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Résumé

L’épidémiologie évolutive des maladies infectieuses vise à comprendre les interactions entre les processus

épidémiologiques et évolutifs. Cette approche est particulièrement pertinente pour étudier la dynamique

transitoire des maladies émergentes, lorsque les échelles de temps épidémiologiques et évolutives se

chevauchent. Il est par exemple crucial pour comprendre la pandémie de COVID-19 de tenir compte de

l’évolution du virus et de la succession des variants préoccupants. Cette adaptation peut affecter des

traits phénotypiques clés et diminuer notre capacité à contrôler les épidémies. L’avènement des méthodes

de séquençage haut-débit permet aujourd’hui de collecter des données génétiques et de suivre à la fois

spatialement et temporellement la distribution des différentes souches. Dans cette thèse, je combine

épidémiologie évolutive théorique et inférence statistique en utilisant des données épidémiologiques et

génétiques pour estimer les phénotypes des agents pathogènes, dans le domaine de la santé publique et de

la microbiologie expérimentale. Mon travail repose sur l’analyse de modèles déterministes basés sur des

systèmes dynamiques d’équations différentielles ordinaires.

Tout d’abord, je m’intéresse au variant Alpha du SARS-CoV-2 en Angleterre et j’étudie les caractéristiques

phénotypiques à l’origine de son avantage sélectif. Pour cela, je développe une approche en deux étapes basée

sur des modèles épidémiologiques SEIR (Susceptible-Exposed-Infectious-Recovered). Dans une première étape,

avant l’émergence du variant, j’estime l’impact des interventions non pharmaceutiques sur la propagation

du virus. Dans une deuxième étape, après l’émergence du variant, j’exploite la dynamique lente-rapide

des processus éco-évolutifs pour estimer les différences phénotypiques entre les deux lignées virales en

compétition. Je montre que l’avantage sélectif du variant Alpha est davantage dû à un taux de transmission

accru qu’à une période de contagiosité plus longue. Deuxièmement, je m’intéresse à une expérience

d’évolution expérimentale qui suit la dynamique épidémiologique et évolutive du bactériophage tempéré 𝜆
au cours de sa propagation dans une population bactérienne d’Escherichia coli. Je développe ici une nouvelle

approche d’inférence pour estimer les phénotypes viraux à différents stades de l’épidémie - y compris des

traits phénotypiques très difficiles à estimer par ailleurs. Je modélise des processus cachés tels que la lyse et la

lysogénie et j’ajuste ce nouveau modèle à un jeu de données incomplètes. Troisièmement, j’analyse comment

la migration entre des populations d’hôtes peut impacter l’épidémiologie et l’évolution transitoire d’un agent

pathogène. Pour cela, je simule la dynamique évolutive transitoire de la compétition entre deux souches dans

un modèle SIRS. Je montre comment la migration peut biaiser la quantification de la force de la sélection et

fausser les interprétations de l’avantage sélectif réel des variants.

Ces trois projets me permettent de développer de nouveaux outils pour exploiter des jeux de données

donnant une description incomplète (processus cachés et données manquantes) de la dynamique d’agents

pathogènes se propageant et évoluant dans un environnement hétérogène. Je montre notamment que prendre

en compte la structure de l’habitat du pathogène dans différents compartiments peut être essentielle pour

estimer les paramètres des modèles, d’où l’importance de la disponibilité de données stratifiées. Ce travail

souligne comment l’analyse théorique et statistique des dynamiques épidémiologiques et évolutives des

maladies infectieuses peut éclairer notre compréhension de l’évolution phénotypique et de l’adaptation des

agents pathogènes.

Mots clés: Épidémiologie évolutive – Modélisation des maladies infectieuses – Équations différentielles

ordinaires – Inférence statistique – SARS-CoV-2 – Bactériophage





Abstract

Evolutionary epidemiology theory of infectious diseases aims to understand the interplay between epidemio-

logical and evolutionary processes. This approach is particularly useful to study the transient dynamics of

emerging pathogens, when epidemiological and evolutionary timescales overlap. For instance, it is essential

for understanding the COVID-19 pandemic to account for the evolution of the virus and the succession

of variants of concern. This adaptation can affect key phenotypic traits and erode our ability to mitigate

epidemics. The advent of sequencing methods makes it now possible to collect genetic data and track the

distribution of different strains across space and time. In this thesis, I combine evolutionary epidemiology

theory and statistical inference using both epidemiological and genetic data to estimate pathogen phenotypes

in public health and experimental microbiology. Throughout, my work relies on the analysis of deterministic

models based on dynamical systems of ordinary differential equations.

First, I focus on the rise of the SARS-CoV-2 Alpha variant in England and I explore which phenotypic traits

drive its selective advantage. For this purpose, I develop a two-step approach based on SEIR (Susceptible-
Exposed-Infectious-Recovered) epidemiological models. In the first step, before the emergence of the variant,

I estimate the impact of the intensity of non-pharmaceutical interventions on the spread of the virus. In a

second step, after the emergence of the variant, I exploit the slow-fast dynamics of eco-evolutionary processes

to infer the phenotypic differences between the two competing lineages. I show that the selective advantage

of the Alpha variant is likely driven by a higher transmission rate than by a longer infectious period. Second, I

focus on an evolution experiment that tracks the epidemiological and evolutionary dynamics of the temperate

bacteriophage 𝜆 throughout its spread in a bacterial population of Escherichia coli. I develop a new inference

approach to estimate the viral phenotypes at different stages of the epidemic – including phenotypic traits

very difficult to estimate otherwise. I model hidden processes such as lysis and lysogeny and fit this new

model to an incomplete dataset. Third, I analyse how migration between host populations can affect the

transient epidemiology and evolution of the pathogen. To do so, I track the transient evolutionary dynamics

of the competition between two strains in an SIRS model. I show how migration can bias the quantification of

the strength of selection and lead to misinterpretations about the real selective advantage of variants.

These three projects allow me to develop new tools to exploit datasets that give access to an incomplete

description (hidden processes and missing data) of the dynamics of a pathogen spreading and evolving in a

heterogeneous host environment. Notably, I show that accounting for the pathogen structure among different

compartments can be key to estimate model parameters, highlighting the importance of the availability of

stratified data. This work emphasizes how the theoretical and statistical analysis of the joint epidemiological

and evolutionary dynamics of infectious diseases can provide insights on the phenotypic evolution driving

pathogen adaptation.

Keywords: Evolutionary epidemiology – Infectious diseases modelling – Ordinary differential equations –

Statistical inference – SARS-CoV-2 – Bacteriophage
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General introduction 1

1.1 Preamble . . . . . . . . . . 3

1.2 On the evolutionary epi-

demiology of infectious

diseases . . . . . . . . . . . 7

1.3 Statistical inference . . . 22

1.4 Objectives of this thesis . 34

1.1 Preamble

Late 2019, less than two years before the start of this thesis, the SARS-

CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) emerged

in the market of Wuhan, Hubei Province, China [2]

[2]: Lu et al. (2020), ‘Outbreak of pneu-

monia of unknown etiology in Wuhan,

China: The mystery and the miracle’

. The respiratory

disease transmitted by the virus, namely COVID-19 (Coronavirus Dis-

ease 2019), spread rapidly and worldwide. By March 2020, COVID-19

reached at least 114 countries and was categorized as a pandemic by

the World Health Organization [3]

[3]: WHO (2020), ‘WHO Director-

General’s opening remarks at the media

briefing on COVID-19 - 11 March 2020’

. Understanding and predicting the

epidemiological dynamics of COVID-19 was therefore a major challenge

for public health; epidemiologists urgently needed to understand its

transmission dynamics, assess the potential burden of the pandemic,

and design strategies to mitigate its spread. Mathematical modelling has

been a critical tool in this effort.

A model is a simplified representation of the reality: many details of the

underlying processes driving the dynamics of complex systems have

to be approximated (i.e., factors considered to be less important are

neglected). While theoretical approaches have often been underrated

compared to empirical approaches [4], mathematical models are really

useful and powerful tools that allow to formalize, analyse, understand

and provide qualitative or quantitative predictions about biological

processes and support decision-making. Models are typically either

made to improve our understanding of complex systems or to make

predictions. The study of infectious disease epidemiology has always

been closely intertwined with mathematical modelling. In the second

half of the 18th century, Bernoulli developed an epidemiological model

to analyse data of smallpox morbidity and mortality and investigated

the benefit of pathogen inoculation [5]. Late 1800 early 1900, Ronald

Ross (Nobel Prize 1902, Physiology or Medicine) proposed the first

mathematical models of malaria transmission and made pioneering

contributions to quantitative theory in epidemiology, which he coined

a priori pathometry. In particular, he demonstrated that malaria was

transmitted through bites of infected Anopheles mosquitoes (vector-borne

disease) and proposed intervention strategies to control the disease

[6–8]. In 1927, Kermack and McKendrick published an article that has

popularized the use of deterministic compartmental models to simulate

epidemiological dynamics [9]. These compartmental models have since

been used extensively, and in particular for the COVID-19 pandemic.

Moreover, mathematical models can be fitted to data (e.g., reported

number of positive cases or deaths) to estimate key parameters, such

as the mean number of secondary infections – estimated for instance

at around 2.9 (95% confidence interval: 2.81 to 3.01) at the beginning

of the epidemic of COVID-19 in France [10]. Mathematical models have

also been used to forecast the future dynamics of COVID-19 in different

scenarios – for example with different control strategies –, notably to

anticipate saturation in health care demand in hospitals (e.g., [11, 12]).
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Figure 1.1: Epidemiology and evolution of SARS-CoV-2 across France, the UK and Canada. I use publicly available data from

2020-08-01 to 2023-09-01. (A) Epidemiology: weekly new confirmed COVID-19 cases (WHO data, downloaded from Our World in Data);

(B) Evolution: relative frequencies of several variants of concern (metadata source: 4,020,732 sequences available on GISAID).
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At the onset of the pandemic, the evolutionary potential of SARS-CoV-

2 was thought to be very limited [13, 14]. Evolutionary dynamics are

generally assumed to occur on timescales that are much slower than

epidemiological dynamics. Yet, the D614G mutation (spike protein sub-

stitution, likely to increase transmission) emerged during the early phase

of the pandemic (around May 2020) and became the dominant strain of

the COVID-19 pandemic [15–17]. The virus was mutating away from the

ancestral strain but those mutations were first considered to be either

detrimental or neutral for viral fitness. The rise of some mutations, like

D614G, could result from the influence of demographic stochasticity

[18]. Later in 2020, the SARS-CoV-2 Alpha variant (Pango lineage B.1.1.7)

emerged in England [19, 20]. The independent increase in frequency of

this variant in different countries (i.e., demographic stochasticity cannot

explain this parallel evolution, see Figure 1.1) changed dramatically the

way evolution was considered in the COVID-19 pandemic. Viral adapta-

tion (i.e., when evolution is driven by natural selection) was suddenly

becoming an important factor that needed to be monitored and many

countries started to sequence the virus after the rise of the Alpha variant.

Alpha was categorized as variant of concern (VOC) – that is a variant with

a selective advantage – and was the first of a succession of VOCs that suc-

cessively emerged and replaced the previous lineage – e.g., Delta (Pango

lineage B.1.617.2), or Omicron (first Pango lineage B.1.1.529) – (Figure 1.1,

using sequences data from GISAID [21]). The COVID-19 pandemic thus

illustrates how crucial it is to characterize pathogen phenotypes, to track

https://github.com/owid/covid-19-data/tree/master/public/data/cases_deaths
https://gisaid.org/
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pathogen phenotypic evolution and to understand the underpinnings of

such evolution. Yet, while statistical approaches are really common in

epidemiology, coupling evolution and epidemiology has generally been

limited to theoretical approaches.

In this thesis, I combine a theoretical approach based on dynamical

mechanistic models and a statistical approach to estimate model param-

eters, such as key phenotypic traits of pathogens, in public health and

experimental microbiology. Figure 1.2 is a schematic of the interactions

between models and data. Data and observations are used qualitatively

to tailor a dynamical model to the biology of a particular host-pathogen

system, tracking the interplay between epidemiology and evolution.

Through theoretical analyses and numerical simulations, models provide

useful insights to understand the evolutionary epidemiology of infectious

diseases, and even provide theoretical predictions. The confrontation

between demographic and genetic data and the outcomes of models

can qualitatively confirm theoretical predictions. More quantitatively,

statistical models built from dynamical models can be fitted to time series

data to estimate model parameters and to make model comparisons.

Combining effectively theoretical and statistical approaches is an iterative

process, back and forth between models and data. In this chapter, I

begin with dynamical models and introduce the field of the evolutionary

epidemiology of infectious diseases. Next, I focus on data and statistical

inference. In particular, I present some concepts and methods in statistical

inference that I used in this thesis to estimate model parameters. As

a guiding thread throughout these two parts, I frequently rely on a

deterministic epidemic model to illustrate the different concepts – model

notations are summarized in Table 1.1. Lastly, I present in more details

the objectives of my research projects.

Epidemiology Evolution

Genetics
(strain

frequencies)

Demography
(densities)

Construction

Understanding/
prediction

Statistical
inference

Validation

Dynamical models

Statistical models

Demography
(densities)

ModelsData

Figure 1.2: Schematic of the relationship between models and data in evolutionary epidemiology. Mathematical models in evolutionary

epidemiology are simplified and formalised representations of the coupled epidemiological and evolutionary processes; epidemiological

and evolutionary feedback shape both epidemiological and evolutionary dynamics. Through theoretical analyses and numerical

simulations, dynamical/mechanistic models are useful to understand the evolutionary epidemiology of infectious diseases and

yield theoretical predictions on both the demography and the evolution of the system. Such predictions can be (in)validated by

experimental/empirical data. Data guide modelling choices for a particular host-pathogen system. Fitting statistical models to the data

enables to estimate parameter values. Here, I use a combination of demographic data (densities) and genetic data (strain frequencies of

the pathogen).
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Table 1.1: Notations. The subscripts 𝑤 and 𝑚 refer to the wildtype strain and the mutant strain (or variant), respectively. Overlines refer

to mean values of life-history traits across all genotypes.

Term Definition

𝑁 Host population

𝑆 Susceptible hosts

𝐼 , 𝐼𝑤 , 𝐼𝑚 Infected (and infectious) hosts

𝑅 Recovered (and immune) hosts

𝑞 Frequency of the variant

𝛽, 𝛽, 𝛽𝑤 , 𝛽𝑚 Per capita transmission rates; 𝛽 = (1 − 𝑞)𝛽𝑤 + 𝑞 𝛽𝑚
𝛾, 𝛾, 𝛾𝑤 , 𝛾𝑚 Per capita recovery rates; 𝛾 = (1 − 𝑞)𝛾𝑤 + 𝑞 𝛾𝑚
𝛼, 𝛼, 𝛼𝑤 , 𝛼𝑚 Virulence (per capita pathogen-induced mortality rates); 𝛼 = (1 − 𝑞)𝛼𝑤 + 𝑞 𝛼𝑚

Δ𝛽, Δ𝛾, Δ𝛼 Phenotypic differences between the variant and the wildtype;

Δ𝛽 = 𝛽𝑚 − 𝛽𝑤 ,

Δ𝛾 = 𝛾𝑚 − 𝛾𝑤 ,

Δ𝛼 = 𝛼𝑚 − 𝛼𝑤

𝜆 Recruitment of susceptible hosts (births, net migration)

𝛿 Per capita natural mortality rate

𝜁 Per capita rate of immunity waning

𝑟, 𝑟, 𝑟𝑤 , 𝑟𝑚 Growth rates of the epidemic (absolute pathogen fitness)

R0 Basic reproduction number of the pathogen

R Effective reproduction number of the pathogen

𝐺 Generation interval

𝐺 Mean generation interval

S Selection gradient (relative fitness) of the variant (rate at which it grows or declines

in frequency on the logit scale)

𝜌 Reporting rate of infected hosts

𝜃 Parameter(s) of interest to estimate

𝜃̂ Estimator/estimation of the parameter(s) of interest

Θ Space of the parameter(s) of interest

𝜎 Nuisance parameter(s)

𝜎̂ Estimator/estimation of the nuisance parameter(s)

𝑦1:𝑛 Data (sequence of 𝑛 observations)

L Likelihood



1.2 On the evolutionary epidemiology of infectious diseases 7

[22]: Lion et al. (2023), ‘Extending eco-

evolutionary theory with oligomorphic

dynamics’

[23]: Geritz et al. (1998), ‘Evolutionar-

ily singular strategies and the adaptive

growth and branching of the evolution-

ary tree’

[24]: Dieckmann (2002), ‘Adaptive dy-

namics of pathogen-host interactions’

[9]: Kermack et al. (1927), ‘A contribution

to the mathematical theory of epidemics’

[25]: Anderson et al. (1991), Infectious dis-
eases of humans: dynamics and control

1.2 On the evolutionary epidemiology of

infectious diseases

Evolutionary epidemiology theory of infectious diseases aims to un-

derstand and disentangle the interplay between epidemiological and

evolutionary processes that are acting upon host-pathogen systems. In

that respect, evolutionary epidemiology theory focuses on the joint tem-

poral dynamics of epidemiological densities and of phenotypic traits’

distributions; it investigates not only their long-term dynamics but also

their transient (short-term) dynamics, especially when epidemiological

and evolutionary timescales overlap (quantitative genetics approach

[22]). Crucially, the phenotypic evolution of pathogens is shaped by their

environment which, at the population level and from the point of view

of the pathogen, is the availability and the quality of susceptible hosts.

It is therefore important to take epidemiological feedback into account

and I thus start by presenting some general concepts in epidemiology

before introducing evolution in a second step. Next, I consider a poly-

morphic pathogen population where two strains with distinct strategies

(phenotypes) co-circulate and I show how the classical framework of

adaptive dynamics can be used to identify the long-term outcome of

the competition. Under the assumption that mutations are rare, this

framework relies on decoupling the epidemiological and evolutionary

dynamics : a variant only emerges when the previous strains has reached

an endemic equilibrium [23, 24]. This is not always the case however,

and I later show how an evolutionary epidemiology framework enables

to track transient dynamics.

1.2.1 Epidemiology: example with a monomorphic SIRS

model

Epidemiological dynamics

Modelling the epidemiological dynamics of a given infectious disease

is most frequently tackled through the framework of deterministic com-

partmental models, as popularized by [9]. This class of epidemic models

assumes an homogeneous-mixing host population (mean-field approach),

stratified between different compartments (or state variables) depending

on their epidemiological status. For instance, in the famous SIR or SIRS

model, compartments are: 𝑆 (susceptible), 𝐼 (infected/infectious) and

𝑅 (recovered, and immune). With such between-host (in contrast to

within-host) models, one track the density of hosts over time in each

compartment but not explicitly that of pathogens [25]. Furthermore,

unlike individual-based models, dynamical models do not rely on an

explicit tracking of each individual in the system but only of the density

of individuals in each compartment.

In the following, I use a version of an SIRS model in continuous time

– a system of ordinary differential equations (ODEs) – for illustration

(Figure 1.3). In contrast with the SIR model – the flagship model of

mathematical epidemiology –, in which recovered hosts acquire lifelong

immunity against reinfection, an SIRS model allows for the recovered

hosts to be immune only temporarily (waning of immunity) and to return
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𝑆 𝐼 𝑅
𝜆 𝛽𝐼/𝑁 𝛾

𝜁

𝛿 𝛿 + 𝛼 𝛿

Figure 1.3: Flow chart of an SIRS model. The host population (with total density 𝑁) is divided between susceptible (𝑆), infected and

infectious (𝐼) and recovered (𝑅) hosts. Each epidemiological status, or compartment, is represented by circles and arrows indicate

transitions between compartments. Parameters governing each transition are reported with the corresponding arrow. New susceptible

hosts are recruited with a constant influx 𝜆 and natural death occurs in all compartments at a per capita rate 𝛿; 𝛽 is the the effective, direct

and horizontal per capita transmission rate; infected hosts recover at a per capita rate 𝛾 and become fully immune or die of the disease at a

per capita rate 𝛼 (virulence); immunity wanes at a per capita rate 𝜁.

[26]: Levin et al. (2021), ‘Waning immune

humoral response to BNT162b2 Covid-19

vaccine over 6 months’

[27]: UKHSA (2022), COVID-19 vaccine
surveillance report – Week 16
[28]: Carabelli et al. (2023), ‘SARS-CoV-2

variant biology: immune escape, trans-

mission and fitness’

[29]: McCallum et al. (2001), ‘How should

pathogen transmission be modelled?’

at some point to the 𝑆 compartment. Hence, the SIR model is a special

case of the more general SIRS model. The second motivation to use an

SIRS model here is that immunity waning is an important feature of

many infectious diseases, such as COVID-19 [26–28] which has been a

strong focus of this thesis. Throughout, the density of a compartment 𝑋

at the current time 𝑡 is denoted 𝑋(𝑡), for example the density of the 𝑆

compartment at a given time is 𝑆(𝑡). 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) is the total

size of the host population. In terms of demography, new susceptible

hosts are recruited with a constant influx𝜆 (births, migration) and natural

death occurs in all compartments at a per capita rate 𝛿. Transmission is

assumed to be horizontal — i.e., no parent-progeny relationship – and

to happen through direct contacts between individuals. Let 𝛽 be the

effective per capita transmission rate, a product between the host contact

rate and the probability of transmission per contact with an infectious

individual. The force of infection – i.e., the per capita infection rate of

susceptible hosts – is here given by 𝛽𝐼(𝑡)/𝑁(𝑡), where the division by

𝑁(𝑡) indicates that transmission is frequency-dependant rather than

density-dependant [29]. Infected hosts either recover at a per capita rate 𝛾
or die at a per capita rate 𝛼. I will then refer to 𝛼 as the virulence, defined

in theoretical biology as the additional (pathogen-induced) mortality

rate. This clarification is important as the term ’virulence’ have different

meanings across fields – e.g,. degree of ability to infect, pathogen-induced

damages, notably in plant pathology. Recovered hosts are fully immune

to the disease but may become susceptible again at a per capita rate

𝜁 governing immunity waning. These epidemiological trajectories are

modeled using the following system of non-linear ODEs where the dot

refers to differentiation with respect to time:
¤𝑆(𝑡) = 𝜆 − 𝛽𝑆(𝑡) 𝐼(𝑡)

𝑁(𝑡) − 𝛿𝑆(𝑡) + 𝜁𝑅(𝑡)

¤𝐼(𝑡) =

(
𝛽
𝑆(𝑡)
𝑁(𝑡) − 𝛿 − 𝛼 − 𝛾

)
𝐼(𝑡)

¤𝑅(𝑡) = 𝛾𝐼(𝑡) − 𝛿𝑅(𝑡) − 𝜁𝑅(𝑡)

(1.1)
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Using ODEs, sojourn times are implicitly assumed to be exponentially

distributed [30], and thus Markovian or memoryless [31, 32]. In (1.1),

the generation interval 𝐺 – i.e., the period of time between a primary

infection and one of its secondary infections [33] – is thereby exponentially

distributed:

𝐺 ∼ E
(
𝛿 + 𝛼 + 𝛾

)
,

where Erepresents the exponential distribution; and the mean generation

interval, denoted 𝐺, is here equal to the inverse of the rate of leaving the

infected compartment [30]:

𝐺 =
1

𝛿 + 𝛼 + 𝛾
(1.2)

In this model, the duration of infectiousness (sojourn time in 𝐼) follows the

same distribution as that of the generation interval 𝐺. The dynamics of

symptoms is not modelled in (1.1) but note that it is often more frequent to

know the dates of symptom onset rather than the actual dates of infection.

Thus, the serial interval – i.e., the amount of time elapsed between the

symptom onset of a primary infection and that of one of its secondary

infections – is often used instead of the generation interval to estimate

the mean 𝐺.

The term between parentheses in the expression of
¤𝐼(𝑡) in (1.1) is the

(Malthusian) growth rate at time 𝑡 of the epidemic, 𝑟(𝑡):

𝑟(𝑡) = 𝛽
𝑆(𝑡)
𝑁(𝑡) − 𝛿 − 𝛼 − 𝛾, (1.3)

which measures the speed of the infection at the population level [34].

Here, the transmission rate is assumed to be constant over time but the

model can be readily extended to integrate time-varying changes in 𝛽
such as seasonal forcing or disease control measures.

Emergence and equilibrium analysis

In the absence of the pathogen, the system (1.1) converges towards a

disease-free equilibrium where 𝑆(∞) = 𝜆/𝛿. Alternatively, when a small

quantity of the pathogen is introduced (at 𝑡 = 0 for simplicity) into the

otherwise fully susceptible population (𝑆(0)/𝑁(0) ≈ 1), the fate of this

host-pathogen system is governed by the sign of 𝑟(0) = 𝛽 − (𝛿 + 𝛼 + 𝛾).
When 𝑟(0) < 0, infections cannot reproduce themselves; therefore the

pathogen goes extinct and the host population converges to the previous

disease-free equilibrium. In contrast, when 𝑟(0) > 0, an outbreak breaks

out and eventually stabilises to the following epidemiological attractor

(endemic equilibrium):

Notation reminder

• 𝑆: susceptible hosts

• 𝐼: infected/infectious hosts

• 𝑅: recovered hosts

• 𝛽: transmission rate

• 𝛾: recovery rate

• 𝛼: virulence

• 𝜆: influx of 𝑆

• 𝛿: natural mortality rate

• 𝜁: rate of immunity waning



𝑆(∞) =
𝜆(𝛿 + 𝛾 + 𝜁)(𝛿 + 𝛼 + 𝛾)

(𝛽 − 𝛼)(𝛿𝛾 + (𝛿 + 𝛼)(𝛿 + 𝜁)) − 𝜁𝛼𝛾

𝐼(∞) =
𝜆(𝛿 + 𝜁)

(
𝛽 − (𝛿 + 𝛼 + 𝛾)

)
(𝛽 − 𝛼)(𝛿𝛾 + (𝛿 + 𝛼)(𝛿 + 𝜁)) − 𝜁𝛼𝛾

𝑅(∞) =
𝜆𝛾

(
𝛽 − (𝛿 + 𝛼 + 𝛾)

)
(𝛽 − 𝛼)(𝛿𝛾 + (𝛿 + 𝛼)(𝛿 + 𝜁)) − 𝜁𝛼𝛾

(1.4)
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The threshold criterion 𝑟(0) > 1 is equivalent to:

R0 =
𝛽

𝛿 + 𝛼 + 𝛾
> 1, (1.5)

where R0 is the basic reproduction number of the pathogen. More intu-

itively, R0 corresponds to the expected number of secondary infections

caused by one primary infected individual (index case) in an otherwise

fully susceptible population [25, 35–37]. The basic reproduction number

provides insights on the potential spread of an emerging epidemic and

plays thus a key role in infectious disease epidemiology. Unlike 𝑟(𝑡),
however, R0 is not a rate but a dimensionless metric; therefore, it does

not tell us anything about the speed of the epidemic.

Transient state of the epidemic

Notation reminder

• R0: basic reproduction number

• R: effective reproduction number

• 𝑟: growth rate of the epidemic

• 𝐺: mean generation interval

Through the course of an outbreak, the pool of susceptible hosts decreases

and R0 becomes a poor predictor of the fate of the epidemic. Indeed, the

success or failure of the pathogen is no longer governed by its performance

in the initial (disease-free) environment. Instead, one may use the effective

reproduction number R(𝑡) that accounts for the current state of the

epidemic and especially the remaining availability of susceptible hosts:

R(𝑡) = R0

𝑆(𝑡)
𝑁(𝑡) . (1.6)

R(𝑡) informs us on the strength of an epidemic [34, 38]. Equation (1.6)

yields the following relationship between R(𝑡), the growth rate of the

epidemic 𝑟(𝑡) and the mean generation interval 𝐺 [25, 30]:

R(𝑡) = 1 + 𝐺 × 𝑟(𝑡). (1.7)

Note that this equation only holds for an exponentially distributed

generation interval.

Reproduction numbers are among the most estimated quantities during

real-time epidemic monitoring, particularly with the intention to design

and assess control interventions that aim to reduce the spread of the

pathogen – i.e., achieving R(𝑡) < 1. Yet, reproduction numbers can be

difficult to estimate. Secondary infections can be counted using contact

tracing data but this would always yield an underestimation of R(𝑡). The

speed of the epidemic 𝑟(𝑡) is also a key metric [34, 38]. Estimating 𝑟(𝑡)
– and in particular its initial value 𝑟(0), during the exponential growth

phase of the epidemic – is typically performed from incidence time

series and the generation interval distribution from contact tracing data

[34]. R(𝑡) can be estimated from previous inference of 𝑟(𝑡) and of the

generation interval distribution using a moment generating function

approach, in particular to deal with other distributions for the generation

interval [30].

When the proportion of susceptible hosts drops to the critical value

𝑆(𝑡)/𝑁(𝑡) = 1/R0, the epidemic reaches its peak before starting to decay

(R(𝑡) < 1). This is the phenomenon under the notion of herd immunity,

the immunity level that leads to the decay of the epidemic (here, 1−1/R0),

as introduced by [25]. The density of hosts infected after the peak has
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passed is called the overshoot of the epidemic [39]. Such a decline in the

outbreak happens when a large enough fraction of the contacts of an

infected host are immune to the disease. As shown with equations (1.4),

the pathogen may however remain in the population without dying out

in the long-term, circulating endemically, as long as susceptible hosts are

still introduced in the system – e.g., births, net migration or immunity

waning – [40].

Figure 1.4 shows an example of simulation of system (1.1) (parameter

values: 𝜆 = 10, 𝛿 = 0.1, 𝛽 = 0.7, 𝛾 = 0.09, 𝛼 = 0.01 and 𝜁 = 0.001)

and illustrates several of the epidemiological elements presented above.

Integration is solved numerically with the function lsoda from the R

package deSolve [41]

[41]: Soetaert et al. (2010), ‘Solving differ-

ential equations in R: package deSolve’
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Figure 1.4: Simulation of the epidemiological dynamics of an SIRS model. I use model (1.1) with parameter values: 𝜆 = 10, 𝛿 = 0.1,

𝛽 = 0.7, 𝛾 = 0.09, 𝛼 = 0.01 and 𝜁 = 0.001. Prior to the introduction of the pathogen (grey background), the fully susceptible host

population grows towards its disease free-equilibrium (top horizontal dashed line). At 𝑡 = 0, the pathogen is introduced at very low

frequency into the population (𝐼(0) = 0.1). An epidemic then arises (basic reproduction number R0 = 3.5 > 1), reaches a peak (red

vertical line) and eventually stabilizes at an endemic equilibrium (three lowest horizontal dashed lines). The small chart shows the

dynamics of the effective reproduction number from 𝑡 = 0 – when the effective reproduction number matches R0. The epidemic starts to

decline when the population reaches herd immunity (the effective reproduction number falls below the threshold value 1).

1.2.2 Evolution

In this section, I begin with a short overview of the different forces

driving evolution. I then focus on phenotypic evolution. In particular,

introducing pathogen polymorphism (i.e., the coexistence of at least two

variants) in the deterministic SIRS model (1.1), I present and discuss the

frameworks of adaptive dynamics and evolutionary epidemiology.
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Evolutionary forces

Evolution corresponds to a gradual change in heritable characteristics

over generations in a population. Four evolutionary forces are discussed

here: (i) mutation, (ii) natural selection, (iii) genetic drift and (iv) migra-

tion/dispersal.

Mutations are random and heritable alterations of the genetic informa-

tion (DNA or RNA nucleotide sequence within a genome). Mutation

rates vary widely across species – several orders of magnitude, between

around 10
−11

and 10
−4

base substitutions per site per generation [42] –

but vary also between strains of the same species (e.g., ’mutator’ bacte-

ria have an increased adaptability to rapidly changing environmental

pressures [43]). In particular, bacteria and viruses may exhibit really

high mutation rates [42]. Mutation rates are generally higher for RNA

genomes compared to DNA genomes, and higher for single-stranded

genomes compared to double-stranded genomes [44]. Mutation rate also

depends on the existence and the efficacy of proofreading and repair

mechanisms (note that coronaviruses exhibit proofreading activities [45]).

If mutations may arise spontaneously, the exposure to environmental

mutagens – e.g. physical mutagens, such as UV, X rays or radioactivity,

chemicals such as alkylating or DNA intercalating agents – can increase

(sometimes dramatically) the background level of mutations. Crucially,

de novo mutations are the ultimate source of genetic variation that fuels

evolution. Different genotypes may lead to the same phenotype, as many

mutations are neutral or nearly neutral [46] (e.g., owing to genetic code

redundancy). Some mutations, on the other hand, result in another pheno-

type, associated with either a beneficial or a detrimental effect, increasing

or decreasing the ability to survive and/or reproduce, respectively. Note

that a mutation may affect different traits (pleiotropic mutation).

Operating upon preexisting polymorphism, natural selection is a sort-

ing mechanism driving adaptive evolution according to the strength of

selective pressures. It corresponds to the differential survival and/or

reproduction of phenotypes over generations [47]. Hence, natural se-

lection is a directional force that increases the frequency of adaptive

(beneficial) mutations in the population and purges deleterious ones.

Crucially, survival and reproduction depends on the environment, so

that natural selection is also environment-dependant. From the point of

view of the pathogen, hosts represent the environment. A population

experiencing a given environment is sometimes expected to go extinct;

however, an evolutionary rescue may prevent extinction if adaptation is

faster [48, 49].

In contrast to natural selection, genetic drift is a stochastic process for

which changes in the distribution of alleles in the population arise by

chance rather than because of selective differences. For instance, for

infectious diseases, such stochasticity may be introduced by superspread-

ers – i.e., individuals who infect a disproportionately large number of

secondary cases – [50]. Without any deterministic force, allele frequencies

undergo random walk processes since genes are randomly sampled from

one generation to the next [51]. Populations with greater effective sizes are

less subject to genetic drift than populations with smaller effective sizes

(a theoretical population of infinite effective size is not affected at all by

genetic drift). Small effective sizes are notably found in populations that
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have gone through genetic bottlenecks. This is commonly experienced

by pathogens upon transmission, as only a small amount of the genetic

diversity found in an infectious host is transmitted to a susceptible host

[50]. Like natural selection, genetic drift leads to the loss or the fixation

of alleles and thus reduces the genetic diversity. This is particularly true

for the loss of rare mutations, which, even if adaptive, are likely to be

discarded through genetic drift. Genetic drift drives the evolution of

alleles regardless of their potential adaptive values [52] and sometimes

leads to the fixation of deleterious alleles, countering natural selection.

While the first three evolutionary forces (mutation, natural selection

and genetic drift) come into play in both open and closed populations,

migration requires spatial heterogeneity. Gene flows tend to homogenize

allele distributions between interconnected populations.

In this thesis, I focus on pathogen evolution and leave aside the evolution

of the host. In particular, I focus on the competition between two strains

(i.e., two phenotypes). De novo mutations are assumed not to occur, or

at least not to lead to any other phenotype. Under the assumption that

the two populations have both large sizes, I only use a deterministic

framework to study the effect of natural selection (or of migration) and I

thus neglect the effect of demographic stochasticity (genetic drift).

Adaptive dynamics in an SIRS model

The ability for pathogens to survive and reproduce depends on numerous

phenotypic, or life-history, traits such as transmission, virulence, recovery

or immunity escape [53]. In the long term, the evolutionary stable strategy

(ESS) corresponds to the fittest phenotype, i.e., a strategy that cannot be

invaded by any other variant. The ESS wins the evolutionary race and is

a kind of evolutionary trap. Finding this singular strategy is classically

tackled using an adaptive dynamics approach.

Evolutionary invasion analysis Back to our previous monomorphic

SIRS model (1.1), I now introduce genetic structure by modelling a

polymorphic pathogen population. In particular, I track the competition

between two strains: (i) the wildtype strain – hereafter denoted with

the letter 𝑤 – vs. (ii) a mutant strain, or variant – hereafter denoted

by the letter 𝑚 – (Figure 1.5). The host population, on the other hand,

remains monomorphic and I only focus on pathogen evolution. The

infected stage 𝐼 is thus divided between hosts infected by the wildtype

(𝐼𝑤) and hosts infected by the variant (𝐼𝑚), such that 𝐼(𝑡) = 𝐼𝑤(𝑡) + 𝐼𝑚(𝑡).
I assume that the variant may differ phenotypically from the wildtype

in its transmission rate 𝛽𝑚 = 𝛽𝑤 + Δ𝛽, its virulence 𝛼𝑚 = 𝛼𝑤 + Δ𝛼 or its

recovery rate 𝛾𝑚 = 𝛾𝑤 + Δ𝛾. I assume that over-infections – including

co-infections with both strains – do not occur and I also assume full

cross-immunity – i.e., recovery from one strain confers immunity to the

other. The temporal dynamics of hosts infected by strain 𝑘 (𝑘 ∈ {𝑤, 𝑚})
is thus given by:

¤𝐼𝑘(𝑡) =
(
𝛽𝑘

𝑆(𝑡)
𝑁(𝑡) − 𝛿 − 𝛼𝑘 − 𝛾𝑘

)
︸                         ︷︷                         ︸

𝑟𝑘 (𝑡)

𝐼𝑘(𝑡), (1.8)
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Figure 1.5: Flow chart of an SIRS

model with two competitive pathogenic

strains. I extend Figure 1.3 to two

pathogenic strains: the subscript 𝑤 de-

notes the wildtype strain while the sub-

script 𝑚 denotes the mutant strain (or

variant). In terms of phenotypes, the

wildtype and the variant may differ

in transmission (𝛽𝑤 ≠ 𝛽𝑚 ), recovery

(𝛾𝑤 ≠ 𝛾𝑚 ) or virulence (𝛼𝑤 ≠ 𝛼𝑚 ).
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with 𝑟𝑘(𝑡), the growth rate of strain 𝑘. Crucially, 𝑟𝑘(𝑡) is the absolute

fitness of strain 𝑘, which depends on both the traits (𝛽𝑘 , 𝛿, 𝛼𝑘 and 𝛾𝑘)

and the environment (the availability of susceptible hosts 𝑆(𝑡)/𝑁(𝑡)).

To simplify the analysis, the adaptive dynamics approach assumes

that mutations are rare, so that a new variant only emerges after the

previously established strain has stabilized to its epidemiological attractor

[22–24]. This framework relies thus on a separation of timescale between

epidemiological dynamics (fast) and evolutionary dynamics (slow). To

determine whether or not the variant can invade the resident population

(wildtype), I compute the invasion fitness of the variant, that is the growth

rate of the variant 𝑟𝑚 in the environment determined by the resident

strain [54]. Setting equation (1.8) (with 𝑘 = 𝑤) to 0 yields the proportion

of susceptible hosts at the endemic equilibrium of the wildtype strain

𝑤:

𝑆(𝑡)
𝑁(𝑡) =

𝛿 + 𝛼𝑤 + 𝛾𝑤
𝛽𝑤

=
1

R0,𝑤

For the variant to invade the resident population, its invasion fitness

must be positive:

𝑟𝑚

���
𝑆
𝑁 = 1

R
0,𝑤

=
𝛽𝑚
R0,𝑤

− 𝛿 − 𝛼𝑚 − 𝛾𝑚︸                                      ︷︷                                      ︸
Invasion fitness

> 0.

Notation reminder

• 𝑆/𝑁 : fraction of susceptible hosts

• 𝛽𝑤 , 𝛽𝑤 : transmission rates

• 𝛾𝑤 , 𝛾𝑚 : recovery rates

• 𝛼𝑤 , 𝛼𝑚 : virulence

• 𝛿: natural mortality rate

• R0,𝑤 , R0,𝑚 : basic reproduction

numbers

After some rearrangements, this invasion fitness criterion is here equiva-

lent to:

R0,𝑚 > R0,𝑤 ,

where R0,𝑤 and R0,𝑚 are the basic reproduction numbers of the wildtype

and mutant strain, respectively. Finding analytically the best strategy in

this model boils down to use the R0 maximization criterion. Equation
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(1.5) shows that the basic reproduction number is an increasing function

of the transmission rate (𝛽) and a decreasing function of the rates of

leaving the infectious state (𝛼 and 𝛾, for the traits of the pathogen).

Higher levels of transmission is beneficial for the pathogen, allowing it

to spread more rapidly in the population; higher levels of virulence is

detrimental for both the pathogen and its host (as the pathogen does

not survive if the host dies); and higher recovery rates – and thus, lower

durations of infectiousness – decrease the number of opportunities of

pathogen transmissions. Therefore, the best strategy for the pathogen is

to remain in the infectious state as long as possible (𝛼 + 𝛾 → 0
+
) – with

benign coexistence as the expected long-term evolutionary endpoint –

coupled with the highest possible transmission rate (𝛽 → +∞) (Figure

1.6).

Figure 1.6: Landscape of the basic repro-

duction number in an SIRS model. I use

the expression of R0 from equation (1.5).

The dotted line indicate R0 = 1, below

which all pathogenic strains go extinct.

As the environmental feedback – the dy-

namics of susceptible hosts (resource) – is

one-dimensional, adaptation is expected

to maximize R0, that is pathogens are

expected to evolve towards higher trans-

mission rates and lower rates of leaving

the infectious state.

Note however that the R0 maximization criterion is rather the exception

than the rule: it holds when the environment is very simple and the envi-

ronmental feedback (here, the dynamics of 𝑆(𝑡)) only one-dimensional.

In more complex models, however, evolution hardly maximizes R0 and

computing the invasion fitness is then required [54]. More broadly, the

strain that survives in the long-term would be the one that tolerates the

worst environment (pessimization principle) [55]; this perspective is thus

that evolution minimizes 𝑆(𝑡) (single resource) to the lowest density for

which the disease still persist [54].

On another matter, many observed examples of virulence maintenance

has increasingly challenged the old wisdom that predicts that pathogens

evolve inevitably towards avirulence [56]. These observations may be

explained by relaxing the assumption that all life-history traits vary

independently.

Phenotypic trade-off Phenotypic traits were previously assumed to

vary independently from each other. However, many traits are not

independent, i.e., positive or negative correlations exist between them. A

famous example is the transmission-virulence trade-off. Based on the idea

that, to be transmitted, pathogens need to exploit – and therefore harm –

their host, this hypothesis suggests a positive covariance between these
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two traits [35]. Hence, selection for higher transmission can indirectly

select for higher virulence [57]. This trade-off has been an alternative

to the avirulence theory to explain the selection for intermediate levels

of virulence and has been supported by several empirical studies [56].

In theoretical biology, the transmission-virulence trade-off is generally

modeled by assuming that transmission is a monotonous increasing and

concave, or saturating, function of virulence (see example in Figure 1.7).

Trade-off functions add biological constraints and reduce therefore the

set of feasible phenotypic combinations. Testing empirically the trade-off

hypothesis may however turn out to be really complicated, and multiple

trade-offs may exist [58].

Figure 1.7: Trade-off between transmis-

sion and virulence. The transmission-

virulence trade-off corresponds to the

boundary (grey line) of the set of pos-

sible phenotypic combinations (shaded

area). I use here the following concave

function: 𝛽(𝛼) = 10

√
𝛼; fixed parameter

values are: 𝛿 = 0.1 and 𝛾 = 0.1. Equation

(1.9) gives a useful geometric representa-

tion of the evolutionary stable strategy

(ESS) which can be found graphically

with the tangent of the curve that passes

through the coordinates (− (𝛿 + 𝛾) ; 0)
(dashed line).
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Back to our previous example (1.8), I now assume, for the sake of

simplicity, that the variant and the wildtype strains only differ in terms of

transmission and virulence (𝛾𝑚 = 𝛾𝑤 = 𝛾) and that a trade-off function

between 𝛽 and 𝛼 exists. The strategy maximizing R0 (𝛼) must verify:

dR0 (𝛼)
d𝛼

=
d

d𝛼

(
𝛽 (𝛼)

𝛿 + 𝛼 + 𝛾

)
= 0 and

d
2R0 (𝛼)
d𝛼2

< 0,

which yields:

d𝛽 (𝛼)
d𝛼

=
𝛽 (𝛼)

𝛿 + 𝛼 + 𝛾
. (1.9)

This expression gives a useful geometric representation, allowing in

particular the ESS to be found graphically (Figure 1.7). Taking the

following trade-off function between transmission and virulence:

𝛽(𝛼) = 𝑏𝛼𝑣

with 𝑏 ∈ ℝ★
+ and 𝑣 ∈]0; 1[, the virulence 𝛼★

that maximizes R0 (ESS) is

given by:

𝛼★ =
𝑣

1 − 𝑣
(𝛿 + 𝛾) .

I show in Appendix A (teaching material) a similar evolutionary invasion

analysis in an SIR model. Adaptive dynamics provides however no

information about the transient (short-term) evolutionary dynamics

when the competition takes place out of equilibrium.
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Transient dynamics of pathogen phenotypic evolution in an SIRS

model

In contrast to adaptive dynamics, evolutionary epidemiology does not

necessarily assume that mutations are rare. This paradigm is particularly

useful to study pathogen competition in more complex scenarios, while

the epidemic has not yet reached an equilibrium (Figure 1.8).

Notation reminder

• 𝑁 : host population

• 𝑆: susceptible hosts

• 𝐼, 𝐼𝑤 , 𝐼𝑚 : infected/infectious hosts

• 𝑅: recovered hosts

• 𝑞: frequency of the variant

• 𝛽, 𝛽, 𝛽𝑤 , 𝛽𝑚 : transmission rates

• 𝛾, 𝛾, 𝛾𝑤 , 𝛾𝑚 : recovery rates

• 𝛼, 𝛼, 𝛼𝑤 , 𝛼𝑚 : virulence

• 𝜆: influx of 𝑆

• 𝛿: natural mortality rate

• 𝜁: rate of immunity waning

• 𝑟, 𝑟𝑤 , 𝑟𝑚 : growth rates of the epi-

demic (absolute pathogen fitness)

Coupling epidemiological and evolutionary dynamics The epidemio-

logical SIRS model (1.1) is now extended to account for both the wildtype

strain and the variant as described in Figure 1.5:

¤𝑆(𝑡) = 𝜆 − 𝛽(𝑡)𝑆(𝑡) 𝐼(𝑡)
𝑁(𝑡) − 𝛿𝑆(𝑡) + 𝜁𝑅(𝑡)

¤𝐼(𝑡) =

(
𝛽(𝑡) 𝑆(𝑡)

𝑁(𝑡) − 𝛿 − 𝛼(𝑡) − 𝛾(𝑡)
)

︸                               ︷︷                               ︸
𝑟(𝑡)

𝐼(𝑡)

¤𝑅(𝑡) = 𝛾(𝑡)𝐼(𝑡) − 𝛿𝑅(𝑡) − 𝜁𝑅(𝑡)

(1.10)

where the overlines refer to mean values of the phenotypic traits after

averaging over the distribution of strain frequencies:
𝛽(𝑡) =

(
1 − 𝑞(𝑡)

)
𝛽𝑤 + 𝑞(𝑡)𝛽𝑚

𝛼(𝑡) =
(
1 − 𝑞(𝑡)

)
𝛼𝑤 + 𝑞(𝑡)𝛼𝑚

𝛾(𝑡) =
(
1 − 𝑞(𝑡)

)
𝛾𝑤 + 𝑞(𝑡)𝛾𝑚

(1.11)

with 𝑞(𝑡), the frequency of the variant at time 𝑡:

𝑞(𝑡) = 𝐼𝑚(𝑡)
𝐼(𝑡) . (1.12)

𝑟(𝑡) is the mean growth rate of the epidemic. Using the temporal dynamics

of 𝐼𝑚(𝑡) (equation (1.8) with 𝑘 = 𝑚) and of 𝐼(𝑡) (in system (1.10)) yields

the following fundamental equation for the rate of change of the variant

frequency [59]:

¤𝑞(𝑡) = 𝑞(𝑡)
(
𝑟𝑚(𝑡) − 𝑟(𝑡)

)
. (1.13)

Thus, to increase in frequency, the absolute fitness of the variant 𝑟𝑚(𝑡) has

to be higher than the mean fitness 𝑟(𝑡). More broadly, equation (1.13) is

not specific to this particular model and is known in population genetics

and evolutionary game theory as a version of the replicator equation [22,

60, 61]. Using (1.13), the rate of change of the average trait values 𝛽(𝑡),
𝛼(𝑡) and 𝛾(𝑡) are given respectively by the covariance between the trait

and the fitness 𝑟 (Price’s equation without mutation [59]):

¤𝛽(𝑡) = ℂov (𝛽, 𝑟) = 𝕍 (𝛽) 𝑆(𝑡)
𝑁(𝑡) −ℂov(𝛽, 𝛼) −ℂov(𝛽, 𝛾)

¤𝛼(𝑡) = ℂov (𝛼, 𝑟) = ℂov(𝛼, 𝛽) 𝑆(𝑡)
𝑁(𝑡) − 𝕍 (𝛼) −ℂov(𝛼, 𝛾)

¤𝛾(𝑡) = ℂov (𝛾, 𝑟) = ℂov(𝛾, 𝛽) 𝑆(𝑡)
𝑁(𝑡) −ℂov(𝛾, 𝛼) − 𝕍 (𝛾)

(1.14)
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Notation reminder

• 𝑆/𝑁 : fraction of susceptible hosts

• 𝑞: frequency of the variant

• Δ𝛽: difference in transmission

(Δ𝛽 = 𝛽𝑚 − 𝛽𝑤 )

• Δ𝛾: difference in recovery

(Δ𝛾 = 𝛾𝑚 − 𝛾𝑤 )

• Δ𝛼: difference in virulence

(Δ𝛼 = 𝛼𝑚 − 𝛼𝑤 )

• 𝑟𝑤 , 𝑟𝑚 : growth rates of the epi-

demic (absolute pathogen fitness)

• S: selection gradient of the variant

By extending in (1.13) the expressions for the growth rates 𝑟𝑚(𝑡) and 𝑟(𝑡),
I obtain here after some rearrangements:

¤𝑞(𝑡) = 𝑞(𝑡)
(
1 − 𝑞(𝑡)

)︸          ︷︷          ︸
Genetic

variance

S(𝑡)︸︷︷︸
selection

gradient

, (1.15)

with:

S(𝑡) = 𝑟𝑚(𝑡) − 𝑟𝑤(𝑡) = Δ𝛽
𝑆(𝑡)
𝑁(𝑡) − Δ𝛼 − Δ𝛾. (1.16)

The temporal dynamics of the frequency of the variant is thus given by the

genetic variance times the selection gradient (aka the selection coefficient)

S(𝑡) [53, 62, 63], which is the difference in growth rates/absolute fitness

between the variant and the wildtype. The genetic variance being always

positive, the direction of selection is governed by the sign of S(𝑡) [53],

which depends on the phenotypic differences between the variant and

the wildtype and, as soon as Δ𝛽 ≠ 0, on the availability of susceptible

hosts. It is then more convenient to track the logit-frequency of the variant

instead, that is the log odds ln(frequency of the variant / frequency of

the wildtype) [64–67]:

d logit

(
𝑞(𝑡)

)
d𝑡

= S(𝑡). (1.17)

Thus, S(𝑡) quantifies the rate of change of the variant frequency on

the logit scale and provides a useful metric for the speed of pathogen

adaptation [53, 62, 63].

Crucially, the proportion of susceptible hosts differs from the proportion

considered in evolutionary invasion analysis, so that the current fitness

value differs from the invasion fitness. Especially, both the direction

and the magnitude of adaptation change throughout the course of the

epidemic [68]. Although the ESS wins in the long-term, another strategy

may still outcompete the ESS in the short-term (see example in Appendix

A). Computing the selection gradient enables to track the direction and

strength of selection over time (Figure 1.8-B). For example in model (1.10),

the selection gradient given in equation (1.16) shows that the threshold

proportion of susceptible hosts for which the variant frequency remains

constant is:

𝑆(𝑡)
𝑁(𝑡) =

Δ𝛼 + Δ𝛾

Δ𝛽
.

A variant with higher transmission (Δ𝛽 > 0) and higher rate of leaving

the infectious compartment (Δ𝛼 + Δ𝛾 > 0) is thus selected for as soon as

𝑆(𝑡)/𝑁(𝑡) > (Δ𝛼 + Δ𝛾) /Δ𝛽, which typically holds at the beginning of

the epidemic. At some point during the course of the epidemic however,

the fraction of susceptible hosts falls below this threshold and the variant

is now selected against.
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Figure 1.8: Adaptive dynamics vs. evolutionary epidemiology. The polymorphic model (1.10) is simulated with parameter values:

𝜆 = 10, 𝛿 = 0.1, 𝛽𝑤 = 0.7, 𝛽𝑚 = 0.5, 𝛼𝑤 = 𝛼𝑚 = 0, 𝛾𝑤 = 0.1, 𝛾𝑚 = 0.02 and 𝜁 = 10
−3

. At 𝑡 = 0, 𝑆(0) = 𝜆/𝛿 = 100, 𝐼𝑤(0) = 0.1
and 𝑅(0) = 0. (A) Within the framework of adaptive dynamics, mutations are assumed to be rare and a variant only emerges after

the previous strain has reached its epidemiological attractor. Top panel: epidemiological dynamics of the wildtype strain before the

emergence of the mutant strain (pink background) and after the introduction of a rare variant (white background, low initial density 0.2).

Bottom panel: the mutant strain can invade the resident (wildtype) strain because its basic reproduction number is higher: R0,𝑚 > R0,𝑤

(white=invasion, black=no invasion). (B) Within the framework of evolutionary epidemiology, mutations are not necessarily rare and a

variant can emerge while the system has not yet reached any epidemiological attractor (I take here 𝐼𝑚(0) = 0.1). The long-term outcome

of the competition is the same as in A, but evolutionary epidemiology also aims to track the short-term (transient) dynamics of the

system. Top panel: epidemiological dynamics. Bottom panel: the selection gradient of the mutant strain is first negative (in red), the

mutant strain is counter-selected and decreases in frequency; at some point the logit-frequency of the mutant reaches a minimum

(vertical dashed line), its selection gradient being equal to 0 (in white); eventually, the selection gradient of the mutant strain is positive

(in green), the mutant strain is selected for and increases in frequency.
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Weak selection assumption and separation of timescale Under the

assumption of weak selection, phenotypic differences between the variant

and the wildtype (Δ𝛽, Δ𝛼 and Δ𝛾) are assumed to be small and of order 𝜀
(denoted O(𝜀), with 𝜀 ≪ 1). Thus, the dynamics of the (logit-)frequency

of the variant in equations (1.15)-(1.17) is alsoO(𝜀). Rewriting the temporal

dynamics of infected hosts in (1.10) by expanding the mean traits values

gives:Notation reminder

• 𝑞: frequency of the variant

• 𝛽𝑤 , 𝛽𝑚 : transmission rates

• Δ𝛽: difference in transmission

(Δ𝛽 = 𝛽𝑚 − 𝛽𝑤 )

• 𝛾𝑤 , 𝛾𝑚 : recovery rates

• Δ𝛾: difference in recovery

(Δ𝛾 = 𝛾𝑚 − 𝛾𝑤 )

• 𝛼𝑤 , 𝛼𝑚 : virulence

• Δ𝛼: difference in virulence

(Δ𝛼 = 𝛼𝑚 − 𝛼𝑤 )

• 𝑟𝑤 , 𝑟𝑚 : growth rates of the epi-

demic (absolute pathogen fitness)

• R0,𝑤 , R0,𝑚 : basic reproduction

numbers

¤𝐼(𝑡) =
(
𝛽𝑤

𝑆(𝑡)
𝑁(𝑡) − 𝛿 − 𝛼𝑤 − 𝛾𝑤

)
𝐼(𝑡) + 𝑞(𝑡)

(
Δ𝛽

𝑆(𝑡)
𝑁(𝑡) − Δ𝛼 − Δ𝛾

)
𝐼(𝑡)

=

(
𝛽𝑤

𝑆(𝑡)
𝑁(𝑡) − 𝛿 − 𝛼𝑤 − 𝛾𝑤

)
𝐼(𝑡)︸                                ︷︷                                ︸

O(1)

+O(𝜀) . (1.18)

Thus, epidemiological dynamics are much faster than evolutionary dy-

namics. A separation of timescale argument (see Box 1.2.1) can therefore

be used to reduce the number of ODEs of the system. In particular, I

focus on the slow dynamics (1.17) (evolution) whose analysis is simpli-

fied by assuming that the fast dynamics (1.18) (epidemiology) reaches

instantaneously its quasi-equilibrium. Hence, setting the right-hand side

of (1.18) to 0 yields when 𝐼(𝑡) ≠ 0:

𝑆(𝑡)
𝑁(𝑡) =

𝛿 + 𝛼𝑤 + 𝛾𝑤
𝛽𝑤

+ O(𝜀) =
1

R0,𝑤
+ O(𝜀) .

Substituting 𝑆(𝑡)/𝑁(𝑡) in (1.17) by its quasi-equilibrium value gives the

simplified dynamics:

d logit

(
𝑞(𝑡)

)
d𝑡

=
Δ𝛽

R0,𝑤
− Δ𝛼 − Δ𝛾 + O

(
𝜀2
)
.

The variant increases in frequency and wins the competition if d logit

(
𝑞(𝑡)

)
/d𝑡 >

0. Neglecting the termO
(
𝜀2

)
, this is equivalent after some rearrangements

to:

R0,𝑚 > R0,𝑤 .

I thus recover the analytical result of adaptive dynamics. The difference is

that, here, selection is assumed to be weak but mutations are not assumed

to be rare while in adaptive dynamics mutations are assumed to be rare

but with no assumption on the size of the phenotypic differences.

Box 1.2.1 Slow-fast dynamics and separation of time scale

A separation of timescale argument is a useful tool enabling to study fast
and slow processes separately (singular perturbation theory, as proposed in
Tikhonov’s theorem) [69–71][69]: Tikhonov (1952), ‘Systems of differ-

ential equations containing small param-

eters in the derivatives. [In Russian]’

[70]: Rinaldi et al. (2000), ‘Geometric anal-

ysis of ecological models with slow and

fast processes’

[71]: Verhulst (2007), ‘Singular perturba-

tion methods for slow–fast dynamics’

. Let 𝑥 (fast) and 𝑦 (slow) be two real variables
such that: 

d𝑥
d𝑡

= 𝑓 (𝑥, 𝑦)
d𝑦
d𝑡

= 𝜀𝑔 (𝑥, 𝑦)

with 𝑓 and 𝑔, two continuous functions, and 𝜀 ≪ 1, a very small positive
parameter emphasizing that 𝑦 has a much slower dynamics than 𝑥 [72, 73][72]: Gjini et al. (2017), ‘A slow-fast dy-

namic decomposition links neutral and

non-neutral coexistence in interacting

multi-strain pathogens’

[73]: Jardón-Kojakhmetov et al. (2021), ‘A

geometric analysis of the SIR, SIRS and

SIRWS epidemiological models’

.
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[53]: Day et al. (2020), ‘On the evolution-

ary epidemiology of SARS-CoV-2’

[63]: Gandon et al. (2022), ‘Targeted vac-

cination and the speed of SARS-CoV-2

adaptation’

[74]: Day et al. (2022), ‘Pathogen evolu-

tion during vaccination campaigns’

The analysis of the fast variable is simplified by neglecting the dynamics of
the slow variable. Taking 𝜀 = 0, the slow variable 𝑦 becomes considered fixed
to a constant value, which yields the critical fast dynamics:

d𝑥
d𝑡

= 𝑓 (𝑥, 𝑦)
d𝑦
d𝑡

= 0

Conversely, the analysis of the slow variable is simplified by assuming that
the fast variable reaches instantaneously a (quasi-)equilibrium value. Using
the change of timescale 𝜏 = 𝜀𝑡, an equivalent alternative system is:

𝜀
d𝑥
d𝜏

= 𝑓 (𝑥, 𝑦)
d𝑦
d𝜏

= 𝑔 (𝑥, 𝑦)

Taking 𝜀 = 0 yields the critical slow subsystem:
0 = 𝑓 (𝑥, 𝑦)
d𝑦
d𝜏

= 𝑔 (𝑥, 𝑦)

Suppose that 0 = 𝑓 (𝑥, 𝑦) is solved by the 𝑥 = 𝜙(𝑦), with 𝜙, a continuous
function satisfying 𝑥(𝑡) → 𝜙(𝑦) as 𝑡 → +∞ and 𝑓

(
𝜙(𝑦), 𝑦

)
= 0 ((quasi-

)equilibrium);
(
𝜙(𝑦), 𝑦

)
is classically known as the ’slow manifold’ [71–73] [71]: Verhulst (2007), ‘Singular perturba-

tion methods for slow–fast dynamics’

[72]: Gjini et al. (2017), ‘A slow-fast dy-

namic decomposition links neutral and

non-neutral coexistence in interacting

multi-strain pathogens’

[73]: Jardón-Kojakhmetov et al. (2021), ‘A

geometric analysis of the SIR, SIRS and

SIRWS epidemiological models’

.
One then only needs to focus on the reduced problem:

d𝑦
d𝜏

= 𝑔
(
𝜙(𝑦), 𝑦

)
1.2.3 Host structure

In the SIRS ODE systems (1.1) and (1.10), the pathogen habitat – namely

the infected compartment 𝐼 – is not structured. Yet, host structure is a

key feature of host-pathogen systems and have different ecological and

evolutionary impacts on the population dynamics.

Introducing host structure can for instance be used to deal with more

complex or realistic disease natural histories. For example, exposed hosts

are hosts that are infected but not yet infectious. Using compartmental

epidemic models, the infected compartment is thus now divided between

two chronologically successive compartments: (i) the exposed compart-

ment 𝐸 and then (ii) the infectious compartment 𝐼, which allows to take

the potential latent period into account – i.e., the lag between infection

and the onset of contagiousness – as in classical SEIR models. More

sophisticated models may include additional stages to describe a partic-

ular disease natural history, such as asymptomatic or pre-symptomatic

compartment (e.g., COVID-19 [53]). Besides, a fraction of the hosts may

also be resistant to the pathogen, e.g., vaccination campaigns and adap-

tive immunity structure the host population between naive and primed

hosts [63, 74]. In microbiology, life cycles are often more original and

complex. For example, bacteriophages (or phages) are viruses that infect

bacteria. Upon bacterial infection, phages lyse (kill) their host to release

free viral particles in the environment where they infect new susceptible
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[75]: Gandon (2016), ‘Why be temperate:

lessons from bacteriophage 𝜆’

[76]: Gandon (2004), ‘Evolution of multi-

host parasites’

[77]: Regoes et al. (2000), ‘Evolution of

virulence in a heterogeneous host popu-

lation’

[59]: Day et al. (2006), ‘Insights from

Price’s equation into evolutionary epi-

demiology’

[78]: Lion (2018), ‘Class structure, demog-

raphy, and selection: reproductive-value

weighting in nonequilibrium, polymor-

phic populations’

[79]: Diekmann et al. (2010), ‘The con-

struction of next-generation matrices for

compartmental epidemic models’

cells (horizontal transmissions). Alternatively, temperate phages can also

integrate themselves into the bacterial genome (lysogeny) and be hered-

itarily transmitted to daughter cells through cellular division (vertical

transmission) [75]. More broadly, pathogens may also be able to infect

different types of host [76, 77], potentially from different species. Hosts

may also be stratified by age or developmental stages, or structured in

spatially separated patches interconnected by migration [59, 78]. In such

structured models, the R0 computation is less straightforward but is

achieved through the next-generation theorem [79].

1.3 Statistical inference

In the previous section, I have shown how deterministic models of

host-pathogen systems can be constructed based on non-linear ODEs

and, especially, how this theoretical framework provides useful insights

on the evolutionary epidemiology of infectious diseases. Given a set

of parameter values and initial conditions, it is easy to simulate the

corresponding epidemiological and evolutionary dynamics over time.

However, from a model tailored to a particular host-pathogen life cycle,

one may also be interested in getting biologically relevant ranges of

parameter values, or in comparing different (usually nested) models to

determine which one would be the most appropriate. Hopefully, when

data are available, it is possible under a range of assumptions to fit

models to data in order to accurately estimate model parameters. Such

parameters are for instance key life-history traits whose estimation allow

to characterize variant phenotypically. In the following, I first present

some typical time series data in evolutionary epidemiology. Second,

I briefly present the frequentist (and Bayesian) approach to estimate

model parameters from data. Third, I address the problem of parameter

identifiability. And eventually, using a frequentist approach, I show

with some examples some statistical methods and tools I used to fit

(non-)linear models.

1.3.1 Time series in evolutionary epidemiology

Most work in mathematical epidemiology focuses on the analysis of

time series of infected individuals to understand the demographic dy-

namics of infectious diseases. For a given infectious disease, traditional

demographic data are for instance the incidence – i.e., number of new

cases per unit time –, the prevalence – i.e., the proportion of cases in the

population at a specific time – or the number of deaths or hospitalizations

per unit time. Such data may be stratified by age, sex, vaccination status,

geographical locations, etc... In most cases, absolute densities are difficult

to assess directly and epidemiological data can be biased. Typically in

public health, only a fraction of the population is actually tested and

symptomatic individuals are more likely to be tested than the others.

I show in Table 1.2, an example of a small part of a publicly available

dataset that deals with the time series of daily new COVID-19 tests and

daily new confirmed cases in the UK.

While demographic data have been used for a very long time, genetic

data are much more recent. Novel methodological advances in molecular
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Table 1.2: Example of time series of tests and new confirmed cases per day. Daily number of COVID-19 tests with new cases tested

positive in the UK (from 07/04/2020), downloaded from the website Our World in Data.

Entity Code Day

new_tests_

annotations

Daily new cases due to COVID-19

7day_smoothed (rolling 7-day average, right-aligned)

United Kingdom GBR 2020-04-07 17876 tests performed 4116.857

United Kingdom GBR 2020-04-08 18521 tests performed 4116.857

United Kingdom GBR 2020-04-09 19013 tests performed 4116.857

United Kingdom GBR 2020-04-10 15713 tests performed 4116.857

United Kingdom GBR 2020-04-11 15963 tests performed 4116.857

United Kingdom GBR 2020-04-12 16216 tests performed 4661.429

. . . . . . . . . . . . . . . . . .

[80]: Hodcroft (2021), CoVariants: SARS-
CoV-2 Mutations and Variants of Interest.
[81]: Hadfield et al. (2018), ‘Nextstrain:

real-time tracking of pathogen evolution’

[21]: Khare et al. (2021), ‘GISAID’s role

in pandemic response’

[19]: Public Health England (2020), In-
vestigation of novel SARS-COV-2 variant
202012/01: technical briefing 5

biology from the end of the 20
th

century are revolutionizing this field

of research, as genetic and genomic data become available. In particular,

high-throughput sequencing methods are increasingly used to determine

pathogen genotypes from collected samples and, very recently, the

COVID-19 pandemic have led to an unprecedented sequencing effort

along with rapid sharing of sequences. This allows notably to monitor

the temporal dynamics of strain frequencies and thus to track pathogen

evolution – for SARS-CoV-2, see for example CoVariants [80] or Nextsrain

[81], with data from GISAID [21]. I show in Table 1.3 an example of a

small part of a publicly available dataset (from the technical briefing

5 of Public Health England [19]) that deals with the time series of the

regional weekly number and percentage of the detection of SARS-CoV-2

Alpha variant among cases tested positive in England (the whole dataset

is plotted in Figure 1.9).
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Figure 1.9: Rise of the SARS-CoV-2 Al-

pha variant in England late 2020 early

2021. Temporal dynamics of the weekly

logit-frequency of the Alpha variant dur-

ing its sweep across the nine regions of

England. I use publicly available time

series data from the technical briefing 5

of Public Health England where qPCR

positive results with S gene target failure

(SGTF) is used as a proxy for the Alpha

variant.

https://ourworldindata.org/grapher/daily-tests-and-daily-new-confirmed-covid-cases?country=~GBR
https://covariants.org/per-country
https://nextstrain.org/ncov/gisaid/global
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Table 1.3: Example of time series of the proportion of a variant detection. Weekly regional number and percentage of Pillar 2 COVID-19

cases in England tested by TaqPath laboratories (download dataset). For this period of time, S gene target failure (SGTF) is used as a

proxy for the SARS-CoV-2 Alpha variant while S gene detection (S-gene) refers to the previous lineage. This dataset comes from the

technical briefing 5 of Public Health England.

Region week week n_Confirmed n_Confirmed percent_Confirmed percent_Confirmed n_Total

S-gene SGTF S-gene SGTF

East Midlands 07/09/2020 635 7 98.9 1.1 642

East Midlands 14/09/2020 720 3 99.6 0.4 723

East Midlands 21/09/2020 964 17 98.3 1.7 981

East Midlands 28/09/2020 1685 15 99.1 0.9 1700

East Midlands 05/10/2020 2895 49 98.3 1.7 2944

. . . . . . . . . . . . . . . . . . . . .

[82]: Fisher (1912), ‘On an absolute crite-

rion for fitting frequency curves’

[83]: Fisher (1922), ‘On the mathematical

foundations of theoretical statistics’

1.3.2 Frequentist (and Bayesian) approach

In a statistical population, parameters of interest are typically considered

as unknown quantities. Most often, data are only collected from a statis-

tical sample, that is a (hopefully representative) subset of the population.

Data can then be used to fit statistical models in order to infer the parame-

ters of the population. From one study to another, the collected data vary

in quantity and/or quality; in particular, data can be incomplete, biased

or inaccurate owing to observational errors. Inferential statistics allow to

estimate model parameters but also to quantify the uncertainty of these

estimates. Two paradigms are classically presented: frequentist (rooted

in frequentist probability) and Bayesian (based on Bayes’ theorem). In

this thesis, I (almost always) use a frequentist approach, so I just say a

few words about the Bayesian approach at the end.

Frequentist approach Let 𝑌1:𝑛 be a sequence of 𝑛 independent random

variables with assumed probability (mass or density) function 𝑓𝑌 (sta-

tistical model) and let 𝑦1:𝑛 be a realization of 𝑌1:𝑛 (data). I also denote

Θ ⊂ ℝ𝑝
, the space of the 𝑝 parameters of interest, 𝜃 ∈ Θ, a vector of

size 𝑝 of these parameters, and 𝜎, a vector of nuisance parameters. In

model-based statistical inference, the likelihood is a key element. Under

a statistical model, the likelihood function L is the (density) probability

to observe the data 𝑦1:𝑛 conditionally on parameter values 𝜃 and 𝜎:

L(𝑦1:𝑛 | 𝜃, 𝜎) = 𝑓𝑌 (𝑦1:𝑛 , 𝜃, 𝜎) .

Statistical inference based on a frequentist approach often relies on

the method of maximum likelihood estimation (MLE), introduced by

Fisher [82, 83]. Under the assumptions of a statistical model, MLE

estimates, denoted 𝜃̂, are expected to be the most likely point values

of the parameters – i.e., point estimates that maximize the likelihood

function – given the collected data. The MLE estimator (also denoted 𝜃̂
for simplicity) of the parameters of interest 𝜃 is thus defined as:

𝜃̂ = argmax

𝜃 ∈Θ

(L(𝑦1:𝑛 | 𝜃, 𝜎)) .

It is often more convenient to work with the log-likelihood ln (L) instead.

Assuming that the random variables 𝑌1:𝑛 are independent with assumed

probability (mass or density) functions 𝑓𝑌𝑖 , respectively, the likelihood

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/957631/Variant_of_Concern_VOC_202012_01_Technical_Briefing_5_Data_England.ods
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[84]: Akaike (1974), ‘A new look at the

statistical model identification’

function is given by:

L(𝑦1:𝑛 | 𝜃, 𝜎) =
𝑛∏
𝑖=1

𝑓𝑌𝑖 (𝑦𝑖 , 𝜃, 𝜎) ,

and the log-likelihood by:

ln (L(𝑦1:𝑛 | 𝜃, 𝜎)) =
𝑛∑
𝑖=1

ln ( 𝑓𝑌𝑖 (𝑦𝑖 , 𝜃, 𝜎)) .

Notation reminder

• 𝜃: parameter(s) of interest

• 𝜃̂: MLE estimator/estimation of 𝜃
• 𝜎: nuisance parameter(s)

• 𝜎̂: MLE estimator/estimation of 𝜎
• L: likelihood

• 𝑓𝑌 : probability function for the

data

• 𝑛: number of data

• 𝑝: number of estimated parame-

ters

• 𝑦1:𝑛 : data
In the simplest cases, it may be possible to find analytically the solutions

of 𝜃 and 𝜎 that maximize the log-likelihood by solving the following

system of partial differential equations for each 𝜃𝑖 ∈ 𝜃 and 𝜎𝑖 ∈ 𝜎:


𝜕 ln (L(𝑦1:𝑛 | 𝜃, 𝜎))

𝜕𝜃𝑖
= 0

𝜕 ln (L(𝑦1:𝑛 | 𝜃, 𝜎))
𝜕𝜎𝑖

= 0

along with negative second derivatives to ensure that the extremum is a

maximum.

Under the assumption of normality for the error terms, let 𝑌1:𝑛 be a

sequence of independent Gaussian random variables, such that: ∀𝑖 ∈
[1, 𝑛], 𝑌𝑖 ∼ N

(
𝜇𝑖(𝜃), 𝜎2

)
, where 𝜇𝑖 and 𝜎2

are the mean and variance

of 𝑌𝑖 , respectively. The log-likelihood is thus:

ln

(
L

(
𝑦1:𝑛 | 𝜃, 𝜎2

) )
= −𝑛 ln (𝜎) − 𝑛

2

ln (2𝜋) − 1

2𝜎2

𝑛∑
𝑖=1

(𝑦𝑖 − 𝜇𝑖(𝜃))2 .

For this Gaussian case, maximizing over 𝜃 is independent of 𝜎 and

implies to minimize the sum of squares

∑𝑛
𝑖=1

(𝑦𝑖 − 𝜇𝑖(𝜃))2, that is the

Euclidean norm ∥𝑦 − 𝜇(𝜃)∥2
, as typically performed in the least squares

method.

Besides, the (log-)likelihood is also useful to compare different models

that have been fitted to the same data when one is interested in selecting

the simplest (i.e., most parsimonious) model that sufficiently explains

the data. This enables to avoid over-fitting and to keep models as simple

as possible to be informative. For nested models, such selection can be

tackled using likelihood ratio tests. More generally, one can compare the

likelihoods while penalizing each model by its complexity. Among others,

the Akaike’s Information Criterion (AIC) [84] is for example defined

as:

AIC = −2 ln

(
L

(
𝑦1:𝑛 | 𝜃̂, 𝜎̂

))
+ 2 𝑝,

with 𝑝, the number of independently adjusted parameters. Although it

is not a formal hypothesis test, selecting the model with the lowest AIC

score is a reasonable approach.

Bayesian approach Unlike the frequentist approach, Bayesian inference

does not assume that parameters are fixed unknown values to estimate,

but assumes that parameters are random variables (due to the uncertainty

about their true value) with unknown probability distribution to estimate.
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In addition to the data, the Bayesian approach allows to account for prior

knowledge about the parameters (informative prior). A prior may also be

non-informative. As its name suggests, the Bayesian paradigm is based

on Bayes’ theorem:

Bayes’ theorem

ℙ(𝐴 | 𝐵) = ℙ(𝐴)ℙ(𝐵 | 𝐴)
ℙ(𝐵)

ℙ(𝜃, 𝜎 | 𝑦1:𝑛)︸          ︷︷          ︸
Posterior

=

Prior︷  ︸︸  ︷
ℙ(𝜃, 𝜎) ×

Likelihood︷          ︸︸          ︷
L(𝑦1:𝑛 | 𝜃, 𝜎)

ℙ(𝑦1:𝑛)︸ ︷︷ ︸
Marginal

.

The posterior distribution to estimate is calculated from a priori in-

formation on the parameters (prior) and the likelihood L(𝑦1:𝑛 | 𝜃).
The denominator, a (possibly high-dimensional) integral potentially

impossible to compute, can be ignored as it constitutes a normalising

constant and cancels out for any posterior ratio. Hence: ℙ(𝜃, 𝜎 | 𝑦1:𝑛) ∝
ℙ(𝜃, 𝜎) ×L(𝑦1:𝑛 | 𝜃, 𝜎). The posterior distribution is typically sampled

using Monte Carlo Markov Chains (MCMC) algorithms, which allows

then to obtain summary statistics and credible intervals for the estimated

parameters.

1.3.3 Identifiability

It is not always guaranteed that model parameters can be estimated.

Indeed, the problem of parameter estimation involves the notion of iden-

tifiability and partially observed dynamical systems frequently exhibit

non-identifiability issues [85].

Structural identifiability (see Box 1.3.1) deals with the uniqueness of the

solutions for the parameters 𝜃, that is the capacity to theoretically recover

unknown parameters from ideal (i.e., infinite and noise-free) input-

output measurements [85–88]. Structural identifiability is an intrinsic

property of the structure of a model. Obviously, two parameters that

always appear as a product or a sum in a model can never be separately

identifiable as an infinite number of combinations yield identical results

(parameters can compensate each other). For example, considering the

force of infection (1 − 𝑐)𝛽𝐼(𝑡)/𝑁(𝑡) with 𝑐 ∈ [0, 1], the efficacy of control

measures, parameters 𝛽 and 𝑐 cannot be separately identifiable (although

the product may be). Nevertheless, detecting non-identifiable parameters

within non-linear systems is usually non-trivial. Formal approaches

exist to investigate such structural identifiability – e.g., the differential

algebra software DAISY [89]. Note that structural identifiability is an a
priori problem. It can thus be investigated before conducting experiments

and guide the design of experimental planning [90] – e.g., suggesting

additional measurements so that the combination of information makes

an otherwise non-identifiable parameter identifiable. Identifiability of the

classical SIR model proposed by [9] was investigated quite recently (early

2000s) and the COVID-19 pandemic has led to an increased interest in

parameter estimation and identification using compartmental epidemic

models [91]. In the classical SIR model, the transmission rate 𝛽 and

the recovery rate 𝛾 are identifiable using prevalence observations and

knowing the initial conditions 𝑆(0), 𝐼(0) and 𝑅(0) (and thus 𝑁) [86,
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92]; however, when only an unknown fraction of the infected hosts are

reported, the transmission rate of this model is not separately identifiable

from the reporting rate [86].

Box 1.3.1 Structural identifiability

Consider the following dynamical system:{
¤𝑥(𝑡) = 𝑓

(
𝑥(𝑡), 𝑢(𝑡), 𝑥0 , 𝜃

)
𝑦(𝑡) = ℎ

(
𝑥 (𝑡 , 𝑢(𝑡), 𝑥0 , 𝜃)

)
where 𝑥 is the state of the system (process model) with initial condition
𝑥(0) = 𝑥0 and whose temporal dynamics is described by an ODE governed by
function 𝑓 ; 𝑢 refers to inputs and 𝑦 to the observations (outputs) of 𝑥 through
the functional mapping ℎ (measurement model), which can increase the
dimensionality of 𝜃 [88] [88]: Raue et al. (2014), ‘Comparison of

approaches for parameter identifiability

analysis of biological systems’

. Indeed, the process model is typically not observable
directly (latent, or “hidden”, processes) but the outputs of the measurement
model (the observations/data) are expected to indirectly reflect the states of
the process model. In most cases with dynamical compartmental models, data
are collected from the sampling of a limited number of compartments. By
definition, the above system is globally structurally identifiable given an initial
state 𝑥0 if and only if:

∀𝑡 > 0, ℎ
(
𝑥 (𝑡 , 𝑢(𝑡), 𝑥0 , 𝜃)

)
= ℎ

(
𝑥 (𝑡 , 𝑢(𝑡), 𝑥0 , 𝜃

′)
)
⇒ 𝜃 = 𝜃′

[86] [86]: Cunniffe et al. (2023), ‘Identifiabil-

ity and Observability in Epidemiological

Models’

and locally structurally identifiable if there exists a neighborhood of 𝜃
V⊂ Θ such that:

∀𝑡 > 0, (𝜃, 𝜃′) ∈ V2 ,

ℎ
(
𝑥 (𝑡 , 𝑢(𝑡), 𝑥0 , 𝜃)

)
= ℎ

(
𝑥 (𝑡 , 𝑢(𝑡), 𝑥0 , 𝜃

′)
)
⇒ 𝜃 = 𝜃′.

A model can also be partially identifiable when only a subset of 𝜃, or some
functions of the parameters, can be accurately estimated.

Structural non-identifiability depends thus only on the structure of the

model and the empirical observations are assumed to be infinite and

noise-free. Yet, this is never the case in practical situations. In that sense,

practical non-identifiability also depends on the actual data (quantity

and quality) and the numerical optimization algorithm used for the

estimation problem [86, 90, 92]. Therefore, a structurally identifiable

model (prerequisite) can still be practically non-identifiable due to too

poor observations.

A useful approach to investigate both the structural and the practical

identifiability is the profile likelihood [90], which can be performed with

either real or simulated data. To construct the profile likelihood of a given

parameter of interest, one iteratively fixes the value of this parameter in

order to cover a relevant range of values while maximizing each time

the log-likelihood function over all the other parameters to estimate; one

then plots the maximized log-likelihood as a function of the fixed values

of the parameter of interest. A profile that peaks at a global maximum

likelihood is the signature of an identifiable parameter. In contrast, a

flat profile is the signature of a non-identifiable parameter [88, 90]. The

curvature of the profile likelihood may also be used to compute CIs [90].
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Based on likelihood ratio test (and Wilks’ theorem), the two values of a

parameter of interest down 1.92 log-likelihood units (half the chi-square

value 3.84 with 1 degree of freedom) from the maximum provide an

approximate pointwise confidence interval to a confidence level 95%. A

flat profile likelihood yields an infinite CI (non-identifiability).

I show below (cf.§1.3.4–Non-linear optimizations) some examples of

profile likelihood based on simulated time series of the density of infected

hosts from the SIRS model (1.1).

1.3.4 Fitting models: examples with SIRS models

In the previous section, I used non-linear systems of ODEs to simu-

late epidemiological and evolutionary dynamics. Within a frequentist

framework (MLE approach), I now seek to fit such models to time series

data in order to estimate model parameters of interest. Fitting non-linear

dynamical models can be a difficult task. Below, I first present how

non-linear optimizations can be used to obtain MLE estimates, which I

exemplify based on the previous SIRS model (1.1). Second, variables can

sometimes be linearized, so that the estimation problem is tackled using

statistical linear models which exhibit convenient properties.

Non-linear optimizations based on the density of infected hosts

Notation reminder

• 𝑆: susceptible hosts

• 𝐼: infected/infectious hosts

• 𝑅: recovered hosts

• 𝛽: transmission rate

• 𝛾: recovery rate

• 𝛼: virulence

• 𝜆: influx of 𝑆

• 𝛿: natural mortality rate

• 𝜁: rate of immunity waning

• 𝑦1:𝑛 : time series data

• 𝜎: SD of observation errors

I consider a first case based on the monomorphic SIRS model (1.1). Taking

some parameter values (𝜆 = 10, 𝛿 = 0.1, 𝛽 = 0.7, 𝛼 = 0, 𝛾 = 0.09 and

𝜁 = 10
−3

) and initial conditions (𝑆(0) = 100, 𝐼(0) = 10
−2

and 𝑅(0) = 0), I

run a simulation from which I generate simulated data 𝑦1:𝑛 corresponding

to the time series of infected individuals such that:

𝑦1:𝑛(𝑡) i.i.d.∼ Log-N
(
ln(𝐼(𝑡)), 𝜎2

)
,

where Log-N(𝜇, 𝜎2) refers to the log-Normal distribution with mean

𝜇 and standard deviation (SD) 𝜎 on the log scale (here I take 𝜎 = 0.1,

Figure 1.10-A). I assume now that only the values of the parameters 𝛽
and 𝛾 are unknown and that I want to estimate them. The parameter

space is only two-dimensional, all the other parameters and all initial

conditions being fixed to their true values. With just two parameters to

estimate simultaneously, the likelihood surface can be directly visualized

by evaluating the likelihood at a grid of points within relevant ranges

of values for 𝛽 and 𝛾 (Figure 1.10-B). MLE estimates are given by the

parameter values associated with the highest point of the likelihood

surface.

As the dimensionality of the parameter spaceΘ increases, the likelihood is

most conveniently explored using non-linear optimization algorithms to

find the maximum. Examples of such non-linear optimization algorithms

include the Nelder-Mead (aka downhill simplex) method [93], quasi-

Newton methods (e.g., Broyden-Fletcher-Goldfarb-Shanno) or simulated

annealing. Although optimization algorithms are powerful tools, they

may as well bring some numerical difficulties. Optimization algorithms

typically start from a given set of arbitrary initial parameter values and

iteratively navigate in the parameter space while evaluating a function to
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Figure 1.10: MLE of two parameters in an SIRS model from the time series of infected individuals. Model (1.1) is simulated with

parameter values: 𝜆 = 10, 𝛿 = 0.1, 𝛽 = 0.7, 𝛾 = 0.09, 𝛼 = 0 and 𝜁 = 0.001; and initial conditions: 𝑆(0) = 𝜆/𝛿 = 100, 𝐼(0) = 0.01 and

𝑅(0) = 0. I seek to estimate parameters 𝛽 and 𝛾 (all the other parameters are fixed to their true values as well as all the initial conditions).

(A) Simulated dynamics of infected hosts (solid line), simulated data (points), generated by multiplying 𝐼(𝑡) with an i.i.d. log-normal

noise (mean 0 and SD 0.1 on the log scale) to mimic measurement errors, and fitted values (dashed line) based on MLE estimates

(𝛽̂ = 0.707, 𝛾̂ = 0.091). (B) Contour plot of the log-likelihood surface as a function of parameters 𝛽 and 𝛾; the white dashed lines indicate

true values and the point indicates MLE estimates (which maximize the log-likelihood). (C) Profile likelihood of parameter 𝛽. (D) Profile

likelihood of parameter 𝛾. For each point in C and D, the log-likelihood is maximized over the other parameter for 100 uniformly drawn

starting points using the R function optim (maximum number of iterations 2000, absolute and relative tolerance 10
−6

); the vertical

dashed lines indicate true parameter values and the solid vertical lines (dark red) the best MLE estimates; the red shaded areas refer to

parameter values within 1.92 units from the maximum log-likelihood (approximate 95% CI).

be optimized (and/or its gradient) until convergence. Most often, due to

the presence of local maxima, where the algorithm can be stuck, likelihood

maximization should be repeated from a larger or smaller number of

starting points to ensure convergence to a global maximum. Furthermore,

imposing parameter bounds through parameter transformations enables

to reduce the exploration space (ℝ𝑝
, by default) to the relevant parameter

space (Θ ⊂ ℝ𝑝
). In particular, biological parameters are typically positive

real values and probabilities should lie between 0 and 1. Based on prior

knowledge of the biology of the system, it is also often possible to refine

parameter bounds even further.

In our previous example, the whole density of infected hosts was mea-

sured. Using non-linear optimizations (here, the Nelder-Mead method

performed by the R function optim from the basic package stats), I

compute the profile likelihood of parameters 𝛽 and 𝛾 (Figure 1.10-C and

D), which clearly shows that under these conditions these two parameters
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are indeed identifiable. However, in most cases, only a fraction of the

infected hosts is reported. For the sake of simplicity, I assume that the

reporting rate 𝜌 of the 𝐼 compartment is constant over time such that:

Notation reminder

• 𝑦1:𝑛 : data (density of infected

hosts)

• 𝐼: infected/infectious hosts

• 𝛽: transmission rate

• 𝛾: recovery rate

• 𝜌: reporting rate of infected hosts

• 𝜎: SD of observation errors

𝑦1:𝑛(𝑡) i.i.d.∼ Log-N
(
ln(𝜌𝐼(𝑡)), 𝜎2

)
.

With the same values of parameters and initial conditions as before,

and taking 𝜌 = 0.05, I now want to estimate parameters 𝛽, 𝛾, 𝜌 and

𝜎. I show in Figure 1.11 optimization results (Nelder-Mead alhorithm)

from 1000 sets of uniformly drawn starting points. I then compute the

profile likelihood of each of these four parameters under two scenarios:

(1) 𝜌 = 0.05 and (ii) 𝜌 = 0.2. I show in Figure 1.12 that all four parameters

are identifiable under these conditions. But note that computing profile

likelihood is a bit more difficult numerically when the reporting rate is

low; in particular the recovery rate 𝛾 is estimated with greater uncertainty

when 𝜌 = 0.05.
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Figure 1.11: Results of non-linear optimizations to obtain MLE estimates of four parameters of an SIRS model from the time series of

infected individuals. I simulate model (1.1) (see Figure 1.10 for parameter values and initial conditions) and generate simulated data by

multiplying the time series of the density of infectious hosts by the reporting rate 𝜌 (𝜌 = 0.05) and by an i.i.d. log-normal noise (with

mean 0 and SD 𝜎 = 0.1 on the log scale). Non-linear optimizations are run starting from 1000 uniformly drawn sets of initial parameter

values to find the best MLE estimates of (A) the transmission rate 𝛽, (B) the recovery rate 𝛾, (C) the reporting rate 𝜌 and (D) the SD of

measurement errors 𝜎. All other parameters and initial conditions are fixed to their true value. Non-linear optimizations are tackled

using the R function optim (Neder-Mead algorithm, maximum number of iterations 2000, relative and absolute tolerance 10
−8

). The

vertical dashed lines indicate true parameter values. Points associated with the highest log-likelihood are enclosed in a circle.
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Figure 1.12: Profile likelihood for four parameters of an SIRS model from the time series of infected individuals. I simulate model

(1.1) (see Figure 1.10 for parameter values and initial conditions) and generate simulated data by multiplying the time series of the

density of infectious hosts by the reporting rate 𝜌 (𝜌 = 0.05 or 𝜌 = 0.2) and by an i.i.d. log-normal noise (with mean 0 and SD 𝜎 = 0.1 on

the log scale). Non-linear optimizations are run to construct the profile likelihood of four parameters: (A) the transmission rate 𝛽, (B) the

recovery rate 𝛾, (C) the reporting rate 𝜌 and (D) the SD of measurement errors 𝜎. In each profile likelihood, for each fixed value of the

parameter of interest, the log-likelihood is maximized over the other parameters to estimate starting from 400 uniformly drawn starting

points. Non-linear optimizations are tackled using the R function optim (Nelder-Mead algorithm, maximum number of iterations 2000,

relative and absolute tolerance 10
−8

). The vertical dashed lines indicate true parameter values and the solid vertical lines (dark red) the

best MLE estimates.

Linear models based on the variant logit-frequency

Linear models – and its extensions – are much easier to deal with than

non-linear models. Crucially, analytical solutions to the problem of

likelihood maximization exist and there is thus no need to explore the

likelihood surface. For example, fitting to the data the classical Gaussian

linear model:

𝑌1:𝑛︸︷︷︸
Response

variable

= 𝑋𝜃 + 𝐸,

with𝑋 the incidence (or design) matrix and𝐸 ∼ N𝑛

(
0, 𝜎2𝐼𝑛

)
, the vector of

residuals (with assumptions of normality, independence and homoscedas-

ticity), only requires to solve the normal equations: 𝜃̂ = (𝑋⊤𝑋)−1

𝑋⊤𝑌1:𝑛 .

This is the classical procedure for (multiple) linear regression and

AN(C)OVA (analysis of (co)variance). Extensions of the (Gaussian) lin-

ear model include, inter alia, linear mixed-effects models, dealing with

non-independent data structures, and generalized linear models, dealing

with observations whose probability density function (PDF) belongs to

an extended family of probability distributions (exponential family, e.g.,
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Binomial, Poisson).

Notation reminder

• 𝑞: frequency of the variant

• S: selection gradient of the variant

• Δ𝛾: difference in recovery

(Δ𝛾 = 𝛾𝑚 − 𝛾𝑤 )

For the polymorphic ODE system (1.10), equation (1.17) shows that the

selection gradient S(𝑡) of a variant is given by the slope of its frequency

on the logit scale. Under the assumption that the selection gradient S is

constant over time, integrating (1.17) yields:

logit(𝑞(𝑡)) = logit

(
𝑞(0)

)
+ S× 𝑡 ,

so that a simple linear regression enables to estimate the selection

gradient S. The logit function has been widely used to linearize the

sigmoid-shaped curves of frequencies over time, especially to quantify

the strength of selection. As an example, I simulate model (1.10) with

parameter values: 𝜆 = 10, 𝛿 = 0.1, 𝛽𝑤 = 𝛽𝑚 = 0.7, 𝛼𝑤 = 𝛼𝑚 = 0,

𝛾𝑤 = 0.09, 𝛾𝑚 = 9× 10
−3

and 𝜁 = 10
−3

; and initial conditions: 𝑆(0) = 100,

𝐼𝑤(0) = 10
−2

, 𝐼𝑚(0) = 10
−4

and 𝑅(0) = 0 (Figure 1.13-A). In this example,

the wildtype strain and the variant only differ in terms of recovery rates

(Δ𝛽 = Δ𝛼 = 0 and Δ𝛾 < 0). Equation (1.17) reduces then to:

d logit

(
𝑞(𝑡)

)
d𝑡

= S= −Δ𝛾.

Assuming that I only have the time series of the strain frequencies, I

generate simulated data by adding random i.i.d. noise (standard Normal

distribution) to the simulated trajectory of the logit-frequency of the

variant. Fitting a Gaussian linear model to the simulated time series

data enables to estimate the slope (Figure 1.13-B) which yields the

following estimation for the phenotypic difference Δ𝛾: -0.075 (95% CI

[-0.090, -0.060], true value Δ𝛾 = −0.081). If the wildtype strain and the

variant also differ in terms of virulence (Δ𝛼 ≠ 0), Δ𝛾 and Δ𝛼 are not
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Figure 1.13: Fitting a linear model to estimate the selective advantage of a variant. The polymorphic model (1.10) is simulated with

parameter values: 𝜆 = 10, 𝛿 = 0.1, 𝛽𝑤 = 𝛽𝑚 = 0.7, 𝛼𝑤 = 𝛼𝑚 = 0, 𝛾𝑤 = 0.09, 𝛾𝑚 = 𝛾𝑤/10 = 9 × 10
−3

and 𝜁 = 10
−3

; and initial conditions:

𝑆(0) = 𝜆/𝛿 = 100, 𝐼𝑤(0) = 10
−2

, 𝐼𝑚(0) = 10
−4

and 𝑅(0) = 0. Therefore, the phenotypes of the variant and of the wildtype only differ in

terms of recovery rates (Δ𝛾 = −0.081). The selection gradient of this variant is thus merely: S= −Δ𝛾 (cf. equations (1.15)-(1.17)). (A)

Epidemiological dynamics over time. (B) Logit-frequency of the variant. Based on the original simulation (dashed line), I simulate data

(points, 𝑛 = 21) by adding i.i.d. Gaussian noise (with mean 0 and SD 1) on the logit scale to mimic measurement errors. A Gaussian

linear regression is fitted to these simulated data – fitted values (dark red solid line) and 95% CI (red shaded envelope) – and thereby

estimates the slope, which yields a MLE estimate of Δ𝛾: −0.075 (95% CI [−0.090, −0.060]).
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structurally separately identifiable based solely on the observations of

the logit-frequency of the variant over time (but estimating the slope

enables to estimate −(Δ𝛼 + Δ𝛾)). The transmission difference Δ𝛽 is

more special as it is weighted by the availability of susceptible hosts

𝑆(𝑡)/𝑁(𝑡). One can take advantage of this relationship to estimate Δ𝛽
but it would require extra information on the 𝑆 compartment. If the

epidemic is slow enough though, the pool of susceptible hosts 𝑆 can be

assumed constant throughout the time period under consideration as a

first approximation.

1.3.5 Bootstrapped-based confidence intervals

MLE estimates are point estimates and no information is provided on their

uncertainty. Quantifying such uncertainty, i.e. constructing confidence

intervals (CIs) for each estimated parameter, can be tackled through a

parametric approach, which relies asymptotically on the properties of

an assumed probability distribution (e.g., Normal, Student, 𝜒2
- distribu-

tions). However, it may be difficult to meet the underlying requirements of

the assumptions of traditional parametric inferential methods. Bootstrap

techniques are useful and powerful non- or semi-parametric methods

that rely on resampling schemes – mimicking the sampling process –

to estimate the sampling distribution of a statistical quantity of interest

[94]. Given the resampled data, the inference of the empirical probability

distribution enables to infer the true distribution of the statistical quantity

given the original data.

In this thesis, I often use a model-based approach where I resample from

the residuals between the original data and the fitted values. The idea

of this semi-parametric approach is to fit parametric models first and

then resampling from the residuals to generate new bootstrapped data.

Refitting the model to resampled data and reiterating this procedure a

sufficiently large number of times enables to obtain the joint sampling

distributions of the parameters of interest. Classically, residuals are

assumed to be identically distributed (homoscedastic). Yet, i.i.d. setups

are often violated in practical situations. For non-i.i.d. models, wild

bootstrap can be used to capture any pattern of heteroscedasticity in

the original error terms [95, 96]. To generate bootstrapped data using

wild bootstrap, residuals are randomly perturbed by an i.i.d. sequence

of 𝑛 random weights {𝑊𝑖}𝑛𝑖=1
satisfying 𝔼 (𝑊𝑖) = 0 and 𝔼

(
𝑊2

𝑖

)
= 1 (e.g.,

Standard Normal, Mammen’s 2-points or Rademacher distribution). Note

that the bootstrap sample is thus not a subset of the original sample.

Crucially, the new residuals are independent of the data and capture any

heteroscedasticity found in the original data. In the context of time series,

one can perform sieve bootstrap [97, 98]. This method approximates the

actual underlying stationary processes by an autoregressive or moving-

average model to construct sieve bootstrap samples. One can use sieve

bootstrap to simulate new residuals and, again, generate bootstrapped

data. In this thesis, I use both wild and sieve bootstrap.
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1.4 Objectives of this thesis

Evolutionary epidemiology theory helps to understand the time-varying

selection acting on new pathogen variants. In particular, the strength of

selection acting on more transmissible and/or more virulent variants

is expected to change with the availability of susceptible hosts in the

population. Combining epidemiological (demographic) and evolution-

ary (strain frequencies) data, this theoretical framework is adequate to

infer the life-history traits of new variants during epidemics in various

situations. The first two research projects (Chapters two and three) stand

at the interface between experimental/empirical data and theoretical

models; the third project (Chapter four) relies primarily on a theoretical

approach.

1.4.1 Objectives of Chapter two (project Alpha)

What is the phenotypic origin of an observed growth advantage? Upon

the emergence and sweep of a novel pathogen variant, it is important

to understand (i) whether it only arises by chance – i.e., its dynamics

are solely driven by stochastic processes – or (ii) whether it is actually

more adapted compared to the ancestral lineages and favored through

natural selection. Yet, various phenotypic traits may be affected by

adaptive mutations and result in similar increased pathogen fitness.

For instance, equation (1.5) shows that an increase in the transmission

rate or a decrease in the recovery rate (i.e., an increase in the duration

of infectiousness) are two mechanistic hypotheses that can both lead

to an increase in the basic reproduction number. It can therefore be

acknowledged that a specific variant has a selective advantage whilst

it still remains unclear which phenotypic traits are involved exactly. In

public health, pathogen adaptation undermines our effort to control

epidemics and, making matters worse, the unanticipated evolution of

life-history traits may lead the pathogen to take advantage of poorly

designed control strategies. Hence, tracking pathogen adaptation and

identifying the traits responsible for a variant growth advantage is a

worthy and important goal, in particular when it comes to optimizing

the efficacy of control strategies.

In this chapter, I address this question for the rise of the SARS-CoV-2

variant of concern Alpha that emerged in England in late 2020, about one

year after the beginning of the COVID-19 pandemic. I seek to characterize

the Alpha variant phenotype and disentangle the origin of its selective

advantage considering two phenotypic traits: (i) the transmission rate

and (ii) the mean duration of infectiousness. For this purpose, I use

the Stringency Index [99], a composite score tailored to measure the

extent of non-pharmaceutical interventions (NPIs), i.e., control measures

implemented to mitigate the spread of the epidemic. Crucially, NPIs

that limit the contact rate between infectious and susceptible hosts

unconditionally to infection (e.g., school closure, cancel public events)

are predicted to diminish the relative selective advantage of variants

with higher transmission rates but not of variants with longer durations

of infectiousness. I seek to take advantage of these theoretical contrasting

effects to estimate the transmission and recovery components of the

selective advantage of the Alpha Variant during its sweep across the
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nine regions of England. Using a combination of information from

epidemiological data (screening test results, fatality cases) and genetic

data (variant frequency among positive cases), I develop a statistical

approach based on the analysis of the temporal fluctuations of the

selection gradient (here, in an SEIR model) driven by the variability of

NPIs stringency.

1.4.2 Objectives of Chapter three (project Lambda)

Alongside public health, characterizing variant phenotypes is also a

worthy goal in experimental microbiology, although the life cycles of

microorganisms can be much more original and complex. In experimental

microbiology, experimental life-history assays are often used to estimate

pathogen phenotypes but typically focus on monomorphic pathogen

populations. Microbiological systems are well suited for tackling in real

life predictions from evolutionary epidemiology theory. While epidemics

in animal, including human, populations, such as COVID-19, allow one

to confront theory with real biological observations, evolution experi-

ments using microorganisms provide an unparalleled way to conduct

population-scale experiments in highly controlled and replicated settings.

Evolution experiments are specifically designed to put a priori theoretical

predictions to the test, whereas epidemics in nature are more used within

an a posteriori approach. Experimental evolution based on the biology

of phage-bacteria systems are particularly useful to test the validity of

theoretical predictions. Microbiological systems conditions are more

controlled than conditions in human epidemiological studies, and exper-

imental data are often less messy and incomplete. Yet, the experimental

validation of theoretical predictions in experimental microbiology is

usually limited to qualitative comparisons.

Figure 1.14: Spread of an epidemic of

two strains of phage 𝝀 in a continuous

culture of E. coli. The wildtype and the

virulent strain 𝜆cl857 have different flu-

orescence color. Photo Thomas W. Bern-

gruber – CEFE – CNRS.

In this chapter, built upon a previous dataset [68], I show how to deepen

quantitatively the match between theoretical models and experimen-

tal data within a polymorphic pathogen population. This quantitative

process enables to better understand the forces acting upon pathogen

evolution but also to estimate key phenotypic traits. The previous study

was an evolution experiment with the temperate phage 𝜆; two viral

strains with distinct life-history strategies (wildtype vs. virulent phage

𝜆cI857) were put in competition in continuous cultures of Escherichia coli
(Figure 1.14) and the authors tracked both the epidemiology (prevalence)

and the evolution (strain frequency among infected cells and in the

culture medium) underlying the viral competition. Based on a qualitative

match between numerical simulations and experimental time series, this

study confirmed important theoretical predictions on the dynamics of

selection on virulence: (i) variants with higher virulence – i.e., variants

with larger propensity to lyse bacterial cells and transmitted mostly

horizontally – are selected for when susceptible hosts are abundant, but

the direction of selection is reversed as soon as the epidemic has reached

high prevalence (epidemiological feedback), (ii) starting with a lower

prevalence results in a higher increase in virulence during the course of

the epidemic and (iii) the virulent strain is always more frequent among

free viral particles than among lysogenic cells. In this chapter, I carry out

a reverse approach, from experimental evolution back to theory, and seek

to perform a quantitative analysis based on a combination of theoretical
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analyses and statistical inference using the same experimental time series

data. I thereby illustrate the virtuous interplay between theoretical, ex-

perimental and statistical approaches to better understand and forecast

the evolutionary epidemiology of infectious diseases.

1.4.3 Objectives of Chapter four (project Omega)

How does migration shape pathogen evolution? In the previous projects,

I focused on the evolutionary epidemiology of host-pathogen systems in

closed populations. In particular, for the sake of simplicity, I assume in

the first project that, during the sweep of the SARS-CoV-2 variant Alpha

in England, all regions were independent of each other, without any

inter-regional migration flows. Yet, in most cases, natural populations

are hardly closed systems and spatially separated populations are inter-

connected through movements (“migration”) of susceptible and infected

individuals. Spatial transmission of diseases spread by direct contagion is

directly associated with host movements and spatial heterogeneity plays

a significant role in epidemiological dynamics. From an epidemiological
perspective, migration alters the speed of pathogen propagation in host

populations, or enables the epidemic to spread on larger scales by allow-

ing pathogens to reach new susceptible hosts from other populations.

From an evolutionary perspective, migration also interferes with the rise of

variants and affect the transient (short-term) and long-term evolutionary

dynamics of infectious diseases. In particular, the differential growth of a

specific variant in different locations – e.g., the sweep of the SARS-CoV-2

Delta variant in India and in different regions of England [67] – challenges

the hypothesis that the dynamics of the variant frequency was solely

driven by differences in fitness. Such discrepancy might be explained by

other mechanisms, such as host movements between populations. Yet,

little is known about how migration shapes the evolutionary dynamics

of the pathogen, especially in the short term.

In this chapter, I seek to better understand the interplay between migra-

tion and selection in pathogen evolution. Based on an SIRS model with a

polymorphic pathogen population (competition between two strains), I

extend the model within a closed population to a two-patch metapop-

ulation where host populations are interconnected through commuter

travel. In particular, I track the transient evolutionary dynamics of the

competition between the two strains when the selection is homogeneous

or heterogeneous among host populations.
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Abstract
Since its emergence in late 2019, the SARS-CoV-2 virus has spread globally, causing the ongoing COVID-19 pandemic. In the fall of 2020, the
Alpha variant (lineage B.1.1.7) was detected in England and spread rapidly, outcompeting the previous lineage. Yet, very little is known about
the underlying modifications of the infection process that can explain this selective advantage. Here, we try to quantify how the Alpha variant
differed from its predecessor on two phenotypic traits: The transmission rate and the duration of infectiousness. To this end, we analyzed the
joint epidemiological and evolutionary dynamics as a function of the Stringency Index, a measure of the amount of Non-Pharmaceutical Inter-
ventions. Assuming that these control measures reduce contact rates and transmission, we developed a two-step approach based on SEIR
models and the analysis of a combination of epidemiological and evolutionary information. First, we quantify the link between the Stringency
Index and the reduction in viral transmission. Second, based on a novel theoretical derivation of the selection gradient in an SEIR model, we
infer the phenotype of the Alpha variant from its frequency changes. We show that its selective advantage is more likely to result from a higher
transmission than from a longer infectious period. Our work illustrates how the analysis of the joint epidemiological and evolutionary dynamics
of infectious diseases can help understand the phenotypic evolution driving pathogen adaptation.
Keywords: life-history evolution, adaptation, competition, selection—natural, models/simulations, parasitism

Introduction
In December 2019, acute pneumonias of as yet “unknown
etiology” were increasingly reported in Wuhan, the capital
of the Hubei Province in Central China (Lu et al., 2020).
Since then, the infectious agent responsible for this emerging
zoonosis, a virus of the family Coronaviridae named SARS-
CoV-2 (severe acute respiratory syndrome coronavirus 2), has
spread worldwide, causing the pandemic COVID-19 (coron-
avirus disease 2019) (World Health Organization, 2020) that
is still ongoing today.

The possibility of a rapid SARS-CoV-2 adaptation was
initially met with considerable skepticism (Grubaugh et al.,
2020b; Rausch et al., 2020). Indeed, compared to other single-
stranded RNA viruses, the mutation rate of SARS-CoV-2 is
relatively low (estimated at the onset of the pandemic around
6.8–9.8×10–4 substitution.site–1.year–1 [van Dorp et al., 2020;
Vasilarou et al., 2021]). Besides, all the observed mutations in
SARS-CoV-2 were initially thought to be neutral or slightly
deleterious. The occasional rise of some mutations could be
due to demographic stochasticity (Day et al., 2020; Grubaugh
et al., 2020a), but the dramatic rise of specific mutations
in different regions of the world challenged the hypothesis
that none of these mutations were beneficial. In particular,
the analysis of the emergence and the spread of several vari-
ants of concern (VOCs) across the world—for example, Alpha
(lineage B.1.1.7), Delta (lineage B.1.617.2), or Omicron (lin-
eage B.1.1.529) (see, e.g., CoVariants [Hodcroft, 2021] or

Nextsrain [Hadfield et al., 2018])—demonstrated that these
variants carry adaptive mutations that explain their faster rate
of spread in the human population (Obermeyer et al., 2022).
However, each of these mutations may act on various dimen-
sions of the fitness landscape of the virus and affect different
life-history traits. It is therefore much less clear why spe-
cific variants are favored. In other words: Which phenotypic
trait(s) can explain this increase in viral fitness? Viral fitness is
governed by multiple life-history traits like the transmission,
the virulence or the recovery rates of the virus (Day et al.,
2020). It is crucial to understand which traits are involved
in the increase in fitness because they may have very dif-
ferent implications for epidemiological dynamics and public
health. For instance, an increase in the transmission rate or
in the duration of infectiousness both lead to an increase in
viral fitness but they may have distinct consequences for the
efficacy of Non-Pharmaceutical Interventions (NPIs), imple-
mented to mitigate the epidemic. It is therefore very impor-
tant to understand and track this adaptation to optimize our
control strategies.

In the following, we will focus on the first of these
VOCs: The lineage B.1.1.7, categorized as Variant of Concern
202012/01 and afterwards named “Alpha variant.” This vari-
ant emerged in early fall 2020 in the South-East region of Eng-
land (Public Health England, 2020; Volz et al., 2021) and then
spread rapidly across the country (Figure 1). The reproduction
number of the Alpha variant (i.e., its expected number of sec-
ondary infections) was estimated to be 40–100% higher than
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Figure 1. The two consecutive phases of the analysis of the spread of the Alpha variant. In phase 1 (before the emergence of the Alpha variant), we
assume the epidemic is driven solely by the resident strain; in phase 2 (after the emergence of the Alpha variant), the epidemic results from the joint
dynamics of the resident strain and the Alpha variant. In the first step of our analysis, we estimated the impact of the Stringency Index (a measure of
the amount of NPIs implemented to mitigate the epidemic, from 0 [no control] to 100 [stringest control]) on the propagation of the resident strain during
phase 1. In the second step of our analysis, knowing the impact of NPIs, we estimated the phenotypic differences between the resident strain and the
Alpha variant during phase 2. The dates reported on the chart match the middle of each week (Thursday). We set the end of phase 1 when the Alpha
variant reached 5% of the cases tested positive at the national scale (horizontal dashed line). For the sake of simplicity, we show data at the national
scale, but the starting date of phase 2 varied among regions (see Supplementary Figure S1 and Methods, A two-step analysis).

for the previous lineage (Davies et al., 2021; Volz et al., 2021).
Several studies aimed to unravel what phenotypic differences
could explain this increased fitness. First, (Davies et al.,
2021) explored various underlying biological mechanisms and
suggested that a higher transmission rate per contact for
the Alpha variant was the most parsimonious explanation,
but that a longer duration of infectiousness—merely increas-
ing the number of opportunities of transmission—could also
explain the data very well. (Blanquart et al., 2022) developed
another methodological approach considering three pheno-
typic traits: The overall reproduction number, the mean, and
the standard deviation of the generation time distribution of
the infection. They showed that the selective advantage of the
Alpha variant was likely to be driven by a higher reproduction
number with an unaltered mean generation time.

The present work is a new attempt to characterize the life-
history traits of the Alpha variant, for which we consider two
phenotypic traits: (a) the transmission rate and (b) the recov-
ery rate (inverse of the mean duration of infectiousness). We
propose a novel approach to estimate these two phenotypic
traits based on the analysis of the time-varying fluctuations of
the selection coefficient driven by the variability in the inten-
sity of NPIs used to limit the spread of the virus. As pointed
out by (Otto et al., 2021), the selection coefficient of the Alpha
variant (i.e., the slope of the change in its logit-frequency) var-
ied with the intensity of NPIs, measured by the “Stringency
Index,” a composite score published by the Oxford COVID-
19 Government Response Tracker (OxCGRT) (Hale et al.,
2021). In (Day et al., 2020) and (Otto et al., 2021), control
measures that reduce contact rates between infectious and sus-
ceptible hosts are predicted to reduce the (relative) selective

advantage of variants that have a higher transmission rate—in
addition to slowing down the spread of the epidemic—but
without affecting the selective advantage of variants that
have a longer duration of infectiousness. In the following, we
exploit these contrasting effects of NPIs on the selection coef-
ficient to infer the transmission rate and the mean duration of
infectiousness of the new variant.

We use a stepwise approach of two consecutive phases of
the epidemic (Figure 1). First, we focus on the analysis of the
epidemiological dynamics taking place just before the emer-
gence of the Alpha variant (i.e., just before it reached 5%
of the positive cases) and we infer the relationship between
the Stringency Index and the effectiveness of the control mea-
sures (NPIs) on the viral propagation in the United King-
dom. Second, we derive a novel expression for the selection
coefficient of a variant in a susceptible–exposed–infectious–
recovered (SEIR) model. Knowing the impact of NPIs on the
viral propagation from the first step, we use our expression
of the selection coefficient to infer the effects of the mutations
of the Alpha variant on (a) the transmission rate and (b) the
mean duration of infectiousness from the analysis of the evolu-
tionary dynamics taking place, in each region of England, just
after the emergence of the variant (i.e., just after it reached
10% of the positive cases).

Methods
A two-step analysis
The analysis is performed in two steps considering two con-
secutive evo-epidemiological periods of time: Before and after
the emergence of the Alpha variant in England (Figure 1). The
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Table 1. Overview of the two-step analysis. This table summarizes the main features of the two phases of the analysis. For each one, we recall the aim,
dates, circulating SARS-CoV-2 strains that we considered, fixed parameters, data, and fitted variables (model)—equation numbers are specified between
brackets just after the corresponding variable. For both phases, we also use values of the Stringency Index in the United Kingdom. ℛ0, 𝛾 (or 𝛾w), and 𝛽
(or 𝛽w) are the basic reproduction number and the per capita rates (per day) of recovery and transmission, respectively, of the resident strain w; 𝜅 is the
per capita transition rate (per day) from the exposed to the infectious state (same for both strains); k and a are the parameters linking the Stringency Index
to the efficacy of NPIs (same for both strains); S(t)/N is the proportion of susceptible hosts in the population (assumed constant in the second phase);
D refers to the cumulative density of COVID-19-related deaths. See Supplementary Tables S1 and S2 for a more detailed summary of the parameters
involved in phases 1 and 2, respectively.

Dates Strain(s) Fixed parameters Data Fitted variable(s)

Phase 1—National frequency of the Alpha variant < 5 %
AIM: Estimating the impact of NPIs (control parameters k and a) on the spread of the virus

August 3, 2020
–
November 8,
2020

Resident strain
(WT)

• ℛ0 = 2.5
• 𝛾 = 0.1
• 𝛽 = 0.25 (≈ 𝛾ℛ0)
• 𝜅 = 0.2
• S(t step 1

0 )/N = 0.9

Daily new cases tested negative
(United Kingdom)
Daily new cases tested positive
(United Kingdom)
Daily new fatality cases (United
Kingdom)

T–(t) (5)

T+(t) (6)

D(t) –D(t – 1) (3)

Phase 2—Regional frequency of the Alpha variant ≥ 10 %
AIM: Knowing the impact of NPIs, estimating the phenotypic differences Δ𝛽 and Δ𝛾

Region-
dependant (final
week January
18, 2021)

Resident strain
(WT) and Alpha
variant

• k and a (estimations from phase 1)
• 𝛽w = 0.25
• 𝛾w = 0.1
• 𝜅 = 0.2
• S/N = 0.75 (≈ final proportion of S at
the end of the simulation of phase 1)

Weekly regional logit-frequencies
of S Gene Target Failure among
cases tested positive (England)

logit( ̃fm(t)) (11)

first step aims to estimate the force of infection in the presence
of NPIs. In particular, we quantify c(t), a function measuring
the impact of NPIs at time t on the force of infection 𝜆(t). This
first step takes place temporally before the emergence of the
Alpha variant—that is, before it reaches 5% of the cases tested
positive in England—and consists in modeling the epidemio-
logical phase of the previous lineage, which we refer to as the
resident strain, disregarding the pre-existing genetic diversity
(Hodcroft et al., 2021). The second step consists in estimating
the differences in contagiousness and in infectious duration in
the presence of NPIs during the period when the two strains
cohabit, that is, for each region, from the moment the fre-
quency of the variant reaches 10% of cases tested positive.
We combine information from screening and mortality data
for the first step (using an epidemiological model), while we
focus on the changes in frequency of the variant among posi-
tive cases for the second step. See Table 1 for an overview of
this two-step approach.

For both steps, we consider a host population of size N.
We note S, E, I, and R, respectively, the states (or com-
partments) of individuals that are Susceptible to the disease,
Exposed (i.e., infected but not yet infectious), Infectious, and
Recovered. For a given state, for instance S, and current time
t (expressed in days), we note S(t) the density of people in
that state and Ṡ(t) its differentiation with respect to time.
Let 𝛽 be the per capita transmission rate (direct and hori-
zontal) and 𝛾 the per capita recovery rate. Control measures
implemented by governments such as social distancing, face
coverings, lockdowns, or travel bans are NPIs that aim to
curb the spread of the epidemic by alleviating the force of
infection 𝜆(t) = 𝛽I(t)/N. Given c(t) the effectiveness of these
measures—ranging from 0 (no control) to 1 (total control)—,
the expression for the force of infection thus becomes: 𝜆(t) =
(1 – c(t))𝛽I(t)/N. Directly estimating the control efficiency c(t)
is usually impossible; it results from a multitude of factors
that may vary spatially and temporally and is not necessarily

proportional to the severity of the measures in place. This is
why we choose here to include the Stringency Index (which
we noted 𝜓(t)), a composite score published by OxCGRT
(Hale et al., 2021). This index is based on nine component
indicators and rescaled to a value between 0 (no control)
and 100 (the stringest) in order to reflect the strictness of
public health policy. Eight component indicators are related
to “containment and closure” (school and workplace clos-
ing, cancel public events, restrictions on gathering site, close
public transport, stay-at-home requirements, and restrictions
on internal movement and on international travel) and one
is related to “health system” (public information campaign)
(Hale et al., 2021). These measures, in contrast with post-
symptomatic isolation or contact tracing (not explicitly taken
into account in this score), are mainly limiting the number of
contacts unconditionally to infection, that is mostly intended
to reduce the transmission rate than to shorten the infectious
period. We thus assume that NPIs included in the Stringency
Index would only affect the transmission rate (and not the
infectious period). Although somewhat imperfect, this index
has the advantage of integrating many factors into one value,
as well as being available per day online since the onset of
the pandemic in many countries. We model the link between
c(t) and 𝜓(t) through the following concave or convex
relationship:

c(t) = k(𝜓(t)100 )
a

, (1)

with k ∈ [0; 1], the maximum achievable efficiency (when
𝜓(t) = 100), and with a ∈ IR∗

+, a “shape” parameter.

Step 1: Epidemiological analysis just before the emergence of
the Alpha variant
We use a version of the well-known SEIR model (see Sup-
plementary Figure S2) to estimate the parameters that govern
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the epidemiological dynamics before the arrival of the Alpha
variant. We denote 𝛼, the additional per capita mortality
rate induced by the viral disease (i.e., the virulence) and D,
the compartment of (COVID-19-related) deceased individu-
als. We assume that the (potential) onset of symptoms and
the onset of infectiousness occur simultaneously after a latent
period of mean duration 1/𝜅. Within the infectious compart-
ment I, some hosts develop symptoms (IS) with probability
𝜔, while the others remain asymptomatic (IA) with comple-
mentary probability. It is further assumed that individuals IA
systematically recover at a per capita rate 𝛾, while individu-
als IS are divided into two subcompartments depending on
their fate: ISd, with probability p, for those who will eventu-
ally die from the disease (with virulence 𝛼), or, alternatively,
ISr, for those who will eventually recover (at the same rate 𝛾
as asymptomatic hosts). We model these epidemiological tra-
jectories using the following system of ordinary differential
equations (ODEs):

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

Ṡ(t) = –(1 – c(t))𝛽S(t) I(t)
N

Ė(t) = (1 – c(t))𝛽S(t) I(t)
N

– 𝜅E(t)
̇IA(t) = (1 – 𝜔)𝜅E(t) – 𝛾IA(t)
̇ISr(t) = (1 – p)𝜔𝜅E(t) – 𝛾ISr(t)
̇ISd(t) = p𝜔𝜅E(t) – 𝛼ISd(t)
Ṙ(t) = 𝛾(IA(t) + ISr(t))
Ḋ(t) = 𝛼ISd(t)

(2)

Following (Diekmann et al., 2010) for the construction of
the Next Generation Matrix, the basic reproduction num-
ber ℛ0—that is, the expected number of infectees from one
infector in a fully susceptible population—is then given in the
absence of NPI by:

ℛ0 = 𝛽 (1 – 𝜔p
𝛾 + 𝜔p

𝛼 ) .

In the context of COVID-19, the product 𝜔p—that is, the
probability of developing symptoms and dying from the
disease—is very low. We then approximate the basic repro-
duction number of the resident strain of SARS-CoV-2 asℛ0 ≈
𝛽/𝛾.

At each time point (each day), only a small fraction
of the population is tested and hosts with symptoms are
more likely to be tested than others. In order to take
these biases into account, we use the following range of
assumptions:

• Individuals S and IA are tested with the same probabil-
ity/reporting rate 𝜌;

• Individuals S and IA can be tested several times;
• All new individuals IS (symptomatic) are tested (reporting

rate of 1);
• Screening of individuals E and R is neglected (reporting

rate of 0);
• All new disease-related deaths are reported (reporting

rate of 1).

Furthermore, screening efforts in the United Kingdom tended
to be strengthened over time during this period (as shown
for instance by the increasing number of negative tests
in Supplementary Figure S3). As the reporting rate for
individuals without symptoms S and IA can no longer be

considered constant, we also assume a linear increase with
time:

• The reporting rate 𝜌 for individuals S and IA (without
symptoms) increases linearly over time: 𝜌(t) = 𝜂 t + 𝜇.

The reporting rate is not identifiable in an SIR model when
only a fraction of the compartment I is observed (Hamelin
et al., 2021). Thus, we also consider the disease-related deaths
in the observation process. The combination of information,
that is daily new cases tested negative and tested positive and
daily new fatality cases, allows us to identify the reporting
rate. Between two consecutive time points t – 1 and t, the
number of new fatality cases is given by:

D(t) –D(t – 1) = ∫
t

t–1
𝛼ISd(t)dt, (3)

and, given ∫
t

t–1
𝜔𝜅E(t)dt, the incidence of symptomatic cases

(i.e., new incomers in compartment IS), we decomposed the
number of performed tests T(t) as follows:

T(t) = T–(t) + T+(t) = 𝜌(t)S(t)⏟⎵⏟⎵⏟
T–(t)

+𝜌(t)IA(t) +∫
t

t–1
𝜔𝜅E(t)dt

⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
T+(t)

,

(4)

with T–(t) and T+(t), the number of cases tested negative and
tested positive, respectively. Thus:

T–(t) = (𝜂 t + 𝜇) S(t) (5)

T+(t) = (𝜂 t + 𝜇) IA(t) +∫
t

t–1
𝜔𝜅E(t)dt (6)

Step 2: Evolutionary analysis
We now consider that two distinguishable pathogenic strains
compete: the resident (or WT) strain, represented with the
subscript w, and the mutant strain (or variant), represented
with the subscriptm. The total number of exposed hosts E(t),
where t is the current time, can therefore be decomposed
into: E(t) = Em(t) + Ew(t). Likewise, for the infectious hosts
I(t): I(t) = Iw(t) + Im(t), and we denote qm(t) = Im(t)/I(t),
the frequency of the variant in I. We propose that the vari-
ant may differ phenotypically from the resident strain in its
effective transmission rate 𝛽m = 𝛽w + Δ𝛽 and/or its recov-
ery rate 𝛾m = 𝛾w + Δ𝛾. In contrast, we neglect any difference
in terms of latent period (𝜅m = 𝜅w = 𝜅), and we neglect the
virulence of both strains (𝛼m = 𝛼w = 0). For SARS-CoV-2,
frequencies of the Alpha variant did not seem to depend on
the age of hosts (Davies et al., 2021). Assuming furthermore
that over-infections do not occur—including coinfections with
both strains—and that (persistent) immunity acquired with
either strain protects effectively against both, we start with
the simple following SEIR model:

⎧
⎪
⎨
⎪
⎩

Ṡ(t) = –(1 – c(t))𝛽(t)S(t) I(t)
N

Ė(t) = (1 – c(t))𝛽(t)S(t) I(t)
N

– 𝜅E(t)
̇I(t) = 𝜅E(t) – 𝛾I(t)
Ṙ(t) = 𝛾(t)I(t)

(7)
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where the overlines refer to mean values of the phenotypic
traits after averaging over the distribution of strain frequen-
cies:

{𝛽(t) = (1 – qm(t))𝛽w + qm(t)𝛽m
𝛾(t) = (1 – qm(t))𝛾w + qm(t)𝛾m

As described in (Lion, 2018; Lion & Gandon, 2022), under
the assumption of weak selection, the overall frequency of the
variant ̃fm(t) can be tracked using:

d ̃fm(t)
dt

= ̃fm(t)(1 – ̃fm(t))⏟⎵⎵⎵⏟⎵⎵⎵⏟
Genetic variance

v(t)⊤ΔR(t)f(t)⏟⎵⎵⎵⏟⎵⎵⎵⏟
s(t), selection coefficient

, (8)

with v(t) and f(t), the vectors of reproductive values and class
frequencies, respectively, within the infected states (E and I),
andΔR(t), thematrix of differences in transition rates between
the mutant strain and the resident strain (for more details, see
Supplementary Appendix). An easier way to study s(t) in time
series analyses is not to directly work with frequencies but
with logit-frequencies instead, that is ln(frequency of the vari-
ant/frequency of the resident strain). Indeed, it may easily be
shown that:

d logit( ̃fm(t))
dt

= s(t). (9)

We then focus on the selection coefficient of the variant
s(t) (also known as the selection gradient). According to its
value (weakly or strongly positive, weakly or strongly nega-
tive), this selection coefficient quantifies over time the success
or the disadvantage of the variant over the resident strain
through natural selection (Day & Gandon, 2006, 2007; Day
et al., 2020). In Supplementary Appendix, we show that,
using quasi-equilibrium approximations for fast variables, the
selection coefficient of the variant s(t) may be approximated
as:
s(t) ≈

2𝜅(1 – c(t))Δ𝛽 S(t)
N

– (𝜅 – 𝛾(t) +√(𝜅 – 𝛾(t))
2
+ 4𝜅(1 – c(t))𝛽(t) S(t)

N
)Δ𝛾

2 √(𝜅 – 𝛾(t))
2
+ 4𝜅(1 – c(t))𝛽(t) S(t)

N

.

(10)

For the SIRmodel nested in the SEIRmodel (7), the selection
coefficient is merely: s(t) = (1–c(t))Δ𝛽S(t)/N–Δ𝛾 (Day&Gan-
don, 2006, 2007), which shows analytically the importance of
the control through c(t) to distinguish the scenario where the
selective advantage of the variant stems from a higher trans-
mission rate (Δ𝛽 > 0; Δ𝛾 = 0) from the scenario with a longer
duration of infectiousness (Δ𝛽 = 0; Δ𝛾 < 0), or from an inter-
mediate scenario (Δ𝛽 ≠ 0; Δ𝛾 ≠ 0). In other words, it is
particularly the variations in c(t) that might help us to decou-
ple the effects of these two phenotypic traits. Simply adding
an exposed state E makes the selection gradient surprisingly
much more difficult to express but the importance of the vari-
ations in c(t) for this purpose (although less clear-cut) remains
nevertheless relevant as suggested by (10).

Statistical inference
Programing
Numerical simulations and data analyses were carried out
using R (R Core Team, 2021) version 4.1.1 (August 10, 2021).
ODEs were solved numerically by the function “ode” (method
“ode45”) from the package “deSolve” (Soetaert et al., 2010).

Step 1
We used daily screening data between August 3, 2020 and
November 8, 2020 in the United Kingdom (a period for which
the Alpha variant was below 5% among cases tested positive
in England); 7-day rolling average data were used in order to
mitigate the effects of variation in testing activity, for example,
during weekends. We also included daily COVID-19-related
deaths in the United Kingdom (“Daily deaths with COVID-
19 on the death certificate by date of death”) as well as the
Stringency Index.

The goal of this part is to compute c(t) from the Stringency
Index and thus to focus on the estimation of the parameters
k and a. We used additional information from the literature
to fix the value of some parameters of the model (2): We
set the mean latent period to 5 days (Ding et al., 2021) and
the mean duration of infectiousness to 10 days (Byrne et al.,
2020), that is, an average infection period of 15 days; we also
set the basic reproduction number ℛ0 to 2.5 (Ferguson et al.,
2020; Li et al., 2020) and the initial proportion of suscep-
tible hosts to 0.9. Besides, we approximated the initial states
within compartment I. This is summarized with further details
in Supplementary Table S1. With these parameters fixed, the
model (2) is identifiable (Supplementary Figure S4, follow-
ing Raue et al., 2009). The remaining parameters of the first
phase were estimated using weigthed least squares (WLS). Let

𝜃 = (k, a, E(t step 1
0 ), 𝛼, 𝜔, p, 𝜂, 𝜇)

⊤
be the vector of param-

eters to estimate, with t step 1
0 the initial time point of the first

step, and ̂𝜃 its estimator such that:

̂𝜃 = argmin
𝜃

∑
i

∑
t

(yi(t) – fi(𝜃, t))
2

fi(𝜃, t)
,

where the subscript i refers to our three observation states,
that is, daily new cases tested negative and tested pos-
itive and daily new fatality cases, which were modeled
through functions fi. fi(𝜃, t) corresponds thus to the expected
observations, while yi(t) corresponds to the real observa-
tions (data). With WLS, squared residuals are weighted by
the inverse of the variance of the observations yi(t); these
weights balanced the contrasting intrinsic contributions of
each observation, for example, negative tests and deaths are
not on the same order of magnitude. Assuming yi(t) to be
Poisson-distributed—consistent with ODEs where sojourn
times are exponentially distributed—then the variance of the
observations is fi(𝜃, t). This would correspond to the Pear-
son 𝜒2 function in (Berkson, 1980). Nonlinear optimizations
were tackled with the R function “optim,” from the basic
package “stats”, using the Nelder–Mead (or downhill sim-
plex) method—maximum number of iterationsmaxit = 2,000,
absolute and relative convergence tolerance abstol = reltol
= 10–6. This optimization procedure was iterated for 1,500
sets of uniformly drawn initial values (because of the pres-
ence of local minima) and was restricted to certain ranges of
values through parameter transformations (cf. Supplementary
Table S3). Only parameter estimates from the best fit, that is,
successful completion with the lowest WLS value, were kept,
and we refer to them as the best WLS estimates.

Parameter distributions were then computed using wild
bootstrap (Kline & Santos, 2012; Liu, 1988), which allow
in particular to take into account any heteroscedasticity in
the residuals. To do this, 2,000 sets of bootstraped data were
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generated: Residuals were perturbed by an i.i.d. sequence of n
random weights {Wi}ni=1 following Mammen’s two-points dis-
tribution (that is, (1 – √5)/2 with probability (√5 + 1)/(2√5)
and (1+√5)/2with probability (√5–1)/(2√5)), which satisfies
𝔼(Wi) = 0 and 𝔼(W2

i ) = 1 (Kline & Santos, 2012). Nonlinear
optimizations were then reiterated, but starting only from the
best WLS estimates and the corresponding set of initial values.

As a sensitivity analysis, ±10% and ±20% perturbations
were applied to the fixed parameters of the first phase sepa-
rately (𝛽, 𝜅, 𝛾, and S(t step 1

0 )/N), and nonlinear optimizations
were each time reiterated starting from a set of 500 initial
conditions (uniformly drawn, as before).

Step 2
We used weekly regional frequencies of S Gene Target Fail-
ure (SGTF) in England from the technical briefing 5 of Pub-
lic Health England (PHE), which was investigating the new
VOC 202012/01 variant between September 2020 and Jan-
uary 2021 (Public Health England, 2020). Briefly, qPCR from
the ThermoFisher TaqPath kit (designed to target three genes:
ORF1ab, N, and S) were performed after swab sampling in
the wider population, that is, outside NHS hospitals and PHE
labs. Due to the deletion ΔH69/V70 in the genome of the
Alpha variant, a mismatch between one of the three molecular
probes and the viral sequence encoding for the glycoprotein
Spike (S) resulted in a failure of detection, or SGTF, a genomic
signature that was then used as a proxy for this variant (Public
Health England, 2020; Volz et al., 2021). As in the first step,
we also included values of the Stringency Index in the United
Kingdom.

Under the assumption that variations in S(t)/N on short
time scales may be neglected for a controlled epidemic
(S(t)/N ≈ S/N) and by neglecting the effect of the rise in
frequency of the variant on the average phenotypic trait val-
ues, that is, 𝛽(t) ≈ 𝛽w and 𝛾(t) ≈ 𝛾w (weak selection
approximation), we may integrate (10) in accordance with
(9) to find an expression for the overall logit-frequency of the
variant:

logit( ̃fm(t)) ≈ logit( ̃fm(t
step 2
0 ))

+ 𝜅∫
t

t
step 2
0

( (1 – c(t))
√(𝜅 – 𝛾w)2 + 4𝜅(1 – c(t))𝛽wS/N

) dt Δ𝛽 S
N

–
1
2 [(𝜅 – 𝛾w)∫

t

t
step 2
0

( 1
√(𝜅 – 𝛾w)2 + 4𝜅(1 – c(t))𝛽wS/N

) dt + Δt] Δ𝛾,

(11)

where Δt = t – t step 2
0 is the period of time between the system

at time t and its initial state.
Δ𝛽 appears as a product with S/N in (11), which implies

that they are likely not to be separately identifiable. At the
final time point of the first phase, our best fit ended up with a
proportion of susceptible hosts around 0.75. Hence, we con-
sistently set S/N to 0.75 for the second phase. As in the first
phase, we also set: 𝜅 = 0.2, 𝛽w = 0.25, and 𝛾w = 0.1. Phe-
notypic differences relative to the previous lineage (Δ𝛽 and
Δ𝛾 in (11)) were estimated using a linear mixed-effects model
(MEM) to fit weekly logit-frequencies of SGTF among cases
tested positive for COVID-19 as a proxy of the Alpha vari-
ant in the nine regions of England late 2020 early 2021.
We assumed that these frequencies were representative of the
infected population and that the regions were independent
of each other, that is, no inter-region flows. In more detail,

logit( ̃fm(t))was the response variable, Δ𝛽 and Δ𝛾were treated
as fixed effects and the region (nine in total) was treated as a
random effect on the intercept of the model. Hence, for the
region i at time point t (i and t are now noted as indexes for
clarity):

logit( ̃fm)t,i⏟⎵⎵⏟⎵⎵⏟
Response variable

= intercept + Δ𝛽 C𝛽
t + Δ𝛾 C𝛾

t + Regioni + 𝜀t,i,

with:

• intercept, the common fixed effect (reference);

• C𝛽
t = 𝜅∫

t

t0

(1 – c(t))
√(𝜅 – 𝛾w)2 + 4𝜅(1 – c(t))𝛽wS/N

dt
S
N

, the

covariate associated with Δ𝛽 (fixed effect);

• C𝛾
t = –

1
2 [(𝜅 – 𝛾w)∫

t

t0

dt

√(𝜅 – 𝛾w)2 + 4𝜅(1 – c(t))𝛽wS/N
+ Δt],

the covariate associated with Δ𝛾 (fixed effect);
• Regioni ∼ 𝒩 (0, 𝜈2), the random effect (with variance 𝜈2)

of the region i on the intercept of the model;
• 𝜀t,i ∼ 𝒩 (0, 𝜎2), the residual error (with variance 𝜎2).

This MEM was implemented using the function “lmer” from
the R package “lme4”: logit( ̃fm) ∼ Δ𝛽 +Δ𝛾+ (1|Region), and
95% CIs of parameters Δ𝛽 and Δ𝛾 were computed using the
function “confint” from the package “stats.” For each region,
the initial date corresponds to the moment the Alpha variant
reached 10% of cases tested positive, that is, above horizon-
tal lines in Supplementary Figure S1-D. Below this threshold,
the dynamics of the variant could not be considered determin-
istic. The parameters k and a that govern the link between
the Stringency Index and the intensity of control (1) were set
according to their best WLS estimates and joint distribution
that were previously computed in the first step (cf. Step 1).

As for the first step, we investigated the robustness of our
estimations. First, keeping our best WLS estimates for param-
eters k and a, linear MEMs were reiterated with ±10% and
±20% perturbations in the fixed parameters of the second
phase separately (𝛽w, 𝜅, 𝛾w, and S/N). Second, we used estima-
tions of parameters k and a that we obtained after perturbing
the fixed parameters of the first phase (cf. Step 1) to propa-
gate these perturbations to the outcomes of the second step;
the values of the fixed parameters of the second phase were
updated each time in accordance.

Results
In the first step of the analysis, we develop an SEIR model
(see equation (2) and Supplementary Figure S2) to capture
the effect of the control measures c(t) on the epidemiolog-
ical dynamics. The effectiveness of these control measures
has been quantified and monitored with the Stringency Index
(Hale et al., 2021). As shown in the Methods section (A two-
step analysis), the Stringency Index depends mainly on NPIs
that decrease contacts with susceptible hosts, and we therefore
assume that NPIs only affect transmission, but not the infec-
tious period. We model the link between the effectiveness of
the control measures c(t) and the Stringency Index 𝜓(t) at each
time point t through the following function:

c(t) = k(𝜓(t)100 )
a

, (1)
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with k, the maximum achievable effectiveness, and a, a
“shape” parameter; 𝜓(t) takes values between 0 (no control)
and 100. We generated daily new fatality cases (3), daily new
cases tested negative (5) and daily new cases tested positive (6)
that we fitted to observed data using weighted least squares
(WLS) (see Methods, Step 1). The best WLS estimates for this
model yielded k = 1 and a = 3.78. The adjusted model seemed
to fit the general dynamics of the data even though somewhat
locally perfectible (Supplementary Figure S3). We then quan-
tified the uncertainty of our parameter estimates using wild
bootstrap (Kline & Santos, 2012; Liu, 1988): We reiterated
about 2,000 nonlinear optimizations on perturbed data in
order to get 2,000 new sets of estimations (cf. Methods, Step
1). We thus obtained the joint distributions of the estimated
parameters (see Supplementary Figure S5), and in particular
parameters k and a that govern equation (1).

In the second step of the analysis, we seek to explain the
rapid spread of the Alpha variant through an increase in the
transmission rate and/or the recovery rate. We developed an
SEIRmodel that takes into account the circulation of both the
Alpha variant and the previous lineage, which we will refer to
as the resident strain (Methods, Step 2: Evolutionary analy-
sis). This model was used to derive an approximation of the
temporal dynamics of the overall frequency ̃fm(t) of the Alpha
variant. Under the assumptions of weak selection and quasi-
equilibrium of fast variables (for more details, see Supplemen-
tary Appendix), we obtained the following approximation for
the selection coefficient s(t) of the Alpha variant:

s(t) =
d logit( ̃fm(t))

dt
≈ 𝜅 + r(t)
𝜅 + 𝛾(t) + 2r(t)

× [ Δ𝛽
𝛽(t)

(r(t) + 𝛾(t)) – Δ𝛾] , (12)

with logit( ̃fm(t)) = ln( ̃fm(t)/(1 – ̃fm(t))) and where Δ𝛽 and
Δ𝛾 are the phenotypic differences between the Alpha variant
and the resident strain in terms of transmission and recovery,
respectively; 𝛽(t) and 𝛾(t) refer to the average transmission
and recovery rates across all genotypes; 𝜅 is the transition rate
from the exposed state E to the infectious state I. Lastly, r(t)
is the average growth rate of the epidemic:

r(t) = q(t) ((1 – c(t))𝛽(t)S(t)
N

– 𝛾(t)) ,

with q(t), the frequency of infectious individuals among
infected hosts (i.e., I(t)/(E(t)+I(t))). It is important to note that
NPIs affect the selection coefficient of the variant (12) through
the growth rate of the epidemic r(t), which depends on the
amount of control c(t). Crucially, this impact is stronger if
the Alpha variant is more transmissible (i.e., Δ𝛽 > 0) (see
also Day et al., 2020 and Otto et al., 2021). Interestingly,
we found—as in (Otto et al., 2021)—a negative correlation
between the selection coefficient of the Alpha variant in Eng-
land and the Stringency Index: –0.88 at the national scale
(95% CI [–0.98; –0.39]) and between –0.97 (London, 95% CI
[–0.99; –0.86]) and –0.81 (South West, 95% CI [–0.97; –0.14])
at the regional level (Supplementary Figure S6). In the fol-
lowing, we approximated r(t) using the quasi-equilibrium
expression of q(t), we assumed that the proportion of sus-
ceptible hosts remained approximately constant during the
second phase of the analysis (S(t)/N ≈ S/N) and we neglected
the effect of the rise in frequency of the variant on the

average phenotypic trait values in (12) and r(t) (weak selection
assumption).

Under these assumptions along with the previous best WLS
estimates for the control parameters from the first step of
the analysis (k = 1, a = 3.78), the fitted linear MEM (Sup-
plementary Figure S7) led to the following estimations of
the phenotypic differences (per day): Δ𝛽 = 0.15 (95% CI
[0.033; 0.258]) and Δ𝛾 = –0.047 (95% CI [–0.099; +0.001])
(Figure 2). With a significance level of 5%, likelihood-based
comparisons of nestedMEMs show a significant effect for Δ𝛽,
but not for Δ𝛾 (although with a p-value very close to the sig-
nificance threshold) (Supplementary Table S4). In addition,
we sought to propagate to the second phase the uncertainty
of our estimates of the parameters k and a. Starting from each
of the almost 2,000 pairs {k; a} based on previous wild boot-
strap computations, we obtained as many new estimators for
{Δ𝛽; Δ𝛾}. For Δ𝛽, 95% of themwere between 0.147 and 0.153
(Supplementary Figure S9-A), for which each corresponding
95% CI remained positive (Supplementary Figure S8). In con-
trast, 95% of these 2,000 estimates were between –0.054 and
–0.046 for Δ𝛾 (Supplementary Figure S9-B), among which
61% of the corresponding 95% CIs included 0 (Supplemen-
tary Figure S8). These distributions led us to conclude that
the Alpha variant has a higher transmission rate than the res-
ident strain. With these estimates of Δ𝛽 and Δ𝛾 and in the
absence of NPI, the selection coefficient of the Alpha variant
was computed, on average, around 0.77 per week (SD 0.02
per week).

We also explored the robustness of these estimations
by applying ±10% and ±20% perturbations in the fixed
parameters of our model (cf. Table 1) to investigate how
they would affect our results. First, we kept the best WLS
estimates for the control parameters (k = 1, a = 3.78), and
we applied the perturbations to the fixed parameters of the
second phase of the analysis. Our estimations of Δ𝛽 and Δ𝛾
were not very sensitive to these perturbations (cf. Supple-
mentary Figure S10). Second, we applied the perturbations
in the fixed parameters of the first step in order to get new
estimates of the control parameters k and a. We used these
new estimates in the second phase of the analysis to estimate
the phenotypic differences Δ𝛽 and Δ𝛾. The parameter k was
hardly affected by these perturbations but the parameter awas
more sensitive, in particular when varying the transmission
rate or the initial proportion of susceptible hosts (cf. Supple-
mentary Figure S11-1). Next, we reiterated the second step
with these new estimations of the pair {k; a}. All the 95% CIs
of the estimates of Δ𝛽 remained positive after these pertur-
bations. However, some perturbations led to more negative
values of Δ𝛾 (i.e., the 95% CIs of Δ𝛾 included only nega-
tive values, Supplementary Figure S11-2). Note that this effect
seems to be driven by the variations in the estimation of the
parameter a (cf. Supplementary Figure S11). Taken together,
the results of these analyses confirm the conclusion that the
Alpha variant has a higher transmission (Δ𝛽 > 0). An increase
in the mean duration of infectiousness (Δ𝛾 < 0) seems less
likely but cannot be completely ruled out.

Discussion
We developed a two-step approach to characterize the
phenotypic variation of the Alpha variant relative to the
previously dominant lineage. In the first step of the anal-
ysis, we focus on the epidemiological dynamics before the

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/article/77/10/2213/7226720 by C

EFE-C
N

R
S user on 21 M

arch 2024



2220 Benhamou et al.

Figure 2. Phenotypic profile of the Alpha variant (transmission and recovery rates) relative to the resident strain. By definition, the phenotype of the
resident strain is located at the origin of the graph (Δ𝛽 = 0; Δ𝛾 = 0). Linear MEM estimates (black point, expressed per day) of phenotypic differences
in transmission Δ𝛽 and in recovery Δ𝛾 as well as 95% CIs (black cross) are based on the best WLS estimates of control parameters k and a from the
analysis of phase 1 (k = 1 and a = 3.78). We obtained Δ𝛽 = 0.15 (95% CI [0.033; 0.258]) and Δ𝛾 = –0.047 (95% CI [–0.099;+0.001]). For the fixed
parameters, we set: S/N = 0.75, 𝜅 = 0.2, 𝛽w = 0.25 and 𝛾w = 0.1. The colored background represents the values of the selection coefficient (in the
absence of NPI) as a function of Δ𝛽 and Δ𝛾; the selection coefficient is here around +0.11 per day (or +0.77 per week) for the Alpha variant. Estimates
and 95% CIs based on the joint distributions of parameters k and a from wild bootstrap computations are represented in Supplementary Figure S8.

emergence of the Alpha variant and we used an SEIR model,
a simplified representation of an age-structured model, to
infer the effect of the Stringency Index on the reduction
of transmission induced by these control measures. This
led us to infer a convex increasing function that captures
the effect of the Stringency Index on the reduction in the
number of contacts with susceptible hosts (Supplementary
Figure S12).

The second step of this approach is based on the analy-
sis of the change in frequency of the Alpha variant after its
emergence. Using evolutionary epidemiology theory (Day &
Gandon, 2006, 2007; Day et al., 2020), we derive an expres-
sion for the gradient of selection in an SEIR model. The anal-
ysis of selection in such a class-structured environment (the
virus is infecting both the E and the I hosts) is facilitated under
the assumption of weak selection and the approximation of
quasi-equilibrium for fast variables (Gandon & Lion, 2022;
Lion, 2018; Lion & Gandon, 2022). We recover a classical
result derived from simpler SIRmodels: The intensity of selec-
tion for higher transmission rates depends on the availability
of susceptible hosts and the amount of NPIs aiming to reduce
contact (e.g., social distancing or face coverings). In contrast,
selection for longer durations of infectiousness is much less
sensitive to these control measures. Using our independent
estimation of the effectiveness of NPIs based on the Strin-
gency Index, we inferred both Δ𝛽 and Δ𝛾 of the Alpha variant
from the temporal dynamics of its logit-frequency. This anal-
ysis suggests that the selective advantage of the Alpha variant

was mainly driven by a higher transmission rate. An increase
in the mean duration of infectiousness (i.e., a lower rate of
recovery) seems less likely but cannot be completely ruled out.
Interestingly, recent experimental studies of viral transmission
confirm the transmission advantage of the Alpha variant. Viral
shedding in breath aerosols was indeed found to be higher in
individuals infected with the Alpha variant than with previous
lineages (Lai et al., 2022).

Several specific mutations of the Alpha variant could
explain these phenotypic differences. Preliminary genomic
characterizations detected around 17 nonsynonymous substi-
tutions or deletions compared to the previous lineage; about
half were associated with the protein S gene, including muta-
tions of immunological significance (Rambaut et al., 2020). In
particular, the mutation N501Y, known to increase the affin-
ity of the viral glycoprotein S for the human receptor ACE2
(Starr et al., 2020), and the mutation P681H, adjacent to a
serine protease cleavage site that is required for cell infec-
tion (Hoffmann et al., 2020), are both likely to affect the
within-host development of the virus in infected hosts. How
this development affects key phenotypic traits like transmis-
sion and recovery rates in human host is difficult to explore
experimentally. Our analysis can thus provide a complemen-
tary approach that may help to link genetic and phenotypic
variation.

Yet, it is important to note that this analysis relies on
several simplifying assumptions. For instance, we assumed
that infectiousness began at the same time as the onset

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/article/77/10/2213/7226720 by C

EFE-C
N

R
S user on 21 M

arch 2024



Evolution (2023), Vol. 77, No. 10 2221

of symptoms, that is, the latent period and the incubation
period coincide perfectly in time. Yet, transmission from a
presymptomatic state is a distinctive feature of SARS-CoV-2
(Day et al., 2020; He et al., 2020; Rothe et al., 2020). Besides,
our framework sticks to the SEIR class of models formal-
ized by ODEs, with 𝜅 and 𝛾, the (constant) rates of leaving
the exposed and infectious compartments, respectively. This
implicitly yields sojourn times in the different compartments
that are exponentially distributed—and thus, markovian or
memoryless (Forien et al., 2021; Sofonea et al., 2021). As a
result, the generation time follows a hypoexponential distri-
bution (generalized Erlang distribution) with mean 1/𝜅 + 1/𝛾
and variance 1/𝜅2 + 1/𝛾2 (Wallinga & Lipsitch, 2007). Our
analysis does not allow the mean and variance of this dis-
tribution to change independently but a variation in 𝛾 does
affect the mean and the variance of the generation time. Sev-
eral studies, however, have discussed the influence of the shape
of the generation time distribution on both the epidemio-
logical and evolutionary dynamics of the pathogen (Abbott
et al., 2022; Blanquart et al., 2022; Day, 2003; Park et al.,
2019, 2022; Wallinga & Lipsitch, 2007). We show in Sup-
plementary Appendix S7 how to recover our results using
the selection on the shape of the generation time distribution
used by (Blanquart et al., 2022). In both analyses, variations
in the intensity of NPIs are assumed to impact the effective
reproduction number without altering the generation time
distribution (which means they only impact transmission).
Nevertheless, some control measures like contact tracing and
postsymptomatic isolation may impact the duration of infec-
tiousness, the generation time distribution, and the selection
on the variant (Park et al., 2022).

Data availability and quality are major limiting factors
in any statistical inference analysis. The Stringency Index
provides a rough approximation of the intensity of control
at the national scale. More precise and more local estima-
tions of control would allow us to refine our estimations. In
addition, we show in Supplementary Appendix S6 how the
availability of data frequency among different types of hosts
(i.e., the differentiation between the exposed and the infec-
tious compartments) may provide another way to estimate
Δ𝛽 and Δ𝛾.

To conclude, we contend that it is important to exploit the
joint epidemiological and evolutionary dynamics of SARS-
CoV-2 to better understand its phenotypic evolution. This
phenotypic evolution is undermining our efforts to control
the epidemic. New variants are emerging and are affecting
other phenotypic traits. In particular, the ability of new vari-
ants (e.g., Omicron) to escape immunity has a major impact
on the epidemiological dynamics (Paton et al., 2022). Infer-
ence approaches using both epidemiological and evolutionary
analysis could yield important insights on the adaptive tra-
jectories on the phenotypic landscape of SARS-CoV-2, and
possibly other pathogens.
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Figure S1: Epidemiological and genetic data from the COVID-19 outbreak in England
between September 2020 and January 2021. Weekly numbers of TaqPath Pillar 2 COVID-19
positive tests associated with the resident strain of SARS-CoV-2 or with the Alpha variant (lineage
B.1.1.7) at the national scale (A, total numbers of tests (not only TaqPath tests) are shown in black)
and at regional scale (C). Weekly percentages of each strain within the TaqPath Pillar 2 COVID-19
positive tests at the national scale (B) and at the regional scale (D). SGTF from qPCR was used as a
proxy of the Alpha variant. In this study, we considered two consecutive evo-epidemiological phases:
(i) the phase that preceded the emergence of the Alpha variant, and (ii) the phase that followed it. The
first phase took place just before the frequency of the variant reached 5% of the cases tested positive
at the national scale (horizontal black line in B). Then, for each region, the second phase started at
the date the variant reached at least the threshold value 10%, indicated in D with horizontal white
lines. Below, the number of cases associated with the Alpha variant was quite low and the dynamics of
its frequency was widely driven by stochastic processes – see for example the erratic dynamics below
the horizontal white line for the second region (’East of England’) in D.
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Figure S2: Flow chart of the epidemiological SEIR model used in the first step of our
analysis (phase 1). Hosts may be: S (Susceptible to the infection), E (Exposed, that is infected but
not yet infectious), I (Infected, with IA: Asymptomatic; IS : Symptomatic (with subscript r for those
for will eventually recover and d for those who will eventually die from the disease)), R (Recovered and
immunised) and D (Deceased). Transitions are represented by solid line arrows associated with the
corresponding parameters (see Table S1 for definitions). The dashed line arrow symbolises the role of
compartment I in the force of infection λ(t) – i.e. transition rate from compartment S to compartment
E. c(t) is the efficacy of NPIs.

4



15
00

00
20

00
00

25
00

00
30

00
00

Aug 2020 Sep 2020 Oct 2020 Nov 2020

D
ai

ly
 n

ew
 n

eg
at

iv
e 

te
st

s
A)

   
 0

10
00

0

20
00

0

30
00

0

Aug 2020 Sep 2020 Oct 2020 Nov 2020

D
ai

ly
 n

ew
 p

os
iti

ve
 te

st
s

B)

   
0

 5
00

10
00

15
00

Aug 2020 Sep 2020 Oct 2020 Nov 2020

D
ai

ly
 n

ew
 fa

ta
lit

y 
ca

se
s

C)

Figure S3: Model fitting to data for the first phase (from 2020-08-03 to 2020-11-08 in the
UK). Observed data – (A) daily new cases tested negative, (B) daily new cases tested positive and
(C) daily new fatality cases – are shown as dark points. Fits based on the best WLS estimates are
represented as dark lines and about 2000 model fits resulting from wild bootstrap are represented as
light lines.
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Figure S4: Identifiability profiles of the first phase. Simulated data for the first phase – i.e. (i)
new cases tested negative, (ii) new cases tested positive and (iii) new fatality cases – were generated
with the parameter values indicated by the vertical dashed lines: E(t0)/N = 8.0 × 10−4 (where t0
refers to the initial time point of the first phase), ω = 0.08, p = 0.02, α = 0.1, k = 0.99, a = 3.78,
η = 3.2 × 10−5, µ = 2.3 × 10−3; i.i.d. Gaussian noise was added to each series of simulated data,
with standard deviation (i) 5000, (ii) 500 and (iii) 5. For the fixed parameters, we set: κ = 0.2,
γ = 0.1, R0 = 2.5, β = γR0 = 0.25 and S(t0)/N = 0.9. We used real values for the Stringency
Index (from 2020-08-02 to 2020-11-08 in the UK). Profiles were built following (Raue et al., 2009): a
parameter of interest is set to a given value (on the x-axis) and the others are estimated to obtain a
WLS value (y-axis, here on log scale); this is then reiterated with different values of the parameter of
interest to cover the desired range (x-axis). As initial conditions, we only started from the parameter
values that we used to simulate the data. Discontinuities in the profiles result merely from convergence
failures. Points associated with the lowest WLS value are enclosed in a circle and their good match
with the values used to simulate the data (vertical dashed lines) confirms that these parameters should
be identifiable. Though, the shallowness of some profiles suggest that precise estimations may be
numerically difficult.
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Figure S5: 95% distributions of the parameters estimated in the first step. The distributions of
these parameters (see Table S1 for definitions) were computed using wild bootstrap (Kline and Santos,
2012; Liu, 1988); bootstraped data were generated with residuals perturbed by an i.i.d. sequence
of n random weights {Wi}ni=1 following Mammen’s 2-points distribution (that is, (1 −

√
5)/2 with

probability (
√
5+1)/(2

√
5) and (1+

√
5)/2 with probability (

√
5−1)/(2

√
5)), which satisfies E(Wi) = 0

and E(W 2
i ) = 1. We only represented values between the 2.5% quantile and the 97.5% quantile. The

vertical dashed lines indicate the best (minimum) WLS estimates computed from the original data.
Using Rademacher distribution (that is 1 or −1 equiprobably) instead yields very similar results (not
shown).
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Figure S6: The selection coefficient of the Alpha variant in England is negatively correlated
with the Stringency Index in the UK (fall - winter 2020-2021). (A) Daily values of the
Stringency Index in the UK; (C) Temporal dynamics of the logit-frequency of SGTF, used as a proxy
of the Alpha variant, for each region of England (the black horizontal dashed line indicates the threshold
frequency 10%); (B-D) Selection coefficient s(t) (per week) of the Alpha variant – i.e. slope of its
logit-frequency over time - at the national scale (B) and by region (D) against the Stringency Index
(weekly average) – only frequencies greater than or equal to 10% (above the threshold in C) were
considered. The correlation between s(t) and the Stringency Index at the national scale is -0.884
(95% CI [-0.983; -0.390]) with a significance test yielding a p-value of 8.33× 10−3. Correlations at the
regional scale are: East Midlands: -0.948 (95% CI [-0.997; -0.400], p-value = 0.0142), East of England:
-0.868 (95% CI [-0.972; -0.483], p-value = 2.39×10−3), London: -0.969 (95% CI [-0.994; -0.857], p-value
= 1.61 × 10−5), North East: -0.885 (95% CI [-0.987; -0.263], p-value = 0.0189), North West: -0.899
(95% CI [-0.993; -0.080], p-value = 0.0381), South East: -0.846 (95% CI [-0.959; -0.499], p-value =
1.04 × 10−3), South West: -0.809 (95% CI [-0.971; -0.142], p-value = 0.0276), West Midlands: -0.968
(95% CI [-0.998; -0.588], p-value = 6.8×10−3), Yorkshire and Humber: -0.931 (95% CI [-0.999; 0.289],
p-value =0.0694).
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Figure S7: Model fitting to logit-frequencies of the Alpha variant in the nine regions of
England. Frequencies of SGTF (black points, on logit scale) were used as a proxy for the Alpha
variant. The magenta curbs show the fitted values based on a linear MEM with ∆β and ∆γ as fixed
effects and the region as a random effect on the intercept of the model. We only fitted frequencies
greater than or equal to the threshold frequency 10% (horizontal black lines) in order to get rid of the
more stochastic part of these temporal dynamics (when the variant was not yet really well established
in the host population).
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Figure S 8: Phenotypic profile of the Alpha variant (transmission and recovery rates)
relative to the previous lineage with uncertainty on the control parameters propagated
from the first step. Estimates per day (points) and 95% confidence interval (crosses) are colored
according to the residual sum of squares. We set S/N = 0.75, κ = 0.2, βw = 0.25 and γw = 0.1 and
each of the almost 2000 points corresponds to a pair {k; a} that was previously estimated with wild
bootstrap in the first step. Side curbs, representing the densities of the estimates of parameters ∆β
(bottom) and ∆γ (right), show that the vast majority of these estimates are grouped around very
similar values (dark purple). Indeed, for ∆β, 95% of them are between 0.147 and 0.153, for which
each corresponding 95% CI remain positive, while, for ∆γ, 95% are between -0.054 and -0.046, among
which 61% of the corresponding 95% CIs cross the zero axis. With these estimates of ∆β and ∆γ, the
selection coefficient s(t) of the Alpha variant in the absence of NPI was computed, on average, around
0.11 per day (standard deviation: 0.003), that is 0.77 per week (standard deviation: 0.023).
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Figure S9: 95% distributions of the inferred phenotypic differences ∆β (transmission effect)
and ∆γ (recovery effect) for the Alpha variant relative to the previous lineage. Each value
(per day) of ∆β and ∆γ was computed using a linear MEM and a particular pair {k; a} that was
previously estimated with wild bootstrap in the first step. Only values between the 2.5% quantile and
the 97.5% quantile are represented. Vertical dashed lines indicate the estimates of ∆β and ∆γ using
the best WLS estimates for parameters k and a.
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Figure S10: Phenotypic differences between the Alpha variant and the resident strain
with small variations in the fixed parameters. ±10% and ±20% perturbations were applied
separately to each fixed parameter to investigate robustness: βw = 0.25 (A), κ = 0.2 (B), γw = 0.1
(C) and S/N = 0.75 (D). Keeping our best WLS estimates for control parameters k and a (k = 1
and a = 3.78), we reiterated MEMs to obtain new estimates (points) and 95% CIs (segments) of the
phenotypic differences ∆β – transmission effect – and ∆γ – recovery effect – between the Alpha variant
and the resident strain.
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Figure S11: Effects of small variations in the fixed parameters propagated through the
two-step approach. ±10% and ±20% perturbations were applied separately to each fixed parameter:
(A) βw = 0.25 (transmission rate of the WT), (B) κ = 0.2 (transition rate from E (exposed state)
to I (infectious state); same for both strains), (C) γw = 0.1 (recovery rate of the WT) and (D)
S(t step 1

0 )/N = 0.9 (initial proportion of susceptible hosts where t step 1
0 refers to the initial time point

in step 1). (1) In the first step, each point corresponds to the best estimation (lowest WLS value)
from 500 non-linear optimizations starting from uniformly drawn initial conditions (cf. Table S2);
relative variations (y-axis) refer to the percentage of variation between the parameters estimated with
perturbations and those without. (2) For the second step, we reiterated MEMs using estimates from (1)
for the control parameters k and a along with the same corresponding ±10% and ±20% perturbations
to obtain new estimates (points) and 95% CIs (segments) for the phenotypic differences ∆β and ∆γ
(S/N was set in (2) consistently with the end of each simulation in (1)).
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Figure S12: Inferred relationship between the Stringency Index and the effectiveness of
NPIs in the UK. The link between the Stringency Index ψ(t) and the effectiveness of NPIs c(t)
is modeled through the following function: c(t) = k (ψ(t)/100)

a
. Depending on the value of a, this

relationship may be concave (0 < a < 1), linear (a = 1) or convex (a > 1). The aim of the first step
of our analysis is to infer the value of parameters k and a. The best WLS estimator yielded k = 1
and a = 3.78 (dark line); a joint distribution for these two parameters (light lines) was obtained using
wild bootstrap computations. With all our estimates of a greater than 1, we always find a (more or
less pronounced) convex relationship between the Stringency Index and the effectiveness of NPIs in
the UK.
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Figure S13: Variation of the selection gradient of three types of variant as a function of
the effective reproduction number of the resident strain (WT). In (Blanquart et al., 2022),
the authors propose that an emerging variant m may differ phenotypically from the WT strain w by
its effective reproduction number Rm(t) = Rw(t)

(
1 + δ1

)
and/or by its mean generation time µm =

µw(t)
(
1 + δ2

)
and/or by the variance of its generation time σ2

m =
(
σw(t)

(
1 + δ3

))2
(we keep the same

notations as in the original article (Blanquart et al., 2022) for the phenotypic differences δ1, δ2 and δ3).
Generation times are assumed to be gamma-distributed and, in particular, exponentially distributed
for the resident strain (special case of gamma distribution where σw = µw) with µw = 10. The selection
gradient is computed under the assumption of weak selection and, for each curb, phenotypic differences
are:

(
δ1 = +30%, δ2 = 0, δ3 = 0

)
,
(
δ1 = 0, δ2 = +30%, δ3 = 0

)
and

(
δ1 = 0, δ2 = 0, δ3 = +30%

)
,

respectively. The variant is selected when its selection gradient is positive – conversely, counter-selected
when it is negative. The case Rw(t) = 1 (vertical grey line) corresponds to a stable epidemic. At the
bottom of the figure, the horizontal arrow pointing to the left symbolizes more explicitly the impact
of NPIs (control measures) that reduces Rw(t), therefore altering the selection gradient.
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Table S1: Summary of the parameters involved in the model of the first phase. The first
phase is the period that took place just before the emergence of the Alpha variant. t step 1

0 refers to
the time point at which the model is initialized.

Symbol Description Value

k Maximum achievable efficacy of NPIs estimated

a ’Shape’ parameter for the relationship between estimated

the efficacy of NPIs and the Stringency Index

E(t step 1
0 ) Initial number of exposed hosts estimated

α
Virulence (per capita disease-induced mortality rate) estimated

ω Probability of symptom development estimated

p Probability to die for symptomatic hosts estimated

η Slope of the increase in screening effort over time estimated

µ Intercept of the increase in screening effort over time estimated

R0 Basic reproduction number 2.5 (Ferguson et al., 2020;

Kucharski et al., 2020;

Li et al., 2020)

γ Per capita recovery rate 0.1 day−1 (Byrne et al., 2020)

β Per capita transmission rate γR0 = 0.25 day−1

κ Transition rate from exposed to infectious state 0.2 day−1 (Ding et al., 2021)

N 2020 UK population size ≈ 67.9 million

S(t step 1
0 )/N Initial proportion of susceptible indivuals 0.9

ISd(t
step 1
0 )

Initial number of symptomatic hosts
D(t step 1

0 +1)−D(t step 1
0 )

αthat will eventually die

ISr(t
step 1
0 )

Initial number of symptomatic hosts (
1−p
p

)
ISd(t

step 1
0 )

that will eventually recover

IA(t
step 1
0 ) Initial number of asymptomatic individual

(
1−ω
ω

)
IS(t

step 1
0 )

R(t step 1
0 ) Initial number of recovered (immune) hosts N − S(t step 1

0 )−
E(t step 1

0 )− I(t step 1
0 )
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Table S2: Summary of the parameters involved in the model of the second phase. The
second phase is the period that took place just after the emergence of the Alpha variant.

Symbol Description Value

∆β Phenotypic difference between the Alpha variant and estimated

the resident strain in terms of transmission rate

∆γ Phenotypic difference between the Alpha variant and estimated

the resident strain in terms of recovery rate

k Maximum achievable efficacy of NPIs estimates from the first step

(best WLS estimate: 1)

a ’Shape’ parameter for the relationship between estimates from the first step

the efficacy of NPIs and the Stringency Index (best WLS estimate: 3.78)

γw Per capita recovery rate of the resident strain 0.1 day−1 (Byrne et al., 2020)

βw Per capita transmission rate of the resident strain 0.25 day−1

κ Transition rate from exposed to infectious state 0.2 day−1 (Ding et al., 2021)

S/N Proportion of susceptible host (assumed constant 0.75

for short enough periods of time during a

controlled epidemic)
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Table S3: Summary of the initialization and optimization sets for the parameters estimated
in the model of the first phase. Because of the presence of local minima, optimization procedure
was repeated for 1500 sets of initial values by drawing randomly in each initialization interval below
according to a continuous uniform distribution. Parameter transformations enabled then to restrict
optimization searches in more relevant ranges of values (referred to ’optimization intervals’ below).
You may refer to the Table S1 for the meaning of the symbols.

Symbol Initialization interval Optimization interval

k [0; 1] [0; 1]

a [0; 10] IR∗+

E(t step 1
0 ) [0; 10−2] [0; 10−2]

α [0; 1] [0; 1]

ω [0.2; 0.8] [0; 1]

p [0; 0.1] [0; 0.2]

η [0; 10−4] [0; 1]

µ [0; 10−2] [0; 1]

Table S4: Likelihood-based comparisons of nested linear MEM. The tilde operator ∼ refers to
the linear relationship between the response variable logit(f̃m(t)), the logit-frequency of the variant,
and the explanatory variables. The phenotypic differences between the variant and the resident strain
∆β (transmission effect) and ∆γ (recovery effect) are considered as fixed effects while (1|Region)
refers to a random effect of the region on the intercept of the model. With a significance level of 5%,
results show a significant effect (*) for ∆β but not (.) for ∆γ (although the p-value associated with
the latter is very close to the significance threshold). AIC is the Akaike Information Criterion and
BIC is the Bayesian Information Criterion (models with lower values are preferred).

logit(f̃m(t)) ∼ ∆β +∆γ + (1|Region)

AIC BIC AIC 61.122 BIC 72.969

logit(f̃m(t)) ∼ ∆β + (1|Region) 62.867 72.345 p-value = 0.053 (.)

logit(f̃m(t)) ∼ ∆γ + (1|Region) 65.386 74.864 p-value = 0.012 (∗)
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Preamble

In this appendix, we show how phenotypic traits of the new variant affect its temporal dynamics. We

derive the selection coefficient (or selection gradient) of a variant – a measure of how much it is favoured

or disfavoured through natural selection – in a susceptible-exposed-infectious-recovered (SEIR) model.

In sections S2-S5 we show how we can use a weak selection argument to obtain a useful approximation

of the selection coefficient of the new variant. In section S6 we use a weak selection argument to derive

an approximation of the differentiation of variant frequency between the exposed and the infectious

states. Finally, in section S7, we detail how our analysis relates to the approach used in (Blanquart

et al., 2022).

S1 SEIR model

Let us consider a directly and horizontally transmitted disease and a host population of size N for

which individuals are either susceptible (S), exposed (E, infected but not yet infectious), infectious

(I) or recovered (R). For a given state, for instance S, we denote S(t), where t is the current time,

its density and Ṡ(t), its differentiation with respect to time. Demographic parameters (newborns,

migration balance, natural mortality, ...) are neglected.

Let also consider a polymorphic pathogen population: the WT strain (resident), which will be

represented with the subscript w, and the mutant strain (or variant), which will be represented with

the subscript m (we then neglect any occurrence of new mutations). Therefore, E(t) and I(t) can be

respectively decomposed into: E(t) = Ew(t)+Em(t) and I(t) = Iw(t)+ Im(t). The variant may differ

phenotypically from the WT in its effective transmission rate βm = βw + ∆β and/or in its recovery

rate γm = γw +∆γ and/or in its disease-induced mortality rate (virulence) αm = αw +∆α and/or in

its transition rate from state E to state I κm = κw +∆κ (note that 1/κ is thus the mean sojourn time

in the exposed state, i.e. the latent period).
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Besides, the transmission of both strains is more or less affected depending on c(t), the effectiveness

of governmental control measures – i.e. Non-Pharmaceutical Interventions (NPIs) – implemented at

time t to mitigate the spread of the epidemic.

We also assume that superinfections do not occur – including co-infections with both strains – and

that (persistent) immunity acquired with either strain protects effectively against both. We model

the temporal dynamics of this SEIR system with the following set of ordinary differential equations

(ODEs):





Ṡ(t) = −(1− c(t))β(t)S(t)
I(t)

N

Ė(t) = (1− c(t))β(t)S(t)
I(t)

N
− κ(t)E(t)

İ(t) = κ(t)E(t)−
(
α(t) + γ(t)

)
I(t)

Ṙ(t) = γ(t)I(t)

(S1)

The overlines refer to mean values of the phenotypic traits after averaging over the distribution of

strain frequencies in the relevant compartments of the model:





κ(t) = (1− pm(t))κw + pm(t)κm

β(t) = (1− qm(t))βw + qm(t)βm

γ(t) = (1− qm(t))γw + qm(t)γm

α(t) = (1− qm(t))αw + qm(t)αm

where the frequency of the variant m in the compartment E is noted pm(t) = Em(t)/E(t) and the

frequency of the variant m in the compartment I is noted qm(t) = Im(t)/I(t). For each strain i

(i ∈ {w;m}):



Ėi(t) = (1− c(t))βiS(t)

Ii(t)

N
− κiEi(t)

İi(t) = κiEi(t)−
(
αi + γi

)
Ii(t)

By noting X(t) =
(
E(t) I(t)

)⊤
, we have:

Ẋ(t) = R(t)X(t)

with R(t) =

(
−κ(t) (1− c(t))β(t)S(t)

N

κ(t) −α(t)− γ(t)

)
, the matrix of (average) transitions rates.
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S2 Overall frequency of the variant

The overall frequency of the variant in the system at time t, fm(t), is:

fm(t) =
Em(t) + Im(t)

E(t) + I(t)
=

pm(t)E(t) + qm(t)I(t)

E(t) + I(t)
= pm(t)p(t) + qm(t)q(t)

where p(t) = E(t)/(E(t) + I(t)) and q(t) = I(t)/(E(t) + I(t)) are the class frequencies of infected

individuals in the exposed state E and in the infectious state I, respectively. Note therefore that

p(t) + q(t) = 1.

The temporal dynamics of the variant can be tracked more conveniently using the following quantity

(Lion, 2018; Lion & Gandon, 2022):

f̃m(t) = pm(t)vE(t)p(t) + qm(t)vI(t)q(t)

where, vE(t) and vI(t) are the reproductive values in state E and in state I, respectively.

Let v(t) =
(
vE(t) vI(t)

)⊤
be the vector of reproductive values and f(t) =

(
p(t) q(t)

)⊤
be the

vector of frequencies within infected states; these two vectors are co-normalized such that v⊤f = 1.

Under the assumption of weak selection, f̃m(t) yields indeed a really useful expression:

df̃m(t)

dt
= f̃m(t)(1− f̃m(t))︸ ︷︷ ︸

Genetic variance

v(t)⊤∆R(t)f(t)︸ ︷︷ ︸
s(t), selection coefficient

, (S2)

or more simply, using the logit function, that is ln(frequency of the variant / frequency of the WT

strain):

s(t) =
d logit(f̃m(t))

dt
= v(t)⊤∆R(t)f(t). (S3)

∆R(t) is the matrix of differences in transition rates between the mutant and the WT strains such

that:

∆R(t) = Rm(t)−Rw(t) =

(
−∆κ (1− c(t))∆β S(t)

N

∆κ −∆α−∆γ

)
.

The selection coefficient s(t) is thus given by:

s(t) = v(t)⊤∆R(t)f(t)

= p(t)∆κ

(
vI(t)− vE(t)

)
+ q(t)

[
(1− c(t))∆β

S(t)

N
vE(t)−

(
∆α+∆γ

)
vI(t)

]
. (S4)

The main problem with this theoretical expression is that class frequencies (p(t) and q(t)) and repro-

ductive values (vE(t) and vI(t)) are generally not available from public health data. In the following

section we show how we can derive useful approximations for these quantities.

3



S3 Class frequencies within infected states & growth rate

Following (Lion, 2018; Lion & Gandon, 2022), the temporal dynamics of the vector of class frequencies

is given by:
df(t)

dt
= R(t)f(t)− r(t)f(t)

with r(t), the growth rate of the epidemic:

r(t) = 1⊤R(t)f(t) = q(t)

(
(1− c(t))β(t)

S(t)

N
− α(t)− γ(t)

)
. (S5)

Therefore:





ṗ(t) = q(t)(1− c(t))β(t)
S(t)

N
− p(t)

(
κ(t) + r(t)

)

q̇(t) = p(t)κ(t)− q(t)

(
α(t) + γ(t) + r(t)

) (S6)

When the difference between the vital rates of the mutant vs. resident is small and O(ε) (i.e. weak

selection), the dynamics of the frequency f̃m(t) is also O(ε) (equation (S2)) while equation (S6) is

O(1). This implies that p(t) and q(t) can be treated as fast variables while f̃m(t) is a slow variable.

Using a quasi-equilibrium approximation, i.e. setting the right-hand sides of (S6) to 0, we then have:





q(t)(1− c(t))β(t)
S(t)

N
= p(t)

(
κ(t) + r(t)

)

p(t)κ(t) = q(t)

(
α(t) + γ(t) + r(t)

)

which yields:

p(t)

q(t)
=

(1− c(t))β(t)S(t)
N

κ(t) + r(t)
=
α(t) + γ(t) + r(t)

κ(t)
. (S7)

In addition,

p(t)

q(t)
=
α(t) + γ(t) + r(t)

κ(t)
⇐⇒ 1− q(t)

q(t)
=

α(t) + γ(t) + q(t)

(
(1− c(t))β(t)S(t)

N − α(t)− γ(t)

)

κ(t)

⇐⇒ q(t)2
(
(1− c(t))β(t)

S(t)

N
− α(t)− γ(t)

)
+ q(t)

(
κ(t) + α(t) + γ(t)

)
− κ(t) = 0

Only the following solution satisfies q(t) ∈ [0, 1]:

q(t) =

−
(
κ(t) + α(t) + γ(t)

)
+

√(
κ(t)− α(t)− γ(t)

)2

+ 4κ(t)(1− c(t))β(t)S(t)
N

2

(
(1− c(t))β(t)S(t)

N − α(t)− γ(t)

)
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Under weak selection and when q(t) is at equilibrium, the growth rate of the epidemic can thus be

approximated by:

r(t) ≈ 1

2


−κ(t)− α(t)− γ(t) +

√(
κ(t)− α(t)− γ(t)

)2

+ 4κ(t)(1− c(t))β(t)
S(t)

N


 (S8)

Note that, when (1− c(t))β(t)S(t)/N − α(t)− γ(t) = 0, then r(t) = 0 which is also consistent for its

approximation (S8).

Besides, starting from either the real expression of the growth rate (S5) or its approximation (S8), we

have:

lim
κ → +∞

r(t) = (1− c(t))β(t)
S(t)

N
− α(t)− γ(t).

In other words, we recover the growth rate of the corresponding nested SIR model as a limit of this

model.

S4 Reproductive values within infected states

Following (Lion, 2018; Lion & Gandon, 2022), the temporal dynamics of reproductive values are given

by:

dv(t)⊤

dt
= −v(t)⊤R(t) + r(t)v(t)⊤

= −
(
vE(t) vI(t)

)(−κ(t) (1− c(t))β(t)S(t)
N

κ(t) −α(t)− γ(t)

)
+ r(t)

(
vE(t) vI(t)

)
.

Therefore:





dvE(t)

dt
= κ(t)

(
vE(t)− vI(t)

)
+ r(t)vE(t)

dvI(t)

dt
= −(1− c(t))β(t)

S(t)

N
vE(t) +

(
α(t) + γ(t) + r(t)

)
vI(t)

(S9)

As previously, we see that the reproductive values are fast variables, so that we can use a quasi-

equilibrium approximation. Setting the right-hand sides of (S9) become equal to 0, we obtain:





κ(t)vI(t) =

(
r(t) + κ(t)

)
vE(t)

(1− c(t))β(t)
S(t)

N
vE(t) =

(
α(t) + γ(t) + r(t)

)
vI(t)

Which yields:
vE(t)

vI(t)
=

κ(t)

r(t) + κ(t)
=
α(t) + γ(t) + r(t)

(1− c(t))β(t)S(t)
N

(S10)
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S5 Approximation of the selection coefficient of the variant

Using the quasi-equilibrium approximation for vectors f(t) and v(t) (cf. (S7) and (S10), respectively),

the expression of the selection coefficient in equation (S4) becomes:

s(t) = p(t)∆κ

(
vE(t)

r(t) + κ(t)

κ(t)
− vE(t)

)
+ q(t)

[
(1− c(t))∆β

S(t)

N
vI(t)

r(t) + α(t) + γ(t)

(1− c(t))β(t)S(t)
N

−
(
∆α+∆γ

)
vI(t)

]

= p(t)vE(t)r(t)
∆κ

κ(t)
+ q(t)vI(t)

[
∆β

β(t)

(
r(t) + α(t) + γ(t)

)
−∆α−∆γ

]
.

Since combining quasi-equilibrium approximations (S7) and (S10) yields

p(t)vE(t)

q(t)vI(t)
=
α(t) + γ(t) + r(t)

κ(t) + r(t)

and, using the co-normalization v⊤f = p(t)vE(t) + q(t)vI(t) = 1, then:

q(t)vI(t) =
κ(t) + r(t)

κ(t) + α(t) + γ(t) + 2r(t)
and p(t)vE(t) =

α(t) + γ(t) + r(t)

κ(t) + α(t) + γ(t) + 2r(t)
.

Thus:

s(t) =

(
α(t) + γ(t) + r(t)

)
r(t) ∆κ

κ(t) +

(
κ(t) + r(t)

)[
∆β

β(t)

(
r(t) + α(t) + γ(t)

)
−∆α−∆γ

]

κ(t) + α(t) + γ(t) + 2r(t)
(S11)

Using (S8) to approximate the growth rate of the epidemic, the selection coefficient of the variant

becomes after some rearrangements:

s(t) ≈

2(1− c(t))S(t)
N

(
∆κβ(t) + κ(t)∆β

)
+∆κ

(
κ(t)− α(t)− γ(t)− Z(t)

)
−

(
∆α+∆γ

)(
κ(t)− α(t)− γ(t) + Z(t)

)

2Z(t)
(S12)

with

Z(t) =

√(
κ(t)− α(t)− γ(t)

)2

+ 4κ(t)(1− c(t))β(t)
S(t)

N
.

Here again, we can recover the expression of s(t) from the nested SIR model (Day & Gandon, 2006,

2007) by taking the limit:

lim
κ → +∞

s(t) = (1− c(t))∆β
S(t)

N
−∆α−∆γ.

As in the main text, we now assume that the virulence may be neglected (αm = αw = 0) and that

there is no difference between the variant and the WT strains in terms of latent period, i.e. ∆κ = 0.
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The approximation (S11) of the selection coefficient reduces then to:

s(t) =
κ+ r(t)

κ+ γ(t) + 2r(t)

[
∆β

β(t)

(
r(t) + γ(t)

)
−∆γ

]
(S13)

Or, using (S12), i.e. based on an approximation of the growth rate:

s(t) ≈
2κ(1− c(t))∆β S(t)

N −
(
κ− γ(t)

)
∆γ −

√(
κ− γ(t)

)2

+ 4κ(1− c(t))β(t)S(t)
N ∆γ

2

√(
κ− γ(t)

)2

+ 4κ(1− c(t))β(t)S(t)
N

(S14)

Since d logit(f̃m(t))/dt = s(t), we get the following approximation of logit(f̃m(t)) by integrating the

last approximation of s(t) between the time points t0 and t = t0 +∆t:

logit(f̃m(t)) ≈ logit(f̃m(t0)) + κ

∫ t

t0


 (1− c(t))S(t)/N√

(κ− γ(t))2 + 4κ(1− c(t))β(t)S(t)/N


 dt ∆β

− 1

2



∫ t

t0


 κ− γ(t)√

(κ− γ(t))2 + 4κ(1− c(t))β(t)S(t)/N


 dt+∆t


∆γ

(S15)

Assuming also that γ(t) ≈ γw, β(t) ≈ βw (weak selection) and S(t)/N ≈ S/N – i.e. the proportion of

susceptible individuals varies sufficiently little throughout the considered time period –, we eventually

obtain the expression we used in the main text:

logit(f̃m(t)) ≈ logit(f̃m(t0)) + κ

∫ t

t0

(
(1− c(t))√

(κ− γw)2 + 4κ(1− c(t))βwS/N

)
dt ∆β

S

N

− 1

2

[(
κ− γw

)∫ t

t0

(
1√

(κ− γw)2 + 4κ(1− c(t))βwS/N

)
dt+∆t

]
∆γ

(S16)

S6 Differentiation between the exposed and the infectious com-

partments

In this section, we start with a SEIR model in a very general form. The particular transition rates

used previously and in the main text will be specified after the study of this general case.

By taking up the matrix form of the temporal dynamics of X(t) =
(
E(t) I(t)

)⊤
:

Ẋ(t) = R(t)X(t)

7



with R(t) =

(
r
←−−
EE r

←−
EI

r
←−
IE r

←−
II

)
, the matrix of average transitions rates (the arrows indicate the sense of the

transitions). We recall that the overlines refer to mean values of the phenotypic traits after averaging

over the distribution of strain frequencies, such that:





r
←−−
EE = r

←−−
EE
m − (1− pm(t))∆r

←−−
EE

r
←−
EI = r

←−
EI
m − (1− qm(t))∆r

←−
EI

r
←−
IE = r

←−
IE
m − (1− pm(t))∆r

←−
IE

r
←−
II = r

←−
II
m − (1− qm(t))∆r

←−
II

In which, with (i, j) ∈ {E, I}2, we denote the phenotypic differences: ∆r
←−
ji = r

←−
ji
m − r

←−
ji
w , where the

subscript m refer to the variant and the subscript w to the WT.

Note that these transition rates may or may not be time-dependent, depending on the model. For

the sake of simplicity, we do not make here this (potential) time dependency explicit.

The temporal dynamics of pm(t) and qm(t) are given by:





ṗm(t) = pm(t)(1− pm(t))∆r
←−−
EE + qm(t)(1− qm(t))∆r

←−
EI

(
q(t)

p(t)

)
+ (qm(t)− pm(t))r

←−
EI

(
q(t)

p(t)

)

q̇m(t) = qm(t)(1− qm(t))∆r
←−
II + pm(t)(1− pm(t))∆r

←−
IE

(
p(t)

q(t)

)
+ (pm(t)− qm(t))r

←−
IE

(
p(t)

q(t)

)

(S17)

To focus on the differentiation between the exposed and the infectious compartments, we study here

the variable Q(t) such that:

Q(t) =
pm(t)

(1− pm(t))

(1− qm(t))

qm(t)
. (S18)

Thus:

ln(Q(t)) = logit(pm(t))− logit(qm(t)).

The temporal dynamics of Q(t) is therefore given by:

Q̇(t) =
qm(t)(1− qm(t))ṗm(t)− pm(t)(1− pm(t))q̇m(t)

(
(1− pm(t))qm(t)

)2 .

By expanding the expressions for ṗm(t) and q̇m(t) and after numerous rearrangements, we obtain:

d ln(Q(t))

dt
=
q(t)

p(t)

(
1− qm(t)

1− pm(t)

)
∆r
←−
EI − p(t)

q(t)

(
1− pm(t)

1− qm(t)

)
∆r
←−
IE +∆r

←−−
EE −∆r

←−
II

︸ ︷︷ ︸
Effect of selection (O(ε))

−
(
Q(t)− 1

)(
q(t)

p(t)

qm(t)

pm(t)
r
←−
EI
m +

p(t)

q(t)

1− pm(t)

1− qm(t)
r
←−
IE
m

)

︸ ︷︷ ︸
Effect of ”migration” (O(1))

. (S19)
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In the neutral case (ε = 0), the mutant strain m and the WT strain w have the same phenotype, that

is: ∀(i, j) ∈ {E, I}2, ∆r
←−
ji = 0, and we rapidly have pm(t)/qm(t) = (1− qm(t))/(1− pm(t)) = Q(t) = 1

because ”migration” – i.e. transitions between compartments E and I, including transmissions –

spatially homogenises the frequencies of the variant. Selection will disrupt these quantities to O(ε).

Solving (S19) for Q(t) based on a quasi-equilibrium approach, i.e. setting the right-hand sides of

(S19) to 0, and using a Taylor expansion for the solution about the neutral case to order ε yields:

Q(t) ≈ 1 +
∆r
←−−
EE +

(
q(t)
p(t)

)
∆r
←−
EI −

(
p(t)
q(t)

)
∆r
←−
IE −∆r

←−
II

(
q(t)
p(t)

)
r
←−
EI
m +

(
p(t)
q(t)

)
r
←−
IE
m

+O(ε2). (S20)

By replacing the general form of the transition rates with the particular parameters of the model (S1),

we get after some rearrangements:

Q(t) ≈ 1 +

(
q(t)
p(t)

)
(1− c(t))∆βS(t)/N −

(
1

q(t)

)
∆κ+∆α+∆γ

(
q(t)
p(t)

)
(1− c(t))βmS(t)/N +

(
p(t)
q(t)

)
κm

+O(ε2). (S21)

Note that q(t) and p(t)/q(t) may then be approximated by their quasi-equilibrium values.

Assuming that the virulence may be neglected (αm = αw = 0) and that there is no difference

between the variant and the WT strains in terms of latent period, i.e. ∆κ = 0, the previous equation

then reduces to:

Q(t) ≈ 1 +

(
q(t)
p(t)

)
(1− c(t))∆βS(t)/N +∆γ

(
q(t)
p(t)

)
(1− c(t))βmS(t)/N +

(
p(t)
q(t)

)
κ
+O(ε2). (S22)

It is interesting to note that the quasi-equilibrium of Q depends on ∆β and ∆γ. More specifically,

this expression predicts that the value of Q will be greater than 1 in the case of a variant with a higher

transmission rate (∆β >0 and ∆γ =0) while the value of Q will be less than 1 in the case of a variant

with a longer duration of infectiousness, i.e. with a lower recovery rate, (∆γ <0 and ∆β = 0). Hence,

some data on the differentiation between different host compartments (here between E and I) could

potentially yield another way to estimate these two quantities.

S7 Relation with Blanquart et al. (2022), eLife

In (Blanquart et al., 2022), the growth rate of the epidemic r(t) and the effective reproduction number

R(t) – i.e. the average number of secondary infections – are linked through the framework popularized

by Wallinga and Lipsitch in (Wallinga & Lipsitch, 2007). Let us consider an epidemic that grows

exponentially at a rate r(t) and a probability density function g for the generation time – i.e. timing

of secondary infections. Assuming that the distribution of the age of infections stabilises very rapidly,

the relationship between r(t) and R(t) are given by (Wallinga & Lipsitch, 2007):

1

R(t)
=

∫ +∞

0

e−r(t)ag(a) da. (S23)
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Let us consider the scenario where a new variantm emerges and spreads in a host population previously

dominated by a wild type strain w. The selection coefficient associated with the new variant can be

computed from the difference in the per capita growth rate of the two variants: s(t) = rm(t)− rw(t).

The higher growth rate of the new variant can be due to different phenotypic effects acting on the

transmission and/or the duration of infection and/or the shape of the whole distribution g. In our

analysis we assume that the mean and the variance of the generation time distribution are linked due

to the assumption of exponentially distributed sojourn times. In contrast, other studies have allowed

the mean and the variance of the distribution to be independently modified by the mutations of the

new variant (Blanquart et al., 2022; Park et al., 2022). More specifically we follow (Blanquart et al.,

2022) and assume that the variant is characterized by its effective reproduction number Rm(t) and by

its generation time distribution with mean µm and standard deviation σm (likewise, Rw(t), µw and

σw, respectively, for the resident stain) such that:





Rm(t) = Rw(t)
(
1 + δ1

)

µm(t) = µw(t)
(
1 + δ2

)

σm(t) = σw(t)
(
1 + δ3

)
(S24)

where δ1, δ2 and δ3 refer to the effects of the mutation of the new variant on the three phenotypic

traits as in (Blanquart et al., 2022). To characterize these phenotypic differences between the variant

and the resident strain, one must then look at δ1, δ2 and δ3.

In the well-known S(E)IR models formalised by a system of ODEs, susceptible hosts S are infected

with a constant transmission rate β and infectious individuals I recover at a constant rate γ. In

(Blanquart et al., 2022), the authors assume that temporal variations in behavior and NPIs would

affect the transmission, only captured by variability in the parameter Rw(t), without affecting the

generation time distribution. We use the same assumption in our analysis through c(t) ∈ [0; 1], the

effectiveness of NPIs. Accounting for these control measures, the effective reproduction number in

classical S(E)IR models is given by: R(t) = (1−c(t))β
γ

S(t)
N , with S(t)/N the proportion of susceptible

hosts at time t in the population (of size N). We recall the notations made in the main text for the

resident strain and the variant, respectively: βw and βm = βw +∆β referred to transmission rates; γw

and γm = γw +∆γ referred to recovery rates. Thus, assuming c(t) to be the same for both strains, we

have:





Rw(t) = (1− c(t))
βw
γw

S(t)

N

Rm(t) = (1− c(t))

(
βw +∆β

γw +∆γ

)
S(t)

N

(S25)

As discussed in (Park et al., 2022), this is indeed valid for interventions that reduce transmission – e.g.

social distancing, face covering – but no longer holds for interventions that lead to isolation of infected

individuals – e.g. contact tracing.

In the following, our aim is to show the links between the framework developed in (Blanquart et al.,

2022) – with phenotypic differences δ1, δ2 and δ3 – and the framework we developed in this study –
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with phenotypic differences ∆β and ∆γ – through the SIR and SEIR models.

S7.1 SIR model

In the classical SIR model formalised by ODEs, the generation time is exponentially distributed (and

thus memoryless). Let’s start, however, with a gamma-distributed generation time as the exponential

distribution is merely a special case of the gamma distribution family. Under this assumption, by

substituting g in (S23) for the probability density function of the gamma distribution with mean µm

and standard deviation σm, growth rates rw(t) and rm(t) thus become (Blanquart et al., 2022):





rw(t) =
(
Rw(t)

( σw
µw

)
2

− 1
) µw

σ2
w

rm(t) =



(
Rw(t)

(
1 + δ1

))

 σw

(
1+δ3

)

µw

(
1+δ2

)



2

− 1




µw

(
1 + δ2

)
(
σw
(
1 + δ3

))2
(S26)

Under the assumption of weak selection – i.e. δ1, δ2 and δ3 are small and O(ε) – the selection gradient

s(t) = rm(t)− rw(t) is:

s(t) =

(
Rw(t)

( σw
µw

)
2

µw

)
δ1 +



(
Rw(t)

( σw
µw

)
2

− 1
) µw

σ2
w

− 2Rw(t)
( σw

µw
)
2

ln
(
Rw(t)

)

µw


 δ2 +

2


Rw(t)

( σw
µw

)
2

ln
(
Rw(t)

)

µw
−
(
Rw(t)

( σw
µw

)
2

− 1
) µw

σ2
w


 δ3 +O(ε2). (S27)

At equilibrium (i.e. Rw(t) = 1), s(t) reduces to: s(t) = δ1/µw + O(ε2). In Fig. S13, we plot an

example of relation between s(t) and Rw(t) according to (S27) for three types of variant. In accordance

with (Blanquart et al., 2022), we can see that:

• Higher δ1 are always selected (whatever the value of Rw(t));

• Lower δ2 are selected when Rw(t) > 1 (conversely, higher δ2 are selected when Rw(t) < 1),

except in some cases when Rw(t) becomes too small;

• Higher δ3 are always selected as soon as Rw(t) ̸= 1.

WhenRw(t) is not too far from 1, ln
(
Rw(t)

)
≈ Rw(t)−1, and, eventually assuming that the generation

time of the resident strain is exponentially distributed (special case of gamma distribution where

σw = µw), (S27) becomes:

s(t) ≈
(Rw(t)

µw

)
δ1 +

((
Rw(t)− 1

)(
1− 2Rw(t)

)

µw

)
δ2 + 2

((
Rw(t)− 1

)2

µw

)
δ3 +O(ε2). (S28)

This expression, easier to understand than the previous one, leads to the same interpretations.
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We now use the expressions in (S25) for the effective reproduction number of the resident strain

and of the variant. Under the assumption of weak selection – i.e. ∆β and ∆γ are small and O(ε) –

a Taylor expansion for the effective reproduction number of the variant Rm(t) about the neutral case

(ε = 0) to order ε yields:

Rm(t) = Rw(t)

(
1 +

∆β

βw
− µw∆γ

︸ ︷︷ ︸
δ1

)
+O(ε2), (S29)

with µw = 1/γw, the mean generation time for the resident strain.

Likewise, for µm = 1/(γw +∆γ), the mean generation time of the variant:

µm(t) = µw(t)

(
1−µw∆γ︸ ︷︷ ︸

δ2

)
+O(ε2), (S30)

This result is the same for σm, the standard deviation of the generation time of the variant, as σm = µm

for the exponential distribution. Hence, using the notations of (Blanquart et al., 2022):





δ1 =
∆β

βw
− µw∆γ

δ2 = −µw∆γ

δ3 = −µw∆γ

(S31)

Substituting these expressions for δ1, δ2 and δ3 in (S27) for the exponential case (µw = σw = 1/γw)

along with the expression of Rw(t) in (S25), s(t) reduces to:

s(t) ≈ (1− c(t))∆β
S(t)

N
−∆γ +O(ε2), (S32)

which is indeed known to be the expression of the selection gradient in the simplest SIR model (Day

& Gandon, 2006, 2007).

S7.2 SEIR model

We now add an exposed state – i.e. infected but not yet infectious –, that individuals leave at a constant

rate κ, altering the generation time distribution. Let us assume that the infectious period is gamma-

distributed with mean µI and standard deviation σI and that the exposed period is exponentially

distributed with mean 1/κ. Therefore, the convolution:

g(a) =

∫
a

0

κe−κx
(a− x)

(
µI

σI

)2
−1

e
−µI (a−x)

(σI)2

Γ

[(
µI

σI

)2](
(σI)2

µI

)(µI

σI

)2 dx

12



– where Γ is the Gamma function –, yields a probability density function for the generation time with

mean µ = 1/κ+ µI and standard deviation σ =

√
1/κ2 + (σI)

2
. Substituting the probability density

function in (S23) for this convolution gives:

R(t) =

(
1 +

r(t)

κ

)(
1 +

(
σI
)2

µI
r(t)

)(
µI

σI

)2

. (S33)

The issue with this expression for the SEIR model is that, although it is easy to express R(t) as a

function of r(t), the reverse (expressing r(t) as a function of R(t)) does not seem to be true. Never-

theless, we may look at some special cases.

First, when 1/κ→ 0+ – i.e. the SEIR model tends to the SIR model since the exposed individuals

tend, on average, to leave their compartment instantaneously –, we find indeed the result for the SIR

model (S26).

Besides, when the infectious period is now exponentially distributed (with σI = µI = 1/γ), the

generation time is hypoexponentially distributed (generalized Erlang distribution) and the previous

expression becomes:

R(t) =

(
1 +

r(t)

κ

)(
1 + µIr(t)

)
, (S34)

as already shown in (Wallinga & Lipsitch, 2007), which yields:

r(t) =
−κµI − 1 +

√(
κµI − 1

)2
+ 4κµIR(t)

2µI
(S35)

It corresponds to the expression we used for the growth rate of the epidemic in this study.

Assuming no change in κ between the resident strain w and the variant m – i.e. same latent period,

on average, for both strains –, we still have Rm(t) = Rw(t)
(
1+ δ1

)
and we obtain from the expression

of the mean generation time µm in (S24) an expression for the mean duration of infectiousness µI
m:

µm(t) = µw(t)
(
1 + δ2

)
⇐⇒ 1

κ
+ µI

m =

(
1

κ
+ µI

w

)(
1 + δ2

)

⇐⇒ µI
m = µI

w + δ2

(
1

κ
+ µI

w

)
(S36)

Substituting R(t) and µI in (S35) using (S24) and (S36), respectively, we can calculate the selection
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gradient s(t) = rm(t)−rw(t). Again, a Taylor expansion about the neutral case (weak selection) gives:

s(t) =


 κRw(t)√(

κµI
w − 1

)2
+ 4κµI

wRw(t)


 δ1+




(
κµI

w + 1
)(√(

κµI
w − 1

)2
+ 4κµI

wRw(t) + κµI
w

(
1− 2Rw(t)

)
− 1

)

2κ (µI
w)

2
√(

κµI
w − 1

)2
+ 4κµI

wRw(t)


 δ2 +O(ε2). (S37)

At equilibrium (i.e. Rw(t) = 1), s(t) is simply: s(t) = δ1/
(
1/κ+ µI

w

)
+ O(ε2). Furthermore, in any

case, we also have:

• Higher δ1 are always selected (whatever the value of Rw(t));

• Lower δ2 are selected when Rw(t) > 1 (conversely, higher δ2 are selected when Rw(t) < 1).

As in the previous subsection with the SIR model, a weak selection approximation of Rm(t) from

(S25) yields:

Rm(t) = Rw(t)

(
1 +

∆β

βw
− µI

w∆γ

︸ ︷︷ ︸
δ1

)
+O(ε2), (S38)

and, for the mean generation time of the variant µm = 1/κ+ 1/(γw +∆γ):

µm(t) = µw(t)

(
1− κ

(
µI
w

)2

κµI
w + 1

∆γ

︸ ︷︷ ︸
δ2

)
+O(ε2). (S39)

Hence, with the notations of (Blanquart et al., 2022):





δ1 =
∆β

βw
− µI

w∆γ

δ2 = − κ
(
µI
w

)2

κµI
w + 1

∆γ

(S40)

Substituting these expressions for δ1 and δ2 in (S37) along with the expression of Rw(t) in (S25) and

µI
w = 1/γw, the selection gradient becomes after some rearrangements:

s(t) =




κ√(
κ− γw

)2

+ 4κ(1− c(t))βw
S(t)
N




(1− c(t))∆β
S(t)

N

− 1

2




κ− γw√(
κ− γw

)2

+ 4κ(1− c(t))βw
S(t)
N

+ 1




∆γ +O(ε2). (S41)
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This is the theoretical derivation of the selection gradient we used in this study (cf. equation (S14)).
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Abstract 

The experimental validation of theoretical predictions is a crucial step in demonstrating the predictive power of a model. While quan-
titative validations are common in infectious diseases epidemiology, experimental microbiology primarily focuses on the evaluation 
of a qualitative match between model predictions and experiments. In this study, we develop a method to deepen the quantitative 
validation process with a polymorphic viral population. We analyse the data from an experiment carried out to monitor the evolution 
of the temperate bacteriophage 𝜆 spreading in continuous cultures of Escherichia coli. This experimental work confirmed the influence 
of the epidemiological dynamics on the evolution of transmission and virulence of the virus. A variant with larger propensity to lyse 
bacterial cells was favoured in emerging epidemics (when the density of susceptible cells was large), but counter-selected when most 
cells were infected. Although this approach qualitatively validated an important theoretical prediction, no attempt was made to fit the 
model to the data nor to further develop the model to improve the goodness of fit. Here, we show how theoretical analysis—including 
calculations of the selection gradients—and model fitting can be used to estimate key parameters of the phage life cycle and yield new 
insights on the evolutionary epidemiology of the phage 𝜆. First, we show that modelling explicitly the infected bacterial cells which 
will eventually be lysed improves the fit of the transient dynamics of the model to the data. Second, we carry out a theoretical analysis 
that yields useful approximations that capture at the onset and at the end of an epidemic the effects of epidemiological dynamics on 
selection and differentiation across distinct life stages of the virus. Finally, we estimate key phenotypic traits characterizing the two 
strains of the virus used in our experiment such as the rates of prophage reactivation or the probabilities of lysogenization. This study 
illustrates the synergy between experimental, theoretical, and statistical approaches; and especially how interpreting the temporal 
variation in the selection gradient and the differentiation across distinct life stages of a novel variant is a powerful tool to elucidate the 
evolutionary epidemiology of emerging infectious diseases.
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1. Introduction
Evolutionary epidemiology theory predicts that the evolution of 
pathogen transmission is driven by the availability of susceptible 
hosts. At the onset of an epidemic, when the density of susceptible 
hosts is high, more transmission is favoured by natural selection. 
When a positive covariance exists between transmission and vir-
ulence (Anderson and May, 1982; Alizon et al., 2009; Alizon and 
Michalakis, 2015), this selection for higher transmission can indi-
rectly select for higher virulence (Bull, 1994; Day, 2002; Lenski 
and May, 1994; Frank, 1996; Day and Proulx, 2004; Gandon and 
Day, 2007). Yet, an experimental validation of this prediction was 
needed to demonstrate the relevance of these predictions on the 
evolution of pathogens in emerging epidemics.

This prediction was put to the test in a previous study using 

experimental evolution of the temperate bacteriophage (or phage) 

𝜆 (Berngruber et al., 2013). Phages are viruses that infect bacte-

ria and phage 𝜆 is the archetypal temperate phage, which can 

switch between a lytic and a lysogenic life style. Upon infection, 

the virus may commit to the lytic pathway by hijacking the host’s 

replication machinery to produce new virions (viral particles) and 

eventually release them in the environment after the lysis of the 

host cell. Alternatively, the virus may commit to the lysogenic 
pathway by integrating its genome into the bacterial chromosome 
where it will lie in a dormant state as a prophage and be hereditar-
ily transmitted to daughter cells at the pace of lysogen divisions. 
The prophage may also regain virulence by excising itself from the 
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2 Benhamou et al.

Figure 1. Flow chart of the phage-bacteria system. The subscripts w and m refer to the wildtype (in green) and mutant (or virulent, in red) strain of 
phage 𝜆, respectively. In the bacterial population (E. coli) of size N, bacteria are either susceptible (S), lysogenic (L)—i.e. carrying a prophage in their 
chromosome (small ellipses)—or carrying phages (small pentagons) replicating in their cytoplasm prior to lysis (Y); V is the free virus stage (culture 
medium). Width of the arrows between S, L, and Y reflects the relative rates of different events: the wildtype strain is transmitted mostly vertically 
(high probability of lysogenization and low rate of prophage reactivation) while the virulent strain is transmitted mostly horizontally (low probability 
of lysogenization and high rate of prophage reactivation). Dashed arrows symbolize the role of the free viral particles in the force of infection 
(epidemiological feedback). See notations in Table 1.

host genome, switching to a lytic cycle (reactivation, also called 
induction) and thus shifting from vertical to horizontal transmis-
sion (Lwoff, 1953; Echols, 1972; Ptashne, 1992; Gandon, 2016). The 
evolution experiment designed in Berngruber et al. (2013) moni-
tored the competition between two strains of phage 𝜆 with distinct 
life-history strategies in continuous cultures of Escherichia coli. The 
first strain is the wildtype, which is known to have a relatively large 
lysogenization rate and low reactivation rate. The second strain is 
the 𝜆cI857 variant, which carries a point mutation in the transcrip-
tional repressor protein cI (St-Pierre and Endy, 2008; Sussman and 
Jacob, 1962); the cI mutant is known to be more virulent and trans-
mitted mostly horizontally through lytic cycles. Berngruber et al. 
(2013) developed a mathematical model tailored to the life cycle 
of phage 𝜆. Numerical simulations of this model using parameter 
values from previous experimental studies led to three theoretical 
predictions: (i) the virulent strain outcompetes the wildtype when 
susceptible hosts are abundant, but the direction of selection is 
reversed as soon as the epidemic reaches high prevalence, (ii) the 
lower the initial prevalence, the higher the increase in virulence 
during the epidemic and (iii) the virulent strain is always more 
frequent among viral particles than among prophages. Tracking 
both the epidemiology (prevalence) and the evolution of the virus 
(frequency of the virulent strain among viral particles and among 
infected bacteria), all three predictions were confirmed experi-
mentally (Berngruber et al., 2013). Yet, the data were only used 
as a qualitative validation of the theory and no attempt was made 
to explore the quantitative match between the predicted and the 
observed dynamics of the virus.

In the present work, we show how the quantitative analysis of 
the experimental results from Berngruber et al. (2013) improves 
our understanding of the evolutionary epidemiology of phage 𝜆. 
First, we modified the structure of the epidemiological model to 
better capture the transient evolutionary dynamics of the virus 
among infected bacteria. Second, we carry out a theoretical anal-
ysis of this model to provide useful approximations to predict 
the evolutionary dynamics of the virus at different stages of the 
epidemic. In particular, we compute the selection gradients and 

the differentiation across distinct life stages of the virus. Finally, 
we develop a statistical inference approach to obtain quantita-
tive estimates of the parameters of the model and, especially, the 
life-history traits of the different strains of phage 𝜆.

2. Materials and methods
Following Berngruber et al. (2013), we first model the competition 
between the wildtype strain—hereafter denoted by the subscript 
w—and the mutant strain 𝜆cI857—hereafter denoted by the sub-
script m—of phage 𝜆 in a chemostat with a well-mixed continuous 
culture of its bacterial host E. coli (Fig. 1). We summarize the nota-
tions in Table 1. We then recall the experimental data generated in 
the original study and describe how we generate simulated data 
to validate our ability to estimate model parameters. In the last 
section, we detail the statistical inference approach we developed.

2.1 A model coupling epidemiology and 
evolution of phage virulence
2.1.1 Epidemiology
Bacteria are either susceptible (S) or infected with phage 𝜆 (we 
do not consider resistant bacteria); infected bacteria may be lyso-
genic (L), following phage integration (lysogenization), or carrying 
phages replicating in their cytoplasm prior to lysis (Y), following 
either lytic infection or prophage reactivation. Unlike the original 
model in Berngruber et al. (2013), adding an extra stage Y allows us 
to take the lysis time into account; we show below that this new 
model improves the goodness of fit to the data (see Results section 
‘3.2.2 Inference from experimental data’). The free virus stage (V) 
corresponds to the free viral particles (virions) that are in the cul-
ture medium—‘free’ meaning ‘extracellular’ here. Throughout, for 
each state variable (aka compartment), for instance S, we denote 
by S(t) its density at the current time t and ̇S(t) its derivative with 
respect to time. Hence, L(t) = Lw(t) + Lm(t) is the total density at time 
t of L cells, Y(t) = Yw(t) + Ym(t), of Y cells, V(t) = Vw(t) + Vm(t), of free 
viral particles, and N(t) = S(t) + L(t) + Y(t), of bacteria.
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Table 1. Notations. The subscripts w and m refer to the wild-
type strain and the mutant (or virulent) strain 𝜆cI857 of phage 𝜆, 
respectively. Overlines refer to mean values of life-history traits 
across all genotypes. SD stands for ‘standard deviation’.

Term Definition

N Bacterial population
S Susceptible bacteria
L,Lw,Lm Lysogens (bacteria carrying a prophage)
Y,Yw,Ym Bacteria with phages replicating in their cytoplasm prior to 

lysis
V,Vw,Vm Free viral particles (virions)
P Prevalence (1 − S/N)
p Frequency of L cells infected by the mutant strain m
q Frequency of the mutant strain m in the free virus stage (V)
f Frequency of Y cells infected by the mutant strain m
g Frequency of cells infected (either Y or L) by the mutant 

strain m
𝛼,𝛼w,𝛼m Rates of prophage reactivation; 𝛼w < 𝛼m

𝜙,𝜙w,𝜙m Probabilities of lysogenization (phage integration into the 
host genome upon infection); 𝜙w > 𝜙m

Δ𝛼,Δ𝜙 Phenotypic differences between the mutant and wildtype 
strain; Δ𝛼 = 𝛼m − 𝛼w,Δ𝜙 = 𝜙m − 𝜙w

a Adsorption rate of free viral particles onto the surface of 
bacteria

b Probability of fusion (injection of the phage genome) upon 
adsorption

𝜏 Lysis rate; 1/𝜏 corresponds to the mean lysis time
B Burst size (number of released viral particles upon lysis)
r Bacterial intrinsic growth rate
K Carrying capacity for the bacterial population: K = 109 cells
𝛿 Dilution rate of the continuous culture: 𝛿 = 0.8 h−1

ℛ0,w,ℛ0,m Basic reproduction numbers of the phage
𝒮 Selection gradient of the virulent phage (rate at which it 

grows or declines in frequency on the logit scale)
𝒬VL Differentiation of the virulent phage between free phages 

and prophages
𝜎P,𝜎g,𝜎q SD of measurement errors for logit (P) , logit (g) and logit (q), 

respectively

Susceptible and lysogenic bacteria grow at a per capita logis-
tic rate r(1 − N(t)/K), where r is the intrinsic growth rate and K
the carrying capacity. We assume, as in Berngruber et al. (2013), 
that the prophage does not affect the intrinsic growth rate of its 
host and that vertical transmission is perfect. Bacteria and viri-
ons are removed from the chemostat at a dilution rate 𝛿. Free 
viral particles adsorb onto bacterial cells at a rate a; adsorption 
is non-reversible, that is, the fate of adsorbed viruses is only to 
infect or die. Infection of a susceptible host also requires the injec-
tion of the phage’s genetic material into the bacterial cytoplasm 
(fusion, with probability b). The force of infection—i.e. the per capita
infection rate—is therefore given by abV(t). We assume that super-
infection (including coinfection with both strains) does not occur. 
In particular, prophage establishment of phage 𝜆 is known to pro-
vide cellular immunity, or superinfection inhibition (Lwoff, 1953; 
Ptashne, 1992; Berngruber et al., 2010; Gandon, 2016). Upon infec-
tion, the wildtype and virulent strains of phage 𝜆 may either be 
integrated as prophages into the host genome (lysogenic cycle) 
with probabilities 𝜙w and 𝜙m, respectively, such that Δ𝜙 = 𝜙m − 𝜙w <
0, or start the biosynthesis and assembly of viral copies (lytic cycle) 
with complementary probabilities. Once integrated, reactivations 
of the wildtype and virulent prophages occur at a rate 𝛼w and 
𝛼m, respectively, such that Δ𝛼 = 𝛼m − 𝛼w > 0. Following either lytic 
infections or prophage reactivations, host cells are lysed at a rate 𝜏
and eventually release B viral particles upon lysis (burst size). We 

assume that parameters a, b, 𝜏, and B are the same for the wild-
type and the mutant which yields the following system of ordinary 
differential equations (ODEs): 

⎧{{{{{{{
⎨{{{{{{{⎩

̇S(t) = rS(t)(1 − N(t)
K

)⏟⏟⏟⏟⏟⏟⏟
Growth

−abV(t)S(t)⏟⏟⏟⏟⏟
Infection

− 𝛿S(t)⏟
Removal

̇L(t) = rL(t)(1 − N(t)
K

)⏟⏟⏟⏟⏟⏟⏟
Growth &

vertical transmission

+𝜙(t)abV(t)S(t)⏟⏟⏟⏟⏟⏟⏟
Lysogenization

− 𝛼(t)L(t)⏟
Prophage

reactivation

− 𝛿L(t)⏟
Removal

̇Y(t) = (1 − 𝜙(t))abV(t)S(t)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Lytic infection

+ 𝛼(t)L(t)⏟
Prophage

reactivation

−𝜏Y(t)⏟
Lysis

− 𝛿Y(t)⏟
Removal

̇V(t) = 𝜏Y(t)B⏟
Virion release

−aN(t)V(t)⏟
Adsorption

− 𝛿V(t)⏟
Removal

, (1)

where 𝜙(t) is the mean probability of lysogenization upon infection 
and 𝛼(t) the mean rate of reactivation among prophages: 

⎧{
⎨{⎩

𝜙(t) = q(t)𝜙m + (1 − q(t))𝜙w

𝛼(t) = p(t)𝛼m + (1 − p(t))𝛼w

, (2)

with q(t) = Vm(t)/V(t) and p(t) = Lm(t)/L(t), the frequencies of the vir-
ulent strain at time t among compartments V and L, respectively.

2.1.2 Evolution
Along with these epidemiological dynamics, we also track the evo-
lutionary dynamics of phage 𝜆. We recall that p(t) and q(t) refer to 
frequencies of the virulent strain in compartment L and V, respec-
tively. In addition, we also denote f (t) = Ym(t)/Y(t), the frequency of 
the virulent strain at time t among Y cells, and g(t), the frequency 
of the virulent strain in infected cells (either Y or L) such that: 

g(t) =
Ym(t) + Lm(t)

Y(t) + L(t)
= f (t)( Y(t)

Y(t) + L(t)
) + p(t)( L(t)

Y(t) + L(t)
) . (3)

Using (1) and (2), one may calculate the ODE for each of 
these frequencies (see Supplementary Appendix S1.2). More con-
veniently, we will then focus on logit-frequencies instead, that is, 
the log odds ln(frequency of the mutant/frequency of the wild-
type). Taken together, the equations of the temporal dynamics of 
the frequencies and the model (1) yield the coupled evolutionary-
epidemiological dynamics of this phage-bacteria system. The 
analysis of this model can provide key insight on the evolutionary 
forces acting on the virus; it may also provide useful approxima-
tions for the change in mutant frequency at different stages of the 
epidemic.

2.2 Time series datasets
2.2.1 Experimental data
We use experimental time series obtained in the first evolution 
experiment of Berngruber et al. (2013). Briefly, this experiment 
started with eight independent chemostats (5 mL chamber vol-
ume, maintained at 35

∘
C) of well-mixed bacterial cultures of E. 

coli MG1655 (RecA+) at carrying capacity. Bacteria were initially 
infected by both the wildtype and virulent strain 𝜆cI857 of phage 𝜆
(prophage stage with initial ratio 1:1). Two treatments were consid-
ered using four chemostats each: (i) an epidemic treatment—low 
initial prevalence, around 1%—and (ii) an endemic treatment—
high initial prevalence, around 99%. Throughout the course of the 
experiment, several quantities were monitored: the prevalence, 
the frequency infected by each strain and the strain frequency in 
the culture medium (free virus stage). Samplings in each chemo-
stat were performed hourly, from 1 to 60 h maximum. The preva-
lence and the frequency of infected hosts were tracked using flow 
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cytometry (FACS) with fluorescent protein marker colours (CFP 
and YFP) while the strain frequency in the free virus stage was 
tracked by qPCR.

2.2.2 Simulated data
Alongside experimental data, we also carry out an analysis based 
on simulated data in order to validate our ability to infer param-
eters from experimental data. For this purpose, we take: 𝛼w =
7 × 10−3, 𝛼m = 2 × 10−2, 𝜙w = 0.2, 𝜙m = 2 × 10−2, a = 3 × 10−9, b = 0.1, 
B = 80, r = 1.4, 𝜏 = 1.5, K = 109 and 𝛿 = 0.8. At t = 0, bacteria are at 
carrying capacity K with initial prevalence 1% (epidemic treat-
ment) or 99% (endemic treatment) and the initial prophage ratio 
for the two strains is 1:1. We simulate the deterministic model 
(1) for the epidemic and endemic treatment (Supplementary Fig. 
S1). We then add i.i.d. Gaussian noise at each time point to mimic 
measurement errors on the logit-prevalence logit(P(t)), the logit-
frequency of hosts infected by the virulent phage logit(g(t)) and 
the logit-frequency of the virulent phage in the free virus stage 
logit(q(t))—this is independently repeated four times for each sim-
ulation to obtain four replicates (chemostats) per treatment. We 
modulate data quantity through two sampling frequencies: 0.1 h−1

vs. 1 h−1, and we modulate data quality through two standard devi-
ations (SD) of measurement errors: 0.01 vs. 0.5. We thus end up 
with four combinations of data quantity and quality (see exam-
ple in Supplementary Fig. S2) from which we then try to recover 
parameter values.

2.3 Maximum likelihood estimation
For the estimation process, we used a two-step approach. Using 
theoretical results, we first compute point estimates of the rates 
of prophage reactivation 𝛼w and 𝛼m. Then, we fix the latter to esti-
mate the remaining parameters of the model using non-linear 
optimizations. Note that it is possible to run non-linear opti-
mizations to estimate all parameters but this two-step approach 
makes the optimization easier by reducing the dimensionality of 
the problem. The Sieve bootstrap method (Bühlmann, 1997; Ulloa 
et al., 2013) is used to compute the joint distributions of all these 
estimated parameters.

2.3.1 Estimation of the rates of prophage reactivation
From the analysis of the model (see Results section ‘3.1 Theo-
retical analysis’), we show that when the system reaches high 
prevalence the selection gradient 𝒮 of the mutant—i.e. the rate 
at which it grows or declines in frequency on the logit scale—
is simply given by: 𝒮 = 𝛼w − 𝛼m = −Δ𝛼 (see Results section ‘3.1.2 
Evolution at the end of the epidemic’). Furthermore, the differenti-
ation 𝒬VL of the virulent strain between free phages and prophages 
converges towards approximately: 𝒬VL = 𝛼m/𝛼w = 1 + Δ𝛼/𝛼w (see 
Results section ‘3.1.3 Differentiation across compartments’). Com-
bining these two expressions enables us to estimate separately 
both reactivation rates: 

⎧{
⎨{⎩

𝛼w = 𝒮
1 −𝒬VL

𝛼m = 𝒮 ×𝒬VL

1 −𝒬VL

.

For each chemostat, we therefore only keep the data from the 
time point the prevalence has reached 95%. We fit a linear model 
on the logit-frequency infected by the virulent phage logit (g(t)) to 
estimate the slope 𝒮, and we estimate 𝒬VL by calculating the geo-
metric mean of q(t)(1−g(t))

(1−q(t))g(t)
 (see details in Supplementary Appendix 

S3.1). Note that we substitute p(t) by g(t) for the calculation of the 

differentiation because we only have access to g(t) in the exper-
iment, and g(t) is almost identical to p(t) towards the end of the 
epidemic (see Results section ‘3.1.2 Evolution at the end of the 
epidemic’ and Supplementary Fig. S1).

2.3.2 Estimation of the remaining parameters
We have three response variables: (i) logit(P(t)), the logit-
prevalence, (ii) logit(g(t)), the logit-frequency of hosts infected by 
the virulent phage, and (iii) logit(q(t)), the logit-frequency of the 

virulent phage in the free virus stage. Let Pepidemic
0  and Pendemic

0  be 
the initial conditions (at t = 0) of the prevalence in the epidemic 
and endemic treatments, respectively, and p0, the initial condi-
tion of the frequency infected by the virulent phage (identical for 

both treatments). Let 𝜃 = (𝜙w, 𝜙m, a, b, r, 𝜏, Pepidemic
0 , Pendemic

0 , p0) be 

the vector of model parameters to estimate. Several parameter 
values are fixed: K = 109 cells and 𝛿 = 0.8 h−1 (Berngruber et al., 
2013); 𝛼w and 𝛼m are fixed to their previous point estimates (cf. 
Material and methods section ‘2.3.1 Estimation of the rates of 
prophage reactivation’); and B = 80 virus.cell−1 (Wang, 2006) as we 
show in Results section ‘3.2.1 Inference from simulated data’ that 
the burst size B is not separately identifiable from parameter b. 
We estimate as well 𝜎P, 𝜎g, and 𝜎q, the SD of measurement errors 
for each of the three response variables, respectively. We assume 
that variation around the deterministic dynamics stems solely 
from measurement errors and we thereby neglect any additional 
process stochasticity. This is justified in particular by the very con-
trolled conditions of the experiment and by the large population 
sizes of both the bacteria and the phage in the chemostats. For 
each response variable, measurement errors are assumed to be 
normally distributed and i.i.d. across all treatments, replicates, 
and time points. The corresponding likelihoods (ℒ) are thence 
respectively given by: 

ℒP(𝜃,𝜎P) = ∏
i,j,t

𝜑(logit(Pi,j(t))
data ∣ logit(Pi,j(𝜃, t))sim, 𝜎2

P) ,

ℒg(𝜃,𝜎g) = ∏
i,j,t

𝜑(logit(gi,j(t))
data ∣ logit(gi,j(𝜃, t))sim, 𝜎2

g) ,

ℒq(𝜃,𝜎q) = ∏
i,j,t

𝜑(logit(qi,j(t))
data ∣ logit(qi,j(𝜃, t))sim, 𝜎2

q) ,

where i refers to treatments (epidemic vs. endemic), j to the jth 
replicate (chemostat), t to time points and 𝜑(. ∣ 𝜇,𝜎2) to the proba-
bility density function of the Normal distribution with mean 𝜇 and 
variance 𝜎2; sim indicates model outputs. We then denote ̂𝜃, the 
maximum likelihood estimation (MLE) estimator of 𝜃, such that: 

̂𝜃 = argmax
𝜃

(ln(ℒP(𝜃,𝜎P)) + ln(ℒg(𝜃,𝜎g)) + ln(ℒq(𝜃,𝜎q))) .

In practice, we minimize the negative overall log-likelihood 
using the Nelder-Mead (aka downhill simplex) algorithm (Nelder 
and Mead, 1965). Parameter bounds (reported in Supplementary 
Table S2) are enforced through parameter transformations. Due to 
the presence of local minima, optimizations are repeated for 2000 
sets of uniformly drawn starting points to ensure convergence to 
a global minimum. The best MLE set of estimates ̂𝜃 corresponds to 
the fit associated with the lowest negative overall log-likelihood 
with successful completion.

2.3.3 Confidence intervals
We generate bootstrapped data to compute 95% CIs of our param-
eters using Sieve bootstrap (Bühlmann, 1997; Ulloa et al., 2013) 
on the residuals between experimental data and the best fit 
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Evolution of Virulence in Emerging Epidemics  5

of our model. For this purpose, autoregressive moving-average 
(ARMA) models are fitted to the time series of centred resid-
uals of each chemostat independently. We then use ARMA 
models to simulate new residuals from which we reconstruct 
new datasets. We eventually reiterate the above estimation 
procedure (cf. Materials and methods section ‘2.3.1 Estima-
tion of the rates of prophage reactivation’ to ‘2.3.2 Estima-
tion of the remaining parameters’), but starting non-linear 
optimizations only from the best MLE estimates we obtained 
with the original data. By repeating this for 10 000 boot-
strapped datasets, we compute the joint distributions of estimated
parameters.

2.4 Details of the implementation
Numerical simulations and data analyses were carried out using 
R (R Core Team, 2022) version 4.2.0 (2022-04-22). ODEs were solved 
numerically by the function ode—with method lsoda—from the 
package deSolve (Soetaert et al., 2010). Non-linear optimizations 
for MLE were tackled with the function nmk (Kelley, 1999), from 
the package dfoptim, which gave here more stable results than
optim from base R. Fit and selection of ARMA models for Sieve 
bootstrap were carried out using the function auto.arima, from 
the package forecast (Hyndman and Khandakar, 2008).

3. Results
3.1 Theoretical analysis
When r > 𝛿, the virus-free system converges to an equilibrium 
where S(∞) = K(1 − 𝛿/r). When a single strain k ∈ {w, m} of the 
virus (with phenotypes 𝛼k and 𝜙k) is introduced in the bacterial 
population (fully susceptible, with density S0), the fate of the 
phage-bacteria system depends on the basic reproduction number 
of the pathogen ℛ0,k which is given by: 

ℛ0,k =
A + √A2 − 4r(1 − S0

K
) (1 − 𝜙k)abS0𝜏B(aS0 + 𝛿)(𝛼k + 𝛿)(𝜏 + 𝛿)

2(aS0 + 𝛿)(𝛼k + 𝛿)(𝜏 + 𝛿)
, (4)

with A = r(1 − S0

K
) (aS0 + 𝛿)(𝜏 + 𝛿) + abS0𝜏B(𝛼k + (1 − 𝜙k)𝛿) [see Supple-

mentary Appendix S2.1 for the construction of the next-
generation matrix, following Diekmann et al. (2010)]. When
ℛ0,k < 1, the virus goes extinct and the bacterial population con-
verges to the previous virus-free equilibrium. Alternatively, when 
ℛ0,k > 1, an epidemic breaks out and eventually stabilizes to an 
endemic equilibrium where all the cells are infected by the virus 
(Supplementary Appendix S2.1).

In the following, we analyse the evolutionary dynamics (i) 
at the beginning of an epidemic where S(t) = S0 and (ii) when 
the system stabilizes towards the endemic equilibrium where
S(t) = 0.

3.1.1 Evolution in an emerging epidemic
At the onset of the epidemic, susceptible cells are highly abun-
dant. For the sake of simplicity, we analyse the dynamics of the 
epidemic when the host density is assumed to be constant over 
time (S(t) = S0). As in the experimental design, we start with a bac-
terial population at carrying capacity (S0 ≈ K). Density dependence 
reduces cell reproduction and vertical transmission of the virus. 
Consequently, the epidemic is mainly driven by the lytic pathway. 
At t = 0 though, only lysogens are introduced at very low den-
sity. After a very short time, the phage-bacteria system reaches 
its new dynamical regime, following prophage reactivations, lyses 
and releases of virions. From there, we assume that L(t)/Y(t) ≈ 0
and we focus on the dynamics of the mutant in the compartment 

Y. We derive an approximation of the selection gradient 𝒮 of the 
virulent phage, which corresponds to the rate at which it increases 
in frequency on the logit scale, and we show in Supplementary 
Appendix S2.2 that: 

𝒮 ∝ −Δ𝜙, (5)

meaning that it is selected for (Δ𝜙 < 0, cf. Supplementary Fig. S3A). 
This is consistent with the experimental data where the virulent 
phage transiently outcompetes the wildtype at the early stage of 
the epidemic treatment (Berngruber et al., 2013). Our prediction is 
accurate when the density of susceptible hosts remains effectively 
constant over time; otherwise, however, our prediction deviates 
from the simulation whose rate slows down because the density of 
susceptible cells is rapidly decreased by the spread of the epidemic 
(Fig. 2A and Supplementary Fig. S3C).

3.1.2 Evolution at the end of the epidemic
At the end of the epidemic, we expect that all the cells will be 
infected by a prophage and there will no longer be any suscep-
tible cells. Consequently, no horizontal transmission takes place 
and, in contrast with the previous scenario, we can neglect the 
density of Y cells relative to the density of lysogens. Indeed, since 
1/𝛼w ≫ 1/𝜏 (time elapsed between phage integration and reactiva-
tion is much longer than lysis time), then Y(t)/L(t) ≈ 0 (see details 
in Supplementary Appendix S2.3). Note that this also means that 
the frequency infected by the virulent strain is mainly driven by 
the corresponding frequency in L, that is, g(t) ≈ p(t). We show in 
Supplementary Appendix S2.3 that the selection gradient of the 
virulent phage is given by: 

𝒮 = −Δ𝛼. (6)

As a result, the virulent phage is counter-selected in the long-
term (Δ𝛼 > 0) and, in each compartment, linearly declines in 
frequency at a rate 𝒮 (negative slope) on the logit scale (Fig. 2B 
and Supplementary Fig. S1B).

3.1.3 Differentiation across compartments
The two previous subsections deal with the dynamics of evolution 
over time; let us now look at the dynamics of selection between 
different compartments. We define here the differentiation 𝒬VL

between the free virus stage and lysogens as: 

𝒬VL(t) =
q(t)

1 − q(t)
1 − p(t)

p(t)
, (7)

such that: 

ln(𝒬VL(t)) = logit(q(t)) − logit(p(t)).

We show in Supplementary Appendix S2.4 that, at the end of 
the epidemic, the differentiation 𝒬VL(t) converges approximately 
towards: 

𝒬VL ≈ 𝛼m

𝛼w
= 1 + Δ𝛼

𝛼w
, (8)

(Fig. 2C), a value of 1 corresponding to no differentiation. We 
obtain the same expression for the convergence of the differen-
tiation between Y and L cells and around 1 between the free virus 
stage V and Y cells (cf. Supplementary Appendix 2.4). Interest-
ingly, these results are also valid at t = 0+ (Supplementary Fig. S4) 
as there are no free phage particles yet and thereby no horizontal 
transmission which, within a very short space of time, resembles 
the end of the epidemic. When the system stabilizes at the end of 
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6 Benhamou et al.

Figure 2. Theoretical predictions. At t = 0, bacteria are at carrying capacity K with initial prevalence 1% (epidemic treatment) or 99% (endemic 
treatment). The initial prophage ratio for the two strains is 1:1. See Supplementary Table S1 for parameter values. (a) The virulent phage is selected for 
at the early stage of the epidemic. Our approximation for the trajectory of the logit-frequency of the virulent phage (light red shading, see 
Supplementary Appendix S2.2) predicts the dynamics of the virulent phage when the density of susceptible cells is kept constant (dashed red line). 
The slope of the upper bound of our approximation is proportional to −Δ𝜙 = 𝜙w − 𝜙m (equation (5)). As only lysogens are introduced in the susceptible 
bacterial population at t = 0, we let the phage-bacteria system reach its new dynamical regime and only start our approximation at t = 1 (white dot). 
However, the rapid drop in the availability of susceptible hosts due to the viral epidemic reduces the increase of the virulent phage relative to our 
approximation (compare the full red line and the dashed red line). (b) The virulent phage is counter-selected when the epidemic reaches high 
prevalence (indicated with the white dots in the epidemic and endemic treatments). At the end of the epidemic, the logit-frequency of the virulent 
phages decreases linearly with negative slope −Δ𝛼 = 𝛼w − 𝛼m (equation (6)). (c) The virulent strain is more frequent among free viruses (V) than among 
prophages (L). When the system reaches high prevalence, we predict the differentiation between these two compartments to converge towards an 
equilibrium that is approximately equal to 1 + Δ𝛼/𝛼w = 𝛼m/𝛼w (equation (8)).

the epidemic, the virulent strain is therefore more frequent among 
free viruses and Y cells than among L cells (prophages) but we also 
expect almost no differentiation between free viruses and Y cells 
(Supplementary Fig. S4).

3.2 Statistical inference
3.2.1 Inference from simulated data
We first conduct a simulation study. We start by validating our 
estimation method of the rates of prophage reactivation 𝛼w and 

𝛼m. Combining equations (6) and (8), we compute point estimates 
of both parameters (cf. Materials and methods section ‘2.3.1 Esti-
mation of the rates of prophage reactivation’) for a large number 
of simulated datasets. Overall, estimated values show a very good 
match with those used in the original simulations (Supplementary 
Fig. S5), especially when the SD of measurement errors is small.

We then show that parameters b and B may not be separately 
identifiable using the simulated dataset closest to the original 
deterministic simulation (sampling effort = 10 h−1 and SD of mea-
surement error = 0.01, see Supplementary Fig. S2A). We fix K
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Evolution of Virulence in Emerging Epidemics  7

Figure 3. Differentiation of the virulent strain between free phages and infected cells. We compute q(t)(1 − g(t))/((1 − q(t))g(t)) for each chemostat (thin 
lines) and the corresponding geometric mean for each treatment (thick lines). The value 1 (horizontal grey line) corresponds to no differentiation. For 
each chemostat, values before the time point the system has reached a prevalence of 95% are shown in transparent color. With high prevalence, we 
have g(t) ≈ p(t) and we thereby obtain the differentiation of the virulent strain between free phage particles (V) and prophages (L). In these conditions, 
such differentiation is expected to reach an equilibrium—the horizontal dashed line indicates the corresponding geometric mean (4.60) across all 
chemostats and time points—with theoretical value 1 + Δ𝛼/𝛼w = 𝛼m/𝛼w (cf. Fig. 2C).

and 𝛿 to their known values, as well as 𝛼w and 𝛼m, as though 
the rates of prophage reactivation have been correctly estimated 
beforehand. Setting (b, B) to many combinations of values ((b, B) ∈
[0, 0.2] × [0, 100]) and maximizing over the remaining parame-
ters, the resulting landscape of the overall log-likelihood suggests 
that only the product b × B is identifiable (Supplementary Fig. S6). 
Such compensatory effect may be understood as the impossibil-
ity here of discriminating whether phage 𝜆 infect fewer bacteria 
(lower probability b of fusion) but release more viral copies upon 
lysis (larger burst size B) or vice-versa. This is the reason why we 
fix B in the following and only estimate b.

Fixing B to its true value used in the original simulations, 
point estimates of parameters are quite close to their true values 
(Supplementary Fig. S7). However, some parameters—like r, 𝜏 or 
b—seem more difficult to estimate with a lower sampling effort.

3.2.2 Inference from experimental data
The original model used in Berngruber et al. (2013) failed to prop-
erly capture the evolutionary dynamics among infected hosts at 
the early stage of the epidemic. Such discrepancy was an opportu-
nity to go back from experimental data to theory and to challenge 
the structure of the model. We noticed that adding an extra stage 
Y in the infected compartment allowed us to better fit the experi-
mental data than the original model (ΔAIC= −101). This significant 
improvement strongly supported the new version of the model 
developed in this study and for which we present the estimation 
results below.

First, we estimate: Δ𝛼 = 9.31 × 10−3 h−1 and 𝒬VL = 4.60 (see Fig. 3 
for the latter). Point estimates of the rates of prophage reactivation 
(expressed in h−1) are thus: ̂𝛼w = 2.58 × 10−3 and ̂𝛼m = 1.19 × 10−2.

Second, we perform non-linear optimizations to estimate the 
remaining parameters. Overall, computed dynamics of the logit-
prevalence and logit-frequencies of the virulent phage closely fit 
experimental data (Fig. 4). Best MLE estimates are listed in Table 2, 

along with their 95% bootstrap-based CIs (see Supplementary Fig. 
S8 for the density distributions of estimated parameters). We show 
pairwise correlation coefficients in Supplementary Fig. S9. Some 
parameters are correlated positively, in particular: 𝛼w with 𝛼m, 
p0 with both reactivation rates, 𝜙m with Pepidemic

0  and r with b; or 
negatively, in particular: 𝜏 with b and r. In Supplementary Fig. 
S10, we plot the 95% distributions of fitted values. To test the 
impact of the fixed value used for the burst size B, we study how 
perturbations of the original value (80 virus cell−1) affect the esti-
mation of the other parameter values (new point estimates from 
non-linear optimizations). In Supplementary Fig. S11, we show 
that all parameters are extremely robust to these perturbations, 
except for parameter b as expected from Supplementary Fig. S6, 
(but the product b × B is always around 3.95). It is also worth not-
ing that the basic reproduction number is not affected by the 
choice of the value of B, as it always appears as a product with 
b in (4). We estimate the basic reproduction number of the wild-
type strain ℛ0,w to be 1.48 (95% CI [1.04, 2.15]) and of the virulent 
strain ℛ0,m to be 2.20 (95% CI [1.58, 3.05]). Interestingly, the basic 
reproduction number of the virulent mutant ℛ0,m is higher than 
that of the wildtype ℛ0,w, but the virulent mutant always loses 
the competition in the long term. The basic reproduction number 
gives the expected number of secondary infections in an other-
wise fully susceptible host population (Anderson and May, 1991). 
The generation interval distribution of the two strains being sim-
ilar for the lytic cycle, the basic reproduction number provides 
a good predictor of the relative fitness of the two strains at the 
early stage of the epidemic (Wallinga and Lipsitch, 2007; Park 
et al., 2019): the mutant outcompetes the wildtype as ℛ0,m > ℛ0,w. 
When the density of susceptible host cells drops, however, the 
basic reproduction number becomes a poor predictor of fitness. 
Eventually, only the strain that tolerates the worst environment in 
terms of resource density—in this case, the lowest density of sus-
ceptible host cells—survives (pessimization principle) (Diekmann, 
2004). The wildtype replicates better at lower S cells densities than 
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8 Benhamou et al.

Figure 4. Fitted values on experimental data. Fitted values (thick dark lines) were obtained from the simulation based on the best MLE estimations 
(see Table 2). We estimate model parameters using experimental data (light-colored thin lines) from the evolution experiment designed in Berngruber 
et al. (2013); initial prevalence is either low (epidemic condition, in red) or high (endemic condition, in blue). Light-colored thick lines correspond to 
mean logit-values across all replicates per treatment. (a) Logit-prevalence of infection; (b) logit-frequency of cells infected (involved either in a 
lysogenic or a lytic cycle) by the the mutant (virulent) phage; (c) logit-frequency of the virulent phage in the culture medium (free virus stage).
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Evolution of Virulence in Emerging Epidemics  9

Table 2. MLE parameter estimations. In a first step, parameters 𝛼w
and 𝛼m are estimated directly using analytic approximations and 
linear models. In a second step, we fix 𝛼w and 𝛼m to their previous 
point estimates and, starting from 2000 sets of initial values, non-
linear optimizations maximizing the overall log-likelihood with 
the experimental data are run to estimate the remaining parame-
ters. 95% CIs are based on Sieve bootstrap (6686 sets of estimates). 
Throughout, fixed parameters are: K = 109 cells, 𝛿 = 0.8 h−1 and B =
80 virus.cell−1.

Parameter
Estimated 
value 95% CI Unit

Parameters of the phage

𝛼w 2.58 × 10−3 [1.94 × 10−4, 7.87 × 10−3] h−1

𝛼m 1.19 × 10−2 [1.03 × 10−3, 2.85 × 10−2] h−1

𝜙w 0.347 [0.198, 0.501] –
𝜙m 2.91 × 10−2 [7.70 × 10−3, 6.94 × 10−2] −
a 1.00 × 10−6 [4.34 × 10−7, 1.00 × 10−6] h−1.cell−1

b 4.94 × 10−2 [2.44 × 10−2, 7.51 × 10−2] –
𝜏 1.08 [0.83, 3.95] h−1

Parameter of the bacteria

r 1.60 [0.77, 5.00] h−1

Initial conditions

Pepidemic
0 4.24 × 10−3 [1.00 × 10−3, 1.13 × 10−2] –

Pendemic
0 99.61 × 10−2 [0.988, 0.998] –

p0 0.416 [0.400, 0.517] –

SD of measurement errors

𝜎P 1.51 [1.13, 2.00] –
𝜎g 0.52 [0.52, 0.75] –
𝜎q 0.83 [0.74, 1.16] –

the virulent strain because it relies more on vertical transmis-
sion and less to transmission to new susceptible cells. ℛ0 is not 
maximized in the long-term because the ‘niche’ of the virus is 
multidimensional, again because of the two modes of replication 
(Lion and Metz, 2018). 

We compared our estimates of model parameters with pre-
vious studies (see reported values in Supplementary Table S3), 
focusing in particular on the parameters of the phage. Note that 
previous estimations of these life-history traits were obtained 
from experimental assays using monomorphic phage cultures. 
Our estimate of the rate of prophage reactivation of the wildtype 
strain 𝛼w falls in the range of previous in vitro estimates, which is 
very large [between 10−7 and 10−2 h−1 (De Paepe et al., 2016; Lit-
tle et al., 1999; Zong et al., 2010)], probably due to the variability 
in experimental methods. For the cI variant, the orders of magni-
tude of 𝛼m are more consistent (Zong et al., 2010; De Paepe et al., 
2016). Other studies, using single-cell monitoring of infected cells 
to estimate the probability of lysogenization of the wildtype strain 
𝜙w, obtained very similar results when the multiplicity of infec-
tion (MOI) is low, around 0.35 on average (Zeng et al., 2010)—but 
see the section ‘Discussion’ for the effect of MOI. We estimate a 
12-fold decrease for the probability of lysogenization of the viru-
lent strain 𝜙m and, to our knowledge, this parameter has not been 
estimated elsewhere. The lysis time 1/𝜏, estimated close to 1 h 
(though with larger uncertainty), is also consistent with the biol-
ogy of phage 𝜆 (Zong et al., 2010; De Paepe and Taddei, 2006; De 
Paepe et al., 2016; Lindberg et al., 2014; Shao and Wang, 2008). On 
the other hand, the adsorption rate a is poorly estimated. Although 
this issue did not arise with simulated data, our estimates based 
on experimental data are mostly stuck at the upper bound (10−6), 
several orders of magnitude higher than expected (De Paepe and 
Taddei, 2006; De Paepe et al., 2016; Lindberg et al., 2014; Shao and 

Wang, 2008). To investigate the sensitivity of the other estimates 
to the estimated value of a, we reiterate non-linear optimizations 
fixing a to different values ranging from 10−9 to 1 to compute new 
point estimates. The inference of most parameters was robust to 
the value of a, with no relative variation higher than 50% found for 
values of a between 10−8 to 1 (Supplementary Fig. S12A). We carry 
out the same sensitivity analysis for the intrinsic growth rate of 
the host r which was also poorly estimated (its distribution being 
mainly flat): with values of r ranging between 1 and 5, the proba-
bilities of lysogenization are little affected by the perturbations in r
(relative variation contained between -7% and +15%) while param-
eters b and 𝜏—the most correlated with r—are the most sensitive 
(Supplementary Fig. S12B).

4. Discussion
In a previous study, Berngruber et al. (2013) carried out an evolu-
tion experiment with the phage 𝜆 to validate several theoretical 
predictions on the evolution of virulence and transmission. This 
study used a two-step approach: (i) a mathematical model tailored 
to the biology of phage 𝜆 was used to show how epidemiological 
dynamics feedback on the evolution of the pathogen and (ii) track-
ing the variation of the frequency of a viral mutant across time 
and across compartments (infected host and free virus) confirmed 
the impact of the density of susceptible cells on the transient 
evolution of the virus at different stages of its life cycle. This exper-
imental validation of the theory focused on the qualitative match 
of the experimental results with the predictions of the model and 
provided empirical support for evolutionary epidemiology theory. 
In the present study, we adopt a reverse approach where we start 
from the data and try to improve the theoretical model developed 
to describe the evolutionary epidemiology of phage 𝜆. We calcu-
late the selection gradients and the differentiation across the life 
stages of the virus at the onset and at the end of the epidemic. 
This analysis allows us to better quantify the processes driving 
the evolutionary dynamics of the virus population.

First, we noticed that the previous model failed to properly 
capture the transient evolutionary dynamics in the infected com-
partment. We improved the goodness of fit with the experimental 
data by distinguishing two types of infected cells: lysogens (L) and 
cells committed to the lytic pathway (Y). Indeed, adding extra 
stages allowed us to observe a transitory peak in the frequency 
of hosts infected by the virulent phage (Supplementary Fig. S13A, 
middle panel), similar to what we observed in the experimental 
data. In this model, the peak is due to the frequency of the vir-
ulent phage among Y bacteria that, unlike L bacteria, transiently 
overshoots during the acute phase of the epidemic. Crucially, lysis 
was assumed to be instantaneous in the original model (Berngru-
ber et al., 2013) and including this additional stage in the phage 
life cycle allowed us to take the lag between infection and lysis 
into account (Yin and McCaskill, 1992; You and Yin, 1999; Mitarai 
et al., 2016; Brown et al., 2022; Geng et al., 2023; De Paepe et al., 
2016). For the sake of simplicity and parsimony, we only kept a 
single extra stage Y, yielding exponentially distributed lysis time 
(Mitarai et al., 2016).

Second, we performed a theoretical analysis of this new model 
to go beyond the numerical approach used in Berngruber et al. 
(2013). In particular, we obtained analytic approximations for the 
spread of the virulent phage at the beginning and at the end of 
the epidemic: (i) the virulent mutant increases in frequency at the 
onset of the epidemic (when the density of susceptible hosts is 
high) with a speed approximately proportional to −Δ𝜙; (ii) the vir-
ulent mutant decreases in frequency at the end of the epidemic 
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10 Benhamou et al.

(when the density of susceptible hosts is low) with a negative 
selection gradient −Δ𝛼, which is consistent with the prediction 
that in the long-term, and in the absence of an influx of suscep-
tible hosts, the temperate phage should evolve a fully lysogenic 
strategy where 𝛼 = 0 and 𝜙 = 1 (Bruce et al., 2021; Wahl et al., 
2019); and (iii) the virulent phage is always more frequent in the 
free virus stage than among prophages and this differentiation is 
approximated by 1 + Δ𝛼/𝛼w at the end of the epidemic. The first 
approximation only held for a very limited period of time because 
the density of susceptible cells drops very rapidly and this epi-
demiological feedback affects the selection on transmission and 
virulence. In contrast, the final two predictions were valid as soon 
as the epidemic reaches high prevalence and, interestingly, yielded 
a novel way to estimate the rates of prophage reactivation of both 
strains.

Third, we developed a statistical inference approach to esti-
mate the parameters of the model. We implemented a two-step 
MLE procedure: (i) we first obtained point estimates of the reacti-
vation rates 𝛼w and 𝛼m of both viral strains and (ii) we then fixed 𝛼w

and 𝛼m to their point estimates and ran non-linear optimizations 
to infer the remaining parameters of the model (except the burst 
size B which had to be fixed because of an identifiability issue). 
The Sieve bootstrap technique was used to generate joint distribu-
tions for all the estimated parameters (Table 2). We showed that 
our estimates of the key phenotypic traits 𝛼w, 𝛼m, and 𝜙w were 
consistent with existing literature (Supplementary Table S3).

Crucially, our inference approach is quite different from pre-
vious studies. First, we analyse the dynamics of a polymorphic 
viral population. Second, we use three types of data to infer the 
parameter values of the model: (i) epidemiological data (i.e. the 
prevalence of the infection), (ii) temporal variations in variant fre-
quencies, and (iii) differentiation of the variant frequency across 
compartments. Each data type carries complementary informa-
tion; together, they allow us to jointly estimate the life-history 
traits of both strains of the phage. This novel method is particu-
larly well suited to estimate the rates of prophage reactivation, for 
which only the endemic treatment is needed—see Supplementary 
Appendix S3.2 where we propose a Bayesian counterpart to easily 
obtain posterior distributions and credible intervals for these two 
parameters (applied to our experimental data, we show results 
in Supplementary Fig. S14A). Estimating the probabilities of lyso-
genization is however more difficult as it requires to monitor the 
transient dynamics of the epidemic treatment. The rapid epidemi-
ological feedback that occurred in emerging epidemics makes it 
necessary to consider both the epidemiology and the evolution 
of the infection. It might thus be relevant to carry out shorter 
experiments for the epidemic treatment—i.e. focusing on the early 
state of the epidemic—but with a more frequent sampling effort to 
monitor the change in frequency more precisely. Alternatively, the 
use of two-stage chemostats, where the influx of susceptible hosts 
could be maintained experimentally (Bonachela and Levin, 2014; 
Husimi et al., 1982), might also be an option worth investigating.

Even though we have improved the original model, many fea-
tures of the present model could be challenged. For example, we 
assume all phenotypic traits to be constant across time and across 
chemostats. Yet, key life-history traits of phage 𝜆 are known to 
vary with the environment (Wegrzyn and Wegrzyn 2005) (i.e. phe-
notypic plasticity). In particular, the probability of lysogenization 
and the reactivation rate of the 𝜆 mutant used in the evolu-
tion experiment is temperature-sensitive (Berngruber et al., 2013; 
St-Pierre and Endy, 2008; Zong et al., 2010). Interestingly, the 
estimated rates of reactivation varied among chemostats (Sup-
plementary Fig. S14B, using a Bayesian approach). This variation 

may have been driven by small variations in temperature among 
the chemostats that could have affected the reactivation rate 
of the mutant (higher rates of reactivation would be expected 
with higher temperature). The probability of lysogenization of 
phage 𝜆 is also known to be more likely to occur at high MOI 
(Kourilsky, 1973; Kourilsky and Knapp, 1975; Zeng et al., 2010). 
MOI-dependent phenotypic plasticity may also affect the rate of 
reactivation of temperate phages (Bruce et al., 2021), or the lysis 
time of virulent phages (Rutberg and Rutberg, 1965). Yet, our 
model has the advantage of the parsimony, while already con-
vincingly reproducing the qualitative patterns observed in the 
data. More sophisticated models would improve the fit to the data 
compared to simpler, nested models. Additional details may be 
rooted in experimental knowledge on the system, but the data 
may not be rich enough to infer the extra-parameters precisely 
(and accordingly, these more complex models may not be selected 
over simpler ones in statistical model comparisons). Moreover, 
simpler models are easier to analyse mathematically and lend 
themselves more easily to interpretation. It is thus delicate to 
know where to draw the line between the parsimony and the good-
ness of fit of a model. Navigating in this trade-off, a first model 
was developed capturing the transient increase in virulent strain 
(Berngruber et al., 2013), and we extended it with the known delay 
between phage infection and lysis to better capture the similarity 
in variant frequency in cells and free viruses. Our final model fits 
the data well, but not all parameters can be inferred precisely, in 
ways that depend on the details of the model and would have been 
difficult to anticipate before formally fitting the model.

Our study emphasizes the benefits of combining theoretical, 
statistical, and experimental approaches. Combining these per-
spectives effectively requires an iterative process. Each step is an 
opportunity to challenge and improve our understanding of the 
biological model, to elucidate microbial life cycles and to pro-
vide support and guidance during experimentation. While most 
experimental life-history assays only focus on monomorphic pop-
ulation, we demonstrate the relevance of evolution experiments 
where different strains are put in competition and where tracking 
their relative frequencies over time may yield novel and effi-
cient ways to estimate some dimensions of their phenotypes, 
especially when it is difficult to access absolute densities. This 
approach could be used under different conditions and in par-
ticular in vivo (De Paepe et al., 2016). The present study may 
thus help characterize the phenotypic traits of microbial organ-
isms used in experimental evolution. More broadly, this overall 
quantitative process is similar in spirit with what can be done 
in epidemiological studies, particularly in public health—though 
generally with a much simpler description of the life cycle. During 
the COVID-19 pandemic, for instance, the successive emergence 
and sweeps of SARS-CoV-2 variants of concern has raised many 
questions about the short- and long-term evolution of the virus, 
especially in terms of transmission and virulence. Statistical infer-
ence based on demographic/epidemiological data (e.g. prevalence, 
deaths, hospital admissions) and genetic data (e.g. strain fre-
quencies) quantified variants properties such as transmission, 
virulence, infectious period, immune escape, or generation inter-
val distribution [e.g. Davies et al. (2021); Blanquart et al. (2022); 
Benhamou et al. (2023)]. In many scenarios, the frequency of a 
variant could be measured in different compartments, for exam-
ple between naive and vaccinated hosts (e.g. for SARS-CoV-2 
variants Omicron), or between infected hosts and an environmen-
tal compartment (e.g. enteropathogenic E. coli in environmental 
waters). As shown in this study, interpreting the temporal vari-
ation in the selection gradient and the differentiation of a novel 
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variant between distinct compartments may be a powerful tool 
to clarify the relationship between its frequencies in distinct life 
stages and to better characterize its phenotype.
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Figure S3: Approximation of the selection gradient of the virulent phage at the early stage
of the epidemic. At t = 0, bacteria are at carrying capacity K with initial prevalence 1% (epidemic
treatment) and initial prophage ratio for the two strains 1:1. We investigate the case where the pool
of susceptible host is kept constant to its initial value S(t = 0) = 0.99 ×K throughout the course of
infection (dashed lines). See Table S1 for parameter values. In panel A, we vary ∆ϕ = ϕm − ϕw by
varying ϕm; in panels B and C, ∆ϕ = −0.18. (A) Approximation interval for the selection gradient of
the mutant strain (slope of logit(f(t))) against ∆ϕ, as given in SI Appendix §S2.2 (equation (S17));
note that the selection gradient is positive when ∆ϕ is negative, meaning that the virulent phage is
predicted to be selected for at the early stage of the epidemic. (B) Temporal dynamics of the ratios
L(t)/Y (t) and V (t)/Y (t) along with their approximations (horizontal black lines). (C) Predictions
of the trajectories of the logit-frequencies of the virulent phage among lytic cells (Y ) and in the free
virus stage (V ), starting from values at t = 1 (white points). Indeed, at t = 0, only lysogens are
introduced in the susceptible population, so we first let the phage-bacteria system reaches its new
dynamical regime – when epidemiological dynamics have reached (quasi-)equilibrium in panel B. The
shaded area derives from the approximation interval illustrated in panel A

4



between Y cells and prophages (L)

between free viruses (V) and Y cells

between free viruses (V) and prophages (L)

0 10 20 30 40 50 60

1

2

4

8

16

1

2

4

8

16

1

2

4

8

16

time (hours)

D
iff

er
en

tia
tio

n 
of

 v
iru

le
nt

 p
ha

ge
epidemic endemic

Figure S4: Differentiation of the virulent phage. In SI Appendix §S2.4, we show that the
differentiation of the virulent phage between free viruses (V ) or lytic cells (Y ) and prophages (L) is
predicted to converge towards approximately 1 + ∆α/αw > 1 (uppermost dashed line), and that the
differentiation between free viruses (V ) and lytic cells (Y ) towards approximately 1 (no differentiation,
lowermost dashed line). In the endemic case – including the late stage of the epidemic –, the virulent
strain is therefore more frequent among free viruses and lytic cells than among prophages but is as
frequent among free viruses as among lytic cells. See Table S1 for parameter values and initial
conditions.

5



αw

αm

0.00

0.01

0.02

0.03

0.04

α̂w α̂m

E
st

im
at

ed
 v

al
ue

Sampling effort = 10 h−1A)

αw

αm

0.00

0.01

0.02

0.03

0.04

α̂w α̂m

Standard deviation
of measurement error

0.01

0.5

Sampling effort = 1 h−1B)

Figure S5: Point estimates of the reactivation rates αw and αm from simulated datasets.
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errors (0.01 (dark blue) vs. 0.5 (light blue)); for each combination, we computed 1,000 simulated
datasets by adding Gaussian noise to the same two simulations (epidemic vs. endemic) shown in Fig.
S1; repeating this four times, we independently generate four replicates (chemostats) per treatment.
For each replicate, we only keep the data from the time point the system had reached a prevalence
of 95%. From each simulated dataset, we eventually compute point estimates of both parameters αw

and αm (see Materials and methods §2.3.1 and SI Appendix §S3.1) which overall show a good
match with the values used in the original simulation (horizontal dashed lines).
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Figure S6: Log-likelihood landscape according to the values of parameters b and B. We
used the simulated dataset closest to the original deterministic simulation (sampling effort = 10 h−1

and SD of measurement error = 0.01, see Fig. S2-A). For each pair (b, B) ∈ [0, 0.2] × [0, 100], we
also fixed the rates of prophage reactivation αw and αm (as though correctly estimated beforehand) as
well as K and δ while we maximized the overall log-likelihood over the remaining parameters. White
dashed lines indicate the values used in the original simulations. Non successful completions are shown
in grey. This landscape points out that parameters b and B are not separately identifiable; its shape
suggests that only the product b×B is identifiable, in particular the log-likelihood always reaches the
highest value (lightest curve) when b×B is around 8.
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Figure S7: Parameter point estimates from simulated data. We use the four simulated datasets
described in Fig. S5, which all stem from the same deterministic simulation but differ in sampling
effort (1 vs. 10 h−1) and/or SD of measurement errors (0.01 vs. 0.5). For each simulated dataset, we
first estimate αw and αm; we then run non-linear optimizations to estimate the remaining parameters
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the best fit. We repeat this procedure for five sets of initial values, yielding five point estimates for
each remaining parameter. Dashed horizontal lines refers to the values we use to generate simulated
data and grey areas indicate out-of-bounds ranges of values.
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Figure S8: Density distributions of parameter estimates. Using sieve bootstrap on the residuals
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φ̂w φ̂m â b̂ r̂ τ̂

P̂ 0

epidemic

P̂ 0

endemic
p̂ 0 σ̂P σ̂g σ̂q

R
el

at
iv

e 
va

ria
tio

n

Burst size (B)

60 (−25%)

72 (−10%)

80

88 (+10%)

100 (+25%)

120 (+50%)
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b×B is always around 3.95).
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chain trick, compartments Y (both Yw and Ym) are stratified into n successive stages. As ODEs
implicitly assume exponentially distributed sojourn time, the lysis time is thus the sum of n i.i.d.
exponential distributions, that is a gamma distribution with shape parameter n and scale parameter
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See Table S1 for parameter values. The mean lysis time is given by 1/τ (vertical dashed line in B).
At t = 0, bacteria are at carrying capacity K with initial prevalence 1% (epidemic treatment) or 99%
(endemic treatment). The initial prophage ratio for the two strains is 1:1.
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Table S1: Parameter values used in the simulations. The subscripts w and m refer to the
wildtype strain and the mutant (or virulent) strain λcI857 of phage λ, respectively. P epidemic

0 and
P endemic
0 correspond to the initial conditions (at t = 0) of the prevalence for the endemic and epidemic

treatment, respectively; p0 corresponds to the initial condition of the frequency of lysogenic hosts (L)
infected by the virulent phage (infected cells are all lysogenic at t = 0). See Table 1 for notations.

Parameter Value Unit

P epidemic
0 1% –

P endemic
0 99% –

p0 0.5 –

αw 7× 10−3 h−1

αm 2× 10−2 h−1

ϕw 0.2 –

ϕm 2× 10−2 –

a 3× 10−9 h−1 . cell−1

b 0.1 –

τ 1.5 h−1

B 80 virus . cell−1

r 1.4 h−1

K 109 cell

δ 0.8 h−1

σP , σg, σq 0.01/0.5 –

Table S2: Bounds for non-linear optimizations. Bounds are placed on estimated parameters to
constrain optimizations to relevant ranges of values. Besides, starting values are uniformly drawn
between these bounds.

Parameter Lower bound Upper bound Unit

P epidemic
0 0.95 1 –

P endemic
0 10−3 2× 10−2 –

p0 0.4 0.6 –

ϕw, ϕm 0 1 –

a 10−9 10−6 h−1 . cell−1

b 0 0.2 –

r 0 5 h−1

τ 0.5 4 h−1

σP , σg, σq 10−3 2 –
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Table S3: Examples of values for phage parameters from previous studies. We do not
include the probability of fusion b, as it is not separately identifiable from the burst size B in
our model and as it is not really considered in most studies. We also do not include the probabil-
ity of lysogenization of the virulent phage ϕm as, to our knowledge, it has not been estimated elsewhere.

Parameter Value Unit Reference

αw

3.4× 10−4

h−1

(De Paepe et al., 2016)

6.3× 10−3 − 3.6× 10−2 (De Paepe et al., 2016)

2.4× 10−5 (Little et al., 1999)

∼ 10−7 − 10−6 (Zong et al., 2010)

αm

1.3× 10−2 (i)

h−1
(De Paepe et al., 2016)

∼ 10−3 (Zong et al., 2010)

ϕw

0.19

–

(De Paepe et al., 2016)

0.63 (ii) (Little et al., 1999)

0.2− 0.4 (iii) (Zeng et al., 2010)

a

2.7× 10−8

h−1 . cell−1

(De Paepe & Taddei, 2006)

5× 10−8 − 3× 10−7 (De Paepe et al., 2016)

∼ 10−9 − 10−8 (iv) (Lindberg et al., 2014)

∼ 10−8 − 10−7 (Shao & Wang, 2008)

B

115

virus . cell−1

(De Paepe & Taddei, 2006)

12.1 (De Paepe et al., 2016)

37− 590 (iv) (Lindberg et al., 2014)

56 (Little et al., 1999)

9.7− 255 (Wang, 2006)

1/τ

0.7

h

(De Paepe & Taddei, 2006)

> 0.67 (De Paepe et al., 2016)

0.78− 1.67 (iv) (Lindberg et al., 2014)

0.49-1.13 (Shao & Wang, 2008)

0.47-1.05 (Wang, 2006)

(i) Virulent mutant λcI∗; (ii) MOI=6-8; (iii) MOI=1; (iv) Phages of P. aeruginosa from environmental water source.
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S1 A model coupling epidemiology and evolution

In the main text, we model in continuous cultures of E. coli the competition between two

strains of phage λ: the wildtype strain – hereafter denoted w – vs. the mutant strain (or

variant) λcI857 – hereafter denoted m. The variant m is known to be more virulent than the

wildtype strain w due to a point mutation in the transcriptional repressor protein cI (St-Pierre

& Endy, 2008; Sussman & Jacob, 1962).

S1.1 Epidemiology

We recall here the epidemiological model (system of ODEs) we use in the main text (see

Table 1 for notations):





Ṡ(t) = rS(t)

(
1− N(t)

K

)
−
(
abV (t) + δ

)
S(t)

L̇(t) = rL(t)

(
1− N(t)

K

)
+ ϕ(t)abV (t)S(t)−

(
α(t) + δ

)
L(t)

Ẏ (t) =
(
1− ϕ(t)

)
abV (t)S(t) + α(t)L(t)−

(
τ + δ

)
Y (t)

V̇ (t) = τY (t)B −
(
aN(t) + δ

)
V (t)

(S1)

where the overlines refer to mean values of the life-history traits after averaging over the

distribution of strain frequencies:

{
α(t) = p(t)αm +

(
1− p(t)

)
αw

ϕ(t) = q(t)ϕm +
(
1− q(t)

)
ϕw

(S2)

Furthermore, at each time point t, the prevalence is given by:

P (t) =
Y (t) + L(t)

N(t)
= 1− S(t)

N(t)
, (S3)

and its differentiation with respect to time yields:

Ṗ (t) =
(
1− P (t)

) [
abV (t)−

(
r

(
1− N(t)

K

)
+ τ

)
Y (t)

N(t)

]
. (S4)

S1.2 Evolution

We refer in the main text to the different frequencies associated with the mutant strain as

follows:
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• p(t) = Lm(t)/L(t), the frequency of L cells infected by the mutant strain;

• q(t) = Vm(t)/V (t), the frequency of the mutant strain in the free virus stage (V );

• f(t) = Ym(t)/Y (t), the frequency of Y cells infected by the mutant strain;

• g(t) =
Ym(t) + Lm(t)

Y (t) + L(t)
, the frequency of cells infected (either Y or L) by the mutant strain.

Note that we also have:

g(t) = f(t)

(
Y (t)

Y (t) + L(t)

)
+ p(t)

(
L(t)

Y (t) + L(t)

)
. (S5)

Using our model (S1), we can then easily calculate the temporal dynamics of each of these

frequencies, which yields:





ṗ(t) =

((
q(t)− p(t)

)
ϕw + q(t)

(
1− p(t)

)
∆ϕ

)
abV (t)S(t)

L(t)
− p(t)

(
1− p(t)

)
∆α

q̇(t) =
(
f(t)− q(t)

)Y (t)

V (t)
τB

ḟ(t) =

((
q(t)− f(t)

)(
1− ϕw

)
− q(t)

(
1− f(t)

)
∆ϕ

)
abV (t)S(t)

Y (t)
+

((
p(t)− f(t)

)
αw + p(t)

(
1− f(t)

)
∆α

)
L(t)

Y (t)

ġ(t) =
(
p(t)− g(t)

)(
r

(
1− N(t)

K

)
− δ

)
L(t)

Y (t) + L(t)
+
(
q(t)− g(t)

) abV (t)S(t)

Y (t) + L(t)
−

(
f(t)− g(t)

)(
δ + τ

) Y (t)

Y (t) + L(t)

(S6)

with ∆α = αm − αw and ∆ϕ = ϕm − ϕw.

Taken together, equations (S1)-(S6) yield the coupled evolutionary-epidemiological dynamics

of this phage-bacteria system. Focusing instead on logit-frequencies, that is the log odds

ln(frequency of the variant / frequency of the wildtype):
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



d logit(p(t))

dt
=

(
q(t)− p(t)

p(t)
(
1− p(t)

)ϕw +
q(t)

p(t)
∆ϕ

)
abV (t)S(t)

L(t)
−∆α

d logit(q(t))

dt
=

f(t)− q(t)

q(t)
(
1− q(t)

) Y (t)

V (t)
τB

d logit(f(t))

dt
=

(
q(t)− f(t)

f(t)
(
1− f(t)

)(1− ϕw
)
− q(t)

f(t)
∆ϕ

)
abV (t)S(t)

Y (t)
+

(
p(t)− f(t)

f(t)
(
1− f(t)

)αw +
p(t)

f(t)
∆α

)
L(t)

Y (t)

d logit (g(t))

dt
=

p(t)− g(t)

g(t)
(
1− g(t)

)
(
r

(
1− N(t)

K

)
− δ

)
L(t)

Y (t) + L(t)
+

q(t)− g(t)

g(t)
(
1− g(t)

) abV (t)S(t)

Y (t) + L(t)
−

f(t)− g(t)

g(t)
(
1− g(t)

)
(
δ + τ

) Y (t)

Y (t) + L(t)

(S7)

S2 Theoretical analyses

S2.1 Equilibrium states & basic reproduction number

In the absence of the virus, (S1) converges trivially to the following equilibrium state:
(
S(∞), L(∞),

Y (∞), V (∞)
)
=
(
K(1 − δ/r), 0, 0, 0

)
if r > δ,

(
0, 0, 0, 0

)
otherwise. When a single

strain of the virus (with phenotypes α and ϕ) is introduced in the bacterial population (fully

susceptible, with density S0), the fate of this phage-bacteria system depends on the basic

reproduction number R0 of the pathogen – i.e., the expected number of secondary infections

caused by one primary infected bacteria in an otherwise fully susceptible population. Using

the next-generation-matrix method (Diekmann et al., 2010), we decompose the life cycle of

phage λ into transmission (matrix T) and transition (matrix Σ) components:

T =



r
(
1− S0

K

)
0 ϕabS0

0 0 (1− ϕ)abS0

0 0 0


 and Σ =



−(α+ δ) 0 0

α −(τ + δ) 0

0 τB −(aS0 + δ)


 ,

such that :

(
L̇(t) Ẏ (t) V̇ (t)

)⊤
= (T+Σ)

(
L(t) Y (t) V (t)

)⊤

The basic reproduction number R0 is given by the spectral radius of the matrix −TΣ−1, that

is:
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R0 =
A+

√
A2 − 4r

(
1− S0

K

)
(1− ϕ)abS0τB(aS0 + δ)(α+ δ)(τ + δ)

2(aS0 + δ)(α+ δ)(τ + δ)
, (S8)

with A = r
(
1− S0

K

)
(aS0 + δ)(τ + δ) + abS0τB(α+ (1− ϕ)δ). Note that, if S0 = K, equation

(S8) reduces to:

R0 =
abKτB(α+ (1− ϕ)δ)

(aK + δ)(α+ δ)(τ + δ)
,

When R0 < 1, phages goes extinct and the bacterial population converges to the virus-

free equilibrium above. Alternatively, when R0 > 1, an epidemic breaks out and eventually

stabilises to the following endemic equilibrium:





S(∞) = 0

L(∞) =
K
(
r − (δ + α)

)

δ + α+ τ

δ + τ

r

Y (∞) =
K
(
r − (δ + α)

)

δ + α+ τ

α

r

V (∞) =
K
(
r − (δ + α)

)

δ + α+ τ

B α τ

aK
(
r − (δ + α)

)
+ δ r

(S9)

S2.2 Viral dynamics in an emerging epidemic

In the epidemic case, susceptible hosts are initially highly abundant. To simplify, we in-

vestigate the case where the density of susceptible hosts remains constant over time, i.e.,

∀t, S(t) = S0. Starting with a bacterial population at carrying capacity K, we also assume

that the population size remains constant over time, i.e., N(t) = K, leading to the following

simplified epidemiological system:





Ṡ(t) = 0

L̇(t) = ϕ(t)abV (t)S0 −
(
α(t) + δ

)
L(t)

Ẏ (t) =
(
1− ϕ(t)

)
abV (t)S0 + α(t)L(t)−

(
τ + δ

)
Y (t)

V̇ (t) = τY (t)B −
(
aK + δ

)
V (t)

(S10)

To study the selection gradient S of the virulent phage – i.e., the rate at which it grows or

declines in frequency on the logit scale –, we focus on compartment Y . As shown in (S7), the

temporal dynamics of logit
(
f(t)

)
depends on the ratio V (t)/Y (t), whose differentiation with

5



respect to time is given by the quadratic polynomial:

d

dt

(
V (t)

Y (t)

)
= −

(
1− ϕ(t)

)
abS0

(
V (t)

Y (t)

)2

−
(
α(t)

L(t)

Y (t)
+ aK − τ

)
V (t)

Y (t)
+ τB. (S11)

We now use an argument of separation of time scale (Rinaldi & Scheffer, 2000; Verhulst,

2007) under the assumption of weak selection: epidemiological dynamics, such as L(t), Y (t)

and V (t), are treated as fast variables while evolutionary dynamics – i.e., strain frequencies

– are treated as slow variables because phenotypic differences between the wildtype and the

virulent strain are assumed to be small. Setting the right-hand side of (S11) to 0, we obtain

the positive solution:

V (t)

Y (t)
≈
τ − α(t)L(t)Y (t) − aK +

√(
τ − α(t)L(t)Y (t) − aK

)2
+ 4(1− ϕ(t)

)
abS0τB

2(1− ϕ(t)
)
abS0

.

In the early state of the epidemic, the system is mainly governed by the lytic pathway,

so we assume that L(t)/Y (t) ≈ 0 (Fig. S3-B). Furthermore, under the assumption of weak

selection, we substitute ϕ(t) by ϕw. We denote Z this approximation of the ratio V (t)/Y (t):

Z =
τ − aK +

√
(τ − aK)2 + 4(1− ϕw)abS0τB

2(1− ϕw)abS0
. (S12)

The temporal dynamics of logit
(
f(t)

)
becomes:

d logit(f(t))

dt
≈
τ − aK +

√
(τ − aK)2 + 4(1− ϕw

)
abS0τB

2(1− ϕw
)

︸ ︷︷ ︸
abS0Z

(
q(t)− f(t)

f(t)
(
1− f(t)

)(1− ϕw
)
− q(t)

f(t)
∆ϕ

)
.

(S13)

We now look at the term in brackets. Posing D(t) = q(t)−f(t)

f(t)
(
1−f(t)

) , we obtain q(t)
f(t) = 1+D(t)

(
1−

f(t)
)
and:

dD(t)

dt
=

d logit(q(t))

dt

q(t)
(
1− q(t)

)

f(t)
(
1− f(t)

) − d logit(f(t))

dt

(
1 +D(t)

(
1− 2f(t)

))
(S14)

We set the right-hand side of (S14) to 0 (quasi-equilibrium) and only keep the solution for

which the term O(0) is equal to 0. Again, under the assumption of weak selection, phenotypic

differences are small and O(ε). A Taylor expansion for the selected solution about the neutral

case - i.e., when both strains share the same phenotype – to first order then yields:
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D(t) ≈
abS0

(
V (t)
Y (t)

)2
∆ϕ

τB + abS0

(
V (t)
Y (t)

)2 (
1− ϕw

) +O(ε2). (S15)

Plugging approximations (S12) and (S15) into (S13), we obtain after some rearrangements:

d logit(f(t))

dt
≈ −∆ϕ abS0Z

(
τB + abS0Z

2
(
1− f(t)

)
∆ϕ

τB + abS0Z2
(
1− ϕw

)
)
. (S16)

We use (S16) as an approximation of the selection gradient of the virulent phage S . As f(t)

is here always between 0.5 and 1 at the beginning of the epidemic:

−∆ϕ abS0Z

(
τB + abS0Z

2∆ϕ/2

τB + abS0Z2
(
1− ϕw

)
)

≤ d logit(f(t))

dt︸ ︷︷ ︸
S

≤ −∆ϕ
abS0ZτB

τB + abS0Z2
(
1− ϕw

) ,

(S17)

which may provide good approximations to predict the trajectory of the logit-frequency of

the virulent phage in both compartment Y and V , while S(t) does not vary over time (Fig.

S3-C).

Or, using once again an assumption of weak selection, a Taylor expansion of (S16) to first

order in ∆ϕ leads to:

d logit(f(t))

dt︸ ︷︷ ︸
S

≈ −∆ϕ
abS0ZτB

τB + abS0Z2
(
1− ϕw

) +O(ε2), (S18)

which is the approximation we use in the main text when we propose that, at the beginning

of the epidemic:

S ∝ −∆ϕ. (S19)

Therefore, the virulent phage (∆ϕ < 0) is selected for at the beginning of the epidemic.

S2.3 Viral dynamics at the end of the epidemic

At the end of the epidemic, the prevalence is high and the pool of susceptible host is depleted,

so that P (t) ≈ 1 and S(t) ≈ 0; the system (S1) reduces then to:
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



Ṡ(t) = 0

L̇(t) = rL(t)

(
1− N(t)

K

)
−
(
α(t) + δ

)
L(t)

Ẏ (t) = α(t)L(t)−
(
τ + δ

)
Y (t)

V̇ (t) = τY (t)B −
(
aN(t) + δ

)
V (t)

(S20)

This phage-bacteria system is now driven by the lysogenic pathway so that the density of Y

cells becomes negligible compared to the density of L cells. Indeed, using (S9):

lim
S(t) → 0

Y (t)

L(t)
=

αw

δ + τ
≈ 0,

as αw ≪ τ (time elapsed between phage integration and reactivation being much longer than

lysis). According to (S5), this also means that the frequency of the virulent strain among

infected hosts is now almost entirely driven by its frequency in lysogenic cells solely, that is

g(t) ≈ p(t).

Rewriting the system (S20) in matrix form for the strain k (k ∈ {w, m}):


L̇k(t)

Ẏk(t)

V̇k(t)


 =



r
(
1− N(t)

K

)
− (δ + αk) 0 0

αk −(τ + δ) 0

0 τB −(aN(t) + δ)




︸ ︷︷ ︸
Rk



Lk(t)

Yk(t)

Vk(t)


 , (S21)

the dominant eigenvalue of the Jacobian Rk is equals to r
(
1− N(t)

K

)
− (δ + αk). In these

conditions, one would expect the selection gradient S of the mutant strain to be given in

each compartment by the difference in eigenvalues which yields:

S =

(
r

(
1− N(t)

K

)
− (δ + αm)

)
−
(
r

(
1− N(t)

K

)
− (δ + αw)

)

= −αm + αw = −∆α. (S22)

As a result, the virulent phage is counter-selected in the long-term (∆α > 0 ⇔ S < 0)

and, in each compartment, decreases in frequency at a rate of S on the logit scale (Fig.

S1-B). We can once again predict the future trajectory of the logit-frequency of the virulent

that linearly declines with negative slope S = −∆α. Note that recovering this result for

compartment L is straightforward as one just needs to set S(t) to 0 in d logit(p(t))/dt in (S7).
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S2.4 Differentiation across compartments

We define the differentiation of the virulent strain between free phages (V ) and prophages

(L) as:

QV L(t) =
q(t)

1− q(t)

1− p(t)

p(t)
, (S23)

such that: ln
(
QV L(t)

)
= logit(q(t))−logit(p(t)). Note that we also have QV L(t) = Vm(t)

Vw(t)
Lw(t)
Lm(t)

and that 1 corresponds to no differentiation. Using the eigenvectors associated with the domi-

nant eigenvalues of the Jacobian matrices Rw and Rm (cf. equation (S21)), the differentiation

QY L(t) converges towards:

QV L =
αm

(
r(1−N(t)/K)− αw + τ

)

αw

(
r(1−N(t)/K)− αm + τ

) ≈ αm

αw
= 1 +

∆α

αw
, (S24)

as αm and αw are very small values.

Likewise, the differentiation between Y and L cells:

QY L(t) =
f(t)

1− f(t)

1− p(t)

p(t)
, (S25)

converges towards:

QY L =
αm

(
r(1−N(t)/K)− αw + aN(t)

)(
r(1−N(t)/K)− αw + τ

)

αw

(
r(1−N(t)/K)− αm + aN(t)

)(
r(1−N(t)/K)− αm + τ

) ≈ αm

αw
= 1 +

∆α

αw

(S26)

and the differentiation between free phages (V ) and Y cells:

QV Y (t) =
q(t)

1− q(t)

1− f(t)

f(t)
(S27)

converges towards:

QV Y =
r(1−N(t)/K) + aN(t)− αw

r(1−N(t)/K) + aN(t)− αm
≈ 1. (S28)

When the system stabilizes (endemic or late stage of the epidemic case), the virulent strain is

therefore more frequent among free viruses and Y cells than among L cells (prophages) but

we also expect almost no differentiation between free viruses and Y cells (Fig. S4).

9



S3 Statistical inference of the rates of prophage reactivation

From the previous analysis of the model, we show that when the system reaches high preva-

lence the selection gradient S of the variant is simply given by: S = αw − αm = −∆α

(S22); and the differentiation QV L of the variant between free phages and prophages by:

QV L = αm/αw = 1 +∆α/αw (S24).

Three quantities are tracked over time in the experiment: (i) the prevalence P (t), (ii) the

frequency of hosts infected by the virulent phage g(t) and (iii) the frequency of the virulent

phage in the free virus stage q(t). We only keep data from the time point the system has

reached high prevalence (≥ 95%). We recall that, in these conditions, g(t) is almost entirely

driven by the frequency of L cells infected by the virulent phage, that is g(t) ≈ p(t) (cf.

§S2.3).

S3.1 Frequentist approach

We fit a linear mixed-effects model on the logit-frequency infected by the virulent phage

logit (g(t)) to estimate the slope S . For treatment i (epidemic vs. endemic), in chemostat j

and at time point t, we have (t, i and j are now noted as indexes for clarity):

logit (g)i,j,t︸ ︷︷ ︸
Response variable

= intercept+ S × t+ βi + χj + εi,j,t,

with:

• intercept, the common fixed effect (reference);

• βi, the fixed effect of treatment i on the intercept of the model;

• χj
i.i.d∼ N

(
0, γ2

)
, the random effect (with variance γ2) of the jth chemostat on the

intercept of the model;

• εi,j,t
i.i.d∼ N

(
0, σ2g

)
, the residual error (with variance σ2g).

We fit this mixed-effects model using the function ’lmer ’ from the R package ’lme4 ’. Along-

side, we also propose a version where the rates of prophage reactivation αw and αm (and

therefore the slope S ) are allowed to vary across chemostats; this slightly changes the previ-

ous linear model to:

logit (g)i,j,t = intercept+ (S + κj)× t+ βi + χj + εi,j,t,

with κj the fixed effect of the jth chemostat on the slope of the model.
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In parallel, we estimate QV L, starting from the computation of ln
(
QV L(t)

)
= logit (q(t))−

logit (p(t)), in which we substitute logit (p(t)) by logit (g(t)). Using the same notations for

the indexes we have:

logit (q)i,j,t − logit (g)i,j,t︸ ︷︷ ︸
ln(QV L)i,j,t, response variable

= ln
(
QV L

)
+ εi,j,t,

where ε
i.i.d∼ N

(
0, σ2Q

)
is the residual error (with variance σ2Q). We thus estimate QV L by

computing, all chemostats combined, the exponential of the arithmetic mean of ln
(
QV L(t)

)

– this is completely equivalent to computing the geometric mean of QV L(t).

Alternatively, if we want to allow αw and αm (and thereforeQV L) to vary across chemostats:

logit (q)i,j,t − logit (g)i,j,t = ln
(
QV L

)
j
+ εi,j,t,

and we just need to compute the mean for each chemostat.

Finally, we obtain point estimates of both rates of prophage reactivation αw and αm

combining equations (S22) and (S24):





αw =
S

1−QV L

αm =
S ×QV L

1−QV L

(S29)

in which we use the estimated values of S and QV L. From our experimental data, all

chemostats combined, we get (expressed in h−1): α̂w = 2.58× 10−3 and α̂m = 1.19× 10−2.

S3.2 Bayesian approach

Besides, we also use a Bayesian approach to estimate parameters αw and αm along with their

95% credible intervals. For treatment i (epidemic vs. endemic), in chemostat j and at time

point t, we consider the following likelihoods for the response variables (t, i and j are now

noted as indexes for clarity):





logit
(
g
)
i,j,t

∼ N
(
βi + χj +

S︷ ︸︸ ︷
(αw − αm)×t, σ2g

)

(
logit (q)i,j,t − logit (g)i,j,t

)
∼ N

(
ln(αm)− ln(αw)︸ ︷︷ ︸

ln(QV L)

, σ2Q

)

with, as before:
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• βi, the fixed effect of treatment i on the intercept of the model;

• χj ∼ N
(
0, γ2

)
, the random effect (with variance γ2) of the jth chemostat on the

intercept of the model;

• σ2g and σ2Q, the variance parameters of the response variables.

We choose the following prior distributions:

αw ∼ U ([0, 0.1])

αm ∼ U ([0, 0.1])

βepidemic ∼ U ([0.25, 3])

βendemic ∼ U ([−0.25, 0.25])

γ ∼ U ([0, 3])

σQ ∼ U ([0, 5])

σg ∼ U ([0, 1])

Again, if we allow parameters αw and αm to vary across chemostats:




logit

(
g
)
i,j,t

∼ N
(
βi + χj + (αw,j − αm,j)× t, σ2g

)

(
logit (q)i,j,t − logit (g)i,j,t

)
∼ N

(
ln(αm,j)− ln(αw,j), σ

2
Q

)

where the prior of each αw,j and αm,j is the same as for αw and αm above.

We independently run 4 Monte-Carlo Markov chains using JAGS (Plummer et al., 2003)

version 4.3.0 and function ’jags’ from the R package ’R2jags’. Each chain is 20,000 iterations

long (length of the burn-in period 8,000) with thinning rate 50. As initial conditions: αw

and αm are drawn uniformly between 0 and 3× 10−2 such that αw < αm; βepidemic is drawn

uniformly between 0.25 and 3, and βendemic between -0.25 and 0.25; χj is drawn from a

standard Normal distribution; and variance parameters σQ, σg and γ are drawn uniformly

between 0 and 1. In the end, we assess convergence of posterior distributions, especially we

check that Gelman-Rubin statistics are below 1.1 and that effective sample sizes are above

100.

From our experimental data, all chemostats combined, we get (expressed in h−1): αw =

2.65 × 10−3 (mean, 95% credible interval [2.03 × 10−3, 3.32 × 10−3]) and αm = 1.21 × 10−2

(mean, 95% credible interval [9.48× 10−3, 1.47× 10−2]) (Fig. S14-A); see Fig. S14-B for

posterior distributions by chemostat.
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Abstract

Pathogen adaptation erodes our ability to mitigate epidemics and represents a major

threat for public health. Upon the acquisition of beneficial mutations, novel variants

emerge and sometimes invade the population. The strength of selection of an emerging

variant is classically quantified using its frequency changes. Such approach is particularly

well suited assuming an homogeneous-mixing population. Yet, spatially separated host

populations are most often interconnected through movements (“migration”) of suscep-

tible and infected individuals. Migration is a key force that may lead to new pathogen

introductions, global pathogen persistence, or affect the spread of epidemics. In addition

to its effects on the epidemiology, migration may also interfere with the evolution of a

polymorphic pathogen population. Yet, little is known about how migration shapes the

evolutionary dynamics of the pathogen. In this study, we track the transient dynamics

of the frequency and differentiation of a variant in competition with the wildtype strain

in a two-patch metapopulation in which hosts commute. We consider a scenario with

homogeneous selection in both populations, and a scenario with heterogeneous selection.

Overall, we emphasize the usefulness of mechanistic dynamical models to disentangle the

effect of migration and selection; migration can blur the quantification of the strength

of selection and lead to erroneous estimations of the selective advantages of variants.

1 Introduction

Spatial heterogeneity can play a significant role in epidemiological dynamics. In particular, host

movements between different areas may allow infectious diseases to persist globally by countering

local extinctions (Lloyd & May, 1996; Post et al., 1983). On the other hand, outbreaks are expected

to be less explosive within fragmented populations because pathogens have access to fewer susceptible

hosts than within spatially uniform populations (Post et al., 1983). Spatial transmission of diseases

spread by direct contagion is bound to host movements. In open environments, the force of infection

is driven by local transmissions – as within closed environments – but also by transmissions between
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individuals from distinct areas. In public health, human mobility can be a particularly important

feature for the spread of infectious diseases and a considerable number of epidemiological studies has

thus often taken such spatial interactions into account. In the context of a highly interconnected and

interdependent world (Hufnagel et al., 2004), human infectious diseases spread faster and at larger

scales, as exemplified by the recent COVID-19 (Coronavirus Disease 2019) pandemic. Nowadays,

human traveling behavior can be accurately quantified, for instance using travel history data (Butera

et al., 2021; Lemey et al., 2020), air-traffic data (Brockmann & Helbing, 2013; Hufnagel et al., 2004)

or cell-phone mobility data (Kraemer et al., 2021; Le Treut et al., 2022).

From a modelling perspective, epidemic compartment models popularized by (Kermack & McK-

endrick, 1927) such as the classical SIR model typically assume an homogeneous-mixing population;

each individual has the same probability to meet any other individual, so that there is no spatial

effect on the spread of the disease (Lipshtat et al., 2021). Using a system of partial differential equa-

tions, classical compartmental models can be extended by adding a spatial diffusion term to model

the dynamics of the continuous spatial distributions of hosts (Murray, 2003; Postnikov & Sokolov,

2007), with solutions in form of traveling waves. Diffusion models typically hold for spatially limited

dispersal, that is with rather short distances compared to geographical distances (in contrast with

air transportation for instance) (Hufnagel et al., 2004; Le Treut et al., 2022). A very simple way to

take into account the arrival of new infected hosts would be to add an immigration term of infected

hosts in the analysis of the dynamics of a focal population (e.g., (Engbert & Drepper, 1994)). A more

advanced approach would be to consider a metapopulation – i.e., a network of spatially separated

patches interconnected through migration flows –; here, “patch” is a generic name for a group of hosts

which, depending on its definition, can refer to households, cities, regions, countries, etc... (Grenfell

& Harwood, 1997). Spatial heterogeneity is considered at the scale of the metapopulation, while each

component patch is still homogeneous. Such models has been used widely in the context of infectious

diseases (e.g., (Brockmann & Helbing, 2013; Grenfell & Harwood, 1997; Hethcote, 1978; Lajmanovich

& Yorke, 1976; Post et al., 1983; Yuksel et al., 2021)), and very recently for the COVID-19 pan-

demic (e.g., (Le Treut et al., 2022; Roques et al., 2020)). In many cases, increasing distances between

patches are assumed to lead to decreasing contact probabilities – e.g., due to travel time and cost

–, so that transmission is often weighted by some functions of the distances (e.g., power law decay

or exponential distance weighting (Roques et al., 2020; Xia et al., 2004)). Besides, host movements

between large populations are typically much more frequent than between small populations. Host

movements depend therefore on both distances between populations and population sizes (Erlander

& Stewart, 1990; Xia et al., 2004). Using gravity models – from transportation theory, and inspired

from Newton’s law of universal gravitation (Erlander & Stewart, 1990) –, transmissions between two

populations are expected to be positively correlated with population sizes and negatively correlated

with the distance separating the two populations (Xia et al., 2004).

The effects of dispersal/migration has also been extensively studied in evolutionary studies, and

especially in population genetics, but not much in evolutionary epidemiology. The effects of spatial

heterogeneity and migration has for instance been investigated for the evolution of host life-history
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traits (Débarre et al., 2012), the emergence of drug resistance (Débarre et al., 2007), the emergence

of specialist or generalist strains (Débarre et al., 2013; Ronce & Kirkpatrick, 2001), the evolution of

pathogen virulence (Berngruber et al., 2015; Boots & Sasaki, 1999) or the phenotypic evolution of

pathogen with vaccination coverage (Walter et al., 2024; Zurita-Gutiérrez & Lion, 2015). However, in

most cases, the interest lies in the long-term outcome of the competition between different pathogenic

strains. Yet, migration can also interfere with the short-term rise of variants and affect evolutionary

dynamics. For example, the differential growth of the Delta variant of SARS-CoV-2 (Severe Acute

Respiratory Syndrome Coronavirus 2) in India and in different regions of England (Volz, 2023) may

challenge the hypothesis that the dynamics of the variant frequency is solely driven by differences in

fitness, and such discrepancy might be explained by other processes such as migration. Classically,

the strength of selection of emerging variants is quantified by estimating the slope of the changes of

the variant frequency on the logit scale, that is the log odds ln(frequency of the variant/frequency of

the wildtype) (Boyle et al., 2022; Otto et al., 2021; Volz, 2023). However, movements of susceptible

and infected hosts can also affect the evolutionary dynamics of pathogens.

In this study, we model a polymorphic pathogen population – competition between the wildtype

and a variant – in an Susceptible-Infected-Recovered-Susceptible (SIRS) model. We first recall some

epidemiological and evolutionary dynamics within a closed host population. We then focus on a

two-patch host metapopulation. Using an evolutionary epidemiology approach, we track the short

(transient) and long-term outcome of the competition and, in particular, the dynamics of the variant

frequencies and of the variant differentiation between the two host populations.

2 Models

2.1 An SIRS model within a closed population

We begin with a simple compartmental SIRS model in a closed population of constant total density

N . We model the dynamics of a directly and horizontally transmitted infectious disease. Hosts

are either susceptible (S), infected and infectious (I) or recovered and immune (R). We denote β,

the per capita transmission rate, which captures both the host contact rate and the probability of

transmission per contact with an infected host; transmission is assumed to be direct, horizontal and

frequency-dependant – i.e., the force of infection is given by βI(t)/N , where I(t) is the density of

infected hosts at time t. Then, infected hosts recover with a per capita recovery rate (or infection

clearance) γ and acquire a full immunity that wane at a per capita rate ζ. We consider that two strains

of a pathogen are co-circulating in the host population: the wildtype (w) and the mutant strain (m),

or variant. Therefore, an individual may either be infected by the wildtype (Iw) or by the variant (Im)

(no coinfections). The variant may differ phenotypically from the wildtype in terms of transmission

rate (βm = βw + ∆β) and/or of recovery rate (γm = γw + ∆γ). We describe these epidemiological

dynamics with the following system of ordinary differential equations (ODEs), where the dots refer to

differentiation with respect to time:
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



Ṡ(t) = −β(t)I(t)
N

S(t) + ζR(t)

İ(t) = β(t)
I(t)

N
S(t)− γ(t)I(t)

Ṙ(t) = γ(t)I(t)− ζR(t)

(1)

where the overlines refer to the mean values of phenotypic traits:

{
β(t) =

(
1− q(t)

)
βw + q(t)βm

γ(t) =
(
1− q(t)

)
γw + q(t)γm

(2)

with q(t) = Im(t)/I(t), the frequency of the variant.

2.2 An SIRS model within a two-patch metapopulation

Building upon the previous SIRS model, we now assume that two spatially separated host populations

A and B are interconnected by migration (two-patch metapopulation, see Fig. 1). Throughout, we

add a superscript A or B to distinguish the two populations. The probability that a host from popu-

lation A (resp. B) visit population B (resp. A) is denoted by ωA (resp. ωB). Visits are assumed to be

only temporary and “migrants” to return shortly to their home population, as commuters (Lipshtat

et al., 2021). Strictly speaking, we thus model the migration of the disease rather than the migration

of hosts (Post et al., 1983). Due to differences in local conditions, we assume that phenotypic traits

β and γ can vary between population A and B, so that the phenotype of the variant in population A

(resp. B) is given by βAm = βAw+∆βA and γAm = γAw+∆γA (resp. βBm = βBw+∆βB and γBm = γBw+∆γB).

We then refer to these differences between populations as heterogeneous selection.

The force of infection – i.e., the per capita infection rate – becomes the sum of the contributions of

four types of intra or inter-community interactions (Le Treut et al., 2022). The intra-community con-

tributions correspond to the transmissions between a susceptible and an infected host that belongs to

the same population, which can occur either (i) in the local population or (ii) in the visited population

(visitor-to-visitor infection). On the contrary, the inter-community contributions correspond to the

transmissions between a susceptible and an infected host that do not belong to the same population,

which can occur (i) when a susceptible visitor gets infected by a native or (ii) when a susceptible

native gets infected by a visitor. Epidemiological dynamics for population A are now given by the

following system of ODEs:
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



ṠA(t) = −
[ (

1− ωA
)
λA(t) + ωAλB(t)

]
SA(t) + ζRA(t)

İA(t) =
[ (

1− ωA
)
λA(t) + ωAλB(t)

]
SA(t)−

∑

k∈{w,m}
γAk I

A
k (t)

ṘA(t) =
∑

k∈{w,m}
γAk I

A
k (t)− ζRA(t)

ṠB(t) = −
[ (

1− ωB
)
λB(t) + ωBλA(t)

]
SB(t) + ζRB(t)

İB(t) =
[ (

1− ωB
)
λB(t) + ωBλA(t)

]
SB(t)−

∑

k∈{w,m}
γBk I

B
k (t)

ṘB(t) =
∑

k∈{w,m}
γBk I

B
k (t)− ζRB(t)

(3)

with λA(t) and λB(t), the forces of infection in population A and population B, respectively (Fig.

1). The force of infection in population A λA(t) is given by:

λA(t) =
∑

k∈{w,m}
βAk

(
1− ωA

)
IAk (t) + ωBIBk (t)

(1− ωA)NA + ωBNB
. (4)

Substituting A by B and vice-versa gives the expression for the force of infection in population B

λB(t). We now assume that migration probabilities ωA and ωB are small, of order ε ≪ 1 (O (ε)).

Treating ωA as εωA and ωB as εωB to emphasize that migration probabilities are small, a Taylor

expansion about ε = 0 yields:

λA(t) =
∑

k∈{w,m}
βAk

(
1− ωB NB

NA

)
IAk (t) + ωBIBk (t)

NA
+O

(
ε2
)
. (5)

Note that the term O (ε) depends on ωB but not on ωA. Under the assumption that migration

probabilities are small, a Taylor expansion of the ODE system (3) about ε = 0 yields the following

epidemiological dynamics for infected hosts from population A:

İA(t) =

Local intra-community infections︷ ︸︸ ︷[(
1− ωA − ωBN

B

NA

)∑

k

βAk
IAk (t)

NA
+

Inter-community infections︷ ︸︸ ︷

ωB
∑

k

βAk
IBk (t)

NA
+ ωA

∑

k

βBk
IBk (t)

NB

]
SA(t)

−
∑

k

γAk I
A
k (t) +O

(
ε2
)
. (6)

Note that the visitor-to-visitor contribution to the force of infection is included in the term O
(
ε2
)
.

In the following, q(t) = Im(t)/I(t) refers to the overall frequency of the variant (i.e., at the scale
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of the metapopulation) at the current time t, and qA(t) = IAm(t)/IA(t) and qB(t) = IBm(t)/IB(t), the

frequency of the variant in population A and B, respectively. Besides, we define the differentiation of

the variant Q between population A and B by:

Q(t) =
qA(t)

1− qA(t)

1− qB(t)

qB(t)
, (7)

such that:

ln (Q(t)) = logit
(
qA(t)

)
− logit

(
qB(t)

)
.

When there is no differentiation between the two populations, Q(t) = 1 and ln (Q(t)) = 0.

3 Results

3.1 Within a closed host population

Using (1) and (2), we derive the temporal dynamics of the frequency of the variant q(t) within a closed

population:

q̇(t) = q(t)
(
1− q(t)

)
︸ ︷︷ ︸
genetic variance

(
∆β

S(t)

N
−∆γ

)

︸ ︷︷ ︸
S(t), selection gradient

. (8)

More conveniently, we then focus on the logit-frequency of the variant – i.e., the log odds ln(frequency

of the variant/frequency of the wildtype) –:

d logit (q(t))

dt
= S(t). (9)

The direction and speed of selection is governed by the sign and magnitude of the selection gradient

S(t), respectively, which depends on the phenotypic differences ∆β and ∆γ and, when ∆β ̸= 0, on

the availability of susceptible hosts (Day & Gandon, 2006, 2007; Day et al., 2020). When one strain

(let say with phenotypes βk and γk, such that βk > γk) outcompetes the other, the system converges

in the long term towards the following epidemiological attractor (endemic equilibrium of strain k):





S(∞) =
γk
βk
N

I(∞) =
ζ (βk − γk)

βk (γk + ζ)
N

R(∞) =
γk (βk − γk)

βk (γk + ζ)
N

(10)
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3.2 Within a two-patch host metapopulation

3.2.1 Homogeneous selection

We first consider the scenario where the phenotypic traits of each strain are identical in both popu-

lations, which yields ∆βA = ∆βB = ∆β and ∆γA = ∆γB = ∆γ (we relax this assumption later to

account for heterogeneous selection). Using equation (6) (two-patch metapopulation) with homoge-

neous selection, the temporal dynamics of the logit-frequency of the variant in population A is given

by:

d logit
(
qA(t)

)

dt
= ∆(t) + Ω(t) +O

(
ε2
)
, (11)

with:





∆(t) = ∆β

[
1− ωA − NB

NAω
B

NA
+

(
ωB

NA
+
ωA

NB

)
qB(t)

qA(t)

IB(t)

IA(t)

]
SA(t)−∆γ

Ω(t) = − qA(t)− qB(t)

qA(t) (1− qA(t))
βw

(
ωB

NA
+
ωA

NB

)
IB(t)

IA(t)
SA(t)

∆(t) represents the effect of selection and Ω(t), the effect of pure migration – i.e., independently of any

phenotypic difference. The slope of the variant logit-frequency depends on the phenotypic differences

between the two strains and the availability of susceptible hosts – as within closed populations –,

but also on the migration probabilities and on demographic ratios between the two populations. The

direction of Ω(t) is opposite to the sign of qA(t) − qB(t), that is migration tends to homogenize the

frequency of the variant between the two populations. When there is no migration (ωA = ωB = 0),

equation (11) reduces to equation (9).

To simplify further, let us assume that only hosts from population A may visit population B

(ωA = ω and ωB = 0) and the variant has reached fixation in population B (qB = 1), we obtain:

d logit
(
qA(t)

)

dt
= ∆β

[
1− ω

NA
+

ω

NB

IB(t)

qA(t)IA(t)

]
SA(t)−∆γA

︸ ︷︷ ︸
∆(t)

+
ω

qA(t)

βw
NB

IB(t)

IA(t)
SA(t)

︸ ︷︷ ︸
Ω(t)

+ O
(
ε2
)
.

As we assume that migration is low (ω ≪ 1), one might thus expect that Ω(t) would be small or negli-

gible compared to ∆(t). However, when the local frequency of the variant is even smaller (qA(t) ≪ ω),

Ω(t) can be very large. The effect of migration can thus amplify significantly the effect of selection at

the beginning of the sweep of the variant; migration effects then diminishes as the variant increases

in frequency (Fig. 2).

Instead of focusing on the variant frequency in one focal population, one can also focus on the

whole metapopulation. The temporal dynamics of the overall logit-frequency of the variant (i.e., at
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the scale of the metapopulation) is given by:

d logit (q(t))

dt
=∆β

[[
1

NA

((
1− ωA − ωB N

NA

)
qA(t)

q(t)

IA(t)

I(t)
+ ωB

)
+
ωA

NB

qB(t)

q(t)

IB(t)

I(t)

]
SA(t) +

[
1

NB

((
1− ωB − ωA N

NB

)
qB(t)

q(t)

IB(t)

I(t)
+ ωA

)
+
ωB

NA

qA(t)

q(t)

IA(t)

I(t)

]
SB(t)

]
−∆γ

− qB(t)− qA(t)

q(t) (1− q(t))
βw

[((
1− ωB − ωA N

NB

)
1

NB
− ωB 1

NA

)
SB(t)−

((
1− ωA − ωB N

NA

)
1

NA
− ωA 1

NB

)
SA(t)

]
IA(t)

I(t)

IB(t)

I(t)
+ O

(
ε2
)
.

(12)

We then focus on the dynamics of the differentiation Q of the variant between the two populations.

Using equation (11) and its counterpart for population B, we obtain the following expression for the

temporal dynamics of ln (Q(t)):

d ln (Q(t))

dt
=∆β

[(
1

NA

(
1− ωA − ωBN

B

NA

)
+

(
ωB

NA
+
ωA

NB

)
qB(t)

qA(t)

IB(t)

IA(t)

)
SA(t)−

(
1

NB

(
1− ωB − ωAN

A

NB

)
+

(
ωA

NB
+
ωB

NA

)
qA(t)

qB(t)

IA(t)

IB(t)

)
SB(t)

]

− (Q(t)− 1)βw

(
ωB

NA
+
ωA

NB

)(
qB(t)

qA(t)

IB(t)

IA(t)
SA(t) +

1− qA(t)

1− qB(t)

IA(t)

IB(t)
SB(t)

)
+O

(
ε2
)
.

(13)

The first two lines of (13) represents the effect of selection driven by the phenotypic differences be-

tween the two strains; the third line represents the effect of pure migration, independently of the

phenotypic differences, whose direction depends on the sign of Q(t)−1 which tends to homogenize the

two populations. In the long term, Q(t) is thus expected to converge towards 1, that is qA(t) = qB(t).

We run some simulations of the SIRS model (3) with homogeneous selection. Starting with pop-

ulation A at the endemic equilibrium of the wildtype and population B at the endemic equilibrium

of a variant that is selected for, migration accelerates the rise of the variant in population A as well

as the homogenization between the two populations, especially at the beginning of the sweep (Fig.

3-A) – the slope of the logit-frequency then converges towards that without migration. In contrast

with closed populations, the variant can still increase in frequency in population A in the neutral case

(∆(t) = 0), driven solely by migration (Ω(t) > 0) because the variant is more frequent in population

B (qA(t) < qB(t)) (Fig. 3-B.1). This scenario emphasizes that the slope of a variant logit-frequency

can be completely misleading about the potential adaptive advantage of the variant in real-life situ-

ations. The rise of the variant is also accelerated when the total density of the population in which

the variant is more frequent is larger (NB > NA, Fig. 3-C.1); on the other hand, the dynamics of

the differentiation of the variant is always faster when an asymmetry between the total population

densities exists (Fig. 3-C.2).
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We also consider a scenario where the pathogen is introduced in equal density and frequency in

both populations, so that initially there is no differentiation between population A and B (Q(0) = 1).

Such scenario could for example occur during the introduction of a small quantity of the pathogen. In-

terestingly, an asymmetry between the total population densities (NA ̸= NB) can result in a transient

differentiation between population A and B (Fig. 4), even though selection is homogeneous. As the

pathogen is introduced with identical density in both populations, susceptible hosts do not represent

the same fraction of the population if total population densities differ. This differential availability

of susceptible hosts leads to differential selection that transiently disrupts the differentiation of the

variant between the two populations. In the long term, however, there is no longer any differentiation.

3.2.2 Heterogeneous selection

We recall that the temporal dynamics of the logit-frequency of the variant in population A is given

by:
d logit

(
qA(t)

)

dt
= ∆(t) + Ω(t) +O

(
ε2
)
.

with ∆(t), the effect of selection, and Ω(t), the effect of pure migration. When the phenotypic

differences between the variant and the wildtype differ in the two populations, we obtain:





∆(t) =

[
∆βA

NA

(
1− ωA − NB

NA
ωB

)
+

(
∆βA

ωB

NA
+∆βB

ωA

NB

)
qB(t)

qA(t)

IB(t)

IA(t)

]
SA(t)−∆γA

Ω(t) = − qA(t)− qB(t)

qA(t) (1− qA(t))

(
βAw

ωB

NA
+ βBw

ωA

NB

)
IB(t)

IA(t)
SA(t)

(14)

Likewise, the temporal dynamics of the overall logit-frequency of the variant is given by:

d logit (q(t))

dt
=

[
∆βA

NA

((
1− ωA − ωB N

NA

)
qA(t)

q(t)

IA(t)

I(t)
+ ωB

)
+∆βB

ωA

NB

qB(t)

q(t)

IB(t)

I(t)

]
SA(t) +

[
∆βB

NB

((
1− ωB − ωA N

NB

)
qB(t)

q(t)

IB(t)

I(t)
+ ωA

)
+∆βA

ωB

NA

qA(t)

q(t)

IA(t)

I(t)

]
SB(t) −

(
qA(t)

q(t)

IA(t)

I(t)
∆γA +

qB(t)

q(t)

IB(t)

I(t)
∆γB

)

− qA(t)− qB(t)

q(t) (1− q(t))

[((
1− ωB − ωA N

NB

)
βBw
NB

− ωB βAw
NA

)
SB(t)−

((
1− ωA − ωB N

NA

)
βAw
NA

− ωA β
B
w

NB

)
SA(t)−

(
γBw − γAw

)] IA(t)
I(t)

IB(t)

I(t)

+O
(
ε2
)

(15)

The temporal dynamics of ln (Q(t)) is given by:
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d ln (Q(t))

dt
=

(
∆βA

NA

(
1− ωA − ωBN

B

NA

)
+

(
∆βA

ωB

NA
+∆βB

ωA

NB

)
qB(t)

qA(t)

IB(t)

IA(t)

)
SA(t)−

(
∆βB

NB

(
1− ωB − ωAN

A

NB

)
+

(
∆βB

ωA

NB
+∆βA

ωB

NA

)
qA(t)

qB(t)

IA(t)

IB(t)

)
SB(t)

−
(
∆γA −∆γB

)

− (Q(t)− 1)

(
βAw

ωB

NA
+ βBw

ωA

NB

)(
qB(t)

qA(t)

IB(t)

IA(t)
SA(t) +

1− qA(t)

1− qB(t)

IA(t)

IB(t)
SB(t)

)

+O
(
ε2
)
. (16)

For the sake of simplicity, let us consider the scenario where the variant and the wildtype only differ in

terms of recovery rates, that is ∆βA = ∆βB = 0. Under the assumption that phenotypic differences

are even smaller than migration probabilities – i.e., migration is faster than selection –, we expect the

dynamics of the differentiation Q to rapidly reach a quasi-equilibrium value. Setting the right-hand

side of (16), we obtain:

Q(t) ≈ 1− ∆γA −∆γB(
βAw

ωB

NA + βBw
ωA

NB

)(
qB(t)
qA(t)

IB(t)
IA(t)

SA(t) + 1−qA(t)
1−qB(t)

IA(t)
IB(t)

SB(t)
)

Migration spatially homogenizes the frequencies of the variant (Q(t) = 1), but these quantities are

disrupted by heterogeneous selection (Fig. 5). When differentiation reaches a quasi-equilibrium and

remains constant, the variant logit-frequency changes with the same slope in each population. This

is surprising since selection is heterogeneous, but is due to migration that rapidly homogenizes the

variant frequency between the two populations.

Let us now consider the case where the variant is adapted in population A but maladapted in

population B. We use parameter values: βAw = βAm = βBw = βBm = 0.25, γAw = γBw = 0.1; γAm = 0.05,

γBm = 0.15 and ζ = 0.01. Therefore, the phenotypic differences are ∆γA = −0.05 and ∆γB =

+0.05 along with no transmission difference (∆βA = ∆βB = 0). First, migration can reverse the

direction of selection, that is the variant can increase in frequency in the population where it is

maladapted just because of host movements between differentiated populations (Fig. 6). Second,

in the long term, local polymorphism maintenance becomes possible when hosts commute between

the two population; polymorphism is sometimes however not maintained when migration is stronger

and the total population densities very asymmetric (Fig. 7). Interestingly, the differentiation is little

affected by population size asymmetry.

4 Discussion

Estimating the selective advantage of emerging variants is essential for evaluating epidemic risk and

optimizing control strategies. In closed populations, the selective advantage of pathogens depends

on the phenotypic differences between competing strains and is also shaped by the environment – in

10



particular, the availability of susceptible hosts and the control measures implemented to mitigate the

spread of the epidemic – (Benhamou et al., 2023; Day et al., 2020; Otto et al., 2021). In metapopula-

tions, populations are interconnected through movements of hosts (“migration”), which can affect the

phenotypic evolution of pathogens. In this study, we investigate the interplay between such spatial

heterogeneity and the evolutionary dynamics across time (variant logit-frequency) and space (differ-

entiation between two populations). For this purpose, we consider a two-patch host metapopulation

with commuting of susceptible and infected hosts. Migration is a force that drives the spatial ho-

mogenization of the variant. The direction and the magnitude of migration effects depends notably

on the differentiation of the variant between the two populations. How can such differentiation be

induced? When selection is homogeneous – i.e., the phenotype of each strain does not depend on

the population in which the strain is found – differentiation is only transient but can arise due to

differences in initial conditions (i.e., the variant is introduced at different time in each populations) or

in the environment (i.e., differential availability of susceptible host). Heterogeneous selection, on the

other hand, can disrupts the spatial homogenization of the variant, maintains in the long term the

differentiation between the two populations, and lead to polymorphism maintenance. These effects

depend on the amount of migration, with increased migration eroding local adaptation (Blanquart

et al., 2013).

The selective advantage of a novel variant is typically estimated during a sweep by fitting a linear

regression on times series of the variant logit-frequency (Boyle et al., 2022; Otto et al., 2021; Volz,

2023). In simple cases, the value of the selective advantage is given by the slope of the linear regression.

The estimation of different slopes in different locations can reflect real differences in terms of selec-

tion – e.g., unequal availability of susceptible hosts, stringency of non-pharmaceutical interventions,

vaccination coverage – but can also be shaped by migration processes. It is therefore challenging to

estimate the selective advantage of emerging variants when hosts move between different areas. Here,

we emphasize that such migration can blur the strength of selection and can be misleading about the

potential real advantage of novel variants, in particular when populations are highly differentiated.

Therefore, estimation could be biased when migration is neglected, at the scale of a one population

or at the scale of the metapopulation.

The evolutionary dynamics (frequency and differentiation) are conditional on the environment and

it is therefore essential to understand the demography to quantify the evolution, especially for transient

dynamics. Dynamical mechanistic models are particularly useful to investigate different scenarios in

order to understand the interplay between demographic and evolutionary processes. To deepen how

neglecting migration can bias the estimation of selective advantages, we can conduct a simulation study

and analyze the discrepancy between estimates obtained with a model that neglects migration and a

model that takes it into account. This study is a work in progress. We also should further investigate

how theoretical approximations, using for instance a separation of timescale between migration and

evolutionary processes, can provide useful approximations and help the estimation process with real

times series data.

11



Table 1: Notations. The subscript k ∈ {w, m} refers to the strain of the pathogen: wildtype strain
w or the mutant strainm (or variant). The superscripts i and j ((i, j) ∈ {A, B}2) refer to populations
A or B.

Term Definition

N i Population i (constant population size)
Si Susceptible host in population i
Ii Infected/infectious host in population i
qi Frequency of the variant m among Ii hosts
βik Per capita transmission rate
γik Per capita infection clearance/recovery rate
ζ Rate of immunity waning
ωi Probability for hosts from population i to be transiently in population j

(commuting)
∆βi, ∆γi Phenotypic differences between the variant and the wildtype;

∆βi = βim − βiw and ∆γi = γim − γiw
∆ Effect of the phenotypic differences on the dynamics of the variant logit-frequency
Ω Effect of migration independently of any phenotypic difference on the dynamics

of the variant logit-frequency
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Population A Population B

ωA

ωB

SA

RAIAw IAm

(
1− ωA

)
λAw

+ ωAλBw

(
1− ωA

)
λAm

+ ωAλBm

γAw γAm

ζ

Figure 1: Flow chart of the epidemic compartment model. Top panel: we model a two-patch
host metapopulation; commuters from population A (resp. B) may visit population B (resp. A)
with probability ωA (resp. ωB) or remain in the home population with complementary probabilities.
Bottom panel: local SIRS model in population A. The subscript w denotes the wildtype strain while
the subscript m denotes the mutant strain (or variant); λAw and λAm (resp. λBw and λBm) refer to the
forces of infection by the wildtype and the mutant strain, respectively, experienced by susceptible
hosts when they are in population A (resp. B).
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Figure 2: Dynamics of the logit-frequency of a novel variant in a two-patch metapopu-
lation. The host metapopulation is divided in two populations, A and B. We use model (3) with
parameter values: βAw = βBw = 0.25, βAm = βBm = 0.3, γAw = γBw = γAm = γBm = 0.1 and ζ = 0.01. Note
that there is no differential selection between the two populations and that the variant only differs
from the wildtype in terms of transmission. The total densities of populations A and B are the same
(NA = NB = 1000). At t = 0, both populations are at the endemic equilibrium of the wildtype
strain and the variant is introduced at very low density (IBm = 1) in population B. From t = 0 to
t = 400 (grey background), there is no migration between the two populations (ωA = ωB = 0), then,
at t = 400, host from population A can visit hosts from population B (ωA = 5 × 10−3 and ωB = 0)
where the variant is near fixation.
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Figure 3: Evolutionary dynamics over time and space (homogeneous selection). The host
metapopulation is divided in two populations, A and B. We simulate model (3) in the case of
homogeneous selection with default parameter values: βw = 0.25, βm = 0.3, γw = γm = 0.1, ζ = 0.01
and ωA = ωB = 5 × 10−3. Default total densities of population A and B are NA = NB = 1000.
We start from an endemic setting: at t = 0 population A is at the epidemiological attractor of the
wildtype without migration and population B is at the epidemiological attractor of the variant without
migration; we still introduced at t = 0 the variant at very low density in population A (IAm(0) = 10−2).
We track the logit-frequency of the variant in population A qA (1, left column) and the differentiation
Q between population A and B (2, right column) after varying (A) the probabilities of migration ωA

and ωB simultaneously, (B) the phenotypic differences in transmission ∆β simultaneously (in all cases
βAw = βBw = 0.25) and (C) the ratio of total population densities NA/NB (in all cases NA = 1000).
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Figure 4: Transient differentiation of the variant between two interconnected populations.
The host metapopulation is divided in two populations, A and B. We simulate model (3) (see Fig. 3
for parameter values). The pathogen is introduced at very low densities and equal initial frequency in
both populations (IAw (0) = IAm(0) = IBw (0) = IBm(0) = 10−3), so that, initially, there is no differentiation
between population A and B. We look at the effect of the asymmetry of the total population densities
on the transient differentiation of the variant between population A and B (in all cases NA = 1000).
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Figure 5: Separation of timescale between migration and selection. Temporal dynamics of
(A) the logit-frequency of the variant and (B) the differentiation of the variant between population
A and B. We use the SIRS model (3) with parameter values: βAw = βAm = βBw = βBm = 0.25,
γAw = γBw = 0.1, γAm = 0.05, γBm = 0.075, ζ = 0.01, ωA = ωB = 0.1. Therefore, the variant only differs
from the wildtype in terms of recovery (∆βA = ∆βB = 0) and selection is heterogeneous between
the two populations (∆γA = −0.05 and ∆γB = −0.025). Populations A and B have identical total
density (NA = NB = 10000). At t = 0, both population are at the epidemiological attractor of the
wildtype and we introduce a small density of the pathogen in both population with equal frequency
between the wildtype and the variant (IAw (t) = IAm(t) = IBw (t) = IBm(t) = 0.5), so that initially there is
no differentiation between the two populations. Under the assumption that migration is faster than
selection, we expect the differentiation of the variant to rapidly reaches a quasi-equilibrium value.
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Figure 6: Dynamics of the logit-frequency of a novel variant in a two-patch metapopulation
with heterogeneous selection. We use model (3) with parameter values: βAw = βAm = βBw = βBm =
0.25, γAw = γBw = 0.1, γAm = 0.05, γBm = 0.15 and ζ = 0.01. Therefore, the variant only differs from the
wildtype in terms of recovery (∆βA = ∆βB = 0) and is adapted in population A (∆γA = −0.05) but
maladapted in population B (∆γB = +0.05). At t = 0, we introduce the wildtype and the variant in
both population with equal frequency (for each population, infected hosts initially represent 0.1% of
the total population density). From t = 0 to t = 50 (grey background), there is no migration between
population A and B (ωA = ωB = 0). From t = 50 (white background), the two populations are
interconnected through host commuting (ωA = ωB = 5× 10−3). Total population densities are either
equal (dotted lines, NA = NB = 10000) or asymmetric (solid lines, NA = 10000 and NB = 1000).
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Figure 7: Polymorphism maintenance for pathogen in a two-patch host metapopulation.
We use model (3) with parameter values: βAw = βAm = βBw = βBm = 0.25, γAw = γBw = 0.1, γAm = 0.05,
γBm = 0.15 and ζ = 0.01. Therefore, the variant only differs from the wildtype in terms of recovery
(∆βA = ∆βB = 0) and is adapted in population A (∆γA = −0.05) but maladapted in population
B (∆γB = +0.05). At t = 0, population A is at the epidemiological attractor of the variant and
population B at the epidemiological attractor of the wildtype. We run simulations for different
strengths of migration, varying ωA and ωB simultaneously, and for different asymmetries between
the total population densities, varying NA/NB (in all cases NA = 1000). At final time t = 4000, we
compute (A) the final frequency qA of the variant in population A, (B) the final overall frequency
q of the variant (in the metapopulation) and (C) the final differentiation Q of the variant between
population A and B. The grey color in C reflects infinite log-differentiation.
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Infectious diseases are major threats for public health. In modern and con-

temporary history, plague, flu, cholera, tuberculosis, malaria, HIV/AIDS
*
,

EVD
†
, SARS or COVID-19 caused together at least tens of millions of

deaths [100]

[100]: Sampath et al. (2021), ‘Pandemics

throughout the history’

. Epidemics in agriculture (crops or livestock) may also be

devastating – e.g., the potato crop failures due to infections by late blight

(oomycete Phytophthora infestans) caused the Great Famine in Ireland in

the 1840s. Nowadays, the increase in land-use changes such as defor-

estation, as well as the consumption of animal products, exacerbates

the risk of zoonosis emergence. In the second half of the 20
th

century,

around two-thirds of the emergence of infectious diseases were caused

by zoonotic spillovers, especially from wildlife reservoir [101], and the

most recent pandemic to date, COVID-19, is another example of emergent

zoonosis. Growing connectivity owing to globalization increases the

potential for epidemics to spread faster and on larger scales [102], in a

context of global health inequalities (e.g., healthcare, vaccination).

Pathogens evolve, sometimes rapidly (high mutations rates, short gen-

eration times). The acquisition of adaptive mutations can accelerate

the spread of pathogens and erodes our ability to control and mitigate

epidemics – e.g. non-pharmaceutical interventions (NPIs), vaccination.

Until recently, only demographic data from traditional surveillance of

infectious diseases were available and studies focused on epidemiolog-

ical dynamics. Using genomic sequencing, the question of pathogen

adaptation has been investigated previously, during the 2013–2016 EVD

epidemic [103, 104], but it was the successive emergence and sweep

of VOCs of SARS-CoV-2 during the COVID-19 pandemic that harshly

demonstrated the importance of evolution in epidemiology. Nowadays,

the advent of sequencing methods revolutionizes this field of research

as they allow to collect genetic data and track the spatio-temporal dis-

tribution of different variants. Statistical approaches are common in

mathematical epidemiology, but coupling evolution and epidemiology

has often been limited to theoretical approaches. Yet, it is essential to

characterize the selective advantage of emerging variants, which requires

the development of novel methods for estimating the phenotypic traits

of pathogens.

5.1 Summary

This thesis stands at the interface between evolutionary epidemiology

theory and statistical analyses of empirical and experimental data. I have

a background in biology but I have always been interested in interdis-

ciplinary approaches, especially between biology and mathematics. I

am also interested in the analysis of real data and statistics. The present

work reflects discussions and collaboration with my PhD supervisors

(statistician and theoretical biologist) with complementary expertise. This

*
Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome

†
Ebola Virus Disease
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enables me to adopt an integrative perspective that provides a compre-

hensive understanding of how the phenotypic evolution of pathogens

is shaped by epidemiological feedback and how the combination of

information between epidemiological and genetic data can allow us to

estimate key phenotypic traits of pathogens. As with all interdisciplinary

work, this is a difficult task. Datasets are typically incomplete because

of hidden processes and missing data, increasing the complexity of evo-

epidemiological models and making even more challenging the process

of estimating the model parameters.

Throughout my PhD, my work relied on the analyses of deterministic

models based on dynamical systems of ordinary differential equations.

I carried out three projects that allowed me to develop new tools to

exploit incomplete datasets and extract so far inaccessible information

on the dynamics of a pathogen spreading and evolving in heterogeneous

environments. These new tools deal with missing data and rely on the

explicit incorporation of hidden processes.

In the first research project (Chapter two), I focused on the selective

advantage of the Alpha variant of SARS-CoV-2 relative to the previous

dominant lineage in England. The underlying phenotypic variation was

quantified considering two life-history traits: (i) the transmission rate

and (ii) the duration of infectiousness (inverse of the recovery rate).

Theoretical models predict that control measures diminishing contact

rates and transmission reduce the selective advantage of variants with

higher transmission but has little or no effect on variants with longer

infectious periods [53, 65]. Based on a deterministic SEIR model, I

used the time-varying stringency of NPIs [99] during the sweep of the

Alpha variant in England to disentangle and estimate both phenotypic

differences. I developed a two-step approach. In the first step, before

the emergence of the variant, I estimated how the intensity of NPIs

impacted the spread of the virus. I used these estimates in the second

step, after the emergence of the variant, where I exploited the slow-fast

dynamics of eco-evolutionary processes to complete the inference of the

phenotypic advantage of the Alpha variant. I showed that the Alpha

variant was more likely to have a higher transmission rate rather than a

longer duration of infectiousness.

In the second research project (Chapter three), I studied the competition

between two strains of the temperate phage 𝜆 throughout experimental

epidemics in continuous cultures of E. coli. These two strains exhibit

distinct life-history strategies: the wildtype is more latent and relies more

on vertical transmission (lysogenic cycle), while the variant (𝜆cI857) is

more virulent and relies mostly on horizontal transmission (lytic cycle).

This dichotomy was assumed to be governed by two life-history traits:

(i) the probability of lysogenization (phage integration) and (ii) the rate

of prophage reactivation. This work was the direct continuation of [68],

which used experimental evolution based on the biology of phage 𝜆
to qualitatively validate predictions from evolutionary epidemiology

theory about the dynamics of selection on virulence in a broader context.

In particular, data tracking both the epidemiology (prevalence) and

the evolution of the virus (frequency of the virulent phage among

viral particles and among infected bacteria) confirmed the theoretical

prediction that variants with higher transmissibility and virulence can be
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selected for in emerging epidemics, but counter-selected as soon as the

host population reaches high prevalence. I went beyond the qualitative

match between theoretical predictions and experimental time series data

and used the data to improve the model and estimate the phenotypic

traits of both strains. I developed a new inference approach to estimate

the viral phenotypes at different stages of the epidemic – including

phenotypic traits particularly challenging to estimate otherwise. Based

on the knowledge of the biology of the system, I modelled hidden

processes such as lysis and lysogeny and fitted this new model to an

incomplete dataset.

In the third and last research project (Chapter four), I examined the

interplay between migration and pathogen evolution. During the sweep

of an emerging variant, selection is quantified by the slope of the variant

frequency on the logit scale [65–67]. I used this approach in my first

research project for the Alpha variant of SARS-CoV-2, assuming that the

nine regions of England were independent closed populations. However,

host populations are typically spatially structured and interconnected

through movements (“migration”) of susceptible and infected individu-

als. How such spatial heterogeneity affects the evolutionary dynamics of

the variant and biases the estimation of its selective advantage are non-

trivial. As in the first project (Chapter two), I considered that the variant

and the wildtype may differ phenotypically in terms of (i) transmission

rate and/or (ii) recovery rate. I considered an SIRS model two-patch host

metapopulation and investigated how the commuting of susceptible and

infected hosts affect the dynamics of the frequency of the variant across

space and time. I showed that migration can blur the effects of selection

and lead to misinterpretations about the real selective advantage of

variants.

My work is a complementary approach to other methods currently used.

In particular, the rise of phylogenetic approaches has allowed the develop-

ment of useful and powerful methods that also combine epidemiological

and genetic data to analyse the spread and the evolution of pathogens.

Phylodynamics (as coined by Bryan Grenfell in 2004 for pathogens [105])

uses data from genomic surveillance (sequencing of collected samples)

to reconstruct molecular phylogenies – i.e., evolutionary trees based on

the relatedness of sampled genetic sequences – and population dynam-

ics models to provide key insight on the dynamics of pathogens (e.g.,

estimate population sizes, reproduction numbers, elucidate pathogen

transmission chains, identify superspreading events) at different scales

[106–109]. These analyses are often based on the assumption that genomic

variation is neutral. Phylodynamics can be limited by sampling biases

and the small genetic variation observed among the genomes. Besides,

the underlying epidemiological models are often simple (e.g., little or no

host structure).

5.2 Host structure and differentiation

In the general introduction (Chapter one), the dynamics were simple

because the pathogen habitat (i.e., the infected hosts 𝐼) was assumed
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to be unstructured. As soon as the pathogen can be found in differ-

ent compartments, one potentially needs to account for heterogeneous

environments.

In the first project, the infected compartment was divided between the

exposed class 𝐸 – which does not allow the pathogen to be transmitted

– and the infectious class 𝐼. I was not able to use the differentiation of

the variant between classes 𝐸 and 𝐼 because no data were available but

I found a way to estimate the phenotypic differences using the overall

frequency of the variant – i.e., in both 𝐸 and 𝐼. To do so, I accounted

for these two classes by weighting the variant frequencies by class

frequencies but also by reproductive values – i.e., relative long-term

contributions to the future of the population – [78, 110]. This method

relies on a separation of timescales argument: under the assumption

of weak selection, epidemiological dynamics are fast and rapidly reach

quasi-equilibrium values that can be then used to simplify the analysis

of the evolutionary dynamics. The validity of this approach can be

challenged, as it is not always guaranteed that epidemiology is faster

than evolution. In particular, phenotypic differences are assumed to be

small, though those are the quantities we want to estimate.

In the second project, the host pathogen habitat was structured between

the free virus stage 𝑉 (the culture medium) and two stages among

infected bacteria (lysogens 𝐿 and cells prior to lysis 𝑌). I did not track

the overall dynamics of the variant but I tracked its frequency in each

compartment. Theoretical analyses were simplified by neglecting the

contribution of the lysogenic pathway at the beginning of the epidemic

and the contribution of the lytic pathway at the end of the epidemic.

Transitions from compartment 𝑉 to compartment 𝐿 or 𝑌 (horizontal

transmissions) were different between the two strains, for they have

different probabilities of lysogenization. Transitions from compartment 𝐿

to 𝑌 (prophage reactivation) were also different between the two strains,

for they have different reactivation rates. These phenotypic differences

induced a differentiation between the different compartments. In the

endemic case, the differentiation was simple and can be used to estimate

the rates of prophage reactivations. On the other hand, the analysis of

the early stage of the epidemic was challenging because epidemiology

and evolution occur on similar timescales, so that they were difficult to

decouple.

Eventually, in the third project, hosts were structured spatially in two

populations interconnected through migration. Movements of infected

hosts were assumed to have identical probabilities, regardless of whether

the hosts were infected by the wildtype or the variant. I studied the

differentiation of the variant between the two populations in the presence

of migration homogeneous or heterogeneous selection.

Modelling and analysing heterogeneous environments is a much more

difficult task than dealing with homogeneous environment, but it is

often essential to capture properly the dynamics of host-pathogen sys-

tems. Crucially, I showed that the differentiation of the variant between

compartments yields useful insights on the evolutionary epidemiology

of infectious diseases and can be key to estimate model parameters

such as phenotypic traits. Some data, unfortunately, do not exist (e.g.,

stratified between exposed and infectious hosts) and some data could
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be available but are not, or are very difficult to obtain (e.g., stratified

by vaccination status). Accounting for the pathogen structure among

different compartments is however essential to understand and to predict

the evolutionary epidemiology of infectious diseases. This is ultimately

bound to the availability of data stratified by compartment, and efforts

should be pursued in this direction.

5.3 All models are wrong

All models rely on numerous assumptions, approximations and simplifi-

cations (often arbitrary) which can always be pointed out and challenged

[111]. This is particularly true for models tailored to real biological systems

and fitted to experimental/empirical data.

Simpler models are easier to analyze mathematically and to interpret,

while more sophisticated models always improve the goodness of fit

compared to simpler, nested models. However, the data may not be

sufficiently rich to precisely infer the extra parameters and would lead to

identifiability issues. For instance, one of the initial goals of the second

project (Chapter three) was to compare the likelihood of an alternative

model that accounts for the phenotypic plasticity of the probability of

lysogenization – see original work [112]. When I took over this project,

I built several models that account for different phenotypic plasticities.

However, experimental data did not provide sufficient information to

explore this level of detail and I eventually decided not to consider phe-

notypic plasticity any further. More broadly, at a certain point, seeking

a better fit is no longer worthwhile, but it is often delicate to know

where to draw the line between model details and parsimony. Combining

effectively theoretical and statistical approaches is an iterative process,

back and forth between models and data, between goodness of fit and

parsimony. There is no general solution to optimize this process and each

project should be examined on a case-by-case basis. In the following, I

would like to look back at the models I used and highlight some limits.

In this thesis, I only relied on deterministic dynamical models based on

systems of ODEs. Yet, random fluctuations and inherent uncertainties

can play a critical role in the dynamics of real-life systems. For instance,

the early stage of an epidemic or the early stage of the sweep of a variant is

characterized by a low density of infected hosts. It can thus be important

to account for process stochasticity and see how far results deviate from

deterministic cases. Stochastic versions of ODE systems can be derived

using Gillespie algorithm [113, 114] (or its 𝜏-leap approximation [115]), or

using stochastic differential equations (e.g., [116, 117]). As for deterministic

dynamical models, stochastic models can be fitted to time series data.

For example, the R software package pomp (partially observed Markov

process) [118] provides powerful tools and algorithms (such as iterated

filtering [119]) to fit stochastic dynamical models to time series data and

estimate model parameters. Interestingly, such methods have already

been used in the context of competing strains [120].

So why stick to deterministic models? Stochastic models are more com-

plex, both mathematically and computationally, and deterministic models
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can provide an accurate approximation of the dynamics of real-life sys-

tems, when population sizes are large and/or when environmental

conditions are controlled experimentally – as in the second project (Chap-

ter three). Because deterministic models poorly capture the early stage of

the sweep of an emerging variant, I discarded in the first project (Chapter

two) the data for which the frequency of the Alpha variant was lower than

10%; in the third project (Chapter four), I sometimes had to introduce

the variant later in the simulation to mimic the effects of stochasticity on

the timing of emergence.

An implicit assumption of simple compartmental models based on

ODEs is that sojourn times are exponentially distributed [31, 32]. The

exponential distribution is Markovian, or memoryless, so that all the

individuals within a compartment have the same probability to leave

this compartment, regardless of how long they have already been in

that state. Yet, many biological processes depend on how much time

has elapsed. In particular, the duration of an infection (sojourn time in

compartment 𝐼) is shaped by biological factors such as the host immune

response, which typically increases over time. More flexible distributions

are classically used, such as the Gamma or the Weibull distributions

– e.g., [121, 122] used the Euler-Lotka/renewal equation framework

popularized by [30] with Gamma-distributed generation interval to

investigate the dynamics of SARS-CoV-2 VOCs. Another approach is to

rely on systems of partial differential equations (PDEs). PDE systems is a

non-Markovian approach in continuous time that incorporates a felxible

temporal (“memory”) structure that explicitly tracks elapsed time [123].

Kermack and McKendrick used mostly systems of PDEs and presented

the SIR model based on ODEs only as a special case with constant rates

[9, 124, 125].

In the first and second project of my thesis, I decided to use an alternative

approach, still based on ODE systems, that consists in stratifying a

compartment into 𝑛 successive stages, so that sojourn time becomes the

sum of 𝑛 independent exponential distributions, i.e., a hypoexponential

distribution (generalized Erlang distribution) or a Gamma distribution if

the 𝑛 distributions are i.i.d. (linear/Gamma chain trick). SEIR models in

the first project are thus a very simple representation of an age-structured

model. In the second project, I used this approach to explore the impact

of Gamma-distributed lysis times – for the sake of simplicity, however, I

kept exponentially distributed lysis time in the main text. I found that

this intermediate approach strikes a balance between simplicity and

biological realism.

5.4 Perspectives

5.4.1 New variants and strain structure

Throughout my PhD, I focused on the competition between two strains

of pathogens (the wildtype and a single mutant). These analyses rely on

a priori strain identification and classification. But when is a strain first

described? This is a difficult task, especially during the early stage of an

emerging variant. Some studies seek to estimate the selective advantage
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of variants without the need for prior strain classification [126]. Tracking

the circulation of multiple strains and the frequencies of alternative

alleles at different loci requires to extend the models used in this thesis

to a multistrain and multilocus framework [127, 128]. Recombination

and epistasis in fitness among multiple loci is expected to alter the

epidemiology and evolution of the pathogen population [129, 130].

5.4.2 Natural immunity and vaccination

In all the projects of this thesis, immunity was modelled as an all-

or-nothing response. However, imperfect immunity, cross-immunity,

immune waning or immune escape shape both the epidemiological and

evolutionary dynamics of infectious diseases. Adaptive immunity can be

acquired through prior infections or through vaccination.

Vaccination is a highly effective way of protecting hosts from infections

and to limit the spread of epidemics. Vaccines can for instance reduce

host susceptibility, within-host pathogen growth, transmission rate of

infected hosts or pathogen virulence [131, 132]. However, pathogens can

adapt to vaccination. Vaccines against influenza viruses must for instance

be updated annually [133]. For COVID-19, the vaccination campaign

started in December 2020 in England and France. During the sweep of

the first Omicron variant of SARS-CoV-2 in England, the variant was

more frequent among vaccinated hosts than among naive hosts (Figure

5.1), revealing a higher ability to infect vaccinated hosts [134]. These

data describe a dual structure for the environment of the pathogen. First,
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the population is stratified regionally (and regions are interconnected

with host movements). Second, hosts are stratified between vaccinated

and non-vaccinated individuals. Vaccination induces a heterogeneous

selection between these two types of hosts.

One of the initial aims of the third project (Chapter four) was to include

vaccination to investigate how migration and vaccination shapes the tran-

sient evolutionary dynamics of pathogens. Future extension of this work

may thus include additional compartments to formally take vaccination

into account.

5.4.3 Host coevolution

In this thesis, I focused on the phenotypic evolution of pathogens and I

assumed that hosts do not evolve. The evolutionary potential of pathogens

is often much higher than their host – metazoan hosts typically have

much longer generation times than their pathogens. Yet, this is not

always the case – e.g., many unicellular organisms such as bacteria –

and the reciprocal selective pressures that hosts and pathogens exert

on each other drive the dynamics of coevolution (red queen dynamics).

For example, in [68], from which the data for the second project are

taken, E. coli acquired resistance to phage 𝜆 later in the experiment.

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)

defense systems – which can be considered as an analogue of adaptive

immunity in bacteria –, coevolve antagonistically with phage immune

escape [135]. Adaptation is accelerated by the presence of plasmids and

recombination events. More broadly, bacteria resistance evolution has

dramatic impact on public health, and especially in the context of rising

(multiple) antibiotic resistance. For this purpose, phage therapy uses

lytic phages as a treatment coevolving with bacteria, offering an effective

alternative to combat bacterial infections and emphasizing the urgent

need to study host-pathogen coevolution.
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Introduction

Fin 2019, moins de deux ans avant le début de cette thèse, le virus

du SARS-CoV-2 (Syndrome Respiratoire Aigu Sévère – Coronavirus 2)

a emergé dans le marché de Wuhan, dans la province de Hubei, en

Chine [2]. La maladie respiratoire transmise par le virus (COVID-19,

Coronavirus disease 2019) s’est rapidement propagée à l’échelle mondiale.

En mars 2020, au moins 114 pays ont été touchés par la maladie qui a été

classée comme pandémie par l’Organisation Mondiale de la Santé [3].

Comprendre et prédire la dynamique épidémiologique du COVID-19

a été un défi majeur de santé publique; les épidémiologistes devaient

comprendre de toute urgence les dynamiques de sa transmission, évaluer

les risques et les conséquences sanitaires potentielles de la pandémie, et

concevoir des stratégies pour en freiner la propagation. Dans cet effort

collectif, la modélisation mathématique a été un outil déterminant.

Un modèle est une représentation simplifiée de la réalité : les processus

sous-jacents sont approximés ou même négligés – pour ceux considérés

comme les moins importants. Alors que les approches théoriques ont

souvent été sous-estimées par rapport aux approches empiriques [4],

les modèles mathématiques sont des outils particulièrement utiles et

puissants qui permettent de formaliser, d’analyser, de comprendre et de

fournir des prédictions qualitatives ou quantitatives sur les processus bi-

ologiques et de guider la prise de décision. On distingue classiquement les

modèles pour comprendre et les modèles pour prédire. L’épidémiologie

des maladies infectieuses est étroitement liée à la modélisation mathéma-

tique et ce depuis très longtemps. Dans la seconde moitié du XVIIIe siècle,

Bernoulli a développé un modèle épidémiologique pour analyser les

données de morbidité et de mortalité de la variole et a étudié le bénéfice

de l’inoculation du pathogène [5]. À la fin du XIXe – début du XXe siècle,

Ronald Ross (Prix Nobel 1902 de physiologie ou médecine) a proposé

les premiers modèles mathématiques de transmission du paludisme; en

particulier, il a démontré que le paludisme était transmis par les piqûres

de moustiques anophèles infectés (maladie vectorielle) et a proposé des

stratégies de contrôle de la maladie [6–8]. En 1927, Kermack et McK-

endrick ont publié un article qui a popularisé l’utilisation des modèles

compartimentaux déterministes pour simuler les dynamiques épidémi-

ologiques [9]. Ces modèles compartimentaux ont depuis été largement

utilisés, notamment pour la pandémie de COVID-19. Les modèles math-

ématiques peuvent de plus être ajustés aux données (par exemple, le

nombre de cas positifs ou de décès déclarés) pour estimer des paramètres

clés d’une épidémie, comme par exemple le nombre moyen d’infections

secondaires - estimé autour de 2,9 (intervalle de confiance à 95 % : 2,81 à

3,01) au début de l’épidémie de COVID-19 en France [10]. Les modèles

mathématiques ont également été utilisés pour prévoir la dynamique

future du COVID-19 dans différents scénarios – différentes stratégies

de contrôle par exemple –, notamment pour anticiper la saturation des

hôpitaux [11, 12].
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Figure 5.2: Épidémiologie et évolution du SARS-CoV-2 en France, au Royaume-Uni et au Canada. J’utilise des données publiques

disponibles du 2020-08-01 au 2023-09-01. (A) Épidémiologie : nouveaux cas confirmés de COVID-19 par semaine (données de l’OMS,

téléchargées depuis Our World in Data); (B) Évolution : fréquences relatives de plusieurs variants préoccupants (source des métadonnées :

4 020 732 séquences disponibles sur GISAID).
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L’adaptation du SARS-CoV-2 n’a reçu que très peu d’attention au début

de la pandémie [13, 14]. Les dynamiques évolutives sont généralement

supposées se dérouler sur des échelles de temps beaucoup plus lentes

que les dynamiques épidémiologiques. Toutefois, la mutation D614G

(substitution de la protéine Spike, probablement associée à une transmis-

sion accrue) est apparue au début de la pandémie de COVID-19 (vers

mai 2020) et est devenue la souche dominante [16, 17]. Les mutations

identifiées étaient cependant d’abord considérées comme neutres ou

faiblement délétères, l’augmentation en fréquence des mutations comme

D614G pouvant potentiellement être attribuée à de la stochasticité dé-

mographique [18]. Plus tard en 2020, le variant Alpha du SARS-CoV-2

(lignée Pango B.1.1.7) a émergé en Angleterre [19, 20]. Sa propagation

spectaculaire dans chaque pays où il a été introduit a brutalement mis

l’évolution au devant de la scène. L’adaptation du virus est devenu

un élément majeur de préoccupation dans la gestion de la pandémie

de COVID-19, lançant des débats sur son évolution à court, moyen et

long terme. Le variant Alpha a été classé comme variant préoccupant

– c’est-à-dire possédant un avantage sélectif – et a été le premier d’une

série de variants qui ont successivement émergé puis remplacé la lignée

précédente – par exemple, Delta (lignée Pango B.1.617.2), ou Omicron

(première lignée Pango B.1.1.529) - (Figure 5.2 , à partir des données

GISAID [21]). L’adaptation des pathogènes peut altérer notre capacité à

contrôler les épidémies. La pandémie de COVID-19 illustre donc combien

il est crucial de caractériser les phénotypes des pathogènes, de suivre leur

https://github.com/owid/covid-19-data/tree/master/public/data/cases_deaths
https://gisaid.org/
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évolution phénotypique et de comprendre les déterminants de cette évo-

lution. Pourtant, alors que les approches statistiques sont très courantes

en épidémiologie, coupler évolution et épidémiologie a le plus souvent

été limité à des approches théoriques.

Dans cette thèse, je combine une approche théorique basée sur des

modèles dynamiques mécanistiques et une approche statistique (Figure

5.3) pour estimer les paramètres de ces modèles – comme les traits

phénotypiques des pathogènes – en santé publique et en microbiologie

expérimentale. Données et observations peuvent être utilisées qualita-

tivement pour adapter un modèle dynamique à la biologie d’un système

hôte-pathogène en particulier. L’analyse théorique et les simulations

numériques de ces modèles peuvent permettre de fournir des clés pour

comprendre et prédire l’épidémiologie évolutive des maladies infec-

tieuses. La confrontation entre données (démographiques et génétiques)

et les résultats d’un modèle peut valider qualitativement des prédictions

théoriques. De façon plus quantitative, les modèles statistiques constru-

its à partir des modèles dynamiques peuvent être ajustés à des séries

temporelles afin d’estimer les paramètres des modèles ou de comparer

plusieurs modèles. Combiner efficacement les approches théoriques et

statistiques est un processus itératif, un aller-retour entre modèles et

données.

Epidemiologie Evolution
Génétique
(fréquences
des souches)

Demographie
(densités)

Construction

Compréhension/
prédiction

Inférence
statistique

Validation

Modèles dynamiques

Modèles statistiques

Demography
(densities)

ModèlesDonnées

Figure 5.3: Relations schématisées entre modèles et données en épidémiologie évolutive. Les modèles mathématiques en épidémiologie

évolutive sont des représentations simplifiées et formalisées du couplage entre processus épidémiologiques et évolutifs, permettant

notamment de prendre en compte leurs rétroactions. Par des analyses théoriques et des simulations numériques, les modèles

dynamiques/mécanistiques sont très utiles pour comprendre et prédire l’épidémiologie évolutive des maladies infectieuses. Ces

prédictions théoriques peuvent être validées ou invalidées par des données empiriques ou expérimentales. Les données peuvent orienter

les choix de modélisation pour un système hôte-pathogène en particulier. De plus, ajuster un modèle statistique permet d’estimer les

valeurs de certains paramètres. Dans cette thèse, je combine à la fois des données démographiques (densités) et des données génétiques

(fréquences des souches pathogènes).
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Évolution phénotypique du SARS-CoV-2 : une

approche par inférence statistique

Depuis son apparition fin 2019, le virus SARS-CoV-2 s’est propagé à

l’échelle mondiale, provoquant la pandémie de COVID-19. À l’automne

2020, le variant Alpha a été détecté en Angleterre et s’est rapidement

répandu, remplaçant la lignée précédente. Toutefois, les modifications

phénotypiques sous-jacentes qui pourraient expliquer cet avantage sélec-

tif ne sont pas très bien connues.

Dans cette étude, j’essaye de quantifier en quoi le variant Alpha différait

de la lignée précédente pour deux traits phénotypiques : le taux de

transmission et la durée de contagiosité. Dans cette optique, j’analyse les

dynamiques épidémiologiques et évolutives conjointes en fonction du

Stringency Index [99], un score qui mesure le degré de sévérité des mesures

de contrôle mises en place pour freiner l’épidémie. En supposant que ces

mesures réduisent les taux de contact et de transmission, j’ai développé

une approche en deux étapes basée sur des modèles SEIR et l’analyse

d’une combinaison d’informations épidémiologiques et évolutives. Dans

une première étape, avant l’émergence du variant Alpha, je quantifie

l’impact du Stringency Index sur la propagation du virus. Cette étape m’a

permis d’inférer une fonction convexe qui permet de capturer l’effet du

Stringency Index sur la réduction du nombre de contacts avec des hôtes

sains. Dans une deuxième étape, après l’émergence du variant Alpha,

j’analyse les changements de fréquence du variant Alpha. À partir d’un

modèle SEIR, je propose une approximation du gradient de sélection

reposant sur des hypothèses de sélection faible et de quasi-équilibre

des variables épidémiologiques [63, 78, 110]. Je retrouve notamment un

résultat classique des modèles SIR : l’intensité de la sélection pour des

taux plus élévés de transmission dépend de la disponibilité des hôtes

sains et des mesures de contrôles en place (par exemple, distanciation

sociale, port du masque). En revanche, la sélection pour des durées de

contagiosité plus longues est beaucoup moins sensible à ces mesures

de contrôle. Grâce à mon estimation indépendante de l’efficacité des

mesures de contrôle calculée lors de l’étape précédente, j’utilise mon

approximation théorique du gradient de sélection pour estimer à la fois

les différences de transmission et de guérison entre le variant Alpha et

la lignée précédente. Je montre que l’avantage sélectif du variant Alpha

résulte d’un taux de transmission accru (Figure 5.4). Une période de

contagiosité plus longue semble beaucoup moins probable, bien que

cette hypothèse ne puisse pas être complètement écartée. Ce résultat est

en accord avec des études expérimentales qui ont confirmé l’avantage de

transmission du variant Alpha [136].
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Figure 5.4: Profil phénotypique du variant Alpha (taux de transmission et de guérison) relativement à la souche résidente. Par

définition, le phénotype de la souche résidente est situé à l’origine du graphique (Δ𝛽 = 0; Δ𝛾 = 0). Les estimations obtenues à partir

d’un modèle linéaire mixte (point noir, exprimé par jour) des différences phénotypiques en termes de transmission Δ𝛽 et de guérisons

Δ𝛾 ainsi que l’intervalle de confiance à 95% (IC95, croix noire) ont été obtenus à partir des meilleures estimations des paramètres du

contrôle (phase 1). Nous avons estimé Δ𝛽 = 0.15 (IC95 [0.033; 0.258]) et Δ𝛾 = −0.047 (IC95 [−0.099;+0.001]). Le fond coloré représente

les valeurs du coefficient de sélection (en l’absence de mesures de contrôle) en fonction de Δ𝛽 et de Δ𝛾; le coefficient de selection

coefficient est ici autour de +0.11 par jour (ou +0.77 par semaine) pour le variant Alpha.

[68]: Berngruber et al. (2013), ‘Evolution

of virulence in emerging epidemics’

Évolution de la virulence dans les épidémies

émergentes : aller-retour entre théorie et

évolution expérimentale

La validation expérimentale de prédictions théoriques est une étape

importante pour démontrer le pouvoir prédictif d’un modèle. Alors

que les validations quantitatives sont courantes en épidémiologie des

maladies infectieuses, la microbiologie expérimentale reste souvent

limitée à l’évaluation d’une simple correspondance qualitative entre les

prédictions d’un modèle et les résultats expérimentaux.

Dans cette étude, je développe une approche quantitative avec une

population virale polymorphique. J’analyse les données d’évolution ex-

périmentale d’une étude précédente sur l’évolution du bactériophage (ou

phage) tempéré𝜆 se propageant dans des cultures continues bactériennes

d’Escherichia coli [68]. Ce travail expérimental a confirmé l’influence des

dynamiques épidémiologiques sur l’évolution de la transmission et de

la virulence du virus. Un variant ayant une plus grande propension à

lyser les cellules bactériennes a été favorisé dans les épidémies émer-

gentes (lorsque la densité de cellules sensibles était importante), mais

contre-sélectionné lorsque la plupart des cellules étaient infectées. Bien

que cette approche ait validé qualitativement une prédiction théorique
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of virulence in emerging epidemics’

importante, aucune tentative n’a été faite pour ajuster le modèle aux

données ni pour développer davantage le modèle afin d’améliorer la

qualité de l’ajustement.

Je montre ici comment l’analyse théorique et l’ajustement de modèles aux

données peuvent être utilisés pour estimer les paramètres clés du cycle de

vie du phage 𝜆 et pour mieux comprendre l’épidémiologie évolutive du

virus. Premièrement, j’ai constasté que le modèle original ne parvenait

pas à capturer correctement les dynamiques évolutives transitoires dans

le compartiment infecté. J’améliore ici l’ajustement avec les données

expérimentales en distinguant deux types de cellules infectées : les

cellules lysogéniques (𝐿) et les cellules engagées dans la voie lytique (𝑌).

L’ajout d’un compartiment supplémentaire permet de modéliser un pic

transitoire dans la fréquence des hôtes infectés par le phage virulent

lors du début de l’épidémie (Figure 5.5-B), cohérent avec les données

expérimentales. Cet apport permet également de prendre en compte

le temps de lyse (instantané dans le modèle original). Deuxièmement,

je fais une analyse théorique de ce nouveau modèle pour aller au-delà

de l’approche purement numérique utilisée dans [68]. Cela me permet

d’obtenir des approximations analytiques sur la propagation du phage

virulent au début et à la fin de l’épidémie. Troisièmement, je développe

une approche d’inférence pour estimer les paramètres du modèle (Figure

5.5). J’implémente une procédure par maximum de vraissemblance en

deux étapes : (i) j’estime grâce à un modèle linéaire les taux de réactivation

des prophages des deux souches virales, (ii) je fixe ces valeurs des taux de

réactivation puis j’effectue des optimisations non linéaires pour inférer

les autres paramètres du modèle.

Cette approche d’inférence est très différente des études précédentes.

Tout d’abord, j’analyse les dynamiques d’une population virale polymor-

phique. Deuxièmement, j’utilise trois types de données pour estimer les

valeurs des paramètres du modèle : (i) des données épidémiologiques (la

prévalence de l’infection), (ii) les changements de fréquence du variant

et (iii) la différenciation du variant entre compartiments. Chaque type

de données apporte des informations complémentaires et me permet

d’estimer conjointement les traits d’histoire de vie des deux souches

du phage 𝜆. Cette nouvelle méthode est particulièrement bien adaptée

pour estimer les taux de réactivation des prophages, pour lesquels seul

le traitement endémique est nécessaire. L’estimation des probabilités de

lysogénisation est cependant plus difficile car elle nécessite de prendre

en compte les dynamiques épidémiologiques transitoires du traitement

épidémique. La rapide rétroaction épidémiologique qui a lieu lors des

épidémies émergentes – c’est-à-dire la baisse du nombre d’hôtes sains –

rend nécessaire de considérer à la fois l’épidémiologie et l’évolution de

l’infection.
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Figure 5.5: Modèle ajusté aux don-

nées expérimentales (projet Lambda).

Les valeurs ajustées (courbes épaisses

de nuance sombre) ont été simulées

à partir des estimations obtenues par

maximum de vraissemblance (données

: courbes fines de nuance claire). La

prévalence initiale est soit faible (au-

tour de 1%, traitement epidémique, en

rouge), soit haute (autour de 99%, traite-

ment endémique, en bleu). Les courbes

épaisses de nuance claire correspondent

à la moyenne des valeurs sur l’échelle

logit pour tous les réplicats par traite-

ment. (A) Logit-prévalence de l’infection;

(B) logit-fréquence des cellules infectées

par le phage mutant (virulent); (C) logit-

fréquence du phage mutant (virulent)

dans le milieu de culture (stade virion

ou virus libre).
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Déplacements d’hôtes et évolution des

pathogènes

L’adaptation des agents pathogènes affecte notre capacité à contrôler

les épidémies et représente un enjeu majeur de santé publique. Lors de

l’acquisition de mutations bénéfiques, de nouveaux variants apparaissent

et remplaçent parfois les souches précédentes. La force de la sélection

sur un variant émergent est classiquement quantifiée au cours de sa

propagation à partir des séries temporelles de sa fréquence au sein des

hôtes infectés. Cette approche marche très bien sous l’hypothèse d’une

population homogène. Néanmoins, les populations d’hôtes sont générale-

ment spatialement hétérogènes et interconnectés via des déplacements

(“migration”) d’hôtes d’une population à une autre. Cette migration peut

conduire à l’introduction d’un pathogène dans de nouvelles populations

ou à la persistence globale du pathogène ; la migration peut aussi affecter

la vitesse et la manière dont se propager les épidémies. Outre ses effets

sur l’épidémiologie, la migration peut également impacter l’évolution

d’une population pathogène polymorphique. Cependant, peu de choses

sont vraiment connus sur la manière dont les dynamiques évolutives

des agents pathogènes sont façonnées par la migration des hôtes, en

particulier à court-terme.

Dans cette dernière étude, j’étudie la dynamique transitoire de la

fréquence et de la différenciation d’un variant en compétition avec

la souche sauvage au sein d’une métapopulation. Dans cette métapopu-

lation, deux populations sont interconnectées par des flux d’hôtes qui

peuvent mutellement se rendre visite (Figure 5.6). Je considére ici un

scénario avec une sélection homogène dans les deux populations, et un

scénario avec une sélection hétérogène. Je met notamment l’accent sur

l’utilité des modèles dynamiques mécanistiques pour séparer les effets

de la migration et ceux de la sélection sur l’évolution des pathogènes. La

migration peut notamment biaiser la force apparente de la sélection et

ainsi conduire à des estimations erronées sur l’avantage sélectif réel des

variants.
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Figure 5.6: Diagramme du modèle SIRS dans une métapopulation. Panneau du haut : je modélise une métapopulation d’hôtes à

deux populations; les hôtes de la population 𝐴 (resp. 𝐵) peuvent transitoirement rendre visite à la population 𝐵 (resp. 𝐴) avec une

probabilité 𝜔𝐴
(resp. 𝜔𝐵

) ou rester dans la population locale avec des probabilités complémentaires. Panneau du bas : modèle SIRS pour

la population locale 𝐴. L’indice 𝑤 désigne la souche sauvage tandis que l’indice 𝑚 désigne la souche mutante (ou variant); 𝜆𝐴
𝑤 et 𝜆𝐴

𝑚

(resp. 𝜆𝐵
𝑤 et 𝜆𝐵

𝑚 ) représentent respectivement les forces d’infection par le sauvage et par le variant auxquelles sont soumis les hôtes sains

de la population 𝐴 (resp. 𝐵).

Conclusion

Cette thèse se situe à l’interface entre épidémiologie évolutive théorique

et analyses statistiques à partir de données empiriques et expérimentales.

J’ai une formation en biologie mais j’ai toujours été intéressé par les

approches interdisciplinaires, en particulier entre la biologie et les math-

ématiques. Je m’intéresse également à l’analyse de données réelles et aux

statistiques. Ce travail reflète les discussions et la collaboration avec mes

directeurs de thèse (un statisticien et un biologiste théoricien) aux exper-

tises complémentaires. Cela m’a permis d’adopter une perspective inté-

grative qui offre une compréhension fine de la manière dont l’évolution

phénotypique des agents pathogènes est impactée par les rétroactions

épidémiologiques et comment la combinaison d’informations entre don-

nées épidémiologiques et génétiques peut permettre d’estimer les traits

phénotypiques des pathogènes. Comme pour tout travail interdisci-

plinaire, c’est une tâche difficile. Les jeux de données sont généralement

incomplets en raison de processus cachés et de données manquantes,

augmentant alors la complexité des modèles éco-épidémiologiques et

rendant encore plus difficile le processus d’estimation des paramètres

du modèle.
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Tout au long de ma thèse, mon travail s’est porté sur des analyses de mod-

èles déterministes reposant sur des systèmes dynamiques d’équations

différentielles ordinaires. J’ai mené trois projets qui m’ont permis de

développer de nouveaux outils pour exploiter davantage des jeux de

données incomplets et extraire des informations jusqu’alors inaccessibles

sur la dynamique de propagation et d’évolution d’agents pathogènes

dans un environnement hétérogène. Ces nouveaux outils reposent sur

l’incorporation explicite des processus cachés. Suivre l’évolution phéno-

typique des agents pathogènes est essentiel, notamment pour mieux

comprendre et anticiper la dynamique de leur adaptation. L’inférence

statistique construite à partir de modèles dynamiques mécanistiques y

est alors très utile pour améliorer notre compréhension de la dynamique

des maladies infectieuses. Dans cet effort, les allers-retours entre modèles

et données stratifiées par compartiments sont des étapes importantes.

Ce travail de thèse pourrait être étendu avec une étude plus poussée de

l’hétérogénéité induite par l’immunité de l’hôte – naturelle ou vaccinale

–, la modélisation de la co-évolution des hôtes ou encore l’étude de la

compétition entre de multiples souches.
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Introduction

The aim of the course is to provide an introduction to the analysis of the joint epidemiological and evolution-
ary dynamics of infectious diseases (i.e., evolutionary epidemiology theory). Throughout the course we have
combined an analytical approach with a numerical exploration of the models. The plan is to present/discuss
briefly the analytical part and ask the participants to work mainly on the numerical part. The goal is to
show how a little bit of analysis can help a lot to interpret numerical simulations.

The course will consist of the following two main parts:

1. Epidemiology
1.1. Analytical approach

• Introduction of the SIR model.
• Derivation of the epidemic condition R0 > 1.
• Derivation of the disease-free equilibrium.
• Derivation of the endemic equilibrium.

1.2. Simulation approach

• Presentation of the simulation of the disease-free equilibrium.
• Simulation of the epidemic until the endemic equilibrium. Validation of the analytical results

(Q1).

2. Evolution
2.1 Dynamics of an epidemic with two pathogens

• Modification of the SIR model to account for a polymorphic pathogen population - the wild type
and the mutant - (Q2).

• Simulation of an epidemic with two pathogens (Q3).
• Analytical derivation from the analysis of the model.
• Computation of the selection coefficient (s(t)) and the density of susceptible hosts (S(t)) as func-

tions of time (Q4, Q5).

2.2 Adaptive dynamics (AD) approach - evolutionary invasion analysis

• Condition of invasion when the resident strain is at the endemic equilibrium.
• Numerical solution for the Evolutionary Stable Strategy (ESS) with a Pairwise Invasibility Plot

(PIP) and comparison with the analytical solution (Q6)
• Geometric construction for the ESS

2.3 Adaptive dynamics (long term) vs. evolutionary epidemiology (transient epidemic)

• We want to show and discuss scenarios where a mutant may transiently outcompete the ESS
strategy.
Test an ESS in a population at endemic equilibrium (Q7). Find a situation where an ESS may
transiently be outcompeted; discuss the results (Q8).
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1 Epidemiology

1.1 Analytical approach

Let’s assume that the dynamics of a host population is governed by the balance between an influx λ of new
individuals (birth and immigration) and a natural death rate δ. This host can be infected by a pathogen
characterised by three main life-history traits: the horizontal transmission rate β, the mortality rate induced
by the infection α (also called the virulence) and the recovery rate γ. The dynamics of this system - a
version of the famous Susceptible-Infectious-Recovered (SIR) model - can be described by the following set
of ordinary differential equations (ODE) where the dot refers to differentiation with respect to time:

Ṡ(t) = λ − βI(t)S(t) − δS(t)
İ(t) = βI(t)S(t) − (δ + α + γ)I(t)
Ṙ(t) = γI(t) − δR(t)

(1)

Before analysing the epidemiological dynamics of the pathogen, we need to characterise the host population
prior to the introduction of the pathogen. The above system reduces to:

Ṡ(t) = λ − δS(t)

The disease-free equilibrium (sometimes noted DFE) is:

S0 = λ

δ

If a pathogen is introduced at the DFE its dynamics will be governed by:

İ(t) =
(

βS0 − (δ + α + γ)
)

I(t)

The pathogen will grow if and only if r0 = βS0 − (δ + α + γ) > 0, where r0 is the instantaneous growth rate
of the pathogen.

This condition is equivalent to R0 = βS0
δ+α+γ > 1, where R0 is the basic reproduction number of the pathogen

(this is not a rate).

When the above condition is satisfied, the introduction of a small quantity of pathogen will lead to an
epidemic that will eventually reach an endemic equilibrium:

Se = δ + α + γ

β

Ie = λβ − δ(δ + α + γ)
β(δ + α + γ)

Re = γ

δ
Ie

3



1.2 Simulation approach

# Cleaning objects from the workplace
rm(list=ls())

# Packages (may first require installations: install.packages("name of the package"))

library(tidyverse) # for data manipulation
library(ggplot2) # for graphic visualizations
library(cowplot) # to arrange and show multiple subplots (function 'plot_grid')
library(deSolve) # to numerically integrate a system of ordinary differential equations
library(scales) # to manipulate the internal scaling infrastructure used by ggplot2
library(lattice) # to draw level plots
library(knitr) # to show nice tables (function 'kable')

ODE_SIR <- function(t, y, parms){

# t, the current time
# y, the current state of the system (/!\ to the order of the state variables)
# parms, the parameters of the model

# State variables
S <- y[1]
I <- y[2]
R <- y[3]

# Parameters
lambda <- parms["lambda"] # Influx of new individuals
delta <- parms["delta"] # Natural death rate
beta <- parms["beta"] # Horizontal transmission rate
alpha <- parms["alpha"] # Mortality rate induced by the infection (virulence)
gamma <- parms["gamma"] # Recovery rate

# Temporal derivatives
dS <- lambda - delta*S - beta*I*S
dI <- (beta*S - (delta + alpha + gamma))*I
dR <- gamma*I - delta*R

result <- c(dS, dI, dR)

# Return
list(result)

}

# Time points

t0 <- 0 # initial time
tf <- 10 # final time
times <- seq(from=t0, to=tf, by=0.1)

# Parameters

lambda = 1
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delta = 1
beta = 5
gamma = 0.1
alpha = 0.1

parms = c("lambda"=lambda, "delta"=delta, "beta"=beta, "alpha"=alpha, "gamma"=gamma)

1.2.1 Disease-free population

# Initialization of each compartment (at time t = t0)

init_disease_free <- c("S" = 0.1, # S(t0), all the population is susceptible (S) to the disease
"I" = 0, # I(t0), disease-free population
"R" = 0) # R(t0), no recovered (R) individuals

Numerical integration

simul_disease_free <- lsoda(y = init_disease_free, times = times, func = ODE_SIR, parms = parms)

head(simul_disease_free, n = 2) # 2 first rows of the table

## time S I R
## [1,] 0.0 0.1000000 0 0
## [2,] 0.1 0.1856454 0 0

tail(simul_disease_free, n = 2) # 2 last rows of the table

## time S I R
## [100,] 9.9 0.9999548 0 0
## [101,] 10.0 0.9999591 0 0

Formatting of simulated data & graphical visualization

plot_simul <- function(simul, title = element_blank(), parms = NULL){

data <- data.frame("Time" = simul[,1] %>% rep(3),
"Compartment" = c("S", "I", "R") %>% rep(each = dim(simul)[1]),
"Density" = simul[,-1] %>% c)

data$Compartment <- factor(data$Compartment, levels = c("S", "I", "R"))

# Other possibility (more advanced in R):
#
# data <- simul %>% as.data.frame %>% tidyr::gather(Compartment, Density, -time) %>%
# dplyr::mutate(Compartment = factor(Compartment, labels = c("S", "I", "R"))) %>%
# dplyr::rename(Time = time)

caption <- ifelse(is.null(parms), yes = "",
no = paste("\n Parameters:", paste(names(parms), parms, sep = " = ", collapse = " ; ")))
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return(ggplot(data, aes(x = Time, y = Density, color = Compartment)) +
geom_line(cex = 1.3) +
labs(title = title, caption = caption) +
theme_bw() +
scale_color_manual(values = c("#619CFF", "#F8766D", "#00BA38")) +
theme(axis.text.x = element_text(size=11),

axis.text.y = element_text(size=11),
plot.caption = element_text(face = 'bold')))

}
plot_simul(simul_disease_free,

title = "Fig. 1. Simulation of the SIR model (1) for a disease-free population\n",
parms = parms) +

geom_hline(yintercept = lambda/delta, lty = 'dashed') + # disease-free equilibrium for S
annotate(geom="text", x=8, y=0.9*(lambda/delta), label="Disease-free equilibrium (DFE)")

Disease−free equilibrium (DFE)
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0.75
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0.0 2.5 5.0 7.5 10.0
Time
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en

si
ty

Compartment
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I

R

Fig. 1. Simulation of the SIR model (1) for a disease−free population

 Parameters: lambda = 1 ; delta = 1 ; beta = 5 ; alpha = 0.1 ; gamma = 0.1

1.2.2 Introduction of a low initial density of infected/infectious individuals in a population
at the disease-free equilibrium

Q1. Use the code given above, adding a low initial density of infected individuals to find the endemic
equilibrium - i.e. the values of Se, Ie and Re. Compare your results to the expected analytical values.

# Initialization of each compartment (at time t = t0)

I_t0 <- 0.001 # I(t0), (low) initial density of I

init_disease <- c("S" = (lambda/delta)-I_t0,
# S(t0), almost all the population is susceptible (S) at the DFE
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"I" = I_t0, # I(t0), low initial density of infected (I) individuals
"R" = 0) # R(t0), no recovered (R) individuals

Numerical integration

simul_disease <- lsoda(y = init_disease, times = times, func = ODE_SIR, parms = parms)

head(simul_disease, n = 2) # 2 first rows of the table

## time S I R
## [1,] 0.0 0.9990000 0.001000000 0.000000e+00
## [2,] 0.1 0.9985145 0.001462207 1.162723e-05

tail(simul_disease, n = 2) # 2 last rows of the table

## time S I R
## [100,] 9.9 0.2399978 0.6333386 0.06333182
## [101,] 10.0 0.2399980 0.6333379 0.06333201

Formatting of simulated data & graphical visualization

plot_simul(simul_disease, title = "Fig. 2. Simulation of the SIR model (1)\n", parms = parms) +
geom_hline(yintercept = c((delta+alpha+gamma)/beta, # endemic equilibrium for S,

lambda/(delta+alpha+gamma) - delta/beta, # I,
(gamma/delta)*(lambda/(delta+alpha+gamma) - delta/beta)), # and R

lty = 'dashed') +
annotate(geom="text", x=7.5, y=0.45, label="Endemic equilibriums in dashed lines")

Endemic equilibriums in dashed lines
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Fig. 2. Simulation of the SIR model (1)

 Parameters: lambda = 1 ; delta = 1 ; beta = 5 ; alpha = 0.1 ; gamma = 0.1
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As expected from the analysis of the model, the density of infected hosts increases because R0 = 4.16 > 1.
After a transient phase, the dynamical variables S(t), I(t) and R(t) converge toward the equilibrium values
derived above (i.e., Se, Ie and Re).

1.2.3 Overview

To sum up this section, Fig. 3 shows the establishment of the disease-free equilibrium, then the introduction
of a small density of infected individuals, eventually leading to the endemic equilibrium.

n_row_df <- dim(simul_disease_free)[1]

simul_disease[,1] <- simul_disease_free[n_row_df,1] + simul_disease[,1]

plot_simul(simul = rbind(simul_disease_free[-n_row_df,], simul_disease),
title = "Fig. 3. Overview of the simulations of the SIR model (1)
before and after the introduction of the pathogen\n", parms = parms) +

geom_vline(xintercept = simul_disease[1,1], lty = 'dashed') +
geom_label(aes(x = simul_disease[1,1], y = 1.2*(lambda/delta),

label = "Introduction\n of the pathogen"), fill = "white", col = 'black') +
ylim(c(0, 1.25*(lambda/delta)))

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

Introduction

 of the pathogen

0.0

0.4

0.8

1.2

0 5 10 15 20
Time

D
en

si
ty

Compartment

S

I

R

Fig. 3. Overview of the simulations of the SIR model (1)
           before and after the introduction of the pathogen

 Parameters: lambda = 1 ; delta = 1 ; beta = 5 ; alpha = 0.1 ; gamma = 0.1

rm(list=ls()) # Cleaning objects from the workplace
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2 Evolution

2.1 Dynamics of an epidemic with two pathogens

2.1.1 Analytical approach

Let’s assume that a new variant appears by mutation. Will this mutant invade and replace the previously
dominant form of the pathogen?

To answer this question we need to account for the circulation of this new variant which requires a new
system of ODE:

Q2. Write the system of ODE describing the epidemiological dynamics of two pathogenic strains, respectively
with parameters (β, α, γ) and (βm, αm, γm)

Ṡ(t) = λ − βI(t)S(t) − βmIm(t)S(t) − δS(t)
İ(t) = (βS(t) − (δ + α + γ))︸ ︷︷ ︸

r(t)

I(t)

˙Im(t) = (βmS(t) − (δ + αm + γm))︸ ︷︷ ︸
rm(t)

Im(t)

Ṙ(t) = γI(t) + γmIm(t) − δR(t)

(2)

Adding one strain requires an additional equation but do not forget to modify the other equations as the
presence of the mutant is also affecting the dynamics of S(t) and R(t).

2.1.2 Simulation approach

Q3. Using a modified version of the earlier code, simulate the epidemiological dynamics dictated by this new
system of ODE. Describe the dynamics of the two infected compartments. Did you expect this behaviour?

ODE_SIR.2 <- function(t, y, parms){

# t, the current time
# y, the current state of the system (/!\ to the order of the state variables)
# parms, the parameters of the model

# State variables
S <- y[1]
I <- y[2]
I_m <- y[3]
R <- y[4]

# Parameters
lambda <- parms["lambda"]
delta <- parms["delta"]
beta <- parms["beta"]
alpha <- parms["alpha"]
gamma <- parms["gamma"]
beta_m <- parms["beta_m"]
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alpha_m <- parms["alpha_m"]
gamma_m <- parms["gamma_m"]

# Temporal derivatives
dS <- lambda - delta*S - (beta*I + beta_m*I_m)*S
dI <- (beta*S - (delta + alpha + gamma))*I
dI_m <- (beta_m*S - (delta + alpha_m + gamma_m))*I_m
dR <- gamma*I + gamma_m*I_m - delta*R

result <- c(dS, dI, dI_m, dR)

# Return
list(result)

}

# Time points
t0 <- 0 # initial time
tf <- 15 # final time
times <- seq(from=t0, to=tf, by=0.01)

# Initialization of each compartment (at time t = t0)
I_t0 <- 0.001 # I(t0), initial density of I
I_m_t0 <- 0.001 # I_m(t0), initial density of I_m
I_T_t0 <- I_t0 + I_m_t0

init <- c("S" = 1-I_T_t0, # S(t0)
"I" = I_t0, # I(t0), individuals initially infected by the WT strain (ancestral)
"I_m" = I_m_t0, # I_m(t0), individuals initially infected by the variant
"R" = 0) # R(t0)

# Parameters
lambda = 1
delta = 1
beta = 10.5
gamma = 0.1
alpha = 1.1
beta_m = 12
gamma_m = 0.1
alpha_m = 1.5

parms = c("lambda"=lambda, "delta"=delta, "beta"=beta, "alpha"=alpha, "gamma"=gamma,
"beta_m"=beta_m, "alpha_m"=alpha_m, "gamma_m"=gamma_m)

Numerical integration

simul <- lsoda(y = init, times = times, func = ODE_SIR.2, parms = parms)

head(simul, n = 2) # 2 first rows of the table

## time S I I_m R
## [1,] 0.00 0.9980000 0.001000000 0.001000000 0.000000e+00
## [2,] 0.01 0.9977861 0.001086352 0.001098356 2.081938e-06
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tail(simul, n = 2) # 2 last rows of the table

## time S I I_m R
## [1500,] 14.99 0.2127208 0.2099941 0.1247275 0.03335710
## [1501,] 15.00 0.2127194 0.2100646 0.1246684 0.03335825

Formatting of simulated data & graphical visualization

plot_simul.2 <- function(simul, title = element_blank(), parms = NULL){

compartments <- colnames(simul)[2:5]
data <- data.frame("Time" = simul[,1] %>% rep(4),

"Compartment" = compartments %>% rep(each = dim(simul)[1]),
"Density" = simul[,2:5] %>% c)

data$Compartment <- factor(data$Compartment, levels = compartments)
caption <- ifelse(is.null(parms), yes = "",

no = paste("\n Parameters:", paste(names(parms), parms, sep = " = ", collapse = " ; ")))

return(ggplot(data, aes(x = Time, y = Density, color = Compartment)) +
geom_line(cex = 1.3) +
labs(title = title, caption = caption) +
theme_bw() +
scale_color_manual(values = c("#619CFF", "#F8766D", "#A90B0B", "#00BA38")) +
theme(axis.text.x = element_text(size=11),

axis.text.y = element_text(size=11),
plot.caption = element_text(hjust = 0, face = 'bold')))

}
plot_simul.2(simul, title = "Fig. 4. Simulation of the SIR model (2)\n", parms = parms)
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Fig. 4. Simulation of the SIR model (2)

 Parameters: lambda = 1 ; delta = 1 ; beta = 10.5 ; alpha = 1.1 ; gamma = 0.1 ; beta_m = 12 ; alpha_m = 1.5 ; gamma_m = 0.1
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In the simulation example presented in Fig. 4, both strains are introduced at very low densities with a 1:1
ratio and the variant (or mutant strain m) differs from the ancestral strain by a higher transmission rate
and a higher virulence. In this case, the mutant strain grows much faster at the beginning of the epidemic
but is then gradually replaced by the ancestral strain which dominates from t = 8.5. However, note that a
change in I(t) or in the parameter values - e.g. the traits of the mutant, the initial densities - can have a
dramatic impact on the dynamics.

2.1.3 Population genetics approach - derivation of the selection coefficient

At this stage and to understand these dynamics, it is useful to rewrite the above system of 4 equations (2)
in the following way:

Ṡ(t) = λ − β(t)IT (t)S(t) − δS(t)
İT (t) = β(t)IT (t)S(t) − (δ + α(t) + γ(t))IT (t)
Ṙ(t) = γ(t)IT (t) − δR(t)

(3a)

where IT (t) = I(t) + Im(t) and β(t) = (1 − pm(t))β + pm(t)βm

α(t) = (1 − pm(t))α + pm(t)αm

γ(t) = (1 − pm(t))γ + pm(t)γm with pm(t) = Im(t)
IT (t)

ṗm(t) = pm(t)(1 − pm(t))︸ ︷︷ ︸
genetic variance

(rm(t) − r(t))︸ ︷︷ ︸
selection coefficient

(3b)

Note again that (2) and (3) are equivalent but the second formulation decoupled epidemiological dynamics
(3a) and evolutionary dynamics (3b). In particular, it is insightful to examine the selection coefficient
s(t) = rm(t) − r(t) (Day & Gandon). To understand the effect of each life-history trait, it is important to
write the selection coefficient as:

s(t) = (βm − β)S(t) + (α + γ) − (αm + γm) (4)

Strains favoured by selection:

• Larger transmission rate

• Lower virulence rate

• Lower recovery rate

Note that the first term acts on the production of new infections (i.e. birth rate of the infection) while the
last two points act on the duration of infection (i.e. lower death rate of the infection).

Q4. To understand the dynamics of the two pathogenic strains, plot the frequency pm(t) as well as the
selection coefficient s(t) each as a function of time.
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simul <- simul %>% as.data.frame

simul$p_m <- simul$I_m / (simul$I_m+simul$I) # compute p_m(t)

simul$selection_coef <- (beta_m-beta)*simul$S+(alpha+gamma)-(alpha_m+gamma_m) # compute s(t)

s_threshold_index <- simul$selection_coef %>% abs %>% which.min
# Index of the value of s(t) closest to 0 in our simulation

S_threshold <- ((alpha_m+gamma_m)-(alpha+gamma))/(beta_m-beta)
# Analytical value of S(t) such that the selection coefficient of the variant is: s(t) = 0

plot_grid(

ggdraw() + draw_label(
"Fig. 5. Temporal dynamics of the frequency (A) and of the selection coefficient (B) of the variant

and of the density of available hosts (C) based on a simulation of the SIR model (2)-(3)\n",
x = 0.025, hjust = 0, size = 13),

ggplot(simul %>% as.data.frame, aes(x = time, y = p_m)) +
geom_line(cex = 1.3, col = "#A90B0B") +
geom_vline(xintercept = simul[s_threshold_index, 1], lty = 'dashed') +
labs(x = "Time", y = "p_m(t), frequency of the variant\n") +
scale_y_continuous(labels = scales::label_number(accuracy = 0.01)) +
xlim(c(0,4)) +
theme_bw() +
theme(axis.text.x = element_blank(), axis.title.x = element_blank(),

axis.text.y = element_text(size=11)),

ggplot(data = simul, aes(x = time, y = selection_coef, color = selection_coef)) +
geom_hline(yintercept = 0, cex = 1) +
geom_line(cex = 1.3) +
geom_vline(xintercept = simul[s_threshold_index, 1], lty = 'dashed') +
labs(y = "s(t), selection coefficient\n") +
scale_color_gradientn(colors = c("#AB0707", "white", "#169822"),

values = rescale(c(min(simul$selection_coef), 0,
max(simul$selection_coef)))) +

scale_y_continuous(labels = scales::label_number(accuracy = 0.01)) +
annotate(geom="text", label = "- s(t) > 0 (green): variant favoured by selection",

x = 2.25, y = 1.067, size = 3.5, hjust = 0) +
annotate(geom="text", label = "- s(t) < 0 (red): variant disfavoured by selection",

x = 2.25, y = 0.917, size = 3.5, hjust = 0) +
xlim(c(0,4)) +
theme_bw() +
theme(axis.text.x = element_blank(), axis.title.x = element_blank(),

axis.text.y = element_text(size=11), legend.position = 'none'),

ggplot(data = simul, aes(x = time, y = S)) +
geom_hline(yintercept = S_threshold, lty = 'dashed') +
geom_vline(xintercept = simul[s_threshold_index, 1], lty = 'dashed') +
geom_line(cex = 1.3, col = "#619CFF") +
geom_point(x = simul[s_threshold_index, 1], y = S_threshold, pch = 5, size = 2) +
scale_y_continuous(labels = scales::label_number(accuracy = 0.01)) +
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labs(x = "Time", y = "S(t), available susceptible hosts\n") +
xlim(c(0,4)) +
theme_bw() +
theme(axis.text.x = element_text(size=11), axis.text.y = element_text(size=11),

plot.caption = element_text(hjust = 0, face = 'bold')),

ggdraw() + draw_label(paste("Parameters:",
paste(names(parms), parms, sep = ' = ', collapse = ' ; ')),

size = 9, fontface = 'bold'),

labels = c("", "A)", "B)", "C)", ""), label_x = 0.03, label_y = c(0, 1.05, 1.05, 1.12, 0),
ncol = 1, rel_heights = c(0.3, 1, 1, 1, 0.1))

Fig. 5. Temporal dynamics of the frequency (A) and of the selection coefficient (B) of the variant
           and of the density of available hosts (C) based on a simulation of the SIR model (2)−(3)
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Parameters: lambda = 1 ; delta = 1 ; beta = 10.5 ; alpha = 1.1 ; gamma = 0.1 ; beta_m = 12 ; alpha_m = 1.5 ; gamma_m = 0.1
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Fig. 5-A and B show that the frequency of the variant increases at the beginning of the epidemic and
then gradually decreases (in this example, the maximum is reached around t = 0.86). When the frequency
of the variant increases, its selection coefficient is positive (the variant has a selective advantage). When
the variant no longer increases in frequency, its selection coefficient is zero. Eventually, when the variant is
progressively replaced by the other strain - i.e. the variant decreases in frequency -, its selection coefficient
becomes negative (and its value reflects the speed of this decay).

We added here the temporal dynamics of the S compartment (cf. Fig. 5-C). Note how the dynamics of
S(t) mirrors the dynamics of the selection coefficient. A particular value of S(t) is associated with the time
point when s(t) = 0 (i.e., when the variant reaches its maximum frequency).

Q5. Find the threshold value of S(t) for which the more selected strain changes, both analytically and
graphically (with a plot s(t) = f(S(t))).

The coefficient of selection of the mutant changes when s(t) = 0. Thus, we can define Ŝ(t) the threshold
value of S(t) where s(t) = 0 and using equation (4):

s(t) = 0 ⇐⇒ (βm − β)Ŝ(t) + (α + γ) − (αm + γm) = 0 ⇐⇒ Ŝ(t) = (αm + γm) − (α + γ)
βm − β

ggplot(data = simul, aes(x = S, y = selection_coef, col = selection_coef)) +
geom_hline(yintercept = 0, cex = 1) +
geom_line(cex = 1.3) +
labs(x = "\n S(t), available susceptible hosts", y = "s(t), selection coefficient\n",

title = "Fig. 6. Selection coefficient of the variant against the density of available hosts",
subtitle= "Based on a simulation of the SIR model (2)-(3)\n",
caption = paste("\n Parameters:", paste(names(parms), parms,

sep = " = ", collapse = " ; "))) +
geom_vline(xintercept = S_threshold, lty = 'dashed') +
scale_color_gradientn(colors = c("#C31515", "white", "#169822"),

values = rescale(c(min(simul$selection_coef), -0.1, 0.1,
max(simul$selection_coef)))) +

theme_bw() +
theme(axis.text.x = element_text(size=11),

axis.text.y = element_text(size=11),
legend.position = 'none',
plot.caption = element_text(hjust = 0, face = 'bold'))
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Fig. 6. Selection coefficient of the variant against the density of available hosts

 Parameters: lambda = 1 ; delta = 1 ; beta = 10.5 ; alpha = 1.1 ; gamma = 0.1 ; beta_m = 12 ; alpha_m = 1.5 ; gamma_m = 0.1

The selection coefficient of the variant s(t) is a linear function of S(t) as shown in Fig. 6 which is consistent
with (4). Here, the threshold density Ŝ(t) is about 0.27. Below this threshold, the selection coefficient is
negative (i.e. the variant is selected against), above, the selection coefficient is positive (i.e. the variant is
selected for). This is because this variant is more transmissible but more virulent than the other strain. As
shown in (4), this transmission advantage depends on the number of available hosts (S(t)). The selective
advantage of this kind of variant changes with the availability of susceptible hosts S(t). When there are no
longer enough susceptible hosts - i.e. below the calculated threshold density Ŝ(t) -, the virulence burden is
no longer compensated by the transmission advantage and the frequency of the variant drops.

rm(list = setdiff(ls(), lsf.str())) # Cleaning objects from the workplace except for the functions
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2.2 Adaptive dynamics (AD) approach - evolutionary invasion analysis

2.2.1 Analytical approach

Another classical approach to model the evolution of life-history is to focus on a situation where the mutant
is introduced when the epidemiological system is at the endemic equilibrium. This assumption makes sense
when the mutation rate is assumed to be very small. In this case, the epidemiology reaches the endemic
equilibrium before a new variant is introduced by mutation. In this case r = 0 and rm = βmSe−(δ+αm+γm).
In other words, the mutant can invade if and only if: rm > 0 which yields:

βm

δ + αm + γm
>

β

δ + α + γ
(5)

This condition is particularly useful when we want to assume some covariation among different life-history
traits (e.g., trade-off between transmission and virulence: impossible to increase transmission without higher
exploitation of the host). In this case, one can write the transmission rate as an increasing function of
virulence: β(α). Here we propose to use the trade-off function: β(α) = 10

√
α

The condition (5) means that adaptation is maximizing: R(α) = β(α)
δ+α+γ

The strategy α∗ that maximizes this ratio must verify:

dR(α)
dα

= 0 (6)

and d2R(α)
dα2 < 0

After some rearrangements (6) yields the following condition:

dβ(α)
dα

= β(α)
δ + α + γ

(7)

For the special case where β(α) = 10
√

α, one can find that:

α∗ = δ + γ

2.2.2 Numerical approach

Q6. Using the condition (5) and the trade-off function β(α) = 10
√

α, find if possible the parameters β∗ and
α∗ of a strain which cannot be invaded by any other strain. This strain is said to be at an Evolutionary
Stable Strategy (ESS). Compare your numerical approximation of α∗ with with the analytical solution. For
the sake of simplicity, use the following function for the trade-off:

Trade_off <- function(alpha, k=10, c=1/2){ # Concave relationship between transmission and virulence
return(k*alphaˆc) # = beta(alpha)

}

# Parameters

k <- 10
c <- 0.5

lambda <- 1
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delta <- 1
gamma <- gamma_m <- 0.1

alpha_vec <- seq(from=0, to=5, length.out = 500)
n_alpha <- length(alpha_vec)

Pairwise comparisons

PIP <- matrix(ncol = n_alpha, nrow = n_alpha) # matrix for Pairwise Invasibility Plot
diag(PIP) <- 0 # A variant cannot invade the resident strain with the same strategy

for(i in 1:(n_alpha-1)){

# Resident strain
alpha <- alpha_vec[i] # Virulence
beta <- Trade_off(alpha, k, c) # Transmission rate using the trade-off function

for(j in (i+1):n_alpha){

# Variant / Mutant strain
alpha_m <- alpha_vec[j] # Virulence
beta_m <- Trade_off(alpha_m, k, c) # Transmission rate using the trade-off function

# Eventually, can the mutant invade the resident strain: r_m > r ?
invasion <- ifelse(beta_m/(delta+alpha_m+gamma_m) > beta/(delta+alpha+gamma), # cf. equation (5)

yes = 1, no = 0)
PIP[i,j] <- invasion
PIP[j,i] <- 1-invasion

}
}
lim <- c(alpha_vec[1], alpha_vec[n_alpha])

levelplot(PIP, row.values = alpha_vec, column.values = alpha_vec, xlim = lim, ylim = lim,
colorkey = FALSE, col.regions = c('black', 'white'),
xlab = expression(paste(alpha, " (resident strain)")),
ylab = expression(paste(alpha[m], " (mutant strain)")),
main = list(label = "Fig. 7. Pairwise Invasibility Plot based on the the SIR model (2)-(3)",

cex = 1, font = 'plain'))
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Fig. 7. Pairwise Invasibility Plot based on the the SIR model (2)−(3)
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# Looking for the ESS (Evolutionary Stable Strategy)
ESS_index <- which(apply(PIP, 1, sum) == 0) # Only row with only '0'

# Analytical result
alpha_ESS <- delta + gamma

if(length(ESS_index) == 0){
print("No Evolutionary Stable Strategy (ESS)")

}else{
alpha_approx_ESS <- alpha_vec[ESS_index]
tab <- c(alpha_approx_ESS, (alpha_vec[n_alpha]-alpha_vec[1])/(2*(n_alpha-1))) %>% round(3) %>%

paste(collapse=" +/- ") %>% c(alpha_ESS) %>% as.data.frame
colnames(tab) <- "$\\alphaˆ{*} (timeˆ{-1})$"
rownames(tab) <- c("Numerical approximation", "Analytical solution")
kable(tab)

}

α∗(time−1)
Numerical approximation 1.102 +/- 0.005
Analytical solution 1.1

The virulence ESS α∗ may be found graphically on a Pairwise Invasibility Plot (PIP) where the diagonal is
intersected by the other boundary of the regions associated with an invasion of the resident strain (in white).
In this example, the PIP allows us to obtain a good approximation for virulence: α∗ ≈ 1.1.
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2.2.3 Geometric construction

Let’s simply note here that equation (7) yields a very useful geometric representation that one can use to
study the effect of various parameters on the evolutionary stable virulence strategy.

α*(ESS)

β*(ESS)

−(δ + γ)

0

10

20

30

0 2 4
α

β

Fig. 8. Geometric construction to find the Evolutionary Stable Strategy (ESS)

2.3 Adaptive dynamics (long term) vs. evolutionary epidemiology (transient
epidemic)

2.3.1 The ESS wins in the long term. . .

Q7. Starting from the endemic equilibrium of any pathogen with a strategy different from the ESS (Evolu-
tionary Stable Strategy), check with some simulations that it is always invaded by the ESS pathogen (both
strains following the same trade-off function).

# Time points
t0 <- 0 # initial time
tf <- 600 # final time
times <- seq(from=t0, to=tf, by=5)

# Parameters

k <- 10
c <- 0.5
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lambda = 1
delta = 1
gamma = gamma_m = 0.1

alpha <- 1.44 # different from the ESS
beta <- Trade_off(alpha, k, c)

alpha_m <- alpha_ESS # ESS
beta_m <- Trade_off(alpha_m, k, c)

parms <- c("lambda"=lambda, "delta"=delta, "beta"=beta, "alpha"=alpha, "gamma"=gamma,
"beta_m"=beta_m, "alpha_m"=alpha_m, "gamma_m"=gamma_m)

# Initialization at endemic equilibrium

S_e <- (delta+alpha+gamma)/beta
I_e <- lambda/(delta+alpha+gamma) - delta/beta
R_e <- (gamma/delta)*I_e

I_m_t0 <- 0.001 # I_m(t0), (very low) initial density of individuals infected by the variant

init_endemic <- c("S" = S_e, "I" = I_e, "I_m (ESS)" = I_m_t0, "R" = R_e)

# Simulation (long term)
simul_long_term <- lsoda(y = init_endemic, times = times, func = ODE_SIR.2, parms = parms)

plot_simul.2(simul_long_term, title = "Fig. 9. Simulation of the SIR model (2)-(3) in the long term\n",
parms = round(parms, 2))
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Fig. 9. Simulation of the SIR model (2)−(3) in the long term

 Parameters: lambda = 1 ; delta = 1 ; beta = 12 ; alpha = 1.44 ; gamma = 0.1 ; beta_m = 10.49 ; alpha_m = 1.1 ; gamma_m = 0.1
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We explore a scenario where the ancestral strain has reached the endemic equilibrium, the strain with the
ESS strategy is introduced at very low density. The latter gradually replaces the previously dominant strain
(it becomes dominant around t = 285). In this case, the replacement is quite slow. We can verify that the
ESS always invades when we use other ancestral strains. The speed of the invasion varies with the ancestral
strains.

2.3.2 . . . but the ESS can be outcompeted by other virulence strategies during transient
epidemics

Q8. Starting from the disease-free equilibrium, introduce two pathogen (one at the ESS) in small but equal
densities, both following the same trade-off function. Is the ESS pathogen always more selected than the
other pathogen? For the second pathogen, try with β < βm and β > βm. What do you notice? Suggest an
explanation.

# Time points
t0 <- 0 # initial time
tf <- 4 # final time
times <- seq(from=t0, to=tf, by=0.05)

# Initialization of each compartment
I_t0 <- I_m_t0 <- 0.001 # Initial density of infected individuals (resident and mutant strains)
I_T_t0 <- I_t0 + I_m_t0 # Total density of infected individuals

init_transient <- c("S" = 1-I_T_t0, "I" = I_t0, "I_m (ESS)" = I_m_t0, "R" = 0)

# Simulation (transient epidemic)
simul_transient <- lsoda(y = init_transient, times = times, func = ODE_SIR.2, parms = parms)

# Plot
Fig_transient <- plot_simul.2(simul_transient)

simul_transient <- as.data.frame(simul_transient)
simul_transient$p_m <- simul_transient[,4] / (simul_transient[,4]+simul_transient[,3])

plot_grid(

ggdraw() + draw_label(
"Fig. 10. Simulation of the SIR model (2)-(3) during a transient epidemic:

epidemiological dynamics (A) and temporal dynamics of the frequency of the variant (B)\n",
x = 0.025, hjust = 0, size = 13),

Fig_transient + theme(axis.text.x = element_blank(), axis.title.x = element_blank(),
legend.position = 'none'),

ggplot(simul_transient, aes(x = time, y = p_m)) +
geom_line(cex = 1.3, col = "#A90B0B") +
labs(caption = paste("\n Parameters:",

paste(names(parms), round(parms, 2), sep = ' = ', collapse = ' ; ')),
x = "Time", y = "p_m(t), frequency of the variant") +

theme_bw() +
theme(axis.text.x = element_text(size=11),

axis.text.y = element_text(size=11),
plot.caption = element_text(hjust = 0, face = 'bold')),
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ggplot() + theme_void(),

get_legend(Fig_transient),

ncol = 2, rel_heights = c(0.2, 1, 1), rel_widths = c(0.85, 0.15), byrow = FALSE,
labels = c("", "", "A)", "", "B)", ""), label_y = c(0, 0, 1.1, 0, 1.1, 0))

Fig. 10. Simulation of the SIR model (2)−(3) during a transient epidemic:
            epidemiological dynamics (A) and temporal dynamics of the frequency of the variant (B)
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 Parameters: lambda = 1 ; delta = 1 ; beta = 12 ; alpha = 1.44 ; gamma = 0.1 ; beta_m = 10.49 ; alpha_m = 1.1 ; gamma_m = 0.1

B)

In this simulation example (same parameters as above (Q7)), starting with small densities for both strains
(ratio 1:1), the one at the ESS (here, the variant) is always dominated by the other strain (here, the resident
strain) (cf. Fig. 10-A). At the beginning of the epidemic, the frequency of the variant drops from 0.5 to
0.33. This shows that, even if a strain has the best strategy in the long term (ESS), it may be transiently
outcompeted (when the host population is not at the endemic equilibrium) by another strain. If we continue
the simulation, however, the ESS strain will eventually invade. We already see for example in Fig. 10-B
that (albeit weakly) the frequency of the variant rises from t = 0.9.

As in Q4-5, the strain favoured in the short term is the most transmissible (and the most virulent according
to our trade-off function) because the available host density S(t) is not limiting (beginning of the epidemic),
while in the longer term (when S(t) is much lower) the transmission advantage no longer compensates for
the burden of a higher virulence (more details in §2.1.3. Population genetics approach - derivation
of the selection coefficient).

23



Theoretical results from the adaptive dynamics approach assume that evolutionary processes are much slower
than epidemiological dynamics and, therefore, that the system has always reached an equilibrium when a new
variant emerges. Evolutionary epidemiology does not rely on this assumption and allows us to understand
what factors affect the change in frequency of the mutant strain (e.g. the availability of susceptible hosts
S(t)) as discussed above in Q4-5.

3 References

Day T. & Gandon S. (2006) Insights from Price’s equation into evolutionary epidemiology. In: Disease evo-
lution: models, concepts and data analyses. (Feng, Z. Dieckmann U.; Levin, S., eds.) American Mathemat-
ical Society, p. 23-43.

Day T. & Gandon S. (2007) Applying population-genetic models in theoretical evolutionary epidemiology.
In: Ecology Letters (10): 876-888.

24





Bibliography

This is the bibliography supporting Chapter one (General introduction) and Chapter five (General discussion).

[1] Simon Benhamou and Valérie Séguinot. ‘How to find one’s way in the labyrinth of path integration

models’. In: Journal of Theoretical Biology 174.4 (1995), pp. 463–466. doi: 10.1006/jtbi.1995.0112

(cited on page vi).

[2] Hongzhou Lu, Charles W Stratton, and Yi-Wei Tang. ‘Outbreak of pneumonia of unknown etiology in

Wuhan, China: The mystery and the miracle’. In: Journal of medical virology 92.4 (2020), p. 401. doi:

10.1002/jmv.25678 (cited on pages 3, 167).

[3] WHO. ‘WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020’.

In: (2020) (cited on pages 3, 167).

[4] Raymond E Goldstein. ‘Are theoretical results ‘Results’?’ In: Elife 7 (2018), e40018. doi: 10.7554/eLife.

40018 (cited on pages 3, 167).

[5] Daniel Bernoulli. ‘An attempt at a new analysis of the mortality caused by smallpox and of the

advantages of inoculation to prevent it’. In: Histoire de l’Académie royale des sciences avec les mémoires de
mathématique, de physique (1760) (cited on pages 3, 167).

[6] Ronald Ross. ‘Inaugural lecture on the possibility of extirpating malaria from certain localities by

a new method’. In: British medical journal 2.2009 (1899), p. 1. doi: 10.1136/bmj.2.2009.1 (cited on

pages 3, 167).

[7] Ronald Ross. ‘The logical basis of the sanitary policy of mosquito reduction’. In: Science 22.570 (1905),

pp. 689–699. doi: 10.1126/science.22.570.689 (cited on pages 3, 167).

[8] Ronald Ross. The prevention of malaria. John Murray, 1911 (cited on pages 3, 167).

[9] William Ogilvy Kermack and Anderson G McKendrick. ‘A contribution to the mathematical theory of

epidemics’. In: Proceedings of the royal society of london. Series A, Containing papers of a mathematical and
physical character 115.772 (1927), pp. 700–721. doi: 10.1098/rspa.1927.0118 (cited on pages 3, 7, 26,

162, 167).

[10] Henrik Salje, Cécile Tran Kiem, Noémie Lefrancq, Noémie Courtejoie, Paolo Bosetti, Juliette Paireau,

Alessio Andronico, Nathanaël Hozé, Jehanne Richet, Claire-Lise Dubost, et al. ‘Estimating the burden

of SARS-CoV-2 in France’. In: Science 369.6500 (2020), pp. 208–211. doi: 10.1126/science.abc3517

(cited on pages 3, 167).

[11] Neil M Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin,

Sangeeta Bhatia, Adhiratha Boonyasiri, Zulma Cucunubá, Gina Cuomo-Dannenburg, et al. ‘Report 9:

Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare

demand’. In: 16 (2020). doi: 10.25561/77482 (cited on pages 3, 167).

[12] Juliette Paireau, Alessio Andronico, Nathanaël Hozé, Maylis Layan, Pascal Crepey, Alix Roumagnac,

Marc Lavielle, Pierre-Yves Boëlle, and Simon Cauchemez. ‘An ensemble model based on early

predictors to forecast COVID-19 health care demand in France’. In: Proceedings of the National Academy
of Sciences 119.18 (2022), e2103302119. doi: 10.1073/pnas.2103302119 (cited on pages 3, 167).

[13] Nathan D Grubaugh, Mary E Petrone, and Edward C Holmes. ‘We shouldn’t worry when a virus

mutates during disease outbreaks’. In: Nature microbiology 5.4 (2020), pp. 529–530. doi: 10.1038/

s41564-020-0690-4 (cited on pages 4, 168).

[14] Jason W Rausch, Adam A Capoferri, Mary Grace Katusiime, Sean C Patro, and Mary F Kearney. ‘Low

genetic diversity may be an Achilles heel of SARS-CoV-2’. In: Proceedings of the National Academy of
Sciences 117.40 (2020), pp. 24614–24616. doi: 10.1073/pnas.2017726117 (cited on pages 4, 168).

https://doi.org/10.1006/jtbi.1995.0112
https://doi.org/10.1002/jmv.25678
https://doi.org/10.7554/eLife.40018
https://doi.org/10.7554/eLife.40018
https://doi.org/10.1136/bmj.2.2009.1
https://doi.org/10.1126/science.22.570.689
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1126/science.abc3517
https://doi.org/10.25561/77482
https://doi.org/10.1073/pnas.2103302119
https://doi.org/10.1038/s41564-020-0690-4
https://doi.org/10.1038/s41564-020-0690-4
https://doi.org/10.1073/pnas.2017726117


[15] Bette Korber, Will M Fischer, Sandrasegaram Gnanakaran, Hyejin Yoon, James Theiler, Werner

Abfalterer, Nick Hengartner, Elena E Giorgi, Tanmoy Bhattacharya, Brian Foley, et al. ‘Tracking

changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus’. In:

Cell 182.4 (2020), pp. 812–827. doi: 10.1016/j.cell.2020.06.043 (cited on page 4).

[16] Jessica A Plante, Yang Liu, Jianying Liu, Hongjie Xia, Bryan A Johnson, Kumari G Lokugamage,

Xianwen Zhang, Antonio E Muruato, Jing Zou, Camila R Fontes-Garfias, et al. ‘Spike mutation D614G

alters SARS-CoV-2 fitness’. In: Nature 592.7852 (2021), pp. 116–121. doi: 10.1038/s41586-020-2895-3

(cited on pages 4, 168).

[17] Erik Volz, Verity Hill, John T McCrone, Anna Price, David Jorgensen, Áine O’Toole, Joel Southgate,

Robert Johnson, Ben Jackson, Fabricia F Nascimento, et al. ‘Evaluating the effects of SARS-CoV-2

spike mutation D614G on transmissibility and pathogenicity’. In: Cell 184.1 (2021), pp. 64–75. doi:

10.1016/j.cell.2020.11.020 (cited on pages 4, 168).

[18] Nathan D Grubaugh, William P Hanage, and Angela L Rasmussen. ‘Making sense of mutation: what

D614G means for the COVID-19 pandemic remains unclear’. In: Cell 182.4 (2020), pp. 794–795. doi:

10.1016/j.cell.2020.06.040 (cited on pages 4, 168).

[19] Public Health England. Investigation of novel SARS-COV-2 variant 202012/01: technical briefing 5. 2020

(cited on pages 4, 23, 168).

[20] Erik Volz, Swapnil Mishra, Meera Chand, Jeffrey C Barrett, Robert Johnson, Lily Geidelberg, Wes R

Hinsley, Daniel J Laydon, Gavin Dabrera, Áine O’Toole, et al. ‘Assessing transmissibility of SARS-CoV-2

lineage B.1.1.7 in England’. In: Nature 593.7858 (2021), pp. 266–269. doi: 10.1038/s41586-021-03470-x

(cited on pages 4, 168).

[21] Shruti Khare, Céline Gurry, Lucas Freitas, Mark B Schultz, Gunter Bach, Amadou Diallo, Nancy Akite,

Joses Ho, Raphael TC Lee, Winston Yeo, et al. ‘GISAID’s role in pandemic response’. In: China CDC
weekly 3.49 (2021), p. 1049. doi: 10.46234/ccdcw2021.255 (cited on pages 4, 23, 168).

[22] Sébastien Lion, Akira Sasaki, and Mike Boots. ‘Extending eco-evolutionary theory with oligomorphic

dynamics’. In: Ecology Letters 26 (2023), S22–S46. doi: 10.1111/ele.14183 (cited on pages 7, 14, 17).

[23] Stefan AH Geritz, E Kisdi, Géza Meszéna, and Johan AJ Metz. ‘Evolutionarily singular strategies

and the adaptive growth and branching of the evolutionary tree’. In: Evolutionary ecology 12 (1998),

pp. 35–57 (cited on pages 7, 14).

[24] Ulf Dieckmann. ‘Adaptive dynamics of pathogen-host interactions’. In: Adaptive Dynamics of Infectious
Diseases: In Pursuit of Virulence Management. Ed. by Ulf Dieckmann, Johan AJ Metz, Maurice W Sabelis,

and Karl Sigmund. Cambridge University Press, 2002, pp. 39–59 (cited on pages 7, 14).

[25] Roy M Anderson and Robert M May. Infectious diseases of humans: dynamics and control. Oxford

University Press, 1991 (cited on pages 7, 10).

[26] Einav G Levin, Yaniv Lustig, Carmit Cohen, Ronen Fluss, Victoria Indenbaum, Sharon Amit, Ram

Doolman, Keren Asraf, Ella Mendelson, Arnona Ziv, et al. ‘Waning immune humoral response to

BNT162b2 Covid-19 vaccine over 6 months’. In: New England Journal of Medicine 385.24 (2021), e84. doi:

10.1056/NEJMoa2114583 (cited on page 8).

[27] UKHSA. COVID-19 vaccine surveillance report – Week 16. 2022 (cited on page 8).

[28] Alessandro M Carabelli, Thomas P Peacock, Lucy G Thorne, William T Harvey, Joseph Hughes,

Sharon J Peacock, Wendy S Barclay, Thushan I De Silva, Greg J Towers, and David L Robertson.

‘SARS-CoV-2 variant biology: immune escape, transmission and fitness’. In: Nature Reviews Microbiology
21.3 (2023), pp. 162–177. doi: 10.1038/s41579-022-00841-7 (cited on page 8).

[29] Hamish McCallum, Nigel Barlow, and Jim Hone. ‘How should pathogen transmission be modelled?’

In: Trends in ecology & evolution 16.6 (2001), pp. 295–300. doi: 10.1016/S0169-5347(01)02144-9 (cited

on page 8).

[30] Jacco Wallinga and Marc Lipsitch. ‘How generation intervals shape the relationship between growth

rates and reproductive numbers’. In: Proceedings of the Royal Society B: Biological Sciences 274.1609

(2007), pp. 599–604. doi: 10.1098/rspb.2006.3754 (cited on pages 9, 10, 162).

https://doi.org/10.1016/j.cell.2020.06.043
https://doi.org/10.1038/s41586-020-2895-3
https://doi.org/10.1016/j.cell.2020.11.020
https://doi.org/10.1016/j.cell.2020.06.040
https://doi.org/10.1038/s41586-021-03470-x
https://doi.org/10.46234/ccdcw2021.255
https://doi.org/10.1111/ele.14183
https://doi.org/10.1056/NEJMoa2114583
https://doi.org/10.1038/s41579-022-00841-7
https://doi.org/10.1016/S0169-5347(01)02144-9
https://doi.org/10.1098/rspb.2006.3754


[31] Raphaël Forien, Guodong Pang, and Étienne Pardoux. ‘Estimating the state of the COVID-19 epidemic

in France using a model with memory’. In: Royal Society open science 8.3 (2021), p. 202327. doi:

10.1098/rsos.202327 (cited on pages 9, 162).

[32] Mircea T Sofonea, Bastien Reyné, Baptiste Elie, Ramsès Djidjou-Demasse, Christian Selinger, Yannis

Michalakis, and Samuel Alizon. ‘Memory is key in capturing COVID-19 epidemiological dynamics’.

In: Epidemics 35 (2021), p. 100459. doi: 10.1016/j.epidem.2021.100459 (cited on pages 9, 162).

[33] Åke Svensson. ‘A note on generation times in epidemic models’. In: Mathematical biosciences 208.1

(2007), pp. 300–311. doi: 10.1016/j.mbs.2006.10.010 (cited on page 9).

[34] Sang Woo Park, David Champredon, Joshua S Weitz, and Jonathan Dushoff. ‘A practical generation-

interval-based approach to inferring the strength of epidemics from their speed’. In: Epidemics 27

(2019), pp. 12–18. doi: 10.1016/j.epidem.2018.12.002 (cited on pages 9, 10).

[35] Roy M Anderson and Robert M May. ‘Coevolution of hosts and parasites’. In: Parasitology 85.2 (1982),

pp. 411–426. doi: 10.1017/S0031182000055360 (cited on pages 10, 16).

[36] Odo Diekmann, Johan Andre Peter Heesterbeek, and Johan Anton Jacob Metz. ‘On the definition and

the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous

populations’. In: Journal of mathematical biology 28 (1990), pp. 365–382 (cited on page 10).

[37] Odo Diekmann and Johan Andre Peter Heesterbeek. Mathematical epidemiology of infectious diseases:
model building, analysis and interpretation. Vol. 5. John Wiley & Sons, 2000 (cited on page 10).

[38] Jonathan Dushoff and Sang Woo Park. ‘Speed and strength of an epidemic intervention’. In: Proceedings
of the Royal Society B 288.1947 (2021), p. 20201556. doi: 10.1098/rspb.2020.1556 (cited on page 10).

[39] Maximilian M Nguyen, Ari S Freedman, Sinan A Ozbay, and Simon A Levin. ‘Fundamental bound on

epidemic overshoot in the SIR model’. In: Journal of the Royal Society Interface 20.209 (2023), p. 20230322.

doi: 10.1098/rsif.2023.0322 (cited on page 11).

[40] Sarah Cobey. ‘Modeling infectious disease dynamics’. In: Science 368.6492 (2020), pp. 713–714. doi:

10.1126/science.abb5659 (cited on page 11).

[41] Karline Soetaert, Thomas Petzoldt, and R Woodrow Setzer. ‘Solving differential equations in R:

package deSolve’. In: Journal of statistical software 33 (2010), pp. 1–25. doi: 10.18637/jss.v033.i09

(cited on page 11).

[42] Selma Gago, Santiago F Elena, Ricardo Flores, and Rafael Sanjuán. ‘Extremely high mutation rate of

a hammerhead viroid’. In: Science 323.5919 (2009), pp. 1308–1308. doi: 10.1126/science.1169202

(cited on page 12).

[43] Csaba Pal, María D Maciá, Antonio Oliver, Ira Schachar, and Angus Buckling. ‘Coevolution with

viruses drives the evolution of bacterial mutation rates’. In: Nature 450.7172 (2007), pp. 1079–1081. doi:

10.1038/nature06350 (cited on page 12).

[44] Siobain Duffy, Laura A Shackelton, and Edward C Holmes. ‘Rates of evolutionary change in viruses:

patterns and determinants’. In: Nature Reviews Genetics 9.4 (2008), pp. 267–276. doi: 10.1038/nrg2323

(cited on page 12).

[45] Everett Clinton Smith, Nicole R Sexton, and Mark R Denison. ‘Thinking outside the triangle:

replication fidelity of the largest RNA viruses’. In: Annual review of virology 1.1 (2014), pp. 111–132. doi:

10.1146/annurev-virology-031413-085507 (cited on page 12).

[46] Motoo Kimura et al. ‘Evolutionary rate at the molecular level’. In: Nature 217.5129 (1968), pp. 624–626.

doi: 10.1038/217624a0 (cited on page 12).

[47] Charles Darwin. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life. London: John Murray, Albemarle Street., 1859 (cited on page 12).

[48] Andrew Gonzalez, Ophélie Ronce, Regis Ferriere, and Michael E Hochberg. ‘Evolutionary rescue: an

emerging focus at the intersection between ecology and evolution’. In: Philosophical Transactions of the
Royal Society B: Biological Sciences 368.1610 (2013), p. 20120404. doi: 10.1098/rstb.2012.0404 (cited

on page 12).

https://doi.org/10.1098/rsos.202327
https://doi.org/10.1016/j.epidem.2021.100459
https://doi.org/10.1016/j.mbs.2006.10.010
https://doi.org/10.1016/j.epidem.2018.12.002
https://doi.org/10.1017/S0031182000055360
https://doi.org/10.1098/rspb.2020.1556
https://doi.org/10.1098/rsif.2023.0322
https://doi.org/10.1126/science.abb5659
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.1126/science.1169202
https://doi.org/10.1038/nature06350
https://doi.org/10.1038/nrg2323
https://doi.org/10.1146/annurev-virology-031413-085507
https://doi.org/10.1038/217624a0
https://doi.org/10.1098/rstb.2012.0404


[49] Sylvain Gandon, Michael E Hochberg, Robert D Holt, and Troy Day. ‘What limits the evolutionary

emergence of pathogens?’ In: Philosophical transactions of the Royal Society B: biological sciences 368.1610

(2013), p. 20120086. doi: 10.1098/rstb.2012.0086 (cited on page 12).

[50] Peter V Markov, Mahan Ghafari, Martin Beer, Katrina Lythgoe, Peter Simmonds, Nikolaos I Stilianakis,

and Aris Katzourakis. ‘The evolution of SARS-CoV-2’. In: Nature Reviews Microbiology 21.6 (2023),

pp. 361–379. doi: 10.1038/s41579-023-00878-2 (cited on pages 12, 13).

[51] Robert C Lacy. ‘Loss of genetic diversity from managed populations: interacting effects of drift,

mutation, immigration, selection, and population subdivision’. In: Conservation biology 1.2 (1987),

pp. 143–158. doi: 10.1111/j.1523-1739.1987.tb00023.x (cited on page 12).

[52] Sewall Wright. ‘Classification of the factors of evolution.’ In: Cold Spring Harbor Symposia on Quantitative
Biology 20 (1955), pp. 16–24 (cited on page 13).

[53] Troy Day, Sylvain Gandon, Sébastien Lion, and Sarah P Otto. ‘On the evolutionary epidemiology

of SARS-CoV-2’. In: Current Biology 30.15 (2020), R849–R857. doi: 10.5683/SP2/VKH3LE (cited on

pages 13, 18, 21, 158).

[54] Sébastien Lion and Johan AJ Metz. ‘Beyond R0 maximisation: on pathogen evolution and environmental

dimensions’. In: Trends in ecology & evolution 33.6 (2018), pp. 458–473. doi: 10.1016/j.tree.2018.02.

004 (cited on pages 14, 15).

[55] Odo Diekmann. ‘A beginner’s guide to adaptive dynamics’. In: Banach Center Publications 63 (2004),

pp. 47–86 (cited on page 15).

[56] Samuel Alizon, Amy Hurford, Nicole Mideo, and Minus Van Baalen. ‘Virulence evolution and the

trade-off hypothesis: history, current state of affairs and the future’. In: Journal of evolutionary biology
22.2 (2009), pp. 245–259. doi: 10.1111/j.1420-9101.2008.01658.x (cited on pages 15, 16).

[57] Troy Day and Stephen R Proulx. ‘A general theory for the evolutionary dynamics of virulence’. In: The
American Naturalist 163.4 (2004), E40–E63. doi: 10.1086/382548 (cited on page 16).

[58] Samuel Alizon and Yannis Michalakis. ‘Adaptive virulence evolution: the good old fitness-based

approach’. In: Trends in ecology & evolution 30.5 (2015), pp. 248–254. doi: 10.1016/j.tree.2015.02.009

(cited on page 16).

[59] Troy Day and Sylvain Gandon. ‘Insights from Price’s equation into evolutionary epidemiology’. In:

Disease evolution: models, concepts, and data analyses 71 (2006), pp. 23–44. doi: 10.1090/dimacs/071/02

(cited on pages 17, 22).

[60] Peter D Taylor and Leo B Jonker. ‘Evolutionary stable strategies and game dynamics’. In: Mathematical
biosciences 40.1-2 (1978), pp. 145–156. doi: 10.1016/0025-5564(78)90077-9 (cited on page 17).

[61] Peter Schuster and Karl Sigmund. ‘Replicator dynamics’. In: Journal of theoretical biology 100.3 (1983),

pp. 533–538. doi: 10.1016/0022-5193(83)90445-9 (cited on page 17).

[62] Troy Day and Sylvain Gandon. ‘Applying population-genetic models in theoretical evolutionary

epidemiology’. In: Ecology Letters 10.10 (2007), pp. 876–888. doi: 10.1111/j.1461-0248.2007.01091.x

(cited on page 18).

[63] Sylvain Gandon and Sébastien Lion. ‘Targeted vaccination and the speed of SARS-CoV-2 adaptation’. In:

Proceedings of the National Academy of Sciences 119.3 (2022), e2110666119. doi: 10.1073/pnas.2110666119

(cited on pages 18, 21, 170).

[64] Luis-Miguel Chevin. ‘On measuring selection in experimental evolution’. In: Biology letters 7.2 (2011),

pp. 210–213. doi: 10.1098/rsbl.2010.0580 (cited on page 18).

[65] Sarah P Otto, Troy Day, Julien Arino, Caroline Colĳn, Jonathan Dushoff, Michael Li, Samir Mechai,

Gary Van Domselaar, Jianhong Wu, David JD Earn, et al. ‘The origins and potential future of SARS-

CoV-2 variants of concern in the evolving COVID-19 pandemic’. In: Current Biology 31.14 (2021),

R918–R929. doi: 10.1016/j.cub.2021.06.049 (cited on pages 18, 158, 159).

[66] Laura Boyle, Sofia Hletko, Jenny Huang, June Lee, Gaurav Pallod, Hwai-Ray Tung, and Richard

Durrett. ‘Selective sweeps in SARS-CoV-2 variant competition’. In: Proceedings of the National Academy
of Sciences 119.47 (2022), e2213879119. doi: 10.1073/pnas.2213879119 (cited on pages 18, 159).

https://doi.org/10.1098/rstb.2012.0086
https://doi.org/10.1038/s41579-023-00878-2
https://doi.org/10.1111/j.1523-1739.1987.tb00023.x
https://doi.org/10.5683/SP2/VKH3LE
https://doi.org/10.1016/j.tree.2018.02.004
https://doi.org/10.1016/j.tree.2018.02.004
https://doi.org/10.1111/j.1420-9101.2008.01658.x
https://doi.org/10.1086/382548
https://doi.org/10.1016/j.tree.2015.02.009
https://doi.org/10.1090/dimacs/071/02
https://doi.org/10.1016/0025-5564(78)90077-9
https://doi.org/10.1016/0022-5193(83)90445-9
https://doi.org/10.1111/j.1461-0248.2007.01091.x
https://doi.org/10.1073/pnas.2110666119
https://doi.org/10.1098/rsbl.2010.0580
https://doi.org/10.1016/j.cub.2021.06.049
https://doi.org/10.1073/pnas.2213879119


[67] Erik Volz. ‘Fitness, growth and transmissibility of SARS-CoV-2 genetic variants’. In: Nature Reviews
Genetics 24.10 (2023), pp. 724–734. doi: 10.1038/s41576-023-00610-z (cited on pages 18, 36, 159).

[68] Thomas W Berngruber, Rémy Froissart, Marc Choisy, and Sylvain Gandon. ‘Evolution of virulence in

emerging epidemics’. In: PLoS pathogens 9.3 (2013), e1003209. doi: 10.1371/journal.ppat.1003209

(cited on pages 18, 35, 158, 164, 171, 172).

[69] Andrei Nikolaevich Tikhonov. ‘Systems of differential equations containing small parameters in the

derivatives. [In Russian]’. In: Matematicheskii sbornik 73.3 (1952), pp. 575–586 (cited on page 20).

[70] Sergio Rinaldi and Marten Scheffer. ‘Geometric analysis of ecological models with slow and fast

processes’. In: Ecosystems 3 (2000), pp. 507–521. doi: 10.1007/s100210000045 (cited on page 20).

[71] Ferdinand Verhulst. ‘Singular perturbation methods for slow–fast dynamics’. In: Nonlinear Dynamics
50 (2007), pp. 747–753. doi: 10.1007/s11071-007-9236-z (cited on pages 20, 21).

[72] Erida Gjini and Sten Madec. ‘A slow-fast dynamic decomposition links neutral and non-neutral

coexistence in interacting multi-strain pathogens’. In: Theoretical Ecology 10 (2017), pp. 129–141. doi:

10.1007/s12080-016-0320-1 (cited on pages 20, 21).

[73] Hildeberto Jardón-Kojakhmetov, Christian Kuehn, Andrea Pugliese, and Mattia Sensi. ‘A geometric

analysis of the SIR, SIRS and SIRWS epidemiological models’. In: Nonlinear Analysis: Real World
Applications 58 (2021), p. 103220. doi: 10.1016/j.nonrwa.2020.103220 (cited on pages 20, 21).

[74] Troy Day, David A Kennedy, Andrew F Read, and Sylvain Gandon. ‘Pathogen evolution during

vaccination campaigns’. In: PLoS biology 20.9 (2022), e3001804. doi: 10.1371/journal.pbio.3001804

(cited on page 21).

[75] Sylvain Gandon. ‘Why be temperate: lessons from bacteriophage 𝜆’. In: Trends in microbiology 24.5

(2016), pp. 356–365. doi: 10.1016/j.tim.2016.02.008 (cited on page 22).

[76] Sylvain Gandon. ‘Evolution of multihost parasites’. In: Evolution 58.3 (2004), pp. 455–469. doi:

10.1111/j.0014-3820.2004.tb01669.x (cited on page 22).

[77] Roland R Regoes, Martin A Nowak, and Sebastian Bonhoeffer. ‘Evolution of virulence in a hetero-

geneous host population’. In: Evolution 54.1 (2000), pp. 64–71. doi: 10.1111/j.0014-3820.2000.

tb00008.x (cited on page 22).

[78] Sébastien Lion. ‘Class structure, demography, and selection: reproductive-value weighting in nonequi-

librium, polymorphic populations’. In: The American Naturalist 191.5 (2018), pp. 620–637. doi: 10.1086/

696976 (cited on pages 22, 160, 170).

[79] Odo Diekmann, JAP Heesterbeek, and Michael G Roberts. ‘The construction of next-generation

matrices for compartmental epidemic models’. In: Journal of the royal society interface 7.47 (2010),

pp. 873–885. doi: 10.1098/rsif.2009.0386 (cited on page 22).

[80] Emma B. Hodcroft. CoVariants: SARS-CoV-2 Mutations and Variants of Interest. 2021. url: https:

//covariants.org/ (cited on page 23).

[81] James Hadfield, Colin Megill, Sidney M Bell, John Huddleston, Barney Potter, Charlton Callender,

Pavel Sagulenko, Trevor Bedford, and Richard A Neher. ‘Nextstrain: real-time tracking of pathogen

evolution’. In: Bioinformatics 34.23 (2018), pp. 4121–4123. doi: 10.1093/bioinformatics/bty407 (cited

on page 23).

[82] Ronald A Fisher. ‘On an absolute criterion for fitting frequency curves’. In: Messenger of mathematics 41

(1912), pp. 155–156 (cited on page 24).

[83] Ronald A Fisher. ‘On the mathematical foundations of theoretical statistics’. In: Philosophical transactions
of the Royal Society of London. Series A, containing papers of a mathematical or physical character 222.594-604

(1922), pp. 309–368. doi: 10.1098/rsta.1922.0009 (cited on page 24).

[84] Hirotugu Akaike. ‘A new look at the statistical model identification’. In: IEEE transactions on automatic
control 19.6 (1974), pp. 716–723. doi: 10.1109/TAC.1974.1100705 (cited on page 25).

[85] Franz-Georg Wieland, Adrian L Hauber, Marcus Rosenblatt, Christian Tönsing, and Jens Timmer. ‘On

structural and practical identifiability’. In: Current Opinion in Systems Biology 25 (2021), pp. 60–69. doi:

10.1016/j.coisb.2021.03.005 (cited on page 26).

https://doi.org/10.1038/s41576-023-00610-z
https://doi.org/10.1371/journal.ppat.1003209
https://doi.org/10.1007/s100210000045
https://doi.org/10.1007/s11071-007-9236-z
https://doi.org/10.1007/s12080-016-0320-1
https://doi.org/10.1016/j.nonrwa.2020.103220
https://doi.org/10.1371/journal.pbio.3001804
https://doi.org/10.1016/j.tim.2016.02.008
https://doi.org/10.1111/j.0014-3820.2004.tb01669.x
https://doi.org/10.1111/j.0014-3820.2000.tb00008.x
https://doi.org/10.1111/j.0014-3820.2000.tb00008.x
https://doi.org/10.1086/696976
https://doi.org/10.1086/696976
https://doi.org/10.1098/rsif.2009.0386
https://covariants.org/
https://covariants.org/
https://doi.org/10.1093/bioinformatics/bty407
https://doi.org/10.1098/rsta.1922.0009
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1016/j.coisb.2021.03.005


[86] N Cunniffe, F Hamelin, A Iggidr, A Rapaport, and G Sallet. ‘Identifiability and Observability in

Epidemiological Models’. In: (2023) (cited on pages 26, 27).

[87] Claudio Cobelli and Joseph J Distefano III. ‘Parameter and structural identifiability concepts and

ambiguities: a critical review and analysis’. In: American Journal of Physiology-Regulatory, Integrative
and Comparative Physiology 239.1 (1980), R7–R24. doi: 10.1152/ajpregu.1980.239.1.r7 (cited on

page 26).

[88] Andreas Raue, Johan Karlsson, Maria Pia Saccomani, Mats Jirstrand, and Jens Timmer. ‘Comparison

of approaches for parameter identifiability analysis of biological systems’. In: Bioinformatics 30.10

(2014), pp. 1440–1448. doi: 10.1093/bioinformatics/btu006 (cited on pages 26, 27).

[89] Giuseppina Bellu, Maria Pia Saccomani, Stefania Audoly, and Leontina D’Angiò. ‘DAISY: A new

software tool to test global identifiability of biological and physiological systems’. In: Computer methods
and programs in biomedicine 88.1 (2007), pp. 52–61. doi: 10.1016/j.cmpb.2007.07.002 (cited on

page 26).

[90] Andreas Raue, Clemens Kreutz, Thomas Maiwald, Julie Bachmann, Marcel Schilling, Ursula Kling-

müller, and Jens Timmer. ‘Structural and practical identifiability analysis of partially observed

dynamical models by exploiting the profile likelihood’. In: Bioinformatics 25.15 (2009), pp. 1923–1929.

doi: 10.1093/bioinformatics/btp358 (cited on pages 26, 27).

[91] F Hamelin, A Iggidr, A Rapaport, G Sallet, and M Souza. ‘About the identifiability and observability

of the SIR epidemic model with quarantine’. In: IFAC-PapersOnLine 56.2 (2023), pp. 4025–4030. doi:

10.1016/j.ifacol.2023.10.1384 (cited on page 26).

[92] Necibe Tuncer and Trang T Le. ‘Structural and practical identifiability analysis of outbreak models’.

In: Mathematical biosciences 299 (2018), pp. 1–18. doi: 10.1016/j.mbs.2018.02.004 (cited on pages 26,

27).

[93] John A Nelder and Roger Mead. ‘A simplex method for function minimization’. In: The computer
journal 7.4 (1965), pp. 308–313. doi: 10.1093/comjnl/7.4.308 (cited on page 28).

[94] Bradley Efron. ‘Bootstrap methods: Another look at the jackknife’. In: The Annals of Statistics 7.1 (1979),

pp. 1–26. doi: 10.1214/aos/1176344552 (cited on page 33).

[95] Regina Y Liu. ‘Bootstrap procedures under some non-iid models’. In: The annals of statistics 16.4 (1988),

pp. 1696–1708. doi: 10.1214/aos/1176351062 (cited on page 33).

[96] Patrick Kline and Andres Santos. ‘A score based approach to wild bootstrap inference’. In: Journal of
Econometric Methods 1.1 (2012), pp. 23–41. doi: 10.1515/2156-6674.1006 (cited on page 33).

[97] Peter Bühlmann. ‘Sieve bootstrap for time series’. In: Bernoulli (1997), pp. 123–148. doi:10.2307/3318584

(cited on page 33).

[98] Gustavo Ulloa, Héctor Allende-Cid, and Héctor Allende. ‘Sieve bootstrap prediction intervals for

contaminated non-linear processes’. In: Progress in Pattern Recognition, Image Analysis, Computer
Vision, and Applications: 18th Iberoamerican Congress, CIARP 2013, Havana, Cuba, November 20-23, 2013,
Proceedings, Part I 18. Springer. 2013, pp. 84–91 (cited on page 33).

[99] Thomas Hale, Noam Angrist, Rafael Goldszmidt, Beatriz Kira, Anna Petherick, Toby Phillips, Samuel

Webster, Emily Cameron-Blake, Laura Hallas, Saptarshi Majumdar, et al. ‘A global panel database of

pandemic policies (Oxford COVID-19 Government Response Tracker)’. In: Nature human behaviour 5.4

(2021), pp. 529–538. doi: 10.1038/s41562-021-01079-8 (cited on pages 34, 158, 170).

[100] Shrikanth Sampath, Anwar Khedr, Shahraz Qamar, Aysun Tekin, Romil Singh, Ronya Green, Rahul

Kashyap, et al. ‘Pandemics throughout the history’. In: Cureus 13.9 (2021). doi: 10.7759/cureus.18136

(cited on page 157).

[101] Kate E Jones, Nikkita G Patel, Marc A Levy, Adam Storeygard, Deborah Balk, John L Gittleman, and

Peter Daszak. ‘Global trends in emerging infectious diseases’. In: Nature 451.7181 (2008), pp. 990–993.

doi: 10.1038/nature06536 (cited on page 157).

[102] Lars Hufnagel, Dirk Brockmann, and Theo Geisel. ‘Forecast and control of epidemics in a globalized

world’. In: Proceedings of the national academy of sciences 101.42 (2004), pp. 15124–15129. doi: 10.1073/

pnas.0308344101 (cited on page 157).

https://doi.org/10.1152/ajpregu.1980.239.1.r7
https://doi.org/10.1093/bioinformatics/btu006
https://doi.org/10.1016/j.cmpb.2007.07.002
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1016/j.ifacol.2023.10.1384
https://doi.org/10.1016/j.mbs.2018.02.004
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176351062
https://doi.org/10.1515/2156-6674.1006
https://doi.org/10.2307/3318584
https://doi.org/10.1038/s41562-021-01079-8
https://doi.org/10.7759/cureus.18136
https://doi.org/10.1038/nature06536
https://doi.org/10.1073/pnas.0308344101
https://doi.org/10.1073/pnas.0308344101


[103] William E Diehl, Aaron E Lin, Nathan D Grubaugh, Luiz Max Carvalho, Kyusik Kim, Pyae Phyo Kyawe,

Sean M McCauley, Elisa Donnard, Alper Kucukural, Patrick McDonel, et al. ‘Ebola virus glycoprotein

with increased infectivity dominated the 2013–2016 epidemic’. In: Cell 167.4 (2016), pp. 1088–1098. doi:

10.1016/j.cell.2016.10.014 (cited on page 157).

[104] Richard A Urbanowicz, C Patrick McClure, Anavaj Sakuntabhai, Amadou A Sall, Gary Kobinger,

Marcel A Müller, Edward C Holmes, Félix A Rey, Etienne Simon-Loriere, and Jonathan K Ball. ‘Human

adaptation of Ebola virus during the West African outbreak’. In: Cell 167.4 (2016), pp. 1079–1087. doi:

10.1016/j.cell.2016.10.013 (cited on page 157).

[105] Bryan T Grenfell, Oliver G Pybus, Julia R Gog, James LN Wood, Janet M Daly, Jenny A Mumford,

and Edward C Holmes. ‘Unifying the epidemiological and evolutionary dynamics of pathogens’. In:

science 303.5656 (2004), pp. 327–332. doi: 10.1126/science.1090727 (cited on page 159).

[106] Erik M Volz, Katia Koelle, and Trevor Bedford. ‘Viral phylodynamics’. In: PLoS computational biology
9.3 (2013), e1002947. doi: 10.1371/journal.pcbi.1002947 (cited on page 159).

[107] Oliver G Pybus and Andrew Rambaut. ‘Evolutionary analysis of the dynamics of viral infectious

disease’. In: Nature Reviews Genetics 10.8 (2009), pp. 540–550. doi: 10.1038/nrg2583 (cited on page 159).

[108] Stephen W Attwood, Sarah C Hill, David M Aanensen, Thomas R Connor, and Oliver G Pybus.

‘Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2

pandemic’. In: Nature Reviews Genetics 23.9 (2022), pp. 547–562. doi: 10.1038/s41576-022-00483-8

(cited on page 159).

[109] Samuel Alizon. ‘Phylodynamique’. In: Modèles et méthodes pour l’évolution biologique (2022). doi:

10.51926/ISTE.9069.ch11 (cited on page 159).

[110] Sébastien Lion and Sylvain Gandon. ‘Evolution of class-structured populations in periodic envi-

ronments’. In: Evolution 76.8 (2022), pp. 1674–1688. doi: 10.1111/evo.14522 (cited on pages 160,

170).

[111] George EP Box. ‘Science and statistics’. In: Journal of the American Statistical Association 71.356 (1976),

pp. 791–799 (cited on page 161).

[112] François Blanquart, Thomas Berngruber, Marc Choisy, and Sylvain Gandon. ‘Evolution of virulence

in emerging epidemics: inference from an evolution experiment’. In: bioRxiv (2020), pp. 2020–08. doi:

10.1101/2020.08.19.256917 (cited on page 161).

[113] Daniel T Gillespie. ‘A general method for numerically simulating the stochastic time evolution

of coupled chemical reactions’. In: Journal of computational physics 22.4 (1976), pp. 403–434. doi:

10.1016/0021-9991(76)90041-3 (cited on page 161).

[114] Daniel T Gillespie. ‘Exact stochastic simulation of coupled chemical reactions’. In: The journal of physical
chemistry 81.25 (1977), pp. 2340–2361. doi: 10.1021/j100540a008 (cited on page 161).

[115] Daniel T Gillespie. ‘Approximate accelerated stochastic simulation of chemically reacting systems’. In:

The Journal of chemical physics 115.4 (2001), pp. 1716–1733. doi: 10.1063/1.1378322 (cited on page 161).

[116] Todd L Parsons, Amaury Lambert, Troy Day, and Sylvain Gandon. ‘Pathogen evolution in finite

populations: slow and steady spreads the best’. In: Journal of The Royal Society Interface 15.147 (2018),

p. 20180135. doi: 10.1098/rsif.2018.0135 (cited on page 161).

[117] Troy Day, Todd Parsons, Amaury Lambert, and Sylvain Gandon. ‘The Price equation and evolutionary

epidemiology’. In: Philosophical Transactions of the Royal Society B 375.1797 (2020), p. 20190357. doi:

10.1098/rstb.2019.0357 (cited on page 161).

[118] Aaron A King, Dao Nguyen, and Edward L Ionides. ‘Statistical inference for partially observed

Markov processes via the R package pomp’. In: Journal of Statistical Software 69.12 (2015), pp. 1–43. doi:

10.18637/jss.v069.i12 (cited on page 161).

[119] Edward L Ionides, Carles Bretó, and Aaron A King. ‘Inference for nonlinear dynamical systems’.

In: Proceedings of the National Academy of Sciences 103.49 (2006), pp. 18438–18443. doi: 10.1073/pnas.

0603181103 (cited on page 161).

https://doi.org/10.1016/j.cell.2016.10.014
https://doi.org/10.1016/j.cell.2016.10.013
https://doi.org/10.1126/science.1090727
https://doi.org/10.1371/journal.pcbi.1002947
https://doi.org/10.1038/nrg2583
https://doi.org/10.1038/s41576-022-00483-8
https://doi.org/10.51926/ISTE.9069.ch11
https://doi.org/10.1111/evo.14522
https://doi.org/10.1101/2020.08.19.256917
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1021/j100540a008
https://doi.org/10.1063/1.1378322
https://doi.org/10.1098/rsif.2018.0135
https://doi.org/10.1098/rstb.2019.0357
https://doi.org/10.18637/jss.v069.i12
https://doi.org/10.1073/pnas.0603181103
https://doi.org/10.1073/pnas.0603181103


[120] Carles Bretó, Daihai He, Edward L Ionides, and Aaron A King. ‘Time series analysis via mechanistic

models’. In: The Annals of Applied Statistics (2009), pp. 319–348. doi: 10.1214/08-AOAS201 (cited on

page 161).

[121] François Blanquart, Nathanaël Hozé, Benjamin John Cowling, Florence Débarre, and Simon Cauchemez.

‘Selection for infectivity profiles in slow and fast epidemics, and the rise of SARS-CoV-2 variants’. In:

Elife 11 (2022), e75791. doi: 10.7554/eLife.75791 (cited on page 162).

[122] Sang Woo Park, Benjamin M Bolker, Sebastian Funk, C Jessica E Metcalf, Joshua S Weitz, Bryan T

Grenfell, and Jonathan Dushoff. ‘The importance of the generation interval in investigating dynamics

and control of new SARS-CoV-2 variants’. In: Journal of The Royal Society Interface 19.191 (2022),

p. 20220173. doi: 10.1098/rsif.2022.0173 (cited on page 162).

[123] Bastien Reyné, Quentin Richard, Christian Selinger, Mircea T Sofonea, Ramsès Djidjou-Demasse, and

Samuel Alizon. ‘Non-Markovian modelling highlights the importance of age structure on Covid-19

epidemiological dynamics’. In: Mathematical Modelling of Natural Phenomena 17 (2022), p. 7. doi:

10.1051/mmnp/2022008 (cited on page 162).

[124] William Ogilvy Kermack and Anderson G McKendrick. ‘Contributions to the mathematical theory

of epidemics. II.—The problem of endemicity’. In: Proceedings of the Royal Society of London. Series A,
containing papers of a mathematical and physical character 138.834 (1932), pp. 55–83. doi: 10.1098/rspa.

1932.0171 (cited on page 162).

[125] William Ogilvy Kermack and Anderson G McKendrick. ‘Contributions to the mathematical theory of

epidemics. III.—Further studies of the problem of endemicity’. In: Proceedings of the Royal Society of
London. Series A, Containing papers of a mathematical and physical character 141.843 (1933), pp. 94–122. doi:

10.1098/rspa.1933.0106 (cited on page 162).

[126] Tjibbe Donker, Alexis Papathanassopoulos, Hiren Ghosh, Raisa Kociurzynski, Marius Felder, Hajo

Grundmann, and Sandra Reuter. ‘Estimation of SARS-CoV-2 fitness gains from genomic surveillance

data without prior lineage classification’. In: Proceedings of the National Academy of Sciences 121.25

(2024), e2314262121. doi: 10.1073/pnas.2314262121 (cited on page 163).

[127] Sunetra Gupta, Martin CJ Maiden, Ian M Feavers, Sean Nee, Robert M May, and Roy M Anderson.

‘The maintenance of strain structure in populations of recombining infectious agents’. In: Nature
medicine 2.4 (1996), pp. 437–442. doi: 10.1038/nm0496-437 (cited on page 163).

[128] Julia R Gog and Bryan T Grenfell. ‘Dynamics and selection of many-strain pathogens’. In: Proceedings
of the National Academy of Sciences 99.26 (2002), pp. 17209–17214. doi: 10.1073/pnas.252512799 (cited

on page 163).

[129] Troy Day and Sylvain Gandon. ‘The evolutionary epidemiology of multilocus drug resistance’. In:

Evolution 66.5 (2012), pp. 1582–1597. doi: 10.1111/j.1558-5646.2011.01533.x (cited on page 163).

[130] David V McLeod and Sylvain Gandon. ‘Effects of epistasis and recombination between vaccine-escape

and virulence alleles on the dynamics of pathogen adaptation’. In: Nature ecology & evolution 6.6 (2022),

pp. 786–793. doi: 10.1038/s41559-022-01709-y (cited on page 163).

[131] Sylvain Gandon, Margaret J Mackinnon, Sean Nee, and Andrew F Read. ‘Imperfect vaccines and the

evolution of pathogen virulence’. In: Nature 414.6865 (2001), pp. 751–756. doi: 10.1038/414751a (cited

on page 163).

[132] Alicia Walter and Sébastien Lion. ‘Epidemiological and evolutionary consequences of periodicity in

treatment coverage’. In: Proceedings of the Royal Society B 288.1946 (2021), p. 20203007. doi: 10.1098/

rspb.2020.3007 (cited on page 163).

[133] Claude Hannoun. ‘The evolving history of influenza viruses and influenza vaccines’. In: Expert review
of vaccines 12.9 (2013), pp. 1085–1094. doi: 10.1586/14760584.2013.824709 (cited on page 163).

[134] Robert S Paton, Christopher E Overton, and Thomas Ward. ‘The rapid replacement of the SARS-CoV-2

Delta variant by Omicron (B.1.1.529) in England’. In: Science Translational Medicine 14.652 (2022),

eabo5395. doi: 10.1126/scitranslmed.abo5395 (cited on page 163).

https://doi.org/10.1214/08-AOAS201
https://doi.org/10.7554/eLife.75791
https://doi.org/10.1098/rsif.2022.0173
https://doi.org/10.1051/mmnp/2022008
https://doi.org/10.1098/rspa.1932.0171
https://doi.org/10.1098/rspa.1932.0171
https://doi.org/10.1098/rspa.1933.0106
https://doi.org/10.1073/pnas.2314262121
https://doi.org/10.1038/nm0496-437
https://doi.org/10.1073/pnas.252512799
https://doi.org/10.1111/j.1558-5646.2011.01533.x
https://doi.org/10.1038/s41559-022-01709-y
https://doi.org/10.1038/414751a
https://doi.org/10.1098/rspb.2020.3007
https://doi.org/10.1098/rspb.2020.3007
https://doi.org/10.1586/14760584.2013.824709
https://doi.org/10.1126/scitranslmed.abo5395


[135] Martin Guillemet, Hélène Chabas, Antoine Nicot, François Gatchich, Enrique Ortega-Abboud, Cornelia

Buus, Lotte Hindhede, Geneviève M Rousseau, Thomas Bataillon, Sylvain Moineau, et al. ‘Competition

and coevolution drive the evolution and the diversification of CRISPR immunity’. In: Nature Ecology &
Evolution 6.10 (2022), pp. 1480–1488. doi: 10.1038/s41559-022-01841-9 (cited on page 164).

[136] Jianyu Lai, Kristen K Coleman, S-H Sheldon Tai, Jennifer German, Filbert Hong, Barbara Albert,

Yi Esparza, Aditya K Srikakulapu, Maria Schanz, Isabel Sierra Maldonado, et al. ‘Evolution of SARS-

CoV-2 shedding in exhaled breath aerosols’. In: Clinical Infectious Diseases 76.5 (2023), pp. 786–794.

doi: 10.1093/cid/ciac846 (cited on page 170).

https://doi.org/10.1038/s41559-022-01841-9
https://doi.org/10.1093/cid/ciac846

	Remerciements
	Résumé
	Abstract
	Contents
	Chapter one
	General introduction
	Preamble

	Preamble
	On the evolutionary epidemiology of infectious diseases

	On the evolutionary epidemiology of infectious diseases
	Epidemiology: example with a monomorphic SIRS model
	Evolution
	Host structure
	Statistical inference

	Statistical inference
	Time series in evolutionary epidemiology
	Frequentist (and Bayesian) approach
	Identifiability
	Fitting models: examples with SIRS models
	Bootstrapped-based confidence intervals
	Objectives of this thesis

	Objectives of this thesis
	Objectives of Chapter two (project Alpha)
	Objectives of Chapter three (project Lambda)
	Objectives of Chapter four (project Omega)

	Chapter two
	Project Alpha
	Phenotypic evolution of SARS-CoV-2: a statistical inference approach
	Supplementary figures and tables
	Supplementary information (SI Appendix)


	Chapter three
	Project Lambda
	Evolution of virulence in emerging epidemics: from theory to experimental evolution and back
	Supplementary figures and tables
	Supplementary information (SI Appendix)


	Chapter four
	Project Omega
	Host movements and pathogen evolution


	Chapter five
	General discussion
	Summary

	Summary
	Host structure and differentiation

	Host structure and differentiation
	All models are wrong

	All models are wrong
	Perspectives

	Perspectives
	New variants and strain structure
	Natural immunity and vaccination
	Host coevolution

	Synthèse en français
	Appendix
	An introduction to evolutionary epidemiology theory

	Bibliography

