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Chapter 1

Introduction

In this manuscript, I will present a summary of the research that I conducted after ob-
taining my PhD in 2008, as well as the research projects that I am planning to pursue during
the coming years. When I was a PhD student, the publication of the human genome se-
quence was still fresh [1], but several hundreds of genome sequences were already available
for prokaryotes, as well as for a few eukaryotes. Several approaches that could quantify gene
at the genome-wide level were already common practice, for example microarrays [2] or serial
analyses of gene expression (SAGE) [3]. It was already possible to evaluate the positions at
which proteins bind along the genome using the ChIP-chip approach, which combined chro-
matin immunoprecipitation with whole-genome DNAmicroarrays [4]. This approach opened
the way for the study of gene expression regulatory mechanisms, at the genome-wide level. It
was also already possible to investigate the three-dimensional conformation of the chromatin,
thanks to the chromosome conformation capture (3C) approach [5]. All of these techniques,
along with many others, were thus already setting the stage for the functional genomics rev-
olution that started a few years afterwards, with the increasing availability and affordability
of next generation sequencing (NGS) techniques. Coupled with NGS, these techniques be-
came truly applicable genome-wide, their sensitivity to detect unfrequent events increased
considerably, and their output became digital and thus easier to model statistically [6].

During my PhD, I studied the evolutionary processes that drive local strand asymmetries
in nucleotide composition, related to the genomic organization of DNA replication and tran-
scription units. In practice, my research projects involved analyzing nucleotide composition
characteristics, such as the GC-content and the GC-skew, as well as synonymous codon fre-
quencies. Because my work was limited to analyzing simple features of genome sequences, I
was somewhat envious of the more complex data types that were rapidly accumulating at the
time thanks to innovations in molecular biology technologies. At my PhD defense, one of the
members of the jury asked an unusual question: if a fairy (specialized in molecular biology
and evolution matters) would grant me any wish, what would I ask for? Although - presum-
ably - it would have been in the fairy’s powers to give me the answer to any question I was
interested in, I decided I would ask for unlimited data, rather than for direct answers to bio-
logical questions. One of the best feelings when doing research is understanding something,
getting the answer to a question that one is interested in. For me, the process of obtaining
the answers, designing and performing the actual analyses that bring together all the pieces
of the puzzle, is part of the enjoyment. I would not want to get the answers on a silver platter,
without getting a chance to play with the data. Although fairies do not exist, I consider my-
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self lucky to be a researcher during a periodmarked by outstanding technological innovations
in molecular biology and genetics, that give us access to previously unimaginable types and
quantities of data.

As a post-doctoral researcher, mywish to studymore complexmolecular datawas granted.
My host laboratory generated an extensive collection of transcriptome sequencing (RNA-seq)
data, for several amniote species and major organs. We used this data collection to analyze
the evolution of protein-coding gene expression patterns [7]. We also used the RNA-seq data
to identify long non-coding RNAs (abbreviated lncRNAs and simply defined as long tran-
scripts that do not encode proteins) in each of the species and to compare their repertoires,
their sequences and their expression patterns across species [8]. Studying lncRNAs made me
face one of the most important challenges in the "big data" era in molecular biology: making
sense of the data. Around the same time, the ENCODE consortium had published its first
genome-wide analyses of biochemical activities or characteristics, including transcription,
transcription factor binding and histone modifications [9]. The ENCODE consortium con-
cluded that the 80% of the human genome had (biochemical) functions. This estimate was
in striking contrast with the proportion of the human genome that is thought to be subject
to purifying selection, estimated at ∼5.5% through comparisons among mammalian species
[10] or at ∼9% through a comparison among human genomes [11]. The conflict between the
notions of biochemical activity and selected biological function became overt [12].

More than 10 years afterwards, the debate is unfortunately not over, and confusions be-
tween biochemical activities and biological functions are still very frequent. This is particu-
larly true when studying lncRNAs. Such transcripts are now readily detected with sensitive
RNA sequencing approaches. It is not yet clear how many lncRNA loci are present in the
human genome. Depending on the annotation database, the number of human lncRNA loci
varies between ∼18,000 (in RefSeq) and ∼95,000 (in NONCODE or LncBook), as of late 2022
[13]. This number is either comparable with or much higher than the estimated number of
protein-coding genes in the human genome, which revolves around ∼20,000 [13]. However,
while protein-coding genes have been studied extensively since the beginnings of molecular
biology and genetics, much less is known about lncRNAs. At present, biological functions and
functionality remain strictly hypothetical for the great majority of the tens of thousands of
lncRNAs that were identified recently with transcriptome sequencing data. In this context,
studying the evolution of lncRNAs is essential. Evidently, the degree of evolutionary conser-
vation of lncRNAs (or of other genomic elements), does not provide a perfect assessment of
their functionality. Purifying selection can be difficult to detect, especially for elements that
have recently acquired their biological functions. Conversely, evidence of purifying selection
at a non-coding genomic locus often does not suffice to pinpoint the exact characteristic of
the locus that is under selection (see also chapter 2). Nevertheless, even if (evidence of) evolu-
tionary conservation is not perfectly synonymous with (evidence of) functionality, identifying
those lncRNAs that are subject to purifying selection can help decide what lncRNAs warrant
a detailed investigation. Given the large number of lncRNAs, which cannot all be thoroughly
investigated experimentally, this type of filter is urgently needed. With this motivation, one
of my main objectives when studying the evolution of lncRNAs and other non-coding DNA
elements is to understand their functionality. I will present some of my research on lncRNA
evolution and functionality in chapter 2.

While the main focus of my first post-doctoral fellowship was lncRNA evolution, quickly
afterwards I became more interested in the evolution of gene expression regulation mech-

– 4 –



Introduction

anisms, in particular of chromatin contacts involving gene promoters and distal regulatory
mechanisms. I was exposed to this exciting topic during my stay in the Laboratory of Devel-
opmental Genomics, at the EPFL, Lausanne, whosemain research objective was to understand
the regulation of the HoxD genes in the context of mouse development. My colleagues had
been among the first to use chromosome conformation capture techniques to identify the
regulatory elements that control HoxD expression in different contexts [14]. They often in-
vestigated the chromatin contacts between HoxD genes and cis-acting regulatory elements
with the 4C-seq technique, a derivative of the original chromosome conformation capture
approach, which identifies interactions involving a pre-defined target genomic region [15]. A
similar approach was more recently proposed to identify chromatin interactions between a
pre-defined set of target genomic regions (such as gene promoters) and the entire genome
[16]. Thanks to this type of approach, regulatory interactions between gene promoters and
cis-regulatory elements can be detected with high sensitivity, at the genome-wide level. How-
ever, as is the case with all high-sensitivity functional genomics methods, the question of the
biological relevance of the detected chromatin interactions also arises. Not all chromatin in-
teractions detected with this type of approach are expected to be biologically relevant, and
not all interactions between promoters and other genomic segments are expected to have reg-
ulatory roles. Here again, studying the evolution of chromatin interaction landscapes is one
possible approach towards better understanding their functional relevance. During my first
years as a CNRS researcher, I initiated a comparative analysis of promoter-centered chro-
matin contacts between human and mouse, which became the research topic of Alexandre
Laverré’s PhD. I will present the main results of Alexandre’s work in chapter 4.

In chapter 5, I will present a recently started research project, in which I aim to inves-
tigate the relationship between genome rearrangements and the evolution of cis-regulatory
landscapes. In particular, this project aims to determine whether genome rearrangements
that drastically alter cis-regulatory landscapes might in some cases lead to gene pseudog-
enization. Although I have not divided this manuscript into "past research activities" and
"research projects", the chapters are presented in approximate chronological order of my re-
search interests. The results presented in chapter 2 are nearly all finalized and published,
while the project presented in chapter 5 is very preliminary.
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Chapter 2

Evolution and functionality of long
non-coding RNAs

In this chapter, I will briefly discuss the functionality of long non-coding RNAs and how
it can be assessed with evolutionary approaches. Over the past few years, several reviews
have discussed the evidence for lncRNA functionality [17, 18], the appropriate methodology
towards testing lncRNA functions [19, 20], and the biological functions that have been at-
tributed to lncRNAs so far [21]. The topic is very much under debate, both in the field of
evolutionary biology and in the field of molecular biology and genetics.

2.1 Are longnon-codingRNAs functional or transcriptional
noise?

Before discussing lncRNA functionality, we need to set a clear definition of "function",
which is a difficult question. An intuitive definition of function for a genomic element could
be given through the notion of usefulness or even necessity for the organism that carries
it. This means that the presence of the genomic element is beneficial for the organism and
that alterations or losses of the element would be deleterious for the organism. In this case,
the evolution of the genomic element should be governed by natural selection, in particular
purifying selection against deleterious mutations, but also potentially positive selection in
favor of new, advantageous mutations (if the element can be further optimized, or if a new
optimum emerges following a change in conditions). The function of the element would then
be directly determined by natural selection; not all features of the element need to be under
selection. This definition corresponds to the notion of selected function [12]. Throughout
the text, I use the term "functionality" to indicate the presence of a biological function for a
genomic element, even if the exact function is unknown.

As others have unambiguously stated before [12], evolutionary biologists cannot agree
with the affirmation made by the original ENCODE project [9], according to which biochem-
ical activity implies biological function. If we applied this definition, all lncRNAs detected
with RNA sequencing would be functional, simply because they are transcribed. An indica-
tion that this cannot be the case, at least for the human genome, is the fact that erroneous
transcripts (for example mRNA transcripts containing premature stop codons, which will be
eventually be degraded by the nonsense-mediated decay machinery [22]) can be detected
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in high-throughput transcriptome sequencing data [23]. Cellular machineries, including the
RNA polymerases and the spliceosome, are not error-free. The error rate is believed to vary
among loci, depending on the fitness cost of errors. For example, highly expressed genes,
for which errors are more costly, have lower alternative splicing rates than weakly expressed
genes [24]. Error rates are also expected to vary among species, depending on efficiency of
natural selection or the effective population size Ne. For example, fewer splicing variants are
detected in species with large Ne such as Drosophila, than in species with small Ne such as
human [25]. This observation is in agreement with the "drift barrier" hypothesis proposed
by Michael Lynch [26]. In this context, it is noteworthy that fewer lncRNAs were detected
for species with large Ne than for species with small Ne [17, 27–29]. If lncRNA production
is not too costly in terms of energy ressources (and given that lncRNAs are generally very
weakly expressed [17] and presumably not translated, energy costs should be limited), then
they should persist in species with small Ne even if they are not beneficial (or even if they are
slightly deleterious) for the organism.

The question in the title is clearly overly simplistic. Some lncRNAs are not only functional
but also essential for the organisms that carry them. However, it is unlikely that the numer-
ous lncRNAs that are currently detected with high-throughput sequencing approaches are
all functional (at least in species with small Ne, such as human and other vertebrates). The
answer depends on the specific lncRNA that one is interested in. If we agree that lncRNAs
cannot all be functional, and cannot all be transcriptional noise, then the question of how to
quantify and distinguish the two classes remains open. Investigating the evolutionary char-
acteristics of lncRNAs can provide a useful - though by no means perfect - approach towards
understanding which lncRNAs are more likely to be functional. I will present below a brief
summary of what is known about the evolution of lncRNAs, including my past contributions
to this topic.

2.2 Evolution of long non-coding RNAs

2.2.1 Evolution of lncRNA sequences

The first evolutionary analyses of lncRNA sequences in mammals were performed before
the NGS revolution, using the transcript repertoires obtained with full length cDNA sequenc-
ing by the FANTOM consortium [30]. It was shown that the sequences of ∼ 3,000 mouse
"macro-RNAs" were subject to detectable purifying selection pressures, in particular on pro-
moter regions and splice signals [30, 31]. The density of functional regions within mouse
macro-RNAs was estimated to be around 5% [31]. A few years later, analyses of an extensive
collection of transcriptome sequencing data showed that three quarters of the human genome
is transcribed [32]. Analyses of lncRNAs defined with RNA-seq and other types of transcrip-
tome assays by the GENCODE project [33] showed that their exonic sequences were much
less conserved than protein-coding gene exons, but significantly more conserved than an-
cestral repeats [28]. These studies evaluated long-term evolutionary sequence conservation,
using estimations of selective constraint derived from comparisons of mammalian genome
alignments. The weak selective constraint observed on lncRNA sequences could thus in prin-
ciple be explained by the presence of recently acquired, lineage-specific functions. However,
analyses of within-species single nucleotide polymorphism data also found little evidence of
selective constraint on human lncRNA sequences, contrary to Drosophila lncRNAs [29].
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2.2.2 Evolution of lncRNA repertoires and expression patterns

The first evolutionary analysis of lncRNA repertoires and transcription patterns was per-
formed on two closely related mouse subspecies and on rat [34]. In this study, only 60% of
lncRNA loci showed conserved transcription among rodents, compared to 90% for protein-
coding genes. Moreover, only those lncRNAs with evidence of transcriptional conservation
had sequences thatweremore conserved during evolution than neighboring neutrally-evolving
sequences [34]. The rapid evolution of lncRNA repertoires was later confirmed at broader
evolutionary scales [8, 35, 36]. During my post-doctoral work, I annotated lncRNAs in 10
vertebrate species, using RNA-seq data from 8 organs [8]. I showed that only about 10% of
human lncRNAs were conserved in mouse, meaning that transcribed homologous sequences
could be identified. More than 10,000 lncRNAs could be detected in each species. Most of
these lncRNAs were predicted to be lineage-specific, and only 400 lncRNAs were predicted
to have originated in the ancestor of all amniote species included in the study. Thus, the se-
quences and the expression of long non-coding RNAs evolved much more rapidly than those
of protein-coding genes.

The expression patterns of lncRNAs also differed considerably from those of protein-coding
genes. LncRNAs had narrower expression patterns than protein-coding genes and were pre-
dominantly expressed in the testes [8]. We analyzed the transcriptomes in isolated cell pop-
ulations during mouse spermatogenesis and found that lncRNAs were specifically expressed
in the germline, in spermatocytes (meiotic cells) and early-stage spermatids (post-meiotic,
haploid cells). The widespread transcription observed in these cell types was accompanied by
an overall open chromatin state. We hypothesized that the extensive transcription of lncR-
NAs and other non-coding regions (including pseudogenes and transposable elements) was
favored by the extensive chromatin remodeling that is known to take place during the late
stages of spermatogenesis [37].

2.2.3 Conserved lncRNAs in embryonic development

Interestingly, we found that those lncRNAs that were highly conserved showed evidence
for a potential involvement in developmental processes, although they were mainly detected
using RNA-seq data from adult organs (with the exception of the placenta, we had sampled
only adult organs). Specifically, the promoters of the highly conserved lncRNAs were enriched
in conserved binding sites for developmental transcription factors, including homeobox tran-
scription factors [8]. This motivated me to continue my work on lncRNA evolution by adding
a temporal dimension in the comparative analysis. I joined the Laboratory of Developmental
Genomics at the EPFL and collaborated with Fabrice Darbellay, a PhD student in the labo-
ratory, to generate a collection of transcriptome sequencing data for mouse and rat, for four
organs (brain, kidney, liver and testis) and five developmental stages (two embryonic stages,
newborns, young and aged adult individuals). For deeper evolutionary comparisons, we also
generated transcriptome sequencing data for chicken, for the two embryonic stages.

This analysis confirmed that overall, lncRNAs evolve much more rapidly than protein-
coding genes, even for lncRNAs that were detected in embryonic organs [38]. However, there
was indeed an association between expression in early development and evolutionary conser-
vation. Long non-coding RNAs that were conserved between rodents and chicken were twice
more likely to be predominantly expressed in embryonic stages, compared to rodent-specific
or species-specific lncRNAs [38].
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Figure 2.1: Long-term sequence conservation (measured with the PhastCons score for placen-
tal mammals) for lncRNAs and protein-coding gene regions. Genes are divided into subsets
that are expressed above noise levels (TPM>1) in combinations of organs and developmental
stages. Developmental stages are numbered from 1 to 5 and include two embryonic stages,
newborns, young and aged adult individuals. Top: protein-coding genes. Bottom: lncRNAs.
Three categories of regions were analyzed: exons, promoters and splice sites. Gray dots repre-
sent all intergenic regions and flanking intergenic regions of lncRNAs. Figure from Darbellay
& Necsulea [38].

2.2.4 Conservation of lncRNA promoters and splice signals

In this study, we also re-evaluated the extent of long-term sequence conservation on dif-
ferent regions of lncRNAs (Figure 2.1). We confirmed that promoters and splice sites were the
most conserved regions of lncRNAs, almost twice more conserved than their exonic regions
[38]. This result confirmed previous observations made for fruitfly and human lncRNAs [29].
The high levels of sequence conservation observed for protein-coding gene splice sites is not
surprising given that these regions are crucial for correct transcript processing. The fact that
lncRNA splice sites also show increased sequence conservation levels compared to flanking
intergenic regions (Figure 2.1) suggests that correct transcript processing is also important
at least for some lncRNAs. The fact that lncRNA promoters generally have higher levels of
sequence conservation than exons could be explained by the fact that a large proportion of
lncRNA promoters are also thought to act as regulatory elements for other genes [39], thus
accumulating another (putative) biological function (see also section 2.3 below).

– 10 –



Evolution and functionality of long non-coding RNAs

Notably, the sequence conservation pattern described above depended on the organ and
developmental stagewhere the long non-coding RNAswere expressed. The excess of sequence
conservation on lncRNA splice sites and promoters compared to exons was only observed for
those lncRNAs that were expressed in somatic organs or in early developmental stages. For
those lncRNAs that were expressed in adult testes (i.e., the great majority of all the lncRNAs
that we could study), exonic sequence conservation levels were generally higher than the
conservation levels of their promoters and splice sites, which were similar to the neighboring
intergenic regions (Figure 2.1).
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Figure 2.2: Expression conservation between mouse and rat, for lncRNAs and protein-coding
genes, in various organs and developmental stages. Panel A: scatter plots of expression lev-
els (log2-transformed TPM values) between individuals from a same species and between
species, for protein-coding genes and lncRNAs. Panel B: expression conservation index for
protein-coding genes, for the 4 organs and 5 developmental stages. Panel C: same as B, for
lncRNAs. Vertical segments represent 95% confidence intervals constructed with 100 boot-
strap replicates. Figure from Darbellay & Necsulea [38].
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2.2.5 Rapid evolution of lncRNA expression levels

The slight excess of sequence conservation on lncRNA promoters might also indicate that
the biological function carried by some of these loci resides in the act of transcription, rather
than in the RNA molecule itself, as was previously shown for e.g. the Airn lncRNA in mouse
[40]. To test to what extent lncRNA expression levels might be under selective constraint, we
devised an expression conservation index. This index is inspired by the classical McDonald-
Kreitman test, which contrasts between-species divergence and within-species variation to
test for natural selection [41]. We simply computed the expression level correlation among
all orthologous lncRNAs (or protein-coding genes) for mouse and rat, and divided it by the
average expression level correlation between pairs of individuals from the same species, for a
given organ/developmental stage combination. This ratio can be seen as an indication of the
degree of expression conservation between species, which takes into consideration the biolog-
ical and technical variability that can be observed among individuals from the same species.
It measures expression conservation at the transcriptome-wide level, not on gene-by-gene ba-
sis. For both protein-coding genes and lncRNAs, this analysis shows that expression levels are
more constrained during embryonic development than in adult organisms, as expected (Fig-
ure 2.2). Likewise, for both categories of genes, the greatest extent of expression conservation
is observed in the brain and in the embryonic stages of the other somatic organs, while the
lowest expression conservation levels are found for the adult testes (Figure 2.2). As observed
for sequence conservation analyses, lncRNA expression levels are much less conserved than
protein-coding gene expression levels, in all organs and developmental stages (Figure 2.2).

2.2.6 Limited evidence for lncRNA functionality from evolutionary
studies

This study and similar comparative transcriptomics analyses across species, organs and
developmental stages [42] have provided several important insights into the global patterns of
lncRNA evolution in mammals and other vertebrates. While the great majority of mammalian
lncRNAs are predominantly expressed in the adult testes [8, 37, 38, 42], it seems likely that
the minority of lncRNAs that are expressed in somatic organs and in earlier developmental
stages are enriched in functionally relevant transcripts. These lncRNAs are more conserved
than testes-specific lncRNAs (though still much less conserved than protein-coding genes),
both in terms of sequences and in terms of expression levels. These transcripts might thus be
prioritized in the search for functional lncRNAs. Interestingly, for transcripts expressed during
embryonic development or in somatic organs, the strongest signals for selective constraint do
not come from lncRNA exonic sequences, but from their promoters and from their splice sites.
Combined with evidence stemming from in vitro perturbations of lncRNAs [43], this finding
suggests that for some of these lncRNAs the biological function may not reside in the non-
coding RNA molecule that is produced by the locus, but may be achieved by other functional
elements embedded in the locus, or may reside in the process of transcription and splicing
rather than in its product [40, 43]. Pinpointing the selected biological function of a lncRNA-
producing genomic locus (even after ascertaining that a function is likely to exist) is a difficult
task. In section 2.3 below, I will provide a brief overview of the challenges of lncRNA functional
investigations.
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2.3 The challenges of investigating lncRNA functions

Studying the evolution of lncRNA loci is not sufficient to prove or disprove their func-
tionality and to understand their functions. Detailed in vitro and in vivo investigations of
lncRNA functions are needed. However, these investigations are challenging due to the mul-
titude of biological functions that could be achieved by a single lncRNA locus, which all need
to be thoroughly tested in different ways [19]. It is important to state that lncRNA loci can
have selected biological functions that are independent of the actual RNAmolecule produced
by the loci. This fact can seem counter-intuitive at first, especially given the model set by
protein-coding genes, where mRNAs are essential carriers of information if not direct cellular
actors. Yet, there are several situations where functional genomic regions can produce RNA
molecules as dispensable by-products.

2.3.1 Associations between lncRNAs and enhancers

It is now well established that the promoters of some mammalian lncRNAs have dual
roles as regulatory elements (in particular expression enhancers) for neighboring genes. More
generally, it is increasingly acknowledged that gene promoters and expression enhancers do
not represent two distinct classes of expression regulatory elements, but have many overlap-
ping characteristics: similar chromatin structure, capability of activating transcription at a
neighboring locus, capability of initiating transcription at the locus itself [44]. Expression en-
hancers, which are typically predicted based on their histone modification signatures, often
generate bidirectional transcripts [45]. These transcripts are short and unstable but could be
identified with RNA-seq techniques that specifically target the 5’ end of the transcripts [46].
While these unstable enhancer-associated RNA molecules (or eRNAs) can not be detected
with classical RNA-seq approaches, there is evidence that stable long non-coding RNAs can
also be produced by some enhancer elements. Notably, it was shown that about half of mouse
lncRNAs detected with RNA-seq are transcribed from genomic elements that would be typi-
cally classified as expression enhancers based on their chromatin modification patterns [39].
It then becomes important to ask whether the transcripts produced at the enhancer locus are
functionally relevant, or just a by-product of the transient fixation of transcription factors
and of the RNA polymerase. The presence of eRNAs was reported to stabilize the promoter-
enhancer loops thatmediate expression activation, in the context of estrogen-dependent tran-
scriptional regulation [47]. However, there is increasing evidence that this is not always the
case, at least for enhancer-associated lncRNAs.

The importance of investigating the additional roles of lncRNA loci as RNA-independent
regulatory elements is well illustrated by lincRNA_p21 example [48]. This lncRNA was orig-
inally reported to function as a gene expression repressor, potentially controlling the exp-
ression of hundreds of genes as part of the canonical p53 transcriptional response (p53 is a
tumor-supressor protein and a key factor in cellular stress responses [49]). This biological
function was proposed following observations that lincRNA_p21 was regulated by the p53
protein, and that in vitro knockdown of lincRNA_p21 resulted in differential expression for
hundreds of genes, many of which were also differentially expressed upon knockdown of the
p53 protein itself [48]. The lncRNA was thus presented as an important regulator of gene exp-
ression in trans. This model was later refuted through in vivo studies in mouse, which showed
that the subcellular localization of the lncRNAwas incompatible with trans-regulation of gene
expression [50]. It was proposed instead that the RNA molecule acts as a cis-regulator of the
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neighboring p21 gene [50]. Further analyses of genetic deletions in the lincRNA_p21 locus
in the mouse model later showed that the cis-regulatory functions were independent of the
presence of the RNA, and that they were carried out by multiple enhancer DNA elements
embedded in the locus [51]. Thus, at least in this context, the lincRNA_p21 RNAmolecule was
functionally irrelevant.

Their dual roles as gene expression enhancers can help explain why lncRNA promoters
tend to be more conserved than their exonic regions. In contrast, the excess of sequence
conservation on lncRNA splice signals compared to exonic regions seems to be in favor of RNA-
dependent functions - indeed, if the sequence of the lncRNA is not important, why would its
splicing pattern be under selection? However, there is now evidence that splicing at lncRNA
locimay contribute to the regulation of neighboring genes, and that this is independent of the
RNA molecule that is produced by the lncRNA locus [43]. In agreement with this finding, it
was reported that enhancers that produce spliced lncRNAs have increased activity compared
to other enhancers [52]. The mechanisms that could explain how lncRNA processing may
affect the regulation of the neighboring genes are not yet perfectly understood, but could
involve cotranscriptional processes that alter histone methylation at the locus, as reported for
the COOLAIR lncRNA in Arabidopsis [53].

2.3.2 Other RNA-independent functions at lncRNA loci

The presence of enhancer elements is not the only biological confounding factor that can
mislead initial assessments of lncRNA functions. An interesting example is the Airn lncRNA,
which is transcribed in antisense of the parentally imprinted gene Igf2r [54]. Transcription of
this lncRNA, which is itself parentally imprinted, is required to repress the neighboring genes,
in cis [55]. It was later shown that the Airn RNA molecule is not required to silence the Igf2r
gene. Analyses ofmutant genotypes with transcription termination signals inserted at various
positions downstream of the Airn promoter showed that transcriptional overlap between Airn
and the promoter of the Igf2r gene was required for the silencing of the latter, but that theAirn
RNA molecule was likely not involved in the gene repression process [40]. For this locus, the
proposed model for gene expression regulation involves transcriptional interference between
the two sense-antisense promoters [40].

2.3.3 The case of Hotair: one lncRNA can hide another

The challenges of investigating lncRNA functions are well illustrated by the case ofHotair.
This lncRNA was originally discovered in human, along with other non-coding RNAs embed-
ded at Hox loci [56]. In animals, Hox genes are crucial transcription factors, which control
the development of the main body axis but also the development of appendages such as the
limbs, the genitalia etc. [57]. In vertebrates, Hox genes are organized into 4 clusters named A,
B, C and D, which derive from the two rounds of whole-genome duplications that occurred
in the vertebrate ancestor. During development, the series of Hox genes within each cluster
are transcriptionally activated in a precise temporal order and in specific spatial domains.
Their expression patterns are controlled by complex regulatory mechanisms, which are still
extensively studied today.

The discovery of lncRNAs produced from the immediate vicinity of Hox genes created a
great deal of interest in their potential involvement in Hox gene regulation [56]. In particular,
it was reported that theHotair lncRNA, which is produced from the intergenic region between
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Hoxc11 and Hoxc12 in the HoxC cluster, regulates the expression of Hoxd genes in trans [56].
Specifically, it was proposed that Hotair is required to target the Polycomb represssive com-
plex PRC2 to the HoxD locus, thus contributing to gene silencing [56].

The original report of the regulatory function of Hotair was based on in vitro experiments
in human fibroblasts. It was later shown that a homologous lncRNA can be recovered in
mouse, but that the mouse and human lncRNAs do not have conserved exon-intron struc-
tures [58]. Moreover, the deletion of the entire mouse HoxC cluster, thus including the Hotair
locus, had no detectable effect on the expression of HoxD genes [58]. These results were in-
terpreted as potential functional differences between the human and mouse Hotair lncRNAs,
but the contradictory results could also be explained by differences in experimental design
(in vitro and in vivo experiments, knock-down of the Hotair RNA vs. knock-out of the entire
HoxC cluster). To disentangle these hypotheses, the group of researchers that discovered Ho-
tair genetically engineered a mouse model carrying a targeted deletion of the Hotair locus.
They reported that themutant mice carried several malformations, including wrist effects and
homeotic transformations in the axial skeleton [59]. They also reported that the deletion of
Hotair resulted inHoxD gene derepression in mouse fibroblasts, consistently with the original
reports in human [59].

The claims regarding the roles of Hotair in HoxD gene regulation were revisited by Rita
Amândio, a PhD student in the Laboratory of Developmental Genomics led by Denis Duboule.
I closely collaborated with Rita on this project, thus having the opportunity to discover first-
hand the intricacies of this case study. First, Rita re-analyzed the phenotypes of the mice
carrying the targeted deletion described above [59]. She was not able to confirm the skele-
tal malformations that were reported originally, and could only report a mild morphological
difference for one caudal vertebra [60]. Rita then generated RNA sequencing data for several
tissues that were relevant for the proposedHotair functions (the forelimbs and the hindlimbs,
the external genitalia and three trunk segments), for wild type mice and for the mice carrying
the Hotair deletion. We analyzed this transcriptome data, first aiming to determine whether
HoxD genes were differentially expressed between the twomouse genotypes. This was not the
case, contrary to what was reported originally. However, we uncovered significant differences
in the expression levels of the Hoxc11 and Hoxc12 genes, which are the immediate neighbors
of Hotair [60]. This result was again in striking contradiction with the original study [59]. To
better understand the sources of these discrepancies, we performed a detailed examination of
the transcriptional profile at the Hotair locus, in wild type and mutant mice (Figure 2.3).

With this analysis, we were able to make several unexpected observations. First, we saw
that another small transcript could be detected between the Hoxc12 and Hoxc11 genes, on
the same strand (Figure 2.3). This transcript appears to initiate from a CpG island promoter,
just like the Hoxc12 and Hoxc11 genes. We named this transcript AHotair, for Antisense of
Hotair (sadly, my proposal of naming it Hoxc113⁄4 was not seriously considered). Interestingly,
in wild type mice this transcript appears to terminate close to the Hotair termination site
on the opposite strand (Figure 2.3). In the mutant mice, the termination sites of Hotair and
AHotair are both deleted, but the AHotair CpG island promoter remains and now generates a
longer transcript that continues until Hoxc11. This transcript could perhaps continue beyond
this boundary, creating an alternative isoform of Hoxc11. This might explain why higher
expression levels were found for Hoxc11 in mutant mice in the RNA-seq data. With short-
read RNA-seq we were not able to determine the full-length isoforms of these transcripts,
and further work is needed to better characterize them.
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On the Hotair strand this time, we observed that the initiation sites of the lncRNA were
not all affected by the deletion. A more distal initiation site is still present and is able to
generate a transcript that extends until the termination site of Hoxc12 on the opposite strand
(Figure 2.3). We named this transcript Ghostair, for Ghost of Hotair, because it lingers after
the announced death of the Hotair lncRNA. The termination site of Ghostair is very close to
the Hoxc12 termination site. Because Hoxc12 is more weakly expressed in mutant compared
to wild type mice, it is tempting to speculate that this particular transcription localization
might play a role in its downregulation, but we have no evidence to support this claim.

B

Figure 2.3: Transcription profile around the Hotair locus. A. Localization of Hotair on the
antisense strand compared to Hoxc genes. B. RNA-seq coverage along the genomic region
containing Hotair, in the posterior trunk of wild type mice (green) and in mice carrying a
deletion of the Hotair locus (orange). Figure adapted from Amândio et al. [60].

Our analyses of the Hotair mutant mice showed that the transcriptional profile around
this locus is much more complex than originally imagined. This specific deletion of the Hotair
gene does not only result in the absence of the main Hotair isoform, but also in the origina-
tion of two new transcripts,AHotair andGhostair. Any phenotypic changes or gene expression
modifications between the two mouse genotypes might thus be due not only to the absence
of Hotair, but also to the presence of these new RNA molecules, at the very least. We cannot
exclude that the deletion of this genomic region affected other functional DNA elements that
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may co-localize with the Hotair region of origin. To unambiguously assign the proposed bi-
ological functions to the Hotair RNA molecule, additional experiments are needed, including
a "rescue" experiment where Hotair is re-introduced in the genetic background of the mutant
mice (a reintroduction would be compatible with its proposed function as a trans-acting exp-
ression regulator). Such experiments are difficult to perform, especially in vivo in the mouse
model, which might help explain their conspicuous paucity in the existing lncRNA literature.
We also did not attempt to rescue the Hotair phenotypes in our revisit of the original claims,
but in our defense that was mainly because we could not confirm any of the reported pheno-
types and thus had nothing to rescue.

Beyond its implications for the biological functions of Hotair, this case study is a good
illustration of the challenges of investigating lncRNA functions. A guideline for the investi-
gation of lncRNA functions in vivo was already proposed [19], but the advice it gave is not
consistently followed. I have the feeling that much of the current lncRNA literature consists
of initial over-optimistic claims of lncRNA functions, followed by more careful reassessments
and walk-backs of the original claims, as was the case for lincRNA_p21. This dynamics seems
to be particularly prevalent for claims related to the roles of lncRNAs in human diseases. I
will discuss more about this in section 2.4 below.

2.4 LncRNA relevance for human health

The discovery that the human genome is pervasively transcribed into non-coding RNAs
[32] brought new hope for the study of many human diseases, for which the molecular mech-
anisms were not yet perfectly understood or for which molecular drug targets could not yet
be identified. Soon after the realization that the human genome encodes tens of thousands
of lncRNAs, these transcripts became an important research focus in biomedicine. One of the
many diseases for which lncRNA research became highly prevalent during the past decade is
hepatocellular carcinoma (HCC). HCC is a major cause of cancer-related death world-wide.
Because HCC is generally detected late, surgery to remove tumors is not possible for the ma-
jority of patients, and available chemotherapies have only a limited effect on patient survival
[61]. The search for new disease biomarkers and for new molecular targets for chemotherapy
is thus understandably intense for HCC. I became interested in the relevance of lncRNAs for
HCC following a collaboration with Markus Heim at the Department of Biomedicine of the
University of Basel, during which we investigated the transcriptional response to hepatitis C
infection and interferon treatment in the human liver [62]. Together with other collaborators,
Markus’s research group set out to investigate the genomic, transcriptomic and proteomic
differences between HCC tumors and healthy liver tissues [63]. They generated transcrip-
tome sequencing data for more than a hundred HCC patients, for tumor and adjacent liver
tissues, as well as for healthy livers. This data enabled us to analyze the expression patterns
of lncRNAs in HCC, and to reevaluate the existing claims regarding lncRNA relevance for this
disease [64].

In this project, we started out by doing a literature search, to get a better idea of howmany
lncRNAs were previously reported to be important for HCC. We queried PubMed with the
keyword "hepatocellular carcinoma" and retrieved the titles and abstracts of the correspond-
ing PubMed records. We then searched the abstracts to identify gene names, by matching
words with a list of human gene names obtained from the Ensembl database. We were thus
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able to identify articles that specifically mentioned lncRNA names in their abstracts; note that
we did not systematically checked the nature of the association between these lncRNAs and
HCC reported in each article. We found that the number of HCC-related articles that cite
lncRNAs increased dramatically between 2009 and 2019, with almost 7% of all HCC-related
publications mentioning lncRNAs in their abstracts (Figure 2.4). However, the overwhelming
majority of lncRNAs were cited in just one HCC-related article (Figure 2.4B). This is under-
standable because the research field is still very new, but it nevertheless highlights the need
to re-assess and reproduce lncRNA-related claims in HCC.
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Figure 2.4: Dramatic increase in the number of HCC-related scientific publications that cite
lncRNAs. A. Number of HCC-articles citing lncRNAs published each year between 2009 and
2019. B. Histogram of the number of HCC-related publications that cite each lncRNA. Figure
from Necsulea et al. [64].

We then analyzed into more depth the lncRNAs that were reported to be associated with
HCC by at least 5 publications. At the top of the list (Figure 2.4B) we found several lncRNAs
that have been extensively studied in many biological contexts, not just in HCC. For example,
NEAT1 and MALAT1 (also initially named NEAT2) were discovered in a screen for nuclear-
enriched transcripts [65], more than 15 years ago. H19, the first lncRNA ever described [66],
is a parentally-imprinted transcript that contributes to the control of placenta development
and embryonic growth [67]. Also at the top of the list is HOTAIR, the human homologue of
the mouse Hotair lncRNA, which we discussed in depth in the subsection 2.3.3 above. The
most cited lncRNAs also include XIST, which is the well known regulator of X-chromosome
inactivation in placental mammals [68]. The fact that the most frequently cited lncRNAs in
association with HCC were originally described in other biological contexts is not surprising,
given that these lncRNAs were reported to have important roles in gene expression regula-
tion and are thus likely to attract attention when attempting to understand the molecular
mechanisms driving tumorigenesis.
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We then attempted to test whether the expression patterns of these frequently HCC-
associated lncRNAs were coherent with their previously proposed biological roles. However,
in many cases it was difficult to understand what these roles might be, because of conflicting
claims in the literature. For example, MALAT1 (short for Metastasis Associated Lung Adeno-
carcinoma Transcript 1), was initially reported to promote metastasis in breast cancer [69],
but was more recently proposed to inhibit metastasis in the same cancer type [70]. In HCC,
MALAT1 is generally proposed to promote cancer progression (see e.g. Li et al. [71]). In our
transcriptome data, MALAT1 was not differentially expressed between tumors and adjacent
tissue samples, nor was it more highly expressed in advanced stage tumors (Figure 2.5), as one
might have expected from a tumorigenesis-promoting gene. Likewise, H19 was proposed to
act as an oncogene [72] and as a tumor suppressor [73]. In our data, H19 is expressed at lower
levels in tumors than in adjacent samples, but at higher levels in late-stage tumors compared
to early stage tumors (Figure 2.5). This complex expression dynamics is not consistent with a
simple role for H19 in HCC. We also observed that HOTAIR is not differentially expressed be-
tween tumors and adjacent samples, and is barely detectable in all but two RNA-seq samples
(Figure 2.5). Thus, our data does not support an important role for HOTAIR in HCC, despite
the numerous articles claiming so.

Evidently, analyses of lncRNA expression levels in tumors, adjacent tissues and healthy liv-
ers are not sufficient to claim that these transcripts can act as tumor suppressors or oncogenes.
However, numerous recent publications in this research field rely on little more than compar-
ative transcriptomics analyses to do so. Experimental validations are often performed in vitro
using immortalized cell lines, which may not recapitulate well the situations encountered in
vivo. Clearly, in vivo experiments are difficult to perfom when investigating human diseases,
in the absence of an animal model that could recapitulate their molecular underpinnings. The
development of better-suited model systems, such as biopsy-derived organoids [74], may help
understand the molecular mechanisms driving HCC, including the roles of lncRNAs therein.
Moreover, as the lncRNA research field gains in maturity, publications claiming major biolog-
ical roles for lncRNAs (whether related to HCC or in other contexts) without proper validation
will hopefully become less frequent.

At present, it is difficult to navigate in the recent lncRNA literature without being over-
whelmed by the sheer number of articles claiming biological functions for these transcripts,
which often do not stand up to scrutiny. The increase in the number of predatory journals in
biomedicine and biology in general has greatly contributed to this problem [75]. Because of
this, I have found it difficult to keep working on this topic, and I am gradually shifting towards
other research subjects. In section 2.5 I will try to explain why I found working on lncRNA
challenging, and why I am nevertheless still very curious about lncRNAs and following this
research topic from a distance.

2.5 Future research around and lncRNAs

During my post-doctoral research at the University of Lausanne, I was mainly interested
in the evolution of lncRNAs although I also participated in other projects. I was keen to
follow my initial assessment of the evolution of lncRNAs with an evo-devo approach, and
I joined the Laboratory of Developmental Genomics with this objective. The research en-
vironment in this laboratory was very different from the ones I had experienced in Lyon or
previously in Lausanne. For the first time, I was part of a research group where bioinformatics
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approaches were very much secondary, and where "evolution" meant observable phenotypic
changes rather than mutation biases, gene conversion, recombination, changes in expression
levels etc. My 31⁄2 years in this research group were an amazing opportunity to learn new
things. I was definitely greatly influenced by the philosophy of the laboratory. I moved away
frommy original interests in lncRNAs not only because I discovered other research questions,
but also because I started seeing more and more the bad part of the lncRNA literature. I was
part of a laboratory where biological hypotheses were tested with exquisite genetic manip-
ulations, where controls were carefully designed and where considerable time and financial
resources were invested towards doing high-quality genetics research. Partly because of this
exposure, I became acutely aware of the lack of rigour that characterizes some of the recent
lncRNA research. The Hotair case study was eye-opening, especially since I had been enthu-
siastic upon reading the first report of this lncRNA and other presumed lncRNA regulators of
Hox gene expression in trans. My tendency to be skeptical about lncRNA functionality claims
was thus further reinforced during my stay in the Laboratory of Developmental Genomics.

While the literature claiming crucial lncRNA functions in human diseases is plagued by
questionable research published in predatory journals, the field of lncRNA evolution is much
healthier. I could have thus decided to pursue my original research objective. However, I de-
cided against continuing in this direction because the competition in this field was of excellent
quality, starting with my post-doctoral advisor, Henrik Kaessmann. I was able to finalize my
first proposed research project [38], but I realized I could not bring any major contributions
to this topic given the high-quality work that was rapidly accumulating in this area [42, 76].

Despite the decision to change research directions, I am still interested in some aspects
of lncRNA biology, and more generally in the functionality of various transcriptome features.
In particular, I am collaborating with Carina Mugal to study the potential implications of
lncRNAs in the establishment of reproductive barriers during speciation in flycatchers. We
started this collaboration by co-supervising Hugo Seytier for his M2 internship in 2023. Hugo
identified several lncRNAs with divergent expression patterns between two flycatcher species
and their F1 hybrids, whichmay represent good candidates for mechanisms involved in repro-
ductive isolation. In a more distantly related project, I am collaborating with Laurent Duret
to study the relationship between transcriptome complexity and effective population sizes in
eukaryotes. We have co-supervised Florian Bénitière for his M2 internship in 2018. Florian
is now finalizing his PhD, co-supervised by Laurent Duret and Tristan Lefébure, and more
distantly co-advised by myself. Florian’s first research paper showed that the prevalence of
alternative splicing is negatively correlated with effective population sizes, supporting the hy-
pothesis that many of the low-frequency alternative splicing variants that are detected with
high-throughput RNA-seq data likely represent biological noise [25].

One of the aspects that initially attracted me towards lncRNA research is their involve-
ment of lncRNAs in X-chromosome inactivation, which is still today one of their major, un-
ambiguously proven functional roles. I am still fascinated by this topic, in particular by the
convergent recruitment of non-homologous lncRNAs in the X-inactivation process in placen-
tal and marsupial mammals [77], and by the lineage-specific emergence of other lncRNAs
involved in the control of gene expression on the X chromosome [78]. The evolutionary ori-
gin of the Xist lncRNA, which is the key player of X-chromosome inactivation in placental
mammals, is also very exciting. Duret et al. [79] showed that Xist appeared in the ancestor
of placental mammals following the pseudogenization of a protein-coding gene. In a recent
project, I have attempted to explore into more detail the evolutionary events that may have
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led to the emergence of Xist. I will briefly describe this project in chapter 5.
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Functionality of long-range chromatin
interactions

Since 2018, my research has shifted away from long non-coding RNAs and towards the
evolution of cis-regulatory mechanisms of gene expression. I have been particularly inter-
ested in the regulatory relationships that take place at long genomic distances between gene
promoters and distal cis-regulatory elements. This was the main focus of Alexandre Laverré’s
PhD thesis, whom I co-supervised with Eric Tannier. In this chapter, I will present an in-
troduction to this topic. I will focus on the functional significance of long-range chromatin
interactions in vertebrates, and to a lesser extent on their evolution, which will be discussed
in depth in chapter 4. This chapter largely corresponds to the first draft of a review article,
which I am currently preparing following an invitation from Genome Biology and Evolution.
This article will soon be available as a preprint on bioRxiv. Note that the figures that will
accompany this article have yet to be prepared. To illustrate the PCHi-C technique, on which
we based many of the analyses described in chapter 4, I include a figure from Schoenfelder
et al. [16], for which I have yet to obtain usage permission.

3.1 Complex cis-regulatory landscapes in vertebrates

Variations in gene expression are central to the biology of complexmulticellular organisms.
Within species, gene expression levels vary among cell types, developmental stages, physio-
logical states, in response to external stimuli, etc. Gene expression changes are also thought
to play an important role in establishing phenotypic differences between species [80]. This
expression versatility is enabled by intricate regulatory mechanisms, which involve interac-
tions between trans-acting factors (e.g., proteins or non-coding RNAs) and DNA sequences in
cis (i.e., found on the same chromosome as the target gene), either in the immediate vicinity
of the gene (proximal elements) or further away (distal elements). Cis-regulatory DNA ele-
ments are typically further divided into enhancers and silencers depending on their activating
or repressing roles on gene expression, although this seemingly clear division is an oversim-
plification of biological reality [81]. Both types of elements were discovered more than three
decades ago [82, 83], but knowledge about their biochemical characteristics and about their
modes of action has rapidly accumulated in recent years, thanks to technological innovations.

Expression enhancers are commonly predicted based on their chromatin modification sig-
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natures, which include methylation and acetylation of histone tails [84]. Chromatin im-
munoprecipitation followed by sequencing (ChIP-seq) experiments that target specific his-
tone marks [85] or the proteins that deposit them [86] have become standard approaches to
map enhancer elements genome-wide. Techniques that aim to identify open chromatin re-
gions, such as DNAse hypersensitivity [87] or transposase accessibility assays [88], are also
typically used for enhancer prediction. Furthermore, following the discovery that enhancers
are frequently transcribed into (often short-lived, unstable) non-coding RNAs [45, 89], tech-
niques that can capture nascent transcripts have also been used to predict the positions of
these regulatory elements [46]. Importantly, the elements detected with these techniques
should be considered as candidate or predicted enhancers, as their ability to activate expres-
sion is typically not tested. Other approaches, such as STARR-seq [90], can directly test the
ability of putative enhancer sequences to drive gene expression in vitro, in constructs where
the enhancer is inserted close to a reporter gene and a minimal promoter. However, these
methods also cannot offer a guarantee of the activity of the predicted element in vivo, which
likely depends on additional factors including chromatin accessibility.

In contrast with enhancers, gene expression silencers have proven more difficult to predict
at the genome-wide level, mainly because silencer-specific chromatin signatures are lacking
[91]. Recently, silencers were predicted genome-wide based on subtractive chromatin status
analyses, which identified open chromatin regions that did not have the histone modification
profiles typical of enhancer or insulator elements [92]. Open chromatin regions that carry
the repressive histone modification H3K27me3 were also proposed as putative silencer ele-
ments [93, 94]. The silencer activity of candidate elements defined with such approaches
could then be tested in vitro with massively parallel reporter assays [95, 96]. Similar to en-
hancer elements, silencers are thought to control gene expression in a position-independent
manner, through chromatin contacts that bring them into physical proximity with gene pro-
moters [91, 94]. Interestingly, in Drosophila almost all elements identified as silencers in a
given cellular context were found to act as enhancers in different contexts [97], indicating
that regulatory elements with dual roles as activators or repressors are more common than
originally thought. Cis-regulatory elements with dual activator/repressor roles also exist in
vertebrates [98], although it is not yet clear whether they are the exception or the rule.

Comparisons of genome-wide chromatin modification maps across cell types and tissues
showed that putative enhancers are often cell type or tissue-specific, much more so than gene
promoters [99, 100]. These elementsmay thus contribute to themodularity of gene expression
regulation, by activating gene expression in specific spatio-temporal contexts [101]. Individual
enhancer elements may carry binding sites for multiple transcription factors, which further
complicates the combinatorial control of gene expression [102]. Moreover, multiple elements
with similar spatiotemporal patterns of activity may contribute to the regulation of the same
gene, potentially contributing to the robustness of gene expression control [103].

The complexity of cis-regulatory mechanisms of gene expression in vertebrates is further
underlined by the fact that many regulatory elements are situated far from their target genes.
The first long-range relationships between cis-regulatory elements and gene promoters were
discovered through genetic manipulation approaches or through functional dissections of
loci involved in human genetic diseases [104–106]. These pioneering studies showed that
enhancers can be situated several hundreds of kilobases (kb) away from their target genes,
and that they did not necessarily control the expression of the closest neighboring genes.
It was later shown with chromosome conformation capture (3C) techniques [5] that these
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regulatory elements and the target gene promoters are brought into physical proximity in
the nucleus [14, 107, 108]. These long-range chromatin interactions (also called chromatin
contacts or chromatin loops) are now commonly detected at the genome-wide level, thanks
to the development of 3C-derived techniques. Below, we will summarize what is currently
known about the prevalence, the functional relevance and the evolutionary implications of
these interactions.
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Figure 3.1: Illustration of the PCHi-C technique. A. Illustration of the PCHi-C protocol, which
includes chromatin cross-linking, proximity ligation and capture of regions of interest using
RNA baits. B. Illustration of the chromatin contacts that can be detected with the Hi-C ap-
proach (two panels at the top) and with the PCHi-C approach (bottom panel). Figure from
Schoenfelder et al. [16].
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3.2 Identification andprevalence of long-range chromatin
interactions

Long-range chromatin interactions between gene promoters and distal regulatory ele-
ments can now be detected at a genome-wide level with several types of chromatin con-
formation assays. Among the many derivatives of the original chromosome conformation
capture (3C) approach, Hi-C is probably the most widely used today [109]. However, the
complexity of the libraries prepared with this technique, which can capture chromatin inter-
actions between all possible pairs of genomic fragments, is too high to enable detection of
specific contacts at high resolution. Other related approaches are better suited for the in-
vestigation of regulatory interactions between promoters and distal elements. For example,
an application of the ChIA-PET technique, which combines immunoprecipitation of a protein
of interest with proximity ligation of DNA fragments found in the same chromatin complex,
was able to reveal several thousands of long-distance promoter-enhancer interactions in hu-
man cells [110]. A similar approach that combines chromatin immunoprecipitation with Hi-C
was likewise able to reveal long-range associations between promoters and enhancers [111].
The promoter-capture Hi-C (PCHi-C) approach, a derivative of Hi-C that targets a set of pre-
defined gene promoters, was specifically designed for the identification of putative regulatory
interactions [16, 112]. Moreover, the Micro-C and capture Micro-C approaches, which differ
from standardHi-C approaches in that genomic fragments are obtained bymicrococcal nucle-
ase digestion rather than by treatment with restriction enzymes, also show great potential for
the fine-scale detection of promoter-enhancer interactions [113, 114]. These techniques each
have specific advantages and disadvantages for the detection of regulatory interactions. For
example, ChIA-PET and HiChIP target interactions mediated by a specific protein or protein
complex, and can thus specifically identify chromatin contacts associated with transcription
factors or with the RNA polymerase, thus enriching for genuine regulatory interactions. On
the contrary, the PCHi-C approach does not rely on the presence of a predefined protein and
can thus detect chromatin interactions that pre-date transcriptional activation [115].

These fine-scale investigations of putative regulatory interactions in human and mouse
showed that about two thirds of chromatin interactions occurred between an element and
its nearest gene promoters, while the remainder bypassed at least one active or inactive pro-
moter [16, 110, 112]. PCHi-C analyses showed that the frequency of interactions between
pairs of genomic elements decreases rapidly with increasing genomic distances between the
two elements, as expected based on previous knowledge obtained from Hi-C data [16, 112].
Nevertheless, the median distance between pairs of interacting promoters and enhancers was
generally above 100 kilobases (kb), although this was dependent on the analyzed cell type [16,
112]. Depending on the technique and on the cell type that was analyzed, several thousands
of chromatin interactions could be detected between regions separated by more than 500 kb
[16, 110, 112]. A non-negligible proportion of ultra-long-range interactions, spanning tens of
megabases (Mb), was also revealed recently [116].

Importantly, long-range interactions between gene promoters and putative regulatory el-
ements are not restricted to actively expressed genes. Some of the chromatin interactions
observed for inactive genes could be explained through regulatory contacts with silencer el-
ements [91, 94]. Indeed, genomic regions carrying the repressive chromatin mark H3K27me3
are known to form chromatin contact clusters, which span long genomic distances in cis and
include trans-interactions [117, 118]. However, not all chromatin interactions involving in-
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active genes have repressive roles. It is increasingly acknowledged that chromatin contacts
between gene promoters and activating regulatory elements can precede gene expression and
that the pre-formed interactions may contribute to the efficiency of transcriptional activation
[119]. Interestingly, PCHi-C data analyses consistently showed that transcriptionally active
promoters tended to interact with more distant genomic elements, compared to inactive pro-
moters [16, 112].

The first reports of long-range regulatory relationships between promoters and distal cis-
acting elements were all related to developmental transcription factors, such as DACH, SOX9
and SHH [104, 105, 120]. Given that genes with functions in embryonic development and in
transcriptional regulation are significantly enriched in the vicinity of large intergenic regions,
which may harbor distant regulatory elements [121], an over-representation of these biolog-
ical functions is perhaps expected. However, genome-wide analyses of promoter-enhancer
contacts did not reveal any particular functional enrichment among the genes that are gen-
erally involved in long-range interactions [16, 112, 122, 123]. Nevertheless, developmental
genes play a key role in a specific class of long-range chromatin interactions, namely those
mediated by the Polycomb repressive complex, which carry H3K27me3 histone marks [16,
117, 124]. Perhaps consistently, the prevalence of long-range interactions was also reported
to vary significantly among cell types in mouse, with higher frequencies observed for embry-
onic stem cells, where the Polycomb repressive complex is known to play an important role
in gene repression [123].

3.3 Long-range regulatory interactions and topologically
associating domains

Long-range regulatory interactions need to be discussed in conjunction with topologically
associating domains (TADs), which are large genomic regions in which chromatin interactions
occur preferentially, to the exclusion of neighboring regions [125]. Because TADs can be un-
covered with genome-wide Hi-C approaches, which are easier to implement than the capture-
based techniques needed to identify fine-scale long-range chromatin interactions, they have
been extensively investigated in the past decade. Their biological and physical characteris-
tics have been discussed in numerous in-depth reviews [126–129]. Here, we will only discuss
TADs insofar as they pertain to the establishment and the evolution of long-range regulatory
interactions.

TADs were originally presented as a central feature of the organization of cis-regulatory
interactions in mammalian genomes [125]. Indeed, TADs tend to overlap with clusters of
co-regulated promoters and enhancers [100]. A commonly accepted view is that TADs func-
tion as facilitators of chromatin interactions between promoters and enhancers, which also
act to inhibit regulatory interference from regulatory elements outside of TADs, to prevent
aberrant gene expression [115]. However, additional regulatory mechanisms must be at work
within individual TADs to confer expression specificity to the genes embedded therein, which
do not all show correlated expression patterns [115]. Moreover, regulatory interactions be-
tween promoters and enhancers can cross TAD boundaries. The great majority of long-range
chromatin interactions detected with PCHi-C occur within TADs, but 6 to 10% were found
to bridge TAD boundaries in mouse cells [16]. In human cells, about one third of PCHi-C
long range interactions were found to occur across TAD boundaries [122]. Additional data
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from genetic manipulations introducing artificial TAD boundaries in mouse cells showed that
strong chromatin interactions between promoters and enhancers, in particular those with
high regulatory activity, could bypass these boundaries [130, 131]. Thus, the coherence be-
tween long-range chromatin contacts and TADs is far from perfect. This may be in part due
to the technical difficulty of identifying these genome architecture features [132].

Viewing TADs as a higher-order control structure for regulatory chromatin interactions
has led to the proposal that they may have had a major influence on the evolution of gene
regulation [133]. In particular, the fact that TAD boundaries inhibit regulatory interactions
(at least to some extent), was proposed to play a role in the integration of newly-evolved regu-
latory elements in gene expression control networks. According to this hypothesis, restricting
newly-evolved regulatory elements to a limited number of putative target genes within the
same TAD may have reduced their potential deleterious effects and facilitated their main-
tenance through evolutionary time [133]. Conversely, the evolution of new TAD structures
through genomic rearrangements was proposed to have contributed to functional innovations
in gene expression regulation [134]. Moreover, it was proposed that TADs may represent a
fertile environment for the evolution of new regulatory relationships, potentially contributing
to the emergence of pleiotropy for key developmental transcription factors [135]. These hy-
potheses are attractive but need to be thoroughly tested through detailed comparative analy-
ses of TADs and regulatory chromatin interactions. The evolution of TADs has already begun
to be explored. However, such evolutionary studies are still at an embryonic stage, as illus-
trated by the difficulty of reaching a consensus on whether TADs are conserved or not [136].
Comparative studies of comparable chromosome conformation data are still scarce [136], but
are starting to become available [137]. Further such comparisons are needed to explore the
complex question of TAD evolution.

While the impact of evolutionary changes of TADs on gene expression regulation remains
for now speculative, genetic manipulations performed on model organisms have provided
valuable data on the effects of TAD perturbations. These can have a wide range of conse-
quences on gene expression and on phenotypes in mammals, ranging from mild changes to
highly deleterious effects. It was shown that alterations of TAD configurations, in particular
of TAD boundaries, are responsible for some human limb malformations [138] and for the ac-
tivation of oncogenes in human cancer cells [139]. Likewise, the formation of new TADs was
proposed to explain the deleterious effects of segmental duplications around the Sox9 locus in
mouse [140]. In other contexts, changes in TAD structures had no detectable phenotypic ef-
fects and only mild effects on gene expression [131, 141]. These contrasting results show that
it is impossible to propose a unified model for the implications of TADs in gene expression
regulation. In this context, we propose that individual chromatin interactions may be a better
suited unit for the study of gene expression regulation rather than complex TADs. Thanks
to the improvement of high-resolution chromatin conformation capture technologies, it is
gradually becoming possible to disentangle the effects of TADs and of individual regulatory
chromatin contacts on the control of gene expression.
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3.4 Are chromatin interactions required for gene expres-
sion regulation?

It is important to note that the causal relationship between chromatin interactions and
gene expression regulation is not as clear as it may seem at first. The commonly accepted
model is that chromatin loops are needed to bring distal enhancers in physical proximity
with gene promoters, in order to activate gene expression. This model relies on substantial
evidence for chromatin contacts between promoters and regulatory elements, and is also sup-
ported by genetic manipulations experiments, which successfully activated gene expression
by forcing chromatin loops with distant enhancers [142–144]. However, there is also evidence
that physical proximity between promoters and enhancers is not always required for gene
activation. For example, it was shown that distal enhancers could activate Shh expression in
mouse, during the transition from embryonic stem cells to neural progenitors, without an in-
crease in physical proximity [145]. Contrary to what was expected, live imaging experiments
showed that the physical distance between enhancers and the target gene promoter increased
following enhancer activation [145]. These results suggested that gene regulation may be me-
diated by additional chromatin conformation changes, in addition to the now well-studied
chromatin loops [145]. Other indications that chromatin interactions may not be needed for
gene regulation came from genetic manipulations that abrogated chromatin interactions be-
tween the Sox2 gene and its control region in mouse embryonic stem cells, with no observable
effect on transcription [146]. Interestingly, live-cell imaging had previously been unable to re-
veal a physical proximity in the nucleus between Sox2 and the same control region during
transcriptional activation [147], although a long-range interaction was consistently detected
with chromatin conformation capture data [146].

Additional mechanistic models of gene expression regulation were proposed to explain
why discrete chromatin interactions between promoters and distal enhancers may not al-
ways be necessary to activate gene expression. For example, a transcription factor (TF) ac-
tivity gradient model was proposed to explain how distant enhancers might act to activate
gene expression without directly contacting the promoter [148]. According to this model, the
binding of a TF to a distant enhancer would result in a post-translational modification (e.g.
acetylation) of the TF protein. The modified TF would then diffuse towards the gene pro-
moter, where it would activate transcription [148]. Another model posits that transcriptional
activation might be achieved through spatial clustering of multiple activator elements and of
RNA polymerases, rather than by the formation of discrete loops between promoters and en-
hancers [149]. This “hub” model for transcriptional activation is supported by evidence from
imaging experiments, which revealed spatial clusters of enhancers and recruited regulatory
factors in the nucleus [150].

In addition to these biological considerations, technical aspects must also be taken into ac-
count before attributing causal regulatory roles to chromatin contacts detected with genome-
wide technologies such as PCHi-C, HIChIP, ChIA-PET etc. These techniques are character-
ized by high sensitivity for the detection of discrete chromatin interactions between gene
promoters and other genomic regions. However, there is no reason to believe that the pre-
dicted chromatin interactions all have regulatory roles, or even that they are all biologically
relevant. Computational methods aiming to predict chromatin interactions from this type of
data rely on models of the probability of chromatin contact between two genomic regions de-
pending on the linear genomic distance between the two regions and other factors [151, 152].
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Predicted chromatin contacts are those deemed to be more frequent than expected, given the
values taken by the variables considered in the model. False positives may arise from factors
that are not accounted for in the models, or from inaccurate estimations of the confounding
factor values. For example, strong interactions may be predicted between regions that are
closer in the genome of the sample under scrutiny than in the reference genome used for
the analysis, due to structural variants or to genome assembly errors. Even excluding false
positives, chromatin interactions detected between promoters and other genomic regions are
not all claimed to have regulatory roles. The genomic regions contacted by promoters are en-
riched in histone modifications that are typical of regulatory elements, but do not all overlap
with predicted regulatory elements [16, 112, 153]. Importantly, Hi-C-derived approaches are
not able to pinpoint associations between gene promoters and individual regulatory elements,
as interactions are detected between restriction fragments, which can be much longer than
a typical enhancer. Overall, promoter-centered chromatin contacts must be considered to be
enriched in, but not synonymous with, regulatory interactions.

3.5 Long-range regulatory interactions constrain genome
evolution

The existence of long-range regulatory interactions raises important questions with re-
spect to their evolutionary robustness and to the constraints theymight impose on large-scale
genome evolution. The distance between two genomic regions found on the same chromo-
some is positively correlated with the probability of observing a genomic rearrangement (a
large-scale inversion, translocation, duplication or deletion) within the interval. Thus, pairs
of gene promoters and regulatory elements are more likely to be directly affected by rear-
rangements if they are separated by large genomic distances. As a consequence of genomic
rearrangements, the chromatin contact between the two elements may be abrogated. In-
deed, chromatin interactions are rarely detected in trans, or in cis but at distances above 10
Mb [16, 112]. Thus, selective pressures acting to maintain long-range regulatory interactions
may eliminate some genomic rearrangements. Interestingly, the presence of large genomic
regions that were maintained in conserved synteny for long evolutionary periods was used to
predict long-range regulatory relationships, much before the deployment of dedicated chro-
matin conformation capture techniques [154–156]. A similar principle was used to predict
regulatory elements and their target genes on the mammalian X chromosome, many of which
were successfully validated with transgenics experiments in zebrafish [157]. The properties
of the regulatory relationships between enhancer elements and target genes predicted with
these approaches are consistent with analyses based on chromatin conformation data. For
example, the number of enhancers predicted to be associated with each target gene, based
on synteny conservation, is positively correlated with gene expression breadth [158].

Another interesting finding with respect to the impact of long-range regulatory interac-
tions on genome evolution is that the recombination rate is reduced between interacting el-
ements, leading to the presence of “recombination valleys” in regulatory domains [159]. This
suggested that combinations of alleles in gene promoters and distal regulatory elements may
be favored by selection and thus need to be transmitted together, although mechanistic ex-
planations involving DNAmethylation were also proposed [159]. However, it was later shown
that regions involved in long-range chromatin interactions are not in linkage disequilibrium,
despite the previously observed reduction in recombination rate [160].
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3.6 Evolution of chromatin interactions between promot-
ers and regulatory elements

To date, very few studies have directly addressed the evolution of chromatin interactions
between promoters and regulatory elements. However, the evolutionary conservation of indi-
vidual interactions was often tested when investigating the phenotypic effects of the disrup-
tion of chromatin architecture. One of the first studies reporting a strong phenotypic effect
of structural variants in TADs was based on the observation of genomic rearrangements in
patients with limb malformations, which were then recapitulated through genetic manipu-
lations in the mouse model [138]. The chromatin interaction profile was found to be sim-
ilar in patient-derived fibroblasts and in mouse cells, for the key limb developmental genes
that were under investigation [138]. Similar chromatin interactions between genetically engi-
neered mouse strains and patients suffering from genetic limbmalformations were also found
at other developmental genes [161]. At larger evolutionary distances, conserved regulatory
interactions were found for HoxD genes between mouse and chicken [162]. However, dif-
ferences in chromatin architecture affecting the regulation of the Shh gene were also found
between mouse and human [163].

These examples, which pertain to a very narrow class of genes responsible for correct em-
bryonic development, cannot be used to make a general statement regarding the evolution-
ary conservation of long-range regulatory interactions at the genome-wide level. However,
at present, genome-wide comparative studies of chromatin contacts are still scarce. We have
previously performed a comparative analysis of putative regulatory interactions, based on
human and mouse PCHi-C data [153]. This analysis was based on heterogeneous collections
of chromatin conformation data, derived from different cell types for human and mouse, and
may thus have under-estimated the true extent to which regulatory chromatin interactions
are conserved during evolution. Nevertheless, this study was able to show that chromatin
interactions between promoters and predicted enhancers were significantly more conserved
than expected by chance. Specifically, on average, about 12% of promoter-enhancer contacts
were conserved between human and mouse, while only 1% of conservation was expected
based on simulated data [153]. Interestingly, the excess of contact conservation compared
to simulations was stronger for promoter-enhancer contacts separated by large genomic dis-
tances, suggesting that long-range interactions may be under stronger purifying selection.
This study also confirmed that genomic rearrangements that alter chromatin interactions are
likely counter-selected, as the homologous sequences of promoter-enhancer pairs detected
with PCHi-C data in human or mouse were found to be in conserved synteny in a wide range
of vertebrate species [153].

3.7 Interplay between the evolution of regulatory chro-
matin interactions and the evolution of gene expres-
sion

The question of the contribution of long-range chromatin interactions to gene expres-
sion regulation is also important from an evolutionary perspective. If they have a substantial
contribution to gene expression regulation, evolutionary changes in long-range chromatin in-
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teractions should lead to evolutionary changes in gene expression. This hypothesis was tested
indirectly in a comparative analysis of PCHi-C interactions between human and mouse [153].
This study showed that the extent of evolutionary conservation of regulatory landscapes was
positively associated with the evolutionary conservation of gene expression patterns. This re-
sult is encouraging and consistent with the commonly accepted role of chromatin interactions
in the control of gene expression. We note however that the association between regulatory
evolution and gene expression evolution was mild, consistent with previous work which failed
to uncover a strong relationship between the two evolutionary parameters [164]. This anal-
ysis suffered from several limitations, which may explain its lack of power for this particular
question. In particular, due to limited data availability, chromatin interactions and gene exp-
ression patterns were not evaluated using the same tissues and cell types. Furthermore, as
only two species could be analyzed, the evolutionary tempo of chromatin interactions could
not be assessed.

3.8 Future steps towards understanding the evolution of
regulatory chromatin interactions

At present, genome-wide evolutionary analyses of interactions between gene promoters
and distal regulatory elements are strikingly scarce. With the exception of the study cited
above [153], we are not aware of any other comprehensive comparison across species. Note
that comparative studies of TADs are more widespread, and have been reviewed elsewhere
[134, 136]. Nevertheless, as the associations between TADs and long-range regulatory inter-
actions are far from perfect, the latter also need to be analyzed in depth from an evolutionary
perspective. Evolutionary analyses are needed for many reasons, not least of which is the
potential to better understand the functional relevance of chromatin interactions. As with all
other functional genomics approaches which are now commonly used to investigate the bio-
chemical activities and structural features of the genome, the techniques designed to identify
chromatin interactions likely capture many spurious, artefactual interactions. These may be
false positives of the approach, or simply biological noise, which is a reality of the clearly
suboptimal vertebrate genomes [12]. Evolutionary studies have the potential to filter out the
noise from the biologically relevant interactions, much like they are needed to better predict
functional long non-coding RNAs [165] or functional cis-regulatory elements [166].

As chromatin conformation capture approaches (such as PCHi-C, HiChIP, ChIA-PET) be-
come more accessible, both technically and financially, they will likely set the stage for in
depth evolutionary analyses, performed with comparable data. Ideally, such comparisons
should combine multiple homologous tissues or cell types, across a wide range of species. Im-
portantly, transcriptome sequencing data obtained from the same biological samples should
provide a solid basis for joint evolutionary analyses of cis-regulatory interactions and of gene
expression. Comparing long-range chromatin interactions along a phylogenetic tree (rather
than just between two species) opens further possibilities for evolutionary analyses, in addi-
tion to better evaluating the rate of regulatory evolution at broader time scales. With multiple
species, it becomes possible to infer ancestral states and to identify changes that occurred
specifically in a given lineage. These changes could then be associated with gene expres-
sion changes, or to lineage-specific genome rearrangements. Thus, a broader evolutionary
perspective could be obtained on the evolution and on the functional impact of long-range
cis-regulatory interactions in vertebrates.
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Evolution of long-range chromatin
interactions

In this chapter, I will present a comparative analysis between human and mouse, which
allowed us to obtain the first insights into the evolution of promoter-enhancer chromatin
interactions at a genome-wide scale. This was the main focus of Alexandre Laverré’s PhD
thesis. As this work is now published [153], I will only briefly discuss the main results and
the main challenges that we encountered in the process.

4.1 Comparative analyses in the absence of perfectly com-
parable data

When we started working on this project in 2018, several technologies specifically de-
signed to identify chromatin interactions with putative regulatory roles were already estab-
lished (see also chapter 3 above). In particular, the promoter capture Hi-C (PCHi-C) technique
had been used in a number of publications to describe chromatin interactions between gene
promoters and other genomic regions, in human and mouse. I thus believed that the time
was ripe to perform a comparative analysis of regulatory chromatin interactions. Alexandre
combined all the publicly available PCHi-C data for human and mouse, taking care to in-
clude only data generated with similar experimental protocols [16, 112] and to re-process it
with a common computational pipeline. However, we quickly realized that the available sam-
ples were derived from very different cell types in the two species. They also greatly differed
in terms of sequencing depth and potentially even capture efficiency. We were not able to
account for all the technical factors that could affect our results, although we attempted to
perform downsampling analyses to control for differential detection power among samples.
In particular, it was impossible to do the analysis using only comparable biological samples.
Only three analyzed cell types were similar between two species (embryonic stem cells, B
cells and adipocytes), but even these cell types were not perfectly comparable, as they were
not obtained with identical protocols. We are thus aware that we likely under-estimated the
true extent of evolutionary conservation of promoter-centered chromatin contacts. However,
given that the majority of detected interactions were shared across several cell types in each
species, we reasoned that the data contains a non-negligible proportion of "constitutive" con-
tacts, and that the comparison between species is thus justified. We also confirmed previous
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observations that promoter-enhancer contacts can occur in the absence of (or prior to) gene
expression activation [119], which could explain the presence of these constitutive interac-
tions.

At present, there are many more publicly available PCHi-C samples for human andmouse
(more than 300 results for each of the two species in the SRA database, as of november 2023).
However, publicly available PCHi-C data exists for only two other species, namely chicken
and pig. The existing data is clearly not sufficient to perform evolutionary analyses at broader
scales. Moreover, the issue of comparability between biological samples is still very much rel-
evant, as these data come from a wide variety of tissues, cell types and experimental settings.
I have recently initiated a collaborative project (MetaEvoChroCo, a collaboration between re-
searchers at LBBE and LEHNA in Lyon, and INRAe and INSERM in Toulouse), whose main
aim is to perform a comprehensive comparative analyses of regulatory landscapes, gene exp-
ression patterns and metabolic phenotypes in birds. In this project, we propose to generate
comparable PCHi-C and RNA-seq data for multiple species, across tissues that are relevant
for energy metabolism. Hopefully, if the project is funded, this data will enable us to perform
an unbiased comparison of regulatory landscapes at broader evolutionary scales.

A key aspect of our study was that we generated simulated PCHi-C data, which recapit-
ulate the genomic distribution of the regions contacted by gene promoters. This simulated
data enabled us to evaluate what is expected by chance, for all our analyses. This is impor-
tant because the distribution of chromatin contacts is far from uniform along the genome.
In particular, gene promoters contact more often their neighboring genomic regions, and the
probability of contact decreases rapidly with the genomic distance between the two regions.
Our simulated data reproduces this behavior (Figure 4.1), which enables us to easily control
for the effect of the distance to the contacting gene promoter.
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4.2 Promoter-centered interactions are enriched in regu-
latory relationships

One of the first aspects that we wanted to clarify when we started our analyses of PCHi-
C data was to what extent the promoter-centered chromatin interactions detected with this
technique could be considered to have regulatory roles. The publications describing the first
applications of these techniques reported that the genomic regions contacted by gene pro-
moters were enriched in histone marks that are characteristic of enhancers, for actively ex-
pressed genes, and that are typical of silenced regions, for inactive genes [16, 112]. However,
a direct estimation of the overlap with predicted enhancers was not provided. At the time,
genome-wide predictions of putative silencers were not yet available.
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Figure 4.2: Enrichment of regulatory elements among the genomic regions contacted by gene
promoters. A. Percentage of the total restriction fragment length covered by predicted en-
hancers, for restriction fragments contacted by gene promoters. B. Percentage of the length
covered by predicted enhancers, as a function of the distance between contacted restriction
fragments and baited gene promoters. C. Percentage of the length covered by predicted en-
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in chromatin contact, as a function of the genomic distance that separates them. Figure from
Laverré et al. [153].
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We intersected the genomic regions contacted by gene promoters with the coordinates of
predicted enhancers, provided by large consortia such as ENCODE, FANTOM etc. We found
that promoters were often in contact with enhancers (for example, 36% of genomic regions
contacted by promoters overlap with ENCODE enhancers for human PCHi-C data). However,
the results were not overwhelming, especially considering that the regions "contacted" by
promoters in simulated PCHi-C data also displayed high overlap fractions with predicted
enhancers (27% for ENCODE). This is perhaps not surprising, considering that the ENCODE
consortium has provided several hundreds of thousands of enhancer predictions, which are
scattered throughout the human and mouse genomes. These predicted enhancers are likely
not all biologically relevant [166].

We also wanted to evaluate to what extent the pairs of promoters and enhancers that are
predicted by PCHi-C data represent genuine regulatory relationships. To do this, we evaluated
the correlation between the activity of promoters and the activity of enhancers in each pair,
estimated with CAGE (cap analysis of gene expression) by the FANTOM consortium [46],
across several hundreds of samples. Perhaps surprisingly at first, the overall correlations were
weak (Figure 4.2D). This could be explained by many factors, including the noise inherent
to CAGE experiments, especially for low abundance enhancer-associated transcripts. The
fact that genes tend to be regulated by multiple enhancers could also explain why individual
activity correlations are low, when single enhancers are considered in conjunction with each
promoter. However, encouragingly, we found that the activity correlations were higher for
PCHi-C data than for simulated data, and that the contrast between the two was higher at
large genomic distances (Figure 4.2D).

Thus, the interactions between promoters and enhancers detected with PCHi-C data can
be considered to be enriched in genuine regulatory relationships. However, I would like to
stress that they are by no means confirmed regulatory relationships. For a more stringent
assessment of regulatory relationships, one could combine PCHi-C data with activity corre-
lations between promoters and enhancers. We did not do this in Alexandre’s work, but this
control could be implemented in the future.

4.3 Genomic sequences contacted by promoters are evo-
lutionarily conserved

We next verified the extent of sequence conservation for the genomic regions contacted
by gene promoters. We note that in PCHi-C data interactions are detected between pairs of
restriction fragments, obtained after chromatin digestion with one or several restriction en-
zymes (see Figure 4.1 and chapter 3). Restriction fragments have variable sizes, up to several
tens of kilobases, and thus often include more than one enhancer. We thus performed the
sequence conservation analysis at two levels, focusing on contacted restriction fragments,
or focusing on the enhancers embedded in contacted restriction fragments (Figure 4.3). We
measured the extent of sequence conservation through the percentage of aligned sequences
between human and mouse, after masking exonic sequences. We found that restriction frag-
ments contacted by gene promoters were significantly more conserved than expected based
on our simulations. This was in part due to a much lower proportion of repetitive sequences in
the real PCHi-C data (perhaps explained by a bias towards mappable regions in the sequenc-
ing analysis pipeline), but the effect remained visible when we analyzed separately repetitive
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and non-repetitive sequence (Figure 4.3). However, surprisingly, we observed no sequence
conservation difference between PCHi-C and simulated data when we specifically analyzed
enhancer sequences (Figure 4.3). This was somewhat disappointing: one of my first intuitions
was that intersecting on one hand enhancer predictions based on histone marks, and on the
other hand chromatin contacts with gene promoters, would give us a set of elements en-
riched in functionally relevant enhancers. This does not seem to be the case, although again
this question should be revisited with additional, more stringent filters on PCHi-C data (e.g.,
selecting contacts detected in multiple samples). Thus, the restriction fragments contacted
by gene promoters are more conserved than expected by chance not because they overlap
with better conserved enhancers, but perhaps because they overlap with more enhancers.
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Figure 4.3: Sequence conservation of genomic regions and of enhancers contacted by gene
promoters. Left: sequence conservation for restriction fragments contacted by gene promot-
ers. Right: sequence conservation for predicted enhancers (ENCODE dataset) found in the
fragments contacted by gene promoters. Solid dots: non-repetitive sequences; empty dots:
repetitive sequences. Figure from Laverré et al. [153].

We also uncovered a strong negative association between sequence conservation (for both
contacted restriction fragments and contacted enhancers) and gene density in the neighbor-
ing regions (Figure 4.3). Specifically, enhancers found in gene-poor regions are more con-
served during evolution. This result is consistent with previous reports of an enrichment of
gene deserts (large intergenic regions, up to several megabases long) around highly conserved
developmental genes and transcription factors [121].
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4.4 Promoter-centered chromatin contacts are evolution-
arily conserved

After these initial exploratory analyses, we arrived at one of our main questions: are chro-
matin contacts between promoters and other genomic regions conserved during evolution?
We focused on chromatin contacts for which both genomic regions were alignable between
human and mouse, without ambiguity. We could thus predict putative orthologous contacts,
and we said that a chromatin contact detected in one species was conserved in the other
species if the orthologous contact was detected in its corresponding PCHi-C data.
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Figure 4.4: Conservation of promoter-centered chromatin contacts between human and
mouse. A. Heatmap representation of the percentage of contact conservation between pairs
of human and mouse samples. B. Boxplot representing the distribution of the percentages
of contact conservation between pairs of samples, for real and simulated PCHi-C data. C.
Relationship between the percentage of contact conservation and the number of cell types
in which contacts were detected. D. Dependency between the percentage of contact con-
servation and the genomic distance separating the two contacting regions. All samples are
combined for the analyses presented in C and D. Figure from Laverré et al. [153].

For this analysis, the excess of conservation in the real PCHi-C data compared to the
simulated PCHi-C data was striking (Figure 4.4). This was particularly true for interactions
detected in multiple cell types, as expected biologically (housekeeping regulatory relation-
ships may be under stronger functional constraint) and technically (given the disparity in the
cell type collections analyzed for human and mouse). The excess of conservation compared to
simulated data was particularly strong for interactions between genomic regions separated
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by large distances on the linear genome (Figure 4.4D). We initially thought that the peaks
of conservation found at distances just below of 1.5 Mb were artefactual, and we did our
best to remove them with additional controls. After further manual inspection, it turned out
that these highly conserved contacts were very much real and involved Hox genes, for which
important long-range regulatory contacts were previously reported [14].

4.5 Regulatory evolution and gene expression evolution

Finally, in this project wewanted to re-evaluate the relationship between regulatory evolu-
tion and gene expression evolution. This question had been previously addressed, but (to our
knowledge) never by defining regulatory relationships with high resolution chromatin contact
data. We evaluated regulatory landscape conservation at multiple levels: by computing the
average sequence conservation of contacted enhancers for each gene; by determiningwhether
the contacted enhancers were in conserved synteny between human and mouse; and by di-
rectly estimating the fraction of conserved contacts between the two species, as described
above. To evaluate gene expression evolution, we compared relative expression profiles, ob-
tained from a publicly available transcriptome collection which encompasses comparable or-
gans and developmental stages [76]. Specifically, for each gene, we obtained a relative exp-
ression profile by dividing the expression levels (evaluated as transcript per million, or TPM,
values) by the maximum observed value among samples. With this procedure, we obtained
expression profiles that are more comparable between species than TPMs, which are affected
by various species-specific factors (gene annotation differences for example). Our measure of
expression conservation can thus capture changes in tissue specificity or developmental stage
specificity for example, but we do not claim to detect quantitative differences in expression
levels between species.

Our analyses confirmed several previously reported results, such as the positive correla-
tion between the number of contacted enhancers, on one hand, and the gene expression level
and the gene expression breadth, on the other hand (Figure 4.5) [164]. However, we were not
able to confirm a previously reported association between the number of enhancers attributed
to each gene and the extent of expression conservation [164]. This discrepancy could be ex-
plained by the fact that we used a different measure of gene expression conservation, but
perhaps also by the way in which enhancers are attributed to genes. In previous regulatory
evolution studies, enhancers were assumed to control the closest neighboring genes, within
a given maximal genomic distance [164]. With PCHi-C data, there is evidence that a con-
siderable proportion (up to one third) of inferred promoter-enhancer relationships bypass the
closest promoter [122]. We also discuss this possible source of discrepancy below (section 4.6).

Overall, our analyses uncovered significant, positive associations between the extent of
gene expression conservation and the extent of regulatory landscape conservation. These
results are intuitively expected, but previous joint evolutionary analyses of gene expression
and regulatory mechanisms [164] had only uncovered verymild associations between the two
factors. Multiple explanations could be proposed to explain the discrepancies with previous
work, including the types of data that were analyzed and the methodology used to evaluate
gene expression conservation [153]. Irrespective of these considerations, we interpret these
results as a positive motivation to continue using chromatin conformation capture data for
the prediction of regulatory relationships.
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Figure 4.5: Correlation between regulatory evolution and expression evolution. A. Highly ex-
pressed genes contact more enhancers than weakly-expressed genes. B. Broadly-expressed
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contact conservation in mouse.

– 40 –



Evolution of long-range chromatin interactions

4.6 Defining target genes for regulatory elements with
PCHi-C data

As mentioned before, with our data, we were unable to uncover a previously reported
association between the number of enhancers predicted to regulate each gene and the extent
of gene expression conservation [153, 164]. One of the possible reasons for this discrepancy
is the way that enhancers were attributed to gene. In the absence of chromatin conformation
data, enhancers are traditionally assumed to regulate the closest neighboring genes, within a
certain maximum genomic distance. This definition of "regulatory domains" is at the basis of
GREAT [167], a widely-used method for the inference of functional associations for predicted
regulatory elements. However, analyses of PCHi-C data largely invalidate this definition of
regulatory domains. As a follow-up on Alexandre Laverré’s work, we exploited the PCHi-C
data collection for human and mouse to propose a new tool for the inference of functional
associations for regulatory elements. We named this tool GOntact, as a contraction between
Gene Ontology and contacts. A preprint is already available [168].We are currently working
to implement this tool as a webserver, which will be available at http://gontact.univ-lyon1.fr.
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Genome rearrangements and the
evolution of regulatory landscapes

5.1 Biaseddistributions of phenotypic effects for observed
rearrangements

The presence of long-range regulatory interactions between promoters and enhancers
raises the question of their robustness to genomic rearrangements, and of the functional con-
straints that they may impose on large-scale genome evolution. The presence of conserved
synteny at large evolutionary scales between genes and conserved non-coding sequences was
interpreted as evidence for conservation of long-range regulatory relationships, even before
such interactions could be predicted with chromatin conformation data [154–157]. This rea-
soning is confirmed by numerous articles, which report deleterious phenotypic effects for
genomic rearrangements that alter chromatin conformations [138, 140, 161, 169]. However,
it is important to note that these considerations may not be applicable at the genome-wide
level, as they are based on analyses of highly conserved genes, including key developmental
transcription factors. Most likely, the fitness effects of genomic rearrangements that perturb
regulatory landscapes vary depending on the functional importance of the genes that are
affected, and on the robustness of their regulatory mechanisms. In our evolutionary com-
parison of chromatin contacts, we also observed that promoter-enhancer relationships were
conserved in synteny significantly more often than expected [153]. This observed average
effect may also be due to the presence of strong constraints on a small subset of regulatory
interactions.

Interestingly, analyses of Drosophila laboratory strains with highly rearranged genomes
did not reveal any detectable effect on gene expression, beyond cases where gene bodies were
directly touched by the rearrangements [170]. A biased representation of possible fitness ef-
fects of genome rearrangements may also explain this result: the laboratory strains under
investigation were all viable, which indicates that genome rearrangements with highly dele-
terious effects were excluded from this pool of genotypes. This biased phenotypic representa-
tion is the opposite of the one observed for case studies of genomic rearrangements involved
in human diseases, where highly deleterious rearrangements are likely favored [138].

While discussing these observations during Alexandre Laverré’s PhD project, we realized
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that our analysis was also biased in terms of phenotypic effects of genome rearrangements,
although we based it on all analyzable genes. Indeed, these analyzable genes are those that
are orthologous between human and mouse. We were not able to analyze cases where a gene
was lost in one of the two lineages, nor did we analyze lineage-specific gene duplications. By
excluding gene losses, we have perhaps discarded a subset of genomic rearrangements with
extreme effects on regulatory landscapes. We can imagine a scenario where a large-scale in-
version (for example) separates a gene from its most important distant regulatory elements.
If, following this drastic change in its regulatory landscape, the gene is no longer expressed
in the tissues where it performs its function, the gene may become pseudogenized follow-
ing a relaxation of purifying selection. Indeed, sequence-altering mutations on a gene that
is already not correctly expressed are unlikely to have any further deleterious effects on the
organism. The gene could thus become pseudogenized and lost with evolutionary time. Evi-
dently, this scenario only applies to dispensable genes, otherwise the original rearrangement
would have highly deleterious phenotypic consequences.

I decided to follow up on this idea, and proposed Master internships to investigate the
association between genomic rearrangements and gene losses. This topic was addressed by
Victor Lefebvre during his M1 internship and by Thomas Lahaie during his M2 internship, in
2023. They each addressed a different aspect of this research question, as briefly described
below.

5.2 Genomic rearrangements around the Xist/Lnx3 locus

One of my motivations for pursuing this idea was a peculiar situation that I observed
around Xist, the long non-coding RNA responsible for X chromosome inactivation in placental
mammals (it does seem that lncRNAs follow me, even though I tried to move away from
them). In 2006, Laurent Duret and collaborators showed that Xist originated in placental
mammals through the pseudogenization of a protein-coding gene, named Lnx3 [79]. One of
the circumstances that helped him uncover this exciting origination story was the remarkable
conservation of synteny around Xist (Figure 5.1).

Figure 5.1: Genomic organization around the Xist/Lnx3 locus, in human, opossum, chicken
and frog. Figure adapted from Duret et al. [79].

The Xist/Lnx3 locus is flanked by the highly conserved Cdx4, Chic1, Xpct genes, which are
maintained in synteny across tetrapod species (Figure 5.1). Among these genes, Cdx4 is a
developmental transcription factor involved in the patterning of the anterior/posterior body
axis. I came across Cdx4 in an unrelated project, in which I collaborated with Isabel Guerreiro
(a post-doc in Denis Duboule’s laboratory in Geneva) with the aim of studying the genetic
basis of axial elongation in snakes. In this project, Isabel and I discovered that Cdx4 is in fact
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part of a very ancient tandem duplication, which likely originated in the ancestor of tetrapods
(and which is completely unrelated with the whole-genome duplications that occurred in the
vertebrate ancestor, which generated a different set of Cdx paralogues). Strikingly, we found
that different lineages lost different copies of the tandem duplicates: placental mammals and
snakes both have just a single copy ofCdx4, but they kept different paralogous copies. In other
species, such as birds and marsupial mammals, the two copies are preserved. The functional
implications of this curious evolutionary event are still under investigation (Guerreiro and
Necsulea, manuscript in preparation). However, this finding motivated me to look beyond the
boundaries of Laurent’s figure from 2006, which stopped at Cdx4 (Figure 5.1 and Figure 5.2).

Figure 5.2: A broader view of the genomic organization around the Xist/Lnx3 locus, in human,
mouse, opossum and chicken. Figure adapted from Victor Lefebvre’s internship report.

If we look upstream of Cdx4, we notice that in addition to Cdx4l (the ancient paralogue of
Cdx4), placental mammals also lost Vegfr (Figure 5.2). Moreover, the two next closest genes
(Amer1 and Arhgef9) were relocated at a distance of more than 10 Mb from Cdx4, and are now
in the opposite transcriptional orientation (Figure 5.2). We can be confident of the direction
of the evolutionary change because chicken and opossum both show the same genomic or-
ganization. This suggests that (at least) one large inversion occured in the immediate vicinity
of Cdx4 in placental mammals. This inversion may have directly perturbed the sequences of
Cdx4l and/or Vegfr, for which we cannot find traces in placental mammal genomes.

Thus, at least one large genomic rearrangement occurred in close proximity to theXist/Lnx3
locus in the ancestor of placental mammals, that is, approximately (on a geological scale) at
the same time as the pseudogenization of Lnx3, Fip1l2, Cdx4l and Vegfr. The sequences of
the last two genes may have been directly affected the genomic rearrangement. However,
the gene bodies of Lnx3 and Fip1l2 were clearly not part of the synteny breakpoint. For these
genes, we cannot exclude the hypothesis that the genomic rearrangement affected their reg-
ulatory chromatin interactions.
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Figure 5.3: Chromatin interactions detected with FitHic2 using Hi-C data for chicken (A),
opossum (B), and detected using PCHi-C data for mouse (C). The Cdx4, Lnx3/Xist, Amer1,
Arhgef9 genes are displayed in color (the latter two genes are not visible in mouse). Figure
adapted from Victor Lefebvre’s internship report.
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5.3 Evolutionary change in chromatin interactions around
the Xist/Lnx3 locus

During his M1 internship, Victor Lefebvre analyzed the distribution of chromatin interac-
tions around the Xist/Lnx3, in opossum and chicken. He used Hi-C data from muscle, which
was publicly available for both species. He detected discrete chromatin interactions with
FitHic2 [171] and compared these interactions with those observed in PCHi-C data in mouse
[153]. Although the Hi-C data is underpowered for the detection of discrete chromatin inter-
actions compared to PCHi-C data, Victor was still able to uncover some interesting differences
between species in the structure of chromatin contacts (Figure 5.3).

In agreementwith previous reports, according towhich Xist is found close to a TAD bound-
ary in placental mammals [125], PCHi-C data show that the Xist promoter preferentially con-
tacts elements upstream to itself (on the right-hand side of the image in Figure 5.3). However,
in chicken Lnx3 does not appear to be situated on the boundary of a TAD. We can observe
genomic interactions that start upstream of Lnx3 (right-hand side of the image) and that end
in the region upstream of Cdx4 (left-hand side of the image) in both chicken and opossum.
These interactions could have been affected by the genomic rearrangements; in any case, they
are not observed in mouse.

This analysis does not allow us to conclude on the effect of this large-scale inversion on
the regulatory landscapes of Lnx3/Xist, not least because the Hi-C data does not offer enough
power to detect fine-scale interactions. We plan to explore this aspect further, using PCHi-C
data for the chicken (data kindly provided ahead of publication by H. Acloque, S. Foissac and
S. Djebali, INRAe and INSERM). Victor will continue this project as part of his M2 internship.

5.4 Gene losses are enriched close to synteny breakpoints

A causal relationship between the neighboring rearrangement and the loss of Lnx3 can
only remain speculative, even if we had abundant chromatin conformation data. To further
test the original hypothesis, we turned to genome-wide analyses, as always in computational
evolutionary biology. As part of his Master 2 internship in 2023, Thomas Lahaie investigated
the potential association between gene losses and synteny breakpoints. He focused on gene
losses that occurred in the ancestor of placental mammals, which include Lnx3. Through
comparative analyes of gene families, Thomas identified approximately 120 protein-coding
genes which were lost in the ancestor of placental mammals, but which were kept as a single
copy in the chicken genome. We call these genes "placental-lost".

We first asked whether these placental-lost genes were spatially clustered in the chicken
genome. Indeed, assuming that genomic rearrangements had drastically perturbed the reg-
ulatory landscapes of the lost genes, a genomic clustering is expected, because neighboring
genes often shared regulatory interactions. To do this, for each placental-lost gene, we com-
puted its distance to the nearest other placental-lost gene. If no other placental-lost gene
was found on the same chromosome, we set the distance to 1e9 (a value close to the chicken
genome size), to denote the absence of a close neighbor. We then compared the distribution
of these distances between placental-lost neighbors to the random expectation, obtained by
randomly re-shuffling the labels ("placental-lost" or "other") of genes. Our results confirm this
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intuition: placental-lost genes are found more closely together than expected in the chicken
genome (figure 5.4). We note that this genomic clustering could also be explained by alter-
native hypotheses, such as co-localization of functionally enriched genes, which might be
concomittantly lost following a phenotypic change.

Figure 5.4: Genomic clustering of placental-lost genes in the chicken genome. A. Position of
placental-lost genes on the chicken chromosomes. B. Distribution of the median distance be-
tween neighboring pairs of placental-lost genes. C. Number of placental-lost gene neighbors
separated by at most 20 kb. D. Number of placental-lost gene neighbors separated by at most
100 kb. B,C,D. The gray histogram represents the random expectation obtained through sim-
ulations. The red vertical bar represents the observed value.

To consolidate this result, Thomas identified synteny breakpoints by comparing the posi-
tions of orthologous genes between chicken, opossum, mouse and human. He again focused
on synteny breakpoints that were found between chicken and placental mammals, but not
between chicken and opossum. We called these synteny breakpoints "placental-breakpoints".
We observed that placental-lost geneswere found significantly closer than expected by chance
to genomic rearrangement breakpoints (figure 5.5). Interestingly, overlaps (distances of 0
kb) between placental-lost genes and placental-breakpoints were not more frequent than ex-
pected. However, short distances (excluding overlaps but below 50 kb) were over-represented
in the observed data compared to the randomizations (figure 5.5) This observation conforts
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our original hypothesis. Indeed, we do not aim to uncover rearrangements which directly
affected gene sequences, but rearrangements which perturbed regulatory landscapes while
leaving gene bodies intact.

Figure 5.5: Proximity between placental-lost genes and placental-breakpoints, in the chicken
genome. A. Distribution of the distance between placental-lost genes and placental-
breakpoints. B. Randomly expected distribution of the distance between placental-lost genes
and placental-breakpoints, obtained through permutations. C. Fraction of distances between
placental-lost genes and placental-breakpoints that are below 50 kb.

These results are clearly very preliminary, but are encouraging enough to motivate fur-
ther analyses. Victor Lefebvre will continue some of these research directions as part of his
M2 internship in 2024. He will also analyze the divergence of regulatory chromatin interac-
tions following another type of genome rearrangement, namely gene duplications. Indeed,
at present very little is known about the evolution of regulatory landscapes following gene
duplications. We will thus be able to explore other aspects of the relationship between cis-
regulatory landscape evolution and genome rearrangements.
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Conclusion

I had originally planned to write my "habilitation à diriger les recherches" manuscript in
2019. I unfortunately missed that self-imposed deadline and then had to postpone it for sev-
eral years due to some difficulties during the Covid period. Although it was a difficult exercise,
writing this manuscript was an opportunity to revise my priorities, among the numerous re-
search projects that I started but had not been able to finish. It was also very motivating.
Writing about them allowed me to see some old projects in a new light, and to some extent
to reconsider my move away from some research directions.

Although I have tried my best to present most of the projects I participate in under a
common title, I think I have notmisled anyone into believing that I carry out a unified research
program. I am perhaps too easily distracted, or attracted, by new and exciting ideas. I think
this is also part of why I am happy to be a researcher during a period marked by so many
technological innovations. I consider myself very privileged to be able to do this type of work.
With this sense of privilege also comes a feeling of guilt, of not doing more easily applicable
research that might perhaps have at least a minuscule contribution to solving some of the
problems of our society. Although I am mainly interested in evolutionary biologiy, I am thus
always eager to collaborate with medical researchers. I am also keen to contribute to the
training of the next generation of researchers, by teaching in various Master programs and
supervising students during their internships.
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