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Centre de Physique Théorique, CNRS, Institut Polytechnique de Paris

91128 Palaiseau cedex, France

The low energy effective action in superstring theory
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Preface

The present manuscript is prepared for my habilitation à diriger des recherches. Its purpose is to

provide a summary of research, with the stated scope of proving the candidate’s ability to master a

research strategy in a sufficiently broad scientific field, and their ability to supervise PhD students.

I have chosen to write the manuscript on the subject of the low energy effective action in

string theory, which concerns roughly about half of my research activity since 2013. Rather than

summarising my list of publications for the last twelve years, I have chosen to expose my current

understanding of the topic more broadly, with emphasis on my own work.

The manuscript does not discuss my work on supergravity black holes solutions and smooth

geometries describing black hole microstates in a semi-classical approximation, nor does it review

the construction of Kac–Moody exceptional field theories that formulate supergravity theories with

infinite-dimensional duality group invariance.

During this period I have supervised three PhD students, Valentin Verschinin and Charles

Cosnier-Horeau (co-direction with Boris Pioline) who have defended their PhD thesis in 2015 and

2018, and Adrien Loty who will defend this year.
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Introduction and summary

String theory is a consistent theory of quantum gravity in the sense that it defines unambiguously

scattering amplitudes in asymptotically Minkowski spacetime and includes a massless spin two

particle in its spectrum. The interpretation of the amplitudes at low energy in quantum field theory

permits to derive the effective action that reproduces Einstein theory of general relativity coupled to

matter and with infinitely many higher derivative corrections. However, string theory lacks a first

principle non-perturbative definition, and one relies on perturbation theory to compute amplitudes.

An n-point amplitude in D-dimensional Minkowski spacetime is written as an expansion over

(super) Riemann surfaces of genus h with n punctures weighted by g 2h−2
s . There is an effective

dilaton eϕ that relates the string length square α′ = ℓ2s to the Planck length ℓ in D dimensions

through its expectation value 1/g 2
s = ⟨e−2ϕ⟩

ℓD−2 = α′D−2
2 g 2

s . (0.1)

It appears therefore that at weak coupling gs ≪ 1, one reaches the string scale much before the

Planck scale and the physics becomes inherently stringy before one enters a quantum gravity regime.

For many quantum gravity questions one wishes to understand string theory at strong coupling,

meaning gs ∼ 1 [1–4].

When the theory admits supersymmetry, some of the most relevant terms in the effective action

are protected by supersymmetry and may be computed exactly in string theory. In particular, the

scalar fields take value in a symmetric space when the supergravity theory admits more than twelve

supercharges, and the two-derivative Lagrangian is determined by the number of vector multiplets

and the gauging (i.e. the gauge group and its action on the symmetric space). Using moreover

duality symmetries [5, 6], one can sometimes extract exact higher derivative corrections. Proto-

typical examples are the leading Green–Gutperle R4 correction in type IIB string theory [7] and

the Harvey–Moore R2 correction in heterotic string theory on T 6 [8]. In the second example the

correction is obtained by a one-loop computation in type IIB on K3×T 2. In the first the correc-

tion is genuinely non-perturbative in string theory, but could be derived as a one-loop correction in

eleven-dimensional supergravity on T 2 [9]. These coupling functions provide extremely useful infor-

mations about non-perturbative effects in string theory, as D-brane and Neveu–Schwarz five-brane

instantons. The pioneering work [7] has been instrumental in computing instanton corrections from

first principles [10–12].

In D = 4 space-time dimensions, the N = 1 supergravity Lagrangian decomposes into the

so-called D and F -terms, that are understood respectively to be the top components of an uncon-

strained scalar superfield and a chiral superfield. Chiral superfields that cannot be obtained by

chiral projection of an unconstrained superfield determine protected couplings in supergravity. The

scalar and Yukawa couplings are fixed in this way in terms of the Kähler potential and a holomorphic

function, the superpotential W. One determines similarly the protected couplings in N -extended

supergravity as preserving a fraction of the N left and N right-handed supersymmetries. Although

one cannot write all the supersymmetry invariant couplings as superspace integrals for N ≥ 4,
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BPS N = 8 N = 6 N = 4 N = 2

(4/N , 1−4/N ) E(0,0)R
4 WF 2R2 W(S)R2

(2/N , 2/N ) E(1,0)∇4R4 E(0,0,0)R
4 E4(ϕ)F 4

(2/N , 0) WkF
2k∇4R4 WkF

2kR4 WkF
2k−2
gr F 2R2 W0(t)F

2,Wk(t)F
2k−2
gr R2

(1/N , 1/N ) E(0,1)∇6R4 E(1,0,0)∇2R4 E2,2(ϕ)∇2F 4 G(ϕ)(∇ϕ)2

Table 1: The supersymmetry invariants associated to (kL/N , kR/N )-BPS operators in N -extended su-

pergravity [14–20]. We write Fgr the Maxwell field strengths in the gravity multiplet for N = 2 and 4 to

distinguish them from the matter multiplet field strengths F . The notation is schematic, G(ϕ) refers to the

hyper-multiplet quaternionic Kähler metric and
∑

k Wk(t)T
2k
gr to the special Kähler prepotential function of

the Weyl multiplet superfield Tgr [21–23].

one can do it in the linearised approximation in terms of free superfields, see e.g. [13]. The no-

tion of F -term is generalised to (kL/N , kR/N )-BPS invariants that are written in the linearised

approximation as superspace integrals

I(kL/N ,kR/N ) ∼
∫
d4xd2N−2kLθd2N−2kL θ̄ O (0.2)

of some operator O annihilated by kL left-handed and kR right-handed supersymmetries that

anticommute with each others. Most of the time one does not specify the chirality and simply

refers to kL+kR
2N -BPS invariants. We give the schematic form of such BPS invariants in Table 1.

The couplings in the same lines in Table 1 have in common the number of preserved supersym-

metries indicated in the first column, as well as the degree of complexity of the coupling function.

One can define an ordering in the set of differential equations a function on a symmetric space can

satisfy. The coupling functions appearing in the first line satisfy the most constraining existing set

of equations and are in this sense minimal. The coupling functions appearing in the second line

are in the same sense next-to-minimal.

The couplings in the last line of table 1 are particularly interesting because they get corrections

from generic 1/N -BPS D-brane instantons in type II string theory [24–28]. The partition function

counting 1/N -BPS D-brane instantons grows exponentially with the instanton charge Q as ∼
eπQ

2
. By duality, the partition function of such instantons is related to the helicity supertrace

counting 1/N -BPS black hole microstates [29–32]. The exponential growth of the number of states

reproduces the macroscopic Bekenstein–Hawking entropy SBH = πQ2 [33, 34].

This implies that the sum over D-brane instantons does not converge since they behave as

eπQ
2−2π|Q|/gs . The corresponding asymptotic series can in principle be defined by Borel resumma-

tion and the ambiguities associated to poles in the Borel plane be fixed by Neveu–Schwarz five-brane

instantons [35]. These coupling functions can alternatively be defined without ambiguities through

their abelian Fourier expansion.

The general strategy to determine an exact coupling function E as the ones in table 1 is to

use symmetries and perturbation theory. To simplify the discussion we assume that N ≥ 4 in four

dimensions and the Minkowski vacuum is supersymmetric, such that the two-derivative Lagrangian
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is uniquely determined (for a given number of vector multiplets) and the scalar fields parametrise

a symmetric space K\G, where K denotes the maximal compact subgroup.

• Supersymmetry Ward identities: E satisfies certain partial differential equations.

• U-duality symmetry: E is invariant under the action of an arithmetic subgroup Γ ⊂ G.

• Perturbative string theory: Determines the weak coupling expansion at gs ≪ 1.

• Perturbative supergravity: Valid in the large volume limit of an internal subspace.

Note that there are often different non-equivalent perturbative definitions of the theory for N = 2

and N = 4, in which case all these couplings may be determined by perturbative computations.

The partial differential equations satisfied by the coupling functions generally imply that they can

only receive corrections up to a fixed order in the string theory genus expansion. The U-duality

symmetry is generally conjectural, but the consistency between the various constraints usually

permits to get compelling evidence of its validity. Combining supersymmetry and U-duality allow

to pin down a finite set of solutions so that the coupling functions only depends on few parameters

that can be determined by consistency with perturbative computations.

In this habilitation thesis we will concentrate on type II string theory on a torus T d−1, for which

the low-energy effective action describing massless particles is (ungauged) maximal supergravity in

D = 11− d dimensions [36,37]. The effective action then consists of the two-derivative Lagrangian

determined by supersymmetry plus an infinity of higher derivative corrections themselves consistent

with supersymmetry. One can understand the effective action as being obtained by integrating out

all the massive fields in string theory, including non-perturbative states. A formal path integral

description suggests that integrating out all string fields up to a scale Λ should give rise to a bare

action S♭
Λ that would allow to define the string amplitude through the supergravity path integral

up the cut-off scale Λ. However, there is a priori no regularisation scheme that preserves maximal

supersymmetry and the modern techniques to compute supergravity amplitudes do not rely on the

Lagrangian, so the definition of this bare action S♭
Λ is not very useful. We will rather introduce

the Wilsonian effective action Wµ and determine the renormalisation scheme in supergravity by

consistency with perturbative string theory.

The approach that has been followed in the literature is to decompose the four-graviton ampli-

tude into analytic and non-analytic components depending of the Mandelstam variables [38]

M4(s, t, u) = Manalytic
4µ (s, t, u) +Mnon-an

4µ (s, t, u) . (0.3)

This split is of course not unique but there is a well justified choice that is defined up to a set of

ambiguities in one-to-one correspondance with logarithmic divergences in supergravity. One may

label them for short by a unique fiducial scale µ. It is useful to interpret this split as defining a

Wilson scale above which all the states of the theory have been integrated out. One can apply

a similar split to higher-point functions, but we shall restrict attention to the four-point super-

amplitude that is determined by the four-graviton amplitude [39].
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The Wilsonian effective action, as a local functional of the supergravity fields, must be invariant

under supersymmetry transformations

δsusyµ Wµ = 0 (0.4)

where both Wµ and the corresponding supersymmetry transformation δsusyµ admit expansions in the

Planck length ℓ that involve higher order derivative terms. However, the local Wilsonian action

Wµ is not invariant under the U-duality group of the theory.

Let us pause now and explain this subtlety in the example of the Harvey–Moore coupling in

N = 4 supergravity [8]. The Riemann square type correction to the two-derivative action depends

on an arbitrary holomorphic function of the axio-dilaton S in supergravity [19,40]. The correction

appearing in heterotic string theory is

− 3

2π2
Im
[
log η(S)

(
Rab ∧Rab +

i

2
εabcdR

ab ∧Rcd
)]

+ . . . (0.5)

with η(S) the Dedekind eta function, while the SL(2,Z) invariant coupling function is

EHM = − 3

8π2
log
(
ImS|η(S)|4

)
, (0.6)

and includes the linear dilaton term log(ImS) = −2ϕ. One explains such term from the change of

frame, from string to Einstein frame, whenever there is a non-analytic dependence of the amplitude

in the Mandelstam variables [41], here

log(−α′s) = log(−ℓ2s)− 2ϕ . (0.7)

This interpretation only holds for the amplitude that depends on the boundary value ϕ(∞), while

the Lagrangian depends on the field S(x). In supergravity the linear dilaton term only appears in

the non-local effective action, i.e. the generating functional of one-particle-irreducible correlation

functions. One cannot separate it from the one-loop correction with massless states in the loop

and it is related to the U(1) duality anomaly [42,43,19].

Non-analytic terms in the string coupling gs appear in this way whenever there is a logarithmic

divergence in supergravity. In practice it is easier to work with a decomposition of the amplitude

in analytic and non-analytic components that are individually U-duality invariant [38]. One can

interpret intuitively the associated ‘Wilsonian’ split in the analytic and the non-analytic components

of the amplitude as being defined for a moduli dependent scale µ′(φ). Because Wµ is obtained by

integrating out all the massive fields in the theory, it is natural to choose the Wilson scale µ as

the lowest mass in the spectrum, that is moduli dependent in Einstein frame. In this heterotic

example one may choose the mass of the first excited string states µ′(φ) = 2eϕ/ℓ. In type II string

theory on T d−1 one can choose µ′(φ) = |Z|/ℓ equal to the mass of any 1/2 BPS particle. The

would-be ‘effective action’ Wµ′(φ) does not satisfy (0.4) as it involves the supersymmetry variation

of the scale µ′(φ). There is in fact no local functional Wµ′(φ) of the fields, and the scale µ′(φ) only

make sense for the asymptotic value of the scalar fields φ(∞). Nonetheless, one can define Manalytic
4µ

with coupling functions that are U-duality invariant, but satisfy modified differential equations.

These modifications of the supersymmetry differential equations are consistent with the action of

the renormalisation group, and are associated to the logarithmic divergences in supergravity in a

way that can intuitively be derived from the discussion above.
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D = 11−d Kd\Ed R(Λd) R(Λ1) R(Λ2)

8 SO(2)\SL(2,R)× SO(3)\SL(3,R) (2,3) (1,3) (2,1)

7 SO(5)\SL(5,R) 10 5 5

6 (Sp(2)×Z2 Sp(2))\Spin(5, 5) 16 10 16

5 (Sp(4)/Z2)\E6 27 27 78

4 (SU(8)/Z2)\E7 56 133 912

3 (Spin(16)/Z2)\E8 248 3875 147250

Table 2: Convention for representations of p-form fields with the Bourbaki labelling consistant with Ed by

truncation [45]. These weights also label the parabolic gauges relevant to describe perturbative string theory

with v ∈ P1 ⊂ Ed, and the large T d volume limit in eleven dimensional supergravity with v ∈ P2 ⊂ Ed.

For example EHM is not the sum of a holomorphic and an anti-holomorphic function, but still

satisfies

∆EHM = −(S−S̄)2∂S̄∂SEHM =
3

8π2
. (0.8)

The right-hand-side is a correction proportional to 1, the coupling function appearing in the two-

derivative Lagrangian. The fact that 3
8π2 corrects ∆EHM is directly related to the fact that the

one-loop supergravity amplitude diverges logarithmically in 3
8π2R

2.2 Another canonical example

is the holomorphic anomaly of the twisted topological string partition function [21] that can be

understood as a consequence of logarithmic divergences in N = 2 supergravity [22].

The type II string theory effective action on T d−1 has been analysed in details over the years. In

D = 11−d spacetime dimensions, maximal supergravity admits massless scalar fields φ parametris-

ing the symmetric space Kd\Ed, vector fields AM
µ in the highest weight representation R(Λd),

two-form fields BMN
µν in R(Λ1), three-form fields CMN,P

µνρ in R(Λ2) according to table 2 above.

These fields couple respectively to the particles, the strings and the membranes of the theory. We

will write Ed ≡ Ed(d) for the exceptional groups, that are always assumed in their split real form.

The Wilsonian effective action takes the schematic form

Wµ =
1

2κ2D

∫
dDx

√
−g

(
R+ · · ·+ ℓ6

48

(∑
p,q≥0

ℓ4p+6qEW
(p,q)µ(φ)t8t8(∇4)p(∇6)qR4 + . . .

))
. (0.9)

where t8t8R
4 generalises the square of the Bel–Robinson tensor in D dimensions [46, 47] and each

∇4 and ∇6 is Lorentz invariant and acts symmetrically on the four Riemann tensors. As explained

above, one will rather use the amplitude coupling functions E(p,q)(φ) ∼ EW
(p,q)µ′(φ)(φ) that are not

analytic in the moduli but are invariant under U-duality. One says that E(p,q)(φ) are automorphic,

i.e. functions on the moduli space Kd\Ed/Ed(Z). The U-duality arithmetic group Ed(Z) can be

defined as the set of matrices in the representation R(Λd) that are integer valued in the Chevalley

2This divergence drops out in the amplitude because Gauss–Bonnet is topological in four dimensions, and one

sometimes talks about an evanescent divergence [44].
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basis (for d ≤ 7). It is generated from the global diffeomorphisms SL(d,Z) of the torus in eleven

dimensions and the T-duality group Spin(d−1, d−1,Z) of automorphisms of the Narain lattice [5].3

The first three coupling functions E(0,0), E(1,0), E(0,1) are protected by supersymmetry and satisfy

very constraining differential equations [48–54].

For type IIB string theory, these three coupling functions can be computed from the one-loop

and two-loop supergravity amplitude on T 2 in eleven dimensions [9, 55,56]

E(0,0) =
′∑

m,n∈Z

(ImS)
3
2

|m+ Sn|3
= 2ζ(3)E

SL(2)
3
2
Λ1

, E(1,0) =
1

2

′∑
m,n∈Z

(ImS)
5
2

|m+ Sn|5
= ζ(5)E

SL(2)
5
2
Λ1

,

E(0,1) =
2π2

9

∫
R3

+

dL1dL2dL3

(
∑

I<JLILJ)3

(∑
I

LI −
5L1L2L3∑
I<JLILJ

) ′∑
mI ,nI∈Z∑

I mI=
∑

I nI=0

e−π
∑

I LI
|mI+SnI |

2

ImS , (0.10)

where m,n are the Kaluza–Klein mode numbers and S the complex structure on T 2.4 The first and

the second function E(0,0) and E(1,0) are known exactly in all dimensions D ≥ 3, in terms of a special

types of automorphic functions known as Eisenstein series (or Langlands–Eisenstein) [57–62,38,63].

We proposed in [64] to write an effective theory keeping all 1/2 BPS particules of the theory.

In type II string theory on T d−1, there is exactly one short spin 2 supermultiplet of particles

for each charge Γ in the lattice Ld in the representation R(Λd) satisfying the constraint that

Γ × Γ = (Γ ⊗ Γ)|R(Λ1) = 0. This effective theory can formally be defined as an exceptional

field theory on a generalised torus [65–73]. The truncation to 1/2 BPS states is not consistent,

because two 1/2 BPS states can produce 1/4-BPS and even non-BPS states in the theory. One

finds nonetheless that the resulting amplitude morally gives the correct answer for the protected

coupling functions E(0,0), E(1,0) and E(0,1). In particular, the one-loop and the two-loop exceptional

field theory amplitude give for all d ≥ 3 [64]

E(0,0) =
d≥2

4πξ(d−3)EEd
d−3
2

Λd
, E(1,0) =

d≥3
8πξ(d−5)

(
ξ(d−4)EEd

d−4
2

Λd−1
+δd,5ξ(d−3)EEd

d−3
2

Λd

)
, (0.11)

and reproduce the results of [63] using Langlands functional identities between different Eisenstein

series. They will be defined in the main text, but let us simply say that ξ(s) = π−s/2Γ(s/2)ζ(s) is

the completed Riemann zeta function and EEd
sΛd

is the sum over Ed(Z) orbits of a power R2s10−d
9−d of

a circle radius 2πℓR (or of a T 2 torus volume for EEd
sΛd−1

). They are natural generalisations of the

SL(2) Eisenstein series in (0.10) and

2ζ(2s)EEd
sΛd

=
′∑

Γ∈Ld
Γ×Γ=0

1

|Z(Γ)|2s
(0.12)

can for example be interpreted as a sum over 1/2 BPS supermultiplets weighted by the BPS mass

M = |Z(Γ)|/ℓ of the particles [60].

3The automorphism group of the Narain lattice IId−1,d−1 is O(d−1, d−1,Z), but the discrete Z2 × Z2 subgroup

includes the exchange of left-handed and right-handed spinors that maps type IIA to type IIB and is not a symmetry

of the effective action. It is nonetheless an accidental symmetry of the four-graviton scattering amplitude.
4The two-loop integral in the second line is formal and needs to be regularised [56].
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Applying the same reasoning at the next order in derivatives and combining the two and three-

loop contributions, we obtained a proposal for the next-to-next-to-leading coupling function for all

d ≤ 3 [64,74]

E(0,1) =
2π2

9

∫
R3

+

dL1dL2dL3

(
∑

I<J LILJ)
7−d
2

(∑
I

LI −
5L1L2L3∑
I<J LILJ

) ′∑
ΓI∈Ld∑
I ΓI=0

ΓI×ΓJ=0

e−π
∑

I LI |Z(ΓI)|2

+
8π4

567
ξ(d+ 3)EEd

d+3
2

Λd
. (0.13)

This formula is divergent and requires renormalisation. The infrared divergences can be interpreted

in the effective theory and drop out in the full amplitude including massless states, up to the

physical infrared divergences in D ≤ 4 dimensions. The ultraviolet divergence must be regularised

for both the two-loop integral above and the Eisenstein series. Because the Eisenstein series are

meromorphic functions of their parameter, it is natural to regularise them by analytic continuation

in the dimension d → d + 2ϵ. The naive analytic continuation of the two-loop formula above

nevertheless turns out not to be correct, and one needs to introduce an appropriate deformation

of the integrand at ϵ ̸= 0. We have given a precise definition in [27], that was checked to match

string perturbation theory and is consistent with the successive decompactification limits of one

circle becoming large in T d−1.

This derivation does not follow from a first principle formulation of the theory and must be

proved to give the correct coupling functions in string theory. The first element in the proof

relies on the differential equations following from supersymmetry. There is a unique function E(0,0)

up to normalisation consistent with supersymmetry that is invariant under Ed(Z) in dimensions

D ≤ 7 [62, 63, 51]. The function E(1,0) is unique up to normalisation in dimension D ≤ 5 [63, 52].

There are two ∇6R4 type supersymmetry invariants in dimensions D ≤ 6. One inhomogeneous

solution is uniquely determined from E(0,0) and two functions invariant under Ed(Z) solve the

two corresponding homogeneous differential equations [53, 75]. We display the classification of

supersymmetry invariant in Figure 1. One can fix the coefficients using string perturbation theory

[38, 76, 27]. Because of the almost uniqueness of these coupling functions, they satisfy a large

number of consistency conditions.

There are different ways to construct Ed(Z) invariant solutions to the differential equations

imposed by supersymmetry, but it is important to find a definition that can be manipulated to

extract the perturbative limit. One can think of (0.13) as the symmetrisation of the eleven-

dimensional supergravity amplitude on T d. A similar formula was proposed in D = 6 dimensions

by symmetrising the two-loop string amplitude through the extension of the Narain lattice II4,4 to

a U-duality extended lattice II5,5 [77]. We checked in [27] that the two definitions give consistently

the same coupling function.

We use this habilitation thesis as an occasion to sharpen the proof of this proposal. We check

its consistency in the large M-theory torus volume limit with the supergravity amplitudes. We

exhibit how the non-analytic terms in the moduli are connected through the renormalisation scale

to the non-analytic components of the amplitude.
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Figure 1: Each node corresponds to a supersymmetry invariant, white if it cannot be written in superspace

in the linearised approximation, and red if the corresponding superspace integral is chiral (with kL ̸= kR).

For ∇6R4, the links to ten dimensions are valid for the homogeneous solution that do not take into account

the modification of the supersymmetry transformations induced from the R4 invariant.

The main interesting open question for future investigations is probably how to go beyond the

BPS protected couplings and describe the low-energy effective action at higher orders in the Planck

length. The four-graviton amplitude in type II string theory is known exactly up to two-loop in

string theory [47, 24]. The expansion of the amplitude at low energy has been studied in details

and is still under intense scrutiny, see [78–82] and [83–86] for important developments at one-loop

and two-loop, respectively. However, the coupling functions starting from E(2,0) onward receive

corrections at all loop orders, as well as BPS and non-BPS instanton corrections. It is therefore a

rather difficult problem that we leave for future investigations.

In this habilitation thesis we wish to review the construction explained above with particular

emphasis on some subtleties that we believe have not yet been explained in details in the literature.

We do not aim at an exhaustive review and will be rather brief on some aspects that can be read

elsewhere.

In Section 1 we review several techniques to determine higher derivative corrections consistent

with supersymmetry in the absence of off-shell formulation, i.e. when the supersymmetry algebra

closes only modulo the equations of motion. We chose to concentrate on the case of half-maximal

supersymmetry because it is better understood. We present several superspace methods through

illustrative examples relevant to heterotic or type I string theory. We briefly review the maximal

supergravity supersymmetry invariants.

Section 2 discusses the low energy expansion of perturbative string theory amplitudes at one and

two-loop with particular emphasis on the non-analytic contributions involving intermediate massive

10



states. We compute the low energy expansion using successive approximations and in particular

that a sphere amplitude emerges whenever several punctures are close enough on the worldsheet.

We show how the non-analytic component of the amplitude can be written in terms of supergravity

Feynman integrals involving the Wilsonian part of tree-level string amplitudes. In this way we

derive one-loop and two-loop form-factors of higher derivative supersymmetric counter-terms in

supergravity.

In Section 3 we review the definition of automorphic forms, automorphic representations and

their relations to supersymmetry. We describe in details the relation between differential equations

imposed by supersymmetry Ward identities and the set of allowed BPS instantons that can con-

tribute in string theory. We explain how to get explicit BPS instanton solutions in general through

the illustrative example of M2-brane instantons on T 7 and discuss their fermionic zero modes. We

write down explicit formulas for Eisenstein series Fourier expansions relevant in the perturbative

string limit and the M-theory large volume limit.

In Section 4 we revisit the eleven-dimensional supergravity amplitude on T d to determine the

contributions to the low energy effective action in D = 11−d dimensions. We explain how to

derive the form-factors for the insertion of the eleven-dimensional supergravity higher derivative

corrections. We define the renormalised coupling functions in dimensional regularisation and exhibit

the precise mixing between analytic and non-analytic components. These computations lead to

further consistency checks for the coupling functions E(0,0), E(1,0) and E(0,1).

Section 5 reviews the proposal for the coupling function (0.13) sketched above. We explain the

constraints from supersymmetry and how we derived the precise renormalised expression. As a

further consistency check, we compute its expansion in the large torus volume limit and check it re-

produces the eleven-dimensional supergravity amplitude analysed in Section 4. We show that there

is no purely non-perturbative E7(Z) invariant function consistent with supersymmetry, proving in

this way that E(0,1) is unique and not subject to ambiguities that could not be fixed using string

perturbation theory in four dimension. Finally, we compute the instanton measure and compare it

with the helicity supertrace counting 1/8 BPS black holes in four dimensions.

11
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1 Supersymmetry of the low-energy effective action

Superstring theory in ten dimensions reduces at low energy to supergravity with N = 1 or N = 2

supersymmetry. The two-derivative Lagrangian is entirely determined by the spectrum and super-

symmetry highly contrains the higher derivative corrections up to 8N−2 derivatives. To classify

the possible supersymmetry invariants that can define higher derivative corrections, it is useful to

combine several tools. It is extremely difficult to work out the Slavnov–Taylor identities of the

full effective action generating the one-particle irreducible correlation functions, and one commonly

restricts oneself to the Wilsonian effective action. The Wilsonian effective action is obtained after

integrating out all the massive states in string theory, as a local effective action for the massless

states in supergravity. This coarse graining operation is not directly doable in string theory, but we

shall explain how this Wilsonian effective action can be extracted from superstring amplitudes by

splitting them into analytic and non-analytic components. This split becomes ambiguous whenever

there is a logarithmic divergence in supergravity, introducing a fiducial renormalisation scale that

drops out in the amplitude. The Wilsonian effective action can be treated as a classical action with

higher derivative corrections. Because the supersymmetry algebra only closes modulo the classical

equations of motion, one must in principle consider the action with antifields φ∗
ג associated to

each field φג (including the ghosts), such that the supersymmetry Slavnov–Taylor identity can be

written in terms of the master equation [87]∫ ∑
ג

δRΣ

δφג
δLΣ

δφ∗
ג
= 0 (1.1)

with

Σ[φ,φ∗] = S[φ] +

∫ ∑
ג
φ∗
sφג

ג + I[φ,φ∗] , (1.2)

where S[φ] is the Wilsonian action, s is the BRST operator defined as

s = Lξψ − δsusy(ϵ)− δLorentz(Ω)− δgauge(c) (1.3)

and I[φ,φ∗] combines higher order terms in the antifields and circumvents the fact that s2 only

vanishes modulo the equations of motion. In the two-derivative approximation, I[φ,φ∗] is quadratic

in the antifields. We write the two-derivative action Σ for eleven-dimensional supergravity in

Appendix A as an illustration. One can expand the Wilsonian effective action Wµ in the Planck

length in D dimensions as

Wµ =
1

ℓD−2

∑
n≥0

ℓ2nS(n) , (1.4)

and similarly for the BRST operator s =
∑

n≥0 ℓ
2ns(n) and I[φ,φ∗]. The main part of the master

equation is supersymmetry invariance

sWµ =
1

ℓD−2

∑
n≥0

ℓ2n
n∑

k=0

s(k)S(n−k) = 0 . (1.5)

Assuming the effective action and the BRST operator are determined up to order ℓ2n, the order

ℓ2n+2 can be decomposed into the particular solution S(n+1)
part and the homogeneous solution S(n+1)

hom
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satisfying respectively

s(0)S(n+1)
part + s(2n+2)

part S(0) = −
n∑

k=1

s(k)S(n+1−k) (1.6)

and

s(0)S(n+1)

hom + s(2n+2)

hom S(0) = 0 . (1.7)

The second equation only requires that

δsusy(0) (ϵ)S
(n+1)

hom ≈ 0 (1.8)

modulo the two derivative field equations of motion. Moreover, using field redefinitions, S(n+1)

hom is

itself only defined modulo the equations of motion and the problem can be considered for field

satisfying the classical two-derivative equations on motion. This justifies the classification of higher

derivative terms defined modulo the equations of motion and that are supersymmetric modulo

the equations of motion, the so-called on-shell supersymmetry invariants. The particular solution

S(n+1)
part is generally extremely difficult to obtain, and the only non-trivial solution (without off-shell

formulation) is the Bergshoeff and de Roo Lagrangian in N = 1 supergravity [88] and its direct

generalisations.

We will first review quickly this emblematic case and describe the Green–Schwarz cancelation

of the supersymmetric anomaly in ten dimensions. We will then explain the construction of some

N = 1 supersymmetry invariants in eight dimensions, to pave the way to N = 2 supergravity.

1.1 Green–Schwarz counter-term and ectoplasm cohomology

We will start this section with a brief review of [88].

Bergshoeff and de Roo Lagrangian

It appears that the higher-derivative corrections in type I supergravity in ten dimensions are much

more easily described in string frame. The string frame supersymmetry transformations (without

vector multiplets) are

δsusy(0) (ϵ)e
a = ϵ̄γaψ

δsusy(0) (ϵ)ψ = dω̂+ϵ− ψ(ϵ̄χ) + ϵ(ψ̄χ)− γaχ(ϵ̄γaψ)

δsusy(0) (ϵ)B = −ea∧ ϵ̄γaψ , δsusy(0) (ϵ)ϕ = −ϵ̄χ

δsusy(0) (ϵ)χ = −1

2
γaϵD̂aϕ− 1

24
Ĥabcγ

abc ϵ− χϵ̄χ (1.9)

where the torsion-full spin connection is defined as

ω̂±
ab = ω̂ab ±

1

2
Ĥabc e

c , H = dB , (1.10)

and the hats indicate the supercovariantisation. We recall that the supercovariantisation of a field

is obtained by adding the ψ dependent components ensuring that its supersymmetry variation does
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not involve the derivative of the spinor parameter. The trick of Bergshoeff and de Roo is to identify

ω̂−
ab as a Spin(1,9) gauge field and the Rarita–Schwinger field strength ρ+ab

1

2
ρ+ab e

a
∧e

b = ρ+ = dω̂+ψ +
1

2
γaχ(ψ̄γ

aψ)− ψ(ψ̄χ) (1.11)

as (minus) its Majorana–Weyl gaugino. Indeed, one finds modulo the fermions equations of motion

the supersymmetry transformations

δsusy(0) (ϵ)ω̂
−
ab = −ecϵ̄γcρ+ab ,

δsusy(0) (ϵ)ρ
+
ab =

1

4
R̂(ω̂−)cdabγ

cdϵ− ρ+abϵ̄χ+ ϵχ̄ρ+ab − γcχϵ̄γcρ
+
ab , (1.12)

which are identical to the ones of the supersymmetric Yang–Mills fields

δA = eaϵ̄γaλ , δλ = −1

4
γab F̂abϵ− λϵ̄χ+ ϵχ̄λ− γaχϵ̄γaλ . (1.13)

One can therefore use the two-derivative Lagrangian for the vector multiplet and substitute the

connection ω̂−
ab and −ρ+ab to determine a correction at order α′ to the effective action.

Including vectors multiplets the supersymmetry transformation of ω̂−
ab gets corrected to

δsusy(0) (ϵ)ω̂
−
ab = −ecϵ̄γc

(
ρ+ab +Tr

[
F̂abλ

])
− 2ecϵ̄γ[aTr

[
F̂b]cλ

]
δsusy(0) (ϵ)ρ

+
ab =

1

4

(
R̂(ω̂−)cdab + 3Tr

[
F̂[abF̂cd]

])
γcdϵ+ . . . (1.14)

and the R2 type correction comes together with an F 4 type correction as

ℓ2S(2)= α′
∫
d10xe

(
−1

4
R̂(ω̂−)abcdR̂(ω̂

−)abcd+
3

2
Tr
[
F̂[abF̂cd]

]
Tr
[
F̂ abF̂ cd

]
+
1

2
Tr
[
F̂a

cF̂bc

]
Tr
[
F̂ a

dF̂
bd
])

(1.15)

Bergshoeff and de Roo have computed the corresponding corrections to the effective action up to

order α′3. The calculation greatly simplifies through the introduction of the corrected three-form

field strength H via the implicite equation [89]

H = dB +Tr
[
AdA+ 2

3A
3
]
− α′Tr

[
ω̂−dω̂− + 2

3 ω̂
−3
]

(1.16)

that one solves perturbatively in α′. Up to order α′3, the bosonic corrections to the supersymmetry

transformation and the Lagrangian are simply obtained by substituting

Tr
[
F̂abF̂cd

]
→ Tr

[
F̂abF̂cd

]
+ α′R̂(ω̂−)abef R̂(ω̂

−)cd
ef (1.17)

in (1.14) and (1.15). To compare with the string theory amplitudes it is convenient to do field

redefinitions to eliminate the higher derivative corrections to the propagators coming from R(ω−)2

that would involve Ostrogradsky ghosts. The quartic term in the field strengths then recombine

into [89,90]

α′

32
t8

(
Tr[FF ]− α′Tr[R(ω̂−)R(ω̂−)]

)(
Tr[FF ]− α′Tr[R(ω̂−)R(ω̂−)]

)
, (1.18)

where the t8 tensor is defined such that

t8F1F2F3F4 = 4F1µνF
νσ
2 F3σρF

ρµ
4 + 4F3µνF

νσ
2 F1σρF

ρµ
4 + 4F2µνF

νσ
3 F1σρF

ρµ
4 + 4F1µνF

νσ
3 F2σρF

ρµ
4

+4F3µνF
νσ
1 F2σρF

ρµ
4 + 4F2µνF

νσ
1 F3σρF

ρµ
4

−2Fµν
1 F2µνF

σρ
3 F4σρ − 2Fµν

2 F3µνF
σρ
1 F4σρ − 2Fµν

3 F1µνF
σρ
2 F4σρ .(1.19)

This determines the particular solution (1.6) for S(4) and S(6) induced by the S(2) correction (1.15).
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Supergravity in superspace

We will now discuss the Green–Schwarz corrections to the effective action [91]. To analyse these

corrections, we find convenient to work in superspace with coordinates zM = (xµ, ϑα). One defines

the supervielbeins EA = (Ea, Eα) and their connection ΩB
A with the supertorsion and curvature

TA = dEA + EB∧ ΩB
A , RB

A = dΩB
A +ΩB

C∧ ΩC
A . (1.20)

N = 1 supergravity in superspace was constructed in [92]. One decomposes the superspace exterior

derivative as [93]

d = dzM∂M = EADA + TAιA , (1.21)

where

DA = EA
M (∂M +ΩM ) , ιAE

B = δBA . (1.22)

The supermanifold SM is a fibre bundle over its bosonic base space M and we assume the existence

of a global section s : M → SM. In practice one uses the trivial injection zM = (xµ, 0). A

homogeneous solution to (1.7) can be obtained from a Lagrangian density defined as the pull-back

s∗ to the bosonic space M of a closed D-superform LD∫
s∗LD =

1

D!

∫
dDx εµ1...µD

(
Eµ1

A1 . . . EµD

ADLA1...AD

)∣∣∣
ϑ=0

(1.23)

defined modulo an exact superform [94, 95]. The action of a superdiffeomorphism φ is defined by

composition with the section s, and for a flow φt generated by a vector field ΞM one has

d

dt

∫
s∗φ∗

tLD|t=0 =

∫
s∗LΞLD =

∫
d
(
s∗ιΞLD

)
. (1.24)

Assuming the appropriate fall off of the fields at infinity one gets therefore that the integral is

invariant under superdiffeomorphisms. If one writes explicitly the pull-back for D = 10 as∫
s∗L10 =

1

10!

∫ (
ea1 ∧ ea2 ∧ . . . ea10La1...a10 |ϑ=0 + 10ψα ∧ ea3 . . . ea10Lαa2...a10 |ϑ=0

+ 45ψα ∧ ψβ ∧ ea3 . . . ea10Lαβa3...a10 |ϑ=0 + . . .
)

(1.25)

the LA1...A10 |ϑ=0 components only depend on the supercovariant fields ans this decomposition is

very similar to the one appearing in the rheonomic approach [96].

The exterior differential can be decomposed in form-degree (b, f)

d = d(2,−1) + d(1,0) + d(0,1) + d(−1,2) , (1.26)

with b and f the bosonic and fermionic form-degrees, such that 5

d(2,−1) =
1

2
Eb∧ EaTab

γιγ , d(1,0) = EaDa +
1

2
Eb∧ EaTab

cιc + Eβ∧ EaTaβ
γιγ ,

d(0,1) = EαDα +
1

2
Eβ∧ EαTαβ

γιγ , d(−1,2) =
1

2
Eβ∧ EαTαβ

cιc . (1.27)

5We can generally assume Tαb
c = 0 and it turns out that Tαβ

γ = 0 in ten dimensions [92].
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The component of lowest bosonic form-degree b = −1

d(−1,2) ≡ t0 = − i

2
Eβ∧ Eαγaαβιa (1.28)

is purely algebraic and nilpotent and must cancel the component L(b,f) of lowest bosonic form-degree

b of LD. This component must therefore be a cohomology class of t0

t0L(b,f) = 0 , L(b,f) ≈ L(b,f) + t0(. . . ) . (1.29)

The cohomology classes of t0 have been classified in ten dimensions [97], and the lowest bosonic

form-degree (b, f) component must have b ≤ 5 to be non-trivial.

The simplest F 4 type closed-form can be obtained from the 11-superforms

W11 = H ∧ Tr
[
F ∧ F ∧ F ∧ F

]
, W ′

11 = H ∧ Tr
[
F ∧ F

]
∧ Tr

[
F ∧ F

]
. (1.30)

Note that we use the same letters to write the superforms H and F and their bosonic components

H|ϑ=0 and F |ϑ=0, or more explicitly

Habc(x, ϑ = 0) = Ĥabc(x) , Fab(x, ϑ = 0) = F̂ab(x) . (1.31)

Hopefully the reader will distinguish them from the context. The superforms H and W11 are not

closed because of the modified Bianchi identity

dH = −Tr
[
F ∧ F

]
+ α′Tr

[
R(ω−) ∧R(ω−)

]
. (1.32)

We will see that this is related to the gauge anomaly in ten dimensions, but let us first neglect the

right-hand-side and assume instead that H = dB and

H =
1

6
Ec ∧ Eb ∧ EaHabc −

1

2
Ec ∧ Eb ∧ Eαγbcα

βχβ − iEc ∧ Eβ ∧ Eαγc αβ . (1.33)

One can then write

H ∧ Tr
[
F ∧ F ∧ F ∧ F

]
= d

(
B ∧ Tr

[
F ∧ F ∧ F ∧ F

])
(1.34)

as a superform, whereas W11 is also the exterior derivative of a gauge invariant antecedent if one

forgets again the Chern–Simons term. Using

F =
1

2
Eb ∧ EaFab − iEb ∧ Eαγb αβλ

β , (1.35)

one computes that the lowest bosonic form-degree component

Tr
[
F ∧ F ∧ F ∧ F

]
abcd,αβγδ

∼ γabcde (αβγ
fghij

γδ)Tr
[
λ̄γfghλλ̄γij

eλ
]

(1.36)

in t0 cohomology [97], and therefore

5γ[e (εζTr
[
F ∧ F ∧ F ∧ F

]
abcd],|αβγδ) ∼ γf (εζγabcde |αβγ

ghijk
γδ)Tr

[
λ̄γfghλλ̄γijkλ

]
. (1.37)
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Therefore the lowest bosonic form-degree component of (1.34) is t0 trivial, and since there is no

obstruction in t0-cohomology with b ≥ 6, one is ensured to find the gauge invariant antecedent

recursively [97]

W(5,6) = t0K(6,4)

t0
(
W(6,5) − d(0,1)K(6,4)

)
= 0

⇒ W(6,5) − d(0,1)K(6,4) = t0K(7,3)

t0
(
W(7,4) − d(1,0)K(6,4) − d(0,1)K(7,3)

)
= 0

⇒ W(7,4) − d(1,0)K(6,4) − d(0,1)K(7,3) = t0K(8,2)

t0
(
W(8,3) − d(2,−1)K(6,4) − d(1,0)K(7,3) − d(0,1)K(8,2)

)
= 0

⇒ W(8,3) − d(2,−1)K(6,4) − d(1,0)K(7,3) − d(0,1)K(8,2) = t0K(9,1)

t0
(
W(9,2) − d(2,−1)K(7,3) − d(1,0)K(8,2) − d(0,1)K(9,1)

)
= 0

⇒ W(9,2) − d(2,−1)K(7,3) − d(1,0)K(8,2) − d(0,1)K(9,1) = t0K(10,0) . (1.38)

Therefore

W11 ∼ dK10 , (1.39)

and one has the closed superform

L10 = K10 −B ∧ Tr
[
F ∧ F ∧ F ∧ F

]
. (1.40)

This closed superform would define a supersymmetry invariant if there was no Chern–Simons term

in the three-form. This failure is related to the gauge anomaly in ten dimensions [98] and the fact

that L10 should cancel both the gauge and the supersymmetry one-loop anomalies [91].

Anomaly in superspace

Let us now revisit the discussion above without neglecting the right-hand-side in the Bianchi identity

(1.32). The closure of W11 gives

dW11 = −Tr
[
F ∧ F

]
∧ Tr

[
F ∧ F ∧ F ∧ F

]
+ α′Tr

[
R(ω−) ∧R(ω−)

]
∧ Tr

[
F ∧ F ∧ F ∧ F

]
. (1.41)

One shows that

Tr
[
F ∧ F

]
∧ Tr

[
F ∧ F ∧ F ∧ F

]
= d

(
Tr
[
AdA+ 2

3A
3
]
∧ Tr

[
F ∧ F ∧ F ∧ F

])
= dK11 (1.42)

for a gauged invariant K11. The existence of K11 follows from the fact that there is no (6,6)-form

in t0 cohomology [97]. The pull-back of the (10,1) component of

Tr
[
AdA+ 2

3A
3
]
∧ Tr

[
F ∧ F ∧ F ∧ F

]
−K11 (1.43)

to the bosonic subspace defines the supersymmetrisation of the gauge anomaly term

Tr
[
c dA

]
∧ Tr

[
F ∧ F ∧ F ∧ F

]
. (1.44)

This is somehow a natural extension of the descent equation relating a consistent anomaly to the

invariant polynomial [99–101]. One can indeed relate the superform to the BRST extended form
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appearing in the descent equation, by identifying the superspace exterior derivative d with the

extended operator

d ∼ d+ s− Lξ + ι 1
2
ϵ̄γϵ (1.45)

in components, where s is the BRST operator, and the fermionic components of the vielbeins

and the gauge fields are identified with the ghosts for supersymmetry, gauge invariance and local

Lorentz invariance, respectively

Eα ∼ −ϵα EαAα ∼ −c , EαΩαa
b ∼ −Ca

b . (1.46)

Now, at zero order in α′ we have that

d(W11 +K11) = 0 , (1.47)

and so we have a closed 11-form to obtain our 10-form Lagrangian density. The same argument as

above shows that W11 +K11 is dK10 for a gauge invariant K10. This is because the proof is only

based on the triviality of the t0-cohomology for (b, f)-superforms with b ≥ 6 and that the lowest

bosonic degree component of K11 is K(7,4) while the one of W11 is W(5,6). Moreover

d
(
B ∧Tr

[
F ∧F ∧F ∧F

])
= H ∧Tr

[
F ∧F ∧F ∧F

]
+Tr

[
AdA+ 2

3A
3
]
∧Tr

[
F ∧F ∧F ∧F

]
(1.48)

therefore the superform (1.40) satisfies

dL10 = K11 − Tr
[
AdA+ 2

3A
3
]
∧ Tr

[
F ∧ F ∧ F ∧ F

]
. (1.49)

The pull-back of L10 to the bosonic subspace is thus a counter-term that permits to restore gauge

invariance and supersymmetry in the presence of a single trace anomaly (1.44).

Although the superform can be used in principle to extract the corresponding invariant, it is

rather tedious to do it in practice and has not been done explicitly. For a superform with lowest

bosonic degree 5, one finds in t0-cohomology

Labcde,αβγδε ∼ γabcde (αβΛγδε) (1.50)

and the linearised invariant can be extracted from the pure spinor measure [97]

L(10,0) ∼ (D5)αβγΛαβγ . (1.51)

Here D5 is the quintic in the linearised superspace covariant derivative Dlin
α projected to the

[0,0,0,3,0] irreducible representation of Spin(1,9). Using the background field B = −iEa∧Eαγaαβϑ
β

in flat space one can write

Λαβγ = ϑδγaδ(αγ
bcdef

βγ)Tr
[
λ̄γabcλλ̄γdefλ

]
(1.52)

and although Λαβγ depends explicitly on ϑ, the resulting integral is supersymmetric in the linearised

approximation. However, this pure-spinor measure does not generalise at the non-linear level. The

field strengths terms were originally computed by brute force in [102,103] to be

L(10,0) =
1

8
e tµνρσκλϑτ8 Tr

[
FµνFρσFκλFϑτ

]
−B ∧ Tr

[
F ∧ F ∧ F ∧ F

]
+ . . . (1.53)
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The same construction goes through for the double trace, the mixed and the gravitational

anomaly. Indeed, the Bergshoeff de Roo trick implies that the superforms Tr
[
R(ω−)2n

]
can be

treated exactly in the same way as Tr
[
F 2n

]
.

To summarise, for a given 8-form invariant polynomial P8[F,R(ω
−)], one can construct an

anomaly canceling term. There exists a gauge invariant 11-superform K11 satisfying

dK11 =
(
Tr
[
F ∧ F

]
− α′Tr

[
R(ω−) ∧R(ω−)

])
∧ P8[F,R(ω

−)] , (1.54)

and a gauge invariant 10-superform K10 satisfying

dK10 = H ∧ P8[F,R(ω
−)] +K11 . (1.55)

The term that appears at one-loop in the Wilson effective action is the integral of the pull-back of

the superform

L10 = K10 −B ∧ P8[F,R(ω
−)] , (1.56)

which is not supersymmetric. But its supersymmetry variation is by construction the contraction

with ϵαια of the superform

dL10 = K11 −
(
Tr
[
AdA+ 2

3A
3
]
− α′Tr

[
ω−dω− + 2

3ω
− 3
])

∧ P8[F,R(ω
−)] (1.57)

which cancels the one-loop anomaly to the supersymmetry Ward identity in supergravity. Note

however that K11 is only determined modulo an exact superform d∆10, which appears as an am-

biguity in the definition of L10. This ambiguity can only be fixed in the full effective action by

ensuring that the supersymmetry Slavnov–Taylor identity is satisfied. In practice a reasonable

regularisation involves a minimal solution K11 that starts with cubic terms in the fermions. In this

way the bosonic part of the counter-term L10 and its quadratic terms in the fermions are uniquely

fixed to the onces identified in [103].

There is a similar story for N = 1 supergravity in six dimensions, and in this case the counter-

terms and the supersymmetrisation of the anomaly have been worked out explicitly in components

for the gauge field part in [104].

Higher derivative corrections in the gauge fields can be defined [105, 106]. In particular the

double-trace ∇TrF 2∇TrF 2 type invariant is also protected and only recieves corrections up to

two-loop in heterotic string theory.

Of particular interest are the R4 type corrections. The only other invariant that can be con-

structed can be defined as the full-superspace integral of the supervielbein Berezinian times a func-

tion of the dilaton. Using consistency with dimensional reduction, one obtains schematically [19]∫
d10,16zBer(E)K(ϕ) ∼

(
∂4ϕK − 12∂3ϕK + 44∂2ϕK − 48∂ϕK

)(
t8t8 +

1
8εε
)
R4 + . . .

+
(
∂2ϕK − 6∂ϕK + 8K

)(
t8∇R2∇TrF 2 + . . .

)
(1.58)

The R4 term therefore vanishes for K = e(2ℓ−2)ϕ for ℓ = 1, 2, 3, 4. Because of the other non-

vanishing terms, a linear dilaton pre-potential of the type K = ϕ e(2ℓ−2)ϕ would lead to a linear

dilaton term for ℓ = 1, 3, 4. We conclude that there is a non-renormalisation theorem in heterotic

string theory that forbids t8t8R
4 to appear in the four-graviton amplitude at 1, 2, 3 and 4-loop

order. This is consistent with the two-loop non-renormalisation established in [24]. Because of the

duality between type I and the Spin(32)/Z2 heterotic string, one expects however that there should

be a contribution to all loop orders ℓ ≥ 5 [107].
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1.2 N = 1 chiral measure in eight dimensions

The analysis of supersymmetry invariants simplifies in eight dimensions because one can define

chiral superspace integrals. The superspace fields on N = 1 supergravity in eight dimensions can

be obtained by consistent truncation of N = 2 supergravity [51]. In this section we will be in

Einstein frame.

The low dimension supertorsion components are

Tαβ̇
c = −iγcαβ̇ , Tαβ

c = 0 , Tαβ
γ̇ = 0 , Tαb

c = 0 ,

Tαβ
γ = δαβχ

γ − 1

2
δγ(αχβ) , Tαβ̇

γ̇ = −3

4
δγ̇
β̇
χα +

1

2
γaβ̇αγa

δγ̇χδ , Tαb
c = 0 , (1.59)

where a = 0 to 7 is the SO(1, 7) index and α and α̇ are the Weyl spinor indices. The gravity

supermultiplets includes the field strengths

F̄ =
1

2
Eb ∧ EaF̄ab − iEb ∧ Eα̇γbα̇

βχβ − Eβ̇ ∧ Eα̇δα̇β̇ , (1.60)

H =
1

6
Ec ∧ Eb ∧ EaHabc −

1

2
Ec ∧ Eb ∧

(
Eαγabα

βχβ + Eα̇γabα̇
β̇χ̄β̇

)
− iEc ∧ Eβ̇ ∧ Eαγcβ̇α .

In this convention, the three-form Habc and the graviphoton field strength F̄ab are dressed with the

scalar fields such that

Habc(x, ϑ = 0) = e−
2
3
ϕĤabc(x) , F̄ab(x, ϑ = 0) = e−

1
3
ϕv̄I F̂

I
ab(x) , (1.61)

where ϕ is the effective string coupling dilaton in eight dimensions and the complex SO(2, n) vector

vI parametrises the symmetric space SO(2, n)/
(
SO(2)× SO(n)

)
for n abelian vector multiplets.6

The left and right projectors on the Grassmanian are defined such that

−vAIv
A
J + vI v̄J + v̄IvJ = ηIJ (1.62)

for the even bilinear form of signature (n, 2) (with two plus signs and n negative). In the quantum

theory, this bilinear form defines an even lattice Λ2,n and the electric charges of the theory lie in

the dual lattice Λ∗
2,n. It is useful to introduce complex coordinates t = x + iy ∈ C1,n−1 with y a

positive norm vector in Λ1,n−1 ⊗ R for a sublattice Λ1,n−1 ⊂ Λ2,n of signature (n, 1). One then

defines the central charge for Q ∈ Λ∗
2,n

Z[Q] = 2vIQ
I = u

(
m+ (t, q)− 1

2(t, t)n
)
, uū =

2

(y, y)
= eK , (1.63)

with QI = (m, q, n) and q ∈ Λ∗
1,n−1. The symmetric space admits the Kähler potential

K(t, t̄) = − log
−(t− t̄, t− t̄)

8
, (1.64)

and the phase α of u = eK/2+iα can be gauge-fixed in component. It is nevertheless useful to keep

α free because the corresponding superfield is then chiral.

6If T2 is the torus volume modulus then e2ϕ = e2ϕH

T2
where ϕH is the dilaton in ten dimensions.
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We define the scalar momentum superform

P̄A = EaP̄A
a − 2Eα̇λ̄Aα̇ (1.65)

where

PA
a (x, ϑ = 0) = ̂vAIDavI(x) . (1.66)

The superfields u and t are chiral. The spinor χα is identified with the dilatino and

Dαϕ = −3

2
χα , Dαχβ =

1

12
γabαβ

(
F̄ab − 1

16χγabχ− 1
2 λ̄

Aγabλ̄A
)
. (1.67)

The supermultiplet structure can be represented schematically as

ϕ →
Dα

χα →
Dα

F̄ab

↓D̄α̇ ↓D̄α̇ ↓D̄α̇

χ̄α̇ →
Dα

Habc →
Dα

ρ̄ab γ̇

↓D̄α̇ ↓D̄α̇ ↓D̄α̇

Fab →
Dα

ρab γ →
Dα

Rabcd

,

t̄

↓D̄α̇

λ̄Aα̇
↓D̄α̇

t →
Dα

λAα →
Dα

FA
ab

, (1.68)

where ρ = dω̂ψ is the Rarita–Schwinger field strength.

We will be mostly interested in the chiral derivatives Dα that satisfy

{Dα, Dβ} = −TαβγDγ +Rαβ cdJ
cd , (1.69)

with Jab the Lorentz generators. The Riemann tensor component is

Rαβ cd = Cαβ

(
F̄cd − 1

2χγcdχ+ 1
2 λ̄

Aγcdλ̄A
)
+

1

12
(γcdγ

ab)(αβ)
(
F̄ab − χγabχ+ λ̄Aγabλ̄A

)
. (1.70)

Note that because P̄A
α = 0, the axial U(1) and the SO(n) component of the Riemann tensor Rαβ B

A

both vanish. One has for the gluinos

Dαλ̄β̇A =
1

2
γaαβ̇

(
−iP̄aA + λ̄Aγaχ

)
+

3

4
χαλ̄β̇A . (1.71)

It is convenient to introduce the combinations

M̄ab = F̄ab +
1
2χγabχ , N̄A

a = P̄A
a − iλ̄Aγaχ , (1.72)

of which the chiral derivative simplifies to

DαM̄ab = −(γ[a
cχ)αM̄b]c − 1

2χαM̄ab − 2i(γ[aλ̄A)αN̄
A
b] + . . .

DαN̄aA =
1

2
(γa

bχ)αN̄
A
b − 1

2χαN̄
A
a + i(γbλ̄A)αM̄ab + . . . , (1.73)

up to cubic terms in the fermions.

Because Tαβ
γ̇ = 0 and the axial U(1) Riemann tensor Rαβ = 0, the Weyl spinor vector fields

Eα close under their Lie bracket as

{Eα, Eβ} =
(
Ωαβ

γ +Ωβα
γ − Tαβ

γ
)
Eγ (1.74)
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and one can expand any scalar superfield in the associated normal coordinates ζα. Following the

construction established in [108], one can then expand the supervielbein Beresinian 7

ζα∂α log Ber(E) = ζαDα log Ber(E) = (−1)ATαA
A − Ωβα

βζα − δαα (Eα
α − δα

α) . (1.75)

It follows that there exists a chiral measure E , such that the full-superspace integral of a scalar

superfield L can be written as a chiral superspace integral as follows∫
d8,8,8zBer(E) L =

∫
d8,8z

∫
d8ζ Ber(E) L =

∫
d8,8zE [D8]L (1.76)

where the chiral projector

[D8]L =
1

8!
εαβγ...ζ

(
DαDβDγ · · ·Dζ + 21χαDβDγ · · ·Dζ + 28eαβDγ · · ·Dζ + . . .

)
L (1.77)

is alternatively determined such that [19]

[D8]
(
DαΞ

α +
13

4
χαΞ

α
)
= 0 (1.78)

for an arbitrary spinor superfield Ξα. The term in χα comes from the supertrace

(−1)ATαA
A =

13

4
χα . (1.79)

The computation of the chiral projector is rather involved and we shall not attempt to do it here.

One can check nonetheless that it satisfies

(Dα − Tαβ̇
β̇)[D8] = (Dα + 2χα)[D

8] = 0 , (1.80)

and one can therefore define the superspace integral∫
d8,8z EW (1.81)

for any chiral Lorentz scalar superfield W of U(1) weight 4 satisfying

(Dα + 2χα)W = 0 . (1.82)

Note that this condition is integrable because

Dαχβ +Dβχα = 0 , Tαβ
γχγ = 0 . (1.83)

For example one can take any anti-holomorphic function of the vector multiplets scalar

W = e
4
3
ϕū4W4(t̄) . (1.84)

Note that the power of the dilaton is precisely such that the corresponding supersymmetry invari-

ant includes a quartic term in the vector multiplet field strengths that does not depend on the

7Here α denotes the local fermionic index and Eα
α is the component of the inverse supervielbein.
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dilaton, and therefore corresponds to a one-loop correction in heterotic string theory. The corre-

sponding t8F
4 type supersymmetry invariant is the eight-dimensional parent of the ten-dimensional

Green–Schwarz anomaly canceling term in ten dimension. In eight dimensions it is of course fully

supersymmetric.

To understand the Riemann tensor terms one needs to construct a chiral superfield quartic in

the modified graviphoton field strength M̄ab. Let us first discuss the case with no vector multiplet.

One can then compute that (1.73) reduces to(
Dα + 1

2χα

)
M̄ab = −(γ[a

cχ)αM̄b]c , (1.85)

where the right-hand-side is a Lorentz transformation acting on M̄ab. Note that this equation is

exact in the absence of vector multiplets, and not only valid up to cubic terms in the fermions. It

follows that any Lorentz invariant polynomial of order k in M̄ab satisfies(
Dα + k

2χα

)
Xk(M̄) = 0 (1.86)

and can be used to define an integrand for the chiral measure. The supermultiplet structure is not

as simple in the presence of vector multiplets. One can nonetheless find that Dα + 1
2χα acting on

the triplets (M̄ab, N̄
A
a , λ̄

Aλ̄B) gives a right-hand-side that simply rotates them under an ancillary

so(1, 7 + n) fermionic rotation

(Dα + 1
2χα)M̄ab = −(γ[a

cχ)αM̄b]c − 2i(γ[aλ̄A)αN̄
A
b] + . . .

(Dα + 1
2χα)N̄aA =

1

2
(γa

bχ)αN̄
A
b + i(γbλ̄A)αM̄ab − 2i(γaλ̄B)α(λ̄

Aλ̄B) + . . .

(Dα + 1
2χα)λ̄

Aλ̄B = i(γaλ̄[A)αN
B]
a , (1.87)

up to cubic terms in the fermions. This structure breaks down at higher order in the fermions,

but is good enough to determine the chiral superfield up to quartic terms in the fermions. This

therefore strongly suggests that there exists X2 satisfying the chirality constraint

(Dα + χα)X2[M̄, P̄ ] = 0 . (1.88)

with up to quartic terms in the fermions.

X2[M̄, P̄ ] = M̄abM̄
ab − 2N̄A

a N̄
a
A + . . . (1.89)

Similarly, we assume that one can define X4 satisfying

(Dα + 2χα)X4[M̄, P̄ ] = 0 , (1.90)

which, up to quartic terms in the fermions, reads

X4[M̄, P̄ ] = M̄abM̄
bcM̄cdM̄

da−4N̄A
a N̄

b
AM̄

acM̄bc+2N̄A
a N̄

a
BN̄

B
b N̄

b
A−8λ̄Aλ̄BN̄a

AN̄
b
BM̄ab+ . . . (1.91)

One can therefore write the chiral superspace integral∫
d8,8z E

(
W0(t̄)X4[M̄, P̄ ] +W ′

0(t̄)X2[M̄, P̄ ]2 + e
2
3
ϕū2W2(t̄)X2[M̄, P̄ ] + e

4
3
ϕū4W4(t̄)

)
(1.92)
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in eight dimensions. This integral is easy to analyse in the linearised approximation since the

integrand is already quartic. One directly obtains from the linearised derivative that it gives rise

to a Riemann to the four term∫
d8,8z E

(
W0(t̄)X4[M̄, P̄ ]+W ′

0(t̄)X2[M̄, P̄ ]2
)
∼ (t8− i

2ε)
(
W0(t̄)Tr

[
R̄4
]
+W ′

0(t̄)Tr
[
R̄2
]2)

. (1.93)

These terms also involve ∇2F 2R2 and ∇4F 4 type terms with the structure coming from the ap-

proximate SO(1, 7+n) symmetry of the integrand.

In eight dimension this defines a fully supersymmetric correction to the effective action that is

associated to a modular anomaly. The pentagone diagram contribution to the axial U(1) current

conservation [98,109,42] gives the SO(2, n) anomaly of the 1PI effective action [110,111]

Γ1PI|γ = Γ1PI+
1

128π4

∫
log
[
d+(γ, t)+ c

2(t, t)
][
(246+n)

( 1

360
Tr[R4]+

1

288
Tr[R2]2

)
−Tr[R2]2

]
(1.94)

for the SO(2, n) transformation g

t|g =
−α

2 (t, t) +At+ β

d+ (γ, t)− c
2(t, t)

, g−1Q =

 a δ b

α A β

c γ d

 m

q

n

 , (1.95)

and in particular

(γ, γ) = −2cd . (1.96)

It can be compensated for a discrete subgroup Γ ⊂ SO(2, n) if W0(t̄) and W ′
0(t̄) are defined as

logarithms of modular forms of the appropriate weight.

This is the case for W0(t) in all string theories with N = 1 supersymmetry in eight dimensions,

which are believed to only exist for n = 2, 10 and 18 according to [112, 113]. The elliptic genus

allows to compute this coupling at one-loop, and gives for the maximal rank case [114]

t8

(
E(t, t̄)Tr[R4] + E ′(t, t̄)Tr[R2]2 + GAB(t, t̄)Tr[R

2]FAFB + FABCD(t, t̄)F
AFBFBFC

)
=
π

3
t8

∫
F

d2τ

τ2

1

∆(τ)

∑
Q∈II2,2⊕D+

16

e−πiτ(Q,Q)−4πτ2|Z(Q)|2
(
α′3

60
E4(τ)Tr[R

4] +
α′3

48
Ê2(τ)

2Tr[R2]2

+α′2Ê2(τ)
(
vAIQ

IvBJQ
J − 1

4πτ2
δAB

)
FAFBTr[R2] (1.97)

+α′
(
8vAIQ

IvBJQ
JvCKQ

KvDLQ
L − 12

πτ2
δABvCIQ

IvDJQ
J + 3

2π2τ22
δABδCD

)
FAFBFCFD

)
.

From this formula one computes using the unfolding method [115–118]

1

α′3E(t, t̄) =
22π

15
K − π

90

∑
q∈II1,1⊕D+

16

log
∣∣c((q, q)/2)e2πi(q,t)∣∣2 , E4(τ)

∆(τ)
=
∑
n≥−1

c(n)e2πinτ , (1.98)

so thatW0(t) is the logarithm of the Borcherds product associated to the modular form E4/∆ [119]

1

α′3W0(t) = − π

90

∑
q∈II1,1⊕D+

16

log
[
c((q, q)/2)e2πi(q,t)

]
. (1.99)
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Note however that the function multiplying Tr[R2]2 does not give the real part of a locally

holomorphic modular form because Ê2(τ) = E2(τ) − 3
πτ2

is not holomorphic [118]. This failure is

due to the α′ correction at tree-level that we have neglected in this analysis. The corrected Bianchi

identity for the three-form is

dH = −2

3
dϕ ∧H − F ∧ F̄ +

1

2
FA ∧ FA − α′e−

2
3
ϕRab ∧Rab . (1.100)

Defining the covariant derivatives

DAvI =
1

2
vAI , DAvBI =

1

2
δAB v̄I , (1.101)

and its complex conjugate, one works out the differential equations [120]

DAD̄BFCDEF = 5δ(BCFDEF )A

DAD̄BGCD =
3

2
δ(ABGCD) +

3

4
α′FABCD

DAD̄BE ′ = − π

24
α′3δAB +

1

4
α′GAB , DAD̄BE =

11π

30
α′3δAB . (1.102)

This gives an illustrative example of a general property. The superspace integral defined in this

section does not take into account the α′R2 correction and therefore does not predict the terms in

α′ in the differential equations. The terms linear in α′ can still be interpreted within the Wilsonian

effective action, and correspond to the modification of the supersymmetry transformation linear in

α′. The terms in α′3 come instead from the terms linear in the Kähler potential K similarly as in

the Harvey–Moore coupling discussed in the introduction. They appear in the amplitude but not in

the Wilsonian effective action and are directly associated to the one-loop supergravity divergence

in eight dimensions and the presence of a U(1)-anomaly.

1.3 Higher derivative corrections in maximal supergravity

The methods described in the previous sections to determine higher derivative corrections preserving

supersymmetry fail to provide a complete proof of the existence of higher derivative corrections

with maximal supersymmetry in general. We refer to [121] for a review. These higher derivative

corrections must nonetheless exist by consequence of the existence of supersymmetric scattering

amplitudes in type II string theory and supergravity. The tree-level type II string theory amplitudes

in ten dimensions define an effective action that preserves supersymmetry and therefore implies

the existence of R4, ∇4R4 type corrections to the effective action [122, 123]. In supergravity,

supersymmetry Slavnov–Taylor identities imply that there must be a supersymmetric counter-term

whenever there is a logarithmic divergence in perturbation theory. The supergravity logarithmic

divergences in eight, seven and six dimensions at one, two and three-loop order imply respectively

the existence of R4, ∇4R4 and ∇6R4 type corrections to the effective action [124–126]. Consistency

of M-theory also requires the existence of a R4 type supersymmetric invariant in eleven dimensions

[6, 127].

In principle the superspace construction of the Green–Schwarz counter-terms explained in sec-

tion 1.1 generalises to eleven dimensional supergravity [97, 128]. It is believed that F4 ∧ (4TrR4 −
TrR2∧TrR2) is t0-trivial, which would imply the existence of the R4 type supersymmetry invariant
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with the expected Chern–Simons coupling A3 ∧ (4TrR4 − TrR2 ∧ TrR2). It is in principle possible

to prove t0-triviality, however, this computation is extremely difficult and has not been achieved.

Assuming these higher derivative terms exist, one can determine very strong constraints on

them. They can be defined in linearised superspace [129, 130, 48, 131, 132]. From the linearised

superspace structure, one can derive the generic form of the non-linear invariant and checks some

of the supersymmetry variations.

This approach was taken in [49] to prove that the leading Wilson coefficient in type IIB string

theory satisfies to a Poisson equation. Type IIB supergravity in superspace was formulated in [133].

The linearised theory is determined by a chiral superfield that satisfies D̄αW = 0 and the reality

constraint that D4W = D̄4W̄ in both irreducible representations associated respectively to the

Weyl tensor Rab,cd and the self-dual field strength gradient ∇aF
+
bcdef . The field content of the

theory includes a complex axio-dilaton S = C0+ie
−ϕ, a left-handed Weyl fermion λα, two two-form

potentials transforming as a doublet of SL(2,R) with complex field strength G = eϕ/2(dC2−SdB2),

the right-handed Weyl gravitino field ψα
µ , the metric and the four-form with self-dual field strength.

The R4 type invariant can be defined in the linearised approximation from the superspace integral

D16W 4 ∼ t8t8R
4 + . . . (1.103)

and more generally one can define the U(1) violating linearised invariant at 4 + n points

D16W 4+n ∼Wnt8t8R
4 + . . . (1.104)

The set of linearised invariants determines the constraints on the function f(S) defining the invari-

ant as

L = dete f(S)t8t8R
4 + . . . (1.105)

in the linearised approximation. The property that there is no linearised invariant with W̄W does

not imply that f(S) is holomorphic, but rather that D̄Df(S) ≈ 0 in the linearised approximation,

which in this case implies that D̄Df(S) = s(s−1)f(S) for some s. We define the covariant derivative

D = 2iImS∂S + w on a weight w form fw(S), such that Dfw has weight w + 1.8 Taking a generic

ansatz of the form

L = dete
(
f(S)t8t8R

4 + · · ·+ c11D11f(S)Ĝλ14 + c′11D11f(S)ψ̄aγ
aλ15 + c12D12f(S)λ16

)
(1.106)

supersymmetry implies c′11 = 104c12 and D̄D12f(S) = −525
4 D11f(S) and therefore [49]

D̄Df(S) = 3

4
f(S) . (1.107)

The interaction terms have been computed from string amplitudes up to six-point at tree-level

[134–138] and up to five-point at one-loop [139,140].

We did a similar computation in eight dimensions in [51], for which there are two types of

supersymmetry invariants. The field content of the theory is summarised in figure 2. The chiral

8We call weight w what is refered to as weight (w,−w) in [49] for short. With this second definition one recovers

the standard weight (w, 0) of modular forms commonly used in the literature with the derivative ∂S + w
2iS2

shifting

weight by (2, 0).
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U(1) weight

4

3

2

1

0

−1

−2

−3

−4

1/2 1 3/2 2 dim

χ̄i
α̇

λijkα

λ̄ijkα̇

χi
α

F̄ ij
ab/Ḡ

−
abcd

H ij
abc

F ij
ab/G

+
abcd

ρiabα

ρ̄iabα̇

Rabcd

W̄

D̄i
α̇

Di
α

Lijkl

W

Figure 2: Structure of the supergravity supermultiplet in the linearised approximation. It includes a chiral

superfield W and a tensor superfield Lijkl related through their second derivative. The symmetry with

respect to the horizontal axe defines complex conjugation.

invariant is complex and was found to expand as

(t8+
i
2)

2f(U)R4+ · · ·+ 1

128
D11f(U)

(1
6
Ĝ+

abcd(χ
14)abcd+4F̂ ij

ab(χ
14)abij −(λ̄λ̄)ijab(χ

14)abij −3(λ̄λ̄)(χ14)
)

+
i

2
D11f(U)ψ̄iγ

aχ15 i +D12f(U)χ16 , (1.108)

where f(U) is a holomorphic function of the complex structure modulus in type IIB. Note that this

supersymmetry invariant gives under truncation to N = 1 supergravity the chiral superspace inte-

gral written in the previous section. There is also a parity symmetric invariant for which a similar

analysis determines a tensorial quadratic equation satisfied by the function of the SO(3)\SL(3,R)
moduli [51].

In lower dimensions it appears that the symbol of the tensorial differential equations satisfied

by the protected couplings determines by integrability the full differential equations. This method

is particularly powerful in four dimensions because the linearised invariants can be determined from

superconformal primary operators according to [16, 141]. In dimensions D ≥ 5 not all linearised

supersymmetry invariants can be defined as harmonic superspace integrals as one can read in

Figure 1.

In N = 8 supergravity the linearised theory is described by the superfield W ijkl satisfying the

complex-selfduality relation

W̄ijkl =
1

24
εijklpqrsW

pqrs , (1.109)

and the linear constraints that

Di
αW

jklp =
1

12
εijklpqrsχαqrs , D̄α̇iW

jklp = 2δ
[j
i χ̄

klp]
α̇ . (1.110)
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We shall write the fundamental weights of SU(8) as Υi, such that the representation of highest

weight λ = niΥi admits Dynkin labels [n1, n2, n3, n4, n5, n6, n7] and in particular the fundamental

representation R(Υ1) has highest weight Υ1 (as Di
α).

9 In this convention the linearised superfield

is in the representation R(Υ4), and one can construct 1/2 BPS superfields as the monomials Wn in

the irreducible representation R(nΥ4) [130]. This is most easily understood in harmonic superspace

[142], in which case one can write SU(8)/S(U(4) × U(4)) harmonic variables (uri, u
r̂
i) with r =

1, 2, 3, 4 and r̂ = 5, 6, 7, 8 of the respective U(4) subgroups. Defining

Dr
α = uriD

i
α , D̄α̇r̂ = uir̂D̄α̇i , W = u1iu

2
ju

3
ku

4
lW

ijkl , (1.111)

the superfield W is (4, 4)-Grassmann analytic

Dr
αW = 0 , D̄α̇ rW = 0 . (1.112)

So W is annihilated by half of the superspace derivatives and so is any monomial in W . The other

derivatives define an order sixteen measureD8D̄8 that gives a non-zero result (up to total derivative)

for W 4+n and any n ≥ 0. This gives the analogue of (1.104) in type IIB supergravity. This implies

that the non-linear ansatz for the supersymmetry invariant can be defined in terms of a single

function of the scalar fields in (SU(8)/Z2)\E7 and the ansatz only involves covariant derivatives of

order n in the irreducible representation R(nΥ). This constraint turns out to determine uniquely

the differential equations satisfied by the function E(0,0) and one finds in particular

∆E(0,0) = −42E(0,0) . (1.113)

This discussion generalises to the next to leading correction of type∇4R4. One can construct 1/4

BPS superfields as the monomials W 2m+n in the irreducible representation R(mΥ2+nΥ4+mΥ6)

[16,141]. This is also described in harmonic superspace [142] using harmonic variables parametrising

SU(8)/S(U(2) × U(4) × U(2)) with r = 3, 4, 5, 6 of U(4), r̂ = 1, 2 and ř = 7, 8 of the two U(2)’s.

One defines then

Dr̂
α = ur̂ iD

i
α , D̄α̇ř = uiřD̄α̇i , W rs = u1iu

2
ju

r
ku

s
lW

ijkl , (1.114)

and the superfield W rs is (2, 2)-Grassmann analytic

Dr̂
αW

rs = 0 , D̄α̇ řW
rs = 0 . (1.115)

One can write the (2, 2)-Grassmann analytic superfields W 4+2m+n in the representation [0, n, 0]

of U(4) that give rise to invariants in R(mΥ2+nΥ4+mΥ6) of SU(8). One concludes that the

ansatz in the coupling function only involves covariant derivatives in the irreducible representations

R(mΥ2+nΥ4+mΥ6) [52]. Once again this determines entirely the set of differential equations

satisfied by the function E(1,0) and in particular

∆E(1,0) = −60E(1,0) . (1.116)

For ∇6R4 one finds two kinds of linearised supersymmetry invariants [53]. The first one is

defined in harmonic superspace using U(8)/S(U(1)×U(6)×U(1)) with r = 2, 3, 4, 5, 6, 7 [16,141].

One introduces

D1
α = u1iD

i
α , D̄α̇8 = ui8D̄α̇i , W rst = u1iu

r
ju

s
ku

t
lW

ijkl , (1.117)

9The corresponding Young diagram admits
∑

i ini boxes with n7 columns of hight 7, n6 columns of hight 6, etc.
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and the superfield W rst is (1, 1)-Grassmann analytic

D1
αW

rst = 0 , D̄α̇ 8W
rst = 0 . (1.118)

This harmonic superspace can be defined in the non-linear theory [143], which proves in this case

that there exists a supersymmetric correction to the two-derivative Lagrangian without relying

on indirect results from amplitudes. One can integrate the monomials W 4+n1+2n2+3n3+4n4+4n′
4 in

the irreducible representation [n2, n4, n1+n3, n4, n2] of U(6) to get linearised invariants in the rep-

resentation [n3+n4+2n′4, n2, n4, n1+n3, n4, n2, n3+n4+2n′4] of SU(8). These are the only allowed

representations in the covariant Taylor expansion of the function E (1)

(0,1) defining the coupling at the

non-linear level, and they determine in this way the symbol of the differential equations satisfied by

E (1)

(0,1). This in turn determines the differential equation at the non-linear level up to the eigen-value

of the Laplacian.

There is a second class of supersymmetry invariant that does not include an SU(8) invariant

representative and was therefore disregarded in [141]. It is complex and defined in harmonic

superspace using U(8)/S(U(2)× U(6)) with r = 3, 4, 5, 6, 7, 8 and r̂ = 1, 2. One introduces

Dr̂
α = ur̂ iD

i
α , W rs = u1iu

2
ju

r
ku

s
lW

ijkl , (1.119)

and the superfield W rs is (2, 0)-Grassmann analytic

Dr̂
αW

rs = 0 . (1.120)

One can integrate monomials W 6+n1+2n2+3n3 in the representation [0, n1, 0, n2, 0] of U(6) to get a

invariants with a scalar monomials in the representation [0, n2 +2n3, 0, n1, 0, n2, 0] of SU(8) multi-

plying F̄ 2∇4R4. This set of complex invariants determine another class of non-linear invariant of

the form E (7)

(0,1)∇6R4 such that the covariant Taylor expansion of E (7)

(0,1) is restricted to the irreducible

representations [0, n2+2n3, 0, n1, 0, n2, 0] and their complex conjugates. This set of representations

determines the entire set of differential equation and in particular the eigen-value of the Laplace

operator to be −60 as for (1.116) [143].

To discuss these differential equations and their solutions in more details we find convenient

to first introduce some other concepts that appear in the description of automorphic forms and in

particular the notion of nilpotent orbit. At this stage we can simply identify that the harmonic

superspace can be labelled by an integral weight υ = niΥi of SU(8). The weight determines a

parabolic subgroup Pυ ⊂ SL(8,C) as the group generated by the Cartan subalgebra and the roots

satisfying (υ, α) ≥ 0. The harmonic variables are valued in SL(8,C)/Pυ = SU(8)/(Pυ ∩ SU(8)).

The Grassmann analytic structure is then associated to the highest weight vector spaces in R(Υ1) =

8 and R(Υ7) = 8 with respect to υ, and the Grassmann analytic superfield is valued in the highest

weight vector space in R(Υ4). We will see in Section 3 that this gives a one-to-one correspondence

between harmonic superspaces and nilpotent orbits and in fact automorphic representations.

But before to do so we want to discuss the effective action in string theory.
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2 String perturbation theory

In this section we shall describe the perturbative four-graviton scattering amplitude in type II

string theory on a torus. We shall concentrate on the low energy limit, with particular emphasise

on the Wilsonian effective action obtained by integrating out massive string states. We shall not

review the computation of the amplitude from first principles.

The perturbative states of type IIB string theory on R1,9−d × T d are counted by the one-loop

partition function

Tr′[(−1)F e−2πτ2H+2πiz·J ] =

∫ 1
2

− 1
2

dτ1

∣∣∣∣∣∣∣∣∣
∑

p∈D4+v

q
p2

2 e2πiz·p −
∑

p∈D4+s

q
p2

2 e2πiz·p

η4q
1
3

4∏
a=1

∞∏
n=1

(1− e2πizaqn)(1− e−2πizaqn)

∣∣∣∣∣∣∣∣∣
2 ∑
m,n∈Zd

q
p2L
2 q̄

p2R
2

(2.1)

where Ja for a = 1 to ⌊8−d
2 ⌋ are the Lorentz currents in a Cartan subalgebra of so(8−d) and za = 0

for a > ⌊8−d
2 ⌋ corresponding to the internal torus. The prime on the trace excludes the zero modes

on R1,9−d, that would involve a divergent integral over the external momenta. Here D4 is the root

lattice and v and s (or c) are the vector and Weyl spinor representation highest weight vectors. We

choose conventions such that

p2L =
1

2
GIJ

(
mI + (BIK +GIK)nK

)(
mJ + (BJL +GJL)n

L
)
,

p2R =
1

2
GIJ

(
mI + (BIK −GIK)nK

)(
mJ + (BJL −GJL)n

L
)
, (2.2)

with the dimensionless torus metric GIJ and two-form BIJ in sting frame. mI are the momentum

mode numbers of the string along the torus, and nI the winding numbers. In light-cone gauge

the factor 1
η8

comes from the eight transverse world-sheet bosons while the world-sheet fermions

contribute to V8 =
∑
D4+v

q
p2

2 /η4 in the (antiperiodic) NS sector and to S8 =
∑
D4+s

q
p2

2 /η4 in the (periodic)

R sector. The type IIA partition function is obtained by changing the chirality of the Weyl spinor

in the right-moving sector.

In ten dimensions, the little group Spin(8) representations of the states are determined by the

expansions∑
p∈D4+v

q
p2

2 e2πiz·p

η4q
1
3

= (1 + q + 2q2 + . . . )tr[ 01 0 0

]ζ + (q + 2q2 + . . . )tr[ 10 0 1

]ζ + q2tr[ 01 1 0

]ζ + . . .

∑
p∈D4+s

q
p2

2 e2πiz·p

η4q
1
3

= (1 + q + 2q2 + . . . )tr[ 00 0 1

]ζ + (q + 2q2 + . . . )tr[ 11 0 0

]ζ + q2tr[ 00 1 1

]ζ + . . .

∑
p∈D4+c

q
p2

2 e2πiz·p

η4q
1
3

= (1 + q + 2q2 + . . . )tr[ 10 0 0

]ζ + (q + 2q2 + . . . )tr[ 01 0 1

]ζ + . . . (2.3)

where ζ = e2πiz·J is defined in the corresponding Spin(8) representations. In particular the massless

spectrum at q0 is consistent with maximal supergravity in 10 − d dimensions. In this section we

want to describe the process of integrating out the massive excitations.
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2.1 Type II superstring four-graviton amplitude at tree-level

We will study the low-energy effective action through the four-graviton scattering amplitude. The

four-graviton scattering amplitude obtained from the Einstein–Hilbert Lagrangian

1

2κ2D

∫
dDx

√
−gR (2.4)

in D spacetimes dimensions can be written as

Msugra
4 tree = −i κ

2
D

210
t8t8

4∏
a=1

R(ka, ϵa)
64

stu
(2.5)

where t8 is the rank eight tensor determined by its contraction with four antisymmetric tensors Fa

as

t8F1F2F3F4 = 4F1µνF
νσ
2 F3σρF

ρµ
4 + 4F3µνF

νσ
2 F1σρF

ρµ
4 + 4F2µνF

νσ
3 F1σρF

ρµ
4 + 4F1µνF

νσ
3 F2σρF

ρµ
4

+4F3µνF
νσ
1 F2σρF

ρµ
4 + 4F2µνF

νσ
1 F3σρF

ρµ
4

−2Fµν
1 F2µνF

σρ
3 F4σρ − 2Fµν

2 F3µνF
σρ
1 F4σρ − 2Fµν

3 F1µνF
σρ
2 F4σρ (2.6)

and R(ka, ϵa) is the linearised Riemann tensor

R(ka, ϵa)µν
σρ = −4ka[µk

[σ
a ϵaν]

ρ] (2.7)

for the external momenta ka and the polarisation tensors ϵa. We use the Mandelstam variables s,

t, u with all momenta incoming

s = −(k1 + k2)
2 , t = −(k2 + k3)

2 , u = −(k1 + k3)
2 . (2.8)

On the other-hand, the sphere string theory four-graviton amplitude on R1,10−d × T d gives

Mstring
4 tree = i

(2π)7α′7

211
e2ϕ

(2π
√
α′)d υs

t8t8

4∏
a=1

R(ka, ϵa)
Γ(−α′

4 s)Γ(−
α′

4 t)Γ(−
α′

4 u)

Γ(1 + α′

4 s)Γ(1 +
α′

4 t)Γ(1 +
α′

4 u)
(2.9)

where eϕ is the ten-dimensional dilaton and (2π
√
α′)d υs is the volume of T d parametrised by the

dimensionless modulus υs. This gives the identification

κ2D =
1

2
(2π)7−dα′ 8−d

2
e2ϕ

υs
(2.10)

and one defines accordingly the effective dilaton in dimension D = 10− d

e2ϕd =
e2ϕ

υs
(2.11)

and the Planck length ℓ is related to the string length as

ℓ = e
2

8−d
ϕd
√
α′ . (2.12)
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We use the same symbol ℓ for the Planck length in all dimensions and define the torus coordinates

with period 2πℓ. The dependence of the Planck length in the torus dimension is absorbed in the

Weyl rescaling of the metric in supergravity.

Supersymmetry implies that the total amplitude can be written in the same way as

Mstring
4 = −i κ

2
D

210
t8t8

4∏
a=1

R(ka, ϵa)A(s, t, u, φ) (2.13)

for a function A(s, t, u, φ) that is invariant under permutations of the Mandelstam variables and

depends on the moduli φ of the theory. We define accordingly the perturbative series

A(s, t, u, φ) = α′3
∞∑
n=0

e2nϕdAn-loop(s, t, u,G,B) +O(e−2πe−ϕd

) . (2.14)

At tree-level one obtains [78]

Atree(s, t, u) = −
Γ(−α′

4 s)Γ(−
α′

4 t)Γ(−
α′

4 u)

Γ(1 + α′

4 s)Γ(1 +
α′

4 t)Γ(1 +
α′

4 u)

=
64

α′3 stu
exp
( ∞∑
n=1

2ζ(2n+ 1)

2n+ 1

(
α′

4

)2n+1
(s2n+1 + t2n+1 + u2n+1)

)
=

64

α′3 stu
+
∑
p,q≥0

(
α′

4

)2p+3q
c(p,q)(s

2 + t2 + u2)p(s3 + t3 + u3)q , (2.15)

where c(p,q) are constants that are polynomial in the odd zeta values ζ(2n+ 1).

The corresponding effective action in string frame takes the schematic form

1

2κ2D

∫
dDx

√
−g

(
R+

ℓ6

48
e−

12
8−d

ϕd

(∑
p,q≥0

(
ℓe−

2
8−d

ϕd
)4p+6q

c(p,q)t8t8(∇4)p(∇6)qR4
))

. (2.16)

In this action, the higher derivative terms take into account the effect of the massive string states at

tree-level. Of course they must be completed by the corresponding supersymmetry completion and

higher order terms in the Riemann tensor. The complete low energy effective action taking into

account both perturbative and non-perturbative quantum corrections take a similar form where

the coefficients c(p,q)e
− 12+8p+12q

8−d
ϕd are replaced by non-perturbative coupling functions EW

(p,q)µ that

are functions of all scalar fields

Wµ ∼ 1

2κ2D

∫
dDx

√
−g

(
R+

ℓ6

48

(∑
p,q≥0

ℓ4p+6qEW
(p,q)µ t8t8∇4p+6qR4

))
. (2.17)

In this section we shall concentrate on their perturbative component. As explained in the introduc-

tion, it is convenient to do not work with the Wilsonian effective action Wµ, but with the coupling

functions appearing in the amplitude such that each E(p,q)(φ) is U-duality invariant.

34



2.2 Low-energy expansion at one-loop

The one-loop contribution to the four-graviton scattering amplitude is written as the integral [47]

A1-loop = 2π

∫
F

d2τ

τ 2
2

ΓIId,d

4∏
a=1

∫
Σ

d2za
τ2

τ2δ
(2)(z4)e

−α′
2

∑
a>bG(za−zb)ka·kb (2.18)

where

ΓIId,d = τ
d
2
2

∑
m,n∈Zd

eπiτp
2
L−πiτ̄p2R , (2.19)

and the torus Green function is defined as

G(τ, z) = − log

∣∣∣∣∣ϑ1(τ, z)ϑ′1(τ)

∣∣∣∣∣
2

+
2π

τ2
(Imz)2 . (2.20)

In this section we will review the low energy limit α′s ≪ 1 of this amplitude that was analysed

in detail in [78, 81, 144] in the case D = 10. This expression is well defined for 0 ≤ d ≤ 5, but

suffers from infrared divergences in D = 4. Because the infrared divergences are well understood in

supergravity [145,146,126], we will discuss the infrared singularities after the low energy expansion

will have been derived. For d = 6 it must therefore be understood that an infrared regularisation

has been introduced in (2.18).

Note that because of conservation of momentum, the Green function in the Koba–Nielsen

exponent can be shifted by an arbitrary constant function of τ . It is convenient to replace the

Green functions in the exponent by the Arakelov Green function [81,144]

G(τ, z) = − log

∣∣∣∣∣ϑ1(τ, z)η(τ)

∣∣∣∣∣
2

+
2π

τ2
(Imz)2 (2.21)

that satisfies
∫
d2z G(τ, z) = 0 and G(τ, z) = G(τ, z)− 2 log

(
2π|η(τ)|2

)
.

To carry out the low energy expansion of the amplitude, it is convenient to introduce a fiducial

parameter Λ to split the moduli space integral into two pieces [78]

A1-loop = A1-loop

<Λ +A1-loop

>Λ . (2.22)

One defines accordingly the truncated fundamental domain

FΛ =
{
τ2 < Λ, −1

2 ≤ τ1 ≤ 1
2 , |τ | > 1

}
(2.23)

as the intersection of the fundamental domain with the region τ2 < Λ for 1 ≪ Λ ≪ 1
α′s and

F = SO(2)\SL(2,R)/PSL(2,Z) = FΛ ∪
{
τ2 ≥ Λ,−1

2 ≤ τ1 ≤ 1
2

}
. (2.24)

This split defines accordingly the Wilsonian component

A1-loop

<Λ = 2π

∫
FΛ

d2τ

τ 2
2

ΓIId,d

4∏
a=1

∫
Σ

d2za
τ2

τ2δ
(2)(z4)

∞∑
n=1

1

n!

(
−α

′

2

∑
a>b

G(za − zb)ka · kb

)n

(2.25)
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for which one can expand the Koba–Nielsen factors such that

A1-loop

<Λ =
∑

m,n≥0

E1-loop

(m,n)Λσ
m
2 σ

n
3 , (2.26)

with

σk = (α
′

4 )
k(sk + tk + uk) , (2.27)

and

E1-loop

(m,n)Λ = 2π

∫
FΛ

d2τ

τ 2
2

ΓIId,dB(m,n)(τ) , (2.28)

where B(m,n)(τ) are the graph functions introduced in [80]. The first graph functions are Eisenstein

series [78]

B(0,0)(τ) = 1 , B(1,0)(τ) =
π2

45
E2(τ) , B(0,1)(τ) =

2π3

567
E3(τ) +

ζ(3)

3
, (2.29)

where the normalisation is such that Es(τ) ∼ τ s2 + ξ(2s−1)
ξ(2s) τ1−s

2 . The graph functions have been

studied extensively, see for example [147–152] for an non-exhaustive list. They behave at large τ2
as [80]

B(m,n)(τ) =
2m+3n−1∑

w=0

b(m,n)(w)(πτ2)
2m+3n−w +O(e−2πτ2) (2.30)

such that the cutoff dependent part of these couplings takes the form

E1-loop

(m,n)Λ = E1-loop
(m,n) ϵ + 2π

2m+3n−1∑
w=0

π2m+3n−wb(m,n)(w)
Λ

d−2
2

+2m+3n−w

d−2
2 + 2m+ 3n− w

(2.31)

for constant coefficients b(m,n)(w) that are linear combinations over Q of single-valued multi-zeta

values of weight w. To avoid to replace the power of Λ by a log Λ whenever d−2
2 +2m+3n−w = 0,

we have introduced an analytic continuation in d (with d replaced by d+ 2ϵ corresponding to the

spacetime dimension D − 2ϵ) and the coupling function E1-loop
(m,n) ϵ is defined as

E1-loop
(m,n) ϵ = 2π

∫
F

d2τ

τ 2
2

τ ϵ2 ΓIId,dB(m,n)(τ) . (2.32)

This integral converges for ϵ < 1− d
2 − 2m− 3n and is defined by analytic continuation near ϵ ≈ 0.

Let us now discuss the non-analytic component of the amplitude defined by the complementary

set integral

A1-loop

>Λ = 2π

∫ ∞

Λ

dτ2
τ 2
2

∫ 1

0
dτ1ΓIId,d

4∏
a=1

∫
Σ

d2za
τ2

τ2δ
(2)(z4)e

−α′
2

∑
a>bG(za−zb)ka·kb . (2.33)

It can be interpreted in supergravity as the sum of five terms

A1-loop

>Λ = A1-loop

>Λ l
+A1-loop

>Λ ■◁ +A1-loop

>Λ ■⃝■
+A1-loop

>Λ =‹ +A1-loop

>Λ›◦ , (2.34)
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corresponding respectively to the supergravity amplitude, the four-point insertion form-factor, the

two four-point insertions form-factor, the five-point insertion form-factor and the six-point insertion

form-factor.

In supergravity, the only form-factors that make sense as gauge invariant observables are the

insertions of the integrated non-linear invariants, so the four-point, five-point and six-point inser-

tions must be combined together to define observables. We will nevertheless call them form-factors

for short.

To compute A1-loop

>Λ one expands the Green function G(z) in the tropical limit [153] as

G(x+ τy) = 2πτ2
(
1
6 − |y|+ y2

)
− log

∣∣1− e−2πτ2|y|+2πi(x+τ1y)
∣∣2 +O(e−πτ2) (2.35)

for −1
2 < y < 1

2 , and where all the terms in O(e−πτ2) can be neglected because they only contribute

to terms exponentially suppressed in the limit Λ → ∞. The logarithmic term can also be neglected

as long as y is away from zero. There are accordingly five different terms one must take into account

depending of the number of distances |yij | going to zero, corresponding to the split in five terms in

(2.34).

At a generic point, one just gets the supergravity one-loop amplitude with the ultra-violet cutoff
1√
πα′Λ

in Schwinger parameter space 10

A1-loop

>Λ l
= 2π

∫ ∞

Λ

dτ2
τ 2
2

∫ 1

0
dτ1τ

d
2
2

4∏
a=1

∫ 1

0
dyaδ(y4)e

−α′πτ2
∑

a>b

(
−|ya−yb|+(ya−yb)

2
)
ka·kb

= 4π

∫ ∞

Λ
dτ2τ

d
2
−2

2

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1

(
eπτ2α

′[(x2−x1)(1−x3)t+x1(x3−x2)u] (2.36)

+eπτ2α
′[(x2−x1)(1−x3)s+x1(x3−x2)t] + eπτ2α

′[(x2−x1)(1−x3)s+x1(x3−x2)u]

)
.

In the computation we have decomposed the integral over the three ya variables into the 6 ordered

integrals, that give two times the three integrals with the orderings 0 ≤ y1 ≤ y2 ≤ y3, 0 ≤ y2 ≤
y3 ≤ y1 and 0 ≤ y3 ≤ y1 ≤ y2. This gives in total two times the three corresponding integrals over

0 ≤ x1 ≤ x2 ≤ x3 ≤ 1 with the three respective changes of variables

y1 = 1− x3 , y2 = 1− x2 , y3 = 1− x1 , (2.37)

y1 = 1− x1 , y2 = 1− x3 , y3 = 1− x2 , (2.38)

y1 = x2 , y2 = x3 , y3 = x1 . (2.39)

This computation can be understood more generally from the point of view of tropical geometry

[153] by recognising (2.101) as the worldline Green function [154].

10The parameter Λ ≫ 1 but the energy cutoff 1√
πα′Λ

is large compare to the energy scale of the amplitude since

α′sΛ ≪ 1.
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The one-loop integral can be computed as follows [155]

4π

∫ ∞

Λ
dτ2τ

d
2
−2

2

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1e

πτ2α′[(x2−x1)(1−x3)s+x1(x3−x2)t]

= 4π2−
d
2α′ 1− d

2Γ(d−2
2 )

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1
(
−(x2 − x1)(1− x3)s− x1(x3 − x2)t

)1− d
2

−
∞∑
k=0

(4π)k+1

k!

Λ
d
2
−1+k

d
2 − 1 + k

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1
(
(x2 − x1)(1− x3)

α′s
4 + x1(x3 − x2)

α′t
4

)k
= −8π2−

d
2
Γ(d−6

2 )Γ(8−d
2 )2

Γ(7− d)

∫ 1

0
dx
(
(−α′s)

2−d
2

(1− x)
4−d
2

(1 + t
s)x− 1

+ (−α′t)
2−d
2

(1− x)
4−d
2

(1 + s
t )x− 1

)
−

∞∑
k=0

(4π)k+1(k + 1)!

(2k + 3)!

Λ
d
2
−1+k

d
2 − 1 + k

∫ 1

0
dx

((1− x)α
′s
4 )k+1 − (xα′t

4 )k+1

(1− x)α
′s
4 − xα′t

4

, (2.40)

where one must take the analytic continuation of d ≤ 5 to complex values d+ 2ϵ in order to make

sense of the two terms in the last line separately. By construction the sum of the two terms is

analytic at ϵ = 0 and the regular parts of the two terms are uniquely defined from the prescription

that d is replaced by d+ 2ϵ. Note that although Λ ≫ 1, the parameter of the incomplete Gamma

function

Γ(d−2
2 ,−πΛα′[(x2 − x1)(1− x3)s+ x1(x3 − x2)t]) (2.41)

is very small because α′sΛ ≪ 1 and the last line is an expansion in α′sΛ. One defines accordingly

the supergravity four-point amplitude

A1-loop
l ϵ = −8π2−

d
2
Γ(d−6

2 )Γ(8−d
2 )2

Γ(7− d)

∫ 1

0
dx
(
(−α′s)

2−d
2

(1− x)
4−d
2

(1 + t
s)x− 1

+ (−α′t)
2−d
2

(1− x)
4−d
2

(1 + s
t )x− 1

)
+ ⟲

= 32(2π)7−dα′ 2−d
2

∫
dDp

(2π)D
1

p2(p− k1)2(p− k1 − k2)2(p+ k4)2
+ ⟲ (2.42)

where ⟲ is the sum over the two other cyclic permutations of the Mandelstam variables and the Λ

dependent terms expand as

A1-loop

>Λ l
= A1-loop

l ϵ −
(
2π

Λ
d−2
2

d−2
2

+
2π3

45

Λ
d+2
2

d+2
2

σ2 +
4π4

567

Λ
d+4
2

d+4
2

σ3 +
16π5

14175

Λ
d+6
2

d+6
2

σ 2
2

2
+ . . .

)
(2.43)

For d = 6 the integral suffers from infrared divergences and A1-loop
l ϵ must be regularised. To avoid

the confusion between ultraviolet and infrared divergences we consider that the infrared regulator

is defined through the introduction of a small mass scale µ, for example by giving a mass µ to the

external momenta in (2.42). We write this integral A1-loop
l ϵ,µ .

The second contribution A1-loop

>Λ ■◁ corresponds to two coincident points. It splits into three contri-

butions corresponding to the s, t, and u-channels. For the s-channel one can consider equivalently

z1 ≈ z2 or z3 ≈ 0. They can all be obtained by permutation from the case z2 − z1 = x+ yτ2 with y

small. They get contributions from the different domains with y negative or positive, and, y1 < y3
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for which one sets y1 = x1 and y3 = x2, or, y3 < y1 for which one sets y1 = 1− x1 and y3 = 1− x2.

With this change of variables one computes

e−
α′
2

∑
a>bG(za−zb)ka·kb (2.44)

∼ eα
′sπτ2x1(x2−x1)

∣∣∣1− e−2πτ2|y|+2πix
∣∣∣−α′s

2
e−α′sπτ2|y|(1−x1)

(
eα

′tπτ2|y|(1−x2) + eα
′uπτ2|y|(1−x2)

)
where the integration domain is now from 0 < x1 < x2 < 1, 0 < x < 1 and −δ < y < δ with

0 < δ ≪ 1. Up to terms that are exponentially suppressed in e−2πδΛ one can extend the integration

domain to y ∈ R, that we write as twice the integral over |y| ∈ R+. Using the change of variable

z = e−2πτ2|y|+2πix (2.45)

one obtains eventually the contribution

2π

∫ ∞

Λ
dτ2τ

d
2
−2

2

∫ 1

0
dx2

∫ x2

0
dx1e

α′sπτ2x1(x2−x1)

× 2

4π2τ2

∫
|z|<1

d2z

|z|2
∣∣1− z

∣∣−α′s
2

(
|z|

α′
2
(x1s−(1−x2)t) + |z|

α′
2
(x1s−(1−x2)u)

)
=

1

π

∫ ∞

Λ
dτ2τ

d
2
−3

2

∫ 1

0
dx2

∫ x2

0
dx1e

α′sπτ2x1(x2−x1)

∫
C

d2z
∣∣1− z

∣∣−α′s
2 |z|

α′
2
(x1s−(1−x2)t)−2

=
(
α′s
4

)2 ∫ ∞

Λ
dτ2τ

d
2
−3

2

∫ 1

0
dx2

∫ x2

0
dx1e

α′sπτ2x1(x2−x1)
−Γ(−α′s

4 )Γ(−α′t1
4 )Γ(−α′u1

4 )

Γ(1 + α′s
4 )Γ(1 + α′t1

4 )Γ(1 + α′u1
4 )

(2.46)

where

t1 = (1− x2)t− x1s , u1 = (1− x2)u− (x2 − x1)s . (2.47)

We recognise the integral over C as the sphere four-point amplitude. This limit z1 ≈ z2 corre-

sponds indeed physically to the exchange of massive string states in the s-channel. To obtain the

contribution to A1-loop

>Λ ■◁ one must subtract the contribution to the supergravity amplitude at coin-

cident points, which here comes from the supergravity tree-level component of the string theory

sphere four-point amplitude. Taking into account the six possible coincident point singularities and

subtracting the three-level supergravity contribution one obtains

A1-loop

>Λ ■◁ = 2

∫ ∞

Λ
dτ2τ

d
2
−3

2

∫ 1

0
dx2

∫ x2

0
dx1

(
eα

′sπτ2x1(x2−x1)
(
α′s
4

)2
W
(
α′s
4 ,

α′

4 ((1−x2)t−x1s)
)
+ ⟲

)
(2.48)

where we have introduced the Wilsonian part of the Virasoro–Shapiro amplitude

W (s, t) = − Γ(−s)Γ(−t)Γ(−u)
Γ(1+s)Γ(1+t)Γ(1+u)

− 1

stu
, (2.49)

as in [144]. It is convenient to integrate τ2 and to split this integral as∫ ∞

Λ
dτ2τ

d
2
−3

2

∫ 1

0
dx2

∫ x2

0
dx1e

α′sπτ2x1(x2−x1)
(
α′s
4

)2
W
(
α′s
4 ,

α′

4 ((1− x2)t− x1s)
)

(2.50)
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= (−α′s
4 )

8−d
2 (4π)

4−d
2 Γ(d−4

2 )

∫ 1

0
dx2

∫ x2

0
dx1
(
x1(x2 − x1)

)2− d
2W

(
α′s
4 ,

α′

4 ((1− x2)t− x1s)
)

−
∞∑
k=0

(α
′s
4 )2+k (4π)

k

k!

Λ
d
2
−2+k

d
2 − 2 + k

∫ 1

0
dx2

∫ x2

0
dx1
(
x1(x2 − x1)

)k
W
(
α′s
4 ,

α′

4 ((1− x2)t− x1s)
)

where once again this split is only defined for d away from the integral dimension. Taking d = 2ϵ

one reproduces the contribution to A1-loop

>Λ ■◁ derived in [144] in D = 10 dimensions.

One defines accordingly the form-factor in dimensional regularisation

A1-loop

■◁ ϵ
= 2(−α′s

4 )
8−d
2 (4π)

4−d
2 Γ(d−4

2 )

∫ 1

0
dx2

∫ x2

0
dx1
(
x1(x2 − x1)

)2− d
2W

(
α′s
4 ,

α′

4 ((1− x2)t− x1s)
)
+ ⟲

= (2π)7−dα′ 8−d
2

∫
dDp

(2π)D
s2W

(
α′s
4 ,−

α′

2 k4 ·p
)

p2(p− k1)2(p− k1 − k2)2
+ ⟲ . (2.51)

This is indeed the expected structure for the supergravity form-factor, with the insertion of the

four-point interaction with momenta k3, k4, p,−p− k3 − k4. Expanding W
(
α′s
4 ,

α′

4 ((1− x2)t− x1s),

one can extract the Λ dependent terms

A1-loop

>Λ ■◁ = A1-loop

■◁ ϵ
− 2ζ(3)

(
σ2

Λ
d−4
2

d−4
2

+
π

3
σ3

Λ
d−2
2

d−4
2

+
4π2

45

σ 2
2

2

Λ
d
2

d
2

+ . . .

)
− ζ(5)

(
5

3

σ 2
2

2

Λ
d−4
2

d−4
2

+ . . .

)
+ . . .

(2.52)

For d = 6 this form-factor suffers from infrared divergences and we write A1-loop

■◁ ϵ,µ
for the same

Feynman integral (2.51) with the small mass scale µ. Recall that we call this contribution the

supergravity form-factor, while the only consistent form-factor in supergravity is the insertion of a

supersymmetric Lagrangian correction that combines the four-point, the five-point and the six-point

insertions.

The third contribution A1-loop

>Λ ■⃝■
corresponds to two pairs of coincident points. They give three

different terms. For the s-channel one has z1 ≈ z2 and z3 ≈ 0. To avoid to have to expand the

propagator at both y3 ≈ 0 and y3 ≈ 1 we shift the integration domain such that −δ < y3 < δ with

0 < δ ≪ 1, as for y = y2 − y1. There are four different contributions depending of the signs of y

and y3. We have 0 < |y3| < y1 and 0 < |y3| < y2 and one has the two possible signs for y = y2− y1.
For y > 0 one sets y1 = x and for y < 0, y1 = 1 − x. One gets two different terms depending on

the sign of yy3

e−
α′
2

∑
a>bG(za−zb)ka·kb (2.53)

∼ eα
′sπτ2x(1−x)

∣∣∣1− e−2πτ2|y|+2πix12

∣∣∣−α′s
2
e−α′sπτ2|y|x

∣∣∣1− e−2πτ2|y3|+2πix3

∣∣∣−α′s
2

×
(
θ(−yy3)e−α′sπτ2|y3|xeα

′tπτ2|yy3| + θ(yy3)e
−α′sπτ2|y3|(1−x)e−α′tπτ2|yy3|

)
Once again, up to terms that are exponentially suppressed in e−2πδΛ one can extend the integration

domain to y ∈ R and y3 ∈ R, that we write as four times the integral over |y| ∈ R+ and |y3| ∈ R+.

Using the change of variables

z = e−2πτ2|y|+2πix12 , w = e−2πτ2|y3|+2πix3 , (2.54)
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one obtains eventually the contribution

2π

∫ ∞

Λ
dτ2τ

d
2
−2

2

∫ 1

0
dxeα

′sπτ2x(1−x) 2

4π2τ2

∫
|z|<1

d2z

|z|2
1

4π2τ2

∫
|w|<1

d2w

|w|2
∣∣1− z

∣∣−α′s
2 |z|

α′s
2

x

×
∣∣1− w

∣∣−α′s
2

(
|w|

α′
2
sxe

α′t
4πτ2

log |z| log |w|
+ |w|

α′
2
s(1−x)e

− α′t
4πτ2

log |z| log |w|
)

=
1

8π3

∫ ∞

Λ
dτ2τ

d
2
−4

2

∫ 1

0
dxeα

′sπτ2x(1−x)

∫
C

d2z

∫
C

d2w
∣∣1− z

∣∣−α′s
2 |z|

α′s
2

x−2

×
∣∣1− w

∣∣−α′s
2 |w|

α′
2
sx−2e

α′t
4πτ2

log |z| log |w|

=
1

8π3

∞∑
k=0

(α
′t
4 )k

πkk!

∫ ∞

Λ
dτ2τ

d
2
−4−k

2

∫ 1

0
dx eα

′sπτ2x(1−x)

(∫
C

d2z
∣∣1− z

∣∣−α′s
2 |z|

α′s
2

x−2 logk |z|

)2

(2.55)

where we recognise the square of the sphere amplitude for k = 0. Once again one must subtract the

contribution from the domain already integrated in A1-loop

>Λ l
and A1-loop

>Λ ■◁. The contribution from A1-loop

>Λ l

corresponds to the case where the sphere amplitudes are both replaced by the supergravity tree-

level amplitude while the contribution from A1-loop

>Λ ■◁ to the case where only one is. One checks that

this subtraction amounts to replace the sphere amplitude by its Wilsonian part and the logarithm

terms by derivatives as in [144] to obtain

A1-loop

>Λ ■⃝■
=

(α
′s
4 )4

8π

∫ ∞

Λ
dτ2τ

d
2
−4

2

∫ 1

0
dx eα

′sπτ2x(1−x)
∞∑
k=0

(α
′t
4 )k

(4πτ2)kk!

(∂kW (α
′s
4 ,−

α′s
4 x+ ζ)

∂ζk

)2∣∣∣
ζ=0

+ ⟲

(2.56)

One computes then

A1-loop

>Λ ■⃝■
= A1-loop

■⃝■ ϵ − 1

8π

∑
m,n≥0

(4π)m−n(α
′s
4 )m+4(α

′t
4 )n

m!n!

Λ
d
2
−3+m−n

d
2 − 3 +m− n

×
∫ 1

0
dx
(
x(1− x)

)m(∂nW (α
′s
4 ,−

α′s
4 x+ ζ)

∂ζn

)2∣∣∣
ζ=0

+ ⟲ (2.57)

with

A1-loop
■⃝■ ϵ =

1

2

∞∑
k=0

1

k!
(−α′s

4 )
14−d

2
+k(α

′t
4 )k(4π)

4−d
2 Γ(d−6

2 + k)

×
∫ 1

0
dx
(
x(1− x)

)3+k− d
2

(∂kW (α
′s
4 ,−

α′s
4 x+ ζ)

∂ζk

)2∣∣∣
ζ=0

+ ⟲

= (2π)7−dα′ 6−d
2

∫
dDp

(2π)D
(α

′s
4 )4W

(
α′s
4 ,

α′

2 k2 ·p
)
W
(
α′s
4 ,−

α′

2 k3 ·p
)

p2(p− k1 − k2)2
+ ⟲ (2.58)

In this last formula we see that the expansion in (α
′t
4 )k simply follows from the Feynman integral

of the two insertions form-factor. Taking d = 2ϵ reproduces the contribution to A1-loop

>Λ ■⃝■
derived

in [144]. Expanding W (α
′s
4 ,−

α′s
4 x+ ζ) one extracts the first Λ dependent term

A1-loop

>Λ ■⃝■
= A1-loop

■⃝■ ϵ − 1

2π
ζ(3)2

σ 2
2

2

Λ
d−6
2

d−6
2

+ . . . (2.59)
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In this case A1-loop
■⃝■ ϵ is safe from infrared singularities in d = 6 and we do not need to introduce a

mass scale.

The fourth term A1-loop

>Λ =‹ corresponds to three coincident points. There are four choices of triplets,

and for each choice there is one Green function argument that goes to zero for each Mandelstam

variable. Each contribution is therefore invariant under permutation of the Mandelstam variables,

although it will not be manifest in the computation. We consider z2 ≈ z1 ≈ 0 while keeping z3 ̸= 0.

To avoid to have to expand the propagator at both y1 ≈ 0 and y1 ≈ 1 we shift the integration

domain such that −δ < y1 < δ, as for y = y2 − y1. There are six different contributions depending

on the sign of y and y1 and y + y1, but using the appropriate redefinition of y3 = x or 1 − x one

obtains that the only sign that matters is the one of yy1 and

e−
α′
2

∑
a>bG(za−zb)ka·kb (2.60)

∼
∣∣∣1− e−2πτ2|y|+2πix12

∣∣∣−α′s
2
eα

′sπτ2|y1|(x−|y1|)
∣∣∣1− e−2πτ2|y1|+2πix1

∣∣∣−α′t
2

×

(
θ(−yy1)eα

′tπτ2|y|xeα
′sπτ2|yy1|

∣∣∣e−2πτ2|y|+2πix12 − e−2πτ2|y1|+2πix1

∣∣∣−α′u
2

+θ(yy3)e
α′tπτ2|y|(1−x)e−α′sπτ2|yy1|

∣∣∣1− e−2πτ2|y|+2πix12e−2πτ2|y1|+2πix1

∣∣∣−α′u
2

)
.

Using the change of variables

z = e−2πτ2|y|+2πix12 , w = e−2πτ2|y1|+2πix1 , (2.61)

one obtains eventually

2π

∫ ∞

Λ
dτ2τ

d
2
−2

2

∫ 1

0
dx

2

4π2τ2

∫
|z|<1

d2z

|z|2
1

4π2τ2

∫
|w|<1

d2w

|w|2
∣∣1− z

∣∣−α′s
2
∣∣1− w

∣∣−α′t
2 |w|−

α′s
2

x

×
(∣∣z − w

∣∣−α′u
2 |z|−

α′
2
txe

α′s
4πτ2

log |w| log |z|
|w| +

∣∣1− zw
∣∣−α′u

2 |z|−
α′
2
t(1−x)e

− α′s
4πτ2

log |w| log |z||w|
)

=
1

8π3

∫ ∞

Λ
dτ2τ

d
2
−4

2

∫ 1

0
dx

∫
C

d2z

∫
C

d2w
∣∣1− z

∣∣−α′s
2 |z|−

α′t
2

x−2
∣∣1− w

∣∣−α′t
2 |w|−

α′s
2

x−2
∣∣z − w

∣∣−α′u
2

×e
α′s
4πτ2

log |w| log |z|
|w| (2.62)

where one can identify the sphere five-point amplitude. As for (2.49) we need to extract the analytic

part of the five-point amplitude to do not overcount the contribution common to A1-loop

>Λ l
and A1-loop

>Λ ■◁.
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We therefore subtract the poles as follows

W5(s1, s2, s3, s4, s5) =
1

π2

∫
C

d2z

∫
C

d2w |z|−2s1−2
∣∣1− z

∣∣−2s2 |w|−2s3−2
∣∣1− w

∣∣−2s4
∣∣z − w

∣∣−2s5

+
1

s3(s1+s2+s5)
+

1

s1(s3+s4+s5)
− 1

(s1+s2+s5)(s1+s2+s3+s4+s5)

− 1

(s3+s4+s5)(s1+s2+s3+s4+s5)
− 1

s1(s1+s3+s5)
− 1

s3(s1+s3+s5)

+
1

2

s 2
2

s3

(
W (s1+s3+s5, s2) +W (−s1−s2−s5, s2)

)
(2.63)

−1

2

s 2
2

s3+s4+s5

(
W (s1, s2) +W (−s1−s2−s3−s4−s5, s2)

)
+
1

2

s 2
4

s1

(
W (s1+s3+s5, s4) +W (−s3−s4−s5, s4)

)
−1

2

s 2
4

s1+s2+s5

(
W (s3, s4) +W (−s1−s2−s3−s4−s5, s4)

)
+
1

2

s 2
5

s1+s3+s5

(
W (s1, s5) +W (s3, s5)

)
−1

2

s 2
5

s1+s2+s3+s4+s5

(
W (−s1−s2−s5, s5) +W (−s3−s4−s5, s5)

)
.

We check that W5(si) is indeed analytic in Appendix B and obtain the α′ expansion (B.5)

W5(s1, s2, s3, s4, s5) =
(
15s2s4s5 − (s2s4+s4s5+s5s2)(s2+s4+s5)

)
ζ(5) +O(s4i ) . (2.64)

Note that the this term does not depend on s1 and s3 and is manifestly symmetric under per-

mutations of s2, s4, s5. As a five-point amplitude with punctures at z1 = 0, z2 = z, z3 = w, z4 =

1, z5 = ∞, (2.63) is invariant under permutations of (z2, z3, z4). It follows that W5(si) is invariant

under the combined permutations of (s2, s4, s5) and (s3, s1,−
∑

i si), consistently with (2.62) being

invariant under permutations of the Mandelstam variables.

Summing (2.62) over the four choices of distinguished external momentum and expanding the

integral ∫ ∞

Λ
dτ2τ

d
2
−4

2 e
α′s
4πτ2

∂ζ∂ξ =
(
−α′s

4π ∂ζ∂ξ

) d−6
2 (

Γ(6−d
2 )− Γ(6−d

2 ,− α′s
4πΛ∂ζ∂ξ)

)
(2.65)

at small s
Λ , one obtains finally

A1-loop

>Λ =‹ = − 1

2π

∞∑
k=0

(α
′s
4 )k

(4π)kk!

Λ
d
2
−3−k

d
2 − 3− k

∫ 1

0
dx
(∂2kW5(

α′

4 xt+ ζ, α
′

4 s,
α′

4 xs+ ξ − ζ, α
′

4 t,
α′

4 u)

∂ζk∂ξk

)∣∣∣
ζ=0,ξ=0

= − 5

2π
ζ(5)σ3

Λ
d−6
2

d−6
2

− 1

2π
ζ(3)2

σ 2
2

2

Λ
d−6
2

d−6
2

+ . . . (2.66)

This contribution is therefore irrelevant for d ≤ 5. This is why it was disregarded in [144] that

focuses on ten dimensions, i.e. d = 0. However it contributes to the logarithmic ultraviolet

divergence in Schwinger parameter space for d = 6, and the integral (2.62) then diverges in the

limit τ2 → ∞ exhibiting that this form-factor suffers from infrared divergences. One may introduce
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an infrared regulator through a cut-off at large τ2, but it is more convenient to first rewrite this

contribution as a momentum space integral

A1-loop

=‹ ϵ,µ = 4(2π)7−dα′ 6−d
2

∫
dDp

(2π)D
W5(−α′

2 p·k4,
α′

4 s,−
α′

2 p·(k1 + k2),
α′

4 t,
α′

4 u)

p2(p− k1)2
, (2.67)

where the mass scale µ can for example be introduced by giving a mass to the external momenta.

The last term A1-loop

>Λ›◦ corresponds to four coincident points z1 ≈ z2 ≈ z3 ≈ 0. In this case one

gets the six-point sphere amplitude with an internal supergravity bubble loop

(2π)7−dα′ 4−d
2

∫
dDp

(2π)D
W6(k1, k2, k3, k4, p,−p)

p2
(2.68)

that only contributes to power-low divergences in the Schwinger parameter space ultraviolet cutoff

for d ≤ 7. It is therefore irrelevant for d ≤ 6 and we shall not compute it.

Eventually one gets that all the Λ dependent parts between the analytic and the non-analytic

components of the amplitude cancel each other. We have checked this explicitly up to σ 2
2 using [156].

The complete amplitude can be rewritten as the limit ϵ→ 0 of

A1-loop = A1-loop
l ϵ +A1-loop

■◁ ϵ
+A1-loop

■⃝■ ϵ + 2π
∑

m,n≥0

∫
F

d2τ

τ 2
2

τ ϵ2 ΓIId,dB(m,n)(τ)σ
m
2 σ

n
3 , (2.69)

for 0 ≤ d ≤ 5, with the supergravity amplitudes and the form-factors defined in dimensional

regularisation with the coupling constant

κ2D =
1

2
(2π)7−dα′ 8−d

2 e2ϕd (2.70)

function of ϵ through d as well. For d = 6 one must also regularise the infrared divergences, which

requires to consider the full form-factor including the five-point insertion

A1-loop
µ = A1-loop

l ϵ,µ +A1-loop

■◁ ϵ,µ
+A1-loop

=‹ ϵ,µ +A1-loop
■⃝■ ϵ + 2π

∑
m,n≥0

∫
F

d2τ

τ 2
2

τ ϵ2 ΓII6,6B(m,n)(τ)σ
m
2 σ

n
3 . (2.71)

It was observed in [144] that the non-analytic component of the four-point amplitude does not

involve irreducible multiple zeta-values in ten dimensions. It is manifestly the case in d ≤ 5 since

these form-factors only depend on the Virasoro–Shapiro amplitude. In D = 4 the infrared regulator

dependent terms in A1-loop

=‹ ϵ,µ could in principle involve irreducible multiple zeta-values, but one checks

that the first three have vanishing coefficients in Appendix B.

Let us finally comment on the supergravity amplitude and form-factors in dimensional regulari-

sation. It is known that the dimensional reduction prescription [157] that preserves supersymmetry

is not a consistent regularisation scheme [158–161]. The total amplitude (2.71) is supersymmetric,

and one expects to be able to split it into the sum of the supersymmetric supergravity amplitude,

the form-factor and the analytic terms contributing to the Wilsonian effective action. As we dis-

cussed in the introduction, this split is only supersymmetric if we include some logarithmic term
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in the moduli in the non-analytic amplitude. The supersymmetric regularisation in supergravity

can be expressed as a dimensional regularisation with coupling constant

κ2D−2ϵ = κ2D

(e 2
8−d

ϕd
√
GIJmImJ

2πℓ

)ϵ
(2.72)

for any mI ∈ Z with gcd(m) = 1. This factor is the mass of Kaluza–Klein states on the torus,

and more generally can be replaced by the mass of any 1/2 BPS state in the theory with κ2D−2ϵ =

κ2D
(
M
2π

)ϵ
.

2.3 The two-loop amplitude

The two-loop amplitude was studied in a series of papers by d’Hoker and Phong [162–165, 24, 24,

166, 167]. We will not attempt to give a review of this gigantic work, but will try to give enough

definitions to make sense of the four-graviton amplitude and its low energy limit.

We write ωi(z) = ωi
z(z)dz the two holomorphic abelian differentials on the genus two surface

Σ, They define the symmetric period matrix Ωij = Ωij
1 + iΩij

2 in the Siegel upper half-plane∮
Ai

ωj(z) = δji , Ωij =

∮
Bi

ωj(z) , (2.73)

with positive definite imaginary part Ω2. The period matrix parameterizes the arithmetic quotient

F2 = U(2)\Sp(4,R)/PSp(4,Z) of the Siegel symmetric space. We write its components as

Ω =

(
ρ v

v σ

)
=

(
ρ u1+ρu2

u1+ρu2 ς+iL+ρu 2
2

)
. (2.74)

The separating degeneration locus v = 0 is a regular point of F2 that corresponds to a singular

genus two Riemann surfaces made of two regular genus one surfaces connected by a very thin

cylinder. The non-separating degeneration locus L → ∞ is an asymptotic boundary of F2, and

corresponds to the singular genus two Riemann surface when the cycle B2 has an infinite length.

A useful basis of modular forms is defined by the 16 theta series ϑ[δ](Ω, Z)

ϑ[a1
b1

a2
b2
](Ω, Z) =

∑
ni∈Z

eiπΩ
ij(ni+ai/2)(nj+aj/2)+2πi(ni+ai/2)(b

i/2+Zi) , (2.75)

for ai, b
i = 0, 1, and ϑ[δ](Ω) ≡ ϑ[δ](Ω, 0). One defines the derivatives

∂ij =
1

2

∂

∂Ωij
+

1

2
δij

∂

∂Ωii
, ∂i =

∂

∂Zi
. (2.76)

The 16 matrices δ ∈ Z2×2
2 are the spin structures on Σ and parametrise the periodicity conditions

for the spinors around Ai and B
i cycles. If aib

i = 0 mod 2 one says that the spin structure is even,

and odd otherwise. The theta functions ϑ[δ](Ω) vanish for the six odd spin structures ν and their

derivatives (hν)
2 = ∂iϑ[ν](Ω, 0)ω

i(z) carry only double poles and admit a unique spinor square root

hν up to sign. One defines the prime form as the square root [168]

E(z, w) =
ϑ[ν](Ω,

∫ z
w ω)√

∂iϑ[ν](Ω, 0)ωi
z(z)∂jϑ[ν](Ω, 0)ω

j
w(w)

(2.77)
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for any odd spin structure, which generalises the genus one prime form E(z, w) = ϑ1(z−w)
ϑ′
1(0)

. The

prime form is independent of the choice of odd spin structure ν and has a single pole at z = w.

It is single valued around AI cycles and has monodromy around a BI cycle such that the Green

function

G(z, w) = − log |E(z, w)|2 + 2πIm

∫ z

w
ωi Ω−1

2 ij Im

∫ z

w
ωj , (2.78)

is single valued. The Weyl fermion two-point function is defined as the square root Sδ(z, w) of

Sδ(z, w)
2 = ∂z∂w logE(z, w) + 4πiωi

z(z)ω
j
w(w)

∂ijϑ[δ]

ϑ[δ]
. (2.79)

The genus two partition function is [165]

Z =
1

3(4π3)4

∫
F2

d6Ω

detΩ5
2

∣∣∣∣∣
∑

δ Ξ6[δ]ϑ[δ]
4

Ψ10

∣∣∣∣∣
2

Γ2-loop

IId,d
, (2.80)

where the inverse of the Igusa cusp form

Ψ10 =
1

46

∏
δ

ϑ[δ]2 , (2.81)

and the genus two Narain partition function are the contributions from the worldsheet bosons

Γ2-loop

IId,d
= detΩ

d
2
2

∑
Qi∈IId,d

eiπΩ
ijpL(Qi)pL(Qj)−iπΩ̄ijpR(Qi)pR(Qj) , (2.82)

while Ξ6[δ]ϑ[δ]
4 comes from the worldsheet fermions with spin structure δ [165]. One defines for

each even spin structure two equivalent triplets of odd spin structures ν1+ν2+ν3 = ν4+ν5+ν6 = δ

mod 2 and introducing the scalar product

⟨ν|δ⟩ = eiπ(δ11ν21+δ12ν22−δ21ν11−δ22ν12) , (2.83)

d’Hoker and Phong define

Ξ6[ν1 + ν2 + ν3] =
∑

1≤i<j≤3

⟨νi|νj⟩
6∏

k=4

ϑ[νi + νj + νk]
4 . (2.84)

The modular form Ξ6[δ] does not depend on the choice of odd spin structure, as can be checked

using the Riemann identities for any odd spin structure ν∑
δ

⟨ν|δ⟩ϑ[δ]4 = 0 . (2.85)

The theta functions satisfy moreover the following identity for each non-zero even spin structure

ε [169]
3∑

I=1

(−1)Iϑ[δ+I ]
2ϑ[δ−I ]

2 = 0 , (2.86)
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where δ±I are the six even spin structures associated to ε such that δ−I = δ+I + ε, and the (−1)I

sign convention is defined such that δ±2 is chosen as follows: δ+2 is δ+2 = (10
0
0) for ε = (10

0
1), δ

+
2 = (01

0
0)

for ε = (01
1
0), δ

+
2 = (10

1
0) for ε = (11

1
1), and δ+2 = (00

0
0) for the six other cases. Among these fifteen

relations only six are independent, and they allow to determine all theta series in function of the

four first ϑ[0r
0
s] and the choice of nine sign ambiguities for the roots appearing in their expressions.

These signs depend on the sheet on the double cover of F2. Using both the Riemann identities

(2.85) and (2.86) one checks that ∑
δ

Ξ6[δ]ϑ[δ]
4 = 0 (2.87)

which ensures that the two-loop contribution to the cosmological constant vanishes [165].

The four-graviton amplitude was derived in [24] and reads using (2.13)

A2-loop =
π

128

∫
F2

d6Ω

(detΩ2)5
Γ2-loop

IId,d

∫
Σ4

YS ∧ YS exp

(
−α

′

2

∑
a>b

ka ·kbG(za, zb)
)

(2.88)

where YS is the holomorphic 4-form on four copies of the Riemann genus two surface Σ defined

as [24]

YS =
α′

3

(
(t− u) εijεkl + (s− t)εikεlj + (u− s)εilεjk

)
ωi(z1)ω

j(z2)ω
k(z3)ω

l(z4) . (2.89)

The fundamental domain F2 can be chosen as [170]

−1/2 ≤ ρ1, v1, σ1 ≤ 1/2 , 0 ≤ 2v2 ≤ ρ2 ≤ σ2 , | det(CΩ+D)| ≥ 1 , (2.90)

for all C,D such that γ ∈ (AC
B
D) ∈ Sp(4,Z). This latter condition needs only to be checked for a

finite set of matrices C,D.

In order to describe the low energy effective action we need now to consider three regions, the

truncated fundamental domain F2,Λ on which L ≤ Λ, the non-separating degeneration intermediate

region L ≥ Λ ≥ Λ1 ≥ ρ2, and the tropical region L ≥ Λ, ρ2 ≥ Λ1 [171]. We split accordingly

A2-loop = A2-loop

<Λ +A2-loop

<Λ1>Λ +A2-loop

>Λ1
. (2.91)

In the domain F2,Λ the amplitude A2-loop

<Λ is analytic in the Mandelstam variables and one can expend

the Koba–Nielsen factor as in the preceding section to obtain

A2-loop

<Λ =
∑

m,n≥0

E2-loop

(m,n)Λσ
m
2 σ

n
3 , (2.92)

with

E2-loop

(m,n)Λ = 2π

∫
F2Λ

d6Ω

detΩ3
2

ΓIId,dB
(2)

(m,n)(Ω) . (2.93)

One finds directly that B(2)

(0,0)(Ω) = 0 [24], and using∫
Σ
ωi ∧ ωj = −2iΩij

2 (2.94)
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one computes that B(2)

(1,0)(Ω) = 2 [166], consistently with the two-loop computation in supergravity

[55]. The first non-trivial genus two graph function is the Kawazumi–Zhang invariant [83]

B(2)

(0,1)(Ω) = 4φKZ(Ω) = −
∫
Σ2

(
Ω−1
2ikΩ

−1
2jl −

1
2Ω

−1
2ijΩ

−1
2kl

)
ωi(z1) ∧ ωj(z1) ∧ ωk(z2) ∧ ωl(z2)G(z1, z2,Ω) .

(2.95)

It is a distribution on F2 satisfying the Poisson equation [84]

∆φKZ(Ω) = 5φKZ(Ω)− π detΩ2 δ(v1)δ(v2) , (2.96)

and is a well defined function on the moduli space of genus two Riemann surfaces. This singularity

is a consequence of unitarity and the factorisation of the two-loop amplitude at the massive poles
α′

4 s = Z>0 [166]. The next genus two graph function B(2)

(2,0)(Ω) was analysed in [55], but the general

graph functions B(2)

(p,q)(Ω) remain to be understood [86].

Let us now discuss the integration region corresponding to the tropical limit, when both ρ2 and

σ2 are large. In this limit the Ai cycles remain unmodified, while the Bi cycles have infinite length.

In this integration domain ρ2 ≥ Λ1 we have detΩ2 ≥ ΛΛ1 ≫ 1 and this region of moduli space is

F2 ∩ {Ω | detΩ2 ≫ 1} = SO(2)\GL(2,R)/PGL(2,Z)×R3/Z3 ∩ {Ω |detΩ2 ≫ 1} (2.97)

We then write

Ω2 =

(
L1+L3 L3

L3 L2+L3

)
, (2.98)

where LI for I = 1, 2, 3 are the lengths of the three lines in the degenerate surface

B2B1

Figure 3: Tropical genus-two vacuum diagram

with the ordering 0 ≤ L3 ≤ L1 ≤ L2 and the abelian one-forms ωi(z) are locally constant and

defined such that they have support on the cycle Bi [153]. Note that this is only a valid approx-

imation for z away from the branching points. For a path γ from z to w in the surface Σ, one

defines the geometric length d(γ). For example taking z = w one has by definition d(B1) = L1+L3

and d(B2) = L2+L3. For a given path that does not include closed loops, there always exists

αi ∈ {−1, 0, 1} such that [153]

αi Im

∫
γ
ωi = d(γ) . (2.99)

If γ is a shortest path from z to w, it is convenient to use an odd theta series of parameter ai = |αi| as
above and bi chosen such that aib

i = 1 to compute the prime form. Up to exponentially suppressed

contributions, the prime form then simplifies to [153]

E(z, w) ∼
2i sin

(
παi

∫
γ ω

i
)

2π
√
αiωi

z(z)αjω
j
z(w)

(2.100)
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and one obtains the tropical limit of the Green function

G(z, w) ∼ 2π
(
−d(γ) + Im

∫
γ
ωi Ω−1

2 ij Im

∫
γ
ωj
)
+ 2 log 2π − log |1− e−2πd(γ)+2πixγ |2 . (2.101)

The first term reproduces the worldline Green function [154] that does not depend on the path

γ, while the logarithmic term must be replaced by the sum over all paths in the graph to exhibit

that the Green function is single valued. In the tropical limit, only the shortest path can be

non-negligible at coincident points, whereas all the other contributions are always exponentially

suppressed. This expression is only valid when the punctures are away from the branching points.

By the property of YS in (2.89), the only contributions in the tropical limit are when at least

two marked points are on the cycle B1, at least two on B2 and at most two on B1 ∩ B2. This

implies that there must be two punctures on one of the three lines and the two others can be either

on one other line or on two, i.e. a permutation of

z1

z2

z4

z3

z1

z2

z3 z4

Figure 4: Planar and non-planar diagrams

corresponding to the planar and the non-planar diagrams in supergravity. There are 18 choices of

planar diagrams and for each we may choose four different orderings of punctures on two lines, so 72

ordered choices in total. There are 36 choices of non-planar diagrams and for each one may choose

two different orderings of punctures on one line, so 72 ordered choices in total. These cases involve

the three choices of channel and the six permutations of the lines, while the extra four choices give

the same result up to crossing and a change of variables for the punctures positions. It is convenient

to absorb the six permutations of the lines in an unfolding of the SO(2)\GL(2,R)/PGL(2,Z)
fundamental domain to the Schwinger parameter space of the vacuum diagram.

The Schwinger parameters LI ∈ R+ are then not ordered and the cut-off is determined by∑
I<J LILJ ≥ ΛΛ1 and (LI+LJ) ≥ Λ1 for all pairs I, J . Doing so, there is a single integral

with multiplicity two for the planar and the non-planar diagrams that we must sum over the

six permutations of the Mandelstam variables. One can therefore write the contribution to the
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amplitude when the punctures are separated from each others and from the branching points as

A2-loop

>Λ1 ll
=
π

4

∫
LI≥0∑

I<JLILJ≥ΛΛ1

LI+LJ≥Λ1

dL1dL2dL3(∑
I<JLILJ

)5− d
2

(α′s)2
∫
0≤y1≤y2≤1
dy1dy2 L

2
1 eπα

′sL1y1(1−y2)

(
(2.102)

∫
0≤y3≤y4≤1
dy3dy4 L

2
2 e

πα′
(
sL2y3(1−y4)+

L1L2L3∑
I<J

LILJ

(
t(y2−y1)(y4−y3)+s(1−y1−y4)(1−y2−y3)

))

+

∫ 1

0
dy3

∫ 1

0
dy4 L2L3 e

πα′ L1L2L3∑
I<J

LILJ

(
t(y2−y1)(y4−y3)+s(1−y1−y4)(1−y2−y3)

))
+ perm.

which gives the four-graviton supergravity amplitude [153]. Introducing the deformation d→ d+2ϵ

one can write the divergent part of the integral as a sum of powers of α′sΛ1 ≪ 1 and α′sΛ ≪ 1,

and the cut-off independent part gives the supergravity four-graviton amplitude in dimensional

regularisation [39]

A2-loop
ll ϵ (2.103)

= 16(2π)14−2dα′5−d

∫
dDpdDq

(2π)2D

(
s2

p2(p−k1)2(p−k1−k2)2(p+q)2q2(q−k4)2(q−k3−k4)2

+
s2

p2(p−k1)2(p−k1−k2)2(p+q)2(p+q+k3)2q2(q−k4)2
+ perm.

)
.

When two points are coincident

•z1

z2

z4

z3

•z1

z2
z3 z4

Figure 5: Planar and non-planar diagrams with coincident points

we cannot neglect the logarithmic term in (2.101) and we introduce the complex variable

z = e
2πi

∫ z1
z2

ω1

(2.104)

that is interpreted as the coordinate of the fourth puncture on the sphere. Similarly as in the

preceding section one has then

G(z1, z2) ∼ log |z| − log |1− z|2 + (log |z|)2

2πL1
, (2.105)
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with |z| < 1 and combining the permutation t ↔ u with the change of variable y1 → 1 − y1,

y3 → 1− y4, y4 → 1− y3 we obtain the integral∫
|z|<1

d2z
∣∣1− z

∣∣−α′s
2

(
|z|

α′
2

(
y1s−

L2L3∑
I<J

LILJ
X
)
−2

+ |z|
α′
2

(
(1−y1)s+

L2L3∑
I<J

LILJ
X
)
−2
)

= π
(
α′s
4

)2(
W
(
α′

4 s,
α′

4

(
L2L3∑

I<J

LILJ
X − y1s

))
+

64

α′3stu

)
(2.106)

with

X =
(
t(y4 − y3)− s(1− y1 − y4)

)
. (2.107)

The non-analytic term in 1
stu was already taken into account in the supergravity two-loop integral,

and we subtract it to obtain the contribution

A2-loop

>Λ1■◁l =
1

256

∫
LI≥0∑

I<JLILJ≥ΛΛ1

LI+LJ≥Λ1

dL1dL2dL3(∑
I<JLILJ

)5− d
2

(α′s)4
∫ 1

0
dy1 L1 e

πα′sL1y1(1−y1) (2.108)

(∫
0≤y3≤y4≤1
dy3dy4 L

2
2 eπα

′sL2y3(1−y4) +
1

2

∫ 1

0
dy3

∫ 1

0
dy4 L2L3

)

e
πα′ L1L2L3∑

I<J

LILJ
s(1−y1−y4)(1−y1−y3)

W
(
α′

4 s,
α′

4

(
L2L3∑

I<J

LILJ

(
t(y4 − y3)− s(1− y1 − y4)

)− y1s
))

+ perm.

We can finally write this expression as a sum of powers in the cut-off plus the dimensionally

regularised supergravity form-factor diagram

A2-loop

■◁l ϵ
=

1

2
(2π)14−2dα′8−d

∫
dDpdDq

(2π)2D

(
2s4W (α

′

4 s,
α′

2 p · k1)
p2(p−k1−k2)2(p+q)2q2(q−k3)2(q−k3−k4)2

+
s4W (α

′

4 s,−
α′

2 p · k2 −
α′

4 s)

p2(p−k1−k2)2(p+q)2(p+q+k3)2q2(q−k4)2
+ perm.

)
. (2.109)

We will now consider the limit in which one puncture approaches a branching point, i.e. permuta-

tions of
z1

z2

z4

z3

• z1

z2 z3 z4

•

Figure 6: Diagrams with a puncture at a branching point

The abelian one-forms near the branching point can be written as

ω1(z) =
i

2π

dz

z
, ω2(z) =

i

2π

dz

z − 1
, (2.110)
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such that one recovers the tropical limits as z approches the first line (of length L1) at z = 0, the

second (of length L2) at z = 1 and the third (of length L3) at z = ∞. For z2 on the first line of

length L1, one computes the prime form using (2.100) and either α⃗ = (1, 0) or α⃗ = (1,−1). One

consistently obtains in both cases 11

|E(z1, z2)|2 ∼ |z|2e2πL1y2

(2π)2
,

G(z1, z2) ∼ −2πL1y2 − log |z|2 + 1

2π
Ω−1
2 [(2πL1y2 + log |z|, log |1− z|)] . (2.111)

Similarly for z4 on the second line of length L2 one finds

|E(z1, z4)|2 ∼ |1− z|2e2πL2(1−y4)

(2π)2
, (2.112)

G(z1, z4) ∼ −2πL2(1− y4)− log |1− z|2 + 1

2π
Ω−1
2 [(log |z|, 2πL2(1− y4) + log |1− z|)] ,

and for z3 on the third of length L3

|E(z1, z3)|2 ∼ e2πL3(1−y3)

(2π)2
, (2.113)

G(z1, z3) ∼ −2πL3(1− y3) +
1

2π
Ω−1
2 [(2πL3(1− y3)− log |z|, 2πL3(1− y3)− log |1− z|)] .

For the first diagram the measure can be computed as for the previous case, but for the second,

one must take into account that ωi(z1) is non-zero on both cycles and one gets

YS ∧ YS ∼ 4α′

π2

∣∣∣s
z
+

t

z − 1

∣∣∣2L1L2L3d
2zdy2dy3dy4

∼ −4α′

π2

( su
|z|2

+
tu

|1− z|2
+

st

|z|2|1− z|2
)
L1L2L3d

2zdy2dy3dy4 . (2.114)

One obtains the amplitude

A2-loop

>Λ1■◁– =
α′4

64

∫
LI≥0∑

I<JLILJ≥ΛΛ1

LI+LJ≥Λ1

dL1dL2dL3(∑
I<JLILJ

)5− d
2

∫ 1

0
dy2 L1

(
(2.115)

∫
0≤y3≤y4≤1
dy3dy4 L

2
2 eπα

′sL2y3(1−y4)s2(t1 + uy3)
2W (α

′

4 s1,
α′

4 (t1 + uy3))

−1

6

∫ 1

0
dy3

∫ 1

0
dy4 L2L3

(
sut 21 + tus 2

1 + stu 2
1

)
W (α

′

4 s1,
α′

4 t1)

)

×e
πα′ L1L2L3∑

I<J

LILJ

(
s(1−y4)(1−y2−y3)+ty2(y4−y3)

)
+ perm. ,

11We do not keep track of the additive constant 2 log(2π) in the Green function because it drops out in the

amplitude. We write Ω−1
2 ijZ

iZj = Ω−1
2 [(Z1, Z2)].
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with

s1 = s(1− y2)− L2L3∑
I<J

LILJ

(
t(y4 − y3) + s(1− y2 − y3)

)
,

t1 = ty4 − L1L3∑
I<J

LILJ

(
t(y4 − y3) + s(1− y2 − y3)

)
,

u1 = uy3 − L1L2∑
I<J

LILJ

(
t(y4 − y3) + s(1− y2 − y3)

)
. (2.116)

We can finally write this expression as the sum of powers in the cut-off and a dimensionally

regularised supergravity form-factor diagram

A2-loop

■◁– ϵ
= (2π)14−2dα′8−d

∫
dDpdDq

(2π)2D

(
s2(2q · k1−s)2W (α

′

4 s+
α′

2 p · k1,
α′

2 q · k1−
α′

4 s)

p2(p−k2)2(p+q)2q2(q−k3)2(q−k3−k4)2

+
2(s q · k1−t p · k1)2W (α

′

4 s+
α′

2 p · k1,
α′

2 q · k1+
α′

4 t)

p2(p−k2)2(p+q)2(p+q+k3)2q2(q−k4)2
+ perm.

)
. (2.117)

At the next step we consider the case in which z2 also approaches the same branching point

z1z2

z4

z3

• z1z2

z3 z4

•

Figure 7: Diagrams with coincident punctures at a branching point

in which case we define
z

w
= e

2πi
∫ z1
z2

ω1

,
1− z

1− w
= e

2πi
∫ z1
z2

ω2

, (2.118)

and

|E(z1, z2)|2 ∼ |z − w|2

(2π)2
,

G(z1, z2) ∼ − log |z − w|2 + 1

2π
Ω−1
2

[(
log
∣∣∣ z
w

∣∣∣, log |1− z|
|1− w|

)]
. (2.119)
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For the first diagram, the measure is unchanged because both z3 and z4 are on the second line, and

one computes the contribution

α′2s2

64π3

∫
LI≥0∑

I<JLILJ≥ΛΛ1

LI+LJ≥Λ1

dL1dL2dL3(∑
I<JLILJ

)5− d
2

∫
0≤y3≤y4≤1
dy3dy4 L

2
2 e

πα′sL2(1−y4)
(
y3+

L1L3∑
I<J

LILJ
(1−y3)

)

∫
C

d2z

∫
C

d2w |z|
α′
2

L2L3∑
I<J

LILJ

(
s(1−y3)+t(y4−y3)

)
−2

|w|
α′
2

L2L3∑
I<J

LILJ

(
s(1−y3)+u(y4−y3)

)
−2

|w−z|−
α′
2
s

×|1−z|
α′
2

(
−uy3−ty4+

L1L3∑
I<J

LILJ

(
s(1−y3)+t(y4−y3)

))
|1−w|

α′
2

(
−ty3−uy4+

L1L3∑
I<J

LILJ

(
s(1−y3)+u(y4−y3)

))
×e

α′s
4π

1∑
I<J

LILJ

(
L2 log |z| log |w|+L3(log |z|−log |1−z|)(log |w|−log |1−w|)+L1 log |1−z| log |1−w|

)
(2.120)

plus permutations of the Mandelstam variables. Using (2.63) one finds that the non-analytic pieces

are already included in the previous integral and we conclude that the corresponding contribution

only involves the five-point function W5(s1, s2, s3, s4, s5).

For the second diagram for which z3 and z4 are on different lines, we must consider that ωi(z1)

and ωi(z2) are non-zero on both cycles. One computes

YS ∧ YS ∼ α′

π4

∣∣∣∣ szw +
t

(z − 1)w
+

u

z(w − 1)

∣∣∣∣2L2L3d
2zd2wdy3dy4 . (2.121)

and one gets

α′2

64π3

∫
LI≥0∑

I<JLILJ≥ΛΛ1

LI+LJ≥Λ1

dL1dL2dL3(∑
I<JLILJ

)5− d
2

∫ 1

0
dy3

∫ 1

0
dy4 L2L3 e

πα′s
L1L2L3∑
I<J

LILJ
(1−y3)(1−y4)

∫
C

d2z

∫
C

d2w
∣∣∣ s
zw+

t
(z−1)w+

u
z(w−1)

∣∣∣2|z|α′
2

L2L3∑
I<J

LILJ

(
s(1−y3)+t(y4−y3)

)
|1−z|

α′
2

(
−ty3+

L1L3∑
I<J

LILJ

(
s(1−y3)+t(y4−y3)

))

×|w|
α′
2

L2L3∑
I<J

LILJ

(
s(1−y3)+u(y4−y3)

)
|1−w|

α′
2

(
−uy3+

L1L3∑
I<J

LILJ

(
s(1−y3)+u(y4−y3)

))
|w−z|−

α′
2
s

×e
α′s
4π

1∑
I<J

LILJ

(
L2 log |z| log |w|+L3(log |z|−log |1−z|)(log |w|−log |1−w|)+L1 log |1−z| log |1−w|

)
. (2.122)
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To take into account the subtraction of the poles that were already taken into account in the

previous limits one defines

1

π2

∫
C

d2z

∫
C

d2w
∣∣∣ s
zw+

t
(z−1)w+

u
z(w−1)

∣∣∣2|z|−2s1 |1−z|−2s2 |w|−2s3 |1−w|−2s4 |w−z|−2s5

= F5(s1, s2, s3, s4, s5) +
s2

s1(s1+s3+s5)
+

s2

s3(s1+s3+s5)
− t2

s1(s3+s4+s5)
− u2

s3(s1+s2+s5)

− t2

s2(s3+s4+s5)
− u2

s4(s1+s2+s5)
+

t2

s2s3
+

u2

s1s4
− 1

2

s2s25
s1+s3+s5

(
W (s1, s5) +W (s3, s5)

)
−s

2s4(s3+s4+s5)− t2s4(s3+s5) + u2(s3+s5)(s3+s4+s5)

s1
W (s3+s5, s4)

−s
2s2(s1+s2+s5) + t2(s1+s5)(s1+s2+s5)− u2s2(s1+s5)

s3
W (s1+s5, s2)

+
t2(s1+s2)

2

s3+s4+s5
W (s1, s2) +

u2(s3+s4)
2

s1+s2+s5
W (s3, s4)

− t
2(s4+s5)

2

s2
W (s4+s5, s3)−

u2(s2+s5)
2

s4
W (s2+s5, s1) . (2.123)

Here the double pole in − t2

s1(s3+s4+s5)
− u2

s3(s1+s2+s5)
comes from the planar diagram 4, at y1 ∼

1−y4 ∼ 0 and 1−y2 ∼ y3 ∼ 0, the double pole in s2

s1(s1+s3+s5)
+ s2

s3(s1+s3+s5)
comes from the non-

planar diagram at y1 ∼ y2 ∼ 0 or 1, while all the other double poles come from the non-planar

diagram with y1 ∼ 1−y3,4 ∼ 0 and 1−y2 ∼ y3,4 ∼ 0. The simple pole in
s2s25

s1+s3+s5
comes from the

non-planar diagram 5, the four last poles from the first diagram 5 and the two terms inW (s3+s5, s4)

and W (s1+s5, s2) from the second diagram 5.

To compute the α′ expansion of the function F (si), it is convenient to use the single-valued

map [172] as proposed in [135].12 We compute in Appendix B the leading contribution

F5(s1, s2, s3, s4, s5) = 2ζ(3)s5(2s
2 − 3t2 − 3u2) + s2O(s3i ) + t2O(s3i ) + u2O(s3i ) . (2.124)

Combing these results one obtains the corresponding supergravity form-factor in dimensional reg-

ularisation

A2-loop

‹⃝– ϵ
= (2π)14−2dα′7−d

∫
dDpdDq

(2π)2D

(
s2W5(

α′

2 p · k1,
α′

2 q · k1,
α′

2 p · k2,
α′

2 q · k2,
α′

4 s)

p2(p+q−k1−k2)2q2(q+k4)2(q−k1−k2)2

+
F5(

α′

2 p · k1,
α′

2 q · k1,
α′

2 p · k2,
α′

2 q · k2,
α′

4 s)

p2(p+q−k1−k2)2(p+q+k4)2q2(q+k4)2
+ perm.

)
. (2.125)

One may then consider the case in which z1, z2, z3 all coincide at a branching point

12We thank Oliver Schlotterer for guiding us in the literature.
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z1z2 z3

z4

•

Figure 8: Diagram with three coincident punctures at a branching point

but this limit only contributes a cut-off dependent constant and we shall not compute it. It involves

a tree-level six-point function and a priori contribute to the bubble diagram divergence of the form-

factor in four dimensions. The last contribution to the one insertion form-factor comes from four

coincident punctures at a branching point and does not contribute to the amplitude for d ≤ 6.

At this order one obtains the contribution to the power-low terms in the cut-off from the α′

expansion

A2-loop

>Λ1
∼ 1

6

∫
LI≥0∑

I<JLILJ≥ΛΛ1

LI+LJ≥Λ1

dL1dL2dL3(∑
I<JLILJ

)3− d
2

(
4π
(
α′

4

)2
(s2+t2+u2)+4π2

3

(
α′

4

)3
(s3+t3+u3)

(∑
I

LI−
5L1L2L3∑
I<JLILJ

)

+
2ζ(3)∑
I<JLILJ

(
5

π

(
α′

4

)3
(s3+t3+u3) +

1

6

(
α′

4

)4
(s2+t2+u2)2

(
7
∑
I

LI −
8L1L2L3∑
I<JLILJ

))
+ . . .

)
(2.126)

which matches the behaviour of the analytic component at large LI according to [173,174]

B(2)

(1,0)(Ω) = 2 (2.127)

B(2)

(0,1)(Ω) ∼ 2π

3

(∑
I

LI −
5L1L2L3∑
I<JLILJ

)
+

5ζ(3)

π2
∑

I<JLILJ

B(2)

(2,0)(Ω) ∼ π2

90

(
4
(∑

I

LI

)2
− 22

∑
I

LI
L1L2L3∑
I<JLILJ

− 3
(∑
I<J

LILJ

)2
+ 32

( L1L2L3∑
I<JLILJ

)2)
+
ζ(3)

6π

(
7
∑
I

LI −
8L1L2L3∑
I<JLILJ

)
+

3ζ(5)

4π3

∑
I LI(∑

I<JLILJ

)2 + β
ζ(3)2

2π4
(∑

I<JLILJ

)2 .
For consistency the term in ζ(5) above must come from diagram 8 that gives a tree-level six-point

insertion. The last term with the undetermined coefficient β must come from the diagrams with

all coincident points at the branching points.

We will not analyse the limits with more than one insertion and the single degeneration limits.

The diagrams with two or three insertions are
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Figure 9: Multiple insertions diagrams

and could be computed in the same way as for a single insertion.

There are other contributions from the non-separating degeneration limit in which only the B2

cycle becomes very large. The corresponding diagrams correspond to form-factors with at least

one insertion of a one-loop correction (2.26). They can be drown as a genus one surface with two

punctures connected by a tropical line of length L, and the four punctures can be either on the

genus one surface or the tropical line. The tropical line corresponds to the loop in supergravity

while the genus one surface gives rise to the insertion of a term in the string theory one-loop

effective action. To compute such corrections one needs to analyse the Green function G(z, w) in

the non-separating degeneration limit when one or the two points are on the tropical line. The

non-separating degeneration limit was analysed in [85,174], based on the general description [168].

In this limit the genus two surface with four punctures z1, z2, z3, z4 is described as a genus one

surface with six punctures z1, z2, z3, z4, 0 and v and the identification of the local coordinates z

near 0 and w near v as

z(w − v) = e−2πL+2πiς , (2.128)

with v, L and ς defining the period matrix (2.74). However, the authors only consider the case

in which z and w remain at finite distance of 0 and v in the limit L ≫ 1. One needs to relax

this assumption to compute the diagrams for which one or two punctures are on the tropical line

of length L. There is also the further degeneration limit in which the B1 cycle of the genus one

surface also becomes infinite while the points v remain close to 0. The corresponding diagrams

can be drown as a sphere with four punctures that are connected in pairs with two tropical lines

of length L1 and L2. The four punctures can then be on the tropical lines or on the sphere. The

corresponding corrections also contribute to the two-loop form factors in supergravity for which

the sphere gives rise to the insertion of a term in the string theory tree-level effective action. They

correspond for example to diagrams of the form

• •

Figure 10: Eight shape diagrams
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The maximal degeneration limit that we have analysed in this section is obtained as the further

degeneration in which L3 becomes also infinite, as one can see in figure one of [175]. We have not

computed these contributions but we shall see in Section 4 that consistency with eleven-dimensional

supergravity requires that the first diagram in (10) does not vanish.
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3 Automorphic forms

The couplings in type II string theory on T d−1 are tensors on the symmetric space Kd\Ed that

are invariant under the U-duality group Ed(Z), defined as the arithmetic subgroup preserving

the highest weight lattice Ld ⊂ R(Λd). As such, the couplings are functions fw on Ed with the

transformation rule

fw(kvγ) = ρw(k)fw(v) (3.1)

for all k ∈ Kd and γ ∈ Ed(Z). Here ρw is a finite-dimensional representation of Kd indexed by the

weight w = niΥi.

One defines a parabolic subgroup Pλ from a weight λ such that it is generated by the Cartan

subalgebra and the root generators Eα satisfying (λ, α) ≥ 0. The Borel subgroup is defined for

λ = ϱ the Weyl vector. Pλ = LU where L is the Levi subgroup generated by the Cartan subgroup

and the root generators Eα satisfying (λ, α) = 0, while U is the unipotent radical generated by

the root generators Eα satisfying (λ, α) > 0. We define the fundamental weights Λi dual to the

simple roots (Λi, α
j) = δji , such that any dominant weight can be written as λ = niΛi for ni ∈ Z≥0

and (Λi,Λj) is the inverse of the Cartan matrix. In particular ϱ =
∑

i Λi. For short we write the

maximal parabolic subgroup Pi ≡ PΛi . We use the Bourbaki labelling such that the exceptional

node of Ed groups is Λ2 and the Weyl spinor nodes of SO(d, d) are Λd−1 and Λd.

It will be natural to consider a coset representative of v ∼ kv ∈ Ed in a maximal parabolic sub-

group relevant to a perturbative limit in string theory. In the perturbative string theory parabolic

P1 = GL(1)×Spin(d−1, d−1)⋉U1, the cusp is defined at small effective dilaton eϕd−1 ≪ 1, where

ϕd−1 is defined in (2.11). Consistently with string perturbation theory, the leading term in the

effective string coupling constant is proportional to e−2ϕd−1 in string frame, and generally power-

low in Einstein frame. Therefore each coupling is bounded by a power-low function at the cusp

eϕd−1 → 0.

Similarly, in the M-theory parabolic P2 = GL(d)⋉U2, the cusp is defined at large torus volume

and the corresponding supergravity amplitude on T d gives terms that are power-low in the volume.

More generally one concludes that the coupling is of moderate growth, i.e. is bounded by

a power-low behaviour at all cusps. For each parabolic subgroup Pλ ⊂ Ed one defines a coset

representative of v ∈ Pλ such that v = alu with a ∈ GL(1)r, l in the semi-simple component [L,L]

of the Levi subgroup L and u ∈ U the unipotent radical. Moderate growth implies that there exists

coefficients C and s = {s1, s2, . . . sr} such that |fw(v)| < Cas at large a.

In string theory it is moreover natural to expect that the coupling functions are smooth almost

everywhere in moduli space. Generally one may expect to have poles at locus in moduli space

where additional fields become massless, but this does not happen in type II string theory on T d−1.

Assuming that the coupling function is smooth, one can define differential operators through the

left-action of the universal enveloping algebra U(ed) generated by ed through

(X · fw)(v) =
( d
dt
fw(e

tXv)
)∣∣∣

t=0
. (3.2)

59



For X ∈ ed ⊖ kd in the coset component, this definition coincides with the covariant derivative on

the symmetric space

(X · fw)(v) = καβXαDβfw(v) (3.3)

with καβ the Cartan–Killing form and X = XαT
α in a basis of generators Tα. The action of X ∈ kd

gives instead the linear transformation under kd induced from the K representation ρw

(X · fw)(v) = dρw(X)fw(v) . (3.4)

One decomposes the Maurer–Cartan form

∂µv · v−1 = Pµ − ωµ (3.5)

with ω ∈ kd and P in the complement ed ⊖ kd, and write the symmetric space metric

Gµν = καβPµαPνβ (3.6)

such that the covariant derivative is defined as

Dαfw(v) = PµαG
µν(∂ν + ρw(ων))fw(v) . (3.7)

The covariant derivative is usually defined in representation theory as in (3.3) with (3.2), while it

is more commonly defined in the physics literature and in Riemannian geometry as (3.7).

For any element in the centre Z(ed) of U(ed) one defines a left-right invariant differential opera-

tor. The canonical example is defined as the quadratic Casimir, which gives the Laplace–Beltrami

operator for the trivial K(Ed) representation

∆f0(v) = καβDαDβf0(v) = καβ(T
α · (T β · f0))(v) . (3.8)

More generally the centre Z(ed) can be defined as the set of Kd-invariant polynomials in the

differential operator Dα generated by the d Casimirs.

A modular form is defined in mathematics as a vector of smooth functions on Ed/Ed(Z) with

uniform moderate growth, the left-action (3.1), and which defines a finite dimensional representation

of the centre Z(ed). In the simplest case it is a dimension one representation of Z(ed), which means

that the function is an eigen-function of all invariant operators. The string theory coupling functions

are generically not in finite-dimensional representations of Z(ed). In particular the function (0.13)

is not and belongs to a class of functions on Ed/Ed(Z) that generalises the notion of automorphic

forms. Examples of modular forms are defined by Eisenstein series. We shall first define Eisenstein

series and describe their automorphic representations. We will only introduce the function (0.13)

in Section 5.

3.1 Eisenstein series and automorphic representations

The simplest example of an Eisenstein series are the real analytic Eisenstein series for the group

SL(2) that can be defined in two ways

ESL(2)
s (τ) =

1

2ζ(2s)

′∑
m,n∈Z

τ s2
|m+ τn|2s

=
∑

γ∈SL(2,Z)/P1(Z)

τ s2
∣∣
γ
, (3.9)

60



either as the sum of vectors (m,n) ∈ Z2 in the lattice L1 or as the Poincaré sum over coset

representatives γ = (ac
b
d) acting on τ = τ1 + iτ2 with a Möbius tranformation

τ |γ =
aτ + b

cτ + d
. (3.10)

This definition has a natural generalisation to maximal parabolic Eisenstein series for arbitrary

simple groups G. The maximal parabolic Pi is defined such that g ∈ Pi acts on the highest weight

Λi as a rescaling 13

gΛi =
1

yi
Λi (3.11)

and one can define the maximal parabolic Eisenstein series in two ways [176]

EG
Pi,s(v) =

1

2ζ(2s)

′∑
Q∈Li

Q×Q=0

1

|vQ|2s
=

∑
γ∈G(Z)/Pi(Z)

ysi
∣∣
γ
. (3.12)

In the first sum we write the weight lattice Li ⊂ R(Λi), and Q×Q ∈ Li ⊗ Li is defined as

Q×Q = καβT
αQ⊗ T βQ− (Λi,Λi)Q⊗Q , (3.13)

and |v(Q)|2 is the K-invariant norm square in the representation normalised such that for g ∈ Pi

we have |gΛi|2 = 1/y2i . The second is the Poincaré sum that generalises the sum over pairs of

relative primes in (3.9). Both infinite sums are absolutely convergent for Re[s] > (Λi,ϱ)
(Λi,Λi)

and admit

an analytic continuation to a meromorphic function of s over C [176].

Coming back to the original example of SL(2,Z), one computes in the domain of absolute

convergence Re[s] > 1 that

ESL(2)
s (τ) = τ s2 +

ξ(2s− 1)

ξ(2s)
τ1−s
2 +

2
√
τ2

ξ(2s)

′∑
n∈Z

σ2s−1(|n|)
|n|s−

1
2

Ks− 1
2
(2π|n|τ2)e2πinτ1 , (3.14)

where σs(n) =
∑

d|n d
s is the divisor sum and Ks is the modified Bessel function of the second kind

that behaves asymptotically as 2
√
τ2Ks(2πτ2) ∼ e−2πτ2 . This Fourier expansion of the Eisenstein

series is absolutely convergent and is manifestly analytic in s ̸= 1, while it admits a simple pole
3

π(s−1) at s = 1.

The maximal parabolic Eisenstein series can naturally be interpreted as sum over the 1/2 BPS

sates with

2ζ(2s)EEd
Pd,s

(v) =
′∑

Γ∈Ld
Γ×Γ=0

1

|Z(Γ)|2s
(3.15)

and ℓM = |Z(Γ)| the mass of the particles in the short multiplet [60].

The definition generalises to arbitrary parabolic subgroup Pi1,i2,...ir associated to the weight

Λi1+Λi2+ . . .+Λir such that

EG
λ (v) =

∑
γ∈G(Z)/Pi1,i2,...ir

(Z)

ys1i1 y
s2
i2
. . . ysrir

∣∣
γ

(3.16)

13For short we write the basis vector eΛi in the representation space as the highest weight Λi itself. This abuse of

language would not accommodate easily weights with multiplicity, but we will not need to write them.
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where the weight λ is defined with r complex parameters si as

λ = si1Λi1 + si2Λi2 + · · ·+ sirΛir . (3.17)

The sum is absolutely convergent if Re[(Λi, λ)] > (Λi, ϱ) for all i = i1, i2, . . . ir and admits a

meromorphic continuation to the complex value s ∈ Cr [176]. Moreover, the Eisenstein series is

meromorphic in the weight λ independently of the choice of parabolic, and the limit sik = 0 for

1 ≤ k ≤ r gives the Eisenstein series for a bigger parabolic. In this way they are all defined from

the Borel Eisenstein series

EG
λ (v) =

∑
γ∈G(Z)/B(Z)

rk(G)∏
i=1

ysii
∣∣
γ
. (3.18)

In the domain of absolute convergence away from the poles in Crk(G) they are eigen-functions of all

invariant operators and in particular of the Laplace operator

∆EG
λ (v) = 2(λ, λ− ϱ)EG

λ (v) . (3.19)

They satisfy the Langlands functional relation for any Weyl reflection w 14

EG
λ (v) =

∏
α>0
wα<0

ξ((2λ− ϱ, α))

ξ((2λ− ϱ, α) + 1)
EG

wλ+ 1
2
(1−w)ϱ

(v) (3.20)

where the product is over all positive roots α reflected to negative ones by w and ξ(s) is the

completed Riemann zeta function

ξ(s) = π−s/2Γ(s/2)ζ(s) (3.21)

that satisfies ξ(1 − s) = ξ(s). See [176, 177] for an exhaustive exposition involving their definition

over the ring of adèles of Q. We shall use extensively the Langlands functional relations above in

the next section to relate SL(d) Eisenstein series for different weight. We are very grateful to Axel

Kleinschmidt who shared with us a nice program that computes these relations very efficiently.

It may happen that we need to evaluate a Langlands Eisenstein series at a pole. For example

for SL(2) one wants to define

Ê
SL(2)
1 (τ) = lim

ϵ→0

(
E
SL(2)
1+ϵ (τ)− ξ(1 + 2ϵ)

ξ(2 + 2ϵ)

)
= − 3

π
log
(
τ2|η(τ)|4

)
. (3.22)

More generally we will need to consider maximal parabolic Eisenstein series that diverge at s = j

for some half-integer j ∈ Z/2. In practice the pole always comes from a Langlands functional

relation involving ξ(1+2ϵ) or ξ(2ϵ) in the numerator, so for the appropriate Weyl reflection w such

that the limit below is finite, we define the renormalised Eisenstein series

ÊG
jΛi

= lim
ϵ→0

(
EG

(j+ϵ)Λi
−
∏
α>0
wα<0

ξ((2(j + ϵ)Λi − ϱ, α))

ξ((2(j + ϵ)Λi − ϱ, α) + 1)
EG

jwΛi+
1
2
(1−w)ϱ

)
. (3.23)

14In the literature one defines normally the Eisenstein series in function of the weight 2λ−ϱ that transforms under

the Weyl group by the associated reflection [176]. Because we consider mainly maximal parabolic Eisenstein series

we find convenient to label them by sΛi rather than 2sΛi − ϱ.
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This Weyl group element w is generally not unique, and the definition of ÊG
jΛi

depends typically

on the choice of w through terms proportional to EG
jwΛi+

1
2
(1−w)ϱ

.

These definitions can be generalised to non-trivial representation ρυ ofK ⊂ G according to (3.1)

and one can also average a cuspidal form on the Levi subgroup semi-simple component [LP , LP ] ⊂
LP

EG
λ,υ,f (v) =

∑
γ∈G(Z)/Pi1,i2,...ir

(Z)

ys1i1 y
s2
i2
. . . ysrir f(l)

∣∣
γ,υ

. (3.24)

We shall not need these generalisations and will only consider so-called spherical parabolic Eisen-

stein series (with υ = 0 and ρυ = 1) and their derivatives.

An Eisenstein series defines a representation of the group G that is characterised by the action

of the universal enveloping algebra acting as in (3.2). One can define accordingly the right ideal

Iλ of U(g) as the annihilator of EG
λ . Because we define the Eisenstein series to be spherical, the

ideal always includes k. At generic weight (where all si ̸= 0 and no Weyl image does) the ideal

is generated by k and the eigen-value equations of the invariant operators in Z(g).15 For larger

parabolic, one gets generally a larger ideal. This ideal is described in part by the associated variety

AI [178]. We define the standard filtration Un of U(g) defined by polynomials of order n in g and

GrU(g) =
∞⊕
n=0

Un/Un−1 . (3.25)

By the Poincaré–Birkhoff–Witt theorem, there is a natural Gad-equivariant isomorphism of graded

algebras GrU(g) = S(g), where S(g) is the algebra of polynomial functions on g∗C. One defines

accordingly Gr Iλ as the symbol of the ideal I in GrU(g) and the associated variety is the set of

zeros of Gr Iλ ⊂ S(g) in g∗C. The associated variety is the closure of the union of complex nilpotent

co-adjoint orbits O ∈ g∗C [179].

The set of nilpotent elements in g∗C admits a stratified structure into open nilpotent orbits

O ∈ g∗C and a partial ordering defined by the inclusion of their closure such that OA ≼ OB if

OA ⊂ OB. One says that an automorphic representation is small if the associated variety of the

corresponding annihilator ideal is a small nilpotent orbit. In particular there is a single minimal

non-trivial complex orbit Omin and the associated automorphic representations are called minimal.

For a spherical function f(g) = f(kg) for all k ∈ K, it is natural to define the graded module

defined by the action of U(g) on the spherical function

GrU(g)f =
∞⊕
n=0

Un/Un−1f . (3.26)

There is then a natural K-equivariant isomorphism of graded modules GrU(g)f = S(p)/If where

S(p) is the algebra of polynomial in p∗C = (gC ⊖ kC)
∗ and If the ideal associated to f . One can

define similarly the real associated variety of the function f as the set of zeros of If ⊂ S(p) in p∗C.

The real associated variety is the closure of the union of complex K orbits in O ∩ p∗C.
16

15Only regularised Eisenstein series at poles define higher-dimensional representations of Z(g). For example a

regularised Eisenstein series (3.23) would define a two-dimensional representation mixing ÊjΛi and EjwΛi+1/2(1−w)ϱ.
16We are grateful to Dmitry Gourevitch for explaining this to us.
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For a function f defining a coupling protected by supersymmetry, the corresponding ideal Iλ
is the set of differential equations that follow from supersymmetry and the ideal If ∈ S(p) defines

the symbol of these differential operators. The quotient S(p)/If is then identified with the set of

Grassmann analytic polynomials in the scalar superfield in p. For small representation it appears

that If may determine Iλ so that the linearised analysis in supergravity is sufficient to determine

the non-linear equations [51,52].

In the simplest example of an SL(2,Z) Eisenstein series we have DD̄ESL(2)
s = s(s − 1)E

SL(2)
s

and

U(sl2)ESL(2)
s

∼= ESL(2)
s ⊕

∞⊕
n=1

DnESL(2)
s ⊕

∞⊕
n=1

D̄nESL(2)
s (3.27)

as a vector space, with the relations

D̄DnESL(2)
s =

(
s(s− 1)− n(n− 1)

)
Dn−1ESL(2)

s , [D, D̄]DnESL(2)
s = 2nDnESL(2)

s . (3.28)

The U(1) module GrU(sl2)ESL(2)
s forgets the right-hand-sides that are set to zero, so that it is

identified with the set of holomorphic plus anti-holomorphic functions of W ∈ C.

Another way to associate a nilpotent orbit to an automorphic form is through its Fourier

coefficients. For a parabolic subgroup P ⊂ G that decomposes into a Levi subgroup L and a

unipotent radical U , the intersection U(Z) = U ∩ G(Z) defines periodicity conditions on the

unipotent component of v ∈ P . One decomposes v = lu and u ∈ U is parametrised by axion

fields in physics. The action of U(Z) then corresponds to discrete gauge transformations of the

axions. One can define accordingly a Fourier expansion of an automorphic form, generalising (3.14).

The abelian Fourier coefficients are defined for characters of U that have support on U/[U,U ]. One

writes ψq(u) = e2πiq·a the corresponding character, where a is the axion parametrising U/[U,U ]

and q is a vector in the lattice u∗1(Z) such that ψq(u) is invariant under U(Z). One defines the

Fourier coefficient

Fq[E
G
λ ](v) =

∫
U/U(Z)

du ψq(u)E
G
λ (vu) . (3.29)

If the unipotent radical is abelian, one can reconstruct the function from its convergent Fourier

expansion

EG
λ (v) =

∑
q∈u∗1(Z)

Fq[E
G
λ ](v) =

∑
q∈u∗1(Z)

EG
λ,q(l)e

2πiq·a . (3.30)

This generalises to non-abelian unipotent subgroups U as we shall discuss in sections 3.4 and 3.5.

As an element in u∗1(Z) ⊂ g∗, q is nilpotent and belongs to a nilpotent co-adjoint orbit. One

defines the wave-front set as the union of nilpotent orbits O for which there exists q ∈ O and a

parabolic P = LU such that Fq[E
G
λ ](v) ̸= 0. The wave-front set is the closure of the union of

nilpotent orbits. For protected couplings in string theory one can interpret the Fourier coefficients

as being associated to non-perturbative effects, for example D-brane instantons. The more BPS is

the coupling, the smallest is the orbit and more restricted are the D-brane instanton charges [62,63].

In all cases that we shall consider in this text, the wave-front set and the associated variety

define the same complex co-adjoint orbits.
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It will be convenient to introduce some notations for the nilpotent orbits [178]. Complex

nilpotent orbits of GC are classified by conjugacy classes of homomorphisms sl2C → gC, i.e. by

standard triples (e, f, h) of elements in the Lie algebra gC satisfying the commutation relations

[e, f ] = h , [h, e] = 2e , [h, f ] = −2f . (3.31)

The GC-orbit of h is determined by a dominant weight λ = niΛi with ni ∈ {0, 1, 2} such that

for each root generator [h,Eα] = (λ, α)Eα. A representative of the nilpotent orbit is a generic

element e =
∑

(λ,α)=2 xαEα in the vector space of eigen values 2 that admits a unique complex

open orbit. We write Oλ the corresponding niplotent GC-orbit. When λ is even, i.e. all ni ∈ {0, 2}
in λ, the intersection of the nilpotent orbit with the nilpotent algebra u of Pλ = LU is dense in u.

The Eisenstein series of parabolic Pλ at generic values of s admits then as wave-front set the real

elements in the closure of the nilpotent orbit Oλ ∩ g.

Kostant–Sekiguchi correspondence relates real G-orbits in g to KC-orbits in gC ⊖ kC. The KC-

orbits in gC⊖ kC are themselves determined by normal triples (e, f, h) where e and f are in gC⊖ kC
and h ∈ kC. They are therefore classified by dominant weights υ = niΥi of K and we write the real

orbit Oυ. We will see that for couplings protected by supersymmetry, the associated variety of the

corresponding function is the closure of the real orbit Oυ for υ the weight defining the harmonic

coset space as KC/Pυ = K/(K ∩ Pυ).

We shall now describe the relation between the wave-front set, the associated variety and SU(8)

harmonic homogeneous spaces for small orbits of E7.

3.2 Example of E7

It will be convenient to consider coordinates ϕµ for the symmetric space (SU(8)/Z2)\E7. For this

we decompose 56 = 28⊕ 28 to write the 56 by 56 E7 matrices in the fundamental representation.

The indices i = 1 to 8 correspond to the fundamental of SU(8). One defines the Maurer–Cartan

form

dV V−1 =

(
2δ

[k
[i ω

l]
j] Pijkl

P ijkl −2δ
[i
[kω

j]
l]

)
, (3.32)

with ωi
j the su(8) component written as an 8 by 8 matrix and

P ijkl =
1

24
εijklpqrsPpqrs , (3.33)

the component in e7 ⊖ su(8). The metric on (SU(8)/Z2)\E7 is defined as

Gµν(ϕ)dϕ
µdϕν =

1

3
PijklP

ijkl , (3.34)

and the derivative in tangent frame is defined such that for any function

dE = 3P ijklDijklE . (3.35)

For a spherical function f(g) = f(kg) on E7, one has

[Dijkl,Dpqrs]Dtuvwf(ϕ) = −24δijklqrs][tDuvw][pf(ϕ) + 3δijklpqrsDtuvwf(ϕ) , (3.36)

65



and the Laplace operator is

∆f(ϕ) =
1

3
DijklDijklf(ϕ) . (3.37)

The higher order Casimir operators can be defined similarly as

∆nf(ϕ) =
1

3
tr28[(D̄D)n]f(ϕ) =

1

3
DijklDklpq . . .DmnrsDrsijf(ϕ) (3.38)

for n = 3, 4, 5, 6, 7, 9. They correspond to 1
6 of the trace of Q2n in the fundamental representation,

which can be checked to define a basis for the linearly independent Casimirs.

Fourier support

Consider a spherical function f(g) expanded in Fourier coefficients in the abelian parabolic P7. We

write g = vea·E the representive of E7 in the abelian parabolic with v ∈ GL(1) × E6 and a ∈ R27

the axions, such that

f(g) =
∑

q∈Z27

fq(v)e
2πiq·a . (3.39)

The wave-front set of f(g) determines for which E6 orbit of q this function is non-vanishing.

The associated variety determines the set of differential operators in the enveloping algebra U(e7)
that annihilate it. In this subsection we will show that they are identical for small spherical

representations.

According to [180,181] one has the E6 orbits of charge q ∈ Z27

q = 0 , dim = 0 ,

q × q = 0 , dim = 17 ,

det q = 0 , dim = 26 ,

det q ̸= 0 , dim = 27 . (3.40)

If fq(v) = 0 for all q the function is in the trivial representation, i.e. it is constant. If fq(v) = 0

for all q such that the Jordan product q × q ̸= 0 the function is in the minimal representation. If

fq(v) = 0 for all q with det q ̸= 0 then these Fourier coefficients are in the next to minimal orbit

and the wave-front set must not include the nilpotent orbit O2Λ7 . It follows that the wave-front

set is then included in the closure of the nilpotent orbit O2Λ1 according to the Hasse diagram 12.

In supergravity, the parabolic P7 corresponds to the symmetry that is manifest in the large

circle radius limit in which one recovers five-dimensional supergravity. The radius gives the GL(1)

modulus, the scalar fields (Sp(4)/Z2)\E6, and the vector fields along the circle the axions a. These

Fourier coefficients can be interpreted physically as instantons associated to BPS Euclidean black

hole of electric charge q ∈ Z27 wrapping the large circle [182]. According to [180], the constraint

q × q = 0 is satisfied for 1/2 BPS instantons and det q ̸= 0 for 1/4 BPS instantons.

Using

∂

∂x
× ∂

∂x
f(ex·Eg)

∣∣∣
x=0

=
1

2
tabc

∂

∂xb
∂

∂xc
f(ex·Eg)

∣∣∣
x=0

=
1

2
tabc

∂

∂xb
∂

∂xc
f(vex·v

−1Ev+a·E)
∣∣∣
x=0

= (2πi)2
∑

q∈Z27

v−1⊺(q × q)fq(v)e
2πiq·a , (3.41)
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one obtains that for a function fmin in the minimal representation, such that fmin
q (v) = 0 for all q

with non-vanishing Jordan product q × q ̸= 0, one has the differential equation

∂

∂a
× ∂

∂a
fmin(g) = 0 . (3.42)

Here we define a = 1 to 27 and switch from a notation with explicit indices to a notation without.

Because fmin(g) = fmin(kgγ) for all k ∈ SU(8) and γ ∈ E7(Z), one obtains that all the differential

operators in the SU(8) orbit of ∂
∂a × ∂

∂a must annihilate the function fmin(g). This may be easier

to understand using a partially fixed gauge for the scalar fields, enforcing g = vea·E ∈ P7. Acting

on the right with γ ∈ E7(Z) and on the left with k(g, γ) such that k(g, γ)gγ ∈ P7, one obtains that
∂
∂a ×

∂
∂af(g) = k(g, γ) · ∂

∂a ×
∂
∂af(g) for any such k(g, γ). It is easy to convince oneself that one can

find enough γ ∈ E7(Z) to span all the irreducible Sp(4) representations that appear in branching

the irreducible representation R(Υ2+Υ6) of SU(8), see [51, Eq. 4.31-4.35].17 We conclude that

fmin
q = 0 for all q satisfying q × q = 0 implies(

28DijpqDklpq − 3δklij∆
)
fmin = 0 . (3.43)

In this case the differential equation determines the functional form of the Fourier coefficients with

q × q = 0 as [62,51]

fmin
q = 2µ(q)

(detv)2

|v(q)|3
(1 + 2π|v(q)|)e−2π|v(q)| . (3.44)

The cubic determinant gives in the same way

det
∂

∂x
f(ex·Eg)

∣∣∣
x=0

=
1

6
tabc

∂

∂xa
∂

∂xb
∂

∂xc
f(ex·Eg)

∣∣∣
x=0

=
1

6
tabc

∂

∂xa
∂

∂xb
∂

∂xc
f(vex·v

−1Ev+a·E)
∣∣∣
x=0

= (2πi)3 det v
∑

q∈Z27

det(q)fq(v)e
2πiq·a . (3.45)

For a function associated to an orbit in the closure of O2Λ1 we have therefore

det
∂

∂x
f n-min(ex·Eg)

∣∣∣
x=0

= 0 . (3.46)

We want to identify the SU(8) module in which this differential operator belongs, i.e. the set of

differential equations generated by E7(Z) on det ∂
∂xf

n-min(ex·Ek(g, γ)gγ) = 0. Let us write a basis

of all third order differential operators acting on a spherical function. The third order differential

operators can be decomposed in the irreducible representation in the symmetric tensor product of

three p = R(Υ4). One finds three rank four tensors

[D3
2Υ2

]ij,kl , [D3
2Υ6

]ij,kl , [D3
Υ4

]ijkl (3.47)

with

[D3
2Υ2

]ij,kl = DijpqDpqmnDmnkl −Dijkl

(
1
4∆+ 6

)
, (3.48)

17This is the analogue of the the result that a modular form of SL(2,Z) with all Fourier coefficients zero must be

constant. Assuming ∂τ1f(τ) = 0 on a function invariant under τ → − 1
τ
implies ∂τ2f(τ) = 0.
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and

[D3
Υ4

]ijkl = Dijkl∆ , (3.49)

one rank six tensor

[D3
Υ1+Υ4+Υ7

]j,klpq
i = Djr[klDirmnDpq]mn − 1

36δ
i
jDklpq(∆ + 42) + 1

36δ
i
[kDlpq]j(∆− 120) , (3.50)

one rank eight and one rank twelve tensor

[D3
Υ2+Υ4+Υ6

]ij,klpq
rs , [D3

3Υ4
]ijkl,pqrs,tuvw . (3.51)

These differential operators are defined on a spherical function, and the terms linear in Dijkl are

determined such that they are in the corresponding irreducible representations of SU(8). These

representations do not appear in the symmetric tensor product of two p = R(Υ4) by property of

E7 because p is odd under the central element e
iπ
4 of SU(8). At first order one gets back the first

derivative Dijkl.

To identify the differential operator, one can check the common E7 module in the symmetric

tensor product of three adjoints. The only E7 representation including the 3Υ4 is 3Λ1. Branching

3Λ1 under E6 one concludes that it contains the 3Λ1 of E6, i.e.

[D3
3Υ4

]ijkl,pqrs,tuvwf(g) = 0 ⇒ ∂

∂xa
∂

∂xb
∂

∂xc
f(ex·Eg)

∣∣∣
x=0

= 0 (3.52)

and so the function satisfying this equation must be constant. Branching Λ1+Λ3, one gets Υ2+Υ4+Υ6

of SU(8) and Λ1+Λ6 of E6, i.e. that

[D3
Υ2+Υ4+Υ6

]ij,klpq
rsf(g) = 0 ⇒ ∂

∂xa
tbcd

∂

∂xc
∂

∂xd
f(ex·Eg)

∣∣∣
x=0

= 0 (3.53)

so that a function satisfying this equation must be in the minimal representation. The only re-

maining E7 representation that includes a cubic term in the 27 of degree 2 is the 2Λ7, and this is

precisely the determinant. It is easy to check that the matrix Q = p in the 56 = R(Λ7) represen-

tation satisfies (
0 Qijkl

Qijkl 0

)3

=

(
0 QijpqQpqrsQrskl

QijpqQpqrsQrskl 0

)
(3.54)

while (q · E)3 in the 56 gives a term proportional to det q.

One concludes that the SU(8) modules of differential operators that include det ∂
∂x are 2Υ2

and 2Υ6. 2Υ2 and 2Υ6 are complex conjugate to each others, so for a spherical function the two

corresponding equations must be satisfied. We conclude therefore that the following conditions are

equivalent

f(g) =
∑

q∈Z27

det q=0

fq(v)e
2πiq·a ⇔ [D3

2Υ2
]ij,klf(g) = [D3

2Υ6
]ij,klf(g) = 0 . (3.55)

Let us now consider the Heisenberg parabolic P1 = GL(1) × Spin(6, 6) ⋉ R32+1 relevant in

string perturbation theory. In this case the effective string coupling constant eϕ6 parametrises
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GL(1), the Narain moduli SO(6, 6), the Ramond-Ramond fields along T 6 parametrise R32 and the

Kalb-Ramond axion the central part of the Heisenberg algebra. According to [181], the abelian

Fourier coefficients in P1 are associated to unipotent characters of charge Q ∈ S− = Z32 of vanishing

cubic product in Z32 for a function in the next to minimal representation. This is more generally

the case for any function in the representation associated to the closure of O2Λ7 . Indeed, there are

five Spin(6, 6) orbits of Majorana-Weyl spinors [183]

Q = 0 , dim = 0 ,

QγabQ = 0 , dim = 16 ,

(QγabQ)γabQ = 0 , dim = 25 ,

2(QγabQ)(QγabQ) = 0 , dim = 31 ,

2(QγabQ)(QγabQ) ̸= 0 , dim = 32 . (3.56)

Physically, these Fourier coefficients are associated to Euclidean D-brane instantons. The 1/2 BPS

instantons satisfy (Qγ2Q) = 0 and the 1/4 BPS brane instantons (Qγ2Q) ·γ2Q = 0. We write

g = vea·EebE the representative of E7 in the Heisenberg parabolic, with b the Kalb-Ramond axion

and aα the Ramond-Ramond spinor. The Abelian Fourier expansion reads∫
[0,1]
db f(g) =

∑
Q∈Z32

fQ(v)e
2πiQ·a . (3.57)

We write similarly

tαβγδ
∂

∂xβ
∂

∂xγ
∂

∂xδ

∫
[0,1]
db f(ex·Eg)

∣∣∣
x=0

= (2πi)3
∑

Q∈Z32

v[(Qγ2Q)·γ2Q]α fQ(v)e
2πiQ·a (3.58)

Therefore this differential operator annihilates a function in the next to minimal representation.

If we write Q = Q · E, the condition (Qγ2Q) ·γ2Q = 0 is equivalent to having Q 3
133 = 0 in

the adjoint representation. The components of Q 3
133 = 0 are in the symmetric tensor product

Sym3R(Λ1) as a cubic monomial and in R(Λ1) ⊗ R(Λ1) as a adjoint representation matrix. The

intersection gives the two representations R(Λ1) and R(Λ3). The component in R(Λ1) vanishes for

any nilpotent element so (Qγ2Q)·γ2Q ∈ R(Λ3) of E7. Branching R(Λ3) under SU(8) one obtains

that

R(Λ3) ∩ Sym3R(Υ4) = R(Υ1+Υ4+Υ7) , (3.59)

corresponding to the differential operator [52]

[D3
Υ1+Υ4+Υ7

]j,klpq
i = Djr[klDirmnDpq]mn − 1

36δ
i
jDklpq(∆ + 42) + 1

36δ
i
[kDlpq]j(∆− 120) , (3.60)

satisfying

[D3
Υ1+Υ4+Υ7

][j,klpq]
i = 0 , [D3

Υ1+Υ4+Υ7
]j,klpq

j = 0 , [D3
Υ1+Υ4+Υ7

]j,klpq
q = 0 . (3.61)

We conclude that∫
[0,1]
db f(g) =

∑
q∈Z32

(Qγ2Q)·γ2Q=0

fQ(v)e
2πiQ·a ⇔ [D3

Υ1+Υ4+Υ7
]j,klpq

i

∫
[0,1]
db f(g) = 0 . (3.62)

69



For an automorphic form this should imply that the complete function f(g) satisfies

[D3
Υ1+Υ4+Υ7

]j,klpq
if(g) = 0 . (3.63)

One may then consider the parabolic P2 = GL(7)⋉R35+7 relevant in the large T 7 volume limit

in eleven-dimensional supergravity. The group GL(7) is parametrised by the metric on T 7, R35 by

the three-form gauge field along T 7 and R7 by the six-form potential along T 7. The generic abelian

Fourier coefficient in P2 corresponds to the nilpotent orbit O2Λ2 [181], and there are ten distinct

SL(7) orbits corresponding to the ten nilpotent orbits in the closure of O2Λ2

N IJK = 0 , dim = 0 , (3.64)

N [I1I2I3N I4I5]J = 0 , dim = 13 ,

N I[K1K2NK3K4K5NK6K7]J = 0 , N I1I2][K1NK2K3K4NK5K6][I3 = 0 , dim = 20 ,

N I1I2][K1NK2K3K4NK5K6][I3 = 0 , dim = 21 ,

N I[K1K2NK3K4K5NK6K7]J = 0 , N I4I5I6N I1I2][K1NK2K3K4NK5K6][I3 = 0 , dim = 25 ,

N I[K1K2NK3K4K5NK6K7]J = 0 , dim = 26 ,

N I4I5I6N I1I2][K1NK2K3K4NK5K6][I3 = 0 , dim = 28 ,

NJ1J2J3NJ4][I1I2N I3I4][K1N |J5J6|K2NK3K4K5NK6K7][J7 = 0 , dim = 31 ,

NJ1J2J3NJ4][I1I2N I3I4I5N I6I7][K1N |J5J6|K2NK3K4K5NK6K7][J7 = 0 , dim = 34 ,

NJ1J2J3NJ4][I1I2N I3I4I5N I6I7][K1N |J5J6|K2NK3K4K5NK6K7][J7 ̸= 0 , dim = 35 .

One finds in this case that the constraint (N3)IJ = 0 above with solution of dimension 26 cor-

responds to equation (3.55) and the constraint (N3)I1I2I3K = 0 with solution of dimension 21

corresponds to equation (3.63). More generally one finds∫
[0,1]
db f(g) =

∑
N∈∧3Z7

N2I1I2I3I4I5,J=0

fN (v)e2πiN ·a ⇔ [D2
Υ2+Υ6

]ij
kl

∫
[0,1]
db f(g) = 0 ,

∫
[0,1]
db f(g) =

∑
N∈∧3Z7

N3 IJ=0

fN (v)e2πiN ·a ⇔ [D3
2Υ2

]ij,kl

∫
[0,1]
db f(g) = 0 ,

∫
[0,1]
db f(g) =

∑
N∈∧3Z7

N3 I1I2I3K=0

fN (v)e2πiN ·a ⇔ [D3
Υ1+Υ4+Υ7

]j,klpq
i

∫
[0,1]
db f(g) = 0 ,

∫
[0,1]
db f(g) =

∑
N∈∧3Z7

N4
IJ=0

fN (v)e2πiN ·a ⇔ [D4
2Υ1+2Υ7

]i,j
k,l

∫
[0,1]
db f(g) = 0 ,

∫
[0,1]
db f(g) =

∑
N∈∧3Z7

N6
I1I2I3

=0

fN (v)e2πiN ·a ⇔ [D6
3Υ1+Υ5

]i,j,k
lpq

∫
[0,1]
db f(g) = 0 ,

∫
[0,1]
db f(g) =

∑
N∈∧3Z7

N7=0

fN (v)e2πiN ·a ⇔ [D7
4Υ1

]i,j,k,l

∫
[0,1]
db f(g) = 0 . (3.65)
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We will now describe the integrability conditions for these differential equations.

Integrability conditions

• Let us first review the case of the minimal representation in these conventions. The absence

of irreducible representation in the Joseph ideal I2
Λ1

= R(Υ2+Υ6) at the second oder, implies for

a spherical function (
28DijpqDklpq − 3δklij∆

)
fmin = 0 . (3.66)

We write the projector

[D2
Υ2+Υ6

]ij
kl = DijpqDklpq − 3

28δ
kl
ij∆ , (3.67)

such that [D2
Υ2+Υ6

]ik
jk = 0. Clearly all the higher order Casimir operators eigenvalues are deter-

mined from the quadratic one since they can be defined as traces of the operator DijpqDklpq to

higher powers. We have in this way

∆nf
min = ( 3

28)
n−1∆nfmin . (3.68)

The third order ideal component in R(2Υ2) implies moreover(
4DijpqDpqmnDmnkl −Dijkl

(
∆+ 24

))
fmin = 0 , (3.69)

where

[D3
2Υ2

]ij,kl = DijpqDpqmnDmnkl −Dijkl

(
1
4∆+ 6

)
. (3.70)

One computes indeed using (3.36) that

18Dpq[ijDpqrsDkl]rs =
9

2
Dijkl∆+ 108Dijkl . (3.71)

Now using moreover (3.66) one obtains that(
4DijpqDpqmnDmnkl −Dijkl

(
∆+ 24

))
fmin = −16Dijkl

(
∆+ 42

)
fmin = 0 , (3.72)

so either fmin is constant and in the trivial representation, or fmin is an eigen-function of the

Laplacian with eigenvalue −42. The spherical representation is therefore unique and is determined

by the Joseph ideal equation

DijpqDklpqfmin = −9

2
δklij f

min . (3.73)

• For the next to minimal we write the two cubic ideals, the one in R(2Υ2)(
4DijpqDpqmnDmnkl −Dijkl

(
∆+ 24

))
f n-min = 0 , (3.74)

and the ideal (3.60) in the R(Υ1+Υ4+Υ7)(
36Djr[klDirmnDpq]mn − δijDklpq(∆ + 42) + δi[kDlpq]j(∆− 120)

)
f n-min = 0 . (3.75)
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Using again (3.36) one can act with an additional derivative on (3.74) and use (3.75) to obtain

Dijpq
(
4DpqrsDrsmnDmnkl −Dpqkl

(
∆+ 24

))
f n-min =

1

12

(
28DijpqDklpq − 3δijkl∆

)(
∆+ 60

)
f n-min

(3.76)

We assume that
(
28DijpqDklpq − 3δijkl∆

)
f n-min ̸= 0 because otherwise we would be back to the

minimal or the trivial representation, so we obtain that f n-min is an eigen-function of the Laplacian

with eigenvalue −60. The higher order Casimir are determined using (3.74) as

∆nf
n-min = −60(−9)n−1f n-min . (3.77)

Associated variety and harmonic superspace

The one-half BPS Grassmann analytic structure defined in (1.111) is associated to the weight Υ4 of

SU(8) that labels the minimal SU(8) nilpotent orbitOΥ4 in pC = e7(C)⊖sl(8,C) [178]. Defining the

normal triple (hΥ4 , eΥ4 , fΥ4), the Grassmann analytic superfield W is precisely defined in (1.111)

to be the component along eΥ4 ∈ pC of W ijkl and the harmonic variables parametrise the SU(8)

orbit of hΥ4 ∈ su(8). As such, W is in the minimal nilpotent orbit OΥ4 and the set of polynomials

in W is isomorphic to GrU(e7)fmin as an SU(8) submodule S(p∗C) of the polynomial functions in

W ijkl, i.e.

GrU(e7)fmin ∼=
∞⊕
n=0

R(nΥ4) . (3.78)

We find therefore that supersymmetry implies equations (3.66) and (3.69) and so by integrability

equation (3.73).

The one-quarter BPS Grassmann analytic structure defined in (1.114) is associated to the

weight Υ2+Υ6 of SU(8) that labels the next-to-minimal SU(8) nilpotent orbit OΥ2+Υ6 in pC
[178]. Defining the normal triple (hΥ2+Υ6 , eΥ2+Υ6 , fΥ2+Υ6), the Grassmann analytic superfieldW rs

defined in (1.114) is in the weight 2 vector space and therefore includes the component along

eΥ2+Υ6 ∈ pC of W ijkl and the harmonic variables parametrise the SU(8) orbit of hΥ2+Υ6 ∈ su(8).

As such, W rs is in the next-to-minimal nilpotent orbit OΥ2+Υ6 and the set of polynomials in W rs

is isomorphic to GrU(e7)f n-min as an SU(8) submodule of S(p∗C)

GrU(e7)f n-min ∼=
⊕

n,m≥0

R(mΥ2+nΥ4+mΥ6) . (3.79)

We find therefore that supersymmetry implies the equations (3.74) and (3.75) and so by integrability

equation (3.77).

The one-eight BPS Grassmann analytic structure of type (1/8, 1/8) defined in (1.117) is associ-

ated to the weight 2Υ1+2Υ7 of SU(8) that labels the SU(8) nilpotent orbit O2Υ1+2Υ7 in pC [178].

This real orbit is inside the even complex orbit O2Λ1 associated to the Heisenberg parabolic P1.

The complex orbit O2Λ1 includes two real orbits, O2Υ1+2Υ7 and O2Υ4 . The closure of their union

O2Λ1 ∪O2Υ4 is expected to define the associated variety of the Heisenberg parabolic Eisenstein se-

ries EE7
sΛ1

at generic values of s ∈ C. Defining the normal triple (h2Υ1+2Υ7 , e2Υ1+2Υ7 , f2Υ1+2Υ7), the
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Grassmann analytic superfield W rst defined in (1.117) is in the weight 2 vector space and therefore

includes the component along e2Υ1+2Υ7 ∈ pC of W ijkl and the harmonic variables parametrise the

SU(8) orbit of h2Υ1+2Υ7 ∈ su(8). As such, W rst is in the nilpotent orbit O2Υ1+2Υ7 and the set of

polynomials in W rst is isomorphic to the SU(8) submodule of S(p∗C)

S(p∗C)|O2Υ1+2Υ7
(3.80)

∼=
⊕

n1,n2,n3,n4,n′
4≥0

R((n3+n4+2n′4)Υ1+n2Υ2+n4Υ3+(n1+n3)Υ4+n4Υ5+n2Υ6+(n3+n4+2n′4)Υ7) .

The module GrU(e7)EE7
sΛ1

also includes polynomial with support on O2Υ4 (see Appendix C.2)

S(p∗C)|O2Υ4
=

⊕
n1,n2,n3,n4≥0

R(n3Υ1+n2Υ2+(n1+n3+2n4)Υ4+n2Υ6+n3Υ7) (3.81)

but this does not give any new SU(8) representation. The complete module GrU(e7)EE7
sΛ1

only

admits SU(8) irreducible representations that appear in S(p∗C)|O2Υ1+2Υ7
as suggested by linearised

supersymmetry. The multiplicities of the representations are different, and in particular the irre-

ducible representation R(2Υ4) appears with two distinct derivative of the function. In general the

associate variety associated to a spherical automorphic representation typically includes the union

of all real orbits in the same complex orbit. We can still conclude that supersymmetry implies equa-

tion (3.74). This analysis does not allow to determine the eigen-value of the Laplacian, although

we know that supersymmetry fixes it to be −60. We obtain that the abelian Fourier coefficients in

the decompactification limit are not generic according to (3.55).

The other one-eight BPS Grassmann analytic structure of type (1/4, 0) defined in (1.119) is

associated to the weight 2Υ2 of SU(8) that labels the SU(8) nilpotent orbit O2Υ2 in pC [178].

It is equivalent to its complex conjugate O2Υ6 that must be considered together for a non-linear

supersymmetry invariant. This real orbit is inside the even complex orbit O2Λ7 associated to

the abelian parabolic P7. The closure O2Λ2 ∪ O2Λ6 defines therefore the associated variety of the

abelian parabolic Eisenstein series EE7
sΛ7

at generic values of s ∈ C. Defining the normal triple

(h2Υ2 , e2Υ2 , f2Υ2), the Grassmann analytic superfield W rs defined in (1.119) is in the weight 2

vector space and therefore includes the component along e2Υ2 ∈ pC of W ijkl and the harmonic

variables parametrise the SU(8) orbit of h2Υ2 ∈ su(8). As such, W rs is in the nilpotent orbit O2Υ2

and the set of polynomials in W rs is isomorphic to the SU(8) submodule of S(p∗C)

S(p∗C)|O2Υ2

∼=
⊕

n1,n2,n3≥0

R((n2+2n3)Υ2 + n1Υ4 + n2Υ6) . (3.82)

For generic values of s one has

GrU(e7)EE7
sΛ7

∼=
⊕

n1,n2,n3,n′
3≥0

n3n′
3=0

R((n2+2n3)Υ2 + n1Υ4 + (n2+2n′3)Υ6) , (3.83)

which is the union of S(p∗C)|O2Υ2
and S(p∗C)|O2Υ6

. The chiral harmonic superspace suggests that

one can define a submodule for n3 ≥ k ≥ 1. One shows in Appendix C.1 that such module can be
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defined starting from a non-trivial SU(8) representation, and k ≥ 1 integer

GrU(e7)D3k
2kΥ2

EE7

(4+k)Λ7

∼=
⊕

n1,n2≥0
n3≥k

R((n2+2n3)Υ2 + n1Υ4 + n2Υ6) ⊕ δk,1GrU(e7)EE7
4Λ7

. (3.84)

For the ∇6R4 type invariant this selects the regularised Eisenstein series at s = 5, for which

GrU(e7)ÊE7
5Λ7

∼=
⊕

n1,n2,n3,n′
3≥0

n3n′
3=0

R((n2+2n3)Υ2 + n1Υ4 + (n2+2n′3)Υ6) ⊕ GrU(e7)EE7
4Λ7

, (3.85)

is consistent with the linearised supersymmetry analysis. The mixing with GrU(e7)EE7
4Λ7

which

expands as (3.79) is due to the one-loop divergence of the ∇4R4 form-factor that can be read

from (2.66). We find therefore that supersymmetry implies equation (3.74) and that the Laplacian

eigen-value is −60. The abelian Fourier coefficients in the string perturbative limit are not generic

in this automorphic representation and satisfy (3.62).

We can summarise the results in this section by associating a nilpotent orbit to each supersym-

metry invariant, as displayed in Figure 11. We can similarly associate Eisenstein series to nilpotent

•

•

•

•

•

•

R

R4

∇4R4

∇6R4, F 2k∇4R4

∇6R4

0

34

52

54

64

66

70

76

Figure 11: Nilpotent orbits associated to supersymmetry invariants

orbits as displayed in Figure 12. For completeness we have included nilpotent orbits beyond the

ones known to appear in string theory.

3.3 BPS instantons as supergravity solutions

The D(-1) brane instanton was described as a supergravity Euclidean solution in [7]. The metric

is flat gµν = δµν and all the fields but the dilaton and the Ramond-Ramond axion vanish. The
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Figure 12: Nilpotent orbits associated to Eisenstein series in the E7 closure diagram, where we removed the

non-special orbits on the left for which there is no automorphic representation. If generic parameters s (or

t) are chosen one obtains the orbits shown; for specific values the wavefront set of the Eisenstein series (or

its leading residue) can be smaller as indicated for smaller orbits. Where we write different Eisenstein series,

they are all related by functional relations. The reduction of the wavefront set have be studied by analysing

the degenerate Whittaker vectors using Casselman–Shalika formula for Fourier coefficients [184,185,75].
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Lagrangian then reduces to

L =
1

2

√
−g
(
∂µϕ∂

µϕ− e2ϕ∂µC∂
µC
)

∼=
1

2
dϕ ⋆ dϕ+

1

2
e−2ϕF ⋆ F − id

(
CF ) (3.86)

where we used that the kinetic term for the dual nine-form field strength F changes sign by duality

in Euclidean signature and the pure imaginary total derivative remains after duality using C as a

Lagrange multiplier for dF = 0. The BPS instantons can be obtained by writing the action as a

square plus a topological term

L =
1

2
e−2ϕ(deϕ ∓ ⋆F ) ⋆ (deϕ ∓ ⋆F ) + d

(
(±e−ϕ − iC)F

)
. (3.87)

One finds that eϕ is harmonic and the single instanton solution reads

F =
12

π5
ndΩ9 , eϕ = eϕ∞ +

3|n|
2π5r8

(3.88)

with Euclidean action S = |n|e−ϕ∞ + inC∞. Without introducing the eight-form potential one can

interpret the solution in the symmetric space SO(1, 1)\SL(2,R) as

v = eϕ/2
(

1 C

0 e−ϕ

)
, C = C∞ +

3ne−ϕ∞

2π5eϕ∞r8 + 3|n|
, (3.89)

and the conserved current

J = v−1
(
⋆dvv−1+η−1(⋆dvv−1)⊺η

)
v =

12n

π5
dΩ9

(
C∞+e−ϕ∞ (C∞+e−ϕ∞)2

−1 −C∞−e−ϕ∞

)
, (3.90)

with η = (10
0

−1) (for the pseudo-Riemannian quotient by SO(1, 1)) is nilpotent, i.e. J2 = 0 as a

matrix.

This generalises to all the symmetric spaces and the BPS instantons contributing in string the-

ory. We will only discuss the case of E7, but the results of this section can easily be generalised. For

instantons contributing to abelian Fourier coefficients in a parabolic Pi ⊂ E7, one needs to consider

a Euclidean solution in which all the axions parametrising Ui/[Ui, Ui] have been dualised. In this

way the dual field strength charge defines the instanton number, as the nine-form F for the D(-1)-

instanton secribed above. Because of the change of sign of the kinetic term in Euclidean signature,

this implies that for P7 one must look at solutions in (SU(8)∗/Z2)\E7
∼= R+×(Sp(4)/Z2)\E6⋉R27.

This is the real form of the coset space that arises when considering the consistent truncation to

stationary solutions in five dimensions. The corresponding instantons are then BPS black holes in

five dimensions with electric charge q ∈ Z27 [186], reduced on the time-like isometry interpreted as

a thermal circle [182].

For P1 the relevant real form is (SU(4, 4)/Z2)\E7
∼= R+ × (SO(6)× SO(6))\SO(6, 6)⋉R32+1.

In this case the vector fields do not admit a real duality equation compatible with E7 symmetry and

the spinors are complex. One finds nonetheless that it seems to be the correct real form to describe

Euclidean D-brane solutions for which the truncation to the scalar sector is well defined [51].
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For P2 the relevant real form is (SL(8)/Z2)\E7
∼= SO(7)\GL(7) ⋉ R35+7. In this case the

vector fields do admit a real duality equation compatible with E7 symmetry but the spinors are

complex. Having complex spinors is not a problem in Euclidean signature [187]. We will discuss

this example is some details using the approach proposed in [188]. The Euclidean Lagrangian for

the scalar fields is

L = −1

4
dGIJ ⋆ dG

IJ +
1

8
GIJdGIJ ⋆ G

KLdGKL − 1

12
GI1J1GI2J2GI3J3daI1I2I3 ⋆ daJ1J2J3

+
1

2
detG−1GIJ

(
dbI − 1

72
εIK1...K6aK1K2K3daK4K5K6

)
⋆
(
dbJ − 1

72
εJL1...L6aL1L2L3daL4L5L6

)
(3.91)

where only the axions aIJK have a kinetic term with negative sign. Here GIJ = EI
aEJa is the

metric on T 7 with vielbeins EI
a, aIJK the three-form and bI the six-form. One defines the dual

three-form field strengths on R4

F I1I2I3 = GI1J1GI2J2GI3J3 ⋆ daJ1J2J3 −
1

6
εI1I2I3J1J2J3KaJ1J2J3HK ,

HI = detG−1GIJ ⋆
(
dbJ − 1

72
εJL1...L6aL1L2L3daL4L5L6

)
= 0 . (3.92)

The superymmetry variation of the Weyl fermions

δχαijk = (/Pijklϵ̄
l)α , δχ̄ijk

α̇ = (/P ijklϵl)α̇ (3.93)

implies that one gets a BPS solution if P abcd = 0 for a, b, c, d ≤ 7, so that Pabc8 = 0. The generic

BPS solution only preserves 1/16 of the supersymmetry through a single right-handed Weyl Killing

spinor ϵ̄8α̇ with SL(7) ⊂ SL(8) stabiliser. Written in terms of F IJK and EI
a, only SO(7) is manifest

with stabiliser G2 ⊂ SO(7). One can parametrise SO(7)/G2 by the orbit of the antisymmetric

tensor Cabc that defines the structure constants of the octonions algebra. It is of course expected

that G2 appears in breaking supersymmetry to N = 1 [189], but here we only keep one chirality.

The tensor Cabc is determined for a given solution by maximisation of the asymptotic boundary

integral

M(N) =
1

6

∫
∂M

CabcEI
aEJ

bEK
cF IJK , (3.94)

which gives the real part of the instanton action. The constraints Pabc8 = 0 can be solved by using

the equation [h, P ] = 2P for the sl8 generator h = 7
2T

8
8, imposing that P belongs to the nilpotent

orbit O4Υ7 ⊂ O2Λ2 . Then the e7 conserved current is automatically in the nilpotent orbit O2Λ2 .

In the P2 basis with manifest SL(7) symmetry, the diagonalising element h can be written in

terms of the generators Eabc ∈ 35(2) and Fabc ∈ 35(−2) as

h =
1

6
CabcE

abc +
1

6
CabcFabc ∈ sl8 . (3.95)

The equation [h, P ] = 2P ensuring that P ∈ O2Λ2 gives

⋆daIJK = −Cabc ⋆ D(EI
aEJ

bEK
c)− 1

12
EI

aEJ
bEK

cεabcdefgC
def detEEgIHI , (3.96)
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while [h, dωh] = 4dωh ensuring that this condition is integrable gives

⋆DCabc =
1

12
εabcdefgCdef detEEg

IHI , (3.97)

with D the SO(7)-covariant derivative. It follows that

daIJK = −d(EI
aEJ

bEK
cCabc) ⇒ aIJK = −EI

aEJ
bEK

cCabc + αIJK , (3.98)

for constant coefficients αIJK . Using the expression for F IJK in (3.92) and (3.96) again we obtain

F IJK − 1

6
εIJKPQRSαPQRHS = ⋆D(Ea

IEb
JEc

KCabc) . (3.99)

Because the left-hand-side is a closed three-form on R4, Ea
IEb

JEc
KCabc are harmonic functions

KIJK

Ea
IEb

JEc
KCabc = KIJK = KIJK

∞ +
∑
p

N IJK

4π2|x− xp|2
. (3.100)

These 35 harmonic functions determine completely the vielbeins Ea
I up the G2 ⊂ SO(7) stabiliser

that is pure gauge. The three-forms HI satisfy

HI = − 1

72
εIJKLPQR KJKL ⋆ dKPQR , (3.101)

which is an exact three-form everywhere on R4 provided the harmonic functions satisfy a bubble

equation of the same type as for four-dimensional multi-black hole solutions to do not admit closed

time-like curves [190]. In the present case this condition imposes the absence of M5-brane instanton

charge, which is required for instanton corrections associated to abelian Fourier coefficients. The

non-abelian Fourier coefficients with non-vanishing M5-brane instanton charge must be defined in

a different signature, see e.g. [120] for a discussion of Taub-NUT instantons.

The single instanton solution takes the form

F IJK =
N IJK

2π2
dΩ3 , Ea

IEb
JEc

KCabc = KIJK
∞ +

N IJK

4π2r2
, (3.102)

with the constraint dHI = 0 at r = 0 that gives

εIJKLPQRKJKL
∞ NPQR = 0 . (3.103)

For HI = 0 one can rewrite the Lagrangian as the sum of a square plus a total derivative

L =
1

12
GILGJPGKQ

(
F IJK − ⋆d

(
Ea

IEb
JEc

KCabc
))
⋆
(
FLPQ − ⋆d

(
Ed

LEe
PEf

QCdef
))

+
1

6
d
(
(CabcEI

aEJ
bEK

c − iaIJK)F IJK
)
, (3.104)

which gives the action
∫
L =M(N)− i

6aIJKN
IJK . One can always choose the asymptotic vielbeins

representative EI
a such that Cabc takes a canonical form at infinity. In this case defining Zabc =

EI
aEJ

bEK
cN IJK at infinity, one must maximise

M(N) =
1

6

∫
∂M

CabcEI
aEJ

bEK
cF IJK = Z123 − Z156 + Z246 − Z345 + Z147 + Z257 + Z367 (3.105)
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with respect to SO(7) acting on EI
a on the right to determine the Euclidean action. The function

M(N) is maximised if these seven Z’s are the only non-vanishing components of Zabc and they

all contribute positively. One finds representatives of the ten SL(7) orbits described in (3.64)

depending of the set of non-vanishing components Zabc among the seven above. One gets a 1/2

BPS charge with only Z123 ̸= 0 and all the other components vanishing, a 1/4 BPS charge with only

Z123, Z156 non-zero. A 1/8 BPS charge in O2Λ7 can be obtained for only Z123, Z156, Z147 non-zero,

while a 1/8 BPS charge is in O2Λ1 for only Z123, Z156, Z246, Z345 non-zero. This permits to write

the covariant form of the instanton action as the largest root of a polynomial in Zabc.

For the appropriate choice of asymptotic values of the scalar fields one has then

P abc8 = Zabcd
1

4π2r2
, Pabcd =

1

6
εabcdefgZ

efgd
1

4π2r2
, (3.106)

while the other components vanish. This implies for the solution with only Z123, Z156, Z147 non-zero

that the only non-vanishing components of P ijkl and Pijkl are up to permutations

P 1238 , P 1568 , P 1478 , P4567 , P2347 , P2356 (3.107)

which gives the four right-handed Killing spinors ϵ̄1α̇, ϵ̄
8
α̇ using (3.93) and the fact that Pijkl = 0

if any of the indices is 1 or 8. On the contrary P ijkl ̸= 0 for any value of i. Following the same

argument as in [7], the fermionic zero modes of the solutions are determined by the unbroken

supersymmetries [191] that give rise to a superspace integral of the type discussed in Section 1.3

for the G-analytic superfield (1.119). One expects therefore such instanton to contribute to the

corresponding (0, 1/4)-BPS supersymmetry invariant consistently with the analysis of the preceding

section.

Similarly for the solution with only Z123, Z156, Z246, Z345 non-zero one obtains that the only

non-vanishing components of P ijkl and Pijkl are up to permutations

P 1238 , P 1568 , P 2468 , P 3468 , P4567 , P2347 , P1357 , P1257 (3.108)

which gives the two right-handed Killing spinors ϵ̄8α̇ and the two left-handed Killing spinors ϵα7
using (3.93). The integration over the fermionic zero modes in this background give rise to a

superspace integral of the type discussed in Section 1.3 for the G-analytic superfield (1.117). One

expects therefore such instanton to contribute to the corresponding (1/8, 1/8)-BPS supersymmetry

invariant consistently with the analysis of the preceding section.

3.4 Eisenstein series in the string perturbative limit

In this section we shall give the explicit form of the EEd
sΛd

Eisenstein series in the parabolic P1

relevant to describe the string theory perturbative limit gs = eϕd−1 ≪ 1. We use the notation of

table 2. The computation is based on the formula (3.12), which reads for E7

2ζ(2s)EE7
sΛ7

=
′∑

Γ∈Z56

(Γ×Γ)|133=0

1

|Z(Γ)|2s
, (3.109)

and that has a natural interpretation as a sum over massive 1/2 BPS supermultiplets with BPS

mass ℓM = |Z(Γ)| [64]. The computation is explained in Appendix D.1. We will write generally S−
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for the lattice of D-brane charges in the left-handed spinor representation of the T-duality group

Spin(d−1, d−1,Z). In our notation, the action of the 1/4-BPS Euclidean D-brane instanton of

charge Q ∈ S− is [192] 18

SD-brane(Q) = 2π

√
|v(Q)|2 + 2|v(Q×Q)|

gs

− 2πi(Q, a) (3.110)

with v ∈ Spin(d−1, d−1) parametrising the Narrain moduli and a ∈ S−(R) the Ramond-Ramond

axions. For short we write Q × Q = (QΓd−5Q) the (d − 5)-form quadratic in Q defined by the

gamma matrix. For d = 5, (QQ) ∈ Z is related by triality to half the even scalar product on II4,4.

For d = 6, QγaQ is normalised such that it is in II5,5. For d = 7, QγabQ is normalised such that

it is a vector in L2, so all its components are integer except one that is possibly half-integer, when

2(QγabQ)(QγabQ) = 1 mod 4. We normalise |v(Q×Q)|2 with a factor of 1
(d−5)! .

For d ≤ 6, the parabolic P1 has an abelian unipotent radical, so that one can write a standard

Fourier expansion

g
4

9−d
s

s EEd
sΛd

= E
Dd−1

sΛ1
+
ξ(2s−d+1)

ξ(2s)
g2s−d+1
s E

Dd−1

(s− d−3
2

)Λd−2
+ δd,6

ξ(2s− 8)ξ(2s− 11)

ξ(2s)ξ(2s− 3)
g4s−16
s

+ 2
g
s− d−1

2
s

ξ(2s)

′∑
Q∈S−
Q×Q=0

σd−1−2s(Q)

gcdQ
d−3
d−1

(d−3−2s)
E
SL(d−1)

(s− d−3
2

)Λd−2
(vQ)

Ks− d−1
2
(2π |v(Q)|

gs
)

|v(Q)|(1−
4

d−1
)s+ 9−d

2
− 4

d−1

e2πi(Q,a)

+ 2δd,6
ξ(2s−8)g

3s− 21
2

s
ξ(2s)ξ(2s−3)

′∑
Q∈S−
Q×Q=0

σ11−2s(Q)
Ks− 11

2
(2π |v(Q)|

gs
)

|v(Q)|
11
2
−s

e2πi(Q,a)

+ 2δd,6
g2s−8
s

ξ(2s)ξ(2s−3)

∑
Q∈S−
Q×Q̸=0

∑
n|Q

n11−2sσ8−2s(
Q×Q
n2 )

B 3
2
,s−4(

|v(Q)|2
g2s

, |v(Q×Q)|
g2s

)

|v(Q×Q)|4−s
e2πi(Q,a) (3.111)

where Dn−1 is the split real form Spin(d−1, d−1), the SL(d− 1) Eisenstein series is evaluated on

the Levi stabiliser subgroup SL(d− 1) ⊂ Pd−2 ⊂ Spin(d−1, d−1) of the one-half BPS pure spinor

Q, and Bj,s is the integral

Bj,s(x, y) =

∫ ∞

0

dt

t1+j
e−πt−πx/tKs(2πy/t) , x, y > 0

=

∞∑
k=0

Γ(s+ k + 1
2)Kj−k− 1

2

(
2π

√
x+ 2y

)
k! Γ(s− k + 1

2) (4π)
k yk+

1
2 (x+ 2y)

2j−2k−1
4

,

(3.112)

that behaves as

Bj,s(
|v(Q)|2

g2s
, |v(Q×Q)|

g2s
) ∼ gj+1

s

e
−2π

√
|v(Q)|2+2|v(Q×Q)|

gs

2
√
|v(Q×Q)|(

√
|v(Q)|2 + 2|v(Q×Q)|)j

(3.113)

18For d = 7 this formula is only valid for 1/4 BPS brane instantons, but 1/8 BPS instanton do not contribute to

EE7
sΛ7

.
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at small string coupling gs ≪ 1. We recall that σs(Q) =
∑

n|Q d
s is the sigma divisor sum of the

greatest divisor n of Q such that Q/n ∈ S−. Note that this expression (3.111) is an absolutely

convergent sum that is real analytic in the moduli and meromorphic in s. The 1/4 BPS instanton

corrections are exponentially suppressed with the expected weight defined by the classical world-

volume action on the Euclidean brane. The measure factor
∑

n|Q n
4σ1(

Q×Q
n2 ) is generic for d ≥ 5

and will be discussed below. The fact that the generic abelian Fourier coefficient is factorised has

been proved in general for the next-to-minimal representation [193–195].

Let us mention that the method developed in [194] provides an alternative way to derive mini-

mal and next-to-minimal Fourier coefficients from Borel Fourier coefficients that can be computed

efficiently using Casselman–Shalika formula [184].

In four dimensions there are also Neveu–Schwarz Euclidean five-brane corrections. We write

the NS5-brane charge k and the corresponding axion b (dual to the Kalb-Ramond two-form). Using

the antisymmetric Spin(6, 6) scalar product ⟨ , ⟩ on S− defined by the charge conjugation matrix

C, one obtains that the unipotent generators define the derivative

∂

∂aα
+

1

2
Cαβa

β ∂

∂b
,

∂

∂b
⇒ Q · ∂

∂a
+

1

2
⟨Q, a⟩ ∂

∂b
, k

∂

∂b
, (3.114)

that satisfy the Heisenberg algebra with central charge ∂
∂b . To define the non-abelian Fourier

coefficients one must therefore choose a polariation [196]. For this we need to break the symmetry

SO(6, 6) by choosing a Lagrangian subspace in S−. A convenient way to do this is to take the

further decomposition that appears in choosing a specific polarisation circle in T 6

so(6, 6) ∼= 10(−2) ⊕ (gl1 ⊕ so(5, 5))(0) ⊕ 10(2) ,

32− ∼= 16(−1) ⊕ 16
(1)
. (3.115)

We write accordingly Q = (q, q̄), a = (a, ā), and

k
∂

∂b
, q · ∂

∂a
− āq

∂

∂b
, q̄ · ∂

∂ā
+ q̄a

∂

∂b
, p · ∂

∂c
− ā/p

∂

∂a
, (3.116)

where we added the derivative with respect to the SO(6, 6) axions c in the 10(2) nilpotent compo-

nent. We can therefore consider the Fourier decomposition with respect to the unipotent character

ψk,q,p = e2πi
(
k(b+āa+ā/cā)+q(a+2/cā)+p·c

)
, (3.117)

where q × q is the product defined by the Spin(5, 5) gamma matrices, and we use the notation

that p · (q × q) = q/pq. In this form q ∈ Z16 is the charge of the Euclidean D-branes wrapping the

polarisation circle, whereas the charge q̄ of the D-branes not wrapping the polarisation circle is not

defined.
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After several manipulations explained in Appendix D.1, one obtains the R4 coupling function

in four dimensions

g4s E(0,0) = 4πξ(4)g4s E
E7
2Λ7

(3.118)

= 2ζ(3)g−2
s + 4πξ(4)ED6

2Λ1
+

8π

gs

′∑
Q∈S−
Q×Q=0

σ2(Q)
K1(2π

|v(Q)|
gs

)

|v(Q)|
e2πi(Q,a)

+
8π

gs

′∑
k∈Z

∑
q∈Z16

k|q×q

R3
s σ3(k, q,

q×q
k )

K 3
2
(2π

√
k2 + g2s Rs|v(q+āk)|2+g4s R2

s |v(
(q+āk)×(q+āk)

k )|2

g2s
)

(k2 + g2s Rs|v(q+āk)|2+g4s R2
s |v(

(q+āk)×(q+āk)
k )|2)

3
4

ψk,q, q×q
k
,

where Rs is the radius in string lengths of the polarisation circle. The one-loop correction reproduces

(2.29) as was identified in [76]

4πξ(4)ED6
2Λ1

= 2π

∫
F

d2τ

τ 2
2

τ ϵ2 ΓII6,6 . (3.119)

The Euclidean D-brane instanton is the same as in ten-dimensions

8π

gs

∑
n∈Z∖{0}

σ2(|n|)
K1(2π

|n|
gs
)

|n|
e2πinC . (3.120)

It was recently computed in [10–12]. The instanton measure σ−2(Q) = σ2(Q)
gcdQ2 is the appropri-

ately normalised partition function of maximal super Yang–Mills on the torus with gauge group

SU(gcdQ)/ZgcdQ, which was computed in [197]. The NS5-brane instanton corrections have not

been computed and are only known through duality relations in general. One may observe that

one finds the same measure and functional dependence in the string coupling constant as in the F 4

threshold function computed in type IIB on K3× T 2 at the T 4/Z2 orbifold point in [198].19

One can check by consistency that the function is invariant under the Ramond-Ramond axion

shift ā→ ā+ x for x ∈ Z16. Indeed

ψk,q,p

∣∣
ā→+̄x

= ψk,q+xk,p+2q×u+u×uk , (3.121)

and the Bessel function argument satisfies the same property such that the total function is invariant

under the shift when including the sum over all k ∈ Z and q ∈ Z16 satisfying k|q× q. It is the case

that if k divides q × q then it divides (q + xk)× (q + xk) = q × q + 2q × xk + x× xk2.

19Note however that the measure factor at a generic point of K3 is very different, and gives instead a result similar

to the heterotic NS5 brane instanton corrections [120].
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The ∇4R4 coupling function is also calculated in Appendix D.1 as

g8s E(1,0) = 8πξ(4)ξ(8)g8s E
E7
4Λ7

(3.122)

= ζ(5)g−2
s +

4π3

45
ξ(8)ED6

4Λ1
+

4

3
g2s ζ(4)E

D6
2Λ5

+16
′∑

Q∈S−
Q×Q=0

(
gs
π

σ2(Q)

gcdQ− 2
3

ζ(4)E
SL(6)
2Λ5

(vQ)
K1(2π

|v(Q)|
gs

)

|v(Q)|
5
3

+
π2

6
σ4(Q)

K2(2π
|v(Q)|
gs

)

|v(Q)|2

)
e2πi(Q,a)

+
16π

gs

∑
Q∈S−
Q×Q̸=0

Q·(Q×Q)=0

∑
d|Q

d4σ1(
Q×Q
d2

)
K1(2π

√
|v(Q)|2+2|v(Q×Q)|

gs
)

|v(Q×Q)|
√
|v(Q)|2 + 2|v(Q×Q)|

e2πi(Q,a)

+8g7s

′∑
k∈Z

∑
q∈Z16

k|q×q

ψk,q, q×q
k

(
π3R8

s

45
σ7(k, q,

q×q
k )

K 7
2
(2π

√
k2 + g2s Rs|v(q+āk)|2+g4s R2

s |v(
(q+āk)×(q+āk)

k )|2

g2s
)

(k2 + g2s Rs|v(q+āk)|2+g4s R2
s |v(

(q+āk)×(q+āk)
k )|2)

7
4

+R5
s

σ1(k, q,
q×q
k )

gcd(k, q, q×q
k )−

3
2

ζ(3)ED5
3
2
Λ1
(vk,q)

K 1
2
(2π

√
k2 + g2s Rs|v(q+āk)|2+g4s R2

s |v(
(q+āk)×(q+āk)

k )|2

g2s
)

k2 + g2s Rs|v(q+āk)|2+g4s R2
s |v(

(q+āk)×(q+āk)
k )|2

)

+16πg3s R
8
s

∑
k∈Z∖{0}
q∈Z16

∑
p∈Z10

k|p|2
2

=q/pq

ψk,q,p

∑
n|(k,q,p)

n7σ3(
(
|p|2
2

, /pq,kp−q×q)

n2 )

B2, 3
2
( k

2 + g2s Rs|v(q + āk)|2 + g4s R
2
s |v(p+ 2ā× q + ā× āk)|2

g4s
,
√

R2
s |v(kp− q × q)|2 + g2s R

3
s |v(/pq + (k/p− ⧸q×q)ā)|2 + g4s R

4
s |v(

|p|2
2 + 2ā/pā+ ā(k/p− ⧸q×q)ā)|2

g4s
)

(R2
s |v(kp− q × q)|2 + g2s R

3
s |v(/pq + (k/p− ⧸q×q)ā)|2 + g4s R

4
s |v(

|p|2
2 + 2ā/pā+ ā(k/p− ⧸q×q)ā)|2)

3
4

.

The one-loop and two loop corrections agree with the perturbative computation [76] 20

4π3

45
ξ(8)ED6

4Λ1
=

2π3

45

∫
F

d2τ

τ 2
2

E2(τ)τ
ϵ
2ΓII6,6 ,

4

3
ζ(4)ED6

2Λ5
= 4π

∫
F2

d6Ω

detΩ3
2

detΩϵ
2ΓII6,6 . (3.123)

It is interesting to look at the generic abelian Fourier coefficient

16π

gs

∑
Q∈S−
Q×Q̸=0

Q·(Q×Q)=0

∑
d|Q

d4σ1(
Q×Q
d2

)
K1(2π

√
|v(Q)|2+2|v(Q×Q)|

gs
)

|v(Q×Q)|
√
|v(Q)|2 + 2|v(Q×Q)|

e2πi(Q,a) (3.124)

corresponding to 1/4 BPS D-brane instanton corrections. As the 1/2 BPS instanton corrections in

(3.119), one expects them to be universal in all dimensions D ≤ 6 by T -duality. We need at least

T 4 to have such a configuration of brane breaking 3/4 of the supersymmetries. One easily reads

from (3.111) that the correction is indeed the same in D = 5. In D = 6 1/4 BPS instantons only

contribute to ζ(5)ÊD5

5/2Λ1
and give again the same formula (3.124) [63].21

20Where one uses the functional relation ξ(2)ED6
3
2
Λ2

= ξ(4)ED6
2Λ6

= ξ(4)ED6
2Λ5

to simplify the genus one integral.
21In D = 6, Q ∈ II4,4 by triality and one can use |v(Q)|2 = pL(Q)2+pR(Q)2 and 2|v(Q×Q)| = |pL(Q)2−pR(Q)2|.

See for example [27] for the complete Fourier expansion of ζ(5)ÊD5
5/2Λ1

.
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The 1/2 BPS index in [197] suggests that the supersymmetric index of D0 particles on T 9 is

equal to the partition function of the Euclidean D3 brane partition function on T 4. This generalised

T-duality suggests then that the helicity supertrace of D1-D5 states on T 5 should be identical to

the partition function of Euclidean D1-D5 branes on T 6 [199], or similar T-dual configurations.

Using [30], one can derive the following helicity supertrace of the D1-D5 CFT on T 4, with Q1 and

Q5 relative primes, as

Tr
L0=L̄0=J3

0=0

[
(−1)2J̃

3
0 (2J̃3

0 )
2
]
=
∑
jL,jR

(−1)jR(2jR + 1)D 1
4
-BPS(Q1, Q5, jL, jR) = σ1(Q1Q5) , (3.125)

which is consistent with the instanton measure
∑

d|Q d
4σ1(

Q×Q
d2

). However, this consistency check

should not be overestimated since there are other choices of helicity supertraces and the projection

to states with J3
0 = 0 is not justified. This result could be derived in principle in string field theory

and one expects the measure factor to be the partition function of the (U(Q1)×U(Q5))/U(1) half-

maximal super Yang–Mills theory coupled to (Q1, Q̄5) hyper-multiplets on a torus [200]. However,

the equivariant localisation formula used in [197] does not directly apply because the Ω-deformed

partition function is a rational function of the εI deformation parameters and the limit εI → 0 is

not unique.

The ∇6R4 coupling admits a contribution from two different supersymmetry invariants, and the

one associated to the chiral harmonic superspace (and nilpotent orbit) of weight Υ2 is given by the

regularised Eisenstein series 64ζ(10)
189 ÊE7

5Λ7
[64]. The abelian Fourier expansion can more generally be

computed as

g2k+8
s

∫
[0,1]
db EE7

(k+4)Λ7
= ED6

(k+4)Λ1
+
ξ(2k + 2)

ξ(2k + 8)
g2+2k
s ED6

(k+2)Λ5
+
ξ(2k − 1)ξ(2k − 4)

ξ(2k + 8)ξ(2k + 8)
g4k−2
s ED6

kΛ1

+ 2
gk+1
s

ξ(2k + 8)

′∑
Q∈S−
Q×Q=0

σ2k+2(Q)

gcdQ
2
3
(k+1)

E
SL(6)
(k+2)Λ5

(vQ)
Kk+1(2π

|v(Q)|
gs

)

|v(Q)|
k+5
3

e2πi(Q,a)

+ 2
ξ(2k − 1)g3ks

ξ(2k + 8)ξ(2k + 4)

′∑
Q∈S−
Q×Q=0

σ4−2k(Q)

gcdQ
−k
3

E
SL(6)
kΛ1

(vQ)
Kk−2(2π

|v(Q)|
gs

)

|v(Q)|
6−k
3

e2πi(Q,a)

+2
g2k−1
s

ξ(2k + 8)ξ(2k + 4)

∑
Q∈S−
Q×Q̸=0

Q·(Q×Q)=0

∑
d|Q

d2+2kσ2k−1(
Q×Q
d2

)

(gcdQ×Q)k−1
E
SL(2)
k (UQ)

B 3
2
,k− 1

2
( |v(Q)|2

g2s
, |v(Q×Q)|

g2s
)√

|v(Q×Q)|
e2πi(Q,a)

(3.126)

where UQ in the last line parametrises the stabiliser SL(2) ⊂ SL(2) × Spin(3, 4) ⋉ R2×8+1 ⊂
Spin(6, 6) of the instanton charge Q.22 One can compare these results to perturbative string

22More precisely Q×Q ∈ L2 ⊂ so(6, 6) and belongs to the SO(6, 6,Z) orbit of the highest weight vector gcd(Q×
Q)Λ2. One defines kvγ such that its SL(2) Levi factor in P2 ⊂ SO(6, 6) is the SL(2) matrix parametrised by UQ

and gcd(Q×Q)γΛ2 = Q×Q.
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theory

64ζ(10)

189
ED6

5Λ1
=

4π4

567

∫
F

d2τ

τ 2
2

E3(τ)τ
ϵ
2ΓII6,6 , 20

∫
F3

d12Ω

detΩ4
2

detΩϵ
2ΓII6,6 =

4ζ(6)

27

(
ÊD6

3Λ5
+ ÊD6

3Λ6

)
(3.127)

so that this function reproduces the above one-loop component and the ÊD6
3Λ5

Eisenstein series part

in the three-loop amplitude [201,84].

Let us end this section by a short analysis of the U(e7) module structure (3.84). Using (3.116)

one finds that the differential operator D3
2Υ2

defined in (3.45) can be written as( ∂

∂cI
− āγI

∂

∂a

)( ∂
∂a

− ā
∂

∂b

)
γI
( ∂
∂a

− ā
∂

∂b

)
− 1

2

∂

∂b

( ∂
∂c

− āγ
∂

∂a
,
∂

∂c
− āγ

∂

∂a

)
. (3.128)

By the cubic constraint Q · (Q × Q) = 0, this derivative ∂
∂cI

is projected to the Levi stabiliser

SL(2). Writing the projection of D3
2Υ2

to the (20,1) irreducible representation of SO(6)× SO(6)

one obtains therefore

D(a
ĉv
( ∂
∂a

× ∂

∂a

)
b)′ĉ

∫
[0,1]
db EE7

(k+4)Λ7
= − 8π2g−9

s

ξ(2k + 8)ξ(2k + 4)

∑
Q∈S−
Q×Q ̸=0

Q·(Q×Q)=0

∑
d|Q

d2+2kσ2k−1(
Q×Q
d2

)

(gcdQ×Q)k−1

×D(a
ĉE

SL(2)
k (UQ)v(Q×Q)b)′ĉ

B 3
2
,k− 1

2
( |v(Q)|2

g2s
, |v(Q×Q)|

g2s
)√

|v(Q×Q)|
e2πi(Q,a)

where a, b, ĉ, d̂ are the vector indices of SO(6) × SO(6) and (ab)′ is projected to the traceless

symmetric component 20. Using the property of the SL(2) Eisenstein series we conclude that

applying the component of D3k
2kΥ2

in the 2kΥ2 irreducible representation of SO(6) gives accordingly

the holomorphic Eisenstein series

DkE
SL(2)
k (U) =

Γ(2k)

Γ(k)
Uk
2G2k(U) =

Γ(2k)

Γ(k)
Uk
2

(
1+

(2πi)k

Γ(2k)ζ(2k)

∞∑
n=1

σ2k−1(n)e
2πinU

)
−δk,1

3

π
. (3.129)

For the k = 1 case one gets the quasi-holomorphic Eisenstein series Ĝ2 = G2 − 3
πU2

, because of the

pole at s = 5. Using the definition

ÊE7
5Λ7

= lim
ϵ→0

(
EE7

(5+ϵ)Λ7
− ξ(5)ξ(1+2ϵ)

ξ(6)ξ(10)
EE7

5
2
Λ1

)
, (3.130)

it follows accordingly from

D78ij [D3
2Υ2

]ij,12E
E7
sΛ7

=
7

12
D78ijDij12(∆ + 60)EE7

sΛ7
(3.131)

and (
∆+ 60

)64ζ(10)
189π

ÊE7
5Λ7

=
45

2π
ζ(5)EE7

5
2
Λ1
, (3.132)
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that

D78ij [D3
2Υ2

]ij,12

(64ζ(10)
189π

ÊE7
5Λ7

)
=

35

8π
D78ijDij12

(
ζ(5)EE7

5
2
Λ1

)
. (3.133)

Here we have used the normalisation justified by the fact that E(0,1) = 64ζ(10)
189π ÊE7

5Λ7
+ EExFT

(0,1) . The

relation above does apply to the exact coupling functions

D78ij [D3
2Υ2

]ij,12E(0,1) =
35

8
D78ijDij12E(1,0) . (3.134)

In analogy with the discrete series, D3k
2kΥ2

EE7

(4+k)Λ7
defines a submodule of U(e7)EE7

(4+k)Λ7
exactly

as G2k defines a submodule of U(sl2)ESL(2)
k for k ≥ 2. This tensor D3k

2kΥ2
EE7

(4+k)Λ7
is a natural

generalisation of a holomorphic function for the real symmetric space (SU(8)/Z2)\E7. In this

interpretation, (3.134) is the equivalent of a holomorphic anomaly that is due to the supergravity

logarithmic divergence.23

3.5 Eisenstein series in the M-theory large volume limit

Let us consider the Eisenstein series EEd
sΛd

in the parabolic P2 corresponding to the large torus

volume limit in eleven-dimensional supergravity. We define the volume of T d as (2πℓV 1/3)d, such

that the volume spanned by a Euclidean M2-brane scales linearly in V .

For d ≥ 5 we define N ×N ∈ ∧5,1Z = ∧5Z⊗Z⊖∧6Z. The 1/2 BPS M2-brane winding matrix

N satisfies N ×N = 0 and the Euclidean action reads

SM2(N) = 2π
√

1
6GILGJPGKQN IJKNLPQ − πi

3
aIJKN

IJK

= 2πV |Z(N)| − 2πi(N, a) , (3.135)

with GIJ the torus metric. The stabiliser of N is then SL(3)×SL(d− 3)⋉R3×(d−3) ⊂ SL(d). We

write vN ∈ SL(3) and v′N ∈ SL(d− 3) for the Levi stabiliser components of v ∈ GL(d).

For d ≥ 6 we define (N × N) · N ∈ ∧6,3Zd the projection of ∧6Z ⊗ ∧3Z to the R(Λ3+Λ6)

irreducible representation. The 1/4 BPS M2-brane winding matrix N satisfies N × N ̸= 0 but

(N × N) · N = 0. The stabiliser of N for d = 5 is then Sp(4,R) × R4, and for d ≥ 6 one gets

GL(d−5)×Sp(4,R)⋉R4+4×(d−5)+d−5 ⊂ P1,5 ⊂ SL(d). We will write νN the corresponding GL(1)

stabiliser for d ≥ 6 (See Appendix D.2 for the precise normalisation). The Euclidean action for 1/4

BPS Euclidean M2-brane instantons of winding matrix N ∈ ∧3Zd can be worked out from (3.105)

as 24

SM2(N) = 2π

√
1
6GILGJPGKQN IJKNLPQ + 1

12

√
1
5!GI1J2 · · ·GI5J5GKLN

[I1I2I3N I4I5]KNJ1J2J3NJ4J5L

−πi
3
aIJKN

IJK

= 2πV
√

|Z(N)|2 + 2|z(N ×N)| − 2πi(N, a) (3.136)

23There is a similar construction for D7k
4kΥ1

EE7
(2+k)Λ2

that defines a submodule of U(e7)EE7
(2+k)Λ2

for k ≥ 2. These

representations are natural candidates to define cuspidal automorphic representations with abelian Fourier coefficients

supported on the set of generic M2-brane instanton charges with compact stabiliser G2 ⊂ SL(7). They may contribute

to 1/16 BPS couplings in string theory, and the coupling function could receive corrections not accessible by any

perturbative methods.
24One must obtain |Z123| + |Z156| for Zabc with only non-zero components Z123 and Z156. This is the case if one

takes the formula below.
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We will use the short notation in the second line, where the normalisations of |Z(N)| and |z(N×N)|
are multiplicative characters of the parabolic P3 and P5,1 for the highest weight representatives of

N and N ×N , respectively.

We compute in Appendix D.2 for d ≤ 5

V − 6
9−d

sEEd
sΛd

= E
SL(d)
sΛd−1

+
ξ(2s− d+ 2)

ξ(2s)
V d−2−2sE

SL(d)

(s− d−3
2

)Λ2
+ δd,5

ξ(2s− 5)ξ(2s− 7)

ξ(2s)ξ(2s− 2)
V 10−4s

+ 2
V

d−2
2

−s

ξ(2s)

′∑
N∈∧3Zd

N×N=0

σd−2−2s(N)

gcdN
2
3
(d−3−2s)

E
SL(3)

(s− d−3
2

)Λ2
(vN )

Ks− d−2
2
(2πV |Z(N)|)

|Z(N)|
2s−d+6

6

e2πi(N,a)

+ 2δd,5
ξ(2s− 5)V

13
2
−3s

ξ(2s)ξ(2s− 2)

′∑
N∈∧3Z5

N×N=0

σ7−2s(N)E
SL(2)

(s− 5
2
)Λ2

(vN )
Ks− 7

2
(2πV |Z(N)|)

|Z(N)|
7
2
−s

e2πi(N,a)

+ 2δd,5
V 5−2s

ξ(2s)ξ(2s−2)

′∑
N∈∧3Z5

N×N ̸=0

∑
n|N

n7−2sσ5−2s(
N×N
n2 )

B 3
2
,s− 5

2
(V 2|Z(N)|2, V 2|z(N ×N)|)

|z(N ×N)|
5
2
−s

e2πi(N,a) . (3.137)

For d = 6 the parabolic P2 is not abelian and in particular there are Euclidean M5-brane cor-

rections to be taken into account. We write the M5-brane axion b. Let us now consider the

non-abelian Fourier coefficient for E6. We introduce the antisymmetric SL(6) scalar product over

∧3Z6. Similarly as in the preceding section, one can define the generator of the Heisenberg algebra

∂

∂b
,

∂

∂aIJK
+

1

12
εIJKLPQaLPQ

∂

∂b
. (3.138)

To define the non-abelian Fourier coefficients one must therefore choose a polariation. Once again

we choose a polarisation circle in T 6, that involves the decomposition of sl6 into P5

sl6 ∼= 5
(−2) ⊕ (gl1 ⊕ sl5)

(0) ⊕ 5(2) ,

20 ∼= 10(−1) ⊕ 10
(1)
. (3.139)

In this way one obtains the decomposition of N = (q, q̄), a = (a, ā), and

k
∂

∂b
, q · ∂

∂a
− āq

∂

∂b
, q̄ · ∂

∂ā
+ q̄a

∂

∂b
, p · ∂

∂c
− ā/p

∂

∂a
, (3.140)

where we added the derivative with respect to the SL(6) axions in 5(2). We can therefore consider

the Fourier decomposition with respect to the unipotent character

ψk,q,p = e2πi
(
k(b+ā∧a+ā∧ā∧c)+q(a+2c∧ā)+pc

)
, (3.141)

where we define the wedge products such that c is a 1-form, q and ā are 2-form, a and q̄ are 3-forms,

and b is a 5-form. One finds that this is a unipotent character of the parabolic P6, for which we know

the Fourier decomposition for any s [202]. Physically, we first expand in the T 6 M-theory volume

V 2 and then on a particular circle radius r5 to choose a polarisation. The M2-brane wrapping the

polarisation circle have a well defined charge q, whereas the charge q of the M2-brane not wrapping

that circle is not determined.
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One obtains in this way the complete expansion of the E6 series

EE6
sΛ6

= V 2sE
SL(6)
sΛ5

+
ξ(2s− 4)

ξ(2s)
V 4E

SL(6)

(s− 3
2
)Λ2

+
ξ(2s− 6)ξ(2s− 8)

ξ(2s)ξ(2s− 3)
V 12−2sE

SL(6)
(s−3)Λ5

+ 2
V s+2

ξ(2s)
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N∈∧3Z6

N×N=0

σ4−2s(N)

gcdN2− 4s
3

E
SL(3)

(s− 3
2
)Λ2

(vN )
Ks−2(2πV |Z(N)|)

|Z(N)|
s
3

e2πi(N,a)

+ 2
ξ(2s− 6)V 8−s

ξ(2s)ξ(2s− 3)

′∑
N∈∧3Z6

N×N=0

σ8−2s(N)

gcdN
6−2s

3

E
SL(3)

(s−3)Λ2
(v′N )

Ks−4(2πV |Z(N)|)
|Z(N)|

6−s
3

e2πi(N,a)

+ 2
V 6

ξ(2s)ξ(2s− 3)

′∑
N∈∧3Z6

N×N ̸=0
(N×N)·N=0

∑
n|N

n8−2sσ6−2s(
N×N
n2 )

gcd(N ×N)
s−3
2

B 3
2
,s−3(V

2|Z(N)|2, V 2|z(N ×N)|)

ν2s−6
N |z(N ×N)|

3(3−s)
2

e2πi(N,a)

+ 2
V

ξ(2s)

′∑
k∈Z

∑
q∈Z10

k|q∧q

ψk,q, q∧q
k

(
r

10s
3

5 σ2s−1(k, q,
q∧q
k )

Ks− 1
2
(2π

√
V 4k2 + V 2r25|v(q + āk)|2 + r45|v(

(q+āk)∧(q+āk)
k )|2)

(k2 + r25
V 2 |v(q + āk)|2 + r45

V 4 |v( (q+āk)∧(q+āk)
k )|2)

2s−1
4

+
ξ(2s− 4)r

8− 2s
3

5

ξ(2s− 3)

σ7−2s(k, q,
q×q
k )

gcd(k, q, q×q
k )

4
5
(2−s)

E
SL(5)

(s−2)Λ1
(ṽk,q)

Ks− 7
2
(2π

√
V 4k2 + V 2r25|v(q + āk)|2 + r45|v(

(q+āk)∧(q+āk)
k )|2)

(k2 + r25
V 2 |v(q + āk)|2 + r45

V 4 |v( (q+āk)∧(q+āk)
k )|2)

19−2s
20

)

+ 2
V 4r

10s
3

5

ξ(2s)ξ(2s− 3)

′∑
k∈Z
q∈Z10

∑
p∈Z5

ψk,q,p

∑
n|(k,q,p)

n2s−1σ2s−4(
(kp−q∧q,p∧q)

n2 )

×
B 3

2
,s−2(V

4k2 + V 2r25|v(q + āk)|2 + r45|v(p+ 2ā ∧ q + ā ∧ āk)|2,
√

V 4r45|v(kp− q ∧ q)|2 + V 2r65|v(p ∧ q + ā ∧ (kp− q ∧ q))|2)

(r45|v(kp− q ∧ q)|2 + r65
V 2 |v(p ∧ q + ā ∧ (kp− q ∧ q))|2)

s−2
2

. (3.142)

For example for the 1/2 BPS coupling, one gets

E(0,0) = 2ζ(3)EE6
3
2
Λd

= 2V 3ζ(3)E
SL(6)
3
2
Λ5

+
2π2

3
V 4 + 4πV 3

′∑
N∈∧3Z6

N×N=0

σ1(N)
e−2πV |Z(N)|

|Z(N)|
e2πi(N,a)

+
4π3

45
V

′∑
k∈Z

∑
q∈Z10

k|q∧q

ψk,q, q∧q
k
r 5
5 σ2(k, q,

q∧q
k )

K1(2π
√

V 4k2 + V 2r25|v(q + āk)|2 + r45|v(
(q+āk)∧(q+āk)

k )|2)

(k2 + r25
V 2 |v(q + āk)|2 + r45

V 4 |v( (q+āk)∧(q+āk)
k )|2)

1
2

(3.143)

The M2-brane instanton corrections are of the same form in all dimensions, and the measure factor

σ1(N) has been computed in a matrix model [203]. The partition function of k parallel M5-branes

wrapping T 6 with the centre of mass motion factorized out gives the partition function of SU(k)/Zk

N = 4 Yang–Mills on T 4 [204], that is σ−2(k) =
σ2(k)
k2

[197].

We have E(1,0) =
ζ(7)
6 EE6

7
2
Λ6

= ζ(5)EE6
5
2
Λ1

in five dimensions, and the coupling function E(1,0) can

therefore be read from (3.142) at s = 7
2 . We do not write the expression since there is no particular
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simplification and the reader can set s = 7
2 in (3.142). Let use note nonetheless that the generic

abelian Fourier coefficient

8πV 6
′∑

N∈∧3Z6

N×N ̸=0
(N×N)·N=0

∑
n|N

nσ−1(
N×N
n2 )

|z(N ×N)|
1
4K1(2πV

√
|Z(N)|2 + 2|z(N ×N)|)

νNgcd(N ×N)
1
4

√
|Z(N)|2 + 2|z(N ×N)|

e2πi(N,a) (3.144)

is factorised and
∑

n|N nσ−1(
N×N
n2 ) should therefore be the partition function for 1/4 BPS M2-

brane instantons. As expected, this Fourier coefficient is universal in all dimensions D ≤ 6, see

(D.36) for the expression in D = 5 and D = 4.
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4 Eleven-dimensional supergravity on T d

Eleven-dimensional supergravity on a circle is conjectured to describe type IIA string theory in the

strong coupling limit eϕA ≫ 1 at low energy sℓ2 ≪ 1 [6]. Compactification on an additional circle

in string frame allows to identify both type IIA and type IIB moduli in nine dimensions, with the

metric

ds211D = e
4
3
ϕA
(
dy10 + C9dy

9
)2

+ e−
2
3
ϕA
(
R2

A(dy
9)2 + ds29D

)
=
(eϕB
R 4

B

) 1
3
(
eϕB
(
dy10 + Cdy9

)2
+ e−ϕB(dy9)2

)
+
(RB

eϕB

) 2
3
ds29D , (4.1)

where we write ϕA and RA the type IIA dilaton and circle radius in string length, and respespectively

ϕB and RB in type IIB, while C9 = C for the Ramond-Ramond one-form and axion. The small

torus volume limit corresponds in type IIB to the large radius limit such that one retrieves type

IIB string theory in ten dimensions. The SL(2,Z) S-duality symmetry of type IIB string theory is

then realised geometrically as the group of global diffeomorphisms of the M-theory torus.

Eleven-dimensional supergravity is instead a good approximation at large torus volume, cor-

responding to small type IIB radius. In this limit one expects the supergravity four-graviton

amplitude to reproduce accurately the string theory amplitude at low energy. The supergravity

four-graviton amplitude in eleven-dimensional supergravity has been computed up to five-loop or-

der [205–208]. The low-momenta expansion of the amplitude exhibits that the lowest order in

momenta only get contributions from the first loop orders. In particular, E(0,0) only gets contribu-

tions at one-loop, E(1,0) up to two-loop and E(0,1) up to three-loop. Moreover, the non-perturbative

corrections in M-theory due to BPS M2-brane instantons do not exist on T 2. Thanks to these

properties one can then safely take the small torus volume limit. The four-graviton amplitude in

eleven dimensions on R1,8 × T 2 was analysed in [9, 55, 56, 209, 210] up to three-loop order and the

one-loop and the two-loop supergravity amplitudes determine the exact coupling functions E(0,0),

E(1,0) and E(0,1) in type IIB string theory [9, 55, 56]. The validity of this construction may rely on

some conjectures, but have been checked to match string theory computations [166,201,84,10–12].

In this section we repeat this computation on a torus T d for 3 ≤ d ≤ 7. We will use this result

to check consistency with the non-perturbative coupling functions in the large volume limit.

4.1 Coupling functions from the supergravity amplitude

The supergravity limit does not give the exact coupling functions E(0,0), E(1,0) and E(0,1) in general.

Including the eleven-dimensional effective action, one expects nevertheless to get all the perturbative

power-low terms in the torus volume. The only BPS non-perturbative corrections are due to M2

and M5-brane instantons, as exhibited explicitly in (3.142) and (3.143) in the preceding section.

We define the eleven-dimensional metric in Einstein frame as

ds211D = r
9−d
3 UIJdy

IdyJ + r−
d
3 gµνdx

µdxν , (4.2)

with U unimodular and r defined such that the torus volume is Vol(T d) = (2πℓr
9−d
6 )d. The relevant

physical modulus used in section 3.5 is V = r
9−d
2 , which scales with the volume spanned by the
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Euclidean M2-brane inside the torus. We write the four-graviton amplitude in terms of the scalar

function A(s, t, u, ϕ) (2.13) with 2κ2D = (2π)8−dℓ9−d and the torus T d has coordinates yI with

periodicity yI ∼= yI + 2πℓ. It admits the loop expansion

A =

∞∑
n=1

κ2nD

(
An-loop + cℓ6An-loop

[∫
t8t8R

4 + . . . ]

+
1

2
c2ℓ12An-loop

[
1
5

∫
t8t8∇6R4 + · · ·+

(∫
t8t8R

4 + . . .
)2
] + . . . (4.3)

where the first term is the supergravity amplitude, the second represents the form-factor with the

insertion of the leading higher derivative correction in the Wilsonian action in eleven dimensions.

The last line includes the form-factor with the insertion of the next-to-leading correction and the

double insertion of the leading correction. In eleven dimensions there is a unique BPS counter-term

that starts as R4, and that we must include with a fixed coefficient c = 2π2

3 to match the type II

string theory four-graviton amplitude [9]. This coefficient can be fixed in many ways, for example

through the cancelation of the M5-brane world-volume anomaly [127], or the cancelation of the

U-duality SL(2,Z) anomaly in D ≤ 8 [42,51].

The one-loop amplitude in eleven dimensions on T d gives rise to the sum over the Kaluza–Klein

states

A1-loop
l ϵ = 64κ2D

∑
n∈Zd

∫
dDp

(2π)D
1

(p2+M2)((p− k1)2+M2)((p− k1 − k2)2+M2)((p+ k4)2+M2)
+ ⟲

= −8π
5−d
2 ℓ6

Γ(d−7
2 )Γ(9−d

2 )2

Γ(8− d)

∫ 1

0
dx

(
(−ℓ2s)

3−d
2

(1− x)
5−d
2

(1 + t
s)x− 1

+ (−ℓ2t)
3−d
2

(1− x)
5−d
2

(1 + s
t )x− 1

)
(4.4)

+4πℓ6
∫ ∞

0

dL

L
5−d
2

′∑
n∈Zd

∫ 1

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3 e

πLℓ2((1−x1)(x2−x3)s+x3(x1−x2)t)−πLr−3U−1[n])+ ⟲

where the Kaluza–Klein mass is ℓ2M2 = r−3U−1[n] and the second term including only the sum

over non-zero modes n ∈ Zd is analytic. The dimensional regularisation d → d + 2ϵ is chosen to

agree with the one derived in string theory in Section 2.2. The two-loop amplitude is written in

Schwinger parameter space as in (2.102)

A2-loop
ll ϵ =

π

4
ℓ10
∑

ni∈Zd

∫
R3

+

dL1dL2dL3(∑
I<JLILJ

)5− d
2

s2e−πr−3(L1U−1[n1]+L2U−1[n2]+L3U−1[n1+n2]) (4.5)

∫
0≤y1≤y2≤1
dy1dy2 L

2
1 eπℓ

2sL1y1(1−y2)

(∫
0≤y3≤y4≤1
dy3dy4 L

2
2

e
πℓ2
(
sL2y3(1−y4)+

L1L2L3∑
I<J

LILJ

(
t(y2−y1)(y4−y3)+s(1−y1−y4)(1−y2−y3)

))
+

∫ 1

0
dy3

∫ 1

0
dy4 L2L3 e

πℓ2
L1L2L3∑
I<J

LILJ

(
t(y2−y1)(y4−y3)+s(1−y1−y4)(1−y2−y3)

))
+ perm.

It must be decomposed into the component with ni = 0 corresponding to the two-loop amplitude

in D dimensions, the component with n1 = 0, n2 = 0 or n1 + n2 = 0 corresponding to a one-loop
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form-factor (when one of the particles in the loops is massless) and the component with ni ̸= 0 and

n1 + n2 ̸= 0 that contributes to the Wilsonian effective action

A2-loop

W ϵ =
ℓ6

6

∫
R3

+

dL1dL2dL3(∑
I<JLILJ

)3− d
2

(
4πσ2+

4π2

3 σ3

(∑
I

LI−
5L1L2L3∑
I<JLILJ

)
+. . .

)∑
ni∈Zd

ni ̸=0
n1+n2 ̸=0

e−πΩij
2

r−3

ℓ2
n⊺
iU

−1nj

(4.6)

where we introduced

σk = ( ℓ2)
2k(sk + tk + uk) . (4.7)

In critical dimensions in which the form-factor diverges logarithmically the sum over degenerate

Kaluza–Klein modes also contribute to the Wilsonian component of the amplitude, as we shall

describe in the next section.

The supergravity three-loop four-graviton amplitude was derived in [125], and further simplified

in [126,205]. To compute the three-loop amplitude in Schwinger parameter space, it is convenient

to use the so-called BCJ integrand [205]. There are twelve diagrams in total, nine are associated

to the vacuum tetrahedron and can be written in the schematic form

A3-loop
Ú

ϵ =
π

16

∑
S3

∑
ni∈Zd

∫
d3Dℓ

∫
S+

d6ΩP (4)

E (Ω)

∫
FE

d4x (N ijℓi · kj+f(s, t))2e−π[Ωij(ℓi · ℓj + r−3

ℓ2
n⊺iU

−1nj) + 2M ijℓi · kj + g(s, t)]

=
π

16

∑
S3

∑
ni∈Zd

∫
S+

d6Ω

detΩ
D
2

P (4)

E (Ω)

∫
FE

d4x
( 1

2π
Ω−1
kl N

kiN ljki · kj + (−Ω−1
kl M

kiN ljki · kj + f(s, t))2
)

×e−πΩij r−3

ℓ2
n⊺
iU

−1nj+πΩ−1
kl MkiM ljki·kj−πg(s,t) (4.8)

where S+ is the subset of the three by three positive matrices

Ω =

 L23 + L03 + L02 −L03 −L02

−L03 L31 + L03 + L01 −L01

−L02 −L01 L12 + L01 + L02

 (4.9)

where Lµν = Lνµ ≥ 0. The matrices M ij are linear in the Lµν with coefficients that are affine in

the Feynman parameters x and depend on each diagrams. The Feynman parameters come with

their integration domain FA and a polynomial P (4)

E (Ω) in the Schwinger parameters coming from

the change of variables. The matrices N ij have constant coefficients and determine the kinetic BCJ

numerators. f and g are linear in the Mandelstam variables, linear in the Schwinger parameters

and polynomial in the Feynman parameters. We used the explicit expressions in a Mathematica

file, but they are rather lengthly and not so illuminating so we chose to do not display them.

The ladder skeleton is obtained by setting L02 = 0. To combine the two types of diagrams it

is convenient to use the same Schwinger parameter space S+ with a Dirac distribution δ(L02). We

write schematically the three diagrams associated to the vacuum ladder diagram as

A3-loop
lll ϵ =

π

16

∑
S3

∑
ni∈Zd

∫
d3Dℓ

∫
S+

d6Ωδ(Ω13)P (5)

A (Ω)

∫
FA

d5x s4e−π[Ωij(ℓi · ℓj + r−3

ℓ2
n⊺iU

−1nj) + 2M ijℓi · kj + g(s, t)]

=
π

16

∑
S3

∑
ni∈Zd

∫
S+

d6Ω

detΩ
D
2

δ(Ω13)P (5)

A (Ω)

∫
FA

d5x s4e−πΩij r−3

ℓ2
n⊺
iU

−1nj+πΩ−1
kl MkiM ljki·kj−πg(s,t).(4.10)
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Writing the ladder diagrams contribution this way is justified if we want to interpret the three-

loop supergravity amplitude as a tropical limit of the three-loop string amplitude. The mod-

uli space of genus three Riemann surfaces can be identified with the Siegel symmetric space

U(3)\Sp(6,R)/Sp(6,Z) with the separating degeneration locus removed. The tetrahedron and

ladder diagrams then arise from the two maximal non-degeneration limits [175,211]. Note nonethe-

less that one does not expect to be able to write the four-point amplitude as an integral over the

moduli space of genus three Riemann surfaces with four punctures [212]. The fact that it is possible

for the leading Wilson coefficient might be related to the fact that it takes the form of a vacuum

diagram [201].

We shall only describe in detail the leading contribution to the Wilsonian effective action that

arises in combining the contributions at low energy

A3-loop

W ϵ =

∫
S+

d6Ω

detΩ
9−d
2

(5
6
σ3 +

1
6P

(4)(Ω) + δ(Ω13)P (5)(Ω)

detΩ
σ 2
2 + . . .

) ∑
ni∈Zd

ni ̸=0
ni+nj ̸=0

e−πΩij r−3

ℓ2
n⊺
iU

−1nj (4.11)

with the definitions

P (4)(Ω) =
π

6

∑
S4

(
detΩL12 −

17

2
L23L31L12L03 −

19

8
L23L31L01L02

)
+

π

64

(∑
S4

L23L01

)2
P (5)(Ω) =

π

4

∑
Z2×Z2

(
L23L31L12(L01L03 + 2L23L01 + L23L12)

)
(4.12)

where Z2 ×Z2 is the stabilizer of L02 in S4 permuting the vertices 0 and 2 and the vertices 1 and

3.

The Schwinger parameter space is a 24th order unfolding of the SL(3,Z) fundamental do-

main G3 = S+/S4, where S4 acts as the permutations of the indices µ of the tetrahedron ver-

tices [210, 74]. In the same way at two-loop, the Schwinger parameter space is a 6th order

unfolding of the PGL(2,Z) fundamental domain G2 = S+/S3 [55]. We shall write the ana-

lytic component of the amplitude in Schwinger parameter space using the tropical moduli space

Gh
∼= SO(h)\GL(h,R)/PGL(h,Z) for h = 1, 2, 3 of the vacuum diagrams

Figure 13: The skeletons graphs with respective symmetry {1}, S3 and S4.

We must also take into account the insertions of the higher-derivative terms in the eleven-

dimensional supergravity effective action. The form-factors have not been derived directly in su-

pergravity, but one can deduce them from the perturbative string theory amplitude or from the

sub-divergences of the supergravity amplitude. The second method was used in [209] to derive the

contribution of the R4 form-factor. Because the power-low divergence does not preserve supersym-

metry a priori, one must be careful and it is more safe to only consider logarithmic divergences in
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the critical dimensions. The pole in 1
ϵ in dimensional regularisation must define supersymmetry

invariants as the first logarithmic divergence in the theory in a given dimension. For R4 it turns

out to give the same result as in string theory, so we can simply deduce from (2.51) that

A1-loop

■◁ ϵ
= 2crd ℓ6κ2D

∑
n∈Zd

∫
dDp

(2π)D
s2

(p2 +M2)((p− k1)2 +M2)((p− k1 − k2)2 +M2)
+ ⟲

=
crd

8
ℓ10

∑
n∈Zd

∫ ∞

0

dL

L3− d
2

∫ 1

0
dx2

∫ x2

0
dx1

(
s2eπℓ

2sLx1(x2−x1)−πLr−3U−1[n]+ ⟲
)
. (4.13)

One can obtain similarly the two-loop form-factor starting from the three-loop amplitude and taking

a subdivergence in D = 8− 2ϵ dimensions

A2-loop

■◁– ϵ
= crdℓ6

∫
G2

d3Ω2

detΩ
9−d
2

2

∑
ni∈Zd

e−πr−3Ωij
2 n⊺

iU
−1nj

(
5

π
σ3

+

(
1

6

(
7
∑
I

LI −
8L1L2L3∑
I<JLILJ

)
+

1

4

∑
I

LI+1LI+2δ(LI)

)
σ 2
2 + . . .

)
. (4.14)

As expected from supersymmetry, this result is consistant with the form-factor contribution at

two-loop in string theory (2.126), upon replacing 2ζ(3) by crd. The term in δ(LI) corresponds to

a eight-shape Feynman diagram 25

2crd ℓ6κ4D

(∑
n∈Zd

∫
dDp

(2π)D
s2

(p2 +M2)((p− k1)2 +M2)((p− k1 − k2)2 +M2)

)2

+ ⟲ (4.15)

that should appear in the two-loop string amplitude. One expects such term to appear in the

further degeneration of the non-separating degeneration limit through the first diagram in figure

10, but we have not carried out this computation.

Here we shall consider the low energy effective action up to fourteen derivatives, for which only

the first three loop orders described above contribute in supergravity, including theR4 counter-term

with coefficient c = 2π2

3 . Combining all the contributions described above, we get

AWϵ = ℓ6
∑
p,q

σp2σ
q
3 E sugra

(p,q)

= 4πℓ6
∫ ∞

0

dL

L
5−d
2

′∑
n∈Zd

∫ 1

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3 e

πLℓ2((1−x1)(x2−x3)s+x3(x1−x2)t)−πLr−3U−1[n])+ ⟲

+4πℓ6
∫
G2

d3Ω2

detΩ
7−d
2

2

(
σ2 + 2σ3φ

tr
KZ(Ω2) + . . .

) ′∑
ni∈Z2×d

e−πΩij
2 r−3n⊺

iU
−1nj

+20ℓ6σ3

∫
G3

d6Ω3

|Ω3|
9−d
2

′∑
ni∈Z3×d

e−πΩij
3 r−3n⊺

iU
−1nj

25Off-shell one should write one integrand in function of k1, k2 and the other in function of k3, k4, but because the

integral only depends on s = −(k1 + k2)
2 = −(k3 + k4)

2 we can write it as a square.
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+ℓ6
(
crd +

(crd)2

10
σ3 + . . .

)
+
ℓ10

8
crd

(
s2
∫ ∞

0

dL

L
7−d
2

′∑
n∈Zd

∫ 1

0
dx1

∫ x1

0
dx2 e

πLℓ2(1−x1)x2s−πLr−3U−1[n]+ ⟲

)

+
5

π
ℓ6crd

∫
G2

d3Ω2

detΩ
9−d
2

2

(σ3 + . . . )

′∑
ni∈Z2×d

e−πΩij
2 r−3n⊺

iU
−1nj + . . . (4.16)

The three first lines follow from the loop expansion in two-derivative supergravity. The fourth line

is the invariant leading Wilsonian correction while the two last lines are the one-loop and two-loop

contributions with one insertion of the leading Wilsonian correction. The final ellipses state for

higher loop contributions that only contribute to higher derivative terms. We have introduced the

tropical Kawazumi–Zhang invariant according to [173]

φtr
KZ(Ω2) =

π

6

(∑
I

LI −
5L1L2L3∑
I<JLILJ

)
. (4.17)

One obtains formally for all d

E sugra
(0,0) ∼ V 3 d−3

9−d

(2π2
3
V + 2ζ(3)E

SL(d)
3
2
Λ1

)
(4.18)

E sugra
(1,0) ∼ 8πV 3 d+1

9−d

(
ξ(4)ξ(d+ 1)E

SL(d)
d+1
2

Λd−1
+
ξ(2)ξ(5)

V 2
E
SL(d)
5
2
Λ1

+
ξ(3)ξ(4)

V 3
E
SL(d)
2Λ2

)
(4.19)

E sugra
(0,1) ∼ V 3 d+3

9−d

(
8π4

567
ξ(d+ 3)E

SL(d)
d+3
2

Λd−1
+

π4

27V
+

8π2

3V 2
ξ(2)ξ(3)E

SL(d)
3
2
Λ1

(4.20)

+
8π

V 3

∫
G2

d3Ω2

detΩ
7−d
2

2

φtr
KZ(Ω2)

′∑
ni∈Zd

e−πΩij
2 n⊺

iU
−1nj +

40ξ(2)

V 5
ξ(6)ξ(5)E

SL(d)
3Λ2

+
40

V 6
ξ(3)ξ(4)ξ(5)E

SL(d)
5
2
Λ3

)

where we use the functional relations following from (3.20)

k−1∏
i=0

[
ξ(2s− i)

]
E
SL(d)
sΛk

=

k−1∏
i=0

[
ξ(d− 2s− i)

]
E
SL(d)

( d
2
−s)Λd−k

. (4.21)

These expressions are formally correct, but to give a meaningful answer we need to be more careful

whenever there is a pole in the Eisenstein series associated to an ultra-violet divergence in super-

gravity. Then the duality invariant coupling functions get a contribution from the non-analytic

component of the amplitude. This is the subject of the next section, which is admittedly aimed at

the most committed readers.

4.2 Cancelation of divergences and logarithmic terms

One needs to combine the analytic and non-analytic components of the amplitude in the Mandel-

stam variables to define the finite amplitude, as we did in Section 2 in string theory. Accordingly

we can use the dimensional regularisation d → d+ 2ϵ with the definition of κ2D = 1
2(2π)

8−dℓ9−d to

extract the finite amplitude, up to orders in which the perturbative supergravity amplitude is finite
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in dimensional regularisation and the low energy effective action is under control. The first pole in

the dimensional regularisation parameter ϵ appears at two-loop order and involves a ∇12R4 type

counter-term in eleven dimensions. Fortunately this is far beyond the terms we shall consider and

this will not affect our computations. Therefore we will not need to renormalise eleven-dimensional

supergravity in dimensional regularisation.

We could in principle extract the complete amplitude with a well defined split in the analytic

and the non-analytic components of the amplitude as we did in section 2.2. In this section we will

not define carefully the non-analytic component and we shall instead cancel the divergences between

analytic and non-analytic components by using an ad hoc infrared regularisation of the amplitudes

with a massless particle in the loop. In practice we shall give a mass µ to the massless propagators

and only keep the logarithmic terms in logµ. Fixing these constant is exactly equivalent as de-

termining the renormalisation scheme determined by string theory. To determine the scheme, we

would not only need to compute the contributions from the non-analytic components carefully, but

also to keep track of all the precise pole subtractions used to define renormalised SL(d) Langlands

Eisenstein series. This is a doable but rather tedious computation. Testing the coupling functions

up to the match of the renormalisation scheme is already a very strong consistency check.

R4 at 1-loop

At one-loop we therefore include the contribution from the massless mode with an infrared mass µ

as follows

2π

∫ ∞

0

dL

L
5−d−2ϵ

2

( ′∑
n∈Zd

e−πLr−3U−1[n] + e−πLµ2
)

= 4πξ(d+ 2ϵ− 3)r
3
2
(d+2ϵ−3)E

SL(d)
d+2ϵ−3

2
Λd−1

+ 2πΓ(d+2ϵ−3
2 )(πµ2)−

d+2ϵ−3
2

=
d=3
ϵ→0

4πξ(3)Ê
SL(3)
3
2
Λ1

− 2π log V − 4π log(2πµ) . (4.22)

One concludes that formula (4.18) for E sugra
(0,0) is accurate, except for d = 3 in which case we have

E sugra
(0,0) =

d=3

2π2

3
V + 2ζ(3)Ê

SL(3)
3
2
Λ1

− 2π log V . (4.23)

This is indeed the result obtained for the non-perturbative coupling function [38]. The renomalisa-

tion prescription compatible with the string theory amplitude has been written explicitly in [213],

which gives an additional 22π/3.

Here and below we define the regularised Eisenstein series Ê
SL(d)
d
2
Λk

such that

ξ(2ϵ)

k−1∏
i=1

[
ξ(2ϵ− i)

]
E
SL(d)
ϵΛk

= ξ(2ϵ)

k−1∏
i=1

[
ξ(1 + i)

]
+

k−1∏
i=0

[
ξ(d− i)

]
Ê
SL(d)
d
2
Λd−k

+O(ϵ) . (4.24)

More generally we write ÊG
jΛk

for the renormalised value of a maximal parabolic Eisenstein series

as defined from (3.23). The precise pole subtraction prescription will be mostly irrelevant since

we do not compute carefully the constants fixing the renormalisation scheme determined by string

theory.
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σ2R4 up to 2-loop

The 1-loop contribution to E sugra
(1,0) is regular in all dimensions

4πξ(4)

∫ ∞

0

dL

L
1−d−2ϵ

2

∑
n∈Zd

e−πLr−3U−1[n] = 8πV 3 d+1
9−d ξ(4)ξ(d+ 1)E

SL(d)
d+1
2

Λd−1
. (4.25)

For the 2-loop contribution to E sugra
(1,0) we decompose the sum over pairs of Kaluza–Klein momenta

ni into the sum over linearly independent ni, the linearly dependent ni with an infrared regulating

mass on the orthogonal component, and the massless contribution with infrared regulator R(µ) =

detΩ2µ
2. The latter is not very natural, as one may rather define TrΩ2µ

2 to give a mass µ to

each internal propagator, but the leading logarithm is universal and we can use this definition to

simplify the computation.

For linearly independent momenta ni we can always map them using SL(d,Z) to the set of

momenta on a torus T 2 ⊂ T d, so we can write the sum over two-by-two matrices combined with a

Poincaré sum over Pd−2(Z)\SL(d,Z). Recall that Pd−2 = GL(2)×SL(d−2)⋉R2×(d−2). Similarly

for a single charge we can write the sum over momenta ni for a preferred circle with a Poincaré

sum over Pd−1(Z)\SL(d,Z). This gives

4π

∫
G2

d3Ω2

detΩ
7−d−2ϵ

2
2

′∑
ni∈Zd

e−πΩij
2 r−3n⊺

iU
−1nj−πR(µ) (4.26)

= 8π
∑

γ∈Pd−2\SL(d)

∑
N∈Z2×2/GL(2,Z)

detN ̸=0

∫
H2

d3Ω2

detΩ
3
2
− d+2ϵ−4

2
2

eπr
−3yd− 2TrΩ2N⊺U−1N

∣∣∣∣∣
γ

+4π
∑

γ∈Pd−1\SL(d)

∞∑
n=1

∫ ∞

0

dL

L1− d+2ϵ−3
2

eπLr
−3y2d− 1n

2

∣∣∣∣∣
γ

∫ ∞

0

dt

t1−
d−5
2

e−πtµ2

+4π

∫
G2

d3Ω2

detΩ
3
2
− d+2ϵ−4

2
2

e−π detΩ2µ2

= 8πξ(d+ 2ϵ− 4)ξ(d+ 2ϵ− 5)r3(d+2ϵ−4)E
SL(d)
d+2ϵ−4

2
Λd−2

+4πξ(d+ 2ϵ− 3)r
3
2
(d+2ϵ−3)E

SL(d)
d+2ϵ−3

2
Λd−1

Γ(d+2ϵ−5
2 )

(πµ2)
d+2ϵ−5

2

+ 4πξ(2)
Γ(d+2ϵ−4

2 )

(πµ2)
d+2ϵ−4

2

=
ϵ→0

8π
(
ξ(4)ξ(3)V 3 d+1

9−d
−3Ê

SL(d)
2Λ2

− δd,4ξ(2)
(
6
5 log V + log(2πµ)

)
−δd,5ξ(3)V

3
2

((
log V + log(2πµ)

)
E
SL(5)
3
2
Λ1

++1
2∂ϵE

SL(5)

( 3
2
+ϵ)Λ1

∣∣
ϵ=0

))
,

where for d = 4 we define Ê
SL(4)
2Λ2

from (4.24), for d = 5 we define Ê
SL(5)
2Λ2

such that

ξ(1 + 2ϵ)ξ(2ϵ)E
SL(5)

( 1
2
+ϵ)Λ3

= ξ(2ϵ)ξ(3− 2ϵ)E
SL(5)

( 3
2
−ϵ)Λ1+ϵΛ4

= ξ(4− 2ϵ)ξ(3− 2ϵ)E
SL(5)

(2−ϵ)Λ2

= ξ(2ϵ)ξ(3− 2ϵ)E
SL(5)
3
2
Λ1

+ ξ(4)ξ(3)Ê
SL(5)
2Λ2

+O(ϵ) (4.27)
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and E
SL(d)
2Λ2

is finite for d ̸= 4, 5. To write this we need to use the Langlands functional relations

on non-maximal parabolic Eisenstein series (3.20). The explicit computations are cumbersome and

are done with a computer so we do not display the details.

We must also consider the 1-loop form-factor of the leading correction to the effective action.

Its contribution to E sugra
(1,0) gives

4πξ(2)rd
∫ ∞

0

dL

L
7−d−2ϵ

2

( ′∑
n∈Zd

e−πLr−3U−1[n] + e−πLµ2
)

= 8πξ(2)rdξ(d+ 2ϵ− 5)r
3
2
(d+2ϵ−5)E

SL(d)
d+2ϵ−5

2
Λd−1

+ 4πξ(2)rdΓ(d+2ϵ−5
2 )(πµ2)−

d+2ϵ−5
2

=
d=5
ϵ→0

8πξ(2)V
5
2

(
ξ(5)Ê

SL(5)
5
2
Λ1

− 3

4
log V − log(2πµ)

)
. (4.28)

We conclude that (4.18) for E sugra
(1,0) is accurate for d = 4, 5, while for d = 4, 5 we have

E sugra
(1,0) =

d=4
8π
(
ξ(4)ξ(5)V 3E

SL(4)
5
2
Λ3

+ ξ(2)ξ(5)V E
SL(4)
5
2
Λ1

+ ξ(4)ξ(3)Ê
SL(4)
2Λ2

− π

5
log(V )− ξ(2) log(2πµ)

)
E sugra
(1,0) =

d=5
8πV

9
2

(
ξ(4)ξ(5)E

SL(5)
3Λ3

+
ξ(2)

V 2

(
ξ(5)Ê

SL(5)
5
2
Λ1

− 3
4 log V

)
+
ξ(3)

V 3

(
ξ(4)Ê

SL(5)
2Λ2

− log V E
SL(5)
3
2
Λ1

− 1
2∂ϵE

SL(5)

( 3
2
+ϵ)Λ1

∣∣
ϵ=0

))
− 2 log(2πµ)E sugra

(0,0) . (4.29)

This result is indeed consistent with the large radius limit of the exact coupling function E(1,0) [38],

as one can see explicitly by comparing with (D.39) and (D.40). Note that the terms proportional to

log V do not need to recombine into the coupling E sugra
(0,0) and they do not. However, the log(2πµ) terms

must recombine into log(2πµ)E sugra
(0,0) in D = 6 dimensions because the ambiguity in the definition of

the infrared cutoff is fixed by adding the one-loop form factor of the E sugra
(0,0)R

4 type invariant insertion

A[E sugra
(0,0)R4] =

d=5

ℓ10

8
E sugra
(0,0)

(
s2
∫ ∞

0

dL

L1−ϵ

∫ 1

0
dx1

∫ x1

0
dx2 e

πLℓ2(1−x1)x2s+ ⟲

)
(4.30)

=
ℓ10

8

Γ(1− ϵ)Γ(2− ϵ)

(1− ϵ)Γ(3− 2ϵ)
E sugra
(0,0)

(
s2(−πℓ2s)−ϵ + t2(−πℓ2t)−ϵ + u2(−πℓ2u)−ϵ

)
= ℓ6σ2E sugra

(0,0)Γ(ϵ)(πµ
2)−ϵ

+
ℓ10

16
E sugra
(0,0)

(
s2
(
3− log(− ℓ2s

µ2 )
)
+ t2

(
3− log(− ℓ2t

µ2 )
)
+ u2

(
3− log(− ℓ2u

µ2 )
))

+O(ϵ) ,

so that the total amplitude does not depend on µ.

σ3R4 up to 3-loop

The 1-loop contribution to E sugra
(0,1) is finite in all dimensions

4π4

567

∫ ∞

0

dL

L− 1+d+2ϵ
2

∑
n∈Zd

e−πLr−3U−1[n] = 40ξ(2)ξ(6)ξ(d+ 3)V 3 d+3
9−dE

SL(d)
d+3
2

Λd−1
. (4.31)
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The 2-loop contribution to E sugra
(0,1) has a divergence for d = 3 and d = 7. To compute them it is

convenient to unfold the integral to Schwinger parameter space and use some simplifications of the

integral explained in Appendix F.1. Using those one gets

8π

∫
G2

d3Ω2

detΩ
7−d−2ϵ

2
2

φtr
KZ(Ω2)

′∑
ni∈Zd

e−πΩij
2 r−3n⊺

iU
−1nj−πR(µ)

=
2π2

9

∫ ∞

0

dρ2

ρ
5−d−2ϵ

2
2

∫ 1

0
du

∫ ∞

ρ2u(1−u)

dt

t
5−d−2ϵ

2

(
1 +

ρ2
t

(
(1− 6u(1− u)

)
+

5ρ 2
2

t2
u2(1− u)2

)

×

( ′∑
ni∈Zd

ni ̸=0, n1+n2 ̸=0

e−πr−3
(
ρ2(n1+un2)⊺U−1(n1+un2)+tU−1[n2]

)
+ 3

′∑
n∈Zd

e−πρ2r−3U−1[n]−πtµ2
+ e−π(ρ2+t)µ2

)

= 8πr3(d+2ϵ−3)

∫
G2

d3Ω2

detΩ
7−d−2ϵ

2
2

φtr
KZ(Ω2)

′∑
ni∈Zd

n1∧n2 ̸=0

e−πΩij
2 n⊺

iU
−1nj

+
4π2

3

Γ(d+2ϵ−3
2 )

(πµ2)
d+2ϵ−3

2

ξ(d+ 2ϵ− 3)r
3
2
(d+2ϵ−3)E

SL(d)
d+2ϵ−3

2
Λd−1

+
2π2

9

9− d− 2ϵ

7− d− 2ϵ

Γ(d+2ϵ−3
2 )2

(πµ2)d+2ϵ−3

+
2π2

9

Γ(d+2ϵ−7
2 )

(πµ2)
d+2ϵ−7

2

ξ(d+ 2ϵ+ 1)r
3
2
(d+2ϵ+1)E

SL(d)
d+2ϵ+1

2
Λd−1

. (4.32)

For d = 3 one gets

8π

∫
G2

d3Ω2

detΩ2−ϵ
2

φtr
KZ(Ω2)

′∑
ni∈Z3

e−πΩij
2 r−3n⊺

iU
−1nj−πR(µ)

= 8πV 2ϵ

∫
G2

d3Ω2

detΩ2−ϵ
2

φtr
KZ(Ω2)

∑
ni∈Z3

n1∧n2 ̸=0

e−πΩij
2 n⊺

iU
−1nj +

4π2

3

Γ(ϵ)

(πµ2)ϵ
ξ(2ϵ)V ϵE

SL(3)
ϵΛ2

+
2π2

9

3− ϵ

2− ϵ

Γ(ϵ)2

(πµ2)2ϵ

=
ϵ→0

ESL(3)
(0,1) +

π2

3
log(V )2 − π

3
log V

(
2ζ(3)Ê

SL(3)
3
2
Λ1

+
π

3

)
+
4π2

3
log(2πµ)2 − 2π

3
log(2πµ)

(
2ζ(3)Ê

SL(3)
3
2
Λ1

− 2π log V +
π

3

)
, (4.33)

where ESL(3)
(0,1) is a function of the SL(3) moduli only, that is defined as

ESL(3)(0,1) = lim
ϵ→0

(
8π

∫
G2

d3Ω2

detΩ2−ϵ
2

φtr
KZ(Ω2)

∑
ni∈Z3

n1∧n2 ̸=0

e−πΩij
2 n⊺

iU
−1nj − 16π2ξ(2ϵ)2

(4− 2ϵ)(3 + 2ϵ)
E
SL(3)
2ϵΛ2

)
. (4.34)
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We prove that this limit is finite in Appendix F.2. For d = 7 one gets

8π

∫
G2

d3Ω2

detΩ−ϵ
2

φtr
KZ(Ω2)

′∑
ni∈Z7

e−πΩij
2 r−3n⊺

iU
−1nj−πR(µ)

= 8πV 12+6ϵ

∫
G2

d3Ω2

detΩ−ϵ
2

φtr
KZ(Ω2)

′∑
ni∈Z7

n1∧n2 ̸=0

e−πΩij
2 n⊺

iU
−1nj +

2π2

9

Γ(ϵ)

(πµ2)ϵ
ξ(8 + 2ϵ)V 12+3ϵE

SL(7)

(4+ϵ)Λ6

=
ϵ→0

V 12ESL(7)
(0,1) − 60ξ(4)ξ(8)V 12 log V E

SL(7)
4Λ6

− 40ξ(4)ξ(8) log(2πµ)V 12E
SL(7)
4Λ6

. (4.35)

where ESL(7)
(0,1) is defined from the finite limit (see Appendix F.2)

ESL(7)
(0,1) = lim

ϵ→0

(
8π

∫
G2

d3Ω2

detΩ−ϵ
2

φtr
KZ(Ω2)

′∑
ni∈Z7

e−πΩij
2 n⊺

iU
−1nj − 4π2

9
ξ(2ϵ)ξ(8 + 2ϵ)E

SL(7)

(4+ϵ)Λ6

)
. (4.36)

The 3-loop contribution to E sugra
(0,1) can be computed as in [74] by splitting the sum over Kaluza–

Klein momenta depending on the rank of niI . We will not explain the details in this case and just

give

20

∫
G3

d6Ω2

detΩ
9−d−2ϵ

2
2

′∑
ni∈Zd

e−πΩij
2 r−3n⊺

iU
−1nj−πR(µ)

= 40
∑

γ∈Pd−3\SL(d)

∑
N∈Z3×3/GL(3,Z)

detN ̸=0

∫
H3

d6Ω3

|Ω3|2−
d+2ϵ−5

2

e−πr−3y
2
3
d− 3TrΩ3N⊺U−1N

∣∣∣∣∣
γ

+20
∑

γ∈Pd−2\SL(d)

∑
N∈Z2×2/GL(2,Z)

detN ̸=0

∫
H2

d3Ω2

detΩ
3
2
− d+2ϵ−4

2
2

eπr
−3yd− 2TrΩ2N⊺U−1N

∣∣∣∣∣
γ

∫ ∞

0

dt

t1−
d+2ϵ−7

2

e−πtµ2

+20
∑

γ∈Pd−1\SL(d)

∞∑
n=1

∫ ∞

0

dL

L1− d−3+2ϵ
2

eπLr
−3y2d− 1n

2

∣∣∣∣∣
γ

∫
G2

d3Ω2

detΩ
3
2
− d+2ϵ−6

2
2

e−π detΩ2µ2

+20

∫
G3

d6Ω2

detΩ
2− d+2ϵ−5

2
2

e−π detΩ2µ2

= 40ξ(d+ 2ϵ− 5)ξ(d+ 2ϵ− 6)ξ(d+ 2ϵ− 7)r
9
2
(d+2ϵ−5)E

SL(d)
d+2ϵ−5

2
Λd−3

+20Γ(d+2ϵ−7
2 )(πµ2)−

d+2ϵ−7
2 ξ(d+ 2ϵ− 4)ξ(d+ 2ϵ− 5)r3(d+2ϵ−4)E

SL(d)
d+2ϵ−4

2
Λd−2

+20ξ(2)Γ(d+2ϵ−6
2 )(πµ2)−

d+2ϵ−6
2 ξ(d+ 2ϵ− 3)r

3
2
(d+2ϵ−3)E

SL(d)
d+2ϵ−3

2
Λd−1

+20ξ(2)ξ(3)Γ(d+2ϵ−5
2 )(πµ2)−

d+2ϵ−5
2 (4.37)

We need to check the cases for which there is a logarithmic correction in µ for each d separately.

For this we use the Langlands functional relations to simplify the result. For d = 5 we get

40ξ(2ϵ)ξ(2ϵ− 1)ξ(2ϵ− 3)V
9
2
ϵE

SL(5)
ϵΛ2

+ 20ξ(2)ξ(3)Γ(ϵ)(πµ2)−ϵ

= 40ξ(5)ξ(4)ξ(3)Ê
SL(5)
5
2
Λ3

− 90ξ(2)ξ(3) log V − 40ξ(2)ξ(3) log(2πµ) , (4.38)
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for d = 6

40ξ(1 + 2ϵ)ξ(2ϵ)ξ(2ϵ− 1)V 3+6ϵE
SL(6)

( 1
2
+ϵ)Λ3

+ 20ξ(2)Γ(ϵ)(πµ2)−ϵξ(3 + 2ϵ)V 3+2ϵE
SL(6)

( 3
2
+ϵ)Λ5

(4.39)

= 40ξ(3)V 3
(
ξ(4)ξ(5)Ê

SL(6)
5
2
Λ3

+ 1
2ξ(2)∂ϵE

SL(6)

( 3
2
+ϵ)Λ5

∣∣
ϵ=0

− 2ξ(2) log V E
SL(6)
3
2
Λ5

− ξ(2) log(2πµ)E
SL(6)
3
2
Λ5

)
,

where we define Ê
SL(d)
d−1
2

Λd−3
for d ≥ 6 such that

ξ(1 + 2ϵ)ξ(2ϵ)ξ(2ϵ− 1)E
SL(d)

( 1
2
+ϵ)Λ3

= ξ(2ϵ)ξ(3− 2ϵ)ξ(2− 2ϵ)E
SL(d)

( 3
2
−ϵ)Λ1+ϵΛ4

= ξ(d− 1− 2ϵ)ξ(d− 2− 2ϵ)ξ(d− 3− 2ϵ)E
SL(d)

( d−1
2

−ϵ)Λd−3

= ξ(2)ξ(2ϵ)ξ(3)E
SL(d)
3
2
Λ1

+ ξ(d− 1)ξ(d− 2)ξ(d− 3)Ê
SL(d)
d−1
2

Λd−3
+O(ϵ) . (4.40)

For d = 7 this gives

40ξ(2 + 2ϵ)ξ(1 + 2ϵ)ξ(2ϵ)V 9+9ϵE
SL(7)

(1+ϵ)Λ4
+ 20Γ(ϵ)(πµ2)−ϵξ(3 + 2ϵ)ξ(2 + 2ϵ)V 9+6ϵE

SL(7)

( 3
2
+ϵ)Λ5

= 40ξ(3)V 9
(
ξ(5)ξ(4)Ê

SL(7)
5
2
Λ3

+ 1
2ξ(2)∂ϵE

SL(7)

( 3
2
+ϵ)Λ5

∣∣
ϵ=0

)
− 60ξ(4)ξ(3)V 9 log V E

SL(6)
2Λ2

−40ξ(4)ξ(3) log(2πµ)V 9E
SL(6)
2Λ2

, (4.41)

where we used

ξ(2 + 2ϵ)ξ(1 + 2ϵ)ξ(2ϵ)E
SL(7)

(1+ϵ)Λ4
= ξ(2ϵ)ξ(4− 2ϵ)ξ(3− 2ϵ)E

SL(7)

(2−ϵ)Λ2+ϵΛ6

= ξ(5− 2ϵ)ξ(4− 2ϵ)ξ(3− 2ϵ)E
SL(7)

( 5
2
−ϵ)Λ3

. (4.42)

We must now consider the form-factor for the leading correction to the Wilson effective action

in eleven dimensions. The 2-loop R4 type form-factor contributes through the integral

20ξ(2)rd
∫
G2

d3Ω2

detΩ
9−d
2

2

′∑
ni∈Zd

e−πΩij
2 r−3n⊺

iU
−1nj−πR(µ) (4.43)

= 40ξ(2)rd
∑

γ∈Pd−2\SL(d)

∑
N∈Z2×2/GL(2,Z)

detN ̸=0

∫
H2

d3Ω2

detΩ
3
2
− d+2ϵ−6

2
2

eπr
−3yd− 2TrΩ2N⊺U−1N

∣∣∣∣∣
γ

+20ξ(2)rd
∑

γ∈Pd−1\SL(d)

∞∑
n=1

∫ ∞

0

dL

L1− d+2ϵ−5
2

eπLr
−3y2d− 1n

2

∣∣∣∣∣
γ

∫ ∞

0

dt

t1−
d−7
2

e−πtµ2

+20ξ(2)rd
∫
G2

d3Ω2

detΩ
3
2
− d+2ϵ−6

2
2

e−π detΩ2µ2

= 40ξ(2)ξ(d− 6)ξ(d− 7)rd+3(d+2ϵ−6)E
SL(d)
d+2ϵ−6

2
Λd−2

+20ξ(2)Γ(d−7
2 )(πµ2)−

d+2ϵ−7
2 ξ(d− 7)rd+

3
2
(d+2ϵ−5)E

SL(d)
d−5
2

Λd−1
+ 20ξ(2)2Γ(d−6

2 )(πµ2)−
d+2ϵ−6

2 rd ,
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For d = 6 one obtains

40ξ(2)ξ(2ϵ)ξ(2ϵ− 1)V 4+4ϵE
SL(6)
ϵΛ4

+ 20ξ(2)2Γ(ϵ)(πµ2)−ϵV 4

= 40ξ(2)ξ(3)ξ(2)V 4Ê
SL(6)
3Λ2

− 80ξ(2)2V 4 log V − 40ξ(2)2 log(2πµ)V 4 , (4.44)

and for d = 7

40ξ(2)ξ(1 + 2ϵ)ξ(2ϵ)V 10+6ϵE
SL(7)

( 1
2
+ϵ)Λ5

+ 20ξ(2)Γ(ϵ)(πµ2)−ϵξ(2 + 2ϵ)V 10+3ϵE
SL(7)

(1+ϵ)Λ6

= 40ξ(2)ξ(5)V 10
(
ξ(6)Ê

SL(7)
3Λ2

− 1
2∂ϵE

SL(7)

( 5
2
+ϵ)Λ1

|ϵ=0

)
− 60ξ(2)ξ(5)V 10 log V E

SL(7)
5
2
Λ1

−40ξ(2)ξ(5) log(2πµ)V 10E
SL(7)
5
2
Λ1

. (4.45)

The 1-loop R4 type form-factor contributes through the integral

4π2

3
ξ(2)rd

∫ ∞

0

dL

L
5−d−2ϵ

2

( ′∑
n∈Zd

e−πLr−3U−1[n] + e−πLµ2
)

=
8π2

3
ξ(2)ξ(d+ 2ϵ− 3)rd+

3
2
(d+2ϵ−3)E

SL(d)
d+2ϵ−3

2
Λd−1

+
4π2

3
Γ(d+2ϵ−3

2 )(πµ2)−
d+2ϵ−3

2 rd

=
d=3
ϵ→0

8π2

3
ξ(2)ξ(3)V Ê

SL(3)
3
2
Λ1

− 4π2

3
ξ(2)V log V − 4π2

3
ξ(2) log(2πµ)V . (4.46)

In total for d = 7 on gets

E sugra
(0,1) =

d=7
V 15

(
8π4

567
ξ(10)E

SL(7)
5Λ6

+
4π2ξ(2)2

3V
+

8π2

3V 2
ξ(2)ξ(3)E

SL(7)
3
2
Λ1

(4.47)

+
1

V 3
ESL(7)
(0,1) +

40ξ(2)

V 5
ξ(5)

(
ξ(6)Ê

SL(7)
3Λ2

− 1
2∂ϵE

SL(7)

( 5
2
+ϵ)Λ1

∣∣
ϵ=0

)
+

40

V 6
ξ(3)

(
ξ(5)ξ(4)Ê

SL(7)
5
2
Λ3

+ 1
2ξ(2)∂ϵE

SL(7)

( 3
2
+ϵ)Λ5

∣∣
ϵ=0

))

−60V 12 log V
(
ξ(4)ξ(8)E

SL(7)
4Λ6

+
ξ(2)ξ(5)

V 2
E
SL(7)
5
2
Λ1

+
ξ(3)ξ(4)

V 3
E
SL(7)
2Λ2

)
− 5

π
log(2πµ)E sugra

(1,0) .

Note that the log(2πµ) term is proportional to the coupling function E sugra
(1,0) , as it must be since this

terms comes from the non-analytic E sugra
(1,0)∇4R4 one-loop form-factor, that includes a logarithmic

term in log(−sℓ2)σ3E sugra
(1,0) .

For d = 6

E sugra
(0,1) =

d=6
V 9

(
8π4

567
ξ(9)E

SL(6)
9
2
Λ5

+
4π2ξ(2)2

3V
+

8π2

3V 2
ξ(2)ξ(3)E

SL(6)
3
2
Λ1

+
40ξ(2)

V 5
ξ(6)ξ(5)Ê

SL(6)
3Λ2

+
8π

V 3

∫
G2

d3Ω2

detΩ
1
2
2

φtr
KZ(Ω2)

′∑
ni∈Z6

e−πΩij
2 n⊺

iU
−1nj+

40

V 6
ξ(3)

(
ξ(4)ξ(5)Ê

SL(6)
5
2
Λ3

+ 1
2ξ(2)∂ϵE

SL(6)

( 3
2
+ϵ)Λ5

∣∣
ϵ=0

))

−40π

3
V 3 log V

(
ξ(2)V + ξ(3)E

SL(6)
3
2
Λ1

)
− 5

3
log(2πµ)E sugra

(0,0) . (4.48)
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In this case the log(2πµ) term comes from the 2-loop R4E sugra
(0,0) form-factor that diverges logarith-

mically as we exhibited in the 2-loop string theory amplitude (2.125),(2.126).

For d = 5

E sugra
(0,1) =

d=5
V 6

(
8π4

567
ξ(d+ 3)E

SL(5)
4Λ4

+
4π2ξ(2)2

3V
+

8π2

3V 2
ξ(2)ξ(3)E

SL(5)
3
2
Λ1

(4.49)

+
8π

V 3

∫
G2

d3Ω2

detΩ2
φtr
KZ(Ω2)

′∑
ni∈Z5

e−πΩij
2 n⊺

iU
−1nj +

40ξ(2)

V 5
ξ(6)ξ(5)E

SL(5)
3Λ2

+
40

V 6
ξ(5)ξ(4)ξ(3)Ê

SL(5)
5
2
Λ3

)

−15ζ(3)

2
log V − 10ζ(3)

3
log(2πµ) ,

where the last term is consistent with the 3-loop divergence in six dimensions.

For d = 3

E sugra
(0,1) =

d=3
V 3

(
8π4

567
ξ(6)E

SL(3)
3Λ2

+
4π2ξ(2)2

3V
+

8π2

3V 2
ξ(2)ξ(3)E

SL(3)
3
2
Λ1

(4.50)

+
1

V 3
ESL(3)
(0,1) +

40ξ(2)

V 5
ξ(6)ξ(5)E

SL(3)
3Λ2

+
40

V 6
ξ(5)ξ(4)ξ(3)

)

+
π2

3
log(V )2 − π

3
log V

(
2ζ(3)Ê

SL(3)
3
2
Λ1

+
π

3

)
+

4π2

3
log(2πµ)2 − 2π2

3
log(2πµ)

(
E sugra
(0,0)+

π

3

)
.

We have now derived the precise contribution from eleven-dimensional supergravity to the

low energy effective action on T d for 3 ≤ d ≤ 7. We find perfect agreement with the results

of [76] derived from the Langlands constant term formula applied to the non-perturbative coupling

functions E(0,0) and E(1,0). We will see in the next section that the non-perturbative function E(0,1)

proposed in [64,27] does give the same function E sugra
(0,1) in the large volume limit.
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5 Beyond automorphic forms

As we said previously, the study of coupling functions in string theory requires to generalise the

notion of automorphic forms. In general the coupling functions do satisfy the condition of auto-

morphicity f(kvγ) = f(v) for k ∈ K and γ ∈ G(Z), the condition of uniform moderate growth

such that f(v) and all its covariant derivatives are polynomially bounded, but they are not eigen

functions of the invariant differential operators on G.

Let us first recall the prototypal example of the coupling function E(0,1) in type IIB string theory.

This function was computed from the two-loop amplitude in eleven-dimensional supergravity on T 2

as (0.10). This integral can be regularised using a formal Poisson summation formula, and defining

the regularised integral as [56]

E(0,1) =
2π2

9

∫
R3

+

dL1dL2dL3√∑
I<JLILJ

(∑
I

LI −
5L1L2L3∑
I<JLILJ

) ′∑
mI ,nI∈Z∑

I mI=
∑

I nI=0

e−π
∑

I LI
|mI+SnI |

2

ImS . (5.1)

The same authors showed that this function satisfies the Poisson equation

(∆− 12)E(0,1) = −(E(0,0))
2 , (5.2)

where ∆ = −(S − S̄)2∂S̄∂S and E(0,0) = 2ζ(3)E
SL(2)

3/2 . This equation together with the appropriate

boundary condition at ImS → ∞ was proved in [214] to determine uniquely the function, con-

sistently with expectations from non-perturbative effects in string theory. It was proved to be

fully consistent with string perturbation theory [84], as well as the leading instanton corrections

including the first instanton anti-instanton correction [12].

In this section we discuss the generalisation of this function for D ≤ 8 proposed in [64]. The

function in D = 8 dimensions was already determined in [215] and in seven and six dimensions

in [77]. The precise definition of this coupling function was given in [27], and shown to agree with

all previous proposals.

5.1 Supersymmetry and automorphic representations

The supersymmetry analysis explained in sections 1.3 and 3.2 did not take into account the presence

of the R4 type correction in analysing the ∇6R4 type supersymmetry invariant. The presence of

S(3) ∼
∫
E(0,0)t8t8R

4 at order ℓ6 requires to modify supersymmetry by a variation δ(3) linear in the

function E(0,0) and its derivatives, such that S(6) ∼
∫
E(0,1)t8t8∇6R4 must be a particular solution to

the supersymmetry invariance identity

δ(0)S(6) + δ(3)S(3) + δ(6)S(0) = 0 . (5.3)

The explicit computation is very difficult, but one can nonetheless conclude that the differential

equation satisfied by E(0,1) must be modified by terms quadratic in E(0,0) and its derivative.

There are two distinct ∇6R4 type invariants in 4 ≤ D ≤ 7 dimensions, and only one of them is

modified by the R4 type supersymmetric correction [53]. In this discussion we will concentrate on

D = 4, as in Section 3.2.
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Let us first analyse the set of differential equations satisfied by (E(0,0))
2. The function E(0,0)

satisfies (3.73), which implies equivalently

Dij[pqDrs]klE(0,0) =
1

6
DijklDpqrsE(0,0) −

1

16
εijklpqrsE(0,0) (5.4)

and therefore (
DijpqDpqrsDrskl −Dijkl

(
6 + 1

4∆
))

(E(0,0))
2 = 0 . (5.5)

Note that this is precisely the equation that follows from the condition that the Fourier coefficients

are non-generic in the decompactification limit in which one circle becomes large (3.55). In this

decomposition we have the explicit formula

ED=4
(0,0) = R3ED=5

(0,0) +
2π3

45
R6 + 4πR

9
2

′∑
q∈Z27

q×q=0

σ3(q)
K 3

2
(2πR|Z(q)|)

|Z(q)|
3
2

e2πiq·a , (5.6)

where R is the circle radius in Planck length and |Z(q)|2 = |v(q)|2 for v ∈ E6. The Fourier expansion

of (E(0,0))
2 is therefore easily found to be

(ED=4
(0,0))

2 =
(
R3ED=5

(0,0) +
2π3

45
R6
)2

+ 16π2R9
′∑

q∈Z27

q×q=0

(
σ3(q)

K 3
2
(2πR|Z(q)|)

|Z(q)|
3
2

)2

+ 8πR
15
2

(
ED=5
(0,0) +

2π3

45
R3
) ′∑

q∈Z27

q×q=0

σ3(q)
K 3

2
(2πR|Z(q)|)

|Z(q)|
3
2

e2πiq·a

+ 16π2R9
′∑

q1,q2∈Z27

q1×q1=0
q2×q2=0
q1 ̸=q2 ̸=0

σ3(q1)σ3(q2)
K 3

2
(2πR|Z(q1)|)

|Z(q1)|
3
2

K 3
2
(2πR|Z(q2)|)

|Z(q2)|
3
2

e2πi(q1−q2)·a . (5.7)

One can see that the first line includes exponentially suppressed terms at large radius that do

not depend on the axion a. They correspond to instanton anti-instanton effects found previously

in [56,214] in type IIB. By property of the E6 cubic invariant

det(q1 − q2) = det q1 − tr[q2 · (q1 × q1)] + tr[q1 · (q2 × q2)]− det q2 = 0 (5.8)

and (E(0,0))
2 indeed satisfies (3.55), and therefore (5.5).

A similar computation in string perturbation theory using (3.119) shows that (E(0,0))
2 admits

generic Fourier coefficients in P1 and therefore does not satisfy (3.62). Physically E(0,0) admits

corrections from D(-1) and D5 instantons in type IIB. Therefore (E(0,0))
2 includes D(-1)-D5 in-

stanton corrections, that correspond to a generic charge Q ∈ S− with (QγabQ)(QγabQ) < 0.

Therefore the abelian Fourier coefficient of (E(0,0))
2 with Q generic is generally non-zero provided

(QγabQ)(QγabQ) < 0. It turns out that the Fourier coefficients vanish for (QγabQ)(QγabQ) > 0.
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According to the analysis of section (3.2) we find that (E(0,0))
2 is compatible with the (1/8, 1/8)-

BPS supersymmetry invariant associated to the harmonic variables in SU(8)/S(U(1) × U(6) ×
U(1)), but not the (1/4, 0)-BPS supersymmetry invariant associated to the harmonic variables in

SU(8)/S(U(2)× U(6)) [53].

We have accordingly

E(0,1) =
8π4

567
ξ(10)ÊE7

5Λ7
+ EExFT

(0,1) (5.9)

where the Eisenstein series ÊE7
5Λ7

defined in (3.130) satisfies(
36Djr[klDirmnDpq]mn − δijDklpq(∆ + 42) + δi[kDlpq]j(∆− 120)

)
ÊE7

5Λ7
= 0 , (5.10)

as well as (3.132) and (3.134). One cannot add a source (E(0,0))
2 in the right-hand-side of (3.132)

without violating equation (5.10).

The function ÊExFT
(0,1) instead satisfies(

DijpqDpqmnDmnkl −Dijkl

(
1
4∆+ 6

))
ÊExFT
(0,1) = 0 , (5.11)

and the Poisson equation (
∆+ 60

)
ÊExFT
(0,1) =

20

π
E(1,0) − (E(0,0))

2 . (5.12)

Here we must distinguish the two terms on the right-hand-side of this equation. As discussed above,

the source term in (E(0,0))
2 comes from the modification of the supersymmetry transformations at

order ℓ6 (5.3), while the term linear in E(1,0) comes from the logarithmic divergence of the ∇4R4

type form-factor in four dimensions [53]. The logarithmic divergence in the one-loop form factor

comes from the five-point insertion (2.66)

A1-loop

ϵ =‹ ∼ − 5

2π

1

ϵ
σ3 E(1,0) . (5.13)

Following the reasoning of [216] this implies that the full coupling function depends logarithmically

on the string coupling constant

E(0,1) ∼
log gs

5

π
log gs E(1,0) . (5.14)

On a function of the dilaton gs = eϕ6 only, the E7 Laplace operator gives

∆f(ϕ6) =
1

4

∂

∂ϕ6

( ∂

∂ϕ6
+ 34

)
f(ϕ6) (5.15)

so that

∆(
5

π
log gs) =

85

2π
. (5.16)

Therefore consistency with the logarithmic divergence requires that the full function (5.9) satisfies

[77] (
∆+ 60

)
E(0,1) =

85

2π
E(1,0) − (E(0,0))

2 . (5.17)

Because of the quadratic source term in (5.12), the function EExFT
(0,1) does not define an automorphic

representation [217]. In particular the decomposition of U(e7)E(0,1) admits infinite multiplicities for
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the irreducible representations of SU(8). Nonetheless, the representations with non-zero multiplic-

ity (and then infinite) are the same as for the Heisenberg parabolic Eisenstein series GrU(e7)EE7
sΛ1

,

consistently with the linearised supersymmetry analysis. The associated variety of the ideal is

therefore still formally the closure of the nilpotent orbit O2Λ1 .

The Fourier coefficients of ÊExFT
(0,1) in any parabolic subgroup, for any unipotent character that

does not define a charge in the closure of the complex nilpotent orbit O2Λ1 , vanish, as in (3.55) and

the equivalent in (3.65). This means physically that ÊExFT
(0,1) only receives non-perturbative correction

from (1/8, 1/8)-BPS instantons, but no corrections from (1/4, 0)-BPS instantons, or even less BPS

instantons. The notion of wavefront set attached to the orbit O2Λ1 is therefore well defined and

very constraining.

We will now explain the formula for EExFT
(0,1) anticipated in [64] and determined in [27].

5.2 Exceptional field theory amplitude

It was proposed in [64] to consider an effective theory of one-half BPS states in string theory. From

the point of view of eleven-dimensional supergravity, one can define the conserved charge

Γ =
(
mI , n

IJ , nI1...I5 , kI1...I7,J
)

(5.18)

where mI is the momentum mode on T 7, nIJ the winding numbers of the M2-brane, nI1...I5 the

winding numbers of the M5-brane and nI1...I7,J the Kaluza-Klein monopole charge. There is exactly

one massive 1/2 BPS state spin 2 supermultiplet for each Γ ̸= 0 in L7 = Z
56 satisfying the constraint

Γ× Γ = 0, i.e. (see e.g. [218,192,60])

nIJmJ = 0 , 3n[IJnKL] = nIJKLPmP ,

6nI[JnKLPQR] = −kI,JKLPQRSmS + kS,IJKLPQRmS ,

7nIJK[PQnRSTUV ] = 2n[IJkK],PQRSTUV , n[IJKLPkQ],RSTUVWX = 0 . (5.19)

Because of E7(Z) U-duality invariance, these multiplets interact mutually when Γ1 × Γ2 = 0, with

the same interactions as Kaluza–Klein states in eleven dimensions.

Whenever Γ1×Γ2 ̸= 0, the two 1/2 BPS particles can produce a 1/4 BPS state. This can easily

be understood in type IIA, calling y7 the M-theory circle coordinate and yi with i = 1, 6 the type

IIA T 6 coordinates we have the identification

q = (mi, n
i7) , χ = (m7, n

ij , nijkl7, kijklpq7,7) , p = (nijklp, k1234567,i) , (5.20)

with q ∈ II6,6 the world-sheet zero modes, χ ∈ S− the D-brane charges (in this case D0-D2-D4-D6)

and p ∈ II6,6 the NS5-brane and Kaluza–Klein monopole charges. A perturbative string state

carries a charge q while χ = p = 0, and the BPS string states are 1/4 BPS whenever min
i7 ̸= 0. In

string theory two 1/2 BPS states can interact to give a generic 1/4 BPS state. According to (2.1)

the perturbative 1/4 BPS states are counted by the partition function [219]26∫ 1
2

− 1
2

dτ1

( ∞∏
n=1

(1− eπizqn)4(1− e−πizqn)4

(1− qn)6(1− e2πizqn)(1− e−2πizqn)
− 1

)(
2 sin(πz/2)

)8 ∑
m,n∈Zd

q
p2L
2 q̄

p2R
2 , (5.21)

26The reader should not confuse the charge q ∈ II6,6 with the q = e2πiτ parameter in the partition function.
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and its complex conjugate.

In fact all 1/4 BPS states of the theory can be mapped to perturbative 1/4 BPS states in

string theory by U-duality. This is because Γ × Γ is always in the minimal nilpotent orbit of E7,

therefore there exists γ ∈ E7(Z) such that γ(Γ× Γ) =
(
(q, q), 0, 0, 0, 0

)
and γΓ = (q, 0, 0) in the P1

decomposition.

Up to and including ∇6R4, the only diagram that contribute are displayed in figure 13 and such

that only three-point interactions with charges satisfying Γ1 × Γ2 ̸= 0 are involved in the loops.

One can therefore extract the contribution from the supergravity amplitude [64]. Because this

truncation to one-half BPS states is naturally interpreted as an exceptional field theory amplitude

on a generalised torus [65–73], we shall refer to them as exceptional field theory amplitudes.

The direct computation in d = 7+2ϵ dimensional regularisation gives [64,74]

EExFT 1-loop
(0,1) ϵ =

8π4

567
ξ(10+2ϵ)EE7

(5+ϵ)Λ7
,

EExFT 2-loop
(0,1) ϵ =

2π2

9

∫
R3

+

dL1dL2dL3

(
∑

I<J LILJ)−ϵ

(∑
I

LI −
5L1L2L3∑
I<J LILJ

) ′∑
ΓI∈Z56∑

I ΓI=0
ΓI×ΓJ=0

e−π
∑

I LI |Z(ΓI)|2 ,

EExFT 3-loop
(0,1) ϵ = 40ξ(2+2ϵ)ξ(1+2ϵ)ξ(2ϵ)EE7

(1+ϵ)Λ5
+ 20

Γ(ϵ)

(πµ2)ϵ
ξ(2+2ϵ)ξ(3+2ϵ)EE7

( 3
2
+ϵ)Λ6

, (5.22)

where an infrared regularisation was introduced at three-loop because of the one-loop subdivergence

when one internal propagator is massless. The three-loop result turns out to be finite, and up to a

part linear in E(1,0) one gets

EExFT 3-loop
(0,1) = 40ξ(8)ξ(9)ξ(12)ÊE7

6Λ1
+

64

189π
ζ(10)ÊE7

5Λ7
. (5.23)

The second term is identical to the one-loop contribution whereas they each have the coefficient

expected in string theory. The first term is not present is string theory, and satisfies the same

differential equations as EExFT
(0,1) without the quadratic source term in (5.12).

The contributions from 1/2 BPS states seem to give all the ingredients to define the non-

perturbative result, but there is some mismatch. This should not be unexpected since we neglected

1/4 BPS states in the loops that have no reason to do not contribute to ∇4R4 and ∇6R4 couplings.

In [74] and [27] we argued that one can obtain such contribution using the one-loop and the two-loop

string theory integrands. We extracted the contribution from BPS states in the perturbative string

amplitude and summed over all U-duality copies to obtain the non-perturbative contribution. This

sum does not converge, and the computation is only defined through an analytic continuation that

we could not justify. Doing so we obtain nonetheless the following result including these expected
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contributions from 1/4 BPS states

EBPS 1-loop
(0,1) ϵ = 0 ,

EBPS 2-loop
(0,1) ϵ =

2π2

9

∫
R3

+

d3Ω2

(detΩ2)−ϵ

(∑
I

LI −
5L1L2L3∑
I<J LILJ

−
√
detΩ2

6
E
SL(2)
−3 (τ)

) ′∑
ΓI∈Z56∑

I ΓI=0
ΓI×ΓJ=0

e−π
∑

I LI |Z(ΓI)|2 ,

EBPS 3-loop
(0,1) ϵ =

2π2

9

∫
R3

+

d3Ω2

√
detΩ2

6
E
SL(2)
−3+2ϵ(τ)

′∑
ΓI∈Z56∑

I ΓI=0
ΓI×ΓJ=0

e−π
∑

I LI |Z(ΓI)|2 +
8π4

567
ξ(10+2ϵ)EE7

(5+ϵ)Λ7
, (5.24)

where we used

Ω2 =

(
L1+L3 L3

L3 L2+L3

)
=

√
detΩ2

τ2

(
1 τ1
τ1 |τ |2

)
. (5.25)

The total one-loop contribution is found to vanish and the contribution from 1/4 BPS states at

two-loop makes the total result finite in the limit ϵ → 0. There is no contribution from 1/4 BPS

states at three-loop because the three-loop string theory amplitude is just the volume of the moduli

space of genus-three surfaces and the sum over string zero modes are level-matched. The function

EBPS 3-loop
(0,1) ϵ is simply a rewriting of the exceptional field theory amplitude

EExFT 3-loop
(0,1) ϵ = EBPS 3-loop

(0,1) ϵ − 5

π

(
log(2πµ) + . . .

)
E(1,0) +O(ϵ) . (5.26)

To obtain this form it is convenient to introduce the variable t =
√
detΩ2 to derive [74]

π2

27

∫
R3

+

d3Ω2
(detΩ2)

1
2
+ϵ

6
E
SL(2)
−3+2δ(τ)

′∑
ΓI∈Z56∑

I ΓI=0
ΓI×ΓJ=0

e−π
∑

I LI |Z(ΓI)|2

=
4π2

9

∫ ∞

0
dt t3+2ϵ

∫
F/Z2

d2τ

τ22
E
SL(2)
−3+2δ(τ)

′∑
Γi∈Z56

Γi×Γj=0

e
−πt 1

τ2
(Γ1+τ̄Γ2)⊺v⊺v(Γ1+τΓ2)

=
4π2

9
ξ(2ϵ+ 2δ)ξ(7− 2δ + 2ϵ)EE7

( 7
2
−δ+ϵ)Λ6+(−3+2δ)Λ7

= 40
ξ(4)ξ(7+2ϵ−2δ)

ξ(4−2ϵ−2δ)ξ(7−4δ)
ξ(8−4δ)ξ(9−2ϵ−2δ)ξ(12−2ϵ−2δ)EE7

(6−ϵ−δ)Λ1+2ϵΛ7
(5.27)

where F/Z2 = SO(2)\SL(2)/PGL(2,Z).

This justifies the definition

E(0,1) = lim
ϵ→0

(
EExFT
(0,1),ϵ +

8π4

567
ξ(10+2ϵ)EE7

(5+ϵ)Λ7

)
, (5.28)
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with

EExFT
(0,1),ϵ = 8π

∫
G2

d3Ω2

(
(detΩ2)

ϵφtr
KZ − π

36
(detΩ2)

1
2
+ϵE

SL(2)
−3 +

π

36

√
detΩ2E

SL(2)
−3+2ϵ

) ′∑
Γi∈Z56

Γi×Γj=0

e−πΩijΓ⊺
i v

⊺vΓj

(5.29)

where we folded the integration domain to G2 = R
3
+/S3, use φ

tr
KZ in (4.17), and wrote the sum over

Γi’s in a manifestly GL(2,Z) invariant form.

The justifications to arrive to this formula are not fully satisfying. However, taking this as a

working hypothesis turns out to give the right answer, as we can check using all possible limits.

We analysed this function (5.28) in [27] in details and showed that it is consistent with string

perturbation theory and the large radius limit. We found that the additional Eisenstein series

E
SL(2)
−3 and E

SL(2)
−3+2ϵ in the integrand are necessary for

ÊExFT
(0,1) = lim

ϵ→0

(
EExFT
(0,1),ϵ + 40ξ(4)ξ(8)ξ(1+2ϵ)EE7

4Λ7

)
(5.30)

to satisfy the differential equations (5.11) and (5.12). Independently of the argument we gave to

justify the definition of ÊExFT
(0,1) , one can consider the consistency checks as a proof that it defines the

exact coupling function in string theory.

The same construction applies to all dimensions D ≥ 4 and one gets the direct generalisation

EExFT
(0,1),ϵ

= 8π

∫
G2

d3Ω2

detΩ
7−d
2

2

(
(detΩ2)

ϵφtr
KZ − π

36
(detΩ2)

1
2
+ϵE

SL(2)
−3 +

π

36

√
detΩ2E

SL(2)
−3+2ϵ

) ′∑
Γi∈Ld

Γi×Γj=0

e−πΩijΓ⊺
i v

⊺vΓj

(5.31)

and

E(0,1) = lim
ϵ→0

[
EExFT
(0,1),ϵ +

8π4

567
ξ(d+2ϵ+3)EEd

d+2ϵ+3
2

Λd
+

5ζ(3)

3ϵ
δd,5 +

π2

3ϵ
δd,3

(1
ϵ
+

1

6
+

1

π
E(0,0) ϵ

)]
(5.32)

which is consistent with string perturbation theory and the large radius limit [27]. The poles in ϵ

come from the three-loop divergence in D = 6 and the two-loop divergence in D = 8 [125,126]. For

d = 2, 3, 4 one does not need to introduce the two terms with the Eisenstein series E
SL(2)
−3 because

there is no pole.

5.3 Matching the eleven-dimensional supergravity limit

It may seem natural that these formulas give back the correct eleven-dimensional supergravity

contribution but it turns out to be a rather non-trivial computation. We find after some efforts

that formulas (5.28) and (5.29) gives back the formula obtained from supergravity in (4.47), with

for 4 ≤ d ≤ 7
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EExFT
(0,1) ϵ ∼ V 3 d+3

9−d

(
4π2ξ(2)2

3V
+

8π2

3V 2
ξ(2)ξ(3)E

SL(d)
3
2
Λ1

+
40

V 6−2ϵ
ξ(5−2ϵ)ξ(4−2ϵ)ξ(3−2ϵ)E

SL(d)

( 5
2
−ϵ)Λ3

+
8π

V 3

∫
G2

d3Ω2

detΩ
7−d−2ϵ

2
2

φtr
KZ

′∑
ni∈Zd

e−πΩij
2 n⊺

iU
−1nj +

40

V 3
δd,7ξ(4)ξ(8)ξ(2ϵ)

(
E
SL(7)

(4−2ϵ)Λ6
− E

SL(7)
4Λ6

)
+

40

V 5−4ϵ
ξ(2+2ϵ)ξ(2ϵ)

(
δd,6ξ(2− 2ϵ) + δd,7ξ(5+2ϵ)E

SL(7)

( 5
2
+ϵ)Λ1

))
(5.33)

and

40ξ(2+2ϵ)ξ(6+2ϵ)ξ(d+2ϵ+3)EEd
d+2ϵ+3

2
Λd

∼ 40V 3 d+3+2ϵ
9−d

(
ξ(2+2ϵ)ξ(6+2ϵ)ξ(d+2ϵ+3)E

SL(d)
d+2ϵ+3

2
Λd−1

+δd,7
ξ(4− 2ϵ)ξ(8− 2ϵ)ξ(1+2ϵ)

V 3+6ϵ
E
SL(d)

(4−ϵ)Λ6

+
ξ(2+2ϵ)ξ(5+2ϵ)ξ(6+2ϵ)

V 5+2ϵ
E
SL(d)

(3+ϵ)Λ2
+δd≥5

ξ(2+2ϵ)ξ(3+2ϵ)ξ(1+2ϵ)

V 6+4ϵ
E
SL(d)

( 3
2
+ϵ)Λ5

)
. (5.34)

This is indeed in perfect agreement with (4.18) including the logarithmic terms computed in section

4.2. To see this one uses

ξ(5−2ϵ)ξ(4−2ϵ)ξ(3−2ϵ)E
SL(d)

( 5
2
−ϵ)Λ3

=
d≥5

ξ(2−2ϵ)ξ(3−2ϵ)ξ(1−2ϵ)E
SL(d)

ϵΛ2+( 3
2
−ϵ)Λ5

ξ(2+2ϵ)ξ(5+2ϵ)ξ(6+2ϵ)E
SL(7)

(3+ϵ)Λ2
= ξ(2+2ϵ)ξ(1+2ϵ)ξ(5+2ϵ)E

SL(7)

( 5
2
+ϵ)Λ1−ϵ7

ξ(2+2ϵ)ξ(5+2ϵ)ξ(6+2ϵ)E
SL(6)

(3+ϵ)Λ2
= ξ(2+2ϵ)2ξ(1+2ϵ)E

SL(6)
−ϵΛ4

. (5.35)

We will now explain how we obtained formula (5.33). For this purpose we decompose the pairs

of charges according to (5.18), and carry out the sums over layers, including an increasing number

of non-vanishing components. We start by the layer for which all the brane charges vanish

8π

∫
G2

d3Ω2

detΩ
7−d
2

2

(
(detΩ2)

ϵφtr
KZ−

π

36
(detΩ2)

1
2
+ϵE

SL(2)
−3 +

π

36

√
detΩ2E

SL(2)
−3+2ϵ

) ′∑
mi∈Zd

e−
π
r3

Ωij
2 m⊺

iU
−1mj

= 8πV 3 d+3+4ϵ
9−d

−3
∫
G2

d3Ω2

detΩ
7−d
2

2

(detΩ2)
ϵφtr

KZ

′∑
mi∈Zd

e−πΩij
2 m⊺

iU
−1mj (5.36)

+40δd,7ξ(4)V
12
(
−V 6ϵ ξ(7+2ϵ)

ξ(7)
ξ(8)ξ(2ϵ)E

SL(7)
ϵΛ5+4Λ6

+
ξ(7−2ϵ)

ξ(7−4ϵ)
ξ(8−4ϵ)ξ(2ϵ)E

SL(7)

ϵΛ5+(4−2ϵ)Λ6

)
.

Using simplifications at first order in ϵ one obtains for d = 7

8π

∫
G2

d3Ω2

(
(detΩ2)

ϵφtr
KZ − π

36
(detΩ2)

1
2
+ϵE

SL(2)
−3 +

π

36

√
detΩ2E

SL(2)
−3+2ϵ

) ′∑
ni∈Z7

e−πΩij
2 r−3n⊺

iU
−1nj

= 8πV 12

∫
G2

d3Ω2(detΩ2)
ϵφtr

KZ

′∑
ni∈Z7

e−πΩij
2 n⊺

iU
−1nj

+40ξ(4)ξ(8)V 12
(
−ξ(2ϵ)ESL(7)

4Λ6
+ ξ(2ϵ)E

SL(7)

(4−2ϵ)Λ6
+ cE

SL(7)
4Λ6

)
, (5.37)
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for a constant c. The determination of the constant c is irrelevant at this level since we did not

determine the finite amplitude from string theory with the explicit split in analytic and non-analytic

components.

At the next step we consider that the M2-brane windings nIJ1 and nIJ2 are non-zero but linearly

dependent. Because of the constraint (5.19) they are in the SL(d,Z) orbit of the highest weight

representative, and the sum can be written as a Poincaré sum over P2(Z)\SL(d,Z) and pairs of

integers ni = gcd(nIJi ). We have therefore

θ(2)d =

′∑
nIJ
i ∈∧2Zd

n
I[J
i n

KL]
j =0

∑
miI∈Zd

ni
IJmjJ=0

e−πΩij
2

(
r−3U−1IJ (miI+1/2aIKLn

KL
i )(mjJ+1/2aJPQnPQ

j )+1/2r6−dUIKUJLn
IJ
i nKL

j

)

=
∑

γ∈P2\SL(d)

′∑
ni∈Z2

∑
mi∈Zd−2

e−πΩij
2

(
r−3y

2
d−2 u−1(mi+ani,mj+anj)+r6−dy2ninj

)∣∣∣
γ

(5.38)

=
∑

γ∈P2\SL(d)

r3(d−2)y−2

detΩ
d−2
2

2

′∑
ni∈Z2

∑
mi∈Zd−2

e−πΩij
2 r6−dy2ninj−πΩ−1

ij r3y
− 2

d−2 u(mi,mj)+2πini(m
i,a)
∣∣∣
γ

and one computes the integral using Appendix F.3

8π

∫
G2

d3Ω2

detΩ
7−d−2ϵ

2
2

φtr
KZθ

(2)

d

∼ 16π2ξ(2− 2ϵ)2

(3 + 2ϵ)(4− 2ϵ)
r2d−2ϵ(6−d)E

SL(d)
2ϵΛ2

+
8π2

3
r

5d−9
2

+(d−3)ϵξ(1− 2ϵ)ξ(2− 2ϵ)E
SL(d)

2ϵΛ2+( 1
2
−ϵ)Λ3

+
4π2

9
r

9
2
(d−5)+(d−3)ϵξ(5− 2ϵ)ξ(3 + 2ϵ)E

SL(d)

2ϵΛ2+( 5
2
−ϵ)Λ3

+ . . .

∼ 4π2ξ(2)2

3
r2d +

8π2

3
r

5d−9
2 ξ(2)ξ(3)E

SL(d)
3
2
Λ1

+
4π2

9
r

9
2
(d−5)+(d−3)ϵξ(5− 2ϵ)ξ(3 + 2ϵ)E

SL(d)

2ϵΛ2+( 5
2
−ϵ)Λ3

+ . . . (5.39)

up to terms that are exponentially suppressed at large V . The first line is finite, except for d = 3

in which case one has instead Ê
SL(3)
3
2
Λ1

. For the complete function one computes similarly

8π

∫
G2

d3Ω2

detΩ
7−d
2

2

(
(detΩ2)

ϵφtr
KZ − π

36
(detΩ2)

1
2
+ϵE

SL(2)
−3 +

π

36

√
detΩ2E

SL(2)
−3+2ϵ

)
θ(2)d

= V 3 d+3
9−d

(4π2ξ(2)2
3V

+
8π2

3V 2
ξ(2)ξ(3)E

SL(d)
3
2
Λ1

+
40

V 6−2ϵ
ξ(5−2ϵ)ξ(4−2ϵ)ξ(3−2ϵ)E

SL(d)

( 5
2
−ϵ)Λ3

)
. (5.40)

There are many more pairs of charges Γi to be considered, but similarly as for the Eisenstein series

EEd
d−3
2

Λd
and EEd

d+1
2

Λd
most of the contributions turn out to vanish at ϵ → 0. For this to be true

it is crucial to take the definition (5.31), and not the naive expression (5.22). We relegate this

computation to Appendix E. One obtains that there are no other contributions for d = 3, 4, 5. For

d = 6, 7 one must include the contribution for which the M5-brane charges nIJKLP are non-zero

and linearly independent. They give the last line in (5.33).
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5.4 1/8-BPS brane instanton measure and uniqueness

In this last section we will show that there is a unique coupling function E(0,1) compatible with

supersymmetry and string perturbation theory in four dimensions. For this purpose we consider a

generic D-brane instanton correction, i.e. an abelian Fourier coefficient in the parabolic P1 ⊂ E7

FQ(gs, v) =

∫
[0,1]32+1

d32a db E(0,1)e
−2πi(Q,a) , (5.41)

for a generic D-brane charge Q ∈ S−. There are two real orbits of charges Q ∈ S−. Either the

quartic invariant

I4(Q) = 2(QγabQ)(QγabQ) (5.42)

is positive and the Levi stabiliser is SU(3, 3) ⊂ Spin(6, 6), or it is negative and the Levi stabiliser

is SL(6) ⊂ Spin(6, 6). For I4 < 0 one can find a representative of the character e−2πi(Q,a) with

support on two real roots, as for example a D(-1)-D5 brane instanton. For I4 > 0 one needs at

least four roots, corresponding for example to a D1-D1-D1-D5 instanton, with three orthogonal

Euclidean D1-branes inside the Euclidean D5 [220]. One works out in general that two 1/2-BPS

charges Q1 and Q2 satisfy that I4(Q1+Q2) ≤ 0. This implies that the source in equation (5.12)

drops out for the Fourier coefficient FQ(gs, v) when I4(Q) > 0,(
∆+ 60

)(
FQ(gs, v)e

2πi(Q,a)
)

=
I4(Q)>0

0 , (5.43)

and FQ(gs, v) satisfies the same differential equations as the Eisenstein series ÊE7
6Λ1

Fourier coefficient(
DijpqDpqmnDmnkl + 9Dijkl

)(
FQ(gs, v)e

2πi(Q,a)
)

=
I4(Q)>0

0 . (5.44)

One proves that there is a unique solution to these differential equations with moderate growth

such that 27

FQ(gs, v) = µ(Q)g−β
s B(vQ/gs) , (5.45)

where µ(Q) is a function of Q that only depends on its arithmetic Spin(6, 6,Z) invariants. This

instanton measure µ(Q) is expected to be the partition function for the corresponding Euclidean

brane effective theory. The function B(vQ/gs) only depends of the SU(4)× SU(4) invariant poly-

nomials in the complex central charge viȷ̂
αQα = Ziȷ̂(Q) in the bi-fundamental representation of

SU(4)×SU(4). As for BPS black holes in four dimensions, these invariants are polynomials in the

four modules |zi| of the eigenvalues of Ziȷ̂ and the phase of its determinant [221]. The Euclidean

action of the instanton is the largest eigenvalue, and the function B(Z/gs) is exponential suppressed

in e−2πmaxi|zi|/gs . We computed these Fourier coefficients in [27] up to a final Poincaré sum that

we could not simplify, but which exhibits the structure explained above. We will see below that a

more precise result can be obtained directly from the two-loop string amplitude.

The Fourier coefficient FQ(gs, v) does not depend on the Levi stabiliser SU(3, 3) of the D-brane

charge Q. We can therefore consider the limit in which one dilaton in SU(3, 3) goes to infinity

while keeping FQ(gs, v) finite. To see this, consider the parabolic decomposition

su(3, 3) ⊃
(
gl1 ⊕ u(2, 2)

)(0) ⊕ (C4)(1) ⊕R(2) . (5.46)

27The proof will be published in a collaboration with Friedberg, Gourevitch, Kleinschmidt and Persson.
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brane T 2 T 2 T 4 T 4 T 4 T 4

D(-1) ◦ ◦ ◦ ◦ ◦ ◦

D1 • • ◦ ◦ ◦ ◦

D1 ◦ ◦ • • ◦ ◦

D1 ◦ ◦ ◦ ◦ • •

D5 • • • • • •

⇒

brane T 2 T 2 T 4 T 4 T 4 T 4

D1 ◦ • • ◦ ◦ ◦

D1 • ◦ • ◦ ◦ ◦

D1 ◦ • ◦ • ◦ ◦

D3 ◦ • • ◦ • •

D3 • ◦ ◦ • • •

Table 3: 1/8-BPS configurations of D-branes related by T-duality on one circle in T 2 and one in T 4

It embeds in the parabolic P2 of SO(6, 6)

so(6, 6) ⊃
(
gl2 ⊕ so(4, 4)

)(0) ⊕ (2,8v)
(1) ⊕R(2) , (5.47)

such that the spinor representation decomposes as

32 ∼= 8(−1)
s ⊕ (2,8c)

(0) ⊕ 8(1)
s . (5.48)

We recognise up to triality the decomposition of the parabolic P1 ⊂ E7. We find therefore that

the GL(1) ⊂ SU(3, 3) in the stabiliser of the charge Q is conjugate under E7 to the GL(1) ⊂ E7

defining P1. The corresponding dilatons are not conjugate under E7(Z), however, we can interpret

this parabolic P2 in the limit in which one T 2 ⊂ T 6 admits a large volume Vol(T 2) = (2π)2α′/y2,

and there is an E7(Z) transformation that exchanges y and gs and acts by triality on Spin(4, 4).

Let us choose Q = (0, qi, 0) in this decomposition with I4(Q) = q21q
2
2 − (q1 · q2)2 > 0, which

corresponds for example to a 1/8 BPS Euclidean D1-D1-D1-D3-D3 instanton as displayed in Table 3.

We write 1
y2U2

(
1
U1

U1

|U |2
)
the metric on T 2, υv ∈ SO(4, 4) the Narain moduli on T 4 and c1, c2 the

Narain axions parametrising the off-diagonal components between T 2 and T 4. We write υc and υs
for the spinor representations. We have then for Q = (p, qi, 0)

vQ =
(
yυc(p+ /qic

i),
1

√
U2
υs(q1 + Uq2), 0

)
. (5.49)

We would like to interpret the Fourier coefficient FQ(gs, v) in (5.45) as a Fourier coefficient of a

perturbative term in the large T 2 volume limit after duality gs ↔ y. The axions ci become then

Ramond-Ramond fields, so we need to integrate them out. But to do so we need to include all

Fourier coefficients that will contribute, so we must include the D-branes wrapping T 4 only with

p ̸= 0. We compute using Poisson summation over p ∈ Z8 that∫
[0,1]16
d16c

∑
p∈Z8

µ(p, q, 0)g−β
s B

( y
gs
υc(p+ /qic

i),
1

gs
√
U2
υs(q1 + Uq2), 0

)
=

g8−β
s

y8

∑
p mod /q

µ(p, q, 0)

det′/q
B̃
(
0,

1

gs
√
U2
υs(q1 + Uq2), 0

)
(5.50)

where

B̃(a, z, b) =

∫
R8

d8x B(x, z, b)e2πi(x,a) (5.51)
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and the sum is over the equivalence classes of p ∈ Z8 ⊂ 8c modulo p ∼ p + /qix
i for xi in Z2×8 ⊂

(2,8v), while det′/q is the number of such classes. Here we have used that the measure is invariant

under the T-duality unipotent subgroup U(Z) ⊂ SO(6, 6,Z) of parameter xi ∈ Z2×8 ⊂ (2,8v)

µ(p+ /qix
i, qi, 0) = µ(p, qi, 0) . (5.52)

Using the duality that exchanges y and gs, one concludes that the same Fourier coefficient

appears as a Fourier coefficient of the two-loop amplitude in the large T 2 torus volume limit. If we

assume moreover det′/q = 1 this gives∫
[0,1]16
d16c

(∫
[0,1]32+1

d32a db E(0,1)

)
e−2πi(q,c) = µ(0, q, 0)

y8−β

g 8
s

B̃
(
0,

1

y
√
U2
υv(q1 + Uq2), 0

)
. (5.53)

We find therefore that the existence of a non-zero Fourier coefficient FQ(gs, v) implies by E7(Z)

invariance that there are some terms that are not exponentially suppressed in the weak coupling

limit. A similar argument works for smaller orbits, so we conclude that a function with wavefront

set O2Λ1 cannot be exponentially suppressed at small gs ≪ 1. This implies that finding a U-duality

invariant function E(0,1) compatible with the differential equations imposed by supersymmetry and

string perturbation theory must give the exact string theory coupling function.

This formula is also useful because it determines the D-brane instanton from a world-sheet

instanton. Using the two-loop amplitude [83] we obtain

8π

∫
[0,1]16
d16c

∫
F2

d6Ω

detΩ3
2

ΓII6,6φKZ(Ω)e
−2πi(q,c) =

∑
p mod /q

µ(p, q, 0)

det′/q
y8−βB̃

(
0,

1

y
√
U2
υv(q1 + Uq2), 0

)
.

(5.54)

Using the Fourier expansion of the Kawazumi-Zhang invariant φKZ derived in [173] together with

the unfolding method [117],28 one computes straightforwardly that β = 10 and

B̃
(
0,

1

gs
√
U2
υv(q1 + Uq2), 0

)
(5.55)

= 4π

∫
SO(2)\GL(2,R)

d3Ω2

detΩ2

(
I4(q)

g4s
+

5

4π2 detΩ2

(
1 +

πtrΩ2Z(q)Z(q)
⊺

g2s

))
e
− 2πtrΩ2ZL(q)ZL(q)⊺

g2s
−πtrΩ−1

2 ,

with

Z(q)Z(q)⊺ = ZL(q)ZL(q)
⊺ + ZR(q)ZR(q)

⊺ ,

ZL(q)ZL(q)
⊺ =

1

U2

(
1 U1

0 U2

)(
pL(q1)

2 pL(q1)pL(q2)

pL(q1)pL(q2) pL(q2)
2

)(
1 0

U1 U2

)
. (5.56)

28In fact the unfolding method does not obviously make sense because the integral diverges at the cusp and φKZ is

a distribution. One convenient way to regularise the integral is to introduce a differential operator acting with Maass

raising and lowering operators that satisfy l2lφKZ = 15
32
φKZ away from the separating degeneration locus Ω12 = 0

[173]. Up to terms that involve a distribution on this singular locus, one can define
∫
dµφKZΓ ∼ 32

15

∫
dµφKZl2lΓ,

which is regular at the cusp. We thank Solomon Friedberg for this explanation. One must treat separately the

regularisation of the integral at the singular locus, but this does not affect the generic Fourier coefficients with

I4 > 0.
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The measure satisfies∑
p mod /q

µ(p, q, 0)

det′/q
=

∑
A∈Z2×2/GL(2,Z)
A−1q∈Z2⊗II4,4

∑
d|A−1q⊺qA−1⊺

1

d3 detA
c̃
( I4(q)

d2 detA2

)
, (5.57)

with c̃ the Fourier coefficients of

−ϑ4(2τ)
η(4τ)6

=
∑
n≥−1

c̃(n)e2πinτ , (5.58)

and d|q⊺q means that d divides gcd(q21/2, q
2
2/2, q1 · q2).

The function B̃ above and therefore B itself exhibits the exponential suppression in the Eu-

clidean action for a 1/8 BPS Euclidean brane instanton. The measure factor µ(Q) involves the

Fourier coefficients c̃(I4(q)) that counts the number of 1/8 BPS D-brane bound-states through the

helicity supertrace Ω14(Q) [30–32].

We will now precise the relation between the instanton measure and the 1/8-BPS helicity

supertrace. One checks that det′/q = 1 if we take q with gcd(q) = 1 and such that

gcdqq⊺ ≡ gcd(q21/2, q
2
2/2, q1 · q2) = 1 . (5.59)

If the D-brane charge Q is primitive in S−, i.e. with gcd(Q) = 1, one can always find γ ∈
Spin(6, 6,Z) to bring it into a diagonal reduced form Q = (0, q, 0) with [183]

q1 = e1+ + n1e1− , q2 = n2e2+ + n3e2− + ke1− , (5.60)

where the ei± define a basis of null vectors

(ei±, ej±) = 0 , (ei+, ej−) = δij . (5.61)

These charges correspond in Table 3 to the brane configuration T-dual to a single D5-brane, nI
D1-brane in each orthogonal T 2 ⊂ T 6 and k D(-1)-branes. The T-duality subgroup SL(3,Z) ×
SL(3,Z) ⊂ SL(6,Z) ⊂ Spin(6, 6,Z) acts on the three by three matrix of D1-brane charges that

wrap one even and one odd coordinate in the bi-fundamental. One can find such a transformation

to bring (n1, n2, n3) in a form in which n1 divides n2 and n2 divides n3. We will write for short

n1|n2|n3. One computes then for a given basis of gamma matrices that

det′/q = gcd(k, n1, n2)
2gcd(k, n1, n3)

2 =
n1|n2|n3

gcd(k, n1)
4 , (5.62)

so det′/q = 1 if gcdqq⊺ = gcd(k, n1, n2n3) = 1. We will therefore assume gcdqq⊺ = 1 to avoid the

sum over p classes in (5.57). For such q one obtains moreover that the only matrices A modulo

GL(2,Z) dividing q are A = (10
0
r) with r|gcd(k, n2, n3) and no d > 1 divides qq⊺. Using

gcd(q1 ∧ q2) = gcd(k, n2, n3, n1n2, n1n3) = gcd(k, n2, n3) , (5.63)

we obtain that the instanton measure takes the form

µ(0, q, 0) =
gcd(q)=1

gcd(qq⊺)=1

∑
r|q1∧q2

r−1c̃
(I4(q)

r2

)
. (5.64)
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We can write this expression in a manifestly Spin(6, 6,Z) invariant form following [222]

µ(Q) =
gcd(Q)=1

gcd(Q×Q)′=1

∑
d|14Q∧I′4(Q)

d−1c̃
(I4(Q)

d2

)
, (5.65)

where (Q×Q)′ is QγabQ with the component in Z/2 excluded.29 I ′4(Q) is the derivative of I4(Q)

and 1
4Q ∧ I ′4(Q) includes the projection to ∧4II6,6 and I4(Q). They are defined for a general Q in

diagonal reduced form as

gcd(Q×Q)′ = gcd(k, nI , nI+1nI+2) , gcd(14Q ∧ I ′4(Q)) = gcd(k2, knI , nI+1nI+2) . (5.66)

Choosing Q in a diagonal reduced form for which n1 divides n2 divides n3, we obtain

gcd(Q×Q)′ = gcd(k, n1) = 1 , gcd(14Q ∧ I ′4(Q)) =
gcd(k,n1)

gcd(k, n2) , (5.67)

consistently with (5.64).

The instanton measure differs slightly from the helicity supertrace counting 1/8 BPS black

holes [30–32,223,222]

Ω14(Q) =
gcd(Q)=1

gcd(Q×Q)′=1

(−1)I4(Q)
∑

d|14Q∧I′4(Q)

d c̃
(I4(Q)

d2

)
. (5.68)

One finds a similar result in N = 4 theories defined by orbifolds of type II on K3×T 2 [20]. It would

be interesting to compute the instanton measure in three dimensions in the P8 ⊂ E8 parabolic,

where one expects the instanton measure to match precisely the helicity supertrace Ω14(Γ) counting

1/8 BPS black holes of charge Γ ∈ Z56.

29For the set of charges (5.60) the components of QγabQ include (k, nI , nI+1nJ+1, 3k/2) while (Q×Q)′ only includes

(k, nI , nI+1nJ+1), which greatest common divisor is Spin(6, 6,Z) invariant [183].
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6 Outlook

In this concluding section we will discuss some ongoing and future projects.

• D-brane instanton corrections in string theory:

One important problem is to derive the non-perturbative D-brane instanton corrections from

first principle. This has been achieved for 1/2 BPS multi-instantons in ten dimensions [11] and

for a single instanton anti-instanton in [12]. It would be interesting to generalise this computation

to 1/4 BPS instantons in D ≤ 6 dimensions and even 1/8 BPS instantons in D = 4 dimensions.

We are currently working on the calculation of the partition function in the corresponding quiver

gauge theory on a torus. In a first stage we are revisiting the computation of [197] using the more

precise contour prescription of Jeffrey–Kirwan [224].

On the other hand the coupling function Fourier coefficients provide a prediction for the instan-

ton measure of 1/8-BPS D-branes instantons in string theory. It would be interesting to repeat the

same computation to see if the measure of black hole instantons in three dimensions reproduces

the helicity supertrace counting 1/8 BPS black holes. A similar analyses can also be applied to

less supersymmetric string theories, we had analysed the case of black holes in N = 4 supergravity

from heterotic CHL orbifolds in [20] and we are currently working on a similar study in N = 6

supergravity.

It would be interesting to understand D-brane instanton corrections for the higher derivative

couplings, not protected by supersymmetry. Because E(2,0) does a priori receives corrections to

all orders in string perturbation theory, it does not make sense to try to make the perturbative

function U -duality invariant starting from tree, one-loop and two-loop corrections. We have checked

in [64] in particular that the two-loop exceptional field theory amplitude is inconsistent with string

perturbation theory. However, the method introduced in Section 5.4 can in principle be used to

compute the D-brane instantons dual to the two-loop wordsheet instantons. To do so, we would

need first to derive the Siegel parabolic Fourier expansion of the function B(2,0) studied in [174].

• Effective theory of BPS particles:

The effective theory of 1/2 BPS states that we proposed in [64] provides an efficient tool to

compute BPS protected couplings in string theory with maximal supersymmetry. It is interesting

to investigate if this same tool can be applied with less supersymmetry. We have already analysed

in some details the case of N = 6 supergravity in four dimensions, for which the 1/2 BPS super-

multiplets are either spin 2 or spin 3/2, and can therefore be analysed in supergravity. We found

already some compelling evidence that this procedure works, generalising the preliminary results

obtained in [28].

For N ≤ 4 there are 1/2 BPS supermultiplets of arbitrary high spin in string theory. Nonethe-

less, it may be that one only needs to consider supermultiplets up to spin 2 in the Horava–Witten

formulation of the theory in eleven dimensions [225,226]. In the future we would like to come with

a formulation of the theory involving all the massive spin 1 supermultiplets with their non-abelian

interactions that are standard non-abelian interactions at the enhanced gauge symmetry points.

This effective theory should be formalised in the framework of double field theory [227].
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• Uniqueness of string theory:

One related open question is about the possible existence of consistent quantum theories of

gravity that could not be realised as string theories. There are compelling evidences that all

consistent supergravity theories with extended supersymmetry are string theories. However, there

is no proof of this conjecture, even for maximal supergravity.

This is the subject of the PhD thesis of my student Adrien Loty, with who we have analysed the

minima of the coupling function E(0,0) [213] and consistency with unitarity of the S-matrix [228,229].

The coupling function E(0,0) can be negative in dimensionsD ≤ 7, and its minimum is at a symmetric

point, which represents the Gram matrix of the densest lattice sphere packing for SL(5) in D = 7

dimensions.

Considering the perturbative limit in extended supergravity where some of the radii are large,

one generally gets logarithmic singularities in the amplitude that can be interpreted as Kaluza–

Klein particles becoming massless in this limit. In string theory we must always get the entire

Kaluza–Klein tower and their interactions can be inferred from supergravity. We are investigating

how unique these interactions are and if one can prove directly in field theory that recovering the

Kaluza–Klein tower is the only consistent resolution of the singularity.

If we make the hypothesis that the effective theory admits more than sixteen supersymmetries

and a U-duality group congruent subgroup Γ ⊂ G(Z) of the maximal possible symmetry group, one

can derive the possible corrections to the low energy effective action that satisfy all the consistency

conditions with the perturbative and decompactification limits. One may hope to come up with a

finite list of theories compatible with these conditions and it would be interesting to check if they

all admit a realisation in string theory.

• Generalised automorphic representations:

The notion of automorphic representations defined in mathematics does not apply directly to

the coupling function defined in Section 5. We are currently working on a mathematical definition

of representations that are not Z(g) finite and including this set of functions. We are particularly

interested in functions for which there exist specific Fourier coefficients that define an arithmetic

number as the instanton measure in (5.45). We have already evidence that there are natural

candidates when the source term generalising (E(0,0))
2 is associated to rigid nilpotent orbits. It

would be interesting to analyse the kind of combinatoric objects these Fourier coefficients count

and if they have a meaning in string theory for E7(Z) or other U-duality groups.

• Other topics:

We have other ongoing and future projects in supergravity applications that are not obviously

related to the subject of this habilitation thesis. They include the study of Kac–Moody exceptional

field theories and their applications to the quantum mechanics formulations of M-theory through

the D0 matrix model [230] and the cosmological billiards [231].

The analysis of supersymmetry invariants in presence of a cosmological constant is almost

inexistent beyond N = 2, despite its relevance to the study of string theory on AdS backgrounds.

The presence of gauge couplings gives a relevant deformation of the supersymmetry invariants that

potentially involves lower derivative couplings in the low energy effective action.
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A Eleven-dimensional supergravity with antifields

We write the Cremmer–Julia–Scherk supersymmetry transformations [36]

δsusy(ϵ)ea =
(
ϵγaψ

)
δsusy(ϵ)A = 1

4e
a
∧e

b
(
ϵγabψ

)
δsusy(ϵ)ψ = dω̂ϵ−

1

6
ea
( 1

24
γa

bcde − 1

3
δ[ba γ

cde]
)
F̂bcde ϵ (A.1)

δsusy(ϵ)ω̂ab = ec
(
ϵ[γ[aρ̂b]c − 1

2γcρ̂ab]
)
+

1

3

(
ϵ
[ 1

24
γabcdef F̂

cdef + F̂abcdγ
cd
]
ψ
)

δsusy(ϵ)F̂abcd = −3
(
ϵγ[abρ̂cd]

)
(A.2)

where

ρ̂ = dω̂ψ − ea∧Taψ , F̂ = F − 1

8
ea∧e

bψ̄γabψ , dω̂e
a +

1

2

(
ψγaψ

)
= 0 , (A.3)

are the supercovariant field strengths and the supertorsion tensor Ta is

Ta ≡ 1

6

( 1

24
γa

bcde − 1

3
δ[ba γ

cde]
)
F̂bcde . (A.4)

In this convention the Lagrangian is [36]

L = e
(1
4
R(ω)− 1

48
F̂µνρσF̂

µνρσ − 1

2
ψ̄µγ

µνρDν(
ω+ω̂
2 )ψρ +

1

192
ψ̄µγ

µνρσκλψν

(
Fρσκλ + F̂ρσκλ

))
− 1

10368
εµνρσκλϑυϵιτAµνρFσκλϑFυϵιτ , (A.5)

where one introduces the non-supercovariant spin-connection ω that solves the first order Euler–

Lagrange equation

dωe
a +

1

2

(
ψγaψ

)
+

1

4
eb∧e

c
(
ψdγ

ade
bcψe

)
= 0 . (A.6)

The supersymmetry algebra (with commuting spinor ϵ) closes on the elfbein ea and the 3-form A

as

δsusy(ϵ)2 = L̂ 1
2 (ϵ̄γϵ)

− δLorentz(ϵ̄Rϵ)− δgauge(14 ϵ̄γ2ϵ) (A.7)

with

Rab ≡
1

144
γabcdef F̂

cdef +
1

6
F̂abcdγ

cd ,
(
ϵ̄γ2ϵ

)
=

1

2
ea∧e

b
(
ϵ̄γabϵ

)
. (A.8)

However, for the gravitino field, this relation is only satisfied modulo its own equation of motion as

δsusy(ϵ)2ψ = L̂ 1
2 (ϵ̄γϵ)

ψ − δLorentz(ϵ̄Rϵ)ψ + eaKabγ
bcdρ̂cd (A.9)

where

Kab ≡ 1

12

(
γc[ϵϵ]γc +

1

2
γcd[ϵϵ]γcd

)
ηab −

1

36
γa[ϵϵ]γb +

1

12
γb[ϵϵ]γa +

1

24
γb

c[ϵϵ]γac −
1

12

(
ϵγabϵ

)
.

(A.10)
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We therefore define the BRST transformation of the gravitino field as

sψ = Lξψ − 1
4Ωabγ

abψ − dω̂ϵ+ eaT∗
a(ϵ) (A.11)

with the anti-field dependent supertorsion term

T∗
a(ϵ) ≡

1

6

( 1

24
γa

bcde − 1

3
δ[ba γ

cde]
)
F̂bcdeϵ+

1

6

(
γc[ϵϵ]γc +

1

2
γcd[ϵϵ]γcd

)
Ψ∗

a

− 1

18
γa[ϵϵ]γ

bΨ∗
b +

1

6
γb[ϵϵ]γaΨ

∗
b +

1

12
γbc[ϵϵ]γacΨ

∗
b −

1

6

(
ϵγabϵ

)
Ψ∗ b (A.12)

where the antifield combination Ψ∗
a is defined as

Ψ∗
a ≡ ψ∗

a − Ω∗
abγ

bϵ . (A.13)

Here Ωab is the Lorentz ghost and Ω∗
ab its antifield. One checks that this does not affect the

nilpotency of the BRST operator on the bosonic fields using

ϵγ[abKc]d = 0 , ϵγ{aKb}c = 0 . (A.14)

The closure of the supersymmetry transformation then involves the antifield dependent Lorentz

transformation with

R∗
ab(ϵ) ≡

(
ϵ γaT

∗
b(ϵ)

)
=

1

6

(
ϵ
[ 1
24
γabcdef F̂

cdef + F̂abcdγ
cd
]
ϵ
)

+
1

4

(
ϵγcϵ

)(
ϵγ[abΨ

∗
c]

)
+

1

3

(
ϵγ[a

cϵ
)(
ϵγb]Ψ

∗
c

)
− 1

18

(
ϵγabϵ

)(
ϵγcΨ∗

c

)
. (A.15)

This way one determines the solution of the master equation [87]∫ ∑
ג

δRΣ

δφג
δLΣ

δφ∗
ג
= 0 (A.16)

as

Σ =

∫ (
− 1

4·9!
εab[9]e

[9]
∧R

ab(ω) +
1

2
F̂∧ ⋆ F̂ +

1

12·8!
εabc[8]e

[8]
∧
(
ψγabcd 1

2
(ω+ω̂)ψ

)
− 1

8
e
[5]
∧
(
ψγ[5]ψ

)(
F + F̂

)
− 1

3
A∧F∧F

+ e∗a∧

(
Lξe

a − Ωa
be

b −
(
ϵγaψ

))
+ ψ

∗
∧

(
Lξ −

1

4
/Ωψ − dω̂ϵ+ eaTaϵ

)
+A∗

(8,−1)∧

(
LξA(3,0) − 1

4

(
ϵ ea∧e

b
∧γabψ

)
− dA(2,1)

)
+A∗

(9,−2)∧

(
LξA(2,1) − 1

8

(
ϵ ea∧e

b γabϵ
)
− dA(1,2) + ι 1

2
(ϵ̄γϵ)A(3,0)

)
+A∗

(10,−3)∧

(
LξA(1,2) − dA(0,3) + ι 1

2
(ϵ̄γϵ)A(2,1)

)
+A∗

(11,−4)∧

(
LξA(0,3) + ι 1

2
(ϵ̄γϵ)A(1,2)

)
+ ξ∗ ·

(
1
2{ξ, ξ} −

1
2

(
ϵγϵ
))

+Ω∗ ab
(
LξΩab +Ωa

cΩbc −
(
ϵRabϵ

)
+ ι 1

2
(ϵ̄γϵ)ω̂

)
+ ϵ∗

(
Lξϵ− 1

4/Ωϵ+ ι 1
2
(ϵ̄γϵ)ψ

)
− [ψ

∗
a + ϵγcΩ∗

ac]K
ab[ψ∗

b − Ω∗
bdγ

dϵ]

)
(A.17)

where we used the form notation and [n] is a short for

εab[9]e
[9] = εabcdefghijke

c
∧e

d
∧e

e
∧e

f
∧e

g
∧e

h
∧e

i
∧e

j
∧e

k . (A.18)
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B Closed string sphere integrals

In this appendix we discuss some details about the five-point sphere integrals. To check that

W5(si) in (2.63) is indeed analytic in its arguments, one decomposes the integral with respect to

the six possible orderings of |z|, |w| and 1. The arguments si are chosen such that the boundary

contributions where z and w are either infinity or zero vanish. The integral in the first line gives

six permutations of the integral

1

π2

∫ 2π

0
dθ

∫ 2π

0
dφ

∫ ∞

0
dα

∫ ∞

0
dβ e2αt+2βv|1− e−α+iθ|−2s|1− e−β+iφ|−2u|1− e−α−β+iθ+iφ|−2w

=
1

tv
− s2

v

∑
n≥1

tn−1
(
ζ(2+n) +

∑
m≥3

sm−2 2n

m!S(m,n)
)
− u2

t

∑
n≥1

vn−1
(
ζ(2+n) +

∑
m≥3

um−2 2n

m!S(m,n)
)

+s2u2

(∑
n≥1

tn−1
(
ζ(2+n) +

∑
m≥3

sm−2 2n

m!S(m,n)
))(∑

n≥1
vn−1

(
ζ(2+n) +

∑
m≥3

um−2 2n

m!S(m,n)
))

+w2 ∑
m,n≥1

tm−1vn−1
(
ζ(2+m+n) +

∑
k≥3

wk−2 2m+n

(m+n)!S(k,m+n)
)
+ 2suw

∑
m,n≥1

tm−1vn−1ζ(3+m+n)

+suw
∑

m,n≥1
(utm−1vn−1 + stn−1vm−1)

(
2S(2+m, 1; 1+n) + S(1, 1; 2+m+n)

)
+suw2 ∑

m,n≥1
tm−1vn−1

(
2S(2, 1; 1+m+n) + S(1, 1; 2+m+n)

)
+s2w2 ∑

m,n≥1
tm−1vn−1S(2+n, 2;m) + u2w2 ∑

m,n≥1
tn−1vm−1S(2+n, 2;m) + . . . (B.1)

where one uses

− log |1− e−α+iθ|2 =
∑
n̸=0

1

|n|
e−|n|α+inθ , (B.2)

and the infinite sums S(m,n; k) and S(m,n) are defined as

S(m,n) =
∑

ki|mi=1 ̸=0

δ∑m
i=1 ki∏m

i=1 |ki|(
∑m

i=1 |ki|)n
, S(m,n; k) =

∑
i,j≥1

1

imjn(i+ j)k
. (B.3)

They can be computed using [79, Appendix A.3] as

2

6
S(3, 1) =

ζ(4)

2
,

22

6
S(3, 2) = 4ζ(5)− 2ζ(2)ζ(3) ,

23

6
S(3, 3) =

3

2
ζ(6)− ζ(3)2 ,

2

24
S(4, 1) =

5

2
ζ(5)− ζ(2)ζ(3) ,

22

24
S(4, 2) =

53

12
ζ(6)− 3ζ(3)2 ,

2

5!
S(5, 1) =

47

24
ζ(6)− ζ(3)2 , S(3, 2; 1) =

1

2
ζ(3)2 ,

S(1, 1; 4) + 2S(2, 1; 3) =
11

6
ζ(6)− ζ(3)2 , 2S(3, 1; 2) + S(1, 1; 4) =

5

6
ζ(6) . (B.4)

This gives up to quartic order

W5(s1, s2, s3, s4, s5) =
(
15s2s4s5 − (s2s4+s4s5+s5s2)(s2+s4+s5)

)
ζ(5)

+
(
1
2(s

2
2+s

2
4+s

2
5 )

2 + 3
2(s

2
2+s

2
4+s

2
5 )(s2+s4+s5)

2 −
(
5s2s4s5 + 2(s 32+s

3
4+s

3
5 )
)
(s2+s4+s5)

)
ζ(3)2

+O(s5i ) (B.5)
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To compute more systematically the α′ expansion of closed string sphere integrals, it is conve-

nient to use the single-valued map [172]. It was conjectured in [135, 136] and proved in [138] that

one can obtain the closed string amplitude sphere integrals from the open string amplitude disk

integrals using the single valued map [172] that satisfies

svζ(2n) = 0 , svζ(2n+ 1) = 2ζ(2n+ 1) . (B.6)

The single-valued map efficiently packages the KLT relations [232] in a way that avoids to com-

pute the KLT matrices. Following [138], one introduces the sphere integrals with Park–Taylor

denominator associated to two permutations τ and ρ

J(τ |ρ) = 1

π2

∫
C5

d2z1d
2z2d

2z3d
2z4d

2z5
vol SL(2,C)

∏
1≤i<j≤5 |zi − zj |−2sij∏4

i=1(zρ(i+1) − zρ(i))
∏4

i=1(z̄τ(i+1) − z̄τ(i))
, (B.7)

that can be obtained from the single-valued map applied to a disk integral

J(τ |ρ) = sv

∫
zτ(i)<zτ(i+1)

dz1dz2dz3dz4dz5
vol SL(2,R)

∏
1≤i<j≤5 |zi − zj |−sij∏4
i=1(zρ(i+1) − zρ(i))

. (B.8)

This generalises to arbitrary numbers of points, but we shall only use it for five-point integrals.

Using the identity 1
zw = 1

z(w−z)+
1

w(z−w) , and a change of variables to get the right-moving

Park–Taylor factor in the trivial permutation one computes that

=
1

π2

∫
C

d2z

∫
C

d2w
1

|z|2|w|2
|z|−2s12 |1−z|−2s24 |w|−2s23 |1−w|−2s34 |w−z|−2s23

= J(σ45|σ45) + J(σ45σ23|σ45) + J(σ45|σ45σ23) + J(σ45σ23|σ45σ23)

= sv

∫
0<x<y<1
dxdy

[
1

x(1− x)y(1− y)
|x|−s12 |1−x|−s25 |y|−s13 |1−y|−s35 |y−z|−s23

+
1

x(1− x)y(1− y)
|x|−s13 |1−x|−s35 |y|−s12 |1−y|−s25 |y−z|−s23

]
. (B.9)

One can use this form to extract the analytic function W5(si) in (2.63) by subtracting the poles as

described in [134]. The basis proposed in [134] does not give directly (2.63), but the α′ expansion of

the basis functions given in [137] allows to obtain the expansion (2.64) of W5(si) straightforwardly

using [135] and the datas provided by Broedel–Schlotterer–Stieberger. We will not display the

expressions that are not very illuminating, but we observe that the first irreducible multiple zeta-

values ζ(3, 3, 5), ζ(3, 5, 5) and ζ(3, 3, 7) appear with a polynomial in the Mandelstam variables

proportional to s2s4s5(s2+s4+s5) and therefore drop out in (2.66).
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One uses the same method to compute the integral (2.123) as

=
1

π2

∫
C

d2z

∫
C

d2w
∣∣∣ s
zw+

t
(z−1)w+

u
z(w−1)

∣∣∣2|z|−2s12 |1−z|−2s24 |w|−2s23 |1−w|−2s34 |w−z|−2s23

= s2J(σ45|σ45) + s2J(σ45σ23|σ45) + s2J(σ45|σ45σ23) + s2J(σ45σ23|σ45σ23)
−stJ(σ45|σ45σ23σ34)− suJ(σ45|σ45σ34)− stJ(σ45σ23|σ45σ23σ34)− suJ(σ45σ23|σ45σ34)
−tsJ(σ45σ23σ34|σ45)− usJ(σ45σ34|σ45)− tsJ(σ45σ23σ34|σ45σ23)− usJ(σ45σ34|σ45σ23)

+t2J(σ45σ23σ34|σ45σ23σ34)+utJ(σ45σ34|σ45σ23σ34)+tuJ(σ45σ23σ34|σ45σ34)+u2J(σ45σ34|σ45σ34)

= sv

∫
0<x<y<1
dxdy

[
s
( s

xy
+

t

x(y − 1)
+

u

(x− 1)y

)
|x|−s12 |1−x|−s25 |y|−s13 |1−y|−s35 |y−z|−s23

+s
( s

xy
+

t

(x− 1)y
+

u

x(y − 1)

)
|x|−s13 |1−x|−s35 |y|−s12 |1−y|−s25 |y−z|−s23

+t
( t

x(y − x)
+

u

x(y − 1)

)
|x|−s13 |1−x|−s23 |y|−s15 |1−y|−s25 |y−z|−s35

+u
( t

x(y − x)
+

u

x(y − 1)

)
|x|−s12 |1−x|−s23 |y|−s15 |1−y|−s35 |y−z|−s25

]
. (B.10)

One can use this form to extract the analytic function F5(si) in (2.123). The α′ expansion of the

basis functions given in [137] allows to obtain the expansion of F5(si) as

F5(s1, s2, s3, s4, s5)

= 2ζ(3)s5(2s
2 − 3t2 − 3u2)

+ζ(5)s5(s
2
(
6(s1+s3)

2+2s1(s1+s4)+2s3(s2+s3)+4s2s4+7(s1+s2+s3+s4+s5)(s2+s4+s5)+s5(7s1+2s2+7s3+2s4+6s5))

−t2(5((s1+s3)(2s1+3s2+2s3+s4)+(s1+s2)
2+2(s2+s4)

2+s21+s
2
4

)
+ s5(29s1+28s2+21s3+22s4+19s5)))

−u2(5((s1+s3)(2s1+s2+2s3+3s4)+(s3+s4)
2+2(s2+s4)

2+s23+s
2
2

)
+ s5(21s1+22s2+29s3+28s4+19s5)))

)
+(s2, t2, u2)O(s4i ) . (B.11)

The first irreducible multiple zeta-values ζ(3, 3, 5), ζ(3, 5, 5) and ζ(3, 3, 7) appear with a polynomial

in the Mandelstam variables proportional to s5(s2+s4+s5)(s1+s2+s3+s4+s5) and therefore vanish

in the two-loop four-point amplitude in which F5 appears evaluated at s1+s2+s3+s4+s5 = 0.

C E7 parabolic multiplicative characters

In this section we derive some of the differential equations satisfied by the Eisenstein series by

using their formula as Poincaré sums of a multiplicative character (3.12). In the domain of absolute

convergence for Re[s] sufficiently large this implies the same differential equation for the Eisenstein

series. When the equation is satisfied as an analytic equation in s it extends by analytic continuation

to all values of s except at the poles.

C.1 Abelian parabolic character

To compute the differential operators acting on a abelian parabolic character of E7 we use the

property that it is obtained from the E7 fundamental representation on a vector Γ in the minimal
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orbit. One can choose such a Γ, and define Z(Γ)ij = Vij
IΓI and its complex conjugate from the

action of g ∈ E7 on the vector Γ. For simplicity we shall write Zij and its complex conjugate Zij .

The minimal orbit condition for Γ implies the equation

Z[ijZkl] =
1

24
εijklpqrsZ

pqZrs , ZikZ
jk =

1

8
δjiZklZ

kl , (C.1)

and the differential operator acts on Zij as an element of e7(7)

DijklZ
pq = 3δpq[ijZkl] , DijklZpq =

1

8
εijklpqrsZ

rs . (C.2)

Using the definition |Z|2 = ZijZ
ij , the spherical abelian parabolic character can be defined as the

function ys7 = |Z|−2s in (3.12). One computes that it satisfies

DijpqDklpq|Z|−2s = 2s(s− 2)ZijZ
kl|Z|−2s−2 +

s(s− 11)

4
δklij |Z|−2s ,

DijpqDpqrsDrskl|Z|−2s = −3s(s− 2)(s− 4)ZijZkl|Z|−2s−2 +
s2 − 15s+ 8

4
Dijkl|Z|−2s ,

Djr[klDirmnDpq]mn|Z|−2s =
(s− 2)(s− 7)

12
δijDklpq|Z|−2s − s2 − 9s− 40

12
δi[kDpql]j |Z|−2s , (C.3)

and the Laplace equation

∆|Z|−2s = 3s(s− 9)|Z|−2s . (C.4)

To exhibit the module structure (3.83), it is convenient to consider a restricted set of indices as

follows (
D12ijDijklDkl12

)n3
(
D12pqD78pq

)n2
(
D1234

)n1 |Z|−2s (C.5)

= (s+n1+n2+n3−1)!(s+n2+n3−3)!(s+n3−5)!
(s−1)!(s−3)!(s−5)!

(
-3Z 2

12

)n3
(
2Z12Z

78
)n2
(
-6Z[12Z34]

)n1 |Z|−2(s+n1+n2+n3) .

One computes moreover that for m ≤ n(
D78ijDijklDkl78

)m(D12pqDpqrsDrs12

)n|Z|−2s (C.6)

= (s+n−1)!(s+n−3)!(s+n−5)!(s+n+m−1)!(s+n+m−3)!(s−n+m−5)!
(s−1)!(s−3)!(s−5)!(s+n−1)!(s+n−3)!(s−n−5)!

(
-3Z78 2

)m(
-3Z 2

12

)n|Z|−2(s+n+m)

=
(
-32
)n+m (s+n−5)!(s+n+m−1)!(s+n+m−3)!(s−n+m−5)!

(s+n−m−5)!(s+2n−1)!(s+2n−3)!(s−n−5)!

(
D12ijDijklDkl12

)n−m(D12pqD78pq
)n+m|Z|−2s

such that acting with a derivative operator in the conjugate representation 2mΥ6 does not produce

an independent tensor. One has in particular for s = k + 4 an integer greater than 5(
D78ijDijklDkl78

)(
D12pqDpqrsDrs12

)k|Z|−2k−8 = 0 . (C.7)

The restriction of the derivative D3n|Z|−2s to the R(2nΥ2) with two free indices reads

[D3n
2nΥ2

]ij12n−122n−1 |Z|−2s

= (s+n−1)!(s+n−3)!(s+n−5)!
(s−1)!(s−3)!(s−5)!

(−3)n

n+ 1
2

(
ZijZ

2n−1
12 − (2n− 1)Z1[iZj]2Z

2n−2
12

)
|Z|−2(s+n) , (C.8)
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and one computes that

D78ij 1

n+ 1
2

(
ZijZ

2n−1
12 − (2n− 1)Z1[iZj]2Z

2n−2
12

)
|Z|−2(s+n)

=
(2n+ 5)(n− s+ 4)

4n+ 2
Z78Z 2n−1

12 |Z|−2s , (C.9)

such that

D78ij [D3n
2nΥ2

]ij12n−122n−1 |Z|−2s

=
3(s+ n− 5)(2n+ 5)(s− n− 4)

8n+ 4

(
D12ijDijklDkl12

)n−1(D12pqD78pq
)
|Z|−2s . (C.10)

In particular for s = k + 4 integer we have that

D78ij [D3k
2kΥ2

]ij12k−122k−1 |Z|−2k−8 = 0 , (C.11)

consistently with the assumption that no lower order tensor is produced. This identity can be

trusted for the Eisenstein series in the domain of absolute convergence k ≥ 6. There are poles at

k = 1, 3, 5, but since the residue is in a representation in which the operator vanish one expects to

have no correction for k ≥ 2.

C.2 Heisenberg parabolic character

One can also consider the Heisenberg parabolic character using the adjoint action on an element Q

in the minimal nilpotent orbit. The element VQV−1 decomposes into the anti-Hermitian traceless

matrix Λi
j and the complex-selfdual antisymmetric tensor Xijkl satisfying to the constraints

Λi
kΛ

k
j = − 1

48
δijX

klpqXklpq ,

Λ[i
[kΛ

j]
l] = −1

2
XijpqXklpq +

1

48
δijklX

pqrsXpqrs ,

Λ[i
pX

j]pkl = Λ[k
pX

l]pij . (C.12)

The action of the derivative on these tensors is defined as the e7(7) action

DijklX
pqrs = 12δ

[pqr
[ijkΛ

s]
l] , DijklΛ

p
q = 2δp[iXjkl]q +

1

4
δpqXijkl . (C.13)

One computes for |X|2 = XijklX
ijkl that

Dijkl|X|2 = −24Xp[ijkΛ
p
l] , DijpqX

klpq = 10δ
[k
[i Λ

j]
l] , (C.14)

DijpqDklpq|X|2 = 30XijpqX
klpq + 3δklij |X|2 , Dijpq|X|2Dklpq|X|2 = 12XijpqX

klpq|X|2 ,

which permits to derive that

DijpqDklpq|X|−2s = 6s(2s− 3)XijpqX
klpq|X|−2s−2 − 3sδklij |X|−2s , (C.15)

and

∆|X|−2s = 2s(2s− 17)|X|−2s . (C.16)
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One gets therefore a solution to the equation

DijpqDklpqfmin = −9

2
δklij f

min , (C.17)

for s = 3
2 . One computes in general that

DijpqDpqrsDrskl|X|−2s =
(
s2 − 17

2 s+ 6
)
Dijkl|X|−2s , (C.18)

and the function satisfies to (3.69) and its complex conjugate for all s. The restriction of the third

order derivative to the Υ1+Υ4+Υ7 gives

D1k[12D34]ijD8ijk|X|−2s = −3

4
s(2s− 3)(2s− 5)Λ8

1X1234|X|−2s−2 , (C.19)

which gives for the irreducible representation

[D3
Υ1+Υ4+Υ7

]j,klpq
i|X|−2s (C.20)

= −3

4

s(2s− 3)(2s− 5)

|X|2s+2

(
Λi

jXklpq +
4

5
Λr

jδ
i
[kXlpq]r −

4

45
δijΛ

r
[kXlpq]r − Λi

[jXklpq] −
8

9
Λr

[jδ
i
kXlpq]r

)
showing that the function solves the cubic equation (3.75) for s = 5

2 .

One then computes that

Di[123[D3
Υ1+Υ4+Υ7

]4],1234
i|X|−2s (C.21)

=
3

4
s(2s− 3)(2s− 5)

(
8

3
(s+1)(Λi

[1X234]i)
2|X|−2s−4 +

(s+1

2
− 20

9

)
(X1234)

2|X|−2s−2

)
whereas

D1234D1234|X|−2s = 6s
(
96(s+1)(Λi

[1X234]i)
2|X|−2s−4 + (X1234)

2|X|−2s−2
)
, (C.22)

exhibiting the multiplicity 2 of the representation 2Υ4 of the Eisenstein series.30

One can also consider the restriction of the fourth order derivative to the 2Υ1 + 2Υ7

D8kijD1lijD1kpqD8lpq|X|−2s = −9

2
s(2s− 3)(2s− 5)(s− 4)Λ8

1Λ
8
1|X|−2s−2 . (C.23)

This does not prove that the Eisenstein series EE7
4Λ1

satisfies the same differential equation. Never-

theless, the function EE7
4Λ1

has a vanishing constant term and turns out to be square integrable as

EE7
3
2
Λ1

and EE7
5
2
Λ1
.

D Computation of EEd

sΛd
Fourier expansions

We compute the Fourier expansion of the Eisenstein series EEd
sΛd

in the parabolic subgroups P1 and

P2. The case of Pd was analysed in [202]. The method can be generalised to P3 and P1,2.

30For the multiplicative character one finds that they are proportional for s = 7
2
, but s = 7

2
is a regular point for

the Eisenstein series in the critical strip and the functional relation to s = 5 shows that the Eisenstein series does

not satisfy any particular equation at this point.
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D.1 Ed Eisenstein series in P1

Let us consider the Eisenstein series EEd
sΛd

of Ed for 6 ≤ d ≤ 7 in the parabolic P1 corresponding to

the perturbative string limit. For this purpose we write the decomposition P1

ed ∼= (∧d−7V )(−2) ⊕ S(−1)

− ⊕ (gl1 ⊕ so(d− 1, d− 1))(0) ⊕ S
(1)

− ⊕ (∧d−7V )(2)

R(Λd) ∼= (∧d−6V )(2
d−8
9−d

) ⊕ S
( d−7
9−d

)

+ ⊕ V ( 2
9−d

)

R(Λ1) ∼= δd,71
(−2) ⊕ (∧d−7V ⊗ S−)

( 3d−23
9−d

) ⊕ (∧d−7V ⊕ ∧d−5V )(
2d−14
9−d

) ⊕ S
( d−5
9−d

)

− ⊕ 1( 4
9−d

) .(D.1)

We decompose the sum over all Γ ∈ Ld into layers according to the number of non-zero components

Γ = (q, χ, p) . (D.2)

The first includes only non-zero string zero modes q ∈ IId−1,d−1 = V (Z). The second includes

the sum over D-brane winding numbers χ ∈ S+(Z). The third includes the sum over NS5-branes

p ∈ ∧d−6V (Z) for d ≥ 6.

The string zero-modes must be level matched so the norm (q, q) = 0. For the second layer the

D-brane winding must be half-BPS, which is the case if χ × χ ≡ χ̄γd−5χ = 0 where γd−5 is the

antisymmetric product of d − 5 gamma matrices for d ≥ 5. The constraint /qχ = 0 implies then

that (q, q) = 0. The third layer appears for d ≥ 6. For d = 6 the NS5-brane in an integer p ∈ Z
and the constraint is

pqa = χ̄γaχ , /qχ = 0 , (q, q) = 0 (D.3)

that can be solved for

qa =
1

p
χ̄γaχ (D.4)

provided p divides χ × χ in II5,5. For d = 7 we have a vector p ∈ II6,6 of NS5-branes and KK-

monopoles. The constraints are

(p, p) = 0 , /pχ = 0 , paqb − pbqa = χ̄γabχ , /qχ = 0 , (q, q) = 0 . (D.5)

We write these constraints schematically for all d and the Eisenstein series sum can be written as

EEd
sΛd

=
1

2ξ(2s)

∫ ∞

0

dt

t1+s

( ′∑
q∈V

(q,q)=0

e−
π
t
g

4
9−d
s |v(q)|2 +

′∑
χ∈S+
χ×χ=0

∑
q∈V
/qχ=0

e−
π
t
(g

4
9−d
s |v(q+2a×χ)|2+g

2 d−7
9−d

s |v(χ)|2)

+

′∑
p∈∧d−6V
p×p=0

∑
χ∈S+
p×χ=0

∑
q∈V

χ×χ=pq

e−
π
t
(g

4
9−d
s |v(q+2a×χ+(a×a+b)p)|2+g

2 d−7
9−d

s |v(χ+ap)|2+g
4 d−8
9−d

s |v(p)|2)

)

=
1

ξ(2s)

∫ ∞

0

dt

t1+s

( ∑
γ∈P1\Dd−1

′∑
n∈N

e−
π
t
g

4
9−d
s y2γn

2

+
∑

γ∈Pd−1\Dd−1

′∑
n∈N

∑
m∈Zd−1

e−
π
t
(g

4
9−d
s y

4
d−1
γ |vγ(m+aγn)|2+g

2 d−7
9−d

s y2γn
2)

+
∑

γ∈Pd−6\Dd−1

′∑
n∈N

∑
χ∈Z16

q∈Z10

χ×χ=nq

∑
m∈Zd−6

e−
π
t
|Zγ(n,χ,q,m)|2

)
(D.6)
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where for d = 7

|Z(n, χ, q,m)|2 = g2s

(
y2γ |υ(m+ āχ+ (āa+ b)n+ c(q + 2a× χ+ a× an))|2

+ |v(q + 2a× χ+ a× an))|2
)
+ yγ |v(χ+ an)|2 + g−2

s y2γn
2 , (D.7)

where all the moduli but gs should have a label γ, since they are different for each representative

γ. For d = 6 there is no Poincaré sum and

|Z(n, χ, q,m)|2 = g
4
3
s |v(q + 2a× χ+ a× an))|2 + g

− 2
3

s |v(χ+ an)|2 + g
− 8

3
s n2 . (D.8)

We write yγ the Pk multiplicative character in each Poincaré sum over Pk(Z)\Spin(d−1, d−1) that

we write Pk\Dd−1 for brevity.

Let us explain how to get these Poincaré sums. The first is the definition of the orbit of

light-like vectors. The second comes by using that χ̄γd−5χ = 0 implies that there exist γ ∈
Pd−1(Z)\Spin(d−1, d−1,Z) such that χ = γnΛd, the highest weight representative. Pd−1 is the

decomposition relevant in the large torus volume Vol(T d−1) = (2π)d−1α′ d−1
2 y−2

γ limit, so that n is

the number of D0-branes and the one-half BPS constraint /qχ = 0 implies that q = (m, 0) ∈ Zd−1 ⊂
IId−1,d−1 does not carry winding number.

The last Poincaré sum is only non-trivial for d = 7.31 There exists γ ∈ P1(Z)\Spin(6, 6,Z) to
bring p into a highest weight vector γnΛ1. In this parabolic /pχ = 0 implies that χ ∈ Z16, a spinor

of Spin(5, 5). The vector q satisfies (p, q) = 0, so it splits into a vector in II5,5 and the highest

weight vector

q = γ
( 1
n
χ̄γ1χ+mΛ1

)
. (D.9)

The remaining constraints are then automatically satisfied using the Spin(5, 5) identity

γaχχ̄γaχ = 0 (D.10)

familiar from super Yang-Mills theory in ten dimensions. Thinking of this parabolic P1 has a

decompactification limit, we can split the R-R axions in S
(1)

− into two spinors of Spin(5, 5) that we

write a and ā. We write the Kalb-Ramond two-form axion b.

The first Poincaré sum gives by definition g
− 4

9−d
s

s E
Dd−1

sΛ1
. The second can be computed by

Poisson resummation over q ∈ Zd−1. One can then exchange the Poincaré sum over Pd−1\Dd−1

for the spinor in S+ and the sum over q ∈ Zd−1
by a Poincaré sum over Pd−2\Dd−1 for the Fourier

coefficient Q = /̃qχ in S−, and the sum over χ ∈ Zd−1
of gcd dividing Q. The result is

ξ(2s− d+ 1)

ξ(2s)
g
2 7−d
9−d

s−d+1
s E

Dd−1

(s− d−3
2

)Λd−2

+ 2
g

5−d
9−d

s− d−1
2

s

ξ(2s)

′∑
Q∈S−
Q×Q=0

σd−1−2s(Q)

gcdQ
d−3
d−1

(d−3−2s)
E
SL(d−1)

(s− d−3
2

)Λd−2
(vQ)

Ks− d−1
2
(2π |v(Q)|

gs
)

|v(Q)|(1−
4

d−1
)s+ 9−d

2
− 4

d−1

e2πi(Q,a) . (D.11)

31Although there are additional layers of charges for d > 7, all the expressions we use extend to d > 7.
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For the third and last Poincaré sum in (D.6) one carries out the Poisson resummation over

m ∈ Zd−6 and the change of variable t → y
2
3
γ g

4
3

d−6
9−d

s t that gives the Poincaré sum over Pd−6\Dd−1

of

g
− 4

3
( d−6
9−d

s+ d−6
2

)
s y

d−9−2s
3

γ

ξ(2s)

′∑
n∈N

∑
χ∈Z16

q∈Z10

χ×χ=nq

∫ ∞

0

dt

t1+s− d−6
2

Ψ(n, χ, q)

× e
−π

t

(
( gs√

yγ
)
4
3 |v(q+2a×χ+a×an))|2+( gs√

yγ
)−

2
3 |v(χ+an)|2+( gs√

yγ
)−

8
3 n2
)

(D.12)

with

Ψ(n, χ, q) =
∑

m∈Zd−6

e
−πt( gs√

yγ
)−

4
3 y

− 2
d−6

γ |υ−T (m)|2+2πim(āχ+(b+āa)n+c(q+2a×χ+a×an))
. (D.13)

In this form mn is manifestly the Fourier coefficient of e2πimnb, i.e. the NS5-brane instanton

charge. To compute the abelian Fourier coefficient we use
∫
db Ψ(n, χ, q) = 1, which sets m = 0.

The constrained lattice sum is then the same for all 6 ≤ d ≤ 8 up to the shift in s and the rescaling

of gs that are absent in d = 6.

We don’t know how to compute this sum directly, but using the exact expansion of EE6
sΛ6

in P6

computed in [202] and the Langlands functional relation

EE6
sΛ6

=
ξ(2s− 8)ξ(2s− 11)

ξ(2s)ξ(2s− 3)
EE6

(6−s)Λ1
(D.14)

altogether with the partial expansion already carried out in this section for d = 6, one obtains that

′∑
n∈N

∑
χ∈Z16

q∈Z10

χ×χ=nq

∫ ∞

0

dt

t1+s
e−

π
t

(
g
4
3
s |v(q+2a×χ+a×an))|2+g

− 2
3

s |v(χ+an)|2+g
− 8

3
s n2

)

=
g
− 4

3
s

s

ξ(2s− 3)

(
ξ(2s− 8)ξ(2s− 11)g4s−16

s (D.15)

+2ξ(2s− 8)g
3s− 21

2
s

′∑
Q∈S−
Q×Q=0

σ11−2s(Q)
Ks− 11

2
(2π |v(Q)|

gs
)

|v(Q)|
11−2s

2

e2πi(Q,a)

+2g2s−8
s

∑
Q∈S−∗
Q×Q̸=0

∑
d|Q

d11−2sσ8−2s(
Q×Q
d2

)
B 3

2
,s−4(

|v(Q)|2
g2s

, |v(Q×Q)|
g2s

)

|v(Q×Q)|4−s
e2πi(Q,a)

)
.

Note that this gives the expected overal factor of 1
ξ(2s−3) that exhibits that this contribution vanishes

for the minimal series at s = 3
2 . Including this result in (D.12) one finds more generally that the

abelian component of this sum vanishes for s = d−3
2 . This should not be the case for the full
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series (D.12) including the non-abelian Fourier coefficients since the minimal series also carries

non-abelian Fourier coefficients. One obtains then

g
− 4

3
( d−6
9−d

s+ d−6
2

)
s y

d−9−2s
3

γ

′∑
n∈N

∑
χ∈Z16

q∈Z10

χ×χ=nq

∫ ∞

0

dt

t1+s− d−6
2

e
−π

t

(
( gs√

yγ
)
4
3 |v(q+2a×χ+a×an))|2+( gs√

yγ
)−

2
3 |v(χ+an)|2+( gs√

yγ
)−

8
3 n2
)

=
g
− 4

9−d
s

s

ξ(2s− d+ 3)

(
ξ(2s− d− 2)ξ(2s− d− 5)g4s−2d−4

s y−2s+d+1
γ (D.16)

+2ξ(2s− d− 2)g
3(s− d+1

2
)

s y
3d−1−6s

4
γ

′∑
Q∈16

Q×Q=0

σd+5−2s(Q)
Ks− d+5

2
(2π

√
yγ |v(Q)|

gs
)

|v(Q)|
d+5
2

−s
e2πi(Q,a)

+2g2s−d−2
s yd+1−2s

γ

′∑
Q∈16

Q×Q̸=0

∑
n|Q

nd+5−2sσd+2−2s(
Q×Q
n2 )

B 3
2
,s− d+2

2
(
yγ |v(Q)|2

g2s
,
yγ |v(Q×Q)|

g2s
)

|yγv(Q×Q)|
d+2
2

−s
e2πi(Q,a)

)

which we must summed over γ ∈ Spin(6, 6,Z)/P1 for d = 7. The first Poincaré sum gives by

definition the Eisenstein series ED6

(s− d+1
2

)Λ1
. For the other terms one identifies the character yγ as

the norm for a primitive vector ω ∈ V and Q as a spinor in S− satisfying /ω×Q = 0. The sum over

such ω and Q indeed reproduces the Poincaré sum with ω ∈ γΛ1 and Q ∈ 16
(1)
. One can rewrite

the second sum, for which Q × Q = 0, as a Poincaré sum over P5\D6 with Q ∈ γgcd(Q)Λ5 and

ω ∈ (Z6)(1). One gets therefore the change of variables

√
yγ |vγ(Q)| = |v(Q)| , yγ =

∣∣∣ v(Q)

gcdQ

∣∣∣ 16 yΛ1 , (D.17)

with the right-hand-sides defined in the parabolic P5, and yΛ1 the character of the parabolic sub-

group PSL(6)

1 of the Levi stabilizer SL(6) of Q ∈ S−.

For the last sum over rank 2 Q one considers instead the Heisenberg parabolic P2 decomposition.

In this case QγabQ ̸= 0, and defines an element in the minimal nilpotent orbit of so(6, 6), and

therefore QγabQ = γ(gcd(QγabQ)Λ2). In this decomposition Q can be written as an SO(4, 4)

vector by triality. We obtain therefore a Poincaré sum over Spin(6, 6)/P2 of spinors Q realised as

vectors of SO(4, 4) with non-zero norm square equal gcd(QγabQ). This parabolic corresponds to

the large T 2 torus limit. In this basis the constraint /ωQ = 0 implies that ω ∈ Z2, i.e. a doublet of

momenta along T 2. The Poincaré sum over P1(Z)\Spin(6, 6,Z) and the sum over generic Q ∈ 16
(1)

can therefore be rewritten as a sum over rank 2 Q ∈ S− and a Poincaré sum over P1\SL(2) of the
Levi stabilizer SL(2)× Spin(3, 4) of Q. The relevant change of variables is then

√
yγ |vγ(Q)| = |v(Q)| , yγ |vγ(Q×Q)| = |v(Q×Q)| , yγ =

∣∣∣ v(Q×Q)

gcd(Q×Q)

∣∣∣ 12U2 , (D.18)

where U2 is now the imaginary part of the large volume T 2 complex structure.

Using these formula and manipulating the Poincaré sums as explained above, one obtains even-

tually
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∫
[0,1]
db EEd

sΛd
= g

− 4
9−d

s
s

(
E

Dd−1

sΛ1
+
ξ(2s− d+ 1)

ξ(2s)
g2s−d+1
s E

Dd−1

(s− d−3
2

)Λd−2

+
ξ(2s− d− 2)ξ(2s− d− 5)

ξ(2s)ξ(2s− d+ 3)
g4s−2d−4
s E

Dd−1

(s− d+1
2

)Λd−6

+ 2
g
s− d−1

2
s

ξ(2s)

′∑
Q∈S−
Q×Q=0

σd−1−2s(Q)

gcdQ
d−3
d−1

(d−3−2s)
E
SL(d−1)

(s− d−3
2

)Λd−2
(vQ)

Ks− d−1
2
(2π |v(Q)|

gs
)

|v(Q)|(1−
4

d−1
)s+ 9−d

2
− 4

d−1

e2πi(Q,a)

+ 2 ξ(2s−d−2)g
3s− 3(d+1)

2
s

ξ(2s)ξ(2s−d+3)

′∑
Q∈S−
Q×Q=0

σd+5−2s(Q)

gcdQ2 d−6
d−1

(d+1−2s)
E
SL(d−1)

(s− d+1
2

)Λd−6
(vQ)

Ks− d+5
2
(2π |v(Q)|

gs
)

|v(Q)|
(6d−46)s+3d(8−d)+19

2(d−1)

e2πi(Q,a)

+ 2 g2s−d−2
s

ξ(2s)ξ(2s−d+3)

∑
Q∈S−∗
Q×Q̸=0

∑
n|Q

nd+5−2sσd+2−2s(
Q×Q

n2 )

gcdQ×Q
d−6
d−5

(d+1−2s)
E
SL(d−5)

(s− d+1
2

)Λd−6
(vQ)

B 3
2
,s− d+2

2
( |v(Q)|2

g2s
, |v(Q×Q)|

g2s
)

|v(Q×Q)|
(d−7)s+1− d(d−7)

2
d−5

e2πi(Q,a)

)

(D.19)

Here we define v(Q) as the Narain moduli matrix acting on the spinor Q ∈ S−, and Q × Q =

(QΓd−5Q) is the (d − 5)-form quadratic in Q, such that v(Q × Q) = v(Q) × v(Q), and its norm

is normalised with the apporiate normalisation for a (d − 5)-form with the 1
(d−5)! factor, such

that |v(Q)| and |v(Q×Q)| are Spin(d−1, d−1,Z) conjugate to multiplicative Borel characters for

primitive charges Q and Q×Q, respectively. For E7 the Gelfand–Kirillov dimension 27 is saturated

by the rank 2 spinor charge lattice of dimension 25 plus 1 for the SL(2) Eisenstein series of its Levi

stabilizer, if one includes the non-abelian Fourier support, i.e. 27 = 25 + 1 + 1.

This computation is in fact the same for E8, although this formula only gives a small part of

the Fourier coefficients at generic values of s in this case. However, one expects that it gives the

complete abelian Fourier coefficients for s = 5
2 and s = 9

2 and in particular

8πξ(4)ξ(9)g18s

∫
[0,1]
db EE8

9
2
Λ8

= ζ(5)g−2
s +

4π3

45
ξ(9)ED7

9
2
Λ1

+
4

3
ζ(4)g2s E

D7
2Λ6

+ 16
′∑

Q∈S−
Q×Q=0

(
gs
π

σ2(Q)

gcdQ− 6
7

ζ(4)E
SL(7)
2Λ6

(vQ)
K1(2π

|v(Q)|
gs

)

|v(Q)|
13
7

+
π2

6
σ4(Q)

K2(2π
|v(Q)|
gs

)

|v(Q)|2

)
e2πi(Q,a)

+ 16πg−1
s

∑
Q∈S−∗
Q×Q̸=0

∑
d|Q

d4σ1(
Q×Q
d2

)
K1(2π

√
|v(Q)|2+2|v(Q×Q)|

gs
)

|v(Q×Q)|
√
|v(Q)|2 + 2|v(Q×Q)|

e2πi(Q,a) . (D.20)

Let us now consider the non-abelian Fourier coefficient for E7(7). We use the polarisation

(3.116) and the unipotent character (3.117). One finds that this is a unipotent character of the

parabolic P7, for which we know the Fourier decomposition at the special values of s = 2 and

4 [202]. One can therefore consider this expansion of the Eisenstein series, and further decompose

it with respect to the P1 parabolic of E6. Physically the non-abelian Fourier coefficients in the

parabolic P1 correspond to first expand in the 4D string coupling gs and then in the string frame
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radus Rs to choose a polarisation, whereas the further decomposition of the Fourier expansion in

P7 corresponds to expand in the Einstein frame radius R first and then in the 5D string coupling

g5. They are related to each others through

R =
(Rs

gs

) 2
3
, g5 = gsR

1
2
s . (D.21)

One obtains in this way using the expression of [202], up to contributions of rank three charge

q ∈ Z27 that vanish for s = 2, 4,

2
g−1
s

ξ(2s)

′∑
k∈Z

∑
q∈Z16

k|q×q

ψk,q, q×q
k

(
R2s

s σ2s−1(k, q,
q×q
k )

Ks− 1
2
(2π

√
k2 + g2s Rs|v(q+āk)|2+g4s R2

s |v(
(q+āk)×(q+āk)

k )|2

g2s
)

(k2 + g2s Rs|v(q+āk)|2+g4s R2
s |v(

(q+āk)×(q+āk)
k )|2)

s− 1
2

2

+
ξ(2s− 5)R5

s

ξ(2s− 4)

σ9−2s(k, q,
q×q
k )

gcd(k, q, q×q
k )

5
2
−s
ED5

(s− 5
2
)Λ1
(gk,q)

Ks− 9
2
(2π

√
k2 + g2s Rs|v(q+āk)|2+g4s R2

s |v(
(q+āk)×(q+āk)

k )|2

g2s
)

k2 + g2s Rs|v(q+āk)|2+g4s R2
s |v(

(q+āk)×(q+āk)
k )|2

)

+ 2
g−5
s R2s

s

ξ(2s)ξ(2s− 4)

′∑
k∈Z
q∈Z16

∑
p∈Z10

k|p|2
2

=q/pq

ψk,q,p

∑
n|(k,q,p)

n2s−1σ2s−5(
(
|p|2
2

,/pq,kp−q×q)

n2 )

B2,s− 5
2
( k

2 + g2s Rs|v(q + āk)|2 + g4s R
2
s |v(p+ 2ā× q + ā× āk)|2

g4s
,
√

R2
s |v(kp− q × q)|2 + g2s R

3
s |v(/pq + (k/p− ⧸q×q)ā)|2 + g4s R

4
s |v(

|p|2
2 + 2ā/pā+ ā(k/p− ⧸q×q)ā)|2

g4s
)

(R2
s |v(kp− q × q)|2 + g2s R

3
s |v(/pq + (k/p− ⧸q×q)ā)|2 + g4s R

4
s |v(

|p|2
2 + 2ā/pā+ ā(k/p− ⧸q×q)ā)|2)

2s−5
4

(D.22)

where gk,q is the Spin(5, 5) element function of gsR
1
2
s , v and ā that stabilize the vector (k, q, q×q

k ) ∈
27. For q = 0 it is obtained by changing basis from the positive parabolic P6 to its transpose inside

E6 (Going from KLU to KLŪ). More generally it is then obtained from the former by the discrete

E6(Z) transformation that relates (k, q, q×q
k ) to (gcd(k, q), 0, 0).

D.2 Ed Eisenstein series in P2

Let us consider the Eisenstein series EEd
sΛd

of Ed for 3 ≤ d ≤ 7 in the parabolic P2 corresponding to

the large volume limite in M-theory. For this purpose we write the decomposition P2
32

ed ∼= · · · ⊕ (gld)
(0) ⊕ (∧3Z

d
)(9−d) ⊕ (∧6Z

d
)(18−2d) ⊕ (∧8,1Z

d
)(27−3d) (D.23)

R(Λd) ∼= (∧7Zd ⊗Zd)(3d−24) ⊕ (∧5Zd)(2d−15) ⊕ (∧2Zd)(d−6) ⊕ (Z
d
)(3)

R(Λ1) ∼= · · · ⊕ (∧7Zd ⊗ ∧3Zd)(4d−30) ⊕ (∧6Zd ⊗Zd)(3d−21) ⊕ (∧4Zd)(2d−12) ⊕ (Zd)(d−3) ,

where we normalised the grading such that it corresponds to the powers of r with (2πℓr
9−d
6 )d =

(2πℓV
1
3 )d the volume of the torus T d.

We will cary out the sum over Γ ∈ Ld with the first layer with only the Kaluza-Klein momentum

p ∈ Zd non-zero, the second layer with non-zero M2-winding Q ∈ ∧2Zd and finally the third layer

with non-zero M5-brane winding number N ∈ ∧5Zd. For d = 7 one should also consider a fourth

layer with Kaluza-Klein monopole charge k ∈ Z7, but we will not do this computation.

32We use the notation ∧p,qZd for the irreducible representation R(Λp+Λq).
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Layer decomposition

The three first grades of the Epstein series, i.e. the complete Epstein series for 3 ≤ d ≤ 6, reads

EEd
sΛd

=
1

2ξ(2s)

∫ ∞

0

dt

t1+s

( ′∑
p∈Zd

e−
π
t
r−3|U−1(p)|2 +

∑
Q∈∧2Zd

∗
Q∧Q=0

∑
p∈Zd

Q·p=0

e−
π
t
(r−3|U−1(p+a·Q)|2+r6−d|U(Q)|2)

+
∑

N∈∧5Zd
∗

N×N=0

∑
Q∈∧2Zd

Q×N=0

∑
p∈Zd

Q∧Q=N ·p

e−
π
t
(r−3|U−1(p+a·Q+(a×a+b)·N)|2+r6−d|U(Q+a·N)|2+r15−2d|U(N)|2)

)

=
1

ξ(2s)

∫ ∞

0

dt

t1+s

( ∑
γ∈Pd\SL(d)

′∑
n∈N

e−
π
t
r−3y2γn

2

+
∑

γ∈P2\SL(d)

′∑
n∈N

∑
p∈Zd−2

e−
π
t
(r−3y

2
d−2
γ |v−⊺

γ (p+aγn)|2+r6−dy2γn
2)

+
∑

γ∈P5\SL(d)

′∑
n∈N

∑
q∈Z10

p∈Z5

q∧q=np

∑
m∈Zd−5

e−
π
t
|Zγ(n,q,p,m)|2

)
(D.24)

where the last line vanishes for 3 ≤ d ≤ 4 and

|Z(n, p, q,m)|2 = r−3
(
y

2
d−5
γ |υ(m+ āq + (āa+ b)n+ c(p+ 2a ∧ q + a ∧ an))|2

+ y
− 2

5
γ |v(p+ 2a ∧ q + a ∧ an))|2

)
+ r6−dy

4
5
γ |v(q + an)|2 + r15−2dy2γn

2 , (D.25)

and yγ is the Pk multiplicative character in each Poincaré sum over Pk\SL(d), and we avoid writing

Pk explicitly for brevity. Also in this last equation, all the moduli but r should have a label γ since

their are different for each representative γ ∈ P5\SL(d), except for d = 5 in which case the set is

empty, and yγ = 1. The second Poincaré sum is straightforward, but let us explain the third in some

details. We set N ∈ ∧5Zd equal n ∈ 1(5(d−10)) using γ−1 ∈ P5\SL(d). The constraint Q × N = 0

in (Z5 ⊗ Zd−5)(6d−35) implies that Q ∈ 10(d−10) that we name q. The constraint Q ∧ Q = N · p
implies that the component p ∈ Z5

of Z
d
satisfies q ∧ q = np while its component m ∈ Zd−5

is

unconstrained. The remaining constraints are then automatically satisfied.

We write the M2 axions in (∧3R
d
)(9−d) as a ∈ 10(15−3d), ā ∈ (R

d−5 ⊗ 10)(15−2d) and the other

components do not appear. We write b in the (Rd−5)(30−5d), the axion coupled to the M5-brane

that contributes. Because two components of the anti-fundamental representation appear we also

define the torus metric axion c ∈ (R
d−5 ⊗ 5)(d) of SL(d).

The first Poincaré sum gives by definition r3sE
SL(d)
sΛd−1

. The second can be computed by Poisson

resummation over p ∈ Zd−2. One can then exchange the Poincaré sum over P2\SL(d) and the sum

over 3-forms np̃ ∈ (Zd−2)(2d−6) for the Poincaré sum over P3\SL(d) and the sum over primitive
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2-forms in (Z
3
)(2d−6), such that∫ ∞

0

dt

t1+s

∑
γ∈P2\SL(d)

′∑
n∈N

∑
p∈Zd−2

e−
π
t
(r−3y

2
d−2
γ |v−⊺

γ (p+aγn)|2+r6−dy2γn
2)

= ξ(2s− d+ 2)r(d−6)s+
(d−2)(9−d)

2 E
SL(d)

(s− d−3
2

)Λ2
(D.26)

+2r
d−3
2

s+
(d−2)(9−d)

4

′∑
N∈∧3Zd

N×N=0

σd−2−2s(N)

gcdN
3
2
(d−3−2s)

E
SL(3)

(s− d−3
2

)Λ2
(vN )

Ks− d−2
2
(2πr

9−d
2 |Z(N)|)

|Z(N)|2s−d+ 7
2

e2πi(N,a)

where N ×N is the projection to ∧5,1Zd.

For the third and last Poincaré sums in (D.24) one carries out the Poisson resummation over

m ∈ Zd−5 and the change of variable t → y
1
2
γ r

− 3(d−5)
4 t that gives the Poincaré sum over P5\SL(d)

of

r
3(d−5)

8
(2s−d+9)y

d−9−2s
4

γ

ξ(2s)

′∑
n∈N

∑
q∈Z10

p∈Z5

q∧q=np

∫ ∞

0

dt

t1+s− d−5
2

Ψ(n, q, p)

× e−
π
t

(
(r

9−d
4 y

3
10
γ )−3|(v−⊺(p+2a∧q+a∧an)|2+(r

9−d
4 y

3
10
γ )|v(p+an))|2+(r

9−d
4 y

3
10
γ )5n2

)
(D.27)

with

Ψ(n, χ, q) =
∑

m∈Zd−6

e−πtr−
3(d−5)

4 y
1
2− 2

d−6
γ |υ−⊺(m)|2+2πim(āq+(b+āa)n+c(p+2a∧q+a∧an)) . (D.28)

In this form mn is manifestly the Fourier coefficient of e2πimnb, i.e. the M5-brane instanton charge.

To compute the abelian Fourier coefficient we use
∫
db Ψ(n, q, p) = 1. The constrained lattice sum

is then the same for all 5 ≤ d ≤ 7 up to the shift in s and the redefinition of r that are absent in

d = 5.

We don’t know how to compute this sum directly, but using the exact expansion of EE5
sΛ5

in P5

computed in [202] and the Langlands functional relation 33

EE5
sΛ5

=
ξ(2s− 5)ξ(2s− 7)

ξ(2s)ξ(2s− 2)
EE5

(4−s)Λ2
(D.29)

33Or in Bourbaki convention ED5
sΛ5

= ξ(2s−5)ξ(2s−7)
ξ(2s)ξ(2s−2)

ED5
(4−s)Λ4

.
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altogether with the partial expansion already carried out in this section for d = 5, one obtains that

′∑
n∈N

∑
q∈Z10

p∈Z5

q×q=np

∫ ∞

0

dt

t1+s
e−

π
t

(
r−3|(v−⊺(p+2a∧q+a∧an)|2+r|v(p+an))|2+r5n2

)

=
r10

ξ(2s− 2)

(
ξ(2s− 5)ξ(2s− 7)r10−5s (D.30)

+2ξ(2s− 5)r3−3s
∑

N∈∧3Z5

N×N=0

σ7−2s(N)
Ks− 7

2
(2πr2|Z(N)|)

|Z(N)|
7−2s

2

e2πi(N,a)

+2r−s
∑

N∈∧3Z5

N×N ̸=0

∑
d|N

d7−2sσ5−2s(
N×N
d2

)
B1,s− 5

2
(r4|Z(N)|2, r4|z(N ×N)|)

|z(N ×N)|
5−2s

2

e2πi(N,a)

)
.

Note that this gives the expected overal factor of 1
ξ(2s−2) that exhibits that this contribution vanishes

for the minimal series at s = 1. Including this result in (D.27) one finds more generally that

the abelian component of this sum vanishes for s = d−3
2 . This is not the case for the full series

(D.27) including the non-abelian Fourier coefficients since the minimal series also carries non-abelian

Fourier coefficients. One obtains then for d = 6, 7, 8

r
3(d−5)(2s−d+9)

8 y
d−9−2s

4
γ

′∑
n∈N

∑
q∈Z10

p∈Z5

q∧q=np

∫ ∞

0

dt

t1+s− d−5
2

e−
π
t

(
(r

9−d
4 y

3
10
γ )−3|(v−⊺(p+2a∧q+a∧an)|2+(r

9−d
4 y

3
10
γ )|v(p+an))|2+(r

9−d
4 y

3
10
γ )5n2

)

=
V

6
9−d

s

ξ(2s− d+ 3)

∑
γ∈P5\SL(d)

(
ξ(2s− d)ξ(2s− d− 2)V 2d−4sy−2s+d

γ (D.31)

+2ξ(2s− d)V
3d−2

2
−3sy

− 7
5
s+ 7d−6

10
γ

∑
q∈Z10

∗
q∧q=0

σd+2−2s(q)
Ks− d+2

2
(2πV y

3
5
γ |vγ(q)|)

|vγ(q)|
d+2
2

−s
e2πi(q,aγ)

+2V d−2sy
2(d−2s)

5
γ

∑
q∈Z10

q∧q ̸=0

∑
n|q

nd+2−2sσd−2s(
q∧q
n2 )

B 3
2
,s− d

2
(V 2y

6
5
γ |vγ(q)|2, V 2y

6
5
γ |vγ(q ∧ q)|)

|vγ(q ∧ q)|
d
2
−s

e2πi(q,aγ)

)

The first Poincaré sum gives by definition the Eisenstein series E
SL(d)

(s− d
2
)Λ5

. For the other terms one

identifies the character yγ as the norm for a primitive 5-form ω ∈ ∧5Zd with ω × ω = 0 and N as

a 3-form in ∧3Zd satisfying that ω × N ∈ ∧6,2Zd vanishes. The sum over such ω and N indeed

reproduces the Poincaré sum with ω ∈ 1(2) and N = q ∈ 10
(1)
. One can rewrite the second sum,

for which N × N = 0, as a Poincaré sum over P3\SL(d) with N ∈ 1(2) and ω ∈ (∧2Zd−3)(2
d−5
d−3

).

One gets therefore the change of variables

y
3
5
γ |vγ(q)| = |Z(N)| , yγ =

∣∣∣Z(N)

gcdN

∣∣∣ d−5
d−3

yΛ2 , (D.32)
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with the right-hand-sides defined in the parabolic P3, and yΛ2 the character of the parabolic sub-

group P2 of the Levi stabilizer SL(d− 3) of N ∈ ∧3Zd.

For the last sum over rank 2 M2 instanton charge N one considers instead the further decom-

position of P5 with respect to the P1 parabolic of the Levi subgroup SL(5) associated to the vector

q ∧ q ∈ Z5. This gives the non-maximal parabolic P1,5 decomposition

sld ∼= · · · ⊕ (gl1 ⊕ gl1 ⊕ sld−5 ⊕ sl4)
(0) ⊕ (415−3d ⊕ (4⊗Zd−5

)d−3)
(d) ⊕ (Z
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where the underscript label gives the weight with respect to the GL(1) stabilizer of N ∈ 6(2d−18).

This decomposition determines the stabilizer of a rank 2 charge N as (GL(d − 5) × Sp(4,R)) ⋉
R4+4×(d−5)+(d−5) in the parabolic P1,5. The redefinition of the GL(1) factors gives

y
3
5
γ |v(q)| = |Z(N)| , y

6
5
γ |v(q ∧ q)| = |z(N ×N)| , yγ =
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∣∣∣ 34 d−5
d−9

νN , (D.34)

where νN is the character of P1,5 that stabilizes N (to the power 1
d−5 with respect to the grading

displayed above).

Using these formulas and manipulating the Poincaré sums as explain above, one obtains even-

tually∫
[0,1]
dbEEd

sΛd
= V

6
9−d

s

(
E
SL(d)
sΛd−1

+
ξ(2s− d+ 2)

ξ(2s)
V d−2−2sE

SL(d)

(s− d−3
2

)Λ2

+
ξ(2s− d)ξ(2s− d− 2)

ξ(2s)ξ(2s− d+ 3)
V 2d−4sE

SL(d)

(s− d
2
)Λ5

+ 2
V

d−2
2

−s

ξ(2s)

′∑
N∈∧3Zd

N×N=0

σd−2−2s(N)

gcdN
2
3
(d−3−2s)

E
SL(3)

(s− d−3
2

)Λ2
(vN )

Ks− d−2
2
(2πV |Z(N)|)

|Z(N)|
2s−d+6

6

e2πi(N,a)

+ 2
ξ(2s− d)V

3d−2
2

−3s

ξ(2s)ξ(2s− d+ 3)

′∑
N∈∧3Zd

N×N=0

σd+2−2s(N)

gcdN
d−5
d−3

(d−2s)
E
SL(d− 3)

(s− d
2
)Λ2

(vN )
Ks− d+2

2
(2πV |Z(N)|)

|Z(N)|
(d−7)s+

d(9−d)
2 −3

d−3

e2πi(N,a)

+ 2 V d−2s

ξ(2s)ξ(2s−d+3)

′∑
N∈∧3Zd

N×N ̸=0

∑
n|N

nd+2−2sσd−2s(
N×N
n2 )

gcd(N ×N)
d−5
d−9

3(d−2s)
4

B 3
2
,s− d

2
(V 2|Z(N)|2, V 2|z(N ×N)|)

ν2s−d
N |z(N ×N)|

d+3
9−d

d−2s
4

e2πi(N,a)

)

(D.35)

This expression is complete for d = 5, 6, but for the particular values s = d−3
2 and s = d+1

2

corresponding to the minimal and the next-to-minimal representation one expects that it is also

complete for d = 7 and 8. For s = d+1
2 this gives
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that indeed agrees with the constant terms
∫
da
∫
dbEEd

5
2
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[76].

For d = 3 or 4 the formula simplifies to the three terms
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But for d ≤ 5 one must also include the Eisenstein series ζ(5)EEd
5
2
Λ1

to obtain the non-pertubative

coupling E(1,0). It simply reduces to ζ(5)E
SL(3)
5
2
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for d = 3 and can be written for d = 4, 5 as
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provided one defines E
SL(1)
sΛ1

= E
SL(4)
sΛ4

= 1. Summing terms up for d = 3, 4 one obtains
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and for d = 5
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One checks that the constant terms that are power-low in V are consistent with the Langlands

constant term formula [38].

E Expansion of the 2-loop exceptional field theory amplitude

In this Appendix we complete the computation explained in Section 5.3. We have already carried

out the sum over pairs of charges Γi for which all brane charges vanish and for which only the

M2-brane charges are non-zero but linearly dependent. They correspond to the first and second

layers of charges. We shall now consider the other layers of charges.

E.1 Third layer

The third layer of charges includes M2 charges that are linearly independent. The antisymmetric

product representation is [∧2Rd]∧ [∧2Rd] ∼= ∧3,1Rd so one needs a non-maximal parabolic subgroup

Poincaré sum over P1,3 ⊂ SL(d), where

P1,3 = S(GL(1)×GL(2)×GL(d− 3))⋉Z2×(d−3)+d−3+2 (E.1)
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The constant terms come from the contribution at pi = q = 0 and one obtains
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This contribution disappears at ϵ → 0 in the renormalised coupling (5.31). These are all the

contributions for 3 ≤ d ≤ 4.

E.2 Fourth layer

The fourth layer includes linearly dependent M5 brane charges nIJKLP
i , that can be rotated to a

basis in which nIJKLP
i are integer ni with γ ∈ P5 ⊂ SL(d). For d = 5 this is already the case and
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the Poincaré sum drops out. The corresponding sum of charges gives
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so that the contributions from mi ̸= 0 are non-abelian. To compute the constant term we can

therefore set mi = 0 in this formula. This gives the Poincaré sum of the contribution for d = 5:
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The computation of the large T 5 volume is identical to the large circle limit for d = 5. This

computation was done in [27] and the entire expansion is reproduced by the term computed above

from the first three layers. We conclude that this term should vanish at ϵ→ 0. The Poincaré sum

could in principle brings an additional pole. The computation of [27] also exhibits that for high

layers the computation gives the same result as for the Eisenstein series in the Heisenberg parabolic

coming from the three-loop exceptional field theory amplitude. We check using Langlands constant

term formula that these contribution indeed vanish for d = 5, 6, 7, 8, which strongly suggests that

the Poincaré sum does not bring in an additional pole that could give a finite contribution at ϵ→ 0.

E.3 Fifth layer

For d ≥ 6 one considers then linearly independent M5 brane charges nIJKLP
i , that can be rotated

to non-degenerate two by two matrices ni
ȷ̂ under P4,6\SL(d). One obtains the solution
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where k is coprime to χa ∈ Z4 and k divides ni
ȷ̂ and qabi χb. The only remaining constraint is

2εı̂ȷ̂n(i
ı̂mj)
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i q
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that is recognised as the vanishing norm condition for vectors Qi = (mi
ı̂, qabi , ni

ı̂) ∈ II5,5. Similarly

as in [27] we shall interpret the sum over k and χa as the principal layer of a Poincaré sum over
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P1\SL(5). The sum over Qi will be computed using the orbit method for the SO(5, 5) Narain theta

series.

The bilinear form decomposes as
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One first perform the Poisson summation over pi, as∑
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The terms with pi ̸= 0 only contribute to non-abelian Fourier coefficients. Concentrating on abelian

Fourier coefficients one obtains
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Using the orbit method as in [27] one obtains
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+a)

r9−dy4
3
2

(qi+ãı̂ni
ı̂,qj+ãȷ̂nj

ȷ̂)+2πimi
ı̂(qi,ã

ı̂)

∼ 20ξ(3)r(6+2ϵ)(d−6)
∑

γ∈P4,6\SL(d)

∑
(k,χ)

y−3−2ϵ
4 y−2

6(
1 + u(χ

k
+a,χ

k
+a)

r9−dy4
3
2

) 3
2
+ϵ

∫
G2

d3Ω2

detΩ
5
2
2

E
SL(2)
2ϵΛ1

(τ)
∑

mi
ı̂∈Z2

det m̸=0

e−πΩ−1
2ijυ

ı̂ȷ̂mi
ı̂m

j
ȷ̂

= 40ξ(3)ξ(1+2ϵ)ξ(2−2ϵ)
ξ(3+2ϵ) r(6+2ϵ)(d−6)

∑
γ∈P4,6\SL(d)

∑
k≥1
χ∈Z4

y−3−2ϵ
4 y−2

6 E
SL(2)
2ϵΛ1

(υ)

∫ ∞

0

dt

t
5
2
+ϵ
e
−π

t

(
k2+ rd−9

y4
3
2

u(χ+ak,χ+ak)
)

∼ 40ξ(3)ξ(1+2ϵ)ξ(2−2ϵ)
ξ(3+2ϵ) r(6+2ϵ)(d−6)

∑
γ∈P4,6\SL(d)

y−3−2ϵ
4 y−2

6 E
SL(2)
2ϵΛ1

(υ)ξ(−1 + 2ϵ)y34r
2(9−d)

∼ 40ξ(1 + 2ϵ)ξ(2)2r(6+2ϵ)(d−6)+2(9−d)E
SL(d)

2ϵΛ5+(1−ϵ)Λ6

For the complete integrand in (5.31) one gets instead the contribution

∼ 20ξ(3− 2ϵ)r6(d−6)
∑

γ∈P4,6\SL(d)

∑
(k,χ)

y−3
4 y−2+2ϵ

6 r−2ϵ(d−9)(
1 + u(χ

k
+a,χ

k
+a)

r9−dy4
3
2

) 3
2
−ϵ

∫
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d3Ω2

detΩ
5
2
−ϵ

2

∑
mi

ı̂∈Z2

det m̸=0

e−πΩ−1
2ijυ

ı̂ȷ̂mi
ı̂m

j
ȷ̂

= 40ξ(1− 2ϵ)ξ(2− 2ϵ)r6(d−6)−2ϵ(d−9)
∑

γ∈P4,6\SL(d)

∑
k≥1
χ∈Z4

y−3
4 y−2+2ϵ

6

∫ ∞

0

dt

t
5
2
−ϵ
e
−π

t

(
k2+ rd−9

y4
3
2

u(χ+ak,χ+ak)
)

∼ 40ξ(1− 2ϵ)ξ(2− 2ϵ)r6(d−6)−2ϵ(d−9)
∑

γ∈P4,6\SL(d)

y−3
4 y−2+2ϵ

6 ξ(−1− 2ϵ)y34r
2(9−d)

∼ 40ξ(1− 2ϵ)ξ(2− 2ϵ)ξ(2 + 2ϵ)r6(d−6)+2(1+ϵ)(9−d)E
SL(d)

(1−ϵ)Λ6

where we have 34

E
SL(6)

(1−ϵ)Λ6
≡ 1

ξ(2− 2ϵ)E
SL(7)

(1−ϵ)Λ6
= ξ(5 + 2ϵ)E

SL(7)

( 5
2
+ϵ)Λ1

ξ(1− 2ϵ)ξ(2− 2ϵ)E
SL(8)

(1−ϵ)Λ6
= ξ(6 + 2ϵ)ξ(5 + 2ϵ)E

SL(8)

(3+ϵ)Λ2
. (E.16)

34For SL(6) the Poincaré sum is ill-defined as one gets
∑

γ∈P4\SL(d) 1, so one needs to introduce an additional

analytic continuation to compute
∑

γ∈P4\SL(d) y
−2δ
4 = 1 + O(δ). This can be done using detΩδ

2E
SL(2)
−3+2ϵ and taking

first the limit δ → 0 and then ϵ → 0.
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E.4 Additional layers

For d = 7 and d = 8 there are additional layers: two more for d = 7 and eight more for d = 8.

The Langlands consitant term formula gives no more constant terms for the corresponding E7

Eisenstein series EE7

(6+ϵ)Λ1
so one expects that the two additional layers give vanishing contributions

to the abelian Fourier coefficients at ϵ→ 0. For d = 8 the E8 function must include one additional

contribution that is missing at this level, probably from the ninth layer.

F Some integrals

Here we collect some additional integrals that have been used.

F.1 Infrared regularised integrals at two-loop

Using the parametrisation

Ω2 =

(
ρ2 ρ2u

ρ2u t+ ρ2u
2

)
, (F.1)

the integral can be unfolded to Schwinger parameter space domain

I(d) =
2π2

9

∫ ∞

0

dρ2

ρ
5−d
2

2

∫ 1

0
du

∫ ∞

ρ2u(1−u)

dt

t
5−d
2

(
1 +

ρ2
t

(
(1− 6u(1− u)

)
+

5ρ 2
2

t2
u2(1− u)2

)
e−πtµ2

1−πρ2µ2
2

=
64π2

9

d(d− 2)Γ(d− 3)Γ(d−1
2 )Γ(d+3

2 )

(d− 3)(7− d)Γ(d+ 2)
(πµ 2

2 )
3−d +

2π2

9
Γ(d−3

2 )2(πµ1µ2)
3−d
2

+
π2

27
Γ(d−7

2 )(πµ 2
1 )

7−d
2 Γ(d+1

2 )(πµ 2
2 )

− d+1
2 +O(µ 2

1 ) . (F.2)

The double pole divergence occurs at d = 3 + 2ϵ and using the prescription µ1 = µ2 = µ after

having eliminated the second ligne that vanishes at µ1 → 0, one obtains

I(3 + 2ϵ) =
2π2

9

3− ϵ

2− ϵ

Γ(ϵ)2

(πµ2)2ϵ
. (F.3)

The double pole is universal, but the single pole depends on the ratio µ2

µ1
. One fixes the prescription

such that the amplitude is finite.

The degenerate contribution associated to one massive loop and the other massless corresponds

to take µ22 = r−3U−1[n]. The first term is then finite, and can be reabsorbed into the nondegenerate

contribution to recombine into the GL(2,Z) invariant sum over all non-zero charges with a infrared

regulator that is set to zero before one expand in ϵ.
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8π

∫
G2

d3Ω2

detΩ
7−d
2

2

φtr
KZ(Ω2)

′∑
pi∈Z2×3

e−πΩij
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−1nj−πR(µ)
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9
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2

2
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0
du
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5ρ 2
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+ e−π(ρ2+t)µ2

)

= 8πr3(d−3)
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3
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d−3
2
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SL(d)
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Λd−1

+
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Γ(d−3
2 )2

(πµ2)d−3
+

2π2

9

Γ(d−7
2 )

(πµ2)
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SL(d)
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, (F.4)

F.2 Divergences of the supergravity amplitude

One defines

ESL(d)(0,1),ϵ = 8π

∫
G2

d3Ω2

detΩ
7−d
2

−ϵ

2

φtr
KZ(Ω2)

′∑
ni∈Zd

e−πΩij
2 n⊺

iU
−1nj . (F.5)

In the limit Pd−1 this gives

ESL(d)(0,1),ϵ =
16π2ξ(d− 3 + 2ϵ)2

(7− d− 2ϵ)(d+ 2ϵ)
y−2(d−3)−4ϵ

+8πy−2
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. (F.6)

One computes then that it diverges for d = 3 as

ESL(3)(0,1),ϵ =
16π2ξ(2ϵ)2

(4− 2ϵ)(3 + 2ϵ)
E
SL(3)
2ϵΛ2

+O(ϵ0) , (F.7)

and for d = 7 with

ESL(7)(0,1),ϵ =
2π2

9
Γ(ϵ)ξ(8 + 2ϵ)E

SL(7)

(4+ϵ)Λ6
+O(ϵ0) . (F.8)
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F.3 Automorphic distribution integrals

We have the integrals

Is[ϕ] =

∫
G

d3Ω

|Ω|
3−s
2

ϕ(τ)

′∑
ni∈Z

e−πΩijninj

= 4ξ(2s)

∫
F

d2τ

τ22
ϕ(τ)E

SL(2)
sΛ1

(τ) (F.9)

for automorphic distributions ϕ(τ) satisfying

∆ϕ(τ) = λϕ(τ)− τ2
∑
k

λk(τ
k
2 + τ−k

2 )δ(τ1) (F.10)

so that they behave at τ1 ≈ 0 as

ϕ(τ) = ϕ(iτ2)− τ−1
2

∑
k

λk(τ
k
2 + τ−k

2 )|τ1|+O(τ 2
1 ) (F.11)

for k = k0, k0 − 2, . . . and grow as τk0+1
2 at large τ2. The integral can be carried out by integration

by part as

(s(s− 1)− λ)

∫
F

d2τ

τ22
ϕ(τ)E

SL(2)
sΛ1

(τ)

= −
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λk
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∑
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= −
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k
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ζ(2s)
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n=1

n−s−km−s+k

= −
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k
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ξ(s− k)ξ(s+ k)
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(F.12)

from which one concludes that

Is[ϕ] =
∑
k

4λk
λ− s(s− 1)

ξ(s+ k)ξ(s− k) . (F.13)
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