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Abstract

Despite significant advances in machine learning in recent years, robotic control learned
from data has yet to show large-scale impact in the real world. One of the main
limitations is access to data – especially when coupled with the complexity of high-
dimensional and underactuated control problems. Unlike in domains such as image
classification or machine translation, explicit training examples cannot be easily sourced
and annotated on the internet but data collection is bounded by real-time robot opera-
tion.

This thesis presents several ways to leverage external data sources, from task demon-
strations to full-length tutorial videos, to address the challenge of slow data collection
and thus accelerate learning of robotic manipulation tasks. First, we propose a method
to efficiently leverage a small number of demonstrations as a starting point, and au-
tonomously improve this initial policy through residual reinforcement learning. No
reward shaping, controller engineering or state estimation is needed as the policy uses
image and proprioceptive inputs as well as sparse task completion rewards only.

In our second contribution, we show that robotic agents can acquire inductive bi-
ases for manipulation by watching videos of humans using their hands and arms before
ever interacting with the world themselves. We demonstrate that our reward functions,
though trained exclusively on human data, are able to generalize their predictions of task
progress to robot arms and accelerate training of several unseen manipulation tasks.

Finally, we propose that narrated instruction videos can not only help agents gain
subtask execution skills, but also teach them which subtasks are needed to accomplish
long-horizon goals and in which order, as well as how they map to natural language in-
structions. Specifically, we present a discriminative clustering based method leveraging
the temporal alignment of the narration and visual streams for automatic subtask dis-
covery and segmentation. Both short and long-form instructional videos are especially
promising data sources as they are widely available on the internet.

In this thesis, we investigate the performance of purely learning-based algorithms
for robotic manipulation, while acknowledging that optimal control as well as hybrid
approaches can provide complementary solutions to some of the open challenges. Our
key argument is that advances in the related fields of computer vision, signal process-
ing, natural language processing, imitation and deep reinforcement learning can help
lead the way towards more adaptive robotic agents. In manipulation domains, in partic-
ular, the variety of materials, shapes and tasks present in the real world beyond tightly
controlled operating conditions poses great difficulty for fixed control strategies and the
precise physical modelling required by classical model-predictive control approaches.
Our overarching goal is therefore to enable more capable and versatile robotic manipu-



lation through data-driven methods. Reducing the amount of domain expertise required
to train robots by emphasizing example-based learning and autonomous improvement
will ultimately support more widespread adoption of adaptive robotic solutions.



Résumé

Malgré des progrès considérables réalisés ces dernières années dans l’apprentissage
automatique, son utilisation dans le cadre de la commande de robots n’a pas encore eu
d’impact à grande échelle. L’une des principales limitations est l’accès aux données,
surtout si l’on tient compte de la complexité des problèmes de commande en haute
dimension et pour des systèmes sous-actionnés. Contrairement au cas des domaines
tels que la classification d’images ou la traduction automatique, il est difficile de trouver
des exemples d’entraînement annotés sur Internet, et la collecte de données dans des
environnements physiques est limitée par le fonctionnement du robot.

Cette thèse présente plusieurs façons d’exploiter des sources de données externes,
de démonstrations de tâches aux tutoriels vidéo, pour relever le défi de la lenteur de
la collecte de données et ainsi accélérer l’apprentissage des tâches de manipulation
robotique. Nous proposons d’abord une méthode pour exploiter efficacement un petit
nombre de démonstrations comme point de départ, et améliorer de manière automa-
tique la politique initiale par un apprentissage par renforcement résiduel. Des étapes
d’affinement de la fonction de récompense, des contrôleurs ou encore d’estimation
d’état ne sont pas nécessaires car la politique utilise uniquement des entrées d’image
et proprioceptives ainsi que des récompenses binaires obtenues en fonction de la réus-
site de la tâche désirée.

Dans notre deuxième contribution, nous montrons que les agents robotiques peu-
vent acquérir des biais inductifs pour la manipulation avant d’interagir eux-mêmes avec
le monde physique, en regardant des vidéos de personnes utilisant leurs mains et leurs
bras. Nous démontrons que nos fonctions de récompense, bien qu’entraînées exclusive-
ment sur des données humaines, sont capables de généraliser leurs prédictions de pro-
gression de tâche aux bras robotiques et d’accélérer l’entraînement de plusieurs tâches
de manipulation.

Enfin, nous proposons d’utiliser des tutoriels vidéo pour enseigner aux agents des
compétences en matière d’exécution de sous-tâches, quelles sont les sous-tâches néces-
saires pour accomplir une tâche à long terme, leur ordre d’exécution, et comment elles
correspondent aux instructions en langage naturel. Plus précisément, nous présentons
une méthode basée sur le clustering discriminant qui exploite l’alignement temporel de
la narration et du flux visuel pour la découverte et la segmentation des sous-tâches. Les
tutoriels vidéo, qu’ils soient courts ou longs, sont des sources de données particulière-
ment prometteuses car ils sont abondants sur Internet.

Dans cette thèse, nous étudions la performance des algorithmes purement basés sur
l’apprentissage pour la manipulation robotique, tout en reconnaissant que la commande
optimale ainsi que les approches hybrides peuvent fournir des solutions complémen-



taires à certains des défis ouverts. Notre argument central est que les avancées dans les
domaines connexes de la vision par ordinateur, du traitement du signal, du traitement du
langage naturel, des l’apprentissage par imitation et par renforcement profond peuvent
aider à ouvrir la voie à des agents robotiques plus adaptatifs. C’est particulièrement le
cas pour le domaine de la manipulation dans le monde réel, en dehors de conditions
d’exploitation étroitement contrôlées. En effet, la variété des matériaux, des formes
et des tâches pose de grandes difficultés pour les stratégies de contrôle fixes et les ap-
proches classiques de commande prédictive qui nécessitent une modélisation physique
précise. Notre objectif principal est donc de permettre une manipulation robotique plus
performante et polyvalente grâce à des méthodes appris à partir des données. Réduire
l’expertise liée au domaine nécessaire pour former les robots, en mettant l’accent sur
l’apprentissage à partir d’exemples et l’amélioration autonome, favorisera en fin de
compte l’adoption plus large de solutions robotiques adaptatives.
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Chapter 1

Introduction

1.1 Objective

GENERAL-PURPOSE ROBOTIC AGENTS face tremendous obstacles when navigating
the physical world. Capabilities requiring little thought in animals and humans, such as
locomotion and fine motor skills, have proven exceedingly difficult for artificial agents
to recreate [Moravec, 1988]. Although machines have reached superhuman perfor-
mance in many tasks requiring symbolic System 2 [Kahneman, 2011] thinking, such
as arithmetic and strategy games, many behaviors requiring intuitive System 1 thinking
that are effortless for humans remain largely open problems.

However, advances in machine learning, largely driven by deep neural networks in
the last decade [Krizhevsky et al., 2012; He et al., 2016; Vaswani et al., 2017], have be-
gun to address this class of fast, approximate System 1 tasks. Considerable progress has
been made in methods that classify, detect, segment and reproduce patterns in incoming
data streams. Many of these tasks naturally arise as subproblems in robotic systems,
and the success of deep learning has inspired an abundance of work in robot learning.
Yet, the majority of machine learning methods have exclusively leveraged supervised
and self-supervised objectives. One of the central arguments of this thesis is that any
autonomous agent expected to perform general-purpose problem solving in novel situ-
ations will also benefit from the ability to learn from scalar-valued feedback obtained
from task completion signals or from humans – the problem addressed by reinforcement
learning (RL).

1.1.1 The generality of reinforcement learning

Many types of sequential decision problems can be formulated as RL problems with few
assumptions. Learning from scalar reward signals obtained through interaction presents
several advantages over learning solely from static datasets with fixed prediction targets:
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1) By defining a reward (or cost) function instead of labels, the learning agent can
be tasked with problems for which no solution or only a suboptimal solution is
known.

2) Continuing to learn from interaction naturally handles distribution shift between
an initial training period and later testing times as well as personalization to an
end user or application.

3) Supervised learning tasks often involve state estimation type problems but do
not always include the actual decision to take based on a predicted quantity; the
decision strategy is in many cases hardcoded on top of estimated features. By
taking ultimate task success into account, the full observation-action loop can be
closed, supporting end-to-end learning.

4) No assumptions are made of the environment, such as access to dynamics, gra-
dients, or the full cost function. The cost function is also not assumed to be
deterministic.

A drawback of the generality and wide applicability of RL is that learning is notori-
ously slow. Most successes have been achieved in simulation, after millions of interac-
tion steps [Mnih et al., 2015; Silver et al., 2016; Andrychowicz et al., 2020; Siekmann
et al., 2021]. The absence of assumptions regarding policy structure, objective function
shape or environment dynamics does result in an extended training time, especially for
deep learning based approaches (i.e., deep RL). For these methods to have impact in
the real world beyond easily simulated tasks, including in robotics, we therefore argue
it is crucial to move beyond the tabula rasa setting by incorporating priors in the form
of demonstrations, other external data, auxiliary objectives, representation learning, or
learned rewards.

While RL allows robotic agents to flexibly discover new behaviors, problems in
robotics in turn serve as a testing ground for advances in learning algorithms, imposing
real-world constraints [Kober et al., 2013]. Robotic control neatly fits the sequential
decision problem setting of RL. As a result, several of the earliest and most standard
benchmark tasks in RL have been inspired by robotics, such as Cart-pole [Barto et al.,
1983] (Fig. 1.1a), where a cart on a one-dimensional track must balance an upright
pole on top of it, or Mountain car [Moore, 1990] (Fig. 1.1b), where an under-powered
car must gather momentum in order to escape a steep valley. When interfacing with
the real world, RL approaches must pay particular attention to sample efficiency, safety
of exploration and limited use of scene resets requiring manual intervention [Dulac-
Arnold et al., 2021]. Especially in tasks requiring high-frequency closed-loop control,
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(a) Cart-pole (b) Mountain car

Figure 1.1: Classical control tasks in RL, from OpenAI Gym [Brockman et al., 2016].

algorithms also need to predict actions in real time and tolerate delays in sensor obser-
vations and actuation. Hardly any of these issues arise in simulated or virtual tasks.

1.1.2 The role of simulation

For the majority of real-world phenomena, no accurate simulators exist. Careful mod-
eling of a changing process and the dependencies between its observed and unobserved
components as well as external factors is difficult and time-consuming, and many dy-
namical systems (in human behavior, biology, markets, climate, and traffic, to name a
few) are simply too complex to be well understood without prohibitive cost and time
investment. Yet, perhaps RL’s characteristic reliance on simulation is not an issue in
robotics – after all, several aspects of physical simulation of rigid bodies are relatively
well-understood, and most classical control methods are also first developed, tuned and
tested in simulation. When such physical models are available, data collection can
be scaled up by running several simulation instances in parallel. Although very data-
hungry algorithms will naturally impose some computational cost in dataset creation,
simulated data is still significantly less costly than robot time.

However, simulations are only useful to the extent that their observation space and
dynamics truly agree with the environment of interest. In order to enable a control
policy trained in simulation to work on a real robot, not only must the simulator be
carefully designed to align with its real counterpart as closely as possible, but the in-
evitably remaining differences must also be addressed in the sim2real transfer process.
Controllers must deal with the physical gap in dynamics between simulation and the
real world; methods using camera inputs must additionally be tolerant to a visual gap
between the systems. Domain randomization [Tobin et al., 2017] is a popular sim2real
method in which random variations of the physical parameters (such as mass, size and
friction coefficients) as well as visual appearance (color, texture and lighting) are intro-
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duced at training time to ensure the resulting policy is robust to such differences.

Nonetheless, significant time and effort goes into developing simulators as well as
precisely tuning them to match real world conditions, and the success of policy training,
even with sim2real adaptation, strongly relies on fidelity to the real system. Unfortu-
nately, progress towards closing the physical gap between a specific simulation and the
corresponding real system only supports better sim2real transfer in that problem setting
– improving policies for the task, environment and robot embodiment being modeled –
while the process must be repeated nearly all over again for each new setup.

At the same time, several recent approaches have managed to train RL policies
directly on real robots in an hour or less by leveraging auxiliary representation learn-
ing objectives [Zhan et al., 2020], or advances in model-free RL [Smith et al., 2022]
and model-based RL [Wu et al., 2022]. These works demonstrate that with the right
algorithmic advances and inductive biases, deep RL approaches need not be limited
to training in simulation, and will likely continue making inroads into other unsimu-
lable domains. In the meantime, particularly for development and benchmarking, it
is sensible to favour simulated tasks that can be parallelized and easily repeated with
identical environmental conditions. In this thesis, we therefore mainly focus on simu-
lated benchmarks, but also present a preliminary simulation-free experiment in which
we train residual RL to push objects on a table directly with a UR5 arm in Chapter 3.

1.1.3 Limitations of current robotics

An alternative to data-driven robotics is to reason explicitly about the dynamics of a sys-
tem and encode these assumptions into a physical model, the approach taken by classi-
cal control methods. However, these systems are necessarily limited by how accurately
the real world can be modeled. The precise physical properties of tasks involving con-
tacts, friction, as well as deformable objects and substances are often hard to measure
and several of the underlying physical principles remain active areas of research, de-
spite the fact that humans navigate these types of interactions with ease on a day-to-day
basis.

Today, robots mostly provide value in heavily constrained settings (Fig. 1.2). In
applications such as manufacturing and warehousing, entire factories must be designed
around robotic controllers that rely on highly structured environments with minimal
variation. Most optimal control methods assume perfect knowledge of low-dimensional
state such as object and target positions, with their performance degrading under state
estimation drift or calibration errors. In many cases, precise state estimation also re-
quires specialized hardware. For now, large scale operations may have been able to af-
ford, install and maintain equipment such as 6-DoF motion capture in all spaces where
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Figure 1.2: Current robotics applications work almost exclusively in highly structured
environments such as production lines and warehouses.

robots operate, but in order to move towards environments designed for humans – such
as streets, homes, offices, hospitals and retail spaces – we must relax the assumption
of perfect state estimation and design approaches replacing predetermined models of
the environment with adaptation to incoming data and state estimation from on-board
sensors.

In addition to precisely controlled operating conditions, the robotic behaviors them-
selves are typically hand-engineered. While the most accurate manipulators, such as
those found in automotive manufacturing, are capable of repeating hardcoded motions
with sub-millimetre accuracy, they are also expensive and heavy, and hence risky to
nearby operators, due to their sturdiness and high-power motors. The parameters of
each controller on an assembly line have typically been carefully tuned by hand to fit a
specific purpose, with precise start and goal configurations. As a result, the assembly
steps must remain unchanged. For most types of manual work in everyday life, there
is significant variation in incoming materials and situations, which is why automation
has yet to show promise in tasks such as sewing, cleaning, cooking, and carpentry,
and why there continues to be huge demand for manual labor. Collaborative robots
working together with people may be better equipped to handle some of these highly
variable tasks compared to robotic agents alone. However, as evidenced by demonstra-
tions of perfectly capable completion of several domestic tasks by teleoperated robot
arms [Wyrobek et al., 2008], current hardware allows for a much wider variety of ma-
nipulation tasks to be solved, and the bottleneck lies in the software.

Another downside of classical control is specialization to a particular problem set-
ting. Work towards designing controllers or modeling physical systems in a particular
sector, such as manufacturing, is unlikely to transfer to another, such as healthcare.
General algorithms for learning from demonstrations, reward-annotated offline data or
online exploration where it can be safely performed, however, have been shown to work
in a diverse array of application domains, including playing ping-pong in a video game
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[Mnih et al., 2015], quadruped walking [Haarnoja et al., 2018b], bipedal stair climbing
[Siekmann et al., 2021], controlling a data center cooling system [Lazic et al., 2018] or
magnetic actuator coils in nuclear fusion reactor [Degrave et al., 2022].

1.1.4 Towards learned control

In order for robots to handle real-world variations, they should be able to learn from
experience. Optimal control methods must first address the subproblem of estimating
low-dimensional input states from available sensor inputs. However, directly incorpo-
rating raw sensor data, including depth or RGB camera observations, in the control pol-
icy itself presents several advantages. Unlike hand-designed compact representations,
using visual inputs enables robustness to miscalibration, drift in proprioceptive state es-
timation and omissions of relevant state information at design time. Moreover, optimal
control usually requires breaking down the desired behaviors into discrete types, such
as using separate manually specified controllers for standing up, walking, running, and
recovering from perturbation in the case locomotion. Reasoning about and enumerating
the full set of possible behavior modalities or environment conditions a-priori is nearly
impossible, especially for complex problem domains. When faced with real-world di-
versity, particularly when additionally having to navigate around unexpected obstacles
or other actors, hand-engineered controllers become brittle and often insufficient.

Learning-based methods are also inherently well-suited for low-cost robots, as they
do not assume perfect repeatability and deterministic environments. Many learning ap-
proaches intentionally apply a small amount of noise to the selected actions at training
time to be robust to small variations, and where available, using real data allows poli-
cies to directly encounter and adapt to any randomness that may be present in real-world
dynamics. Being highly precise and repeatable requires expensive and rigid joints, typi-
cally resulting in heavy robots with high power consumption. As part of a shift towards
more learning from experience and less controller engineering, more errors in state es-
timation, calibration, robot configuration parameters and motor repeatability could be
tolerated as they could be corrected for at the algorithmic level based on visual inputs
rather than estimated intermediate state features. Such manipulators could be designed
to be cheaper, more energy-efficient, lighter and therefore safer for human operators.

In this thesis, we present three contributions towards improving general-purpose
robotic manipulation by using scalable and readily available data sources. We investi-
gate scripted and teleoperated demonstrations collected in the robot’s observation and
action space (Chapter 3), short video clips of human demonstrations (Chapter 4), and fi-
nally, full-length instruction videos (Chapter 5). As is the case in many related domains
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such as computer vision and natural language processing, we argue that advances in
data-driven and deep learning approaches may unlock tremendous potential for learn-
ing adaptive behavior in robotics. Given sufficient data and compute, generic and scal-
able models have been shown to outperform hand-crafted solutions time and time again
[Sutton, 2019].

Nonetheless, our aim is of course not to entirely replace classical methods in robotics
with learning-based approaches, as they are complementary in their strengths and weak-
nesses. While end-to-end learning can flexibly adapt to unseen situations and correct
for inaccuracies in state estimation, first-principles physical modelling and feedback
control allow parts of the problem which are well understood to be efficiently solved.
Assuming modelling is accurate, incorporating it into hybrid models would likely re-
duce training data requirements. Furthermore, optimal control is well suited to impos-
ing constraints for robot behavior. One way of combining both families of approaches
could be to use classical controllers in a subroutine of an RL policy, which might in
turn take actions at a lower frequency to handle longer-term goal setting. In a similar
vein, we make use of fixed inverse kinematics (IK) submodules with knowledge of the
physical model of the robot, and simplify the learning problem to controlling the end-
effector position in task space (with IK handling the conversion to joint parameters) in
the methods presented in Chapters 3 and 4. However, even in seemingly simple control
problems, there may be many hard-to-model external and internal perturbations such as
air resistance, wind, gear backlash and hardware wear and tear.

While this thesis is in large part motivated by robotic manipulation, RL, learning
from demonstration and weakly-supervised learning from video – including methods
similar to those we present in the following chapters – could equally be applied to learn
from sparse rewards in sequential decision making tasks in many other domains, such
as website navigation, trading, information retrieval, conversational agents, as well as
robotic locomotion and navigation tasks, too.

1.2 Motivation

1.2.1 Applications of adaptive manipulation

There remains a significant amount of unrealized potential for increased productivity
and economic growth from deploying robotics applications. In this section, we outline
just some of the many domains to which general-purpose manipulation skills could be
applied.
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(a) Many cooking tasks
require fine manipula-
tion.

(b) Wheeled delivery
robots are unable to get
past doors or gates.

(c) Rovers deployed in space must
adapt to and learn from unknown envi-
ronments.

Lot-size-one manufacturing. While manufacturing is one of the oldest domains to be
automated, current production lines require significant upfront investment per category
of item and hence require demand for vast quantities of one object for production to be
economically viable. Factory lines are typically highly specialized and allow for little
variation in the end product. On the other hand, 3D printing is dramatically increasing
access to individually customizable items such as personalized medical devices. Being
able to send a robot manufacturing and assembly instructions on-demand would greatly
diversify the types of custom items that could be cheaply produced.

Logistics and retail. Warehousing, packaging, and last mile delivery systems are
among the most well-known large-scale applications of robots. Prototype delivery
robots are currently being tested out, but typically move on wheels and have limited
ability to traverse obstacles and navigate the challenges of built environments, such as
stairs, gates and doors (Fig. 1.3b). Early bipedal models are in development.

Hazardous environments. Ideally, autonomous and adaptive robots could allow peo-
ple to limit their exposure to situations posing serious health or safety risks, in domains
such as search-and-rescue following disasters, mining, construction, as well as explo-
ration in extreme conditions such as the ocean floor or outer space (Fig. 1.3c). These
agents would need to navigate diverse terrains, but comprehensive manipulation skills
would also greatly extend their capabilities. Waste management and sorting can also
pose occupational hazards through exposure to dangerous substances. Much of waste
management around the world is still done manually.

Healthcare and prosthetics. Artificial limbs, exoskeletons and other assistive tech-
nologies have potential to greatly improve quality of life for people with impaired mo-
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bility. Robot arms are also routinely used in surgery [Kasina et al., 2017], though usu-
ally teleoperated by a surgeon. Increasing autonomy for routine procedures could fur-
ther increase the availability of highly skilled labor.

Laboratory tasks. Robotic manipulation is also being applied to the natural sciences
in the form of scaling up laboratory work. The scope of experiments that can be con-
sidered could be vastly increased and the pace of discovery accelerated using robots.
Laboratories are typically much more structured than most human environments, mak-
ing robotic applications feasible in the short to medium term.

Domestic tasks. While robotic vacuum cleaners have been available to consumers
for two decades [Jones, 2006], and robotic lawn mowers and pool cleaners for roughly
three decades [Hicks II and Hall, 2000; Prassler et al., 2000], robots for other domestic
tasks have lagged behind. Although prototype arms have been proposed for cooking
(Fig. 1.3a), current systems mainly cater to a desire for novelty rather than practical use
cases, and no solution has yet offered sufficient generality at a feasible price point. Due
to the highly unconstrained environment and rigorous safety requirements of working in
immediate proximity with humans, these applications are some of the hardest to tackle.
In the medium term, robotized kitchens at the restaurant or factory scale could serve as
a stepping stone in this direction.

1.3 Challenges

Safety. An immediate concern in any robotic deployment is the safety of surround-
ing people (and property). For learning-based methods, this is also a concern during
training, which may require exploration in the form of trial and error. While in some
applications this issue may be side-stepped by imposing distance or physical barriers
between humans and robots, in others, such as household and healthcare applications
it must be addressed before any substantial progress can be made. In this thesis, we
mainly consider settings falling under the former category; in particular, fixed-base ma-
nipulation arms.

Reward specification. The reward function is a critical component to define correctly
in order for RL policies to learn what was intended. Finding the right definition often
involves careful balancing of several weighted components with additional tunable hy-
perparameters. Moreover, these reward terms typically depend on full state information
such as target positions, which may not be accessible but must be estimated from read-
ily available signals, such as camera images, in an intermediate step. In this thesis, we
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remove the need for manually shaped rewards by inferring them from human data using
inverse RL (Chapter 4), or by developing sufficiently robust and data-efficient methods
to learn from only sparse rewards (Chapters 3 and 4).

Data reuse. Data collected on a real robot is always subject to the constraint of real-
time execution. Moreover, creating large datasets by sharing data across tasks or across
robots is not straightforward. In Chapter 4, we propose a method able to learn from
mixed-task data from different actors such as other robots, or humans.

Scene resets. While a non-issue in simulation, when training RL on a real robot, re-
setting the scene to an initial configuration may impose a significant amount of manual
work in an otherwise autonomous learning process. While not the focus of this thesis,
potential solutions have been proposed to alleviate this issue [Gupta et al., 2021].

1.4 Contributions

This thesis is based on the following publications:

• Minttu Alakuijala, Gabriel Dulac-Arnold, Julien Mairal, Jean Ponce, Cordelia Schmid.
Residual Reinforcement Learning from Demonstrations.
RSS 2020 Workshop on Advances & Challenges in Imitation Learning for
Robotics. [Alakuijala et al., 2020a]
A longer version is in preparation for a future journal submission.

• Minttu Alakuijala, Gabriel Dulac-Arnold, Julien Mairal, Jean Ponce, Cordelia Schmid.
Learning Reward Functions for Robotic Manipulation by Observing Humans. 2022,
Under review. [Alakuijala et al., 2022]

• Minttu Alakuijala, Julien Mairal, Jean Ponce, Cordelia Schmid.
Discovering Actions by Jointly Clustering Video and Narration Streams Across Tasks.
CVPR 2020 Workshop on Learning from Instructional Videos.
[Alakuijala et al., 2020b]

In the first contribution, Residual Reinforcement Learning from Demonstrations
[Alakuijala et al., 2020a], we extend work in residual RL by incorporating data-driven
learning for defining base controllers. Prior residual RL approaches propose to super-
impose a hand-designed but improperly tuned classical feedback controller with an RL
policy, in order to autonomously learn to correct the base controller’s actions by maxi-
mizing task reward. Instead of depending on an existing controller being available, our
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method additively adapts a base policy learned from demonstrations. The initial imi-
tation learning policy may perform suboptimally, especially with limited training data,
for regions of the state space not included in demonstrations and under any changes be-
tween data collection and testing conditions. We demonstrate consistent performance
improvement after residual training starting from base policies learned from just a hand-
ful of demonstrations, which can be easily provided by non-experts. A major advantage
of our approach is that it does not require access to full state information, such as the
positions of objects and targets, which are typically assumed to be available in opti-
mal control. To accurately estimate these unknown state features from sensor data,
input pipelines handling this challenging subproblem must therefore also be designed,
adding further engineering effort. Our method is instead entirely learned from data;
yet, thanks to priors in the form of demonstrations, the residual policy structure as well
as reuse of visual features learned using the imitation objective, we show our method
to be sufficiently sample-efficient to be able to learn from only binary task-completion
rewards (Fig, 1.4). This is in contrast to many RL methods that must define dense re-
wards a-priori, which often include several precisely weighted components and impose
non-negligible tuning effort.

(a) (b)

Figure 1.4: a) We propose a way to leverage demonstration data to learn a control
policy as well as task-relevant visual features through behavioral cloning on image and
proprioceptive inputs. b) The policy is then improved through reinforcement learning
by a superimposed residual policy, based on the learned visual features, allowing data-
efficient learning of control policies in image space from sparse rewards.

Our second contribution, Human Offline Learned Distances [Alakuijala et al., 2022],
offers a different perspective on reward specification by adopting an inverse RL ap-
proach to learning from human videos. The objective in inverse RL is to infer a reward
function that best explains the behavior of an expert, in order to use the learned reward
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in subsequent RL policy training. The expert data is usually assumed to come from the
action and observation spaces of the target policy, a requirement which we propose to
relax by learning from third-person observations of humans, instead. The specific goals
of our method are a) to learn priors for robotic manipulation by observing humans per-
forming various object interaction tasks, a cheap and easily scalable data source, and
b) to train a single, task-agnostic reward function conditioned on a goal image that can
be reused for several robot tasks. Specifically, we train functional distance models to
predict how far apart two image observations occur in unlabeled human video demon-
strations (Fig. 1.5), either by directly regressing the time remaining to reach a goal state
or in the form of distances in an embedding space learned using a time-contrastive ob-
jective. Through goal conditioning, our model can be trained even on ungrouped human
data without task labels. We propose to use the learned model as a reward function for
RL and demonstrate accelerated training in several sparse reward manipulation tasks.

Figure 1.5: Using short video clips of humans performing various manipulation tasks,
we propose to learn a model of remaining transition time from the current state to a goal
image. Thanks to highly diverse training data from the Something-Something dataset
[Goyal et al., 2017] (visualized on the left), the learned functions are able to generalize
to observations of robots in various simulated domains (examples shown on the right),
despite never having seen a robot arm in training.

Finally, our third contribution Discovering Actions by Jointly Clustering Video and
Narration Streams Across Tasks [Alakuijala et al., 2020b] addresses the challenging
problem of full-length video tutorial understanding. Beyond the short crowd-sourced
demonstrations considered in the second contribution, we now wish to learn from in-
the-wild instruction videos, which may be untrimmed, and often include irrelevant di-
gressions, scene transitions, changes in lighting, camera motion, footage of the nar-
rator speaking instead of visually demonstrating a task, as well as unstructured audio
narration. Using tutorial videos from YouTube and their corresponding transcripts ob-
tained with automatic speech recognition, we propose a discriminative clustering based
method detecting actions (i.e., subtasks) jointly occurring in the narration and visual
streams. Unlike most prior work, we do not assume task labels are available for the
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videos but propose to learn action classes across tasks (Fig. 1.6). By leveraging only
the relative timing of narration and video frames as well as pretrained visual and lan-
guage representations, our method discovers key steps making up each instructional
video without any subtask labels. The clustering objective is augmented with a se-
quence alignment penalty, encouraging the sequence of actions assigned to the narra-
tion to match the sequence assigned to frames, with approximate temporal alignment.
Our method produces a full temporal segmentation of mixed-task demonstrations into
one of k subtasks or background. The predicted subtask decompositions and extracted
demonstrations could be used as training data for robots, for learning both individual
skills as well as longer-horizon task planning using visual inputs, language descriptions,
or both. Indeed, evaluating the quality of the subtask predictions within the context of
robot learning is an interesting direction for further work.

Figure 1.6: Using only weak supervision from narration, we automatically discover
actions that might occur across different tasks and contexts—without assuming the task
depicted, such as the recipe label, is known.

1.5 Thesis outline

This thesis is organized into six chapters, including this introduction. In Chapter 2, we
review the existing literature on data-driven robotics and weakly-supervised learning. In
Chapter 3, we present our first contribution, a reinforcement learning method combin-
ing demonstrations with online trial-and-error learning [Alakuijala et al., 2020a]. Our
second contribution, a task-agnostic reward function for robotic manipulation learned
exclusively from human videos [Alakuijala et al., 2022], is introduced in Chapter 4.
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Chapter 5 presents our third contribution, a weakly-supervised method for action dis-
covery and segmentation in long-form narrated instruction videos [Alakuijala et al.,
2020b]. Finally, conclusions and further work are discussed in Chapter 6.
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Chapter 2

Related work

LEARNING-BASED ROBOTIC CONTROL dates back to at least the 1980s [Pomerleau,
1988], and optimal control has an even longer history. This chapter introduces the
reader to the technical concepts used throughout this thesis and includes a literature
review of recent related work.

2.1 Weakly supervised learning

In supervised learning, the most widely used type of machine learning, the objective
is to learn a function f : Rm → Rd mapping each example in a training dataset X ∈
Rn×m to its corresponding label in y ∈ Rn×d. The setting where y is only partially
available is referred to as weakly supervised. Such cases often arise in prediction tasks
where a full coverage of accurate labels is costly or even impossible to collect, and
learning methods need to be adapted to handle cheaper forms of supervision. This may
mean that y may be entirely or partially missing for some examples, or that each label
yi may be associated to a group of examples X ′ ⊆ X , only one of which is assumed
to truly match the label (or possibly several, depending on the setting). In some cases,
the labels that are available are not the prediction targets of interest but some related
quantities or attributes. In computer vision, classical examples include labels collected
at the image or video level, without fully defined temporal (interval start and end) or
spatial (bounding boxes, segmentation masks) extent.

2.2 Imitation learning

The objective in imitation learning is to reproduce the behavior of an expert demonstra-
tor. Given a dataset of demonstrations D consisting of state-action pairs (s, a), where
s ∈ S , the set of environment states, and a ∈ A, the set of possible actions, the aim is
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to map state observations to actions using a policy π : S → A. In behavioral cloning
(BC) [Pomerleau, 1988], one of the earliest and most standard imitation learning meth-
ods, the policy is trained to simply predict the expert actions under the distribution of
the data:

θ∗ = argmin
θ

E
(s,a)∼D

||a − πθ(s)||22, (2.1)

with the policy π parameterized by θ, such as the weights of a neural network. This
training objective is identical to supervised learning as introduced in Section 2.1; how-
ever, at test time the policy is evaluated for task success rather than its precision in
matching expert actions, and in particular, for episodes from the distribution visited by
π rather than D. As a result, BC suffers from the problem of compounding errors: as
small prediction errors lead the policy to steer away from states that were visited by the
expert and hence seen at training time, the quality of the predictions decreases further,
leading to yet further compounding.

Dataset Aggregation (DAgger) was proposed by Ross et al. [2011] to alleviate this
issue by allowing the expert demonstrator to be queried for newly encountered states,
in an interactive loop alternating BC training and data collection with the learned pol-
icy. However, DAgger comes at an increased cost in both environment interaction and
labeling effort. Several subsequent imitation learning methods have addressed the chal-
lenge of compounding errors even in the fixed dataset setting without further access to
the expert, typically by matching the full distribution of expert actions rather than only
their expectation [Ho and Ermon, 2016; Dadashi et al., 2021; Florence et al., 2021]. Al-
ternatively, Laskey et al. [2017] propose to expand the state coverage of demonstrations
by adding noise to the demonstrator actions at data collection time.

2.3 Reinforcement learning

Similar to imitation learning, in reinforcement learning (RL) [Sutton and Barto, 2018]
we are also interested in learning a policy π mapping observations (or states) to ac-
tions. However, the goal in RL is to take actions in the environment so as to maximize
the cumulative output of a scalar-valued reward function over time (Figure 2.1). Un-
like in the case of supervised or weakly supervised learning, correct prediction targets
are never provided but the agent must learn from just scalar feedback, which may be
incomplete or delayed. The environment is typically described using the Markov de-
cision process (MDP) formalism. An MDP consists of a 5-tuple (S, A, p, r, γ), where
S is the set of environment states, A is the set of possible actions, p : S × A → S
is the transition function describing forward dynamics, r : S × A → R is the reward
function, and γ ∈ [0, 1] is a discount factor representing a trade-off between imme-
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Figure 2.1: The reinforcement learning problem setting. An agent is faced with a se-
quential decision making problem: at each time step t, it observes the state of the envi-
ronment st and must decide on an action at. In response, the environment produces a
scalar reward rt and transitions to a new state st+1. The goal of the learning agent is to
choose actions in order maximize not just the immediate reward rt, but the cumulative
reward from the current time step onward.

diate rewards and long-term cumulative reward. The environment is assumed to be
Markovian, meaning that knowing the current state is sufficient to predict future states:
p(st+1|s1:t, a1:t) = p(st+1|st, at) ∀ st, st+1 ∈ S, at ∈ A. The objective for learning πθ,
at time t, is to choose at given st so as to maximize expected discounted return

E[Gπ
t ] := E

[ T∑
k=t

γk−trk

∣∣∣ rk ∼ r(sk, ak), sk+1 ∼ p(sk, ak)
]
, (2.2)

where T is the episode length, which may be infinite in the non-episodic case (for γ <

1). RL algorithms vary in how actions ak>t are sampled to evaluate this expectation.

In RL problems, p, r, or both may be stochastic and be unknown a priori, in which
case they must be estimated from samples only (also called black-box or zeroth order
optimization). Specifically, the objective is maximized on batches of incoming inter-
action data (st, at, rt, st+1, at+1, rt+1, st+2, ...) (with a full episode often called a trajec-
tory) rather than analytical gradients of p and r, which are not assumed to be available.
Algorithms using only newly gathered data from the current πθ are known as on-policy
methods, whereas those able to learn from data gathered using a different policy, such
as an earlier iteration of πθ, are referred to as off-policy methods.
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In model-based RL, p (and often, r) is estimated explicitly, whereas the objective
in model-free RL is to directly maximize Eq. 2.2 without tackling these intermediate
prediction problems in the process. Model-free algorithms are further divided into

a) value-based methods, which estimate value functions:
typically, state value functions
V π(st) := E[rt + γV π(st+1)

∣∣∣ rt ∼ r(st, at), at ∼ πθ(st), st+1 ∼ p(st, at)],
or state-action value functions
Qπ(st, at) := E

[
rt+γV π(st+1)

∣∣∣rt ∼ r(st, at), st+1 ∼ p(st, at)
]

[Watkins, 1989],

b) policy-based methods, which directly optimize the parameters of πθ to maximize
the policy objective on incoming data, and

c) actor-critic methods, which combine both.

RL makes few assumptions about the environment beyond the Markov property.
Even this requirement can, in fact, often be side-stepped by changing the state repre-
sentation. If st is not rich enough to capture the entire state of a system, further state
variables can be added to it, such as any previous states st′ , for t′ < t. Using a short
history of stacked image observations is common practice in image-based RL methods
[Mnih et al., 2015].

Thanks to the generality of the problem formulation and its few assumptions, very
similar algorithms with few changes have been successfully applied in domains as di-
verse as video games [Mnih et al., 2015], locomotion [Haarnoja et al., 2018b], data
center cooling [Lazic et al., 2018] and nuclear fusion [Degrave et al., 2022]. In this
thesis, we focus on applications to robotic manipulation.

2.3.1 Deep RL

Deep neural networks may be used in RL to represent the policy and value functions,
and additionally to estimate environment dynamics and the reward function in model-
based RL. Deep Q-networks (DQN) [Mnih et al., 2015] and Deep Deterministic Policy
Gradients (DDPG) [Lillicrap et al., 2016] were the earliest methods to combine RL and
deep learning, for discrete and continuous action spaces, respectively. Several algorith-
mic advances have been proposed since. A popular line of work has been to augment
the policy objective from Eq. 2.2 with terms encouraging the updated policy to stay
close to the previous iterate for improved learning stability [Schulman et al., 2015,
2017], or with terms encouraging exploration (e.g., the maximum entropy RL frame-
work) [Haarnoja et al., 2018a]. Rather than predicting the expected discounted return,
several methods have also proposed to estimate the full distribution of Gπ

t [Bellemare
et al., 2017; Dabney et al., 2018a,b; Barth-Maron et al., 2018].
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2.3.2 Offline RL

Standard RL requires online interaction with the environment to improve π, which may
be problematic on real systems, including robots but also user-facing systems such as
recommendation engines and even treatment plans in medicine. Offline RL [Kumar
et al., 2019; Fujimoto et al., 2019], also called batch RL, instead aims to learn a policy
and / or value function from a fixed dataset of trajectories consisting of (st, at, rt, st+1)
tuples per time step. Naively applying off-policy RL algorithms to a static dataset suf-
fers from value estimation errors for actions that were not included in the dataset. While
online Q-learning also suffers from overestimation bias under conditions of the deadly
triad [Sutton and Barto, 2018] of bootstrapping, experience replay and function ap-
proximation, the problem is aggravated in offline RL where no new data is observed
that could correct the bias. To address this problem, offline RL approaches typically
aim to balance maximizing reward while staying close to the dataset collection policy
[Fujimoto et al., 2019; Kumar et al., 2019, 2020]. Approaches include regressing over
the demonstrated actions (as in BC) while weighting samples according to a learned
value function [Wang et al., 2020; Peng et al., 2019; Nair et al., 2020]. Nair et al.
[2020] study the setting where offline data is available but training can be continued
online.

2.3.3 Large-scale methods

While access to data is a bottleneck in both online and offline RL, in applications where
abundant data collection is cheap and parallelizable, such as in simulation or video
games, the full representational capacity of deep neural networks can be leveraged.
This has lead to an active line of work on asynchronous and distributed algorithms
[Mnih et al., 2016; Horgan et al., 2018] able to merge environment trajectories [Horgan
et al., 2018] or policy parameter updates [Mnih et al., 2016] across copies of actor-
environment interaction threads running in parallel. As network architectures have
grown to contain as many as hundreds of billions of parameters with attention-based
architectures such as Transformers [Vaswani et al., 2017], the amount of training data
required has drastically increased. Notable applications of transformers in RL include
Decision Transformers, [Chen et al., 2021b], Trajectory Transformers [Janner et al.,
2021] and Gato [Reed et al., 2022]. Reed et al. [2022] train a single policy network
on over 600 tasks with various embodiments and action spaces, including Atari games,
language generation, and block stacking with a real robot arm. We discuss large-scale
learning in the context of robotics in Section 2.4.
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2.3.4 Representation learning

Several approaches for learning task-relevant representations from high-dimensional in-
puts have been proposed. They typically involve self-supervised tasks with prediction
targets that are readily available or can be automatically sourced. Various supervised
objectives can then be leveraged to capture relevant state information from raw obser-
vations. This greatly reduces the difficulty of the RL problem compared to learning
representations as purely a side effect of mapping inputs to actions given only scalar
feedback. Jaderberg et al. [2017] observed that predicting state features that were
known but not made visible to the policy, such as estimating depth from RGB as an
auxiliary task, improved policy performance more than simply giving the agent access
to the depth data directly. Pathak et al. [2017] propose a self-supervised objective for
learning state representations ϕ such that the action at should be recoverable given
(ϕ(st), ϕ(st+1)). Contrastive objectives have been widely embraced for self-supervised
pretraining in other domains and have similarly been applied to RL, by using image
observations with different crops and augmentations [Laskin et al., 2020], or different
views of simultaneous video data [Sermanet et al., 2018] as positive pairs.

State representations are a natural place to incorporate pretraining on external data.
Efforts towards learning universal robot representations from external datasets include
Reusable Representations for Robotic Manipulation (R3M) [Nair et al., 2022], which
could be learned once on a large amount of data and reused for several downstream
tasks.

2.3.5 Self-supervised objectives

In the absence of supervision in the form of rewards, there are still several ways to
acquire skills in the environment using RL objectives. An agent can define its own
objective, such as diversity, coverage or goal reaching. A prominent example is goal-
conditioned RL [Schaul et al., 2015; Andrychowicz et al., 2017], where the task is
to transition to a goal state, which can be any state in S . Alternatively, the objective
could be defined as learning skills (i.e., low-level policies) with maximally different
state visitation distributions [Eysenbach et al., 2019]. Pure exploration strategies such
as Random Network Distillation [Burda et al., 2019] also fall in this category, although
most commonly used together with a task reward. Go-explore [Ecoffet et al., 2019]
uses the strategy of eventually returning to all previously visited states to tackle hard
exploration problems: tasks with extremely sparse rewards, which are essentially state
coverage maximization problems until the first reward is observed. Methods in self-
supervised RL are typically evaluated by how quickly they learn a newly specified task
once its corresponding reward does become available.



21

2.4 Data-driven robotics

Any approach using real or simulated interaction data to train a behavior or to fit a
model can be considered data-driven, without limiting this definition specifically to im-
itation and reinforcement learning. However, methods in this category vary in the extent
to which they are conditioned on data: e.g. system identification does use data to set
the parameters of a physical model, but the parametrization and structure of the model
itself is strongly predefined, whereas end-to-end learned systems are almost entirely
determined by data. While the line can be blurry, we mainly use data-driven robotics
to refer to methods that employ neural networks, without assumptions such as linear-
ity of system dynamics or a quadratic cost function. Recent successes of this line of
work include applications to throwing [Zeng et al., 2019], stacking [Lee et al., 2021],
quadruped walking [Wu et al., 2022], bipedal stair climbing [Siekmann et al., 2021],
in-hand manipulation [Andrychowicz et al., 2020], shaping dough [Qi et al., 2022] and
various kitchen tasks [Ahn et al., 2022].

While the imitation learning and RL methods covered in the previous sections are
also relevant and applicable to most robot control tasks, several constraints arise specif-
ically in robotics applications. When interfacing with physical hardware in the real
world, issues that can be largely overlooked in simulation become significant chal-
lenges. Once learning algorithms move to real robots, emloying parallelization is much
less straightforward. Kalashnikov et al. [2018] used a farm of 7 identical robot arms col-
lecting over 800 hours (33+ days) of execution data to learn picking of diverse objects
from images.

Much like the ImageNet dataset [Deng et al., 2009] enabled a significant leap ahead
in image classification and serves now as one of the most standard benchmarking and
pretraining datasets, several efforts have set out to release a similar large dataset for
robotics, including RoboNet [Dasari et al., 2020], RoboTurk [Mandlekar et al., 2018],
and Bridge Data [Ebert et al., 2021].

2.4.1 Data reuse

Sharing data is essential in order to avoid starting data collection from scratch for each
new experiment. In order to reuse data across agents, robot instances and experiments,
we must employ off-policy algorithms as they are able to learn from data collected with
a different policy, unlike on-policy methods. In addition to distributed training where
data is shared across several actor-environment threads, we may want to also share data
across tasks, environments, robots and even between a human and a robot (discussed
in Section 2.5). One way to collect a single dataset relevant for learning several down-
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stream tasks is collecting human teleoperated play data in a robot environment [Lynch
et al., 2020; Lynch and Sermanet, 2021]. Lynch and Sermanet [2021] make use of a
common weakly supervised learning pattern of labeling a small subset of data (lan-
guage descriptions collected for <1% of sequences) and using readily available proxy
labels (goal images) for the rest. The robot’s own data collected while learning one task
can also be reused for learning other tasks [Cabi et al., 2019; Kalashnikov et al., 2021].
In Chapter 4, we propose a novel way to learn robotic reward functions from mixed-task
demonstration data.

2.4.2 Reward annotation

Many results in RL depend on a significant time investment in designing and tuning the
parameters of reward functions. While a globally optimal reward function is highly
non-trivial to determine for complex behaviors such as front flips, Christiano et al.
[2017] simplify the task to rating one of two policy executions as being closer to the in-
tended behavior. In a similar vein, Cabi et al. [2019] ask annotators to provide sketched
curves of perceived progress to the goal, which are significantly faster to provide than
per-timestep manual reward annotation. Learned success classifiers or reward models
[Sermanet et al., 2017] are another way to reduce annotation workload.

2.4.3 Learning from demonstration

While sometimes considered synonymous with imitation learning, learning from demon-
stration (LfD) refers to the family of approaches making use of expert data together with
RL objectives (also called apprenticeship learning). Unlike the case of pure imitation, a
task reward is typically assumed to be available, and unlike in offline or mixed offline-
online RL, the actions in the external data are assumed to be optimal or at least of high
quality (thus combining supervised learning and RL). LfD approaches aim to maximize
task reward while staying close to the expert data [Vecerik et al., 2017; Rajeswaran
et al., 2017]. This may present advantages over either RL or imitation learning alone: if
the exploration problem is difficult or the reward is poorly specified, demonstrations al-
low to bootstrap and regularize learning to a desirable subspace of policies, yet learning
from task reward, if it is available, allows to potentially outperform the demonstrations
through trial and error.

Demonstrations can also be used to learn state representations, infer rewards (in
what is called inverse RL) or to learn an action representation to simplify a complicated
action space. Dadashi et al. [2022] propose to use demonstrations to learn a discretiza-
tion of a continuous action space.
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2.4.4 Combined learning and optimal control

Several hybrid methods taking inductive biases from classical control have been pro-
posed. The original residual RL methods Johannink et al. [2019]; Silver et al. [2018],
which we build on in Chapter 3, used a hand-engineered controller for a block insertion
task [Johannink et al., 2019] or pushing and fetching with a hook [Silver et al., 2018].
Dynamic movement primitives [Ijspeert et al., 2013] have also been additively adapted
with residual RL [Davchev et al., 2020]. In the same vein, [Zeng et al., 2019] additively
correct a trajectory model proposing release velocities for throwing with autonomous
trial and error.

2.5 Learning from human videos

Whereas the methods above exclusively use data from the same MDP as the target task
(with the possible exception of the reward function, which may not be available in imi-
tation and inverse RL tasks), more recently, a line of work has proposed to share experi-
ence across actors operating in different but related state and action spaces. An instance
of this problem which is particularly relevant in the real world is robots learning from
observing humans. Schmeckpeper et al. [2020] propose to learn a domain-invariant
embedding space for robot and human observations from the same task as well as an
inverse model for predicting robot actions corresponding to the embeddings for human
transitions. Zakka et al. [2022] use a temporal cycle consistency constraint to align
trajectories accomplishing the same task but possibly demonstrated by different em-
bodiments – such as a robotic gripper, a human hand, two human hands or a human
using various tools – to learn an embodiment-invariant representation of task progress.
Sermanet et al. [2018] use multiple views of the same human demonstrations to define
a time-contrastive objective for also learning task progression aware image representa-
tions. While Schmeckpeper et al. [2020], Zakka et al. [2022] and Sermanet et al. [2018]
use data for a single task at a time, Chen et al. [2021a] and Shao et al. [2021] propose
to use a much larger, multi-task human video dataset [Goyal et al., 2017] for learning
a reward function conditioned on a human video [Chen et al., 2021a] or a language de-
scription of the task [Shao et al., 2021].

Outside the context of robotics, classic video understanding tasks include action
recognition [Wang and Schmid, 2013; Carreira and Zisserman, 2017], segmentation
(both spatial [Tsai et al., 2016] and temporal [Koprinska and Carrato, 2001]), object
tracking and prediction / generation. Video data is well suited for weakly supervised and
self-supervised objectives as it provides significantly more information than standalone
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images: audio, dynamics, length of time, direction of time, and temporal continuity in
contiguous frames. Alayrac et al. [2016] propose to use narrated instruction videos to
automatically discover key subtasks commonly occurring in videos of the same task.
Zhukov et al. [2019] extend upon this work by learning component models, such as
ones modelling verbs and objects of action descriptions, that may occur across several
tasks. Moreover, Elhamifar and Zaing [2019] propose a Hidden Markov Model whose
latent states correspond to different action classes and which supports repeated, omitted
and out-of-order actions. Progress in general video understanding tasks is likely to lead
towards more capable robotic agents in the long term.
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Chapter 3

Residual RL from Demonstrations

RESIDUAL REINFORCEMENT LEARNING (RL) has been proposed as a way to solve
challenging robotic tasks by adapting control actions from a conventional feedback
controller to maximize a reward signal. We extend the residual formulation to learn
from visual inputs and sparse rewards using demonstrations. Learning from images,
proprioceptive inputs and a sparse task-completion reward relaxes the requirement of
accessing full state features, such as object and target positions. In addition, replac-
ing the base controller with a policy learned from demonstrations removes the depen-
dency on a hand-engineered controller in favour of a set of demonstrations, which can
be provided by non-experts. Our experimental evaluation on simulated manipulation
tasks on a 6-DoF UR5 arm and a 28-DoF dexterous hand demonstrates that residual
RL from demonstrations is able to generalize to unseen environment conditions more
flexibly than either behavioral cloning or RL fine-tuning, and is capable of solving high-
dimensional, sparse-reward tasks out of reach for RL from scratch.

3.1 Introduction

Reinforcement learning has the potential to enable autonomous learning of hard-to-
specify behaviors under varying environment conditions. However, learning control
entirely from data requires a significant amount of robot experience to be collected for
most tasks of interest. To improve sample efficiency, residual RL [Johannink et al.,
2019; Silver et al., 2018] takes advantage of a conventional controller to address the
part of the task that can be solved efficiently by feedback control, but adapts the control
outputs through a superimposed residual policy, trained with RL.

Videos of policy executions are available on the project website:
https://sites.google.com/view/rrlfd/.

https://sites.google.com/view/rrlfd/
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However, relying on hand-engineered base controllers imposes certain limitations
on the kind of tasks that can be addressed. Providing prior information in the form of
demonstrations instead of a manually specified feedback controller would allow resid-
ual RL to be used in a wider set of applications for which first-principles physical mod-
eling and accurate state estimation are not feasible. Drawing from the extensive field of
imitation learning, we train residual RL to complement a policy learned with behavioral
cloning (BC) [Pomerleau, 1988].

Replacing the base controller with a policy learned from demonstrations presents a
number of advantages. First, the resulting policy can be trained from data alone, in the
form of demonstrations for the base controller and rollouts in the environment for the
residual policy. We argue that in many settings, demonstrations are easier to provide
than custom controllers for new tasks, objects or robot configurations. Demonstrations
may, for example, be obtained by teleoperation, or any logged task execution data.
Second, feedback controllers typically rely on full state estimation, such as the positions
of objects, targets and obstacles. We instead propose to learn control entirely from
visual and robot proprioceptive inputs, and learn task-specific state features through
BC on demonstrated trajectories. Whereas the residual policies considered in prior
work require hand-crafted state features [Johannink et al., 2019; Silver et al., 2018;
Barekatain et al., 2020; Schoettler et al., 2020; Rana et al., 2020; Davchev et al., 2020],
our method, Residual Reinforcement Learning from Demonstrations (RRLfD), learns
from images and requires minimal feature engineering.

Moreover, learning a residual on top of a base controller enables a significant de-
crease in sample complexity compared to training RL from scratch [Johannink et al.,
2019; Silver et al., 2018; Schoettler et al., 2020; Rana et al., 2020; Davchev et al., 2020]
as the controller provides a good prior for the RL policy. This reduces the importance
of exploration and thus of reward shaping, and allows for more difficult and longer-
horizon tasks to be learned from sparse rewards compared to a randomly exploring
agent that might never observe a task completion in practice. The residual formulation
also simplifies the learning task, allowing the RL policy to take smaller actions and to
reduce the magnitude of exploration required—an important consideration for robotics
applications. Moreover, the residual form has potential to alleviate catastrophic forget-
ting [McCloskey and Cohen, 1989] compared to a policy that is simply initialized from
demonstrations and fine-tuned with RL.

Our contribution is therefore twofold: we propose a novel way to leverage data
gathered from the system to accelerate the training of residual RL policies in image
space through visual feature sharing, and present a fully data-driven method, RRLfD,
leveraging both imitation learning and residual RL to allow for efficient training of
sparse image-based tasks from demonstrations. We evaluate our method on robotic
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(a) (b)

Figure 3.1: a) We propose a way to leverage demonstration data to learn a control
policy as well as task-relevant visual features through behavioral cloning on image and
proprioceptive inputs. b) The policy is then improved through reinforcement learning
by a superimposed residual policy, based on the learned visual features, allowing data-
efficient learning of control policies in image space from sparse rewards.

manipulation tasks; however, the formulation is general and readily applicable to any
control task in a continuous action space. We begin by comparing the proposed method
to prior work in Section 3.2, then describe the residual policy’s structure and training in
Section 3.3. We evaluate our method in seven experimental settings from two simulated
task suites and present the results in Section 3.4.

3.2 Related work

Residual RL for robot control, concurrently proposed by Johannink et al. [2019] and
Silver et al. [2018], has been studied for manipulation tasks [Johannink et al., 2019;
Silver et al., 2018; Schoettler et al., 2020] and navigation [Rana et al., 2020] to com-
plement a conventional feedback controller. Most related to our method is the work
of Davchev et al. [2020], where the base policy is structured as a dynamic movement
primitive whose coefficients are learned using demonstrations but which operates on
full state features, including a goal position for insertion. We instead make no assump-
tions about the structure of the base policy but train a convolutional neural network
using direct behavioural cloning in image space, without requiring access to accurate
state estimation.

Another line of work has generalized the residual formulation to consider adaptively
re-weighting multiple base policies, each trained with RL to solve the same task under
different robot dynamics [Barekatain et al., 2020]. Related to residual control is also
a recent work on robotic throwing [Zeng et al., 2019], where a scalar release velocity
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given by projectile physics is additively corrected using self-supervised learning. In
addition to policies, residual formulations have also been proposed for correcting the
predictions of approximate environment models [Ajay et al., 2018; Allevato et al., 2019;
Saveriano et al., 2017] and adapting features in transfer learning [Zhang et al., 2020].

Alternatively, an agent’s policy could be initialized using demonstrations and its
training continued using RL [Kober and Peters, 2008; Rajeswaran et al., 2018]. We
instead fix the base policy after training and always add it to the continuous control
action in order to alleviate the risk of catastrophic forgetting for parts of the state space.

Also related to our work are off-policy RL methods which learn jointly from demon-
strations and new environment rollouts, by merging them in a single replay buffer [Hes-
ter et al., 2018; Vecerik et al., 2017] or with an auxiliary objective that aims to stay
close to the demonstrations while also maximizing observed reward [Nair et al., 2018;
Rajeswaran et al., 2018; Zhu et al., 2018]. These approaches either pretrain a policy
offline and then continue training on the real system, or learn from scratch using offline
data as a prior. There is also work on fully offline RL that can be used to train a pol-
icy using only demonstrations without access to the system [Gülçehre et al., 2020; Fu
et al., 2020; Wang et al., 2020; Argenson and Dulac-Arnold, 2021]. As our approach is
rather orthogonal to existing learning from demonstration methods, it could be readily
combined with other training protocols (e.g., a pre-populated replay buffer) and objec-
tives (e.g., staying close to demonstrations). An interesting direction for future work
could be to extend fully offline methods to further online training, for example by using
offline RL in lieu of BC in our method.

Prior work on picking and insertion from images has leveraged both demonstrations
and black-box policies. Schoettler et al. [2020] train connector plug insertion using both
residual RL and RL with demonstrations from images. Although the task is executed
on a real robot, the target is fixed and known by the base controller, and the final control
policy is not shown to generalize to unseen target positions, unlike our method. The
QT-Opt algorithm [Kalashnikov et al., 2018] learns grasping from images using a par-
allel set of robots (similar to Levine et al. [2018]) and is initialized with a black-box
controller to help with the initial exploration phase. However, it does not use residual
control, and the initial controller is hand-coded. QT-Opt is able to learn a good grasp-
ing policy both in simulation and on real robots, but comparing data efficiency is not
straightforward as performance is often reported for the number of episodes or gradient
updates rather than environment time steps. Our method can instead be initialized from
demonstrations without a hand-engineered controller.
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3.3 Residual Policy Learning from Demonstrations

RRLfD is trained in two stages (Fig. 3.1). A convolutional neural network (CNN) is first
trained to predict demonstrated control actions given a short history of depth or RGB
images as well as current robot proprioceptive state (Section 3.3.1). Using demonstrated
trajectories, the network learns to capture visual features relevant to solving the control
task.

However, the base policy can only learn behaviour that was present in the demon-
strations. Depending on the coverage of the dataset, behaviors involving recovery from
failure or states near the edges of the workspace may not be included. Moreover, pure
BC is known to suffer from compounding errors [Ross and Bagnell, 2010]. To improve
the policy with autonomous environment interaction, a light-weight policy network on
top of the learned CNN features is trained with RL to additively correct the base policy’s
actions (Section 3.3.2).

3.3.1 Base policy

We learn a base policy using behavioral cloning (BC). First, N demonstrations are
gathered for a task of interest to create a dataset consisting of the demonstrated trajec-
tories’ states Si = [si

1, ..., si
Ti

] and actions Ai = [ai
1, ..., ai

Ti
] taken at each time step

t = 1, ...Ti, i = 1, ..., N , drawn from a behavior policy πe(si
t). Each state s includes a

history of stacked camera frames, as either depth or RGB, as well the robot’s proprio-
ceptive state. We consider a history of three previous frames to allow policies to capture
velocity and acceleration of objects in the scene. Where applicable, the inverse kine-
matics of the robot are used to reduce the effective dimensionality of the action space
from joint space control to end-effector control.

A convolutional neural network fθ mapping a state s to a sequence of actions
[ât, ât+10, ât+20, ât+30], and parametrized by θ, is then trained with BC on this dataset:

θ∗ = argmin
θ

E
(st,at)∼(S1:N ,A1:N )

∑
δ=0,10,20,30

L(ât+δ, at+δ), (3.1)

to obtain a policy πb
θ(s) = ât. In addition to predicting at, we include actions 10, 20,

and 30 time steps ahead and minimize loss over each of these targets, as done by Strudel
et al. [2020]. This serves as an auxiliary prediction task leading to better data efficiency
[Jaderberg et al., 2017] and encourages the policy to capture longer-term task structure
(up to three seconds in the future given control actions at 10Hz).

Depending on the task, the action space may have discrete and continuous compo-
nents, which we may denote by g and v, respectively, such that a = [v, g] and â = [v̂, ĝ].
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For tasks requiring discrete components such as gripper state control, the loss L is de-
fined by weighting L2 and cross-entropy terms, as in Strudel et al. [2020]:

L((v̂, ĝ), (v, g)) = λ||v̂ − v||22 − (1 − λ)
|g|∑

c=1
gc log ĝc, (3.2)

where λ is a hyperparameter. For tasks with fully continuous action spaces, only the
regression loss is considered (λ = 1).

3.3.2 Residual policy

After BC training, the base policy πb
θ is fixed. Given u = πb

θ(s), a residual policy
πr

ϕ(s, u) = a is trained using RL to complement the base action u, and the resulting
control action u + a is executed in the environment. πr

ϕ is trained to maximize the
expected discounted return Gπ in the residual Markov Decision Process (MDP):

Qπ(s, a) = E [Gπ(s, a)] = E
[

T∑
t=0

γtr(st, at)
]

, (3.3)

st ∼ p(· | st−1, ut−1 + at−1), at ∼ πr
ϕ(· | st, ut),

ut = πb
θ(st), s0 = s

where p is the state transition dynamics, γ is a discount factor in [0, 1) and r is a reward
function whose value is 1 if the task has been completed and 0 otherwise. πr

ϕ takes as
input the base action u, the robot’s proprioceptive state, and the features of the bottle-
neck layer (i.e., the final hidden layer before the fully connected output layer) of the BC
policy network fθ. The bottleneck layer features provide the residual policy with visual
information learned during BC. πr

ϕ then outputs a corrective action a by predicting the
parameters of a Gaussian distribution with diagonal covariance:

a ∼ N (µ, Σ), with (µ, Σ) = πr
ϕ(s, u). (3.4)

At evaluation time, the policy is made deterministic: u + µ is executed in the environ-
ment instead of drawing a sample from the predicted Gaussian.

3.4 Experiments

3.4.1 Environments

To demonstrate the generality of our approach, we consider control tasks from two dis-
tinct manipulation suites of different complexity and dimensionality. The Mime envi-
ronments [Strudel et al., 2020] define of a 6-DoF UR5 robotic arm with a 3-finger Robo-
tiq gripper using the PyBullet physics simulator [Coumans and Bai, 2016–2021]. An
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(a) Pick (b) Bowl (c) Push

(d) Door (e) Hammer (f) Pen (g) Relocate

Figure 3.2: We evaluate RRLfD on seven manipulation tasks on two different robotic
simulation platforms: a 6-DoF UR5 arm (a–c) and a 28-DoF ShadowHand model (d–g).

inverse kinematics submodule allows control in task space by converting end-effector
velocities to joint velocities at 10Hz, exposing to the higher-level policies πb

θ and πr
ϕ an

action space consisting of the translational velocity v in R3 and a binary gripper state
g in {0, 1}. We consider two standard tasks included in Strudel et al. [2020]: picking
up a cube (Fig. 3.2a) as well as picking up a cube and placing it in a bowl (3.2b), and
additionally define a third task of pushing a cube to a fixed target location (3.2c). All
object positions and sizes, starting robot pose as well as the positions of the surrounding
walls are drawn at random for each episode.

Our second task suite of interest, Adroit [Rajeswaran et al., 2018], defines a five-
fingered arm controlled at 10Hz in a continuous action space consisting of joint values
for a ShadowHand-inspired dexterous hand (24 DoF) and the position of the arm (4
DoF). The suite consists of four MuJoCo [Todorov et al., 2012] environments, defining
tasks of opening a door, hammering a nail, in-hand orientation of a pen, and object
relocation (Fig. 3.2d–3.2g).

3.4.2 Demonstrations

We follow convention set by prior work and define the expert policy πe by either a
script (for Mime environments [Strudel et al., 2020]) or a previously trained RL agent
(for Adroit environments [Jain et al., 2019]), but it could equally come from a human
teleoperator or any black-box controller.
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3.4.3 Observation space

We consider two kinds of inputs to the base policy: images only, and images with
robot proprioceptive state. To give an indication of an upper bound reachable with
flawless state estimation pipelines, we also consider BC trained on images with full
state, including both proprioception and the positions of relevant objects. For the Mime
environments, the proprioceptive state consists of tool position in R3, tool velocity in
R3, gripper state in R and gripper opening (if positive) or closing (if negative) velocity
in R. Full state additionally includes cube position in R3 (and bowl position in R3, if
applicable). For Adroit, proprioception includes joint positions, joint velocities, palm
position and the fingertips’ tactile sensor readings as defined by Jain et al. [2019]. As
full state, we use the environments’ original observation space. We keep each task
suite’s default setting and use depth cameras in Mime and RGB cameras in Adroit, but
use a consistent resolution of 240 × 240px in each.

3.4.4 RL algorithm

We apply Distributional Maximum a-posteriori Policy Optimization (DMPO), a variant
of Maximum a-posteriori Policy Optimization (MPO) [Abdolmaleki et al., 2018] with
a distributional critic on the residual task, as it outperformed pure MPO and another
recent off-policy algorithm, D4PG [Barth-Maron et al., 2018], in our experiments. The
implementation is publicly available as part of the Acme framework [Hoffman et al.,
2020]. MPO is an off-policy actor-critic algorithm based on maximum entropy RL. It
treats RL as an inference problem: at each update step, a distribution of policy param-
eters is updated using a single-step temporal difference (TD) update, with a Gaussian
prior around the current policy. Distributional MPO (DMPO) additionally adopts a
distributional Q-network parametrized as in C51 [Bellemare et al., 2017]: instead of
predicting the expectation of Gπ(s, a), the critic learns to model its full distribution
with a categorical distribution of 51 atoms.

3.4.5 Training details

For data efficiency, we use image augmentation in BC training as presented by Strudel
et al. [2020], namely random crops and rotations. For Mime tasks, we additionally
use the environments’ built-in viewpoint augmentation and record the demonstrations
from five camera positions which are sampled from a section of a sphere centered on
the robot. For details, see Strudel et al. [2020]. Image inputs are normalized to be in
[−1, 1] and the demonstrated actions as well as proprioceptive features are normalized
per dimension to have zero mean and unit variance in demonstration data. For tasks
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requiring the gripper, we empirically set λ to 0.9 as done by Strudel et al. [2020].
For fθ, we use a ResNet-18 [He et al., 2016] with all layer sizes halved, such that

the bottleneck layer features have dimensionality d = 256, and concatenate the scalar
inputs, where used, to the bottleneck features. Given demonstration datasets of different
sizes, we use 95% of the data for training and validate on the remaining 5%, with the fθ

training epoch with the lowest validation loss evaluated in the environment on a fixed
set of 100 unseen initial states. To represent the residual policy πr

ϕ, we use a three-layer
fully connected neural network with layer normalization and layer sizes [256, 256, 256],
and another with sizes [512, 512, 512] for the critic (defaults of the DMPO implementa-
tion [Hoffman et al., 2020]).

Given the normalization scheme applied to demonstrated actions in BC training,
actions drawn from πb

θ must again be denormalized to match the original action space
of the environment:

u = σ(A) ◦ πb
θ(s) + µ(A), (3.5)

where A is the set of all actions in the BC dataset and ◦ denotes element-wise multi-
plication. Like base policy actions, we also denormalize residual actions sampled from
πr

ϕ using statistics from the demonstrations, but with the output distribution centered
around zero rather than the demonstrations’ mean:

a ∼ cσ(A) ◦ N (πr
ϕ(s, πb

θ(s))), (3.6)

where c is an optional scalar. This allows both πb
θ and πr

ϕ to better handle a potentially
very heterogeneous action space and efficiently learn tasks that may require signifi-
cantly different distributions of actions per action dimension. The residual denormal-
ized actions may additionally be scaled using c < 1 to encourage small corrective
actions relative to the variance of demonstrator actions. In addition to c, we find the
size of exploration (the diagonal elements of Σ) at initialization to be an important hy-
perparameter: a larger Σ means larger exploratory residual actions will be taken early
on in training. We set both c and Σ’s diagonal (a single value for all elements) by grid
search over {0.01, 0.033, 0.1, 0.33, 1}. The range for the critic’s value distribution is set
to [0, 1] to match the range of possible sparse returns, and the learning rate is set empir-
ically to 3.3×10−4 for all tasks (by considering a small grid around the implementation
default, 10−4). All other algorithm hyperparameters were kept at default values of the
Acme implementation.

3.4.6 Base policy

Success rates for the BC policy are given in Fig. 3.3. Although there is significant vari-
ance across random seeds for most tasks, overall the performance increases as more
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Figure 3.3: BC success rates (as %) evaluated on 100 unseen initial states. (10 seeds,
95% confidence intervals)

demonstrations are added and eventually approaches the expert’s performance. We
observe that conditioning BC on the robot proprioceptive state in addition to images
improves performance on Mime but not on Adroit. We believe this is due to 1) the tasks
being solvable from images alone, and 2) overfitting enabled by the high dimensionality
of proprioceptive state in Adroit (54–100, depending on the task). Exploring architec-
tures and training procedures that would enable successful fusion of these modalities,
leading to a performance increase on Adroit relative to image-only inputs, would be an
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Figure 3.4: Success rates of residual policies as a function of base policy success rate
(mean of 5 seeds, 95% confidence intervals).

interesting topic for further work.

A further increase in success rate can be obtained when full environment state is
included; however, we assume it is not known in general. We therefore only consider
base policies without access to full state in the residual experiments.

3.4.7 Residual policy

We train residual DMPO on top of BC policies of various strengths to investigate the
effect of base success rate on final performance and the required training time. Out of
the BC policies included in Fig. 3.3, we choose policies with success rates close to
30%, 50%, 70% and 90% for each task (with the exception of Door, for which no BC
policy achieved less than 55%) to cover a wide range of possible base policy perfor-
mances. The residual success rate at convergence is shown in Fig. 3.4 as a function of
base success. However, significantly shorter training times are sufficient to outperform
the base policies: Fig. 3.5 shows the improvement in success rate over training. No-
tably, we observe only a minor drop, if any, in success rate relative to the BC policy
at the start of training, making residual training viable on real-world systems where
performance should not drastically fall. The policies are evaluated every 100,000 train-
ing frames (i.e., steps in the environment); in reporting final numbers, we consider a
moving average of 5 evaluations.

Although Adroit environments are originally defined with full state observations
and shaped rewards [Rajeswaran et al., 2018], we make use of neither and instead use
camera observations, proprioceptive state (joint positions, joint velocities, palm position
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Figure 3.5: Success rates for the residual agent over training (5 seeds, 95% confidence
intervals).
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Figure 3.6: Length (in number of time steps) of successful episodes for the residual
agent over training. A lower number means the policy is able to solve the task faster.
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Figure 3.7: An example episode from the test set for Bowl where BC fails but the
residual policy succeeds. The instance is difficult as the cube is large relative to the
bowl. Residual RL has learned to adjust the position from which the cube is released to
be more precisely centered on the bowl. Top: BC policy trained on 30 demonstrations.
Bottom: Residual policy.

as well as tactile sensor readings – the observation space previously defined in Jain et al.
[2019]), and sparse rewards only. Accordingly, we measure success rate of the resulting
policies in our evaluation, not episodic return as defined by the shaped reward functions.
We observed that the RL policy, unlike BC, is able to successfully combine robot state
information with visual inputs in Mime as well as in Adroit, and omitting robot state
consistently hurt residual performance.

The average length of successful episodes over the course of training in shown in
Fig. 3.6 for each task. The residual policies learn to solve the tasks not only more reli-
ably, but also more efficiently than BC for all tasks and base policies while respecting
the environments’ velocity limits, with an average 21% reduction in execution time,
corresponding to 2 seconds of robot time per episode. An example side-by-side com-
parison of BC and the residual policy is shown in Fig. 3.7.

3.4.8 Fine-tuning baseline

RRLfD’s residual shape with a fixed base policy protects against catastrophic forget-
ting, which can be a significant source of instability in deep RL. One alternative way
to incorporate demonstrations as a prior in RL training is to initialize the policy net-
work using an imitation learning method, such as BC, and then continue training using
a non-residual RL objective. We considered two settings: we either froze the ResNet
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weights as in residual training, or included them in fine-tuning. The network architec-
ture (as shown in Fig. 3.1b) is kept constant, except for the omission of the base action
ut; the network πr

ϕ is included at BC training stage. Moreover, a continuous action
space is used, including velocity control of the gripper, as DMPO does not support a
discrete-continuous action space. Appropriately handling a hybrid action space could
be considered in further work, as was done by Neunert et al. [2019].

We found that fine-tuning the full network leads to immediate catastrophic inter-
ference in the ResNet features given that they are shared between the actor and the
critic. As the critic network cannot be directly initialized from demonstrations without
rewards, updating the full network using the randomly initialized critic’s objective de-
stroys the pretrained features – we found this to be the case even for very small learning
rates. As the pretrained policy in turn depends on these features, its performance falls
to near 0%, after which no further useful training data can be collected.

In an attempt to alleviate catastrophic forgetting, we also run experiments with the
CNN weights fixed and fine-tune the policy layers πr

ϕ only. Although the fine-tuned
policy is able to improve upon BC for some of the easier tasks, it requires longer training
and larger exploratory actions than residual RL, both of which would be undesirable on
a real robot. For Door, success rates of 97.9% and 99.4% rates are achieved given
initializations with 75% and 89% success, respectively, after 3 million frames and only
with the diagonal elements of Σ initialized to 1.0 (0.33 is sufficient in residual training).
For Pick and Pen, fine-tuning was able to slightly improve over BC, but only for low-
performing initializations: at best, it scored 50.8% for Pick after 3 million frames, and
52.2% for Pen after 7 million frames, starting from 30% in both cases. For all other
tasks and BC initializations (policies with ≈30 and ≈90% success were considered for
each task), success never exceeded BC performance. A direction for further work could
be to consider also initializing the value function from demonstrations (see e.g. [Wang
et al., 2020]) by labeling demonstrations with a sparse reward, assuming successful
completion. However, a perfect demonstrator is not always available: our expert scores
just 81% for Pen, for example.

3.4.9 RL baseline

We have also run experiments to find out the number of frames required to train DMPO
from scratch on each task. As input, we consider either images with robot proprio-
ceptive state (denoted robot state) or the full environment state including robot state
(denoted full state), in which case the CNN is omitted. Each action dimension is nor-
malized to the unit interval, as demonstration statistics are not assumed to be available.

Although our setting of interest is that of sparse task completion rewards and read-
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image + robot full state

dense reward sparse reward dense reward

task success steps success steps success steps

Pick 0.0 8M 59.2 9M 98.8 10M
Bowl 0.0 8M 0.0 20M 52.2 9M
Push 1.0 3M 99.0 2M 98.0 2M
Door 0.0 6M 20.0 5M 99.5 7M
Hammer 6.3 6M 20.0 7M 98.9 6M
Pen 9.4 4M 93.1 13M 91.2 12M
Relocate 0.0 6M 0.0 20M 97.4 12M

Table 3.1: Sample efficiency and success rate at convergence of DMPO trained from
scratch. Sparse reward policies from images and robot state scored nearly 0.0 for all
tasks (not shown), which is not surprising given that RL without any priors is extremely
difficult in settings with sparse rewards and very high-dimensional inputs.

ily available state features, we also consider settings with dense reward signals and full
state features for each task to highlight the trade-offs between providing demonstra-
tions and designing shaped rewards or higher-level state features. For Pick, we use the
negative Euclidean distance between the gripper and the cube; for Bowl, the sum of the
negative distance between the gripper and the cube, and between the cube and the bowl;
and for Push, the sum of negative distance between the gripper and the cube as well as
the cube and the goal region. While further reward shaping beyond our choice of reward
functions could accelerate learning, defining a fully dense reward, i.e., one that guides
the policy towards solving the task from any state—without creating unintentional local
maxima—can in general be as difficult as designing a controller to solve the task, and
usually requires balancing multiple reward components, such as approaching the cube
vs. bringing the cube closer to the bowl. For Adroit environments, we use the care-
fully shaped multi-component rewards defined by Rajeswaran et al. [2018]. We also
add sparse task completion to each dense reward, appropriately scaled to prioritize task
success, as we found this to increase success rates.

As shown in Table 3.1, learning from images does not lead to any successful poli-
cies within the training budgets: although the agent occasionally completes an episode
successfully, this is not sufficient to learn useful visual representations, even with a
dense reward. It is difficult and time-consuming to learn control from scratch without
any priors in this setting due to the high dimensionality of both the input and the action
space; many RL tasks consider a smaller dimensionality and use full state based inputs
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or low-resolution images instead. Replacing the depth frames with the full environment
state simplifies the task and regularly leads to successful policies in the sparse reward
setting for Push and Pen – as well as occasionally for Pick, Door and Hammer – and
in the dense reward setting for all tasks. Learning Bowl from scratch is particularly
tricky as adept gripper control is of central importance, whereas DMPO considers a
continuous action space.

Comparing the empirical sample efficiencies of the RL baselines and the results
presented in Fig. 3.4, we have shown demonstrations to be a viable alternative to manual
reward shaping and full state estimation. Using a residual formulation, learning from
demonstration can be combined with any RL method.

3.4.10 Real robot experiments

To evaluate the viability of RRLfD in learning manipulation tasks on real robots, we also
propose a preliminary experiment on a real UR5 arm. Using a single Intel RealSense
camera and a joystick for 2D teleoperation, we record 50 demonstrations of a pushing
task (Fig. 3.8). The end-effector (a closed OnRobot RG6 gripper) is controlled in the
xy-plane at a fixed height. The starting position of a 5cm cube is randomized within
a 10cm x 14cm region of the table, and the task is considered successful if the cube is
pushed fully behind the front end of the tape within a maximum of 15 seconds without
it hitting the tape at any point. Evaluation for all policies is performed on a fixed set of

(a) The cube’s initial position is randomized
within the region shown in blue. The evalua-
tion positions (15 in total) are shown in red.

(b) Image from the robot’s observation space.

Figure 3.8: The pushing task setup on a UR5 arm.
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Number of
demonstrations

πb
θ(image, gripper position) πb

θ(image, gripper position,
gripper velocity)

20 7/15 10/15
50 10/15 13/15

Table 3.2: Success rates for BC as a function of the number of demonstrations and
policy inputs on Real UR5 Pushing.

Figure 3.9: Success rates (out of 15) over initial training on Real UR5 Pushing. We plot
the average performance over two repeated evaluations with the same starting positions
(to the extent manually repeatable in practice).

15 initializations, shown in Figure 3.8a.

As the task does not require color vision, we convert the RGB camera images to
grayscale, crop and downscale them to 128x128px for computational efficiency (Fig.
3.8b). All other training details and network architecture are unchanged from Sections
3.4.4 and 3.4.5.

Results for the BC stage are shown in Table 3.2. Including the gripper’s xy-velocity
in the proprioceptive state was found to improve pushing success.

After a relatively short training time (compared to Section 3.4.7) of 65,000 environ-
ment steps, we report an improved success rate of 77% for the residual policy starting
from a 20-demonstration base policy with 67% success (Figure 3.9). 65,000 steps at a
command frequency of 5Hz corresponds to 3h 37min of robot time, with an additional
3h 15min taken by scene resets. At this training length, the policy loss had not yet con-
verged and it is likely that further training would lead to a higher performance increase,
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but verifying this is left for future work.

3.5 Discussion

We have presented a novel method for combining demonstrations and RL to learn con-
tinuous control through a residual formulation. Our approach does not require base
controller engineering, reward shaping or feature engineering as it is able to learn from
readily available image and proprioceptive inputs and sparse rewards. We have empir-
ically demonstrated sample-efficient training on robotic manipulation tasks in simula-
tion, in a setting out of reach for RL from scratch with current algorithms.

As the base policy is treated as a black box during residual training, the proposed
method is equally compatible with hand-engineered base controllers as with the BC
policy considered in this work. Provided a sufficient quantity of demonstration data is
available, using a BC policy as the base controller represents a more flexible choice that
may be improved as more data becomes available. Data gathered on the system, which
BC directly models, better represents true environment dynamics than is possible with
first-order modelling in hand-engineered controllers without extensive manual tuning,
especially in tasks with rich contacts and friction and in high-dimensional action spaces.
In a low-data regime, however, and when accurate state estimation is feasible, using a
classical controller remains a good alternative. In this setting as in the case of BC
base policies, a residual in image space is a valuable addition as it can learn to correct
for state estimation noise or omission of relevant state features. Task-specific visual
features learned through BC on collected trajectories can equally be used in the classical
residual RL setting to accelerate learning from images on the residual control task.
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Chapter 4

Learning Reward Functions for
Robotic Manipulation by Observing
Humans

OBSERVING A HUMAN DEMONSTRATOR manipulate objects provides a rich, scalable
and inexpensive source of data for learning robotic policies. However, transferring
skills from human videos to a robotic manipulator poses several challenges, not least
a difference in action and observation spaces. In this work, we use unlabeled videos
of humans solving a wide range of manipulation tasks to learn a task-agnostic reward
function for robotic manipulation policies. Thanks to the diversity of this training data,
the learned reward function sufficiently generalizes to image observations from a pre-
viously unseen robot embodiment and environment to provide a meaningful prior for
directed exploration in reinforcement learning. The learned rewards are based on dis-
tances to a goal in an embedding space learned using a time-contrastive objective. By
conditioning the function on a goal image, we are able to reuse one model across a vari-
ety of tasks. Unlike prior work on leveraging human videos to teach robots, our method,
Human Offline Learned Distances (HOLD) requires neither a priori data from the robot
environment, nor a set of task-specific human demonstrations, nor a predefined notion
of correspondence across morphologies, yet it is able to accelerate training of several
manipulation tasks on a simulated robot arm compared to using only a sparse reward
obtained from task completion. Videos of predicted rewards and the trained policies are
included on the project website1.

1https://sites.google.com/view/hold-rewards

https://sites.google.com/view/hold-rewards
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4.1 Introduction

Deep learning has greatly advanced the state of the art in applications ranging from
computer vision [He et al., 2016; Dosovitskiy et al., 2020] to natural language process-
ing [Brown et al., 2020; Chowdhery et al., 2022] to speech recognition [He et al., 2019],
but its significance in robotics has been blunted by limited access to large-scale data.
Although previous efforts have attempted to sufficiently cover a specific embodiment
and task [Levine et al., 2018; Fang et al., 2020], collecting a massive dataset for each
robot and environment of interest is simply not feasible due to the cost of maintenance
and human oversight, hardware wear and tear as well as the bottleneck imposed by
real-time execution. For these reasons, creative reuse of data is of central importance
for unlocking the benefits of powerful function approximation and data-driven learning
in robotics.

One potential source of external data is videos of humans performing arbitrary tasks,
widely available on the internet and inexpensive to produce. We focus on manipulation
tasks in this work, with the aim of learning from crowd-sourced videos of human arms
and hands. However, replicating the demonstrated actions and object interactions with
a robot is a challenging open problem. On the perception side, there is a significant
visual domain gap between observations of a person and of a robot. Human and robot
arms usually have very different morphologies and dynamics, particularly in the end-
effector, creating a physical domain gap and making a 1:1 mapping between poses
ill-defined in general. Moreover, the actions taken by humans are not observed unless
explicitly recorded with specialized equipment, and hence conventional imitation learn-
ing [Pomerleau, 1991; Ho and Ermon, 2016] or offline reinforcement learning [Kumar
et al., 2019; Fujimoto et al., 2019] methods are not applicable.

To overcome these challenges, we investigate the use of videos of people solving
manipulation tasks to learn a notion of distance between images from the observation
space of a task. We leverage this learned distance as a reward signal on tasks with
similar structure but very different visual appearance on a set of robotic manipulation
domains that the model has never observed.

By training on diverse human demonstrations, we employ a strategy analogous to
domain randomization [Tobin et al., 2017] used for sim-to-real transfer in robotics,
which applies variations to visual and physical simulation parameters at training time
so that a real-world robotic task with unknown physical properties is more likely to fall
in the training distribution. Similarly, when trained with different demonstrators, back-
grounds, viewpoints, lightings, objects and tasks, our distance model learns to general-
ize to a variety of manipulator appearances. Furthermore, several aspects of the task as
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solved by a human are preserved in the robot workspace. For example, object displace-
ments must respect the laws of physics regardless of the actor.

The learned distance function captures roughly how long it takes for an expert policy
to transition from one state to another, and is therefore closely related to a dense reward
function representing task progress that can be optimized with reinforcement learning
(RL). Learning dense rewards is especially useful in hard exploration tasks where it is
straightforward to define a sparse task-completion reward, but laborious and error-prone
to specify a well-shaped dense reward.

In addition to model-free RL, reward functions estimating task progress can also be
optimized with model predictive control [Chen et al., 2021a; Tian et al., 2021], in which
case both a predictive forward model of the environment dynamics and a state-action
value function need to be learned, typically from undirected exploration data in the
target environment. However, extensive a priori data collection with sufficient coverage
on a target robot environment and its action space are required for these methods to be
applicable, and learning accurate video prediction models remains a challenging open
problem in itself. We instead propose to learn a state-value function from observation-
only data which allows for the reuse of data from different embodiments, and train a
policy for the target embodiment with online RL. We empirically show better sample
efficiency per task in online training than was required to learn a model in prior work
[Chen et al., 2021a].

Our contributions are as follows:

i) We train HOLD, a global goal-conditioned distance model, which removes the
need for demonstration task labels and exact alignment between robot tasks and
demonstrated tasks required by prior work [Chen et al., 2021a; Schmeckpeper
et al., 2020; Zakka et al., 2022; Shao et al., 2021].

ii) We show that time-contrastive embeddings [Sermanet et al., 2018] can success-
fully represent distances for multiple tasks at once despite a high degree of multi-
modality in mixed-task training data.

iii) We show generalization of reward functions trained from unconstrained human
videos to robot arms of various morphologies and environments.

iv) We demonstrate up to 18x accelerated training of model-free RL on 5 simulated
manipulation tasks by either providing shaped rewards in sparse-reward tasks, or
even entirely replacing the reward signal in some tasks.

v) We show our method to significantly outperform existing cross-domain imitation
[Sermanet et al., 2018] and representation learning [Nair et al., 2022] approaches.
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4.2 Related work

Intermediate representations Several prior works have addressed learning robotic
policies from human videos via intermediate representations such as pose estimation
or keypoint tracking [Qin et al., 2021; Petrík et al., 2020; Das et al., 2020]. In this
work, our aim is to advance the capabilities of learning from raw video data, without
depending on hand-crafted intermediate representations of human hands or an object
database.

Imitation learning Our work is related to imitation learning from observation, al-
though this line of work has mostly addressed the case of demonstrations from the
same observation space [Ho and Ermon, 2016; Torabi et al., 2018; Aytar et al., 2018;
Kostrikov et al., 2019]. We instead tackle the more difficult problem of inverse re-
inforcement learning from observation under significant observational and dynamical
domain shift.

Offline RL Similarly to HOLD, Offline RL [Fujimoto et al., 2019; Wu et al., 2019;
Wang et al., 2020; Peng et al., 2019] also aims to learn a value function from a dataset of
existing trajectories. However, our setting is significantly different from the offline RL
problem as we do not have access to either the actions or the rewards of the demonstrator
in our dataset, nor do we have a forward model of which states are reachable from a
given state, making temporal difference based methods not applicable.

Mapping methods Many methods for learning from videos seek to learn a direct
mapping between demonstration videos and robot states and/or actions, such as an in-
verse model labeling each human transition with an action from the robot action space
[Schmeckpeper et al., 2020], or an image-to-image translation of a human demonstra-
tion to a corresponding robot demonstration [Xiong et al., 2021; Li et al., 2021]. By
contrast, our method does not assume a precise 1:1 mapping between the observation
and action spaces of the human and the robot and can therefore leverage arbitrarily large
amounts of human demonstration videos without any manual supervision cost.

Consistency methods A line of prior work has proposed to learn domain-invariant
features capturing task progress regardless of whether the actor is a human or a robot
arm [Schmeckpeper et al., 2020; Zakka et al., 2022; Sermanet et al., 2018] with reward
defined as distance to a human demonstration [Sermanet et al., 2018] or to a goal state
[Zakka et al., 2022] in the feature space. One issue with using geometrical distances
is that transition times between states are not symmetrical if the environment includes



49

unidirectional transitions, such as dropping an object or knocking something down. To
account for this, we also propose an alternative which predicts distances as a function
of two ordered states.

Among learned embedding methods, sequence-based objectives such as temporal
cycle consistency [Zakka et al., 2022] are well suited for single-task learning where all
trajectories can be aligned along a global task progression, but it is unclear whether
these approaches would work on data from several tasks. Our task-invariant distance
function is instead able to fully take advantage of the diversity of hands, objects, back-
grounds, lighting variations etc. across tasks, even when a grouping of demonstrations
into distinct tasks is not available.

Most existing approaches to learning robotic manipulation from human videos also
require exact overlap between tasks demonstrated by humans and the robot tasks [Chen
et al., 2021a; Schmeckpeper et al., 2020; Zakka et al., 2022; Shao et al., 2021], and
some require robot demonstrations for some of the same tasks [Chen et al., 2021a]. As
our model is not specialized for any single task and learns from human data only, no
robot demonstrations are needed and the target robot task does not need to be strictly
included in the training data as long as a goal image is available to specify the new task.

Time-contrastive embeddings Sermanet et al. [2018] propose to use distances in an
embedding space learned with a time-contrastive objective, but only consider reward
learning for a single task, whereas we learn a single multi-task reward model. More-
over, while Sermanet et al. [2018] propose to directly imitate a human demonstration
at 1:1 speed, we instead define the task with a goal image from the robot’s observation
space. As we show experimentally, the Time-Contrastive Network (TCN) of Sermanet
et al. [2018] needs a nearly identical alignment in the initial states, execution speed
and cropping between the video and the robot observations, which is a significant lim-
itation. By contrast, our inverse RL approach requires less supervision and allows the
robot to potentially outperform the demonstrator, either by executing the task faster or
by finding a more optimal trajectory.

Functional distance Our work is also related to estimating functional (also called dy-
namical) distance between states from online [Hartikainen et al., 2020] or offline robot
data [Tian et al., 2021]. Most related to our method, Tian et al. [2021] use an offline
dataset and use estimated time-to-goal as a value function in a model predictive control
loop. However, both works use only robot data from the same environment, without
transfer of the action or observation spaces. Our approach is instead based on esti-
mating the state-value function of the demonstrated behavior drawn from an unknown
action space.
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4.3 Human Offline Learned Distances

4.3.1 Functional distances from observation-only data

We propose to learn about distances in state space by observing humans and using
this prior knowledge of environment dynamics to accelerate training of reinforcement
learning policies on a robot manipulator. Specifically, our goal is to estimate functional
distance d(s, g), as defined by Tian et al. [2021], between an image s of the current state
and a goal image g, where s, g ∈ Sr, the set of camera observations from the robot’s
observation space. This metric should correlate with δ(s, g), the number of time steps
it takes for an expert policy π∗ to reach the goal g from the state s:

δ(s, g) = E[ T | sT = g, s0 = s, at ∼ π∗(st, g), st+1 ∼ p(st, at) ], (4.1)

where p are the transition dynamics of the environment, modeled as a Markov decision
process (MDP). The negated time difference −δ(s, g) is equal to the value function V ∗

for an optimal policy π∗ for the reward function

r(s, g) =

0 s = g

−1 otherwise.
(4.2)

However, this is not the only reward function that can be optimized to recover π∗. In
order to serve as a useful reward function for the task defined by g, the value of d does
not need to perfectly correlate with δ; instead, pairwise rankings should be preserved
for all states:

δ(s, g) > δ(s′, g) =⇒ d(s, g) > d(s′, g) for any s, s′, g ∈ Sr. (4.3)

Although defined in terms of an expert policy π∗, δ(s, g), and consequently the
functions d(s, g) that preserve its rankings, can be estimated from observation-only
data, without access to actions a, the expert π∗, or even its action space, by obtaining
self-supervised time deltas without manual annotation. While Tian et al. [2021] learn
the Q-function corresponding to Eq. (4.2) from offline trajectories from the robot, our
choice of a state-value function, agnostic to a specific action space, allows reuse of
data gathered with different but related morphologies, such as other robots or humans.
Strictly speaking, the ability to share the function δ between human and robot MDPs
relies on them being isomorphic [Schmeckpeper et al., 2020], requiring a 1:1 mapping
between the action and observation spaces that preserves dynamics p. While this may
not fully hold in practice, and the distribution of δ in human data may not necessar-
ily match the robot’s dynamics in absolute terms due to embodiment differences, the
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rankings produced by d can be transferred under fewer assumptions. For example, one
embodiment may be twice as fast as the other while still preserving all pairwise rankings
of states.

We assume access to a dataset of N video demonstrations of humans executing
a variety of manipulation tasks using approximately shortest paths. In practice, the
precise length of time may vary significantly across trials and human demonstrators,
and depend on the optimality of the demonstration. Although the absolute length of
such time intervals may not be consistent across demonstrators, their relative durations
provide a useful learning signal; in order to push an object to the right, one must first
approach its current position from the left before starting the pushing maneuver, and
not the other way around. We present two methods for learning d on this data.

Direct regression (HOLD-R) We assume the demonstrations are optimal and pose
the functional distance learning problem as a supervised regression task:

θ∗ = argmin
N∑

i=1

Ti∑
t=1

Ti−t∑
δ=1

||dθ(si
t, si

t+δ) − δ||22 (4.4)

where si
t is the tth frame of the ith video, Ti is the length of the ith video, and dθ is

a function parameterized by θ trained to predict δ from Eq. (4.1). The third summa-
tion corresponds to data augmentation allowing any future time step in the video to be
considered the goal rather than only the last.

Time-contrastive embeddings (HOLD-C) Since directly predicting time intervals
is difficult and sensitive to noise, we may also consider learning an embedding space
where distances can be defined. We propose to use a time-contrastive objective as in
TCN [Sermanet et al., 2018], adapted for single-view video. Frames within a small
temporal window are encouraged to lie close together in embedding space, whereas
embeddings for frames outside some temporal neighborhood are pushed apart. Specif-
ically, if sp is a positive instance for anchor s, and sn is a negative instance, for all
triplets, we want:

||f(s) − f(sp)||22 + m < ||f(s) − f(sn)||22 (4.5)

where the margin m is a hyperparameter. However, unlike the single-task setup pro-
posed in Sermanet et al. [2018], we train f on multi-task data and show it to accelerate
robot learning across tasks. Moreover, our method improves upon TCN in several ways
at the policy training stage:

i) HOLD enables the robot to outperform the demonstrations by learning relevant
shortcuts through interaction, or by simply moving faster, whereas TCN aims to
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imitate the human. TCN defines the task using a human video, and minimizes
distance to each of its states at 1:1 speed – although the distances are minimized
with RL, the best possible reward is defined as matching the human performance.

ii) HOLD requires less supervision: TCN needs one human trajectory of the full task
whereas we use distance to a goal image only and require no task demonstrations.

iii) We use a simpler Euclidean distance to define the metric d(s, g) in the space f ,
whereas Sermanet et al. [2018] apply a weighted mixture of squared Euclidean
and a Huber-style loss

d(st, gt) = α||f(st) − f(gt)||22 + β
√

γ + ||f(st) − f(gt)||22, (4.6)

requiring two additional hyperparameters (β and γ) to be tuned in an already
computationally expensive RL training setup.

4.3.2 Policy learning

We propose to use the learned functional distance to define a dense reward function
for an RL policy. Although our reward function is goal-conditioned and shared across
tasks, we train one policy per robot task. As we want to minimize distance to the goal
frame, we define reward as follows:

r(st, at, st+1, g) = − max(0, d(st+1, g) − d(g, g))/T (4.7)

where st, st+1, g ∈ Sr, at is an action from the robot’s action space, and T is an optional
normalizer. We subtract the baseline d(g, g), the prediction from the goal image to
itself, from the distance estimates to ensure arriving at the goal has reward 0, and upper
bound to zero to ensure no other state has higher reward; d(g, g) may be positive for the
regression models due to untrimmed training videos where the demonstrator idles after
solving the task instead of terminating the demonstration immediately.

This definition of reward corresponds to minimizing the sum of distances until the
end of the episode, as done by Tian et al. [2021] and Hartikainen et al. [2020]. Alterna-
tively, r could be defined based on the difference d(st+1, g)−d(st, g), such that only the
reduction is maximized for each time step. However, we found the cumulative form to
perform better empirically (details in Section 4.8), possibly due to being less sensitive
to noise.
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4.4 Experimental results

4.4.1 Distance learning

Dataset We train HOLD on Something-Something v2 (SSv2) [Goyal et al., 2017],
a crowd-sourced dataset of 220,847 video clips of 174 action classes (with examples
in Fig. 4.1). Each action is demonstrated with arbitrary objects, matching templates
such as Moving [something] closer to [something]. The clips last 4 seconds on aver-
age and are mostly filmed using handheld devices, with non-negligible camera motion.
Although SSv2 videos are grouped into discrete action classes, we do not make use of
these labels2, making our method applicable on any large-scale goal-oriented manipu-
lation data. As we train a single goal image-conditioned distance function, there also
does not need to be exact overlap between the demonstrated tasks and the target tasks
on the robot, unlike in prior works Chen et al. [2021a], Schmeckpeper et al. [2020],
Zakka et al. [2022], and Shao et al. [2021].

Training details We consider two sizes of network architecture: a ResNet-50 [He
et al., 2016] and a Video Vision Transformer (ViViT) [Arnab et al., 2021] pretrained
on SSv2 classification. As the single-view time-contrastive objective only supports
embedding single images (as their immediate temporal neighbors are used as positive
anchors), for HOLD-C we instead use either a ResNet or a Vision Transformer (ViT)
[Dosovitskiy et al., 2020] pretrained on ImageNet-21K [Deng et al., 2009]. We train
the ResNet models from scratch, and fine-tune the pretrained models on SSv2 without
labels after replacing their classification heads. To adapt the pretrained ViViT model
for regression, we also reinitialize its temporal position embeddings and shorten the
temporal window to 4, including the 3 most recent frames and one goal frame. We also
reduce the temporal filter dimension to 1 as there is no longer a computational benefit to
shortening the sequence length. For time-contrastive training, we sample batches of 32
subsequent frames per video and use a positive window of 0.2 seconds and a negative
window of 0.4s, as done by Sermanet et al. [2018]. For both objectives, we apply the
same data augmentation procedure as Arnab et al. [2021], but leave out MixUp [Zhang
et al., 2018]. For further training details, see Section 4.6.

We observed better policy training performance for the ResNet model for HOLD-
C, and for ViViT for HOLD-R, so we report results using these backbones in Section

2Only HOLD-R with ViViT architecture made use of labels in pretraining, whereas HOLD-R with
ResNet backbones as well as all HOLD-C models did not. However, the pretraining could have poten-
tially been done on a different labeled dataset such as Kinetics [Kay et al., 2017] or skipped altogether,
and no labels are needed for the regression task. We are working on evaluating a fully label-free ViViT
regression model.
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(a) Pushing mouse from left to right (b) Putting paint brush
underneath magazine

(c) Moving book up

Figure 4.1: Example human videos from Something-Something v2 used to train the
distance models.

(a) Pushing start (b) Pushing goal (c) Drawer start (d) Drawer subtask (e) Drawer goal

Figure 4.2: The RLV tasks.

(a) Start state for all tasks (b) Close Drawer (c) Push Cup Forward (d) Turn Faucet Right

Figure 4.3: The DVD tasks: a Sawyer arm in a tabletop environment adapted from
Meta-World [Yu et al., 2020].

4.4.2. Ablations using the other architectures in included in Section 4.8, and strategies
for evaluating the distance models on human data before testing them in robot policy
training are discussed in Section 4.7.

4.4.2 Policy learning

To demonstrate the utility of our method as a reward function for training RL policies,
we evaluate it on the Pushing and Drawer Opening tasks defined by RLV Schmeck-
peper et al. [2020] (Fig. 4.2) and on the Close Drawer, Push Cup Forward and Turn
Faucet Right tasks defined by DVD [Chen et al., 2021a] (Fig. 4.3). We follow prior
work [Schmeckpeper et al., 2020; Zakka et al., 2022] in using Soft Actor-Critic (SAC)
[Haarnoja et al., 2018a] as the underlying RL algorithm and evaluate it on 20 episodes
for all tasks. All policies use images as input, and we reuse the policy and critic archi-
tectures as well as algorithm hyperparameters from Schmeckpeper et al. [2020].
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(a) Pushing (b) Drawer Opening (2 subtasks)

Figure 4.4: Return on the RLV tasks (5 random seeds, with standard error).

(a) Close Drawer (b) Push Cup Forward (c) Turn Faucet Right

Figure 4.5: Success rates on the DVD tasks (10 random seeds, with standard error). Our
reward functions improve over sparse reward, and learn the Close Drawer task without
using sparse reward.

Like Schmeckpeper et al. [2020], we augment our learned reward from Eq. (4.7)
with a sparse task reward: +1 for success, and 0 otherwise, defined by each environ-
ment based on distance to the target configuration. Since the predicted distances can
be significantly larger than 1 but should not override the sparse reward, we scale the
predicted rewards by 1/T , where T is set such that the scale of initial state distances is
≈ 1/3. Ablations for other values are included in Section 4.8.

RLV tasks

As shown in Fig. 4.4, the sum of both reward functions, appropriately balanced, sig-
nificantly accelerates training compared to using the sparse reward alone. In our ex-
periments, using only sparse reward required 10x more samples for Pushing and >18x
more for Drawer to reach the return of HOLD-C. We find that HOLD-C outperforms
HOLD-R overall for Pushing, both with and without sparse reward, and in the sparse
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reward setting for Drawer Opening.

Pushing Without added sparse reward, a single failure case is prominent: while the
policy quickly learns to match the end-effector position in the goal frame, it fails to pay
attention to the puck position. As observed by Tian et al. [2021], it is easy for the dis-
tance function to excessively focus on fully actuated components in the scene as these
are highly predictive of temporal offset. Although HOLD is able to generalize from hu-
man arms to a robot arm, for tasks with variable object positions, it may be better suited
as an exploration strategy used together with an otherwise rarely-observed sparse re-
ward than a standalone multi-task reward. Note that although Zakka et al. [2022] also
evaluate on Pushing, their results are not comparable as their method is trained on the
easier RLV Pushing dataset [Schmeckpeper et al., 2020] collected to match the appear-
ance of the robot task, and report on the simpler State Pusher task where the policy
directly observes the 2D puck position and the 3D end-effector position.

Drawer The Drawer Opening task has double the episode length (200 steps) of Push-
ing, and consists of two distinct motions: approaching and inserting the gripper into
the handle, and pulling the drawer open once there. We find that applying the HOLD
models on the full task suffers from the local minimum of only matching the arm po-
sition in the goal image. However, if we instead define the task in two parts using an
intermediate goal image (in Fig. 4.2d), our rewards significantly improve sample ef-
ficiency compared to the sparse task-completion reward provided by the environment
alone, as shown in Fig. 4.4b. Moreover, HOLD-R alone without any environment re-
ward performs on par with sparse reward in this setting. We train a single policy for
both subtasks, which is conditioned on the active goal image by concatenating it to the
observation s. For all distance functions, we switch to the next subtask when d < 1 for
at least 3 consecutive time steps.

DVD tasks

We report success rate for the DVD tasks in Fig. 4.5. These tasks are significantly easier
than the RLV tasks and quickly learned even using only sparse reward. To estimate the
upper bound in learning speed achievable by improving the reward alone, we define an
oracle reward using knowledge of robot and object positions. Since we observe only a
narrow performance gap between the oracle and the sparse reward, the learning speed
in these tasks is limited mostly by the RL algorithm. Although it is therefore difficult
to show much improvement over the sparse reward, both HOLD models outperform it,
particularly for Close Drawer and Turn Faucet Right. For Close Drawer, HOLD also
solves the task without sparse reward. Unlike Chen et al. [2021a], we do not first collect
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(a) Pushing (b) Drawer Opening (2 subtasks)

Figure 4.6: HOLD-C outperforms TCN and distances in R3M representation space on
both RLV tasks.

a dataset of 10,000 trajectories, or 600,000 steps, of random exploration on the robot to
learn a model of the environment, but instead focus on the model-free setting. We show
adaptation to a new robot, set of objects and environment in just 12,000–18,000 steps,
or 200 to 300 episodes, when sparse environment reward is available, or 22,000 without
sparse reward for Close Drawer.

4.4.3 Baseline comparisons

We compare HOLD to rewards defined by two prior methods: TCN [Sermanet et al.,
2018] and R3M [Nair et al., 2022]. TCN proposes to transfer a policy given a human
video demonstration by minimizing distance to the embeddings of each of the visited
states gt in turn. We empirically set the hyperparameters of d(st, gt) to α = 0.005, β =
0.02, and γ = 0.2. As performance may vary based on the exact demonstration video
used, we evaluate 3 demonstrations per task from the RLV dataset, which is collected to
closely match the RLV robot tasks, and report the average performance across demon-
strations (trained with 5 seeds each) in Figure 4.6. Even the closely aligned demon-
strations transfer poorly to policy learning, especially for Pushing, due to slight differ-
ences in initial state, cropping or execution speed, highlighting the brittleness of the
trajectory-following objective of TCN.

Although R3M is proposed as a general feature representation, we also compare
against using Euclidean distance in the representation space for defining dense rewards.
We used the ResNet-50 model checkpoint from Nair et al. [2022], trained on the much
larger Ego4D [Grauman et al., 2022] (3,500 hours) rather than SSv2 (200 hours). As
shown in Figure 4.6, HOLD-C outperforms R3M in both RLV tasks despite having
been trained on less data and requiring no language descriptions. Like our method,
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R3M also requires sparse rewards to fully solve the tasks, and an intermediate goal for
Drawer opening.

We also include a simple baseline of using the negative pixel-wise distance in image
space between the current observation and the goal image as a reward. While using
distances in image space with sparse reward also learns the Pushing task faster than
sparse reward alone, as shown in Figure 4.6, this still requires many more training
samples than either HOLD-R or HOLD-C, and fails to reliably learn the Drawer task.

4.5 Limitations

Long-horizon and non-Markovian tasks In the robot learning literature, several
ways of defining tasks have been proposed. Some task may be best described in natural
language, while for others showing how the task should be performed, either as a still
frame or a full demonstration video, may better resolve any ambiguity in which objects
should be manipulated and how. While a complete demonstration is more laborious to
provide, especially in robot observation space, goal images may not be able to represent
certain tasks. One limitation is that task progress must be fully observable, i.e. the task
must be Markovian, to be describable with a {start image, goal image} pair.

As our distance function in its general definition is not specialized to any specific
tasks or objects, it is very difficult for it to predict what should happen in long-horizon
tasks, or in order to produce particular object deformations as demonstrated by the RLV
Drawer Opening task. However, this limitation could be overcome either by defining
a hierarchical model capable of producing its own subgoals, or by reintroducing some
task specialization, such as human data focused on, say, maneuvers involving handles
of drawers and doors.

4.6 Training hyperparameters

Our distance models are implemented in JAX [Bradbury et al., 2018] using the Scenic
library [Dehghani et al., 2021]. Hyperparameter settings are shown in Table 4.1 for the
regression models and in Table 4.2 for time-contrastive training.

For policy training, we reuse the implementation of SAC from Schmeckpeper et al.
[2020] based on Softlearning Haarnoja et al. [2018b]. All RL hyperparameter settings
are unchanged (included in Table 4.3 for reference).



59

Parameter ViViT ResNet-50
Epochs 20 100

Base learning rate 0.1 3e-4
Optimizer Momentum Adam
Batch size 64 32

Table 4.1: Training hyperparameters for HOLD-R.

Parameter ViT ResNet-50
Epochs 5 100

Sequence length 32 32
Base learning rate 1e-4 1e-4

Optimizer Adam Adam
Batch size 8 8

Table 4.2: Training hyperparameters for HOLD-C.

Parameter Value
Initial exploration steps 1000

Learning rate 3e-4
Batch size 256
Optimizer Adam

Gradient steps per environment step 1

Table 4.3: Training hyperparameters for policy training.

4.7 Distance model evaluation on human data

To avoid evaluating every variation of HOLD in the target robot environment, it would
be preferable to be able to rank and pre-select models based on their performance on
held-out human data, and test only the most promising ones in robot policy training.
However, it is difficult to evaluate generalization without access to robot data, and it is
not straightforward to design a suitable test metric that captures both smoothness and
correct ranking of states. In this section, we propose several relevant metrics.

For the regression models, in addition to the training objective mean squared error
(MSE), we can also evaluate mean absolute error in time steps and in seconds. How-
ever, these metrics assume uniform progress at each time step toward task completion,
and require high-scoring models to match the scale of ground truth time intervals. Us-
ing a hinge loss instead allows non-uniform progress and only penalizes out-of-order
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Loss Network; frames Spearman Misclassif. MSE Mean error Hinge loss
R ViViT; 3 0.6709 0.4539 499.2 18.0 (1.54 s) 0.0663
R ResNet-50; 1 0.7136 0.3976 482.1 17.3 (1.48 s) 0.0233
R ResNet-50; 3 0.7139 0.4385 514.1 18.1 (1.55 s) 0.0611
C ResNet-50; 1 0.6246 0.4015
C ViT; 1 0.6559 0.4006

Table 4.4: Evaluation scores on the Something-Something v2 validation set. Time-
based metrics are only defined for HOLD-R as HOLD-C models do not predict time.

predictions:
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Another option is to not use time-based metrics at all. As explained in Section 4.3.1, it
is ultimately more important for the distance models to preserve the ranking of states
with respect to a goal frame than to reproduce δ in absolute terms. With the aim of
maximally preserving pairwise rankings as defined in Eq. (4.3), we propose two further
metrics, namely misclassification rate:
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) > d(si

j, si
Ti

)]I[j < k] /
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(Ti − 1), (4.9)

and Spearman correlation, i.e., the correlation between rankings assigned to each frame
in the full sequence s1:Ti−1, and the ground truth order.

The scores of each of the models we present are shown in Table 4.4. As we assume
no access to robot data at distance training time, we use the SSv2 validation set as
a proxy for model performance, and use Spearman correlation as an early stopping
criterion. However, we observe that the scores on human data are not predictive of the
downstream robot performance these models obtain, highlighting the difficulty of the
domain transfer.

4.8 Distance model ablations

We evaluate a variety of design choices in HOLD models on the RLV Pushing task.
Specifically, we compare several values for the reward normalizer T introduced in Eq.
(4.7), as well as variants of the network architecture and the form of the reward (cumu-
lative vs. instantaneous, as described in Section 4.3.2).

The effect of reward scale for HOLD-R is shown in Fig. 4.7a. While T = 10
increases return the fastest, its performance is less stable towards the end of training



61

(a) Effect of reward scale for HOLD-R. (b) Cumulative distance vs. subtracting the pre-
vious distance for HOLD-R.

(c) Effect of architecture choice for HOLD-R. (d) Effect of reward definition, scaling and ar-
chitecture choice for HOLD-C.

Figure 4.7: HOLD model ablations on RLV Pushing.

and it suffers a momentary drop in performance when the policy appears to overfit to
the distance reward over the sparse task reward. The normalizer T = 45, equal to the
average length of a training video in SSv2, provides the best trade-off in sample effi-
ciency and stability and we therefore report results using this setting in Section 4.4.2.
This value is used for all tasks except RLV Open Drawer, where the task horizon is
twice as long and we found T = 100 to work significantly better (see Fig. 4.8). To
avoid further extensive tuning of the reward scale for HOLD-C and for each baseline,
we simply set T such that the scale of initial predictions is approximately 1/3, the same
scale as HOLD-R with T = 45. Using this strategy, we obtain T = 5 for HOLD-C and
T = 30 for the L2 baseline (or T = 10 and T = 100 for RLV Drawer, respectively),
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Figure 4.8: Effect of reward scale on RLV Open Drawer.

which we indeed found to perform better than respective alternatives T = 1 and T = 45.

As for reward definition, the cumulative distance reward clearly outperforms instan-
taneous distance reward (i.e. subtracting the distance at the previous time step) for both
HOLD-R (Fig. 4.7b) and HOLD-C (Fig. 4.7d). Although the scale of dt − dt−1 is
expected to be different from the scale of dt and hence the normalizer T may need to
be set differently, we found the HOLD-R instantaneous distance form to perform con-
sistently worse for a wide range of values of T : {0.1, 1, 10, 45, 100}. Moreover, the
choice of T seemed to have very little effect on the learning performance for T ≥ 1.

Finally, in Fig. 4.7c, we compare the HOLD-R ViViT model against ResNet-50
conditioned on either 1 or 3 frames, but found that these smaller models had slightly
worse sample efficiency in RL training than ViViT. For HOLD-C models, we found
ResNet to outperform ViT, however, ViT may have benefited from longer training. In
Section 4.4.2, we therefore report HOLD-C results using the ResNet architecture.

4.9 Longer training for sparse reward

HOLD-C converges to a return of 80 for Pushing after 80,000 environment steps of
training and a return of 145 for Drawer after 150,000 steps. In order to estimate how
much training time is accelerated compared to using only the sparse reward, we also
run experiments with considerably longer training for the sparse reward baseline. The
return of HOLD is eventually reached after 800,000 samples for Pushing, whereas for
Drawer, it is not reached even after 2.75 million steps. We therefore obtain a speedup
of 10x for Pushing (Fig. 4.9a) and at least 18x for Drawer (Fig. 4.9b).
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(a) Pushing (b) Drawer Opening

Figure 4.9: Eventual return for the sparse reward on the RLV tasks after 1–2.75 million
environment steps (2.5–7x increase from Fig. 4.4).

4.10 Training data coverage of evaluated robot tasks

Our distance models are not specialized for any specific task and can therefore be ap-
plied on previously unseen manipulation tasks, or tasks with very few human demon-
strations. In this section, we investigate to what extent the robot tasks we evaluate on
are covered in SSv2 training data. Note that our models never observe the task labels
and are only trained on ungrouped SSv2 videos.

The tasks included in SSv2 are intentionally very diverse. As task templates include
generic movements such as Moving something up, Moving something down, Pushing
something from left to right, Pushing something from right to left, it is genuinely difficult
to find manipulation tasks unrelated to any of the 174 templates. However, several tasks
include drastically different manipulations depending on the objects considered: e.g.,
opening the screw cap of a bottle and opening a book use the same template Opening
something but very different motions. As shown in Table 4.5, the action-object pairs
we evaluate in the robot tasks have never been demonstrated for Turn Faucet Right, and
have been demonstrated <5 times for Push Cup Forward and RLV Pushing (Moving a
cap towards the camera). The objects puck or disk do not appear in SSv2, so we replace
puck by cap.

Moreover, on closer inspection of the three videos labeled Moving cap towards
the camera, we observe significant variation in the interpretation of the action labels
themselves. Instead of pushing an object along a surface like in our robot task, one out
of three videos in fact shows pulling a (baseball) cap along a surface, and the remaining
two show a person holding a bottle cap and moving it directly towards the camera lens
without using a surface at all. The same two motions are demonstrated for related
objects such as lid (2 videos) and bottle cap (1 video). It seems unlikely that the same
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Robot task Closest action a; Closest object o #a #o #(a, o)
Pushing Moving sth towards the camera; cap 927 611 3
Open Drawer Opening sth; drawer 1585 619 67
Close Drawer Closing sth; drawer 1296 619 62
Push Cup Forward Moving sth away from the camera; mug 937 951 4
Turn Faucet Right Pushing sth from left to right; faucet 3199 28 0

Table 4.5: SSv2 training examples most closely matching the evaluated robot tasks. a
corresponds to the most similar action template to each robot task, whereas o is the most
similar object among the objects manipulated across all tasks templates. In columns 3–
5, we give the number of videos in the training and validation sets labeled with either
a, o, or both, respectively. The full dataset consists of 220,847 videos: 168,913 in the
train set, 24,777 in the validation set and the remaining 27,157 in the test set.

task, pushing a puck towards the camera is demonstrated at all (the pushing templates
featuring horizontal directions only). Similarly, only 1/4 videos labeled Moving mug
away from the camera and 1/4 videos labeled Moving cup away from the camera push
an object along a surface at all, and the rest perform the maneuver in the air.

We conclude that we have shown generalization to at least one and possibly multiple
novel tasks which were not included in the training dataset.

4.11 Conclusion

We have presented a method for learning goal image conditioned reward functions for
robotic manipulation from unlabeled human videos, in a challenging setting which no
prior work has addressed to our knowledge. Learning a prior for robot behavior from a
dataset of human demonstrations without task labels requires generalization both across
tasks and across a significant domain shift. While most accurate for short-horizon tasks
with single-step movements, the distance functions we train produce useful rewards
for visually different robot environments that are able to accelerate training over using
sparse reward alone, and can be composed to perform more general multi-step manip-
ulation tasks using subgoals. Finally, we have shown that for some tasks, the predicted
rewards alone are sufficient to learn the task without any additional success signals.
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Chapter 5

Discovering Actions by Jointly
Clustering Video and Narration

TUTORIAL VIDEOS ON THE INTERNET are a rich source of supervision for teaching
robots to accomplish goals and to interact with objects. In this chapter, we address
the problem of discovering actions in narrated instruction videos by jointly clustering
visual features and text, without any external supervision. Eventually, the predicted
action classes and extracted intervals could be used as training data for robotic policies,
for learning both individual skills and their composition for longer tasks.

Unlike previous work, our method does not assume any prior grouping of the videos
into distinct tasks, or that videos depicting the same task share an identical script, i.e.,
the same sequence of actions. In this work, only the narration and the visual stream
of each individual video are assumed to be mutually consistent and depict the same
sequence of actions with approximate temporal alignment. Our method is based on a
discriminative clustering objective, with a penalty term corresponding to the distance
between the sequence of actions assigned to frames and that assigned to words in each
video. This encourages the order and timing of actions in each assignment to become
consistent over the course of optimization. Our experimental evaluation on the Inria
Instruction Videos and CrossTask datasets shows that our method achieves comparable
performance to existing task-specific methods while greatly improving on their gener-
ality by relaxing the assumption of a shared script, and by requiring less supervision.

5.1 Introduction

Tutorial videos are a varied and abundant source of data for machine learning systems
[Alayrac et al., 2016; Elhamifar and Zaing, 2019; Miech et al., 2019; Tang et al., 2019;
Zhukov et al., 2019]. However, full temporal annotation of video datasets sufficiently
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large for supervised action recognition comes at a significant labeling cost, which limits
the amount of progress to be made by fully supervised methods. This motivates efforts
to learn from instruction videos using weaker forms of supervision, or no external su-
pervision at all. One widely available source of weak supervision is video narration,
the usefulness of which has grown in recent years thanks to notable improvements in
automatic speech recognition quality.

In this chapter, we address the problem of extracting from video tutorials the corre-
sponding procedure steps, using only weak supervision from narration. This problem
is commonly addressed in the case where many tutorials for the same activity (e.g.,
changing a tire) are available [Alayrac et al., 2016; Elhamifar and Zaing, 2019; Sener
and Yao, 2018]. We consider here instead the case where many tutorials for different
activities that may contain shared components are available, and cast our problem as
one of joint clustering of textual and video information into a finite set of actions. Con-
trary to the single-task setting, temporal ordering constraints are not available for the
text data alone, since we may only have a single tutorial instance for each activity of
interest. As opposed to prior work, our method does not require any prior grouping
of the tutorials, such as which task is demonstrated. Since the narration can also be
transcribed without human input, using automatic speech recognition and parsing, our
method can be applied on large, automatically sourced datasets, without any labeling
cost.

Our approach to the action discovery problem is more general than existing meth-
ods, as we do not assume all videos depicting a given activity, such as build a desk,
consist of a shared sequence of steps, always performed in an identical order. More-
over, our method returns a full segmentation of the video, unlike most prior work, where
exactly one time step per action per video is labeled—even if a step may be missing.
This also allows our method to identify repetitions of the same action, which most ap-
proaches focused on shared sequences do not permit.

The rest of this chapter is structured as follows. In Section 5.2, we discuss related
work on weakly supervised action discovery in videos. The problem of learning label
assignments on frames and words is defined in Section 5.3.1. Sections 5.3.2 and 5.3.3
outline the constraints connecting the two assignments, and how they are relaxed dur-
ing optimization. We describe in Section 5.4 our optimization procedure, where each
intermediate assignment of frames to actions is informed by, but not fully dictated by,
its counterpart word-to-action assignment, and vice versa. Finally, our experimental
evaluation is described in Section 5.5, with conclusions in Section 5.10.
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Figure 5.1: Using only weak supervision from narration, we automatically discover
actions that might occur across different tasks and contexts—without assuming the task
depicted, such as the recipe label, is known.

5.2 Related work

5.2.1 Weakly supervised learning of actions in video

Learning to recognize actions in videos is an active area of research. However, tem-
porally labeling a video in the weakly supervised setting is a difficult problem due to
its combinatorial nature. To constrain the space of label assignments considered, many
examples of prior work assume an ordered list of actions to be available, obtained for
instance from a transcript or a movie script [Bojanowski et al., 2014]. Using unordered
meta-tags, Richard et al. [2018] consider the slightly more difficult problem where the
set of actions is known, but their order is not.

Instructional videos, on the other hand, exhibit common structure that allows the
requirement of an ordered sequence of actions to be known a priori to be relaxed. When
videos are split into distinct tasks, and it is assumed that each task is described by a
global script, the shared order can be learned from data [Alayrac et al., 2016; Sener
et al., 2015]. As most video tutorials also have one or more narrators that describe
the steps being performed, the transcribed narration provides further constraints on the
action timings.
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However, the prior works on instruction videos mentioned above have focused on
learning from a single activity at a time. This requires a grouping of the videos of
interest into known activities, such as which recipe is being depicted. Moreover, it is
not always the case that all videos depicting the same activity follow a shared sequence
of actions: steps may be skipped, shuffled or repeated. Out of the prior work in weakly
supervised action classification, Richard et al. [2018] and Elhamifar and Zaing [2019]
are among the few to allow repetitions and shuffles, and Elhamifar and Zaing [2019]
additionally allows for missing steps.

Also closely related to our work are methods that segment videos into a set of ac-
tions [Elhamifar and Zaing, 2019; Kuehne et al., 2017; Sener and Yao, 2018], instead
of simply identifying the single most salient time steps. However, unlike our approach,
they model each task separately of others, and do not use narration, as we do in this
work. Kukleva et al. [2019] additionally consider the problem of separating an un-
grouped dataset into tasks, but also learn task-specific action classifiers.

5.2.2 Sharing across tasks

Learning from a single activity at a time also overlooks the opportunity to jointly learn
action models across tasks. A single cooking step may appear in many recipes, or a
single assembly step might appear in many home DIY tutorials, and learning from all
available data is likely to lead to better classifiers. Sharing across activity categories
has been approached in the form of a component model [Zhukov et al., 2019]: two
steps such as pour coffee and pour mixture share the verb pour, for which a classifier
is trained. Similarly, a classifier is learned for each word in any step description. The
sharing is directly determined by a common sequence of steps for each activity, known
a priori, and is dependent on the exact phrasing of these steps. In this work, we take ad-
vantage of sharing on a general set of videos without assuming that an ordered sequence
of steps is known.

5.3 Proposed model

5.3.1 Objective function

We consider a dataset of N narrated videos. Each video i is made up of mi frames,
each represented by some feature in Rp, such that the video itself can be represented by
a matrix X i in Rmi×p. We assume that a narration made of ni words, each represented
by a feature in Rq, is attached to the video, and similarly represent it by Y i in Rni×q.
Here, the terms frame and word correspond to any representation of visual and textual
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content of a video: a frame may actually consist of a block of frames, and include some
motion or even sound information. Likewise, a word may also designate a direct object
relation (verb + object) or even a sentence, and a script may designate an actual script,
subtitles, or a text transcription of an audio commentary. Where available, we also
take advantage of an approximate alignment of the frames that overlap with a given
word and vice versa, represented by a binary matrix Ai of size mi × ni. In the case
of transcripts obtained from automatic speech recognition, the timings of captions are
obtained without any labelling cost.

We wish to automatically discover k action classes occurring across the dataset, us-
ing only weak supervision in the form of the transcribed narration. Each word and each
frame may be associated to one of k actions or to a background class. The correspond-
ing assignments can respectively be represented by mi × K and ni × K binary matrices
P i and Qi for each video i (see Figure 5.2), where K = k + 1 in order to include a
column for background. The label assignments must respect certain constraints (de-
scribed in Sections 5.3.2 and 5.3.3), which we denote here by the fact that the ordered
pair (P, Q) must belong to some constraint set C in {0, 1}m×K × {0, 1}n×K , where
P = [P 1; ...; P N ] and Q = [Q1; ...; QN ] are the stacked assignments, m = ∑

i mi and
n = ∑

i ni.
Given N videos and their associated scripts, we can now pose the problem of learn-

ing the assignments P and Q as the minimization of a discriminative clustering [Bach
and Harchaoui, 2008] objective:

h(P, Q) = min
U∈Rp×k,
V ∈Rq×k,
a,b∈Rk

1
2m

∥∥∥P − XU − 1maT
∥∥∥2

F
+ α

2
∥U∥2

F

+ 1
2n

∥∥∥Q − Y V − 1nbT
∥∥∥2

F
+ β

2
∥V ∥2

F .

(5.1)

where X in Rm×p and Y in Rn×q are the features X i and Y i stacked for each video
i, (U, a) and (V, b) are linear (or rather affine) classifiers, the minimization over which
can be done in closed form. This gives a quadratic program in P and Q:

min
(P,Q)∈C

h(P, Q) = min
(P,Q)∈C

f(P ) + g(Q), (5.2)

where f(P ) = 1
2m

Tr(PP T B), (5.3)

g(Q) = 1
2n

Tr(QQT C), (5.4)

B = Im − X(XT X + mαIp)−1XT , and (5.5)

C = In − Y (Y T Y + nβIq)−1Y T . (5.6)
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Figure 5.2: Illustration of the indicator matrices considered, shown here for a single
video. P (resp. Q) assigns frames (resp. words) in the video to one of k classes, or
to no class at all. A encodes an approximate temporal alignment between P and Q (in
gray). The true (and a priori unknown) aligned frame-word pairs depicting the same
action instance are shown in black for illustration only.

5.3.2 Separate constraints

Let us consider for the remainder of this section a single video and omit the correspond-
ing superscripts i.

Non-overlapping actions Each frame and each word may be assigned to a single
action, or no action (background):

P1K = 1m; Q1K = 1n. (5.7)

Number of actions per video A common problem with discriminative clustering is
that it suffers from the trivial optima corresponding to a single cluster, as well as the
constant assignment matrix 1

K
11

T
K . This is known to happen when the optimization do-

main is symmetric over permutations of the label classes [Guo and Schuurmans, 2008],
as is the case in our setting. To rule out the solution of a single cluster, we would like
to set minimum and maximum proportions for any cluster. However, since we apply
the Frank-Wolfe algorithm to our optimization problem and use a dynamic program to
solve the linear minimization oracle (more details in Section 5.4), and the proportion
constraint cannot be incorporated into a dynamic program, we must relax this constraint.
We instead add an entropy regularizer (as done in Joulin et al. [2012]) on the distribu-
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tion of action labels summed over the time dimension (frames or words, respectively)
to our objective:

h(P, Q) = f(P ) + g(Q) − ρP H(P ) − ρQH(Q), (5.8)

where H(P ) = −
K∑

c=1

∑
j Pjc∑

j,c Pjc

log
∑

j Pjc∑
j,c Pjc

. (5.9)

High entropy is encouraged to balance the sizes of clusters. The entropy terms of P and
of Q are scaled respectively by terms ρP and ρQ, set by validation.

5.3.3 Joint constraints

Temporal constraints In this work, an action is deemed to appear in a video if it is
associated with a frame and a word whose timings overlap. For simplicity, here we
consider the case where for each frame labeled with an action class, there must be
exactly one word with the same label, and vice versa, but the extension to one-to-many
mappings is included in Section 5.6.

For the f th frame of the video to be assigned to an action a in 1, ..., k, it must be
paired with a word, with index w, also assigned to a that is aligned with the f th frame
(i.e., Afw = 1):

P ◦ (AQ − 1) ≥ 0. (5.10)

where ◦ is elementwise multiplication. The converse must also hold:

Q ◦ (AT P − 1) ≥ 0, (5.11)

If no temporal information is available for the script, A can be replaced by 1m1
T
n .

Ordering constraints In addition to overlapping alignment constraints, the order
(and number) of actions appearing in the video and its script should also be consis-
tent. Specifically, if a and a′ are two actions appearing in P at frame indices f and
f ′, respectively, such that f < f ′, then there should exist word indices w, w′ such that
Qwa = Qw′a′ = 1 where w < w′. Again, the inverse must also hold of P given Q. An
equal number of actions is implied by this bidirectional constraint. While desirable in
a final label assignment, this constraint makes things challenging from an optimization
perspective.

5.3.4 Constraint relaxation

The joint constraints linking P and Q are not convex. We propose to use block-
coordinate descent and alternately optimize over one assignment matrix while keeping
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the other fixed. When either P or Q is fixed, the problem resembles the form considered
in the second stage of Alayrac et al. [2016], a discriminative clustering problem in one
modality under ordering and temporal alignment constraints. In our case, however, the
order and number of actions given in the constraints (P or Q, whichever is currently
fixed) is not assumed to be correct at any given iteration: due to shared ordering con-
straints, treating the initialization of one variate as the correct order would indeed not
allow a better order to be discovered, i.e., whichever order and number of actions the
initially fixed variate were to encode would necessarily be propagated into the other
assignment. Therefore, the alignment and ordering constraints must be relaxed. We
replace the hard constraints by a penalty based on the Needleman-Wunsch sequence
alignment algorithm [Needleman and Wunsch, 1970], as described below.

Sequence alignment cost Let us consider the labels of each row in P as a sequence
p, and the labels of each row in Q as a sequence q, where each item in p and in q is
in 0, 1, ...k (0 corresponds to background). We wish to measure the distance between p

and q in order to penalize an assignment pair (P, Q) in proportion to how inconsistent
the sequences are with respect to each other, given the approximate alignment matrix
A.

We define this measure of inconsistency as the number of actions in p that are not
matched by q, and vice versa. For a fixed pair (p, q), this distance can be calculated
using the Needleman-Wunsch sequence alignment algorithm [Needleman and Wun-
sch, 1970], commonly used on DNA sequences, with the modification that the sub-
set of alignments considered must fall within A. Similar to dynamic time warping,
Needleman-Wunsch discovers an alignment of the two sequences so as to maximize an
alignment score. We define a pairwise scoring function s : {0, 1, ..., k} × {0, 1, ...k} →
Z (more details in Section 5.7) such that the negative alignment score corresponds to
the number of actions present in Q and skipped in P , plus the number of actions in-
serted by P . We add this conflict penalty l(P, Q) to our objective function, giving a
final objective of the form:

h(P, Q) =f(P ) + µg(Q) − ρP H(P ) − ρQH(Q)
+ λtl(P, Q). (5.12)

The conflict l is scaled by λ, which is increased according to some schedule at each
iteration t to encourage P and Q to become increasingly consistent over the course of
optimization. We also scale g(Q) by µ, which is set by validation, in order to give l

different relative weight when optimizing for Q as opposed to P .
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5.4 Optimization

Having relaxed the joint alignment and ordering constraints, we are left with the indi-
vidual constraints P in D and Q in E only, corresponding to Eq. (5.7). The sets D and E
are discrete and hence not convex. To optimize h(P, Q) over them, we use Frank-Wolfe
[Frank and Wolfe, 1956], an iterative first-order optimization algorithm, which con-
siders their convex hulls conv(D) and conv(E). We use block-coordinate descent and
alternate between optimizing for P with Q fixed, and optimizing for Q with P fixed,
between each Frank-Wolfe step. At each iteration, a first-order Taylor approximation
of h around Pt−1 and Qt−1 is minimized subject to P in conv(D) to find a corner P c

t

(similarly, Qc
t is found by minimizing QT dh

dQ
around Pt and Qt−1). Since optimizing a

linear function over our convex constraint set necessarily gives an integer solution, we
have P c

t in D and Qc
t in E .

As conflict l(P, Q) is defined for integer P and Q only, a rounded Q̂t−1 in E is
considered when optimizing for Pt, and a rounded P̂t in D when optimizing for Qt.
However, since h is not differentiable due to its l-term defined for integer P and Q only,
we instead minimize:

P c
t = argmin

P ∈D
P T d(f − ρH)

dP
(Pt−1) + λtl(P, Q̂t−1), (5.13)

Qc
t = argmin

Q∈E
QT d(g − ρH)

dQ
(Qt−1) + λtl(P̂t, Q). (5.14)

The objective as well as the constraints are block-wise separable by video, so we can
solve for P c and Qc individually for each video. This is done using a dynamic program.

We update P and Q by taking a step towards P c and Qc as follows:

θP = argmin
θ

h(((1 − θ)Pt−1 + θP c
t ), Q̂t−1), (5.15)

Pt = (1 − θP )Pt−1 + θP P c
t , (5.16)

θQ = argmin
θ

h(P̂t, (1 − θ)Qt−1 + θQc
t), (5.17)

Qt = (1 − θQ)Qt−1 + θQQc
t , (5.18)

where P0 (resp. Q0) is obtained by starting from any point in conv(D) (resp. conv(E)).
Other initialization strategies are discussed in Section 5.5. The optimization is contin-
ued until both θP and θQ fall below a threshold. The final solution (P̂T , Q̂T ) is obtained
by rounding PT and QT after the last iteration T .
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5.5 Experiments

In this section, we demonstrate the validity of our method through its experimental
evaluation on Inria Instruction Videos [Alayrac et al., 2016] and CrossTask [Zhukov
et al., 2019].

5.5.1 Datasets

Inria Instruction Videos consists of 150 narrated tutorial videos, depicting 5 tasks.
CrossTask, on the other hand, consists of an annotated primary set of 2763 videos
(depicting 18 tasks) and an unannotated related set of 1950 videos (depicting 65 tasks).
Both datasets are sourced from YouTube, and provide full temporal annotation of ground-
truth steps. The tasks included comprise activities such as cooking, interior decora-
tion and car maintenance, with 3 to 12 annotated steps per video. We only consider
the primary subset of CrossTask in our evaluation, as ground truth data is not pro-
vided for the related set. In the Inria dataset, any off-topic introduction or ending has
been trimmed from each video, whereas CrossTask videos are untrimmed. For Inria
Instruction Videos, manually corrected transcribed narration is provided, whereas for
CrossTask we use captions from automatic speech recognition (ASR), or user-generated
captions where available.

Although each dataset groups the videos into categories, in the interest of generality,
we do not make use of these labels, but treat the order of actions in each video as
independent of other videos. Our method only relies on actions occurring often enough
across the dataset to allow for enough data to learn from. On Inria Instruction Videos,
the included tasks are different enough to not have any overlapping actions; we therefore
do not expect to see an improvement on a particular task by combining it with other
tasks. However, on CrossTask we can observe the effect of sharing, as 10% of the
action steps occur in more than one task.

5.5.2 Feature representations

For a fair comparison with existing methods, we use the original features provided for
each dataset as our frame representation. As a word representation, we use Elmo word
vectors [Peters et al., 2018]. The narration is processed as follows: the original narration
is transcribed to text with ASR. We follow Alayrac et al. [2016] in converting the free-
form narration into a sequence of direct object relations (verb-object pairs) using the
Stanford parser [Klein and Manning, 2003]. Each direct object relation is lemmatized
(verbs are stripped of tense and conjugation, nouns are made singular) and represented
by the concatenation of the word vectors of its verb and its object parts.
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We also define a time window for each direct object relation as the shortest interval
covering the individual timings of both the verb and the object, given the approximate
timings of each word returned by ASR. From this, we obtain the alignment matrix
A. The raw alignment can optionally be widened to cover delays between when some
activity, say a recipe step, is discussed and when it is shown—the motivation being that
narrators may describe what they are about to do slightly before doing it—-or set to
1m1

T
n if no alignment information is available. In our experiments, the alignment is

widened by 10 seconds from its end points as done by Alayrac et al. [2016].

5.5.3 Further objective terms

Making independent predicting for individual time steps can sometimes result in flick-
ering between classes. However, for frames, there is a strong prior that consecutive
time steps share the same label. To encourage longer predicted segments, we also add a
penalty δ for each time step that is assigned a label different to that of the previous time
step in P . Alternatively, shorter segments could be penalized at the rounding stage, but
incorporating the penalty in the objective allows the clustering method to take advantage
of this prior for learning.

Moreover, we apply a special treatment for the background class: in addition to
a discriminative objective, we use a constant penalty γP for each frame assigned to
background, and γQ for each word assigned to background. This is to account for the
fact that background will never introduce a conflict penalty as defined by l(P, Q). As
the cost of conlicts increases over the course of optimization, this additional penalty
allows to balance the size of the background class without necessarily increasing the
entropy penalty.

5.5.4 Evaluation

Our method produces a full segmentation of the videos into k classes or background.
We evaluate the discovered frame intervals according to how much they overlap with
the annotated intervals in each video. Note that our method does not have access to
ground-truth labels in training, and ground truth is only used for evaluation. However,
none of the datasets we consider come with a predefined mapping of the spoken words
to class labels, which is necessary to evaluate the word clusters. We therefore provide
only a qualitative evaluation for words.

Label permutations Since there is no inherent ordering in the labels returned by our
method (as the search space is symmetric with respect to permutations of the classes),
we evaluate our output using the Hungarian algorithm. It finds the most favourable 1:1
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mapping between predicted and true classes by maximizing the number of intersecting
time steps between the two sets (as was done in Alayrac et al. [2016]; Elhamifar and
Zaing [2019]; Sener et al. [2015]).

Evaluation metrics The output of our algorithm is a complete segmentation of the
video at each time step into one of k classes or background. This is in contrast to
Alayrac et al. [2016] and Zhukov et al. [2019], where only one time step is predicted
per action and per video. Defining an evaluation metric to directly compare both outputs
is not straightforward.

In Alayrac et al. [2016], a segment-based F1 metric is used: a prediction is con-
sidered a true positive if it falls within an annotated interval of the same label, and a
false positive otherwise. Each ground-truth segment that is missed by the predictions
is counted as a single false negative, regardless of its length. The counts of true posi-
tive, false positive and false negative instances are then added up across the classes to
define a single F1 score, i.e., the harmonic mean of precision and recall. In Zhukov
et al. [2019], however, the number (and order) of action classes is known a priori, such
that there is a one-to-one mapping between predicted and ground truth classes. In this
setting, recall is used to measure how many of the ground truth time steps are correctly
identified by having the predicted time step fall within the interval.

These evaluation metrics no longer give a useful indication of performance in our
setting, as we want a segmentation to score in proportion to how extensively it covers
the ground-truth intervals while introducing as few false positive time steps as possible.
More relevant for our task is Jaccard index, i.e., intersection over union (IoU), on the
number of time steps in the predicted intervals compared to ground truth intervals. To
compare our method against prior work that outputs a single time step per prediction us-
ing this metric, we convert these single predictions into intervals by considering a fixed
size window around each of them. This interval length is set to the average annotated
interval duration in the ground truth across all action classes.

5.5.5 Baselines

As baselines, we use a random assignment as well as k-means clustering applied on the
frames separately. To highlight the difficulty of the segmentation task, we also report
IoU performance in a supervised setting, i.e., the performance obtained by training a
linear classifier (which has a closed form solution) on the ground truth labels. The l2-
regularization weight for the supervised classifier is fit to maximize performance across
4-fold crossvalidation on 80% of the dataset, after which it is retrained on all 80% and
evaluated on the held out 20%.
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Change
tire

Make
coffee

Perform
CPR

Jump-
start car

Repot
plant

All 5

random 0.037 0.027 0.036 0.016 0.030 0.008
k-means 0.120 0.093 0.127 0.034 0.070 0.088
Ours, init. from k-means 0.125 0.097 0.127 0.038 0.070 0.088
Alayrac et al. [2016],
fixed length intervals

0.126 0.065 0.076 0.042 0.064 n/a

Ours, from Alayrac et al.
[2016]’s init.

0.162 0.092 0.238 0.036 0.121 n/a

Supervised 0.193 0.074 0.331 0.033 0.090 0.115

Table 5.1: IoU for each task of Inria Instruction Videos, and for all tasks jointly. We set
k = 10 for each separate task and k = 50 for the joint dataset.

Figure 5.3: F1 scores on Inria Instruction Videos. The number of ground-truth actions
is given in parentheses for each task.

5.5.6 Results

Frames Table 5.1 shows IoU for each task of Inria Instruction Videos, as well as for
all included tasks combined into a single dataset, where the task labels are hidden. We
report results for our method initialized from k-means, and from the initialization of
Alayrac et al. [2016], in order to encode some prior knowledge without fully constrain-
ing the order. The initialization is obtained by first clustering the words using multiple
sequence alignment (see Alayrac et al. [2016] for details), sampling 10 frames from
each of the aligned time intervals and setting the initial P to the average of these 10
integer solutions.

Figure 5.3 shows F1 score for frames, for each task of Inria Instruction Videos,
and Table 5.2 shows recall results for each individual task of CrossTask. We fit our
hyperparameters on the validation set of 20 videos per primary task that is provided with
the dataset, and evaluate on the remaining primary task videos. To fairly compare our
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method to prior work in these contexts, we additionally constrain our label assignments
to predict the same order of actions in each video, as this is a strong inductive bias for
the datasets. We consider the middle time step of the predicted intervals when reporting
F1 and recall. Although Elhamifar and Zaing [2019] also report F1 results for Inria
Instruction Videos, their evaluation is different from ours and hence not comparable—
an annotated segment is considered as correctly predicted if at least one time step of a
prediction overlaps with it.
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Zhukov et al. [2019] 19.5 35.3 10.0 32.3 13.8 29.5 37.6 43.0 13.3

Table 5.2: Recall scores (%) on CrossTask. In order to compare with existing work, we
assume the true k is known. Note that the method of Zhukov et al. [2019] has access to
the additional data set of related tasks, as well as additional supervision in the form of
known recipe steps.
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Figure 5.4: The predicted intervals compared with Alayrac et al. [2016] and ground-
truth annotations for a few example videos of the change tire task of Inria Instruction
Videos.

Words We include a visualization of our word to action assignments in Figure 5.5 for
the perform CPR task. Qualitatively, our word assignment improves over Alayrac et al.
[2016], as we are able to identify synonyms and related terminology, such as tilt head
and grasp chin, or wake casualty and tap shoulder. In contrast, the word clustering stage
in Alayrac et al. [2016] supports only basic synonym matching based on the WordNet
tree [Oram, 2001]. Using this external corpus, direct object relations such as perform
compression and do compression are correctly identified as describing the same action.
However, the majority of the word clusters identified consist of a single direct object
relation, such as open airway, start compression, or pinch nose.

5.6 One-to-many constraints

Typically, an action appears in multiple consecutive frames, but is described by only one
or a few words. It is therefore desirable to relax the assumption of an equal number of
labeled time steps between the two modalities; however, the number of labeled action
segments should be equal. The temporal constraints in Equations (5.10) and (5.11)
already allow one-to-many mappings between frames and words, but in this section we
additionally adapt the ordering constraints for this setting. Note that both the temporal
and the ordering constraints only apply for the non-background columns, i.e., for P ′ =
P1:m,1:k and Q′ = Q1:n,1:k.

As defined in Section 5.3.3, for a consistent order between P and Q in the one-
to-one setting, we want there to exist two distinct words w and w′, w < w′, for each
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Figure 5.5: Nine of the word clusters discovered on the perform CPR task of Inria In-
struction Videos. The ground-truth actions for the task are open airway, check response,
call 911, check breathing, check pulse, give breath, and give compression.

ordered pair of frames f and f ′, f < f ′, such that f and w are assigned to the same
action a, and f ′ and w′ are assigned to the same action a′. The converse should hold for
P given Q. To allow a single word to map to multiple frames and vice versa, we instead
have w ≤ w′ and f ≤ f ′.

One-to-many mappings are enabled in all experiments included in Section 5.5.

5.7 Sequence alignment

As in Section 5.3.4, let us again consider the labels of each row in P as a sequence p,
and the labels of each row in Q as a sequence q, where each item in p and in q is in
0, 1, ...k (0 corresponds to background). We will now present how the distance between
p and q is computed.

We apply the Needleman-Wunsch sequence alignment algorithm [Needleman and
Wunsch, 1970] to find the best alignment between P and Q, within the bounds of the
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approximate alignment A. Needleman-Wunsch uses dynamic programming to fill in a
score table G of size (m+1)×(n+1), where Gy+1,x+1 corresponds to the best possible
score obtained by aligning sequences p1:y and q1:x. Similarly, G1,x corresponds to the
score of skipping the first x elements of q, and Gy,1 of skipping the first y elements of
p. Each Gy>1,x>1 is calculated as the best outcome among three options: moving di-
agonally from Gy−1,x−1 (aligning py with qx), moving vertically from Gy−1,x (skipping
py), or moving horizontally from Gy,x−1 (skipping qx).

We define a symmetric scoring function s : {0, 1, ..., k} × {0, 1, ...k} → Z which
assigns the following scores when aligning py with qx:

s(py, qx) =



0 if py = qx and Ay,x = 1,

−1 if py = 0, qx > 0,

−1 if py > 0, qx = 0,

−2 otherwise.

(5.19)

In addition, skipping a sequence element (moving vertically or horizontally) is
scored 0 if it is labeled background, and −1 otherwise. An exception to this are one-to-
many mappings. A skip move, say from (py−1, qx) to (py, qx) does not incur a penalty if
the previous element qx matches the skipped element: py = qx. However, the elements
of p matched by any single qx (and vice versa) need to be consecutive.

The negative score −Gm+1,n+1, which we call the conflict penalty l(P, Q), corre-
sponds to the number of actions present in Q and skipped in P , plus the number of
actions inserted by P .

5.8 Computational complexity

Taking the gradient df
dP

with respect to all videos requires multiplying matrices of size
k × m, m × p and p × m (similarly, k × n, n × q and q × n for dg

dQ
, although this is

likely a cheaper operation due to videos generally having fewer words than frames).

As the constraints are separable by video, the linear oracle can be solved separately
for each video. To solve the linear oracle is O(Nminik

2) where mi and ni are respec-
tively the number of frames and words in any single video, and N is the number of
videos considered.
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5.9 Rounding scheme

To obtain integer P̂t from Pt and Q̂t from Qt, a number of rounding schemes can be
used. The simplest strategy is geometric rounding:

P̂t = argmin
P̂ ∈D

∥∥∥P̂ − Pt

∥∥∥2

F
, Q̂t = argmin

Q̂∈E

∥∥∥Q̂ − Qt

∥∥∥2

F
. (5.20)

However, alternative schemes have been successfully applied with Frank-Wolfe. In
Alayrac et al. [2016], the previous corner (P c

t or Qc
t in our case) is used when round-

ing in the word clustering stage (i.e., frank-wolfe rounding). On the other hand, cost
classifier rounding is applied when clustering frames (the second stage):

P̂t = argmin
P̂ ∈D

∥∥∥P̂ − XU − 1maT
∥∥∥2

F
, Q̂t = argmin

Q̂∈E

∥∥∥Q̂ − Y V − 1nbT
∥∥∥2

F
. (5.21)

Section 5.5 introduced two experimental settings. For the fully unconstrained case,
we found geometric rounding to perform best, as it is better able to account for the size
of the background class. Cost classifier rounding easily overestimates the size of the
background class, since learning a linear classifier for background is hard. However,
when the order of actions is fixed, the problem of learning label assignments, including
the subproblem of balancing background and foreground time steps, is easier. For this
setting, we found cost classifier rounding to outperform geometric rounding.

5.10 Conclusion

We have presented a method for automatically discovering actions in narrated tutorial
videos, based on discriminative clustering and a sequence alignment penalty. We ad-
dressed the difficult problem of complex action segmentation in video, using no exter-
nal supervision. Through experimental evaluation on two instruction video datasets, we
have shown comparable performance to prior work, while requiring less supervision.
At no labeling cost, our method can be applied on large video datasets to obtain action
classifiers, demonstrations, or verbal descriptions of actions. Evaluating the quality of
the subtask predictions in the context of training robots is a clear direction for follow-up
work.
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Chapter 6

Conclusion

REINFORCEMENT LEARNING AND WEAKLY supervised learning from video have many
applications in robotic manipulation tasks, as seen in the previous chapters. In particu-
lar, we have focused on studying problem settings with realistic constraints, in the form
of sparse or poorly defined reward functions, limited online interaction, and learning
directly from sensor inputs such as camera images, rather than privileged information
from a simulator’s internal state. Taking advantage of external data is critically impor-
tant in bringing RL methods closer to practical applications in robotics while limiting
interaction time on the physical system. Ultimately, the goal is to seamlessly inte-
grate learning from task demonstrations, from undirected or unsupervised large offline
datasets, and new data collection on a real or simulated robot.

Advanced computer vision, imitation learning and deep RL have great potential to
enable adaptive robotic agents and to fill the gaps in conventional optimal control. Es-
pecially in manipulation, the real-world diversity of objects, materials, shapes and tasks
encountered outside of strictly controlled settings has proven challenging for classical
control approaches. Particularly in tasks involving contracts, friction or air resistance
such as pushing, sliding and throwing, or non-rigid deformations such as folding fabric,
tying a rope, or working with viscous materials such as dough, the intermediate prob-
lem of precise physical modelling required by conventional model-predictive control
approaches may well be more difficult than directly learning the relevant manipulation
maneuver, the path taken by data-driven methods.

6.1 Summary of contributions

The methods presented in the preceding Chapters 3–5 propose solutions for several
challenges in robot learning. A core thread throughout this thesis is an effort to reduce
the amount of domain expertise required to train robots. The aim is to decrease the
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importance of precise first-principles physical modelling, simulation and controller pa-
rameter tuning, as well as specialized solution methods per task, and to focus instead
on pretraining on data available on the internet, task demonstrations (which may be
provided by annotators without a robotics background), and online autonomous learn-
ing. We have equipped robotic agents with vision, proprioception, behavior priors from
demonstrations, learned rewards as well as sparse rewards. The goal is to make use of
an increasing variety of input data, with an emphasis on reusable and scalable sources:

• online robot interaction in the case of on-policy RL

• online interaction as well as prior interaction data in off-policy RL, including
externally generated robot demonstrations in LfD (Ch. 3, 4)

• prior robot data only in offline RL

• unlabeled robot or human data without rewards in self-supervised objectives such
as reconstruction, future prediction, or temporal offset estimation (Ch. 4)

• data collected from different robots, environments or tasks in multi-task offline
RL (straight-forward extension of the method presented in Ch. 4)

• videos of humans executing manipulation tasks (Ch. 4)

• instruction videos of humans demonstrating activities with multiple subtasks
(Ch. 5)

The most readily available sources lower down this list should be prioritized, with the
top-most sources used sparingly.

6.2 Further work

The problem of movement is far from solved. In this section, we outline some promising
directions for follow-up research. Beyond the avenues we have included below, which
are most related to the topics of this thesis, there is no shortage of further open problems
in the field of robot learning, such as meta- and multi-task learning, socially aware
agents, and multi-agent learning.

6.2.1 Physical priors

Ideally, we should be able to equip our agents with an intuitive understanding of physics
and geometry before expecting them to discover useful behaviors unsupervised. Ex-
amples could include using structured representations as state observations, such as
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depth images, segmentation maps, point clouds or 3D reconstructions. Furthermore,
symmetries and translational invariances could be imposed in the observation and ac-
tion spaces, where relevant. However, such priors should in many cases be soft, and
malleable by sufficient contradicting evidence rather than hard and unchangeable. Oth-
erwise, agents are doomed to fail as soon as the assumptions underlying the physical
model do not hold in a particular situation.

6.2.2 Predicting affordances

In addition to reward functions as explored in Chapter 4, behavior priors in the form
of object affordances [Khetarpal et al., 2020] readily lend themselves to pretraining
from offline data, including observations of humans. However, mapping affordances
as used by a human demonstrator to robot equivalents remains challenging, as a robot
with a significantly different end-effector morphology would likely need to adapt how
and where exactly to hold objects, compared to a human hand. Nonetheless, gathering
a basic understanding of objects and their relationships to each other would greatly
simplify the search space for learning manipulation policies.

6.2.3 Long-horizon and hierarchical models

Skill hierarchies are a natural way to represent long-horizon tasks. Rather than predict-
ing actions at the granularity of individual time steps, a high-level policy may perform
long-term task planning by repeatedly handing control to one of a set of low-level poli-
cies, which represent individual subtasks and operate at a higher frequency. However,
the task of jointly learning both low-level and high-level policies is difficult due to their
direct coupling. Alternatively, hierarchies can be learned from offline data [Ajay et al.,
2021; Pertsch et al., 2020]. In the vein of the method presented in Chapter 5, long-form
tasks executed by a different actor, such as a human demonstrator, could equally serve
as a source for learning hierarchies.

6.2.4 Language conditioning

Natural language is an essential component of human communication. To simplify the
processes of specifying tasks and of giving feedback to artificial agents, too, it should
a supported in human-computer and human-robot interaction. People routinely learn
new tasks through language descriptions, through reading and listening to instructions
as well as asking questions. In particular, natural language allows for tasks to be and
parametrized and modularized ("place the red cup in the small box, then clear the ta-
ble").
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Recent work in language conditioning has proposed to take advantage of large lan-
guage models [Ahn et al., 2022; Shridhar et al., 2021; Nair et al., 2021]. However,
much of language-conditioned robotic manipulation work has focused on pure imita-
tion [Shridhar et al., 2021; Lynch and Sermanet, 2021] without supporting autonomous
improvement beyond demonstrations. Nonetheless, these early results paint an encour-
aging picture of task generalization in the latent space of natural language models.
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MOTS CLÉS

apprentissage par renforcement, prise robotique, compréhension video, apprentissage par démonstration.

RÉSUMÉ

La commande robotique appris à partir de données n'a pas encore eu d'impact à grande échelle dans le monde réel.

L'une des principales limitations est l'accès aux données: il est difficile de trouver des exemples d'entraînement annotés

sur Internet, et la collecte de données dans des environnements physiques est limitée par le fonctionnement du robot en

temps réel. Cette thèse présente plusieurs façons d'exploiter des sources de données externes, de démonstrations de

tâches aux tutoriels vidéo, pour relever le défi de la lenteur de la collecte de données et ainsi accélérer l'apprentissage

des tâches de manipulation robotique. Notre argument central est que les avancées dans les domaines connexes de la

vision par ordinateur, du traitement du signal, du traitement du langage naturel, des l'apprentissage par imitation et par

renforcement profond peuvent aider à ouvrir la voie à des agents robotiques plus adaptatifs. C'est particulièrement le cas

pour le domaine de la manipulation dans le monde réel, en dehors de conditions d'exploitation étroitement contrôlées. En

effet, la variété des matériaux, des formes et des tâches pose de grandes difficultés pour les stratégies de contrôle fixes

et les approches classiques de commande prédictive qui nécessitent une modélisation physique précise. Notre objectif

principal est donc de permettre une manipulation robotique plus performante et polyvalente grâce à des méthodes appris

à partir des données.

ABSTRACT

Robotic control learned from data has yet to show large-scale impact in the real world. One of the main limitations is

access to data: explicit training examples cannot be easily sourced and annotated on the internet but data collection is

bounded by real-time robot operation. This thesis proposes several ways to leverage external data sources, from task

demonstrations to full-length tutorial videos, to address the challenge of slow data collection and thus accelerate learning of

robotic manipulation tasks. Our key argument is that advances in the related fields of computer vision, signal processing,

natural language processing, imitation and deep reinforcement learning can help lead the way towards more adaptive

robotic agents. In manipulation domains, in particular, the variety of materials, shapes and tasks present in the real world

beyond tightly controlled operating conditions poses great difficulty for fixed control strategies and the precise physical

modelling required by classical model-predictive control approaches. Our overarching goal is therefore to enable more

capable and versatile robotic manipulation through data-driven methods.

KEYWORDS

reinforcement learning, robotic grasping, video understanding, learning from demonstration.
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