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Université Jean Monnet de Saint-Etienne.

pour l’obtention de
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Michel Brion
Directeur de Recherche (CNRS), Université
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1 Accessible Introduction

This dissertation can be labelled as lying in the junction of two general mathematical
areas: algebra and geometry. More precisely, the studied objects are mainly
geometric objects (commuting varieties, sheets, Hilbert schemes, . . . ) coming
from algebraic geometry (such as the Hilbert schemes), from symplectic geometry
(fibers of moment maps, symplectic reduction) or from representation theory
(including algebraic groups, Lie algebras, quiver representations, invariant theory. . . ).
Most of the studied properties of these objects are properties stated in the
language of algebraic geometry. This ranges from rather elementary descriptions,
such as characterisation of the irreducible components, to more sophisticated
ones, such as smoothness, normality and reducedness of schemes.

This dissertation is written in the perspective of getting the Habilitation
degree. By nature, this rather self-centered exercise will be primarily focused
on the author’s works. If several selected other results are cited in order to set
the context, no exhaustiveness was sought concerning the works related to the
various mathematical questions addressed here.

1.1 Elementary concepts

Most of the objects of this dissertation are linked with group actions on varieties.
These actions appears in many mathematical and extra-mathematical settings.
We can cite group of symmetries (crystallographic groups, automorphism groups
of varieties, Lorentz group and other invariance group of various mathematical
models of theoretical physics...), elliptic curves (used in cryptography) as well
as dynamical systems and symplectic geometry.

By variety, we mean an algebraic variety2 and we will mostly speak of
affine varieties, that is subsets of the affine space of dimension n defined as
the vanishing locus of some polynomials (with n variables). For instance,

{(x, y)|x2 + y2 = 1}, the unit circle, (1.1)

{(x, y)| y = 0}, a line, (1.2)

{(x, y)| y − x2 = 0}, a parabola, (1.3)

{(x, y)|xy = 0}, the union of the two axis (1.4)

are subvarieties of the plane (the affine space of dimension 2). The example
(1.4) is said to be reducible since it can be written as the union of two proper
closed subvarieties {(x, y)|x = 0} and {(x, y)| y = 0} (the axes). On the other
hand, examples (1.1), (1.2) and (1.3) are irreducible. Any algebraic variety

2i.e. a reduced separated scheme of finite type over a field. Varieties are not assumed to
be irreducible in this dissertation
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X has a unique decomposition as a union of irreducible components (maximal
irreducible subvarieties of X). At each of its points, an algebraic variety can be
either smooth or singular. Even if they have different definitions, two varieties X
and Y can be isomorphic3. This is the case for the line and the parabola defined
above4. Isomorphic varieties share the same geometric properties; e.g. there is
a 1:1-correspondence between the irreducible components of both varieties. The
geometric objects considered in this dissertation are defined over an algebraically
closed field k, which we will often assume to be of characteristic 0 (such as the
field C of complex numbers).

An action of a group on a variety can be seen as a pair (G,V ) where V is a
variety and each element of the group G induces an automorphism of V (i.e. an
invertible transformation of the variety V ). The image of an element v of V by
an element g of G will be denoted by g · v. We say that G is an algebraic group
if it is equipped with an algebraic variety structure, with multiplication and
inverse map being both morphisms of varieties. The action we are interested

in are algebraic, which means that the action map
{

G× V → V

(g, v) 7→ g · v
is a

morphism of varieties. When V is a vector space and G acts linearly, we say
that (G,V ) is a representation . Among classical examples, we can cite

• an example in small dimension: the action of the torus T1 :=C× = C\{0}
on C2 with weights (1,−1), defined via t · (x, y) := (tx, t−1y).

• the action on a vector space V of the group GL(V ) of invertible linear
transformations of V .

• the action by conjugation of GLn = {invertible matrices of size n} on
gln = {square matrices of size n} via g · v := gvg−1 (change of basis
formula).

• the action by conjugation of SOn = {orthogonal matrices of size n} on
Sn := {symmetric matrices of size n}.

If (G,V ) is an action, the orbit of an element v ∈ V is the set G · v = {g ·
v| g ∈ G}. For instance, in the setting of the above described action (T1,C2),
we get different types of orbits. When (x, y) satisfies xy = c 6= 0, we have
T1 · (x, y) = {(a, b)| ab = c} which is an orbit of dimension 1 (hyperbola); the
element (x, y) is then said to be semisimple (or, more suitably, polystable) since
its orbit is closed. When x = 0 and y 6= 0, T1 · (0, y) = {(0, b)| b 6= 0} is a
(non-closed) orbit of dimension 1; the element (0, y) is said to be nilpotent (or,
more suitably, unstable) since the orbit contains (0, 0) in its closure. Similarly,
when x 6= 0 and y = 0. The last orbit is {(0, 0)} of dimension 0; the element
being then both semisimple and nilpotent.

3i.e. there are morphism of varieties (polynomial functions), X → Y and Y → X whose
compositions yield the identity morphisms on X and on Y

4via (x, y)→ (x, y + x2) and (x, y)→ (x, y − x2)
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The action (GLn, gln) is a particular case of the adjoint action on a Lie
algebra, which is reductive5 in this case. The Lie algebras should be seen as
linearisations of algebraic groups. The theory of Lie algebras emerged in the
second half of 19th century and has been constantly developed since. See [Ha00]
for an historical account. The classification of the simple Lie algebras (which
are the building blocks of the reductive Lie algebras and, in a weaker sense, of
all Lie algebras) has been achieved by E. Cartan in the beginning of the 20th
century. They can be sorted in 4 series (the so-called classical types) : An

(n > 1) which coincides with6 gln+1 (modulo its center); Bn (n > 2) : so2n+1;
Cn (n > 3) : sp2n; Dn (n > 4) : so2n and in five exceptional cases: E6, E7, E8,
F4 et G2.

Lie algebras are (unsurprisingly) algebraic objects. Namely, a Lie algebra is
a vector space g equipped with a Lie bracket (a “multiplication”), that is a skew-
symmetric7 bilinear map satisfying some specific associativity property (Jacobi
identity). In type A, the bracket is defined on matrices via [X,Y ] = XY − Y X
and measures the defect of commutativity of the matrix multiplication. In
reductive Lie algebras, the notions of semisimple and nilpotent elements have an
algebraic definition which coincides with the above-given geometric definition.
For instance, in type A, the semisimple matrices are the diagonalizable matrices,
while nilpotent matrices are those for which some power vanish. In any reductive
Lie algebra g, any element x ∈ g has a unique Jordan decomposition x = s+ n

where s is semisimple, n is nilpotent and [s, n] = 0. In particular, x is semisimple
(respectively nilpotent) if and only if n = 0 (resp. s = 0).

1.2 Some more advanced geometry

Smooth points are the “nicest” points of a variety. At these points, varieties
much behave like differential manifolds. For instance, if x ∈ X and y ∈ Y are
smooth points and if X and Y have common dimension d locally around x and
y, then X and Y are locally8 isomorphic around x and y. This being said, a
singularity can still have good propeties. For instance, it can be normal (ex:
singularity at 0 of the cone {(x, y, z)|x2 + y2 − z2 = 0}). Normality is a key

5reductive Lie algebras are direct sums of abelian Lie algebras (trivial bracket) and simple
Lie algebras. At the other end of the classification of Lie algebras, we encounter solvable and
nilpotent Lie algebras

6Classical Lie algebra are usually denoted with the same letters as the corresponding
algebraic group, with lower case gothic letters. So son (resp. spn) is the Lie algebra of
the special orthogonal (resp. symplectic) group in dimension n.

7[x, y] = −[y, x]
8étale-locally here. Étale topology is a (Grothendieck) topology on algebro-geometric

objects in which “local” has a meaning similar than in the complex manifold setting. On the
other hand, we also often consider on algebro-geometric objects the Zariski topology which is
a coarser topology. For instance, the Zariski-closed subsets of the n-dimensional space are the
vanishing locus of sets of polynomials, so any non-empty open subset of kn is dense.
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property in algebraic geometry because of Zariski’s main theorem which, for
instance, allows to enhance set-theoretic properties to geometric properties:

Theorem 1.1. Assume that Y is an irreducible variety. Then the following
assertions are equivalent:

• Y is normal,

• Any morphism of irreducible varieties f : X → Y which is birational9

with finite fibers, is in fact an isomorphism between X and a Zariski open
subset of Y .

A point y ∈ Y is normal if and only if there exists a (Zariski) neighborhood
of y in Y which is normal. In addition, at normal points, varieties are locally10

irreducible11, see e.g. [MO, §V.6].
At some points, we will encounter varieties defined by equations generating

a possibly non-radical ideal. The correct object to consider in this situation
is the corresponding algebraic scheme12 defined by these equations. It is an
algebro-geometric object whose points are in bijection with those of the variety
(then called the associated reduced scheme) but which may carry additional
infinitesimal information. If X is a scheme, the associated variety is denoted by
Xred. By convention, when speaking about irreducible components of a scheme,
we mean components of the associated variety13.

We can illustrate this notion of scheme on single-point objects. In the plane
k2, there is a unique variety whose only point is (0, 0). On the other hand, many
subscheme of k2 are supported only at this single point. Let us mention those
defined by the following equations

x = 0 = y, the reduced one (1.5)

x2 = 0 = y − ax (a ∈ k) the length 2 subscheme at (0,0)
of the line with equation y = ax

(1.6)

The schemes of the form (1.6) “remember” the direction of the supporting line.
A point of a scheme is said to be reduced if the scheme is reduced in a (Zariski)
neighborhood of this point.

There are many desirable properties for varieties and schemes. They are
reduced, smooth or normal when their locus of reduced (resp. smooth, resp.

9Alternatively, in our setting char k = 0, we can replace “birational” by “bijection on dense
(Zariski) open subsets of X and Y ”.

10étale-locally here.
11we then say that the variety is unibranch at these points
12i.e. separated scheme of finite type over k = k
13i.e. we do not consider embeded components. Moreover, when we will look at reduced

points of a given component Y of X, we will always be interested in reduced points of X
belonging to the component Y .

9



normal) points coincides with the whole scheme. In general, these loci are
known to form a (Zariski) open subset of the scheme. If k ∈ N is such that the
singular locus of the scheme is of codimension at least k + 1 in each irreducible
component, we say that the scheme is smooth in codimension k or equivalently
that it satisfies the condition (Rk). An irreducible component Y of a scheme X
satisfies (R0) in X if and only if it contains some smooth point of X if and only
if it has at least one reduced point of X. The component Y is then said to be
generically reduced or generically smooth in X.

We also say that a subscheme X of kn is a complete intersection if and only if
it can be defined by (n−dimX) equations in kn. It is then equidimensional, i.e.
all the irreducible components of X share the same dimension. Using Serre’s
conditions (Sk) (k ∈ N) which will not be defined here, we can write down the
following graph of implications for the above mentioned possible properties on
a given scheme:

smoothKS

��

+3 normalKS

��

+3 reducedKS

��

(Sk+1)⇒ (Sk) (Rk+1)⇒ (Rk)

∀k, (Rk) (S2)+(R1) (S1)+(R0) complete
intersection

+3 ∀k, (Sk)

(1.7)
Another geometric feature of interest in this dissertation is Invariant Theory.

Given a reductive group G acting on an affine variety V (e.g. if (G,V ) is a
representation), we can consider the categorical quotient π : V → V//G. It
is a variety which has the following universal property: If ϕ : V → Y is a
G-invariant morphism (i.e. ∀g, v, ϕ(g · v) = ϕ(v)), then ϕ factors through π.
Set-theoretically, we have

V//G = {closed G-orbits in V }

and π sends v ∈ V to the closed orbit lying in the closure of G · v. For instance,
if (G,V ) is a representation and V nil denotes the set of nilpotent elements in
V , then V nil = π−1(π(0)). When all the orbits are closed, e.g. when G is finite,
then the quotient V//G is also a set-theoretic one. We then say that it is a
geometric quotient and we denote it by V/G. We refer to [PV91, §4] or [Kr84,
II.3] for a more detailed exposition on these quotients.

For instance, in the above-described case of the action of T1 on C2 with
weights (1,−1), we have C2//T1 ∼= C with π(x, y) = xy. In particular, the two
nilpotent orbits and the 0-orbit are all sent to 0 in the quotient. Following the
general philosophy of Geometric Invariant Theory (GIT), we can consider open
subsets of V to get better-behaved quotients. For instance, in the preceding
example, we can set U := {(x, y)|x 6= 0} ⊂ C2. All the orbits in U become
closed in U and we have a geometric quotient U/G. In this precise case, U/G
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happen to be isomorphic to C2//G. In general, such constructions might provide
desingularisations of (open sets of) V//G.

1.3 Some more advanced algebra

Reductive Lie algebras carry a lot of structure. A key notion involved in their
classification is that of Cartan subalgebra. If g is a reductive Lie algebra, a
Cartan subalgebra h of g is a maximal subspace of semisimple elements. We
have [h, h] = 0. In type A, an example is given by h = {diagonal matrices}. We
define the rank of the Lie algebra g, by rk g := dim h. For instance rk gln = n.

There exists several nested generalisations of the notion of reductive Lie
algebra. These generalisations give rise to representations (G,V ) where G is an
algebraic group, V a vector space, and where the properties of the action imitate
those of the adjoint action of an algebraic group on its Lie algebra. From more
particular to more general settings, we can cite:

• Symmetric Lie algebras.
A (reductive)14 symmetric Lie algebra is a reductive Lie algebra g equipped
with a Z/2Z-grading g = g0 ⊕ g1 (with [gi, gj ] ⊂ gi+j). It gives rise to
an action of the form (G0, g1) where G0 is a connected algebraic group
whose Lie algebra is g0. The action (SOn, Sn) mentioned in Section 1.1
is an example of such action15.
Simple symmetric Lie algebras have been classified by E. Cartan in 20
types, among which 8 series denoted by AI, AII, AIII, BI, DI, CI, CII,
DIII and 12 exceptional cases EI, . . ., EIX, FI, FII and GI.

• θ-groups.
Their definition is the same as the one of symmetric Lie algebras, except
that the grading is a Z/mZ-grading (with m > 1, arbitrary). The studied
action is still (G0, g1). We refer to [Vi76] for main properties in this
setting.

• Polar representations.
A polar representation is a representation of a reductive group (G,V ),
such that V has big enough (i.e. of dimension dimV//G) subspaces c ⊂ V
of semisimple elements with locally parallel orbit (i.e. g · c = g · c for some
general element16 c ∈ c). Such a subspace is called a Cartan subspace of
the representation. Our main reference for polar actions is [DK85]

Any property proved at one level is valid in the previous settings (and in the
setting of Lie algebras). In each of these settings, there is a notion of Cartan

14For simplicity of exposition, symmetric Lie algebras will always be assumed to be reductive
15here g = gln is decomposed into antisymmetric and symmetric matrices
16by general element we will always mean for all the elements lying in a suitable dense

open subset
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subspace which is geometrically close to that of Cartan subalgebra. They are
vector subspaces of V and any two of them are conjugate under the action
of the group. As for ordinary Lie algebras, we define the rank of (G,V ) via
rk(G,V ) = dim c for any Cartan subspace c ⊂ V .

We now point out some desirable properties of a representation (G,V ). We
refer to [PV91, §8] for these properties and several related others. We say that
the representation is stable if the general elements in V are semisimple (i.e. have
closed orbits). This is equivalent to ask for the general fibers of the quotient
map to be single orbits. Actions arising in the symmetric case (and thus adjoint
action for reductive Lie algebras) are stable but this is not always the case for
θ-groups (and thus neither for polar representations).

We say that the representation is visible if there are finitely many nilpotent
orbits. Equivalently, each fiber of the quotient map is made of finitely many
orbits. This is the case for any θ-groups but not necessarily for polar representations.

Lastly, the representation is said to be locally free if there are some orbits of
maximal dimension dimG. No adjoint action of a non-trivial Lie algebra satisfies
this property but we can find some examples in each of the other settings.

We present a last class of representations, which are spaces of quiver representations.
They are of the following form. Let Q be a (finite) oriented graph17 with Q0 its
vertex set and Q1 its arrow set. Let (Ei)i∈Q0 be a family of finite dimensional
vector spaces. Let G :=

∏
i∈Q0

GL(Ei) and V :=
∏

ϕ∈Q1
Hom(Et(ϕ), Eh(ϕ))

where t(ϕ) (resp. h(ϕ)) denotes the node on the “tail” (resp. “head”) of ϕ ∈ Q1.
See [CB] for a detailed account on the subject.

By construction, this quiver setting has a lot to do with type A cases.
For instance, the quotient V//G can always be computed since invariants can
be expressed by means of certain trace functions [LP90]. Also, the adjoint
representation (GLn, gln) associated with the Lie algebras in type A can be
realized as the above described representation associated with a quiver with one
node and one loop, setting dimE = n. Similarly, for symmetric Lie algebras of
type AIII (resp. θ-group of inner type A), we consider the cyclic quiver with 2
nodes (resp. the cyclic quivers of an arbitrary length):

E E1 E2 E1 E2 En (1.8)

On the other hand, quivers yield a far more general class of representations.
For instance, the quivers in (1.8) are all of tame representation type and it
is manageable to describe the action of the group in a detailed manner18.
However, most of the quivers (such as the double loop quiver) are of wild

17i.e. a quiver, since it contains arrows
18e.g. we can classify the orbits, as for any θ-group
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representation type. They are linked to undecidable problems [Pr88] and a
satisfactory classification of orbits is widely considered as intractable in these
cases.

1.4 Objects of study

We now roughly present the content of this dissertation. A central object here
is the commuting variety. Given a finite dimensional Lie algebra (g, [·, ·]), its
commuting variety is defined as

C(g)red := {(x, y) ∈ g× g| [x, y] = 0} (1.9)

The importance of this variety can be seen through the multiplicity of perspectives
from which it can be considered.

First of all, it is an object defined in algebraic terms (i.e. with the algebraic
operations of the Lie algebra). In type A, the commuting variety coincides
with the set of pairs of matrices (X,Y ) satisfying the commutativity relation
XY = Y X. In this dissertation, we will also consider some generalisations
in reductive contexts (symmetric Lie algebras, θ-groups, polar representations)
and in non-reductive ones (parabolic subalgebras of reductive Lie algebras).
Additional constraints on the considered pairs can also be set (e.g. commuting
nilpotent varieties, when we ask x and y to be nilpotent). As a first step, it is
sometimes enlightening to describe such variety set-theoretically.

Second, it is also an object of geometric nature. It is an algebraic variety,
namely an algebraic subset of the affine space g× g. The relation [x, y] = 0 also
defines a (possibly non-reduced) scheme C(g). As a first rough description of
these varieties, it is interesting to describe their irreducible components. Such
description is one of the goals of Sections 2 and 3. Among finer properties that
are also studied, we can cite the description of their smooth, normal or even
reduced locus (cf. Conjecture 2.2).

In the study of the irreducible components of commuting varieties (Section
2), another important object of this dissertation appears: sheets. Given an
algebraic action (G,V ), the sheets are defined as the irreducible components of
the sets of the form

V (m) := {x ∈ V |dimG · x = m} (m ∈ N).

We deal with the rich structure of these objects in the setting of symmetric Lie
algebras in Section 4.

The commuting variety is also an example of a class of classical objects
arising in the setting of symplectic geometry: zero fibers of moment maps. More
precisely, given a representation (G,V ), we define the symplectic double V ×V ∗

13



and we can consider the moment map

µ :
{

V × V ∗ → g∗

(v, ϕ) 7→
[
g 7→ ϕ(g · v)

] . (1.10)

When V = g (adjoint action in the reductive Lie algebra case), we have C(g) ∼=
µ−1(0) via the Killing isomorphism g ∼= g∗. In Section 2, we consider C(G,V )
as µ−1(0) for an arbitrary representation (G,V ).

The commuting varieties are G-varieties so, in the setting of invariant theory
mentioned in Section 1.2, it is natural to look at their quotients. Notably, in
symplectic geometry, the categorical quotient µ−1(0)//G is a classical object
called a symplectic reduction19. A classical type of desired result in such
setting is the normality of the symplectic reduction. Such study is made in
Section 5 for θ-groups and polar representations.

Lastly, we can also define GIT quotients of commuting varieties. In the
gln-case, this allows to recover Hilbn(k2), the punctual Hilbert scheme of the
plane. Its points are the “length n” subschemes of the affine plane k2. For
instance, for each a ∈ k the scheme described in (1.6) is a point of Hilb2(k2);
thus describing an affine line in Hilb2(k2)20. Hilbert schemes are natural objects
studied in general algebraic geometry. In Section 6, we describe the connection
with the commuting variety. We also focus on the so-called nested Hilbert
schemes which parametrise pairs of subschemes zk ⊂ zn of respective length
k and n. It turns out to be related to the commuting variety of a parabolic
subalgebra p of gln (a non-reductive case). Considerations on the sheets of p

yield to the study of the representations of some specific quivers. There, the
rich existing theory allows to derive important consequences for C(p) and the
corresponding Hilbert scheme.

In a last section, the annexe aims at providing more context for the existing
directions of research related to the commuting variety. In a first part, we
present how C(g) fits in a poset of also studied subsets of g×g. In a second part
we present some other contemporary interesting directions of research which
aim to study analogues of commuting varieties in different contexts.

19also known as Hamiltonian reduction or Marsden-Weinstein reduction
20and even in Hilb2

0(k2), the Hilbert scheme paramterizing subschemes of k2 supported at
the single point (0, 0)
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2 Introduction to commuting varieties and sheets

Let g be a finite dimensional Lie algebra defined over an algebraically closed field
k of characteristic zero. Let h be a Cartan subalgebra of g. The commuting
scheme C(g) is defined as

C(g) := {(x, y) ∈ g× g| [x, y] = 0}. (2.1)

We also consider the commuting variety C(g)red, the reduced scheme associated
to C(g).

When g is reductive, h is abelian, so h× h ⊂ C(g). The following theorem is
a seminal result of Richardson21

Theorem 2.1. [Ri79]. Assume g is reductive, then C(g)red = G · (h× h). In
particular, C(g) is irreducible of dimension dim g + rk g.

The following long standing conjecture (see e.g. [Va94, §9.3]) aims at describing
finer geometry of the commuting variety

Conjecture 2.2. The commuting scheme C(g) is reduced and normal.

Several generalizations of the commuting scheme are possible. Some of
them are of the form C(G,V ) := µ−1(0) for some representation (G,V ), in
the notation of the end of Section 1.4. That is

C(G,V ) = {(x, ϕ) ∈ V × V ∗|ϕ ∈ [g, x]⊥}. (2.2)

When g is reductive, we have C(g) ∼= C(G, g) where (G, g) is the adjoint action,
using the Killing isomorphism g ∼= g∗. In the special case (G,V ) = (SOn, Sn),
this corresponds to the set of pairs of commuting symmetric matrices. Another
possible generalization is

C′(G,V ) := {(g, v) ∈ g× V | g · v = 0}. (2.3)

In a different philosophy from Theorem 2.1, we are also interested in the nilpotent
commuting varieties which focus on the least semisimple commuting pairs. For
instance

Cnil(g) := {(x, y) ∈ C(g)|x, y nilpotent}22 (2.4)
21previously proved by Gerstenhaber in type A [Ge61]
22there are several natural scheme structures encoding the nilpotency condition here. For

instance, one can consider the scheme-theoretic intersection of C(g) with gnil × gnil where
gnil is the (reduced) nilpotent cone. In gln, we can also consider sets of defining equations
like xn = yn = 0 or even xn = xn−1y = · · · = xyn−1 = yn = 0. Most of the time, we
look at properties of the underlying variety such as irreducible components or dimension, so
the scheme structure play no role. The only exception is in Theorem 6.3 (2), where the last
mentioned scheme structure is used.
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A summary of the commuting varieties/schemes mentioned in this thesis is
given in Table 1

The study of these commuting varieties is eased by considerations on sheets
[Pa94, SY06]. In the setting of an algebraic action (G,V ) of an algebraic group
G on a variety V , the latter can be stratified by orbit dimension. Namely, given
m ∈ N, we consider the following locally closed subset of V :

V (m) := {x ∈ V |dimG · x = m} (2.5)

The sheets are the irreducible components of such V (m). The modality of a
sheet S is defined as modS := dimS −m. Intuitively, this corresponds to the
number of continuous parameters needed to classify the orbits in S. This is
also the dimension of the quotient S/G, whenever it exists. We also define the
modality of (G,V ) as mod(G,V ) := maxS(modS) where the maximum is taken
over the set of sheets.

Theorem 2.3. Let (G,V ) be a representation

(i) If S is a sheet of V , CS(G,V ) := {(x, y) ∈ C(G,V )|x ∈ S} is an irreducible
subvariety of C(G,V ) of dimension dimV + modS.

(ii) Each irreducible component of C(G,V ) is of the form CS(G,V ) for some
sheet S of V .
In particular, dim C(G,V ) = dimV + mod(G,V )

Proof. The conclusion in (ii) was already present in [Pa94]. The irreducibility
statement in (i) follows mainly from [SY06, Lemma 2.2]. Let us give a stronger
version of this last result.

Lemma 2.4. Let X,Y be varieties and let E be a (locally closed) subvariety of
X × Y . Assume moreover that

1. pr1(E) ⊂ X is irreducible23.

2. The non-empty fibers of (pr1)|E are all irreducible of fixed dimension r.

3. There exists y0 ∈ Y such that pr1(E)× {y0} ⊂ E.

Then E is irreducible

Proof. Let F be an irreducible component of E of maximal dimension. Then
for a general x ∈ pr1(F ), dimE = dimF = dim pr1(F ) + dim(pr1)−1

|F (x) 6

dim pr1(E)+ r = dimE. So dim pr1(F ) = dim pr1(E) and the non-empty fibers
of (pr1)|F are of dimension r. Since F is closed in E, for any x ∈ pr1(F ),
assumption 2 implies that (pr1)−1

|F (x) = (pr1)−1
|E (x) . In particular, pr1(F ) ×

{y0} ⊂ F so, by assumptions 3 and 1, pr1(F ) = pr1(E). Thus F = E.
23pr1(E) might not be a subvariety of X. Neverthless, many notions such as irreducibility

and dimension still make sense for such subsets, see [TY05, §1].
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End of proof of the theorem. The sheets are irreducible locally closed subvarieties
of V . Thus each CS(G,V ) = (C(G,V ) ∩ (S × V ∗))red is locally closed. We will
apply Lemma 2.4 to E = CS(G,V ), X = V , Y = V ∗ and y0 = 0. In this setting
each (pr1)−1

|E (x) (x ∈ S) is the orthogonal in V ∗ of the vector space [g, x] ⊂ V .
It is thus a vector space of fixed constant dimension dimV −dim[g, x] = dimV −
mS . This proves (i). Statement (ii) follows since C(G,V )red coincides with the
finite union

⋃
S CS(G,V ).

An easy adaptation of the proof of the previous theorem yields the following

Remark 2.5. (i) When the notion makes sense V nil, the set of nilpotent
elements in V , is G-stable. If S is a sheet of V nil, then the subvariety
Cnil

S (G,V ) := {(x, y) ∈ Cnil(G,V )|x ∈ S} is of dimension at most dimV +
modS with equality if and only if S is a sheet in V nil of distinguished
elements24. In this last case, Cnil

S (G,V ) is also irreducible.
In particular, the sheets made of distinguished elements with maximal
modality, when they exist, are in bijection with the irreducible components
of maximal dimension dimV + mod(G,V nil) in Cnil(G,V ). Note that in
many classical settings, including the representation associated to any θ-
group, V nil is a finite union of orbits so mod(G,V nil) = 0.

(ii) If we replace C(G,V ) by C′(G,V ), we can define C′S(G,V ) := {(x, y) ∈
C′(G,V )|y ∈ S}. Then the same statements as in Theorem 2.3 (i) and (ii)
hold for C′(G,V ) with each occurrence of dimV replaced by dimG.
Same for (C′)nil(G,V ) when this makes sense, e.g. for Cnil(p) when p is a
parabolic subalgebra of a semisimple Lie algebra.

For the commuting varieties under consideration, we often consider the
principal component of the variety, which corresponds to CSreg (G,V ) where Sreg

is the sheet of regular elements (i.e. whose orbits are of maximal dimension).
This is the irreducible component of C(G,V ) dominating V via pr1. Similar
principal components can be defined in the other settings of Table 125.

Proving the irreducibility of a commuting variety often amounts to show
that there is no other component. For instance, a crucial step in the proof of
Theorem 2.1 is that, in a given sheet S ⊂ g, the general elements are either
semisimple or commute with non-trivial semisimple elements.

Here is a list of results obtained by various authors and directly related to
my works presented in this dissertation.

Theorem 2.6. 1. If g is a reductive Lie algebra then C(g) satisfies (R2).
[Po08]

24x ∈ V nil is said to be distinguished if and only if (x, y) ∈ C(G,V )⇒ y ∈ (V ∗)nil

25with possibly several such components in nilpotent commuting varieties when V nil is not
irreducible
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2. If g is a reductive Lie algebra then the irreducible components of Cnil(g) are
precisely those corresponding to distinguished nilpotent orbits. In particular
Cnil(g) is equidimensional of dimension dim g. [Pr03]

3. If (G0, g1) is an action coming from a symmetric Lie algebra, then the
principal component of C(G0, g1) is its unique component of maximal dimension
dim g1 + rk(g0, g1) [SY06]. A classification of the cases when C(G0, g1) is
irreducible or not is given in 17 cases (among 20) in [PY07] and references
therein.

4. If (G0, g1) is an action coming from a symmetric Lie algebra, in 14 cases
among 20, the irreducible components of Cnil(g1) are precisely those corresponding
to (g1-)distinguished nilpotent orbits. In particular Cnil(G0, g1) is of pure
dimension dim g1. Conjecturally, this still holds true in the 6 remaining
cases [Bu09] (Phd results)

5. If (G,V ) is such that G is reductive and the representation is visible,
stable and locally free, then C(G,V ) is an irreducible and reduced complete
intersection. [Pa94]
In particular, it is normal if and only if it is smooth in codimension 1 (see
(1.7)).

6. If p is a parabolic subalgebra of a reductive Lie algebra g, then the minimal
possible dimension of the irreducible components of C(p) is dim p + rk g,
which is the dimension of the principal component.
The cases when C(p) is irreducible are characterised via a numerical criterion
involving modality of some varieties of nilpotent elements26.
When p is a Borel subalgebra of g, the classification into irreducible and
reducible cases is completed. [GG18]

26including mod(P, pnil), but also similar modalities in Levi factors of g
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3 Smooth locus and irreducible components in
the symmetric case

Following Theorem 2.6 (1), the author studied in [Bu11b] the smooth locus
of C(G0, g1) where (G0, g1) is the adjoint action associated with a reductive
symmetric Lie algebra g = g0 ⊕ g1.

More precisely, V. Popov showed in [Po08] that the singular locus of the
commuting scheme of a reductive Lie algebra coincides with the irregular locus,
that is the set of elements whose orbit is not of maximal dimension dimG−dim h:

Cirr(g) := {(x, y) ∈ C(g)|dim gx,y > dim h} (3.1)

where gx,y is the stabiliser of (x, y) in g. Then, looking at some key decomposition
classes (cf. beginning of Section 4) and arguing by induction on the rank of g, he
classified these pairs in each case. As a result, he showed that the codimension
of Cirr(g) in C(g) is 2, 3 or 4, depending of the type of the Lie algebra. In
particular, C(g)red is at least smooth respectively in codimension 1, 2 and 3.27

Turning to the symmetric case, it follows from Theorem 2.6 (3) that the
commuting variety is not irreducible in several cases. The natural generalisation
of Popov’s result in this setting requires to focus on the principal component of
C(G0, g1). This yielded:

Theorem 3.1. [Bu11b] The principal component of C(G0, g1) satisfies (R2) in
C(G0, g1) 28.

This was already proved in the locally free case29 by D. Panyushev [Pa94]
in connection with Theorem 2.6 (5).

A difficulty arising in the present general symmetric setting is the initialization
step of the induction argument since, for instance, there are 7 types of symmetric
Lie algebras of rank 1, including several series. One consequence is that there no
longer exists any uniform upper bound for the codimension of the irregular locus.
Moreover, this precise codimension could only be computed in 23 (sub-)cases
among 30.

Nevertheless, part of the argumentation still makes sense for all the components
of C(G0, g1). This can be stated as follows. Assume that CS(G0, g1) is an
irreducible component of C(G0, g1) for some sheet S (cf. Theorem 2.3). Then,
in this component, the smooth points of the whole commuting scheme are the
pairs (x, y) satisfying dim gx,y

0 = dim g0 − dim g1 + modS30. By combining the
27and no more if C(g) happens to be reduced
28i.e. the singular points of C(G0, g1) belonging to the principal component form a closed

subset of codimension at least 2 in this component.
29Also known as the maximal rank case, since this is equivalent to the condition rk(g0, g1) =

rk(g)
30which is dim g0 − dim g1 + rk(g0, g1) for the principal component
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increasingness of dim CS(G0, g1) in modS with the upper semi-continuity of the
map (x, y) 7→ gx,y

0 , we can thus detect the components admitting smooth points
simply by looking at dim gx,y

0 .
After reformulation, this can be stated in terms of rigid pairs:

Definition 3.2. Let (x, y) ∈ C(G0, g1). We say that (x, y) is a rigid pair if
dim gx,y

0 = dim g0 − dim g1.

Theorem 3.3. [Bu11b] In the symmetric case,

1. There is a bijection between irreducible components which are generically
reduced in C(G0, g1) 31 and conjugacy classes of pairs (l, (x, y)) where

• l is the centralizer in g of a semisimple element of g1

• (x,y) is a rigid pair in the odd part of the derived algebra of l = l0⊕ l1

The component corresponding to (l, (x, y)) is then G0 · (cg1(l) + x, cg1(l) + y)
where cg1(l) is the centralizer of l in g1

32.

2. The classification of cases when C(G0, g1) is irreducible has been achieved
(cf. Theorem 2.6 (3)).
Moreover, all the reducible cases are shown to admit such a generically
reduced component different from the principal component.

Further elements of proof. In order to get (1), one needs to refine the decomposition
C(G0, g1)red =

⋃
CS(G0, g1). Namely, we replace the sheets by decomposition

classes, see Section 4. Each class is of the form J := G0 · (cg1(l)• + x) for some
centralizer l of a semisimple element of g1 and some nilpotent element x ∈ l1.

The set of elements commuting with any element of cg1(l)•+x is cg1(l) + lx1 .
Also, g(x,y)

0 = cg0(l) + l
(x,y)
0 Thus studying commuting pairs (z1, z2) with z1 ∈ J

amounts mostly to study commuting pairs in l1 of the form (x, y). This explains
where the subalgebras l in (1) come from and partly why the argument sketched
above Definition 3.2 translates as stated.

The given form of the component associated to (l, (x, y)) follows from the
following remarkable fact concerning rigid pairs: If (x, y) is rigid in l then L0.y

is dense in lx1 .
Concerning the first part of (2), the author then simply found in each of

the 3 remaining cases some non-trivial rigid pairs, thus showing the existence
of irreducible components other than the principal one.

Comments and Perspectives

From Theorem 3.3, it is natural to look for the following weaker analogue of
Conjecture 2.2 in the symmetric case.

31i.e. components admitting smooth points of the commuting scheme, as defined in the
introduction.

32i.e. cg1 (l) is the odd part of the center of the Levi l
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Conjecture 3.4. [Bu11b] When (G0, g1) is the representation arising from a
symmetric Lie algebra, then all the components of C(G0, g1) are generically
reduced in C(G0, g1)33.

It is worth noting from the subsequent Example 5.7 that C(G0, g1) is not
reduced in general. It is thus hard to ask for a stronger statement than Conjecture
3.4 concerning reducedness.

In practice, we can list the rigid pairs for a given symmetric Lie algebra
using probabilistic tests. More precisely, for each nilpotent orbit G0 · x ⊂ g1

the set of y ∈ gx
1 such that (x, y) is a rigid pair is open in gx

1 . Thus choosing
y randomly, we should fall in this open set, whenever it is non-empty, with a
high rate of success. Such algorithm provides a list of conjugacy classes of rigid
pairs which is likely to be complete. The uncertainty can be shrunk by testing
multiple choices for y.

In order to show that the list provided by the above mentioned algorithm
is complete, it is sufficient to show that the orbits G0 · x, expected not to be
involved in any rigid pair (x, y), do not give rise to an irreducible component of
C(G0, g1), see Theorem 3.3.

Using these methods the author computed34 the complete list of rigid pairs
in several low-rank cases, thus checking Conjecture 3.4 in these cases. Notably,
this has been done for all the exceptional cases. Also, the previously known
components exhibited in [PY07] all arise from rigid pairs as in Theorem 3.3.

For the classical cases, there are only three series 35 where C(G0, g1) is not
always irreducible. In these cases several open questions remain such as:

• The classification of rigid pairs.

• The validity of Conjecture 3.4.

In order to answer to the first question, one could take inspiration from the
various classifications of pairs mentioned in the Annexe 736. Preliminary computations
suggest that this classification would be quite involved. For instance, no “grid-
like” description, like the skew-graphs of [EP01], apply to the description of
some rigid pairs, even in type AIII.

Concerning the conjecture, we could then try to show case by case that,
given a sheet S for which CS(G0, g1) has no smooth points of C(G0, g1)37, then
CS(G0, g1) is not an irreducible component of C(G0, g1). Indeed, there are many
requirements on a sheet S for CS(G0, g1) to be an irreducible component. For
instance, many cases of irreducibility were shown by ruling out this possibility

33i.e. C(G0, g1) is generically reduced
34unpublished work
35AIII, CII and DIII
36All the more so as rigid pairs turn out to be nilpotent pairs
37i.e. C(G0, g1) does not correspond to a pair (l, (x, y)) with (x, y) rigid, in Theorem 3.3
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for all the sheets apart from the regular one. However, there is no evidence that
the available discarding arguments would be enough to conclude here.
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4 Sheets

We now look at sheets in reductive Lie algebras and reductive symmetric Lie
algebras. That is, we consider an action (M,V ) of the form (G, g) or (G0, g1)
depending on the context. It is then useful to consider the so-called decomposition
classes. Each of these classes gathers the elements with similar Jordan decomposition.
Given an element x ∈ V , we denote its Jordan decomposition by x = xs + xn

where xs is its semisimple part and xn its nilpotent part. We refer to [TY05,
§39] for most of the known properties on decomposition classes38.

Definition 4.1. The decomposition class of an element x ∈ V is

J(x) := {y ∈ V | gy is conjugate to gx}

= M.{ys + yn | gys = gxs and Mxs · xn = Mxs · yn}

In particular, decomposition classes are classified by conjugacy classes of
pairs of the form (l,O) where

• l is a standard Levi factor arising from V , that is a centralizer in g of a
semisimple element of V .39

• O is an (M ∩ L)◦-nilpotent orbit in l ∩ V , where L ⊂ G is a connected
group with Lie algebra l. 40

The class corresponding to (l,O) will be denoted by J(l,O). We then have
J(l,O) = M · (cV (l)• + O), where cV (l) is the centralizer of l in V and a•

denotes the set of elements of a with maximal dimension of M -orbit. It is fairly
easy to show that the elements of a given decomposition class share a common
M -orbit dimension. Moreover, we have

mod(J(l,O)) = dim cV (l).

We say that O is rigid if it forms a single sheet for ((M ∩ L)◦, l ∩ V ).
Ground results concerning sheets and decomposition classes can be stated

as follows.

Theorem 4.2. 1. When (M,V ) is the adjoint action associated with a reductive
Lie algebra, [BK79, Bo81, IH05, Pe78]

(a) Sheets are union of decomposition classes and the closure of a decomposition
class is a union of decomposition classes.

38called Jordan classes there
39In the Lie algebra case this coincides with the classical notion of a Levi factor.

In the symmetric case, some types of Levi factors of g might not appear as centralizers of
elements of g1.

40In the Lie algebra case, this is just a nilpotent L-orbit in l.
In the symmetric case, with obvious notation, this is an (L0)◦-orbit in l1.
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(b) Decomposition classes are finitely many. They are locally closed,
irreducible, and smooth.

(c) Each sheet admits a unique dense decomposition class 41, and a
unique nilpotent decomposition class42.

(d) In a sheet, the inclusion relation on closures of decomposition classes
is encoded by the parabolic induction43 of nilpotent orbits:

J(l1,O1) ⊂ J(l2,O2)• ⇔ Indl1l2(O2) = O1 (up to conjugacy of pairs (li,Oi)).

(e) Sheets are smooth in classical types. There exists a singular sheet in
the exceptional type G2.

2. When (M,V ) is the action associated with a reductive symmetric Lie
algebra

(a) 1b) and 1c) (except unicity of the nilpotent decomposition class) remain
valid, see [TY05] and references therein.

(b) Sheets in classical types A, B, C, D are smooth. They are studied in
details in types AI, AII, AIII. [Bu11a] (PhD results)

(c) 1a) remains valid over C44. More precisely, closures of decomposition
classes are unions of decomposition classes [Le11].

The notion of parabolic induction mentioned in 1d) is crucial to study many
aspect of sheets. For instance, it is used to

• parametrise sheets, [BK79]

• characterise sheets as the subvarieties of the form J(l,O)• with rigid orbit
O ⊂ l. [Bo81]

• show that sheets are stratified by decomposition classes. (cf. (1a)) [BK79,
Bo81]

• compute rigid orbits algorithmically and provide combinatorial descriptions,
for each sheet, of the decomposition classes J(l,O) belonging to it. [Ke83,
Sp80]

• . . .

Unfortunately, it is hard to generalise this notion nicely in the symmetric
setting. This can already be seen in the (SO2, S2)-case where the dense sheet
Sreg contains both semisimple and nilpotent elements while there is no Borel
subalgebra of g containing elements of both types.

41with dimG · xs maximal, i.e. a decomposition class “as semisimple as possible”
42this class is then a single orbit
43see [Sp80, Bo81, TY05] for definitions and properties of parabolic induction, respectively

en français, auf Deutsch and in english.
44using analytic methods
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Following [Ka83] and [IH05] in the Lie algebra case, the study of [Bu11a] in
the symmetric case shows that we can read much information about sheets on
their so-called Slodowy slices [Sl80]. With Pascal Hivert (Univ. Versailles), the
author developed in [BH16] a notion of slice induction which allows to recover
most of the properties initially deduced from parabolic induction, as well as
finer geometric properties of sheets.

More precisely, given a nilpotent element e ∈ V , we consider an affine
subspace e + U ⊂ V transversal to the orbit M · e at e. We do this by setting
U := gf ∩V where (e, h, f) is a (normal45) sl2-triple. Given a locally closed M -
stable cone S ⊂ V , we can consider its Slodowy slice e+X(S, e) := S ∩ (e+U)
which has the following properties

Lemma 4.3. 1. e ∈ S ⇔ X(S, e) 6= ∅

2. In this case, the orbit map{
M × (e+X(S, e)) → S

(m,x) 7→ m · x

is a smooth dominant morphism with relative dimension dimM · e.

The idea of (2) is that the action by M is transverse to the slice. The direct
sense in (1) mainly follows from (2) applied to S. The reciprocal follows from
the existence of a 1-parameter subgroup of M × k∗ fixing e and contracting U
to 0, where k∗ acts by scalar multiplication.

Studying X(S, e) is often easier than studying S. The first reason is that
intersecting with the transversal space allows to “throw off the orbit part” by
cutting off dimM · e coordinates. Another reason is that if S is closed in V (m)

with m = dimM · e, (thus not closed in V , unless m = 0) then X(S, e) becomes
a closed subvariety of U .

Following Lemma 4.3 and Theorem 4.2 (1d), we define the following.

Definition 4.4. Given (g,O1) and (l2,O2), we say that (l2,O2) slice induces
(l1,O1) when the following holds

• X(J2, e1) 6= ∅ where J2 := J(l2,O2) and e1 ∈ O1

• dimM · O2 = dimO1.

This definition extends to pairs (l1,O1) and (l2,O2) with l2 ⊂ l1, by considering
l1 as the ambient algebra.

This definition is then sufficiently robust to get the following result.
45in the symmetric case, this condition means that e, f ∈ g1, and thus h ∈ g0. In the Lie

algebra case, we only need an ordinary sl2-triple.
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Theorem 4.5. [BH16] Assume that (M,V ) = (G0, g1) is the representation
associated with a symmetric Lie algebra.

Then the results (1a) and (1d) of Theorem 4.2 remain valid, replacing parabolic
induction by slice induction.

Comments and perspectives

Theorem 4.5 also provides a new proof of these results in the setting of ordinary
Lie algebras. Moreover, it shows that slice induction and parabolic induction
coincide in this case.

In addition, it seems that the consequences listed below Theorem 4.2 can
mostly be adapted in the symmetric setting using slice induction. The first three
points are stated in [BH16]. For instance, each sheet can be parameterised as
S =

⋃
i M.(ei +X(S, ei)) where the ei are representatives of the nilpotent orbits

in S. The author plans to investigate other consequences in forthcoming studies.
Also, in yet unpublished works, the author describes an effective46 algorithm

computing X(V (m), e) for any nilpotent element e with dimM · e = m. This
allows to decide whether a given nilpotent orbit is rigid or not. Thanks to
Lemma 4.3, this also allows to study whether the sheets are smooth or not,
even in the Lie algebra case. In particular, examples of singular sheets were
obtained in each exceptional (ordinary) Lie algebra (cf. Theorem 4.2 (1e))

Among the reasonable goals to pursue in the symmetric setting, one
should then look for:

• The classification of sheets in each symmetric Lie algebra.

• The classification of the decomposition classes lying in each sheet.

• Complete induction tables in order to classify the pairs (l1,O1), (l2,O2)
for which J(l1,O1) ⊂ J(l2,O2)(•).

In order to fully answer to the first two points, one of the main remaining
difficulties is the conjugacy problem: “In a given symmetric Lie algebra, decide
whether isomorphic pairs (l,O1), (l,O2) are conjugate or not”.

In order to get complete induction tables, one should compute whether
X(J(l,O), e) 6= ∅ 47 for each (l,O) and nilpotent orbit M · e. For non-rigid
O the computation of X(J(l,O), e) turns out to be more involved than for rigid
orbits.

Upon finishing this dissertation, the article [CES20] was prepublished. It
generalises the results of [BH16] to the θ-groups setting. The general strategy is
similar to [BH16], making use of a recent study [Po18] of decomposition classes
in this setting.

46at least in the low rank cases, including all the exceptional ones
47equivalently, whether X(J(l,O), e) 6= ∅, thanks to Lemma 4.3 (1)
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5 Symplectic reductions

As explained in Section 1.4, the commuting scheme fits in the broader class of
schemes of the form C(G,V ) := µ−1(0) ⊂ V × V ∗ with µ the moment map
associated with an arbitrary representation (G,V ), see (1.10).

In light of Theorem 2.1 (and Theorem 5.4), it is interesting to look at
representations for which the notion of Cartan subspace still makes sense. This
is the case for representations arising from reductive θ-groups and for polar
representations.

While sharing many similarities with the Lie algebra case, these more general
settings allow new phenomenons, including counter-examples to open conjectures
or theorems which are valid for reductive Lie algebras. In this direction, the
author showed the following result:

Theorem 5.1. [Bu18] Assume that (G,V ) is the representation associated with
a simple θ-group and assume also that (G,V ) is stable and locally free. Then
C(G,V ) is normal in all but 5 cases.

Remark 5.2. The representations associated with θ-groups are always visible.
Then the quite restrictive assumptions of stability and local freeness imply by
(1.7) and Theorem 2.6 (5) that normality is only a matter of codimension of
the singular locus. Thus Theorem 5.1 can be seen as an attempt to generalise
Theorem 2.6 (1) (and Theorem 3.1) in very favorable cases.

The main lesson is that even in these favorable cases, there are counter-
examples to normality. All these 5 counter-examples arise in exceptional θ-
groups of rank 1.

As indicated in Section 1.4, we can always define the categorical quotient of
an affine variety under the action of a reductive group. The quotient V//G is a
variety whose points are in bijection with closed G-orbits in V . The following
result is a generalization of Chevalley’s restriction theorem for reductive Lie
algebras. It was previously obtained in [KR71] (resp. [Vi76]) for actions associated
with symmetric Lie algebras (resp. θ-groups).

Theorem 5.3. [DK85] Let (G,V ) be a polar representation. Then V//G is
isomorphic to c//W (= c/W ) where c is a Cartan subspace of V and W is the
associated Weyl group48.
Since W is a finite group generated by reflections, these quotient spaces are
isomorphic to affine spaces.

In general, the quotient of an affine space by a finite group is not isomorphic
to an affine space. It is however a variety with nice properties49, which is called
an orbifold

48i.e. W = NG(c)/ZG(c) where NG(c) and ZG(c) respectively denote the stabilizer and the
pointwise stabilizer of c in G

49e.g. it is normal
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In the setting of symplectic reduction, we consider the quotient scheme
µ−1(0)//G = C(G,V )//G. Then the following theorem is often considered as
a “doubled version” of Chevalley’s restriction theorem50. It was first proved by
A. Joseph in [Jo97] in the setting of Lie algebras.

Theorem 5.4. [Te00] If (G,V ) is the representation associated with a symmetric
Lie algebra, then the quotient variety C(G,V )red//G is isomorphic to (c× c)/W .
In particular, it is normal.

Note that when X is normal, then X//G is automatically normal. This
theorem can thus be seen as a good test for the validity of Conjecture 2.2. On
the other hand, we have seen that this normality conjecture fails in more general
settings:

• In the symmetric setting, C(G,V ) might be reducible, cf. Theorem 2.6
(3). In these cases, the irreducible components meet at 0 so the C(G,V )red

cannot be normal. The above result then shows that the quotient is better
behaved than the original variety.

• In the θ-group setting, even if C(G,V ) is reduced and (S2), normality can
fail, cf. Theorem 5.1.

Another important seminal result in this direction deals with the normality
of Nakajima quiver varieties51. The following is a simplified version of this
result.

Theorem 5.5. [CB03] If (G,V ) is a representation arising from a quiver setting
(see Section 1.3), then C(G,V )red//G is a normal variety

With Christian Lehn (Univ. Chemnitz, GER), Manfred Lehn (Univ. Mainz,
GER) and Ronan Terpereau (Univ. Bourgogne), we got the following generalisation
of Theorem 5.4

Theorem 5.6. [BLLT17] Let (G,V ) be a polar representation.

1. There is a canonical scheme morphism r : (c×c∗)/W → C(G,V )//G which
is also a Poisson morphism.

2. If, in addition, (G,V ) is locally free, visible and stable, then r is an
isomorphism. In particular, C(G,V )//G is an orbifold, so is normal52.

Moreover, dropping some hypothesis on (G,V ), we have exhibited several
counter-examples to the second point of the theorem. More precisely

50or of Theorem 5.3 for generalizations
51i.e. a symplectic reduction associated to a quiver representation space, possibly after

adding framings, also considering fibers at points other than 0 and where the quotient is
taken with respect to some possibly non-trivial stability parameter

52Note that irreducibility and reducedness of C(G,V )//G already follow from
Theorem 2.6 (5)
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Example 5.7. • There are some polar representations for which r is not
bijective. In some of these cases, C(G,V )red//G is even not irreducible
(thus not normal).

• There exists a symmetric Lie algebra for which C(G,V )//G is not reduced.
In particular, C(G,V ) is not reduced in this case.

We found the counter-examples of the first kind only in non-visible cases.
On the other hand, in order to avoid the difficulty raised by the second counter-
example, we can consider the reduced morphism rred

53 yielded by the scheme
morphism r of Theorem 5.6. We then stated the following reasonable conjecture:

Conjecture 5.8. If (G,V ) is polar and visible, then rred is an isomorphism.
In particular, C(G,V )red//G is normal.

In support of this conjecture, the author also studied arbitrary representations
of tori. Tori simply are the multiplicative groups of the form Tk = (k×)d. Their
representation theory is much simpler than that of general reductive groups. In
this setting, the following result was shown.

Theorem 5.9. [Bu18] Assume that (T, V ) is a representation with T a torus.

1. C(T, V ) is normal.

2. If the representation is not visible, then there exists some closed orbits in
C(T, V ) of the form T.(x, y) with T.x and T.y non-closed. In particular,
no natural analogue of the map r can be bijective.

3. If the representation is visible, then it is polar and Conjecture 5.8 holds
for (T, V ).

Comments and perspectives

In many interesting cases, it is not hard to show that rred is a bijection. For
instance, this is the case for the representation associated to an arbitrary θ-
group. In this case, the isomorphism statement in Conjecture 5.8 is equivalent
to the normality of C(G,V )red//G.

Deciding whether C(G,V )red//G is normal for any given representation is
a classical question. The answer is not always positive (see Example 5.7).
However in [HSS20], it is shown that the normality holds for any “sufficiently
large” representation of a group G. For these representations, there is no
hope of finding something like a Cartan subspace which would help interpreting
C(G,V )red//G as an orbifold. In comparison, the visible polar representations
studied here are quite “small”.

In addition to Conjecture 5.8, we can mention some interesting open problems:
53with reduced target µ−1(0))red//G
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• Describe the quotient in “intermediate cases”, where there is no Cartan
subspace, but where the techniques of [HSS20] do not apply.

• In the cases covered by Conjecture 5.8, reconstruct the invariants k[C(G,V )(red)]G

from the invariants k[c]W ∼= k[V ]G and k[c∗]W ∼= k[V ∗]G. For instance,
it has already been shown in [Hu97], that k[C(g)red]G is generated by the
polarisations (resp. generalized polarisations) of elements of k[g]G in the
classical cases of type A, B, C (resp. D).
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6 Hilbert schemes via commuting varieties and
quivers

6.1 Hilbert schemes

Central objects of interest in this section are Hilbert schemes. They parametrise
certain subschemes (here, 0-dimensional ones) of a given variety (here, k2, with
k algebraically closed). We can partition the set of 0-dimensional subschemes
via their length. If Iz is the ideal in k[X,Y ] (the algebra of polynomial function
on k2) generated by the equations defining a subscheme z ⊂ k2, then the length
of z is defined as

length(z) := codimk[X,Y ] Iz.

It is finite precisely when z is 0-dimensional. For instance, a reduced subscheme
with n distinct points has length n. Examples of non-reduced subschemes of
length 2 supported on the single point (0, 0) are given in (1.6). They are said to
be curvilinear since each is a subscheme of a smooth curve of k2. Given n ∈ N∗,
a smooth curve C ⊂ k2 and a point (x, y) ∈ C, there is exactly one (necessarily
curvilinear) subscheme of C of length n supported on (x, y). Some examples of
subschemes of length 3 are given below:

x3 = 0 = y − ax− bx2 (a, b ∈ k) the length 3 curvilinear subscheme
at (0, 0) of the parabola y = ax+ bx2

(6.1)

{x2 = xy = y2 = 0} the length 3 fat point
supported on (0, 0)

(6.2)

We can define the (punctual) Hilbert scheme (of length n in the affine plane)
set-theoretically via:

Hilbn = Hilbn(k2) := {subschemes z ⊂ k2| length(z) = n} (n ∈ N)

We refer to [EH00, Be12] for a definition in terms of representable functors
which allows to define a natural scheme structure 54 on the above set55. For
instance, in Hilb2, the subscheme defined in (1.6) is in the closure of the set of
reduced subschemes of the form {(t, at), (−t,−at)} (t ∈ k×).

Along the same ideas we can construct many interesting variations of such
Hilbert schemes. For instance, the following scheme parametrises the “least
possibly reduced” subschemes:

Hilbn
0 = Hilbn

0 (k2) := {z ∈ Hilbn | z is supported on (0, 0)}
54separated of finite type over k
55and also on Hilbn(X), for any scheme X
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Scheme-theoretically, it is the fiber at 0 of the Hilbert-Chow morphism56 [Be12].
Moreover, in the study of these Hilbert schemes we are naturally led to consider
nested Hilbert schemes [Ch98]57.

Hilb¯
n(k2) :=

{
(z1, . . . , zs)

∣∣∣∣∣ ∀i zi ∈ Hilbni

∀i zi ⊂ zi+1

} (
¯
n = (n1, . . . , ns) ∈ Ns

n1 6 · · · 6 ns = n

)

Hilb¯
n
0 (k2) :=

{
(z1, . . . , zs)

∣∣∣∣∣ ∀i zi ∈ Hilbni
0

∀i zi ⊂ zi+1

} (
¯
n = (n1, . . . , ns) ∈ Ns

n1 6 · · · 6 ns = n

)
For instance, Hilb2

0 is isomorphic to the projective line P1
k. Heuristically, the

points of Hilb2
0 are in bijection with the lines of k2 passing through the origin:

with each line we can associate its length 2 curvilinear subscheme supported at
the origin, see (1.6). Another geometric example: in Hilb3

0, the fat point (6.2)
lies in the closure of the set of the curvilinear schemes of the form (6.1) 58.

The simplest points on a given Hilbert scheme, are the curvilinear ones. The
set of such points forms an irreducible subvariety in each above-defined Hilbert
scheme and the closure turns out to be an irreducible component. We call this
component the curvilinear component of the considered Hilbert scheme. This
should be thought of as an analogue of the principal component for commuting
varieties. For Hilbn the general59 curvilinear points are unions of n reduced
points. If zn ∈ Hilbn

0 is curvilinear, for k ∈ [[0, n]], there exists a unique
zk ∈ Hilbk

0 such that zk ⊂ zn. Thereby, we get a bijective morphism from
the curvilinear locus of Hilb¯

n
0 to that of Hilbn

0 .
We now state a few results of importance concerning the geometry of Hilbert

schemes:

Theorem 6.1. Under the above notation,

1. The scheme Hilbn(k2) is smooth, irreducible of dimension 2n [Fo68].
The curvilinear component of Hilb¯

n(k2) is also of dimension 2n.

2. Hilbn
0 (k2) is irreducible of dimension n− 1 [Br77].

The curvilinear component of Hilb¯
n
0 (k2) is also of dimension n− 1.

3. Hilb¯
n and Hilb¯

n
0 are connected. The scheme Hilbk,n is smooth if and only

if k ∈ {0, 1, n− 1, n}60 [Ch98]. Moreover Hilbn−1,n
0 is irreducible [CE15]

Note that it follows from items 1 and 2 that general points of Hilbn and
Hilbn

0 are curvilinear.
56a natural morphism sending a subscheme of length n of k2 to its support in (k2)n/Sn
57see [BFT20] for some motivations coming from physics
58Clue: set at := t and bt := t−1 so that the equation y−atx−btx2 = 0 yields x2 = −t2x+ty

and xy = (tx2 + t−1x3 =)tx2 and consider t→ 0.
59i.e. for points in some well-chosen dense open subset of the set of curvilinear points
60and, essentially, these are the only smooth cases of Hilb¯

n. For instance, Hilb1,2,3 is
smooth, but it is isomorphic to Hilb2,3
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6.2 Link with commuting varieties in type A

In [Na99], Nakajima built a connection between the Hilbert scheme Hilbn(k2)
and the type A commuting scheme C(gln). Such result allows to reduce the
study of Hilbert schemes to that of commuting varieties, which are more “linear”
objects.

More precisely, given (x, y) ∈ C(gln) and v ∈ V := kn a cyclic element61

for the commuting pair (x, y), we define the following ideal of codimension n of
k[X,Y ]:

ker
(
ϕ :
{

k[X,Y ] → V

P 7→ P (x, y)v

)
=: I(x,y),v.

This yields a map

π̃ :
{
C̃cyc(gln) → Hilbn

((x, y), v) 7→ I(x,y),v

(6.3)

where C̃cyc(gln) := {((x, y), v) ∈ C(gln) × V | v is cyclic for (x, y)} is a GLn-
stable62 open subset of C(gln)× V .

Theorem 6.2. [Na99] The map π̃ is a geometric quotient morphism63, thus
Hilbn ∼= C̃cyc(gln)/GLn.

In fact, the action of GLn on C̃cyc(gln) is free. Moreover, if x, y, v, v′ are
such that ((x, y), v), ((x, y), v′) ∈ C̃cyc(gln), then these two tuples lie in the
same GLn-orbit and we have I(x,y),v = I(x,y),v′ = {P ∈ k[X,Y ]|P (x, y) = 0}.
We denote by Ix,y this last set. Thus π̃ induces a set-theoretic quotient map by
GLn

π :
{
Ccyc(gln) → Hilbn

(x, y) 7→ Ix,y

(6.4)

where Ccyc(gln) := {(x, y) ∈ C(gln) which admits a cyclic element}.
It is unclear whether π is a morphism, nevertheless the geometries of Ccyc(gln)

and Hilbn are intimately linked by Theorem 6.2. For instance, we can recover
Theorem 6.1 (1) from results on the commuting variety. Indeed, Theorem 2.1
implies that Ccyc(gln) and thus C̃cyc(gln) and C̃cyc(gln)/GLn are irreducible.
Since the GLn-action on C̃cyc(gln) is free, the smoothness statement follows
from that of Ccyc(gln) ⊂ C(gln) \ Cirr(gln), see (3.1).

The above constructions have analogues for the other Hilbert schemes. Let
p

¯
n := {x ∈ gln| ∀i, x(Vni

) ⊂ Vni
} and P

¯
n := p

¯
n ∩ GLn, where {0} =: Vns

⊂
Vns−1 ⊂ · · · ⊂ Vn1 ⊂ V is a fixed partial flag of V with dimV/Vni = ni for
each i. They are respectively parabolic subalgebras and parabolic subgroups of
GLns

. Setting n0 := 0, the associated Levi have blocks of size ni − ni−1.
61i.e. as a k[x, y]-module, V is generated by v. In other words 〈xkylv〉k,l∈N = V .
62the action of GLn is given by g · ((x, y), v) = (gxg−1, gyg−1, gv)
63Here C̃cyc(gln) is non-affine in general, but we can find a cover by GLn-stable affine open

subvarieties whose quotient maps can be glued together
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Hilb Hilbn Hilbn
0 Hilb¯

n Hilb¯
n
0

C C(gln) Cnil(gln) C(p
¯
n) Cnil(p

¯
n)

G GLn GLn P
¯
n P

¯
n

reference [Na99] [Ba01] [BE16]65

Table 2: Hilbert schemes and commuting varieties

Proposition 6.3. [Na99, Ba01, BE16] Let C, Hilb and G be as in Table 2. Let
Ccyc := C ∩ Ccyc(gln) and C̃cyc := C̃cyc(gln) ∩ (C × V ).

Then,

• The group G acts on C̃cyc and Ccyc. The action on C̃cyc is free.

• The restriction π̃|C̃cyc is a geometric quotient by G. Thus Hilb ∼= C̃cyc/G.

• The restriction π|Ccyc is a set theoretic quotient by G.
It induces a bijection between

∗ the set of irreducible components of Hilb of dimension m

∗ the set of irreducible components of Ccyc of dimension m+ dimG−
n.64

This correspondence is useful in both directions. Indeed, V. Baranovsky
used in [Ba01] the irreducibility of Hilbn

0 (see, Theorem 6.1 (2)) to prove the
irreducibility of Cnil(gln). Then, in [Pr03] (see Theorem 2.6 (2)), A. Premet
gave a proof of the irreducibility of Cnil(gln) valid over an algebraically closed
field of arbitrary characteristic, thus proving the irreducibility of Hilbn

0 in this
setting.

With Laurent Evain (Univ. Angers), we then got the following more specific
results by making use of the above correspondence.

Theorem 6.4. [BE16]

1. Cnil(pk,n) and Hilbk,n
0 (k2) are irreducible if and only if k ∈ {0, 1, n−1, n}.

2. Assume that n > 4 and k ∈ {2, n − 2}. Then Cnil(pk,n) and Hilbk,n
0 (k2)

are equidimensional of respective dimension dim pk,n− 1 and n− 1. They
both have

⌊
n
2
⌋

irreducible components.
64alternatively, this is the set of irreducible components of C of dimension m + dimG − n

which meet Ccyc. Notably, the principal component of C meets Ccyc and corresponds to the
curvilinear component of Hilb via this bijection

65In this paper, the results were only stated for the last column, but the proofs work in the
same way for the 3rd column
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It is striking in these examples that Hilbk,n
(0) and Hilbn−k,n

(0) share similar
properties. To some extent, this can be explained by the fact that they are
related to the isomorphic Lie algebras pk,n and pn−k,n respectively. However
the resulting GIT quotients of C(p

¯
n) are constructed with respect to different

stability conditions.

6.3 Modality of pnil and consequences

From Proposition 6.3, we are led to study the (nilpotent) commuting varieties
of any parabolic subalgebra p of gln. From Remark 2.5, and Theorem 2.6 (6),
it is enlightening to look at the modality of the action of P on p and pnil, as
defined below (2.5).

With Magdalena Boos (Univ. Bochum, GER), we tackled the classification
of parabolic subalgebras p of gln satisfying mod(P, pnil) = 0, that is such that
pnil has a finite number of P -orbits. Similar questions had already been studied
in various contexts66. We can cite

Theorem 6.5. 1. Pk,n acts on pnil
k,n with finitely many orbits if and only if

k 6 5 or k > n− 5. [Mu00]

2. P
¯
n acts on the nilradical of p

¯
n with finitely many orbits if and only if the

corresponding Levi has at most 5 blocks [HR99]

Our main results can be stated as follows.

Theorem 6.6. [BB19] Let
¯
n = (n1, . . . , ns) ∈ Ns with n1 < · · · < ns. Let

d
¯
n := (ns − ns−1, . . . , n2 − n1, n1) ∈ Ns be the block sizes of a Levi of the

parabolic subalgebra of p
¯
n ⊂ gln, then

1. P
¯
n acts on pnil

¯
n with finitely many orbits if and only if d

¯
n appears (up to

symmetry) in Diagram 2.

2. In these cases, dim Cnil(p
¯
n) = dim p

¯
n − 1 and dim Hilb¯

n
0 = n− 1.

3. If 6 6 k 6 n− 6, then dim Cnil(pk,n) > dim p
¯
n and dim Hilbk,n

0 > n.

4. C(p200,400) is reducible.

Remark 6.7. • The infinite cases67 are displayed in Diagram 1.

• Statement (1) is in fact valid over an arbitrary infinite field.

• In order to prove statement (2), we only have to apply Remark 2.5 and
Proposition 6.3. The “−1” in these formulas comes from the fact that
there is no distinguished orbit in pnil

¯
n , but there are some in pnil

¯
n ∩ sln.

66An early appearance of the study of commuting varieties in the 0-modality case can be
found in [Py75]

67i.e. the complementary cases to statement (1)
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(2,2,2)3 blocks

4 blocks

5 blocks

≥ 6 blocks

≤ 2 blocks

(1,1,1,1,1,1) at least
6 blocks

at least
3 blocks

of size >2

(1,1,2,1,1) (1,1,k,1,1)
k > 2

(1,1,1,1,2) (1,1,1,1,k)
k > 2

5 blocks
with 2 blocks

of size >2

(1,2,1,2,1)

(1,1,2,2) (1,1,k,k’)
k,k’ > 2

(1,2,1,4)

(2,1,1,2) (k,1,1,k’)
k,k’ > 2

(1,k,1,k’)
k > 2, k’> 4

(1,4,6)

(1,4,4,1) (1,k,k’,1)
k,k’ > 4

(1,k,k’)
k > 4, k’> 6

(4,1,4) (k,1,k’)
k,k’ > 4

(6,6) 2 blocks > 6

Figure 1: Infinite cases

5 blocks

4 blocks

3 blocks

2 blocks

(1,1,1,k,1)
k> 1

(1,1,1,k)
k> 1

(1,3,k,1)
k> 1

(1,2,k,1)
k> 1

(1,k,1,3)
k> 1

(1,k,1,2)
k> 1

(1,1,k,1)
k> 1

(1,k,5)
k> 1

(1,k,4)
k> 1

(1,k,3)
k> 1

(1,k,2)
k > 1

(1,k,1)
k > 1

(1,3,k)
k > 1

(1,2,k)
k > 1

(3,1,k)
k > 1

(2,1,k)
k > 1

(1,1,k)
k > 1

(5,k)
k> 1

(k,k’)
k6 4
k’> 1

Figure 2: finite cases
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• The first part of statement (3) is about maximal parabolics of gln.
In order to prove it we need to show that, when an infinite family of orbits
arise in this setting, then we can always manage to get an infinite family
of distinguished orbits. This was done by relating distinguished elements
of pnil

¯
n to irreducible representations of the quiver Qs defined below.

In order to push the result down to the Hilbert scheme Hilbk,n
0 , we had to

show that for x lying in such an infinite family, the general pairs (x, y) ∈
Cnil(pk,n) have cyclic elements.

• In [GG18], the authors pointed out several examples of parabolics with
reducible commuting variety. In type A, these examples were built using
infinite families provided by Theorem 6.5 (2) and the resulting parabolics
had Levi factors with at least 6 blocks. Statement (4) shows that maximal
parabolics can also have a reducible commuting variety.

• The proof of the “if” part in (1) is done case by case on the darkened cases
of Diagram 2. Then some reduction lemmas allow to deduce finiteness in
the other cases.

6.4 Elements of proof via quiver representations

The aim of this subsection is to expose the key concepts behind the proof of
Theorem 6.6 (1)-“only if part” and (4).

Following [HR99] and [BH00], we reinterpreted the classification of orbits
of pnil in terms of quiver representations where one can use richly developed
theories68. For

¯
n = (n1, . . . , ns), we let Qs be the quiver with s vertices, one

loop βi at each vertex (i ∈ [[1, s]]) and one arrow αi from vertex i to vertex i+ 1
(i ∈ [[1, s− 1]]). That is

Qs : • • • · · · • • •
1 2 3 s− 2 s− 1 s

α1 α2 α3 αs−3 αs−2 αs−1

β1 β2 β3 βs−2 βs−1 βs

Then,

Proposition 6.8. [BB19] There is a bijection69

{
P

¯
n-orbits in pnil

¯
n

}
1:1←→



GL
¯
n-orbits of representations of Qs

with dimension vector
¯
n,

satisfying the relations
βi+1αi = αiβi, each βi is nilpotent,

and each αi is injective.


68e.g. the BHV-list (from works of Bongartz, Happel and Vossieck) available in [GR92,

§10] allows to classify all the quivers with relations into finite and infinite representation type.
69see [BB19, Lemma 3.1] for a more geometric statement
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A bit more explicitly, given (theGL
¯
n-orbit of) a representation ofQs satisfying

the above requirements,

• the map provided by βs defines an endomorphism of V = Vns

• the system of injective maps (αi)i∈[[1,s−1]] defines a flag Vn1 ⊂ · · · ⊂ Vns

(with dimVni
= ni) stabilised by βs such that the associated parabolic is

isomorphic to p
¯
n

70.

The next step is to consider the covering quiver Q̂s of Qs with respect to
the given relations. This has the noteworthy effect of getting rid of the loops.
We refer to [BG81] for covering theory.

...
...

...
...

...
...

...

• • • · · · • • •

Q̂s : • • • · · · • • •

• • • · · · • • •

...
...

...
...

...
...

...

β1 β2 β3 βs−2 βs−1 βs

β1 β2 β3 βs−2 βs−1 βs

α1 α2 α3 αs−3 αs−2 αs−1

α1 α2 α3 αs−3 αs−2 αs−1

α1 α2 α3 αs−3 αs−2 αs−1

We are interested in representations of Q̂s

• whose dimension vectors (ni,j)i∈N,j∈[[1,s]] satisfy
∑

i ni,j = nj

• such that the squares commute, i.e. βi+1αi = αiβi.

• with injective αi’s71

Covering theory then provides a map F from this variety of representations
of Q̂s to the variety of representations of Qs involved in Proposition 6.8. Among
other properties of this map, we mention

Proposition 6.9. If M,M ′ are two representations of Q̂s such that M is not
isomorphic to a Z-translate of M ′, then GL

¯
n · F(M) 6= GL

¯
n · F(M ′).

Thanks to Propositions 6.9 and 6.8, from infinite families of non-isomorphic
representations of Q̂s we get infinite families of P

¯
n-orbits in pnil

¯
n . This turns out

to be a powerful tool for the “only-if part” of Theorem 6.6 (1). For instance, we
70The flag provided here has a embedding structure dual to the one defining p

¯
n. Still, the

associated parabolic Lie algebras are isomorphic
71the nilpotency relation βi ◦ · · · ◦ βi︸ ︷︷ ︸

n

= 0 is automatic since we look at representations with

finite support
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can fold the infinite families provided by the extended Dynkin quivers72 in order
to construct infinite families for Q̂2 satisfying the above-described conditions
(injectivity, nilpotency and commuting square conditions).

1

2

321

2

1

a b

d

c

e

f

1

2

3

3

2

1

2

1

1

2
a

b

d

c

e e

fb

ba

f

Infinite family of representations
for the extended Dynkin diagram

in type E6

Infinite family for Q̂2

with
¯
n = (6, 12)

i.e. d
¯
n = (6, 6)

Lastly, in order to get Theorem 6.6 (4), we looked for (k, n) such that
C(pk,n) has an irreducible component of dimension bigger than that of the
principal component. More precisely, the modality of the principal component
is equal to n = ns. On the other hand, quiver theory implies that modality
grows quadratically with respect to the dimension vector. We could push this
fact through Propositions 6.9 and 6.8 to exhibit maximal73 parabolics with
mod(Pk,n, pk,n)(> mod(Pk,n, p

nil
k,n)) > n.

6.5 Comments and perspectives

The above reasoning consists in firstly linking Hilbert schemes with commuting
varieties, and then studying commuting varieties via the modality of the space
of representations of some given quiver.

We mainly sought to draw the line between dimension vectors whose associated
space of representations of the quiver Q̂s has, respectively, zero and positive
modality. This turned out to help getting interesting dimension results on the
nilpotent commuting variety of parabolics and, eventually, on the nested Hilbert
schemes supported at the origin.

One can still look deeper into the above argumentation and more precise
results should lead to a better understanding of commuting varieties of parabolics
and nested Hilbert schemes. For instance, part 4 of Theorem 6.6, was granted
almost for free using our correspondence. Here are a few promising directions
for further investigation.

• First of all, it would be interesting to get more precise bounds on the
modality of the representation (P, pnil) for any parabolic subalgebra p ⊂
gln. From [GG18], this should allow to make progress on the classification

72that is, any orientation of an extended Dynkin diagram in type A,D or E, at dimension
vectors corresponding to imaginary roots

73and also some other interesting non-maximal
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of the commuting varieties C(p) into irreducible and reducible cases, as
was done in the Borel case. This would also allow to get better estimates
for the dimension of the components of C(p) and Cnil(p) and, ultimately,
for the corresponding Hilbert schemes.

• Also, progress can be made on the detection of the components of the
commuting varieties which still appear at the Hilbert scheme level. That
is, the components of C(nil),cyc(p). In particular, this would help to
make progress on the (ir)reducibility question for Hilb¯

n, especially in
the 2-step case Hilbk,n in which very little is known. For instance, the
high dimensional families of commuting pairs constructed for part 4 of
Theorem 6.6 do not admit cyclic vectors. The author is not able yet to
construct high modality families in (Pk,n, p

(nil)
k,n ) giving rise to components

of Ccyc(pk,n).

• Lastly, it would be interesting to look for similar quiver constructions
in types B, C and D. This might require to make use of the notion of
quiver with involution74. One should then also seek whether the associated
Hilbert schemes still have a valuable meaning.

74as for other generalisations from type A quiver construction to the other classical cases,
see e.g. [Sa12]
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7 Annexe: other related topics

Up to this point, this dissertation primarily focused on the author’s results. The
aim of this section is to outline related material in a few directions.

7.1 Doubled setting: a bigger picture

The commuting variety of a Lie algebra g is a subvariety of g × g. This space
is equipped with the diagonal G-module structure g · (x, y) = (g · x, g · y). The
study of such doubled setting is inherently more involved than that of the adjoint
action (G, g).

For instance, when g = gln, we get the G-modules associated to the space

of representions of the 2-loop quiver in dimension n
•

. This quiver
is known to be of wild representation type and its theory of finite dimensional
modules in known to be undecidable75 [Pr88, §17]. In particular, the classification
of its representations up to isomorphism, i.e. of the GLn-orbits of gln × gln, is
hopeless in a certain sense [BS03].

However, all hope is not lost. One way to get an insight into this doubled
setting is to describe meaningful sub-G-varieties. In this dissertation, we already
discussed the commuting scheme C(g) and its nilpotent version Cnil(g).

In addition from that, we can mention many other subvarieties of g × g.
The aim of this section is to briefly gather results concerning some selected
varieties, thus drawing a bigger picture around the material of this dissertation.
Inclusion relations are displayed in Figure 3. For X ⊂ g × g, we denote by
Xnil := X ∩ (gnil × gnil), its intersection with the set of pairs of nilpotent
elements.

• The null-cone76 N (g× g) is the vanishing locus of the augmentation ideal
of k[g × g]G77. Its coincides with G.(n × n) where n is the nilradical of
a Borel subalgebra of g, see [KW06]. It should not be confused with the
set of pairs of nilpotent elements gnil × gnil. In particular, N (g × g) is
irreducible of dimension 3 dim n.

• The null-cone is an irreducible component of the nilpotent bicone Ng,
which is defined as the scheme whose defining equations are the polarisations
of invariant polynomials on g, see [CM09]. This last scheme is a non-
reduced complete intersection. In particular, it is equidimensional of
dimension 3 dim n.

75Namely, there cannot exist any algorithm which decides whether each first order statement
stated in the language of k[X,Y ]-modules is true for every k[X,Y ]-module

76or, more accurately, the reduced null-cone
77i.e. the ideal generated by the homogeneous G-invariant polynomial functions on g × g

with positive degree
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g× g

M(k)(gln) (k > 2) D(g, h)B(g)

M(1)(gln)

gnil × gnil

C(g)

Mnil
(1)(gln)

Ng

(k > 2) Mnil
(k)(gln) N (g× g) = Bnil(g)

Cnil(g)

I.C.I.C.

{nilpotent
pairs

}
{wonderful

nilpairs
}

{distinguished
nilpairs

}{ even
nilpairs

}
{rectangular

nilpairs
}

{almost even
nilpairs

}
{ almost

pn-pairs
}

{pn-pairs}

A, B, C,��ZZD

Figure 3: Doubled setting, some G-subsets/subvarieties/subschemes.
Each line denotes an inclusion of the bottom set into the top one, regardless of the scheme
structure.
“I.C.” means that the bottom variety is an irreducible component of the top one. The dashed
lines indicate towers of inclusions · · · ⊂ M(k) ⊂M(k+1) ⊂ . . . .
The dotted line indicates an inclusion in the classical types A, B, C. This inclusion fails in
type D in general
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• The diagonal commutator scheme D(g, h) introduced in [Kn05] depends on
a Cartan subalgebra h ⊂ g. It is the scheme defined by {(x, y) ∈ g× g| [x, y] ∈ h}.
It is a reduced complete intersection and the commuting variety is one of
its irreducible components.

• The variety B(g) denotes the variety of pairs of elements lying in a common
Borel subalgebra78. It is irreducible of dimension 3 dim n + 2 rk(g). We
refer to [CZ16] and references therein for further information concerning
B(g). It is also worth noting that we have an isomorphism of quotients
B(g)//G ∼= C(g)//G.

• When g = gln, and k ∈ N, we define M(k)(gln) as the variety of pairs of
matrices whose commutator is of rank at most k. When k = 0, we get
C(g)red. When k > 2, the variety is irreducible. When k = 1, we get an
equidimensional variety with n − 1 components of dimension n2 + 2n −
1. This last variety is closely linked with the almost commuting variety
studied in [GG06] {(x, y, i, j) ∈ gl2n × kn × (kn)∗|[x, y] + ij = 0}. We
refer to this article and references therein for all the stated results. The
nilpotent version has been studied in [Zo10].

We also pointed out, on the bottom part of the diagram, various sets of pairs
of nilpotent commuting elements. The basic notion is that of a nilpotent pair,
also written nilpair in the diagram. By definition, it is a pair of commuting
nilpotent elements (e1, e2) with (C×e1,C×e2) ⊂ G · (e1, e2). Equivalently,
(e1, e2) admits a characteristic, i.e. a pair of commuting semisimple elements
(h1, h2) with [hi, ej ] = δi,jej , thus mimicking part of the sl2-triple machinery79.

However, even classifying G-orbits of nilpotent pairs turns out to be a wild
problem. After the seminal notion of principal nilpotent pair80, abbreviated as
pn-pair in the diagram, introduced in [Gi00], the various notions appearing in
Diagram 3 have been studied in [Pa01, Pa00, EP01, Yu02]. The set of G-orbits
of wonderful nilpotent pairs81 is in bijection with the set of G-orbits of their
associated characteristics and is therefore finite. Thus providing a nice doubled
analogue of the notion of a nilpotent element of g.

We should note that each mentioned set of nilpairs does not form a closed
subvariety of g× g. It would be interesting to look at the closures of these sets
and check whether the G-orbits are still classifiable there.

78while C(g) is the closure of the set of elements lying in a same Cartan subalgebra by
Theorem 2.1

79The whole sl2-triples appear for so-called rectangular nilpotent pairs
80Namely: a nilpotent pair (e1, e2) is principal when it satisfies the regularity condition:

“dim ge1,e2 is of minimal dimension dim h”, see (3.1).
81a characteristic (h1, h2) of a nilpotent pair (e1, e2) gives rise to a Q × Q-grading

g =
⊕

(i,j)∈Q×Q g(i, j). Then (e1, e2) is said to be wonderful when dim gh1,h2 is equal to
dim ge1,e2 ∩

⊕
(i,j)∈N×N g(i, j).
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7.2 Some other directions of generalisation

In the body of this dissertation, we have looked at generalisations from the Lie
algebra case to either symmetric Lie algebras, θ-groups or polar representations
cases. In Section 7.1, we also introduced several varieties related to commuting
varieties. The aim of this section is to provide several other directions of
generalisations.

First of all, the doubled setting considered above is a special case of the study
of d-tuples. See [Ri88] for early studies in this setting. Concerning commuting
varieties, one often either considers the whole scheme C(d)(g) of commuting d-
tuples, see e.g. [NS14], or, in connection with Theorem 2.1, its single principal
component G · (hd), see e.g. [CZ16]. The scheme C(d)(g) tends to become
reducible when d and/or rk(g) increase [NS14]. The Hilbert scheme obtained
by considering a quotient associated with C(d)(gln) is Hilbn(Cd). Concerning
reducibility of this scheme, we refer to [HJ18] and references therein.

The presentation made here was mostly valid only over an algebraically
closed field with characteristic 0. This setting is one of the most comfortable
ones. That is why geometric and representation theories are firstly developed
under this assumption. However, the theory is growing faster over other bases,
including algebraically closed fields of positive characteristic, e.g. [Le02]; the
field of real numbers, e.g. [Ri79, §6]; finite fields, e.g. [BW11]; or rings, e.g.
[DEG+15].

Multiplicative settings are also of interest. For instance, the commuting
variety in the group GLn(K) can be written as {(x, y)|xyx−1y−1 = Id}. For
reductive groups, the commuting variety is irreducible as shown in [Ri79]82.
Note that the study of sheets in a reductive group is also now quite well
understood, see [ACE19] and references therein.

We have already mentioned how to define null-fibers of the moment map and
the corresponding symplectic representations in quiver settings. We can qualify
this as the additive setting. These varieties are much studied in connection with
integrable systems which originate from theoretical physics. For instance, the
Calogero-Moser space can be seen as a Nakajima quiver variety83 corresponding
to the one-loop quiver. thus underlining the importance of Theorem 5.5.

Since then, a multiplicative setting has been introduced in [CBS06] which
is known to be the right setting for other related integrable systems such as
Ruijsenaars-Schneider [CF17]. In many important cases, the symplectic reduction
is étale-locally isomorphic to one coming from an additive setting [ST18, §7.5].
However, global questions, such as irreducibility, still have to be investigated.

82again
83here, a variety of the form µ−1(λ)//G for some G-fixed point λ.
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With Maxime Fairon (Univ. Glasgow), we are currently working on such
questions in the multiplicative case.
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[Br77] J. Briançon, Description de Hilbn C{x; y}, Invent. Math., 41 (1977), 45–
89.

[BW11] J. W. Britnell and M. Wildon, On types and classes of commuting
matrices over finite fields, J. Lond. Math. Soc., 83 (2011), 470–492.
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