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RÉSUMÉ

La découverte du boson de Higgs en 2012 est un succès majeur du Large Hadron Collider (LHC)

au CERN. Grâce au jeu de données important collecté au LHC depuis, des mesures de précision des

propriétés du boson de Higgs (H) sont possibles. La production du boson H en association avec une

paire de quarks top, suivie d’une désintégration du boson H en paires de quarks b, ttHbb, permet une

mesure directe du couplage de Yukawa du top. Le processus ttHbb présente un état final complexe

avec au moins quatre jets de b et requiert une méthode d’identification des jets de b sophistiquée,

appelée b-tagging. Le trajectographe d’ATLAS sera mis à niveau pour maintenir ses performances

dans les conditions du LHC à haute luminosité (HL-LHC). Cette thèse présente les performances des

algorithmes de b-tagging, en se focalisant sur les algorithmes basés sur les paramètres d’impact ou

les vertex secondaires, avec des simulations du Inner Tracker d’ATLAS pour le HL-LHC. L’analyse

tt̄H(H ! bb̄) est effectuée sur la base de 139 fb�1 de données collectées par ATLAS au Run 2 à
p

s = 13 TeV et tire parti des plus récents algorithmes de reconstruction et d’identification. La

grande multiplicité du nombre de jets de b due aux produits de désintégration supplémentaires du

quark top rend nécessaires des stratégies d’analyse dédiées basées sur le machine learning. Des

Deep Neural Networks (DNNs) ont été développés pour améliorer la sensibilité de l’analyse en

contraignant les sous-composantes du bruit de fond tt̄+jets dominant. Les performances du DNN

et des Boosted Decision Trees (BDTs) utilisés précédemment sont présentées dans cette thèse.

L’intensité du signal est mesurée de manière inclusive et différentielle par rapport à l’impulsion

transverse du boson de H en utilisant l’approche Simplified Template Cross-Section (STXS). La

sensibilité au signal tt̄H par rapport au bruit de fond attendu en utilisant les algorithmes DNN est de

2.71σ , comparée à 2.54σ .

Mots-clés: LHC, ATLAS, Higgs boson, MVA, tt̄H, tt̄ + jets, b-tagging, LHC à haute luminosité.



ABSTRACT

The discovery of the Higgs boson in 2012 was a major success of the Large Hadron Collider

(LHC) at CERN. With larger data-sets collected at the LHC since then, precise measurements of the

Higgs boson properties are possible. The Higgs boson production in association with a pair of top

quarks, where Higgs decays into a pair of b-quarks, tt̄H(H ! bb̄), allows direct measurement of

the top-Yukawa coupling. The tt̄H(H ! bb̄) process has a challenging final state with at least four

b-jets, which requires a b-jet identification method known as b-tagging. In view of the operation

of the ATLAS detector under High-Luminosity LHC conditions, the central tracking system will

be upgraded to maintain high levels of performance. This thesis presents the performance of the

b-tagging algorithms focusing on impact parameter-based and secondary vertex-based taggers using

the updated ATLAS Inner Tracker (ITk) simulation. Some re-optimization of the b-taggers is

performed, and the impact on performance is also presented. The tt̄H(H ! bb̄) analysis is per-

formed using 139 fb�1 of ATLAS Run 2 data at
p

s = 13 TeV and takes advantage of the most

recent object performance algorithms. The high b-jet multiplicity due to additional top quark

decay products requires dedicated analysis strategies based on machine learning. The multivariate

analysis approaches using Deep Neural Networks (DNNs) were developed to improve the search

sensitivity while constraining large tt̄+bb̄ background sub-components. This thesis compares DNN

performance to that of previously used Boosted Decision Trees (BDTs). The signal strength is

measured inclusively and differentially with respect to the Higgs boson transverse momentum using

the Simplified Template Cross-Section formalism. The expected significance of the tt̄H signal over

the expected SM background using DNN is 2.71 σ , compared to 2.54 σ using BDTs.

Keywords: LHC, ATLAS, Higgs boson, MVA, tt̄H, tt̄ + jets, b-tagging, High Luminosity LHC.
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1

FRENCH SUMMARY

Quels sont les constituants fondamentaux de l’Univers ? Quelles sont les règles qui les gouvernent ?

De telles questions ont longtemps laissé l’Homme perplexe. Le Modèle Standard (MS) de la

physique des particules est le modèle théorique correspondant à notre compréhension actuelle des

particules élémentaires et décrivant les forces fondamentales qui régissent leurs interactions. Depuis

des décennies, les prédictions du MS ont été testées et validées de plus en plus précisément. Le

boson de Higgs, dernière pièce manquante du MS, a été découvert en 2012 par les collaborations

ATLAS et CMS au Large Hadron Collider (LHC). Cette découverte a été une avancée majeure en

physique des particules, puisqu’elle a étendu notre compréhension des mécanismes par lesquels

les particules élémentaires, acquièrent leur masse, au travers de leur interaction avec le boson

de Higgs. Grâce aux nombreuses collisions proton-proton enregistrées au LHC, les propriétés du

boson de Higgs peuvent aujourd’hui être mesurées très précisément. Une de ces propriétés est

la façon dont le boson de Higgs interagit avec les fermions. L’intensité de cette interaction est

proportionnelle à la masse de la particule et le quark top, la plus massive d’entre elles, interagit donc

fortement avec le boson de Higgs. La mesure précise de cette interaction est une sonde puissante

pour mettre en lumière des phénomènes de nouvelle physique, tels que de nouvelles sources de

violation charge-parité qui peuvent exister au-delà du MS. Le Chapitre 1 introduit le MS, en se

focalisant notamment sur le mécanisme de Higgs et les recherches du boson de Higgs au LHC.

Le LHC est l’accélérateur de particules circulaire le plus complexe jamais construit. Le détecteur

ATLAS, le plus grand détecteur de particules généraliste au LHC, est conçu pour tester le MS

de la physique des particules tout en permettant l’exploration de la physique au-delà du MS. Le

Chapitre 2 décrit le LHC et l’expérience ATLAS. La production du boson de Higgs en association

avec une paire de quarks top, suivie d’une désintégration du boson de Higgs en paire que quarks

b, tt̄H(H ! bb̄), permet une mesure directe du couplage de Yukawa du quark top (Figure 1 a).

Le processus tt̄H(H ! bb̄) présente un état final complexe avec au moins quatre jets de b, issus

de l’hadronisation de quarks b. Une méthode d’identification complexe, appelée b-tagging, est

employée au LHC pour identifier les jets de b. Le principal défi de l’analyse tt̄H(H ! bb̄) est

la production importante du bruit de fond irréductible tt̄ accompagnée des jets supplémentaires,

notamment lorsque ceux-ci sont des jets de b (Figure 1 b). Le b-tagging est non seulement crucial

pour le processus tt̄H(H ! bb̄), mais aussi pour un grand nombre d’analyses de physique au LHC.

Celui-ci sera également essentiel au HL-LHC, pour étudier l’auto-couplage du boson de Higgs et
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maximiser la sensibilité des mesures de précision et des recherches de nouvelle physique. Durant

ma thèse, j’ai principalement contribué à des développements liés au b-tagging, notamment pour

l’upgrade de Phase 2 du détecteur ATLAS pour la phase de Haute Luminosité du LHC (HL-LHC),

ainsi qu’à l’analyse tt̄H(H ! bb̄) basée sur l’ensemble des données collectées par ATLAS durant le

Run 2 du LHC. Mes contributions à chacun de ces projets, détaillées dans les Chapitres 3, 4 et 5,

sont résumées ci-dessous.

(a) (b)

Figure 1 – Diagrammes de Feynman (a) du processus tt̄H(H ! bb̄) dans le canal à un lepton, comprenant au
moins six jets dans l’état final, dont au moins quatre jets de b et (b) du bruit de fond principal tt̄ +
bb̄.

Performances de b-tagging avec le détecteur ATLAS de Phase 2

Le HL-LHC est un upgrade du LHC qui vise à augmenter la luminosité instantanée jusqu’à

7⇥1034 cm�2s�1, résultant en une luminosité intégrée de 4ab�1 d’ici la fin de la prise de données.

Cela aura également pour conséquence d’augmenter le nombre de collisions proton-proton par

croisement de faisceau (pile-up) jusqu’à hµi= 200. Pour maintenir des performances équivalentes

de reconstruction des traces au HL-LHC, l’Inner Detector (ID) d’ATLAS sera remplacé par l’Inner

Tracker (ITk). L’ITk est un trajectographe entièrement en silicium dont la couverture s’étend jusqu’à

|η | = 4 (au lieu de 2.5 pour l’ID). Il est constitué de deux sous-systèmes: le détecteur à pixels

interne et le détecteur à pistes externe. Les algorithmes de b-tagging développés dans ATLAS se

basent sur l’information des traces reconstruites à partir de l’ID ou de l’ITk et leurs performances

représentent une référence importante en termes de reconstruction et d’identification des objets.

La Figure 2 présente un schéma de la géométrie de l’ITk, qui a été utilisée pour les études de

b-tagging présentées dans cette thèse. Le Chapitre 3 détaille mon travail concernant les algorithmes

de b-tagging et leur optimisation avec l’ITk.
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Figure 2 – Schéma de la géométrie de l’ITk considérée pour la majorité des études présentées dans cette
thèse. [1].

Les caractéristiques uniques des hadrons b sont à la base de l’identification des jets de b. Les hadrons

b ont une longue durée de vie (τ ⇡ 1.5 ps). Cela offre aux algorithmes de b-tagging deux signatures

exploitables. D’une part, la désintégration d’un hadron b crée un vertex secondaire déplacé par

rapport au vertex primaire, où la collision de protons s’est produite. D’autre part, les hadrons b ont

une masse élevée (⇠5 GeV) par rapport aux hadrons c ou légers. Les particules chargées produites

dans la désintégration du hadron b au niveau du vertex déplacé seront alors reconstruites comme

des traces avec de grands paramètres d’impact, correspondant à la distance d’approche minimale de

la trace par rapport au vertex primaire. La Figure 3 (a) représente les propriétés susmentionnées.

Les algorithmes de b-tagging utilisés dans les analyses de physique d’ATLAS pour distinguer les

jets de b des jets de c et légers (associés aux gluons ou aux quarks légers), sont construits en deux

étapes impliquant des algorithmes de bas et de haut niveau. Les algorithmes de bas niveau, basés

sur les paramètres d’impact (IP3D) ou les vertex secondaires (SV1), sont directement liés aux

propriétés des hadrons b. IP3D est un algorithme utilisant un formalisme de likelihood et exploitant

une catégorisation des traces basée sur des informations liées aux hits du détecteur à pixels. Des

distributions de référence, correspondant aux significances des paramètres d’impact d0 et z0 sinθ ,

sont construites à partir de cette catégorisation, pour les traces de jets de b, de c et légers. La

Figure 3 (b) présente la distribution de la significance de d0 pour des traces de jets de b et de jets

légers. SV1 est un autre algorithme basé sur une likelihood exploitant la reconstruction des vertex

secondaires et leurs propriétés. Puisque les performances de ces algorithmes de bas niveau sont

décorrélées, ils peuvent être combinés et utilisés comme variables d’entrée pour les algorithmes de

haut niveau, tels que MV2, pour améliorer les performances globales de b-tagging.
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(a) (b)

Figure 3 – (a) Schéma illustrant un vertex secondaire dans un jet et les paramètres d’impact importants (d0)
des traces produites au niveau du vertex déplacé. (b) Distribution de la significance de d0 pour des
traces issues de jets de b et légers dans la région |η |< 1, pour différentes tailles de pixels de l’ITk.

Les développements en termes de b-tagging auxquels j’ai contribué se sont focalisés sur les

algorithmes de bas niveau IP3D et SV1. Un des buts de mon travail a notamment été de valider

l’implémentation des algorithmes de b-tagging dans la version la plus récente du software d’ATLAS

dédiée aux études upgrade (r21.9) en vue du remplacement de la version précédente (r20.20). J’ai

également mené des optimisations de IP3D et SV1 pour améliorer leurs performances. Les catégories

de traces de l’algorithme IP3D ont été ainsi mises à jour pour mieux exploiter la dépendance en

pT de la résolution des paramètres d’impact dans la région centrale (|η |< 2) et la dépendance au

contenu en hits dans la région avant (|η |> 2) de l’ITk. Une réjection des vertex secondaires issus

d’interactions avec les matériaux du détecteur a également été implémentée en tenant compte de la

géométrie complexe du détecteur à pixels de l’ITk.

Ces implémentations des algorithmes de b-tagging en r21.9, incluant ces nouvelles optimisations,

ont été utilisées pour évaluer les performances de b-tagging avec la géométrie mise à jour de

l’ITk. Les performances attendues ont été comparées avec celles obtenues avec l’ID du Run 2. La

Figure 4 (a) montre ainsi les meilleures performances d’IP3D, liées à la meilleure résolution sur

le paramètre d’impact avec l’ITk ainsi qu’à la nouvelle catégorisation réoptimisée des traces. La

Figure 4 (b) présente les performances améliorées de MV2. Comme illustration, pour un point de

fonctionnement à 77% d’efficacité de sélection des jets de b, une réjection des jets légers 20% plus

élevée que celle obtenue avec le détecteur du Run 2 est observée, en lien avec les performances
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améliorées d’IP3D. Pour tous les algorithmes, les performances se dégradent dans la région à plus

grand |η |, dû à l’augmentation des effets de diffusion multiple.

(a) (b)

Figure 4 – Réjection des jets légers en fonction de l’efficacité de sélection des jets de b pour les algorithmes
(a) IP3D et (b) MV2, dans différents intervalles en |η |, évaluée pour des événements tt̄ avec un
pile-up de 200 et la géométrie mise à jour de l’ITk. Pour comparaison, les performances obtenues
avec l’ID du Run 2 et un pile-up moyen de 38 sont également représentées.

Analyse tt̄H(H ! bb̄) utilisant une nouvelle technique d’analyse
multivariée basée sur des réseaux de neurones profonds

Les études présentées dans cette thèse sont effectuées en vue de la prochaine version de l’analyse

tt̄H(H ! bb̄) basée sur l’ensemble des données collectées par ATLAS durant le Run 2, dénommée

analyse legacy. Cette analyse vise à améliorer la version précédente grâce à de nouvelles méthodolo-

gies, une meilleure modélisation du bruit de fond simulé tt+bb et des algorithmes améliorés de

reconstruction et d’identification des objets, principalement basés sur les jets reconstruits grâce

au Particle-Flow et à l’algorithme de b-tagging DL1r. Cet algorithme est un des plus récemment

développés pour les analyses d’ATLAS et présente des performances améliorées par rapport à MV2.

L’analyse tt̄H(H ! bb̄) est effectuée dans le canal avec un lepton, où un des bosons W se désintègre

en état final hadronique et l’autre en état final avec un lepton.

L’analyse utilise le formalisme de Simplified Template Cross-Section (STXS) pour mesurer la

section efficace du signal en fonction de l’impulsion transverse du boson de Higgs
⇣

pH
T

⌘

, c’est

pourquoi il est important de reconstruire de façon précise cette variable. Six classes STXS différentes



TABLE OF CONTENTS 6

correspondant aux intervalles 0-60 GeV, 60-120 GeV, 120-200 GeV, 200-300 GeV, 300-450 GeV et

450-∞ GeV, dénotées STXS1...6, sont définies pour la mesure STXS. Des sélections d’événements

dédiées sont utilisées pour améliorer le rapport signal sur bruit. Les événements sont répartis entre

régions enrichies en signal (Signal Regions, SR) et appauvries en signal (Control Regions, CR). Des

techniques d’analyse multivariée (Multivariate Analysis, MVA) améliorent davantage la sensibilité

dans les régions d’analyse. Une nouvelle technique de MVA basée sur des réseaux de neurones

profonds (Deep Neural Networks, DNN) a été développée afin de remplacer les arbres de décision

boostés (Boosted Decision Trees, BDT) utilisés précédemment et d’améliorer la sensibilité globale.

Un ré-entraînement des BDT a été effectué pour l’analyse legacy et a servi de point de référence

pour les nouveaux développements MVA utilisant des DNN. Un profile-likelihood fit a également

été effectué, en combinant les SR et CR, pour extraire la section efficace tt̄H.

Les techniques MVA examinent de façon simultanée plusieurs variables pour identifier des motifs

récurrents et des corrélations. Il s’agit d’un outil utilisé en physique des hautes énergies pour

reconstruire et classifier de façon efficace des processus physiques. Dans cette analyse, les techniques

de MVA se basent sur les combinaisons de jets présents dans l’état final et leurs corrélations,

exploitant notamment des masses invariantes et des distances angulaires. Chaque combinaison de

jets est une permutation correspondant à une interprétation de l’événement associant les objets

reconstruits aux produits de désintégration du boson de Higgs et des quarks top. Les DNN Deep-sets

ont été exploités pour développer un nouveau modèle de MVA, car ils fournissent une invariance

par permutation en traitant les combinaisons de jets en tant qu’ensemble non-ordonné pour leur

entraînement. Le modèle Deep-sets combine les étapes suivantes:

• une régression sur la variable cinématique pH
T , utilisée pour définir des classes STXS pour la

mesure différentielle STXS,

• une multi-classification pour distinguer le signal tt̄H et les sous-composantes du bruit de fond

tt̄+jets, tels que tt̄+1b, tt̄+B, tt̄+ � 2b ou tt̄+ � 1c, permettant de construire des CR utiles

pour contraindre certaines systématiques et améliorer ainsi la sensibilité.

Le modèle Deep-sets produit dix scores discriminants: six scores STXS associés au signal tt̄H

et quatre scores associés au bruit de fond. Chaque score est interprété comme la probabilité

pour un événement d’être issu de la catégorie correspondante. Des régions d’analyse peuvent

ainsi être définies en se basant sur le score le plus élevé parmi les dix. La somme des six scores

STXS correspond à la probabilité inclusive d’être un événement de signal tt̄H et est appelé score

tt̄H. La Figure 5 (a) présente la distribution du score tt̄H pour les échantillons tt̄H et les sous-

composantes tt+jets. La discrimination la plus importante est observée entre tt̄H et tt̄+� 2b,
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indiquant une séparation performante. La Figure 5 (b) présente les performances du Deep-sets au

travers d’une matrice de migration, qui indique la répartition des événements issus d’un processus

donné entre les catégories prédites par le classificateur Deep-sets. La diagonale couvrant les classes

STXS correspond aux fractions d’événements correctement assignés à chaque catégorie STXS. La

catégorie prédite other correspond à la fusion des catégories tt̄+1b, tt̄+B et tt̄+� 1c, regroupées

suite aux performances similaires des discriminants spécifiques à ces catégories. Les scores Deep-

sets sont exploités par la suite pour le profile-likelihood fit utilisé pour l’extraction du signal.

(a) (b)

Figure 5 – (a) Distribution du score tt̄H pour le signal tt̄H et les différentes sous-composantes du bruit de
fond. (b) Matrice de migration, normalisée suivant les rangées, présentant les performances du
modèle Deep-sets.

La Figure 6 (a) présente l’accord données-Monte Carlo obtenu pré-fit pour la distribution des

événements dans les différentes catégories d’analyses.

La version précédente de l’analyse utilisait une stratégie basée sur deux BDT pour définir les régions

STXS (recoBDT) et pour séparer le signal tt̄H du bruit de fond tt̄+jets (classBDT). La variable

classBDT était utilisée pour effectuer le profile-likelihood fit utilisé pour l’extraction du signal. Les

performances de prédiction des catégories STXS pour l’ensemble des événements sont comparées

entre Deep-sets et le recoBDT en Figure 7. Deep-sets présente des performances améliorées de façon

significative pour les régions avec pH
T > 120 GeV (STXS3...6). La Figure 8 présente les courbes

ROC (Receiver Operating Characteristic) illustrant les performances de classification de Deep-sets

et du classBDT. La séparation obtenue entre le signal tt̄H et le bruit de fond tt+jets est similaire

entre les deux méthodes mais Deep-sets a l’avantage d’offrir une discrimination supplémentaire

entre les sous-composantes du bruit de fond.
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Figure 6 – (a) Distribution du nombre dévénements attendus et observés dans chaque SR et CR. Les distribu-
tions des données sont masquées dans les régions avec un rapport signal sur bruit S/B > 7.7%. (b)
Distribution du score tt̄+� 2b obtenue après un fit sans signal dans la CR tt̄+� 2b.

(a) (b)

Figure 7 – Matrice de migration des classes STXS prédites pour (a) Deep-sets et (b) le RecoBDT. La matrice
est normalisée suivant chaque rangée.
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Figure 8 – Courbes ROC illustrant les performances de classification du multi-classificateur Deep-sets. Les
courbes ClassBDT et Deep-sets tt̄H correspondent à la séparation entre tt̄H et les événements de
bruit de fond inclusif. Les autres courbes Deep-sets correspondent à la séparation entre tt̄H et les
sous-composantes du bruit de fond.

Les performances attendues pour l’analyse tt̄H(H ! bb̄) sont évaluées avec un Asimov fit incluant

les incertitudes systématiques, sous l’hypothèse signal et bruit de fond. Un facteur de normalisation

du bruit de fond tt̄+� 1b flottant, sans contrainte pré-fit, est utilisé. Les résultats du fit sont analysés

à la fois pour les mesures inclusive et STXS d’intensité du signal, correspondant au ratio entre

la section-efficace mesurée et prédite par le MS. Pour les mesures STXS, le fit est effectué en

utilisant plusieurs paramètres d’intensité du signal décorrélés, associés aux six régions STXS. La

performance attendue obtenue avec les nouveaux discriminants Deep-sets est comparée avec celle

des BDT utilisés précédemment, dans des configurations équivalentes. Les précisions attendues

pour les mesures d’intensité du signal STXS et inclusive sont présentées en Figure 9 pour Deep-sets

et les BDT. Dans chacune des région STXS, la précision attendue de la mesure est améliorée entre

5 et 35%, grâce à la réduction des corrélations entre les paramètres d’intensités du signal et les

systématiques dominantes. Les incertitudes liées à la modélisation du bruit de fond ont le plus

large impact sur la mesure inclusive. La significance attendue pour la mesure inclusive en utilisant

Deep-sets est de 2.71σ , comparée à 2.54σ avec les BDTs.

Étant donné que l’analyse doit encore être soumise à la revue de la Collaboration ATLAS au moment

de l’écriture de cette thèse, les résultats de la mesure ne sont pas présentés dans ce document, afin de

ne pas biaiser la revue des résultats. Une configuration du fit dans l’hypothèse sans signal est utilisée

pour effectuer un fit des données avec Deep-sets, fournissant des informations précieuses pour la
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(a) (b)

Figure 9 – Précision attendue pour les mesures d’intensité du signal inclusive et STXS avec (a) Deep-sets et
(b) les BDT.

validation de la modélisation des bruits de fond. Un bon accord post-fit entre données et Monte

Carlo est observé dans les CR. Un bon accord données-Monte Carlo est obtenu post-fit, comme

illustré dans la CR tt̄+� 2b en Figure 6 (b). Le résultat de la mesure du facteur de normalisation du

bruit de fond tt̄+� 1b est :

k(tt̄+� 1b) = 1.12+0.06
�0.06

Pour résumer le travail accompli durant cette thèse, les algorithmes de b-tagging étudiés ont

bénéficié d’une optimisation dédiée afin d’exploiter la géométrie la plus récente du détecteur

ITk. Les améliorations que j’ai développées pour les algorithmes de bas niveau IP3D et SV1

pourront servir pour la prochaine génération d’algorithmes de b-tagging basés sur des DNN en

cours d’adaptation pour le détecteur ATLAS au HL-LHC. Le nouveau modèle Deep-sets que j’ai

mis en place présente une amélioration significative des performances en termes de classification

STXS, en comparaison des BDT, et permet également l’implémentation d’une CR optimisée pour

les composantes non-tt̄+� 2b du bruit de fond. Le modèle Deep-sets a été intégré dans le software

central d’analyse utilisé par le groupe tt̄H(H ! bb̄) et pourra ainsi servir de méthode de référence

pour l’analyse legacy en cours de finalisation.



INTRODUCTION

What are the fundamental building blocks of the universe? What are the rules that govern them ?

Questions like these have perplexed humans for a long time. The Standard Model (SM) of fun-

damental particle physics is the theoretical framework describing our current understanding of

elementary particles and explaining the fundamental forces that govern their interactions. For

decades, the predictions of the SM have been tested and validated. The Higgs boson, which was the

last missing piece of the SM, was discovered in 2012 by both ATLAS and CMS collaborations at the

Large Hadron Collider (LHC). The breakthrough was a significant step forward in particle physics

because it expanded our understanding of how elementary particles like quarks and leptons gain

mass through interactions with the Higgs field. With many proton-proton collisions now recorded

at the LHC, the properties of the Higgs boson can now be measured very precisely. One such

property is how Higgs interacts with fermions. This interaction strength is proportional to the

mass of the fermion, and the top quark, being the heaviest, interacts strongly with the Higgs. Its

precise measurement is a powerful probe to unravel new physics phenomena like the new sources

of Charge-Parity violation that might exist beyond the SM. Chapter 1 provides an overview of the

SM with a focus on the Higgs mechanism and the Higgs boson searches at the LHC.

The LHC is the most complex circular particle accelerator ever built. The ATLAS detector, which

is the largest general-purpose particle detector at the LHC, is designed to test the SM of particle

physics while also assisting in the exploration of the physics beyond the SM. Chapter 2 describes

the LHC and ATLAS experiment setups. Since the Higgs boson cannot be directly detected by

the detector, different Higgs decay modes are investigated. The production of the Higgs boson

in association with a pair of top quarks, in which the Higgs decays into a pair of bottom quarks,

tt̄H(H ! bb̄), allows direct measurement of the top-Yukawa coupling. This process suffers from the

large irreducible background production of tt̄ with additional jets (tt̄ + jets) and mainly when these

jets are b-jets, which originate from the hadronization of b-quark. The tt̄H(H ! bb̄) process has a

challenging final state with multiple jets where at least four jets are b-jets. Thus, a sophisticated b-jet

identification method known as b-tagging is employed in the ATLAS experiments. The b-tagging

is crucial not only for the tt̄H(H ! bb̄) process, but also for a large fraction of physics analyses at

the LHC. It will also play a key role at the upcoming High-luminosity LHC (HL-LHC) phase to

investigate Higgs boson self-coupling and maximise sensitivity for physics analyses.
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During my thesis, I mainly contributed to addressing the challenges and performing developments

in the areas of b-tagging, mainly for the Phase 2 upgrade of the ATLAS detector at the HL-LHC,

and the tt̄H(H ! bb̄) analysis using full Run 2 ATLAS data-set at the LHC. My contributions to

each of these projects are detailed in Chapters 3, 4 and 5.
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CHAPTER

1

THEORETICAL INTRODUCTION AND HIGGS

BOSON SEARCHES AT THE LHC

The Standard Model (SM) of fundamental particle physics [2–4] is the theoretical framework

describing our current understanding of elementary particles and explaining the fundamental forces

that govern their interactions. The SM describes three of the four fundamental interactions in nature

i.e. the electromagnetic, the strong, and the weak forces, and only gravity remains unexplained. This

theory has been probed over the last decades with enormous precision, although there are also some

limitations in explaining many phenomena such as baryon asymmetry, the origin of mass, gravity,

dark mass, dark energy, etc. This chapter presents the relevant theory for describing the SM along

with an overview of the experimental searches for the Higgs boson at the LHC experiments.

Section 1.1 gives a brief overview of the SM and its particle composition. Section 1.2 and Section 1.3

provide an introduction to the Quantum Electrodynamics (QED) and electroweak unification,

respectively. The Higgs boson mechanism and its role in electroweak symmetry breaking are

discussed in Section 1.4 followed by an overview of Quantum Chromodynamics (QCD), presented

in Section 1.5. The characteristics of the proton-proton collisions at the LHC involving Parton

Distribution Functions (PDFs) are discussed in Section 1.6. The searches for the Higgs boson at

LHC are described in Section 1.7 followed by the latest results of tt̄H measurements at the LHC

experiments, presented in Section 1.8.

1.1 The Standard Model overview

The SM provides a theoretical framework that captures the relationship between the fundamental

interactions and the elementary particles to our best of knowledge . Figure 10 shows the summary
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of known fundamental particles whose dynamics are described by the SM. The elementary matter

constituents are the fermions of spin 1/2, obeying the Fermi-Dirac statistics, and their interactions

are mediated by the exchange of spin 1 particles called bosons, governed by the Bose-Einstein

statistics. The fermions are classified between leptons and quarks. These fermions are classified

into three generations, each consisting of one charged lepton, one neutrino, and two quarks. The

particles of a different generation have identical quantum numbers with the exception of their mass,

which increases as we go from the first to the third generation. The first-generation fermions are the

ones that make up ordinary matter. In addition, each and every fermion particle is paired with an

anti-particle that carries the opposite charge.

Figure 10 – Summary of the SM elementary particles and their properties.

The quarks carry an electric and a colour charge, and hence, they can interact weakly, electromag-

netically as well strongly. Each generation has an up-type quark with an electric charge of e = + 2/3

and a down-type quark with charge e = - 1/3. The first generation consists of up (u) and down

(d) quarks, the second of charm (c) and strange (s) quarks, and the third of top (t) and bottom (b)

quarks. In nature, only particles without colour charge are observed, and free quarks have never

been observed. This is explained by colour confinement, where the quarks exist in bound states

called hadrons and cannot propagate as free particles. These bound states can be composed of a

quark-anti-quark pair, in which case they are called mesons, or can be composed of three quarks

in a formation called baryons. Hadrons with four or five quarks have also been observed. These

multi-quark hadrons are called exotics hadrons.
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In regards to leptons in each generation, there are the electron (e), the muons (µ) and the taus

(τ), and the associated neutrinos are the electron-neutrino (νe), the muon-neutrino (νµ ) and the

tau-neutrino (ντ ), respectively. The leptons (e, µ , τ) carry electric charge of e = - 1 whereas the

neutrinos have no electric charge. Both charged leptons and neutrinos have no colour charge and

interact through weak forces, as well as electromagnetic forces in the case of charged leptons.

Table 1 provides a summary of the masses of the quarks and leptons as well as their respective

electric charges.

The gauge bosons are the vector bosons, which are the carrier particles for the three fundamental

forces described by the SM. The photon (γ), which is massless, is the mediator of electromagnetic

force. The W
± and Z bosons are massive and are mediators of weak forces. The gluons (g) are the

force carriers of the strong interactions. There are a total of eight types of gluons. The characteristics

of the gauge bosons are outlined in Table 2.

In addition to fermions and bosons, a scalar spin-zero particle also exists—the Higgs boson.

Section 1.4 describes the Higgs mechanism and concept of electroweak symmetry breaking (EWSB)

in detail.

Quarks Leptons
Generation Flavour Mass Charge (e) Flavour Mass Charge (e)

1
u 2.16+0.49

�0.26 MeV + 2/3 e 0.511 ± 1.5 x 10�10 MeV -1

d 4.67+0.48
�0.17 MeV - 1/3 νe < 2 eV 0

2
c 1.27 ± 0.02 GeV + 2/3 µ 105.7 ± 2.3 x 10�6 MeV -1

s 93.4+8.6
�3.4 MeV - 1/3 nuµ < 0.19 MeV 0

3
t 172.89 ± 0.30 GeV + 2/3 τ 1776.8 ± 0.12 MeV -1

b 4.18+0.03
�0.02 GeV - 1/3 nuτ < 18.2 MeV 0

Table 1 – The summary of mass and electric charge of the quarks and leptons in SM [5].

Bosons Interactions Mass Charge (e)

g strong 0 0

γ electromagnetic 0 0

W
± weak 80.38 ± 0.012 GeV ±1

Z weak 91.19 ± 0.0021 GeV 0

Table 2 – A summary of the properties of the gauge boson in SM [5].

The SM is a Quantum Field Theory (QFT), postulating a set of symmetries. The QFT describes

fundamental particles in the SM as an excitation in a quantum field defined at all points in space-time.
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The QFT provides the mathematical framework of the SM, in which a Lagrangian controls the

dynamics of the theory and is renormalizable and invariant under local gauge transformation. The

SM is a non-abelian gauge theory and is invariant under the following gauge symmetry group:

GSM = SU(3)C ⌦SU(2)L ⌦U(1)Y (1.1)

where C is colour, L represents that the weak isopsin group couples to the left-handed fermions, and

Y corresponds to the hypercharge defined by the Gell-Mann-Nishijima formula:

e = I3 +
Y
2

(1.2)

where, I3 is the third component of the isospin and e is the electric charge. The SU(3)C group is

the strong interaction symmetry group. The SU(2)L ⌦U(1)Y gauge group corresponds to the gauge

group of the unified weak and electromagnetic interactions. A more detailed discussion of the gauge

groups, described above, will be provided in the coming sections.

1.2 Quantum Electrodynamics

The Quantum Electrodynamics, commonly named as QED is the theoretical description of the

electromagnetic interactions between the charged fermions and the photons and is invariant under

local U(1) transformation. The Dirac Lagrangian describes a freely propagating fermion field:

L = ψ̄(iγµ∂µ �m)ψ (1.3)

where, Ψ is the free spinor field, m is the mass of the particle, γµ are Dirac gamma matrices, ∂µ is

∂/∂xµ derivative and Ψ̄ = Ψ
†γ0 denotes the Dirac adjoint of the spinor. The spinor field transforms

as follows under the U(1) local space transformation:

ψ(x)�! ψ 0 = exp(ieθ(x))ψ(x) (1.4)

where, e is the electric charge, θ(x) corresponds to a generic function that describes the local phase.

Applying this transformation to the free spin 1/2 particle, the Lagrangian gives:

L �! L0 = L�qψ̄γµ(∂µθ(x))ψ (1.5)



Chapter 1. Theoretical introduction and Higgs boson searches at the LHC 17

For the QED Lagrangian to be invariant under this gauge transformation, the derivative ∂µ can be

replaced by a covariant derivative (Dµ ) which denotes the coupling between the Dirac fermion and

the vector field Aµ :

∂µ �! Dµ = ∂µ + ieAµ (1.6)

For the addition of the new field Aµ to provide cancellation of the additional term i.e qψ̄γµ(∂µθ(x))ψ

and as result, Aµ transforms under gauge transformation as:

Aµ �! A
0
µ = Aµ �∂µθ(x) (1.7)

The final QED Lagrangian which is invariant under a local U(1) gauge transformation, is:

LQED = ψ̄(iγµ
Dµ �m)ψ � 1

4
FµνF

µν (1.8)

where, Fµν = ∂µAν �∂νAµ is the field strength tensor and FµνFµν describes the kinetic energy

term of the photon.

1.3 Electroweak unification

The theory developed by Glashow, Salam and Weinberg [2–4], unifies the weak and electromagnetic

forces under SU(2)L ⌦U(1)Y gauge group. SU(2)L group is associated to the weak isospin group,

and its generators in the spinor representation are the Pauli matrices:

σ1 =

 

0 1

1 0

!

; σ2 =

 

0 �i

i 0

!

; σ3 =

 

1 0

0 �1

!

(1.9)

I3 is the eigenvalue of the operator σ3. U(1)Y is the Abelian hypercharge group. The generator of

U(1)Y is simply denoted 1 and its eigenvalue by Y. A scalar field φ is introduced that transforms as

a doublet under SU(2)L and is symmetric under gauge transformations:

φ = e(iαaσa/2)e(iβ/2)φ ; a 2 1,2,3, (1.10)
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where, β is the gauge coupling constant and α represents three functions specifying the local phase

in space-time. A kinetic term and a potential term φ are used to build the electroweak Lagrangian:

L = |Dφ
µ |

2 +V (φ) (1.11)

where Dµ is the electroweak covariant derivative. For the kinetic term to be invariant under the

gauge transformation, Dµ must take the form:

Dµφ =

 

∂µ � i
g
0
µ

2
Bµ � i

g

2
W

j
µσ j

!

φ (1.12)

where W
1,2,3, B are the field strengths and g, g

0 are the coupling constants associated to the gauge

groups SU(2)L and U(1)Y, respectively. The electroweak mixing angle θW , quantifies the relative

strengths of electromagnetism and the weak force and can be expressed in terms of coupling

constants:

cos(θW ) =
g

q

g
2 +g

02
, sin(θW ) =

g
0

q

g
2 +g

02
(1.13)

which also allows to represent the electric charge in terms of the gauge couplings as e = gsinθW .

By expanding the Lagrangian in terms of field tensors and employing Pauli matrix identities, the

Lagrangian is transformed into:

L = |∂µφ |2 +
g
02

2
BµB

µ |φ |2 +
g

2

2
W

j
µW

µ

j |φ |
2 +

g
0
g

4
BµW

kµ
⇣

φ †σkφ +(σk)φ
†
⌘

+V (φ) (1.14)

for the simplicity following substitutions are applied:

Aµ =
g
0
Bµ +gW

3
µ

q

g
02 +g

2
(1.15)

W
±
µ =

W
1
µ ± iW

2
µp

2
(1.16)

Zµ =
g
0
Bµ �gW

3
µ

q

g
02 +g

2
(1.17)
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where, the transformed field strength Aµ corresponds to the electromagnetic field and has eigenvalue

e = I3 + Y , and the transformed field strengths W
+
µ , W

�
µ and Zµ correspond to the W and Z bosons,

respectively. The final Lagrangian becomes:

L = |∂µφ |2 +
g
02 +g

2

2
ZµZ

µ |φ |2 +
g

2

2
W

+
µ W

�µ |φ |2 +V (φ) (1.18)

When postulating the SM based on symmetries, the particles in the model should be massless

because introducing mass term in the Lagrangian for bosons and fermions would violate the local

gauge invariance. Experiments, on the other hand, have provided clear evidence that particles such

as electroweak gauge bosons and fermions are massive. Both gauge and fermion mass terms are

introduced with the mechanism of spontaneous electroweak symmetry breaking described in the

next section.

1.4 The Higgs mechanism

The mass generation of the fermions and the electroweak gauge bosons is introduced through the

Brout-Englert-Higgs (BEH) mechanism [6], with the spontaneous electroweak symmetry breaking

(EWSB). The potential for the doublet V (φ) is taken to be:

V (φ) = µ
2φ †φ +

λ

2

⇣

φ †φ
⌘2

(1.19)

where, µ and λ are scalar constants and, in particular, λ describes the quadratic self-interaction

among the scalar fields. The spontaneous symmetry breaking is based on the non-invariance of the

vacuum state with respect to the SU(2) symmetry. When µ
2 and λ are both positive, the minimum

of the potential is found in the unique configuration φ = 0. If µ
2 < 0 and λ > 0, the minimum of the

potential V(φ) is described by an infinite number of solutions satisfying:

φ †φ =
1
2
(φ 2

1 +φ 2
2 +φ 2

3 +φ 2
4 ) =

ν2

2
=�µ

2

2λ
(1.20)

where, φ1,2,3,4 are real scalar fields. Figure 11 shows the shape of the Higgs field potential V(φ).

The symmetry is spontaneously broken, choosing the system to fall into one of the multiple ground

states, for example:
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φ0 =
1p
2

 

0

ν

!

(1.21)

Then, expanding around the ground state, the Higgs field itself is given by:

φ =
1p
2

 

0

v+H

!

(1.22)

where H is the real scalar field corresponding to the Higgs boson. Performing this substitution, the

Lagrangian becomes:

L = (∂µH)2 +
g
02 +g

2

2
ZµZ

µ(v+H)2 +g
2
W

+
µ W

�µ(v+H)2 +V (v+H) (1.23)

The mass terms for W and Z bosons have been obtained in addition to the interactions between

these particles and the Higgs field H:

mW =
1
2

νgw, mZ =
1
2

ν

q

g
2
w +g

02, mγ = 0 (1.24)

where the photon remains massless and does not interact with the Higgs boson at tree level. The last

term in eq 1.23 gives the Higgs mass term (mH = ν
p

2λ ) as well as the interactions between the

Higgs boson and itself. Self-coupling of the Higgs boson is a parameter of significant interest, and

the experimental studies have been performed [7, 8].

Fermion masses and interactions:

The mechanism used to explain how fermions acquire mass is based on the same principles as the

vector boson masses, but the formalism is slightly different. The Lagrangian for a fermion field ψ

can be written as:

Lψ = ψ̄γµ
Dµψ = ψ̄i��Dµψ (1.25)

where the covariant derivative Dµ is same as eq 1.12. The term in the Lagrangian can be broken

into two: left- and right-handed components of the field:
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Figure 11 – The shape of the Higgs field potential V(φ ) for a single complex field in the simplified case of
the U(1) rotational symmetry.

ψ̄i��Dψ = ψ̄L��DψL + ψ̄Ri��DψR (1.26)

Since the W-boson only couples to the left-handed components of a fermion field, left-handed

fermions in the SU(2)L gauge group are represented as doublets, while right-handed fermions

are represented as singlets. As a result, right-handed fermions have I3 = 0 and Y = e, whereas

left-handed fermions have I3 = 1/2 and Y = e ± 1/2.

One can write the Lagrangian for a single generation of fermions as:

L = ĒLi��DEL + ēRu��DeR + Q̄Li��DQL + ūRi��DuR + d̄Ri��DdR (1.27)

where, EL and QL are left-handed lepton doublets and the left-handed quark doublets, respectively.

Expansion of the covariant derivative yields kinetic terms for every fermion as well as fermion-gauge

boson interactions. To generate the masses of the fermions, an additional Yukawa term is introduced

in the Lagrangian:

Le = λeĒLiφR j (1.28)

where φ is the Higgs doublet and λe is the electron Yukawa coupling. The Lagrangian for the first

generation leptons (here e) is given by:



Chapter 1. Theoretical introduction and Higgs boson searches at the LHC 22

Le =
�vλep

2
ēLeR +

λep
2

HēLeR (1.29)

The mass of e obtained is me = λev/
p

2, and the strength of the electron Higgs coupling is propor-

tional to me In a similar way, it is possible to generate mass terms and Higgs boson coupling terms

for other charged leptons and down-type quarks. The mechanism to explain the mass of the up-type

quarks requires the gauge-invariant transformation φ ! iσ2φ⇤ which gives Yukawa terms, a slightly

different form:

Lu =�iλµQ̄Lσ2φ⇤
uR (1.30)

In the case of the top quark, which is the focus of this thesis work, the mass and coupling terms are

identical to those of the electron:

Lt =
�vλtp

2
t̄LtR +

λtp
2

Ht̄LtR (1.31)

with the top mass proportional to the Yukawa coupling via mt = λtv/
p

2.

The Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix), represented by a 3 × 3 unitary

mixing matrix, describes the mixing between the neutrino mass and three flavour eigenstates [9, 10].

The lepton mass matrix G
`

i j has no off-diagonal entries since the lepton number is conserved for

each generation in the SM and the neutrinos are assumed to be massless. However, this is not the

case with the quark mass matrix G
u,d
i j , where off-diagonal entries are present and can be diagonalised

via four unitary matrices V
u,d
L,R , which results in the mass eigenstates:

ū
i
L,R =

�

V
u
L,R

�

ik
u

k
L,R; d̄

i
L,R =

⇣

V
d
L,R

⌘

ik
u

k
L,R (1.32)

By introducing mass eigenstates into the Lagrange density, its structure is preserved with the

exception of the flavor-changing quark interactions that are mediated by the charged vector bosons.

The quark mixing matrix, also known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix, is as

follows:

0

B

@

d
0

s
0

b
0

1

C

A
=VCKM

0

B

@

d

s

b

1

C

A
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0

B

@

Vud Vus Vub

Vcd Vcs Vcb
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C
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0

B
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d

s

b

1

C

A
, (1.33)
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V
u
L V

d†
L =VCKM (1.34)

where, the diagonal elements of the CKM matrix are close to one (|Vtb| = 0.999105 ± 0.000032) [5].

1.5 Quantum Chromodynamics

The theory that describes strong interactions based on SU(3)C colour charge is preserved is called

Quantum Chromodynamics (QCD). The QCD Lagrangian governs the dynamics of quarks and

gluons. The Lagrangian can be obtained in the same way as QED. The quark field can be expressed

as colour triplets q̄k = ( ¯qred, ¯qblue, ¯qgreen) that undergo a local gauge transformation as:

qk(x)�! exp(iαsλa/2(x))qk(x), α 2 R, a 2 1, ...,8 (1.35)

where, k is the flavour index, αa are the coupling constant of strong interactions, λa are the generators

of the SU(3) group called Gell-Mann matrices [11] and a is the colour index. The coupling between

quarks and gluons is added as the appropriate covariant derivative Dµ to maintain the local gauge

invariance of the Lagrangian:

Dµ = ∂µ � igs

λa

2
G

a
µ(x) (1.36)

where, G
a
µ are the eight gluon field strength tensors and gs is the coupling constant, which can be

expressed as the function of the coupling constant of the strong interaction as:

αs =
g

2
s

4π
(1.37)

A gluon field transforms under SU(3)C according to:

G
a
µ �! Ḡ

a
µ = G

a
µ � 1

gs

∂µθ a(x)+ f
abcθb(x)Gµc(x) (1.38)

in order to guarantee gauge invariance of the QCD Lagrangian under colour charge transformations,

where f
abc are structure constants of SU(3)C group. The final QCD Lagrangian which is SU(3)

gauge invariant is:
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LQCD = Σkq̄k

�

iγµ
Dµ �mk

�

qk �
1
4

G
µν
a G

a
µν (1.39)

with the gluon field strength tensor:

G
a
µν = ∂µG

a
ν �∂νG

a
µ �gs f

abc
G

b
µG

c
ν (1.40)

The additional term 1
4Gµν

a Ga
µν is needed in order to maintain local gauge invariance of the La-

grangian and results in the gluon self interactions. The gluons couple to themselves via three-gluon

or four-gluon interactions.

The rate or cross-section of the strong interactions can be expressed as a power series in αs:

σQCD = Σ
∞

i ciα
i
s (1.41)

When αs is small, this expansion is perturbative, meaning that the contribution of each subsequent

term is small compared to the contribution of the preceding terms. If the highest order term in a

σQCD calculation is linear in αs, the calculation is referred to as leading order (LO). If the sum is

completed up to the quadratic or cubic term in αs, the calculation is referred to as next-to-leading

order (NLO) or next-to-next-to-leading order (NNLO), respectively.

When compared to QED, self-coupling causes a different energy scaling behaviour. The dependence

of αs on the energy-scale (renormalization scale µR) is known as running of the strong coupling [12],

given by:

αs(µ
2
R) =

12π

(33�2n f )log

✓

µ
2
R

Λ
2
QCD

◆ (1.42)

where, ΛQCD is the non-perturbative constant indicating the scale at which the coupling diverges,

and n f is the number of light quark flavours. The running of the strong coupling is shown in

Figure 12 for µR = Q2, where Q2 is the momentum transfer.

As the µR is varied, each term in the perturbative expansion in 1.41 also changes. However, the

infinite sum remains unchanged. Generally, the µR values employed in pertubative QCD calculations

are set to O(Q2), ensuring that higher order terms remain small. The application of perturbation
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Figure 12 – Measurements of the running of the strong coupling collected by the Particle Data Group [5].

theory to compute scattering amplitudes is only possible for scales where Q2 � ΛQCD where,

αs(Q
2) ⌧ 1. At low energy scales, the effective coupling between two coloured particles increases,

and thus coloured objects cannot freely exist and form colourless bound states (hadrons). This

phenomenon is known as colour confinement. However, at high Q2 the αs is very small and quarks

are not confined to bound states. This phenomena is characterised as asymptotic freedom [13] in

QCD. This behaviour contrasts strikingly with QED, for example, where interaction rates fall nearly

to zero for particles that are separated by very long distances or decreasing Q2. The calculations of

collider phenomena, discussed in Section 1.6, are divided into two regimes [14, 15].

1. Physics at short distance where Q2 is high Q2 (perturbative in QCD)

2. Physics at long distance where Q2 is low (non-perturbative in QCD)

The separation of the two regimes can be done via factorization scale µF. The µF value is set such

that αs is sufficiently small and the cross-section can be calculated at fixed order in perturbation

theory. Below this value, calculations are non-perturbative in QCD and predictions rely on other

phenomenological models of low-energy. µF is commonly set to O(Q2), like µR. The calculations

at higher order terms are considered to be independent of the renormalization and factorization
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scales. However, some small residual dependence on µF and µR are expected from finite perturbative

expansions and can be covered as systematic uncertainties (see Section 5.5).

1.6 Characteristics of proton–proton collisions

In order to investigate physics of the elementary particles at the highest energies and the smallest

distance scales, collider experiments focus on hard-scatter (HS) interactions. A large momentum

transfer Q2 occurs between two incident particles in hard-scatter interactions. For Q2 � ΛQCD,

αs(Q
2)⌧ 1, hadrons are considered to be made of weakly interacting constituent called partons

(quark, anti-quark and gluons).

One constituent parton of each incoming proton participates in the hard scatter interaction in the

proton-proton (pp) collisions. The remaining partons can contribute to the sum of all the processes

that build up the final hadronic state in a collision, called underlying event (UE). Additionally, the

UE consists of particles from initial- and final-state radiation resulting from the hard interaction.

Figure 13 shows a diagram of a proton–proton event containing a HS interaction of cross section σ̂ .

Figure 13 – Feynman diagram of an example proton–proton event containing a hard-scatter interaction of
cross section σ̂ .

The distribution of the momentum fraction of the partons are described by the Parton Distribution

Functions (PDFs). The PDFs are convolved with parton-parton HS cross sections σ̂ to obtain the

full pp cross section σ :

σ(P1,P2) = Σi j

Z

dx1dx2 fi(x1,µ
2
F) f j(x2,µ

2
F)σ̂i j(p1, p2,αs(µ

2
F),Q

2/µ
2
F) (1.43)
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where, σ̂ is calculated to fixed order in perturbation theory for all the combinations of incoming

partons, denoted by i and j. fi, j represents their corresponding PDFs.

Parton Distribution Functions: As mentioned before, the PDFs describes the probability density

of a parton inside a proton to carry a certain momentum fraction x (Bjrken x) = �!p /
�!
P , where p is

the parton momentum and P is the proton momentum. The PDF depends on µF. Measurements of

PDFs are primarily based on data from Deep Inelastic Scattering, with additional input data from

neutrino scattering and hadron collider measurements [14,15]. An example of PDFs at two values of

µ
2
F = Q2 are shown in Figure 14. At high values of Q2, the gluon is the dominant proton constituent.

Figure 14 – The Parton Distribution Functions (PDFs), shown for two different factorisation scales
µ

2
F = Q2 = (a) 10 GeV2 and (b) 104 GeV2 [5].

Four flavour scheme and five flavour scheme: The processes involving b-quarks at HS level can

be treated in two distinct ways in QCD using two different factorisation schemes based on the

b-quark mass ΛQCD < mb ⌧ v: the four flavour scheme (4FS) and the five flavour scheme (5FS).

In 5FS, a massless b-quark is included among the constituents of the proton. The b-quarks are

treated in the same manner as the other light quarks. It comprises a b-quark PDF and the number of

light flavour quarks is set to n f = 5 in eq 1.42. In 4FS, the b-quarks are considered to be massive

and they appear only in the final state. The presence of b-quarks in the proton can happen only

through initial-state gluon splitting. The b-quarks PDF is set to zero, decoupling it from the QCD
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perturbative evolution, which includes only the four lightest flavours and the gluon. Thus also

decouples from the running of αs and the number of light flavour quarks is set to n f = 4. For high

scales, mass effects become negligible, collinear logarithms
⇣

log(Q2/mb)
⌘

associated with b-quark

radiation are large and must be resummed, and the 5FS is always more accurate. In contrast, mass

effects are significant near the production threshold, while collinear logs are small, and the 4FS is

more precise.

The QCD radiations below µF are modelled by parton showering (PS) algorithms. After the

calculation of the HS cross section, additional QCD radiation below the factorization scale is

modeled by parton showering algorithms. Parton showering algorithms use many different models,

such as angular ordered [16] and dipole [17] showering, to simulate chains of low-energy and

small-angle QCD radiation. To combine a parton showering algorithm with an HS matrix element

calculation, matching and merging algorithms are used to make sure the calculations are the same

and there is over-counting.

During the parton showering process, the quarks and gluons lose energy and move from a high

Q2 regime to a low Q2 regime. During this transition, partons undergo hadronisation, resulting in

a collimated jet of hadrons. There are several models that can be used to simulate hadronization

and colour flow in hadronic final states. The string [18] and cluster [19] models are the most

common ones. The underlying event, parton shower and hadronization, together referred as UEPS,

are non-perturbative in QCD. Generally, the parameters of these models are adjusted (tuned) [20]

based on data rather than being predicted a priori. These tunes are used a lot in simulations and

predictions, and the differences in their predictions are covered by taking into account the systematic

uncertainties.

1.7 Search for the Higgs Boson at LHC

The Higgs boson, which was the last missing piece of the SM, was discovered in 2012 by both

ATLAS [21] and CMS [22] collaborations at the LHC. This scalar particle associated to the Higgs

field, has a mass of (125.10 ± 0.14) GeV [5]. With mass parameter as fixed, its couplings and

production rates can be calculated. Since its discovery, with much larger data-set available at the

LHC, its properties have been investigated and found to be consistent with the SM predictions. The

precision measurements of the Higgs boson properties and couplings is crucial to probe the nature

of the EWSB and to unravel new physics phenomena [23].

Different Higgs production modes in various Higgs decay channels are exploited by the LHC

experiments to perform measurements of its properties. These production modes are listed here in

decreasing order of their cross-sections:
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• Gluon-gluon fusion (ggH): It is the dominant production mode, mediated by a virtual quark

loop, with the dominant contribution from the top due to its large Yukawa coupling.

• Vector boson fusion (VBF): In this production mode, the fusion of two vector boson (either

W
± or Z) produces a Higgs boson. This mode gives direct access to the coupling of heavy

gauge bosons to the Higgs. The initial quarks that are radiated are only slightly deviated, and

travel along their initial paths. The jets are mainly the remnants of the protons so they show

up two forward jets in the detector with large transverse momenta. Due to no QCD activity

between them, these jets are distinct and forms the characteristic signature of the process used

in the experimental analyses to exploit this production mode.

• Associated production with a vector boson (VH): This production mode is also named as

Higgs Strahlung, where the Higgs boson is produced in association with a W
± or a Z boson.

The presence of W
± / Z bosons in the final states is widely used experimentally as leptonic

decay is possible which helps to better identify the events and to reduce the background

contributions.

• Associated production with top-quark pair (tt̄H): This production mode allows a direct

measurement of the top Yukawa coupling, by producing the Higgs in the fusion of a top

quark-antiquark pair or through radiation from a top quark. This occurs at the tree-level

instead of virtual loop and allows the measurement in a model-independent way, unlike ggH.

Figure 15 shows the leading order Feynman diagrams of the ggH, VBH and VH processes. The

leading order Feynman diagrams for tt̄H production are shown in Figure 16.

Figure 15 – Representative leading order Feynman diagrams of the four main production modes of the Higgs
boson at the LHC [24]: (a) gluon-gluon fusion (ggH), (b) vector boson fusion (VBF), (c) Higgs
strahlung (VH).

Figure 17 illustrates the dependence of the cross-sections of the main Higgs boson production modes

on the center-of-mass energy in pp collisions. These cross-sections increase as the center-of-mass

energy increases. When compared to Run 1 (2010-2013), where the center-of-mass energy was 7

and 8 TeV, the tt̄H cross-section increased 13 TeV i.e by a factor of four in Run 2 (2015-2018).
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Figure 16 – Leading order Feynman diagrams of the tt̄H process.

Figure 17 – Cross-section production of Higgs boson with mH = 125 GeV as a function of the center-of-mass
energy

p
s [25].

Figure 18 illustrates the branching ratios of the Higgs boson decay modes as a function of its mass.

With a mass of mH = 125 Gev, the Higgs boson decays primarily to a bb̄ pair. The branching ratio

values of different decay modes with a mass of mH = 125 Gev is shown in Figure 19. The H ! bb̄

mode has the largest branching ratio of around 58.2%. The H ! WW⇤ has the second highest

branching ratio of 21.4%. Even though both of these decay modes have a high branching ratio,

they are difficult to access due to difficulties distinguishing them from background processes. The

purest decay modes are the H ! γγ and H ! ZZ⇤ ! 4` decay modes. These Higgs decay modes to

γγ and ZZ (ZZ⇤ ! 4`) decay modes have very low branching ratios of 0.2 % and 2.6 % (0.01 %)

respectively. These decay channels have high purity and and offers very clean signatures so they are

often referred to as the golden channels.
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In this thesis, the tt̄H production is explored in H ! bb̄ decay mode and more detailed overview

and motivation for this analysis is presented in Chapter 5.

Figure 18 – The branching ratios of the various decay modes of the SM Higgs boson as a function of its
mass [25].

The discovery of Higgs boson in 2012 was performed in these golden channels by exploiting the

data collected during Run 1 at 7 and 8 TeV center-of-mass energies at the LHC. The local significant

excess at ⇡ 125 GeV was observed by ATLAS experiment as shown in Figure 20 in H ! γγ and

H ! ZZ⇤ ! 4` channels. The significance of H ! γγ and H ! ZZ⇤ ! 4l was combined and was

measured to be 5.9 σ by ATLAS [26] and 5.8 σ by CMS [27], thus exceeding the 5 σ discovery

threshold. Over the next years, other main Higgs production modes in different Higgs decay channels

were also observed by both ATLAS and CMS collaborations [28–30]. However, this thesis will only

focus on the tt̄H(H ! bb̄) analysis, presented in Chapter 5.

1.8 Status of ttH measurements at the LHC

The tt̄H cross-section accounts for about 1% of the total Higgs boson production cross section. To

compensate this, the tt̄H measurement targets as many decay modes as possible. The first observation

of tt̄H production was reported by ATLAS [31] and CMS [32] in 2018. It was a very important

achievement since the discovery of Higgs boson in 2012 as it provides a direct way to probe

top-Higgs coupling, which would not be possible via Higgs decays. Different Higgs decay channels:
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Figure 19 – Branching ratio of the Higgs boson decays with a Higgs mass of mH = 125 GeV.

(a) (b)

Figure 20 – The invariant mass distribution of di-photon system in (a) H ! γγ and (b) H ! ZZ⇤ ! 4l channel,
compared to the background expectation for the combination of the

p
s = 7 TeV and

p
s = 8 TeV

data-sets [21].
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H ! bb̄/WW
⇤/ττ/ZZ

⇤/γγ were considered for the ttH measurement using Run 1 and partial Run 2

data-set. Based on their branching ratios and signal purity, each decay mode has its own set of merits

and challenges to exploit. Table 3, lists the sensitivities of the individual channels for the ATLAS tt̄H

combination. The luminosity varies among the various ttH analyses due to different levels of partial

data utilization. The H ! γγ and multilepton (H ! WW⇤/ττ/ZZ⇤) decay channels have the largest

significance. H ! γγ decay channel is mainly dominated by statistical uncertainties. The H ! bb̄

channel has a significantly lower sensitivity and is dominated by systematic uncertainties, primarily

due to large uncertainties in the tt̄ + bb̄ background modelling. The overall observed (expected)

significance was reported to be 6.3 (5.1) σ by ATLAS and 5.2 (4.2) σ by CMS. The signal strength,

which is the ratio of the observed production rate to the SM prediction, was reported to be 1.32+0.28
�0.26

by the ATLAS and 1.26+0.31
�0.26 by the CMS. Figure 21 and Figure 22 shows the distribution of events

in all analysis regions as a function of log10(S/B) in ATLAS and CMS, respectively.

Analysis Integrated luminosity (fb�1) tt̄H cross-section (fb) Obs. sig. Exp. sig.

H ! γγ 79.8 710+210
�190 (stat.) +120

�90 (syst.) 4.1 σ 3.7 σ

H ! Multilepton 36.1 790+150
�140 (stat.) +150

�140 (syst.) 4.1 σ 2.8 σ

H ! bb̄ 36.1 400+150
�140 (stat.) ±270 (syst.) 1.4 σ 1.6 σ

H ! ZZ⇤ ! 4` 79.8 < 900 (68% CL) 0 1.2 σ

Combined (13 TeV) 36.1 - 79.8 670 ± 90 (stat.)+ 110
� 100(syst.) 5.8 σ 4.9 σ

Combined (7, 8, 13 TeV) 4.5, 20.3, 36.1 - 79.8 - 6.3 σ 5.1 σ

Table 3 – List of the ATLAS measurement of the total tt̄H production cross sections at 13 TeV along with the
observed (Obs.) and expected (Exp.) significances (sig.) relative to the background-only hypothesis.
The results of both the individual and combined analyses are shown. An observed upper limit is
set to 68% confidence level (CL) in the H ! ZZ⇤ ! 4` decay channel using pseudo-experiments,
since no event is observed in this channel [31].

1.8.1 tt̄H(H ! bb̄) measurement results

The measurement of tt̄H production where Higgs boson decaying into a pair of b-quarks is performed

both by ATLAS and CMS. The latest tt̄H(H ! bb̄) measurement [33] by ATLAS was performed

using full Run 2 data corresponding to an integrated luminosity of 139 fb�1 [34]. This was the first

differential measurement of tt̄H(H ! bb̄), explored through Simplified Template Cross Sections

(STXS) formalism, described in Section 1.8.2. The ATLAS tt̄H(H ! bb̄) analysis, discussed in detail

in Chapter 5, focused on the events where at least one W-boson from either of the two top-quarks
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Figure 21 – Observed combined event yields with the ATLAS experiment in all analysis categories as a
function of log10(S/B), where S is the expected signal yield and B the background yield extracted
from the fit with freely floating signal. A clear tt̄H signal-like excess over the background is
visible for high log10(S/B) [31].

decay leptonically, referred to as the single-lepton channel. It used complex event categorisation

based on number of leptons, number of jets, number of b-jets at different b-tagging efficiencies

and number of boosted Higgs boson candidates to better extract the information of the signal

and background processes in dedicated phase space. The analysis was optimised using machine

learning techniques such as Boosted Decision Trees (BDTs) for reconstruction and classification, as

discussed in detail in Chapter 4. In addition to that, dedicated control regions were also defined to

constrain the irreducible tt̄ + bb̄ background. The signal strength was measured with an observed

(expected) significance of 1.0 (2.7) standard deviations and measured to be µ = 0.35+ 0.36
� 0.34, shown

in Figure 23. The measurement uncertainty was dominated by systematic uncertainties, especially

from tt̄+�1b modelling.

The latest CMS measurement of tt̄H(H ! bb̄) [35] was performed by combining two analyses,

using the 2016 data-set with 35.9 fb�1 and 2017 data-set with 41.5 fb�1. The CMS analysis cover

three channels i.e single-lepton, dilepton and fully hadronic channels (see Section 5.1). The analysis

employs multivariate techniques using BDTs (in dilepton channel) and Deep Neural Networks (in

single-lepton channel) and a matrix element method (in hadronic channel) for the signal extraction

fit. Figure 24 shows the value of the measured signal strength, µ = 1.15 ± 0.15(stat.)+0.28
�0.25 (syst.)
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Figure 22 – Observed combined event yields with the CMS experiment in all analysis categories as a function
of the log10(S/B), where S is the expected post-fit signal and B is expected post-fit background
yields. A clear tt̄H signal-like excess over the background is visible for high log10(S/B) [32].

with an observed (expected) significance of 3.9 (3.5) standard deviations.

Figure 23 – Fitted values of the tt̄H signal-strength parameter in the individual channels and in the inclusive
signal strength measurement with ATLAS experiment [33].

The systematic uncertainties of the ttH(H ! bb̄) CMS result are considerably lower than the

ATLAS result. The systematic model configuration used in ATLAS and CMS are relatively dif-
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Figure 24 – Best fit values of the tt̄H signal-strength in the combined fit of the 2016 and 2017 data-sets per
channel with CMS experiment [35].

ferent especially for tt̄ + �1b modelling. As mentioned before, the uncertainty associated to the

tt̄ + �1b modelling is dominant in the ATLAS analysis. In CMS, the combined tt̄ + bb̄ and tt̄ + cc̄

(tt̄ + heavy flavour) is around the same order as for the signal modelling uncertainty. This is ex-

plained by the fact that ATLAS takes into account more tt̄ + heavy flavour modelling components

than CMS. While the CMS result considers fewer shape uncertainties on tt̄ + jets. In addition, the

differences between the 4FS and 5FS (see Section 2.4.4) in the tt̄ + bb̄ modelling is fairly large

whereas this uncertainty is not considered in the CMS measurement.

1.8.2 Simplified Template Cross-section measurements

The Simplified Template Cross-Section (STXS) formalism [25,36] has been developed as a common

effort of different LHC experiments and theorists to perform signal strength measurements in

different exclusive kinematic phase space regions referred to as STXS bins. It allows much easier

combination of the results in different decay channels as well as different experiments. The kinematic

bins in the STXS formalisation are optimised to reduce theory model dependence, that are folded

into the measurements, to the greatest extent possible. A separate signal template, which presents

the signal MC prediction in the targeted kinematic region at the truth level, is defined for each

STXS bin. Most tt̄H production measurements, in prominent Higgs decay channels, allow for

STXS measurements where cross-section is measured as a function of Higgs transverse momentum
⇣

pH
T

⌘

. The tt̄H(H ! bb̄) process is ideal for probing differential cross-sections measurements,

due to its high production rate. The precise measurements in the higher pT regimes can also be
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exploited, which is otherwise challenging in other decay channels like tt̄H(H ! γγ), which lacks

statistics [37]. This process also allows the kinematic reconstruction of the candidate Higgs boson,

which is not possible in other Higgs decay channels, such as Higgs decay to multilepton. The STXS

bins definitions: 0–120 GeV, 120–200 GeV, 200–300 GeV, 300–450 GeV and 450-∞ GeV, were

used in the previous round of tt̄H(H ! bb̄) analysis using full Run 2 ATLAS experiment data. The

analysis presented in this thesis, several improvements were performed of which the first STXS

class (0–120 GeV) has been split into two i.e 0–60 GeV and 60–120 GeV. This was done to further

improve the measurement sensitivity in the lower pH
T regions, discussed in Chapter 5. Figure 25

shows the first differential measurement in tt̄H(H ! bb̄) channel performed in different truth pH
T

bins, labelled as p̂H
T , following the STXS formalism.

Figure 25 – Signal-strength measurements in the individual STXS truth pH
T bins along with inclusive signal

strength in tt̄H ! bb̄ channel [33].

The STXS bins defined based on pH
T are also sensitive to the Charge-Parity (CP) structure of the

Higgs boson [38] and to the Higgs self-coupling [39].
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CHAPTER

2

THE ATLAS EXPERIMENT

The Large Hadron Collider (LHC) [40], discussed in Section 2.1, is the most complex circular

particle accelerator ever built. The purpose of the LHC is to test the SM of particle physics while

also assisting in the exploration of new physics not covered by the SM. This machine produces

high-energy proton-proton (pp) collisions at a high rate, making it an ideal environment for studying

the elementary particles and their interactions. The ATLAS detector, which is the largest general-

purpose particle detector at the LHC is discussed in Section 2.2. The data collected by this detector

is used to perform the studies, presented in this thesis. Section 2.3 gives a summary of the simulation

chain set up for physics analyses. Section 2.4 describes the reconstruction and identification methods

used in ATLAS detector, which targets the objects produced during the collisions. In view of the

High-Luminosity upgrade of the LHC, the ATLAS detector will undergo a major upgrade, discussed

in Section 2.5.

2.1 The Large Hadron Collider

The LHC consists of a 26.7 km ring, placed at a depth of around 100 m underground at the

Franco-Swiss border near Geneva. It is operated by the European Organization for Nuclear Research

(CERN1). Currently more than 6,000 users, over half of the planet’s high-energy physicists, carry out

fundamental research at CERN. The LHC was approved by the CERN Council in 1994 and built from

1998 to 2008 to replace the Large Electron-Positron (LEP) collider [41] decommissioned in 2000.

The Large Hadron Collider (LHC) is a particle particle accelerator that collides charged particles

(protons and heavy ions) with incredibly high energy and velocity. Bunches of approximately 1011

protons collide with a gap of 25 ns between two consecutive LHC bunches, known as bunch-spacing.

1 CERN is the acronym of the organization’s name in French, Conseil Européen pour la Recherche Nucléaire
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The collisions occur at specific points where particle detectors are installed. This makes the LHC a

key tool for modern particle physics research, allowing researchers to investigate not only numerous

Standard Model (SM) processes, but also rare processes and the new physics scenarios that may

arise at high energies. The first beam was circulated in 2008, and the first operational run (Run

1) began in March 2010 with successful collisions of proton beams at a center-of-mass energy of

7 TeV, and lasted until early 2013 with the collision energy boosted successfully to 8 TeV in 2012.

The LHC ring and detectors were upgraded from 2013 to 2015 to operate at higher center-of-mass

energy and luminosity. The Run 2 phase, which lasted from mid-2015 to the end of 2018, had a

13 TeV energy. Between 2019 and 2022, the LHC and the detectors has undergone another upgrade

(LS2), now followed by the Run 3 where a 13.6 TeV energy is recorded. The LHC will be upgraded

to the High Luminosity-LHC (HL-LHC) and Run 4 is planned to start in 2029 (see Section 2.5).

2.1.1 The accelerator design

The LHC is mainly designed to accelerate protons, as they are easy to obtain, stable and have low

energy loss through synchrotron radiation compared to electrons or positrons. The protons used

for collisions at the LHC are obtained by ionizing hydrogen gas using a strong electric field. These

protons undergo consecutive accelerating stages before reaching the LHC which is the final element

in the CERN accelerator chain depicted in Figure 26.

Linear accelerator 4 (Linac4) [42] accelerates the protons to an energy of 160 MeV which are

then passed through three successive circular accelerators: proton synchrotron BOOSTER, Proton

Synchrotron (PS) and Super Proton Synchrotron (SPS), increasing their energy up to around 1.4 GeV

, 25 GeV and 450 GeV respectively. Finally, the protons are transferred to the two beam pipes of the

LHC, where they circulate in two opposite-direction beams. After around 20 minutes, the proton

beams at the LHC are stabilized and given their final shape while their energy is increased up to

6.8 TeV in Run 3.

The LHC ring is made up of eight straight sections and arcs. The radiofrequency (RF) cavities in

the LHC, which are placed in the straight sections, are used to accelerate the particles. The protons

are accelerated to the necessary energy by an electric field of 5 MV/m oscillating at 400 MHz

generated by the RF cavities. The proton beams inside the LHC are maintained in a curved trajectory

by a variety of superconducting magnets that are cooled to a temperature of 1.9 K using superfluid

Helium. Two primary types of magnets are used: dipoles, which bend proton beams in arcs, and

quadrupoles, which focus the beams and keep the protons away from the pipe walls. A magnetic

field of 8.3 T is generated by 1232 dipole magnets, each measuring roughly 15 m in length. A

cross-section of an LHC dipole element is shown in the Figure 27. It consists of two beam pipes

around which two opposite-sign magnetic fields are formed to curve the trajectory of the counter-
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Figure 26 – Schematic view of the CERN hadron accelerator chain [43]. The LHC is the last element of this
system, in which the beams reach their highest energies.

rotating proton beams. There are 858 quadrupoles in all, with nominal gradients of 223 T/m and

241 T/m. The breadth and height of the beams are controlled by these magnets, which are positioned

in pairs along the LHC ring. In the LHC, additional magnetic multipoles (sextupoles, octupoles, and

decapoles) are used to counteract divergence-inducing effects that result in proton beam defects.

The instantaneous luminosity L can be used to describe the collision rate at a collider, which is an

important value for characterizing the performance of the accelerator. It is defined as:

L =
N

2
pnb frev

4πσxσy

F (2.1)

where Np is the number of protons per bunch, nb the number of bunches per beam, frev the beam

revolution frequency (around 11 kHz), σx(y) the beam dispersion in the transverse plane correspond-

ing to the size of the beamspot and F a geometric correction factor encoding the effect of the beams

crossing angle at the interaction point. The peak instantaneous luminosity achieved in Run 2 was

around 2 x 1034 cm�2s�1. The integrated luminosity given by L =
R

Ldt, is a measurement of the

collected data size. The ATLAS Run 2 data sample corresponded to an integrated luminosity of

139 fb�1 is used to perform tt̄H(H ! bb̄) analyses, presented in Chapter 5.
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Figure 27 – The cross section of the LHC main dipole [44].

During a data collection period, the total number of events collected for a certain process considered

by an analysis, via

N = L σε (2.2)

where σ is the process cross-section and ε is the event selection efficiency convoluting trigger,

offline reconstruction and analysis phase space selection efficiencies. The large number of protons

contained inside a bunch can lead to multiple proton-proton collisions per bunch crossing, called pile-

up. The mean number of interactions per crossing is denoted as <µ>. The hard-scatter interactions

are of interest for the physics analyses and the pile-up effects needs to be suppressed. The Run 2

operation at the LHC, gives an average of <µ> = 33.7 for the ATLAS experiment in the years from

2015 to 2018, as shown in Figure 28.

2.1.2 The LHC experiments

The four key experiments at the LHC are discussed here:

• The ATLAS (A Toroidal LHC ApparatuS) experiment [46]: It is a multipurpose experiment

intended to detect the majority of pp collision products over a wide energy range. The ATLAS

detector is discussed in detail in Section 2.2.
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Figure 28 – Luminosity-weighted distribution of the mean number of interactions per crossing < µ > for the
Run 2 pp collision data at

p
s = 13 TeV [45].

• The CMS (Compact Muon Solenoid) experiment [47]: It is a general-purpose experiment

with a physics program similar to ATLAS, although it employs different detector technologies.

It is advantageous to have two independent experiments targeting the same physics analyses

since it allows them to cross-check their results and increase the precision.

• The LHCb (LHC beauty) experiment [48]: It is an experiment dedicated to heavy flavour

physics at the LHC. Its main goal is to look for indirect evidence of new physics via precision

measurements of CP violation and rare decays of beauty and charm hadrons. LHCb operates

at a lower luminosity compared to ATLAS and CMS (around 1032 cm�2s�1).

• The ALICE (A Large Ion Collider Experiment) experiment [49]: It is a heavy-ion experiment

that studies the physics of strongly interacting matter and quark-gluon plasma at high energy

density and temperature.

Besides the above main detectors, there are other small experiments [50–53], installed around the

LHC designed to perform dedicated physics analyses.

2.2 The ATLAS detector

The ATLAS detector [46] is a general-purpose detector located at one of the LHC interaction points,

to collect the data used in the study presented in this thesis. It measures 25 m in height, 44 m in
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length, and weighs approximately 7000 tons. Figure 29 shows a computer-generated view of the

ATLAS detector. It has a cylindrical structure made up of several sub-detector layers and offers

nearly full solid angle coverage of 4π . The detector consists of a Inner Detector (ID) surrounded by

a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and an outer Muon

Spectrometer (MS) situated on three large superconducting air-core toroidal magnets. These are

designed to achieve high granularity, fast electronics readout, efficient object reconstruction and

resolution.

Figure 29 – A schematic view of the full ATLAS detector [54].

2.2.1 The ATLAS coordinate system

Throughout ATLAS, a right-handed coordinate system is used, with the origin defined at the nominal

interaction point. Figure 30 shows the sketch of this coordinate system where the longitudinal z-axis

runs parallel to the beam direction, whereas the transverse xy-plane runs perpendicular to it. The

positive x-axis points from the origin to the center of the LHC ring, the positive y-axis points to the

ground surface. A spherical polar coordinate system is also commonly used, where the polar angle

θ is measured from the positive z-axis, the azimuthal angle φ is measured from the positive x-axis,

and the radial coordinate R =

q

x2 +y2 is the measured distance from the beamline.
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The momentum of a collision product in the transverse direction is referred to as pT, where pT =

p sinθ . The rapidity y is defined as:

y =
1
2
� ln

✓

E + pz

E � pz

◆

(2.3)

where, E is the energy and pz is the z component of the momentum vector. When the mass of the

particle is negligible with respect to its energy, as if often true for particles at the LHC, the rapidity

reduces to the pseudorapidity (η):

η =�ln

✓

tan
θ

2

◆

(2.4)

Using pseudorapidity is beneficial as its difference ∆η is invariant under Lorentz boost along the

beam axis. The distance of two points in the η-φ plane is given by:

∆R =

q

∆η2 +∆φ 2 (2.5)

where ∆η and ∆φ are differences of η and φ , respectively.

Figure 30 – A sketch of the ATLAS coordinate System.
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2.2.2 Inner Detector

The Inner Detector (ID) [55, 56] is the innermost component of the ATLAS detector, shown in

Figure 31. The ID is crucial in measuring the momentum of charged particles using the 2T solenoid

magnetic field and reconstructing the primary vertex. The highly energetic particles usually do

not get absorbed in this part of the detector. The path of charged particles described by an object

is known as a track. The precise tracking of particles is required for momentum measurements,

particle and vertex identification, and physics object reconstruction.

The ID has three sub-components: the Pixel Detector, the Semi-Conductor Tracker (SCT), and

Transition Radiation Tracker (TRT). These three sub-components deliver precise measurements and

tracking within the pseudorapidity range |η | < 2.5.

Figure 31 – Overview of the of ATLAS Inner Detector, showing the three primary sub-detectors: Pixels
(inclusing IBL), SCT, and TRT [57].

Pixel detector:

The Pixel Detector [58] is at the innermost part of the ID. By providing the tracking information so

close to the interaction point, accurate track reconstruction can be achieved. The innermost layer

is called IBL [59], and was installed in-between Run 1 and Run 2 at R = 33.25 mm in the barrel

region. On the outer side, three pixel layers in the barrel region are installed at R = 50.5, 88.5,

122.5 mm. It provides 3D measurements with an excellent resolution of 10 µm in r-φ and 115 µm

in z direction. The resolution improves even more with the smaller pixels of the IBL: 8 µm in
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r-φ and 40 µm in z direction. This enables accurate reconstruction of charged tracks, interaction

vertices, and secondary vertices, which is crucial for b-tagging (Chapter 3). There are six pixel

end-cap layers, three on either side of the interaction points. The pixel detector also includes pixel

sensors that works through the creation of electron-hole pairs when a particle passes through them.

In total, the pixel detector contains 92 M readout channels, which accounts for 50% of the total

readout channels of the ATLAS detector.

Semi-Conductor Tracker:

The SCT [60] works in a similar way to the pixel detector but is made up of narrow and long strips

rather than small pixels. The strips cover up to |η | < 2.5 and has a size of 12 cm in length and

80 µm in width. It comprises four barrel layers and 2 end-caps with nine disks each. The SCT

system achieves a hit resolution of 17 µm in r-phi and 580 µm in z direction. The SCT is crucial

for tracking in the plane perpendicular to the beam and it measures particles across a significantly

broader area than the Pixel Detector. It is composed of four double layers of silicon strips, with a

total of 6.3 M readout channels.

Transition Radiation Tracker:

The last and outermost component of the ID is the Transition Radiation Tracker (TRT) which has

an effective range of |η | < 2.0. The TRT is a gaseous detector comprised of straw tubes with a

diameter of 4 mm and with a maximum length of 150 cm. The straw tubes contain gold-plated

tungsten wires, and are filled with a gas mixture of Xe (70 %), CO2 (27 %) and O2 (3 %). In Run 2,

Xe was replaced with argon for the straw tubes belonging to modules with large gas leakage [61].

In the barrel and end-cap sections, the hit resolution is 120 µm and 130 µm, respectively. Particles

that pass through the straws of the TRT ionize the gas within the tube resulting in a current along

the wires leading to a detection. The size of the TRT active area allows for many measurements

throughout the path of charged particle, improving momentum measurements. TRT has a total of

350,000 read-out channels. Electrons can be identified by their larger in ionization deposited in each

straw in comparison to other particles.

2.2.3 Calorimeters

The ATLAS calorimeter system is located outside of the ID with |η | < 4.9 and full φ coverage

around the beam axis. Figure 32 shows the design of entire calorimeter system. It is capable of

precisely measuring the particle energy by absorbing them, as well as measuring shower parameters

to allow particle identification. It is composed of electromagnetic and hadronic calorimeters . Both

are sampling calorimeters, which absorb energy in high-density metal and periodically sample the

shape of the subsequent particle shower, inferring the energy deposit of the particles.
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Figure 32 – Longitudinal cut of the calorimeter system showing the Liquid Argon and tile calorimeters [62,
63].

Electromagnetic calorimeter:

The Electromagnetic calorimeter (ECal), collects energy from electromagnetically interacting

particles such as charged particles and photons. It has two half-barrel sections separated at the

center of the detector and two end-cap wheels. The barrel sections cover the region |η | < 1.475

and the end-caps extend over 1.375 < |η | < 3.2. It is a high granularity sampling calorimeter that

is composed out of layers of lead plate absorbers that are interleaved with Kapton electrodes and

immersed in a liquid argon (LAr) active material. An accordion-shaped geometry was adopted for

the absorbers and electrodes to ensure a full coverage in φ without gaps. The end-cap wheels sit on

both sides of the barrel and are made up of an inner and outer coaxial wheel.

Hadronic calorimeter:

The Hadronic calorimeter (HCal) is located outside the ECal, and is composed of three different

components. First, the tile calorimeter extends over |η | < 1.7. It is made up of three sections,

the central one with a range from |η | < 1.0 and two outer sections over 0.8 < |η | < 1.7. The

tile calorimeter are made up of steel and plastic and measure the energy deposition of charged

and neutral hadrons. The two sides of the tiles have wavelength shifting fibers that direct the

photons from the scintillator into photomultiplier tubes. Second, the end-cap calorimeters, which

are based on the the LAr technology, are directly outside the EM calorimeter, covering the range

1.5 < |η | < 3.2. Finally the Forward calorimeter (FCal) finishes out the LAr system in the range

3.1 < |η | < 4.9. The FCal has three modules, one made of copper designed for EM measurements

and two made of tungsten designed for hadronic measurements. The modules consist of longitudinal
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channels parallel to the beam axis. These longitudinal channels contain concentric rods and tubes

separated by a LAr gap, and the metal of the modules serves as the sensitive medium.

2.2.4 Muon Spectrometer

The Muon Spectrometer (MS) [64], shown in Figure 33 is placed at the outermost part of the ATLAS

since muons punch through the calorimeters due to their long lifetime and small energy loss. The MS

is made up of precision tracking concentric cylindrical shell chambers in the barrel region at radii of

5 m, 7.5 m, and 10 m. In the two end-cap regions the muon chambers are made up of large wheels

at |z| ⇠ 7.5 m, 10.8 m, 14 m, and 21.5 m all perpendicular to the z-axis. The forward muon-tracking

region (called the muon Small Wheel) has been upgraded with two New Small Wheels (NSW) [65]

for Run 3.The NSW will have two chamber technologies, one for the Level-1 trigger function and

one for precision tracking. The powerful toroidal magnetic field produced by the magnetic system,

covered in the next section deflects muons exiting the calorimetry system and the MS tracks provide

precision measurements of their momentum in complement to the ID. The MS is made up of four

different kind of chambers that serve either precision tracking or triggering functionality. The two

high precision chambers are Monitored Drift Tubes (MDT) and Cathode Strip Chambers (CSC).

The MDT chambers are installed in the barrel and end-cap region covering covering |η | < 2.7 region,

except for the part where CSC chambers are installed covering 2 < |η | < 2.7 region. It delivers

spatial resolution of 80 µm per tube and a resolution of 35 µm per chamber. The other tracking

chamber, the CSC, operates from 2.0 < |η | < 2.7. Each chamber contains four planes which provides

four independent η , φ measurements. It delivers a spatial resolution of 40 µm in the η-plane and 5

mm in the φ -plane. The two trigger systems work together to cover the range |η | < 2.4 with the

Resistive Plate Chambers (RPC) operating at |η | < 1.05. Thin Gap Chambers (TGC) covering the

remainder of the range. Both these trigger chambers primarily provide bunch crossing identification

and coarse muon tracking information.

2.2.5 Magnet system

The magnet system [67] of the ATLAS detector is designed to generate a magnetic field that allows

for precise measurement of charged particle momentum. The magnet system is made up of four

superconducting magnets: the central solenoid, the barrel toroid, and the two end-cap toroids. The

four components produce different magnetic fields with the central solenoid having a peak field

strength of 2.6 T and the barrel and end-cap toroids having 3.9 T and 4.1 T strengths respectively.

The central solenoid is aligned on the beam axis in order to provide an axial magnetic field for ID.



Chapter 2. The ATLAS experiment 49

Figure 33 – Transverse cut view of the central muon system [66].

2.2.6 Trigger system and Data Acquisition

Around 40 million bunch crossings per second takes place at the LHC, which creates a massive

data acquisition and storage challenge. The vast majority of these collisions involve only minor

scattering of protons and are thus less important to the physics analyses. At a size of around 1.5 MB

per event there is no feasible way to store all this data for later analysis anyway. In addition to this,

the read-out system is not capable to extract data at 40 MHz and the CPU time needed to reconstruct

40 MHz of events is not manageable. To solve this, ATLAS uses a trigger [68] and data acquisition

system, shown in Figure 34, to filter the data in quasi real-time and decide which events to keep.

The first level of filtering is accomplished with a system of custom hardware electronics called the

Level-1 hardware trigger. The Level 1 trigger uses information from the calorimeter system and the

MS to decide whether or not to keep an event. The incoming data rate of 40 MHz is reduced to 100

kHz before reaching the the high level trigger (HLT). The HLT is a software based trigger running

on a computing system where reconstruction algorithms are run on either full event readout data, or

by looking at particular isolated regions of the detector. This software-based trigger reduces the L1

rate of 100 kHz to an average output rate of 1.5 kHz. The data rate is reduced by a factor of about

40,000 in total, allowing the full record of all remaining events to be written to permanent storage.

Since 2015, ATLAS has continued to record increasing luminosities every year, necessitating an

increase in the trigger thresholds to keep the rate within limits. However, several improvements to

the trigger have been made in order to avoid raising the thresholds as much as possible.
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Figure 34 – Schematic view of the ATLAS trigger and data acquisition system in Run 2 [68].

2.3 Simulating Collision Events

The connection between the theory of SM, described in Chapter 1.1 and the data collected by the

ATLAS experiment hinges on the ability to accurately predict the rate and properties of physics

events. The simulation of pp collision events, as outlined in Section 1.6, is required to perform

ATLAS physics analyses.

Event Generation:

The event generation is split into two parts: the matrix element (ME) generation, which describes the

hard scattering, and the parton shower (PS) evolution and hadronisation modelling, which includes

initial state radiation (ISR) and final state radiation (FSR). The factorization of pp collisions and the

event simulation using Parton Distribution Functions (PDFs) are covered in Section 1.6. The gener-

ation of simulated events corresponding to various physics processes begins with producing what is

known as event-level Monte-Carlo (MC). This is accomplished by using a generator to calculate

the ME. The ME generators used in the studies presented in this thesis are POWHEGBOX [69],

GRAPH5_aMC@NLO [70] and SHERPA [71]. These ME generators are interfaced with the parton

shower generators: PYTHIA8 [72] and HERWIG7 [73]. On the other hand, SHERPA has its own

showering and hadronization models and thus does not require interfacing. In addition, the param-
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eters of the models used to describe non-perturbative processes can be adjusted using collision

data. The ATLAS experiment commonly uses A14 parameters [20] for PYTHIA8 or the H7UE set

of tuned parameters [74] for HERWIG7. The output produced via the event generator sequence is

known as the MC history. It is a list of four-vectors of all the particles produced in the event after

hadronization and decay of the majority of the intermediate unstable particles. The particles in the

MC history record are commonly known as truth particles.

Detector Simulation:

The simulated MC event depicts the physics that occurs during a collision, but it does not represent

the real signal produced by the ATLAS detector. The simulation of the detector is performed using

the GEometry ANd Tracking (GEANT4) toolkit [75]. GEANT4 simulates an event by propagating

the particles from the event through the detector and evaluating the interactions, energy depositions,

and momentum transfers that occur as the particles interact with the different materials. The detector

simulation phase consumes the majority of the computational power required for the entire event

simulation. This is primarily due to the formation of electromagnetic PS in the ATLAS calorimeter

system, which takes the longest to simulate. As an illustration, a single tt̄t event simulation using

a highly detailed detector description, known as the full detector simulation (FULLSIM), requires

approximately 15 mn of CPU time [76]. To reduce the amount of CPU time required to process

an event, a faster and less refined alternative simulation known as ATLFAST-II (AFII) [76] was

implemented. This is accomplished primarily by using pre-simulated electromagnetic showers of

low energy particles rather than developing them from scratch. FULLSIM samples have higher

precision and are used as the nonimal samples for physics analyses. AFII samples are used for

optimization studies and to evaluate theoretical systematic uncertainties.

Digitization:

When collision data is collected, the detector electronics responds to the physical objects, resulting

in digital signals. Digitization is accomplished by converting the simulated energy deposits from

the GEANT 4 toolkit into electrical responses. Noise is introduced to better reflect the hardware

setup and finally the data readout structure of the ATLAS electronics is recreated. The HLT and

reconstruction are then applied to the simulated outputs in the same way that they are applied to

experimental data.

The final step, known as reconstruction, is performed and is common to both simulated and real

data events.
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2.4 Object reconstruction and identification in ATLAS

The ATLAS experiment employs a number of specialised algorithms designed to determine and

reconstruct the properties of the various physics objects present in an event. These objects are jets,

muons, photons, electrons, taus, and missing transverse energy. Figure 35, depicts the path that

different particles take through the detector. The charged particles leave a track in the ID, electrons

and photons shower in the ECal and hadrons shower in the HCal. The tt̄H(H ! bb̄) analysis,

presented in Chapter 5, makes use of electrons, muons, jets, and missing transverse momentum and

are discussed in Section 2.4.1, 2.4.2, 2.4.3, 2.4.4 and 2.4.5, respectively.

Figure 35 – Diagram of particle paths in the ATLAS detector [77].

2.4.1 Tracks

Tracking algorithm:

Tracks are the reconstructed trajectories of charged particles in the ATLAS ID.A charged particle

hitting a sensor of the ID are first translated into a space-point called hit. The reconstruction

of the tracks [78] is based on the combination of several algorithms [71]. In the first step, the

track finding employs an inside-out algorithm in which track seeds are initially constructed from

the hits in the pixel and SCT detectors. These seeds are then extended by iteratively adding hits

from the subsequent SCT layers to form a track candidate. This is performed by a combinatorial

Kalman filter [79]. At this stage, several track candidates are obtained per seed if there are multiple

compatible track extrapolations on the same layer. A procedure for resolving ambiguity is used to

identify the best track candidates and reduce the number of fake tracks. The procedure involves a
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score-based ranking scheme for tracks which takes into account several inputs. The number and

type of hits on the track are important factors considered when ranking. When a hit is associated

to one track, a bonus is given to the score of this track. Sometimes a hit can also be associated to

several tracks and is called shared-hit. This could be due to the presence of a fake track or because

the detector granularity is insufficient to resolve nearby particles. A neural network is trained to

distinguish between these two cases [80]. The tracks which pass these quality requirements are then

extended towards the TRT, where further hits are added. The final stage of track reconstruction

is based on outside-in algorithm. The algorithm takes into account hits that were not chosen by

the inside-out algorithm. It starts by finding track segments in the TRT and then extrapolates them

back to the silicon detectors. This strategy is well suited for the tracks stemming from long-lived

particles.

Vertexing algorithm:

A vertex is the point of origin of tracks. The primary vertex (PV) is of particular interest because

it represents the HS interaction of partons in colliding protons. The PV within an event are re-

constructed by applying an iterative vertex finding algorithm on tracks with pT > 400 MeV. To

find a vertex seed, the algorithm first searches for the global maximum in the distribution of the

z-positions of the selected tracks. In the next step, the optimal vertex position is determined and

the associated uncertainties are estimated. To achieve this, the seed position and nearby tracks are

fed into the χ2 fitting algorithm as input, which iteratively removes tracks that are incompatible

with the vertex. Tracks which are displaced by more than 7σ are used as a new vertex seed and the

procedure is repeated until no more seeds are found in the event. The vertex with the largest ∑p2
T

of the associated tracks forms the PV, while the remaining vertices are considered to be pile-up

interactions.

Track parameters:

After the tracks are reconstructed, a fit is performed to estimate the track parameters. The track

candidates are defined by five variables, depicted in Figure 36:

• Transverse impact parameter (d0): It is the distance of closest approach of the track to the PV

in the transverse plane.

• Longitudinal impact parameter (z0): It is the distance between the PV and the point of closest

approach of the track to it, along the beam axis.

• Azimuthal angle (φ ): It is the angle between the transverse momentum vector �!pT and the

x-axis in the transverse plane.

• Polar angle θ : It is the angle between the momentum vector �!p and the z-axis.
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• Electric charge (e) over the transverse momentum (pT): The ratio is calculated using the

magnetic field strength B and the track curvature Rcurv.

Figure 36 – A schematic diagram of a track depicting the track impact parameters d0 and z0.

2.4.2 Electrons

The reconstruction of electrons [81] is performed using the ID and calorimeter system information.

The electron, being the charged particle, leaves a track in the ID and is then absorbed in the

electromagnetic calorimeter, where it leaves an electromagnetic shower.

Reconstruction:

The electrons are reconstructed in the region |η | < 2.47 excluding 1.37 < |η | < 1.52 region,

which is the transition region of barrel and end-cap. First, electron candidates are selected by

matching reconstructed tracks to clusters formed by the energy deposited in the electromagnetic

calorimeter [82]. These tracks are obtained after applying the Gaussian-sum filter [83] (GSF)

method which takes into account the energy loss through related to bremsstrahlung. Second, the

clusters are built around the seeds using an extended window of size 3 × 7 in the barrel region or

5 x 5 in the end-cap region. It is done by expanding the cluster size on either side of the original

seed in φ or η . In the transition region (1.37 < |η | < 1.52), a method employing both elements

of the extended-window size is utilised. Ultimately, the energy of the clusters must be calibrated
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to match the energy of the original electrons based on data and simulated samples [84, 85]. The

calibration is performed only after selecting electron candidates. The energy scale and resolution

are calibrated using Z!ee decays. The energy of the final candidate electron is calculated from the

calibrated energy of the extended-window cluster, while the φ and η directions are derived from the

corresponding track parameters.

Identification and isolation criteria:

Once the electron reconstruction is complete, identification algorithms are used to remove the

misidentified electrons. These could be from non-prompt electrons produced in photon conver-

sions or from QCD jets and heavy-flavoured hadron decays. The identification is done using a

likelihood discriminant using variables measured in the electromagnetic calorimeter and the ID.

The discriminating variables are defined based on the electromagnetic shower shape and the track

quality information. Depending on the likelihood discriminant distribution, three working points are

defined in increasing order of background rejection: Loose, Medium, and Tight. Figure 37 depicts

the electron identification efficiency for the aforementioned working points in Z!ee decays.

Figure 37 – Electrons identification efficiency in Z!ee decays. The efficiencies are calculated with respect
to reconstructed electrons [81].

The isolation criteria are applied to suppress background from non-prompt electrons produced in the

heavy-flavour hadron decays or from light hadrons misidentified as electrons. These requirements

uses a track-based and a calorimeter-based variable, which are associated with the pT of the tracks

and the energy deposited in the calorimeters within a cone centred around the electron track,

respectively.
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2.4.3 Muons

Muons pass through the calorimeter system with minimum energy loss. The information from the

ID and the MS can be combined for muon reconstruction [86].

Reconstruction:

The reconstruction of muons starts with independent reconstructions in the ID and MS. Then infor-

mation from both reconstruction algorithms is combined to form muon tracks. The reconstruction

in the ID is the same as for other charged particles, described in Section 2.4.1. In the MS, the

reconstruction starts with the formation of local track segments in each muon chamber. These

segments are then combined into track candidates, which require at least two matching segments

per track, with the exception of the barrel end-cap transition region, where one segment can be used.

The track candidates are built by fitting these segments using a global χ2 fit. The combined muon

reconstruction is carried out using various algorithms that take the information provided by the ID,

MS, and calorimeters as inputs. Muons are divided into Combined (CB), Segment-tagged (ST),

Calorimeter-tagged (CT) and Extrapolated (ET) muons, based on which sub-detector is used in the

reconstruction.

• Combined muons: These muon candidates can be reconstructed by fitting hits from matched

ID and MS tracks.

• Segment-tagged muons: These muons are those that do not fall into the combined muons

category. They are reconstructed by an ID muon track being associated with one local track

segment from the MS.

• Calorimeter-tagged muons: These muons are reconstructed by an ID track matched to an

energy deposit in the calorimeter. This muon type has the lowest purity and is optimised for

the region |η | < 0.1.

• Extrapolated muons: These muons are only reconstructed in the MS by extending the accep-

tance to 2.5 < |η | < 2.7, which is not covered by the ID.

Identification and isolation criteria:

The non-prompt muons which mainly comes from pions and kaons decays, can be suppressed via

identification procedure similar to electrons. Reconstructing prompt muons with a high efficiency

and a good momentum resolution requires particular amount of hits in both the ID and MS. The

combined muons are required to have at least three hits ((one hit and at most one hole) in at least

two MDT layers except for the |η | < 0.1 region where only one MDT layer is sufficient. In physics
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analyses, different working points can be used based in the analyses. In this thesis, Loose and

Medium are used. The reconstruction efficiency at medium WP with pT > 20 GeV is 96.1%. The

medium WP aims to reduce systematic reconstruction and calibration uncertainties associated with

muons. In case of loose WP, the reconstruction efficiency reaches up to 98.1%, where all the muon

types are used. Figure 38 shows the reconstruction efficiency measured in data from Z ! µµ and

J/ψ ! µµ events for Medium WPs.

Figure 38 – The reconstruction efficiency as a function of the muon pT for Z ! µµ and J/ψ ! µµ events
for Medium WPs [86].

The muon isolation is used to reject heavy flavour semi-leptonic decays taking place inside the

jets. The isolation criterias are similar to the ones used for the electrons. The track-based and

calorimeter-based isolation criteria are used, similar to electron.

2.4.4 Jets

Due to the colour confinement, discussed in Section 1.5, gluons and quarks produced as final state

partons cannot exist as free particles and are not directly observed in the detector. Instead, they

hadronize by producing collimated showers, called jets. The jets are observed as clusters of energy

deposits in the calorimeter system, which can be associated to the charged particle tracks in the ID.

Jet reconstruction:

The reconstruction of jets depends on the chosen clustering algorithm which enables to match the

physics objects to the initial partons from which they originated. The charged particles in the jet,

deposit energy in the ECal and HCal after leaving tracks in the ID. The energy is also deposited in

these calorimeters by neutral objects. These form topoclusters, which are topologically adjacent clus-
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ters of calorimeter. These are constructed with the help of a specific clustering method [87]. These

clusters are used to perform standard ATLAS jet reconstruction using the anti-kt algorithm [88]. It

is a clustering algorithm that combines sequentially the four-vector objects into final jets, which is a

cone-like object, characterised by a radius parameter R. The distances dij between objects i and j,

diB between object i and the beam2 line B, is introduced:

di j = min(p
2p
Ti , p

2p
T j)

∆
2
i j

R
2 , (2.6)

diB =
1

p
2
Ti

(2.7)

where, ∆
2
ij = (yi �yj)2 + (φi �φ j)2 and pT(i), yi, φi are the transverse momentum, rapidity and

azimuthal angle of particle i( j). The clustering process, involves the identification of the minimum

between dij and diB. When diB is the smallest, particle i is termed as jet and is removed from the list

of objects. This recursive method is followed until no objects are left in the list. This algorithm has

the advantage of producing reconstructed jets with stable shape and properties that are not easily

influenced when one particle is replaced with two collinear particles and when soft particles are

added. In this thesis, the jets used for the analyses are reconstructed via the anti-kt algorithm with

R=0.4.

Other than topo-clusters, the anti�kt algorithm takes a variety of objects as inputs. The jet that can

be reconstructed using tracks from ID is referred to as track-jet. Both the calorimeter jets and the

track jets are reconstructed based on the detector’s response. These jets are referred to as reco-jets.

The jets that are reconstructed in generator-level simulated events are known as truth-jets. These

are not reconstructed from topo-clusters found in the calorimeter, but rather from stable particles

generated in MC samples.

Jet calibration:

These reconstructed jets are calibrated to match the energy of the truth-jets. Figure 39, describes

different steps involved in jet calibration in ATLAS. The energy scale of the electromagnetic

showers is used for the initial calibration of the calorimeter clusters. The four-moment of jets are

reconstructed from the clusters, which go through several stages of calibration. First the jet is

corrected to point back to the PV, without affecting the measured energy of the jet. Second, the

pile-up corrections are applied to reduce the contribution from the pile-up. This is carried out in

2 not to be confused with a real beam
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two stages: the area-based correction followed by the residual pile-up correction. After removing

the pile-up contribution, the MC samples without pile-up are used to calculate the absolute jet

energy scale (JES). It allows the correction of the jet four-momenta to the particle-level energy

scale of truth-jets. Following that, the global sequential calibration is implemented to account for

multiplicative corrections to the jet energy measurement. These corrections are based on calorimeter,

MS, and track-based variables. The tracking information is used to reduce the flavour dependence of

the calorimeter response to jets, i.e. the observed difference in calorimeter response to jets initiated

by different parton flavours. The calorimeter energy deposit and MS information are utilised to

enhance the jet energy resolution. Finally the in situ energy calibration is derived from data using

well-measured physics objects such as photons and Z-bosons, to account for mismodelings in

simulations and their calibration steps.

Pile-up jet corrections:

Many physics analyses require the suppression of jets originating from pile-up interactions [89] in

order to properly measure the targeted HS process. Jets are filtered using a Jet Vertex Tagging (JVT)

algorithm [90] to select HS jets. The JVT provides a discriminant based on likelihood function of

two variables. First, the fraction of the total momentum of tracks in the jet which is associated with

the hard-scatter PV. Second, the ratio of the sum of the pT of tracks within the jet which originate

from the hard-scatter PV to the fully calibrated jet pT. The JVT score ranges from 0 (pileup-like)

to 1 (HS-like). After the jet is calibrated and reconstructed, JVT is used to reject pileup for jets by

requiring JVT > 0.59 for jets with pT < 60 GeV and |η | < 2.4.

Figure 39 – Jet calibration chain used in ATLAS [91].

Electromagnetic Topocluster and Particle Flow jets: ATLAS employs a variety of jet collections

based on the anti�kt algorithm. EMTopo and Particle Flow jets are two of these which are employed

in the tt̄H(H ! bb̄) analysis, presented in Chapter 5. EMTopo jets are reconstructed using only

calorimeter-based energy information [91]. The topoclusters are calibrated at the EM energy scale.



Chapter 2. The ATLAS experiment 60

The jets are fully calibrated using the jet calibration technique including a correction for pileup,

as described above. Until recently, EMTopo jets were the main jet collection used for ATLAS

physics analyses. The ATLAS Particle Flow (PFlow) [92] reconstruction method combines the

measurements from the calorimeter and the ID to improve jet measurements as opposed to simply

using track based corrections in the jet calibration. First, the tracks from charged particles in the ID

are matched to the topoclusters from calorimeters. The energy deposit of the topoclusters matched

to tracks is replaced with the corresponding track momentum. The addition of track measurements

is beneficial because the momentum resolution of tracking detectors exceeds the energy resolution

of calorimeters for low-energy charged particles. In addition, the reconstruction is extended to softer

particles whose energy deposits do not surpass the threshold for topocluster formation. The tracking

detectors have finer granularity than calorimeters and thus, provide much better angular resolution

for single charged particles. As a result of these advantages, PFlow jets have improved angular and

energy resolution compared to EMTopo jets. After proper jet calibration and reconstruction, the

PFlow jets are associated to the HS interaction by requiring JVT > 0.2 for jets with pT < 60 GeV

and |η | < 2.4. This selection criteria has the same pileup jet rejection as the tighter JVT selection

for EMTopo jets with a higher HS jet efficiency.

b-tagging working points:

The b-jets coming from the hadronization of b-quarks can be distinguished from other kinds of jets

by exploiting the distinctive features of b-hadrons. The identification of b-jets, known as b-tagging,

is important for many physics analyses and is detailed in Chapter. 3.

In an ideal situation, the full spectrum of the final b-tagging discriminant would be calibrated and

utilised in the physics analyses. This continuous calibration would necessitate a separate calibration

in very fine efficiency bins, resulting in an enormous complexity and required workload that is not

feasible within required time scales in ATLAS. Therefore, four distinct b-tagging working points

(WPs) covering various physics analysis requirements are defined. The efficiency with which a jet

of specific flavour j (b, c or light) is identified by a b-tagging algorithm is given by:

ε j =
N

j
pass(D >C f )

N
j

total

(2.8)

where Nj
pass(D > Cf) are the number of jets of flavour j passing the cut C f on the tagger discriminant

D and Nj
total are number of jets of flavour j before the cut. The WPs are defined using the b-jet

efficiency εb evaluated on a tt̄ sample. The b-tagging is calibrated independently for each WP in

order to correct the b-tagging efficiency in simulation to data. To do this, data-MC scale factors (SF)

are estimated as the ratio between data and simulated efficiencies which are applied on the MC
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result. Table 4 shows the list of WPs used in ATLAS. In addition to the b-jet efficiency, each WP is

distinguished by its c- and light-jet rejection, which is the inverse of the c- and light-jet efficiency,

respectively.

Selection b-jet efficiency
loose 85%
medium 77 %
tight 70 %
very-tight 60 %

Table 4 – List of the single cut WPs for b-tagging in ATLAS.

The misidentification improves with a decrease in signal efficiency and consequently rejects more

background in exchange for a lower signal statistics. Every jet satisfying the WP criteria is classified

as a b-jet. In addition to WPs, five tag score bins, known as the pseudo-continuous b-tagging scores

, are defined. These scores are retrieved based on the single cut WPs, listed in Table 5.

b-jet efficiency tag score
(85,100)% 1
(77,85)% 2
(70,77)% 3
(60,70)% 4
(0,60)% 5

Table 5 – List of the pseudo-continuous b-tagging scores in ATLAS.

Most of the c- and light -jets end up in first bin [85, 100]%. The last bin [0, 60]% mainly consists of

b-jets which passes the tightest WP (60%). Compared to single cut WPs, the pseudo-continuous

b-tagging scores provides significant additional information. The requirement for b-tagging can

be eased, and by including the the pseudo-continuous b-tagging score as an additional input, the

information is retained while gaining more statistics. It is a measure of the quality of the b-jet that is

particularly useful for the multivariate analysis methods, presented in Chapter 4.

2.4.5 Missing transverse momentum

The measurement of missing transverse momentum [93], referred as MET or Emiss
T , is critical for

processes involving decays into neutrino which majorly escapes from the detector without any

interaction. In this thesis, the Emiss
T is of interest because the leptonic final states in the tt̄H(H ! bb̄)

analyses contain neutrinos. Practically, it is not possible to measure the full missing energy due to

the inaccessibility of initial parton momenta. These however can be assumed to be negligible in the
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transverse plane given that pp collisions occur along the z-axis. Emiss
T is the negative vector sum of

the transverse momenta of all reconstructed and calibrated electrons, photons, jets, hadronically

decaying τ-leptons, and muons, denoted as hard term. To account for the contribution from underly-

ing events and soft radiations, an additional term is considered. It is computed using the momenta

of tracks from the ID that match the HS vertex but are not associated with the reconstructed objects.

This method is more resistant to pile-up interaction contamination than the calorimeter-based

approach used in Run 1, which used energy deposits in calorimeters that were not associated with

the hard objects.

2.5 High-Luminosity LHC upgrade and ATLAS Phase II

upgrades

The High Luminosity Large Hadron Collider (HL-LHC) is an upgrade of the LHC which aims at

maximize the sensitivity for physics analyses by boosting the instantaneous luminosity. Figure 40

shows the timeline of the LHC baseline programme including the HL-LHC phase. The HL-LHC

upgrade [94] is expected to increase the instantaneous luminosity up to 7⇥1034cm�2s�1, resulting

in an accumulated integrated luminosity of around 4 ab�1 by the end of HL-LHC data-taking. This

will also lead to an increase of up to 200 proton-proton collisions per bunch crossing.
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Figure 40 – Timeline of the LHC baseline programme including the HL-LHC phase [95].
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The large amount of data collected during HL-LHC phase will greatly improve the experimental

precision of SM measurements, and also allow to investigate Higgs boson self-coupling and rare

phenomenas. The collider upgrade is complemented by experiment upgrades allowing the detectors

to fully exploit the HL-LHC potential while also dealing with very high pile-up of up to 200 in the

ultimate scenario. Due to these challenging conditions the current ATLAS ID [46] must be replaced

with ATLAS Inner Tracker (ITk) [96,97]. In addition, a High-Granularity Timing Detector [98] will

also be installed covering the η region between 2.4 and 4 to help mitigate pile-up effects by using

timing information to distinguish between collisions that are close in space but far apart in time.

Major upgrades are also planned for the calorimeters [99] [100] and MS [86] read-out electronics.

The trigger and data acquisition system will undergo upgrade [101], with the purpose of a faster and

more efficient online selection of collision events.

2.5.1 ATLAS Inner Tracker

The ATLAS Inner Tracker (ITk) is an all-silicon tracker which extends the tracking coverage up to

|η | = 4 (was 2.5 for the ID). It consists of two subsystems: the inner Pixel detector [97] and the

outer Strip detector [96].

The combination of these detectors are designed to provide at least nine precision measurements per

track for the full expected beam spot of size of 50 mm, for each charged particle with pT > 1 GeV

passing through the detector within |η | < 4. The ITk layout, considered for performing the b-tagging

studies, presented in Chapter 4, is shown in Figure 41. The radius at which the barrel layers are

placed and the z-positions of the end-cap disks, have been selected to optimize the number of hits

on a track and the pT resolution. Figure 42 shows a display of the ATLAS ITK detector.

ITk Strip detector

The Strip Detector that extends up to |η | = 2.7 has a four-layer barrel section and a six-disk end-cap

on each side (cf. Figure 41). Each strip barrel layer extends along the z-axis from -1.4 m to +1.4 m.

The two inner (outer) barrel layers have 300 (320) µm thick and 24.1 mm (48.2 mm) long strip

sensors whereas the end-caps have strips ranging in length from 19 to 60.1 mm depending on the

radius. Each barrel layer (end-cap disk) consists of pairs of detectors mounted back-to-back.

ITk Pixel detector

The Pixel detector provides tracking coverage up to |η | = 4 and has five pixel layers and multiple

inclined or vertical ring-shaped end-cap disks (see Figure 41). Different pixel pitches and pixel

sensors are used in the ITk layers. The pixel pitch of 50 ⇥ 50 µm2 and 25 ⇥ 100 µm2 have been

considered for the pixel sensors. The ITk layout considered for the studies shown in Chapter 3, uses

a pixel pitch of 50 ⇥ 50 µm2 throughout the whole pixel detector. Due to the extreme radiation
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(a)

(b)

Figure 41 – (a) A schematic depiction of the ITk layout considered in most studies presented in this thesis. (b)
A zoomed-in view of the Pixel detector. In each case, only one quadrant and only active detector
elements are shown. The active elements of the strip detector are shown in blue, and those of the
pixel detector are shown in red. The horizontal axis is along the beam line with zero being the
interaction point. The vertical axis is the radius measured from the interaction region [102].
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Figure 42 – Display of the latest Inner Tracker layout [1].

environment expected at the HL-LHC, the two innermost barrel and ring layers are replaceable. The

remaining outer layers and rings are expected to last the entire lifetime of the ITk.

At the time of writing, optimizations of the ITk layour have been carried out and a new updated

ITk layout has been adopted by the ATLAS [1]. The radius of the innermost pixel layer (L0) is

reduced from 39 to 34 mm and the pixel sensor pitch to be used in the barrel in L0 has also been

fixed to 25 ⇥ 100 µm2. The rest of the pixel detector will still be based on the original pixel pitch of

50 ⇥ 50 µm2. These changes significantly improved the transverse impact parameter resolution of

the reconstructed tracks, which is strongly correlated with the b-tagging performance. The accuracy

of the simulation has also been improved, reflecting the most recent ITk detector engineering

developments.



66

CHAPTER

3

EXPECTED B-TAGGING PERFORMANCE

WITH THE ATLAS PHASE 2 DETECTOR

Many physics analyses at the LHC rely on b-jet identification, such as top physics and measuring

Higgs boson couplings to heavy quarks like tt̄H(H ! bb̄) process, which is explored in Chapter 5.

With a much larger data-set at the upcoming HL-LHC, b-jet identification will be crucial for

investigating Higgs boson self-coupling and maximising sensitivity for precision measurements

and new physics searches. This is why several algorithms are developed within ATLAS for the

identification of b-jets, commonly called b-tagging. The intrinsic properties of b-jets, introduced

in Section 3.1, are used to define the b-tagging algorithms, described in Section 3.2. The tracking

information from ATLAS ID is critical for b-tagging. As mentioned before, the current ID will

be replaced by the ATLAS ITk, to maintain tracking performance in extreme conditions during

the HL-LHC phase. The robust tracking performance against HL-LHC conditions is essential

in order to maintain and possibly improve the current Run 2 b-tagging performance for the ITk.

The b-tagging performance is thus an important benchmark for the tracking performance of the

ITk detector. After a general introduction to b-tagging, this chapter will primarily investigate the

b-tagging performance with the ITk, as presented in Section 3.3. One of the main contributions of

this thesis are some re-optimisation of b-taggers, discussed in Section 3.4. The overall developments

in b-tagging algorithms for the ITk have been used for performance studies based on the evolved

ITk layout, as described in 3.5.



Chapter 3. Expected b-tagging performance with the ATLAS Phase 2 detector 67

3.1 b-hadron properties

The identification of the b-jets originating from the hadronization of b-quarks is made possible

by the distinctive properties of the b-hadrons produced in the process. These are the fundamental

elements upon which b-tagging algorithms are built. One of the most distinctive b-hadrons property

is their relatively long lifetime (τ ⇡ 1.5 ps). As an example, b-hadrons with a transverse momentum

of pT = 50 GeV and a mass of about 5 GeV, will have a significant transverse flight path length of

Lxy = βγcτ = 4 mm. This provides two signatures that the b-tagging algorithms can directly exploit.

Firstly, the b-hadron decay gives rise to at least one secondary vertex (SV) displaced with respect

to the primary vertex (PV) where the hard-scatter collision occurred. Secondly, the charged decay

products of the b-hadron coming from the displaced vertex, will be reconstructed as tracks having

large Impact Parameters (IP). The transverse IP (d0), is the distance of closest approach of the

track to the PV point, in the r�φ projections. The longitudinal IP (z0) is defined as the difference

between the coordinates of the PV and of the track at this point of closest approach. The Figure 43

depicts the aforementioned properties.

Figure 43 – A sketch illustrating the distinctive properties of a b-jet, namely the presence of a secondary
vertex within the jet and the large transverse impact parameters (d0) of the tracks originating
from the displaced vertex.

Another feature of b-hadrons that is useful for b-tagging algorithms is their relatively high mass (⇡
5 GeV) in comparison to c- and light-hadrons. As a result, b-hadron decays generate a large number

of charged particles, resulting in high track multiplicity and large opening angles within b-jets.

Similar to b-hadrons, c-hadrons have a lower decay multiplicity and have shorter lifetime, resulting

in a smaller IP. This results in similar but not identical jet topologies of c- and b-jets, making them
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difficult to distinguish. The majority of the tracks within the light-jets originate directly from the

fragmentation of quarks.

3.2 b-tagging algorithms

The b-tagging algorithms used by ATLAS physics analyses to distinguish b-jets from c- and light-jets

are built in two steps. First, the low-level b-taggers are developed by directly utilising the properties

of b-hadrons (see Section 3.1). These low-level b-tagging algorithms, are either IP- or SV-based

algorithms, as detailed in Section 3.2.1 and Section 3.2.2, respectively. The development of low-level

b-tagging algorithms is the main focus of the expected b-tagging performance studies with the ITk

detector. Second, since their performances are largely uncorrelated, they can be combined into a

single powerful discriminant, referred to as high-level b-taggers. Until recently, ATLAS employed

the BDT-based b-tagger MV2, described in Section3.2.3, which has been replaced by the Deep

Neural Network-based b-tagger DL1, described in Section3.2.4. The developments in low-level

b-taggers, presented in Section 3.3 and Section 3.4, were utilised in performance studies based on

the updated ITk layout, which also investigated MV2 performance. Overall, the final b-tagging

quantities are computed after applying a specific cut on the b-tagging discriminant distribution,

commonly known as the working point (WP), introduced in Section 2.4.4.

Figures of merit for b-tagging performance: Many figures of merit for b-tagging performance

are based on certain key quantities. The first, is the efficiency with which a b-jet is identified by

a b-tagging algorithm, known as the b-jet tagging efficiency. The second, is the probability of

mistakenly tagging a light-jet as a b-jet, known as mis-tag rate. This can also be expressed as

rejection factor, which is defined as the inverse of the mis-tag rates. The classification power can be

measured by plotting the receiver operating characteristic (ROC) curve for each tagger. The ROC

curve is essentially the background rejection as a function of the signal efficiency. Both the signal

efficiency (here b-jet efficiency) and the background rejection are varied by the WP, which defines

the signal/background cut on the tagger output. As an illustration, when the WP is set to 70%, any

jet with a b-tagger output greater than 0.7 is classified as a b-jet, while any jet with a b-tagger output

less than 0.7 is classified as light-jet.

3.2.1 Impact parameter-based algorithm

The IP-based algorithms utilise the long decay path of the b-hadron, resulting in a displaced vertex.

The IP of tracks is computed with respect to the event PV candidate. It is possible to assign a sign

to the IP (d0 and z0), defined relatively to the jet direction. The sign is based on whether the point of

closest approach of the track to the PV is in front of or behind the PV, as illustrated in Figure 44.
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Figure 44 – A sketch illustrating the definition of positive and negative impact parameters signs based on the
angle between the jet and the line between the primary vertex and the point of closest approach
of the track.

The tracks associated with b-hadron decays are more likely to have a positive sign, while tracks

associated with particles produced directly at the PV have equal probabilities of getting a positive

or negative sign. The tracks with pT > 1 GeV and fulfilling the requirements of |d0| < 1 mm and

|z0 sinθ | < 1.5 mm are considered to reduce the contamination from pile-up interactions. IP3D

tagger makes use of these d0 and z0 significances in two-dimensional template

S ⌘
 

d0

σd0

,
z0 sinθ

σz0sinθ

!

(3.1)

where, σd0
and σz0 sinθ are the uncertainties on the reconstructed d0 and z0 sinθ respectively.

Figure 45 shows the distributions for the d0 and z0 sinθ significances for the tracks from b- and

light- jets.

Probability density functions (PDFs) obtained from reference histograms for d0 and z0 sinθ signifi-

cances are derived from MC simulation. They are separated into exclusive categories based on the

hit-based categories associated with different track quality1 and track kinematic. In order to increase

the discriminating power, PDFs are used for the various track categories and for each jet-flavour

hypothesis to calculate the ratios of the b- and light-jet probabilities. The IP3D is based on the

log-likelihood ratio (LLR) method, which is computed as the sum of the per-track contributions:

IP3D = ∑
Tracks

log
pb

pu
(3.2)

1 Quality of tracks is determined by the resolution with which its impact parameters are measured
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(a) (b)

Figure 45 – The distributions of (a) d0 and (b) z0 sinθ significances in the category of central tracks from b-
and light- jets with |η | < 1. The distributions are obtained with "50x50 µm2" and "25x100 µm2"
pixel pitches of the ITK layout [103].

where, pb and pu are the PDFs for the b- and light-flavour jet flavour hypotheses, respectively.

Figure 46 shows the IP3D LLR distribution for b-jets, c-jets and light-jets.

Figure 46 – IP3D log-likelihood ratio distribution for b-jets, c-jets and light-jets obtained in tt̄ events simulated
with the ITk detector.
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Different LLRs are potentially built to separate either b- from light-jets, as well as b- from c-jets,

and c-jets from light-jets. All three discriminants can be used by high-level flavour taggers when fed

as inputs. The scope of this study focuses only on IP3D algorithm separating b- and light-flavour

jets and the other two are not used hereafter. The IP3D b-tagging performance with the ITk detector

is presented in Section 3.3.

3.2.2 Secondary vertex-based algorithms

The reconstruction of displaced SV within the jet is exploited by the SV-based algorithms. The

Single Secondary Vertex Finder (SSVF) [104] is one such algorithm that aims to reconstruct an

inclusive SV per jet. The reconstruction begins with the identification of all possible two-track

vertices built with all tracks associated with the jet, while rejecting tracks compatible with long-lived

particle decay (Kaons or Λ), photon conversions, or hadronic interactions with the detector material.

The description is precise for ITk and very similar to what is done for recent Run 3, where some of

the features involving track reconstruction are updated in Run 3. [105, 106]

If at least a two-track vertex remains, a new vertex is fitted with all tracks from the accepted two-

track vertices, with outliers removed iteratively from this collection of tracks. In case a b-jet contains

both b- and c-hadron decay vertices, the SSVF merges these vertices into a common single vertex

if they are close, or reconstructs the vertex with the largest track multiplicity if they are far apart.

The SSVF algorithm has a small probability of reconstructing a (fake) vertex when there are no

real SV in the jet. This feature is crucial for the rejection of light jets in the b-tagging. Several track

selections are applied before forming all possible two-track vertices. Tracks are ordered according

to their pT and at most 25 tracks with largest pT are considered, in order to reduce the number of

fake vertices. Their transverse impact parameter must fulfil |d0| < 3.5 mm and |z0 sinθ | < 25 mm

selection. In order to mitigate the higher hadronic interactions between detector materials, further

track cleaning is done such as implementing material rejection to discard SV close to the layers of

the pixel detector.

The properties of this SV are then used as inputs to a likelihood ratio formalism similar to the

one used for the IP3D tagger (cf. Section 3.2.1), known as the SV1 algorithm. SV1 exploits the

following properties of the reconstructed secondary vertex:

• Vertex mass (invariant mass of all charged-particle tracks used to reconstruct the vertex)

• Ratio of the sum of the energies of these tracks to the sum of the energies of all tracks in the

jet (charged energy fraction)

• Number of two-track vertices (N2T)
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• Angular distance ∆R between the jet axis and the direction of the line joining PV and SV

SV1 uses a two-dimensional distribution of the first two variables and two one-dimensional distribu-

tions of the latter variables. Figure 47 illustrates some of the properties of SVs reconstructed by the

SSVF algorithm. The SV1 tagger performance in context to the default ITk layout is presented in

Section 3.3.

(a) (b)

(c) (d)

Figure 47 – The properties associated with the secondary vertices reconstructed by the SSVF algorithm for
b-, c- and light-jets in simulated tt̄ events: (a) number of two-track vertices reconstructed within
the jet, (b) invariant mass and (c) the energy fraction defined as the ratio of the energy of tracks
associated with the SV relative to the energy of all tracks reconstructed within the jet and (d) ∆R
between the jet axis and the direction of the line joining the PV and the SV.
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JetFitter [107, 108] is a topological multi-vertex algorithm that attempts to reconstruct the full

b - hadron decay chain by exploiting the b- and c-hadrons decay topology inside the jet. The

b-tagging studies presented in this thesis do not cover JetFitter.

3.2.3 MV2

MV2 [109] is a multivariate algorithm based on a Boosted Decision Tree (see Section 4.2) that

combines inputs from the low-level taggers, IP3D, SV1, and JetFitter, to improve discrimination

between jet flavours. To take advantage of the correlations with the other input variables, the

kinematic properties of the jets, like pT and |η |, are also included in the BDT training. The BDT

employs b-jets as the signal class and c- and light-jets as a single background class. A c-jet fraction

of 7% and a light-jet fraction of 93% was found to be best for balancing c vs light-jet performance,

at least for a wide range of analyses. This tagger is known as MV2c10, which was used as the

recommended flavour-tagger for the EMTopo jets (see Section 2.4.4) for ATLAS physics analyses

using Run 2 data. In this thesis, the following tagger will be referred to as MV2.

3.2.4 DL1

DL1 [110] is a multivariate algorithm based on a Deep Neural Networks (DNNs see Section 4.4)

that combines inputs used for MV2 with the addition of JetFitter c-tagging variables. The DL1 has a

multi-class DNN output corresponding to the probabilities for a jet to be a b-jet, a c-jet or a light-jet.

Figure 48 shows the performance of high level tagger (MV2 and DL1) and low-level taggers (IP3D,

SV1, JetFitter) in terms of the background light-jets rejection as a function of the b-jet efficiency.

When compared to low-level algorithm performances, high-level tagger shows increase in light-jet

rejection by factor of around 10 at 70% b-tagging efficiency. When compared between MV2 and

DL1, the light-jet rejection with DL1 is improved by 30% at 70% b-tagging efficiency. A c-jet

fraction of 1.8% and a light-jet fraction of 98.2% were found to be the best values for balancing

c vs light - jet performance. The DL1r b-tagger, which is a version of DL1, also combines the result

of the RNNIP algorithm [111], which is based on a recurrent neural network. RNNIP uses the same

information as the IP-based algorithms and also exploits the correlation between the IP of the tracks.

Due to the improved b-tagging performance of DL1r when compared to MV2c10, it is used as the

recommended flavour-tagger for the PFlow jets (see Section 2.4.4). The latest tt̄H(H)! bb̄ analysis,

documented in Chapter 5, uses PFlow-jets using DL1r tagger and aims to exploit the benefits from

improvements in b-tagging algorithm DL1r to improve the sensitivity.



Chapter 3. Expected b-tagging performance with the ATLAS Phase 2 detector 74

Figure 48 – Light-jet rejection vs the b-tagging efficiency for the IP3D, SV1, JetFitter, MV2 and DL1
b-tagging algorithms evaluated in tt̄ events [109].

3.3 b-tagging performance in ITk

b-tagging performance studies in ITk aim to have at-least comparable performance to current Run-2,

in spite of the more challenging pile-up conditions. The b-tagging developments related to the ITk

at the ATLAS software level have been carried out for a while, and the previous developments

were incorporated in ATLAS software release 20.20 (will be referred as r20.20). This software

release was decommissioned after the HGTD TDR [98], in early 2020. Therefore, there is a need

to re-establish r20.20 functionality and performance in new ATLAS upgrade release 21.9 (will

be referred as r21.9). My work primarily focuses on migrating the previous developments from

r20.20 to r21.9, particularly low-level b-taggers. The reference histograms templates used for the

IP3D and SV1 LLR formalism in the following study are derived from simulations in r20.20 with

an ITk layout similar to the one used in this study for r21.9. In this section, the overall b-tagging

performances are compared and analyzed between r20.20 and r21.9. The primary goal is to achieve

similar performance between the releases. Additional developments are also done in r21.9, discussed

in Section 3.4.
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3.3.1 Samples and physics objects selections

The studies described in this section, are done using simulated Monte Carlo samples produced in

proton-proton collisions with a center-of-mass energy of
p

s = 14 TeV. This sample was generated

using POWHEG BOX [69, 112] interfaced to the PYTHIA 8 [72] parton shower model with the A14

set of tuned parameters. The EVTGEN 1.2.0 [113] was employed for the simulation of the b- and

c-hadron decays. In order to assess the b-tagging performance in HL-LHC conditions, samples

are generated with pile-up value of µ = 200. Samples without pile-up have also generated in

order to perform cross-checks. The tracks reconstructed in the ITk, the primary vertex, and the jet

direction acquired from calorimeter jets are the most relevant objects for b-tagging. The primary and

pile-up interaction vertices are reconstructed using the Adaptive Multi-Vertex Finder(AMVF) [114]

algorithm. The primary vertex is chosen as the one with the largest sum of squared transverse

momenta (Σp2
T) of the associated tracks. Simulation studies in tt̄ events illustrate that using these

criteria, the probability of identifying the proper signal primary vertex is around 95%.

The tracks are reconstructed, following the procedure described in Section 2.4.1.Tracks are then

ranked accordingly to their hit content and track fit quality, where ambiguities between multiple track

candidates are solved by comparing the corresponding scores and keeping the track with the highest

score. The final reconstructed tracks are obtained after applying the η dependent tracking selections,

summarized in Table 6. Depending on the b-tagging algorithm used, further track selections are

applied subsequently. The b-tagging algorithms also rely on the association of tracks with jets. The

association of jets to tracks is realized through a geometric matching by exploiting ∆R between

the track and the jet axis. Since decay products from energetic heavy-flavoured hadrons are more

collimated, the R requirement varies as a function of jet pT, being wider for low pT values and

narrower for high pT values [115].

Selections |η | > 2 2 < |η | < 2.6 2.6 < |η | < 4
pixel + strip hits � 9 � 8 � 7
pixel hits � 1 � 1 � 1
holes  2  2  2
pT [MeV] > 900 > 400 > 400
|d0| mm  2  2  10
|z0| cm  20  20  20

Table 6 – Summary of the tracking selection criteria applied to reconstructed tracks in different η regions in
the ITk detector [97]. A hole is an intersection of the predicted particle’s trajectory with an active
sensor element from which no measurement is assigned to the track (inactive sensors are not taken
into account). Additional cuts are also applied for b-tagging quality selection.

The jets are reconstructed by clustering energy deposits in the calorimeter with the anti-kt algo-

rithm [88] with a radius parameter of 0.4. The key objects, b-, c- or light-jets in the simulation are
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labeled, first by searching for b-hadrons within the cone of radius ∆R < 0.3 around the jet-axis.

If no b-hadron is found, the algorithm is repeated for c-hadrons, and for τ leptons. Finally, the

remaining jets that do not fit into the previous categories are classified as light-flavor jets. The

transverse momenta of the b- and c-hadrons are required to be larger than 5 GeV. In this document,

only jets with pT > 20 GeV and |η | < 4 are selected. In order to reject jets originating from pile-up

interactions, truth-matching is applied to these selected jets. Truth-matching refers to the matching

criteria to match the reconstructed jets to the particle-level jets or truth jets within ∆R < 0.3 around

the jet-axis. Truth-jets are reconstructed in simulated events at generator-level and are not recon-

structed from topo-clusters found in the calorimeter, but rather from stable particles generated in

MC samples. Also, the events where the selected PV is not within 0.1 mm from the true position of

the HS vertex along the beam axis are discarded. Furthermore, generator-level jet filter for light-jets

is also implemented, to reject light-jets matched to isolated electrons. This selection is defined as

electron veto and is used as default matching scheme for light-jets in the following studies. Apart

from this, another light-jet matching scheme to match light-quarks coming from top decays, referred

as top-matching is used for the additional checks.

3.3.2 Track variable and track category studies

The b-tagging algorithm implementation in r21.9 has been synchronised with the developments

in r20.20, particularly in IP3D and SV1 tagging algorithms. Thus, it is necessary to check the

functionality and performance of the latest software implementation, and compare those with the

one obtained with r20.20. To begin with, the track-related variables used in the definition of the

track categories are analysed between r21.9 and r20.20. These track categories, which can depend

on the quality of tracks are used in computation of IP3D tagger performance. The quality of tracks

is determined by the resolution with which its impact parameters are measured and is inherently

dependent on the hit content. Figure 49 shows the number of pixel and strip hits as a function of η .

In contrast to r20.20, the tracks with zero pixel hits are observed in r21.9. This might come from the

track conversions, primarily the proportion of photons converting as a result of interactions with the

detector material, which reaches 20% at η = 0 [1]. For accurate extrapolation of a trajectory track

back to the PV, it is essential for a track to have a first measured hit at a small radius in the detector.

If tracks lack this measurement in the first pixel layer i.e innermost or the second pixel layer i.e

next-to-innermost layers, the resolution of their impact parameters will be low. Knowing whether

the hit in the innermost and next-to-innermost layers is expected or not is also a quality criterion.

If the extrapolation of the helix in that layer crosses an active part of the silicon sensor, a hit is

expected in that layer. Figure 50 shows the number of innermost pixel hits and next-to innermost

pixel hits as a function of η .



Chapter 3. Expected b-tagging performance with the ATLAS Phase 2 detector 77

(a) (b)

(c) (d)

Figure 49 – Distribution of the number of pixel hits as function of η in (a) r20.20 and (b) r21.9 and distribution
of the number of strip hits as function of η in (c) r20.20 and db) r21.9 in tt̄ events with an average
pile-up of 200.
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(a) (b)

(c) (d)

Figure 50 – Distribution of the number of hits in the innermost pixel layer as function of η in (a) r20.20 and
(b) r21.9 and Distribution of the number of hits in the next-to-innermost pixel layer as function
of η in (c) r20.20 and (d) r21.9 in tt̄ events with an average pile-up of 200.
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Differences are observed in next-to-innermost pixel layer hits distribution between the releases,

highlighting a different convention used in r20.20, where only pixel rings up to z = 1000 mm were

counted. The tracks which have no hit in in neither the first nor the second pixel layers, while they

were expected, contains poor quality tracks. Other hit content parameters also have an impact on the

quality of the tracks. A hit is considered split if it was identified as being created by several charged

particles. If a pixel or strip hit is connected with more than one track and is not previously marked

as split, it is labelled as shared, which is frequently a sign of a pattern-recognition issue caused by

the high track density. The requirement that a track has a low number of shared measurements is a

very powerful tool for preventing duplicate and fake2 tracks.

The track categories used in the IP3D studies, aims to handle good and poor quality of tracks

separately to improve the overall performance. These hit content parameters are used for defining

track categories in central region η < 1, referred to as region A. The tracks of the worst quality

are in category 01, while the best quality tracks belong to category 14. Similar criteria, based on

hit information, are used for 1 < η < 2 region, referred to as region B. This region have only five

sub-categories as compared to region A. In general, the final track categories are defined after some

merging of the categories with low statistics. In the forward region η > 2, the track categories are

not defined based on the hit content but from an additional parameter γ . The tracks in this region

suffers from a larger rate of material interaction and are indeed dominated by multiple scattering

effects. Thus, the IP resolutions tends to decrease at higher η regions. The multiple scattering effect

is proportional to the amount of material crossed by the particle. Figure 51 shows that the resolution

of the IP can be set to be correlated with γ value given by: γ ⌘ 1
pT

p
sinθ

where, γ is inversely proportional to the pT of the particle and θ is the polar angle. The low

momentum tracks are likely to undergo large scattering effects. The resolution worsens as gamma

increases, which is to be expected because tracks with a high gamma are expected to suffer the most

from multiple scattering.

Finally, the IP3D PDF templates are obtained separately in each region, for the track categories just

described, as summarized in Table 7. One way to assess the quality of the tracks is to examine their

impact parameter resolution, mostly in d0. The d0 resolution is based on the width of the distribution

of d0 residual, which is the difference between the reconstructed and true values of d0. The d0

resolution has been computed per track category in the inclusive track pT and compared between

the releases, shown in Figure 53. Figure 52 shows the track categories distribution as function of η ,

which is consistent between r20.20 and r21.9. The d0 resolution for each category is estimated by

iterative convergence (IterConv) parameter, which relates to the number of iterations required to

2 Tracks which are not associated with real particles.
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Figure 51 – γ parameter as a function of d0 resolution for the tracks from b- and light-jets.

obtain a stable RMS3 width of the residual about mean. On comparing the estimated d0 resolution

values between r21.9 and r20.20, differences are observed in A01, A05, B01 and B05 categories.

η region Category Description

|η | < 1 A01 No hit in 1st pixel layer; no hit in 2nd pixel layer
|η | < 1 A05 No hit in 1st pixel layer but expected
|η | < 1 A06 No hit in 1st pixel layer and not expected
|η | < 1 A07 No hit in 2nd pixel layer but expected
|η | < 1 A08 No hit in 2nd pixel layer and not expected
|η | < 1 A09+10 Total number of shared hits in pixel layers > 0
|η | < 1 A14A All other tracks; number of hits in 1st pixel layer = 1
|η | < 1 A14B All other tracks; number of hits in 1st pixel layer � 2

1 < |η | < 2 B01 No hit in 1st pixel layer; no hit in 2nd pixel layer
1 < |η | < 2 B05 No hit in 1st pixel layer but expected

1 < |η | < 2 B09+10 Total number of shared hits in pixel layers > 0
1 < |η | < 2 B11 Total number of shared hits in strip layers > 1
1 < |η | < 2 B14 All other tracks

|η | > 2 Zone 1 γ  0.001 MeV�1

|η | > 2 Zone 2 0.001 < γ  0.002 MeV�1

|η | > 2 Zone 3 0.002 < γ  0.003 MeV�1

|η | > 2 Zone 4 γ � 0.003 MeV�1

Table 7 – Description of the track categories used by IP3D algorithms for the ITk layout.

3 The standard deviation of the distribution
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(a) (b)

Figure 52 – Distributions of 17 Track categories as function of η for (a) r20.20 and (b) r21.9 in tt̄ events with
an average pile-up of 200.

Figure 53 – d0 resolution as function of the track category in the inclusive track pT, compared between r20.20
(black) and r21.9 (red) in tt̄ events with an average pile-up of 200.

Additional checks are done to study the d0 resolution for each of those categories, shown in Figure 54.

Overall, the differences in the IterConv estimates of the d0 resolution are found to be compatible

with the low statistics in r21.9, and better consistency is observed with RMS and Gauss4 values. In

order to ensure proper statistical coverage, uncertainty is assigned to the IterConv method.

4 The width of a Gaussian fit
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(a) (b)

(c) (d)

Figure 54 – d0 residual compared between r20.20 (black) and r21.9 (red) for (a) A01 (b) A05, (c) B01 and
(d) B05 track categories in tt̄ events with an average pile-up of 200. The IterConv , RMS and
Gauss values are used to estimate the d0 resolution for the track category.
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3.3.3 Jet kinematics studies

The performance of b-tagging is impacted by jet kinematics, particularly by jet pT and η . To have

a similar baseline for the b-tagging performance, it is necessary to analyze and compare these

jet kinematic distributions between r20.20 and r21.9 at both truth and reconstructed (reco) levels.

Deeper investigations on jet kinematics were carried on by the jet performance group.

After applying the selections described in Section 3.3.1, the jet distributions are studied separately

for b-jets and light-jets, with electron veto as the default matching scheme for light-jets. Similar

studies using the top-matching scheme for the light-jets are also carried out for additional checks.

Figure 55, shows the truth pT spectrum after matching with reconstructed jets, where light-jets

are matched using electron veto and top-matching. Similarly, the reconstructed jet pT and jet η

spectrum are shown in Figure 56 and Figure 57, respectively.

(a) (b)

Figure 55 – Truth-jet pT distribution after matching with reconstructed jets, compared between r20.20 and
r21.9, where light-jets are selected using (a) default matching and (b) top-matching in tt̄ events
with an average pile-up of 200. The green (blue) ratio distribution corresponds to the r20.20 and
r21.9 ratios of the b-jets (light-jets) distribution.

Between the releases, some inconsistencies are observed in truth pT and reconstructed jet pT

distributions, while the jet η distribution appears to be consistent to some extent, especially with top-

matching selection. In truth pT distribution, the ratio between r20.20 and r21.9 for truth pT > 50 Gev

appears flat, indicating a possible threshold effect associated with the reconstructed pT selection cut

of pT > 20 GeV. The fact that the discrepancy in the reconstructed pT between the releases appears

different suggests a discrepancy in the jet calibration between the releases. Some of the differences
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(a) (b)

Figure 56 – Reconstructed jet pT distribution compared between r20.20 and r21.9, where light-jets are selected
using (a) default matching and (b) top-matching in tt̄ events with an average pile-up of 200. The
green (blue) ratio distribution corresponds to the r20.20 and r21.9 ratios of the b-jets (light-jets)
distribution.

(a) (b)

Figure 57 – Reconstructed jet pT distribution compared between r20.20 and r21.9, where light-jets are selected
using (a) default matching and (b) top-matching in tt̄ events with an average pile-up of 200. The
green (blue) ratio distribution corresponds to the r20.20 and r21.9 ratios of the b-jets (light-jets)
distribution.
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in the selections, in particular due to the pT > 20 GeV requirement combined with different pT

response, could also have impacted the truth pT distribution.

The correlation between truth pT and reconstructed pT is compared between r20.20 and r21.9 in

different η bins, shown in Figure 58. A slight under-calibration is observed in r20.20, consistent

in all the η bins. The jet energy response is also investigated between the releases in different η

bins, as shown in Figure 59. Visible differences in jet energy response are observed. Due to the

different jet selection efficiency associated with the reconstructed pT > 20 GeV threshold, the truth

pT spectrum is expected to be impacted by the different jet energy response.

The observed differences in jet kinematics are significant and must be mitigated in order to disentan-

gle between releases from the jet kinematic reconstruction and b-tagging performance.. Based on the

feedback received from the jet calibration group, the implementation of event variables used for jet

pile-up energy subtraction has evolved between r20.20 and r21.9, making the jet calibration derived

in r20.20 obsolete. In r21.9, new calibrations were to be re-derived, but were not yet available for

the studies shown in this thesis.

Given the expected pT dependence in b-tagging performance, it is best not to rely on reconstructed

pT for the investigation of the b-tagging performance shown here. Instead, truth pT will be used after

re-weighting in r21.9, shown in Figure 60, to match the truth pT distribution in r20.20. The default

jet selection defined using reconstructed pT is replaced with the corresponding truth pT (re-weighted)

cut of truth pT > 20 GeV. It was observed that, the truth pT cut showed similar performance when

using reconstructed pT selection cut. This re-weighting may not account for all differences between

r20.20 and r21.9 in jet reconstruction. The pT-dependent track-jet association may still be affected

and influence the subsequent b-tagging performance. Some proper comparisons would ideally be

possible after a new 21.9 jet calibration is released.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 58 – Reconstructed pT vs truth pT correlation distribution in r20.20 and r21.9 for jets in 0 < |η | < 1,
1 < |η | < 2, 2 < |η | < 3, and 3 < |η | < 4 regions in tt̄ events with an average pile-up of 200.
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Figure 59 – Jet energy response distribution for the jets compared between r20.20 (black) and r21.9 (red)
in (a) 0 < |η | < 1, (a) 1 < |η | < 2, (a) 2 < |η | < 3 and (a) 3 < |η | < 4 region in tt̄ events with an
average pile-up of 200.
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(a) (b)

Figure 60 – The distribution of (a) truth pT and (b) η for b- and light-jets, compared between release 20.20
and 21.9 after truth pT re-weighting in r21.9 in tt̄ events with an average pile-up of 200.

3.3.4 IP3D performance

The expected b-tagging performance in r21.9 in terms of ROC curves for the IP3D tagger is shown

in Figure 61, compared with r20.20 in exclusive η and truth pT regions.

These results show that the b-tagging implementation for the IP3D algorithm developed in r21.9

restores the developments in r20.20 within 20-30%, which is considered reasonable, given the

differences that may arise from different jet calibrations which are not corrected by simple truth pT

re-weighting. Largest discrepancies are observed in the central region and at high pT.

3.3.5 SV1 performance

The expected b-tagging performance in terms of ROC curves for the SV1 tagger is shown in

Figure 62, comparing the performance obtained with r21.9 to r20.20 in exclusive η and truth pT

regions. The reference histograms templates used for the SV1 LLR formalism is also derived from

simulations in r20.20, similar to IP3D. The performance looks consistent between releases, within

20-30% for |η | < 3 region, for working points away from the ROC curve endpoints. Those endpoints

correspond to the bare SV reconstruction rate, with no SV1 discriminant selection applied. The SV

reconstruction rate is increased by a few percents for b-jets in the |η | < 2 region and the light jet

rejection at the endpoint is identical. There are more significant differences observed in the region

|η | > 3. Such differences were not observed in the IP3D performance, which uses a tighter |z0sinθ |

selection than SV1 (< 1.5 mm instead of < 25 mm). As a result, the SV1 performance in the higher
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(a)

(b)

Figure 61 – Light-jet rejection vs b-tagging efficiency in exclusive (a) η and (b) truth pT regions, compared
between r20.20 and r21.9 for the IP3D tagging algorithm evaluated in tt̄ events with an average
pile-up of 200.
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η region required further investigation.

(a)

(b)

Figure 62 – Light-jet rejection vs b-tagging efficiency in exclusive (a) η and (b) truth pT regions, compared
between r20.20 and r21.9 for the SV1 tagging algorithm evaluated in tt̄ events with an average
pile-up of 200.
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Further studies are done in order to understand the source of improved b-tagging performance for

the SV1 algorithm at larger η . To begin with, studies are performed between releases to determine

whether the differences are due to different SVs reconstruction rate, is defined as the fraction of jets

with a reconstructed SV. Figure 63a shows the SV reconstruction rate as a function of η compared

between releases separately for b- and light-jets, where a large difference is observed for light-jets.

Figure 63b and Figure 63c shows SV reconstruction rate as function of truth pT inclusive in η and

specifically for 3 < |η | < 4 region, respectively. Overall, the difference in r21.9 is mostly due to the

lower SV reconstruction rate for light jets, which leads to better rejection at the SV1 ROC curve

endpoint. The differences observed in the SV reconstruction rate is also investigated further.

Figure 64 shows the SV radius ( =
q

(SVx)
2 +(SVy)

2) as a function of SVz for the light-jets,

highlighting the position of SVs reconstructed close to the beam pipe (R = 24 mm) and the first

ITk pixel layer (R = 39 mm), where no significant difference is observed between the releases. The

difference in the forward region was still being investigated at the time of this study. The difference

in detailed ITk simulation in the forward region, as well as the difference in detailed implementation

of the SSVF reconstruction algorithm in r21.9, could have been the potential causes. As previously

indicated, the different conventions used in r20.20, highlighted in the next-to-innermost pixel

layer hits distribution between the releases, could also contribute to the differences in the forward

region. The observed differences in jet kinematics are significant and must be mitigated in order to

disentangle between releases from the jet kinematic reconstruction and b-tagging performance.

3.4 b-tagging re-optimisation studies in ITk

This section will focus on the studies I conducted to further optimise the low-level b-taggers,

particularly in developing new track categories for IP3D and implementing material rejection for

ITk to improve SV1 performance, discussed in Section 3.4.1 and Section 3.4.2, respectively. The

IP3D and SV1 performances are then compared to those obtained with the default implementations,

presented in Section 3.3. Due to the larger statistical samples available in r20.20, the references used

here are still derived from r20.20. As a result, the final results will be sub-optimal, demonstrating

the lower limit of the achievable performance.

3.4.1 IP3D performance with re-optimised categorisation

The re-optimisation of the IP3D track categorises are performed to better exploit the expected

pT-dependence of the IP resolution in the central region with |η | < 2 and the hit-content dependence

in the forward region with |η | > 2. Table 8 describes the updated track categories. The default
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(a)

(b) (c)

Figure 63 – SV reconstruction rate for b- and light-jets, as a function of (a) η (b) truth pT in inclusive η and
(c) truth pT in 3 < |η | < 4 in tt̄ events with an average pile-up of 200.
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(a) (b)

Figure 64 – Distribution of SV radius as function of SVz for light-jets for (a) r20.20 and (b) r21.9 in tt̄ events
with an average pile-up of 200.

categories, listed in Table 7, |η | < 1 region (region A) already strongly exploits the detailed hit

content of the tracks.

Hence, the idea is to make categories in 1 < |η | < 2 (region B) and |η | > 2 (referred as region C here)

regions, similarly detailed with some merging of the categories where statistics are very low,

especially in the forward region. As previously stated, there is a correlation between the IP resolution

and the γ parameter, shown in Figure 51. The default track categories in the forward region

already exploited this dependence by splitting the track categories by γ values. This motivated to

similarly split the sensitive categories in region A and region B, i.e. A14 and B14, using γ values.

Figure 65 shows the distribution of the tracks from b- and light-jets in these updated track categories.

Figure 66 illustrates the d0 resolution as a function of new track categories, where the updated track

categorization makes it easier to isolate tracks with poor d0 resolution and avoid contamination in

the most sensitive categories impacting in the IP3D performance improvement.

Figure 67 shows the b-tagging performance in terms of ROC curves for the IP3D tagger in exclusive

η bins, comparing the performance with updated and default track categories. In |η | < 2 region, a

significant improvement of up to 50% is seen with the new track categorization.

3.4.2 SV1 performance with material rejection

SVs can possibly be reconstructed when the particles interact with the detector material. Figure 68

shows the reconstructed SV radius distribution for b- and light-jets. Visible peaks are observed at
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η region Category Description

|η | < 1 A01 No hit in 1st pixel layer, no hit in 2nd pixel layer

|η | < 1 A02 No hit in 1st pixel layer but expected
|η | < 1 A03 No hit in 1st pixel layer and not expected
|η | < 1 A04 No hit in 2nd pixel layer but expected
|η | < 1 A05 No hit in 2nd pixel layer and not expected
|η | < 1 A06 Total number of shared hits in pixel layers > 0
|η | < 1 A07 Number of outliers5 in 1st and 2nd pixel layer > 0
|η | < 1 A08 Number of spoilt6 hits � 2
|η | < 1 A141 0.75·10�3 MeV�1  γ

|η | < 1 A142 0.5·10�3 < γ  0.75·10�3 MeV�1

|η | < 1 A143 0.25·10�3 < γ  0.5·10�3 MeV�1

|η | < 1 A144 γ  0.25·10�3 MeV�1

1 < |η | < 2 B01 No hit in 1st pixel layer and hit 2nd pixel layer
1 < |η | < 2 B02 No hit in 1st pixel layer but expected
1 < |η | < 2 B03 No hit in 1st pixel layer and not expected
1 < |η | < 2 B04 No hit in 2nd pixel layer but expected
1 < |η | < 2 B05 No hit in 2nd pixel layer and not expected
1 < |η | < 2 B06 Total number of shared pixel hits > 0
1 < |η | < 2 B07 Number of outliers in 1st and 2nd pixel layer > 0
1 < |η | < 2 B08 Number of pixel spoilt hits �2
1 < |η | < 2 B141 1.5·10�3 MeV�1  γ

1 < |η | < 2 B142 1·10�3 < γ  1.5·10�3 MeV�1

1 < |η | < 2 B143 0.5·10�3 < γ  ·10�3 MeV�1

1 < |η | < 2 B144 γ  0.5·10�3 MeV�1

|η | > 2 C01 No hit in 1st and 2nd pixel layer
|η | > 2 C020304 No hit in 1st pixel layer or no hit 2nd pixel layer but expected
|η | > 2 C05 No hit 2nd pixel layer and not expected
|η | > 2 C06 Total number of shared pixel hits > 0
|η | > 2 C07 Number of outliers in 1st and 2nd pixel layer > 0
|η | > 2 C0809 Number of pixel spoilt hits �2
|η | > 2 C141 3·10�3 MeV�1  γ

|η | > 2 C142 2·10�3 < γ  3·10�3 MeV�1

|η | > 2 C143 ·10�3 < γ  2·10�3 MeV�1

|η | > 2 C144 γ  1·10�3 MeV�1

Table 8 – Description of the re-optimised track categories for the IP3D algorithms with the ITk layout.



Chapter 3. Expected b-tagging performance with the ATLAS Phase 2 detector 95

Figure 65 – Distribution of updated track categories for the tracks from b- and light-jets in tt̄ events with an
average pile-up of 200, in r21.9, obtained with the ITk layout.

Figure 66 – d0 resolution as function of the updated track categories in tt̄ events with an average pile-up of
200 in r21.9, obtained with the ITk layout.
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Figure 67 – Light-jet rejection vs b-tagging efficiency in exclusive η regions, with the default and the updated
track categories, for the IP3D tagging algorithm evaluated in tt̄ events with an average pile-up of
200 in r21.9, obtained with the ITk layout.

certain SV radii in light jets, whereas such peaks are not observed or are less significant in b-jets.

The peaks in light-jets correspond to material interactions near the pixel layers and represent a

non-negligible source of reconstructed SV for light-jets. Thus, it is needed to reject these SVs

reconstructed near pixel layers or other mechanical structures, to reduce the source of background

and improve the SV1 performance. Some material rejection is already hard-coded in the Run 2

detector software, but the implementation is incompatible with the more complex ITk geometry. I

performed studies using a tracking material map to implement SV rejection compatible with the ITk

layout. This map is a 2D histogram distribution of beam pipe and pixel sensor positions generated

directly from the ITk detector layout as implemented in the simulation software. Figure 69 shows

the the reconstructed SV radius distribution of tracks from light-jets after material rejection is

applied, where peaks observed previously at certain SV radii in light-jets, are no longer observed.

Figure 70 depicts the SV reconstruction efficiency as function of |η | for b- and light-jets, with light-

jets (b-jets) showing a ⇠5% (⇠1.5%) reduction in SV reconstruction efficiency in the central region.

The overall impact on the SV1 performance with material rejection is illustrated in Figure 71, for

exclusive η regions, compared with default performance (without material rejection). The light-jet

rejection is increased by 5 to 20% using material rejection with the ITk detector.
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Figure 68 – SV radius distribution of tracks from b- and light-jets in tt̄ events with an average pile-up of 200
in r21.9, obtained with the ITk layout.
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Figure 69 – SV radius distribution of tracks from light-jets when material rejection is applied in tt̄ events
with an average pile-up of 200 in r21.9, obtained with the ITk layout.
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Figure 70 – SV Reconstruction efficiency as a function of η , with and without material rejection, for b- and
light-jets in tt̄ events with an average pile-up of 200, obtained with the ITk layout.

Figure 71 – Light-jet rejection vs b-tagging efficiency, with and without material rejection, in exclusive η

regions for the SV1 tagging algorithm evaluated in tt̄ events with 200 pile-up event in r21.9,
obtained with the ITk layout.
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3.5 b-tagging performance with updated ITk layout

The implementation of the b-tagging algorithms in r21.9, including the new optimizations presented

in Section 3.4, was used to evaluate b-tagging performance with the updated ITk layout, described

in Section 2.5.1. The references used for the low-level b-taggers are re-derived from r21.9. The

expected performance with the updated ITK is compared with the performance obtained with the

Run 2 ID. These results are detailed in [1]. The comparison with Run 2 is presented to provide a

rough comparison and ensure that the order of magnitude of performance is similar. Figure 72(a)

depicts the improved IP3D performance as a result of the improved IP resolution expected with ITk,

as well as the new, re-optimized track categorization. The performance of the SV1 algorithms with

ITk, shown in Figure 72(b), is evaluated using a BDT with several kinematic and topological vertex

properties as inputs to define standalone discriminants. The SV1 algorithm studied here is different

from the SV1 results shown previously, which were likelihood-based. The SV1 performance is

degraded due to the larger rate of reconstructed SVs (real and fake) in light jets, associated with

the larger density of pileup tracks and the different amount of material in pixel layers close to the

interaction point. However, SV1 still retains some intrinsic discrimination that could be exploited

for b-tagging.

The MV2 algorithm, which is based on another BDT, combines IP3D, SV1 and JetFitter algorithm

outputs. The re-training of MV2 is performed in r21.9. Figure 73 shows the improved MV2

performance. As an illustration, for a 77% b-jet efficiency working point, a light-jet rejection

20% higher than what has been obtained with the Run 2 detector, driven by the IP3D improved

performance. For all algorithms, the performance degrades at higher |η | region. The DL1 tagger is

not tested here as it was not available in r21.9 at the time of writing.
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(a) (b)

Figure 72 – Light-jet rejection vs b-tagging efficiency for the (a) IP3D and (b) SV1 b-tagging algorithms for
different η ranges, evaluated in tt̄ events with 200 pileup events, obtained with the updated ITk
layout. For comparison, the performance obtained with the Run 2 Inner Detector with an average
pileup of 38 is also shown [1].
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Figure 73 – Light-jet rejection vs b-tagging efficiency for the MV2 b-tagging algorithms for different η

ranges, evaluated in tt̄ events with 200 pileup events, obtained with the updated ITk layout. For
comparison, the performance obtained with the Run 2 Inner Detector with an average pileup of
38 is also shown [1].
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CHAPTER

4

MULTIVARIATE ANALYSIS USING MACHINE

LEARNING TECHNIQUES IN tt̄H(H ! bb̄)

ANALYSIS

Multivariate analysis (MVA) is a statistical method that analyses more than two variables simul-

taneously to identify patterns and relationships between them. This is a commonly used tool in

experimental high-energy physics for efficiently reconstructing and classifying physics topologies.

This chapter will focus on MVA techniques used in tt̄H(H ! bb̄) analysis, which allows the kine-

matic reconstruction of the Higgs boson candidate and the rejection of the tt̄+jets backgrounds. The

high b-jet multiplicity due to additional top quark decay products requires dedicated MVA strategies

based on machine learning. Section 4.1 provides a general introduction to machine learning and

the terminology used in the MVA studies. The previous round of the tt̄H(H ! bb̄) analysis used

two different Boosted Decision Trees (BDTs) to identify the Higgs boson candidate and distinguish

the signal (tt̄H) from the main backgrounds (tt̄+jet), discussed in Section 4.2. This chapter focuses

on the MVA studies performed in the next round of tt̄H(H ! bb̄) analysis, referred to as legacy

analysis, using full Run 2 data. The analysis aims to take advantage of the most recent object

performance algorithms, mainly the Particle-Flow jets (see Section 2.4.4) and the newly optimised

b-tagging algorithm DL1r (see Section 3.2). In addition, different simulated background samples

are used in the legacy analysis, specifically different tt̄+ bb̄ samples with improved modelling (see

Section. 5.3). The BDTs are retrained with the updated input samples, and their performance is

compared to that of the previous round of BDT performance, as discussed in Section 4.3. The

legacy round also opened new possibilities to develop and optimise different tools used in the

previous rounds, particularly the MVA methods. One of the main contributions of this thesis is the

development of a novel MVA approach based on Deep Neural Networks (DNNs). The DNN model
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is employed to combine reconstruction of the Higgs pT and classification to distinguish tt̄H from

the background sub-components in a single step. Section 4.4 describes the Deep-sets DNN model,

used in the development of the new MVA technique, which aims to replace the BDTs and improve

overall sensitivity. Section 4.5 discusses the overall performance of Deep-sets MVA, including

comparisons with previously employed BDTs.

4.1 Machine learning in physics

Machine learning (ML) is a broad field that encompasses a variety of algorithms that are optimised

for specific tasks. These methods are adaptable to different problem sets depending on the model’s

architecture and by tuning their parameters. ML is widely used in high energy physics experiments at

the LHC. It is deployed in FPGAs for the trigger [116], object identification like τ identification [117]

and b-tagging [109,118], where MV2 and DL1r-based b-taggers are used in the studies in this chapter.

In physics analyses, sophisticated ML methods aid in the reconstruction and discrimination of signal

processes, such as in tt̄H(H ! bb̄) analysis, which is one of the main applications discussed in this

thesis. ML methods are now also being further optimised to cope with the increasing luminosity

during Run 3 of the LHC and the HL-LHC. In general, there are two types of ML: supervised

learning, which requires fully labelled training data, and unsupervised learning, which does not

require any labelled data. In this thesis, supervised learning approaches based on Boosted Decision

Trees (BDTs) and Deep Neural Networks (DNNs) are used. This section introduces common ML

terminologies that are used in the MVA studies, presented in this chapter.

Data preparation: In order to ensure an unbiased training process, at least three orthogonal data-

sets are required. The training sample is utilised for the actual algorithm training. The validation

sample is used to optimise the model further by tuning the hyper-parameters of the model. The

validation set provides an unbiased evaluation of the trained model. The testing sample is used

solely to evaluate the final performance and is not incorporated into the training procedure. In the

context of the BDTs and DNNs studies, the event number
1 variable is used to split the data-set

into the training and testing set. This way, one can know which events were used in the training.

During the training, 20% of the training data-set is used as the validation data. In order to cover

full statistics, the model trained on even events is applied to events with an odd event number, and

vice versa. This is referred to as cross-training in this thesis. The training data-set of length N can

be represented as
�!
X = (x1,x2...xN ), where each event i has a feature set �!xi = (x1

i ,x2
i ...xM

i ), with M

features.

1 The event number is a unique integer number associated to each event in the MC samples.
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Prediction in ML: The true outputs or labels on a given data-set are referred to as target outputs.

The function that maps the input to its correct labels is called the target function. Many ML methods

aim to produce a function that is as close to the target function as possible without sacrificing

generalizability. The target output can be used to compare and determine the accuracy of a model

prediction.

Regression and classification problems: ML models are commonly used to perform regression

and classification problems. A regression technique is used to determine the relationship between

features and the target. The goal is to predict the value of a continuous variable. In contrast, the goal

of the classification problem is to predict a class from a set of classes.

Under-fitting and over-fitting: During the training, the ML network can become over specialised

on the training events and loose the generalization ability when doing predictions on independent

testing samples. This phenomenon is called over-fitting. This usually happens when the model is too

complex. To mitigate this, a stopping condition parameter is used to terminate the training process

when the model starts over-fitting. Another phenomenon can occur, where the ML model is unable

to fit even the training set due to its low complexity. This phenomenon is called under-fitting, which

can be mitigated by increasing the complexity of the model, the number of training features, or the

training duration.

Loss function: The loss function is a measure of the difference between the model prediction Ŷ

and the target values Y . The model is trained to minimise the loss function. Different loss function

choices could result in different optimal solutions. The ML algorithm finds this mapping by solving

an optimisation task, measuring the quality of the prediction at each event i with a loss function

L(Yi,Ŷi), which should be minimised to find the best model according to some metric.

4.2 MVA using Boosted Decision Trees

This section will focus on the MVA technique using two different BDT tools, employed in the

previous round of tt̄H(H ! bb̄) analysis [33]. A general introduction to BDTs is discussed in

Section 4.2.1. The two types of BDTs employed are the reconstruction BDT and the classification

BDT. The reconstruction BDT, which is used to find the correct jet-parton assignment per event

and reconstruct the Higgs boson and top-quark candidates, is described in Section 4.2.2. The

classification BDT, which is used to distinguish tt̄H from tt̄ + jets backgrounds, is discussed in

Section 4.2.3.
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4.2.1 Introduction to BDTs

A decision tree is a powerful MVA technique used to perform regression and classification tasks

by learning a set of cut-based decisions inferred from the training data-set. It uses an algorithmic

approach, where events that fail a criterion are not immediately rejected but rather re-examined with

other features or the same features in a subset of events. Figure 74 shows the basic structure of a

decision tree with only two possible classes: signal and background. The BDTs employed in the

previous round were based on this binary class approach. In general, a decision tree can also have

multiple output classes, where each branch is split into several sub-branches.

(a)

Figure 74 – An illustration of a binary decision tree showing the splitting algorithm from the initial node
using variables xi, x j and xk with c1, c2, c3 and c4 as their corresponding cut values. S(B) denotes
signal (background).

The decision tree, as its name suggests, is a tree-like structure with branches connected by nodes.

A node is a decision point where a variable and cut value are provided. The first node is called

the root node, where the training starts. The training sample consists of signal and background

events, described by a set of variables �!x . Each event i is assigned an initial weight wi (usually

random). The root node then splits into two daughter branches by applying a selection of the form

xi > ci, on a single variable. The optimal variable xi and the cut value ci are chosen as the ones

providing the best separation between signal and background. At the root node, the events passing

this cut will enter a signal-rich node, and those failing will enter a background-rich node. Similarly,
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each node can be split recursively into two branches. In this way, the events that did not satisfy

a certain criterion are not immediately discarded but rather re-examined with the same or other

features in a subset of events. The last nodes where the splitting of the trees stops are called leaf

nodes. Each leaf node is assigned a purity value p = S/S+B, where S(B) corresponds to the sum of

weights of signal (background) events that ended up in the leaf during the training. The value is

bound between 0 and 1, with a value close to 1 indicating a signal-like event and a value close to 0

indicating a background-like event. The result of the decision tree for an event tested on a single

tree is equal to the purity of the leaf on which the testing terminates. There are several stopping

condition parameters used in the training. The minimum leaf size is the threshold number of events

in a node, below which splitting is not allowed, converting the node into a leaf node. The splitting

also stops if perfect separation is achieved, which means that all of the events in the node are of the

same class. The maximum number of nodes in the training is given by the maximal tree depth, after

which the training is terminated.

Although a single decision tree can improve upon a simple cut-based analysis when used on its own,

techniques based on the plain averages of multiple decision trees could be more reliable. The BDT

works on the principle of the boosting method [119], which is expected to be more powerful than

single or multiple decision trees without boosting, where all the events are given the same weight.

In the boosting method, the mis-classified events (signal as background, or vice versa) are given

larger weights, and a new tree is built using these new weights. The new weights αm are assigned to

a single tree Tm (where m is the tree number), given by:

αm = β · ln
1� εm

εm

(4.1)

where, β is a free parameter to adjust the strength of boosting factor and εm is the mis-classification

rate of the m
th tree. The training events for the current tree Tm+1 are then assigned a new weight,

given by

w
m
j ! w

m+1
j = w

m
j · e

αm (4.2)

The classified events are unchanged from Tm to Tm+1, while weights of the mis-classified events are

increased by a factor e
αm . This way, the mis-classified events are given more importance during the

training of the next tree. The boosted result of event i is a weighted average of all the decision trees

into single discriminant, and is defined as:
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T (i) =
1

Σ
Nm

m=1αm

Σ
Nm

m=1αmTm(i) (4.3)

The Adaptive Boost (AdaBoost) [120] is used to perform BDT studies, presented in this thesis.

AdaBoost employs an exponential loss function to minimise the loss function: JBDT = e�p(x)y,

where p denotes the model prediction and y is the truth label, and x represents the input features.

In general, BDTs can be easily incorporated into a variety of analysis software workflows due to

the fact that they are accessible within the data analysis package called ROOT [121] via TMVA

package [122].

4.2.2 Reconstruction BDT

The reconstruction BDT, referred to as recoBDT, is used to extract the information from the

final state of tt̄H(H ! bb̄) process in the single-lepton channel (see Section 5.1). Each possible

combination of jets in the final state is a permutation, which will end up with a corresponding

reconstruction of objects, e.g. the Higgs boson, the hadronic top etc., as shown in Figure 75.

Figure 75 – A Feynman diagram depicting the ambiguity that exists when associating several jets to the
partons in the final state of tt̄H(H ! bb̄) single-lepton channel.

The reconstruction algorithms for different objects in the final states for an event containing at least

six jets, of which four jets are b-tagged jets, are described here:
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• Hadronic W-boson: The reconstruction of hadronic W-boson is done using all the possible

combinations of jets that are not b-tagged jets. If an event contains less than two non-b-tagged

jets, then in that case a b-tagged jet is allowed to be used for hadronic W-boson reconstruction.

• Leptonic W-boson: The reconstruction of leptonic W-boson requires lepton and full neutrino

momentum reconstruction. The transverse component of neutrino is given by E
T
miss whereas

the longitudinal component (pzν ) is not measurable. It is possible to deduce this by presuming

that the lepton and E
T
miss are the sole products of a W-boson decay and constraining the

invariant mass to that of the W-boson. pzν is inferred by solving:

m
2
W = (p`+ pν)

2 (4.4)

where, mW corresponds to the W-boson mass. If there are two solutions to this quadratic

equation, they are both considered, resulting in two distinct interpretations for the leptonic

W-boson.

• Top quarks: The combination of a W-boson and a b-tagged jet is used for the reconstruction

of top quarks.

• Higgs boson: The remaining b-tagged jets are used to reconstruct the Higgs boson candidate.

A number of different quantities, including the invariant mass of the object candidates and their

angular distances, are computed for each possible combination of jets. The complete list of inputs

used for performing recoBDT is shown in Table 9. The list includes a total of 19 variables among

which, 15 variables are based on the topological information of the tt̄ system and four variables

are related to the Higgs system. When applied to tt̄ + jets background events, the jet combination

selected by recoBDT with Higgs information may be more tt̄H-like, resulting in less discriminating

kinematics against tt̄H when fed into the classification BDT. Thus, in order to prevent a bias in the

background processes, additional training is carried out without the inclusion of the topological

Higgs information.

In order to decrease the number of possible combinations of jets for the training, additional b-tagging

information is exploited. The jets are sorted based on their pseudo-continuous b-tagging score (see

Section 2.4.4), and if the scores are the same, the jets are sorted based on their pT. Only the first

six sorted leading jets are considered, where b-quarks can only be associated with b-jets and other

jets are associated with W decay products. The number of combinations are further reduced by

assuming that one of the two final partons of the Higgs and hadronic W decays carries the higher

pT. This pT ordering does not affect the physics, as the important information is the association of
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Variables

Topological information from tt̄

Mass of toplep

Mass of tophad

Mass of Whad

Mass of Whad and b from toplep

Mass of Wlep and b from tophad

∆R(Whad b from tophad)

∆R(Whad b from toplep)

∆R(`,b from toplep)

∆R(`,b from tophad)

∆R(b from toplep, b from tophad)

∆R(q1 from Whad, q2 from Whad)

∆R(b from thad, q1 from Whad)

∆R(b from thad, q2 from Whad)

Min. ∆R(b from tophad, qi from Whad)

∆R(lep,b from toplep) - min. ∆R(b from tophad, qi from Whad)

Topological information from the Higgs boson candidate

Mass of Higgs

Mass of Higgs and q1 from Whad

∆R(b1 from Higgs, b2 from Higgs)

∆R(b1 from Higgs, lepton)

Table 9 – List of input variables for the reconstruction BDTs in the single-lepton channel. The subscript had
(lep) indicates the hadronically (leptonically) decaying W-boson or the corresponding top-quark
candidates. The symbol bi refers to b-tagged jets from the Higgs-boson candidate decay, sorted by
pT. The symbol qi refers to jets from the W-boson decay, sorted by pT [33].



Chapter 4. Multivariate analysis using machine learning techniques in tt̄H(H ! bb̄) analysis 110

the jets to the Higgs boson and the W. As an illustration, for an event with exactly six jets (events

with one solution for pzν , given by eq 4.4) in the final state, a total of 720 different permutations

would be needed to be tested for an event. With the additional b-tagging requirements, this number

is reduced to 48, and without an attempt to distinguish the Higgs and hadronic W decay products,

only 12 combinations are required to be tested. In the case of two solutions for pzν , the number of

combinations doubles i.e 24 combinations are tested.

The recoBDT is trained only on tt̄H events containing at least six jets where four jets are b-tagged

jets at @85% WP, referred as 6 ji4bi@85% hereafter. Cross-training is performed to cover training

on all the ttH events. For the recoBDT training, signal refers to all of the correct combinations in

the tt̄H sample, while background refers to all other combinations. The jet combination with the

highest recoBDT score is considered as the right interpretation of the event and is used to define

high-level observables, such as the reconstructed Higgs pT or the top mass. The reconstruction of

Higgs pT candidate is crucial, since the cross-section measurement is performed in exclusive STXS

bins (see Section 1.8.2). Table 10 lists the fraction of tt̄H events in the single-lepton channel, where

the b-jets from the Higgs decay products are correctly assigned in a specific STXS bin using the

recoBDT in previous round.

Higgs pT SR�6j
�4b

Inclusive 43%
[0-120) GeV 35%

[120-200) GeV 45%

[200-300) GeV 57%

[300-450) GeV
59%

[450-∞) GeV

Table 10 – List of the fraction of ttH events where the b-jets from the Higgs decay products are properly
assigned in a specific STXS bin using the recoBDT in single-lepton channel [33].

4.2.3 Classification BDT

The classification BDT, referred to here as classBDT, is used to separate tt̄H from the tt̄ + jets

background in the single-lepton channel. The classBDT training is performed on tt̄H and inclusive tt̄

+ jets background samples. A total of 18 discriminating variables are used for the classBDT training,

shown in Table 11.
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Variable Definition

General kinematic variables

∆Ravg
bb Average ∆R for all b-tagged jet pairs

∆RmaxpT
bb ∆R between the two b-tagged jets with largest vector sum pT

∆ηmax
jj Maximum ∆η between any two jets

m
min∆R
bb Mass of the combination of two b-tagged jets with the smallest ∆R

N
Higgs30
bb Number of b-tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass

Aplanarity 1.5λ2, where λ2 is the second eigenvalue of the momentum tensor built with all jets

H1 Second Fox–Wolfram moment computed using all jets and the lepton

Variables from reconstruction BDT

BDT output Output of the reconstruction BDT †

mHiggs
bb Higgs candidate mass

mH,bleptop
Mass of Higgs candidate and b-jet from leptonic top candidate

∆RHiggs
bb ∆R between b-jets from the Higgs candidate

∆RH,tt̄ ∆R between Higgs candidate and tt̄ candidate system †

∆RH,leptop ∆R between Higgs candidate and leptonic top candidate

Variables from likelihood calculations

LHD Likelihood discriminant

Variables from b-tagging

wHiggs
b�tag Sum of b-tagging discriminants of jets from best Higgs candidate from the recoBDT

B3
jet 3rd largest jet b-tagging discriminant

B4
jet 4th largest jet b-tagging discriminant

B5
jet 5th largest jet b-tagging discriminant

Table 11 – List of input variables to the classBDT in the single-lepton channel. For variables from the
recoBDT, those with a † are from the BDT using Higgs boson information, those with no † are
from the BDT without Higgs boson information [33]

.
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The training learns from various information listed here:

• The recoBDT scores (with or without using Higgs-related features) and the resulting kinematic

variables of the Higgs and tt̄ systems.

• The combination–independent kinematics denoted as global variables.

• The pseudo-continuous b-tagging information.

• Likelihood discriminant (LHD) [33]: It is an intermediate MVA output and is one of the

dominant discriminants of the classBDT. LHD computation uses 1D PDFs of the invariant

masses and angular variables from reconstructed objects. The signal hypotheses (psig) and

background hypotheses (pbkg) are derived from the product of the PDFs for a single variable.

These are then averaged over all possible parton combinations while being weighted by the

b-tagging information. The ratio psig/(psig + pbkg) is used as input for the classBDT per

event.

The classBDT cross-training is performed in 6 ji4bi@85% region. During the training, the level of

importance of the input features can be evaluated. It is determined by the frequency with which the

classBDT makes use of that variable in the different nodes. In the previous round, the classBDT

outputs were used as the discriminants in each STXS region and as inputs for the profile likelihood

fit (see Section 5.6) to extract the signal. Figure 76 shows the classBDT output distribution for the

tt̄H signal and all the background components for different STXS regions.

4.3 BDT performance with legacy tt̄H(H ! bb̄) analysis

As mentioned before, the legacy analysis aims to benefit from the latest object performance

algorithms. First, the PFlow-jets are used instead of EMTopo-jets, described in detail in Section 2.4.4.

Second, the DL1r b-tagger is used instead of MV2c10 b-tagger, in order to benefit from better

b-tagging performance. For simplicity, the jets used in legacy round will be referred as PFlow/DL1r

jets and the one used in the previous round will be referred as EMTopo/MV2c10 jets.

To begin with, the old weights obtained from the previous training (using the EMTopo/MV2c10 jets)

are used to study the recoBDTs and the classBDT performance with the PFlow/DL1r jets. This is

done to understand the overall BDT configurations used in the previous round. Then later, retraining

using the PFlow/DL1r jet samples are also performed. The overall performance of the BDTs using

the PFlow/DL1r jets are compared with the performance obtained with the EMTopo/MV2c10 jets.

The recoBDT and the classBDT performances, as described above, are presented in Section 4.3.1

and Section 4.3.2, respectively.
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(a) (b)

(c) (d)

Figure 76 – The classification BDT output distribution in (a) 0  p
H
T < 120 GeV, (b) 120  p

H
T < 200 GeV,

(c) 200  p
H
T < 300 GeV and (d) 300  p

H
T < 450 GeV STXS regions in the single-lepton

channel. The dashed line shows the tt̄H signal distribution normalised to the total background
prediction [33].
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4.3.1 RecoBDT performance

When evaluating the performance, the recoBDT takes into account how well they are able to

successfully reconstruct certain objects. The performances are analysed using all the events in the

6 ji4bi@85%, which corresponds to the training region, where the dedicated BDTs were trained

or retrained. Before examining the performance based on the recoBDT score, event fraction is

evaluated. This corresponds to the fraction of events where the truth objects in the final state are

reconstructed. The event fraction value of a matched object, represents the maximum reconstruction

performance attainable for that object. The b-tagging requirement, discussed in Section 4.2.2, is

not taken into account for evaluating the event fraction. This means that b-quarks can be associated

to any jet. Figure 77, shows the event fraction as a function of the matched objects. The matched

objects definitions are described as followed:

• all: six selected jets, all matched to the six partons in the final state

• b+1W: four b-quarks from top and Higgs decays and one quark from W decay

• allb: four b-quarks from the top and Higgs decays

• H: Higgs boson

• btop: two b-quarks from tt̄ decays.

• W: hadronic W-boson

• Hb1: leading pT b-quark from Higgs decay

• Hb2: sub-leading pT b-quark from Higgs decay

• blt: b-quark from leptonic top decay

• bht: b-quark from hadronic top decay

• wj1: leading pT quark from hadronic W-boson decay

• wj2: sub-leading pT quark from hadronic W-boson decay

For illustration, comparing the "all" category, around 39%(36%) of the events have six selected

jets all truth matched to the six partons in the final state using PFlow/DL1r jets (EMTopo/MV2c10

jets). When compared to EMTopo/MV2c10 jets, slightly higher event fraction values are observed

for all the matched objects with PFlow/DL1r jets. This might be due to different reconstruction

of a given event, shown later in this section. The measure of the reconstruction performance can
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be analysed via matching fraction. This refers to the fraction of events where the truth objects are

reconstructed from the jet combinations with highest recoBDT score. Figure 78 shows the matching

fraction as a function of different matched objects in 6 ji4bi@85% region. The matching efficiency

performance using PFlow/DL1r jets is slightly better (around 2-3%) than EMTopo/MV2c10 jets

performance, whereas, retraining shows negligible impact on the performance. Thus, switching

from EMTopo/MV2c10 jets to PFlow/DL1r jets has very slight effect on the variables entering the

recoBDT training.

Figure 77 – The fraction of selected events for which their corresponding objects are truth matched.

Further studies are also performed to compare event by event reconstruction performance us-

ing PFlow/DL1r and EMTopo/MV2c10 jets. Figure 79 and Figure 80 depict the event fraction

and matching fraction performance for events with and without identical event numbers, respec-

tively. The fraction values for all the matched objects are compared between PFlow/DL1r and

EMTopo/MV2c10 jets samples. Around 82% of events are selected for both sets of jet recon-

struction/b-tagging algorithms. Even after selecting the identical events, differences in event and

matching fractions are still observed. Compared to events that are identical, the difference in match-

ing fraction performance between samples is larger for uncommon events. Similar patterns can be

observed in the event fraction performance. The slight overall improvement with PFlow/DL1r jets

could be attributed to the different reconstruction of a given event in the two samples.
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Figure 78 – The fraction of selected events for which their corresponding objects are truth matched only for
the jet combinations with the highest recoBDT score. Here, tag "retrain" refers to the performance
obtained after retraining with the corresponding jet samples.

(a) (b)

Figure 79 – Event fraction of the final state objects for events with (a) same and (b) different event number,
compared between PFlow/DL1r and EMTopo/MV2c10 jets samples.
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(a) (b)

Figure 80 – Matching fraction of the final state objects for events with (a) same and (b) different event number,
compared between PFlow/DL1r and EMTopo/MV2c10 jets samples.

4.3.2 ClassBDT performance

The ClassBDT performance can be measured using Receiver Operating Characteristics (ROC). The

signal efficiency, or the ratio of correctly identified signal events to total number of signal events, is

calculated for each decision cut on the classifier output against how often the background is not

mis-classified (1 - background efficiency). The integrated Area Under Curve (AUC) is calculated to

quantify the performance.

The classBDT performances using PFlow/DL1r and EMtopo/MV2c10 jets are analysed using all

the events in the 6 ji4bi@85% region. Figure 81(a) shows the performance of the classBDT when

the old weights are used. The classBDT performance with PFlow/DL1r jets is similar to EM-

Topo/MV2c10 performance. The retraining with the new samples shows negligible improvements,

shown in Figure 81(b). Similar to the recoBDT case, the overall classBDT variables have a very

low dependence on the change from EMtopo/MV2c10 to PFlow/DL1r samples. The classBDT

performance is also checked in the region with tighter b-tagging requirement i.e 6 ji4bi@70%.

Figure 82 depicts the performance of classBDT in the 6 ji4bi@70% region, where the same trend is

observed as in the 6 ji4bi@85% region.

To conclude, the retraining of the BDTs using PFlow/DL1r jets will serve as a baseline for new

MVA developments using Deep Neural Networks, which will be discussed in Section 4.5. The

previously trained BDT weights in the central tt̄H(H ! bb̄) analysis framework were also replaced

by the retrained weights using PFlow/DL1r jets.
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(a) (b)

Figure 81 – Performance of classification BDT in 6 ji4bi@85% region, labeled as 6ji4bi@85%. "retrain"
refers to the performance obtained using retrained weights from PFlow/DL1r jets.

(a) (b)

Figure 82 – Performance of classification BDT in 6 ji4bi@70% region. "retrain" refers to the performance
obtained using retrained weights from PFlow/DL1r jets.
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4.4 MVA developments using Deep Neural Networks

Different DNN models [123] are already extensively used in various experimental analyses using

LHC data and have provided improvements with respect to the previously used methods. The

studies presented in this section will focus on new MVA developments using DNNs for the legacy

tt̄H(H ! bb̄) analysis using full Run 2 ATLAS data. The goal is to replace the two-step BDT model,

as described in Section 4.2, with the single-step DNN model. The general idea is to exploit the

flexibility of DNN architecture to perform the following MVA steps in a single tool:

• Perform regression on Higgs kinematic variables like pH
T , in order to define different STXS

bins for differential STXS measurements in the tt̄H(H ! bb̄) analysis.

• Perform multi-classification to distinguish tt̄H from tt̄+jets sub-background components i.e

tt̄+1b, tt̄+B, tt̄+ � 2b, tt̄+ � 1c and tt̄ + light, introduced in Section 5.3. This also allows

to build discriminant with a probability associated with each sub-background components.

These discriminants can be used to build dedicated control regions in the analysis to constrain

the uncertainties of the different processes and increase the overall sensitivity. The multi-class

DNN approach is already employed in the tt̄H(H ! bb̄) analysis by CMS [35], which also

served as the motivation to investigate the MVA strategy using DNNs.

Section 4.4.1 provides an overview of DNNs, followed by Section 4.4.2, which introduces the

specific DNN model used in the MVA studies, namely Deep-sets. Section 4.4.3 details on the

computation of the high-level inputs used in the DNN training and testing. Section 4.4.4 describes

the Higgs kinematic regression performed using simple DNN and Deep-set networks. The strategies,

the design and the optimisations involved in the development of the final Deep-sets MVA model is

discussed in Section 4.4.5.

4.4.1 Introduction to DNNs

Deep learning [124] is a machine-learning method that aims to model data using complex structures

that combine several non-linear transformations. The Neural Networks (NNs), which are the

fundamental building blocks of deep learning, are composed of the elementary units known as

artificial neurons. Figure 83 shows a sketch of the operation of the artificial neuron. The artificial

neurons receives the input x, which are then multiplied by their assigned weights Wi and then a

bias term b is added to the result. This forms the weighted sum which is then passed through the

activation function f . The activation function is chosen to introduce non-linearity into the model

(described in detail later in the section). The bias term is a constant value that is used to produce an
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offset such that the output y takes the linear form b+W · x. This helps the model in fitting best for

the given data that do not pass through the origin by enabling the activation function to be shifted

accordingly.

Figure 83 – Sketch showing the operation of the artificial neuron in neural networks.

One of the simplest type of network is called feed-forward network, shown in Figure 84. It consists

of one input layer, one or more hidden layers, and one output node. The hidden layer is where the

transformations are performed on the features, fed into it via the input layer, and are then passed to

the output layer. The mathematical point of view of a feed-forward network can be represented as:

PNN = f2 (W2 f1(W1x+b1)+b2)) (4.5)

The feed forward network with one hidden layer is fairly simple and computationally limited, but it

can provide insight into more complex neuron structures. By varying the amount of hidden layers

and nodes, a NNs can approximate any arbitrary function and allows the network sufficient freedom.

For instance, W and b values are free parameters that can be optimised. Deep Neural Networks

(DNNs) are built by combining NNs with multiple hidden layers. A very complex DNNs can easily

reach several ten-thousands of free parameters.

During the training, the data-set is shuffled randomly and is divided into equal-sized segments,

known as batches. The size of the batches is determined by batch-size parameter, which is a free

parameter and can be optimised during the training. At each iteration of the training of a batch,

the model tries to extract patterns from the sample by adjusting the set of weights. Each weight
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Figure 84 – The sketch of feed forward network with one hidden layer.

update is called a batch training. The process is repeated for all the training samples, and a round of

updating over the full training data-set is called an epoch. For each epoch, the total training data-set

is randomly shuffled and therefore the batch sampling are different from the previous epoch. In

general, DNNs have non-trainable parameters that fix the architecture and training process of a

DNN, known as hyper-parameters. The most important hyper-parameters are described here:

• Loss function: For the regression problems, the most commonly used loss function is the

mean square error (MSE), defined as:

JMSE =
1
N

Σ
N

i=1(Yi � Ŷi)
2 (4.6)

where, N is the length of the training data-set �!x , Y is the target value and Ŷ is the model

prediction for each event i. For the binary classification problem, the negative log-likelihood

of a Bernoulli distribution is used, called binary cross-entropy:

Jbinary�cross�entropy =� 1
N

Σ
N

i=1Yi · log(Ŷi)+(1�Yi)log(1� Ŷi) (4.7)

In case of multi-classification problem with C classes, categorical cross-entropy is used:

Jcategorical�cross�entropy =� 1
N

Σ
N

i=1Σ
C

c=1Yiclog(Ŷic) (4.8)

• Optimizer: The training of the model involves a process of updating the set of weights

(described above) to minimise the loss function. The optimizer is used to determine how these

weights are optimised in each layer l, based on the gradient of the loss function. The method
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to fully compute the loss gradients is called back-propagation. After a first initialisation of

the weights W0, the weights are updated iteratively using the formula:

Wl+1 = Wl �λ 5Wl
J (4.9)

where, λ is the learning rate which is a tunable parameter which has an impact on the conver-

gence speed. The learning rate is defined as the magnitude of model weight update/change

during the back-propagation training procedure. If the learning rate is set too high, conver-

gence may not occur because the optimization will skip over the minimum. A low learning

rate, on the other hand, can cause the optimization process to move more slowly, and the

optimizer to become stuck in a local minimum. The most commonly used optimiser called,

ADAM optimiser [125] is used for the studies presented in this thesis.

• Activation functions: The activation functions are used to allow the model to learn the

non-linear patterns (complex data) to to make precise predictions. Non-linear activation

functions have the property of being differentiable; otherwise, they cannot work during DNN

back-propagation. Typically, the activation functions used in output nodes differ from those

used in hidden layers. The DNN studies shown in this chapter employs the rectified linear

unit (ReLU) in the hidden layers. ReLU function is defined as:

fReLU(x) =

8

<

:

0, for x < 0

x, for x � 0
(4.10)

In case of regression studies, shown in Section 4.4.4, a linear activation function is used in

the output layer. For the multi-classification studies, shown in Section 4.4.5, softmax [124]

activation function is used in the output layer, defined as:

fso f tmax(xC) =
e

xl

Σ
C
c=1e

xc
(4.11)

fulfilling,

Σ
C

c=1 fso f tmax(xc) = 1 (4.12)

The output for each class have value between 0 and 1 which can be interpreted as probabilities.

• Regularisation: In order to keep the model robust and avoid-over-fitting, regularisations are

used. This includes mainly batch-normalization [126], dropout [127] and early-stopping.

Batch normalisation re-normalises and re-scales the output of the previous layer of the batch.
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Early stopping terminates the training process when certain criterias are met, such as when

the loss has not decreased over a predetermined number of epochs. In this chapter, the

training is early stopped if the loss on the validation data-set does not improve in 35 epochs

before reaching the specified training epoch, and the model with the minimum validation

loss is finally saved for application. Other parameters like AUC on validation data-set is also

considered as the alternative for early stopping criteria. Dropout is used to randomly drop a

percentage of neuron connections, called dropout rate. During the first iteration of training of

a batch, only the un-dropped neuron weights are updated and the dropped ones remaining

unchanged. Then, in a new batch training, another set of neurons is chosen to be dropped

from among all the neurons. As a result, the overall result is similar to an average of various

networks. And each neuron is compelled not to rely too heavily on neurons from the previous

layer.

• Sample weights: A set of weights, of length equivalent to the training data-set, can be passed

during the training to add more importance to some events than others. These weights are

called sample weights. The sample weight affects how the loss is calculated and can help to

maximize the decrease in the loss function.

Python and its related libraries are used to implement all DNN training, testing, and performance

checks before sending them to the ATLAS framework. Uproot [128] is used to read branches from

ROOT files directly into the Python environment as Numpy arrays. DNNs can be accessed through

a variety of sophisticated packages and user-friendly software. Popular software packages are

KERAS [129], TensorFlow, and scikit-learn [130]. An open-source format known as ONNX [131] is

being used to facilitate the exchange of models between various tools and to allow the incorporation

of DNN models into ATLAS software architectures. In this thesis, the ONNX package is used to

deploy KERAS models in the central ATLAS tt̄H(H ! bb̄) framework. The Deep-sets network,

described in next section, is used in the development of the new MVA model.

4.4.2 Deep-sets

Deep-sets [132] is a permutation-invariant DNN model where the input features are treated as

sets and no specific ordering of the elements is considered. Deep-sets architecture was first used

in particle physics to identify jet types [133] and was also recently used to develop the ATLAS

flavour-tagging algorithm called DIPS [118]. As described in Section 4.4.3, the inputs features

used for the training of any DNN model are computed for 12/24 different combinations per event.

In tt̄H(H ! bb̄) analysis, the deep-sets network can offer permutation invariance by treating the

jet combinations per event as unordered during the training. The basic structure can be similar
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to feed-forward NNs connected with multiple hidden layers. The Deep-set computation can be

represented in the form of:

ρ

 

n

∑
i=1

φ(xi)

!

(4.13)

where, n is total number of combinations and φ and ρ corresponds to by fully connected dense

layers with each dense layer using ReLU activation function. The two networks i.e φ and ρ deals

with different operations. The combination network φ network deals with the operations on the

inputs, where it extracts the relevant combination features whereas the ρ network focuses on the

operations over the sets which deals with the correlation among the combinations of jets. The

sum operation is employed to ensure permutation invariance. This summed up layer encodes the

information about the number of combinations in each event which helps in the identification of the

best combination in an event. Thus, the Deep-sets architecture was considered for the development

of the MVA model using DNNs. The strategy and final model adapted for the new MVA model in

tt̄H(H ! bb̄) analysis is described in detail in Section 4.4.5.

4.4.3 Input preparation for DNNs

As already described in Section 4.2, the final state of tt̄H(H ! bb̄) is quite complex involving

many jets and b-jets. The combined list of inputs, listed in Table 9 and Table 11 for the events in

� 6-jets and �4 b-jets@70% region are used for performing training on the DNN networks. A

technique similar to BDTs is used to limit the number of combinations of jets entering the network,

described in Section 4.2.2. A total of 34 different features computed for each combinations in

� 6-jets and �4 b-jets@70% region are used, exploiting both the multiple jet combinations as well

as the correlation between the features. Out of this total, 19 variables are the ones from recoBDT

inputs, complemented by the Higgs pT i.e. the pT of the di-jet system assumed to come from the

Higgs boson decay products. The remaining 14 variables are taken from the classBDT variables.

LHD was not included as it did not improve the final performance and would have in principle

required to re-derive new likelihood templates as part of the training process.

The input features used for the DNN training have different range of values. The normalisation

of the inputs can make the model more stable and aids in the convergence and can generalize

appropriately. The input features used in the training of the DNN model is normalised to to have

a mean zero and standard deviation one. In order to make the inputs fixed-size, zero padding is

performed on events with fewer than 24 combinations, resizing them to 24 by adding zeroes.
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The training and testing data-sets are prepared by dividing the full statistics based on their event

numbers and 20% of training data-set is used as the validation data.

4.4.4 Higgs pT regression

The first step in the effort to develop new MVA using DNNs was to perform Higgs kinematic

regression on tt̄H signal events to reconstruct the Higgs pT, to be used for differential STXS

measurements. This was achieved by using the DNN network to perform regression on Higgs pT

in tt̄H events. Since the tt̄H events are statistically limited and high-level2 inputs are used for the

training, a simple DNN model was used, as illustrated in Figure 85.

Figure 85 – The architecture of the DNN model for performing Higgs pT regression.

The DNN model consists of an input layer, where the inputs are flattened into a long single-array.

The random ordering of jet combinations per event entering the input layer is maintained in the

flattening layer. The dense layers are incompatible with multi-dimensional array data processing.

Since, the trained inputs are a three-dimensional array of size = (event, combination, feature), the

data is converted to a single one-dimensional vector before being fed to the next dense layer. Using

the ReLU activation function, the network has two fully connected hidden layers with dropout-rate

value of 0.2 applied between each layers. To provide linear continuous predictions, the output layer

uses a linear activation function. As, the Higgs pT regression accounts for the reconstruction part,

only 20 features discussed in Section 4.4.3 are used. The target value is the truth level Higgs pT

distribution. The Table 12 shows the list of hyper-parameter values for the DNN network to perform

Higgs pT regression.

The output of the DNN model described above is used to predict the reconstructed Higgs pT

spectrum. The performance of the DNN model is compared to the recoBDT, which uses the

reconstructed Higgs pT defined based on the jet permutation with the highest BDT score.
2 High-level variables are functions of low-level features like pT of a final state particle
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Hyper-parameters Values

NNodes [240, 64, 8, 1]

Dropouts 0.2

Batch-size 256

Learning rate 0.01

Table 12 – The list of hyper-parameter values for the DNN model used to perform Higgs pT regression.

Figure 86 depicts the the DNN prediction spectrum of Higgs pT, and RecoBDT output as well

as the target spectrum, i.e. the truth Higgs pT. Clearly, the shape of the predicted Higgs pT using

DNN is quite different from the truth Higgs pT shape. Figure 87 depicts the 2D distribution of the

truth vs prediction, which demonstrates a clear offset from the diagonal, which is not observed in

the reconstructed Higgs pT. Figure 88 shows the difference between prediction and truth Higgs pT

(prediction - truth) as a function of truth Higgs pT. When compared to recoBDT in truth pT < 200

GeV region, DNN output shows less deviation (prediction - truth) from zero. In pT > 200 GeV

region, DNN shows more deviation between 10% and 50%, compared to recoBDT. Thus, the

degraded performance of the simplified DNNs, motivated to perform regression with more complex

and optimised DNN models like Deep-sets.

Figure 86 – The Higgs pT distribution [GeV] where (solid gray) shows the truth Higgs pT spectrum, (blue)
shows the reconstructed Higgs pT spectrum with highest recoBDT score and (orange) shows the
predicted Higgs pT spectrum from the DNN network

The Deep-sets model, which can handle the inputs better without flattening them is used to perform

regression by replacing the simple dense layers with a Deep-set network (see Section 4.4.2). The

Deep-sets model used for this regression task is described in Section 4.4.2. The hyper-parameters



Chapter 4. Multivariate analysis using machine learning techniques in tt̄H(H ! bb̄) analysis 127

(a) (b)

Figure 87 – Scatter plots showing correlation between (a) truth vs reconstructed Higgs pT and (b) truth vs
DNN prediction.

Figure 88 – The profile distribution showing (prediction - truth) as a function of truth Higgs pT using
reconstructed Higgs pT (black) and Deep-sets prediction(red). The dashed line is the mean value
and the vertical error bar corresponds to the standard deviation.
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like the number of layers in the φ and ρ networks, the number of nodes in the φ and ρ , batch-size

and learning-rate of the Deep-sets network are optimised by hand at first. Table 13 shows the list

of the hyper-parameters used for the Deep-sets regression model. Figure 89 shows the Deep-sets

regression prediction spectrum of predicted Higgs pT compared with recoBDT and truth Higgs

pT distribution, where the predicted shape is comparable. Figure 90 shows the truth vs Deep-sets

scatter plot, where no visible offset from the diagonal is observed. Figure 91, shows the deviation

of (prediction - truth) as a function of truth Higgs pT. Comparing Deep-sets performance with the

recoBDT, Deep-sets shows lower deviation between 10% and 60% across truth Higgs pT range.

Hyper-parameters Values

Number of φ layers 3

Number of ρ layers 2

φ NNodes [240, 240, 128]

ρ NNodes [240, 128]

Dropouts 0.2

Batch-size 128

Learning rate 0.001

Table 13 – The list of hyper-parameter values for the Deep-sets model used to perform Higgs pT regression.

Figure 89 – The Higgs pT distribution [GeV] where (solid gray) shows the truth Higgs pT spectrum, (blue)
shows the reconstructed Higgs pT spectrum with highest recoBDT score and (orange) shows the
predicted Higgs pT spectrum from the Deep-sets regression network

The preliminary DNN setup using deep-set produced positive results, which formed the basis for

further developments in MVA. Since the cross-section measurements are performed per STXS
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Figure 90 – Scatter plots showing truth Higgs pT vs Deep-sets prediction pT correlations.

Figure 91 – The profile distribution showing (prediction - truth) as a function of truth Higgs pT using
reconstructed Higgs pT (black) and Deep-sets prediction pT (red). The dashed line is the mean
value and the vertical error bar corresponds to the standard deviation.
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bin, the Deep-sets performance was also investigated by converting the Deep-sets regression

model to a multi-classifier, with STXS pT bins as different classes. Figure 92 shows the Migration

matrix compared between the Deep-sets regression model and the multi-classifier model. In case

of regression model, the STXS bins are chosen based on the predicted pT distribution while in

multi-classifier, predicted STXS class outputs are directly used.

(a) (b)

Figure 92 – Migration matrix showing (a) Deep-sets regression and (b) Deep-sets multi-classifier predictions.
The matrix is normalised along the row.

The training was performed using the similar hyper-parameters, listed in Table 13. Deep-sets

multi-classifier performance shows better performance in most of the STXS bins. In addition to

the performance, multi-classifier approach was also beneficial in terms of the easier extension

to background classes. Thus, it was reasonable to use the Deep-sets multi-class model as the

baseline DNN configuration. The final single-step deep-set MVA model, with dedicated STXS and

background classes, is discussed in detail in the following Section 4.4.5.

4.4.5 DeepSet-based MVA design and strategy

The Deep-sets multi-classifier model, as described in the previous section, which used to classify

events into different STXS bins, showed overall better performance when compared to recoBDT.

This multi-classifier model was extended to the background classes in order to simultaneously

perform multi-classification to assign events to different STXS bins and to separate tt̄H signal
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from the tt̄ + jets background sub-components in a single-step. As mentioned before, the Deep-sets

multi-classifier model had six different STXS classes defined. The model was extended by further

adding four different corresponding to tt̄+1b, tt̄+B, tt̄+� 2b and tt̄+� 1c backgrounds. tt̄+light was

initially considered, but was later dropped due to the low fraction of tt̄+light events in the training

(1% of total background events used in the training). The idea to develop a new MVA model which

performs the reconstruction of Higgs pT and classification of ttH and sub-background components

in a single step was effectively achieved by multi-class model using Deep-sets multi-classifier model

(referred as Deep-sets hereafter). The final deep-set multi-class model used for the new MVA studies

is shown in Figure 93. The final Deep-sets model has a total of 10 output classes

Figure 93 – Deep-set multi-class architecture showing 10 output classes with a probability assigned to them,
which add up to 1. The first six multi-classifier outputs corresponds to the STXS classes while
other four corresponds to the tt̄+1b, tt̄+B, tt̄+� 2b and tt̄+� 1c background classes.

Event weights3 are used during the training and passed as the sample weights (see Section 4.4.1).

3 Event weights takes into account different factors like cross-section of the process, collected luminosity



Chapter 4. Multivariate analysis using machine learning techniques in tt̄H(H ! bb̄) analysis 132

MC event generators used to produce tt̄H and tt̄ + jets backgrounds processes can have events with

negative event weights. Negative weights are not supported by the DNN architecture in general, so

events with negative event weight (quite small fraction) must be removed from training. To avoid

losing a large number of training events, the absolute value of the event weights are passed as

sample weights.

The events are weighted in order to give equivalent training statistics for signal and total background.

Since the Higgs pT spectrum is not present in background samples, up sampling is not considered.

Due to the limited statistics involved, performing down sampling is also not preferred. Table 14

lists the fraction of training events after applying event weights in each output class. The weighted

number of events in the backgrounds classes i.e tt̄+1b, tt̄+�2b, tt̄+B, tt̄+�c are also very different.

Among all the background sub-components, tt̄+�2b jets is the major background. Hence, it was

better for the network to focus more on the tt̄H vs tt̄+�2b discrimination rather than the tt̄H vs

tt̄+B discrimination because the fraction of tt̄+B events is 2% of the total backgrounds. Thus, the

background classes are not relatively balanced in the training.

Both tt̄H and tt̄+jets samples are used for the Deep-sets training. Cross-training is performed to cover

full MC event statistics. The training is performed for 120 epochs to reach convergence. The training

is terminated if no new validation minimum is achieved after training for 25 consecutive epochs.

Since the deep-set performs multi-classification, the loss function is categorical cross-entropy, and

the output layer employs a softmax activation function. The final output has 10 output classes,

which assign a probability per event to each of the 10 classes. The class with the highest probability

is used as the predicted class. The Deep-sets model was initially optimised by hand and further

improved by performing hyper-parameter optimizations using grid search. In grid search, the set

of candidate values for each variable parameter is first defined. The models are then trained for all

possible parameter combinations, and the one with the best testing performance is chosen. Table 15

shows the list of grid-searched hyper-parameters for the Deep-sets. The optimised hyper-parameter

values used in the final training are shown in bold.

4.5 MVA performance using DeepSet-sets

This section will present the performance of the Deep-sets MVA method that was developed in

context to the tt̄H(H ! bb̄) analysis. Since, the newly developed MVA model is intended to replace

the recoBDT and the classBDT, the performance of the Deep-sets is compared to the BDTs. The

measure of the performance is done via migration matrix, which can tell how the model behaves on

various classes. It is an N X M matrix representation of predicted and actual classes, where N is

and various correction factors.
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Deep-sets classes Fraction of events

[0, 60) 0.09

[60, 120) 0.15

[120, 200) 0.14

[200, 300) 0.08

[300, 450) 0.03

[450,∞) 0.01
tt̄+1b 0.05

tt̄+B 0.02

tt̄+�2b 0.40

tt̄+�c 0.03

Table 14 – List of the fraction of training events in each output class. The tt̄H events are re-weighted to have
an an equivalent training statistics to that of the total background.

Hyper-parameters Values

Number of φ layers 3

Number of ρ layers 2

φ NNodes 128, 256, 512

ρ NNodes 64, 128, 256

Dropouts 0.2, 0.1, 0.5

Batch-size 64, 128, 256

Learning rate 0.01, 0.001, 0.0001

Table 15 – Grid-searched hyper-parameters for the Deep-sets model. The optimized values used in the final
training is shown in bold.
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the number of truth classes and M is the number of predicted classes in the Deep-sets model. The

migration matrix shown in this section has N > M as tt̄+light truth class is also explored in order to

observe the Deep-sets model’s performance for tt̄+light events. The x-axis of the matrix represents

the predicted class value, and the y-axis represents the truth class value. This provides a method

for examining how effectively the model identified specific class, and it also enables to discover

which class the model is not correctly classifying. Two kinds of migration matrices are shown in this

section. The migration matrix can be normalised along either the predicted or true classes. When

normalised along the predicted classes, the matrix gives information about the composition of each

predicted class. When normalised along the truth class, it instead reflects the repartition of the truth

class events between the predicted classes. ROC curves are employed to evaluate classification

performance using Deep-sets. The ROC curves shown in this section have a Y axis for true positive

rate and an X axis for false positive rate. This means that the ideal point is in the top left corner of

the plot, with a false positive rate of zero and a true positive rate of one.

The first look at the raw Deep-sets outputs is discussed in Section 4.5.1. The Deep-sets MVA perfor-

mance is presented in the Section 4.5.2. Comparison studies of the reconstruction and classification

performance of the Deep-sets model to those of the BDTs are described in Section 4.5.3.

4.5.1 First look at the Deep-sets outputs

The Deep-sets MVA model produces 10 different discriminant scores, of which the first six are

the STXS scores and the rest four are the different background scores, i.e tt̄+1b, tt̄+B, tt̄+� 2b,

tt̄+� 1c. The sum of the first six STXS class scores gives the total probability of an event being

a signal i.e tt̄H event. This is referred to as the tt̄H score. Figure 94 shows the tt̄H score and

tt̄+� 2b score distribution obtained from Deep-sets model, shown for tt̄H and different tt̄+jets

component samples. The highest discrimination is observed between tt̄H and tt̄+� 2b, showing

good separation. Additionally, tt̄+1b, tt̄+B, and tt̄+� 1c scores have consistently lower values.

In case of tt̄+1b and tt̄+� 1c, some level of some separation is also observed between the back-

ground sub-components. However, the separation among tt̄+1b, tt̄+B and tt̄+� 1c does not

look significant, and merging of these non-tt̄+� 2b classes can be considered. Figure 95 shows

a migration matrix with 10 classes, normalised along the row. The matrix shows the fraction of

events that enter the actual category after the prediction of the classifier. Here, tt̄+� 2b truth events

are distributed with 77% in predicted tt̄+� 2b category, 3 % in the first STXS bin (0-60 GeV),

7% in the second STXS bin (60-120 GeV) and so on. Clearly, the output probability for tt̄+1b,

tt̄+B and tt̄+� 1c is consistently low, mainly due to the lower fraction of these events entering

the training. The current network only classifies background-like events into tt̄+� 2b category

which had large fraction of events in the training (around 40%) compared to other sub-background
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(a) (b)

(c) (d)

(e)

Figure 94 – The distribution of (a) tt̄H, (b) tt̄+� 2b, (c) tt̄+1b, (d) tt̄+B and (e) tt̄+� 1c score scores for ttH
signal and different background sub-components.
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categories (around 10%). In order to fix this bias towards the tt̄+� 2b events, the raw output

discriminant scores are re-scaled by their corresponding fraction of events in the training, listed in

Table 14. The Deep-sets model was consequently integrated in the central analysis framework. s

performed on unbalanced background classes with unnormalized loss function.

Figure 95 – Migration matrix of Deep-sets multi-classifier with 10 classes which shows the fraction of events
that enter the actual category after the prediction of the classifier. The matrix is normalised along
the truth classes.
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4.5.2 Deep-sets performance

The two-step categorization is implemented to analyse the overall Deep-sets MVA performance

using the re-scaled Deep-sets outputs. The aim is to give more emphasis to tt̄H vs background

discrimination and then deal with the STXS assignment of the predicted tt̄H events. These steps are

described as follows:

1. Step I: The step involves classification using inclusive tt̄H as a single class. The events can be

assigned to either of the tt̄H/ tt̄+� 2b/ tt̄ +1b/ tt̄+B/ tt̄+� 1c categories, where the events go

to the class which has highest output probability after re-scaling.

2. Step II: All the events, including tt̄H and background, are assigned to STXS classes using

re-scaled STXS scores. The assignment of the STXS classes in the background categories

is done to study the pT shape of the dominant background in the STXS region, discussed in

Section 5.5

Figure 96 shows how an event is assigned to one of the predicted classes out of the 10 classes based

on the two-step categorization using the re-scaled outputs. Figure 97 shows the performance after

implementing step I, as described above.

Figure 96 – An illustration of performing Step I and Step II categorization. The probability values of a given
event are arbitrary.
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(a)

(b)

Figure 97 – Migration matrix of Deep-sets multi-classifier after Step I categorization, normalised along the
(a) predicted classes and (b) truth classes.
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As a result of re-scaling, the bias towards tt̄+� 2b is no longer observed as few events now fall in

tt̄+1b, tt̄+B and tt̄+� 1c categories as well. Figure 98 shows the overall Deep-sets performance

via the migration matrix normalised along the predicted class after implementing step I and step

II. As hinted before, the performance in tt̄+1b, tt̄+B and tt̄+� 1c are similar and do not vary

significantly. Thus, the output probabilities are merged, and the combined discriminant score will

be used for these sub-background categories in the analysis. Figure 99 shows the similar migration

matrix normalised along the column but here the classes tt̄+1b, tt̄+B and tt̄+� 1b are represented

as merged referred as other predicted class. A dedicated training was done using the same deep-sets

MVA network, but reducing the total number of classes from 10 to eight classes where tt̄+1b,

tt̄+B and tt̄+� 1c classes are merged into one at the time of training. The overall performance

was found to be similar to the performance when tt̄+1b, tt̄+B and tt̄+� 1c scores are treated

separately during the training but merged during the evaluation. Keeping the initial setup provides

flexibility to refer to their individual output scores and will be used subsequently. Figure 100 shows

the performance via migration matrix normalised along the row obtained after step I and then Step II

followed by merging tt̄+1b, tt̄+B and tt̄+� 1c categories.

Figure 98 – Migration matrix of Deep-sets multi-classifier after Step I and Step II categorization. The matrix
is normalised along the predicted classes.
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Figure 99 – Migration matrix of Deep-sets multi-classifier after Step I and Step II categorization and merging
tt̄+1b, tt̄+B and tt̄+� 1c categories into "other" category. The matrix is normalised along the
predicted classes.

4.5.3 Deep-sets vs BDTs comparisons

The performance of the predicted STXS classes for all the events is compared between Deep-sets

and recoBDT. In case of recoBDT, the reconstructed Higgs pT for the highest recoBDT score is

used to define the STXS classes. Figure 101 shows the migration matrix of all the predicted STXS

classes, normalised along the row. The diagonal covering the STXS classes represents the fraction of

all the events that are correctly predicted in each STXS bin. Deep-sets shows significantly improved

performance for regions with pH
T (STXS3..6). This improvement can majorly impact overall analysis

due to the better STXS bin assignment in the the higher pT regions.

The classification performance is illustrated via ROC curves, as shown in Figure 102. The separation

between the tt̄H signal and the tt̄ + jets background is comparable between the two setups with

AUC value of around 76%. In addition, Deep-sets offer the advantage of discrimination between
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Figure 100 – Migration matrix of Deep-sets multi-classifier after Step I and Step II categorization and merging
tt̄+1b, tt̄+B and tt̄+� 1c categories into "Other" category. The matrix is normalised along
the truth classes.

additional background sub-components, i.e tt̄+� 2b and other. The discrimination between the tt̄H

signal and the tt̄+� 2b background is lower but still similar to classBDT performance. The AUC

value for classifying other background against tt̄H is 67%.

The performance of the new Deep-sets model seems promising when compared to BDTs. In

addition, the Deep-sets model benefits from the dedicated background node for the non-tt̄+� 2b

background. The Deep-sets model was consequently integrated into the central analysis framework.

The integration into a full analysis strategy is going to be discussed in the next Chapter 5.
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(a) (b)

Figure 101 – Migration matrix of STXS predicted classes for (a) Deep-sets and (b) RecoBDT. The matrix is
normalised along the truth classes.

Figure 102 – ROC curves showing the classification performance of Deep-Sets multi-classifier and classBDT.
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CHAPTER

5

SEARCH FOR THE HIGGS BOSON IN THE

SINGLE LEPTON tt̄H(H ! bb̄) CHANNEL

The associated production of a Higgs boson with a top quark pair (tt̄H) allows for a direct mea-

surement of the top-Yukawa coupling. Its precise measurement is a powerful probe to unravel new

physics phenomena [23] like the new sources of CP violation that might exist beyond the SM. This

thesis explores the measurement of tt̄H production, where the Higgs boson decays into a b-quark

pair. The tt̄H(H ! bb̄) analysis presented in this chapter accounts for the legacy round, which is

built on the previous round [33] using full Run 2 ATLAS data. The objective is to further optimise

the analysis by employing new methodologies and improving object definitions. As mentioned in

Chapter 4, the legacy round will employ new MVA methods developed using Deep-sets, as the dis-

criminant for the signal extraction fit in the single-lepton channel. The analysis uses dedicated event

selections to enhance signal contribution and suppress background. The events are then divided

into signal-regions (SRs) and control regions (CRs), which are signal-enriched and signal-depleted

categories, respectively. Deep-sets outputs are used as discriminants to assign events to STXS bins

and to separate signal and background processes. The combined SRs and CRs are used to perform

a profile-likelihood fit while accounting for the systematic uncertainties. Section 5.1 provides an

overview of the tt̄H(H ! bb̄) analysis. The selection criteria for reconstructed objects and events

used in this analysis are described in Section 5.2 followed by an overview of the modelling of the

signal and background processes in Section 5.3. The analysis regions are discussed in Section 5.4.

Section 5.5 provides an overview of the sources of the systematic uncertainties used in this analysis,

followed by an introduction to the profile-likelihood fit in Section 5.6. The final results of the

analysis are presented in Section 5.7.
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5.1 The tt̄H(H ! bb̄) analysis in a nutshell

In tt̄H(H ! bb̄) analysis, there are three different channels based on the decay mode of the W-bosons

that come from the decay of the tt̄ pair:

• All-hadronic channel: This channel has the highest branching ratio of about 45.7%, where

both W-bosons decay hadronically. Since there are no leptons in the final state, the multi-jet

background is difficult to suppress.

• Dilepton channel: This channel has the smallest branching ratio of 10.5%, where both W-

bosons decay leptonically. Due to the presence of two neutrinos from W-boson decays, the

reconstruction of the final states becomes less precise. However, the leptons in the final states

offer the cleanest signature to suppress the multi-jet background.

• Single-lepton channel: This channel corresponds to the events where one W-boson decays

hadronically and the other one leptonically. The branching ratio is about 43.8%, which is very

close to the hadronic channel but offers a relatively clean topology with a lepton in the final

state to suppress the multi-jet background. In addition, only one neutrino is there in the final

state and, thus can be fully determined from the event Emiss
T . Figure 103, shows the Feynman

diagram of tt̄H(H ! bb̄) production in the single-lepton channel. Since the branching ratio is

fairly high, even the higher pT regions have reasonable statistics, which is essential for the

STXS measurements. In the previous analysis, the single-lepton channel was further divided

into resolved and boosted channels [33]. Resolved refers to the events where Higgs boson

decay products are reconstructed as two separate jets, whereas boosted refers to the events

where the decay products are reconstructed into a single large-R jet.

The analysis presented here is carried out in the resolved single-lepton channel. Both the boosted

channel and the dilepton are analysed separately and are not covered in this thesis. The boosted

channel may overlap with the resolved channel, particularly in the pT > 300 GeV region. This is not

addressed in this thesis, but will be addressed in the final combination fit, which includes all three

channels to extract the tt̄H signal cross-section.

In the single-lepton channel, six jets are expected in the final state, with four of them being b-jets.

Furthermore, it includes exactly one isolated lepton in the final state. The term lepton (`) can

refer to an electron or a muon. The leptonic decay of τ leptons into electrons and muons is also

taken into account. The complex final state topology of this channel induces several challenges,

the most significant of which is the assignment of reconstructed objects to the decay products of

the top quarks and the Higgs boson. Another major challenge for this process is the large tt̄ + jets
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Figure 103 – Feynman diagram of the Higgs boson production with associated top quarks, where the Higgs
boson decays into a b-quark pair. The final state of this process corresponds to the the single-
lepton channel.

background, in particular when these jets originate from b-quarks. This background has a much

larger production cross-section than the tt̄H signal. Figure 104 shows a Feynman diagram for the

tt̄ + bb̄ production process. This process suffers from large theoretical uncertainties and is poorly

constrained by data measurements, which limits the sensitivity of this analysis. The analysis will

explore the STXS formalism, described in Section 1.8.2, where cross-sections are measured as a

function of the STXS bins defined using reconstructed Higgs pT

⇣

pH
T

⌘

. In the previous round, five

different STXS classes corresponding to the 0-120 GeV, 120-200 GeV, 200-300 GeV, 300-450 GeV,

and 450-∞ GeV regions were used. For the legacy round, the first STXS class (0–120 GeV) has

been split into two i.e 0–60 GeV and 60–120 GeV, to further improve the measurement sensitivity

in the lower pT
H regions. Thus, a total of six STXS bins will be used for performing the STXS

cross-section measurement of the tt̄H signal.
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Figure 104 – A Feynman diagram of the main tt̄ + bb̄ background.

5.2 Event selection

The events used for performing this analysis are selected from the proton-proton collisions at
p

s = 13 TeV recorded by the ATLAS experiment during Run 2 at the LHC between 2015 and 2018,

with an integrated luminosity of 139 fb�1. The events are recorded using single-lepton triggers

that have different pT thresholds. These triggers are combined in a logical "OR" to ensure higher

selection efficiency. The events must either satisfy a low pT threshold and lepton isolation, or a

higher trigger threshold with a looser identification criterion and without any isolation requirement.

For data collected in 2015 (2016–2018), the lowest pT threshold for the single-muon trigger was 20

(26) GeV, whereas for the single-electron trigger, it was 24 (26) GeV. Table 16 shows the summary

of single-lepton triggers used in this analysis. The reconstruction methods for the physics objects

used in this analysis are described in Section 2.4.

lepton
pT (GeV) Identification Isolation

2015 2016-2018 2015 2016-2018 2015 2016-2018

electrons
24 26 medium tight - loose
60 60 medium medium - -
120 140 loose loose - -

muons
20 26 medium medium loose medium
50 50 medium medium - -

Table 16 – Single-lepton trigger requirements used for tt̄H(H ! bb̄) analysis, shown separately for the data
taken in 2015 and 2016–2018 [134].

Electrons are required to have pT > 10 GeV and |η | < 2.47 (excluding 1.37 < |η | < 1.52). Muons

need to satisfy pT > 10 GeV and |η | < 2.5 selection. Electrons and muons need to fulfil the

Medium [82] and Loose [86] identification criteria, respectively. In order to match the lepton tracks

to the PV of the event, they have to fulfill |z0 sin(θ)| < 0.5 mm and d0/σ(d0) < 5 (3) criteria for
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electrons (muons). The efficiency of the trigger chain used to record electrons and muons, as well

as their reconstruction and identification, differs between data and MC. To account for this effect,

appropriate lepton scale factors are applied to electrons and muons in the MC simulation.

The PFlow jets, as described in Section 2.4.4, are built using the anti-kT algorithm with radius

parameter 0.4. The jets are required to pass pT > 25 GeV and |η | < 2.5. In order to reduce the

pile-up effects, jets with low pT have to pass through the medium WP of the jet vertex tagger (JVT).

The jets consisting of b-hadrons are identified with the high-level b-tagging algorithm DL1r.

Four working points (WPs): 85%, 77%, 70% and 60% are used, defined based on the different

thresholds for the DL1r discriminant. A pseudo-continuous b-tagging score is assigned to the jet, as

described in Section 2.4.4. The correction factors are applied to the simulated events to compensate

for differences between data and simulation in the b-jet efficiency, c- and light-jet mis-tag rate

separately.

An overlap removal procedure between jets and leptons is used, so that a single detector response is

not counted as more than one physics object in an event. It follows an iterative process, and only the

objects that pass through all the previous steps are used in the next steps. If a muon shares a track

with an electron, the electron is discarded. To prevent double-counting of electron energy deposits

as jets, the jets within ∆R < 0.2 of an electron are rejected. To reduce the impact of non-prompt

electrons, the electron is rejected if a jet is present within 0.2 < ∆R < 0.4. In case a jet has fewer than

three tracks and is within ∆R < 0.4 of a muon, the jet is removed. However, if this jet is associated

with at least three tracks, the muon is removed instead. This helps in the suppression of the muons

from heavy-flavour decays inside the jets.

The selected events are required to have at least five jets, where at least four jets are tagged with the

70% b-tagging WP. Moreover, there should be exactly one lepton with pT > 27 GeV in the event

that satisfies the Tight and Medium identification criterion for electrons and muons, respectively.

In addition, events with any additional lepton with a pT > 10 GeV that satisfies the Medium

(Loose) identification operation point for electrons (muons) are discarded. In order to maintain the

orthogonality with other tt̄H channels [135], events with two or more hadronic τ candidates are

removed.

5.3 Signal and background modelling

The tt̄H signal and the background processes are modelled using simulated event samples. These

are generated using ATLAS simulation software, as described in Section 2.3. The MC samples

used for nominal predictions of all the considered processes are generated using the full ATLAS

detector simulation (FULLSIM) based on GEANT4. For some of the alternative samples used to
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define modelling systematic uncertainties, the faster simulation (ATLFAST) is also used. The two

simulations gives similar modelling for the observables used in the analysis. PYTHIA8 is used

to simulate the pile-up interactions using a specific set of parameters, called A3 tune [136]. The

simulated samples are also re-weighted to match the pile-up conditions observed in the full Run

2 data-set. Table 17 shows the list of the MC samples used in this analysis. It summarises both

the nominal samples that are used for the baseline modelling and the alternative samples that are

used to estimate systematic uncertainties. The PS and other multi-parton interactions (MPI), beam

remnant and hadronisation processes are generated using either PYTHIA8 or HERWIG7 [73, 137],

except the case where the samples are produced with SHERPA [71]. The b- and c hadron decays

are simulated using EVTGEN v1.6.0 [113]. For PYTHIA 8, the A14 [138] set of tuned parameters

with the NNPDF2.3LO PDF set [20] are used. For HERWIG 7, the H7UE tune is used with the

MMHT2014LO PDF set [74]. Top quarks, Z- and W - bosons are decayed at leading order (LO)

using MadSpin [139, 140] to preserve all spin correlations in all the samples generated using

MADGRAPH5_aMC@NLO [70] for the ME, and in the single-top (t-channel) POWHEG samples.

For most of the samples, the ME generator is used at NLO precision in QCD. The top-quark mass is

set to mtop = 172.5 GeV and mass of b-quark coming from the top decay is set to mb = 4.95 GeV

when the decay is modelled by POWHEG BOX or MADSPIN, and to mb = 4.75 GeV for the samples

produced with SHERPA. To improve the precision, some samples are normalised to account for the

QCD corrections up to next-to-next-to-leading order (NNLO) and the electroweak (EW) corrections

up to next-to-leading order (NLO).

5.3.1 tt̄H signal modelling

The tt̄H signal events are modelled in the 5FS scheme (see Section 1.6) using POWHEG Box [69,

112, 147, 148] generator and PS and hadronisation processes with PYTHIA8. The ME generator is

used at NLO in QCD with NNPDF3.0NLO PDF set [142]. The functional form of renormalisation

and factorisation scales are µR = µF = 3
p

mT (t) ·mT (t̄) ·mT (H), where mT =

q

m
2 + p

2
T is the

transverse mass of a particle. The hdamp
1 parameter is set to 0.75·(mt +mt̄ +mH) = 325.5 GeV.

The samples are normalised to the tt̄H cross-section of σtt̄H = 507+35
�50 fb, which includes NLO

QCD and EW corrections for mH = 125 GeV. All the Higgs boson decay modes are considered

but the overall optimisation of the analysis is focused on H ! bb̄ as other decay modes account

for a negligible fraction of events after the single-lepton event selections. Two alternative samples:

POWHEG+HERWIG7 and POWHEG+MADGRAPH5_aMC@NLO, are used to assess the uncertainty

associated to the tt̄H modelling.

1 The hdamp parameter controls the pT of the first additional emission beyond the leading-order in the PS
and therefore regulates the high-pT emission against which the tt̄ system recoils.
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Process ME generator ME PDF PS Normalisation

Higgs boson

tt̄H
POWHEG Box v2 NNPDF3.0NLO PYTHIA 8.230 NLO+NLO (EW)
POWHEG Box v2 NNPDF3.0NLO HERWIG 7.04 NLO+NLO (EW)
MADGRAPH5_aMC@NLO 2.6.0 NNPDF3.0NLO PYTHIA 8.230 NLO+NLO (EW)

tHjb MADGRAPH5_aMC@NLO 2.6.2 NNPDF3.0NLO nf4 PYTHIA 8.230 -
tWH MADGRAPH5_aMC@NLO 2.6.2 [DR] NNPDF3.0NLO PYTHIA 8.235 -

tt̄+jets backgrounds

tt̄
POWHEG BOX v2 NNPDF3.0NLO PYTHIA 8.230 NNLO+NNLL
POWHEG BOX v2 NNPDF3.0NLO HERWIG 7.04 NNLO+NNLL
SHERPA 2.2.1 NNPDF3.1NLO nf4 SHERPA NNLO+NNLL

tt̄+bb
POWHEG Box Res NNPDF3.1NLO nf4 PYTHIA 8.230 -
POWHEG BOX v2 NNPDF3.1NLO nf4 HERWIG 7.04 NNLO+NNLL
SHERPA 2.2.1 NNPDF3.1NLO nf4 SHERPA -

Other backgrounds

tW

POWHEG Box v2 [DR] NNPDF3.0NLO PYTHIA 8.230 NNLO+NNLL
POWHEG BOX v2 [DS] NNPDF3.0NLO PYTHIA 8.230 NNLO+NNLL
POWHEG Box v2 [DS] NNPDF3.0NLO HERWIG 7.04 NNLO+NNLL
MADGRAPH5_aMC@NLO 2.6.2 [DR] CT10NLO PYTHIA 8.230 NNLO+NNLL

t-channel
POWHEG Box v2 NNPDF3.0NLO nf4 PYTHIA 8.230 NLO
POWHEG Box v2 NNPDF3.0NLO nf4 HERWIG 7.04 NLO
MADGRAPH5_aMC@NLO 2.6.2 NNPDF3.0NLO nf4 PYTHIA 8.230 NLO

s-channel
POWHEG BOX v2 NNPDF3.0NLO PYTHIA 8.230 NLO
POWHEG BOX v2 NNPDF3.0NLO HERWIG 7.04 NLO
MADGRAPH5_aMC@NLO 2.6.2 NNPDF3.0NLO PYTHIA 8.230 NLO

W + jets SHERPA 2.2.1 (NLO [2j], LO [4j]) NNPDF3.0NNLO SHERPA NNLO
Z + jets SHERPA 2.2.1 (NLO [2j], LO [4j]) NNPDF3.0NNLO SHERPA NNLO
VV (had) SHERPA 2.2.1 NNPDF3.0NNLO SHERPA -
VV (lep.) SHERPA 2.2.2 NNPDF3.0NNLO SHERPA -
VV(lep.)+jj SHERPA 2.2.2 (LO [EW]) NNPDF3.0NNLO SHERPA -

tt̄W
MADGRAPH5_aMC@NLO 2.3.3 NNPDF3.0NLO PYTHIA 8.210 NLO+NLO (EW)
SHERPA 2.0.0 (LO [2j]) NNPDF3.0NNLO SHERPA NLO+NLO (EW)

tt̄``
MADGRAPH5_aMC@NLO 2.3.3 NNPDF3.0NLO PYTHIA 8.210 NLO+NLO (EW)
SHERPA 2.0.0 (LO [1j]) NNPDF3.0NNLO SHERPA NLO+NLO (EW)

tt̄Z (qq,νν)
MADGRAPH5_aMC@NLO 2.3.3 NNPDF3.0NLO PYTHIA 8.210 NLO+NLO (EW)
SHERPA 2.0.0 (LO [2j]) NNPDF3.0NNLO SHERPA NLO+NLO (EW)

tttt MADGRAPH5_aMC@NLO 2.3.3 NNPDF3.0NLO PYTHIA 8.210 NLO+NLO (EW)
tZq MADGRAPH5_aMC@NLO 2.3.3 (LO) CTEQ6L1 PYTHIA 8.212 -
tWZ MADGRAPH5_aMC@NLO 2.3.3 [DR] NNPDF3.0NLO PYTHIA 8.230 -

Table 17 – List of the MC samples used in this analysis with their corresponding generator set-ups. The first
row of each sample correspond to the nominal sample, and the rest are used to estimate systematic
uncertainties. [33, 141]. ’n f 4’ corresponds to the Nf = 4 versions of the NNPDF3.0 sets [142]. To
handle interference with tt production, the diagram removal (DR) [143] scheme is used for tW

production. To assess an uncertainty in the modelling of this interference, an additional sample
using the diagram subtraction (DS) [143,144] scheme is used. In W+jets and Z+jets, NLO-accurate
MEs are calculated for up to two partons (2 j) and LO accurate MEs for up to four partons (4 j).
They were matched with the SHERPA PS using the MEPS@NLO [145, 146] prescription and the
NNPDF3.0NNLO PDFs set. For the VV Sherpa samples, "had" ("lep") denotes that one decays
leptonically and one hadronically (both bosons decay leptonically).
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5.3.2 tt̄+jets background modelling

Different MC samples are used to model the nominal tt̄ + jets background as well as associated

systematic uncertainties, each with a different PS and with a different level of precision in the ME

generator. The tt̄ + jets samples are divided into three main components based on the truth-flavour

of the jets produced in addition to the top quark decays. The truth-flavour of the jets is defined using

so-called truth-jets, formed from stable particles, and determined based on a matching criterion

similar to the matching done for b-tagging, as described in Section 3.3.1. Events are labelled as

tt̄+� 1b if at least one b-jet is identified, or else as tt̄+� 1c if at least one c-flavour jet is identified,

and otherwise as tt+light. The tt̄+� 1b events can be further split into tt̄+1b (exactly one b-jet),

tt̄+B (exactly one B-jet2), and tt̄+� 2b (at-least two b-jet).

The modelling of the tt̄+� 1c and tt̄+light events is performed in the 5FS using POWHEG BOX v2

with µR = µR =
q

m2
top +p2

T = mtop
3 and hdamp = 1.5· ·mtop [144]. In order to precisely model the

main tt̄+� 1b background, a sample with tt̄+bb̄ MEs is produced at NLO QCD accuracy in 4FS

scheme using POWHEG Box Res [149] generator and OpenLoops [150]. The b-quarks are treated

as massive with a mass of mb = 4.75 GeV. The setting of the POWHEG+PYTHIA8 samples are

optimised [141] with respect to the tt̄+bb̄ samples used in the previous round of the tt̄H(H ! bb̄)

analysis. This was done to improve tt̄+bb̄ modelling and optimise background uncertainty model.

The optimization process involves lowering the renormalization scale in order to get a better match

with the data. This resulted in the reduction of the NLO K-factor from 1.62 to 1.54, obtained by

comparing the tt̄ production cross-section with at least two additional b-jet or at least one at NLO

to LO. These optimisations resulted in the reduction of events with negative weight by factor of

two . The decay handling and spin correlation have also been changed, using the default method

in POWHEG. In comparison to the ATLAS measurement, the fiducial cross-section of tt̄+bb̄ by

POWHEG+PYTHIA8 predictions using different scale choices is shown in Figure 105. Different

scale choices are described as follows:

• Scale 1: µR = µ
def
R , µF = µ

def
F

• Scale 2: µR = 0.5 ·µdef
R , µF = µ

def
F

• Scale 3: µR = 0.5 ·µdef
R , µF = 0.5 ·µdef

F

2 B-jets are the jets matched to more than one b-hadron, where the sub-leading b-hadrons have no pT

requirement.
3 Since this scale is computed in the tt̄ rest-frame, it follows that the pT values of the top quark and the top

anti-quark are identical.
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where, µ
def
R = 4

p

mT (t) ·mT (t̄) ·mT (b) ·mT (b̄) and µ
def
F = 0.5 x Σi=t,t̄,b,b̄mT(i). The predictions made

by using scale 1 are consistent with the one used in the previous tt̄H(H ! bb̄) analysis. The scale 2

setting shows the improved data/MC agreement compared to scale 1 and scale 3 , and is used for

generating tt̄+bb̄ nominal and the alternative samples for the current analysis round. Two alternative

samples are used to assess the uncertainty, simulated using POWHEG+HERWIG7 and using SHERPA

2.2.10 which implements an MC@NLO [151] type matching and generates its own PS and particle

decays.

Figure 105 – Fiducial cross-section of tt̄+bb̄ as measured by POWHEG+PYTHIA8 (P+P8.2) predictions with
different scale settings compared to the ATLAS measurement [152].

5.3.3 Other background modelling

Table 17 lists the simulated samples used for the other background process involved in the analysis.

The tt̄W and tt̄Z samples are generated using the MADGRAPH5_aMC@NLO 2.3.3 generator at

NLO in QCD with µR = µF = 0.5 ΣimT (i). tt̄W and tt̄Z samples will be collectively referred as tt̄V

in the following studies.

The tH events, corresponding to the tHjb and tWH production, are treated as background. These are

generated using the MADGRAPH5_aMC@NLO 2.6.2 generator at NLO in QCD with the function

form of µR and µF similar to tt̄V.
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The QCD V + jets processes (i.e. W + jets and Z + jets) were simulated with the SHERPA 2.2.1

generator. The Comix [145] and OpenLoops libraries are used to calculate NLO-accurate MEs for

up to two partons and LO accurate MEs for up to four partons. They are matched with the SHERPA

PS using the MEPS@NLO [145, 146] prescription and the NNPDF3.0NNLO PDFs set.

The diboson event simulation is performed with the SHERPA 2.2.1 and 2.2.2 generators. Multiple

MEs are matched with Sherpa PS based on Catani–Seymour dipole factorisation [153] using the

MEPS@NLO prescription and the NNPDF3.0NNLO PDFs set.

The Single-top in s-, t-channel, and tW production are modelled using the POWHEG BOX v2 at NLO

precision in QCD. The NNPDF3.0NNLO nf4 PDF set [142] in 4FS is used to generate t-channel

samples, with µR = µF = mT(b). The s-channel and tW samples are generated in 5 FS with the

NNPDF3.0NLO PDF set, and µR = µF = mtop. To handle interference with tt̄ production, the diagram

removal (DR) [143] scheme is used for tW production. To assess an uncertainty in the modelling

of this interference, an additional sample using the diagram subtraction (DS) [143, 144] scheme is

used.

The four top quarks samples are generated using the MADGRAPH5_aMC@NLO 2.3.3 generator at

NLO in QCD with the NNPDF3.1NLO PDF set, and µR = µF = 0.25 · ΣimT(i).

The tZq samples are generated using the MADGRAPH5_aMC@NLO 2.3.3 generator in the 4FS at

LO in QCD with the CTEQ6L1 [154] PDF set, and µR = µF = 4 · mT(b), where the b-quark is the

one coming from the gluon splitting.

The tWZ sample samples are generated using the MADGRAPH5_aMC@NLO 2.3.3 generator at

NLO in QCD with the NNPDF3.0NLO PDF set, and µR = µF = mtop. The DR scheme is used to

handle the interference between tWZ and tt̄Z.

Events that involve a jet or a photon that is incorrectly identified as a lepton, as well as events

that involve a non-prompt lepton, are found to contribute a negligible amount to the single-lepton

channel. Except the tt̄V background, all other non-tt̄ + jets background processes will be referred as

the "Other" background in the following studies.

5.4 Analysis regions

The events passing the event selection, described in Section 5.2, are further categorised into mutually

exclusive regions. The sensitivity of the analysis regions is further improved by employing Multi-

variate Analysis (MVA) techniques, as described in Chapter 4. The MVAs employed in the previous

round were based on the BDTs, whereas in the legacy round Deep-sets are used. The analysis regions

are defined based on the total number of jets as well as on the number of b-jets at different b-tagging
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WPs: 60% and 70%. The regions with higher signal-to-background (S/B) ratio are classified as

signal regions (SRs). The analysis regions which are signal-depleted are called control region (CRs),

which provides stringent constraints on the normalisation of the backgrounds and on the systematic

uncertainties when used in a fit with SRs. The analysis regions definitions in the single-lepton

channel are summarised in Table 18.

The Data/MC comparisons of distributions in the SRs and the CRs in the single-lepton channel,

prior to any profile likelihood fit, are studied to identify mis-modelling. In the analysis presented

here, there are a total of 10 analysis regions defined, with six SRs and four CRs. The events are first

categorised based on the number of jets i.e the ones with at least six jets and the ones with exactly

five jets. In each of these regions, events are further sub-classified.

Region SR�6j
�4b CR�6j

�4b CR5j
�4b

sub-region STXS 1 STXS 2 STXS 3 STXS 4 STXS 5 STXS 6 tt̄+� 2b other hi lo

pT [GeV] [0, 60) [60, 120) [120, 200) [200, 300) [300, 450) [450, ∞) Inclusive
#leptons = 1
#jets >=6 = 5

#b-tag
@70% >=4
@60% - >=4 <4

Fit input DNN output ∆Rbb
avg

Table 18 – List of definitions of the analysis regions in single-lepton channel. The last row represents the
inputs used in each analysis region for the signal extraction fit. "other" corresponds to tt̄+1b/ tt̄+B/
tt̄+� c region.

The events in the six-jet region are split into six SRs and two CRs based based on the multi-class

Deep-sets scores, described in Section 4.4. The STXS multi-classifier Deep-sets scores serve

as discriminants for defining the six SRs, which corresponds to the six STXS classes. The two

CRs in six-jet region (6jCRs) are defined based on tt̄+� 2b and other (tt̄+1b/ tt̄+B/ tt̄+� 1c)

Deep-sets scores. The Deep-sets outputs are used as the inputs for the SRs and the 6jCRs to the

signal extraction fit. The events in the five-jet region are split between the CRs in five-jet. The

variable ∆Ravg
bb , which is the average ∆R for all the possible combinations of b-jet pairs, is used

as the inputs for the 5jCRs to the signal extraction fit. The dedicated 6jCRs and 5jCRs help to

constrain the different systematic uncertainties associated to sub-background processes. Figure 106

depicts the composition of tt̄H simulated events in each STXS regions. The expected event yield

corresponding to the tt̄H components in each STXS regions is shown in Table 19. As expected, the

STXS event category is dominated by its corresponding tt̄H STXS component. Figure 107 shows

the background contributions in SRs, 6jCRs and 5jCRs, where tt̄ + jets background is dominant and
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only small contributions come from the Other background process. The largest fraction of tt̄ + jets

corresponds to the tt̄+� 2b background, which accounts for more than 75% of the total background

in all the SRs, followed by tt̄+1b,tt̄+B and tt̄+� c, which are around 10-20% across all the SRs.

The fraction of tt̄+� 2b events is dominant in the dedicated CR( tt̄+� 2b), while the fraction of

tt̄+1b,tt̄+B and tt̄+� c background events are higher in the dedicated CR(other), compared to

other regions.

Figure 106 – Pie chart showing the tt̄H signal composition in different STXS regions (SRs) defined based on
tt̄H STXS multi-classifier scores.

tt̄H events STXS1 region STXS2 region STXS3 region STXS4 region STXS5 region STXS6 region
pH

T 2 [0,60) GeV pH
T 2 [60,120) GeV pH

T 2 [120,200) GeV pH
T 2 [200,300) GeV pH

T 2 [300,450) GeV pH
T 2 [450,∞) GeV

tt̄H1 33.13 6.23 4.99 3.66 0.91 0.07
tt̄H2 23.54 32.88 15.04 9.17 2.29 0.22
tt̄H3 13.01 10.92 46.26 15.29 3.42 0.31
tt̄H4 2.47 2.16 5.47 37.97 6.015 0.40
tt̄H5 0.304 0.27 0.60 2.01 18.96 1.59
tt̄H6 0.017 0.02 0.06 0.08 0.63 5.17

Table 19 – Expected pre-fit yields for tt̄H(i) components in all the signal regions in the single-lepton channel,
where i[1�6] corresponds to the six STXS regions split based on truth pH

T .

Figure 108 shows the pre-fit Data/MC distributions over the different event categories including the

systematic uncertainties band, discussed in Section 5.5. The expected yields in different analysis



Chapter 5. Search for the Higgs boson in the single lepton tt̄H(H ! bb̄) channel 155

ATLAS Simulation Internal

 = 13 TeVs

Single lepton

tt + B tt + 1b
2b≥tt +  + lighttt

 + Vtt 1c≥ + tt
Other

 [0,60) GeV∈ H

T
p  [60,120) GeV∈ H

T
p  [120,200) GeV∈ H

T
p  [200,300) GeV∈ H

T
p

 [300,450) GeV∈ H

T
p ) GeV∞ [450,∈ H

T
p tt+2b region tt1b/ttB/ttc region

4b lo≥

5j
CR

4b hi≥

5j
CR

Figure 107 – Pie chart showing all the background composition in the analysis regions.

regions are shown in Table 20. In order to perform the analysis optimisation without looking at the

data in regions sensitive to tt̄H(H ! bb̄), a blinding threshold is applied based on the S/B ratio. In

this analysis the bins are blinded if S/B is larger than 7.7%. Figure 109 shows the pre-fit distributions

of the tt̄H, tt̄+� 2b and other scores in the inclusive six-jet region (before splitting between STXS

SRs and tt̄+� 2b and other CRs). The data/MC agreement is observed to be around ⇠ 10-20%.
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Figure 108 – Pre-fit summary showing the event yields in each of SRs and CRs in the single-lepton chan-
nel. The uncertainty band consists the uncertainties described in Section 5.5, except for the
normalisation factor k(tt̄+� 1b)The pre-fit distributions are blinded where S/B > 7.7%.

pH
T 2 [0,60)

GeV
pH

T 2 [60,120)
GeV

pH
T 2 [120,200)

GeV
pH

T 2 [200,300)
GeV

pH
T 2 [300,450)

GeV
pH

T 2[450,∞)
GeV

tt̄+� 2b
region

other
region

CR5j
�4blo CR5j

�4bhi

tt̄H 72.5 ± 9.8 52.5 ± 6.9 72.4 ± 11.01 68.2 ± 9.5 32.2 ± 4.8 7.8 ± 1.5 71.7 ± 12.9 85.07 ± 9.8 64.1 ± 9.4 67.9 ± 10.8

tt̄ + � 1b 566.01 ± 122.5 408.1 ± 63.9 540.7 ± 85.9 459.3 ± 73.4 202.3 ± 47.8 46.1 ± 11.6 3133.2 ± 430.9 2001.3 ± 367.1 1320.4 ± 328.4 1005.8 ± 302.9

tt̄ + W 0.9 ± 0.2 0.7 ± 0.1 1.3 ± 0.5 1.07 ± 0.2 0.7 ± 0.1 0.2 ± 0.07 5.2 ± 0.9 3.1 ± 0.5 1.4 ± 0.3 0.4 ± 0.08

tt̄ + Z 18.4 ± 2.4 13.3 ± 1.7 18.1 ± 2.5 20.2 ± 3.9 12.5 ± 2.3 3.6 ± 1.2 60.05 ± 8.8 38.7 ± 5.2 26.8 ± 3.3 23.4 ± 3.2

Wt channel 3.4 ± 2.5 2.4 ± 1.3 3.5 ± 0.8 3.7 ± 1.1 2.8 ± 1.1 1.3 ± 0.8 38.3 ± 8.5 22.2 ± 15.2 24.3 ± 16.7 10.05 ± 8.9

tH 0.7 ± 0.1 0.4 ± 0.1 0.6 ± 0.1 1.04 ± 0.2 0.6 ± 0.1 0.1 ± 0.06 1.4 ± 0.2 2.6 ± 0.32 3.5 ± 0.4 3.6 ± 0.4

Other top sources 4.3 ± 0.5 3.1 ± 0.4 4.1 ± 0.5 5.4 ± 0.8 2.9 ± 0.4 0.7 ± 0.2 41.2 ± 2.9 24.3 ± 2.01 34.5 ± 2.6 27.4 ± 1.9

VV & V + jets 6.4 ± 2.6 2.9 ± 1.05 5.5 ± 2.2 7.7 ± 3.2 4.1 ± 1.8 2.2 ± 0.9 67.3 ± 25.9 35.2 ± 12.9 42.6 ± 15.8 27.1 ± 9.5

Total 744.3 ± 143.6 532.6 ± 83.7 704.8 ± 111.4 614.3 ± 89.5 282.5 ± 53.4 66.3 ± 13.9 3630.5 ± 477.8 2502.8 ± 446.4 1893 ± 436.2 1205 ± 306.3

Table 20 – The expected pre-fit yields in all the analysis regions in the single-lepton channel. The errors
include systematic uncertainties, discussed in Section 5.5.
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Figure 109 – The pre-fit distribution of Deep-sets (a) tt̄H score (b) tt̄+� 2b score and (c) other score in the
inclusive six-jet region. The probability scores are not within [0,1] range as the Deep-sets scores
are rescaled (cf. Section 4.5). The dashed red line shows the tt̄H signal normalised to the total
background prediction. The uncertainty band consists of all the uncertainties except for the
normalisation factor k(tt̄+� 1b). The pre-fit distributions are blinded where S/B > 7.7%.
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In the SRs, two possible discriminants could be used as the inputs to the signal extraction fit.

• Inclusive tt̄H scores: These are the Deep-sets score obtained by adding the individual STXS

scores per event. This gives the probability for an event to be tt̄H signal.

• Individual STXS scores: These scores corresponds to the assigned probabilities per event

for being in each STXS regions.

Figure 110, shows the pre-fit distribution of tt̄H scores in different STXS regions. S/B is observed

to be 10-12% in STXS regions except the first bin, which is the only one unblinded. Similarly,

Figure 111, shows the individual STXS scores in different STXS regions before the fit. All the

STXS bins are blinded due to high S/B ratios. Both of these DNN outputs have the potential to

be a strong discriminant; therefore, each is evaluated separately in the statistical fit to determine

which one gives better performance. Thus, the choice of the discriminant to be used as inputs in the

SRs is done via fit results, presented in Section 5.7.2. Figure 112 and Figure 113 shows the pre-fit

distributions of 6jCRs and 5jCRS, respectively. The data/MC agreement was analysed and is found

to be uniform and within systematic uncertainties.

In the previous round of the tt̄H(H ! bb̄) analysis, a total of eight analysis regions, with six SRs4

and two CRs were defined in the single-lepton channel. Six STXS categories are defined in the

six-jet region, similar to Deep-sets, but the categories are defined based on the reconstructed pH
T

computed via recoBDT score, as described in Section 4.2, rather than Deep-sets score. The dedicated

BDT discriminants for defining CRs to constrain tt̄+� 2b and other backgrounds are not available

and thus, is one of the main difference in the event categorisation between Deep-sets and the BDTs.

In addition, 5jCRs are defined similar to the Deep-sets. The classBDT outputs distributions are

used in the SRs as the input to the fit, whereas ∆Ravg
bb distribution is used in the CRs. Figure 114

shows the S/B and S/
p

B ratios in the STXS regions defined using the Deep-sets. The S/B ratios

in STXS regions defined using recoBDTs cannot be directly compared with Deep-sets, since it

does not exclude the contribution from the background. In order to have a fair comparison of tt̄H

signal-enriched regions, a classBDT > 0.38 cut is applied. The cut gives similar signal efficiency to

the fraction of events in Deep-sets in the STXS regions altogether. Figure 115, shows the S/B and

S/
p

B ratios after the classBDT cut in the STXS regions. The S/B in Deep-sets is around 10-13 %

across the SXTS regions, comparable to the BDT regions.

4 The previous round used five SRs corresponding to five STXS regions, but first SR is split into two in the
studies shown in this thesis.
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Figure 110 – Pre-fit distribution of the inclusive ttH DNN scores in the (a) pH
T 2 [0,60) GeV, (b) pH

T 2 [60,120)
GeV, (c) pH

T 2 [120,200) GeV, (d) pH
T 2 [200,300) GeV, (e) pH

T 2 [300,450) GeV, (f) pH
T 2

[450,∞) GeV regions. The uncertainty band consists of all the uncertainties except for the
normalisation factor k(tt̄+� 1b). The pre-fit distributions are blinded where S/B > 7.7%.
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Figure 111 – Pre-fit distribution of the STXS DNN scores in the (a) pH
T 2 [0,60) GeV, (b) pH

T 2 [60,120) GeV,
(c) pH

T 2 [120,200) GeV, (d) pH
T 2 [200,300) GeV, (e) pH

T 2 [300,450) GeV, (f) pH
T 2 [450,∞)

GeV regions. The uncertainty band consists of all the uncertainties except for the normalisation
factor k(tt̄+� 1b). The pre-fit distributions are blinded where S/B > 7.7%.
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Figure 112 – Pre-fit distribution of the (a) tt̄+� 2b DNN score in the tt̄+� 2b CR, (b) tt̄+1b / tt̄+B / tt̄+� c
DNN score in the other CR. The uncertainty band consists of all the uncertainties except for the
normalisation factor k(tt̄+� 1b). The pre-fit distributions are blinded where S/B > 7.7%.
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Figure 113 – Pre-fit ∆Ravg
bb distribution in (a) CR5j

�4b hi and (b) CR5j
�4b lo. The uncertainty band consists of

all the uncertainties except for the normalisation factor k(tt̄+� 1b). The pre-fit distributions
are blinded where S/B > 7.7%.
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Figure 114 – The S/
p

B ratio distribution along with the S/B ratio values for different STXS regions defined
using Deep-sets scores.

Figure 115 – The S/
p

B ratio distribution along with the S/B ratio values for different STXS regions defined
using recoBDTs.
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5.5 Systematic uncertainties

The systematic uncertainties, which come from a variety of sources that are discussed in this

section, have a significant impact on the tt̄H(H ! bb̄) analysis. These can not only affect the overall

normalisation (N) of the samples but also can affect both the shape of the various distribution in the

analysis regions and the normalisation (SN). The uncertainties affecting the normalisation change

the relative fraction of the different samples, resulting in a shape uncertainty in the distribution of

the final discriminant for the total prediction in the different analysis categories. The systematic

model used in this analysis is adapted from the one used in the previous round [33]. Table 21

shows a list of all systematic uncertainties considered in the analysis, and indicates the number of

independent components and also whether they affect only the normalisation or both the shapes and

the normalisation. However, a few of the experimental uncertainties, discussed later in this section,

are not taken into account in the analysis results.

The systematic uncertainties can be categorized into two main parts. The first one corresponds to the

experimental uncertainties, coming from the calibration and reconstruction of physics objects. With

the exception of uncertainty in the luminosity, the experimental uncertainties affect both the shape

and normalisation of all MC samples. The experimental uncertainties are discussed in Section 5.5.1.

The second part includes uncertainties from the modelling of the signal and backgrounds processes,

described in Section 5.5.2 and Section 5.5.3, respectively. Few of the systematic uncertainties are

also broken down into multiple independent sources, where each individual source has an effect

that is correlated across all of the analysis categories.

5.5.1 Experimental uncertainties

The experimental uncertainties are described here, which are correlated across all of the analysis

regions. The uncertainties associated to b-tagging and jets, have a significant impact in the profile-

likelihood fit, discussed in Section 5.6.

Luminosity and pile-up modelling: The uncertainty associated with the integrated luminosity for

the combined 2015-2108 Run-2 data is 1.7% [34]. The uncertainty on the modelling of the pile-up

is also considered, to account for the difference between the predicted and measured values for the

inelastic cross-section [155].

Jets and b-tagging: The experimental uncertainties are dominated by the uncertainties associated

with jets. Even if the single components have relative uncertainties in the range of 1-5 %, the

huge number of jets in the final state magnifies their effect. Combining the information gained

from the test-beam data, the LHC data, and simulation allows to extract the jet energy scale (JES)

uncertainty [156]. The uncertainty on the jet energy resolution (JER) is derived by combining
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Systematic uncertainties Type Components
Experimental uncertainties

Luminosity N 1
Pileup modelling SN 1
Physics Objects

Electrons SN 7
Muons SN 15
Jet energy scale SN 31
Jet energy resolution SN 9
Emiss

T SN 1
Jet vertex tagger SN 3
b-tagging

Efficiency SN 45
Mis-tag rate (c) SN 20
Mis-tag rate (light) SN 20
Signal modelling

tt̄H cross-section N 2
tt̄H modelling SN 4
Higgs branching fractions N 3
Background modelling
tt background

tt̄ cross-section N 1
tt̄+� 1c normalisation N 1
tt̄+� 1b normalisation (free-floating) N 1
tt̄+light normalisation SN 4
tt̄+� 1c modelling SN 4
tt̄+� 1b modelling SN 6
Other background

tt̄W cross-section N 2
tt̄Z cross-section N 2
tt̄W modelling SN 1
tt̄Z modelling SN 1
Single-top cross-section N 3
Single-top modelling SN 7
W+jets normalisation N 3
Z+jets normalisation N 3
Diboson normalisation N 1
four-tops cross-section N 1
tZq, tWZ, tHjb, and tWH cross-sections N 3

Table 21 – Summary of all the systematic uncertainties used in the analysis. "N" corresponds to the uncertainty
is affected by the normalisation-only. "SN" denotes that both the normalisation and the shapes are
considered. For a more accurate treatment, some of the systematic uncertainties are divided into
several components! [33].
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information from simulation and di-jet pT balance measurements [156]. There are in total 31 and

9 independent sources of uncertainties considered on JES and JER, respectively. An uncertainty

associated to the jet vertex tagger (JVT) calibration is also considered to account for the differences

between data and simulations [157]. Additional uncertainty sources are also taken into account

such as related to the jet flavour, pile-up corrections and jet kinematics as well as the full and fast

simulation differences. The b-tagging calibration, which accounts for the correction of b-tagging

efficiencies in simulated samples to match those in data, is used to extract the associated uncertainties

as a function of the different b-tagging WPs and the jet pT. A total of 85 uncorrelated uncertainties

for b-, c- and light-jets are taken into account. Depending on the WPs, the uncertainty on the

b-tagging jets calibration is around 2-10 %. The mis-tag calibration uncertainty for c- and light-jets

is 10-25 % and 15-50 %.

Leptons: The uncertainty on the leptons mainly comes from the the trigger, reconstruction, identifi-

cation and isolation efficiencies as well as the lepton momentum scale and resolution for the muons

and the electrons. These independent sources have small effect on the final fit.

Missing Transverse Momentum: The estimation of the missing transverse momentum is subject

to all of the uncertainties that are associated with the energy scales or resolution of the reconstructed

objects. In this analysis, three additional uncertainties associated with the scale and resolution of

the soft term are considered. These uncertainties have a relatively minor effect in the fit, given that

the missing transverse momentum is only used as input of the Deep-sets discriminants used for the

event categorisation and the distributions used in the profile-likelihood fit and not for the selection

of the event.

Only the luminosity, pileup and b-tagging experimental uncertainties are taken into account in the

analysis results. The other experimental uncertainties described above required dedicated sample

processing to estimate their impact on the sample acceptance, and was still ongoing at the time of

the writing the thesis. However, the estimated impact of on the uncertainty on the final results based

on the previous round results are discussed in Section 5.7.2.

5.5.2 Signal modelling uncertainties

To estimate the signal cross-section uncertainty, an uncertainty of ± 3.6 % is applied by varying the

PDF and αs in the fixed-order calculation [158–160]. The PDF variations have a negligible effect

on the shapes of the distributions used in the analysis. Uncertainties in the Higgs boson branching

fractions are also taken into account. The uncertainty coming from the branching fraction of the

Higgs boson into bb̄ amounts to 2.2 % [158]. The ISR uncertainty is estimated by simultaneously

varying µR and µF up (down) by a factor of 0.5 (2) in the ME and α ISR
s in the PS, while an
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uncertainty due to FSR is estimated by varying αFSR
s in the PS by a factor of 0.5 (2) [161]. Event

weights are used to assess the impact of these systematic uncertainties in the analysis. Two-point

systematics are used in order to estimate some modelling uncertainties. This method retrieves the

uncertainty, by comparing two different MC generator setups and deriving an uncertainty from the

differences between them. The impact of the PS and hadronisation model is evaluated by comparing

the nominal generator setup with a sample produced with POWHEG+HERWIG 7 in 5FS. To assess

the uncertainty due to the choice of the matching scheme, the nominal sample is compared to

a generator setup of MADGRAPGH5_aMC@NLO+PYTHIA8. Additional uncertainty is applied,

estimated due to missing higher order terms in the perturbative QCD calculations on the total

cross-section. This amounts to an scale uncertainty of 9.2% for the total cross-section retrieved

using the Stewart-Tackmann procedure [162]. All the signal modelling uncertainties are correlated

across all the STXS bins.

5.5.3 Background modelling uncertainties

tt̄+jets backgrounds:

The background modelling uncertainties of tt̄+jets used in this analysis are listed in Table 22. The

different tt̄+jets components i.e tt̄+� 1b, tt̄+� 1c and tt̄+light are impacted by different types of

uncertainties. The tt̄+light processes benefits from relatively precise measurements in data. tt̄+� 1b

and tt̄+� 1c processes are fairly sensitive to the precision of the ME and the flavour scheme used for

the PDF. Thus, separate uncertainties are assigned for the tt̄+� 1b, tt̄+� 1c and tt̄+light processes.

Across these three components, all systematic uncertainty sources are treated as uncorrelated. The

impact of the PDF uncertainties is found to be negligible.

Uncertainty source Description Components

tt̄ cross-section ± 6% tt̄+light
tt̄+� 1b normalisation free-floating tt̄+� 1b
tt̄+� 1c normalisation ±100% tt̄+� 1c
ISR Varying µ

ISR
R (PS), µR and µF (ME) in POWHEGBox+PYTHIA8 ttbb (4FS) tt̄+� 1b

in POWHEGBox+PYTHIA8 tt̄ (5FS) tt̄+� 1c, tt̄+light
FSR Varying µ

FSR
R (PS) in POWHEGBox+PYTHIA8 ttbb (4FS) tt̄+� 1b

in POWHEGBox+PYTHIA8 tt̄ (5FS) tt̄+� 1c, tt̄+light
NLO matching SHERPA 2.210 tt̄+bb̄ (4FS) vs. POWHEGBox+PYTHIA8 ttbb (4FS) tt̄+� 1b

SHERPA 2.210 tt̄ (5FS) vs. POWHEGBox+PYTHIA8 tt (5FS) tt̄+� 1c, tt̄+light
PS and hadronisation POWHEGBox+HERWIG7 tt̄+bb̄ (4FS) vs. POWHEGBox+PYTHIA8 tt̄+bb̄ (4FS) tt̄+� 1b

POWHEGBox+HERWIG7 tt (5FS) vs. POWHEGBox+PYTHIA8 tt̄ (5FS) tt̄+� 1c, tt̄+light
tt̄+� 1b fractions Variation of the relative fractions of tt̄+� 2b and tt̄+1b/1B tt̄+� 1b
pbb

T shape Shape mismodelling measured from data tt̄+� 1b

Table 22 – List of the sources of systematic uncertainty for tt̄+jets modelling. The last column of the table
shows the tt̄ + jets components to which a systematic uncertainty is assigned. Across the three
components, all systematic uncertainty sources are treated as uncorrelated.
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When calculating the inclusive tt̄ cross-section (NNLO+NNLL), an uncertainty of ±6 % is only

applied to the tt̄+light samples, because it predominates in the inclusive phase space. This uncertainty

accounts for various effects from varying the normalisation and the factorisation scales, αs, the

PDFs and the top-quark mass. An uncertainty of 100 % is applied to the normalisation of the

tt̄+� 1c sample. As mentioned before, the tt̄+� 1b normalisation is kept free-floating in the fit.

The ISR and FSR uncertainties for tt̄+jets components are estimated using the same procedure

as for tt̄H. The variations for both the systematic uncertainties are performed on the respective

nominal tt̄+jets components samples. Two-point systematics are also used in order to estimate

tt̄+� 1b, tt̄+� 1c and tt̄+light modelling uncertainties. Table 22 shows the list of the nominal and

the alternative samples for each of the tt̄+jets component, used for estimating the impact of the PS

and hadronisation and the choice of matching scheme.

The fraction of tt̄+� 1b events in the selected phase-space (here � 5j �4b@70%) in all the

alternative samples is re-weighted to match the fraction in the nominal sample. This is to allow the

normalisation of tt̄+� 1b to be driven solely by the free-floating parameter in the signal extraction

fit to data. tt̄+� 1b NLO matching uncertainty is decorrelated between SRs and CRs. To account

for variations in the tt̄+� 1b sub-component fractions found in different predictions, an additional

NP is introduced to cover the largest discrepancy between two models for the fraction of tt̄+1b

and tt̄+� 2b. The 1σ variation of this NP corresponds to reducing the amount of tt̄+� 2b by 3%

and increasing the amount of tt̄+1b by 11%. This uncertainty is correlated across all regions, and

impacts each region differently due to the varying compositions of tt̄+� 1b.

The pbb
T shape uncertainty was introduced in the previous round of the analysis to account for the

data/MC mis-modelling of tt̄+� 1b events in the pre-fit distributions of the reconstructed pH
T in

the signal-lepton channel. Figure 116 (a) shows a clear slope in data/MC ratio, where in the first

bin the ratio is more than 25 %. Figure 116 (b) shows a similar distribution in the legacy round,

where slight slope is observed but less prominent than the previous round. Since there is no STXS

bin prediction for CRs, an indirect method is used to study pbb
T modelling in CRs. Similarly to the

SRs, the STXS scores are used for the STXS bin assignment. This uncertainty in the previous round

was derived from the data-MC difference observed in the six-jet SR, whereas the uncertainty in this

round is derived from the dedicated tt̄+� 2b CR, is orthogonal to the SR, which is expected to

reduce the impact of this systematic in the analysis results.

Other backgrounds:

Table 23 lists the sources of the systematic uncertainties Other background modelling processes.

These uncertainties have much lower impact in the final fit, compared to the tt̄+jets uncertainties.
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Figure 116 – Pre-fit distribution of the reconstructed Higgs boson pT in the SR (� 6j � 4b@70%) in the
single-lepton channel for the (a) the previous [33] and the (b) legacy round of tt̄H(H ! bb̄)
analysis.

Uncertainty source Description

tt̄V [163]
cross-section ±15%
NLO matching MADGRAPH5_aMC@NLO +PYTHIA8 vs SHERPA

PS and hadronisation MADGRAPH5_aMC@NLO +PYTHIA8 vs SHERPA

Single-top [164–166]

NLO cross-section ± 5%
NLO matching MADGRAPH5_aMC@NLO +PYTHIA8 vs POWHEGBox+PYTHIA8
PS and hadronisation POWHEGBox+HERWIG7 vs POWHEGBox+PYTHIA8

tW and tt interference [167]
POWHEGBox+PYTHIA8
(Diagram removal (DR) vs Diagram subtraction (DS) scheme)

W+jets
cross-section ±40%

normalisation
± 30%
(events with = 2 and > 2 Heavy flavour jets are uncorrelated)

Z+jets normalisation ±35%
Diboson [168] cross-section and additional jet production ±50%

tZq [169]
cross-section (PDFs) ±0.9%
factorisation and normalisation ± 7.9%

tWZ [169] cross-section ±50%

tHjb [25]
cross-section (PDFs) ±3.7%
factorisation and normalisation +6.5 / -14.9%

tWH [25]
cross-section (PDFs) ±6.3%
factorisation and normalisation +6.5 / -6.7%

four-tops normalisation ±50%

Table 23 – List of the sources of systematic uncertainty for Other background modelling processes [33].
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5.6 Profile-likelihood fit

The statistical test of signal presence is based on Neyman-Pearson lemma [170], which states that

to reject a hypothesis H0 in favour of hypothesis H1 the most powerful test is the ratio of their

likelihoods. The general form of a likelihood function can be expresses as L(θ) = ∏
n
i=1 f (xi,Θ),

where x1...xn are the measurement of random variable x repeated n times and f (xi,Θ) is the

probability density function of x known a priori except Θ which corresponds to a set of parameters

with unknown values. In this analysis, the set of signal strengths µ , which is ratio of the expected

or observed signal cross section to the SM cross section, the background normalisation factor k,

and the set of Nuisance Parameters (NPs) θ , are the unknown parameters. The set of NPs gives

extra degrees of freedom to the fit and characterises the effects of systematic uncertainties in the

signal and background expectations. A binned data distribution with number of events Ni in bin i, is

compared via the fit procedure to its expectation value of the number of events:

N
exp
i (µ,k,θ) =∑

µ

µs · sigs,i(θ)+∑
k

kb ·bkgb,i(θ) (5.1)

where, sigs,i are the expected tt̄H events of component s and bkgb,i are the expected background

events of component b in bin i. The parameter of interest is defined as:

µs =
σ s

σ s
SM

(5.2)

where, µs is one element in the set of signal strength parameters µ , σ s is the cross-section of the

signal and σ s
SM is the expected SM cross-section. In this analysis, only one signal-strength parameter

is used for an inclusive cross-section measurement, whereas six signal-strength parameters are used

for the STXS measurement. kb acts only on the tt̄+� 1b background and is kept freely floating. On

the other hand, all of the other background processes are normalised to their projected cross-sections,

and kb is set to one. A central value of θ = 0 is used, which corresponds to the best estimate of

a given parameter associated with a systematic uncertainty, and a ± shift reflects the distribution

variation resulting from its 1σ uncertainty. The continuous NPs are defined by extrapolation for

|θ | > 1 and interpolation for |θ | < 1. NPs are implemented in the likelihood as Poissonian or

Gaussian priors, given by:

L(µ,k,θ) =∏
i

N
exp
i (µ,k,θ)Ni

Ni!
e
�N

exp
i (µ,k,θ)

M

∏
i

1p
2π

e
θ

2
µ

2 (5.3)
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where M is the total number of NPs. The best estimates of the parameters in the fit: µ , k, θ are

achieved by maximizing the likelihood function. It is more convenient to minimize the negative

log-likelihood, as it is numerically more stable. The test statistics λµ is defined as:

λµ =�2ln

0

@

L(µ, ˆ̂
kµ ,

ˆ̂θµ)

L(µ̂, k̂, θ̂)

1

A (5.4)

where the parameters denoted with a single-hat are the values that maximise the likelihood func-

tion, whereas the parameters denoted with a double-hat correspond to the NPs that maximise the

likelihood function for a given µ value [171]. The compatibility of the observed data with the

background-only hypothesis (µ = 0) is measured using the test statistic λ0. The uncertainty associ-

ated to the best-fit µ value is determined by finding the values of µ that correspond to changing λµ

by one unit. The statistical tool for further implementing the statistical inferences on µ is provided

by RooFit package [172]. One of them is the significance S =
p

λ0, which represents the significance

of a deviation from the background-only hypothesis.

In the tt̄H(H ! bb̄) analysis, the distribution of the DNN discriminants in the SRs and 6jCRs, and

the ∆R
avg
bb distribution in 5jCRs, are combined in a profile-likelihood fit to test for the presence of

the tt̄H signal. One NP is assigned for each of the bins in the analysis regions, to account for the

limited statistics of the simulated samples. It incorporates the predicted yields and the uncertainties

in each of the bins of the analysis regions to fit them to the data. The binning of these distributions is

optimised in such a way as to maximise the sensitivity. This is done by simultaneously maintaining

the total MC statistical uncertainty in each bin at a level that is adjusted to prevent biases caused by

the fluctuations in the predicted yields.

A simultaneous fit to the data is performed in the single-lepton channel under the background-only

hypothesis, where the normalisation factor for tt̄+� 1b background is kept freely floating. Since

the legacy analysis still needs to go through ATLAS unblinding approval at the time of writing, thus,

full (S+B) fits to the data will not be presented in this thesis. In addition to the fit to the data, the

Asimov data-set can also be used instead of the real data in all the regions. The Asimov data-sets

are binned data-sets with the event count in each bin set to the expected event yield for the selected

model parameters. This is mainly used as a statistical test to obtain the expected uncertainties on

the signal strength and the background normalisation as well as the expected significance. The

profile-likelihood fit studies are performed for both inclusive and STXS cross-section measurements

on the Asimov data-set under the (S+B) hypothesis.
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5.7 Analysis results

This section presents the results of the analysis performed in the single-lepton channel using the

profile-likelihood fit, described in Section 5.6, where all 10 analysis regions were used in the signal

extraction fit. Both the inclusive and the STXS cross-section measurements are performed where

similar event categorization is used. For the STXS measurements, the fit is performed with multiple

signal strengths corresponding to the six p̂H
T bins.

The Asimov fit (statistics-only) which is performed using different choices of DNN discriminants

in the SRs is discussed in Section 5.7.1 followed by the expected performance of the fit under the

signal-plus-background (S+B) assumption, including the systematic uncertainties, discussed in

Section 5.7.2. The background-only fit is also performed, presented in Section 5.7.3. The expected

performance using the newly developed DNN discriminants are compared with the previously

used BDT discriminants, using the same configuration for signal extraction fit in the single-lepton

channel.

5.7.1 Statistics-only Asimov fit

The fit is first carried out using the Asimov data set, with only the statistical uncertainties being taken

into consideration. The signal strength and normalisation factors for the backgrounds measured

with that configuration are 1 as expected, and their corresponding statistical uncertainties can be

extracted from the fit. For the results presented here, two independent normalisation factors are

considered corresponding to the dedicated CR regions for tt̄+� 2b and other (tt̄+1b, tt̄+B and

tt̄+� c) background sub-components. These are denoted as k(tt̄+� 2b) and k(other) in the fit and

are kept freely-floating. These have been replaced by an inclusive normalisation factor covering

the inclusive tt̄+� 1b background component in the final fit configuration including the systematic

uncertainties used to produce the results presented in this thesis. However, the availability of

an exclusive CR region focused on different background sub-components helps to constrain the

uncertainties specifically associated with those by reducing their correlation.

As mentioned before, two choices of discriminant in the SRs are available, i.e., Deep-sets tt̄H

scores and Deep-sets STXS scores. In order to determine which discriminant offers the better fit

performance, the statistics-only fit is carried out independently for both of these discriminants.

Figure 117 and Figure 118 show the expected statistical uncertainties on the signal strengths fitted

simultaneously in all the pH
T bins as well as on the inclusive signal strength, using the STXS and the

tt̄H scores as the discriminants in the SR, respectively. Figure 119 shows the expected statistical

uncertainties on both inclusive and STXS fitted signal strengths using classBDT as the discriminant

in the STXS categories built based on the RecoBDT, as described in Section 4.2. Figure 121 shows
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the normalisation factor for the tt̄+� 2b and other backgrounds. When using the STXS scores as

the SR discriminants, the expected uncertainties on the fitted signal strengths in each pH
T bin are the

lowest when compared to both the tt̄H score and the classBDT. The expected statistical uncertainties

on the inclusive signal strength (µtt̄H) is comparable among all the three discriminants, however the

tt̄H score performs slightly better.

First, when comparing tt̄H and STXS discriminant performance, STXS discriminant is slightly

better than tt̄H, showing a reduction in the expected statistical uncertainty between 1% and 10%

across the STXS bins. This is consistent with the reduced correlation between the STXS bins,

as shown in Figure 120. In both cases, the uncertainty on k(tt̄+� 2b) and k(other) is consistent.

As a result of the better performance for the STXS measurement, the Deep-sets STXS scores are

considered as the default choice of discriminants (further referred to as Deep-sets) in the SR for the

signal extraction fit and will be used as such in the studies shown from now on.

Second, when comparing the performance of Deep-sets and classBDT discriminants, the Deep-sets

discriminant outperforms the classBDT, showing a reduction in the expected statistical uncertainty

between 5% and 30% across the STXS bins. The improved performance is much more pronounced

in the higher pT bins. Again this is consistent with the significantly reduced correlation between the

STXS bins, as shown in Figure 120.

Figure 117 – The inclusive and STXS signal-strength measurements, including the expected statistical uncer-
tainty, using the STXS Deep-sets scores as the signal region discriminant in the Asimov (S+B)
fit in the single-lepton channel.
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Figure 118 – The inclusive and STXS signal-strength measurements, including the expected statistical uncer-
tainty, using the tt̄H Deep-sets scores as the signal region discriminant in the Asimov (S+B) fit
in the single-lepton channel.

Figure 119 – The inclusive and STXS signal-strength measurements, including the expected statistical uncer-
tainty, using the classBDT outputs as the signal region discriminant in the Asimov (S+B) fit in
the single-lepton channel.
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Figure 120 – The correlation matrix between the nuisance parameters in the Asimov (S+B) fit in the single-
lepton channel using (a) the STXS scores (b) the tt̄H scores and (c) the classBDT scores at
the signal region discriminant. Each NP has to have at least one correlation above 20% to be
included here.
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The overall lower correlation between STXS signal strengths and background normalisation factors

account for a part of the improvement in STXS uncertainties and background normalisations, shown

in Figure 121.

Figure 121 – Fitted normalisation factors for the tt̄+� 1b and other backgrounds, including the expected
statistical uncertainty, in the Asimov (S+B) fit in the single-lepton channel.

5.7.2 Expected performance

The expected uncertainties on the signal strengths and normalisation factor, as well as the expected

significance, are extracted from the Asimov fit. The systematic uncertainties, discussed in Section 5.5

are also included as NPs in the fit. The studies presented here are performed considering k(tt̄+� 1b)

as the only background normalisation factor and kept freely floating. In order to speed up the

convergence of the fit, certain optimizations are done on the systematic uncertainties. The shape

and normalisation of systematic uncertainties are pruned, separately per region and per sample,

with the pruning threshold set to 1%. This means that all the shape and normalisation systematic

variations below this threshold will be removed from the fit. It helps to reduce the computation time

of the fit and at the same time does not change the NP constraints nor affect the final signal strength.

Moreover, a smoothing method is also applied to reduce the impact from the statistical fluctuations

in simulated samples.

Figure 122 shows the normalisation factor for the k(tt̄+� 1b) background, where the expected total

uncertainty on the normalisation factor for tt̄+� 1b background with Deep-sets is improved by

25% in comparison to the classBDT. The total uncertainties includes the systematic as well as the

statistical uncertainty.

Figure 122 – Fitted normalisation factors for the tt̄+� 1b background, including the total expected uncer-
tainty, in the Asimov (S+B) fit in the single-lepton channel.
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Figure 123 and Figure 124 show the inclusive signal strength and the STXS measurements along

with the total expected uncertainties, using the Deep-sets and the classBDT, respectively. The

value of the systematic uncertainty is derived by subtracting the statistical uncertainty quadratically

from the total uncertainty i.e σsyst =
q

σ2
tot �σ2

stat. The expected µtt̄H is comparable between the

Deep-sets and classBDT. Similar to the statistics-only Asimov fit, the Deep-sets performs better

than the classBDT in each of the pH
T bins. The expected signal strength measurements in the SXTS

bins show an improvement between 3% and 35%. This is consistent with the reduced correlation

between the dominant NPs, shown in Figure 125 and Figure 126 for the Deep-sets and classBDT

in the µtt̄H measurement, respectively. The NPs which have dominant impact on fit are discussed

later in this section. Only the NPs which have at least one correlation above 20% are included in

the correlation matrix. Therefore, the total number of NPs shown in the correlation matrix differs

between the two setups.

The expected significance from the S+B fit using an inclusive signal strength using Deep-sets is

2.71 standard deviations, compared to 2.54 standard deviations using BDTs.

Figure 123 – The inclusive and STXS signal-strength measurements, including the total expected uncertainty,
in the Asimov (S+B) fit using the Deep-sets discriminants in the single-lepton channel.

Figure 127 presents the fitted NPs in the S+B Asimov fit in the single-lepton channel. In the

Deep-sets, tt̄+� 1b ISR, tt̄+� 1b PS and hadronisation, tt̄+� 1b NLO (CR and SR) show high

constraints. In the classBDT, tt̄+� 1b NLO have much higher constraint in SR and relatively
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Figure 124 – The inclusive and STXS signal-strength measurements, including the total expected uncertainty,
in the Asimov (S+B) fit using the classBDT discriminants in the single-lepton channel.

relaxed constraint in CR compared to the Deep-sets. As mentioned in Section 5.4, the categorization

of CRs differs between Deep-sets and classBDT, where Deep-sets have additional 6jCRs, from

which the constraints are derived in tt̄+� 1b NLO CRs. The constraints on pbb
T shape and tt̄+� 1b

PS and hadronisation are comparable between the two setups. The tt̄+� 1b FSR show lower

constraint in Deep-sets while constraint on tt̄+� 1b ISR is higher, which might due to the higher

correlation between tt̄+� 1b ISR and PS and hadronisation in Deep-sets. The remaining fitted NPs

show comparable expected constraints on the NPs between the two setups.

Further studies on systematic uncertainties have been performed in this analysis using Deep-sets

discriminant. Figure 128 shows the 20 leading NPs whose associated systematic uncertainties

contribute the most to the overall uncertainty in the inclusive signal strength measurement. The

impact of each NP is denoted by ∆µ . It is calculated by comparing the nominal best-fit value of µ ,

to the result of the fit when fixing the considered NP to its best-fit value, θ̂ , shifted by its pre-fit

(post-fit) ±4θ (±4 θ̂ ). The pulls on the NP correspond to: (θ̂ �θ0)/4θ . The NLO matching

affecting the tt̄+� 1b background in CRs has the largest impact on the inclusive signal strength. The

leading systematic is followed by three uncertainties related also to the modelling of the tt̄+� 1b

and tt̄+� c background components. The pbb
T shape uncertainty is also among the five dominant

uncertainties impacting the fit. As previously stated, there are a few experimental uncertainties that
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Figure 125 – The correlation matrix between the nuisance parameters for the inclusive signal strength
measurement in the Asimov (S+B) fit using the Deep-sets discriminants. Each NP has to have
at least one correlation above 20% to be included here. "QCD dy" denotes the scale uncertainty
on the total tt̄H cross-section. "EV 0" refers to the first component of the b-tagging uncertainty
source.
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Figure 126 – he correlation matrix between the nuisance parameters for the inclusive signal strength measure-
ment in the Asimov (S+B) fit using the classBDT discriminants. Each NP has to have at least
one correlation above 20% to be included here. "QCD dy" denotes the scale uncertainty on the
total tt̄H cross-section. "EV 0" refers to the first component of the b-tagging uncertainty source.
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Figure 127 – Fitted nuisance parameters in the S+B fit on the Asimov data-set in the single-lepton channel,
performed using Deep-sets (solid black point) and using classBDT (red circles).
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are not accounted for in the fit. These include jet energy scale and resolution uncertainties, which

had a less significant impact on the fit in the previous round and were not among the top 20 NPs in

the ranking plot [33]. Among the experimental uncertainties, the uncertainty originating from the

flavour-tagging calibration has the highest impact and is included in the fit.

Figure 128 – Ranking of the 20 nuisance parameters with the largest post-fit impact on µ in the fit. The empty
blue rectangles correspond to the pre-fit impact on µ and the filled blue ones to the post-fit
impact on µ . The black points show the pulls of the nuisance parameters. k(tt̄+�1b) is the
freely floating normalisation factor for which pre-fit impact on µ is not defined and values of θ0

and ∆θ are set to 1.
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5.7.3 Fit results on data

The background (B)-only fit to the data is performed using Deep-sets discriminants in the single-

lepton channel. This fit provides valuable information for the validation of the background modelling.

Since this is a B-only fit, the results are valid for both inclusive and STXS cross-section measure-

ments, as they only provide information about the backgrounds. The normalisation factor for

tt̄+� 1b background after the fit to data is k(tt̄+� 1b) = 1.12+0.06
�0.06. Figure 129 shows the fitted

NPs for the tt̄+� 1b background modelling, mainly where the largest impact on the pulls are

observed.

Figure 129 – Fitted tt̄+� 1b nuisance parameters in the B-only fit on data in the single-lepton channel.

A large pull is observed on tt̄+� 1c PS and hadronisation, which is pulled down by 0.9 σ with

respect to the nominal fit. tt̄+light PS and hadronisation is pulled up by factor of 0.6. The pbb
T shape

uncertainty is also pulled up 0.6 σ , which is expected from the pre-fit mismodelling, shown in

Figure 116. The normalisation of the tt̄+� 1c background is pulled up by factor of 0.7, which is

consistent with the previous round of analysis, which observed 0.6σ pull [33]. A pull of 0.3 σ

is observed in tt̄+� 1b NLO CR, which ranks highest in terms of the impact on the fit and also

showed large constraints in the (S+B) Asimov fit (see Figure 127). The other constrained NPs which

come from tt̄+� 1b ISR and PS and hadronisation exhibit much smaller pulls. The B-only post fit

input variables in 6jCRs and 5jCRs are shown in Figure 130. Overall, there is good post-fit Data/MC

agreement across all distributions. The uncertainty is reduced post-fit due to the fit introducing

constraints and correlations among NPs. The SR bins are not shown since, the bins are blinded.

Instead, the STXS pH
T shape distribution after the post fit for all the events in six-jet region are
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shown in Figure 131. The pbb
T shape uncertainty contribute to correcting the pbb

T shape in six-jet

region, resulting in no slope and good post-fit data/MC agreement.
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Figure 130 – Post-fit distributions of the Deep-sets determinant in the 6jCRs: (a) (tt̄+� 2b) and (b) other
regions; and the ∆Ravg

bb distribution in 5jCRs: (c) CR(hi) and (d) CR(lo) in the single-lepton chan-
nel. The bins which were blinded (where S/B > 7.7%) in the corresponding pre-fit distributions
are kept blinded
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Figure 131 – Post-fit distributions of the Deep-sets STXS bins in (a) inclusive � 6j � 4b@70%, (b) tt̄+� 2b
and (c) other regions. The uncertainty band includes all uncertainties and their correlations. The
bins which were blinded (where S/B > 7.7%) in the corresponding pre-fit distributions are kept
blinded.



SUMMARY AND CONCLUSION

This thesis focuses on addressing the challenges and making developments in two closely related

fields of experimental high-energy physics with the ATLAS experiment at the Large Hadron Collider

(LHC). The first one is related to the b-tagging algorithms, mainly for the Phase 2 upgrade of the

ATLAS detector at the High Luminosity-LHC (HL-LHC). The b-tagging algorithms rely on the

tracking information from the ATLAS Inner Detector (ID), which will be replaced by the ATLAS

Inner Tracker (ITk) to maintain tracking performance during HL-LHC operation. To maintain or

possibly improve the current Run 2 b-tagging performance, b-tagging developments with the ITk

were investigated. The next research topic presented in this thesis connects to the Higgs boson

searches in association with a pair of top quarks, in which the Higgs decays into a pair of bottom

quarks (tt̄H(H ! bb̄)), using the full Run 2 ATLAS data-set. The analysis explores the Simplified

Template Cross-Section (STXS) formalism to measure the signal cross-section as a function of

the Higgs transverse momentum (pH
T ). The high multiplicity of the number of b-jets due to the

additional decay products of the top quark, requires dedicated multivariate analysis techniques

based on machine learning, which were explored in this thesis.

The b-tagging developments mainly focused on low-level b-taggers such as IP3D and SV1. In

preparation for the phase-out of the previous upgrade release (r20.20), the b-tagging algorithm

developments with ITk were synchronised to the most recent ATLAS upgrade software release

(r21.9). To improve the performance of IP3D and SV1, some optimizations were also performed.

The IP3D algorithm track categories were updated to better exploit the expected pT-dependence

of the impact parameter resolution in the central region (|η | < 2) and the hit-content dependence

in the forward region (|η | > 2) of the ITk. The new track categorization resulted in a significant

improvement in the central region, with up to 50% of light-jet rejection at 70% b-tagging efficiency.

Material rejection was also implemented by taking the ITk pixel geometry into account, which 18%

improvement in the light-jet rejection at 70% b-tagging efficiency. Those developments were used

to perform b-tagging performance studies with the updated ITk layout. These b-taggers have already

been exploited with MV2 and are also expected to benefit future DNN based ITk taggers. The

tt̄H(H ! bb̄) analysis also benefits from the advanced b-tagging methods, due to its challenging

final state with at least four b-jets.
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The legacy round of tt̄H(H ! bb̄) analysis was performed in the single-lepton channel. The analysis

was carried using Run 2 data-set of pp collision data collected at
p

s = 13 TeV by the ATLAS

detector at the LHC, corresponding to an integrated luminosity 139 fb�1. The purpose of the legacy

round was to improve upon the previous round by implementing new methodologies, improving the

modelling of dominant background (tt̄+bb̄) simulated samples, and improving object definitions,

primarily based on Particle-Flow reconstructed jets and the DL1r b-tagging algorithm. The legacy

round provided new opportunities to develop and optimise various tools used in the previous

version of the analysis, especially the Multivariate analysis (MVA) techniques. One of the main

contributions of this thesis is the development of a novel MVA approach based on DNNs. This

was used to combine reconstruction of the Higgs pT and classification to distinguish tt̄H from the

background sub-components in a single step. The Deep-sets DNN model was used, which aimed

to replace the previously used Boosted Decision Trees (BDTs) and improve the overall sensitivity.

Under the signal and background hypothesis, the expected performance of the tt̄H(H ! bb̄) analysis

was evaluated using an Asimov fit including systematic uncertainties. The fit results were analysed

for both STXS and inclusive signal strength measurements. The expected significance for the

inclusive measure using Deep-sets is 2.71σ , compared to 2.54σ with BDTs. Similar to the previous

round, tt̄+� 1b modelling uncertainty had the greatest impact on the inclusive signal strength

measurement. The new Deep-sets MVA model showed a significant improvement in performance

in terms of STXS classification, in comparison to BDTs. It also allowed the implementation of

a dedicated control regions (CR) for the non-tt̄+� 2b background. A background-only fit was

also performed with the data and offered valuable insights for the validation of the background

modelling. A good post-fit agreement was observed between the data and Monte Carlo simulation

in the CRs. Owing to the more efficient MVA model showing improved STXS performance, the

Deeps-sets MVA model can therefore serve as the potential baseline for the legacy tt̄H(H ! bb̄)

analysis, to be finalised in ATLAS over the coming months, to improve the sensitive of the search.
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