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Résumé

L’objectif principal de cette thèse est d’étudier l’existence de solutions de systèmes de Hodge
indéterminés dans des espaces fonctionnels “critiques”. L’exemple le plus simple est l’équation
de la divergence :

divu = f , sur Rd, (§)

où f est une fonction donnée et u un champ vectoriel. Si 1 < p <1 et f est une fonction Lp à
support compact d’intégrale nulle, alors la théorie elliptique standard implique l’existence d’une
solution de (§) dont le gradient appartient à Lp. En revanche, lorsque p = 1 ou p =1, il existe
des fonctions f dans Lp, à support compact et d’intégrale nulle, telles que (§) n’a pas de solutions
u à gradient dans Lp. Ces résultats de non-existence ont été prouvés par Wojciechowski (1999),
Bourgain-Brezis (2003), pour le cas p = 1, et par Preiss (1997), McMullen (1998), pour le cas
p =1.

Nous obtenons des résultats similaires de non-existence dans le cas plus général des systèmes
de Hodge indéterminés de la forme

du = f , sur Rd, (§§)

où f est une l-forme fermée prescrite et u est une (l°1)-forme.
En utilisant un nouveau résultat d’approximation pour les fonctions dans les espaces Sobolev

critiques, Bourgain et Brezis (2007) ont montré que si f a les coefficients Ld, alors il existe
une solution u de (§§), dont les coefficients sont bornés et dont le gradient appartient à Ld.
En utilisant leur idée, Wang, Yung (2014) ont étendu ce résultat au cas plus général des groupes
homogènes stratifiés, Ultérieurement, Bousquet, Russ, Wang, Yung (2017) ont obtenu une version
euclidienne du résultat de Bourgain et Brezis, dans les espaces de Sobolev critiques avec une
plus grande régularité. Nous unifions les deux résultats mentionnés ci-dessus, en obtenant une
version pour les espaces de Sobolev critiques avec une plus grande régularité, dans le contexte
des groupes stratifiés homogènes.

D’autres sujets connexes sont étudiés. Nous étudions l’équation de divergence avec, comme
terme source, une mesure positive, nous fournissons une version améliorée du résultat de non-
existence de Preiss et McMullen, et nous analysons les multiplicateurs de Fourier dans les es-
paces de Sobolev homogènes Ẇk,p(Rd), lorsque p = 1 ou p =1 et k ∏ 1 est un entier. Par ailleurs,
nous étudions un probleme concernant les relèvements BV -minimaux des fonctions complexes
unimodulaires.

La thèse comprend trois parties.

Partie I. Dans cette partie, nous étudions des systèmes de Hodge dont les termes sources
sont dans L1 ou L1, ou sont des mesures non négatives. La plus part de résultats que nous
obtenons sont des résultats négatifs, concluant à la non-existence de solutions avec la régularité
maximale attendue. Nous présentons également plusieurs résultats d’existence pour des solu-
tions légèrement moins régulières, qui illustrent l’optimalité des résultats de non-existence.

La Partie I est formée des quatre chapitres.
Dans le Chapitre 1, notre objectif est de généraliser le théorème suivant de non-existence

pour l’équation de divergence avec des termes sources non négatifs :
5



6 RÉSUMÉ

Théorème. Soit µ une mesure de Radon non négative sur Rd, et un paramètre 1∑ p ∑ d/(d°1).
Si l’équation divF =µ a une solution F 2 Lp(Rd,Rd), alors µ¥ 0.

Nous montrons que ce résultat de non-existence se généralise à des espaces invariants par
réarrangement (r. i. pour faire court). Sans donner ici une définition de ces espaces, nous
citons quelques exemples d’espaces fonctionnels largement utilisés qui sont r. i. : les espaces
de Lebesgue Lp, les espaces de Lorentz Lp,q (1 ∑ p <1,1 ∑ q ∑1) et les espaces d’Orlicz ©(L).
Dans cette direction, nous obtenons:

Théorème. Soit µ une mesure de Radon non négative sur Rd, et X un espace r. i. de fonctions
sur Rd tel que |x|1°d

1Bc n’appartienne pas à X. Si l’équation divF =µ a une solution F 2 X (Rd,Rd),
alors µ¥ 0.

De plus, nous montrons que la condition “|x|1°d
1Bc n’appartient pas à X ” dans le théorème ci-

dessus est optimale. En effet, soit ¡ une fonction non triviale non négative de L1
c (Rd) et définis-

sons µ := ¡m (où m est la mesure de Lebesgue), qui est une mesure positive non triviale. Si
|x|1°d

1Bc 2 X , alors on montrons que l’équation divF =µ a une solution F dans X (Rd,Rd).
Nous étudions également le lien entre l’existence de solutions pour l’équation de divergence

dans r. i. et les indices de Boyd associés à ces espaces.
Les Chapitres 2 et 3 sont consacrés à un même résultat de non existence pour les systèmes

de Hodge, obtenu par deux méthodes différentes. Soit N ∏ 2. Si g 2 L1
c(RN) est d’integrale nulle,

alors en général il n’est pas possible de résoudre l’équation div X = g avec X 2W1,1
loc (RN ;RN) (Woj-

ciechowski 1999), ou même X 2 LN/(N°1)
loc (RN ;RN) (Bourgain et Brezis 2003). En utilisant ces ré-

sultats, nous prouvons que, pour N ∏ 3 et 2 ∑ `∑ N °1, il existe une `-forme f 2 L1
c(RN ;§`) avec

les coefficients d’integrale nulle, satisfaisant la condition d f = 0 et telle que l’équation d∏ = f
n’ait pas de solution ∏ 2 W1,1

loc (RN ;§`°1). Ceci donne une réponse négative à une question posée
par Baldi, Franchi et Pansu (2019).

Dans les deux chapitres, le problème est réduit au problème de l’équation de divergence. Dans
le Chapitre 2, cette réduction est faite en utilisant l’hypoellipticité de l’operateur de Laplace,
tandis que dans le Chapitre 3 la réduction est faite en utilisant la continuité des opérateurs de
Calderón-Zygumnd sur des espaces de Besov homogènes.

Dans le Chapitre 4, notre point de départ est le résultat suivant de non-existence : il existe g 2
L1(T2), d’integrale nulle et telle que l’équation (§) n’ait pas de solution f = ( f1, f2) 2W1,1(T2). Ce
résultat a été obtenu indépendamment par Preiss (1997), en utilisant un argument géométrique
délicat, et par McMullen (1998), via la non-inégalité d’Ornstein. Nous améliorons substantielle-
ment ce résultat, en montrant qu’en général (§) n’a pas de solution satisfaisant @2 f2 2 L1, avec
f “un peu mieux” que L1. Notre démonstration est basée sur les produits Riesz, dans l’esprit de
l’approche de Wojciechowski (1999) pour l’étude de (§) avec source g 2 L1. La démonstration est
élémentaire et évite completement l’utilisation de la non-inégalité d’Ornstein.

Voici par exemple une conséquence, simple à énoncer, du résultat principal de ce chapitre :
Théorème. Soit "> 0 fixé. Il existe une fonction g 2 L1(T2) telle que l’équation

g = f0 +@1 f1 +@2 f2

n’ait pas de solution satisfaisant f0, f1, f2 2 H"(T2) et @2 f2 2 L1(T2).
Ce résultat se généralise aux dimensions d ∏ 3.

Partie II. Dans cette partie, nous étudions la possibilité d’obtenir des solutions pour des
systèmes de Hodge indéterminés, un peu plus réguliers (bornés et avec la régularité différentielle
attendue) que ceux fournis par la théorie classique. Cette partie contient les Chapitres 5 et 6.

Le Chapitre 5 traite la généralisation commune de deux résultats d’approximation pour des
fonctions dans des espaces critiques de Sobolev. D’une part, il s’agit d’un résultat pour les espaces
de régularité différentiable 1 obtenu dans le cas général des groupes stratifiés homogènes par
Wang et Yung (2014). D’autre part, d’un résultat d’approximation similaire obtenu par Bousquet,
Russ, Wang, Yung (2017), pour des espaces de Sobolev de régularité plus élevée, mais uniquement
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dans le cas euclidien. Nous obtenons un résultat d’approximation dans le cas d’espaces de Sobolev
de grande régularité sur des groupes stratifiés homogènes.

Pour simplifier la présentation, nous énonçons ci-dessous le résultat principal adapté au
groupe de Heisenberg Hn.

Soient X1, .., Xn et Y1, ..,Yn les champs vectoriels standard sur le groupe Hn, définis par :

X j := @

@xj
+2yj

@

@t
, Yj := @

@yj
°2xj

@

@t
, pour j = 1,2, ...,n.

Soit

rb := (X1, .., Xn,Y1, ..,Yn).

Théorème. Soit Q := 2n+2. Nous considérons les paramètres 1 < p, q <1 et Æ := Q/p. Si
J1, J2 Ω {1, ...,n} sont deux ensembles tels que |J1|+ |J2| < min(p,2n), alors, pour chaque fonction
f , Schwartz sur Hn, et chaque ±> 0 il existe une fonction F telle que :

X

j2J1

∞∞X j( f °F)
∞∞

ḞÆ°1,p
q (Hn) +

X

j2J2

∞∞Yj( f °F)
∞∞

ḞÆ°1,p
q (Hn) ∑ ±krb f kḞÆ,p

q (Hn)

et

kFkL1(Hn) +kFkḞÆ,p
q (Hn) ∑ C± krb f kḞÆ,p

q (Hn) ,

où C± est une constante qui ne dépend que de ±.

Ici, les espaces ḞÆ,p
q (Hn) sont les analogues naturels des espaces du type Triebel-Lizorkin. Si

Æ est un entier et q = 2, ces espaces coïncident avec les espaces de Sobolev standard sur Hn.
Le Chapitre 6 aborde un problème géométrique. Nous étudions les solutions des systèmes de

Hodge dans les espaces critiques de Sobolev, avec des conditions aux limites du type Dirichlet.

Partie III. Dans cette partie, nous étudions deux problèmes différents. Le premier problème,
étudié au Chapitre 7, fait référence à la “généricité” des fonctions unimodulaires complexes qui
ont un unique relèvement BV -minimal. Le deuxième problème, étudié au Chapitre 8, est étroite-
ment lié à l’existence de solutions d’équations différentielles et concerne les multiplicateurs de
Fourier sur les espaces de Sobolev pathologiques.

Le but du Chapitre 7 est de répondre à une question posée par Brezis et Mironescu sur
les relèvements BV -minimaux pur les fonctions unimodulaires complexes. Étant donné u 2
W1,1 °

≠,S1¢ (ici, ≠ est un domaine lisse, borné et simplement connexe dans R2), nous appelons
relèvement BV une fonction ¡ 2 BV (≠,R) de sorte que u = ei¡ (l’existence d’un telle function
¡ est connue). On dit que un relèvement BV ¡ de u est BV -minimal si la seminorme BV de
¡ est minimale. La question que nous nous posons est la suivante : l’ensemble des fonctions
u 2 W1,1 °

≠,S1¢ qui admettent un relèvement BV -minimal unique (mod 2º), est-il résiduel dans
W1,1 °

≠,S1¢ ? Nous montrons que la réponse à cette question est oui. En fait, nous obtenons cette
réponse comme une conséquence du résultats suivant :

Théorème. Soit ≠ un domaine lisse, borné et simplement connexe dans R2. Soit k un en-
tier positiv. L’ensemble des vecteurs a = (a1, ...,ak) 2 ≠k pour lesquels chaque u 2 W1,1 °

≠,S1¢\
C(≠\{a1, ...,ak}) admet un relèvement BV-minimal unique (mod 2º) est de pleine mesure dans
≠k.

Nous démontrons ce résultat en réduisant le problème à l’étude des propriétés algébriques
des distances entre les points du domaine ≠.

Au Chapitre 8, nous généralisons le résultat suivant obtenu par Kazaniecki et Wojciechowski
(2013) concernant les multiplicateurs de Fourier sur l’espace homogène de Sobolev Ẇ1,1 :

Théorème. Soit d ∏ 2. Si m est un multiplicateur de Fourier sur Ẇ1,1 °
R

d¢
, alors m 2 Cb

°
R

d¢
.

Nous démontrons la généralisation suivante du résultat ci-dessus :
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Théorème. Soient d ∏ 2 et l ∏ 1 deux entiers. Si m est un multiplicateur de Fourier sur
Ẇl,1 °

R
d¢

, alors m 2 Cb
°
R

d¢
.

On obtient également un résultat similaire dans le cas de l’espace Ẇ l,1 °
R

d¢
. Nous dé-

montrons ces résultats en utilisant une version de la méthode utilisée par Kazaniecki et Woj-
ciechowski.



Abstract

The main purpose of the present thesis is to study the existence of solutions of underdeter-
mined Hodge systems in “critical” function spaces. The simplest Hodge system is the (single)
divergence equation:

divu = f , on R
d, (§)

where f is a given function and u a vector field. As long as 1 < p <1, if f is an Lp compactly
supported function with zero integral, the standard elliptic theory provides a solution u to (§)
whose gradient belongs to Lp. On the other hand, when p = 1 or p =1, there exist functions f
in Lp which are compactly supported of integral zero, and such that (§) does not have solutions u
with gradient in Lp. These nonexistence results were proved by Wojciechowski (1999), Bourgain-
Brezis (2003) in the case where p = 1, and by Preiss (1997), McMullen (1998) in the case where
p =1.

We obtain similar nonexistence results in the case of more general undeterminated Hodge
systems of the form

du = f , on R
d, (§§)

where f is a prescribed closed l-form and u is an (l°1)-form.
Using a new type of approximation result for functions in critical Sobolev spaces, Bourgain

and Brezis (2007), showed that if f has Ld coefficients then there exists an (l°1)-form u, solution
of (§§), whose coefficients are bounded and have the gradient in Ld. Following their idea, Wang,
Yung (2014) extended the result to the more general case of stratified homogeneous groups and
later Bousquet, Russ, Wang, Yung (2017) obtained an Euclidean version for higher regularity
Sobolev spaces. We unify under a common roof the two aforementioned results, obtaining a
version for higher regularity Sobolev spaces in the context of stratified homogeneous groups.

We also investigate several other related topics. We study the divergence equation when
the source term is a nonnegative measure, we obtain improved versions of the nonexistence re-
sult of Preiss and McMullen and we analyze the multipliers of the homogeneous Sobolev spaces
Ẇk,p °

R
d¢

, when p = 1 or p = 1 and k ∏ 1 is an integer. Aside from these topics, we study a
problem concerning minimal BV -liftings of complex unimodular maps.

9
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Introduction

Overview

The main theme of this manuscript is the inversion of the divergence equation, or, more gen-
erally of underdetermined Hodge systems in “critical” function spaces. The central question is
whether or not these differential systems admit solutions which are sufficiently “smooth”. Clas-
sical regularity theory provides satisfying positive answers in most of the cases. However, there
are several limit situations in which the classical theories (e.g., the Calderón-Zygmund theory)
cannot be applied. In some of these cases, we expect the nonexistence of solutions “as smooth
as the source term allows”. On the other side, there are cases where we expect to find solutions
“smoother” than the ones provided by the classical theory.

We address several such questions. For equations or systems falling into the first category, we
either significantly enlarge the function space in which nonexistence occurs, or we extend known
nonexistence results from the divergence equation to Hodge systems. For the latter category, we
generalize the existing positive results obtained on Euclidean spaces or for low regularity source
terms to stratified homogeneous groups and to source terms with “critical regularity”.

In different directions, we investigate smoothness properties of multipliers in homogeneous
spaces, and the generic uniqueness of minimal liftings of unimodular maps.

1. The divergence equation

The simplest underdetermined system is the ubiquitous divergence equation

divY = f , (0.1)

where f is a given function (or, more generally, distribution) defined on a domain of Rd. The
function f will be called source term. The problems we are interested in here are related to local
regularity. In order to discard the possible influence of the boundary, we work with functions and
vector fields on the d-dimensional torus Td or on the d-dimensional Euclidean space Rd. Here,
T

d is the group Rd/(2ºZ)d. In most cases, it will be identified with the set [°º,º)d endowed with
the usual Lebesgue measure.

In general, it is easy to transfer existence results from T
d to Rd (or conversely), and from T

d

to smooth bounded domains.
If d ∏ 2, the equation (0.1) is underdetermined. For example, if Y is a solution of (0.1) and Y 0

is another vector field satisfying divY 0 = 0 (i.e., Y 0 is “divergence-free”), then

Y 00 :=Y +Y 0 (0.2)

is also a solution of (0.1). There are many divergence-free vector fields. For example, if d = 2, any
vector field Y 0 of the form Y 0 =

°
°@2¡,@1¡

¢
, where ¡ is an arbitrary distribution, is divergence-

free.
The case d = 1 is easy; in this case, (0.1) becomes

Y 0 = f on T. (0.3)

Let us note some regularity results in this trivial case; they will guide us in the higher di-
mensional case. Consider some 1 ∑ p ∑ 1. If f 2 Lp (T) has zero integral, then there exists a
unique function Y 2W1,p (T,R) with zero integral satisfying (0.1). This Y has one extra degree of
regularity compared with f . This is a natural property that we expect to occur also in the case
d ∏ 2 whenever we have a solution, at least for one solution ((0.2) shows that this cannot hold for

13



14 INTRODUCTION

all the solutions and that, even in the Sobolev class, no uniqueness of solutions can be expected
in any reasonable sense).

From now on we assume that d ∏ 2.

The case 1 < p < 1. Classical theory. Let us fix 1 < p < 1. We first observe that, if
f 2 Lp °

T
d¢

and there exists Y in W1,p °
T

d,Rd¢
such that (0.1) holds, then

Z

Td
f =

Z

Td
divY = 0. (0.4)

Hence, we have to impose the necessary condition (0.4), i.e., the source term must have zero
integral. We thus let f belong to Lp

]

°
T

d¢
, the space of all Lp °

T
d¢

-functions with zero integral. If
f 2 Lp

]

°
T

d¢
, then it is well-known that there always exists a solution Y in W1,p °

T
d,Rd¢

of (0.1).
This can be easily seen by applying the standard Calderón-Zygmund theory. In fact, we have the
following explicit solution:

Y :=r4°1 f , (0.5)

where 4 : D0(Td)!D
0(Td)/R is the Laplacian on T

d, and 4°1 : D0(Td)/R!D
0(Td) is its inverse.

Indeed, one may see that this Y satisfies (0.1) on T
d in the sense of distributions:

divY = divr4°1 f =44°1 f = f .

Also, if we write Y = (Y1, ...,Yd), we have

@iYj = @i@ j4°1 f = RiR j f , for all i, j = 1,2, ...,d, (0.6)

where R1, ...,Rd are the Riesz transforms on T
d. Here, the operators R j are defined by the rela-

tions
ÅR j√ (n) :=

n j

|n|
b√(n), for any n 2Zd \{0}, ÅR j√(0)= 0, (0.7)

where √ is any trigonometric polynomial on T
d with

b√(0)= 0. (0.8)

Notice that this gives

·RiR j√ (n)=
nin j

|n|2
b√(n)= @i@ j4°1√
V

(n) , for any n 2Zd \{0},

which formally justifies the formula (0.6).
One may still define Ri for distributions √ on T

d satisfying (0.8) (which has to be under-
stood as h√,1i = 0), via formula (0.7). It is not difficult to see that, in this case, Ri√ is again a
distribution

The operators R j are bounded on Lp °
T

d¢
(see below). Hence, we get @iYj 2 Lp

]

°
T

d¢
, for all

i, j = 1,2, ...,d, i.e., for each j = 1,2, ...,d, we have Yj 2W1,p °
T

d,Rd¢
. We also obtain the estimate

kY kW1,p(Td) ∑ Cp k f kLp(Td) ,

were Cp is a constant depending only on p and d.
We now briefly recall why Ri acts on Lp

] (Td), when 1 < p <1. A Calderón-Zygmund kernel
on R

d is a measurable function K : Rd\{0} !C for which there exists a constant B > 0, such that
(see [22, p. 166]):

(i) |K (x)|∑ B |x|°d, for all x 2Rd\{0};
(ii)

Z

|x|>2|y|
|K(x)°K(x° y)|dx ∑ B, for all y 2Rd\{0};

(iii)
Z

s<|x|<t
K(x)dx = 0, for all 0< s < t <1.

With such a kernel we can associate an operator T, formally defined by T√ = K §√ for
Schwartz functions √; T is called a Calderón-Zygmund operator. We have the following fun-
damental theorem of Calderón and Zygmund (see [22, Theorem 7.5]):
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THEOREM 0.1. Suppose T is a Calderón-Zygmund operator as above. Then, for every 1 <
p <1 one can extend T to a bounded operator on Lp(Rd) with the bound kTkLp!Lp ∑ CB, where
C = C(p,d) is a constant only depending on p and d.

The usual Riesz transforms R j on R
d are Calderón-Zygmund operators whose kernels are

respectively defined by

k j(x)= cd
xj

|x|d+1 , for x 2Rd\{0} ,

where cd is a constant such that

ck j(ª)=
ª j

|ª| , for ª 2Rd\{0} .

Hence, each R j : Lp °
R

d¢
! Lp °

R
d¢

is well-defined and bounded (see [22, Section 7.2]). Without
much difficulty, this result implies also the boundedness of the Riesz transforms on Lp °

T
d¢

via a
transference method (see for example [14, Theorem 3.6.7]).

Concerning the divergence equation, the case of Rd is very similar. This time 4 and Ri will be
the Laplacian and the Riesz transforms on R

d. The operator 4°1 will be defined by the formula:

4°1√= E§√,

for any Schwartz function √, where E is “the” fundamental solution of 4.
However, since Rd is not compact, some care is needed when defining the right spaces to work

with. For example if f 2 Lp °
R

d¢
and the tempered distribution Y is given by (0.5), then we have

again that each component of rY is Lp, i.e., Y 2 Ẇ1,p °
R

d,Rd¢
(see Section 5 for notation). Yet, we

do not have in general that Y 2 Lp °
R

d,Rd¢
. However, such a Y satisfies Y 2 Lp

loc(R
d) [15, Theorem

4.5.8].
It is worth mentioning that Bogovskiı̆ ([2], 1980) found an explicit formula (see (0.9) below)

for an inverse of the divergence operator on quite general domains.
Let ≠ be a bounded domain in R

d. The question that we ask in this case is the following:
given a function f 2 Lp (≠) with zero integral on ≠, does there exist a vector field Y 2 W1,p

0 (≠)
such that (0.1) holds in the sense of distributions on ≠? We recall that W1,p

0 (≠) is the closure of
C1

c (≠) under the W1,p-norm. Note that a solution Y satisfying the weaker condition Y 2W1,p(≠)
can be obtained as above. Indeed, we can extend f by letting f = 0 outside ≠ and then let Y
as in (0.5). The stronger condition Y 2 W1,p

0 (≠) amounts to requiring in addition that, in some
generalized sense, we have Y = 0 on @≠.

In order to explicitly construct such a Y , we work on domains≠ that are star-like with respect
to a ball. More specifically, we assume that there exists a ball B(x0, r) such that B(x0, r) Ω≠ and
≠ is star-like with respect to every point of B(x0, r), i.e., for any x0 2 B(x0, r) and any y0 2≠ the
whole segment

£
x0, y0

§
is contained in ≠.

Consider now a function ¥ 2 C1
c (B(x0, r)) such that

Z

B(x0,r)
¥= 1.

For a function f 2 Lp (≠), satisfying
Z

≠
f = 0,

we define the vector field

Y (x) :=
Z

≠
f (y)

∑
(x° y)

Z1

1
¥ (y+ t (x° y)) td°1dt

∏
d y. (0.9)

This vector field has the remarkable property that Y 2W1,p
0 (≠) with

kY kW1,p(≠) . k f kLp(≠) , (0.10)
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and it satisfies (0.1) (see [13, Lemma III.3.1, p. 162]). Here and in what follows, A(x) . B(x)
stands for A(x) ∑ C B(x), for some constant C <1 independent of x. In particular, in (0.10) we
have , kY kW1,p(≠) ∑ Ck f kLp(≠) for some C <1 independent of f .

To check the estimate (0.10) is a matter of Calderón-Zygmund theory. Since the argument
needs some careful computations we skip it. Also, the verification of (0.1) is somewhat lengthy
and will be omitted. For both results, we refer the reader to [13] (see the proof of Lemma III.3.1,
p. 162.)

Finally, we note that it is intuitively clear that Y “vanishes” on the boundary. Indeed, suppose
for simplicity that f is smooth. In this case, after a more careful look at formula (0.9), one can
see that the vector field Y is also smooth (in the whole Rd). Consider now a point x 2 @≠, or, more
generally, a point x which does not belong to ≠. In order to see that Y (x) = 0, it suffices to show
that

¥ (y+ t (x° y))= 0,

for any y 2≠ and for any t ∏ 1. Suppose this is not the case. If y and t are fixed, then we must
have y+t (x° y)= b for some b 2 B(x0, r). However, we get from this that x is a convex combination
of y and b:

x =
µ
1° 1

t

∂
y+ 1

t
b.

Since ≠ is star-like with respect to b 2 B(x0, r), we get x 2 [y,b] Ω ≠ which contradicts our
hypothesis that x ›≠.

This method can be extended to John domains (see [1]), or even to general bounded domains,
considering weighted Lp spaces (see [12]).

The cases p = 1, p =1. “Pathological” sources. We saw that, as long as 1 < p <1, we
always have solutions of expected regularity. A natural question is to ask what happens in the
remaining cases. It is well-known that the Riesz transforms are not bounded on L1 or L1 (see,
for example, [22, Exercise 7.5]).

Therefore, in these cases formula (0.5) need not provide solutions with the expected regularity
of the divergence equation. This suggests that, when p = 1 or p = 1, W1,p solutions of the
divergence equation may not exist for a general f 2 Lp

] .
It turns out that this is indeed the case. More precisely, we have the following negative results

(which for technical reasons are formulated for the d-dimensional torus):

THEOREM 0.2. Assume d ∏ 2. There exists f 2 L1
]

°
T

d¢
such that there is no vector field Y 2

W1,1 °
T

d¢
with divY = f .

THEOREM 0.3. Assume d ∏ 2. There exists f 2 L1
]

°
T

d¢
such that there is no vector field Y 2

W1,1 °
T

d¢
with divY = f .

Theorem 0.2 was first proved by Wojciechowski in 1998 (see [31]). His proof is by contradic-
tion, and relies on Riesz products. A simpler proof was given by Bourdaud-Wojciechowski ([7]) in
2000 and Bourgain-Brezis in 2003 ([3]) by showing that a stronger conclusion holds: there exists
f 2 L1

]

°
T

d¢
such that there is no vector field Y 2 Ld0 °

T
d¢

with divY = f . Here d0 := d/(d°1) is the
conjugate exponent of d.

Theorem 0.3 was initially proved by Preiss in 1997 ([26]) using a geometrical argument and
by McMullen in 1998 ([21]), via Ornstein’s L1-non-inequality ([23]). The proof of Theorem 0.3
that we present below is essentially McMullen’s one.

Both theorems were rediscovered by Dacorogna, Fusco and Tartar in [10]. They also provided
several different proofs of Theorem 0.2.

Since the proofs of Theorem 0.2 and Theorem 0.3 are instructive and simple, we recall them
below, following the presentation in [3].



1. THE DIVERGENCE EQUATION 17

PROOF OF THEOREM 0.2. Suppose, by contradiction, that the statement of the theorem is
false. That is, for any f 2 L1

]

°
T

d¢
there exists a vector field Y 2W1,1 °

T
d¢

such that divY = f .
We find that the operator div : W1,1

] (Td) ! L1
] (T

d) is continuous and surjective. By the open
mapping theorem, for every f 2 L1

] (T
d), there exists some Y 2W1,1(Td) satisfying

divY = f and kY kW1,1 . k f kL1. (0.11)

Combining (0.11) with Gagliardo’s embedding W1,1 ,! Ld0
, we find that, for every f 2 L1

] (T
d),

there exists some Y satisfying

divY = f and kY kLd0 . k f kL1. (0.12)

Let us fix ' 2 C1 °
T

d¢
with zero integral. There exists f 2 L1

]

°
T

d¢
with k f kL1 = 1 such that∞∞'

∞∞
L1 .

≠
', f

Æ
. With Y as in (0.12), we have

∞∞'
∞∞

L1 .

≠
', f

Æ
=

≠
',divY

Æ
=°

≠
r',Y

Æ
∑

∞∞r'
∞∞

Ld kY kLd0 .
∞∞r'

∞∞
Ld . (0.13)

From (0.13), we easily obtain the embedding W1,d °
T

d¢
,! L1 °

T
d¢

, which is well-known to be
false when d ∏ 2. This contradiction completes the proof of Theorem 0.2. ⇤

PROOF OF THEOREM 0.3. For simplicity we prove the theorem in the case d = 2. The general
case is very similar.

Suppose by contradiction that the statement of the theorem is false. That is, for any f 2
L1
]

°
T

2¢ there exists a vector field Y 2 W1,1 °
T

2¢ such that divY = f . Using the open mapping
theorem, Y can be chosen such that

kY kW1,1(T2) . k f kL1(T2) .

Let us fix ' 2 C1 °
T

2¢. There exists f 2 L1
]

°
T

2¢ with k f kL1 = 1 such that
∞∞@1@2'

∞∞
L1 .

≠
@1@2', f

Æ
. Let Y be as above. Then we have

∞∞@1@2'
∞∞

L1 .
≠
@1@2', f

Æ
=

≠
@1@2',divY

Æ
=

≠
@1@2',@1Y1

Æ
+

≠
@1@2',@2Y2

Æ

=
≠
@2

1',@2Y1
Æ
+

≠
@2

2',@1Y2
Æ
∑

∞∞@2
1'

∞∞
L1 k@2Y1kL1 +

∞∞@2
2'

∞∞
L1 k@1Y2kL1

.

∞∞@2
1'

∞∞
L1 +

∞∞@2
2'

∞∞
L1 .

However, as Ornstein proved (see [23]), this inequality is false in general.
Actually, this argument shows that one cannot take @1Y2 and @2Y1 in L1, which is weaker

than requiring Y to be in W1,1. ⇤

Let us make some observations concerning the above proofs. In the proof of Theorem 0.3, we
have used the following relatively difficult non-inequality of Ornstein ([23], 1962):

∞∞@1@2'
∞∞

L1 ✓
∞∞@2

1'
∞∞

L1 +
∞∞@2

2'
∞∞

L1 , ' 2 C1 °
T

2¢ . (0.14)

Following the same idea as in the proof of Theorem 0.3, it is possible to prove Theorem 0.2
using the following non-inequality (see for example [10]):

∞∞@1@2'
∞∞

L1 ✓
∞∞@2

1'
∞∞

L1 +
∞∞@2

2'
∞∞

L1 , ' 2 C1 °
T

2¢ . (0.15)

This non-inequality is easier than (0.14). In a more general form, it was first proved by de
Leeuw and Mirkil (see [20]) before Ornstein proved (0.14). The proof in [20] relies on relatively
simple duality methods. Also, some explicit constructions can be given. For example, Mityagin
gave in 1958 (see [18]) the following example illustrating the failure of (0.15). Consider the
function

g (x1, x2) := 3x1x2 ° x1 ln
°
x2

1 + x2
2
¢
° x2

2 arctan
µ

x1

x2

∂
° x2

1 arctan
µ

x2

x1

∂
, on (R\{0})2,

extended by continuity to R2.



18 INTRODUCTION

One can check that

@2
1 g (x1, x2)=°2arctan

µ
x2

x1

∂
, @2

2 g (x1, x2)=°2arctan
µ

x1

x2

∂
, @1@2 g (x1, x2)=° ln

°
x2

1 + x2
2
¢
,

in the classical sense in (R\{0})2, and in the sense of distributions in R
2.

Now choose a function ¥ 2 C1
c (B(0,1)) such that ¥ ¥ 1 on B(0,1/2). By defining ' := g¥, we

have

@2
1',@2

2' 2 L1 and @1@2' › L1.

Identifying T2 with [°º,º)2 we get that smooth approximations of ' will provide examples for
(0.15).

Compared to (0.15), it is much more difficult to illustrate the failure of (0.14); actually, the
validity of (0.14) was an open problem of L. Schwartz, negatively solved by Ornstein via a delicate
explicit construction, in the first part of its seminal contribution [23]. By the duality arguments
presented above, this suggests that Theorem 0.2) is easier than Theorem 0.3.

The case p = d. Critical spaces. Let us now turn to another “limiting” case for the exponent
p, namely p = d. As we already saw, if f 2 Ld

]

°
T

d¢
, then there exists Y 2W1,d °

T
d¢

which satisfies
(0.1). It is important to recall that W1,d °

T
d¢

is not embedded in L1 °
T

d¢
. (Recall that d ∏ 2.) An

explicit example of function in W1,d °
T

d¢
\ L1 °

T
d¢

is provided by

gÆ(x) := |ln |x||Æ¥ (x) ,

where ¥ 2 C1
c (B (0,1)) is a function such that ¥(0) = 1 and 0 < Æ < d0. One may observe that

gÆ 2W1,d °
T

d¢
, while, clearly, gÆ is not bounded.

Let us consider the function

hÆ(x) := x1 gÆ(x), on T
d,

and define the vector field YÆ :=rhÆ. Clearly, we have

divYÆ =4hÆ,

and it is easy to see that YÆ is the solution to the divergence equation with source term 4hÆ

provided by the formula (0.5). Clearly, YÆ := (gÆ+ x1@1 gÆ, x1@2 gÆ, ..., x1@d gÆ) and, since gÆ +
x1@1 gÆ › L1 °

T
d¢

, we have that YÆ › L1 °
T

d¢
. By a direct computation, we see that

ØØr2hÆ(x)
ØØ.

1
|x|

|ln |x||Æ°1 , on B (0,1) ,

and since
1
|x|

|ln |x||Æ°1 2 Ld
loc

and hÆ is supported in B (0,1), we get that r2hÆ 2 Ld °
T

d¢
. In particular, this gives us that

YÆ 2W1,d °
T

d¢
and that 4hÆ 2 Ld °

T
d¢

.
The above example is due to L. Nirenberg and appears in [3]. It shows that, in general, if

f 2 Ld
]

°
T

d¢
, the solution to the divergence equation provided by formula (0.5) is not necessarily

bounded.
However, it is possible to conclude by other means that, for this type of source term, the

divergence equation admits a bounded solution. (This does not contradict the above example,
since the divergence equation is underdetermined.) More precisely, we have:

THEOREM 0.4. For any f 2 Ld
]

°
T

d¢
there exists a vector field Y 2 L1 °

T
d¢

satisfying divY = f
and

kY kL1(Td) . k f kLd(Td) . (0.16)

This was first proved by Bourgain and Brezis in [3] (2003). Since their proof is simple and
short we recall it below.
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PROOF. Recall that we have Gagliardo’s embedding

kukLd0(Td) . krukL1(Td) , (0.17)

for any smooth function u on T
d with zero integral. Consider now the normed subspace

V :=
n
ru | u smooth on T

d with zero integral
o
Ω L1

≥
T

d,Rd
¥
,

and let f 2 Ld
]

°
T

d¢
. Define the functional L f : V !R by

L f (ru) :=°h f ,ui ,

whenever u is smooth on T
d with zero integral. Note that L f is well-defined, since u 7! ru is

one-to-one for such u’s. Moreover, L f is clearly linear.
The inequality (0.17) gives us that L f is bounded on V , and that

kL f k. k f kLd . (0.18)

By using the Hahn-Banach theorem, we can find a bounded extension eL f 2
°
L1 °

T
d,Rd¢¢§ =

L1 °
T

d,Rd¢
of L f such that keL f k = kL f k. Let Y 2 L1 °

T
d,Rd¢

be a vector field representing eL f .
We have

°h f ,ui= L f (ru)= eL f (ru)= hY ,rui=°hdivY ,ui ,

for any u smooth on T
d with zero integral. Hence, Y is a bounded solution (0.1) in the sense of

distributions on T
d. Estimate (0.16) follows from (0.18). ⇤

Observe that in the above theorem the solution is obtained by a nonconstructive argument. In
their paper [3], Bourgain and Brezis also proved that the bounded solution Y whose existence is
given by Theorem 0.4 cannot depend linearly on f . Equivalently, there is no bounded linear map
T : Ld

] (Td) ! L1(Td;Rd) satisfying divT f = f , 8 f 2 Ld
] (Td). This is in contrast with the explicit

and linear formula (0.5).
The striking fact that was proved in [3] is that we can simultaneously satisfy the conditions

Y 2 L1 °
T

d¢
and Y 2W1,d °

T
d¢

. More precisely, we have

THEOREM 0.5. For any f 2 Ld
]

°
T

d¢
there exists a vector field Y 2 L1 °

T
d¢

\W1,d °
T

d¢
satisfying

divY = f and

kY kL1(Td)+kY kW1,d(Td) . k f kLd(Td) . (0.19)

This result was proved by an involved approximation argument using the Littlewood-Paley
square function. We will not describe the argument here. We mention instead that the compli-
cated construction used in [3] can also be used in more general situations. Following the ideas in
[3], Bousquet, Mironescu and Russ proved in [5] (2014) the following generalization of Theorem
0.5 in the scale of Triebel-Lizorkin spaces:

THEOREM 0.6. Suppose that 2 ∑ q ∑ p <1 and s > °1/2 are such that (s+1) p = d. For any
f 2 Fs,p

q
°
T

d¢
, there exists a vector field Y 2 L1 °

T
d¢

\Fs+1,p
q

°
T

d¢
satisfying divY = f and

kY kL1(Td)+kY kFs+1,p
q (Td) . k f kFs,p

q (Td) . (0.20)

In order to keep the presentation simple, we omit here the precise definition of the Triebel-
Lizorkin spaces, and refer the interested reader to Section 5. It is worth noting that the scale of
these spaces includes the classical Sobolev spaces Wk,p, k 2N, 1< p <1.

The existence of a vector field Y satisfying one of the estimates kY kL1(Td) . k f kLd(Td) or
kY kW1,d(Td) . k f kLd(Td) (implied by (0.20)) follows from standard results in harmonic analysis.
Indeed, it suffices to adapt the proof of Theorem 0.4 for the first estimate (and to use the adapted
Sobolev type embedding), respectively to apply Calderón-Zygmund theory (whose validity for
Triebel-Lizorkin spaces is well-established) for the latter one. As in the case of Theorem 0.5, the
difficulty consists of finding Y satisfying both estimates.

In [5], the authors
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also proved a version of Theorem 0.6 on smooth domains.

THEOREM 0.7. Suppose that 2∑ q ∑ p <1 and s >°1/2 are such that (s+1) p = d. Let ≠ be a
smooth bounded domain in R

d and let f 2 Fs,p
q (≠) be such that

Z

≠
f = 0.

Then, there exists a vector field Y 2 L1 (≠)\Fs+1,p
q (≠) satisfying divY = f and trY = 0 on @≠.

Moreover, we can choose Y such that
kY kL1(≠) +kY kFs+1,p

q (≠) . k f kFs,p
q (≠) .

Sources which are nonnegative measures. We also consider the case where sources are
measures rather than Lp functions. This is related to the “pathological” case where the sources
were L1, however, we are interested here in the decay at infinity of the solutions, rather than
their differential regularity.

We consider the equation

divF =µ on R
d, (0.21)

with µ a nonnegative Radon measure on R
d.

Let us prove, by a simple argument1, that, if the above equation has a solution in certain Lp

spaces, then we necessarily have µ= 0.
For this purpose, suppose µ is as above and let F be a solution of (0.21) that belongs to Lp °

R
d¢

for some 1 ∑ p ∑ d0. For simplicity, we suppose that F is smooth, but this is not relevant for the
final conclusion. Even without the smoothness assumption on F, we can “smooth” the problem
by taking convolutions with smooth compactly supported functions, and then argue as below.

By applying the Gauss-Ostrogradskii theorem, we get, for any R > 0,

µ (B (0,R))=
Z

B(0,R)
dµ=

Z

B(0,R)
divFdx =

Z

S(0,R)
F ·∫dæ,

where S (0,R) is the boundary of B (0,R) and ∫ is the unit outward normal at S (0,R). We imme-
diately obtain that

µ (B (0,R))∑
Z

S(0,R)
|F|dæ,

and, by applying Hölder’s inequality, we have

µ (B (0,R)). R(d°1)/p0
µZ

S(0,R)
|F|p dæ

∂1/p
,

i.e.,
µp (B (0,R))
R(d°1)(p°1) .

Z

S(0,R)
|F|p dæ.

Integrating in R this last inequality, we get
Z1

R0

µp (B (0,R))
R(d°1)(p°1) dR .

Z1

R0

Z

S(0,R)
|F|p dædR = kFkp

Lp(Rd\B(0,R0)) <1, (0.22)

for any R0 > 0.
We now observe that, since p ∑ d0 = d/(d°1), we have (d°1)(p°1)∑ 1, and thus

Z1

R0

1
R(d°1)(p°1) dR =1. (0.23)

Since µ is nonnegative, we have that µ (B (0,R))∏µ (B (0,R0))∏ 0 for all R ∏ R0 and
Z1

R0

µp (B (0,R))
R(d°1)(p°1) dR ∏µp (B (0,R0))

Z1

R0

1
R(d°1)(p°1) dR,

1We thank to P. Mironescu for this argument.
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which together with (0.22) and (0.23) gives us that µ (B (0,R0)) = 0. Since we can choose R0
arbitrarily large, we get that µ¥ 0 on R

d.
To summarize, by the above argument we have obtained the following result:

THEOREM 0.8. Let 1∑ p ∑ d/(d°1) and let µ be a nonnegative Radon measure on R
d. If there

exists a vector field F 2 Lp(Rd,Rd) such that div F =µ on R
d, then µ¥ 0.

The above result was proved by Phuc and Torres (see [24, Theorem 3.1]) by a different
method than the one given above. They have obtained Theorem 0.8 by a direct application of
the Calderón-Zygmund theory. They also proved that the exponent d/(d°1) above is sharp. We
point out that this result treats only the case of nonnegative measures. In the more general case
of signed Radon measures the situation is more complicated and little is known in this direction.

2. Differential forms and Hodge systems in R
d and in H

n

General facts. Hodge systems in R
d. A natural generalisation of the divergence equation

is a (underdetermined) Hodge system: given a l-differential form ∏ on R
d whose coefficients are

elements of some function space on R
d, we ask for the existence of an (l°1)-differential form u

on R
d, with coefficients in some “appropriate” function space such that:

du =∏. (0.24)

Here, l is an integer with 1 ∑ l ∑ d and du stands for the exterior derivative of u, defined as
follows. When 1∑ k ∑ d, we write dxI = dxi1 ^ ...^dxik for any increasing sequence i1 < ...< ik in
{1, ...,d} and I := {i1, ..., ik}. With this notation, if

u :=
X

Iµ{1,...,d}
|I|=l°1

uI dxI ,

then

du =
X

Iµ{1,...,d}
|I|=l°1

X

1∑i∑d
@iuI dxi ^dxI . (0.25)

Since we will work in spaces of distributions, as in the case treated before of the divergence
equation, all the derivatives in (0.25) will be considered in the sense of distributions.

Let us quickly explain why, when l = d, the system (0.24) is equivalent to the divergence
equation. We have exactly one subset of {1, ...,d} whose cardinality is d; namely, the set {1, ...,d}
itself. Hence, any d-form ∏ can be written as

∏= f dx1 ^ ...^dxd, (0.26)

for some function f . We have exactly d subsets of {1, ...,d} of cardinality d°1; namely {1, ..., j°1, j+1, ...,d}
for 1∑ j ∑ d. Hence, any (d°1)-form u can be written as

u =
dX

j=1
u jdx1 ^ ...^dxj°1 ^dxj+1 ^ ...^dxd,

for some functions u j. Using the definition (0.25), we obtain

du =
dX

j=1

dX

i=1
@iu jdxi ^dx1 ^ ...^dxj°1 ^dxj+1 ^ ...^dxd

=
dX

j=1
@ ju jdxj ^dx1 ^ ...^dxj°1 ^dxj+1 ^ ...^dxd

=
√

dX

j=1
(°1) j°1@ ju j

!

dx1 ^ ...^dxd,

(0.27)
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where we have used the fact that dxi ^dxi = 0. Combining (0.27) with (0.26), we obtain that
in the case l = d the system (0.24) becomes

dX

j=1
(°1) j°1@ ju j = f .

Clearly, this is equivalent to a divergence equation with the source f .
As in the smooth case, we have d2u = 0 (this time in the sense of distributions), and thus in

order to be able to solve (0.24) we have to impose the compatibility condition

d∏= 0 in the sense of distributions. (0.28)

Note that, as long as we work on R
d, the above compatibility condition is vacuous in the case

l = d .
If

'=
X

Iµ{1,...,d}
|I|=l

'I dxI and ¡=
X

Iµ{1,...,d}
|I|=l

¡I dxI

are some l-forms in L2(Rd), formally, we write
≠
',¡

Æ
:=

X

Iµ{1,...,d}
|I|=l

Z

Rd
'I¡I dx.

The formal adjoint of the exterior derivative d will be denoted by d§. Hence, we have:
≠
d√1,√2

Æ
=°

≠
√1,d§√2

Æ

for all (l°1)-forms √1 and l-forms √2 with smooth and compactly supported coefficients. It turns
out that we can compute d§ explicitly, as explained below. For ' as above we have

d§'=
X

|I|=l

X

1∑i∑d
@i'I@icdxI , (0.29)

where the expressions @icdxI are (l°1)-forms defined as follows.
Suppose I = {i1, ..., il}, where 1 ∑ i1 < ... < il ∑ d. If i 2 I, and 1 ∑ k ∑ l is such that i = ik, then

we set

@icdxI = @ikcdxI := (°1)k°1dxi1 ^ ...^dxik°1 ^dxik+1 ^ ...^dxil .

Moreover, if i › I, then @icdxI := 0 if i › I. (See [11, Example, (3.12)].)
By a direct computation we can verify that 4= d d§+d§ d. In other words, for any differential

form ' with smooth coefficients we have:

4'= dd§'+d§d', (0.30)

where 4 acts on differential forms “component-wise”:

4' :=
X

|I|=l
4'I dxI ,

for any form

'=
X

|I|=l
'I dxI .

In a similar way one can define the action of 4°1 on differential forms with smooth compactly
supported coefficients:

4°1' :=
X

|I|=l
4°1'I dxI .

It is easy to see that 4 and 4°1 are commuting with the operators d and d§. If ' is a form
with smooth compactly supported coefficients, then from (0.30) we get

'=4°1dd§'+4°1d§d'= d4°1d§'+d§4°1d'. (0.31)
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Note that d4°1d§' (respectively d§4°1d') is a closed (respectively co-closed) form, i.e., we
have

d(d4°1d§')= 0 and d§(d§4°1d')= 0. (0.32)

In view of (0.32), (0.31) asserts that any smooth compactly supported form can be decomposed
as a sum of a closed form and a co-closed form.

It is also possible to give an Lp-version of (0.31).2 In the case of Rd, we have the following
simple Hodge decomposition formula (see for example [27]):

v = d4°1d§v+d§4°1dv (0.33)

for any l-form v with Lp coefficients where 1< p <1.
Indeed, using (0.25) and the explicit formula of d§, (0.29), it is easy to see that the operators

d4°1d§ and d§4°1d are linear combinations of operators of the form RiR j, where R j are the
Riesz transforms on R

d. Hence, each term in the right hand side of (0.33) is well-defined and we
have

∞∞d4°1d§v
∞∞

Lp(Rd) . kvkLp(Rd) and
∞∞d§4°1dv

∞∞
Lp(Rd) . kvkLp(Rd) .

In some cases we can use the decomposition formula in (0.33) to construct solutions to Hodge
systems. We illustrate this by the following simple proposition (see for example [27]).

PROPOSITION 0.9. Let 1 ∑ l ∑ d be an integer and 1 < p < 1. Suppose ∏ is an l-form with
d∏ = 0 and whose coefficients are Lp functions on R

d. Then, there exists an (l°1)-form u with
Ẇ1,p coefficients on R

d and such that (0.24) is satisfied.

Indeed, one can construct explicitly the solution

u :=4°1d§∏. (0.34)

To see, at least formally, that u solves (0.24), we rely on (0.33) and find

du = d4°1d§∏= d4°1d§∏+d§4°1d∏=∏.

The expression (0.34) is very similar to the one in (0.5) used to explicitly construct solutions
for the divergence equation. As in the case of (0.5), using the Calderón-Zygmund theory, we infer
that each coefficient of u is a distribution in Ẇ1,p °

R
d¢

.
Knowing the nonexistence results for the divergence equation for p = 1 or p =1, described

in Theorem 0.2 and 0.3, it is natural to ask if similar results hold true for more general Hodge
systems (0.24). In other words, is it true that there exists an l-form f on R

d with L1 coefficients
and satisfying d f = 0, such that there is no (l°1)-form u with Ẇ1,1 coefficients and satisfying
(0.24)? The same question makes sense if we replace the space L1 with L1 and Ẇ1,1 with Ẇ1,1.
We will address these questions in Chapters 2 and 3.

Hodge systems in R
d. The case of critical function spaces. We have the following ana-

logue of Theorem 0.4, in the case of Hodge systems:

THEOREM 0.10. Let 2 ∑ l ∑ d. If ∏ 2 Ld(Rd) is an l-form with d∏ = 0, then there exists an
(l°1)-form u 2 L1(Rd) such that du =∏ on R

d. Also, we can choose u such that

kukL1(Rd) . k∏kLd(Rd) .

2Whenever X is a normed function space on R
d , we write, for all l-forms ',

∞∞'
∞∞

X :=
X

Iµ{1,...,d}
|I|=l

∞∞'I
∞∞

X .

Usually, for the sake of simplicity, when each coefficient 'I belongs to some function space X , we say that ' belongs
to X (and we write ' 2 X ).



24 INTRODUCTION

Notice that the condition l ∏ 2 in the above result is necessary. An analogue result for the case
l = 1 does not hold. Indeed, the case l = 1 corresponds to the gradient equation. Actually, if we
use the following standard identifications: a 0-form u is a function, and its exterior differential
du is identified with ru, a 1-form ∏ is a vector field, and its exterior differential d∏ is identified
with curl∏, then solving du = ∏ for a 1-form ∏ satisfying d∏= 0 amounts to the following: given
a vector field ∏ with curl∏= 0, and whose components are Ld functions, we ask if there exists an
L1 function u such that

ru =∏, on R
d.

Such a function u does not always exists. Clearly, if ∏ :=rv where v is an unbounded function
in Ẇ1,d(Rd), then u°v is constant and hence u is not bounded.

We mention that Theorem 0.10 is a direct consequence of Theorem 0.13 below which was
obtained by quite complicated means. However, even the weaker Theorem 0.10 is interesting on
its own. The natural question here is whether there is a simple(r) proof for this weaker result.
In the case l = d, where the Hodge system reduces to the divergence equation, this is a direct
consequence of Gagliardo’s embedding (see Theorem 0.4 and its proof). In the case 2 ∑ l < d, we
can prove Theorem 0.10 by following the idea in the proof of Theorem 0.4 and the next estimate
(see [33, Theorem 3]):

THEOREM 0.11. Let 1∑ l ∑ d°1. Suppose that f 2 C1
c (Rd) is an l- form such that d f = 0 and

' 2 C1
c (Rd) is a (d° l)-form. Then,

ØØØØ
Z

Rd
f ^'

ØØØØ∑ Ck f kL1(Rd)
∞∞d'

∞∞
Ld(Rd) , (0.35)

where C is a constant independent of f and '.

It turns out that Theorem 0.11 is equivalent to Theorem 0.10 (see [33] for details). The ad-
vantage of the statement of Theorem 0.11, as was shown by Van Schaftingen in [33], is that
(0.35) can be proved by much simpler means than Theorem 0.13. The technique is based on
some embeddings for Morrey spaces. There is also a relative resemblance with the standard
method for proving the classical Gagliardo embedding. In fact, Theorem 0.11 implies the follow-
ing Gagliardo-type embedding for differential forms:

kukLd0 (Rd) . kdukL1(Rd) +
∞∞d§u

∞∞
L1(Rd) ,

for any l-form u, provided that 2 ∑ l ∑ d°2 and the result does not hold for l = 1,d°1 (see [33]
for details). This result was also independently obtained by Lanzani and Stein in [19].

The technique in [3], used in the proof of Theorem 0.5, was developed to a higher level of
generality by the same authors in [4]. The main tool in [4] is a new approximation result (see [4,
Theorem 11]).

THEOREM 0.12. Given ± > 0 and f 2 Ẇ1,d(Rd) there exists some F 2 L1(Rd)\ Ẇ1,d(Rd) such
that, for all j = 1,2, ...,d°1,

∞∞@ j ( f °F)
∞∞

Ld(Rd) ∑ ±k f kẆ1,d(Rd)

and

kFkẆ1,d(Rd) ∑ C± k f kẆ1,d(Rd) ,
kFkL1(Rd) ∑ C± k f kẆ1,d(Rd) ,

for a constant C± that depends only on ± and d.

This approximation result is sufficiently robust so that, using it in conjunction with an iter-
ative method, it is possible to prove existence results for more general Hodge systems than the
divergence equation. It can be applied even to other differential systems (see [33]). We illustrate
how the argument works in the case of Hodge systems. Suppose ∏ is an l-form (where l ∏ 2) on Rd
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with Ld coefficients, satisfying d∏= 0. Then, thanks to Proposition 0.9 we can find an (l°1)-form
' on R

d,

'=
X

Iµ{1,...,d}
|I|=l°1

'I dxI ,

solving d'=∏, such that 'I 2 Ẇ1,d for each I. This ' can be chosen such that
∞∞'I

∞∞
Ẇ1,d(Rd) . k∏kLd(Rd) , for all I. (0.36)

Let ±> 0. Using the approximation result given by Theorem 0.12 and (0.36) we can find, for
each I, a function FI 2 L1(Rd)\Ẇ1,d(Rd) such that

∞∞@ j
°
'I °FI

¢∞∞
Ld(Rd) ∑ ±k∏kLd(Rd) , for all j › I,

and

kFIkẆ1,d(Rd) ∑ C± k∏kLd(Rd) ,
kFIkL1(Rd) ∑ C± k∏kLd(Rd) .

It is possible to apply here Theorem 0.12, thanks to the fact that l ∏ 2. Indeed, since l°1∏ 1,
each set I with |I| = l°1 is nonempty. With no loss of generality, we may assume that d 2 I, and
then the existence of FI follows from Theorem 0.12.

Note that, by definition,

d'=
X

Iµ{1,...,d}
|I|=l°1

X

1∑i∑d
@i'I dxi ^dxI .

Let observe that in the above formula, the expressions like dxi ^dxI are zero if i 2 I. Hence,
we can write

d'=
X

Iµ{1,...,d}
|I|=l°1

X

1∑i∑d
i›I

@i'I dxi ^dxI .

If we set

F :=
X

Iµ{1,...,d}
|I|=l°1

FI dxI ,

and we use the triangle inequality, we get

k∏°dFkLd(Rd) =
∞∞d'°dF

∞∞
Ld(Rd)

∑
X

Iµ{1,...,d}
|I|=l°1

X

1∑i∑d
i›I

∞∞@i'I °@iFI
∞∞

Ld(Rd)

.±k∏kLd(Rd) .

Note that we also have

kFkẆ1,d(Rd) ∑ C± k∏kLd(Rd) ,
kFkL1(Rd) ∑ C± k∏kLd(Rd) .

Hence, if ± is sufficiently small, we have

k∏°dFkLd(Rd) ∑
1
2
k∏kLd(Rd) ,

and

kFkẆ1,d(Rd) ∑ Ck∏kLd(Rd) ,
kFkL1(Rd) ∑ Ck∏kLd(Rd) ,

for some constant C depending only on d.
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Now we can use an iterative method. Let F0 := F. Applying the above result for ∏° dF0

instead of ∏, we obtain an (l°1)-form F1 such that
∞∞∏°dF0 °dF1∞∞

Ld(Rd) ∑
1
2

∞∞∏°dF0∞∞
Ld(Rd) ∑

1
4
k∏kLd(Rd) ,

and F1 satisfies
∞∞F1∞∞

Ẇ1,d(Rd) ∑
C
2
k∏kLd(Rd) ,

∞∞F1∞∞
L1(Rd) ∑

C
2
k∏kLd(Rd) .

Now, as above we approximate ∏°dF0 °dF1 and we find an (l°1)-form F2 such that
∞∞∏°dF0 °dF1 °dF2∞∞

Ld(Rd) ∑
1
2

∞∞∏°dF0 °dF1∞∞
Ld(Rd) ∑

1
8
k∏kLd(Rd) ,

with
∞∞F2∞∞

Ẇ1,d(Rd) ∑
C
4
k∏kLd(Rd) ,

∞∞F2∞∞
L1(Rd) ∑

C
4
k∏kLd(Rd) .

We continue this iteration scheme and we obtain a sequence of (l°1)-forms F0,F1, ...,Fn, ...,
such that

∞∞∏°dF0 ° ...°dFn∞∞
Ld(Rd) ∑

1
2n+1 k∏kLd(Rd) , (0.37)

and
∞∞Fn∞∞

Ẇ1,d(Rd) ∑
C
2n k∏kLd(Rd) , (0.38)

∞∞Fn∞∞
L1(Rd) ∑

C
2n k∏kLd(Rd) . (0.39)

We see that we can define the (l°1)-form

u := F0 +F1 + ...+Fn + ....

Indeed, this series is absolutely convergent in L1 (which is a Banach space) thanks to (0.39).
From (0.38), u also belongs to Ẇ1,d(Rd).

Quantitatively, we have

kukẆ1,d(Rd) ∑ 2Ck∏kLd(Rd) ,
kukL1(Rd) ∑ 2Ck∏kLd(Rd) .

Also, (0.37) implies that du =∏.
To summarize, we have obtained the following (see [4]).

THEOREM 0.13. Let 2 ∑ l ∑ d. If ∏ 2 Ld(Rd) is a l-form with d∏ = 0, then there exists an
(l°1)-form u 2 L1(Rd)\Ẇ1,d(Rd) such that du =∏ on R

d. Also, we can choose u such that

kukL1(Rd) +kukẆ1,d(Rd) . k∏kLd(Rd) .

As we have already mentioned, this result implies in particular Theorem 0.10. Similar results
holds for d§ instead of d.

Observe that Theorem 0.12 gives a result of approximation only for functions of differential
regularity one. A similar approximation result, for higher order Sobolev spaces was obtained by
Bousquet, Russ, Wang, Yung in [6] (2017). Following the ideas in [4], they were able to extend
Theorem 0.12 to the more general case of the homogeneous spaces Ḟd/p,p

q (Rd) (see Section 5 for
their precise definition). More specifically, these authors have proved the following:
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THEOREM 0.14. Consider the parameters 1< p, q <1, Æ := d/p and let k be the largest positive
integer with k<min(p,d). Then, for every ±> 0 there exists a constant C± > 0 depending only on ±,
such that for every function f 2 ḞÆ,p

q (Rd) there exists F 2 L1(Rd)\ḞÆ,p
q (Rd) satisfying the following

estimates:
kX

i=1
k@i( f °F)kḞÆ°1,p

q (Rd) ∑ ±k f kḞÆ,p
q (Rd) ,

kFkL1(Rd) +kFkḞÆ,p
q (Rd) ∑ C± k f kḞÆ,p

q (Rd) .

Note that, for Æ = 1 and p = d, Theorem 0.14 is exactly Theorem 0.12. As a consequence of
Theorem 0.14, we obtain the following result, similar to Theorem 0.13, concerning Hodge systems
[6, Theorem 1.2]:

THEOREM 0.15. Consider the parameters 1< p, q <1, Æ := d/p and let k be the largest positive
integer with k < min(p,d). Let d°k+1 ∑ l ∑ d. If ∏ 2 ḞÆ°1,p

q (Rd) is an l-form with d∏ = 0, then
there exists an (l°1)-form u 2 L1(Rd)\ ḞÆ,p

q (Rd) such that du = ∏ on R
d. Also, we can choose u

such that

kukL1(Rd) +kukḞÆ,p
q (Rd) . k∏kḞÆ°1,p

q (Rd) .

Theorem 0.15 follows from Theorem 0.14, by an iterative argument, in the same way Theorem
0.13 follows from Theorem 0.12.

Hodge systems in H
n. The case of critical function spaces. The results obtained in the

Euclidean framework were generalized, to some extent, to the case of stratified homogeneous
groups. This class of groups is large enough to contain, for example, the Euclidean space Rd and
the Heisenberg group Hn. One attempt of development in this context is due to Chanillo and Van
Schaftingen in [9]. A more elaborated approach was proposed by Wang and Yung [30]. We will
discuss their results in what follows.

In order to give a glimpse of the results in this framework of stratified homogeneous groups,
for the sake of simplicity, we focus on the case of Heisenberg group H

n, which arises quite often
in analysis. Its non-abelian character makes the group Hn quite different from R

d.
Before describing the results obtained in [9] and [30], we quickly recall some basic facts about

H
n. We follow [28, pp. 531–545].

Let n ∏ 1 be an integer. Viewed as a set, we identify Hn with

C
n £R=

©
[≥, t] | ≥ 2Cn, t 2R

™
,

with the usual additive operation. We endow H
n with the multiplicative operation “±” given by

[≥, t]±
£
¥, s

§
:=

£
≥+¥, t+ s+2Im

°
≥ ·¥

¢§
,

where

≥ ·¥ := ≥1¥1 + ...+≥n ·¥n.

We also define a dilation on H
n, different from the one on R

n £Rn £R: if ∏ > 0 and [≥, t] 2Hn

then we set:

∏ [≥, t] :=
£
∏≥,∏2t

§
. (0.40)

The dilation is consistent with the operation “±”, in the sense that

∏
°
[≥, t]±

£
¥, s

§¢
= (∏ [≥, t])±

°
∏

£
¥, s

§¢
.

One can verify that Hn endowed with the operation “±” is a non-abelian group, with identity
[0,0] and the inverse in given by the rule [≥, t]°1 = [°≥,°t]. It also turns out that Hn is a Lie
group. Its Lie algebra hn is generated by the following 2n+1 left-invariant vector fields:

X j := @

@xj
+2yj

@

@t
, Yj := @

@yj
°2xj

@

@t
, for j = 1,2, ...,n,
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and

T := @

@t
.

Note that we have the commutation relations
£
X j, Xk

§
=

£
Yj,Yk

§
= 0, for j,k = 1,2, ...,n,

and
£
Yj, Xk

§
= 4± jkT,

where ± jk = 1 if k = j, and ± jk = 0 if k 6= j. Notice that, if we are allowed to take commutators of
vector fields and linear combinations, then the 2n vector fields X1, ..., Xn,Y1, ...,Yn are sufficient
in order to generate the full Lie algebra hn.

After introducing the above vector fields, we can now define homogeneous Sobolev spaces on
H

n similar to the usual ones defined on R
d. First, by identifying Hn with the set Rn £Rn £R, any

function f defined on Hn can be seen as a function on Rn£Rn£R. With this identification, we will
say that a function f is Schwartz on Hn if f is Schwartz on Rn£Rn£R. Similarly, by distributions
on H

n we mean distributions on R
n £Rn £R. Also, for each 1 ∑ p ∑1 we let Lp (Hn) be the usual

space Lp (Rn £Rn £R). Next, we define the seminorm of the Sobolev space ṄLk,p (Hn), where k is
an nonnegative integer. For this purpose, we consider the subgradient on H

n defined by

rb := (X1, ..., Xn,Y1, ...,Yn) .

Then, the ṄL1,p (Hn)-seminorm is given by (the possibly infinite quantity)

k f kṄL1,p(Hn) := krb f kLp(Hn) ,

for any distribution f on H
n.

For k ∏ 2, the ṄLk,p (Hn)-seminorm is given by the recurrence formula

k f kṄLk,p(Hn) := krb f kṄLk°1,p(Hn) ,

for any distribution f on H
n.

The function space ṄLk,p (Hn) consists of distributions on Rn£Rn£R for which the ṄLk,p (Hn)-
seminorm is finite. E.g., we have

ṄL1,p(Hn) := { f 2D
0(Hn) | rb f 2 Lp}.

In order to parallel the theory on R
d, we next recall few facts related to differential forms

on H
n. We follow [28, pp. 594–595]. Let dz1, ...,dzn be the basic (0,1)-forms on H

n, where
z j := xj + i yj. If I =

©
j1, ..., jq

™
, with 1∑ j1 < ...< jq ∑ n, we write

dzI := dz j1 ^ ...^dz jq .

Suppose 1∑ q ∑ n is given. An expression of the form
X

|I|=q
fI dzI ,

where fI are some complex-valued functions on H
n, will be called (0, q)-form. We formally define

the operator @b by the relation

@b

√
X

|I|=q
fI dzI

!

:=
nX

j=1

X

|I|=q
Z j ( fI)dz j ^dzI ,

where Z j are the left-invariant Cauchy-Riemann operators defined by

Z j := @

@z j
° iz j

@

@t
.

Let @
§
b be the formal adjoint of @b. Thus @

§
b is characterized by the equality

D
@
§
b f , g

E
:=

D
f ,@b g

E
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for any smooth (0, q)-form f and any smooth (0,(q°1))-form g in L2(Hn). Here, for any two (0, q)-
forms ' and √ in L2(Hn), their scalar product is defined by

h',√i :=
X

|I|=q

Z

Rn

Z

Rn

Z

R

'I√I dxdydt

Let Q := 2n + 2. This number is the homogeneous dimension of Hn, and differs from the
dimension of Hn, which is 2n+1. As we will see below, this homogeneous dimension plays, to
some extent, the role of the space dimension in the Euclidean setting.

To illustrate this, let us investigate the behaviour of the homogeneous space ṄL1,Q (Hn) under
the action of the group of dilations. Suppose e.g. that f is a Schwartz function on Rn£Rn£R=R2n£
R and ∏> 0 is given. We define f∏ by

f∏(≥, t) := f (∏ [≥, t])= f
°£
∏≥,∏2t

§¢
.

We have

k f∏kQ
ṄL1,Q (Hn)

=
Z

R2n

Z

R

ØØrb
°
f
°£
∏≥,∏2t

§¢¢ØØQ d≥dt

=∏Q
Z

R2n

Z

R

ØØrb f
°£
∏≥,∏2t

§¢ØØQ d≥dt

=
Z

R2n

Z

R

ØØrb f
°£
∏≥,∏2t

§¢ØØQ d (∏≥)d
°
∏2t

¢

=
Z

R2n

Z

R

|rb f ([≥, t])|Q d≥dt,

i.e., k f∏kṄL1,Q (Hn) = k f kṄL1,Q (Hn). The same type of invariance holds in the case of L1 (Hn). From
this point of view, the pair of spaces ṄL1,Q (Hn) and L1 (Hn) behave like their Euclidean counter-
parts: Ẇ1,d (Rn) and L1 °

R
d¢

. We will see that this is not a coincidence.
We have the following analogue of Theorem 0.10, which can be deduced from the work [9] of

Chanillo and Van Schaftingen (see [32]).

THEOREM 0.16. Suppose n ∏ 3 is an integer and consider Q := 2n+2. Let r be an integer with
1∑ r < n°1. For any (0, r)-form ' in ṄL1,Q (Hn), there exists a (0, r)-form Y in L1 (Hn) such that

@
§
bY = @

§
b'

and

kY kL1(Hn) .
∞∞∞@

§
b'

∞∞∞
LQ (Hn)

.

Note that, in the case of Hn, the critical homogeneous Sobolev space ṄL1,Q (Hn) plays the
same role as Ẇ1,d °

R
d¢

plays in the case of Rd.

Following the ideas in [4], Wang and Yung proved in [30] an analogue of Theorem 0.12 for the
case of stratified homogeneous groups.3 Adapted to Hn, their result reads as follows.

THEOREM 0.17. Suppose J1, J2 Ω {1, ...,n} are two nonempty sets such that |J1|+ |J2|∑ 2n°1.
Then, for any Schwartz function f on H

n and any ±> 0 there exists a function F such that:

X

j2J1

∞∞X j( f °F)
∞∞

LQ (Hn) +
X

j2J2

∞∞Yj( f °F)
∞∞

LQ (Hn) ∑ ±krb f kLQ (Hn)

and

kFkL1(Hn) +krbFkLQ (Hn) ∑ C± krb f kLQ (Hn) ,

where C± is a constant depending only on ±.

3The definition and some important properties of these groups, which include the Heisenberg group H
n, will be

recalled in Chapter 5.
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The iterative method used in conjunction with Theorem 0.17 leads to the following improve-
ment of Theorem 0.16.

THEOREM 0.18. Suppose n ∏ 3 is an integer. Let r be an integer with 1 ∑ r < n°1. For any
(0, r)-form ' in ṄL1,Q (Hn), there exists a (0, r)-form Y in L1 (Hn)\ ṄL1,Q (Hn) such that

@
§
bY = @

§
b'

and

kY kL1(Hn) +kY kṄL1,Q (Hn) .
∞∞∞@

§
b'

∞∞∞
LQ (Hn)

.

Note that Theorem 0.17 and Theorem 0.12 only concern functions of differential regularity
one. We will study in Chaper 5 higher order analogues of these results, in the more general
context of stratified homogeneous groups.

3. Short description of the main contributions of the thesis

This manuscript is based on the following articles:
1. On the existence of vector fields with nonnegative divergence in rearrangement-invariant spaces,

Indiana Univ. Math. J. 69, 87-104, 2020.
This will form the content of Chapter 1.

2. On the representation as exterior differentials of closed forms with L1-coefficients, C. R. Math.
Acad. Sci. Paris, 357(4) :355-359, 2019.

This will form the content of Chapter 2.
3. The divergence equation with L1 source, accepted at Annales de la Faculté des Sciences de

Toulouse.
This will form the content of Chapter 4.

4. Approximation of critical regularity functions on stratified homogeneous groups, accepted at
Communications in Contemporary Mathematics.

This will form the content of Chapter 5.
5. Minimal BV-liftings of W1,1 °

≠,S1¢ maps in 2D are “often” unique, in press at Nonlinear Anal-
ysis.

This will form the content of Chapter 7.
6. Chapters 3 and 6 are original contributions that will not be published elsewhere.
7. Chapter 8 is the basis of a manuscript in preparation.

Part I. Hodge systems with “pathological” source terms. In this part, we study under-
determined Hodge systems whose source terms are in L1 or L1, or are nonnegative measures.
Many of the results that we obtain are negative results, concluding to the nonexistence of solu-
tions with the maximal expected regularity. We also present several positive existence results, of
slightly rougher solutions, that illustrate the sharpness of the nonexistence results.

Chapter 1. In this chapter, our goal was to generalise Theorem 0.8, by replacing the Lp

spaces with more general rearrangement-invariant spaces (r. i. for short). Without providing
here a definition of these spaces, we mention few examples of widely used function spaces that
are r. i.: the Lebesgue spaces Lp, the Lorentz spaces Lp,q (1 ∑ p <1, 1 ∑ q ∑1) and the Orlicz
spaces © (L).

Our first result is the following.

THEOREM 0.19. Let µ be a nonnegative Radon measure on Rd, and X an r. i. space of functions
on R

d such that |x|1°d
1Bc does not belong to X. If the equation divF = µ has a solution F 2

X (Rd,Rd), then µ¥ 0.
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(Here, Bc is the complement of the unit ball and 1Bc is its characteristic function.)
Let us observe that in the case where X = Lp, the condition “|x|1°d1Bc does not belong to X ” is

equivalent to the fact that 1 ∑ p ∑ d0, and thus Theorem 0.8 follows from Theorem 0.19. Indeed,
we have

Z

Rd

ØØØ|x|1°d
1Bc (x)

ØØØ
p

dx =
Z

Bc

1
|x|(d°1)p dx,

and this integral is divergent if and only if 1∑ p ∑ d0.
The proof of Theorem 0.19 is elementary and uses only basic properties of the r. i. spaces. The

main argument relies on a decomposition of Rd in dyadic shells and is similar to the argument
we presented above, leading to the proof of Theorem 0.8.

Furthermore, we show that the condition “|x|1°d
1Bc does not belong to X ” in the above theorem

is sharp. Indeed, let ¡ be a non trivial nonnegative function in L1
c (Rd) and set µ := ¡m (where

m is the Lebesgue measure), so that µ is a non trivial positive measure. If |x|1°d
1Bc 2 X , then we

prove that the equation divF =µ has a solution F in X (Rd,Rd).
Next, we are interested in obtaining some explicit (i.e., we construct F) and quantitative (i.e.,

we estimate F) versions of Theorem 0.19. In this direction, we obtain the following result.

THEOREM 0.20. Let X be a r. i. space of functions on Rd such that 0<ÆX ∑ÆX < 1. If (0.21) has
a solution F 2 X (Rd,Rd), then I1µ 2 X. Moreover, there exists a constant CX > 0 only depending on
X such that

∞∞I1µ
∞∞

X ∑ CX kFkX . (0.41)

Here, ÆX and ÆX are the Boyd indexes of X ; their definition will be recalled in Chapter 1. We
mention that in the case X = Lp both Boyd indexes of X are equal to 1/p. On the other hand, I1
is the 1-Riesz potential, whose action is given by

I1µ(x) :=
Z

Rd

dµ(y)
|x° y|d°1 .

Note that (0.41) is a lower bound for F.
The latter result is obtained by following the ideas in Phuc and Torres in [24]. In our case, we

rely on the Calderón-Zygmund theory for r. i. spaces. Formally, we have from (0.21) that

I1µ= R1F1 + ...+RdFd, (0.42)

where R1, ...,Rd are the Riesz transforms on R
d. The heart of the proof consists of justifying

(0.42); this can be achieved under the assumptions on F and on the Boyd indexes.
We also establish a partial converse of Theorem 0.20.

THEOREM 0.21. Let X be a r. i. space of functions on R
d with the property that whenever µ is

a signed Radon measure on R
d with µ= divF for a vector field F 2 X (Rd,Rd), we have that I1µ

+,
I1µ

° are finite a.e., I1µ 2 X and
∞∞I1µ

∞∞
X ∑ CX kFkX for a positive constant CX . Then 0<ÆX ∑ÆX <

1.

The above theorem is quite technical and relies on the properties of the Calderón operator (for
a definition see Chapter 1).

A common difficulty related to the proofs of the results in this chapter is the lack of explicit
expressions for the r. i. norms.

Chapters 2 and 3. We consider the Hodge system

d∏= f , in R
d, (0.43)

where f and ∏ are l and (l °1)-forms respectively, with f given and satisfying the compatibility
condition d f = 0. We focus on the case where f has L1 coefficients.
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In the case l = d, (0.43) becomes the divergence equation. It was first shown by Wojciechowski
in [31] that there exists g 2 L1

c(Rd), with zero integral, such that the equation divY = g has no
solution Y 2W1,1

loc (Rd;Rd).
In Chapters 2 and 3, we prove a similar nonexistence result for all the Hodge systems for

which 1 < l ∑ d: there exists an l-form f 2 L1
c with d f = 0 such that there is no (l ° 1)-form

∏ 2 W1,1
loc satisfying (0.43). Both proofs are based on reducing the problem to the case of the

divergence equation. Roughly speaking, we deal in both proofs with assertions of the following
form. There exists a subspace V of Rd such that any g 2 L1

c(V ) can be written as

divY = g+R, on V (0.44)

for some Y 2 W1,1
loc (V ) and a remainder term R. The idea is to show that this remainder is negli-

gible in some sense and eventually can be eliminated. In other words, we reduce (0.44) to

divY 0 = g, on V

for some Y 0 2 W1,1
loc . After showing this, we can use the above negative result for the divergence

equation in order to get a contradiction.
The proof in Chapter 2 is elementary. It uses, as a key tool, the hypoellipticity of the Lapla-

cian. We show in this case that the remainder R is C2
c . The proof in Chapter 3 is less elementary,

however, it is more compact. It uses, as a key tool, the boundedness of the Calderón-Zygmund
operators on the homogeneous Besov spaces. In this case we show that a Besov norm of R is
small and by a limiting argument we conclude that R can be eliminated. (The Appendix of Chap-
ter 3 contains another proof of the same nonexistence result, which is more elementary than the
previous ones. The proof is based on a “compactness” argument which reduces the problem to its
easier version on T

d.)
On the other hand, we mention that Bourgain and Brezis proved in [3] the following stronger

nonexistence result for the divergence equation: there exists g 2 L1
c(Rd) with zero integral, such

that the equation divY = g has no solution Y 2 Ld/(d°1)
loc (Rd;Rd). In view of the embedding W1,1

loc ,!
Ld/(d°1)

loc , this improves the result of Wojciechowski ([31]).
We show in Chapter 2 that an analogous result in the case 1 ∑ l < d does not hold. More

precisely, if 1 ∑ l < d, then for any l-form f 2 L1
c with d f = 0 there exists an (l °1)-form ∏ 2 Ld0

loc
satisfying (0.43). This result is a direct consequence of (0.35).

Chapter 4. In this chapter, we come back to the divergence equation. We give a new proof of
the following classical result of Preiss and McMullen: there exists g 2 L1(Td), with zero integral,
such that the equation divY = g has no solution Y 2 W1,1(Td;Rd). Our proof is based on the
Riesz products technique introduced by Wojciechowski in [31] for the study of the divergence
equation with L1 sources. We show that his idea is also suitable, after minor modifications and
simplifications, in the case of L1 sources. Our proof is short, more elementary than the one in
[31] and yields a significant improvement of the above mentioned result of Preiss and McMullen,
which does not seem to be attainable with their respective methods.

More specifically, we introduce the function spaces S∏ defined on T
2 as follows:

S∏

°
T

2¢ :=
(

f 2D
0(T2)

ØØØØØ sup
n2Z2

ØØ f̂ (n)
ØØ

∏ (|n|)
<1

)

,

where ∏ :N! (0,1) is a given decreasing function such that ∏ (k)! 0 when k !1.
Our result is the following.

THEOREM 0.22. Suppose ∏ : N! (0,1) is decreasing to 0. There exists g 2 L1(T2) such that
there are no f0, f1, f2 2 S∏

°
T

2¢ with @2 f2 2 L1(T2) and

g = f0 +@1 f1 +@2 f2.
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In order to give an idea about the meaning of this result, let us fix a small " > 0. We see
immediately that the Sobolev space H"(T2) is embedded in S∏

°
T

2¢ for ∏ (|n|) = 1/(1+|n|)". Our
result implies that even the weak regularity condition f0, f1, f2 2 H"(T2), @2 f2 2 L1(T2) rules out
the existence of a solution for the above equation with general L1 source g. Intuitively speaking,
we do not have, in general, a solution of this equation such that f0, f1 and f2 are even “slightly
better than L1”.

Part II. Hodge systems in critical function spaces. In this part we study underdeter-
mined Hodge systems for which classical regularity theory provides solutions in Sobolev spaces
which are “critical for the Sobolev embedding”, in the sense that they “almost” embed into L1.
We show that in this case it is possible to obtain solutions that are both bounded and with the
expected Sobolev regularity. In the first chapter of this part, we study an approximation prop-
erty of functions on stratified homogeneous groups. This property implies the above mentioned
existence result for Hodge systems. In the second chapter, we prove the existence of bounded and
critically smooth solutions to Hodge systems with Dirichlet boundary conditions on Euclidean
domains.

Chapter 5. The purpose of this chapter is to find a common roof to Theorem 0.17 and Theo-
rem 0.14 and to give an affirmative answer to Open question 1.4 in [6].

Following closely the ideas in [30], we define some natural homogeneous spaces of Triebel-
Lizorkin type on stratified homogeneous groups. We mention that, in the non Euclidean setting,
it is common to have different, non equivalent definitions of function spaces. Spaces similar
to ours were already introduced in the literature (see, for example [16]). However, our proofs
concerning the properties of these spaces are more elementary and also their construction is
more flexible than the previous one, and well adapted to our purposes.

Following the proof structure in [6], we were able to prove an approximation result very
similar to Theorem 0.14 in the context of stratified homogeneous groups and concerning the
Triebel-Lizorkin spaces that we have introduced. This generalizes both results of Theorem 0.14
and Theorem 0.17.

The definition and some basic properties of stratified homogeneous groups will be given in
Chapter 5. For the sake of simplicity, we specialize here to the “concrete” case of the Heisenberg
group Hn.

To start with, we sketch our definition of homogeneous Triebel-Lizorkin spaces on H
n. Let

n ∏ 1 and let Q := 2n+2 be the homogeneous dimension of Hn. If § is a Schwartz function on H
n

and j is an integer, we write § j for the function given by

§ j(x) := 2 jQ§(2 j x), x 2Hn.

Recall that here, 2 j x is the group dilation of x with the factor 2 j, i.e., if x = [≥, t] 2 Hn, then
2 j x =

£
2 j≥,22 j t

§
(see (0.40)).

Fix s ∏ 0, p, q 2 (1,1). We define the space Ḟ s,p
q (Hn) as being formed by the tempered distri-

butions f on R
n £Rn £R=R2n+1 for which the following seminorm

k f kḞs,p
q (Hn) :=

∞∞∞∞∞∞

√
X

j2Z
2s jq

ØØØ§1
j f

ØØØ
q
!1/q

∞∞∞∞∞∞
Lp

(0.45)

is finite. Here, §1 :=
°
§1,a¢

a2A is an adapted finite family of Schwartz functions on R
2n+1; its

construction is part of the theory (see Proposition 0.23 below). The quantity
ØØØ§1

j f
ØØØ is defined by

ØØØ§1
j f

ØØØ :=
X

a2A

ØØØ§1,a
j f

ØØØ ,

where

§1,a
j f (x) :=

Z

R2n+1
f (x± y°1)§1,a

j (y)d y,
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for all a 2 A. In other words, §1,a
j f = f §§1,a

j , where “§” is the convolution on the group Hn.

The definition (0.45) is very similar to the definition of classical homogeneous Triebel-Lizorkin
spaces on R

d via Littlewood-Paley decomposition formula. However, in our situation, the exis-
tence of a Littlewood-Paley decomposition having all the expected properties is a delicate matter.

The existence of the above family §1is a consequence of the following result.

PROPOSITION 0.23. Given m 2 N, there exist finite Schwartz families §1 =
°
§1,a¢

a2A, §2 =°
§2,a¢

a2A, §3 =
°
§3,a¢

a2A on R
2n+1 such that, for all a 2 A,

Z

R2n+1
P(x)§1,a(x)dx =

Z

R2n+1
P(x)§2,a(x)dx =

Z

R2n+1
P(x)§3,a(x)dx = 0,

for all the polynomials P of degree ∑ m and such that for all Schwartz functions f we have

f =
X

j2Z

X

a2A
f §§1,a

j §§2,a
j §§3,a

j

the convergence being in any Lp(R2n+1) for any 1< p <1.

When we define, via (0.45), spaces Ḟ s,p
q (Hn) of regularity s ∏ 0, §1 is as in the above proposi-

tion, and m is any integer > s.

This leaves the possibility that these spaces depend on §1 and m. It turns out that this is not
the case: any triple of families §1, §2, §3 and any integer m > s as in the above proposition will
lead to the definition of the same space Ḟ s,p

q (Hn).

Also, we mention that, whenever k is a nonnegative integer and 1 < p < 1 we have the
pleasant identity, reminiscent of the famous square function theorem in the Euclidean case:

Ḟk,p
2 (Hn)= ṄLk,p(Hn),

with equivalent seminorms. This is a key identity that permits us to view our approximation
result as a generalization of Theorem 0.17.

The use of a decomposition formula with three convolutions, as the one above, turns out to be
very convenient. It enables us to handle the estimates required in the proof of our approximation
result.

On H
n, our main result reads as follows.

THEOREM 0.24. Let Q := 2n+2 and consider the parameters 1 < p, q <1, Æ := Q/p. Suppose
J1, J2 Ω {1, ...,n} are two nonempty sets such that |J1|+ |J2| < min(p,2n). Then, for any Schwartz
function f on H

n and any ±> 0 there exists a function F such that:

X

j2J1

∞∞X j( f °F)
∞∞

ḞÆ°1,p
q (Hn) +

X

j2J2

∞∞Yj( f °F)
∞∞

ḞÆ°1,p
q (Hn) ∑ ±krb f kḞÆ,p

q (Hn)

and

kFkL1(Hn) +kFkḞÆ,p
q (Hn) ∑ C± krb f kḞÆ,p

q (Hn) ,

where C± is a constant depending only on ±.

Note that, if we let Æ := 1 and p :=Q in the above theorem, we recover Theorem 0.17.

In general, when proving Theorem 0.24, apart from the difficulties that were already present
in the Euclidean case, the problems that arise are related to the noncommutativity of convolu-
tions and the noncommutativity of the vector fields.
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Chapter 6. We prove a version of Theorem 0.15 for the exterior differential operator with
Dirichlet boundary condition on smooth bounded domains. More precisely, we obtain the follow-
ing result.

THEOREM 0.25. Let ≠ be a smooth bounded domain in R
d. Let 1∑ l ∑ d°2 be an integer and

consider the parameters d° l < p <1, 1< q <1, Æ := d/p. Suppose ∞ 2 C(@≠)\BÆ°1/p,p
p (@≠) is an

l-form and v 2 FÆ,p
q (≠) is an l-form satisfying ∫^dv = ∫^d∞ on @≠. Then, there exists an l-form

u 2 C(≠)\FÆ,p
q (≠) such that

(
du = dv, on ≠
u = ∞, on @≠

.

Moreover, u can be chosen such that

kukL1(≠) +kukFÆ,p
q (≠) .

∞∞∞
∞∞

L1(@≠) +
∞∞∞

∞∞
BÆ°1/p,p

p (@≠) +kvkFÆ,p
q (≠) .

Here, ∫ is the 1-form on @≠ given by

∫=
dX

j=1
∫ jdxj,

where the vector ∫= (∫1, ...,∫d) is the outward unit normal to @≠.
We note that the compatibility condition ∫^dv = ∫^d∞ in the sense of distributions on @≠ is

meaningful.
Theorem 0.25 extends the result of Theorem 0.7 to other Hodge systems. The method we use

is adapted after the method used in [5, Section 7].

Part III. Miscellaneous. In the first chapter, we investigate the uniqueness of minimal
liftings of Sobolev mappings with values into the unit circle. We prove that, in 2D, minimal
liftings are “generically” unique. In the second chapter, investigate the properties of the Fourier
multipliers on the homogeneous Sobolev space Ẇ l,1.

Chapter 7. In this chapter we study the equation

u = ei' on ≠. (0.46)

Here, ≠ is a smooth, bounded and simply connected domain in R2 and u 2W1,1 °
≠,S1¢ is given.

It is known that there exists a BV -lifting of u on≠, i.e., there exists ' 2 BV (≠,R) satisfying (0.46)
(for example see [8]). A BV -lifting with minimal BV -seminorm is called a minimal BV -lifting.

We are going to answer the following question raised in [8]: is the set of functions u 2
W1,1 °

≠,S1¢ which admit a unique (mod2º) minimal BV -lifting, residual in W1,1 °
≠,S1¢?

We prove that more is true: roughly speaking, most of the functions u 2 W1,1 °
≠,S1¢ with

a fixed number of singularities have unique (mod2º) minimal BV -lifting. More precisely, we
establish the following result.

THEOREM 0.26. Suppose ≠ is a smooth, bounded and simply connected domain in R
2. Let

k be a positive integer. The set of vectors a = (a1, ...,ak) 2 ≠k for which each u 2 W1,1 °
≠,S1¢\

C(≠\{a1, ...,ak}) admits a unique minimal BV-lifting is of full measure in ≠k.

We prove this result by reducing the problem to a geometrical one. For each u as above we
spot a set of “geometrical structures” that determine whether or not u has a minimal lifting.
Thanks to a sort of rigidity of these “structures”, they fail to be “good” only in few cases. In this
way Theorem 0.26 reduces to the following elementary looking fact:

PROPOSITION 0.27. Let ≠Ω R2 be an open set such that ≠ 6=;,R2, and k 2N§. For almost all
X = (x1, ..., xk) 2≠k we have that the numbers dist(xi,@≠), 1 ∑ i ∑ k and

ØØxi ° xj
ØØ, 1 ∑ i < j ∑ k are

linearly independent over Z and each xi has a unique projection on @≠.
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The main idea that enters in the proof of this fact is to show that each nontrivial linear
combination over Z of the elements dist(xi,@≠) and

ØØxi ° xj
ØØ, as above, cannot vanish apart from

a Lebesgue null set in ≠k. Once we have this, we can obtain Proposition 0.27 by using the fact

that ZN , where N := k+
√
k
2

!

, is a countable set.

Chapter 8. We study the continuity of multipliers of some “pathological” homogeneous Sobolev
spaces. Suppose l ∏ 0 is an integer and 1∑ p ∑1. A measurable function m :Rd !C is a Fourier
multiplier on Ẇ l,p °

R
d¢

if there exists a bounded operator

Tm : Ẇ l,p
≥
R

d
¥
! Ẇ l,p

≥
R

d
¥
,

such that
ÉTm f = m bf ,

for any Schwartz function f on R
d.

Bonami and Poornima [25] proved in 1982 that the only Fourier multipliers on Ẇ1,1 °
R

d¢
which

are homogeneous functions of degree zero are the constant functions. More precisely, they proved
the following (see [25, Theorem 2.9]):

THEOREM 0.28. Suppose d ∏ 2 and let ≠ be a continuous function on R
d\{0}, homogeneous of

degree zero. If ≠ is a Fourier multiplier on Ẇ1,1 °
R

d¢
, then ≠ is a constant.

This result was generalized by Kazaniecki and Wojciechowski in 2013 as follows (see [17,
Theorem 1.1]):

THEOREM 0.29. Suppose d ∏ 2. If m is a Fourier multiplier on Ẇ1,1 °
R

d¢
, then m 2 Cb

°
R

d¢
.

We follow the ideas in [17] in order to prove a generalisation of this theorem for the case of
Ẇ l,1 °

R
d¢

, where l ∏ 1. We also deal with multipliers on Ẇ l,1 °
R

d¢
.

Our results are the following:

THEOREM 0.30. Suppose d ∏ 2 and l ∏ 1 are some integers. If m is a Fourier multiplier on
Ẇl,1 °

R
d¢

, then m 2 Cb
°
R

d¢
.

THEOREM 0.31. Suppose d ∏ 2 and l ∏ 1 are some integers. If m is a Fourier multiplier on
Ẇl,1 °

R
d¢

, then m 2 Cb
°
R

d¢
.

As in [17], our proof relies on Riesz products. However, our approach is more elementary than
the one in [17].

The methods we use here are reminiscent of those in Chapter 4. For example, if m is a
multiplier on Ẇ l,1, we prove that for any bounded continuous function f there exists functions
(gÆ)|Æ|=l in L1 such that

@l
1Tm f =

X

|Æ|=l
rÆgÆ,

in the sense of distributions. In order to prove Theorem 0.31, we show that, if m is not a contin-
uous function, then there exists f as above for which this equation does not have solutions.

4. In short

In this manuscript, we study the existence of solutions to Hodge systems when the source
term belongs to various function spaces. The Hodge systems are in general underdetermined
and, in this framework, we mainly study two types of problems. First one is to decide whether
or not the Hodge systems admit solutions with the expected regularity when the source term
is “pathological” in some sense. By this we mean the situations in which standard Calderón-
Zygmund theory cannot be applied. Secondly, we are interested in finding solutions more regular
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than the solutions provided by Calderón-Zygmund theory. Roughly speaking, when the stan-
dard theory provides a solution in a critical Sobolev space, we aim to obtain a solution which is
simultaneously in this critical Sobolev space and bounded.

One particular case of Hodge system is the divergence equation on the Euclidean space. For
this equation, the first problem addressed was the existence of solutions in W1,p

loc , with p = 1 or 1,
when the source is in Lp

loc. The answer is negative both in L1 (Wojciechowski, Bourgain-Brezis)
and in L1 (Preiss, McMullen). We show similar results for more general Hodge systems. Also,
we obtain a substantial improvement of the nonexistence result for the divergence equation with
L1 sources.

Concerning the second type of problem, the answer was known to be positive, in the Euclidean
case, for a large class of Hodge systems and critical Sobolev-type spaces. This was possible thanks
to a new type of approximation result of functions in critical Sobolev spaces. This approximation
result was proved by Bourgain and Brezis, for spaces of regularity one, and extended to higher
regularity spaces by Bousquet, Russ, Wang and Yung. The regularity one case was also settled in
the framework of stratified homogeneous groups by Wang and Yung. We prove a similar approx-
imation result in the general setting of stratified homogeneous groups for functions in critical
Sobolev-type spaces defined on these groups. For this purpose we define homogeneous spaces
of Triebel-Lizorkin type on stratified homogeneous groups that are similar to the classical ones
defined on the Euclidean space.

In a different direction, we study the existence of solutions F of divF = µ in rearrangement-
invariant spaces, when the source µ is a nonnegative Radon measure. Our results generalize
previous ones of Phuc and Torres, obtained for Lp spaces.

We also investigate the uniqueness of minimal BV -liftings of W1,1(≠,S1) maps. Here, S1 is
the unit circle and ≠ is a 2-dimensional smooth, bounded, simply connected domain. It is well-
known that each map in W1,1 °

≠,S1¢ has BV -liftings. We prove that “almost all” the maps in
W1,1 °

≠,S1¢ have unique minimal BV -liftings.
Finally, we study some properties of the Fourier multipliers on the homogeneous Sobolev

spaces Ẇ l,1 and Ẇ l,1.

5. Some notation concerning the function spaces used

Apart for some very common notation, we use also the following:
1. Cb

°
R

d¢
is the space of the continuous bounded functions on R

d.
2. C1

c
°
R

d¢
is the space of compactly supported C1 functions on R

d.
3. Lp

c (Rd) (with 1∑ p ∑1) is the space of compactly supported Lp functions on R
d.

4. Ẇk,p(Rd) (with k ∏ 0 is an integer and 1∑ p ∑1) is the homogeneous Sobolev space consisting
of those distributions f on Rd for which rk f 2 Lp(Rd). The space Ẇk,p(Rd) is endowed with the
following seminorm

k f kẆk,p(Rd) :=
∞∞∞rk f

∞∞∞
Lp(Rd)

.

5. Consider a radial function ' 2 C1
c

°
R

d¢
such that supp'Ω B(0,2) and '¥ 1 on B(0,1). For j 2Z

we define the operators P j, acting on the space of tempered distributions on Rd, by the relation

ÅP j f (ª) :=
µ
'

µ
ª

2 j

∂
°'

µ
ª

2 j°1

∂∂
bf (ª) ,

for any Schwartz function f on R
d. We will also consider the operator P∑0 defined by

P∑0 f
V

(ª) :=' (ª) bf (ª)
for any Schwartz function f on R

d. The operators P∑0, P j will be called Littlewood-Paley
“projections” adapted to Rd. For any Schwartz function f we have that

f =
X

j2Z
P j f ,
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in the sense of tempered distributions.
6. Fs,p

q
°
R

d¢
(with 1∑ p, q <1 and s a real number) is the inhomogeneous Triebel-Lizorkin space

consisting of those tempered distributions f on R
d for which the following norm is finite.

k f kFs,p
q (Rd) := kP∑0 f kLp(Rd)+

∞∞∞∞∞∞

√
X

j∏0
2s jq ØØP j f

ØØq
!1/q

∞∞∞∞∞∞
Lp(Rd)

.

A remarkable fact is that, if k ∏ 0 is an integer and 1 < p <1, then Fk,p
2

°
R

d¢
= Wk,p(Rd)

with equivalent norms.
7. Bs,p

q
°
R

d¢
(with 1∑ p, q ∑1 and s a real number) is the inhomogeneous Besov space consisting

of those tempered distributions f on R
d for which the following seminorm is finite.

k f kBs,p
q (Rd) := kP∑0 f kLp(Rd)+

√
X

j∏0
2s jq ∞∞P j f

∞∞q
Lp(Rd)

!1/q

.

8. Ḟ s,p
q

°
R

d¢
(with 1 ∑ p, q <1 and s a real number) is the homogeneous Triebel-Lizorkin space

consisting of those tempered distributions f on R
d for which the following seminorm is finite.

k f kḞs,p
q (Rd) :=

∞∞∞∞∞∞

√
X

j2Z
2s jq ØØP j f

ØØq
!1/q

∞∞∞∞∞∞
Lp(Rd)

.

A remarkable fact is that, if k ∏ 0 is an integer and 1 < p <1, then Ḟk,p
2

°
R

d¢
= Ẇk,p(Rd)

with equivalent norms.
9. Ḃs,p

q
°
R

d¢
(with 1∑ p, q ∑1 and s a real number) is the homogeneous Besov space consisting of

those tempered distributions f on R
d for which the following seminorm is finite.

k f kḂs,p
q (Rd) :=

√
X

j2Z
2s jq ∞∞P j f

∞∞q
Lp(Rd)

!1/q

.

10. One can also define Littlewood-Paley operators P j in the case of Td. For each j 2N we define
the operators P j, given by

ÅP j f (n) := 1{2 j°1∑|n|1<2 j}(n) bf (n),

for any distribution f on T
d. Here, |n|1 := max1∑i∑d |ni|. The operators P j will be called

Littlewood-Paley projections adapted to Td. Notice that each P j is a genuine projection: P2
j =

P j. We have the identity

f =
X

j∏0
P j f ,

for any distribution f on T
d.

11. Fs,p
q

°
T

d¢
(with 1 ∑ p, q <1 and s a real number) is the homogeneous Triebel-Lizorkin space

consisting of those distributions f on T
d for which the following seminorm is finite.

k f kFs,p
q (Td) :=

∞∞∞∞∞∞

√
X

j∏0
2s jq ØØP j f

ØØq
!1/q

∞∞∞∞∞∞
Lp(Td)

.

A remarkable fact is that, if k ∏ 0 is an integer and 1< p <1, then Fk,p
2

°
T

d¢
= Wk,p(Td).

12. Bs,p
q

°
T

d¢
(with 1 ∑ p, q ∑1 and s a real number) is the homogeneous Besov space consisting

of those distributions f on T
d for which the following seminorm is finite.

k f kBs,p
q (Td) :=

√
X

j∏0
2s jq ∞∞P j f

∞∞q
Lp(Td)

!1/q

.

In what follows, ≠ is a domain in R
d.
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13. C1
c (≠) is the space of C1 functions which are compactly supported in the domain ≠.

14. Wk,p
0 (≠) (with k ∏ 0 an integer and 1∑ p ∑1) is the closure of C1

c (≠) under the Wk,p-norm.
15. Fs,p

q (≠) (with 1 ∑ p, q <1 and s a real number) is the space consisting of restrictions to ≠ of
elements from Fs,p

q
°
R

d¢
, normed with

k f kFs,p
q (≠) := inf

n
kgkFs,p

q (Rd) | g 2 Fs,p
q (Rd), g = f on ≠

o
.

16. Bs,p
q (≠) (with 1 ∑ p, q ∑1 and s a real number): is the space consisting of restrictions to ≠ of

elements from Bs,p
q

°
R

d¢
, normed with

k f kBs,p
q (≠) := inf

n
kgkBs,p

q (Rd) | g 2 Bs,p
q (Rd), g = f on ≠

o
.

For more details, see [29].
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Part 1

Hodge systems with “pathological” source terms





CHAPTER 1

On the existence of vector fields with nonnegative divergence in r. i.
spaces

We investigate the existence of solutions of

divF =µ, on R
d. (§)

Here, µ ∏ 0 is a Radon measure, and we look for a solution F 2 X (Rd,Rd), where X is a
rearrangement-invariant space.

We first prove the equivalence of the following assertions:
(i) (§) has a solution for some nontrivial µ;
(ii) the function x 7! |x|1°d

1Bc (x) belongs to X .

Here, B is the unit ball in R
d.

We next investigate the solvability of (§) when µ is fixed. A sufficient condition is that I1µ 2 X ,
where I1µ is the 1-Riesz potential of µ. This condition turns out to be also necessary when the
Boyd indexes of X belong to (0,1).

Our analysis generalizes the one of Phuc and Torres (2008) when X = Lp.

1. Introduction

We will study the existence of solutions in different function spaces for the divergence equa-
tion

divF =µ, on R
d, (1.1)

where µ is a nonnegative Radon measure. Here, d ∏ 2.

Our work is motivated by the following result of Phuc and Torres (see [4, Theorem 3.1]):

THEOREM 1.1. Let 1∑ p ∑ d/(d°1) and let µ be a nonnegative Radon measure on R
d. If there

exists a vector field F 2 Lp(Rd,Rd) such that divF =µ on R
d, then we have that µ¥ 0.

The proof given in [4] uses the Calderón-Zygmund theory. More specifically, assume that (1.1)
has a solution F in Lp. It is shown first that the 1-Riesz potential I1µ of µ, defined by the formula

I1µ(x)=
Z

Rd
|x° y|1°ddµ(y),

satisfies the relation

I1µ(x)= (1°d) lim
"!0

Z

|°|>"
F(y)

x° y
|x° y|d+1 dµ(y)= cd

dX

j=1
R jFj(x), a.e. on R

d,

where R j are the Riesz transforms and cd is a constant only depending on d. Now, since F 2 Lp,
the Calderón-Zygmund theory ensures that I1µ 2 Lp, whenever p > 1, and that I1µ 2 L1,1, if
p = 1. However, since we have the trivial inequality

I1µ(x)∏ µ(B(0,R))
(|x|+R)d°1 , for any R > 0,

we must have µ(B(0,R)) = 0 for all R > 0. Indeed, the function (|x|+R)1°d is never in L1,1 or an
Lp space for p 2 (1,d/(d°1)]. Therefore µ¥ 0.

45
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Also, using functional analytical methods, in [4] is proved (this follows easily from Theorem
3.2 and Theorem 3.3 from [4]) that the constant d/(d °1) in the above theorem is sharp, in the
sense that if d/(d°1) < p ∑1 then there exists an F 2 Lp such that divF = 1Bm. Here, m is the
Lebesgue measure and 1B is the characteristic function of the unit ball.

Rewriting the condition on p in an integral form, we can express these facts by saying that if
the divergence equation has a solution in Lp, then the measure µ is forced to be trivial if and only
if the function |x|1°d

1Bc is not in Lp (here, 1Bc is the characteristic function of the complement
of the unit ball). As we will see, this phenomenon still occurs in a more general context where
instead of the Lp spaces we consider rearrangement-invariant spaces (r. i. spaces for short). Our
proof is quite elementary and does not use tools like the Calderón-Zygmund theory. It only makes
use of basic properties of r. i. spaces whose definition is recalled below.

Following the presentation in [1, Chapters 1 and 2] we define first the notion of the Banach
function space. Consider a measured space (Y ,∫) and the set

M+ := { f : Y ! [0,1] | f is ∫-measurable} .

We call function norm a mapping Ω : M+ ! [0,1] with the following properties:

(P1) Ω( f )= 0 iff f = 0 ∫°a.e., Ω(af )= aΩ( f ) and Ω( f + g)∑ Ω( f )+Ω(g);
(P2) 0∑ g ∑ f ∫°a.e. implies Ω(g)∑ Ω( f );
(P3) 0∑ fn " f ∫°a.e. implies Ω( fn) " Ω( f );
(This condition has an immediate important consequence called the Fatou property: if fn, f

are nonnegative measurable functions and fn ! f ∫°a.e., then Ω( f )∑ lim
n!1

Ω( fn).)

(P4) ∫(E)<1 implies Ω(1E)<1;
(P5) ∫(E)<1 implies

R
E f d∫∑ CEΩ( f )

whenever f , fn, g 2 M+, a ∏ 0 and E is a measurable subset of Y . Here, CE > 0 is a constant only
depending on E.

The set of measurable functions f : Y ! R for which Ω(| f |) <1 is called the Banach function
space associated to Ω. It turns out that this space (in which we consider two functions equal
when they are equal ∫°a.e.) with the norm k·k= Ω(| · |) is a complete normed vector space (see [1,
Theorem 1.6, p. 5]).

A r. i. space is a Banach function space associated to a function norm Ω with the property that
Ω(| f |) = Ω(|g|) for every pair of measurable functions on Y with the same distribution function
∏ f = ∏g (we recall that ∏ f (t) = ∫({x 2Y | | f (x)| > t}) for all t ∏ 0). Here are few examples: the
Lebesgue spaces Lp, the Lorentz spaces Lp,q (1< p <1), the Orlicz spaces ©(L).

In our case we will always have Y = R
d and ∫ = m will be the Lebesgue measure on R

d. In
this setting, we will use the following version of Theorem 4.8 in [1], p. 61:

LEMMA 1.2. Let m be the Lebesgue measure on Rd and let
°
E j

¢
j∏1 be a sequence of measurable

pairwise disjoint subsets of Rd, each with finite positive measure. Let E = R
d\

S
j E j. For each

measurable nonnegative function f on R
d, we define

A f = f 1E +
1X

j=1

µ
1

m
°
E j

¢
Z

E j

f dx
∂
1E j .

Then A is a contraction on each r. i. space X over (Rd,m), that is,

kA f kX ∑ k f kX , for all f 2 X .



2. THE MAIN NONEXISTENCE RESULT 47

2. The main nonexistence result

We can now state the first result:

THEOREM 1.3. Let µ be a nonnegative Radon measure on R
d, and X a r. i. space of functions

on R
d such that |x|1°d

1Bc does not belong to X. If the equation divF = µ has a solution F 2
X (Rd,Rd), then µ¥ 0.

PROOF. For each integer j ∏ 0 we consider the set Uj = B(0,2 j+1)\ B(0,2 j) and the function
' j 2 C0,1

c (Rd) defined by ' j(x) = 1 if |x| 2 [0,2 j), ' j(x) =°2° j|x|+2 if |x| 2 [2 j,2 j+1) and ' j(x) = 0 if
|x|∏ 2 j+1. We consider also the weights g j :=µ(B(0,2 j)).

Supposing that the equation divF =µ has a solution in the space X , we estimate the weights
g j as follows:

g j ∑
Z

Rd
' jdµ=°

Z

Rd
F ·r' jdx ∑ 1

2 j

Z

Uj

|F|dx for all j ∏ 0

so that

g j

2 j(d°1) ∑ c
1

m(Uj)

Z

Uj

|F|dx for all j ∏ 0, (1.2)

where c is a positive constant depending on d. Now if A is the operator defined in Lemma 1.2
corresponding to the sequence of sets U0, U1,..., we have

A|F| = |F|1B +
1X

j=0

µ
1

m(Uj)

Z

Uj

|F|dx
∂
1Uj

and, by Lemma 1.2 and axiom (P2), we obtain that

∞∞∞∞∞

1X

j=0

µ
1

m(Uj)

Z

Uj

|F|dx
∂
1Uj

∞∞∞∞∞
X

∑ 2kFkX <1. (1.3)

Of course we always have g j ∏ g0 and we can use (P2), (1.2) and (1.3) to write

g0Ω(|x|1°d
1Bc )∑ Ω

√
1X

j=0

g0

2 j(d°1) 1Uj

!

∑ Ω

√
1X

j=0

g j

2 j(d°1) 1Uj

!

<1,

where Ω is the norm function which defines the norm on X .
However, since Ω(|x|1°d

1Bc ) =1, the quantity g0 must be zero. By a translation argument,
the measure µ must be trivial. ⇤

We saw that the condition

|x|1°d
1Bc › X (1.4)

was used for proving the nonexistence of a solution F when µ 6¥ 0.
In order to obtain existence results we assume that condition (1.4) does not hold, that is

|x|1°d
1Bc 2 X . (1.5)

In this case we will prove the following

PROPOSITION 1.4. Assume (1.5) and let µ be a measure such that µ = ¡m for a nonnegative
function ¡ 2 L1

c (Rd). Then (1.1) has a solution F in X (Rd,Rd).
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The above result is an immediate consequence of the following two statements (which do not
require (1.5)):

PROPOSITION 1.5. Let ¡ 2 L1
c (Rd) be such that ¡ ∏ 0 and let µ be the measure defined by

µ=¡m. Then there exists a constant C > 0 only depending on µ and d such that

I1µ(x)∑ C(1B(x)+|x|1°d
1Bc (x)), on R

d.

(The proof of Proposition 1.5 is immediate.)

PROPOSITION 1.6. Let µ be a nonnegative Radon measure on R
d and let X be a r. i. space of

functions on R
d. If I1µ 2 X, then there exists a vector field F 2 X (Rd,Rd) such that divF = µ in the

distributional sense.

PROOF OF PROPOSITION 1.6. If Ω is the norm function defining the norm on X , we have
(using the property (P5)) that, for any x0 2Rd, there exist a constant Cx0 such that

Z

B(x0,1)
I1µdx ∑ Cx0Ω(I1µ)= Cx0

∞∞I1µ
∞∞

X <1.

It follows that I1µ must be a finite quantity a.e. on R
d. Now we can fix a point x1 2 Rd, such

that I1µ(x1)<1. Using this property of x1, we find that:
Z

Rd

dµ(y)
hyid°1 ∑C1

µZ

|x1°y|<1

dµ(y)
hyid°1 +

Z

|x1°y|∏1

dµ(y)
|x1 ° y|d°1

∂

∑C2
°
µ(B(x1,1))+ I1µ(x1)

¢
<1

(1.6)

for some positive constants C1 and C2. Here, hyi := (1+|y|2)1/2.
If E is the standard fundamental solution of the Laplacian on R

d, we define the vector field
F :Rd !R

d by the formula

Fj(x)=
Z

Rd
@ jE (x° y)dµ(y), j 2 {1,..., d} .

We can easily see that F is a.e. well-defined. Indeed there exist a constant C3 > 0 such that

Z

Rd

ØØ@ jE (x° y)
ØØdµ(y)∑ C3

Z

Rd

ØØØØ
xj ° yj

|x° y|d

ØØØØdµ(y)∑ C3I1µ(x),

and thus |F|∑ C4I1µ<1 a.e. In addition, since I1µ is already in X , using the monotonicity of Ω
we get F 2 X . Choosing a test function ' 2 C1

c (Rd) and using (1.6), we get that

Z

Rd

Z

Rd

ØØØØ
xj ° yj

|x° y|d

ØØØØdµ(y)|@ j'(x)|dx ∑
Z

Rd
I1|@ j'|dµ∑ C'

Z

Rd

dµ(y)
hyid°1 <1.

Here, we have used the straightforward estimate

I1|@ j'|(y)∑ C'
1

hyid°1 .

We can now prove, using Fubini’s theorem, that F solves (1.1):

°
X

j
< Fj,@ j'>=°

X

j

Z

Rd

Z

Rd
@ jE (x° y)@ j'(x)dxdµ(y)=

X

j

Z

Rd
(@ jE)§ (@ j')dµ

=
X

j

Z

Rd
@2

j (E§')dµ=
Z

Rd
'dµ=<',µ> .

So divF =µ in the distributional sense on R
d. ⇤
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REMARK 1.7. The above proof does not extend to the case of signed Radon measures. The
existence problem in this case is more difficult and seems to be unsolved even in the Lp setting
(see [4, p. 1575] and the references therein).

3. The rearrangement invariant norm of the 1-Riesz potential

As we saw, in the Lp case, the proof sketched after the statement of Theorem 1.1 gives a
stronger conclusion when 1 < p < 1, namely if we can find a solution F 2 Lp of equation (1.1)
then, not only that the condition (1.5) is satisfied, but the 1-Riesz potential of µ must be in Lp

too. In what follows we prove that we have a similar situation in the case of r. i. spaces, giving
a sufficient condition in terms of the Boyd indexes of the considered space. We recall some basic
facts which will be useful and the definition of these indexes, again following the presentation in
[1]:

Let X be a r. i. space over Rd whose function norm is Ω. We can define the associate norm Ω0

of Ω by:

Ω0(g)= sup
ΩZ

Rd
f gdx | f 2 M+, Ω( f )∑ 1

æ
, for g 2 M+.

It is known (see [1, Theorem 2.2, p. 8]) that Ω0 is a norm function whose corresponding Banach
function space, which is also an r.i space, will be denoted by X 0. The following Hölder type
inequality is a direct consequence of the definition:

Z

Rd
| f g|dx ∑ k f kX kgkX 0 , when f 2 X , g 2 X 0.

Let g§ denote the nonincreasing rearrangement of a measurable function g :Rd !R:

g§(s) := inf
©
t > 0| ∏g(t)∑ s

™
, s > 0.

We also recall the following inequality of Hardy and Littlewood (see [1, Theorem 2.2, p. 44])
that will be useful later. We have thatZ

Rd
| f g|dx ∑

Z1

0
f §(s)g§(s)ds

for all measurable functions f , g on R
d.

The Luxemburg representation theorem (see [1, Theorem 4.10. p. 62]) provides a unique
rearrangement-invariant function norm Ω defined on the nonnegative measurable functions on
(0,1), defined by

Ω(h)= sup
ΩZ1

0
h§g§dx | g 2 M+, Ω0(g)∑ 1

æ
,

with the property that Ω( f ) = Ω( f §). The corresponding r. i. space of Ω will be denoted by X . For
any µ > 0 we can define the dilation operator Eµ : X ! X by the formula Eµ f (s) = f (µs) for all
f 2 X . One may prove that each Eµ is a bounded operator. The lower Boyd index and the upper
Boyd index are given by

ÆX := sup
0<t<1

logkE1/tk
log t

, ÆX := inf
1<t

logkE1/tk
log t

respectively. Here kE1/tk is the norm of the operator E1/t. It turns out (see [1, Proposition 5.13, p.
149]) that we can actually take limits in the definition:

ÆX = lim
t!0

logkE1/tk
log t

, ÆX = lim
t!1

logkE1/tk
log t

,
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and that always 0 ∑ÆX ∑ ÆX ∑ 1. As an important example consider the spaces Lp. In this case
both indexes are equal to 1/p. For the Lorentz spaces Lp,q (1< p <1, 1∑ q ∑1) the indexes are
again both equal to 1/p.

In order to obtain the necessity of the condition I1µ 2 X , we adapt the proof of Theorem 1.1.
To do so, we will need the following lemma which is just a rephrasing of some ideas presented in
[1] and [3] (see, more specifically, the results of Calderón and Stein in section 3 in [3]).

Recall that a singular integral operator is an operator K of the form

K f (x)= lim
"!0+

Z

|y|>"
k(y) f (x° y)d y.

The kernel k is odd if k is a function of the form k(r!)= r°d≠(!) for all r > 0 and all ! 2Sd°1,
where ≠ 2 L1(Sd°1) is odd.

LEMMA 1.8. Let X be a r. i. space of functions on R
d such that 0 <ÆX ∑ ÆX < 1. Then any

singular integral operator with odd kernel is well-defined and bounded from L2 \ X into X. In
particular, the Riesz transforms R1,..., Rd : L2 \ X ! X are well-defined and bounded.

PROOF. Let K , k be as above. It is well-known that the operator K is well-defined and con-
tinuous on Lp(Rd) for 1 < p <1. According to Theorem 3 in [3, p. 193], if f 2 L2(Rd) then, for all
s > 0, we have that

(K f )§(s)∑ 1
s

Zs

0
(K f )§(t)dt ∑ k≠kL1(S(0,1))

µ
1
s

Z1

0
f §(t)sinh°1

≥ s
t

¥
dt

∂
.

Introducing the two operators

P g(s)= 1
s

Zs

0
g(t)dt and Q g(s)=

Z1

s
g(t)

dt
t

,

for g measurable nonnegative, and integrating by parts, we can write for all s > 0,

1
s

Z1

0
f §(t)sinh°1

≥ s
t

¥
dt =

Z1

0

P f §(t)
p

s2 + t2
dt =

Zs

0

P f §(t)
p

s2 + t2
dt+

Z1

s

P f §(t)
p

s2 + t2
dt

∑P2 f §(s)+QP f §(s),

concluding that there exist a constant Ck > 0 such that for all s > 0 we have

(K f )§(s)∑ Ck
°
P2 +QP

¢
f §(s). (1.7)

Theorem 5.15 in [1] guarantees that the operators P, Q are well-defined and continuous from
X into X in the case where the Boyd indexes of X are in the interval (0,1). Under this assumption,
the inequality (1.7) implies that there exist a constant Ck,X > 0 only depending on k and X such
that, for all f 2 L2 \ X (Rd) we have

kK f kX ∑ Ck,X k f kX ,

and we obtain the conclusion. ⇤

THEOREM 1.9. Let X be a r. i. space of functions on R
d such that 0<ÆX ∑ÆX < 1. If (1.1) has

a solution F 2 X (Rd,Rd), then I1µ 2 X. Moreover, there exists a constant CX > 0 only depending on
X such that

∞∞I1µ
∞∞

X ∑ CX kFkX .
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REMARK 1.10. In particular, Theorem 1.9 applies to all Lp and, more generally, Lp,q spaces
with 1< p <1, 1∑ q ∑1. Also the theorem applies to all reflexive Orlicz spaces.

PROOF. First we observe that, using Fubini’s theorem and the monotone convergence theo-
rem, we can rewrite the 1-Riesz potential of a Radon measure ∫ on R

d, for which I1|∫| <1 a.e.:

I1∫(x)= lim
±!0+

Z

Rd
min(|x° y|1°d,±1°d)d∫(y)= (d°1) lim

±!0+

Z

Rd

µZ1

±

1B(x,r)(y)
rd dr

∂
d∫(y)

=(d°1) lim
±!0+

Z1

±

∫(B(x, r))
rd dr = (d°1)

Z1

0

∫(B(x, r))
rd dr.

(1.8)

Suppose (1.1) has a solution F 2 X . Consider a standard radial bump function ' 2 C1
c (Rd)

with 0∑'∑ 1, supp'µ B(0,1),
∞∞'

∞∞
L1(Rd) = 1 and some ¡ 2 C1

c (Rd) with 0∑¡∑ 1, ¡= 1 on B(0,1).
For any µ," > 0 we define '" and ¡µ on R

d by the formula '"(x) = "°d'(x/") and ¡µ(x) = ¡(µx).
Fixing an "> 0, the smooth functions F" := F §'" and µ",µ :=

°
µ§'"

¢
¡µ+F" ·r¡µ, clearly satisfy

div
°
¡µF"

¢
=µ",µ . As in [4], we can now use the Gauss-Ostrogradskii theorem and (1.8) to compute

I1µ",µ(x) for all x in R
d, in terms of ¡µF":

I1µ",µ(x)=(d°1) lim
±!0+

Z1

±

1
rd

Z

S(x,r)

°
¡µF"

¢
·ndædr

=(d°1) lim
±!0+

Z1

±

Z

S(x,r)

°
¡µF"

¢
(y) · x° y

|x° y|d+1 dæ(y)dr

=(d°1) lim
±!0+

Z

|x°y|>±

°
¡µF"

¢
(y) · x° y

|x° y|d+1 d y.

The last expression equals cd
P

j R j
°
¡µF", j

¢
(x) a.e. in x. Thanks to Lemma 1.8 and noticing

that ¡µF", j 2 C1
c (Rd) Ω L2, we have that there exists a constant CX > 0, only depending on X ,

with

∞∞I1µ",µ
∞∞

X ∑ cd

∞∞∞∞∞
X

j
R j

°
¡µF", j

¢
∞∞∞∞∞

X

∑ CX
X

j

∞∞¡µF", j
∞∞

X ∑ CX
X

j

∞∞F", j
∞∞

X , for all "> 0. (1.9)

It is not hard to see that, if f 2 X , we have

Ω
°ØØ f §'"

ØØ¢=Ω
µØØØØ

Z

Rd
f (·°"y)'(y)d y

ØØØØ

∂
∑

Z

Rd
Ω

°
| f (·°"y)|'(y)

¢
d y

=
Z

Rd
Ω (| f (·°"y)|)'(y)d y

(we just consider an increasing sequence of nonnegative continuous functions converging point-
wise to the function | f | and then we apply (P3) to reduce the problem to the case of continuous
functions, case which can be handled using Riemann sums and the property (P3) as before).
Since f and | f (·°"y)| have the same distribution function and X is a r. i. space, we get thatR
Rd f (·°"y)'(y)d y belongs to X and its norm is bounded by k f kX . This fact combined with (1.9)

gives us
∞∞I1µ",µ

∞∞
X ∑ CX kFkX <1, for all µ,"> 0. (1.10)

It remains to show that this implies I1µ 2 X and the expected estimate. We have that I1µ",µ =
I1

°
µ"¡µ

¢
+ I1

°
F" ·r¡µ

¢
, where µ" :=µ§'". When µ! 0, for the second term we can write for each
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x 2Rd,
ØØI1

°
F" ·r¡µ

¢
(x)

ØØ∑µ
Z

Rd

ØØF"(y) ·r¡(µy)
ØØ

|x° y|d°1 d y=
Z

Rd

ØØF"(y/µ) ·r¡(y)
ØØ

|µx° y|d°1 d y

∑kE1/µF"kX

∞∞∞∞
r¡

|µx° ·|d°1

∞∞∞∞
X 0

∑ kE1/µkkF"kX

∞∞∞∞
r¡

(1° |µx|)d°1

∞∞∞∞
X 0

∑2kE1/µkkF"kX
∞∞r¡

∞∞
X 0 ∑ 2µÆX /2 kF"kX

∞∞r¡
∞∞

X 0 ! 0.

The dominated convergence theorem gives for the first term that I1
°
¡µµ"

¢
! I1µ" pointwise

when µ! 0. From these two observations, (1.10) and the Fatou property of Ω (which follows from
(P3)) we conclude:

∞∞I1µ"
∞∞

X ∑ lim
"!0

∞∞I1µ",µ
∞∞

X ∑ CX kFkX <1, for all "> 0. (1.11)

We now let "! 0 in (1.11). For each x 2Rd and r > 0 we can write:

µ"(B(x, r))=
Z

B(x,r)

Z

Rd
'"(z° y)dµ(y)dz =

Z

Rd
'"§1B(x,r)(y)dµ(y).

It is not hard to see that, taking "! 0, '" §1B(x,r)(y) ! 1 when y 2 B(x, r), '" §1B(x,r)(y) ! 0
when y › B(x, r) and '" § 1B(x,r)(y) ! 1/2 when y 2 @B(x, r). Moreover the function '" § 1B(x,r)
is bounded by 1 and has its support contained in B(x, r + 1) when " is small. The dominated
convergence theorem yields

µ"(B(x, r))!µ(B(x, r))+ 1
2
µ(@B(x, r)), when "! 0

and hence, for any l ∏ 1,

Zl

1/l

µ(B(x, r))
rd dr ∑

Zl

1/l

µ(B(x, r))
rd dr+ 1

2

Zl

1/l

µ(@B(x, r))
rd dr

= lim
"!0

Zl

1/l

µ"(B(x, r))
rd dr.

The inequality from (1.11) and the Fatou property of Ω will give

(d°1)
∞∞∞∞
Zl

1/l

µ(B(·, r))
rd dr

∞∞∞∞
X
∑(d°1)lim

"!0

∞∞∞∞
Zl

1/l

µ"(B(·, r))
rd dr

∞∞∞∞
X

∑ lim
"!0

∞∞I1µ"
∞∞

X ∑ CX kFkX

and we can finish the proof by using the Fatou property and (1.8), taking l !1. ⇤

The above result covers the case of Lp spaces when 1 < p < 1. However, even in the Lp

setting, the fact that the equation (1.1) has a solution in X does not imply that the 1-Riesz
potential of the measure belongs to X . More specifically, we have the following classical result
(see [4]):

THEOREM 1.11 (Theorem 3.3 in [4]). Let µ be a nonnegative Radon measure on R
d. Then the

equation (1.1) has a solution F2L1(Rd ! R
d) if and only if the measure µ is (d°1)°Frostman,

i.e., there exist a constant M only depending on µ such that

µ(B(x, r))∑ Mrd°1, for all x 2Rd and r > 0.

In order to prove Theorem 1.11, let µ be a Radon measure. The fact that there exists a
solution F2L1 for the equation divF =µ is equivalent to the fact that µ belongs to the dual of the
space w1,1. Here, w1,1 is the closure of C1

c (Rd) under the norm k·kw1,1 , where kukw1,1 := krukL1,
u 2 C1

c (Rd). Now, for nonnegative measures this condition is equivalent to the fact that µ is
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(d°1)°Frostman. This result is due to Meyers and Ziemer (originally appearing in [2]; see also
[5, Lemma 4.9.1, p. 209] for a proof of a more general statement).

Clearly, there exist (d°1)°Frostman nonnegative measures whose 1-Riesz potential is un-
bounded. Take for example the measure µ defined by µ(E) = md°1(E\ {x1 = 0}) for all Borel sets
E Ω R

d. Here, md°1 is the (d°1)°dimensional Lebesgue measure on the hyperplane {x1 = 0}. For
this µ, the quantity

R1
1 r°dµ(B(x, r))dr is infinite for all x 2 Rd and then, by (1.8), I1µ is infinite

everywhere.

Note that the Boyd indexes of L1 are 0 and thus the example obtained in the previous para-
graph does not contradict Theorem 1.9.

The case of the space L1 is also a pathological one, the Boyd indexes being equal to 1. However
we cannot find a counterexample for the assertion of the Theorem 1.9 in the case of nonnegative
measures. Indeed, by Theorem 1.1, the measure µ will be trivial and then I1µ¥ 0 2 L1. Neverthe-
less, we can give a simple example of a vector field F 2 L1 and of a signed Radon measure µ such
that divF = µ, but the 1-Riesz potential, I1µ, does not belong to L1. The construction of F and µ
relies on the following observation. Consider √ 2 C1

c (B(0,1)). When |x| is large we can write, for
r = |x|, != x/|x|, that

I1√(x)= 1
rd°1

Z

B(0,1)

√(y)
|!° y/r|d°1 d y= 1

rd°1

Z

B(0,1)

√(y)
|1°2y ·!/r+|y|2/r2|(d°1)/2 d y

= 1
rd°1

Z

B(0,1)
√(y)d y+ d°1

rd ! ·
µZ

B(0,1)
y√(y)d y

∂
+ 1

rd+1

Z

B(0,1)
√(y)h(r, y)d y,

where h is a smooth bounded function on (1,1)£Rd. Thus,

I1√(x)= A
|x|d°1 + b · x

|x|d+1 +O
µ

1
|x|d+1

∂
as |x|!1, (1.12)

where

A :=
Z

B(0,1)
√(y)d y and b :=

Z

B(0,1)
y√(y)d y.

The right hand side of (1.12) belongs to L1 if and only if A = 0 and b = 0. In conclusion,
√ 2 C1

c (B(0,1)) has the property that I1√ 2 L1 if and only if

Z

B(0,1)
√(y)d y =

Z

B(0,1)
yj√(y)d y= 0 for all j 2 {1, ...,d} .

We can now construct our example. Let ' 2 C1
c (B(0,1)) be such that

R
B(0,1)'(y)d y 6= 0, and set

F = (',0, ...,0) 2 L1 and µ=
°
@1'

¢
m. Clearly, we have

Z

B(0,1)
y1@1'(y)d y=°

Z

B(0,1)
'(y)d y 6= 0

and, by the above observation (with √= @1'), I1µ does not belong to L1.

These examples show that, at least in the case where the measure is signed, we cannot expect
for the pathological Lp spaces, namely L1 and L1, to have the property stated in the above
Theorem 1.9. This is also the case in the more general context of r. i. spaces: as long as at least
one of the Boyd indexes of the space X is equal to 0 or 1, we can always find a signed Radon
measure which is the divergence of a field F belonging to X , but whose 1-Riesz potential does
not have the norm in X controlled by the norm of F. It is not hard to observe that, after minor
modifications in the proof, the conclusion of Theorem 1.9 remains true in the case of signed Radon
measures. With this in mind, Proposition 1.12 below is a sort of converse.



54 1. ON THE EXISTENCE OF VECTOR FIELDS WITH NONNEGATIVE DIVERGENCE IN R. I. SPACES

PROPOSITION 1.12. Let X be a r. i. space of functions on Rd with the property that whenever µ
is a signed Radon measure on Rd with µ= divF for a vector field F 2 X (Rd,Rd), we have that I1µ

+,
I1µ

° are finite a.e., I1µ 2 X and
∞∞I1µ

∞∞
X ∑ CX kFkX for a positive constant CX . Then 0<ÆX ∑ÆX <

1.

Proposition 1.12 is a consequence of Lemma 1.13 below, which is a d°dimensional version of
Proposition 4.10 p. 140 in [1], with essentialy the same proof. To state Lemma 1.13, consider the
operators P and Q defined in the proof of Lemma 1.8 and let S be the Calderón operator defined
by the formula:

S f (s)= P f (s)+Q f (s)=
Zs

0

f (t)
s

dt+
Z1

s

f (t)
t

dt =
Z1

0
f (t)min

µ
1
t
,
1
s

∂
dt, s > 0,

initially for nonnegative measurable functions f on (0,1) (see [1, p 133 and 142]).

LEMMA 1.13. Let X be a r. i. space of functions on R
d and f 2 X. Consider the sets

C+ := (0,1)d, C° := (°1,0)d

and the function G : Rd ! [0,1], G(x) = f §(vd|x|d)1C°(x), where vd := m(B(0,1))/2d. Then G
and f are equimeasurable functions, the Riesz transforms R1G,..., RdG of G are well-defined as
functions on C+ and there exist a constant cd > 0 such that:

((R1G+ ...+RdG)1C+)§ (s)∏ cdS( f §)(s), for all s > 0. (1.13)

Moreover, if (R1G+...+RdG)1C+ 2 X for all f 2 X then 0<ÆX ∑ÆX < 1. In particular, the same
conclusion holds if the sum of the Riesz transforms is a well-defined operator from X into X .

PROOF OF LEMMA 1.13. Consider for simplicity the function g : (0,1) ! [0,1] with g(s) =
f §(vdsd). Note that g is nonincreasing, and thus g§ = g. It is easy to see that, since G(x) =
g(|x|)1C°(x) and since g is nonincreasing, we have ∏G(t) = vd∏

d
g(t) for all t > 0. Hence, a simple

computation gives us G§(s) = g§(v°1/d
d s1/d) = g(v°1/d

d s1/d) = f §(s) for all s > 0, which shows the
equimeasurability of G and f . Taking now a j 2 {1, ...,d} we can write, for x 2 C+:

R jG(x)=c1
d

Z

C+

xj + yj

|x+ y|d+1 g(|y|)d y= c1
d

Z

C+

xj

|x+ y|d+1 g(|y|)d y+ c1
d

Z

C+

yj

|x+ y|d+1 g(|y|)d y

∏c2
dxj

Z

C+
min

µ
1

|x|d+1 ,
1

|y|d+1

∂
g(|y|)d y+ c2

d

Z

C+
yj min

µ
1

|x|d+1 ,
1

|y|d+1

∂
g(|y|)d y

∏c3
d

xj

|x|d+1

Z

B(0,|x|)\C+
g(|y|)d y+ c3

d

Z

Bc(0,|x|)\C+

yj

|y|d+1 g(|y|)d y.

Summing up these inequalities yields
dX

j=1
R jG(x)∏c3

d
x1 + ...+ xd

|x|d+1

Z

B(0,|x|)\C+
g(|y|)d y+ c3

d

Z

Bc(0,|x|)\C+

y1 + ...+ yd

|y|d+1 g(|y|)d y

∏c4
d

1
|x|d

Z

B(0,|x|)\C+
g(|y|)d y+ c4

d

Z

Bc(0,|x|)\C+

1
|y|d

g(|y|)d y

∏c5
d

1
|x|d

Z|x|

0
rd°1 g(r)dr+ c5

d

Z1

|x|

g(r)
r

dr

∏c6
d

1
|x|d

Zvd |x|d

0
f §(t)dt+ c6

d

Z1

vd |x|d
f §(t)

t
dt ∏ cdS( f §)(vd|x|d).

Since S( f §) is a nonincreasing function, we can see as above that the nonincreasing re-
arrangement of the function x ! S( f §)(vd|x|d)1C+(x) computed in s > 0 is equal to S( f §)(s). Hence,
we have proved the inequality (1.13).
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To prove the next claim, observe that the inequality (1.13) under the assumption that (R1G+
...+RdG)1C+ 2 X gives us that, if f 2 X , then we must have S( f §) 2 X .

Let us note that we have S(| f |) ∑ S( f §). This can be easily seen by applying the Hardy-
Littlewood inequality to | f | and the nonincreasing function t !min(1/s,1/t) when s > 0 is fixed:

S(| f |)(s)=
Z1

0
| f (t)|min

µ
1
s

,
1
t

∂
dt ∑

Z1

0
f §(t)min

µ
1
s

,
1
t

∂
dt = S( f §)(s).

Up to now we have that, if f 2 X and (R1G + ...+RdG)1C+ 2 X , then S(| f |) 2 X . As in the
proof of Theorem 1.8, p. 7, [1] we suppose by contradiction that the operator S : X ! X is not
continuous. Then we can find a sequence ( fn)n∏1 of nonnegative functions in X with k fnkX = 1
and such that kS( fn)kX ∏ n3 for all n ∏ 1. The series

P
n∏1 fn/n2 being absolutely convergent in X ,

it defines a function f 2 X , hence S( f ) 2 X . However since all the functions fn are nonnegative,
we have f ∏ fn/n2 and consequently S( f )∏ S( fn)/n2 which implies kS( f )kX ∏ kS( fn)kX /n2 ∏ n for
all n ∏ 1, obtaining a contradiction.

Having that S is a continuous operator, we can use Theorem 5.15 in [1, p. 150] to obtain the
statement about the Boyd indexes of X . ⇤

PROOF OF PROPOSITION 1.12. To prove the Proposition 1.12, consider a function f 2 X and
the field F = (G, ...,G), with G constructed from f as in Lemma 1.13. Suppose first that f §
is compactly supported. Note that µ := divF is not always a Radon measure (we can compute
explicitly µ+ and µ° to see that these measures are not always locally finite), but is of course a
distribution. With the notation from the proof of Theorem 1.9, we have that µ§'" and F §'"
are smooth compactly supported functions. In particular, µ§'" is a compactly supported signed
Radon measure on R

d. Since µ§'" = div
°
F §'"

¢
and, as in the proof of Theorem 1.9,

∞∞F §'"
∞∞

X ∑
kFkX , we must have then, that

∞∞I1
°
µ§'"

¢∞∞
X ∑ CX

∞∞F §'"
∞∞

X ∑ CX kFkX for all " > 0. As above,
the formula (1.8) and the Gauss-Ostrogradskii theorem give us that:

I1
°
µ§'"

¢
(x)= (d°1) lim

±!0+

Z

|x°y|>±
F §'"(y) · x° y

|x° y|d+1 d y for all x 2Rd. (1.14)

Fix r > 0 and take " 2 (0, r). The support of F is contained in the closure of the set C°. Hence
F §'" is supported in the closure of C°+"B. We can write, for all x 2 C+

r := (r, ..., r)+C+, that

lim
±!0+

Z

|x°y|>±
F §'"(y) · x° y

|x° y|d+1 d y=
Z

C°+"B
F §'"(y) · x° y

|x° y|d+1 d y

∏
Z

C°
F §'"(y) · x° y

|x° y|d+1 d y.
(1.15)

Since the integrand of the last term is nonnegative, one can use Tonelli’s theorem to change
the order of integration, and find that

Z

C°
F §'"(y) · x° y

|x° y|d+1 d y=
Z

Rd

µZ

C°
F(y°"ª) · x° y

|x° y|d+1 dy
∂
'(ª)dª

∏
Z

C+

µZ

C°
g(|y°"ª|) · x1 ° y1 + ...+ xd ° yd

|x° y|d+1 d y
∂
'(ª)dª.

The fact that the function g is nonincreasing enables us to see that for a fixed ª 2 C+ we
have g(|y°"ª|) ∑ g(|y°"0ª|) for all y 2 C° and for all 0 < "0 < ". Hence the monotone convergence
theorem gives us

Z

C°
g(|y°"ª|) · x1 ° y1 + ...+ xd ° yd

|x° y|d+1 d y!
Z

C°
g(|y|) · x1 ° y1 + ...+ xd ° yd

|x° y|d+1 d y,

when "! 0. With the help of Fatou’s lemma and the above calculation we have

lim
"!0

Z

C°
F §'"(y) · x° y

|x° y|d+1 d y∏ A
Z

C°
g(|y|) · x1 ° y1 + ...+ xd ° yd

|x° y|d+1 d y,
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where A =
R

C+'(ª)dª> 0. Using (1.14), (1.15) we obtain

lim
"!0

I1
°
µ§'"

¢
(x)∏ (d°1) A

Z

C°
g(|y|) · x1 ° y1 + ...+ xd ° yd

|x° y|d+1 d y∏ 0,

for all x 2 C+
r and all r > 0. Since (d°1) A do not depend on r, this inequality can be rewriten as

lim
"!0

°
I1

°
µ§'"

¢¢
1C+ ∏ cd (R1G+ ...+RdG)1C+ ∏ 0,

and consequently by the Fatou property of X , we get

k(R1G+ ...+RdG)1C+kX ∑ C1
X lim
"!0

∞∞I1
°
µ§'"

¢∞∞
X

which implies k(R1G+ ...+RdG)1C+kX ∑ C2
X kFkX , and by using inequality (1.13) from Lemma

1.13, we get that
∞∞S( f §)

∞∞
X ∑ C3

X
∞∞ f §

∞∞
X (1.16)

whenever f 2 X and f § is compactly supported. Now, if f 2 X and f § is not necessarly compactly
supported, from (1.16) we have

∞∞S( f §1(0,n))
∞∞

X ∑ C3
X

∞∞ f §1(0,n)
∞∞

X for all n ∏ 1. By the monotone
convergence theorem and the Fatou property of X we get, taking n ! 1, that (1.16) is true
whenever f 2 X . Since as in the proof of Lemma 1.13 we have S(| f |) ∑ S( f §), we get now that
kS(| f |)kX ∑ C3

X k f kX for all f 2 X , obtaining that S is bounded from X into X .
The conclusion follows now as in Lemma 1.13. ⇤
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CHAPTER 2

On the representation as exterior differentials of closed forms with
L1-coefficients

Let N ∏ 2. If g 2 L1
c(RN) has zero integral, then the equation div X = g need not have a solution

X 2W1,1
loc (RN ;RN) (Wojciechowski 1999) or even X 2 LN/(N°1)

loc (RN ;RN) (Bourgain and Brezis 2003).
Using these results, we prove that, whenever N ∏ 3 and 2 ∑ ` ∑ N °1, there exists some `-form
f 2 L1

c(RN ;§`) such that d f = 0 and the equation d∏= f has no solution ∏ 2W1,1
loc (RN ;§`°1). This

provides a negative answer to a question raised by Baldi, Franchi and Pansu (2019).

1. Introduction

We consider the Hodge system

d∏= f in R
N , (2.1)

where f and ∏ are ` and (`°1)-forms respectively, f being given and satisfying the compatibility
condition d f = 0. We focus on the case where f has L1 coefficients.

To start with, let us recall some known facts about the cases `= N and `= 1.
In the case ` = N, (2.1) reduces to the divergence equation. It was first shown by Woj-

ciechowski [6] that there exists g 2 L1
c(RN), with zero integral, such that the equation div X = g

has no solution X 2 W1,1
loc (RN ;RN). On the other hand, Bourgain and Brezis [2] proved, using a

different method, the following: there exists g 2 L1
c(RN) with zero integral, such that the equation

div X = g has no solution X 2 LN/(N°1)
loc (RN ;RN). In view of the embedding W1,1

loc ,! LN/(N°1)
loc , this

improves [6].
In the case `= 1, (2.1) reduces to the following “gradient" equation

r∏= f , (2.2)

where f is a vector field satisfying the compatibility condition r£ f = 0 and ∏ is a function. Unlike
the case `= N, this time (2.2) has a solution ∏ 2W1,1

loc (RN). Actually, any solution of (2.2) belongs
to W1,1

loc and, moreover, if f is compactly supported then we may choose ∏ 2W1,1.
The question of the solvability in W1,1

loc of the system (2.1) with datum in L1 in the remaining
cases, i.e., 2 ∑ ` ∑ N °1, has been recently raised by Baldi, Franchi and Pansu [1]. Our main
result settles this problem.

THEOREM 2.1. Let N ∏ 3. Let 2 ∑ ` ∑ N °1. Then there exists some f 2 L1
c(RN ;§`) such that

d f = 0 and the equation d∏= f has no solution ∏ 2W1,1
loc (RN ;§`°1).

The proof of Theorem 2.1 we present is a simplification, communicated to the author by P.
Mironescu, of the original one. This simplified version has the advantage of being relatively
self-contained and elementary.

2. Proof of Theorem 2.1

We start with some auxiliary results.

LEMMA 2.2. Let 1 ∑ ∑∑ N °1 and f 2 L1
c(RN ;§∑) be such that d f = 0. Then there exists some

! 2 Lq
loc(R

N ;§∑°1), for all 1∑ q < N/(N °1), such that d!= f .
59
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PROOF. Let E be “the" fundamental solution of ¢ and set ¥ := E § f . Let ! := d§¥. First,
¥ 2W1,q

loc (RN) (by elliptic regularity) and thus ! 2 Lq
loc(R

N), 1∑ q < N/(N°1). Next, d¥= E§d f = 0.
Finally,

d!= dd§¥= (dd§+d§d)¥=¢¥= f .

Hence, ! has the required properties. ⇤

A similar argument leads to the following.

LEMMA 2.3. Let 1 < r <1, k 2N. Let 1 ∑ ∑∑ N °1. Let f 2 Wk,r
c (RN ;§∑) be such that d f = 0.

Then there exists some ! 2Wk+1,r
loc (RN ;§∑°1) such that d!= f .

We next recall the following “inversion of d with loss of regularity". It is folklore, and one pos-
sible proof consists of using Bogovskiı̆’s formula (see for example [4, Corollary 3.3 and Corollary
3.4] for related arguments).

LEMMA 2.4. Let 1 ∑ ∑ ∑ N °1. Let Q be an open cube in R
N. Then there exists some integer

m = m(N,∑) such that if f 2 Ck
c (Q;§∑) (whose coefficients have zero integral), with k 2 {m,m+

1, . . .}[ {1}, satisfies d f = 0, then there exists some ! 2 Ck°m
c (Q;§∑°1) such that d!= f .

Combining Lemmas 2.2–2.4, we obtain the following

PROPOSITION 2.5. Let 1 ∑ ∑ ∑ N °1. Let Q be an open cube in R
N. Let f 2 L1

c(Q;§∑) (whose
coefficients have zero integral) be such that d f = 0. Then there exists some ! 2 Lq

c (Q;§∑°1), for all
1∑ q < N/(N °1), such that d!= f .

PROOF. Set f0 := f . We consider a sequence (≥ j) j∏0 in C1
c (Q;R) such that ≥0 = 1 on supp f0

and, for j ∏ 1, ≥ j = 1 on supp≥ j°1. We let ¥0 be a solution of d¥0 = f0, constructed as in Lemma
2.2. We set !0 := ≥0¥0, so that !0 2 Lq

c (Q;§∑°1), 1∑ q < N/(N °1) and

d!0 = d≥0 ^¥0 +≥0d¥0 = d≥0 ^¥0 +≥0 f0 = d≥0 ^¥0| {z }
° f1

+ f0.

Let us note that d f1 =°d2!0 +d f0 = 0 and that f1 2 Lq
c (Q;§∑), 1∑ q < N/(N °1).

Fix some 1 < r < N/(N °1). By Lemma 2.3, there exists some ¥1 2 W1,r
loc(RN ;§∑°1) such that

d¥1 = f1. Set !1 := ≥1¥1. Then !1 2 W1,r
c (Q;§∑°1) and, as above, f2 := f1 °d!1 satisfies d f2 = 0

and f2 2W1,r
c (Q;§∑). Applying again Lemma 2.3, we may find ¥2 2W2,r

loc(RN) such that d¥2 = f2.
Iterating the above, we have

!0 +·· ·+! j 2 Lq
c (Q;§∑°1), 1∑ q < N/(N °1),

d(!0 +·· ·+! j)= f0 ° f j, with d f j = 0 and f j 2W j,r
c (Q;§∑).

Let now j be such that W j,q(Q) ,! Cm(Q), with m as in Lemma 2.4. Let ª 2 C0
c(Q;§∑°1) be

such that dª=° f j. Set ! :=!0 +·· ·+! j +ª. Then ! has all the required properties. ⇤

Let us note the following consequence of hypoellipticity of ¢ and of the proofs of Proposition
2.5 and Lemmas 2.2 and 2.3 (but not of their statements).

COROLLARY 2.6. Assume, in addition to the hypotheses of Proposition 2.5, that f 2 C1(U) for
some open set U ΩQ. Let s 2N. Then we may choose ! such that, in addition, ! 2 Cs(U).

PROOF OF THEOREM 2.1. We write the variables in R
N as follows: x = (x0, x00), with x0 2 R`

and x00 2RN°`.
Pick some g 2 L1

c((0,1)`;R) with zero integral, such that the equation div X = g has no solution
X 2 L`/(`°1)

loc (R`;R`) (see [6], [2]). Clearly, for any G 2 C2
c((0,1)`;R),

the equation divY = g+G has no solution Y 2 L`/(`°1)
loc (R`;R`). (2.3)
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Let √ 2 C1
c ((0,1)N°`) be such that √ ¥ 1 in some nonempty open set V Ω (0,1)N°`. Set Q :=

(0,1)N and ¥ := g(x0)√(x00)dx0 2 L1
c(Q;§`). We note that d¥= g(x0)d√(x00)^dx0 2 L1

c(Q;§`+1). Let
us also note that d¥ = 0 in R

`£V . By Corollary 2.6 with U = (0,1)`£V , there exists some ! 2
Lq

c (Q;§`), 1∑ q < N/(N °1), such that d!= d¥ and ! 2 C2((0,1)`£V ).
Consider now the closed form f := ¥°! 2 L1

c(Q;§`). We claim that there exists no ∏ 2 W1,1
loc

(RN ;§`°1) such that d∏ = f . Argue by contradiction and let ∏i denote the coefficient, in ∏, of
dx1^dx2 · · ·^dxi°1^dxi+1^ · · ·^dx`, 1∑ i ∑ `. Let !0 denote the coefficient of dx0 in !. Then, in
R
`£V , we have

X̀

i=1
(°1)i+1@i∏i(x0, x00)= g(x0)√(x00)°!0(x0, x00)= g(x0)°!0(x0, x00). (2.4)

Hence, for a.e. x00 2V , the following equation is satisfied in D
0(R`):

X̀

i=1
(°1)i+1@i∏

0
i = g°!0

0, (2.5)

with

∏0
i :=∏i(·, x00) 2W1,1

loc (R`) and !0
0 =!0(·, x00) 2 C2

c((0,1)`). (2.6)

The above properties (2.5) and (2.6), combined with the embedding W1,1
loc (R`) ,! L`/(`°1)(R`),

contradict (2.3). ⇤

REMARK 2.7. We have actually proved the following improvement of Theorem 2.1. Let N ∏ 3
and 2 ∑ ` ∑ N ° 1. Then there exists some f 2 L1

c(Rd;§`) satisfying d f = 0 and such that the
system d∏= f has no solution

∏ 2 L1
loc(R

(N°`);L`/(`°1)
loc (R`;§`°1)).

REMARK 2.8. A similar question can be raised in L1. We have the following analogue of
Theorem 2.1.

THEOREM 2.9. Let N ∏ 3. Let 2 ∑ `∑ N °1. Then there exists some f 2 L1
c (RN ;§`) such that

d f = 0 and the equation d∏= f has no solution ∏ 2W1,1
loc (RN ;§`°1).

The proof of Theorem 2.9 is very similar to the one of Theorem 3. The main difference is the
starting point, in dimension `. Here, we use the fact that there exists some g 2 L1

c (R`), with zero
integral, such that the equation div X = g has no solution X 2W1,1

loc (R`;R`) (see [5]).

3. Solution in LN/(N°1) when 1∑ `∑ N °1

As mentioned in the introduction, when ` = N, the system (2.1) with right-hand side f 2 L1

need not have a solution ∏ 2 LN/(N°1)
loc . In view of Theorem 2.1 and of Proposition 2.5, it is natural

to ask whether, in the remaining cases 1 ∑ ` ∑ N °1, given a closed `-form f 2 L1
c, it is possible

to solve (2.1) with ∏ 2 LN/(N°1)
loc . This is clearly the case when ` = 1 (by the Sobolev embedding

W1,1
loc ,! LN/(N°1)

loc ). Moreover, we may pick ∏ 2 W1,1. The remaining cases are settled by our next
result. In what follows, we do not make any support assumption on f , and therefore the case
where `= 1 is also of interest.

PROPOSITION 2.10. Let N ∏ 2 and 1 ∑ ` ∑ N °1. Then, for every f 2 L1(RN ;§`) with d f = 0,
there exists some ∏ 2 LN/(N°1)(RN ;§`°1) such that f = d∏.

PROOF. Suppose f 2 L1(RN ;§`°1) with d f = 0 as above. According to Bourgain and Brezis [3]
(see [3, Corollary 20] for a very similar statement; see also [7, Theorem 3]), we have

ØØØØ
Z

Rd

≠
√, f

ÆØØØØ. k f kL1
∞∞d§√

∞∞
LN , 8√ 2 C1

c (RN ;§`). (2.7)
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Consider the functional

L f : S = {d§√; √ 2 C1
c (RN ;§`)}!R, L f

°
d§√

¢
:=

Z

Rd

≠
√, f

Æ
.

Here, S is endowed with the LN-norm. The inequality (2.7) shows that L f is well-defined and
bounded. By the Hahn-Banach theorem, there exists an extension eL f : LN(RN ;§`+1) ! R of L f
with

∞∞eL f
∞∞=

∞∞L f
∞∞. Hence, there exists an (`°1)-form ∏ 2 LN/(N°1)(RN ;§`°1) such that

Z

RN

≠
√, f

Æ
= L f

°
d§√

¢
= eL f

°
d§√

¢
=

Z

RN

≠
d§√,∏

Æ
=

Z

RN

≠
√,d∏

Æ

for all ` -forms √ 2 C1
c (RN ;§`).

This implies that ∏ 2 LN/(N°1)(RN ;§`°1) satisfies d∏= f . ⇤
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CHAPTER 3

Hodge systems with L1 sources

Let d ∏ 2. In [3], Bourgain and Brezis proved that there exists g 2 L1
c(Rd) with zero

integral, such that the equation div X = g has no solution X 2 W1,1
loc (Rd), and actually not even

in Ld0
(Rd). Using this result, we prove that whenever d ∏ 3 and 2 ∑ l ∑ d, there exists some

G 2 L1
c(Rd;§l) such that dG = 0 and the equation dF =G has no solution F 2 Ẇ1,1(Rd;§l°1). This

was originally proved in [6] by completely different methods, and answers negatively a question
in [1].

1. Short introduction

Our goal is to prove the following:

THEOREM 3.1. Suppose d ∏ 2 and l 2 {2, ...,d}. There exists an l-form G 2 L1
c on R

d with
dG = 0, whose coefficients have zero integral, and such that there is no (l°1)-form F 2 Ẇ1,1 on R

d

with G = dF.

This was essentially proved in [6] (providing a negative answer to a question in [1, p. 6]) by
reducing the problem to the study of the divergence equation on a lower dimensional subspace of
R

d, and then using the nonexistence result from [3]. More exactly, in [6] ( see also Chapter 2) it
was shown that, if Theorem 3.1 fails to be true, then, for any g 2 L1

c
°
R

l¢ with zero integral, there
exists a vector field Y 2 Ll/(l°1)

loc
°
R

l ,Rl¢ and a sufficiently smooth (C2 and compactly supported)
remainder G, such that divY = g+G. (The smoothness of G was established by using the hypoel-
lipticity of the operator 4.) However, the existence, for each g 2 L1, of such Y and G contradicts
the nonexistence result in [3, Section 2.1].

In this chapter, we prove the above result via a completely different approach, that may be
useful in more general problems. More specifically, we reduce the problem to the study of the
divergence equation in R

2 (here, the dimension is two for every value of l). On the other hand,
instead of proving the smoothness of the remainder G (which will be different and with a different
role) we prove its smallness in some appropriate Besov norm. The key property that we will use
is the boundedness of the Calderón-Zygmund operators on the homogeneous Besov spaces, even
for the “limit” parameter p = 1 (see Lemma 3.4).

2. Proof of Theorem 3.1

We will need several lemmas.

LEMMA 3.2. We have 1
≥
L1(Rd),Ẇ°2,1(Rd)

¥

1/2,1
= Ḃ°1,1

1 (Rd).

Here, for a positive integer m, Ẇ°m,1(Rd) is defined as being the space of those distributions
f on R

d for which there exists a family of functions (FÆ)|Æ|=m in L1(Rd) such that

f =
X

|Æ|=m
rÆFÆ.

1Here, Ḃ°1,1
1 is the Banach space obtained as the closure of the space of Schwartz functions in the norm of Ḃ°1,1

1 .
This definition does not coincide with the definition of the homogeneous Besov spaces given in the Section 5 of the
Introduction Chapter. However, for simplicity we keep this notation throughout this chapter.
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The space Ẇ°m,1(Rd) is endowed with the following norm:

k f kẆ°m,1 = inf

(
X

|Æ|=m
kFÆkL1

ØØØØØ f =
X

|Æ|=m
rÆFÆ

)

.

In particular, the elements of Ẇ°m,1(Rd) are distributions of order ∑ m.

PROOF. We adapt the method in [2, p. 143]. To obtain the embedding
°
L1,Ẇ°2,1¢

1/2,1 ,! Ḃ°1,1
1 , (3.1)

we use the K-method.
We recall that for a compatible couple (A0, A1) of Banach spaces, the K functional is defined

as follows (see [2, Chapter 3]):

K ( f , t, A0, A1) := inf
f= f0+ f1

°
k f0kA0 + tk f1kA1

¢
,

for any f 2 A0 + A1 and t > 0. For any constant µ> 0, the norm of the space (A0, A1)µ,q,K (where
µ 2 (0,1) and 1∑ q ∑1) satisfies the equivalence (see [2, Lemma 3.1.3])

k f k(A0,A1)µ,q,K
ª

µX

∫2Z
2°µ∫µqK q °

f ,2µ∫, A0, A1
¢∂1/q

.

In what follows, we let µ= 2.
We now return to (3.1). Consider a distribution f 2 L1+Ẇ°2,1 and a decomposition f = f0+ f1

with f0 2 L1 and f1 2 Ẇ°2,1.
There exists a family of functions fÆ 2 L1 such that

f1 =
X

|Æ|=2
rÆ fÆ with

X

|Æ|=2
k fÆkL1 ∑ 2k f1kẆ°2,1 ,

and therefore we have
∞∞P j f1

∞∞
L1 ∑

X

|Æ|=2

∞∞rÆP j fÆ
∞∞

L1 . 22 j X

|Æ|=2

∞∞P j fÆ
∞∞

L1 . 22 j X

|Æ|=2
k fÆkL1 . 22 j k f1kẆ°2,1 , (3.2)

where P j are the homogeneous Paley-Littlewood “projections”. For the second inequality in (3.2),
we have used the “direct” Nikolskiı̆’s inequality

kDk f kLp . Rk k f kLp if supp bf Ω {|ª|∑ R} (3.3)

for any 1∑ p ∑1.
For further use, let us also note the “inverse” Nikolskiı̆’s inequality

kDk f kLp º Rk k f kLp if supp bf Ω {R/2∑ |ª|∑ 2R} (3.4)

For (3.3) and (3.4), see e.g. [4, Lemma 2.1.1].
From (3.2) we have, for all j 2Z,

2° j ∞∞P j f
∞∞

L1 ∑ 2° j °∞∞P j f0
∞∞

L1 +
∞∞P j f1

∞∞
L1

¢
. 2° j

≥∞∞P j f0
∞∞

L1 +22 j k f1kẆ°2,1

¥
,

which gives

2° j ∞∞P j f
∞∞

L1 . 2° jK( f ,22 j,L1,Ẇ°2,1)

and hence, by summing up,

k f kḂ°1,1
1

.

X

j
2°2(1/2) jK( f ,22 j,L1,Ẇ°2,1). k f k1/2,1,K .

To obtain the embedding

Ḃ°1,1
1 ,!

°
L1,Ẇ°2,1¢

1/2,1 (3.5)

we use the J-method.
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We recall that for a compatible couple (A0, A1) of Banach spaces, the J functional is defined
as follows (see [2, Chapter 3]):

J ( f , t, A0, A1) :=max
°
k f kA0 , tk f kA1

¢
,

for any f 2 A0 \ A1 and t > 0. For any constant µ> 0, the norm of the space (A0, A1)µ,q,J (where
µ 2 (0,1) and 1∑ q ∑1) satisfies the equivalence (see [2, Lemma 3.2.3])

k f k(A0,A1)µ,q,J
ª inf

µX

∫2Z
2°µ∫µq Jq °

u∫,2µ∫, A0, A1
¢∂1/q

.

Here, the infimum is taken over all the representations

f =
X

∫2Z
u∫, with convergence in A0 + A1,

where u∫ 2 A0 \ A1 for all ∫ 2Z. In what follows, we let µ= 2.
We now return to (3.5). For f 2 Ḃ°1,1

1 , we have

k f k1/2,1,J .

X

j
2°2(1/2) j J(P j f ,22 j,L1,Ẇ°2,1). (3.6)

Let √0 be the Schwartz function satisfying P0 g = g §√0, 8 g 2 S
0. Consider a Schwartz

function © with 0 › supp b© and such that b©= 1 on supp√0. Then, clearly, we have P j g§© j = P j g
for all j and any Schwartz function g. Here, © j(x) := 2 jd©(2 j x). Therefore, the function ¡ :=4°1©
(noticing that b¡(ª)=°|ª|°2 b©(ª)) is Schwartz and we have

∞∞P j f
∞∞

Ẇ°2,1 =
∞∞P j f §© j

∞∞
Ẇ°2,1 =

∞∞∞P j f §
°
4¡

¢
j

∞∞∞
Ẇ°2,1

= 2°2 j ∞∞P j f §4¡ j
∞∞

Ẇ°2,1

=2°2 j ∞∞4P j f §¡ j
∞∞

Ẇ°2,1 . 2°2 j ∞∞4(P j f )
∞∞

Ẇ°2,1 ∑ 2°2 j ∞∞P j f
∞∞

L1 .

Therefore, we have J(P j f ,22 j,L1,Ẇ°2,1).
∞∞P j f

∞∞
L1. Combining this with (3.6), we obtain

k f k1/2,1,J .

X

j
2° j ∞∞P j f

∞∞
L1 . k f kḂ°1,1

1
,

whence the conclusion of the lemma. ⇤

The following consequence of the above lemma will be used in the proof of Theorem 3.1.

LEMMA 3.3. Let " 2 (0,1) and define the operator T" by T"'(x) := "d°2'(x0,"x00), for ' 2 C1
c

°
R

d¢
,

where x0 2R2, x00 2Rd°2 and x = (x0, x00) 2Rd. Then,

kT"kḂ°1,1
1 !Ḃ°1,1

1
∑ C
"

for some 0< C <1.

PROOF. We see that

kT"kL1!L1 = 1. (3.7)

Consider now ' 2 Ẇ°2,1 and write

'=
X

Æ2N2,Ø2Nd°2

|Æ|+|Ø|=2

rÆ
x0r

Ø

x00FÆØ, (3.8)

where the functions FÆØ 2 L1 satisfy the inequality
X

Æ2N2,Ø2Nd°2

|Æ|+|Ø|=2

∞∞FÆØ

∞∞
L1 ∑ 2

∞∞'
∞∞

Ẇ°2,1 .

From (3.8), we have

T"'(x)= "d°2'(x0,"x00)=
X

Æ2N2,Ø2Nd°2

|Æ|+|Ø|=2

rÆ
x0r

Ø

x00

≥
"d°2°|Ø|FÆØ(x0,"x00)

¥
,
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and thus

∞∞T"'
∞∞

Ẇ°2,1 ∑
X

Æ2N2,Ø2Nd°2

|Æ|+|Ø|=2

"°|Ø|
∞∞FÆØ

∞∞
L1 ∑

1
"2

X

Æ2N2,Ø2Nd°2

|Æ|+|Ø|=2

∞∞FÆØ

∞∞
L1 ∑

2
"2

∞∞'
∞∞

Ẇ°2,1 .

We obtain

kT"kẆ°2,1!Ẇ°2,1 ∑
2
"2 . (3.9)

From this, (3.7) and Lemma 3.2 we get

kT"kḂ°1,1
1 !Ḃ°1,1

1
∑ CkT"k(L1(Rd),Ẇ°2,1(Rd))1/2,1!(L1(Rd),Ẇ°2,1(Rd))1/2,1

∑ CkT"k1/2
L1!L1 kT"k1/2

Ẇ°2,1!Ẇ°2,1 ∑ C
1
"

,

whence the claim. ⇤

We will also need the following well-known result concerning the boundedness of the Calderón-
Zygmund operators (see Section 1 of the Introduction Chapter for a definition) on the homoge-
neous Besov spaces (see [7, Corollary 6.7.2, p. 96]):

LEMMA 3.4. Suppose K is a Calderón-Zygmund operator and s 2 R, 1 ∑ p, q ∑ 1 are given.
Then, for any Schwartz function f on R

d we have

kK f kḂs,p
q

. k f kḂs,p
q

.

Combining the “lifting property”

k f kḂs,p
q

ª kr f kḂs°1,p
q

(which is a straightforward consequence of (3.4)) with the above lemma applied with s = 0, p =
q = 1 for the Calderón-Zygmund operator r4°1d§ (again, see see Section 1 of the Introduction
Chapter), we obtain that for any (l°1)-form v with Schwartz coefficients, the following inequality
holds

∞∞4°1d§v
∞∞

Ḃ0,1
1

ª
∞∞°
r4°1d§¢

v
∞∞

Ḃ°1,1
1

. kvkḂ°1,1
1

. (3.10)

In order to prove Theorem 3.1 it suffices to prove the following fact:

PROPOSITION 3.5. Let r > 0. Suppose d ∏ 2 and l 2 {2, ...,d}. There exists an l-form G 2
L1

c (B (0, r)) with dG = 0 and whose coefficients have zero integral, such that there is no (l°1)-form
F 2W1,1

c (B (0,3r)) on R
d with G = dF.

(Here L1
c(B(0, r)) is the space of L1-functions which are supported in B(0, r) and W1,1

c (B(0,3r))
is the space of W1,1 functions which are supported in B(0,3r). Note that the main difference
between Theorem 3.1 and Proposition 3.5 is that Proposition 3.5 involves the inhomogeneous
Sobolev space, while Theorem 3.1 involves the homogenous space.)

PROOF THAT PROPOSITION 3.5 IMPLIES THEOREM 3.1. We prove that, assuming Theorem
3.1 is false, then Proposition 3.5 must be false too.

Suppose Theorem 3.1 is false. Then, for any closed l-form G 2 L1
c (B (0, r)) whose coefficients

have zero integral, one can find an (l°1)-form F 2 Ẇ1,1 such that dF = G. By using the open
mapping theorem, we can choose F such that

dF =G and krFkL1 . kGkL1 . (3.11)

Fix a closed l-form G 2 L1 as above and with supp G Ω B (0, r) (for some r > 0) and let ¥ 2
C1

c (B (0,2r)) be a function such that ¥¥ 1 on B (0, r). Decompose the form F given in (3.11) as

F =
X

|I|=l°1
FI dxI .
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By considering regularizations with convolutions, we can assume without loss of generality
that G and F are smooth. We define a new (l°1)-form F1 := ¥ (F ° c) where the multiplication is

considered component-wise and c = (cI)|I|=l°1 is the vector with

√
d

l°1

!

components defined by

cI :=
Z

B(0,2r)
FI .

From Poincaré’s inequality, (3.11) and the properties of ¥, we find that F1 satisfies
∞∞F1∞∞

L1 +
∞∞rF1∞∞

L1 . kGkL1 , (3.12)

supp F1 µ B (0,2r) , (3.13)

dF1 = d
°
¥ (F ° c)

¢
= ¥d (F ° c)+G1 =G+G1, (3.14)

where G1 is an l-form whose coefficients are linear combinations of products between the coeffi-
cients of (F ° c) and the derivatives of ¥. As in (3.12), we have

∞∞G1∞∞
L1 +

∞∞rG1∞∞
L1 . kGkL1 . (3.15)

Note that G1 2W1,1
c (B (0,2r)). Thanks to Gagliardo’s embedding we get G1 2 Ld0

c (B (0,2r)) and,
using (3.15),

∞∞G1∞∞
Ld0 . kGkL1 .

By an inspection of Bogovskiı̆’s formula (see [5, Corollary 3.3 and Corollary 3.4]) one can find
a compactly supported (l°1)-form F2 2W1,d0

c (B (0,3r)) satisfying dF2 =G1 and such that
∞∞F2∞∞

W1,d0 .
∞∞G1∞∞

Ld0 . kGkL1 .

Now, if F 0 := F1°F2, then, from (3.14), we have dF 0 =G. Since W1,d0
c (B (0,3r)) ,!W1,1

c (B (0,3r)),
we have

∞∞F 0∞∞
W1,1 .

∞∞F1∞∞
W1,1 +

∞∞F2∞∞
W1,d0 . kGkL1 .

To summarize, as claimed, we have proved that for each compactly supported l-form G 2 L1,
whose coefficients have zero integral, there exists an (l°1)-form F 0 2 W1,1

c (B (0,3r)) such that
dF 0 =G. This completes the proof. ⇤

Now, we are going to prove Proposition 3.5. We argue by contradiction. If Proposition 3.5 does
not hold, then we have the following consequence (that we will later disprove, in order to obtain
a contradiction).

LEMMA 3.6. Assume that Proposition 3.5 does not hold for some d ∏ 2 and l 2 {2, ...,d}. Let
r > 0. Then for any l-form G 2 L1

c (B (0, r)) with dG = 0 and whose coefficients have zero integral,
there exists an (l°1)-form F 2W1,1

c (B (0,3r)) on R
d with G = dF. Moreover, we can choose F such

that
kFkẆ1,1 ∑ CkGkL1 , (3.16)

where C is a constant independent of r.

Indeed, this follows from a scaling argument. Suppose e.g. that Proposition 3.5 does not hold
for r = 1. Than one can use the open mapping theorem in order to chose F satisfying (3.16), with
a constant independent of G. To see that the constant C remains the same when r changes, it
suffices to note that, for any r > 0, we have d (rF(x/r))=G(x/r) and

∞∞∞G
≥ ·
r

¥∞∞∞
L1

= rd kGkL1

and ∞∞∞rF
≥ ·
r

¥∞∞∞
Ẇ1,1

= rd kFkẆ1,1 .

Hence (3.16) is dilation-invariant.
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PROOF (BY CONTRADICTION) OF PROPOSITION 3.5. We observe that it suffices to consider
only the case where d > 2. Indeed, when d = 2 the only possible Hodge system to which Proposi-
tion 3.5 applies is the divergence equation; as we mentioned above this case was already settled
in [3].

Let g 2 C1
c (R2) and a nonnegative √ 2 C1

c (Rd°2) satisfying the conditions
Z

R2
g = 0,

Z

Rd°2
√= 1.

Via a standard explicit construction, we may find h, k 2 C1
c (R2) such that

g = @1h+@2k on R
2. (3.17)

Consider now the l-form on R
d:

G" :=
°
g≠√"

¢
dx1 ^dx2 ^ ...^dxl + (°1)l+1

dX

i=l+1

°
h≠@i√"

¢
dx2 ^dx3 ^ ...^dxl ^dxi

+ (°1)l
dX

i=l+1

°
k≠@i√"

¢
dx1 ^dx3 ^ ...^dxl ^dxi,

(3.18)

where √"(x00) := "d°2√("x00). Here, if g1 is a function on R
2 and g2 is a function on R

d°2, we write
g1 ≠ g2 for the function

(g1 ≠ g2)(x) := g1
°
x0

¢
g2

°
x00

¢
, x =

°
x0, x00

¢
2R2 £Rd°2.

Computing dG" by using (3.17), one obtains:

dG" =(°1)l X

l+1∑i∑d

°
g≠@i√

"
¢
dx1 ^dx2 ^ ...^dxl ^dxi

+ (°1)l+1
dX

i=l+1

°
@1h≠@i√

"
¢
dx1 ^dx2 ^ ...^dxl ^dxi

+ (°1)l+1
dX

i=l+1

°
@2k≠@i√

"
¢
dx1 ^dx2 ^ ...^dxl ^dxi +R"

=(°1)l X

l+1∑i∑d
(g°@1h°@2k)≠@i√

" dx1 ^dx2 ^ ...^dxl ^dxi +R" = R",

(3.19)

where R" is an (l+1)-form whose coefficients are linear combinations of terms of the form h≠
@ j1@i1√

" and k≠@ j2@i2√
", with i1, j1, i2, j2 2 {l+1, ...,d}.

We next note that R" 2 Ḃ°1,1
1 (Rd) and we have, using Lemma 3.3,

kR"kḂ°1,1
1

∑C
∞∞h≠r2

x00√"

∞∞
Ḃ°1,1

1
+C

∞∞k≠r2
x00√"

∞∞
Ḃ°1,1

1

=C"2
∞∞∞h≠

°
r2

x00√
¢"∞∞∞

Ḃ°1,1
1

+C"2
∞∞∞k≠

°
r2

x00√
¢"∞∞∞

Ḃ°1,1
1

=C"2 ∞∞T"

°
h≠r2

x00√
¢∞∞

Ḃ°1,1
1

+C"2 ∞∞T"

°
k≠r2

x00√
¢∞∞

Ḃ°1,1
1

∑C0"
∞∞h≠r2

x00√
∞∞

Ḃ°1,1
1

+C0"
∞∞k≠r2

x00√
∞∞

Ḃ°1,1
1

= Ch,k,√".

(3.20)

Since dR" = 0, the l-form !" :=4°1d§R" satisfies (see (3.10))

!" 2 Ḃ0,1
1 (Rd), d!" = R" and k!"kḂ0,1

1
∑ CkR"kḂ°1,1

1
∑ Ch,k,√",

from which we get

k!"kL1 ∑ k!"kḂ0,1
1

∑ Ch,k,√". (3.21)

To justify (3.21), we first observe that R" is a smooth compactly supported function. Therefore,
we have

R" =
X

j2Z
P jR", (3.22)
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in the sense of distributions. By applying on both sides of (3.22) the operator 4°1d§, we find that

!" =
X

j2Z
P j!", (3.23)

in the sense of distributions. Using (3.10) we obtain that, for any j 2Z,
∞∞P j!"

∞∞
L1 . 2° j ∞∞P jR"

∞∞
L1 ,

and, since R" 2 Ḃ°1,1
1

°
R

d¢
, we get that the sum in (3.23) is absolutely convergent in L1. Therefore,

we have !" 2 L1 °
R

d¢
. From the triangle inequality and (3.23), we obtain (3.21).

Suppose Proposition 3.5 is false. We show that, in the above construction, !" can be replaced
by a compactly supported form still satisfying an estimate of the form (3.21). For this purpose,
we use the following lemma that follows from Lemma 3.6.

LEMMA 3.7. Assume that Proposition 3.5 does not hold. Let r > 0 and R be an (l+1)-form
in C1

c (B (0, r)) whose coefficients have zero integral and such that there exists a smooth l-form
! 2 L1 °

R
d¢

with d!= R and

k!kL1 ∑ CkRkḂ°1,1
1

for some fixed constant C.
Then there exists an l-form !0 2 L1

c (B (0,6r)) such that

d!0 = R and
∞∞!0∞∞

L1 ∑ C0 kRkḂ°1,1
1

, (3.24)

where C0 depends only on C, but not on !.

PROOF OF LEMMA 3.7. Suppose first that r = 1. Consider a function ¥ 2 C1
c (B (0,2)) such

that
ØØ¥

ØØ∑ 1,
ØØr¥

ØØ∑ 1 and ¥¥ 1 on B (0,1). Setting !1 := ¥!, we have that
∞∞!1∞∞

L1 ∑ k!kL1 ∑ CkRkḂ°1,1
1

. (3.25)

The l-form !1 is supported on B (0,2) and

d!1 = ¥d!+R1 = R+R1, (3.26)

where R1 is an (l+1)-form whose coefficients are linear combinations of products between the
coefficients of ! and the derivatives of ¥. Hence,

∞∞R1∞∞
L1 .

∞∞r¥
∞∞

L1
∞∞!1∞∞

L1 .
∞∞!1∞∞

L1 ∑ CkRkḂ°1,1
1

.

Clearly, the form R1 is closed and (by (3.26), the fact that !1 is compactly supported, and the
assumption that the coefficients of R have zero integral), its coefficients have zero integral.

On the other hand, R1 is compactly supported in B (0,2). Lemma 3.6 implies the existence of
some !2 2W1,1

c (B (0,6)) satisfying d!2 = R1 and
∞∞!2∞∞

L1 ∑
∞∞!2∞∞

W1,1 .
∞∞R1∞∞

L1 .CkRkḂ°1,1
1

. (3.27)

Hence, if we set !0 := !1 °!2, then we have !0 2 L1
c (B (0,6)), d!0 = R and thanks to (3.25),

(3.27),
∞∞!0∞∞

L1 .CkRkḂ°1,1
1

∑ C0 kRkḂ°1,1
1

.

To obtain the statement for a general r, we use the same dilation argument as above: for any
r > 0, we have d

°
r!0(x/r)

¢
= R(x/r),

∞∞∞R
≥ ·
r

¥∞∞∞
Ḃ°1,1

1

= rd+1 kRkḂ°1,1
1

and ∞∞∞r!0
≥ ·
r

¥∞∞∞
L1

= rd+1 ∞∞!0∞∞
L1 .

Hence (3.24) is dilation-invariant. ⇤
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PROOF OF PROPOSITION 3.5 COMPLETED. As we observed above, the coefficients of R" are
sums of second derivatives of compactly supported smooth functions (see (3.19)), and one can
easily check that R = R" satisfies the hypotheses of Lemma 3.7. Thanks to the Lemma 3.7 and
(3.21), we can find a compactly supported l-form !0

" such that d!0
" = R" and

∞∞!0
"

∞∞
L1 ∑ Ch,k,√", (3.28)

where the constant Ch,k,√ does not depend on ".
We have d

°
G"°!0

"

¢
= dG" ° R" = 0 and hence, from (3.18) and (3.28), we can find (using

Lemma 3.6) an (l°1)-form F" 2W1,1
c (Rd) such that

G" =!0
"+dF", (3.29)

kF"kẆ1,1 ∑ C
∞∞G"°!0

"

∞∞
L1 ∑ CkG"kL1 +Ch,k,√"∑ CkgkL1 +Ch,k,√". (3.30)

By identification of the coefficient dxI := dx1 ^dx2 ^ · · ·^dxl in (3.29), we see that

g≠√" = (G")I =
°
!0
"

¢
I + (dF")I . (3.31)

Consider now a nonnegative function ' 2 C1
c (R2) with the integral equal to 1. Set

'"(x0) := "2'(x0), 8x0 2R2.

Taking in (3.31) the convolution with

'"≠√" ='"≠√"(x0, x00)= "d °
'≠√

¢
("x0,"x00)= "d °

'≠√
¢
("x)

and integrating in x00 on R
d°2, we obtain that

g§'" =
Z

Rd°2

°
!0
"

¢
I §

°
'"≠√"

¢
(·, x00)dx00+

Z

Rd°2
(dF")I §

°
'"≠√"

¢
(·, x00)dx00. (3.32)

(Here, we have used the fact that
R
Rd°2 √" = 1.)

Setting

f0" :=
Z

Rd°2

°
!0
"

¢
I §

°
'"≠√"

¢
(·, x00)dx00,

we find, using (3.28), that

k f0"kL1(R2) ∑
∞∞!0

"

∞∞
L1(Rd) ∑ Ch,k,√". (3.33)

On the other hand, we note that the second term on the right hand side of (3.32) can be
rewritten asZ

Rd°2
(dF")I §

°
'"≠√"

¢
(·, x00)dx00 = @1 f1"+@2 f2",

for some f1", f2" 2W1,1
c (R2) such that

k f1"kẆ1,1(R2) +k f2"kẆ1,1(R2) ∑ kF"kẆ1,1(Rd) ∑ CkgkL1 +Ch,k,√". (3.34)

Since f1" and f2" are compactly supported, we get by (3.34) and Gagliardo’s embedding that

k f1"kL2(R2) +k f2"kL2(R2) ∑ CkgkL1 +Ch,k,√". (3.35)

(Note that the above constants do not depend on ".)
Using the estimates (3.33), (3.35) and the Banach-Alaoglu theorem in L2(R2), we can pass to

the limit "! 0 (possibly up to a subsequence) in the identity

g§'" = f0"+@1 f1"+@2 f2" (3.36)

and obtain the existence of some f1, f2 2 L2(R2) satisfying

g = @1 f1 +@2 f2 and k f1kL2 +k f2kL2 ∑ CkgkL1 . (3.37)

This implies the existence of a solution in L2(R2) for the divergence equation on R
2 with

L1(R2) source terms. However, this was disproved in [3]. This contradiction achieves the proof of
Proposition 3.5. ⇤
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REMARK 3.8. Warning: at the end of the day, we know that Lemma 3.6 and Lemma 3.7 are
wrong.

REMARK 3.9. By following the above proof, with minor modifications, one can prove:

THEOREM 3.10. Suppose d ∏ 2 and l 2 {2, ...,d}. There exists an l-form G 2 L1
c on R

d with
dG = 0, whose coefficients have zero integral and such that there is no (l°1)-form F 2 Ẇ1,1 on R

d

with G = dF.

Theorem 3.10 can also be obtained by adapting the argument in [6].

3. Appendix: Yet another proof

We give here a sketch for another proof of the main result. This proof is mainly based on a
“compactness argument” (see Lemma 3.11 below) which enables us to reduce the problem on R

d

to its analogue on T
d. (Here we identify T

d with [0,1)d.) The problem in this last case can be
immediately solved by using the nonexistence result for the divergence equation in [3].

According to [3, Section 2] one can choose a function g 2 L1 °
T

2¢ with zero integral which is not
the divergence of a W1,1 vector field. Now, consider on T

d (assuming d > 2) the following l-form:

G := (g≠1)dx1 ^ ...^dxl .

It is easy to see that G 2 L1 °
T

d¢
is closed and has the coefficients of integral zero, and still is

not the exterior derivative of a W1,1 form on Td. In fact, it is not possible to write G as G = dF 0°R0

for some (l°1)-form F 0 2W1,1 °
T

d¢
and an l-form R0 2 Ld0

(Td). Indeed, by looking at the coefficient
corresponding to I = {1, ..., l} and integrating in x3, ..., xd (on T

d°2), we get that g = div f ° r on T
2

for some vector field f 2 W1,1 °
T

2¢ and a function r 2 Ld0 °
T

2¢. Since the integral of r is zero, r
is the divergence of a vector field in W1,d0 °

T
2¢ ,! W1,1 °

T
2¢. Hence, g is the divergence of a W1,1

vector field. This contradicts our choice of g.
We now explain how the problem on R

d reduces to its analogue on T
d.

Let k1,k2,... be an enumeration of the elements of Zd and consider the family of cubes
°
Q j

¢
j∏1

defined by Q j := k j+(0,3/2)d, for j ∏ 1. There exists a family
°
¥ j

¢
j∏1 of functions with ¥ j 2 C1

c
°
Q j

¢
,ØØr¥ j

ØØ∑ 1 for each j ∏ 1, and such that ¥1 +¥2 + ...= 1 on R
d.

We extend the above G by periodicity to Rd and we observe that

sup
j∏1

kGkL1(Q j) =: CG <1.

For each j ∏ 1 we choose a vector c j 2RN (with N =
°d

l
¢
) such that the coefficients of

°
G° c j

¢
¥ j

have zero integral. It is easy to see that
ØØc j

ØØ.CG . We have

d
°°

G° c j
¢
¥ j

¢
= (dG)¥ j +G^d¥ j =G^d¥ j 2 L1

c
°
Q j

¢
.

There exists G1
j 2 Ld0

c
°
Q j

¢
, whose coefficients have zero integral, such that dG1

j =G^d¥ j and∞∞∞G1
j

∞∞∞
Ld0 . CG (see the proof of Lemma 3.6). Hence,

°
G° c j

¢
¥ j °G1

j is closed and its coefficients
have zero integral.

If Theorem 3.1 is false, then (see Lemma 3.6) there exists an (l°1)-form Fj 2W1,1
c

°
3Q j

¢
such

that dFj =
°
G° c j

¢
¥ j °G1

j and
∞∞Fj

∞∞
W1,1 .

∞∞∞
°
G° c j

¢
¥ j °G1

j

∞∞∞
L1

.CG . (3.38)

Let X1 be the completion of the space of Schwartz functions on R
d under the following norm:

k f kX1 := sup
j∏1

k f kL1(Q j)+kr f kL1(Rd) .
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In a similar way we define the space X2 of the Ld0
loc functions for which the following norm is

finite:

k f kX2 := sup
j∏1

k f kLd0(Q j) .

Define F := F1 +F2 + .... Thanks to (3.38), we easily see that kFkX1 .CG . Also,

dF =G+R, (3.39)

where

R :=°
1X

j=1

≥
c j¥ j +G1

j

¥
with kRkX2 .CG .

In order to transfer the problem on T
d we need the following lemma.

LEMMA 3.11. Let u 2 X1 ( u 2 X2) and consider the sequence

un := 1
|Bn|

X

¬2Zd
u

°
x+¬

¢
,

where Bn := B(0,n)\Zd. Then, there exists a function u0 2 BVloc
°
R

d¢
( u0 2 X2) which is component-

wise 1-periodic and un ! u0, up to a subsequence, in the sense of distributions.

This lemma can be proved on the same lines as Lemma 8.17 from Chapter 8.

From (3.39), we have dFn = G +Rn, for all n ∏ 1. Letting n !1, and applying Lemma 3.11
we get that dF 0 = G +R0 for some component-wise 1-periodic forms F 0 2 BVloc

°
R

d¢
and R0 2 X2

with
∞∞F 0∞∞

BV (Td) . kGkL1(Td) and
∞∞R0∞∞

Ld0 (Td) . kGkL1(Td) .

(Note that, since G is component-wise 1-periodic, we have CG ª kGkL1(Td).)
By a standard regularization with convolution and a limiting argument, we can replace the

space BV (Td) with W1,1(Td). Now Theorem 3.1 follows from the discussion at the beginning of
the Appendix. Theorem 3.10 can also be proved on the same lines.
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CHAPTER 4

The divergence equation with L1 source

A well-known fact is that there exists g 2 L1(T2) with zero integral, such that the
equation

div f = g (§)

has no solution f = ( f1, f2) 2W1,1(T2). This was proved by Preiss ([4]), using an involved geomet-
ric argument, and, independently, by McMullen ([2]), via Ornstein’s non-inequality. We improve
this result: roughly speaking, we prove that, there exists g 2 L1 for which (§) has no solution
such that @2 f2 2 L1 and f is “slightly better" than L1. Our proof relies on Riesz products in the
spirit of the approach of Wojciechowski ([6]) for the study of (§) with source g 2 L1. The proof we
give is elementary, self-contained and completely avoids the use of Ornstein’s non-inequality.

1. Introduction

In this chapter, we improve the following result of Preiss ([4]) and McMullen (Theorem 2.1 in
[2]):

THEOREM 4.1. There exists g 2 L1(T2) with zero integral, such that there are no f1, f2 2
W1,1(T2) with

g = @1 f1 +@2 f2.

The proof in [4] is “geometric", the one in [2] relies essentially on Ornstein’s non-inequality
([3]).

Note that, in the above statement, the conditions on f1, f2 are isotropic, i.e., we require
@l f j 2 L1(T2) for all l, j = 1,2. In what follows, we will prove that, under some mild regular-
ity assumptions on f1, f2, the above requirements can be weakened to anisotropic conditions.
Namely, it is enough to impose @2 f2 2 L1(T2). In order to state this more precisely, we introduce
the following spaces of distributions.

Suppose ∏ : N! (0,1) is a decreasing function such that ∏ (k) ! 0 when k !1. To such a
function we associate the Banach space of those distributions whose Fourier transform decays at
the rate at least ∏. More precisely, consider the space

S∏

°
T

2¢ :=
(

f 2D
0(T2)

ØØØØØ sup
n2Z2

ØØ f̂ (n)
ØØ

∏ (|n|)
<1

)

,

endowed with the norm given by

k f kS∏
:= sup

n2Z2

ØØ bf (n)
ØØ

∏ (|n|)
, f 2 S∏

°
T

2¢ .

To mention only few examples, we note that, for any m 2N§, Wm,1(T2) ,! S∏

°
T

2¢, with ∏ (|n|)=
1/(1+|n|)m and, if s > 0, the fractional Sobolev space Hs(T2) is embedded in S∏

°
T

2¢ for ∏ (|n|) =
1/(1+|n|)s.

With this notation, we can formulate our result.
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THEOREM 4.2. Suppose ∏ : N! (0,1) is decreasing to 0. There exists g 2 L1(T2) such that
there are no f0, f1, f2 2 S∏

°
T

2¢ with @2 f2 2 L1(T2) and

g = f0 +@1 f1 +@2 f2.

We can easily observe that Theorem 4.2 implies Theorem 4.1. Indeed, if f1, f2 2 W1,1(T2)
then @2 f2 2 L1(T2) and, as we mentioned above, we have f1, f2 2 S∏

°
T

2¢ for ∏ (|n|) = 1/(1+|n|).
Also, even the weaker regularity condition f0, f1, f2 2 H"(T2), @2 f2 2 L1(T2) ("> 0, a small fixed
number) rules out the existence of a solution. Intuitively, f 2 S∏

°
T

2¢, with ∏ slowly decaying,
means that f is “slightly better" than L1. The above result asserts that solutions with such
regularity satisfying @2 f2 2 L1(T2) need not exist.

Finally, we discuss the most important aspect, which is the proof of Theorem 4.2. Our proof
completely avoids the use of Ornstein’s non-inequality. It is an adaptation of the Riesz products
based proof, given by Wojciechowski in [6], of the fact that there exist L1 functions which are not
divergences of W1,1 vector fields. We follow the general structure of his proof making the needed
modifications in order to handle the L1 case. While the proof in [6] relies on a relatively difficult
lemma (Lemma 1, in [6]), in our case, the role of this lemma will be played by Lemma 4.3 below,
which is elementary and easy. Another aspect of our proof is the presence of the function ∏. This
allows us to quantify the regularity that we impose to the solution and to improve the result
described by Theorem 4.1. The approach based on Ornstein’s non-inequality does not seem to be
suited for obtaining this improvement.

We also mention that the proof given below of Theorem 4.2 is self-contained and elementary.

2. Proof of Theorem 4.2

Before starting the proof, we recall first the following well-known elementary fact (see [5,
Lemma 6.3, p. 118]):

LEMMA 4.3. Suppose z1,..., zN are some complex numbers. Then, there exist æ1,..., æN 2 {0,1}
such that

ØØØØØ

NX

k=1
ækzk

ØØØØØ∏
1
º

NX

k=1
|zk| .

PROOF. We follow [5]. View z1,..., zN as vectors in R
2. For a given µ 2 [0,2º], let rµ :=

(cosµ,sinµ). If Hµ is the half-plane given by

Hµ :=
©
z 2R2| hz, rµi ∏ 0

™
,

we have

1
2º

Z2º

0

ØØØØØ

NX

k=1,zk2Hµ

zk

ØØØØØdµ ∏ 1
2º

Z2º

0

NX

j=1

≠
z j, rµ

Æ+ dµ =
NX

j=1

1
2º

Z2º

0

≠
z j, rµ

Æ+ dµ,

and we easily see that, for all j,

1
2º

Z2º

0

≠
z j, rµ

Æ+ dµ =
ØØz j

ØØ 1
2º

Z2º

0
(cosµ)+ dµ = 1

º

ØØz j
ØØ .

Using the above inequality, we complete the proof of Lemma 4.3 via a mean value argument.
⇤
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We will also need few facts concerning the trigonometric polynomials.
Fix a finite sequence (ak)k=1,N in Z

2. For each finite sequence (Æ1, ...,ÆN) of complex numbers
we have the following expansion rule:

NY

k=1
(1+Æk cosht,aki)= 1+

NX

k=1

X

"1,...,"k2{°1,0,1}
"k 6=0

√
Y

" j 6=0

Æ j

2

!

eiht,"1a1+...+"kaki.

Suppose, moreover, that (ak)k=1,N is component-wise lacunary, i.e., there exists a constant
M > 3 such that |ak+1 (1)| / |ak (1)| > M and |ak+1 (2)| / |ak (2)| > M for all 1∑ k ∑ N°1. Then, all the
expressions "1a1+...+"kak in the above formula are distinct and nonzero. Hence, if Æ1, ...,ÆN and
Ø1, ...,ØN are complex numbers, by using the above formula and the relation between convolution
and the Fourier transform, we obtain

NY

k=1
(1+Æk cosh·,aki)§

NY

k=1

°
1+Øk cosh·,aki

¢
=

NY

k=1

µ
1+ ÆkØk

2
cosh·,aki

∂
. (4.1)

We will also use the following standard algebraic identity:
NY

k=1
(1+ ck)= 1+

NX

k=1
ck

k°1Y

j=1

°
1+ c j

¢
(4.2)

for any complex numbers c1,..., cN .

PROOF OF THEOREM 4.2. Suppose that the assertion of Theorem 4.2 is false and fix a func-
tion ∏ as in the statement. Then, by the open mapping principle, there exists a constant C > 0
such that for any g 2 L1(T2) there exist distributions f0, f1, f2 2 S∏(T2), satisfying g = f0+@1 f1+
@2 f2, with the properties that @2 f2 2 L1(T2) and

k f0kS∏
+k f1kS∏

+k f2kS∏
+k@2 f2kL1 ∑ CkgkL1 . (4.3)

Let N be a large positive integer such that ln N > 25ºC and consider the functions on T
2

gN(t) :=
NY

k=1

µ
1+ i

k
cosht,aki

∂
and GN (t) :=

NY

k=1
(1+cosht,aki) ,

where the finite sequence (ak)k=1,N in (N§)2 is defined below.
Using Lemma 4.3, applied to the sequence of complex numbers

zk := 1
k

k°1Y

j=1

µ
1+ i

2 j

∂
for k = 1, ..., N,

(here and after the product over an empty set is by convention equal to 1), we can find a sequence
æ1,..., æN 2 {0,1} such that

ØØØØØ

NX

k=1

æk

k

k°1Y

j=1

µ
1+ i

2 j

∂ ØØØØØ∏
1
º

NX

k=1

1
k

k°1Y

j=1

µ
1+ 1

4 j2

∂1/2
∏ 1
º

NX

k=1

1
k
∏ 1
º

ln N. (4.4)

Now we impose the sequence (ak)k=1,N to satisfy the following properties:

(i) (ak)k=1,N is component-wise lacunary;
(ii) If æk = 1, then

ØØØØØak(1)+
X

1∑ j∑k°1
" ja j(1)

ØØØØØ∏

√ØØØØØak(2)+
X

1∑ j∑k°1
" ja j(2)

ØØØØØ

!

< 1
4N for all "1, ...,"k°1 2 {°1,0,1} ;

(iii) If æk = 0, then
ØØØØØak(2)+

X

1∑ j∑k°1
" ja j(2)

ØØØØØ∏

√ØØØØØak(1)+
X

1∑ j∑k°1
" ja j(1)

ØØØØØ

!

< 1
4N for all "1, ...,"k°1 2 {°1,0,1} .

(By convention the sum over an empty set is equal to 0.)
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Such a sequence can be easily constructed by induction on k: if a1,..., ak°1 are chosen, then
we choose ak(2) much larger than ak(1), or ak(1) much larger than ak(2), depending on whether
æk = 1 or æk = 0 respectively. Since ∏ is decreasing to 0, we can satisfy in this way the conditions
(ii), respectively (iii). Also, the condition (i) can be easily satisfied.

We now return to the proof of Theorem 4.2. Note that

kgNkL1 =
NY

k=1

µ
1+ 1

k2

∂1/2
∑ eº

2/12 < 3, and also GN ∏ 0 and kGNkL1 = 1. (4.5)

Using (4.1) and (4.2), we get

GN § gN(t)=
NY

k=1

µ
1+ i

2k
cosht,aki

∂
= 1+

NX

k=1

i
2k

cosht,aki
k°1Y

j=1

µ
1+ i

2 j
cos

≠
t,a j

Æ∂
. (4.6)

Consider the sets

A :=
N[

k=1
æk=1

{"1a1 + ...+"kak| "1, ...,"k 2 {°1,0,1} , "k 6= 0},

B :=
N[

k=1
æk=0

{"1a1 + ...+"kak| "1, ...,"k 2 {°1,0,1} , "k 6= 0}.

Since the sequence (ak)k=1,N is component-wise lacunary, we have ({0}£Z)\ (A[B) = ?,
(Z£ {0})\ (A[B)=? and A\B =?, while clearly |A[B|∑ 3N . In particular, |A|∑ 3N , |B|∑ 3N .

Using now (4.6) and (4.4), we obtain

|PAGN § gN(0)| =
ØØØØØ

NX

k=1

iæk

2k

k°1Y

j=1

µ
1+ i

2 j

∂ØØØØØ∏
1

2º
ln N, (4.7)

where PA is the linear operator on trigonometric polynomials, satisfying PA eiht,ni = eiht,ni if n 2 A
and PA eiht,ni = 0 otherwise.

On the other hand, according to our assumption and (4.5), we can find f0, f1, f2 2 S∏(T2),
satisfying gN = f0 +@1 f1 +@2 f2, with the properties that @2 f2 2 L1(T2) and

k f0kS∏
+k f1kS∏

+k f2kS∏
+k@2 f2kL1 ∑ 3C.

Let us note that

PAGN § gN = PAGN § f0 +PAGN §@1 f1 +PAGN §@2 f2. (4.8)

We next estimate each term on the right hand side of (4.8).
For the second term, we have:

kPAGN §@1 f1kL1 =kGN §PA@1 f1kL1 ∑ kGNkL1 kPA@1 f1kL1 = kPA@1 f1kL1

∑ |A|max
n2A

ØØØÅ@1 f1(n)
ØØØ= |A|max

n2A
|n(1)|

ØØ bf1(n)
ØØ

∑ |A|max
n2A

|n(1)|∏ (|n|)k f1kS∏
∑ |A|max

n2A
|n(1)|∏ (|n (2)|)k f1kS∏

∑3N4°N3C < 3C,

where we have used (ii).
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For the third term, we have:
kPAGN §@2 f2kL1 =kGN §@2 f2 °PBGN §@2 f2kL1 ∑ kGN §@2 f2kL1 +kPBGN §@2 f2kL1

∑kGNkL1 k@2 f2kL1 +kGNkL1 kPB@2 f2kL1 = k@2 f2kL1 +kPB@2 f2kL1

∑3C+|B|max
n2B

ØØØÅ@2 f2(n)
ØØØ= 3C+|B|max

n2B
|n(2)|

ØØ bf2(n)
ØØ

∑3C+3N max
n2B

|n(2)|∏ (|n|)k f2kS∏
∑ 3C+3N max

n2B
|n(2)|∏ (|n (1)|)k f2kS∏

∑3C+3N4°N3C < 6C,

where we have used the identity GN = PAGN +PBGN +1 and (iii).
Finally, the first term is easier to handle. We have:

kPAGN § f0kL1 =kGN §PA f0kL1 ∑ kPA f0kL1 ∑ |A|max
n2A

ØØ bf0(n)
ØØ

∑ |A|max
n2A

∏ (|n|)k f0kS∏
∑ |A|max

n2A
|n(1)|∏ (|n(2)|)k f0kS∏

∑3N4°N3C < 3C.

These estimates together with (4.8) give us

kPAGN § gNkL1 ∑ 3C+6C+3C = 12C,

which contradicts (4.7), since ln N > 25ºC. ⇤

REMARK 4.4. (1) Similarly, a closer look to the proof in [6] gives the following analogue of
Theorem 4.2 in the case of L1.

THEOREM 4.5. Suppose ∏ : N! (0,1) is decreasing to 0. There exists g 2 L1(T2) such that
there are no f0, f1, f2 2 S∏

°
T

2¢ with @2 f2 2 L1(T2) and

g = f0 +@1 f1 +@2 f2.

(2) The d-dimensional case, with d ∏ 3, can be easily obtained from Theorem 4.2. More pre-
cisely, we have

THEOREM 4.6. Let d ∏ 2. Suppose ∏ : N! (0,1) is decreasing to 0. There exists g 2 L1(Td)
such that there are no f0, f1, f2,..., fd 2D

0 °
T

d¢
with f0, f1, f2 2 S∏

°
T

d¢
, @2 f2 2 L1(Td) and

g = f0 +@1 f1 +@2 f2 + ...+@d fd.

Indeed, consider a g0 2 C1(T2) and √ 2 C1(Td°2) such that 0 ∑ √ ∑ 1 and
R
Td°2 √ = 1. If the

above result were not true, we could find f0, f1, f2,..., fd 2D
0 °
T

d¢
such that

g0 ≠√= f0 +@1 f1 +@2 f2 + ...+@d fd

and

k f0kS∏(Td)+k f1kS∏(Td)+k f2kS∏(Td)+k@2 f2kL1(Td) ∑ C
∞∞g0∞∞

L1(T2) .

Without loss of generality, we can suppose that f0, f1, f2,..., fd are smooth. Integrating this
equation in the last d ° 2 coordinates, we reduce the problem to the 2-dimensional case: g0 =
f 00 +@1 f 01 +@2 f 02 where

f 0j (t) :=
Z

Td°2
f j (t,ø)dø, for j = 0,1,2,

satisfy
∞∞ f 00

∞∞
S∏(T2)+

∞∞ f 01
∞∞

S∏(T2)+
∞∞ f 02

∞∞
S∏(T2)+

∞∞@2 f 02
∞∞

L1(T2) ∑ C
∞∞g0∞∞

L1(T2) .
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Here, we have used the fact that, for all n0 2Z2,
ØØØ bf 0j

°
n0¢

ØØØ=
ØØ bf j

°
n0,0

¢ØØ∑∏
°ØØ°n0,0

¢ØØ¢∞∞ f j
∞∞

S∏(Td) =∏
°ØØn0ØØ¢∞∞ f j

∞∞
S∏(Td) .

(3) Using Lemma 4.3, and adapting the technique in [1], we can obtain similar anisotropic
Ornstein type inequalities adapted to the L1 case. We give below an example. For any " > 0,
there exists a trigonometric polynomial f on T

2, depending on ", such that

"
∞∞@3

1@
2
2 f

∞∞
L1 ∏

∞∞@4
1 f

∞∞
L1 +

∞∞@2
1@

4
2 f

∞∞
L1 +

∞∞@1@
6
2 f

∞∞
L1 +

∞∞@8
2 f

∞∞
L1 .
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Part 2

Hodge systems in critical function spaces





CHAPTER 5

Approximation of critical regularity functions on stratified
homogeneous groups

Let G be a stratified homogeneous group with homogeneous dimension Q and whose
Lie algebra is generated by the left-invariant vector fields X1,...,Xd1. Let 1 < p, q <1, Æ := Q/p
and ±> 0. We prove that for any function f 2 ḞÆ,p

q (G) there exists a function F 2 L1(G)\ ḞÆ,p
q (G)

such that
kX

i=1
kXi( f °F)kḞÆ°1,p

q (G) ∑±k f kḞÆ,p
q (G) ,

kFkL1(G) +kFkḞÆ,p
q (G) ∑C± k f kḞÆ,p

q (G)

where k is the largest integer smaller than min(p,d1) and C± is a positive constant depending
only on ±. Here, ḞÆ,p

q (G) is a homogeneous Triebel-Lizorkin type space adapted to G.
This generalizes earlier results of Bourgain, Brezis [4] and of Bousquet, Russ, Wang, Yung [6]

in the Euclidean case and answers an open problem in [6].

1. Introduction

Let B Ω Rd (d ∏ 2) be a Euclidean ball. It is well-known that, if f 2 Lp
loc(B,R) with 1 < p <1,

then the equation divY = f has a solution Y 2W1,p
loc (B,Rd). When p = d, this Y “almost" belongs

to L1
loc(B,Rd). A striking result obtained by Bourgain and Brezis (in [3]) asserts that is possible

to find Y 2 W1,d
loc (B,Rd)\L1

loc(B,Rd), solving divY = f . Their argument relies on a new type of
approximation results.

This seminal work has been followed by a number of approximation results of similar type
[4], [5], [13], [6]. Our work is primarily motivated by two types of developments of the results in
[13], [6] concerning functions in critical Sobolev spaces that barely fail the embedding in L1.

The first of these results ([13, Lemma 1.7]) deals with the extension of the approximation
result given in [4, Theorem 11] in the Euclidean case, to the more general case of stratified
homogeneous groups. Somewhat informally this reads (see Section 2 for definitions):

THEOREM 5.1. Suppose G is a stratified homogeneous group whose homogeneous dimension
is Q and let X1, ..., Xn1 be a minimal family of vector fields generating the Lie algebra of G. Then,
for any Schwartz function f on G and any ±> 0 there exists a function F such that:

n1°1X

i=1
kXi( f °F)kLQ (G) ∑±krb f kLQ (G) ,

kFkL1(G) +krbFkLQ (G) ∑C± krb f kLQ (G) ,

where C± is a constant depending only on ±.

Here, rb f =
°
X1 f , ..., Xn1 f

¢
. Theorem 11 in [4] corresponds to the Euclidean case.

On the other hand, it was proved in [6, Theorem 1.1] that Theorem 11 in [4] remains true,
in the Euclidean case if we replace the critical Sobolev space Ẇ1,d(Rd) by more general critical
spaces such as Ḟd/p,p

q (Rd). More precisely, we have the following:

87
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THEOREM 5.2. Consider the parameters 1< p, q <1, Æ := d/p and let k be the largest positive
integer with k<min(p,d). Then, for every ±> 0 there exists a constant C± > 0 depending only on ±,
such that for every function f 2 ḞÆ,p

q (Rd) there exists F 2 L1(Rd)\ḞÆ,p
q (Rd) satisfying the following

estimates:
kX

i=1
k@i( f °F)kḞÆ°1,p

q (Rd) ∑±k f kḞÆ,p
q (Rd) ,

kFkL1(Rd) +kFkḞÆ,p
q (Rd) ∑C± k f kḞÆ,p

q (Rd) .

Note that here we have a somewhat unnatural technical condition on k, which does not seem
to be optimal. Namely, we impose k < min(p,d) instead of only imposing k < d. (See [6] for a
discussion on this assumption.)

The purpose of this chapter is to find a common roof to Theorem 5.1 and Theorem 5.2 and
to give an affirmative answer to Open question 1.4 in [6]. Our generalisation is an adaptation
of Theorem 5.2 above to the stratified homogeneous groups context of Theorem 5.1. In this case
the role of the Euclidean dimension is played by the homogeneous dimension Q of the group and
the critical regularity becomes, in this case, Æ=Q/p. The role of the derivatives is played by the
vector fields that generate the full Lie algebra of G.

The statement of our main result is:

THEOREM 5.3. Consider the parameters 1< p, q <1, Æ :=Q/p and let k be the largest positive
integer with k < min(p,d1). Then, for every ± > 0 there exists a constant C± > 0 depending only
on ±, such that, for every function f 2 ḞÆ,p

q (G), there exists F 2 L1(G)\ ḞÆ,p
q (G) satisfying the

following estimates:
kX

i=1
kXi( f °F)kḞÆ°1,p

q (G) ∑±k f kḞÆ,p
q (G) ,

kFkL1(G) +kFkḞÆ,p
q (G) ∑C± k f kḞÆ,p

q (G) .

We will give in Section 2 precise definition of the function spaces we consider on G. For the
time being, let us mention that we cover the case of the more familiar anisotropic homogeneous
Sobolev spaces ṄLm,p, defined informally as containing the functions f on G for which rm

b f 2 Lp.
Despite the fact that we also have the unnatural restriction k<min(p,d1), as in the Euclidean

case, this suffices for some applications to divergence-like systems. Basically, all the applications
to such systems presented in [4] can be easily adapted to the stratified homogeneous group setting
and higher order Sobolev spaces. We give one example, formulated for simplicity for spaces of
integer regularity.

THEOREM 5.4. Let m < Q be a positive integer. Suppose f 2 ṄLm°1,Q/m(G) and there exist
functions v1, ...,vd1 2 ṄLm,Q/m(G) such that

X1v1 + ...+ Xd1 vd1 = f .

Then, there exist u1, ...,ud1 2 L1(G)\ ṄLm,Q/m(G) such that

X1u1 + ...+ Xd1 ud1 = f .

The chapter is divided into two parts. The first one (Section 2) deals with the construction of
the Triebel-Lizorkin spaces on stratified homogeneous groups. We mention that the Euclidean
analogues of these spaces coincide with the classical ones and that in the general stratified ho-
mogeneous group setting, they also satisfy similar interpolation and duality properties as their
classical analogues.

Spaces of a similar kind were already defined and studied for example in [1], [10] and other
works (see also [9] for a construction of inhomogeneous spaces in the more general context of Lie
groups of polynomial volume growth). Our construction is very similar to the one given in [10] (it
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turns out that our spaces essentially coincide with the ones introduced in [10], as a consequence
of our Proposition 5.18). While the construction in [10] is based on spectral decomposition of
sublaplacians, our construction is based only on the relatively elementary technique developed
in [13] for obtaining a Littlewood-Paley decomposition for functions defined on the group. (We
also notice that our purpose is not to explore the properties of these spaces, but rather to prove a
minimal number of their properties, required in the proof of Theorem 5.3.)

While in [13] Littlewood-Paley decomposition is obtained by a Calderón reproducing formula
with two convolutions, we will also need similar reproducing formulas with three convolutions
(we will prove that all the definitions of the spaces with two or more convolutions coincide).
This allows us to prove the full analogue of the Littlewood-Paley inequality as well as other
inequalities needed in the proof of Theorem 5.3.

The second part (Sections 3 and 4) is devoted to the proof of Theorem 5.3. We follow closely the
proof in [6]. Several relatively minor modifications were made in order to simplify the exposition.
Some more substantial adaptations were required in order to bypass the lack of commutativity
of the vector fields. In some cases the arguments are easily adapted to the group setting, and in
these situations we only sketch the arguments or refer to the proofs in [6]. In the Appendix we
recall the Calderón-Zygmund theory on stratified homogeneous groups in order to give a direct
proof of an inequality (Proposition 5.48) whose Euclidean analogue was proved in the Appendix
of [6] by similar but more complicated means.

2. Function spaces on stratified homogeneous groups

Basic facts on stratified homogeneous groups. Here, we follow mainly Folland and Stein
[8] and Stein [12]. We also present some auxiliary results, possibly known to experts, that we will
need in order to develop the Littlewood-Paley theory of function spaces on stratified homogeneous
groups. We will consider homogeneous groups as defined in [12, p. 618]. For such a group G, we
write the following decomposition of its Lie algebra g:

g=V1 ©V2 © ...©V`, (5.1)

where V1, ...,V` are vector spaces of left-invariant vector fields such that

(i)
£
Vi,Vj

§
µ Vi+ j (making the convention that V` is not trivial and any Vj with j > ` is triv-

ial),
(ii) V1 generates the whole algebra g (this is the so called Hörmander condition).

Dimension. We let d j := dimVj and set d := d1 + ...+d`; the number Q := d1 +2d2 + ...+`d`

is called the homogeneous dimension of G. As sets, we identify G with R
d. In view of this

identification, we consider the following dilation rule: if x = (x1, ..., xd) 2 G and ∏ > 0, then ∏x :=
(∏a1 x1, ...,∏ad xd), where

a := (a1, ...,ad)= (1, ...,1,2, ...,2, ...,`, ...,`) (5.2)

is the vector of the homogeneities, each j 2 {1, ...,`} appearing d j times. The dilations are known
to be automorphisms of G and, with respect to them, the following “norm" on G is homogeneous:

kxkG :=
√
X̀

j=1

X

d1+...+d j°1<i∑d1+...+d j

|xi|
2`!

j

! 1
2`!

. (5.3)

We have also the quasi-triangle inequality

kx · ykG . kxkG +kykG , for x, y 2G.
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Subgradient. We write X1, X2, ..., Xd for the left-invariant vector fields forming the standard
basis of g, with X1, X2, ..., Xd1 forming a basis of V1. We will call full gradient and subgradient
respectively the following operators

r := (X1, X2, ..., Xd) , rb :=
°
X1, X2, ..., Xd1

¢
.

Note that, whenever f is a sufficiently smooth function on R
d with rb f ¥ 0 then, thanks to

the Hörmander condition, we get r f ¥ 0. Hence, in a sense, the subgradient encodes all the
differential information about f . We will always be concerned with the subgradient of functions
rather than with the full gradient. We will consider for example the Sobolev-type space ṄL1,Q ,
which informally is a space of functions on G whose subgradient is in LQ . Note that this space is
not the same as Ẇ1,Q on G seen as a manifold.

Similar considerations hold for right-invariant vector fields. We will write X R
j for the right-

invariant analogue of X j.

An important aspect is that, with the identification G =Rd, we have that x · y is a polynomial
in x, y and (x · y)k = xk + yk for any x, y 2 G as long as 1 ∑ k ∑ d1. Also we have x°1 = °x for all
x 2G (see for example [13, Section 2]).

Balls and the maximal function. We consider balls on G defined by the quasimetric Ω on G,
given by

Ω(x, y) :=
∞∞y°1 · x

∞∞
G

for x, y 2G. The open ball centred at x and of radius ±> 0 is the set

B(x,±) :=
©
y 2G | Ω(y, x)< ±

™
,

whose Lebesgue measure is |B(x,±)| ª ±Q . For all balls B = B(x,±) and ∏ > 0 we will write ∏B :=
B(x,∏±).

We also consider the Hardy-Littlewood maximal function M on G, defined by

M f (x)= sup
B3x

1
|B|

Z

B
| f (y)|d y,

for all functions f 2 L1
loc(G), where the supremum is taken over all balls B ΩG containing x.

Often, the maximal operator will be used to bound convolutions. For two functions f 2 L1(G)
and g 2 L1(G), their convolution on G is defined by

f §¡(x)=
Z

Rd
f (y)¡(y°1 · x)d y=

Z

Rd
f (x · y°1)¡(y)d y.

REMARK 5.5. Throughout the chapter, we will often use the simbol “." in order to compare
two nonnegatve quantities. Namely, if A1, A2 ∏ 0 are some variable quantities, “A1 . A2" will
mean that there exists a constant C > 0 such that “A1 ∑ CA2". In the case where the constant C
will depend on some parameters s1, s2, ..., sn, we will sometimes write “A1 .s1,s2,...,sn A2".

We recall the following classical facts (for proofs see [12, Chapter 2]):

PROPOSITION 5.6. (i) If ' is a nonnegative decreasing function on [0,1), such that C' :=R
G'(kykG)d y<1 and ¡ is a measurable function on G such that

ØØ¡(y)
ØØ∑'(kykG) on G, then

ØØ f §¡
ØØ.C'M f on G,

for any Schwartz f .
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(ii) M is of weak type (1,1) and of strong type (p, p) for all 1< p ∑1.
(iii) (the Fefferman-Stein inequality) Consider a sequence of Schwartz functions

°
f j

¢
j2Z. Then,

for 1< p, q <1, we have

∞∞∞∞
∞∞M f j

∞∞
lq

j

∞∞∞∞
Lp

.p,q

∞∞∞∞
∞∞ f j

∞∞
lq

j

∞∞∞∞
Lp

.

Vector fields and polynomials. We remind the following elementary formula (see [12, p. 621]):

X j f (x) := @ f (x · y)
@yj

ØØØØ
y=0

= @ j f (x)+
X

k> j
q j,k(x)@k f (x) (5.4)

where y := (0, ...0, yj,0, ...0) and q j,k are homogeneous polynomials of degree ak °a j.
Another elementary fact is that the integral of the functions of the form X j f , where f is

a Schwartz function is, as in the Euclidean case, equal to 0. Here is a proof of this fact. For
any y = (0, ...0, yj,0, ...0) 2 G, with yj 6= 0, using the fact that the Lebesgue measure on R

d is a
bi-invariant Haar measure on G ([8, Proposition (1.2), p. 3]), we have

Z

Rd

f (x · y)° f (x)
yj

dx = 1
yj

µZ

Rd
f (x · y)dx°

Z

Rd
f (x)dx

∂
= 0.

Using now the formula (5.4), the classical mean value theorem in the (Euclidean) Rd and the
dominated convergence theorem, we can pass to the limit when yj ! 0 in the above formula to
obtain Z

Rd
X j f (x)dx = 0.

A similar formula holds for right-invariant vector fields. As an immediate consequence of this
and the Leibniz rule we get the formula (see [8, p. 21])

Z

Rd

°
X j f

¢
gdx =°

Z

Rd
f
°
X j g

¢
dx (5.5)

whenever f and g are Schwartz functions or one of them is Schwartz and the other one is poly-
nomial.

Before going to the next step let us fix some notation. For a real valued function f suffi-
ciently smooth on G and a positive integer m, we write rm

b f for the vector valued function whose
components are

r∞
b f :=

µ
X∞1

1
1 X∞1

2
2 ...X

∞1
d1

d1

∂µ
X∞2

1
1 X∞2

2
2 ...X

∞2
d1

d1

∂
...

µ
X∞m

1
1 X∞m

2
2 ...X

∞m
d1

d1

∂
f (5.6)

listed in the lexicographic order given by ∞ =
≥
∞1

1, ...,∞1
d1

, ...,∞m
1 , ...,∞m

d1

¥
2 Nd1 £ ...£Nd1 (m times)

with
ØØ∞

ØØ=P
i, j ∞

i
j = m. Note that by the embedding Nd1 £ ...£Nd1 in

°
N

d1
¢N, we can define r∞

b f by
the above formula whenever

ØØ∞
ØØ<1.

We will use many times the notation rm
b ·' where ' :=

°
'∞

¢
|∞|=m is a finite family of Schwartz

functions. This has the following meaning

rm
b ·' :=

X

|∞|=m
r∞

b'∞. (5.7)

Also, we will often deal with vectors of Schwartz families. If ¡ :=
°
'1, ...,'N¢

is a vector of
Schwartz families (where ' j :=

≥
'

j
∞

¥

|∞|=m
), we write, with an abuse of notation,

rm
b ·¡=

≥
rm

b ·'1, ...,rm
b ·'N

¥
. (5.8)
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Sometimes the situation can be more complex and we need to apply gradients to expressions
like rm

b ·¡ above. In this case we write, again with an abuse of notation,

rm1
b

°
rm2

b ·¡
¢
=rm1+m2

b ¡. (5.9)

Since only the number of derivatives and their nature (left or right invariant) will be impor-
tant for us, such conventions (which will be clear in the context) will be harmless.

Let us see that high powers of the subgradient are able to annihilate low degree polynomials.
More specifically,

PROPOSITION 5.7. Suppose p 2R [x1, ..., xd] is a polynomial and consider m 2N§. Then rm
b p is

a vector valued polynomial with degrm
b p ∑ `deg p°m. In particular, if m is such that m > `deg p,

then we have that rm
b p ¥ 0.

The similar assertion for the right-invariant subgradient also holds.

(Here, we recall that ` is defined by (5.1).)

PROOF. It suffices to prove the statement when p is a monomial. Suppose p(x)= xÆ = xÆ1
1 ...xÆd

d
for some Æ = (Æ1, ...,Æd) 2 Nd and consider the function q := rm

b p. We can see from the formula
(5.4) that q is a vector valued polynomial on R

d. Writing ∏x for the group dilation of x 2 G with
the parameter ∏> 0, we immediately see from the definition of the subgradient that rm

b (p(∏x))=
∏mrm

b p(∏x). Also, we have

p(∏x)=
°
∏a1 x

¢Æ1
1 ...

°
∏ad x

¢Æd
d =∏ha,Æip(x),

where a = (a1, ...,ad) is given by (5.2).
From this we conclude that, for all x 2G,

q(∏x)=
°
rm

b p
¢
(∏x)=∏°mrm

b (p(∏x))=∏ha,Æi°mrm
b p(x)=∏ha,Æi°mq(x).

If cxØ is a monomial (c 6= 0) of maximum degree in q, as before we get (∏x)Ø = ∏ha,ØixØ for all
∏ > 0. Choosing from these monomials one for which

≠
a,Ø

Æ
is maximum, we get by the above

formula that
≠
a,Ø

Æ
= ha,Æi°m and hence deg q =

ØØØ
ØØ∑

≠
a,Ø

Æ
∑ ` |Æ|°m. ⇤

Let us next recall a fundamental formula that makes a connection between the derivatives on
R

d and the vector fields from g. More specifically, for any 1∑ i ∑ d we have ([8, p. 25])

@i =
dX

k=1
Pk,i Xk, (5.10)

where Pk,i are homogeneous polynomials of degree ak °ai.
We will also need the following.

PROPOSITION 5.8. We have that

@i =
d1X

k=1
XkD§

k,i, (5.11)

where the operators D§
k,i are the adjoints of some operators of the form

P
∞ p∞r∞

Rd for appropriate
polynomials p∞ and multi-indexes ∞ in a finite subset of Nd.
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PROOF. Since the vector fields X1, X2, ..., Xd1 are generating the full Lie algebra of the group,
we can write each X j in terms of X1, X2, ..., Xd1 using commutators, which are linear combinations
of expressions of the form r∞

b =r∞0

b Xk for some 1∑ k ∑ d1 and some indexes ∞, ∞0 2
°
N

d1
¢N. Keeping

the last vector field from such an expression and using (5.4) to express r∞0

b in terms of derivatives
on R

d and polynomials, we can rewrite (5.10) as

@i =
d1X

k=1
Dk,i Xk, (5.12)

where each operator Dk,i is of the form
P
∞ p∞r∞

Rd for some polynomials p∞ and ∞ in a finite subset
of Nd.

Now, if f and g are arbitrary Schwartz functions we can write (see (5.5)):
Z

Rd
f @i gdx =°

Z

Rd
(@i f ) gdx =°

d1X

k=1

Z

Rd

°
Dk,i Xk f

¢
gdx =

d1X

k=1

Z

Rd
f Xk

≥
D§

k,i g
¥
dx

and hence, by identification,

@i =
d1X

k=1
XkD§

k,i,

which proves the Proposition 5.8. ⇤

PROPOSITION 5.9. Let m 2N and f be a Schwartz function.

(i) If f =rm
b ·' for a family of Schwartz functions ', then for any polynomial p with deg p < m/`

we have
R

G pf dx = 0.
(ii) There exists an m0 2 N depending only on m and G such that if we have

R
G pf dx = 0 for

any polynomial p with deg p ∑ m0, then there exists a family of Schwartz functions ' such that
f =rm

b ·'.
The same is also true in the case of the right-invariant subgradient.

REMARK 5.10. (1) Since the assertion of (ii) in the above proposition remains true for any
integer larger than m0, when applying this part of the proposition, we will assume for technical
reasons that m0 > m`.

(2) In particular, Proposition 5.9 gives the following (informally speaking): if '1 is a Schwartz
family, then there exists another Schwartz family '2 such that:

≥
rR

b

¥m0

·'1 =rm
b ·'2.

This property will be used several times.

PROOF. Part (i) follows from Proposition 5.7 and by a repeated application of the formula
(5.5). Part (ii) will be proved by induction on m. The case m = 0 is trivial (we take by convention
m0 = 0). Fix m ∏ 1 and suppose we have the statement of (ii) for m°1. Consider the number
m0 := (m°1)0+M +2, where M is the maximum degree reached by a polynomial p∞ entering in
the expression of the operators Dk,i that occur in (5.12). If

R
G pf dx = 0 for any polynomial p of

degree at most m0, then we can use the well-known fact that in the Euclidean case there exists a
collection of Schwartz families

°
¡i

¢
1∑i∑d such that

f =
dX

i=1
@i

≥
rm0°1
Rd ·¡i

¥
.



94 5. APPROXIMATION OF CRITICAL REGULARITY FUNCTIONS ON STRATIFIED HOMOGENEOUS GROUPS

Using now formula (5.11) we can write:

f =
dX

i=1
@i

≥
rm0°1
Rd ·¡i

¥
=

dX

i=1

d1X

k=1
XkD§

k,i

≥
rm0°1
Rd ·¡i

¥

=
d1X

k=1
Xk

√
dX

i=1
D§

k,ir
m0°1
Rd ·¡i

!

=
d1X

k=1
Xk¡̃k,

(5.13)

where ¡̃k are the Schwartz functions ¡̃k :=Pd
i=1 D§

k,ir
m0°1
Rd ·¡i. It is easy to see that

R
G p¡̃kdx = 0

for all polynomials p of degree at most (m°1)0. By the induction hypothesis, we get that for each
k there exists a family of Schwartz functions 'k such that ¡̃k =rm°1

b ·'k. From this and formula
(5.13), we get the conclusion. ⇤

Convolutions. We recall that, for two Schwartz functions f , g their convolution is defined by
the formula:

f § g(x)=
Z

Rd
f (y)g(y°1 · x)d y=

Z

Rd
f (x · y°1)g(y)d y.

It can be verified directly that the convolution is associative.

Concerning the interaction of vector fields with the convolution, it is known that (see [8, p.
22]):

PROPOSITION 5.11. For all Schwartz functions f , g we have:

X j ( f § g)= f §
°
X j g

¢
, X R

j ( f § g)=
≥
X R

j f
¥
§ g,

and
°
X j f

¢
§ g = f §

≥
X R

j g
¥
. (5.14)

We have also the following elementary fact.

PROPOSITION 5.12. If ©1,©2 are two Schwartz functions, then ©1 §©2 is also Schwartz.

PROOF. We can easily observe that, since each component of x · y is a polynomial in x and y,
we can find a large number nG 2N§ such that

1+|x · y|. (1+|x|)nG (1+|y|)nG , (5.15)

for all x, y 2Rd. This implies that, for example, we have

sup
x

(1+|x|)N |©1 §©2(x)|∑sup
x

Z

Rd

°
1+

ØØx · y°1 · y
ØØ¢N ØØ©1(x · y°1)

ØØ |©2(y)|d y

.sup
x

Z

Rd

°
1+

ØØx · y°1ØØ¢NnG ØØ©1(x · y°1)
ØØ (1+|y|)NnG |©2(y)|d y

.

Z

Rd
(1+|y|)NnG |©2(y)|d y<1.

More generally, the estimate of supx (1+|x|)N ØØ@Ø (©1 §©2)(x)
ØØ is reduced to the above calcu-

lation using the connection between the derivatives and the vector fields on G via (5.10) and
(5.4). ⇤
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The Littlewood-Paley decomposition. We introduce the following notation. Whenever §
is a Schwartz function on G and j is an integer, we write § j for the function defined by § j(x) :=
2 jQ§(2 j x). Also, if f is another Schwartz function, we write § j f := f §§ j.

PROPOSITION 5.13. Given m 2 N, there exist Schwartz families §1, §2, §3 on R
d such thatR

Rd P(x)§1(x)dx =
R
Rd P(x)§2(x)dx =

R
Rd P(x)§3(x)dx = 0 for all the polynomials P of degree ∑ m0

(with m0 as in Proposition 5.9) and such that for all Schwartz functions f we have

f =
X

j2Z
f §§1

j §§
2
j §§

3
j =

X

j2Z
§3

j§
2
j§

1
j f , (5.16)

the convergence being in any Lp(Rd) for 1< p <1.
In particular, according to Proposition 5.9 (ii), there exist families of Schwartz families 'i, ¡i

(i = 1,2,3) such that §i =O
m
b ·'i =

°
O

R
b
¢m ·¡i for each i = 1,2,3.

REMARK 5.14. Some explanations are in order. The proposition literally states that there
exist three finite Schwartz families §i =

°
§i,a¢

a2A (A is a finite set), i = 1,2,3, such that all the
moments of order up to m0 of each §i,a are zero and

f =
X

j2Z

X

a2A
f §§1,a

j §§2,a
j §§3,a

j =
X

j2Z

X

a2A
§3,a

j §2,a
j §1,a

j f .

The last assertion means that there exists 6|A| Schwartz families 'i,a, ¡i,a such that

§i,a =O
m
b ·'i,a =

≥
O

R
b

¥m
·¡i,a

for all a 2 A and i = 1,2,3 (see (5.7)). Since the use of the family A leads to heavy notation, we
prefer the form of the above proposition which turns out to be more convenient in the calculations
that follow. This can be compared with the summation convention in geometry. We also note that
the absolute value of expressions like § j f , where §= (§a)a2A is a Schwartz family, will have the
following meaning:

ØØØ§1
j f

ØØØ :=
X

a2A

ØØØ§1,a
j f

ØØØ .

Similarly, we set
ØØØ§2

j§
1
j f

ØØØ :=
X

a2A

ØØØ§2,a
j §1,a

j f
ØØØ ,

and so on.
These conventions, together with (5.7), (5.8) and (5.9), will enable us to estimate expressions

involving Schwartz families as if they were functions. We will also abuse the notation in other
situations, where the distinction between functions and finite families of functions will be clearly
irrelevant (see also the conventions in [13]).

PROOF. This proof follows the lines of Proposition 5.5 in [13]. We consider a radial Schwartz
function ™ with ™̂ ¥ 1 on B

Rd (0,1) and supp™̂ µ B
Rd (0,2) (here B

Rd (0,1) and B
Rd (0,2) are Eu-

clidean balls). We need now the easy argument used in the proof of Proposition 5.1 from [13]
which we reproduce below for the convenience of the reader.

LEMMA 5.15. Let© be a Schwartz function on Rd such that
R
Rd ©dx = 1 and fix some 1< p <1.

Then, for any Schwartz function f , we have
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f =
X

j2Z
f § (© j °© j°1),

the convergence being in Lp.

PROOF. We have, for any N 2N§,

X

| j|∑N
f § (© j °© j°1)= f §©N ° f §©°N°1.

Hence it remains to see that f §©N ! f and f §©°N ! 0 in Lp when N !1. In order to prove
the first claim we write, using Minkowski’s integral inequality,

k f §©N ° f kLp =
∞∞∞∞
Z

Rd

≥
f (x · (2°N y)°1)° f (x)

¥
©(y)d y

∞∞∞∞
Lp

x

∑
Z

Rd

∞∞∞ f (x · (2°N y)°1)° f (x)
∞∞∞

Lp
x
|©(y)|d y! 0.

This can be seen by using the dominated convergence theorem, since
∞∞ f (x · (2°N y)°1)° f (x)

∞∞
Lp

x
is uniformly bounded and converges to 0 when N !1. Indeed, fix y 2G. We have

∞∞∞ f (x · (2°N y)°1)° f (x)
∞∞∞

Lp
x
∑

∞∞∞ f (x · (2°N y)°1)
∞∞∞

Lp
x
+k f (x)kLp

x
= 2k f kLp ,

hence
∞∞ f (x · (2°N y)°1)° f (x)

∞∞
Lp

x
is uniformly bounded.

Using (5.15) we have, for all x 2G,

1+|x|&
°
1+

ØØx · (2°N y)
ØØ¢1/nG

1+
ØØ(2°N y)

ØØ ,

and we get (x ! x · (2°N y)°1)

1+
ØØØx · (2°N y)°1

ØØØ&
(1+|x|)1/nG

1+
ØØ(2°N y)

ØØ .

Using this inequality and the fact that f is Schwartz, we get
ØØØ f (x · (2°N y)°1)° f (x)

ØØØ∑
ØØØ f (x · (2°N y)°1)

ØØØ+| f (x)|

.

≥
1+

ØØØx · (2°N y)°1
ØØØ
¥°(d+1)nG + (1+|x|)°(d+1)

.

≥
1+

ØØØ(2°N y)
ØØØ
¥(d+1)nG

(1+|x|)°(d+1) + (1+|x|)°(d+1)
.y (1+|x|)°(d+1) .

Hence, for any fixed y 2 G,
ØØ f (x · (2°N y)°1)° f (x)

ØØp is dominated by an L1 function. Also,ØØ f (x · (2°N y)°1)° f (x)
ØØ ! 0, when N ! 1. Using the dominated convergence theorem, we get∞∞ f (x · (2°N y)°1)° f (x)
∞∞

Lp
x
! 0, when N !1.

In order to prove the second claim, again by Minkowski’s integral inequality we have

k f §©°NkLp ∑ k f kL1 k©°NkLp = 2°NQ(1°1/p) k f kL1 ! 0,

proving the lemma. ⇤

Proof of Proposition 5.13 continued.
The above Lemma applied to ©=™§™§™ (see Proposition 5.12) yields

f =
X

j2Z
f §

°
(™§™§™) j ° (™°1 §™°1 §™°1) j

¢
=

X

j2Z
f § (™§™§™°™°1 §™°1 §™°1) j

=
X

j2Z
f § (™§™§ (™°™°1)+™§ (™°™°1)§™°1 + (™°™°1)§™°1 §™°1) j ,
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(5.17)

the convergence being in Lp(Rd) with 1 < p <1. Since we have ™̂° ™̂°1 ¥ 0 in a neighborhood
of 0, the function ™°™°1 is orthogonal to all polynomials. By applying Proposition 5.9 (ii) we
can find a Schwartz family ' such that ™°™°1 =

°
rR

b
¢2n2 ·', with n2 := (2n1)0 where n1 :=

°
m0¢0.

Using (5.14) we can write in short, abusing the notation,

™§™§ (™°™°1)=™§™§
≥
rR

b

¥2n2 ·'=™§rn2
b ™§

≥
rR

b

¥n2
'

=™§
≥
rR

b

¥2n1
™̃§

≥
rR

b

¥n2
'=rn1

b ™§
≥
rR

b

¥n1
™̃§

≥
rR

b

¥n2
',

where ™̃ is a Schwartz family such that
°
rR

b
¢2n1 ™̃ = rn2

b ™; this can be seen to exist thanks
to Proposition 5.9 (see Remark (2)). The other terms in (5.17), namely ™§ (™°™°1)§™°1 and
(™°™°1)§™°1§™°1 can be handled in a similar way. We find that each one of them is a finite sum
in which each term is of the form Y (m0)0

1 ·¡1§Y (m0)0
2 ·¡2§Y (m0)0

3 ·¡3 where ¡i are Schwartz families
and Yi is rb or rR

b . This implies (5.16) via Proposition 5.9 (i), once we note that
°
m0¢0 > m0` (see

the Remark (1) after Proposition 5.9). ⇤

REMARK 5.16. (1) We will use sometimes the function ¢ :=™§™§™°™°1 §™°1 §™°1 for
which, as we can see in the above proof, we have the estimate

ØØ¢ j f
ØØ∑

ØØØ§3
j§

2
j§

1
j f

ØØØ for all integers
j and all Schwartz functions f . From (5.17), we have

f =
X

j2Z
¢ j f in Lp, 1< p <1.

In short we write ¢=§3§2§1. We will also consider its weaker analogue,

¢1 :=§2§1. (5.18)

(2) It is easy to see that we can obtain decompositions of the form

f =
X

j2Z
§k

j ...§
3
j§

2
j§

1
j f ,

with arbitrary k ∏ 1 and §1,..., §k as in Proposition 5.13. It turns out that, for the estimates we
need in this work, convolutions involving k ∏ 3 terms are in some cases very convenient. Note
that a decomposition formula as above with k ∏ 2 convolutions implies a decomposition with k°1
convolutions. In this respect we note that even if in most cases a decomposition formula with two
convolutions suffices (to define Triebel-Lizorkin spaces and to prove several of their properties),
the proof of Theorem 5.3 relies on decomposition formulas with three convolutions (this will be
used, for example to prove the Bernstein type inequalities (5.25)).

Definition of function spaces on stratified homogeneous groups. Let s 2R, p, q 2 (1,1)
and fix m > |s| and some Schwartz families §1, §2 whose moments up to order m0 are zero (see
Proposition 5.13 and the Remarks after) and such that we have the following decomposition
formula with two convolutions:

f =
X

j2Z
§2

j§
1
j f ,

for any Schwartz function f .
We define the spaces Ḟ s,p

q and Ḃs,p
q as being the spaces of tempered distributions f on R

d

whose (semi)norms, respectively defined as:

k f kḞs,p
q

:=

∞∞∞∞∞∞

√
X

j2Z
2s jq

ØØØ§1
j f

ØØØ
q
!1/q

∞∞∞∞∞∞
Lp
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and

k f kḂs,p
q

:=
√
X

j2Z
2s jq

∞∞∞§1
j f

∞∞∞
q

Lp

!1/q

,

are finite.
We notice that at first sight these definitions seem to depend on the families §1,§2. We will

show however (Proposition 5.18), that the definition of Ḟ s,p
q (and of Ḃs,p

q ) does not depend on §1,
§2. We will also show (Proposition 5.23) that, as expected, the space Ḟn,p

2 with n a nonnegative
integer, is the same as the more “classical" Sobolev space ṄLn,p.

Independence of the definition. We will need the following simple lemma:

LEMMA 5.17. Consider a sequence ( fk)k2Z of Schwartz functions such that all but a finite
number of them are zero. Consider also an s 2 R, an integer m > |s| and two finite Schwartz
families § and £ for which all the moments up to the order m0 are zero. Then, for 1< p, q <1, we
have:

∞∞∞∞∞∞

√
X

k
2skq

ØØØØØ§k
X

j
£ j f j

ØØØØØ

q!1/q
∞∞∞∞∞∞

Lp

.

∞∞∞∞∞∞

√
X

k
2skq | fk|q

!1/q
∞∞∞∞∞∞

Lp

. (5.19)

PROOF. From the assumptions on £ and §, and Proposition 5.9, we know there are some
Schwartz families ¡ and ' such that £=rm

b ·¡ and §=
°
rR

b
¢m ·'. With compact notation (using

(5.14)),

£ j §§k =
°
£§§k° j

¢
j =

°
rm

b ·¡§§k° j
¢

j = 2m(k° j)
µ
¡§

≥≥
rR

b

¥m
§

¥

k° j

∂

j
,

hence,

£ j §§k = 2m(k° j)¡ j §
≥≥
rR

b

¥m
§

¥

k
. (5.20)

In a similar way, we get

£ j §§k = 2m( j°k) °(rb)m£
¢

j §'k. (5.21)

Note that, if g, ¡ and √ are Schwartz and j, k are two integers, then

ØØg§¡ j §√k
ØØ. M(g§¡ j). MM g,

where the implicit multiplicative constants only depend on ¡ and √. Using this observation and
(5.20), (5.21), we can write

ØØ§k£ j f j
ØØ. 2°m|k° j|MM f j.

Choosing Ø 2 (0,1) such that Øm > |s|, and using Hölder’s inequality, we can write:

X

k
2skq

ØØØØØ
X

j
§k£ j f j

ØØØØØ

q

.

X

k
2skq

√
X

j
2°m|k° j|MM f j

!q

=
X

k
2skq

√
X

j
2°(1°Ø)m|k° j|2°Øm|k° j|MM f j

!q

.

X

k
2skq X

j
2°qØm|k° j| ØØMM f j

ØØq =
X

j

√
X

k
2skq2°qØm|k° j|

!
°
MM f j

¢q ,
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where we had used, in the third line, the fact that
√
X

j
2°q0(1°Ø)m|k° j|

!q/q0

. 1.

We have now, for all j 2Z,

X

k
2skq2°qØm|k° j| =

X

k∏ j
...+

X

k< j
...=

X

k∏0
2sq j2(s°Øm)qk +

X

k<0
2sq j2(s+Øm)qk ª 2s jq

and, as a consequence of the above inequality,

√
X

k
2skq

ØØØØØ
X

j
§k£ j f j

ØØØØØ

q!1/q

.

√
X

j
2s jq °

MM f j
¢q

!1/q

.

Applying twice the Fefferman-Stein inequality (Proposition 5.6, (iii)) we get (5.19). ⇤

Now we can see that the above lemma implies the independence of the definition of the spaces
of Triebel-Lizorkin type with respect to the choice of §1, §2. (The following statement is similar
to Theorem 7 in [10].)

PROPOSITION 5.18. Given the parameters s 2 R, p, q 2 (1,1), the space Ḟs,p
q does not depend

on the auxiliary functions §1, §2.

PROOF. Indeed, let s 2 R, p, q 2 (1,1), and m1,m2 > |s|. Consider, as in the definition of the
Triebel-Lizorkin spaces, two couples of functions §1, §2 and £1, £2 corresponding to m1,m2
respectively. We can construct, using the first and the second couples of functions, the spaces°
Ḟ s,p

q
¢
§ and

°
Ḟ s,p

q
¢
£ respectively. Using Proposition 5.13 and Lemma 5.17 for §=§1, £=£2 and

f j = £1
j f for a Schwartz function f , we get, after a limiting argument that:

k f k(Ḟs,p
q )§ =

∞∞∞∞∞∞

√
X

k
2skq

ØØØØØ§
1
k
X

j
£2

j

≥
£1

j f
¥ØØØØØ

q!1/q
∞∞∞∞∞∞

Lp

.

∞∞∞∞∞∞

√
X

k
2skq ØØ£1

k f
ØØq

!1/q
∞∞∞∞∞∞

Lp

= k f k(Ḟs,p
q )£ .

Note that in a similar way we can obtain the converse inequality. Hence, by density, we have
that

°
Ḟ s,p

q
¢
§ =

°
Ḟ s,p

q
¢
£ with equivalent norms. ⇤

REMARK 5.19. (1) The same type of independence can be proved, in a very similar way, for
the Besov spaces Ḃs,p

q . In this case the analogue of Lemma 5.17 is

LEMMA 5.20. Consider a sequence ( fk)k2Z of Schwartz functions such that all but a finite
number of them are zero. Consider also an s 2 R, an integer m > |s| and two finite Schwartz
families § and £ for which all the moments up to the order m0 are zero. Then, for 1< p, q ∑1, we
have:

√
X

k
2skq

∞∞∞∞∞§k
X

j
£ j f j

∞∞∞∞∞

q

Lp

!1/q

.

√
X

k
2skq k fkkq

Lp

!1/q

.

Note that here we allow the values p =1, q =1. This is due to the fact that the Fefferman-
Stein inequality is no longer needed.
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(2) Lemma 5.17 can also be used to prove real and complex interpolation results for the
Triebel-Lizorkin spaces with the same retraction method as for the classical spaces. In this
case, the extension and retract operators E : Ḟ s,p

q ! Lp(l̇ q
s ) and R : Lp(l̇ q

s ) ! Ḟ s,p
q are defined by

E f :=
°
§1

k f
¢
k2Z and R ( fk)k2Z := P

j2Z§
2
j f j. Lemma 5.17 is used to prove that R is well-defined

and bounded, while these properties are obvious for E. Similarly for Besov spaces, relying on
Lemma 5.20.

Inspecting the above proof of Proposition 5.18, we can see immediately that, by a very similar
reasoning, we get the following:

COROLLARY 5.21. Consider some parameters 1 < p, q < 1, s 2 R. Also consider an integer
m > |s| and a Schwartz family §̃ such that all its moments of order up to m0 are zero. Then, for
any Schwartz function f , we have:

∞∞∞∞∞∞

√
X

k
2skq ØØ§̃k f

ØØq
!1/q

∞∞∞∞∞∞
Lp

. k f kḞs,p
q

.

The lifting property. Let us now see how Corollary 5.21 implies the lifting property for the
spaces Ḟ s,p

q (the following statement is similar to Corollary 21 in [10]).

PROPOSITION 5.22. For any Schwartz function f , we have
krb f kḞs,p

q
ª k f kḞs+1,p

q
.

PROOF. Consider some Schwartz functions §1
j , §

2
j for which all the moments of order up to

m0 are zero (s 2R and the integer m > |s| being fixed) and such that

f =
X

j2Z
§2

j§
1
j f ,

for any Schwartz function f . Combining the definition of the Triebel-Lizorkin spaces, Proposition
5.11 and Corollary 5.21, we have

krb f kḞs,p
q

ª

∞∞∞∞∞∞

√
X

j2Z
2sq j

ØØØ(rb f )§§1
j

ØØØ
q
!1/q

∞∞∞∞∞∞
Lp

=

∞∞∞∞∞∞

√
X

j2Z
2sq j

ØØØ f §
≥
rR

b§
1
j

¥ØØØ
q
!1/q

∞∞∞∞∞∞
Lp

=

∞∞∞∞∞∞

√
X

j2Z
2(s+1)q j

ØØØØ f §
≥
rR

b§
1
¥

j

ØØØØ
q
!1/q

∞∞∞∞∞∞
Lp

=

∞∞∞∞∞∞

√
X

j2Z
2(s+1)q j

ØØØ§̃1
j f

ØØØ
q
!1/q

∞∞∞∞∞∞
Lp

.k f kḞs+1,p
q

,

where §̃1 :=rR
b§

1.
For the opposite inequality, using Proposition 5.9 and the independence of the definition

(Proposition 5.18), we can assume that §1 =rR
b ¡ where ¡ :=

°
rR

b
¢m0

√ for some Schwartz function
√, and then we have:

k f kḞs+1,p
q

ª

∞∞∞∞∞∞

√
X

j2Z
2(s+1)q j

ØØØ f §§1
j

ØØØ
q
!1/q

∞∞∞∞∞∞
Lp

=

∞∞∞∞∞∞

√
X

j2Z
2(s+1)q j

ØØØØ f §
≥
rR

b ¡
¥

j

ØØØØ
q
!1/q

∞∞∞∞∞∞
Lp

=

∞∞∞∞∞∞

√
X

j2Z
2sq j

ØØØ f §rR
b ¡ j

ØØØ
q
!1/q

∞∞∞∞∞∞
Lp

=

∞∞∞∞∞∞

√
X

j2Z
2sq j ØØrb f §¡ j

ØØq
!1/q

∞∞∞∞∞∞
Lp

=

∞∞∞∞∞∞

√
X

j2Z
2sq j ØØ¡ j (rb f )

ØØq
!1/q

∞∞∞∞∞∞
Lp

. krb f kḞs,p
q

.



2. FUNCTION SPACES ON STRATIFIED HOMOGENEOUS GROUPS 101

Hence, for all Schwartz functions f we have krb f kḞs,p
q

ª k f kḞs+1,p
q

. ⇤

The identification Ḟn,p
2 = ṄLn,p. The following statement is a generalisation of Proposition

5.7 in [13].

PROPOSITION 5.23. Fix an m 2N§ and consider Schwartz families §1, §2 corresponding to m
as in Proposition 5.13. Then, for any Schwartz function f we have

∞∞∞∞∞∞

√
X

j2Z
22n j

ØØØ§1
j f

ØØØ
2
!1/2

∞∞∞∞∞∞
Lp

ª
∞∞rn

b f
∞∞

Lp ,

for all n 2N with n ∑ m°1 and 1 < p <1. In other words, we have Ḟn,p
2 = ṄLn,p with equivalent

norms.

PROOF. We follow the lines of Proposition 5.7 in [13], which proves a similar statement in the
case n = 1. The estimate “." easily follows by writing §1 =

°
rR

b
¢n+1 ·' for a Schwartz family '

and then applying Proposition 5.4 in [13], whose statement is reproduced below in a simplified
form (see also [12, Chapter 13, section 5.3]):

LEMMA 5.24. If D is a Schwartz function such that
R

G Ddx = 0, then for a fixed 1< p <1 and
any Schwartz function f we have:

∞∞∞∞∞∞

√
X

j2Z

ØØD j f
ØØ2

!1/2
∞∞∞∞∞∞

Lp

.k f kLp .

Using this we immediately obtain (using also (5.14)):
∞∞∞∞∞∞

√
X

j2Z

ØØØ2n j§1
j f

ØØØ
2
!1/2

∞∞∞∞∞∞
Lp

=

∞∞∞∞∞∞

√
X

j2Z

ØØØØr
n
b f §

≥
rR

b ·'
¥

j

ØØØØ
2
!1/2

∞∞∞∞∞∞
Lp

.

∞∞rn
b f

∞∞
Lp .

For the reverse estimate we need to observe that, according to the proof of Proposition 5.5 in
[13], whenever we have a decomposition of the form f =P

j f §§ j§£ j with § and £ Schwartz and
having zero integral, we get for any Schwartz function f that

k f kLp .

∞∞∞∞∞∞

√
X

j2Z

ØØ§ j f
ØØ2

!1/2
∞∞∞∞∞∞

Lp

. (5.22)

Before going further, we sketch, for the convenience of the reader the standard duality argu-
ment to prove (5.22). For all Schwartz functions g write, using Fubini’s theorem and the above
Lemma 5.24,

h f , gi=
X

j

≠
£ j§ j f , g

Æ
=

X

j

D
§ j f ,£§

j g
E
∑

Z

G

√
X

j

ØØ§ j f
ØØ2

!1/2 √
X

j

ØØØ£§
j g

ØØØ
2
!1/2

dx

∑

∞∞∞∞∞∞

√
X

j2Z

ØØ§ j f
ØØ2

!1/2
∞∞∞∞∞∞

Lp

∞∞∞∞∞∞

√
X

j2Z

ØØØ£§
j g

ØØØ
2
!1/2

∞∞∞∞∞∞
Lp0

.

∞∞∞∞∞∞

√
X

j2Z

ØØ§ j f
ØØ2

!1/2
∞∞∞∞∞∞

Lp

kgkLp0 .

Here, h·, ·i denotes the standard L2 scalar product and £§
j (x) :=£ j(x°1) on G.

We obtain (5.22) by taking, in (4.2), the supremum over g such that kgkLp0 ∑ 1.



102 5. APPROXIMATION OF CRITICAL REGULARITY FUNCTIONS ON STRATIFIED HOMOGENEOUS GROUPS

Using (5.22) with § := §1 and £ := §2, replacing f by rn
b f and using (5.14) together with

Corollary 5.21, we obtain:

∞∞rn
b f

∞∞
Lp .

∞∞∞∞∞∞

√
X

j2Z

ØØØrn
b f §§1

j

ØØØ
2
!1/2

∞∞∞∞∞∞
Lp

=

∞∞∞∞∞∞

√
X

j2Z

ØØØ f §
≥≥
rR

b

¥n
§1

j

¥ØØØ
2
!1/2

∞∞∞∞∞∞
Lp

=

∞∞∞∞∞∞

√
X

j2Z

ØØØØ2
jn f §

≥≥
rR

b

¥n
§1

¥

j

ØØØØ
2
!1/2

∞∞∞∞∞∞
Lp

=

∞∞∞∞∞∞

√
X

j2Z

ØØØ2 jn§̃1
j f

ØØØ
2
!1/2

∞∞∞∞∞∞
Lp

.k f kḞn,p
2

ª

∞∞∞∞∞∞

√
X

j2Z

ØØØ2 jn§1
j f

ØØØ
2
!1/2

∞∞∞∞∞∞
Lp

,

where §̃1 :=
°
rR

b
¢n
§1. This proves the proposition. ⇤

3. Estimates of the auxiliary functions

Remark concerning the approximations. Following [6], our purpose is to prove the ap-
proximation property stated in Theorem 5.3. In the remaining part of the chapter we will use
decomposition formulas with three convolutions, as in Proposition 5.13.

It suffices to prove this approximation property for functions of a special form:

fJ :=
X

| j|∑J
§3

j§
2
j§

1
j f =

X

| j|∑J
¢ j f ,

where §1
j , §

2
j , §

3
j and m >Æ are fixed. (This particular form of the functions fJ will ensure, as we

will see, that some expressions involving infinite sums and products are well-defined.) Indeed,
suppose that f is a fixed Schwartz function and for each positive integer J we can find an FJ
satisfying the estimates:

kX

i=1
kXi( fJ °FJ)kḞÆ°1,p

q
∑±k fJkḞÆ,p

q
,

kFJkL1 +kFJkḞÆ,p
q

∑C± k fJkḞÆ,p
q

.

Note that Lemma 5.17 immediately implies that k f ° fJkḞÆ,p
q

! 0 when J !1. By the se-
quential Banach-Alaoglu theorem, we can choose a subsequence (Jk)k∏1 such that FJk converges
weakly star in L1 to a function F 2 L1. Together with the last estimate and the above observa-
tion, this easily implies that F 2 ḞÆ,p

q as follows. For any positive integer N and any compact set
K ΩG we have

∞∞∞∞∞∞

√
X

| j|∑N
2Æq j

ØØØ§1
j FJk

ØØØ
q
!1/q

∞∞∞∞∞∞
Lp(K)

∑ C±

∞∞ fJk

∞∞
ḞÆ,p

q
.± k f kḞÆ,p

q
,

where by .± we indicate that the implicit multiplicative constant may depend on ±.
Since,

∞∞FJk

∞∞
L1 .± k f kḞÆ,p

q
we get

∞∞∞§1
j FJk

∞∞∞
L1 .± k f kḞÆ,p

q
for all j. We also can see that

§1
j FJk (x) !§1

j F(x) for every x 2 G. Hence, the above inequality and the dominated convergence
theorem imply that

∞∞∞∞∞∞

√
X

| j|∑N
2Æq j

ØØØ§1
j F

ØØØ
q
!1/q

∞∞∞∞∞∞
Lp(K)

.± k f kḞÆ,p
q

,

and from this we get the claim. Also we obtain that

kFkL1 +kFkḞÆ,p
q

.± k f kḞÆ,p
q



3. ESTIMATES OF THE AUXILIARY FUNCTIONS 103

and, in a similar way,
kX

i=1
kXi( f °F)kḞÆ°1,p

q
∑ ±k f kḞÆ,p

q
.

From now, we consider J is a fixed positive integer.

Definitions and properties of some auxiliary functions. This subsection is inspired by
the approach in [4], and its variants in [13], [6].

For a real number æ and x 2 G we will write xæ := (2°æx1, ...,2°æxk, xk+1, ..., xd). Consider the
functions S,E : G !R defined by:

S(x) :=min(1,kxk°Q°1
G ) and E(x) := exp

≥
°(1+kxæk2`!

G )1/2`!
¥
.

We will also consider the functions

S j(x) := 2 jQS(2 j x), E j(x) := 2 jQE(2 j x)

and set S j f := f §S j. With this notation we introduce the new functions (where ¢1 was defined
in (5.18)):

! j(x) :=
µZ

Rd

h≥
S j

ØØØ¢1
j f

ØØØ
¥
(2° j r)E(r°1 · (2 j x))

ip
dr

∂1/p
, if | j|∑ J and 0 otherwise.

Consider a smooth function ≥ : [0,1) ! [0,1] such that ≥ ¥ 1 on [0,1/2] and ≥ ¥ 0 on [1,1).
Following [13], we define the functions ≥ j as follows:

≥ j :=
(

≥
≥

2Æ j! jP
k< j,k¥ j(modR) 2Æk!k

¥
, if

P
k< j,k¥ j(modR) 2Æk!k 6= 0,

0 , otherwise,

where R is a large positive integer that will be chosen later.
Using the ≥ j ’s, we decompose a finite sum fJ =P

| j|∑J¢ j f as follows:

fJ =
X

| j|∑J
¢ j f =

X

| j|∑J
(1°≥ j)¢ j f +

X

| j|∑J
≥ j¢ j f =

X

j
h j +

X

j
g j = h+ g

where

h :=
X

j
h j, with h j := (1°≥ j)¢ j f if | j|∑ J and 0 otherwise,

g :=
X

j
g j, with g j := ≥ j¢ j f if | j|∑ J and 0 otherwise.

Then we let

h̃ :=
X

j
h j

Y

j0> j
(1°Uj0), with Uj := (1°≥ j)! j,

g̃ :=
R°1X

c=0

X

j¥c(modR)
g j

Y

j0> j
j0¥c(modR)

(1°G j0), with G j :=
X

t>0
t¥0(modR)

2°Æt! j°t.

The heart of the proof of Theorem 5.3 consists in establishing the fact that FJ := h̃+ g̃ is a
“good approximation” of fJ = h+ g.
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Point-wise and integral estimates on ! j. Here we collect several useful estimates on ! j in
which we will see an instance of the role played by the critical condition on the exponents: Æp =Q.

In what follows we will need the following elementary approximation property proved in [13]
(Proposition 3.6):

PROPOSITION 5.25. For any æ 2R and x,µ 2G we have:
ØØk(x ·µ)ækG °kxækG

ØØ∑ CkµkG and
ØØk(µ · x)ækG °kxækG

ØØ∑ CkµkG .

In particular,

|kx ·µkG °kxkG |∑ CkµkG and |kµ · xkG °kxkG |∑ CkµkG .

PROPOSITION 5.26. Let æ> 0. With the above notation we have:

(i) ! j . E jS j

ØØØ¢1
j f

ØØØ. 2QæMM
≥
¢1

j f
¥

for all j 2Z;
(ii)

ØØ¢ j f
ØØ.! j for all j 2Z;

(iii)
∞∞! j

∞∞
L1 . 2kæ k f kḞÆ,p

q
for all j 2Z;

(iv)
∞∞Uj

∞∞
L1 . 2kæ k f kḞÆ,p

q
for all j 2Z;

(v)
∞∞∞∞
∞∞2Æ j! j

∞∞
lq

j

∞∞∞∞
Lp

. 2Qæ k f kḞÆ,p
q

.

PROOF. It is not hard to see that there exist measurable pairwise disjoint sets M1, M2, ...
covering G, such that we have Bi µ Mi µ (3C) ·Bi for some balls Bi of radius 1/3 in G, where
(3C) ·Bi is the ball of the same center as Bi and of radius 3C. (Here C > 1 is a constant such
that Ω (x, y) ∑ C

°
Ω (x, z)+Ω (z, y)

¢
for all x, y, z 2 G.) Indeed, let (xn)n∏1 be a C-net in G. That is,

the balls (B (xn,C))n∏1 cover G, and Ω
°
xi, xj

¢
∏ C for all i 6= j. We note that, if i 6= j, then the balls

B (xi,1/3) and B
°
xj,1/3

¢
are disjoint. Now we put Bi := B (xi,1/3) and M1 := B (x1,C)\

°
[ j 6=1B j

¢
,

and Mk := (B (xk,C)\(M1 [ ...[Mk°1))\
°
[ j 6=kB j

¢
for all k ∏ 2.

We observe that Proposition 5.25 implies that, for each x,µ 2G with kµkG . 1 we have E(x·µ)ª
E(µ · x)ª E(x) and S(x ·µ)ª S(µ · x)ª S(x). It follows, that

S j

ØØØ¢1
j f

ØØØ (x ·µ)=2 jQ
Z

Rd

ØØØ¢1
j f

ØØØ (y)S
≥≥

2 j y°1
¥
·
≥
2 j x

¥
·
≥
2 jµ

¥¥
d y

ª2 jQ
Z

Rd

ØØØ¢1
j f

ØØØ (y)S
≥≥

2 j y°1
¥
·
≥
2 j x

¥¥
d y

=S j

ØØØ¢1
j f

ØØØ (x),

for all x 2G, provided kµkG . 2° j.
If ri is the center of Bi, then for all r in 2Bi, and hence for all r in Mi, we can write r =

ri · µ for some µ depending on r with kµkG ∑ 2. Now, considering the above estimates and the
decomposition G =S

i Mi we can write, since |Mi|ª 1,

! j(x)=
√
1X

i=1

Z

Mi

≥
S j

ØØØ¢1
j f

ØØØ (2° j r)E(r°1 · (2 j x))
¥p

dr

!1/p

ª
√
1X

i=1

≥
S j

ØØØ¢1
j f

ØØØ (2° j r i)E(r°1
i · (2 j x))

¥p
!1/p

∑
1X

i=1
S j

ØØØ¢1
j f

ØØØ (2° j r i)E(r°1
i · (2 j x))

ª
1X

i=1

Z

Mi

S j

ØØØ¢1
j f

ØØØ (2° j r)E(r°1 · (2 j x))dr

=
Z

G
S j

ØØØ¢1
j f

ØØØ (2° j r)E(r°1 · (2 j x))dr = E jS j

ØØØ¢1
j f

ØØØ (x).

(5.23)
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Next we note that E(x)∑ Ẽ(x) := exp(°k2°æxkG) and therefore (using Proposition 5.6)

E jS j

ØØØ¢1
j f

ØØØ∑ Ẽ jS j

ØØØ¢1
j f

ØØØ. Ẽ jM
ØØØ¢1

j f
ØØØ.

∞∞Ẽ j
∞∞

L1 MM
ØØØ¢1

j f
ØØØ. 2QæMM

ØØØ¢1
j f

ØØØ . (5.24)

We obtain (i), from (5.23) and (5.24).
Now we prove (ii). By the change of variables s°1 = r°1 · (2 j x) we can write, as above,

! j(x)=
√
1X

i=1

Z

Mi

≥
S j

ØØØ¢1
j f

ØØØ
≥
x · (2° j s)

¥
E(s°1)

¥p
ds

!1/p

∏
µZ

M1

≥
S j

ØØØ¢1
j f

ØØØ
≥
x · (2° j s)

¥
E(s°1)

¥p
ds

∂1/p
ª S j

ØØØ¢1
j f

ØØØ (x) .

To conclude we observe that, for all j 2Z,
ØØ¢ j f

ØØ∑
ØØØ§3

j§
2
j§

1
j f

ØØØ=
ØØØ
≥
§2

j§
1
j f

¥
§§3

j

ØØØ∑
ØØØ§2

j§
1
j f

ØØØ§
ØØØ§3

j

ØØØ

=
ØØØ¢1

j f
ØØØ§

ØØØ§3
j

ØØØ.
ØØØ¢1

j f
ØØØ§S j = S j

ØØØ¢1
j f

ØØØ ,

where we used the fact that, since §3 is Schwartz, we have
ØØ§3ØØ. S and hence

ØØØ§3
j

ØØØ. S j.
In order to prove (iii) we observe that, since Æp =Q,

∞∞∞¢1
j f

∞∞∞
L1 .

∞∞∞§1
j f §§2

j

∞∞∞
L1 .

∞∞∞§1
j f

∞∞∞
Lp

∞∞∞§2
j

∞∞∞
Lp0

.2Æ j
∞∞∞§1

j f
∞∞∞

Lp
. k f kḞÆ,p

q
,

(5.25)

which together with (i), the fact that
∞∞E j

∞∞
L1 . 2kæ and the Young inequality (see [8, Proposition

1.18]) gives the estimate.
Item (iii) and the definition of Uj immediately imply (iv).
In order to prove (v), we observe that

∞∞∞∞
∞∞∞2Æ j¢1

j f
∞∞∞

lq
j

∞∞∞∞
Lp

=
∞∞∞∞
∞∞∞2Æ j§2

j§
1
j f

∞∞∞
lq

j

∞∞∞∞
Lp

.

∞∞∞∞
∞∞∞2Æ jM§1

j f
∞∞∞

lq
j

∞∞∞∞
Lp

.

∞∞∞∞
∞∞∞2Æ j§1

j f
∞∞∞

lq
j

∞∞∞∞
Lp

= k f kḞÆ,p
q

,
(5.26)

which, again, together with (i) and the Fefferman-Stein inequality, gives the estimate. ⇤

REMARK 5.27. Items (i), (ii) and (v) do not use the fact that Æ=Q/p. In contrast, (iii) and (iv)
require Æ=Q/p.

PROPOSITION 5.28. For æ large, we have
∞∞sup j2Z2Æ j! j

∞∞
Lp .æ2

kæ
p k f kḞÆ,p

q
.

PROOF. We follow the proof in [6] of Proposition 4.7. We have (with the change of variables
r°1 · (2 j x)! r°1):

ØØØØØsup
j2Z

2Æ j! j(x)

ØØØØØ

p

=sup
j2Z

Z

Rd

≥
2Æ jS j

ØØØ¢1
j f

ØØØ (2° j r)E(r°1 · (2 j x))
¥p

dr

=sup
j2Z

Z

Rd

≥
2Æ jS j

ØØØ¢1
j f

ØØØ (x ·
≥
2° j r

¥
)E(r°1)

¥p
dr

∑
Z

Rd
Ep(r°1)

√

sup
j2Z

2Æ jS j

ØØØ¢1
j f

ØØØ (x ·
≥
2° j r

¥
)

!p

dr

∑
Z

Rd
Ep(r°1)

∞∞∞2Æ jS j

ØØØ¢1
j f

ØØØ (x ·
≥
2° j r

¥
)
∞∞∞

p

lq
j
dr.
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We note that, according to (5.26),
∞∞∞∞
∞∞∞2Æ j¢1

j f
∞∞∞

lq
j

∞∞∞∞
Lp

. k f kḞÆ,p
q

, and hence, using Proposition 5.48

(see the Appendix) we get

∞∞∞∞∞sup
j2Z

2Æ j! j

∞∞∞∞∞

p

Lp

∑
Z

Rd
Ep(r°1)

∞∞∞∞
∞∞∞2Æ jS j

ØØØ¢1
j f

ØØØ (x ·
≥
2° j r

¥
)
∞∞∞

lq
j

∞∞∞∞
p

Lp
x

dr

.

µZ

Rd
Ep(r°1) lnp(2+krkG)dr

∂
k f kp

ḞÆ,p
q

.

By a change of variables, we can write
Z

Rd
Ep(r°1) lnp(2+krkG)dr = 2kæ

Z

Rd
exp

≥
°p(1+kyk2`!

G )1/2`!
¥
lnp(2+ky°ækG)d y.

We can estimate this as follows. We have, for all y 2G,

lnp(2+ky°ækG).1+ lnp(2+2æ |y1|+ ...+2æ |yk|+ |yk+1|+ ...+|yd|)
∑1+ lnp(2æ (2+|y1|+ ...+|yd|)).æp + lnp(2+|y1|+ ...+|yd|).

Now, clearly
Z

Rd
Ep(r°1) lnp(2+krkG)dr .

°
æp +1

¢
2kæ.æp2kæ,

and we get the claim. ⇤

To make the notation more compact we introduce the functions Im(x)= 1Am(x), where

Am :=
(

y 2Rd

ØØØØØ 2Æm!m(y)> 1
2

X

k<m, k¥m(modR)
2Æk!k(y)

)

, m 2Z.

With this we have:

PROPOSITION 5.29. For æ large, we have
∞∞∞k2Æm!mImklq

m

∞∞∞
Lp

. Ræ2
kæ
p k f kḞÆ,p

q
.

PROOF. Fix a j 2 {0,1, ...,R°1}. Since !m ¥ 0 for all but a finite number of m 2 Z, we can
choose for each x 2G, the largest integer mx ¥ j(modR) with the property that x 2 Amx , in partic-
ular, 2Æmx!mx(x)> 1

2
P

k<mx, k¥mx(modR) 2Æk!k(x). Using this, we can write

X

m¥ j(modR)
2Æm!m(x)Im(x)∑2Æmx!mx(x)+

X

k<mx, k¥ j(modR)
2Æk!k(x)

∑3 ·2Æmx!mx(x)∑ 3sup
m

2Æm!m(x)

and hence,

∞∞∞
∞∞2Æm!mIm

∞∞
lq
m

∞∞∞
Lp

∑
∞∞∞∞
X

m
2Æm!mIm

∞∞∞∞
Lp

∑
R°1X

j=0

∞∞∞∞∞
X

m¥ j(modR)
2Æm!mIm

∞∞∞∞∞
Lp

∑ 3R
∞∞∞∞sup

m
2Æm!m

∞∞∞∞
Lp

.

By using Proposition 5.28, we get the claim. ⇤

REMARK 5.30. Proposition 5.28 and Proposition 5.29 do not use the fact that Æ=Q/p.
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Estimates involving derivatives. Consider a function u on G, smooth on R
d\{0} and homoge-

neous of degree 1. If a = (1, ...1,2, ...,2, ...`, ...,`) is the vector of the homogeneities of G defined in
(5.2) and ∞ is a multi-index, then we easily see that

r∞(u(∏x))=∏h∞,ai °r∞u
¢
(∏x)

for any ∏> 0 (where x !∏x is the group dilation). Since u is homogeneous of degree 1, we have

∏
°
r∞

bu
¢
(x)=r∞

b(∏u(x))=r∞
b(u(∏x))=∏|∞| °r∞

bu
¢
(∏x)

and hence
°
r∞

bu
¢
(∏x)=∏1°|∞| °r∞

bu
¢
(x), for all x 2G and ∏> 0. (5.27)

Thus, for all x 6= 0, writing x =∏∫ where ∏ := kxkG , ∫ := x/kxkG , we get by (5.27) that
°
r∞

bu
¢
(x)=∏1°|∞| °r∞

bu
¢
(∫),

which implies in particular that if kxkG ∏ 1 and |∞|∏ 1 then
ØØr∞

bu(x)
ØØ.∞ kxk1°|∞|

G .∞ 1. (5.28)

Let us also note that if ø :R!R and v : G !R are some smooth functions, then

X j (ø (v (x)))= ø0 (v (x)) X jv (x) for all 1∑ j ∑ d.

Iterating this, we get

ØØr∞
b (ø (v (x)))

ØØ.∞

|∞|X

k=1

ØØØø(k) (v (x))
ØØØ

X

∞1+...+∞k=∞

kY

i=1

ØØr∞i
b v (x)

ØØ , (5.29)

for all multi-indexes ∞ 2
°
N

d1
¢N with

ØØ∞
ØØ<1.

These observations are the basis for proving the following proposition.

PROPOSITION 5.31. For every ∞0 2
°
N
k£ {0}d1°k

¢N and ∞ 2
°
N

d1
¢N with

ØØ∞
ØØ+

ØØ∞0
ØØ<1 (see (5.6)),

we have ØØØr∞+∞0
b ! j

ØØØ.∞,∞0 2 j|∞|2( j°æ)|∞0|! j.

PROOF. Replacing G with R£G, and considering

u(t, x) := k(t, x)kR£G = (|t|2`! +kxk2`!
G )1/2`!,

we get by observation (5.28) above, with t = 1, that
ØØr∞

b(1+kxk2`!
G )1/2`!ØØ . 1 for all finite ∞ 2

°
N

d1
¢N,

∞ 6= 0 as above.
By (5.29) we obtain

ØØØr∞
b exp

≥
°p(1+kxk2`!

G )1/2`!
¥ØØØ. exp

≥
°p(1+kxk2`!

G )1/2`!
¥

and as in [6, Proposition 4.4], we get from this that,
ØØØr∞+∞0

b Ep(r°1 ·
≥
2 j x

¥
)
ØØØ. 2 j|∞|2( j°æ)|∞0|Ep(r°1 ·

≥
2 j x

¥
).

Consequently we have
ØØØr∞+∞0

b !
p
j

ØØØ. 2 j|∞|2( j°æ)|∞0|!p
j (5.30)

and by writing ! j = ø
≥
!

p
j

¥
, where ø (t) := t1/p, we can conclude the proof of Proposition 5.31 by

using (5.29). We give below the argument. Firstly, we can suppose without loss of generality
that ∞ 2

°
{0}k£Nd1°k

¢N. Clearly, if ∞1 + ...+∞k = ∞+∞0 for some multi-indexes ∞1, ...,∞k 2
°
N

d1
¢N

then, we can write ∞i = ∞i +∞0i for each 1 ∑ i ∑ k, where ∞1, ..,∞k 2
°
{0}k£Nd1°k

¢N and ∞01, ..,∞0k 2
°
N
k£ {0}d1°k

¢N are such that ∞1 + ..+∞k = ∞ and ∞01 + ..+∞0k = ∞0. From the definition of ! j we see
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that if ! j(x) = 0 for some x 2 G, then ! j ¥ 0 on G. Suppose this is not the case, i.e., ! j > 0 on G.
Using (5.29) and (5.30), we get

ØØØr∞+∞0
b ! j

ØØØ.
|∞|+|∞0|X

k=1

ØØØø(k)
≥
!

p
j

¥ØØØ
X

∞1+...+∞k=∞+∞0

kY

i=1

ØØØØr
∞ j+∞0j
b !

p
j

ØØØØ

.

|∞|+|∞0|X

k=1
!

1°pk
j

√
X

∞1+...+∞k=∞+∞0

kY

i=1
2 j|∞i|2( j°æ)

ØØ∞0i
ØØ
!

!
pk
j

=
√|∞|+|∞0|X

k=1
2 j|∞|2( j°æ)|∞0|

!

! j . 2 j|∞|2( j°æ)|∞0|! j.

This concludes the proof. ⇤

PROPOSITION 5.32. For every ∞0 2
°
N
k£ {0}d1°k

¢N and ∞ 2
°
N

d1
¢N with

ØØ∞
ØØ+

ØØ∞0
ØØ<1, we have

ØØØr∞+∞0
b ≥ j

ØØØ.∞,∞0 2 j|∞|2( j°æ)|∞0|. (5.31)

PROOF. Since the proof of (5.31) follows very closely the similar estimate in [6, (Proposition
4.5)], we only sketch the argument.

We suppose ≥ j 6= 0 and write ≥ j = ≥(2Æ j! j/vj), where vj :=P
k< j,k¥ j(modR) 2Æk!k. From Proposi-

tion 5.31 we get
ØØØr∞+∞0

b vj

ØØØ. 2 j|∞|2( j°æ)|∞0|vj. (5.32)

Since r∞+∞0
b

°
vj/vj

¢
= 0, the Leibniz rule gives us,

ØØØØvjr∞+∞0
b

µ
1
vj

∂ØØØØ.
X

Ø∑∞+∞0
|Ø|<|∞|+|∞0|

ØØØr∞+∞0°Ø
b vj

ØØØ
ØØØØr

Ø
b

µ
1
vj

∂ØØØØ

=
X

Ø1∑∞,Ø2∑∞0
|Ø1|+|Ø2|<|∞|+|∞0|

ØØØr(∞°Ø1)+(∞0°Ø2)
b vj

ØØØ
ØØØØr

Ø1+Ø2
b

µ
1
vj

∂ØØØØ .
(5.33)

The inequality (5.33) used in conjunction with (5.32) leads by a straightforward induction onØØ∞
ØØ+

ØØ∞0
ØØ, to
ØØØØr

∞+∞0
b

µ
1
vj

∂ØØØØ. 2 j|∞|2( j°æ)|∞0| 1
vj

.

Using this, Proposition 5.31 and (5.29) for the functions ≥ and 2Æ j! j/vj, we can conclude as in
[6, Proposition 4.5]. ⇤

4. Estimates of the approximation function

Estimates of the L1 norm. In this subsection we are going to verify that the functions h̃
and g̃ are well-defined and, under a smallness condition on k f kḞÆ,p

q
((5.35) below), obey the L1

estimates:
∞∞h̃

∞∞
L1 . 1, k g̃kL1 . R. (5.34)

In the remaining part of the chapter we assume that f satisfies

k f kḞÆ,p
q

∑ ¥, (5.35)

where ¥ is a sufficiently small number (depending only on æ, R and ±) that will be chosen later.
We also assume that R > 1/Æ.
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In order to obtain the bounds (5.34), we will need the following observation. If (ak)k2Z is a
sequence with finite support, then we have the identity (see [6, Lemma 3.2]):

X

j0> j
a j0

Y

j< j00< j0
(1°a j00)+

Y

j0> j
(1°a j0)= 1. (5.36)

An immediate consequence of this equality is that, whenever ak 2 [0,1], we must have, for all
j,

X

j0> j
a j0

Y

j< j00< j0
(1°a j00)∑ 1. (5.37)

The boundedness of h̃. First of all we easily see that h̃ is well-defined (as a consequence of the
fact that only a finite number of functions h j, ! j and Uj are nonzero). Recalling the definition of
h j and using Proposition 5.26 (ii), we can write:

ØØh j
ØØ=

°
1°≥ j

¢ØØ¢ j f
ØØ.

°
1°≥ j

¢
! j =Uj.

If f satisfies (5.35) with small ¥ then, by Proposition 5.26 (iv), we get Uj 2 [0,1] for all j 2 Z
and hence, by using (5.37) and the definition of h̃, we get the estimate:

ØØh̃
ØØ∑

X

j

ØØh j
ØØ Y

j0> j
(1°Uj0).

X

j
Uj

Y

j0> j
(1°Uj0). 1.

The boundedness of g̃. Let us see first that g̃ is well-defined. We have that all but a finite
number of the functions g j are identically zero, hence it remains to discuss the nature of the
products of the form

Y

j0> j
(1°G j0). (5.38)

Following [6], we show that these products converge uniformly. Indeed, we have ! j ¥ 0 for all
j > J. For small ¥ in (5.35), by Proposition 5.26 (iii), we have

ØØ! j
ØØ< 1 and thus we can write:

0∑G j <
X

t>0, t∏ j°J
t¥0(modR)

2°Æt ∑
min

°
2°ÆR ,2°Æ( j°J)¢

1°2°ÆR .

If j is large, then we have G j .R 2°Æ( j°J) which proves the uniform convergence of (5.38).

Now we estimate the L1 norm of g̃. When R > 1/Æ, from the above inequality we get G j 2 [0,1]
for all j. By the definition of ≥ j, we see that ≥ j(x) 6= 0 only if

2Æ j! j(x)∑
X

k< j
k¥ j(modR)

2Æk!k(x).

Hence,
ØØg j(x)

ØØ. ≥ j(x)! j(x).
X

k< j
k¥ j(modR)

2Æ(k° j)!k(x)=G j,

and by using (5.37) and the definition of g̃ we obtain,

| g̃|∑
R°1X

c=0

X

j¥c(modR)

ØØg j
ØØ Y

j0> j
j0¥c(modR)

(1°G j0).
R°1X

c=0

X

j¥c(modR)
G j

Y

j0> j
j0¥c(modR)

(1°G j0)∑ R.



110 5. APPROXIMATION OF CRITICAL REGULARITY FUNCTIONS ON STRATIFIED HOMOGENEOUS GROUPS

Estimating h° h̃. Our goal in this subsection is to prove the following estimates:

PROPOSITION 5.33. Suppose 1 < p,q < 1, Æ = Q/p and k are as in Theorem 5.3. Then, we
have

(i)
kX

i=1

∞∞Xi(h° h̃)
∞∞

ḞÆ°1,p
q

.Ræ22°æmin(1,Æ)+kæ
p k f kḞÆ,p

q
+Ræ22æmax(1°Æ,0)+

≥
1+[Æ]+ 1

p

¥
kæ k f k2

ḞÆ,p
q

;

(ii)
d1X

i=1

∞∞Xi(h° h̃)
∞∞

ḞÆ°1,p
q

.Ræ22
kæ
p k f kḞÆ,p

q
+Ræ22æmax(1°Æ,0)+

≥
1+[Æ]+ 1

p

¥
kæ k f k2

ḞÆ,p
q

.

(Here, [Æ] stands for the integer part of Æ.)

Before starting the proof, we note that, writing:

Vj :=
X

j0< j
h j0

Y

j0< j00< j
(1°Uj00),

and by using the definition of h̃ together with the identity (5.36) (as in [13, p. 19]), one obtains

h° h̃ =
X

j
VjUj. (5.39)

In order to obtain Proposition 5.33, we first collect some estimates satisfied by Uj and Vj.

LEMMA 5.34. For every ∞0 2
°
N
k£ {0}d1°k

¢N and ∞ 2
°
N

d1
¢N with

ØØ∞
ØØ+

ØØ∞0
ØØ<1, we have

(i)
ØØØr∞+∞0

b Um

ØØØ. 2m|∞|2(m°æ)|∞0|!mIm;

(ii)
∞∞r∞

bUm
∞∞

L1 . 2m|∞|2kæ k f kḞÆ,p
q

.

PROOF. As in [6, Lemma 5.2], this follows from Propositions 5.26, 5.31 and 5.32. ⇤

LEMMA 5.35. For all m 2Z, ∞ 2
°
N

d1
¢N with

ØØ∞
ØØ<1 we have

∞∞r∞
bhm

∞∞
L1 . 2m|∞| k f kḞÆ,p

q
.

PROOF. This is a direct consequence of the definition of hm, (5.31) and of the Bernstein type
inequality (5.25), since we have

∞∞¢ j f
∞∞

L1 =
∞∞∞§3

j¢
1
j f

∞∞∞
L1 .

∞∞∞¢1
j f

∞∞∞
L1 . k f kḞÆ,p

q
, (5.40)

for all j. ⇤

LEMMA 5.36. Under the smallness assumption (5.35), we have

(i) |Vm|. 1,
(ii) for all ∞ 2

°
N

d1
¢N with

ØØ∞
ØØ<1,

∞∞r∞
bVm

∞∞
L1 . 2m|∞|2æ|∞|k k f kḞÆ,p

q
.

PROOF. We just follow the proof in [6, Lemma 5.4]. Item (i) follows directly from the construc-
tion and by using (5.37). The arguments are very similar to the ones used to prove (5.34). Item
(i) is also proved in [13] (the inequality (6.6)).

We prove now item (ii). By induction we can write (see [6] or [13, Section 6])

r∞
bVm =

X

m0<m

√

r∞
bhm0 °

X

0<Ø∑∞
c∞0,∞rØ

bUm0r∞°Ø
b Vm0

!
Y

m0<m00<m
(1°Um00). (5.41)

This can be seen as follows. Suppose (Am)m2Z and (Bm)m2Z are two sequences of smooth
functions on G, such that for all integers m we have

Am =
X

m0<m
Bm0

Y

m0<m00<m
(1°Um00) (5.42)
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(also we assume “good" convergence properties for all the derivatives).
Then, if X is a left-invariant vector field from the Lie algebra of G, we can write

X Am =
X

m0<m
(XBm0)

Y

m0<m00<m
(1°Um00)

°
X

m0
m0<m

Bm0
X

∫
m0<∫<m

(XU∫)
Y

m0<m00<∫
(1°Um00)

Y

∫<m00<m
(1°Um00)

=
X

m0<m
(XBm0)

Y

m0<m00<m
(1°Um00)

°
X

∫
∫<m

(XU∫)
X

m0
m0<∫

Bm0
Y

m0<m00<m
(1°Um00)

Y

∫<m00<m
(1°Um00)

=
X

m0<m
(XBm0)

Y

m0<m00<m
(1°Um00)°

X

∫
∫<m

(XU∫) A∫

Y

∫<m00<m
(1°Um00)

=
X

m0<m
(XBm0)

Y

m0<m00<m
(1°Um00)°

X

m0<m
(XUm0) Am0

Y

m0<m00<m
(1°Um00),

and hence, we get

X Am =
X

m0<m
((XBm0)° (XUm0) Am0)

Y

m0<m00<m
(1°Um00).

We observe that this equality is of the same form as (5.42); in the sense that, if we now define

A1
m := X Am and B1

m := (XBm)° (XUm) Am,

then

A1
m =

X

m0<m
B1

m0
Y

m0<m00<m
(1°Um00).

Applying this iteratively, using the definition of Vm, we get (5.41).

By Lemmas 5.35 and 5.34, we have
∞∞r∞

bVm
∞∞

L1 .

X

m0<m

√
∞∞r∞

bhm0
∞∞

L1 +
X

0<∞0∑∞

∞∞∞rØ
bUm0

∞∞∞
L1

∞∞∞r∞°Ø
b Vm0

∞∞∞
L1

!

.

X

m0<m

√

2m0|∞| +
X

0<Ø∑∞
2m0|Ø|2kæ

∞∞∞r∞°Ø
b Vm0

∞∞∞
L1

!

k f kḞÆ,p
q

and by induction on
ØØ∞

ØØ we get the inequality in item (ii). (Recall that we work under the small-
ness assumption (5.35).) ⇤

We are now in position to complete the proof of Proposition 5.33.

PROOF OF PROPOSITION 5.33. We prove (i) in detail, following closely [6, Section 5]. As in
[6], for all 1∑ k ∑k, we write

∞∞Xk(h° h̃)
∞∞

ḞÆ°1,p
q

=
∞∞∞∞
∞∞∞2(Æ°1)m§1

mXk(h° h̃)
∞∞∞

lq
m

∞∞∞∞
Lp

=

∞∞∞∞∞∞

∞∞∞∞∞2(Æ°1)m§1
mXk

√
X

j2Z
VjUj

!∞∞∞∞∞
lq
m

∞∞∞∞∞∞
Lp

=
∞∞∞∞∞

∞∞∞∞2(Æ°1)m§1
mXk

µX

r2Z
Vr+mUr+m

∂∞∞∞∞
lq
m

∞∞∞∞∞
Lp

∑
X

r2Z

∞∞∞∞
∞∞∞2(Æ°1)m§1

mXk(Ur+mVr+m)
∞∞∞

lq
m

∞∞∞∞
Lp

.

We split this last sum in three terms
P

r>æ,
P

r<0,
P

0∑r∑æ.
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(I) Estimate of
P

r>æ. Following [6, Subsection 5.1] and using (5.14), we have:
∞∞∞∞
∞∞∞2(Æ°1)m§1

mXk(Ur+mVr+m)
∞∞∞

lq
m

∞∞∞∞
Lp

=
∞∞∞∞
∞∞∞2(Æ°1)m(Ur+mVr+m)§ X R

k §
1
m

∞∞∞
lq
m

∞∞∞∞
Lp

=
∞∞∞∞
∞∞∞2Æm(Ur+mVr+m)§

≥
X R

k §
1
¥

m

∞∞∞
lq
m

∞∞∞∞
Lp

.

∞∞∞
∞∞2ÆmM(Ur+mVr+m)

∞∞
lq
m

∞∞∞
Lp

.

∞∞∞
∞∞2Æm(Ur+mVr+m)

∞∞
lq
m

∞∞∞
Lp

.

∞∞∞
∞∞2ÆmUr+m

∞∞
lq
m

∞∞∞
Lp

=2°Ær
∞∞∞
∞∞2ÆmUm

∞∞
lq
m

∞∞∞
Lp

.

(5.43)

Recalling that Uj = (1°≥ j)! j and using Proposition 5.29 we get

∞∞∞
∞∞2ÆmUm

∞∞
lq
m

∞∞∞
Lp

.

∞∞∞
∞∞2Æm!mIm

∞∞
lq
m

∞∞∞
Lp

. Ræ2kæ/p k f kḞÆ,p
q

,

and summing up,

X

r>æ
....

X

r>æ

≥
2°ÆrRæ2kæ/p k f kḞÆ,p

q

¥
. Ræ2°Ææ+kæ/p k f kḞÆ,p

q
.

(II) Estimate of
P

r<0. If a := [Æ] then, as we have already seen, we can write §1 =
°
rR

b
¢a ·'

for a Schwartz family ', and then §1
m = 2°ma °

rR
b
¢a ·'m. Hence, if Xk is a vector field in a “good"

direction, i.e. 1∑ k ∑k, we have
∞∞∞
∞∞2(Æ°1)m§1

mXk(Um+rVm+r)
∞∞

lq
m

∞∞∞
Lp

=
∞∞∞∞
∞∞∞2(Æ°1)m2°maXk(Um+rVm+r)§

≥
rR

b

¥a
·'m

∞∞∞
lq
m

∞∞∞∞
Lp

=
∞∞∞
∞∞2(Æ°1)m2°ma £

ra
b Xk(Um+rVm+r)

§
§'m

∞∞
lq
m

∞∞∞
Lp

.

∞∞∞
∞∞2(Æ°1)m2°maMra

b Xk(Um+rVm+r)
∞∞

lq
m

∞∞∞
Lp

.

∞∞∞
∞∞2(Æ°1)m2°mara

b Xk(Um+rVm+r)
∞∞

lq
m

∞∞∞
Lp

.2°(Æ°1°a)r
∞∞∞
∞∞2(Æ°1°a)mra

b Xk(UmVm)
∞∞

lq
m

∞∞∞
Lp

,

where we have used the Fefferman-Stein inequality in the third line.
As in [6], using the Leibniz rule and Lemmas 5.34 and 5.36, we obtain

ØØra
b Xk(UmVm)

ØØ.
ØØVm

°
ra

b XkUm
¢ØØ+

aX

l=0

ØØØrl
bUm

ØØØ
ØØØra+1°l

b Vm

ØØØ

.2ma2m°æ!mIm+
aX

l=0

≥
2ml!mIm

¥≥
2m(a+1°l)2k(a+1°l)æ k f kḞÆ,p

q

¥

.2m(a+1)
≥
2°æ+2k(a+1)æ k f kḞÆ,p

q

¥
!mIm.

Now we get, via Proposition 5.29,
∞∞∞
∞∞2(Æ°1)m§1

mXk(Um+rVm+r)
∞∞

lq
m

∞∞∞
Lp

.2°(Æ°1°a)r
≥
2°æ+2k(a+1)æ k f kḞÆ,p

q

¥∞∞∞
∞∞2Æm!mIm

∞∞
lq
m

∞∞∞
Lp

.Ræ2
kæ
p k f kḞÆ,p

q
2°(Æ°1°a)r

≥
2°æ+2k(a+1)æ k f kḞÆ,p

q

¥
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and, summing up,

X

r<0
....

√
X

r<0
2°(Æ°1°a)r

!

Ræ2
kæ
p k f kḞÆ,p

q

≥
2°æ+2k(a+1)æ k f kḞÆ,p

q

¥

.Ræ
µ
2°æ+kæ

p k f kḞÆ,p
q

+2k
≥
a+1+ 1

p

¥
æ k f k2

ḞÆ,p
q

∂
.

(III) Estimate of
P

0∑r∑æ. This is similar to the preceding estimate. Here, instead of taking a
to be the integer part of Æ, we consider a = 0. As above we conclude that

∞∞∞
∞∞2(Æ°1)m§1

mXk(Um+rVm+r)
∞∞

lq
m

∞∞∞
Lp

. Ræ2
kæ
p k f kḞÆ,p

q
2°(Æ°1)r

≥
2°æ+2kæ k f kḞÆ,p

q

¥
,

and by summing up,
X

0∑r∑æ
....CÆ (æ)Ræ

µ
2°æ+kæ

p k f kḞÆ,p
q

+2k
≥
1+ 1

p

¥
æ k f k2

ḞÆ,p
q

∂

where CÆ (æ)ª 1 if Æ> 1, CÆ (æ)ª æ if Æ= 1 and CÆ (æ)ª 2(1°Æ)æ if Æ< 1.

With this we have proved (i). The proof of (ii) follows the same lines as the one of (i). The
main difference is that since we are no longer restricted to the case of derivatives in “good"
directions, we have to use, instead of Lemma 5.34 (i) applied with

ØØ∞0
ØØ= 1 (as in (II) and implicitly

in (III) above), the weaker statement for the case
ØØ∞0

ØØ = 0. This will produce almost the same
estimates, the difference being that the coefficient 2°æ+kæ

p of k f kḞÆ,p
q

in the corresponding parts

(I), (II) becomes 2
kæ
p . ⇤

Estimating g° g̃. Our goal in this subsection is to prove the following counterpart of Propo-
sition 5.33.

PROPOSITION 5.37. Consider 1 < p, q < 1 and Æ = Q/p. Also consider aÆ 2 (0,Æ] such that
aÆ = 1 if Æ∏ 1. We have

krb(g° g̃)k
ḞÆ°1,p

q
. 2QæR2°min(1,ÆaÆ)R k f kḞÆ,p

q
+2([Æ]+1)QæR22°min(1,ÆaÆ)R k f k2

ḞÆ,p
q

.

We recall the definition of G j:

G j :=
X

t>0
t¥0(modR)

2°Æt! j°t.

The starting point is the identity (similar to (5.39))

g° g̃ =
X

j
G jH j,

where

H j :=
X

j0< j
j0¥ j( modR)

g j0
Y

j0< j00< j
j00¥ j(modR)

(1°G j00)

and g j = ≥ j¢ j f .

LEMMA 5.38. For all m 2Z, ∞ 2
°
N

d1
¢N with

ØØ∞
ØØ<1,

ØØr∞
bGm

ØØ.∞ 2Qæ
X

t>0
t¥0(modR)

2°Æt2|∞|(m°t)MM
ØØ¢1

m°t f
ØØ .
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PROOF. By the definition of Gm and Proposition 5.31,
ØØr∞

bGm
ØØ∑

X

t>0
t¥0(modR)

2°Æt ØØr∞
b!m°t

ØØ.
X

t>0
t¥0(modR)

2°Æt2|∞|(m°t)!m°t.

Note now that, according to Proposition 5.26,

!m°t . 2QæMM
ØØ¢1

m°t f
ØØ ,

whence the estimate. ⇤

LEMMA 5.39. For all m 2Z, ∞ 2
°
N

d1
¢N with

ØØ∞
ØØ<1,

ØØr∞
b gm

ØØ.∞ 2|∞|mM
ØØ¢1

m f
ØØ .

PROOF. By Proposition 5.32 and the Leibniz rule, recalling the definition of gm, we have
ØØr∞

b gm
ØØ.

X

0∑∞0∑∞
2|∞°∞0|m

ØØØr∞0

b
°
§3

m
°
¢1

m f
¢¢ØØØ.

X

0∑∞0∑∞
2|∞°∞0|m

ØØØ
°
¢1

m f
¢
§r∞0

b §
3
m

ØØØ

.

X

0∑∞0∑∞
2|∞°∞0|m2|∞0|mM

ØØ¢1
m f

ØØ.∞ 2|∞|mM
ØØ¢1

m f
ØØ

(since
ØØ∞°∞0

ØØ=
ØØ∞

ØØ°
ØØ∞0

ØØ when 0∑ ∞0 ∑ ∞). ⇤

LEMMA 5.40. For all m 2Z, ∞ 2
°
N

d1
¢Nwith

ØØ∞
ØØ<1, and under the smallness condition (5.35)

on f , we have
(i) |Hm|. 1,
(ii)

ØØr∞
bHm

ØØ. 2|∞|QæP
t>0, t¥0( modR) 2|∞|(m°t)MM

ØØ¢1
m°t f

ØØ.

PROOF. Item (i) follows directly from the construction. Also, it is proved in [13, Section 11].
Item (ii) is obtained following the strategy in [6, Lemma 6.5]. The proof is similar to the one

of Lemma 5.36. It is done by induction on
ØØ∞

ØØ and using Lemmas 5.38, 5.39. ⇤

PROOF OF PROPOSITION 5.37. As in the estimate of h° h̃, we can write

krb (g° g̃)kḞÆ°1,p
q

∑
X

r2Z

∞∞∞∞
∞∞∞2(Æ°1)m§1

mrb(Gr+mHr+m)
∞∞∞

lq
m

∞∞∞∞
Lp

.

Recalling that

Gr+m :=
X

t>0
t¥0(modR)

2°Æt!r+m°t,

we get

krb (g° g̃)kḞÆ°1,p
q

∑
X

t>0
t¥0(modR)

2°Æt X

r2Z

∞∞∞∞
∞∞∞2(Æ°1)m§1

mrb(!r+m°tHr+m)
∞∞∞

lq
m

∞∞∞∞
Lp

=
X

t>0
t¥0(modR)

2°Æt X

r>aÆt
...+

X

t>0
t¥0(modR)

2°Æt X

r∑0
...+

X

t>0
t¥0(modR)

2°Æt X

0<r∑aÆt
....
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(I) Estimate of
P

r>aÆt. Using the fact that kHmkL1 . 1 and Proposition 5.26 we have (as in
(5.43)):

∞∞∞∞
∞∞∞2(Æ°1)m§1

mrb(!r+m°tHr+m)
∞∞∞

lq
m

∞∞∞∞
Lp

. 2°Æ(r°t)
∞∞∞
∞∞2Æm!m

∞∞
lq
m

∞∞∞
Lp

. 2°Æ(r°t)2Qæ k f kḞÆ,p
q

.

Summing up we get:

X

t>0
t¥0(modR)

2°Æt X

r>aÆt
....

0

B@
X

t>0
t¥0(modR)

2°Æt X

r>aÆt
2°Æ(r°t)

1

CA2Qæ k f kḞÆ,p
q

=

0

B@
X

t>0
t¥0(modR)

X

r>aÆt
2°Ær

1

CA2Qæ k f kḞÆ,p
q

.

X

t>0
t¥0(modR)

2°ÆaÆt2Qæ k f kḞÆ,p
q

. 2°ÆaÆR2Qæ k f kḞÆ,p
q

.

(II) Estimate of
P

r∑0. Let a ∏ 0 be an integer. As in the estimate (II) for h° h̃ we obtain

∞∞∞∞
∞∞∞2(Æ°1)m§1

mrb(!r+m°tHr+m)
∞∞∞

lq
m

∞∞∞∞
Lp

. 2°(Æ°1°a)r
∞∞∞∞
∞∞∞2(Æ°1°a)mra+1

b (!m°tHm)
∞∞∞

lq
m

∞∞∞∞
Lp

.

(5.44)

In order to estimate the right hand side we recall that the following estimates hold (see Propo-
sition 5.26, Proposition 5.31 and Lemma 5.40):

!m°t .2QæMM(¢1
m°t f ),

ØØØrl
b!m°t

ØØØ.2(m°t)l!m°t,

|Hm|.1,
ØØØrl

bHm

ØØØ.2lQæ
X

t>0
2(m°t)l MM

ØØ¢1
m°t f

ØØ ,

for all l 2N. Using the Leibniz rule, we get:
ØØra+1

b (!m°tHm)
ØØ.2(m°t)(a+1)!m°t

+2(a+1)Qæ
X

t0>0

aX

l=0
2(t0°t)l2(a+1)(m°t0)MM

°
¢1

m°t f
¢
MM

°
¢1

m°t0 f
¢
.

(5.45)

Using (5.25), we estimate the double sum from the right hand side as follows:

X

t0>0

aX

l=0
....k f kḞÆ,p

q

√
X

0<t0∑t
2(a+1)(m°t0)MM

°
¢1

m°t0 f
¢
+

X

t0>t
2(t0°t)a2(a+1)(m°t0)MM

°
¢1

m°t f
¢
!

.k f kḞÆ,p
q

X

0<t0∑t
2(a+1)(m°t0)MM

°
¢1

m°t0 f
¢
.

Going back to (5.45), we obtain
ØØra+1

b (!m°tHm)
ØØ. 2(m°t)(a+1)!m°t +2(a+1)Qæ k f kḞÆ,p

q

X

0<t0∑t
2(a+1)(m°t0)MM

°
¢1

m°t0 f
¢
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and hence, the term
∞∞∞
∞∞2(Æ°1°a)mra+1

b (!m°tHm)
∞∞

lq
m

∞∞∞
Lp

is bounded by

2(Æ°1°a)t
∞∞∞∞
∞∞∞2Æ(m°t)!m°t

∞∞∞
lq
m

∞∞∞∞
Lp

+2(a+1)Qæ k f kḞÆ,p
q

Ba,Æ(t)
∞∞∞
∞∞2ÆmMM

°
¢1

m f
¢∞∞

lq
m

∞∞∞
Lp

.2(Æ°1°a)t
∞∞∞
∞∞2Æm!m

∞∞
lq
m

∞∞∞
Lp

+2(a+1)Qæ k f kḞÆ,p
q

Ba,Æ(t)
∞∞∞
∞∞2Æm¢1

m f
∞∞

lq
m

∞∞∞
Lp

.2Qæ2(Æ°1°a)t k f kḞÆ,p
q

+2(a+1)Qæ k f kḞÆ,p
q

Ba,Æ(t)
∞∞∞
∞∞2Æm§1

m f
∞∞

lq
m

∞∞∞
Lp

.2Qæ2(Æ°1°a)t k f kḞÆ,p
q

+2(a+1)QæBa,Æ(t)k f k2
ḞÆ,p

q
,

where Ba,Æ(t) := P
0<t0∑t 2(Æ°1°a)t0 . Here, we have used the Feffereman-Stein inequality to pass

from the first to the second line, Proposition 5.26 (v) and (5.26) to pass from the second to the
third line. Hence,

∞∞∞∞
∞∞∞2(Æ°1°a)mra+1

b (!m°tHm)
∞∞∞

lq
m

∞∞∞∞
Lp

. 2Qæ2(Æ°1°a)t k f kḞÆ,p
q

+2(a+1)QæBa,Æ(t)k f k2
ḞÆ,p

q
. (5.46)

Finally, from (5.44) and (5.46) we obtain
∞∞∞∞
∞∞∞2(Æ°1)m§1

mrb(!r+m°tHr+m)
∞∞∞

lq
m

∞∞∞∞
Lp

.2°(Æ°1°a)r2Qæ2(Æ°1°a)t k f kḞÆ,p
q

+2°(Æ°1°a)r2(a+1)QæBa,Æ(t)k f k2
ḞÆ,p

q
.

(5.47)

If we choose now a = [Æ] and we observe that in this case we have Ba,Æ(t) . 1, then, using
(5.47) we can bound the term

X

t>0
t¥0(modR)

2°Æt X

r∑0

∞∞∞∞
∞∞∞2(Æ°1)m§1

mrb(!r+m°tHr+m)
∞∞∞

lq
m

∞∞∞∞
Lp

by

2Qæ

0

B@
X

t>0
t¥0(modR)

2°Æt X

r∑0
2°(Æ°1°a)r2(Æ°1°a)t

1

CAk f kḞÆ,p
q

+2(a+1)Qæ

0

B@
X

t>0
t¥0(modR)

2°Æt X

r∑0
2°(Æ°1°a)r

1

CAk f k2
ḞÆ,p

q
.

Since
X

t>0
t¥0(modR)

2°Æt X

r∑0
2°(Æ°1°a)r2(Æ°1°a)t =

X

t>0
t¥0(modR)

2°(a+1)t X

r∑0
2(a+1°Æ)r

. 2°(a+1)R

and
X

t>0
t¥0(modR)

2°Æt X

r∑0
2°(Æ°1°a)r

. 2°ÆR ,

we obtain
X

t>0
t¥0(modR)

2°Æt X

r∑0
.... 2Qæ2°(a+1)R k f kḞÆ,p

q
+2(a+1)Qæ2°ÆR k f k2

ḞÆ,p
q

.
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(III) Estimate of
P

0∑r∑aÆt. Using the estimate (5.47) above with a = 0, we get

X

0∑r∑aÆt

∞∞∞∞
∞∞∞2(Æ°1)m§1

mrb(!r+m°tHr+m)
∞∞∞

lq
m

∞∞∞∞
Lp

. AÆ(t)
≥
2Qæ2(Æ°1)t k f kḞÆ,p

q
+2QæB0,Æ(t)k f k2

ḞÆ,p
q

¥
,

where

AÆ(t).

8
<

:

2(1°Æ)aÆt if Æ< 1,
aÆt if Æ= 1,
1 if Æ> 1,

and B0,Æ(t).

8
<

:

1 if Æ< 1,
t if Æ= 1,
2(1°Æ)t if Æ> 1.

Now summing up we get three possible bounds:
(1) if Æ< 1, we have aÆ < Æ

1°Æ and
X

t>0
t¥0(modR)

2°Æt X

0∑r∑aÆt
.... 2Qæ2°R(1°(1°Æ)aÆ) k f kḞÆ,p

q
+2Qæ2°R(Æ°(1°Æ)aÆ) k f k2

ḞÆ,p
q

;

(2) if Æ= 1, we have aÆ = 1 and
X

t>0
t¥0(modR)

2°Æt X

0∑r∑aÆt
.... 2QæR2°R k f kḞÆ,p

q
+2QæR22°R k f k2

ḞÆ,p
q

;

(3) if Æ> 1, we have aÆ = 1 and
X

t>0
t¥0(modR)

2°Æt X

0∑r∑aÆt
.... 2Qæ2°R k f kḞÆ,p

q
+2Qæ2°R k f k2

ḞÆ,p
q

.

Now from the above estimates, since 0< aÆ ∑Æ, we have
X

t>0
t¥0(modR)

2°Æt X

0∑r∑aÆt
.... 2QæR2°R min(1,ÆaÆ) k f kḞÆ,p

q
+2QæR22°R min(1,ÆaÆ) k f k2

ḞÆ,p
q

.

Toghether with (I) and (II), this gives Proposition 5.37. ⇤

Proof of Theorem 5.3. Now we can estimate the Triebel-Lizorkin norm of fJ°FJ = (h° h̃)+
(g° g̃). By Proposition 5.33 (i) and Proposition 5.37, we have

kX

i=1
kXi( fJ °FJ)kḞÆ°1,p

q
.

kX

i=1

∞∞Xi(h° h̃)
∞∞

ḞÆ°1,p
q

+
kX

i=1
kXi(g° g̃)kḞÆ°1,p

q

.

≥
Ræ22°æmin(1,Æ)°kæ

p +2QæR2°min(1,ÆaÆ)R
¥
k f kḞÆ,p

q
+DR,æ k f k2

ḞÆ,p
q

,

where DR,æ is a large constant depending on R and æ.
As in [6, Section 7], for æ 2N, we set

R = Ræ :=
∑

100Q
min(1,ÆaÆ)

∏
æ.

If ± > 0 is fixed, then it is easy to see (using the fact that k/p < min(1,Æ)) that for a æ large
enough, we have

Ræ22°æmin(1,Æ)+kæ
p ∑ ±/4 and 2QæR2°min(1,ÆaÆ)R ∑ ±/4.

Hence, for a large D± we have

kX

i=1
kXi( fJ °FJ)kḞÆ°1,p

q
∑ ±

2
k f kḞÆ,p

q
+D± k f k2

ḞÆ,p
q

,

and since we assumed that k f kḞÆ,p
q

is small (see (5.35)), then we may take D± k f kḞÆ,p
q

∑ ±/2 obtain-
ing

kX

i=1
kXi( fJ °FJ)kḞÆ°1,p

q
∑ ±k f kḞÆ,p

q
. (5.48)
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In a similar way, using Proposition 5.33 (ii) and Proposition 5.37 we get

d1X

i=1
kXi( fJ °FJ)kḞÆ°1,p

q
.

d1X

i=1

∞∞Xi(h° h̃)
∞∞

ḞÆ°1,p
q

+
d1X

i=1
kXi(g° g̃)kḞÆ°1,p

q

.D0
R,æ k f kḞÆ,p

q
+D00

R,æ k f k2
ḞÆ,p

q
,

and hence, as above,

d1X

i=1
kXi( fJ °FJ)kḞÆ°1,p

q
.± k f kḞÆ,p

q
, (5.49)

provided that k f kḞÆ,p
q

is small enough. From (5.49) and the lifting property (Proposition 5.22) of
the Triebel-Lizorkin norm, we get

kFJkḞÆ,p
q

∑ k( fJ °FJ)kḞÆ,p
q

+k fJkḞÆ,p
q

ª
d1X

i=1
kXi( f °F)kḞÆ°1,p

q
+k f kḞÆ,p

q
.± k f kḞÆ,p

q
. (5.50)

Now (5.48) and (5.50) together with the L1 estimates (5.34) give Theorem 5.3 under the
smallness assumption on k f kḞÆ,p

q
(observing that the bounds proved do not depend on J and

taking J !1). We complete the proof of Theorem 5.3 via the homogeneity of the norms.

REMARK 5.41. (1) Following the same lines, it is also possible (and easier) to prove a version
of Theorem 5.3 for the Besov spaces introduced in Subsection 2.3:

THEOREM 5.42. Consider the parameters 1 < p < 1, 1 < q ∑ 1, Æ = Q/p and let k be the
largest positive integer with k < min(p,d1). Then, for every ± > 0 there exists a constant C± > 0
depending only on ±, such that for every function f 2 ḂÆ,p

q (G) there exists F 2 L1(G)\ ḂÆ,p
q (G)

satisfying the following estimates:
kX

i=1
kXi( f °F)kḂÆ°1,p

q (G) ∑±k f kḂÆ,p
q (G) ,

kFkL1(G) +kFkḂÆ,p
q (G) ∑C± k f kḂÆ,p

q (G) .

(2) To mention one application of Theorem 5.3, we state the following generalisation of Theo-
rem 1.8 in [13] concerning the Hodge systems on the (2n+1)-dimensional Heisenberg group Hn.
Note that in this case d = 2n+1, d1 = 2n and Q = 2n+2.

THEOREM 5.43. Suppose n ∏ 3 is an integer. Consider 1< p, q <1, Æ := (2n+2)/p and let r be
an integer with 1 ∑ r < min(p/2,n°1). For any (0, r)-form ' in ḞÆ,p

q (Hn), there exists a (0, r)-form
Y in L1 (Hn)\ ḞÆ,p

q (Hn) such that

@
§
bY = @

§
b'

and

kY kL1(Hn) +kY kḞÆ,p
q (Hn) .

∞∞∞@
§
b'

∞∞∞
ḞÆ°1,p

q (Hn)
.

We recall here the meaning of @b and @
§
b following [12, p. 594-595]. Let dz1, ...,dzn be the

basic (0,1)-forms on H
n, where z j = xj + i yj. If I =

©
j1, ..., jq

™
, with 1∑ j1 < ...< jq ∑ n, we write

dzI := dz j1 ^ ...^dz jq .

Suppose 1 ∑ q ∑ n is given and for each I with |I| = q, some smooth complex-valued functions fI
are given on H

n. Then,

@b

√
X

|I|=q
fI dzI

!

:=
nX

j=1

X

|I|=q
Z j ( fI)dz j ^dzI ,



5. APPENDIX 119

where Z j are the left-invariant Cauchy-Riemann operators

Z j := @

@z j
° iz j

@

@t
.

An expression like
X

|I|=q
fI dzI ,

will be called (0, q)-form on H
n.

The operator @
§
b is the formal adjoint of @b. We have

D
@
§
b f , g

E
=

D
f ,@b g

E
for any (0, q)-form f

and any (0,(q°1))-form g on H
n.

Theorem 5.43 is proved by using Theorem 5.3 to approximate in an efficient way the coef-
ficients of the form ' and then to conclude by using an iteration argument. Since the proof is
very similar to the one given in [13] and its Euclidean analogue in [6, Theorem 1.2], we omit it.
Theorem 5.4 can be proved following the same lines.

5. Appendix

We collect here some facts related to the Calderón-Zygmund theory on stratified homoge-
neous groups for vector-valued functions. These results (Lemma 5.44 and Theorem 5.45) are
well-known. However, since it is hard to find the exact statements in the literature (see for exam-
ple [2] for a Euclidean version, or [7] for similar considerations on spaces of homogeneous type),
we have chosen to present them here.

Consider a Banach space A. In what follows we deal with functions from the space Lp
A :=

Lp(G, A) where 1∑ p ∑1.

A first result is a Calderón-Zygmund decomposition of fuctions on G (see also [7, Théorème
2.2, Chapitre 3]), obtained via the weak (1,1) estimate for the maximal operator:

LEMMA 5.44. Consider a function f 2 L1
A and a number ∏ > 0. Then there exist a countable

family of measurable sets (≠n)n∏1 which are pairwise disjoint and a decomposition f = g+ b =
g+P

n bn where g,b,bn 2 L1
A for all n ∏ 1, and such that:

(i) kgkL1
A
.∏;

(ii) suppbn µ≠n,
R

bn(x)dx = 0 and kbnkL1
A
.∏|≠n| for all n;

(iii)
P

n |≠n|. 1
∏ k f kL1

A
.

PROOF. We adapt the standard proof in the Euclidean case. Consider the open set ≠̃ :=©
x 2G| M k f kA (x)>∏

™
. For each x 2 ≠̃ we consider a ball B (x, rx) centered in x and such that

B (x, rx) Ω ≠̃, but 2 ·B (x, rx) ≠̃ (recall that, if c > 0 and B is a ball in G centered in xB of radius
RB, then c ·B is the ball in G of center xB and of radius cRB). Notice that, by Proposition 5.6,

|B (x, rx)|∑
ØØ≠̃

ØØ∑ 1
∏
k f kL1

A

and hence, the balls B (x, rx) have uniformly bounded radii. Using the Vitali covering lemma
(which has the same proof in G as in the Euclidean case), we can find a countable subfam-
ily of balls (Bk)k∏1 of the family (B (x, rx))x2≠̃, which are pairwise disjoint and such that ≠̃ =S

x2≠̃B (x, rx)µS
k∏1 C ·Bk, where C > 2 is an absolute constant depending only on G.

We set

≠1 :=
°
≠̃\C ·B1

¢
\

√
[

j 6=1
B j

!

and inductively we define

≠k :=
√
°
≠̃\C ·Bk

¢
\

[

1∑i∑k°1
≠i

!

\

√
[

j 6=k
B j

!
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for all k ∏ 2. We see immediately that for all k ∏ 1 we have Bk µ≠k µ C ·Bk and this also give us
that |≠k|ª |Bk|ª |C ·Bk|. By definition the sets ≠k are pairwise disjoint and ≠̃=S

k∏1≠k. We can
define the functions:

g(x) :=
Ω

f (x), if x › ≠̃
f≠k , if x 2≠k

(5.51)

and bk :=
°
f ° f≠k

¢
1≠k for all k ∏ 1. Here, f≠k := |≠k|°1 R

≠k
f dx.

To prove (i), we see that if x 2≠k we have

kg(x)kA =
∞∞ f≠k

∞∞
A ∑ 1

|≠k|

Z

≠k

k f (y)kA d y.
1

|C ·Bk|

Z

C·Bk

k f (y)kA d y∑ M k f kA (x0)∑∏,

where x0 is a point in C ·Bk\≠̃. (Such a point exists since 2 ·Bk  ≠̃ and 2 ·Bk Ω C ·Bk.) For a.e.
x › ≠̃, by the Lebesgue differentiation theorem (which is a consequence of the weak estimate for
the operator M), we have kg(x)kA ∑ M k f kA (x)∑∏.

To prove (ii) and (iii), observe that by the above inequality we have

∞∞kbkkA
∞∞

L1 ∑ |≠k|
µ

1
|≠k|

Z

≠k

k f (y)kA d y+
∞∞ f≠k

∞∞
A

∂
= 2|≠k|

∞∞ f≠k

∞∞
A . |≠k|∏, for all k,

and, using the weak estimate for M,

X

k
|≠k|.

1X

k=1
|Bk| =

ØØØØØ
1[

k=1
Bk

ØØØØØ∑
ØØ≠̃

ØØ.
1
∏

∞∞k f kA
∞∞

L1 .

We can also see from these inequalities that

X

k
kbkkL1

A
.∏

X

k
|≠k|. k f kL1

A
. (5.52)

This proves in particular that the series defining b is absolutely convergent in L1
A and that

b, g 2 L1
A satisfy kgkL1

A
+kbkL1

A
. k f kL1

A
. ⇤

THEOREM 5.45. Suppose A1 and A2 are two Banach spaces and K 2 L1
loc(G\{0} !L(A1, A2))

has the following properties:
(i) there exists a constant c > 0 such that

R
kxkG∏ckykG

∞∞K(x)°K(y°1 · x)
∞∞dx ∑ 1 for all y 2G;

(ii) the operator T f := f §K is well-defined and bounded from Lq
A1

to Lq
A2

for some q 2 (1,1).
Then, T : L1

A1
! L1,1

A2
is well-defined and bounded. By real interpolation and duality we get

that T : Lp
A1

! Lp
A2

is well-defined and bounded for any p 2 (1,1).

(Here L(A1, A2) stands for the space of the bounded linear operators from A1 to A2.)

PROOF. We adapt again the proof in the Euclidean case. Using Lemma 5.44 we can write,
for a given f 2 L1(A1) and ∏ > 0, the decomposition at height ∏: f = g+ b. We next note thatØØ©kT f kA2 (x)> 2∏

™ØØ ∑
ØØ©kT gkA2 (x)>∏

™ØØ+
ØØ©kTbkA2 (x)>∏

™ØØ. The size of the set
©
kT gkA2 >∏

™
can

be bounded using (ii) above and the Markov inequality:

ØØ©kT gkA2 (x)>∏
™ØØ∑∏°q ∞∞kT gkA2

∞∞q
Lq .∏°q ∞∞kgkA1

∞∞q
Lq =∏°q

∞∞∞kgkq
A1

∞∞∞
L1

∑∏°q∏q°1 ∞∞kgkA1

∞∞
L1 =∏°1 kgkL1

A1
.∏°1 k f kL1

A1
.

To estimate the size of the set
©
kTbkA2 (x)>∏

™
we proceed as follows. Consider the sets ≠k

from the proof of Lemma 5.44; for each such ≠k we denote by yBk the center of the ball Bk Ω≠k
and we set ≠§

k := (C1 +C) ·Bk æ≠k where C1 > 0 is a large constant depending only on G and c.
We write now
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ØØ©kTbkA2 (x)>∏
™ØØ∑

ØØØØØ
[

k
≠§

k

ØØØØØ+
ØØØØØ

(

x 2G\
[

k
≠§

k| kTbkA2 (x)>∏

)ØØØØØ

.∏°1 k f kL1
A1

+∏°1
Z

G\
S

k≠
§
k

kTbkA2 (x)dx,

and it remains to estimate the last term. For this purpose, we note that if x 2 G\≠§
k and

y 2≠k, then Ω(x, yBk ) =
∞∞∞y°1

Bk
· x

∞∞∞
G
∏ (C1 +C)RBk ∏ C°1 (C1 +C)Ω(y, yBk ) ∏ C°1C1

∞∞∞y°1
Bk

· y
∞∞∞

G
(with

RBk the radius of Bk) and thanks to the quasinorm property of k·kG , we find a constant C2 > 0
depending on G only, such that

∞∞y°1 · x
∞∞

G =
∞∞∞y°1 · yBk · y°1

Bk
· x

∞∞∞
G
∏ C2

∞∞∞y°1
Bk

· x
∞∞∞

G
°

∞∞y°1 · yBk

∞∞
G ∏

°
C°1C1C2 °1

¢∞∞∞y°1
≠k

· y
∞∞∞

G
, where we used the equality a°1 = °a on G. If C1 is sufficiently large,

we deduce
∞∞y°1 · x

∞∞
G ∏ c

∞∞y°1 · yBk

∞∞
G = c

∞∞∞∞
°
y°1 · x

¢≥
y°1

Bk
· x

¥°1
∞∞∞∞

G
. As a consequence,

Z

G\
S

k≠
§
k

kTbkA2 (x)dx ∑
X

n

Z

G\
S

k≠
§
k

∞∞∞∞
Z

≠n
K(y°1 · x)bn(y)d y

∞∞∞∞
A2

dx

=
X

n

Z

G\
S

k≠
§
k

∞∞∞∞
Z

≠n

≥
K(y°1 · x)°K(y°1

Bn
· x)

¥
bn(y)d y

∞∞∞∞
A2

dx

∑
X

n

Z

≠n

√Z

G\
S

k≠
§
k

∞∞∞K(y°1 · x)°K(y°1
Bn

· x)
∞∞∞dx

!

kbn(y)kA1 d y

∑
X

n

Z

≠n

kbn(y)kA1 d y. k f kL1
A1

,

where we have used the condition (i) above and (5.52). ⇤

REMARK 5.46. We see from the proof that if kTkLq
A1

!Lq
A2

∑ 1 then we have kTkLp
A1

!Lp
A2

.p 1.
Hence if the quantity in (i) is bounded by a number Ø> 0 (instead of 1) and also kTkLq

A1
!Lq

A2
∑Ø,

then we have kTkLp
A1

!Lp
A2

.p Ø.

LEMMA 5.47. Suppose ' 2 L1(G) and:
(i)

R
kykG∏R

ØØ'(y)
ØØd y. R°1 for any R ∏ 1;

(ii)
R
Rd

ØØ'(x°1 · y)°'(y)
ØØd y. kxkG for all x 2G with kxkG ∑ 1.

If for r 2G we define k j(x) :=' j(x·2° j r), where ' j(x) := 2 jQ'(2 j x) for all j 2Z, then, there exists
a constant c > 0 depending only on G, such that we have

Z

kykG∏ckxkG

X

j2Z

ØØk j(x°1 · y)°k j(y)
ØØd y.' ln(2+krkG).

PROOF. We follow the proof in [6]. We decompose the sum under the integral as follows:

X

j2Z

ØØk j(x°1 · y)°k j(y)
ØØ=

X

2 jkxkG∑1
...+

X

1<2 jkxkG<2+krkG

...+
X

2 jkxkG∏2+krkG

...=: I + I I + I I I.

We now estimate each term. Using (ii), we can estimate the first term as follows

Z

kykG∏ckxkG

I ∑
Z

G

X

2 jkxkG∑1
2 jQ

ØØØ'(
≥
2 j x°1

¥
·
≥
2 j y

¥
· r)°'(

≥
2 j y

¥
· r)

ØØØd y

∑
Z

G

X

2 jkxkG∑1

ØØØ'(
≥
2 j x°1

¥
· y)°'(y)

ØØØd y.
X

2 jkxkG∑1
2 j kxkG . 1.
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For the second term we have:

Z

kykG∏ckxkG

II ∑
X

1<2 jkxkG<2+krkG

2
Z

Rd

ØØk j(y)
ØØd y= 2

X

1<2 jkxkG<2+krkG

Z

Rd

ØØ'(y)
ØØd y

and this is bounded by
ØØ©log2 1/kxkG < j < log2 ((2+krkG) /kxkG)

™ØØ. ln(2+krkG) .

Using the quasinorm property of k·kG we can find a constant c1 such that ky1 · y2kG ∑ c1 ky1kG+
c1 ky2kG for all y1, y2 2G. Assuming that c is sufficiently large we can estimate the third term as
follows.

Z

kykG∏ckxkG

II I ∑2
X

2 jkxkG∏2+krkG

Z

kykG∏c2kxkG

ØØk j(y)
ØØd y

=2
X

2 jkxkG∏2+krkG

Z

kykG∏2 j c2kxkG

ØØ'(y · r)
ØØd y

=2
X

2 jkxkG∏2+krkG

Z

ky·r°1kG∏2 j c2kxkG

ØØ'(y)
ØØd y

.

X

2 jkxkG∏2+krkG

Z

kykG∏2 j c3kxkG

ØØ'(y)
ØØd y

.

X

2 jkxkG∏2+krkG

1
2 j kxkG

.
1

2+krkG
. 1,

where c2 := (c° c1) /c1 and c3 := (c2 ° c1) /c1. Here, we have used (i) to pass from the fourth to the
last line.

Summing up these estimates we get the claim. ⇤

In what follows we will need to apply the above lemma to the function ' := S, where we recall
that S(x)=min(1,kxk°Q°1

G ). It is easy to verify that the function S satisfies the conditions (i) and
(ii) required by Lemma 5.47. Indeed, by a change of variables, we can write for all R ∏ 1,

Z

kykG∏R
|S(y)|d y= R°1

Z

kykG∏1
kyk°Q°1

G d yª R°1,

which proves that (i) is satisfied. To verify (ii), we recall that |kb ·akG °kakG |∑ CkbkG for all a,b 2
G (see Proposition 5.25) and note that if kykG ∑ 1°CkxkG ∑ 1, then

∞∞x°1 · y
∞∞

G ∑ kykG+CkxkG ∑ 1.
In this case S(x°1 · y)= S(y)= 1. Also, if kykG ∏ 1+CkxkG , then

∞∞x°1 · y
∞∞

G ∏ kykG °CkxkG ∏ 1. In
this case S(x°1 · y)=

∞∞x°1 · y
∞∞°Q°1

G and S(y)= kyk°Q°1
G . Hence, if kxkG ∑ 1, we can write

Z

Rd

ØØS(x°1 · y)°S(y)
ØØdy=

Z

1°CkxkG∑kykG∑1+CkxkG

ØØS(x°1 · y)°S(y)
ØØd y

+
Z

kykG∏1+CkxkG

ØØS(x°1 · y)°S(y)
ØØdy

.kxkG +
Z

kykG∏1+CkxkG

ØØØØØ
1

∞∞x°1 · y
∞∞Q+1

G

° 1

kykQ+1
G

ØØØØØd y

=kxkG +
Z

kykG∏1+CkxkG

ØØØØØØ

∞∞x°1 · y
∞∞Q+1

G °kykQ+1
G∞∞x°1 · y

∞∞Q+1
G kykQ+1

G

ØØØØØØ
d y

.kxkG +kxkG

Z

kykG∏1+CkxkG

1

kykQ+2
G

d y. kxkG .
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PROPOSITION 5.48. Suppose p, q 2 (1,1). Then, for every sequence
°
f j

¢
j2Z in Lp(G, lq(Z)) and

for every r 2G we have
∞∞∞∞
∞∞∞S j f j(x ·

≥
2° j r

¥
)
∞∞∞

lq
j

∞∞∞∞
Lp

x

.p,q ln(2+krkG)
∞∞∞∞
∞∞ f j

∞∞
lq

j

∞∞∞∞
Lp

.

PROOF. As we already saw, the function S satisfies the requirements of Lemma 5.47. Let k j
as in Lemma 5.47 with '= S. We see directly that, for any Schwartz function f , we have

f §k j(x)=
Z

Rd
f (y)S j(y°1 · x · (2° j r))d y= S j f (x · (2° j r)).

Let K be the kernel given by K := (k j) j2Z. We consider

T( f j) j2Z(x) := ( f j) j2Z§K(x)= ( f j §k j) j2Z(x)= (S j f (x · (2° j r))) j2Z,

the operator T being initially defined for a sequence of Schwartz functions ( f j) j2Z. Considering
the Banach spaces A1 = A2 = lq(Z) we can see that the statement of the Proposition 5.48 is
equivalent to the fact that the operator T : Lp

A1
! Lp

A2
is continuous, with its norm bounded by

ln(2+krkG). This can be obtained as follows. Consider a sequence a in the unit sphere of lq(Z).
We have that:

≠
K(x)°K(y°1 · x),a

Æ
=

X

j2Z

°
k j(x)°k j(y°1 · x)

¢
a j ∑

√
X

j2Z

ØØk j(x)°k j(y°1 · x)
ØØq0

!1/q0

∑
X

j2Z

ØØk j(x)°k j(y°1 · x)
ØØ ,

for all x, y 2G. Hence
∞∞K(x)°K(y°1 · x)

∞∞∑P
j2Z

ØØk j(x)°k j(y°1 · x)
ØØ and thanks to Lemma 5.47 we

get (using the same notation):

Z

kxkG∏ckykG

∞∞K(x)°K(y°1 · x)
∞∞dx ∑

Z

kxkG∏ckykG

X

j2Z

ØØk j(x)°k j(y°1 · x)
ØØdx. ln(2+krkG).

Also we can easily see that T : Lq
A1

! Lq
A2

is bounded and of norm 1. These two last observa-
tions together with Theorem A1 and the Remark after, give us the claim. ⇤

REMARK 5.49. Proposition 5.48 is reminiscent of an inequality due to Bourgain (see for ex-
ample [11, Section 5]).
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CHAPTER 6

Hodge systems on smooth bounded domains

We consider the Hodge system
(

du = dv, on ≠
u = ∞, on @≠

. (§)

Here, ≠ is a smooth bounded domain in R
d and

v 2 Fd/p,p
q (≠), ∞ 2 C(@≠)\Bd/p°1/p,p

p (@≠)

are given l-forms satisfying a natural compatibility condition. When 1 ∑ l ∑ d°2, d° l < p <1
and 1< q <1, we prove that (§) admits a solution

u 2 C(≠)\Fd/p,p
q (≠).

1. Introduction

We start by recalling the following existence result for Hodge systems on Rd ( see [3, Theorem
1.2], also Theorem 0.15 in the Introduction Chapter):

THEOREM 6.1. Let 1 ∑ l ∑ d ° 2 be an integer and consider the parameters d ° l < p < 1,
1< q <1, Æ := d/p. If ' 2 ḞÆ,p

q (Rd) is an l-form, then there exists an l-form u 2 L1(Rd)\ ḞÆ,p
q (Rd)

such that

du = d', on R
d.

Also, one can choose u such that
kukL1(Rd) +kukḞÆ,p

q (Rd) .
∞∞'

∞∞
ḞÆ,p

q (Rd) .

In what follows we focus mainly on the case 1 ∑ l ∑ d°2 and we thus assume assume d ∏ 3.
We establish an analogue of the above theorem on smooth bounded domains when a Dirichlet
condition is prescribed.

First, let us fix some notation and mention some conventions. Suppose that u is an l-form on
some smooth bounded domain ≠. For simplicity, let us assume that u is smooth on ≠. If

u =
X

|I|=l
uI dxI ,

then, on @≠, we have

u|@≠ =
X

|I|=l
uI |@≠dxI ,

where u|@≠ is the restriction of u on @≠. Hence, even if expressions of the form

∞=
X

|I|=l
∞I dxI ,

where ∞I are functions on @≠, are not differential forms on @≠, such expressions naturally appear
as traces on @≠ of forms on ≠. In this chapter, by an abuse of terminology, expressions like ∞’s
above will be denoted as l-forms on @≠.

We introduce an 1-form on @≠ given by

∫=
dX

j=1
∫ jdxj,
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where the vector (∫1, ...,∫d) is the outward unit normal to @≠. We will often use the notation ∫^¡
where ¡ is a smooth l-form defined on ≠. By convention ∫^¡ is an (l+1)-form on @≠, defined by
the formula

∫^¡ :=
dX

j=1

X

|I|=l
∫ juI |@≠dxj ^dxI .

The compatibility conditions that we will impose are in the style of the following theorem.

THEOREM 6.2. Let ≠ be a smooth bounded domain in R
d. Consider the parameter 1 < p <1

and let r ∏ 2 and 1 ∑ l ∑ d°2 be two integers. For any l-form v 2Wr,p(≠) satisfying ∫^dv = 0 on
@≠, there exists an l-form u 2Wr,p(≠) such that

(
du = dv, on ≠
tru = 0, on @≠

.

Moreover, u can be chosen such that

kukWr,p(≠) . kvkWr,p(≠) .

Theorem 6.2 can be easily deduced from the global regularity results of Dacorogna [4] (see
[4, Theorem 11] for a Hölder spaces version of the above theorem, and [4, Introduction] for the
arguments leading to Sobolev spaces versions).

Let us discuss the compatibility condition “∫^dv = 0 on @≠” in the above theorem. Suppose
for simplicity u and v are smooth up to the boundary and ≠= Q := (°1,1)d°1 £ (0,1). The “lower
face” of ≠ is @dQ := (°1,1)d°1 £ {0}. Note that, on this lower face, we have ∫=°dxd. Hence,

∫^dv =°dxd ^
X

|I|=l

X

1∑i∑d
(@ivI) |@≠dxi ^dxI =°dxd ^

X

|I|=l
d›I

X

1∑i∑d°1
(@ivI) |@≠dxi ^dxI

and the condition “∫^dv = 0” becomes, on the lower face of ≠,
X

|I|=l
d›I

X

1∑i∑d°1
@ivI

°
x0,0

¢
dxi ^dxI = 0 (6.1)

for any x0 2 (°1,1)d°1. One can see now that, if we define the “genuine” l-form

v0
°
x0

¢
:=

X

|I|=l
d›I

X

1∑i∑d°1
vI

°
x0,0

¢
dxI

in (°1,1)d°1, then (6.1) reads dv0 = 0 in (°1,1)d°1, i.e., v0 is closed in (°1,1)d°1. In general, using
a pullback (see Section 2 below), one can interpret the condition “∫^dv = 0 on @≠” as follows.

We will use the following notation. For an l-form

u =
X

|I|=l
uI dxI ,

on Q we write

Tu :=
X

|I|=l
d›I

uI dxI and Nu :=
X

|I|=l
d2I

uI dxI ,

for the “tangential” and the “normal” component respectively. The same conventions apply to
l-forms that are traces on @dQ. Note that,

u =Tu+Nu.

Let x0 2 @≠ and let F : W ! ≠\B (here, B is a ball centred at x0 and W Ω R
d) be a diffeo-

morphism such that F°1(@≠\B) Ω Rd°1 £ {0}. Then “∫^dv = 0 on @≠\B” has the meaning that
the trace on R

d°1 of TF§v is a closed form in F°1(@≠\B). (In what follows forms like TF§v will
always be enough regular in order to consider such traces in the sense of distributions.) It is easy
to see that this property of v is local and does not depend on the parametrization. In order to see
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this, consider two diffeomorphisms F1 : W1 !≠\B and F2 : W2 !≠\B as above together with
a diffeomorphism G : W2 ! W1 such that F2 = F1 ±G. We have tr TF§

2 v = tr TG§F§
1 v = G|§

Rd°1 tr
TF§

1 v. Hence, if tr TF§
1 v is closed, then tr TF§

2 v is closed. In general, the condition “∫^dv = 0
on @≠” means that after covering @≠ with a finite number of balls B1, ...,Bn as above, we have
“∫^dv = 0 on @≠\B j” for each j. This property of v does not depend on the covering of @≠.

REMARK 6.3. If v is smooth, then the condition “∫^dv = 0 on @≠” can be interpreted in the
classical sense.

We prefer to work with source terms of the form dv, i.e., we work with exact forms, instead
considering closed forms, in order to avoid imposing additional compatibility conditions which are
related to the topology of the domain ≠ (see [4, Remark 16]). Recall that on contractible domains,
e.g. on balls, exact is equivalent with closed.

Our result is the following:

THEOREM 6.4. Let ≠ be a smooth bounded domain in R
d. Let 1 ∑ l ∑ d°2 be an integer and

consider the parameters d° l < p <1, 1< q <1, Æ := d/p. Suppose ∞ 2 C(@≠)\BÆ°1/p,p
p (@≠) is an

l-form and v 2 FÆ,p
q (≠) is an l-form satisfying ∫^dv = ∫^d∞ on @≠. Then, there exists an l-form

u 2 C(≠)\FÆ,p
q (≠) such that

(
du = dv, on ≠
u = ∞, on @≠

. (6.2)

Moreover, u can be chosen such that

kukL1(≠) +kukFÆ,p
q (≠) .

∞∞∞
∞∞

L1(@≠) +
∞∞∞

∞∞
BÆ°1/p,p

p (@≠) +kvkFÆ,p
q (≠) .

REMARK 6.5. The condition d° l < p in Theorem 6.4 is a relic of the use of Theorem 6.1.

Here, the condition “∫^ dv = ∫^ d∞ on @≠” means “∫^ d(v° ∞̃) = 0 on @≠”, where ∞̃ is any
continuous extension of ∞ to ≠. It turns out that this condition do not depend on the extension
∞̃ neither v, but only on ∞ and tr v. This is apparent from the preceding discussion on the
compatibility condition. We will write this condition as ∫^d(v°∞)= 0 or even as ∫^d(tr v°∞)= 0.

A statement similar to Theorem 6.4 in the case l = d°1 (for 2∑ q ∑ p <1) which corresponds
to the divergence equation, was already treated in [2, Section 7] (see also Theorem 0.7). (The
full statement1 corresponding to the case l = d °1 can be obtained by following the strategy in
[2, Section 7] and using Theorem 6.1 instead of [2, Theorem 1.1].) Note that if v is a sufficiently
regular (d°1)-form, we have ∫^dv = 0 on @≠ regardless the choice of ∞. Here, the compatibility
condition we have to impose is of a different type:

Z

≠
dv =

Z

@≠
h∞,∫idæ.

For simplicity, in what follows we do not treat the case l = d°1.

Few words concerning the proof of Theorem 6.4. We prove our result via a sophistication of
the techniques in [2, Section 7] and an application of Theorem 6.2. More specifically, we use the
methods in [2, Section 7] in order to obtain the conclusion Theorem 6.4 up to a higher regularity
“error term”. Then we use Theorem 6.2 in order to deal with this “error term”.

2. Some useful facts

We briefly recall below some facts from [2, Section 7] that will be useful later.
Reflection operator. Consider æ> 0. Let k be the integer part of æ and consider the Vandermonde
matrix

A :=
≥
(°1/ j)i°1

¥

1∑i, j∑k+1
.

1i.e., for 1< p, q <1.
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Since A is invertible, we can introduce a vector a 2Rk+1 by the formula

a = (a1, ...,ak+1)t := A°1 (1, ...,1)t .

Let Q := (°1,1)d°1 £ (0,1). For a function f 2 Fæ,p
q (Q), we define its “reflection” R f on Q0 :=

(°1,1)d°1 £ (°1,1) by

R f (x0, xd) :=

8
><

>:

f (x0, xd), if xd ∏ 0
X

1∑ j∑k+1
a j f (x0,° xd

j
), if xd < 0 .

As shown in [2, Section 7], we have

kR f kFæ,p
q (Q0) . k f kFæ,p

q (Q) . (6.3)

(We note that it is easy to see that (6.3) holds when q = 2 and æ is an integer. In this case, the
space Fæ,p

q reduces to a classical Sobolev space, and then (6.3) is well-known, see e.g. [1, Theorem
5.19].)
Extensions and traces. Consider æ> 1/p and a function Ω 2 C1

c
°
R

d°1¢. We write Ωt for the function
defined by Ωt(x0) := t1°dΩ(x0/t), with t > 0. Given a function f 2 Bæ°1/p,p

p (Rd°1), one can “extend” it
to Rd°1 £ (0,1) by setting

F(x0, xd) := f §Ωxd (x0), 8 (x0, xd) 2Rd°1 £ (0,1).

In addition, assume in what follows that supp f µ (°1,1)d°1. Then, we have (see [2, Lemma
7.3])

kFkFæ,p
q (Q) . k f kBæ°1/p,p

p ((°1,1)d°1) . (6.4)

When the integral of Ω on R
d°1 is 1, the function F extends f , in the sense that trF = f on

R
d°1 £ {0} that we identify with R

d°1. When the integral of Ω on R
d°1 is 0, we have trF = 0 on

R
d°1 (see [2, proof of Lemma 7.2]).

One can also see directly that, if f is continuous on [°1,1]d°1, then F is continuous on R
d°1£

[0,1), and we have

kFkL1(Q) . k f kL1([°1,1]d°1) . (6.5)

Besov spaces on @≠. Let æ > 0, 1 < p, q < 1 be some parameters and suppose ≠ is a smooth
bounded domain in R

d. Then, there exist open sets V1, ..., Vn covering @≠ such that each Vj \≠
is isometric with a smooth epigraph. Hence, for each j there exists a bounded domain ° j Ω Rd°1

and a diffeomorphism √ j :° j !Vj \@≠. Let f be a smooth function defined on @≠. We define

k f kBæ,p
q (@≠) :=

nX

j=1
k f ±√ jkBæ,p

q (° j);

Different coverings yield equivalent norms (see [7, Section 3.3] for details). The space Bæ,p
q (@≠) is

the completion of C1(@≠) with the respect to the above norm. It is well-known that if F 2 Fæ,p
q (≠)

and æ> 1/p, then tr F 2 Bæ°1/p,p
p (@≠). Conversely, given f 2 Bæ°1/p,p

p (@≠), there exists F 2 Fæ,p
q (≠)

such that tr F = f on @≠ (see e.g. [7, Section 3.3]).
Pullback. We quickly recall here some basic properties of pullbacks following [8]. Suppose ≠1 Ω
R

d1 and ≠2 ΩRd2 are two smooth bounded domains and let F :≠1 !≠2 be a smooth function. The
pullback F§¡ of an k-form ¡ on ≠2 is the k-form on ≠1 defined by

F§¡ :=
X

|I|=k
(¡I ±F)(dFi1)^ ...^ (dFik ),

where {i1 < ...< ik}= I in the above sum. We have the following properties:

F§(¡1 ^¡2)= (F§¡1)^ (F§¡2),
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for any two forms ¡1,¡2 on ≠2 (see [8, p. 75]);

F§(d¡)= dF§(¡),

for any form ¡ on ≠2 (see [8, p. 76]).
If ≠3 ΩRd3 is another smooth bounded domain and F 0 :≠2 !≠3 is smooth, then

(F 0 ±F)§¡= F§F 0§¡,

for any form ¡ on ≠3 (see [8, Exercise 1, p. 81]). As a consequence, when F is a diffeomorphism,

(F°1)§F§¡=¡,

for any form ¡ on ≠2.
Similar properties will be used also in the case where the forms are defined only on boundaries

of domains.

Before preceding to the proof of Theorem 6.4, let us note that, the condition “ ∫^dv = ∫^d∞
on @≠” is necessary for the solvability of (6.2). This can be easily deduced from the following
proposition, by using some of the above facts.

PROPOSITION 6.6. Suppose 1 < p, q < 1 and s > 1/p are given and let 1 ∑ l ∑ d ° 2 be an
integer. If u 2 Fs,p

q (≠) is an l-form such that du = 0 in the distributions sense in ≠, then ∫^du = 0
on @≠.

PROOF. It suffices to prove that, for each x 2 @≠, there exists a number rx > 0 such that
∫^du = 0 on @≠\B(x, rx). Fix x0 2 @≠, and consider a number rx0 > 0 such that for B := B(x0, rx0)
the set≠\B is a piecewise smooth, simply connected domain. By standard regularity theory there
exists an (l°1)-form ¡ 2 Fs+1,p

q (≠\B) such that u = d¡ on ≠\B. Consider now a diffeomorphism
F : V ! B (here, V ΩRd is an open set) such that ° := F°1(@≠\B)ΩRd°1£ {0}. V1 := F°1 (≠\B)Ω
V . Since F§u 2 Fs,p

q (V1) (see [6, Proposition 6, p. 16]), we easily see that the trace on ° of TF§u
is a genuine form on ° whose coefficients are in Bs°1/p,p

p (°). It remains to show that the trace on
° of TF§u is closed on °.

We have

F§u = F§d¡= d¡0, on V1,

where ¡0 := F§¡ 2 Fs+1,p
q (V1). Writing

¡0 =
X

|I|=l°1
¡0

I dxI ,

we get

tr TF§u = tr
X

|I|=l°1
d›I

X

1∑i∑d°1
@i¡

0
I dxI = d

Rd°1
°
tr T¡0¢ on °,

where d
Rd°1 is the exterior derivative considered only in the coordinates x1, ..., xd°1.

This concludes the proof of Proposition 6.6. ⇤

In what follows we will use several times Proposition 6.6.

3. Proof of the main result

From now on, we let Æ := d/p. Also, l is an integer such that 1 ∑ l ∑ d°2 and p is such that
d° l < p <1, unless otherwise mentioned.

First, we can easily see that Theorem 6.1 implies the following local version.

THEOREM 6.7. Suppose ≠ is a bounded piecewise smooth domain in Rd. Let 1∑ l ∑ d°2 be an
integer and consider the parameters d° l < p <1, 1< q <1, Æ := d/p. If ' 2 FÆ,p

q (≠) is an l-form,
then there exists an l-form u 2 C(≠)\FÆ,p

q (≠) such that

du = d', on ≠.
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Also, one can choose u such that

kukL1(≠) +kukFÆ,p
q (≠) .

∞∞'
∞∞

FÆ,p
q (≠) .

Note that the above statement does not involve any boundary conditions, and is obtained by
extending ' to Rd. In order to handle the boundary conditions, we will use the following result:

LEMMA 6.8. Let ≠ be a smooth bounded domain in R
d. Let 1 ∑ l ∑ d °2 be an integer and

consider the parameters d° l < p <1, 1< q <1, Æ := d/p. For any l-form ∞ 2 C(@≠)\BÆ°1/p,p
p (@≠)

satisfying ∫^d∞= 0 on @≠, there exists an l-form u 2 C(≠)\FÆ,p
q (≠) such that

(
du = 0, on ≠
u = ∞, on @≠

.

Moreover, u can be chosen such that

kukL1(≠) +kukFÆ,p
q (≠) .

∞∞∞
∞∞

L1(@≠) +
∞∞∞

∞∞
BÆ°1/p,p

p (@≠) .

Theorem 6.4 is a direct consequence of Theorem 6.7 and Lemma 6.8. Indeed, suppose ∞ and
v are given as in the statement of Theorem 6.4. According to Theorem 6.7, there exists an l-form
u0 2 C(≠)\FÆ,p

q (≠) such that du0 = dv in ≠. Since tru0 2 C(@≠)\BÆ°1/p,p
p (@≠) and ∫^d

°
∞° tru0¢=

0 on @≠ (see Proposition 6.6), Lemma 6.8 implies the existence of some u00 2 C(≠)\FÆ,p
q (≠) such

that du00 = 0 in ≠ and tru00 = ∞° tru0 on @≠. We find that u := u0+u00 satisfies the conclusion of
Theorem 6.4 (estimates included).

PROOF OF LEMMA 6.8. We note that, thanks to the open mapping theorem, it suffices to
prove only the existence part. Following the strategy in [2, Section 7] we start with the case
of a cube Q := (°1,1)d°1 £ (0,1) and its lower boundary @dQ := (°1,1)d°1 £ {0}. More precisely, we
consider systems of the form

(
du = 0, in Q
u = ∞, on @dQ

. (6.6)

In most of the cases we identify @dQ with (°1,1)d°1. We will also use the notation x =
°
x0, xd

¢
2

Q0 := (°1,1)d°1 £ (°1,1) where x0 2 @dQ and xd 2 (°1,1).

PROOF OF SOLVABILITY OF (6.6). Step 1. Consider an l-form ∞ 2 C(@dQ)\BÆ°1/p,p
p (@dQ), of the

form

∞(x0)=
X

|I|=l
d›I

∞I(x0)dxI ,

with dxd ^ d∞ = 0 in the sense of distributions on @dQ. Note that in this case, thanks to the
special form of ∞, the condition dxd ^d∞= 0 reads d

Rd°1∞= 0 (here, we indentify ∞ with a genuine
form on (°1,1)d°1 and “d

Rd°1” is considered only in the variables x1, ..., xd°1.) In order to apply
the results in Section 2 we assume that supp ∞Ω @dQ. (However, this hypothesis is not necessary
for the final result and can be easily removed.)

It can be seen immediately that there exist an l-form u0 2 C(Q)\FÆ,p
q (Q) and an l-form ! 2

FÆ°1,p
q (Q) such that

(
du0 = dxd ^!, in Q
Tu0 = ∞, on @dQ

. (6.7)

Indeed, consider a function Ω 2 C1
c (@dQ) with

Z

Rd°1
Ω = 1
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and define an l-form by

u0 := ∞I §Ωxd =
X

|I|=l
d›I

∞I §Ωxd dxI ,

where Ωt(x0) = t1°dΩ(x0/t) for x0 2 @dQ and t > 0. According to (6.4) and (6.5) we have that u0 2
C(Q)\FÆ,p

q (Q) and Tu0 = ∞ on @dQ (see also [2, Section 7]). We now compute du0. By using the
fact that d∞= 0, we obtain:

du0 =
X

|I|=l
d›I

X

1∑i∑d°1

°
@i∞I

¢
§Ωxd dxi ^dxI +

X

|I|=l
d›I

@d
°
∞I §Ωxd

¢
dxd ^dxI

=Ωxd § (d∞)+dxd ^!= dxd ^!,
(6.8)

where ! is the l-form

! :=
X

|I|=l
d›I

@du0
I dxI 2 FÆ°1,p

q (Q). (6.9)

Step 2. In order to eliminate ! from (6.8), we rely on the following lemma.

LEMMA 6.9. If ! 2 FÆ°1,p
q (Q) is an l-form such that T! is closed in Q, then there exists an

l-form w 2 C(Q)\FÆ,p
q (Q), satisfying

(
dw = dxd ^!, in Q
Tw = 0, on @dQ

.

PROOF OF LEMMA 6.9. We assume for simplicity that Æ> 1. In what follows, R is the reflec-
tion operator defined in Section 2 for æ :=Æ°1> 0. (When Æ∑ 1, the argument has to be modified
as was done in [2, Section 7, Proof of Theorem 1.3, case i)].)

Since, T! is closed in Q, one can easily check that dxd ^R! is closed in Q0. By standard
regularity theory, we can find an l-form ¡ 2 FÆ,p

q (Q0) such that d¡ = dxd ^R! in Q0. Hence, by
using Theorem 6.7, we obtain an l-form ≥ 2 C(Q0)\FÆ,p

q (Q0), such that d≥= d¡= dxd ^R!, in Q0.
Let us observe that, by decomposing ≥ as

≥=
X

|I|=l
≥I dxI =

X

|I|=l
d›I

≥I dxI +
X

|I|=l
d2I

≥I dxI ,

we get

d≥=
X

|I|=l
d›I

@d≥I dxd ^dxI +
X

|I|=l
d2I

X

1∑i∑d°1
@i≥I dxi ^dxI +∏,

where ∏ is a form whose terms do not contain dxd as a factor. Since we have d≥= dxd ^R!, the
form ∏ must be identically zero. Hence,

dxd ^R!= d≥=
X

|I|=l
d›I

@d≥I dxd ^dxI +
X

|I|=l
d2I

X

1∑i∑d°1
@i≥I dxi ^dxI . (6.10)

We now construct a new l-form w as follows. First, one can check (see [2, Section 7]) that
there exist real numbers Ø2,Ø3, ...,Øk+2 such that

Ø1 +Øk+2a1 = 1 and Ø j +Øk+2a j = 0, for any 2∑ j ∑ k+1, (6.11)

and
k+1X

j=1
jØ j °Øk+2 = 0. (6.12)

(See Section 2 for the definition of the a j ’s.)
We now define w by
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w(x0, xd) :=
X

|I|=l
d›I

√
k+1X

j=1
jØ j≥I(x0,

xd

j
)°Øk+2≥I(x0,°xd)

!

dxI

+
X

|I|=l
d2I

√
k+1X

j=1
Ø j≥I(x0,

xd

j
)+Øk+2≥I(x0,°xd)

!

dxI .

Clearly, w 2 C(Q)\FÆ,p
q (Q) and thanks to (6.12) we have Tw = 0 on @dQ. Let us see now that

dw = dxd ^!, in Q. Indeed, we have,

dw(x0, xd)=
X

|I|=l
d›I

X

1∑i∑d°1

√
k+1X

j=1
jØ j@i≥I(x0,

xd

j
)°Øk+2@i≥I(x0,°xd)

!

dxi ^dxI

+
X

|I|=l
d›I

√
k+1X

j=1
Ø j@d≥I(x0,

xd

j
)+Øk+2@d≥I(x0,°xd)

!

dxd ^dxI

+
X

|I|=l
d2I

X

1∑i∑d°1

√
k+1X

j=1
Ø j@i≥I(x0,

xd

j
)+Øk+2@i≥I(x0,°xd)

!

dxi ^dxI .

Changing the order of summation, we get

dw(x0, xd)=
k+1X

j=1
jØ j∏(x0,

xd

j
)°Øk+2∏(x0,°xd)

+
k+1X

j=1
Ø j

0

B@
X

|I|=l
d›I

@d≥I(x0,
xd

j
)dxd ^dxI +

X

|I|=l
d2I

X

1∑i∑d°1
@i≥I(x0,

xd

j
)dxi ^dxI

1

CA

+Øk+2

0

B@
X

|I|=l
d›I

@d≥I(x0,°xd)dxd ^dxI +
X

|I|=l
d2I

X

1∑i∑d°1
@i≥I(x0,°xd)dxi ^dxI

1

CA .

Using (6.10) and (6.11) we get that, in Q we have

dw(x0, xd)=dxd ^
√

k+1X

j=1
Ø j!(x0,

xd

j
)+Øk+2R!(x0,°xd)

!

=dxd ^
√

k+1X

j=1
Ø j!(x0,

xd

j
)+Øk+2

k+1X

j=1
a j!(x0,

xd

j
)

!

=dxd ^
k+1X

j=1
(Ø j +Øk+2a j)!(x0,

xd

j
)

=dxd ^!(x0, xd),

which concludes the proof of the lemma. ⇤

Step 3. In order to obtain u satisfying the boundary condition on @dQ, we rely on the following
result.

LEMMA 6.10. Consider an l-form ∞ 2 C(@dQ)\BÆ°1/p,p
p (@dQ) such that

∞(x0)=
X

|I|=l
d2I

∞I(x0)dxI.



3. PROOF OF THE MAIN RESULT 135

Then, there exists u 2 C(Q)\FÆ,p
q (Q) such that

(
du = 0, in Q
u = ∞, on @dQ

.

PROOF OF LEMMA 6.10. One can assume that supp ∞Ω @dQ. Considering the function Ωt as
before, we define on Q the form

u := (°1)l°1 X

|I|=l°1
d›I

X

1∑i∑d
@i

°
xd

°
∞I[{d} §Ωxd

¢¢
dxi ^dxI = (°1)l°1 d

°
xd

°
∞§Ωxd

¢¢
.

Note that, thanks to (6.4) and (6.5), we have u 2 C(Q)\FÆ,p
q (Q) and also we can check that tr

@i
°
xd

°
∞I[{d} §Ωxd

¢¢
= 0 on @dQ whenever 1 ∑ i ∑ d°1 and tr @d

°
xd

°
∞I[{d} §Ωxd

¢¢
= ∞I[{d} on @dQ

(see also [2, Lemma 7.2]). As a consequence we get that the trace of u on @dQ equals ∞:

tr u = (°1)l°1 X

|I|=l°1
d›I

∞I[{d}dxd ^dxI = ∞.

Since the form u is exact, we must have du = 0 in Q. This completes the proof of Lemma
6.10. ⇤

Step 4. Thanks to the above results, we can now handle the case where the trace has both
tangential and nontangential components.

LEMMA 6.11. Consider an l-form ∞ 2 C(@dQ)\BÆ°1/p,p
p (@dQ) such that ∫^d∞= 0 on @dQ. Then,

there exists an l-form u 2 C(Q)\FÆ,p
q (Q) satisfying

(
du = 0, in Q
u = ∞, on @dQ

. (6.13)

PROOF OF LEMMA 6.11. We decompose ∞ as ∞ = T∞+N∞. The condition dxd ^d∞ = 0 reads
d
Rd°1T∞= 0. Thanks to Step1 (see (6.7)), there exist an l-form u0 2 C(Q)\FÆ,p

q (Q) and an l-form
! 2 FÆ,p

q (Q) such that
(

du0 = dxd ^!, in Q
Tu0 =T∞, on @dQ

.

This ! automatically satisfies T! = 0 in Q. According to Lemma 6.9, we can find an l-form
w 2 C(Q)\FÆ,p

q (Q) satisfying
(

dw = dxd ^!, in Q
Tw = 0, on @dQ

.

It follows that
(

d
°
u0 °w

¢
= 0, in Q

T
°
u0 °w

¢
=T∞, on @dQ

.

We can now apply Lemma 6.10 to the trace form °tr N
°
u0 °w

¢
+N∞ in order to obtain the

existence of an l-form u1 2 C(Q)\FÆ,p
q (Q) such that

(
du1 = 0, in Q
u1 =°N

°
u0 °w

¢
+N∞, on @dQ

.

To conclude the proof of Lemma 6.11 it suffices to set u := u0 °w+u1. ⇤
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PROOF OF LEMMA 6.8 ON A SMOOTH EPIGRAPH. Consider a function √ 2 C1
c ((°1,1)d°1) and

the corresponding domain fQ together with its “lower boundary” @dfQ defined by

fQ :=
n
(x0, xd) 2 (°1,1)d°1 £R| √(x0)< xd < 1+√(x0)

o
,

@dfQ :=
n
(x0, xd) 2 (°1,1)d°1 £R| √(x0)= xd

o
.

(By an abuse of terminology we will call a domain like fQ above an epigraph and we will say
that @dfQ is its graph.)

The function F : fQ !Q with F(x0, xd) := (x0, xd °√(x0)) is a diffeomorphism. We observe that F
naturally extends to an diffeomorphism (also denoted by F) from the closure of fQ to the closure
of Q. Also, the restriction of F to @dfQ (again denoted by F) is a diffeomorphism from @dfQ to @dQ.

Now suppose ∞ 2 C(@dfQ)\BÆ°1/p,p
p (@dfQ) is an l-form with the property that ∫^d∞= 0 on @dfQ.

If F§ is the pullback of F, then dxd ^dF§∞= 0 on @dQ (equivalently, TF§∞ is closed on @dQ). We
also have (see [6, Proposition 6, p. 16]) that F§∞ 2 C(@dQ)\BÆ°1/p,p

p (@dQ).
This enables us to use the case of the cube to find an l-form u 2 C(Q)\FÆ,p

q (Q) that solves the
system

(
du = 0, in Q
u = F§∞, on @dQ

.

Now, choosing eu :=
°
F°1¢§ u we get deu =

°
F°1¢§ du = 0 in fQ and tr eu =

°
F°1¢§ F§∞= ∞ on @dfQ.

Also (see [6, Proposition 6, p. 16]) we get eu 2 C(fQ)\FÆ,p
q (fQ). Hence, we have obtained a solution

of the system
(

deu = 0, in fQ
eu = ∞, on @dfQ

. (6.14)

Gluing the pieces.
Now we find a global solution. Suppose that ≠ is a bounded smooth domain. It is easy to

see that there exist some open sets V1, ...,Vn,V 0
1, ...,V 0

n such that Vj Ω V 0
j , @≠ Ω V1 [ ...[ Vn, and

each V 0
j \≠ being isometric with a smooth epigraph (whose corresponding graph is V 0

j \@≠). We
choose a family of functions ¡1, ...,¡n 2 C1

c (Rd) with supp¡ j Ω Vj and ¡1 + ...+¡n = 1 on ≠. As in
(6.14), we can find for each j 2 {1, ...,n} an l-form u j 2 C(V 0

j \≠)\FÆ,p
q (V 0

j \≠) such that du j = 0

in V 0
j \≠ and u j = ∞ on V 0

j \@≠. We extend each u j by 0 outside V 0
j \≠ and we define the l-form

u :=¡1u1 + ...+¡nun on R
d. Clearly, u 2 C(≠)\FÆ,p

q (≠) and

(
du = L, in ≠
u = ∞, on @≠

, (6.15)

where L = L(u1, ...,un) 2 FÆ,p
q (≠) is an (l+1)-form. Note that the differential regularity of the

source term L is Æ>Æ°1. This will be used in what follows.
In order to complete the proof of Lemma 6.8 we need to apply the following version of Theorem

6.2 adapted to the scale of the Triebel-Lizorkin spaces.

THEOREM 6.12. Let ≠ be a bounded smooth domain in Rd. Consider the parameters 1< p, q <
1, s > 1 and an integer 1∑ l ∑ d°2. Suppose v 2 Fs,p

q (≠) is an l-form satisfying ∫^dv = 0 on @≠.
Then, there exists an l-form u 2 Fs,p

q (≠) satisfying
(

du = dv, on ≠
tru = 0, on @≠

.
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Moreover, u can be chosen such that
kukFs,p

q (≠) . kvkFs,p
q (≠) .

SKETCH OF PROOF OF THEOREM 6.12. Notice that, by the same method as above we can
obtain an analogue of (6.15) for the “noncritical” case. Namely, for a given l-form g 2 Bs°1/p,p

p (@≠)
satisfying ∫^dg = 0 on @≠, we have

(
d¡= L1, in ≠
tr¡= g, on @≠

. (6.16)

for some l-forms ¡ 2 Fs,p
q (Rd) and L1 2 Fs,p

q (≠).
Fix 1< p <1. At this moment we know that, thanks to Theorem 6.2, the above the statement

of Theorem 6.12 is true for any integer s ∏ 2 and q = 2. For any pair (s, q) of parameters, consider
now the following assertion

A (s, q) : “Theorem 6.12 is true for s and q.”

We show that (6.16) and A (s,2) for all the integers s ∏ 2, are sufficient in order to conclude
A (s, q) for all the real numbers s > 1 and all 1< q <1.

Let 1<æ< s <æ+1. We show that

A (æ+1,2) implies A (s, q) (6.17)

for any 1< q <1. Indeed, since æ< s we have Fs,p
q (≠) ,! Fæ,p

2 (≠). Since, L1 2 Fæ,p
2 (≠) there exists

a compactly supported (l+1)-form eL1 2 Fæ,p
2 (Rd) such that eL1 = L1 on ≠. Let ¡1 := d§4°1 eL1 2

Fæ+1,p
2 (≠). We observe that

∫^d¡1 = ∫^L1 = ∫^d¡= ∫^dg = 0 on @≠.

By applying A (æ+1,2) one can find an l-form ¡2 2 Fæ+1,p
2 (≠) ,! Fs,p

q (≠) such that

d¡2 = d¡1 = L1 = d¡ in ≠,

and tr ¡2 = 0 on @≠. If we define ¡3 :=¡°¡2 2 Fs,p
q (≠), then, using (6.16), we get

(
d¡3 = 0, in ≠
tr¡3 = g, on @≠

. (6.18)

Now, suppose an l-form v 2 Fs,p
q (≠) is given such that ∫^ dv = 0 on @≠. Applying (6.18) to

g := tr v, we obtain an l-form ' 2 Fs,p
q (≠) such that

(
d'= 0, in ≠
tr'= trv, on @≠

.

It suffices now to set u := v°' and we obtain A (s, q) and hence (6.17) is proved.

As we mentioned above, thanks to Theorem 6.2 we have A (s,2) for any integer s ∏ 2. This,
together with (6.17) give us that A (s, q) for any real s > 1 which is not an integer and any 1< q <
1. By applying once again (6.17) together with this last result, we obtain the full statement of
Theorem 6.12. ⇤

PROOF OF LEMMA 6.8 COMPLETED. We extend the (l+1)-form L from (6.15) to a compactly
supported (l+1)-form eL 2 FÆ,p

q (Rd) and we write eL = d¡ for some l-form ¡ 2 FÆ+1,p
q (Rd). In par-

ticular, we have d¡ = du in ≠ and thanks to Proposition 6.6, ∫^ d¡ = ∫^ du = ∫^ d∞ = 0 on
@≠. Hence, by Theorem 6.12, there exists an l-form ¡1 2 FÆ+1,p

q (≠) ,! C(≠)\FÆ,p
q (≠) with tr

¡1 = 0 on @≠ and such that d¡1 = d¡ = du in ≠. Notice that, it suffices now to redefine u as
u°¡1 2 C(≠)\FÆ,p

q (≠). ⇤

The proof of Theorem 6.4 is complete. ⇤
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Part 3

Miscellaneous





CHAPTER 7

Minimal BV -liftings of W1,1 °
≠,S1¢ maps in 2D are “often” unique

Let ≠ be a smooth, bounded and simply connected domain in R
2 and k a positive

integer. We prove that the set of vectors a = (a1, ...,ak) 2 ≠k for which each u 2 W1,1 °
≠,S1¢\

C(≠\{a1, ...,ak}) admits a unique (mod2º) minimal BV -lifting is of full measure in ≠k. (Here, S1

is the unit circle.)
In particular, this implies that the set of those u 2 W1,1 °

≠,S1¢ that admit a unique (mod2º)
minimal BV -lifting is dense in W1,1 °

≠,S1¢. This answers a question of Brezis and Mironescu.

1. Introduction

Suppose ≠ is a smooth, bounded and simply connected domain in R
2. It is known (see [4,

Section 6.2], [3], [6] and [2, Theorem 2.4]) that for each u 2W1,1 °
≠,S1¢ there exists a BV -lifting

of u on ≠, i.e., there exists ' 2 BV (≠,R) such that u = ei' on ≠. Clearly, ' is not unique; if ' is a
BV -lifting, then so is '+2kº, k 2Z. We say that ' is a minimal BV -lifting of u if

ØØ'
ØØ
BV = inf

u=ei¡

ØØ¡
ØØ
BV ,

where
ØØ¡

ØØ
BV :=

∞∞D¡
∞∞

M (≠,R2) .

Clearly, the above infimum is attained. In general, the minimal lifting is not unique, even
(mod2º). For example, the following functions have more than one minimal BV -lifting (mod2º):

a) u(z) := z/ |z|, on ≠= B(0,1) (the unit disc);
b) u(z) := (2z°1)°1 |2z°1| (2z+1) |2z+1|°1, on ≠= (°1,1)2.

(See Remark 7.10 below.)

In order to simplify the presentation, in what follows, uniqueness of liftings is meant (mod2º).
We do not specify this anymore.

We are going to answer the following question raised in [2]: is the set of functions u 2
W1,1 °

≠,S1¢ which admit a unique minimal BV -lifting, residual in W1,1 °
≠,S1¢?

The answer is positive. More specifically, we have the following result.

THEOREM 7.1. Suppose≠ is a smooth, bounded and simply connected domain in R2. Consider
the set

U :=
©
u 2W1,1 °

≠,S1¢ | u has a unique minimal BV-lifting
™
.

Then, U is a G± dense subset of W1,1 °
≠,S1¢.

This will be proved by using the geometrical description of the minimal liftings given in [2]
combined with some “generic” geometric properties of k-tuples in ≠k, where k is a positive in-
teger. In fact, our proof will give a somewhat more precise result. Consider u 2 W1,1 °

≠,S1¢\
C(≠\{a1, ...,ak}), where a1, ...,ak are distinct points in ≠. It is easy to see (see Remark 7.9 be-
low) that whether or not u admits a unique minimal BV -lifting, depends only on the vector of
singularities a = (a1, ...,ak) 2 ≠k and the vector of degrees d = (d1, ...,dk), with d j := deg(u,a j)
(the degree of u on a small circle around a j). We have that in “almost all cases” the minimal
BV -lifting of u is unique:
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MAPS IN 2D ARE “OFTEN” UNIQUE

THEOREM 7.2. Suppose ≠ is a smooth, bounded and simply connected domain in R
2. Let

k be a positive integer. The set of vectors a = (a1, ...,ak) 2 ≠k for which each u 2 W1,1 °
≠,S1¢\

C(≠\{a1, ...,ak}) admits a unique minimal BV-lifting (regardless the choice of d1, ...,dk 2 Z) is of
full measure in ≠k.

It is easy to see, using the results in [1], that Theorem 7.2 implies Theorem 7.1 (see Lemma
7.13 below).

2. “Generic” properties of k-tuples in ≠k

In this part, ≠ is an open subset of R2 such that ≠ 6=;,R2.
We start by fixing some notation. Given a point x 2≠, we will denote by Px its set of projections

on the boundary of ≠, i.e.,

Px := {y 2 @≠ | dist (x,@≠)= |x° y|} .

We say that x 2≠ has a unique projection on @≠ if Px contains only one point. Also, given a
set A ΩR2 we denote by diam A its diameter.

For the convenience of the reader we mention some elementary geometric facts.

Fact 1. Consider r > 0. Suppose P is a point in the open ball B (O, r) ΩR2, which is not its center.
Consider Æ 2 [0,2º] and let QÆ 2 @B (O, r) be such that the angle ]POQÆ equals Æ. Then, the
distance |PQÆ| is a strictly increasing function of Æ, for Æ 2 [0,º].

Fact 2. Suppose P is a point in the open ball B (O, r) Ω R2, which is not its center. Consider Æ< Ø
two angles in [0,º]. Suppose QÆ is as above and Q0

Ø 2 R2\B (O, r) is a point such that that the

angle ]POQ0
Ø equals Ø. Then, |PQÆ| <

ØØØPQ0
Ø

ØØØ.

Fact 1 is a direct consequence of the cosine formula. Fact 2 is a direct consequence of Fact 1
and the cosine formula. Indeed, with the above notation, we have from Fact 1 that |PQÆ| <

ØØPQØ

ØØ.
Now, since the function x ! x2 °2x |OP|cosØ is increasing on (|OP| ,1) and

ØØØOQ0
Ø

ØØØ∏
ØØOQØ

ØØ= r >
|OP|, we have

ØØØPQ0
Ø

ØØØ
2
=

ØØØOQ0
Ø

ØØØ
2
°2

ØØØOQ0
Ø

ØØØ |OP|cosØ+|OP|2

>
ØØOQØ

ØØ2 °2
ØØOQØ

ØØ |OP|cosØ+|OP|2

=
ØØPQØ

ØØ2 > |PQÆ|2 .

Using these facts we prove the following geometric lemma.

LEMMA 7.3. Let ≠ be an open subset of R2 such that ≠ 6= ;,R2. Suppose that B (x0, r) Ω ≠.
Then, for any "> 0, there exist two numbers Æ, ±> 0 depending only on ", and a cone CÆ of angle
Æ, with vertex x0, such that for any x 2 CÆ\B (x0,±r) we have diamPx < ".

PROOF. Choose x1 2 Px0. We can suppose without loss of generality that r = |x1 ° x0|. For each
0 < Ø < 2º we consider the open cone CØ of angle Ø with vertex x0 and axis determined by the
vector x1 ° x0. Let 0<Æ<º/4 be an angle that will be chosen later. Fact 2 implies that

B (x, |x° x1|)\B (x0, |x0 ° x1|)Ω C2Æ (7.1)

for any x 2 CÆ. Indeed, suppose by contradiction that there exists y 2 B (x, |x° x1|)\B (x0, |x0 ° x1|)
such that y › C2Æ. In particular, we have y 2R2\B (x0, r) and

|](y° x0, x° x0)| >Æ/2> |](x1 ° x0, x° x0)|.
Fact 2 gives now that |y° x| > |x1 ° x|, which contradicts the fact that y 2 B (x, |x° x1|).



2. “GENERIC” PROPERTIES OF k-TUPLES IN ≠k 145

Now, for any "0 > 0 there exists a ±> 0 depending only on "0, such that, if |x° x0| < ±r, then

B (x, |x° x1|)Ω B
°
x0,

°
1+"0

¢
|x0 ° x1|

¢
. (7.2)

Fix "0 > 0 and choose ± > 0 as above. From (7.1) and (7.2) we get that, for any x 2 CÆ with
|x° x0| < ±r, we have the inclusion

B (x, |x° x1|)\B (x0, |x0 ° x1|)Ω AÆ,"0 , (7.3)

where

AÆ,"0 :=
≥
C2Æ\B

°
x0,

°
1+"0

¢
|x0 ° x1|

¢¥
\B (x0, |x0 ° x1|) .

If x0 2 Px, then
ØØx° x0

ØØ∑ |x° x1|, and hence Px µ B (x, |x° x1|). Also, we have Px µ @≠, and since
B (x0, |x0 ° x1|) contains no point from @≠, it follows that Px µ B (x, |x° x1|)\B (x0, |x0 ° x1|). Hence,
thanks to (7.3), we get Px Ω AÆ,"0 .

It remains to observe that, if Æ and "0 are sufficiently small, then diam AÆ,"0 < ". This implies

diamPx ∑ diam AÆ,"0 < "

for any x 2 CÆ\B (x0,±r). ⇤

Using the above lemma we are able to prove the following (possibly known) proposition con-
cerning the smallness of the set of points with nonunique projections on the boundary.

PROPOSITION 7.4. Let ≠Ω R2 be an open set such that ≠ 6=;,R2. If M is the set of the points
of ≠ which have unique projection on @≠, then Mc :=≠\M is a Lebesgue null set.

PROOF. First we note that

M =
1\

n=1
Mn where Mn := {x 2≠ | diamPx < 1/n} .

We will show that each Mn contains a Lebesgue measurable set of full measure and hence the
exterior measure of each Mc

n is 0. This will show in particular that each Mn is measurable, M is
measurable and

m
°
Mc¢∑

1X

n=1
m

°
Mc

n
¢
= 0.

Fix n ∏ 1. With " = 1/n, let Æ and ± be as in Lemma 7.3. If B(x0, r) Ω ≠ and Q is a square
centred at x0 and such that Q Ω B(x0,±r), by applying Lemma 7.3, we can find a cone C of angle
Æ with vertex x0 such that C\Q Ω Mn. Note that

m(C\Q)
m(Q)

∏ ¥, (7.4)

where 0< ¥< 1 only depends on Æ and hence it only depends on n.
Consider a nonempty open set V Ω ≠. We claim that we may write

V =
1[

j=1
Q j,

with Q j essentially disjoint squares such that, for each j, there exists some ball B(xj, r j) Ω ≠
(where xj is the center of Q j) with Q j Ω B(xj,±r j). Indeed, it suffices to consider first the Whitney
decomposition

V =
1[

k=1

fQk

of V , then cut each fQk into a finite number of squares of size < ±r0, where r0 is the distance from
fQk to @≠.
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Applying (7.4), we get a collection of cones C1, C2,... such that C j \Q j are essentially disjoint
and m(C j \Q j)∏ ¥m(Q j) for all j ∏ 1. Now, for A :=[ j∏1(C j \Q j) we have

m (A )=
1X

j=1
m(C j \Q j)∏ ¥

1X

j=1
m(Q j)= ¥m(V ).

Note that, since each C j \Q j is included in Mn, we have A Ω Mn. This implies that, for any
nonempty open set V Ω ≠ (of finite measure) and any µ > 0, there exists a closed set A Ω V \Mn
such that

m(A)
m(V )

∏ ¥°µ. (7.5)

We now introduce the following quantity

R := inf
VΩ≠

sup
AΩMn\V

m(A)
m(V )

,

where inf is taken over all nonempty open sets V Ω ≠ and sup is taken over all closed sets
A ΩV \Mn. By (7.5), we have ¥∑ R ∑ 1. We show that R = 1.

Let V be as above. Choose 0 < µ < R. We can find a closed set A0 Ω V \ Mn such that
m(A0)/m(V ) > R ° µ. The set V\A0 is nonempy and open. Hence, by (7.5) we can find A1
Ω (V\A0)\Mn such that m(A1)/m (V\A0)> R°µ. We have that A0 [ A1 ΩV \Mn and

m(A0 [ A1)
m(V )

=m(A0)
m(V )

+ m(A1)
m(V )

∏ m(A0)
m(V )

+ (R°µ)
m (V\A0)

m(V )

=m(A0)
m(V )

+ (R°µ)
µ
1° m(A0)

m(V )

∂
= (1°R+µ)

m(A0)
m(V )

+R°µ

∏ (1°R+µ) (R°µ)+R°µ.

Since µ can be chosen arbitrarily small, we get

R ∏ (1°R)R+R.

Hence, we have R = 0 or R = 1. Since R ∏ ¥> 0, we get R = 1.
This shows that Mn has full measure in ≠, concluding the proof of the Proposition 7.4. ⇤

A shorter proof of this proposition can be given by using Rademacher’s differentiation theo-
rem. The following proof was suggested to the author by P. Bousquet.

ANOTHER PROOF OF PROPOSITION 7.4. Consider the function ' : ≠! R defined by '(x) :=
(dist(x,@≠))2. Choose x 2≠ such that ' is differentiable in x. Fix v 2R2. If x0 2 Px, then

'(x+ tv)∑
ØØx+ tv° x0

ØØ2 =
ØØx° x0

ØØ2 +2t
≠
v, x° x0

Æ
+ t2 |v|2

='(x)+2t
≠
v, x° x0

Æ
+ t2 |v|2 ,

for any t 2R with x+ tv 2≠. Hence, if t > 0 is as above, we get
'(x+ tv)°'(x)

t
∑ 2

≠
v, x° x0

Æ
+ t |v|2 ,

and letting t ! 0, we obtain
≠
r'(x),v

Æ
∑ 2

≠
v, x° x0

Æ
. By a similar argument (considering t < 0) we

get
≠
r'(x),v

Æ
∏ 2

≠
v, x° x0

Æ
. Since v is arbitrary, we get r'(x)= 2

°
x° x0

¢
. In particular, we obtain

that Px =
©
x0

™
(x has unique projection on @≠). (This argument is taken from [5, p. 14].)

Since ' is locally Lipschitz, the set of points x 2≠ such that ' is differentiable in x is of full
measure in ≠. By the above observation we get Proposition 7.4. ⇤
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LEMMA 7.5. Suppose d1, d2 2N§ and K Ω (0,1)d1 £ (0,1)d2 is a closed set with m (K) > 0. For
any y 2 (0,1)d2 define

K y :=
n

x 2 (0,1)d1 | (x, y) 2 K
o

.

Then, there exists a measurable set A Ω (0,1)d2 £ (0,1)d2 , with m (A) > 0, such that for all the
pairs (y1, y2) 2 A, m

°
K y1 \K y2

¢
> 0. In particular, there exists a point P = (y1, y2) 2 A such that all

of its 2d2 coordinates are pairwise distinct and m
°
K y1 \K y2

¢
> 0.

PROOF. For (y1, y2) 2 (0,1)d2 £ (0,1)d2 we write

m
°
K y1 \K y2

¢
=

Z

(0,1)d1
1K y1

(x)1K y2
(x)dx =

Z

(0,1)d1
1K (x, y1)1K (x, y2)dx.

Integrating on (0,1)d2 £ (0,1)d2, and using the Cauchy-Schwarz inequality, we get
Z

(0,1)d2

Z

(0,1)d2
m

°
K y1 \K y2

¢
d y1d y2 =

Z

(0,1)d1

µZ

(0,1)d2
1K (x, y1)d y1

∂µZ

(0,1)d2
1K (x, y2)dy2

∂
dx

=
Z

(0,1)d1

µZ

(0,1)d2
1K (x, y)d y

∂2
dx

∏
µZ

(0,1)d1

Z

(0,1)d2
1K (x, y)d ydx

∂2

= (m (K))2 > 0,

whence the first claim.
To get the second claim we observe that the set of the points in (0,1)d2 £ (0,1)d2 for which at

least two of the 2d2 real coordinates coincide, is contained in a finite union of hyperplanes, and
hence is a Lebesgue null set. Hence, its complement is of full measure and intersects A. ⇤

Now we use the above lemma to prove the following.

LEMMA 7.6. Let ≠ Ω R
2 be an open set such that ≠ 6= ;,R2, and k 2 N§. Consider some real

numbers ai, 1∑ i ∑ k, Æi j, 1∑ i < j ∑ k not all zero and c 2R. Almost everywhere on ≠k we have
X

1∑i∑k
aidist (xi,@≠)+

X

1∑i< j∑k
Æi j

ØØxi ° xj
ØØ 6= c.

PROOF. Consider the function f :≠k 7!R defined by

f (X )=
X

1∑i∑k
aidist (xi,@≠)+

X

1∑i< j∑k
Æi j

ØØxi ° xj
ØØ ,

where X = (x1, ..., xk) 2≠k.
Suppose by contradiction that the set M :=

©
x 2≠k | f (X )= c

™
has nonzero measure. Since

f is continuous, M is closed and by applying Lemma 7.5, we can find some Y1 = (x1
2, ..., x1

k),Y2 =
(x2

2, ..., x2
k) 2≠k°1 such that the elements x1

2, ..., x1
k, x2

2, ..., x2
k are pairwise distinct and m

°
MY1 \MY2

¢
>

0. We have that, for any x 2 M0 := MY1 \MY2 Ω≠,

a1dist (x,@≠)+
kX

j=2
Æ1 j

ØØØx° x1
j

ØØØ= c1, (7.6)

a1dist (x,@≠)+
kX

j=2
Æ1 j

ØØØx° x2
j

ØØØ= c2, (7.7)
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where c1 and c2 are some constants. By subtracting the above equalities, we get for any x 2 M0,
kX

j=2
Æ1 j

ØØØx° x1
j

ØØØ°
kX

j=2
Æ1 j

ØØØx° x2
j

ØØØ= c3

for some constant c3. The function g :≠\
©
x1

2, ..., x1
d, x2

2, ..., x2
d
™
!R defined by

g(x)=
kX

j=2
Æ1 j

ØØØx° x1
j

ØØØ°
kX

j=2
Æ1 j

ØØØx° x2
j

ØØØ

(which is real analytic) is constant on M0. Since m(M0)> 0, it follows that g ¥ c3 on ≠.
Suppose now that Æ1 j0 6= 0 for some j0 ∏ 2. We can write

Æ1 j0

ØØØx° x1
j0

ØØØ=°
kX

j=2
j 6= j0

Æ1 j

ØØØx° x1
j

ØØØ+
kX

j=2
Æ1 j

ØØØx° x2
j

ØØØ+ c3 (7.8)

on ≠. However, in a neighborhood of x1
j0

, the right hand side of (7.8) is a C1 function, while the
left hand side is not. Hence, we must have Æ1 j = 0 for all j ∏ 2.

By a similar argument we get that all the coefficients Æi j are zero.
The relation (7.6) reads now as a1dist (x,@≠)= c1 on M0. Suppose a1 6= 0 and consider the set

S := {x 2≠ | dist (x,@≠)= c1/a1} .

Since M0 ΩS , the set S has positive measure. Hence, there exists a Lebesgue point x0 in S ,
i.e., some x0 2S satisfying

lim
r!0

m (S \B(x0, r))
m (B(x0, r))

= 1. (7.9)

Let x1 2 @≠ such that |x0 ° x1| = dist (x0,@≠). Using the notation from the proof of Lemma 7.3,
we have that C2º/3\S \B(x0, |x0 ° x1|)=;. Indeed, if x 2 C2º/3\B(x0, |x0 ° x1|), then dist (x,@≠)<
c1/a1. Hence,

lim
r!0

m (S \B(x0, r))
m (B(x0, r))

= lim
r!0

m ((S \B(x0, r))\C2º/3)
m (B(x0, r))

∑ 2º°2º/3
2º

= 2
3

,

which contradicts (7.9).
Hence a1 = c1 = 0. By a similar argument we get also that all the coefficients ai are zero,

obtaining a contradiction. ⇤

With this results we can easily prove the following

PROPOSITION 7.7. Let ≠ Ω R
2 be an open set such that ≠ 6=;,R2, and k 2N§. For almost all

X = (x1, ..., xk) 2 ≠k we have that the numbers dist (xi,@≠), 1 ∑ i ∑ k,
ØØxi ° xj

ØØ, 1 ∑ i < j ∑ k are
linearly independent over Z and each xi has a unique projection on @≠.

(We will say that a point X as above has the property (P).)

PROOF. Let v1,v2, ..., be an enumeration of the set ZN\{0}, where N := k+
°k
2
¢
, and for each

X = (x1, ..., xk) 2≠k consider the vector

¢(X ) :=
≥
(dist (xi,@≠))1∑i∑k ,

°ØØxi ° xj
ØØ¢

1∑i< j∑k

¥
2RN .

Let §n :=
©
X 2≠k | hvn,¢(X )i= 0

™
for n ∏ 1. By Lemma 7.6 we have that m (§n) = 0 for all

n ∏ 1. Hence, the set

§ :=
n

X 2≠k | there exists v 2ZN\{0} with hv,¢(X )i= 0
o
=

1[

n=1
§n

is Lebesgue null.
This fact combined with Proposition 7.4 gives the result. ⇤
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REMARK 7.8. It is easy to see that Lemma 7.3, Proposition 7.4, Lemma 7.6 and Proposition
7.7 remain true in R

d for d ∏ 3. The adaptations of the above proofs are obvious.

3. Geometric properties of liftings in 2D

From now on we suppose that ≠ is a smooth, bounded and simply connected domain in R
2.

We are going to apply the Proposition 5.37 in order to obtain the prevalence of the set of those
u 2 W1,1 °

≠,S1¢, with a finite number of singularities, that admit a unique minimal BV -lifting.
We will use the conventions and several facts from [2, Chapter 3] to describe the minimal liftings
(and the minimal configurations) of a given u 2W1,1 °

≠,S1¢ with a finite number of singularities.
We quickly recall these conventions and facts.

Consider a function u 2 W1,1 °
≠,S1¢\C(≠\{a1, ...,ak}) where a1, . . . , ak 2≠ are pairwise dis-

tinct points. To the vector of singularities a = (a1,a2, ...,ak) we associate the vector of degrees
d = (d1,d2, ...,dk) where d j := deg

°
u,a j

¢
is the degree of u computed on a small circle around a j.

We consider a fictitious point ak+1 2 @≠, of degree

dk+1 =°
kX

j=1
d j.

We split the family of points a1,a2, ...,ak,ak+1 in two disjoint parts: the family of “positive
points” whose degree is positive and the family of “negative points” whose degree is negative. We
omit the points of zero degree. The points from the first family will be denoted Pl and those from
the second family Nl . With these points we create a list {Pl , Nl}1∑l∑m by repeating

ØØd j
ØØ times

each point of degree d j. It is easy to see that there are as many positive and negative points, and
therefore these points can be matched in pairs.

We introduce the following pseudometric on ≠:

dists (A1, A2) :=min{|A1 ° A2| , dist (A1,@≠)+dist (A2,@≠)} ,

for A1, A2 2≠.

With this we define the quantity:

L (a,d) := min
æ2Sm

mX

l=1
dists

°
Pl , Næ(l)

¢
. (7.10)

We recall that ([2, Chapter 3, Lemma 3.4]) we can further add points from @≠ to the collection
{Pl , Nl}1∑l∑m, to obtain a possibly larger collection {Pl , Nl}1∑l∑n satisfying the properties:

nX

l=1
±Pl =

kX

j=1
d j>0

d j±a j ,
nX

l=1
±Nl =

kX

j=1
d j<0

d j±a j in D
0 (≠) , (7.11)

and

L (a,d)=
nX

l=1
|Pl °Nl | . (7.12)

We will say that a collection of oriented segments (Pl , Nl)1∑l∑n (counted with multiplicities)
formed with points satisfying (7.11) and (7.12) is a minimal configuration associated with (a,d).
Note that, in general there is more than one minimal configurations for a given u.

A connection associated with (a,d) is an R
2-valued measure µ on ≠ of the form

µ=
1X

i=1
∫iH

1b(Si \≠) ,

where Si are Borel subsets of C1 oriented curves in R
2 of normal vectors ∫i, with

1X

i=1
H

1b(Si \≠)<1,
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and satisfying

curlµ=
kX

j=1
d j±a j .

A minimal connection (associated with (a,d)) is a connection µ (associated with (a,d)) such
that

∞∞µ
∞∞

M
= L(a,d).

It is known (see [2, Chapter 3]) that there is a one-to-one correspondence between the minimal
connections and the minimal liftings of a given u 2 W1,1 °

≠,S1¢\C(≠\{a1, ...,ak}). (Recall that,
by our convention, two minimal liftings are equal if they differ by an integer multiple of 2º.)

REMARK 7.9. The above one-to-one correspondence between the minimal liftings and the
minimal connections gives us that the property that u 2 W1,1 °

≠,S1¢\C(≠\{a1, ...,ak}) admits a
unique minimal BV -lifting depends only on the vector of singularities a = (a1, ...,ak) 2≠k and the
vector of degrees d = (d1, ...,dk).

REMARK 7.10. Let us discuss the examples, presented in the introduction, of maps having
several minimal BV -liftings.

a) In the case of u(z) := z/ |z|, on ≠ = B(0,1), we have one singularity at the origin, of degree
+1. The minimal configurations are given by the pairs (P1, N1) where P1 = 0 and N1 is any
point on @D(0,1) (considered with the degree °1). Hence, there are infinitely many minimal
configurations. Each one of these configurations corresponds to a minimal connection, hence we
have an infinite number of minimal BV -liftings for this u.

b) In the case of u(z) := (2z°1)°1 |2z°1| (2z+1) |2z+1|°1, on ≠= (°1,1)2, we have two singu-
larities, a1 =°1/2, respectively a2 = 1/2, of degrees d1 =+1, respectively d2 =°1. We have in this
case exactly two minimal configurations. One configuration is given by the collection of oriented
segments (P1, N1), (P2, N2), where P1 := °1/2 (of degree +1), N1 := °1 (of degree °1), N2 := 1/2
(of degree +1), P2 := 1 (of degree +1). Another minimal configuration is given by the oriented
segment (P1, N2) (the same notation). Each one of these configurations corresponds to a minimal
connection, hence we have two minimal BV -liftings for this u.

REMARK 7.11. In order to prove Theorem 7.2, we will use a property weaker than the bijective
correspondence between the minimal connections and the minimal liftings. More specifically, we
rely on the fact that there is a surjective correspondence between the minimal configurations and
the minimal liftings of a given u 2 W1,1 °

≠,S1¢\C(≠\{a1, ...,ak}). In particular, if there exists
only one minimal configuration for u as above, then, there exists only one minimal lifting of u.
(See [2, Chapter 3, Remark 3.8].)

We need to introduce some new notation. Let u 2W1,1 °
≠,S1¢ \ C(≠\{a1, ...,ak}) and (a,d) be

given as above, and suppose the vector a = (a1,a2, ...,ak) 2≠k has the property (P) described in
Proposition 5.37, namely, the numbers dist (ai,@≠), 1 ∑ i ∑ k,

ØØai °a j
ØØ, 1 ∑ i < j ∑ k are linearly

independent over Z and each ai has unique projection on @≠. Let P be a positive point and N a
negative point as above. We observe that one and only one of the following may happen:

(i) dists(P, N)= |P °N|;
(ii) dists(P, N)=

ØØP °N 0ØØ+
ØØP 0 °N

ØØ for some P 0, N 0 2 @≠with dist(P,@≠) =
ØØP °N 0ØØ and dist(N,@≠)=ØØP 0 °N

ØØ. Thanks to property (P), the points N 0 and P 0 are unique.

Indeed, the definition of ds ensures that the pair (P, N) is in at least one of the above cases.
Also, thanks to the fact that |P °N|,

ØØP °N 0ØØ,
ØØP 0 °N

ØØ are linearly independent over Z, we have
that only one of the above situations is possible.
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Consider the set of oriented segments
M :=

©°
Pi, Nj

¢
| 1∑ i, j ∑ m,

°
Pi, Nj

¢
is in case (i)

™

[
n≥

Pi, N 0
j

¥
| 1∑ i, j ∑ m,

°
Pi, Nj

¢
is in case (ii)

o

[
©°

P 0
i, Nj

¢
| 1∑ i, j ∑ m,

°
Pi, Nj

¢
is in case (ii)

™
,

respectivelly the set of numbers
Md :=

©ØØPi °Nj
ØØ | 1∑ i, j ∑ m,

°
Pi, Nj

¢
is in case (i)

™

[
nØØØPi °N 0

j

ØØØ | 1∑ i, j ∑ m,
°
Pi, Nj

¢
is in case (ii)

o

[
©ØØP 0

i °Nj
ØØ | 1∑ i, j ∑ m,

°
Pi, Nj

¢
is in case (ii)

™
.

Clearly, the function ± : M 7! Md, defined by ± (P, N) := |P °N|, is a bijection.

Fix æ 2 Sm. Consider the sum

Læ :=
mX

l=1
dists

°
Pl , Næ(l)

¢
. (7.13)

Note that, thanks to the definition of dists, this is a sum with elements from Md. Proposition
5.37 allows us to define the set

Cæ :=
©°
±°1 (r) ,n

¢
| (r,n) 2 Md £N, r appears exactly n times in (7.13)

™
.

If

Cæ =
©°
±°1 (r1) ,n1

¢
, ...,

°
±°1 °

rp
¢
,np

¢™
,

let Cæ be the collection

±°1 (r1) , ...,±°1 (r1)| {z }
n1 times

, ...,±°1 °
rp

¢
, ...,±°1 °

rp
¢

| {z }
np times

.

Thanks to Proposition 5.37, we immediately see that if æ1,æ2 2 Sm are such that Læ1 = Læ2,
then Cæ1 = Cæ2. If æ is minimal, i.e, Læ = L(a,d), then Cæ is a minimal configuration. In par-
ticular, it follows that there is only one minimal configuration. Hence, we get Theorem 7.2 (see
Remark 7.11). ⇤

REMARK 7.12. Consider a connection µ associated with (a,d) as above. We can associate with
µ a unique 1-rectifiable current given by

C :=
1X

i=1
øiH

1b(Si \≠) ,

where øi is obtained from ∫i by a rotation of °º/2 (hence øi is tangent to the C1 curve that
supports Si). We have

@C =
kX

j=1
d j ±a j . (7.14)

Also to each 1-rectifiable current satisfying (7.14) we can associate a unique connection µ. In
case where µ is a minimal connection, C is a mass minimizing 1-rectifiable current.

In the language of geometric measure theory, Remark 7.9 and Remark 7.11 give the following:
if there exists only one minimal configuration for (a,d) as above, then, there exists only one mass
minimizing 1-rectifiable current (i.e., “least length curve”) with (measure geometric) boundary

kX

j=1
d j ±a j . (See [2, Chapter 3, Section 3.9.4] for details.) Thus the proof of Theorem 7.2 implies

the following: for a.e. (a1, . . . ,ak) 2 ≠k, and for every (d1, . . . ,dk) 2 Zk, there exists exactly one

least length curve with boundary
kX

j=1
d j ±a j .



152 7. MINIMAL BV -LIFTINGS OF W1,1 °
≠,S1¢

MAPS IN 2D ARE “OFTEN” UNIQUE

Now we show how Theorem 7.2 implies Theorem 7.1. From now on, we consider domains ≠
which are bounded, simply connected and smooth.

Fix k 2 N. Let d = (d1, ...,dk) 2 (Z\{0})k and consider the set Wd of those u 2 W1,1 °
≠,S1¢

for which there exist some distinct a1, ...,ak 2 ≠ such that u 2 W1,1 °
≠,S1¢\ C(≠\{a1, ...,ak})

and deg
°
u,a j

¢
= d j for all 1 ∑ j ∑ k. The set Wd is a metric space with the norm induced by

W1,1 °
≠,S1¢.

It is easy to see that each u 2 Wd can be written as u = uaei√ with a = (a1, ...,ak) as above,
with ua given by the formula

ua (z) :=
kY

j=1

µ z°a jØØz°a j
ØØ

∂d j

, z 2≠,

and √ 2W1,1 (≠,R).
This can be proved as follows. From [2, Chapter 3], we have

J (u)= J (ua)=º
kX

j=1
d j±a j

where J (u) := curl(u^ru) /2. Hence, if v := u°1
a u = uau, then v 2W1,1 °

≠,S1¢ and

J (v)= J (ua)+ J (u)=°J (ua)+ J (u)= 0. (7.15)

Combining (7.15) with and from [2, Chapter 2, Lemma 2.8], we find that there exists some
√ 2W1,1 (≠,R) such that v = ei√.

We have the following.

LEMMA 7.13. Fix k 2N. For each d 2 (Z\{0})k, the set Ud :=U \Wd is dense in Wd.

PROOF. Let " > 0 and u 2 Wd. From the above observation, we can write u = uaei√ for some
a = (a1, ...,ak) 2≠k, and √ 2 W1,1 (≠,R). If a0 2≠k and the distance

ØØa°a0ØØ is sufficiently small,
then kr (ua °ua0)kL1 < "/2 and

Z

≠
|ua °ua0 |

ØØr√
ØØdx < "/

°
2+2

∞∞r√
∞∞

L1
¢
.

For u0 := ua0 ei√ we have
∞∞r

°
u°u0¢∞∞

L1 ∑ kr (ua °ua0)kL1 +
Z

≠
|ua °ua0 |

ØØr√
ØØdx < ".

Note that Theorem 7.2 allows us to choose a0 2≠k as above and such that u0 2 Ud admits a
unique minimal BV -lifting. ⇤

Note that, since the set of those u 2W1,1 °
≠,S1¢ with a finite number of singularities is dense

in W1,1 °
≠,S1¢ (see [1]), Lemma 7.13 immediately implies that U is dense in W1,1 °

≠,S1¢. This
gives the density part in Theorem 7.1.

To complete the proof of Theorem 7.1, we show that U is a G± set in W1,1 °
≠,S1¢. We present

below the argument.

For each u 2W1,1 °
≠,S1¢, we consider the set L (u) of all minimal BV -liftings ¡ of u satisfying

ØØØØ
1

m (≠)

Z

≠
¡ (x)dx

ØØØØ∑º. (7.16)

We endow L (u) with the L1 metric and we consider Ω : L (u)£L (u) 7! [0,1) defined by

Ω
°
'1,'2

¢
:= inf

k2Z

∞∞'1 °'2 +2ºk
∞∞

L1 ,
°
'1,'2

¢
2L (u)£L (u) .
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Define

diamΩL (u) := sup
¡1,¡22L (u)

Ω
°
¡1,¡2

¢
, (7.17)

and consider the sets

Dn :=
©
u 2W1,1 °

≠,S1¢ | diamΩL (u)< 1/n
™
, n ∏ 1.

We easily check that U = \n∏1Dn and hence it suffices to prove that each Dn is open in
W1,1 °

≠,S1¢.
For this purpose we start by establishing some useful properties.
First, let (um)m∏1 be a sequence in W1,1 °

≠,S1¢ converging to some u 2 W1,1 °
≠,S1¢, and let°

'm¢
m∏1 be a sequence in BV (≠,R) such that 'm is a minimal lifting of um for each m ∏ 1. If 'm

converges to some ' 2 BV (≠,R) in the L1 norm, then ' is a minimal lifting of u.
Indeed,

∞∞∞um ° ei'
∞∞∞

L1(≠)
=

∞∞∞ei'm ° ei'
∞∞∞

L1(≠)
∑

∞∞'m °'
∞∞

L1(≠) ! 0,

when m ! 1. It follows that um ! ei' 2 BV
°
≠,S1¢ in the sense of distributions and hence

u = ei', i.e., ' is a BV -lifting of u.
Using [2, Corollary 2.4], we have that

ß (um)=
∞∞um ^rum °D'm∞∞

M
, (7.18)

where ß (v), for v 2W1,1 °
≠,S1¢, is defined as being the quantity

ß (v) := inf
¡2BV (≠,R)

∞∞v^rv°D¡
∞∞

M
.

In order to show the minimality of ', it suffices to show that
∞∞u^ru°D'

∞∞
M

∑
∞∞u^ru°D√

∞∞
M

,

for any √ 2 BV (≠,R) (see [2, Corollary 2.4]).
Fix √ 2 BV (≠,R) as above. By (7.18) we have, for all m ∏ 1,

∞∞um ^rum °D'm∞∞
M

∑
∞∞um ^rum °D√

∞∞
M

. (7.19)

Since um ^rum ! u^ru in L1, we immediately see that
∞∞um ^rum °D√

∞∞
M

!
∞∞u^ru°D√

∞∞
M

.

Also, D'm ! D' in the sense of distributions and hence, from (7.19) we get
∞∞u^ru°D'

∞∞
M

∑ lim
m!1

∞∞um ^rum °D'm∞∞
M

∑
∞∞u^ru°D√

∞∞
M

.

A second observation is that the supremum in (7.17) is attained. Indeed, by the above ob-
servation, L (u) is compact in L1 (≠). Since L (u)£L (u) is compact in L1 (≠)£L1 (≠) and Ω is
continuous, there exist '1,'2 2L (u) such that

Ω
°
'1,'2

¢
= diamΩL (u) . (7.20)

Going back to the proof Theorem 7.1, it remains to prove that Dc
n is a closed set. We have

that:

Dc
n =

©
u 2W1,1 °

≠,S1¢ | diamΩL (u)∏ 1/n
™
.

Suppose that (um)m∏1 is a sequence in Dc
n converging to some u 2 W1,1 °

≠,S1¢. From (7.20),
there exist two sequences

°
'm

1
¢
m∏1,

°
'm

2
¢
m∏1 with 'm

1 ,'m
2 2 L (um) for all m ∏ 1, such that um =

ei'm
1 = ei'm

2 and

Ω
°
'm

1 ,'m
2

¢
= diamΩL (um)∏ 1/n. (7.21)

Since (um)m∏1 is bounded in W1,1 °
≠,S1¢, we get

∞∞'m
1

∞∞
BV ,

∞∞'m
2

∞∞
BV . kumkW1,1 . 1. Hence,

there exist '1,'2 2 BV (≠,R) such that 'm
1 ! '1, 'm

2 ! '2 in L1, possibly up to a subsequence.
According to our observation, '1 and '2 are minimal liftings of u. We have from (7.21) and the
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continuity of Ω that Ω
°
'1,'2

¢
∏ 1/n. Also, '1, '2 satisfy (7.16). We get that u 2 Dc

n.
The proof of Theorem 7.1 is complete. ⇤
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CHAPTER 8

On the continuity of Fourier multipliers on Ẇl,1 °
R

d¢
and Ẇl,1 °

R
d¢

Suppose d ∏ 2. Kazaniecki and Wojciechowski proved in 2013 ([3]) that every Fourier
multiplier on Ẇ1,1 °

R
d¢

is a bounded continuous function on R
d. This is a generalization of an old

result of Bonami and Poornima concerning homogeneous multipliers of degree zero. We further
generalize the result of Kazaniecki and Wojciechowski. We prove that, given an integer l ∏ 1,
every multiplier on Ẇ l,1 °

R
d¢

or on Ẇ l,1 °
R

d¢
is a bounded continuous function on R

d. We obtain
these results via a substantial simplification of the Riesz products technique used in [3]. Another
feature of our approach is that it does not rely on transference theorems.

1. Introduction

In this chapter, we study the continuity properties of functions which are Fourier multipliers
on the homogeneous Sobolev spaces Ẇ l,1 °

R
d¢

and Ẇ l,1 °
R

d¢
, where l ∏ 1 is an arbitrary integer.

Given a nonnegative integer l and a parameter 1∑ p ∑1, the space Ẇ l,p °
R

d¢
consists of those

distributions f on R
d for which rl f 2 Lp °

R
d¢

. This space is endowed with the seminorm given by

k f kẆ l,p(Rd) =
∞∞∞rl f

∞∞∞
Lp(Rd)

=max
|Æ|=l

∞∞rÆ f
∞∞

Lp(Rd) .

Given a function m 2 L1
loc(R

d), we say that m is a Fourier multiplier on Ẇ l,p °
R

d¢
if, for each

Schwartz function f 2 S (Rd) the distribution m bf is temperate and if, in addition, the following
estimate holds:

kTm f kẆ l,p ∑ Ck f kẆ l,p , 8 f 2S (Rd), (8.1)

for some constant C <1, where Tm is defined by the relation
ÉTm f = m bf , 8 f 2S (Rd).

The least constant C in the above inequality will be called the norm of m and will be denoted
by kTmk (which is a quantity depending on p and l).

The Fourier transform that we work with is given by the following formula

bf (ª) :=
Z

Rd
e°ihx,ªi f (x)dx, 8S (Rd).

Some classical examples of multipliers on Ẇ l,p °
R

d¢
in the case 1 < p < 1 (for any l), are

the functions m j (ª) := ª j/ |ª|, defined for ª 2 Rd\{0} and any j = 1,2, ...,d. In this case we have
Tm j = R j, where R1, ...,Rd are the Riesz transforms on R

d. Let us observe that the functions m j

are homogeneous of degree zero, i.e., m j (∏ª) = m j (ª), for all ª 2 Rd\{0} and any ∏ > 0. Also, m j
are not continuous at zero.

If p = 1, the situation is different. When l = 0, the m j ’s fail to be multipliers on Ẇ0,1 °
R

d¢
=

L1 °
R

d¢
, since the R j ’s are not bounded on L1 °

R
d¢

. In fact, if m is a multiplier on L1 °
R

d¢
, then

it is easy to see that m is the Fourier transform of a finite measure and hence m 2 Cb
°
R

d¢
. The

case of the multipliers on L1 °
R

d¢
is similar.

Suppose d ∏ 2. Then there exist Fourier multipliers on Ẇ1,1 °
R

d¢
which are not Fourier trans-

forms of finite measures (see [7, Proposition 2.2]). In fact, the proof in [7] concerning Ẇ l,1 °
R

d¢

applies to all the spaces Ẇ l,p °
R

d¢
, with l ∏ 1 and 1∑ p ∑1.

Let us illustrate this when d = 2 and l = 1, via a simple example from [7]. As a consequence
of Ornstein’s L1 non-inequality (see [6]), there exists a distribution u, supported in the unit ball,
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such that @2
1u, @2

1u are L1 functions on R2 and @1@2u is not a finite measure. We define m := É@1@2u.
Clearly, m is not the Fourier transform of a finite measure, however m is a multiplier on Ẇ1,p °

R
2¢.

Indeed,

Tm f = @1@2u§ f ,

for any Schwartz function f .
Hence,

rTm f =
°
@2

1u§@2 f ,@2
2u§@1 f

¢

and thus, by Young’s inequality,

krTm f kLp ∑
∞∞@2

1u
∞∞

L1 k@2 f kLp +
∞∞@2

2u
∞∞

L1 k@1 f kLp =
°∞∞@2

1u
∞∞

L1 +
∞∞@2

2u
∞∞

L1
¢
kr f kLp .

Using Ornstein’s L1 non-inequality, Bonami and Poornima proved in 1982 that the only
Fourier multipliers on Ẇ1,1 °

R
d¢

which are homogeneous functions of degree zero and continu-
ous outside the origin are the constant functions. More precisely, they proved the following (see
[1, Theorem 2]).

THEOREM 8.1. Suppose d ∏ 2, l ∏ 1 are two integers and let ≠ be a continuous function on
R

d\{0}, homogeneous of degree zero. If ≠ is a Fourier multiplier on Ẇl,1 °
R

d¢
, then ≠ is a constant.

When l = 1, this result was generalized by Kazaniecki and Wojciechowski in 2013 as follows
(see [3, Theorem 1.1]).

THEOREM 8.2. Suppose d ∏ 2. If m is a Fourier multiplier on Ẇ1,1 °
R

d¢
, then m 2 Cb

°
R

d¢
.

Since any function homogeneous of degree zero that is continuous on Rd has to be constant, we
see that Theorem 8.2 implies Theorem 8.1 when l = 1. In order to prove Theorem 8.2, Kazaniecki
and Wojciechowski used Theorem 8.1 and some Riesz product technique reminiscent of [10]. Also,
for technical reasons, some classical results concerning multipliers, as for example de Leeuw’s
transference theorems, were involved in the argument. The central role is played by the Riesz
products technique, a key tool being a relatively difficult lemma of Wojciechowski (see [9, Lemma
1], [10, Lemma 1]) concerning the L1-norm of some trigonometric polynomials.

We follow the ideas in [3] in order to prove a generalisation of Theorem 8.2 for the case of
Ẇ l,1 °

R
d¢

, where l ∏ 1. The proof is also based on the Riesz products technique and the construc-
tions we use are very similar to those in [3]. However, rather than using Wojciechowski’s lemma
we rely on much easier facts instead (see Lemmas 8.14 and 8.16 below). The other ingredient
is Theorem 8.1. We do not use transference theorems and, apart from Bonami and Poornima’s
result, the proof is quite elementary. Another advantage of our approach is that it also applies to
multipliers on Ẇ l,1 °

R
d¢

.
Our results are the following.

THEOREM 8.3. Suppose d ∏ 2 and l ∏ 1 are integers. If m is a Fourier multiplier on Ẇl,1 °
R

d¢
,

then m 2 Cb
°
R

d¢
.

THEOREM 8.4. Suppose d ∏ 2 and l ∏ 1 are integers. If m is a Fourier multiplier on Ẇl,1 °
R

d¢
,

then m 2 Cb
°
R

d¢
.

REMARK 8.5. In fact, what we prove in these theorems is that m is a.e. equal to some bounded
continuous function.

The proofs go as follows. First, following the idea in the proof of Lemma 3.1 in [3] we show, by
simple arguments, that, whenever m is a multiplier on Ẇ l,1 °

R
d¢

or on Ẇ l,1 °
R

d¢
, we need to have

m 2 Cb
°
R

d\{0}
¢
. (More specifically, as a preliminary step in our analysis, we define a function

which equals m a.e. on Rd and is continuous and bounded on Rd\{0}.) Next, using this conclusion,
we prove that, if m is a multiplier on Ẇ l,1 °

R
d¢

or on Ẇ l,1 °
R

d¢
, then m has to be continuous at

the origin. For this part of the proof, we use constructions based on Riesz products.
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While the proofs of these facts are similar, we start by studying the multipliers on Ẇ l,1 °
R

d¢
,

since the proof is simpler in this setting. For this purpose, we adapt and simplify the ideas in
[3] to the case of Ẇ l,1 °

R
d¢

, with the help of Lemma 8.14 below. Next, we study multipliers
on Ẇ l,1 °

R
d¢

. We show by a duality method that the boundedness of Tm implies the existence
of bounded solutions for some underdetermined differential equation. We conclude that such
solutions do not exist if m is not continuous. Here, the technique is similar to the one in [2],
which was in turn inspired by the one in [10].

2. Continuity outside the origin

Suppose that m is a multiplier of Ẇ l,p °
R

d¢
for some 1 ∑ p ∑1 and l ∏ 0. Let us notice that

the norm of Tm is invariant by dilations and isometries. More precisely, if ∏ 2R\{0}, respectively
R 2O(d) and we set m∏(ª) := m (∏ª), respectively mR(ª) := m(Rª), 8ª 2Rd, then

∞∞Tm∏

∞∞= kTmk and
∞∞TmR

∞∞ªl,d kTmk , (8.2)

where the kTmk is the norm of Tm : Ẇ l,p °
R

d¢
! Ẇ l,p °

R
d¢

.
Let us justify this when m 2 L1(Rd); the general case is obtained by approximation. For any

d£d real invertible matrix A and any Schwartz function f on Rd, we have the following identity:

cf A (ª)=
1

|det A|
bf
°
A°1ª

¢
,

where f A(x) := f (Ax) for any x 2Rd. Via a change of variables, we find that

TmA f (x)=(2º)°d
Z

Rd
eihx,ªim (Aª) bf (ª)dª= (2º)°d

|det A|

Z

Rd
eihx,A°1ªim (ª) bf

°
A°1ª

¢
dª

=(2º)°d
Z

Rd
ei

D
(A°1)tx,ª

E

m (ª) cf A (ª)dª= Tm f A
≥°

A°1¢t x
¥

for a.e. x 2Rd.

When, A =∏I, we get that Tm∏ f = Tm f∏ (·/∏). We obtain
∞∞∞rlTm∏ f

∞∞∞
Lp

=∏°l
∞∞∞
≥
rlTm f∏

¥
(·/∏)

∞∞∞
Lp

=∏°l∏d/p
∞∞∞rlTm f∏

∞∞∞
Lp

∑kTmk∏°l∏d/p
∞∞∞rl f∏

∞∞∞
Lp

= kTmk
∞∞∞rl f

∞∞∞
Lp

.

Hence,
∞∞Tm∏

∞∞∑ kTmk for any ∏ 6= 0. This gives the first equivalence in (8.2).
When, A = R, where R is orthogonal, we get TmR f = Tm f R (R·). Since the absolute value of

each entry of R is bounded by 1, we obtain
∞∞∞rlTmR f

∞∞∞
Lp

.l,d

∞∞∞
≥
rlTm f R

¥
(Rx)

∞∞∞
Lp

=
∞∞∞rlTm f R

∞∞∞
Lp

∑kTmk
∞∞∞rl f R

∞∞∞
Lp

.l,d kTmk
∞∞∞rl f

∞∞∞
Lp

.

Hence,
∞∞TmR

∞∞.l,d kTmk for any orthogonal d£d matrix R. This gives the second equivalence
in (8.2).

Let us first observe that the multipliers of Ẇ l,1 °
R

d¢
and the multipliers of Ẇ l,1 °

R
d¢

are
bounded and continuous on R

d\{0}.

LEMMA 8.6. If m is a multiplier on Ẇl,1 °
R

d¢
, then m 2 Cb

°
R

d\{0}
¢
.

REMARK 8.7. Actually, the statement means that m has a bounded continuous representative
on R

d \0.

PROOF. We recall that l ∏ 1. We essentially follow the argument in [3, Lemma 3.1]. We first
prove that m has a continuous representative on R

d \{0}. Indeed, let Ω be any Schwartz function
such that bΩ(ª) 6= 0, 8ª (e.g. a standard Gaussian). Set Æ j := (± j

k l)1∑k∑d, where ± j
k is the Kronecker

delta. Since @Æ
j
(TmΩ) 2 L1, we find that m j := (iª)Æ

j ÅTmΩ is a continuous bounded function, and

(iª j)l m(ª) bΩ(ª)= m j(ª) for a.e. ª 2Rd. (8.3)
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Set, for ª 6= 0,

fm(ª) :=
m j(ª)

(iª j)l bΩ(ª)
, if ª j 6= 0.

It is not clear if the above definition is correct, since the result may depend not only on ª, but
also on the choice of the coordinate ª j. However, (8.3) implies first that this definition is correct
for a.e. ª, next, using the continuity of m j, the definition is correct for every ª and that, in addition
fm is continuous. Clearly (from (8.3)), we have note that m = fm a.e. and

(iª j)l fm(ª) bΩ(ª)= m j(ª) for every ª 2Rd \{0}. (8.4)

Using the fact that each m j is bounded, we find from (8.4) that fm is bounded on the unit
sphere Sd°1. More specifically, we have

max
|ª|=1

|fm(ª)|. kTmk. (8.5)

Combining (8.5) and (8.2), we find that fm is bounded. ⇤

LEMMA 8.8. If m is a multiplier on Ẇl,1 °
R

d¢
, then m 2 Cb

°
R

d\{0}
¢
.

PROOF. As in the proof of Lemma 8.6, we first prove that m has a representative which is
continuous on R

d \ {0}. Set m0 defined by m0 (ª) := m (°ª). Clearly, m0 is also a multiplier on
Ẇ l,1 °

R
d¢

, with the same norm as m.
It follows that∞∞∞@l

1Tm0'
∞∞∞

L1(Rd)
∑ kTmk

∞∞∞rl'
∞∞∞

L1(Rd)
, (8.6)

for any ' 2 C1
c

°
R

2¢.
Consider now the normed subspace

V :=
n
rl' | ' 2 C1

c

≥
R

d
¥o

Ω
≥
C0

≥
R

d
¥¥Ø

,

endowed with the norm induced by
°
C0

°
R

d¢¢Ø, where Ø := #
©
Æ 2Nd | |Æ| = l

™
. Let Ω be as in the

proof of Lemma 8.6. We consider the linear functional LΩ : V !R defined by

LΩ

≥
rl'

¥
:=

D
Ω,@l

1Tm0'
E

, 8' 2 C1
c

≥
R

d
¥
.

Thanks to (8.6), LΩ is well-defined and bounded on Vand
∞∞LΩ

∞∞∑ kTmk
∞∞Ω

∞∞
L1(Rd).

Using the Hahn-Banach theorem, we obtain a bounded extension eLΩ of LΩ to
°
C0

°
R

d¢¢Ø.
Moreover, we can choose eLΩ 2

≥°
C0

°
R

d¢¢Ø¥§ =
°
M

°
R

d¢¢Ø such that its norm equals
∞∞LΩ

∞∞. Let
°
µÆ

¢
|Æ|=l 2

°
M

°
R

d¢¢Ø be an element representing eLΩ. We have that
∞∞µÆ

∞∞
M(Rd) ∑ kTmk

∞∞Ω
∞∞

L1(Rd) , (8.7)

for any multiindex Æ, with |Æ| = l. Also, we have
D
@l

1TmΩ,'
E
= (°1)l

D
Ω,@l

1Tm0'
E
= (°1)l LΩ

≥
rl'

¥
= (°1)l eLΩ

≥
rl'

¥

= (°1)l X

|Æ|=l

≠
µÆ,rÆ'

Æ
=

X

|Æ|=l

≠
rÆµÆ,'

Æ
,

i.e.,

@l
1TmΩ =

X

|Æ|=l
rÆµÆ, (8.8)

in the sense of tempered distributions on R
d.

Taking the Fourier transform in (8.8), we obtain

(iª1)l m(ª) bΩ(ª)=
X

|Æ|=l
(iª)ÆcµÆ(ª) := m1(ª) a.e. on R

d. (8.9)
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Similar identities hold for the partial derivatives @l
jTm f , j = 2, . . . ,d. Noting that each cµÆ is a

continuous function (since µÆ is a finite measure), we continue as in the proof of Lemma 8.6 and
find some fm 2 C(Rd \{0}) such that m = fm a.e.

The boundedness of m is obtained exactly as in Lemma 8.6 ⇤

REMARK 8.9. In the case where 1< p <1, it is not true that if m is a multiplier on Ẇ l,p °
R

d¢
,

then m 2 Cb
°
R

d\{0}
¢
. For example if m(ª) := sgn(ª1), then Tm is the Hilbert transform on the

first coordinate and hence m is a multiplier of any space Ẇ l,p °
R

d¢
, with 1 < p <1. However, m

is singular on the whole hyperplane {ª1 = 0}.
Also, if p = 2, any bounded measurable function is a multiplier. Hence, in this case, the

multiplier may be even less regular.

It remains to study, in Ẇ l,1 and Ẇ l,1, the continuity of the multipliers at the origin.

3. Almost radial limits

Following [3, Section 2], we will say that a function f :Rd \{0}!C has almost radial limits at
the origin if the following condition is satisfied.

If (vn)n∏1, (wn)n∏1 ΩRd \{0} are two sequences converging to 0

and lim
n!1

f (vn) 6= lim
n!1

f (wn), then liminf
n!1

ØØØØ
vn

|vn|
° wn

|wn|

ØØØØ> 0.
(I)

Note that, if (I) does not hold for f = m, which is bounded, then there exists a sequence
(vn)n∏1 ΩRd \{0}, converging to 0 and such that

vn

|vn|
! ∫ 2Sd°1, m(v2n)! b1, m(v2n+1)! b2, with b1,b2 2C, b1 6= b2.

By considering the possible limits (up to subsequences) of (m(°v2n)) and (m(°v2n+1)), we ob-
tain the following. If m : Rd \ {0} ! C is a bounded function which does not have almost radial
limits, then there exists a sequence (vn)n∏1 ΩRd \{0}, converging to 0, and such that (at least) one
of the two happens:

vn

|vn|
! ∫ 2Sd°1, m(v2n)! b1, m(°v2n)! b1, m(v2n+1)! b2,

m(°v2n+1)! b2, with b1,b2 2C, b1 6= b2,
(IIs)

or
vn

|vn|
! ∫ 2Sd°1, m(vn)! b1, m(°vn)! b2, with b1,b2 2C, b1 6= b2. (IIa)

We will refer to the first case as the symmetric case, and to the second as the asymmetric case.
The plan of the proofs of Theorems 8.3 and 8.4 consists of establishing the desired results

separately in cases (I), (IIs) and (IIa). In case (I), the proof relies on Theorem 8.1 or on its Ẇ l,1

variant, Theorem 8.10 below.

4. Proof of Theorems 8.3 and 8.4 in case (I)

The case of Ẇ l,1 °
R

d¢
. First, as in [3], we observe that a bounded function having almost

radial limits at 0 also has (genuine) radial limits at 0, and therefore we may define the function

≠ (ª) := lim
n!1

m (ª/n) . (8.10)

Clearly, the function ≠ is homogeneous of degree 0. Now, one can easily see that ≠ is a
multiplier on Ẇ l,1 °

R
d¢

. Indeed, let f be a Schwartz function and let √ be an arbitrary Schwartz
function with

∞∞√
∞∞

L1 ∑ 1. Thanks to (8.2) we have, for any multiindex Æ with |Æ| = l and any n ∏ 1,
ØØ≠rÆTm1/n f ,√

ÆØØ∑ kTmkk f kẆ l,1 .
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AND Ẇl,1
≥
R

d
¥

On the other hand, the dominated convergence theorem gives, with c = cÆ,d := ı|Æ| (2º)°d,
≠
rÆTm1/n f ,√

Æ
= c

Z

Rd
ªÆm (ª/n) bf (ª) b√ (ª)dª! c

Z

Rd
ªÆ≠ (ª) bf (ª) b√ (ª)dª=

≠
rÆT≠ f ,√

Æ
,

and hence,
ØØ≠rÆT≠ f ,√

ÆØØ∑ kTmkk f kẆ l,1 .

By Lemma 8.6, we have that ≠ 2 C
°
R

d\{0}
¢
. We are now in position to apply Theorem 8.1

and obtain that ≠ is constant. From this and condition (I), we deduce that m is continuous at the
origin. ⇤

The case of Ẇ l,1 °
R

d¢
. As above, we conclude that the function ≠ defined by (8.10) is a

multiplier on Ẇ l,1 °
R

d¢
. In particular, by Lemma 8.8, we have that ≠ 2 C

°
R

d\{0}
¢
. In order

to complete (as above) the proof in this case, it suffices to establish the following analogue of
Theorem 8.1. ⇤

THEOREM 8.10. Let d ∏ 2 and l ∏ 1 be some integers and let ≠ 2 C
°
R

d\{0} ;C
¢

be homogeneous
of degree zero. If ≠ is a multiplier on Ẇl,1 °

R
d¢

, then ≠ is a constant.

PROOF OF THEOREM 8.10. We adapt the arguments from [5]. As in the proof of Lemma 8.8,
for any Schwartz function Ω whose integral is 1, one can find some finite measures µÆ such that

@l
1T≠0Ω =

X

|Æ|=l
rÆµÆ, (8.11)

where ≠0 (ª) :=≠ (°ª).
Now, if ' 2S

°
R

d¢
and '"(x) :='("x) for some "> 0, then

≥
@l

1T≠'"

¥
(x)= "l

≥
@l

1T≠'
¥
("x), (8.12)

since ≠ is homogeneous of degree zero.
Combining (8.11) and (8.12), we find that

"l
Z

Rd
Ω(x)

≥
@l

1T≠'
¥
("x)dx = "l X

|Æ|=l

Z

Rd

°
rÆ'

¢
("x)dµÆ(x). (8.13)

Since ≠ is bounded, @l
1T≠0' is the inverse Fourier transform of an L1 function and hence,

@l
1T≠0' is continuous and bounded. Dividing both sides in (8.13) by "l and taking "! 0, we get

by the dominated convergence theorem,
≥
@l

1T≠'
¥
(0)=

X

|Æ|=l
µÆ(Rd)

°
rÆ'

¢
(0),

for any ' 2S
°
R

d¢
. This implies that

≥
@l

1T≠'
¥
(x)=

X

|Æ|=l
µÆ(Rd)

°
rÆ'

¢
(x),

for any ' 2S
°
R

d¢
and any x 2Rd. Hence, by taking the Fourier transform, we get

ªl
1≠ (ª) b' (ª)=

X

|Æ|=l
µÆ(Rd)ªÆ b' (ª) ,

and we have

ªl
1≠ (ª)=

X

|Æ|=l
µÆ(Rd)ªÆ =: p1 (ª) .

We can write

≠ (ª)=
p1 (ª)
ªl

1
, (8.14)
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as an equality of two continuous functions in the domain where ª1 6= 0. Similarly, there exists a
homogeneous polynomial pd of degree l such that

≠ (ª)=
pd (ª)
ªl

d
, (8.15)

as an equality of two continuous functions in the domain where ªd 6= 0. From (8.14) and (8.15),
we get

ªl
d p1 (ª)= ªl

1 pd (ª) everywhere in R
d. (8.16)

By identifying the coefficients in (8.16), we see that p1 must be a multiple of ªl
1, thus a con-

stant multiple of ªl
1 (since p1 is of degree l). Going back to (8.14), we find that ≠ is constant in

the region {ª1 6= 0}. Similarly, ≠ is constant in the region {ªd 6= 0}, and thus constant. ⇤

From now on, we investigate cases (IIs) and (IIa), which are more involved.

5. Proof of Theorem 8.3

We argue by contradiction. We assume that m is not continuous in 0 and we show that (8.1)
does not hold. The following easy lemma will enable us to replace some estimates involving
Schwartz functions with similar estimates involving instead functions which are linear combi-
nations of some exponentials. This last type of functions will be used to explicitly construct a
sequence of functions violating (8.1).

LEMMA 8.11. Let m be a multiplier on Ẇl,1 °
R

d¢
for some integer l ∏ 0. Consider the set of

functions

Pm :=
(

nX

j=1
c j eih·,q ji

ØØØØØ n 2N§, q1, ..., qn 2Rd\{0} and c1, ..., cn 2C
)

.

Let T 0
m : Pm ! Pm be defined by

T 0
m

√
nX

j=1
c j eih·,q ji

!

:=
nX

j=1
c jm(q j)eih·,q ji,

for any n 2N§, q1, ..., qn 2Rd\{0} and c1, ..., cn 2C.
We have that

∞∞T 0
m f

∞∞
Ẇ l,1(Rd) ∑ kTmkk f kẆ l,1(Rd) , (8.17)

for any function f 2 Pm.

REMARK 8.12. Note that, since the exponentials eih·,q ji are linearly independent and Pm is
formed only with (finite) linear combinations of these exponentials, the definition of T 0

m is correct.

PROOF. We note that at this point we know that m is continuous and bounded on R
d\{0}.

This will be used in the proof below.
Consider a function ¥ 2 C1

c
°
R

d¢
whose integral is 1. Fix q 2 Rd\{0}. For any small " > 0, we

set '"q(t) := eiht,qi¥
V

("t) on R
d. Since '"q is a Schwartz function, we have

Tm'
"
q

V

(ª)= m(ª)'"q
V

(ª) ,

in the sense of tempered distributions on R
d. A direct computation gives

c'"q (ª)=
Z

Rd
e°iht,ª°qib¥("t)dt = 1

"d

Z

Rd
e°i

D
t, ª°q

"

E

b¥(t)dt

= 1
"d

bb¥
µ
ª° q
"

∂
= (2º)d

"d ¥

µ
q°ª
"

∂
.
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Hence,

ÉTm'
"
q (ª)= m(ª)

(2º)d

"d ¥

µ
q°ª
"

∂
, (8.18)

Note that, since m 2 L1, the right hand side of (8.18) is L1; we obtain using the Fourier
inversion formula,

Tm
°
'"q

¢
(t)=

Z

Rd
eiht,ªim(ª)

1
"d ¥

µ
q°ª
"

∂
dª=

Z

Rd
eiht,q°"ªim(q°"ª)¥(ª)dª, (8.19)

in the sense of tempered distributions. We naturally identify Tm
°
'"q

¢
with the right hand side of

(8.19).
Now we can prove (8.17). Let f 2 Pm, with

f (t)=
nX

j=1
c j eiht,q ji.

Using (8.19) we have
∞∞∞∞∞r

l
nX

j=1
c j

Z

Rd
m(q j °"ª)eiht,q j°"ªi¥(ª)dª

∞∞∞∞∞
L1

t

=
∞∞∞∞∞r

lTm

√
nX

j=1
c j'

"
q j

!

(t)

∞∞∞∞∞
L1

t

∑kTmk
∞∞∞rl( f (t)b¥("t))

∞∞∞
L1

t
.

In other words, for every multiindex Æ 2Nd with |Æ| = l,

∞∞∞∞∞

nX

j=1
c j

Z

Rd
(q j °"ª)Æm(q j °"ª)eiht,q j°"ªi¥(ª)dª

∞∞∞∞∞
L1

t

∑ kTmk
∞∞∞
≥
rl f (t)

¥
b¥("t)

∞∞∞
L1

t
+"kTmkCf ,¥,

where Cf ,¥ is a finite constant depending only on f and ¥. Letting "! 0 we find that:
∞∞∞∞∞r

Æ
nX

j=1
c jm(q j)eiht,q ji

∞∞∞∞∞
L1

t

=
∞∞∞∞∞

nX

j=1
c j qÆj m(q j)eiht,q ji

∞∞∞∞∞
L1

t

∑ kTmk
∞∞∞rl f

∞∞∞
L1 .

Here, we use the fact that b¥(0)= 1 and the obvious fact that
∞∞∞
≥
rl f (t)

¥
b¥(0)

∞∞∞
L1

t
∑ liminf

"!0

∞∞∞
≥
rl f (t)

¥
b¥("t)

∞∞∞
L1

t
.

The proof of Lemma 8.11 is complete. ⇤

REMARK 8.13. For simplicity, from now on, we will denote both operators Tm and T 0
m by Tm.

We keep this convention even in the case where p = 1. As we will see this will turn out to be
convenient in some computations.

The symmetric case, (IIs). In what follows we suppose for simplicity that d = 2. Also, we
suppose without loss of generality that b1 = 1, b2 = 0 and ∫= (1,0). This is possible thanks to the
rotation and dilation invariance we have discussed.

We will need the following simple lemma (see the Appendix).

LEMMA 8.14. Fix N 2N§. There exists a finite sequence (æk)1∑k∑N in {0,1} such that
ØØØØØ

NX

k=1

æk

k

k°1Y

j=1

µ
1+ i

j

∂ØØØØØ∏
1
º

ln N. (8.20)

Suppose N 2 N§ is fixed and æ1, ...,æN 2 {0,1} are some fixed numbers such that inequality
(8.20) holds. We construct, by backward induction on k, a sequence (ak)1∑k∑N in R2 satisfying the
following properties:
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(P1) for each k 2 {1, ..., N} we have
ØØØØØm

√

"kak +
X

1∑ j∑k°1
" ja j

!

°æk

ØØØØØ<
1

4N ,

for all "1, ...,"k 2 {°1,0,1} with "k 6= 0;
(P2) for each k 2 {1, ..., N °1} we have

4 |ak(1)| < |ak+1(1)| and 4 |ak(2)| < |ak+1(2)| ;

(Here, ak(1) and ak(2) are the two coordinates of ak. )
(P3) for each k 2 {1, ..., N} we have

0<
ØØØØØak (1)+

X

1∑ j∑k°1
" ja j (1)

ØØØØØ ,

ØØØØØak (2)+
X

1∑ j∑k°1
" ja j (2)

ØØØØØ< 1,

for all "1, ...,"k°1 2 {°1,0,1};
(P4) for each k 2 {1, ..., N} we have

ØØak(2)+P
1∑ j∑k°1 " ja j(2)

ØØ
ØØak(1)+P

1∑ j∑k°1 " ja j(1)
ØØ <

1
4N ,

for all "1, ...,"k°1 2 {°1,0,1}.

(A similar construction appears in [3, Subsection 2.2] and in [10].) The construction goes as
follows. We first modify the sequence (vn)n∏1 in (IIs) such that vn(2) 6= 0 for all n ∏ 1. This is
possible, since m is continuous on R

2 \ {0}. At each step we choose ak to be a term in the set
{vn | n ¥ 0(mod2)} or {vn | n ¥ 1(mod2)} if æk = 1 or æk = 0 respectively. It remains to see that
at each step the term ak can be chosen sufficiently small in order to satisfy the above condi-
tions. Since vn ! 0, we can choose a vector ak with both components nonzero and such that
|m("kak)°æk| < (1/2)4°N , for any "k 2 {°1,1}. Since m is continuous outside the origin, there
exists rk > 0 such that |m(ª)°æk| < 4°N for any ª 2 B(ak, rk)[B(°ak, rk). Hence, if ak°1, ...,a1
are sufficiently small, then (P1) is satisfied. We have that ∫ = (1,0), and hence if ak = vn, for n
sufficiently large, and ak°1, ...,a1 are sufficiently small, then (P4) is satisfied. It is easy to see
that the remaining conditions can be satisfied too.

Consider the set

§N :=
(

NX

k=1
"kak

ØØØØØ "1, ...,"N 2 {°1,0,1} , not all 0

)

. (8.21)

Thanks to (P2), for each q 2§N the representation

q =
NX

k=1
"kak, for some "1, ...,"N 2 {°1,0,1} ,

is unique. Let us also observe that, for each q 2§N we have (from (P3) and (P4)),

0< |q(1)| , |q(2)| < 1 (8.22)

and
|q(2)|
|q(1)| <

1
4N . (8.23)

Define the function

RN (t) :=°1+
NY

k=1

µ
1+ i

k
cosht,aki

∂
, t 2R2. (8.24)
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By (8.57) (see the Appendix),

RN (t)=
NX

k=1

X

"1,...,"k2{°1,0,1}
"k 6=0

√
Y

" j 6=0

i
2 j

!

eiht,"1a1+..."kaki =
X

q2§N

cqeiht,qi, (8.25)

for some coefficients cq with
ØØcq

ØØ∑ 1. Thanks to (8.22) we have that q(1) 6= 0, for any q 2§N . This
allows us to define the function

hN(t) :=
X

q2§N

cq

(q(1))l eiht,qi, on R
2. (8.26)

We claim that∞∞∞rlhN

∞∞∞
L1(R2)

∑ 4. (8.27)

Indeed, we have
∞∞∞@l

1hN

∞∞∞
L1(R2)

=kRNkL1(R2) ∑ 1+
NY

k=1

µ
1+ 1

k2

∂1/2

∑1+
NY

k=1
e1/2k2 ∑ 1+ eº

2/12 ∑ 4.
(8.28)

On the other hand, if l1,l2 are nonnegative integers with l1 + l2 = l and l1 < l, we have (using
(8.22), (8.23)),

∞∞∞@l1
1 @

l2
2 hN

∞∞∞
L1(R2)

=
∞∞∞∞∞

X

q2§N

(q(2))l2

(q(1))l°l1
cqeiht,qi

∞∞∞∞∞
L1(R2)

∑
X

q2§N

|q(2)|l2

|q(1)|l°l1

=
X

q2§N

µ |q(2)|
|q(1)|

∂l2

∑
X

q2§N

4°Nl2 ∑ |§N |4°N ∑ 3N4°N ∑ 1.

We are now going to estimate kTmhNkẆ l,1(R2). Since by (8.26), hN 2 Pm, with Pm as in Lemma
8.11, we may define TmhN via Lemma 8.11 (see Remark 8.13). More specifically, we will prove
that

kTmhNkẆ l,1(R2) ∏
1
º

ln N °1. (8.29)

In order to see this, it suffices to prove that
∞∞∞@l

1TmhN

∞∞∞
L1(R2)

∏ 1
º

ln N °1. (8.30)

We have∞∞∞@l
1TmhN

∞∞∞
L1(R2)

=
∞∞∞Tm@

l
1hN

∞∞∞
L1(R2)

= kTmRNkL1(R2) .

Using (8.25) and (8.57), we obtain

TmRN (t)=
NX

k=1

X

"1,...,"k2{°1,0,1}
"k 6=0

m("1a1 + ..."kak)

√
Y

" j 6=0

i
2 j

!

eiht,"1a1+..."kaki. (8.31)

Introducing the function

Z(t) :=
NX

k=1

X

"1,...,"k2{°1,0,1}
"k 6=0

æk

√
Y

" j 6=0

i
2 j

!

eiht,"1a1+..."kaki, (8.32)

we have (by the identities (8.57) and (8.59) in the Appendix),

Z(t)=
NX

k=1

iæk

k
cosht,aki

k°1Y

j=1

µ
1+ i

j
cos

≠
t,a j

Æ∂
.
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Lemma 8.14 yields

kZkL1(R2) ∏ |Z(0)|∏ 1
º

ln N. (8.33)

Also, using the property (P1), together with (8.31) and (8.32), we get

kTmRN °ZkL1(R2) ∑ |§N |4°N ∑ 3N4°N ∑ 1. (8.34)

Using (8.33), (8.34) and the triangle inequality, we arrive at

kTmRNkL1(R2) ∏ kZkL1(R2)°kTmRN °ZkL1(R2) ∏
1
º

ln N °1,

concluding the proof of (8.30).
By taking N !1, (8.27) and (8.29) give us that m is not a multiplier on Ẇ l,1 °

R
2¢. ⇤

REMARK 8.15. To deal with the case d > 2 we may suppose that ∫ = (1,0, ...,0); we consider
constructions like RN ≠ 1, where RN is defined as above on R

2 and the constant function 1 is
defined on R

d°2.

The asymmetric case, (IIa). This case is very similar to the previous one. We again suppose
without loss of generality that b1 = 1, b2 = 0 and ∫ = (1,0). In a similar way we construct a
sequence (ak)1∑k∑N satisfying the above properties (P2)- -(P4) and (P1’) below:

(P1’) for each k 2 {1, ..., N} we have
ØØØØØm

√

"kak +
X

1∑ j∑k°1
" ja j

!

° 1+"k

2
æk

ØØØØØ<
1

4N ,

for all "1, ...,"k 2 {°1,0,1} with "k 6= 0.

With this new sequence (ak)1∑k∑N we define §N as in (8.21). We again have (8.22), (8.23). We
also define RN and hN as in (8.24) and (8.26) respectively. The inequality (8.27) holds in this case
too and it remains to show that

∞∞∞@l
1TmhN

∞∞∞
L1(R2)

= kTmRNkL1(R2) ∏
1
º

ln N °1. (8.35)

Using (8.57), we have

TmRN (t)=
NX

k=1

X

"1,...,"k2{°1,0,1}
"k 6=0

m("1a1 + ..."kak)

√
Y

" j 6=0

i
2 j

!

eiht,"1a1+..."kaki. (8.36)

Introducing the function

Z(t) :=
NX

k=1

X

"1,...,"k2{°1,0,1}
"k 6=0

1+"k

2
æk

√
Y

" j 6=0

i
2 j

!

eiht,"1a1+..."kaki, (8.37)

we observe that, by (8.57) and (8.59), we have

Z(t)=
NX

k=1

iæk

k
eiht,aki

k°1Y

j=1

µ
1+ i

j
cos

≠
t,a j

Æ∂
.

Lemma 8.14 gives us that

kZkL1(R2) ∏ |Z(0)|∏ 1
º

ln N. (8.38)

The property (P1’), together with (8.36) and (8.37), give

kTmRN °ZkL1(R2) ∑ |§N |4°N ∑ 3N4°N ∑ 1. (8.39)
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Using (8.38), (8.39) and the triangle inequality, we get

kTmRNkL1(R2) ∏ kZkL1(R2)°kTmRN °ZkL1(R2) ∏
1
º

ln N °1,

concluding the proof of (8.35). (For the case d > 2, see Remark 8.15.) ⇤

6. Proof of Theorem 8.4

We prove now Theorem 8.4. Suppose m is not continuous in 0. As in the preceding section,
we may assume that m is in one of the cases (IIs) or (IIa). Again we work under the hypothesis
d = 2, b1 = 1, b2 = 0 and ∫= (1,0).

The symmetric case, (IIs). We need the following analogue of Lemma 8.14 (see the Appen-
dix):

LEMMA 8.16. Fix N 2N§. There exists a finite sequence (æk)1∑k∑N in {0,1} such that
ØØØØØ

NX

k=1

æk

2k

k°1Y

j=1

µ
1+ i

2 j

∂ØØØØØ∏
1

2º
ln N.

In what follows (ak)1∑k∑N is a sequence in Q
2 satisfying the properties (P1)- -(P4) for the

sequence (æk)1∑k∑N from Lemma 8.16 above. It is easy to see that such a sequence exists. Using
this sequence we construct the function RN as in (8.24).

Suppose that m is a multiplier on Ẇ l,1 °
R

2¢. Then m0 defined by m0 (ª) := m (°ª) is also a
multiplier on Ẇ l,1 °

R
2¢ with the same norm as m. It follows that

∞∞∞@l
1Tm0'

∞∞∞
L1(R2)

∑ kTmk
∞∞∞rl'

∞∞∞
L1(R2)

, (8.40)

for any ' 2 C1
c

°
R

2¢.
Consider now the normed subspace

V :=
n
rl' | ' 2 C1

c
°
R

2¢
o
Ω

°
L1 °

R
2¢¢2l

,

endowed with the norm induced by
°
L1 °

R
2¢¢2l

. We consider the linear functional LN : V ! R

defined by

LN

≥
rl'

¥
:=

D
RN ,@l

1Tm0'
E
=

Z

R2
RN(t)@l

1Tm0'(t)dt, ' 2 C1
c

°
R

2¢ .

Thanks to (8.40), LN is bounded on V . Using the Hahn-Banach theorem, we get that there
exists a bounded extension eLN of LN , on

°
L1 °

R
2¢¢2l

. Moreover, we can choose eLN 2
≥°

L1 °
R

2¢¢2l¥§
=

°
L1 °

R
2¢¢2l

such that its norm equals kLNk. Note that, by (8.28),

kLNk ∑ kTmkkRNkL1(R2) ∑ 4kTmk .

Let (uÆ)|Æ|=l 2
°
L1 °

R
2¢¢2l

be the element representing eLN , where Æ 2N2 are multiindexes. We
have that

kuÆkL1(R2) ∑ 4kTmk , (8.41)

for any multiindex Æ, with |Æ| = l. Also, we have (see Remark 8.13)
D
@l

1TmRN ,'
E
= (°1)l

D
RN ,@l

1Tm0'
E
= (°1)l LN

≥
rl'

¥
= (°1)l eLN

≥
rl'

¥

= (°1)l X

|Æ|=l

≠
uÆ,rÆ'

Æ
=

X

|Æ|=l

≠
rÆuÆ,'

Æ
,

i.e.,

@l
1TmRN =

X

|Æ|=l
rÆuÆ, (8.42)
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in the sense of distributions on R
2.

As in (8.31) we have

TmRN (t)=
NX

k=1

X

"1,...,"k2{°1,0,1}
"k 6=0

m("1a1 + ..."kak)

√
Y

" j 6=0

i
2 j

!

eiht,"1a1+..."kaki. (8.43)

For each N we fix a positive integer M = M(N) such that Mak 2 Z2 for all 1 ∑ k ∑ N. From
(8.43) we get that TmRN is a component-wise 2ºM-periodic function. Hence, TmRN (Mt) is
component-wise 2º-periodic.

We will show that uÆ in (8.42) can be chosen to be component-wise 2ºM-periodic. In order to
prove this we need the following easy lemma.

LEMMA 8.17. Let A > 0 be a real number and suppose u 2 L1 °
R

2¢ is given. We consider the
sequence of functions

un(t) := 1
|Bn|

X

¬2Bn

u
°
t+ A¬

¢
, t 2R2, n ∏ 1,

where Bn := B(0,n)\Z2. Then, there exists g 2 L1 °
R

2¢, component-wise A-periodic, with kgkL1(R2) ∑
kukL1(R2) and such that un ! g up to a subsequence, in the sense of distributions.

PROOF OF LEMMA 8.17. Since kunkL1(R2) ∑ kukL1(R2) for any n ∏ 1, by the sequential Banach-
Alaoglu theorem, there exists g 2 L1 °

R
2¢ with kgkL1(R2) ∑ kukL1(R2) such that un ! g in the w§-

topology of L1 up to a subsequence. (For simplicity we denote the subsequence also by (un)n∏1.)
In particular, un ! g in the sense of distributions. Also, we easily get that g is component-wise
A-periodic. Indeed, for ' 2 C1

c
°
R

2¢, and any ¬0 2Z2, we have
Z

R2
un

°
t+ A¬0

¢
' (t)dt =

Z

R2
un (t)'

°
t° A¬0

¢
dt

!
Z

R2
g (t)'

°
t° A¬0

¢
dt

=
Z

R2
g

°
t+ A¬0

¢
' (t)dt.

(8.44)

Also,
Z

R2
un

°
t+ A¬0

¢
' (t)dt = 1

|Bn|
X

¬2Bn

Z

R2
u

°
t+ A

°
¬+¬0

¢¢
' (t)dt

= 1
|Bn|

X

¬2Bn+¬0

Z

R2
u

°
t+ A¬

¢
' (t)dt

= 1
|Bn|

X

¬2Bn

Z

R2
u

°
t+ A¬

¢
' (t)dt+ rn

=
Z

R2
un (t)' (t)dt+ rn,

where

rn := 1
|Bn|

X

¬2(Bn+¬0)\Bn

Z

R2
u

°
t+ A¬

¢
' (t)dt° 1

|Bn|
X

¬2Bn\(Bn+¬0)

Z

R2
u

°
t+ A¬

¢
' (t)dt.

Since
ØØ°Bn +¬0

¢
\Bn

ØØ,
ØØBn\

°
Bn +¬0

¢ØØ. n and |Bn|ª n2, we have rn ! 0. Hence,

lim
n!1

Z

R2
un

°
t+ A¬0

¢
' (t)dt = lim

n!1

Z

R2
un (t)' (t)dt,

which together with (8.44) concludes the proof of Lemma 8.17. ⇤
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Now, since @l
1TmRN is component-wise 2ºM-periodic, we have

°
@l

1TmRN
¢
n = @l

1TmRN for any
n ∏ 1. From (8.42) we get

@l
1TmRN =

≥
@l

1TmRN

¥

n
=

X

|Æ|=l
rÆ (uÆ)n ,

for any n ∏ 1. Taking n !1 and applying Lemma 8.17, with A := 2ºM, we get

@l
1TmRN =

X

|Æ|=l
rÆgÆ, (8.45)

for some component-wise 2ºM-periodic functions gÆ 2 L1 °
R

2¢ such that

kgÆkL1(R2) ∑ 4kTmk (8.46)

(from (8.41)).
From now on, for each function √ on R

2, we write √M for the function √M (t) :=√ (Mt).
Consider the function

GN (t) :=°1+
NY

k=1
(1+cosht,aki) , t 2R2.

Notice that GM
N is component-wise 2º-periodic. (We recall here that each Mak belongs to Z2.)

Also, (TmRN)M and each gM
Æ are component-wise 2º-periodic. From (8.45) we get

@l
1 (TmRN)M =

X

|Æ|=l
rÆgM

Æ ,

in the sense of distributions on R
2 and hence in the sense of distributions on T

2. Taking convolu-
tion (on the torus T2) with GM

N , we get

@l
1

≥
(TmRN)M §GM

N

¥
=

X

|Æ|=l
rÆ

≥
gM
Æ §GM

N

¥
. (8.47)

It is easy to see that the spectrum of each gM
Æ §GM

N and the spectrum of (TmRN)M §GM
N , as

functions on the torus T2, are included in M§N and therefore do not touch the set {0}£Z (see
(8.22)). Hence, we can apply the operator @°l

1 in (8.47) to obtain

(TmRN)M §GM
N =

X

|Æ|=l
rÆ@°l

1

≥
gM
Æ §GM

N

¥
.

Hence,
∞∞∞(TmRN)M §GM

N

∞∞∞
L1(T2)

∑
X

|Æ|=l

∞∞∞rÆ@°l
1

≥
gM
Æ §GM

N

¥∞∞∞
L1(T2)

. (8.48)

We claim that∞∞∞rÆ@°l
1

≥
gM
Æ §GM

N

¥∞∞∞
L1(T2)

∑ 8kTmk , (8.49)

for any multiindex Æ with |Æ| = l. This estimate is similar to (8.27).
Indeed, for Æ= (l,0) we have, using (8.46),

∞∞∞@l
1@

°l
1

≥
gM
Æ §GM

N

¥∞∞∞
L1(T2)

=
∞∞∞gM

Æ §GM
N

∞∞∞
L1(T2)

∑
∞∞∞gM

Æ

∞∞∞
L1(T2)

∞∞∞GM
N

∞∞∞
L1(T2)

∑2kgÆkL1(R2) ∑ 8kTmk .
(8.50)

Here, we have used the fact that
∞∞GM

N
∞∞

L1(T2) ∑ 2. This can be justified as follows. We have

NY

k=1
(1+cosht, Maki)∏ 0

and hence, thanks to (8.57) and (P2), we obtain
∞∞∞∞∞

NY

k=1
(1+cosh·, Maki)

∞∞∞∞∞
L1(T2)

= 1.



6. PROOF OF THEOREM 8.4 171

We now turn to the proof of (8.49) for Æ 6= (l,0).
Writing

gM
Æ §GM

N (t)=
X

q2§N

c0qeiht,Mqi,

we get that (note that c0q is a Fourier coefficient):
ØØc0q

ØØ∑
∞∞∞gM

Æ §GM
N

∞∞∞
L1(T2)

∑ 8kTmk ,

for all q 2§N .
Hence, if Æ= (l1, l2), with l1 + l2 = l and l1 < l, we have (using (8.22), (8.23)),

∞∞∞
≥
@l1

1 @
l2
2

¥
@°l

1

≥
gM
Æ §GM

N

¥∞∞∞
L1(T2)

=
∞∞∞∞∞

X

q2§N

(Mq(2))l2

(Mq(1))l°l1
c0qeiht,Mqi

∞∞∞∞∞
L1(T2)

∑8kTmk
X

q2§N

|q(2)|l2

|q(1)|l°l1
= 8kTmk

X

q2§N

µ |q(2)|
|q(1)|

∂l2

∑8kTmk
X

q2§N

4°Nl2 ∑ 8kTmk |§N |4°N ∑ 8kTmk3N4°N

∑8kTmk .
(8.51)

We see that (8.50) and (8.51) imply (8.49).

We next obtain a contradiction. The starting point is the left-hand side of (8.48). We claim
that

∞∞∞(TmRN)M §GM
N

∞∞∞
L1(T2)

∏ 1
2º

ln N °1. (8.52)

The method applied to obtain this estimate is similar to the one used to obtain (8.30).
By using (8.57) and (8.58) (see the Appendix) we have:

(TmRN)M §GM
N (t)=

NX

k=1

X

"1,...,"k2{°1,0,1}
"k 6=0

m("1a1 + ..."kak)

√
Y

" j 6=0

i
4 j

!

eiht,"1Ma1+...+"kMaki. (8.53)

Introducing the function

Z(t) :=
NX

k=1

X

"1,...,"k2{°1,0,1}
"k 6=0

æk

√
Y

" j 6=0

i
4 j

!

eiht,"1Ma1+...+"kMaki, on T
2, (8.54)

we observe that, by (8.57) and (8.59), we have

Z(t)=
NX

k=1

iæk

2k
cosht, Maki

k°1Y

j=1

µ
1+ i

2 j
cos

≠
t, Ma j

Æ∂
.

Lemma 8.16 gives us that

kZkL1(T2) ∏ |Z(0)|∏ 1
2º

ln N. (8.55)

Also, using the property (P1), together with (8.53) and (8.54), we get
∞∞∞(TmRN)M §GM

N °Z
∞∞∞

L1(T2)
∑ |§N |4°N ∑ 3N4°N ∑ 1. (8.56)

Using (8.55), (8.56) and the triangle inequality, we obtain
∞∞∞(TmRN)M §GM

N

∞∞∞
L1(T2)

∏ kZkL1(T2)°
∞∞∞(TmRN)M §GM

N °Z
∞∞∞

L1(T2)
∏ 1

2º
ln N °1,

concluding the proof of (8.52).
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Now, (8.48), (8.49) and (8.52) allow us to write
1

2º
ln N °1∑ 8kTmk2l .

Since N is arbitrary, the last inequality implies that m is not a multiplier on Ẇ l,1 °
R

2¢. ⇤

The asymmetric case, (IIa). This case is very similar to the previous one and we skip the
proof. We can again suppose by contradiction that m is a multiplier on Ẇ l,1 °

R
2¢ and use this

result to obtain a representation result similar to the one in (8.42). The only difference is that
now we have to follow the “asymmetric case” as in the proof corresponding to multipliers on
Ẇ l,1 °

R
2¢. The functions RN and GN will be constructed as above, starting, as in the case of

Ẇ l,1 °
R

2¢, with a sequence (ak)1∑k∑N in Q
2 satisfying the conditions (P1’), (P2)–(P4). ⇤

7. Appendix

Some useful identities. We quickly recall here some elementary facts and formulas con-
cerning some trigonometric polynomials on the torus.

Fix a finite sequence (ak)1∑k∑N in Z
d. For each finite sequence Æ1, ...,ÆN of complex numbers

we have the following expansion rule:
NY

k=1
(1+Æk cosht,aki)= 1+

NX

k=1

X

"1,...,"k2{°1,0,1}
"k 6=0

√
Y

" j 6=0

Æ j

2

!

eiht,"1a1+...+"kaki. (8.57)

A sequence (ak)k=1,N in Z
d will be called dissociated if the only solution to the equation

"1a1 + ...+"NaN = "01a1 + ...+"0NaN ,

with "1, ...,"N ,"01, ...,"0N 2 {°1,0,1} is the trivial solution "1 = "01, ...,"N = "0N . For example any se-
quence (ak)1∑k∑N in Z

d which is lacunary on at least one component is dissociated. If (ak)1∑k∑N
is dissociated and Æ1, ...,ÆN and Ø1, ...,ØN are complex numbers, by using (8.57) and the relation
between convolution and the Fourier transform, we obtain that

NY

k=1
(1+Æk cosh·,aki)§

NY

k=1

°
1+Øk cosh·,aki

¢
=

NY

k=1

µ
1+ ÆkØk

2
cosh·,aki

∂
, (8.58)

as functions on the d-dimensional torus.
The following identity is also useful. We have

NY

k=1
(1+ ck)= 1+

NX

k=1
ck

k°1Y

j=1

°
1+ c j

¢
(8.59)

for any complex numbers c1,..., cN .

A selection lemma. The following interesting fact is taken from [8] (Lemma 6.3, p. 118).

LEMMA 8.18. Suppose z1,..., zN are some complex numbers. Then, there exist æ1,..., æN 2 {0,1}
such thatØØØØØ

NX

k=1
ækzk

ØØØØØ∏
1
º

NX

k=1
|zk| .

The proof is elementary and we skip it (see [8, Lemma 6.3]).
Let us define two sequences

°
z0

k
¢
1∑k∑N and

°
z1

k
¢
1∑k∑N by the expressions

zØk := 1
2Øk

k°1Y

j=1

µ
1+ i

2Ø j

∂
for k = 1, ..., N,

where Ø= 0,1 is an index. Here, the product over an empty set is by convention equal to 1.
It is easy to see that, using Lemma 8.18 applied to the sequence

°
z0

k
¢
1∑k∑N we get Lemma

8.14. Similarly, using Lemma 8.18 applied to the sequence
°
z1

k
¢
1∑k∑N we get Lemma 8.16.
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Remarks on Wojciechowski’s inequality. We discuss here some inequalities from the fam-
ily of Lemma 8.14 and Lemma 8.16. Wojciechowski was the first one to use such inequalities in
the proof of non-estimates. In particular, he obtained in [9] the following relatively difficult esti-
mate (see [9, Lemma 1], [10, Lemma 1]):

LEMMA 8.19. There exists a constant C > 0 such that, for any integer N ∏ 2 there exist M =
M(N) and a sequence æ1,..., æN 2 {0,1} such that

∞∞∞∞∞

NX

k=1
æk cosh·,aki

k°1Y

j=1

°
1+cos

≠
·,a j

Æ¢
∞∞∞∞∞

L1(Td)
∏ CN, (8.60)

whenever the sequence (ak)1∑k∑N in Z
d satisfies

|ak+1| > M |ak| , for 1∑ k ∑ N °1.

This lemma was already used in conjunction with the Riesz products technique in [10], [3],
[4]. Lemma 8.19 was used in [10] to prove that there exists g 2 L1 °

T
2¢ such that there are no

f0, f1, f2 2W1,1 °
T

2¢ with

g = f0 +@1 f1 +@2 f2.

It was also used in [4] in order to prove some anisotropic Ornstein-type non-inequalities and in
[3] to study the continuity of the multipliers on Ẇ1,1 °

R
d¢

.
Here we want to point out that, in the above applications, a weaker form suffices: we only need

to know that the lower bound in (8.60) goes to 1 when N !1. (In the case of the application
of Lemma 8.19 given in [10], this was observed by Wojciechowski [10, Remark 1].) This weaker
version can be achieved by much cheaper arguments than the ones used to obtain Lemma 8.19.
In this direction we mention the following.

LEMMA 8.20. For any integer N ∏ 2 there exists a sequence æ1,..., æN 2 {0,1} such that
∞∞∞∞∞

NX

k=1
æk cosh·,aki

k°1Y

j=1

°
1+cos

≠
·,a j

Æ¢
∞∞∞∞∞

L1(Td)
∏ 1

2º

s
N
e

,

for any dissociated sequence (ak)1∑k∑N in Z
d.

PROOF. The proof follows the ideas in [2]. By applying Lemma 8.18 to the sequence (zk)1∑k∑N ,
where

zk := 1
2
p

N

µ
1+ i

2
p

N

∂k°1
for k = 1, ..., N, (8.61)

we obtain a sequence (æk)1∑k∑N in {0,1} such that
ØØØØØ

NX

k=1

æk

2
p

N

µ
1+ i

2
p

N

∂k°1
ØØØØØ∏

1
2º

NX

k=1

1
p

N
=

p
N

2º
. (8.62)

Suppose (ak)1∑k∑N is a dissociated sequence in Z
d. Consider the functions

gN(t) :=
NY

k=1

µ
1+ i

p
N

cosht,aki
∂

and GN (t) :=
NY

k=1
(1+cosht,aki) ,

defined on T
d. Note that, by (8.58), we have

gN §GN (t)=
NY

k=1

µ
1+ i

2
p

N
cosht,aki

∂
. (8.63)

Also, we consider the set

A :=
N[

k=1
æk=1

{"1a1 + ...+"kak| "1, ...,"k 2 {°1,0,1} , "k 6= 0}
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≥
R

d
¥

AND Ẇl,1
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and the projection PA defined by ÅPA f (n)= bf (n) if n 2 A and ÅPA f (n)= 0 otherwise, for any trigono-
metric polynomial f on T

d. Observe that, (8.59) and (8.63) give

PA (gN §GN) (t)=
NX

k=1

æk

2
p

N
cosht,aki

k°1Y

j=1

µ
1+ i

2
p

N
cos

≠
t,a j

Æ∂
,

and thanks to (8.62),

|PA (gN §GN) (0)|∏
p

N
2º

.

Since,

kgNkL1(Td) =
µ
1+ 1

N

∂N/2
∑
p

e,

we obtain

p
ekPAGNkL1(Td) ∏kgNkL1(Td) kPAGNkL1(Td) ∏ |hgN ,PAGNi|

=|PA (gN §GN) (0)|∏
p

N
2º

.

It remains to observe that,

PAGN (t)=
NX

k=1
æk cosht,aki

k°1Y

j=1

°
1+cos

≠
t,a j

Æ¢
,

which concludes the proof. ⇤

REMARK 8.21. In fact, it is possible to prove Lemma 8.20 without using Lemma 8.18. Indeed,
the sequence (zk)1∑k∑N defined in (8.61) has a quite simple form: the argument of zk is (k°1)µN
(mod2º), where µN := arctan

°
1/2

p
N

¢
. One can choose the sequence (æk)1∑k∑N explicitly: æk = 1,

if °º/4∑ (k°1)µN (mod2º)∑º/4, and æk = 0, otherwise.
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Inversion of the divergence and Hodge systems

Abstract: The main purpose of the present thesis is to study the existence
of solutions of underdetermined Hodge systems in “critical” function spaces. The
simplest Hodge system is the (single) divergence equation:

div u = f , on Rd, (⇤)

where f is a given function and u a vector field. As long as 1 < p < 1, if f is an
Lp compactly supported function with zero integral, the standard elliptic theory
provides a solution u to (⇤) whose gradient belongs to Lp. On the other hand, when
p = 1 or p = 1, there exist functions f in Lp which are compactly supported of
integral zero, and such that (⇤) does not have solutions u with gradient in Lp.
These nonexistence results were proved by Wojciechowski (1999), Bourgain-Brezis
(2003) in the case where p = 1, and by Preiss (1997), McMullen (1998) in the case
where p = 1.
We obtain similar nonexistence results in the case of more general undetermi-

nated Hodge systems of the form

du = f , on Rd, (⇤⇤)

where f is a prescribed closed l-form and u is an (l � 1)-form.

Using a new type of approximation result for functions in critical Sobolev spaces,
Bourgain and Brezis (2007), showed that if f has Ld coe�cients then there exists
an (l � 1)-form u, solution of (⇤⇤), whose coe�cients are bounded and have the
gradient in Ld. Following their idea, Wang, Yung (2014) extended the result to
the more general case of stratified homogeneous groups and later Bousquet, Russ,
Wang, Yung (2017) obtained an Euclidean version for higher regularity Sobolev
spaces. We unify under a common roof the two aforementioned results, obtaining
a version for higher regularity Sobolev spaces in the context of stratified homoge-
neous groups.

We also investigate several other related topics. We study the divergence equa-
tion when the source term is a nonnegative measure, we obtain improved versions
of the nonexistence result of Preiss and McMullen and we analyze the multipliers
of the homogeneous Sobolev spaces Ẇ k,p

�
Rd

�
, when p = 1 or p = 1 and k � 1

is an integer. Aside from these topics, we study a problem concerning minimal
BV -liftings of complex unimodular maps.

Keywords: Hodge systems, critical Sobolev spaces.


