allows one to perform different computing
tasks simultaneously. More generally speaking, High-Performance Computing (HPC) includes
all techniques to optimize computer codes, and mostly minimize their execution time (wall-
clock time). It includes parallel computing, vectorization, cache management, etc. It is a pow-
erful advantage in optimization that allows to perform the optimization in a reduced wall-time
by operating different parts of the algorithm in parallel. This is especially relevant in case the
budget is a fixed wall-clock time. Usual parallelization techniques include partitioning the de-
sign space, multi-start algorithms, etc. In BO, the simulation is assumed to be black-box, so
no work can be done at this level regarding implementation. In addition, the objective func-
tion evaluation is considered time-consuming. Regarding the latter aspect, the simulation time
is generally dominant (in the mathematical meaning) compared to the remaining of the op-
timization process. With this assumption, the main profitability of parallel computing is the
parallelization of the objective function evaluations.

More precisely, in PBO, the AP provides a batch of candidates that will be evaluated in
parallel and integrated into the data set. Basically, the master node yields all the tasks to
perform (i.e. all the candidates to evaluate) and distributes them to the worker units. This
represents the basic master-worker parallel scheme of BO. Even though less profitable in the
context of expensive objective functions, the parallelization could be applied to other parts of
the algorithm. For instance, the optimization of the AF could be executed in parallel, or we
could fit several surrogate models in parallel by creating subsets of data. Actually, we will
see in Chapter 3 that parallel computing can be efficiently applied inside the AP, reducing the
overall execution time.

In the parallel setting, we evaluate the performance of an algorithm in terms of scalabil-
ity and the batch effectiveness. The batch effectiveness refers to the ability to preserve the
performance (in terms of solution quality) of the sequential version while being executed in
parallel. In BO, it consists in having the same effectiveness in terms of quality of objective val-
ues for q points selected sequentially than q ones selected simultaneously. Obviously, this is
quite difficult to achieve since the q points are chosen with less information. Strictly speaking,
scalability measures the ability to effectively using an increasing number of processing units,
and thus to speed-up the resolution of a problem of fixed size. Equivalently, scalability mea-
sures the ability to perform more evaluations with more computing resources. Assuming k
performed evaluations in one computing core, the best we can hope for with ncores computing
cores is to perform k × ncores evaluations. It somehow measures the non-reducible part of the
algorithm (i.e. the sequential part).

1.2 Surrogate Modeling for Bayesian Optimization

This section addresses the construction of surrogate models applicable to SBO. We present the
GP models which are primarily used in BO. For the sake of clarity, let us set some notations
first. Bold type is used for vectors and upper-case symbols for matrices or random variables.
In particular, a point is denoted as x = (x1, . . . , xd) ∈ Rd, where d is the dimension of the

19

Chapter 1

objective function f . The matrix of n points is denoted X = (x(1), . . . ,x(n)) and y = f(X) =(
f(x(1)), . . . , f(x(n))

)
= (y(1), . . . , y(n)). We call an observation the result of the simulator at a

certain location, which gives the couple (x, y = f(x)), and the set of locations and observations
D = (X,y) is referred to as the data set.

1.2.1 Gaussian Process Regression

Talking about Gaussian Process (GP), we often assume a Bayesian point of view which is char-
acterized by the use of the Bayes rule but mostly by the definition of a prior probability distribu-
tion over an event. Given relevant data (or evidence), the prior is updated to give the posterior
distribution. According to Rasmussen and Williams in Gaussian Processes for Machine Learn-

ing [4], the prior is taken to represent our prior beliefs over the kind of functions we expect to
observe, before seeing any data.

Bayesian Linear Regression

Assuming the standard linear model as stated in [4], the observation y is a function of the
decision vector x plus a small perturbation denoted ϵ:

y = aTx+ ϵ (1.1)

Learning the a parameters will then allow us to predict y(x∗) = aTx∗. The observa-
tion/output value is often considered noisy, hence the ϵ error term which is assumed Gaussian:
ϵ ∼ N (0, σ2).

Placing a Gaussian prior over the weights allows us to derive a posterior probability distri-
bution over them by including the observations in the model. So let us assume:

a ∼ N (0,Σp) (1.2)

To build the prediction at an unknown location, we need to learn the weights. More pre-
cisely, we compute the posterior distribution over the weights, according to the data and our
prior distribution. Using Bayes Theorem the posterior writes:

p (a|X,y) =
p (y|X,a) p (a)

p (y|X)
(1.3)

where p (y|X,a) is the likelihood, p(y|X) is the model evidence, p(a) the prior (also called
normalizing constant), and p (a|X,y) the posterior. The X conditioning is omitted in p(a)
since the prior is independent of the inputs.

Also, the model evidence can be marginalized over the weights to give the marginal likeli-
hood

∫
a
p (y|X, a) p(a)da, and finally we have:

p (a|X,y) =
p (y|X,a) p (a)∫

a
p (y|X, a) p(a)da

(1.4)

20

Parallel Bayesian Optimization

Equation 1.3 can be stated as :

posterior =
likelihood × prior

marginal likelihood
(1.5)

The input data x may be projected into a feature space with the help of a set of basis func-
tions ϕi, i ∈ {1, . . . , L} and we denote as Φ the projected vector. Using the same notation, we
can simply replace X by Φ in Equation 1.3.

With the Gaussian assumption, the posterior will also be Gaussian. According to Equa-
tion 1.3 the posterior is proportional to the likelihood times the prior, which is proportional
to:

p (a|X,y) ∝ exp

(
− 1

2σ2

(
y −XTa

)T (
y −XTa

))
exp

(
−1

2
aTΣ−1

p a

)
(1.6)

by keeping only the terms depending on a in the normal distribution (Definition A.1.2).

It can be shown1 that:

p (a|X,y) ∝ exp

(
−1

2
(a− ā)T

(
1

σ2
XXT + Σ−1

)
(a− ā)

)
(1.7)

and we recognize the form of a Gaussian distribution with mean ā = 1
σ2A

−1Xy and co-
variance matrix A−1, where A =

(
1
σ2XXT + Σ−1

)
. This means that:

a|X,y ∼ N
(

1

σ2
A−1Xy, A−1

)
(1.8)

The posterior distribution of the weights expresses their probability in light of the obser-
vations and allows to make predictions by marginalizing over the posterior. The predictive
distribution of a given location x∗ is given by y∗|X,y,x∗. Marginalizing over the weights
gives the predictive distribution of a design point x∗ which writes:

p (y∗|X,y,x∗) =

∫
a

p (y∗|ax∗) p (a|X,y) da (1.9)

and is also Gaussian.

Using the form of the linear predictor y∗ = aTx∗ and the posterior distribution of a (Equa-
tion 1.8), by the linear transformation rule on the normal distribution (A.1.2), we can derive the
law of the predictive distribution which writes:

y∗|X,y,x∗ ∼ N
(

1

σ2
x∗TA−1Xy,x∗TA−1x∗

)
(1.10)

One can decide to projectx into a feature space using basis functionsϕi(x), · · · , ϕL(x) = ϕ.
The predictive law becomes:

1Demonstration in Annex. A.2

21

Chapter 1

y∗|Φ,y,x∗ ∼ N
(

1

σ2
ϕ∗TA−1Φy,ϕ∗TA−1ϕ∗

)
(1.11)

by simply replacing X by Φ. Furthermore, using K = ΦTΣΦ it can be shown2 that Equa-
tion 1.9 can be equivalently written as:

y∗|X,y,x∗ ∼ N (ϕ∗TΣΦ(K + σ2I)−1y,

ϕ∗TΣϕ∗ − ϕ∗TΣΦ(K + σ2I)−1ΦTΣϕ∗).
(1.12)

With y = aTϕ, as y is assumed of mean zero : E[y] = 0 and Cov(yi, yj) = ϕT
i E[aaT]ϕj =(

ϕTΣϕ
)
i,j

(see A.1.1). Using k(x(i),x(j)) = ϕ(i)Σϕ(j), and K =
(
k(x(i),x(j))

)
i,j∈{1,...,n} the

covariance function defined by the covariance kernel k.

Re-writing Equation 1.12 with this notations:

y∗|X,y,x∗ ∼ N (k∗T (K + σ2I)−1y,

k(0)− k∗T (K + σ2I)−1k∗)
(1.13)

The K matrix is known as the covariance matrix, or the Gram matrix.

Distribution over the functions

Similar results to the previous section can be obtained by considering directly the functions as
a collection of Gaussian processes.

A GP is defined by its mean function and covariance function:

m(x) = E[f(x)]
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]

(1.14)

with
f(x) ∼ N (m(·), k(·, ·)) . (1.15)

Let us consider first that f is a zero mean linear predictor, similarly to Equation 1.1: f =
aTϕ. With the previously defined notations we have:

E[f(x)] = ϕ(x)TE[a] = 0
E[f(x)f(x′)] = ϕ(x)TE[aaT]ϕ(x′) = ϕ(x)TΣϕ(x′) = k(x,x′).

(1.16)

2Demonstration in Annex. A.2.2

22

Parallel Bayesian Optimization

Kriging and Best Linear Unbiased Predictor

Kriging models are generally equivalent to GP and both often designate the same surrogate
model. The first step of Kriging is inspired by the mining industry [35] and in particular by
Danie G. Krige and his work on distance-weighted average gold grades at the Witwatersrand
reef complex in South Africa [36]. Kriging is named after him, considering he is the pioneer
of the method. Other occurrences of similar works are found in the literature, for example in
forestry (B. Matèrn [37]) and meteorology (L.S. Gandin [38]). The theory is formalized later by
Georges Matheron in Traité de géostatistique appliquée [39] (1962).

The common trait of the different works is the idea of spatial correlation and the fact that
observations are more likely to be similar (correlated) if they are geographically close. Under
this formalism, the Kriging predictor takes the form of the Best Unbiased Linear Prediction
- see Design and Analysis of Computer Experiments, by Santner, Williams, and Notz [40]. The
minimization of themean square error implied by the linear predictor also requires to determine
the covariance matrix K , and results in a formulation similar to Equation 1.12.

1.2.2 The Covariance Kernel

As highlighted in the previous section, the covariance kernel is an important hyper-parameter
to build our regression model. It is usually chosen among the following usual kernels:

• Gaussian :
κ(x, y) = exp

(
−(x− y)2

θ2

)
(1.17)

• Matern 5
2
:

κ(x, y) =

(
1 +

√
5|x− y|

θ
+

5(x− y)2

3θ2

)
exp

(
−
√
5|x− y|

θ

)
(1.18)

• Matern 3
2
:

κ(x, y) =

(
1 +

√
3|x− y|

θ

)
exp

(
−
√
3|x− y|

θ

)
(1.19)

• Exponential :

κ(x, y) = exp

(
−|x− y|

θ

)
(1.20)

Multi-dimensional case:

k(x,y) =
d∏

i=1

κ(xi, yi, θi) (1.21)

The parameters θ are referred to as the characteristic length scales [4].

23

Chapter 1

A lot of more kernels can be defined and created using known kernels, we refer to the works
of N. Durrande [41] [42] andD. Duvenaud [43][44] to see how to create kernels and choose them
for specific purposes. Although mixing kernels is possible and can be useful in some contexts
(e.g., additive kernels [44]), it is not explored in this work.

Maximizing the likelihood

The covariance kernel is a parametric function that needs to be fit to the data. A popular
method is the Maximum Likelihood Estimation (MLE) of the parameters which consists of find-
ing the most probable parameters given the observation. Assuming the parameters to be fit are
θ = (θ1, . . . , θd). The likelihood is a function of the parameters to optimize, that expresses the
probability of the observation under the parameter’s assumptions. In our case:

L(θ) = p(y|X,θ)

Since the likelihood often takes the form of a product, it is common to use the log-likelihood,
which preserves the maximum of the likelihood function. Using the Gaussian hypothesis
y ∼ N (0, K), the log-likelihood writes:

log (p(y|X,θ)) = −1

2
yTK−1y − 1

2
log (|K|)− n

2
log(2π) (1.22)

TheMLE consists in finding the θ parameters that maximize Equation 1.22. It can be done by
finding the derivatives of Equation 1.22 with respect to θi to use gradient-based routines. The
complexity of the parameter fitting through MLE is dominated by the inversion of K which
time is O(n3), where n is the matrix size (i.e., the number of observations). Consequently,
once K−1 is computed, the remaining part requires only time O(n2) per parameter [4], so a
gradient-based optimizer is well suited. As an example, the L-BFGS-B algorithm [45] might
be applied.

The second term of Equation 1.22 is sometimes called the complexity penalty and its op-
timization favors less complex models. The marginal likelihood automatically incorporates a
trade-off between model fit and complexity. A precise fit to the data can be achieved by reduc-
ing the length scale however the marginal likelihood does not favour this [4]. The Bayesian
treatment can be extended to other hyper-parameters of the GP models, including for example
the noise σ or the parameters of the basis functions a.

1.2.3 Considerations from some Observations on GPs

Even though the investigation and contributions reported in this manuscript do not concern
the theory of GPs, it is important to understand the different aspects of the surrogate models
on which we can act.

Regarding the hypothesis of the model

24

Parallel Bayesian Optimization

• The zero or constant mean assumption (most common) is not a drastic limitation since
the mean of the posterior distribution is not confined to be constant [4] as shown in
Figure 1.6. The latter also illustrates different samples drawn from the prior and posterior

Figure 1.6: The posterior distribution is non constant even with constant mean prior.

distributions, which are possible observations regarding the assumptions. The samples
from the prior arewith constantmean, and the samples from the posterior are conditioned
by the data. Hence, the posterior provides suitable observations close to the data.

• The observations close to the location of the point being predicted have more impact on
the prediction.

• Covariance matrices and kernels strongly impact the models and the kernel is chosen as
a hyper-parameter. However, except for specific purposes, the choice of the kernel might
not be excessively important in the optimization context [46].

Numerical considerations

• Assuming noisy observations even for a deterministic simulation adds a hyper-parameter
to optimize but it is necessary in case of computer simulation with no way to assert the
stationarity. Numerically, it reinforces the diagonal of the covariance matrix and limits
the bad conditioning of the matrix [47]. Figure 1.7 illustrates the numerical inaccuracy
of the posterior distribution (the prediction) resulting from noisy observations. The blue
curve results from a model that considers no noise, while the green one is built using
a noise parameter estimated in the model. Without noise, the model interpolates the
observations causing high variations in some situations. The addition of a noise hyper-
parameter helps to deal with this phenomenon, even with noise-free observations.

• The noise estimation also improves the variance estimation. Figure 1.8 shows 100 sam-
ples from the posterior distribution built with and without noise estimation. The blue

25

Chapter 1

Figure 1.7: Prediction of a noisy objective with and without noise estimation in the model

background indicates a 2σ confidence interval (≈ 95%) for the prediction. We can see
that the variance is 0 at observed points in the top graph (without noise), while the pre-
diction and variance are quite high in non-sampled areas. The prediction and variance of
the bottom graph (with noise estimation) seem much more accurate.

Figure 1.8: Predictive distribution and confidence interval for models build with and without
noise estimation

• The fitting time of the model scales with O(n3) due to the inversion of the covariance
matrix.

• The kernels reflect the smoothness of the function to approximate, they also impact the
stability: Matern 5

2
is usually a good choice for numerical stability thanks to its derivabil-

ity of order 2, as recommended in [48].

26

Parallel Bayesian Optimization

• The correlation fades with distance which can result in flat predictions and misleading
results [48]. Even though the MLE estimation already favors less complex models and
thus non-negligible length scales, a suitable option is to impose a minimum value for
each length scale parameter.

• The input dataX is scaled into the [0, 1]d hyper-cube, and the output is either standard-
ized (zero mean and unit variance) or (less frequently) scaled between 0 and 1.

Non stationary processes: In broad terms, non-stationary refers to objective functions that
abruptly vary in certain (non-canonical) dimensions. Some approaches are dedicated to tackle
non-stationary random processes, since it is not tackled here we only report some references:
non stationary kernels [49]; partitioning [50][51]; heteroscedastic GP coupled to space parti-
tioning [52]; deep GP [53, 54]; or warped GP [55].

1.3 Acquisition Strategy and Parallel Computing

What makes BO special amongst SBO approaches is its AP that optimizes the AF to propose
the most valuable candidate to be exactly evaluated. This section is dedicated to defining more
precisely what does valuable means in this context.

1.3.1 Single-Point Strategies

The origin of BO is often associated with the works of H. Kushner [2] and J. Mockus [8] who
respectively defined the Probability of Improvement (PI) and Expected Improvement (EI), which
are single-point AFs. The framework has been popularized by D.R. Jones et al. in [1] where they
present the Efficient Global Optimization (EGO) algorithm, whose pseudo-code is basically the
same as Algorithm 1. This algorithm is further described in Section 2.1 since EGO lends itself
to the tackled application.

Shahriari et al. propose in [11] an introduction to BO through several examples (A/B testing,
Recommender System, Reinforcement learning, etc.) and set up a classification of the different
AFs used in the BO framework. Three classes are identified:

• Optimistic AFs: they assume the best-case scenario regarding the uncertainty, such as
in the Lower Confidence Bound (LCB) [9]. A decision x∗ is favored (more likely to be
selected for evaluation) by a good prediction µ(x∗) and a high variance σ(x∗).

• Improvement-based AFs: they use the improvement which is defined as I(x) =
max(fmin − f(x), 0). For example PI [2], EI [8], Scaled EI [56], etc. Such AFs also take
into account the current best-found value fmin.

• Information-based AFs: they focus on the information rather than the improvement.
They principally rely on Thompson Sampling (TS) such as in [57] or on entropy-basedAFs
such as Entropy Search [10] Predictive Entropy Search [58], Max-Value Entropy Search
[59], Conditional Entropy [60], etc. Such AFs mainly rely on the predictive distribution.

27

Chapter 1

The last category is based on information theory, whose literature and point of view are
slightly different. However, in a BO setting, it is exactly analogous to the AF.

The optimization of the selected AF returns the design point that will be evaluated next. The
AP is then an optimization process itself, however, it is fundamentally different from the original
global problem. First, the AF is known analytically and the gradient can be used. Second, its
computational cost is much lower so that we are not restricted in the number of evaluations of
the objective function. This makes this inner optimization problem easier to tackle. Obviously,
it also has a computational cost, as well as the surrogate fitting, and we will come back to it
later.

Despite the large variety of AFs, EI remains a popular generic choice [7]. It will be used in
the following and adopting standard notations (µ and σ2 for predictive mean and variance), it
states as:

EI(x) = E[I(x)] = E[max(fmin − f(x), 0)] (1.23)

= (fmin − µ(x)) Φ

(
fmin − µ(x)

σ(x)

)
+ σ(x)ϕ

(
fmin − µ(x)

σ(x)

)
(1.24)

where Φ and ϕ denote respectively the Gaussian cumulative density function and probability
density function. For the same reason, we also explicitly express the LCB criterionwhich simply
states:

LCB(x) = µ(x)− βσ(x) (1.25)

where β > 0 is a parameter setting the exploration/exploitation trade-off.

Recent advances in hardware and mainly general-purpose hardware generalized the use of
parallel computing to solve optimization problems. However, at first sight the BO principle is
inherently sequential. As previously mentioned, the main profitability of parallel computing
concerns the simultaneous evaluation of several candidate points. Consequently, we need APs
capable of providing batches of candidates. Of course, in sequential mode the next sampling
point is chosen with maximum information. The challenge is then to be able to provide a batch
of equivalent quality, as if the candidate points of the batch were chosen sequentially.

1.3.2 Multi-Point Acquisition Processes

Many methods have emerged to get around the problem of providing a batch of q candidate
design points at each cycle.

In the following, we review the existing approaches that we classify into three (non exclu-
sive) classes:

• Inherently multi-point AFs,
• Repeated single-point AFs,
• Multi-criteria approaches.

28

Parallel Bayesian Optimization

Inherently multi-point criteria

A pioneering work is presented in [16] using the q-points EI (previously defined in [61]) whose
objective is to simultaneously provide q candidate design points from the optimization of the
qEI criterion. However, its exact computation would require multivariate integrals which are
not mathematically tractable and require approximations to be numerically computed [16, 17].
Therefore, they suggest approximating qEI with Monte-Carlo simulations. Another approach
from Marmin et al. [62] uses the analytical form of the multi-point EI gradient to optimize the
function with gradient information. We can also mention the Parallel Predictive Entropy Search
from Shah and Ghahramani [63], where approximations are made to compute the predictive
entropy; or the closed-form approximation of qEI of Chevalier et al. [64]. Wang et al. [65]
use infinitesimal perturbation analysis to construct a gradient estimator of the qEI surface, and
a multi-start technique to find the set of local optima. Nonetheless, its computation remains
expensive as q increases. Indeed, the optimization problem is of dimension q × d, where d is
the number of design variables.

Therefore, despite attractive theoretical properties of multi-point AFs such as qEI, and ef-
ficient methods for approximating them, they will not be of much use in our parallel context
since limited in batch size (typically, q < 10) [62], or of high computational cost. Still in [16], the
authors present two heuristics allowing to mimic the q-points EI using sequentially the single-
point EI. These two heuristics, namely Kriging Believer (KB) and Constant Liar (CL), are the
rudiments of the second family of AP, alluded to in Section 1.3.1, where a single-point strategy
is repeated to yield q points.

Repeated single-point acquisition

Intuitively, instead of simultaneously optimizing a batch of points through a multi-point AF,
we try to locate distinct local optima of a single-point one. To do so, the basic idea is to modify
the information returned by the surrogate model, so that the response from the AF will also be
modified. One approach promoted in [16] and [17] consists in updating the surrogate model
(without hyper-parameter fitting) using a false value of f(xnew) = ynew (cf. Algorithm 1). This
false value must be easy to get so that it spares the time cost of the exact evaluation by the
simulator. This process is repeated sequentially q times to get q candidates and only then the
batch of candidates is evaluated in parallel. This approach is referred to as qEGO in reference
to the EGO algorithm [66].

Algorithm 2 presents the qEGO algorithm using sequential heuristics such as CL and KB
(cf. below). The core of the algorithm is similar to EGO (Algorithm 1), its difference lies be-
tween lines 3 and 7, where a second loop is executed instead of simply maximizing the AF.
The objective of this inner loop is to form a batch of points, without any call to the simulator,
which is the computationally expensive part. It consists in sequentially fitting a GP model with
temporary data composed of the known data D to which is added the partial batch of points
already assembled. Each candidate x(k) results from the sub-AP of line 5 and is added to the
temporary data set, along with the associated false response ỹ(k). The false response is the pre-
dicted value (the model is trusted) in the KB heuristic and an arbitrary constant value (e.g. the

29

Chapter 1

current best observation) in the CL one. This allows updating the surrogate model to choose
another candidate until we get q ones to evaluate in parallel.

Algorithm 2 qEGO using sequential heuristics
Input

f : objective function
Ω: design space
D = (X,y): known data

1: while budget available do
2: Dtmp = D
3: for k in 1 : q do ▷ sequential loop
4: M← GP(Dtmp)

5: x(k) ← argmaxΩ(α(x))

6: Dtmp ← Dtmp ∪ {x(k), ỹ(k)}
7: end for

8: Xnew ← (x(1), . . . ,x(q))

9: ynew = f(Xnew) ▷ parallel evaluation
10: D ← D ∪ {Xnew,ynew}
11: end while

12: return miny D

This approach introduced in [16] is of particular interest to our work since it is very simple
to set up and works with any AF, or even set of AFs. However, requiring several metamodel
fittings is a major drawback. Even though in the original work, the hyper-parameters of the
model are not fitted in the intermediate states, the time cost remains a potential bottleneck.

During the past few years, many methods emerged trying to improve the scalability and the
batch effectiveness of the BO framework. A common trait of all methods falling in the second
category (repeated single-point acquisition) is that the landscape of the AF must change in
some way so that optimizing AF leads to different candidates. Instead of modifying directly the
landscape of the AF, one can search for distinct local optima of the single-point AF imposing a
sort of distance between candidates or a penalty to discard already visited areas. With this idea,
we can mention Zhan et al. [67] or Wang et al. [68] where a niching strategy is used to locate
several optima of the single point EI. Gonzalez et al. [69] use the Lipschitz constant in order to
iteratively optimize a penalized AF. The penalty has a repulsive effect on already visited areas.

Multi-point sampling from different AFs or models

Another option to simply gather a batch of points, keeping the idea of modifying the AF land-
scape, is to optimize the same AF but built with different models. Modifying either the hyper-
parameters of the model (e.g. the kernel) or its learning sample [70] allows one to propose
multiple candidates easily, even from the same AFs. This approach presents the advantage
of being easily parallelizable. Wang et al. [71] use p AFs coupled with multi-point proposal

30

Parallel Bayesian Optimization

inspired by the KB heuristic from [17] to get a batch of candidates. The parallel stepwise uncer-
tainty reduction strategy is also investigated with different AFs in [72]. Kandasamy et al. [57]
use parallel Thompson Sampling (TS) to draw several samples (functions) from the posterior
distribution and find their optimum. The work is also extended in De Palma et al. [14] with
Acquisition TS.

Mixing selection criteria by using an ensemble of AFs is also a suitable option, and can
benefit from parallel computing. The chosen AF must address different objectives (e.g. in-
tensification, diversification) and then if needed, a selection is performed among all available
candidates. For example, in [73] 4 AFs are used to parallelize over 4 cores. The GP-hedge algo-
rithm from Hoffman et al. [74] associates a score to each AF in a portfolio and tries to employ
the best choice for each cycle. We define this AP as competitive since the selection criteria are
in competition with each other. Each AF provides one candidate, hopefully complementary, but
independently.

On the contrary, it is also possible to use the AFs in a cooperative way. For example, using
multi-objective optimization combining different AFs allows to sample from the Pareto opti-
mal set of candidates [75][76]. We consider this kind of approach as cooperative since they
act together to find a trade-off instead of acting independently. The idea of Pareto optimality
between the minimum prediction and the maximum variance was already present in earlier
works such as [16], without being developed. The multi-criteria approaches are also referred
to as multi-infill.

Other strategies

A large set of strategies fall into the previous classes, however some others do not. For example,
De Ath et al. [77] propose ϵ-Shotgun that selects a first candidate using single-point AF and
then samples around it according to a Gaussian distribution centered at xb1 with the standard
deviation computed using a locally estimated Lipschitz constant.

1.4 Chapter’s Conclusion

In this chapter, we first provided the theoretical background for PBO. We detailed the construc-
tion of the GP-based surrogate model that is essential in the BO framework. We also exposed
different options for the parallelization of the algorithms, and we have seen that being able to
provide an effective batch of candidates is critical in the parallel setting. Finally, we reviewed
the different approaches for the batch acquisition.

In optimization, we often refer to the No Free Lunch Theorem [78] as to say there is no
perfect algorithm that suits any context. In particular regarding the acquisition of large batches
of candidates, current approaches suffer from some limitations. Despite the variety of existing
approaches, most of the mentioned methods are not suited for large batches either because
they become excessively time-consuming (e.g., the sequential heuristic used in KB-qEGO), or
less efficient (e.g., TS tends to over-exploit and thus be redundant) [12, 15].

31

Chapter 1

In the following chapter, we demonstrate the usefulness of BO on real-world problems of
different dimensions and execution times. We also emphasize the previously stated challenge
that consists in choosing the most effective batch of candidates.

32

Chapter 2

Observations on Real-World Problems

2.1 Potential of EGO in Solving Expensive Simulation-Driven Problems . 36
2.1.1 Inverse Identification in Mechanical Engineering 36
2.1.2 The Efficient Global Optimization Algorithm 40
2.1.3 Experimental Results . 42

2.2 Impact of the Batched Parallelism in EGO 44
2.2.1 Optimal Commitment of Virtual Power Plants 44
2.2.2 Offline SAO versus qEGO . 47
2.2.3 Experimental Results . 49

2.3 qEGO versus Surrogate-Assisted EA 52
2.3.1 Tuberculosis Transmission Control (TBTC) 52
2.3.2 Competing Approaches . 53
2.3.3 Experimental Results . 54

2.4 Chapter’s Conclusions . 58

We have detailed in Chapter 1 the components of PBO which are the surrogate model and
the acquisition strategy to obtain batches of points. BO offers a valuable framework for many
real-world applications, and we demonstrate its efficiency in this chapter. Chapter 2 presents
three real-world optimization problems from engineering in which BO and PBO can be applied.
The choice of the most suitable algorithm directly depends on the characteristics of the tackled
problem. Through these three real-world problems, we give an overview of the scope of BO
algorithms and mostly we identify associated limitations and some insights for their design.

In Section 2.1, we tackle an inverse identification problem in mechanical engineering. The
objective of this first problem is to fit the parameters of a cutting model so that the model
accurately describes the cutting process. The model takes 5 parameters which are our design
variables. Due to complex numerical computations, the evaluation of a set of design variables
is extremely time-consuming. However, parallel computing can be used to reduce the time of
a single simulation. In this situation, the parallel evaluation of several candidate points might
not be the best option. Consequently, we apply the sequential EGO algorithm.

33

Chapter 2

One parallel version of the EGO algorithm is applied in Section 2.2, where we deal with an
electrical engineering problem whose objective is to find the best bidding strategy for an oper-
ator to participate in the energy market. The particularity of this problem is that the decision
must be taken in a restricted time so that the solution takes part in the daily energy market.
The budget is then very limited. In this situation, the simulator is time-consuming in the sense
that the number of calls to the simulator must be limited. The simulator considers 3 decision
variables and the PBO is compared to an offline strategy where the GP model is fit before being
used in an Evolutionary Algorithm (EA). Themodel is not updated at each cycle. In comparison,
BO is said online as it is updated with the incoming information.

We have seen in recent years that being able to predict the evolution of epidemics and
evaluate the impact of certain decisions is important in healthcare. Section 2.3 deals with an
optimization problem applied to tuberculosis transmission control. The application is designed
to find the best vaccination strategy to minimize the prevalence of the disease. This problem
involves 6 design variables, and parallel computing can be leveraged to improve the optimiza-
tion process. We use the qEGO algorithm with the KB heuristic and compare the BO approach
to population-based algorithms in terms of batch effectiveness and scalability.

The observations from the latter real-world problems offer a better characterization of the
challenges we face in improving the parallelization of BOAs. First, we observe that the batch
acquisition does not preserve the quality of its sequential counterpart. Actually, even consider-
ing the increased number of simulations offered by the parallelization of the simulations, large
batches degrade the final outcome. Second, we denote a bad scalability caused by the increas-
ingly time-consuming sequential part of the algorithm.

The contributions presented in this chapter has been published in the four following articles:

• In academic journals:

– Kugalur Palanisamy, N., Rivière Lorphèvre, E., Gobert, M., Briffoteaux, G., et al.
Identification of the Parameter Values of the Constitutive and Friction Models in
Machining Using EGO Algorithm: Application to Ti6Al4V. Metals 12. issn: 2075-
4701. https://www.mdpi.com/2075-4701/12/6/976 (2022)

– Ducobu, F., Kugalur Palanisamy, N., Briffoteaux, G., Gobert, M., et al. Identification
of the Constitutive and Friction Models Parameters via a Multi-Objective Surrogate-
Assisted Algorithm for the Modeling of Machining - Application to ALE orthog-
onal cutting of Ti6Al4V. Journal of Manufacturing Science and Engineering, 1–54.
issn: 1087-1357. eprint: https://asmedigitalcollection.asme.org/
manufacturingscience/article-pdf/doi/10.1115/1.4065223/
7324066/manu- 23- 1749.pdf. https://doi.org/10.1115/1.
4065223 (2024)

– Briffoteaux, G., Gobert, M., Ragonnet, R., Gmys, J., et al. Parallel surrogate-assisted
optimization: Batched Bayesian Neural Network-assisted GA versus q-EGO. Swarm
and Evolutionary Computation 57, 100717. issn: 2210-6502. http : / / www .
sciencedirect.com/science/article/pii/S2210650220303709
(2020)

• In conference proceedings, with peer reviewing, and presentation:

34

https://www.mdpi.com/2075-4701/12/6/976
https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf
https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf
https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf
https://doi.org/10.1115/1.4065223
https://doi.org/10.1115/1.4065223
http://www.sciencedirect.com/science/article/pii/S2210650220303709
http://www.sciencedirect.com/science/article/pii/S2210650220303709

Observations on Real-World Problems

– Gobert, M., Gmys, J., Toubeau, J.-F., Vallée, F., Melab, N. & Tuyttens, D. Surrogate-
Assisted Optimization for Multi-stage Optimal Scheduling of Virtual Power Plants.
in 2019 International Conference on High Performance Computing Simulation (HPCS)

(2019), 113–120

35

Chapter 2

2.1 Potential of EGO in Solving Expensive Simulation-

Driven Problems

The advancement in computer science enables the development of numerical models that em-
ulate real experiments. Those models generally require to be tuned for specific applications
by fixing the hyper-parameters of the model and accurately describe the reality. The numeri-
cal modeling of engineering processes usually result in computationally-intensive simulations
which makes the optimization of the hyper-parameters challenging. This process is called in-

verse identification. It is applied to an orthogonal cutting problem and solved using the Efficient
Global Optimization (EGO) algorithm [1].

2.1.1 Inverse Identification in Mechanical Engineering

The problem introduced in this section consists in finding the parameters of a model that de-
scribes the machining of an alloy. The Ti6Al4V alloy is considered for an orthogonal cutting
process, as illustrated in Figure 2.1. The yellow cutting tool enters the alloy in rotation when
moving forward following the red axis (orthogonal to the rotation axis). This alloy is commonly
used in aerospace, biomedical, and marine fields for its excellent properties. It is considered as
a major production industry concern because of its poor machinability characteristics [79–81].

Figure 2.1: Illustration of the orthogonal cutting process [82]

Finite element modeling is generally used for the simulation of the metal-cutting process
[83]. This finite element model is used in place of the experimental cutting and is referred to as
the simulator in the following. It makes it possible to execute a larger set of tests and predict
quantities that are difficult to obtain experimentally [84]. However, modeling the machining
process using finite element methods is challenging in several aspects. The accuracy of the
model depends on themodel’s choices such as the formulation type, the quality of themesh [85],
the boundary conditions, the material constitutive and friction models [86–89].

36

Observations on Real-World Problems

In particular, material model and friction conditions between tool and chip are essential to
obtain accurate and reliable results from the simulation [87]. In this present work, the John-
son–Cook constitutive model and Coulomb’s friction coefficient are implemented in the sim-
ulator that approximates the cutting process. The objective is then to jointly calibrate the pa-
rameters of the two latter using an inverse identification procedure to minimize the prediction
error. But first, we describe the simulator and its relation with the objective function.

The simulator

The formulation of the objective function considers the Johnson-Cook model and the Coulomb
friction for the finite element method. For the sake of clarity, we adopt here the black-box

point of view and only consider the optimization aspects of this work. The full justification and
motivations behind those choices are given in [21]. We summarize in Figure 2.2 the constitutive
elements of the simulator and provide a succinct description of the variable of interest.

Simulator

Finite Element Solver

Constitutive model

Friction model

Figure 2.2: Constitution of the simulator

The Johnson-Cook model is a constitutive model which relates the flow stress (σ) to strain
(ϵ), strain rate (ϵ̇) and temperature (T). A constitutive model usually writes σ = σ(ϵ, ϵ̇, T). It is
widely used and possesses five material parameters (A,B, n,m,C) to describe the flow stress
σ during the orthogonal cutting process. The formula states:

σ = [A+Bϵn]×
[
1 + C ln

(
ϵ̇

ϵ̇0

)]
×
[
1−

(
T − Troom

Tmelt − Troom

)m]
(2.1)

The yield stress of the material at a reference temperature is given by the A parameter,
B gives the modules of strain hardening, n the strain-hardening exponent, C the strain rate
sensitivity, andm is the thermal softening exponent. The temperature parameters are identified
by the letter T , where T is the current temperature, Tmelt and Troom are respectively the melting
and the room temperatures. Last, ϵ̇0 = 1 is the reference strain rate.

The friction model is also an important factor influencing the accuracy of the simulation.
The Coulomb’s friction model is used to explain the friction conditions at the tool-chip inter-
face. Coulomb’s model stated in Equation 2.2 assumes that the frictional sliding force (τ) is
proportional to the applied normal load (σ). The µ parameter is called the friction coefficient
and is constant in all the contact length.

37

Chapter 2

τ = µσ (2.2)

The set of design variables is composed of (B,C, n,m) from the Johnson Cook constitutive
model and µ from the Coulomb friction model. The yield stress parameter A of Equation 2.1
is attributed 997.9 MPa in accordance with [90, 91] and is not a design variable in our study.
Hence, the decision vector of the optimization problem is x = (B,C,m, n, µ) ∈ R5.

To achieve an efficient cutting process, the knowledge of the forces experienced during the
cutting of a material is essential. It affects the tool wear, the workpiece surface quality, etc. An
accurate prediction of forces during the simulation process is then also essential. The objective
function is built on three quantities provided by the finite element model: the cutting force Fc,
the feed force Ff and the chip thickness h′.

Figure 2.3 illustrates these quantities in the machining process. The uncut chip thickness h
is a user-defined parameter that is subject to change. Ideally, the model parameters identified
with the optimization process are well suited for any h.

Workpiece

Tool edge

Figure 2.3: Illustration of the mechanical cutting process and the monitored quantities

Adopting the black-box point of view, we summarize the simulator in Figure 2.4. The set of
design variables are the inputs of the simulator, which returns the simulated Fc, Ff , and h′.

Simulator

Finite Element Solver

Johnson-Cook model

Coulomb model
Inputs Outputs

Figure 2.4: Representation of the simulator for inverse identification problem

38

Observations on Real-World Problems

The numerical simulator (written with Abaqus) is computationally expensive. The compu-
tation time for an uncut chip thickness h = 0.1 mm is about 42 minutes using the eight cores
of an Intel® Core™ i7-10700 computing unit with 16GB memory.

Objective function

The objective function is defined as a measure of the error between the real experiments and
the simulated ones. We denote with (exp) and (sim) exponents the quantities coming from
respectively experiments and simulations.

A weighted sum method is used to evaluate the combined error of the three monitored
quantities. This allows us to define the real-value objective function (single objective) given in
Equation 2.3.

f(x) = wFc

|Fc
(sim) − Fc

(exp)|
max |Fc

(sim) − Fc
(exp)|

+ wFf

|Ff
(sim) − Ff

(exp)|
max |Ff

(sim) − Ff
(exp)|

+ wh′
|h′(sim) − h′(exp)|

max |h′(sim) − h′(exp)|

(2.3)

where (wFc , wFf
, wh′) is a vector of weights giving the importance of each objective with∑

w∗ = 1.

We consider two sets of weights: the first one is a uniform distribution, w(1), giving equal
importance to the three outputs (Fc, Ff , h

′). The second set named w(2) is chosen to be more
representative of the importance of the three quantities in the industrial context. The two sets
of weights are given in Table 2.1.

Table 2.1: Two sets of weights for the objective function of Equation 2.3

w wFc wFf
wh′

w(1) 1
3

1
3

1
3

w(2) 0.40 0.35 0.20

Ti6Al4V alloy test case

The experimental values are extracted from the work of Ducobu et al. [92]. The orthogonal cut-
ting experiments are performed using Ti6Al4V with the same cutting conditions as our model
for an uncut chip thickness of 0.1 mm. The results are displayed in Table 2.2.

39

Chapter 2

Table 2.2: Mean objective values observed experimentally with 6 repetitions

h (mm) Fc
(exp) (N/mm) Ff

(exp) (N/mm) h′(exp) (mm)
0.1 173± 2 51± 1 0.135± 0.006

The design variables are restricted within boundaries chosen according to the literature.
Table 2.3 presents the boundaries chosen in accordance with the work of Ducobu et al. [93],
where the authors extensively investigated the literature for Ti6Al4V alloy.

Table 2.3: Boundaries of the design variables for the inverse identification problem

Parameters lower bound upper bound
B 331.2 1092
C 0.000022 0.05
m 0.6437 1.51
n 0.122 1.01
µ 0 1

2.1.2 The Efficient Global Optimization Algorithm

The objective function of Equation 2.3 evaluates the error between numerical simulation and
experimental measures. The simulator is time-consuming, and the Abaqus software used for
the finite element implementation of the simulator already leverages parallel computing to re-
duce the wall-clock time. Consequently, a sequential BO algorithm such as EGO is perfectly
appropriate.

EGO is a well-known BO algorithm with proven efficiency for time-consuming black-box
optimization problems [1]. We first illustrate the working principle of the algorithm through a
toy problem, before applying it to the inverse identification problem.

Figure 2.5 depicts the three steps of EGO that are also presented in Algorithm 1. First, as
shown in Figure 2.5a, a surrogate model is built based on the observations. Then, the first new
candidate is selected by optimizing the AF, i.e. Expected Improvement (EI) in our case. The new
candidate is marked with a green star in Figure 2.5b. This candidate is evaluated and integrated
into the data set, and a new cycle can begin as represented in Figure 2.5c to Figure 2.5f. Finally,
the algorithm returns the best-found outcome.

40

Observations on Real-World Problems

(a) EGO initial state (b) EGO cycle 1

(c) EGO cycle 2 (d) EGO cycle 3

(e) EGO cycle 4 (f) EGO cycle 5

(g) EGO final state (h) legend

Figure 2.5: Five cycles of EGO. A cycle is composed of a surrogate model fitting, an AP, and a
simulation

41

Chapter 2

2.1.3 Experimental Results

Experimental protocol

The objective function is defined according to the experimental values of Table 2.2, obtained for
an uncut chip thickness of h = 0.1. Ideally, the obtained optimized parameters should also be
valid for other values of h. Consequently, our protocol also assesses the quality of the obtained
results for uncut chip thicknesses of 0.06mm and 0.04mm. The obtained results are compared
with values from Seo et al. [91]. The total computation budget is fixed to 300 simulations,
corresponding to 300 EGO cycles, which take about 8 days to complete. The algorithm is used
with the EI criterion, given in Equation 1.23. Two distinct optimization runs are performed with
the two sets of weights given in Table 2.1.

Implementation of EGO

Following standard recommendations [1], an initial data set is built with 60 (12 × d, with the
problem dimension d = 5) design points. The initial sample is created with the Latin Hy-
percube Sampling (LHS) method [94] in order to ensure a good space filling. Several GPs are
built with the initial data set following a grid search pattern in order to select the best hyper-
parameters for the problem. The grid search involves several kernels and mean functions for
the GP model, as well as various learning rates for the optimization of the model’s parameters
(cf Section 1.2.2). The Leave-One-Out Cross-Validation score [95] is used to compare the dif-
ferent combinations. All the experiments are performed using the GPyTorch and BOTorch
frameworks in Python [96, 97], and revealed that the constant mean and spectral mixture kernel
allow one to achieve a good accuracy with a learning rate of 0.1.

Experimental results

The results from the two runswith the two sets of weights are displayed in Table 2.4 and referred
to as R(1) and R(2) in accordance with w(1) and w(2). The obtained results in terms of cutting
force (Fc), feed force (Ff), and chip thickness (h′) are compared to the experimental values and
to the work of Seo et al. [91]. We observe a global improvement for both runs compared to the
reference work.

Table 2.4: Cutting force (Fc), feed force (Ff), chip thickness (h′), and their differences (∆) with
the experimental results for h = 0.1 mm.

h source Fc (N/mm) ∆Fc (%) Ff (N/mm) ∆Ff (%) h′ (mm) ∆h′ (%)

0.1

Experiment 173± 2 - 51± 1 - 0.135± 0.006 -
Seo et al. [91] 177 2 41 22 0.177 27
R(1) 163 6 53 4 0.147 9
R(2) 169 2 55 7 0.150 11

42

Observations on Real-World Problems

The results fromR(1) provide homogeneous errors, consistently with the weights given by
w(1). Despite an improved cumulative error, the one associated to Fc is higher compared to the
reference work. Considering the second set of weights, w(2), it gives a higher importance to
Fc, slightly less to Ff , and far less to h′. This results in a reduced error for Fc and a slightly
increased error for Ff and h′ compared to R(1). However, in comparison with Seo et al., R(2)

is still better for h′ and Ff , and equivalent regarding Fc.

Validation of the results

Two additional uncut chip thickness values are considered for validating the previous results:
h = 0.04 mm and h = 0.06 mm. The results of the numerical simulation as well as the experi-
mental values and reference values are provided in Table 2.5.

Both R(1) and R(2) provide a quite accurate cutting force (deviation lesser than 4%) for
h = 0.04 mm and h = 0.06 mm. However, the feed force Ff seems overestimated (16% to
33%) compared to experiments and is less accurate than the reference work. Regarding the
chip thickness h′, the prediction shows some improvement when compared with the reference
values, even though they are also overestimated (14% to 19%) compared to the experimental
measures.

The accuracy for the new cutting conditions is lower but still quite good, especially for the
cutting force. The prediction of the latter has an important impact on tool design, and also for
tool wear/life prediction [98].

Table 2.5: Cutting force (Fc), feed force (Ff), chip thickness (h′), and their differences (∆) with
the experimental results for h = 0.04 mm and h = 0.06 mm.

h source Fc (N/mm) ∆Fc (%) Ff (N/mm) ∆Ff (%) h′ (mm) ∆h′ (%)

0.06

Experiment 112± 2 - 45± 1 - 0.080± 0.004 -
Seo et al. [91] 120 7 41 9 0.112 33
R(1) 112 0 56 22 0.093 15
R(2) 116 4 53 16 0.097 19

0.04

Experiment 86± 2 - 41± 1 - 0.059± 0.005 -
Seo et al. [91] 92 7 35 16 0.083 34
R(1) 86 0 57 33 0.068 14
R(2) 88 2 52 24 0.071 18

Nevertheless, the lesser accuracy for the new cutting conditions shows the limits of optimiz-
ing the parameters on a single cutting condition (h = 0.1 mm). A multi-objective formulation
is recommended to simultaneously optimize the parameters on different cutting conditions.

43

Chapter 2

Insights from the observations

This first application inmechanical engineering illustrates the efficiency of sequential BOmeth-
ods such as EGO. This study does not leverage batched-BO since the simulator is already exe-
cuted using parallel computing, and larger scale parallelization is not possible due to proprietary
software. In this situation, it is preferable to choose the next candidate point with maximum
information, i.e. sequentially, and use the computing power to alleviate the time cost of a simu-
lation. Through this application, we demonstrated that BO is efficient in real-world applications
and that it contributed to significant improvements for this mechanical engineering application.

The BO framework constitutes a novel approach for the inverse joint identification of the
optimal parameters of the constitutive and friction models during an orthogonal cutting finite
element modeling of Ti6Al4V. The identified parameters predict the forces and chip thicknesses
with a better overall accuracy than the best set of parameters identified and stated in the liter-
ature.

Multi-objective formulation

Even though not being in the scope of this manuscript, an Adaptive Bayesian Multi-objective
Evolutionary Algorithm has also been considered to simultaneously handle the three cutting
conditions. The obtained results show a great improvement compared to the single-objective
framework as it allows us to predict the cutting and feed forces with a deviation of less than
4% from the experiments for the three considered cutting conditions. We published this work
in [23].

2.2 Impact of the Batched Parallelism in EGO

Our next application takes place in the electrical engineering field, and more precisely in the
electricity market. We adopt the point of view of an actor in the electricity market taking
part in the medium-term and short-term markets. This actor operates on an entity, called a
virtual power plant, aggregating heterogeneous assets (e.g. thermal power plant, hydroelectric
stations, etc.) whose decision to participate in the different energymarkets will impact its profit.
We investigate the parallel KB-qEGO [16] on this problem to find the optimal bidding strategy
for maximizing the profit of the operator. This approach is compared to an offline Surrogate-
Assisted Evolutionary Algorithm (SAEA), where the optimization is performed only using the
surrogate model.

2.2.1 Optimal Commitment of Virtual Power Plants

Virtual power plants are aggregators whose initial goal is to make some profit by helping the
transmission system operator maintain its frequency. Indeed, to ensure the electricity distri-
bution grid stability, the transmission system operation must balance energy generation and
consumption to ensure a 50 Hz-frequency constant within the grid. Any failure to maintain

44

Observations on Real-World Problems

this balance can result in severe consequences, including congestion or blackouts within the
electricity system [99]. The transmission system operator is responsible for this constraint and
has to contract energy reserves to be triggered when needed.

Practically, virtual power plants can be seen as single actors combining different generation,
storage, and load management technologies. Their operators can either participate in energy
markets (selling/buying energy to other actors) or offer ancillary services to the transmission
system operator to help him maintain the grid stability. Such services are typically contracted
in mid-term (i.e. week- or month-ahead) and consist of amounts of energy kept available in case
the system operator needs to balance the electrical supply and demand. The optimized decision
of the joint operation of the different assets allows the operator to maximize its expected profit.
A simulator is designed to compute the expected profit the virtual power plant operator can
hope for, bymaking a decision. The objective of this work is then to propose an efficient decision
tool to maximize the expected profit of the market operator.

Similarly to the previous application, we adopt a black-box point of view and only succinctly
present the simulator without getting into details of its conception, for which we refer to the
work of J-F. Toubeau et al. [100].

A two-stage formulation

We consider a virtual power plant operator participating in medium-term reserves (week-
ahead) as well as day-ahead and real-time energy markets. The decision process involves differ-
ent embedded time horizons and each market is characterized by a decision to allocate a certain
amount of resources. Consequently, the problem formulation takes the form of a two-stage al-
gorithm.

The first stage is called medium-term optimization and concerns the reserve market deci-
sions. The second stage is called short-term optimization and refers to decisions taken on the
day-ahead and real-timemarkets. This second stage depends on the first stage since the amount
of energy allocated to the reserve market cannot be used in the other markets, at the risk of
not being able to fulfill the commitment and being penalized. This situation establishes a mu-
tual dependency between the electricity market and the reserve market. Therefore, it is highly
preferable to address both problems simultaneously as a two-stage optimization problem.

Furthermore, the short-term optimization has to be carried out daily and somemoderate risk
attitude can thus be envisaged here. Two-stage scenario-based optimization is therefore favored
over techniques such as robust or interval optimization techniques that are known to yield
conservative (and thus sub-optimal) solutions [101]. Furthermore, the optimization tool must
take into account the prediction uncertainty due to unexpected load or renewable production
to contract energy reserves and be able to contribute to the grid safe state restoration in case
of unexpected dizziness on the electricity transmission system. This is the reason why it is
treated using a stochastic algorithm, where several scenarios of possible short-term realizations
are generated [102]. The mid-term uncertainty is addressed by defining representative days of
wind and solar generation as well as total consumption within the portfolio. Afterwards, the
day-ahead scenarios are generated.

45

Chapter 2

The simulator

The aggregator’s decision involves the two dependent stages, however, our decision variables
only concern the reserve procurement done at the medium-term level. In practice, the operator
can act on three products depending on the required responsiveness. They are:

• R1, to be activated within 30 seconds to bring the frequency shift back to 50 Hz,
• R2, to be fully activated between 7.5 and 15 minutes to help restoring the frequency,
• R3, to be required at longer-term if the use of R1 and R2 are not sufficient.

Let us call Xu = (R1, R2, R3) the design variables of the first (upper) stage decision. Follow-
ing the mid-term commitment, the contribution to day-ahead and real-time markets must be
decided. We denote as Xl the second (lower) stage variables, on which we cannot act. Xl is a
mixed-integer vector, decided through a dedicated optimization process, also depending onXu.
Consequently, the simulator can be represented as shown in Figure 2.6, where Pt represents the
total profit realized at both stages.

Inputs Outputs

Two-stage formulation

Medium term optimization

Short term optimization (MILP)

Mutual dependency

Simulator

Figure 2.6: Representation of the simulator for the virtual power plant optimal commitment
problem

The short-term optimization is an optimal scheduling problem and is itself a two-stage opti-
mization problem (day-ahead and real-time markets). The decisions must consider constraints
such as the physical limits of the various means of production, or the necessity to be balanced
in real-time (i.e. what has been procured in previous market floors has to be actually delivered).
The short-term optimization constitutes the non-linear part of the objective function: it gives
a variable profit by optimizing resource management in day-ahead and real-time markets.

Objective function

One could formulate the problem as follows:

max
Xu∈Ω

Pt(Xu, Xl) = max
Xu∈Ω

Pf (Xu) + E [Pv(Xu, Xl)] (2.4)

s.t Xl = argmax (E [Pv(Xu, Xl)]) (2.5)

46

Observations on Real-World Problems

The total profit Pt of Equation 2.4 is the result of two contributions, Pf and Pv. They respec-
tively correspond to the fixed profit and the variable profit. Pf is directly computed with a
linear combination of the Xu decisions, while Pv depends on a complex mixed integer linear
formulation [100] and is the result of the short-term optimization. The short-term optimization
is formulated as a Mixed-Integer Linear Programming (MILP) following the model from [103].

As pointed out above, the optimizations of the two temporal horizons are intrinsically
linked. The resources allocated in mid-term must remain available if they are required in real-
time. The simulator gives the expected best variable profit according to the reserves commit-
ment that guaranty a fixed profit. High commitment to the reserve is then less risky, but high
resources allocated to the short-time market are potentially more profitable.

This stochastic programming approach resulting from the mentioned uncertainties has two
main challenges. The first one consists of modeling the uncertainty through a set of time-
varying predictive scenarios that represent time trajectories of all uncertain variables. The
second one is to overcome the computational burden associated with the resulting formulation
dealing with uncertainties. Both are treated in Toubeau et al. [100]. This is why the use of a
metamodel is mandatory to complete the optimization in the dedicated time.

From the optimization point of view, we optimize the upper stage design variablesXu, trying
to maximize the total profit Pt.

Description of the test case

The virtual power plant is composed of 3 conventional power plants, with a maximum output
power of respectively 130, 80, and 55 MW as well as 2 pump storage units, both characterized
by an output power of 15MW. In addition, there are also renewable generation devices such as
wind farms and domestic rooftop photovoltaic installations for a total power of 120MW.

The prices for the reserve capacity are fixed at 16e/MW forR1, 4e/MW forR2, and 1e/MW
for R3. The activation prices reflect the technology-specific operation costs. The portfolio is
created based on real data from the Belgian system in order to represent a typical actor. The
generation and consumption patterns are realized regarding aggregated data for a typical month
of July.

2.2.2 Offline SAO versus qEGO

In [100], Toubeau et. al adopt an offline strategy where the simulator is replaced by a surrogate
model to spare the computational cost of the short-term optimization. Then, an evolutionary
optimization is carried out using the metamodel instead of the simulator, and the best obtained
Xu is evaluated afterwards with the real simulator to return the real expected profit. Following
the definitions of Section 1.1.2, this method is an offline SAEA. The term offline is opposed to
online where the surrogate model is dynamically updated with incoming information, such as
in BO.

47

Chapter 2

Themodeling throughGP is reasonable since the variation expected from small variations in
the decisionXu should result in a small variation of the total profit. Consequently, the simulator
is assumed stationary. The optimization must be carried out in a limited time window since it
is included in a decision-making process in the energy market. Consequently, this application
will be treated using batched-BO algorithms, and the approach will be compared to the initial
offline strategy. Then, we oppose the offline strategy, consisting of a GP model coupled to an
Evolutionary Algorithm (EA), to the online strategy provided by BO and more precisely to the
qEGO algorithm.

Evolutionary algorithm with GP model

The short-term optimization result is replaced by a GP model, trained over a data set previously
generated. As for the mid-term optimization, it is carried by an EA operating on the surrogate
model that approximates the short-term management. An EA consists in evolving a population
of candidate solutions through generations of individuals trying to perpetuate the good genes
(i.e. design variables) that produce good values from the objective function’s point of view.
Classical operations involved in an EA are the selection, reproduction, and replacement [32].
The three steps are used to evolve the populations through successive generations of individu-
als. For a given population, the selection operator chooses pairs of individuals, called parents,
to be used in the reproduction step. The newly produced individuals are called offspring and
are the result of the crossover and mutation operators. The crossover selects genes from both
parents to produce the offspring, while the mutation alters the offspring with a given probabil-
ity after the crossover. The new individuals are evaluated with the fitness function, which is
actually the surrogate model in our situation. Finally, the replacement operator is used to de-
cide whether the newly generated individuals replace the parents or not. The algorithm loops
over these previous steps until the stopping criterion is met, as described in Algorithm 3.

Algorithm 3 Evolutionary Algorithm
Input

f : objective function
Ω: design space
psize: population size

1: P = sampling(f,Ω, psize)

2: while Budget available do
3: Ppar = selection(P)
4: Poff = reproduction(Ppar) ▷ crossover and mutation
5: Poff = evaluation(f, Poff)

6: P = replacement(P ,Poff)

7: end while

8: return best_individual(P)

EAs are very popular in solving black-box optimization problems [104–106], however, they
usually require a large number of objective function evaluations. This motivates the introduc-
tion of the surrogate model to replace the time-consuming evaluation of the simulator.

48

Observations on Real-World Problems

Batch-parallel EGO

The EGO and qEGO are proposed to challenge the previously described approach. Both algo-
rithms are introduced in Section 1.3, and the qEGO pseudo-code is given in Algorithm 2. The
latter offers the possibility to evaluate the q candidates coming from the acquisition process in
parallel. Since only the evaluation of the objective function is executed in parallel, it is often re-
ferred to as a batch-parallel algorithm, and q is called the batch size. Setting q to 1 is equivalent
to running the standard EGO algorithm.

2.2.3 Experimental Results

Experimental protocol

The total computational budget is set to 48 simulations. The offline model is learned over a set
of initial points generated through Latin Hypercube Sampling (LHS), supplemented with the
8 corner points for a total of 48 initial design samples. The final obtained point also needs to
be evaluated by the simulator, making a total of 49 simulations. As for the EGO algorithm, the
first model is set up based on an initial data set composed of 15 points generated using LHS.
The remaining budget is used to evaluate points proposed by the qEGO algorithm. The con-
sidered batch sizes are q ∈ {1, 2, 4, 8}, which means that the algorithm performs respectively
ncycles = 32, 16, 8, or 4 optimization cycles for a total of 32 new points. The total number of
simulations is slightly less to compensate for the surrogate update during the search. However,
assuming a smaller budget, the algorithm operates in an iterative fashion and could be stopped
at any cycle, providing the actual best-observed point.

Implementation of the algorithms

Consistently with the initial work, the offline model is set up using the SUMO toolbox [107],
the kernel is Gaussian, and a linear trend function is chosen to account for the linear part
of the total profit. Then, the EA from the Matlab Global Optimization toolbox [108] is
initialized with a randomly generated population. The hyper-parameters of the method are
chosen according to the recommendations of the toolbox. The selection operator is stochastic
uniform, attributing a higher probability of being selected to individuals with good properties
(i.e high objective values). The crossover operator is a scatter function that generates a ran-
dom binary vector that indicates from which parent the gene is selected. As for the mutation
operator, it adds a small perturbation of each design variable of the individual. The perturba-
tion is computed according to a centered Gaussian distribution with a standard deviation set to
σk = σk−1(1− k

N
), where k is the current generation, N the maximum number of generations,

and σ0 = 1. Its probability of appearance is 0.01. Each generation is composed of 50 individuals
and the number of generations is set to 100× d where d = 3 is the dimension.

49

Chapter 2

The online approach is the q-points EGO from [16], using the CL heuristic described in
Section 1.3.2. The surrogate model is also a Kriging model, with a Matern 5

2
covariance ker-

nel and a linear trend. The implementation relies on the DiceOptim and DiceKriging R
packages [48].

Results and observations

The results are presented in Figure 2.7 which displays the expected profit of the operator as a
function of the number of evaluations. For all the batch sizes, the average outcome (µ) is plotted
in solid lines and the standard deviation σ computed over the 10 repetitions is displayed in
dotted lines of the same color. The reference result from the offline optimization is represented
by the constant orange line. First, we can see that the qEGO algorithm consistently performs
better than the offlinemethod. In a few evaluations, the BO algorithm achieves higher expected
profit.

However, noticeable differences are observed between the different batch sizes. Indeed,
increasing the batch size usually results in a lower profit for a given number of simulations. It
is understandable as the large batches of points are chosen with limited information compared
to small batches. Indeed, when q = 1, each time the algorithm requires a new candidate, it is
selected according to a model fitted with all the previous information. However when q > 1,
each additional candidate is selected using a model partially fitted on a data set including the
lies from the CL heuristic. This results in sub-optimal choices for the next candidates and we
can observe Figure 2.7 a plateau corresponding to a cycle. For example, evaluations 9 to 16
correspond to the second cycle when q = 8. As they are selected sequentially, it indicates that
almost no improvement is done after the first sample of the batch.

Figure 2.8 displays a resized window of Figure 2.7 where we can observe more precisely the
plateaus. We clearly see that the gain from new candidates is higher when it is selected at the
beginning of a cycle. The effectiveness of the batch of candidates decreases when the batch size
increases.

Insights from the observations

We demonstrated the superiority of the online qEGO algorithm compared to the offline coupling
of an EA and a GP model on this maximization problem. However, we observed a low batch
effectiveness of the qEGO algorithm. It is characterized by a loss of performance regarding the
final outcome when the batch size increases, for a fixed number of simulations. This observa-
tion needs to be clarified with experiments accounting for the global optimization time. Indeed,
the time should be taken into account to compare the algorithms since increasing the number
of processing units, therefore of the batch size, hopefully results in a larger number of simula-
tions in a given time. The acquisition of the batch of points draws its utility from the parallel
simulations of the obtained candidates, thus a time saving. Accounting only for the number of
simulations as it is usually the case withdraws the gain from parallel computing.

50

Observations on Real-World Problems

Figure 2.7: Average expected profit (µ, in e) in a function of the number of simulations for
batch sizes q ∈ {1, 2, 4, 8}. The orange curve represents the average expected profit from the
offline approach. Dotted lines indicate the standard deviation (σ) for each batch size.

Figure 2.8: Zooming on the average expected profits (in e) in a function of the number of
simulations for batch sizes q ∈ {1, 2, 4, 8}. Dotted lines indicate the standard deviation (σ) for
each batch size.

51

Chapter 2

2.3 qEGO versus Surrogate-Assisted EA

Properly calibrated, mathematical models have the ability to simulate the transmission within
a population and estimate the impact of control interventions on disease propagation [109]. In
particular, the AuTuMN model, used in this work, is an ordinary differential equation-based
system modeling the impact and cost of tuberculosis control programs [110]. In this prob-
lem, we are searching for the best strategy to minimize the impact of a disease. The time cost
of the simulator is smaller than for the precedent applications, allowing a larger number of
simulations, even in restricted time. Surrogate-Assisted Evolutionary Algorithm (SAEA) are
known to scale efficiently with the number of computing units, consequently we confront this
population-based algorithm to the qEGO algorithm on this minimization problem.

2.3.1 Tuberculosis Transmission Control (TBTC)

Tuberculosis is an airborne disease that has been threatening mankind for thousands of years
and still affects 10 million individuals each year, killing around 1.7 million of them [111]. Main
global health agencies and funders increasingly rely on mathematical modeling to design better
tuberculosis control policies. Optimization of resource allocation is increasingly popular in the
context of global health. The AuTuMN model [110] is used to create a simulator that estimates
the impact of a preventive treatment allocated across different age groups. The objective is then
to find the best allocation strategy to limit the prevalence of the disease. The prevalence reports
the number of infected people over 100 000 at a given time.

The simulator

The simulator is a black-box computing program built with AuTuMN that computes the ex-
pected prevalence of the tuberculosis disease after a period of time, given the initial conditions
of a population and a specific control program. The prevalence is used to measure the effec-
tiveness of the control program. Given a limited number of treatments available each year,
the treatments are distributed among d age groups. The number of age groups constitutes the
number of design variables x = (x1, . . . , xd), which are linked by the relation:

∑d
i=1 xi = n,

where n is the number of available treatments. Consequently, the design variables are integers.
However, they are implemented as real numbers in the optimization process. The effectiveness
of this strategy is measured by the prevalence returned by the simulator.

The objective function can be stated as follows:

min
x∈Nd

f(x), (2.6)

s.t

d∑
i=1

xi = n, (2.7)

52

Observations on Real-World Problems

Presentation of the test-case

For this application, we consider the Philippines, a high tuberculosis burden country with a
disease prevalence of over 1% measured in 2016. The objective is to determine the allocation
of preventive treatments that would minimize the estimated prevalence in 2035. Six age cate-
gories are considered and the optimization variables represent the number of treatments to be
allocated to each of these sub-groups, considering a total number of preventive treatments of
n = 600 000 per year starting from 2020.

2.3.2 Competing Approaches

Considering the TBTC test case, one evaluation of the objective function lasts up to 20 seconds.
In this situation, the simulation time is onlymoderately expensive. Indeed, it is costly enough to
discard evolutionary approaches such as EAs, yet BOmight not be suitable either because of the
surrogate model time cost. Indeed, it is expected that the data set becomes rapidly substantial
because of the 20-second simulation, and the use of parallel computing. In this context, we
propose two approaches to tackle this problem: the qEGO algorithmwill be used and confronted
with a Surrogate-Assisted Evolutionary Algorithm (SAEA) algorithm. SAEA is a SAO algorithm
(see Figure 1.4) using an EA to guide the optimization, and a surrogate model to either evaluate
the objective function or to decide which offspring are to be exactly simulated.

In [112], the authors proposed a Bayesian neural network-assisted EA that has been applied
to another TBTC problem. However, this work relies on either the surrogate prediction, or the
surrogate uncertainty, but not both. Inspired by EGO, the present work appraises the introduc-
tion of the EI criterion into the EC so that both the prediction and uncertainty are used jointly
to select the new batch of points. An extensive comparison of the different ECs is conducted
in [19]. In this work, we focus more on the differences between BO algorithms (more exactly
qEGO) and SAEAs.

Dealing with the linear constraint in qEGO

The qEGO algorithm is used with the KB heuristic, and referred to as KB-qEGO in the following.
To take into account the constraint of Equation 2.7, the AP will be managed by an EA dealing
with the constraint directly into the reproduction operator so that all candidates are admissible.
The generic EA is described in Algorithm 3 and only the reproduction step needs adjustment to
take into account the linear constraint. The algorithm operates as follows: first, the parents are
randomly selected without replacement in the population; then the reproduction is carried on
by randomly selecting each attribute from one of the parents; and finally, the result is re-scaled
to fulfill the constraint. Two offspring are produced for each pair of parents, and they replace
these latter if they improve the objective.

53

Chapter 2

Bayesian Neural-Network Assisted EA

In SAEA [113], the model is often an artificial neural network [114] [115] [116]. The used
algorithm, further described in [20], proposes to use the EI (see Equation 1.23) as an EC to
assist the optimization. Doing so, the optimization can benefit from recommendations taking
into account the standard deviation of the prediction. However, unlike Kriging, neural networks
are easier to train but do not provide uncertainty information around their predictions [117].
The development of Bayesian neural networks based on Monte Carlo dropout seems to provide
a suitable alternative to retain the best of both Kriging and artificial neural networks [118]
[119]. The Bayesian neural network with Monte Carlo dropout is adopted as surrogate model
to compute the EI into the EC.

Monte Carlo dropout consists of generating nsubnet sub-networks by dropping out neurons
from the fully connected network. The final prediction and standard deviation are derived from
the standard mean and variance estimators, recalled in Appendix A.1.1. The surrogate model is
fitted with all the available data of simulated individuals. For each new cycle, which ends with
the evaluation of the new batch of points, the surrogate model is updated using the weights
from the model built during the previous cycle. Thanks to the incremental fitting, the time
needed to fit the network is greatly reduced.

In this SAEA, the number of produced offspringnoff is larger than the batch size q so that the
offspring are split into two groups. The first one, composed of q points, will be exactly evaluated
while the second composed of the remaining points will be only predicted. The surrogate model
is then used as an evaluator and as a filter. The selection is done according to the EI value so
that the most promising candidates are exactly evaluated (i.e. surrogate as a filter) and the other
ones, a priori less critical are only predicted (i.e. surrogate as an evaluator).

Algorithm 4 summarizes the EC steps of the Bayesian neural network-assisted EA, which
will be denoted as BNN-GA in the following. Given the current population P , and a model
M fitted on the whole data set D, a population of offspring is created based on the selected
parents as state lines 1 and 2. Then, in line 3, the offspring are evaluated by the EI criterion.
The ones with higher EI are used to form a sub-population of simulated (evaluated with the
real simulator) individuals, while the remaining form another sub-population with predicted
individuals. Line 4 refers to the new batch of points to be simulated byXnew, consistently with
Algorithm 1. This batch is evaluated and added to the data set at respectively lines 6 and 7.
As for the second population of predicted individuals, it is evaluated by the surrogate model
prediction and designated by Ppred at line 9. Both populations take part in the replacement step
at line 10 to update the current population. However, only the simulated one is saved into the
data set as shown in line 7.

2.3.3 Experimental Results

Experimental protocol

As stated in Section 2.2, having a budget defined by the number of simulations does not enable
us to assess the suitability of a parallel approach since the number of cycles depends on the

54

Observations on Real-World Problems

Algorithm 4 Evolution Control in Bayesian Neural Network assisted Evolutionary Algorithm
Input

P : current population
M: surrogate model
D = (X,y): current data set
q: batch size

1: Ppar = selection(P)
2: Poff = reproduction(Ppar)

3: α = EI(Poff ,M,min(y))

4: Xnew = sort(Poff , α)[: q] ▷ select q points according to EI
5: Ppred = Poff\Xnew

6: ynew = evaluate(Xnew, f) ▷ q parallel simulations
7: D ← D ∪ {Xnew,ynew}
8: Psim = {Xnew,ynew} ▷ Simulated population
9: Ppred = evaluate(Ppred,M)} ▷ Predicted population
10: P = replacement(Psim,Ppred)

batch size. One could fix the budget as a number of cycles so that the total number of simu-
lations is nsim = q × ncyc. However, this does not account for the time required to set up the
surrogate model, which increases fast with the data set size in PBO algorithms. Another choice,
adopted here, is to rely on a fixed time budget. Actually, time is often the limiting factor of the
studies, and this appears as a relevant budget definition in the parallel computing setting. Both
algorithms are then evaluated based on their capability to find good objective values in a given
time, and their ability to use the computing resources.

The search starts with the generation of a random initial sample (respecting the constraint)
composed of 128 points, and a budget of 30minutes is granted to each algorithm. The considered
batch sizes are q ∈ {1, 8, 16, 32} and the optimization runs are repeated 50 times for each. There
are 50 initial sets, so the two algorithms start with the same data for the 50 repetitions on 4
different batch sizes. Experiments are run on a cluster composed of 8 compute nodes, involving
two 16-core AMD EPYC 7301 CPUs. One evaluation of the simulator lasts 6 to 20 seconds on a
single core.

Implementation of the algorithms

The KB-qEGO algorithm is implemented using the R packages DiceKriging and
DiceOptim from Roustant et al. [48]. The Kriging model is built with a linear trend, and
a Matern5

2
covariance kernel as advised in [48]. A small perturbation (i.e. a jitter) is added to

the metamodel to avoid ill-conditioning of the Krigingmatrix. It is automatically estimated dur-
ing the fitting of the model. The EI maximization is performed with an EA to manage the linear
constraint as explained previously. The population size is set to npop = 150 and the number of
generations is limited to ngen = 15.

55

Chapter 2

The Pagmo library [120] library is used to implement the Bayesian neural network-assisted
EA. The neural network hyper-parameters are fixed to 2 hidden layers, 12 neurons per layer,
ReLU activation function, a learning rate of 0.3, and a probability of dropping the neuron of
pdrop = 0.1. The EA is configured as follows: the population size is npop = 128, and the
number of offspring depends on the batch size q so that q = 0.25×noff . Consequently, noff ∈
{4, 32, 64, 128}. A simulated binary crossover with probability 0.9 and distribution index 10
is used along with a polynomial mutation with probability 0.1 and distribution index 50. The
reproduction operator also takes into account the constraint of Equation 2.7 by re-scaling the
offspring. The replacement operator is a tournament of size 2. In addition to these parameters,
the surrogate model fitting uses an early stopping strategy with a tolerance of 10−4 during 56
iterations. The stochastic gradient descent is used with a Nesterov momentum of 0.1 and the
training set is normalized to lie into [0, 1]d.

Results and observations

The results of the experiments are reported in Figure 2.9. It shows the average prevalence as a
function of the number of simulations. The budget is defined as a fixed time, consequently, the
number of simulations differs with the batch sizes. Ideally, with perfect scalability, increasing
the batch size proportionally increases the number of simulations. The curves are truncated to
theminimum number of evaluations so that each point represents the average over 50 runs. The
last point also gives the minimum number of simulations performed by the algorithms for the
given budget of 30 minutes. The rhombus-shaped point indicates the common best prevalence
from the initial sample. The first overall observation is that KB-qEGO is very sample-efficient.
Indeed, after only a few cycles the prevalence is reduced from about 803 to 797. On the contrary,
the Bayesian neural network-assisted EA needs a lot more evaluations to achieve equivalent
results.

Figure 2.9: Average prevalence according to the number of simulations. The mean is computed
over 50 repetitions. The rhombus-shaped point represents the common initial best value.

56

Observations on Real-World Problems

Regarding the effectiveness of the batch size, we can see that KB-qEGO faces difficulties to
profit from the parallel setup despite the sample efficiency pointed out above. When looking at
Figure 2.10, which focuses on the KB-qEGO results, we only observe slightly better outcomes
when increasing the batch size from q = 1 to q = 8, and no improvement is visible between q =
1 and q = 16 despite a larger number of simulations. Increasing the batch size to q = 32 even
deteriorates the final outcome of the KB-qEGO method. Actually, the same plateaus observed
in Figure 2.7 are observed in Figure 2.10 corresponding to the different cycles. For a given
number of simulations, it is always preferable to keep a small batch size, as already observed in
Section 2.2 with the optimal scheduling problem. As for the SAEA, not all the points are plotted
since there is no logical order in the generation of the offspring as there is in KB-qEGO. BNN-
GAmanages to take advantage of the larger batch size. Indeed, the performance of BNN-GA for
a given number of simulations is equivalent for the different batch sizes. Therefore, increasing
the batch size allows the algorithms to perform more simulations and achieve better outcomes.

Figure 2.10: Focus on the average prevalence according to the number of simulations for KB-
qEGO. The mean is computed over 50 repetitions. The rhombus-shaped point represents the
common initial best value.

In addition, doubling the number of processing units and the batch size does not result in
a significant increase in terms of simulations for the KB-qEGO algorithm. Going from q = 1
to q = 8 significantly increases the number of simulations, however the latter does not persist
from q = 8 to q = 16 and q = 32. The surrogate model fitting and AP take an important
part of the time budget, especially when the batch size is high. Regarding BNN-GA, we can
see in Figure 2.9 that the number of simulations is almost proportional to the batch size, which
indicates a much better scalability. More precisely, Table 2.6 reports the minimum number of
simulations performed over the 50 repetitions by each algorithm for each batch size. It also
displays the gain related to the increase of the batch size, and the scaling factor. We can see, as
already observed in Figure 2.9, that the gain in terms of simulations does not scale well with q
for KB-qEGO. However, the scaling factor decreases much slower for BNN-GA. Having q = 32
available computing cores implies being able to execute 17.6 times more simulations. This is
quite good considering the surrogate model fitting part is executed sequentially, which becomes

57

Chapter 2

more and more time-consuming as the data set gets bigger. This difference is most likely due
to the surrogate model fitting, which is done incrementally for the Bayesian neural network
allowing to save considerable time.

q 1 8 16 32

KB-qEGO
nq 44 208 240 256

gain (nq/n1) 1 4.7 5.5 5.8
scaling factor (nq/(n1.q)) 1 0.59 0.34 0.18

BNN-GA
nq 80 400 752 1408

gain (nq/n1) 1 5 9.4 17.6
scaling factor (nq/(n1.q)) 1 0.63 0.59 0.55

Table 2.6: Minimum number of simulations over the 50 repetitions of KB-qEGO and BNN-GA
according to the batch size. With perfect scalability, nq/n1 = q, and nq/(n1.q) = 1.

Regarding the results from an epidemiological point of view, the prevalence reduction from
803 to less than 797, as suggested by the results, represents a significant improvement in the
epidemiological situation of the Philippines. Indeed, given that the population of this country is
over 100 million, the reduction induced by optimization is equivalent to more than 6,000 cases
of tuberculosis prevented in 2035.

Insights from the observations

The observed results for this optimization problem refine the analysis of Section 2.2 by compar-
ing the standard KB-qEGO algorithm to an efficient Bayesian neural network-assisted EA. The
KB-qEGO algorithm struggles to exploit the full capacity of the available computing resources,
mainly when the batch size q passes 8. The present assertion is supported by the low effective-
ness of the batch size (indicated by the plateaus) and the bad scalability regarding the gain in
terms of simulations with larger batch sizes.

2.4 Chapter’s Conclusions

The conclusions of the precedent studies point out the low parallel potential of the KB-qEGO
algorithm, which can be generalized to many BO algorithms. In some situations, character-
ized by a moderately time-consuming objective function, the data set can become substantial,
especially using parallel computing. Consequently, it makes the fitting cost increasingly time-
consuming and highly superior to the simulation time. In addition, the AP (excluding model
fitting) can also become time-consuming when the batch size is large. The combination of the
two aspects leads most BO algorithms to scale poorly with the batch size.

A lot of approaches consider learning and acquisition time negligible compared to the sim-
ulation time. However, for many applications, the simulation time might be quite small but
still considered high if the computational budget is defined as a restricted time. A pertinent

58

Observations on Real-World Problems

approach would be to compare the simulation time and the acquisition time (model fitting time
included) to choose the adapted family of algorithms. Considering this, the previously stated
limitations become even more significant.

Making BO parallel raises new challenges relative to scaling to large-scale parallel compu-
tation. Even though we know how to choose a few (≤ 8) candidates efficiently [16, 17], it is still
a challenge to propose larger batches of candidates to exactly evaluate [12, 15]. Recent parallel
computers involve thousands of computing cores and even general-purpose products involve
16 cores per CPU that can be used in many applications.

The need for a better scalability takes us to reconsider the sequential AP of qEGO by in-
serting parallelism inside the AP. The low batch effectiveness also reveals a defect in the diver-
sification/intensification trade-off of the batch of candidates. The main leads for improvement
are the reduction of the sequential part of the algorithm to better exploit the computing re-
sources, and the use of complementary criteria in the AP. We investigate space decomposition
and multi-infill approaches in the following chapters. We rely on the scalability and batch

effectiveness as performance indicators for the considered algorithms.

59

Chapter 2

60

Part II

Contribution to the Design and Analysis

of Parallel Hybrid BOAs

61

Chapter 3

BSP-EGO: a New Decomposition-based
EGO

3.1 Improving the Scalability and the Batch Effectiveness 66
3.1.1 Multi-Criteria Algorithms . 66
3.1.2 Space Partitioning in Optimization 69
3.1.3 A Taxonomy of Bayesian Optimization Algorithms 71

3.2 Binary Space Partitioning EGO (BSP-EGO) 72
3.2.1 A New Acquisition Strategy for Large Batch Sizes 72
3.2.2 Global Model-based BSP-EGO 74
3.2.3 Local Model-based BSP-EGO Variant 75
3.2.4 Software Implementation and Packaging 76

3.3 Benchmarking BSP-EGO against state-of-the-art BOAs 78
3.3.1 Objective and Experimental Framework 78
3.3.2 Experimental Protocol . 79
3.3.3 Results and Analysis . 81
3.3.4 Discussion on Exploration and Exploitation 87
3.3.5 Conclusions and Recommendations 90

3.4 Real-world Test Case: Optimal Scheduling of UPHES 92
3.4.1 Context and Motivation . 92
3.4.2 Underground Pumped Hydro-Energy Storage 93
3.4.3 Experimental Setup . 95
3.4.4 Results and Discussion . 96

3.5 Chapter’s Conclusions . 101

The contributions of this chapter concern the development of a new parallel algorithm and
its performance investigation regarding recent state-of-the-art algorithms on both benchmark

63

Chapter 3

and real-world problems. This algorithm includes an Acquisition Process (AP) fully paralleliz-
ing the acquisition of new candidates by partitioning the search space. Indeed, a basic approach
to improve the scalability is to split the computational workload between the worker units. This
technique is also very common in Global Optimization (GO) to better control the trade-off be-
tween local and global search. For example, the DIRECT algorithm [121] has been widely used
and derived in various forms [122]. Space decomposition-based algorithms explore methodi-
cally the whole search space while being easily parallelizable since the jobs in each partition
may be performed concurrently without interfering. Consequently, they add a level of paral-
lelism to BO authorizing us to consider higher evaluation budgets in equivalent time. Actually,
they supply another way to balance exploration and exploitation by determining which region
is better being explored. Based on that idea of spatial decomposition, we propose Binary Space
Partitioning Efficient Global Optimization (BSP-EGO) [27, 123] and Local model-based BSP-
EGO (ℓBSP-EGO) [24] using binary trees to manage the sub-spaces. The binary decomposition
is investigated with two variants of surrogates: global ones learned over the whole data set, and
local models learned over only a subset of the data.

We conduct an extensive comparison between the two-variant proposed approach and sev-
eral related ones. The contestant algorithms are chosen for their good performances and the fact
that they adopt different acquisition strategies so we can analyze their impact on the optimiza-
tion. The selected algorithms involve the simultaneous use of several Acquisition Functions
(AFs), allowing to reduce the acquisition time cost but mostly increasing the batch effectiveness.
In addition, multiple criteria are used either cooperatively or competitively. The cooperative
way selects candidates finding trade-offs between the considered criteria, while the compet-
itive way involves different criteria without (explicit) interaction. We propose a competitive
AF-based algorithm inspired by the qEGO algorithm that illustrates the complementarity of
the AFs. Trust region approaches that reduce the search space iteratively are also analyzed,
as well as recursive space partitioning techniques. The investigation of the algorithms is per-
formed on classical benchmark functions so that we can conduct exhaustive experimentation
in a reasonable time. The experimental setup considers 5 benchmark functions executable in
dimensions 6 and 12. Then, the best-performing algorithms are further investigated on an-
other scheduling problem from electrical engineering that has 12 design variables. The results
confirm that resorting to multiple AFs is beneficial for the optimization, and that splitting the
search space is also very effective. As expected, higher dimensional problems are more time
demanding and emphasize the lesser efficiency of some methods compared to multi-infill and
partitioning ones.

This chapter starts with the description of the investigated strategies in Section 3.1 and the
developed BSP framework in Section 3.2. Then, in Section 3.3 the benchmark analysis is con-
ducted to assess for the efficiency of the different approaches. Finally, the best-performing algo-
rithms are further investigated on the real-world Underground Pumped Hydro-Energy Storage
(UPHES) management problem.

The work presented in this chapter relates to the following publications:

• In academic journals:

– Gobert, M., Gmys, J., Toubeau, J.-F., Melab, N., Tuyttens, D. & Vallée, F. Batch Ac-
quisition for Parallel Bayesian Optimization; Application to Hydro-Energy Storage

64

BSP-EGO: a New Decomposition-based EGO

Systems Scheduling. Algorithms 15. issn: 1999-4893. https://www.mdpi.com/
1999-4893/15/12/446 (2022)

• In conference proceedings, with peer reviewing and presentation:

– Gobert, M., Gmys, J., Melab, N. & Tuyttens, D. Adaptive Space Partitioning for Par-
allel Bayesian Optimization. in HPCS 2020 - The 18th International Conference on

High Performance Computing Simulation (Barcelona / Virtual, Spain, 2021). https:
//hal.inria.fr/hal-03121209

– Gobert, M., Gmys, J., Toubeau, J.-F., Melab, N., Tuyttens, D. & Vallée, F. Parallel
Bayesian Optimization for Optimal Scheduling of Underground Pumped Hydro-
Energy Storage Systems. in 2022 IEEE International Parallel and Distributed Process-

ing Symposium Workshops (IPDPSW) (2022), 790–797

• And as abstracts and presentations in conferences:

– Gobert, M., Gmys, J., Melab, N. & Tuyttens, D. Towards Adaptive Space Parti-
tioning for Large-scale Parallel Bayesian Optimization. in OLA’2020 - International

Conference on Optimization and Learning (Cadix, Spain, 2020). https://hal.
archives-ouvertes.fr/hal-02898960

– Gobert, M., Gmys, J., Melab, N. & Tuyttens, D. Space Partitioning with multiple
models for Parallel Bayesian Optimization. in OLA 2021 - Optimization and Learning

Algorithm (Sicilia / Virtual, Italy, 2021). https://hal.archives-ouvertes.
fr/hal-03324642

65

https://www.mdpi.com/1999-4893/15/12/446
https://www.mdpi.com/1999-4893/15/12/446
https://hal.inria.fr/hal-03121209
https://hal.inria.fr/hal-03121209
https://hal.archives-ouvertes.fr/hal-02898960
https://hal.archives-ouvertes.fr/hal-02898960
https://hal.archives-ouvertes.fr/hal-03324642
https://hal.archives-ouvertes.fr/hal-03324642

Chapter 3

3.1 Improving the Scalability and the Batch Effectiveness

As already mentioned in Section 1.3, it might be difficult to choose the best AF for a given
problem since none is consistently better [11]. Actually, it has been noticed that AFs performing
well in small and high-dimensional spaces are not the same. For example, Rehbach et al. claim
in [124] that the predicted value is a better AF than EI in some cases (d > 10). The variance
provided by the GP model is less reliable when the dimension increases, misleading the search.

Many approaches use multiple criteria at the same time in order to maximize the effective-
ness of the batch of candidates. The advantage is that it is easy to massively sample candidates,
and we do not have to choose which AF to use [74]. However, it can result in a waste of budget.
This question will be addressed in this chapter and we identify two ways of using multiple AFs
in PBO. We differentiate APs operating either competitively or cooperatively whose common
objective is to improve the batch effectiveness of the AP.

Actually, resorting tomultiple AFs can also be useful regarding the scalability as it would not
require to update themodel as in qEGO. The decomposition of the design space into smaller sub-
regions is another valuable alternative for improving the optimization process and its scalability
since it allows themanagement of the exploration and exploitation trade-offwhile adding a level
of parallelism to the algorithm. Indeed, in some cases, distinct sub-regions can be considered
so that multiple APs can be conducted independently. The decomposition can also be used to
re-center the design space around good regions so that it compensates for the over-exploration
of classical BOAs [125].

3.1.1 Multi-Criteria Algorithms

Competitive approaches

In order to maximize the promisingness of a batch of candidates, competitive approaches opti-
mize multiple AFs to independently select multiple candidates. Each AF is optimized using the
same surrogate model, saving the partial updates compared to the previously used KB-qEGO
algorithm. Consequently, the different AF optimizations can be conducted in parallel, limiting
the increasing time required for the AP. To represent this class of algorithms, we propose Multi-
Infill Criteria qEGO (MIC-qEGO). This new variant of qEGO is a combination of this latter and
multi-infill approaches such as in De Palma et al. [14]. It has been observed that resorting to
different AFs can impact favorably the objective value, especially when the batch size is high.
Indeed, the relevance of candidates after several partial updates ofM may be discussed.

The process is described in Algorithm 5. First, given a list of AFs, a number of candidates is
attributed to each of them. For a given AF α, ncand[α] gives the number of candidates selected
according to α. A counter is initialized to 0 at line 1 and increments each time the algorithm
adds a candidate toXnew. The algorithm goes through the list of AFs and proceeds to the opti-
mization of the latter if α is allocated a candidate, as indicated in lines 4 and 6 respectively. Each
time a candidate is selected from the AF α, the number of selected candidates is incremented
by 1 as shown in line 9 and the number of remaining candidates relative to α is decremented as

66

BSP-EGO: a New Decomposition-based EGO

displayed in line 7. Afterward, if more candidates are needed, a surrogate update must be done
in order to repeat the previous operations. Nevertheless, this intermediate step must remain
fast to not penalize the overall time of the optimization. The temporary model is fitted with a
smaller budget than the initial model. It is named partial_fit at line 12 and it is realized with the
predicted value of the surrogate model, consistently with the KB heuristic. The loop continues
until the algorithm completes the batch of candidates.

Algorithm 5 Acquisition Process of the Multi-Infill Criteria qEGO (MIC-qEGO) Algorithm
Input

M: Surrogate model
ncrit: number of chosen AF
ncand: vector of size ncrit

ncand[α]: number of candidates for AF α,
∑

ncand = q

1: ct = 0: initialize counter
2: Xnew = {}, ynew = {}
3: while ct < q do

4: for α in AF list do
5: if ncand[α] ̸= 0 then

6: xnew = argmaxD(α(x),M)

7: ncand[α]← ncand[α]− 1

8: Xnew,ynew = Xnew ∪ xnew,ynew ∪ yPV

9: ct← ct+ 1

10: end if

11: end for

12: M← partial_fit(X ∪Xnew,y ∪ ynew)

13: end while

14: returnXnew

Cooperative approaches

With the same idea of resorting to multiple AFs to maximize the promisingness of the batch
issued per cycle, another way to proceed is to consider a trade-off between all chosen can-
didates. To do so, we resort to multi-objective optimization1 algorithms that provide a set of
non-dominated solutions. This set is called the Pareto set. Loosely speaking, this set includes
the best trade-off between all the objectives. Usually, there are no candidates that give the best
possible outcome for every objective, and multiple choices can be made regarding the impor-
tance of the considered objectives. One advantage regarding the execution time is that we can
choose as many candidates as needed with a single surrogate model. However, multi-objective
optimization is generally much more time-consuming.

1Notes on multi-objective optimization are given in Appendix B

67

Chapter 3

TheMulti ACquisition Ensemble (MACE) algorithm [75] uses this principle to create a set of
points resulting from the simultaneousmaximization of EI, minimization of LCB, andmaximiza-
tion of PI. Then, q candidate points are randomly sampled from the Pareto set resulting from
the multi-objective optimization. This set of AFs also appears to give good results in [13]. The
multi-objective optimization of MACE is performed by NSGA-II [126]. Details about NSGA-II
are provided in Appendix B.2. MACE has been experimented on 8 benchmark functions whose
dimension varies between 2 and 10 and 2 real-world problems. The comparison involves several
popular BOAs such as qEGO [17] and Local Penalization EGO with EI [69] and is conducted
for a maximum batch size of 4 simulations per iteration. We then extend the study up to the
acquisition of 32 points per cycle.

Algorithm 6 describes the operation of MACE for a user-defined set of AFs, designated by
α in line 6. After building the surrogate model at line 2 that is needed to evaluate the AFs,
a multi-objective optimization is carried out using NSGA-II. The obtained Pareto set of line 4
represents the best trade-offs between all AFs. A subset of size q is sampled to create the batch
of candidates required for the parallel evaluation of line 6.

Algorithm 6 Multi ACquisition Ensemble (MACE) Algorithm
Input

Ω: Design space
D = (X,y): initial data set
M: surrogate model
q: batch size
α = (α1, . . . , αp): chosen AFs

1: while budget available do
2: M = GP(D)
3: P = NSGA-II(α,M)

4: Pps = Pareto_set(P)
5: Xnew = random_selection(Pps)

6: ynew = f(Xnew)

7: D = D ∪ (Xnew,ynew)

8: end while

9: return miny D

The second considered approach for improving the batch effectiveness and scalability of
BOAs is to split the design space into several smaller spaces in order to split the tasks and
ensure diversity in the AP. The decomposition approach is detailed in the following section.

68

BSP-EGO: a New Decomposition-based EGO

3.1.2 Space Partitioning in Optimization

Divide and conquer approaches

The divide and conquer strategy is quite common in optimization schemes. For example, the re-
cursive decomposition of the design space has been extensively used in optimization algorithms
such as DIRECT [122] and possesses the advantage of being easily parallelizable. Some other
methods use the divide and conquer scheme differently such as Villanueva et al. [127], where
an agent is allocated to a sub-domain and performs a surrogate-based optimization on its own.
Sub-domains are created using k-mean clustering, they also have the possibility to merge or to
be removed. Wang et al. [128] also use clustering techniques to create sub-regions into which
we can zoom. Li et al. [129] proposed a decomposition approach based on principal component
analysis and split until each sub-domain possesses approximately the same sample size to cre-
ate local metamodels. Wang et al. [130] used a partitioning scheme inspired by DIRECT [131]
to lower the computing cost and guide the optimization.

However, few works associate spatial decomposition with organized structures, such as
space partitioning trees, and surrogate-based optimization. The only found reference is the
Treed GP algorithm from Gramacy et al. [50, 51], developed in the context of non-stationary
processes. In this case, local models are used to better approximate the landscape of the non-
stationary objective function. We propose a new algorithm that is able to select large batches of
points to evaluate in parallel in a moderate timing while keeping a balance between exploration
and exploitation. We use a space partitioning managed by a self-organizing binary tree in
order to perform simultaneously different local APs in each sub-domain. The purpose of the
tree is to structure the design space and decompose the global AP into several ones. It also
guides the optimization process using a decision heuristic dealing with where to intensify the
decomposition process, and where to sample less frequently. This type of partitioning does not
reduce the dimension of the problem, each sub-domain remains of dimension d. Dimension
reduction methods like feature extraction or differential grouping are out of the scope of this
thesis since we do not consider any additional property regarding the objective function. The
developed algorithm is exhaustively described in Section 3.2.

Other approaches, more focused on higher dimensional problems, use trust regions. They
represent a sub-space of the design space, where we choose to intensify the search. The primary
idea is to compensate for the over-exploration of classical BO.

Trust Region-based acquisition

Trust region approaches consider a sub-region that characterises the best current outcome, plus
a hyper-volume around it in which to intensify the search. It is especially valuable when the
dimension increases and the models are less accurate, often overestimating the uncertainty,
which results in misleading the sampling. Among them, differences exist in how and when to
trigger the trust regions. For example, in TREGO [132], the algorithm operates at both local
and global levels. If the global optimization fails, the local optimization is performed. Given x∗

k,

69

Chapter 3

the best current point at cycle k, the trust region is defined as:

Ωk = {x ∈ Ω|dminσk ≤ ∥ x− x∗
k∥ ≤ dmaxσk},

where dmin and dmax are two strictly positive constants, and σ is a parameter increasing or
decreasing according to success or not.

The TrUst Region Bayesian Optimization (TuRBO) algorithm [18] also uses a local strat-
egy by performing local optimization in a trust region. It aims at compensating for the over-
exploration resulting from a global acquisition process. The trust region is a hyper-rectangle
centered on the best solution found so far. The edges of the hyper-rectangle are scaled ac-
cording to the length scale from the GP model (see Equation 1.21). The side length for each
dimension of the hyper-rectangle is scaled according to the length scale θi, while maintaining
a total volume of Ld. The trust region evolves at each iteration, either decreasing its volume
when the algorithm fails to improve the target for a certain number of iterations and needs
more exploitation or, conversely, increasing it when more exploration is needed. Li et al. [133]
propose the TRLBO algorithm, inspired from TuRBO, where the models are locally fitted inside
the trust region. This results in a faster AP and faster algorithm.

Algorithm 7 TrUst Region Bayesian Optimization (TuRBO) Algorithm
Input

Ω: Design space
D = (X,y): initial data set
M: surrogate model
q: batch size
T , L: trust region and its length

1: while budget available do
2: M = GP(D)
3: θ = length_scale(M)

4: T = xmin ± Lθ/2 (
∏

θ)
1
d ▷ Total volume of Ld

5: Xnew = argmaxT (qEI(x))
6: ynew = f(Xnew)

7: D = D ∪ (Xnew,ynew)

8: update_length(L)
9: end while

10: return miny D

The considered version of TuRBO for the following benchmark uses a single trust region,
with the EI criterion, but can be generalized to k sub-regions characterized by their own trust
region. Algorithm 7 displays the operation of TuRBO. The main difference with standard BO
is the management of the trust region length, denoted L. It is used to compute the trust region
T of line 4. The size of the trust region along the dimensions is proportional to the associated
length scale from the covariance matrix of the model (line 3), giving a wider space to influential
variables. Then, as indicated in line 5, the maximization of the qEI criterion is performed inside
the trust region. The selected candidates are evaluated and integrated into the data set, and

70

BSP-EGO: a New Decomposition-based EGO

the length of the trust region is updated according to the following rule: after τsucc consecutive
successes, L ← min(2L,Lmax); while after τfail consecutive failures, L ← L/2. If L becomes
too small (i.e. if the algorithm has converged) the trust region is reset to the initial value. This
feature is added to avoid repetitive sampling which could conduct to singular covariance ma-
trices, but also to limit the traps of local optima. The single trust region algorithm is presented
as TuRBO-1 in [18], where it gives good results on various problems (especially those with
dimensions 12 and 14) as well as a good efficiency considering the batch sizes up to ncores = 64.

3.1.3 A Taxonomy of Bayesian Optimization Algorithms

BO

Single-Criterion

Distance-based

Partitioning
BSP-EGO, ℓBSP-EGO

Local penalization

Model ensemble
TS-qEGO, KB-qEGO

Inherently multi-point
qEGO, TuRBO Multi-Criteria

Cooperative
MACE

Competitive
MIC-qEGO

Figure 3.1: A taxonomy of batch-parallel Bayesian Optimization Algorithms

Figure 3.1 represents a taxonomy of existing methods in BO. We first distinguish the single-
criterion approaches, the inherently multi-point criteria (e.g., qEI) and their approximated
forms, and the multi-criteria ones.

In the first set, the acquisition of new candidates requires to either impose a distance be-
tween candidates, or modify the model (or resort to several ones). The distance-based class
includes methods using for instance space partitions, or local penalization, or even niching
strategies (not displayed in Figure 3.1). The developed BSP-EGO and ℓBSP-EGO algorithms are
representative of this latter class. Among methods using model ensembles, we can mention
TS-qEGO, which samples candidates from different draws from the GP model, and KB-qEGO
which resorts to partial updates of the surrogate model to change the landscape of the single-
point AF. The single-criterion category also includes multi-model sampling methods, where
each candidate is provided with the help of a different model.

qEGO and TuRBO are two algorithms representative of the second set but are quite different
since TuRBO acts on trust regions, restricting the search space. The last mentioned set involves
cooperative and competitive approaches. For instance, MACE is said cooperative since its AP
considers simultaneously the different AFs, trying to find the best trade-off between them. On
the other side, MIC-qEGO operates in a more competitive way by optimizing each criterion
independently.

The algorithms are sorted with their main characteristic features. Each class is representa-
tive of a feature that is supposed to improve the BO framework, and that is being investigated

71

Chapter 3

in the following. However, this taxonomy is obviously not exhaustive, and the classes are not
mutually exclusive. For instance, ℓBSP-EGO uses local models, therefore an ensemble of mod-
els, but the main feature is the local domains generated through the partitioning of the design
space. It does not take into account either the global or local aspect of the surrogate models
which could be applied to any algorithm. Trust region algorithms such as TuRBO focus on a
single sub-space while qEGO acts globally, yet they belong to the same class. Likewise, BSP-
EGO and ℓBSP-EGO are mainly built with a partition structure but have two distinct ways of
using the partition.

The developed algorithms, namely BSP-EGO and ℓBSP-EGO, are compared to different al-
gorithms representative of the above classes in Section 3.3.

3.2 Binary Space Partitioning EGO (BSP-EGO)

Parallel versions of EGO-like algorithms often suffer from time-consuming APs or costly meta-
model updates, and a major difficulty lies in balancing the optimization process [20]. Despite a
fast improvement of the outcome at early stages of the optimization, we observe a tendency to
over-exploration [125] and thus a stagnation at later stages [20]. We then propose to partition
the design space into smaller sub-spaces in order to perform simultaneously different local APs
in each sub-domain. The partitioning is managed by a self-organizing binary tree. It allows
the decomposition of the global AP into several ones but also balances the optimization pro-
cess by using a decision heuristic choosing where to intensify the decomposition process, and
where to sample less frequently. However, the algorithm remains able to sample in any sub-
region, continuing to explore according to a decision criterion to be defined. The strength of
this method lies in its adaptability. Actually, it is able to provide as many candidates as needed,
remains fast to execute, and is parallelizable (sub-APs are independent of each other). Finally,
the partitioning tree is automatically adapted for the next cycle.

3.2.1 A New Acquisition Strategy for Large Batch Sizes

The particularity of this new AP is that it is decomposed into several sub-processes responsible
for providing one candidate each. Let us suppose that the whole domain is Ω1. The partitions
are managed by a binary tree, where the root node (at tree level 1) contains Ω1. The next level
(level 2) has two nodes (node 2 and node 3) that contain Ω2 and Ω3 such that Ω1 = Ω2 ∪ Ω3.
For each node k, the property is respected such that Ωk = Ω2k ∪ Ω2k+1 and Ω2k ∩ Ω2k+1 = ∅.
Therefore, for each level of the tree, the union preserves the entire domain, without overlaps.

An example is presented in Figure 3.2, where the domain is split into four sub-domains.
Let us call Fn the family of sub-domain indices at cycle n, such that

⋃
k∈Fn

, Ωk = Ω
and ∀i, j ∈ Fn, Ωi ∩ Ωj = ∅. Following the example from Figure 3.2, Fn = {2, 6, 7} and
Fn = {3, 4, 5} are acceptable sets. Thanks to this kind of decomposition, it is easy to perform
one sub-AP in each sub-domain, while keeping knowledge of the entire domain. As soon as
all the candidates are selected, they are collected and sorted according to the chosen figure of
merit. A subset of them, corresponding to the batch size q will be exactly evaluated while the
rest is discarded.

72

BSP-EGO: a New Decomposition-based EGO

1
Ω1

2
Ω2

4
Ω4

5
Ω5

3
Ω3

6
Ω6

7
Ω7

Figure 3.2: Partitioning of Ω through the binary tree

This strategy intends to reinforce the global aspect of optimization by continuing the sam-
pling in a priori less interesting areas ofΩ (from the AF point of view). Nevertheless, in order to
avoid sampling with clearly no gain, and thus waste the computational budget, the batch size
is smaller than the total number of candidates. Furthermore, to balance the exploration and ex-
ploitation processes, the tree evolves by splitting further the most promising nodes to intensify
the search into the best sub-domain - always in terms of the chosen AF. Even though the sub-
domains are distinct, it may happen that several candidates are very close to a shared boundary,
and thus to each other. In that scenario, the candidates receive a small random perturbation so
that the area is still sampled twice but not redundantly.

The number of candidates provided by the AP before the selection phase is chosen as a
multiple of the batch size to balance the computational load between workers. Indeed, the
batch size is fixed equal to the number of available cores (1 evaluation per core), thus each
computing unit performs the same number of sub-APs. As stated in the previous paragraph,
one candidate is chosen in each sub-domain, thus we have as many candidates as leaves in the
tree. Let us call nleaves that number, and still q the batch size. Consequently, nleaves = r ∗ q
where r ∈ N\{0}.

The tree is updated once per cycle to take into account the new information. The supposed
best sub-domain, according to the AF, is decomposed further to intensify the search in that area.
Nevertheless, as we decide to keep nleaves constant, this splitting step is only performed if two
domains are merged. In terms of the BSP-tree, the leaf with the highest figure of merit is split,
and the parent node with the lowest one loses its leaves to become a leaf itself. This process is
illustrated in Figure 3.3.

This example directly follows the one from Figure 3.2, one candidate is chosen inside each
leaf (i.e., the ones indexed by F0 = {4, 5, 6, 7}). Each node is attributed the best figure of merit
of its children, this number is denoted in Figure 3.3 by AFnode. In Figure 3.3a, Ω4 possesses the
best value among the nodes indexed by F0. Consequently, the node will be split if the merge
operation can be performed. Regarding the parents of the leaves, Ω3 possesses the worst value,
meaning that the area does not need as much attention and thus it will be merged. Eventually,
we end up with F1 = {3, 5, 8, 9}. In case of a non-allowed operation, the tree is kept identical
for the next cycle. For instance, regarding Figure 3.3b, it may happen that for the next cycle Ω3

is still the worst sub-domain and can’t be merged with Ω2. However, this kind of exception is
relatively rare when dealing with large trees.

73

Chapter 3

Ω1

root

Ω2

AF2 = best(AF4, AF5)

Ω4

AF4

Ω5

AF5

Ω3

AF3 = best(AF6, AF7)

Ω6

AF6

Ω7

AF7

(a) Step 1: selection of node to be split or merged

Ω1

Ω2

Ω4

Ω8 Ω9

Ω5

Ω3

(b) Step 2: operation allowed, the decomposition
evolves

Figure 3.3: Illustration of one tree update

Without loss of generality, let us setΩ1 = [0, 1]d. Wemust decide how to split the hypercube.
For practical reasons, the choice is made for now to keep hyper-rectangular domains, so that
a splitting operation is characterized by the axis/dimension to be split, and the range at which
the section is done. For example, if Ω1 = [0, 1]2 is split according to the first axis in the middle
of the segment, it comes to Ω2 = [0, 0.5] × [0, 1] and Ω3 = [0.5, 1] × [0, 1]. The heuristic for
this study is arbitrary splitting: based on the idea that it is preferable to have dimensions of the
same order of magnitude, axes are split one after another in a cyclic way. The chosen axis is
determined by the level of depth of the tree node, i.e., the axis along which a sub-domain is split
is given by: dsplit = depth(node) mod(d). The initial tree is formed using this heuristic until it
reaches the desired depth.

3.2.2 Global Model-based BSP-EGO

Named after the EGO algorithm, this method is called Binary Space Partitioning Efficient Global
Optimization (BSP-EGO). It uses a global model learned over the whole data set, and the same
surrogate model is used in each sub-region for the local AP.

BSP-EGO is outlined in Algorithm 8. The tree T is initialized at a predefined depth, deduced
from the user-defined hyper-parameter nleaves. At the beginning of each cycle, starting at line 3,
the surrogate model is created before the AP begins. The global AP is composed of several sub-
APs performed independently in each leaf of the tree, as indicated in lines 6 and 7. In each leaf of
the tree, marked by F , a candidate is proposed by maximization of the chosen AF. As each leaf
is independent (non-overlapping), the local APs can be performed in parallel. The candidates
are gathered and the q most promising ones, according to the chosen AF, are selected (line 9).
Then, the tree is updated according to the previously described rule, and the leaves are indexed
into F . As for other BO algorithms, the cycle ends with the parallel evaluation of the selected
candidates and their insertion into the data set as shown lines 11 and 12.

The present method still relies on a model learned over the whole data set and we have seen
that it becomes quickly very time-consuming, especially in the context of time-constrained
application. In addition, the evaluation of the tree described in Figure 3.3b requires pruning
the tree by cutting the leaves associated with the worst parent. However, this also results in

74

BSP-EGO: a New Decomposition-based EGO

Algorithm 8 Binary Space Partitioning Efficient Global Optimization (BSP-EGO) Algorithm
Input

f : objective function
Ω: design space
D = (X,y): initial data
dtree: depth of the tree

1: T ← build_tree(dtree)
2: F ← get_leaves(T)
3: while budget available do
4: M← GP(D)
5: B ← ∅
6: for leaf in F do ▷ parallelizable loop
7: B ← B ∪ argmaxΩleaf

(M, α(x))

8: end for

9: Xnew ← selection(B)
10: (T ,F)← update_tree(T ,B,F)
11: ynew = f(Xnew)

12: D ← D ∪ {Xnew,ynew}
13: end while

14: return miny D

limiting the maximum depth of the tree. Depending on the evolution of the tree and its depth,
it can be quite limiting in terms of intensification. For the latter reasons, we develop another
version of BSP-EGO that involves local models, and a deeper exploration of the tree.

3.2.3 Local Model-based BSP-EGO Variant

A second approach, named Local-model Binary Space Partitioning Efficient Global Optimiza-
tion (ℓBSP-EGO), is developed to select a batch of candidates using local models. The local
surrogate models are fitted on a subset of points selected from D. As a result, ℓBSP-EGO offers
a way to control the time allocated to the metamodel fitting by operating on a subset of data,
in a local way. Indeed, the model fitting and the AP can also be computationally expensive.
Adjusting the size of the subset helps to better fit the time constraint. It speeds up the model
fitting step, and the local models can be fit in parallel, prior to the local APs.

The local data set is chosen according to the distance from the center of the sub-region. The
nlearn points the closest are chosen, even if they lie outside of the considered sub-region. This
basic clustering technique seems to be a reasonable choice since the GP predictor is mainly
influenced by the value of the closest points. Consequently, the parallelization does not only
concern the evaluations but also the whole AP, including the model fitting (contrary to BSP-
EGO). Being able to adjust the learning time of themodel and acting locally allows us to perform

75

Chapter 3

many more optimization cycles. However, the ratio between the time allocated to the AP com-
pared to the evaluation time must be tuned carefully. Fast AP and model training allows one to
sample more, but the promisingness of each new candidate might be lower.

BSP-EGO relies on the EI to sort the leaves and decide which one is more valuable than
the others. However, in the context of local models, the EI coming from different models is
less relevant. For instance, one might preferably rely on the predicted value or on the LCB.
In addition, and in order to promote intensification, the number of leaves is not kept constant.
The tree still evolves at each cycle, but performs only the splitting step allowing it to dig much
deeper and improve the intensification. Of course, it implies making one more choice about
which leaf (i.e. sub-region) to activate. Indeed, exploring all the leaves would be excessively
time-consuming if the tree becomes large, which is expected. The number of selected leaves is
ideally a multiple of the number of processing units, which is also usually equal to the batch
size q, to balance the computational load. For both the selection strategy of the leaves and the
evolution of the tree, a choice is made between two options: either relying on the best outcome
of the leaf (i.e. the best objective value) or on the best potential improvement determined by
the chosen AF value of the previous cycle. Since the leaves are not all activated at each cycle, it
requires to keep track of each AP conducted in previous cycles. A dynamic strategy is adopted
regarding this choice: the probability is computed according to the remaining time budget. The
probability of selecting the AF as leaf selection criteria is given by p = 1 − tcurrent/ttotal. At
the beginning of the search, exploration is favored by giving more probability to select the AF
option, while at the end the probability is reversed favoring exploitation by using the objective
value. Furthermore, with a fixed low probability the criterion might be chosen as the index of
the leaf, forcing the exploration of large regions - a low index indicates bigger sub-regions.

Algorithm 9 shows the important steps of ℓBSP-EGO. First, the leaves to be activated need
to be chosen. According to the dynamic criterion described above and named α in line 4, the
most promising leaves are activated as shown at line 5. For each selected leaf of the binary tree,
a GP model is fitted with the nlearn points closest to the center of the sub-domain. The model
is then used to proceed to the local AP using the LCB. The previous steps are described from
lines 7 to 10. The remaining operations involved in ℓBSP-EGO, described between lines 12 and
15 are similar to the ones of BSP-EGO. Among the gathered batch of candidates, q ones are
selected to be simulated in parallel and the tree is updated.

Even though not the primary objective in our context, resorting to local models also con-
tributes to dealing with non-stationarity in the search space [11, 51].

3.2.4 Software Implementation and Packaging

All the implementations of the methods are based on GPyTorch [96] and BOTorch [97]. The
surrogate models are built using GPyTorch and BOTorch is used for all that relates to the APs.
The implementations of TuRBO2 and MACE3 are extracted and adapted from their respective
GitHub repositories. MIC-qEGO, BSP-EGO, and ℓBSP-EGO are our own implementations since
they are our own contributions.

2https://botorch.org/tutorials/turbo_1
3https://github.com/Alaya-in-Matrix/pyMACE

76

https://botorch.org/tutorials/turbo_1
https://github.com/Alaya-in-Matrix/pyMACE

BSP-EGO: a New Decomposition-based EGO

Algorithm 9 Local-model Binary Space Partitioning Efficient Global Optimization (ℓBSP-EGO)
Algorithm
Input

f : objective function
Ω: design space
D = (X,y): initial data
dtree: depth of the tree
nlearn: size of the learning sample

1: T ← build_tree(dtree)
2: F ← get_leaves(T)
3: while tcurrent < ttotal do

4: α← α(remaining_budget) ▷ dynamic criterion
5: L ← select_leaves(F , α)
6: B ← ∅
7: for leaf in L do ▷ parallelizable loop
8: Dleaf = create_subsets(D, leaf)
9: Mleaf ← GP(Dleaf)

10: B ← B ∪ argmaxΩleaf
(Mleaf , LCB)

11: end for

12: Xnew ← selection(B)
13: (T ,F)← update_tree(T ,B,F)
14: ynew = f(Xnew)

15: D ← D ∪ {Xnew,ynew}
16: end while

17: return miny D

77

Chapter 3

The source code of the whole experimental framework is available on GitHub at this ad-
dress:

https://github.com/MaGbrt/pySBO.git.

It is built upon the pySBO4 library [134] from which the mentioned GitHub repository
is a fork. The repository includes all the experiments conducted within the scope of the thesis.

The tree-based algorithms were initially implemented in C++ using the BayesOpt [135]
library, before being ported to Python. Consequently, some differences might appear when
comparing with the related publications.

3.3 Benchmarking BSP-EGO against state-of-the-art BOAs

The simulators used in Chapter 2 are subject to software dependencies or proprietary software
making large-scale experiments impossible and difficult to replicate. In addition, the time cost
implied by the real-world simulators makes it difficult to reach higher simulation budgets. For
the aforementioned reasons, the choice is made to experiment with benchmark functions.

The main objective of this section is to investigate the two identified leads to improve the
performances of BOAs. Mostly we confront the developed algorithms BSP-EGO and ℓBSP-
EGO to state-of-the-art algorithms and relate the most valuable features of the considered BO
algorithms and their field of application. The study identifies some remaining limitations and
possible improvements for future research directions.

3.3.1 Objective and Experimental Framework

Objective of the study

In this study, we investigate our two proposed algorithms leveraging a recursive decomposition
of the search space, namely BSP-EGO and ℓBSP-EGO. Alongwith the proposed new approaches,
the investigation involves several recently designed well-performing algorithms from the liter-
ature. In accordance with the established taxonomy shown in Figure 3.1, we classify them into
two categories of methods. The first one concerns the multi-criteria methods, such as MIC-
qEGO and MACE. The second one involves space-partitioning methods such as BSP-EGO and
ℓBSP-EGO to which we add TuRBO, which also deals with the design space. We aim to assess
the gain of such algorithms regarding the identified low scalability and low batch effectiveness
of classical BO algorithms.

To do so, the following algorithms are selected for investigation:

• MIC-qEGO and MACE, presented in Algorithm 5 and Algorithm 6 respectively, are used
in this study to represent the multi-criteria approaches. MIC-qEGO embodies the com-
petitive way and MACE the cooperative way of dealing with multiple criteria.

4https://pysbo.readthedocs.io

78

https://github.com/MaGbrt/pySBO.git
https://pysbo.readthedocs.io

BSP-EGO: a New Decomposition-based EGO

• BSP-EGO, ℓBSP-EGO, and TuRBO, presented in Algorithm 8, Algorithm 9 and Algo-
rithm 7 respectively are chosen to represent the partitioning approach. Both tree-based al-
gorithms are representative of recursive decomposition-based approaches, while TuRBO
embodies the trust region methods.

Baseline algorithms

In addition to the five previously mentioned algorithms, we add three frequently used BO algo-
rithms. First, qEGO is used with the multi-point EI. To speed up the AP, the reparameterization
trick [136] is used with a fast Monte Carlo approximation of the qEI surface. Second, we retain
the KB-qEGO algorithm, already described in Algorithm 2, which offers another alternative to
the time-consuming qEI optimization. And last, we add TS-qEGO, which relies on Thompson
Sampling (TS) to propose the batch of q candidates. TS samples from the posterior distribu-
tion and minimizes the sampled GP so that it gives the best point to evaluate, according to that
posterior sample. It is a fast and scalable method for parallel BO [137].

Potential of improvement

Our investigation focuses on two aspects:

• The performance of the method in terms of the outcome in proportion to the batch size,
i.e., the batch effectiveness. Ideally, the method obtains equivalent outcome quality for an
equivalent number of simulations, whatever the batch size is. Thus, for a given number
of cycles, we achieve better results when increasing the batch size.

• The scalability of the method, studied with the number of total cycles/simulations per-
formed in the fixed time. The expected ideal behavior is that the time cost arising from
optimization methods (outside simulation time) remains short enough not to hamper the
optimization. Therefore, increasing ncores also increases the number of simulations by
the end of the time budget. Additionally, if the previous point is respected, it should also
improve the quality of the final result.

3.3.2 Experimental Protocol

Benchmarking procedure

For the same reasons put forward in Section 2.3.3, we rely on a time budget rather than on
the number of evaluations or cycles. This aims at visualizing the impact of the AP time in
the optimization process and better representing the time constraints of a given optimization
problem. With the very small time cost of the benchmark functions, a 20-minute budget is
considered as it is found to be sufficient to perform a large enough number of cycles for any
algorithm to observe significant divergences between them.

79

Chapter 3

The test-bed includes 5 benchmark functions representative of known problems in optimiza-
tion (e.g., flat regions, several local optima, noisy landscape, etc.). Details about the functions are
given in Appendix C.1. The analysis is conducted in dimensions 6, and 12 so that we can observe
the impact of the dimension on the search strategies. Each algorithm performs 20 distinct opti-
mization runs, on each benchmark function, for the following batch sizes q ∈ {2, 4, 8, 16, 32}.
For each of the 20 runs of each function, an initial sample is randomly generated with ninit

design points according to the dimension. The same initial set is used for all batch sizes and
every method.

The whole experimental setup represents#dimensions×#batch_sizes×#functions×
#algorithms × nrep = 8000 optimization runs. Each run lasts 20 minutes, this is equivalent
to approximately 112 days of computation in a single machine (assuming the number of cores
is at least q). This type of benchmark is only made possible with the help of the Grid50005
computational test-bed [5].

As stated in [138], it is generally preferable to begin with a small sample to achieve the
best performances. It matches our observations that with a fast-increasing model fitting time,
the initial design should remain restricted. For this reason, we adopt the quite common rule
of considering an initial design of size ninit ≈ 10 × d, where d is the dimension. Therefore,
the initial size is set to 64 and 128 respectively for dimensions 6 and 12, consistently with the
batch sizes in a parallel execution perspective. Indeed, 64 and 128 are multiple of any q ∈
{2, 4, 8, 16, 32}. The global experimental setup is summarized in Table 3.1.

Table 3.1: Summary of the experimental setup

Dimension d ∈ {6, 12}
Batch size q ∈ {2, 4, 8, 16, 32}
Functions Rosenbrock, Ackley, Schwefel, Alpine02, Rastrigin
Algorithms qEGO, TS-qEGO, KB-qEGO, MIC-qEGO, MACE, BSP-EGO, ℓBSP-EGO
Number of repetitions nrep = 20

Hyper-parameter Settings

For all the algorithms of this study, the surrogate model is a GP model. The trend is assumed
constant but unknown, the covariance kernel follows the Matérn 5

2
model and is fitted through

MLE. The model is considered with a homoskedastic noise level and the kernel is fit with au-
tomatic relevance determination [139]. The way to fit the GP model can be seen as a hyper-
parameter as well since it is an implementation choice, and it impacts the behavior of the al-
gorithms, especially in a time-constrained context. As it is not investigated here, an identical
routine is used for all methods for a fair comparison. Those parameters are identified from
previous works and literature as good default choices [7, 97].

The training set is composed of all the available data, except for ℓBSP-EGO where nlearn =
min(128; |D|). MIC-qEGO uses 2 criteria, namely EI and LCB. This choice is arbitrary and could
be improved by investigating the impact of the set of AFs. However, it is found to give good

5https://www.grid5000.fr

80

https://www.grid5000.fr

BSP-EGO: a New Decomposition-based EGO

results in preceding experiments. As for MACE, the set from the original paper is used, it is
composed of PI, EI, and LCB. TuRBO uses the same AP as qEGO, but in a trust region. Only
one trust region is considered in this study. BSP-EGO uses nleaves = 4× q that are all explored
by an AP so that a selection can be done between all the gathered candidates. In ℓBSP-EGO,
the number of leaves of the binary tree is initialized to nleaves = 2 × q, but is not limited.
However, the number of considered leaves per cycle remains constant after the selection phase
(see Algorithm 9) and is equal to q. Those parameters allow a fast training of the local models
while ensuring local accuracy.

3.3.3 Results and Analysis

We analyze the results regarding the following three aspects. First, we evaluate the perfor-
mance of each algorithm regarding the outcome for different timestamps. Then, we study the
scalability in terms of number of performed evaluations within the time budget. Finally, we
assess the batch effectiveness.

Overall observations on the outcomes

Table 3.2 and Table 3.3 present a synthetic overview of the results. For each algorithm and
batch size, we save the outcome for given timestamps (0, 30, 60, 120, 300, 600, 900, 1200). The
outcome for each function is scaled between 0 and 1, where 0 indicates the best possible outcome
and 1 the initial best sample (common to all runs). A score between 0 and 1 is then obtained
for each function that allows to aggregate the 5 benchmark functions into a single indicator
by averaging the scores of each function (for all algorithms, batch sizes, and timestamps). The
best values, close to 0, are highlighted in blue shades for a fast visual identification of the well-
performing methods.

First, looking at Table 3.2 displaying the results for the 6d-benchmark functions, we
can see a clear dominance of the investigated approaches compared to the baseline algorithms.
Consistently with what was observed in previous sections, qEGO and KB-qEGO do not achieve
better performances in terms of final outcome with higher computational power. The ideal
batch size for these algorithms is between 4 or 8 simultaneous candidates. In addition, we ob-
serve a fast improvement at the beginning, but after 300 seconds it is very limited. Among
the three mentioned algorithms, KB-qEGO seems to outperform the two others after 180 sec-
onds despite its lower number of simulations due to the time-consuming AP, as indicated in
Figure 3.4.

The multi-infill approaches show much better behavior as time increases. Indeed, MIC-
qEGO shows considerable improvement compared to KB-qEGOwhen the time budget is higher.
However, the best observed average outcome is for q = 8, which still indicates a bad batch
effectiveness, and/or a bad scalability. Regarding MACE, the algorithm is outperformed for
very low budgets but appears to have a much better batch effectiveness than MIC-qEGO since
the outcome improves with both time and q. However, MIC-qEGO is better or equivalent on
average with batch sizes 4 or 8 than any batch size and time of the MACE algorithm.

81

Chapter 3

Table 3.2: Scaled outcome averaged over the 5 benchmark 6d-functions. Values close to 1 indi-
cate small improvement compared to initial sampling while values approaching the theoretical
optimal value are close to 0 and highlighted in blue shades.

Timestamps 0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.5659 0.5052 0.4655 0.4498 0.4149 0.4034 0.3898 0.3839
4 1 0.5556 0.4919 0.4562 0.4451 0.4302 0.4164 0.4074 0.4018
8 1 0.5207 0.4742 0.4483 0.4384 0.4304 0.4185 0.4121 0.4114
16 1 0.5486 0.4967 0.4668 0.4614 0.4472 0.4371 0.4320 0.4285
32 1 0.5748 0.5420 0.5109 0.5026 0.4914 0.4736 0.4601 0.4501

TS-qEGO 2 1 0.7561 0.6801 0.6114 0.5717 0.5390 0.4967 0.4721 0.4517
4 1 0.6788 0.6077 0.5445 0.5271 0.4937 0.4669 0.4588 0.4437
8 1 0.6486 0.5617 0.5233 0.5039 0.4791 0.4462 0.4332 0.4289
16 1 0.6008 0.5411 0.5029 0.4786 0.4622 0.4424 0.4294 0.4247
32 1 0.5559 0.5094 0.4838 0.4665 0.4566 0.4446 0.4254 0.4191

KB-qEGO 2 1 0.5403 0.4629 0.4004 0.3765 0.3542 0.3244 0.2950 0.2926
4 1 0.5350 0.4545 0.3912 0.3638 0.3407 0.3057 0.2979 0.2892
8 1 0.5890 0.5183 0.4376 0.4044 0.3797 0.3422 0.3250 0.3185
16 1 0.6600 0.5427 0.4789 0.4410 0.3981 0.3655 0.3556 0.3504
32 1 0.7177 0.6098 0.5122 0.4806 0.4571 0.4244 0.4088 0.4040

MIC-qEGO 2 1 0.5386 0.4407 0.3827 0.3647 0.3400 0.3102 0.2929 0.2854
4 1 0.4457 0.3646 0.3118 0.2864 0.2486 0.2253 0.2187 0.2085
8 1 0.4762 0.3715 0.3110 0.2812 0.2611 0.2360 0.2266 0.2184
16 1 0.5785 0.4370 0.3457 0.3276 0.3079 0.2698 0.2599 0.2521
32 1 0.6467 0.5055 0.3788 0.3397 0.3032 0.2818 0.2675 0.2611

MACE 2 1 0.7560 0.6565 0.5670 0.4999 0.4089 0.3229 0.2887 0.2768
4 1 0.6678 0.5723 0.4787 0.4175 0.3353 0.2870 0.2677 0.2518
8 1 0.6146 0.5070 0.3805 0.3279 0.3033 0.2644 0.2449 0.2334
16 1 0.5741 0.4577 0.3401 0.3025 0.2793 0.2460 0.2383 0.2328
32 1 0.4537 0.3268 0.2803 0.2737 0.2603 0.2465 0.2340 0.2193

BSP-EGO 2 1 0.4825 0.3838 0.3171 0.2817 0.2618 0.2389 0.2317 0.2293
4 1 0.4491 0.3654 0.3184 0.2944 0.2768 0.2500 0.2399 0.2349
8 1 0.4133 0.3304 0.2832 0.2717 0.2509 0.2336 0.2245 0.2199
16 1 0.4315 0.3592 0.3075 0.2871 0.2633 0.2466 0.2370 0.2318
32 1 0.5083 0.4426 0.3661 0.3330 0.3065 0.2584 0.2444 0.2304

ℓBSP-EGO 2 1 0.3888 0.2964 0.2801 0.2794 0.2783 0.2776 0.2775 0.2771
4 1 0.3350 0.2589 0.2420 0.2417 0.2413 0.2411 0.2410 0.2410
8 1 0.3272 0.2408 0.2102 0.2027 0.1968 0.1945 0.1930 0.1930
16 1 0.3415 0.2366 0.1952 0.1872 0.1765 0.1475 0.1453 0.1450
32 1 0.4156 0.2974 0.2091 0.1831 0.1523 0.1350 0.1296 0.1232

TuRBO 2 1 0.3853 0.3439 0.3088 0.2904 0.2612 0.2547 0.2467 0.2416
4 1 0.3586 0.3202 0.3018 0.2775 0.2546 0.2240 0.2111 0.2045
8 1 0.3480 0.3207 0.3035 0.2997 0.2818 0.2510 0.2441 0.2388
16 1 0.3260 0.3000 0.2847 0.2726 0.2616 0.2526 0.2349 0.2317
32 1 0.3353 0.2772 0.2574 0.2371 0.2303 0.2062 0.1952 0.1879

82

BSP-EGO: a New Decomposition-based EGO

Table 3.3: Scaled outcome averaged over the 5 benchmark 12d-functions. Values close to 1 indi-
cate small improvement compared to initial sampling while values approaching the theoretical
optimal value are close to 0 and highlighted in blue shades.

0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.6765 0.6587 0.6355 0.6275 0.6205 0.6121 0.6065 0.6021
4 1 0.6724 0.6560 0.6413 0.6320 0.6204 0.6120 0.6075 0.6033
8 1 0.6740 0.6584 0.6468 0.6311 0.6283 0.6221 0.6127 0.6073
16 1 0.6763 0.6688 0.6563 0.6514 0.6416 0.6287 0.6178 0.6163
32 1 0.6639 0.6596 0.6502 0.6419 0.6366 0.6280 0.6279 0.6264

TS-qEGO 2 1 0.7616 0.7379 0.7080 0.6899 0.6771 0.6584 0.6472 0.6439
4 1 0.7493 0.7198 0.6924 0.6843 0.6720 0.6567 0.6531 0.6476
8 1 0.7258 0.7112 0.6901 0.6801 0.6702 0.6581 0.6530 0.6495
16 1 0.7259 0.7090 0.6916 0.6848 0.6758 0.6642 0.6549 0.6519
32 1 0.7081 0.6948 0.6739 0.6662 0.6601 0.6517 0.6468 0.6439

KB-qEGO 2 1 0.6781 0.6535 0.6254 0.6156 0.5970 0.5890 0.5841 0.5769
4 1 0.6868 0.6666 0.6368 0.6235 0.5997 0.5835 0.5819 0.5800
8 1 0.6995 0.6814 0.6610 0.6517 0.6360 0.6233 0.6154 0.6112
16 1 0.7085 0.6855 0.6735 0.6604 0.6509 0.6307 0.6266 0.6238
32 1 0.7103 0.7062 0.6971 0.6887 0.6738 0.6637 0.6566 0.6482

MIC-qEGO 2 1 0.6776 0.6401 0.6180 0.6045 0.5910 0.5815 0.5788 0.5763
4 1 0.6117 0.5587 0.5216 0.5007 0.4845 0.4629 0.4512 0.4465
8 1 0.6138 0.5608 0.5193 0.5048 0.4859 0.4588 0.4442 0.4386
16 1 0.6594 0.5924 0.5576 0.5383 0.5164 0.4923 0.4776 0.4712
32 1 0.7037 0.6389 0.5936 0.5726 0.5552 0.5352 0.5264 0.5161

MACE 2 1 0.7217 0.6876 0.6235 0.5804 0.5475 0.5097 0.4792 0.4656
4 1 0.6847 0.6467 0.5904 0.5629 0.5289 0.4935 0.4778 0.4707
8 1 0.6539 0.5868 0.5496 0.5311 0.5060 0.4767 0.4567 0.4511
16 1 0.6222 0.5624 0.5206 0.5024 0.4734 0.4337 0.4159 0.3968
32 1 0.5969 0.5418 0.5057 0.4756 0.4475 0.4001 0.3768 0.3604

BSP-EGO 2 1 0.6357 0.5781 0.5464 0.5266 0.5063 0.4952 0.4860 0.4846
4 1 0.6030 0.5761 0.5324 0.5105 0.4940 0.4729 0.4631 0.4564
8 1 0.5838 0.5354 0.5012 0.4871 0.4642 0.4445 0.4342 0.4312
16 1 0.5941 0.5559 0.5204 0.4987 0.4880 0.4575 0.4463 0.4393
32 1 0.6384 0.6004 0.5723 0.5552 0.5419 0.5078 0.4945 0.4898

ℓBSP-EGO 2 1 0.5347 0.4407 0.3666 0.3298 0.3129 0.3105 0.3095 0.3092
4 1 0.4896 0.3848 0.3137 0.2880 0.2705 0.2671 0.2660 0.2651
8 1 0.4676 0.3857 0.3144 0.2821 0.2536 0.2378 0.2347 0.2337
16 1 0.4857 0.4023 0.3405 0.3170 0.2857 0.2527 0.2398 0.2276
32 1 0.5494 0.4674 0.4045 0.3733 0.3432 0.3096 0.2910 0.2823

TuRBO 2 1 0.5316 0.4421 0.3694 0.3460 0.3272 0.3154 0.3107 0.3050
4 1 0.4911 0.4142 0.3586 0.3390 0.3196 0.3099 0.3064 0.3044
8 1 0.4715 0.3983 0.3518 0.3395 0.3310 0.3228 0.3215 0.3203
16 1 0.4426 0.3781 0.3458 0.3380 0.3322 0.3259 0.3247 0.3230
32 1 0.5297 0.4289 0.3608 0.3365 0.3238 0.3131 0.3117 0.3112

83

Chapter 3

Partitioning the search space into sub-regions also appears to improve the overall perfor-
mances of qEGO-like algorithms. Indeed, BSP-EGO shows an average performance equivalent
to that of MIC-qEGO while being slightly more effective regarding the batch acquisition. How-
ever, the outcome for each time stamp is very similar across the batch size, which also indicates
a limited batch effectiveness. ℓBSP-EGO presents better performances than all the baseline
algorithms. However, for low batch sizes (q ≤ 4), BSP-EGO, MIC-qEGO, and TuRBO show
equivalent or better outcomes. ℓBSP-EGO appears to be very effective in its ability to improve
the outcome with the batch size. Indeed, except before 120 seconds, increasing the batch sizes
always improves the outcome for any timestamp. The best average performance of the whole
benchmark is realized for ℓBSP-EGO with q = 32. TuRBO shows a very good sample efficiency,
with a low time budget (<2 minutes) the average outcomes are equivalent to the final outcomes
of KB-qEGO. TuRBO also shows a good batch effectiveness, since for a given time, increasing
the batch size improves the outcome. The best outcome achieved by TuRBO is found for q = 32,
nevertheless, for q = 8 and q = 16 the performance is lower than for q = 4.

Increasing the dimension to 12 shows radically different outcomes as reported in Ta-
ble 3.3. The investigated algorithms still perform better than the baseline, but a clear advantage
can be noticed for the methods that intensify a lot: TuRBO and ℓBSP-EGO. Even though appar-
ently the best option, ℓBSP-EGO performs best with q = 8 or q = 16 instead of q = 32 as for the
6d case. Regarding TuRBO, after a fast improvement at the beginning, all the indices beyond
180 seconds of execution remain similar, for all batch sizes. Similarly to the 6d-benchmark,
MIC-qEGO and BSP-EGO have close average performances. However, a difference appears
with MACE when the budget increases. In the same way as the 6d-benchmark MACE shows
an improved outcome when increasing q for a given timestamp. This allows MACE to outper-
form MIC-qEGO and BSP-EGO with large batch sizes (q ≥ 16) even for restricted time budgets
(starting from 120 seconds).

As we will see in the following, the benchmark functions present very different landscapes,
and sometimes a large batch size that increases the exploration of the design space is to be pre-
ferred. At the same time, other functions could require more intensification and small batches
would be preferable. Then, increasing the batch size could have an opposite effect on the func-
tions, and averaging the results into a single score does not account for this. To report on the
latter, the functions are analyzed separately in the incoming section. But beforehand, let us
look closer at the scalability and batch effectiveness of the investigated approaches.

Observations on the scalability

Figure 3.4 and Figure 3.5 depict the average number of simulations in the 20-minute budget
according to the batch size for respectively the 6d and 12d-Alpine02 functions. We only show
the Alpine 02 function since the same observations can be done for any other one.

Looking at the number of performed simulations displayed in Figure 3.4 and Figure 3.5, the
main difference between the results in dimensions 6 and 12 lies in the number of simulations.
The model being more complex in higher dimensions, it results in a loss in terms of number of
simulations. However, the following observations are valid in both 6 and 12 dimensions.

84

BSP-EGO: a New Decomposition-based EGO

Figure 3.4: Average number of simulations according to the batch size for the 6d-Alpine02 func-
tion. Dashed-lines indicates the standard deviation over the 20 repetitions.

Figure 3.5: Average number of simulations according to the batch size for the 12d-Alpine02
function. Dashed-lines indicates the standard deviation over the 20 repetitions.

85

Chapter 3

We observe a clear difference between ℓBSP-EGO, acting locally, and other global methods.
We distinguish three groups that are mainly determined by their AP. Firstly, ℓBSP-EGO uses lo-
cal models and parallel AP, which explains its time efficiency even for large budgets. ℓBSP-EGO
achieves around 4 times more simulations than other methods. However, we can see that its
scalability decreases with the batch size. The learning time and acquisition time are controlled
by the learning size nlearn and by the number of exploited sub-regions, but the per-cycle time
still increases. The most probable reasons for this are the computational costs associated with
the tree management and the setting of the subset of points for the local models. Indeed, in
ℓBSP-EGO the tree only splits the design space into smaller sub-regions, without merging non-
promising ones as in BSP-EGO. The selection of the activated leaves and the memory access
to the data can become time-consuming for very large trees. In addition, the local models are
built with subsets assembled according to a distance-based scheme which can become compu-
tationally intensive for large data sets. A more precise analysis of the time of each phase of the
algorithm should be conducted to draw a more accurate conclusion. Be that as it may, the good
performances of the algorithm with respect to the time budget are directly linked to its good
scalability. We can see at the beginning that ℓBSP-EGO is not significantly better than other
algorithms, but when others stop improving due to their time-consuming execution, ℓBSP-EGO
still manages to improve the outcome.

Secondly, the second set of algorithms is composed of qEGO, TS-qEGO, and MACE. They
use a global model and a time-efficient AP. A quite important difference is noted with MACE
when increasing the batch size, its scalability is less impacted than others thanks to its AP that
has the same cost whatever the batch size is. Indeed, the multi-objective optimization returns a
Pareto front on which the algorithm chooses q samples. The main limiting factor is the global
surrogate model that takes the most time in the cycles of the algorithm.

Lastly, the heuristic-based APs (KB-qEGO and MIC-qEGO) are the least efficient in terms of
number of simulations. Similarly to other qEGO-based algorithms, they use a global model, but
they also need a partial update for each new candidate in a batch. Even though the MIC-qEGO
algorithm spares some updates by resorting to several criteria, the gain is not significant, and
when the batch size exceeds q = 8 the number of simulations stagnates. BSP-EGO is between
the two groups since it operates in parallel and thus limits the acquisition time, but a larger
number of local APs is performed. This makes BSP-EGO less efficient than the second group,
but still faster than the last one.

On the other hand, the higher number of simulations is not always synonymous with better
outcomes. The most evident example is TS-qEGO which is quite efficient in terms of number of
simulations, and nonetheless performs poorly in comparison to the other approaches regarding
the outcome. In the following, we try to refine the analysis by looking individually at the bench-
mark function. We identify the strengths and weaknesses of each algorithm by associating their
performances with the known difficulties of the different benchmark functions.

Observations on the batch effectiveness

The batch effectiveness is not easily interpreted with this kind of presentation of the results. In
this situation, we should rather talk about time efficiency since we are interested in the outcome
for a given time instead of a given number of simulations. Nevertheless, we can see that for a

86

BSP-EGO: a New Decomposition-based EGO

given time stamp, increasing the batch size does not mean improving the outcome. Actually,
for algorithms such as MIC-qEGO or BSP-EGO it is preferable to perform more cycles with
small batch sizes than to increase the batch size (even if it allows more simulations). The only
algorithm that always profits from larger batches is MACE, but it is generally equivalent to or
worse than TuRBO or ℓBSP-EGO in terms of objective value.

TuRBO achieves quite similar outcomes, whatever the batch size, except for the 6d-
functions, where q = 32 gives the best results at almost any time. ℓBSP-EGO manages to
better profit from a larger batch size only if the time budget is sufficient, i.e. ≥ 180 seconds at
least for the 6d-benchmark, and 300 seconds for the 12d-one. However, in 12d the best outcome
is achieved for q = 16 and not q = 32. The strength of ℓBSP-EGO lies in its scalability rather
than in the batch effectiveness.

3.3.4 Discussion on Exploration and Exploitation

The performance of the algorithms varies a lot depending on the function (and its associated
landscape, see Appendix C.1) and the average values of Table 3.2 and Table 3.3 fail to account
for this. To better represent that aspect, equivalent tables are given in Appendix C.2 for every
benchmark function.

In addition, regarding the batch effectiveness that is difficult to assess when considering
only the time stamps, we also plot the mean best output (i.e., the objective value) as a function
of the number of simulations, for different batch sizes. For obvious reasons, only the necessary
graphs will be displayed in due time.

Discussion on space-partitioning

Space-partitioning approaches allow a better intensification, and especially TuRBO and ℓBSP-
EGO that allow a deep intensification into a small sub-region. This is indicated by their very
good performance on the Ackley test function (displayed in Figure 3.6 for q = 8), which presents
a single global minimum that can be found only with a strong intensification. On the contrary,
the Alpine 02 function is highly multi-modal and a strong intensification could result in being
trapped in local minima. It seems to be the case for TuRBO and ℓBSP-EGO when looking at
Figure 3.7.

In this case, more exploration is needed. Actually, larger batches favor exploration as seem
to indicate the results of TuRBO and ℓBSP-EGO on the 6d-Alpine02 function, reported in Ta-
ble C.7 of Appendix C.2. Figure 3.8, displaying the results for the 6d-Alpine function with a
batch size of 32, supports this hypothesis by showing that TuRBO and ℓBSP-EGO considerably
improve their performance compared to MACE with a batch size of q = 32. However, MACE
with q = 8 is still a better choice. Furthermore, their standard deviation is rather large indi-
cating high uncertainty on the final result. It is also quite clear that the number of simulations
ℓBSP-EGO is able to perform in a limited time is a strong advantage. It is often less efficient in
terms of outcome for a given number of simulations, but considering time instead reverses the
trend.

87

Chapter 3

Figure 3.6: Evolution of the outcome for the 6D-Ackley function with q = 8

Figure 3.7: Evolution of the outcome for the 6D-Alpine function with q = 8

88

BSP-EGO: a New Decomposition-based EGO

Figure 3.8: Evolution of the outcome for the 6D-Alpine function with q = 32

Discussion on Multi-Infill strategies

The multi-infill approach clearly increases the batch effectiveness and is particularly efficient
on the multi-modal Alpine 02 function as indicated in Figure 3.7. Both MIC-qEGO and MACE
perform well, indicating a good aptitude for exploration. Actually, it results from the fact that
those approaches rely only on AFs, whereas TuRBO and ℓBSP-EGOmostly intensify by restrict-
ing the search space based on the best known objective value to enhance the intensification.

The cooperative multi-infill approach seems to generally outperform the competitive one.
In addition, MACE has better scalability than MIC-qEGO, which usually turns into better out-
comes. However, the latter is denied by the results of the Rastrigin function where MACE
performs poorly with q = 8. Indeed, as shown in Figure 3.9, MIC-qEGO clearly outperforms
MACE. The Rastrigin function presents a single global minimum, but many local ones as it is
extremely noisy. This could result in conflicting interests between the AFs, therefore, compro-
mising between them leads to a less valuable batch of points. In that situation the competitive
approach might be preferable. However, it is impossible to verify this hypothesis without fur-
ther investigation.

89

Chapter 3

Figure 3.9: Evolution of the outcome for the 6D-Rastrigin function with q = 8

3.3.5 Conclusions and Recommendations

The first objective of this study was to challenge the newly developed algorithms, namely
BSP-EGO and ℓBSP-EGO. In addition, we assess the validity of multi-criteria and space-
decomposition approaches on a large benchmark experimental setup. Experiments have been
conducted on 5 functions in dimensions 6 and 12. The investigated methods are compared to
the baselines of state-of-the-art algorithms that have proven their effectiveness. The results
clearly indicate that all of BSP-EGO, ℓBSP-EGO, MIC-qEGO, MACE, and TuRBO possess fea-
tures that are valuable to improve the optimization process as they all consistently outperform
the baseline algorithms.

We first observed that the effectiveness of the batch is considerably improved by the multi-
criteria selection, be it cooperative or competitive. Multi-infill strategies are effective for en-
hancing the exploration of the search space and escaping local optima. Cooperative strategies
show a better batch effectiveness, and often better outcomes. However, the competitive ap-
proach can be more appropriate in some contexts (e.g. if cooperating criteria are conflicting).

Regarding the decomposition-based approaches, they allowmore intensification and closely
approach the global optimum if the promising region is spotted. They are also a good choice
in very restricted budgets since they focus on refining the best-known solution and are not
drawn towards exploration since the AP does not rely only on the AF. In addition, design space
decomposition is clearly the best choice in higher dimensional spaces, even if multi-criteria
approaches punctually perform best.

90

BSP-EGO: a New Decomposition-based EGO

From a general point of view, it is preferable to keep the batch size under 16 to prevent
the fast-increasing time cost of the global model. Only ℓBSP-EGO is exempt from this, acting
on local models learned over a subset of data. Its better scalability enables the algorithm to
outperform any other one of this benchmark analysis when the time budget and batch size
increase. It has to be noted that MACE also shows better performances when increasing either
the batch size, the time budget, or both. However, it is generally not sufficient to consistently
outperform ℓBSP-EGO as the global model learning time is a major brake.

The ℓBSP-EGO algorithm presents the most interesting features as it scales well with the
batch size, and continues to improve the objective value with time. It is the best choice for
optimizing many of the benchmark functions of this analysis, in both dimensions 6 and 12.

More insights

TuRBO has been tested with and without the restart parameter that resets the length of the
trust region. The results are clearly better with the restart option for the 6d-benchmark, so
only this version is used here. However, we did not observe any difference in dimension 12. The
hypothesis behind this is that TuRBO is designed to tackle higher dimensional spaces and the
trust region shrinking is intensive. In dimension 6, TuRBO tends to converge towards very small
trust regions quite fast, causing an early stagnation in the optimization process and numerical
instabilities in the Gram matrix. Those instabilities do not occur for the considered budget in a
higher dimension.

A similar observation can be made for the other algorithms: stagnation is often observed
at some point. This could be improved by restarting the algorithm with a new set of design
points, or at least a subset of the already observed ones. It has two advantages: limiting the
early stagnation and speeding up the optimization process by limiting the size of the data set.
Actually, a similar feature could be implemented for ℓBSP-EGO by resetting the tree when the
volume of a leaf is too small. In addition, since the batch effectiveness remains limited, we could
wonder if running several algorithms with lower batch sizes would be a better strategy.

All algorithms could be tuned to achieve better results. For instance, we could investigate
the impact of the set of AFs onMIC-qEGO andMACE. Regarding TuRBO, a different reset option
could be tried out, and an equivalent option could be added to ℓBSP-EGO.However, the previous
recommendations still stand, and based on the conclusion, coupling space decomposition with
multi-infill strategies appears as a suitable future research direction.

As we saw in Chapter 2, the real-world applications are quite different from the benchmark
functions in several ways. In particular, we may face operational constraints such as a time-
restricted budget. In the following, we tackle a real-world problem dealing with the resources
management of an Underground Pumped Hydro-Energy Storage (UPHES) operator participat-
ing to the energy market.

91

Chapter 3

3.4 Real-world Test Case: Optimal Scheduling of UPHES

Integrating renewable energy resources is a key challenge to ensure the transition towards a
low-carbon energy system. Electricity storage systems provide a valuable solution to compen-
sate for uncertain production, thus offering sustainable means to increase the flexibility of the
system [140]. An appropriate option regarding storage technologies is offered by Underground
Pumped Hydro-Energy Storage (UPHES). However, in modern competitive energy networks,
individual actors rely on efficient operational strategies, enabling them to hedge the uncertainty
of renewable energy resources. It is thus essential to dispose of efficient tools to make perti-
nent decisions at the different time steps of the energy markets (e.g., from long-term towards
real-time) [26] (see Section 2.2).

3.4.1 Context and Motivation

From the operator’s point of view, the quality of a decision is measured as a profit, so let
us assume that for a decision x ∈ Rd, the expected profit of a UPHES operator is given by
f : Rd → R; x 7→ y = f(x). The simulator, f , is then considered as a time-consuming
black-box function, which is further described in Section 3.4.2.

The complexity of physical phenomena in UPHES devices usually calls for model-based
approximations [141]. Using these approximations, the evaluation of the expected profit is fast,
and classical optimization methods (e.g., dynamic programming, genetic algorithms) can be
applied to optimize the UPHES schedulingwithin a reasonable time budget [142, 143]. However,
approximations may lead to unreliable simulations, motivating the recent proposal of a more
robust model-based UPHES simulator in Toubeau et al. [141]. This comes at a much higher
computational cost compared to conventional model-based approximations.

With this increased computational cost of the simulation, existing optimization approaches
become impractical as operational constraints require scheduling optimization to be completed
within approximately 30 minutes. This motivates us to investigate the use of surrogate models
to (partially) replace the time-consuming simulator, in conjunction with parallel computing.
To the best of our knowledge, SBO has never been applied to the UPHES scheduling problem.
In our previous work [26] (see also Section 2.2), we demonstrate that PBO can be efficient in
management problems in electrical engineering. Consequently, the overall optimization time
can be considerably reduced. This is essential due to the time constraint arising from both the
organization of energymarkets and the complexmodeling of physical and economic constraints
of pumped-hydro systems.

92

BSP-EGO: a New Decomposition-based EGO

3.4.2 Underground Pumped Hydro-Energy Storage

General description

Due to their ability to quickly and cost-effectively mitigate energy imbalances, Pumped Hydro-
Energy Storage (PHES) stations offer an appropriate storage solution. PHES plants are com-
posed of (at least) a lower and an upper reservoir from which water is exchanged to either
produce or store energy. In off-peak periods, production might exceed consumption such that
energy is saved by pumping water from the lower reservoir into the upper one. Then, it pro-
vides a substantial reserve of energy that can be later released when needed, e.g., to maintain
the transmission grid stability. Figure 3.10 shows the basic pumped hydro-energy storage unit
with one lower and one upper reservoir.

Figure 3.10: Illustration of the basic hydro-energy storage unit. Source: Dominion Energy, Power-
ing Southwest Virginia

Recent progress in power electronics has enabled PHES units to operate with a reliable
variable-speed feature in both pump and turbinemodes. The flexibility offered by these facilities
is highly valuable. Indeed, it improves the economic efficiency of existing resources such as
wind farms or thermal power plants [140, 144], and provides ancillary services to ensure grid
stability (such as frequency control or congestion management).

The inherent potential of PHES units leads to the development of new technological solu-
tions such as Underground PHES (UPHES) for which the lower basin is located underground.
A significant advantage of UPHES is the limitation of expenses from civil engineering works
thanks to the recycling of end-of-life mines or quarries. These stations have a very limited im-
pact on the landscape, vegetation, and wildlife, and are not limited by topography so that more
sites can be exploited [145]. In the current competitive framework governing the electricity
sector, UPHES units are exploited with the objective of return on investment. Consequently,
the profit of such stations must be maximized. This task is challenging since the UPHES oper-
ation is governed by two main nonlinear effects that cannot be easily modeled with traditional
analytical models [141].

Firstly, groundwater exchanges between the reservoirs and their hydro-geological porous
surroundings may occur. This situation typically arises for UPHES when the waterproofing
work is not feasible or uneconomical [146]. Secondly, UPHES units are generally subject to

93

https://www.dominionenergy.com/poweringswva
https://www.dominionenergy.com/poweringswva

Chapter 3

important variations of the net hydraulic head (i.e., the height difference between water levels
in the reservoirs). These variations are referred to as the head effects [147], and are typically
quantified through laboratorymeasurements on a scaledmodel of the hydraulicmachines [148].
This characterization of head effects is important since the head value defines both the safe
UPHES operating range as well as the efficiency of both pump and turbine processes. In this
way, the safe operating limits in pump and turbine modes continuously vary over time with
regard to head variations. In general, the performance curves of UPHES stations are difficult to
model since they present a non-convex and non-concave behavior.

Directly integrating these effects into model-based optimization (which maximizes the UP-
HES profit in the different market floors) implies a high computational burden or strong as-
sumptions that may jeopardize the feasibility of the obtained solution. To address these issues,
a simulation-based BO strategy has been developed in this work. The simulator, which is a
black box from the user’s perspective (developed independently without access to the source
code), returns the daily UPHES profit accounting for all techno-economic constraints. The full
description of physical and economical constraints can be found in Toubeau et al. [102].

Problem Instance

The experimental evaluation uses a real-world site located in Maizeret (Belgium) as a test case.
Its configuration is shown in Figure 3.11. The lower basin is a former underground open pitmine
subject to groundwater exchanges. Furthermore, the surface of both reservoirs is relatively
limited, which results in significant head effects. The specific features of the UPHES unit are
taken into account in the simulator implemented in the Resource-Action-Operation language
[149] and Matlab. The UPHES nominal output ranges (for the nominal value of the hydraulic
head) are respectively [6, 8] MW and [4, 8] MW in pump and turbine modes and the energy
capacity is 80 MWh. The optimization problem involves 12 decision variables.

This simulator is denoted as f in the following and, according to a decision vector x ∈ R12,
it returns the expected profit y = f(x) ∈ R. The 12-dimensional decision vector includes 8
decision variables to participate in the different time slots of the energy market, and 4 to the
reserve market (i.e. provision of ancillary services). The design variables from x1 to x8 range
from -8 to 8 and represent the amount of energy that is delivered or stored (depending on the
sign). The remaining ones, from x9 to x12, range from 0 to 8 as we only provide energy in the
reserve market. The number of decision variables is subject to modification in order to gain
more flexibility in future studies. The objective is then to find the decisions that maximize the
daily expected profit. The objective function f also involves the constraints and deals with
them by adding a penalty term inside the simulator.

These UPHES decisions must comply with hydraulic and electro-mechanical constraints
over the whole daily horizon. This results in a challenging optimization problem (embedded in
the simulator), which is discontinuous (from the cavitation effects of the pump-turbine machine
that incur unsafe operating zones), nonlinear (from the complex performance curves of the
unit), mixed-integer (to differentiate the pump-turbine-idle operation modes), which is subject
to uncertainties (e.g., on water inflows and market conditions). The formulation used in this
work can be found in [102].

94

BSP-EGO: a New Decomposition-based EGO

Figure 3.11: Topology of the UPHES unit on Maizeret site [102].

Quick literature review

With full model-based optimization, errors caused by the inherent modeling approximations
(typically, linearizations), required to ensure computational tractability of complex effects (i.e.
nonlinearwater levels within reservoirs, penstock head loss, and head-dependent pump/turbine
performance curves) may lead to infeasible solutions [141]. Relying instead on surrogatemodels
may provide an efficient and robust solution to this problem.

According to the two surveys of Taktak and D’Ambrosio [142], and Steeger, Barroso, and
Rebennack [143], this kind of management problem in electrical engineering is typically solved
using Mixed-Integer (Linear) Programming [150], dynamic programming [151], or nonlin-
ear programming [152]. Current techniques also involve metaheuristics such as GA [153] or
PSO [154]. However, we are not aware of any BOA or SBO approaches for the UPHES manage-
ment problem.

3.4.3 Experimental Setup

We investigate several parallel batch-based algorithms using different APs that have proven
their efficiency in the previous section and we compare the optimized average profit. Experi-
ments are conducted with different batch sizes to evaluate and compare the scalability of the
approaches in regard to the simulation time. The same protocol as already presented in Sub-
section 3.3.2 is adopted for this experiment to account for the time constraint of the application.
Indeed, the optimization must be conducted in a restricted time and, contrary to common as-
sumption, the acquisition time is not negligible compared to the simulation time. Consequently,
the acquisition time needs to be taken into account in order to perform an efficient optimiza-
tion. However, based on the previous results, the number of experiments is reduced to the best
performing approaches of Section 3.3.

95

Chapter 3

Objectives

Compared to the precedent benchmark analysis where we focus on the scalability and the batch
effectiveness, for the UPHES problem we are mainly interested in the performance of a method
in terms of the final outcome. Then, the main objective for the UPHES application is to iden-
tify the best strategy to optimize the expected profit regarding the given optimization context.
Unlike the benchmark functions, the UPHES simulator has a non-negligible cost. Hence, the
scalability of the method may vary. Given a 10-second simulation and a 20-minute budget, the
maximumnumber of cycles is 120. Assuming there is no cost for obtaining a batch of candidates,
the total number of simulations should be 120× ncores.

Experimental Protocol

The most promising algorithms from the 12d-benchmark analysis of Section 3.3 are TuRBO,
ℓBSP-EGO, MACE, and MIC-qEGO. Consequently, only these four algorithms are investigated
in the following, in their exact same settings. The UPHES simulator itself is implemented in
Matlab and the domain-specific RAO language. As the black-box UPHES simulator executable
requires a software license, experiments are performed on a single node of a university cluster,
preventing us from conducting the analysis on large batch sizes. The dedicated node includes 2
Intel(R) Xeon(R) CPU E5-2630 v3 2.40 GHz, with 8 cores each, limiting the batch size to q = 16.

Due to the responsive energymarket operational constraints, the optimizationmust be com-
pleted within tens of minutes. Hence, to remain consistent with the time constraints, the global
budget of each optimization run is chosen as a time budget of 20 minutes, without initial sam-
pling. According to usual recommendations in BO, a fraction of the budget is allocated to the
initial sampling. The initial sampling budget is set to 128 in accordance with the previous sec-
tion’s protocol. Experiments are performed for nbatch = 4, 8, 16, with the same initial sample
for any algorithm and batch size. Each run is performed 10 times to assess for the robustness
of the results.

In order to avoid too much case-specific conclusions, the choice is made to consider a fixed
time of 10 seconds for a simulation. Indeed, one execution of a simulation lasts for 9 to 10
seconds, and a non-negligible overhead results from parallel calls to the black-box simulator.
This overhead is only case-specific since the simulator resorts to RAO language, under the
form of an executable program which necessitates interfaces between programs not suited for
parallel computing. Therefore, the parallel overhead is independent of the parallel framework
and is only caused by the software-dependent simulator.

3.4.4 Results and Discussion

Presentation of the results

Results displayed in Figure 3.12, Figure 3.13, and Figure 3.14 present the average profit value
of the UPHES management problem according to the number of simulations performed by the

96

BSP-EGO: a New Decomposition-based EGO

algorithms. Dashed lines are added to indicate the standard deviation around the average ob-
jective value. Optimization runs are repeated 10 times with 10 different initial sets, and each
algorithm is run once with each initial set. Therefore, within each figure, each curve has the
same starting point.

Figure 3.12: Evolution of the best known profit according to the number of simulations. Plain
lines display the average profit while dashed-lines represent their standard deviation over the
10 repetitions.

Since the limiting factor is time, each execution of the optimization algorithms does not
perform the same number of cycles (and simulations). Consequently, the curves only display
the results for which all data are available, and the rest is truncated. Thereby, the final expected
profit is not always visible on the graphs. Nevertheless, the final results at the end of the time
budget are shown in Table 3.4. The table also presents the minimum, maximum, and standard
deviation of each set of optimizations, for all batch sizes and all approaches.

Analysis of the results

MIC-qEGO seems to be the best choice among the considered algorithms, for all budgets and
batch sizes. Indeed, Figure 3.12, Figure 3.13, and Figure 3.14 show a clear preference for MIC-
qEGO. The performances of TuRBO, MACE, and ℓBSP-EGO are quite similar since neither of
them is constantly better than the two others. However, MACE and TuRBO present a larger
standard deviation (indicated by the dashed lines on the graphs) which denotes very differ-
ent results obtained with the same algorithm. Table 3.4 shows the minimum and maximum
values obtained by MACE and TuRBO, where we can see a large amplitude between the two
extremes. ℓBSP-EGO seems more robust, except for q = 16. However, for the largest batch
size of this study, none of the methods achieves better performances compared to lower batch

97

Chapter 3

Figure 3.13: Evolution of the best known profit according to the number of simulations. Plain
lines display the average profit while dashed-lines represent their standard deviation over the
10 repetitions.

Figure 3.14: Evolution of the best known profit according to the number of simulations. Plain
lines display the average profit while dashed-lines represent their standard deviation over the
10 repetitions.

98

BSP-EGO: a New Decomposition-based EGO

Table 3.4: Minimum, maximum, average profit values (EUR) as well as standard deviation of the
UPHES management problem obtained with 10 runs of each method according to batch size.

nbatch = 4 min mean max sd

MIC-qEGO 196.74 592.24 1153.59 331.98

MACE -1528.30 68.72 1052.43 767.31
ℓBSP-EGO -442.72 72.28 940.33 459.83
TuRBO -1569.05 -327.57 1310.19 932.40

nbatch = 8

MIC-qEGO 113.33 802.80 1233.92 409.59
MACE -1579.85 -420.42 1139.53 764.48
ℓBSP-EGO -663.41 82.68 489.91 396.15

TuRBO -1225.09 -214.51 1358.43 872.61

nbatch = 16

MIC-qEGO -1252.78 119.35 876.98 724.00

MACE -2871.26 -708.70 573.27 1321.22
ℓBSP-EGO -2179.73 -310.76 475.36 825.06
TuRBO -1735.59 -542.88 336.86 765.86

sizes. Increasing the batch size from q = 4 to q = 8 improves the average expected profit for
all methods, except for MACE.

The number of simulations is higher for any algorithm when the batch size increases, as
indicated in Figure 3.15a. Nevertheless, according to Figure 3.15b, it always results in a loss in
terms of cycles. As the batch size increases, the data set size increases even faster, which results
in time-consuming surrogate modeling. The only exception is ℓBSP-EGO which operates on
local models and thus the learning time is not impacted. Nevertheless, the size of the data still
causes an overhead in the algorithm because the local models are fit using a distance-based
subset of points. The gain in terms of simulations is tempered by the loss in terms of cycles.
This implies that for an equivalent performance, the batch selectionmust be effective. However,
the results displayed in Table 3.4 indicate that going beyond q = 8 deteriorates the results for
all approaches.

The main difference between the UPHES problem and the benchmarks, despite their evident
different nature, is the presence of the time cost of the simulation. Obviously, this impacts the
number of simulations the algorithm can perform in 20 minutes and we can see that slow APs
are better in this context. Our publication [22] related to this section also used KB-qEGO and
BSP-EGO and reported the same conclusions: MIC-qEGO outperforms other methods.

99

Chapter 3

(a) (b)

Figure 3.15: Solid lines indicate the average over 10 runs, and dashed lines of same colors in-
dicate their standard deviation. (a) Number of simulations as a function of the batch size. (b)
Number of cycles as a function of the batch size.

Discussion

For the UPHES management problem, the final expected profit is considerably improved com-
pared to the initial sampling thanks to PBO. Even considering a large random sample of almost
12,000 objective function evaluations, the best-observed profit is around −1200 e. All investi-
gated BOAs achievemuch better profitswith significantly fewer simulations. This demonstrates
the need for efficient optimization algorithms for this application.

Using PBO in a time-restricted setting necessitates to take into account the increasing time
needed to fit a surrogate model and to optimize the AF. Our experiments have indeed shown
that there is a “breaking point” beyond which an increase in the batch size deteriorates perfor-
mance instead of adding value to the optimization process. The latter is also observed in the
benchmark analysis of Section 3.3. However, the time cost of the UPHES simulators induces
different behaviors. Concerning the UPHES management optimization, the “breaking point”
appears around q = 8 as the best performances for all investigated algorithms are obtained for
this batch size, and degrade afterward.

Conclusions and Future Research Directions

Four batch-acquisition BOAs are investigated in this study with the objective of identifying
the most suited approach for maximizing the profit of a UPHES operator. The profit is given
by a simulator computing the expected profit according to a set of decisions. The evaluation
of a decision (i.e., the simulation) lasts 10 seconds, and the optimization must be completed in
20 minutes (initial sampling excluded). These constraints place us in the context of black-box
optimization with a time-consuming simulator, except that the simulator is time-consuming
in regards to the time constraint. Therefore, unlike the classical BO assumption, learning and
acquisition times are not negligible.

100

BSP-EGO: a New Decomposition-based EGO

The study reveals that in this context, on benchmark problems as well as on the UPHES
management problem, resorting to large batch sizes and large parallelization quickly becomes
excessively time-consuming, worsening the performance of any BOA considered in this work.
The best trade-off lies between batch sizes of 4 and 8 and the best performances are achieved
by MIC-qEGO, our proposed variant of qEGO, which manages to find consistently good solu-
tions to the UPHES management problem. Accordingly, it appears as a viable way to approach
time-constrained applications despite the high overhead incurred by surrogate management.
However, making the most of parallel computing in this context remains challenging as the
best batch size is rather low.

Finally, regarding the robustness of the algorithms, the present study considers only one
scenario of UPHES management. For a better robustness of the conclusion, it would be inter-
esting to evaluate the performances of the algorithms on different scenarios.

3.5 Chapter’s Conclusions

PBO faces difficulties in scaling to larger batch sizes, and then to profit from the increased ca-
pacity of recent processors. On the one hand, the scalability in terms of number of simulations
in a dedicated time is hampered by the complexity of the APs. On the other hand, the batch
effectiveness is low: the batch acquisition is much less effective than the sequential one. Those
two factors contribute to the ineffectiveness of large-scale batched BO. In this chapter, we de-
veloped a new strategy that improves the scalability and batch effectiveness of PBO algorithms.
The approach leverages spatial decomposition of the design space and executes distinct sub-
APs in non-overlapping sub-regions. The different tasks induced by the space decomposition
allow the use of parallel computing inside the AP and offer another way to deal with the explo-
ration/exploitation trade-off. The distinct sub-regions ensure the diversity of the candidates,
while intensification is promoted as the optimization progresses by splitting the most promis-
ing sub-regions. Two algorithms are derived from it, namely BSP-EGO and ℓBSP-EGO. They
respectively use global and local surrogate modeling.

We first investigated benchmark functions in a 6-dimension space, where we observed con-
siderable improvement of the multi-infill or space partitioning (including trust regions) ap-
proaches compared to multi-point or approximation-based alternatives. More precisely, meth-
ods dealing with the design space (using decomposition or trust regions) seem to outperform
the others for most budgets. However, they favor intensification at the risk of being trapped
in local optima. Multi-infill approaches are less subject to being trapped, but also sometimes
lack intensification. This observation becomes even clearer when dealing with 12d-benchmark
functions, where intensification is usually preferred, due to the size of the design space. Thus,
locally-acting methods such as TuRBO and ℓBSP-EGO have consistently better performances.
Nevertheless, it is worth noting that the cooperative multi-infill algorithm, namely MACE,
scales well with the batch size and can compete with them for some problems, and MIC-qEGO
also punctually performs well. For instance, it is found to be the best algorithm for the UPHES
management problem, where the simulation time is not negligible, unlike for the benchmark
functions.

101

Chapter 3

More precisely regarding tree-based algorithms, the parallelization of the AP and the inten-
sification induced by the tree evolution manage to improve the optimization process compared
to the reference algorithms. However, as for most algorithms of this study, the number of sim-
ulations is strongly impacted by the remaining sequential part of the algorithms, which princi-
pally means the model fitting. The local modeling approach (i.e. ℓBSP-EGO) facilitates scaling
the parallelization to higher batch sizes since local searches only depend on a sub-model which
is much faster to train. The gain in terms of number of simulations is evident and grants better
outcomes in many situations. Consequently, the BSP paradigm offers a scalable framework for
PBO, which can easily be coupled with other AP strategies such as cooperative and competitive
sampling.

Indeed, the hybridization of the investigated strategiesmight be a suitable research direction
since the scalability and batch effectiveness remain limited. The observed results indicate that
for most algorithms, exceeding 8 candidates per batch does not yield better outcomes, except
for MACE and ℓBSP-EGO. Regarding exclusively the final outcome, a batch size of 8 or 16 is ad-
equate for all algorithms. Consequently, it might be preferable to runmany fast complementary
BO algorithms instead of a single one consuming the whole budget.

Considering only moderately time-consuming simulators, a fast operating AP allows the
algorithm to perform a lot more evaluations in the given time budget. As illustrated by the
good performances of ℓBSP-EGO on the benchmark functions, the fast AP is a strong advantage.
Nevertheless, this study does not take into account other SBO algorithms that could be suited
in this context, such as BNN-GA in Section 2.3. Furthermore, this analysis does not account
for the simulation time as the benchmark functions evaluation have a very low computational
cost. Actually, the best-suited strategy for a problem mostly depends on the computational cost
of the simulation. This should be connected to the computational budget and the computing
resources to be able to select the best algorithm.

102

Chapter 4

Bayesian versus/with Evolutionary Opti-
mization

4.1 Towards Time-Efficient Algorithms 106
4.1.1 Context and Motivations . 106
4.1.2 Surrogate-Assisted Evolutionary Optimization 107
4.1.3 The Investigated Algorithms 108

4.2 BOAs versus SAEAs . 111
4.2.1 Experimental Protocol . 111
4.2.2 Determination of the Threshold 114
4.2.3 Efficiency of the Acquisition Processes 117

4.3 Hybrid Methods Combining SAEA and BOA 119
4.3.1 Threshold-based Hybrid Algorithm 119
4.3.2 Validation Through Unseen Problems 121
4.3.3 Conclusions and Discussion 122

4.4 Opening to Higher Dimensional Problems 125
4.4.1 PHES Optimal Management Problem 126
4.4.2 Experimental Protocol . 127
4.4.3 Experimental Results . 127
4.4.4 Conclusion and Discussion 133

In the previous chapters, the objective functions are qualified as time-consuming to evalu-
ate. Informally, this means that the number of sequential evaluations in the dedicated time does
not exceed a few dozen. If the function evaluation requires human intervention or spending
money, one would certainly choose to minimize the number of calls to the objective function
and spend more time in the Acquisition Process (AP)1. However, this type of optimization prob-
lem is quite well addressed with sequential methods like Efficient Global Optimization (EGO)

1construct the best surrogate model and perform extensive search to optimize the Acquisition Function (AF)

103

Chapter 4

[1] and assimilated ones [9, 10, 56, 58, 59]. Our approach is more focused on objective functions
for which we have no limited number of queries, but rather a fixed time budget. The objective
is then to find an AP that can find an effective batch of candidates of arbitrary size within a
reasonable time. The study of Section 3.3 revealed very different per-cycle times among the in-
vestigated algorithms. But still, for most of them, the time per cycle grows fast, up to becoming
detrimental. Only local-model methods manage to keep a reasonable per-cycle time cost. We
have already come up to this breaking point in Chapter 2, that recent methods such as multi-
infill or partitioning strategies have only managed to push back. However, the previous study
does not take into account the time cost of a function evaluation. In addition, we observed
in Section 2.3, where BO was compared to SAO, that the relevance of certain classes of meth-
ods strongly depends on the budget in terms of a number of simulations, or a total wall time.
Consequently, in the following chapter, we investigate further the concept of time-consuming

by attributing a fictitious cost to the simulations and compare the BO approaches to recent
SAEAs.

In this chapter, we intend to better characterize what is a time-consuming simulator and
to relate the context of the optimization with the appropriate choice of algorithm. We define
the context as the combination of the budget in terms of wall time, the expensiveness of the
objective function, and the computational resources available for the optimization. With the
latter definition, we further investigate the notion of time-efficiency introduced in Section 3.3
that relates the time complexity of an algorithm with its performance for given time-stamps.
We conduct an extensive investigation involving the already studied BOAs which we challenge
with SAEAs and EAs to identify their domain of performance regarding the different contexts.
The proposed work reveals a threshold below which BOAs are to be favored. The threshold
is characterized by the theoretical upper bound of the number of simulations in a given time.
The definition of the theoretical upper bound allows us to assess the efficiency of each AP, with
respect to the expensiveness of the simulator. For a budget higher than this threshold range,
the BOAs are generally hampered by their execution time compared to SAEAs. The time cost
associated with the acquisition of candidates through a GP becomes too important and SAEAs
are preferred in this situation. (Surrogate-free) EAs and SAEAs showmuch better scalability re-
garding the number of simulations performed performed within a given time frame, and SAEAs
notably reduce the number of simulations compared to EAs for an equivalent outcome qual-
ity. The observed threshold helps practitioners to adequately choose or design time-efficient
algorithms. A hybrid algorithm is built upon the threshold range by simply switching from the
best-performing BOA of this study to the best SAEA. The hybrid algorithm shows to perform
well in a much wider range of contexts.

Using this hybrid algorithm, we tackle another electrical engineering problem related to
energy storage. The objective remains the optimal management of a pumped-hydro station,
except that the lower basin is not underground, contrary to Section 3.4.2. We will refer to this
problem as the PHES management problem. This optimization problem addresses the multi-
period day-ahead scheduling faced by PHES plant owners who participate in both the energy
and reserve markets (see Section 2.2). The main difference with the UPHES analogous is that
30 design variables are considered, and the simulation is much faster. However, the time cost
is still too high to efficiently solve the problem with classical metaheuristics such as EAs or
PSO. Consequently, approximations inside the simulator are generally conceded to speed up
the simulations and resort to exact methods. For instance, piecewise linear approximations

104

Bayesian versus/with Evolutionary Optimization

can be used for a MILP formulation [155]. We first challenge this approach by applying SBO
algorithms to the complex (and thus more reliable) simulator. In a second time, we propose a
multi-fidelity approach combining the guarantees offered by theMILP solver with the efficiency
of SBO algorithms. The simulator is scenario-based, which means that different scenarios of
the same problem can be used to assess the robustness of a method. For this study, 11 scenarios
are considered.

Higher dimensional spaces usually require a larger sampling and are more complex to tackle
with BO. In those spaces, the distance between the design points is rather large making the
correlation matrix inefficient in capturing the relation between samples [156, 157]. In addition,
AFs that are efficient in lower dimension spaces might not be in higher ones. Actually, it has
been observed that the predicted value of the model is a better AF than EI in certain cases
[124]. This aspect is partially approached with the PHES management problem which involves
30 design variables, but a lot remains to investigate in this area.

We first describe the investigated algorithms in Section 4.1 before analyzing them in Sec-
tion 4.2. The study results in the creation of a hybrid algorithm that is further described and
validated in Section 4.3. Finally, we challenge the best-performing algorithms through the PHES
management problem that involves 30 dimensions. Section 4.4 constitutes an opening to higher
dimensional problems which constitutes another big challenge in PBO.

The contributions of this chapter have been published in the following articles:

• In academic journals:

– Gobert, M., Briffoteaux, G., Gmys, J., Melab, N. & Tuyttens, D. Observations in Ap-
plying Bayesian versus Evolutionary approaches and their Hybrids in Parallel Time-
constrained Optimization, Currently under review in Engineering Applications of

Artificial Intelligence

– Favaro, P., Gobert, M. & Toubeau, J.-F. Multi-fidelity Optimization for Pumped Hy-
dro Energy Storage Participating in Energy and Reserve Markets, Currently under
review in Applied Energy

105

Chapter 4

4.1 Towards Time-Efficient Algorithms

The term time-consuming has been used many times along this manuscript without being really
characterized. In this section, we try to define more precisely what time-consuming means, and
what algorithms are the most suited regarding the simulation time and the available computa-
tional resources (i.e. the number of used processing units).

4.1.1 Context and Motivations

The choice of the category of methods according to the expensiveness of the problem at hand
is an important question whose answer will guide practitioners to best solve real-world en-
gineering problems and to design more successful SBO approaches. Classifying a problem as
computationally cheap, moderate, or expensive depends on the available time budget and the
available computational resources. In fact, a ten-second evaluation of the objective function
characterizes a moderately expensive problem when the optimization problem must be solved
in a short time budget, such as in the UPHES problem of Section 3.4.2. This situation is par-
ticularly faced when dealing with decision-making problems such as in the real-time energy
market [22, 26]. This aspect of time-constrained optimization is not often considered although
essential in many areas [158].

In the time-constrained context, it is also important to control the time cost of other opera-
tions involved in the optimization process, namely the surrogate training and the acquisition of
new candidate solutions. This study investigates the existence of a threshold from which BOAs
are more efficient than SAEAs. The threshold is identified according to the available compu-
tational power and the time cost of the objective function by performing intensive numerical
experiments on the CEC2015 test suite designed for expensive black-box optimization prob-
lems. The study includes both surrogate-free and surrogate-based approaches to extract more
general guidelines.

Even though GPs are said to be non-parametric, the efficient implementation of the BOAs
rests on several hyper-parameters. This makes the comparison difficult since the implementa-
tions of the model (hyper-parameters and fitting budget), the AF, the inner-optimizer and its
budget, the benchmark functions (different versions, domains, dimensions, etc.) are all choices
that impact the performances of the method. A recent paper from Le Riche and Picheny [159]
reports that BO is not often compared to widely different alternatives. In addition, the bench-
marks are restricted, which makes the comparison difficult. Similarly to our previous remark,
they raise the point that implementation may vary across the different studies, possibly result-
ing in different conclusions, making it difficult to build recommendations.

As a partial response to the raised issues, we propose a non-usual benchmarking procedure
that takes into account the simulation time and the batch size, and fixes the budget as a wall
clock time. We compare the most efficient algorithms of the previous chapter, and supplement
the test-bed by the conceptually different SAEAs. For more detailed explanations on BOAs and
SAEAs, see Sub-section 1.1.2. The study is conducted on a large set of functions, in different
contexts defined by the computational cost of an evaluation and the available computational
power. This type of method is already used in Section 2.3 to tackle the tuberculosis transmission

106

Bayesian versus/with Evolutionary Optimization

control problem. According to the attributed computational budget, three classes of algorithms
are available and investigated in this study: BOA, SAEA, and (Surrogate-free) EAs. A large set of
benchmark functions and engineering applications are considered with various computational
budgets to come up with guidelines for the choice between the three categories. According
to the computational expensiveness of the objective functions and the number of processing
cores, we identify a threshold from which SAEAs should be preferred to BOAs. Based on this
threshold, we derive a new hybrid Bayesian/Evolutionary algorithm that allows one to tackle a
wide range of problems without prior knowledge of their characteristics.

4.1.2 Surrogate-Assisted Evolutionary Optimization

Both SAEAs and BOAs rely on surrogate models to assist the optimization. However, the core
element is slightly different. Following the descriptions of Section 1.1.2, SAEAs are SAO al-
gorithms relying on evolutionary optimization and using surrogate models to either filter out
or evaluate candidates. In contrast, BOAs use the model to construct an oracle that evalu-
ates the promisingness of a candidate. Maximizing the latter samples the points to evaluate
next. However, the surrogate modeling and the selection of candidates can become excessively
time-consuming or less efficient. This partially explains why SAEAs are preferred to BOAs for
optimizing less expensive objective functions [20].

More precisely, SAEAs differ from BOAs by the fact that the acquisition of new candi-
dates does not rely on the optimization of the AF but rather on evolutionary operators such
as crossover and mutation in a Genetic Algorithm (GA)[160] or the velocity and position up-
dates in a Particle Swarm Optimization (PSO) [161]. The surrogate model intervenes in the
evolution to screen out and/or evaluate new solutions through the Evolution Control (EC). The
EC is similar to the AF as it points out the most promising new candidates [162–164].

Evolutionary Algorithms

The standard EA is described in Algorithm 3, on page 48. The population size psize is a critical
parameter impacting the trade-off between exploration and exploitation. Large populations
tend to favor exploration and smaller populations promote exploitation [165]. Even if EAs are
applied successfully to a large variety of real-world problems [104–106], they require a large
number of objective function evaluations to converge. To bypass this weakness preventing
the applicability to simulation-based real-world problems, parallel computing, and surrogate
modeling are leveraged via the definition of an EC [19].

Evolution Control

Inserted between the production of offspring and their evaluation, the EC aims at distinguishing
the most promising ones [166, 167]. The criterion defining the promisingness is a comparison
operator based on the surrogate prediction and/or predictive uncertainty [19]. On the one hand,
the surrogate can be used as a filter to discard unpromising candidates while the remaining
offspring are evaluated by the objective function f . On the other hand, the surrogate can also be

107

Chapter 4

used as an evaluator in place of f . In doing so, the population may embed predicted individuals.
Let’s denote as noff the number of offspring issued per generation. The population of noff

offspring is split into three sub-populations ofnsim, npred, andndisc individuals respectively. The
first sub-population containing the most promising candidates is evaluated with f , the second
sub-population composed of moderately promising candidates is evaluated by the surrogate
model, and the less promising candidates are discarded. An EC is defined by the promisingness
comparison operator and the values for nsim, npred and ndisc under the following condition:
nsim+npred+ndisc = noff . The promisingness comparison operator can be defined using only
the surrogate model’s prediction or using a trade-off between the prediction and the predictive
uncertainty. In the first case, a lower prediction indicates a better promise, while in the second
case, the offspring with high predictive uncertainty are also considered promising. The second
operator category acts similarly to the AF in BOAs.

4.1.3 The Investigated Algorithms

The competing algorithms are categorized into three groups following the previous descrip-
tions: BOAs, SAEAs, and EAs. For each newly introduced algorithm, a succinct description is
given along with its associated reference publication.

Bayesian Optimization Algorithms

The BOAs investigated in this comparative study are TuRBO [18], MIC-qEGO [22], BSP-EGO
[27], ℓBSP-EGO [123], MACE [75], and ϵ-Shotgun [77]. Except for ϵ-Shotgun, all the BOAs are
described in Chapter 3.

The selected BOAs all possess distinct features that have been introduced to tackle the lim-
itations of standard sequential BOAs. They are chosen among recent methods outperforming
classical parallel BOAs (such as q-EI-based methods) that present interesting features for our
study such as the local APs, parallel acquisition of the candidates, or multi-criteria APs. Conse-
quently, we expect to observe different behaviors of BOAs depending on the contexts considered
in the experimental section (see Section 4.2).

First, it is often difficult to identify the best AF, both MACE and MIC-qEGO propose to
use simultaneously several AFs. Second, the acquisition strategy might be time-consuming,
therefore, MIC-qEGO, BSP-EGO and ℓBSP-EGO offer the possibility to make the acquisition
parallel. The GP variance is known to be sometimes unreliable which often results in over-
exploring the search space [124], especially when the dimension is relatively high. TuRBO and
BSP-based methods make use of spatial decomposition to increase the intensification as the
optimization advances. Finally, ϵ-Shotgun is the only new BOA of this section. It uses another
strategy to avoid the expensive optimization, it finds the best candidates by optimizing one AF
and samples around it.

ϵ-Shotgun:
The ϵ-Shotgun algorithm [77] uses an ϵ-greedy strategy: with probability 1− ϵ the AF is used
to identify the first candidate of the batch xb1; else, xb1 is randomly sampled. The novelty

108

Bayesian versus/with Evolutionary Optimization

of ϵ-shotgun lies in the selection of the remaining candidates to complete the batch. They
are sampled according to a normal distribution centered at xb1 with the standard deviation
computed as follows: r = |pred(xb1)−miny|

L
− σ(xb1)

L
, withL the local estimated Lipschitz constant.

L is estimated within a hypercube centered in xb1 with side lengths of twice the length scale of
the GP kernel. The algorithm is investigated on both real-world and synthetic problems from
1 to 10 dimension(s) and batch sizes from 2 to 20.

Surrogate-free Evolutionary Algorithms

The selected EAs for this study are the GA and the PSO algorithms.

Genetic Algorithms:

We use a GA where the selection of parents is based on the fitness of the individuals. In order
to produce the offspring solutions, the crossover and mutation reproduction operators are em-
ployed. The crossover combines features of the parents while the mutation introduces small
random perturbations. The replacement step is elitist, this means only the best-fitted individ-
uals are kept for the next generation. The GA uses a tournament selection, a simulated binary
crossover and a polynomial mutation as advised in [32]. Two variants of this GA are consid-
ered by setting the size of the population to either 32 or 64, thus providing different trade-offs
between exploration and exploitation. In the following, these variants are denoted GA32 and
GA64 respectively.

Particle Swarm Optimization:

In the PSO algorithm, the population is a swarm of particles evolving in the search space Ω.
The evolution of the swarm follows the three standard steps of the EAs. The selection step
consists in determining the best neighbor of each particle. The production of new candidates
relies on the current position of the particle, on the best neighbor, on the best solutions of the
swarm, and on the personal best position of the particle. The generation of offspring also implies
to update velocities and positions through formulas that can be compared with reproduction
operators in GAs. The replacement is mandatory in a PSO algorithm as each new position of
the particle replaces the previous one in the swarm. However, a memory is maintained to keep
each best position of the particle occupied so far. The considered PSO uses the constriction
method to update the velocities [168, 169] and the absorbent walls strategy to ensure that the
new particles always stay within the box-constrained domain Ω [170]. The neighborhood is
global so that all particles are connected to each other which favors exploitation as the best
neighbor corresponds to the best individual of the swarm. Consistently with the GAs, the PSO
algorithm is also proposed with the two population sizes and named PSO32 and PSO64 in the
following.

Surrogate-Assisted Evolutionary Algorithms

The investigated SAEAs use the GA and PSO algorithms, with two distinct strategies to inte-
grate the surrogate model: namely Surrogate as a Filter (SaaF), also known as indirect fitness
replacement [163], and Surrogate as an Evaluator and a Filter (SaaEF) mixing direct and indirect
fitness replacement.

109

Chapter 4

Surrogate-Assisted Genetic Algorithms:

In the Surrogate-Assisted Genetic Algorithm (SAGA) [171], the number of offspring produced
at each generation exceeds the population size so that the EC only retains the most promising
ones. To enhance diversification and give the reproduction operators a better opportunity to
propose interesting candidates, multiple crossover and mutation operators are employed. In
SAGA-SaaF, the surrogate model is only used as a filter to discard solutions considered un-
promising by the EC. The offspring are produced by employing two different crossover and
mutation operators, namely simulated binary and 2-point crossover, and polynomial and Gaus-
sian mutation. Using the second version named SAGA-SaaEF, by using the surrogate to eval-
uate offspring solutions, predicted individuals may appear in the population. The offspring
produced per generation are split into three sets: ndisc are discarded, nsim are simulated and
npred are only predicted before undergoing replacement. SAGA-SaaEF uses simulated binary
and 2-point crossover as well as the polynomial mutation.

Surrogate-Assisted Particle Swarm Optimization:

In Surrogate-Assisted Particle Swarm Optimization (SAPSO) [171], multiple new positions are
proposed for each particle at each iteration but only one position is retained per particle ac-
cording to the EC. Multiple neighborhoods and formulas for velocity and position updates are
leveraged to increase the chance of producing good new candidates. As for SAGA, the SAPSO
is proposed with the SaaF and SaaEF variants. In SAPSO-SaaF, the new particles are obtained
by invoking two formulas for velocity updates: the constriction and the inertia. Two types of
neighborhoods are also considered to determine the local best particle: in the first one, all the
particles are connected while the second one consists of 8 clusters inter-connected via one tie
only. In SAPSO-SaaEF, similarly to SAGA-SaaEF, the offspring are split into three categories:
simulated, predicted, and discarded. The constriction and inertia formulas are applied using the
fully connected neighborhood.

In all the SAEAs, the promisingness comparison operator varies during the search. During
the first half of the search, exploration is promoted as the more distant an offspring is from the
set of all previously simulated candidates, the more promising it is. During the second part of
the search, offspring with low predicted objective values are promoted to improve exploitation.
This strategy has been shown to perform well in SAGA-SaaF and SAGA-SaaEF [172] and it is
extended to SAPSO-SaaEF and SAPSO-SaaF in this study.

GA and PSO are considered in this work as they have been applied to a large range of
real-world problems [32]. They offer different operators to evolve the population, resulting in
different paths across the search space [173, 174]. The social interactions in the population
are primordial in PSO while the GA focuses more on global elitism. Integrating the surrogate
model as a filter in the evolution allows more possibility to the reproduction to come up with
interesting candidates [171]. An inaccurate surrogate would erroneously discard promising
candidates but the reproduction operators should be able to recover the right search path be-
cause the population is only composed of simulated solutions. Integrating the surrogate as an
evaluator to replace the objective function is more error-prone as the population can embed
predicted individuals. However, the computational budget is preserved [163].

110

Bayesian versus/with Evolutionary Optimization

A Hybrid Algorithm Combining SAEA and BOA

In this work, we introduce a way to build a hybrid algorithm based on the expected threshold
from which the SAEAs perform better than the BOAs. The basic idea of this hybrid algorithm is
to use a BOA to initiate the optimization process and continue with a SAEAwhen the efficiency
of the BOA starts to drop. The initial population of the SAEA is formed with the last queries
from the BOA. The hybrid algorithm is then defined by a BOA, the threshold, and a SAEA. They
will be chosen in the following based on the performances of the investigated algorithms.

4.2 BOAs versus SAEAs

A fair comparison of the different classes of algorithms is difficult since they are not usually
employed to tackle the same problems. BOAs are often used to tackle the optimization of time-
consuming simulators and their budget is limited to a few hundred evaluations at most. How-
ever, we have seen that BO can be used in other contexts such as time-constrained optimization.
In such context, the simulation is not the only time-consuming part of the algorithm and it is
important to handle it. SAEAs are less sample-efficient but operate a lot more rapidly with a
much better scalability. The proposed protocol is designed to establish the frontier of suitabil-
ity between BOAs and SAEAs in regard to the computational cost of an evaluation, and the
available computing resources.

4.2.1 Experimental Protocol

Implementation and Calibration

For all the SBO algorithms described in the previous section, a GP is selected as the surrogate
model. The trend is assumed constant but unknown, the covariance kernel follows the Matérn
5
2
model and is fitted through MLE. Those parameters are identified from previous works and

literature as good default choices [7, 97]. The surrogate models are built usingGPyTorch [96].

In the BOAs, the training set is composed of all the available data, except for ℓBSP-EGO
where nlearn needs to be calibrated, while it is restricted to the last 96 simulations in the case
of the SAEAs. Indeed, in SAEAs, the EA drives the search towards promising regions. By
restricting the training set to the last evaluations, we expect the surrogate to adapt to the last
identified regions while saving computational budget by limiting the costs of surrogate training.
All BOAs use the BOTorch [97] library in addition to GPyTorch.

TuRBO2, MACE3, and ϵ-Shotgun4 implementation information are available in their respec-
tive GitHub repositories. MIC-qEGO, gBSP-EGO, and ℓBSP-EGO are original implementations5
based on the same libraries. In ℓBSP-EGO, the number of leaves of the binary tree and the

2https://botorch.org/tutorials/turbo_1
3https://github.com/Alaya-in-Matrix/py\acrshort{mace}
4https://github.com/georgedeath/eshotgun
5Available in https://github.com/MaGbrt/pySBO.git

111

https://botorch.org/tutorials/turbo_1
https://github.com/Alaya-in-Matrix/py\acrshort {mace}
https://github.com/georgedeath/eshotgun
https://github.com/MaGbrt/pySBO.git

Chapter 4

training set size for the local models are set from prior experiments to nlearn = min(128; |D|)
and nleaves = 2 × q. The calibration of ℓBSP-EGO allows a fast training of the local models
while ensuring local accuracy. Regarding the number of leaves, having nleaves proportional to
q is important to balance the parallel workload and to select a subset of candidates avoiding
not worthy ones. The ϵ parameter in ϵ-Shotgun is set to 0.1 in accordance with the original
work [77].

Both the EAs and SAEAs are implemented using the pySBO6 Python platform [134]. The
GA is tuned according to the recommendations provided in [32], namely a tournament selection
of size 2, a simulated binary crossover with probability 0.9 and distribution index 2, and a
polynomial mutation with probability 0.1 and distribution index 20. The PSO is calibrated
according to both preliminary experiments and guidance from the literature. The constriction
method is used with parameters c1 = c2 = 2.05 and κ = 0.5.

In the SaaF version of SAGA and Surrogate-Assisted Particle Swarm Optimization (SAPSO),
the population size is set to psize = 32. The number of offspring produced per generation is
set to noff = 128 among which nsim = 32 are simulated and ndisc = 96 are discarded. In the
second version, referred to with the SaaEF suffix, the population size is set to psize = 64. The
algorithms still produce noff = 128 offspring per generation among which ndisc = 64 ones are
discarded, nsim = 32 ones are simulated, and npred = 32 ones are predicted.

The way to fit the GP model can be seen as a hyper-parameter as well since it is an im-
plementation choice. An identical routine is used for all methods, except that SAEAs use an
early stopping criterion which results in a very fast learning of the GP model necessary to be
integrated into the SAEA framework. It is observed in [19] that it can be counterproductive to
accurately train GP model as it strongly impacts the number of performed simulations when
the time frame is limited. On the contrary, more time is dedicated to the model fitting in BOAs
since it is not used simply as a filter but as an oracle to select the candidates, which justifies the
training of more accurate models.

The parallel implementation is handled with MPI for Python, MPI4Py [175].

Protocol and Objectives

This protocol is designed to estimate the budget range in terms of number of simulations where
BOAs and SAEAs are the most efficient. We expect to observe a threshold that will guide the
choice of the appropriate category of algorithm and to design hybrid algorithms. Ideally, this
threshold is determined for each problem. However, in this study, we aim at providing a generic
threshold that can be refined afterward if needed for more precise purposes.

To account for the acquisition time of the different methods, the global budget is defined as a
limited wall-clock time. We set up several experimental settings defined by the simulation time
tsim and the number of used computing cores ncores. Each (tsim, ncores) pair is representative
of a scenario the user can face. This set of objective functions is chosen large enough to be
representative of various difficulties relative to the landscape of the function, such as multi-
modality.

6https://github.com/GuillaumeBriffoteaux/pySBO

112

https://github.com/GuillaumeBriffoteaux/pySBO

Bayesian versus/with Evolutionary Optimization

The numerical comparison includes 18 benchmark functions of 10 decision variables each,
optimized with the 15 algorithms presented in the previous sections. The benchmark consists
of 15 functions defined in CEC2015 [176] and 3 additional problems including Alpine 02 and
two custom functions. This set of functions is a subset of CEC2014 [177], whose functions are
implemented in Pygmo2 [120]. For the sake of clarity and consistency with the names of func-
tions in Pygmo2, each of them is referred to with its CEC2014 identifier CEC2014_i, where
i ∈ {2, 3, 6, 11, 12, 13, 14, 15, 16, 17, 19, 22, 23, 25, 27}. We supplement the benchmark with
the highly multi-modal Alpine 02 problem, defined in [178] and already used in Chapter 3. In
addition, we build two additional artificial problems that we define according to the hybrid and
composition construction schemes of CEC2014 [177]. The first custom problem is called Hy-
brid_AW and is obtained by hybridization of the Alpine 02 and the Weierstrass functions. The
second custom function is denoted by Composition_AS and is generated via the composition
of the Alpine 02 and the Schwefel functions. The Alpine 02, Hybrid_AW and Composition_AS
functions are also available in the pySBO GitHub repository.

The computational budget for one search is set to 20 minutes on different numbers of avail-
able CPU cores ncores ∈ {2, 4, 8, 16, 32}. Since the benchmark functions have negligible time
cost, we add an artificial cost of tsim seconds each time we evaluate a solution on a single core.
We assume that the evaluation time is constant so that the synchronous parallel evaluation of
ncores candidates also takes tsim seconds. This allows one to study the impact of the evaluation
time on the number of iterations or generations by artificially increasing tsim a posteriori. The
considered values for tsim are {5, 15, 30, 60} seconds.

The optimization runs are repeated 10 times on each benchmark function. For each repeti-
tion, the initial sampling of 96 points is the same across the algorithms. With the 18 functions,
each algorithm is evaluated based on 180 executions. All the experiments are realized on the
samemachine featuring Intel Xeon Gold 5220 CPU and stemming from the Grid5000 infrastruc-
ture for distributed computing [5]. The global experimental plan represents a total of 13, 500
distinct optimization exercises.

Significance of the results

The 15 algorithms are compared for each (tsim, ncores) pair by computing the Friedman’s test
rank. For each of the 18 benchmark functions, the methods are ranked from best to worst
based on the average outcome of the 10 repetitions. Finally, the ranks are averaged to give the
Friedman’s rank displayed in Table 4.1. A gradient from blue to white is applied to the table to
be more visually readable. The lower ranks indicate a better performance and are highlighted
by a blue background while the higher ranks indicate a lesser efficiency. For each (tsim, ncores)
pair and a fixed budget of 20 minutes, we associate the theoretical upper bound of function
evaluations, denoted ρ, which is reached if the query for new candidates has no cost (e.g., pure
random search). For instance, our 20-minute budget allows a maximum of ρ = 40 simulations
if tsim = 60 and ncores = 2.

Based on the rank of each algorithm, we can assess the significance of the difference between
the outcomes of the algorithms by performing the Friedman’s Two-way Analysis of Variance,
and the post-hoc pairwise Friedman’s test [179]. Figure 4.1 displays the results of the pairwise
tests. If the presented p-value is significant (< 0.1), the cell background is colored in blue

113

Chapter 4

shades. Darker colors indicate higher significance. In addition, in case of a significant difference
between the two algorithms, an arrow indicates which one is to be preferred.

Both Table 4.1 and Figure 4.1 contain the results of the hybrid algorithm (namely TuRBO-
SAGA) so that it is easily comparable with the other algorithms. However, the it will be analyzed
after the determination of both the threshold and the best performing algorithms.

4.2.2 Determination of the Threshold

We define the threshold as the budget range from which BOAs face a drop of efficiency while
SAEAs begin to compete with BOAs in terms of optimization outcomes. The characterization of
the latter helps practitioners to efficiently choose the suitable family of algorithms. In Table 4.1,
for each (tsim, ncores) pair, we observe different ranks. The significance of the differences is
confirmed by the Friedman’s Test (Two Way Analysis of Variance by Ranks) for which the p-
value is far smaller than 0.01. The p-values of the pairwise comparisons shown in Figure 4.1
clarify the differences.

More precisely, in Table 4.1, we observe a loss in the performance of the BOAs when the
budget increases. Indeed, most of the blue shaded cells can be observed for BOAs for ncores = 2
while clearer and white cells appear progressively until representing the majority of cells for
ncores = 32. Conversely, an improvement of the rank is to be noted for EAs and SAEAswhen the
budget increases as the cells’ color tends towards darker blue as ncores increases. These obser-
vations are similar for any fixed value of ncores, with decreasing tsim. In both cases, increasing
ncores or reducing tsim means a budget increase which translates into a loss of performance
from the BOAs compared to EAs and SAEAs.

In Table 4.1, the best-performing BOA is TuRBO and the best SAEA is SAGA-SaaF. Regard-
ing the p-values of the pairwise comparisons displayed in Figure 4.1, we observe a significant
advantage for BOAs, and particularly TuRBO for budgets smaller than (tsim, ncores) = (15, 2),
(15, 4), (15, 8), (60, 16) and (60, 32), which indicates a shift when the budget approaches 640
maximum simulations (i.e. ρ = 640). A clear advantage is visible for any BOA when the budget
is smaller than 160 and TuRBO extends the statistical dominance of BO up to 320 simulations.
Despite a better average performance of TuRBO on higher budgets (e.g., (tsim, ncores) = (5, 2),
(15, 4), (15, 8), (30, 16) and (60, 32)) the confidence provided by the rank test results shown in
Figure 4.1 is not always sufficient to assert the dominance (pval > 5%). The lower confidence is
often due to the SAGA-SaaF algorithm that achieves good performances, often similar or better
than most BOAs except TuRBO as soon as the budget exceeds 640 simulations (see Table 4.1).
For higher ρ, ℓBSP-EGO shows advantages compared to TuRBO, however, it coincides with the
better performances of evolutionary approaches. A transition to SAGA-SaaF seems to occur
when the budget exceeds (tsim, ncores) = (5, 4), (5, 8), (15, 16), and (30, 32) representing an
upper bound of 960, 1920, 1280, and 1280 simulations respectively. Nevertheless, the advan-
tage of SAEAs and more precisely SAGA-SaaF is significant over the BOAs and TuRBO only
for (tsim = 5, ncores ≥ 4) and (tsim = 15, ncores ≥ 16) which means a minimum of 960 sim-
ulations. One can also note that the SAEAs and mainly SAGA-SaaF remain very efficient for
budgets of a few thousands of simulations. In addition, we do not observe any context where
EAs are consistently outperforming SAEAs.

114

Bayesian versus/with Evolutionary Optimization

Figure 4.1: p-values of the pairwise comparison post-hoc Friedman’s rank test
Low values indicate statistically significant differences, and are highlighted by the color scale.
In case of p-value < 0.1, an arrow indicates the direction of the algorithm outperforming the
other.

115

Chapter 4

Table 4.1: Friedman’s rank of the algorithms in relation to ncores and tsim.
Lower values indicate a better performance of the algorithm and are highlighted by a darker cell
background. ρ indicates the maximum number of simulations possible within a fixed budget of
20 minutes using ncores processing cores for a simulation lasting tsim seconds.

Class BOAs EAs SAEAs Hybrid

M
et
ho

d

ρ Tu
RB

O

M
IC
-q
EG

O

g
BS

P-
EG

O

ℓB
SP

-E
GO

M
AC

E

ϵ-
Sh

ot
gu

n

GA
32

GA
64

PS
O
32

PS
O
64

SA
GA

-S
aa
F3
2

SA
GA

-S
aa
EF

64

SA
PS

O
-S
aa
F3
2

SA
PS

O
-S
aa
EF

64

Tu
RB

O
-S
AG

A

ncores tsim

2 60 40 2.67 6.78 5.78 3.94 5.22 5.61 8.94 14.00 7.78 15.00 9.17 10.78 11.22 9.17 3.94
30 80 2.06 7.50 6.94 4.50 5.28 6.89 9.22 11.61 8.33 10.94 10.00 11.78 12.28 10.17 2.50
15 160 1.78 8.17 7.61 4.83 6.17 6.72 9.22 11.94 8.67 9.94 8.78 11.11 12.67 10.06 2.33
5 480 3.78 10.83 9.78 5.67 7.67 7.67 6.61 10.39 7.94 9.78 5.00 8.17 11.89 10.50 4.33

4 60 80 2.61 6.00 6.94 4.61 6.17 7.11 8.33 11.78 7.72 11.28 9.67 12.11 12.67 9.89 3.11
30 160 1.83 7.11 7.61 5.33 6.39 7.11 8.06 11.50 7.28 11.00 8.89 12.06 13.61 9.83 2.39
15 320 2.56 7.94 8.72 5.33 6.83 7.61 7.56 11.67 6.94 10.89 7.00 10.17 13.89 9.56 3.33
5 960 5.94 10.33 11.61 6.56 8.00 9.61 5.11 7.94 8.94 10.28 3.11 7.06 10.89 9.11 5.50

8 60 160 2.72 6.28 7.17 4.50 6.61 8.11 8.56 12.33 7.89 10.67 8.78 11.83 13.28 9.50 1.78
30 320 2.78 7.39 7.61 4.89 6.50 8.89 7.00 11.78 7.50 10.67 7.89 11.06 13.61 10.22 2.22
15 640 4.00 9.22 8.78 5.83 7.17 9.11 5.44 10.17 8.44 10.22 5.67 8.94 13.11 10.33 3.56
5 1920 7.67 10.94 11.39 6.50 9.11 11.28 5.78 5.33 11.11 10.33 3.50 6.83 8.44 8.67 3.11

16 60 320 3.11 8.50 8.00 5.22 5.39 8.44 6.89 11.78 7.22 11.06 7.72 10.44 13.06 10.61 2.56
30 640 4.61 10.39 9.33 5.50 5.83 9.39 5.39 9.94 7.94 9.33 5.89 9.11 13.61 9.50 4.22
15 1280 6.67 11.72 10.39 6.56 7.11 10.56 4.72 6.67 9.67 8.72 3.72 7.28 13.33 8.61 4.28
5 3840 9.06 12.44 11.89 6.78 8.61 11.94 5.61 4.11 11.06 9.28 3.72 6.39 7.17 8.44 3.50

32 60 640 3.44 10.61 9.89 6.22 6.28 9.72 5.72 10.50 8.00 9.22 5.89 9.56 13.22 8.17 3.56
30 1280 4.83 11.83 11.22 6.17 7.11 10.28 4.78 6.94 9.83 8.78 4.56 8.17 13.28 8.06 4.17
15 2560 6.72 12.28 11.78 6.89 7.94 11.06 5.56 5.28 10.28 8.89 3.06 6.89 12.72 7.44 3.22
5 7680 7.83 12.89 12.67 6.67 8.61 11.94 6.00 5.28 11.39 9.67 3.33 5.89 6.89 7.83 3.11

Among the EAs, it is clear through Table 4.1 that a small population, enhancing intensifi-
cation, is preferred when dealing with very limited budgets as those with ncores = 2. Actually,
for such budgets, exploitation is to be favored. The suitability of larger populations arises when
the budget increases as shows the rank of GA64 for tsim ⩽ 15 and ncores ⩾ 16.

Within the BOAs, some differences are also observed. Clearly, TuRBO outperforms the five
others in most cases, except for larger budgets where ℓBSP-EGO shows its interest. The good
average performance of TuRBO can be explained by the local AP performed in a specific sub-
region. This also explains the good performance of ℓBSP-EGO in comparison with MACE, MIC-
qEGO, gBSP-EGO, and ϵ-Shotgun, whose performances are generally close. Similarly to TuRBO,
ℓBSP-EGO intends to focus on promising sub-regions as the budget fades, which seems to be a
profitable strategy. The MACE acquisition strategy that consists in finding a trade-off between
several AFs also seems to perform well for small to moderate budgets (ρ ≤ 640). The MACE
algorithm seems to efficiently use an increased batch size since its performances do not drop
when ncores increases, contrary to other BOAs, except TuRBO. Resorting to complementary AFs

116

Bayesian versus/with Evolutionary Optimization

seems beneficial, especially for large batches. In comparison with the benchmark analysis of
Section 3.3, we clearly see the impact of the number of simulations here.

Table 4.2 provides a concise summary of Table 4.1, showing for each (tsim, ncores) pair the
best method to use among BO, EA, and SAEA. Bold font indicates a statistical dominance of at
least one algorithm of the dominant class compared to all the algorithms of other classes. The
threshold from which switching from BOAs to SAEAs consequently lies between 640 and 960
expected simulations.

Table 4.2: Recommendation of the method according to tsim and ncores, and their equivalent
in terms of maximum expected simulations (ρ, in parenthesis). Bold font indicates a stronger
confidence (low p-value) in the results.

tsim / ncores 2 4 8 16 32

60 BO (40) BO (80) BO (160) BO (320) BO (640)
30 BO (80) BO (160) BO (320) BO (640) SAEA (1280)
15 BO (160) BO (320) BO (640) SAEA (1280) SAEA (2560)
5 BO (480) SAEA (960) SAEA (1920) SAEA (3840) SAEA (7680)

4.2.3 Efficiency of the Acquisition Processes

In order to assess the parallel efficiency of the algorithms, we observe the number of performed
simulations for each algorithm. We report in Table 4.3 the ratio between the average number of
simulations (over the 10 repetitions of all the benchmark functions), and the theoretical upper
bound of number of simulations (ρ). It allows the estimation of the proportion of the time
budget spent in the acquisition of the candidates compared to the time spent in simulations.
Hence, it represents the scalability. However, it is not entirely reliable since the landscape
of the benchmark functions may influence the number of simulations, mainly because of the
different learning times of the surrogate model. In Table 4.3, we can see that the scalability of
BOAs is strongly impacted by the increase of ρ. The displayed ratio radically falls down when
approaching ρ = 1000, indicating a time-consuming AP and surrogate fitting for all BOAs.
On the contrary, EAs and SAEAs achieve excellent scalability, except for very low batch sizes.
Indeed, when the remaining budget is not sufficient to execute a new generation, the algorithm
is stopped prematurely. This explains why GA64 and PSO64 cannot perform a single generation
when ρ = 40.

However, the scalability must also take into account the effectiveness of the APs when
increasing the batch size. Then, we relate the quality of the final outcome with the number
of simulations. In other terms, does the algorithm benefit from the parallel execution of large
batches of simulations, or is it preferable to perform more iterations with smaller batches? This
was previously referred to as the batch effectiveness.

117

Chapter 4

Table 4.3: Efficiency of the algorithms in terms of number of simulations.
The ratio between the averaged number of simulations over all the test problems and its theo-
retical maximum ρ is close to 1 (dark background) if most of the time budget of the algorithm
is spent in simulations.

Class BOAs EAs SAEAs Hybrid

M
et
ho

d

ρ Tu
RB

O

M
IC
-q
EG

O

g
BS

P-
EG

O

ℓB
SP

-E
GO

M
AC

E

ϵ-
Sh

ot
gu

n

GA
32

GA
64

PS
O
32

PS
O
64

SA
GA

-S
aa
F3
2

SA
GA

-S
aa
EF

64

SA
PS

O
-S
aa
F3
2

SA
PS

O
-S
aa
EF

64

Tu
RB

O
-S
AG

A

ncores tsim

2 60 40 0.95 0.95 0.95 0.95 0.85 0.95 0.80 0.00 0.80 0.00 0.80 0.80 0.80 0.80 0.95
30 80 0.93 0.93 0.93 0.96 0.77 0.91 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.93
15 160 0.88 0.87 0.87 0.93 0.63 0.84 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.87
5 480 0.62 0.60 0.60 0.82 0.35 0.56 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.59

4 60 80 0.94 0.93 0.94 0.95 0.87 0.95 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.95
30 160 0.91 0.89 0.90 0.95 0.79 0.89 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.92
15 320 0.82 0.77 0.78 0.92 0.64 0.78 0.90 0.80 0.90 0.80 0.90 0.90 0.90 0.90 0.82
5 960 0.46 0.42 0.43 0.79 0.33 0.43 0.97 0.93 0.97 0.93 0.97 0.96 0.97 0.97 0.71

8 60 160 0.92 0.88 0.92 0.95 0.88 0.92 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.94
30 320 0.86 0.78 0.85 0.94 0.78 0.85 0.90 0.80 0.90 0.80 0.90 0.89 0.90 0.90 0.87
15 640 0.68 0.58 0.66 0.89 0.58 0.66 0.95 0.90 0.95 0.90 0.95 0.94 0.95 0.95 0.80
5 1920 0.31 0.26 0.30 0.71 0.26 0.30 0.98 0.97 0.98 0.97 0.98 0.96 0.95 0.93 0.81

16 60 320 0.87 0.75 0.87 0.95 0.83 0.88 0.90 0.80 0.90 0.80 0.90 0.89 0.90 0.90 0.89
30 640 0.73 0.57 0.70 0.91 0.66 0.74 0.95 0.90 0.95 0.90 0.95 0.93 0.95 0.95 0.86
15 1280 0.49 0.36 0.45 0.83 0.43 0.49 0.97 0.95 0.97 0.95 0.97 0.95 0.97 0.95 0.87
5 3840 0.19 0.14 0.18 0.57 0.17 0.19 0.99 0.98 0.99 0.98 0.97 0.95 0.87 0.79 0.85

32 60 640 0.75 0.55 0.77 0.92 0.74 0.82 0.95 0.90 0.95 0.90 0.95 0.92 0.95 0.95 0.90
30 1280 0.54 0.36 0.52 0.88 0.51 0.57 0.97 0.95 0.97 0.95 0.97 0.94 0.97 0.95 0.90
15 2560 0.32 0.20 0.30 0.74 0.30 0.34 0.99 0.97 0.99 0.97 0.97 0.94 0.93 0.87 0.88
5 7680 0.12 0.07 0.11 0.42 0.11 0.13 1.00 0.99 1.00 0.99 0.94 0.91 0.71 0.58 0.80

It is generally accepted that BO is particularly efficient in addressing very expensive objec-
tive functions because the time cost associated with the surrogate model fitting and the acquisi-
tion of candidates remains negligible compared to the simulation time. According to Table 4.3,
it is clear that BOAs are sample-efficient for tight budgets. The ratio is close to 1, and the per-
formances displayed in Table 4.1 are also very good. For (tsim, ncores) corresponding to small
budgets (less than 320 simulations in Table 4.1), BOAs spend the major part of the 20-minute
budget in simulations and BOAs are strongly recommended. However, when increasing ncores,
the BOAs seem to be less efficient.

Indeed, with increased parallel computing capabilities and a shorter simulation time, the
data size increases rapidly, leading most of the BOAs to scale very poorly, essentially (but not
only) because of the global GP model. Only ℓBSP-EGOmanages to notably increase the number
of simulations by relying on local surrogate models learned over the subset of data, and local
parallel APs. This allows ℓBSP-EGO to generally outperform MIC-qEGO, MACE, gBSP-EGO

118

Bayesian versus/with Evolutionary Optimization

and ϵ-Shotgun. Nevertheless, the higher number of simulations does not always provide bet-
ter outcomes than TuRBO. Furthermore, its parallel efficiency also drops after a few thousand
simulations. The APs are also responsible for the differences in terms of number of simulations
between BOAs. MIC-qEGO and MACE have time-consuming acquisition strategies, relying on
multiple updates of the surrogate model and multiple optimizations of the AFs for the first one,
while the second one resorts to multi-objective optimization. TuRBO is slightly faster by means
of the local optimization inside a trust region, gBSP-EGO parallelizes the process by operating
multiple local optimizations, and ϵ-Shotgun only optimizes the AF once.

On the other hand, both EAs and SAEAs are not limited by the data set size since they
operate on populations of fixed size and rely on fast-to-compute evolutionary operators. Fur-
thermore, SAEAs only consider the last 96 simulations for fitting the GP model and use an early
stopping criterion to reduce the training time. It has to be noted that for the EAs and SAEAs, a
generation is performed only if the remaining time budget is sufficient. This observation apart,
EAs show an efficient scaling by achieving almost the maximum number of possible simula-
tions. However, a perceptible difference between the SaaF and SaaEF strategies is observed in
Table 4.3 to the advantage of the SaaF one. Indeed, the SaaEF strategy requires a bit more com-
putation than SaaF for each generation. Consequently, the advantage of SaaF becomes percep-
tible for larger budgets. A larger difference is observed between SAGAs and SAPSO algorithms.
Actually, the evolution of the population in GAs requires less data and computation than the
evolution of the swarm in the PSO algorithm. The latter becomes substantial after a few thou-
sand evaluations and SAGAs appear to be a better choice in this situation. Furthermore, the
population-based algorithms show improved outcomes compared to BOAs when increasing ρ,
which indicates a better batch effectiveness in addition to the very good scalability.

In BOAs, the whole batch of candidates supplements the data set at each iteration which be-
comes too large for GP to be fitted fast. Even though ℓBSP-EGO appears to outperform all BOAs
when the budget exceeds ρ = 1920, SAEAs are a better choice on average. The conjunction
of the two aspects, namely the costly training and difficulty to point out numerous promising
new candidates, leads to bad parallel efficiency and is referred to as the breaking point of BOAs
in [22] and was also observed in Section 3.3. These two aspects explain why SAEAs are clearly
preferred when the budget approaches 1000 simulations. The best performance of BOAs seems
to be achieved with simulation time greater than 15 seconds and a number of available cores
smaller than 8. This allows a maximum of 640 simulations in this protocol.

4.3 Hybrid Methods Combining SAEA and BOA

4.3.1 Threshold-based Hybrid Algorithm

Based on the previous observations and identified limitations of BOAs, a hybrid algorithm is
built upon the TuRBO and SAGA-SaaF algorithms. The basic idea is to benefit from the effi-
ciency of the BOA in the early stages of the optimization process to create a population. The
latter is then used after a certain number of simulations to initialize a SAEA to benefit from its
fast execution and good scalability. The early stages of the search are performed by TuRBO and

119

Chapter 4

Algorithm 10 Pseudo code of the hybrid algorithm TuRBO-SAGA
Input

f : objective function
D = {X,y}: Initial DoE
T : Trust region
P , psize: population and its size
t: threshold

1: while |D| < t and budget available do
2: M = GP(D)
3: Xnext = TuRBO acquisition_process(M, T)
4: ynext = f(Xnext)

5: D = D ∪ {Xnext,ynext}
6: T = update_trust_region (T)
7: end while

8: P = initialise_population(psize,D)
9: while budget available do
10: M = GP(D)
11: Ppar = select_parents(P)
12: Poff = generate_offspring(Ppar)

13: Xnext = evolution_control(M,Poff)

14: ynext = f(Xnext)

15: P = update_population(P , (Xnext,ynext))

16: end while

17: return best(x, y)

the switch to SAGA-SaaF occurs when the threshold is reached. The threshold lies for ρ rang-
ing from 640 and 960. In BO, this would correspond to 450 effective simulations as training the
surrogate and acquiring new solutions are not computation-free operations. Table 4.2 suggests
that after 320 possible simulations, BOAs start to drop in terms of efficiency. Adding the 96 ini-
tial samples, we propose to set the threshold to 420: as soon as the data set holds 420 points, the
algorithm switches from TuRBO to SAGA-SaaF. The population of the GA is initialized based
on the last simulations from TuRBO.

Algorithm 10 illustrates the serial application of the two algorithms, where lines 1 to 7
depict the TuRBO algorithm with each iteration involving a GP fitting, an AP, the simulations,
and the updates of the data set and trust region. Once the threshold is reached, the SAGA-SaaF
algorithm takes over and operates from line 9 to 15 by successively fitting a GP model, selecting
parents to generate offspring that pass through the EC to filter them out before resorting to the
simulator, and updating the population.

The last column of Table 4.1 and Table 4.3 displays the performance indicators of
the described hybrid algorithm, namely TuRBO-SAGA. Looking at Table 4.1, except for
(tsim, ncores) = (5, 4), the new algorithm provides similar performances than TuRBO for low
computational budgets. Moreover, TuRBO-SAGA improves over SAGA-SaaF for larger budgets

120

Bayesian versus/with Evolutionary Optimization

taking advantage of the initial population composed of solutions acquired by TuRBO (line 8 in
Algorithm 10). Regarding Table 4.3, we can see that the scalability of the approach does not
suffer from the BO’s early-optimization strategy and offers an average efficiency between 0.8
and 0.9. The switch occurs before TuRBO becomes too slow. Its good overall performance is
significant in most contexts according to Figure 4.1. Despite the very simple rule guiding the
algorithm, it offers a general suitable option, and mostly many perspectives to design hybrid
algorithms. In order to confirm the previous results, we propose to apply the same strategy to
new problems that have not been used to determine the threshold.

4.3.2 Validation Through Unseen Problems

Two additional problems from engineering are used to validate TuRBO-SAGA on problems
that have not been used to find the threshold. They are the multi-product batch plant problem
[180] and the rolling element bearing design problem [181], both implemented in [182]. They
both possess constraints in their formulation which are dealt with by penalizing the objective
function as suggested in [182]. Since the hybrid algorithm is built on top of TuRBO and SAGA-
SaaF, which seems to outperform in most contexts their contestants in their respective classes,
only TuRBO, SAGA-SaaF and TuRBO-SAGA are compared based on this set of problems.

The experimental protocol remains the same as in the previous section. Figure 4.2 and Fig-
ure 4.3 display the evolution of the best-known output according to the number of evaluations
in semi-logarithmic scale. On each figure, we observe in solid lines the average best output
value, and its associated standard deviation is represented using dashed lines in the same color.
Vertical dotted lines illustrate the average number of simulations that would be expected if the
evaluation lasted tsim ∈ {60, 30, 15, 5} seconds. In particular, we observe the evolution of the
best objective value around the threshold (324 evaluations on the graphs) and after, by zoom-
ing in on the graphs. It has to be noted that in order to plot the average outcome, the curves
are truncated to the minimum number of evaluations over the 10 repetitions. Therefore, the
average number of simulations given by the vertical doted-lines accounting for tsim = 5 might
be slightly shifted to the right compared to where the curves end.

The first overall observation is that the results are consistent with the previous section:
the hybrid algorithm performs well and achieves fast improvement at the beginning using the
TuRBO part before the threshold, and continues improving the objective value after it while
TuRBO does not, through the switch to SAGA. It is particularly observable for themulti-product
batch plant problem displayed in Figure 4.3. The threshold seems to generalize since for a num-
ber of evaluations smaller than 500, TuRBO is always to be preferred. According to Table 4.3,
the parallel efficiency of TuRBO is approximately 0.7 when ρ = 640, which corresponds to
about 450 real simulations. The two observations are then consistent as well. Figure 4.2 and
Figure 4.3 also illustrate the better scalability in terms of number of evaluations and obtained
outcomes. Firstly, in terms of number of evaluations, the SAGA-based algorithms achieve many
more evaluations than TuRBO in the given time budget. This is illustrated by the vertical doted-
lines on which we can see that the smaller tsim is, the bigger the difference between TuRBO
and SAGA-based algorithms. Secondly, regarding the outcomes, we can see especially for the
multi-product batch plant problem that increasing the number of computing units comes with
an improvement in the final outcomes for the hybrid algorithm and the SAEA. On the contrary,

121

Chapter 4

TuRBO does not benefit as much as its contestants from the higher computing capabilities re-
garding the number of simulations. However, we can see especially in Figure 4.3 that increasing
ncores also improves the final outcome.

4.3.3 Conclusions and Discussion

In this study, we compared 14 algorithms belonging to 3 classes of GO algorithms: BOAs,
SAEAs, and surrogate-free EAs. In addition, we derive a hybrid algorithm combining two of the
most efficient investigated algorithms. The implemented protocol accounts for the time cost of
the objective function and the number of available computing units, which offers a different
point of view to better choose a suitable approach for solving a black-box problem. We ex-
amined principally two aspects which are their performance regarding the final outcome with
respect to the computational budget and their parallel efficiency in regard to the data set size
and the available computing power.

The primary objective was to determine the threshold in terms of simulation budget from
which on SAEAs outperform BOAs using an experimental protocol accounting for the simu-
lation time. The proposed experimental study establishes the frontier of suitability of BOAs
and SAEAs between 640 and 960 simulations (ρ). This threshold can be used by practitioners
to choose the suitable class of algorithms accounting for their operational constraints (time
budget, number of processing units, and simulation time).

The present study also highlighted two algorithms outperforming their contestants in their
respective classes: TuRBO among the BOAs, and SAGA-SaaF among SAEAs. This emphasizes
the importance that is rightfully attributed to the acquisition strategy since the performance
strongly depends on this choice. The SAGA-SaaF algorithm almost always achieves better or
equivalent results compared to any investigated surrogate-free EAs for any considered budget,
and can even compete with TuRBO on moderate budgets (more than 640 simulations). SAGA-
SaaF also gets the best scalability among the considered SBO algorithms. Actually, unlike BOAs
it scales very well with the number of available cores, and the outcomes are improved by the
larger sampling offered by the parallel machines. Indeed, all investigated BOAs are very sample-
efficient for low batch sizes (≤ 8), the time-consuming acquisition strategy pays off when the
number of simulations is very limited.

Nevertheless, their scalability is limited by the low effectiveness of large batches (≥ 16) of
candidates and strongly hampered by the fast-increasing data set size causing time-consuming
model fittings. Only TuRBO, ℓBSP-EGO, and MACE manage to get a good batch effectiveness
regarding the final outcome and still perform well with ncores ≥ 16. As for the scalability, only
ℓBSP-EGO manages to significantly increase the number of simulations with the batch size.
Given sufficient time budget, ℓBSP-EGO outperforms all the other BOAs, but is also outper-
formed by the best-performing SAEAs. This confirms the conclusion of Chapter 3 that local
acquisition strategies such as in TuRBO or ℓBSP-EGO, as well as multi-criteria APs such as in
MACE improve the batch effectiveness.

The identified threshold offers a new perspective to design hybrid algorithms that fit any
context, regardless of the simulation time or available computational resources. A hybrid
TuRBO-SAGA algorithm is designed to switch from TuRBO to SAGA-SaaF when a threshold is

122

Bayesian versus/with Evolutionary Optimization

(a) ncores = 2 (b) ncores = 4

(c) ncores = 8 (d) ncores = 16

(e) ncores = 32

Figure 4.2: Evolution of the best average outcome in a function of the number of evaluations for
the rolling element bearing design problem. Dashed-lines indicates the standard-deviation
and vertical dotted-lines the mean number of evaluations for the different tsim.

123

Chapter 4

(a) ncores = 2 (b) ncores = 4

(c) ncores = 8 (d) ncores = 16

(e) ncores = 32

Figure 4.3: Evolution of the best average outcome in a function of the number of evaluations
for the multi-product batch plant problem. Dashed-lines indicates the standard-deviation
and vertical dotted-lines the mean number of evaluations for the different tsim.

124

Bayesian versus/with Evolutionary Optimization

reached. The proposed TuRBO-SAGA algorithm is first investigated on the initial benchmark
set and compared to the other approaches. It presents the advantages of BOAs in the begin-
ning of the optimization and the advantages of SAEAs when the data set gets bigger, if the
budget is large enough. In the following, the observed results are validated on two engineering
problems for which we observe consistent performance of the hybrid algorithm. Its good ob-
served performance is validated afterward The threshold obtained on the benchmark problems
generalizes well to the considered real-world applications.

BOAs are known to be more efficient on low-dimensional problems. As a matter of fact,
the dimension of the problem also impacts the surrogate fitting time, the AP time, and thus the
global efficiency of the algorithms. This is particularly important when the budget is defined
as a limited time. The impact of the problem dimension will be investigated in the future as a
complementary criterion to the computational budget to select the appropriate algorithm. The
poor scalability of BOAs in terms of optimization quality and number of simulations suggests
that multiple BOAs operating on small batches are preferable to a single algorithm with a large
batch size. Another question that is not addressed is the time dedicated to the model learn-
ing. We clearly see that the results are dependent on the quality of the model. Nevertheless, a
cheaper model would enable more optimization cycles and possibly improve the final outcome.
This is difficult to quantify without a proper analysis. The combination of BOAs and SAEAs
appears as a suitable direction for improving the current SBO algorithms and can be supple-
mented by different BOAs operating in parallel to maximize the parallel efficiency and batch
effectiveness.

4.4 Opening to Higher Dimensional Problems

BO is known to not scale well with the problem dimension [18, 124, 156]. GPs are much less
reliable since the distance between the design points does not allow an efficient correlation
between them. Consequently, it would require a lot more observations and we observed in
previous sections and chapters that BOAs do not scale well with the data set size either. In
addition, a large dimension implies more hyper-parameters, which also contributes to the inef-
ficiency and computational burden of BO.

The limit in terms of dimension from where BO loses efficiency is not well-established. In
the previous chapter we already observed significant differences regarding the performances of
the algorithms between the problems involving different numbers of design variables. However,
several works mention 20 as the limit for traditional BOAs [3, 7, 183]. Beyond this limit, three
main approaches to improve the performances of BO are reported in a survey from Binois and
Wycoff [3]. The first one is to reduce the dimension by removing the design variables with
the least influence on the output. This is also mentioned as feature selection in opposition to
feature extraction which is another alternative consisting of creating new features carrying
the maximum information from the initial features in less variables (e.g. principal component
analysis). The last mentioned direction is to assume additivity of effects of the variables, such
as in additive kernels GP [44]. Nevertheless, those approaches require additional assumptions
over the objective function, which we are not able to assert.

125

Chapter 4

We have seen that partitioning the search space and relying on several criteria improved the
performance of BOAs. Particularly, TuRBO is initially designed to tackle higher dimensional
problems by drastically reducing the search space and scaling according to the length scales. In
addition, as suggested in Subsection 1.2.3, imposing a minimal value for the length scales or us-
ing automatic relevance determination might help in higher dimensional spaces. Consequently,
we propose to tackle with the previously investigated algorithms another optimal management
problem similar to the one of Section 3.4.2, but involving 30 dimensions.

4.4.1 PHES Optimal Management Problem

The integration of larger shares of renewable energy sources into global production is crucial to
limit global warming. However, the intermittency of solar and wind power sources poses sig-
nificant challenges to grid operations and can disrupt the grid stability. Therefore, disposing of
storage facilities is crucial to maintain the balance between power generation and consumption.
As already introduced in Section 3.4.2, PHES plants are valuable assets for this purpose.

Context and Objectives

Efficient tools for maximizing the profitability of PHES plants are needed to facilitate the inte-
gration of renewable energy sources into the global consumption. Consequently, a simulator is
developed in Favaro et al. [155] to compute the profit y of the operator according to a decision
x. The simulator is referred to as f : R30 → R; f(x) 7→ y in the following. In this work, the
simulator is assumed already known and black-box, but the details about its construction are
available in [155].

Most methods tackling this problem involve its reformulation, such as with a MILP formu-
lation [184], so that the problem can be solved with linear programming solvers. This type of
approach is able to guarantee the optimality - or at least an estimate of the error - of the obtained
solution and operates fast, but concedes some approximations that possibly result in unfeasible
decisions. Another alternative is to directly optimize the simulator, but without any guarantee
of optimality. Usual approaches in this case include various metaheuristics such as EA or PSO
[185]. In Favaro et al. [155], the authors proposed a neural network-assisted MILP formulation
of the problem which offers the desirable optimality guarantees and avoids divergences. The
method shows to outperform the state of the art on several scenarios of the considered PHES
plant. Despite these advances, the solution of the MILP algorithm may not always be feasible
due to the inherent approximations of the model.

In the present work, we challenge the MILP formulation with the previously studied SBO
algorithms. Similarly to the mentioned EAs and PSO algorithms, they are directly applied to
the simulator, which operates without approximation, and thus captures the full complexity of
the process and ensures the feasibility of the final decision. Nevertheless, the main drawback of
this approach is that we lose the optimality guarantees provided by the Mixed-Integer Linear
Programming (MILP) formulation.

126

Bayesian versus/with Evolutionary Optimization

The first step of this work aims to assess if the SBO algorithms applied to the simulator are
able to find a better solution in a limited time than the MILP approach. The cost of a simulation
is less than 0.2 second, therefore we do not expect BOAs to compete with SAEAs or with the
MILP formulation. However, the dimension is not prohibitively high to apply BO and thus it
is still interesting to study the differences between the BOAs with the additional prism of the
dimension. In a second time, a multi-fidelity approach is proposed to combine the guarantees,
tractability, and robustness offered by the MILP solver with the versatility of surrogate-based
methods. In this context, the BOAs might be successful in refining the solution thanks to their
sampling efficiency. The initial sample of the SBO includes decisions found by the MILP opti-
mization so that SBO algorithms are used only to refine the decision vector.

4.4.2 Experimental Protocol

The simulator is based on scenarios representing different states of the energy market, mainly
characterized by the prices for each time interval. Those data are extracted from real data
sets and account for different days and conditions the PHES operator may face. The ability to
consistently find a good decision for any scenario is essential to ensure the profitability of the
storage units. Therefore, we investigate 11 different operation days.

The methods taking part in this study are the same as in the benchmark analysis of Sec-
tion 4.1. Considering the short execution time of the simulator, we investigate another version
of TuRBO (which is expected to perform best among BOAs), where the surrogatemodel fitting is
faster. Up to now, learning the hyper-parameters of the GP model was done identically for each
BOA. The only difference was the size of the data set for ℓBSP-EGO. However, as mentioned
earlier the routine to fit the model can vary, resulting in different accuracies. The GPytorch
library offers the possibility to tune the learning phase by granting a budget to the likelihood
maximization step. The impact of the accuracy of the model should be investigated in a separate
study. However, in this context, reducing the learning time seems relevant.

The experiments are led on an Intel Xeon Gold 5220 CPU from the Grid5000 infrastructure
for distributed computing [5]. The batch size is fixed to 8 so that the protocol is transferable to
most recent single-processor machines. The initial design of experiment includes 296 (≈ 10d)
points and 4 initial conditions are considered. The first one is generated through Latin hyper-
cube sampling only, while the three others also include solutions from theMILP resolution. This
strategy is referred to as the warm-start optimization and the computational budget is divided
between the MILP resolution and the Bayesian Optimization (BO). The total optimization time
is fixed to 20 minutes, including the initial sampling. The time dedicated to the warm-start is
twarm ∈ {1, 2, 5} minutes. Each of the 11 scenarios is executed for the 4 warm-start conditions
and repeated 10 times. The best profit is monitored after t ∈ {2, 3, 5, 10, 15, 20} minutes.

4.4.3 Experimental Results

As a preliminary task, 8 neural networks are created to be used in the MILP formulation. They
approximate the turbine operation curves that intervene in the simulator. It is an external task
that is not included in the 20-minute budget as it can be done only once for the installation.

127

Chapter 4

Consequently, the differences in the approximation cause differences in the outcome of the
MILP. The maximum resolution time is fixed to 20 minutes, and those 8 solutions constitute
our baseline for the following comparison.

Optimization without warm-start

First, we compare the methods between them depending on the time budget, without warm-
start. Table 4.4 shows the Friedman’s rank computed with the 10 repetitions of the 11 scenarios.
A lower rank indicates a better performance compared to the other approaches. For short times,
BOAs achieve better outcomes than EAs. Among them, the Fast-TuRBO algorithm presents the
best results but all of them are outperformed by SAGA as soon as the time reaches 300 seconds.

Tu
RB

O

Fa
st
-T
uR

BO

M
AC

E

M
IC
-q
EG

O

ℓB
SP

-E
GO

SA
GA

-S
aa
F

Tu
RB

O
-S
AG

A

GA

twarm t

0 120 4.18 1.00 3.73 2.45 5.91 7.09 3.73 7.91
300 3.45 2.00 3.27 5.27 7.55 1.64 5.36 7.45
600 4.27 4.45 3.64 6.64 7.91 1.00 2.18 5.91
900 4.18 5.55 3.91 6.91 7.64 1.00 2.00 4.82
1200 4.00 5.82 3.91 6.82 7.64 1.18 1.82 4.82

Table 4.4: Friedman ranks for the PHES management problem, without warm-start

Table 4.5 presents the number of simulations performed for each time stamp, excluding the
initial sample. According to Table 4.5, BOAs remain very sample-efficient as they have the best
outcomes with much fewer simulations than EAs. The faster version of TuRBO appears to out-
perform the others, most likely because of the higher number of simulations that Fast-TuRBO
is able to perform compared to TuRBO. However, given enough time (t ≥ 600s), TuRBO out-
performs its faster version despite a much lower number of simulations. The performances of
TuRBO and MACE are close in terms of Friedman’s rank despite a slightly lower number of
simulations achieved by MACE. In this context, the cooperative acquisition strategy of MACE
seems to be a better choice than the competitive counterpart represented by MIC-qEGO. Un-
surprisingly, ℓBSP-EGO does not perform well in this context. The binary decomposition is
irrelevant for such dimension, and the low batch size does now allow the algorithm to fully
exploit what makes it efficient.

Without warm-start, according to Table 4.4, Fast-TuRBO should be preferred if the time bud-
get is lower than 300 seconds, and SAGA-SaaF otherwise. The latter observations are confirmed
by the post-hoc pairwise Friedman’s test [179] displayed in Figure 4.4 for each time-stamp.

Figure 4.5 presents the best-expected profit according to the number of simulations for day 6.
The results observed for day 6 are rather representative of the observations done for any other

128

Bayesian versus/with Evolutionary Optimization

(a) twarm = 0 and t = 120 (b) twarm = 0 and t = 300

(c) twarm = 0 and t = 600 (d) twarm = 0 and t = 1200

Figure 4.4: p-values of the pairwise comparison post-hoc Friedman’s rank test for the PHES
problem. Low values indicates statistically significant differences, and are highlighted by the
color scale. In case of p-value < 0.1, an arrow indicates the direction of the algorithm outper-
forming the other.

129

Chapter 4

120 300 600 1200
twarm Method

0 TuRBO 46.76 160.22 277.89 434.98
GA 256.29 1272.15 2938.18 6249.89
TuRBO-SAGA 47.05 210.84 1996.22 5018.47
SAGA-SaaF 235.93 1138.04 2643.78 5592.73
MACE 31.56 126.62 233.31 369.75
Fast-TuRBO 125.09 403.13 669.09 979.13
MIC-qEGO 31.56 129.24 231.20 365.09
ℓBSP-EGO 76.87 338.18 708.80 1318.04

Table 4.5: Average number of simulations on the PHES management problem, excluding the
initial sample.

day. The black dotted line shows the best outcome from the 8 initial MILP results. Only the
SAGA and TuRBO-SAGA algorithms consistently (10 times out of 11 days) achieve better out-
comes than the best MILP outcome. No significant difference compared to day 6 is observed on
the other investigated scenarios and similar observations can be made for any day, except day
1, where no algorithm gives better results than the MILP.

Finally, we compare the expected profit of the best-performing methods to the best result
of the MILP formulation. For each day, we report the minimum, average, and maximum profit
and scale them according to the best MILP result. Last, to summarize the data, the average is
computed over the 11 days and the results are presented in Table 4.6. We can see that SAGA
approaches are the only ones consistently outperforming the MILP formulation, but only with
at least 600 seconds of execution. Considering the 20-minute budget, SAGA-SaaF offers an
average gain of 18%. Only the day-1 scenario shows a loss between 16% (worst case) and 12%.

Optimization with warm-start

We have demonstrated the interest of SBO algorithms and especially of the SAEAs in this con-
text. However, we have no indication on the optimality of the solution, and the obtained results
might be, on rare cases, less profitable than the MILP ones. Another strategy that might be in-
teresting to bypass these issues is to initialize the data set with the preliminary results from
the MILP formulation. Doing so offers a stronger guarantee of profitability, and possibly much
better outcome if the time-budget is sufficient. The MILP solver is stopped after twarm seconds
and the outcome is used in the initial data set.

Table 4.7 presents the Friedman’s rank of the methods according to the time dedicated to the
warm start, for each time-stamp. With the warm-start, both TuRBO versions perform well at
any time, with a small advantage for the faster alternative. Considering small additional times
after the warm-start (twarm + tadd where tadd ≤ 300), Fast-TuRBO offers the best outcomes. If
the additional time is 600 seconds at least, SAGA-SaaF is often the best option.

130

Bayesian versus/with Evolutionary Optimization

Figure 4.5: Best expected profit according to the number of simulations for day 6 of the PHES
management problem.

120 300 600 900 1200
Method Value

TuRBO Min -0.14 0.55 0.68 0.72 0.77
Avg 0.23 0.67 0.78 0.86 0.91
Max 0.49 0.81 0.90 0.98 1.05

TuRBO-SAGA Min -0.08 0.47 0.87 1.03 1.08
Avg 0.22 0.60 0.98 1.10 1.15
Max 0.46 0.71 1.09 1.19 1.24

SAGA-SaaF Min -17.88 0.57 0.98 1.06 1.09
Avg -7.80 0.78 1.08 1.14 1.18
Max -1.01 0.93 1.17 1.23 1.27

MACE Min -0.16 0.50 0.65 0.73 0.77
Avg 0.17 0.70 0.84 0.89 0.91
Max 0.41 0.85 0.95 0.98 1.00

Fast-TuRBO Min 0.47 0.58 0.59 0.59 0.59
Avg 0.59 0.75 0.78 0.79 0.79
Max 0.70 0.89 0.94 0.95 0.95

Table 4.6: Gain of the SBO algorithms compared to the MILP formulation for the PHES man-
agement problem, without warm-start

131

Chapter 4

Figure 4.6a shows that a large warm-start time is not mandatory to get good preliminary
outcomes. Very few changes are observed in the MILP outcomes after 120 seconds. Spend-
ing more time in the MILP resolution only increases the guarantee in the optimality of the
final outcome. However, limiting twarm to 120 seconds offers more time to the SBO algorithms
which generally manage to improve the expected profit, given a sufficient time budget. Con-
sequently, fixing twarm to 120 seconds seems a fair compromise between optimality guarantee
and efficiency. For stronger guaranties, one can decide to run the MILP a bit longer to achieve
to desired guaranty before resorting to SBO. Table 4.8 shows the average gain of the best SBO
methods compared to the best MILP outcome, given a 120-second warm-start. We can see that
Fast-TuRBO shows improvement after a small additional time, but if the total budget exceeds
600 seconds, SAGA-based algorithms should be preferred.

Using the warm-start procedure obviously induces a bias in the search and incentivizes the
sampling close to the initial MILP results. Regarding only SAGA-SaaF in Table 4.8 and Table 4.5
we can see that the warm-start strategy slightly delays the higher gains. However, using the
full budget, the two approaches (with and without a warm-start) offer very similar results, but
with a higher guarantee for the warm-start one.

Tu
RB

O

Fa
st
-T
uR

BO

M
AC

E

M
IC
-q
EG

O

ℓB
SP

-E
GO

SA
GA

-S
aa
F3
2

Tu
RB

O
-S
AG

A

GA
twarm t

60 300 2.73 1.91 3.18 7.18 6.91 5.45 4.82 3.82
600 4.00 2.09 4.73 7.36 6.91 1.82 3.64 5.45
900 3.73 2.91 5.55 7.36 7.09 1.82 2.64 4.91
1200 3.45 3.27 5.55 7.36 7.18 1.91 2.55 4.73

120 300 2.36 3.27 3.09 7.18 7.00 5.36 4.36 3.36
600 3.45 1.91 4.82 7.36 6.73 2.36 4.45 4.91
900 3.27 2.55 5.55 7.36 7.09 2.09 3.18 4.91
1200 3.27 3.00 5.64 7.45 7.00 2.18 2.73 4.73

300 600 3.27 1.45 3.36 7.09 7.55 3.73 5.27 4.27
900 4.09 2.18 4.91 7.27 7.18 1.91 3.27 5.18
1200 3.55 2.73 5.27 7.27 7.27 1.91 2.91 5.09

Table 4.7: Friedman ranks for the PHES management problem, with warm-start

Finally, we compare the MILP only strategy with the multi-fidelity approach defined by a
120 seconds warm-start followed by the SAGA-SaaF algorithm. The average profit according to
the time spent is displayed on Figure 4.6. The average value is represented in solid lines while
the dotted lines shows the best and worst outcomes. Figure 4.6b displays the results of the best
observed strategy, that is SAGA-SaaF after a 120-second warm-start. This approach allows to
increase the profit of the operator by 18% in average.

132

Bayesian versus/with Evolutionary Optimization

120 300 600 900 1200
Method Value

TuRBO Min 1.00 1.00 1.00 1.02 1.06
Avg 1.00 1.00 1.02 1.06 1.10
Max 1.00 1.00 1.05 1.11 1.14

TuRBO-SAGA Min 1.00 1.00 1.00 1.05 1.09
Avg 1.00 1.00 1.01 1.11 1.15
Max 1.00 1.00 1.05 1.20 1.24

SAGA-SaaF Min 1.00 1.00 1.01 1.06 1.08
Avg 1.00 1.00 1.06 1.13 1.17
Max 1.00 1.00 1.14 1.22 1.26

Fast-TuRBO Min 1.00 1.01 1.04 1.05 1.05
Avg 1.00 1.02 1.08 1.10 1.10
Max 1.00 1.04 1.13 1.14 1.15

Table 4.8: Gain of the multi-fidelity strategy (SBO after a 120sMILPwarm-start) for the PHES
management problem

4.4.4 Conclusion and Discussion

We applied different SBO algorithms to the PHES optimal management problem and proposed a
suitable strategy for increasing the expected profit of the operator. The best-identified strategy
consists in solving (in parallel) several MILP approximations with a maximum operation time
of 120 seconds, and then to apply a SAEA to the simulator, initialized with the results of the
warm-start. This strategy results in an average gain of 18% of the expected profit on 11 scenarios
employed in this study.

SAEAs are the only methods that present consistent improvements over the MILP formu-
lation. The dimension of the problem makes BOAs less efficient, but mostly the small time cost
of the simulator strongly favors fast operating algorithms such as SAEAs. This is also observed
with the Fast-TuRBO algorithm, where a fast model learning allows many more simulations in
the dedicated time. However, even if it results in a fast improvement at the beginning, at some
point it is preferable to spend more time learning the hyper-parameters to make better choices
in the candidate selection.

Finally, accounting only for the number of performed simulations, BOAsmanage to improve
the outcome with only few evaluations. Both multi-infill and trust region methods significantly
improve the initial sampling and often achieve results equivalent to or better than the GA, with
a much smaller number of simulations. This indicates that for more time-consuming problems,
BOAs could be a good choice even in dimension 30.

133

Chapter 4

(a) Best outcome of the MILP formulation
according to the optimization time

(b) Best outcome of the proposed multi-fidelity strategy
according to time: twarm = 120 followed by SAGA-
SaaF

Figure 4.6: Comparison between the baseline approach (left) and the proposed one (right) for
the PHES problem. Solid lines indicate the average outcomes while dotted-lines represent their
respective minimum and maximum.

134

Conclusions and Perspectives

Conclusions

Simulation, machine learning, optimization and parallel computing are the ingredients for solv-
ing computationally expensive black-box engineering problems. These latter refer to optimiza-
tion problems in which the objective function is CPU time-intensive, is derivative free and has
an unknown analytical expression. In this thesis, we investigate Parallel Bayesian Optimization
(PBO) combining optimization with surrogate-based machine learning and parallel computing,
resulting in a powerful approach to deal with these computationally expensive problems. BO
Algorithms (BOAs) are Surrogate-Driven Optimization (SDO) methods, where the next sam-
pling point is queried by the optimization of an Acquisition Function (AF). Sequential BOAs
such as Efficient Global Optimization (EGO) are particularly efficient and achieve excellent per-
formances with tight computational budgets. Their ability to identify good solutions with only
few simulations makes BO one of the most promising approach for tackling expensive prob-
lems. Considering a fixed time budget as part of the operational constraints, driving BOAs
parallel would allow the algorithms to perform more simulations and possibly achieve better
outcomes. However, as further developed in the following, the parallelisation of BOAs raises
significant challenges.

As a first contribution, we analysed the performances and limitations of state-of-the-art
algorithms, including EGO and one parallel version named qEGO, applied to challenging real-
world problems. The sequential EGO algorithm is extremely sample-efficient and particularly
adapted for very expensive simulations where the parallel resources can be exploited inside the
simulation. When parallel calls to the simulator are possible, qEGO can be used to perform
more simulations per cycle. However, we observed a much lower performance of qEGO com-
pared to its sequential counterpart for an equivalent number of simulations. Actually, many
BOAs suffer from a low batch effectiveness (i.e. batch of poor quality). In addition, we observed
a poor scalability regarding the number of simulations mainly caused by the computational
burden of the surrogate model fitting and the Acquisition Process (AP). The two aspects re-
sult in a waste of the computational budget as increasing the resources and consequently the
number of simulations does not always improve the final outcome. In order to emphasize the
computational burden of BOA, in particular regarding the AP time, it is decided to define the
budget as a fixed time instead of a number of simulations or cycles (i.e., q simultaneous simula-
tions). When compared with evolutionary alternatives, the sample-efficiency of BOAs such as
qEGO is confirmed. Indeed, Evolutionary Algorithm and their surrogate-assisted counterparts
usually require much more objective function evaluations to compete with BOAs. However,
the evolutionary operators responsible for the generation of candidates are more time-efficient
than the AP in BOAs. Consequently, with a moderately time-consuming simulator, the AP
time might not be negligible anymore compared to the simulation time and Surrogate-Assisted
Evolutionary Algorithms (SAEAs) might be preferred.

An efficient PBO algorithm requires a well-designed Acquisition Process (AP). The compu-
tational cost of the AP must remain reasonable compared to the simulation time, and the batch

135

Chapter 4

effectiveness must be improved to preserve the effectiveness of the sequential candidate selec-
tion in a parallel framework. We proposed a new AP using spatial decomposition to introduce
parallelism into the candidate selection and to better control the diversification/intensification
trade-off, improving the batch effectiveness. We derived two algorithms from this approach,
namely Binary Space Partitioning Efficient Global Optimization (BSP-EGO) and Local BSP-
EGO (ℓBSP-EGO), and studied the impact of spatial decomposition in BOAs. BSP-EGO pre-
serves the global search by fitting the Gaussian Process (GP) surrogate model over the whole
available data, while ℓBSP-EGO selects a subset of the data to fit a local surrogate model inside
a sub-region. The two algorithms were challenged with state-of-the-art BOAs using multiple
single-point Acquisition Functions (AFs), multi-point AFs, or APs inside a trust region. We
demonstrated the efficiency of the decomposition scheme to reduce the acquisition time and
improve the batch effectiveness as BSP-EGO performs better than qEGO and KB-qEGO on av-
erage. However, we also observed that the global model fitting time becomes prohibitively large
when the data set size increases. This problem occurs for any BOA, except for ℓBSP-EGO thanks
to the local surrogate modeling. ℓBSP-EGO shows a good scalability as it is able to perform a lot
more objective function evaluations than its contestants in the fixed time budget. In addition,
the gain in terms of number of simulations results in an improved final outcomewhich indicates
a good batch effectiveness. The two aspects made ℓBSP-EGO the best-performing algorithm of
the benchmark study. Another perspective regarding those results is offered when adding a
fictitious time cost to the benchmark function evaluation. Indeed, the excellent average perfor-
mance of ℓBSP-EGO is dependent on the number of additional simulations compared to other
algorithms. Among BOAs, it achieves better performances than most alternatives except from
TuRBO which generally performs best for budgets below one thousand of simulations (for any
batch size).

The objectives of this thesis also included providing guidelines for practitioners to ade-
quately select an algorithm for a given problem. For this purpose, we investigated the perfor-
mance of several BOAs that operate the batch acquisition in different ways, but also completely
different alternatives such as SAEAs. The proposed protocols account for the computational
cost of the simulator, the available computing units, and the total time budget. From the exten-
sive benchmark analysis and the diverse real-world problems, we were able to derive several
recommendations regarding the choice of the most suitable algorithm. On the one hand, focus-
ing only on the BOAs, we observed that relying on multiple AFs is generally a good strategy,
either competitively or cooperatively. The competitive way consists in choosing several AFs
that act separately, it is quite effective for low computational budgets but does not scale well
with the batch size as the AP remains time-consuming. Concerning the cooperative way, it
necessitates multi-objective optimization to find the best trade-offs between the AFs. The main
advantage of this strategy is that it is easy to sample from the Pareto front to get an arbitrarily
large number of candidates of good quality. Consequently, the scalability is better regarding
the batch size. Another profitable strategy is to progressively focus on sub-regions to force
intensification. The BSP-based algorithms evolve at each cycle to intensify the search in the
most promising regions. One can also rely on trust regions such as in the TuRBO algorithm.
Exploration is favored at the beginning of the search, and as the budget fades, exploitation
is promoted. This approach is particularly efficient when the dimension increases (i.e. 10 or
more). However, the binary decomposition is not drastic enough to compensate for the curse
of dimensionality. In a 30-dimensional space, TuRBO seems to be more effective as it acts on
all dimensions at once.

136

Bayesian versus/with Evolutionary Optimization

On the other hand, considering Surrogate-Assisted Optimization (SAO), an alternative to
the SDO, allowed us to extract more general insights regarding the choice of the algorithm.
Indeed, it is observed that SAEAs considerably reduce the number of necessary simulations
compared to surrogate-free Evolutionary Algorithms (EAs). Especially, using evolutionary op-
erators to generate candidates and filter them using a GPmodel (e.g. as in SAGA-SaaF) provides
excellent results with a computing budget of few hundred evaluations. SAEAs consistently out-
perform any BOAs as soon as the budget exceeds about one thousand of exact evaluations. The
identified threshold between BOAs and SAEAs drove us to propose a hybrid algorithm using
a BOA at the early stages of the search to benefit from its sample efficiency and switch to a
more time-efficient SAEA as soon as the BOA becomes too time-consuming. This algorithm
is experimented using TuRBO and SAGA-SaaF and displays excellent any-time performance,
offering a suitable algorithm for many situations.

From the application point of view, we addressed five real-world engineering problems us-
ing well-chosen SBO algorithms. The introduction of SBO into the different applications re-
sulted in improved outcomes compared to the approaches used so far. The inverse identification
problem in mechanical engineering has been approached using the EGO algorithm. The associ-
ated simulator is very expensive and software-dependent, which prevents larger parallelization,
consequently sequential BO is particularly suited. The optimized parameters provide a better
accuracy than the ones from the reference work. PBO is successfully applied to the tuberculosis
transmission control problem, where the simulator evaluates the impact of the budget alloca-
tion (i.e. the design vector) on the expected prevalence of the disease in the Philippines. The
simulation of the optimized decision shows a positive impact of the treatment allocation on
the population. In this application, the simulator is only moderately time-consuming as the
budget can be large enough to achieve many simulations. In light of the threshold identified
in Chapter 4, SAEAs could be a better choice with an increased budget. We have also demon-
strated that PBO can be leveraged in time-constrained optimization problems such as the ones
involved in the energy market. Three applications related to the energy market are tackled
in this thesis. They involve from 3 to 30 design variables and various simulation costs and all
concern the management of the resources of a plant operator seeking for maximum profit. We
proposed two optimization approaches depending on the expensiveness and the dimension of
the simulator. Namely, BOAs are used for simulators with a moderate time-cost and dimensions
lesser than 12, while SAEAs yield better profits in the case of cheaper simulators and higher
dimensions.

In a nutshell

The main contributions of this thesis are summarized as follows:

• We demonstrated the usefulness of BOAs for solving efficiently real-world problems and
in domains where they are not often considered.

• We redefined the concept of optimization budget by taking into account the experimental
conditions (i.e. simulation time, computational resources, and total time).

137

Chapter 4

• We designed and implemented new algorithms that introduced parallelism into the AP,
which is uncommon in BO, speeding up the batch acquisition, and enhancing its promis-
ingness.

• We packaged and made publicly available all the developed algorithms as well as the full
experimental framework (all algorithms and benchmark functions) in a dedicated GitHub
repository: https://github.com/MaGbrt/pySBO.

• We confronted BOAs with other SBO algorithms, namely SAEAs and EAs, to identify
their domain of applicability in terms of number of simulations.

• We derived recommendations to select or design relevant algorithms according to the
experimental conditions.

Perspectives

The previous contributions also revealed some leads for future developments. In this work, we
mainly confronted the different APs of the BOAs to identify their strengths. However, we did
not consider the simultaneous use of, for instance, spatial decomposition and complementary
AFs. The two features seem to perform differently depending on the objective function. The
combination of both could help to efficiently tackle a wider range of problems.

Despite improvements regarding the batch effectiveness, having a large batch size does not
always mean better outcomes at the end. The latter suggests that concurrent BOAs acting in
parallel with moderate batch sizes could be beneficial compared to a single one with a large
batch size. For instance, 4 (different) algorithms running with q = 8might be preferable to one
with q = 32.

In addition, the decomposition scheme adopted in BSP-based algorithms shows its limita-
tions when increasing the dimension of the objective function. The decomposition of the design
space could be more intensive such as in the trust region methods, where all dimensions are
reduced at once. For instance, each sub-region could be characterized by its best sample with a
trust region built around it.

In the last section, we initiated the questioning of the way surrogate models are fitted. The
TuRBO algorithm is experimented with a fast routine to fit the hyper-parameters of the model
and noticeable differences are observed. The faster version tends to give better outcomes at
early stages, but for late improvements, the more precise version shows better final outcomes.
This should be further investigated to evaluate the impact of the model fitting on the optimiza-
tion.

Hybrid methods combining BOAs and SAEAs showed promising results. The hybridization
is based on the identified threshold and the first population is initialized with the last simula-
tions. These two aspects could be further investigated and, for instance, dynamic criterion that
triggers either the BOA or the SAEA could be considered for the hybridization.

The length-scale parameters of the GP model are sometimes used to identify the most im-
pacting design variables, such as in TuRBO which uses them to scale the trust region. This
strategy appears to be quite efficient and somehow reminds landscape analysis methods. The

138

https://github.com/MaGbrt/pySBO

Bayesian versus/with Evolutionary Optimization

latter is rarely considered since it requires many function evaluations to be pertinent. However,
with the increased number of evaluations of recent BOAs and considering the performances of
algorithms such as TuRBO, information from landscape analysis could be integrated into the
optimization process to dynamically and adaptively select the best strategy.

All along the manuscript, we considered synchronous parallelization. However, with paral-
lel APs and restricted time budgets, the development of asynchronous parallel algorithms could
help to exploit the full potential of parallel processors. Indeed, in case of irregular workloads
(e.g., simulations) in a synchronous framework, most worker processes are idling at some point
waiting for the last worker to finish.

Likewise, only single-objective problems, or scalarized multi-objective ones, are tackled. In
the multi-objective context, the proposed approaches should be revisited using uncommonly a
Pareto-based approach taking into account the correlations between the objectives as in [186].

139

Chapter 4

140

Bibliography

1. Jones, D. R., Schonlau,M. &Welch,W. J. Efficient Global Optimization of Expensive Black-
Box Functions. Journal of Global Optimization 13, 455–492. issn: 1573-2916. https:
//doi.org/10.1023/A:1008306431147 (1998).

2. Kushner, H. J. A New Method of Locating the Maximum Point of an Arbitrary Mul-
tipeak Curve in the Presence of Noise. Journal of Fluids Engineering 86, 97–106.
issn: 0098-2202. eprint: https : / / asmedigitalcollection . asme . org /
fluidsengineering / article - pdf / 86 / 1 / 97 / 5763745 / 97 \ _1 . pdf.
https://doi.org/10.1115/1.3653121 (1964).

3. Binois, M. & Wycoff, N. A Survey on High-dimensional Gaussian Process Modeling with
Application to Bayesian Optimization. ACM Trans. Evol. Learn. Optim. 2. https://
doi.org/10.1145/3545611 (2022).

4. Rasmussen, C. E. &Williams, C. K. I. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). isbn: 026218253X (The MIT Press, 2005).

5. Balouek, D., Carpen Amarie, A., Charrier, G., Desprez, F., et al. Adding Virtualization Ca-
pabilities to the Grid’5000 Testbed. in Cloud Computing and Services Science (eds Ivanov,
I. I., van Sinderen, M., Leymann, F. & Shan, T.) 3–20 (Springer International Publishing,
2013). isbn: 978-3-319-04518-4.

6. Wang, X., Jin, Y., Schmitt, S. & Olhofer, M. Recent Advances in Bayesian Optimization.
ACM Comput. Surv. 55. issn: 0360-0300. https://doi.org/10.1145/3582078
(2023).

7. Frazier, P. A Tutorial on Bayesian Optimization (2018).

8. Močkus, J. On bayesian methods for seeking the extremum. in Optimization Techniques

IFIP Technical Conference Novosibirsk, July 1–7, 1974 (ed Marchuk, G. I.) (Springer Berlin
Heidelberg, Berlin, Heidelberg, 1975), 400–404. isbn: 978-3-540-37497-8.

9. Srinivas, N., Krause, A., Kakade, S. & Seeger, M. Gaussian Process Optimization in the
Bandit Setting: No Regret and Experimental Design. in (2010), 1015–1022.

10. Hennig, P. & Schuler, C. Entropy Search for Information-Efficient Global Optimization.
Journal of Machine Learning Research 13 (2011).

11. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & de Freitas, N. Taking the Human Out
of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE 104, 148–175.
issn: 1558-2256 (2016).

12. Binois, M., Collier, N. & Ozik, J. A portfolio approach to massively parallel Bayesian
optimization. working paper or preprint. 2023. https://hal.inria.fr/hal-
03383097.

141

https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/86/1/97/5763745/97_1.pdf
https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/86/1/97/5763745/97_1.pdf
https://doi.org/10.1115/1.3653121
https://doi.org/10.1145/3545611
https://doi.org/10.1145/3545611
https://doi.org/10.1145/3582078
https://hal.inria.fr/hal-03383097
https://hal.inria.fr/hal-03383097

Chapter 4

13. Chen, J., Luo, F., Li, G. & Wang, Z. Batch Bayesian optimization with adaptive batch ac-
quisition functions via multi-objective optimization. Swarm and Evolutionary Computa-

tion 79, 101293. issn: 2210-6502. https://www.sciencedirect.com/science/
article/pii/S2210650223000664 (2023).

14. Palma, A. D., Mendler-Dünner, C., Parnell, T., Anghel, A. & Pozidis, H. Sampling Acquisi-
tion Functions for Batch Bayesian Optimization. 2019. arXiv: 1903.09434 [cs.LG].

15. Adachi, M., Hayakawa, S., Hamid, S., Jørgensen, M., Oberhauser, H. & Osborne, M. A.
SOBER: Highly Parallel Bayesian Optimization and Bayesian Quadrature over Discrete
and Mixed Spaces. 2023. arXiv: 2301.11832 [cs.LG].

16. Ginsbourger, D., Le Riche, R. & Carraro, L. A Multi-points Criterion for Deterministic
Parallel Global Optimization based on Kriging (2008).

17. Ginsbourger, D., Le Riche, R. & Carraro, L. Kriging Is Well-Suited to Parallelize Optimiza-
tion. in (2010).

18. Eriksson, D., Pearce, M., Gardner, J., Turner, R. D. & Poloczek, M. Scalable Global Opti-
mization via Local Bayesian Optimization. in Advances in Neural Information Processing

Systems 32 (Curran Associates, Inc., 2019). https://proceedings.neurips.cc/
paper_files/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-
Paper.pdf.

19. Briffoteaux, G. Algorithmes parallèles et basés sur méta-modèles pour la résolution de
problèmes d’optimisation coûteux. PhD thesis (2022).

20. Briffoteaux, G., Gobert, M., Ragonnet, R., Gmys, J., Mezmaz, M., Melab, N. & Tuyttens, D.
Parallel surrogate-assisted optimization: Batched Bayesian Neural Network-assisted GA
versus q-EGO. Swarm and Evolutionary Computation 57, 100717. issn: 2210-6502. http:
//www.sciencedirect.com/science/article/pii/S2210650220303709
(2020).

21. Kugalur Palanisamy, N., Rivière Lorphèvre, E., Gobert, M., Briffoteaux, G., Tuyttens, D.,
Arrazola, P.-J. & Ducobu, F. Identification of the Parameter Values of the Constitutive and
Friction Models in Machining Using EGO Algorithm: Application to Ti6Al4V.Metals 12.

issn: 2075-4701. https://www.mdpi.com/2075-4701/12/6/976 (2022).

22. Gobert, M., Gmys, J., Toubeau, J.-F., Melab, N., Tuyttens, D. & Vallée, F. Batch Acquisi-
tion for Parallel Bayesian Optimization; Application to Hydro-Energy Storage Systems
Scheduling.Algorithms 15. issn: 1999-4893. https://www.mdpi.com/1999-4893/
15/12/446 (2022).

23. Ducobu, F., Kugalur Palanisamy, N., Briffoteaux, G., Gobert, M., Tuyttens, D., Arra-
zola Arriola, P.-J. & Rivière-Lorphèvre, E. Identification of the Constitutive and Fric-
tion Models Parameters via a Multi-Objective Surrogate-Assisted Algorithm for the
Modeling of Machining - Application to ALE orthogonal cutting of Ti6Al4V. Journal
of Manufacturing Science and Engineering, 1–54. issn: 1087-1357. eprint: https://
asmedigitalcollection.asme.org/manufacturingscience/article-

142

https://www.sciencedirect.com/science/article/pii/S2210650223000664
https://www.sciencedirect.com/science/article/pii/S2210650223000664
https://arxiv.org/abs/1903.09434
https://arxiv.org/abs/2301.11832
https://proceedings.neurips.cc/paper_files/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
http://www.sciencedirect.com/science/article/pii/S2210650220303709
http://www.sciencedirect.com/science/article/pii/S2210650220303709
https://www.mdpi.com/2075-4701/12/6/976
https://www.mdpi.com/1999-4893/15/12/446
https://www.mdpi.com/1999-4893/15/12/446
https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf
https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf
https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf

BIBLIOGRAPHY

pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf. https:
//doi.org/10.1115/1.4065223 (2024).

24. Gobert, M., Briffoteaux, G., Gmys, J., Melab, N. & Tuyttens, D. Observations in Applying
Bayesian versus Evolutionary approaches and their Hybrids in Parallel Time-constrained
Optimization, Currently under review in Engineering Applications of Artificial Intelli-

gence.

25. Favaro, P., Gobert, M. & Toubeau, J.-F. Multi-fidelity Optimization for Pumped Hydro
Energy Storage Participating in Energy and Reserve Markets, Currently under review
in Applied Energy.

26. Gobert, M., Gmys, J., Toubeau, J.-F., Vallée, F., Melab, N. & Tuyttens, D. Surrogate-Assisted
Optimization for Multi-stage Optimal Scheduling of Virtual Power Plants. in 2019 Inter-

national Conference on High Performance Computing Simulation (HPCS) (2019), 113–120.

27. Gobert, M., Gmys, J., Melab, N. & Tuyttens, D. Adaptive Space Partitioning for Parallel
Bayesian Optimization. in HPCS 2020 - The 18th International Conference on High Per-

formance Computing Simulation (Barcelona / Virtual, Spain, 2021). https://hal.
inria.fr/hal-03121209.

28. Gobert, M., Gmys, J., Toubeau, J.-F., Melab, N., Tuyttens, D. & Vallée, F. Parallel Bayesian
Optimization for Optimal Scheduling of Underground Pumped Hydro-Energy Storage
Systems. in 2022 IEEE International Parallel and Distributed Processing Symposium Work-

shops (IPDPSW) (2022), 790–797.

29. Filipič, B., Depolli, M., Zupančič, J., Gmys, J., Gobert, M., Melab, N. & Tuyttens, D.
ECG Simulator Tuning: A Parallel Multiobjective Optimization Approach. in Proceedings

OLA’2018 International Workshop on Optimization and Learning: Challenges and Applica-

tions (2018), 25–28.

30. Gobert, M., Gmys, J., Melab, N. & Tuyttens, D. Towards Adaptive Space Partitioning for
Large-scale Parallel Bayesian Optimization. inOLA’2020 - International Conference on Op-
timization and Learning (Cadix, Spain, 2020). https://hal.archives-ouvertes.
fr/hal-02898960.

31. Gobert, M., Gmys, J., Melab, N. & Tuyttens, D. Space Partitioning with multiple models
for Parallel Bayesian Optimization. in OLA 2021 - Optimization and Learning Algorithm

(Sicilia / Virtual, Italy, 2021). https://hal.archives-ouvertes.fr/hal-
03324642.

32. Talbi, E.-G. Metaheuristics: from design to implementation, 566. https : / / hal .
inria.fr/hal-00750681 (Wiley, 2009).

33. Diaz-Manriquez, A., Toscano Pulido, G., Barron-Zambrano, J. & Tello, E. A Review of
Surrogate Assisted Multiobjective Evolutionary Algorithms. Computational Intelligence

and Neuroscience 2016, 1–14 (2016).

143

https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf
https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf
https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/doi/10.1115/1.4065223/7324066/manu-23-1749.pdf
https://doi.org/10.1115/1.4065223
https://doi.org/10.1115/1.4065223
https://hal.inria.fr/hal-03121209
https://hal.inria.fr/hal-03121209
https://hal.archives-ouvertes.fr/hal-02898960
https://hal.archives-ouvertes.fr/hal-02898960
https://hal.archives-ouvertes.fr/hal-03324642
https://hal.archives-ouvertes.fr/hal-03324642
https://hal.inria.fr/hal-00750681
https://hal.inria.fr/hal-00750681

Chapter 4

34. Jin, Y. Surrogate-assisted evolutionary computation: Recent advances and future chal-
lenges. Swarm and Evolutionary Computation 1, 61–70. issn: 2210-6502. https://www.
sciencedirect.com/science/article/pii/S2210650211000198 (2011).

35. Chauvet, P. Aide-Mémoire de Géostatistique Linéaire (1993-2006).

36. Krige, D. G. A Statistical Approach to Some Basic Mine Valuation Problems on the Wit-
watersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa 52,

119–139 (1951).

37. Matérn, B. Spatial variation: Stochastic models and their application to some problems
in forest surveys and other sampling investigations. 1960.

38. Gandin, L. S. Objective analysis of meteorological fields. Quarterly Journal of the Royal

Meteorological Society 92, 447–447. eprint: https : / / rmets . onlinelibrary .
wiley . com / doi / pdf / 10 . 1002 / qj . 49709239320. https : / / rmets .
onlinelibrary.wiley.com/doi/abs/10.1002/qj.49709239320 (1966).

39. Matheron, G. Principles of geostatistics. Econ Geol (Lancaster). Economic Geology (1963).

40. Santner, T., Williams, B. & Notz, W. The Design and Analysis Computer Experiments.
isbn: 978-1-4419-2992-1 (2003).

41. Durrande, N. Étude de classes de noyaux adaptées à la simplification et à l’interprétation
des modèles d’approximation. Une approche fonctionnelle et probabiliste. Thèse de doc-
torat dirigée par Carraro, Laurent Mathématiques Saint-Etienne, EMSE 2011. PhD thesis
(2011). http://www.theses.fr/2011EMSE0631/document.

42. Durrande, N., Ginsbourger, D. & Roustant, O. Additive covariance kernels for high-
dimensional Gaussian process modeling. Annales de la Faculté de Sciences de Toulouse

Tome 21. http://afst.cedram.org/afst-bin/fitem?id=AFST_2012_6_21_3_481_0, p. 481–
499. https://hal.archives-ouvertes.fr/hal-00644934 (2012).

43. Duvenaud, D. Automatic model construction with Gaussian processes. https://www.
repository.cam.ac.uk/handle/1810/247281 (2014).

44. Duvenaud, D. K., Nickisch, H. & Rasmussen, C. Additive Gaussian Processes. in
Advances in Neural Information Processing Systems (eds Shawe-Taylor, J., Zemel, R.,
Bartlett, P., Pereira, F. & Weinberger, K.) 24 (Curran Associates, Inc., 2011). https:
/ / proceedings . neurips . cc / paper _ files / paper / 2011 / file /
4c5bde74a8f110656874902f07378009-Paper.pdf.

45. Liu, D. & Nocedal, J. On the limited memory BFGS method for large scale optimization.
English (US). Mathematical Programming 45, 503–528. issn: 0025-5610 (1989).

46. Picheny, V., Wagner, T. & Ginsbourger, D. A benchmark of kriging-based infill criteria for
noisy optimization. Structural and Multidisciplinary Optimization 48 (2013).

47. Ababou, R., Bagtzoglou, A. & Wood, E. On the condition number of covariance matrices
in kriging, estimation, and simulation of random fields.Mathematical Geology 26, 99–133
(1994).

144

https://www.sciencedirect.com/science/article/pii/S2210650211000198
https://www.sciencedirect.com/science/article/pii/S2210650211000198
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.49709239320
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.49709239320
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49709239320
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49709239320
http://www.theses.fr/2011EMSE0631/document
https://hal.archives-ouvertes.fr/hal-00644934
https://www.repository.cam.ac.uk/handle/1810/247281
https://www.repository.cam.ac.uk/handle/1810/247281
https://proceedings.neurips.cc/paper_files/paper/2011/file/4c5bde74a8f110656874902f07378009-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/4c5bde74a8f110656874902f07378009-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/4c5bde74a8f110656874902f07378009-Paper.pdf

BIBLIOGRAPHY

48. Roustant, O., Ginsbourger, D. & Deville, Y. DiceKriging, DiceOptim: Two R Packages
for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Opti-
mization. Journal of Statistical Software 51, 1–55. https://www.jstatsoft.org/
index.php/jss/article/view/v051i01 (2012).

49. Snoek, J., Swersky, K., Zemel, R. & Adams, R. Input warping for Bayesian optimization of
non-stationary functions. in International Conference on Machine Learning (2014), 1674–
1682.

50. Gramacy, R., Lee, H. & Macready, W. Parameter space exploration with Gaussian process
trees (2004).

51. Gramacy, R. B. & Lee, H. K. H. Bayesian treed Gaussian process models with an applica-
tion to computer modeling. Journal of the American Statistical Association 103, 1119–1130
(2008).

52. Assael, J. M., Wang, Z. & de Freitas, N. Heteroscedastic Treed Bayesian Optimisation.
CoRR abs/1410.7172. arXiv: 1410.7172. http://arxiv.org/abs/1410.7172
(2014).

53. Damianou, A. & Lawrence, N. D. Deep Gaussian Processes. in Proceedings of the Six-

teenth International Conference on Artificial Intelligence and Statistics (eds Carvalho, C. M.
& Ravikumar, P.) 31 (PMLR, Scottsdale, Arizona, USA, 2013), 207–215. https : / /
proceedings.mlr.press/v31/damianou13a.html.

54. Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.-G. & Melab, N. Bayesian optimization us-
ing deep Gaussian processes with applications to aerospace system design. Optimization

and Engineering. https://hal.science/hal-03046272 (2020).

55. Marmin, S. Warping and sampling approaches to non-stationary gaussian process mod-
elling. PhD thesis (2017).

56. Noè, U. & Husmeier, D. On a New Improvement-Based Acquisition Function for Bayesian
Optimization. ArXiv abs/1808.06918 (2018).

57. Kandasamy, K., Krishnamurthy, A., Schneider, J. & Poczos, B. Asynchronous Par-
allel Bayesian Optimisation via Thompson Sampling. 2017. arXiv: 1705 . 09236
[stat.ML].

58. Hernández-Lobato, J. M., Hoffman, M. W. & Ghahramani, Z. Predictive Entropy Search
for Efficient Global Optimization of Black-box Functions. in NIPS (2014).

59. Wang, Z. & Jegelka, S. Max-value Entropy Search for Efficient Bayesian Optimization.
2018. arXiv: 1703.01968 [stat.ML].

60. Villemonteix, J., Vazquez, E. & Walter, E. An informational approach to the global opti-
mization of expensive-to-evaluate functions. Journal of Global Optimization 44, 509. issn:
1573-2916. https://doi.org/10.1007/s10898-008-9354-2 (2008).

61. Schonlau, M. Computer Experiments and Global Optimization. AAINQ22234. PhD thesis
(CAN, 1997). isbn: 0612222349.

145

https://www.jstatsoft.org/index.php/jss/article/view/v051i01
https://www.jstatsoft.org/index.php/jss/article/view/v051i01
https://arxiv.org/abs/1410.7172
http://arxiv.org/abs/1410.7172
https://proceedings.mlr.press/v31/damianou13a.html
https://proceedings.mlr.press/v31/damianou13a.html
https://hal.science/hal-03046272
https://arxiv.org/abs/1705.09236
https://arxiv.org/abs/1705.09236
https://arxiv.org/abs/1703.01968
https://doi.org/10.1007/s10898-008-9354-2

Chapter 4

62. Marmin, S., Chevalier, C. & Ginsbourger, D. Differentiating the Multipoint Expected Im-
provement for Optimal Batch Design, 37–48. https://doi.org/10.1007/978-
3-319-27926-8_4 (2015).

63. Shah, A. & Ghahramani, Z. Parallel Predictive Entropy Search for Batch Global Optimiza-
tion of Expensive Objective Functions. 2015. arXiv: 1511.07130 [cs.LG].

64. Chevalier, C. & Ginsbourger, D. Fast Computation of the Multi-points Expected Improve-
ment with Applications in Batch Selection. working paper or preprint. 2012. https:
//hal.archives-ouvertes.fr/hal-00732512.

65. Wang, J., Clark, S. C., Liu, E. & Frazier, P. Parallel Bayesian Global Optimization of Expen-
sive Functions. Oper. Res. 68, 1850–1865. https://api.semanticscholar.org/
CorpusID:12234219 (2016).

66. Jones, D. A Taxonomy of Global Optimization Methods Based on Response Surfaces. J.
of Global Optimization 21, 345–383 (2001).

67. Zhan, D., Qian, J. & Cheng, Y. Balancing global and local search in parallel efficient global
optimization algorithms. Journal of Global Optimization 67, 873–892. issn: 1573-2916.
https://doi.org/10.1007/s10898-016-0449-x (2017).

68. Wang, H., Bäck, T. & Emmerich, M.Multi-point Efficient Global Optimization using Nich-
ing Evolution Strategy. in (2014).

69. González, J., Dai, Z., Hennig, P. & Lawrence, N. D. Batch Bayesian Optimization via Local
Penalization. 2015. arXiv: 1505.08052 [stat.ML].

70. Viana, F. A. C., Haftka, R. T. & Watson, L. T. Efficient global optimization algorithm as-
sisted bymultiple surrogate techniques. Journal of Global Optimization 56, 669–689. issn:
1573-2916. https://doi.org/10.1007/s10898-012-9892-5 (2013).

71. Wang, Y., Han, Z.-H., Zhang, Y. & Song, W. Efficient Global Optimization using Multiple
Infill Sampling Criteria and Surrogate Models. in (2018).

72. Chevalier, C., Bect, J., Ginsbourger, D., Vazquez, E., Picheny, V. & Richet, Y. Fast parallel
kriging-based stepwise uncertainty reduction with application to the identification of an
excursion set. Technometrics 56, 455–465. https://hal.archives-ouvertes.
fr/hal-00641108 (2014).

73. Liu, J., Song, W., Han, Z.-H. & Zhang, Y. Efficient aerodynamic shape optimization of
transonic wings using a parallel infilling strategy and surrogate models. Structural and
Multidisciplinary Optimization 55 (2017).

74. Hoffman, M., Brochu, E. & de Freitas, N. Portfolio allocation for Bayesian optimization.
in Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence

(AUAI Press, Barcelona, Spain, 2011), 327–336. isbn: 9780974903972.

146

https://doi.org/10.1007/978-3-319-27926-8_4
https://doi.org/10.1007/978-3-319-27926-8_4
https://arxiv.org/abs/1511.07130
https://hal.archives-ouvertes.fr/hal-00732512
https://hal.archives-ouvertes.fr/hal-00732512
https://api.semanticscholar.org/CorpusID:12234219
https://api.semanticscholar.org/CorpusID:12234219
https://doi.org/10.1007/s10898-016-0449-x
https://arxiv.org/abs/1505.08052
https://doi.org/10.1007/s10898-012-9892-5
https://hal.archives-ouvertes.fr/hal-00641108
https://hal.archives-ouvertes.fr/hal-00641108

BIBLIOGRAPHY

75. Lyu, W., Yang, F., Yan, C., Zhou, D. & Zeng, X. Batch Bayesian Optimization via Multi-
objective Acquisition Ensemble for Automated Analog Circuit Design. in Proceedings of

the 35th International Conference on Machine Learning (eds Dy, J. & Krause, A.) 80 (PMLR,
Stockholmsmässan, Stockholm Sweden, 2018), 3306–3314. http://proceedings.
mlr.press/v80/lyu18a.html.

76. Feng, Z., Zhang, Q., Zhang, Q., Tang, Q., Yang, T. & Ma, Y. A multiobjective optimization
based framework to balance the global exploration and local exploitation in expensive
optimization. J Glob Optim 61, 1–18 (2014).

77. De Ath, G., Everson, R. M., Fieldsend, J. E. & Rahat, A. A. M. ϵ-shotgun: ϵ-greedy batch
bayesian optimisation. in Proceedings of the 2020 Genetic and Evolutionary Computa-

tion Conference (Association for Computing Machinery, Cancún, Mexico, 2020), 787–795.
isbn: 9781450371285. https://doi.org/10.1145/3377930.3390154.

78. Wolpert, D. & Macready, W. No free lunch theorems for optimization. IEEE Transactions

on Evolutionary Computation 1, 67–82 (1997).

79. Donachie, M. Titanium: A Technical Guide. American Society for Testing and Materials,

29–34 (1988).

80. Bridges, P. & Magnus, B. Manufacture of Titanium Alloy Components for Aerospace and
Military Applications, Cost Effective Application of Titanium Alloys in Military Platforms

(2002).

81. Lütjering, G. & Williams, J. C. Titanium (Engineering Materials and Processes). isbn:
978-3-540-71398-2. https://www.amazon.com/Titanium- Engineering-
Materials-Processes-L (Springer, 2013).

82. Ducobu, F. Contribution à l’étude de la formation du copeau de Ti6Al4V en coupe orthog-
onale. Approches numérique et expérimentale pour la compréhension des mécanismes
de coupe macroscopique et microscopique. fr. PhD thesis (Université de Mons, 2013).

83. Yi, J., Zhou, W. & Deng, Z. Experimental Study and Numerical Simulation of the Inter-
mittent Feed High-Speed Grinding of TC4 Titanium Alloy. Metals 9. issn: 2075-4701.
https://www.mdpi.com/2075-4701/9/7/802 (2019).

84. Markopoulos, A. Finite ElementMethod inMachining Processes. isbn: 978-1-4471-4329-1
(ASM, 2012).

85. Ducobu, F., Rivière-Lorphèvre, E. & Filippi, E. Application of the Coupled Eulerian-
Lagrangian (CEL) method to the modeling of orthogonal cutting. European Journal of

Mechanics - A/Solids Volume 59, 58–66 (2016).

86. Kugalur-Palanisamy, N., Rivière-Lorphèvre, E., Arrazola, P. J. & Ducobu, F. Comparison
of Johnson-Cook and modified Johnson-Cook material constitutive models and their in-
fluence on finite element modelling of Ti6Al4V orthogonal cutting process. PROCEED-
INGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORM-

ING: ESAFORM 2019 (2019).

147

http://proceedings.mlr.press/v80/lyu18a.html
http://proceedings.mlr.press/v80/lyu18a.html
https://doi.org/10.1145/3377930.3390154
https://www.amazon.com/Titanium-Engineering-Materials-Processes-L
https://www.amazon.com/Titanium-Engineering-Materials-Processes-L
https://www.mdpi.com/2075-4701/9/7/802

Chapter 4

87. Kugalur Palanisamy, N., Riviere, E., Arrazola, P. & Ducobu, F. Influence of Coulomb’s
Friction Coefficient in Finite Element Modeling of Orthogonal Cutting of Ti6Al4V. Key
Engineering Materials 926, 1619–1628 (2022).

88. Melkote, S., Grzesik, W., Outeiro, J., Rech, J., Schulze, V., Attia, H., Arrazola, P., M’Saoubi,
R. & Saldana, C. Advances in material and friction data for modelling of metal machining.
CIRP Annals - Manufacturing Technology 66 (2017).

89. Ducobu, F., Arrazola, P.-J., Rivière-Lorphèvre, E., de Zarate, G. O., Madariaga, A. & Filippi,
E. The CEL Method as an Alternative to the Current Modelling Approaches for Ti6Al4V
Orthogonal Cutting Simulation. Procedia CIRP 58. 16th CIRP Conference on Modelling
of Machining Operations (16th CIRP CMMO), 245 –250. issn: 2212-8271. http://www.
sciencedirect.com/science/article/pii/S2212827117303700 (2017).

90. Leseur, D. Experimental investigations of material models for Ti-6A1-4V and 2024-T3.
https://www.osti.gov/biblio/11977 (1999).

91. Seo, S., Min, O. & Yang, H. Constitutive equation for Ti–6Al–4V at high temperatures
measured using the SHPB technique. International Journal of Impact Engineering - INT J

IMPACT ENG 31, 735–754 (2005).

92. Ducobu, F., Riviere, E. & Filippi, E. Experimental contribution to the study of the Ti6Al4V
chip formation in orthogonal cutting on a milling machine. in. 8 (2014).

93. Ducobu, F., Arrazola, P.-J., Rivière-Lorphèvre, E., de Zarate, G. O., Madariaga, A. & Filippi,
E. The CEL Method as an Alternative to the Current Modelling Approaches for Ti6Al4V
Orthogonal Cutting Simulation. Procedia CIRP 58. 16th CIRP Conference onModelling of
Machining Operations (16th CIRP CMMO), 245–250. issn: 2212-8271. https://www.
sciencedirect.com/science/article/pii/S2212827117303700 (2017).

94. Iman, R. L. Latin Hypercube Sampling. in Encyclopedia of Quantitative Risk Analysis

and Assessment (John Wiley & Sons, Ltd, 2008). isbn: 9780470061596. eprint: https:
/ / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / 9780470061596 .
risk0299. https://onlinelibrary.wiley.com/doi/abs/10.1002/
9780470061596.risk0299.

95. Sammut, C. & Webb, G. I. Leave-One-Out Cross-Validation. in Encyclopedia of Machine

Learning 600–601 (Springer US, Boston, MA, 2010). isbn: 978-0-387-30164-8. https:
//doi.org/10.1007/978-0-387-30164-8_469.

96. Gardner, J. R., Pleiss, G., Bindel, D.,Weinberger, K. Q. &Wilson, A. G. GPyTorch: Blackbox
Matrix-Matrix Gaussian Process Inference with GPU Acceleration. in Advances in Neural

Information Processing Systems (2018).

97. Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham, B., Wilson, A. G. & Bakshy, E.
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. in Advances in

Neural Information Processing Systems 33 (2020). http://arxiv.org/abs/1910.
06403.

148

http://www.sciencedirect.com/science/article/pii/S2212827117303700
http://www.sciencedirect.com/science/article/pii/S2212827117303700
https://www.osti.gov/biblio/11977
https://www.sciencedirect.com/science/article/pii/S2212827117303700
https://www.sciencedirect.com/science/article/pii/S2212827117303700
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470061596.risk0299
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470061596.risk0299
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470061596.risk0299
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470061596.risk0299
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470061596.risk0299
https://doi.org/10.1007/978-0-387-30164-8_469
https://doi.org/10.1007/978-0-387-30164-8_469
http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403

BIBLIOGRAPHY

98. Arrazola, P., Özel, T., Umbrello, D., Davies, M. & Jawahir, I. Recent advances in mod-
elling ofmetalmachining processes.CIRPAnnals -Manufacturing Technology 62, 695–718
(2013).

99. Toubeau, J.-F., Vallée, F., DeGrève, Z. & Lobry, J. A new approach based on the experimen-
tal design method for the improvement of the operational efficiency in Medium Voltage
distribution networks. International Journal of Electrical Power and Energy Systems 66,

116 –124. issn: 0142-0615 (2015).

100. Toubeau, J.-F., De Grève, Z. & Vallée, F. Medium-Term Multimarket Optimization for
Virtual Power Plants: A Stochastic-Based Decision Environment. IEEE Transactions on

Power Systems 33, 1399–1410 (2018).

101. Bruninx, K. Improved modeling of unit commitment decisions under uncertainty. PhD
thesis (KU Leuven, 2016).

102. Toubeau, J.-F., Bottieau, J., Vallée, F. & De Grève, Z. Deep Learning-Based Multivariate
Probabilistic Forecasting for Short-Term Scheduling in Power Markets. IEEE Transactions
on Power Systems 34, 1203–1215. issn: 0885-8950 (2019).

103. Pandžić, H., Kuzle, I. & Capuder, T. Virtual power plant mid-term dispatch optimization.
Applied Energy 101, 134–141 (2013).

104. Alkan, B. & Kaniappan Chinnathai, M. Performance Comparison of Recent Population-
Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Ma-
chinery Components.Machines 9. issn: 2075-1702. https://www.mdpi.com/2075-
1702/9/12/341 (2021).

105. Kaveh, M. & Mesgari, M. Application of Meta-Heuristic Algorithms for Training Neural
Networks and Deep Learning Architectures: A Comprehensive Review.Neural Processing
Letters. issn: 1573-773X. https://doi.org/10.1007/s11063-022-11055-6
(2022).

106. Torres-Jiménez, J. & Pavón, J. Applications of metaheuristics in real-life problems.
Progress in Artificial Intelligence 2. issn: 2192-6360. https://doi.org/10.1007/
s13748-014-0051-8 (2014).

107. Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T. & Crombecq, K. A Surrogate Model-
ing and Adaptive Sampling Toolbox for Computer Based Design. J. Mach. Learn. Res. 11,

2051–2055 (2010).

108. MATLAB Optimization Toolbox. The MathWorks, Natick, MA, USA.

109. Caldwell, J. M., Le, X., McIntosh, L., Meehan, M. T., Ogunlade, S., Ragonnet, R., O’Neill,
G. K., Trauer, J. M. &McBryde, E. S. Vaccines and variants: Modelling insights into emerg-
ing issues in COVID-19 epidemiology. Paediatric Respiratory Reviews 39, 32–39. issn:
1526-0542. https://www.sciencedirect.com/science/article/pii/
S152605422100066X (2021).

149

https://www.mdpi.com/2075-1702/9/12/341
https://www.mdpi.com/2075-1702/9/12/341
https://doi.org/10.1007/s11063-022-11055-6
https://doi.org/10.1007/s13748-014-0051-8
https://doi.org/10.1007/s13748-014-0051-8
https://www.sciencedirect.com/science/article/pii/S152605422100066X
https://www.sciencedirect.com/science/article/pii/S152605422100066X

Chapter 4

110. Trauer, J. M., Ragonnet, R., Doan, T. N. &McBryde, E. S. Modular programming for tuber-
culosis control, the “AuTuMN” platform. BMC Infectious Diseases 17, 546. issn: 1471-2334.
https://doi.org/10.1186/s12879-017-2648-6 (2017).

111. Global tuberculosis report 2018. WHO/CDS/TB/2018.20 (World Health Organization,
Geneva, 2018). http://www.who.int/tb/publications/global_report/
en/.

112. Briffoteaux, G., Ragonnet, R., Mezmaz, M., Melab, N. & Tuyttens, D. Evolution Con-
trol for parallel ANN-assisted simulation-based optimization application to Tubercu-
losis Transmission Control. Future Generation Computer Systems 113, 454–467. issn:
0167-739X. https://www.sciencedirect.com/science/article/pii/
S0167739X19308635 (2020).

113. Deb, K. & Nain, P. An Evolutionary Multi-objective Adaptive Meta-modeling Procedure
Using Artificial Neural Networks. in Evolutionary Computation in Dynamic and Uncertain

Environments (eds Yang, S., Ong, Y.-S. & Jin, Y.) doi: http://dx.doi.org/10.1007/
978-3-540-49774-5_13, 297–322 (Springer, Berlin, Heidelberg, 2007). isbn: 978-3-
540-49772-1.

114. Poloni, C., Giurgevich, A., Onesti, L. & Pediroda, V. Hybridization of a multi-objective
genetic algorithm, a neural network and a classical optimizer for a complex design prob-
lem in fluid dynam ics. Computer Methods in Applied Mechanics and Engineering 186.

doi: https://doi.org/10.1016/S0045- 7825(99)00394- 1, 403 –420.
issn: 0045-7825. http://www.sciencedirect.com/science/article/pii/
S0045782599003941 (2000).

115. Syberfeldt, A., Grimm,H., Ng, A. & John, R. I. A parallel surrogate-assistedmulti-objective
evolutionary algorithm for computationally expensive optimization problems. in 2008

IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational In-

telligence) doi: https://doi.org/10.1109/CEC.2008.4631228 (2008), 3177–
3184.

116. Gaspar-Cunha, A. & Vieira, A. A Multi-Objective Evolutionary Algorithm Using Neural
Networks to Approximate Fitness Evaluations. International Journal of Computers, Sys-

tems and Signals 6, 18–36 (2005).

117. Vicario, G., Craparotta, G. & Pistone, G. Meta-models in Computer Experiments: Kriging
versus Artificial Neural Networks. Quality and Reliability Engineering International 32,

2055–2065. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
qre.2026. https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.
2026 (2016).

118. Gal, Y. Uncertainty in Deep Learning. PhD thesis (University of Cambridge, 2016).

119. Gal, Y. & Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. arXiv e-prints. arXiv: 1506.02142 [stat.ML] (2015).

150

https://doi.org/10.1186/s12879-017-2648-6
http://www.who.int/tb/publications/global_report/en/
http://www.who.int/tb/publications/global_report/en/
https://www.sciencedirect.com/science/article/pii/S0167739X19308635
https://www.sciencedirect.com/science/article/pii/S0167739X19308635
http://dx.doi.org/10.1007/978-3-540-49774-5_13
http://dx.doi.org/10.1007/978-3-540-49774-5_13
https://doi.org/10.1016/S0045-7825(99)00394-1
http://www.sciencedirect.com/science/article/pii/S0045782599003941
http://www.sciencedirect.com/science/article/pii/S0045782599003941
https://doi.org/10.1109/CEC.2008.4631228
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.2026
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.2026
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.2026
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.2026
https://arxiv.org/abs/1506.02142

BIBLIOGRAPHY

120. Biscani, F. & Izzo, D. A parallel global multiobjective framework for optimization: pagmo.
Journal of Open Source Software 5, 2338. https://doi.org/10.21105/joss.
02338 (2020).

121. Jones, D. The DIRECT global optimization algorithm. Encyclopedia of Optimization 1

(2001).

122. Jones, D. R. & Martins, J. The DIRECT algorithm: 25 years Later. J. Glob. Optim. 79, 521–
566 (2021).

123. Gobert, M., Gmys, J., Melab, N. & Tuyttens, D. Space Partitioning with multiple models
for Parallel Bayesian Optimization. in OLA 2021 - Optimization and Learning Algorithm

(Sicilia / Virtual, Italy, 2021). https://hal.archives-ouvertes.fr/hal-
03324642.

124. Rehbach, F., Zaefferer, M., Naujoks, B. & Bartz-Beielstein, T. Expected Improvement
versus Predicted Value in Surrogate-Based Optimization. 2020. arXiv: 2001 . 02957
[cs.NE].

125. Siivola, E., Vehtari, A., Vanhatalo, J., González, J. & Andersen, M. R. Correcting bound-
ary over-exploration deficiencies in Bayesian optimization with virtual derivative sign
observations. 2018. arXiv: 1704.00963 [stat.ML].

126. Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002).

127. Villanueva, D., Le Riche, R., Picard, G. &Haftka, R. Dynamic Design Space Partitioning for
Optimization of an Integrated Thermal Protection System. in (2013). isbn: 978-1-62410-
223-3.

128. Wang, G. & Simpson, T. Fuzzy clustering based hierarchical metamodeling for design
space reduction and optimization. English (US). Engineering Optimization 36, 313–335.
issn: 0305-215X (2004).

129. Li, Z., Ruan, S., Gu, J., Wang, X. & Shen, C. Investigation on parallel algorithms in efficient
global optimization based on multiple points infill criterion and domain decomposition.
Structural and Multidisciplinary Optimization 54, 747–773 (2016).

130. Wang, S. & Hui Ng, S. Partition-Based Bayesian Optimization for Stochastic Simulations.
in 2020 Winter Simulation Conference (WSC) (2020), 2832–2843.

131. Jones, D., Perttunen, C. & Stuckman, B. Lipschitzian Optimisation Without the Lipschitz
Constant. Journal of Optimization Theory and Applications 79, 157–181 (1993).

132. Diouane, Y., Picheny, V., Le Riche, R. & Scotto Di Perrotolo, A. TREGO: a Trust-Region
Framework for Efficient Global Optimization. Journal of Global Optimization 86, 1–23
(2022).

133. Li, Q., Fu, A., Wei, W. & Zhang, Y. A Trust Region Based Local Bayesian Optimization
without Exhausted Optimization of Acquisition Function. Evolving Systems, 1–20 (2022).

151

https://doi.org/10.21105/joss.02338
https://doi.org/10.21105/joss.02338
https://hal.archives-ouvertes.fr/hal-03324642
https://hal.archives-ouvertes.fr/hal-03324642
https://arxiv.org/abs/2001.02957
https://arxiv.org/abs/2001.02957
https://arxiv.org/abs/1704.00963

Chapter 4

134. Briffoteaux, G. pySBO: Python framework for Surrogate-Based Optimization. https:
//pysbo.readthedocs.io/. 2021.

135. Martinez-Cantin, R. BayesOpt: A Bayesian Optimization Library for Nonlinear Optimiza-
tion, Experimental Design and Bandits. Journal of Machine Learning Research 15, 3735–
3739 (2014).

136. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. 2022. arXiv: 1312.6114
[stat.ML].

137. Pleiss, G., Jankowiak, M., Eriksson, D., Damle, A. & Gardner, J. R. Fast Matrix Square
Roots with Applications to Gaussian Processes and Bayesian Optimization. 2020. arXiv:
2006.11267 [cs.LG].

138. Bossek, J., Doerr, C. &Kerschke, P. Initial Design Strategies and their Effects on Sequential
Model-Based Optimization An Exploratory Case Study Based on BBOB. in Genetic and

Evolutionary Computation Conference (GECCO’20) (Cancun, Mexico, 2020). https://
hal.sorbonne-universite.fr/hal-02871959.

139. Neal, R. Bayesian Learning for Neural Networks. Lecture Notes in Statistics (1996).

140. Toubeau, J.-F., Bottieau, J., De Grève, Z., Vallée, F. & Bruninx, K. Data-Driven Scheduling
of Energy Storage in Day-Ahead Energy and Reserve Markets With Probabilistic Guar-
antees on Real-Time Delivery. IEEE Transactions on Power Systems 36, 2815–2828 (2021).

141. Toubeau, J.-F., De Grève, Z., Goderniaux, P., Vallée, F. & Bruninx, K. Chance-Constrained
Scheduling of Underground Pumped Hydro Energy Storage in Presence of Model Uncer-
tainties. IEEE Transactions on Sustainable Energy 11, 1516–1527 (2020).

142. Taktak, R. & D’Ambrosio, C. An overview on mathematical programming approaches
for the deterministic unit commitment problem in hydro valleys. Energy Systems 8, 1–23
(2017).

143. Steeger, G., Barroso, L. & Rebennack, S. Optimal Bidding Strategies for Hydro-Electric
Producers: A Literature Survey. Power Systems, IEEE Transactions on 29, 1758–1766 (2014).

144. Abreu, L. V. L., Khodayar, M. E., Shahidehpour, M. & Wu, L. Risk-Constrained Coordina-
tion of Cascaded Hydro Units With Variable Wind Power Generation. IEEE Transactions

on Sustainable Energy 3, 359–368 (2012).

145. Montero, R., Wortberg, T, Binias, J & Niemann, A. Integrated assessment of underground
pumped-storage facilities using existing coal mine infrastructure. in (2016), 953–960.
isbn: 978-1-138-02977-4.

146. Pujades, E., Orban, P., Bodeux, S., Archambeau, P., Erpicum, S. & Dassargues, A. Un-
derground pumped storage hydropower plants using open pit mines: How do ground-
water exchanges influence the efficiency? Applied Energy 190, 135–146. issn: 0306-
2619. https : / / www . sciencedirect . com / science / article / pii /
S0306261916318608 (2017).

152

https://pysbo.readthedocs.io/
https://pysbo.readthedocs.io/
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2006.11267
https://hal.sorbonne-universite.fr/hal-02871959
https://hal.sorbonne-universite.fr/hal-02871959
https://www.sciencedirect.com/science/article/pii/S0306261916318608
https://www.sciencedirect.com/science/article/pii/S0306261916318608

BIBLIOGRAPHY

147. Ponrajah, R., Witherspoon, J. & Galiana, F. Systems to Optimize Conversion Efficiencies
at Ontario Hydro’s Hydroelectric Plants. Power Systems, IEEE Transactions on 13, 1044
–1050 (1998).

148. Pannatier, Y. Optimisation des stratégies de réglage d’une installation de pompage-
turbinage à vitesse variable (2010).

149. Artiba, A., Emelyanov, V. & Iassinovski, S. Introduction to Intelligent Simulation: The
RAO Language. The Journal of the Operational Research Society 51 (2000).

150. Cheng, C., Wang, J. & Wu, X. Hydro Unit Commitment With a Head-Sensitive Reservoir
and Multiple Vibration Zones Using MILP. IEEE Transactions on Power Systems 31, 4842–
4852 (2016).

151. Arce, A., Ohishi, T. & Soares, S. Optimal dispatch of generating units of the Itaipu hydro-
electric plant. IEEE Transactions on Power Systems 17, 154–158 (2002).

152. Catalao, J. P. S., Mariano, S. J. P. S., Mendes, V. M. F. & Ferreira, L. A. F. M. Scheduling of
Head-Sensitive Cascaded Hydro Systems: A Nonlinear Approach. IEEE Transactions on

Power Systems 24, 337–346 (2009).

153. Chen, P.-H. & Chang, H.-C. Genetic aided scheduling of hydraulically coupled plants in
hydro-thermal coordination. IEEE Transactions on Power Systems 11, 975–981 (1996).

154. Yu, B., Yuan, X. & Wang, J. Short-term hydro-thermal scheduling using particle swarm
optimization method. Energy Conversion and Management 48, 1902–1908. issn: 0196-
8904. https : / / www . sciencedirect . com / science / article / pii /
S0196890407000489 (2007).

155. Favaro, P., Dolányi, M., Vallée, F. & Toubeau, J.-F. Neural network informed day-
ahead scheduling of pumped hydro energy storage. Energy 289, 129999. issn: 0360-
5442. https : / / www . sciencedirect . com / science / article / pii /
S0360544223033935 (2024).

156. Priem, R. Optimisation bayésienne sous contraintes et en grande dimension appliquée
à la conception avion avant projet. Theses (ISAE-SUPAERO, 2020). https://hal.
science/tel-03096022.

157. Priem, R., Bartoli, N., Diouane, Y., Dubreuil, S. & Saves, P. High-dimensional efficient
global optimization using both random and supervised embeddings. in AIAA AVIATION

2023 Forum (). eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2023-
4448. https://arc.aiaa.org/doi/abs/10.2514/6.2023-4448.

158. Storti, G. L., Paschero, M., Rizzi, A. & Frattale Mascioli, F. M. Comparison between
time-constrained and time-unconstrained optimization for power losses minimization
in Smart Grids using genetic algorithms. Neurocomputing 170. Advances on Biological
Rhythmic Pattern Generation: Experiments, Algorithms and Applications Selected Pa-
pers from the 2013 International Conference on Intelligence Science and Big Data En-
gineering (IScIDE 2013) Computational Energy Management in Smart Grids, 353–367.

153

https://www.sciencedirect.com/science/article/pii/S0196890407000489
https://www.sciencedirect.com/science/article/pii/S0196890407000489
https://www.sciencedirect.com/science/article/pii/S0360544223033935
https://www.sciencedirect.com/science/article/pii/S0360544223033935
https://hal.science/tel-03096022
https://hal.science/tel-03096022
https://arc.aiaa.org/doi/pdf/10.2514/6.2023-4448
https://arc.aiaa.org/doi/pdf/10.2514/6.2023-4448
https://arc.aiaa.org/doi/abs/10.2514/6.2023-4448

Chapter 4

issn: 0925-2312. https://www.sciencedirect.com/science/article/
pii/S0925231215008772 (2015).

159. Le Riche, R. & Picheny, V. Revisiting Bayesian Optimization in the light of the COCO
benchmark. Structural andMultidisciplinary Optimization. https://hal.archives-
ouvertes.fr/hal-03188590 (2021).

160. Holland, J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. isbn: 9780262275552.
https://doi.org/10.7551/mitpress/1090.001.0001 (The MIT Press,
1992).

161. Poli, R., Kennedy, J. & Blackwell, T. M. Particle swarm optimization. Swarm Intelligence

1, 33–57 (1995).

162. Briffoteaux, G., Ragonnet, R., Mezmaz, M., Melab, N. & Tuyttens, D. Evolution Con-
trol for parallel ANN-assisted simulation-based optimization application to Tubercu-
losis Transmission Control. Future Generation Computer Systems 113, 454–467. issn:
0167-739X. https://www.sciencedirect.com/science/article/pii/
S0167739X19308635 (2020).

163. Díaz-Manríquez, A., Toscano, G., Barron-Zambrano, J. & Tello-Leal, E. A Review of Sur-
rogate Assisted Multiobjective Evolutionary Algorithms. Computational Intelligence and

Neuroscience 2016. doi: https://doi.org/10.1155/2016/9420460, 14. issn:
Article ID 9420460. https : / / www . hindawi . com / journals / cin / 2016 /
9420460/ (2016).

164. Sun, C., Jin, Y., Cheng, R., Ding, J. & Zeng, J. Surrogate-Assisted Cooperative Swarm Op-
timization of High-Dimensional Expensive Problems. IEEE Transactions on Evolutionary

Computation 21, 644–660 (2017).

165. Chen, T., Tang, K., Chen, G. & Yao, X. A large population size can be unhelpful in evo-
lutionary algorithms. Theoretical Computer Science 436, 54–70. issn: 0304-3975. https:
//www.sciencedirect.com/science/article/pii/S0304397511001368
(2012).

166. Jin, Y., Olhofer, M. & Sendhoff, B. On Evolutionary Optimization with Approximate Fit-
ness Functions. in Proceedings of the 2Nd Annual Conference on Genetic and Evolutionary

Computation (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000), 786–
793. isbn: 1-55860-708-0. http://dl.acm.org/citation.cfm?id=2933718.
2933864.

167. Jin, Y., Olhofer, M. & Sendhoff, B. Managing approximate models in evolutionary aero-
dynamic design optimization. in Proceedings of the 2001 Congress on Evolutionary Com-

putation (IEEE Cat. No.01TH8546) 1 (2001), 592–599 vol. 1.

168. Khokhar, M. A., Boudt, K. & Wan, C. Cardinality-Constrained Higher-Order Moment
Portfolios Using Particle Swarm Optimization. in, 169–187 (2021). isbn: 978-3-030-70280-
9.

154

https://www.sciencedirect.com/science/article/pii/S0925231215008772
https://www.sciencedirect.com/science/article/pii/S0925231215008772
https://hal.archives-ouvertes.fr/hal-03188590
https://hal.archives-ouvertes.fr/hal-03188590
https://doi.org/10.7551/mitpress/1090.001.0001
https://www.sciencedirect.com/science/article/pii/S0167739X19308635
https://www.sciencedirect.com/science/article/pii/S0167739X19308635
https://doi.org/10.1155/2016/9420460
https://www.hindawi.com/journals/cin/2016/9420460/
https://www.hindawi.com/journals/cin/2016/9420460/
https://www.sciencedirect.com/science/article/pii/S0304397511001368
https://www.sciencedirect.com/science/article/pii/S0304397511001368
http://dl.acm.org/citation.cfm?id=2933718.2933864
http://dl.acm.org/citation.cfm?id=2933718.2933864

BIBLIOGRAPHY

169. Clerc, M. & Kennedy, J. The particle swarm - explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions on Evolutionary Computation 6, 58–
73 (2002).

170. Carroll, E. Multi-Swarm Adaptive Velocity PSO for Constrained Engineering Problems.
PhD thesis (2017).

171. Shi, L. & Rasheed, K. A Survey of Fitness Approximation Methods Applied in Evolution-
ary Algorithms. in Computational Intelligence in Expensive Optimization Problems 3–28
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2010). isbn: 978-3-642-10701-6.

172. Briffoteaux, G., Ragonnet, R., Mezmaz, M., Melab, N. & Tuyttens, D. Evolution Control
Ensemble Models for Surrogate-Assisted Evolutionary Algorithms. in High Performance

Computing and Simulation 2020 (Barcelona, Spain, 2021). https://hal.inria.fr/
hal-03332521.

173. Boeringer, D. & Werner, D. Particle swarm optimization versus genetic algorithms for
phased array synthesis. IEEE Transactions on Antennas and Propagation 52, 771–779
(2004).

174. Eberhart, R. C. & Shi, Y. Comparison between Genetic Algorithms and Particle
Swarm Optimization. in Evolutionary Programming (1998). https : / / api .
semanticscholar.org/CorpusID:14050546.

175. Dalcin, L. & Fang, Y.-L. L. mpi4py: Status Update After 12 Years of Development. Com-

puting in Science & Engineering 23, 47–54 (2021).

176. Chen, Q., Liu, B., Zhang, Q. F., Liang, J. J., Suganthan, P. N. & Qu, B. Problem Defini-
tions and Evaluation Criteria for CEC 2015 Special Session on Bound Constrained Single-
Objective Computationally Expensive Numerical Optimization. in (2015).

177. Liang, J., Qu, B. & Suganthan, P. Problem definitions and evaluation criteria for the CEC
2014 special session and competition on single objective real-parameter numerical opti-
mization. Tech. rep. (2013).

178. Clerc, M. The swarm and the queen: Towards a deterministic and adaptive particle swarm
optimization. in. 3 (1999), 1957 Vol. 3. isbn: 0-7803-5536-9.

179. Derrac, J., García, S., Molina, D. & Herrera, F. A practical tutorial on the use of non-
parametric statistical tests as a methodology for comparing evolutionary and swarm in-
telligence algorithms. Swarm and Evolutionary Computation 1, 3–18. https://app.
dimensions.ai/details/publication/pub.1011052808 (2011).

180. Kumar, A., Wu, G., Ali, M. Z., Mallipeddi, R., Suganthan, P. N. & Das, S. A test-suite of
non-convex constrained optimization problems from the real-world and some baseline
results. Swarm and Evolutionary Computation 56, 100693. issn: 2210-6502. https://
www.sciencedirect.com/science/article/pii/S2210650219308946
(2020).

155

https://hal.inria.fr/hal-03332521
https://hal.inria.fr/hal-03332521
https://api.semanticscholar.org/CorpusID:14050546
https://api.semanticscholar.org/CorpusID:14050546
https://app.dimensions.ai/details/publication/pub.1011052808
https://app.dimensions.ai/details/publication/pub.1011052808
https://www.sciencedirect.com/science/article/pii/S2210650219308946
https://www.sciencedirect.com/science/article/pii/S2210650219308946

Chapter 4

181. Xiao, Y.-N., Guo, Y., Cui, H., Wang, Y., Li, J. & Zhang, Y. IHAOAVOA: An improved hy-
brid aquila optimizer and African vultures optimization algorithm for global optimization
problems. Mathematical biosciences and engineering: MBE 19, 10963–11017 (2022).

182. Thieu, N. V. ENOPPY: A Python Library for Engineering Optimization Problems. 2023.
https://github.com/thieu1995/enoppy.

183. Moriconi, R., Deisenroth, M. & K S, S. K. High-dimensional Bayesian optimization using
low-dimensional feature spaces. Machine Learning 109, 1925–1943 (2020).

184. Toufani, P., Karakoyun, E. C., Nadar, E., Fosso, O. B. & Kocaman, A. S. Optimization
of pumped hydro energy storage systems under uncertainty: A review. Journal of En-
ergy Storage 73, 109306. issn: 2352-152X. https://www.sciencedirect.com/
science/article/pii/S2352152X23027044 (2023).

185. Vivien Lai, Van Son Lai, Huang, Y. F., Yuk Feng Huang, et al. A Review of Reservoir
Operation Optimisations: from Traditional Models to Metaheuristic Algorithms.Archives
of Computational Methods in Engineering.MAG ID: 4214558369 (2022).

186. Hebbal, A., Balesdent, M., Brevault, L., Melab, N. & Talbi, E.-G. Deep Gaussian process
for multi-objective Bayesian optimization. Optimization and Engineering 24, 1–40 (2022).

187. Srinivas, N. & Deb, K. Multiobjective Optimization Using Nondominated Sorting
in Genetic Algorithms. Evolutionary Computation 2, 221–248. https : / / api .
semanticscholar.org/CorpusID:13997318 (1994).

156

https://github.com/thieu1995/enoppy
https://www.sciencedirect.com/science/article/pii/S2352152X23027044
https://www.sciencedirect.com/science/article/pii/S2352152X23027044
https://api.semanticscholar.org/CorpusID:13997318
https://api.semanticscholar.org/CorpusID:13997318

List of Figures

1.1 Black-box function representation . 13

1.2 Illustration of the exploration and exploitation processes 14

1.3 Surrogate model principle . 15

1.4 Surrogate-Assisted Optimization loop . 17

1.5 Surrogate-Driven Optimization loop . 17

1.6 The posterior distribution is non constant even with constant mean prior. 25

1.7 Prediction of a noisy objective with and without noise estimation in the model . 26

1.8 Predictive distribution and confidence interval for models build with and with-
out noise estimation . 26

2.1 Illustration of the orthogonal cutting process [82] 36

2.2 Constitution of the simulator . 37

2.3 Illustration of the mechanical cutting process and the monitored quantities . . . 38

2.4 Representation of the simulator for inverse identification problem 38

2.5 Five cycles of EGO. A cycle is composed of a surrogate model fitting, an AP, and
a simulation . 41

2.6 Representation of the simulator for the virtual power plant optimal commitment
problem . 46

2.7 Average expected profit (µ, in e) in a function of the number of simulations for
batch sizes q ∈ {1, 2, 4, 8}. The orange curve represents the average expected
profit from the offline approach. Dotted lines indicate the standard deviation
(σ) for each batch size. 51

2.8 Zooming on the average expected profits (in e) in a function of the number of
simulations for batch sizes q ∈ {1, 2, 4, 8}. Dotted lines indicate the standard
deviation (σ) for each batch size. 51

2.9 Average prevalence according to the number of simulations. The mean is com-
puted over 50 repetitions. The rhombus-shaped point represents the common
initial best value. 56

2.10 Focus on the average prevalence according to the number of simulations for KB-
qEGO. The mean is computed over 50 repetitions. The rhombus-shaped point
represents the common initial best value. 57

I

Chapter 4

3.1 A taxonomy of batch-parallel Bayesian Optimization Algorithms 71

3.2 Partitioning of Ω through the binary tree . 73

3.3 Illustration of one tree update . 74

3.4 Average number of simulations according to the batch size for the 6d-Alpine02
function. Dashed-lines indicates the standard deviation over the 20 repetitions. . 85

3.5 Average number of simulations according to the batch size for the 12d-Alpine02
function. Dashed-lines indicates the standard deviation over the 20 repetitions. . 85

3.6 Evolution of the outcome for the 6D-Ackley function with q = 8 88

3.7 Evolution of the outcome for the 6D-Alpine function with q = 8 88

3.8 Evolution of the outcome for the 6D-Alpine function with q = 32 89

3.9 Evolution of the outcome for the 6D-Rastrigin function with q = 8 90

3.10 Illustration of the basic hydro-energy storage unit. Source: Dominion Energy,
Powering Southwest Virginia . 93

3.11 Topology of the UPHES unit on Maizeret site [102]. 95

3.12 Evolution of the best known profit according to the number of simulations.
Plain lines display the average profit while dashed-lines represent their stan-
dard deviation over the 10 repetitions. 97

3.13 Evolution of the best known profit according to the number of simulations.
Plain lines display the average profit while dashed-lines represent their stan-
dard deviation over the 10 repetitions. 98

3.14 Evolution of the best known profit according to the number of simulations.
Plain lines display the average profit while dashed-lines represent their stan-
dard deviation over the 10 repetitions. 98

3.15 Solid lines indicate the average over 10 runs, and dashed lines of same colors
indicate their standard deviation. (a) Number of simulations as a function of the
batch size. (b) Number of cycles as a function of the batch size. 100

4.1 p-values of the pairwise comparison post-hoc Friedman’s rank test Low values
indicate statistically significant differences, and are highlighted by the color
scale. In case of p-value< 0.1, an arrow indicates the direction of the algorithm
outperforming the other. 115

4.2 Evolution of the best average outcome in a function of the number of evalu-
ations for the rolling element bearing design problem. Dashed-lines in-
dicates the standard-deviation and vertical dotted-lines the mean number of
evaluations for the different tsim. 123

II

https://www.dominionenergy.com/poweringswva

LIST OF FIGURES

4.3 Evolution of the best average outcome in a function of the number of evalua-
tions for themulti-product batch plant problem. Dashed-lines indicates the
standard-deviation and vertical dotted-lines the mean number of evaluations
for the different tsim. 124

4.4 p-values of the pairwise comparison post-hoc Friedman’s rank test for the PHES
problem. Low values indicates statistically significant differences, and are high-
lighted by the color scale. In case of p-value < 0.1, an arrow indicates the di-
rection of the algorithm outperforming the other. 129

4.5 Best expected profit according to the number of simulations for day 6 of the
PHES management problem. 131

4.6 Comparison between the baseline approach (left) and the proposed one (right)
for the PHES problem. Solid lines indicate the average outcomes while dotted-
lines represent their respective minimum and maximum. 134

B.1 Example of a Pareto front in a two dimensional objective space. XVIII

C.1 Rosenbrock 2D landscape . XXII

C.2 Ackley 2D landscape . XXII

C.3 Schwefel 2D landscape . XXIII

C.4 Alpine02 2D landscape . XXIV

C.5 Rastrigin 2D landscape . XXIV

III

Chapter 4

IV

List of Tables

2.1 Two sets of weights for the objective function of Equation 2.3 39

2.2 Mean objective values observed experimentally with 6 repetitions 40

2.3 Boundaries of the design variables for the inverse identification problem 40

2.4 Cutting force (Fc), feed force (Ff), chip thickness (h′), and their differences (∆)
with the experimental results for h = 0.1 mm. 42

2.5 Cutting force (Fc), feed force (Ff), chip thickness (h′), and their differences (∆)
with the experimental results for h = 0.04 mm and h = 0.06 mm. 43

2.6 Minimum number of simulations over the 50 repetitions of KB-qEGO and BNN-
GA according to the batch size. With perfect scalability, nq/n1 = q, and
nq/(n1.q) = 1. 58

3.1 Summary of the experimental setup . 80

3.2 Scaled outcome averaged over the 5 benchmark 6d-functions. Values close to
1 indicate small improvement compared to initial sampling while values ap-
proaching the theoretical optimal value are close to 0 and highlighted in blue
shades. 82

3.3 Scaled outcome averaged over the 5 benchmark 12d-functions. Values close to
1 indicate small improvement compared to initial sampling while values ap-
proaching the theoretical optimal value are close to 0 and highlighted in blue
shades. 83

3.4 Minimum, maximum, average profit values (EUR) as well as standard devia-
tion of the UPHES management problem obtained with 10 runs of each method
according to batch size. 99

4.1 Friedman’s rank of the algorithms in relation to ncores and tsim. Lower values in-
dicate a better performance of the algorithm and are highlighted by a darker cell
background. ρ indicates the maximum number of simulations possible within a
fixed budget of 20 minutes using ncores processing cores for a simulation lasting
tsim seconds. 116

4.2 Recommendation of the method according to tsim and ncores, and their equiv-
alent in terms of maximum expected simulations (ρ, in parenthesis). Bold font
indicates a stronger confidence (low p-value) in the results. 117

4.3 Efficiency of the algorithms in terms of number of simulations. The ratio be-
tween the averaged number of simulations over all the test problems and its
theoretical maximum ρ is close to 1 (dark background) if most of the time bud-
get of the algorithm is spent in simulations. 118

V

Chapter 4

4.4 Friedman ranks for the PHES management problem, without warm-start 128

4.5 Average number of simulations on the PHES management problem, excluding
the initial sample. 130

4.6 Gain of the SBO algorithms compared to the MILP formulation for the PHES
management problem, without warm-start . 131

4.7 Friedman ranks for the PHES management problem, with warm-start 132

4.8 Gain of the multi-fidelity strategy (SBO after a 120s MILP warm-start) for the
PHES management problem . 133

C.1 Scaled outcome for the 6d-Rosenbrock function averaged over 20 repetitions.
Values close to 1 indicate small improvement compared to initial samplingwhile
values approaching the theoretical optimal value are close to 0 and highlighted
in blue shades. XXV

C.2 Scaled outcome for the 6d-Alpine02 function averaged over 20 repetitions. Val-
ues close to 1 indicate small improvement compared to initial sampling while
values approaching the theoretical optimal value are close to 0 and highlighted
in blue shades. XXVI

C.3 Scaled outcome for the 6d-Ackley function averaged over 20 repetitions. Val-
ues close to 1 indicate small improvement compared to initial sampling while
values approaching the theoretical optimal value are close to 0 and highlighted
in blue shades. XXVII

C.4 Scaled outcome for the 6d-Schwefel function averaged over 20 repetitions. Val-
ues close to 1 indicate small improvement compared to initial sampling while
values approaching the theoretical optimal value are close to 0 and highlighted
in blue shades. XXVIII

C.5 Scaled outcome for the 6d-Rastrigin function averaged over 20 repetitions.
Values close to 1 indicate small improvement compared to initial samplingwhile
values approaching the theoretical optimal value are close to 0 and highlighted
in blue shades. XXIX

C.6 Scaled outcome for theRosenbrock-12d function averaged over 20 repetitions.
Values close to 1 indicate small improvement compared to initial samplingwhile
values approaching the theoretical optimal value are close to 0 and highlighted
in blue shades. XXX

C.7 Scaled outcome for the 12d-Alpine02 function averaged over 20 repetitions.
Values close to 1 indicate small improvement compared to initial samplingwhile
values approaching the theoretical optimal value are close to 0 and highlighted
in blue shades. XXXI

VI

LIST OF TABLES

C.8 Scaled outcome for the 12d-Ackley function averaged over 20 repetitions. Val-
ues close to 1 indicate small improvement compared to initial sampling while
values approaching the theoretical optimal value are close to 0 and highlighted
in blue shades. XXXII

C.9 Scaled outcome for the 12d-Schwefel function averaged over 20 repetitions.
Values close to 1 indicate small improvement compared to initial samplingwhile
values approaching the theoretical optimal value are close to 0 and highlighted
in blue shades. XXXIII

C.10 Scaled outcome for the 12d-Rastrigin function averaged over 20 repetitions.
Values close to 1 indicate small improvement compared to initial samplingwhile
values approaching the theoretical optimal value are close to 0 and highlighted
in blue shades. XXXIV

VII

Chapter 4

VIII

List of Algorithms

1 Bayesian Optimization . 18
2 qEGO using sequential heuristics . 30
3 Evolutionary Algorithm . 48
4 Evolution Control in Bayesian Neural Network assisted Evolutionary Algorithm 55
5 Acquisition Process of the Multi-Infill Criteria qEGO (MIC-qEGO) Algorithm . . 67
6 Multi ACquisition Ensemble (MACE) Algorithm 68
7 TrUst Region Bayesian Optimization (TuRBO) Algorithm 70
8 Binary Space Partitioning Efficient Global Optimization (BSP-EGO) Algorithm . 75
9 Local-model Binary Space Partitioning Efficient Global Optimization (ℓBSP-

EGO) Algorithm . 77
10 Pseudo code of the hybrid algorithm TuRBO-SAGA 120
11 Non-dominated Sorting Genetic Algorithm II . XIX

IX

Chapter

X

Appendices

XI

Appendix A

Mathematics for Bayesian Optimization

A.1 Notions of Probability and Statistics

Definition A.1.1. Common estimators

Given a set of observations (Xi)i=1,...,n of a random variable X , standard estimators of the

expectation, variance are respectively:

• X̄ =
1

n

n∑
i=1

Xi

• s2 =
1

n

n∑
i=1

(Xi − X̄)2 or s2∗ =
1

n− 1

n∑
i=1

(Xi − X̄)2

Definition A.1.2. Normal distribution, also known as the Gaussian distribution

Letx be a random vector with dimension d following a gaussian law. The distribution is defined

by its mean µ and its covariance matrix Σ. We write x ∼ N (µ,Σ)

The distribution of x given µ,Σ writes:

p(x|µ,Σ) = 1

(2π)d/2
1

|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(A.1)

Proposition A.1.1. Gaussian moments

E[x] = µ (A.2)

Cov(xi, xj) = E[(xi − µi)(xj − µj)] = E[xixj]− µiµj = Σi,j (A.3)

E[xxT] = µµT + Σ (A.4)

XIII

Chapter A

Proposition A.1.2. Linear transformation of a normal distribution

Let X ∼ N (µ,Σ) and Y = AX + b any linear transformation.

Then Y ∼ N (Aµ+ b, AΣAT)

Proposition A.1.3. Inversion of a sum of two matrices

Given A,U,C, V matrices such that A+ UCV is invertible:

(A+ UCV)−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1 (A.5)

Proposition A.1.4. Properties of symmetric matrices

Let A and B be (real) symmetric matrices:

• If A−1
exists, then A−1

is also symmetric, (A−1)T = A−1

• The sum of symmetric matrices is also symmetric, ∀a, b ∈ R, aA+ bB is symmetric.

A.2 Gaussian Process Regression

Lemma A.2.1.

p (a|X,y) ∝ exp

(
−1

2
(a− ā)T

(
1

σ2
XXT + Σ−1

)
(a− ā)

)
Proof. Starting from Equation 1.6

p (a|X,y) ∝ exp

(
− 1

2σ2

(
y −XTa

)T (
y −XTa

))
exp

(
−1

2
aTΣ−1

p a

)
∝ exp

(
− 1

2σ2

(
yT − aTX

) (
y −XTa

)
− 1

2
aTΣ−1

p a

)
∝ exp

(
− 1

2σ2

(
yTy − yTXTa− aTXy + aTXXTa

)
− 1

2
aTΣ−1

p a

)
∝ exp

(
− 1

2σ2

(
yTy − yTXTa− aTXy

)
− 1

2
aT

(
1

σ2
XXT + Σ−1

p

)
a

)
∝ exp

(
− 1

2σ2

(
yTy − yTXTa− aTXy

)
− 1

2
aTAa

)
with A =

(
1

σ2
XXT + Σ−1

)
∝ exp

(
− 1

2σ2
yTy +

1

2σ2
yTXTa+

1

2σ2
aTXy − 1

2
aTAa

)
∝ exp

(
− 1

2σ2
yTy +

1

σ2
(Xy)Ta− 1

2
aTAa

)
With the completing the square trick:

ax2 + 2bx+ c = a(x2 + 2
b

a
x) + c = a(x+

b

a
)2 + c− b2

2

XIV

Mathematics for Bayesian Optimization

and its equivalent in matrix form using M symmetric, and then MT = M and M−1T = M−1

(A.1.4)

xTMx− 2bTx = xTMx− 2bTM−1Mx

= xTMx− 2uTMx with u = M−1b

= xTMx− 2uTMx+ uTMu− uTMu

= (x− u)TM(x− u)− uTMu

In previous expression, replacing by the following notations x = a, M = A, b = Xy, and
using u = 1

σ2A
−1Xy, we can derive:

1

σ2
(Xy)Ta− 1

2
aTAa = −1

2

(
aTAa− 2

σ2
aTXy

)
= (a− u)TA(a− u)− uTAu

Denoting ā = 1
σ2A

−1Xy, A =
(

1
σ2XXT + Σ−1

)
symmetric, we have:

p (a|X,y) ∝ exp

(
− 1

2σ2
yTy +

1

σ2
(Xy)Ta− 1

2
aTAa

)
∝ exp

(
−1

2
(a− ā)TA(a− ā)− āTAā− 1

2σ2
yTy

)
∝ exp

(
−1

2
(a− ā)TA(a− ā)

)
∝ exp

(
−1

2
(a− ā)T

(
1

σ2
XXT + Σ−1

)
(a− ā)

)

Lemma A.2.2. Equivalent form a the predictive law

y∗|Φ,y,x∗ ∼ N
(

1

σ2
ϕ∗TA−1Φy,ϕ∗TA−1ϕ∗

)
= N (ϕ∗TΣΦ(K + σ2I)−1y,ϕ∗TΣϕ∗ − ϕ∗TΣΦ(K + σ2I)−1ΦTΣϕ∗)

Proof. Let us set K = ΦTΣΦ, and recall A =
(

1
σ2ΦΦ

T + Σ−1
)
.

AΣΦ =

(
1

σ2
ΦΦT + Σ−1

)
ΣΦ

=
1

σ2
ΦΦTΣΦ + Φ

=
1

σ2
ΦK + Φ

=
1

σ2
Φ(K + σ2I)

XV

Chapter A

Then, multiplying by A−1 on the left and (K + σ2I)−1 on the right:

AΣΦ =
1

σ2
Φ(K + σ2I)

⇔ ΣΦ(K + σ2I)−1 =
1

σ2
A−1Φ

so for the mean:

1

σ2
ϕ∗TA−1Φy = ϕ∗TΣΦ(K + σ2I)−1y

The equivalence regarding the variance expression uses the matrix inversion lemma A.1.3
with U = Φ and V = ΦT , A = Σ−1, C = I :

A−1 =

(
1

σ2
ΦΦT + Σ−1

)−1

= Σ− ΣΦ(σ2I + ΦΣΦT)−1ΦTΣ

= Σ− ΣΦ(σ2I +K)−1ΦTΣ

Multiplying by ϕ∗T and ϕ∗ directly gives the desired expression.

XVI

Appendix B

Multi-Objective Optimization

B.1 Multi-Objective Formulation

Definition B.1.1. Formulation of multi-objective problem

For a given number of objectives, we consider the multi-dimensional function F = (f1, . . . , fn)

where fi : Ω ⊂ Rd → R. Assuming a minimization problem, it writes:

min
x∈Ω

(fi(x), . . . , fn(x)) .

Definition B.1.2. Pareto Dominance

Given x(1)
and x(2)

, we say that x(1)
dominates x(2)

if:

∀i ∈ {1, . . . , n}, fi
(
x(1)

)
≤ fi

(
x(2)

)
,

∃i ∈ {1, . . . , n}, fi
(
x(1)

)
< fi

(
x(2)

)
.

x(1)
is better than x(2)

in at least one objective, without deteriorating the other ones.

We write x(1) ≺ x(2)
in case of minimization, meaning x(1)

is preferable to x(2)
.

Definition B.1.3. Pareto Optimal Set

Given a population P , x∗ ∈ P is said non-dominated if:

∀x ∈ P ,x∗ ≺ x.

The Pareto set, or Pareto front, refers to the set of non-dominated solution.

Example: In a two dimensional objective space, assuming the minimization of both objec-
tives (f1 and f2) the Pareto set can be visualized as shown in Figure B.1.

XVII

Chapter B

Figure B.1: Example of a Pareto front in a two dimensional objective space.

B.2 Multi-Objective Algorithms

Non-dominated Sorting Genetic Algorithm (NSGA)

NSGA [187] is an EA where the selection operator takes into account the diversity of the solu-
tion. First, the Pareto set is identified and all its individuals are attributed a very good dummy
fitness value. The same value is assigned to give an equal reproductive potential. Then a shar-
ing method is used for each individual in the Pareto front to degrade the fitness of individuals
around it.

The previous steps are repeated after removing the already-treated individuals from the
population. This gives another Pareto set that is attributed to a lower fitness than the previous
set. The steps are repeated until all individuals from the population are classified into several
fronts. This is the non-dominated sorting procedure and each front is referred to as Fi, where
i = 1 is the best one.

In NSGA-II, the sorting strategy is improved to be faster. The sharing strategy is replaced
by a crowded-comparison that does not require any user-defined parameter and has a better
computational complexity. NSGA-II is summarized in Algorithm 11 where we can see the clas-
sical operators with the special non-dominated sorting procedure inserted at line 3 before the
generation of the offspring population. The parents are selected as shown in line 4 according
to the rank of their Pareto front, and the crowding-distance. The rest of the algorithm operates
as the EA described in Algorithm 3.

XVIII

Multi-Objective Optimization

Algorithm 11 Non-dominated Sorting Genetic Algorithm II
Input

f : objective function
Ω: design space
psize: population size

1: P = sampling(f,Ω, psize)

2: while Budget available do
3: F = non-dominated_sorting(P)
4: Ppar = selection(F , psize) ▷ based on the crowding-distance and front’s rank
5: Poff = reproduction(Ppar)

6: Poff = evaluation(f, Poff)

7: P = Ppar ∪ Poff

8: end while

9: return best_individual(P)

XIX

Chapter B

XX

Appendix C

Benchmarking Optimization Algorithms

This chapter is dedicated to present the benchmark functions used in the analysis of Section 3.3.
We also give additional results helping for a finer analysis of the results.

C.1 Usual Benchmark Functions

The following functions are used in Chapter 3 to conduct our experimentation. We provide
their analytical expression as well as the domain they are optimized on. The domain may vary
from the literature as we wanted to avoid symmetrical domains when the global optimum is
located in its center. Indeed, in such configuration, the splitting scheme of BSP-based algorithms
happens to divide the domain exactly on the optimum.

Definition C.1.1. Rosenbrock function

f(x) =
d−1∑
i=1

[
100(xi=1 − x2

i)
2 + xi − 1)2

]
(C.1)

with x ∈ [−5, 10]d, and x[i] = xi, ∀i ∈ {1, . . . d}.

Definition C.1.2. Ackley function

f(x) = −20exp(−0.2

√√√√1

d

d∑
i=1

x2
i)− exp

(
1

d

d∑
i=1

cos(2πxi)

)
+ 20 + e (C.2)

with x ∈ [−15, 30]d.

Definition C.1.3. Schwefel function

f(x) = 418.9829d−
d∑

i=1

xi sin
(√
|xi|
)

(C.3)

with x ∈ [−500, 500]d.

XXI

Chapter C

Figure C.1: Rosenbrock 2D landscape

Figure C.2: Ackley 2D landscape

XXII

Benchmarking Optimization Algorithms

Figure C.3: Schwefel 2D landscape

Definition C.1.4. Alpine02 function

f(x) =
d∏

i=1

√
xi sin (xi) (C.4)

with x ∈ [−100, 100]d, re-scaled into x ∈ [0, 10]d.

Definition C.1.5. Rastrigin function

f(x) = 10d+
d∑

i=1

[
x2
i − 10 cos (2πxi)

]
(C.5)

with x ∈ [−4.12, 7.12]d.

C.2 Additional Results of the Benchmark Analysis

The following tables present the results for the five benchmark functions investigated in Chap-
ter 3. Each score between 0 and 1 is computed by scaling the outcome using the known min-
imum, and best initial sample. Consequently a score close to 0 indicates a good performance,
and a score close to 1 indicates a poor improvement compared to the initial sampling. A color
scale is added to the tables to be visually interpretable. The color scale is adapted for each table
so that only the best performing algorithms are highlighted.

XXIII

Chapter 4

Figure C.4: Alpine02 2D landscape

Figure C.5: Rastrigin 2D landscape

XXIV

Benchmarking Optimization Algorithms

Table C.1: Scaled outcome for the 6d-Rosenbrock function averaged over 20 repetitions. Val-
ues close to 1 indicate small improvement compared to initial sampling while values approach-
ing the theoretical optimal value are close to 0 and highlighted in blue shades.

0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.0869 0.0353 0.0228 0.0182 0.0135 0.0076 0.0056 0.0043
4 1 0.1005 0.0510 0.0281 0.0207 0.0137 0.0080 0.0055 0.0045
8 1 0.0949 0.0408 0.0267 0.0228 0.0150 0.0103 0.0077 0.0066
16 1 0.1037 0.0540 0.0335 0.0260 0.0171 0.0119 0.0093 0.0092
32 1 0.1160 0.0548 0.0377 0.0312 0.0255 0.0204 0.0138 0.0107

TS-qEGO 2 1 0.3283 0.2085 0.0896 0.0533 0.0281 0.0149 0.0119 0.0096
4 1 0.2342 0.1110 0.0482 0.0316 0.0204 0.0126 0.0105 0.0093
8 1 0.1548 0.0756 0.0297 0.0219 0.0158 0.0128 0.0107 0.0103
16 1 0.0931 0.0443 0.0213 0.0178 0.0148 0.0120 0.0117 0.0113
32 1 0.0377 0.0287 0.0224 0.0191 0.0167 0.0150 0.0136 0.0132

KB-qEGO 2 1 0.1206 0.0491 0.0172 0.0113 0.0051 0.0022 0.0014 0.0012
4 1 0.0958 0.0513 0.0153 0.0085 0.0042 0.0018 0.0014 0.0011
8 1 0.1159 0.0530 0.0187 0.0092 0.0046 0.0021 0.0013 0.0010
16 1 0.1292 0.0733 0.0263 0.0165 0.0066 0.0033 0.0022 0.0018
32 1 0.1629 0.0747 0.0367 0.0180 0.0117 0.0050 0.0035 0.0028

MIC-qEGO 2 1 0.1171 0.0408 0.0165 0.0097 0.0052 0.0019 0.0014 0.0012
4 1 0.0943 0.0391 0.0128 0.0066 0.0021 0.0008 0.0005 0.0004
8 1 0.1016 0.0338 0.0130 0.0068 0.0026 0.0010 0.0005 0.0004
16 1 0.1561 0.0566 0.0205 0.0120 0.0040 0.0018 0.0012 0.0007
32 1 0.1437 0.0729 0.0333 0.0138 0.0056 0.0020 0.0013 0.0010

MACE 2 1 0.3161 0.2245 0.0784 0.0414 0.0100 0.0037 0.0027 0.0022
4 1 0.2221 0.1429 0.0236 0.0097 0.0056 0.0021 0.0016 0.0014
8 1 0.1697 0.0982 0.0168 0.0072 0.0028 0.0015 0.0010 0.0010
16 1 0.1364 0.0648 0.0141 0.0045 0.0024 0.0013 0.0012 0.0012
32 1 0.0915 0.0417 0.0167 0.0102 0.0054 0.0013 0.0008 0.0006

BSP-EGO 2 1 0.1801 0.0674 0.0169 0.0104 0.0047 0.0018 0.0013 0.0007
4 1 0.0954 0.0406 0.0115 0.0071 0.0037 0.0014 0.0009 0.0007
8 1 0.1104 0.0303 0.0102 0.0051 0.0023 0.0009 0.0007 0.0006
16 1 0.0997 0.0319 0.0104 0.0062 0.0027 0.0009 0.0004 0.0004
32 1 0.1406 0.0585 0.0198 0.0161 0.0087 0.0035 0.0024 0.0017

ℓBSP-EGO 2 1 0.0902 0.0210 0.0032 0.0016 0.0005 0.0002 0.0001 0.0001
4 1 0.0400 0.0058 0.0005 0.0003 0.0002 0.0001 0.0000 0.0000
8 1 0.0196 0.0040 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000
16 1 0.0184 0.0040 0.0007 0.0003 0.0002 0.0001 0.0001 0.0001
32 1 0.0274 0.0114 0.0037 0.0012 0.0004 0.0002 0.0001 0.0001

TuRBO 2 1 0.0192 0.0032 0.0010 0.0005 0.0004 0.0003 0.0003 0.0003
4 1 0.0070 0.0013 0.0009 0.0008 0.0005 0.0004 0.0004 0.0003
8 1 0.0043 0.0024 0.0018 0.0013 0.0009 0.0004 0.0003 0.0003
16 1 0.0046 0.0014 0.0008 0.0007 0.0005 0.0003 0.0003 0.0003
32 1 0.0146 0.0027 0.0008 0.0004 0.0003 0.0003 0.0003 0.0003

XXV

Chapter 4

Table C.2: Scaled outcome for the 6d-Alpine02 function averaged over 20 repetitions. Values
close to 1 indicate small improvement compared to initial sampling while values approaching
the theoretical optimal value are close to 0 and highlighted in blue shades.

0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.8569 0.8000 0.7911 0.7839 0.7724 0.7678 0.7602 0.7602
4 1 0.8514 0.8358 0.8330 0.8291 0.8249 0.8217 0.8217 0.8217
8 1 0.8268 0.7985 0.7920 0.7843 0.7833 0.7831 0.7652 0.7646
16 1 0.8491 0.8021 0.7756 0.7694 0.7656 0.7597 0.7520 0.7520
32 1 0.8376 0.8264 0.7866 0.7840 0.7636 0.7529 0.7429 0.7144

TS-qEGO 2 1 0.9816 0.9185 0.9032 0.8794 0.8486 0.8214 0.7853 0.7400
4 1 0.9184 0.8772 0.8388 0.8333 0.8035 0.7885 0.7826 0.7657
8 1 0.9074 0.8234 0.7895 0.7846 0.7830 0.7448 0.7316 0.7306
16 1 0.8895 0.8549 0.8268 0.7802 0.7512 0.7004 0.6852 0.6827
32 1 0.8717 0.8649 0.8226 0.8029 0.7946 0.7946 0.7607 0.7607

KB-qEGO 2 1 0.7310 0.6796 0.5939 0.5933 0.5571 0.5301 0.4744 0.4682
4 1 0.7285 0.6629 0.5952 0.5550 0.5099 0.4476 0.4265 0.4200
8 1 0.7561 0.6806 0.6079 0.5966 0.5443 0.4766 0.4357 0.4221
16 1 0.8280 0.6671 0.6424 0.5787 0.5420 0.5104 0.4854 0.4854
32 1 0.8785 0.7835 0.6756 0.6692 0.6471 0.5766 0.5678 0.5678

MIC-qEGO 2 1 0.7557 0.6432 0.6131 0.5912 0.5911 0.5710 0.5259 0.5144
4 1 0.6349 0.5453 0.4913 0.4689 0.4193 0.3809 0.3806 0.3804
8 1 0.6537 0.5559 0.4839 0.4481 0.4245 0.3630 0.3481 0.3468
16 1 0.7456 0.5555 0.4879 0.4738 0.4593 0.4232 0.4186 0.4110
32 1 0.8661 0.7427 0.5642 0.5021 0.4269 0.3824 0.3572 0.3463

MACE 2 1 0.9273 0.8499 0.7572 0.6489 0.4789 0.2760 0.2194 0.2000
4 1 0.9234 0.8430 0.6977 0.5394 0.3700 0.3141 0.2824 0.2321
8 1 0.8730 0.6914 0.4662 0.3291 0.2749 0.1831 0.1638 0.1297
16 1 0.8399 0.6202 0.4136 0.3482 0.2973 0.2702 0.2491 0.2409
32 1 0.6134 0.3743 0.3472 0.3467 0.3466 0.3284 0.3073 0.2791

BSP-EGO 2 1 0.6106 0.5376 0.4729 0.4356 0.3906 0.3580 0.3483 0.3483
4 1 0.5686 0.5553 0.4866 0.4567 0.4438 0.4057 0.4051 0.4051
8 1 0.5282 0.4923 0.4666 0.4564 0.4507 0.4501 0.4501 0.4501
16 1 0.5940 0.5564 0.5276 0.5227 0.4976 0.4864 0.4859 0.4859
32 1 0.6012 0.5602 0.5031 0.4743 0.4666 0.4184 0.3960 0.3768

ℓBSP-EGO 2 1 0.6455 0.6455 0.6449 0.6445 0.6438 0.6429 0.6427 0.6426
4 1 0.5946 0.5945 0.5945 0.5944 0.5944 0.5939 0.5937 0.5937
8 1 0.5955 0.5790 0.5550 0.5539 0.5531 0.5523 0.5448 0.5448
16 1 0.6059 0.5929 0.5559 0.5442 0.5165 0.4222 0.4119 0.4109
32 1 0.5983 0.5419 0.4718 0.4310 0.3764 0.3432 0.3415 0.3414

TuRBO 2 1 0.6193 0.6051 0.5937 0.5799 0.5767 0.5767 0.5767 0.5767
4 1 0.5603 0.5574 0.5532 0.5086 0.4936 0.4605 0.4362 0.4243
8 1 0.6368 0.6349 0.6261 0.6261 0.6261 0.5381 0.5270 0.5177
16 1 0.5447 0.5446 0.5446 0.5446 0.5446 0.5446 0.5083 0.5041
32 1 0.3766 0.3240 0.3237 0.3237 0.3237 0.3208 0.2934 0.2724

XXVI

Benchmarking Optimization Algorithms

Table C.3: Scaled outcome for the 6d-Ackley function averaged over 20 repetitions. Values
close to 1 indicate small improvement compared to initial sampling while values approaching
the theoretical optimal value are close to 0 and highlighted in blue shades.

0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.5735 0.5735 0.5663 0.5512 0.5343 0.5343 0.5343 0.5343
4 1 0.5623 0.5225 0.5119 0.5119 0.5119 0.4912 0.4912 0.4912
8 1 0.5326 0.5168 0.5168 0.5168 0.5168 0.5168 0.5168 0.5168
16 1 0.5670 0.5375 0.5375 0.5375 0.5375 0.5375 0.5375 0.5375
32 1 0.6242 0.6242 0.5700 0.5700 0.5700 0.5700 0.5700 0.5700

TS-qEGO 2 1 0.5797 0.5141 0.4680 0.4403 0.4209 0.3996 0.3915 0.3821
4 1 0.5328 0.4978 0.4657 0.4574 0.4457 0.4235 0.4144 0.4027
8 1 0.5365 0.4907 0.4662 0.4583 0.4448 0.4270 0.4157 0.4110
16 1 0.5583 0.5122 0.4872 0.4761 0.4731 0.4556 0.4377 0.4368
32 1 0.5443 0.5054 0.4855 0.4650 0.4578 0.4562 0.4442 0.4442

KB-qEGO 2 1 0.3741 0.3741 0.3729 0.3729 0.3729 0.3674 0.3669 0.3669
4 1 0.4741 0.4130 0.4097 0.4052 0.4052 0.4052 0.4052 0.4052
8 1 0.4714 0.4589 0.4212 0.4018 0.4018 0.4018 0.4018 0.4018
16 1 0.5897 0.4739 0.4522 0.4333 0.3943 0.3943 0.3910 0.3910
32 1 0.7020 0.6040 0.5103 0.4762 0.4762 0.4762 0.4762 0.4762

MIC-qEGO 2 1 0.4165 0.4042 0.3627 0.3627 0.3627 0.3383 0.3383 0.3383
4 1 0.2126 0.1993 0.1951 0.1943 0.1898 0.1894 0.1888 0.1871
8 1 0.2041 0.1834 0.1830 0.1810 0.1754 0.1732 0.1722 0.1712
16 1 0.3176 0.2134 0.1985 0.1976 0.1916 0.1879 0.1871 0.1857
32 1 0.5134 0.2916 0.1857 0.1829 0.1803 0.1772 0.1766 0.1766

MACE 2 1 0.6418 0.3892 0.2924 0.2323 0.2028 0.1541 0.1340 0.1327
4 1 0.4282 0.2566 0.2045 0.1852 0.1559 0.1442 0.1383 0.1383
8 1 0.3105 0.2065 0.1819 0.1579 0.1465 0.1356 0.1348 0.1348
16 1 0.2529 0.1750 0.1560 0.1456 0.1361 0.1335 0.1322 0.1322
32 1 0.2051 0.1537 0.1286 0.1252 0.1195 0.1177 0.1177 0.1177

BSP-EGO 2 1 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2448
4 1 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752
8 1 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485
16 1 0.1919 0.1553 0.1509 0.1509 0.1509 0.1509 0.1509 0.1509
32 1 0.2655 0.2540 0.2230 0.1981 0.1793 0.1579 0.1579 0.1579

ℓBSP-EGO 2 1 0.0777 0.0189 0.0146 0.0146 0.0145 0.0145 0.0145 0.0145
4 1 0.0489 0.0049 0.0026 0.0025 0.0024 0.0024 0.0024 0.0024
8 1 0.0486 0.0116 0.0011 0.0005 0.0003 0.0001 0.0000 0.0000
16 1 0.0689 0.0241 0.0055 0.0042 0.0022 0.0007 0.0004 0.0002
32 1 0.1265 0.0825 0.0451 0.0229 0.0108 0.0050 0.0033 0.0022

TuRBO 2 1 0.1233 0.0964 0.0822 0.0749 0.0699 0.0681 0.0666 0.0647
4 1 0.0916 0.0774 0.0693 0.0637 0.0565 0.0481 0.0470 0.0458
8 1 0.0904 0.0784 0.0690 0.0654 0.0593 0.0580 0.0560 0.0542
16 1 0.0911 0.0679 0.0629 0.0619 0.0580 0.0547 0.0542 0.0541
32 1 0.1643 0.0888 0.0644 0.0608 0.0600 0.0544 0.0529 0.0528

XXVII

Chapter 4

Table C.4: Scaled outcome for the 6d-Schwefel function averaged over 20 repetitions. Values
close to 1 indicate small improvement compared to initial sampling while values approaching
the theoretical optimal value are close to 0 and highlighted in blue shades.

0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.6076 0.4811 0.4179 0.4067 0.3760 0.3479 0.3341 0.3192
4 1 0.6454 0.5090 0.4410 0.4103 0.3838 0.3588 0.3240 0.3202
8 1 0.6573 0.5724 0.4893 0.4580 0.4414 0.3999 0.3897 0.3878
16 1 0.6665 0.5882 0.5222 0.5139 0.4856 0.4575 0.4448 0.4271
32 1 0.7438 0.7025 0.6732 0.6415 0.6231 0.6049 0.5695 0.5565

TS-qEGO 2 1 0.9531 0.8732 0.8245 0.7881 0.7350 0.6423 0.6295 0.6158
4 1 0.8372 0.8002 0.7194 0.6879 0.6224 0.5884 0.5800 0.5624
8 1 0.8365 0.7241 0.6935 0.6647 0.6190 0.5800 0.5660 0.5616
16 1 0.7550 0.6958 0.6384 0.6036 0.5765 0.5633 0.5452 0.5302
32 1 0.7134 0.6423 0.6161 0.5929 0.5728 0.5373 0.5050 0.4769

KB-qEGO 2 1 0.6736 0.5070 0.4232 0.4064 0.3807 0.3505 0.3251 0.3197
4 1 0.6588 0.5424 0.4337 0.4091 0.3743 0.3434 0.3319 0.3183
8 1 0.8099 0.7057 0.5907 0.5251 0.4932 0.4346 0.4170 0.4005
16 1 0.8985 0.7845 0.6801 0.6545 0.5826 0.4767 0.4565 0.4459
32 1 0.9308 0.7786 0.6835 0.6362 0.5725 0.5352 0.4925 0.4828

MIC-qEGO 2 1 0.6150 0.4811 0.4139 0.3954 0.3633 0.3205 0.3064 0.3002
4 1 0.5457 0.4260 0.3719 0.3597 0.3404 0.3274 0.3116 0.2946
8 1 0.6917 0.4933 0.4325 0.3891 0.3557 0.3361 0.3227 0.3104
16 1 0.8129 0.6301 0.4402 0.4090 0.3861 0.3587 0.3542 0.3517
32 1 0.8515 0.6946 0.5480 0.5070 0.4679 0.4348 0.4113 0.4031

MACE 2 1 0.8956 0.8450 0.7716 0.7373 0.5952 0.4652 0.4065 0.3909
4 1 0.8006 0.7275 0.6426 0.5747 0.4597 0.3337 0.2897 0.2716
8 1 0.7724 0.6807 0.5366 0.4520 0.4049 0.3254 0.2934 0.2797
16 1 0.7291 0.6141 0.4300 0.3574 0.3313 0.2622 0.2553 0.2428
32 1 0.6020 0.4052 0.3430 0.3261 0.2847 0.2480 0.2251 0.2034

BSP-EGO 2 1 0.6143 0.4523 0.3743 0.3390 0.3245 0.2911 0.2814 0.2731
4 1 0.6326 0.4851 0.4433 0.4191 0.3756 0.3413 0.3244 0.3144
8 1 0.6048 0.4851 0.4206 0.4034 0.3504 0.3155 0.2893 0.2791
16 1 0.6397 0.4934 0.4199 0.3980 0.3657 0.3310 0.3118 0.2997
32 1 0.7432 0.6580 0.5540 0.5068 0.4634 0.3931 0.3834 0.3653

ℓBSP-EGO 2 1 0.5083 0.4307 0.4195 0.4175 0.4142 0.4120 0.4119 0.4111
4 1 0.4458 0.3772 0.3404 0.3397 0.3397 0.3397 0.3397 0.3397
8 1 0.4817 0.3511 0.3085 0.2963 0.2838 0.2838 0.2838 0.2838
16 1 0.5098 0.3419 0.2694 0.2512 0.2469 0.2182 0.2182 0.2182
32 1 0.6512 0.4777 0.3197 0.2806 0.2297 0.2085 0.2030 0.1889

TuRBO 2 1 0.3699 0.3318 0.3230 0.3168 0.2995 0.2979 0.2979 0.2979
4 1 0.3929 0.3419 0.3086 0.3080 0.3080 0.2877 0.2876 0.2779
8 1 0.3732 0.3367 0.3343 0.3343 0.3343 0.3258 0.3202 0.3187
16 1 0.3383 0.2953 0.2842 0.2842 0.2771 0.2727 0.2722 0.2722
32 1 0.3365 0.2627 0.2616 0.2563 0.2550 0.2540 0.2540 0.2481

XXVIII

Benchmarking Optimization Algorithms

Table C.5: Scaled outcome for the 6d-Rastrigin function averaged over 20 repetitions. Values
close to 1 indicate small improvement compared to initial sampling while values approaching
the theoretical optimal value are close to 0 and highlighted in blue shades.

0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.0869 0.0353 0.0228 0.0182 0.0135 0.0076 0.0056 0.0043
4 1 0.1005 0.0510 0.0281 0.0207 0.0137 0.0080 0.0055 0.0045
8 1 0.0949 0.0408 0.0267 0.0228 0.0150 0.0103 0.0077 0.0066
16 1 0.1037 0.0540 0.0335 0.0260 0.0171 0.0119 0.0093 0.0092
32 1 0.1160 0.0548 0.0377 0.0312 0.0255 0.0204 0.0138 0.0107

TS-qEGO 2 1 0.3283 0.2085 0.0896 0.0533 0.0281 0.0149 0.0119 0.0096
4 1 0.2342 0.1110 0.0482 0.0316 0.0204 0.0126 0.0105 0.0093
8 1 0.1548 0.0756 0.0297 0.0219 0.0158 0.0128 0.0107 0.0103
16 1 0.0931 0.0443 0.0213 0.0178 0.0148 0.0120 0.0117 0.0113
32 1 0.0377 0.0287 0.0224 0.0191 0.0167 0.0150 0.0136 0.0132

KB-qEGO 2 1 0.1206 0.0491 0.0172 0.0113 0.0051 0.0022 0.0014 0.0012
4 1 0.0958 0.0513 0.0153 0.0085 0.0042 0.0018 0.0014 0.0011
8 1 0.1159 0.0530 0.0187 0.0092 0.0046 0.0021 0.0013 0.0010
16 1 0.1292 0.0733 0.0263 0.0165 0.0066 0.0033 0.0022 0.0018
32 1 0.1629 0.0747 0.0367 0.0180 0.0117 0.0050 0.0035 0.0028

MIC-qEGO 2 1 0.1171 0.0408 0.0165 0.0097 0.0052 0.0019 0.0014 0.0012
4 1 0.0943 0.0391 0.0128 0.0066 0.0021 0.0008 0.0005 0.0004
8 1 0.1016 0.0338 0.0130 0.0068 0.0026 0.0010 0.0005 0.0004
16 1 0.1561 0.0566 0.0205 0.0120 0.0040 0.0018 0.0012 0.0007
32 1 0.1437 0.0729 0.0333 0.0138 0.0056 0.0020 0.0013 0.0010

MACE 2 1 0.3161 0.2245 0.0784 0.0414 0.0100 0.0037 0.0027 0.0022
4 1 0.2221 0.1429 0.0236 0.0097 0.0056 0.0021 0.0016 0.0014
8 1 0.1697 0.0982 0.0168 0.0072 0.0028 0.0015 0.0010 0.0010
16 1 0.1364 0.0648 0.0141 0.0045 0.0024 0.0013 0.0012 0.0012
32 1 0.0915 0.0417 0.0167 0.0102 0.0054 0.0013 0.0008 0.0006

BSP-EGO 2 1 0.1801 0.0674 0.0169 0.0104 0.0047 0.0018 0.0013 0.0007
4 1 0.0954 0.0406 0.0115 0.0071 0.0037 0.0014 0.0009 0.0007
8 1 0.1104 0.0303 0.0102 0.0051 0.0023 0.0009 0.0007 0.0006
16 1 0.0997 0.0319 0.0104 0.0062 0.0027 0.0009 0.0004 0.0004
32 1 0.1406 0.0585 0.0198 0.0161 0.0087 0.0035 0.0024 0.0017

ℓBSP-EGO 2 1 0.0902 0.0210 0.0032 0.0016 0.0005 0.0002 0.0001 0.0001
4 1 0.0400 0.0058 0.0005 0.0003 0.0002 0.0001 0.0000 0.0000
8 1 0.0196 0.0040 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000
16 1 0.0184 0.0040 0.0007 0.0003 0.0002 0.0001 0.0001 0.0001
32 1 0.0274 0.0114 0.0037 0.0012 0.0004 0.0002 0.0001 0.0001

TuRBO 2 1 0.0192 0.0032 0.0010 0.0005 0.0004 0.0003 0.0003 0.0003
4 1 0.0070 0.0013 0.0009 0.0008 0.0005 0.0004 0.0004 0.0003
8 1 0.0043 0.0024 0.0018 0.0013 0.0009 0.0004 0.0003 0.0003
16 1 0.0046 0.0014 0.0008 0.0007 0.0005 0.0003 0.0003 0.0003
32 1 0.0146 0.0027 0.0008 0.0004 0.0003 0.0003 0.0003 0.0003

XXIX

Chapter 4

Table C.6: Scaled outcome for the Rosenbrock-12d function averaged over 20 repetitions.
Values close to 1 indicate small improvement compared to initial sampling while values ap-
proaching the theoretical optimal value are close to 0 and highlighted in blue shades.

0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.0265 0.0202 0.0162 0.0160 0.0151 0.0143 0.0124 0.0118
4 1 0.0281 0.0254 0.0216 0.0208 0.0170 0.0163 0.0162 0.0157
8 1 0.0319 0.0300 0.0300 0.0278 0.0261 0.0223 0.0219 0.0215
16 1 0.0360 0.0360 0.0360 0.0360 0.0351 0.0336 0.0319 0.0305
32 1 0.0340 0.0340 0.0340 0.0340 0.0340 0.0340 0.0340 0.0340

TS-qEGO 2 1 0.1915 0.1588 0.1057 0.0957 0.0846 0.0734 0.0694 0.0660
4 1 0.1870 0.1483 0.1055 0.0963 0.0793 0.0692 0.0646 0.0617
8 1 0.1489 0.1351 0.1045 0.0960 0.0914 0.0849 0.0774 0.0746
16 1 0.1481 0.1213 0.1108 0.0999 0.0928 0.0868 0.0837 0.0817
32 1 0.1568 0.1268 0.1099 0.0984 0.0925 0.0863 0.0863 0.0843

KB-qEGO 2 1 0.0303 0.0235 0.0147 0.0129 0.0092 0.0078 0.0073 0.0069
4 1 0.0287 0.0247 0.0153 0.0138 0.0100 0.0084 0.0082 0.0079
8 1 0.0286 0.0231 0.0169 0.0121 0.0099 0.0084 0.0080 0.0077
16 1 0.0347 0.0306 0.0224 0.0159 0.0132 0.0100 0.0095 0.0092
32 1 0.0368 0.0340 0.0227 0.0196 0.0129 0.0107 0.0095 0.0093

MIC-qEGO 2 1 0.0299 0.0247 0.0141 0.0116 0.0098 0.0072 0.0068 0.0063
4 1 0.0316 0.0220 0.0147 0.0115 0.0087 0.0070 0.0051 0.0045
8 1 0.0299 0.0238 0.0172 0.0155 0.0115 0.0079 0.0068 0.0063
16 1 0.0377 0.0296 0.0196 0.0153 0.0113 0.0096 0.0087 0.0083
32 1 0.0419 0.0312 0.0261 0.0195 0.0140 0.0098 0.0085 0.0081

MACE 2 1 0.1109 0.0704 0.0321 0.0266 0.0167 0.0100 0.0068 0.0058
4 1 0.0477 0.0366 0.0285 0.0243 0.0173 0.0103 0.0068 0.0052
8 1 0.0457 0.0385 0.0345 0.0307 0.0234 0.0136 0.0088 0.0078
16 1 0.0352 0.0334 0.0262 0.0224 0.0190 0.0159 0.0145 0.0119
32 1 0.0296 0.0278 0.0269 0.0244 0.0190 0.0170 0.0139 0.0130

BSP-EGO 2 1 0.0370 0.0240 0.0157 0.0112 0.0080 0.0060 0.0050 0.0045
4 1 0.0383 0.0262 0.0130 0.0101 0.0067 0.0045 0.0031 0.0026
8 1 0.0362 0.0261 0.0117 0.0102 0.0065 0.0042 0.0030 0.0021
16 1 0.0394 0.0296 0.0212 0.0115 0.0084 0.0049 0.0037 0.0032
32 1 0.0465 0.0430 0.0340 0.0275 0.0210 0.0123 0.0110 0.0098

ℓBSP-EGO 2 1 0.0376 0.0311 0.0108 0.0045 0.0016 0.0009 0.0008 0.0007
4 1 0.0355 0.0168 0.0035 0.0022 0.0009 0.0006 0.0004 0.0004
8 1 0.0334 0.0124 0.0054 0.0035 0.0015 0.0008 0.0006 0.0004
16 1 0.0365 0.0165 0.0066 0.0052 0.0043 0.0026 0.0018 0.0016
32 1 0.0445 0.0374 0.0210 0.0111 0.0059 0.0046 0.0035 0.0030

TuRBO 2 1 0.0111 0.0048 0.0024 0.0018 0.0015 0.0011 0.0009 0.0008
4 1 0.0064 0.0025 0.0015 0.0013 0.0009 0.0006 0.0005 0.0005
8 1 0.0048 0.0018 0.0010 0.0008 0.0006 0.0004 0.0004 0.0004
16 1 0.0038 0.0014 0.0007 0.0007 0.0005 0.0004 0.0004 0.0003
32 1 0.0096 0.0040 0.0013 0.0009 0.0007 0.0004 0.0004 0.0003

XXX

Benchmarking Optimization Algorithms

Table C.7: Scaled outcome for the 12d-Alpine02 function averaged over 20 repetitions. Values
close to 1 indicate small improvement compared to initial sampling while values approaching
the theoretical optimal value are close to 0 and highlighted in blue shades.

0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.9980 0.9979 0.9978 0.9973 0.9971 0.9969 0.9969 0.9965
4 1 0.9993 0.9992 0.9987 0.9986 0.9983 0.9977 0.9977 0.9976
8 1 0.9982 0.9975 0.9954 0.9950 0.9939 0.9925 0.9919 0.9919
16 1 0.9976 0.9969 0.9961 0.9957 0.9954 0.9930 0.9929 0.9929
32 1 0.9982 0.9973 0.9972 0.9971 0.9965 0.9962 0.9961 0.9961

TS-qEGO 2 1 0.9997 0.9997 0.9995 0.9986 0.9983 0.9981 0.9967 0.9964
4 1 0.9971 0.9969 0.9966 0.9958 0.9952 0.9938 0.9938 0.9937
8 1 0.9973 0.9943 0.9930 0.9929 0.9915 0.9909 0.9909 0.9909
16 1 0.9987 0.9980 0.9979 0.9968 0.9967 0.9958 0.9953 0.9945
32 1 0.9948 0.9941 0.9920 0.9910 0.9909 0.9904 0.9904 0.9904

KB-qEGO 2 1 0.9982 0.9955 0.9952 0.9952 0.9945 0.9943 0.9924 0.9922
4 1 0.9997 0.9996 0.9995 0.9995 0.9991 0.9989 0.9989 0.9988
8 1 0.9997 0.9987 0.9986 0.9985 0.9977 0.9977 0.9976 0.9976
16 1 0.9995 0.9995 0.9992 0.9992 0.9991 0.9991 0.9991 0.9991
32 1 0.9992 0.9990 0.9980 0.9980 0.9978 0.9972 0.9972 0.9972

MIC-qEGO 2 1 0.9987 0.9967 0.9957 0.9955 0.9955 0.9952 0.9952 0.9946
4 1 0.9926 0.9839 0.9776 0.9744 0.9639 0.9426 0.9338 0.9293
8 1 0.9856 0.9729 0.9555 0.9462 0.9324 0.8987 0.8831 0.8773
16 1 0.9932 0.9818 0.9649 0.9528 0.9317 0.8996 0.8709 0.8595
32 1 0.9976 0.9932 0.9832 0.9757 0.9634 0.9535 0.9491 0.9436

MACE 2 1 0.9990 0.9948 0.9917 0.9890 0.9847 0.9685 0.9379 0.9102
4 1 0.9988 0.9964 0.9918 0.9892 0.9805 0.9663 0.9602 0.9517
8 1 0.9985 0.9904 0.9847 0.9773 0.9566 0.9242 0.8673 0.8554
16 1 0.9953 0.9913 0.9690 0.9542 0.9204 0.8458 0.8072 0.7657
32 1 0.9837 0.9650 0.9393 0.9238 0.8792 0.8117 0.7658 0.7117

BSP-EGO 2 1 0.9969 0.9950 0.9927 0.9927 0.9925 0.9915 0.9915 0.9915
4 1 0.9956 0.9903 0.9900 0.9880 0.9848 0.9830 0.9828 0.9802
8 1 0.9946 0.9926 0.9867 0.9858 0.9854 0.9850 0.9844 0.9831
16 1 0.9884 0.9868 0.9858 0.9858 0.9857 0.9852 0.9848 0.9822
32 1 0.9869 0.9859 0.9859 0.9859 0.9859 0.9854 0.9854 0.9841

ℓBSP-EGO 2 1 0.9757 0.9314 0.9158 0.9124 0.9123 0.9113 0.9105 0.9101
4 1 0.9421 0.8959 0.8838 0.8828 0.8826 0.8819 0.8766 0.8721
8 1 0.9191 0.8734 0.8543 0.8419 0.8373 0.8278 0.8234 0.8201
16 1 0.9102 0.8832 0.8521 0.8383 0.8212 0.7930 0.7784 0.7482
32 1 0.9404 0.8826 0.8507 0.8419 0.8334 0.8240 0.8107 0.8078

TuRBO 2 1 0.9903 0.9634 0.8917 0.8642 0.8626 0.8626 0.8626 0.8626
4 1 0.9813 0.9070 0.8578 0.8422 0.8266 0.8266 0.8266 0.8266
8 1 0.9895 0.9307 0.8822 0.8807 0.8775 0.8771 0.8771 0.8771
16 1 0.9769 0.9244 0.8876 0.8802 0.8769 0.8769 0.8769 0.8769
32 1 0.9856 0.9485 0.8946 0.8666 0.8534 0.8409 0.8389 0.8387

XXXI

Chapter 4

Table C.8: Scaled outcome for the 12d-Ackley function averaged over 20 repetitions. Values
close to 1 indicate small improvement compared to initial sampling while values approaching
the theoretical optimal value are close to 0 and highlighted in blue shades.

0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.7801 0.7763 0.7718 0.7598 0.7480 0.7480 0.7480 0.7480
4 1 0.7626 0.7540 0.7540 0.7540 0.7540 0.7540 0.7537 0.7381
8 1 0.7742 0.7742 0.7742 0.7197 0.7197 0.7197 0.7197 0.7197
16 1 0.7707 0.7707 0.7448 0.7448 0.7448 0.7448 0.7226 0.7208
32 1 0.7442 0.7442 0.7342 0.7193 0.7193 0.6997 0.6997 0.6997

TS-qEGO 2 1 0.8339 0.8009 0.7686 0.7448 0.7297 0.7090 0.7002 0.6979
4 1 0.8181 0.7790 0.7485 0.7428 0.7359 0.7204 0.7202 0.7078
8 1 0.7918 0.7797 0.7690 0.7601 0.7498 0.7393 0.7347 0.7266
16 1 0.8299 0.8100 0.7869 0.7814 0.7669 0.7617 0.7519 0.7427
32 1 0.8256 0.8175 0.7753 0.7694 0.7639 0.7512 0.7419 0.7412

KB-qEGO 2 1 0.7181 0.7177 0.6982 0.6744 0.6439 0.6432 0.6432 0.6155
4 1 0.7497 0.7322 0.6835 0.6642 0.6128 0.5882 0.5882 0.5882
8 1 0.7664 0.7356 0.7322 0.7293 0.7080 0.6826 0.6826 0.6826
16 1 0.7952 0.7653 0.7479 0.7231 0.7049 0.6777 0.6777 0.6777
32 1 0.7892 0.7892 0.7734 0.7728 0.7699 0.7699 0.7679 0.7454

MIC-qEGO 2 1 0.7111 0.6495 0.6266 0.6001 0.5815 0.5815 0.5815 0.5815
4 1 0.4549 0.3314 0.2711 0.2600 0.2551 0.2479 0.2449 0.2424
8 1 0.4425 0.3215 0.2872 0.2756 0.2639 0.2450 0.2372 0.2250
16 1 0.6035 0.3847 0.3352 0.3207 0.3030 0.2912 0.2803 0.2747
32 1 0.7708 0.5316 0.3663 0.3249 0.3217 0.3120 0.3011 0.2967

MACE 2 1 0.7949 0.7194 0.5619 0.4024 0.3027 0.2123 0.1695 0.1568
4 1 0.7000 0.5644 0.3816 0.3086 0.2317 0.1584 0.1467 0.1451
8 1 0.5784 0.3632 0.2516 0.2171 0.1753 0.1436 0.1430 0.1430
16 1 0.4844 0.3004 0.2099 0.1812 0.1546 0.1378 0.1290 0.1288
32 1 0.3979 0.2774 0.2076 0.1816 0.1570 0.1378 0.1323 0.1297

BSP-EGO 2 1 0.5544 0.4392 0.4193 0.4193 0.3980 0.3980 0.3980 0.3980
4 1 0.3605 0.3605 0.3323 0.3323 0.3323 0.3149 0.3149 0.3149
8 1 0.3404 0.2687 0.2040 0.2013 0.1864 0.1864 0.1862 0.1862
16 1 0.3481 0.3081 0.2719 0.2413 0.2368 0.1857 0.1774 0.1741
32 1 0.5317 0.4094 0.3630 0.3623 0.3502 0.2755 0.2603 0.2588

ℓBSP-EGO 2 1 0.2416 0.1492 0.1140 0.0902 0.0625 0.0563 0.0557 0.0549
4 1 0.1298 0.0625 0.0258 0.0088 0.0012 0.0004 0.0003 0.0002
8 1 0.1536 0.0815 0.0394 0.0268 0.0109 0.0031 0.0020 0.0018
16 1 0.1900 0.0998 0.0619 0.0443 0.0305 0.0190 0.0127 0.0114
32 1 0.3266 0.1873 0.1239 0.1016 0.0733 0.0555 0.0478 0.0466

TuRBO 2 1 0.2976 0.1917 0.1496 0.1325 0.1117 0.1038 0.0975 0.0926
4 1 0.2181 0.1614 0.1310 0.1184 0.1118 0.1052 0.1006 0.0953
8 1 0.1992 0.1444 0.1256 0.1214 0.1122 0.1015 0.1002 0.0972
16 1 0.2107 0.1581 0.1399 0.1308 0.1233 0.1170 0.1143 0.1112
32 1 0.3177 0.1715 0.1216 0.1100 0.1084 0.0993 0.0948 0.0938

XXXII

Benchmarking Optimization Algorithms

Table C.9: Scaled outcome for the 12d-Schwefel function averaged over 20 repetitions. Values
close to 1 indicate small improvement compared to initial sampling while values approaching
the theoretical optimal value are close to 0 and highlighted in blue shades.

0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.9221 0.8550 0.7691 0.7498 0.7333 0.7067 0.6815 0.6695
4 1 0.9163 0.8756 0.8201 0.7888 0.7490 0.7101 0.6895 0.6844
8 1 0.9439 0.8995 0.8557 0.8377 0.8267 0.8007 0.7708 0.7446
16 1 0.9346 0.9124 0.8767 0.8615 0.8429 0.7963 0.7700 0.7659
32 1 0.9212 0.9138 0.8920 0.8657 0.8489 0.8268 0.8263 0.8193

TS-qEGO 2 1 0.9864 0.9738 0.9433 0.9116 0.9011 0.8742 0.8682 0.8632
4 1 0.9755 0.9514 0.9438 0.9288 0.9020 0.8724 0.8710 0.8592
8 1 0.9702 0.9457 0.9231 0.9050 0.8982 0.8649 0.8581 0.8567
16 1 0.9597 0.9428 0.9102 0.8995 0.8864 0.8681 0.8473 0.8462
32 1 0.8972 0.8947 0.8718 0.8571 0.8505 0.8371 0.8284 0.8242

KB-qEGO 2 1 0.9452 0.8674 0.7991 0.7798 0.7389 0.7082 0.6880 0.6802
4 1 0.9545 0.9135 0.8471 0.8101 0.7594 0.7127 0.7046 0.6957
8 1 0.9777 0.9633 0.9025 0.8743 0.8400 0.8101 0.7826 0.7675
16 1 0.9884 0.9477 0.9306 0.9114 0.8884 0.8597 0.8461 0.8326
32 1 0.9930 0.9800 0.9737 0.9508 0.9284 0.8900 0.8603 0.8504

MIC-qEGO 2 1 0.9689 0.8842 0.8301 0.7926 0.7597 0.7223 0.7114 0.7035
4 1 0.9280 0.8509 0.7683 0.7185 0.6805 0.6273 0.5925 0.5767
8 1 0.9296 0.8440 0.7384 0.6940 0.6563 0.6115 0.5923 0.5885
16 1 0.9670 0.9254 0.8518 0.8025 0.7517 0.7040 0.6801 0.6690
32 1 0.9958 0.9679 0.9475 0.9035 0.8649 0.8077 0.7846 0.7570

MACE 2 1 0.9831 0.9744 0.8983 0.8645 0.8278 0.7643 0.6916 0.6650
4 1 0.9713 0.9603 0.8851 0.8664 0.8069 0.7453 0.7031 0.6923
8 1 0.9449 0.8860 0.8440 0.8045 0.7679 0.7073 0.6694 0.6589
16 1 0.9207 0.8447 0.7879 0.7626 0.6963 0.6042 0.5684 0.5201
32 1 0.9028 0.8079 0.7408 0.6578 0.6233 0.5089 0.4549 0.4307

BSP-EGO 2 1 0.9174 0.8115 0.7013 0.6393 0.5822 0.5639 0.5451 0.5436
4 1 0.9264 0.8460 0.7055 0.6382 0.5864 0.5389 0.5266 0.5193
8 1 0.8921 0.7849 0.7223 0.6806 0.5945 0.5357 0.5118 0.5027
16 1 0.9108 0.8420 0.7494 0.7070 0.6643 0.6153 0.5791 0.5681
32 1 0.9196 0.8952 0.8428 0.8049 0.7877 0.7264 0.7023 0.6946

ℓBSP-EGO 2 1 0.8229 0.6891 0.5393 0.4842 0.4678 0.4665 0.4631 0.4628
4 1 0.7708 0.5817 0.4364 0.3877 0.3645 0.3630 0.3630 0.3630
8 1 0.7870 0.6452 0.4908 0.3980 0.3138 0.2754 0.2704 0.2704
16 1 0.8038 0.6580 0.5759 0.5328 0.4441 0.3476 0.3211 0.3019
32 1 0.8618 0.7636 0.6532 0.6165 0.5612 0.4775 0.4251 0.3916

TuRBO 2 1 0.8259 0.6683 0.4905 0.4562 0.4244 0.4186 0.4167 0.4083
4 1 0.7759 0.5913 0.5074 0.4777 0.4529 0.4467 0.4467 0.4467
8 1 0.7937 0.6160 0.5253 0.5107 0.5050 0.5002 0.4993 0.4993
16 1 0.6402 0.5055 0.4739 0.4704 0.4698 0.4697 0.4697 0.4697
32 1 0.8296 0.6503 0.5317 0.4838 0.4672 0.4625 0.4624 0.4624

XXXIII

Chapter 4

Table C.10: Scaled outcome for the 12d-Rastrigin function averaged over 20 repetitions. Values
close to 1 indicate small improvement compared to initial sampling while values approaching
the theoretical optimal value are close to 0 and highlighted in blue shades.

0 30 60 120 180 300 600 900 1200
Method q

qEGO 2 1 0.6557 0.6442 0.6224 0.6147 0.6087 0.5948 0.5937 0.5846
4 1 0.6556 0.6260 0.6123 0.5980 0.5839 0.5821 0.5806 0.5806
8 1 0.6219 0.5908 0.5787 0.5753 0.5753 0.5753 0.5591 0.5591
16 1 0.6426 0.6280 0.6280 0.6192 0.5900 0.5756 0.5716 0.5716
32 1 0.6220 0.6086 0.5935 0.5935 0.5841 0.5832 0.5832 0.5832

TS-qEGO 2 1 0.7964 0.7566 0.7228 0.6989 0.6717 0.6373 0.6015 0.5960
4 1 0.7688 0.7234 0.6677 0.6577 0.6479 0.6275 0.6161 0.6154
8 1 0.7209 0.7013 0.6612 0.6463 0.6202 0.6104 0.6039 0.5989
16 1 0.6933 0.6731 0.6520 0.6464 0.6360 0.6084 0.5963 0.5946
32 1 0.6663 0.6409 0.6208 0.6149 0.6025 0.5936 0.5871 0.5794

KB-qEGO 2 1 0.6987 0.6635 0.6199 0.6158 0.5986 0.5915 0.5896 0.5896
4 1 0.7011 0.6631 0.6385 0.6300 0.6172 0.6095 0.6095 0.6095
8 1 0.7253 0.6863 0.6547 0.6445 0.6242 0.6177 0.6063 0.6004
16 1 0.7249 0.6843 0.6676 0.6522 0.6486 0.6073 0.6007 0.6004
32 1 0.7335 0.7287 0.7178 0.7023 0.6598 0.6507 0.6481 0.6386

MIC-qEGO 2 1 0.6795 0.6454 0.6235 0.6225 0.6085 0.6015 0.5992 0.5958
4 1 0.6516 0.6052 0.5762 0.5393 0.5144 0.4895 0.4799 0.4799
8 1 0.6812 0.6418 0.5982 0.5926 0.5656 0.5308 0.5018 0.4959
16 1 0.6956 0.6404 0.6164 0.6000 0.5840 0.5571 0.5483 0.5447
32 1 0.7124 0.6708 0.6449 0.6392 0.6118 0.5929 0.5888 0.5752

MACE 2 1 0.7205 0.6791 0.6338 0.6193 0.6056 0.5934 0.5903 0.5903
4 1 0.7059 0.6757 0.6651 0.6261 0.6081 0.5869 0.5725 0.5592
8 1 0.7019 0.6559 0.6331 0.6261 0.6065 0.5947 0.5947 0.5903
16 1 0.6755 0.6422 0.6099 0.5915 0.5767 0.5649 0.5604 0.5578
32 1 0.6702 0.6311 0.6141 0.5902 0.5591 0.5251 0.5172 0.5167

BSP-EGO 2 1 0.6729 0.6211 0.6030 0.5706 0.5506 0.5166 0.4904 0.4852
4 1 0.6944 0.6575 0.6214 0.5840 0.5599 0.5232 0.4883 0.4649
8 1 0.6556 0.6048 0.5813 0.5575 0.5482 0.5114 0.4855 0.4820
16 1 0.6840 0.6129 0.5737 0.5478 0.5448 0.4964 0.4867 0.4687
32 1 0.7072 0.6687 0.6359 0.5954 0.5646 0.5392 0.5137 0.5019

ℓBSP-EGO 2 1 0.5959 0.4028 0.2531 0.1577 0.1206 0.1174 0.1173 0.1173
4 1 0.5696 0.3672 0.2189 0.1586 0.1030 0.0896 0.0896 0.0896
8 1 0.4451 0.3160 0.1823 0.1401 0.1046 0.0815 0.0770 0.0757
16 1 0.4877 0.3538 0.2060 0.1645 0.1282 0.1011 0.0848 0.0746
32 1 0.5735 0.4660 0.3735 0.2954 0.2423 0.1862 0.1679 0.1624

TuRBO 2 1 0.5331 0.3825 0.3131 0.2753 0.2360 0.1908 0.1757 0.1610
4 1 0.4739 0.4088 0.2954 0.2554 0.2056 0.1701 0.1573 0.1527
8 1 0.3705 0.2988 0.2250 0.1840 0.1597 0.1347 0.1306 0.1277
16 1 0.3812 0.3008 0.2268 0.2082 0.1906 0.1655 0.1622 0.1569
32 1 0.5059 0.3700 0.2550 0.2211 0.1892 0.1625 0.1622 0.1610

XXXIV

	Remerciements
	Abstract
	Résumé
	Table of contents
	List of Acronyms
	Introduction
	I Parallel Bayesian Optimization: Background and Preliminary Analysis
	Parallel Bayesian Optimization
	Introduction to Bayesian Optimization
	Black-Box Global Optimization
	Surrogate-Based Optimization
	Bayesian Optimization
	Parallel Computing in Bayesian Optimization

	Surrogate Modeling for Bayesian Optimization
	Gaussian Process Regression
	The Covariance Kernel
	Considerations from some Observations on GPs

	Acquisition Strategy and Parallel Computing
	Single-Point Strategies
	Multi-Point Acquisition Processes

	Chapter's Conclusion

	Observations on Real-World Problems
	Potential of EGO in Solving Expensive Simulation-Driven Problems
	Inverse Identification in Mechanical Engineering
	The Efficient Global Optimization Algorithm
	Experimental Results

	Impact of the Batched Parallelism in EGO
	Optimal Commitment of Virtual Power Plants
	Offline SAO versus qEGO
	Experimental Results

	qEGO versus Surrogate-Assisted EA
	Tuberculosis Transmission Control (TBTC)
	Competing Approaches
	Experimental Results

	Chapter's Conclusions

	II Contribution to the Design and Analysis of Parallel Hybrid BOAs
	BSP-EGO: a New Decomposition-based EGO
	Improving the Scalability and the Batch Effectiveness
	Multi-Criteria Algorithms
	Space Partitioning in Optimization
	A Taxonomy of Bayesian Optimization Algorithms

	Binary Space Partitioning EGO (BSP-EGO)
	A New Acquisition Strategy for Large Batch Sizes
	Global Model-based BSP-EGO
	Local Model-based BSP-EGO Variant
	Software Implementation and Packaging

	Benchmarking BSP-EGO against state-of-the-art BOAs
	Objective and Experimental Framework
	Experimental Protocol
	Results and Analysis
	Discussion on Exploration and Exploitation
	Conclusions and Recommendations

	Real-world Test Case: Optimal Scheduling of UPHES
	Context and Motivation
	Underground Pumped Hydro-Energy Storage
	Experimental Setup
	Results and Discussion

	Chapter's Conclusions

	Bayesian versus/with Evolutionary Optimization
	Towards Time-Efficient Algorithms
	Context and Motivations
	Surrogate-Assisted Evolutionary Optimization
	The Investigated Algorithms

	BOAs versus SAEAs
	Experimental Protocol
	Determination of the Threshold
	Efficiency of the Acquisition Processes

	Hybrid Methods Combining SAEA and BOA
	Threshold-based Hybrid Algorithm
	Validation Through Unseen Problems
	Conclusions and Discussion

	Opening to Higher Dimensional Problems
	PHES Optimal Management Problem
	Experimental Protocol
	Experimental Results
	Conclusion and Discussion

	Conclusions and Perspectives
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Appendices
	Appendix Mathematics for Bayesian Optimization
	Notions of Probability and Statistics
	Gaussian Process Regression

	Appendix Multi-Objective Optimization
	Multi-Objective Formulation
	Multi-Objective Algorithms

	Appendix Benchmarking Optimization Algorithms
	Usual Benchmark Functions
	Additional Results of the Benchmark Analysis

