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Preface

The present manuscript is prepared for my habilitation a diriger des recherches. Its purpose is to
provide a summary of research, with the stated scope of proving the candidate’s ability to master a
research strategy in a sufficiently broad scientific field, and their ability to supervise PhD students.

I have chosen to write the manuscript on the subject of the low energy effective action in
string theory, which concerns roughly about half of my research activity since 2013. Rather than
summarising my list of publications for the last twelve years, I have chosen to expose my current
understanding of the topic more broadly, with emphasis on my own work.

The manuscript does not discuss my work on supergravity black holes solutions and smooth
geometries describing black hole microstates in a semi-classical approximation, nor does it review
the construction of Kac—-Moody exceptional field theories that formulate supergravity theories with
infinite-dimensional duality group invariance.

During this period I have supervised three PhD students, Valentin Verschinin and Charles
Cosnier-Horeau (co-direction with Boris Pioline) who have defended their PhD thesis in 2015 and
2018, and Adrien Loty who will defend this year.
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Introduction and summary

String theory is a consistent theory of quantum gravity in the sense that it defines unambiguously
scattering amplitudes in asymptotically Minkowski spacetime and includes a massless spin two
particle in its spectrum. The interpretation of the amplitudes at low energy in quantum field theory
permits to derive the effective action that reproduces Einstein theory of general relativity coupled to
matter and with infinitely many higher derivative corrections. However, string theory lacks a first
principle non-perturbative definition, and one relies on perturbation theory to compute amplitudes.
An n-point amplitude in D-dimensional Minkowski spacetime is written as an expansion over
(super) Riemann surfaces of genus h with n punctures weighted by g2"2

dilaton e® that relates the string length square o/ = ¢? to the Planck length ¢ in D dimensions

. There is an effective

through its expectation value 1/g2 = (e=2%)
(P=2 = oz'%gf . (0.1)

It appears therefore that at weak coupling g, < 1, one reaches the string scale much before the
Planck scale and the physics becomes inherently stringy before one enters a quantum gravity regime.
For many quantum gravity questions one wishes to understand string theory at strong coupling,
meaning g, ~ 1 [1-4].

When the theory admits supersymmetry, some of the most relevant terms in the effective action
are protected by supersymmetry and may be computed exactly in string theory. In particular, the
scalar fields take value in a symmetric space when the supergravity theory admits more than twelve
supercharges, and the two-derivative Lagrangian is determined by the number of vector multiplets
and the gauging (i.e. the gauge group and its action on the symmetric space). Using moreover
duality symmetries [5, 6], one can sometimes extract exact higher derivative corrections. Proto-
typical examples are the leading Green-Gutperle R* correction in type IIB string theory [7] and
the Harvey—Moore R? correction in heterotic string theory on T° [8]. In the second example the
correction is obtained by a one-loop computation in type IIB on K3xT?2. In the first the correc-
tion is genuinely non-perturbative in string theory, but could be derived as a one-loop correction in
eleven-dimensional supergravity on T2 [9]. These coupling functions provide extremely useful infor-
mations about non-perturbative effects in string theory, as D-brane and Neveu—Schwarz five-brane
instantons. The pioneering work [7] has been instrumental in computing instanton corrections from
first principles [10-12].

In D = 4 space-time dimensions, the N' = 1 supergravity Lagrangian decomposes into the
so-called D and F-terms, that are understood respectively to be the top components of an uncon-
strained scalar superfield and a chiral superfield. Chiral superfields that cannot be obtained by
chiral projection of an unconstrained superfield determine protected couplings in supergravity. The
scalar and Yukawa couplings are fixed in this way in terms of the Kéahler potential and a holomorphic
function, the superpotential W. One determines similarly the protected couplings in N-extended
supergravity as preserving a fraction of the A/ left and A right-handed supersymmetries. Although
one cannot write all the supersymmetry invariant couplings as superspace integrals for N' > 4,



BPS N =38 N =6 N =4 N =2
(4/N,1—4/N) EoonRY WF?R? W(S)R?
(2/N,2/N) Euo VIR Lo R’ Ea(o)F*
(2/N,0) Wi F#VARY | W F?RY | W F2F2F2R? | Wo(t)F2, Wy (t) F2F 2 R?
(1/N,1/N) EonyVORY | Eh00VERY | E32(p)V2E! G(9)(Vo)?

Table 1:  The supersymmetry invariants associated to (k./N, kr/N)-BPS operators in N -extended su-
pergravity [14-20]. We write Fy, the Maxwell field strengths in the gravity multiplet for N' = 2 and 4 to
distinguish them from the matter multiplet field strengths F. The notation is schematic, G(¢) refers to the
hyper-multiplet quaternionic Kéhler metric and ), I/Vk(t)Tg?r”C to the special Kéhler prepotential function of
the Weyl multiplet superfield Ty, [21-23].

one can do it in the linearised approximation in terms of free superfields, see e.g. [13]. The no-
tion of F-term is generalised to (kr/N,kr/N)-BPS invariants that are written in the linearised
approximation as superspace integrals

Ty N e/ N) ™ / dlad™ it =2eg O (0.2)

of some operator O annihilated by kj left-handed and kg right-handed supersymmetries that
anticommute with each others. Most of the time one does not specify the chirality and simply

refers to %—BPS invariants. We give the schematic form of such BPS invariants in Table 1.

The couplings in the same lines in Table 1 have in common the number of preserved supersym-
metries indicated in the first column, as well as the degree of complexity of the coupling function.
One can define an ordering in the set of differential equations a function on a symmetric space can
satisfy. The coupling functions appearing in the first line satisfy the most constraining existing set
of equations and are in this sense minimal. The coupling functions appearing in the second line
are in the same sense next-to-minimal.

The couplings in the last line of table 1 are particularly interesting because they get corrections
from generic 1/N-BPS D-brane instantons in type II string theory [24-28]. The partition function
counting 1/N-BPS D-brane instantons grows exponentially with the instanton charge @ as ~
e™Q* By duality, the partition function of such instantons is related to the helicity supertrace
counting 1//N-BPS black hole microstates [29-32]. The exponential growth of the number of states
reproduces the macroscopic Bekenstein-Hawking entropy S = 7Q? [33, 34].

This implies that the sum over D-brane instantons does not converge since they behave as
e™Q?=27|Ql/9s The corresponding asymptotic series can in principle be defined by Borel resumma-
tion and the ambiguities associated to poles in the Borel plane be fixed by Neveu—Schwarz five-brane
instantons [35]. These coupling functions can alternatively be defined without ambiguities through
their abelian Fourier expansion.

The general strategy to determine an exact coupling function £ as the ones in table 1 is to
use symmetries and perturbation theory. To simplify the discussion we assume that AV > 4 in four
dimensions and the Minkowski vacuum is supersymmetric, such that the two-derivative Lagrangian



is uniquely determined (for a given number of vector multiplets) and the scalar fields parametrise
a symmetric space K\G, where K denotes the maximal compact subgroup.

e Supersymmetry Ward identities: £ satisfies certain partial differential equations.

e U-duality symmetry: £ is invariant under the action of an arithmetic subgroup I' C G.
e Perturbative string theory: Determines the weak coupling expansion at g, < 1.

e Perturbative supergravity: Valid in the large volume limit of an internal subspace.

Note that there are often different non-equivalent perturbative definitions of the theory for N' = 2
and N = 4, in which case all these couplings may be determined by perturbative computations.
The partial differential equations satisfied by the coupling functions generally imply that they can
only receive corrections up to a fixed order in the string theory genus expansion. The U-duality
symmetry is generally conjectural, but the consistency between the various constraints usually
permits to get compelling evidence of its validity. Combining supersymmetry and U-duality allow
to pin down a finite set of solutions so that the coupling functions only depends on few parameters
that can be determined by consistency with perturbative computations.

In this habilitation thesis we will concentrate on type II string theory on a torus 791, for which
the low-energy effective action describing massless particles is (ungauged) maximal supergravity in
D =11 — d dimensions [36,37]. The effective action then consists of the two-derivative Lagrangian
determined by supersymmetry plus an infinity of higher derivative corrections themselves consistent
with supersymmetry. One can understand the effective action as being obtained by integrating out
all the massive fields in string theory, including non-perturbative states. A formal path integral
description suggests that integrating out all string fields up to a scale A should give rise to a bare
action S/b\ that would allow to define the string amplitude through the supergravity path integral
up the cut-off scale A. However, there is a priori no regularisation scheme that preserves maximal
supersymmetry and the modern techniques to compute supergravity amplitudes do not rely on the
Lagrangian, so the definition of this bare action S/b\ is not very useful. We will rather introduce
the Wilsonian effective action W, and determine the renormalisation scheme in supergravity by
consistency with perturbative string theory.

The approach that has been followed in the literature is to decompose the four-graviton ampli-
tude into analytic and non-analytic components depending of the Mandelstam variables [38]

Ma(s, t,u) = M (st u) + M (st ) - (0.3)

This split is of course not unique but there is a well justified choice that is defined up to a set of
ambiguities in one-to-one correspondance with logarithmic divergences in supergravity. One may
label them for short by a unique fiducial scale u. It is useful to interpret this split as defining a
Wilson scale above which all the states of the theory have been integrated out. One can apply
a similar split to higher-point functions, but we shall restrict attention to the four-point super-
amplitude that is determined by the four-graviton amplitude [39].



The Wilsonian effective action, as a local functional of the supergravity fields, must be invariant
under supersymmetry transformations
6 W, =0 (0.4)

where both W), and the corresponding supersymmetry transformation ¢, admit expansions in the
Planck length ¢ that involve higher order derivative terms. However, the local Wilsonian action
W,, is not invariant under the U-duality group of the theory.

Let us pause now and explain this subtlety in the example of the Harvey—Moore coupling in
N = 4 supergravity [8]. The Riemann square type correction to the two-derivative action depends
on an arbitrary holomorphic function of the axio-dilaton S in supergravity [19,40]. The correction
appearing in heterotic string theory is

—2—7?;21111 [log n(S) (Rab A Rgp + %EabcdR“b A R0d>] +... (0.5)

with n(S) the Dedekind eta function, while the SL(2,Z) invariant coupling function is
3
HM 4
EM = 5.2 log(ImS|n(S)[*) , (0.6)

and includes the linear dilaton term log(ImS) = —2¢. One explains such term from the change of
frame, from string to Einstein frame, whenever there is a non-analytic dependence of the amplitude
in the Mandelstam variables [41], here

log(—a/s) = log(—£*s) — 2¢ . (0.7)

This interpretation only holds for the amplitude that depends on the boundary value ¢(c0), while
the Lagrangian depends on the field S(z). In supergravity the linear dilaton term only appears in
the non-local effective action, i.e. the generating functional of one-particle-irreducible correlation
functions. One cannot separate it from the one-loop correction with massless states in the loop
and it is related to the U(1) duality anomaly [42,43,19].

Non-analytic terms in the string coupling g, appear in this way whenever there is a logarithmic
divergence in supergravity. In practice it is easier to work with a decomposition of the amplitude
in analytic and non-analytic components that are individually U-duality invariant [38]. One can
interpret intuitively the associated ‘Wilsonian’ split in the analytic and the non-analytic components
of the amplitude as being defined for a moduli dependent scale p/(¢). Because W), is obtained by
integrating out all the massive fields in the theory, it is natural to choose the Wilson scale u as
the lowest mass in the spectrum, that is moduli dependent in Einstein frame. In this heterotic
example one may choose the mass of the first excited string states p/(¢) = 2e?/£. In type II string
theory on 79! one can choose u/(p) = |Z|/¢ equal to the mass of any 1/2 BPS particle. The
would-be ‘effective action” W, () does not satisfy (0.4) as it involves the supersymmetry variation
of the scale 1//(¢). There is in fact no local functional W, of the fields, and the scale 1/'(¢) only
make sense for the asymptotic value of the scalar fields ¢(o0). Nonetheless, one can define MZ“ZIytiC
with coupling functions that are U-duality invariant, but satisfy modified differential equations.
These modifications of the supersymmetry differential equations are consistent with the action of
the renormalisation group, and are associated to the logarithmic divergences in supergravity in a
way that can intuitively be derived from the discussion above.



D=11-d K\Es R(AD) | R(AY | R(As)
8 O(2)\SL(2,R) x SO3)\SL(3,R) || (2,3) | (1,3) | (2,1)
7 O(5)\SL(5,R) 10 5 5
6 (Sp(2) X7, Sp(2))\Spin(5,5) 16 10 16
5 p(4)/Z2)\ E 27 | 27 78
4 ( U(8)/Zs)\Ex 56 | 133 | 912
3 (Spin(16)/Z2)\ Es 248 | 3875 | 147250

Table 2: Convention for representations of p-form fields with the Bourbaki labelling consistant with E; by
truncation [45]. These weights also label the parabolic gauges relevant to describe perturbative string theory
with v € P; C Eg4, and the large T¢ volume limit in eleven dimensional supergravity with v € Py C Ej.

For example £™ is not the sum of a holomorphic and an anti-holomorphic function, but still

satisfies
3

8m2
The right-hand-side is a correction proportional to 1, the coupling function appearing in the two-
derivative Lagrangian. The fact that % corrects AE™ is directly related to the fact that the
one-loop supergravity amplitude diverges logarithmically in S%RQ.Q Another canonical example
is the holomorphic anomaly of the twisted topological string partition function [21] that can be
understood as a consequence of logarithmic divergences in N' = 2 supergravity [22].

AE™ = —(S-8)20505E™ = (08)

The type II string theory effective action on 79! has been analysed in details over the years. In
D = 11—d spacetime dimensions, maximal supergravity admits massless scalar fields ¢ parametris-
ing the symmetric space Kg\FEy, vector fields Aﬁ” in the highest weight representation R(Ay),
two-form fields B%N in R(A;), three-form fields C,%LV’P in R(A2) according to table 2 above.
These fields couple respectively to the particles, the strings and the membranes of the theory. We
will write By = Eg(q) for the exceptional groups, that are always assumed in their split real form.

The Wilsonian effective action takes the schematic form

dPzv/—g <R+ ﬁ;(z erroagy (e )tgtg(v4)p(vﬁ)qR4+...>> . (0.9)

p,q=>0

WN 22

where tgtg R* generalises the square of the Bel-Robinson tensor in D dimensions [46,47] and each
V* and VO is Lorentz invariant and acts symmetrically on the four Riemann tensors. As explained

above, one will rather use the amplitude coupling functions &g, , () ~ EV that are not

(p.a) i (@)( )
analytic in the moduli but are invariant under U-duality. One says that &, (¢) are automorphic,
i.e. functions on the moduli space K4\Eq4/E4(Z). The U-duality arithmetic group E4(Z) can be

defined as the set of matrices in the representation R(Ay) that are integer valued in the Chevalley

2This divergence drops out in the amplitude because Gauss-Bonnet is topological in four dimensions, and one
sometimes talks about an evanescent divergence [44].



basis (for d < 7). It is generated from the global diffecomorphisms SL(d,Z) of the torus in eleven
dimensions and the T-duality group Spin(d—1,d—1,Z) of automorphisms of the Narain lattice [5].?
The first three coupling functions &y o), 1,0y, £o,1) are protected by supersymmetry and satisfy
very constraining differential equations [48-54].

For type IIB string theory, these three coupling functions can be computed from the one-loop
and two-loop supergravity amplitude on 72 in eleven dimensions [9,55, 56]

/ /

ImS): 1 Ims)}
5(070) = Z g _ 2c( ) SL(Q) , 8(170) —— Z & _ C(5)ESL(2) :

3 5 SA
. |m + Snl 2 ez |m + Sn| 2\
P dLydLoydLs (Z | Shilsaly ) z’: o Ly Sl (0.10)
oy = o (0.
9 ]R3 (Z[<JLILJ ZI<JLILJ mr,ni€Z
> rmr=3;nr=0

where m, n are the Kaluza—Klein mode numbers and S the complex structure on 72.* The first and
the second function & o and & o) are known exactly in all dimensions D > 3, in terms of a special
types of automorphic functions known as Eisenstein series (or Langlands—Eisenstein) [57-62,38,63].

We proposed in [64] to write an effective theory keeping all 1/2 BPS particules of the theory.
In type II string theory on T9 !, there is exactly one short spin 2 supermultiplet of particles
for each charge I' in the lattice Ly in the representation R(A,) satisfying the constraint that
I'xI' = (' ®T)|g@,) = 0. This effective theory can formally be defined as an exceptional
field theory on a generalised torus [65-73]. The truncation to 1/2 BPS states is not consistent,
because two 1/2 BPS states can produce 1/4-BPS and even non-BPS states in the theory. One
finds nonetheless that the resulting amplitude morally gives the correct answer for the protected
coupling functions &y, £1,0) and &y 1y. In particular, the one-loop and the two-loop exceptional
field theory amplitude give for all d > 3 [64]

Eon 2, 4nEd=-3) Eiy, . Eao =, 87¢(d—5)(¢(d—4) BY: iy, +6d,5§(d—3)E%Ad>, (0.11)

and reproduce the results of [63] using Langlands functional identities between different Eisenstein
series. They will be defined in the main text, but let us simply say that £(s) = 7—%/2'(s/2)((s) is
the completed Riemann zeta function and E sEAdd is the sum over Ey(Z) orbits of a power R*%+ of
a circle radius 2m¢R (or of a T? torus volume for Ef;{id_l). They are natural generalisations of the
SL(2) Eisenstein series in (0.10) and

!/

1
E

20(2s) By, = Z 1Z(D)[2s
I'elLy

I'xT=0

(0.12)

can for example be interpreted as a sum over 1/2 BPS supermultiplets weighted by the BPS mass
M = |Z(T")|/¢ of the particles [60].

3The automorphism group of the Narain lattice II4—1,4—1 is O(d—1,d—1,7Z), but the discrete Zs X Zs subgroup
includes the exchange of left-handed and right-handed spinors that maps type ITA to type IIB and is not a symmetry
of the effective action. It is nonetheless an accidental symmetry of the four-graviton scattering amplitude.

“The two-loop integral in the second line is formal and needs to be regularised [56].



Applying the same reasoning at the next order in derivatives and combining the two and three-
loop contributions, we obtained a proposal for the next-to-next-to-leading coupling function for all
d < 3 1[64,74]

272 dleL2dL3 5L1LsLs i )
o1 = / e~ 2 LilZ(T1)|
(0,1) 9 ]Ri ( (Z I — ZI<J L[LJ) Z

> 1<y LiLy) = I€Ly
Z[ 1—‘IZO
F]XFJZO
8t
+7567§(d + 3) d+3A (0.13)

This formula is divergent and requires renormalisation. The infrared divergences can be interpreted
in the effective theory and drop out in the full amplitude including massless states, up to the
physical infrared divergences in D < 4 dimensions. The ultraviolet divergence must be regularised
for both the two-loop integral above and the Eisenstein series. Because the Eisenstein series are
meromorphic functions of their parameter, it is natural to regularise them by analytic continuation
in the dimension d — d + 2¢. The naive analytic continuation of the two-loop formula above
nevertheless turns out not to be correct, and one needs to introduce an appropriate deformation
of the integrand at € # 0. We have given a precise definition in [27], that was checked to match
string perturbation theory and is consistent with the successive decompactification limits of one
circle becoming large in 791,

This derivation does not follow from a first principle formulation of the theory and must be
proved to give the correct coupling functions in string theory. The first element in the proof
relies on the differential equations following from supersymmetry. There is a unique function &,
up to normalisation consistent with supersymmetry that is invariant under E4(Z) in dimensions
D < 7[62,63,51]. The function &g 4 is unique up to normalisation in dimension D < 5 [63,52].
There are two VOR* type supersymmetry invariants in dimensions D < 6. One inhomogeneous
solution is uniquely determined from &£, and two functions invariant under Eg4(Z) solve the
two corresponding homogeneous differential equations [53, 75]. We display the classification of
supersymmetry invariant in Figure 1. One can fix the coeflicients using string perturbation theory
[38,76,27]. Because of the almost uniqueness of these coupling functions, they satisfy a large
number of consistency conditions.

There are different ways to construct E4(7Z) invariant solutions to the differential equations
imposed by supersymmetry, but it is important to find a definition that can be manipulated to
extract the perturbative limit. One can think of (0.13) as the symmetrisation of the eleven-
dimensional supergravity amplitude on 7. A similar formula was proposed in D = 6 dimensions
by symmetrising the two-loop string amplitude through the extension of the Narain lattice II4 4 to
a U-duality extended lattice II5 5 [77]. We checked in [27] that the two definitions give consistently
the same coupling function.

We use this habilitation thesis as an occasion to sharpen the proof of this proposal. We check
its consistency in the large M-theory torus volume limit with the supergravity amplitudes. We
exhibit how the non-analytic terms in the moduli are connected through the renormalisation scale
to the non-analytic components of the amplitude.



dim

10 IIA 1IB ITA 1IB ITA 1IIB

; N :

R* V4IR4 VGIR‘*

Figure 1: Each node corresponds to a supersymmetry invariant, white if it cannot be written in superspace
in the linearised approximation, and red if the corresponding superspace integral is chiral (with kp # kgr).
For VSR, the links to ten dimensions are valid for the homogeneous solution that do not take into account
the modification of the supersymmetry transformations induced from the R* invariant.

The main interesting open question for future investigations is probably how to go beyond the
BPS protected couplings and describe the low-energy effective action at higher orders in the Planck
length. The four-graviton amplitude in type II string theory is known exactly up to two-loop in
string theory [47,24]. The expansion of the amplitude at low energy has been studied in details
and is still under intense scrutiny, see [78-82] and [83-86] for important developments at one-loop
and two-loop, respectively. However, the coupling functions starting from &4, onward receive
corrections at all loop orders, as well as BPS and non-BPS instanton corrections. It is therefore a
rather difficult problem that we leave for future investigations.

In this habilitation thesis we wish to review the construction explained above with particular
emphasis on some subtleties that we believe have not yet been explained in details in the literature.
We do not aim at an exhaustive review and will be rather brief on some aspects that can be read
elsewhere.

In Section 1 we review several techniques to determine higher derivative corrections consistent
with supersymmetry in the absence of off-shell formulation, i.e. when the supersymmetry algebra
closes only modulo the equations of motion. We chose to concentrate on the case of half-maximal
supersymmetry because it is better understood. We present several superspace methods through
illustrative examples relevant to heterotic or type I string theory. We briefly review the maximal
supergravity supersymmetry invariants.

Section 2 discusses the low energy expansion of perturbative string theory amplitudes at one and
two-loop with particular emphasis on the non-analytic contributions involving intermediate massive

10



states. We compute the low energy expansion using successive approximations and in particular
that a sphere amplitude emerges whenever several punctures are close enough on the worldsheet.
We show how the non-analytic component of the amplitude can be written in terms of supergravity
Feynman integrals involving the Wilsonian part of tree-level string amplitudes. In this way we
derive one-loop and two-loop form-factors of higher derivative supersymmetric counter-terms in
supergravity.

In Section 3 we review the definition of automorphic forms, automorphic representations and
their relations to supersymmetry. We describe in details the relation between differential equations
imposed by supersymmetry Ward identities and the set of allowed BPS instantons that can con-
tribute in string theory. We explain how to get explicit BPS instanton solutions in general through
the illustrative example of M2-brane instantons on 77 and discuss their fermionic zero modes. We
write down explicit formulas for Eisenstein series Fourier expansions relevant in the perturbative
string limit and the M-theory large volume limit.

In Section 4 we revisit the eleven-dimensional supergravity amplitude on 7% to determine the
contributions to the low energy effective action in D = 11—d dimensions. We explain how to
derive the form-factors for the insertion of the eleven-dimensional supergravity higher derivative
corrections. We define the renormalised coupling functions in dimensional regularisation and exhibit
the precise mixing between analytic and non-analytic components. These computations lead to
further consistency checks for the coupling functions &£ ), 1,0y and g 1y-

Section 5 reviews the proposal for the coupling function (0.13) sketched above. We explain the
constraints from supersymmetry and how we derived the precise renormalised expression. As a
further consistency check, we compute its expansion in the large torus volume limit and check it re-
produces the eleven-dimensional supergravity amplitude analysed in Section 4. We show that there
is no purely non-perturbative E7(Z) invariant function consistent with supersymmetry, proving in
this way that £, is unique and not subject to ambiguities that could not be fixed using string
perturbation theory in four dimension. Finally, we compute the instanton measure and compare it
with the helicity supertrace counting 1/8 BPS black holes in four dimensions.
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1 Supersymmetry of the low-energy effective action

Superstring theory in ten dimensions reduces at low energy to supergravity with N'=1or N/ = 2
supersymmetry. The two-derivative Lagrangian is entirely determined by the spectrum and super-
symmetry highly contrains the higher derivative corrections up to 8N'—2 derivatives. To classify
the possible supersymmetry invariants that can define higher derivative corrections, it is useful to
combine several tools. It is extremely difficult to work out the Slavnov—Taylor identities of the
full effective action generating the one-particle irreducible correlation functions, and one commonly
restricts oneself to the Wilsonian effective action. The Wilsonian effective action is obtained after
integrating out all the massive states in string theory, as a local effective action for the massless
states in supergravity. This coarse graining operation is not directly doable in string theory, but we
shall explain how this Wilsonian effective action can be extracted from superstring amplitudes by
splitting them into analytic and non-analytic components. This split becomes ambiguous whenever
there is a logarithmic divergence in supergravity, introducing a fiducial renormalisation scale that
drops out in the amplitude. The Wilsonian effective action can be treated as a classical action with
higher derivative corrections. Because the supersymmetry algebra only closes modulo the classical
equations of motion, one must in principle consider the action with antifields ¢3 associated to
each field goj (including the ghosts), such that the supersymmetry Slavnov—Taylor identity can be
written in terms of the master equation [87]

LRI
— L =0 1.1
/zj: 3t b3 -

with
Slp,¢*] = Sl + / S pis + Ilp ¢ (1.2)
]

where S[p] is the Wilsonian action, s is the BRST operator defined as
s = Eg@b _ 5susy(6) _ 5Lorentz(Q) _ 5gauge(c) (13)

and I[p, ¢*] combines higher order terms in the antifields and circumvents the fact that s only
vanishes modulo the equations of motion. In the two-derivative approximation, I[p, ¢*] is quadratic
in the antifields. We write the two-derivative action X for eleven-dimensional supergravity in
Appendix A as an illustration. One can expand the Wilsonian effective action W, in the Planck
length in D dimensions as

1 n n
Wy =55 ) 18", (1.4)

n>0

and similarly for the BRST operator s =}, - s and I[p, ¢*]. The main part of the master
equation is supersymmetry invariance

1 n - n—
Wy =g D 12" ) sM8 ™ =0, (1.5)
n>0 k=0

Assuming the effective action and the BRST operator are determined up to order ¢?", the order

¢?"+2 can be decomposed into the particular solution SI():I” and the homogeneous solution S\
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satisfying respectively
n

n+1 2n+2 n —
5O Gt 4 gl GO = —Zs(k)S( +1-F) (1.6)
k=1
and
(0) g(n+1) (2n+2) ¢(0) _
S Shom + Shom S - 0 . (17)

The second equation only requires that

S (e)Sint ~ 0 (1.8)

hom

modulo the two derivative field equations of motion. Moreover, using field redefinitions, S\ is
itself only defined modulo the equations of motion and the problem can be considered for field
satisfying the classical two-derivative equations on motion. This justifies the classification of higher
derivative terms defined modulo the equations of motion and that are supersymmetric modulo
the equations of motion, the so-called on-shell supersymmetry invariants. The particular solution
SI(,Zf) is generally extremely difficult to obtain, and the only non-trivial solution (without off-shell
formulation) is the Bergshoeff and de Roo Lagrangian in N' = 1 supergravity [88] and its direct
generalisations.

We will first review quickly this emblematic case and describe the Green—Schwarz cancelation
of the supersymmetric anomaly in ten dimensions. We will then explain the construction of some

N =1 supersymmetry invariants in eight dimensions, to pave the way to AN/ = 2 supergravity.

1.1 Green—Schwarz counter-term and ectoplasm cohomology

We will start this section with a brief review of [88].

Bergshoeff and de Roo Lagrangian

It appears that the higher-derivative corrections in type I supergravity in ten dimensions are much
more easily described in string frame. The string frame supersymmetry transformations (without
vector multiplets) are

e = et
8oy (€)Y = dyre—v(ex) + e(x) — Y x(Evat)

BB = ~eet, 6o = —ex
Susy 1 ~ 1 - _
0oy ()x = —57%€Dadp — ﬂHabc’)/abC € — X€X (1.9)

where the torsion-full spin connection is defined as
At ~ [ c
wab:wab:tiHabce , H=dB, (1.10)

and the hats indicate the supercovariantisation. We recall that the supercovariantisation of a field
is obtained by adding the 1) dependent components ensuring that its supersymmetry variation does
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not involve the derivative of the spinor parameter. The trick of Bergshoeff and de Roo is to identify
W, as a Spin(1,9) gauge field and the Rarita-Schwinger field strength p:b

1 1 - —

P €ne” = P = das b+ SAax(Py*¥) — (9x) (1.11)
as (minus) its Majorana—Weyl gaugino. Indeed, one finds modulo the fermions equations of motion
the supersymmetry transformations

S i = —eern.
SuUsy 1 - A — — — —
5o (€)ph, = SR )edat Y€ — phEx + expl, — VXEVP | (1.12)

which are identical to the ones of the supersymmetric Yang—Mills fields
1 .
0A = ey )\, O = —Zvab Fape — Nex + XA — YXEVa - (1.13)

One can therefore use the two-derivative Lagrangian for the vector multiplet and substitute the
connection w_, and — p;fb to determine a correction at order o’ to the effective action.
Including vectors multiplets the supersymmetry transformation of w_, gets corrected to

0oy (g, = —e“ere(pgy, + Tr[Fap]) — 2e°ey, Tr[Fy A
, 1/, LA .
Sy (€)pgy = 1 (R(w Jedab + 3Tr [Fiap Feq) | )’Y Yet ... (1.14)

and the R? type correction comes together with an F*4 type correction as
1. - 3 Aoa PR 1 R PR
PSP = ¢ / dPze <— 1 R@ apea R(&™ yabed 4 o T [Flap Feq | Tr [Febped] 4+ o Tr[Fof Fe| Tr [Py B

(1.15)
Bergshoeff and de Roo have computed the corresponding corrections to the effective action up to
order a’3. The calculation greatly simplifies through the introduction of the corrected three-form
field strength H via the implicite equation [89]

H =dB + Tr[AdA + 2A%] — o/ Tr[& do™ + 2077 (1.16)

that one solves perturbatively in o. Up to order a/3, the bosonic corrections to the supersymmetry
transformation and the Lagrangian are simply obtained by substituting

Tr [Fabpcd] — Tr[Fachd] + a,R(d)_)abefR(w_)cdef (1'17)

in (1.14) and (1.15). To compare with the string theory amplitudes it is convenient to do field
redefinitions to eliminate the higher derivative corrections to the propagators coming from R(w™)?
that would involve Ostrogradsky ghosts. The quartic term in the field strengths then recombine
into [89,90]

/

?%tg (Tr[FF] - a’Tr[R(oD‘)R(d)_)]) (Tr[FF] - o/Tr[R(w_)R(dJ—)]) , (1.18)
where the tg tensor is defined such that
tsF1FoF3Fy = 4F1MVF2'/UF30PFI# + 4F3HVF2VUF10pr“ + 4F2#VF3':JF10pr“ + 4F1#VF§/JFQUpr”
—{-4FgwjFlyaf*ﬁggpr'u + 4F2uVF1VUF30-pF4pM
COF Py PP Fyyy — 2FLY o FOP Fyyy — 2FY By FSP Fyyy (1.19)
This determines the particular solution (1.6) for S® and S® induced by the S® correction (1.15).

16



Supergravity in superspace

We will now discuss the Green—Schwarz corrections to the effective action [91]. To analyse these
corrections, we find convenient to work in superspace with coordinates 2™ = (z#,9%). One defines
the supervielbeins B4 = (E?, E%) and their connection €2 5” with the supertorsion and curvature

TA=dEA+ EBAQp?, Rt =dQp? + QA Qc?. (1.20)

N = 1 supergravity in superspace was constructed in [92]. One decomposes the superspace exterior
derivative as [93]
d=dzMoy = EADy+ T4, (1.21)

where
DA:EAM(8M+QM) , LAEB 252 . (1.22)

The supermanifold SM is a fibre bundle over its bosonic base space M and we assume the existence
of a global section s : M — SM. In practice one uses the trivial injection zM = (z#,0). A
homogeneous solution to (1.7) can be obtained from a Lagrangian density defined as the pull-back
s* to the bosonic space M of a closed D-superform Lp

« 1 D A A
/s Lp = D!/d peltHb (EM 1"'EMD DLAlmAD)‘ﬂ:O (1'23)

defined modulo an exact superform [94,95]. The action of a superdiffeomorphism ¢ is defined by
composition with the section s, and for a flow ¢; generated by a vector field ZM one has

d

@ S*SOILD‘t:O = /S*ﬁgLD = /d(s*LELD) . (1.24)

Assuming the appropriate fall off of the fields at infinity one gets therefore that the integral is
invariant under superdiffeomorphisms. If one writes explicitly the pull-back for D = 10 as

1
/S*Lm = o1 (e‘“ ANe? N . ..eLg,  aiolv=0 + 100* Ae® ... e Logs. a0 lo=0
B AP A €™ . €M Logas..arglo—o + .- ) (1.25)

the LA,  A,,|v=0 components only depend on the supercovariant fields ans this decomposition is
very similar to the one appearing in the rheonomic approach [96].
The exterior differential can be decomposed in form-degree (b, f)

d=dg_1 +due +deoy +d1 (1.26)
with b and f the bosonic and fermionic form-degrees, such that °
1 1
de-1 = §EbA EaTab’YLA/ , dae = E*D, + §Eb/\ E*T 1. + EBA EaTaB'yL,y ,

1 1
desy = E®Dy + 5EﬁA E°TogVty,  dim = §E5/\ E°To 5% . (1.27)

®We can generally assume T,,° = 0 and it turns out that Thg” = 0 in ten dimensions [92].
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The component of lowest bosonic form-degree b = —1
i
d(*1,2) =ty = _iEﬁ/\ Ea’yaaﬁlla (128)

is purely algebraic and nilpotent and must cancel the component L, ;) of lowest bosonic form-degree
b of Lp. This component must therefore be a cohomology class of tg

The cohomology classes of ¢y, have been classified in ten dimensions [97], and the lowest bosonic
form-degree (b, f) component must have b < 5 to be non-trivial.
The simplest F* type closed-form can be obtained from the 11-superforms

Wiu=HATX[FANFANFAF], W, =HAT[FAF|AT[FAF]. (1.30)

Note that we use the same letters to write the superforms H and F' and their bosonic components
H|y—o and F|y—g, or more explicitly

Habc(l'aﬂ = 0) = Habc(l‘) ) Fab(fz:?l? = 0) = Fab(x) . (131)

Hopefully the reader will distinguish them from the context. The superforms H and Wj; are not
closed because of the modified Bianchi identity

dH = -Tr[FAF] + o/Tr[R(w™) AR(w™)] . (1.32)

We will see that this is related to the gauge anomaly in ten dimensions, but let us first neglect the
right-hand-side and assume instead that H = dB and

1 1
H= éEC ANEY A EHy, — 5Ec AEY N E®Ypeo®xp — iE° N EP N E®Ye0p - (1.33)

One can then write
HAT[FAFAFAF]=d(BAT[FAFAFAF]) (1.34)

as a superform, whereas Wi is also the exterior derivative of a gauge invariant antecedent if one
forgets again the Chern—Simons term. Using

F= %Eb ANE“Ey —iE° A E®ypap)\’ | (1.35)
one computes that the lowest bosonic form-degree component
Te[EAFAENF] g apes ™ Vabede (a8 5 T Ay pn ANy A (1.36)
in t¢p cohomology [97], and therefore

e (e TE[EAFNFNF] 0505 ~ 7 (¢ Vabede a7 6 Te [ My pgn Ay ] (1.37)
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Therefore the lowest bosonic form-degree component of (1.34) is ¢ trivial, and since there is no
obstruction in tg-cohomology with b > 6, one is ensured to find the gauge invariant antecedent
recursively [97]

Wee = toKea
to(Wees) — doyKes) = 0
= Wes —donKey = 1oK@z
to (W(7,4) - d(1,0)K(6,4) - d(0,1)K(7,3)) =0
= Weoy —daoKesy —donKes = toKse
to(Wess) — deo, 0 Koy — Ao Krs) — doyKszy) = 0
= W(8,3) - d(?,fl)K(GA) - d(l,O)K(7,3) - d(O,l)K(S,Q) — tOK(Q,l)
to (W(g,z) —de,-Kas —daonKse — d(o,1)K(9,1)) =0
= Weo —de-nKas —daoLsz —donKey = toKao) - (1.38)

Therefore
Wi ~dKyo , (1.39)

and one has the closed superform
Liy=Kiow—BAT[FANFAFAF]. (1.40)

This closed superform would define a supersymmetry invariant if there was no Chern—Simons term
in the three-form. This failure is related to the gauge anomaly in ten dimensions [98] and the fact
that Lqp should cancel both the gauge and the supersymmetry one-loop anomalies [91].

Anomaly in superspace

Let us now revisit the discussion above without neglecting the right-hand-side in the Bianchi identity
(1.32). The closure of Wi, gives

AWy = -Tr[FAF|ATt[FAFAFAF] +dTr[Rw ) ARW )| ATe[FAFAFAF] . (1.41)
One shows that
Te[FAF]ATe[FAFAFAF] =d(Tr[AdA+ 2A°| ATr[FAFAFAF]) =dKy;; (1.42)

for a gauged invariant K1;. The existence of K1; follows from the fact that there is no (6,6)-form
in tp cohomology [97]. The pull-back of the (10,1) component of

Tr[AdA+ 2A* ) AT [FAFAFAF] — Kpy (1.43)
to the bosonic subspace defines the supersymmetrisation of the gauge anomaly term
Tr[cdA] ANTe[FAFANFAF] . (1.44)

This is somehow a natural extension of the descent equation relating a consistent anomaly to the
invariant polynomial [99-101]. One can indeed relate the superform to the BRST extended form
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appearing in the descent equation, by identifying the superspace exterior derivative d with the
extended operator
de+S_££+L%€7€ (1.45)

in components, where s is the BRST operator, and the fermionic components of the vielbeins
and the gauge fields are identified with the ghosts for supersymmetry, gauge invariance and local
Lorentz invariance, respectively

EY ~ — E%Ag ~ —c,  EQu"~—-C.l. (1.46)
Now, at zero order in o/ we have that
dWi + K1) =0, (1.47)

and so we have a closed 11-form to obtain our 10-form Lagrangian density. The same argument as
above shows that Wy, + K11 is dK7g for a gauge invariant K1g. This is because the proof is only
based on the triviality of the typ-cohomology for (b, f)-superforms with b > 6 and that the lowest
bosonic degree component of K11 is K(; 4 while the one of Wiy is W5 4. Moreover

d(B/\T&"[F/\F/\F/\FD = HATr[FAFAFAF]+Tr[AdA+ ZAY ) ANTe[FAFAFAF] (1.48)

therefore the superform (1.40) satisfies
dLig = K11 — Tr[AdA+ 2A* ] ATt [FAFAFAF] . (1.49)

The pull-back of L1y to the bosonic subspace is thus a counter-term that permits to restore gauge
invariance and supersymmetry in the presence of a single trace anomaly (1.44).

Although the superform can be used in principle to extract the corresponding invariant, it is
rather tedious to do it in practice and has not been done explicitly. For a superform with lowest
bosonic degree 5, one finds in typ-cohomology

Labcde,a,@’y&s ~ Yabcde (aﬁAwSa) (150)
and the linearised invariant can be extracted from the pure spinor measure [97]
Logy ~ (D*)*Aus, . (1.51)

Here D?® is the quintic in the linearised superspace covariant derivative Dgn projected to the
[0,0,0,3,0] irreducible representation of Spin(1,9). Using the background field B = —i E*A E%y, agﬁﬂ
in flat space one can write

Aaﬁ’y = ﬁ67a5(a7b0def,37)Tr[S‘VabcAj\’Ydef)\] (152)

and although A, depends explicitly on 9, the resulting integral is supersymmetric in the linearised
approximation. However, this pure-spinor measure does not generalise at the non-linear level. The
field strengths terms were originally computed by brute force in [102,103] to be

1
Lo = ge th PN T [ By Fpo ForFor) — BATe[FAFAFAF] + ... (1.53)
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The same construction goes through for the double trace, the mixed and the gravitational
anomaly. Indeed, the Bergshoeff de Roo trick implies that the superforms Tr [R(w_)2"] can be
treated exactly in the same way as Tr [FQ”}.

To summarise, for a given 8-form invariant polynomial Ps[F, R(w™)], one can construct an
anomaly canceling term. There exists a gauge invariant 11-superform K7 satisfying

dK1 = (Tr [FAF] - o' Tr[R(w™) A R(w—)]) A PS[F, R(w™)] . (1.54)
and a gauge invariant 10-superform Kjg satisfying
dKl():H/\Pg[F,R(w*)]—FKH . (1.55)

The term that appears at one-loop in the Wilson effective action is the integral of the pull-back of
the superform
Lig=Kijo— BANR[F,Rw)], (1.56)

which is not supersymmetric. But its supersymmetry variation is by construction the contraction
with €%ty of the superform

ALy = K1y — (Tr[AdA + 34%] = o' Tr[wdw™ + 307 ) A R[F, R(w?)] (1.57)

which cancels the one-loop anomaly to the supersymmetry Ward identity in supergravity. Note
however that K7; is only determined modulo an exact superform dAjg, which appears as an am-
biguity in the definition of Lip. This ambiguity can only be fixed in the full effective action by
ensuring that the supersymmetry Slavnov—Taylor identity is satisfied. In practice a reasonable
regularisation involves a minimal solution K1 that starts with cubic terms in the fermions. In this
way the bosonic part of the counter-term L1¢ and its quadratic terms in the fermions are uniquely
fixed to the onces identified in [103].

There is a similar story for A/ = 1 supergravity in six dimensions, and in this case the counter-
terms and the supersymmetrisation of the anomaly have been worked out explicitly in components
for the gauge field part in [104].

Higher derivative corrections in the gauge fields can be defined [105,106]. In particular the
double-trace VIrF2VTrF? type invariant is also protected and only recieves corrections up to
two-loop in heterotic string theory.

Of particular interest are the R* type corrections. The only other invariant that can be con-
structed can be defined as the full-superspace integral of the supervielbein Berezinian times a func-
tion of the dilaton. Using consistency with dimensional reduction, one obtains schematically [19]

/ d'"'%zBer(E)K(¢) ~ (93K — 1205 K + 4405 K — 4804 K) (tsts + see) R + . ..
+ (03K — 604K +8K) (tsVR*VTrF? +...) (1.58)

The R* term therefore vanishes for K = e2(=2)¢ for ¢ = 1,2,3,4. Because of the other non-
vanishing terms, a linear dilaton pre-potential of the type K = d)e(%_Q)
dilaton term for £ = 1,3,4. We conclude that there is a non-renormalisation theorem in heterotic

¢ would lead to a linear

string theory that forbids tgtgR* to appear in the four-graviton amplitude at 1, 2, 3 and 4-loop
order. This is consistent with the two-loop non-renormalisation established in [24]. Because of the
duality between type I and the Spin(32)/Zs heterotic string, one expects however that there should
be a contribution to all loop orders ¢ > 5 [107].
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1.2 N =1 chiral measure in eight dimensions

The analysis of supersymmetry invariants simplifies in eight dimensions because one can define
chiral superspace integrals. The superspace fields on N’ = 1 supergravity in eight dimensions can
be obtained by consistent truncation of N' = 2 supergravity [51]. In this section we will be in
Einstein frame.

The low dimension supertorsion components are

Taﬁc = —i'YCaB ’ Tocﬁc =0, Taﬂﬁ/ =0, T’oebC =0,
1 . 3 - 1 ‘
Tog? = X" = 50xg > Tog' = —100Xa + 5700 s T =0, (159)

where a = 0 to 7 is the SO(1,7) index and « and & are the Weyl spinor indices. The gravity
supermultiplets includes the field strengths

_ 1 _ . : .
F = 5Eb NE*Fap —iE" N By’ xp — E° NE%S .5, (1.60)

1 1 : 5 _ . :
= 5 E°ANEY A E“Hy, — 5Ec A E° A (E®Yapa®x5 + E%abdﬁxﬁ-) —{E°ANEP A EY 0
In this convention, the three-form Hy. and the graviphoton field strength F;, are dressed with the
scalar fields such that

Hope(z,9 = 0) = e 3% Hyo(z),  Fupla, 9 =0) = e 3%, FL () (1.61)

where ¢ is the effective string coupling dilaton in eight dimensions and the complex SO(2,n) vector
vy parametrises the symmetric space SO(2,n)/(SO(2) x SO(n)) for n abelian vector multiplets.
The left and right projectors on the Grassmanian are defined such that

—vav 4 vy + Trvg =1y (1.62)

for the even bilinear form of signature (n,2) (with two plus signs and n negative). In the quantum
theory, this bilinear form defines an even lattice Ay, and the electric charges of the theory lie in
the dual lattice A3 ,,. It is useful to introduce complex coordinates ¢ = x + iy € Clr! with y a
positive norm vector in A;,—1 @ R for a sublattice Aj,—1 C Az, of signature (n,1). One then
defines the central charge for @ € A3,

20Q) = 20,Q" = u(m+ (t,0) ~ J(t.0)m) . = (yzy) =k, (1.63)

with Q' = (m,¢,n) and q € A7 ,_1- The symmetric space admits the Kéhler potential

it 1)

K(t,7) = —log ] , (1.64)

K/2+ia

and the phase a of u = e can be gauge-fixed in component. It is nevertheless useful to keep

« free because the corresponding superfield is then chiral.

e2PH
To

STf T% is the torus volume modulus then e?? = where ¢y is the dilaton in ten dimensions.
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We define the scalar momentum superform

PA = pgopt —2pazg (1.65)
where -
PA(z,9 = 0) = vA;Dv! (z) . (1.66)
The superfields u and t are chiral. The spinor x, is identified with the dilatino and
3 1 _ - _
Dy¢ = _§Xa > DaX,B = Eryabaﬁ (Fab - %X'yabx - %)‘A'Yab)\A) . (1-67)

The supermultiplet structure can be represented schematically as

¢ Dii Xa B,Z Fap n
4P 4P \Pe 4P
Xa D—> Habc D_> f_)ab"y , 5\2 , (168)
_ « _ o _ Dy,
\I/Dol \LDQ \l/Da \L
t — A =  F3
Fap D—> Pab~y D—> Raped Dq ¢ Da ab
where p = dy1 is the Rarita—Schwinger field strength.
We will be mostly interested in the chiral derivatives D, that satisfy
{Da, Dg} = —Tup" D~ + Ragead? (1.69)

with J,p the Lorentz generators. The Riemann tensor component is

_ _ _ 1 . _ _ B
Roged = Cos(Fed — 3x7eax + 32 eaa) + ﬁ(%ﬂ b)(aﬁ) (Fap — XVabX + M vapra) . (1.70)

Note that because P2 = 0, the axial U(1) and the SO(n) component of the Riemann tensor Rog 5
both vanish. One has for the gluinos
_ 1, o _ 3 _
Da)\BA: 37 aB(—lPaAﬂL)\A%X) +1XQABA . (1.71)
It is convenient to introduce the combinations
Mg = Fop + 3xvabx, N2 =P —idy.x (1.72)
of which the chiral derivative simplifies to

D, M,, = _(’Y[acX)aMb}c — %XaMab — Zi(’y[aXA)aNl;? + ...

_ 1 _ _ . _
DyN,1 = i(yabx)a]\f{‘— Ia N2+ (VP2 aMap + . ... (1.73)

up to cubic terms in the fermions.
Because 1,57 = 0 and the axial U(1) Riemann tensor R,s = 0, the Weyl spinor vector fields
E,, close under their Lie bracket as

{Ea,Eg} = (Qp” + Qo — Tup") E, (1.74)
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and one can expand any scalar superfield in the associated normal coordinates (“. Following the

construction established in [108], one can then expand the supervielbein Beresinian *

%0y log Ber(E) = (* Dy log Ber(E) = (—1)ATa? — Q5,°¢% — 03(Eo* — 6%) . (1.75)

It follows that there exists a chiral measure £, such that the full-superspace integral of a scalar
superfield L can be written as a chiral superspace integral as follows

/ d*®82Ber(E) L = / d®8z / d*¢Ber(E) L = / d®®2€ [D8|L (1.76)
where the chiral projector
1
DAL = e (DaDsDsy -+ D+ 21xaDaDy -+ D¢ + 28€qsDy -+ Do+ )L (L77)

is alternatively determined such that [19]

(D] (Daaa + ?xaaa) =0 (1.78)

for an arbitrary spinor superfield Z%*. The term in y, comes from the supertrace

13
(~D)*"Toa = Fxa (1.79)

The computation of the chiral projector is rather involved and we shall not attempt to do it here.
One can check nonetheless that it satisfies

(Da — T,,5")[D¥] = (Do +2xa)[D*] = 0, (1.80)
and one can therefore define the superspace integral

/d&ngW (1.81)

for any chiral Lorentz scalar superfield W of U(1) weight 4 satisfying
(Do + 2xa)W = 0. (1.82)
Note that this condition is integrable because
Doxg+Dgxa =0, Tog"xy=0. (1.83)
For example one can take any anti-holomorphic function of the vector multiplets scalar
W = 3@ Wy() . (1.84)

Note that the power of the dilaton is precisely such that the corresponding supersymmetry invari-
ant includes a quartic term in the vector multiplet field strengths that does not depend on the

"Here o denotes the local fermionic index and E,* is the component of the inverse supervielbein.
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dilaton, and therefore corresponds to a one-loop correction in heterotic string theory. The corre-
sponding tg F'* type supersymmetry invariant is the eight-dimensional parent of the ten-dimensional
Green—Schwarz anomaly canceling term in ten dimension. In eight dimensions it is of course fully
supersymmetric.

To understand the Riemann tensor terms one needs to construct a chiral superfield quartic in
the modified graviphoton field strength M. Let us first discuss the case with no vector multiplet.
One can then compute that (1.73) reduces to

(Da + %XO‘)M‘II? = _(’Y[acX)aMb]c ) (185)

where the right-hand-side is a Lorentz transformation acting on M,,. Note that this equation is
exact in the absence of vector multiplets, and not only valid up to cubic terms in the fermions. It
follows that any Lorentz invariant polynomial of order k in My, satisfies

(Do + Exa) Xe(M) =0 (1.86)

and can be used to define an integrand for the chiral measure. The supermultiplet structure is not
as simple in the presence of vector multiplets. One can nonetheless find that D, + % Xo acting on
the triplets (Mg, N;‘, MAB) gives a right-hand-side that simply rotates them under an ancillary
$0(1,7 + n) fermionic rotation

(Do + %Xa)Mab = _('Y[aCX)aMb]c - Qi(’y[a;\A)O‘Nﬁ T
_ 1 = . by — oy YAY
(Da + %Xa)NaA = §(VabX)aNl;4 + Z(’Yb)‘A)OéMab - Qz(vaAB)a()\A)\B) t+...
(Du + %Xa)j\Aj\B _ i(,yaj\[A)aNf] , (1.87)

up to cubic terms in the fermions. This structure breaks down at higher order in the fermions,
but is good enough to determine the chiral superfield up to quartic terms in the fermions. This
therefore strongly suggests that there exists Xy satisfying the chirality constraint

(Do + Xa)Xo2[M,P] =0. (1.88)
with up to quartic terms in the fermions.
Xo[M, P = My, M® — 2NANS + ... (1.89)
Similarly, we assume that one can define X4 satisfying
(Do +2x0)X4[M,P] =0, (1.90)
which, up to quartic terms in the fermions, reads
X[, P] = My NI" Vg 1% — ANANY N9 Ny + 2NA NGNS NG — 8AANE NN M+ .. (1.91)
One can therefore write the chiral superspace integral

/d8’8z5 (WO(E)X4[M, P + WD) Xa[M, P]? + 3°a2Wa(H) X[ M, P] + e§¢@4W4(E)> (1.92)
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in eight dimensions. This integral is easy to analyse in the linearised approximation since the
integrand is already quartic. One directly obtains from the linearised derivative that it gives rise
to a Riemann to the four term

/f&w(wuﬁnmam+wya&mamﬁA4m_;(wuwﬁmﬂ+wawnmﬂﬁ.ag@

These terms also involve V2F2R? and V*F* type terms with the structure coming from the ap-
proximate SO(1,74+n) symmetry of the integrand.

In eight dimension this defines a fully supersymmetric correction to the effective action that is
associated to a modular anomaly. The pentagone diagram contribution to the axial U(1) current
conservation [98,109,42] gives the SO(2,n) anomaly of the 1PI effective action [110,111]

P, =T /log [d+ (v, t)+5(t,1)] [(246+n)(imR‘*HiTr[R?]?) —TY[RZ]Q] (1.94)

12874 360 288

for the SO(2,n) transformation g

o b m
—St)+ AL+ 8 ¢
’ 2\ c v d n
and in particular
(v,7) = —2cd . (1.96)

It can be compensated for a discrete subgroup I' € SO(2,n) if Wy(t) and W/(t) are defined as
logarithms of modular forms of the appropriate weight.

This is the case for Wy(¢) in all string theories with ' = 1 supersymmetry in eight dimensions,
which are believed to only exist for n = 2,10 and 18 according to [112,113]. The elliptic genus
allows to compute this coupling at one-loop, and gives for the maximal rank case [114]

ts (S(t, HTe[RY) + &' (t, ) Te[R%)? + Gap(t, T [R}FAFE + Fapepl(t, Z)FAFBFBFC)

™ d’r 1 A o [ o3 a3 ~

= =t — —miT(Q,Q)—4r72| Z(Q)| E Trl R Ey(7)2Tr[R212

3 8/; m A0 2 ¢ go LTI} g e () I ]
QeI 2®Dy

+aI2E2(T) <UA1QIUBJQJ — 5AB>FAFBTI'[R2] (1.97)

AT

+a' (SUAIQIUBJQJUCKQKUDLQL — 2 6apvorQlvpsQ” + %?§T225AB5CD>FAFBFCFD> -
From this formula one computes using the unfolding method [115-118]

1 221 7 (ot Ey(T iy
D) ="K - o5 D logle((g, q)/2)e” @02 K((T)) = ) c(n)e*™™, (1.98)

qGHLlEBDTG n>—1

so that Wy(t) is the logarithm of the Borcherds product associated to the modular form Ey/A [119]

1 s ,
I =5 5 toglel(a.0)/2) )] (1.99)
g€l 1®D7
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Note however that the function multiplying Tr[R?]?> does not give the real part of a locally
holomorphic modular form because Ea(7) = Ea(1) — %TQ is not holomorphic [118]. This failure is
due to the o correction at tree-level that we have neglected in this analysis. The corrected Bianchi

identity for the three-form is
2 _ 1
dH = —gdqﬁ/\H—F/\F—l—EFA/\FA—a’e’g“sRab/\Rab. (1.100)
Defining the covariant derivatives
1 1 _
Davr = S VAT Davpr = 55,431}[ , (1.101)

and its complex conjugate, one works out the differential equations [120]

DaDpFeper = 56cFper)a
_ 3 3
DaDpbcp = 50apYcp) + ZO/FAB(JD
_ 1 _ 11
DsDpE = —27;40/35,43 + ZO/QAB , DuDpE = 375(0/35143 . (1.102)

This gives an illustrative example of a general property. The superspace integral defined in this
section does not take into account the a’R? correction and therefore does not predict the terms in
o/ in the differential equations. The terms linear in o/ can still be interpreted within the Wilsonian
effective action, and correspond to the modification of the supersymmetry transformation linear in

o/. The terms in o3

come instead from the terms linear in the Kéhler potential K similarly as in
the Harvey—Moore coupling discussed in the introduction. They appear in the amplitude but not in
the Wilsonian effective action and are directly associated to the one-loop supergravity divergence

in eight dimensions and the presence of a U(1)-anomaly.

1.3 Higher derivative corrections in maximal supergravity

The methods described in the previous sections to determine higher derivative corrections preserving
supersymmetry fail to provide a complete proof of the existence of higher derivative corrections
with maximal supersymmetry in general. We refer to [121] for a review. These higher derivative
corrections must nonetheless exist by consequence of the existence of supersymmetric scattering
amplitudes in type II string theory and supergravity. The tree-level type Il string theory amplitudes
in ten dimensions define an effective action that preserves supersymmetry and therefore implies
the existence of R* V4R* type corrections to the effective action [122,123]. In supergravity,
supersymmetry Slavnov—Taylor identities imply that there must be a supersymmetric counter-term
whenever there is a logarithmic divergence in perturbation theory. The supergravity logarithmic
divergences in eight, seven and six dimensions at one, two and three-loop order imply respectively
the existence of R*, VAR* and VO R* type corrections to the effective action [124-126]. Consistency
of M-theory also requires the existence of a R* type supersymmetric invariant in eleven dimensions
[6,127].

In principle the superspace construction of the Green—Schwarz counter-terms explained in sec-
tion 1.1 generalises to eleven dimensional supergravity [97,128]. It is believed that Fy A (4TrR* —
TrR2 ATrR?) is to-trivial, which would imply the existence of the R* type supersymmetry invariant
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with the expected Chern-Simons coupling Az A (4TrR* — TrR2 A TrR?). It is in principle possible
to prove tg-triviality, however, this computation is extremely difficult and has not been achieved.

Assuming these higher derivative terms exist, one can determine very strong constraints on
them. They can be defined in linearised superspace [129,130, 48,131, 132]. From the linearised
superspace structure, one can derive the generic form of the non-linear invariant and checks some
of the supersymmetry variations.

This approach was taken in [49] to prove that the leading Wilson coefficient in type IIB string
theory satisfies to a Poisson equation. Type IIB supergravity in superspace was formulated in [133].
The linearised theory is determined by a chiral superfield that satisfies DoW = 0 and the reality
constraint that D*W = D*W in both irreducible representations associated respectively to the
Weyl tensor Rgpcq and the self-dual field strength gradient Van‘Ed of The field content of the
theory includes a complex axio-dilaton S = Cy+ie~?, a left-handed Weyl fermion \,, two two-form
potentials transforming as a doublet of SL(2, R) with complex field strength G = e?/?(dCy— SdB>),
the right-handed Weyl gravitino field ¢y}, the metric and the four-form with self-dual field strength.
The R* type invariant can be defined in the linearised approximation from the superspace integral

DSW* ~ tgts R + . .. (1.103)
and more generally one can define the U(1) violating linearised invariant at 4 + n points
DISWHn « Whtgts R + ... (1.104)

The set of linearised invariants determines the constraints on the function f(S) defining the invari-
ant as

L = dete f(S)tgtsR* + ... (1.105)

in the linearised approximation. The property that there is no linearised invariant with WW does
not imply that f(S) is holomorphic, but rather that DD f(S) ~ 0 in the linearised approximation,
which in this case implies that DD f(S) = s(s—1) f(S) for some 5. We define the covariant derivative
D = 2ilmSds + w on a weight w form f,,(S), such that Df,, has weight w + 1.® Taking a generic
ansatz of the form

L= dete( F(S)tstsRE + - + c;y DIF(S)GAY + &y DU (S)hay AL + c121>12f(S)A16) (1.106)
supersymmetry implies ¢}; = 104cio and DD? f(S) = —32DI1 £(S) and therefore [49]
DDF(S) = %f(S) . (1.107)

The interaction terms have been computed from string amplitudes up to six-point at tree-level
[134-138] and up to five-point at one-loop [139,140].

We did a similar computation in eight dimensions in [51], for which there are two types of
supersymmetry invariants. The field content of the theory is summarised in figure 2. The chiral

8We call weight w what is refered to as weight (w, —w) in [49] for short. With this second definition one recovers
the standard weight (w,0) of modular forms commonly used in the literature with the derivative 0s + 7;& shifting
weight by (2,0).
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Figure 2: Structure of the supergravity supermultiplet in the linearised approximation. It includes a chiral
superfield W and a tensor superfield LY*! related through their second derivative. The symmetry with
respect to the horizontal axe defines complex conjugation.

invariant is complex and was found to expand as

i 1 1 - abe nd] a Y Y\ a Y
(ts+ 52 F(U)R 4+ 52D FU) (GO o +4F (5 = GV E M =300 ()

+ 5D FU)EA X+ DU (1.108)

where f(U) is a holomorphic function of the complex structure modulus in type IIB. Note that this
supersymmetry invariant gives under truncation to N' = 1 supergravity the chiral superspace inte-
gral written in the previous section. There is also a parity symmetric invariant for which a similar
analysis determines a tensorial quadratic equation satisfied by the function of the SO(3)\SL(3,R)
moduli [51].

In lower dimensions it appears that the symbol of the tensorial differential equations satisfied
by the protected couplings determines by integrability the full differential equations. This method
is particularly powerful in four dimensions because the linearised invariants can be determined from
superconformal primary operators according to [16,141]. In dimensions D > 5 not all linearised
supersymmetry invariants can be defined as harmonic superspace integrals as one can read in
Figure 1.

In N = 8 supergravity the linearised theory is described by the superfield W#¥* satisfying the
complex-selfduality relation

1
Wijlcl = ﬂeijklpqrswpqm 5 (1109)

and the linear constraints that

o 1 . _ , .
DD = Moy DW= a0 A (1.110)
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We shall write the fundamental weights of SU(8) as Y;, such that the representation of highest
weight A = n’Y; admits Dynkin labels [n',n? n3 n* n® n% n’] and in particular the fundamental
representation R(Y1) has highest weight T; (as D?).” In this convention the linearised superfield
is in the representation R(Y4), and one can construct 1/2 BPS superfields as the monomials W™ in
the irreducible representation R(nY4) [130]. This is most easily understood in harmonic superspace
[142], in which case one can write SU(8)/S(U(4) x U(4)) harmonic variables (u";,u";) with r =
1,2,3,4 and 7# = 5,6,7,8 of the respective U(4) subgroups. Defining

Dl =w";D.,  Da =u'sDgi, W =ulju?judpu, Wikl (1.111)
the superfield W is (4,4)-Grassmann analytic
DIW =0, Ds W =0. (1.112)

So W is annihilated by half of the superspace derivatives and so is any monomial in W. The other
derivatives define an order sixteen measure D8 D8 that gives a non-zero result (up to total derivative)
for W4t" and any n > 0. This gives the analogue of (1.104) in type IIB supergravity. This implies
that the non-linear ansatz for the supersymmetry invariant can be defined in terms of a single
function of the scalar fields in (SU(8)/Z2)\ E7 and the ansatz only involves covariant derivatives of
order n in the irreducible representation R(nY). This constraint turns out to determine uniquely
the differential equations satisfied by the function £,y and one finds in particular

Ag(O,O) - —428(0,0) . (1113)

This discussion generalises to the next to leading correction of type V4R*. One can construct 1/4
BPS superfields as the monomials W2™*" in the irreducible representation R(mYa+nY4+mYe)
[16,141]. This is also described in harmonic superspace [142] using harmonic variables parametrising
SUB)/S(U(2) x U(4) x U(2)) with r = 3,4,5,6 of U(4), # = 1,2 and 7 = 7,8 of the two U(2)’s.
One defines then

DZ = ufiD(ix N Ddf = uifDm' N W"s = uliUQjUTkUSlWijkl s (1.114)

and the superfield W"* is (2, 2)-Grassmann analytic

DIW™ =0,  DgiW™=0. (1.115)
One can write the (2,2)-Grassmann analytic superfields W4+2m+7 in the representation [0,n, 0]
of U(4) that give rise to invariants in R(mYo+nY4+mYe) of SU(8). One concludes that the
ansatz in the coupling function only involves covariant derivatives in the irreducible representations
R(mYa+nYT4+mYs) [52]. Once again this determines entirely the set of differential equations
satisfied by the function &, ) and in particular

A&p0) = —60E0,0) - (1.116)

For VOR* one finds two kinds of linearised supersymmetry invariants [53]. The first one is
defined in harmonic superspace using U(8)/S(U(1) x U(6) x U(1)) with r = 2,3,4,5,6,7 [16,141].
One introduces

Dl ulinx s Ddg = uigDm‘ s Wmt = uliurjuskuthijkl s (1.117)

a =

9The corresponding Young diagram admits 3 , in; boxes with n7 columns of hight 7, n¢ columns of hight 6, etc.
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and the superfield W"*! is (1, 1)-Grassmann analytic
DLwrst =0,  DgsW™t=0. (1.118)

This harmonic superspace can be defined in the non-linear theory [143], which proves in this case
that there exists a supersymmetric correction to the two-derivative Lagrangian without relying
on indirect results from amplitudes. One can integrate the monomials W4tn1+2n2+3ns+dnatdny )
the irreducible representation [ng, n4, n1+mns, ng, no] of U(6) to get linearised invariants in the rep-
resentation [ng+ns+2n/, na, ng, n1+ns, ng, no, ng+ng+2n}] of SU(8). These are the only allowed
representations in the covariant Taylor expansion of the function 887)1) defining the coupling at the
non-linear level, and they determine in this way the symbol of the differential equations satisfied by
5(%7)1). This in turn determines the differential equation at the non-linear level up to the eigen-value
of the Laplacian.

There is a second class of supersymmetry invariant that does not include an SU(8) invariant
representative and was therefore disregarded in [141]. It is complex and defined in harmonic
superspace using U(8)/S(U(2) x U(6)) with r = 3,4,5,6,7,8 and 7 = 1,2. One introduces

DZ; = ufiDg , W= uliquurkuleijkl , (1.119)
and the superfield W is (2,0)-Grassmann analytic
DIW™ =0. (1.120)

One can integrate monomials W6+71+2n2+3n3 ip the representation [0, n1,0,n2,0] of U(6) to get a
invariants with a scalar monomials in the representation [0, n2 + 2ns, 0,11, 0, ng, 0] of SU(8) multi-
plying F2V4R*. This set of complex invariants determine another class of non-linear invariant of
the form 5<(()7,)1)V6R4 such that the covariant Taylor expansion of 5((07?1) is restricted to the irreducible
representations [0, ng +2n3,0,n1, 0, n2, 0] and their complex conjugates. This set of representations
determines the entire set of differential equation and in particular the eigen-value of the Laplace
operator to be —60 as for (1.116) [143].

To discuss these differential equations and their solutions in more details we find convenient
to first introduce some other concepts that appear in the description of automorphic forms and in
particular the notion of nilpotent orbit. At this stage we can simply identify that the harmonic
superspace can be labelled by an integral weight v = niY; of SU(8). The weight determines a
parabolic subgroup P, C SL(8,C) as the group generated by the Cartan subalgebra and the roots
satisfying (v, ) > 0. The harmonic variables are valued in SL(8,C)/P, = SU(8)/(P, N SU(8)).
The Grassmann analytic structure is then associated to the highest weight vector spaces in R(Y;) =
8 and R(T7) = 8 with respect to v, and the Grassmann analytic superfield is valued in the highest
weight vector space in R(Y4). We will see in Section 3 that this gives a one-to-one correspondence
between harmonic superspaces and nilpotent orbits and in fact automorphic representations.

But before to do so we want to discuss the effective action in string theory.
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2 String perturbation theory

In this section we shall describe the perturbative four-graviton scattering amplitude in type II
string theory on a torus. We shall concentrate on the low energy limit, with particular emphasise
on the Wilsonian effective action obtained by integrating out massive string states. We shall not
review the computation of the amplitude from first principles.

The perturbative states of type IIB string theory on R1?~¢ x T are counted by the one-loop
partition function

> qé e2mizp 3 qéeZTriz-p ?
1 _
/ F_—2nroH42miz-J 2 pEDs+v pED4+s i ,é
Tr'[(—1)" e =" =] dn T E q2q>
1
-3 n4q% H H (1 _ eZm'zaqn)(l _ 6—2m'zaqn) m,nczd
a=1n=1

(2.1)
where J, for a =1 to L%J are the Lorentz currents in a Cartan subalgebra of s0(8 —d) and z, = 0
for a > L%j corresponding to the internal torus. The prime on the trace excludes the zero modes
on R4 that would involve a divergent integral over the external momenta. Here Dy is the root
lattice and v and s (or ¢) are the vector and Weyl spinor representation highest weight vectors. We
choose conventions such that

1
P2 = 5G”(mi + (Bix + Grx)n®™) (my + (Byr + Gyp)n*) |

1
Py = §G” (mr+ (Brk — GU()nK) (my+ (Byr — GJL)nL) , (2.2)

with the dimensionless torus metric Gy and two-form By in sting frame. m; are the momentum
mode numbers of the string along the torus, and n! the winding numbers. In light-cone gauge

the factor nis comes from the eight transverse world-sheet bosons while the world-sheet fermions

contribute to V3 = % qé/n‘l in the (antiperiodic) NS sector and to Sg = 3 qé/n‘l in the (periodic)

Dy+v Dy+s

R sector. The type ITA partition function is obtained by changing the chirality of the Weyl spinor
in the right-moving sector.
In ten dimensions, the little group Spin(8) representations of the states are determined by the

expansions
2

Z q%627riz-p

D
pe 4+V4 1 = (1+q+2q2+“')tr[l“]c—l_(q+2q2+'")tr[ool}g‘i'q%r[llo}f-l---.
nigs 3 . o
Z qée%rzzp
D
pe 4+S4 T = (1+Q+2q2+"')tr{OOO]C—i_(q+2q2+--')tr[lol}g+q2tr{010}<’—|—...
g’ ; : .
E qp22627rzzp
D
pe 4+C4 T :(1+q+2q2+...)tr{ool]CJr(q+2q2+...)tr{loo}c+... (2.3)
nqs ° 1

where ¢ = e2™#/ is defined in the corresponding Spin(8) representations. In particular the massless
spectrum at ¢" is consistent with maximal supergravity in 10 — d dimensions. In this section we

want to describe the process of integrating out the massive excitations.
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2.1 Type II superstring four-graviton amplitude at tree-level

We will study the low-energy effective action through the four-graviton scattering amplitude. The
four-graviton scattering amplitude obtained from the Einstein-Hilbert Lagrangian

dPz/—gR (2.4)
2/£D

in D spacetimes dimensions can be written as

. P 64
M4tree = _Zﬁt8t8 H R(kav EG)T (25)

Stu
a=1

where tg is the rank eight tensor determined by its contraction with four antisymmetric tensors F,
as

ts 1 Fo FsFy = AFy, FY° Fyop FYF + 4F5,,, FY Fio ) FiY + AFy, FY° Fy oy FY + AF) 1 FY° Fog y FP*
+4F3M,,F1VUFQJPF5“ + 4F2MVF{/0F30PF£M
—2F1 oy FYP Faop — 288" 3 FYP Fuop — 2F8 i By P Fup  (2.6)

and R(kq, €,) is the linearised Riemann tensor
R(ka, €a) ™" = —4kopukl €0 (2.7)

for the external momenta k, and the polarisation tensors ¢,. We use the Mandelstam variables s,
t, u with all momenta incoming

—(]{71 + /{?2)2 , t= —(k‘g + ]{?3)2 , u= —(kl + k3)2 . (2.8)
On the other-hand, the sphere string theory four-graviton amplitude on R10~% x T¢ gives
e 2m)7QT €2 & T(—% )T (=2 )T
s _ W)HO‘ ° tits [ | Rlhas o) - 1 )T L C l (2.9)
2 @rva)dog D14+ 2s)I(1+2HI(1+ % u)

where e? is the ten-dimensional dilaton and (27v/a/)? v is the volume of T parametrised by the
dimensionless modulus vs. This gives the identification

1 g s=de??
K2 = 5(277)7 do/"2 o (2.10)
and one defines accordingly the effective dilaton in dimension D = 10 — d
2¢
200 = £ 2.11
i = = (211)
and the Planck length ¢ is related to the string length as
(= ema®/ol . (2.12)
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We use the same symbol ¢ for the Planck length in all dimensions and define the torus coordinates
with period 27¢. The dependence of the Planck length in the torus dimension is absorbed in the
Weyl rescaling of the metric in supergravity.

Supersymmetry implies that the total amplitude can be written in the same way as

2 4
string R
'/\/14t f= _ZQT%t8t8 H R(ktu EQ)A(S, t) Uu, 30) (213)

a=1

for a function A(s,t,u, ) that is invariant under permutations of the Mandelstam variables and
depends on the moduli ¢ of the theory. We define accordingly the perturbative series

A(s,t,u, ) = o Z e?nPa Aroor (st u, G B) + 0(67271-6_%) . (2.14)

n=0

At tree-level one obtains [78§]

Atree(s7t7 u) = - F(_%S)P(_%/)F(_%U)/
P+ Gs)I'(1+ )1+ Fu)

64 = 20(2n+1), .
= < (Z L—H(%)Qn'ﬂ(s%ﬁ-l+t2n+1+u2n+1))

o3 stu on+1
n=1
64 \2p+3q 2 2 2 3 3 3
- a3 stu +pq>0(i) C(pyq)(s +1t"+u )p(s +t°+u )q , (2.15)

where ¢, . are constants that are polynomial in the odd zeta values ((2n + 1).
The corresponding effective action in string frame takes the schematic form

1
2K2,

6
dPx/=g <R + %e—&¢d< > (ze—8_"’d¢d)4p+6qc(p,q)t8t8(V4)p(v6)qR4>) . (2.16)

p,g>0

In this action, the higher derivative terms take into account the effect of the massive string states at
tree-level. Of course they must be completed by the corresponding supersymmetry completion and
higher order terms in the Riemann tensor. The complete low energy effective action taking into
account both perturbative and non-perturbative quantum corrections take a similar form where

_ 12+48p+12q ¢d

the coefficients ¢, e 5 are replaced by non-perturbative coupling functions £ p that

are functions of all scalar fields
—1 D £ 4p+6 4Ap+6q P4
Wu~ o3 /d xﬂ<R+ Zg( > ey tsts VPR ) : (2.17)
p,q>0

In this section we shall concentrate on their perturbative component. As explained in the introduc-
tion, it is convenient to do not work with the Wilsonian effective action W), but with the coupling
functions appearing in the amplitude such that each &, (¢) is U-duality invariant.
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2.2 Low-energy expansion at one-loop

The one-loop contribution to the four-graviton scattering amplitude is written as the integral [47]

2 o
Ao _ / d°T Fﬂdd H/ T 5(2) (24)e” G2 aspG(za—2p)ka Ky (2.18)

where
% TiTP? —TiTP2
Unyg =1 emTPLT T R (2.19)

and the torus Green function is defined as

2
791 (7’, Z)
()

2

72

G(t,z) = —log == (Imz)? . (2.20)

In this section we will review the low energy limit o’s < 1 of this amplitude that was analysed
in detail in [78,81,144] in the case D = 10. This expression is well defined for 0 < d < 5, but
suffers from infrared divergences in D = 4. Because the infrared divergences are well understood in
supergravity [145,146,126], we will discuss the infrared singularities after the low energy expansion
will have been derived. For d = 6 it must therefore be understood that an infrared regularisation
has been introduced in (2.18).

Note that because of conservation of momentum, the Green function in the Koba—Nielsen
exponent can be shifted by an arbitrary constant function of 7. It is convenient to replace the
Green functions in the exponent by the Arakelov Green function [81,144]

2
2
+ T (mz)? (2.21)
T2

(T, 2)

n(r)

that satisfies [ d% G(7,2) =0 and G(7, 2) = G(,2) — 2log(2n|n(7)|?).
To carry out the low energy expansion of the amplitude, it is convenient to introduce a fiducial

G(r,z) = —log

parameter A to split the moduli space integral into two pieces [78]
Al-loop A1<h[);)p 4 Al 1oop . (222)
One defines accordingly the truncated fundamental domain

Fa={n<A -i<n<i|r>1} (2.23)

F =SO@2)\SL(2,R)/PSL(2,Z) = FAU{r > A, -1 < < 1}. (2.24)

This split defines accordingly the Wilsonian component

» d27' 4 d2 o0 1 n
azpe=on [ Eorn, IT [0 54 (5 et aon) e
a=1 n=1

a>b
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for which one can expand the Koba—Nielsen factors such that

ALY = > & o] (2.26)
m,n>0
with
or = () (" + 1 +uh) (2.27)
and
1-loop d2
FA 7-2
where B, .,(7) are the graph functions introduced in [80]. The first graph functions are Eisenstein
series [78]
w2 273 ¢(3)
Boo(m) =1, Buo(r) = zE2(7), Bow(r) = o Bs(r) + ==, (2.29)
where the normalisation is such that Es(7) ~ 75 + 5(2(28) )7' ~%. The graph functions have been

studied extensively, see for example [147-152] for an non-exhaustive list. They behave at large 7o

as [80] o
m—+3n—

By (T) = D by (w) (w72) 273070 1 072772 (2.30)

such that the cutoff dependent part of these couplings takes the form

2m+3n—1 ) . A +2m+3n w
glfloop gl loop + 2 T m+ n_wb (w) (231)
m,n m,n (m.n) )
(mym) & 7 Tlemim) € wzo =2 4 29m+3n —w

for constant coefficients by, ., (w) that are linear combinations over Q of single-valued multi-zeta
values of weight w. To avoid to replace the power of A by a log A whenever % +2m+3n—w =0,
we have introduced an analytic continuation in d (with d replaced by d + 2¢ corresponding to the
spacetime dimension D — 2¢) and the coupling function &%

(m,n) €

is defined as

d2
Sﬁfzﬁf O Ty B (7). (2.32)

F 7’2

This integral converges for e < 1 — % —2m — 3n and is defined by analytic continuation near € ~ 0.

Let us now discuss the non-analytic component of the amplitude defined by the complementary
set integral

dr ’
A =2 / 7 / driT,, H / “1p0P (zg)e” T Zazp bk (2.33)

It can be interpreted in supergravity as the sum of five terms

1- loop 1-loop 1- loop 1-loop 1-loop 1-loop
ASK” = ASKD T AN T AS e T A T A (2.34)
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corresponding respectively to the supergravity amplitude, the four-point insertion form-factor, the
two four-point insertions form-factor, the five-point insertion form-factor and the six-point insertion
form-factor.

In supergravity, the only form-factors that make sense as gauge invariant observables are the
insertions of the integrated non-linear invariants, so the four-point, five-point and six-point inser-
tions must be combined together to define observables. We will nevertheless call them form-factors
for short.

To compute ALY one expands the Green function G(z) in the tropical limit [153] as
Gz +71y) = 27r72( —lyl+vy ) — log‘l _ e~ 22|yl 2mi(z4+my) ‘2 +0(e™™?) (2.35)

for —% <y< %, and where all the terms in O(e~""2) can be neglected because they only contribute
to terms exponentially suppressed in the limit A — oco. The logarithmic term can also be neglected
as long as y is away from zero. There are accordingly five different terms one must take into account

depending of the number of distances |y;;| going to zero, corresponding to the split in five terms in
(2.34).

At a generic point, one just gets the supergravity one-loop amplitude with the ultra-violet cutoff

1 10

VoA

ATRE = 27T/ dT2/ dn7y H/dya Yys)e B S T A DR
A

o / dryri ™ / das / dzs / dx1< T |(ea=an) (1)t (sgaz)u (2.36)

+e7r7'2a’[(ngxl)(lfmg)er:rl(:ngzg)t] +€ﬂ72a’[(z2x1)(1x3)s+ml(zgaz2)u]> )

in Schwinger parameter space

In the computation we have decomposed the integral over the three y, variables into the 6 ordered
integrals, that give two times the three integrals with the orderings 0 < y; < yo < w3, 0 < yo <
y3 <y and 0 < y3 < y; < yo. This gives in total two times the three corresponding integrals over
0 <1 <x9 < 23 <1 with the three respective changes of variables

n = 1l—ux3, y2=1—1x9, y3=1—1x1, (2.37)
y = 1l—x, Yo =1—x3, yz3 =1—1x2, (2.38)
Yy = g, Yo =3, Y3 =171 . (2.39)

This computation can be understood more generally from the point of view of tropical geometry
[153] by recognising (2.101) as the worldline Green function [154].

10The parameter A > 1 but the energy cutoff \/ﬁ is large compare to the energy scale of the amplitude since
a'sA < 1.
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The one-loop integral can be computed as follows [155]

471'/ dTQTQ /dwg/ dxg/ dmle””a [(w2—21)(1=5)st21 (25 —22)1]

— Ap2ig/1- 7I‘% /dmg/ dazg/ dml :cg—xl)(l—arg)s—xl(xg—xg)t)l_

s 47'(' kt+1 - / ’
fz( ]j' d /dxg/ dxg/ dajl 2*$1)(1*xg)%+$1($3*$2)%t)k
’ 2

d
2

k=0 L+k
P O\ GOk ne (1-2)% e (1-2)
= s T d) /de (=5 (1+§)x—1+(_at) (1+§)z—1)
0o (4 ) 1(l<:+1)' A§—1+k 1 ((1—3:)"‘—/5 k+1 _ xﬂ)kﬂ
—kzo @3] _1+k/da: a —2)%5—:(;%? , (2.40)

where one must take the analytic continuation of d < 5 to complex values d + 2¢ in order to make
sense of the two terms in the last line separately. By construction the sum of the two terms is
analytic at € = 0 and the regular parts of the two terms are uniquely defined from the prescription
that d is replaced by d 4+ 2¢. Note that although A > 1, the parameter of the incomplete Gamma
function

[(%52, —mAd/[(zo — 21)(1 — 23)s + 21 (x5 — T2)t]) (2.41)

is very small because o’sA < 1 and the last line is an expansion in o/sA. One defines accordingly
the supergravity four-point amplitude

Idoop __ ( ) (J) 1y 254 (1— x)% 250 (1-— g;)%
ALlr = 87?2 ?/0 dx ((fa s) m + (—a't) (1—|—§):U—1>+ ®)
_ 7—d,, 1254 1
R B e e e (242

where O is the sum over the two other cyclic permutations of the Mandelstam variables and the A
dependent terms expand as

A 7 o3 A% 47t A% 167> A 3 o
1-loop 1-loo “n - 72
ASxn =45 - (2” 2 T 2 o2t per dtd %+ 1075 6 T+ )

(2.43)

For d = 6 the integral suffers from infrared divergences and A4 must be regularised. To avoid
the confusion between ultraviolet and infrared divergences we consider that the infrared regulator
is defined through the introduction of a small mass scale u, for example by giving a mass i to the

external momenta in (2.42). We write this integral Ao

oop

The second contribution A> Amg corresponds to two coincident points. It splits into three contri-
butions corresponding to the s, ¢, and u-channels. For the s-channel one can consider equivalently
z1 & z or z3 ~ 0. They can all be obtained by permutation from the case zo — 21 = = + y7m» with y
small. They get contributions from the different domains with y negative or positive, and, y; < y3
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for which one sets y1 = x1 and y3 = x9, or, y3 < y1 for which one sets y; =1 —x1 and y3 = 1 — x2.
With this change of variables one computes

=% TazsG(za—2)kaky (2.44)

o' stroxy (T2—2x1) 1— 6—27r7-g|y|+27rix e—a’s7r7'2|y\(1—x1)(eo/t7r7'2|y\(1—x2) + ea’u7r7—2\y|(1—x2))

~ €

where the integration domain is now from 0 < z1 < 29 < 1, 0 < z < 1 and —§ < y < § with

—2moA

0 < § < 1. Up to terms that are exponentially suppressed in e one can extend the integration

domain to y € R, that we write as twice the integral over |y| € R4. Using the change of variable
5 = e—27r7'2|y\+27ria: (245)

one obtains eventually the contribution

27T/ d7'27'2 /d$2/ dxie® 'smTaw1 (z2—21)

><22/ * z\l—z\fioz\ (1s=(=2)t) o |5)% (m1a- (Hﬁm))
4m21y Jiz<a |2

1
= / d7'27'2 /dxz/ dxie” S”T2xl(x2x1)/d2z‘1—z‘ El |z[ (@15—(1—22)t)—2
T C

/ !

, —D(—%s)P(—2hyp(—oim
= (%) /deTz /dxg/ dmleaswmﬂm—wﬂr( (,;‘) T (2.46)

14+ 9T (14 S0+ 2)

where
t1 =1 —mz)t —x1s, wu; =(1—ax2)u—(x2—121)5. (2.47)

We recognise the integral over C as the sphere four-point amplitude. This limit z; ~ z corre-
sponds indeed physically to the exchange of massive string states in the s-channel. To obtain the
contribution to A" loo_j one must subtract the contribution to the supergravity amplitude at coin-
cident points, which here comes from the supergravity tree-level component of the string theory
sphere four-point amplitude. Taking into account the six possible coincident point singularities and
subtracting the three-level supergravity contribution one obtains

Al 100.:] — 2/ d7_27'2 /dIQ/ dfl:l aSWszl(CUZ—Zl)(aT/s)QW(O[T/S’%((1*1‘2)t*l‘18))+ O) (248)
where we have introduced the Wilsonian part of the Virasoro—Shapiro amplitude

F(=s)l(=)(=w) 1
F(1+s)L(14+6)0(1+u)  stu’

W(s,t) = — (2.49)

as in [144]. It is convenient to integrate 7o and to split this integral as

/ d7'27'2 /dl‘g/ day e 52 (2= (%)2W(°‘TIS, %/((1 — z9)t — x15)) (2.50)
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_d / ’
= (- %) (47T R r'(4%) /dxg/ dw (z1( $2—$1))2 W (%2, % ((1 — z2)t — 215))
d
> 471' §_2+k / ’
Z 2+k ' —2—|—k‘/d$2/ d."L‘l 1‘1( 2—xl))kW(%,%((l—1:2)15—:1713))

k=0

where once again this split is only defined for d away from the integral dimension. Taking d = 2¢
one reproduces the contribution to A;IXOE derived in [144] in D = 10 dimensions.
One defines accordingly the form-factor in dimensional regularisation

’ — 7Q ! /
AL = 2(-2%2)%3" (4m) 7 T(45Y) / dary / dary (w1 (w2 — 1)) 2 W (%2, (1 = 22)t — 218))+ ©
2W(@ _gk4.p)
:27r7d/8/ 2 +0 . 2.51
2(p— k1)%(p — k1 — ko)? (251

This is indeed the expected structure for the supergravity form-factor, with the insertion of the
four-point interaction with momenta ks, k4, p, —p — ks — k4. Expanding W(O‘ s o T (1 —22)t —118),
one can extract the A dependent terms

d—4 —
00] 00! Az ™ A2 47T O'2A2 50’ A
Alloon — pldoor _ C(3)<02 T 3% 2. ) C(5)<3 22 e +...>+...
2 2 2 2

(2.52)
For d = 6 this form-factor suffers from infrared divergences and we write Al IOO‘L for the same
Feynman integral (2.51) with the small mass scale p. Recall that we call this contribution the
supergravity form-factor, while the only consistent form-factor in supergravity is the insertion of a
supersymmetric Lagrangian correction that combines the four-point, the five-point and the six-point
insertions.

The third contribution A;lf\‘)po corresponds to two pairs of coincident points. They give three

different terms. For the s-channel one has z; = z3 and z3 =~ 0. To avoid to have to expand the
propagator at both y3 ~ 0 and y3 ~ 1 we shift the integration domain such that — < y3 < ¢ with
0 <d <1, as for y=yo —y1. There are four different contributions depending of the signs of y
and y3. We have 0 < |y3| < y1 and 0 < |y3| < y2 and one has the two possible signs for y = yo — y;.
For y > 0 one sets y; = z and for y < 0, y1 = 1 — x. One gets two different terms depending on
the sign of yys

6_%/Za>bg(za_zb)ka'kb (253)

’ ’
—_as —_as
1— e—27r7'2|y|+27rix12 2 —o/s7r7—2\y|r 1— 6—27‘(‘7’2|y3‘+27r2'1'3 2

o' strox(1—1x) e

~ €

% (0(_yy3)€—o¢’s7r7'2\y3|a:eo¢’t7r7'2|yy3| 4 Q(yyg)e—a%ﬂm|y3|(1—a:)e—o/t7r7-2|yy3|>

Once again, up to terms that are exponentially suppressed in e 2704

one can extend the integration
domain to y € R and y3 € R, that we write as four times the integral over |y| € R4 and |ys| € Ry.

Using the change of variables

5 — o 2mmalyl42mizas ’ w = e 27T2lys|+2mizs , (2.54)
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one obtains eventually the contribution

2 d? 1 d? _als ol
277/ d7'27'2 /d:neo‘ smraa(1-2) / z / u2}|1 —z| 7T
Am21e Jiz<1 212 47272 Jjw)<1 |0

|1 —w|” 2 (\wy emlog'Z‘log‘w\Hw, s(1-2) .~ 4ﬂ2log|zwlog\w\)

1 [ a
= 83/ drots /d e®'smraa(l—z /d2 /d2 ‘1—2! El |z T"” 2
™ A

log |2/ log ]

x’l—w‘ el |w\ oo 264”2

= 1%(?)/? /ojiT 73_4_k/dxeo‘/3”2”(1_x) /d22|1—z‘ El \z\ =2 10gk || 2 (2.55)
= 83 L gkl 272 ) o & '

A

where we recognise the square of the sphere amplitude for k = 0. Once again one must subtract the
contribution from the domain already integrated in A;IXE and A;lj\”zj The contribution from A;lf\og
corresponds to the case where the sphere amplitudes are both replaced by the supergravity tree-
level amplitude while the contribution from A1 l°°p to the case where only one is. One checks that
this subtraction amounts to replace the Sphere amphtude by its Wilsonian part and the logarithm

terms by derivatives as in [144] to obtain

a’s\4 00 a't\k k a's a's
1-loo; o (T) g o/ strox(l—x ( ) 9 W(T’if‘erC) 2
Al — /Ade /dx 2 )Z 5 ( ) ]<:0+o

81 FTQ)kk' 8<k
(2.56)
One computes then
d
1-loo _ Aldoo 1 (47T)m n(a4s)m+4(aT)n A§f3+mfn
m,n>0 D)
1 m (W~ + )\
x/od:c(a:(lx)) ( acn ) ‘C:0+© (2.57)
with
“loop Tox 1 of sy 14=d o 4-d _
Aicl)-eI = 2’62/{!(_4) 2 +k(7t)k(47r) 2 F(%—}—k)
=0
1 k O/S OCIS
s+h—2 (O"W(%, =z + () 2‘
/dx( (=) ( ack ) =t ©
o (5210 (52, S ko)W (52, ~ S bap)
= 27.[. 7— d /6 / 4 4 0 2 +O 2.58
P2(p — k1 — k2)? (2.58)

In this last formula we see that the expansion in (O‘T/t)k simply follows from the Feynman integral

of the two insertions form—factor Taking d = 2€ reproduces the contribution to A7*  derived

>SACn
n [144]. Expanding W(— ——x + () one extracts the first A dependent term
2 A%
A;l;\oi) Al loop 74—( ) 72 6 4. (259)
2
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. 1-1 . . .. . .
In this case A% is safe from infrared singularities in d = 6 and we do not need to introduce a
mass scale.

The fourth term A —A o corresponds to three coincident points. There are four choices of triplets,
and for each choice there is one Green function argument that goes to zero for each Mandelstam
variable. Each contribution is therefore invariant under permutation of the Mandelstam variables,
although it will not be manifest in the computation. We consider zo =~ 21 &~ 0 while keeping z3 # 0.
To avoid to have to expand the propagator at both y; =~ 0 and y; ~ 1 we shift the integration
domain such that —§ < y; < 9, as for y = yo — y1. There are six different contributions depending
on the sign of y and y; and y + y;, but using the appropriate redefinition of y3 =  or 1 — = one
obtains that the only sign that matters is the one of yy; and

6_%2a>bg(zl1_zb)ka'kb (2.60)

_as _at
~ ‘1 - e—27r7'2\y|+27rix12 2 ea’s7r’rz|y1\(cc—|y1|)‘1 - e—27r7'2\y1|+27rzx1 2

Q
e

—27r7'2\y|+27ri3312 _ 6—27r7‘2|y1‘+27‘ri$1 T2

/ /
% <9(_yy1)ea t7r7'2|y|$6a sTTa|yy | e

_au
+0(yy3)ea’t7r’rg|y\(1—:c)e—o/sm-g|yy1| 1— 6—27r’rg|y\+2m'zlge—27r72|y1H—2m’zl 2 ) )

Using the change of variables

5 — o 2malyl42mizys ’ w = e 2rT2lyi[+2miz: , (2.61)

one obtains eventually

27r/d7'27'22 2/d / g 5 / 2|1—Z‘ |1—w’ 2|w[
A 421y Jiz)<n 1212 47212 Jjw)<1 |0

«(Jz = |~ e oo g Zwr%zr—%’t(l—x) % g tol sl

1
= ]g/ood7—27234/dw/d22’/d2w‘1 —Z‘_a;s|z|*%lt3372‘1 wl 2 |w‘ s 2}2 w‘_a;u
83 A 0 pe au

Xe47r7'2 10g|w|10g |w|\ (262)

where one can identify the sphere five-point amplitude. As for (2.49) we need to extract the analytic

part of the five-point amplitude to do not overcount the contribution common to A1>'1‘[’\°§ and A;lx"p_j
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We therefore subtract the poles as follows

1 - - -
Wi;(s1, s2, 83, 84, S5) = 7T2/al22:/d2w \z|7231*2‘1 — 7] 2s2|w]*28372‘1 —w| 284}2 —w| 25
C C

1 1
+ + -
s3(s1+s2+s5)  s1(s3+satss)  (S1+52+55)(S1+52+53+54455)
1 1 1
(s3+84+55)(s1+S2+53+54+85)  s1(s1+s3+s5)  S3(s1+S3+85)
152
+§S—2(W(sl+33+85, s2) + W (—s1—s2—55, 52)) (2.63)
3
1 522 (W( )+ W( ))
[ SE— S1, S —81—89—83—84—S85, S8
9 53154155 1,52 1—52—83—54—55, 52

1s2
5 25 (W (srbsatss, 1) + W (—s5—s51—55, 51))
1

1 342
——————— (W(s3,84) + W(—51—52—53—54—55,
231—|—82+85( (s3,54) (—s1—S2—83—54—85,54))
LS (W (e es) 4 W(ss.s9)
- 81,8 s3,8
2 81+83+s5 175 8175
S S— )+ W( )
—= —81—82—55, 8 —83—84—S5,55)) .
2 51489+53+54+55 TR BRI

We check that Wj(s;) is indeed analytic in Appendix B and obtain the o’ expansion (B.5)
Wis(s1, 82, 83, 84, S5) = (15525455 - (3254+3435—|—8582)(52+54+85))C(5) +0(s}) . (2.64)

Note that the this term does not depend on s; and s3 and is manifestly symmetric under per-
mutations of ss, s4,85. As a five-point amplitude with punctures at z;1 = 0,20 = 2,23 = w, 24 =
1,25 = 00, (2.63) is invariant under permutations of (22, z3,24). It follows that W;(s;) is invariant
under the combined permutations of (s2, s4,s5) and (s3,s1,— >, s;), consistently with (2.62) being
invariant under permutations of the Mandelstam variables.

Summing (2.62) over the four choices of distinguished external momentum and expanding the

integral
d—6

o0 d_y afs ’ 2 /
/ dT2T22 4647r7—2 O¢ O — <_%8<8§) 2 (F(6%d) o F(%, _ﬁacaf)) (265)
A

at small §, one obtains finally

e —ii (s)k A3k /1d$<a2kw5(j’xt+g, o, Las+E— (%Lt ﬁu)ﬂ
>A ok om —~ (4m)kkl d —3 — & Jo oCkogk (=0,6=0
d—6 d—=6
5 AT 1 G02 A2
= —%c(s) 35 %C( ) o dw T (2.66)

This contribution is therefore irrelevant for d < 5. This is why it was disregarded in [144] that
focuses on ten dimensions, i.e. d = 0. However it contributes to the logarithmic ultraviolet
divergence in Schwinger parameter space for d = 6, and the integral (2.62) then diverges in the
limit 7o — oo exhibiting that this form-factor suffers from infrared divergences. One may introduce

43



an infrared regulator through a cut-off at large 79, but it is more convenient to first rewrite this
contribution as a momentum space integral

/ de Wi(— %S p-ka, &5, —Lp- (k1 + ko), Et, )
pi(p — k1)? ’

where the mass scale p can for example be introduced by giving a mass to the external momenta.

Alloop _4(27T 7 d 18=d

o N7 (267)

The last term A;lj’\oio corresponds to four coincident points z1 ~ z9 ~ z3 =~ 0. In this case one
gets the six-point sphere amplitude with an internal supergravity bubble loop

D _
(27r)7_da/4;2d / (;l )PD WG(klv k271;§7 k47p7 p)
T

(2.68)

that only contributes to power-low divergences in the Schwinger parameter space ultraviolet cutoff
for d < 7. It is therefore irrelevant for d < 6 and we shall not compute it.

Eventually one gets that all the A dependent parts between the analytic and the non-analytic
components of the amplitude cancel each other. We have checked this explicitly up to . using [156].
The complete amplitude can be rewritten as the limit € — 0 of

Al = Alioor 4 Apeor 4 ALY 4 om Y / —5 75 Uity Bl (1) 03" 05" (2.69)

m,n>0

for 0 < d < 5, with the supergravity amplitudes and the form-factors defined in dimensional
regularisation with the coupling constant

1
wh = 5(2m) " 834 2t (2.70)

function of € through d as well. For d = 6 one must also regularise the infrared divergences, which
requires to consider the full form-factor including the five-point insertion

ARl — Abioon 4 ALPP 4 AP+ AST 21 Y / 75 Cltg o By (T)og" g . (2.71)

m,n>0

It was observed in [144] that the non-analytic component of the four-point amplitude does not
involve irreducible multiple zeta-values in ten dimensions. It is manifestly the case in d < 5 since
these form-factors only depend on the Virasoro—-Shapiro amplitude. In D = 4 the infrared regulator
dependent terms in A;O(ép# could in principle involve irreducible multiple zeta-values, but one checks
that the first three have vanishing coefficients in Appendix B.

Let us finally comment on the supergravity amplitude and form-factors in dimensional regulari-
sation. It is known that the dimensional reduction prescription [157] that preserves supersymmetry
is not a consistent regularisation scheme [158-161]. The total amplitude (2.71) is supersymmetric,
and one expects to be able to split it into the sum of the supersymmetric supergravity amplitude,
the form-factor and the analytic terms contributing to the Wilsonian effective action. As we dis-
cussed in the introduction, this split is only supersymmetric if we include some logarithmic term
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in the moduli in the non-analytic amplitude. The supersymmetric regularisation in supergravity
can be expressed as a dimensional regularisation with coupling constant

2
2 2 <68d¢d V C";’IJ'I’IILI'I?'LJ)6

RKp_o9 = K
D—2¢ D 27_((

(2.72)

for any m; € Z with ged(m) = 1. This factor is the mass of Kaluza-Klein states on the torus,

and more generally can be replaced by the mass of any 1/2 BPS state in the theory with k2 _, =
2 (M€

kb (2r)

2.3 The two-loop amplitude

The two-loop amplitude was studied in a series of papers by d’Hoker and Phong [162-165, 24, 24,
166,167]. We will not attempt to give a review of this gigantic work, but will try to give enough
definitions to make sense of the four-graviton amplitude and its low energy limit.

We write wi(2) = w’(2)dz the two holomorphic abelian differentials on the genus two surface
¥, They define the symmetric period matrix Q% = Qij + ZQZQJ in the Siegel upper half-plane

W(z)=0, Q=9 Wiz, (2.73)
A; Bi

with positive definite imaginary part 2o. The period matrix parameterizes the arithmetic quotient
Fo =U(2)\Sp(4,R)/PSp(4,Z) of the Siegel symmetric space. We write its components as

a= (7" "= °* wrpuz ) (2.74)
v oo ui+pus  s+iL+pus

The separating degeneration locus v = 0 is a regular point of F5 that corresponds to a singular
genus two Riemann surfaces made of two regular genus one surfaces connected by a very thin
cylinder. The non-separating degeneration locus L. — oo is an asymptotic boundary of Fs, and
corresponds to the singular genus two Riemann surface when the cycle Bs has an infinite length.

A useful basis of modular forms is defined by the 16 theta series 9[d](2, Z)
IR, Z) = Z o™ (nitai/2)(nj+a;/2)+2mi(nita; /2) (b /2+27) (2.75)

bl b2
n;EZ

for a;,b* = 0,1, and 9[6](Q) = I[6](2, 0). One defines the derivatives

2006 27 Qi Yoz

0ij = (2.76)
The 16 matrices 6 € Z%XQ are the spin structures on X and parametrise the periodicity conditions
for the spinors around A; and B? cycles. If a;b* = 0 mod 2 one says that the spin structure is even,
and odd otherwise. The theta functions ¥[6](€2) vanish for the six odd spin structures v and their
derivatives (h,)? = 9;9[V](£, 0)w’(z) carry only double poles and admit a unique spinor square root
hy, up to sign. One defines the prime form as the square root [168]

B I, [ w)
Bz, w) = , ,
VO], 0)wt ()9, 9[1](€, 0)es (w)

(2.77)
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for any odd spin structure, which generalises the genus one prime form E(z,w) = 19119(,2 (6;”) . The
1

prime form is independent of the choice of odd spin structure v and has a single pole at z = w.
It is single valued around Aj cycles and has monodromy around a By cycle such that the Green

function ; s
G(z,w) = —log |E(z,w)|* + 27T1m/wi Q;Zl] Im/wj , (2.78)
w w
is single valued. The Weyl fermion two-point function is defined as the square root Ss(z,w) of
; 0500
Ss(z,w)* = 0,0, log E(z,w) + 4miw’ (2)w? (w) ?9[6[] ] . (2.79)
The genus two partition function is [165]
1 &0 |3 =669 ||
Z = / = | =2 | (2.80)
3(4m3)t )5, det O3 L4T dd
where the inverse of the Igusa cusp form
1
Uy = Y3 H§[5]2 ; (2.81)
0

and the genus two Narain partition function are the contributions from the worldsheet bosons

d - Oyij - &ij
I‘Qﬂ'l:j); = det 0, Z ™ pL(Qi)pL(Q;)—in QY pr(Qi)pr(Q;) 7 (2.82)
Qi€llyq
while Zg[0]9[6]* comes from the worldsheet fermions with spin structure 6 [165]. One defines for

each even spin structure two equivalent triplets of odd spin structures v1 +vo+v3 = vy +v5+vg =6
mod 2 and introducing the scalar product

<V|(5> — i (d11v21 4012022021111 —022012) , (2.83)
d’Hoker and Phong define
6
Boli +va+usl= > (wilvy) [[ Olvi + vy + wil* (2.84)
1<i<j<3 k—4

The modular form Zg[0] does not depend on the choice of odd spin structure, as can be checked
using the Riemann identities for any odd spin structure v

> wls)ys*t =0. (2.85)

0

The theta functions satisfy moreover the following identity for each non-zero even spin structure
e [169]

3
> (=DM P =0, (2.86)
I=1
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where 5;5 are the six even spin structures associated to e such that §; = 67 + ¢, and the (—1)7
sign convention is defined such that &5 is chosen as follows: 05 is 85 = (§3) for e = (§9), o5 = (39
for e = (93), 65 = (3}) for e = (}1), and 65 = (J9) for the six other cases. Among these fifteen
relations only six are independent, and they allow to determine all theta series in function of the
four first ¥[V%] and the choice of nine sign ambiguities for the roots appearing in their expressions.
These signs depend on the sheet on the double cover of F». Using both the Riemann identities
(2.85) and (2.86) one checks that

> Eglo]0[0]* =0 (2.87)

é

which ensures that the two-loop contribution to the cosmological constant vanishes [165].
The four-graviton amplitude was derived in [24] and reads using (2.13)
T d%§) [2-oop
—I” A —— > kqky G( 2.88
128 /7, (det Q)5 Mo / Vs A Vs exp Z b Gz 2) (2.88)

a>b

2-loop __

where )g is the holomorphic 4-form on four copies of the Riemann genus two surface > defined
s [24]

Vg = O;((t —u) gi5em + (s — t)eier; + (u — 8)eucjr)w' (21)w’ (22)w” (23)w! (24) - (2.89)

The fundamental domain F5 can be chosen as [170]
—1/2 < py,v1,01 <1/2, 0 <2vy <py <oz, |det(CQ2+ D)| > 1, (2.90)
for all C, D such that v € (353) € Sp(4,7Z). This latter condition needs only to be checked for a

finite set of matrices C, D.

In order to describe the low energy effective action we need now to consider three regions, the
truncated fundamental domain F3 o on which L < A, the non-separating degeneration intermediate
region L > A > Ay > po, and the tropical region L > A, po > Ay [171]. We split accordingly

-loo 2-loop 2-loo; 2-loop
AFoor — g g gZn |y AT (2.91)

In the domain F3 A the amplitude A2<'1}’\°p is analytic in the Mandelstam variables and one can expend
the Koba—Nielsen factor as in the preceding section to obtain

A= > E&er of'of (2.92)
m,n>0
with 5
d
grloon =2 / —— Ty, B2 (Q). 2.93
(m,n) A 7T Fon deth Hd,d (nL,n)( ) ( )

One finds directly that B, () = 0 [24], and using
/ W' Awi = —2iQ0Y (2.94)
b
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one computes that Béf?o)(Q) = 2 [166], consistently with the two-loop computation in supergravity

[55]. The first non-trivial genus two graph function is the Kawazumi-Zhang invariant [83]

Bioh () = 4pkz(2) = —/ (%:19%;1 — 39,;00)w' (21) Awi(21) Aw®(22) Awl(22)G (21, 22,9) -

»2
(2.95)
It is a distribution on JFj satisfying the Poisson equation [84]
Apkz() = 5Kz (§2) — 7 det Q2 6(v1)d(v2) (2.96)

and is a well defined function on the moduli space of genus two Riemann surfaces. This singularity
is a consequence of unitarity and the factorisation of the two-loop amplitude at the massive poles
%/s = Z~o [166]. The next genus two graph function BE;?O)(Q) was analysed in [55], but the general
graph functions B (Q) remain to be understood [S6].

(p,a)

Let us now discuss the integration region corresponding to the tropical limit, when both py and
o9 are large. In this limit the A; cycles remain unmodified, while the B? cycles have infinite length.
In this integration domain po > A; we have det Q9 > AA; > 1 and this region of moduli space is

Fon{Q]detQy > 1} = SO(2)\GL(2,R)/PGL(2,Z) x R3/Z3 N {Q|det 0y > 1} (2.97)

We then write
Li+L3 L3
Qg = , 2.98
2 ( Ly LotLy ) (2.98)

where Ly for I = 1,2,3 are the lengths of the three lines in the degenerate surface

@ B2

Figure 3: Tropical genus-two vacuum diagram

with the ordering 0 < L3 < Li < Lo and the abelian one-forms wi(z) are locally constant and
defined such that they have support on the cycle B® [153]. Note that this is only a valid approx-
imation for z away from the branching points. For a path = from z to w in the surface X, one
defines the geometric length d(v). For example taking z = w one has by definition d(B') = Li+Ls3
and d(B?) = Lyo+L3. For a given path that does not include closed loops, there always exists
a; € {—1,0,1} such that [153]

a; Im/ w'=d(y) . (2.99)
¥
If v is a shortest path from z to w, it is convenient to use an odd theta series of parameter a; = || as

above and b’ chosen such that a;b’ = 1 to compute the prime form. Up to exponentially suppressed
contributions, the prime form then simplifies to [153]

21 sin (Wai f7 wi)

E(z,w) ~ ‘
QW\/aiwg(z)ajwé (w)

(2.100)
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and one obtains the tropical limit of the Green function
G(z,w) ~ 27 (—d(’y) + Im / w' QL Im/ wj> + 2log 27 — log |1 — e~ 2™ +2mizy |2~ (9101)
v v

The first term reproduces the worldline Green function [154] that does not depend on the path
v, while the logarithmic term must be replaced by the sum over all paths in the graph to exhibit
that the Green function is single valued. In the tropical limit, only the shortest path can be
non-negligible at coincident points, whereas all the other contributions are always exponentially
suppressed. This expression is only valid when the punctures are away from the branching points.

By the property of Vs in (2.89), the only contributions in the tropical limit are when at least
two marked points are on the cycle B!, at least two on B? and at most two on B' N B2. This
implies that there must be two punctures on one of the three lines and the two others can be either
on one other line or on two, i.e. a permutation of

21 24 21

— 23 z4

Z9 z3 Z9

Figure 4: Planar and non-planar diagrams

corresponding to the planar and the non-planar diagrams in supergravity. There are 18 choices of
planar diagrams and for each we may choose four different orderings of punctures on two lines, so 72
ordered choices in total. There are 36 choices of non-planar diagrams and for each one may choose
two different orderings of punctures on one line, so 72 ordered choices in total. These cases involve
the three choices of channel and the six permutations of the lines, while the extra four choices give
the same result up to crossing and a change of variables for the punctures positions. It is convenient
to absorb the six permutations of the lines in an unfolding of the SO(2)\GL(2,R)/PGL(2,7Z)
fundamental domain to the Schwinger parameter space of the vacuum diagram.

The Schwinger parameters L; € Ry are then not ordered and the cut-off is determined by
YresLiLy > AAy and (Lr+Lj) > Ay for all pairs I,J. Doing so, there is a single integral
with multiplicity two for the planar and the non-planar diagrams that we must sum over the
six permutations of the Mandelstam variables. One can therefore write the contribution to the
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amplitude when the punctures are separated from each others and from the branching points as

dL1dLodL /
Ailloﬁpm = Z / 14L2 z_é (a/S)Z/ dy1dys L12 e sLiy1(1—y2) (2102>
L;>0 (ZI<JLILJ) 2 0<y1<y2<1
S resLiLy>AN
Li+Ly>A

LyLoL-
e (stys(l—y4)+ Sy (t(yz—y1)(y4—y3)+8(1—y1—y4)(1—y2—y3)))

I<J

/ dysdys L3 e
0

<ysz<ya<l

I mar 2L (142 —y1) (s —ya)+5(1—y1—ya) (1-92-35))
+ / dys / dys LoLze = +perm.
0 0

which gives the four-graviton supergravity amplitude [153]. Introducing the deformation d — d+2¢
one can write the divergent part of the integral as a sum of powers of o/sA; < 1 and o'sA < 1,
and the cut-off independent part gives the supergravity four-graviton amplitude in dimensional
regularisation [39]

Azl (2.103)
_ 16(27_‘_)142da/5d/dequ 52
(2m)2P \ p?(p—k1)2(p—k1—k2)?(0+q)2q*(q—ka)?(q—k3—k4)?
52
+ + perm. | .
P2 (p—k0)2(p—k1— k)2 (p+0)2 (p+q+ ks )22 (q—ka)?  ©

When two points are coincident

Z4
21 21
— <3 Z4
z2 22
Z3

Figure 5: Planar and non-planar diagrams with coincident points

we cannot neglect the logarithmic term in (2.101) and we introduce the complex variable

. rz1 1
.= e27rz f22 w

(2.104)

that is interpreted as the coordinate of the fourth puncture on the sphere. Similarly as in the
preceding section one has then

(log|2[)”

Gla1, 22) ~ log 2| —log |1 — 22 + =2

(2.105)
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with |z] < 1 and combining the permutation ¢ <> u with the change of variable y; — 1 — y,
y3 — 1 —y4, ya — 1 — y3 we obtain the integral

/ I (\z|a2/(y”’,§ffifx)—2+|Z’%’(<1—y1>s+§f;hx)_2>
|

z|<1
_ a’s\2 1774 o . o ( LyLs X 64 2106
B F(T) zs, Z(IE;IL;LJ B yls) * 0[,3$tu ( ’ )
with
X = (t(ya —y3) —s(1 —y1 —ya)) - (2.107)
The non-analytic term in ﬁ was already taken into account in the supergravity two-loop integral,
and we subtract it to obtain the contribution
1 dLidLsdL L ,
ASReo = 355 / — (0/8)4/ dyr Ly emshvi=u) (2.108)
L1>0 (ZI<JL[LJ) : 0
Doty LiLy>AN
Li+L;>MA
, 1 1 1
/ dysdys L' 7 *L2ntmm) + o / dys / dys Lo L3
0<y3<ys4<1 0 0
ma! BLE2E8 (1—y1 —ya) (1—y1—y3)
> LiLy ’ / )
e P (%s, % ( XL:2LL,JLJ (t(ysa —y3) — s(L —y1 —ya)) — y15)> + perm.

We can finally write this expression as a sum of powers in the cut-off plus the dimensionally
regularised supergravity form-factor diagram

AZloor 1(27T)14_2d0/8_d/ dequ 254W(%5’ %/p ’ kl)
e 2 (2m)2D \ p2(p—k1—k2)2(p+q)2q%(q—k3)2(q—k3—ka)?
N S4W(%S, f%/p ko — %S)
P (p—k1—k2)2(p+q) 2 (p+q+ks)2q?(q—k4)?

We will now consider the limit in which one puncture approaches a branching point, i.e. permuta-

+ perm.) . (2.109)

tions of
21 21
Z4

29 29 — 23 24

z3

Figure 6: Diagrams with a puncture at a branching point

The abelian one-forms near the branching point can be written as

R

b dz _
S 2mz—1"

W (z) =

= 2.110
2r z ( )
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such that one recovers the tropical limits as z approches the first line (of length L) at z = 0, the
second (of length Lo) at z = 1 and the third (of length L3) at z = co. For 29 on the first line of
length L, one computes the prime form using (2.100) and either @ = (1,0) or & = (1,—1). One
consistently obtains in both cases '

2 2 L1y2
E 2 2|7
|E(z1, 22)| oL
1
G(z1,22) ~ —2mLyys — log |z|? + %le[(Qﬂ'LlyQ +log |2|,log |1 — z|)] . (2.111)

Similarly for z4 on the second line of length Ly one finds

1 _ 2’2627'('[/2(1—?44)
(27)? ’
1
G(z1,24) ~ —2mLa(1 — y4) — log |1 — 2> + %Qz Y(log |2|, 2w Lo(1 — y4) + log |1 — 2|)] ,

B, 20)f? ~ | (2.112)

and for z3 on the third of length L3

827rL3(1—y3)
T en?

1
G(21,23) ~ —2mL3(1 —y3) + gﬂz (2rLs(1 — y3) — log|z|,27L3(1 — y3) — log |1 — 2|)] .

|E (21, z3) | (2.113)

For the first diagram the measure can be computed as for the previous case, but for the second,
one must take into account that w’(21) is non-zero on both cycles and one gets

— 4d' s t |2
VsNYVs ~ — |-+ 7’ Ly Ly Ld? zdyadysdys
T lz z-—1
4a! 1 su tu st
—— (== Ly Ly L3d? zdysdysdys . 2.114
— <|z|2 + TR + |z|2|l—z|2> 1L2L3d”zdyadysdys ( )

One obtains the amplitude

a dL1dLydL 1
R el
L;>0 (ZI<JLILJ) 20
YresLiLy>AM
Li+L;>MA

/ dysdyy L22 e”a18L2y3(1_y4)52(t1 + Uy3)2W(%51, %(751 + uys))
0<y3<ys<1

1t ! , ,
o / dyg/ dys LoLsg (sutl2 + tusl2 + Stuf)W(%sh ﬁtﬂ)
0 0

LyLyL
mo/ (5(1*3/4)(1*y27y3)+ty2 (y4fy3))
I<J

Xe + perm. ,

"1We do not keep track of the additive constant 2log(2w) in the Green function because it drops out in the
amplitude. We write Q5 2°Z7 = Q;'[(Z", Z°)].
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with

s1= s(1—y2) = 2 (t(ya — y3) + s(1 —y2 —3))

I<J

t1 = tys — élLLI“LJ (t(ya —y3) +s(1 —y2 —y3)) ,
Ul = uys — élLLIQLJ (t(y4 —y3)+s(1 —y2 — yg)) . (2.116)

1<J

We can finally write this expression as the sum of powers in the cut-off and a dimensionally
regularised supergravity form-factor diagram

AZoop _ (27T)14—2da/8—d/ dPpdPq (s°(2q - kl—S)QW(%’s—i—%/p -k, %/q : kl—%’s)
e (2m)2P \ pA(p—ka)?(p+49)2q?(q—k3)?(q—h3—k4)?
2(sq-ki—tp- kl)QW(%/s—k%,p - k1, %,q . kﬁ—%t)
P?(p—k2)?(p+q)?(p+q+k3)?q*(q—Fk4)?

+perm.>. (2.117)

At the next step we consider the case in which 25 also approaches the same branching point

22 21 22 Z1

—Z3 Z4

Figure 7: Diagrams with coincident punctures at a branching point

in which case we define

2 _gmfe 1z oo (2.118)
w 1l —w
and
2
E 2 |z — w|
|E(21, 22)] @)
1 z |1 —z|
G(z1,22) ~ —log|z — w|* + %QQ ! [(log’E ,log = w|>} . (2.119)
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For the first diagram, the measure is unchanged because both z3 and z4 are on the second line, and
one computes the contribution

o252 / dLydLodL3 / dysdys L2 emstz(l—yz;)(strlz La (1-ys))
3 _d 3 2 <J
o Lr>0 (ZI<JLILJ)5 2 JO<yz<ys<1
ZI<JLILJEAA1
Li+Ly>A
/dQ /d2 ] 0;’ ;%fr,((l y3)+t(ya— y3)) 2‘ ’%152,5}’1, (8(1—y3)+u(y4—y3))_2’ e
Z 1<J w 1<J W—2z 5
x|1— Z| ( uy3— ty4+zLL ( (1—y3)+t(ysa— y3)))|1 w|%( tys— uy4+ZL1LJ( (1—ys)Lu(ya— yg)))

’
a’ s

b ZLIL,(Lglog\z|10g|w|—|—L3(log|z\ —log |1—z|)(log |w|—log |1—w|)+L1 log |1—z|log |1— w|)
xe " 5 (2.120)

plus permutations of the Mandelstam variables. Using (2.63) one finds that the non-analytic pieces
are already included in the previous integral and we conclude that the corresponding contribution
only involves the five-point function Wj(s1, s2, s3, 84, S5)-

For the second diagram for which z3 and z4 are on different lines, we must consider that w®(zy)
and w'(z9) are non-zero on both cycles. One computes

—  ds t u 2 9 o
Vs NVs ~ g + + 7 Lo Lsd®zd*wdysdyy . (2.121)

2w (z—1w  z(w-—1)

and one gets

o2 / dLidLodLs / s / s Lylge %(1 y3)(1—ya)

6473
L1>0 (ZI<JL1LJ
YoresLiLy>AA
Li+Lj>A1
2 2 | s e ézii (1—ys)+t(ya— ys)) ( ty3+ZL1L ( (1—ys)+t(ya— ys)))
/d /d zw (z— 1 z(w 1) ) |Z| ~ | _Z| <
& éiff’,( (1~ys)+u(ys— y:a)) ( uy3+ZL1L,( (1—ys)+u(ya— ys))) o
xlw]* & 1wl TE e

/
a' s

o ZL]LJ(L210g|z\log;|w|—‘,—L3(log\z| log |1—z])(log |w|—log |1—w]|)+L1 log |1—z|log |1— w\)
xe . (2.122)
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To take into account the subtraction of the poles that were already taken into account in the
previous limits one defines

12/d2z/d2w
™ C C

2
—_— L - - - - — 455
Pl ey et e B I e e ) e e It [

&2 &2 52 2
= F5(s1, 52, 83,54, 85) + + — —
(51, 52, 53, 84, 55) s1(s1+s3+s5)  s3(si+s3+ss)  si(sz+satss)  s3(s1+s2+ss5)
2 u? 12 u? 1 325%

— - + - = W(s1,s5) + W(s3,s
So(s3+s4+s5)  sa(s1+S2+S5)  S283  S184 231+33—|—35( (51, 55) (53 5))

_3234(33—1—34—1-35) — t254(s3+s5) + u?(s3+55)(83+84+55)
S1
 s%sa(s1+s2+85) + 12 (s1485) (s1+59+s5) — uPsa(s1+s5)
s3
t2(s1459)2 u?(s3454)2
7( 1+52) W(31,32)+7( ats4)
S3+S4+55 S1+82-+55
t2(s4+s5)2 u?(s9455)?
_ Elsatss)” W (sa+s5,83) — w{satss)”
S9 S4

W (s3+ss, 54)

W (s1+ss5, $2)
W (s3,54)

W(82+S5,81) . (2123)

t2 _ u? . -~
SisotsiTes)  ss(eiteates) COmes from the planar diagram 4, at g

. 2 2
1—y4 ~ 0 and 1—y9 ~ y3 ~ 0, the double pole in 81(81j83+s5) + 33(sl—i53+35
planar diagram at y; ~ yo ~ 0 or 1, while all the other double poles come from the non-planar

Here the double pole in —

j comes from the non-

diagram with y; ~ 1-y34 ~ 0 and 1—y2 ~ y34 ~ 0. The simple pole in % comes from the
non-planar diagram 5, the four last poles from the first diagram 5 and the two terms in W (s3+ss, $4)
and W (s1+ss, s2) from the second diagram 5.

To compute the o/ expansion of the function F(s;), it is convenient to use the single-valued

map [172] as proposed in [135].'2 We compute in Appendix B the leading contribution
Fy(s1, 52, 83, 54, 55) = 2C(3)s5(252 — 3t — 3u?) 4+ s2O(s?) + t20(s3) + u?O(s?) . (2.124)

Combing these results one obtains the corresponding supergravity form-factor in dimensional reg-
ularisation

AZloor (27r)14_2d0/7_d/ dequ S2W5(%/p k1, %/C] -k, %/p - ka, %/q < ka, %5)
e (2m)2P \  pA(pra—Fk1—Fk2)?q?(q+ka)?(g—F1—k2)?

F5(%/p : kl7 %/q : kl) %/p : k?) %/q : k?v %S)
P2(p+q—k1—k2)?(p+q+ka)2q? (q+k4)?

—|—perm.>. (2.125)

One may then consider the case in which z1, 2o, z3 all coincide at a branching point

12We thank Oliver Schlotterer for guiding us in the literature.
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2973 21

Z4

Figure 8: Diagram with three coincident punctures at a branching point

but this limit only contributes a cut-off dependent constant and we shall not compute it. It involves
a tree-level six-point function and a priori contribute to the bubble diagram divergence of the form-
factor in four dimensions. The last contribution to the one insertion form-factor comes from four
coincident punctures at a branching point and does not contribute to the amplitude for d < 6.

At this order one obtains the contribution to the power-low terms in the cut-off from the o’
expansion

1 dLydLodL , , —_
A [ (4“(‘1)2<82+t2+u2>+4§2(3)3(s3+t3+u3>(ZL1—2122)
L1>0 (XiesLrly)” 2 7 1<gbrly
SresLiLi>AM
Li+Ls>A
2¢(3) (5 a/\3,3 ,3. 3 1,\4, 9 .2 9w 8L1LyLs
+ P (2 (P + () (PP (T L - S )
S osLiLy 7r(4)( ) 6(4)( ) 21: S L.

(2.126)

which matches the behaviour of the analytic component at large L; according to [173,174]

B&,(Q) = 2 (2.127)
o 5L1LyLs 5¢(3)
B ~ (Y- )+
o)~ 3 ZI: YLy T R Ly
2 LLyL 2 LiLoLs \2
B2 (Q) ~ 7T<4 L,) D Y it tac k. 3( LILJ) +32(7) )
o 9 T Z "iesLiLy Z;] dreslily
3 8L LyL 3 L 3)2
+C<)(7ZL1_ 122)+i(3) > L ;+— ¢(3) !
P\ T L) T (L) 2 (5 i)

For consistency the term in {(5) above must come from diagram 8 that gives a tree-level six-point
insertion. The last term with the undetermined coefficient 5 must come from the diagrams with
all coincident points at the branching points.

We will not analyse the limits with more than one insertion and the single degeneration limits.
The diagrams with two or three insertions are
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Figure 9: Multiple insertions diagrams

and could be computed in the same way as for a single insertion.

There are other contributions from the non-separating degeneration limit in which only the B2
cycle becomes very large. The corresponding diagrams correspond to form-factors with at least
one insertion of a one-loop correction (2.26). They can be drown as a genus one surface with two
punctures connected by a tropical line of length L, and the four punctures can be either on the
genus one surface or the tropical line. The tropical line corresponds to the loop in supergravity
while the genus one surface gives rise to the insertion of a term in the string theory one-loop
effective action. To compute such corrections one needs to analyse the Green function G(z,w) in
the non-separating degeneration limit when one or the two points are on the tropical line. The
non-separating degeneration limit was analysed in [85,174], based on the general description [168].
In this limit the genus two surface with four punctures zi1, zo, z3, 24 is described as a genus one
surface with six punctures zi, 29, 23, z4, 0 and v and the identification of the local coordinates z
near 0 and w near v as

2(w — v) = e~ 2l A2mic (2.128)

with v, L and ¢ defining the period matrix (2.74). However, the authors only consider the case
in which z and w remain at finite distance of 0 and v in the limit L > 1. One needs to relax
this assumption to compute the diagrams for which one or two punctures are on the tropical line
of length L. There is also the further degeneration limit in which the B! cycle of the genus one
surface also becomes infinite while the points v remain close to 0. The corresponding diagrams
can be drown as a sphere with four punctures that are connected in pairs with two tropical lines
of length L; and Ls. The four punctures can then be on the tropical lines or on the sphere. The
corresponding corrections also contribute to the two-loop form factors in supergravity for which
the sphere gives rise to the insertion of a term in the string theory tree-level effective action. They
correspond for example to diagrams of the form

(X0 OO

Figure 10: Eight shape diagrams
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The maximal degeneration limit that we have analysed in this section is obtained as the further
degeneration in which L3 becomes also infinite, as one can see in figure one of [175]. We have not
computed these contributions but we shall see in Section 4 that consistency with eleven-dimensional
supergravity requires that the first diagram in (10) does not vanish.
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3 Automorphic forms

The couplings in type II string theory on 79! are tensors on the symmetric space K4\Ey that
are invariant under the U-duality group E4(Z), defined as the arithmetic subgroup preserving
the highest weight lattice Ly C R(Ag4). As such, the couplings are functions f,, on E; with the
transformation rule

fw(kv,y) = pw(k)fw(v) (31)

for all k € K4 and v € E4(Z). Here p,, is a finite-dimensional representation of K, indexed by the
weight w = n'Y;.

One defines a parabolic subgroup Py from a weight A such that it is generated by the Cartan
subalgebra and the root generators E, satisfying (A, «) > 0. The Borel subgroup is defined for
A = o the Weyl vector. Py = LU where L is the Levi subgroup generated by the Cartan subgroup
and the root generators FE, satisfying (A, ) = 0, while U is the unipotent radical generated by
the root generators E, satisfying (A, ) > 0. We define the fundamental weights A; dual to the
simple roots (A;,ad) = 5{ , such that any dominant weight can be written as A = n‘A; for n; € Z>g
and (A, Aj) is the inverse of the Cartan matrix. In particular o = ), A;. For short we write the
maximal parabolic subgroup P; = P,,. We use the Bourbaki labelling such that the exceptional
node of E; groups is Ay and the Weyl spinor nodes of SO(d,d) are Ay_1 and Aq.

It will be natural to consider a coset representative of v ~ kv € E4 in a maximal parabolic sub-
group relevant to a perturbative limit in string theory. In the perturbative string theory parabolic
Py = GL(1) x Spin(d—1,d—1) x Uy, the cusp is defined at small effective dilaton e?¢-1 < 1, where
¢q—1 is defined in (2.11). Consistently with string perturbation theory, the leading term in the
effective string coupling constant is proportional to e~2%d-1 in string frame, and generally power-
low in Einstein frame. Therefore each coupling is bounded by a power-low function at the cusp
ePi-1 — (.

Similarly, in the M-theory parabolic P, = GL(d) x Us, the cusp is defined at large torus volume
and the corresponding supergravity amplitude on T gives terms that are power-low in the volume.

More generally one concludes that the coupling is of moderate growth, i.e. is bounded by
a power-low behaviour at all cusps. For each parabolic subgroup Py C FE,4 one defines a coset
representative of v € Py such that v = alu with a € GL(1)", [ in the semi-simple component [L, L]
of the Levi subgroup L and u € U the unipotent radical. Moderate growth implies that there exists
coefficients C' and s = {s1, s2,...s,} such that |f,(v)| < Ca® at large a.

In string theory it is moreover natural to expect that the coupling functions are smooth almost
everywhere in moduli space. Generally one may expect to have poles at locus in moduli space
where additional fields become massless, but this does not happen in type II string theory on 7%~1.
Assuming that the coupling function is smooth, one can define differential operators through the
left-action of the universal enveloping algebra U (ey4) generated by ¢4 through

(X fu)(0) = (G Fule )| (32

t=0
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For X € ¢y © ¢4 in the coset component, this definition coincides with the covariant derivative on
the symmetric space

(X - fu)(v) = £ XaDg fu(v) (3.3)
with £k the Cartan-Killing form and X = X7 in a basis of generators T®. The action of X € €4
gives instead the linear transformation under £; induced from the K representation p,,

(X - fu)(v) = dpu(X) fu(v) - (3.4)
One decomposes the Maurer—Cartan form
v -v =P —wy (3.5)
with w € 5 and P in the complement ¢; © £, and write the symmetric space metric
Guv = KPPy Pys (3.6)
such that the covariant derivative is defined as

Do fuw(v) = PG (0 + pulwy)) fu(v) - (3.7)

The covariant derivative is usually defined in representation theory as in (3.3) with (3.2), while it
is more commonly defined in the physics literature and in Riemannian geometry as (3.7).

For any element in the centre Z(eq) of U(e;) one defines a left-right invariant differential opera-
tor. The canonical example is defined as the quadratic Casimir, which gives the Laplace—Beltrami
operator for the trivial K(FE,) representation

Afo(v) = £%DaDs fo(v) = kap(T* - (T? - fo))(v) . (3.8)

More generally the centre Z(eq) can be defined as the set of Ky-invariant polynomials in the
differential operator D, generated by the d Casimirs.

A modular form is defined in mathematics as a vector of smooth functions on E;/FE4(Z) with
uniform moderate growth, the left-action (3.1), and which defines a finite dimensional representation
of the centre Z(e4). In the simplest case it is a dimension one representation of Z(e4), which means
that the function is an eigen-function of all invariant operators. The string theory coupling functions
are generically not in finite-dimensional representations of Z(eg4). In particular the function (0.13)
is not and belongs to a class of functions on Ey/FE4(Z) that generalises the notion of automorphic
forms. Examples of modular forms are defined by Eisenstein series. We shall first define Eisenstein
series and describe their automorphic representations. We will only introduce the function (0.13)
in Section 5.

3.1 Eisenstein series and automorphic representations
The simplest example of an Eisenstein series are the real analytic Eisenstein series for the group

SL(2) that can be defined in two ways

/

SL@) .y L 5 _ s
B0 = 2a 2 v 2 T (3.9)

m,ne€”Z YeSL(2,Z)/ P\ (Z)
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either as the sum of vectors (m,n) € Z? in the lattice L1 or as the Poincaré sum over coset
representatives vy = (“b) acting on 7 = 7 + 7o with a Mobius tranformation

ar +b

= 1
TH ct+d (3.10)

This definition has a natural generalisation to maximal parabolic Eisenstein series for arbitrary
simple groups GG. The maximal parabolic P; is defined such that g € P; acts on the highest weight

A; as a rescaling '

Yi

and one can define the maximal parabolic Eisenstein series in two ways [176]

/

1 1
ES = = sl 12
Pl =5t & g~ 2 v (3.12)
QEL; V€G(Z)/Pi(Z)
QxQ=0
In the first sum we write the weight lattice L; C R(A;), and @ x Q € L; ® L; is defined as
QX Q=rapT* QT Q- (A, Ai)Q®Q, (3.13)

and [v(Q)|? is the K-invariant norm square in the representation normalised such that for g € P

we have |gA;|? = 1/y?. The second is the Poincaré sum that generalises the sum over pairs of

relative primes in (3.9). Both infinite sums are absolutely convergent for Re[s] > ((/(\lf)) and admit

an analytic continuation to a meromorphic function of s over C [176].
Coming back to the original example of SL(2,7Z), one computes in the domain of absolute
convergence Re[s] > 1 that

25 —1 2 ‘
E;GL(Q)(T) =75+ 5(5*(928>) 21 \/772 2 J2|s ;W 1 (27r|n|7'2)e2mnn ’ (3.14)
n

where o5(n) = >_,,, d* is the divisor sum and K is the modified Bessel function of the second kind

nEZ

that behaves asymptotically as 2,/73Ks(2772) ~ e~2™™2. This Fourier expansion of the Eisenstein
series is absolutely convergent and is manifestly analytic in s # 1, while it admits a simple pole
ﬁ at s = 1.

The maximal parabolic Eisenstein series can naturally be interpreted as sum over the 1/2 BPS

sates with )

2(25)EEL ) = 3 o

2
& 1z

I'xI'=0
and (M = |Z(I")| the mass of the particles in the short multiplet [60].
The definition generalises to arbitrary parabolic subgroup F;, 4, .
Ai +A,+ ... +A;, such that

G s
ES (v) = > wuneul,
YEG(Z)/ Py, ig,...ir (L)

(3.15)

associated to the weight

T

(3.16)

13For short we write the basis vector ea; in the representation space as the highest weight A; itself. This abuse of
language would not accommodate easily weights with multiplicity, but we will not need to write them.
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where the weight A is defined with r complex parameters s; as
A= SilAil + SiQAiQ + -+ SirAiT . (317)

The sum is absolutely convergent if Re[(A;, \)] > (Ai,0) for all i = iy,d9,...7, and admits a
meromorphic continuation to the complex value s € C" [176]. Moreover, the Eisenstein series is
meromorphic in the weight A independently of the choice of parabolic, and the limit s;, = 0 for
1 < k < r gives the Eisenstein series for a bigger parabolic. In this way they are all defined from

the Borel Eisenstein series
rk(G)

E§w)= > 1lwl,

V1€G(2)/B(Z) =1

(3.18)

In the domain of absolute convergence away from the poles in C™(%) they are eigen-functions of all
invariant operators and in particular of the Laplace operator

AES (v) =2\ X\ — 0)ES (v) . (3.19)
They satisfy the Langlands functional relation for any Weyl reflection w '*
2A — 0, )) G
=11 EC | (v) (3.20)
— A5 (1—
a>0 § 2/\ o0, >+1) wA+y(1-w)e
wa<0

where the product is over all positive roots « reflected to negative ones by w and £(s) is the
completed Riemann zeta function

&(s) = 7/°D(s/2)¢(s) (3.21)

that satisfies {(1 — s) = £(s). See [176,177] for an exhaustive exposition involving their definition
over the ring of adeles of Q. We shall use extensively the Langlands functional relations above in
the next section to relate SL(d) Eisenstein series for different weight. We are very grateful to Axel
Kleinschmidt who shared with us a nice program that computes these relations very efficiently.

It may happen that we need to evaluate a Langlands Eisenstein series at a pole. For example
for SL(2) one wants to define

SSLE), oy SL(2) §(1+2¢)\ 3 4
El (7') = ll;()% <E1+€ (T) — m = —; 10g(T2|77(T)| ) . (322)
More generally we will need to consider maximal parabolic Eisenstein series that diverge at s = j
for some half-integer j € Z/2. In practice the pole always comes from a Langlands functional
relation involving £(1+ 2¢) or £(2¢) in the numerator, so for the appropriate Weyl reflection w such
that the limit below is finite, we define the renormalised Eisenstein series

5G ] -+ G)A — 0, O[)) a
B _g%< (ran H § y+e —gja)+1)ijAi+%(1—w)@ : (3.23)

wa<0

11n the literature one defines normally the Eisenstein series in function of the weight 2\ — ¢ that transforms under
the Weyl group by the associated reflection [176]. Because we consider mainly maximal parabolic Eisenstein series
we find convenient to label them by sA; rather than 2sA; — o.
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This Weyl group element w is generally not unique, and the definition of EJGA, depends typically

. . G
on the choice of w through terms proportional to ij AL (1—w)e’

These definitions can be generalised to non-trivial representation p,, of K C G according to (3.1)
and one can also average a cuspidal form on the Levi subgroup semi-simple component [Lp, Lp] C
Lp

G r
B s(v) = > kv oL, (3:24)
YEG(Z)/ Piy iy,...ir (Z)

We shall not need these generalisations and will only consider so-called spherical parabolic Eisen-
stein series (with v = 0 and p, = 1) and their derivatives.

An Eisenstein series defines a representation of the group G that is characterised by the action
of the universal enveloping algebra acting as in (3.2). One can define accordingly the right ideal
Ty of U(g) as the annihilator of Eg*' Because we define the Eisenstein series to be spherical, the
ideal always includes €. At generic weight (where all s; # 0 and no Weyl image does) the ideal
is generated by £ and the eigen-value equations of the invariant operators in Z(g).!” For larger
parabolic, one gets generally a larger ideal. This ideal is described in part by the associated variety
Az [178]. We define the standard filtration U, of U(g) defined by polynomials of order n in g and

Gril(g) = P Un/Un-1 - (3.25)
n=0

By the Poincaré—Birkhoff-Witt theorem, there is a natural G,q-equivariant isomorphism of graded
algebras Gri(g) = S(g), where S(g) is the algebra of polynomial functions on gg. One defines
accordingly GrZ, as the symbol of the ideal Z in Gri{(g) and the associated variety is the set of
zeros of GrZy C S(g) in g¢. The associated variety is the closure of the union of complex nilpotent
co-adjoint orbits O € g¢ [179].

The set of nilpotent elements in g admits a stratified structure into open nilpotent orbits
O € g¢ and a partial ordering defined by the inclusion of their closure such that 04 < Op if
O4 C Op. One says that an automorphic representation is small if the associated variety of the
corresponding annihilator ideal is a small nilpotent orbit. In particular there is a single minimal
non-trivial complex orbit On;i, and the associated automorphic representations are called minimal.

For a spherical function f(g) = f(kg) for all k£ € K, it is natural to define the graded module
defined by the action of U(g) on the spherical function

Grl/l(g)f: @Un/un—lf . (3'26>
n=0

There is then a natural K-equivariant isomorphism of graded modules Gri/(g)f = S(p)/Z; where
S(p) is the algebra of polynomial in pg. = (gc © €¢)* and Iy the ideal associated to f. One can
define similarly the real associated variety of the function f as the set of zeros of Ty C S(p) in pg.

The real associated variety is the closure of the union of complex K orbits in O N pg."0

150nly regularised Eisenstein series at poles define higher-dimensional representations of Z (g). For example a
regularised Eisenstein series (3.23) would define a two-dimensional representation mixing Eja, and Eju,a,+1/2(1—w)e-
6We are grateful to Dmitry Gourevitch for explaining this to us.
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For a function f defining a coupling protected by supersymmetry, the corresponding ideal 7
is the set of differential equations that follow from supersymmetry and the ideal Zy € S(p) defines
the symbol of these differential operators. The quotient S(p)/Zs is then identified with the set of
Grassmann analytic polynomials in the scalar superfield in p. For small representation it appears
that Zy may determine 7, so that the linearised analysis in supergravity is sufficient to determine
the non-linear equations [51,52].

In the simplest example of an SL(2,7Z) Eisenstein series we have DPDE;H? = s(s — 1)E§L(2)
and

oo (o.9)
U(sly) ES"? = BP0 o D ES"Y o @S D ESM (3.27)
n=1 n=1

as a vector space, with the relations
DD"ESM? = (s(s — 1) —n(n —1))D" ' ESL@ | [D, DID"EJL®) = 2nD ESLA) (3.28)

The U(1) module Gri/ (5[2)E§L(2) forgets the right-hand-sides that are set to zero, so that it is
identified with the set of holomorphic plus anti-holomorphic functions of W € C.

Another way to associate a nilpotent orbit to an automorphic form is through its Fourier
coefficients. For a parabolic subgroup P C G that decomposes into a Levi subgroup L and a
unipotent radical U, the intersection U(Z) = U N G(Z) defines periodicity conditions on the
unipotent component of v € P. One decomposes v = lu and v € U is parametrised by axion
fields in physics. The action of U(Z) then corresponds to discrete gauge transformations of the
axions. One can define accordingly a Fourier expansion of an automorphic form, generalising (3.14).
The abelian Fourier coefficients are defined for characters of U that have support on U/[U, U]. One
writes 1,(u) = €2™4% the corresponding character, where a is the axion parametrising U/[U, U]
and ¢ is a vector in the lattice uj(Z) such that 1y(u) is invariant under U(Z). One defines the
Fourier coefficient

FAESI0) = [ dui GBS o) (3.29)
Uu/u(z)

If the unipotent radical is abelian, one can reconstruct the function from its convergent Fourier

= Y FIEJIw) = > Ef, (e, (3.30)

qeui(2) qeu; (Z)

expansion

This generalises to non-abelian unipotent subgroups U as we shall discuss in sections 3.4 and 3.5.
As an element in uj(Z) C g*, ¢ is nilpotent and belongs to a nilpotent co-adjoint orbit. One
defines the wave-front set as the union of nilpotent orbits O for which there exists ¢ € O and a
parabolic P = LU such that F,[E{](v) # 0. The wave-front set is the closure of the union of
nilpotent orbits. For protected couplings in string theory one can interpret the Fourier coefficients
as being associated to non-perturbative effects, for example D-brane instantons. The more BPS is
the coupling, the smallest is the orbit and more restricted are the D-brane instanton charges [62,63].

In all cases that we shall consider in this text, the wave-front set and the associated variety
define the same complex co-adjoint orbits.
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It will be convenient to introduce some notations for the nilpotent orbits [178]. Complex
nilpotent orbits of G¢ are classified by conjugacy classes of homomorphisms sloC — gg, i.e. by
standard triples (e, f, h) of elements in the Lie algebra g¢ satisfying the commutation relations

le,fl=h, [he]=2e, [h, fl==-2f. (3.31)

The Gg-orbit of h is determined by a dominant weight A = nA; with n’ € {0,1,2} such that
for each root generator [h, E,] = (A, a)FE,. A representative of the nilpotent orbit is a generic
element e = Z( Aa)=2 zoFE, in the vector space of eigen values 2 that admits a unique complex
open orbit. We write O the corresponding niplotent Gg-orbit. When A is even, i.e. all n* € {0, 2}
in A, the intersection of the nilpotent orbit with the nilpotent algebra u of Py = LU is dense in u.
The Eisenstein series of parabolic P at generic values of s admits then as wave-front set the real
elements in the closure of the nilpotent orbit Oy N g.

Kostant—Sekiguchi correspondence relates real G-orbits in g to Kg-orbits in g¢ © £¢. The K-
orbits in g¢ © £¢ are themselves determined by normal triples (e, f, h) where e and f are in g¢ © £¢
and h € £¢. They are therefore classified by dominant weights v = n‘Y; of K and we write the real
orbit O,,. We will see that for couplings protected by supersymmetry, the associated variety of the
corresponding function is the closure of the real orbit O, for v the weight defining the harmonic
coset space as K¢ /P, = K/(K N P,).

We shall now describe the relation between the wave-front set, the associated variety and SU(8)
harmonic homogeneous spaces for small orbits of Fx.

3.2 Example of E;

It will be convenient to consider coordinates ¢* for the symmetric space (SU(8)/Zs2)\E7. For this
we decompose 56 = 28 ¢ 28 to write the 56 by 56 E; matrices in the fundamental representation.
The indices i = 1 to 8 correspond to the fundamental of SU(8). One defines the Maurer—Cartan

form "
261w P;;
-1 _ [i % 7l ijkl

avy— = ( pish sl i > ; (3.32)

adid

with w’; the su(8) component written as an 8 by 8 matrix and

y 1 ..

Pt = TPy (3.33)

the component in e7 © su(8). The metric on (SU(8)/Z2)\E7 is defined as
Gl )4 dg" = S Py P (3.34)
and the derivative in tangent frame is defined such that for any function
d€ = 3PND; € (3.35)
For a spherical function f(g) = f(kg) on E7, one has

[Dijklv DPCITS}Dtuvwf(qb) = _245ijkl Duvw“pf((ls) + 35;2]]iiptuvwf(¢) ’ (336)

qrs][t
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and the Laplace operator is
1,
Af(p) = 3D MDDy f () . (3.37)

The higher order Casimir operators can be defined similarly as

A, f(o) = %trgg[(@D)"] f(p) = %Diﬂ‘klpk,pq D™D, G f () (3.38)

forn =3,4,5,6,7,9. They correspond to % of the trace of Q*" in the fundamental representation,
which can be checked to define a basis for the linearly independent Casimirs.

Fourier support

Consider a spherical function f(g) expanded in Fourier coefficients in the abelian parabolic P;. We
write g = ve®” the representive of E; in the abelian parabolic with v € GL(1) x Eg and a € R?”
the axions, such that

flo) = 3 falw)erion. (3:39)

qeZ27
The wave-front set of f(g) determines for which Fg orbit of ¢ this function is non-vanishing.
The associated variety determines the set of differential operators in the enveloping algebra U(e7)
that annihilate it. In this subsection we will show that they are identical for small spherical
representations.
According to [180,181] one has the Eg orbits of charge q € Z*7

q = 0, dim =0,

gxq = 0, dim =17,
detq = 0, dim = 26 ,
detqg # 0, dim = 27 . (3.40)

If f,(v) = 0 for all ¢ the function is in the trivial representation, i.e. it is constant. If f,(v) =0
for all ¢ such that the Jordan product g x ¢ # 0 the function is in the minimal representation. If
fq(v) = 0 for all ¢ with detq # 0 then these Fourier coefficients are in the next to minimal orbit
and the wave-front set must not include the nilpotent orbit Ozp,. It follows that the wave-front
set is then included in the closure of the nilpotent orbit Osp, according to the Hasse diagram 12.

In supergravity, the parabolic P; corresponds to the symmetry that is manifest in the large
circle radius limit in which one recovers five-dimensional supergravity. The radius gives the GL(1)
modulus, the scalar fields (Sp(4)/Z2)\ Es, and the vector fields along the circle the axions a. These
Fourier coefficients can be interpreted physically as instantons associated to BPS Euclidean black
hole of electric charge ¢ € Z27 wrapping the large circle [182]. According to [180], the constraint
g x ¢ = 0 is satisfied for 1/2 BPS instantons and det g # 0 for 1/4 BPS instantons.

Using

aﬁ i B _ 1 abci 9 B
o (%f(e 9) e=0 2 Oxb (%ccf(e 9 =0
_ 1 abci 9 zv 'Bvta-E
2 Qb Gajcf( ) z=0
= (2mi)* Y v (g x q) fy(v)e?mO? (3.41)

q€Z27
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min

one obtains that for a function f™" in the minimal representation, such that f7*"(v) = 0 for all ¢

with non-vanishing Jordan product ¢ x g # 0, one has the differential equation

0
8@

Here we define a = 1 to 27 and switch from a notation with explicit indices to a notation without.
Because f™(g) = f™"(kgvy) for all k € SU(8) and v € E7(Z), one obtains that all the differential
operators in the SU(8) orbit of % X % must annihilate the function f™"(g). This may be easier
to understand using a partially fixed gauge for the scalar fields, enforcing g = ve®¥ € P;. Acting
on the right with v € E7( ) and on the left with k(g,~) such that k(g,7)gy € Py, one obtains that
% X %f( ) = k(g, 7) gaf( ) for any such k(g,~). It is easy to convince oneself that one can
find enough v € E;(Z) to span all the irreducible Sp(4) representations that appear in branching
the irreducible representation R(Y9+Yg) of SU(8), see [51, Eq. 4.31-4.35].'7 We conclude that

fgﬂn = 0 for all ¢ satisfying g x ¢ = 0 implies

2 gy =0. (3.42)

(28D D7 — 365 A) 7 = 0. (3.43)

In this case the differential equation determines the functional form of the Fourier coefficients with
g x q=0as [62,51]

(detv)?
lv(q)]?

"= 2u(q) (14 27|v(q)])e @1 . (3.44)

The cubic determinant gives in the same way

det %f(e 9) =0 6t Oz Oz 8xcf(e 9) =0
8 6 a zv 1 Ev+a-E
N 6t Oz Oz Oach(ve )z:0
= (2mi)¥detv »  det(q)fy(v)e™ T . (3.45)
q€Z27

For a function associated to an orbit in the closure of Oz, we have therefore

a n-min/ _x-F
det 9 e g)

We want to identify the SU(8) module in which this differential operator belongs, i.e. the set of
differential equations generated by Er(Z) on det % frmin(erEE(g,v)gy) = 0. Let us write a basis
of all third order differential operators acting on a spherical function. The third order differential
operators can be decomposed in the irreducible representation in the symmetric tensor product of
three p = R(Y4). One finds three rank four tensors

[Div,Jiji » [Divy )it » (DY, Jijki (3.47)

=0. 3.46
- (3.46)

with
(D3, )ijkt = Dijpg PP Dt — Dijrt (1A + 6) (3.48)

'"This is the analogue of the the result that a modular form of SL(2,Z) with all Fourier coefficients zero must be
constant. Assuming &, f(7) = 0 on a function invariant under 7 — —2 implies 0, f(7) = 0.
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and
(DY Jijkt = Dijuild (3.49)

one rank six tensor
(DY vs s libipg’ = Pieipt D™ Pglmn — 3595 Phipg (A + 42) + 3500, Dipgij (A —120) ,  (3.50)

one rank eight and one rank twelve tensor

[D%2+T4+T6]ij,klpqrs s [D§T4]ijkl,pqrs,tuvw . (351)

These differential operators are defined on a spherical function, and the terms linear in D;j; are
determined such that they are in the corresponding irreducible representations of SU(8). These
representations do not appear in the symmetric tensor product of two p = R(T4) by property of
E7 because p is odd under the central element e of SU (8). At first order one gets back the first
derivative D;jy.

To identify the differential operator, one can check the common F; module in the symmetric
tensor product of three adjoints. The only Er representation including the 3T, is 3A;. Branching
3A1 under Fg one concludes that it contains the 3A; of Fg, i.e.

o 0 0

v Y B
Ox° Ozt Bmcf(e 9)

[Dg’r4]ijkl,pqrs,tuvwf(g) =0

=0 3.52
- (3.52)

and so the function satisfying this equation must be constant. Branching A;+Ag, one gets To+Y4+Tg
of SU(8) and A1+Ag of Eg, i.e. that

rs 0 c o 0 2
DRyt rasrolishivg *fl9) =0 = @tb daxc ﬁf(e Eg)

=0 (3.53)

=0

so that a function satisfying this equation must be in the minimal representation. The only re-
maining Fr representation that includes a cubic term in the 27 of degree 2 is the 2A7, and this is
precisely the determinant. It is easy to check that the matrix Q@ = p in the 56 = R(A7) represen-
tation satisfies

3
0 Qz . 0 Qz . qurs Qrs
( Qiikl djkl ) = < Qiirg Qpars Qrskl wl 0 M ) (3.54)

while (g - E)? in the 56 gives a term proportional to det g.

One concludes that the SU(8) modules of differential operators that include det % are 27
and 2Yg. 219 and 2Yg are complex conjugate to each others, so for a spherical function the two
corresponding equations must be satisfied. We conclude therefore that the following conditions are
equivalent

fl@) =Y fe™ o [Dirliuf(9) = [Dir, "M f(g)=0. (3.55)

N/
det ¢=0

Let us now consider the Heisenberg parabolic P = GL(1) x Spin(6,6) x R3?*! relevant in
string perturbation theory. In this case the effective string coupling constant e?s parametrises
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GL(1), the Narain moduli SO(6, 6), the Ramond-Ramond fields along T° parametrise R3? and the
Kalb-Ramond axion the central part of the Heisenberg algebra. According to [181], the abelian
Fourier coefficients in P} are associated to unipotent characters of charge Q € S_ = Z3? of vanishing
cubic product in Z3? for a function in the next to minimal representation. This is more generally
the case for any function in the representation associated to the closure of Ozp,. Indeed, there are
five Spin(6,6) orbits of Majorana-Weyl spinors [183]

Q = 0, dim =0,
QvQ = 0, dim=16,
(@ Q@ = 0,  dim=25,
20Q7"Q)(QvwQ) = 0,  dim=31,
20Q7"Q)( Q@) # 0,  dim=32. (3.56)

Physically, these Fourier coefficients are associated to Euclidean D-brane instantons. The 1/2 BPS
instantons satisfy (Qv2Q) = 0 and the 1/4 BPS brane instantons (Q72Q)-72Q = 0. We write
g = ve®FePF the representative of E; in the Heisenberg parabolic, with b the Kalb-Ramond axion
and a® the Ramond-Ramond spinor. The Abelian Fourier expansion reads

db fg) =Y fov)e’™oe. (3.57)

[0,1] Qez3?

We write similarly

o o0 0
apye ¥ Y Y z-FE
R e /[0%7 f(e*Fg)

Therefore this differential operator annihilates a function in the next to minimal representation.

If we write Q = @Q - E, the condition (Q72Q)-72Q = 0 is equivalent to having Q{33 = 0 in
the adjoint representation. The components of Q733 = 0 are in the symmetric tensor product
Sym3R(A1) as a cubic monomial and in R(A;) ® R(A1) as a adjoint representation matrix. The
intersection gives the two representations R(A;) and R(A3). The component in R(A;) vanishes for
any nilpotent element so (Q72Q)-72Q € R(A3) of E7. Branching R(A3) under SU(8) one obtains
that

= 2mi)° Y v[(@1Q) Q)" fo(v)e™e  (3.58)

QeZSQ

=0

R(A3) N Sym®R(Y4) = R(T1+T4+77) , (3.59)

corresponding to the differential operator [52]
[D’?‘1+T4+T7]j,klpqi — Djr[leirmnqu]mn — %(Z'Dklpq(A -+ 42) + %%kplpq]j(A — 120) , (3.60)
satisfying
{D%1+T4+T7][j,klpq]i =0, [D%1+T4+T7]j,klqu =0, [D§r1+r4+r7]j7klpqq =0. (3.61)

We conclude that

/[Odbf(g)z Yo fo)e™ e DY v likipg' /[ db f(g)=0. (3.62)

’1} q€Z32 0’1}
(Q72Q)72Q=0
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For an automorphic form this should imply that the complete function f(g) satisfies

(DR ixasrslikipg f(9) =0 (3.63)

One may then consider the parabolic P, = GL(7) x R3**7 relevant in the large 77 volume limit
in eleven-dimensional supergravity. The group GL(7) is parametrised by the metric on 77, R3® by
the three-form gauge field along 77 and R” by the six-form potential along T7. The generic abelian
Fourier coefficient in P» corresponds to the nilpotent orbit Oap, [181], and there are ten distinct
SL(7) orbits corresponding to the ten nilpotent orbits in the closure of Ogx,

NK = o, dim=0, (3.64)
N T2Ts N Iads)T 0, dim = 13,
NIE K2 NEsKals KoKl NTRlEy KoK K N KsKellls — dim =20,
NDR][Ky pE2KsKy N KsKellls 0, dim = 21,
NIEUKe NKsKals NEKoR7l o Nlalslo NTue)[Ka Ny KeKsKa NKsKellls — - qim — 25 |
NI NKsKaKs NKeKTlT ) dim = 26 ,
NTTsls NI Ko KsKa NEsKllls — () dim = 28,
N T2ds NIl NI Ta)[K w1 s Je Ko N s KaKs N Ks KAl — , dim = 31,
NTI2ds NIz N TsTTs N TsT7] Ry N1 s Jol e N Ks Kaks N KsKelTr — ) dim = 34,
N1T2ds Nl T N TaTads 6Tl 1 JsJol Ko K Kas N Ko KallTr £ ) dim =35 .

One finds in this case that the constraint (N3)!/ = 0 above with solution of dimension 26 cor-
responds to equation (3.55) and the constraint (N3)1/253 ;- = 0 with solution of dimension 21
corresponds to equation (3.63). More generally one finds

/ Big) = S eV o DR gl / db f(g) =0,

[071] Ne/\3z7 [071]
N2I1I2131415,0

/ W)=Y Iv@e Ve e [Diyliw /[ db f(g) =0,

[071] NE/\3Z7 071]
N31J—o
/[0 b fl9) = Y. IN@WETC e DY r ke /[0 b f(9) =0,
’ N3]\I[1€Ié\Iggz}::0 ’
/db f(g) = Z fN(U)eQﬂ—iNAa <~ [D§T1+2T7]i,jk7l /db f(g) =0,
[071] ]\][VEECBZZ(: [071]
[ re) = 3 oo Dhe st [ @56 =0,
) N 3z7 )
N?lef;\fszo
[drfe) = 3 i@ e Dl [ fg) =0, (3.65)
[071] N€A3Z7 [091]
NT=0
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We will now describe the integrability conditions for these differential equations.

Integrability conditions

e Let us first review the case of the minimal representation in these conventions. The absence
of irreducible representation in the Joseph ideal 1'12\1 = R(Y2+7Y) at the second oder, implies for
a spherical function

(28D D7 — 365 A ) 7 =0 (3.66)

We write the projector
2 Kl Kl 3 skl
[D¥y11elii™ = DijpgD"! — 55655 A (3.67)

such that [D%Z +T6]ikj k= 0. Clearly all the higher order Casimir operators eigenvalues are deter-
mined from the quadratic one since they can be defined as traces of the operator DiquDklpq to
higher powers. We have in this way

Anfmin —_ (%)n—lAnfmin ) (368)
The third order ideal component in R(2Y5) implies moreover
(4D150 PP Dyt = Digra (A +24) ) [ = 0., (3.69)

where
3 1. —D.. pgmn . (1
2 )
[D2T ]zg kl Dz]qu Dmnk:l ngkl(4A + 6) . (3.70)

One computes indeed using (3.36) that

18D

9
pq[iijqTSDkl]rs = *'DijklA + 108Dijkl . (371)

2

Now using moreover (3.66) one obtains that
(4D D™ Dyt = Dt (A +24) ) 7™ = =16 Dyjra (A +42) f =0 , (3.72)

so either f™" is constant and in the trivial representation, or f™" is an eigen-function of the
Laplacian with eigenvalue —42. The spherical representation is therefore unique and is determined

by the Joseph ideal equation
9

D _-
2

Dk:lqumin — 651 min . (373)

1Jpq
e For the next to minimal we write the two cubic ideals, the one in R(2Y3)
<4Diquppqm"7)mnkl — Dy (A + 24)) frmin — (3.74)
and the ideal (3.60) in the R(Y14+Y4+7Y7)
(36Djr[klpi’“mnppq]mn — 8 Dyipg (A + 42) + 8, Dy (A — 120)) frmin — () (3.75)
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Using again (3.36) one can act with an additional derivative on (3.74) and use (3.75) to obtain

DwPY <4qu7‘sDTSmannkl — qukl (A + 24)) fn—mm — E (28DZ]quklpq — 362‘7[A> (A + 60) fn—mm
(3.76)
We assume that (28Diqupklpq - 35/1%A> frmin £ 0 because otherwise we would be back to the

minimal or the trivial representation, so we obtain that f"™® is an eigen-function of the Laplacian
with eigenvalue —60. The higher order Casimir are determined using (3.74) as

Anfn-min — _60<_9)n—1fn—min ) (377>

Associated variety and harmonic superspace

The one-half BPS Grassmann analytic structure defined in (1.111) is associated to the weight T4 of
SU (8) that labels the minimal SU(8) nilpotent orbit Oy, in pc = ¢7(C)Ss((8, C) [178]. Defining the
normal triple (hy,,er,, fr,), the Grassmann analytic superfield W is precisely defined in (1.111)
to be the component along ey, € pc of W¥* and the harmonic variables parametrise the SU(8)
orbit of hy, € su(8). As such, W is in the minimal nilpotent orbit Oy, and the set of polynomials
in W is isomorphic to Grif(e7) f™" as an SU(8) submodule S(pg) of the polynomial functions in
Wikl je.

Grid(er) f™ = @ R(ny) . (3.78)
n=0

We find therefore that supersymmetry implies equations (3.66) and (3.69) and so by integrability
equation (3.73).

The one-quarter BPS Grassmann analytic structure defined in (1.114) is associated to the
weight To+Y¢ of SU(8) that labels the next-to-minimal SU(8) nilpotent orbit Ov,1v, in p¢
[178]. Defining the normal triple (hr,+7y, €Yy+7ss fro+7s)s the Grassmann analytic superfield W
defined in (1.114) is in the weight 2 vector space and therefore includes the component along
er,+1s € pe of W4 and the harmonic variables parametrise the SU(8) orbit of hy, v, € su(8).
As such, W™ is in the next-to-minimal nilpotent orbit O, v, and the set of polynomials in W7"*
is isomorphic to Gri(e7) f*™" as an SU(8) submodule of S(pg)

Grid(er) f"™ = P R(mY2+nYs+mYs) . (3.79)

n,m>0

We find therefore that supersymmetry implies the equations (3.74) and (3.75) and so by integrability
equation (3.77).

The one-eight BPS Grassmann analytic structure of type (1/8,1/8) defined in (1.117) is associ-
ated to the weight 27 1+2Y7 of SU(8) that labels the SU(8) nilpotent orbit Oay, oy, in pe [178].
This real orbit is inside the even complex orbit Op, associated to the Heisenberg parabolic P;.
The complex orbit Ozp, includes two real orbits, Oay, +ov, and Oay,. The closure of their union
Oap, U Oay, is expected to define the associated variety of the Heisenberg parabolic Eisenstein se-
ries E5\71 at generic values of s € C. Defining the normal triple (hoy,tov., €27, +27,, for,+2r,), the
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Grassmann analytic superfield W defined in (1.117) is in the weight 2 vector space and therefore
includes the component along eay, o, € pc of Wkl and the harmonic variables parametrise the
SU(8) orbit of hoy, tor, € su(8). As such, W is in the nilpotent orbit Ooy, 127, and the set of
polynomials in W7 is isomorphic to the SU(8) submodule of S(p)

S(p?kC)|O2T1+2T7 (3.80)
= @ R((n3+n4+2n))Y1+n2To+n4Ts+(n14+n3) Ta+ns Ls+ne Lo+ (ns+nga+2ny)Y7) .

n1,m2,n3,n4,14>0

The module Gri/ (27)EfA71 also includes polynomial with support on Oay, (see Appendix C.2)

S(p%)]@m = @ R(n3T1+n2T2+(n1+n3+2n4)T4+n2T6+n3T7) (3.81)

ni,n2,n3,m4>0

but this does not give any new SU(8) representation. The complete module Gri/ (27)ESEA71 only
admits SU(8) irreducible representations that appear in S (pTC)|(92T1 Lor, s suggested by linearised
supersymmetry. The multiplicities of the representations are different, and in particular the irre-
ducible representation R(274) appears with two distinct derivative of the function. In general the
associate variety associated to a spherical automorphic representation typically includes the union
of all real orbits in the same complex orbit. We can still conclude that supersymmetry implies equa-
tion (3.74). This analysis does not allow to determine the eigen-value of the Laplacian, although
we know that supersymmetry fixes it to be —60. We obtain that the abelian Fourier coefficients in
the decompactification limit are not generic according to (3.55).

The other one-eight BPS Grassmann analytic structure of type (1/4,0) defined in (1.119) is
associated to the weight 2Ty of SU(8) that labels the SU(8) nilpotent orbit Osy, in pe [178].
It is equivalent to its complex conjugate Oay, that must be considered together for a non-linear
supersymmetry invariant. This real orbit is inside the even complex orbit gy, associated to
the abelian parabolic P;. The closure Oap, U Oap, defines therefore the associated variety of the
abelian parabolic Eisenstein series JE’SEA77 at generic values of s € C. Defining the normal triple
(hax,, €27, for,), the Grassmann analytic superfield W defined in (1.119) is in the weight 2
vector space and therefore includes the component along esy, € pc of Wikl and the harmonic
variables parametrise the SU(8) orbit of haoy, € su(8). As such, W"* is in the nilpotent orbit Oary,
and the set of polynomials in W"* is isomorphic to the SU(8) submodule of S(pg)

S(p}})\@wz = @ R((n2+2n3)T2 +n1 YTy + HQTG) . (382)

ni,n2,n3>0

For generic values of s one has

GrU(en)ELY = @ R((na+2n3)Y2 +m Ty + (ng+2n5)Te) , (3.83)

n1,m2,n3,n5>0
nanf=0

which is the union of S(pg)|o,y, and S(pg)|o,y,- The chiral harmonic superspace suggests that
one can define a submodule for ng > k£ > 1. One shows in Appendix C.1 that such module can be
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defined starting from a non-trivial SU(8) representation, and k > 1 integer

GI"Z/{(27)D%],§T2E(E47+]€)A7 = @ R((n2—|—2n3)T2 +n1 Y4+ nng) D 5k71G1“U(27)E4EA77 . (3.84)
n1,n2>0
n3>k

For the V6R* type invariant this selects the regularised Eisenstein series at s = 5, for which

Gri(er) B = @ R((na+2ns3)To+mYy+ (np+2n%)Ye) & GrUd(er) By ,  (3.85)

!
ni,n2,n3,n3>0
nang=0

is consistent with the linearised supersymmetry analysis. The mixing with Gri/ (37)Ef/(7 which
expands as (3.79) is due to the one-loop divergence of the V4R* form-factor that can be read
from (2.66). We find therefore that supersymmetry implies equation (3.74) and that the Laplacian
eigen-value is —60. The abelian Fourier coefficients in the string perturbative limit are not generic
in this automorphic representation and satisfy (3.62).

We can summarise the results in this section by associating a nilpotent orbit to each supersym-
metry invariant, as displayed in Figure 11. We can similarly associate Eisenstein series to nilpotent

76
70

66 v6R4
64

54 VORY FPRVAR ‘\
52 ) VAR

34 ¢ R4

Figure 11: Nilpotent orbits associated to supersymmetry invariants

orbits as displayed in Figure 12. For completeness we have included nilpotent orbits beyond the
ones known to appear in string theory.

3.3 BPS instantons as supergravity solutions

The D(-1) brane instanton was described as a supergravity Euclidean solution in [7]. The metric
is flat g, = 0., and all the fields but the dilaton and the Ramond-Ramond axion vanish. The

74



94 ‘

92

90

86 2A1—|—2A7 q

84 2A6 L
82
76
70

66
64

52

Er pE
34 Esz7 ? Eg71EA27

0 Eé577 ®

Figure 12: Nilpotent orbits associated to Eisenstein series in the F; closure diagram, where we removed the
non-special orbits on the left for which there is no automorphic representation. If generic parameters s (or
t) are chosen one obtains the orbits shown; for specific values the wavefront set of the Eisenstein series (or
its leading residue) can be smaller as indicated for smaller orbits. Where we write different Eisenstein series,
they are all related by functional relations. The reduction of the wavefront set have be studied by analysing
the degenerate Whittaker vectors using Casselman—Shalika formula for Fourier coefficients [184, 185, 75].
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Lagrangian then reduces to

1
L = ixﬁ—g(auqb@“(b—e%@uCa“C)

1 1
= Cdpxdp+ 5e*wF*F —id(CF) (3.86)

where we used that the kinetic term for the dual nine-form field strength F' changes sign by duality
in Euclidean signature and the pure imaginary total derivative remains after duality using C as a
Lagrange multiplier for dF' = 0. The BPS instantons can be obtained by writing the action as a
square plus a topological term

[ — %e’w(de‘b T +F) % (de¢ F+F) + d((ief‘z’ — ZC)F) . (3.87)

One finds that e? is harmonic and the single instanton solution reads

12

3
F=—ndQy, e? = eP> 4 il
T

3.88
2758 ( )

with Euclidean action S = |n|e~%= +inCy. Without introducing the eight-form potential one can
interpret the solution in the symmetric space SO(1,1)\SL(2,R) as

1 C 3ne =P
v=e < 0 =0 > , C=0Cx+ Setr® £ 3jn] (3.89)

and the conserved current

B 12n

J = v (xdvv 7 (kdov ) ) = ——-d€Qy ( (3.90)

e -1 —Clog—e

Coote %> (Coote 9>)? >
with n = ({_9) (for the pseudo-Riemannian quotient by SO(1,1)) is nilpotent, i.e. J? = 0 as a
matrix.

This generalises to all the symmetric spaces and the BPS instantons contributing in string the-
ory. We will only discuss the case of E7, but the results of this section can easily be generalised. For
instantons contributing to abelian Fourier coefficients in a parabolic P; C E7, one needs to consider
a Euclidean solution in which all the axions parametrising U;/[U;, U;] have been dualised. In this
way the dual field strength charge defines the instanton number, as the nine-form F' for the D(-1)-
instanton secribed above. Because of the change of sign of the kinetic term in Euclidean signature,
this implies that for Py one must look at solutions in (SU(8)*/Z2)\E7 = Ry x (Sp(4)/Zs)\ Eg x R?7.
This is the real form of the coset space that arises when considering the consistent truncation to
stationary solutions in five dimensions. The corresponding instantons are then BPS black holes in
five dimensions with electric charge ¢ € Z>7 [186], reduced on the time-like isometry interpreted as
a thermal circle [182].

For P; the relevant real form is (SU(4,4)/Z2)\E7 = R, x (SO(6) x SO(6))\SO(6,6) x R3?+1,
In this case the vector fields do not admit a real duality equation compatible with E7 symmetry and
the spinors are complex. One finds nonetheless that it seems to be the correct real form to describe
Euclidean D-brane solutions for which the truncation to the scalar sector is well defined [51].
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For P, the relevant real form is (SL(8)/Z2)\E; = SO(T)\GL(7) x R**7. In this case the
vector fields do admit a real duality equation compatible with E7 symmetry but the spinors are
complex. Having complex spinors is not a problem in Euclidean signature [187]. We will discuss
this example is some details using the approach proposed in [188]. The Euclidean Lagrangian for
the scalar fields is

1 1 1
L= —2dGry*dG" + gG” dGry* G HdGrey, — G GRRGR P dar, 11, + dag, gy,

1 _ 1 1
+ 5 detG 1G[J (de — 7€IK1~~K6aK1K2K3daK4K5K6> * (de — fEJLl"'L6aL1L2L3daL4L5L6)

72 72
(3.91)

where only the axions a’//% have a kinetic term with negative sign. Here Gr; = E;%Ey, is the
metric on 77 with vielbeins E;%, arjx the three-form and b' the six-form. One defines the dual
three-form field strengths on R*

1
I IoT I Jy Do Jo I3 213 J1JaJs K
Flhilads — iJiclaJ2 (s 3*da‘]1j2]3—*5123123 aJlsz:;HKv

1
H] = detG_lG]J * (de — EEJLI"'LﬁaL1L2L3daL4L5L6) =0. (3.92)

The superymmetry variation of the Weyl fermions
OXaijh = Py )a X5 = (P7™e)q (3.93)

implies that one gets a BPS solution if P%°? = 0 for a,b,¢,d < 7, so that P,.s = 0. The generic
BPS solution only preserves 1/16 of the supersymmetry through a single right-handed Weyl Killing
spinor €% with SL(7) C SL(8) stabiliser. Written in terms of F//K and E;%, only SO(7) is manifest
with stabiliser G2 C SO(7). One can parametrise SO(7)/G2 by the orbit of the antisymmetric
tensor Cyp. that defines the structure constants of the octonions algebra. It is of course expected
that Gy appears in breaking supersymmetry to N = 1 [189], but here we only keep one chirality.
The tensor Cype is determined for a given solution by maximisation of the asymptotic boundary
integral

M(N) = / CarcEI*E Ex FTE (3.94)
6 Jom
which gives the real part of the instanton action. The constraints P,.s = 0 can be solved by using
the equation [h, P] = 2P for the slg generator h = %T88, imposing that P belongs to the nilpotent
orbit Oy, C O2p,. Then the e7 conserved current is automatically in the nilpotent orbit Oay,.
In the P basis with manifest SL(7) symmetry, the diagonalising element h can be written in
terms of the generators E®¢ € 35® and Fy. € 35¢2 as
1 abc 1 abc
h = écabcE + 60 Fape € slg . (395)
The equation [h, P] = 2P ensuring that P € Oy, gives

1
xdarj = —Clupe * D(E*E P Ex°) — EEI“E TP Bk Capede g C% det EEY Hy (3.96)
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while [h, d,h] = 4d,h ensuring that this condition is integrable gives

1
*DC%e = ﬁeabcdef 9Cyes det EE, Hy (3.97)

with D the SO(7)-covariant derivative. It follows that
darjx = —d(Br"E’ExCape) = arjx = —Er*E;°Ex Cope + a5 (3.98)

for constant coefficients ay . Using the expression for F//X in (3.92) and (3.96) again we obtain

1
FIIK _ 6€IJKPQRSQPQRHS = «D(E,' E, E.K Ce) | (3.99)

Because the left-hand-side is a closed three-form on R*, E,’E,” E.XC* are harmonic functions
KclIK
NIJK

Eo' By ES O = KPR = KR+ 37— (3.100)
p

2|lo —apl?
These 35 harmonic functions determine completely the vielbeins E,! up the Go C SO(7) stabiliser
that is pure gauge. The three-forms H satisfy

1
Hj = _ig”KLPQR/CJKL*d/cPQR, (3.101)

which is an exact three-form everywhere on R* provided the harmonic functions satisfy a bubble
equation of the same type as for four-dimensional multi-black hole solutions to do not admit closed
time-like curves [190]. In the present case this condition imposes the absence of M5-brane instanton
charge, which is required for instanton corrections associated to abelian Fourier coefficients. The
non-abelian Fourier coeflicients with non-vanishing M5-brane instanton charge must be defined in
a different signature, see e.g. [120] for a discussion of Taub-NUT instantons.

The single instanton solution takes the form

x _ NUE I Jp K ab x , NVE
—_ aobc __
Pt = gdQs . B By BT = KoT g (3.102)
with the constraint dH; = 0 at » = 0 that gives
ersxLprRKIEENTRR =0 . (3.103)

For H; = 0 one can rewrite the Lagrangian as the sum of a square plus a total derivative
1
L= GnGirGrq (FI7E = sd(E, By ESC) )+ (FIPQ — +d(E/F B EQC™) )
1
+ 6d((CabcE1“EJbEKC ~ z'aUK)F”K> . (3.104)

which gives the action [ £ = M(N)— %a 17k NT7K One can always choose the asymptotic vielbeins
representative Er® such that Cy. takes a canonical form at infinity. In this case defining Z%¢ =
Er*E’ErcNT7K at infinity, one must maximise

1
M(N) = 6/ CaurcEI°Ej"Ex F"R = Z193 — Zis6 + Zoas — Zaas + Z1ar + Zast + Zser (3.105)
oM
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with respect to SO(7) acting on E7® on the right to determine the Euclidean action. The function
M(N) is maximised if these seven Z’s are the only non-vanishing components of Z,,. and they
all contribute positively. One finds representatives of the ten SL(7) orbits described in (3.64)
depending of the set of non-vanishing components Z,,. among the seven above. One gets a 1/2
BPS charge with only Zj23 # 0 and all the other components vanishing, a 1/4 BPS charge with only
Z123, Z156 non-zero. A 1/8 BPS charge in Oap, can be obtained for only Zi23, Z156, Z147 nON-z€T0,
while a 1/8 BPS charge is in Oap, for only Zi23, Zi56, Z246, Z345 non-zero. This permits to write
the covariant form of the instanton action as the largest root of a polynomial in Z,..

For the appropriate choice of asymptotic values of the scalar fields one has then
1 1
42p2 7 4m2p2 7

while the other components vanish. This implies for the solution with only Z123, Z156, Z147 non-zero

1
PabCS — Zabcd Pabcd — ggabcdefg Zefgd (3 106)

that the only non-vanishing components of PY*! and Pjjk; are up to permutations
pls | plses - plT Pissr . Pasar, Passe (3.107)

which gives the four right-handed Killing spinors €, €8 using (3.93) and the fact that Pi = 0
if any of the indices is 1 or 8. On the contrary P7* £ 0 for any value of i. Following the same
argument as in [7], the fermionic zero modes of the solutions are determined by the unbroken
supersymmetries [191] that give rise to a superspace integral of the type discussed in Section 1.3
for the G-analytic superfield (1.119). One expects therefore such instanton to contribute to the
corresponding (0, 1/4)-BPS supersymmetry invariant consistently with the analysis of the preceding
section.

Similarly for the solution with only Zi23, Z156, Zo4g, Z345 non-zero one obtains that the only

non-vanishing components of P* and P;j1; are up to permutations
1238 1568 2468 3468
P Pt PR P Pser s Pasar, Pisst s Prost (3.108)

which gives the two right-handed Killing spinors €§ and the two left-handed Killing spinors €7
using (3.93). The integration over the fermionic zero modes in this background give rise to a
superspace integral of the type discussed in Section 1.3 for the G-analytic superfield (1.117). One
expects therefore such instanton to contribute to the corresponding (1/8,1/8)-BPS supersymmetry
invariant consistently with the analysis of the preceding section.

3.4 Eisenstein series in the string perturbative limit

In this section we shall give the explicit form of the ngd Eisenstein series in the parabolic P;
relevant to describe the string theory perturbative limit g, = e?-1 <« 1. We use the notation of
table 2. The computation is based on the formula (3.12), which reads for E;

/

1
E
INSVA
(FXF)|133:0

and that has a natural interpretation as a sum over massive 1/2 BPS supermultiplets with BPS
mass M = |Z(T")| [64]. The computation is explained in Appendix D.1. We will write generally S_
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for the lattice of D-brane charges in the left-handed spinor representation of the T-duality group
Spin(d—1,d—1,7Z). In our notation, the action of the 1/4-BPS Euclidean D-brane instanton of
charge Q € S_ is [192] 1®

SD—brane(Q) =7 \/|/U |2 + 2|U(Q X Q)|
9s

—27i(Q, a) (3.110)

with v € Spin(d—1,d—1) parametrising the Narrain moduli and a € S_(R) the Ramond-Ramond
axions. For short we write @ x @ = (QTy_5Q) the (d — 5)-form quadratic in @ defined by the
gamma matrix. For d =5, (QQ) € Z is related by triality to half the even scalar product on Iy 4.
For d = 6, Q7@ is normalised such that it is in II55. For d = 7, Q7@ is normalised such that
it is a vector in Lo, so all its components are integer except one that is possibly half-integer, when
2(Q7*Q)(QV4pQ) = 1 mod 4. We normalise |[v(Q x Q)|? with a factor of ﬁ.

For d < 6, the parabolic P; has an abelian unipotent radical, so that one can write a standard
Fourier expansion

L E(2s—dt1) b £(25 — 8)E(2s — 11) 4.
9—d d EEd _EDd 1 5( 25— d+1E d—1 S 4s—16
9 Faha T Py £€2s) & (—2590as T 0T 2g)e(25 —8) O
g_d=1 [v(Q)]
Lo¥ : 0d-1-25(Q)  sL(d-1) (vG Ky aa(2m755) 27i(Qua)
5(28) Qes. ngQ%(d_?)_zg) (57%)Ad72 |U(Q)’(1—ﬁ)s+?—ﬁ
QxQ=0
21 / K " (27T|v(Q)\)
T e 11 : .
+25d6£(2; 8)925 3 Z o11-2s( 2% mi(@a)
£(25)€(25—-3) el w(Q)z ~*
QXQ 0

Bs (& gz>|2 l(@xQ)ly

25s—8 3 o
Js 11-2s QXQ S s g9 271i(Q,a
+ 2046 725)e(25=3) E E n 08_2s(5%) 2|v(Q><Q)\ 2@ (3111)
QES_ n|Q
QXQ#0

where D,,_1 is the split real form Spin(d—1,d—1), the SL(d — 1) Eisenstein series is evaluated on
the Levi stabiliser subgroup SL(d — 1) C Py_s C Spin(d—1,d—1) of the one-half BPS pure spinor
Q, and B; , is the integral

° dt
Bj(,y) :/0 e T K 2y ) . ay >0
& DAkt g) Ky 2rvaT2y) (3.112)
S TSRS LS S

that behaves as

o VI2(Q)12+2[v(Qx Q)]

21/1v(Q x Q)I(v/I(Q)]% +2[v(Q x Q)[)I

8For d = 7 this formula is only valid for 1/4 BPS brane instantons, but 1/8 BPS instanton do not contribute to

E7
E5A7'

2 1
Bjs(1MGE, MR ~ gIF

95 92

(3.113)
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at small string coupling g, < 1. We recall that o4(Q) = Zn|Q d® is the sigma divisor sum of the
greatest divisor n of @ such that @Q/n € S_. Note that this expression (3.111) is an absolutely
convergent sum that is real analytic in the moduli and meromorphic in s. The 1/4 BPS instanton
corrections are exponentially suppressed with the expected weight defined by the classical world-
volume action on the Euclidean brane. The measure factor Q" Ul(Q XQ
and will be discussed below. The fact that the generic abelian Fourier coefficient is factorised has
been proved in general for the next-to-minimal representation [193-195].

) is generic for d > 5

Let us mention that the method developed in [194] provides an alternative way to derive mini-
mal and next-to-minimal Fourier coefficients from Borel Fourier coefficients that can be computed
efficiently using Casselman—Shalika formula [184].

In four dimensions there are also Neveu-Schwarz Euclidean five-brane corrections. We write
the NS5-brane charge k and the corresponding axion b (dual to the Kalb-Ramond two-form). Using
the antisymmetric Spin(6,6) scalar product (,) on S_ defined by the charge conjugation matrix
C, one obtains that the unipotent generators define the derivative

0 50 0 0

Ca Q ~—+

1 ) B
dac T 6(% b da | 2

— k— 3.114
<Q7 a> 8b b ab b ( )
that satisfy the Heisenberg algebra with central charge %. To define the non-abelian Fourier
coefficients one must therefore choose a polariation [196]. For this we need to break the symmetry
S0O(6,6) by choosing a Lagrangian subspace in S_. A convenient way to do this is to take the

further decomposition that appears in choosing a specific polarisation circle in 7

50(6,6) = 1077 & (gl ®s0(5,5)) ®10® |
32_ 1600 ¢ 16" . (3.115)

I

We write accordingly @ = (¢, ), a = (a,a), and

0 o 0 9 0 g _,0
kop U ag  Wayo T gz vl Prg. Wy, (3.116)
where we added the derivative with respect to the SO(6,6) axions ¢ in the 10® nilpotent compo-

nent. We can therefore consider the Fourier decomposition with respect to the unipotent character

. op = 627ri(k(b-f—fla-i—(igi&)+q(a+2¢d)+p~c) ’ (3117)

where ¢ x ¢ is the product defined by the Spin(5,5) gamma matrices, and we use the notation
that p- (¢ x q) = gpg. In this form ¢ € Z is the charge of the Euclidean D-branes wrapping the
polarisation circle, whereas the charge ¢ of the D-branes not wrapping the polarisation circle is not
defined.
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After several manipulations explained in Appendix D.1, one obtains the R* coupling function
in four dimensions

9lon = 4AnE(4)glEy, (3.118)
v(Q)]
8T Ky(2r )y
= 2AB)g P HATEAE +— D 03(Q)— L€
9 S5 [0(Q)]
QxQ=0
r Ks (2r /2 + @R Jolgahk) P+gt B2 2 )
us 3 92
T Rlos(k,q, 54— ; 5 Vg g 0% 5
9 z%%qe%e (K2 + g2 Rlo(g+ak) g R2o((2t22atapy g B0
klaxq

where R, is the radius in string lengths of the polarisation circle. The one-loop correction reproduces
(2.29) as was identified in [76]

d2
AmE(4)EDE = 7'('/]:;—7'261_‘1[6’6. (3.119)

T

The Euclidean D-brane instanton is the same as in ten-dimensions

[n
87 KI(QWT) ;
— > 02(\n\)T’9e2”Z"C . (3.120)
9 neZ~{0}
It was recently computed in [10-12]. The instanton measure o_9(Q) = gjégg is the appropri-

ately normalised partition function of maximal super Yang—Mills on the torus with gauge group
SU(gedQ)/Zgeaq, which was computed in [197]. The NS5-brane instanton corrections have not
been computed and are only known through duality relations in general. One may observe that
one finds the same measure and functional dependence in the string coupling constant as in the F*
threshold function computed in type IIB on K3 x T2 at the T*/Zs orbifold point in [198].1

One can check by consistency that the function is invariant under the Ramond-Ramond axion
shift @ — a + « for x € Z'%. Indeed

wkqup‘aalz = wk,q+mk,p+2q><u+u><uk ; (3‘121)

and the Bessel function argument satisfies the same property such that the total function is invariant
under the shift when including the sum over all k € Z and ¢ € Z' satisfying k|q x ¢. It is the case
that if k divides ¢ x ¢ then it divides (q + xk) x (¢ + k) = q x q + 2q x vk + x x zk.

9Note however that the measure factor at a generic point of K3 is very different, and gives instead a result similar
to the heterotic NS5 brane instanton corrections [120].
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The V*R* coupling function is also calculated in Appendix D.1 as

P = STE(AEB)IEL, (3.122)
_ 473 4
= ((B)g. + €OV E, + 507 C(4) By,
0@ v(Q)|
6 S (8 02@ oy psie o, KOTT) w2 BT i
6 3 0B, (vg) o+ T 2
0cs. \ T ged@s v(Q)|3 [v(Q)]
QxQ=0
\/Iv(Q)\2+2|v(QXQ)\
110 S dro(%R) Fa(om ) mia)
95 Qes. 4 v(Q x Q)V[v(Q ’2 +2/v(Q x Q)
QxQ#0
Q(@xQ)=0
R8 Kz (2r \/kz+qu‘ (q+ak)\2+q4R2 (letaklx(gtak) ) > )
JrSgs 1/, axaq 07(1{;7% qxq) 2 92
léqezzjlﬁ fa ( (k2 R (g ak)[P g B2ttt o)
klgxq

Ky (2 VB + 2R folg-ak)+g! R (R

C(8) BT (k) —

92 R.Jv(g+ak) [2g! R |o((HAR (k) 2

R5 Ul(kvqa %) .
“ged(k, g, 1) 2

122 g k
+167rgs3ng Z Z ¢kz,q,p Z n70'3((2¢q7;—2pq><q))

keZ~{0} pez!® n|(k,q,p)
€Z16 k p 2
a Elpl” — g
B ( k2 + 2R |u(q + ak)|2 + g"R2|v(p + 2a x g+ a x ak)|>  \/Blolp—ax o + 2 Ro(a+ (p—ax@)a)? + g Ro( 2 + 2apa + alks —as)a)l? )
2,3 g9 ’ g9¢
s s

2 N3
(R2|o(kp — g x @)% + g>R3[u(pq + (kp —x0)a)|* + g* R o(Z + 2apa + a(kp —gxq)a)|>) 4

The one-loop and two loop corrections agree with the perturbative computation [76] 2

473 D 273 d*r . 4 D 6
TR =T [ T B@m, . CWER, = 4r /f qerog A (3123
It is interesting to look at the generic abelian Fourier coefficient
VP +2[(@xQ)]
16 K (2w ,
4 Z Zd4‘71 QXQ ( 25 ) o2mi(Q.a) (3.124)
% ges.  dq Q)VI(Q)F +2v(Q x Q)]
QxQ#0
Q(RxQ)=0

corresponding to 1/4 BPS D-brane instanton corrections. As the 1/2 BPS instanton corrections in
(3.119), one expects them to be universal in all dimensions D < 6 by T-duality. We need at least
T* to have such a configuration of brane breaking 3/4 of the supersymmetries. One easily reads
from (3.111) that the correction is indeed the same in D = 5. In D = 6 1/4 BPS instantons only
contribute to ¢(5)EZ, 5 /2 A, and give again the same formula (3.124) [63]. 21

20Where one uses the functional relation §(2)E§Df\2 = 5(4)E2DA66 = £(4)EDe to simplify the genus one integral.
3 o
*'Tn D = 6, Q € II4 4 by triality and one can use |[v(Q)|* = pL(AQ)2 +pr(Q)? and 2[v(Q x Q)| = |p(Q)? — pr(Q)?|.

See for example [27] for the complete Fourier expansion of ¢(5)E55, -
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The 1/2 BPS index in [197] suggests that the supersymmetric index of DO particles on T? is
equal to the partition function of the Euclidean D3 brane partition function on 7%. This generalised
T-duality suggests then that the helicity supertrace of D1-D5 states on T° should be identical to
the partition function of Euclidean D1-D5 branes on 7 [199], or similar T-dual configurations.
Using [30], one can derive the following helicity supertrace of the D1-D5 CFT on T*, with Q7 and
Q5 relative primes, as

rot s (PR @I?| = 32 (-1 2k + 1Dy pps(Q1. Qs r.dr) = 01(@1Qs) . (3.125)
JLJR

which is consistent with the instanton measure ) dlQ d401(Q z~). However, this consistency check
should not be overestimated since there are other choices of helicity supertraces and the projection
to states with Jg = 0 is not justified. This result could be derived in principle in string field theory
and one expects the measure factor to be the partition function of the (U(Q1) x U(Q5))/U(1) half-
maximal super Yang-Mills theory coupled to (Q1,Qs5) hyper-multiplets on a torus [200]. However,
the equivariant localisation formula used in [197] does not directly apply because the Q-deformed
partition function is a rational function of the ¢; deformation parameters and the limit e; — 0 is
not unique.

The VOR* coupling admits a contribution from two different supersymmetry invariants, and the

one associated to the chiral harmonic superspace (and nilpotent orbit) of weight Y5 is given by the
64¢(10)
189

regularised Eisenstein series EE7 [64]. The abelian Fourier expansion can more generally be

computed as

2%k +8 Jo _ Ds §(2k +2) 9 o 1D £(2k — 1)€(2k ) 4k—2 2 Dg
9s /[Ocﬁ’ E(k+4)A7 E(k+4) * (2k+8)g E(k+2) + £(2k + 8)€(2k g B,
' lv(Q)]
po S5 own(Q s wem@a)
£(2k +8) Ocs. gchs (k) (hH2) (@)
QxQ=0
' [v(Q)]
po SCE-DE s~ an @) g, KE2CT ) ariga)
E2k+8)ERk+4) 2 ged@w (@) 3
QxQ=0
(@ [v(@xQ)
L g2k1 Z d2+2k02k—1(QdX72Q)ESL(z)(UQ)Bg,kfl( 92 g )627ri(Q,a)
£(2k + 8)&(2k + 4) Ges. 4o (ged@ x Q)F=L ¥ [v(Q x Q)|
QxQ#0
Q(@xQ)=0
(3.126)

where Ug in the last line parametrises the stabiliser SL(2) C SL(2) x Spin(3,4) x RS+ C
Spin(6,6) of the instanton charge Q.?> One can compare these results to perturbative string

22More precisely @ x @ € L2 C s0(6,6) and belongs to the SO(6, 6, Z) orbit of the highest weight vector gcd(Q x
Q)A2. One defines kvy such that its SL(2) Levi factor in P> C SO(6,6) is the SL(2) matrix parametrised by Ug
and ged(Q X Q)yA2 = Q X Q.
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theory

644(10)ED6 - d>r

d?Q 4¢(6)
A — Es(1)751 20
189 541 567 F TS STl s /Fg de tQ4

detQEPH66 = T’?

D D
(E3A65 + E3A66)
(3.127)

so that this function reproduces the above one-loop component and the E . Eisenstein series part
in the three-loop amplitude [201,84].

Let us end this section by a short analysis of the U(e7) module structure (3.84). Using (3.116)
one finds that the differential operator D%TQ defined in (3.45) can be written as

0 0 0 o\ 770 0 10 /0 o 0 0
= —ay— ) (— —ae )Y (- — e ) — oo (o — Gy, — —ay—) . 3.128

(acf “71(9@) (8@ “ab>7 (8@ “ab) 28b<6c “Voa’ dc ‘”aa) (3.128)
By the cubic constraint @ - (Q x @) = 0, this derivative 88 7 is projected to the Levi stabiliser
SL(2). Writing the projection of D3y to the (20,1) irreducible representation of SO(6) x SO(6)
one obtains therefore

D cv(g X 2) /db EE7 _ 8mg;® Z d2+2k02k_1(@d%62)
da” dalvye [y WO T €2k + 8)E(2k + 4) g5 g (eed@x Q)
QxQ#0
QR(RxQ)=0
Bs 77(\U(Q)|2’ |U(QXQ)\) ‘
D( CESL ( ) (Q % Q)b)/ 2:k—3 g2 g2 eQﬂz(Q,a)

[v(Q@ x Q)]

where a,b, ¢ d are the vector indices of SO(6) x SO(6) and (ab) is projected to the traceless
symmetric component 20. Using the property of the SL(2) Eisenstein series we conclude that
applying the component of ngr in the 2k irreducible representation of SO(6) gives accordingly
the holomorphic Eisenstein series

2 I'(2k 2m ; 3
DE(U) = UG (U) = 2 )U§< Zagk, e ) ~5a = . (3.129)

For the £ = 1 case one gets the quasi-holomorphic Eisenstein series Gy =Gy — ﬂU , because of the
pole at s = 5. Using the definition

5)€(142
Egy, = l%(E(bt;le)A? - f(g()e;i(g(m;) EgEXJ ) (3.130)

it follows accordingly from

7 g
D™Dy, lij 2B = EDMDW(A +60)EL (3.131)
and 64¢(10)
~nE
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that

y 64¢(10) ~ 35 iy
781513 Er\ _ 78157y, . E

DT [De iz (“ g0 Eae) = 52D Disn2(CBIEE, ) (3.133)
Here we have used the normalisation justified by the fact that £, = 6%%8;_]) Ef A T E(Fg‘f)T . The

relation above does apply to the exact coupling functions

g 35 ...

D™ [Diy, Jij12E01) = §D78”Dz‘j125(1,0) : (3.134)
In analogy with the discrete series, DgllijiﬁFk) A, defines a submodule of ¢ (67)E(b:11k) A, exactly

as Gop defines a submodule of M(E[Q)E:LQ) for k > 2. This tensor ’DSQTQE(EZLLIC) A

generalisation of a holomorphic function for the real symmetric space (SU(8)/Z2)\E7. In this

interpretation, (3.134) is the equivalent of a holomorphic anomaly that is due to the supergravity
23

is a natural

logarithmic divergence.

3.5 [Eisenstein series in the M-theory large volume limit

Let us consider the Eisenstein series Eg{ld in the parabolic P, corresponding to the large torus

volume limit in eleven-dimensional supergravity. We define the volume of T¢ as (27£V'/3)4, such
that the volume spanned by a Euclidean M2-brane scales linearly in V.

For d > 5 we define N x N € A%'Z = NSZ,.® Z.© A®Z. The 1/2 BPS M2-brane winding matrix
N satisfies N x N = 0 and the Euclidean action reads

SM?(N) — QW\/%G]LGJPGKQNIJKNLPQ _ %GUKNUK
= 27V |Z(N)| — 27i(N, a) , (3.135)

with G, the torus metric. The stabiliser of N is then SL(3) x SL(d —3) x R**(@=3) ¢ SL(d). We
write vy € SL(3) and v}, € SL(d — 3) for the Levi stabiliser components of v € GL(d).

For d > 6 we define (N x N) - N € A®3Z? the projection of ASZ ® A3Z to the R(Az+Ag)
irreducible representation. The 1/4 BPS M2-brane winding matrix N satisfies N x N # 0 but
(N x N)-N = 0. The stabiliser of N for d = 5 is then Sp(4,R) x R*, and for d > 6 one gets
GL(d—5) x Sp(4, R) x R4+4x(d=5)+d=5 — p, o = S[(d). We will write v the corresponding GL(1)
stabiliser for d > 6 (See Appendix D.2 for the precise normalisation). The Euclidean action for 1/4
BPS Euclidean M2-brane instantons of winding matrix N € A3Z¢ can be worked out from (3.105)
ag 24

gM2 (N) = 2#\/%G1LGJPGKQNUKNLPQ + % \/%Ghb oo+ G, g Gy N T2Is NTals K o Js N JadsL

)
1JK
-3 argk N

= 20V /|Z(N)2 4+ 2|2(N x N)| — 2mi(N, a) (3.136)

ZThere is a similar construction for DZ?TlE(EZZ—k)AZ that defines a submodule of Z/{(e7)E(E2:_k)A2 for k > 2. These
representations are natural candidates to define cuspidal automorphic representations with abelian Fourier coefficients
supported on the set of generic M2-brane instanton charges with compact stabiliser G2 C SL(7). They may contribute
to 1/16 BPS couplings in string theory, and the coupling function could receive corrections not accessible by any
perturbative methods.

240ne must obtain | Z123| 4 | Z156| for Zape with only non-zero components Zi23 and Zis6. This is the case if one
takes the formula below.
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We will use the short notation in the second line, where the normalisations of |Z(N)| and |z(IN x N)|
are multiplicative characters of the parabolic P3 and Ps; for the highest weight representatives of
N and N x N, respectively.

We compute in Appendix D.2 for d < 5

— 8 s E sp@y | E(2s—d+2) 4 o o SL) §(2s = 5)(2s = 7) . 10_4s
i g = ses—are) B 5
V sy sANg_1 + 5(28) V ( d— 3)A2 + d,5 5(25)5(28 _ 2) V
d—2
LA / 0d—2-2s(N) _s13) (o KS*H(%V‘Z(N)')ezm(N,a)
d—3 s—
£(2s) | L5 gedNS(-3-2) (=5 |Z(N)| =5
NXxN=0
13_3s ! K 2nVI|Z(N
+25d’5§(25 —5)V= 07—25(N)ESL(25)A (vn 5~ ( mViZ( )Dezm'(N,a)
5(28)5(28*2) Nerszs (s—3)A2 |Z( )’7—5
NXxN=0
- Bs ,_s(V2|Z(N)|*,V?|z(N x N)|)
+ 2005 Ty Z D nT oy g (M) 22 — iVl (3.137)
NEA3Z5 n|N ‘Z(NXN)|2 s
NxNA£0

For d = 6 the parabolic P, is not abelian and in particular there are Euclidean Mb-brane cor-
rections to be taken into account. We write the Mb-brane axion b. Let us now consider the
non-abelian Fourier coefficient for Fg. We introduce the antisymmetric SL(6) scalar product over
A3ZS. Similarly as in the preceding section, one can define the generator of the Heisenberg algebra

0 0 1 IJKLPQ 0
— — — . 3.138
ob ’ aaUK + 125 aLPQab ( )

To define the non-abelian Fourier coefficients one must therefore choose a polariation. Once again
we choose a polarisation circle in 7, that involves the decomposition of slg into Ps

sl = 57V @ (gl ®sls)@ @5
20 ~ 10°V g 10" . (3.139)

In this way one obtains the decomposition of N = (¢, q), a = (a,a), and

0 0 0 0 0 0 0
k— e {1/ s P C e —ap— 3.140
' T “a Tt Pac Poa (3.140)
where we added the derivative with respect to the SL(6) axions in 5. We can therefore consider

the Fourier decomposition with respect to the unipotent character

Doy = e2m‘(k(b+a/\a+aAaAc)+q(a+2cA&)+pC) (3.141)
ap = ’ '

where we define the wedge products such that c is a 1-form, ¢ and @ are 2-form, a and ¢ are 3-forms,
and b is a 5-form. One finds that this is a unipotent character of the parabolic Pg, for which we know
the Fourier decomposition for any s [202]. Physically, we first expand in the T® M-theory volume
V2 and then on a particular circle radius 5 to choose a polarisation. The M2-brane wrapping the
polarisation circle have a well defined charge ¢, whereas the charge g of the M2-brane not wrapping
that circle is not determined.
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One obtains in this way the complete expansion of the Fg series

o 95 2SL6) | §(258 —4) 4. SL(6) (25 — 6)£(25 — 8) - 19_95 .SL(6)
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For example for the 1/2 BPS coupling, one gets

c 9¢(3)EPs o173 L(6) 2”2‘/4 Ar V3 / N e~ 2mVIZ(N)] 2mi(N,a)
o0 = KOEG, = WGBS + Ve anV? 3 o) e
Nen3z6
NxN=0
4 Kq(2 U4 VEZo(g+ k)P 4 rd o LERAEaR) ) 3
y i VZ Y Wguarsoa(k, g, %) LMYV it o AR g g
kEZ qe7,10 (K2 + Flo(q + ak) 2 + o200t 2) 5

klgng

The M2-brane instanton corrections are of the same form in all dimensions, and the measure factor
01(N) has been computed in a matrix model [203]. The partition function of k parallel M5-branes
wrapping 7% with the centre of mass motion factorized out gives the partition function of SU(k)/Zy,
N = 4 Yang-Mills on T* [204], that is o_»(k) = 2% [197).
We have &, ) = %EZE/G\G = {(5)E§/6\1 in five dimensions, and the coupling function & can
2 2

therefore be read from (3.142) at s = % We do not write the expression since there is no particular
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simplification and the reader can set s = % in (3.142). Let use note nonetheless that the generic
abelian Fourier coefficient

!/

N x N)|1K;(2 Z(N)2+2[z(N x N :
srV0 S Y no g () [2(N x N)[1Ky( 7TV\/I )2 +2|z(V x )I)egm(w,a) (3.144)
vnged(N x N)iy/[Z(N)2 + 2z(N x N)]

Nen3zb n|N
NXN#£0
(NxN)-N=0

is factorised and -,y no— 1(N XN should therefore be the partition function for 1/4 BPS M2-
brane instantons. As expected, this Fourier coefficient is universal in all dimensions D < 6, see
(D.36) for the expression in D =5 and D = 4.

89



4 Eleven-dimensional supergravity on 7

Eleven-dimensional supergravity on a circle is conjectured to describe type IIA string theory in the
strong coupling limit e®A > 1 at low energy s¢> < 1 [6]. Compactification on an additional circle
in string frame allows to identify both type ITA and type IIB moduli in nine dimensions, with the
metric

ds?y, = €39 (dy'® + Cody®)” + e~ 391 (R2(dy”)? + ds2)

OB\ % 2
= (;—]34) : (e¢’B (dy'® + C’dyg)2 +e79B (dy9)2) + (%) Yds2 (4.1)
where we write ¢, and R, the type ITA dilaton and circle radius in string length, and respespectively
¢p and Ry in type 1IB, while C9 = C for the Ramond-Ramond one-form and axion. The small
torus volume limit corresponds in type IIB to the large radius limit such that one retrieves type
IIB string theory in ten dimensions. The SL(2,7Z) S-duality symmetry of type IIB string theory is
then realised geometrically as the group of global diffeomorphisms of the M-theory torus.

Eleven-dimensional supergravity is instead a good approximation at large torus volume, cor-
responding to small type IIB radius. In this limit one expects the supergravity four-graviton
amplitude to reproduce accurately the string theory amplitude at low energy. The supergravity
four-graviton amplitude in eleven-dimensional supergravity has been computed up to five-loop or-
der [205-208]. The low-momenta expansion of the amplitude exhibits that the lowest order in
momenta only get contributions from the first loop orders. In particular, £, only gets contribu-
tions at one-loop, & o) up to two-loop and &y 1) up to three-loop. Moreover, the non-perturbative
corrections in M-theory due to BPS M2-brane instantons do not exist on 72. Thanks to these
properties one can then safely take the small torus volume limit. The four-graviton amplitude in
eleven dimensions on R'® x T2 was analysed in [9,55,56,209,210] up to three-loop order and the
one-loop and the two-loop supergravity amplitudes determine the exact coupling functions &g g,
Eu,0 and &y in type IIB string theory [9,55,56]. The validity of this construction may rely on
some conjectures, but have been checked to match string theory computations [166,201,84,10-12].

In this section we repeat this computation on a torus T for 3 < d < 7. We will use this result
to check consistency with the non-perturbative coupling functions in the large volume limit.

4.1 Coupling functions from the supergravity amplitude

The supergravity limit does not give the exact coupling functions & oy, £1,0) and Ep 1y in general.

Including the eleven-dimensional effective action, one expects nevertheless to get all the perturbative

power-low terms in the torus volume. The only BPS non-perturbative corrections are due to M2

and Mb-brane instantons, as exhibited explicitly in (3.142) and (3.143) in the preceding section.
We define the eleven-dimensional metric in Einstein frame as

ds?y, =15 Upydy'dy” + =5 g datda” (4.2)

with U unimodular and r defined such that the torus volume is Vol(T¢) = (27¢ r%)d. The relevant

physical modulus used in section 3.5 is V = 7“%, which scales with the volume spanned by the
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Fuclidean M2-brane inside the torus. We write the four-graviton amplitude in terms of the scalar
function A(s,t,u,¢) (2.13) with 2x2 = (27)89%~¢ and the torus T¢ has coordinates y! with
periodicity y! = y! + 27¢. It admits the loop expansion

A= Z/@ (Ao o e® o / tsts R + ...

+ 2626121411 IUOP[ /t8t8V6R4 -+ (/ t8t8R4 + ... )2] + ... (4.3)

where the first term is the supergravity amplitude, the second represents the form-factor with the
insertion of the leading higher derivative correction in the Wilsonian action in eleven dimensions.
The last line includes the form-factor with the insertion of the next-to-leading correction and the
double insertion of the leading correction. In eleven dimensions there is a unique BPS counter-term
that starts as R*, and that we must include with a fixed coefficient ¢ = % to match the type II
string theory four-graviton amplitude [9]. This coefficient can be fixed in many ways, for example
through the cancelation of the M5-brane world-volume anomaly [127], or the cancelation of the
U-duality SL(2,Z) anomaly in D < 8 [42,51].

The one-loop amplitude in eleven dimensions on T gives rise to the sum over the Kaluza-Klein
states

1-loop __ 1
AT = 64k % %d/ (p24+M2)((p — k1)2+M2)((p — k1 — ko)2+M2)((p + k4)2+M2)+ O
_ F(d 7)F(M)2 ! 3—d (1—Jr)¥ 3-d (1—&?)%
= 812 662(8d)/odm (( —0%5)" 2 m (=22 (1+8)$_1> (4.4)

—|—47T€6 /OO dsI—/d Z /ldl‘l/ débz/ ds eﬂ'Lé ((1—z1) (w2 —x3)s+x3(x1—x2)t)—mLr—3U "' [n]) + 0O
0 L2

where the Kaluza—Klein mass is (2M? = r—3U~![n] and the second term including only the sum

over non-zero modes n € Z% is analytic. The dimensional regularisation d — d 4 2¢ is chosen to

agree with the one derived in string theory in Section 2.2. The two-loop amplitude is written in

Schwinger parameter space as in (2.102)

Ao — ﬁgloz dleL?dLi; _ §2e~ T (LU ]+ LU [n2]+ LsU ™ [n1+n2]) (4.5)
neza /R (ZI<JL1LJ) 2

/ dydys LE ™ sl (1=v2) / dysdys Ly
0<y1<y2<1 0<y3<ys4<1

7r€2 (styz(l y4)+ L ,Q,Lf” (t(y2—y1)(y4—y3)+8(1—y1—y4)(1—y2—y3)))
7752%(t(y2*y1)(y4*y3)+8(1*y1*y4)(1*y2*y3))
/ dy3/ dys LoLse = + perm.

It must be decomposed into the component with n; = 0 corresponding to the two-loop amplitude

in D dimensions, the component with ny = 0, ng = 0 or ny + ne = 0 corresponding to a one-loop
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form-factor (when one of the particles in the loops is massless) and the component with n; # 0 and
n1 + ng # 0 that contributes to the Wilsonian effective action

A dL,dLydL 5L1LsL Qi3 T
Ai,f/‘)zpzf 157203 d<47r02+4§203<ZLJ—1 23 )+> Ze w0y T iUy
2
I

6 Iri (5, niLs)® 2resbibs
n17—l|-if7lé20750
(4.6)
where we introduced
or = (52 (sF +tF + k). (4.7)

In critical dimensions in which the form-factor diverges logarithmically the sum over degenerate
Kaluza—Klein modes also contribute to the Wilsonian component of the amplitude, as we shall
describe in the next section.

The supergravity three-loop four-graviton amplitude was derived in [125], and further simplified
n [126,205]. To compute the three-loop amplitude in Schwinger parameter space, it is convenient
to use the so-called BCJ integrand [205]. There are twelve diagrams in total, nine are associated
to the vacuum tetrahedron and can be written in the schematic form

ASE = Z Z / e / AP () [dha (Ng; - kyt f(s, )26 T b+ arnlU ) + 2096 ks (5.0
FE

S3 n;ezd

“Er Y [

S3 n;eZd

1 . ) . )
5P (Q) /d4x (—Q;llN’”N”ki kj A+ (U MMINY k- ke 4 f(s,t))2>
det Q' Fp 2T

7 1]7« nT 1arkipgly _
xe w2 TU n+nQp; M* MYk -kj—mg(s,t) (48)

where Sy is the subset of the three by three positive matrices

Lo3 + Loz + Lo2 —Lo3 —Lo2
0= —Lo3 L31 + Los + Lox —Lo1 (4.9)
—Lo2 —Lo1 Lio + Lo1 + Lo2

where L,, = L, > 0. The matrices M iJ are linear in the L,,, with coefficients that are affine in
the Feynman parameters z and depend on each diagrams. The Feynman parameters come with
their integration domain F4 and a polynomial Pg '(Q) in the Schwinger parameters coming from
the change of variables. The matrices N¥ have constant coeflicients and determine the kinetic BCJ
numerators. f and g are linear in the Mandelstam variables, linear in the Schwinger parameters
and polynomial in the Feynman parameters. We used the explicit expressions in a Mathematica
file, but they are rather lengthly and not so illuminating so we chose to do not display them.

The ladder skeleton is obtained by setting Loz = 0. To combine the two types of diagrams it
is convenient to use the same Schwinger parameter space S with a Dirac distribution d(Lg2). We
write schematically the three diagrams associated to the vacuum ladder diagram as

é;)]ore) _ 16 Z Z /d3D€/SdGQ5 Ql3 (Q) /}C_P:L’ S4ef7r[52”(/ -l +Tn U™'ng) +2M¥94; - kj + g(s,t)]
S3 n;ez7 A

—EY Y [

S3 n;czd Sy det Q 2

nI U nj+mQ MM MYk -k —mg(s,t) (4.10)

S0 [
Fa
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Writing the ladder diagrams contribution this way is justified if we want to interpret the three-
loop supergravity amplitude as a tropical limit of the three-loop string amplitude. The mod-
uli space of genus three Riemann surfaces can be identified with the Siegel symmetric space
U(3)\Sp(6,R)/Sp(6,7) with the separating degeneration locus removed. The tetrahedron and
ladder diagrams then arise from the two maximal non-degeneration limits [175,211]. Note nonethe-
less that one does not expect to be able to write the four-point amplitude as an integral over the
moduli space of genus three Riemann surfaces with four punctures [212]. The fact that it is possible
for the leading Wilson coefficient might be related to the fact that it takes the form of a vacuum
diagram [201].

We shall only describe in detail the leading contribution to the Wilsonian effective action that
arises in combining the contributions at low energy

59 /5 Lp@(Q) + §(Q'3) PO (Q) Y e i’
ASIOO}):/ 7(70_3_1_ 6 0-2+) e ™ TLU n; (411)
AV 9—d 2
‘ Sidet 0°z" \6 det €2 n;€Z4
n;7#0
n;+n;7#0

with the definitions

7r 17 19 s 2
PY(Q) = s Z(detQ Lz — 5 LasLsiLaaLos — §L23L31L01L02) t 5 (Z L23L01)
Sa
7['

PO(Q) = 1 Z (L23L31L12(L01L03 + 2Ly3Lo1 +L23L12)) (4.12)
ZQXZQ

where Ziy X Zo is the stabilizer of Lys in S4 permuting the vertices 0 and 2 and the vertices 1 and
3.

The Schwinger parameter space is a 24'"" order unfolding of the SL(3,7) fundamental do-
main Gz = S4/Ss, where Sy acts as the permutations of the indices p of the tetrahedron ver-
tices [210, 74]. In the same way at two-loop, the Schwinger parameter space is a 6" order
unfolding of the PGL(2,7Z) fundamental domain Gy = S;/S3 [55]. We shall write the ana-
lytic component of the amplitude in Schwinger parameter space using the tropical moduli space
Gn = SO(h)\GL(h,R)/PGL(h,Z) for h =1,2,3 of the vacuum diagrams

O DO &

Figure 13: The skeletons graphs with respective symmetry {1}, S3 and Sy.

We must also take into account the insertions of the higher-derivative terms in the eleven-
dimensional supergravity effective action. The form-factors have not been derived directly in su-
pergravity, but one can deduce them from the perturbative string theory amplitude or from the
sub-divergences of the supergravity amplitude. The second method was used in [209] to derive the
contribution of the R* form-factor. Because the power-low divergence does not preserve supersym-
metry a priori, one must be careful and it is more safe to only consider logarithmic divergences in
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the critical dimensions. The pole in % in dimensional regularisation must define supersymmetry
invariants as the first logarithmic divergence in the theory in a given dimension. For R?* it turns
out to give the same result as in string theory, so we can simply deduce from (2.51) that

2
Al loop __ 2¢r €6H2 / 5 + O
e i gZ:d (p +M2)((p—k:1)2+M2)((p—k1—k2)2+M2)
nezd

One can obtain similarly the two-loop form-factor starting from the three-loop amplitude and taking
a subdivergence in D = 8 — 2¢ dimensions

Az)(;p _ crd€6/ d3Q; Z e_ﬂr—3Q;jn;!'U71nj <50'3
92 detQy? pyezd T
1 8L, LoLs 1 )
+ ((7 L[— 7) + = L[+1L[+25(L1) 09 + ... . (4.14)
(T2t i) a2

As expected from supersymmetry, this result is consistant with the form-factor contribution at
two-loop in string theory (2.126), upon replacing 2¢(3) by c¢r?. The term in §(L;) corresponds to

a eight-shape Feynman diagram 2°
6 2 2
2er" (% / > + O 4.15
<§ (p2 + M2)((p — k1)2 + M2)((p — k1 — k2)2 + M?) (4.15)

that should appear in the two-loop string amplitude. One expects such term to appear in the
further degeneration of the non-separating degeneration limit through the first diagram in figure
10, but we have not carried out this computation.

Here we shall consider the low energy effective action up to fourteen derivatives, for which only

the first three loop orders described above contribute in supergravity, including the R* counter-term
with coefficient ¢ = % Combining all the contributions described above, we get

6 bll‘rr a
Awe =1 Z 02 (p,q)

_ 4 66/ dL Z /dwl/ dis /m2d(133 T LE((1-21) (22 —s) s+ (@1 —2)0)~wLr=3U - [n]) |
0

nezd
dSQ ! i, — -
nl? / (o2 205 () ) DD e
92 detd, > nyeZBxd

/

6 i
+20£503 / d%fd D U
Gs |

3‘ 2 nieZQSXd

250ff-shell one should write one integrand in function of ki1, k2 and the other in function of ks, k4, but because the
integral only depends on s = —(k1 4 k2)? = — (ks + k4)? we can write it as a square.
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+£6< d W03+...)

7070 < Z /dl’l/ day eﬂ’Lé (1—x1)x2s—mwLr—3U 1 [n}_i_ O)
nezd

5 30 .
+€6crd/ 72(03+ ) §: eI U Ny (4.16)
g 92 det(,> ny€Z2xd

The three first lines follow from the loop expansion in two-derivative supergravity. The fourth line
is the invariant leading Wilsonian correction while the two last lines are the one-loop and two-loop
contributions with one insertion of the leading Wilsonian correction. The final ellipses state for
higher loop contributions that only contribute to higher derivative terms. We have introduced the
tropical Kawazumi—Zhang invariant according to [173]

5L1LoL3
PRz () = (Z Li— Z:I<JLILJ> . (4.17)

One obtains formally for all d

sugra d=3 (27> pSL
Euly ~ Vo ( V+2(B3)E A(l )) (4.18)
sugra dil oL £(2)E(5) sr@ | €B3)E(4) s
gumy ~ seVPa (g(@Ed+ DE B + 2B ) (4.19)
4 2
sugra gats (8T ESL@ 7T 8 SL(d)
eusy ~ VS (5675<d+ YEID 4T e (4.20)
8 [ dQ I T 40
+375 N S e el D e6)e(:) B3 + Tae()E)E ) B
V V V 2A3
deetQ n; €74
where we use the functional relations following from (3.20)
k—1 " k—1 “
1 SL(d N7 SL(d
[T[es = B" = [Tlew@—2s =l BT, (4.21)

These expressions are formally correct, but to give a meaningful answer we need to be more careful
whenever there is a pole in the Eisenstein series associated to an ultra-violet divergence in super-
gravity. Then the duality invariant coupling functions get a contribution from the non-analytic
component of the amplitude. This is the subject of the next section, which is admittedly aimed at
the most committed readers.

4.2 Cancelation of divergences and logarithmic terms

One needs to combine the analytic and non-analytic components of the amplitude in the Mandel-
stam variables to define the finite amplitude, as we did in Section 2 in string theory. Accordingly
we can use the dimensional regularisation d — d + 2¢ with the definition of k2 = %(ZW)S_dﬁg_d to
extract the finite amplitude, up to orders in which the perturbative supergravity amplitude is finite

95



in dimensional regularisation and the low energy effective action is under control. The first pole in
the dimensional regularisation parameter e appears at two-loop order and involves a V2R* type
counter-term in eleven dimensions. Fortunately this is far beyond the terms we shall consider and
this will not affect our computations. Therefore we will not need to renormalise eleven-dimensional
supergravity in dimensional regularisation.

We could in principle extract the complete amplitude with a well defined split in the analytic
and the non-analytic components of the amplitude as we did in section 2.2. In this section we will
not define carefully the non-analytic component and we shall instead cancel the divergences between
analytic and non-analytic components by using an ad hoc infrared regularisation of the amplitudes
with a massless particle in the loop. In practice we shall give a mass u to the massless propagators
and only keep the logarithmic terms in log y. Fixing these constant is exactly equivalent as de-
termining the renormalisation scheme determined by string theory. To determine the scheme, we
would not only need to compute the contributions from the non-analytic components carefully, but
also to keep track of all the precise pole subtractions used to define renormalised SL(d) Langlands
Eisenstein series. This is a doable but rather tedious computation. Testing the coupling functions
up to the match of the renormalisation scheme is already a very strong consistency check.

R* at 1-loop

At one-loop we therefore include the contribution from the massless mode with an infrared mass pu

as follows
!

> dL —mLr=3U1[n] —mLu?
27[' ) W(Ze +e )
2

nezd
= dm(d+ 26— 3ra R IEID, | oD (T ()T
= 4w§(3)177§i<13> —27log V — 4rlog(2mp) . (4.22)
e—0

One concludes that formula (4.18) for £;%} is accurate, except for d = 3 in which case we have

sugra 27T2 SSL(3
Eowy =, 3V +2AEB) E%Ai ) —2rlogV . (4.23)
This is indeed the result obtained for the non-perturbative coupling function [38]. The renomalisa-
tion prescription compatible with the string theory amplitude has been written explicitly in [213],

which gives an additional 227 /3.

Here and below we define the regularised Eisenstein series ELZ/L\(:) such that
2
k—1 p k—1 k—1 ;
‘ L(d . 1 BSL(d
£(2¢) lj[l [e(2e — )] BSL = €(2¢) ]:[1 [€(1+4)] + ]1 [€(d — z)]E%A(d " 400 . (4.24)

More generally we write E]GAk for the renormalised value of a maximal parabolic Eisenstein series
as defined from (3.23). The precise pole subtraction prescription will be mostly irrelevant since
we do not compute carefully the constants fixing the renormalisation scheme determined by string
theory.
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goR* up to 2-loop

The 1-loop contribution to £ is regular in all dimensions

* dL —nLr=3U"'n d+1
47r§(4)/0 == S e — grviag)s(d + DELY, (4.25)
* nezd -

For the 2-loop contribution to 7% we decompose the sum over pairs of Kaluza-Klein momenta
n; into the sum over linearly independent n;, the linearly dependent n; with an infrared regulating
mass on the orthogonal component, and the massless contribution with infrared regulator R(u) =
detQopu?. The latter is not very natural, as one may rather define TrQu? to give a mass u to
each internal propagator, but the leading logarithm is universal and we can use this definition to
simplify the computation.

For linearly independent momenta n; we can always map them using SL(d,Z) to the set of
momenta on a torus 72 C T%, so we can write the sum over two-by-two matrices combined with a
Poincaré sum over Py_5(Z)\SL(d, Z). Recall that Py_y = GL(2) x SL(d—2) x R?*(@=2) Similarly
for a single charge we can write the sum over momenta n; for a preferred circle with a Poincaré

sum over P;_1(Z)\SL(d,Z). This gives

/

430 i,
47?/ D e D (4.26)
G2 detQ 2 n; EZd

d3Qy -3 -1
— E ' TPy, s Tr Qo NTUTN
- 8m /H 3 d+2e— T3 _dt2.a € "

YEPy—2\SL(d) NEZQXQ/GL 2,7) " "2 detQ2 2
det N0
x
dt —mtp?
a—5 €
o ti=7%
~

7rLr’3y{2, n?
4 E : § :/ d+2s 3 € o

1—
~EP;_1\SL(d) n=1 L

3
+4m / d—Qze*ﬂ detQop?
G

3 _ d+2e—4

2 detQSf 2
= 8m&(d+ 2 — 4)E(d + 2¢ — 5)r3<d+2€*4>E§f§2§l4 N

F( d+26—4)

8 (d2e—3) SL(d) (HF=2) >
+47T§(d + 2¢ — 3) 2 Ed+225—3Ad | T, d+2e—5 + 47"5(2) d+2e—4

“H(mp2) (mp?) 2
= sr(@EBVITETERY — 6446(2) (Slog V + log(2m)

—045£(3)V ((logV+log(27r,u))E L©) ++58 E( )A L 0)),

where for d = 4 we define Ei@w from (4.24), for d = 5 we define EZS&ES) such that

1+20€Q)ELT), = €R0EB 2B, L =64 2060 - 20 B,
= €203 - 20 E51Y + £(4)E(3) By + O(e) (4.27)
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and E;féd) is finite for d # 4,5. To write this we need to use the Langlands functional relations
on non-maximal parabolic Eisenstein series (3.20). The explicit computations are cumbersome and
are done with a computer so we do not display the details.

We must also consider the 1-loop form-factor of the leading correction to the effective action.
Its contribution to E%} gives

!/

oo L 3 .
A (2)r / %(Z e U o)
0 L2 nezd

2 €— €— —
= SrE)rig(d+2e — )2 IBID | me@)r T (B () T

_ 5 SSLG) 3 B
= 8mE(2)V 2 (5(5)Eg N T glosV log(27w)) - (4.28)
€E—r

We conclude that (4.18) for £} is accurate for d = 4, 5, while for d = 4,5 we have

& =, 8r(WEEVELY + @eGIVEL + @B Byl - T log(V) — €(2)log(2mn))

sugra 9 5 2 ~
i) = 87V (5(4)5(5>E§AL§5> + 80 (¢(5) B0 — 310gV)

V2 §A1
450 (E@E;RD —10gV EXO — 19 B2FO) | )] = 2log(2mu) e (4.29)
V3 272 0g %A1 ( +e)Aq 1e=0 O8\ETH)C(0,0) - ’
This result is indeed consistent with the large radius limit of the exact coupling function & o) [38],
as one can see explicitly by comparing with (D.39) and (D.40). Note that the terms proportional to
log V' do not need to recombine into the coupling % and they do not. However, the log(27) terms
must recombine into log(2mu)Ey%) in D = 6 dimensions because the ambiguity in the definition of
the infrared cutoff is fixed by adding the one-loop form factor of the E%} R* type invariant insertion

sugra 610 sugra s X x2S
A[gﬁofbogRél] Pt g(o°o)< / 1- e/d.f[?l/ dxs e Le(1-z1)z2 —|—O> (4.30)

AOP(1 = T2 = €) S
T R A-orB- 2)5<°°>< (=7%5) ™ + 2(=7t) ™ + v (—mlPu) ™)
= g (e) (rp?)

flO

S0 (5(3 — log(=5) + (3 — log(=54)) + v (3 — log(=54) ) + O(e)

so that the total amplitude does not depend on .

o3R* up to 3-loop

The 1-loop contribution to £} is finite in all dimensions

A7t [ dL

—maLr=3U ' [n] _ 443 __SI(d)
567 ), pommE ) M= d0EO)E( + VB (431)

Ag—1
nezd
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sugra

The 2-loop contribution to £y has a divergence for d = 3 and d = 7. To compute them it is
convenient to unfold the integral to Schwinger parameter space and use some simplifications of the
integral explained in Appendix F.1. Using those one gets

39, Qi3 1, _
8”/ ——ia PRz () Ze g T n U g —m ()
GadetQ, T =

21% [ dpy P2 5p
= 9 5—d—2¢ d 2¢ / / 5 d 2 (1‘|‘ ((1—6u(1 —u)) 2 2(1 u)Q)
pau(l—u)

/ /
% < Z 6—7rr*3 (p2(n1+un2)TU’1(n1+un2)+tU’l[nz]) +3 Z e—ﬂp2ri3U71[n}_7"tﬂ2 + 6_”(P2+t)ﬂ2>

n; €Z4 nezd
n;#0,n1+n2#0

_ grp3(dt2c-3) d*Qy S () Z o TnTUIn

7—d—2e
G2det(d, 2 —
n1An27#0
2 p(d42e=3 20 _ 7 d+2e-312

47T Lme)gg(d_i_ 26 )TQ(d+2€ 3)ES£2E) 3A 2l9 d 26 F( 5 §+2€)_3

3 (rp2) - 9 7—d—2¢(mp?)
92 F(d+26 7) ) -

9 Wf(d +2¢ + 1)r2 (02 +1)Ed+ée)+lA (4.32)

(mp?)

For d = 3 one gets

430 i -
SW/g de tQQ2—e<70KZ (€22) Ze T U =)
2

n; EZ3
d3Qy o inTU-1n, AT T(e) SL(3) 2723 — ¢ T(e)?
- 87TV26/ () Y e™mUm = Vepst® 2L 2o 8 S
e 7 2 e B
nl/l\nﬁé()
2
— g T 2 _ T SSLB) | T
o Eony + 5 log(V) —glogV<2C(3)E%A1 +§>
472 , 27
+?log(27w) - §IOg(27m) (2(:( ) —2rlogV + 3) (4.33)

where 5<0 1? is a function of the SL(3) moduli only, that is defined as

SL(3) _ d*Qy —r QY nIU ', 167°€(2¢)*  sr3)
6(0 no h—)O (87T/ de QZ ESOKZ(QQ) %36 2 ’ (4 — 26)(3 + 26) E26A2 . (434)

ni /\17,2750
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We prove that this limit is finite in Appendix F.2. For d = 7 one gets

!/

d3Qs ij —3, Tr—1, .
87‘(’/ tr (Q) e—wQQ'r n] U™ n;—mR(u)
: 2

¢ PKZ
,det(2y, s
d? Q QY TU1p, 27 F(e) SL(7)
= 8 V12+6€/ () QY nTU~ ~m” 8 4+ 96\ V1243
B 5, et #Rz(%2 276 Tty )t B2 (4+Ae
nl/l\nz;ﬁo
=, VIEN) — 606()E(8)V 2 og V Byl — 406(4)E(8) log(2mp) V2B (4.35)

where E<SOL1()7) is defined from the finite limit (see Appendix F.2)

erQ r ! QYT 1, 471‘2 SL(7
gaky —lg%<87r don e (1)) R A 1—75(26)5(8+26)E(4J§6§A6 . (4.36)
n; €27

sugra

The 3-loop contribution to £47) can be computed as in [74] by splitting the sum over Kaluza—
Klein momenta depending on the rank of n;;. We will not explain the details in this case and just
give

/

6 iy
20/ d 3%1—25 Z 6—7FQZQJT_31’L;FU_17’L]'—7FR(,M)
Gs det€dy T e

6 2
— 40 d>Q3 —mr 3yl TrQ3NTU !
- 0 2_d+2e 5 €
~EP;_3\SL(d )NeZ3X3/GL 3,Z) Ha | Q] o
det N£0
dgﬂg -3 1 > dt 2
Tr~ 2y, S Tr Qo NTU* N —mtp
+20 Z / 3_ d+2e—4 T3 dt2.-4 € ! 1_d+2677 €
YEPy_5\SL(d) NEZQXQ/GLZZ Mo detQ); 2 470t :
det N#£0

+20 > Z / e emlr Ty m?

YEP3—1\SL(d) n=1

6
+20 / d—%e—w detQop?
g

_ d+2e-5

s detQs 2
= 40€(d + 2€ — 5)E(d + 26 — 6)E(d + 2¢ — T)r2(d+2e=5) pSLID)

d+2e—5
+T€Ad73

3

d’Qy —m detQapu?

3 d12c6C
92 detO2 2

d+2e

2 —7§(d + 2e — 4)&(d + 2¢ — 5)T3(d+2e—4)ESL(d)

d+2e—4
+26 Ad72

207 (26T ) (%)

+20§(2)F(W)(ﬂ_u2),d+22576€(d 42— 3)r 3(d+2e-3) pSL(d)

d+2e—3
%Ad—

d+2e—5

F206(2)E(3)N(HL2) (mp?)~ 5 (4.37)

We need to check the cases for which there is a logarithmic correction in p for each d separately.
For this we use the Langlands functional relations to simplify the result. For d = 5 we get

40€(2€)€(2¢ — 1)€(2¢ — 3)V B + 206(2)€(3)T(e) (mp?)
= 405(5)5(4)5(3)E5L P~ 90£(2)&(3) log V — 40€(2)£(3) log(2mps) (4.38)
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ford=26

40€(1 + 26)£(2€)€(2e — 1)V3TOESEO L 00¢(2)T (€) (mp2) ~¢€(3 + 2€) V32 B0 (4.39)
(2+e)As (G+e)As

= 40¢(3)V® (5 (4)€ (5)15;(36) +1¢ (2)8€Ef§fj) a o — 260 VE‘;\(SG) — €(2)log(2mp) ESL(G ) |

where we define £ sy 5 /i for d > 6 such that

d—3

§(1+206(20)¢(2e - DEYD) | = 620608 ~ 2062 203

= fd-1-20¢(d-2-20¢(d -3 -2, |

= QBB + £(d — 1)~ De(d - BB 1+ 0(e) . (4.40)
For d = 7 this gives

408(2 + 2€)€(1 + 260)(26) VO BT ; + 200 (€) (mp?) ~CE(3 + 2€)£(2 + 26)V9+66EE9§LJ(:€)) N
2

= 406V (BB + JE@DET T | L,) — B0EHER)V log VL
—40&(4)&(3) log(2mp) VO Epy | (4.41)

where we used

(24 26)E(1 + 26)5(26)EE91L+(3A4 = {(2€)§(4 — 2€)&(3 — 2¢ )E(z (Z;A2+5A6

= £(5—2e)¢(4 —2e)€(3 — QE)Ef%Li)) A (4.42)

We must now consider the form-factor for the leading correction to the Wilson effective action
in eleven dimensions. The 2-loop R* type form-factor contributes through the integral

3 ! y
B g (449
G2 det£22T niEZd
d3Qs 3 1
= 40¢2)rt > > O e U T BNTUTIN
YEP1_o\SL(d) Nez2*?)GL(2,2) " T2 detQ3 2 N
det N0

—3,,2 2
+20£(2)r I Z Z/ - PrmE=T= 5 © e

YEP—1\SL(d) n=1

o dt 2
o ti="7
v

d3Q
+205<2)Td/ §7d2+2576 e” detfdon®
G2 detQz 2

= A0E(2)E(d — 6)E(d — Ty D
oy,

+20€(2)T (457 (mp®)~

d+2e—T d+2e—6 d
2

3 _ _
§(d = T)rt R IR 2062 (40) ()T,
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For d = 6 one obtains

406(2)€(2€)€(2¢ — VB 4 206(2)°T(€) ()~ V*
= 406(2)6B3)E2)V Bz’ — 80(2)*V log V — 40¢(2)° log (2mpu)V* (4.44)

and for d =7

405(2)E(1 + 29OV CBL L+ AEAT(E) (ma®) 62+ 29V BT,

= 406GV (SO E5y” — §0E3 1) le=o) — 60EEE)V  log VES,

—40€(2)£(5) log(27ru)V10ESL(7) . (4.45)

The 1-loop R* type form-factor contributes through the integral

4m? > dL ' P
e [ i (3 )

nezd

2 : 2
- %é(zys(dme_3>rd+%<d+26*3>ESL<d> AT ()

d+2e—3 d
2

d+2e—3

G2, 3

872 ~ 472 472
=, ?5(2)5(3)VE§1L\(13> — 5 €@V logV — —-¢(2) log(2mp)V . (4.46)
e—0

In total for d = 7 on gets

2 2 2
sugra 15 SL(7) 47 5(2) 8 SL(7)
gren = v (567§(10)E5A6 + 3V + 3V2§(2)§(3)E% " (4.47)

01 4=,
40§ SL(7)
5 ( 3A2 aE1( +€)A1‘e 0)
B0

(7) 1 SL(7
As +§€( )Oe E( +e) ’e O)>

—60V12 1ogv<g(4)g(8)EfAL§” + 5(23/52(5) E A”’ + 5(3‘)/2(4) EgALf)) . glog(%u)eﬁl‘%? .

+3 V3 8(0 1)

V5
VG

sugra

Note that the log(27m) term is proportional to the coupling function £7%;, as it must be since this
terms comes from the non-analytic £3%V*R* one-loop form-factor, that includes a logarithmic

sugra

term in log(—s?)o3&%).

For d =6
sugra SL 47{-25(2)2 877-2 SL 405(2) SL
e 2,V (mmeoEs + RO S coemmst + B o Bt
81 d QQ _ Qw TU 1, 40 SL( )
Q) e ™ it 4
o il ZZ 4 o) (CWEE B + o0 B | )
407T > 5 sugra
=V 1ogv(§(2)v+5(3)E§i<f>> — 2 log(2mu)EL) (4.48)
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sugra

In this case the log(27u) term comes from the 2-loop R4€(0,0) form-factor that diverges logarith-
mically as we exhibited in the 2-loop string theory amplitude (2.125),(2.126).
Ford=5

‘ 8t 4m2€6(2)?  8n?
sugra 6 SL(5) SL(5)
ey = v (Se a0 + IR | S eo)eoym (4.49)
8 dBQQ i ! I TU s 40£(2) SL(5) 40 ~SL(5)
+173 g2detQ2¢KZ(Q2)§: Ui SO OBV By, + (E(B)EEB) B
15¢(3 10¢(3
—é() logV — g() log(2mp) ,

where the last term is consistent with the 3-loop divergence in six dimensions.
Ford=3

: 87t 472¢(2)2  8r? ‘
sugra 3 SL(3) SL(3)
& =V (567§(6)E3A2 g Rt EB)E (4.50)
1 40£(2) sim 40
tolon T —ps SO By, + TEB)EEB)
2 2 2
s 9 T ~SLE3) | T 4 9 2m uera . T
+§ log(V')* — 3 logV(QC(S)E%A1 +§> + 3 log(2mp)* — S log(2mp) (E(Of’m%—g) .

We have now derived the precise contribution from eleven-dimensional supergravity to the
low energy effective action on T¢ for 3 < d < 7. We find perfect agreement with the results
of [76] derived from the Langlands constant term formula applied to the non-perturbative coupling
functions £, and & . We will see in the next section that the non-perturbative function & ,,
proposed in [64,27] does give the same function £} in the large volume limit.
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5 Beyond automorphic forms

As we said previously, the study of coupling functions in string theory requires to generalise the
notion of automorphic forms. In general the coupling functions do satisfy the condition of auto-
morphicity f(kvy) = f(v) for k € K and v € G(Z), the condition of uniform moderate growth
such that f(v) and all its covariant derivatives are polynomially bounded, but they are not eigen
functions of the invariant differential operators on G.

Let us first recall the prototypal example of the coupling function & ) in type IIB string theory.
This function was computed from the two-loop amplitude in eleven-dimensional supergravity on 72
as (0.10). This integral can be regularised using a formal Poisson summation formula, and defining
the regularised integral as [56]

/

- 27r dLydLadLs (Z M) 3 S LR gy
IE{3 \/m I EI<JLILJ m[,RIEZ
Soymr=y ;nr=0

The same authors showed that this function satisfies the Poisson equation
(A =12)E01 = —(Eom)? (5.2)

where A = —(S — 9)?0505 and &) = 2{(3)E§/L2(2). This equation together with the appropriate
boundary condition at ImS — oo was proved in [214] to determine uniquely the function, con-
sistently with expectations from non-perturbative effects in string theory. It was proved to be
fully consistent with string perturbation theory [84], as well as the leading instanton corrections
including the first instanton anti-instanton correction [12].

In this section we discuss the generalisation of this function for D < 8 proposed in [64]. The
function in D = 8 dimensions was already determined in [215] and in seven and six dimensions
in [77]. The precise definition of this coupling function was given in [27], and shown to agree with
all previous proposals.

5.1 Supersymmetry and automorphic representations

The supersymmetry analysis explained in sections 1.3 and 3.2 did not take into account the presence
of the R* type correction in analysing the VOR?* type supersymmetry invariant. The presence of
S® ~ [ EpotstsRY at order (0 requires to modify supersymmetry by a variation §© linear in the
function &,y and its derivatives, such that S©® ~ f 5(0,1)t8t8V6R4 must be a particular solution to
the supersymmetry invariance identity

§OGO) 4 53 GB) 4 5650 — () (5.3)

The explicit computation is very difficult, but one can nonetheless conclude that the differential
equation satisfied by £, ) must be modified by terms quadratic in & and its derivative.

There are two distinct VOR?* type invariants in 4 < D < 7 dimensions, and only one of them is
modified by the R* type supersymmetric correction [53]. In this discussion we will concentrate on
D =4, as in Section 3.2.
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Let us first analyse the set of differential equations satisfied by (Eo.)2. The function &y,
satisfies (3.73), which implies equivalently

1 1
Dij[qurs]klg(O,O) = gpijklppqrsg(o,o) - Egijklpqrsg(o,o) (54)

and therefore
(Disna P Dyt = Digna (6 + 14) ) (E0)* = 0. (5.5)

Note that this is precisely the equation that follows from the condition that the Fourier coefficients
are non-generic in the decompactification limit in which one circle becomes large (3.55). In this
decomposition we have the explicit formula

D=4 3 oD=5 27® 6 2 : K%(27TR|Z(Q)|) 2mig-a

oo =R 5(0,0)+ER + 47 R> Z o3(q) 3 e , (5.6)
qeZ27 1Z(q)]2
g%xq=0

where R is the circle radius in Planck length and | Z(q)|? = |v(q)|? for v € Fg. The Fourier expansion
of (Eo.0))? is therefore easily found to be

Njw

2
. 21 2 ’ K3 (2mR|Z(q)])
(E0a)? = (Rehs + =R +167°R" ) (os(q)

3
ez 1Z(q)|
gxq=0
e 2 EKsQrRIZE))
+8TR> (5{’05;+ER3) S oy(q)—2 e
qeZ?? ’ (q)]2
gxq=0
! K3 (2nR|Z(q1)|) K3 (27 R|Z(q2)|) .
+ 167 R® Z o3(q1)o3(q2) —* 3 2 N
01,0227 1Z(q1)]2 |Z(q2)]2
q1Xq1=0
q2Xq2=0
Q179270

One can see that the first line includes exponentially suppressed terms at large radius that do
not depend on the axion a. They correspond to instanton anti-instanton effects found previously
in [56,214] in type IIB. By property of the Eg cubic invariant

det(q1 — q2) = det g1 — trlg2 - (1 X q1)] + tr[q1 - (g2 X q2)] — detga =0 (5.8)

and (€q))? indeed satisfies (3.55), and therefore (5.5).

A similar computation in string perturbation theory using (3.119) shows that (£4.,,)? admits
generic Fourier coefficients in P; and therefore does not satisfy (3.62). Physically £ admits
corrections from D(-1) and D5 instantons in type IIB. Therefore (€ p))? includes D(-1)-D5 in-
stanton corrections, that correspond to a generic charge @ € S_ with (Qv?Q)(QV.Q) < 0.
Therefore the abelian Fourier coefficient of (€))% with @Q generic is generally non-zero provided
(Q7*Q)(QV4pQ) < 0. Tt turns out that the Fourier coefficients vanish for (Qv*Q)(Qv.Q) > 0.
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According to the analysis of section (3.2) we find that (£,)? is compatible with the (1/8,1/8)-
BPS supersymmetry invariant associated to the harmonic variables in SU(8)/S(U(1) x U(6) x

U(1)), but not the (1/4,0)-BPS supersymmetry invariant associated to the harmonic variables in
SU(8)/S(U(2) x U(6)) [53].

We have accordingly
87t
5,(0,1) = %

where the Eisenstein series E5X7 defined in (3.130) satisfies

E10) B, +£5T (5.9

(36Djr[klp”m"1)pq]mn — 89 Dytpg(A +42) + 8, Dy (A — 120))375{7 ~0, (5.10)

as well as (3.132) and (3.134). One cannot add a source (€))% in the right-hand-side of (3.132)
without violating equation (5.10).
The function £57) instead satisfies

(DijpgDP™ Dyt — Dijra (LA +6))EETT =0, (5.11)
and the Poisson equation
4 20
(A+60)EET = 280 = (Ewn)? (5.12)

Here we must distinguish the two terms on the right-hand-side of this equation. As discussed above,
the source term in (€,))? comes from the modification of the supersymmetry transformations at
order 5 (5.3), while the term linear in &, comes from the logarithmic divergence of the V*R*
type form-factor in four dimensions [53]. The logarithmic divergence in the one-loop form factor
comes from the five-point insertion (2.66)

oo 51

Following the reasoning of [216] this implies that the full coupling function depends logarithmically
on the string coupling constant

5
5(0,1) lorg\;ng ; log gs 5(1,0) . (5.14)

On a function of the dilaton g, = e?¢ only, the E; Laplace operator gives

10 (0
AS60) = 150 (5 +34) f(@0) (5.15)
so that . g5
A(; log g.) = 7 (5.16)

Therefore consistency with the logarithmic divergence requires that the full function (5.9) satisfies
[77]
85 )
(A +60)€01) = 5—-E0o = (E0o)” - (5.17)
Because of the quadratic source term in (5.12), the function £G does not define an automorphic
representation [217]. In particular the decomposition of U (e7)E 1) admits infinite multiplicities for
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the irreducible representations of SU(8). Nonetheless, the representations with non-zero multiplic-
ity (and then infinite) are the same as for the Heisenberg parabolic Eisenstein series Grif (e7)EfA71,
consistently with the linearised supersymmetry analysis. The associated variety of the ideal is
therefore still formally the closure of the nilpotent orbit Ogy,.

The Fourier coefficients of é’(hoxﬁf in any parabolic subgroup, for any unipotent character that
does not define a charge in the closure of the complex nilpotent orbit Osp,, vanish, as in (3.55) and
the equivalent in (3.65). This means physically that é(%"f)T only receives non-perturbative correction
from (1/8,1/8)-BPS instantons, but no corrections from (1/4,0)-BPS instantons, or even less BPS
instantons. The notion of wavefront set attached to the orbit Oyp, is therefore well defined and
very constraining.

ExFT

We will now explain the formula for g7

anticipated in [64] and determined in [27].

5.2 Exceptional field theory amplitude

It was proposed in [64] to consider an effective theory of one-half BPS states in string theory. From
the point of view of eleven-dimensional supergravity, one can define the conserved charge

T = (my,n!/ nfi-ts gh-IrT) (5.18)

where m; is the momentum mode on 77, n!’ the winding numbers of the M2-brane, n/t5 the
winding numbers of the M5-brane and n/t-17/ the Kaluza-Klein monopole charge. There is exactly
one massive 1/2 BPS state spin 2 supermultiplet for each " # 0 in Ly = Z?% satisfying the constraint
' xT'=0,ie. (seee.g. [218,192,60])

nmy, = 0, T KL —  IIKLP
6n!lpKLPQR]  _  _LLJKLPQRS,, | [.SIJKLPQR,
Tl IKIPQERSTUV]  _ 9 [IJLK],PQRSTUV plIJELPLQLRSTUVWX _ y (5.19)

Because of F;(Z) U-duality invariance, these multiplets interact mutually when I'y x 'y = 0, with
the same interactions as Kaluza—Klein states in eleven dimensions.

Whenever I'y x 'y # 0, the two 1/2 BPS particles can produce a 1/4 BPS state. This can easily
be understood in type ITA, calling 47 the M-theory circle coordinate and y* with i = 1,6 the type
ITA T6 coordinates we have the identification

q= (mi7 ni7) ’ X = (m% nij7 nijkl7’ kijklpq?,?) ’ p= (nijklp’ k1234567,i) \ (5'20)

with ¢ € I ¢ the world-sheet zero modes, x € S_ the D-brane charges (in this case D0-D2-D4-D6)
and p € Ilgs the NS5-brane and Kaluza—Klein monopole charges. A perturbative string state
carries a charge ¢ while Y = p = 0, and the BPS string states are 1/4 BPS whenever m;n‘" # 0. In
string theory two 1/2 BPS states can interact to give a generic 1/4 BPS state. According to (2.1)
the perturbative 1/4 BPS states are counted by the partition function [219]%°

% 00 1_€7rizn41_efm'zn4 ) i_é
/_ dm (H (1 _(qn)G(l —q62>7ri(zqn)(1 — eq—2)m'zqn) o 1) (2 SIH(WZ/Q))S Z 92, (5'21)

1
2 n=1 m,nez?

2miT

26The reader should not confuse the charge q € IIs,¢ with the ¢ = ¢ parameter in the partition function.
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and its complex conjugate.

In fact all 1/4 BPS states of the theory can be mapped to perturbative 1/4 BPS states in
string theory by U-duality. This is because I' x I' is always in the minimal nilpotent orbit of E7,
therefore there exists v € E7(Z) such that y(I' x ') = ((g,¢),0,0,0,0) and 7I" = (¢, 0,0) in the P
decomposition.

Up to and including VOR?, the only diagram that contribute are displayed in figure 13 and such
that only three-point interactions with charges satisfying I'y x I’y # 0 are involved in the loops.
One can therefore extract the contribution from the supergravity amplitude [64]. Because this
truncation to one-half BPS states is naturally interpreted as an exceptional field theory amplitude
on a generalised torus [65-73], we shall refer to them as exceptional field theory amplitudes.

The direct computation in d = 7+2¢ dimensional regularisation gives [64, 74]

EEXFT 1-loop __ 877[-45(]_04—26)EE7
O1)€ 567 (Brar?

!
Epye P = 2 / Cadiad (Z Ly — rtals > S e S Lzl
’ R Ji

9 Jrs (XjeyLiLly)~e 2y Lily I ezZ56
> Tr=0
F[XFJZO
xFT 3-loo F €
e ™ = 406(2+26)E(1426)E(2€) B{7, 5 + 20(m22))€§(2+2e)g(3+2e)E(E§7+6) no (522)

where an infrared regularisation was introduced at three-loop because of the one-loop subdivergence
when one internal propagator is massless. The three-loop result turns out to be finite, and up to a
part linear in & o) one gets

~ 64 ~
X 2-100 E E
Eiyy T = 40€(8)€(9)E(12) By + @4(10)@) Yo (5.23)
The second term is identical to the one-loop contribution whereas they each have the coefficient
expected in string theory. The first term is not present is string theory, and satisfies the same

differential equations as £ without the quadratic source term in (5.12).

The contributions from 1/2 BPS states seem to give all the ingredients to define the non-
perturbative result, but there is some mismatch. This should not be unexpected since we neglected
1/4 BPS states in the loops that have no reason to do not contribute to V4R* and V6 R* couplings.
In [74] and [27] we argued that one can obtain such contribution using the one-loop and the two-loop
string theory integrands. We extracted the contribution from BPS states in the perturbative string
amplitude and summed over all U-duality copies to obtain the non-perturbative contribution. This
sum does not converge, and the computation is only defined through an analytic continuation that
we could not justify. Doing so we obtain nonetheless the following result including these expected
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contributions from 1/4 BPS states

g(]?)Pls)lEloop =0 ,
’
Eomye” = 2 / . <ZL1— Slalals _ vdetfh ES§<2>(T)> S T LlZwnP
IR3 (det QQ ZI<J LiL; 6 - P
ZI Ir=0
F[XFJZO
oy 272 VdetQs _sre . > 8
5(1?’18)? P _ R Sd?)Q . E—3S—%e(7-) Z e~ T2 LilZz(Tn)PF 5676(10+26)E(€315)A , (5.24)
IR F[€Z56
> I'r=0
FIXFJZO

where we used

QQZ<L1+L3 Ly >:\/M< 1 7 ) (5.25)

L3 Lo+Ls ||

T2

The total one-loop contribution is found to vanish and the contribution from 1/4 BPS states at
two-loop makes the total result finite in the limit ¢ — 0. There is no contribution from 1/4 BPS
states at three-loop because the three-loop string theory amplitude is just the volume of the moduli

space of genus-three surfaces and the sum over string zero modes are level-matched. The function

Egpf)ikmp is simply a rewriting of the exceptional field theory amplitude

5
ERETI = RS — 2 (log(2mp) + .)€ + O] (5.26)
To obtain this form it is convenient to introduce the variable ¢t = \/detQy to derive [74]

2 70, (deth) ESLE) Z oS LilZ(TD)?

27 3 6 3+26
]R INTSVAS

2o =0
I'yxI' ;=0

4 3+2¢ d’r SL(2) I —mt 2 (D1 +7T2)ToTo(T1+702)

:9/dtt+/ 7E3+25(7')Z€ ER s
0 Flt2"2 I, €75
FiXFJ':O

472 B

(Z—6+€)Ag+(—3+28)A7
E(4)E(T+2e—20)

— 405(4726726)5(7745)5(8—45)5(9—26—25)5(12—26 2)E{ g g2, (5:27)
where F/Zy = SO(2)\SL(2)/PGL(2,Z).
This justifies the definition
Eo = lim (5(E0x§)T€ + ﬁg(1o+2€)E(E57+6)A7) , (5.28)
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with

!/

EBIT — 8 / 4*Q, <(det92)€¢§§z o (det2)? 2 te St \/d tQ, B +2€> 3 eIy
G2 I, €25
FiXF]‘:O
(5.29)

where we folded the integration domain to Go = R3 /S3, use ¢lf, in (4.17), and wrote the sum over
I';’s in a manifestly GL(2,Z) invariant form.

The justifications to arrive to this formula are not fully satisfying. However, taking this as a
working hypothesis turns out to give the right answer, as we can check using all possible limits.

We analysed this function (5.28) in [27] in details and showed that it is consistent with string
perturbatlon theory and the large radius limit. We found that the additional Eisenstein series
ESL( and Esg +%E in the integrand are necessary for

EET = lim (€541, + 40¢(4)E(B)6(1420) BT, ) (5.30)

to satisfy the differential equations (5.11) and (5.12). Independently of the argument we gave to

ExFT
g(oxl) ’

exact coupling function in string theory.

justify the definition of one can consider the consistency checks as a proof that it defines the

The same construction applies to all dimensions D > 4 and one gets the direct generalisation

i,
d392 L ooSL) T SL(2) : QT TyTol
= 877/ ((deth)pr{Z (det92)§+€E_3 + = detQQE_3+2€> g R
G 2 36 36
2 detQ I'ely
FZ‘XF]'ZO
(5.31)
and

5¢(3)
3e

2 1 1 1
5(0 1) — hm E"(I?JXI;)TE + 75( +2€+3)EdEf2€+3A + 5d,5 + §5d73 (; + 6 + ;S(O,O)e)} (532)

567
which is consistent with string perturbation theory and the large radius limit [27]. The poles in €
come from the three-loop divergence in D = 6 and the two-loop divergence in D = 8 [125,126]. For
d = 2,3,4 one does not need to introduce the two terms with the Eisenstein series Efg(z) because
there is no pole.

5.3 Matching the eleven-dimensional supergravity limit

It may seem natural that these formulas give back the correct eleven-dimensional supergravity
contribution but it turns out to be a rather non-trivial computation. We find after some efforts
that formulas (5.28) and (5.29) gives back the formula obtained from supergravity in (4.47), with
forda<d<T7
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L)

ExFT 3443 4r? £(2 ) 871'2 SL(d) 40

5(01)6 ~ Ve < 3V V2§(2)§(3)E%A1 +V6_255(5_26)5(4_26)5(3_26) (%—E)Ag

87 d3Q, tr d Qi Ty~1p. . 40 SL SL

U7l M el ) B BmUming 4 730a7E(H)E(8)E(2e) <E(4_(;)5)A6 - 4Aé7))
G2 det(), ? ez
40 SL(T
T £ (2+20)€(2) (5d,6§(2 —2€) + 5d77€<5+26)E(%j_€)) m)) (5.33)

and

405(2+2€)§(6+2€)§(d+26+3)Ed+ze+3A
£(4 — 2€)§(8 — 2€)£(1+2¢) ST

d+342¢ SL(d
~ 40V3 5-d (5(2+2e)£(6+2e)£(d+26+3)Ed+§23+3 A, 1047 1/3+6e (4—e)As
£(2+42€)€(54+2€)E(6+2¢€) _s1(a) £(242€)§(3+26)€(1+42¢€) s1(a)
B8 Hass ot By As) . (5.34)

V5+2e

This is indeed in perfect agreement with (4.18) including the logarithmic terms computed in section

4.2. To see this one uses
L(d)

£(5—2€)¢(4—2€)¢(3—2€) B (‘?)A =, §(2-20¢(3-20)¢(1- 26)EA+( S,
L _ §(2+2e)§(1+26)£(5+26)E( f’m .

5(2+26)§(5+26)£(6+26)E(3+€)A
gL (5.35)

E(2+20)6(5+20)E(6+20) By o)y = €(2+2¢)%€(1420) B ) .

We will now explain how we obtained formula (5.33). For this purpose we decompose the pairs
of charges according to (5.18), and carry out the sums over layers, including an increasing number

of non-vanishing components. We start by the layer for which all the brane charges vanish
!/

3Q T O,
87r/ d((detQQ)ap}gZ—(dem) +€ESL<2>+ detQ ES§+2E>Z e~ 3m{UTIm
Go detﬂ m,-EZd

= 87rV3d+93tl463/ digg(detﬁg ik, Z e~ m{UIm (5.36)
G2 det€2, mi€Zd
& (T+2¢) SL(T) £(7—2¢) SL(T)
+40847£ (V2 (~V0 ) S®ERIBLT, + 57 6 10ECIE T a0 r)

Using simplifications at first order in € one obtains for d =7
!/

877/ d*Qy <(demg)fgpfgz o (detQy) 2t BT \/d QB He)z e~ T n]U

Go 36 n; €77

/ ..
= 8rV12 / A3y (det Q) ot e U
G2 n; EZ7
S S
HAE(EBV2 (6B + 6B + e B | (5.37)
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for a constant c. The determination of the constant c is irrelevant at this level since we did not
determine the finite amplitude from string theory with the explicit split in analytic and non-analytic
components.

At the next step we consider that the M2-brane windings n{” and nl’ are non-zero but linearly
dependent. Because of the constraint (5.19) they are in the SL(d,Z) orbit of the highest weight
representative, and the sum can be written as a Poincaré sum over P»(Z)\SL(d,Z) and pairs of
integers n; = ged(nf’). We have therefore

0(d2) — 2 : § e—WQ;j(7‘73U7HJ(m11+1/2a1KLnKL)(mj‘]—i—l/QaJan )+1/2T6 dU[KU]LnI‘]’I’LKL)

nlTen?zt  myeZ?

P KL g nilTm; ;=0
@ J

_2
=YY Y el b 535

YEP\SL(d) mEZQ m; €242 !

.. __2_ . . )
_ 2 : 2 : 2 : —WQ;] r6=dy2n;n; —WQ,i_leSy d=2 y(m*,mI)+2min;(mt,a)
~EPy\SL(d) detQ ni €22 micZd—2 7

and one computes the integral using Appendix F.3
d3Q
8 / ——ia PRzby
92 detQ, 2
2 2 2
167£(2 — 2¢) y2d=2e(6-d) pSLW) 8%7“#+(d_3)e€(1 —20)E(2 — 2€)ESL(d)

(31 26)(4 — 2¢) 2eMo 2eAa+(%—€)As
+4§2 2(HABg (5 20)¢(3 + 2) By (5one T

e OO
_i_479TQ 3(=5)F([d=3)eg (5 _ 26)¢(3 + 2¢) 256\((]1(”6) +... (5.39)

up to terms that are exponentially suppressed at large V. The first line is finite, except for d = 3

in which case one has instead ESL(?))

3a, For the complete function one computes similarly

d3Q
87T/ <(det92)6<,pgz - —(detﬂg) 2 tegSh@) 3 detQE° 3%)0(2)
G2 detQ

a+3 (42€(2)2  8n? 40
_ v%fd( ”;‘ﬁ L 3;25(2)5(3)E§ﬁ(1d) + e (5206 (42006 (3 26)E( <d>) A5> . (5.40)

There are many more pairs of charges I'; to be considered, but similarly as for the Eisenstein series

E;Ef’?, A and E;Efl , most of the contributions turn out to vanish at ¢ — 0. For this to be true
5 o A

it is crucial to take the definition (5.31), and not the naive expression (5.22). We relegate this

computation to Appendix E. One obtains that there are no other contributions for d = 3,4, 5. For

d = 6,7 one must include the contribution for which the M5-brane charges n!’%%F are non-zero

and linearly independent. They give the last line in (5.33).
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5.4 1/8-BPS brane instanton measure and uniqueness

In this last section we will show that there is a unique coupling function &,y compatible with
supersymmetry and string perturbation theory in four dimensions. For this purpose we consider a
generic D-brane instanton correction, i.e. an abelian Fourier coefficient in the parabolic P, C E7

Fo(gnv) = / adb £ e Q) (5.41)
[0,1]32+1

for a generic D-brane charge @ € S_. There are two real orbits of charges Q € S_. Either the

quartic invariant

L(Q) = 2@ Q) Q@) (5.42)

is positive and the Levi stabiliser is SU(3,3) C Spin(6,6), or it is negative and the Levi stabiliser
is SL(6) C Spin(6,6). For Iy < 0 one can find a representative of the character e~27(@:) with
support on two real roots, as for example a D(-1)-D5 brane instanton. For Iy > 0 one needs at
least four roots, corresponding for example to a D1-D1-D1-D5 instanton, with three orthogonal
Euclidean D1-branes inside the Euclidean D5 [220]. One works out in general that two 1/2-BPS
charges Q1 and Q9 satisfy that I4(Q1+Q2) < 0. This implies that the source in equation (5.12)
drops out for the Fourier coefficient Fg(gs,v) when I4(Q) > 0,

2mi(Q,a) —
(A +60)(Fg(gs,v)e ) (@0 0, (5.43)

and Fg(gs, v) satisfies the same differential equations as the Eisenstein series EGE& Fourier coefficient

(Dijpg D" Dyt + 9IDijua) (F (g, v)e*™ @) = 0. (5.44)
14(Q)>0
One proves that there is a unique solution to these differential equations with moderate growth
such that 27

Fo(g.v) = m(Q)g; *B(vQ/g.) , (5.45)

where 1(Q) is a function of @ that only depends on its arithmetic Spin(6,6,7) invariants. This
instanton measure p(Q) is expected to be the partition function for the corresponding Euclidean
brane effective theory. The function B(vQ/g,) only depends of the SU(4) x SU(4) invariant poly-
nomials in the complex central charge v;;*Q, = Z;;(Q) in the bi-fundamental representation of
SU(4) x SU(4). As for BPS black holes in four dimensions, these invariants are polynomials in the
four modules |z;| of the eigenvalues of Z;; and the phase of its determinant [221]. The Euclidean
action of the instanton is the largest eigenvalue, and the function B(Z/g) is exponential suppressed
in e~2mmaxilzl/9s We computed these Fourier coefficients in [27] up to a final Poincaré sum that
we could not simplify, but which exhibits the structure explained above. We will see below that a

more precise result can be obtained directly from the two-loop string amplitude.

The Fourier coefficient F(gs,v) does not depend on the Levi stabiliser SU(3,3) of the D-brane
charge . We can therefore consider the limit in which one dilaton in SU(3,3) goes to infinity
while keeping Fg(gs, v) finite. To see this, consider the parabolic decomposition

su(3,3) O (g u(2,2)” @ (CHY o R® . (5.46)

2"The proof will be published in a collaboration with Friedberg, Gourevitch, Kleinschmidt and Persson.
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brane | T2 | T2 | T* | T* | T* | T* brane | T2 | T2 | T* | T* | T* | T*
D(-1) | o o o o o o D1 o ° ° o o o
D1 ° ° o o o o D1 ° o ° o o o
DI |o|o|e|elolo = DI |o|e|lole|olo
DI | ol o | o] o| e | e D3 | o| e | e | o| e | e
D5 | | e | e | o | o | @ D3 | e« | o | o| e | e | e

Table 3: 1/8-BPS configurations of D-branes related by T-duality on one circle in 72 and one in T*

It embeds in the parabolic P, of SO(6,6)
50(6,6) D (gl © s0(4,4))” ® (2,8,)V &R, (5.47)
such that the spinor representation decomposes as
32803 (2,8.)” 38" . (5.48)

We recognise up to triality the decomposition of the parabolic P, C E7;. We find therefore that
the GL(1) € SU(3,3) in the stabiliser of the charge @ is conjugate under E; to the GL(1) C Ex
defining P;. The corresponding dilatons are not conjugate under F7(Z), however, we can interpret
this parabolic P, in the limit in which one 72 C T% admits a large volume Vol(T?) = (27)%a//y?,
and there is an F7(Z) transformation that exchanges y and g, and acts by triality on Spin(4,4).

Let us choose Q@ = (0,¢;,0) in this decomposition with I4(Q) = ¢?¢3 — (¢1- ¢2)> > 0, which
corresponds for example to a 1/8 BPS Euclidean D1-D1-D1-D3-D3 instanton as displayed in Table 3.
We write QU (IlJl\UUlP) the metric on T2, v, € SO(4,4) the Narain moduli on 7% and ¢!, c? the
Narain axions parametrising the off-diagonal components between T2 and T*. We write v, and v
for the spinor representations. We have then for @ = (p, ¢;,0)

v@Q = <yvc(]9 + dz’ci), \/1(72113((]1 + UQQ>, 0) . (5.49)

We would like to interpret the Fourier coefficient Fi(gs,v) in (5.45) as a Fourier coefficient of a
perturbative term in the large 72 volume limit after duality g, <+ y. The axions ¢’ become then
Ramond-Ramond fields, so we need to integrate them out. But to do so we need to include all
Fourier coefficients that will contribute, so we must include the D-branes wrapping 7% only with
p # 0. We compute using Poisson summation over p € Z® that

/Odlﬁc > ulpq,0)g B( vc(pﬂiz )

vs(g1 + Ugw), 0)

1]16 ZS

w(p; g, 0) 1
U 5.50
detq ( gq\/@ (QI + QQ ( )

p mod ¢
where
Bl(a, z,b) = / d®z B(z, z, b)) (5.51)
R8
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and the sum is over the equivalence classes of p € Z® C 8. modulo p ~ p + ¢;z° for ' in Z>*® C
(2,8,), while det’¢ is the number of such classes. Here we have used that the measure is invariant
under the T-duality unipotent subgroup U(Z) C SO(6,6,Z) of parameter x° € Z>*® C (2, 8,)

p(p + dia', i, 0) = p(p, ¢:,0) - (5.52)

Using the duality that exchanges y and g, one concludes that the same Fourier coefficient
appears as a Fourier coefficient of the two-loop amplitude in the large 72 torus volume limit. If we
assume moreover det’¢d = 1 this gives

8—
/ 'S¢ ( / 432 db S(O,U)e—?”(w) = 1(0,¢,0)” SBE(O, 1 Uv(q1+Uq2),0>. (5.53)
[0,1]16 [0,1]32+1 g yVUa

S

We find therefore that the existence of a non-zero Fourier coefficient Fg(gs, v) implies by E7(Z)
invariance that there are some terms that are not exponentially suppressed in the weak coupling
limit. A similar argument works for smaller orbits, so we conclude that a function with wavefront
set Ozp, cannot be exponentially suppressed at small g, < 1. This implies that finding a U-duality
invariant function &, ;) compatible with the differential equations imposed by supersymmetry and
string perturbation theory must give the exact string theory coupling function.

This formula is also useful because it determines the D-brane instanton from a world-sheet
instanton. Using the two-loop amplitude [83] we obtain

s .q, -
8T d'6. / QS HM,%OKZ(Q) —27i(g,c) N P,q,0 8 ﬁB(O,
Fa

v ,0) .
[0 1]16 det det/ﬁ v (ql + UQQ) )

1
p mod ¢ ym
(5.54)
Using the Fourier expansion of the Kawazumi-Zhang invariant ¢ky derived in [173] together with

the unfolding method [117],%® one computes straightforwardly that 8 = 10 and

1
B0, ——wvy Ug),0 5.55
( TR (1 + Ugo) ) (5.55)

4 / d3 (1'4(q)+ 5 <1+7rtrQQZ(q)Z(q)T>>eM2Z§éq>ZL(q)Tntr921

9

det)s g2 472 dets
SO(2)\GL(2,R)

with

Z()Z(@)" = Z(@)ZL(Q)" + Zr(9)Zr(q)T

ZiNz (T = (LU pr(q)®  pr(a)pr(ee) 1 0
(@27 = U 5 oo ) o (5:56)

Uz \ 0 U pr(q)pr(q2)  prlqe) 1 U
28In fact the unfolding method does not obviously make sense because the integral diverges at the cusp and @iz is
a distribution. One convenient way to regularise the integral is to introduce a differential operator acting with Maass
raising and lowering operators that satisfy [o[Jokz = %Lp}(z away from the separating degeneration locus Q'? = 0
[173]. Up to terms that involve a distribution on this singular locus, one can define [du ¢zl ~ 32 [du i[O,
which is regular at the cusp. We thank Solomon Friedberg for this explanation. One must treat separately the

regularisation of the integral at the singular locus, but this does not affect the generic Fourier coefficients with
14> 0.
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The measure satisfies

,Lt(p, q, 0) _ 1 ~ I4(Q)
2. det’y 2 2. B detAc<d2 detA2) ’ (5:57)
A€Z2%2 |GL(2,Z) d|A~1qTqA~1T
A~lqe72@14 4

with ¢ the Fourier coefficients of

_194(27—) _ Z E(H)CQWinT, (5.58)

and d|qTq means that d divides ged(¢?/2,43/2,q1 q2)-

The function B above and therefore B itself exhibits the exponential suppression in the Eu-
clidean action for a 1/8 BPS Euclidean brane instanton. The measure factor p(Q) involves the
Fourier coefficients ¢(14(q)) that counts the number of 1/8 BPS D-brane bound-states through the
helicity supertrace 14(Q) [30-32].

We will now precise the relation between the instanton measure and the 1/8-BPS helicity
supertrace. One checks that det’¢ = 1 if we take ¢ with ged(q) = 1 and such that

gedgq” = ged(q3/2,43/2,q1- ) = 1. (5.59)

If the D-brane charge @ is primitive in S_, i.e. with ged(Q)) = 1, one can always find v €
Spin(6,6,7) to bring it into a diagonal reduced form @ = (0, ¢,0) with [183]

q1 = e+ +niei—, q2 = ngeat +nzea— + key_ (560)
where the e;4 define a basis of null vectors
(eit,ejx) =0, (€it,ej—) = bij - (5.61)

These charges correspond in Table 3 to the brane configuration T-dual to a single D5-brane, ny
D1-brane in each orthogonal 7% C T® and k D(-1)-branes. The T-duality subgroup SL(3,7) x
SL(3,7Z) C SL(6,Z) C Spin(6,6,Z) acts on the three by three matrix of D1-brane charges that
wrap one even and one odd coordinate in the bi-fundamental. One can find such a transformation
to bring (ni,mn2,n3) in a form in which n; divides ng and ng divides ng. We will write for short
ni|nz|ns. One computes then for a given basis of gamma matrices that

det'q = ged(k,n1,n2)?ged(k, n1,n3)*> = ged(k,n1)*, (5.62)

ni|nz|ns

so det'q = 1 if gedgq™ = ged(k, ny,nang) = 1. We will therefore assume gedgq™ = 1 to avoid the

sum over p classes in (5.57). For such ¢ one obtains moreover that the only matrices A modulo
GL(2,7) dividing q are A = (}?) with r|ged(k, n2,n3) and no d > 1 divides gqT. Using

ged(q1 A q2) = ged(k, n2, n3, ning, ning) = ged(k, n2,n3) , (5.63)

we obtain that the instanton measure takes the form

_1-(14(q)

0,q,0 = 1 . 5.64

p0.0.0) = 3 (=) (5.64)
ged(qqT)=1 Tlq1Ag2
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We can write this expression in a manifestly Spin(6,6,Z) invariant form following [222]

_12(14(Q)
= d-le( =22 5.65
ged(Q=1 Z C( d? >’ (5.65)
ged(@=Q)'=1 dkarr(Q)

where (Q x Q)" is Q4@ with the component in Z/2 excluded.?” I}(Q) is the derivative of I4(Q)
and 1Q A I4(Q) includes the projection to A*Ilg¢ and I4(Q). They are defined for a general @Q in
diagonal reduced form as

ged(Q x Q) = ged(k, np, niping+e) ,  ged(2Q A IN(Q)) = ged(k*, knp,nisinri) . (5.66)

Choosing @ in a diagonal reduced form for which n; divides ngy divides ng, we obtain

ged(Q x Q) = ged(k,m1) =1, ged(3Q A I4(Q)) sl ged(k,na) , (5.67)

consistently with (5.64).

The instanton measure differs slightly from the helicity supertrace counting 1/8 BPS black
holes [30-32,223, 222]

_(14(Q)
Q — D@ 5 g 1 . .
14(Q) sed( @)t (—1) 1 c( i ) (5.68)
ged(@x Q) =1 d|7QNL(Q)

One finds a similar result in NV = 4 theories defined by orbifolds of type II on K3xT? [20]. It would
be interesting to compute the instanton measure in three dimensions in the Py C FEg parabolic,

where one expects the instanton measure to match precisely the helicity supertrace 14(T") counting
1/8 BPS black holes of charge I' € Z5°.

29For the set of charges (5.60) the components of Q. Q include (k, nr, nry1ns41, 3k/2) while (Q x Q)’ only includes
(k,nr,nry1ns41), which greatest common divisor is Spin(6,6,Z) invariant [183].
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6 Outlook

In this concluding section we will discuss some ongoing and future projects.

e D-brane instanton corrections in string theory:

One important problem is to derive the non-perturbative D-brane instanton corrections from
first principle. This has been achieved for 1/2 BPS multi-instantons in ten dimensions [11] and
for a single instanton anti-instanton in [12]. It would be interesting to generalise this computation
to 1/4 BPS instantons in D < 6 dimensions and even 1/8 BPS instantons in D = 4 dimensions.
We are currently working on the calculation of the partition function in the corresponding quiver
gauge theory on a torus. In a first stage we are revisiting the computation of [197] using the more
precise contour prescription of Jeffrey—Kirwan [224].

On the other hand the coupling function Fourier coefficients provide a prediction for the instan-
ton measure of 1/8-BPS D-branes instantons in string theory. It would be interesting to repeat the
same computation to see if the measure of black hole instantons in three dimensions reproduces
the helicity supertrace counting 1/8 BPS black holes. A similar analyses can also be applied to
less supersymmetric string theories, we had analysed the case of black holes in N' = 4 supergravity
from heterotic CHL orbifolds in [20] and we are currently working on a similar study in N’ = 6
supergravity.

It would be interesting to understand D-brane instanton corrections for the higher derivative
couplings, not protected by supersymmetry. Because £, does a priori receives corrections to
all orders in string perturbation theory, it does not make sense to try to make the perturbative
function U-duality invariant starting from tree, one-loop and two-loop corrections. We have checked
in [64] in particular that the two-loop exceptional field theory amplitude is inconsistent with string
perturbation theory. However, the method introduced in Section 5.4 can in principle be used to
compute the D-brane instantons dual to the two-loop wordsheet instantons. To do so, we would
need first to derive the Siegel parabolic Fourier expansion of the function B, studied in [174].

e Effective theory of BPS particles:

The effective theory of 1/2 BPS states that we proposed in [64] provides an efficient tool to
compute BPS protected couplings in string theory with maximal supersymmetry. It is interesting
to investigate if this same tool can be applied with less supersymmetry. We have already analysed
in some details the case of N’ = 6 supergravity in four dimensions, for which the 1/2 BPS super-
multiplets are either spin 2 or spin 3/2, and can therefore be analysed in supergravity. We found
already some compelling evidence that this procedure works, generalising the preliminary results
obtained in [28].

For N < 4 there are 1/2 BPS supermultiplets of arbitrary high spin in string theory. Nonethe-
less, it may be that one only needs to consider supermultiplets up to spin 2 in the Horava—Witten
formulation of the theory in eleven dimensions [225,226]. In the future we would like to come with
a formulation of the theory involving all the massive spin 1 supermultiplets with their non-abelian
interactions that are standard non-abelian interactions at the enhanced gauge symmetry points.
This effective theory should be formalised in the framework of double field theory [227].
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e Uniqueness of string theory:

One related open question is about the possible existence of consistent quantum theories of
gravity that could not be realised as string theories. There are compelling evidences that all
consistent supergravity theories with extended supersymmetry are string theories. However, there
is no proof of this conjecture, even for maximal supergravity.

This is the subject of the PhD thesis of my student Adrien Loty, with who we have analysed the
minima of the coupling function &, [213] and consistency with unitarity of the S-matrix [228,229].
The coupling function & o, can be negative in dimensions D < 7, and its minimum is at a symmetric
point, which represents the Gram matrix of the densest lattice sphere packing for SL(5) in D =7
dimensions.

Considering the perturbative limit in extended supergravity where some of the radii are large,
one generally gets logarithmic singularities in the amplitude that can be interpreted as Kaluza—
Klein particles becoming massless in this limit. In string theory we must always get the entire
Kaluza—Klein tower and their interactions can be inferred from supergravity. We are investigating
how unique these interactions are and if one can prove directly in field theory that recovering the
Kaluza—Klein tower is the only consistent resolution of the singularity.

If we make the hypothesis that the effective theory admits more than sixteen supersymmetries
and a U-duality group congruent subgroup I' C G(Z) of the maximal possible symmetry group, one
can derive the possible corrections to the low energy effective action that satisfy all the consistency
conditions with the perturbative and decompactification limits. One may hope to come up with a
finite list of theories compatible with these conditions and it would be interesting to check if they
all admit a realisation in string theory.

e Generalised automorphic representations:

The notion of automorphic representations defined in mathematics does not apply directly to
the coupling function defined in Section 5. We are currently working on a mathematical definition
of representations that are not Z(g) finite and including this set of functions. We are particularly
interested in functions for which there exist specific Fourier coefficients that define an arithmetic
number as the instanton measure in (5.45). We have already evidence that there are natural
candidates when the source term generalising (€))% is associated to rigid nilpotent orbits. It
would be interesting to analyse the kind of combinatoric objects these Fourier coefficients count
and if they have a meaning in string theory for E7(Z) or other U-duality groups.

e Other topics:

We have other ongoing and future projects in supergravity applications that are not obviously
related to the subject of this habilitation thesis. They include the study of Kac-Moody exceptional
field theories and their applications to the quantum mechanics formulations of M-theory through
the DO matrix model [230] and the cosmological billiards [231].

The analysis of supersymmetry invariants in presence of a cosmological constant is almost
inexistent beyond N = 2, despite its relevance to the study of string theory on AdS backgrounds.
The presence of gauge couplings gives a relevant deformation of the supersymmetry invariants that
potentially involves lower derivative couplings in the low energy effective action.
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A Eleven-dimensional supergravity with antifields

We write the Cremmer—Julia—Scherk supersymmetry transformations [36]

0"V(e)e® = (E'yaw)

FHOA = e (Era)
1 1 1 .
susy _ - bede  * ¢[b. cde]
(Y = dae— e (579" = 5007 ) Frege € (A1)
S ()@ap = € (EVaPrle — 57Vchab)) + 1<€[iv bedes FCT + Fy, dWCd} ¢>
a [aPblc — 2VcPa 3 o, labede abe
5“1‘;\/( ) abed = _3(E7[abﬁcd]) (AQ)
where

p=dptp— e Totp, F=F- feAe"wmw, dye® + (Ww) =0, (A.3)

are the supercovariant field strengths and the supertorsion tensor T, is

1/1 1 A
']ra = . (24,}/ bede géz[zb’)/Cde])Fbcde ) (A4)

In this convention the Lagrangian is [36]

1 1 uvpo 7 v w+w 1 VPOK
L= e(ZR(w) 48FuupaF ’ %’Y“ pr( —5 )wp + 192%’7“ ’ A%( POKA + Fpam\))
1
o uupaﬁ)\ﬂveLTA I F A
103686 uvpl o 9L verr » ( 5)

where one introduces the non-supercovariant spin-connection w that solves the first order Euler—
Lagrange equation

dwe + 5 (W“w) + eAe (P ®petbe) = 0. (A.6)

The supersymmetry algebra (with commuting spinor €) closes on the elfbein e® and the 3-form A
as

5susy(€) — ﬁ%(eve) 5Lo1ent/(6R€) 5gauge(%€,y26) (A7)

with 1 1 1
Rap = m’YabcdefFCdef + éFabcd’YCd > (6726) = ieg\eb (E’Yabe) . (AS)
However, for the gravitino field, this relation is only satisfied modulo its own equation of motion as
6susy(6)2w _ EA%(EF}/E)w . 5Lorcntz(€R€)w + ea]Kab,ybcdpAcd (Ag)

where
1 1 1 1 1 1
Kup = ﬁ<vc[eEhc + 570"1[66]76[1) Ny — gealel + 5leEra + 5 leevac — E(E'Yabe) :

(A.10)
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We therefore define the BRST transformation of the gravitino field as
s = Lep — 1y — dye + €T (e) (A.11)
with the anti-field dependent supertorsion term

T*()_l(l,ybcde_l

1 1
b cde]) ( cf = - oedp = ) *
521 30077 | Fhede€ + 5 (7 [e€]ve + 57 [€€]vea ) ¥y

1 I %
—Plee] Ve Us — é(e'yabe)\ll b (A12)

]. * ]— — *
— —7ale€]y b\Ifb + E’yb[ee]’ya\llb + B

18
where the antifield combination ¥} is defined as
T =4k — Qe . (A.13)

Here €4, is the Lorentz ghost and €27, its antifield. One checks that this does not affect the
nilpotency of the BRST operator on the bosonic fields using

EV[ach]d =0, €7{aKb}c =0. (A.14>
The closure of the supersymmetry transformation then involves the antifield dependent Lorentz

transformation with

1 1 ~ .
6 (E[ﬂ’}/abcdefFCdef + Fabcd’VCd] 6)

1 1
L) ) + s Eve) () -

Roy(€) = (€7 Th(e) =
= (Ere) (W) . (A15)

This way one determines the solution of the master equation [87]

DY 5L2
/ Z P (A.16)

Y= /<_419'5ab[9]e[/\]Rab( )+ F/\ * F + 1218' abc[8]e[/§} (W’”d%(w@w)
— B @) (F + F) — S ANFAF
e (Lo = et = (@00)) + 7 (e = 40— doc + € Toe)

+ A, 1)/\<‘C§A(3 0 — (€% el yant) — dA<2,1>>

+ A(9 N <L’§A<2 ) — (e ese %bﬁ) dAq o + L1 ey )A(3 0>>

+ ATloﬁs) A (ﬁéA(l,z) —dAs Tt g0de 1>> + Al A (ﬁﬁAm 5 T U e, 2>)
< {£,€6) — (E’}/E)) + Qrab (ng?ab + Qe — (€Rape) + L%(E’ye)a)>
# (Cee = 48 1y ) — [0+ QIR - D) (A1)
where we used the form notation and [n] is a short for

€ab[9]€[ I = 5abcdefghmke/\edAeAej;\e AehAe’/\e Aek (A.18)
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B Closed string sphere integrals

In this appendix we discuss some details about the five-point sphere integrals. To check that
Wi(s;) in (2.63) is indeed analytic in its arguments, one decomposes the integral with respect to
the six possible orderings of |z|, |w| and 1. The arguments s; are chosen such that the boundary

contributions where z and w are either infinity or zero vanish. The integral in the first line gives

six permutations of the integral

1 21 27 0o 00 A A
2/0 d0/0 dgp/o da/o dj e2at+26v|1_e—a+16’|—23|1_e_ﬂ_t,_w,‘_guu

™

_ e—a—ﬂ+i9+iw|—2w

S ot ({(2+n) + mZ>3 w225 (m, n))

1 52 u?
- -7 n—1 m—2 2" _
= LT (¢(2+m) + 3y ZiS(m,m)) - = z
+82u2<z t"‘1<C(2+n) + 3 sm—ij,S(m,n))> (
n>1 m>3 ) n>1 m>3

> (¢ + 3 um—sz!S(m,n))>

Hw? 3 iyl (C(2+m+n) + 3 wh2 2 S(k,m—m)) +2suw . " (34m+n)
k>3

|
o1 (m+n)!

m,n>1

+suw Y (uwt™ o 4 st ™) (28(24m, 1; 14n) 4+ S(1, 15 24+m-+n))

m,n>1

+suw? Yt (28(2, 1; 14m4n) + S(1, 15 24+m+n))

m,n>1

+52w? S T 8(24m, 2;m) + utw? S oIS (240, 25m) 4. (B.1)

m,n>1 m,n>1

where one uses 1
—log |1 - efa+i0|2 _ Z 7ef|n|a+in9 7
o In
and the infinite sums S(m, n; k) and S(m,n) are defined as

P
Stmm)= 3 o ok Stmnik) = 3

They can be computed using [79, Appendix A.3] as

2 C(4) 22 23
2541—55 2)¢(3 22542—536 3¢(3)?
ﬂ(,)—gé()—C()C(), ﬂ(’)_EC()_ ¢(3)7,
2 47 1

590,1) = 524(6) =C(3)°, S(3,2:1) = 5¢(3)°

S(1,1:4) +25(2,1:3) = %C(G) S, 25(3,1:2) + S(1,1:4)

This gives up to quartic order

W5(81, S92, 83, 54, 85) = (15525485 — (8284+S485+8582)(82+S4+85))C(5)

(B.2)
jn(; g B9
206~ ¢,
=2c). (B

+ (%(822—‘1-8424-85?)2 + %(522—1—3424—352)(82—1-344-35)2 — (5sasass + 2(85’+32+8$))(82+84+85))<(3)2
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To compute more systematically the o/ expansion of closed string sphere integrals, it is conve-
nient to use the single-valued map [172]. It was conjectured in [135,136] and proved in [138] that
one can obtain the closed string amplitude sphere integrals from the open string amplitude disk
integrals using the single valued map [172] that satisfies

sv((2n) =0, sv((2n+1)=2¢(2n+1) . (B.6)

The single-valued map efficiently packages the KLT relations [232] in a way that avoids to com-
pute the KLT matrices. Following [138], one introduces the sphere integrals with Park—Taylor
denominator associated to two permutations 7 and p

1 [ dzd?2d?z3d®2d? i<j<s |2 — 2 7%
J(rlp) = 2/ 21d“zod* z3d* z4d* z5 ; ng <j<5 | - _]|_ ] ’ (B.7)
s C5 VOl SL(27 @) Hi:l(zp(i-l-l) —_ Zp(z)) Hz‘:l(ZT(i—i—l) — ZT(i))
that can be obtained from the single-valued map applied to a disk integral
Ielp) =sv [ dz1dzpdzsdzadzs acicies 12 = 217 (B.3)
sy <z VOLSLZR) T (2o(041) — 2p(a))

This generalises to arbitrary numbers of points, but we shall only use it for five-point integrals.
Using the identity ﬁ = %—i—

1
w—z) ' w(z—w)’
Park—Taylor factor in the trivial permutation one computes that

and a change of variables to get the right-moving

= 12/d2,z/d2w %|Z‘_2512|1_Z|_2824’w|_2823’1_w|_2834’w—2’_2823
mJe Jo o |zl

= J(oas|045) + J(0450923|045) + J(045|045023) + J(045023|045023)

= SV/ dxdy
O<zr<y<l

e e I 1 B N 7 B e

1
(1 —2)y(l —y)

1
+$(1 — $)y(1 — y) |33|_513|1*:E’_s35 ’y|—512|17y|—s25 |y72|—323 ) (B9)

One can use this form to extract the analytic function W;(s;) in (2.63) by subtracting the poles as
described in [134]. The basis proposed in [134] does not give directly (2.63), but the o/ expansion of
the basis functions given in [137] allows to obtain the expansion (2.64) of W;(s;) straightforwardly
using [135] and the datas provided by Broedel-Schlotterer—Stieberger. We will not display the
expressions that are not very illuminating, but we observe that the first irreducible multiple zeta-
values ((3,3,5), ¢(3,5,5) and ((3,3,7) appear with a polynomial in the Mandelstam variables
proportional to sas4ss(se+s4+s5) and therefore drop out in (2.66).
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One uses the same method to compute the integral (2.123) as

1
= 2/dzz/de
™ C C

s J(045)045) + 82T (045023|045) + 52T (045]045023) + 82T (045023|045023)

2
%—i_(z_tl)w—*_z(wu_l) ‘Z|72512|1_Z|72524‘w|72523‘1_w|72334‘w_z‘72523

—stJ(045|045023034) — suJ(0a5|045034) — StJ(045023|045023034) — suJ (045023|045034)
—tsJ(045023034|045) — uSsJ(045034|045) — tsJ (045023034|045023) — usJ (045034|045023)

+12 J (045023034|045023034) Fut J (045034| 045023034 +tuT (045023034 |045034) +u T (045034|045034)

= sv/ dxdy
O<z<y<1

s t U
3< ) T —S12 1 T —S25 y —S513 1 y —S835 y z —S23
Yy x(y - 1) (QU - 1)y ’ ‘ ‘ ’ ’ ‘ ‘ | | |

s t u
(2 ¥ )l =53 L] =5y 121y oy 2
zy (z—-1)y z(y-—1)

t U
t( ) T —S13 1_33 —S523 y —S15 l_y —S525 y_z —S835

1—y| %% y—z| 75| . (B.10)

o] L]y

t u
+u<x(y — ) * z(y — 1))

One can use this form to extract the analytic function Fj(s;) in (2.123). The o’ expansion of the
basis functions given in [137] allows to obtain the expansion of Fj(s;) as

Fy(s1, 52, 83, 54, 85)
= 2(¢(3)s5(2s? — 3t% — 3u?)
+¢(5)s5(s> (6(sl+33)2+231(31+S4)+283(.92+83)+45254+7(81+52+53+84+S5)(82+84+85)+55(751+282+753+254+685))
— 12 (5((s1-+53) (2514 352+ 255+ 52)+(51452)2+2(50-+54) 2+ 52+ 52) + 55(2051 42859+ 21 55+2254+1955)) )
— U (5((s51453) (251+52+ 253 +354)+ (53+54)2+ 25+ 54) 2+ 53-+53) + 55(2151+2252+2933+2854+1955))))
+(s%,t2,u?)O(s?) . (B.11)
The first irreducible multiple zeta-values (3, 3,5), ((3,5,5) and ((3,3,7) appear with a polynomial

in the Mandelstam variables proportional to s5(sa+s4+55)(s1+52+53+54+55) and therefore vanish
in the two-loop four-point amplitude in which F; appears evaluated at s1+sso+s3+s4+5s5 = 0.

C FE7 parabolic multiplicative characters

In this section we derive some of the differential equations satisfied by the Eisenstein series by
using their formula as Poincaré sums of a multiplicative character (3.12). In the domain of absolute
convergence for Re[s] sufficiently large this implies the same differential equation for the Eisenstein
series. When the equation is satisfied as an analytic equation in s it extends by analytic continuation
to all values of s except at the poles.

C.1 Abelian parabolic character

To compute the differential operators acting on a abelian parabolic character of E; we use the
property that it is obtained from the F; fundamental representation on a vector I' in the minimal
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orbit. One can choose such a I', and define Z(I');; = Vijl I'; and its complex conjugate from the
action of g € Fy on the vector I'. For simplicity we shall write Z;; and its complex conjugate AR
The minimal orbit condition for I' implies the equation

1 s ) 1 .
AN ﬂgijklpqrszpqz ; ZpZ* = §5§ZMZM , (C.1)

and the differential operator acts on Z;; as an element of e7(7

1
Dijklqu = 35ﬁ32kl] s Dijklqu = égijklpqrszrs . (CZ)

Using the definition |Z|? = ZijZij, the spherical abelian parabolic character can be defined as the
function y$ = |Z|72¢ in (3.12). One computes that it satisfies

(s —11)

Dijpg D7 2] = 2s(s - 2) 228|277 + =5 = l|z) >
- _9g_ 52 — 155+ 8 _
Diququ’”SDmkl\Z\ 25— —38(8 — 2)(8 — 4>ZijZkl’Z’ 252 + fpijkl‘z‘ 2 )
- _ (s=2)(s=17) _ 52 —9s — 40 _
Djr[klpwmnppq]mn‘z‘ » = T(S;‘Dklpq|z| 2 — Té[lkppql]j‘z| 2 3 (03)
and the Laplace equation
A|Z|7% =3s(s —9)|Z|7% . (C.4)

To exhibit the module structure (3.83), it is convenient to consider a restricted set of indices as
follows

(D12, DM Dy12)™ (D1apgD™P)"* (D123a) ™ | 2|2 (C.5)

—1)\! —3)! —5)! P —
(stm1 +n2+réi_8igztg)zlz;n_%)?)-(s%s 5)! (_32122)% (2Z12Z78)"2 (—6Z[12234])"1 1Z| 2(s+n1+na+ns)

One computes moreover that for m <n

(D™D D)™ (D12pg PP *Dysr2) | Z| 7% (C.6)

s+n—1)!(s+n—3)!(s+n—>5)!(s+n+m—1)!(s+n+m—3)!(s—n+m—>5)! 78 2\M 2\n —2(s+n+m
( (sfl)!(s£3)!(375)!(s+n71)!(s+n73)!(sfn7(5)! (_SZ ) (_3Z12) |Z| (stntm)

3\ nt+m (s+n—>5)!(s+n+m—1)!(s+n+m—3)!(s—n+m—5)! ikl n—m 78pg\ " +M | | —2
(o) R Gt DGt 9 an (P12 DY Drnz) T (Paagg D) 21T

2

such that acting with a derivative operator in the conjugate representation 2m7Yg does not produce
an independent tensor. One has in particular for s = k + 4 an integer greater than 5

(D™D, 54y DM™®) (D12pg DP"* Dysr2) "1 2|25 = 0. (C.7)
The restriction of the derivative D3"|Z|~2% to the R(2nY3) with two free indices reads

[DS’ZTQ]m%flz?n*l |Z|7%

sn—.sn—.sn—._gn n— n— —2(s+n
etnoDieen etns) O (7,281 - = 122528 72) 121720, (©8)
2
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and one computes that

1
D™ 1 (Zijzfznil —(2n - 1)Z1[iZj}QZ122n72> |Z|_2(S+n)
n + 2
(2n+5)(n —s+4) B B
= 4n + 2 Z782122n 1|Z| 2 Y (Cg>

such that

DI [D3y, Jijin-19om1|Z| 7%

3(s+n—5)(2n+5)(s—n—4) il . - -
- 8n + 4 (D125 DM Dyyi2)" ™ (Dr2pg D) Z|7% . (C.10)

In particular for s = k + 4 integer we have that

D78ij [Dgllz'rz]ij12k7122k71 |Z|_2k_8 — 0 3 (Cll)
consistently with the assumption that no lower order tensor is produced. This identity can be
trusted for the Eisenstein series in the domain of absolute convergence k > 6. There are poles at
k =1,3,5, but since the residue is in a representation in which the operator vanish one expects to

have no correction for k > 2.

C.2 Heisenberg parabolic character

One can also consider the Heisenberg parabolic character using the adjoint action on an element )
in the minimal nilpotent orbit. The element VQV~! decomposes into the anti-Hermitian traceless
matrix Aij and the complex-selfdual antisymmetric tensor Xz, satisfying to the constraints

‘ 1 .
Alk/\kj = —@5;Xklquklpq )
o 1. 1 .
AL [kAﬂl] — _§X”quklpq + 47852]1qursqurs :
Al xRt — ATk xlpi (C.12)

The action of the derivative on these tensors is defined as the e7(7) action

1
Dijlepqrs = 12(5[1[];{1’:[\8]” , Dijklqu = 25{;Xjkl]q + ngXUk’l . (013)

One computes for | X|? = Xijleijkl that

)

DijpgD"PUX|? = 30Xijpg X P14+ 3611 X2, Dijpg| XIPDHPUX|? = 12X, X9 X |?

Dyl X|? = —24X,;A7 D g X100 = 1067 AL (C.14)

which permits to derive that
Dijpg DPPU X725 = 65(25 — 3) X;jp X *PU X | 72572 — 3555?\)(\*28 , (C.15)

and
A|IX|7% =25(2s — 17)|X|7% . (C.16)
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One gets therefore a solution to the equation
Dijpg D[ = —gag frm (C.17)
for s = % One computes in general that
Dijpg D" * Drsiat| X|72° = (s* — Y5+ 6) Dy | X|7>° (C.18)

and the function satisfies to (3.69) and its complex conjugate for all s. The restriction of the third
order derivative to the T1+Y4+Y7 gives

I 3 _os—
Diyj1oDagy D7 X7 = —5(25 = 3)(25 — 5) A% Xugaa| X| 7272, (C.19)
which gives for the irreducible representation

[D%1+T4+T7]jaklpqi|X|_2s (020)

35(25 —3)(25—=5) (i dyr o 4 i i 8 \r i
=1 X (A% Xy + s N 00 Xipqr — 05 1 Xipgr — A Xnipg) — gA 504 Xipalr )

showing that the function solves the cubic equation (3.75) for s = 3.
One then computes that

Dipn23[D¥, vy, laj1230' 1 X% (C.21)
3 8 ,. mea sl 20 e
= 18(23 —3)(2s = 5) <3(3+1)(A 1 X234)° | X771 4 <T - 3)(X1234)2\X\ 2 2)
whereas
Droai Do | X |25 — i N2( v —25—4 2| v [—25—2
1234 D1234| X |77 = 65( 96(s+1) (A" [ Xo3456) | X| + (X1234)° | X| ) (C.22)

exhibiting the multiplicity 2 of the representation 2Y, of the Eisenstein series.?

One can also consider the restriction of the fourth order derivative to the 2Y; + 275

. 9

DIUD D1 DI X |72 = —55(25 = 3)(25 = 5)(s - 4)AB AS | X722 . (C.23)

This does not prove that the Eisenstein series EfA71 satisfies the same differential equation. Never-

theless, the function Eszl has a vanishing constant term and turns out to be square integrable as

EFT and EF
2

5 -
GEAS!

D Computation of EfAdd Fourier expansions

We compute the Fourier expansion of the Eisenstein series Eﬁd in the parabolic subgroups P; and
P,. The case of P; was analysed in [202]. The method can be generalised to P; and P o.

3%For the multiplicative character one finds that they are proportional for s = %, but s = % is a regular point for
the Eisenstein series in the critical strip and the functional relation to s = 5 shows that the Eisenstein series does

not satisfy any particular equation at this point.
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D.1 E,; Eisenstein series in P;

Let us consider the Eisenstein series £ SEAdd of E; for 6 < d < 7 in the parabolic P; corresponding to
the perturbative string limit. For this purpose we write the decomposition P;

e =2 ATV a8 g (gl @so(d—1,d— 1)@ @SV @ (MY

~ d—67,\(22=8) €= (e2)
R(Ag) = (AN7V)Po=d g S0 g Vie=a

RA) = 57107 @ (ATV @ S) 5 @ (ATV @ A5V D ¢ §95 g 1650 (D)

We decompose the sum over all I' € IL; into layers according to the number of non-zero components

I'= (g x;p) - (D-2)

The first includes only non-zero string zero modes ¢ € IIg_1 4—1 = V(Z). The second includes
the sum over D-brane winding numbers y € S;(Z). The third includes the sum over NS5-branes
p € NSV(Z) for d > 6.

The string zero-modes must be level matched so the norm (g, q) = 0. For the second layer the
D-brane winding must be half-BPS, which is the case if x X x = Xv4—5x = 0 where v4_5 is the
antisymmetric product of d — 5 gamma matrices for d > 5. The constraint ¢x = 0 implies then
that (¢,q) = 0. The third layer appears for d > 6. For d = 6 the NS5-brane in an integer p € Z
and the constraint is

pq = XV'X gx =0, (¢,9) =0 (D.3)

that can be solved for )
= —X7"x (D.4)

b

provided p divides x x x in II55. For d = 7 we have a vector p € Il of NS5-branes and KK-
monopoles. The constraints are

(p,p) =0, Px=0, DPadp—Poda=XYabX: dx=0, (g,9)=0. (D.5)
We write these constraints schematically for all d and the Eisenstein series sum can be written as

1 [ dt [ v 295
Eq _ — %95 o(g)] —Z( v(g+2axx)*+gs 7 v(x)[?)
% = s (z AL B o e

qeV XES+ q€V
(q q):O XXXZO dxzo

d77

d78
+ Z Z Z - Iv g+2axx+(axa+b)p)2+g. ° [o(x+ap) P49, o(p)| ))

peNd—OY xESy g€V
pxp=0 pXx=0XXX=Pq

1 ® dt ! —ngfdanQ
T E2s) )yt > D e !

’Y€P1\Dd,1 nelN

4 d77

. Z S e 2 (gT Ty T oy (mr a7 420?)

YEPg—1\Da— 1”€]NmEZd 1

+ Z Z Z Z e~ T2y (nx.am )I) (D.6)

vE€P;_6\Dg—1 n€N Y76 mezd-6
qeZ'0
XXXx=nq
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where for d =7

1200, x4 m)? = g2 (y2[v(m + ax + (@a + b)n + clg + 2a x x +a x an))

+ lo(g + 20 x x+a x an)2) + g, Ju(x + an) 2 + g7 %20% (D7)

where all the moduli but g5 should have a label ~, since they are different for each representative
v. For d = 6 there is no Poincaré sum and
4 2 8
1Z(n, X, 0, m)P = g3 g+ 2a x x + a x an))|* + g5 * Jo(x + an)|* + g5 *n® . (D.8)
We write y,, the P, multiplicative character in each Poincaré sum over Py (Z)\Spin(d—1,d—1) that
we write Py\Dgy_1 for brevity.

Let us explain how to get these Poincaré sums. The first is the definition of the orbit of
light-like vectors. The second comes by using that Yv;_s5x = 0 implies that there exist v €
Py 1(Z)\Spin(d—1,d—1,7Z) such that x = ynA4, the highest weight representative. P;_; is the
decomposition relevant in the large torus volume Vol(T91) = (27?)‘1_10/% Yy 2 limit, so that n is
the number of DO-branes and the one-half BPS constraint ¢x = 0 implies that ¢ = (m,0) € Z4~! C
II4_1 4—1 does not carry winding number.

The last Poincaré sum is only non-trivial for d = 7.3! There exists v € Py(Z)\Spin(6,6,Z) to
bring p into a highest weight vector ynA;. In this parabolic $y = 0 implies that x € Z'%, a spinor
of Spin(5,5). The vector ¢ satisfies (p,q) = 0, so it splits into a vector in II5 5 and the highest
weight vector

1_
q= ’Y(EX’YIX‘FmAl) : (D.9)
The remaining constraints are then automatically satisfied using the Spin(5,5) identity
Y XXYaX =0 (D.10)

familiar from super Yang-Mills theory in ten dimensions. Thinking of this parabolic P; has a
decompactification limit, we can split the R-R axions in S into two spinors of Spin(5,5) that we
write a and a. We write the Kalb-Ramond two-form axion b.

The first Poincaré sum gives by definition g¢. msE&I_l. The second can be computed by
Poisson resummation over ¢ € Z%'. One can then exchange the Poincaré sum over P;_1\Dg_1
for the spinor in S} and the sum over g € Zd_l by a Poincaré sum over Py_5\Dy_; for the Fourier

coefficient @ = §x in S_, and the sum over y € 75 of ged dividing Q. The result is

6(28 —d+ 1) 2%5—(&1—1 Dy_1

£(2s) g (s—953)Ag—2
5-d. d—1 [v(Q)]
g2 ' 04—1-2s(Q)  _sr(d-1) st%(% ) 2i(Qa)
5(25) Qes_ gchd—l( 3—2s) (=757 )Aa—2 ’U(Q)‘( 15t 5 o1
QxQ=0

3! Although there are additional layers of charges for d > 7, all the expressions we use extend to d > 7.
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For the third and last Poincaré sum in ( ) one carries out the Poisson resummation over

P ol
‘G‘

@

m € Z% 6 and the change of variable t — y7 gs dt that gives the Poincaré sum over Py_g\Dg—1

of
) e
s Y
s (X, 9)
£(2s) 7;\1 ezzjw/o t”s—*
qEZlO
XXX=nq
« o H(E paroncaxam P+ g vocran (g7 Ee?) - o)
with
2
\I/(n X q) _ Z e—wt(%)7%y7 =6 10T (m)]24+2mim(ax—+(b+aa)n+c(g+2ax x+axan)) (D 13)

In this form mn is manifestly the Fourier coefficient of €*™™"% .. the NS5-brane instanton
charge. To compute the abelian Fourier coefficient we use [ db ¥(n,x,q) = 1, which sets m = 0.
The constrained lattice sum is then the same for all 6 < d < 8 up to the shift in s and the rescaling
of g, that are absent in d = 6.

in Py

We don’t know how to compute this sum directly, but using the exact expansion of Ef[{"S

computed in [202] and the Langlands functional relation

By _ §(25 —8)€(2s —11) g,
she £(25)€(2s5 — 3) (6—s)A1 (D.14)

altogether with the partial expansion already carried out in this section for d = 6, one obtains that

_2 _8
Z Z/ o~ (8 lo(a+2ax xcraxam) P+g; ® o(cram) Pos S n2)
t1+s

nelN XEZlG
qezlo
XXX=nq
,%S
s 45—16
= — 2s — 8)&(2s — 11 D.15
e H) (s( s — 8)¢(2s — 11)g; (D.15)
K57£ (27‘(‘ |U(gQ)|) '
+2§(23_ Z J11— 25 2 1172: 627”(@’[1)
Qes_ lv(Q)] 2
QxQ=0

By (M 1M(QxQ))
P 3T D o (G 2 AT @ )
5 W@ x Q)
QXQ#0

Note that this gives the expected overal factor of 3 that exhibits that this contribution vanishes

£(2
for the minimal series at s = 5. Including this result in (D.12) one finds more generally that the

abelian component of this sum vanishes for s = %. This should not be the case for the full
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series (D.12) including the non-abelian Fourier coefficients since the minimal series also carries
non-abelian Fourier coefficients. One obtains then

fé(@erﬂ) d=9-2s /OO dt ( _os 1% 2, (_9s \-3 2, (_9s \-§ 2)
3\9—d 2 3 (=) 3 v(g+2axx+axan))?+(2=)73 [u(x+an) P +(E=) " 3n
gs Yy ——a%e 7 v v
qezlo
XXX=nq
4
g "
= @ dr 3 <g(2s —d—2)&(2s —d — 5)gisT 24y st (D.16)
S J—
3(s—dtl) 3d=l=6s KS,M(QW@) omi(Q
+2£(2s — d — 2)gs kR Z Tar5-2s( 2 I e2mi(Q,a)
Q€16 ‘U(Q)| 2
QxQ=0
B 5_di(?h|v(Q)|27 ywlv(QXQ)l) '
+2g2s d—2 d+1 2s Z an-l—S QSUd o QS(QnQQ) 2 2 92 - 92 6271'1(Q,a)
Qe16n|Q [y, (Q x Q)2 °
QXxQ#0

which we must summed over v € Spin(6,6,Z) /P for d = 7. The first Poincaré sum gives by

definition the Eisenstein series E” For the other terms one identifies the character y, as

d+1 Al‘
the norm for a primitive vector w(e \% a)nd @ as a spinor in S_ satisfying ¢ x @ = 0. The sum over
such w and @ indeed reproduces the Poincaré sum with w € yA; and Q € 16"”. One can rewrite
the second sum, for which @ x @ = 0, as a Poincaré sum over Ps\Dg with € yged(Q)As and
w € (Z%)®. One gets therefore the change of variables

1
6

VR @I=1@] =] 22

YA1 (D.17)

with the right-hand-sides defined in the parabolic Ps, and ya, the character of the parabolic sub-
group P;"% of the Levi stabilizer SL(6) of Q € S_.

For the last sum over rank 2 () one considers instead the Heisenberg parabolic P, decomposition.
In this case Qv,»®@ # 0, and defines an element in the minimal nilpotent orbit of s0(6,6), and
therefore Qv,pQ = 7(ged(Qyap@)A2). In this decomposition ) can be written as an SO(4,4)
vector by triality. We obtain therefore a Poincaré sum over Spin(6,6)/P; of spinors ) realised as
vectors of SO(4,4) with non-zero norm square equal ged(Qv.@). This parabolic corresponds to
the large T2 torus limit. In this basis the constraint ¢0QQ = 0 implies that w € Z?2, i.e. a doublet of
momenta along T2. The Poincaré sum over P;(Z)\Spin(6,6,Z) and the sum over generic Q € 16"
can therefore be rewritten as a sum over rank 2 Q € S_ and a Poincaré sum over P;\SL(2) of the
Levi stabilizer SL(2) x Spin(3,4) of Q. The relevant change of variables is then

v(QxQ) |2
ged(Q x Q)

where U, is now the imaginary part of the large volume T2 complex structure.
Using these formula and manipulating the Poincaré sums as explained above, one obtains even-

VI (@) = (@) yy|vy (@ x Q) = [v(@ x Q)] ,  y, = U2 (D.18)

tually
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/db EE/? _ g_S)fids <EDd—1 + §(2S —d+ 1)928—d+1EDd—1
sAg s

[0,1] sh &(2s) s (s—953)Ag—2
§(2s —d —2)§(2s —d — 5)g4sf2d74EDd—1
£(2s)&(2s —d+ 3) * (s— ) Ao
s—i5t Q)
Y 2 Od— 1 QS(Q) SL(d—1) (v0) K, d71(27r ) (@)
_d=3 1
§(2s) QQEéS‘ ngQd 1(d=3-25) (5= 5 ) Aa2 |U(Q)](1_7)5+ 2 a1
X 0
(@)
4 98s—d— 2)0"” o z/: Td+5-2s(Q) SL(d—1) vo Ks—¥(27T ) e2mi(Q,a)
s—d _d+1
£(25)€(25—d+3) QQGS OngQ2§ 8(d+1-2s)  (s—%5)Aa—s o )|W
X
B auo (MQL M@xQ)
g o 2(35) pSL(-) 5% & ori(Qua)
+2 £(25—d+3) Z Z ngQxQd 6 (a+1-23) E(S_M)Ad_ﬁ('l)@) (Tysr1_ 4D €
955 mle p(@x Q)

(D.19)

Here we define v(Q) as the Narain moduli matrix acting on the spinor @ € S_, and @ x Q =
(QT4—5Q) is the (d — 5)-form quadratic in @, such that v(Q X Q) = v(Q) x v(Q), and its norm
is normalised with the apporiate normalisation for a (d — 5)-form with the d%)! factor, such
that |v(Q)| and |[v(Q x Q)| are Spin(d—1,d—1,Z) conjugate to multiplicative Borel characters for
primitive charges @ and @Q x @, respectively. For E; the Gelfand—Kirillov dimension 27 is saturated
by the rank 2 spinor charge lattice of dimension 25 plus 1 for the SL(2) Eisenstein series of its Levi
stabilizer, if one includes the non-abelian Fourier support, i.e. 27 =25+ 1+ 1.

This computation is in fact the same for FEg, although this formula only gives a small part of
the Fourier coefficients at generic values of s in this case. However, one expects that it gives the
complete abelian Fourier coefficients for s = % and s = % and in particular

473 4
SRE(WEO)a!® [ b B = )T+ L EOBYS, + (B,
K (2W|U(Q)|) 2 K (QW\U(Q”) ]
s 02(Q SL(T) 1 g5 m 2 s 21i(Q,a)
+16 ¢ V)" + —04(Q) 2 e
Qg ( ngQ_ﬁ (4)E 2A6 (Q) |U(Q)|173 6 0(Q)
Q*xQ=0
K (2n Y H@P @)
+16mg >0 Y dtor (LR 2%’ e2mU@a) (D.20)
QES_. dQ | (@ x QVI[v(Q)P +2v(Q x Q)

QXQF#0

Let us now consider the non-abelian Fourier coefficient for E;(7). We use the polarisation
(3.116) and the unipotent character (3.117). One finds that this is a unipotent character of the
parabolic P7, for which we know the Fourier decomposition at the special values of s = 2 and
4 [202]. One can therefore consider this expansion of the Eisenstein series, and further decompose
it with respect to the P; parabolic of Fg. Physically the non-abelian Fourier coeflicients in the
parabolic P; correspond to first expand in the 4D string coupling g, and then in the string frame
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radus R, to choose a polarisation, whereas the further decomposition of the Fourier expansion in
P7 corresponds to expand in the Einstein frame radius R first and then in the 5D string coupling
gs. They are related to each others through
R\ 3 1
R= (7) S gs=q.R?. (D.21)
One obtains in this way using the expression of [202], up to contributions of rank three charge
q € Z*7 that vanish for s = 2, 4,

) ( \/kz + 2R Jo(qtak) \Z+g4R2\ ( q+ak‘)z(fl+ak))‘2
S—3 gs

1

1
- YA 2

(k2 + g2R.Jv(q-+ak) 2+t R2o({CHRE a0 2) 7

4,9%4 (R o2s-1(k, q, 137)

k‘EZ qEZlG
klgxq

2 + g2 R|v(g+ak)|*+gi R2|v(Letakllatak)y 2
5 qxq K 2 \/ s s A %
£(2s —5)R® o9_25(k,q, TY) EDs s—g( T P

€25 —4) ged(k,q, L)z (7N a{9va) K2 + 2R [o(g--ak)+g! REfo({1E K2

/

g:5R525 (Ip‘ P
+2W Z Z wk,q,p Z n 025 5(T)

ke pez (k)
€ k\m?
=qiq
B ( k2 + 2R Jv(q + ak))? + g"R2|v(p + 2a x g+ a x ak)|>  \/Blolhp—q x 0 + 2 R)o(a + (p—qx)a)? + 'R o( L + 2apa + alks —qxia)l? )
2,6—3 g2 ’ gz

- 555 (D.22)
(R2Jo(kp — q % @) + 2R¥v(pq + (kp —ax@)a) 2 + g* R3o( %" + 2apa + a(kp —qxa)a)|>) ~ 4

where gy, 4 is the Spin(5,5) element function of gbRg , v and @ that stabilize the vector (k, ¢, 431) €
27. For ¢ = 0 it is obtained by changing basis from the positive parabolic Py to its transpose inside
FEg (Going from KLU to K LU). More generally it is then obtained from the former by the discrete
FEs(Z) transformation that relates (k, ¢, 3) to (ged(k, ¢),0,0).

D.2 E,; Eisenstein series in P,

Let us consider the Eisenstein series Ef;{id of E; for 3 < d < 7 in the parabolic P» corresponding to
the large volume limite in M-theory. For this purpose we write the decomposition P,
eq > O (g[d)(o) @ (/\3Zd)(9—d) D (/\GZd)(lg—Qd) D (/\8’1Zd)(27_3d) (D.23)
—=d
(/\7Zd ® Zd)(3d724) D (/\SZd)(mflz’)) D (/\2zd)(d76) ® (Z )(3)
R(Al) >~ @ (/\7Zd ® /\3Zd)(4d—30) ® (/\6Zd ® Zd)(3d—21) D (/\4Zd)(2d—12) D (Zd)(d—B) ’

=
~
S
It

where we normalised the grading such that it corresponds to the powers of r with (QWET%)d =
(QWKV%)d the volume of the torus 7.

We will cary out the sum over I' € Ly with the first layer with only the Kaluza-Klein momentum
p € Z% non-zero, the second layer with non-zero M2-winding Q € A2Z? and finally the third layer
with non-zero M5-brane winding number N € A°Z?. For d = 7 one should also consider a fourth
layer with Kaluza-Klein monopole charge k € Z’, but we will not do this computation.

32We use the notation AP9Z¢ for the irreducible representation R(Ap+Ay).
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Layer decomposition

The three first grades of the Epstein series, i.e. the complete Epstein series for 3 < d < 6, reads

!/

g, 1 % dt 3 (p) 2 T Q)P+ U(Q))
A PO I o (el

pEZd Qen2zé pez
QAQ=0 Q-p=0
+ 3 Y 3 et (p+a-@+(axa+b>-N)|2+r6-d|U(Q+a-N>|2+r15-2d|U<N)|2>)
NeA®ZE Qen?zd  pezd

NxN=0 QxN=0 QAQ=N-p

1 * dt ~342p2
- §<2s>/o tl+< 2 Zet o
yEP4\SL(d) neEIN
2

, R
+ Y Y Y T et )

~EP\SL(d) neN pezd—2

+ Z Z Z Z eﬁlZw(nqup»mNQ) (D.24)

YEP;\SL(d) neN ¢e70 mezd—5
PEZD
gNg=np

where the last line vanishes for 3 < d < 4 and

_2
1Z(n,p,q,m) =17 (43" [v(m + ag + (@a + b)n + c(p + 2a A g + a A an))
_2
£ o+ 20 A g+ anan)) 5l (g + an)f? + 152207 | (D.25)

and y, is the P, multiplicative character in each Poincaré sum over P, \SL(d), and we avoid writing
Py, explicitly for brevity. Also in this last equation, all the moduli but r should have a label v since
their are different for each representative v € Ps\SL(d), except for d = 5 in which case the set is
empty, and y, = 1. The second Poincaré sum is straightforward, but let us explain the third in some
details. We set N € A°Z< equal n € 16@19) using y~! € P;\SL(d). The constraint Q x N =0
n (Z° ® Z47°)©=35 implies that Q € 10¢'% that we name gq. The constraint Q A Q = N - p
implies that the component p € 7" of Z" satisfies g N\ ¢ = np while its component m € VAREE
unconstrained. The remaining constraints are then automatically satisfied.

We write the M2 axions in (/\3Ed)(9’d> as a € 10739 g ¢ (Ed_5 ® 10)*5=29 and the other
components do not appear. We write b in the (R?°)®*—39 the axion coupled to the M5-brane
that contributes. Because two components of the anti-fundamental representation appear we also
define the torus metric axion ¢ € (ﬁd_5 ®5)® of SL(d).

SL(d)

The first Poincaré sum gives by definition r35E . The second can be computed by Poisson

resummation over p € Z%~2. One can then exchange the Poincaré sum over P\SL(d) and the sum
over 3-forms np € (Z472)?4-9 for the Poincaré sum over P3\SL(d) and the sum over primitive

134



2-forms in (Zg)@d’ﬁ), such that

2

 dt ! —3, d-2 | —T 2, ,.6-d, 2, 2

[ 5 S e e
t

0

~EP\SL(d) n€EN pczd—2

— £(25 — d + 2)p(d-Os+ L pSL@) (D.26)
(s—55°)A2
9-d
op d53s+ DO ~_oaza(N) i) Ko a2 (2mr 2 |Z(N)])
tar 3(d—3—2s)  (s—953)A (on) 2s—d+L
Nepszd 8CAN2 2 |Z(N)| 2
NXxN=0

where N x N is the projection to A>1Z<.
For the third and last Poincaré sums in (D.24) one carries out the Poisson resummation over

1 3(d—5)
m € Z45 and the change of variable ¢t — y2r~ " 7t that gives the Poincaré sum over Ps\SL(d)
of

3d=5) (95— d+9) =52 00
ro8 Yny / dt (
——=¥(n,q,p)
§(2s) %qgo 0 t1+s_d °
pEZP

3

« o~ 3 (0TI 0T 2anganan) P+ Ty IO o(pran) P+ 2T 4 10)02) (D.27)

with

- 3z5)
U(n,x,q)= »_ e

meZ4—6

1__2
y,y7 4=6 |y =T (m) |24+-2mim (Gg+(b+aa)n+c(p+2arg+anran)) ] (D28)

In this form mn is manifestly the Fourier coefficient of e27#mnb

, t.e. the Mb-brane instanton charge.
To compute the abelian Fourier coefficient we use [ db ¥(n,q,p) = 1. The constrained lattice sum
is then the same for all 5 < d < 7 up to the shift in s and the redefinition of r that are absent in
d=7>5.

We don’t know how to compute this sum directly, but using the exact expansion of Eﬁ’s in P;
computed in [202] and the Langlands functional relation **

. §(25—5)E(2s —T) g,
W= mes -7 DU (D-29)

330r in Bourbaki convention ESDAS5 = %E(’f_s)u.
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altogether with the partial expansion already carried out in this section for d = 5, one obtains that

Z Z / ks % r 3\(U’T(p+2a/\q+a/\an)|2+7"|v(p+an))|2+r5n2)
s€

nelN qEZlO
PEZ®
gxq=np
o £(25 — 5)€(2s — T)r10-5s (D.30)
GRS |
K, :2m?|Z(N)]) , .
+2¢(25 — 5)r3738 Z o7—2s(N) = e?miNa)

Nen3z5 1Z(N)| 2
NXN=0

(A 2 4
—8 Z Zd7 280_ 3 S NXN)B]”S_%(T ‘Z(N)| 7T5|Z(N X N)|)e2m(N,a) .
[2(N x N)| 2

Nen37Z5 d|N

N XN=#£0
Note that this gives the expected overal factor of ;5 —55 that exhibits that this contribution vanishes
for the minimal series at s = 1. Including this result in (D.27) one finds more generally that
the abelian component of this sum vanishes for s = d—g?’. This is not the case for the full series

(D.27) including the non-abelian Fourier coefficients since the minimal series also carries non-abelian
Fourier coefficients. One obtains then for d = 6,7, 8

pRRendin) S5 “E E 2 (T ) 10T pr2angtanam) P+ 5T I oo ran)) P (2T 10 on2)
t1+s——

nelN ¢ez10
pEZP
qNg=np
yosa®
S S — 25 — d)€(2s — d — 2)V2d—4sy~2s+d D.31
’YEPs\SL(d)
3
_ 7, 7d=6 K, a2 (2nVyiloy(q)]) .
+2§(23—d)V3dT2*3sy755+ 10 Ud+2725(CI) ST M,s e2m(¢1,aw)
qeZL0 luy(q)] 2
qAq=0
(V2y3 o, (@)%, V203 vy (g A 0)])
2(d_20) Bs . a(V2yy|vy (@)%, Voyy vy (g A g .
+2Vd—2s ZZ”HZ 2504 S(Tq) 3573 — PRLIACRY
g€z nlq [vy (g A )]

qAg#0
SL(d

E(S—( %))As'
identifies the character y, as the norm for a primitive 5-form w € AZ% with w x w = 0 and N as
a 3-form in A3Z? satisfying that w x N € A®2Z? vanishes. The sum over such w and N indeed
reproduces the Poincaré sum with w € 1® and N = ¢ € 10"”. One can rewrite the second sum,
for which N x N = 0, as a Poincaré sum over P3\SL(d) with N € 1® and w € (A?Z4~ 3)(2 e= 1
One gets therefore the change of variables

The first Poincaré sum gives by definition the Eisenstein series For the other terms one

3 Z(N) |55
g = |Z(N)| = |
Y7 lvy (@) = 1Z(N)] Y= | gedN

YAz (D.32)
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with the right-hand-sides defined in the parabolic P3, and ya, the character of the parabolic sub-
group P, of the Levi stabilizer SL(d — 3) of N € A3Z4.

For the last sum over rank 2 M2 instanton charge N one considers instead the further decom-
position of P5 with respect to the P, parabolic of the Levi subgroup SL(5) associated to the vector
q A q € Z5. This gives the non-maximal parabolic P; 5 decomposition

sly = @ (g @gl @sly s @80) 0@ (A5 30 B (ADZ )y 5) D @ (Zy 0y) >
77 = (Z5)7° ® (44-5)"0 @ (Lig-20)
NZS = @ (3g-15 D (AR LT P)3_g) " @ 61
NAZE =@ (434215 B (A @ ZYT)3_q) T @ 10479
NZE 2 @ (AR L) @ (1ag_10) 7
/A= © (4@ 23754 7)1 (D.33)

where the underscript label gives the weight with respect to the GL(1) stabilizer of N € 62?18,
This decomposition determines the stabilizer of a rank 2 charge N as (GL(d — 5) x Sp(4,R)) x
RAF4X(d=5)+(d=5) in the parabolic P; 5. The redefinition of the GL(1) factors gives

3 g 22(N x N) |15
> =|Z(N 3 ANqg)|=1]z2(N x N =|——= D.34
¥ lv(@) =1Z(N), yylv(gAa)l = |a( ) Yy 2cd(V X N) N, (D.34)
where vy is the character of Pj 5 that stabilizes N (to the power ﬁ with respect to the grading
displayed above).
Using these formulas and manipulating the Poincaré sums as explain above, one obtains even-
tually

/dbESE/{i :V9 d ( E5Ld) +Mvd 2— 25ESL()

0.1 i £(29) (s= 2500
£(25 — d)§(2s —d - 2) y2d-4s L)
£(2s)&(2s — d + 3) (s—9)As
d—2
+2VT_S , 0d—2-2s(N) s13) (on KS—@(%V‘Z(N)D@,%MN@)
d— =
§(25) | L5 L gedNE(@3-29) (=N |Z(N)| =
NxN=0
/
N 2{(23 —d) 0q4+2-25(N) SLd-3),, K, 442 (2nV]Z(N)]) (2mi(N,a)
5(28)5(28 —d+ 3) CdN%(d_QS) (8—5)/\2 (d—T)s+ (92 d) _,
NNE © Zn)
_ ‘ 2 2 172
Lo vi z’: 5 ndt2-25g, o (NXNy By a(V2Z(N)[?, VZ[z(N x N)|) WW&))
£(2s)&(25—d+3) d—5 3(d—2s) 23 d d+3d 25
Nerszann ged(N x N)ya&=s 1 [2(N x N)[o=
NXN#£0
(D.35)
This expression is complete for d = 5,6, but for the particular values s = % and s = %
corresponding to the minimal and the next-to-minimal representation one expects that it is also
complete for d =7 and 8. For s = % this gives
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3 T 2 7
V2 NG/\?’Zd ngN3 ’ |Z(N)|6
NXN=0
2 ! O'l(N) SL(d — Kl(27TV|Z(N)|) i a
+— Z S b—d (2)EA1( K (vy)—2 3d—13 2mi(Ny)
2 Nepdzd AN a3 |Z(N)| 2d=5

NxN=0

B .
+7 Z S no () K127V /IZ(N)|2 + 2]z(N x N)]) e2miVa) | (D 36)
)|

2z(NxN)
Ne/\3Zdn|N |gcii N>;N)‘49 d\/|Z ’2+2‘ (NXN
NxXN#0

that indeed agrees with the constant terms [da [ alefI"(1 [76].
2

For d = 3 or 4 the formula simplifies to the three terms

2 93(N) ¢\ 5SEG) Ks@eVIZIND oriiva D.37
t—3 TE(4) By, () ¢ (D.37)
Ve 5y gedNs |Z(N)]s
NxN=0

But for d < 5 one must also include the Eisenstein series (5 )EEd to obtain the non-pertubative

SL(3

coupling & ). It simply reduces to ¢ (5) for d = 3 and can be written for d = 4,5 as

E 22 —25 2SL(d —4s -SL(d
£(25)E% = vo-a (g(zs)v 2D 1 (25 — 4V E(S_(%))M

/

_ —9s K, _9(2 Z(N )
+ 2v2—3s Z ESL(L:{) j’)\) U;\[ 042 (jg\f) 2( 7I'V| 1( )D eQﬂz(N,a)) (D38)
=M ged(N)2 7 Z(N)]2

Nen3za

NXxN=0
provided one defines ESL(U = Ef/f @ =1, Summing terms up for d = 3,4 one obtains
Eawe = 8r(EWEM+ 1+ 20E5 1 +E@)E6 205, ) (D-39)

L83

— 87.(.V3d+1+2€ <£(4)£(d + ].) ﬁ/a W§(5)ESL(11)

YR (5 (A)EB) B, +E()E(1 - 2e)v%5d,4)

! K1 (2rVIZ(N)|)
+2£(2)V*% Z N 2 , eZm(N,a)
NeA3zd |Z(N)|2
! Ks(@2nV|Z(N)]) .
—|—2£(4)V_% Z o3(N) Ef/fé )(’U 2 _ e2mi(N,a) ’
Nen3zd ged N3 |Z(N)[s
NXxN=0
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and for d =5
Eawe = 8n(SWE6 + 2B, 0, +E@EG 207, )

— 8V <§(4)£(6)E(53LJ£‘3 p H VT EWEB)EYD,, +EE0 — 20V E B, )

§(2 SL(5
+ V;L (EG—eVE B0y, 1+ 20))
/
s S22 orian) K1an@TVIZON) » Ky @eVIZNDN oy
+2V72 Z (5(2)V Eq <6;A1 zed( () ) 7+|Z(N)\% +E(1+2e)V 0 01—26(N)W)6 (e
Nen3zd
2 'L o3(N) SL(3) Ks(2nV|Z(N)]) omi(N )
+ — TE(4) By, (vn) Fa—
Nepszd 8CANS |Z(N)|3
NXN=0
L2 Z 5 3o (XN Ky (20V/[Z(N)2 + 2]2(N x N)|)e2m.(N,a)> . (D40)
V.2 o (N x N VIZVP + 2020V x V)|

NxN£0

One checks that the constant terms that are power-low in V' are consistent with the Langlands
constant term formula [38].

E Expansion of the 2-loop exceptional field theory amplitude

In this Appendix we complete the computation explained in Section 5.3. We have already carried
out the sum over pairs of charges I'; for which all brane charges vanish and for which only the
M2-brane charges are non-zero but linearly dependent. They correspond to the first and second
layers of charges. We shall now consider the other layers of charges.

E.1 Third layer

The third layer of charges includes M2 charges that are linearly independent. The antisymmetric
product representation is [A2RY] A[AZR?] 22 A3 R? so one needs a non-maximal parabolic subgroup
Poincaré sum over P; 3 C SL(d), where

Pi3 = S(GL(1) x GL(2) x GL(d — 3)) x 72*(d=3)+d=3+2 (E.1)
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and

/ ..
0&3) — § § e—TK‘Q;] (T_SU_HJ(mi1+1/2a[KLn1KL)(mjJ+1/2aJan§DQ)+1/2r6_dU[KUJLnf‘]n]KL)

nllen?zd  m;ez
(1110
1J,KL

i) 70

_ E : § : E : e—TrQ;]TG’dylyg,vgjniinjj

~y€Py 3\SL(d) n;7c72%2 qEZ
detn#0 p;ez2x(d=3)

n

—Wﬂéj (r_3yd_3 u’l(pi—&—ainii—l—ﬁiici(q—l—an),pj+ajnjj+ﬁjjcj(q+an))+r_3y1y3_lvijfziiﬁjj(q—l-an)Q)

xe
~
_ § : 2 : eZwi(niipi,ai)—o—Qﬁinqa
vEP1 3\SL(d) n;7ez2*2 qEZ
detn£0 pigz2*(d=3)
__2_
—m Q6= dyy) yovsan,ingd —m Q5 L r3y diSU(Pi»Pj)*i” =3y ya (gterii )
xe R B Qyf vyngtag) Ot o ) (E.2)
¥
The constant terms come from the contribution at p’ = ¢ = 0 and one obtains
d3Q,
tr (3)
871—[; 7—d PKZ 9d (E.3)

2 detQ2T

§(de—1) si9 904 —2e, —1-2¢ & QY vming
YEP1,5\SL(d) G2 TE1%2 nd€Z2%?

det n#£0

This contribution disappears at ¢ — 0 in the renormalised coupling (5.31). These are all the

contributions for 3 < d < 4.

E.2 Fourth layer

The fourth layer includes linearly dependent M5 brane charges nl[ JKLP “that can be rotated to a
IJKLP are integer n; with v € Ps C SL(d). For d = 5 this is already the case and

basis in which n;
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the Poincaré sum drops out. The corresponding sum of charges gives

!/
9&‘” _ Z Z Z Z e*ﬂ'ﬂéjr_:’yﬁﬁ(m¢+bm+...,mj+bnj+...) (E.4)

YEP\SL(d)n€Z  ¢;eNZ5 m;cZd—5

piEZO
n(iP5)=qi Xq;
a(ip;)=0
.. 2 4
Xefﬂ'Q;J (r*3y75u’l(pi+aqi+%axani,pj+aqj+la><anj)+r6*dy§u(q¢+ani,qj+anj)+ 15—2dg2p, nj)
d 5 __2 . . .
_ 2 : )y 2 : 2 : 2 : 77r922.§.r3y d=5 g~ 1 (m? ,mI)+2mim? (n;b+...)
yeP5\SL(d) detQ nE€Z  enZd  miczd—5
p;€Z5
n(iP5)=qi Xq;
4(iPj)=0
L. . 2 . 4
XefﬂQg (r‘3y 5u’l(pi+aq¢+%a><ani,pj+aqj+%a><anj)+rb_dy5u(q¢+ani,qj+anj)+ 15—2dg2p, nJ>

so that the contributions from m! # 0 are non-abelian. To compute the constant term we can
therefore set m’ = 0 in this formula. This gives the Poincaré sum of the contribution for d = 5:

877/ (137%2_6”0%& 9254ab) = 8rr2(d=T)=3(d=5)e Y 1/ ¢ ng - 0(4)(7’ ST y%)
92 det(2,? 76Pr\SL(d G, detf2

(E.5)
The computation of the large T volume is identical to the large circle limit for d = 5. This
computation was done in [27] and the entire expansion is reproduced by the term computed above
from the first three layers. We conclude that this term should vanish at ¢ — 0. The Poincaré sum
could in principle brings an additional pole. The computation of [27] also exhibits that for high
layers the computation gives the same result as for the Eisenstein series in the Heisenberg parabolic
coming from the three-loop exceptional field theory amplitude. We check using Langlands constant
term formula that these contribution indeed vanish for d = 5,6, 7,8, which strongly suggests that
the Poincaré sum does not bring in an additional pole that could give a finite contribution at € — 0.

E.3 Fifth layer

For d > 6 one considers then linearly independent M5 brane charges nf JELP “that can be rotated
to non-degenerate two by two matrices n;/ under Pyg\SL(d). One obtains the solution

nlTELP — (. 0nd) € - @ (A3ZH 1D @ (220D (E.6)
nf/ = (..,0nd%,q) €@ (2) P @ (2PN o (A7 (E.7)
mir = (qgi- %7mij7pi) € (Z4)(_%’O) D (Z2)(1’_1) & (Zd 6)<0 a*s) (E.8)

where k is coprime to y, € Z* and k divides n;/ and q?bXb. The only remaining constraint is

C 1
2ein(i M)’ + JCabead; 5" =0 (E.9)

that is recognised as the vanishing norm condition for vectors Q; = (m;%, ¢%*,n;') € II5 5. Similarly
as in [27] we shall interpret the sum over k and y, as the principal layer of a Poincaré sum over
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P\SL(5). The sum over @; will be computed using the orbit method for the SO(5,5) Narain theta
series.
The bilinear form decomposes as

2

G(FZ, F]) = T_Syg_G ﬂ(pz =+ bmli N + bjnjj 4+ ... ) (ElO)
_3 PN
+7"6_dy4 (yG( ‘|‘ Yy 2 ( +a, % + a))vijniznj]
d-9, ~1 Xb Xd ab | ~ab, J\(,ab | ~cd ]
+(Uactipg + 7Yy *tac(XL + ab)(— + aq))(gf” + a3°ni?)(¢f° + a5'n;”)

+r%(m" + Lak, g + 1al ab s bk 4 b, ,m;’ +2acdq] +1a ]da n; —i—bn] ))

where ]
~7 Wj~cd 1 7 Xb Xa
Aap = igadeg ]a/j = Agp +c U«T{: bk (Ell)

One first perform the Poisson summation over p;, as

§ : e—er;]r’g’yéi*G U(pi+byng*+....pj+bymn 7 +...)

p; €246
3(d—6), —2 _ 2 o o
T _ —1.3 d—6 ~—1/.i j S G AP
— 5{% e ;5 Ye (p*,p7)+2mip! (ni*bit...) (E.12)

detQ,?  piczd-s

The terms with p? # 0 only contribute to non-abelian Fourier coefficients. Concentrating on abelian
Fourier coefficients one obtains

d3Q
877/ 772;51 i, 9;5‘"‘]“) (E.13)
G2 det€2,
—3—2¢, —2 3 .
- s 3 [ By, 3 e
u(X aX a + 5
vePia\SL() (ko) (1 2E552)2 7 VG2 det Q3 qicllys
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(Qi,Q4)=0
with
9(Qi, Q) = 7 ys, [1 4 Mkt nf"’
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1 9—d

y4 ux (§ +a)’
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r . s » - R s s » N
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+ a % a

9= dy42

(E.14)
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Using the orbit method as in [27] one obtains

d3Q
8 /g ol 0 (E.15)

2 det(2,?
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XE€Z4
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YEP;, 6\SL(d)
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For the complete integrand in (5.31) one gets instead the contribution

—2+2¢,.~2¢(d—9) 3
~ 20€(3 — 26)r%@= 3" Zy4 Yo / d952 S e grmin;
g

u(x+ax+a) —€ 5—6 £
vePio\SLd) (k) (14 75 ) 2 detQ i ez

det m#0
oo o It —%(kQ-i-Td;gu(x-i-ak,x—&-ak))
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XEZ4
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YEP4,6\SL(d)

~ A06(1 — 206(2 — 26)(2 + 2SO LD

where we have 4

SL(6)
B, =1
SL(7) B SL(7)
§2-20E)",,, = &6+ 26)E(%+6)A1
§1-2062 - 2B, = €6+20E(6+2)E;,, - (E.16)

HEP4\SL(d) 1, so one needs to introduce an additional

analytic continuation to compute >°__p \ 51, y;2® = 14 O(8). This can be done using detQ3E fg(f)% and taking
first the limit 6 — 0 and then € — 0.

34For SL(6) the Poincaré sum is ill-defined as one gets >
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E.4 Additional layers

For d = 7 and d = 8 there are additional layers: two more for d = 7 and eight more for d = 8.
The Langlands consitant term formula gives no more constant terms for the corresponding FE7
Eisenstein series E( ‘e, SO one expects that the two additional layers give vanishing contributions
to the abelian Fourier coefﬁaents at € = 0. For d = 8 the Eg function must include one additional
contribution that is missing at this level, probably from the ninth layer.

F Some integrals

Here we collect some additional integrals that have been used.

F.1 Infrared regularised integrals at two-loop

Using the parametrisation

P2 p2u
Qy = , F.1
? < pau t+ pou? > (1)

the integral can be unfolded to Schwinger parameter space domain

I(d) = / dpz / / %((1 — 6u(1 — u)) 4 %UQ(l U)Q) e*ﬂ'tlul%fﬂ'pg'u,%
pau(l— u)t 2

6472 d(d 2)T(d - 3)T(5H)T(42) -
- Tt
7

3—d

o2
S T(5E) (mpape) 2

9

2

5 D) (d) 7 () (rpa) ™5+ Oud) (F.2)

The double pole divergence occurs at d = 3 + 2¢ and using the prescription p; = po = p after
having eliminated the second ligne that vanishes at u; — 0, one obtains

2123 — € T'(e)?
I(3+26)_Tﬁm . (F.3)
The double pole is universal, but the single pole depends on the ratio % One fixes the prescription
such that the amplitude is finite.

The degenerate contribution associated to one massive loop and the other massless corresponds
to take u3 = r~3U'[n]. The first term is then finite, and can be reabsorbed into the nondegenerate
contribution to recombine into the GL(2,Z) invariant sum over all non-zero charges with a infrared

regulator that is set to zero before one expand in e.

144



/

8 / %%@(Qz) S Oy G
G2 det(, 2 €223

T [ e )

><< Z e (pzu Y(p1+up2,p1+up2)+tu- 1(1)2,192)) +3 Z e~ P2 ~3U M n]—wtp? +e —m(patt)u? )
nezd

Di EZ2 X3
pi#0, p1+p27#0

_ d QZ d —xQURTU 1 471'2 F( ) 3(d— SL(d
_ 87TT3(d 3)/g ﬁ@KZ(QQ} Z Q5'n, U j - (d 3) 5(d 3)EdT,§1id71

2det (), ? o 3 (mp
29729 _ 4 T'(4=3)2 or2 (47
2729 —d T(%5%) T cavy Hen g (F.4)

9 7T—d(mp2)™3 " 9 (7w2)7

F.2 Divergences of the supergravity amplitude

One defines

SL(d d’ Q2 —mQy U n
S
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In the limit P;_; this gives
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F.3 Automorphic distribution integrals

We have the integrals

!/

3 .
Lig) = /g T2 o) 3 e @ning
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d*r SL(2)
= 44(2s) | (1) B (T) (F.9)
F T
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so that they behave at 71 ~ 0 as
O(7) = dlima) =75 ' > M( + 73 )| + O(7?) (F.11)
k
for k = kg, ko — 2, ... and grow as T§0+1 at large 7. The integral can be carried out by integration
by part as
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