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Chapter 1

10 Years of Research Later

Science advances one funeral at a time. - Max Planck

This HDR thesis focuses on the Random Subset Sum problem (RSSP)
and its applications to Artificial Neural Networks (ANNs).

The HDR thesis should provide a general perspective on the researcher
that is applying for the HDR title. Most scientists have a main research in-
terest and it is thus clear what the main content of the thesis is going to be
about. That’s not my case, and the purpose of this first chapter is to delay
our treatment of the RSSP until it can be framed in the right perspective
within my application for the HDR. On the one hand, I considered survey-
ing two different topics before resolving to the RSSP, but after some initial
efforts, it simply felt that the result would not capture enough of the essence
of my research over the last few years. In particular, I recently published
the survey [BCN20a], in which my coauthors and I summarize the theoret-
ical area in which I have been most active; that work is too recent to be
expanded upon, and repeating most of its content felt of little service to the
research community. On the other hand, trying to talk about everything in
a more lightweight fashion was an option that I never really considered, as
the result would have appeared too heterogeneous. I then set for the present
compromise of presenting the main results in one of the research areas I
have been contributing to, while providing a quick general overview of my
scientific activity in the present chapter.

1.0.1 Thesis organization

The present chapter provides an informal and personal overview of my re-
search over the last 10 years. In Section 1.6 I discuss my experience as a
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CHAPTER 1. 10 YEARS OF RESEARCH LATER 4

PhD student supervisor. Chapters 2, 3 and 4 are technical and focus on
the Random Subset Sum Problem and its connection with the so-called Lot-
tery Ticket Hypothesis in artificial neural networks. Chapter 5 informally
discusses some possible future research directions.

1.1 Alpha and beta releases: PhD years

Ten years ago, in 2013, I started my Ph.D. in Computer Science at Sapienza
University of Rome. Five years before, in 2008, I had started studying Math-
ematics at the University of Rome Tor Vergata. One thing that become
rapidly clear was that I would not become a professional mathematician in
a classical sense, and I’d rather focus on other promising endeavors.

One surely was to contribute to what could be achieved using a computer.
The other endeavor was to contribute to our understanding of life sciences,
if not to the most mysterious byproduct of evolution: the human brain.
Perhaps, in pursuing the first goal, I reasoned, I may also acquire useful
tools to later contribute to the second one. The computer was, after all, a
thinking machine. Or, if the reader would at this point find such a claim too
cheap, I can quote:

If you will tell me precisely what it is that a machine cannot do,
then I can always make a machine which will do just that. - John
von Neumann [JB03]

So it happened that I started my journey to become a theoretical computer
scientist. Shortly after starting my Master’s studies at the same university,
in 2011, I switched to the Computer Science MSc degree. I was then very
fortunate to be involved in the research group of Prof. Andrea Clementi. I
had told him that, as Master’s thesis project, I was looking for “a problem
intersecting machine learning, distributed computing and network analysis”.
He then proposed to tackle the problem of community detection in temporal
random networks. We later published our joint work in [CDIG+15].

Two years later, in 2013, I found myself with the important problem of
choosing a Ph.D. topic. Distributed Computing was a possibility that would
fit nicely with personal circumstances, and the hope that such a field could
offer insights for progressing on the many open problems within the field of
Complex Systems and Neuroscience was appealing. I then started my Ph.D.
in Computer Science at Sapienza University of Rome.

During the aforementioned Master thesis project, I started analyzing
some simple interaction rules among the agents of a system, that will be
discussed next, in Section 1.2.
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Figure 1.1: Examples of different computational dynamics that I investigated
(see Section 1.2).

1.2 v1.0: Theoretical Computer Science and Multi-
agent systems

During my Ph.D., which I obtained in 2017, I was fortunate enough to dis-
cover a research direction that we could later name Computational Dynam-
ics, i.e., simple distributed probabilistic algorithms which allow multi-agent
systems to solve global coordination tasks. Such line of works, that I sum-
marized in my PhD thesis [Nat17] and, later, in a more up-to-date joint
survey for ACM SIGACT News [BCN20a], concerned classes of algorithms
that had been studied extensively from the perspective of computability the-
ory. However, due to the lack of mathematical tools to rigorously model the
behavior of these systems in the short term, efforts to explore these dynamics
algorithmically had started to succeed only recently. My main contributions
in this area had been on the fundamental distributed-computing problems
of Consensus in some models of stochastic communication, under different
flavors, which I briefly summarize in the coming Section 1.2.1.
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Figure 1.2: Illustration of noisy communication: A) The sender sends a given
message m; B-C) m is changed to some message m′ according to a probability
distribution pm which depends on m; D) the receiver receives the message
m′.

1.2.1 Consensus Problems under Stochastic Communication

For the most part, I focused on the uniform PULL model in which every
agent can only observe another agent sampled uniformly at random at each
time step [DGH+87]. The communication pattern is thus stochastic in the
sense that agents have no control over with whom they communicate. This
is typical of many real-world scenarios in biology, where multi-agent systems
such as swarms of birds or insects can only get information from close neigh-
bors, but the identity of the latter change unpredictably in a short time.
Such stochastic communication property should not be confused with noisy
communication, i.e. the fact that, when an agent u tries to convey some in-
formation to another agent v, the information that v receives can be different
from what u originally intended to communicate (Figure 1.2).

The latter is the classical setting considered in Information Theory and
has also played an important part in the work that I will mention in this
section.

In general, we should think about the multi-agent system as a graph
(that most of the time is complete), whose nodes/agents hold an opinion
that can be represented with a color (see e.g. Figure 1.1).

Among the most fundamental problem in Distributed Computing and in
the theory of Multi-agent Systems there’s certainly the Consensus Problem,
i.e. the problem of making agents agree on a value among a set of possible
options.
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How interesting could the Consensus Problem be? I will not
argue about its importance for the Theory of Distributed Algorithms in
general. In fact, I myself cannot offer more insight than a reader might get
after reading for a few hours a standard reference [Lyn96]. As I mentioned
above, in Section 1.1, my interest for the field has always been skewed toward
aspects that could be of relevance for a biologist and, in that respect, I have
been in rather a hurry to answer questions such as the following, which I
hope will be captivating enough for most readers:

Consider n agents, each one initially having a color out of a set of
k possible ones. At each step, each agent u looks at the colors of
two other agents v1 and v2 chosen independently and uniformly
at random and, if v1 and v2 have the same color c, u’s color
becomes c as well.

As surprising as it could appear, back in 2013 the above question was both
unanswered and interesting for the research community of distributed and
parallel algorithms. So it was that I have been working on many variants of
the Consensus Problem, which I list in the following.

In [BCN+16] I have been studying the Stable Consensus Problem, in
which consensus should be maintained even when an adversary is corrupting
the opinion of a limited number of agents in the system at each time step.

In [FN19], [BNFK18] and [dCN22], I have been studying the Noisy
Consensus Problem, in which the communication is noisy (in the noisy-
communication sense we just described). Notably, [BNFK18] appeared in
PLOS Computational Biology, because of its interest for theoretical biolo-
gists, in particular concerning the study of the collective behaviors of bio-
logical systems. The latter work was thus a meaningful achievement to me
as it represented a success with respect to my personal goal of contributing
to the field of biology.

In the works [BCN+15, BCN+17b, CNNS18], I have been studying the
Majority Consensus problem, in which we wish for the system to converge
to the opinion which is initially held by a relative majority of the agents.
The main object of investigation in the latter case are known as majority
dynamics.

In [BCE+17], while the main object under investigation are still majority
dynamics, I have been studying them in relation to the classical (Valid)
Consensus Problem, in which the only requirement is that agents come to
agree with a value that was initially present in the starting configuration.
More specifically, the question being what if we start with essentially every
agent holding a different opinion? In [BCE+17] we offer one of the first
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rigorous ways to directly relate the behavior the 3-Majority and 2-Choices
Dynamics, two of the most popular processes studied in the area.

Another joint work that is directly related to both the Valid and Noisy
Consensus Problem has been [CGN+20] in which, in a precise sense, the
Consensus Problem is shown to reduce to the Broadcast Problem, where an
exponential gap between the two problems is shown when communication is
affected by noise.

As mentioned above, [BCN20a] is a survey that I co-authored and which
collects most of the relevant results (with the inevitable subjectivity of any
relatively short survey). This section is thus kept as short as possible, and the
reader interested in Computational Dynamics for the Consensus Problem is
deferred to it. Related, older references that are still useful in many respects
are [Sha07] and [MT17].

Next, in Section 1.2.2, I write about other works In which I tackled
different problems other than variants of the Consensus one. However, the
core mathematical techniques remain close to those employed in the above
works. Further below, in Section 1.2.3, I dedicate a few lines to sharing my
general opinion on the whole research area.

1.2.2 Opinion Dynamics and Community Detection

Back in Section 1.1, I mentioned how my journey as a researcher started in
2013 with my MSc thesis work [CDIG+15]. I have subsequently continued
investigating the problem which goes under the names of Distributed Clus-
tering or Distributed Community Detection, with the most beautiful result
most likely being the very simple community detection algorithm for the
stochastic block model in [BCN+20b] (Figure 1.3).

I provided an adaptation of [BCN+20b] in my joint work [BCM+18],
where a variant of the clustering algorithm succeeds in performing commu-
nity detection in the Population Protocol model, in which agents act asyn-
chronously and there is no consistent notion of global time. I should remark
here that the fact that the community detection problem becomes much
harder in the Population Protocol model should not suggest to the inexperi-
enced reader that problems are generally harder to solve in the asynchronous
model. That is, in fact, quite not the case for the analysis of many compu-
tational dynamics such as those mentioned in Section 1.2.1: the behavior of
a dynamics in the Population Protocol model gives rise to a much simpler
Markov chain, as it involves a single interaction per transition.

Since 2013, while working on the conference version of [CIG+13], it was
clear from simulations that the same result that our algorithm was achiev-
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Figure 1.3: The Averaging Dynamics (see Section 1.2.2). On the top left,
is the pseudocode of the process. On the bottom, illustration of one step
of the dynamics. On the top right, is the representation of the evolution
of the process: after an initial instability of the value held by a node, the
value either decreases or increases stably, thus providing a common signal
for identifying the node communities.
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ing, could have been achieved through much simpler rules. Such rules were,
and still are, extensively studied under the name of Label Propagation Al-
gorithms, but almost all work on them is empirical. A good overview of
some literature is provided by [Cru19]. Luckily, in 2018, a new technique
to analyze one such dynamic - the 2-Choices Dynamics - had been found
[CRRS17], allowing me and my collaborators to obtain the kind of rigorous
result that I was striving for in 2013. The latter result appeared in [CNS19]
and a related one that we obtained around the same time is [CNNS18].

1.2.3 So what?

The purpose of this chapter is to provide a bird’s eye view of my past research,
and given that the above works are not the focus of the present one, I will
only share here my informed opinion for a researcher interested in knowing
more about it.

In one way or another, all the above works consisted of a rigorous proba-
bilistic analysis of discrete stochastic processes. The necessary mathematical
background for understanding such analyses does not go too far beyond a
solid background in the analysis of probabilistic algorithms, such that the one
provided in [MU17]. The core techniques are a good grasp of concentration
inequalities [CL06], probabilistic coupling [MU17, Ch. 12] and martingale
techniques [Len17].

Unfortunately, most of the analyses one comes across in the literature
turns out to be quite ad-hoc and, contrary to my hopes when I initially
started to work in this area at the beginning of my Ph.D., the progress
towards more general tools has been very limited. While on the practical
side, there are surely many low-hanging results that the community would
consider interesting and could thus be published in prestigious venues, I
have to express my doubts regarding the possibility that, many years from
now, such results that keep accumulating will crystallize into a more general
understanding.

1.2.4 Other more-or-less related problems

As I have been recounting in previous sections, until recently the main focus
of my research has been the study of computational dynamics. Along the
way, however, I investigated many other related problems, among which the
following have been particularly interesting.
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Figure 1.4: An illustration of one step of 7 tokens performing a random
walks on a 7-node network in the GOSSIP Model. Each token selects its next
destination independently and uniformly at random among the neighbors of
its current node. Since in the GOSSIP Model, each node can communicate
with only one neighbor at each step (see Section 1.2.4.1), if two or more
tokens situated on the same node want to move to different neighbors, then
they have to take turns moving.

1.2.4.1 Random walks in the GOSSIP Model

The analysis of random walks in networks subject to congestion constraints,
such as the GOSSIP Model in which each node can communicate with at
most one neighbor at each step, has been the subject of my joint work
[BCN+17a]. The motivating scenario of random walks in the GOSSIP Model
was actually proposed two years before, in my previous joint work [BCN+15]
(see Fig. 1.4).

1.2.4.2 Clock synchronization in stochastic environments

Back in 2015, while visiting the IRIF Lab in Paris, I met for the first time
Amos Korman. That was the beginning of one of the most important col-
laborations I carried on in the following years, and it was marked right away
by a specific problem, the Zealot Consensus Problem. In the simplest form
of the Zealot Consensus Problem, the system aims at reaching consensus
when one agent in the system is not going to change opinion. We tackled
the problem in the setting of a discrete-time multi-agent system in which
agents interact stochastically in parallel (i.e. in the PULL model), and they
can communicate only a few bits per interaction. One year later, in 2016,
we started conceiving a solution that, after an additional year of refinement,
resulted in the publication [BKN18]. In fact, the problem can be reduced,
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in a classical sense, to that of synchronizing a clock; the intuition of such
reduction is sketched in Figure 1.5.

In [BKN18], we manage to synchronize a clock of arbitrary cycle length
using just 3 bits per interaction. Of course, the problem of further reducing
the message length to 2 or even 1 bit was quite appealing. Later, in 2019, I
started working with a student on a solution to the problem using only two
bits. I successively stopped contributing to the project, but the student and
other collaborators were able to successfully carry it on, publishing the 1-bit
improvement in [BGS21]1. The interesting fact that should be noted here
is that, in fact, since the very few days after Amos had originally told me
the problem, we came out with a 1-bit algorithm that was intuitively and
empirically correct, but a rigorous analysis appeared beyond the grasp of
current techniques. Recently, Amos Korman and a student of his managed
to analyze a variant of such a natural algorithm in [KV22].

1.2.4.3 Fully-distributed Physarum dynamics

Physarum polycephalum is a multinucleate coenocyte which made headlines
because, despite lacking a nervous system, behaves in a way that allows it
to solve, sensu lato, instances of the Shortest Path Problem (see Fig. 1.6).

Its popularity spread among theoretical computer scientists when a dis-
crete version of the aforementioned behavior started to be investigated. The
interested reader is deferred to [Bon20] and references therein.

An important aspect that appeared to be lacking in such algorithmic
models of the behavior of Physarum was that, in practice, the behavior of
the organism is merely local: what the organism is doing in some spacial
point is not influenced by points that are far away. Without getting into the
details, let it be said that the algorithmic models tacitly assumed that the
solution that Physarum was computing could leverage some kind of global
information. In [BBN18], we address such a problem by providing a fully-
local version of the famous algorithmic model, which leverages the nice theory
bridging random walks and electric potentials.

1I was quite flattered by the acknowledgement the authors wrote in [BGS21]: "We are
deeply indebted to Emanuele Natale for introducing the problem to us, for helping us to
devise the binary clock protocol, for pointing out related work, and for helpful discussions
through the course of this project."
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Figure 1.5: Illustration of how the binary Zealot Consensus Problem can
be solved under the assumption that agents share a clock modulo O (log n)
where n is the number of agents. The shared clock is divided into two phases:
one in which agents only adopt the first opinion if they communicate with
an agent holding it, and a second one in which they only adopt the second
opinion if they see it. In subfigures A-C, the agents are in the red phase,
hence the red opinion spreads in the system and is eventually supported by
all agents except the zealot agent who always hold the blue opinion. Succes-
sively, in subfigures D-F, the clock is in the blue phase and all agents copy
the blue opinion if they see agents supporting it. Eventually, in subfigure F,
all agents support the blue opinion (including the zealot agent), and when
the clock enters again the red phase there is no red agent that can start
propagating again the red opinion.



CHAPTER 1. 10 YEARS OF RESEARCH LATER 14

Figure 1.6: Illustration of the plasmodial maze-solving process (see Section
1.2.4.3), from left to right: (1) Physarum polycephalum is initially spread
all over the maze. (2) Nutrients are placed in locations marked with AG;
Physarum starts concentrating in a vascular-like system according to the
model ẋe = |qe| − xe where e a segment of the maze (an edge), xe is the
density of Physarum present in that segment, and qe is the flow of nutrients
being transported by Physarum along that segment. (c) The final state that
Physarum reaches, in which the organism is concentrated on the shortest
path between the two food sources. (d) Network representation of the maze,
where the source node N1 and the sink node N2 are indicated by solid circles
and other nodes are shown by solid squares.

1.2.4.4 Sampling random expander graphs and load balancing in
distributed networks

In [BCN+19], we analyzed simple distributed processes for creating random
expander graphs. The more general result is about sapling a random ex-
pander subgraph from a sufficiently dense one. If we consider the special
case of a complete graph as the starting topology, we can think about such
special case as n agents that wants to construct an expander graph in a de-
centralized manner. The underlying process is as simple as asking a random
neighbor to connect in the expander, and accepting the first k requests that
you receive. The analysis presented [BCN+19] is very technical and leverages
the interesting technique of encoding arguments, a pedagogical exposition of
which is provided in [MMR17].

In subsequent work, with some colleagues, we refined the analysis of
[BCN+19] and obtained a result that appeared particularly relevant in the
context of load balancing in distributed networks, which we published in
[CNZ21].
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1.2.4.5 Levy walks and the optimal foraging hypothesis

After my work on the Physarum dynamics that I described in Section 1.2.4.3,
I started to become interested in the more general question of how animals
move. There is a myriad of patterns that animal species follow, for a variety
of reasons. These reasons, which can range from the optimal foraging to the
fastest way to reach a nest site, are the main motivations why researchers
are interested in animal movement models.

Lévy walks are one such pattern that has attracted a lot of attention in
the biological and physical communities in the last twenty years, as they are
optimal search strategies. The investigation of this type of random process
dates back to work by Paul Lévy in 1937 [Lev37], from which the process
gets its name. In the bi-dimensional case, we can think of a Lévy walk as
follows: an agent repeatedly chooses a direction uniformly at random and
then moves in that direction for a distance that is drawn from a power-law
distribution with parameter α. Lévy walks are thus characterized by the
power-law parameter α that tunes how often the walks exhibit short steps
in contrast to longer ones. Of particular relevance is the range α ∈ (2, 3);
outside this interval, the behavior of a Lévy walk is similar to those of other
known movement models, namely, the Brownian motion (3 ≤ α), and the
ballistic walk (α ≤ 2), which are well understood (see also Figure 1.7).

Starting with Shlesinger and Klafter in 1986 [SK86], over past decades,
several studies have highlighted how the movement of many animal species
and living organisms exhibit a pattern resembling that of Lévy walks [Rey18].
Nevertheless, the main reason Lévy walks have been the object of an intense
investigation is that they have been mathematically proven to be optimal
foraging strategies: in particular, when a single forager is searching for food
in an environment that exhibits a “uniform” distribution of food locations,
the Lévy walk with parameter α = 2 outperforms other search strategies
[VBH+99]. The fact that Lévy walks rarely revisit previously explored ar-
eas seems to play a fundamental role in this respect. For such reasons,
researchers have introduced the so-called Lévy flight foraging hypothesis,
which states that, since Lévy walks can optimize search efficiency, then nat-
ural selection must have led to adaptations for Lévy walk foraging.

But what about animals that search collectively, like ants or bees? To-
gether with my former student Francesco D’Amore and other colleagues, in
[CdGN21] I have analyzed the search efficiency of a group of entities that
must find a single target in the infinite two-dimensional grid. We consider
the case in which all entities start together from the same position (e.g., a
nest site) and must find as efficiently as possible a target that is placed at
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Figure 1.7: The three fundamental regimes of Lévy walks: on the left, the
diffusive regime for the range of values of α for which the variance of the step
length is finite (α > 3); in the middle the ballistic regime for the range of
values of α for which the expected length of the steps is infinite (α < 2); on
the right is the super-diffusive regime for the range of values of α for which
the step length has finite expectation but infinite variance (2 < α < 3).

some distance from the nest. In distributed computing, the above problem
has been known as the ANTS problem [FK17]. We show that Lévy walks
are the optimal search strategy; more precisely, the hitting time (i.e., the
first time an entity finds the target) matches the smallest time that is re-
quired to find the target with constant probability. Depending on the target
distance and the number of individuals composing the search group, the pa-
rameter α characterizing the search pattern needs to be accurately tuned to
reach optimality. Nevertheless, if each entity in the nest chooses uniformly
at random its parameter in the interval α ∈ (2, 3) and then performs a Lévy
walk with that parameter, optimality is still achieved. This search algorithm
is very simple, homogeneous, and performs as well as more artificial search
strategies which were previously designed for this search problem [FK17].

Moreover, the aforementioned strategy, which yields optimal search ef-
ficiency for (almost) all distance scales, requires different members of the
same group to follow different search patterns. The mathematical evidence
for such variation in the search patterns among individuals of the same group
raises interesting questions which would require experimental validation.

Overall, our result has been in line with other recent findings [GK20],
showing that Lévy walks are surprisingly efficient movement patterns, thus
offering new mathematical grounds for the Lévy flight foraging hypothesis.
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1.3 v2.0: Computational Neuroscience

Let me recall how one of the mysteries inspiring me to pursue an academic
career was the functioning of the human brain (Section 1.1). In 2016, I
was very fortunate to have the opportunity to participate to a semester at
the Simons Institute for the Theory of Computing as a visiting graduate
student, and even more fortunate to know that the Institute was considering
organizing a program that would foster collaborations between theoretical
computer scientists and theoretical and computational neuroscientists. The
prospect of such a unique possibility revamped my enthusiasm and I tried to
stir with more determination my current research in a direction that could
increase my chances to be granted a Simons Fellowship for such a program.
The work [BNFK18], which I already mentioned in Section 1.2.1, grew largely
out of that desire, as one can hardly attend several talks by theoretical
neuroscientists without the role of noise being called into question. In that
regard, there is usually an attempt to propose that noise plays a constructive
role; in [BNFK18], on the contrary and less surprisingly, we investigated
instead the limit that a stochastic and noisy biological system has to face to
propagate information reliably.

One year later, in 2017, the program was officially announced and I was
granted a fellowship. I can say that my research activity in theoretical neu-
roscience officially began right then, during the 2018 Brain and Computation
Program of the Simons Institute for the Theory of Computing, although the
first work that could be considered properly pertaining to the area I did not
publish until 2022. This has been a collaboration with one of the program
organizers, Christos Papadimitriou. In his words, the program would give
me the chance to acquire, in few months, a birds-eye vision of the field of the-
oretical neuroscience comparable to what he got after several years of study.
The reason for such a time gap in grasping the fundamentals of the discipline
was indeed one of the main takeaways, which I find best summarized in the
provocative question that was asked during the Simons workshop “What Is
Missing in Current Theories of Brain Computation” on April 17th, 2018:

What do all theoretical neuroscientists agree on, other than
there are neurons that fire in the brain? - Abbas El Gamal.

After the program, Christos started publishing joint works on the Assem-
bly Calculus, a theoretical framework that seeks to explain the emergence
of high-level cognition from the low-level behavior of neurons and synapses
through an algorithmic formalization of Hebbian learning [PVM+20]. In
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Figure 1.8: An instance of a Blocks World puzzle.

[MCP21], it is shown how the model can allow neurons to effectively imple-
ment a parser. In [dMC+22], we further show how such a framework can
allow us to solve planning problems. Specifically, we consider the famous
task of solving Blocks World puzzles [Win71, ST01], in which the disposition
of blocks (which we can think of as child-toy blocks on a table) is modified
via simple operations until a given configuration is reached (see e.g. Fig.
1.8). In [dMC+22] we show how simple programs solving Blocks World can
be implemented in Assembly Calculus.

As I said, [dMC+22] was the first theoretical neuroscience project I fi-
nally published since taking part to the Simons Program in 2018. Since the
Program, however, I’ve been trying to tackle El Gamal’s question by making
efforts to ground some theoretical ideas on real data. Unfortunately, the the-
oretical part is still far from becoming concrete, but the experimental part
leads to three works. Let me spend a few words on the experimental part
before sharing a brief consideration of the theoretical one.

The first one is still unpublished and consists in investigating whether the
phylogenetic tree of more than one hundred mammals can be reconstructed
based on the neural connectivity of their brains.

The second one is [FCC+21], in which we investigate a network align-
ment algorithm (i.e. a relaxed version of graph isomorphism, also known as
graph matching [CFSV04]), and apply it to assess the robustness of brain
atlases (see Fig. 1.9), which are canonical ways to partition the brain into
regions according to various anatomical and functional criteria [FZB16]. The
third one is also unpublished, but the large dataset has already been made
publicly available in [RDN23]: it consists of a series of graphs representing
the correlation of the activity among brain regions during fMRI recordings
of the subject in a resting state (i.e. performing no task).

Back to theoretical considerations, theoretical neuroscience is a field that
has historically been led by physicists. I do share Christos Papadimitriou’s
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Figure 1.9: Illustration of the success rate with which regions for different
atlases are correctly labeled by the methodology proposed in Frigo et al.
(2021) after the regions are shuffled according to a uniform random permu-
tation. Atlases with 100 regions or fewer are illustrated in the first row. The
second row illustrates atlases with approximately 300 regions, and the third
row those with 1,000 regions (see Section 1.3).
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view, which he expressed in his joint survey [MPVL19], that theoretical
computer science has much to contribute to the development of the field.
Many theoretical computer scientists are indeed devoting energies in this
direction.

As for myself, my contribution has been limited to the aforementioned
work on the Assembly Calculus (which is also experimental). The reason
for that is a variant of El Gamal’s question: What are the conditions for
making other theoretical neuroscientists accept a new theory? That is a
problem that Science has solved, in principle, since its incipit, by forcing
us to face empirical observations and experiments. Unfortunately, we can
see how, in many domains, it is way easier for a theorist to base theory on
theory, and much harder to base it on reality. Today, I am still struggling
to get certain empirical observations on the brain, but in the last section, I
will share more on a theoretical neuroscience topic I’ve worked on, Section
1.5, which is devoted to the main subject of the present thesis, namely my
work in the theory of ANNs.

1.4 Digression in Integrated Assessment Modeling

Before introducing the subject that will be the main object of study of this
work, let me mention another project that has absorbed a good deal of
my time over the last two years. Since 2021, I’ve also been working on
an integrated assessment modeling library, WorldDynamics.jl, to apply sci-
entific machine learning to develop models related to sustainable develop-
ment goals, which can be found at https://github.com/worlddynamics/
WorldDynamics.jl. Such research interest emerged during the COVID quar-
antine periods in 2020, when the general atmosphere drifted my attention
towards sustainability and ecological societal issues.

Given the importance of predicting how the global socioeconomic system
interacts with major ecological aspects of the planet, I reasonably expected
that substantial modeling effort had been done in that direction. I learned
about the seminal work that Jay Wright Forrester and others carried out
in the ’70, which culminated in the World3 Model, giving birth to the area
of Integrated Assessment Models [For73]. To my great surprise, however,
the following decades didn’t see the emergence of a rigorous and systematic
approach. Forrester et al.’s modeling methodology crystallized in what be-
came known as System Dynamics [BAN17], which is a modeling framework
in which dependencies among variables fall in a limited set of mathemati-
cal relations. Many other models were proposed since World3, e.g. Nobel

https://github.com/worlddynamics/WorldDynamics.jl
https://github.com/worlddynamics/WorldDynamics.jl
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Figure 1.10: Evolution of some variables in a simulation of the World3 Model
performed with the WorldDynamics.jl library, overlaid on the original Figure
7.7 from the famous book by Meadows et al. (see Section 1.4).

Laureate William Nordhaus’ DICE Model [Nor18], but the relations among
them remained debatable. As a side note, the lack of systematic scientific
progress in Integrated Assessment Modeling is an interesting fact from the
point of view of the sociology of science, and could have a direct relationship
with the aforementioned fragmentation in theoretical neuroscience (Section
1.3).

A recent effort to provide a systematic framework to organize and com-
pare models aimed at estimating carbon emissions is the MIMI Framework
[MRL+18]. However, in 2020, a framework including World3 and many fa-
mous IAM was still missing. Besides that, the emerging Julia programming
language had been developing an ecosystem of libraries on techniques at the
intersection of machine learning and scientific computing that got recently
grouped under the umbrella term of Scientific Machine Learning [BAB+19].
The perspective of applying such techniques for developing new IAMs seemed
to have the potential to be scientifically significant.

When I shared the above considerations with Pierluigi Crescenzi in 2020,
his shared enthusiasm for the endeavor quickly led us to embark on a re-
implementation of the World3 model. Let me only say that the model had
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been developed in 1970 before even the C language had been created; For-
rester and his collaborators had thus developed a specific language called
DYNAMO to implement and simulate the Wolrd3 model, which is today a
dead language; we thus had to turn into software archaeologists and study
old manuals of the language. Today, we are continuing to develop the li-
brary with the hope that the project could have a positive impact outside
academia. The reader who’s interested in some of the scientific aspects of
the library is deferred to [CLN+23, CNRS23].

1.5 v3.0: Sparsification in ANNs

Artificial neural networks (ANNs) are a research topic that is often claimed to
be backed up by little theory: they work in practice, and we don’t know why.
Given such an atmosphere, contributing to their understanding had been an
appealing challenge since my PhD years. Such desire grew stronger when,
in 2015, I attended for the first time the Biological Distributed Algorithms
Workshop (BDA) to present my work on Noisy Consensus (mentioned in
Section 1.2.1). There, Turing Award Leslie Valiant held an invited talk
titled “A computational model and theory of cortex ”.

Starting from the empirical fact that the connections between neurons
in our brains are much denser at birth and become progressively sparser
throughout our lives, Valiant shared some considerations on the extent to
which learning might be a sparsification process: Theoretically, starting with
a complete graph, we could encode information by simply removing edges,
like a sculptor carving stone. Already interested in sparsification techniques
in theoretical computer science (which later led to the works mentioned in
Section 1.2.4.4), the desire of exploring Valiant’s speculation implanted in my
brain and started growing when I was finally attending the Simons Program
three years later.

Unfortunately, with the great kind of frustration discussed in Section
1.3, to date I cannot find sufficient experimental details on sparsification to
justify some theoretical ideas. On the another hand, the investigation led me
to the study of sparsification algorithms for ANNs, also known as pruning
algorithms. So it happened that, since 2019 ANN pruning has been a major
part of my research [BNV19]. Along with the investigation of the latter, I
should also mention some joint work on security aspects of ANNs [dCNV23],
and on a patent that we filed on a neuromorphic computing approach that
emerged from some of the ideas discussed in the next chapters ([DCNV17]).

Finally, we have arrived at what will be the technical focus of this work. I
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hope that the reader will be able to appreciate, as mentioned at the beginning
of the chapter, the heterogeneity of my research, and the consequent difficulty
in isolating a topic that can be the subject of a sufficiently cohesive treatise.
I hope even more strongly that the final choice will prove useful to those
interested in the topic.

1.6 Supervising PhD students

I trace back the start of my student supervision activity to 2017 when, as
a postdoctoral fellow of the Max Planck Institute for Informatics, I started
supervising interns. During my Ph.D., I already carried on some projects
with other students, thus without the guidance of more senior scientists, such
as [BN16] (later published in [BN19]). At the Max Planck, however, I was for
the first time responsible for the research activity of undergraduate students,
which were now less experienced than me. I was very fortunate to work
with bright students. With one of them, Iliad Ramezani, we worked during
the summer of 2018 on proving upper and lower bounds on the necessary
memory for the problem of computing the relative majority in the famous
distributed-computing model known as Population Protocols, which falls
within the research topics discussed in Section 1.2. Our work was later
published in [RN19].

Even deeper was my collaboration with two other Ph.D. students, Gia-
como Scornavacca and Emilio Cruciani, which were visiting the Max Planck
for a few months. I have already mentioned several works we co-authored
in Section 1.2.2, in particular, [CNNS18, CNS19] with both Emilio Cruciani
and Giacomo Scornavacca, and [CGPS17, CGG+18, CGN+20] with Giacomo
Scornavacca. Given the extent of our collaboration, I was kindly offered to
become a co-supervisor of Emilio Cruciani, who then became my first PhD
student, defending his thesis in 2019. Emilio later joined the COATI project-
team, as a postdoctoral fellow and played a key role in the interdisciplinary
collaboration on the topic of brain alignment discussed in Section 1.3, which
resulted in the publication [FCC+21].

My second Ph.D. student has been Francesco D’Amore, who started his
Ph.D. in 2019 in COATI under the direction of Nicolas Nisse (HDR). I have
written about our several joint works in sections 1.2, 1.2.4.5 and 1.3. With
Francesco D’Amore, my share of responsibility was even higher than with
Emilio Cruciani, as I was also the one who proposed the topic of his Ph.D.
thesis. However, his mathematical talent and his kind personality made
working with him a real pleasure. He brilliantly defended his thesis in 2022,
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and nowadays we are continuing to interact closely while he is continuing to
pursue his academic career as a postdoctoral fellow in prestigious interna-
tional research groups in theoretical computer science.

My third Ph.D. student has been Arthur Carvalho Walraven Da Cunha2,
for which I got the derogation to be his supervisor without having the HDR.
Unfortunately, the first part of his thesis has been carried on during the
COVID-19 pandemic, which made our collaboration difficult for some time.
Despite that, we managed to carry on the technical topic that constitutes
the main part of this document, namely chapters 2, 3 and 4. Several of our
works have initially been rejected by top-tier conferences, but we did not give
up and we managed to publish several of them in the end, namely [dCNV22],
[dCNV23] and [dCdG+22]3, while others are currently under review.

Already when I was a Ph.D. student, I could see the great diversity of
philosophies and approaches to student supervision. Some supervisors are
distant, quite formal and only meet with their students a few hours per week
(or even months). Others are informal, meet with their students every day
and are very close to them. The latter has been the case for my Ph.D.
supervisor, Prof. Andrea Clementi, and I have tried to follow his example.
Today, I think that the distant approach is easier to follow, but the close
approach is more rewarding for both the supervisor and the student. On the
other hand, it is fundamental to select the student quite carefully, as a closer
relationship does not allow to follow too many students at the same time,
and it can even be counterproductive if the student is not motivated enough.
Luckily for me, when I compare my experience to that of many colleagues, I
can see that I have been lucky with my students. Of course, as Luis Pasteur
once said, "Chance only favors the mind which is prepared"; I very much
hope to continue having opportunities to supervise motivated and brilliant
students in the future, and to seize them by being the best supervisor I can
be in helping them achieve their potential as researchers.

2At the time of writing, he just submitted the manuscript of his Ph.D. thesis and is
expected to defend in September 2023.

3At the time of writing, the paper has been accepted to the European Symposium on
Algorithms 2023.



Chapter 2

Introduction to RSS

On voit, par cet Essai, que la théorie des probabilités n’est, au fond, que
le bon sens réduit au calcul; elle fait apprécier avec exactitude ce que les
esprits justes sentent par une sorte d’instinct, sans qu’ils puissent souvent
s’en rendre compte. - Pierre-Simon Laplace [Lap18]

This chapter introduces the Random Subset Sum Problem (RSSP) and
the results that will be used in the following chapter. Our interest for the
problem in the context of machine learning is motivated by its application
to the Strong Lottery Ticket Hypothesis, which will be presented in Chapter
4, after presenting a simplified proof of the main result about the RSSP that
had been leveraged in this context.

First, let us recall the classical (deterministic) Subset Sum Problem.

Definition 1 (Subset Sum Problem (SSP)). Given n integers x1, ..., xn and
a target value z, the SSP is the decision problem of determining whether
there exists a subset S ⊆ {x1, ..., xn} such that

∑
x∈S x = z.

To appreciate the depth of the SSP, we also need to remark on how it is
essentially equivalent to another fundamental decision problem in complexity
theory, the Number Partition Problem (NPP). We defer such important
digression on the relation between the two problems in Section 2.0.1. Next,
we give two important definitions for approaching the approximate variant
of SSP that we are interested in in this work.

Definition 2 (ϵ-approximation). We say that x ϵ-approximates z if |x− z| ≤
ϵ.

Definition 3 (ϵ-approximable). Given a set of values ωn = {x1, ..., xn}, we
say that z is ϵ-approximable with ωn if there exists a subset Sz ⊆ ωn such
that the sum of its elements

∑
x∈Sz

x ϵ-approximates z.

25
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We are now ready to provide a formal statement of the Random SSP.

Problem 4 (Random Subset Sum Problem (RSSP)). Let Ωn = {X1, ..., Xn}
be i.i.d. uniform random variables over [−1, 1]. Given ϵ > 0 and z ∈ [−1, 1],
is there a subset S ⊆ Ωn such that the sum of its elements

∑
x∈S x ϵ-

approximates z?

The study of RSSP intensified after Lueker applied it to the estimation of
the integrality gap (i.e. the difference between the values of the integer and
relaxed solutions) for random instances of the Knapsack Problem, a classical
NP-complete problem defined by the following integer linear program (ILP).

Definition 5 (0-1 Knapsack Problem [Kar72]). Given 2n+ 1 positive reals
a1, ..., an, b1, ..., bn and B, an instance of the 0-1 Knapsack Problem is defined
by the following ILP:

maximize
n∑

i=1

ziai

subject to


n∑

i=1

zibi ≤ B,

zi ∈ {0, 1} .

To explain the efficacy of fast backtracking algorithms for Knapsack, in
[Lue82] Lueker showed that RSSP naturally appears in the analysis of a
greedy procedure for the problem, and managed to prove, under relatively
mild assumptions, that the integrality gap is at most O

(
logn
n

)
and at least

Ω
(
1
n

)
. His proof relied on a second moment method [AS16], and was later

generalized by Dyer and Frieze to random packing integer programs (IP)
[DF89] and very recently by Borst et al. to random binary IP [BDHT].

In this work, we are going to focus on one of several refined results that
Lueker proved in 1998 on RSSP, which we state next.

Theorem 6 ([Lue98],[dCdG+22]). Let Ωn = {X1, ..., Xn} be i.i.d. uniform
random variables over [−1, 1] and ϵ ∈

(
0, 13
)
. There is a universal constant1

C such that if n ≥ C log 1
ϵ then with probability at least 1− ϵ any z ∈ [−1, 1]

is ϵ-approximable with Ωn.

Lueker proved a slight variant of Theorem 6 by constructing a clever
martingale and applying the Azuma-Hoeffding inequality to it [DP09]. In

1I.e. a constant independent from n and ϵ.
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Chapter 3, we will propose a more elementary, alternative proof that does
not require familiarity with such relatively advanced tools and should thus
be more accessible.

Remark 7. In [Lue98], it is remarked that C ≤ 2 (1 + log e). In its present
form, the approach that we present in Chapter 3 leads to a much larger
bound, namely 742.27 log 1

2ϵ , but we did not try to optimize the resulting
constant.

Before presenting some results related to Theorem 6 that will be useful
in applying the latter in the context of artificial neural network pruning in
Chapter 4, in the next section we are going to briefly discuss the relationship
between SSP and NPP.

2.0.1 The Subset Sum Problem and the Number Partition
Problem

An instance of the SSP is easily transformed into an instance of NPP, one
of the six basic NP-complete problems of historical importance in Compu-
tational Complexity Theory [GJ79]. Let us define NPP and show next how
to reduce SSP to NNP.

Definition 8 (Number Partition Problem (NPP)). Given n integers x1, ..., xn,
the NPP is the decision problem of determining whether there exists a subset
S ⊆ {x1, ..., xn} such that2

∑
x∈S x−

∑
x ̸∈S x = 0.

Given an instance of SSP with n integers x1, ..., xn and a target value z,
an equivalent instance of NPP is obtained by considering the set of n + 1
integers {x1, ..., xn,

∑n
i=1 xi − 2z}. Indeed, we can assume without loss of

the generality that the solution to such NPP will be of the form(
n∑

i=1

xi − 2z

)
+
∑
x∈S

x−
∑
x ̸∈S

x = 0 (2.1)

for some S ⊆ {x1, ..., xn}. Using the fact that
∑n

i=1 xi −
∑

x ̸∈S x =
∑

x∈S x,
we can rewrite which we can rewrite Eq. 2.1 as

∑
x∈S x = z, which is a

solution to the SSP.
For completeness, we observe that by a similar reasoning an instance of

the NPP problem with input x1, ..., xn can be transformed into an instance
of the SSP by considering the same set of input values {x1, ..., xn} and target
value 1

2

∑
i xi.

2We denote with Ā the complement of the set A.
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Hence, the SSP is equivalent to the NPP. We remark here that, while
in this work, we focus on a random version of SSP, some works have in-
vestigated random versions of NPP. The above argument shows that results
for one of them can often be directly translated into results for the other.
We will not leverage results obtained on the NPP in this work, but for
the sake of completeness, we mention that random versions of NPP have
attracted a lot of interest in Statistical Physics [MM09], in particular con-
cerning the study of phase transitions in random combinatorial structures
[Mer01, BCP01, BCMP04].

2.1 Useful corollaries

In his section, we show how we can easily extend Theorem 6 to more general
distributions that contain a uniform distribution. We will see an application
of such a corollary in Chapter 4.

Let us begin by making precise the notion of containing a uniform dis-
tribution.

Definition 9 (Super-uniform variable). Given a > 0 and b ∈
(
0, 1

2a

)
, a

random variable X is (a, b)-super-uniform if its density fX satisfies fX (x) ≥
b for each x ∈ [−a, a]. We simply say that X is super-uniform if there exist
a and b such that X is (a, b)-super-uniform.

We can now state and prove the following corollary of Theorem 3.

Corollary 10 (RSS for super-uniform variables). Let Ωn = {X1, ..., Xn}
be independent (a, b)-super-uniform random variables over and ϵ ∈

(
0, 13
)
.

There is a constant Ca,b, depending only on a and b, such that if n ≥
Ca,b log

1
ϵ then with probability at least 1−ϵ any z ∈ [−a, a] is ϵ-approximable

with Ωn.

Proof. Let fi be the density of Xi and U1, ..., Un be n i.i.d. standard uniform
random variables. Consider a sample Ωn = {X1, ..., Xn} of independent
(a, b)-super-uniform random variables and define the pruned sample

Ω̃n = {Xi : (Xi ∈ Ωn) ∧ (Xi ∈ [−a, a]) ∧ (Ui · f (Xi) ≤ b)}i∈[n] .

One can verify that for each i and each x ∈ [−a, a]

Pr
(
Xi = x

∣∣∣Xi ∈ Ω̃n

)
=

Pr ((Xi = x) ∧ (Xi ∈ [−a, a]) ∧ (Ui · fi (Xi) ≤ b))

Pr ((Xi ∈ [−a, a]) ∧ (Ui · fi (Xi) ≤ b))
,
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=
Pr (Ui · fi (x) ≤ b |Xi = x) Pr (Xi = x)∫ a

−a Pr (Ui · fi (t) ≤ b) fi (t) dt

since fi (x) ≥ b for x ∈ [−a, a] and Pr (Xi = x) = fi (x)

=

b
fi(x)

fi (x)∫ a
−a

b
fi(t)

fi (t) dt

=
1

2a

which means that each Xi ∈ Ω̃n has distribution Unif ([−a, a]). Moreover,
since

Pr
(
Xi ∈ Ω̃n

)
≥ 2ab,

we can choose Ca,b large enough so that a straightforward application of a
Chernoff bound yields

Pr

(∣∣∣Ω̃n

∣∣∣ ≥ C log
1

ϵ

∣∣∣∣ |Ωn| ≥ Ca,b log
1

ϵ

)
≥ 1− ϵ

2
,

where C is the universal constant of Theorem 6. We can thus apply Theorem
6 to Ω̃n with error ϵ′ = ϵ

2 , which implies that the overall probability that
Ω̃n is sufficiently large and that all values are ϵ-approximable is

(
1− ϵ

2

)2
>

1− ϵ.

A case of special interest, because of its occurrence in applications, is
when the random samples follow the distribution of the product of two uni-
form random variables, which we provide in the next lemma.

Lemma 11 (Product of uniforms). If X1 and X2 are independent Unif ([−1, 1])

random variables then X1 ·X2 is
(
1
2 ,

log 2
2

)
-super-uniform.

As we mentioned above, in Chapter 4 we are going to leverage Corollary
10 and Lemma 11 to prove some interesting results on random convolutional
neural networks. Before that, in the next Chapter, we are going to provide
an alternative proof of Theorem 6 to that originally given in [Lue98].



Chapter 3

An Elementary Proof of
Random Subset Sum

I am going to give what I will call an elementary demonstration.
But elementary does not mean easy to understand. Elementary
means that very little is required to know ahead of time to un-
derstand it, except to have an infinite amount of intelligence - R.
P. Feynman, [FGG96]

This chapter contains a more streamlined presentation of the proof of Theo-
rem 6 given in [dCdG+22], which leverages a common analysis technique for
Rumor Spreading protocols (see e.g. [DK]).

Compared to the original proof in [Lue98], this new proof does require fa-
miliarity with the concept of martingale and the Azuma-Hoeffding inequality
and it involves easier calculations. It is thus more accessible and should be
easier to adapt to variants of the original theorem. The initial setup will be
the same as that of the original proof. We recall that our goal is to be able
to ϵ-approximate all values in [−1, 1]. We can thus estimate our progress
towards the latter goal by measuring the fraction of values z ∈ [−1, 1] which
are ϵ-approximable with a sample of a given size. We make the latter notion
precise in the next definition.

Definition 12. The density of approximable values ZΩn with a sample Ωn =
{X1, ..., Xn} is

ZΩn,ϵ =
1

2

∫ 1

−1
YΩn (z) dz, (3.1)

where YΩn,ϵ (z) is the indicator random variable which is 1 if and only if z is
ϵ-approximable with Ωn.

30
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We can then look at a sequence of samples of increasing size Ω1 ⊆ Ω2 ⊆
... ⊆ Ωn ⊆ ... where Ωi = {X1, ..., Xi} for each i, and at the correspond-
ing sequence YΩ1,ϵ (z) , ..., YΩn,ϵ (z) , ... as if it were a discrete-time stochastic
process.

Notation 13. For simplicity’s sake, in the following, we often abuse notation
and, instead of ZΩn,ϵ and YΩn,ϵ (z), we write Zn,ϵ and Yn,ϵ (z) respectively,
or even just Zn and Yn (z).

A key observation is then that the process Y1 (z) , ..., Yn (z) , ... satisfies
the following recurrence equation.

Lemma 14. Given Ωn = {X1, ..., Xn}, Ωn+1 = Ωn ∪{Xn+1} and z ∈ R, Yn
satisfies the recurrence

Yn+1 (z) = Yn (z) + (1− Yn (z))Yn (z −Xn+1) . (3.2)

Proof. When trying to approximate z with the sum of a subset of Ωn+1 =
{X1, ..., Xn+1}, we can distinguish two cases

1. There is a subset achieving that without including Xn+1, in which case
Yn (z) = 1, or

2. It is necessary to include Xn+1, which implies Yn+1 (z) = Yn (z −Xn+1).

Our main goal is then to exploit Eq. 3.2 to prove that all values will be
ϵ-approximable with a certain probability and sample size. In particular, we
will leverage the following fact and focus on proving that, for some n, with
high probability Zn ≥ 1− ϵ.

Lemma 15. If Zn,ϵ ≥ 1− ϵ
2 , then Zn,2ϵ = 1.

Proof. Let z′ be a value which is not ϵ-approximable with Ωn. Since Zn,ϵ ≥
1− ϵ

2 , then z′ is at distance at most ϵ from a value z which is ϵ-approximable
with Ωn. Let x be the sum of the subset which ϵ-approximates z. By the
triangle inequality ∣∣z′ − x

∣∣ ≤ ∣∣z′ − z
∣∣+ |z − x| ≤ ϵ.
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3.1 Exponential Increase Phase

Still following [Lue98], we are now going to look at the expectation of the
random variable Zn. However, we are going to depart from his analysis by
providing different bounds and leveraging them in a different way.

Proposition 16 (Expected growth). It holds

E [Zn+1 |X1, ..., Xn] ≥ Zn

(
1 +

1

4
(1− Zn)

)
.

Proof. We have

E [Zn+1 |X1, ..., Xn]

from Definition 12

= E
[
1

2

∫ 1

−1
Yn+1 (z) dz

∣∣∣∣X1, ..., Xn

]
bringing the integral outside

=
1

2

∫ 1

−1
E [Yn+1 (z) |X1, ..., Xn] dz

from Lemma 14

=
1

2

∫ 1

−1
E [Yn (z) + (1− Yn (z))Yn (z −Xn+1) |X1, ..., Xn] dz

making expectation explicit

=
1

2

∫ 1

−1

1

2

∫ 1

−1
(Yn (z) + (1− Yn (z))Yn (z − x)) dxdz

distributing integrals

=
1

2

∫ 1

−1
Yn (z)

(
1

2

∫ 1

−1
dx

)
dz +

1

2

∫ 1

−1
(1− Yn (z))

1

2

∫ 1

−1
Yn (z − x) dxdz

recognizing Zn and changing variable z − x = y

= Zn +
1

4

∫ 1

−1
(1− Yn (z))

∫ z+1

z−1
Yn (y) dydz. (3.3)

In order to provide a lower bound on
∫ 1
−1 (1− Yn (z))

∫ z+1
z−1 Yn (y) dxd, notice

that Yn (z) and 1− Yn (z) are non-negative, hence for each u ∈
[
−1

2 ,
1
2

]
and

z ∈
[
u− 1

2 , u+ 1
2

]
we can just restrict the domain of integration, yielding∫ 1

−1
(1− Yn (z))

∫ z+1

z−1
Yn (y) dydz
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since
[
u− 1

2
, u+

1

2

]
⊆ [−1, 1]

≥
∫ u+ 1

2

u− 1
2

(1− Yn (z))

∫ z+1

z−1
Yn (y) dydz

since
[
u− 1

2
, u+

1

2

]
⊆ [z − 1, z + 1]

≥
∫ u+ 1

2

u− 1
2

(1− Yn (z))

∫ u+ 1
2

u− 1
2

Yn (y) dydz. (3.4)

We would like to express the latter lower bound in terms of Zn. Using
the intermediate value theorem, we can prove that there is a value u∗ ∈[
−1

2 ,
1
2

]
for which

∫ u∗+ 1
2

u∗− 1
2

Yn (y) dy = Zn. To see why, consider the function

h (u) = 1
2

∫ u+ 1
2

u− 1
2

Yn (y) dy. h is continuous with h
(
−1

2

)
=
∫ 0
−1 Yn (y) dy and

h
(
1
2

)
=
∫ 1
0 Yn (y) dy. Since h

(
−1

2

)
+ h

(
1
2

)
=
∫ 1
−1 Yn (y) dy = 2Zn, then

max

{
h

(
−1

2

)
, h

(
1

2

)}
≥ Zn and min

{
h

(
−1

2

)
, h

(
1

2

)}
≤ Zn.

Hence, as announced, from the intermediate value theorem there exists a
u∗ ∈

[
−1

2 ,
1
2

]
such that h (u∗) = Zn. We can then lower bound Eq. 3.4 with

(1− Zn)Zn, and Eq. 3.3 with Zn

(
1 + 1

4 (1− Zn)
)
, concluding the proof.

Proposition Eq. 16 shows that, as long as the fraction of approximable
values does not exceed a constant fraction, it grows exponentially in expec-
tation. Next, in Section 3.1.1, we are going to turn such expected growth
into a bound on the probability that Zn+1 ≥ (1 + β)Zn.

Before doing that, it is instructive to derive a bound on the expected time
for Zn to exceed 1

2 .

Proposition 17. 18If n ≥ log 1
2ϵ

log 13
12

then

E [Zn] >
1

2
.

Proof. We have

E [Zn+1]

by the law of total expectation
= E [E [Zn+1 |X1, ..., Xn]]
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by the law of total probability

= E

[
E
[
Zn+1

∣∣∣∣X1, ..., Xn, Zn <
2

3

]
Pr

(
Zn <

2

3

)

+ E
[
Zn+1

∣∣∣∣X1, ..., Xn, Zn ≥ 2

3

]
Pr

(
Zn ≥ 2

3

)]
lower bounding the second conditional expectation

≥ E
[
E
[
Zn+1

∣∣∣∣X1, ..., Xn, Zn <
2

3

]
Pr

(
Zn <

2

3

)
+

2

3
Pr

(
Zn ≥ 2

3

)]
by Proposition 16

≥ E
[
Zn

(
1 +

1

12

)
Pr

(
Zn <

2

3

)
+

2

3
Pr

(
Zn ≥ 2

3

)]
= E [Zn]

(
1 +

1

12

)
Pr

(
Zn <

2

3

)
+

2

3
Pr

(
Zn ≥ 2

3

)
= E [Zn]

(
1 +

1

12

)(
1− Pr

(
Zn ≥ 2

3

))
+

2

3
Pr

(
Zn ≥ 2

3

)
= E [Zn]

(
1 +

1

12

)
+

(
2

3
− E [Zn]

(
1 +

1

12

))
Pr

(
Zn ≥ 2

3

)
≥ E [Zn]

(
1 +

1

12

)
1[E[Zn](1+ 1

12)≤
2
3 ]

≥ E [Zn−1]

(
1 +

1

12

)2

1[E[Zn−1](1+ 1
12)≤

2
3 ]
1[E[Zn](1+ 1

12)≤
2
3 ]

since Zn ≥ Zn−1 we can drop further 1[·] functions and keep unrolling

≥ E [Z0]

(
1 +

1

12

)n+1

1[E[Zn](1+ 1
12)≤

2
3 ]

since E [Z0] ≥ ϵ

≥ ϵ

(
1 +

1

12

)n+1

1[E[Zn](1+ 1
12)≤

2
3 ]
.

If n ≥ log 1
2ϵ

log 13
12

, the last inequality implies E [Zn] ≥ 1
21[E[Zn−1](1+ 1

12)≤
2
3 ]

, which

in turn implies that either E [Zn] ≥ 1
2 (if E [Zn−1]

(
1 + 1

12

)
≤ 2

3) or E [Zn−1] >
8
13 > 1

2 .

Unfortunately, trying to derive a bound with high probability on the
event “Zn > 1

2” by directly applying a Chernoff-Hoeffding bound to Propo-
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sition 18 would yield an extra log 1
ϵ time factor. Saving the latter factor is

the goal of the more careful analysis, that is given in the next section.

3.1.1 Interval partition with geometric coupling

In the next proposition, we are going to convert the expected growth esti-
mated in Proposition 16 to a probabilistic bound.

Proposition 18. Given β ∈
(
0, 18
)
, it holds

Pr

(
Zn+1 ≥ Zn (1 + β)

∣∣∣∣X1, ..., Xn, Zn ≤ 1

2

)
≥ 1− 7

8 (1− β)
.

Proof. Notice that if Zn ≤ 1
2 , Proposition 16 implies

E
[
Zn+1

∣∣∣∣X1, ..., Xn, Zn ≤ 1

2

]
≥ Zn

(
1 +

1

8

)
. (3.5)

To prove the thesis, we need an upper bound on the value of Zn+1. To
that end, we are going to use a reversed form of Markov’s inequality, stated
in the following lemma.

Lemma 19 (Reverse Markov’s inequality [BGPS06]). If X is a random
variable such that 0 ≤ X ≤ B, then for any t ∈ (0, B) it holds

Pr (X ≥ t) ≥ E [X]− t

B − t
.

Proof. We have

E [X] ≤ tPr (X < t) +B Pr (X ≥ t)

= t+ (B − t) Pr (X ≥ t) .

While Zn+1 ≤ 1 with probability 1, such a bound would not serve the
purpose: as we will see shortly, the upper bound is going to appear in the
denominator of the reverse Markov’s inequality, and we need it to have Zn

as a factor to cancel a corresponding factor in the numerator. To achieve
that, we consider a random variable Ẑn which is always smaller than Zn, by
defining it as Ẑn = 1

2

∫ 1
−1 Ŷn (z) dz where

Ŷn+1 (z) = Yn (z) + (1− Yn (z))Yn (z −Xn+1)1z−Xn+1∈[−1,1]. (3.6)
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By comparing Eq. 3.6 with Eq. 3.2, we see that

Pr
(
Ẑn ≤ Zn

)
= 1. (3.7)

Moreover

Ẑn+1 =
1

2

∫ 1

−1
Ŷn+1 (z) dz

by Eq. 3.6

=
1

2

∫ 1

−1

(
Yn (z) + (1− Yn (z))Yn (z −Xn+1)1z−Xn+1∈[−1,1]

)
dz

distributing the integral

= Zn +
1

2

∫ 1

−1
(1− Yn (z))Yn (z −Xn+1)1z−Xn+1∈[−1,1]dz

discarding 1− Yn (z)

≤ Zn +
1

2

∫ 1

−1
Yn (z −Xn+1)1z−Xn+1∈[−1,1]dz

substituting y = z −Xn+1

= Zn +
1

2

∫ 1−Xn+1

−1−Xn+1

Yn (y)1y∈[−1,1]dy

making the indicator function implicit in the integration domain

= Zn +
1

2

∫ min{1,1−Xn+1}

max{−1,−1−Xn+1}
Yn (y) dy

≤ Zn +
1

2

∫ 1

−1
Yn (y) dy

≤ 2Zn. (3.8)

Hence, we can compute

Pr

(
Zn+1 ≥ Zn (1 + β)

∣∣∣∣X1, ..., Xn, Zn ≤ 1

2

)
by Eq. 3.7

Pr

(
Ẑn+1 ≥ Zn (1 + β)

∣∣∣∣X1, ..., Xn, Zn ≤ 1

2

)
by the reverse Markov’s inequality (Lemma 19) and Eq. 3.8

≥
E
[
Ẑn+1

∣∣∣X1, ..., Xn, Zn ≤ 1
2

]
− Zn (1 + β)

2Zn − Zn (1 + β)
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by Eq. 3.5

≥
Zn

(
1 + 1

8

)
− Zn (1 + β)

2Zn − Zn (1 + β)

=
1
8 − β

1− β

= 1− 7

8 (1− β)
.

We can now leverage Proposition 18 to upper bound the probability of
the duration of the first phase of the process, in which Zn exceeds 1

2 .

Proposition 20. Let β ∈
(
0, 18
)
, pβ = 1− 7

8(1−β) and αβ,ϵ =
⌈

log 1
2ϵ

log(1+β)

⌉
. If

n ≥ αβ,ϵ+1
pβ

, it holds

Pr

(
Zn >

1

2

)
> 1− e

−
2p2β
n

(
n−

αβ,ϵ
pβ

)2

.

Proof. In order to leverage Proposition 18, we partition the interval [0, 1] as
follows:

I0 = (0, ϵ]

Ii =
(
ϵ (1 + β)i−1 , ϵ (1 + β)i

]
for i ∈ {1, ..., αβ,ϵ − 1}

Iαβ,ϵ
=

(
ϵ (1 + β)αβ,ϵ−1 ,

1

2

]
Iαβ,ϵ+1 =

(
1

2
, 1

]
By the law of total probability, it then directly follows from Proposition 18
that

Pr (Zn+1 ∈ Ii+1 |Zn ∈ Ii) ≥ pβ.

Hence, defining the geometric random variables Z
(↑)
i ∼ Geom (pβ), we can

consider a coupling such that, for any k,

Z
(↑)
i = k =⇒ “Zn+k ∈

αβ,ϵ+1⋃
j=i+1

Ii+1

 | Zn ∈ Ii”,
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that is
αβ,ϵ+1∑
i=0

Z
(↑)
i ≤ n =⇒ Zn >

1

2
. (3.9)

From Eq. 3.9, we can stochastically dominate the original process:

Pr

(
Zn ≤ 1

2

)
≤ Pr

(αβ,ϵ∑
i=0

Z
(↑)
i > n

)
. (3.10)

We can bound the r.h.s. of Eq. 3.10 using a standard coupling between a sum
of geometric i.i.d. random variable and an appropriate binomial distribution,
which can be expressed with the following abuse of notation

Pr

αβ,ϵ+1∑
i=0

Z
(↑)
i > n

 = Pr

αβ,ϵ+1∑
i=0

Geomi (pβ) > n

 .

= Pr (Bin (n, pβ) ≤ αβ,ϵ + 1) (3.11)

We now recall a Chernoff-Hoeffding bound, which are going to apply next.

Theorem 21 (Chernoff–Hoeffding bound [DP09]). Let X =
∑n

i=1Xi where
the Xi are i.i.d. in [0, 1]. For all t > 0 and ϵ > 0, it holds

Pr (X < E [X]− t) ≤ e−
2t2

n .

By combining Eq. 3.10 and Eq. 3.11, and using Theorem 21 with E [X]−
t = npβ − t = αβ,ϵ + 1, we get

Pr

(
Zn ≤ 1

2

)
≤ Pr (Bin (n, pβ) ≤ αβ,ϵ + 1)

≤ e−
2(npβ−αβ,ϵ−1)

2

n , (3.12)

which holds as long as npβ − αβ,ϵ − 1 > 0, namely n >
αβ,ϵ+1

pβ
. The thesis

follows by considering the complementary event Zn > 1
2 in Eq. 3.12.

Proposition 20 concludes the analysis of a first phase of the process, in
which the expected growth of Zn is exponential. The exponential increase is
allowed by the fact that a relatively large fraction of not-yet-approximable
values (i.e. 1 − Zn) can become approximable, but such an assumption
ceases to apply when Zn becomes large. This is a common situation in
the analysis of analogous stochastic processes in other contexts, such as the
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analysis of opinion dynamics [BCN20a], and the key observation is that when
the exponential growth is coming to an end, an exponential decay phase for
the complementary variable 1 − Zn is about to begin, as we will see in the
next section.

3.2 Exponential Decrease Phase

Our analysis will now deal with a second phase of the process, in which the
complement of Zn, i.e. the quantity Z̄n = 1 − Zn (namely the fraction of
values that are not ϵ-approximable) shrinks exponentially fast in expectation.

Corollary 22 (of Proposition 16). It holds

E
[
Z̄n+1

∣∣X1, ..., Xn

]
≤ Z̄n

(
1 +

1

4

(
1− Z̄n

))
.

Proof. We have

E
[
Z̄n+1

∣∣X1, ..., Xn

]
= 1− E [Zn+1 |X1, ..., Xn]

from Proposition 16

≤ 1− Zn

(
1 +

1

4
(1− Zn)

)
= Z̄n − 1

4
Z̄n

(
1− Z̄n

)
.

In contrast to Proposition 20, translating Corollary 22 into a probability
bound is relatively straightforward.

Lemma 23. Let τ be such that Zτ > 1
2 , then for n > τ it holds

Pr

(
Zn ≤ 1− ϵ

2

∣∣∣∣Zτ >
1

2

)
≤
(
7

8

)n−τ

.

Proof. For any τ < n, it holds

E
[
Z̄n

∣∣∣∣ Z̄τ ≤ 1

2

]
by the law of iterated expectation
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= E
[
E
[
Z̄n

∣∣∣∣X1, ..., Xn−1, Z̄τ ≤ 1

2

]]
by Corollary 22

≤ 7

8
E
[
Z̄n−1

∣∣∣∣ Z̄τ ≤ 1

2

]
. (3.13)

Hence

Pr

(
Zn ≤ 1− ϵ

2

∣∣∣∣Zτ >
1

2

)
= Pr

(
Z̄n ≥ ϵ

2

∣∣∣∣ Z̄τ ≤ 1

2

)
by Markov’s inequality

≤ 2
E
[
Z̄n

∣∣ Z̄τ ≤ 1
2

]
ϵ

by Eq. 3.13

≤
(
7

8

)n−τ

2E
[
Z̄τ

∣∣∣∣ Z̄τ ≤ 1

2

]
≤
(
7

8

)n−τ

.

We can finally combine Lemma 23 and Proposition 20 to prove Theorem
6.

Proof of Theorem 6. It holds

Pr
(
Zn > 1− ϵ

2

)
≥ Pr

(
Zn > 1− ϵ

2

∣∣∣∣Zk >
1

2

)
Pr

(
Zk >

1

2

)
by Lemma 23 and Proposition 20

≥

(
1−

(
7

8

)n−k
)1− e

−
2p2β
k

(
k−

αβ,ϵ
pβ

)2


for n, k ≥ Cβlog
1

2ϵ
for a large enough Cβ

≥
(
1− ϵ

2

)(
1− ϵ

2

)
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≥ 1− ϵ.



Chapter 4

The Strong Lottery Ticket
Hypothesis for Convolutional
Networks

[T]he set of possible people allowed by our DNA so massively
outnumbers the set of actual people. In the teeth of these stupe-
fying odds it is you and I, in our ordinariness, that are here. We
privileged few, who won the lottery of birth against all odds[.] -
Richard Dawkins [Daw06]

In this chapter, we are going to apply the results on RSS that we have
discussed and re-proved in chapters 2 3 to a seemingly unrelated problem in
the theory of artificial neural networks (ANNs), known as the Strong Lot-
tery Ticket Hypothesis (SLTH). In particular, after recalling the history of
the SLTH and briefly surveying related results, we are going to provide a
simplified version of our original contribution to the topic, namely a proof of
the SLTH in the case of Convolutional Neural Networks (CNNs) [dCNV22].
Specifically, compared to the original version [dCNV22], this chapter pro-
vides a more streamlined proof of one of the main technical ingredients,
namely Proposition 32.

4.1 The SLTH

The SLTH is a strong version of the Lottery Ticket Hypothesis (LTH), a
statement motivated by empirical observations by [FC19]. The LTH is closely
related to one of the simplest compression strategies for neural networks,

42
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Figure 4.1: Diagram illustrating key facts related to the LTH. While sparse
networks do not generally achieve good accuracy when trained, IMP suc-
ceeds in creating a sparse network that performs well. A variant of IMP
“with rewind” allows to identify lottery tickets, i.e. sparse subnetworks that,
when re-initialized with the original weights, successfully train to reach good
accuracy.

i.e. Iterative Magnitude Pruning (IMP), in which edges of the network are
progressively removed (pruned) during training (Figure 4.2). Despite its
simplicity, IMP is still nowadays one of the most effective strategies for re-
ducing the number of parameters of ANNs [BGOFG20]. Before explaining
the experiments in [FC19] on a variant of IMP that motivated the LTH,
let us first informally recall a key empirical fact on ANNs (see also Figure
4.1): generally speaking, training sparse architectures with relatively few
parameters doesn’t work, in the sense that it doesn’t allow to reach good
accuracy; training large architectures with many parameters, on the con-
trary, generally succeeds in reaching good accuracy; on the other hand IMP
allows to reach the accuracy of large architectures while producing, in the
end, a sparse network. In this context, [FC19] considers a variant of IMP
with rewind, in which after each pruning step the weights of the remaining
edges are re-initialized to their original value before training. This way, they
manage to obtain sparse networks that successfully train to good accuracy.
The success of their approach lead them to formulate the LTH:

“Dense, randomly-initialized, feed-forward networks contain sub-
networks (winning tickets) that—when trained in isolation reach
test accuracy comparable to the original network in a similar



CHAPTER 4. THE SLTH FOR CNNS 44

Figure 4.2: Schematic representation of Iterative Pruning techniques, in
which an initial network is repeatedly trained according to some schedule
(e.g. a predetermined number of epochs or until reaching some accuracy)
and then pruned according to some rule (e.g. the edges with the smallest
absolute value are removed).

number of iterations.”

Let us now establish some notation to rephrase the LTH and prepare the
ground for introducing its stronger version, the SLTH.

Let us denote by N0 a dense randomly initialized network with 2ℓ layers1,
by NL a subnetwork obtained by pruning N0 and by NT the best ℓ-layer tar-
get network for the task at hand among those which are sufficiently smaller
than N0 (see also Figure 4.3).

We can rephrase the LTH as follows:

Given a network NT , a sufficiently large network N0 contains a
subnetwork NL such that the accuracy of NL after training is at
least as good as that of NT .

Later works then explored an even more extreme case of pruning, by intro-
ducing methods to sparsify the network as a training strategy. Specifically,
[ZLLY19] presents an algorithm that learns an associated probability p for
each weight w in the network. On the forward pass, they include the weight w
with probability p and otherwise zero it out. Equivalently, they use weight˜
w = wX where X is a Bernoulli(p) random variable. The probabilities p

1In the dense network case, the 2ℓ layers of N0 can be reduced to ℓ + 1 as shown by
[Bur22]. Here we keep the factor 2 since it is not clear whether the argument carries on
to the CNN case we are going to consider in this chapter.
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are the output of a sigmoid, and are learned through stochastic gradient de-
scent. Subsequently, [RWK+20] proposed a more accurate pruning-without-
training strategy with the edge-popup algorithm, which assigns to each
edge (u, v) a score suv and deterministically select the top-k edges in the net-
work with the highest scores. The scores are updated naively with gradient
descent: ignoring momentum and weight decay, s(t+1)

uv = s
(t)
uv −α ∂L

∂I(t)
v

wuvZ(t)
u

where Iv is the input of node v, Zu is the output of node u (i.e. Zu = σ (Iu)),
wuv is the weight of the edge (u, v) (which doesn’t change), α is the step size
of the gradient descent and L is the loss function. [RWK+20] formally proves
that the above pruning rule and score update do indeed optimize the loss
across mini-batches.

The above works thus motivated a stronger version of the LTH, the
Strong Lottery Ticket Hypothesis (SLTH):

Given a network NT , a sufficiently large network N0 contains a
subnetwork NL such that the accuracy of NL is approximately
the same as that of NT .

From a theoretical point of view, the SLTH presents the big advantage of
being easier to turn in a quantitative statement, since training is not involved
(see Figure 4.3). The SLTH thus spawned various theoretical results.

The first, [MYSSS], presented a way to prune random feed-forward dense
neural networks that was progressively refined across subsequent works.

Intuitively, if we would like to obtain a certain network NT , we can
imaging generating a random network N0 which is identical in structure to
NT , except for having M random edges between each pair of neurons (i.e.
being a random multi-graph); for a large enough value of M , there would
then be a large enough probability that, for each edge, one of the M random
edges would be close enough to the weight of the corresponding edge in NT .

The construction by [MYSSS], represented in Figure 4.4, can be seen as
a way to simulate the previous idea, by essentially pre-prune the random
network N0 so that each pair of pairs of layers (2ℓ, 2ℓ− 1) and (2ℓ− 1, 2ℓ)
correspond to a pair of layers (ℓ, ℓ+ 1) of an ideal target network NT that
we wish to approximate, and each weight w between ℓ and ℓ+1 corresponds
to a gadget shown in part (c) of Figure 4.4. The idea is then to further
prune the aforementioned gadgets to approximate w. In subfigure (c), it is
also hinted that [MYSSS] leverage the identity x = σ(x) − σ(−x) in order
to approximate the output xw for any sign of x and w, when intermediate
neurons in the construction are subject to ReLU activations.

In [MYSSS], the above construction follows the above intuition of looking
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Figure 4.3: Diagram of the relation between the initial random network N0,
the target network NT and the lottery ticket subnetwork NL.

for a single random edge that ϵ-approximate w, which then requires that N0

is larger than NT by a factor of order 1
ϵ .

[PRN+20] and, independently, [OHR], improved the factor 1
ϵ in [MYSSS]

to log 1
ϵ , which can be seen to be tight by a packing argument. In particular,

when considering the construction in [MYSSS], [PRN+20] recognized that
if one aims at combining several random weights instead of picking just the
best one, then the problem can be traced back to the famous Random Subset
Sum Problem that we discussed in detail in the previous chapters.

Later work generalized the class of functions for which the result of
[PRN+20] holds and, for approximating an ℓ-layer network NT , reduced the
number of layers of the random network N0 from 2ℓ to ℓ+1 [BLMG22, FB21].

This chapter is devoted to our contribution to the SLTH, namely the first
proof for CNNs. Next, we provide an informal version of our result.

Theorem 24 (Informal version of Theorem 31). Let ϵ > 0, and NT be any
CNN with k parameters, ℓ layers, and such that all its filters have ℓ1 norm
at most 1; finally, let N0 be a random CNN with O

(
k log kℓ

ϵ

)
parameters and

2ℓ layers. With probability 1− ϵ, we can approximate NT within an error ϵ
by suitably pruning N0.

The rest of this chapter presents a revised version of the proof of 24,
originally given in [dCNV22].
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Figure 4.4: Diagram by Pensia et al. (2020) illustrating the construction
by Malach et al. (2020) (see Section 4.1). (a) Suppose that there exists a
target network NT that we wish to approximate (see also Figure 4.3), and
let w be any weight of such network. (b) Consider a random network N0

(again, see Figure 4.3), such that the layers ℓ and ℓ+ 1 at the endpoints of
w correspond to layers 2ℓ− 2 and 2ℓ of N0, so that there is an intermediate
layer 2ℓ − 1 in N0 with many intermediate neurons; if we assume that the
activation of the intermediate neurons is the identity and all weights between
layer 2ℓ − 1 and 2ℓ are 1, we can prune edges between 2ℓ and 2ℓ − 1, and
between 2ℓ − 1 and 2ℓ, so that the resulting topology computes

∑
i∈S aix

where ai is the weight of the remaining edges connecting the left neuron to
a set of intermediate neurons Ω, and S is the subset of intermediate neurons
Ω which are connected to the right neuron. (c) In the previous construction,
we can remove the assumption of weight 1 between layers 2ℓ− 1 and 2ℓ and
further assume that intermediate neurons have ReLU activations.
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4.2 CNN notation and definitions

Let σ be the ReLU activation function, i.e. σ (x) = max {0, x}. We say that
a tensor is non-negative if all its entries are non-negative. Given any tensor
K, we denote with ∥K∥max the maximum absolute value of all entries of
K,namely ∥K∥max = max⃗i∈indices(K)

∣∣Ki⃗

∣∣. We often make use of the slice
notation “:”, which indicates that the full range of the index where the colon
appears has to be considered; for example, if U ∈ Rd1×d2×d3×d4 , then for any
i3 ∈ d3 we denote with U:,:,i,: the 3-dimensional tensor in Rd1×d2×d3×d4 such
that

(U:,:,i3,:)i1,i2,i4 = Ui1,i2,i3,i4 . (4.1)

Since we are interested in randomly-initialized CNNs, it will be handy to
formally define the notion of a tensor with uniformly random entries.

Definition 25 (Uniform tensor). We say that U ∈ Rd1×d2×d3×d4 is a uniform
tensor and write U ∼ Unif ([−1, 1])d1×d2×d3×d4 if its entries are i.i.d. with
distribution Unif ([−1, 1]).

The SLTH being about pruning, we also need to define the notion of a
mask, which allows us to represent pruning algebraically via component-wise
multiplication between tensors.

Definition 26 (Tensor mask). A mask S of a tensor L is a binary tensor
with the same size as L.

Next, we define the two main operations used when deadline with convo-
lutional neural networks: the aforementioned component-wise multiplication
of tensors and discrete (finite) convolution.

Definition 27 (Component-wise multiplication �). The component-wise
multiplication (also known as Hadamard product) of two tensors L and L′,
denoted with L � L′, is defined as the component-wise product of the two
tensors. In formulas, given indices I(

L � L′)
I
= (L)I ·

(
L′)

I
.

Given two tensors K ∈ Rd×d×c and X ∈ RD×D×c, their discrete convo-
lution is the D ×D matrix such that, for each i, j ∈ [D]

(K ∗X)i,j =
∑

i′,j′∈[d],k∈[c]

Ki′,j′,k ·Xi−i′+1,j−j′+1,k,
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where all missing entries of X are assumed to be 0, i.e. X is zero-padded.
Analogously, when K ∈ Rd×d×c0×c1 and X ∈ RD×D×c0 , K ∗ X is the D ×
D × c1 tensor such that, for each i, j ∈ [D] and ℓ ∈ [c1]

(K ∗X)i,j,ℓ =
∑

i′,j′∈[d],k∈[c0]

Ki′,j′,k,ℓ ·Xi−i′+1,j−j′+1,k. (4.2)

For convenience, we often make use of the slice notation (Eq. 4.1) when
referring to the output of a 4-dimensional convolution; for example, for each
ℓ we can rewrite Eq. 4.2 as

(K ∗X):,:,ℓ = K:,:,:,ℓ ∗X.

Next, we formally define the type of convolutional neural networks (CNNs)
which we consider in our proofs. Compared to classical CNNs, the convolu-
tions have no bias and are suitably padded with zeros.

Definition 28 (Simple CNN). A simple CNN N : [0, 1]D×D×c0 → RD×D×cℓ

is a neural network that it can be written as

N (X) = K(ℓ) ∗ σ
(
K(ℓ−1) ∗ σ

(
· · · ∗ σ

(
K(1) ∗X

)))
where K(i) ∈ Rdi×di×ci−1×ci for i ∈ [ℓ] and for some c0, ..., cℓ and d1, ..., dℓ
are the network filters.

We call a random simple CNN a simple CNN such that K(i) ∼ Unif ([−1, 1])di×di×ci−1×ci .

Remark 29. The restrictions on tensor sizes and the exclusion of bias terms
are for the sake of simplicity. The proof we provide also works with biases,
yielding an equivalent RSS problem, with the only modification of replacing
d2i terms with d2i + 1 terms.

Finally, since the terms kernel and filter are not consistently used in the
literature, we provide a formal definition of our convention.

Definition 30 (Kernels and filters). Given a simple CNN K(ℓ)∗σ
(
K(ℓ−1) ∗ σ

(
· · · ∗ σ

(
K(1) ∗X

)))
,

we call a filter each tensor K(i) ∈ Rdi×di×ci−1×ci (i ∈ [ℓ]), and each slice
K

(i)
:,:,t,k (t ∈ [ci−1] , k ∈ [ci]) a kernel.

4.3 Proof of the SLTH for CNNs

We start the section by providing the full rigorous statement of Theorem 24.
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Figure 4.5: Scheme of the random CNN employed in Theorem 31.

Theorem 31. Let D, d, c0, c1 and ℓ be positive integers and let ϵ and C be
positive real numbers. For each i ∈ [ℓ], let L(2i−1) ∼ Unif ([−1, 1])di×di×ci−1×ni

and L(2i) ∼ Unif ([−1, 1])1×1×ni×ci with ni ≥ Cci log
ci−1cid

2
i ℓ

ϵ for some posi-
tive integers ni and ci. Let then N0 be a random CNN of the form

N0 (X) = L(2ℓ) ∗ σ
(
· · ·σ

(
L(1) ∗X

))
.

Given any mask S(i) for each tensor L(i), let

N
(S(1),...,S(2ℓ))
0 =

(
S(2ℓ) � L(2ℓ)

)
∗ σ
(
· · ·σ

((
S(1) � L(1)

)
∗X

))
be the CNN resulting from pruning N0 by applying mask S(i) to each tensor
L(i). Finally, let F be the class of functions f : [0, 1]D×D×c0 → RD×D×cℓ

which can be written in the form

f (X) = K(ℓ) ∗ σ
(
· · ·σ

(
K(1) ∗X

))
where K(i) ∈ [−1, 1]di×di×ci−1×ci and for ∥K(1)∥1 ≤ 1 for each i.

There exists a universal value of C such that, with probability 1 − ϵ, for
every f ∈ F

inf
S(1),...,S(2ℓ)

∀i,S(i)∈{0,1}size(L
(i))

sup
X∈[−1,1]D×D×c0

∥∥∥∥f (X)−N
(S(1),...,S(2ℓ))
0 (X)

∥∥∥∥
max

≤ ϵ.

We break the proof down into three sections: Section 4.3.1 where we
bound the approximation error for a single filter, Section 4.3.2 where we
bound the approximation error over an entire layer, and finally Section 4.3.3
where we conclude the proof by combining the previous results.
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4.3.1 Approximation of a filter

The main ingredient for proving Theorem 31 is provided by the following
lemma, which shows how to approximate a convolution with a single filter
using convolutions with random filters after suitably pruning them.

Proposition 32 (Unstructured filter pruning). Let D, d, c, n ∈ N be positive
integers and ϵ, C ∈ R>0 with n ≥ C log d2c

ϵ , and let U ∼ Unif ([−1, 1])d×d×c×n,
V ∼ Unif ([−1, 1])1×1×n×1 and S ∈ {0, 1}size(U). We define N0 (X) =

V ∗ σ (U ∗X) where X ∈ [0, 1]D×D×c, and its pruned version N
(S)
0 (X) =

V ∗ σ ((U � S) ∗X). There is a universal constant C such that, with proba-
bility 1− ϵ, for all K ∈ [−1, 1]d×d×c×1 with ∥K∥1 ≤ 1, there exists an S such
that

sup
X∈[0,1]D×D×c

∥∥∥K ∗X −N
(S)
0 (X)

∥∥∥
max

< ϵ.

To prove Proposition 32, we use the following inequality.

Proposition 33 (Tensor Convolution Inequality). Given real tensors K and
X of respective sizes d× d′ × c0 × c1 and D ×D′ × c0, it holds

∥K ∗X∥max ≤ ∥K∥1 · ∥X∥max .

Proof. We have

∥K ∗X∥max

≤ max
i,j∈[D],ℓ∈[c1]

∑
i′,j′∈[d],k∈[c]

∣∣Ki′,j′,k,ℓXi−i′+1,j−j′+1,k

∣∣
≤ max

i,j∈[D],ℓ∈[c1]

 ∑
i′,j′∈[d],k∈[c]

∣∣Ki′,j′,k,ℓ

∣∣ ∥X∥max

≤ max
i,j∈[D],ℓ∈[c1]

∥K∥1 · ∥X∥max

= ∥K∥1 · ∥X∥max .

We can now proceed with the proof of Proposition 32.

Proof of Proposition 32. The first step of the proof is to get rid of the non-
linearity so that we can work with V ∗ (U ∗X) rather than V ∗ σ (U ∗X).
Given that σ (x) = x for all positive x, this is easily achieved by pruning
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all negative entries of U , yielding U+ = max· {0, U} where max· denotes an
entry-wise application of max. Since the input tensor X is non-negative, we
then have

V ∗ σ
(
U+ ∗X

)
= V ∗

(
U+ ∗X

)
. (4.3)

We then compute(
V ∗

(
U+ ∗X

))
r,s,1

=

n∑
t=1

V1,1,t,1 ·
(
U+ ∗X

)
r,s,t

=
n∑

t=1

V1,1,t,1 ·

 ∑
i,j∈[d],k∈[c]

U+
i,j,k,t ·Xr−i+1,s−j+1,k


r,s,t

=
n∑

t=1

∑
i,j∈[d],k∈[c]

(
V1,1,t,1 · U+

i,j,k,t

)
·Xr−i+1,s−j+1,k

=
∑

i,j∈[d],k∈[c]

(
n∑

t=1

V1,1,t,1 · U+
i,j,k,t

)
·Xr−i+1,s−j+1,k

defining Li,j,k,1 =

n∑
t=1

V1,1,t,1 · U+
i,j,k,t

=
∑

i,j∈[d],k∈[c]

Li,j,k,1 ·Xr−i+1,s−j+1,k

which shows that V ∗ (U+ ∗X) is equivalent to L ∗ X for a suitable L ∈
Rd×d×c×1. We now observe that, for each tuple of indices (i, j, k), we can
control the value of Li,j,k,1 by suitably pruning the entries of the vector
U+
i,j,k,:. In fact, for each target value Ki,j,k,1 ∈ [−1, 1], the problem of pruning

U+
i,j,k,: so that |Ki,j,k,1 − Li,j,k,1| < ϵ is an instance of RSS.

More precisely, we can define the event

E(filter)
i,j,k,1 = “∀z ∈ [−1, 1] , ∃S ⊆ [n] :

∣∣∣∣∣z −∑
t∈S

V1,1,t,1 · U+
i,j,k,t

∣∣∣∣∣ < ϵ”

and their union E(filter) =
⋂

i,j,k∈[d] E
(filter)
i,j,k,1 . By Corollary 11, for every

i, j, k and t, the random variable V1,1,t,1 · U+
i,j,k,t is

(
1
2 ,

log 2
2

)
-super-uniform.

By Corollary 10 and the hypothesis n ≥ C log d2c
ϵ , it thus follows that
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Pr
(
Ē(filter)
i,j,k,1

)
≤ ϵ

d2c
, where Ē(filter)

i,j,k,1 denotes the complement of E(filter)
i,j,k,1 . By

a union bound, we then see that

Pr
(
E(filter)

)
= 1− Pr

 ⋃
i,j,k∈[d]

Ē(filter)
i,j,k,1


≥ 1−

∑
i,j,k∈[d]

Pr
(
Ē(filter)
i,j,k,1

)
≥ 1−

∑
i,j,k∈[d]

ϵ

d2c

≥ 1− ϵ. (4.4)

Thus, when E(filter) holds, we have

sup
K∈[−1,1]d×d×1×1

inf
S∈{0,1}size(U)

∥∥K − V ∗ (U+ � S)
∥∥
max

<
ϵ

d2c
. (4.5)

It follows that, when E(filter) holds (which, by Eq. 4.4, happens with proba-
bility 1− ϵ), we can compute

sup
K∈[−1,1]d×d×1×1

inf
S∈{0,1}size(U)

sup
X∈[0,1]D×D×c

∥∥∥K ∗X −N
(S)
0 (X)

∥∥∥
max

= sup
K∈[−1,1]d×d×1×1

inf
S∈{0,1}size(U)

sup
X∈[0,1]D×D×c

∥K ∗X − V ∗ σ ((U � S) ∗X)∥max

restricting U to positive entries
= sup

K∈[−1,1]d×d×1×1

inf
S∈{0,1}size(U)

sup
X∈[0,1]D×D×c

∥∥K ∗X − V ∗ σ
(
(U+ � S) ∗X

)∥∥
max

by a slight adaptation of Eq. 4.3
= sup

K∈[−1,1]d×d×1×1

inf
S∈{0,1}size(U)

sup
X∈[0,1]D×D×c

∥∥K ∗X − V ∗
(
(U+ � S) ∗X

)∥∥
max

from the distributivity property of convolution
= sup

K∈[−1,1]d×d×1×1

inf
S∈{0,1}size(U)

sup
X∈[0,1]D×D×c

∥∥(K − V ∗ (U+ � S)
)
∗X

∥∥
max

by the Tensor Convolution Inequality (Proposition 33)
= sup

K∈[−1,1]d×d×1×1

inf
S∈{0,1}size(U)

sup
X∈[0,1]D×D×c

∥∥K − V ∗ (U+ � S)
∥∥
1
· ∥X∥max

since ∥X∥max≤ 1
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= sup
K∈[−1,1]d×d×1×1

inf
S∈{0,1}size(U)

∥∥K − V ∗ (U+ � S)
∥∥
1

since K − V ∗ (U+ � S) has d2c entries

= d2c sup
K∈[−1,1]d×d×1×1

inf
S∈{0,1}size(U)

∥∥K − V ∗ (U+ � S)
∥∥
max

by Eq. 4.5

= d2c
ϵ

d2c
= ϵ,

proving the thesis.

4.3.2 Approximation of a convolution layer

The next lemma extends the approximation provided by Proposition 32 from
a single filter to an entire convolution layer.

Lemma 34 (Layer-wise approximation). Let D, d, c0, c1, n ∈ N and ϵ′, C ∈
R>0 with n ≥ Cc1 log

d2c0c1
ϵ′ , U ∼ Unif ([−1, 1])d×d×c0×n and V ∼ Unif ([−1, 1])1×1×n×c1.

Let N0 : [0, 1]
D×D×c0 → RD×D×c1 be the random 2-layer CNN

N0 (X) = V ∗ σ (U ∗X) ,

and given any two masks S and T for U and V respectively, let

N
(S,T )
0 (X) = (V � T ) ∗ σ ((U � S) ∗X) .

There exists a value for the above constant C such that, independently from
all other parameters, with probability 1−ϵ it holds that for all K ∈ [−1, 1]d×d×c0×c1

there exist masks S and T which satisfy

sup
X∈[0,1]D×D×c0

∥∥∥K ∗X −N
(S,T )
0 (X)

∥∥∥
max

≤ ϵ′.

Proof. Intuitively, to approximate each output channel of a given layer, we
are going to prune the second convolution filter V of N0 in a way that allows
us to treat each output channel independently. Specifically, we choose T to
be the block diagonal matrix with c1 blocks of size n′ = n

c1
, namely

(T )1,1,t,ℓ =

{
1 if (ℓ− 1)n′ ≤ t ≤ ℓn′,

0 otherwise.
(4.6)
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The rest of the proof is devoted to showing how to choose S, which we do
independently for each kernel in an analogous way to the proof of Proposition
32. For each ℓ ∈ [c1] let us denote K(ℓ) the ℓ-th kernel of K, namelyK(ℓ) =
K:,:,:,ℓ. Moreover, as we show shortly, the block structure of T given in Eq.
4.6 motivates the definition of the following sub-tensors

U (ℓ) = U:,:,:,(ℓ−1)n′<t≤ℓn′ , S(ℓ) = S:,:,:,(ℓ−1)n′<t≤ℓn′ , V (ℓ) = V:,:,(ℓ−1)n′<t≤ℓn′,:.
(4.7)

Similarly to the proof of Proposition 32, we now choose S so that we can
zero the negative entries of U and compute

((V � T ) ∗ σ ((U � S) ∗X))r,s,ℓ

by choosing S so that U � S = U+ � S

=
(
(V � T ) ∗ σ

((
U+ � S

)
∗X

))
r,s,ℓ

since
(
U+ � S

)
∗X is positive

=
(
(V � T ) ∗

((
U+ � S

)
∗X

))
r,s,ℓ

making convolutions explicit

=
∑

(ℓ−1)n′<t≤ℓn′

V1,1,t,ℓ

∑
i,j∈[d],k∈[c]

(
U+ � S

)
i,j,k,t

·Xr−i+1,s−j+1,k

substituting the definitions of Eq. 4.7

=
(
V (ℓ) ∗

((
U (ℓ) � S(ℓ)

)
∗X

))
r,s

.

We now apply Proposition 32 with ϵ = ϵ′

c1
to each output channel of

σ ((U � S) ∗X) by defining the events E(layer)
ℓ as the fact that for any K(ℓ) ∈

[−1, 1]d×d×c0×c1 and X ∈ [0, 1]D×D×c0 it holds∥∥∥K(ℓ) ∗X − V (ℓ) ∗
((

U (ℓ) � S(ℓ)
)
∗X

)∥∥∥
max

≤ ϵ′

c1
.

We thus get that the intersection of all those events E(layer) =
⋂

ℓ E
(layer)
ℓ

(which corresponds to the thesis), holds with probability

Pr
(
E(layer)

)
= 1− Pr

(
Ē(layer)

)
= 1− Pr

(⋃
ℓ

Ē(layer)
ℓ

)
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by the union bound

≥ 1−
∑
ℓ

Pr
(
Ē(layer)
ℓ

)
by Proposition 32

≤ 1−
∑
ℓ

ϵ′

c1

= 1− ϵ′.

4.3.3 Approximation of a CNN 31

We are now ready to prove Theorem 31, by closely following the same proof
given in [?, Appendix B].

Proof of Theorem 31. To bound the error propagation across layers, let us
define the layers’ outputs2

X(0) = X,

X(i) = σ
(
K(i) ∗X(i−1)

)
for 1 ≤ i ≤ ℓ− 1, (4.8)

X(ℓ) = K(ℓ) ∗X(ℓ−1).

Notice that X(ℓ) is the output of the target function, i.e.

f (X) = X(ℓ) = K(ℓ) ∗X(ℓ−1). (4.9)

For brevity’s sake, given masks S(1), ..., S(2ℓ), let us denote

L̃(i) = L(i) � S(i). (4.10)

Since the ReLU function is 1-Lipschitz, for all X(i−1) it holds∥∥∥σ (K(i) ∗X(i−1)
)
− σ

(
L̃(2i) ∗ σ

(
L̃(2i−1) ∗X(i−1)

))∥∥∥
max

≤
∥∥∥K(i) ∗X(i−1) − L̃(2i) ∗ σ

(
L̃(2i−1) ∗X(i−1)

)∥∥∥
max

. (4.11)

2We remark that some technicalities can be avoided by applying a ReLU to the last
layer as well, so that it is analogous to other layers. However, we keep the last layer linear
for consistency with the common practical use of analogous architectures.
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Moreover, for each layer i, Lemma 34 implies that with probability at least
1− ϵ

2ℓ for all X(i−1) ∈ RD×D×c0 it holds∥∥∥K(i) ∗X(i−1) − L̃(2i) ∗ σ
(
L̃(2i−1) ∗X(i−1)

)∥∥∥
max

multiplying and dividing by
∥∥∥X(i−1)

∥∥∥
max

=

∥∥∥∥∥K(i) ∗ X(i−1)∥∥X(i−1)
∥∥
max

− L̃(2i) ∗ σ

(
L̃(2i−1) ∗ X(i−1)∥∥X(i−1)

∥∥
max

)∥∥∥∥∥ · ∥∥∥X(i−1)
∥∥∥
max

by Lemma 34

<
ϵ

2ℓ
·
∥∥∥X(i−1)

∥∥∥
max

. (4.12)

Hence, combining Eq. 4.11 and Eq. 4.12 we get that with probability at
least 1− ϵ

2ℓ for all X(i−1) ∈ RD×D×ci−1∥∥∥σ (K(i) ∗X(i−1)
)
− σ

(
L̃(2i) ∗ σ

(
L̃(2i−1) ∗X(i−1)

))∥∥∥
max

<
ϵ

2ℓ
·
∥∥∥X(i−1)

∥∥∥
max

.

(4.13)
By a union bound, we get that Eq. 4.13 holds for all layer with probability

at least 1− ϵ.
We now define the pruned layers’ outputs

X̃(0) = X,

X̃(i) = σ
(
L̃(2i) ∗ σ

(
L̃(2i−1) ∗ X̃(i−1)

))
for 1 ≤ i ≤ ℓ− 1, (4.14)

X̃(ℓ) = L̃(2ℓ) ∗ σ
(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)
.

Notice that X̃(ℓ) is the output of the pruned network, i.e.

N
(S(1),...,S(2ℓ))
0 (X) = X̃(ℓ) = L̃(2ℓ) ∗ σ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)
. (4.15)

Observe that analogous equations to Eq. 4.12 and Eq. 4.13 hold for all
pruned layers’ output with probability 1− ϵ, namely∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ σ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

≤ ϵ

2ℓ
·
∥∥∥X̃(ℓ−1)

∥∥∥
max
(4.16)

and∥∥∥σ (K(i) ∗ X̃(i−1)
)
− σ

(
L̃(2i) ∗ σ

(
L̃(2i−1) ∗ X̃(i−1)

))∥∥∥
max

<
ϵ

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

.

(4.17)
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Moreover, for each 1 ≤ i ≤ ℓ− 1∥∥∥X̃(i)
∥∥∥
max

=
∥∥∥X̃(i) − σ

(
K(i) ∗ X̃(i−1)

)
+ σ

(
K(i) ∗ X̃(i−1)

)∥∥∥
max

by the triangle inequality

≤
∥∥∥X̃(i) − σ

(
K(i) ∗ X̃(i−1)

)∥∥∥
max

+
∥∥∥σ (K(i) ∗ X̃(i−1)

)∥∥∥
max

by Eq. 4.13

≤ ϵ

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

+
∥∥∥σ (K(i) ∗ X̃(i−i)

)∥∥∥
max

by the Lipschitz property of σ

≤ ϵ

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

+
∥∥∥K(i) ∗ X̃(i−i)

∥∥∥
max

by Proposition 33

≤ ϵ

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

+
∥∥∥K(i)

∥∥∥
1

∥∥∥X̃(i−i)
∥∥∥
max

=
∥∥∥X̃(i−1)

∥∥∥
max

(
1 +

ϵ

2ℓ

)
unrolling the recurrence

≤
∥∥∥X̃(0)

∥∥∥
max

(
1 +

ϵ

2ℓ

)i
. (4.18)

Thus, combining Eq. 4.16 and Eq. 4.18 we get∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ σ
(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

≤ ϵ

2ℓ
·
(
1 +

ϵ

2ℓ

)ℓ−1
,

(4.19)
and combining Eq. 4.17and Eq. 4.18 we get∥∥∥σ (K(i) ∗ X̃(i−1)

)
− σ

(
L̃(2i) ∗ σ

(
L̃(2i−1) ∗ X̃(i−1)

))∥∥∥
max

<
ϵ

2ℓ
·
(
1 +

ϵ

2ℓ

)i−1
.

(4.20)
We then see that with probability 1−ϵ for all S(i) ∈ {0, 1}size(L

(i)) with i ∈
[2ℓ] (remember that S(i) is implicit in Eq. 4.10) and all X ∈ [−1, 1]D×D×c0∥∥∥∥f (X)−N

(S(1),...,S(2ℓ))
0 (X)

∥∥∥∥
max

=
∥∥∥X(ℓ) − X̃(ℓ)

∥∥∥
max

=
∥∥∥K(ℓ) ∗ σ

(
· · ·σ

(
K(1) ∗X

))
− L̃(2ℓ) ∗ σ

(
· · ·σ

(
L̃(1) ∗X

))∥∥∥
max
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by Eq. 4.9 and Eq. 4.15

=
∥∥∥K(ℓ) ∗X(ℓ−1) − L̃(2ℓ) ∗ σ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

(4.21)

by the triangle inequality

≤
∥∥∥K(ℓ) ∗X(ℓ−1) −K(ℓ) ∗ X̃(ℓ−1)

∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ σ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

by the distributive property of convolution

=
∥∥∥K(ℓ) ∗

(
X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ σ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

by Proposition 33

≤
∥∥∥K(ℓ)

∥∥∥
1
·
∥∥∥(X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ σ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

since
∥∥∥K(ℓ)

∥∥∥
1
≤ 1

≤
∥∥∥X(ℓ−1) − X̃(ℓ−1)

∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ σ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

(4.22)

by Eq. 4.19 (which holds with prob. 1− ϵ across all layers)

≤
∥∥∥X(ℓ−1) − X̃(ℓ−1)

∥∥∥
max

+
ϵ

2ℓ
·
(
1 +

ϵ

2ℓ

)ℓ−1
. (4.23)

Similarly, for 1 ≤ i ≤ ℓ− 1 we have (again, with probability 1− ϵ)∥∥∥X(i) − X̃(i)
∥∥∥
max

by Eq. 4.8 and Eq. 4.14

=
∥∥∥σ (K(i) ∗X(i−1)

)
− σ

(
L̃(2i) ∗ σ

(
L̃(2i−1) ∗ X̃(i−1)

))∥∥∥
max

by the same calculations from Eq. 4.21 to Eq. 4.22

≤
∥∥∥X(i−1) − X̃(i−1)

∥∥∥
max

+
∥∥∥K(i) ∗ X̃(i−1) − L̃(2i) ∗ σ

(
L̃(2i−1) ∗ X̃(i−1)

)∥∥∥
max

by Eq. 4.20 (which holds with prob. 1− ϵ across all layers)

≤
∥∥∥X(i−1) − X̃(i−1)

∥∥∥
max

+
ϵ

2ℓ
·
(
1 +

ϵ

2ℓ

)i−1
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unrolling the recurrence for
∥∥∥X(i−1) − X̃(i−1)

∥∥∥
max

≤
i∑

j=1

ϵ

2ℓ
·
(
1 +

ϵ

2ℓ

)j−1

summing the geometric series

=
(
1 +

ϵ

2ℓ

)i
− 1. (4.24)

Combining Eq. 4.23 and Eq. 4.24 we finally get that with probability
1− ϵ ∥∥∥∥f (X)−N

(S(1),...,S(2ℓ))
0 (X)

∥∥∥∥
max

≤
(
1 +

ϵ

2ℓ

)ℓ−1
− 1 +

ϵ

2ℓ
·
(
1 +

ϵ

2ℓ

)ℓ−1

=
(
1 +

ϵ

2ℓ

)ℓ
− 1

≤ e
ϵ
2 − 1

since ϵ < 1

≤ ϵ.



Chapter 5

10 Years of Research from Now

Because the academic career puts a young person in a sort of
compulsory situation to produce scientific papers in impressive
quantity, a temptation to superficiality arises that only strong
characters are able to resist. - Albert Einstein

In this work, after a brief overview of my first 10 years of research, I
have presented some of my contributions to some theoretical aspects related
to the role of sparsity in artificial neural networks. What is next? From
reading Chapter 1, the reader has perhaps already formed a representation
of my research path that is accurate enough to see how my work on sparsifi-
cation in neural networks is just yet another attempt at pursuing the more
ambitious goal of contributing sensibly to the understanding of the working
of the human brain. In this respect, in this chapter, I sketch some research
directions that I would like to pursue in the future. The theoretical results
in Chapter 4 and some ongoing work I am pursuing, suggest that there are
still interesting questions to be answered in the context of sparsity in arti-
ficial neural networks. In the following, I will first discuss the latter, and
I will then elaborate more generally on future synergies that the field of
neuroscience and theoretical computer science could benefit from.

In the present work, we have discussed a connection between the LTH
and the Random Subset Sum Problem (RSSP). Rather surprisingly, the ob-
tained theoretical results have also led me and my collaborators to insights
into the area of neuromorphic computing which resulted in the deposit of a
patent application [DCNV17]. We argue here that the connection between
the RSSP and sparsity in neural networks is much deeper than its applica-
tion to the SLTH. Generalizations of the RSSP could not only be leveraged
to prove more general versions of the SLTH, but they also have important
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implications for other training paradigms such as neural networks trained
via genetic algorithms and spiking neural networks. Moreover, deep connec-
tions of an equivalent problem to the RSSP (the Random Number Partition
Problem) have long been recognized in statistical physics. I am currently
working on leveraging very recent advancements on the RSSP to obtain the
first theoretical bounds on filter pruning for random CNNs (i.e. on ways to
prune random CNNs that allow them to run more efficiently on the GPU). In
parallel, I am also working on new results on the multidimensional variant of
the RSSP which would improve recent general bounds on the integrality gap
of random integer linear programs [BDHT]. Progress on the latter problem
would also allow us to prove new results on some genetic algorithms for train-
ing neural networks. Moreover, the SLTH has practically been motivated by
experimental works that train the network by only pruning it [RWK+20]; the
above generalization could motivate new versions of the previous paradigm.
Not only the application of RSSP to the theory of neural networks appears
a stimulating research direction, but it is also particularly original because
of its connection to a classical problem in complexity theory, allowing the
interaction of quite different areas of computer science. From a technical
point of view, the above problems require improving probabilistic methods
for the analysis of discrete random structures and processes (e.g. martin-
gale techniques and related concentration inequalities and second-moment
methods with dependent random variables) and developing new ones.

What insights could the above research provide for the understanding of
sparsification in the brain? Some experimental works in the past have been
at the origin of my interest in the phenomenon, such as [KWG+01, WL03,
TL12, TWK+12] in which the authors show that the process of synapse
elimination in the brain appears to be guided by a competitive process in
which the less active synapses are eliminated. But more broadly, it might
be inspiring to recall that the field of theoretical neuroscience has originally
been in close contact with that of TCS, from McCulloch-Pitts neurons in
1943 to Von Neumann’s influential book *The Computer and the Brain* in
1958. While the fields have drifted apart over the second half of the last
century (with an approach predominantly guided by methodologies drawn
from physics), we are nowadays witnessing a renewed synergy arising from an
algorithmic lens on neuroscience [MPVL19]. In this respect, I have recently
contributed to the Assembly Calculus (AC), an algorithmic framework that
aims at bridging the gap between the behavior of individual neurons and the
high-level cognitive functions of the brain by leveraging the Hebbian learning
principle [dMC+22]. The AC crucially leverages the concept of sparsity, with
a group of neurons (assemblies) increasingly strengthening their interconnec-
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tions while weakening those with the rest of the network. The analysis of
such processes is at the heart of many applications in TCS, including many
that I have investigated in the past. For example, in my recent joint results
on the analysis of Levy flights in theoretical biology, I discuss the connections
with the Small World phenomenon [CdGN21]. Small worldness is a concept
that has been introduced in the context of complex networks, and it is be-
lieved to be a crucial feature of the brain [FZB16]. I am also investigating
random graph models that could serve as null models to test hypotheses on
network data extracted from neurological recordings (previous work in this
respect is [FCC+21], which we mentioned in Section 1.3); the hyperbolic ran-
dom graph model [KPK+10], for example, has attracted a lot of attention in
the complex networks community because of its ability to reproduce salient
properties observed in real networks, such as small worldness. I am also
trying to provide a more solid theoretical explanation for the efficacy of the
sparse hashing algorithm, called FlyHash, that has been observed in the ol-
factory system of drosophilas [DSN17], which should highlight the appealing
algorithmic properties of FlyHash. Many other results as well found direct
links between neuroscience and areas of TCS in which lies my expertise (e.g.
distributed computing [AAB+11]), and provide a strong signal towards the
profitability of further exploring the synergy between TCS and theoretical
neuroscience.
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