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1Galaxies and black holes

Overview

In this chapter, we dive into the universe of galaxies, discussing their
classifications, features, and compositions. We will also introduce the
main focus of this manuscript, massive black holes, and delve into their
relationship with their host galaxies.

1.1 Galaxies, a variety of floating worlds

Galaxies are fundamental constituents of the Universe, serving not only as stellar
and metal nurseries but also as cosmic milestones that help us explore the fabric of
space-time. It is remarkable to consider that until Hubble discerned Cepheid variables
in the Andromeda Nebula in the 1920s (Hubble, 1929), the notion that the myriad
’nebulous’ entities chronicled in John Dreyer’s catalogues (Dreyer, 1888, 1910) were
separate galaxies was not widely accepted. Consequently, the field of extragalactic as-
tronomy has emerged quite recently in our history. Yet, the strides made since then
have been substantial: meticulous surveys of local galaxies have been conducted across
the full electromagnetic spectrum, vast redshift surveys have mapped out the large-scale
structure of the Universe, and we are gradually revealing the galaxies of the distant past.

1.1.1 The Classification of Galaxies

A galaxy is a vast collection of gas, dust, billions of stars, and their solar systems,
all bound together by gravity. When we look up at the sky in search of galaxies, the
first thing we notice is the diversity of their characteristics. Some are uniform, elliptical,
and emit smooth light, while others, more complex, feature central bulges surrounded
by spiral arms, and still others have more irregular shapes. Fig. 1.1 shows some exam-
ples of galaxy images. To obtain these, different observational techniques are used by
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CHAPTER 1 • GALAXIES AND BLACK HOLES

astronomers to reveal various aspects of galaxies: starlight is prominent in optical and
near-infrared views, dust emissions stand out in the far-infrared, and the high-energy
processes unfold at the far ends of the wavelength spectrum.

NGC	4278	(E1)	,	HST NGC	3377	(E6),	HST

NGC	5364	(Sc),	MLO NGC	1427A	(IBm),	HST NGC	7292	(IBm),	HST

NGC	5866	(SO),	HST

NGC	175	(SBa),	SDSS NGC	6814	(Sb),	HST NGC	4565	(Sb),	HST

Figure 1.1: Examples of different types of galaxies.

To better organize the diverse range of morphologies, American astronomer Edwin
Hubble developed a classification system known as the Hubble sequence or the Hub-
ble tuning-fork diagram (Hubble, 1926), detailed in Fig. 1.2. Hubble’s classification
encompasses four main categories:

1. Elliptical Galaxies: Characterized by their smooth, elliptical light profiles, these
galaxies are categorized into subtypes from E0 to E7, where a galaxy of type En
has axis ratio b/a = 1 − n/10, with a and b the lengths of the semimajor and
semiminor axes, respectively.
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1.1. GALAXIES, A VARIETY OF FLOATING WORLDS

2. Spiral Galaxies: Identified by their distinct disk shapes and spiral arms, these
galaxies are further divided into barred and normal spirals based on the presence
of a central bar. Each type is then classified into subclasses (a, b, c) based on three
factors: the proportion of light in the central bulge, how tightly the spiral arms are
wound, and the clarity of features such as stars, ionized hydrogen (HII) regions,
and dust lanes within the arms. These criteria are correlated, with galaxies like Sa
having prominent bulges and tightly wound arms, while Sc galaxies feature weak
or absent bulges and open arms with bright HII regions. When these criteria
conflict, the openness of the spiral arms is the deciding factor.

3. Lenticular (S0) Galaxies: Serving as a bridge between elliptical and spiral galaxies,
lenticulars combine features of both. They have a smooth light profile without
spiral arms or HII regions, akin to ellipticals, yet possess a thin disk and a bulge,
with the bulge being more pronounced than in spirals. Barred lenticulars are
labeled SB0.

4. Irregular Galaxies: These galaxies lack a dominant bulge or symmetric disk, show-
ing no clear structure but rather a patchy appearance with notable HII regions.
Hubble initially excluded irregulars from his sequence, uncertain of their classifi-
cation. Today, they are often considered an extension of the spiral category.

Elliptical and lenticular galaxies are frequently grouped as early-type galaxies, whereas
spirals and irregulars are categorized as late-type galaxies. Moving from left to right
across the Hubble sequence, galaxy morphologies transition from early-type to late-type.
It is important to note that these terms are historical designations and do not refer to
an evolutionary property of galaxies. They should not be interpreted as a chronological
sequence.

Following Hubble’s original framework, various classification systems have emerged,
with de Vaucouleurs’ scheme being notably influential (de Vaucouleurs, 1974). He re-
fined the categorization of spiral galaxies within the Hubble sequence by introducing
additional types like SOa, Sab, Sbc, as well as their barred counterparts. Recognizing
that several galaxies labeled as irregular by Hubble actually possessed faint spiral arms,
de Vaucouleurs expanded the spiral category to include irregular galaxies, introducing
classifications such as Scd, Sd, Sdm, Sm, Im, and I0 based on a scale of decreasing
regularity.

Beyond morphology, galaxies are also classified by other characteristics. These in-
clude their luminosity (bright vs. faint), surface brightness (high vs. low), color (red vs.
blue), gas content (gas-rich vs. gas-poor), level of star formation activity (quiescent vs.
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CHAPTER 1 • GALAXIES AND BLACK HOLES

starburst), and whether or not they host an active galactic nucleus (normal vs. active).
A key insight from the Hubble sequence and its extensions is the systematic variation of
these attributes along the sequence, suggesting it mirrors underlying physical differences
among galaxies. 2.3 Galaxies 39

Sa Sb Sc Im

SBa SBb SBc IBm

S0E6E3E0

(Ellipticals)

(Normal spirals)

(Barred spirals)

Fig. 2.8. A schematic representation of the Hubble sequence of galaxy morphologies. [Courtesy of
R. Abraham; see Abraham (1998)]

now referred to as the Hubble sequence or Hubble tuning-fork diagram (see Fig. 2.8). Hubble’s
scheme classifies galaxies into four broad classes:

(i) Elliptical galaxies: These have smooth, almost elliptical isophotes and are divided into
subtypes E0, E1, . . . , E7, where the integer is the one closest to 10(1−b/a), with a and
b the lengths of the semimajor and semiminor axes.

(ii) Spiral galaxies: These have thin disks with spiral arm structures. They are divided into
two branches, barred spirals and normal spirals, according to whether or not a recogniz-
able bar-like structure is present in the central part of the galaxy. On each branch, galaxies
are further divided into three classes, a, b and c, according to the following three criteria:

• the fraction of the light in the central bulge;
• the tightness with which the spiral arms are wound;
• the degree to which the spiral arms are resolved into stars, HII regions and ordered dust

lanes.

These three criteria are correlated: spirals with a pronounced bulge component usually
also have tightly wound spiral arms with relatively faint HII regions, and are classified
as Sa. On the other hand, spirals with weak or absent bulges usually have open arms
and bright HII regions and are classified as Sc. When the three criteria give conflicting
indications, Hubble put most emphasis on the openness of the spiral arms.

(iii) Lenticular or S0 galaxies: This class is intermediate between ellipticals and spirals. Like
ellipticals, lenticulars have a smooth light distribution with no spiral arms or HII regions.
Like spirals they have a thin disk and a bulge, but the bulge is more dominant than that in
a spiral galaxy. They may also have a central bar, in which case they are classified as SB0.

(iv) Irregular galaxies: These objects have neither a dominating bulge nor a rotationally sym-
metric disk and lack any obvious symmetry. Rather, their appearance is generally patchy,
dominated by a few HII regions. Hubble did not include this class in his original sequence
because he was uncertain whether it should be considered an extension of any of the other
classes. Nowadays irregulars are usually included as an extension to the spiral galaxies.

Ellipticals and lenticulars together are often referred to as early-type galaxies, while the spirals
and irregulars make up the class of late-type galaxies. Indeed, traversing the Hubble sequence
from the left to the right the morphologies are said to change from early- to late-type. Although
somewhat confusing, one often uses the terms ‘early-type spirals’ and ‘late-type spirals’ to refer
to galaxies at the left or right of the spiral sequence. We caution, though, that this historical
nomenclature has no direct physical basis: the reference to ‘early’ or ‘late’ should not be
interpreted as reflecting a property of the galaxy’s evolutionary state. Another largely historical

Figure 1.2: The "tuning fork" of the Hubble classification of galaxy morphologies
(schematic from Abraham, 1998; Mo et al., 2010).

1.1.2 Relaxation time

Given that galaxies are primarily made of billions of stars bound together by gravity,
a logical initial question to ask is: Is it a mess in there? In other words, can a
star move freely among this crowd of other stars, or is it constantly perturbed by its
peers? We will answer this question by following the derivation presented in Binney
& Tremaine (2008). We track a single star on a circular orbit as it moves through
a galaxy composed of N other stars of the same mass m, and we will estimate the
magnitude of velocity perturbation caused by interactions with other stars. For now,
let’s consider the perturbation caused by a single close encounter with another star.
Figure 1.3 illustrates this scenario, showing the subject star approaching a field star
with an impact parameter b.

We aim to calculate the change in the velocity δv of the subject star as a result of the
encounter. First, we assume that the velocity perturbation is small | δv | /v ≪ 1, and
that the field star remains stationary throughout the encounter such that the velocity
change parallel to the trajectory averages to zero and the subject star has, to a first
approximation, a straight-line trajectory. The perpendicular force is given by

F⊥ = Gm2

b2 + x2 cos θ = Gm2b

(b2 + x2)3/2 = Gm2

b2

[
1 +

(
vt

b

)2
]−3/2

. (1.1)

Using Newton’s second law
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!! " #
$

%subject star

field star

Figure 1.3: Close encounter with impact parameter b between a subject star and a
field star.

m
dv
dt

= F (1.2)

and projecting it onto the perpendicular direction, we obtain :

δv = 1
m

∫ ∞

−∞
F⊥dt (1.3)

where we choose the origin of time at the moment of the closest approach between the
stars. With (1.1) this gives :

δv = Gm

b2

∫ ∞

−∞

dt

[1 + (vt/b)2]3/2
= Gm

bv

∫ ∞

−∞

ds

(1 + s2)3/2 = 2Gm
bv

. (1.4)

We see that our approximation | δv | /v ≪ 1 holds only if

b ≫ 2Gm
v2 ≡ bmin. (1.5)

The equation (1.4) quantifies the velocity perturbation resulting from an encounter.
To calculate the total perturbation, we need to sum up all such encounters. In the
galaxy, the surface density is of order N/πR2, where N is the total number of stars
and R is the radius of the galaxy. The number of encounters with an impact parameter
between b and b+ db during a passage through the galaxy is therefore:

δn = N

πR2 2πb db = 2N
R2 b db. (1.6)

As encounters are a random process, the mean velocity perturbation is zero. However,
the mean-square change (δv)2 is not. For a passage through the galaxy, it is :

(δv)2 δn =
(2Gm

bv

)2 2N
R2 b db. (1.7)
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CHAPTER 1 • GALAXIES AND BLACK HOLES

Integrating over the impact parameters gives the mean-square velocity change per cross-
ing 1 :

∆v2 =
∫ bmax

bmin

(2Gm
bv

)2 2N
R2 b db = 8N

(
Gm

vR

)2
ln
(
bmax
bmin

)
. (1.8)

This expression can be simplified by noting that the velocity of the subject star is
of the order of magnitude of that of a star in circular orbit at the edge of the galaxy, so
that we can substitute

v2 ≃ GNm

R
, (1.9)

which allows to write, by setting bmax = R,

bmax
bmin

= Rv2

2Gm
≃ N

2
. (1.10)

The relative velocity change is

∆v2

v2 ≈ 8
N

ln
(
N

2

)
. (1.11)

It becomes significant after nrelax passages if

∆v2

v2 nrelax ≈ 1 ⇔ nrelax = N

8 ln
(

N
2

) . (1.12)

Encounters with other stars thus become non-negligible after a time

trelax = nrelax × tcross (1.13)

where tcross is the typical crossing time.

We can now answer our initial question. A typical galaxy consists of ∼ 1011 stars,
yielding a relaxation time of about 5 × 108 crossing times. Considering that galaxies
are aged by several hundred crossing times, we conclude that stellar collisions within
them are negligible. This result allows to model galaxies using smooth potentials
rather than as an assembly of billions of point masses.

1.1.3 Globular clusters: collisional islands in a collisionless sea

Although collisions are rare, galaxies contain clumps of denser stellar systems where
collisions are prevalent. The first type of star cluster is the open clusters, which are

1 A more accurate estimation of this quantity can be obtained by using equation (A.43).
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1.1. GALAXIES, A VARIETY OF FLOATING WORLDS

young systems, loosely bound, and rarely exceed a few billion years in age. They are
composed of 102 −104 stars that originated together from a recent star-formation event.

The second type of clusters is called globular clusters. These are much denser than
the open clusters. A typical globular cluster consists of 104 − 106 stars distributed
spherically and has a short crossing time tcross ≈ 1Myr. Using equation (1.13), it is
deduced that the relaxation time is very short, meaning that collisions significantly in-
fluence the structure of these systems, making them unique laboratories for studying
the gravitational N -body problem. The center of these clusters is so dense that their
size is generally described by three characteristic radii: (i) the core radius, where the
brightness drops to half its center value; (ii) the median or half-light radius, encompass-
ing half the cluster’s total luminosity; (iii) and the tidal radius, marking the cluster’s
outer edge where the density drops to zero.

Their highly collisional environment makes globular clusters a factory for the for-
mation of stellar mass black hole binaries with high eccentricity and peak gravitational
wave frequencies within the LIGO band (Samsing et al., 2014, 2018a). Moreover, al-
though a clear consensus has yet to emerge due to limitations in observed kinematics
and dynamical modeling, studies are revealing indications of intermediate-mass black
holes at the centers of some globular clusters (see Noyola et al., 2008; van der Marel
& Anderson, 2010; McNamara et al., 2012; Lützgendorf et al., 2013a,b; Lanzoni et al.,
2013; Häberle et al., 2024).

Globular clusters are found in almost all galaxies. Our Galaxy houses about 150
globular clusters, though larger elliptical galaxies, like M87, may have up to 10 000.
Unlike open clusters, they are ancient and considered remnants from the galaxy’s early
formation stages. They can also get disrupted by tidal forces from their host galax-
ies, resulting in the creation of narrow stellar streams (see Murali & Dubinski, 1999;
Odenkirchen et al., 2003; Grillmair, 2009; Ibata et al., 2019; Jensen et al., 2021).

1.1.4 Observational properties in a nutshell

To conclude this introductory section on galaxies, we will discuss some observational
properties of elliptical and disk galaxies, drawing on insights summarized in Mo et al.
(2010).

Elliptical galaxies. On the left side of the Hubble sequence, Elliptical galaxies are
characterized by their smooth, elliptical surface brightness distribution, with isophotes
often approximated by ellipses, defined by their minor-to-major axis ratios b/a (or el-
lipticities ε = 1 − b/a) and position angles. However, detailed modeling of their sur-
face brightness reveals that these isophotes generally don’t strictly conform to elliptical
shapes, but rather exhibit "disky" or "boxy" configurations, as illustrated in Fig. 1.4.
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This distinction between disky and boxy ellipticals is crucial because it corresponds
to notable differences in their properties. Boxy ellipticals tend to be brighter, exhibit
slower rotation, and display pronounced radio and X-ray emissions. On the other hand,
disky ellipticals are generally fainter, show more significant rotation, and have minimal
to no radio and X-ray emissions (Bender et al., 1989; Pasquali et al., 2007). Further-
more, the shape of the isophotes correlates with the nuclear features; disky ellipticals
usually possess steep cusps, whereas boxy ones often feature central cores (Faber et al.,
1997).

Elliptical galaxies have red photometric colors, indicative of an old, metal-rich stel-
lar population. These galaxies also exhibit a color gradient, with the outer regions
appearing bluer than the core (Peletier et al., 1990).

Contrary to early beliefs that elliptical galaxies were devoid of gas and dust, research
has shown they possess a considerable interstellar medium, different from that in spiral
galaxies (Roberts et al., 1991; Buson et al., 1993; Welch et al., 2010). Dominated by
hot (∼ 107 K) X-ray emitting gas, this medium can account for a significant portion of
an elliptical’s mass. Additionally, ellipticals contain smaller quantities of warm ionized
gas, cold gas and dust, but these components don’t correlate with galaxy luminosity
like in spirals. Often, dust and gas form a central disk or exhibit complex distributions
(van Dokkum & Franx, 1995; Tran et al., 2001), originating from internal stellar mass
loss or external accretion, evidenced by their kinematics occasionally diverging from the
stars’ motion (Braun et al., 1992; Temi et al., 2007).

Finally, in terms of kinematics, they generally have low rotation velocities (Fried &
Illingworth, 1994).

Boxy Disky

Figure 1.4: Illustration of boxy and disky isophotes shown by solid lines, with their
respective best-fit ellipses represented by dashed lines.

Disk galaxies. Disk galaxies display a more intricate morphology than ellipticals,
typically featuring a rotationally supported disk characterized by spiral arms and often
a bar, alongside a central bulge. Surrounding this structure, a spheroidal stellar halo
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stretches across large radii.
• The disk itself usually comprises both a thin and a thick component. The thick

disk is notable for its excess surface brightness at considerable distances from the mid-
plane and has a scale height about three times that of the thin disk, though their radial
scale lengths are quite similar (Yoachim & Dalcanton, 2006).

• Bulges vary significantly across disk galaxies; they are prominent in earlier types
and may be absent in later ones. Studies have explored bulge-disk decompositions
across large samples of disk galaxies, finding the ratio between the bulges effective
radius and the disk scale length to be relatively consistent regardless of Hubble type
(see de Jong, 1996; MacArthur et al., 2003a). While most bulges have nearly elliptical
isophotes, some faint bulges in edge-on, late-type disk galaxies, display boxy or even
peanut-shaped isophotes. These latter bulges are typically bars that have thickened
vertically.

• Over half of all spiral galaxies exhibit bar-like structures in their central areas,
a characteristic not significantly influenced by spiral type, with S0 galaxies frequently
featuring bars as well. These bars often have squarish isophotes and are generally
elongated.

• The spiral structure is delineated by young stars, HII regions, molecular gas, and
dust absorption. Galaxy disks exhibit diverse spiral formations: ’Grand-design’ systems
with well-defined arms, often connected to a strong bar or an interacting neighbor, and
’flocculent’ systems that lack a clear large-scale pattern and consist of numerous arm
segments (Peek, 1932; Reid et al., 2019; Poggio et al., 2021; Chugunov et al., 2024). The
orientation of these spiral arms is typically trailing, aligning with the galaxy’s rotational
direction (leading being the opposite).

• Disk galaxies finally possess a stellar halo composed of old, metal-poor stars (Zi-
betti et al., 2004) with a large amount of substructure in the form of stellar streams (e.g.
Helmi et al., 1999; Ferguson et al., 2002; Yanny et al., 2003; Bell et al., 2008; Tenachi
et al., 2022; Oria et al., 2022). These streams originate from satellite dwarf galaxies and
globular clusters that have been tidally stripped by tidal forces from the host galaxies.
In certain instances, they can be linked back to their original stellar structures (e.g.
Ibata et al., 1994; Odenkirchen et al., 2002), which allows us to learn a great deal about
the history of galaxy assembly.

In contrast to elliptical galaxies, where the gas is mostly in a hot, highly ionized
state, the gas in spiral galaxies primarily consist of neutral and molecular hydrogen
forms, namely HI and HII (Young & Scoville, 1991). The fraction of gas mass varies
significantly in the local Universe, ranging from about 5% in larger, early-type spi-
ral galaxies (Sa/SBa) to as much as 80% in some smaller, low surface brightness disk
galaxies (McGaugh & de Blok, 1997). Disk galaxies tend to appear bluer than ellipticals
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with similar luminosity due to ongoing star formation, which predominantly involves
younger, bluer stars.

Rotation curve. Thanks to the conservation of angular momentum along the ver-
tical axis imposed by axisymmetry, the stars and gas in disk galaxies follow nearly
circular orbits. Consequently, the dynamics of these galaxies can be well described by
the circular velocity of their constituents as a function of the orbital radius. Assuming
for simplicity a spherical symmetry (this is also valid for the simple model of a Mestel
disk, Mestel 1963), the circular velocity is given by:

v2
c = GM(< R)

R
, (1.14)

with R the orbital radius, G the universal gravitational constant, and M(< R) the
galactic mass enclosed within radius R. Equation (1.14) thus allows us to estimate the
mass content of a galaxy from measurements of the circular velocity of its constituents.
Figure 1.5 shows rotation curves for the spiral galaxy NGC 2998. The data come from
the SPARC database, which includes 175 late-type galaxies (spirals and irregulars).
The HI+Hα rotation curves 2 , tracing the gravitational potential out to large radii,
are measured using Spitzer photometry with wavelength bands at 3.6µm.

There is an intriguing discrepancy in these curves, isn’t there? The solid blue curve,
representing the theoretical rotation curve derived from the observable matter (gas and
stars), fails to match the actual measured rotation curve (black points). More strikingly,
the curves diverge at larger radii. Contrary to expectations of a decrease in circular
velocity with increasing distance from the galactic center, the observed velocity remains
surprisingly constant!

1.2 Something more than the observable

1.2.1 Field or matter?

Changing the law of gravity. To address the issue we have just highlighted, two
different approaches have emerged 3 . The first involves changing the law of gravi-
tational attraction. For example, Modified Newtonian Dynamics (MOND) proposes

2 The Hα line corresponds to a transition of the electron in a hydrogen atom (n = 3 → 2), emitting
a photon with a specific wavelength in the red part of the visible spectrum. It is a key indicator of
HII regions, which are clouds of ionized hydrogen around young, hot stars. The presence of strong Hα
emission indicates intense star formation activity. Therefore, this emission is used to map star-forming
regions in galaxies. HI neutral gas, on the other hand, typically extends further than the ionized gas
found in HII regions, allowing rotation curves to be measured at larger galactocentric radii.

3 Are they fundamentally different? In quantum field theory, matter is merely the manifestation of
a field after all...
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Figure 1.5: The rotation curves of the spiral galaxy NGC 2998. The blue solid curve
shows the theoretical rotation curve obtained from the contribution of visible mass (gas
and stars), assuming a mass-to-light ratio of 0.6M⊙/L⊙ (from McGaugh & Schombert,
2014). The black points are the actual measurements of the rotation speed obtained
using Spitzer photometry.

modifying Newton’s law (Milgrom, 1983; Famaey & McGaugh, 2012) in the regime of
very low accelerations (this regime is precisely what we find at large radii of galaxies,
where the curves diverge in Fig. 1.5).

This modification is defined by a constant: a0 ≃ 10−10 ms−2. In cases where
F/m = g ≫ a0, the dynamic is described by the usual Newtonian law, i.e., g = gN

(with gN the Newtonian acceleration). Conversely, when F/m = g ≪ a0, a modification
applies: g = √

gN a0. For a test particle in circular motion around a point mass M ,
the balance between the radial component of the force and the centripetal acceleration
yields equation (1.14):

v2
c

R
= gN = GM

R2 . (1.15)

In the regime of low acceleration, this relationship becomes:

v2
c

R
= g =

√
GMa0
R2 ⇒ v4

c (R) = v4
c = a0GM, (1.16)

the circular velocity no longer depends on the radius; it asymptotically approaches a
constant that depends only on the mass of the central object and fundamental constants.
This allows to match the observed constant behavior of the rotation curve in Fig. 1.5.
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ΛCDM model. The second approach is to assume that galaxies possess more mass
than what can be observed with our telescopes (Faber & Gallagher, 1979; Peebles, 1980).
This view is supported by the observation that the flatness of the rotation curves can
be explained if the enclosed mass is proportional to the orbital radius, M(< R) ∝ R.
Therefore, this theory includes an additional component known as "dark matter" which,
although invisible, significantly influences the dynamics of baryonic matter. Conse-
quently, Equation (1.14) becomes:

v2
c = G

R

Mb(< R) +MDM(< R)︸ ︷︷ ︸
∝ R

 , (1.17)

with Mb(< R) the usual baryonic galactic mass and MDM(< R) the enclosed mass of
invisible dark matter.

Dark matter has proven to be profoundly successful in both astrophysics and general
physics, offering explanations that extend to cosmological scales. It forms a cornerstone
of the ΛCDM model, which relies on three foundational assumptions to describe the
Universe:

1. The cosmological principle: the Universe is homogeneous and isotropic on large
scales.

2. The universality principle: gravitation is consistently described by general rela-
tivity across all scales.

3. The matter composition: the Universe primarily consists of cold dark matter 4

(CDM), baryons and radiation.

Additionally, the Universe contains dark energy, which drives the acceleration of its
expansion. The cosmological constant, denoted by Λ, represents the simplest form of
dark energy.

A prime example of the effectiveness of dark matter at cosmological scales can be
seen in the power spectrum of the Cosmic Microwave Background (CMB) fluctuations.
This background is radiation from about 300 000 years post-Big Bang, first predicted in
the 1940s (Gamow, 1948a,b; Alpher & Herman, 1948a,b) and discovered by Penzias &
Wilson (1965). It is linked to the era when the dense, hot plasma of subatomic particles
that composed the Universe cooled sufficiently for protons and electrons to combine to
form mostly hydrogen atoms. This transition from plasma to neutral atoms, known

4 Cold because the particles move slowly compared to the speed of light.
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as the recombination epoch, rendered the Universe transparent, as these atoms did not
scatter thermal radiation like plasma. Consequently, this allowed photons to move freely
through space, marking the emergence of the Universe’s first diffuse radiation.

The CMB is crucial for understanding cosmological structures because matter per-
turbations left imprints on this radiation, observed as small temperature anisotropies
against an otherwise isotropic background (Zeldovich & Sunyaev, 1969; Peebles, 1982a,b).
These anisotropies were confirmed by the COBE and WMAP satellites and the Planck
space observatory (Smoot et al., 1992; Bennett et al., 2013; Planck Collaboration et al.,
2020), supporting the inflationary flat ΛCDM model.

The detailed structure of the CMB, especially its acoustic peaks, is highly sensitive
to the parameters of the cosmological model that depicts the Universe, influencing
the understanding of its matter content. The ΛCDM model enables the description
of the CMB using six independent parameters (Planck Collaboration et al., 2020). To
align with observations, the Universe must contain non-interacting, non-relativistic dark
matter, which accounts for over 84% of all matter at the time of recombination and plays
a crucial role in the formation and evolution of the Universe.

1.2.2 The radial distribution of dark matter

Upon considering the existence of dark matter, the critical question arises concerning
its distribution around galaxies, specifically how to determine MDM(< R) from equation
(1.17). Note that for convenience, the distribution of dark matter is also described
using its density profile, noted ρ. The flat rotation curves of spiral galaxies suggest that
MDM(< R) is proportional to R. If we assume the simplest scenario where dark matter
is distributed in spherical halos encompassing galaxies (we will now use the notation
for radius in spherical coordinates r), this linear dependence of MDM(< r) implies that
ρ ∝ r−2 because:

M(< r) =
∫ r

0
4πr̃2ρ(r̃)dr̃. (1.18)

The simplest density model satisfying this dependence on r is the isothermal sphere,
given by the following expression:

ρ(r) = σ2

2πGr2 (1.19)

where σ is the velocity dispersion and G is the gravitational constant. This model was
initially used to describe dark matter halos and was supported by observations at the
time. Initially at the galactic scale, with White et al. (1983) demonstrating with galaxy
binaries that the relative velocity dispersion does not depend on the separation between
each pair, which is a characteristic of the isothermal sphere model 5 . Then, at the scale

5 Their observations on how velocity differences depend on the luminosity and separation resulted
in estimated parameters of α = 0.25, β = 0 for the scaling relation ∆v2 ∼ Lαr−2β

p (where rp represents
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of galaxy clusters, Tully (1982) showed that the number density of luminous galaxies
in the Virgo Cluster falls off as r−2 (after averaging over angles to account for the non-
spherical shape of the Virgo supercluster). Thus, across the range from individual or
binary galaxies to superclusters, the mass (or mass excess) density profile consistently
seems to follow an r−2 distribution.

A few years later, however, studies using numerical simulations showed that dark
matter halos are not perfectly described by the simple isothermal sphere profile, but
rather have gently changing logarithmic slopes (Dubinski & Carlberg, 1991; Navarro
et al., 1995). Navarro et al. (1996) showed that the density profiles of cold dark matter
(CDM) halos across all masses could be uniformly described by scaling an empirical
universal profile:

ρ(r) = ρ0

(
r

rs

)−1 [
1 + r

rs

]−2
. (1.20)

This formula is a specific instance of the broader Zhao profile (Zhao, 1996), expressed
as:

ρ(r) = ρ0

(
r

rs

)−γ [
1 +

(
r

rs

)α] γ−β
α

, (1.21)

where α = 1, β = 3 and γ = 1 define the outer, transitional, and inner logarithmic
slopes of the density profile, respectively. The scale radius rs indicates where the profiles
shape transitions, and:

ρ0 = ρcritδc with ρcrit = 3H2

8πG
and δc = 200

3
c3

[ln(1 + c) − c/(1 + c)]
(1.22)

where ρcrit is the critical density of the Universe, H is the Hubble constant, and
c = r200/rs is a dimensionless parameter known as the halo concentration. Here, r200

is defined as the radius within which the mean enclosed density is 200 × ρcrit. In the
remainder of this manuscript, we will associate this radius with the virial radius, used
to characterize the size of a dark matter halo.

The NFW profile exhibits a shallower slope than the isothermal profile near the
center of a halo and a steeper one in the outer regions. It remains the predominant model
for characterizing dark matter halo distributions, despite its limitations in accounting
for density cores, which will be discussed further in Chapter 2.

1.2.3 Stellar-to-halo mass relation

In the ΛCDM model, the dark matter halos are fundamental to galaxy formation,
acting as gravitational wells that attract baryonic matter after the Big Bang (White &

the projected distance). A β value of 0 indicates an isothermal interaction potential. Within such a
potential, the relationship ∆v2 ∼ Lα is scale-independent.
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Rees, 1978; Blumenthal et al., 1984; Springel et al., 2005). This process begins with the
rapid growth of baryonic fluctuations matching that of dark matter, following recom-
bination at zrec ≈ 1 100 6 . The fluctuations in smaller masses evolve into nonlinear
and virialized states, organizing into progressively larger systems through hierarchical
clustering. Subsequently, ordinary matter in systems with masses ranging from 108 to
1012M⊙ cools efficiently within these dark matter halos, leading to galaxy formation. In
contrast, larger mass fluctuations result in the formation of galaxy clusters. Thus, the
inner regions of galaxies show a strong correlation between the baryon-to-dark matter
ratio and their stellar and total mass, as well as the environment and hydrodynamical
processes (e.g., stellar and/or active galactic nuclei feedback).
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Figure 1.6: Stellar mass fraction relative to the dark matter halo mass across different
redshifts. Halos around ∼ 1012M⊙ consistently show higher star formation efficiency
across all epochs. In contrast, halos with higher or lower masses display drastically re-
duced efficiency. This curves are based on the five-parameter fit function from Behroozi
et al. (2013).

Figure 1.6 illustrates the correlation between the stellar mass of a galaxy and its
dark matter halo mass across various redshifts. This correlation is modeled based on
the five-parameter fit function proposed by Behroozi et al. (2013), with comparable
findings reported in several other studies (see Yang et al., 2009; Conroy & Wechsler,
2009; Behroozi et al., 2010; Moster et al., 2010; Yang et al., 2012; Leauthaud et al., 2012;
Moster et al., 2013). To achieve this, they start with dark matter simulations, which

6 The redshift z measures the expansion of the universe, reflecting the shift in wavelengths of light
from distant objects. The higher the redshift, the older and more distant the observed object is.
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provide the properties of halos over time and their assembly history as they grow and
merge. On top of that, they add a galaxy formation model, SFR = f(Mh, Ṁh, z), where
SFR is the star formation rate, Mh the halo mass, Ṁh the rate of mass change, and z

the redshift. This formulation, while speculative, assigns a star formation rate to each
halo, allowing for the calculation of the stellar mass (as well as color and luminosity)
by integrating the halo’s mass accretion and merger history. Each model variation
generates a mock Universe which is then compared against actual observational data.
Through this comparison, a likelihood function is derived and then fit using Markov
Chain Monte Carlo (MCMC) methods to identify the allowed range of physical models
that reproduce observations.

We observe in Fig. 1.6 that halos with a mass around ∼ 1012M⊙ are notably more
efficient at forming stars compared to those larger or smaller, where star formation effi-
ciency drops off dramatically. This difference in efficiency is interpreted as a consequence
of feedback processes in galaxies, where energy, momentum, and mass are transferred
from stars, supernovae, and Active Galactic Nuclei (AGN) back into the interstellar
medium. These processes play a crucial role in shaping galactic properties such as star
formation rates (Baldry et al., 2006; Wilman et al., 2010; Fossati et al., 2015; Arora
et al., 2019), gas content (Shangguan et al., 2018), stellar and gas kinematics (Frosst
et al., 2022; Waterval et al., 2022), and chemical compositions (Planelles et al., 2014).
At the low mass end of the stellar mass function, stellar winds and supernova explosions
limit star formation in smaller halos (Dekel & Silk, 1986), while in larger halos, AGN
feedback from supermassive black holes prevents further star formation by expelling vast
quantities of material from the galaxy’s core (Silk & Rees, 1998; Silk & Mamon, 2012).
Furthermore, these feedback processes may also influence the dark matter distribution
within galaxies, providing an explanation for the creation of density cores as discussed
in Chapter 2.

1.3 Dwarf galaxies, unique laboratories for studying the
Universe

The low mass end of Fig. 1.6 is the realm of dwarf galaxies, the most dark matter-
dominated objects in the Universe. By number, these are the most abundant galaxies,
yet they stand out due to their unique characteristics which make them crucial for test-
ing theoretical models. Despite their prevalence, dwarf galaxies do not fit neatly into
the traditional Hubble sequence, highlighting their distinct nature from larger galaxies
not only in scale but also in intrinsic properties and evolutionary paths. Their key
difference from larger galaxies often lies in their capacity to retain baryonic matter dur-
ing evolutionary processes. While larger late-type galaxies tend to maintain a constant
central surface brightness indicating the retention of initial baryonic components, dwarf
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galaxies frequently lose a significant portion of their baryons, likely due to supernova-
driven winds (Dekel & Silk, 1986) or tidal interactions (Peñarrubia et al., 2008; Wetzel
& White, 2010) which are more disruptive in galaxies with shallower gravitational wells
(Sales et al., 2022).

Types of dwarf galaxies. Dwarf galaxies are generally characterized by certain
mass or luminosity thresholds: (i) a virial mass (mass within r200) less than or equal
to 1011M⊙ (Saifollahi, 2022), (ii) an absolute magnitude in the V-band fainter than
MV ∼ −18 (Grebel et al., 2003; McConnachie, 2012). Despite these parameters, dwarf
galaxies do not form a homogeneous group; they include various types (Saifollahi, 2022):

1. Early-type dwarf spheroidals. Dwarf spheroidals (dSphs) and dwarf ellipti-
cals (dEs) are the predominant dwarf galaxy types found in galaxy groups and
clusters. They are characterized by their red color and lack of gas. Both dSphs
and dEs exhibit low luminosity and surface brightness, with light profiles that
typically follow an exponential profile. They generally possess a V-band abso-
lute magnitude ranging from−16 to −8 and an effective radius between 0.1 and
2 kiloparsecs (kpc). The main distinction between dSphs and dEs lies in their
brightness and surface brightness, with dSphs being the dimmer and less lumi-
nous counterparts of dEs. Some early-type dwarfs host a nuclear star cluster at
their center (Neumayer et al., 2020).

2. Late-type dwarf irregulars. Dwarf irregulars (dIs), found primarily in the low-
density regions and peripheries of galaxy groups and clusters, are characterized by
their blue color, abundant gas, and ongoing star formation. These low-mass galax-
ies exhibit an irregular morphology and share similar attributes such as luminosity,
effective radius, and surface brightness with their early-type dwarf counterparts.

3. Blue compact dwarfs (BCDs) are a more compact form of dIs. These galax-
ies, characterized by their blue hue, feature several bright knots and active star-
forming regions, all set within a low surface brightness envelope. Despite sharing
similar luminosity levels with late-type dwarf irregulars, BCDs have significantly
smaller effective radii.

4. Ultra faint dwarfs (UFDs) are the faintest category of dwarf galaxies currently
identified, exhibiting luminosities comparable to or even lower than those of typical
Milky Way globular clusters (GCs), with absolute magnitudes MV > −8. Unlike
GCs that generally have radii around 2−3 parsecs (pc), UFDs are more extended,
with effective radii around 100 pc. These galaxies are not only the most dark
matter-dominated but also the most metal-poor objects in the Universe (Simon,
2019).
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5. Ultra compact dwarfs (UCDs) are dense stellar systems that surpass typical
Milky Way GCs in size, brightness, and mass. These systems display absolute
magnitudes between MV = −13 and −10 and maintain effective radii less than
100 pc. Commonly located in the dense centers of galaxy clusters or near massive
galaxies, UCDs exhibit scaling relations similar to those of nuclear star clusters
in dwarf early-type galaxies. This resemblance indicates that many UCDs may
be the remnants of nuclear star clusters from dwarf galaxies that were tidally
disrupted in high-density environments (Neumayer et al., 2020). Some UCDs are
thought to have originated from GCs (Alfaro-Cuello et al., 2019).

Our knowledge primarily stems from dwarf galaxies within the Local Group, around
our Milky Way, where approximately sixty such galaxies have been documented. Obser-
vations extend to denser environments like galaxy groups and clusters, hosting a greater
diversity of morphologies influenced by various physical processes (Gunn & Gott, 1972;
Boselli & Gavazzi, 2014).

Simulation of dwarf galaxies. The challenges of representing dwarf galaxies in
cosmological simulations are substantial due to their low mass. Typically, these simu-
lations encompass vast volumes, on the order of 100 Mpc3. This extensive scope often
precludes achieving the fine mass resolution necessary to accurately simulate the small-
est galaxies, given the current limits of computing capabilities. Nevertheless, recent
advancements have led to the development of cosmological simulations that are capable
of resolving systems with stellar masses ≳ 107M⊙, albeit within significantly smaller
volumes. For instance, the NewHorizon simulation (Dubois et al., 2021) operates within
a zoom-in region of 16 Mpc3, embedded within a larger box. This region is re-simulated
at a high resolution, achieving a spatial resolution of 34 pc within galaxies. Such preci-
sion allows the simulation to capture the multi-phase nature of the interstellar medium.
It also boasts a dark matter mass resolution of MDM = 1.2×106M⊙ for the best-resolved
region. Similarly, the Illustris TNG50 simulation (Pillepich et al., 2019) achieves a com-
parable mass resolution of MDM = 4.5 × 105M⊙ and a spatial resolution up to 100 pc.

Given their low luminosity and challenging observability, combined with the dif-
ficulty of accurately simulating their low mass, dwarf galaxies remain relatively un-
explored despite their abundance. These characteristics position them as critical yet
underutilized keys to unlocking deeper insights into the assembly of more massive galax-
ies and the elusive nature of dark matter. By advancing our understanding of dwarf
galaxies, we can significantly enhance our knowledge of cosmic structure formation and
evolution.
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1.4 Black holes

As discussed in previous sections, galaxies contain stars, gas, dust, and dark matter.
They also harbor well-known yet enigmatic objects: black holes. Before delving into
the interaction between black holes and galaxies, it is essential to define these objects.

1.4.1 Definition and types of black holes

A black hole is an object with such strong gravity that nothing, not even light or
other electromagnetic waves, can escape its pull 7 . Consider an object with mass M•.
We can calculate the size this object must have for even light to be unable to escape.
This requires its potential energy to be greater than the kinetic energy of light 8 :

GM•
r

>
1
2
c2 ⇔ r < rSch ≡ 2GM•

c2 (1.23)

where G is the gravitational constant, c is the speed of light, and rSch is the critical
radius satisfying this condition, known as the Schwarzschild radius. Any object with
mass M• and a size smaller than this radius is a black hole.

To get a sense of the magnitudes involved, consider this example: for Earth (mass
mE = 5.972 × 1024 kg) to become a black hole, it would need to be compressed to a size
smaller than rE

Sch = 9 mm, roughly the size of a grape! Notice that the requirement for
an object to be a black hole does not constrain its mass, allowing theoretical freedom
regarding this property. Today, we distinguish three populations of black holes in the
Universe, categorized by their mass 9 :

1. Stellar-Mass Black Holes: These black holes form from the gravitational col-
lapse of massive stars. Their masses range from a few solar masses (M⊙) to about
60 − 80M⊙, with the upper limit for this category set at 100M⊙.

2. Intermediate-Mass Black Holes (IMBHs): This type of black hole is hypo-
thetical, with limited direct evidence of their existence. They are believed to have
masses between those of stellar-mass and supermassive black holes, estimated to
be around 100 − 106M⊙

10 .
7 For simplicity, we refer to it as an object with mass, though it can also be viewed as a region of

spacetime with extreme curvature.
8 Note here that this is a Newtonian derivation to obtain an order of magnitude, which is strictly

speaking not correct, as black holes are objects predicted by general relativity.
9 There are theoretical extensions proposing other mass ranges, such as mini black holes with masses

smaller than stellar-mass black holes, but we will not discuss these cases in this manuscript.
10 The upper limit varies among authors, with some placing it at 104M⊙ and others at 105M⊙. Since

this manuscript focuses particularly on these black holes, it is prudent to adopt the broadest possible
mass range to consider the maximum number of scenarios, hence setting the limit at 106M⊙. It is
important to remember that this is a convention.
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3. Supermassive Black Holes (SMBHs): These are the most massive black
holes, with masses exceeding 106M⊙. As we will see in the following subsections,
there is still much uncertainty regarding their formation.

1.4.2 Dynamical Friction

After exploring the grandeur of galaxies and the singularity of black holes, we arrive
at an intriguing intersection: what happens when a black hole navigates through the
sea of stars in a galaxy? The resulting gravitational interactions reveal a fundamental
phenomenon in galactic astrophysics, known as dynamical friction. In this section, we
will present a concise overview of dynamical friction to facilitate reading. Nevertheless,
a complete and pedagogical derivation can be found in Appendix A.

Chandrasekhar’s dynamical friction. Consider the case of a black hole with mass
M moving within a galaxy composed of stars with mass m. During an encounter with
one of these stars, the black hole’s velocity is perturbed by the gravitational interaction
between the two objects. It can be shown (see Sect. A.1) that this encounter induces
a change in the black hole’s velocity, both parallel and tangential to its motion, given
by 11

|∆vM⊥| = 2mv0
M +m

b/b90
1 + b2/b2

90

|∆vM∥| = 2mv0
M +m

1
1 + b2/b2

90

(1.24)

(1.25)

where v0 is the norm of the relative velocity vector between the two objects, b is the
impact parameter of the encounter, and b90 ≡ G(M+m)

v2
0

.

Let us now consider the cumulative effect of all encounters when the black hole orbits
within the galaxy. As we have seen in Section 1.1.2, the perpendicular perturbations
cancel out on average due to the stochastic nature of the encounter process. Although
the mean of the squared perturbations is not zero, leading to a stochastic alteration of
the black hole’s trajectory, the time required for this modification to become significant
is much greater than the age of the Universe for galaxies. Conversely, the perturbations
parallel to the black hole’s motion do not cancel out, and their sum generates a force.
Assuming a homogeneous medium, we obtain an analytical expression (see Sect. A.2):

d−→vM

dt
= −8π2G2m(M +m) ln

(
1 + Λ2

) −→vM

v3
M

∫ vM

0
v2

m f(−→vm)dvm (1.26)

11 In the limit of large impact parameters: |∆vM⊥| ≃ 2 m v0
M+m

b90
b

= 2 m v0
M+m

G(M+m)
b v2

0
= 2 G m

b v0
, which

corresponds to the expression obtained in equation (1.4).
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with Λ ≡ bmax
b90

= bmax v2
0

G(M+m) where bmax is the maximum impact parameter. Equation
(1.26) is often referred to as the Chandrasekhar’s dynamical friction formula (Chan-
drasekhar, 1943). If we then assume that the velocities are distributed according to a
Maxwellian distribution, we obtain

d−→vM

dt
= −2πG2 ρ0 (M +m) ln

(
1 + Λ2

) [
−2X√

π
exp

(
−X2

)
+ erf(X)

] −→vM

v3
M

(1.27)

with X ≡ vM√
2 σ

where σ is the velocity dispersion of the stars, and erf(x) is the error
function 12 . In the case of interest for IMBHs or SMBHs where M ≫ m and since
Λ ≫ 1 typically, we can simplify the expression:

d−→vM

dt
= −4πG2 ρ0M ln(Λ)

[
−2X√

π
exp

(
−X2

)
+ erf(X)

] −→vM

v3
M

(1.28)

The force generated by the encounters is collinear and opposite to the black hole’s ve-
locity, acting as a frictional force that causes it to lose energy and angular momentum
during its motion. Consequently, the orbiting black hole will spiral towards the center
of the galaxy. It is noted that: (i) the force (

−→
F = M × d−→vM/dt ∝ M2) is proportional

to the square of the black hole’s mass, meaning a more massive black hole falls more
quickly towards the center of the galaxy; (ii)

−→
F depends on the density of stars ρ0

regardless of their mass m.

The limitations of Chandrasekhar’s formula. This derivation has several limi-
tations: (i) we do not account for the response of the medium; indeed, the black hole
perturbs the surrounding stars, and this perturbation in turn affects the black hole. Ad-
ditionally, although we consider the gravitational attraction between the black hole and
the stars, we do not take into account the mutual attraction between the stars them-
selves; (ii) to obtain equation (1.26), we assume that the stars pass by M in Keplerian
hyperbolae (cf. Sect. A.1). However, the orbits in the combined gravitational fields of
M and the galaxy are more complex. These simplifications are particularly problematic
when the black hole is near the galactic center, where the integrated galactic mass is
comparable to the black hole’s mass. We will discuss this point in the following chapters.
For most general cases, however, N -body simulations and linearized response calcula-
tions show that Chandrasekhar’s formula provides a remarkably accurate description of
the drag experienced by a body orbiting in a stellar system (White, 1983; Bontekoe &
van Albada, 1987; Zaritsky & White, 1988; Weinberg, 1989; Cora et al., 1997) even for
non-spherical distribution if we take into account the correction for velocity anisotropy

12 erf(x) = 2√
π

∫ x

0 exp
(
−t2
)
dt
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(see Binney, 1977; Peñarrubia et al., 2004).

Here, we have focused on dynamical friction in a collisionless medium, and our stars
can be replaced by collisionless dark matter particles without changing the results. It is
worth noting that dynamical friction also exists in gaseous media where more advanced
physics is involved (see Ostriker, 1999).

1.4.3 Chasing Shadows

The detection of black holes. Massive black holes (MBHs) are expected to migrate
to the centers of galaxies due to dynamical friction, making these regions prime targets
for observation with our telescopes. The galactic centers are typically rich in gas, which
MBHs can accrete, leading to significant luminosity, according to:

L = ϵ Ṁin c
2

= 5 × 1020L⊙ ϵ
Ṁin

M⊙.yr−1 ,
(1.29)

where ϵ ≃ 0.1 is the average efficiency of converting rest mass into energy, Ṁin is the
inflow rate of mass towards the MBH 13 , c is the speed of light and L⊙ is the lumi-
nosity of the Sun. This high luminosity makes MBHs observable. The energy output
from these AGN can be so immense that they outshine their host galaxies. Among
AGNs, quasars (quasi-stellar objects) are the most luminous and can be detected at
great distances. Quasars emit energy at levels hundreds to thousands of times greater
than that of the Milky Way and exhibit high redshifts, indicating their significant dis-
tances. Consequently, quasars are crucial for studying MBHs in the early Universe. As
of now, the SDSS DR16 quasar catalog has listed 750 414 observed quasars (Lyke et al.,
2020). Another method for detecting MBHs involves analyzing the dynamics of stars
within their sphere of influence. By resolving the kinematics of these stars, one can
infer the presence of a MBH and estimate its mass using Jeans modeling (Voggel et al.,
2022). Over the past few decades, these techniques have revealed MBHs at the centers
of massive galaxies (Kormendy & Richstone, 1995) and more recent studies, with vari-
ous probes (e.g., optical, X-ray, Radio or infrared) have brought to light the presence of
such black holes within dwarf galaxies (Reines et al., 2013; Pardo et al., 2016; Mezcua
et al., 2018, 2019; Zaw et al., 2020; Cann et al., 2020).

A co-evolution between black holes and galaxies. The mass of MBHs corre-
lates with various properties of their host galaxy such as the bulge’s velocity dispersion
(Ferrarese & Merritt, 2000; Gebhardt et al., 2000; Tremaine et al., 2002; Gültekin et al.,

13 If Ṁ is the rate of mass growth of the black hole by accretion, then dM = (1 − ϵ) dMin.
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2009; van den Bosch, 2016, see Fig. 1.7), mass (Magorrian et al., 1998; Häring & Rix,
2004), luminosity (Marconi & Hunt, 2003), concentration (Graham & Driver, 2007) or
other host properties such as the number of globular clusters (Burkert & Tremaine,
2010) or their global velocity dispersion (Sadoun & Colin, 2012). These correlations
suggest a common past history between MBHs and galaxies: as galaxies increase their
mass via accretion and mergers 14 , MBHs correspondingly increase their mass (Malbon
et al., 2007; Anglés-Alcázar et al., 2013).
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Figure 1.7: Scaling relation between black hole mass and stellar velocity disper-
sion in the bulge. The M − σ relation is represented by the thick solid black line:
log10(MBH/M⊙) = α log10(σ/km.s−1) + β, with α = 5.35 ± 0.23 and β = −4.0 ± 0.5.
The gray dashed and solid thin lines denote one and three times the intrinsic scatter
of the relation ϵ = 0.49 ± 0.03. The fit is based on 230 galaxies, ranging from dwarf
to elliptical galaxies. The fit and data selection are from van den Bosch (2016). Upper
limits are shown as open triangles. Different colors represent different types of black
hole mass measurements (see van den Bosch, 2016, Section 2 for more details).

Due to the co-evolution of MBHs and galaxies, it is expected that black holes initially
possess small masses in the early Universe, positioned at the lower left of the M − σ

relation shown in Fig. 1.7. Over time, they would grow through accretion and mergers
alongside their host galaxies, ultimately reaching the upper right of the relation. How-
ever, recent observations have challenged this scenario. Indeed, very massive quasars,

14 The correlation between black hole mass and bulge properties indicates that mergers play a crucial
role, as classical bulges are typically formed from the merging of disks.
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on the order of 109M⊙, have been observed at high redshifts (z > 6.4), when the Uni-
verse was less than 0.9 Gigayear (Gyr) old (Willott et al., 2003; Mortlock et al., 2011;
Venemans et al., 2013, 2015; Bañados et al., 2015, 2018). The most extreme example
in mass to date is a SMBH of (1.6 ± 0.4) × 109M⊙ at z = 7.642, which corresponds to
∼ 670 million years after the Big Bang (Wang et al., 2021).

The problem of mass growth. One might think that black holes could achieve
these masses rapidly through intense accretion, but under the spherical geometry as-
sumption, accretion is theoretically limited by the Eddington limit, beyond which radia-
tion pressure counteracts gravitational attraction. Above the Eddington limit, radiation
pressure exceeds gravitational pull, causing material to be expelled rather than accreted
by the black hole. While it is theoretically possible for a black hole starting with 1M⊙

to grow by 9 orders of magnitude in slightly over 1 Gyr, this would require continuous
accretion over its entire lifetime and the feedback produced by the stars and the black
hole itself would also have to be negligible, which is highly unlikely.

To address this issue, the initial seed from which black holes grow would need to
be more massive. Indeed, it is much easier for a black hole of 100 − 105M⊙ to reach
the masses observed at high redshifts (Haiman & Loeb, 2001). Thus, it appears that
IMBHs may hold the key to this problem. The question then becomes how they form and
whether they truly exist. Regarding their formation, several models have been proposed,
such as population III stars and direct collapse (see Volonteri & Bellovary, 2012), with
dense environments also potentially providing an answer. Proposed scenarios include
stellar-mass black hole mergers (Miller & Hamilton, 2002) and star collisions (Portegies
Zwart et al., 2004) in globular clusters, but many uncertainties still surround these
processes. As for observations, the situation is not much clearer. There are observations
of both nuclear and non-nuclear IMBHs in dwarf galaxies (Mezcua & Lobanov, 2011;
Reines et al., 2013; Secrest et al., 2015; Baldassare et al., 2015, 2017; Reines et al.,
2020) 15 but their detection is still debated in the low mass regime (103 − 104M⊙).
Some studies also suggest the detection of such black holes at the centers of globular
clusters (see Noyola et al., 2008; van der Marel & Anderson, 2010; McNamara et al.,
2012; Lützgendorf et al., 2013a,b; Lanzoni et al., 2013; Häberle et al., 2024), but due to
limitations in observed kinematics and dynamical modeling, a clear consensus has yet
to emerge.

1.4.4 Gravitational waves: a new look at the Universe

IMBHs are difficult to observe because, being less massive than SMBHs, they ac-
crete less, if at all, and have a smaller impact on the dynamics of surrounding stars.

15 See Mezcua (2017) for a review of the observations.
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Additionally, they migrate to the centers of galaxies more slowly due to dynamical fric-
tion, and as we will see later, this migration time can be so prolonged that they remain
in off-center orbits in some galaxies. This off-center positioning exacerbates detection
challenges because they are located in regions with lower densities of gas and stars. Fur-
thermore, unlike galactic centers, there is no preferential zone to target with telescopes
since they can wander anywhere within the galaxy.

However, since 2015, a revolution has occurred in observational astrophysics with the
detection of the first stellar-mass black hole coalescence through gravitational waves.
The initial detection of these waves by the LIGO interferometer (Laser Interferome-
ter Gravitational-Wave Observatory; Abbott et al., 2016) marked the beginning of a
new era in astrophysics, allowing us to probe cosmic phenomena previously inaccessible
through traditional astronomy. These waves are generated when two black holes spiral
towards each other before merging. They propagate across the Universe at the speed of
light, distorting spacetime as they pass.

Since the first detection in 2015, several observatories have been built and improved
to detect these waves with increasing precision. The main detectors currently in oper-
ation are LIGO (LIGO Scientific Collaboration et al., 2015) in the United States and
Virgo (Accadia et al., 2012; Acernese et al., 2015) in Europe. These detectors can iden-
tify black hole mergers ranging from a few solar masses to several tens of solar masses,
with the most massive merger detected so far involving black holes of 85M⊙ and 66M⊙,
forming a remnant of 142M⊙ (Abbott et al., 2020). To date, over 90 merger events
have been observed 16 (Abbott et al., 2023).

The Future of Gravitational Waves. Although we are currently limited to de-
tecting lower-mass black holes, the future of gravitational wave detection is promising
with the development of even more sensitive detectors. Among them, the future space
interferometer LISA (Laser Interferometer Space Antenna; Amaro-Seoane et al., 2017),
scheduled for the 2030s, will be capable of detecting very low-frequency gravitational
waves, opening a window to more massive black holes. This instrument will be able
to detect mergers involving IMBHs (Amaro-Seoane et al., 2017), bridging the observa-
tional gap between stellar-mass and supermassive black holes. The coming years will
be crucial for our understanding of these types of black holes, making it essential to
develop our theoretical models to best interpret this new data.

16 Black hole-black hole merger or black hole-neutron star merger.
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1.5 Outline of this thesis

In this thesis, I aim to deepen our understanding of the dynamics of IMBHs within
the unique setting of dwarf galaxies. In Chapter 2, I first explore the centers of these
galaxies to study the formation of density cores. I study the cusp-core discrepancy by
examining the interplay between dark matter and baryonic matter through feedback
processes. The presence of such cores significantly impacts orbital dynamics, which I
will examine in Chapter 3 by analyzing their effect on the structure of Lagrange points
and the influence radius of a black hole binary system. I propose a new scenario for
IMBH mergers occurring outside the galactic center, initiated by gravitational capture.
Chapter 4 delves into the phenomenon of gravitational capture within a galactic con-
text, exploring its behavior, properties, and dependence on initial conditions to build
a comprehensive understanding of this process. In Chapter 5, I will derive a capture
probability based on specific physical assumptions. Finally, Chapter 6 presents my con-
clusions and discusses future perspectives for the study of off-center black hole mergers.
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2
A detour to the centers of
galaxies: the formation of

cores

Overview

In this chapter, we explore the core of galaxies to better understand
the interplay between dark matter and baryonic matter. We begin
by outlining the cusp-core discrepancy problem and then attempt to
explain this divergence using a theoretical framework. Next, we present
the simulation setup used to test the theoretical model and our results.
Finally, we discuss the consequences of the presence of a density core on
the orbital dynamics of perturbers, which partly motivates the work
presented in the following chapters. A summary of the chapter is
available in Section 2.6.

2.1 The cusp-core discrepancy

In the ΛCDM model, large scale structures such as galaxy clusters are governed by
dark matter, while baryons come into play later in the history of the Universe. Con-
sequently, simulations using only dark matter are often employed to understand the
formation of large structures up to the early stages of galaxy formation. These sim-
ulations are particularly useful for deriving the density profile of dark matter halos,
indicating that this profile is universal across all scales (Dubinski & Carlberg, 1991;
Navarro et al., 1995, 1996; Newman et al., 2013, cf. Eq. 1.20). A notable feature of
this profile is the presence of a density divergence at the center of halos, known as the
"cusp" (ρ ∝ r−γ with γ = 1). However, observations have shown that the centers of
some dark matter halos actually exhibit a constant density, i.e., a density core instead
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of a divergence (Moore, 1994; de Blok et al., 2008; de Blok, 2010; Oh et al., 2011, 2015).
Figure 2.1 shows the density profiles of seven dwarf galaxies taken from the HI Nearby
Galaxy Survey (THINGS). It is observed that the data flattens at the centers of the
halos, deviating from the NFW (cusp) profile. This indicates a discrepancy between the
predictions of dark matter-only simulations and observational data.

The Astronomical Journal, 141:193 (45pp), 2011 June Oh et al.

Figure 6. Left: shape of the total rotation curves (not corrected for baryons) of the seven THINGS dwarf galaxies. The rotation curves are scaled with respect to the
rotation velocity V0.3 at R0.3 where the logarithmic slope of the curve is dlogV/dlogR = 0.3 (Hayashi & Navarro 2006). We overplot the rotation curves of the NFW
models with V200 ranging from 10 to 110 km s−1. The dotted lines indicate the NFW models with V200 less than 110 km s−1. The scaled rotation curves of the best-fit
pseudo-isothermal halo models (denoted as ISO) are also overplotted. See Section 6.2 for more details. Right: shape of the dark matter rotation curves of the seven
THINGS dwarf galaxies. These are corrected for baryons and are scaled with respect to the rotation velocity V0.3 at R0.3. Same legends as in the left panel. Compared
to the total rotation curves in the left panel, the dark matter rotation curves increase less steeply but they are similar due to the low baryonic fraction of the galaxies as
discussed in Section 5.1. See Section 6.2 for more discussions.
(A color version of this figure is available in the online journal.)

density profile is critical for resolving the “cusp/core” problem
at the galaxy center. The Poisson equation (∇2Φ = 4πGρ,
where Φ = −GM/R) can be used for the conversion assuming
a spherical mass distribution. The mass density ρ is directly
derived from the rotation curve V (R), as follows (see de Blok
et al. 2001 for more details):

ρ(R) = 1
4πG

[

2
V

R

∂V

∂R
+

(
V

R

)2]

. (15)

Using Equation (15), we directly convert the total rotation
curves into mass density profiles. Here, we use the minimum
disk hypothesis (i.e., it ignores baryons). As already discussed
in Section 5.1, our galaxies are mostly dark-matter-dominated
and this “minimum disk” assumption is a good approximation
for describing their dynamics. Particularly useful is the fact that
it gives a hard upper limit to the dark matter density.

In this way, we derive the mass density profiles of the seven
THINGS dwarf galaxies and present them in the Appendix. We
also derive the mass density profiles using the scaled rotation
curves derived assuming minimum disk in Figure 6, and plot
them in Figure 7. The best fits of the NFW and pseudo-
isothermal models are also overplotted. Despite the scatter,
the derived mass density profiles are more consistent with the
pseudo-isothermal models as shown in Figure 7.

To quantify the degree of concentration of the dark matter dis-
tribution toward the galaxy center, we measure the logarithmic
inner slope of the density profile. For this measurement, we first
need to determine a break radius where the slope changes most
rapidly. The inner density slope is then measured by performing
a least-squares fit to the data points within the break radius.
For the uncertainty, we remeasure the slope twice, including the
first data point outside the break radius and excluding the data
point at the break radius. The mean difference between these
two slopes is adopted as the slope uncertainty ∆α. The measured
slope α and slope uncertainty ∆α of the galaxies are shown in the
Appendix. In addition, we overplot the mass density profiles of
NFW and pseudo-isothermal halo models which are best fitted

Figure 7. Dark matter density profiles of the seven THINGS dwarf galaxies.
The profiles are derived using the scaled rotation curves (assuming minimum
disk) as described in Section 6.2 (see also Figure 6). The dotted lines represent
the mass density profiles of NFW models (α ∼ −1.0) with V200 ranging from
10 to 110 km s−1. The dashed lines indicate the mass density profiles of the
best-fit pseudo-isothermal halo models (α ∼ 0.0). See Section 6.3 for more
details.
(A color version of this figure is available in the online journal.)

to the rotation curves of the galaxies. From this, we find that the
mean value of the inner density slopes for the galaxies is α =
−0.29 ± 0.07 (and −0.27 ± 0.07 without Ho i which has a low
inclination. See Section 3.4 for details). These rather flat slopes
are in very good agreement with the value of α = −0.2 ± 0.2
found in the earlier work of de Blok et al. (2001; see also de Blok
& Bosma 2002) for a larger number of LSB galaxies. They are,
however, in contrast with the steep slope of ∼ − 0.8 predicted
by ΛCDM simulations (e.g., Stadel et al. 2009; Navarro et al.
2010) as well as those by the classical simulations (e.g., Navarro

11

Figure 2.1: Dark matter density profiles of seven dwarf galaxies taken from the HI
Nearby Galaxy Survey (THINGS). The black dotted curves represent the NFW density
profiles (with an inner logarithmic slope γ = 1), and the red dashed curves represent
the best fits with pseudo-isothermal halo models (inner logarithmic slope γ = 0). It is
evident that the data flattens and deviates from the black dotted curves at the centers of
the halos, indicating the presence of density cores. This figure is from Oh et al. (2011).

Alternatives to cold dark matter. To explain this cusp-core discrepancy, one
approach is to modify dark matter to create density cores. Spergel & Steinhardt (2000)
proposed a model in which dark matter particles experience weak self-interaction on
kilo- to megaparsec scales. This interaction creates cores similar to those observed in
dwarf galaxies (Burkert, 2000). Another popular model is Warm Dark Matter, which
posits that dark matter is composed of particles with masses around the keV scale 1 , re-
sulting in significant thermal motion that erases small-scale perturbations (Colín et al.,

1 1 keV/c2 ≃ 1.783 × 10−30 grams.
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2000; Bode et al., 2001). However, this model faces challenges because the particle
mass required to reproduce the observed cores does not allow for the formation of dwarf
galaxies in the first place (Hannestad & Scherrer, 2000; Macciò et al., 2012). Other
models include self-interacting warm dark matter (Hannestad & Scherrer, 2000), fuzzy
dark matter (Hu et al., 2000), repulsive dark matter (Goodman, 2000), fluid dark matter
(Peebles, 2000), ultralight axions (Marsh & Silk, 2014), or the MOND phenomenology
(Gentile et al., 2011), which fundamentally changes the gravitational law.

Baryonic processes. A second approach is to retain cold dark matter but focus
more on baryonic processes. Since the cusp-core discrepancy arises from simulations
that only include dark matter and occur at the scale at which baryons start to play
an important role, it might be wise to examine the interplay between dark matter
and baryonic matter. One significant baryonic process is that massive objects such
as satellite galaxies or gas clumps can transfer some of their kinetic energy to the
dark matter background through dynamical friction. This process can "heat" the halo,
thereby helping to suppress the central cusp (El-Zant et al., 2001, 2004; Tonini et al.,
2006; Romano-Díaz et al., 2008; Goerdt et al., 2010; Cole et al., 2011; Nipoti & Binney,
2015). A second important process is the phenomenon of feedback. As we saw in
Section 1.2.3, feedback processes are crucial in shaping the galactic properties. Powerful
stellar feedback processes, such as stellar winds, supernova explosions, and AGNs, cause
significant gas movements. These variations in the baryonic mass distribution induce
strong potential fluctuations that can push dark matter particles away from the center
of the halo, eventually forming a core (Dekel & Silk, 1986; Pontzen & Governato, 2012,
2014; El-Zant et al., 2016; Freundlich et al., 2020a). Hydrodynamical simulations with
different feedback implementations are able to reproduce dark matter cores (Read &
Gilmore, 2005; Mashchenko et al., 2006, 2008; Governato et al., 2010, 2012; Macciò
et al., 2012; Zolotov et al., 2012; Martizzi et al., 2013; Teyssier et al., 2013; Madau et al.,
2014; Di Cintio et al., 2014; Chan et al., 2015; Dutton et al., 2016; Peirani et al., 2017;
Macciò et al., 2020; Arora et al., 2024), but the feedback recipes used are often ad hoc,
with finely tuned parameters to match observables rather than physics-motivated ones.
Therefore, it is crucial to develop a physical intuition for the interplay between feedback
processes and dark matter using theoretical models. While we have mentioned some
of the existing models, we will focus on the CuspCore model developed by Freundlich
et al. (2020a).

2.2 Theoretical framework

In this section, we present the CuspCore model for dark matter core formation
(Freundlich et al., 2020a). Initially, we derive the velocity dispersion of a dark matter
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halo, grounded in the fundamental principles of collisionless systems theory introduced
in Section 2.2.1. This derivation will be instrumental in our later discussions. Fol-
lowing this, we detail the CuspCore model’s principles in Section 2.2.2 and outline its
implementation in the subsequent Sections 2.2.3, 2.2.4 and 2.2.5.

2.2.1 Describing a collisionless halo

A halo is composed of a very large number of dark matter particles interacting
gravitationally. To describe it, it is impractical to track the movement of each individual
particle; instead, the problem must be approached statistically. Similar to a galaxy, a
halo is a system where collisions are negligible (cf. Section 1.1.2), making it a good
approximation to ignore them. Following Binney & Tremaine (2008) chapter 4, let’s
consider a collection of N identical point masses (in our example, these point masses
represent dark matter, but they could also be stars). The probability of finding a
particle at time t within an infinitesimal phase space volume d3xd3v around position x
and velocity v is given by f(x,v, t) d3xd3v, where f is the probability density function
(pdf, also known as the distribution function df) of the system. This probability is
the same for all particles since we have assumed they are identical. By definition, f is
normalized such that: ∫

f(x,v, t) d3x d3v = 1. (2.1)

If we follow a star during its movement in phase space, the probability must be con-
served in the absence of collisions 2 , which translates to a zero Lagrangian derivative:

df
dt

= 0 ⇔ ∂f

∂t
+ ∂

∂q
· (f q̇) + ∂

∂p
· (f ṗ) = 0

⇔ ∂f

∂t
+ ∂

∂q ·
(
f
∂H

∂p

)
− ∂

∂p ·
(
f
∂H

∂q

)
= 0

⇔ ∂f

∂t
+ ∂f

∂q · ∂H
∂p − ∂f

∂p · ∂H
∂q = 0

where to transition to the second and third lines, we used Hamilton’s equations q̇ =
∂H/∂p and ṗ = ∂H/∂q with H being the Hamiltonian of the system, as well as
Schwarz’s theorem ∂2H/∂q∂p = ∂2H/∂p∂q. By using these equations once more, we
obtain the collisionless Boltzmann equation:

∂f

∂t
+ q̇ · ∂f

∂q + ṗ · ∂f
∂p = 0. (2.2)

2 A perhaps more intuitive way to think about this is to talk in terms of the number of stars rather
than probability. The reasoning is the same, provided we change the normalization of Eq. 2.1 to:∫
f(x,v, t) d3x d3v = N . In this case, it is clear that if we follow a particle or a group of particles

during their movement in phase space, the number of particles must be conserved.
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For studying a spherically symmetric dark matter halo, spherical coordinates are used
with the corresponding Hamiltonian:

H = 1
2

(
p2

r + p2
θ

r2 +
p2

ϕ

r2 sin2 θ

)
+ Φ, (2.3)

allowing us to rewrite equation (2.2) :

∂f

∂t
+ pr

∂f

∂r
+ pθ

r2
∂f

∂θ
+ pϕ

r2 sin2 θ

∂f

∂ϕ
−
(
∂Φ
∂r

− p2
θ

r3 −
p2

ϕ

r3 sin2 θ

)
∂f

∂pr

−
(
∂Φ
∂θ

−
p2

ϕ cos θ
r2 sin3 θ

)
∂f

∂pθ
− ∂Φ
∂ϕ

∂f

∂pϕ
= 0.

(2.4)

The Boltzmann equation deals with the probability density function, which is not
an observable quantity. However, it is possible to derive observable and more intuitive
quantities by integrating the pdf. For example, integrating over the velocities yields the
probability per unit volume ν(x) of finding a particular star at position x, regardless of
its velocity:

ν(x) ≡
∫
f(x,v) d3v. (2.5)

This quantity is directly related to the number density and mass density of the sys-
tem. By multiplying it by the total number of stars and the total mass of the system,
respectively, we obtain these densities:

n(x) ≡ Nν(x)

ρ(x) ≡ Mν(x).
(2.6)

R
Note that the second equation (2.6) links the density ρ to the distribution
function, and the density is also related to the gravitational potential Φ
from (2.3) through the Poisson equation:

∇2Φ = 4πGρ.

Thus, it is evident that integrating the Boltzmann equation (2.4) over velocities will
be fruitful in deriving equations that relate observable quantities. By multiplying Eq.
(2.4) by pr and integrating over the momenta, we obtain a new equation:

d(νv2
r )

dr
+ 2β

r
νv2

r = −ν dΦ
dr

(2.7)

where the anisotropy parameter β is defined as:

β ≡ 1 −
v2

θ + v2
ϕ

2v2
r

= 1 −
σ2

θ + σ2
ϕ

2σ2
r

, (2.8)
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with v2
i ≡ σ2

i the velocity dispersion. The complete derivation of this equation is detailed
in Appendix B. Eq. (2.7) is the Jeans equation, which relates velocity dispersions to
the gravitational potential. The β parameter quantifies the degree of radial anisotropy
in the system. If all orbits are circular, σr = 0 and β = −∞; conversely, if all orbits are
perfectly radial, σθ = σϕ = 0 and β = 1. Finally, if the system is isotropic at all points,
σr = σθ = σϕ and β = 0.

If we assume the halo is isotropic, the second term in Eq. (2.7) vanishes, and
integrating over the radii yields the velocity dispersion of the dark matter (see Appendix
B for more details):

v2
r (r) = 1

ρ(r)

∫ rmax

r
ρ(r′)G m(r′)

r′2 dr′ (2.9)

where rmax is the maximum radius of the halo, satisfying the boundary condition:
limr→rmax v

2
r = 0. In our case, for dark matter, rmax = r200 where r200 is the radius

within which the mean enclosed density is 200×ρcrit, the critical density of the Universe
(see Eq. 1.22). The density profile ρ(r) refers to the population for which we want to
determine the dispersion (here the dark matter halo), and m(r) is the total enclosed
mass.

2.2.2 The CuspCore model

Let’s now focus on the CuspCore model of dark matter core formation. According
to this model, core formation results from fluctuations in the central potential caused
by feedback processes. The general framework of this model was first introduced by
Pontzen & Governato (2012, 2014), who showed that the impulsive nature of feedback
processes produces an irreversible transfer of energy to the collisionless particles of the
dark matter halo, thereby creating cores. This idea was then taken up by Dutton et al.
(2016), who developed a toy model consisting of cycles of adiabatic inflow and impul-
sive gas outflow, and compared it to NIHAO simulations (hydrodynamical zoom-in
simulations conducted using the GASOLINE code). Finally, Freundlich et al. (2020a)
generalized the model and also tested it with NIHAO. This is the version we will present
here.

A three-step process. We aim to describe the response of a collisionless spherical
halo with an initial mass profile Mi(r) when mass is instantaneously added or removed
around the center with a profile m(r). We seek to determine the final mass profile of the
collisionless halo Mf(r). Positive values of m correspond to inflows, while negative val-
ues correspond to outflows. To achieve this, we follow the evolution of isolated spherical
shells that initially enclose a mass M of dark matter at radius ri and, after relaxation,
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are found at radius rf such that M = Mi(ri) = Mf(rf). The model is divided into three
steps.

1 Initially, the shells (and thus the halo) are in equilibrium. The total energy
of a shell per unit mass is given by:

Ei(ri, pi) = Ui(ri, pi) +Ki(ri, pi) (2.10)

where Ui and Ki are the gravitational potential and kinetic energy per unit mass, re-
spectively, depending on the initial radius of the shell ri and parameters of the initial
mass profile. Since the halo is assumed to be in equilibrium, the kinetic energy is de-
termined by the Jeans velocity dispersion (Eq. 2.9) derived in the previous section. We
will elaborate on this and the expressions for Ui and Ki in the following sections.

2 A mass m is instantaneously removed (or added, if m > 0) inside ri. Be-
cause the mass variation occurs over a very short timescale compared to the dynamical
timescale of the system (Förster Schreiber et al., 2019), the gravitational potential ad-
justs instantly to this mass variation while the velocities are frozen at their initial values
(and the shells remain at radii ri), leading to a transitional out-of-equilibrium state. The
total energy per unit mass of a shell just after the mass variation is:

Et(ri, pi) = Ut(ri, pi) +Ki(ri, pi) with Ut(ri, pi) = Ui(ri, pi) − Gm

ri
(2.11)

where we assume that the mass flow is spherically symmetric and inside ri. This as-
sumption holds even if the removed (or added) mass is not point-like but has a mass
profile m(r), as long as the shell of interest is outside the main body of mass variations.

3 The system is now out of equilibrium, the model assume it will relax at
constant energy towards a new Jeans equilibrium, with the energy given by:

Ef(rf , pf) = Uf(rf , pf) +Kf(rf , pf ,m) with Uf(rf , pf) = Uf(rf , pf) − Gm

rf
. (2.12)

It is this relaxation that is responsible for the creation of the core in the density pro-
file. The conservation of energy in the shells during the relaxation phase is a strong
assumption of the model, which is not entirely justified since there is diffusion and not
all orbits are circular. This assumption is partially justified a posteriori by the success
of the model. Shell crossing might challenge this assumption, as we will see in the
following sections. Figure (2.2) summarizes these three steps.
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R
The kinetic energyKf(rf , pf ,m) accounts for the mass variation otherwise
we would end up with the trivial solution ri = rf and pi = pf .
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Figure 2.2: CuspCore model. (1) The dark matter halo is initially in equilibrium with
the baryonic matter at the center. (2) Following a sudden change in mass, the gravita-
tional potential adjusts instantaneously while the velocities remain fixed at their initial
values. (3) The halo then relaxes at constant energy towards a new Jeans equilibrium.
This relaxation process creates a core in the density profile.

2.2.3 Parameterization of the density profile

To describe how environmental effects lead to changes in the dark matter distribution
from cusps to cores, Dekel et al. (2017) proposed a parameterization of the Zhao profile
(Eq. 1.21) with α = 0.5 the intermediate shape parameter and β = 3.5 the external
asymptotic slope:

ρ(r) = ρ0

(
r

rs

)−γ
[
1 +

(
r

rs

)1/2
]2(γ−3.5)

. (2.13)

This profile has the advantage of a free inner slope γ and provides analytic expressions
for the gravitational potential, velocity dispersion, mass, and circular velocity profiles.
Dekel et al. (2017) and Freundlich et al. (2020b) showed that this functional form pro-
vides excellent fits for halos in simulations with and without baryons, ranging from sharp
central cusps to flat cores. The parameterization with α = 0.5 and β = 3.5 in particular
fits the simulated profiles at least as well as the NFW profile but better accounts for
cores. For a given halo mass (which sets ρ0), this profile has two free parameters: γ,
the inner slope, and c = r200/rs. Consequently, the gravitational potential U(r, p) and
the kinetic energy K(r, p) will also depend on these free parameters, with p = (γ, c) in
equations (2.10), (2.11) and (2.12) from the previous section.
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2.2.4 Gravitational potential and kinetic energy of a shell

What remains now is to determine the analytical formulas for the gravitational po-
tential and the kinetic energy per unit mass.

Gravitational potential. Following Freundlich et al. (2020a), the gravitational
potential is equal to the negative of the energy required to extract a unit mass from r

to infinity:

U(r) =
∫ +∞

r
F (y)dy = −

∫ Rt

r

GM(y)
y2 dy − GMt

Rt
(2.14)

where Rt is the truncation radius of the halo. We will identify it with the virial radius,
implying that Rt = rvir = r200 and Mt = Mvir = M200. By integrating by parts,
equation (2.14) becomes:

U(r) = −GM(r)
r

−G

∫ r200

r

1
y

dM

dy
dy = −GM(r)

r
−
∫ r200

r
4πyGρ(y)dy (2.15)

The first term represents the contribution of the shells inside r, while the second term
accounts for the contribution of the shells outside r. For the density profile (2.13),
Freundlich et al. (2020a) derived an analytical expression for the potential, given by:

U(r, γ, c) = −V 2
vir

(
1 + 2cµ

[
χ

2(2−γ)
vir − χ2(2−γ)

2(2 − γ)
− χ

2(2−γ)+1
vir − χ2(2−γ)+1

2(2 − γ) + 1

])
(2.16)

where γ ̸= 2 or 5/2 and :
- c = rvir/rs,
- µ = cγ−3(1 + cα)

β−γ
α ,

- χ = x1/2/(1 + x1/2) with x = r/rs,
- χvir = χ(c)
- Vvir = GMvir/Rvir.

Kinetic energy. For an infinitesimal mass shell dM between r and r+dr, the local
kinetic energy tensor per unit mass is given by:

Kjk ≡ 1
2
vjvk. (2.17)

We take its trace to obtain the local kinetic energy per unit mass:

K ≡ 1
2
∑

i

v2
i

= 1
2

(v2
r + v2

θ + v2
ϕ)

= (3 − 2β)
2

v2
r

(2.18)

− 35 −



CHAPTER 2 • A DETOUR TO THE CENTERS OF GALAXIES: THE FORMATION OF CORES

where we used the expression for the β anisotropy parameter (2.8). Using the notation
v2

r ≡ σ2
r for the radial velocity dispersion given by equation (2.9), we obtain:

K(r) = (3 − 2β)
2

σ2
r (r). (2.19)

If we now consider the isotropic case (β = 0) and replace ρ(r) with the analytical
expression of the Dekel-Zhao profile (2.13), we also obtain an analytical expression for
the local kinetic energy per unit mass (cf. Freundlich et al., 2020a):

K(r, γ, c) = cµ
GMvir
Rvir

(3 − γ)ρ0
ρ(r)

[B(4 − 4γ, 9, ζ)]1χ (2.20)

where B(a, b, x) =
∫ x

0 t
a−1(1 − t)b−1dt is the incomplete beta function, and the brackets

refer to the difference of the bracketed function between 1 and χ, i.e., [f(ζ)]1χ ≡ f(1) −
f(χ) for any function f .

2.2.5 Procedure

The CuspCore model can make predictions for the evolution of a dark matter halo
subjected to sudden mass changes. In practice, the initial halo is fitted using the Dekel-
Zhao profile, which enables the retrieval of the initial parameters pi = (γi, ci) and the
calculation of the gravitational potential, kinetic energy, and thus the initial energy
of the halo using equation (2.10). For a chosen mass variation, the transitional en-
ergy is calculated using equation (2.11). The model is based on the assumption of
relaxation at constant energy. The goal is then to find Ef(rf , pf) that closely matches
Et(ri, pi), ensuring energy conservation. This requires solving a two-parameter optimiza-
tion problem to identify the final parameters pf = (γf , cf) that minimize the difference
Ef(rf , pf) −Et(ri, pi) using the least squares method. These parameters will provide the
final density profile of the halo after relaxation.

2.3 Simulations

We now need a way to test the theoretical predictions of the CuspCore model. As-
trophysics is a unique science in that the Universe is not a replicable and fully observable
object of study. We cannot conduct laboratory experiments on the Universe, so other
methods had to be developed to adopt a proactive approach rather than merely rely-
ing on the glimpses the Universe is willing to reveal. Galaxies are vast assemblies of
masses interacting through gravity. By leveraging our understanding of gravitational
laws, we can simulate the movement of these masses and replicate the behavior of as-
trophysical systems. The algorithms that calculate gravitational interactions between
multiple bodies are known as N -body codes. These codes work by first taking the initial
positions and velocities of all the bodies. Then, they compute the gravitational force
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on each body resulting from its interactions with all others. Using these forces, the
bodies’ positions and velocities are updated incrementally over small time steps. This
process is repeated iteratively for the number of time steps required to cover the desired
simulation timescale 3 .

2.3.1 N-body simulations

At each time step, the code must calculate the gravitational force on a mass (or
’particle’) i resulting from interactions with other masses j ̸= i. In the Newtonian
formalism, this force is expressed as:

Fi =
∑
j ̸=i

Gmj
rj − ri

|rj − ri|3
(2.21)

with m being the mass and r the position vector of the mass. This approach requires
calculating N − 1 distances per particle at each time step. Since there are N particles,
this results in a total of 1

2N(N − 1) distances to evaluate, with the division by two
coming from the fact that each distance can be used twice (i → j and j → i). The com-
plexity is therefore O(N2), and for a very large number of particles, which is typically
the case for a galaxy where N ∼ 1010, the computation time can quickly escalate, even
with modern and high-performance computing hardware. Therefore, efficient strategies
had to be developed to make it feasible to simulate the Universe.

Tree-code Tree codes reduce the complexity from O(N2) to O(N logN) (Barnes &
Hut, 1986). To achieve this, the simulation volume is recursively subdivided into 8 oc-
tants until each octant, called a cell or node, contains a maximum of Ncrit particles. This
hierarchical tree structure is called an octree. When calculating the gravitational force
on a specific particle, particles from nearby cells are considered individually whereas par-
ticles in distant cells are approximated either as a single large particle at the cell’s center
of mass or as a low-order multipole expansion. Figure 2.3 illustrates this structure in 2D.

Softening Despite this technique that reduces complexity and saves computation
time, galactic systems are still too ambitious for our current computational power.
Another simplification is to reduce the mass resolution of the simulation. Instead of
simulating particles with realistic stellar masses, around M ∼ 1,M⊙, we simulate ’super-
particles’ with higher masses. This way, for the same galactic mass, fewer particles
need to be simulated, reducing the number of distance calculations between particles.

3 While this discussion focuses on simulations of point masses influenced solely by gravity, it is worth
noting that simulating gas dynamics requires hydrodynamical simulations. We should also mention that
more complex codes exist that incorporate other forces, such as electromagnetic interactions, as well as
additional galactic physical processes like feedback and radiation.
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Figure 2.3: Barnes-Hut tree. When calculating the gravitational force on a specific
particle (in this case, particle B), particles from nearby cells are considered individually
whereas particles in distant cells (E, F and G here) are approximated either as a single
large particle at the cell’s center of mass or as a low-order multipole expansion.

The downside of this simplification is the introduction of an increased ’granularity,’
which can lead to non-physical behaviors. Granularity is an artifact of sampling the
density distribution, giving more importance to collisions in an intrinsically smooth
(collisionless) physical system. To address this issue, softening is introduced to smooth
out the overly coarse mass sampling and prevent divergences in the force when two
particles are too close. This is achieved by replacing equation (2.21) with:

Fi =
∑
j ̸=i

Gmj SF (|rj − ri|)
rj − ri

|rj − ri|
(2.22)

where we introduce the function SF (r), the force softening kernel. This function re-
places the r−2 term in equation (2.21), where r = |rj − ri|. SF (r) is a function that
approximates r−2 for r larger than a certain length ε, known as the softening length,
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and smoothly approaches zero for small values of r, preventing divergences during close
encounters. The challenge lies in finding a softening length that is not too large, to
avoid significant bias in the physical laws, and not too small, to prevent non-physical
behaviors in the simulation (we will discuss this point in more detail in Section 2.3.2).

2.3.2 Our setup

To test the predictions of the CuspCore model presented in Section 2.2.2, we use
galaxy-scale N -body simulations. For this purpose, we employ the gyrfalcON code
(Dehnen, 2000, 2002), an optimized tree code with a complexity of O(N), which is
significantly faster than traditional tree codes with a complexity of O(N logN) 4 . We
simulate a live NFW dark matter halo in initial equilibrium with a central baryonic
potential:

Φbar(r) = − G mbar√
r2 + a2

. (2.23)

We choose a Plummer potential, where mbar is the baryonic mass at the center of the
halo and a its characteristic radius. Initially, we approximate the baryonic mass as
point-like by selecting a small value for the characteristic radius, a = 0.01 kpc. The
halo is initially in equilibrium with the central baryonic potential. At t = 0 Gyr, we
vary mbar to observe the dynamical response of the dark matter halo. We will then
compare its relaxed density profile to that predicted by the CuspCore model.

Study Object. Simulations indicate that core formation is very efficient in the mass
regime of dwarf galaxies, with a sweet spot around Mvir ∼ 1011M⊙ (Chan et al., 2015;
Tollet et al., 2016; Freundlich et al., 2020b). Figure 2.4 shows the inner slope of the
Dekel-Zhao profile as a function of stellar mass M⋆, halo mass Mvir, and the stellar-
to-halo mass ratio M⋆/Mvir. The inner slope is fitted from data derived by Freundlich
et al. (2020b) from NIHAO simulations using their functional form (Eq. 45 of Fre-
undlich et al., 2020b). A favorable mass range for the creation of density cores is
observed for Mvir between 1010.5 and 1011.5. Therefore, we select a dark matter halo
with Mvir = 1011M⊙. This corresponds to a stellar mass of M⋆ ∼ 5 × 108M⊙ accord-
ing to the stellar-to-halo mass relation (Fig. 1.6) and the ratio, M⋆/Mvir = 0.5%, is
also a good value for core creation (Di Cintio et al., 2014). However, to maximize core
creation according to Fig. 2.4, we choose a baryonic mass of mbar = 2 × 108M⊙. The
mass parameters of our study object are indicated in Fig. 2.4. The virial radius of the

4 The code achieves this efficiency by combining the Barnes-Hut tree structure with a Fast Multipole
Method (Greengard & Rokhlin, 1987) to calculate mutual cell-cell interactions, where both cells act as
source and sink simultaneously. The decision to split or execute a cell-cell interaction is made using an
improved mass-dependent tolerance parameter.
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halo is rvir = 100 kpc, while its scale radius is rs = 6.7 kpc, giving a concentration c = 15.

4 6 8 10 12
log10 (M /M¯ )

0.0

0.5

1.0

1.5

2.0

s 1

σ= 0.35

9 10 11 12 13
log10 (Mvir/M¯ )

σ= 0.38

6 5 4 3 2 1
log10 (M /Mvir)

σ= 0.34

Figure 2.4: Inner slope s1 of the Dekel-Zhao profile as a function of stellar mass M⋆,
halo mass Mvir, and stellar-to-halo mass ratio M⋆/Mvir. The inner slope is fitted from
data derived from NIHAO simulations using the functional form of Freundlich et al.
(2020b). The best-fit curve is shown in blue, with parameters available in Table 1 of
Freundlich et al. (2020b). σ is the standard deviation of the residuals. A favorable
region for core creation (s1 → 0) is observed between 107 < M⋆/M⊙ < 1010 and
1010.5 < Mvir/M⊙ < 1011.5. It is worth noting that s1 measures the inner logarithmic
slope at the resolution limit in the NIHAO simulations, i.e., at r = 0.01 rvir, and thus
slightly differs from the parameter γ in equation (2.13). The red vertical lines indicate
the values for our study halo.

Softening kernel. We chose a softening kernel that replaces point masses with
spheres of density:

ρ(r) ∝
(

1 +
(
r

ε

)2
)−7/2

(2.24)

with ε being the softening length. The advantage of this kernel is that it is continuous
in all its derivatives and converges more rapidly to the Newtonian force at r ≫ ε than
the classic Plummer kernel, resulting in less force bias (Dehnen, 2001).

Softening length. Selecting the appropriate softening length is crucial: a value too
large introduces a significant bias in the gravitational force calculation (systematic er-
ror), while a value too small makes the simulation susceptible to random fluctuations in
the gravitational force due to the mass distribution discretization (variance error). The
optimal softening length lies between these two extremes and is typically comparable
to the average distance between particles. In the central 5 kpc of our dark matter halo,
the region of interest for core creation, this distance is d = 0.09 kpc. However, to ensure
accurate evaluation of the halo density up to r = 0.1 kpc from the center, we opt for
a smaller softening length. To minimize the softening effects at r = 0.1 kpc (close to
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d = 0.09 kpc), we reduce this value by a factor of ten, resulting in ϵ = 0.01 kpc (see
Errani & Navarro, 2021, for example, which observe numerical deviation at the center
when r < 8 ∆x, with ∆x being their simulation resolution, equivalent to our softening
length). With this choice, rmin > 10 ϵ, where rmin is the smallest radius at which we
will evaluate the central density. Figure 2.5 shows the density profile of the dark matter
halo after 3 Gyr of evolution for various softening lengths. An excessively large soften-
ing length lowers the central density of the halo. We confirm convergence towards the
theoretical density profile as ϵ decreases.
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Figure 2.5: Convergence test of the softening length. The figure shows the density
profile of the dark matter halo after 3 Gyr of evolution for different values of the softening
length. An excessively large softening length lowers the central density of the halo due to
the introduction of a bias in the gravitational force calculation. It convergences towards
the theoretical density profile, shown by the dashed black line, when ϵ decreases.

Time step. The choice of the time step τ is made through the parameter kmax such
that:

τ = 1
2kmax

. (2.25)

The time step should be a fraction of the typical time for a particle’s trajectory to
change significantly. As a rough estimate, we should have:

τ ≤ λϵ

vtyp
(2.26)

where vtyp is the typical velocity of the particles and λ is the accuracy parameter, which
we set to 0.2. In the central 10 kpc of our halo, the typical velocity is close to 55 kpc/Gyr.
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According to Eq. (2.26), this gives a time step condition of τ ≤ 3.63 × 10−5Gyr. There-
fore, we choose kmax = 15, which gives a time step of τ = 3.05 × 10−5Gyr. Figure 2.6
shows the density profile of the dark matter halo after 3 Gyr of evolution for different
values of kmax. An excessively small value for this parameter creates an artificial density
core at the halo’s center. We confirm convergence towards the theoretical density profile
as kmax increases.
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Figure 2.6: Time step convergence test. The figure shows the density profile of the
dark matter halo after 3 Gyr of evolution for different values of kmax. An excessively
small value for kmax leads to the formation of an artificial core. It convergences towards
the theoretical density profile, shown by the dashed black line, when kmax increases.

Other integration parameters. Regarding the tolerance parameter that deter-
mines the separation beyond which the interaction between two cells is approximated,
gyrfalcON uses an improved mass-dependent tolerance parameter θ(M), which itself
depends on a new tolerance parameter θ0. We keep the default value θ0 = 0.6, which
is a suitable choice for the simulation of spherical systems. We also keep the default
maximum number of particles per cell at Ncrit = 6.

Number of particles and halo partition. Our focus is on the central few kilo-
parsecs of the halo, where we aim to maximize particle numbers to minimize statistical
fluctuations in density. In contrast, the outer regions of the halo do not require the same
precision. To optimize computational resources, we partition the halo into two popu-
lations with different mass resolutions. The inner region, within rcut = 5 kpc, is more
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finely resolved, comprising of N ≃ 6 × 105 particles, each with a mass of Mp = 104M⊙.
Beyond rcut, the outer region contains N ≃ 9 × 104 particles, each with a mass of
Mp = 106M⊙. We performed tests to verify minimal mixing between the two popu-
lations due to mass segregation. After 3 Gyr of evolution, the central kiloparsec still
retains 94% of the better-resolved particles.

2.4 Successes and failures of the CuspCore model

2.4.1 Single episode of mass flow

Figure 2.7 shows the evolution of the inner part of the dark matter halo following
baryonic mass variations of 50% (η = 0.5), 75% (η = 0.75), and 100% (η = 1), character-
ized by the parameter η of the fractional mass change, defined as η ≡ 1 −mbar,f/mbar,i,
where mbar,f and mbar,i are the final and initial baryonic masses, respectively. In each
case, a lowering of the density profile at the halo’s center, i.e., the creation of a core, is
observed. Each time, the theoretical prediction of the CuspCore model is in very good
agreement with the fit to the simulation data. In the three cases presented in Fig. 2.7,
mbar/Mvir = 0.002. We have observed that for large mass variations, η > 0.35, the
ratio of baryonic-to-virial mass significantly affects the accuracy of the model’s predic-
tion. When η > 0.35 and mbar/Mvir ≲ 0.001, the model tends to underestimate core
creation. Conversely, when η > 0.35 and mbar/Mvir ≳ 0.003, the model overestimates
core creation. Figure 2.8 illustrates these two cases where the model fails to predict the
simulation behavior.

2.4.2 Multiple episodes of mass flow

We also tested the model’s predictions in a scenario involving multiple episodes of
baryonic mass variation. Here, we alternated between several episodes of outflows, pre-
sumed to be due to feedback, and inflows representing gas accretion at the center. Each
episode involves the same mass variation. Figure 2.9 shows the evolution of the inner
part of the dark matter halo following successive episodes. The left panel illustrates
the first three episodes of mass variation: the initial outflow, followed by an inflow,
and then the second outflow. As the episodes progress, the model increasingly devi-
ates from the simulation, with significant divergence occurring from the second outflow
onward. In the right panel, only the even-numbered episodes are shown, representing
the moments when the halo has reaccreted the initial baryonic mass at its center. De-
spite the presence of the same amount of baryonic matter at the center, the density
profile progressively lowers with each pair of episodes. This phenomenon is due to the
asymmetry between outflow and inflow processes. While an adiabatic process would
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Figure 2.7: Successes of the CuspCore model. The figure shows the evolution of the
inner part of the dark matter density profile after the first 3 Gyr. The initial profile
is in black. The yellow area represents the final profile from the simulation, including
the Poisson noise. The orange dashed curve is the fit of these data with the Dekel-Zhao
profile (Eq. 2.13). The red curve is the theoretical prediction of the CuspCore model.
The left panel shows a 50% variation in baryonic mass, the middle panel 75%, and the
right panel 100%. The model accurately predicts the evolution of the dark matter halo
in all three cases.

return the density profile to its initial state after an outflow followed by an inflow of the
same mass, the impulsive nature 5 of feedback processes irreversibly transfers energy
to the dark matter. To visualize this, consider a dark matter particle at a radius ri near
the galactic center. After the reduction of the central baryonic mass, the centripetal
force decreases, causing the particle to move to a larger radius rf . If the same mass
is later reaccreted at the center, the force exerted on the particle will be weaker due
to its greater distance from the center, given that gravitational force scales with 1/r2

and rf > ri. Consequently, the particle will move back towards the center, but the
force is insufficient to return it to ri. Repeating this process creates a significant core,
varying a smaller amount of baryonic mass compared to what we discussed in the previ-
ous section, which would be unfeasible in a single ejection episode driven by supernovae.

The left panel of Fig. 2.10 shows the magnitude of the core creation as a function of
the number of episodes. Core creation is measured using the ratio rf

1%/r
i
1% of the final

to initial radius enclosing 1% of the virial mass of the halo. An increase in this ratio
above 1 indicates an expansion of the halo’s central region, signifying core creation. We
conducted five different cases with varying numbers of episodes: N = 4, 6, 8, 10, and 12.
In each case, the final central baryonic mass equals the initial baryonic mass, situating
us after the re-accretion of the expelled matter. It is observed that rf

1%/r
i
1% increases

with the number of episodes, indicating stronger core creation. The halo relaxes in just

5 The ejection velocity of the matter is much higher than the local circular velocity.
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Figure 2.8: Failures of the CuspCore model. The figure shows the evolution of the
inner part of the dark matter density profile after the first 3 Gyr. The initial profile
is in black. The yellow area represents the final profile from the simulation, including
the Poisson noise. The orange dashed curve is the fit of these data with the Dekel-Zhao
profile (Eq. 2.13). The red curve is the theoretical prediction of the CuspCore model.
In both panels, the halo responds to a 100% variation in baryonic mass. In the left
panel, the total baryonic mass is such that mbar/Mvir ≲ 0.001. In this case, the model
underestimates the core creation. In the right panel, the total baryonic mass is such
that mbar/Mvir ≳ 0.003. In this case, the model overestimates the core creation.

under 1 Gyr, so we spaced the flow episodes by 1 Gyr. This means that simulations
with a larger N correspond to longer integration times. The region between 10 and
12 episodes is hatched because, in hindsight, we found that numerical scattering effects
begin to appear over these time periods. The right panel of Fig. 2.10 illustrates the
most extreme case of a 12 Gyr simulation without baryonic mass removal, showing a
significant artificial lowering of density. For all five cases, we ran five simulations, and
the scatter in the left panel corresponds to the standard deviation of the five rf

1%/r
i
1%

values obtained for each case.

The fact that multiple episodes can effectively create a density core with potentially
smaller mass variations suggests that it would be interesting to study the limit where N
is very large and η is small. In this scenario the halo experiences a large number of small
mass fluctuations, thus approaching the theoretical model developed by El-Zant et al.
(2016), for example, where core creation arises from stochastic density fluctuations in
the gas distribution. This situation closely resembles the reality of feedback in dwarf
galaxies, i.e., multiple supernova explosions expelling smaller quantities of gas that are
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Figure 2.9: Multiple episodes of mass flow. The diagram at the top of the figure is
a timeline of the mass flow events. At t = 0 Gyr, baryonic mass is removed, causing
the halo to expand until t = 1 Gyr when the mass is re-added to the center. The halo
then contracts until t = 2 Gyr when the mass is removed again, and so on. In the lower
part of the figure, the two plots show the evolution of the inner part of the dark matter
density profile after the flow episodes N indicated in the top diagram. In both panels,
the initial profile is shown in black. The solid lines are fits to the simulation data using
the Dekel-Zhao functional form (Eq. 2.13), and the dashed lines are predictions from
the CuspCore model. The halo responds to a 100% variation in baryonic mass, and the
total baryonic mass is such that mbar/Mvir = 0.002. The left panel shows the density
profiles after the first three flow episodes. It is observed that as N increases, the model
diverges from the simulation. The right panel shows only the density profiles for the
even-numbered N episodes, i.e., the moments when the central baryonic mass is the
same as at the beginning of the simulation. Despite the presence of the same amount of
baryonic matter at the halo’s center, the density profile decreases. The impulsive nature
of feedback processes assumed in the CuspCore model irreversibly transfers energy to
the dark matter, creating a core in the density profile independent of the amount of
central baryonic mass.
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subsequently reaccreted at the center in a repeated manner.
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Figure 2.10: Left Panel: Magnitude of the core creation as a function of the number
of alternating mass flows. Core creation is measured using the ratio rf

1%/r
i
1% of the

final to initial radius enclosing 1% of the virial mass of the halo. We simulated the
cases with N = 4, 6, 8, 10, and 12 even-numbered episodes, i.e., the moments when the
central baryonic mass is the same as the initial mass. For each case, we conducted
5 simulations, and the scatter corresponds to the standard deviation of the 5 values
of rf

1%/r
i
1% obtained. The increase in this ratio with N indicates that core creation

becomes more significant as the number of flow episodes increases. The region where
N > 10 is hatched to indicate the presence of numerical scattering. An example of the
effect of this scattering is shown in the right panel, where the artificial lowering of the
density profile is observed when the simulation time is too long, despite the baryonic
mass remaining constant.

2.4.3 The CuspCore II model

The limitations of the CuspCore model that we have highlighted can be attributed to
the simplifying assumptions underlying the model. The reasoning presented in Section
2.2.2 is valid under the assumption that there is no shell crossing, which allows us to
assume that the energy of each shell is conserved during the system’s relaxation. In
other words, ri and rf refer to the same Lagrangian shell. When shell crossing occurs,
we assume that the energy equality still holds but for shells encompassing the same
mass before and after relaxation, even if they do not represent the same Lagrangian
shell. This strong assumption of the model is not formally justified. The reality is more
complex and for epicyclic orbits the energy change depends on the orbital phase as it
is a function of the radius at the time of the potential variation. Thus, particles on the
same initial orbit, and therefore with the same energy, can experience different energy
gains depending on their phase. This is an energy diffusion process.

Such tests of the CuspCore model were carried out more systematically using a
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setup close to the one I developed by Zhaozhou Li (Hebrew University of Jerusalem).
Identifying the flaws of the model, as presented here, enabled Zhaozhou Li to generalize
the model. Both the tests and the generalization of the model are presented in Li et al.
(2023). The new CuspCore II model treats the relaxation process self-consistently. It
traces the diffusion of orbital energy by iteratively updating the phase-space distribution
function during relaxation. The new version of the model reproduces the simulated dark
matter profiles with approximately 10% accuracy or better, outperforming the CuspCore
model and providing more accurate predictions even in extreme cases of significant mass
variation.

2.5 Dynamical buoyancy and core stalling

Limitation of Chandrasekhar’s formalism. The presence of a core in the den-
sity profile has significant consequences on the orbital dynamics of objects within the
galaxy. In Section 1.4.2, we discussed dynamical friction, which describes the loss of
momentum and kinetic energy of a massive body moving through a field of lighter parti-
cles due to gravitational interactions. Chandrasekhar’s description, as presented in Eq.
1.28, works well in simple cases to describe the orbits of satellites in spherical galaxies
(and non-spherical ones if we account for velocity anisotropy corrections) with general
background distributions (Binney, 1977; White, 1983; Bontekoe & van Albada, 1987;
Zaritsky & White, 1988; Weinberg, 1989; Cora et al., 1997; Peñarrubia et al., 2004).
However, it is based on strong assumptions. Firstly, it assumes the background is infi-
nite, homogeneous, and isotropic. Secondly, it neglects the self-gravity of the medium,
including the self-gravity of the wake and the medium’s response to the perturbation
caused by the perturber. Lastly, this description assumes that stars pass by the mas-
sive object M in Keplerian hyperbolae (cf. Sect. A.1), while orbits in the combined
gravitational fields of M and the galaxy are more complex.

This description is therefore not perfect and shows several shortcomings. For in-
stance, being local (proportional to the local density), it suggests that a perturber
orbiting outside a galaxy (or halo) of finite extent would not feel any drag force, which
is not what is observed in simulations (see Lin & Tremaine, 1983). Later, Tremaine
& Weinberg (1984) formulated a perturbative theory of dynamical friction, providing a
global rather than local understanding of the phenomenon through resonances. In this
framework, the decay of the perturber’s orbit is due to interactions between the latter
and resonant background orbits, resulting in a net retarding torque called LBK torque
(after Lynden-Bell & Kalnajs, 1972). This explanation naturally resolves the locality
problem mentioned above.
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Dynamical friction in density cores. Another problem is that the simplifications
we mentioned earlier are particularly problematic when the perturber is near the galac-
tic center, where the integrated galactic mass is comparable to the perturber’s mass.
More recently, other deviations from Chandrasekhar’s formulation have been observed,
particularly in density cores. Core stalling, i.e., the cessation of dynamical friction in a
constant density core (Read et al., 2006; Inoue, 2011; Petts et al., 2015), and dynam-
ical buoyancy, i.e., the outward push of a perturber initially placed near the center of
a cored density profile (see Cole et al., 2012), have been observed in simulations and
are not accounted for by Chandrasekhar’s formulation. To tackle this issue, using a
slightly different approach with the collisionless Boltzmann equation to compute the
perturbed distribution function of field particles, Kaur & Sridhar (2018) found the net
torque and showed that when the perturber enters a core region, important resonances
are suppressed, decreasing the strength of the torque and stopping dynamical friction.
This provides an explanation for core stalling in terms of resonances. They also found
that the stalling radius rcs is directly related to the mass of the perturber through:

Ωp(rcs) = Ωb with Ωp(r) =

√
G
Mb(< r) +Mp

r3 , (2.27)

where Ωp is the perturber’s orbital frequency, Ωb the orbital frequency of stars at the
very center of the cored potential and Mb(< r) the enclosed mass of the background
density.

Recently, Banik & van den Bosch (2021) extended the work of Tremaine & Weinberg
(1984) and Kaur & Sridhar (2018) by relaxing two underlying assumptions: the secular
approximation, which implies that the perturber evolves over a timescale much longer
than the system’s dynamical time, and the adiabatic approximation, which assumes
that the perturber is introduced into the system over a long timescale.

By relaxing these two assumptions, they derived an expression for a generalized
LBK torque which has contributions from both resonant and non-resonant orbits. In
the adiabatic limit, which assumes a slow growth of the perturber potential, they recov-
ered the LBK torque with contributions solely from pure resonances. Conversely, in the
limit of an instantaneous introduction of the perturber (as typically done in idealized
numerical simulations), the result is a time-dependent torque with contributions from
both near-resonant and purely resonant orbits. This torque can be retarding, causing
the slowing down of the perturber and thus the phenomenon of dynamical friction 6 ,
but it can also flip sign, making it enhancing and causing dynamical buoyancy. Core
stalling is simply a migration trap that occurs at a radius balancing these two phenom-
ena.

6 They also recover the "super-Chandrasekhar" phase observed in Zelnikov & Kuskov (2016).
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Figure 2.11 shows the radius of a perturber plunging into a density core as a function
of time. With the theoretical model of Banik & van den Bosch (2021), it is observed that
if the perturber initially has an orbital radius larger than the core stalling radius, it will
plunge towards the center at a slightly slower rate than predicted by Chandrasekhar,
then undergo a super-Chandrasekhar phase during which it falls at an accelerated rate
(Read et al., 2006; Zelnikov & Kuskov, 2016). This enhancement occurs only in the
core region of the galaxy. Finally, after this phase, it reaches the stalling radius and
becomes trapped in this equilibrium zone between friction and buoyancy. Conversely,
if the perturber initially has an orbital radius smaller than the core stalling radius, it
will be pushed towards the latter by dynamical buoyancy and will also end up in this
equilibrium. We note that the theoretical core stalling radius from Kaur & Sridhar
(2018) is slightly different from that of Banik & van den Bosch (2021). In the following,
we will use the definition by Kaur & Sridhar (2018), as it is simpler to implement.
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Figure 2.11: Orbital decay of a perturber in an isochrone potential for various initial
radii. The dotted lines represent the results from Chandrasekhar’s formalism. The
dashed lines show the results from Kaur & Sridhar (2018) with the LBK torque, and the
solid lines depict the results from the generalized LBK torque obtained by Banik & van
den Bosch (2021). Each color corresponds to a different initial radius. The horizontal
black lines represent the theoretical core stalling radii from the two formalisms. We
observe that they differ slightly; in the following, we will use the definition by Kaur &
Sridhar (2018), as it is simpler to implement. This figure is a simplified version of Fig.
4 from Banik & van den Bosch (2021).
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To determine if we can achieve core stalling and to test the analytical formula for the
core stalling radius given by Kaur & Sridhar (2018) in Eq. (2.27), we conducted a test
simulation of a black hole on an epicyclic orbit within a cored potential. We used the
Bonsai tree code, a GPU-based code that is faster than GyrfalcON, which operates
on a single processor. For the simulation parameters, we followed those of Read et al.
(2006) to see if we could obtain similar results. Thus, we have a black hole with a
mass MBH = 2 × 105M⊙, initially located at r = 1.069 kpc from the center of a halo
distributed according to a Zhao profile (cf. Eq. 1.21) with ρ0 = 9.93 × 107M⊙.kpc−3

(corresponding to a virial mass Mvir = 2×109M⊙) and parameters α = 1.5, β = 3, and
γ = 0. The scale radius is rs = 0.91 kpc, and the concentration is c = 40. We simulated
a total of N = 107 particles.

Figure 2.12 shows the radius of the black hole as a function of time. We observe the
stalling phenomenon starting at around 9 Gyr of evolution, when the radius stabilizes.
We also indicated on this figure the theoretical core stalling radius given by Eq. (2.27).
This radius accurately describes the final position of the black hole. The black hole’s
stalling occurs around the core radius rcore ∼ 200 pc, similar to the results of Read et al.
(2006). However, the stalling happens slightly later, which is due to the fact that the
black hole is not entirely in equilibrium at the beginning of the simulation, explaining
the initial jump in radius. Therefore, it starts from a slightly higher radius and takes
longer to reach the core.
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Figure 2.12: Core stalling in simulation. Left panel: Orbital radius of a black hole in a
slightly elliptical orbit as a function of time. The red dashed line indicates the position
of the theoretical core stalling radius given by Eq. (2.27). As the black hole approaches
the density core, its radius stops decreasing and stabilizes at the core stalling radius.
Right panel: Background density profile. The red dashed line indicates the theoretical
core stalling radius.
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As we have seen, the presence of a harmonic core changes the dynamics of per-
turbers and gives rise to various effects not accounted for by the classical description
of dynamical friction. On the other hand, several observations point to the presence of
cores approximately 1 kpc in size at the centers of dark matter halos across all scales,
from dwarf galaxies to the most massive galaxies (see Binney & Evans, 2001; Borriello
& Salucci, 2001; de Blok et al., 2001). If massive black holes become offset due to core
stalling or long infall times, the question arises whether they can merge outside the
galactic center. This is the question we will address in the following chapters of this
manuscript.

2.6 Summary of Chapter 2

This chapter focuses on understanding the interplay between dark matter and bary-
onic matter within the centers of galaxies. It explores the discrepancy in the distribution
of dark matter between the theoretical predictions of the ΛCDM model and observations.

Cusp-Core Discrepancy. The ΛCDM model predicts that dark matter governs
large-scale structures, with baryons becoming significant later. Simulations based solely
on dark matter show a density cusp at the center of halos. However, observations,
particularly of dwarf galaxies, reveal flat density cores instead. This inconsistency,
known as the cusp-core discrepancy, challenges the ΛCDM model. Two approaches
have been proposed to address this discrepancy: one modifies the cold dark matter
model, while the other retains it and emphasizes the interaction between baryonic and
dark matter. In this chapter, we focused on the latter, presenting the CuspCore model,
which explains core formation through feedback processes.
The CuspCore Model. Feedback processes, such as stellar winds and supernova
explosions, can create potential fluctuations that drive dark matter particles away from
the center, forming a core. Hydrodynamical simulations support this, but often rely on
ad hoc parameters. We introduced the CuspCore model, which explains core forma-
tion through feedback-induced potential fluctuations. The model outlines a three-step
process: initial equilibrium, instantaneous mass variation, and subsequent relaxation.
The relaxation, assumed to occur at constant energy, leads to a new equilibrium state
featuring a density core.
Tests with N-body simulations. Simulations are crucial for testing theoretical
models, given the non-replicable nature of the universe. In this chapter, we tested the
predictions of the CuspCore model using N -body simulations at the galactic scale. We
described the setup for N -body simulations, including techniques like tree-code and
softening to manage computational complexity.
Single epsiode. These simulations highlighted the successes and failures of the Cus-
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pCore model. They revealed that the CuspCore model accurately predicts core forma-
tion in many scenarios (see Fig. 2.7) but fails under certain conditions, such as extreme
mass variations. We found that for large mass variations (greater than 35%), the ratio
of baryonic-to-virial mass significantly affects the accuracy of the model’s prediction. In
these cases, when mbar/Mvir ≲ 0.001, the model tends to underestimate core creation.
Conversely, when mbar/Mvir ≳ 0.003, the model overestimates core creation (see Fig.
2.8).
Multiple episodes. Multiple episodes of baryonic mass variation are also explored.
In a scenario of alternating outflows and inflows, the model has significant difficulty pre-
dicting the behavior of the simulations starting from the second outflow (see Fig. 2.9).
However, the simulations demonstrate the cumulative effect of repeated fluctuations in
creating cores (see Fig. 2.9 and 2.10). The effectiveness of multiple episodes in creating
a density core with smaller mass variations suggests studying the limit where the num-
ber of episodes is very large and the mass variation is small. This scenario, resembling
feedback in dwarf galaxies, aligns with the theoretical model where core creation arises
from stochastic density fluctuations in the gas distribution (El-Zant et al., 2016).
Caveat and improvements. The model’s failures can be attributed to its strong
assumptions, such as the conservation of energy during the relaxation phase and the
disregard for orbital eccentricity, which induces an energy diffusion process. Acknowl-
edging these limitations of the original CuspCore model led to its generalization: the
CuspCore II model (Li et al., 2023). This new version self-consistently traces the diffu-
sion of orbital energy, providing more accurate predictions even in extreme scenarios.
The consequences of a density core. To conclude this chapter, we discussed the
impact of a density core on orbital dynamics. The presence of cores gives rise to new
phenomena such as dynamical buoyancy and core stalling, which prevent perturbers
like massive black holes from falling to the center of galaxies. This partly motivates the
exploration of scenarios involving the mergers of massive black holes outside of galactic
centers, which will be the focus of the upcoming chapters.
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3
Off-center mergers and
black hole influence in

cored profiles

Overview

In this chapter, we present the standard scenario of massive black hole
mergers in galactic centers. Then, after providing the motivation for
our work, we propose an off-center merger scenario for black holes.
We study the structure of the Lagrange points for the case of a cored
dwarf galaxy and calculate the radius of influence of a black hole in
this context. Finally, we define a capture criterion. Subsections 3.2,
3.3, and 3.4 are detailed versions of Sections 1, 2.4, and 2.5 of François
et al. (2024), adapted to fit the manuscript. A summary of the chapter
is available in Section 3.5.

3.1 Standard scenario of massive black hole mergers: the
reign of dynamical friction

Observations indicate the presence of massive black holes (MBHs) in galaxies rang-
ing from dwarfs to ellipticals, and even potentially in globular clusters 1 (see Section
1.4.3). Major galaxy mergers, accretion events, and the in-spiraling of globular clusters
can result in multiple black holes (BHs) within the same galaxy (see Schweizer et al.,
2018; Nguyen et al., 2019; Kollatschny et al., 2020; Shen et al., 2021; Stemo et al., 2021;
Voggel et al., 2022; Pechetti et al., 2022). Subsequently, several physical processes come
into play to bring MBHs from several kpcs away to form a binary and potentially merge.

1 Although a clear consensus has not yet been established.
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This process can roughly be divided into three stages (Begelman et al., 1980).

From kiloparsec to parsec. A typical galaxy has an effective radius 2 ranging from
about a kiloparsec in dwarf galaxies to several tens of kiloparsecs in elliptical galaxies.
In hopes of merging BHs within these galaxies, a physical process is needed to bring
them from these distances down to a few parsecs. This role is fulfilled by dynamical
friction. As a BH moves through a galaxy, it transfers part of its kinetic energy to stars
and/or gas, loses angular momentum, and spirals towards the galaxy’s center (see Sec-
tion 1.4.2). Figure 3.1 shows the time required for a supermassive black hole (SMBH) on
a circular orbit within the disk of our Milky Way to fall to the center due to dynamical
friction. This was calculated using equations (A.71) and (A.72). It shows that a SMBH,
originating several kiloparsecs away, can effectively reach the galactic center within the
span of a Hubble time. In scenarios where multiple MBHs exist within the same galaxy,
this process creates a focal point in phase space, enabling MBHs to converge within the
galaxy.

Three-body scattering. When two MBHs of masses M1 and M2 converge at the
galactic center and achieve a negative binding energy, they form a bound pair. In the
center-of-mass frame, this energy is expressed by 3 :

Eb = −GM1M2
2 drel

, (3.1)

with µ = M1M2/(M1 + M2) the reduced mass, G the gravitational constant, drel the
relative distance between the two BHs and vrel their relative velocity. Following this, the
binary enters a second phase where it loses energy and angular momentum, tightening
through three-body interactions with nearby stars. When a star approaches the BH
pair, it gravitationally interacts and can be ejected from the three-body system with
increased kinetic energy, which tightens the binary (Saslaw et al., 1974). During this
interaction, the change in the binary’s energy is given by:

∆E = C 2m⋆

M1 +M2
Eb ≃ −m⋆

Gµ

drel
, (3.2)

where m⋆ is the mass of the star and C is a non-trivial function of the encounter
parameters. For the second equality, we used equation (3.1) and set C = 1 since Monte
Carlo experiments have shown that C is typically of the order of unity (Hills, 1983;
Sesana et al., 2006).

The binary tightens when the star is ejected from the system, that is, if its velocity
exceeds the escape velocity, which, to first order, equals the stars’ velocity dispersion σ.

2 The radius within which half of the galaxy’s total light is emitted.
3 This expression does not account for the external tidal field.
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Figure 3.1: Time required to reach the Milky Way galactic centre due to dynamical
friction as a function of the initial orbital radius R. Different colors indicate BHs of
varying masses. The BH is assumed to be in a circular orbit within the disk plane.
The Milky Way’s potential is modeled with a thin and a thick stellar disk, a gas disk, a
stellar bulge, and a dark matter halo. The parameters are from (McMillan, 2017). For
the velocity dispersions of the thin disk, thick disk, gas disk, bulge, and halo, values of
43, 85, 10, 100, 200 km.s−1 are adopted respectively (Bensby & Feltzing, 2006; Kalberla
& Kerp, 2009; Rich et al., 2007; Battaglia et al., 2005). We assume an isotropic dark
matter halo and use the radial dispersion from (Battaglia et al., 2005). The blue region
represents times shorter than the age of the Universe.

We have:
−∆E >

1
2
m⋆σ

2 ⇔ drel < rh ≡ 2Gµ
σ2 (3.3)

where rh is the hardening radius. To get an idea of the magnitudes involved, consider
our Milky Way (σMW ∼ 200 km.s−1) and suppose it harbors a second SMBH of the
same mass as Sagittarius A⋆ 4 (MSgr = 4.1 × 106M⊙). In this case, stellar scattering
becomes efficient when the binary has a separation of drel = rh = 0.5 pc.

However, this process is constrained by the number of stars that are available to
interact with the binary. If there are insufficient encounters, the binary stalls, this is
known as the "final parsec problem" (Milosavljević & Merritt, 2003). For a star to be
ejected by the binary, it must have sufficiently low angular momentum to pass close
to the galactic center, and there is a limited number of stars that meet this criterion.

4 The BH at the center of our Galaxy.
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This is particularly true in galaxies with strong symmetry, such as spherical or disk
galaxies, where angular momentum conservation along the axis of rotation limits the
number of stars that can pass close to the center 5 . Therefore, a process is needed to
refill low angular momentum stars within a Hubble time to allow the BHs to merge.
Several models have been proposed to solve this "loss cone refilling problem," but there
are still many uncertainties. Negative gas torques were initially suggested as a poten-
tial solution, however, recent simulations indicate that AGN winds create a feedback
cavity, effectively stripping the binary and halting the orbital decay process (del Valle
& Volonteri, 2018). Another possibility is the presence of a third MBH, which could
increase the binary’s eccentricity through the Kozai mechanism (Blaes et al., 2002) or
extract energy via gravitational slingshot (Valtonen et al., 1994).

Relativistic regime. If there are sufficient stars to facilitate energy loss through
three-body scattering, the binary can reduce its separation to a point where gravitational
radiation becomes a dominant factor. While gravitational waves are emitted in principle
at all separations, the energy loss is significantly more efficient when the binary is closely
bound. Let’s calculate this critical separation, assuming the orbits are circular. Under
this assumption, the system decays within a finite time, tGW, given by (see Peters, 1964,
Eq. 5.10, and note that this formula is valid only at the 2.5 post-Newtonian correction
level):

tGW = 5 c5 r4

256G3M1M2(M1 +M2)
, (3.4)

where c is the speed of light. The separation required for the merger to occur within a
Hubble time (tGW = thubble ∼ 14 Gyr) is therefore:

rGW =
(

256G3M1M2(M1 +M2)
5 c5 thubble

)1/4

. (3.5)

Taking our previous example of a Sagittarius A⋆ binary at the center of our Milky
Way, we calculate the separation at which gravitational waves significantly influence
the merger to be rGW = 0.001 pc.

The three previous stages constitute the conventional framework for the merger of
MBHs through the assembly of galaxies, they are depicted in the top panel of Fig. 3.2.

5 The lack of angular momentum conservation in triaxial galaxies allows for phylocentric orbits
that can feed the binary by passing through the center. However, the rate of replenishing stars via
phylocentric orbits is significantly lower than the full loss-cone rate (Vasiliev et al., 2014).

− 58 −
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Phase 3 :

o Gravitational waves emission

Phase 1 :

o Falls at the center because of 
dynamical friction

Phase 1 :

o Jacobi capture

Phase 2 :

o Energy loss through
dissipative forces

Central merger

Off-center merger
This work

Figure 3.2: Central versus off-center BH merger scenarios. Top row: classical massive
BH merger scenario in the galactic center. Phase 1: the massive BHs lose angular
momentum through dynamical friction with the galaxy and halo, which causes them
to sink toward the center. Phase 2: once both BHs have reached the center, they may
form a bound pair and continue to lose energy via dissipative forces. Phase 3: the
binary eventually enters the relativistic regime and loses energy through gravitational
waves emission, allowing the two BHs to merge. Bottom row: proposed scenario for
an off-center merger. Phase 1: the BHs are on off-center orbits e.g., as a result of long
dynamical time for their radius to decrease through dynamical friction or core stalling
acting against dynamical friction. If both BHs are sufficiently close energetically, they
may form an off-center bound pair through Jacobi capture. This is the scenario explored
in this thesis.

3.2 Off-center scenario of massive black hole mergers: the
counterattack of long fall time and core stalling

The merging scenario relies mainly on dynamical friction to bring BHs together at
the center. However, calculating the time it takes for intermediate-mass black holes
(IMBHs) to reach the center of a dwarf galaxy reveals that it can significantly exceed
the age of the Universe. Figure 3.3, analogous to Figure 3.1, displays this for IMBHs
within a dark matter halo of a spheroidal dwarf galaxy. We used here the halo from
Chapter 2 modeled by a Zhao profile (Eq. 1.21) with α = 1 and β = 3 representing the
outer and transitional slopes of the density profile. The figure shows the infall time for
two different inner slopes: γ = 0, representing a core, and γ = 1, representing a cusp.
The virial mass is still Mvir = 1011M⊙, the virial radius is r200 = 100 kpc, and the scale
radius is rs = 6.7 kpc, giving a concentration of 15.
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Figure 3.3: Time required to reach the galactic centre due to dynamical friction as
a function of initial orbital radius R. Different colors indicate BHs of varying masses.
The BH is assumed to be on a circular orbit. The potential is that of a spheroidal
dwarf galaxy dark matter halo, described by an (α, β, γ) density profile (Hernquist,
1990; Zhao, 1996). Two internal slopes are used: γ = 0 (core) and γ = 1 (cusp). A
velocity dispersion value of 20 km.s−1 has been used. The blue region represents times
shorter than the age of the Universe. It is observed that in the case of a cored density
profile, IMBHs do not have sufficient time to reach the center via dynamical friction.

It is observed that in the case of a cored density profile, IMBHs (103 − 106M⊙)
predominantly do not have sufficient time to reach the center due to dynamical friction.
As a consequence, BHs are left on off-center orbits, with their guiding radius reduc-
ing only very slightly over 14 Gyr. According to simulations and observations, it is
estimated that half of the IMBHs are off-center in dwarf galaxies (see Bellovary et al.,
2019; Pfister et al., 2019; Reines et al., 2020; Bellovary et al., 2021). Furthermore, their
electromagnetic detection is highly challenging due to their low accretion luminosities,
and their dynamical detection is equally problematic as they have a very small impact
on the dynamics of the stars within their sphere of influence.

In certain instances, however, the long infall time argument alone does not provide
a satisfactory explanation for the existence of off-center objects, such as in the case of
the Fornax dwarf galaxy. This galaxy harbors five globular clusters orbiting at approx-
imately 1 kpc from its center (Mackey & Gilmore, 2003), and based on conventional
assumptions, these clusters should have migrated from their current locations within a
few billion years (see Goerdt et al., 2006, though this picture has been challenged, given
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the modeling freedom of the initial GC formation radius, and uncertainties arising from
projection effects, see e.g., Borukhovetskaya et al. 2022). As we saw in Section 2.5, this
is in part due to dynamical processes which cannot be modeled using Chandrasekhar
dynamical friction alone: numerical simulations have revealed instances of core stalling,
where the perturber’s fall comes to a halt (see Read et al., 2006; Inoue, 2011; Petts
et al., 2015), as well as the occurrence of an outward push, or dynamical buoyancy
(see Cole et al., 2012). These phenomena are observed in constant-density cores (as
those observed at the center of dark matter halos in low-mass galaxies, see Binney &
Evans, 2001; Borriello & Salucci, 2001; de Blok et al., 2001), and are not accounted for
in Chandrasekhar’s description.

3.3 Off-center mergers as a 3-body problem

In light of these cases where IMBHs are found off-center, either because their infall
time greatly exceeds the dynamical time of the system or because it is halted due to
the presence of a constant density core, the question arises whether a IMBH merger is
possible outside the galactic center. Indeed, the aforementioned three-phase scenario
must be revised. Firstly, there is no guarantee that the BHs may get sufficiently close in
phase space to form a binary, as opposed to the classical case where the galactic center
acts as an attractor, allowing an agglomeration at a single point. In this context, specific
phase-space conditions must be met for them to form bound configurations away from
the center.

We propose a new scenario for off-center mergers of MBHs, starting with a gravita-
tional capture 6 . During this phase, the two BHs meet a suitable configuration where
their gravitational attraction becomes comparable to the force generated by the galaxy.
They bond, outside the center, for a certain period of time and produce several close
encounters. This scenario may be modeled, as a first approximation, as a circular-
restricted three-body problem. This is a variation of the three-body problem in which
two very light objects orbit around a much more massive body. This problem, known
as Hill’s problem, has been extensively studied to describe the movements of satellites
around a planet (Petit & Henon, 1986; Henon & Petit, 1986; Petit & Hénon, 1990)
as well as gravitational wave capture of stellar-mass BHs around a supermassive BH
(Boekholt et al., 2023; Li et al., 2022). The principal distinctions in our case lies in the
fact that a galaxy is an extended massive body rather than point-like, so the mass of the
central body depends on the orbital radius of the BHs and the shape of the potential is
different, featuring a density core at the center.

Then, it has been observed that dissipative forces play a crucial role in the harden-
ing of the binary (e.g., Fabian et al., 1975; Goldreich et al., 2002). In Li et al. (2022);

6 In this manuscript, we will use the terms gravitational capture, Jacobi capture, or simply capture.
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Boekholt et al. (2023) this energy dissipation is facilitated by the emission of gravita-
tional waves, while in Tagawa et al. (2018, 2020); Li et al. (2022); Rowan et al. (2023);
DeLaurentiis et al. (2023), it is dynamical friction with the surrounding gas that tight-
ens the binary. We anticipate a similar behavior for the case of two IMBHs: the bound
stellar populations that typically surround them can generate dynamical friction on the
other BH, eventually leading to the last step of the classical scenario (see bottom panel
in Fig. 3.2).

3.3.1 Classical Keplerian case & distant tide approximation

In the following chapters of this manuscript, we focus on the first step of the off-center
merger scenario, i.e. the Jacobi capture. In order to label captures, it is important to
have a quantity that allows us to evaluate the gravitational influence of a BH orbiting
within a dwarf galaxy. In this section and the subsequent ones, we will calculate this
quantity and discuss its limitations within the scope of our study. This will be useful
for defining a capture criterion in Section 3.4.

The volume of influence, also known as the Hill volume, defines a spatial domain sur-
rounding the BH where its gravitational influence dominates. Traditionally, this volume
is approximated as a sphere, characterized by the Hill radius (or radius of influence).
In the classical restricted three-body problem, this radius is derived by determining the
distance between the body of interest and the Lagrange point L1, situated along the
line connecting the two massive bodies, between them (cf. Fig. 3.4).

Consider the simple case of a BH with mass m on a circular orbit around a point mass
M , as described in Binney & Tremaine (2008) Sect. 8.3.1. We orient the coordinate
system so that m and M are at rm = [M,R/(M + m), 0, 0] and rM = [−m,R/(M +
m), 0, 0], respectively, and the angular speed is Ω = (0, 0,Ω), with

Ω =

√
G(M +m)

R
, (3.6)

where R is the relative distance between the two masses. According to its definition,
the Hill radius, rH, satisfies:

∂Φeff
∂x

∣∣∣∣
(xm−rH,0,0)

= 0, (3.7)
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Figure 3.4: Effective potential of the two masses system M and m, plotted in the
reference frame rotating at the angular frequency of the BH orbit in the (x, y) plane.
The coordinates (x, y) = (0, 0) denote the center of mass of the two masses. The
Lagrange points, along with the positions of the masses are highlighted in red.

with the potential given by 7 :

Φeff(r) = ΦM (r) + Φm(r) − 1
2

|Ω × r|2

= −G
[

M

|r − rM|
− m

|r − rm|
+ M +m

2R3 (x2 + y2)
]
.

(3.8)

Thus, we have
1
G

∂Φeff
∂x

∣∣∣∣
(xm−rH,0,0)

= M

(R−RH)2 − m

R2
H

− M +m

R3

(
MR

M +m
−RH

)
. (3.9)

Under the distant-tide approximation, assuming a Hill radius much smaller than the
distance between the masses (RH ≪ R) and a significant mass hierarchy (m ≪ M), the
expression simplifies to

M

(R−RH)2 = M

R2

(
1 − RH

R

)−2
≃ M

R2

(
1 + 2RH

R

)
(3.10)

and
M +m

R3 RH ≃ M

R3 RH (3.11)

7 In the case of a circular orbit.
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which finally gives for equation (3.7):

3MRH
R3 − m

R2
H

= 0 ⇔ RH =
(
m

3M

)1/3
R . (3.12)

It is worth noting that if we had chosen to define the Hill radius as the distance between
the BH and the Lagrange point L2, the equation (3.9) would be replaced by

1
G

∂Φeff
∂x

∣∣∣∣
(xm+rH,0,0)

= M

(R+RH)2 + m

R2
H

− M +m

R3

(
MR

M +m
+ RH

)
, (3.13)

which, after simplification, yields the same expression for the radius of influence. There-
fore, the distant tide approximation imposes a symmetry of the Lagrange points L1 and
L2 on either side of the BH.

3.3.2 Lagrange points in a cored profiles

To address the extended galactic case, using the previous analytical expression for
the Hill radius, which involves replacing M by Mb(< R) the enclosed mass of our back-
ground density at the radius of the BH, is not desirable. Complications arise due to sev-
eral reasons: (i) our investigation deviates from previous assumptions, particularly when
we examine the dynamics of BHs in close proximity to the center (RH ∼ R), where the
galaxy’s integrated mass is comparable in order to that of the BH (Mb(< R) ∼ MBH);
(ii) in density profiles featuring a central core, distinct Lagrange point structures
emerge, differing from those observed in the Keplerian case (Banik & van den Bosch,
2022); (iii) the density profile employed lacks an analytical formula for the potential.
For these reasons, we have conducted numerical computations to determine the La-
grange points and the radius of influence.

Figure 3.5 shows the effective potential of the galaxy-BH system, plotted in the
reference frame rotating with the BH. Each row in Fig. 3.5 corresponds to a distinct
position of the BH within the core. The left-hand column is computed for the cored
galactic potential, while the right-hand column corresponds to the Keplerian case, where
we approximate the galaxy as a point mass equal to the enclosed galactic mass up to the
BH orbit. Near the galactic center, the topology of the effective potential in the (α, β, γ)
case differs from the Keplerian case. As the BH approaches the center and reaches a
critical radius Rcrit, a bifurcation occurs and the Lagrange points L1, L3 and L0 merge
into a single point. In the last two rows of Fig. 3.5, we observe the scenario where
the BH’s radius exceeds this critical value, resulting in the same number of Lagrange
points as in the Keplerian case, albeit at different positions. Conversely, the first row
illustrates the case where the BH’s radius is smaller than the critical value, leading to
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Figure 3.5: Effective potential of the galaxy-BH system plotted in the reference frame
rotating at the angular frequency of the BH orbit in the (x, y) plane. The coordinates
(x, y) = (0, 0) denote the center of mass, calculated for the sum of the BH mass and
the mass of the host galaxy integrated up to the BH orbit. Hence the galactic center
is shifted significantly from (0, 0) in some cases. The Lagrange points, along with
the positions of the black hole (denoted BH) and galactic center (denoted GC), are
highlighted in red. R = f×rc is the orbital radius of the BH, where f is a dimensionless
factor and rc represents the core radius of the potential, defined by its inflection point.
We observe distinct differences in the topology of the effective potential, as well as in
the positioning and number of Lagrange points, between the cored galactic potential
(on the left) and the Keplerian case (on the right) where we approximate the galaxy as
a point mass equal to the enclosed galactic mass up to the BH orbit.
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the merging of Lagrange points L1, L3, and L0 8 . As the BH’s orbital radius increases,
the galactic potential gradually approaches the Keplerian model.

3.3.3 Black hole’s influence radius in a cored profile

Figure 3.6 shows the Hill radius as a function of the BH orbital radius. It is com-
puted in two ways, by taking the distance between the BH and the L1 Lagrange point
and the distance between the BH and L2. Four background potentials are considered :
a Keplerian potential and three (α, β, γ) profiles with different inner density slopes.

First, we observe that the distance between the BH and L1 matches that between
the BH and L2 around and beyond the core radius. However, this symmetry does not
persist within the core. Here, the distant-tide approximation, which enforces precise
L1/L2 symmetry by eliminating asymmetry terms in the calculations, breaks down.
The exception is the NFW profile (γ = 1), where symmetry holds across all radii.

In our study profile with a core (γ = 0), we discern a discontinuity in the BH-L1
distance at a specific radius, indicative of the earlier mentioned bifurcation. Beyond
this critical radius, the L1 Lagrange point lies between the BH and the galactic center.
However, as the BH’s orbital radius diminishes, the L1 point converges toward the
galactic center. Below the critical radius, the distance between the BH and the galactic
center is measured, accounting for the linearity of the curve.

The Keplerian profile closely aligns with the Hill radius predicted by the distant-tide
approximation formula, maintaining this consistency even within the core despite L1/L2
asymmetry. It is only in very close proximity to the center that significant divergence
occurs. In contrast, the extended profiles (α, β, γ) exhibit clear discrepancies with the
distant-tide approximation, particularly within the core, notably for inner slopes γ = 0
and γ = 1. Within our study profile (γ = 0), we see a difference of a factor of 2 be-
tween the distant-tide approximation’s analytical formula and the precise computation.
This discrepancy, coupled with the distinct shape of the Hill radius curve compared to
the Keplerian case, suggests that the galaxy cannot be adequately treated as a radius-
dependent point mass. Moreover, the disparities among the three extended density
profiles highlight the significant dependence of the Hill radius in our study area on the
inner density slope. Consequently, we anticipate an equally pronounced sensitivity of
the capture process to this parameter.

Figure 3.7 shows the Hill radius as a function of the BH mass. Two background

8 A detailed investigation is warranted to confirm whether this convergence indeed represents a single
point or falls below our resolution limit. This aspect will be addressed in future research endeavors.
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potentials are considered : a Keplerian potential and the cored Zhao profile with α = 1,
β = 3 and γ = 0. The Hill radius increases with the mass of the BH. As the BH mass
increases, the BH-L1 and BH-L2 distances diverge. This occurs because the approxi-
mation MBH ≪ Mb(< R) no longer holds, resulting in asymmetrical Lagrange points
around the BH.

Figure 3.5 and 3.6 show that the dynamics and likelihood of Jacobi captures are
significantly influenced by the galactic context. Firstly, the zone of influence of BHs
is different from the Keplerian case, and secondly, the altered topology of the effective
potential gives rise to novel types of BH orbits, including Pacman orbits (see Fig. 4.20),
which are pivotal for core stalling (Banik & van den Bosch, 2022).

3.4 Capture criterion

We aim to contextualize Jacobi captures within an observable framework to evaluate
the likelihood of forming and detecting off-center BH binaries. To achieve this, we con-
duct simulations spanning a timeframe of 14 Gyr. Consequently, some captures may be
truncated by halting the simulation, while others that are theoretically feasible may not
have sufficient time to occur. For instance, when the orbital radii of BHs are extremely
close, the time required to catch-up their phase difference may exceed 14 Gyr. Likewise,
in order to deduce a probability from initial conditions, we incorporate conditions that
lead to capture at t = 0 Gyr. These cases are indeed conditions allowing BH binding
off-center, and due to the ergodic nature of this study, any stretch of 14 Gyr should
be equivalent to another. Put differently, a time shift in the simulation range would
interchange some initial (happening at t = 0 Gyr) and dynamical (happening at t > 0
Gyr) captures. Lastly, although we simulate 14 Gyr of evolution during which an initial
condition can result in several captures, we solely focus on the first, as higher-order
effects can significantly influence the sequence of events in reality (such as dynamical
friction and post-Newtonian corrections).

To determine a capture, two conditions must be met. First, the binding energy
between the BHs must be negative. This is given by

Eb = 1
2
µ v2

rel − GM1M2
drel

, (3.14)

with µ = M1M2/(M1 + M2) the reduced mass, G the gravitational constant, drel the
relative distance between the two BHs and vrel their relative velocity. Note that this
expression does not take into account the external tidal field. Secondly, during the
period of negative binding energy, the distance between the BHs must fall below the
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Figure 3.6: Hill radius (RH) as a function of the BH orbital radius R in units of
the core radius for a mass MBH = 106M⊙. The Hill radius is computed as the BH-L1
distance (dashed lines) and the BH-L2 length (solid lines). Four background potentials
were considered : a Keplerian potential (shown as light-blue lines); and three α, β, γ
profiles with α = 1, β = 3 and inner slopes γ = 0 (red), 1/2 (green) and 1 (yellow)
respectively. The thick dark blue solid line is for the distant-tide approximation, which
goes to a constant value as R → 0. On the figure, the shaded area denotes the scope
of this study. The core stalling radius and galactic core radius are indicated by vertical
lines. The separation of the dashed and solid lines indicates an asymmetry between L1
and L2 on either side of the BH when entering the core region. Note that for the case of
an NFW profile (γ = 1 , yellow) the L1 and L2 solutions very nearly overlap inside the
core. The discontinuity of the dashed red line shows a bifurcation of the Lagrange points
in the core profile. It is striking that the Keplerian potential remains close to the distant-
tide approximation well inside the core of the galaxy, before diverging significantly at
log R/rc ≲ −1.3. By comparison, extended profiles may show differences with this
approximation exceeding a factor 2 anywhere inside the core for γ = 0 (red).

binary Hill radius. This radius is defined as the average distance between BH-L1 (or
BH-L0 if L1 no longer exists) and BH-L2 for a total mass Mtot = M1 + M2 located at
r̃ = (M1 × r1 + M2 × r2)/(M1 + M2). This additional condition prevents mislabeling
due to coincidental alignment of velocity vectors, which could lead to a negative energy
reading. It is important to bear in mind that classical two-body dynamics do not allow
for gravitational capture, as BHs get accelerated upon approach due to energy conser-
vation. However, in the three-body system, the presence of a third body enables the
binding energy to dip below zero and later return to positive values, allowing for un-
binding (Petit & Henon, 1986; Renaud et al., 2011; Peñarrubia, 2023). The time spent
in this sub-zero state, during which the BHs can revolve around each other a few times,
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Figure 3.7: Hill radius (RH) as a function of the black hole (BH) mass MBH, divided
by the enclosed galactic mass at the BH radius Mb(< R). The BH is placed at a
radius R = 0.19 × rc where rc represents the core radius of the potential, defined by its
inflection point. The Hill radius is computed as the BH-L1 distance (dashed lines) and
the BH-L2 length (solid lines). Two background potentials are considered : a Keplerian
potential (shown as light-blue lines); and the α, β, γ profile with inner slopes γ = 0
(red). The dark blue line is the distant-tide approximation. The x-axis covers the mass
range studied in this manuscript, i.e., MBH ∈ [103 − 106]M⊙. The separation of the
dashed and solid lines indicates an asymmetry between L1 and L2 on either side of the
BH when the distant-tide approximation breaks down (Mb(< R) ∼ MBH).

is challenging to predict due to the chaotic nature of the three-body problem, occurring
over a broad range of timescales. However, dissipative forces like dynamical friction,
three-body scattering or post-Newtonian corrections can enhance temporary captures
when considered (Samsing et al., 2018b; Li et al., 2022; Boekholt et al., 2023; Rowan
et al., 2023; DeLaurentiis et al., 2023). Consequently, since our focus in this study is on
Jacobi captures, our aim is to identify sub-zero crossings independently of their duration.

Although flybys with a single close encounter are traditionally distinguished from
captures with more than one close encounter, we opt to label both scenarios as cap-
tures: (i) unlike other distance-based criteria (Boekholt et al., 2023), Eq. (3.14) is more
stringent as it incorporates a velocity condition for BHs. This refinement ensures that
the surviving flybys consist of BHs close in energy and with mean eccentricities below
1 (see Fig. 4.15). Consequently, we anticipate that these flybys may be more easily
stabilized in the future (for a comparison with another, less restrictive criterion yielding
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numerous hyperbolic flybys, refer to Section 4.6); (ii) it is conceivable that even a single
close encounter could lead to eventual stabilization, especially when dissipative forces,
such as those arising from the post-Newtonian corrections, play a significant role at the
pericenter of eccentric binaries (cf. Fig. 4.15). The question of the conditions necessary
for stabilization remains a subject for future investigation.

Figure 3.8 illustrates six instances of Jacobi captures characterized by varying num-
bers of close encounters. The top row displays the relative coordinates between the BHs
during these captures, with the reference frame centered on the most massive BH and
rotating with it. The binary Hill radius is depicted by the dotted circle. The bottom
row shows the binding energy and the relative distance between the BHs.

3.5 Summary of Chapter 3

This chapter investigates the influence of massive black hole in off-center regions of
cored galaxies. It starts with an overview of the standard scenario for massive black
hole mergers at galactic centers and introduces a new scenario of off-center mergers as
a possible alternative.

Off-Center Scenario for Black Hole Mergers. The standard picture of massive
black hole mergers involves a three-phase process starting by their infall towards the
galaxy center due to dynamical friction. However, in the case of intermediate-mass
black holes in dwarf galaxies, the time required for them to reach the center can exceed
the age of the Universe. Additionally, the presence of a constant-density cores allow
black holes to settle on stable off-center orbits due to core stalling. In this chapter, we
proposed a new scenario for off-center intermediate-mass black hole mergers, initiated by
gravitational capture. This process can be approximated as a circular-restricted three-
body problem, where the dynamics are influenced by the extended mass distribution of
the galaxy, especially in the presence of a central core.
Structure of Lagrange Points in Cored Profiles. First, we studied the structure
of Lagrange points in a cored galaxy potential, showing how the topology of the effective
potential differs from the classical Keplerian case. Near the galactic center, a bifurcation
occurs, and the merging of Lagrange points can significantly affect the dynamics of black
holes, altering their zones of influence and the likelihood of gravitational capture.
Radius of Influence and Capture Criterion. Next, we calculated the influence
radius of the black holes and showed that, within our study area, it is approximately
twice the value given by the distant-tide approximation. In the core, the influence radius
depends on the inner slope of the density profile and cannot be approximated using the
Keplerian potential typically used in the literature. We defined a binding criterion based
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Figure 3.8: Examples of Jacobi captures with different numbers of close encounters
between BHs. Top row: relative coordinates between BHs during Jacobi captures. The
reference frame is centered on the most massive BH and rotates with it. The binary
Hill radius is marked by the dotted circle. Bottom row: the black line represents the
binding energy (Eb) per unit mass of the binary (Mtot = M1 + M2), with negative
values shown in the colored area. The black marker indicates the point when the energy
becomes negative. The blue curve represents the relative distance (drel) between the
BHs. The binary Hill radius is indicated by a dashed blue line. The number of close
encounters, Ne, is given in the box. To contextualize captures within observational
framework, we extend our simulations over a period of 14 Gyr. Consequently, we observe
instances where captures are halted prematurely, as illustrated by cases with Ne = 20
and Ne = 77. Additionally, we retain flybys due to our energy-based criterion, which is
more stringent compared to distance-based criteria. This ensures that surviving flybys
comprise BHs with similar energy levels, potentially facilitating stabilization through
dissipative forces.
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on two requirements: (1) the binding energy between the black holes must be negative,
and (2) the distance between the black holes must fall within the binary Hill radius
during the period of negative binding energy. The chapter concludes with examples of
gravitational captures, illustrating the complex dynamics involved in off-center mergers
and setting the stage for further exploration of this alternative scenario in the next
chapter.
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4Simulating gravitational
captures in dwarf galaxies

Overview

To study Jacobi captures of intermediate-mass black hole within a
galactic context, we designed and ran numerical experiments. After
presenting our setup, we will examine the sensitivity of captures to ini-
tial conditions. We will introduce the different types of captures, their
probabilities based on initial conditions, and their properties. Addi-
tionally, we will discuss resonances. Finally, we will compare these
results with those obtained using an alternative capture criterion, al-
lowing us to discuss the challenge of choosing a perfect criterion for
this problem. This chapter is a detailed version of subsections 2.1, 2.2,
3.1, and A of François et al. (2024), adapted to fit the manuscript. A
summary of the chapter is available in Section 4.7.

4.1 Simulation setup, a tricky problem for the N-body

In this study, we aim to explore the influence of different initial properties of black
holes (BHs) on the occurrence of a Jacobi capture. We also aim to provide physical
insights on the capture process itself, occurring off-center in an extended galactic po-
tential. As a consequence, we are reduced to a number of simplifying assumptions.
Because we want to sample a large parameter space of initial BH masses and kinemat-
ics, we cannot afford to simulate the host galaxy as a live N -body component. Indeed,
the problem we are considering requires high computational accuracy along two lines.
First, we need to resolve the dynamics of the BH binary, implying a high time resolution
of the integration. Second, an extreme number of galactic particles is required to resolve
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processes such as dynamical friction 1 . As a workaround, we consider the galaxy as a
background static potential, in a simplified setup that enables us to execute thousands
of simulations within a reasonable timeframe 2 .
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Figure 4.1: Density profile and integrated mass profile of the dark matter halo (back-
ground potential). The two horizontal lines represent the limits of the mass range we
consider for the BHs. The shaded area denotes the scope of this study, and the x-axis at
the top of the figure is expressed in units of the core radius of the potential rc, defined
by its inflection point.

We integrate the orbits of two BHs in an external gravitational potential represent-
ing the dark matter halo of a dwarf galaxy. Simulations made use of the REBOUND
N -body code (Rein & Liu, 2012). The simulations were integrated using IAS15, a 15th
order Gauss-Radau integrator (Rein & Spiegel, 2015). This integrator incorporates a
step-size control mechanism to automatically select an optimal timestep and is adept
at handling close encounters and orbits with high eccentricity. With systematic errors

1 We simulate intermediate-mass black holes of 103 − 106M⊙ in a dark matter halo of 1011M⊙. In
order to resolve dynamical friction, a mass ratio of ∼ 1/1000 is required between the galactic particles
and the BHs. Consequently, the mass of the galactic particles must not exceed 1M⊙. We therefore
need to simulate 1011 particles which is well outside the technical capabilities at our disposal in terms
of memory and computing time.

2 This setup does not account for dynamical friction. However, as discussed in Section 3.2, the infall
time of the intermediate-mass black hole in the galaxy under study is much longer than the age of the
Universe.
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maintained well below machine precision, IAS15 demonstrates adherence to Brouwer’s
law, where energy errors exhibit random walk behavior.

We choose a dwarf galaxy halo as various studies indicate that this type of galaxy
hosts a substantial population of off-center BHs (Bellovary et al., 2019, 2021). Further-
more, in the standard ΛCDM paradigm dwarf galaxies are dominated by dark matter,
hence we can initially approximate them by considering only their halo. We consider a
galaxy with a 1011M⊙ cored dark matter halo with a virial radius r200 = 100 kpc (this
corresponds to a stellar mass of ∼ 108M⊙). This halo mass range is expected to develop
cored profiles more efficiently (see Tollet et al., 2016; Freundlich et al., 2020b, and Fig.
2.4). The dark matter component of our dwarf galaxy model is described by a cored
(α, β, γ) density profile (Hernquist, 1990; Zhao, 1996)

ρ = ρ0

(
r

a

)−γ [
1 +

(
r

a

)α] γ−β
α

, (4.1)

with α = 1, β = 3 and γ = 0 respectively the outer, transitional and inner slope of
the density profile. The scale radius is a = 6.7 kpc. The density profile as well as the
integrated mass profile are depicted in Fig. 4.1.

4.1.1 Toy model

We adopt a simplified model where the two BHs are on circular orbits in the same
plane. This configuration closely resembles Hill’s problem (Petit & Henon, 1986; Henon
& Petit, 1986; Petit & Hénon, 1990; Boekholt et al., 2023). However, our massive body
is extended rather than point-like, so its mass depends on the orbital radius of the
BHs, and the potential shape differs, featuring a density core at the center. If our BHs
are close to the center (which is the case for core stalling), the mass of the central
body is comparable to the mass of the BHs. When the proximity of the two BHs leads
to gravitational forces comparable to those exerted by the galaxy, temporary captures
occur. These are known as Jacobi captures and are marked by multiple close encounters
between BHs.

Our aim is to probe the phase space of the initial conditions to determine the percent-
age of cases in which the BHs produce a Jacobi capture. A priori, we have 14 parameters
to describe an initial configuration: 6 phase space coordinates per BH (r, vr, θ, vθ, φ, vφ)
and the mass of each object (M1 and M2). We decide to simplify the problem by con-
sidering the 2D case of two BHs orbiting in the same plane, which reduces our number
of parameters to 10. We place the BHs on circular orbits in the θ = π/2 plane which
fixes vr and vφ once the position is known. Finally, we do not need each BH’s phase
(φ1 and φ2) but only the phase difference ∆φ because of cylindrical symmetry. We
thus end up with five initial parameters: r1, r2,∆φi,M1 and M2. However, it is more
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∆𝜑#

Δ𝑟#

𝑟#
x

y

𝑀)

𝑀* Figure 4.2: Parameters of an initial
configuration, ri the initial radius of the
inner BH, ∆ri the radial separation be-
tween BHs, ∆φi the phase difference
and M1,M2 the two masses.

Table 4.1: Parameter ranges for the five-parameter case. For a definition of the
parameters in use, see Fig. 4.2

Minimum
value

Maximum
value

Number
of values

Spacing

M1/M⊙ 103 106 8 Log
M2/M⊙ 103 106 8 Log
ri/kpc 0.1 6 14 Log

∆ri/kpc 0.08 1.2 30 Log
∆φi 0 2π 9 Lin

convenient to use ri,∆ri,∆φi,M1 and M2 with ri the initial radius of the inner BH and
∆ri the initial radial separation between the two BHs (these parameters are shown in
Fig. 4.2). Without loss of generality we impose that M1 is always the inner BH (this
means that ∆ri is always positive). We quantify the effect of the initial parameters on
Jacobi capture and the percentage of cases in which such an event occurs. Parameter
ranges are summarized in Table 4.1.

4.2 Chaos

To underscore the chaotic behavior of Jacobi captures in this context, we choose
a specific capture as a point of reference and examine how small changes in initial
conditions affect the number of close encounters between the BHs. In the left-hand
panel of Fig. 4.3, this reference capture is shown, characterized by 5 close encounters
(Ne) between the BHs. We set the initial conditions (M1,M2, ri,∆ri,∆φi) for this
capture and conducted two refined simulations: one varying (M1,M2) more finely and
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another varying the radial parameters (ri,∆ri). For both sets of parameters, we sampled
400 linearly distributed values, varying them by plus or minus 1% relative to the original
initial conditions. The central and right-hand panels of Fig. 4.3 present the number of
close encounters between the BHs for each case. In these regions of phase space, the
number of close encounters fluctuates between 5 to 33 for the central panel and 2 to
34 for the right-hand panel. The upper limits are due to the fixed integration time,
truncating the captures beyond 14 Gyr. The significant irregularities in the count of
close encounters when both pairs of parameters are varied illustrate the high sensitivity
to initial conditions. In the central panel, the patterns of irregularity align along lines.
In reality, these lines depend on a combination of the reduced mass and the total mass
through the binding energy. However, in the case we are considering, where M1 ≃ M2,
they can be approximated by M1 +M2 ∼ C, with C being a constant.
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Figure 4.3: Influence of the initial conditions on the number of close encounters (Ne).
Left panel: Reference Jacobi capture (M0

1 = 3.7276 × 105 M⊙, M0
2 = 3.7276 × 105 M⊙,

r0
i = 6.000 kpc, ∆r0

i = 0.6242 kpc, ∆φ0
i = 3.4907, with significant figures up to the

resolution of the central and right panels). The top panel shows the relative coordinates
between the BHs during the capture. The reference frame is centered on the most
massive BH and rotates with it. The binary Hill radius is indicated by the dotted circle.
In the bottom row, the black line represents the binding energy (Eb) per unit mass of
the binary (Mtot = M1 + M2), with negative values depicted in the colored area. The
black marker indicates the point at which the energy becomes negative. The blue curve
represents the relative distance (drel) between the BHs. The binary Hill radius is shown
by a dashed blue line. The reference capture involves 5 close encounters between the
BHs. Central panel: Ne variations as a function of initial conditions (M1,M2). The
(M1,M2) values are distributed plus or minus 1% around the initial condition of the
reference capture, denoted as (M0

1 ,M
0
2 ). Right panel: Ne variations as a function of

initial conditions (ri,∆ri). The (ri,∆ri) values are distributed plus or minus 1% around
the initial condition of the reference capture, denoted as (r0

i ,∆r0
i ). The reference capture

is located at (0, 0) in each panel. The strong variations of Ne with initial conditions is
suggestive of chaotic motion.
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4.3 Mapping the initial conditions for Jacobi captures

4.3.1 General statistics and 1:1 resonances

We integrated 8 × 8 × 14 × 30 × 9 = 241 920 initial configurations (cf. Table 4.1)
over 14 Gyr. We find a capture in 7.1% of cases, of which 26.2% are flybys.

Even though we do not focus on what happens after the first capture, as collective
effects and relativistic corrections are expected to significantly alter the dynamics, it is
interesting to note that 39.3% of flybys result in subsequent captures. Figures 4.4 and
4.5 show examples of these cases. Figure 4.4 illustrates cases of 1:1 resonances, with an
example of a horseshoe orbit shown on the left. In a horseshoe orbit, two objects share
a similar average orbital radius but periodically swap their positions relative to each
other. This swap is mediated by their gravitational interactions, which cause exchanges
of angular momentum. As the objects approach each other, their mutual gravitational
attraction causes one to accelerate (moving to a slightly higher orbit) and the other to
decelerate (moving to a slightly lower orbit). Over long timescales, the average distance
of both objects from the central body remains the same, meaning they complete their
orbits in the same amount of time on average. This is why the system is considered to
be in a 1:1 resonance, even though the instantaneous periods can differ slightly. The
existence of a central core within the density profile facilitates the emergence of a novel
orbital type known as Pacman orbits (Banik & van den Bosch, 2022). An example of
this orbital type is shown in the central panel of Fig. 4.4. These orbits play a key
role in the phenomenon of dynamical buoyancy within cores, which drives perturbers
outward to an equilibrium radius with the dynamical friction, ultimately resulting in
core stalling. During capture events, BHs experience these unique dynamics. Finally,
the right panel of Fig. 4.4 illustrates a chimera orbit, where a Pacman orbit transitions
into a horseshoe orbit. Figure 4.5 presents cases of stabilized horseshoe orbits. Initially,
these cases are horseshoe flybys during a first close encounter, which then stabilize into
more stable captures during a second encounter several Gyr later. Examples of more
stable Jacobi captures, featuring various numbers of close encounters, are also presented
in Fig. 3.8.

The captures can be further categorized into two distinct types: those formed at the
beginning of the simulations (t=0 Gyr, hereafter referred to as initial captures), com-
prising 66.3% of the total captures, and those emerging during the integration at later
times (t>0 Gyr, hereafter referred to as dynamical captures), making up the remaining
33.7% of the captures. It is essential to bear in mind that in the following sections our
focus is on the initial conditions that initiate the capture process i.e., the transition
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Figure 4.4: Examples of 1:1 resonances. Top row: relative coordinates between BHs
during Jacobi captures. The reference frame is centered on the most massive BH and
rotates with it. The binary Hill radius is marked by the dotted circle. Bottom row:
the black line represents the binding energy (Eb) per unit mass of the binary (Mtot =
M1 + M2), with negative values shown in the colored area. The blue curve represents
the relative distance (drel) between the BHs. The binary Hill radius is indicated by a
dashed blue line. Left column: Horseshoe orbit. Central column: Pacman orbit. Right
column: Chimera orbit.

from two separate two-body problems to a three-body problem. Consequently, the re-
sults presented here are not subject to chaos. We examine the initiation of the process
rather than the subsequent three-body interaction (such as capture duration or number
of close encounters) which typically exhibit chaotic behavior (cf. Section 4.2).

4.3.2 Initial captures

Initial captures are traditionally not considered in the study of Jacobi captures (Pe-
tit & Henon, 1986; Henon & Petit, 1986; Petit & Hénon, 1990; Boekholt et al., 2023),
despite their crucial role in understanding this process. To fully comprehend the capture
phenomenon, they should not be disregarded for three reasons: (i) These captures facil-
itate off-centered binding between BHs, which cannot be overlooked when performing
statistical analyses on the initial conditions leading to off-center captures. Additionally,
due to the ergodic nature of the problem, some initial captures and dynamical captures
are interchangeable with a time shift in the simulation; (ii) as we will see, some initial
captures are actually permanent captures –bound throughout the entire simulation– that
appear to conspire with all temporary captures to account for the theoretical statistics
related to the capture process (Peñarrubia et al., 2024); (iii) the formation mechanisms
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Figure 4.5: Examples of stabilized horseshoe. Top row: relative coordinates between
BHs during Jacobi captures. The reference frame is centered on the most massive BH
and rotates with it. The binary Hill radius is marked by the dotted circle. Bottom row:
the black line represents the binding energy (Eb) per unit mass of the binary (Mtot =
M1 + M2), with negative values shown in the colored area. The blue curve represents
the relative distance (drel) between the BHs. The binary Hill radius is indicated by a
dashed blue line.

for BHs can include bound or nearly bound compact remnants, so quick captures may
reflect a correlation in phase space that corresponds to this. Therefore, it is essential
not to exclude them from consideration.

When examining initial captures more closely, we distinguish two different behav-
iors. Some of these captures become unbound during the simulation, and may even lead
to subsequent captures. Figure 4.6 shows three examples of such cases. Another portion
of initial captures remains bound throughout the entire simulation and exhibits a high
degree of regularity. We will refer to these as permanent captures, meaning they stay
bound for the entire 14 Gyr simulated period. Figure 4.7 illustrates examples of these
cases. The stability of these perturber-phylic captures is remarkable, given the chaotic
nature of the three-body problem. There is a striking difference between these highly
regular captures and the more chaotic initial captures shown in Figure 4.6. Permanent
captures occur only at t = 0 Gyr, but Peñarrubia et al. (2024) have shown that in cases
where the masses vary over time, they can occur spontaneously and randomly during
the simulation, which is particularly interesting in the case of accreting BHs. This study
also indicates that there seems to be an underlying connection between permanent and
temporary captures, working together to preserve a constant phase-space density. It
suggests that both populations are intrinsically linked. The question remains whether
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Figure 4.6: Examples of initial captures that become unbound and subsequently lead
to a second capture during the simulation.

these are unstable captures with a characteristic instability time much longer than the
14 Gyr simulated, or if allowing initial captures grants access to a non-zero measure
phase space region that results in regular periodic captures. This question remains
unanswered, but it is an exciting prospect for future exploration.

In the bottom right panel of Fig. 4.7, we notice a case where the capture remains
regular despite the separation between the BHs being greater than the Hill radius of the
binary. This echoes the study by Johnston et al. (1999), which found a population of
extra-tidal stars bound to a cluster but outside its radius of influence. The inverse has
also been observed, where unbound stars (with energy above the escape energy) remain
indefinitely within the cluster’s radius of influence (see Fukushige & Heggie, 2000). In
the bottom left panel of Fig. 4.7, we observe a case where a regular capture appears to
be perturbed but then regains its regularity.

Figure 4.8 shows the percentage of initial captures in the space of different param-
eter pairs, marginalized over the others. The right-hand panels show this percentage
in (M1,∆ri) space (top) and in (M2,∆ri) space (bottom). In both panels, the propor-
tion of captures increases as the radial separation between the BHs decreases and their
masses increase. These conditions elevate the potential term of the binding energy (see
Eq. 3.14), consequently reducing the binding energy of the binary. Beyond a certain
threshold of radial separation, captures cease to occur. This limit does not precisely
match the maximum binary Hill radius (for the parameter range explored in this study,
logRmax

H = −0.35), as the definition of the Hill radius accounts for the centrifugal force,
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Figure 4.7: Examples of permanent initial captures.

which we ignore in our energy-based criterion. Nevertheless, the maximum radial sep-
aration allowing initial capture is rather close to Rmax

H .

The top left panel of Fig. 4.8 shows the percentage of initial captures as a function
of (M1, ri), while the lower left panel shows it as a function of (M2, ri). Regarding
the ri dependence, we observe a sharp increase in the percentage of capture at low
radii (log ri/kpc < −0.4) for higher masses, which then stabilizes for higher radii. The
constant part at higher radii is attributed to the nearly constant Hill radius within this
range (refer to Fig. 3.6 for the case of a 106M⊙ BH). At small radii, marginalization
increases the probability of capture. In this region, there are more values of ∆φi that
allow the BHs to remain within their sphere of influence, despite its decrease. As
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illustrated in Fig. 4.9, which shows the percentage of captures as a function of the
initial radius of the inner BH and the initial phase difference between the BHs, we note
that when the BHs are closer to the center (low ri), there are more phase differences
that allow a bond at t = 0 Gyr. Back to Fig. 4.8, the captures at high masses and
small radii correspond to cases where the BHs are initially outside the binary Hill’s
radius (which is smaller at low radii) but with negative binding energy. Their labeling
is sensitive to the capture criterion used (whether pseudo-forces related to rotation are
considered or not). We will discuss this point in more detail in Section 4.6.
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Figure 4.8: Percentage of initial captures as a function of different parameter pairs,
marginalising each time over the three others. Top-left panel: as a function of the mass
of the inner BH (M1) and its initial radius (ri); bottom-left panel: as a function of the
mass of the outer BH (M2) and ri; top-right panel: as a function of M1 and the initial
radial separation between the BHs (∆ri); bottom-right panel: as a function of M2 and
∆ri.
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Figure 4.9: Percentage of initial captures as a function of the initial radius of the inner
BH (ri) and the initial phase difference between BHs (∆φi).

4.3.3 Dynamical captures

Examples of dynamical captures are shown in Fig. 3.8. Figure 4.10 shows the per-
centage of dynamical captures (i.e., happening at t>0 Gyr) as a function of (M1,M2).
The percentage of captures increases as the mass of the two BHs increases, and we
notice that the percentage is higher when the mass of the outer BH is greater than the
mass of the inner one (M2 > M1). This is of particular interest within the context
of core stalling, which predicts a larger stalling radius for more massive BHs (cf. Eq.
5.2). This outcome can be attributed to the interaction between BHs, which imparts
eccentricity to the initially circular orbits over time. This eccentricity gain depends on
the BH mass: when one BH is much more massive, it remains nearly circular while the
lighter one becomes eccentric. Consequently, if the more massive BH is positioned closer
to the center, the lighter one will approach it more centrally, resulting in higher kinetic
energy and a more challenging capture. On the contrary, when the more massive BH
occupies the outer position, the lighter BH approaches it at a larger radius, resulting in
reduced kinetic energy and thus facilitating the capture process. In Fig. 4.10, we also
overplotted contour lines representing the average time it took for the capture to occur
since the start of the simulation. The average capture time shows an increase as the
total BH mass diminishes.

Figure 4.11 represents the percentage of captures as a function of (ri,∆ri), when
we fix the masses M1,M2 and marginalize over ∆φi only. We show the results for two

− 84 −



4.3. MAPPING THE INITIAL CONDITIONS FOR JACOBI CAPTURES

3 4 5 6
log10 (M2 / M¯ )

3

4

5

6

lo
g

1
0
(M

1
/
M

¯
)

4.0
4.04.8

5.6

6.4

7.2

8.0 0.5

1.0

1.5

2.0

%
 o

f d
yn

am
ic

al
 c

ap
tu

re
s

Figure 4.10: Percentage of dynamical captures as a function of inner (M1) and outer
(M2) BH mass. The contour lines represent the average time it took for the capture to
occur since the start of the simulation, measured in Gyr. The percentage of captures
increases as the mass of the two BHs increases, and the mass of the outer BH is greater
than the mass of the inner one (M2 > M1).

different pairs of masses, on the left-hand panel log(Mtot/M⊙) = 4.8 and on the right
panel log(Mtot/M⊙) = 6.1. Yellow areas represent initial captures and blue areas dy-
namical captures. Note the presence of blue bands that shift to the right (∆ri larger) as
the total mass increases. To the left of these bands (∆ri smaller), we notice the presence
of initial captures on a shallow yellow background. The plot can be divided into three
regions: to the left, within, and to the right of the bands.

To the right of the band (∆ri larger), there is no capture: the BHs are too distant
initially to reach a configuration where their gravitational attraction is comparable to
the force generated by the external potential. To the left of the band (∆ri smaller), cap-
tures occur at t=0 (in yellow). Indeed, two possible scenarios arise: (i) captures form
at t=0 if BHs have a sufficiently low initial phase shift ∆φi, (ii) the initial phase shift is
too large for an initial capture, and ∆ri is too small to allow phase catch-up within the
simulation timeframe 3 . Also note the darker yellow area in the lower left of the right
panel of Fig. 4.11. In this region the BHs are positioned very near the galactic center
(ri small) and are in close radial proximity to each other. Under these conditions, the
shorter distances for the same angular separation allow for more flexibility in terms of

3 When ∆ri is small, the BHs share similar orbital frequencies, so their phase difference evolves
slowly.
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Figure 4.11: Percentage of captures as a function of initial inner BH radius (ri) and
initial radial separation (∆ri) for two mass pairs. In the left panel, log(M1/M⊙) = 3.9
and log(M2/M⊙) = 4.7, in the right panel, log(M1/M⊙) = 5.6 and log(M2/M⊙) = 6.
Red areas represent initial captures while blue areas dynamical captures. The black
lines indicate the limits within which core stalling can position our BHs, given the mass
range studied. The black crosses indicate where core stalling would position the BHs in
each case.

the initial phase shifts that result in Jacobi capture. In other words, when ri decreases
larger initial phase shifts can lead to a capture, which explains the increased capture
percentage (cf. Fig. 4.9).

Figure 4.12 shows the percentage of dynamical captures as a function of the initial
radius of the inner BH (ri) and the initial phase difference between the BHs (∆φi). We
observe the presence of a clump of dynamical captures when the initial phase difference is
zero (∆φi = 0) for certain values of ri. These dynamical captures are, in fact, borderline
cases where the BHs are within the binary’s sphere of influence at t = 0 Gyr, but their
relative velocity is slightly too high for the binding energy to be negative. After a few
time steps, this condition changes, and they become bound. These cases highlight the
limitations of the binding criterion and the difficulty in establishing a perfect criterion.
Another criterion based solely on the binary’s radius of influence would label these
bindings as initial, for example (cf. Section 4.6).

4.4 Lindblad resonance

As discussed in Section 4.3.1, we have identified the presence of 1:1 resonances. It
is worthwhile to investigate whether other types of resonances exist within our system.
Two objects in orbit at radii r1 and r2 are in resonance when their relative frequencies
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Figure 4.12: Percentage of dynamical captures as a function of initial inner BH radius
(ri) and initial phase difference between BHs (∆φi).

are commensurate, meaning that

n · (Ω1 − Ω2) = 0 (4.2)

with Ω1 = Ω(r1) and Ω2 = Ω(r2) being the frequency vectors of the two objects and n
a vector of integer values such that n ̸= 0. In the case of two coplanar BHs, Ω = (Ω, κ)
with Ω the circular frequency and κ the epicycle frequency given by:

Ω(r) ≡ vc
r

=
(
GMb(< r)

r3

)1/2

κ(rg) =
(
r

dΩ2

dr
+ 4Ω2

)1/2

rg

(4.3)

with vc the circular velocity (cf. Eq. 1.14) and rg the guiding radius of the orbit 4 .
The equation (4.2) is written as follows:

n1 · (Ω1 − Ω2) + n2 · (κ1 − κ2) = 0

⇔ Ω1 + n2
n1

κ1 = Ω2 + n2
n1

κ2

⇔ Ω1 + nκ1 = Ω2 + nκ2

or Ω(r1) + nκ(r1) = Ω(r2) + nκ(r2)

(4.4)

4 Radius that minimizes the effective potential energy and for which the circular orbit would have
the same angular momentum as the given orbit.
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where (n1, n2) are the components of n and n = n2/n1. If n2 = 0, it results in the
corotation resonance Ω1 = Ω2, and when (n1, n2) = (m,∓1), the Lindblad resonances 5

m(Ω1 − Ω2) = ±(κ1 − κ2) arise. Figure 4.13 shows Ω(r) + nκ(r) for different values of
n in our density profile (cf. Eq. 1.21). The only non-monotonic curve in the displayed
radial range, which allows for a solution to equation (4.4) other than the trivial solution
r1 = r2, is the inner Lindblad resonance (n = −1/2). We have plotted this resonance in
Fig. 4.14. It can be seen that every radius within our study area resonates with another
radius outside our study area, indicating that we are too close to the galactic center for
inner Lindblad resonances to play a major role.
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Figure 4.13: Behavior of Ω + nκ for our background potential.

4.5 Binary eccentricity during Jacobi captures

The histogram in the left panel of Fig. 4.15 displays the mean eccentricity of the
binary during captures. Jacobi captures tend to result in rather eccentric binaries, a
factor that can aid in stabilization through energy dissipation caused by dissipative
forces. Post-Newtonian corrections can particularly influence highly eccentric orbits,
especially at the pericenter (Samsing et al., 2018b). Notably, our criterion ensures that
the mean eccentricity during captures remains below 1. On the right panel of Fig. 4.15,
the standard deviation of eccentricity during captures is depicted. These variations may
permit a very high eccentricity during the capture, despite a lower mean eccentricity.

5 For the case of a single object (Ω1, κ1) = (Ω0, κ0) in resonance with a bar (Ω2, κ2) = (Ωb, 0), we
have: m (Ω0 − Ωb) = ±κ0.
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Figure 4.14: Inner Lindblad resonance for our background potential. The light blue
area represents our study zone. We have plotted two examples of radii r1 and r′

1 that
resonate with r2 and r′

2, respectively. It is noteworthy that even r1, the largest radius
within our study zone, resonates with r2 located outside the study zone. Therefore,
inner Lindblad resonances do not play a major role within our study area.

4.6 Alternative capture criterion

In this section, we revisit some of the findings using an alternative capture criterion
based solely on the radius of influence (i.e., only on the effective potential). Here, we
define BHs as captured when their separation is less than the Hill radius of the binary.
When the separation between the BHs is smaller than the binary Hill radius, the po-
tential generated by the BHs competes with that of the galaxy, resulting in a significant
perturbation of the BH trajectories. Therefore, it is natural to consider that this cri-
terion alone may suffice to define a capture. We examine here the differences that this
approach entails.

Applying this new criterion to the general five-parameter case, we find captures in
16.4% of the simulated instances. This is more than double the 7.1% obtained with the
energy criterion. There are 5.4% initial captures (compared to 4.7% with the energy
criterion) and 11.0% dynamical captures (compared to 2.4%). We observe a significant
increase in the number of dynamical captures.

Figure 4.16 serves as the counterpart to Fig. 4.8, depicting the percentage of initial
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Figure 4.15: Eccentricity during Jacobi captures. Left panel: histogram in percent
of the mean eccentricity of the binary during captures (initial captures in yellow and
dynamical captures in blue). The dark blue line represents only dynamical captures with
a single close encounter (i.e., flybys). Jacobi captures produce rather eccentric binaries.
A significant proportion are in the very high eccentricity range (e ≳ 0.9), for which Post-
Newtonian corrections can be significant at the pericenter. Right panel: percentage
histogram of standard deviation of eccentricity during captures. These variations may
permit a very high eccentricity during the capture, despite the lower mean eccentricity.

captures across various parameter pairs, marginalized over the remaining three. In the
top-left panel, the percentage of captures with respect to ri closely mirrors the Hill ra-
dius curve depicted in Figure 3.6, albeit with a leftward shift as the BH mass decreases.
The white area in the top-left corner of Fig. 4.16 appears dark on the figure 4.8 due to
cases where the BHs initially maintain a relative distance slightly larger than the Hill
radius but have a negative binding energy. It is important to note that the potential
term in our energy-based criterion differs from the effective potential used to calculate
the Lagrange points and the Hill radius. Consequently, it is possible for the BHs to
have a separation greater than the Hill radius (according to the effective potential), yet
if their relative velocity is sufficiently low, the sum of the kinetic term and the potential
term (non-effective potential this time) results in a negative binding energy. In these
cases they are energetically close and plunge into the Hill sphere after a few time steps.
Under the distance criterion they are classified as dynamical captures, while the energy-
based criterion categorizes them as initial captures. This can be verified in Fig. 4.17.
It shows the dynamical captures based on the distance criterion for the parameter pair
(M1, ri). We observe a higher probability area in the top-left corner (low ri and high
M1), which corresponds to the white area of missing captures in Fig. 4.16.
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Figure 4.16: Percentage of initial captures as a function of different parameter pairs,
marginalising each time over the three others. Top-left panel: as a function of the mass
of the inner BH (M1) and its initial radius (ri); bottom-left panel: as a function of the
mass of the outer BH (M2) and ri; top-right panel: as a function of M1 and the initial
radial separation between the BHs (∆ri); bottom-right panel: as a function of M2 and
∆ri. This figure is analogous to Fig. 4.8 with a different capture criterion. BHs are
considered bound if their relative distance falls below the binary’s Hill radius.

Figure 4.18 serves as the counterpart to Fig. 4.11, depicting the percentage of
dynamical captures relative to the initial radius of the inner BH (ri) and the initial
radial separation between the BHs (∆ri). Comparing it with Figure 4.11, we observe
that the dynamical binding bands extend further down in ri. To understand the nature
of these dynamical captures introduced by the alternative criterion, we can turn to
Fig. 4.19, mirroring Figure 4.15. The histogram of mean eccentricities during captures
on the left-hand panel extends beyond 1. Consequently, these newly added dynamical
captures are mostly hyperbolic flybys close to the galactic center.
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Figure 4.17: Percentage of dynamical captures as a function of the mass of the inner
BH (M1) and its initial radius (ri), marginalising over the other parameters. BHs are
considered bound if their relative distance falls below the binary’s Hill radius.
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Figure 4.18: Percentage of dynamical captures as a function of initial inner BH ra-
dius (ri) and initial radial separation (∆ri) for two mass pairs. In the left panel,
log(M1/M⊙) = 3.9 and log(M2/M⊙) = 4.7, in the right panel, log(M1/M⊙) = 5.6
and log(M2/M⊙) = 6. This figure is analogous to Fig. 4.11 with a different capture
criterion. BHs are considered bound if their relative distance falls below the binary’s
Hill radius. We observe that the binding bands of dynamical captures extend closer to
the galactic center. The majority of these captures involve hyperbolic flybys, indicating
that the BHs involved have high relative velocities.
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Figure 4.19: Eccentricity during Jacobi captures. Left panel: histogram in percent
of the mean eccentricity of the binary during captures (initial captures in red and
dynamical captures in blue). The dark blue line represents only dynamical captures with
a single close encounter (i.e., flybys). Right panel: percentage histogram of standard
deviation of eccentricity during captures. This figure is analogous to Fig. 4.15 with
a different capture criterion. BHs are considered bound if their relative distance falls
below the binary’s Hill radius. Note that the alternative criterion adds captures for
which the mean eccentricity is greater than 1.

4.6.1 Pacman orbit and number of close encounters

Figure 4.20 illustrates another example of a Pacman capture. This example serves as
a perfect illustration of how the labeling of the number of close encounters between BHs
depends, in some borderline cases like this one, on the criterion used to label a capture.
In the right panel of Fig. 4.20, the binding energy and relative distance between the BHs
during the capture are depicted. With the energy-based capture criterion (Eq. 3.14),
we would label two captures with a single close encounter, as the energy returns to
positive values between the encounters. However, if we utilize the alternative criterion
presented in this section (where BHs are labeled as captured when the relative distance
is less than the binary Hill radius), we would label only a single capture with two close
encounters. This case underscores the complexity of selecting an appropriate capture
criterion, as finding a perfect one remains a challenging task.

4.7 Summary of Chapter 4

This chapter explores the phenomenon of gravitational capture of intermediate-mass
black holes within the context of dwarf galaxies. The aim is to develop an intuition for
this initial stage of the off-center merger scenario, where black holes bind outside the
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Figure 4.20: Example of Pacman capture. Top row: relative coordinates between
BHs during the Jacobi capture. The reference frame is centered on the most massive
BH and rotates with it. The binary Hill radius is marked by the dotted circle. Bottom
row: the black line represents the binding energy (Eb) per unit mass of the binary
(Mtot = M1 + M2), with negative values shown in the colored area. The black marker
indicates the point when the energy becomes negative. The blue curve represents the
relative distance (drel) between the BHs. The binary Hill radius is indicated by a dashed
blue line.

galactic center and undergo several close encounters.

Simulation Setup. In order to isolate the capture step and conduct thousands of
simulations efficiently, we performed idealized simulations of two point-like black holes
in a smooth background gravitational potential. We considered black holes with masses
ranging from 103 to 106M⊙ within a cored dark matter halo of 1011M⊙ (same galaxy
as previous chapters). We considered five initial parameters: initial radius of the inner
black hole (ri), radial separation between black holes (∆ri), phase difference (∆φi), and
the masses (M1 and M2). We varied them to analyze which initial configurations allow
gravitational capture to occur within a Hubble time. This approach pinpoints regions
in phase space where captures are most likely, paving the way for a comprehensive
investigation of the subsequent merger stages through N -body simulations.
Chaos in captures. Jacobi captures exhibit chaotic behavior, indicated by their
high sensitivity to initial conditions. Small variations in initial parameters can lead to
significant changes in the number of close encounters between black holes (Fig. 4.3).
Mapping initial conditions. We integrated 241 920 initial configurations (see Ta-
ble 4.1) over 14 Gyr, finding that 7.1% resulted in captures. Captures can be classified
into initial captures (66.3%), formed at the start of the simulation, and dynamical cap-
tures (33.7%) that occur during the integration at later times. Initial captures include
both temporary (Fig. 4.6) and permanent captures which remain bound throughout the
simulation, exhibiting remarkable stability despite the chaotic nature of the three-body
problem (Fig. 4.7). Dynamical captures are favored when the mass of the outer black
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hole exceeds that of the inner one (Fig. 4.10), which is of particular interest within the
context of core stalling. We found capture bands in ∆ri, i.e., a range of radial separation
values leading to capture (Fig. 4.11). The capture band moves to higher ∆ri as the
binary mass increases. To the right of the band (∆ri larger), the black holes are too far
away from each other to produce a capture. To the left of the band (∆ri smaller), dy-
namical capture is infeasible due to the impossibility of phase catch-up within a Hubble
time.
Eccentricity of captures. Jacobi captures generally result in highly eccentric bi-
naries (Fig. 4.15), which can facilitate stabilization through energy dissipation from
Post-Newtonian corrections at the pericenter (Samsing et al., 2018b).
Alternative capture criterion. We explored an alternative capture criterion based
solely on the radius of influence, defining captures when black holes are within the
binary Hill radius. This criterion results in a higher percentage of captures (16.4%)
compared to the energy-based criterion (7.1%). While this alternative criterion is use-
ful for understanding the behavior of certain captures, it is less desirable than the energy
criterion. The additional captures it introduces are mostly hyperbolic flybys, which are
unlikely to lead to mergers due to the high relative velocity between black holes. Choos-
ing the appropriate capture criterion is challenging and can lead to contradictions in
borderline cases. This is evident in the example of Pacman captures (Fig. 4.20). These
near-resonant captures emerge due to the presence of the density core and perfectly
illustrate a limiting case where the number of close encounters between black holes
depends on the criterion used.
Caveat. The primary goal of our work is to gain a better qualitative understanding of
Jacobi capture on a case-by-case basis. On the way, we had to make two key assumptions
that need to be addressed in future studies: we restricted the problem to specific initial
orbits and assumed a static galactic potential. The first assumption concerns the
geometry of black hole orbits, as we considered only coplanar black holes. While orbits
could be randomly oriented in general, coplanar orbits may artificially increase the
probability of Jacobi capture since black holes are, on average, closer both spatially and
in velocity. However, in scenarios where off-center black holes originate from accretion
events, they are expected to exhibit spatial correlations that favor coplanar orbits.
Additionally, we assumed initially circular orbits, which is realistic given that dynamical
friction tends to circularize a black hole’s orbit over time. Finally, we assumed all orbits
revolve in the same direction, effectively doubling the probability of capture. This
effect could be mitigated by the correlated origin of accreted black holes. The second
assumption of a static galactic potential is also noteworthy. In some cases, the galaxy’s
reflex response may significantly affect the dynamics, particularly for stalling black
holes, where the very definition of stalling implies that the galaxy is responding. This
background motion may induce complex changes in the dynamics, even for a single black
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hole orbiting a galaxy, and even more so for two black holes. Dynamical friction and
buoyancy exerted on each individual black hole could couple, in a way that would modify
the stalling radii of each black hole, or suppress the stalling process altogether. A more
detailed treatment using live N -body simulations is required to assess the influence of
galactic response on Jacobi capture.
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5Capture probability

Overview

The previous chapter provides valuable insights into the impact of
various parameters on Jacobi captures. In this chapter, our objective
is to reduce the number of free parameters by making two assumptions
concerning the origin and decentering of black holes. This allows us to
calculate a probability of capture. This chapter is a detailed version of
subsection 3.2 of François et al. (2024), adapted to fit the manuscript.
A summary of the chapter is available in Section 5.3.

5.1 Bound black holes from the core stalling radii

The general five-parameter case helps us emphasize the influence of masses and
kinematics on Jacobi captures. Yet, to derive a probability of capture, we must delve
deeper into a physically motivated parameter space with a reduced number of degrees
of freedom. To achieve this, we conduct a second simulation, assuming that black holes
(BHs) are off-center at their core stalling radius. This fixes the radii once the masses
are defined, effectively reducing the number of free parameters to three. The stalling
radius rcs is directly related to the mass of the BH through (see Kaur & Sridhar, 2018)

Ωp(rcs) = Ωb with Ωp(r) =

√
G
Mb(< r) +Mp

r3 , (5.1)

where Ωp is the BH’s orbital frequency, Ωb the orbital frequency of stars at the very
center of the cored potential and Mb(< r) the enclosed mass of our background den-
sity. Numerical integration of Eq. 5.1 leads to a near-power solution which we find is
accurately recovered from

rcs
kpc

≃ A

(
M

M⊙

)1/4
(5.2)
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Table 5.1: Parameter ranges for the three-parameter case.

Minimum
value

Maximum
value

Number
of values

Spacing

M1/M⊙ 103 106 20 Log
M2/M⊙ 103 106 20 Log

∆φi 2π/1000 2π 400 Lin

with A ≃ 1/80 a dimensionless constant. We note that rcs increases with the mass
of the perturber, which is in agreement with Read et al. (2006). We end up with only
three parameters: M1,M2 and ∆φi (the parameter ranges used are summarized in Table
5.1). We can impose M2 ≥ M1 without loss of generality, ensuring that M1 consistently
represents the inner BH, as in the previous section. Not imposing this condition would
mean simulating all possible cases twice, merely swapping the BH labels. This approach
would yield mass-symmetric outcomes, offering limited insights into the impact of BH
positioning on captures. Thus, we consider a total of 84 000 initial configurations, 11 712
of which show a Jacobi capture, corresponding to 13.9% of cases. There is an increase
in the percentage of captures, meaning that core stalling allows BHs to be placed on
radii that favor capture.

The left panel of Fig. 5.1 shows the percentage of captures as a function of the mass
of the inner (M1) and outer (M2) BH. The upper left region of the figure is left empty
because of the condition M2 ≥ M1, guaranteeing that BH2 consistently holds the outer
position. The right-hand panel depicts the percentage of captures as a function of the
initial phase difference ∆φi. The left panel reveals a higher percentage of captures when
both M1 and M2 exhibit higher values, and when the mass gap between BHs is modest.
The right-hand panel illustrates that captures predominantly occur with small initial
phase difference (∆φi close to 0).

Core stalling positions the BHs on very similar radii, as can be seen in Fig. 4.11,
where the black lines indicate the boundaries within which core stalling operates for the
studied mass range of 103 − 106M⊙. This region is in the regime of small radial sepa-
ration discussed in Section 4.3.3. In that region, the vast majority of captures (95.4%)
occur initially, when the BHs are sufficiently close in both initial radius and initial phase
shift. Furthermore, to understand why there is a higher percentage of capture when
masses are high, we can once again refer to Fig. 4.11. In each panel, the black cross
indicates the positioning of BHs by core stalling. Notably, in the right-hand panel with
higher masses, this cross falls within a darker region. This zone shifts from left to right
as the mass of the BHs increases. In the right panel of Fig. 5.1, captures are observed at
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Figure 5.1: Percentage of captures in the three-parameter case. Left panel: as a
function of inner (M1) and outer (M2) BH mass when positioned on their core stalling
radius. The contour lines depict the probability (in percentage) of obtaining a mass
pair (derived from a Monte Carlo sampling using SatGen, see Section 5.2). Right panel:
as a function of the initial phase difference.

low angular separations, as we simulate 14 Gyr of evolution to evaluate captures within
a Hubble time. When the angular separation is too large, BHs are unable to catch up
with their phase delay within the given timeframe.

5.2 Black holes from a cosmological sequence of mergers

It is possible to reduce further the parameter set by employing a statistical sampling
approach for the BH masses, based on a cosmological model. This fixes M1 and M2

and leaves a single parameter ∆φi assumed to be uniform, allowing the derivation of
a probability of capture. The selection of BH masses hinges on the assumption that
they originate from the nuclei of two galaxies that underwent major mergers, ultimately
forming our target galaxy for study. We also assume that within these nuclei, the BHs
were accreting matter from the galaxy, which makes it possible to correlate their mass
with that of their host galaxy.

First, we used dark matter merger trees obtained within the Semi-Analytic Satellite
Generator (SatGen) introduced by Jiang et al. (2021). These merger trees are generated
using an algorithm (Parkinson et al., 2008) based on the extended Press-Schechter
formalism (Lacey & Cole, 1993). We generated 4 000 such merger trees for the target
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Figure 5.2: Scaling relation between black hole mass and stellar mass. The MBH −M⋆

relation is represented by the thick solid black line: log(MBH/M⊙) = α+β log(M⋆/M0),
with M0 = 3 × 1010M⊙, α = 7.43 ± 0.09, β = 1.61 ± 0.12. The gray dashed lines denote
the intrinsic scatter of the relation ϵ = 0.81 ± 0.06. The fit and data are from Greene
et al. (2020). Blue markers represent early-type galaxies and red markers late-type
galaxies. Upper limits are shown as open triangles.

halo of mass M = 1011M⊙ at z=0, and assess the associated stellar masses of the two
progenitors according to the stellar-to-halo mass relation of Behroozi et al. (2013), see
Fig. 1.6. Given the 0.16 dex scatter of the relation, we drew 10 realizations of the stellar
mass per halo mass, following a lognormal distribution. In the context of accreting BH,
mass accumulation is tied to the stellar mass. We assumed that the BH masses follow
the MBH −M⋆ relation of Greene et al. (2020) 1 :

log(MBH/M⊙) = α+ β log(M⋆/M0) ± ϵ (5.3)

with M0 = 3 × 1010M⊙, α = 7.43, β = 1.61 and ϵ = 0.81 the intrinsic scatter. This
relationship is plotted in Fig. 5.2. We drew a series of 10 BH masses per stellar mass
assuming again a lognormal distribution given the scatter of the relation. Following
a selection process that involves filtering major mergers 2 , requiring progenitors’ halo
mass ratio to be above 1/3, we end up with 4 367 pairs of BH masses (M1,M2). A

1 Low-mass galaxies pose challenges as they lack σ⋆ measurements and have diminished bulge frac-
tions (MacArthur et al., 2003b). Consequently, Greene et al. (2020) revisited the MBH – M⋆ correlation,
focusing on dynamical studies involving BHs with MBH < 106M⊙.

2 For BHs to accrete and for us to apply the MBH – M⋆ relation, they must be sufficiently massive.
Minor mergers involve less massive galaxies, where the MBH – M⋆ relation no longer holds.
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Figure 5.3: Diagram summarizing the procedure for obtaining the black hole mass
pair.

diagram summarizing our procedure is shown in Fig. 5.3 and a visualization of the
(M1,M2) distribution is plotted in Fig. 5.4 and is also reported as contour lines in Fig.
5.1. We then convolved the merger probability (Figure 5.1) with the mass distribution
derived from the semi-analytic model (Figure 5.4). For each pair of masses (M1, M2)
generated by the Monte Carlo algorithm, we calculated the capture proportion using
our results from Section 5.1 as

pi(M1,M2) = n(bound | M1,M2)
n(tot | M1,M2)

(5.4)

with pi(M1,M2) the capture proportion for a given pair of masses, n(bound|M1,M2) the
number of captures for the pair of masses (M1,M2) and n(tot|M1,M2) the total number
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Figure 5.4: Monte Carlo sampling of BH mass using SatGen.

of simulations conducted for this pair of masses. The distribution of pi is plotted in Fig.
5.5. The median value is indicated in the blue box. The positive (negative) uncertainty
is derived from the difference between the median and the third (first) quartile. We
finally estimate the total probability by taking the average value of this distribution:

ptot = 1
N

N∑
i=1

pi (5.5)

where the sum relates to the cases generated by SatGen, N being the number of BH
pairs generated. We obtain: ptot = 13.2%. This result, which is not negligible, carries
significant implications for the assembly of BH masses, especially if these captures can
be sustained over time through dissipative forces. Further investigations into the ef-
fectiveness of these forces, particularly within stripped nuclei or globular clusters, are
warranted.

5.3 Summary of Chapter 5

This chapter aims to determine the probability of gravitational captures by reduc-
ing the number of free parameters. To reach this goal, we made assumptions about the
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Figure 5.5: Distribution of pi(M1,M2) values. The median value is indicated in the
blue box. The positive (negative) uncertainty is derived from the difference between
the median and the third (first) quartile.

origin of the black holes and the nature of their shift from the center.

Bound black holes from the core stalling radii. First, we assumed black holes
are off-center at their core stalling radius, which allows us to fix the radii of the black
holes based on their mass. We ran 84 000 simulations with the three remaining free
parameters (masses of the black holes M1 and M2 and the initial phase difference ∆φi,
see Table 5.1). Of these, 11 712 show a Jacobi capture, corresponding to 13.9% of
cases. The increase in the capture percentage compared to the five-parameters case
(7.1%) suggests that core stalling positions black holes at radii that favor capture.
Given the mass range under study, core stalling positions the black holes within a
regime characterized by close radial separations. In this context, the vast majority of
captures (95.4%) occur initially, if the black holes are sufficiently close. This condition
necessitates M1 and M2 to be close, corresponding to a small radial separation and a
low initial phase shift ∆φi (Fig. 5.1).
Black holes from a cosmological sequence of mergers. Our second assumption
is that these black holes originate from the central regions of two galaxies that under-
went a major merger, ultimately forming our target galaxy for study. This enabled to
recover a statistical distribution of black hole masses, employing a Monte Carlo sam-
pling algorithm to construct merger trees and using scaling relations between stellar
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and black hole masses (Fig. 5.4). By doing this, we obtained a probability of capture
of 13.2%.
Caveat. We selected the black hole masses from a semi-analytical model, which is
contingent upon the assumption that they are remnants of central black holes from past
major mergers. The application of a correlation between stellar mass and black hole
mass hinges on the assumption of black hole accretion of galactic matter. For scenarios
involving wandering black holes situated outside the galactic center, refraining from
accretion, reference to Fig. 5.1 is required on a case-by-case basis for each black hole
mass pair.
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6Conclusion

6.1 Overall summary

If I had to encapsulate the essence of this thesis in one compelling sentence, it
would be: "What occurs when the most elusive type of black hole encounters the most
enigmatic type of galaxy in the Universe?". Although this statement is somewhat sen-
sational, it highlights the two key protagonists of this study. First, there are dwarf
galaxies, enigmatic due to their very low luminosity, making them difficult to observe
beyond the local universe, and their low mass, complicating their simulation on cosmo-
logical scales (see Section 1.3). Dwarf galaxies are a remarkable playground for testing
our theories and exploring new physics. They have unique properties such as their high
dark matter fraction and are a possible point of divergence between theories and ob-
servations. The presence of density cores in their centers, in contradiction with ΛCDM
dark matter only simulations, is a perfect example. The second main character in this
story is intermediate-mass black holes (IMBHs). Although their existence is crucial for
understanding the mass assembly of black holes (BHs), their detection is still debated,
especially in the low mass regime and there is considerable uncertainty surrounding
their formation (see Section 1.4.3). This thesis explores the dynamics of IMBHs within
cored dwarf galaxies.

First of all, in Chapter 2, we addressed the cusp-core discrepancy, a significant
issue in cosmology where the ΛCDM model suggests a central density cusp in dark
matter halos, while observations, especially of dwarf galaxies, show flat cores. Using
N -body simulations, we showed that feedback processes could explain this discrepancy
within the framework of the ΛCDM model. Stellar winds and supernova explosions
create potential fluctuations that drive dark matter from the center, forming a core.
Additionally, we showed that the repetition of outflow / inflow episodes of baryonic
matter can create cores even if the final central mass returns to its initial value. This
process could be highly effective in forming cores and is particularly interesting to study
within the limit of a very large number of small variations, thereby approximating the
behavior of feedback in dwarf galaxies.
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Orbital dynamics are also unique in cored dwarf galaxies. A massive black hole
(MBH) orbiting in a galaxy is assumed to fall to the center due to dynamical friction,
which causes it to lose kinetic energy. While a supermassive black hole (SMBH) falls
to the center of a Milky Way-type galaxy within a few billion years, the infall time of
an IMBH within a dwarf galaxy can far exceed the age of the Universe. Furthermore,
in a cored profile, the fall towards the galactic center is halted as it enters the core, a
phenomenon known as core stalling. Due to prolonged dynamical friction timescales and
core stalling in cored dark matter halos, a significant population of off-center wandering
IMBHs is expected in dwarf galaxies. In this thesis, we investigated the possibility of
such BHs binding outside the galactic center.

In Chapter 3, we proposed a novel scenario for off-center MBH mergers. We showed
that the Lagrangian points and the zone of influence of a BH binary in a cored profile
differ significantly from those in a Keplerian case or an NFW profile (with a cusp). In
Chapter 4, we focused on the initial stage of off-center IMBH mergers: gravitational
capture. Using idealized simulations, we examined the conditions under which two
IMBHs can capture each other in a cored dark matter halo. Our study shows that these
captures are chaotic, with small variations in initial conditions leading to vastly differ-
ent outcomes, typically resulting in highly eccentric binaries. By mapping the initial
conditions that lead to captures, we identified regions in phase space where captures are
most likely. This analysis not only develops an understanding of the capture process but
also paves the way for a comprehensive investigation of the subsequent merger stages
through N -body simulations. Finally, in Chapter 5, we estimated the probability of
gravitational captures by simplifying the number of free parameters. Assuming that
BHs are off-center at their core stalling radii and originate from the central regions of
galaxies that underwent major mergers, we found a capture probability of 13.2%.

6.2 Implications

In recent years, IMBHs have been successfully detected outside the centers of dwarf
galaxies (Reines et al., 2020), as well as single relic nuclear clusters at kiloparsecs from
the center of the galaxy have been confirmed (Seth et al., 2014; Ahn et al., 2018).
Simulations and model predictions suggest that these relics of accretion events should
be extremely common (Tremmel et al., 2018; Voggel et al., 2019), and mergers are
thought to be a driving force behind the M-σ relation (Volonteri & Natarajan, 2009).
In this thesis, we investigated whether and under what circumstances two IMBHs can
become bound while outside the center of a galaxy. We find that such captures do
occur at substantial fractions in our simplified simulations. Our capture probability
of 13.2% is based on strong assumptions, and it is likely that this figure may decrease
when these assumptions are relaxed. However, even a small fraction of this percentage
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remains noteworthy, especially since cosmological simulations predict not just two off-
center BHs, as we studied, but rather an entire population of wandering IMBHs in
dwarf galaxies (Pfister et al., 2019; Bellovary et al., 2019, 2021). Therefore, even a
lower probability could have significant implications for BH mass assembly and the
expected gravitational wave signals.

This study is particularly timely, given the advent of detectors with unprecedented
sensitivity that have recently been launched or are expected in the coming years. The
first major breakthrough is the James Webb Space Telescope (JWST), launched on
December 25, 2021 (Menzel et al., 2023; Rigby et al., 2023). JWST can observe in
the infrared, reducing contamination from dust and offering greater sensitivity than its
predecessor, the Hubble Space Telescope. This has enabled high-redshift observations
that provide key insights into the formation and evolution of massive BHs. Early ob-
servations have already re-confirmed the presence of SMBHs at high redshift (Furtak
et al., 2024), making it crucial to refine our models to explain how such massive BHs
could form so early in the universe’s history.

Off-center IMBHs are very challenging to observe due to their position, in a low-
density environment, and their low mass (they minimally perturb surrounding stars
and have little to no accretion activity). If this hidden off-center population of BHs
merge repeatedly before reaching the center they would increase their mass with smaller
merging events and be more massive once they reach the center of the main galaxy.
Furthermore, as the probability of capture increases with BH mass, off-center mergers
could further enhance the likelihood of additional off-center mergers by leaving behind
a more massive merger product. The existence of off-center BH mergers also implies
that three massive BHs simultaneously descending toward the galaxy’s center becomes
more rare. When this does occur, it causes an unstable three-body system, which
can lead to the ejection of one BH. However, if two of the three BHs merge during
their inspiral path, only two BHs reach the center, enabling a more stable situation
and thus a more likely subsequent merger that yields a more massive BH than in the
previous scenario. The history of BH mergers being altered by the possibility of off-
center mergers, this will modify the emission rate of gravitational waves at a given
frequency. This is particularly significant as the upcoming gravitational wave detector,
LISA (Laser Interferometer Space Antenna; Amaro-Seoane et al., 2017), will offer to
detect mergers of more massive BHs such as IMBHs.

Dwarf galaxies being the most common type of galaxy in the Universe, off-center
mergers could have a major impact on the assembly of BH mass and gravitational wave
emission. Moreover, dwarf galaxies can be accreted by more massive galaxies, meaning
that events within dwarfs will have long-term consequences for more massive galaxies
as well.
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6.3 Outlook

6.3.1 The role of dissipative forces

As this type of merger can have major implications but has not been explored much
in the literature, it is crucial to improve upon our idealized simulations. First, our study
of gravitational captures does not account for the energy loss of BHs due to dissipative
processes. This energy loss primarily arises from three sources:

1. Typically, BHs are surrounded by nuclear star clusters (Seth et al., 2008), and
as they approach each other, they lose energy due to dynamical friction with the
surrounding clusters.

2. The BH binary can also interact with nearby stars, ejecting them through three-
body interactions, which tightens the binary.

3. Relativistic energy losses can be significant, especially at pericenter in highly ec-
centric binaries, which is typically the case during captures, as we have observed.

While gravitational captures are temporary, it has been observed that dissipative
forces play a crucial role in the hardening of the binary (Fabian et al., 1975; Goldreich
et al., 2002; Samsing et al., 2018b; Tagawa et al., 2018, 2020; Li et al., 2022; Boekholt
et al., 2023; Rowan et al., 2023; DeLaurentiis et al., 2023). The next step is therefore
to determine whether this inclusion can help maintain our gravitational captures over
time and tighten the binary (as can be seen in the right panel of Fig. 6.1).

I have recently begun exploring this question. To do so, I set up initial conditions
that present a gravitational capture in the idealized case without dissipation. I then re-
place the individual BHs with BH-star cluster systems, where the stars are distributed
according to a King profile (King, 1966), ensuring that the total mass remains un-
changed. My initial tests with GyrfalcON, the N -body code presented in Chapter
2, revealed that this code, being designed for collisionless systems, is not well-suited
for simulating star clusters. The high central density of the clusters requires a drastic
reduction in the time step, resulting in very long integration times. Consequently, I
have recently installed the KETJU code (Mannerkoski et al., 2023).

This code integrates several crucial features: direct interactions in the vicinity of
BHs, feedback mechanisms, post-Newtonian corrections, and even a tool for predicting
gravitational wave signals. Beyond resolving the dynamics of stars near the center, this
code will also allow for the incorporation of relativistic corrections. The aim now is to
explore the following questions: can all captures be stabilized, or only those featuring
a minimum number of close encounters? How is the stability influenced by the density
profile of stars bound to the BHs? Additionally, is dissipation through three-body

− 108 −



6.3. OUTLOOK

interactions effective in this context? Do these dissipations allow the transition to the
relativistic regime?

To address these questions, I will continue the work I began with GyrfalcON,
initially focusing on the energy loss due to interactions with the star clusters. Specifi-
cally, I will investigate how stabilization depends on (i) the properties of the idealized
capture and (ii) the various parameters of the clusters’ density profiles. If the transi-
tion to the relativistic regime is possible at this stage, the next goal will be to integrate
post-Newtonian corrections to resolve the final stages of the merger and predict the
gravitational wave signals expected from these events.

Without stellar populations
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Figure 6.1: Stabilization of a Jacobi capture in the presence of stellar populations
around the black holes (right panel) compared to the case without such stellar popula-
tions (left panel). The top row shows BH trajectory in the center of mass frame of the
binary, the color gradient indicates the time. The bottom row shows the binding energy
and the BHs separation as a function of time. In both cases, the initial conditions, total
mass, and integrator are the same. △! The right case was obtained with GyrfalcON
but should be considered as a proof of concept. Using a more appropriate code is advis-
able for drawing physical conclusions. Here, each cluster consists of N = 4 × 104 stars
with a mass of M⋆ ∼ 1M⊙, distributed according to a King profile with W0 = 5 and a
scale radius a = 10 pc. The black hole accounts for 10% of the total mass.
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6.3.2 Globular cluster mergers

Most globular clusters exhibit multiple stellar populations, the origin of which re-
mains uncertain, possibly resulting from secondary star formation. However, this mech-
anism falls short in explaining the observed significant spread in iron content. Bekki &
Tsujimoto (2016) and Gavagnin et al. (2016) propose a solution involving the merger
of two globular clusters with slightly different formation times (∼ 300 Myr). According
to their hypotheses, such mergers are predominantly feasible within the halo or nucleus
of dwarf galaxies due to their shallower gravitational potentials. Subsequently, these
dwarf galaxies, along with their pristine or merged globular clusters, are accreted by the
Milky Way. To test this hypothesis, it is crucial to investigate the likelihood of mergers
between globular clusters in dwarf galaxies. My results on Jacobi captures are transfer-
able to this problem, since any merger outside the galactic center, including for globular
clusters, begins with this physical process. In cases where a capture occurs, one can re-
place the BHs with a sets of N particles distributed according to stellar density profiles
(King 1966 or Varri & Bertin 2012) to assess if interactions between stellar populations
through N -body simulations can lead to capture stabilization and, consequently, the
merger of globular clusters.

6.3.3 Capture rate for gravitational wave prediction

So far, I tackled Jacobi captures primarily from a kinematic perspective. While
this approach provides insights into the phenomenon and helps develop an intuitive un-
derstanding of BH motion, it necessitates certain orbit-related assumptions. To achieve
greater generality and take into account the distribution of wandering BHs in the galaxy,
I propose to adopt a statistical approach, following Peñarrubia (2023). This new per-
spective involves treating an off-center BH as a reference point, referred to as RBH, and
assessing the likelihood of its interactions with a population of other off-center BHs as
it moves through the galaxy. The process will consist of two key steps. First, I will
use cosmological hydrodynamical simulations (in the same spirit as what was done in
Bellovary et al., 2019, 2021) to obtain a density profile of wandering BHs ρ(r). Then
I will use it to calculate the theoretical fraction of off-center BH with negative binding
energy within RBH’s sphere of influence. Second, as RBH moves through the galaxy,
I will estimate the number of BHs entering its sphere of influence during a given time
interval, using Poisson statistics. Putting these two elements together, I will obtain an
off-center BH-BH capture rate, a valuable tool in the long run for making predictions
about the emission of gravitational waves and the mass growth of BHs through repeated
off-center mergers.
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6.3.4 Influence of the galactic response on Jacobi captures

For the captures we have simulated near the galactic center, where the galaxy’s
integrated mass is comparable to that of the BHs, the galaxy must be treated with live
particles. It would be interesting to explore the effect of the core’s response on Jacobi
captures. To do this, one could select initial conditions that present a capture and
replace the external potential with a live halo. This question is closely linked to the
study of core stalling in the presence of two perturbers (in this case, two BHs). This is
a non-trivial problem, and it is unclear how core stalling is affected by the presence of
a second BH.

My initial intuition is that in the case of two BHs with similar masses, M1 ≃ M2,
the presence of the second BH could prevent the emergence of the orbits responsible for
buoyancy and core stalling. However, if the BHs are out of phase, positioned on opposite
sides of the galactic center, a quadrupolar mode might preserve the regularity necessary
for such orbits to emerge. In the scenario of two BHs with a significant mass hierarchy,
M1 ≫ M2, the lighter BH could be perceived as a minor perturbation, and stalling
might persist. In this case, it would be interesting to study a situation where a massive
BH (say M1 ∼ 106M⊙) stalls while several less massive BHs (M2 ∼ 102 − 103M⊙)
are present. The massive BH at its core stalling radius could capture these smaller
BHs, potentially merge with them, and thus increase its mass. As its mass increases, it
would move farther from the galactic center because its theoretical core stalling radius
is larger.

6.3.5 Fractal structure

In Section 4.2, we showed that captures exhibit chaotic behavior with respect to the
four parameters M1,M2, ri, and ∆ri. When plotting the number of close encounters
as a function of one of these parameters, such as ∆ri, we obtain irregularities in the
form of peaks, as shown in Fig. 6.2. In the Keplerian case (with a central point mass
instead of the galaxy), these irregularity peaks have been shown to exhibit a self-similar
fractal structure that can be described by a generalised Cantor set with a dimension of
approximately 0.4 (Boekholt et al., 2023). It would be interesting to investigate whether
this fractal structure persists in the case of an extended central potential. Additionally,
examining how the fractal dimension varies with the potential parameters, such as the
inner slope of the density profile, would also be of great interest.

− 111 −



CHAPTER 6 • CONCLUSION

0.55 0.60 0.65 0.70 0.75 0.80
∆ri [kpc]

0

5

10

15

20

N
e

Figure 6.2: Number of close encounters Ne between BHs during capture as a function
of their initial radial separation ∆ri.
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7French summary / Résumé
en français

7.1 Résumé détaillé

Si je devais résumer l’essence de cette thèse en une phrase accrocheuse, ce serait :
"Que se passe-t-il lorsque le type de trou noir le plus insaisissable rencontre le type de
galaxie le plus énigmatique de l’Univers ?". Bien que cette affirmation soit quelque peu
sensationnelle, elle met en lumière les protagonistes clés de cette étude. Premièrement,
il y a les galaxies naines, énigmatiques en raison de leur très faible luminosité, qui les
rend difficiles à observer au-delà de l’univers local, et de leur faible masse, ce qui com-
plique leur simulation à des échelles cosmologiques (voir Section 1.3). Les galaxies naines
constituent un terrain de jeu remarquable pour tester nos théories et explorer de nou-
velles physiques. Elles ont des propriétés uniques, comme leur forte fraction de matière
noire, et représentent un point de divergence possible entre théories et observations. La
présence de coeurs de densité en leur centre, en contradiction avec les simulations de
matière noire seules du modèle ΛCDM, en est un exemple parfait. Les autres person-
nages principaux de cette histoire sont les trous noirs de masse intermédiaire. Bien que
leur existence soit cruciale pour comprendre l’assemblage de la masse des trous noirs,
leur détection fait encore débat, en particulier dans le régime des faibles masses, et il
existe une grande incertitude concernant leur formation (voir Section 1.4.3). Cette thèse
explore la dynamique des trous noirs de masse intermédiaire au sein des galaxies naines
à coeur.

7.1.1 Chapitre 2

Tout d’abord, au chapitre 2, nous avons exploré la divergence cusp-core, un problème
majeur en cosmologie où la densité des halos de matière noire dans le cadre du modèle
ΛCDM ne reproduit pas certaines observations. Ce chapitre examine l’interaction entre
la matière noire et la matière baryonique au sein des centres de galaxies afin de mieux
comprendre et potentiellement résoudre cette divergence.
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Divergence cusp-core. Le modèle ΛCDM prédit que la matière noire domine les
grandes structures de l’Univers, tandis que la matière baryonique devient significative
plus tard. Les simulations basées uniquement sur la matière noire montrent une di-
vergence de la densité au centre des halos. Cependant, les observations, en particulier
celles des galaxies naines, révèlent des coeurs de densité plats. Cette incohérence, con-
nue sous le nom de divergence cusp-core, remet en question le modèle ΛCDM. Deux
approches ont été proposées pour résoudre cette divergence : l’une modifie le modèle
de matière noire froide, tandis que l’autre le conserve et met l’accent sur l’interaction
entre la matière baryonique et la matière noire. Dans ce chapitre, nous nous sommes
concentrés sur la seconde, en présentant le modèle CuspCore, qui explique la formation
des coeurs par des processus de rétroaction.
Le modèle CuspCore. Les processus de rétroaction, tels que les vents stellaires et
les explosions de supernova, peuvent créer des fluctuations de potentiel qui repoussent
les particules de matière noire du centre, formant ainsi un coeur. Les simulations hydro-
dynamiques soutiennent cette idée, mais reposent souvent sur des paramètres ad hoc.
Nous avons introduit le modèle CuspCore, qui explique la formation des coeurs par des
variations du potentiel induites par la rétroaction. Le modèle décrit un processus en
trois étapes : l’équilibre initial, une variation instantanée de masse, et une relaxation
ultérieure. La relaxation, supposée se produire à énergie constante, conduit à un nouvel
état d’équilibre caractérisé par un coeur de densité.
Tests avec des simulations N-corps. Les simulations sont essentielles pour tester
les modèles théoriques, compte tenu de la nature non réplicable de l’Univers. Dans
ce chapitre, nous avons testé les prédictions du modèle CuspCore à l’aide de simula-
tions N -corps à l’échelle galactique. Nous avons introduit les concepts fondamentaux
des simulations N -corps utilisant un code en arborescence, en détaillant les techniques
d’optimisation comme le lissage, ainsi que les paramètres spécifiques employés dans nos
simulations.
Épisode unique. Ces simulations ont mis en évidence les succès et les échecs du
modèle CuspCore. Elles ont révélé que le modèle prédit avec précision la formation de
coeurs dans de nombreux scénarios (voir Fig. 2.7) mais échoue dans certaines condi-
tions, comme lors de variations de masse extrêmes. Nous avons constaté que pour de
grandes variations de la masse baryonique (supérieures à 35%), le rapport de la masse
baryonique (mbar) à la masse de viriel (Mvir) affecte considérablement la précision de la
prédiction du modèle. Dans ces cas, lorsque mbar/Mvir ≲ 0.001, le modèle a tendance
à sous-estimer la création de coeurs. À l’inverse, lorsque mbar/Mvir ≳ 0.003, le modèle
surestime la création de coeurs (voir Fig. 2.8).
Épisodes multiples. Des épisodes multiples de variation de masse baryonique ont
également été explorés. Dans un scénario d’alternance entre expulsions et accrétion, le
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modèle a des difficultés importantes à prédire le comportement des simulations à partir
de la deuxième expulsion (voir Fig. 2.9). Cependant, les simulations montrent l’effet
cumulatif des fluctuations répétées dans la création de coeurs (voir Fig. 2.9 et 2.10).
L’efficacité des épisodes multiples dans la création d’un coeur de densité avec de plus
petites variations de masse suggère d’étudier la limite où le nombre d’épisodes est très
grand et la variation de masse est faible. Ce scénario, plus fidèle au réel comportement
de la rétroaction dans les galaxies naines, est en accord avec des modèles théoriques où
la création de coeurs résulte de fluctuations stochastiques de densité dans la distribution
de gaz (El-Zant et al., 2016).
Limites et améliorations. Les échecs du modèle peuvent être attribués à ses hy-
pothèses fortes, telles que la conservation de l’énergie pendant la phase de relaxation
et la négligence de l’excentricité des orbites, ce qui induit un processus de diffusion de
l’énergie. La reconnaissance de ces limites du modèle CuspCore original a conduit à
sa généralisation : le modèle CuspCore II (Li et al., 2023). Cette nouvelle version suit
de manière auto-cohérente la diffusion de l’énergie orbitale, fournissant des prédictions
plus précises même dans les cas extrêmes de variation de masse.
Les conséquences d’un coeur de densité. Pour conclure ce chapitre, nous avons
discuté de l’impact d’un coeur de densité sur la dynamique orbitale. La présence de
coeurs donne lieu à de nouveaux phénomènes tels que la flottabilité dynamique et le
core stalling, qui empêchent les perturbateurs comme les trous noirs massifs de tomber
au centre des galaxies. Cela motive en partie l’exploration d’un scénario impliquant
des fusions de trous noirs massifs en dehors des centres galactiques, qui fera l’objet des
chapitres suivants.

7.1.2 Chapitre 3

Au Chapitre 3, nous avons étudié l’influence des trous noirs massifs à l’extérieur du
centre des galaxies naines à coeur. Nous avons commencé par un aperçu du scénario
standard des fusions de trous noirs massifs au centre des galaxies et nous avons ensuite
introduit un nouveau scénario de fusion en dehors du centre comme alternative possible.

Scénario de fusion excentrée de trous noirs. Le scénario standard des fusions
de trous noirs massifs implique un processus en trois phases commençant par leur chute
vers le centre de la galaxie sous l’effet de la friction dynamique. Cependant, dans le cas
des trous noirs de masse intermédiaire dans les galaxies naines, le temps nécessaire pour
atteindre le centre peut dépasser l’âge de l’Univers. De plus, la présence de coeurs de
densité constante permet aux trous noirs de se stabiliser sur des orbites excentrées en
raison du phénomène de core stalling. Dans ce chapitre, nous avons proposé un nouveau
scénario de fusions de trous noirs de masse intermédiaire en dehors du centre, initié
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par une capture gravitationnelle. Ce processus peut être approximé par un problème
restreint à trois corps circulaire, où la dynamique est influencée par la distribution de
masse étendue de la galaxie, en particulier en présence d’un coeur central.
Structure des points de Lagrange dans les profils à coeur. Tout d’abord, nous
avons étudié la structure des points de Lagrange dans un potentiel de galaxie à coeur,
montrant comment la topologie du potentiel effectif diffère du cas képlérien classique.
Près du centre galactique, une bifurcation se produit et la fusion des points de Lagrange
peut affecter de manière significative la dynamique des trous noirs, modifiant leurs zones
d’influence et la probabilité de capture gravitationnelle.
Rayon d’influence et critère de capture. Ensuite, nous avons calculé le rayon
d’influence des trous noirs et montré que, dans notre zone d’étude, il est environ deux
fois plus grand que la valeur donnée par l’approximation des marées lointaines. Dans le
coeur, le rayon d’influence dépend de la pente interne du profil de densité et ne peut pas
être approximé à l’aide du potentiel képlérien typiquement utilisé dans la littérature.
Nous avons défini un critère de liaison basé sur deux conditions : (1) l’énergie de liaison
entre les trous noirs doit être négative, et (2) la distance entre les trous noirs doit devenir
inférieure au rayon de Hill de la binaire pendant la période d’énergie de liaison négative.
Le chapitre se termine par des exemples de captures gravitationnelles, illustrant la
dynamique complexe des fusions excentrées et ouvrant la voie à une exploration plus
approfondie de ce scénario alternatif dans le chapitre suivant.

7.1.3 Chapitre 4

Au Chapitre 4, nous nous sommes concentrés sur la première étape d’une fusion
excentrée de trous noirs de masse intermédiaire : la capture gravitationnelle. L’objectif
est de développer une intuition de ce processus à l’échelle galactique, où les trous noirs
se lient en dehors du centre et subissent plusieurs rencontres proches.

Configuration des simulations. Afin d’isoler l’étape de capture et d’explorer effi-
cacement des centaines de milliers de conditions initiales, nous avons effectué des sim-
ulations idéalisées de deux trous noirs ponctuels dans un potentiel gravitationnel lisse.
Nous avons considéré des trous noirs de masses allant de 103 à 106M⊙ dans un halo
de matière noire à coeur de 1011M⊙ (la même galaxie que dans les chapitres précé-
dents). Nous avons pris en compte cinq paramètres initiaux : le rayon initial du trou
noir intérieur (ri), la séparation radiale entre les trous noirs (∆ri), la différence de phase
(∆φi) et les masses des trous noirs (M1 et M2). Nous les avons variés pour analyser
quelles configurations initiales permettent une capture gravitationnelle dans un temps
de Hubble. Cette approche permet d’identifier les régions dans l’espace des phases où
les captures sont plus probables, ouvrant ainsi la voie à une enquête approfondie des
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étapes de fusion suivantes grâce aux simulations N -corps.
Chaoticité des captures. Les captures de Jacobi présentent un comportement chao-
tique, comme en témoigne leur grande sensibilité aux conditions initiales. De légères
variations de ceux-ci peuvent entraîner des changements significatifs dans le comporte-
ment, notamment dans le nombre de rencontres proches entre les trous noirs (Fig. 4.3).
Cartographie des conditions initiales. Nous avons intégré 241 920 configurations
initiales (voir Table 4.1) sur 14 milliards d’années, et constaté que 7, 1% d’entre elles
aboutissent à des captures. Les captures peuvent être classées en deux sous-catégories
: les captures initiales (66, 3%), formées au début de la simulation, et les captures
dynamiques (33, 7%) qui se produisent plus tard lors de l’intégration. Les captures
initiales comprennent à la fois des captures temporaires (Fig. 4.6) et permanentes, qui
restent liées tout au long de la simulation et montrent une stabilité remarquable malgré
la nature chaotique du problème à trois corps (Fig. 4.7). Les captures dynamiques sont
favorisées lorsque la masse du trou noir extérieur dépasse celle du trou noir intérieur
(Fig. 4.10), ce qui est particulièrement intéressant dans le contexte du core stalling.
Nous avons identifié des bandes de capture en ∆ri, c’est-à-dire une gamme de valeurs
de séparation radiale menant à une capture (Fig. 4.11). La bande de capture se déplace
vers des valeurs plus élevées de ∆ri à mesure que la masse de la binaire augmente. À
droite de la bande (∆ri plus grand), les trous noirs sont trop éloignés l’un de l’autre pour
produire une capture. À gauche de la bande (∆ri plus petit), la capture dynamique est
impossible en raison de l’impossibilité de rattraper le retard de phase en un temps de
Hubble.
Excentricité des captures. Les captures de Jacobi aboutissent généralement à des
binaires très excentriques (Fig. 4.15), ce qui peut faciliter leur stabilisation par dissi-
pation d’énergie due aux corrections post-newtoniennes au péricentre (Samsing et al.,
2018b). Ce résultat présente également un intérêt particulier dans le contexte des ondes
gravitationnelles, dont la fréquence est influencée par l’excentricité des binaires.
Critère de capture alternatif. Nous avons exploré un critère de capture alter-
natif basé uniquement sur le rayon d’influence, définissant les captures lorsque les trous
noirs se trouvent à l’intérieur du rayon de Hill de la binaire. Ce critère conduit à un
pourcentage de captures plus élevé (16, 4%) par rapport au critère basé sur l’énergie
(7, 1%). Bien que le critère alternatif soit utile pour comprendre le comportement de
certaines captures, il est moins souhaitable que le critère énergétique. Les captures
supplémentaires qu’il introduit sont principalement des flybys hyperboliques, qui sont
peu susceptibles de mener à des fusions en raison de la grande vitesse relative entre les
trous noirs. Le choix du critère de capture approprié est complexe et peut entraîner
des contradictions dans les cas limites. Cela se manifeste clairement dans l’exemple des
captures Pacman (Fig. 4.20). Ces captures quasi-résonnantes émergent en raison de la
présence du coeur de densité et illustrent parfaitement un cas limite où le nombre de
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rencontres proches entre les trous noirs dépend du critère utilisé.
Limitations. Le principal objectif de notre travail est d’obtenir une meilleure com-
préhension qualitative des captures de Jacobi au cas par cas. En chemin, nous avons
dû faire deux hypothèses clés qui devront être relachées dans de futures études : nous
avons restreint le problème à des orbites initiales spécifiques et supposé un potentiel
galactique statique. La première hypothèse concerne la géométrie des orbites des
trous noirs, car nous n’avons considéré que des trous noirs coplanaires. Bien que les
orbites puissent généralement être orientées de manière aléatoire, les orbites coplanaires
peuvent augmenter artificiellement la probabilité de capture de Jacobi puisque les trous
noirs sont, en moyenne, plus proches à la fois spatialement et en vitesse. Cependant,
dans les scénarios où les trous noirs excentrés proviennent d’événements d’accrétion, ils
devraient présenter des corrélations spatiales favorisant des orbites coplanaires. Nous
avons également supposé des orbites initialement circulaires, ce qui est idéalisé mais
raisonnable étant donné que la friction dynamique tend à circulariser l’orbite d’un trou
noir au fil du temps. Enfin, nous avons supposé que toutes les orbites tournent dans la
même direction, doublant effectivement la probabilité de capture. Cet effet pourrait être
atténué par l’origine corrélée des trous noirs accrétés. La deuxième hypothèse d’un
potentiel galactique statique est également notable. Dans certains cas, la réponse réflexe
de la galaxie peut avoir un impact significatif sur la dynamique, en particulier pour les
trous noirs en stalling, où la définition même du stalling implique que la galaxie réagit.
Ce mouvement de fond peut induire des changements complexes dans la dynamique,
même pour un seul trou noir en orbite autour d’une galaxie, et encore plus pour deux
trous noirs. La friction dynamique et la flottabilité exercées sur chaque trou noir in-
dividuel pourraient se coupler, modifiant les rayons de stalling de chaque trou noir ou
supprimant complètement le processus de stalling. Un traitement plus détaillé utilisant
des simulations N -corps en direct est nécessaire pour évaluer l’influence de la réponse
galactique sur les captures de Jacobi.

7.1.4 Chapitre 5

Enfin, au Chapitre 5, nous avons estimé la probabilité de captures gravitationnelles
en réduisant le nombre de paramètres libres. Pour ce faire, nous avons fait des hy-
pothèses sur l’origine des trous noirs et la nature de leur décalage par rapport au centre.

Trous noirs liés à partir des rayons de core stalling. Tout d’abord, nous avons
supposé que les trous noirs sont excentrés à leur rayon de core stalling, ce qui nous
permet de fixer les rayons des trous noirs en fonction de leur masse. Nous avons réalisé
84 000 simulations avec les trois paramètres libres restants (masses des trous noirs M1

et M2 et la différence de phase initiale ∆φi, voir Table 5.1). Parmi celles-ci, 11 712
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montrent une capture de Jacobi, correspondant à 13, 9% des cas. L’augmentation du
pourcentage de captures par rapport au cas à cinq paramètres (7, 1%) suggère que le
core stalling positionne les trous noirs à des rayons favorables à la capture. Étant donné
l’intervalle de masse étudié, le core stalling place les trous noirs dans un régime carac-
térisé par des séparations radiales rapprochées. Dans ce contexte, la grande majorité
des captures (95, 4%) se produisent initialement, si les trous noirs sont suffisamment
proches. Cette condition nécessite que M1 et M2 soient proches, ce qui correspond à
une petite séparation radiale et à un faible décalage de phase initiale ∆φi (Fig. 5.1).
Trous noirs issus d’une séquence cosmologique de fusions. Notre seconde
hypothèse est que ces trous noirs proviennent des régions centrales de deux galaxies
ayant subi une fusion majeure, formant ainsi notre galaxie d’étude. Cela nous a permis
de retrouver une distribution statistique des masses des trous noirs, en utilisant un
algorithme d’échantillonnage Monte Carlo pour construire des arbres de fusion et en
utilisant des relations d’échelle entre les masses stellaires et les masses des trous noirs
(Fig. 5.4). De cette façon, nous avons obtenu une probabilité de capture de 13, 2%.
Limitation. Nous avons sélectionné les masses des trous noirs à partir d’un modèle
semi-analytique, qui repose sur l’hypothèse qu’ils sont les résidus de trous noirs centraux
provenant de fusions majeures passées. L’application d’une corrélation entre la masse
stellaire et la masse du trou noir dépend de l’hypothèse d’accrétion de matière galactique
par les trous noirs. Pour des scénarios impliquant des trous noirs errants situés en dehors
du centre galactique, sans accrétion, il faut se référer à la Fig. 5.1 au cas par cas pour
chaque paire de masses de trous noirs.

7.2 Implications

Au cours des dernières années, des trous noirs de masse intermédiaire ont été détec-
tés avec succès en dehors des centres de galaxies naines (Reines et al., 2020), et des amas
nucléaires reliques isolés à plusieurs kiloparsecs du centre des galaxies ont également été
confirmés (Seth et al., 2014; Ahn et al., 2018). Les simulations et les modèles prédisent
que ces reliques d’événements d’accrétion devraient être extrêmement courantes (Trem-
mel et al., 2018; Voggel et al., 2019), et les fusions sont considérées comme une force
motrice derrière la relation M-σ (Volonteri & Natarajan, 2009). Dans cette thèse, nous
avons étudié si, et dans quelles circonstances, deux trous noirs de masse intermédiaire
peuvent devenir liés alors qu’ils sont situés en dehors du centre d’une galaxie. Nos
résultats montrent que de telles captures se produisent couramment dans nos simula-
tions simplifiées. Notre probabilité de capture de 13, 2% est basée sur des hypothèses
fortes, et il est probable que cette valeur diminue lorsque ces hypothèses sont relâchées.
Cependant, même une fraction réduite de ce pourcentage reste notable, d’autant plus
que les simulations cosmologiques prédisent non pas seulement deux trous noirs décen-
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trés, comme nous les avons étudiés, mais une population entière de trous noirs de masse
intermédiaire errants dans les galaxies naines (Pfister et al., 2019; Bellovary et al., 2019,
2021). Par conséquent, même une probabilité plus faible pourrait avoir des implications
significatives sur l’assemblage de la masse des trous noirs et les signaux attendus d’ondes
gravitationnelles.

Cette étude est particulièrement pertinente dans le contexte de l’arrivée de dé-
tecteurs d’une sensibilité sans précédent, récemment lancés ou prévus dans les années
à venir. Le premier jalon important est la mise en service du télescope spatial James
Webb (JWST), lancé le 25 décembre 2021 (Menzel et al., 2023; Rigby et al., 2023). Le
JWST peut observer dans l’infrarouge, réduisant ainsi la contamination par la poussière
et offrant une sensibilité accrue par rapport à son prédécesseur, le télescope spatial Hub-
ble. Cela a permis des observations à haut redshift qui fournissent des informations clés
sur la formation et l’évolution des trous noirs massifs. Les premières observations ont
déjà reconfirmé la présence de trous noirs supermassifs à haut redshift (Furtak et al.,
2024), soulignant l’importance de raffiner nos modèles pour expliquer comment de tels
trous noirs massifs ont pu se former si tôt dans l’histoire de l’univers.

Les trous noirs intermédiaires décentrés sont très difficiles à observer en raison de
leur position, dans un environnement de faible densité, et de leur faible masse (ils
perturbent peu les étoiles environnantes et ont peu ou pas d’activité d’accrétion). Si
cette population cachée de trous noirs décentrés fusionne de manière répétée avant
d’atteindre le centre, ils augmenteraient leur masse avec des événements de fusion plus
petits et seraient plus massifs une fois arrivés au centre de la galaxie principale. De
plus, comme la probabilité de capture augmente avec la masse des trous noirs, les
fusions décentrées pourraient encore augmenter la probabilité d’autres fusions décentrées
en laissant derrière elles un produit de fusion plus massif. L’existence de fusions de
trous noirs décentrés implique également que la situation où trois trous noirs massifs
descendent simultanément vers le centre de la galaxie devient plus rare. Lorsque cela se
produit, il en résulte un système instable à trois corps, qui peut entraîner l’éjection d’un
trou noir. Cependant, si deux des trois trous noirs fusionnent au cours de leur chutte
vers le centre, seuls deux d’entre eux parviennent à cette région centrale, permettant
une situation plus stable et une fusion ultérieure plus probable qui produit un trou noir
plus massif que dans le scénario précédent. L’histoire des fusions de trous noirs étant
modifiée par la possibilité de fusions décentrées, cela modifiera le taux d’émission d’ondes
gravitationnelles à une fréquence donnée. Cela est particulièrement important car le
futur détecteur d’ondes gravitationnelles, LISA (Laser Interferometer Space Antenna;
Amaro-Seoane et al., 2017), offrira la possibilité de détecter des fusions de trous noirs
plus massifs, tels que les trous noirs de masse intermédiaire.

Les galaxies naines étant le type de galaxie le plus courant dans l’Univers, les fu-
sions décentrées pourraient avoir un impact majeur sur l’assemblage de la masse des
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trous noirs et l’émission d’ondes gravitationnelles. De plus, les galaxies naines peuvent
être accrétées par des galaxies plus massives, ce qui signifie que les événements qui se
produisent dans ces systèmes auront des conséquences à long terme pour les galaxies
plus massives.

7.3 Perspectives

7.3.1 Le rôle des forces dissipatives

Comme ce type de fusion peut avoir des implications majeures mais a été peu exploré
dans la littérature, il est crucial d’améliorer nos simulations idéalisées. Tout d’abord,
notre étude des captures gravitationnelles ne tient pas compte de la perte d’énergie des
trous noirs due aux processus dissipatifs. Cette perte d’énergie provient principalement
de trois sources :

1. En général, les trous noirs sont entourés de amas d’étoiles (Seth et al., 2008), et
à mesure qu’ils se rapprochent, ils perdent de l’énergie en raison de la friction
dynamique avec les amas environnants.

2. La binaire de trous noirs peut également interagir avec des étoiles proches, les
éjectant par interaction à trois corps, ce qui resserre la binaire.

3. Les pertes d’énergie relativistes peuvent être significatives, notamment au péri-
centre dans les binaires très excentriques, ce qui est généralement le cas lors des
captures, comme nous l’avons observé.

Bien que les captures gravitationnelles soient temporaires, il a été observé que les
forces dissipatives jouent un rôle crucial dans le resserrement de la binaire (Fabian
et al., 1975; Goldreich et al., 2002; Samsing et al., 2018b; Tagawa et al., 2018, 2020;
Li et al., 2022; Boekholt et al., 2023; Rowan et al., 2023; DeLaurentiis et al., 2023).
L’étape suivante consiste donc à déterminer si cette inclusion peut aider à maintenir
nos captures gravitationnelles au fil du temps et à resserrer la binaire (comme on peut
le voir dans le panneau de droite de la Fig. 6.1).

J’ai récemment commencé à explorer cette question. Pour ce faire, j’ai établi des
conditions initiales présentant une capture gravitationnelle dans le cas idéalisé sans dis-
sipation. J’ai ensuite remplacé les trous noirs individuels par des systèmes de trous
noirs-amas d’étoiles, où les étoiles sont réparties selon un profil de King (King, 1966),
en veillant à ce que la masse totale reste inchangée. Mes premiers tests avec Gyrfal-
cON, le code N -corps présenté au Chapitre 2, ont révélé que ce code, conçu pour des
systèmes sans collisions, n’est pas bien adapté pour simuler les amas d’étoiles. Leur forte
densité centrale nécessite une réduction drastique du pas de temps, ce qui entraîne des
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temps d’intégration très longs. Par conséquent, j’ai récemment installé le code KETJU
(Mannerkoski et al., 2023).

Ce code intègre plusieurs fonctionnalités cruciales : des interactions directes à prox-
imité des trous noirs, des mécanismes de rétroaction, des corrections post-newtoniennes,
et même un outil de prédiction des signaux d’ondes gravitationnelles. En plus de ré-
soudre la dynamique des étoiles proches du centre des amas, ce code permettra égale-
ment d’incorporer des corrections relativistes. L’objectif est maintenant d’explorer les
questions suivantes : toutes les captures peuvent-elles être stabilisées, ou seulement
celles présentant un nombre minimum de rencontres proches ? Comment la stabilité
des captures est-elle influencée par le profil de densité des étoiles liées aux trous noirs ?
De plus, la dissipation par interactions à trois corps est-elle efficace dans ce contexte ?
Ces dissipations permettent-elles le passage au régime relativiste ?

7.3.2 Fusions d’amas globulaires

La plupart des amas globulaires présentent plusieurs populations stellaires, dont
l’origine reste incertaine, résultant possiblement d’une formation secondaire d’étoiles.
Cependant, ce mécanisme ne suffit pas à expliquer l’importante dispersion observée dans
la teneur en fer. Bekki & Tsujimoto (2016) et Gavagnin et al. (2016) proposent une
solution impliquant la fusion de deux amas globulaires ayant des temps de formation
légèrement différents (∼ 300 Myr). Selon leurs hypothèses, de telles fusions sont princi-
palement réalisables au sein du halo ou du noyau des galaxies naines en raison de leur
potentiel gravitationnel plus faible. Par la suite, ces galaxies naines, avec leurs amas
globulaires intacts ou fusionnés, sont accrétées par la Voie lactée. Pour tester cette hy-
pothèse, il est crucial d’examiner la probabilité de fusions entre amas globulaires dans
les galaxies naines. Mes résultats sur les captures de Jacobi sont transférables à ce
problème, car toute fusion en dehors du centre galactique, y compris pour les amas
globulaires, commence par ce processus physique. Dans les cas où une capture se pro-
duit, on peut remplacer les trous noirs par un ensemble de N particules distribuées
selon des profils de densité stellaire (King 1966 ou Varri & Bertin 2012) pour évaluer
si les interactions entre populations stellaires, par le biais de simulations N -corps, peu-
vent conduire à la stabilisation de la capture et, par conséquent, à la fusion des amas
globulaires.

7.3.3 Taux de capture pour la prédiction des ondes gravitationnelles

Jusqu’à présent, j’ai abordé les captures de Jacobi principalement sous un angle
cinématique. Bien que cette approche aide à développer une compréhension intuitive
du mouvement des trous noirs, elle nécessite certaines hypothèses liées aux orbites.
Pour atteindre une plus grande généralité et tenir compte de la distribution des trous
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noirs errants dans la galaxie, je propose d’adopter une approche statistique, en suivant
Peñarrubia (2023). Cette nouvelle perspective consiste à traiter un trou noir décentré
comme un point de référence, appelé RBH, et à évaluer la probabilité de ses interactions
avec une population d’autres trous noirs décentrés au fur et à mesure de son déplacement
dans la galaxie. Le processus se composera de deux étapes clés. Tout d’abord, j’utiliserai
des simulations hydrodynamiques cosmologiques (dans le même esprit que ce qui a
été fait dans Bellovary et al., 2019, 2021) pour obtenir un profil de densité des trous
noirs errants ρ(r). Ensuite, j’utiliserai ce profil pour calculer la fraction théorique de
trous noirs décentrés ayant une énergie de liaison négative à l’intérieur de la sphère
d’influence de RBH. À mesure que RBH se déplace dans la galaxie, j’estimerai le nombre
de trous noirs entrant dans sa sphère d’influence pendant un intervalle de temps donné,
en utilisant la statistique de Poisson. En combinant ces deux éléments, j’obtiendrai un
taux de capture de trous noirs décentrés, un outil précieux à long terme pour faire des
prédictions sur l’émission d’ondes gravitationnelles et la croissance de masse des trous
noirs par le biais de fusions répétées hors du centre.

7.3.4 Influence de la réponse galactique sur les captures de Jacobi

Pour les captures simulées près du centre galactique, où la masse intégrée est com-
parable à celle des trous noirs, il est nécessaire de traiter la galaxie avec des particules
vivantes. Il serait intéressant d’explorer l’effet de la réponse du coeur sur les captures
de Jacobi. Pour ce faire, on pourrait sélectionner des conditions initiales qui présentent
une capture et remplacer le potentiel externe par un halo vivant. Cette question est
étroitement liée à l’étude du core stalling en présence de deux perturbateurs (dans ce
cas, deux trous noirs). Il s’agit d’un problème non trivial, et l’impact de la présence
d’un second trou noir sur le core stalling reste incertain.

Mon intuition initiale est que, dans le cas de deux trous noirs de masses similaires,
M1 ≃ M2, la présence du second trou noir pourrait empêcher l’émergence des orbites re-
sponsables de la flottabilité dynamique et du core stalling. Cependant, si les trous noirs
sont déphasés, positionnés de part et d’autre du centre galactique, un mode quadripo-
laire pourrait préserver la régularité nécessaire à l’émergence de telles orbites. Dans le
scénario de deux trous noirs avec une hiérarchie de masses significative, M1 ≫ M2, le
trou noir plus léger pourrait être perçu comme une perturbation mineure, et le stalling
pourrait persister. Dans ce cas, il serait intéressant d’étudier une situation où un trou
noir massif (disons M1 ∼ 106M⊙) stall tandis que plusieurs trous noirs moins massifs
(M2 ∼ 102 − 103M⊙) sont présents. Le trou noir massif à son rayon de core stalling
pourrait capturer ces petits trous noirs, fusionner potentiellement avec eux, et ainsi aug-
menter sa masse. À mesure que sa masse augmente, il s’éloignerait du centre galactique
car son rayon théorique de stalling est plus grand.
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7.3.5 Structure fractale

Dans la Section 4.2, nous avons montré que les captures présentent un comportement
chaotique par rapport aux quatre paramètres M1,M2, ri, et ∆ri. Lorsqu’on trace le
nombre de rencontres proches en fonction de l’un de ces paramètres, ∆ri par exemple,
on obtient des irrégularités sous forme de pics, comme montré dans la Fig. 6.2. Dans
le cas képlérien (avec une masse ponctuelle centrale à la place de la galaxie), il a été
montré que ces pics d’irrégularités présentent une structure fractale auto-similaire qui
peut être décrite par un ensemble de Cantor généralisé avec une dimension d’environ
0.4 (Boekholt et al., 2023). Il serait intéressant d’examiner si cette structure fractale
persiste dans le cas d’un potentiel central étendu. Il serait également pertinent d’étudier
comment la dimension fractale évolue en fonction des paramètres du potentiel, tels que
la pente interne du profil de densité.
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ADerivation of dynamical
friction

In this section, we derive the analytical expression for dynamical friction. We con-
sider a black hole with mass M navigating through a sea of stars with mass m. In
subsection A.1, we first calculate the black hole’s velocity perturbation caused by a sin-
gle encounter with a star in the galaxy (based on the derivation provided in Binney &
Tremaine, 2008). Then, in subsection A.2, we integrate over all the stars in the galaxy
to calculate the total contribution from all encounters. Finally, in subsection A.3, we
calculate the friction time, i.e. the time required for the black hole to fall to the center
of a galaxy.

A.1 Single encounter

A.1.1 Equation of motion

We begin by considering the perturbation induced by a star of mass m when a black
hole of mass M passes nearby. In the inertial frame of reference, let (rM ,vM ) denote
the position and velocity vectors of the black hole, and (rm,vm) denote the position
and velocity vectors of the star. To make the equations of motion more manageable,
we switch to a coordinate system that uses the relative position and velocity between
the two objects (r, ṙ = v), along with the position and velocity of the center of mass
(R, Ṙ = V) as shown in Fig. A.1.

So we have:
r = rm − rM , R = M · rM +m · rm,

ṙ = ṙm − ṙM , Ṙ = M · ṙM +m · ṙm,
(A.1)

and the relative positions in terms of the center of mass are:

r′
M = − m

M +m
r

r′
m = M

M +m
r.

(A.2)
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Figure A.1: Coordinate system change. On the left, the two objects are described
in the inertial coordinate system. On the right, the center of mass position R and the
relative position between the objects r are used.

The Lagrangian of the system is:

L = 1
2
M ṙ2

M + 1
2
m ṙ2

m − Φ(r) with Φ(r) = −GMm

r
(A.3)

this becomes:

L = 1
2

(M +m)Ṙ2 + 1
2
M ṙ′2

M + 1
2
m ṙ′2

m − Φ(r)

= 1
2

(M +m)Ṙ2 + 1
2
M

(
− m

M +m
ṙ
)2

+ 1
2
m

(
M

M +m
ṙ
)2

− Φ(r)

= 1
2

(M +m)Ṙ2 + 1
2

Mm

M +m
ṙ2 − Φ(r)

= 1
2

(M +m)Ṙ2 + 1
2
µ ṙ2 − Φ(r) with µ = Mm

M +m
,

(A.4)

assuming the system is isolated, with no external forces acting on the masses, and using
µ as the reduced mass. The Lagrange equation

d

dt

(
∂L
∂Ṙ

)
− ∂L
∂R = 0 (A.5)

becomes
d Ṙ
dt

= 0 ⇔ M
d ṙM

dt
+m

d ṙm

dt
= 0 (A.6)

which is the equation for the conservation of momentum. It can be rewritten as:
d ṙM

dt
= −m

M

d ṙm

dt
= −m

M

d

dt
(ṙ + ṙM )

⇔ M +m

M

d ṙM

dt
= −m

M

d ṙ
dt

⇔ d ṙM

dt
= − m

M +m

d ṙ
dt

.

(A.7)

− 128 −



A.1. SINGLE ENCOUNTER

We can now calculate the change in relative velocity caused by the encounter and
determine the change in the black hole’s velocity using equation (A.7). By applying the
Lagrange equation to r:

d

dt

(
∂L
∂ṙ

)
− ∂L
∂r = 0 (A.8)

we have the equation of motion for a particle with mass µ orbiting at a distance r from
a mass M +m:

µr̈ = −GMm

r2 er. (A.9)

It is more insightful to project the Lagrange equations onto polar coordinates r = (r, ψ):

d

dt

(
∂L
∂ṙ

)
− ∂L
∂r

= 0

d

dt

(
∂L
∂ψ̇

)
− ∂L
∂ψ

= 0.
(A.10)

Using the Lagrangian 1 in polar coordinates

L = 1
2
µ
[
ṙ2 + r2ψ̇2

]
− Φ(r) (A.11)

the equation for ψ gives

d

dt

(
r2ψ̇

)
= 0 ⇔ dL

dt
= 0 with L = r2ψ̇ (A.12)

where L is the angular momentum, a conserved quantity for central force problems.
The equation for r is given by:

µ
(
r̈ − rψ̇2

)
= −dΦ

dr

⇔ r̈ = − 1
µ

dΦ
dr

+ L2

r3 .

(A.13)

Next, we note that
L = r2 dψ

dt
⇔ dψ

dt
= L

r2 (A.14)

thus:
d

dt
= d

dψ

dψ

dt
= L

r2
d

dψ
(A.15)

which gives:
dr

dt
= L

r2
dr

dψ
(A.16)

and thus:
r̈ = d

dt

(
dr

dt

)
= L

r2
d

dψ

(
L

r2
dr

dψ

)
= L2

r2
d

dψ

( 1
r2
dr

dψ

)
. (A.17)

1 We have omitted the part involving R as it does not contribute.
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Equation (A.13) becomes:

L2

r2
d

dψ

( 1
r2
dr

dψ

)
− L2

r3 = − 1
µ

dΦ
dr

⇔ d

dψ

( 1
r2
dr

dψ

)
− 1
r

= − r2

µL2
dΦ
dr
.

(A.18)

If we now set u = 1/r, the first term becomes:

d

dψ

[
u2 d

dψ

(1
u

)]
= − d

dψ

(
du

dψ

)
= − d2u

dψ2 (A.19)

and the equation simplifies to:

d2u

dψ2 + u = 1
µL2u2

dΦ(1/u)
dr

. (A.20)

For a Keplerian potential:

Φ = −GMm

r
hence dΦ

dr
= GMm

r2 = GMmu2. (A.21)

The equation becomes:
d2u

dψ2 + u = G(M +m)
L2 (A.22)

which has the following solution:

u(ψ) = C cos(ψ − ψ0) + G(M +m)
L2 (A.23)

where C and ψ0 are determined by the initial conditions.

A.1.2 Velocity perturbation

With this information, we are now equipped to determine the velocity perturbation
resulting from a hyperbolic encounter.

Let v0 = v(t → −∞) be the initial relative velocity vector and b the impact parameter
(see Fig. A.2). We then have 2

L = b v0 (A.24)

and according to Eq. (A.23),

1
r

= C cos(ψ − ψ0) + G(M +m)
b2 v2

0
. (A.25)

2 The cross product eliminates the component of the position vector parallel to v0, leaving only the
perpendicular component b.
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Figure A.2: Trajectory of a reduced mass throughout a hyperbolic encounter.

Now, let’s take the derivative of equation (A.25):

d

dt

(1
r

)
= −C sin(ψ − ψ0) ψ̇

⇔ ṙ = C r2ψ̇︸︷︷︸
L=Cst

sin(ψ − ψ0) = C b v0 sin(ψ − ψ0).
(A.26)

Defining the direction ψ = 0 to point towards µ as t approaches negative infinity,
we evaluate equation (A.26) at t → −∞. We can replace ṙ(t → −∞) → −v0 and
ψ(t → −∞) → 0 and we obtain:

−v0 = C b v0 sin(−ψ0) ⇔ C = − 1
b sin(−ψ0)

. (A.27)

If we now evaluate equation (A.25) at t → −∞, we obtain:

0 = C cos(−ψ0) + G(M +m)
b2 v2

0
(A.28)

by substituting C, we get:

tan(ψ0) = − b v2
0

G(M +m)
. (A.29)

Noting from (A.25) and (A.26) that ψ = ψ0 corresponds to the closest approach, making
the orbit symmetric about this angle, the deflection angle is 3

θdefl = 2ψ0 − π. (A.30)

We can now calculate the velocity deviations caused by the encounter:

|∆v⊥| = v0 sin(θdefl) = v0 sin(2ψ0 − π) = −v0 sin(2ψ0) (A.31)
3 To convince oneself, consider the case of an almost negligible deflection, which would give θdefl ∼ 0

and 2ψ0 ∼ π.
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bearing in mind that 4

sin(2x) = 2 sin(x) cos(x) = 2 tan(x)
1 + tan2(x)

(A.32)

we get

sin(θdefl) = − sin(2ψ0) = − 2 tan(ψ0)
1 + tan2(ψ0)

. (A.33)

If ψ0 = π i.e. θdefl = π :

tan(ψ0) = 0 ⇔ b = G(M +m)
v2

0
≡ b90 (A.34)

this gives
tan(ψ0) = − b

b90
(A.35)

and finally

|∆v⊥| = 2 v0 (b/b90)
1 + b2/b2

90
. (A.36)

On the other hand,

|∆v∥| = v0 [1 − cos(θdefl)] = v0 [1 + cos(2ψ0)] (A.37)

using the fact that

tan2(x) = 1 − cos(2x)
1 + cos(2x)

⇔ tan2(x) + cos(2x) tan2(x) = 1 − cos(2x)

⇔ tan2(x) − 1 = − cos(2x)
[
tan2(x) + 1

]
⇔ cos(2x) = −tan2(x) − 1

tan2(x) + 1

(A.38)

we finally get for the parallel perturbation:

|∆v∥| = v0

[
1 − tan2(x) − 1

tan2(x) + 1

]
= 2 v0

[
tan2(x) + 1

]−1
(A.39)

or

|∆v∥| = 2 v0
1 + b2/b2

90
. (A.40)

Finally, converting back to the original coordinate system using equation (A.7), we get:

|∆vM⊥| = 2mv0
M +m

b/b90
1 + b2/b2

90

|∆vM∥| = 2mv0
M +m

1
1 + b2/b2

90

(A.41)

(A.42)

These are the parallel and perpendicular velocity perturbations caused by an encounter
(b, v0) on the black hole of mass M by a star of mass m.

4 sin(a) cos(b) = 1
2 [sin(a+ b) + sin(a− b)]
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A.2 Sea of stars

We now need to integrate over the impact parameters (b) and velocities (v0) to
obtain the total perturbation caused by a galaxy. The sum of the perpendicular pertur-
bations (∆vM⊥) is zero because encounters are stochastic processes, resulting in equal
perturbations in both directions. However, the mean squared perturbation is not zero:

⟨∆v2
M⊥⟩ =

∫
6D

|∆vM⊥|2 f(x,v)d3x d3v (A.43)

This calculation provides a more precise analog to equation (1.8) that can be used to
calculate the relaxation time more accurately.

The tangential velocity perturbations do not cancel out, and we can calculate the
acceleration produced on the black hole by the cumulative encounters:

dvM

dt
=
∫

5D
|∆vM∥| f(x,vm) v0 d

2x d3vm (A.44)

where f(x,vm) v0 d
2x d3vm is an encounter rate because the left-hand side represents a

change in velocity. If we make the following assumptions:

• Assumption 1: The medium is homogeneous 5 .

• Assumption 2: The velocities are Maxwellian distributed 6 .

We have

f(x,vm) = n0
(2πσ2)3/2 exp

(
− v2

m

2σ2

)
= f(vm) with n0 = ρ0

m
(A.45)

where σ is the velocity dispersion, n0 is the number density and ρ0 is the density of stars
(assumed homogeneous). Thanks to these two assumptions, we can rewrite equation
(A.44):

dvM

dt
=
∫

5D
|∆vM∥| f(vm) v0 2π b db d3vm. (A.46)

First, we integrate over the impact parameters to obtain dvM
dt

∣∣∣
vm

and then we integrate

over the velocities dvM
dt =

∫
vm

dvM
dt

∣∣∣
vm

.

5 Implications of homogeneity:
• f(x,v) = n0 f(v) where n0 and ρ0 are constants.

6 Implications of velocity distribution:
• f(v) = 1

(2πσ2)3/2 exp
(

− v2

2σ2

)
=
∏3

i=1
1

(2πσ2)1/2 exp
(

− v2
i

2σ2

)
=
∏3

i=1 f(vi)
• fx(vx) = fy(vy) = fz(vz) = f(vi) ∀ i
• ⟨v⟩ =

∫
vf(v)dv = 0 ⇒ σ =

√
⟨v2⟩ − ⟨v⟩2 =

√
⟨v2⟩

• fn(v) = 4π v2f(v), with fn(v) the probability density of the velocity norm and f(v) = f(v) the
probability density of having a velocity vector, dependent only on the norm. We could write f(vm) =
f(vm) but we keep the vector notation to avoid confusion with fn(vm) the probability density of the
velocity norm.
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A.2.1 Integration over Impact Parameters

We have:

dvM

dt

∣∣∣∣
vm

= 4πmv0
M +m

f(vm) v0 d
3vm

∫ bmax

0

[
1 + b2v4

0
G2(M +m)2

]−1

b db.︸ ︷︷ ︸
Int.I

(A.47)

We set:

x = b2v4
0

G2(M +m)2 ⇒ b = G(M +m)
v2

0
x1/2 ⇒ db = G(M +m)

2 v2
0

x−1/2 dx (A.48)

and we recall that:

b90 ≡ G(M +m)
v2

0
⇒ x = b2

b2
90
, (A.49)

The minimum and maximum integration bounds become 0 and b2
max/b

2
90, respectively.

We denote:

Λ ≡ bmax
b90

= bmax v
2
0

G(M +m)
(A.50)

and (Int.I) becomes

Int.I =
∫ Λ2

0
[1 + x]−1 · G(M +m)

v2
0

x1/2 · G(M +m)
2 v2

0
x−1/2 dx

= G2(M +m)2

2 v4
0

∫ Λ2

0
[1 + x]−1 dx

= G2(M +m)2

2 v4
0

[ln(1 + b)]Λ
2

0

= G2(M +m)2

2 v4
0

ln
(
1 + Λ2

)
(A.51)

Thus, equation (A.47) becomes:

dvM

dt

∣∣∣∣
vm

= 4πmv0
M +m

f(vm) v0 d
3vm × Int.I

= 4πmv0
M +m

f(vm) v0 d
3vm

G2(M +m)2

2 v4
0

ln
(
1 + Λ2

)
= 2πG2m(M +m) ln

(
1 + Λ2

)
f(vm) v0

v3
0
d3vm

(A.52)

A.2.2 Integration over Velocities

Now, we will integrate dvM
dt

∣∣∣
vm

over the velocities. First, we need to express v0 in
terms of vM and vm.
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Figure A.3: Coordinate
system for velocity vec-
tors.

vM = vM


0
0
1

 , vm = vm


sin θ cosϕ
sin θ sinϕ

cos θ

 , v0 = vm − vM =


vm sin θ cosϕ
vm sin θ sinϕ
vm cos θ − vM


Thus,

|vm − vM | =
√
v2

m sin2 θ cos2 ϕ+ v2
m sin2 θ sin2 ϕ+ v2

m cos2 θ + v2
M − 2vmvM cos θ

=
√
v2

m + v2
M − 2vmvM cos θ

= vM

(
1 + v2

m

v2
M

− 2 vm

vM
cos θ

)1/2

.

(A.53)
We can now integrate over the velocities:

dvM

dt
=
∫

vm

dvM

dt

∣∣∣∣
vm

= 2πG2m(M +m) ln
(
1 + Λ2

)
︸ ︷︷ ︸

χ

∫∫∫
f(vm) vm − vM

|vm − vM |3
d3vm

= χ ·
∫∫∫

f(vm)

v3
M

(
1 + v2

m

v2
M

− 2 vm
vM

cos θ
)3/2


vm sin θ cosϕ
vm sin θ sinϕ
vm cos θ − vM

 v2
m sin θ dvm dθ dϕ

(A.54)
along the x-axis, the integral gives:∫∫∫

v3
m sin2 θ cosϕ f(vm)

v3
M

(
1 + v2

m

v2
M

− 2 vm
vM

cos θ
)3/2 dvm dθ dϕ = 0 because

∫ 2π

0
cosϕdϕ = 0 (A.55)
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similarly, along the y-axis:

∫∫∫
v3

m sin2 θ sinϕ f(vm)

v3
M

(
1 + v2

m

v2
M

− 2 vm
vM

cos θ
)3/2 dvm dθ dϕ = 0 because

∫ 2π

0
sinϕdϕ = 0 (A.56)

along the z-axis, we have:

∫∫∫
v2

m sin θ f(vm)

v3
M

(
1 + v2

m

v2
M

− 2 vm
vM

cos θ
)3/2 (vm cos θ − vM ) dvm dθ dϕ

= 2π
v3

M

∫∫
v2

m sin θ f(vm)(
1 + v2

m

v2
M

− 2 vm
vM

cos θ
)3/2 (vm cos θ − vM ) dθ dvm.

(A.57)

We make a change of variable t = cos θ ⇒ dθ = −dt/ sin θ, the integral becomes:

∫ π

0

v2
m sin θ f(vm)(

1 + v2
m

v2
M

− 2 vm
vM

cos θ
)3/2 (vm cos θ − vM ) dθ

=
∫ 1

−1

v2
m f(vm)(

1 + v2
m

v2
M

− 2 vm
vM
t

)3/2 (vm t− vM ) dt

= v2
m f(vm)

 vm − vM√
(vm−vM )2

v2
M

− vm + vM√
(vm+vM )2

v2
M


= v2

m f(vm)
[
|vM | vm − vM

|vm − vM |
− |vM | vm + vM

|vm + vM |

]

=

−2 v2
m vM f(vm) if vM > vm,

0 if vM < vm.

(A.58)

Thus, equation (A.54) becomes:

dvM

dt
= −8π2G2m(M +m) ln

(
1 + Λ2

) vM

v3
M

∫ vM

0
v2

m f(vm)dvm

= −8π2G2m(M +m) ln
(
1 + Λ2

) vM

v3
M

× n0
(2πσ2)3/2

∫ vM

0
v2

m exp
(

− v2
m

2σ2

)
dvm︸ ︷︷ ︸

Int.II

.

(A.59)
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It remains to calculate (Int.II). To do this, we integrate by parts:
∫
u′v = [uv] −

∫
uv′,

with

• u′ = vm exp
(

− v2
m

2σ2

)
⇒ u =

∫
vm exp

(
− v2

m

2σ2

)
dvm

= −σ2
∫ d exp

(
− v2

m
2σ2

)
dvm

dvm

= −σ2 exp
(

− v2
m

2σ2

)
• v = vm ⇒ v′ = 1

thus

Int.II =
[
−σ2 vm exp

(
− v2

m

2σ2

)]vM

0
+
∫ vM

0
σ2 exp

(
− v2

m

2σ2

)
dvm

= −σ2 vM exp
(

− v2
M

2σ2

)
+ σ2

∫ vM

0
exp

(
− v2

m

2σ2

)
dvm︸ ︷︷ ︸

Int.III

.
(A.60)

To calculate (Int.III), we change variables: t = vm√
2σ

⇒ dvm =
√

2σ dt. The integral
becomes:

Int.III =
√

2σ3
∫ X

0
exp

(
−t2

)
dt ≡

√
π

2
σ3 erf(X) with X ≡ vM√

2σ (A.61)

and with erf(x) = 2√
π

∫ x
0 exp

(
−t2

)
dt. Thus, we have:

Int.II =
∫ vM

0
v2

m exp
(

− v2
m

2σ2

)
dvm = −

√
2σ3X exp

(
−X2

)
+
√
π

2
σ3 erf(X). (A.62)

Finally, we obtain:

dvM

dt
= −8π2G2m(M +m) ln

(
1 + Λ2

) vM

v3
M

× n0
(2πσ2)3/2

∫ vM

0
v2

m exp
(

− v2
m

2σ2

)
dvm

= −8π2G2m(M +m) ln
(
1 + Λ2

) n0
4π

[
−2X√

π
exp

(
−X2

)
+ erf(X)

] vM

v3
M

dvM

dt
= −2πG2 ρ0 (M +m) ln

(
1 + Λ2

) [
−2X√

π
exp

(
−X2

)
+ erf(X)

] vM

v3
M

(A.63)

This expression can be simplified by using two approximations:

• Assumption 3: Λ ≫ 1, which is typically the case in our context 7 .
7 We have: ln

(
1 + Λ2) = ln

(
Λ2[ 1

Λ2 + 1]
)

= ln
(
Λ2)+ ln

(
1 + 1

Λ2

)
and if Λ ≫ 1 we can approximate:

ln
(
Λ2)+ ln

(
1 + 1

Λ2

)
≃ ln

(
Λ2) = 2 ln(Λ).
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• Assumption 4: M ≫ m, which is justified when studying the motion of an
IMBH or SMBH (M > 102M⊙) within a population of stars (m ∼ 1 − 10M⊙).

This gives

dvM

dt
= −4πG2 ρ0M ln(Λ)

[
−2X√

π
exp

(
−X2

)
+ erf(X)

] vM

v3
M

. (A.64)

From equations (A.63) or (A.64), we see that this force acting on the moving black hole
in a sea of stars is collinear with and opposite to its velocity vector. Thus, it is a force
that acts "against" the black hole, causing it to lose energy and angular momentum
during its motion.

A.3 Friction time

Due to this frictional force, the black hole loses angular momentum and spirals
towards the center of the galaxy. We can calculate the time required for a black hole
initially positioned at a radius ri to spiral to the center. Starting from:

dL
dt

= d(r × v)
dt

= dr
dt

× v + r × dv
dt

= r × dv
dt

(A.65)

with L as the angular momentum per unit mass of the black hole, and assuming:

• Assumption 5: The black hole is on a circular orbit 8 .

we can write on the one hand:

dL

dt
= F

M
× r (A.66)

8 The only force not collinear with r is the frictional force, which is collinear with the velocity vector,
itself perpendicular to the position vector during circular motion. In this context, we also have L = r vc

with vc being the circular velocity.
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with F = M × dvM
dt being the dynamical friction force. And on the other hand:

dL

dt
= d(r vc)

dt

= r
dvc(r)
dt

+ vc(r)
dr

dt

= r
dvc(r)
dr

dr

dt
+ vc(r)

dr

dt

= r
d

dr

(
GMtot(r)

r

)1/2 dr

dt
+ vc(r)

dr

dt

= dr

dt

(
r
d

dr

(
GMtot(r)

r

)1/2
+ vc(r)

)

= dr

dt

(
r

2

(
GMtot(r)

r

)−1/2 d

dr

(
GMtot(r)

r

)
+ vc(r)

)

= dr

dt

(
Gr

2

(
r

GMtot(r)

)1/2 d

dr

(
Mtot(r)

r

)
+ vc(r)

)

= dr

dt

(
G

2r

(
r

GMtot(r)

)1/2 [
r
dMtot(r)

dr
−Mtot(r)

]
+ vc(r)

)

= dr

dt

(
G

2r vc(r)

[
r
dMtot(r)

dr
−Mtot(r)

]
+ vc(r)

)

(A.67)

where we used vc(r) =
(

G Mtot(r)
r

)1/2
with Mtot(r) being the total mass (including all

components) enclosed within the galaxy at radius r.

For a spherical matter distribution:

• Assumption 6: Spherically symmetric matter distribution.

then
dMtot(r)

dr
= 4π r2 ρtot(r) (A.68)

and equation (A.67) becomes:

dL

dt
= dr

dt

(
G

2r vc(r)

[
4π r3 ρtot(r) −Mtot(r)

]
+ vc(r)

)
. (A.69)

By equating (A.66) and (A.69), we obtain:

F

M
× r = dr

dt

(
G

2r vc(r)

[
4π r3 ρtot(r) −Mtot(r)

]
+ vc(r)

)
⇔ dt =

(
G

2r vc(r)

[
4π r3 ρtot(r) −Mtot(r)

]
+ vc(r)

)
M

r × F
dr

⇔ dt = −
v2

c (r)
(

G
2r vc(r)

[
4π r3 ρtot(r) −Mtot(r)

]
+ vc(r)

)
2πG2 ρ0 (M +m) ln(1 + Λ2)

[
− 2X√

π
exp(−X2) + erf(X)

]
r
dr

(A.70)
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where we replaced vM with vc. We then have:

tfric = −
∫ ri

0
I(r) dr (A.71)

with

I(r) = −
v2

c (r)
(

G
2r vc(r)

[
4π r3 ρtot(r) −Mtot(r)

]
+ vc(r)

)
2πG2 ρ0 (M +m) ln(1 + Λ2)

[
− 2X√

π
exp(−X2) + erf(X)

]
r

(A.72)

or if we use expression (A.64):

I(r) = −
v2

c (r)
(

G
2r vc(r)

[
4π r3 ρtot(r) −Mtot(r)

]
+ vc(r)

)
4πG2 ρ0M ln(Λ)

[
− 2X√

π
exp(−X2) + erf(X)

]
r

(A.73)
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BJeans equation and
dispersion

B.1 Derivation of the spherical Jeans equation

First, let’s simplify the Jeans equation in spherical coordinates:

∂f

∂t
+ pr

∂f

∂r
+ pθ

r2
∂f

∂θ
+ pϕ

r2 sin2 θ

∂f

∂ϕ
−
(
∂Φ
∂r

− p2
θ

r3 −
p2

ϕ

r3 sin2 θ

)
∂f

∂pr

−
(
∂Φ
∂θ

−
p2

ϕ cos θ
r2 sin3 θ

)
∂f

∂pθ
− ∂Φ
∂ϕ

∂f

∂pϕ
= 0.

by assuming that the system is spherically symmetric and time-independent, which
allows us to ignore the terms ∂Φ/∂θ, ∂Φ/∂ϕ, ∂f/∂t and ∂f/∂ϕ. However, we retain
the term ∂f/∂θ, as the dependence of f on vϕ will introduce terms that depend on θ 1 .
After these simplifications, the equation becomes:

pr
∂f

∂r
+ pθ

r2
∂f

∂θ
−
(

dΦ
dr

− p2
θ

r3 −
p2

ϕ

r3 sin2 θ

)
∂f

∂pr
+
p2

ϕ cos θ
r2 sin3 θ

∂f

∂pθ
= 0. (B.1)

Recall that:

pr = ṙ = vr ; pθ = r2θ̇ = rvθ ; pϕ = r2 sin2 θ ϕ̇ = r sin θvϕ (B.2)

and ∫
dprdpθdpϕ f = r2 sin θ

∫
dvrdvθdvϕ f = r2 sin θν (B.3)

where in the last equality, we used:

ν(x) ≡
∫
f(x,v) d3v.

1 See equation (B.2): vϕ = pϕ/r sin θ.
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We multiply equation (B.1) by pr dprdpθdpϕ and integrate over the momenta:

1︷ ︸︸ ︷∫
p2

r

∂f

∂r
d3p +

2︷ ︸︸ ︷∫
pθpr

r2
∂f

∂θ
d3p −

3︷ ︸︸ ︷∫ dΦ
dr

∂f

∂pr
pr d3p +

4︷ ︸︸ ︷∫
p2

θpr

r3
∂f

∂pr
d3p

+
∫ p2

ϕpr

r3 sin2 θ

∂f

∂pr
d3p︸ ︷︷ ︸

5

+
∫ p2

ϕpr cos θ
r2 sin3 θ

∂f

∂pθ
d3p︸ ︷︷ ︸

6

= 0.

1

∫
p2

r

∂f

∂r
d3p = ∂

∂r

∫
p2

rfd3p = ∂

∂r

∫
r2 sin θp2

rfd3v = ∂

∂r

(
r2 sin θνp2

r

)
where the first equality is obtained because pr does not depend on r, the second equality
follows directly from equation (B.3), and the last equality holds because

p2
r =

∫
p2

rfx(v)d3v =
∫
p2

r

f(x,v)
ν(x)

d3v ⇒ ν(x)p2
r =

∫
p2

rfd3v

in the same way:

2

∫
pθpr

r2
∂f

∂θ
d3p = ∂

∂θ

∫
pθpr

r2 fd3p = ∂

∂θ

∫
r2 sin θpθpr

r2 fd3v = ∂

∂θ
(sin θνpθpr) .

For the third term, we have:

3

∫ dΦ
dr

∂f

∂pr
pr d3p = dΦ

dr

∫ (
∂(fpr)
∂pr

− f
∂pr

∂pr

)
d3p = dΦ

dr

(∫
∇pr (fpr) d3p −

∫
f d3p

)
= dΦ

dr

(∮
S
fpr n · epr dS −

∫
f d3p

)
= −dΦ

dr
r2 sin θν.

For the third equality, we used the divergence theorem:∫
V

∇g dV =
∮

S
g n dS,

where n(x′, g(x′)) = 1/
√

1 + |∇g(x′)|2(−∇g(x′), 1). The surface integral is zero because
f is zero for |v| tending to infinity, as the probability of finding a star with infinite
velocity is zero regardless of its position.

4

∫
p2

θpr

r3
∂f

∂pr
d3p =

∫ 1
r3

(
∂(p2

θprf)
∂pr

− ∂(p2
θpr)
∂pr

f

)
d3p

=
∮

S

1
r3 p

2
θprf n · epr dS︸ ︷︷ ︸

=0

−
∫
p2

θ

r3 f d3p = −
p2

θ

r3 r
2 sin θν
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in the same way:

5

∫ p2
ϕpr

r3 sin2 θ

∂f

∂pr
d3p =

∫ 1
r3 sin2 θ

(
∂(p2

ϕprf)
∂pr

−
∂(p2

ϕpr)
∂pr

f

)
d3p

=
∮

S

1
r3 sin2 θ

p2
ϕprf n · epr dS︸ ︷︷ ︸
=0

−
∫ p2

ϕ

r3 sin2 θ
f d3p

= −
p2

ϕ

r3 sin2 θ
r2 sin θν

and finally, for the last term:

6

∫ p2
ϕpr cos θ
r2 sin3 θ

∂f

∂pθ
d3p =

∫ cos θ
r2 sin3 θ

(
∂(p2

ϕprf)
∂pθ

−
∂(p2

ϕpr)
∂pθ

f

)
d3p

=
∮

S

cos θ
r2 sin3 θ

p2
ϕprf n · epθ

dS = 0

Combining all the terms, we get:

∂

∂r
(r2 sin θνp2

r) + ∂

∂θ
(sin θνprpθ) + r2 sin θν

dΦ
dr

−
p2

θ

r3 −
p2

ϕ

r3 sin2 θ

 = 0 (B.4)

In a static spherical system, prpθ = rvrvθ vanishes because the pdf is an even function
of vr

2 so

r vrvθ = r

∫
vrvθ fx(v)d3v = r

∫
vrvθ

f(H,L)
ν(x)

d3v = r

ν(x)

∫ odd︷︸︸︷
vr vθ f(H,L)︸ ︷︷ ︸

even

d3v = 0.

The second term of Eq. (B.4) disappears. We divide by r2 sin θ and use equations
(B.2):

d(νv2
r )

dr
+ ν

dΦ
dr

+
2v2

r − v2
θ − v2

ϕ

r

 = 0. (B.5)

Which can be rewritten as:

d(νv2
r )

dr
+ 2β

r
νv2

r = −ν dΦ
dr

(B.6)

with

β ≡ 1 −
v2

θ + v2
ϕ

2v2
r

2 This is due to Jeans’ theorem, which states that any stationary solution of the collisionless Boltz-
mann equation depends on the phase space coordinates only through integrals of the motion of the
potential, and any function of the integrals of motion provides a stationary solution to the collisionless
Boltzmann equation. According to this theorem, the pdf can be written as f(H,L), with H being the
Hamiltonian and L the angular momentum of the system. Thus, it is an even function of vr because H
depends on v2

r (cf. Eq. 2.3) and L does not depend on vr//r.
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B.2 Jeans velocity dispersion

Now let’s calculate the radial velocity dispersion of a dark matter halo assumed to
be spherical and isotropic (β = 0). Eq. (B.6) becomes:

d(νv2
r )

dr
= −ν dΦ

dr
. (B.7)

We multiply by the total mass of the system to introduce the density (cf. Eq. 2.6):

d(ρv2
r )

dr
= −ρdΦ

dr
,

We then integrate over the radii from r to rmax, where rmax is the maximum radius of
the halo, defined by cosmology. These integration bounds are chosen because we want
the system to satisfie the boundary condition: limr→rmax v

2
r = 0. Thus, we have:∫ rmax

r

d(ρv2
r )

dr′ dr′ = −
∫ rmax

r
ρ(r′)dΦ

dr′ dr
′ ⇐⇒

[
ρv2

r

]rmax

r
= −

∫ rmax

r
ρ(r′)dΦ

dr′ dr
′

and according to the boundary condition:

ρ(r)v2
r (r) =

∫ rmax

r
ρ(r′)dΦ

dr′ dr
′ ⇐⇒ v2

r (r) = 1
ρ(r)

∫ rmax

r
ρ(r′)dΦ

dr′ dr
′.

In our case, Φ(r) = −Gm(r)/r with m(r) the enclosed mass, we thus obtain the Jeans
dispersion equation (2.9):

v2
r (r) = 1

ρ(r)

∫ rmax

r
ρ(r′)Gm(r′)

r′2 dr′.

R
If we study a system composed of multiple populations (e.g., stars and
dark matter), then ρ refers to the population for which we want to deter-
mine the dispersion, and m(r) is the total enclosed mass (i.e., the sum
of all populations).
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Thibaut François

Trous noirs massifs dans les galaxies naines : formation
de binaires excentrées par capture gravitationnelle

Résumé
L’observation de trous noirs (TNs) supermassifs à haut redshift questionne notre compréhension
de leur croissance. Le scénario standard de fusion des TNs massifs prévoit que ces derniers se
retrouvent au centre galactique, amenés par la friction dynamique. Cependant, le temps nécessaire
à un TN de masse intermédiaire pour atteindre le centre d’une galaxie naine typique est bien plus
grand que l’âge de l’univers. De plus, les phénomènes de rétroaction peuvent abaisser la densité
centrale de ces galaxies et créer un cœur, permettant le phénomène de core stalling, où les TNs
restent sur des orbites stables excentrées.
Ainsi, la question se pose : ces TNs peuvent-ils fusionner à l’extérieur du centre galactique ? Cette
thèse explore d’abord la formation de cœurs de densité dans les galaxies naines et propose un
nouveau scénario de fusion excentrée des TNs massifs, initiée par une capture gravitationnelle.
Nous découvrons que les captures permettent la formation de binaires dans 13% des cas dans
notre configuration idéalisée. Ce résultat justifie une analyse approfondie des processus dissipatifs
pour stabiliser ces captures, en particulier à la lumière des futurs observatoires comme LISA, qui
détecteront les ondes gravitationnelles issues de telles fusions.

Mots-clés : astrophysique, dynamique galactique, galaxies naines, trous noirs, gravitation, simu-
lations

Abstract
The observation of supermassive black holes (BHs) at high redshift challenges our understanding
of their growth. The standard scenario of massive BH mergers relies on the fact that they settle at
the galactic center due to dynamical friction. However, the time required for an intermediate-mass
BH to reach the center of a typical dwarf galaxy far exceeds the age of the universe. Additionally,
feedback processes can reduce the central density of these galaxies, creating a core and leading to
core stalling, where BHs remain in stable, off-center orbits.
This raises the question : can these BHs merge outside the galactic center ? This thesis first exa-
mines the formation of density cores in dwarf galaxies and proposes a new scenario for off-center
mergers of massive BHs, initiated by gravitational capture. We find that in our idealized setup,
captures result in the formation of binaries in 13% of cases. This finding underscores the need for a
detailed analysis of dissipative processes to stabilize these captures, especially given the upcoming
capabilities of observatories like LISA, which are expected to detect gravitational waves from such
mergers.

Keywords : astrophysics, galactic dynamics, dwarf galaxies, black holes, gravity, simulations


	Galaxies and black holes
	Galaxies, a variety of floating worlds
	Something more than the observable
	Dwarf galaxies, unique laboratories for studying the Universe
	Black holes
	Outline of this thesis

	A detour to the centers of galaxies: the formation of cores
	The cusp-core discrepancy
	Theoretical framework
	Simulations
	Successes and failures of the CuspCore model
	Dynamical buoyancy and core stalling
	Summary of Chapter 2

	Off-center mergers and black hole influence in cored profiles
	Standard scenario of massive black hole mergers: the reign of dynamical friction
	Off-center scenario of massive black hole mergers: the counterattack of long fall time and core stalling
	Off-center mergers as a 3-body problem
	Capture criterion
	Summary of Chapter 3

	Simulating gravitational captures in dwarf galaxies
	Simulation setup, a tricky problem for the N-body
	Chaos
	Mapping the initial conditions for Jacobi captures
	Lindblad resonance
	Binary eccentricity during Jacobi captures
	Alternative capture criterion
	Summary of Chapter 4

	Capture probability
	Bound black holes from the core stalling radii
	Black holes from a cosmological sequence of mergers
	Summary of Chapter 5

	Conclusion
	Overall summary
	Implications
	Outlook

	French summary / Résumé en français
	Résumé détaillé
	Implications
	Perspectives

	Appendices
	Derivation of dynamical friction
	Single encounter
	Sea of stars
	Friction time

	Jeans equation and dispersion
	Derivation of the spherical Jeans equation
	Jeans velocity dispersion

	Bibliography

