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“Success consists of going from failure to failure without loss of enthusiasm.”

—Winston Churchill
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Chapter 1

Introduction

The industry is in the midst of a digital revolution exponentially accelerated
by technologies in full growth, such as automation, communication, infor-
mation technology, and Artificial Intelligence (AI) (Gökalp, Şener, and Eren,
2017). These technologies have opened the gates to new ways of production,
in which machines, people, processes, and data (the manufacturing processes
actors) involved in manufacturing processes, interact autonomously making
intensive use of the Internet and the latest manufacturing technologies, with
the primary purpose of developing smarter and more efficient factories (San-
tos et al., 2017). This new way of production has been called Industry 4.0.

The term Industry 4.0 was introduced in the Hanover Trade Fair in 2011 as
a concept to denote the new generation of connected robotics, and intelligent
factories. This fourth industrial revolution includes concepts as the Internet
of Things (IoT), as well as servitization and Cyber-Physical Systems (CPS). It
succeeds the three industrial revolutions that influenced the manufacturing
domain many years ago.

One of the main goals of Industry 4.0 is to relieve human laborers to focus
on work that is more engaging and valuable. Several repetitive applications
exist aiming to steer human intervention towards performing, efficient and
less wasteful production. Among applications, we may list:

• Augmented reality;

• Taking care of human factor in manufacturing plants, robotics;

• Additive manufacturing (3D printing);

• Monitoring and quality control;

• Predictive maintenance;

• Composites, new materials and assembly automation and robotics;
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• Energy efficiency;

• Automation of R&D design and inventive design.

Machine learning (ML) is one of the main technological advances that is
allowing Industry 4.0 to gain a foothold in businesses and on factory floors.
Machine learning is essentially a subdomain of Artificial Intelligence that al-
lows systems and algorithms to decide without being explicitly programmed
to do so. Owing to ML, companies and specifically machines are able to take
decision without the human supervision. Machines are now capable of sup-
plying and replacing humans in a few cases when the task is repetitive and
transferable to machines.

In this thesis, as highlighted in Figure 1.1, we focus on three distinct appli-
cations based on data mining and machine learning, which are: (i) predictive
maintenance, (ii) inventive design modelling and (iii) energy efficiency. In
these three applications, we investigate the use of data mining techniques for
Industry 4.0. Indeed, data mining is a well-known sub-discipline of ML that
aims to extract knowledge from large volumes of data and find knowledge
when humans are incapable to do so. The following paragraphs describe the
various interactions between data mining and Industry 4.0

The first interaction is explored between data mining and predictive main-
tenance. In this topic, we investigate the use of pattern mining to explain
the failure happening in a production line. Concerning predictive mainte-
nance in smart factories, pattern mining has been widely used to discover
frequently occurring temporally-constrained patterns, through which warn-
ing signals can be sent to humans for a timely intervention (Dousson and
Duong, 1999). Among pattern mining techniques, chronicle mining has been
applied to industrial data sets for extracting temporal information of events
(Cram, Mathern, and Mille, 2012). The extracted temporal information is
valuable for predicting potential machinery failures that may appear in the
future (Cram, Mathern, and Mille, 2012). However, even though chronicle
mining results are expressive and interpretable representations of complex
temporal information, domain knowledge is required for users to have a
comprehensive understanding of the mined chronicles (Pei, Han, and Wang,
2002). The HALFBACK project - this work was funded by the InterReg of-
fensive science project HALFBACK1 deals with this theme and aims to sup-
port Small and Medium Enterprises (SMEs) in the production process and

1https://www.interreg-rhin-sup.eu/projet/halfback-usines-intelligentes-
transfrontalieres-hautement-disponibles-dans-le-cloud/

https://www.interreg-rhin-sup.eu/projet/halfback-usines-intelligentes-transfrontalieres-hautement-disponibles-dans-le-cloud/
https://www.interreg-rhin-sup.eu/projet/halfback-usines-intelligentes-transfrontalieres-hautement-disponibles-dans-le-cloud/
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FIGURE 1.1: The three main contributions of this thesis show-
ing the interaction between data mining and Industry 4.0

reduce machine downtime. To do so, a software prototype which predicts
and optimizes maintenance planning using the machine’s own sensor data
was developed during the project. At the same time, options for (partial)
outsourcing of the production were indicated so that it did not have to be
stopped. An intelligent "machine broker" made possible a statewide coordi-
nation of companies and machines.

The second interaction explores the interaction of text mining and TRIZ
theory (Altshuller, 1996). The goal is to analyze patent documents to ex-
tract TRIZ contradiction. A contradiction is a domain-free formulation of
a problem. When comparing problems from different fields, the challenge
that arises is the vocabulary used for their description, which is fundamen-
tally different for a problem in mechanics and a problem in chemistry. Thus,
Altshuller introduced general parameters (called TRIZ parameters) which
can apply to all domains to describe problems (Weight of Stationary Objects,
Speed, Power, Waste of Energy...). A contradiction from TRIZ domain is seen
as a parameter improvement which leads to another parameter degradation
where compromising between these two parameters is not the appropriate
path to invent. One should find a solution that both improve the first pa-
rameter while also improving the second. The matrix gathers the inventive
principles (i.e. the inventive paths to follow) that statistically have the best
chance of success on every possible contradiction between TRIZ parameters.
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The idea, in this thesis, is to mine and find patents sharing the same contra-
diction. This work was steered by two PhD students funded by the Chinese
government scholarships and one by the INSA Strasbourg scholarship.

The third interaction consists in analyzing Lithium-ion batteries in order
to predict the Remaining Useful Life (RUL). The goal is in line with the topic
of energy efficiency in Industry 4.0. Indeed, we assume that when the RUL is
predictable, the user could be notified and recommendation could be made to
extend it. To do so, we focus on analyzing Lithium-ion batteries cells RUL us-
ing user usage data such as current, voltage and/or temperature. The prob-
lem is then assumed to be a regression problem using exogenous variables.
To the best of our knowledge, the problem is not sufficiently investigated in
literature. Therefore, we propose a twofold contribution. First, we aim at us-
ing the regressive neural networks model to predict the RUL using the usage
data. In this part, we investigate, in particular, how to compress the data of
the usage time series. Secondly, we intend to make these black boxes more
explainable. We add a layer of SHAP model (Lundberg and Lee, 2017) on
the top of a predictive model to explain the relation between the predicted
output and the inputs. This work was funded by the InterReg offensive sci-
ence project HALFBACK and VEHICLE 2. The VEHICLE project focuses on
the development of intelligent management strategies based on advanced
algorithms. ML models are among the considered solutions to manage the
battery system.

This thesis provides 5 chapters including the state of the art and contri-
butions. The order of the chapters has been dictated by the chronological
sequence in which work began on these topics. The chapters are listed be-
low:

• Chapter 2: Sequential Pattern Mining: Application to Predictive Min-
ing covers the state of the art of sequential pattern mining. We intro-
duce the definitions of a rich pattern called chronicle. Finally, we address
all the existing approaches dealing with the predictive maintenance.

• Chapter 3: Text Mining Application to TRIZ Inventive Design Mod-
elling covers the state of the art in text mining and the full process
needed to mine large amounts of data. Particular emphasis is given
to deep neural networks to build very rich token representations. We
discuss TRIZ and works dealing with patent analysis.

2https://www.interreg-rhin-sup.eu/projet/vehicle-source-de-stockage-hybride-
batterie-li-ion-supercondensateurs-avec-une-machine-synchrone-a-reluctance-variable-
pour-les-vehicules-electriques/

https://www.interreg-rhin-sup.eu/projet/vehicle-source-de-stockage-hybride-batterie-li-ion-supercondensateurs-avec-une-machine-synchrone-a-reluctance-variable-pour-les-vehicules-electriques/
https://www.interreg-rhin-sup.eu/projet/vehicle-source-de-stockage-hybride-batterie-li-ion-supercondensateurs-avec-une-machine-synchrone-a-reluctance-variable-pour-les-vehicules-electriques/
https://www.interreg-rhin-sup.eu/projet/vehicle-source-de-stockage-hybride-batterie-li-ion-supercondensateurs-avec-une-machine-synchrone-a-reluctance-variable-pour-les-vehicules-electriques/
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• Chapter 4 : Chronicle Mining and Reasoning in Predictive Mainte-
nance introduces all failure chronicles mining algorithms in the context
of Industry 4.0. The second part of this chapter details three different
approaches to use these chronicles on the prediction step.

• Chapter 5: Patent Mining for Inventive Design Modelling covers three
main contributions. They are: Mining TRIZ contradictions in patent
documents; Matching contradictions with each other using similarity
measurement; Ranking similar patents considering several criteria.

• Chapter 6: Battery Prognostic Using Neural Networks Models details
two approaches to predict the state of battery cells health using usage
data. All approaches are based on neural networks. Finally, we explain
the found results using explainable model based on SHAP.

• Appendix provides further details about several models theories. The
Evidence Theory, the Neural Network Basic, and TRIZ concepts are
highlighted. We also provide the list of publications by the author as
well as the projects funding list.
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Part II

State of the Art
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Introduction

In this chapter, we review the state of the art of the sequential pattern min-
ing domain. We start by presenting the basics of sequential pattern mining.
These definitions are the basis of the chronicle mining approaches of which
we review the foundations and the state of the art. All pattern mining defi-
nitions are presented formally using illustrative examples. These definitions
will serve the contributions of Chapter 4

In the second part of this chapter, we focus on the domain of predictive
maintenance, one of the main applicative pillars of Industry 4.0, and the dif-
ferent used-model families. We detail the state of the art of predictive main-
tenance and the different approaches. A special attention is paid to machine
learning and data-mining based approaches.

2.1 Pattern Mining from Sequential Data

Sequential pattern mining is a branch of data mining whereby knowledge
is extracted from data structured as sequences. In the following subtitles, we
give an introduction to the different sequential mining notions used through-
out this document.

2.1.1 Background

Definition 1 (item, itemset, sequence). Let I = {i1, i2, . . . , in} be a set of items.
An itemset is a subset of items. A sequence is an ordered1 list of itemsets. A sequence
S is denoted by ⟨s1, s2, . . . , sl⟩, where sj is an itemset, i.e. sj ⊆ I for 1 ≤ j ≤ l. l is
the size of the sequence.

The problem of sequential pattern mining was proposed by Agrawal and
Srikant (Srikant and Agrawal, 1996), as the problem of mining interesting
subsequences in a set of sequences.

Example 1. Assuming a sequence dataset of Table 2.1. itemsets are shown between
parentheses while items are without. We use single lowercase letters a,b, . . . to denote
items. We omit braces for singleton itemset, i.e., writing simply a for {a}. We omit
all commas.

Definition 2 (itemset inclusion). An itemset β = (bi)i∈{1,...,m} is a sub-itemset of
α = (ai)i∈{1,...,n}, denoted β ⊑ α, iff there exists a sequence of m integers 1 ≤ i1 <

i2 < . . . < im ≤ n such that ∀k ∈ {1, . . . , m}, bk = aik .
1A classical order on items is the lexicographical order
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TABLE 2.1: Sequence dataset

SID sequences
10 < a(abc)(ac)d(c f ) >
20 < (ad)c(bc)(ae) >
30 < (e f )(ab)(d f )cb >
40 < eg(a f )cbc >

Definition 3 (Sequence inclusion). A sequence S = ⟨s1, s2, . . . , sm⟩ is a subse-
quence of another sequence S′ = ⟨s′1, s′2, . . . , s′n⟩ and denoted S ⪯ S′, if there exist
integers 1 ≤ i1 < i2 < . . . < im ≤ n such that sk ⊑ s′ik , ∀k ∈ {1, . . . , m}.

Example 2. In the sequence dataset of Table 2.1, ⟨(e f )c⟩ is subsequence of the Se-
quence 30.

Definition 4 (Sequence support). LetD = {S1, S2, . . . , SN} be a sequence dataset.
The absolute support of a sequence S, denoted supp(S), is the number of sequence
D in which S is a subsequence:

supp(S) = |{Si ∈ D|S ⪯ Si}| (2.1)

Generally, an itemset (aka pattern) could be either frequent or rare de-
pending on its support. A pattern is considered as frequent if its support is
greater than or equal to a given threshold fmin, otherwise, it is considered as
a rare pattern.

Definition 5 (Support). The support of a sequence is the frequency of occurrence of
said sequence in a given sequential database: if S belongs to the sequential database,
and S′ is a subsequence of S, not necessarily in the database, then S′ occurs within
S.

The absolute support of S is the number of sequences in the sequential database
in which S is a subsequence.

The relative support of S is the number of entries in the sequential database
containing S divided by the size of the database. Its value is between 0 and 1.

We will note supp(S) the absolute support of a sequence S.

Definition 6 (Frequent Sequences). Given an arbitrary value fmin, called mini-
mum support, a sequence is said to be frequent if its support is greater than or equal
to fmin. We note the set of all frequent sequences FS .

Example 3. Assuming a minimum support fmin = 2
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Sequence S1 = ⟨abc⟩ is considered frequent, since it occurs in 2 out of 4 se-
quences in the dataset supp(S1) = 2 > fmin (SID 10 and 40).

Sequence S2 = ⟨(ab)c⟩ is considered frequent in the dataset since it occurs in 2
out of 4 sequences (10 and 30) in the database supp(S2) = 2 ≥ fmin.

Sequence S3 = ⟨(ab)c f ⟩ is not considered frequent in the database since it occurs
in 1 out of 4 sequences in the dataset supp(S3) = 1 < fmin.

Definition 7 (Closed Frequent Sequences). The Closed Frequent Sequences set
(CFS) is defined as follows:

CFS := {s|s ∈ FS ∧ (∄β ∈ FS|s ⊆ β ∧ supp(s) = supp(β))}

In other words, a frequent sequence S is said to be closed if there is not a frequent
sequence S′ such that S ⪯ S′ and S′ has the same support.

Example 4 (Closed frequent sequences examples). Referring to Table 2.1, with
a relative minsupp of 0.5, one can see that the sequence S3 = ⟨(ab) f ⟩ is frequent
closed sequence, as it has a support of 0.5 and there exists no other super sequence of
S3 that has the same support.

Thus, we see that by keeping closed patterns only, we filter simpler, less
informative patterns, but we retain those which are more frequent than other,
more complex ones.

Remark 1 (Inclusion). The set of closed frequent sequences is a subset of the fre-
quent sequence set: CFS ⊆ FS .

Several algorithms have been proposed to mine frequent and closed fre-
quent sequential patterns (Fournier-Viger et al., 2017). In the following sub-
sections, we detail several main sequential pattern mining algorithms.

2.1.2 Mining algorithms

Pei et al., 2001 propose PrefixSpan algorithm. The essence of this algorithm
is to check only prefix subsequences and only their corresponding postfix
subsequences are visualized into projected dataset, instead of processing the
whole sequential dataset. PrefixSpan uses a direct application of the Apriori
(Agrawal and Srikant, 1994) property to reduce candidate sequences.
The input of PrefixSpan is a sequence dataset and a user-specified threshold
fmin. In the output, PrefixSpan discovers all frequent sequential patterns oc-
curring in a sequence dataset.
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Definition 8 (Prefix). A sequence S′ = ⟨s′1, s′2, . . . , s′m⟩ is a prefix of S = ⟨s1, s2, . . . , sn⟩,
denoted S ≺b S, iff ∀i ∈ {1, . . . , m− 1}, s′i = si and s′m ⊑ sm. We have S′ ≺b S
⇒ S′ ≺ S.

Definition 9 (Projection). Given two sequences T and S such that T is a subse-
quence of S, i.e., S ⪯ T. A subsequence T′ of the sequence T (i.e., T′ ⪯ T) is called a
projection of T w.r.t prefix S, and noted T′ = T|S, if and only if: (i) T′ has prefix S;
(ii) there exists no proper super-sequence T” of T′ (i.e., T′ ⊑ T” but T′ ̸= T”) such
that T” is a subsequence of T and also has prefix S.

Definition 10 (Concatenation operators). Let S = ⟨s1, . . . , sn⟩ and S′ = ⟨s′1, . . . , s′m⟩
be two sequences. Let 3• be the concatenation operator. We define two kinds of con-
catenations (Yin, Zheng, and Cao, 2012) :

• 3i : S 3i S′ = ⟨s1, . . . , sn−1, (sn
⋃

s′1), s′2, . . . , s′m⟩. Here, the first element of
S′ merges with the last element of S, and then we just append the rest of the
second sequence.

• 3s : S 3s S′ = ⟨s1, . . . , sn−1, sn, s′1, s′2, . . . , s′m⟩. This is the usual concatena-
tion.

Definition 11 (New definition of prefix and suffix). Assuming two sequences
S = ⟨s1, s2, . . . , sn⟩ and S′ = ⟨s′1, s′2, . . . , s′m⟩. If S” = S′ 3 S, S′ is a prefix of S”
and S is a suffix of S”.

Pei et al., 2001 introduce an algorithm for mining the complete set of fre-
quent sequential pattern called PrefixSpan. PrefixSpan, as shown in Algo-
rithm 1, is pattern-growth-based sequential pattern mining, based on depth-
first search. PrefixSpan separates entries into prefixes and suffixes. Frequent
prefixes are captured and the prefix’s projection becomes a suffix. PrefixSpan
scans the data once to find length-1 sequential patterns and extends frequent
length-1 sequential patterns recursively. Extending is done by setting length-
1 as the prefix and the remaining items that start with length-1 as the suffix
(referred to as the projected database), and recursively increase the length
of the prefix. The projected database will shrink after every iteration as the
suffix decreases in length.

Example 5. For fmin = 2, PrefixSpan finds length-1 sequential patterns and prunes
those infrequent:
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Algorithm 1 PrefixSpan Algorithm

Require: D: sequence dataset, fmin:minimum support threshold, α: a se-
quential pattern, i: the length of α, D|α: the α-projected database, if
α ̸=<>; otherwise, the sequence database D

Ensure: The complete set of sequential pattern
1: Scan D|α once, find the set of frequent items b such that

• b can be assembled to the last element of α to form a sequential pat-
tern;
or

• ⟨b⟩ can be appended to α to form a sequential pattern.

2: For each frequent item b, appended to α form a sequential pattern α’, and
output α’

3: For each α′, construct α′-projected database D|α′, and call PrefixSpan(α′,
i + 1,D|α′).

SID sequences
10 < a(abc)(ac)d(c f ) >
20 < (ad)c(bc)(ae) >
30 < (e f )(ab)(d f )cb >

40 < eg(a f )cbc >

→
< a > < b > < c > < d > < e > < f > ����< g >

4 4 4 3 3 3 1

PrefixSpan computes the projection databases. Below the projection databases of
length-1 frequent sequential patterns:

< a >

< (abc)(ac)
d(c f ) >
< (−d)c
(bc)(ae) >
< (−b)
(d f )cb >

< (− f )cbc >

< b >

< (−c)(ac)
d(c f ) >
< (−c)
(ae) >

< (d f )cb >

< c >

< c >
< (ac)d
(c f ) >
< (bc)
(ae) >
< b >

< bc >

< d >

< (c f ) >
< c(bc)
(ae) >

< (− f )cb >

< e >
< (− f )(ab)
(d f )cb >

< (a f )cbc >

< f >

< (ab)(d
f )cb >

< cbc >

Let us take as example the prefix < d >:

< d >

< (c f ) >
< c(bc)
(ae) >

< (− f )cb >
Find subsets of sequential patterns:

����< a > < b > < c > ����< d > ����< e > ����< f > �����< − f >

1 2 3 0 1 1 1
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�����
< db >

< (−c)(ae) >

< dc >
< (bc)(ae) >

< b >

→
< b > ����< a > ����< e > ����< c >

2 1 1 1

< dcb >

<>
⇒ Output: < dcb >

CloSpan, as shown in Algorithm 2, is a depth-first based algorithm pro-
posed by Yan et al. (Yan, Han, and Afshar, 2003). CloSpan implements the
PrefixSpan algorithm. In fact, it is an optimization of the latter, intended to
prune the search space by avoiding browsing certain branches in the recur-
sive division process (by detecting in advance the unclosed sequential pat-
terns).

Definition 12 (Total number of items). I(D) represents the total of items and is
computed as follows:

I(D) =
n

∑
i=1
|si|

Algorithm 2 CloSpan Algorithm

Require: A sequence s, a projected database D|s, a threshold fmin.
Ensure: The prefix search lattice L.

1: Check whether a discovered sequence s’ exists either s ⊑ s′ or s′ ⊑ s, and
I(D|s) = I(D|s′)

2: if such super-pattern or sub-pattern exists then
3: modify the link in L, return
4: else
5: insert s into L
6: Scan D|s once, find every frequent item α such that:

• s can be extended to (s 3i α),
or

• s can be extended to (s 3s α)

7: if no valid α available then
8: return
9: for valid α do

10: Call CloSpan(s 3i α), D|s 3i α, f qmin,L)
11: for valid α do
12: Call CloSpan(s 3s α), D|s 3s α, f qmin,L)
13: return
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Since a < b, we scan the projected base of a before that of b. Moreover,
we can detect that a always appears before f in the dataset. The idea of
CloSpan is to say that any sequence of the form < (b) + α >, with α a se-
quence added as I-extension or S-extension (SPAM), will have the same sup-
port as < (ab) + α >. It is therefore not necessary to scan the projected base
of b and only the results from the projected base of a are retained.

Another analyzed case by CloSpan: f < g, we scan the projected base of
f before that of g. Moreover, we can detect that g always appears before f
in the dataset. In this case, any sequence of the form < ( f ) + α > will have
the same support as < ( f )(g) + α >. It is therefore not necessary to scan the
projected base of e, but in this case, we can add (g) in front of all the results
from the scan on the projected base of b and keep the sequences of the form
< ( f )(g) + α > as the closed result.

2.2 Chronicle Mining

Sequential patterns are mined to extract frequent events or correlations be-
tween events. Unfortunately, they lack descriptiveness and temporal details.
Therefore, a new type of rich pattern, called chronicle, has been introduced
(Cram, Mathern, and Mille, 2012). In the following parts, we introduce ba-
sics of chronicle mining.

2.2.1 Chronicle foundations

Definition 13 (Event). An event (Cram, Mathern, and Mille, 2012), is a couple
(e, t) with e ∈ E and t ∈ T where E is the set of events and T is the time set.

These events appear together in their order of occurrence, called times-
tamped events, which allows us to form a sequence.

Definition 14 (Timestamped sequence). Let E be a set of event types, and T a
time domain such that T ⊆ R. E is assumed totally ordered by the relation ≤E. A
sequence is a couple ⟨SID, ⟨(e1, t1), (e2, t2), ..., (en, tn)⟩⟩ such that SID is the index
of the sequence and ⟨(e1, t1), (e2, t2), ..., (en, tn)⟩ is a sequence of events. The events
in the sequence are ordered by ⋖ defined as i, j ∈ [1, n], i < j⇔ (ei, ti)⋖ (ej, tj)⇔
ti < tj ∨ (ti = tj ∧ ei <E ej).

The appearance of timestamped events in a sequence allows us to define
temporal constraints between them.
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Definition 15 (Temporal constraint). A time constraint is a quadruplet (e1, e2, t−, t+),
denoted e1[t−, t+]e2, where e1, e2 ∈ E, e1 ≤E e2 and t−, t+ ∈ T.

A time constraint e1[t−, t+]e2 is said satisfied by a couple of events ((e, t), (e′, t′)),
e ≤E e′ iff e = e1, e′ = e2 and t′ − t ∈ [t−, t+].

We say that e1[a, b]e2 ⊆ e′1[a
′, b′]e′2 iff [a, b] ⊆ [a′, b′].

The extraction of temporal constraints between the events of a sequence
leads us to define the concept of chronicles (Dousson and Duong, 1999).

Definition 16 (Chronicle). A chronicle is a pair C = (E , T ) such that:

1. E = {e1...en}, where ∀i, ei ∈ E and ei ≤E ei+1,

2. T = {tij}1≤i<j≤|E| is a set of temporal constraints on E such that for all pairs
(i, j) satisfying i < j, tij is denoted by ei[t−ij , t+ij ]ej.

E is called the episode of C, according to the definition of episode’s dis-
covery in sequences (Mannila, Toivonen, and Verkamo, 1997).

The relevance of a chronicle is based essentially on the value of its sup-
port. The support of a chronicle refers to the number of its occurrences in a
sequence. It can therefore be formalized by the definition below.

Definition 17 (Chronicle support). An occurrence of a chronicle C in a sequence
S is a set (e1, t1)...(en, tn) of events of the sequence S that satisfies all temporal con-
straints defined in C. The support of a chronicle C in the sequence S is the number of
its occurrences in S.

Example 6. Let us illustrate all these basic definitions. Assuming a sequence S of
three events ⟨abc⟩ represented as follows:

0 1 2 3 4 5 6 7 8

a b b c c

FIGURE 2.1: Example of timestamped sequence

Time constraints that describe the pattern S are noted by a[2, 5]b, b[1, 4]c and
a[6, 7]c.

After the generation of temporal constraints, these events can be represented as a
graph, as shown in Figure 2.2.
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c

b

a

[2,5]

[6,7] [1
,4

]

FIGURE 2.2: Example of a chronicle

2.2.2 Discovering Frequent Chronicles

The concept of frequent chronicles discovery is to mine all chronicles whose
occurrences in a trace is greater than or equal to a minimum threshold speci-
fied by the user.
Several algorithms have been designed for this process, the first one, called
FACE for Frequency Analyser for Chronicle Extraction, is introduced (Dous-
son and Duong, 1999).

To extract frequent chronicles, the algorithm is based on Apriori (Agrawal,
Imieliński, and Swami, 1993). This algorithm is based on the idea that a
chronicle is not considered frequent if one of its sub-chronicles is infrequent.
Otherwise, if all of its sub-chronicles are frequent, this chronicle is candidate
to be frequent. The algorithm computes candidate sets of chronicles that can
be frequent, it then computes the frequency of each candidate and keeps only
the frequent ones. The pseudo-code of the main algorithm is shown in Algo-
rithm 3.

Algorithm 3 FACE Algorithm

Require: D: Timestamped sequence dataset, f qmin: the minimum threshold.
Ensure: the set of frequent chronicles.

1: Φ1 ← {((a, ta), . . .)|A ∈ L, supp(a) ≥ f qmin}
2: while Φi−1 ̸= ∅ do
3: Φi

c ← generateCandidate(Φi−1)
4: compute fq(C) for all the chronicles C of Φi

c
5: Φi ← {C ∈ Φi

c|supp(C) ≥ f qmin}
6: i← i + 1

The pseudo-code of the procedure "generateCandidate" is shown in Al-
gorithm 4.

The algorithm FACE relies on using first the unconstrained chronicle which
is a chronicle model with no time constraint and no order between events.
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Algorithm 4 Candidate generation Algorithm

1: procedure GENERATECANDIDATE(Φi−1)
2: Ψi

c ← generateUnconstrainedCandidates(Φi−1)
3: compute support for all the chronicles C of Ψi

c
4: Ψi ← {C|C ∈ Ψi

c and supp(C) ≥ f qmin}
5: Φi

c ←generateConstrainedCandidates(Ψi, Φi−1)
6: return(Φi

c)

FACE is a levelwise mining algorithm that generated unconstrained chron-
icles and then computes time constraints. For example, using the same se-
quence of events as Figure 2.1, f qmin = 2, i = 3, we have the previous
set of frequent unconstrained chronicles {ab, ac, bc, bb} and the set of events
Ω = {a, b, c}.

Beginning with ab, adding to this one each element of Ω, one by one,
we obtain three candidates {aba, abb, abc}, we compute the support of each
candidate and we keep only frequent ones. We process similarly for ac, bc
and bb.

The algorithm begins with the extraction of the frequent time constraints
to be used for the candidate generation phase. In this part, the algorithm dis-
covers chronicles of size 2. In addition, for each pair of events, only one time
constraint is selected. Subsequently, it combines the chronicles discovered to
generate larger chronicles.

To conclude, this algorithm is not complete, since there are chronicles that
are not extracted.

• Complete method

The algorithm by Cram and Mille (Cram, Mathern, and Mille, 2012) is the
first complete chronicle discovery algorithm. It starts by building a temporal
constraint database, which must be given as input of the main algorithm. A
constraint database is said to be complete if all the frequent temporal con-
straints are stored. HCDA (Heuristic Chronicle Discovery Algorithm) is a
generalization of Dousson and Duong (Dousson and Duong, 1999) to ex-
tract the complete set of chronicles. The main difference between the two
approaches is the selection of frequent temporal constraints. In HCDA, all
possible frequent temporal constraints are used to enumerate the frequent
chronicles. It is based on a breadth-first search strategy as shown in the exam-
ple of Figure 2.3. At first step the whole set of frequent temporal constraint is
extracted. This set corresponds to the set of chronicles with two events. The
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FIGURE 2.3: The chronicle pattern-growth step as illustrated in
(Cram, Mathern, and Mille, 2012)

candidate chronicles are then generated by adding new temporal constraints
to a frequent chronicle before its frequency test.

ASTPminer (ÁLvarez, FéLix, and CariñEna, 2013) is an apriori based al-
gorithm that extracts the complete set of frequent chronicles from a sequence
set. The datasets on which this algorithm is used are obtained from polysomnog-
raphy tests in patients with sleep apnea–hypopnea syndromes. Contrary to
the Huang et al. (Huang, Lu, and Duan, 2012) approach, a same event can
occur several times in a sequence. This implies a big time complexity. To
tackle this, a window size constraint of 80 seconds, i.e. the constraint that all
events of a chronicle occur in a window of 80 seconds, is used to reduce the
size of the extracted pattern set.

Data Mining can be defined as the process of analyzing large volumes of
data to derive useful insights from it that can help businesses solve prob-
lems, seize new opportunities, and mitigate risks. It can be leveraged to
answer business questions that were traditionally considered to be too time-
consuming to resolve manually.

It is the process of finding patterns in large volumes of data to translate
them into valuable information. Data Mining Tools help you get comprehen-
sive Business Intelligence, plan company decisions, and substantially reduce
expenses.
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Data mining and especially sequential pattern mining were the core chal-
lenge of the HALFBACK project. The HALFBACK project aimed to support
SMEs in the production process and reduce machine downtime under the so-
called topic of predictive maintenance. To do so, a software prototype will
be developed during the project which mines data, predicts and optimizes
maintenance planning using the machine’s own sensor data.

The objective of the next section is to conduct a systematic literature re-
view that provides an overview of the current state of research concerning
predictive maintenance including data mining perspective.

2.3 Predictive Maintenance and Applications

In industry, the predictive maintenance task relies on the monitoring of mea-
surable system diagnostic parameters, which identifies the state of a system
(Grall et al., 2002). According to the current state of a machine, if any fault
or failure exists, a diagnosis can be launched to determine the causes of the
fault or failure. Also, the study of the premises characteristic of a failure,
analysis about their evolution can be performed. In this way, machine or
mechanical system deterioration tendency and the location of a failure can
be predicted. Based on the prediction results, maintenance decisions, such
as calling the intervention of a machine operator are proposed according to
the severity of anomalies, to prevent the halt of the production lines and to
minimize economic loss. The use of predictive maintenance techniques has
several advantages, such as improved machine availability, improved pro-
duction efficiency, and reduced maintenance cost (Widodo and Yang, 2007;
Rao, 1996).

2.3.1 Physical models

Physical models use explicit mathematical representation to formalize the
physical understanding of a degrading machine or equipment (Pecht, 2010).
This type of models addresses a predictive maintenance task by solving a de-
terministic equation or a set of equations derived from extensive empirical
data (Sikorska, Hodkiewicz, and Ma, 2011). By using physical models, pre-
dictive maintenance of a physical asset is achieved through the interpretation
of the acquired knowledge of a manufacturing process, and through the anal-
ysis of possible hazards that may cause a failure. Normally, the main steps
of a physical model-based predictive maintenance approach include Failure
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Modes and Effects Analysis (FMEA), feature extraction, and remaining use-
ful life (RUL) estimation (Pecht, 2009).

The advantages of physical models are their capability of direct incor-
poration of existing physical mechanisms that have been proved and well-
understood by extensive and exhaustive empirical testing (e.g. Paris– Ergo-
dan crack propagation laws (Paris and Erdogan, 1963)). As physical under-
standing of the system improves, the model can be adapted to improve its ac-
curacy. Consequently, when available and sufficiently complete, behavioural
models tend to significantly outperform other types of models (Sikorska,
Hodkiewicz, and Ma, 2011). Furthermore, changes in the model outputs
are described by the residuals (the differences between the reality and the
model), which normally have a direct and translatable physical meaning.
This eases the interpretation of the outputs of a physical model (Sikorska,
Hodkiewicz, and Ma, 2011). Because of these advantages, physical models
have been widely used in the predictive maintenance of different physical
assets, such as air vehicles (Roemer, Nwadiogbu, and Bloor, 2001), turbine
engines (Heng et al., 2009; Sikorska, Hodkiewicz, and Ma, 2011), and sensor
default in aircraft military systems (Efthymiou et al., 2012), etc.

The main disadvantage of a physical model is the difficulty of assigning
appropriate parameters used in the model. Since the massive and multivari-
ate data required for the assignment of parameters are usually not available,
it is hard to quantitatively characterize the system behavior (Sikorska, Hod-
kiewicz, and Ma, 2011). Also, since fault and failure mechanisms may vary
from one equipment to another, physical models are normally equipment-
dependent. Thus, it is hard to identify the fault and failure mechanisms of
a newly monitored machine component/machine without interrupting sys-
tem operation (Heng et al., 2009).

2.3.2 Data-driven models

In recent years, rapid advances have been made in the research of data-
driven models and approaches for accurate predictive maintenance. Several
models perform like a black box that learn the behavior of physical assets
directly from their operation data (Javed, Gouriveau, and Zerhouni, 2017).
Within a data-driven approach, knowledge about machines is extracted in-
ternally from machine operation data, instead of externally from domain ex-
perts. Normally, data-driven approaches are classified into machine learning
and statistical learning techniques (Dragomir et al., 2009; Peng, Dong, and
Zuo, 2010).
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2.3.2.1 Machine learning-based approaches

Recently, machine learning (ML) approaches have been proven to be effective
solutions for predictive maintenance. The implementation of ML models has
been facilitated by the growing capabilities of hardware, cloud computing,
and newly introduced state-of-the-art algorithms (Susto et al., 2014).

For supervised and semi-supervised learning, depending on the charac-
teristics of the training data, the learning process of ML-based predictive
maintenance could be done using several models (Javed, Gouriveau, and
Zerhouni, 2017).

• Supervised learning which is applied to labeled data. This type of
methods aims to learn a function that maps an input to an output based
on a set of labeled training examples. Typical learning algorithms for
supervised learning are Support Vector Machine (SVM) (Scholkopf and
Smola, 2001), Artificial Neural Networks (ANN) (Krenek et al., 2016;
Javed et al., 2011), Logistic Regression (Kleinbaum et al., 2002), Naive
Bayes (Rish et al., 2001), Random Forests (Liaw, Wiener, et al., 2002),
and Decision Trees (Quinlan, 1986), etc.

• Semi-supervised learning applied to both labeled and unlabeled data.
This type of learning methods is a learning paradigm concerned with
the study of how computers and natural systems such as humans learn
in the presence of both labeled and unlabeled data (Zhu and Goldberg,
2009). In addition to unlabeled data, semi-supervised learning algo-
rithms are provided with a certain level of supervision, but not for
all the training examples. Semi-supervised learning requires less hu-
man effort than supervised learning, meanwhile giving higher accu-
racy than unsupervised learning (Zhu and Goldberg, 2009). Because of
these advantages, it has been pervasively implemented in real-world
practices. Typical techniques used in this field are Self-Training algo-
rithms (Rosenberg, Hebert, and Schneiderman, 2005), Generative Mod-
els (Kingma et al., 2014), Semi-supervised Support Vector Machines
(Bennett and Demiriz, 1999), Graph-Based Algorithms (Bryant, 1986),
and Multi-view Algorithms (Bickel and Scheffer, 2004), etc.

Facilitated by the capabilities of the advanced techniques and state-of-
the-art algorithms, machine learning-based approaches have shown to be
promising and effective solutions for industrial predictive maintenance. The
algorithms and techniques introduced in this subsection have been widely
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used in real-world practices to reduce the maintenance cost and production
downtime (Susto et al., 2014).

2.3.2.2 Data mining-based approaches

Unsupervised learning is applied to unlabeled data. In unsupervised learn-
ing, the training data is not associated with any corresponding target val-
ues. In other words, no labels are given to the learning algorithm, leaving it
on its own to discover patterns and structure from the input data. The ob-
jective of an unsupervised learning process is to segregate data points with
similar traits and assign them into clusters, which is known as clustering,
or to construct an estimate of the distribution of the input data, which is
known as density estimation. Common unsupervised learning methods in-
clude k-means Clustering (Likas, Vlassis, and Verbeek, 2003), Gaussian Mix-
ture Models (Reynolds, 2015), Self-organizing Maps (Kohonen, 1997), etc. In
Rabatel et al. (Rabatel, Bringay, and Poncelet, 2011), a knowledge discovery
solution is presented to extract data from historical behavioral data collected
by sensors. It is based on association rules, more specifically sequential pat-
tern mining, to extract specialized classes. Using anomaly detection, they
compare new patterns with sequential patterns describing normal behavior
that were extracted before. In Remil et al. (Remil et al., 2021), the authors
present an efficient incident triage model based on 170k incidents reported
on more than a thousand application servers over the last 7 years. Artzmuller
(Atzmueller, 2015) has provided a review of subgroup discovery techniques
and their application. The discovery of subgroups aims to group the pre-
dicted objects into subgroups that support the same explanation. Each sub-
group is also associated with a description that characterizes it in a unique
way. This approach addresses in a new way the problem of explaining the
results of the model, in particular when the number of results to explain is
large. Because of the low cost of deployment and better applicability than
physical models, data-driven models have been widely applied to indus-
trial predictive maintenance. However, the main disadvantage of this type
of model is their demand for higher volume of data than physical models.
To well train a data-driven model, sufficient run-to-failure data ("sufficient"
quantity means that data have been observed for all fault modes of interest
(Uckun, Goebel, and Lucas, 2008)) needs to be collected for the model to cap-
ture complex relations among data (Javed, Gouriveau, and Zerhouni, 2017).
This means a large amount of machine historical data needs to be collected
as starting step for obtaining high-quality and accurate data-driven models.
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2.3.2.3 Statistical learning-based approaches

Within this kind of approach, predictive maintenance is achieved by fitting
the empirical model (a function) as close as possible to the collected data
and extrapolating the fitted curve to failure criteria (Javed, Gouriveau, and
Zerhouni, 2017). A typical statistical model is a regression method for trend
extrapolation, which is based on linear, exponential, or logarithmic functions.
The common methods used in statistical learning-based approaches are (i)
Stochastic filtering (Kallianpur, 2013); (ii) Particle filters and their variants
(Gustafsson et al., 2002); (iii) Hidden Markov models (Beal, Ghahramani, and
Rasmussen, 2002); iv) Time series analysis (Hamilton, 1994).

2.3.3 Hybrid models

A hybrid model applies both physics-based and data-driven approaches. As
mentioned in the previous subsection, data-driven models are feasible to be
used when the required big data is easy to collect. However, it is usually the
case that only part of machine historical data can be obtained (Wang, 2016).
In this context, the data-driven approach is jointly used with the physics-
based approach for effectively identifying machine conditions. Existing hy-
brid model-based predictive maintenance approaches can be classified into
two types: (i) Series approaches and (ii) Parallel approaches.

In series approaches, physical models are combined with online param-
eter estimation techniques to update model parameters when new data are
available (Javed, Gouriveau, and Zerhouni, 2017). Data-driven methods are
used to tune the parameters of physical models. This type of approaches
have been applied to the predictive maintenance of various equipments, such
as power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)
Celaya et al. (Celaya et al., 2011), printed circuit card assemblies (Pecht,
2010), and Lithium-ion (Li-ion) batteries (Saxena et al., 2012), etc.

Within parallel approaches, data-driven models are trained to predict the
residuals not explained by the first principle model (Javed, Gouriveau, and
Zerhouni, 2017). Normally, the hybrid model used in a parallel approach is
created with an individual approach, which is either physics-based or data-
driven. Therefore, the accuracy of a parallel hybrid model is normally higher
than a series hybrid model (Javed, Gouriveau, and Zerhouni, 2017). How-
ever, implementing a parallel hybrid model requires several steps, which
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leads to a higher modeling complexity than series approaches-based mod-
els. Because of this, parallel hybrid models consume more computational
time than series hybrid models.

In general, the different steps for implementing a parallel hybrid model
for predictive maintenance are: parameter identification, condition moni-
toring, feature extraction, healthy baseline creation, anomaly detection, pa-
rameter isolation, failure definition, parameter trending, and RUL estimation
(Cheng and Pecht, 2009).

2.4 Conclusion

Predictive maintenance is a key technique implemented in smart factories
to improve the availability, reliability, and productivity of manufacturing
systems. In this chapter, we have reviewed the existing sequential pattern
mining techniques. We shed the light on a special pattern called chronicle
mining that contains both events and time duration. We detailed as well ap-
proaches for industrial predictive maintenance by classifying them into four
categories: knowledge-based models, physical models, data-driven models,
and hybrid models. The classification was followed by the demonstration of
the advantages and disadvantages of the existing models.
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Introduction

Scientists have been working on understanding natural languages since the
turn of the last century and, as of today, we have reached reasonable success
in this area. The research on how to make computers analyze and manipu-
late natural languages draws from several fields, including computer science,
math, linguistics, and neuroscience, and the resulting interdisciplinary area
of research is called Natural Language Processing (NLP).

Text mining, is a sub-field of NLP domain, that refers to the process of
identifying, enumerating, and analyzing syntactic and semantic characteris-
tics of a text corpus. The purpose of text mining is to bring to light unknown
facts, characteristics, patterns and ultimately to lead to a better identifica-
tion of new text insight. It is one of the main disciplines of Artificial Intel-
ligence. The data can have a constant structure. In this case we speak of
"structured data". If it is not the case, we speak of unstructured data. This
chapter presents related research works about NLP and the text mining field,
including several approaches about the semantic textual similarity computa-
tion, natural language understanding, and TRIZ-related applications.

3.1 Representation Learning on Natural Language

Processing

Any text mining task relies on several main steps. As illustrated in Figure
3.1 (Chen et al., 2021), the different processing stages of NLP are presented.
A data mining pipeline generally consists of several steps from data pre-
processing to a choice of model architecture and results analysis. Textual
data must be transformed into numeric data to be processed by a computer.
First, the tokenization splits the input document into words. Vector repre-
sentations of the documents or words, called embeddings, can then be built.
The embeddings may finally be used to mine the targeted information.

Over the past years, deep learning has seen huge advances in several ap-
plication fields such as computer vision or speech recognition. Deep learn-
ing has also been extensively used in the NLP domain. The adjective "deep"
in deep learning refers to the use of multiple layers neural networks topol-
ogy1. Deep neural networks link predictions to data inputs through sequen-
tial non-linear variation. In this chapter, we focus on deep learning models

1Basics of neural networks are given in Appendix C
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widely used in NLP tasks.

FIGURE 3.1: The generic process of NLP (Chen et al., 2021)

Natural Language Processing, also known as computational linguistics,
involves the engineering of computational models and programs to solve the
practical problems of human language analysis (Otter, Medina, and Kalita,
2020).

Moreover, NLP involves teaching machines to interpret, classify, manip-
ulate, and generate language. From the early use of handwritten rules and
statistical techniques to the recent adoption of deep learning, the NLP do-
main has provided several models with a wide range of application fields
(Zhang et al., 2021).

Over the past few years, with the growing computing power and large-
scale text data, distributed representation trained with neural networks and
large volumes of data has become the mainstream (Liu, Lin, and Sun, 2020).
In detail, distributed representation is mainly driven by the fact that the rep-
resentation of any single concept is distributed over many, if not all, process-
ing units (Deng and Yu, 2013).

Several text representation models have been introduced for the NLP.
These models could be assigned to one of these two families: contextual and
non contextual. In what follows, we summarize a few models commonly used
in NLP tasks, and they are detailed in subsection 3.1.1:

• N-gram Model (Brown et al., 1992): it predicts the next item in a se-
quence based on its previous n-1 items.

• Bag-of-Words (Harris, 1954): a bag of words is a representation of text
that describes the occurrence of words within a document.

• Distributed Representation (Hinton et al., 1986): a distributed repre-
sentation occurs when some concept or meaning is represented by the
network, but that meaning is represented by a pattern of activity across
a number of processing units.
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• Neural Probabilistic Language Model (Bengio et al., 2003): it learns a
joint probability function of a sequence of words given a context.

• Pre-trained Language Model (Edunov, Baevski, and Auli, 2019): it
includes contextual words representation, the novel pre-training-fine-
tuning pipeline, larger corpora, and deeper neural architectures.

3.1.1 Non contextual embedding

3.1.1.1 N-gram Model

N-gram is one of the oldest techniques for word embedding. N-grams could
be sequences of characters or words extracted from text (Majumder, Mitra,
and Chaudhuri, 2002). It is used to predict a word from previous analyzed
words (Brown et al., 1992). It relies on assuming that linguistic items with
similar distributions have similar meanings (Harris, 1954). It has led to the
emergence of new NLP models such as Word2vec (Mikolov et al., 2013b)
and BERT (Devlin et al., 2018). N-grams can be classified into two families:
character-based and word-based.

• Character N-gram is a collection of n consecutive characters extracted
from a word. The main motivation behind this approach is that similar
words contain a high percentage of shared N-grams. Typical values for
n are 2 or 3. These values respectively correspond to the use of bigrams
or trigrams, respectively. For instance, for the word "car", it results in
the generation of the bigrams as *c, ca, ar, r* and trigrams as **c, *ca, car,
ar*, r**.

• Word N-grams are sequences of n consecutive words extracted from a
text. Word-level N-gram models are robust for statistical modeling of
language as well as for information retrieval and are not very language-
dependent. For instance, for the sentence of "Car is cleaned by Tony.",
a created vocabulary set by bi-gram is ["car is", "is cleaned", ... , "by
Tony"].

3.1.1.2 Bag-of-Words

The Bag-of-Words model (BOW) is an orderless documentary representation,
which is built on the distribution hypothesis (Harris, 1954). The distribu-
tional relation about elements’ occurrence between the correlation of several
aspects of meaning is revealed. The BOW only focuses on words occurrence
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FIGURE 3.2: An example of Bag-of-Words

without checking their positions. In this approach, word occurrence is the
main feature (Goldberg, 2017).

As a special N-gram model where n = 1, it ignores the text’s syntax and
word order and sees the text as a combination of several individual words.
The occurrence of each word in the text is independent (Soumya George and
Joseph, 2014). A bag-of-word vector is produced to represent texts. The BOW
first designs a vocabulary of words using every word in the corpus. It maps
then the text to a bag-of-word vector where co-occurrence words with the
vocabulary are shown as "1" and the inverse as "0" (Ni, Samet, and Caval-
lucci, 2021). "1" is added each time the word is repeated in the document.
For instance, as illustrated in Figure 3.2, the co-occurrence words in bag-of-
words are presented as "1" in the corresponding vector. After that, the text is
converted into fixed-length vectors of numbers.

3.1.1.3 Distributed Representation

The name “distributed representation” is mainly driven by the fact that the
representation of any single concept is distributed over many, if not all, pro-
cessing units. In many cases, the unit values in the vectors are continuous
values, instead of just 1’s and 0’s. Distributed representations for words were
first proposed by Hinton et al. (Hinton et al., 1986).

The significant performance of distributed representations in the NLP
field has encouraged the resurgence of several works since Mikolov et al.
paper in 2012 (Mikolov et al., 2012). It is used in several NLP applications
such as word representation, named entity recognition, word sense disam-
biguation, parsing, tagging, and machine translation (Collobert and Weston,
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FIGURE 3.3: An example for the distributed representation of
words

2008; Turney and Pantel, 2010; Turian, Ratinov, and Bengio, 2010; Collobert
et al., 2011; Socher et al., 2011; Zou et al., 2013; Huang et al., 2012). Word2Vec
(Mikolov et al., 2013a), surely an iconic model using distributed representa-
tion, is a two-layer neural network that can be trained. Training can be done
by a given corpus to convert each unique word presentation in the corpus
into a computable and structured vector in an apriori chosen space dimen-
sion. A word vector is positioned in the vector space so that words sharing
similar contexts in the corpus are located close to one another in the space
(Mikolov et al., 2013b). Words with similar meanings get a similar represen-
tation. For instance, as illustrated in Figure 3.3 (Mikolov, Le, and Sutskever,
2013), with the distributed word representations, five word vectors in English
(left) and Spanish (right) are projected down to two dimensions.

3.1.1.4 Neural Probabilistic Language Model

As one of the pioneer practices of distributed representation in NLP (Liu, Lin,
and Sun, 2020), the neural probabilistic language model is meant to learn the
joint probability function of sequences of words in a language (Bengio et al.,
2003).
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A computationally efficient probabilistic modeling approach is proposed
by Bengio et al. (Bengio et al., 2003) to figure out the issue of the course of di-
mensionality, which is that the joint distribution of a large number of discrete
variables results in exponentially large parameters. It allows each training
sentence to provide the model with an exponential number of semantically
adjacent sentences. The model is able to learn a distributed representation of
each word and a probability function for the sequence of words, which are
represented in terms of these representations, and word embeddings (i.e.,
low-dimensional word vectors) are brought by it as learned parameters. Se-
mantic meanings of words are indeed encoded by these vectors. Several typ-
ical models including Word2Vec (Mikolov et al., 2013b), Glove (Pennington,
Socher, and Manning, 2014), and FastText (Bojanowski et al., 2017) are in-
spired by the neural probabilistic language model to embed words into dis-
tributed representations to optimize them as model parameters. It eventually
makes it possible to take advantage of longer contexts and significantly im-
prove the model’s performance compared to N-gram models.

3.1.2 Contextual embeddings models

Contextual embeddings models move beyond global word representations
like Word2Vec and achieve ground-breaking performance on a wide range
of natural language processing tasks. Contextual embeddings assign each
word a representation based on its context, thereby capturing uses of words
across varied contexts and encoding knowledge that transfers across lan-
guages. These models are usually generated using neural encoders. Sev-
eral neural network-based architectures have been used: Recurrent Neural
Networks (RNNs) (Mikolov et al., 2010), Transformers and Convolutional
Neural Networks(CNNs) (Gu et al., 2018).

3.1.2.1 Recurrent networks-based encoder

Recurrent Neural Networks have signals traveling in both directions by us-
ing feedback loops in the network. Features derived from earlier input are
fed back into the network which gives them an ability to memorize. Recur-
rent networks are characterised by a temporal link between the network’s
outputs ht and inputs xt. Indeed, hidden states (the network’s memory cells)
are updated with respect to the information flowing from the input to the
output. Information is therefore "saved" and can be reused later, i.e. for
future predictions. Recurrent neural networks are particularly relevant for
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NLP tasks as they establish the link between words that appear at different
positions. As shown in Figure 3.4, a simplified way of representing the Re-
current Neural Network is by unfolding/unrolling the RNN over the input
sequence. For example, if we feed a sentence as input to the Recurrent Neu-
ral Network that has 10 words, the network would be unfolded such that it
has 10 neural network layers.

FIGURE 3.4: The architecture of a Recurrent Neural Network
and its equivalent unfolded over a sequence.

The most famous RNN is the Long Short Term Memory (LSTM). The in-
ternal structure of an LSTM contains "gates" which control the information
in the hidden states. The memory vector flows in the upper part of the cell in
Figure 3.5. The network’s input Xt and the previous network’s output ht−1

flow in the lower part in the cell. The first block represented in the LSTM
unit, shown in Figure 3.6, is the forget gate ft. The information from the cur-
rent input Xt and the previous hidden state ht is passed through the sigmoid
activation function (σ in Figure 3.6). If the output value is closer to 0 means
forget, and the closer to 1 means to retain. The input gate works as an input
to the cell state. It consists of two parts; first, we pass the previous hidden
state ht and current input Xt into a sigmoid function to decide which values
will be updated. Then, we pass the same two inputs into the tanh activation
to regulate the network. Finally, multiply the tanh output with the sigmoid
output to decide which information is important to update the cell state. The
hidden state contains information on previous inputs and is used for predic-
tion. The output gate regulates the present hidden state ht. The previous
hidden state ht−1 and current input Xt are passed to the sigmoid function.
This output is multiplied with the output of the tanh function to obtain the
present hidden state. The current state (Ct) and present hidden state ht are
the final outputs from a classic LSTM unit. Formally, the cell state is modified
at each inference (Equation 3.1), to take into account the previous state and
the input.

Ct = ft ⊙ Ct−1 + it ⊙ gt (3.1)
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ft is the forget gate that will select the information to keep in the cell
state, it is the input gate (weighted formula depending of Xt) that will select
the information to add in the cell state given the input, and gt also depends
on the input and the previous output. ⊙ is the Hadamard product.

In the case of a text analysis, the words are successively fed to the net-
work. It means that the network is only able to analyse the previous words
to find the context. A LSTM network is therefore unidirectional. It works
either from left to right words or from right to left but it cannot analyse both
right and left contexts. To address this problem, two LSTM networks may
be stacked, the first analyses the context from left to right and the other one
from right to left.

FIGURE 3.5: Architecture of a Long Short Term Memory neural
network

FIGURE 3.6: Architecture of a Long Short Term Memory unit

A Gated Recurrent Unit (GRU) network is very similar to a LSTM. The
main difference is the fusion between the hidden states and the output in the
GRU network while in a LSTM the output is different from the hidden states.
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To build the sentence and the word representations, the hidden states have
to be concatenated.

Recurrent Networks show good performance for text analysis and text
summarization. They work also very well for generation tasks. The words
are predicted one after the other. Nevertheless the main limitation of recur-
rent networks is the flow of information. To analyze a sentence, the network
updates the hidden states at each time step, i.e. for each word. It means that
the information coming from the first words is drowned under other words
information (Koehn, 2017). Therefore the quality of the transferred informa-
tion decreases relatively fast. Moreover, research was done to design a full
bidirectional network instead of stacking two unidirectional networks. This
has led to the development of Transformers and pre-trained encoders.

3.1.2.2 Transformers

Transformers and LSTMs are both popular techniques used in the field of
NLP and sequence-to-sequence modeling tasks. Transformers make use of
the attention mechanism that enables them to process and capture crucial
aspects of the input data. They do this without relying on recurrent neural
networks (RNNs) like LSTMs or gated recurrent units (GRUs). This allows
for parallel processing, resulting in faster training times compared to sequen-
tial approaches in RNNs. The architecture of Transformers typically consists
of stacked encoder and decoder layers, with self-attention and feed-forward
neural network (FNN) layers in each. The absence of RNN cells contributes
to their parallel processing capabilities. Encoders may be designed to be
trainable in a non-supervised way. This is especially the case for Transform-
ers networks (Vaswani et al., 2017b) shown in Figure 3.7. They can then be
trained on all sort of documents like Wikipedia pages, articles, journals, etc.
These models are largely used due to the lack of summarization database.
With a small database, it is not possible to learn the encoder and the decoder
in the same time without over-fitting and under-performance.

Transformer Networks are interesting for language understanding and
language generation because of their bidirectionality. They are composed of
several stacked Attention Mechanisms. An Attention Mechanism is designed
to select the best information from a flow of data. For instance, it can be used
to determine which encoded information is important for the decoder. There
are two different Attention Mechanisms: Global Attention where all the in-
formation is weighted (according to their relevance) and summed up and
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FIGURE 3.7: The encoder-decoder structure of the Transformer
architecture Taken from (Vaswani et al., 2017a)

Local Attention where only a part of the information is taken into account to
reduce the number of computations, for example.

The stacked Attention Mechanisms are composed of three inputs (see Fig-
ure 3.8): the Keys (K), Queries (Q) and Values (V). The Queries represent
the information needed by the network. The Keys are the actual informa-
tion flowing in the network. A dot-product between the Queries and Keys
therefore highlights the information that will be selected in the Values with
a simple multiplication. Indeed, Values also contain the flowing information
in the network. When the Keys, Valued and Queries contain the same infor-
mation, it is called self-Attention. These mechanisms enable the network to
study the internal structure of a text.

FIGURE 3.8: BERT’s Attention Mechanism (Devlin et al., 2019)
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If the encoder is already pre-trained on another database, then a small
database may be enough to a downstream task without overfitting. These
encoders are therefore trained on very large databases (billions of words)
and their performances are beyond reach. BERT (Devlin et al., 2019) (Figure
3.9) is the most famous pretrained-encoder. BERT makes use of Transformer,
an attention mechanism that learns contextual relations between words (or
sub-words) in a text. The input of BERT is a sequence of tokens (i.e words),

FIGURE 3.9: BERT architecture based on Transformers with
twelve encoder blocks.

which are first embedded into vectors and then processed in the neural net-
work. The first token of every sequence is always a special classification
token ([CLS]). [SEP] is a special token to separate between two sentences. Be-
fore feeding word sequences into BERT, 15% of the words in each sequence
are replaced with a [MASK] token. The model then attempts to predict the
original value of the masked words, based on the context provided by the
other, non-masked, words in the sequence. Therefore, to predict the output
words, we: (i) add a classification layer on top of the encoder output (Wi in
Figure 3.9); (ii) multiply the output vectors by the embedding matrix, trans-
forming them into the vocabulary dimension; (iii) calculating the probability
of each word in the vocabulary with softmax.
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BERT uses Wordpiece embeddings input for tokens. Along with token
embeddings, BERT uses positional embeddings and segment embeddings
for each token. Positional embeddings contain information about the posi-
tion of tokens in sequence. Segment embeddings help when model input
has sentence pairs. Tokens of the first sentence will have a pre-defined em-
bedding of 0 whereas tokens of the second sentence will have a pre-defined
embedding of 1 as segment embeddings.

Final Embeddings used by model architecture are the sum of token em-
bedding, positional embedding as well as segment embedding. The final
embeddings are then fed into the deep bidirectional layers to get output. The
output of the BERT is the hidden state vector of pre-defined hidden size cor-
responding to each token in the input sequence. These hidden states from
the last layer of the BERT are then used for various NLP tasks.

BERT encoder shows incredible results and helped establishing the state
of the art in a great number of NLP tasks. Nevertheless, it has some disad-
vantages. The non-supervised learning is based on the prediction of masked
input tokens. To predict one of these tokens, the model should rely on all the
other tokens but some of these are also masked. Moreover, it does not take
into account the dependencies between masked tokens. The input length
is also limited to 512 tokens because of the chosen position embedding for
tokens and to reduce the size of the model.

In Lan et al. (Lan et al., 2019), some sharing parameters and learning
techniques are presented in order to lighten the BERT model and improve
the results. But the global limitations of BERT cited above are not resolved.

The XLNet (Yang et al., 2019) model aims at addressing the limitations
of the BERT approach and the classical auto-regressive (recurrent networks)
limits by mixing the advantages of both techniques: the ability of generation
tasks from the recurrent models and the pretraining and bidirectionality of
BERT without its learning issues. XLNet is based on a permutation model.
The context words are randomly permutated and the network is trained to
predict each word, given the previous words that can come from all over the
sentence. The model is therefore able to gather information from all positions
on both sides. XLNet performs better than BERT in various NLP tasks mostly
because it was trained using much more data than BERT as shown in Zhuang
et al. (Zhuang et al., 2021) where the authors compare XLNet and BERT
performance with an equal amount of training data.
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FIGURE 3.10: Basic structure of CNN for NLP

FIGURE 3.11: Basic operational structure of the convolutional
layer

3.1.2.3 Convolutional Neural Networks (CNN)

Convolutional networks (Lecun et al., 1998) originate from image processing
and are more rarely used in NLP than the two types of networks discussed
previously. Nevertheless, they have properties that can also be exploited for
language processing. This section presents a brief introduction of the Convo-
lutional Neural Network (CNN) and its main elements whose applications
could be highly effective in the field of Natural Language Processing (NLP).

As illustrated in Figure 3.10, a convolutional neural network includes suc-
cessively an input layer, multiple hidden layers, and an output layer, the
input layer being dissimilar according to various applications. The hidden
layers, which are the core block of a CNN architecture, consist of a series of
convolutional layers, pooling layers, and finally export the output through
the fully-connected layer. The convolutional layer is the core building block
of a CNN. In short, the input with a specific shape will be abstracted on a
feature map after passing the convolutional layer. A set of learnable filters
(or kernels) plays an important role throughout this process. Figure 3.11 pro-
vides a more intuitive explanation of the convolutional layer. The pooling
layer is a concept that can be intuitively understood. The purpose of the
pooling layer is to reduce progressively the spatial size of the feature map,
which is generated from the previous convolutional layer, and identify im-
portant features.
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The CNN is often associated with an LSTM type encoder (Zhou et al.,
2016). CNN’s have a strong ability to extract features locally but are limited
when it comes to creating longer term links between several sentences for
example. This is why they remain much less used so far in language pro-
cessing. Recently, Li et al. (Li et al., 2021) showed that it was possible to
implement attention mechanisms with convolutional networks.

3.2 Text Mining for Enhancing Innovation Using

TRIZ

TRIZ is a human-oriented knowledge-based systematic methodology of
inventive problem solving (Savransky, 2000). Originally, it was proposed by
Altshuller (Altshuller, 1999) through his analysis of thousands of scientific
text documents. The explanation of the definition is as follows:

• Human-oriented: As the practice of TRIZ depends on the problem it-
self and the socio-economic environment, it is human beings, not ma-
chines, who set the direction of the heuristic.

• Knowledge-based : Knowledge of generic problem solving heuristics
is extracted from thousands of patents in the engineering fields. TRIZ
uses not only knowledge from the natural and engineering sciences,
but also knowledge about the specific problem domain.

• Systematic : TRIZ offers an effective application of existing solutions
to new problems and the creative process is systematically structured.

• Inventive problem solving : The aim of TRIZ is to solve creative prob-
lems in which only the main contradiction needs to be solved.

In addition, with the definition of TRIZ, Altshuller proposed three pri-
mary findings which are:

• Problems and solutions could be shared among all industries;

• The pattern of technological evolution also repeats itself in different
industries;

• The scientific effects used by an innovation go beyond the field in which
it was developed.
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One of the main theoretical pillars of TRIZ theory for solving inventive prob-
lems is contradiction. The subsection below details the definition of contra-
diction in TRIZ.

3.2.1 Contradiction

The concept of contradiction is one of the two significant parts of TRIZ (to-
gether with evolution laws). It is applied in any TRIZ problem-solving pro-
cess. TRIZ states that in order to obtain creative solutions, contradictions
must be eliminated, without allowing for compromise or optimization, and
introduces the principle of formulating and eliminating contradictions in a
systematic way. There are two typical types of contradictions that are classi-
fied (Domb, 1997; Rousselot, Zanni-Merk, and Cavallucci, 2012):

• Technical contradiction: A technical contradiction describes the state
of a system in which one action causes a useful effect, but also creates
an undesirable effect at the same time. It is a typical engineering trade-
off when something becomes better but another thing becomes worse.
In fact, this occurs when it attempts to improve certain properties or
functions of a system but results in the deterioration of other properties
in the system (Yan, 2014).

• Physical contradiction : A physical contradiction resolves the part of
the technical contradiction centered on the parameter, which must con-
tain two opposite values at the same time. This occurs when there are
inconsistent requirements for the physical conditions of the same sys-
tem. For instance, the big size of a laptop screen is able to provide a
better watching experience but may make it too heavy to carry around.
Therefore, the screen’s size values (big screen for watching and small
screen for space occupancy) present a physical contradiction.

Figure 3.12 shows a technical contradiction between the volume and the
weight. In the example, increasing an aircraft volume for higher number of
seats impact negatively the overall weight.

3.2.2 The TRIZ Knowledge Sources

When dealing with technical contradictions, the TRIZ knowledge sources for
solving inventive problems include forty inventive principles. Other TRIZ
techniques such as seventy-six inventive standards, and eleven separation
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FIGURE 3.12: An example of TRIZ contradiction

methods for removing technical contradictions, provide problem-solving so-
lutions and remove physical contradictions respectively. The full contents of
TRIZ matrix, inventive principles and inventive standards are presented in
Appendix A.

• Inventive Principles: Forty inventive principles are a type of tool used
to find out innovative and creative solutions for target problems. They
derive from the research of TRIZ and patent analysis in order to solve
the technical contradictions. Among principles, there is “segmenta-
tion”, which proposes breaking down objects into independent parts.
This might include manufacturing an object so that it becomes easier
to disassemble, or use segmentation to resolve a technical issue. This
might be done by using a trailer and truck instead of one large truck or
by designing cubicles for an open plan office to enable easy reshuffling
of the office layout according to need.

• Standard Solutions: Most inventions refer to conceptual modifications
of physical systems. Therefore, there should be several common ap-
proaches for solving problems that apply to the entire group of similar
inventive problems. These problems are similar when problems from
different fields produce the same physical model. Thus, solving sys-
tem problems does not always need to identify contradictions. Among
solutions, there is "introduce the additive temporarily". An example
could be for certain kinds of bone injuries, a metal screw is placed in
the bone while healing starts, then removed.

A classical TRIZ problem-solving process can be illustrated in Figure 3.13
(Yan, 2014). In detail, experts should first present the target problem in the
form of contradiction by using different tools. After that, they should achieve
abstract solutions by using different knowledge. Eventually, with the help of
other domains knowledge base like physical, chemical, or geometrical fields,
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FIGURE 3.13: The processing of solving inventive problems via
classical TRIZ

abstract solutions can be instantiated to achieve one or more concept solu-
tions to be implemented in real cases. Altshuller was also interested in the
solutioning. So, as with the parameters, he tried to find universal formu-
lations of the ideas leading to solutions. This is what he called the inven-
tive principles. There are 40 of them2. The contradictions and the inventive
principles allowed him to develop the TRIZ matrix and the inventive prob-
lem solving algorithm. The TRIZ matrix is a statistical representation of the
inventive principles that were mostly used in the 40,000 inventive patents
that were analyzed by Altshuller and the engineers with whom he worked.
Each cell corresponds to a contradiction between two evaluation parameters
(which are on the abscissa and ordinate). The cells contain, for each contra-
diction, the indices of the inventive principles that were statistically the most
used to solve these contradictions.

3.2.3 Implementation of TRIZ on the Problem Solving

Several models and extensions based on TRIZ have been proposed by re-
searchers. A TRIZ-based patent knowledge management system called TP-
KMS is proposed by Ding et al (Ding et al., 2017) to explore the possible in-
ventive principles for solving problems. The structural information of patents,

2Reader may refer to Appendix A for further details about TRIZ matrix
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TRIZ theory, and 40 inventive principles are combined to help researchers
explore the process of construction innovations. TPKMS requires that users
have the corresponding domain knowledge to explore inventive solutions.
Moreover, Rahim et al. (Rahim et al., 2018) proposed an approach using the
computational thinking model and TRIZ methodology to enhance patent in-
novativeness. Identifying patterns in the computational thinking model en-
ables the generation of a possible solution. Based on the exploration of trend
pattern recognition on the proposed paper, users could explore the inventive
solutions among different domains.

Besides, a framework is proposed by Cavallucci et al. (Cavallucci, Rous-
selot, and Zanni, 2011) which aims at extracting and representing the know-
how of domain experts and populating an already constructed ontology of
Inventive Design Modelling (IDM). Authors (Yan, Zanni-Merk, and Rous-
selot, 2011) proposed a method to calculate the semantic distance between
short texts and use it to fill the semantic gap between the parameter and
the generalized one and to facilitate the use of inventive design techniques.
A formal contradiction model applicable to inventive design is highlighted
(Rousselot, Zanni-Merk, and Cavallucci, 2012) to promote the related soft-
ware development. A method based on a synergy between the theory of in-
ventive problem solving and the case-based reasoning (Houssin et al., 2015)
is introduced (Negny et al., 2012) to support engineers in preliminary design.
Yan et al. (Yan et al., 2013) also presents an inventive method to facilitate the
use of the contradiction matrix, using a semantic similarity approach and
case-based reasoning.

However, for the aforementioned approaches based on TRIZ, an obvious
drawback is that users still need to master the complexity of TRIZ method-
ology in order to make full use of TRIZ potential. It becomes a significant
challenge for most novices to use it. How to automatize the inventive so-
lutions retrieval for users who do not possess TRIZ knowledge is the main
purpose of Chapter 5.

3.2.4 Automatizing TRIZ Inventive Process with Machine Learn-

ing

Patents can be exploited to serve creative action by providing targeted infor-
mation on existing inventions with text mining techniques. The mining of
TRIZ parameters and inventive principles, in particular, have already been
attempted.
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3.2.4.1 Contradictions and TRIZ parameters extraction

Chang et al. (Chang, Chang, and Wu, 2017) introduce a method to retrieve
TRIZ parameters. They assume that a patent solves one contradiction and
two TRIZ parameters are therefore improved (or at least not degraded). The
method consists in key phrases detection. One of the parameters is supposed
to be in a phrase similar to "to be prevented from worsening" and the second
parameter in a phrase with "to be improved". The detection method is there-
fore very limited and it works only for Chinese patents as the syntax does
not vary much.

Souili and Cavallucci (Souili and Cavallucci, 2017) use linguistic tools to
extract concepts related to Inventive Design ontology from patents, i.e. prob-
lems and partial solutions. Sentiment analysis used as a solution often lies in
a "positive" sentence, while a problem lies in a "negative sentence".

Following the work by Souili and Cavallucci (Souili and Cavallucci, 2017),
Berdyugina and Cavallucci (Berdyugina and Cavallucci, 2022a) proposed an
approach based on antonyms and topic modeling to identify potentially con-
flicting parameters in patents from the problems and parameters isolated ear-
lier (Souili and Cavallucci, 2017).

Yanhong et al. (Yanhong Liang, Runhua Tan, and Jianhong Ma, 2008),
present a methodology to retrieve patents according to the contradictions
they solve. Nevertheless, the method uses Wordnet dictionary but it is un-
clear why, considering that no attempt to test this approach has been made.
Therefore, it cannot be really considered as a prior art method. The same
authors published another approach in 2009 (Liang et al., 2009), one year
later, dealing with patent classification. This time, it was not a classification
in accordance with the solved contradictions but in accordance with the in-
ventive principles. First, the initial contradiction must be found. The most
suitable inventive principles are then chosen and patents potentially related
to the inventive principle are suggested to the user. To measure the rele-
vancy of patents, a traditional TF-IDF (Term Frequency-Inverse Document
Frequency) algorithm with Chi-square method is used.

Cascini and Russo (Cascini and Russo, 2007), present a framework to de-
tect the solved contradictions. The worsening factor is supposed to be located
in the background of the invention / state of the art and the improving factor
in the claims. Nevertheless, the method in use seems to be limited (keywords
approach) and no numerical results are shown.
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3.2.4.2 Inventive principles, physical effects and solution mining

TF-IDF and LDA (Latent Dirichlet Allocation) clustering may be utilized for
physical effects retrieval (Korobkin, Fomenkov, and Kravets, 2017).

Loh et al. (Loh, He, and Shen, 2006) show an attempt to classify patents in
accordance with the inventive principle they use to solve a problem. A very
small database is used (200 patents) and the patents are only classified using
6 inventive principles due to a lack of precision. He and Loh (He and Loh,
2008) also try to classify patents as a function of the inventive principles. In
this case, all the inventive principles are used but, in order to deal with the
lack of data and to make the training possible, groups of inventive principles
are created. The purpose of the method is to recognize which groups of in-
ventive principles are linked to the patents. Even with this simplification, the
results are noisy with a very low recall.

Liang and Tan (Liang and Tan, 2007), present another methodology which
is based on keywords, to achieve the same purpose. The idea is to recognize
patterns associated with the problems or the way of solving these problems.

Patent parameters of a particular process are mined using semantic
databases (Wang et al., 2016). These parameters are then associated with
the general parameters from TRIZ matrix. Contradiction solving principles
are also clustered to build a new TRIZ matrix with the process patents.

Ni et al. (Ni, Samet, and Cavallucci, 2022) propose a solving method
based on problems matching. Their purpose is to avoid mining contradic-
tions. Thus, from an initial problem, their model searches for semantically
similar problems in patents. If problems are similar, the solution of the solved
one should also apply to the non-solved one. It would at least give an insight
on how to solve it. Question answering is coupled with the matching system
to find the answer of the problem in the matched patents.

3.2.4.3 Estimation of inventiveness level

The estimation of the level of inventiveness is one of the main challenges
for patents analysis in TRIZ domain. Nevertheless, very few methods were
proposed.

Li et al. (Li et al., 2012) present a natural language processing and a
metric-based citation method. Machine learning is used to infer the degree of
inventiveness after a training on a dataset of 75 rated patents. The machine
learning model takes as inputs the backward citations, the originality, the
backward citation tag but also the knowledge transfer measurement. They
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get more than 70% accuracy, which is relatively impressive considering the
size of their dataset. Researchers [ (Lanjouw and Schankerman, 2004) and
(Cremers et al., 1999)] discuss the ways to measure patent quality and the link
between patent value and the number of citations, while others (Jugulum and
Frey, 2007) try to redefine Altshüller’s matrix by replacing the inventiveness
in the patents with the notion of robustness. The more an invention is robust,
the more reliable it is.

3.2.5 Summary

Table 3.1 summarizes all the contributions in TRIZ domain linked to text or
patent mining using machine learning. The different approaches are orga-
nized following their purpose and their date. We highlight that, prior to this
work, only keywords analysis (Cascini and Russo, 2007) was attempted to
retrieve contradictions. It consists in retrieving the phrases positioned af-
ter "increase" or "decrease" for example. Nevertheless, the two parts of the
contradiction are, thus, processed independently and no real contradiction
relation is extracted.

Following this work, Berdyugina and Cavallucci (Berdyugina and Caval-
lucci, 2022a) extended the keyword-based contradiction mining with the use
of antonyms and switched to a deep learning-based approach.

Concerning TRIZ parameter mining which is also part of a full contradic-
tion mining process, several works address this challenge but mostly using
keywords and key phrases, which is not very relevant for most of the patents.
Automatic language processing and patent mining are not new fields and can
therefore motivate the choice of an approach. Contradiction extraction is the
identification of two contradictory parameters (in the TRIZ sense) in a tex-
tual content. An unsupervised approach does not seem to be feasible here
since the modeling of the notion of TRIZ contradiction is difficult and no
clustering algorithm would allow the identification of these two parameters
in contradiction. A supervised approach is therefore chosen.

It appears that the contradictions are understood owing to the sentences
that surround the parameters. For example, in the US06938300 patent, the
two following sentences are considered: When the stroller 1 moves over a lawn
or uneven road surfaces, it is necessary for the stroller wheels to have a large di-
ameter so as to ensure the comfort of the baby. However, if each of the front wheel
assemblies 11 has two large-diameter front wheels 13, the total volume and weight
of the stroller 1 will increase significantly so that it is difficult to push the stroller 1.
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The notion of contradiction is included not in the parameters but in the rela-
tionship between the two sentences. This finding implied the development
of a two-step approach. First, the modeling of the contradiction relations at
the sentence-level and then the extraction of the parameters contained in the
sentences in contradiction.

For sentence-level analysis, the closest NLP task is automatic summariza-
tion. It consists in selecting the important information in a text with respect
to its purpose. The idea is to shift the initial summarization task to a TRIZ
summarization which aims at identifying the contradiction relations between
sentences. The automatic summarization can be based on sentence classifi-
cation or on a generative model (see chapter 5).
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3.3 Conclusion

In this chapter, we present the basics of any NLP task. We detail the neural
network based approach for word/sentence embedding. In the second part
of the chapter, we focus on presenting the TRIZ theory meant for providing
inventive solution when the initial problem is presented in a contradiction
form. In order to contribute to the field of TRIZ, we investigate the use of
data mining techniques to automatize the process of inventiveness. Consid-
ering all existing approaches, we finally choose the tree-step approach. As
no existing contradiction mining approach has been found, we compare our
approach to classical summarization approaches. Contradiction has great
importance for matching an input-formulated problem to all contradiction
in large volumes of patents. It allows to filter them through their inventive-
ness and provides the engineers with a set of similar problems solved with
inventive solutions. These contributions are detailed in Chapter 5.
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Introduction

In this chapter, we are interested in showing how pattern mining is used
in predictive maintenance application. As detailed in Chapter 2, we focus
in investigating one of the richest and highly descriptive patterns which are
chronicles. Two main investigations are addressed in this chapter: (i) How
to mine chronicles to detect the signature of a failure from machines sensor
sequences; (ii) How to use these mined patterns to prevent future failures.

4.1 Mining Failure Chronicles for Predictive

Maintenance

In predictive maintenance context, data come sequentially. The data is
recorded until a failure happens. Then, several sequences of sensor data
are recorded ending with a failure event. In order to understand the fail-
ure through a mining process, several preprocessing steps have to be taken.
Figure 4.1 explains the steps used in every mining approach. In fact, to select
the most relevant data and to make it suitable for chronicle mining, meth-
ods of attribute selection (Novakovic, 2000) followed by the discretization
of the data are applied. Subsequently, after the processing of the sequences,
we mine closed patterns with a sequential closed pattern mining algorithm.
Then, we extract the time constraints between events of patterns. Data pre-
processing refers to operations performed on raw data to make them suitable
for another processing use. It is a preliminary step that is used in the field of
data mining and is needed to transform the data in a format that can facili-
tate the mining step. Feature selection is used to reduce dimensionality and
eliminate irrelevant attributes. Subsequently, the discretization is used since
we need a finite set of events for mining process.

Several datasets as SECOM (McCann and Johnston, 2008) request a fur-
ther transformation to build a sequential dataset. For this purpose, we
add sequentialization process to our approach to handle the cases when the
timestamped data do not constitute a sequence. In our case, a sequence is a
set of ordered events that end with a particular event: the machine failure.
Therefore, sequential pattern mining techniques are applicable. After pre-
processing, resulting data are ready to use. The idea is to mine the chronicles
that can describe a given failure. These chronicles are called failure chronicles
which are explained in Definition 18.
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FIGURE 4.1: Figure illustrating the steps of the chronicle mining

Definition 18 (Failure chronicle). Assuming a chronicle CF = (E , T ). We say
that CF is a failure chronicle if and only if its events are ordered according to their ap-
pearances in the sequence and the last event in the chronicle is the one that describes
the failure, i.e. for E = {e1 · · · en|ei ≤E ei+1, i ∈ [1, n]}, en is the failure event.

The contributions of this chapter are related to these failure chronicles.
Our contributions are twofold: (i) mining these failure chronicles showing all
the steps before reaching a failing status; (ii) predicting future failures once
all failure chronicles are mined. In the next section, we detail the mining
algorithms to mine failure chronicles.

4.1.1 CPM Algorithm

Algorithm 5 summarizes the general idea of our approach. It runs in three
main stages. At first, FrequentSet extracts all the frequent closed patterns in
the dataset. This step is carried out by the extraction algorithm of frequent
closed sequences CloSpan (Yan, Han, and Afshar, 2003). Then, for each fre-
quent pattern, the ExtractTimeConstraints function allows to extract the dif-
ferent time constraints that separate its events.

For each frequent sequence, the conjunction of its temporal constraints
extracted by the time constraints function allows to obtain a chronicle which
models the sequencing from the first event until reaching the failure.

A sequence may contain one or more events and subsequently it may be
described by one or more chronicles. In fact, to get a better detection, we
have to specify the sequences covered by the chronicles; thus we can keep
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Algorithm 5 Extract Frequent Chronicles

Require: D: The database of the events, f qmin: minimum threshold
Ensure: C: set of frequent failure chronicles

1: {FS,IFS}← FrequentSet (D, f qmin)
▷ Extraction and index of lines of frequent closed sequential patterns.

2: C ← ∅;
3: for s ∈ FS do
4: T ← ExtractTimeConstraints (D, s, IFS)
5: C ← C ∪ {(s, T )}

return C

only the most relevant chronicle for a given failure, taking for example the
support of the chronicle as a reference measure.

4.1.2 Clasp-CPM

The first implementation of chronicle mining (Sellami, Samet, and Tobji,
2018) handled few cases of time constraints extraction. It was dependent on
the length of the patterns and treated these on a case-by-case basis. More-
over, chronicle extraction needed two steps of time constraints extraction :
one for the events on the patterns, and another to extract constraints between
regular events and the breakdown event. To overcome these two major
setbacks, two notions were used : subsequence graphs and suffix datasets.

First, we introduce a sample data set, shown in Table 4.1 which will be
used for examples in this section.

TABLE 4.1: Sample data set

Seq. Id Events

1 ⟨(ace, 1), (bd f , 3), (ac f , 4), (ace, 8), (bde, 10)⟩
2 ⟨(ac f , 2), (ad f , 6), (ace, 7), (bd f , 9)⟩
3 ⟨(ad f , 0), (ac f , 3), (ac f , 7), (bd f , 8), (bce, 12)⟩
4 ⟨(ac f , 1), (ad f , 3), (ace, 4), (bd f , 7), (ade, 9)⟩
5 ⟨(ad f , 2), (ac f , 4), (bde, 7)⟩

Definition 19 (Suffix database). Let ω be a sequence. Dω is said to be the suffix
database associated to D if :

∀s ∈ Dω, ∃s′ ∈ D, s = s′ 3s w
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Assuming ω is a suffix for all sequences in Dω, we note FSω and CSω the set of
frequent sequences and the set of closed frequent sequences associated to the suffix
database Dω, respectively.

Remark 2.

• We have defined the suffix database with the s-concatenation operator as i-
concatenation does not preserve the closeness property we need.

• In our application, we will use a sequence of length 1 for ω.

• #D = #Dω, i.e. D and Dω have both the same number of sequences.

• FS ⊆ FSω, more precisely FSω = FS ∪ {s 3s ω|s ∈ FS}. This tells
us that if a sequence is frequent in D, then it is also frequent in Dω, but the
converse does not hold.

• sω ∈ FSω ∧ sω = s 3s ω ⇒ s ∈ FS .

Example 7 (Suffix database). Table 4.2 present a suffix database, by s-appending
the failure itemset {P} at the end of each sequence.

TABLE 4.2: Sample suffix database : P is the failure event, s-
concatenated at the end of each sequence

Seq. ID Events

1 ⟨(ace, 1), (bd f , 3), (ac f , 4), (ace, 8), (bde, 10), (P, 10)⟩
2 ⟨(ac f , 2), (ad f , 6), (ace, 7), (bd f , 9), (P, 9)⟩
3 ⟨(ad f , 0), (ac f , 3), (ac f , 7), (bd f , 8), (bce, 12), (P, 12)⟩
4 ⟨(ac f , 1), (ad f , 3), (ace, 4), (bd f , 7), (ade, 9), (P, 9)⟩
5 ⟨(ad f , 2), (ac f , 4), (bde, 7), (P, 7)⟩

One can choose the timestamp to be different to that of the last element, but the
added time should be constant to keep a coherent analysis later.

Proposition 1.
CSω = {s 3s ω|s ∈ CS} (4.1)

Lemma 1. Let ω be the sequence associated to the suffix database Dω built from the
database D. Then

∀s ∈ FS , ∃s′ ∈ FSω, s′ = s 3s ω : supp(s) = supp(s′) (4.2)
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This proposition is useful to prove that every closed frequent sequence
of a suffix database ends with the sequence ω. We use this fact to improve
the previously presented algorithm, as there will be only one ExtractTimeCon-
straints procedure and it has no union of chronicles at the end.

4.1.2.1 Subsequence graph

As chronicle mining algorithms are resource greedy, we are obliged to im-
prove existing works to scale with manufacturing requirements (i.e. large
number of sequences, real-time prediction, etc). In addition, to handle
the huge volume of sequences, several optimization methods and multi-
threading coding are harnessed. A new graph-based approach is introduced
to improve the chronicle mining. In this section, we introduce all related
graph basics needed for the subsequence graph construction.

A subsequence graph is a data structure built to represent all occurrences
of a sequence within another sequence. It was designed similarly to the
Knuth-Morris-Pratt algorithm for word matching.

Definition 20 (Subsequence graph). Let s = ⟨s1, ..., sn⟩ be a sequence and p =

⟨p1, ..., pm⟩, a pattern. A susbequence graph is a couple (X, U) where X are the
vertices and U are the (directed) edges. Vertices vi,j correspond to elements of the
pattern pi, indexed by their position on s, j. There is an edge from vi,j to vk,l iff

• k = i (both pattern elements are the same) and vk,l, l > j, is the first next
occurrence (of such pattern element) in s.

• k = i + 1 and there is no edge from vi,j to vk,m with m < l (vk,l is the first
occurrence of pi+1 after vi,j).

Example 8 (Graph construction). Assuming the pattern ⟨abbc⟩ and the sequence
⟨bacbbacabcbabc⟩. Table 4.3 enumerates the sequence :

TABLE 4.3: Sequence enumeration

b a c b b a c a b c b a b c

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. First, we initialize an empty list of lists, such that the first element corresponds
to the occurrences of a, the second one to the occurrences of b, the third one to
the occurrences of b following a b and the fourth one to the occurrences of c.
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2. Next, in the first step, b is placed in the second list. Then, a is placed in the
first list. In step three, c is placed in the fourth list (figure 4.2). Notice there
are no links yet as the elements, while they are individually in the pattern,
have not occurred in the order of the pattern.

3. During the fourth iteration, we find a second b. We proceed in four steps : b
is placed in the third list, we add links from the second list elements, without
links to a third list element, to this b element, then we add b to the second
list and we add links from the first list elements, without links to a second list
element, to this b (Figure 4.3).

4. We continue the process. During step seven, the graph allows to extract the
first occurrence of the pattern in the sequence: ⟨(a, 2), (b, 4), (b, 5), (c, 7)⟩
(Figure 4.4).

5. Last, when the whole sequence has been treated, one can perform pruning steps
to remove the nodes without links or that do not allow to extract a whole pat-
tern (Figure 4.5).

a2

b1

c3

FIGURE 4.2:
Subsequence
graph: After

three steps

a2

b1 b4

b4

c3

FIGURE 4.3:
Subsequence
graph: After

four steps
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We devised this structure to be able to extract all the information needed,
namely timestamps and precedence relations for each element of a pattern in
a sequence. It is not consuming in space, as each element is only referenced.

4.1.2.2 Multi-threading

The first step of CPM is frequent closed-sequences mining, which we found
hard (if possible) to parallelize. Thus, we enchanced the following steps: time
constraint extraction and chronicle building with multi-threading.

Using a Producer-Consumer approach, we defined the following schema:

1. Initialize a certain number of workers, a pool of extracted closed pat-
terns, a pool of time constraints sets and a pool of chronicles.

2. (Time constraint extraction) For half the workers:

(a) Take a pattern from the pool.

(b) Extract the time constraints associated with it, i.e. build a subse-
quence graph for each sequence in which the pattern is found and
use it to extract the constraints.

(c) Put the time constraints in the corresponding pool.

(d) Repeat until the pattern pool is empty.

3. (Chronicle Building) For the remaining half the workers:

• Take the constraints from the pool.
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• Build a chronicle using the time constraints.

• Put the chronicle in the corresponding pool.

• Repeat until the constraint pool is empty.

An improvement would be to switch workers’ tasks when one of the
pools is empty, e.g. if the time constraint pool is empty, then all workers
are extracting time constraints, and vice versa.

There is no race conditions when accessing the data set as the sequences
are not modified but only read. Our implementation uses blocking queues
and linked blocking queues (Java) for the pools. Here again, each element is
a reference only, so we do not significantly increase memory usage beyond
the extraction step.

4.2 Failure Detection with Chronicles

In this section, we are interested in using the chronicle for the predictive
maintenance task. We aim to predict failure using the mined set of failure
chronicles.

4.2.1 Maximum Confidence-based approach

After mining of the chronicles characterizing the anomalous sequence, a sec-
ond step is developed to test the prediction of the mined chronicle which is
represented in the Algorithm 6. The algorithm requires to match chronicles
to input sequences. Two definitions are detailed.

Definition 21 (Chronicle cover). Assuming a sequence S = ⟨SID, (e1, t1),
(e2, t2), · · · , (en, tn)⟩ and a failure chronicle C. We say that c covers the sequence
SID if and only if the events represented by the chronicle belong to the sequence as
well as the time intervals between these events in the sequence belong to the temporal
constraints extracted by the chronicle, i.e.,

C � S⇔ ∀ei[t−, t+]ej ∈ C,

∃((e, t), (e′, t′)) ∈ S ∧ e = ei, e′ = ej ∧ t′ − t ∈ [t−, t+].

Definition 22 (Supported failure chronicle). Assuming a sequence S and the
set of failure covering chronicle ,i.e., C = {C ∈ C, c � S}. We say that C f is
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the supported failure chronicle if and only if it has the maximal support among all
chronicles of the set C, i.e. C f = {C ∈ C∧ ∄c′ ∈ C∧ supp(C′) > supp(C)}.

Algorithm 6 represents the general idea of detecting anomalies using both
Definitions 21 and 22.

Algorithm 6 Failure Detection with Chronicles
Require: S: Sequence, C: Chronicles set
Ensure: C f

1: C f ← ∅
2: for all C ∈ C do
3: if (COVERAGE(S, C)) then
4: C← C∪ c
5: suppmin ← 0
6: for all C ∈ C do
7: if supp(C) > suppmin then
8: C f ← c
9: suppmin ← supp(C)

10: if C f ̸= ∅ then
11: return C f

Algorithm 7 Procedure COVERAGE for computing the covering chronicles

1: procedure COVERAGE(S, C)
2: for all (e1, e2)∈ E and (t−, t+) ∈ T do
3: if ∃((e, t), (e′, t′)) ∈S) | e = e1, e′ = e2 and t− t′ ∈ [t−, t+] then
4: return true
5: return false

First, the algorithm uses the coverage procedure to check whether the pro-
cessed sequence is described by the set of chronicles or not. This procedure
takes as parameters a sequence and a set of chronicles. For a given sequence,
the procedure checks if there is one or more chronicles whose events belong
to the sequence. Furthermore, the procedure also checks whether the tem-
poral constraints described by the chronicle are validated by the sequence or
not.

If the sequence is shown by the chronicles, the algorithm traverses this
set to extract the one with the highest support; it is the supported failure
chronicle.
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4.2.2 The algorithm for rule base integration with detection

of the three issues

One of the main asset of chronicles is their high descriptiveness. In this ap-
proach, we investigate the case when an expert formulates rules (in chronicle
form) to detect failure. These expert chronicles are used along with those
mined from the collected sensor data. To cohabit together mined rules and
expert ones, we provide several definitions.

Definition 23 (Chronicle rule redundancy). A chronicle rule R : EC ∧ TEC →
TF and a rule R′ : EC′ ∧ TEC′ → TF′ are considered as redundant when the two
rules have the same sets of events, and the events have the same temporal constraints,
denoted as

ChroRedundancy(R, R′)⇐⇒ (EC = EC′) ∧ (TEC = TEC′) ∧ (TF = TF′).
(4.3)

Definition 24 (Chronicle rule conflict). A chronicle rule R : EC ∧ TEC → TF
and a rule R′ : EC′ ∧ TEC′ → TF′ are considered to have conflict when the two
rules succeed in the same sets of non-failure events and the same temporal constraints
for these non-failure events, but with conflicting temporal constraints of a failure,
denoted as

ChroCon f lict(R, R′)⇐⇒ (EC = EC′) ∧ (TEC = TEC′) ∧ (TF ̸= TF′). (4.4)

Definition 25 (Chronicle rule subsumption). A chronicle rule R : EC∧ TEC →
TF subsums the chronicle rule R′ : EC′ ∧ TEC′ → TF′ when they have the same
temporal constraints of a failure, but rule R contains additional restrictions on the
set of non-failure events or on the temporal constraints of these non-failure events.
This subsumption relationship is denoted as

ChroSubsums(R, R′)⇐⇒ (TF = TF′) ∧ ((EC′ ∧ TEC′) |= (EC ∧ TEC)).
(4.5)

These definitions are used to detect issues with regard to rule base verifi-
cation. They provide foundations for the rule base refinement approach.

To ensure, that these chronicles obey the same construction of these mined
from the data, an ontology is used (Cao et al., 2020). To automate the rule
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base integration and refinement process, we propose an algorithm to detect
the issues when an expert rule is integrated into the chronicle rule base. The
algorithm checks Redundancy, Conflict, and Subsumption between the chroni-
cle rules and an expert rule. The pseudocode is shown in Algorithm 8. The
algorithm runs into six major steps:

• For an expert rule Re, three functions extract different sets of atoms
from it. The function Non-failureEvent extracts all the non-failure events
inside Re. The function Non-failureTemporalConstraints extracts the tem-
poral constraints of these non-failure events, and the function Fail-
ureTemporalConstraints extracts the temporal constraints of the failure.

• For each chronicle rule R in the chronicle rule base R, the three func-
tions that are described in the previous step extract the same types
of atoms from it (non-failure events, temporal constraints of the non-
failure events, and the temporal constraints of the failure).

• For each chronicle rule R and the expert rule Re, redundancy issue is
checked by the algorithm. If they are redundant, the expert rule is re-
moved whilst the redundant chronicle rule is retained in the rule base.

• Rule Subsumption is examined after the check of Redundancy. For each
chronicle rule R and the expert rule Re, if R subsumes Re (if R is more
specific than Re), then discard Re; If Re subsumes R, then remove R
from the rule baseR and integrate the expert rule Re intoR.

• After the Redundancy and Subsumption issues are inspected, the last is-
sue to be examined is rule Conflict. If the expert rule Re is in conflict
with a chronicle rule R, then remove R and integrate Re into the rule
base. The reason for doing this is based on the assumption that the re-
liability of an expert rule is always higher than or equal to a chronicle
rule when they have Conflict. In this context, when there is a rule Con-
flict issue, the expert rule always have the priority of being integrated
into the rule base.

• Return the refined rule baseR′ as the algorithm output.

By taking the expert rules as input, Algorithm 8 is applied to check
whether there exist issues among the expert rules and chronicle rules. The
description of the used functions are defined in Table 4.4. The chronicle rule
base is refined and verified progressively for each input expert rule. At last,
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Algorithm 8 The algorithm to detect the three issues when an expert rule is
integrated into the chronicle rule base.

Require: R: a chronicle rule base which contains a set of failure chronicles,
Re: an expert rule which is in the form of a failure chronicle.

Ensure: R′: the integrated rule base.
1: EE← ∅, TEE← ∅, TFE← ∅, EC ← ∅, TEC ← ∅, TFC ← ∅,R′ ← ∅.
2: EE← Non− f ailureEvent(Re)
3: TEE← Non− f ailureTemporalConstraints(Re)
4: TFE← FailureTemporalConstraints(Re)
5: for each R ∈ R do
6: EC ← Non− f ailureEvent(R)
7: TEC ← Non− f ailureTemporalConstraints(R)
8: TFC ← FailureTemporalConstraints(R)
9: if EE = EC, TEE = TEC, TFE = TEC, then

10: ChroRedundancy(Re, R)
11: Remove(Re,R)
12: else if TFE = TFC, EC = EE, TEC ⊆ TE, then
13: ChroSubsumes(Re, R)
14: Remove(R,R)
15: Integrate(Re,R)
16: else if EE = EC, TE ⊆ TEC, TFE ̸= TFC, then
17: ChroCon f lict(Re, R)
18: Remove(R,R)
19: Integrate(Re,R)
20: else
21: Integrate(Re,R)
22: end if
23: end for each
24: R′ ← R
25: returnR′

a refined rule base is obtained, which consists of best-quality chronicle rules
as well as expert rules.

4.2.3 Chronicle fusion approach

When considering classifying a sequence as an anomaly or predicting when
it is going to happen, we may encounter several failure chronicles that ap-
pear in the sequence. Thus, it becomes problematic to cope with different
information when predicting. Therefore, in this subsection, we aim to use all
the supported failure chronicles rather than use the one maximizing the sup-
port. To do so, using fusion framework as the evidence theory (Dempster,
1968; Shafer, 1976b) is a strategy.
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TABLE 4.4: Details of the functions of Algorithm 8

Function Role
Non− f ailureEvent() Extract all the non-failure events of this ex-

pert rule
Non −
f ailureTemporalConstraints()

Extract the temporal constraints of these
non-failure events

FailureTemporalConstraints() Extract the temporal constraints of the fail-
ure

ChroRedundancy() Mark the rule as redundant
ChroSubsumes() Mark the rule as subsuming
ChroCon f lict() Mark the rule as conflictual
Remove() Remove a rule from the set
Integrate() Integrate a rule into the set

We investigate a new approach for fusing several chronicles when we
analyse a new incoming sequence. In this approach, we consider not only
failure chronicles but also other chronicles not ending with the failure event.
Indeed, we assume that a sequence could end up as a normal sequence even
if a failure chronicle covers it. The proposed approach rely on the evidence
theory. Readers may refer to Appendix B for details about the theory.

Definition 26 (Basic Belief Assignment modeling). Assuming a chronicle
Ci ∈ C f ∪C f̄ that covers a sequence S, we model the Basic Belief Assignment (BBA)
function mi of Ci in θ = { f , f̄ } as follows :

mi( f ) = Supp(Ci)

mi( f̄ ) = 0

mi(θ) = 1− Supp(Ci)

(4.6)

Definition 27 (Chronicles combination). Assuming N chronicles Ci that cover
a sequence S, with mi, i ∈ [1, N], the basic belief assignment function relative to
the ith chronicle. The joint mass function that combines all the mi mass functions of
the chronicles Ci that cover S using the Dempster Rule of combination is defined as
follows:

m⊕(A) = m1 ⊕ . . .⊕mN(A); ∀A ⊆ θ (4.7)

To make the decision, we compute the pignistic probability BetP for fail-
ure ( f ) and normal ( f̄ ) outcome. The final decision is obtained by retaining
the hypothesis that maximized the pignistic probability as follows:

x = argmaxBetPxi∈θ(xi). (4.8)
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For the prediction task, we developed the FCP algorithm (Fusion of
Chronicles for Prediction). It consists in comparing the input sequence (to
predict) with every chronicle in terms of events and time constraints. To
each matching chronicle, we model a BBA that measures to which degree
the chronicle expresses the failure ( f ) and normal ( f̄ ) behaviour classes. The
level of uncertainty is retained using the support of the chronicle. Once all
matching chronicles are modelled, we use the Dempster rule of combination
to combine all the BBAs. The joint BBA shows the membership of the input
sequence to both classes. The final class is computed using the argmax func-
tion. If the final class is failure, we display the failure time by aggregating
the time constraints of all matching failure chronicles. Algorithm 9 performs
the combination of the covering chronicles to predict the status of a sequence
using all aforementioned notions.

4.3 Experiments

4.3.1 The SECOM Data Set

Our approaches are validated by conducting experimentation on the SECOM
data set (McCann and Johnston, 2008), which contains measurements of fea-
tures of semi-conductor production within a semi-conductor manufacturing
process. In the SECOM data set, 1567 data records and 590 attributes are col-
lected, with each recording being characterized by a timestamp referring to
the time that the data is recorded. Each recording is also associated with a
label, which is either 1 or -1. The label of every recording explains the correct-
ness of the event, with -1 corresponding to a non-failure event, and 1 refers to
a failure. Timestamps are associated with all the records indicating the mo-
ment of each specific test point. In total, 104 records represent the failures of
production. The data is stored in a raw text file, within which each line rep-
resents an individual example of recording with its timestamp. The features
are separated by spaces.

However, the data contained in SECOM data set do not have the same
types of attributes and values, that some of the information contained in the
data is irrelevant to the failure prediction task thus is considered as noise.
Moreover, due to the inter-dependency among individual features and the
complex behavior of combined features, it is difficult to extract frequent pat-
terns and rules based on the analysis of all the 590 attributes. Thus, in this
context, instead of going through the entire data set and use all 590 attributes
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Algorithm 9 Fusion of Chronicle for Prediction

Require: S: sequence, C: chronicles set
Ensure: R: result, min_time_ f ailure: minimum time to failure,

max_time_ f ailure: maximum time to failure
1: CM ← {}
2: for all C ∈ C do
3: if (coverage(S,C)) then
4: CM ← CM ∪ C
5: for all C ∈ CM do
6: if (C.Type == f ) then

7: m


m( f ) = Supp(C)
m( f̄ ) = 0
m(θ) = 1−m( f )

8: else

9: m


m( f ) = 0
m( f̄ ) = Supp(C)
m(θ) = 1−m( f̄ )

10: m⊕ ← m⊕ ⊕m
11: R← argmaxxi∈θBetP(xi)
12: if (R == f ) then
13: Init(CM,min_time_ f ailure,max_time_ f ailure)
14: for all C ∈CM do
15: if ( min_time_ f ailure > C.min_time ) then
16: min_time_ f ailure← C.min_time
17: if ( max_time_ f ailure < C.max_time) then
18: max_time_ f ailure← C.max_time
19: return R, min_time_ f ailure, max_time_ f ailure
20: else
21: return R

for failure prediction, feature selection methods (Guyon and Elisseeff, 2003a)
are used to identify and select the most relevant attributes in predicting the
failures. The selected attributes are subsequently used to extract the key fac-
tors and patterns that lead to machine failures. This reduces the data pro-
cessing time and memory consumption.

4.3.2 Evaluation of the chronicle mining

In this first part, we confront Clasp-CPM to other algorithms of the state-of-
the-art using synthetic data sets. We compared it to a previous brute-force al-
gorithm called CPM (Sellami, Samet, and Tobji, 2018), as well as DCM (Daux-
ais et al., 2015) and FACE (Dousson and Duong, 1999). In our experiments,
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FIGURE 4.6: Different steps used in the frequent failure chroni-
cle mining approach, adapted from (Sellami et al., 2019).

we used different synthetic data sets to test the effect of several parameters on
the results. Table 4.5 shows the number of generated chronicles by the afore-
mentioned algorithms for a range of support threshold that goes from 0.4 to 1
for three different synthetic data sets where we change seq_size, dic_size and
max_items/event.

As Clasp and Clospan extract the same number of closed patterns (Anto-
nio et al., 2013), the experiments show that both Clasp-CPM and CPM gen-
erate the same number of frequent chronicles. This number depends on the
different parameters used when generating the data set. Obviously, it in-
creases considerably while increasing the parameters’ values. These same
experiments done on FACE algorithm (Dousson and Duong, 1999) show that
this algorithm generates the highest number of chronicles, since it is an Apri-
ori based algorithm. In fact, Apriori extracts all the frequent patterns, not
only the closed frequent ones. In our introduced approach, we bypassed the
Apriori-like methods to avoid redundant chronicles, and to optimise the per-
formance of our chronicle mining step. On the other hand, DCM (Dauxais et
al., 2015) was designed to consider discriminancy in data, so the comparison
with our algorithm is not straightforward.

Extracting chronicles was only possible for threshold values greater than
0.7 as shown in Table 4.5. One hypothesis for these results is, as already
mentioned, the use of the discriminance constraint. This parameter was in-
tegrated in the epidemiology algorithm to distinguish two populations (pos-
itive and negative) and to extract patterns that are frequently present in the
positive base, which is not really the case in our approach since we only pro-
cess a single data set (population) at a time.

Table 4.5 shows that the maximum size of a sequence is the parameter that
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TABLE 4.5: Number of chronicles of Clasp-CPM, CPM, DCM
and FACE w.r.t data set size, sequence’s size, dictionary size,

maximum events/item and support threshold

Threshold Clasp-CPM CPM DCM FACE

DB 500 ; seq_size = 10 ; dic_size = 5 ; max_items/event = 3

0.4 70103 70103 N/A 74531
0.5 61403 61403 N/A 65312
0.6 8156 8156 N/A 9703
0.7 7180 7180 8336 8854
0.8 471 471 514 630
0.9 380 380 483 520

DB 500 ; seq_size = 10 ; dic_size = 25 ; max_items/event = 7

0.4 86723 86723 N/A 89641
0.5 81641 81641 N/A 85644
0.6 71187 71187 N/A 74290
0.7 11280 11280 13002 13383
0.8 6521 6521 6701 6824
0.9 4236 4236 4812 5148

DB 500 ; seq_size = 15 ; dic_size = 30 ; max_items/event = 7

0.4 135681 135681 N/A 140023
0.5 126550 126550 N/A 127670
0.6 27930 27930 N/A 28354
0.7 20998 20998 22601 21564
0.8 930 930 941 950
0.9 784 784 846 897

affects mostly the number of obtained chronicles. On the other hand, increas-
ing the dictionary size and the maximum number of items per event leads to
a small increase of the number of chronicles. This behaviour is explained
by the fact that small sequences generate fewer closed patterns. A larger
sequence size induces more frequent closed sequential patterns, which in-
creases the number of generated frequent chronicles. This experiment result
supports our choice to use an attribute selection method in the pre-processing
step of our approach. Indeed, the more attributes (measures) we consider,
the more our sequences are long. That’s why we consider only relevant at-
tributes, avoiding a huge number of "irrelevant" chronicles that would make
our approach more costly, without a significant impact on the prediction step.
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4.3.3 Predictive maintenance analysis

To evaluate the quality of prediction, we used several measures. The first
is to compute the True Positive Rate of the extracted chronicles. It is used to
measure the number of positive sequences that are correctly classified, i.e.,
the sequences for which there is at least one chronicle allowing to predict
the appearance of the failure without taking into consideration the tempo-
ral constraints. Indeed, for each sequence, if its events are described by the
chronicle, we have correctly classified the sequence’s failure and the chroni-
cle could have predicted what are the events which caused this breakdown.
Otherwise, if there is no chronicle that could describe the failure for a given
sequence, therefore there is no prediction of failure so the sequence was mis-
classified. The idea is to bring the approach to a classification problem to
apply the cross-validation method (Stone, 1974).

In our experiments, we used the 10 fold cross validation evaluation meth-
ods. For each value of f qmin, the chronicles are extracted from the training
sequences. Then, for the test set, we check for each sequence its membership
in at least one chronicle among those extracted. The number of sequences
validated by the chronicles is computed to estimate its percentage with re-
spect to the sequence set. This procedure is repeated 10 times to validate all
the sequences of the data set. This is the same principle used to compute
the recall rate (Davis and Goadrich, 2006), which is defined by the number
of relevant instances found in relation to the number of relevant instances in
the data set.

The True Positive Rate is computed according to this formula :

TPR =
TP

TP + FN
(4.9)

where TP (the true positive results) is the number of validated sequences,
for which we found at least one chronicle that could have predicted the fail-
ure, and FN (the false negative results) is the number of sequences for which
no chronicle could predict the failure.

Indeed, if there is no chronicle that describe a sequence S, then we cannot
classify the sequence as a "failure", and we state the "normal" case. However,
all the sequences of our data set lead to a machine failure, that’s why we
consider such a sequence classified as false negative.

In Example 9, the first three sequences are described by the given chron-
icle, since according to this chronicle an event a followed by a b causes a
failure, whereas this is not the case for the fourth sequence since the event d
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is not described by the chronicle. So the true positive rate for this example is:
3

3 + 1
= 75%.

Example 9. Let’s take the chronicle shown in Figure 4.7 and the four sequences
depicted in Table 4.6.

F

b

a

[1,3]

[3,7] [2
,4

]

FIGURE 4.7: Example of a chronicle

TABLE 4.6: Sequences’ data set

SID Events

1 ⟨(a, 1), (b, 2), (F, 4)⟩
2 ⟨(a, 0), (b, 3), (F, 7)⟩
3 ⟨(a, 2), (b, 6), (F, 17)⟩
4 ⟨(a, 3), (d, 5), (F, 5)⟩

The second measure we used evaluates the precision of the results with
consideration of the failure time, i.e., it estimates the percentage of sequences
for which time constraints are extracted correctly. Indeed, for each sequence,
if the moment predicted by the extracted chronicles is outside the failure ap-
pearance interval in the sequence, so the chronicle could not extract the tem-
poral constraints of this failure, and the failure is classified as false positive.
These interpretations allow us to apply the following precision formula:

Precision =
TP

TP + FP
. (4.10)

Example 10. With the same data from the Example 9, the first two sequences are
classified as TP since the temporal constraints between events belong to those ex-
tracted by the chronicle, whereas the third sequence is classified as FP since the events
are described by the chronicle but the temporal constraints are not checked. So the

precision rate is:
2

2 + 1
= 66.66%.
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These two previous measurements allow to compute the F-measure as
follows:

F−measure =
2TP

2TP + FP + FN
. (4.11)

Taking always the same example, the F-measure value will be equal to

:
2× 2

2× 2 + 1 + 1
= 66.6%.

The literature is plentiful of other measures that use the number of true
negatives such as specificity measure (also called the True Negative Rate).
It measures the proportion of negatives that are correctly identified. In our
application case, we can not apply them because a sequence is classified as a
true negative if the chronicles are able to predict normal cases for a sequence
where there is no failure. This class can not be used in our case since all
the available sequences lead to failures. Furthermore, a chronicle is made to
predict a failure and not the normal operation of a machine.

The prediction approaches that use chronicles for prediction are limited.
In this thesis, we compare our approach to FADE (Sellami et al., 2019). As for
FCP (Ben Chrayet, Samet, and Bach Tobji, 2020), FADE classifies the sequence
and predicts when it is going to happen using time constraint of the chroni-
cle failure event. For these reasons FADE is a natural comparative reference
to FCP. In addition, we adapted the k-NN algorithm introduced in (Fan, Ye,
and Chen, 2016) for evaluation. In our adapted version, we choose the k most
similar chronicles to our sequence among the chronicles that cover it. So we
do not consider all chronicles, just the k nearest chronicles that correspond
to the top 30% of the covering chronicles. Second, we combine the obtained
classes using the weighted majority vote method, so the weight of a class
is proportional to the distance between the sequence and the chronicles that
represent the class in question. Knowing that, our approach uses mined pat-
terns, classifies sequences and predict time to failure. We also compare FCP
to other neural network based classification approaches (Tax et al., 2017). Ta-
ble 4.7 shows the results in terms of recall, precision and F-measure on the
SECOM data set.

This experiment showed that the FCP outperforms all adapted classifiers.
First FCP outperforms FADE since FADE was initially introduced to find fail-
ure sequences. When failure is predicted using FCP, the algorithm returns the
merged intervals of failing chronicles which is a large time interval compar-
atively to FADE. Knowing that the SECOM dataset is a 104 sequences built
from the timestamped data, it is limited to train neural network approach
like (Tax et al., 2017). Additionally, the FCP considers both assumptions that
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TABLE 4.7: Quality of prediction on the SECOM data set

Approach Parameters Recall Precision F-measure
FCP(Ben Chrayet, Samet,
and Bach Tobji, 2020)

minsup=0.4 0.78 0.81 0.79

FADE(Sellami et al., 2019) minsup=0.4 0.72 0.70 0.71
k-NN(Fan, Ye, and Chen,
2016)

k equivalent to 30%
of chronicles

0.69 0.71 0.69

LSTM(Tax et al., 2017) 1 shared layer;
2 prediction layers

0.73 0.74 0.73

the sequence could be normal or abnormal one. The model try to capture the
characteristics of both situations which make it more performing.

4.4 Conclusion

In this chapter, we investigate the use of data mining techniques and more
specifically, pattern mining algorithms for predictive maintenance. We study
a rich pattern called chronicle and we provide mining algorithms to extract
chronicles from sequential data. Out of high number of mined chronicles, we
select those that describe events ending with a failure. We provide three dif-
ferent approaches to predict failure from event sequences. A first algorithm
considers the chronicle with the highest support. A second approach deals
with extra-information given by an expert in a chronicle format. Finally, the
third approach combines information when several chronicles match a input
sequence.
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Introduction

In this chapter, we are interested in mining inventive solutions using TRIZ
theory. As detailed in Chapter 3, we investigate neural networks models to
mine pertinent data to users. Three main concerns are addressed in this chap-
ter: (i) How to mine contradictions essential for any TRIZ resolution problem
using neural approaches; (ii) How to link the contradiction to a plausible so-
lution provided in patent documents; (iii) Finally, how to rank the inventive-
ness of mined solutions using multiple criteria.

5.1 Full Framework of TRIZ Patent Inventive De-

sign

In order to ensure TRIZ-based inventive design mining, we adopt a multi-
stage strategy as shown in Figure 5.1. Patents are downloaded from USPTO1

and stored in a database. From these patents, we focus on state of the
art sections in which contradictions are exposed and solutions are shown.
Therefore, in this chapter, the contributions are threefold. At first, we mine
patents’ contribution using two different architectures of neural networks.
We assume that the invention of a patent is centred on its TRIZ contra-
diction. Therefore, assuming a user formulated contradiction, an analyzed
patent could provide an inventive solution if they share the same contradic-
tion. Therefore, as a second contribution, we match patents by using the
similarity-based approach. Finally, we rank the patents according to their
inventiveness by using several criteria in a Multi Criteria Decision Analysis
(MCDA) approach.

5.2 Mining Patent TRIZ Contradictions

In this chapter, the focus is on patents’ state of the art. Indeed, it is the
part that details what is at stake in invention. The state of the art section
presents, usually, the goal of the invention and the difficulties encountered
by the prior-art current solutions. In order to extract the contradiction be-
tween parameters solved by the patent, several scenarios are then possible. A
starting problem can be presented like this: "When primary antioxidants, such

1https://www.uspto.gov/patents

https://www.uspto.gov/patents
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FIGURE 5.1: The full process for mining inventive designs

as hindered phenols, are utilized, polymers can have a more yellow color than unsta-
bilized polymers, therefore decreasing the commercial value of polymers". This sen-
tence contains a parameter that worsens, in this case, the commercial value.
Solutions to this problem are then presented but they have disadvantages
such as: "Applications employing phosphite additives can result in a reduced qual-
ity in the physical properties of polyolefins". In this second sentence, a second
parameter is recovered which can be degraded by the application of the so-
lution. Therefore, the solution mentioned in the state of the art allows the
improvement of the "commercial value" parameter but leads to the degrada-
tion of the "physical properties" parameter. Consequently, there is a contra-
diction between these two parameters. In the same way, if the parameter to
be improved is presented in the state of the art, "This necessitates proper po-
sitioning of the upwardly-extending portion of the below-ground structure". The
disadvantages of the solutions of the prior art form a contradiction with this
parameter as, for example, the risks of injuries: "Therefore, repetitively plac-
ing, removing and re-placing such device in the process of determining how best
to complete the upper end of the upwardly-projecting portion of the below-ground
structure involves considerable physical strain and accompanying risks". Finding
this contradiction makes it possible to formulate the problem in a TRIZ the-
ory manner and allows an in-depth description of the object of the invention
which, by hypothesis, responds to this (or these) contradiction(s). The sen-
tences containing the parameters to be improved or the parameters involved
in the initial problem are associated with the first part of the contradiction.
The disadvantages of the solutions of the prior art constitute the second part
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of the contradiction. This choice to separate the two parts of the contra-
diction is motivated by the fact that the meaning of the contradiction must
be detected. Indeed, Altshuller’s matrix presenting the inventive principles
as a function of the contradictions between parameters is not symmetrical.
Therefore, if a parameter A is in contradiction with a parameter B, the inven-
tive principles that are statistically the most used and therefore the types of
solutions are different.

5.2.1 Baseline Approach

The extraction of contradiction sentences is close to an automatic summariza-
tion task. This is the reason why our model is based on an extractive sum-
marization model (Guarino et al., 2020), called SummaTRIZ, as it is shown in
Figure 5.2. BERT encoder is used in this model. BERT takes as input a series
of tokens. Each sentence is separated by a special token [SEP]. Another spe-
cial token [CLS] is used to represent each sentence. BERT also takes in input
indicators of positions of tokens and sentences called Positional Embeddings
and Segment Embeddings. The input embeddings then pass into a series of
Transformer layers based on attention mechanisms that allow extracting the
salient information.

BERT allows building a contextual representation of each input token.
These representations integrate a maximum of information coming from ad-
jacent tokens and can then be used for many automatic language processing
tasks such as summarization tasks as it is the case here.

A Transformer layer on top of BERT takes as input the token representa-
tions [CLS]. The used Transformer on a given sentence representation allows
to have global attention on the whole sequence even if the latter was longer
than the 512-token limit for BERT. The output of this last layer is thus a con-
textual representation of each sentence. The limit is set to 1,500 tokens to fit
the length of the patent’s state of the art parts.

The baseline model is pre-trained on an extractive summarization task of
press articles with the CNN/DailyMail dataset (Hermann et al., 2015). The
objective is to train the attention layer above BERT so that it is able to build
a representation containing the essential information in the input sequences.
Indeed, the training of this layer requires a large variety of documents. Data
are cleaned and tokenized using Standford-Core-NLP tokenizer before the
standard BERT’s tokenizer. This process was used to pre-train the baseline
model on CNN/DailyMail dataset and it was therefore reused for patent pro-
cessing so that the pre-trained model operates in the same conditions.

https://stanfordnlp.github.io/CoreNLP/
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FIGURE 5.2: Baseline approach: SummaTRIZ (Guarino et al.,
2020)

Two 2-classes ANN classifiers are used, on top of the Transformer layer,
to predict whether each sentence belongs to the first part of the contradiction,
the second part of the contradiction, or none of them. Two different classifiers
are used because there is a non-zero probability that a sentence contains the
whole contradiction and thus should be classified as the first and second part
of the contradiction at the same time.

5.2.2 PaGAN: Patent Generative Adversarial Network

The architecture of PaGAN is based on Guarino et al.’s model (Guarino et
al., 2020) described above in subsection 5.2.1. BERT encoder allows to build
context-wise representations of sentences which are then classified as first
part of contradiction, second part of contradiction or as neutral sentence. For each
part of the contradiction, a classifier with two output neurons Oi0, Oi1 is used
(with i ∈ {1, 2} the part of the contradiction). The higher the output score of
Oi1 the higher probability that this sentence describes a contradiction.

We improve the model through two contributions. The first contribu-
tion is the addition of a document-level classifier, described in subsection
5.2.2.1, that allows predicting whether a document contains a contradiction.
The document classifier validates sentences processed by the sentence classi-
fiers by analyzing the whole document. The document classifier also prunes
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all the documents without contradictions. A mass of several millions of
unlabeled patents is available. The possible use of unlabeled data led us
to explore the potential of semi-supervised training to improve baseline re-
sults. Our second major contribution is the implementation of a Generative
Adversarial Network (GAN) to optimize the model’s fine-tuning via semi-
supervised learning and cope with training dataset size.

5.2.2.1 Document-based approach for contradiction mining

The limitation of the baseline model is that it does not predict whether a
document contains a contradiction or not. Not all analyzed patents contain
the TRIZ contradiction. Therefore, the addition of a document-level analysis
would allow to automatically prune the patents that do not contain a contra-
diction.

We propose four different models for this part which cover the main ten-
dencies in document classification: a probabilistic model, a model based on
a recurrent network, a Transformer-based model, and an ANN-based model.

Probabilistic model
In this model, we consider that the belonging of a sentence Si to either the

first part or the second part of the contradiction are independent events and
thus:

Pc(S1...Sn) = max
1≤i≤n

(Pc1(Si)) ∗ max
1≤i≤n

(Pc2(Si)) (5.1)

with Pc(S1...Sn) the probability that a contradiction is in a sentence sequence
S1...Sn. Pc1(Si) is the probability that sentence i is the first part of the con-
tradiction and Pc2(Si) the probability that sentence i is the second part of the
contradiction.

Recurrent model
The probabilistic model is limited in performance because of its postulate

which is too strong. A more global analysis of the document seems there-
fore necessary. The main difficulty encountered is the variable length of the
documents. One possibility is to use recurrent networks. A LSTM (Hochre-
iter and Schmidhuber, 1997) or a GRU (Chung et al., 2014) is used for this
model. These recurrent networks take as input a sequence of sentence repre-
sentations, i.e, in this case, the representations of all sentences in the state of
the art. The LSTMs contain a memory vector called Cell State which allows
them to select the "useful" information during the iterations. The cell state is
modified at each inference using Equation 3.1.
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In our case, the "useful" information will be the features related to the
presence or not of a contradiction. The features are learned by BERT encoder,
so the recurrent network only has to extract the right ones. This is why only
one unidirectional cell of LSTM is used. This allows limiting the number of
parameters without affecting the results.

Transformer model
The recurrent model has several drawbacks such as its run time or the

loss of information due to successive iterations. A transformer layer does
not have these drawbacks. In this model, the transformer layer takes the
sequence of sentence representations as input and its first output is the doc-
ument classification score.

ANN model
The recurrent neural network and transformer models do not take into

account the results related to the classification of sentences. We, therefore,
present a last model based on a multi-layer perceptron. The idea is to keep
only decisive information in the decision-making concerning the existence
of a contradiction. In this case, because the encoder allows building a very
precise contextual representation of the sentences, only the representations
associated with the two sentences forming the contradiction are necessary for
the decision making. A multi-layer perceptron is used for the classification
of the document from the representations of the two sentences having the
maximum probabilities of belonging to the contradiction (one sentence for
the first part and one sentence for the second part of the contradiction). Thus,
the probability Pc(S1...Sn) that a contradiction is present in the document
becomes:

Pc(S1...Sn) = ANN(arg max
1≤i≤n

(Pc1(Si)), arg max
1≤i≤n

(Pc2(Si))). (5.2)

The advantage of this approach is that the model has less chances of over-
fitting despite the small amount of data since, for the same documents, its in-
puts vary during the learning process. Indeed, as the sentences scores evolve
during the training, for a same document, the selected sentences which go
through the ANN model change. The approach makes the encoder integrate
the contradiction information in all "main" sentences which make the ANN
decision easier.
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5.2.2.2 GAN and semi-supervised training

Semi-supervised learning aims to improve the generalization of a model us-
ing unlabeled data. It also improves the quality of the representations gen-
erated by the model (Weston, Ratle, and Collobert, 2008; Yang, Cohen, and
Salakhutdinov, 2016; Kipf and Welling, 2017). Generative Adversarial Net-
works were introduced by Goodfellow et al. (Goodfellow et al., 2014). The
purpose of GANs is to generate new data close to a target data distribution.
The GANs were then adapted to semi-supervised learning (Salimans et al.,
2016). Croce et al. (Croce, Castellucci, and Basili, 2020) showed the efficiency
of this method for sentence classification.

A model called generator G generates dummy data and another model
called discriminant D tries to distinguish the data generated among real but
unlabeled examples.

The generator G learns to map input noise variables z to the real data
distribution pdata. Its goal is therefore to minimize log(1 − D(G(z))). The
discriminant, on the contrary, tries to maximize log(1− D(G(z))) while as-
sociating the right labels to the real data x, i.e. maximizing log(D(x)).

D and G play therefore a two-player minimax game with value function
V(G, D):

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))] (5.3)

Model training
An adversarial training for the sentence-level classifiers is implemented

as described by Salimans et al. (Salimans et al., 2016). An additional class
is created to introduce the probabilities of input data fitting to the target dis-
tribution pdata. Sentence classifiers have therefore three output neurons: the
initial contradiction’s classification neurons and another neuron which out-
puts the probability for the document to be fake (see Figure 5.3). The "con-
tradiction" neurons are therefore involved in the supervised loss (Dsup_1 or
Dsup_2) for the two contradictions’ classification classes C and C (the sen-
tence belongs to the part i of the contradiction or not, Equation 5.4) while the
"adversarial" neuron is involved in the unsupervised losses for the fake F and
real F classes (Equations 5.5 and 5.6).

Dsup_i = Ex,y∼pdata [−log(P(ŷsi = ysi |x, ysi ∈ (C, C)))] (5.4)
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FIGURE 5.3: PaGAN architecture

Dunsup_i = Ex∼pdata [−log(P(ŷsi = ysi |x, ysi = F))] (5.5)

D f ake_i = Ez∼pz [−log(P(ŷsi = ysi |x, ysi = F))] (5.6)

Dunsup relates to how good is the model at classifying the real data as real
data. D f ake relates to how good is the model at classifying the fake data as
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fake data. The sentences used for the unsupervised losses come from un-
labeled patents. As the losses are computed at a sentence level, not many
documents are needed (we only use 1/10 of the number of labeled docu-
ments). Dunsup is therefore back-propagated through the Transformer layer
and BERT encoder. This implies that the encoder will learn to integrate new
information in the sentence representations to allow better recognition of the
"real" data. This richer representation of patents’ sentences induces an easier
classification for the contradiction which is our main purpose. This mecha-
nism also allows minimizing overfitting. This is even amplified by the fact
that two non-supervised losses are computed and back-propagated at the
same time (one for each classifier).

The document classifier has only one output neuron that makes the de-
cision between documents that contain a contradiction (Dc class) and those
that do not (Dc class). It is thus involved in a single supervised loss:

Dsup_doc = Ex,y∼pdata [−log(P(ŷd = yd|x, yd ∈ (Dc, Dc)))]. (5.7)

As the number of labeled documents is lower than the number of labeled
sentences, the document classifier tends to learn faster than the sentence clas-
sifiers. An experimental coefficient of 0.1 is therefore applied to Dsup_doc so
that the learning curves of all classifiers can match.

Generator architecture and training
A few different architectures were implemented for the generator: a fully

connected network, a LSTM, and a transformer. The comparison of these
different architectures is shown in section 5.5.

The generator, in our case, creates sequences of sentence representations
that are plausible in order to deceive the sentence-level classifiers but, as
BERT uses the context to encode the sentences, the generator must also pro-
duce a plausible context. The loss associated with the generator combines
both losses from sentence-classifiers (G_loss_1 and G_loss_2 in Figure 5.3):

Gloss =
2

∑
i=1

Ez∼pz [−log(1− P(ŷsi = ysi |x, ysi = F))]. (5.8)

To ensure that the generator converges to the right distributions, we add two
feature matching losses. G f eat_mean (Equation 5.9) ensures that the generated
representations is close to the training data and G f eat_std (Equation 5.10) also
ensures that the generated documents are not a single representation of a
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sentence repeated n times. We, thus, add a constraint on the variety of repre-
sentations in the same document.

G f eat_mean =
∥∥∥Ex∼pdata(x) f (x)− Ez∼pz(z) f (G(z))

∥∥∥ (5.9)

G f eat_std =
∥∥∥σx∼pdata(x) f (x)− σz∼pz(z) f (G(z))

∥∥∥ (5.10)

Finally, to bring variety in the generated documents, we introduce a mini-
mization of the similarity between generated documents via a cosine simi-
larity measure:

Cossimilarity(A, B) =
A · B
∥A∥ ∥B∥∀A, B ∈ Rn. (5.11)

At each iteration, a constant number of documents is generated but they
include a random number X of representations with X ∼ N (µ, σ2) and
µ = 8, σ = 2. All the documents generated at an iteration i have nevertheless
the same length Xi. The computation of the similarity between documents
can be done relatively easily by using the similarity between sentences. The
similarity between two documents is, thus, defined as the sum of the similar-
ities between the sentences of these documents.

In practice, this additional strong constraint, since it forces the represen-
tations to be very different, does not interfere with the convergence of the
generator while avoiding mode collapse.

5.3 SAM-IDM for Inventive solution mining

To predict accurately similar problems from different domains, the model’s
ability of learning long context information has to be considered. Specif-
ically, patent documents contain very long sentences compared to generic
texts. In this section, in order to improve this ability, we introduce a novel
retrieval model named SAM-IDM in detail. Similarity-based approach for
merging IDM-related knowledge (SAM-IDM) aims at preparing inventive
solutions by extracting similar contradictions from a large number of patent
documents.

At the first step, a period of several patent documents from USPTO are
randomly chosen to build a patent database in XML format. PaGAN is then
used to extract contradictions from input patents in the second step. A third
step consists in designing a reduction strategy to assign IDM-related knowl-
edge into different groups according to different domains they belong to.
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It aims to only access inventive solutions of level 3. Altshuller separated the
patents’ different degrees of inventiveness into five levels. Level 3 designates
finding a solution outside the studied domain. This reduction strategy is also
able to enhance the performance of the sequential similarity computation by
decreasing the search set. After that, in the fourth step, the trained MaLSTM
(Mueller and Thyagarajan, 2016) is used to learn sentence semantic meanings
in order to predict similarity among different domains contradictions. Sev-
eral similar contradictions are eventually listed and ranked via their similar-
ity scores. Corresponding partial solutions towards different domains prob-
lems can be seen as potential inventive solutions of the input contradiction.
Our SAM-IDM approach follows these steps:

• Reduction of IDM-related Knowledge Set : SAM-IDM analyses a
large number of contradiction sentences. This could lead to a signifi-
cant performance issue for computing similarity among sentences. In-
deed, if we compare this considered contradiction to all of the remain-
ing contradiction sentences, computation time increases drastically. In
industrial context, the extensive computation is a major waste of time
drawback for companies and engineers. Therefore, following the hy-
pothesis, we specifically divide IDM-related knowledge into several
groups according to the different domains they belong to, so that the
computational consumption among the same domains patents can be
avoided. In detail, we compare the considered contradiction Poij of
patent i from Domaind−1 with other contradictions which are from dif-
ferent domains like Domaind. Since several domains tend to contain a
much larger number of patents, the proportion of contradiction is there-
fore high.

• Manhattan Long Short Term Memory Networks for Similarity Mea-
sure of Problem Sentence: In SAM-IDM, Manhattan LSTM (MaLSTM)
(Mueller and Thyagarajan, 2016) is applied to perform the semantic
similarity computation among different contradictions. As shown in
Figure 5.4, MaLSTM consists of two identical LSTM networks (LSTM
Encoder1 and LSTM Encoder2). Same weights are shared in these two
LSTM networks to decrease the training time of the model, because
of its siamese recurrent architecture. In MaLSTM, the identical sub-
network LSTMs is able to learn representations of contradiction sen-
tences Poij via sequences of word vectors xT. Furthermore, the word
embedding approach provides the semantic meaning to each word
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FIGURE 5.4: The structure of MaLSTM developed by (Mueller
and Thyagarajan, 2016)

Po•ij of the problem sentence in a vector representation. We apply la-
belled Quora dataset containing a large number of similar Quora ques-
tion pairs to feed LSTMs in order to let it learn hidden semantic rep-
resentations between labelled similar pairwise sentences. Similarity of
the representation space is subsequently used to infer the underlying
semantic similarity of the sentences. The Manhattan distance is even-
tually used to measure semantic similarity among contradictions Poij

from different domains patents.

5.4 Inventive solution mining using Multiple-

Criteria Decision Analysis (MCDA)

As illustrated in Figure 5.5, an inventive solutions-ranking model called Pa-
tRIS is proposed. In detail, different domains patents Pat firstly flow to SAM-
IDM model based on LSTM neural networks to achieve similar pairwise con-
tradictions set P for the target contradictions Ptarget and corresponding SV.
After that, IDM-Matching based on XLNet neural networks retrieves solu-
tions S for given similar problems according to the context information of
patent documents. We see these solutions from different domains patents as
potential inventive solutions for the target problem.

However, with a large number of patents input, several inventive solu-
tions with the same similarity value might be also generated. It leads to the
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FIGURE 5.5: The framework of PatRIS

TABLE 5.1: Inventive Solutions from Different Domains

Input sentence Similar Problems Patent Num-
ber

Similarity
Value

Domain Inventive Solutions

Patent Number: US9534284
Domain: C
the second metal layer is not provided

the web page
is not captured
normally

US9535571 0.86 G associated with a broadcasting appli-
cation according to an exemplary em-
bodiment of the present invention

if the wfe in-
struction is not
intended for
agent discov-
ery purposes

US9535772 0.83 G are accessible to the agent as well as
the client, such as designated locations
in a memory 104

the scope of the
first aspect is
not limited to
these examples

US9537403 0.86 H a slow DAC 930, the gear shift can be
made gradual. Alternatively, by using
a fast DAC, the gear shift can

the message is
not received in
step

US9537998 0.86 H step 301. Alternatively, when the mes-
sage is transmitted, the mobile

obstacle of ranking solutions only with their similarity values. As shown in
Table 5.1, three latent inventive solutions with the same similarity value 0.86
are generated from the real-world U.S. patent sample. We assume that the
inventiveness of potential solutions is related to the inventiveness of corre-
sponding patents from which they are extracted. Patent inventiveness in-
dicators as well as the Similarity Value indicator (SV) are leveraged by Pa-
tRIS to build the inventive solution ranking model according to the multiple-
criteria decision analysis approach. It is able to eventually rank these inven-
tive solutions according to patent features and semantic similarity.

Moreover, as a sub-discipline of the operation research, Multiple Criteria
Decision Analysis (MCDA) is able to explicitly evaluate multiple criteria in
decision making in order to help understand the inherent trade-off (Greene et
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al., 2011). PatRIS is based on the MCDA approach named TOPSIS (Greene et
al., 2011) and integrates five patent indicators and semantic similarity value
(SV) as the sixth criterion to build a ranking system. Ranking problems could
be formulated as the function 5.12. It is designed to maximize the inventive-
ness of solutions under the selected indicators in order to rank them.

max f (x) = (F1(x), F2(x), F3(x), F4(x), F5(x), F6(x))

F1(x) = NI(x1, x2, ..., xn)

F2(x) = CFCNF(x1, x2, ..., xn)

F3(x) = CFCF(x1, x2, ..., xn)

F4(x) = CBCNF(x1, x2, ..., xn)

F5(x) = CBCF(x1, x2, ..., xn)

F6(x) = SV(xsv1, xsv2, ..., xsvn)

(5.12)

subjected to linear constraints:

xi ≥ 0, i = 1, ..., n (5.13)

xsvi ∈ [0, 1], i = 1, ..., n (5.14)

In (5.12)-(5.14), NI(x), CFCNF(x), CFCF(x), CBCNF(x), CBCF(x), and
SV(xsv) are count of the number of inventors, cited-forward citations with
no family, cited-forward citations with family, cited-backward citations with
no family, cited-backward citations with family, and semantic similarity re-
spectively. x stands for the vector of the count variable, 0 presents the lower
bound of the ith count variable. The linear constraint comes from the con-
sideration of patent cost expenditure (number of inventors), peer recognition
(number of backward citations), relevant knowledge references (number of
forward citations), and semantic distance (similarity value). As illustrated
in Table 5.2, a real-world sample of U.S. patents, the count distribution of
indicators has been listed. The higher the number of inventors, the higher
the cost invested in the patent. A high number of forward citations shows
that the invention contains a high technical impact. A high number of back-
ward citations means that the innovation tends to cite a large number of,
and range of, scientific publications. A high similarity value indicates a short
distance between the corresponding problem of solution and the target prob-
lem. These six criteria are therefore positively related with the corresponding
values xij. PatRIS ranks the mined solutions from the most innovative to the
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TABLE 5.2: A sample of the indicator detail

Patent Number NI CFCNF CFCF CBCNF CBCF SV
US9535571 1 1 22 18 0 0.86
US9537403 3 3 14 15 0 0.86
US9535772 2 0 2 4 0 0.83
US9537998 2 0 2 9 0 0.86

least innovative. Different weights wj are also assigned to these criteria.
As illustrated in formula 5.15, we normalize each value so that all at-

tributes are set in the same range: j-th feature Fj = {x1, x2, ...xi}, i ∈ {0, n}
derives from six criteria, and xij is the value of the i-th solution under the j-th
feature. After normalization, values xij of patent indicators reaching 1 indi-
cate that the corresponding patents are more innovative in the j-th feature
Fj than other patents. When xsvij is closer to 1, the solution might be more
innovative. Attribute weights are also applied to the corresponding values.

Normalization(xij, F) =
xij

sum(F)
(5.15)

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)
with other two typical types of MCDA approaches, namely Weighted Sum
approach and Weighted Product approach, are listed below.

1. Weighted Sum (WS):

Scorei = ∑
i

xij × wj (5.16)

2. Weighted Product (WP):

Scorei = Πixij
wj (5.17)

3. TOPSIS: It aims at selecting the alternative that contains the longest ge-
ometric distance from the negative ideal solution and the shortest geometric
distance from the positive ideal solution. Thus, the optimal goal is to ap-
proach the best alternative and stay away from the worst alternative. The
main steps are as follows:

Step1: Realize the normalized matrix.

x̄ij =
xij√

∑i xij
2

(5.18)
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Step2: Assign weights to each value in order to compute the weighted
normalized matrix.

xwij = x̄ij × wj (5.19)

Step3: Compute the ideal best to mark the attribute as containing the pos-
itive impact.

idealbestpositive j = Max(xwij) (5.20)

idealworstpositive j = Min(xwij) (5.21)

Step4: Compute the Euclidean distance of idealbestpositive and
idealworstpositive, respectively.

Besti =
√

∑
j
(xwij − idealbestpositivej)

2 (5.22)

Worsti =
√

∑
j
(xwij − idealworstpositivej)

2 (5.23)

Step5: Compute Scorei and use it to rank inventive solutions.

Scorei = Worsti/(Besti + Worsti) (5.24)

5.5 Experiments

5.5.1 Contradiction mining experiments

Contradictions mining relates to a classification problem. This is why the
classical classification metrics (Accuracy, Precision, Recall, F1 score) are used
for the evaluation. However, they are not sufficient to fully evaluate the min-
ing performance. New metrics are therefore introduced, among them, a few
are inspired from extractive summary metrics.

The metrics S and Sm are used to evaluate sentence-level analysis. A la-
beled document includes n1 sentences for the first part of the contradiction
and n2 sentences for the second part of the contradiction. The metric S for
a labeled document D is defined as the number of correct sentences for the
first/second part of contradiction in the n1/n2 sentences with the maximum
probabilities of belonging to the first/second part of contradiction. Sm evaluates
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the number of correctly extracted sentences in the n1 +margin or n2 +margin
best sentences depending on the part of the studied contradiction (we take
margin = 2 for the experiments). These metrics allow us to assess the impor-
tance of the sentences that are extracted.

We call E1 = {S10...S1n1} the set of the n1 sentences labeled as first part of
contradiction and E2 = {S20...S2n1} the set of the n2 sentences labeled as second
part of contradiction. Each pair S1iS2j forms a contradiction. We consider that
a contradiction is extracted if:

arg max
1≤i≤n

(Pc1(Si)) ∈ E1 (5.25)

arg max
1≤i≤n

(Pc2(Si)) ∈ E2 (5.26)

Pc(S1...Sn) > Pthreshold (5.27)

with Pc1(Si) the probability that sentence i is the first part of the contradic-
tion, Pc2(Si) the probability that sentence i is the second part of the contra-
diction and Pc(S1...Sn) the probability that there is a contradiction to mine.
The COFound metric evaluates the first two conditions so that it only takes
into account the analysis of the sentences. The COValid metric is used to eval-
uate the number of extractions that verify all these conditions, i.e. correct
sentences are chosen and the document has a high probability of containing
a contradiction. We take Pthreshold = 0.5 for the experiments.

Concerning the hardware and the experimental settings, all the experi-
ments are performed using a four RTX 2080Ti and Intel Core i9-9820X 3.30
GHz machine. Pytorch framework is used for all experiments. Fourfold
cross-validation is performed for all experiments (at the best of three train-
ings). All results, except losses, accuracy, precision, recall, and F1-score are
summed up over the fourfolds. Losses are averaged out and the accuracy,
precision, recall and F1-score are computed from the summed TP, FP, TN,
and FN.

The results of sentences classification are shown in Tables 5.3 and 5.4. Re-
sults of document classification are sketched in Table 5.5.
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SummaTRIZ (Guarino et al., 2020) is the only existing approach that has
tackled contradiction mining. This model only allows sentence classifica-
tion. In order to compare it to other approaches, we introduce the classifi-
cation of documents in SummaTRIZ model with a probabilistic model (Part
5.2.2.1). SummaTRIZD model is trained on our dataset only. TL subscript
refers to Transfer Learning; it indicates that the model is first trained on
CNN/DailyMail dataset (extractive summarization task) and finetuned with
our dataset. For a fairer comparison of the models and to highlight the contri-
bution of the GAN, a SummaTRIZ model with an ANN document classifier
(Part 5.2.2.1) is also introduced as Baseline. The influence of the document
classifier (PROB described in 5.2.2.1, ANN described in 5.2.2.1, LSTM de-
scribed in 5.2.2.1 and TF described in 5.2.2.1) is also studied with PaGAN.
Note that for the sentence classifiers, we use an ANN with a single interme-
diate layer.

At first, we notice that the dataset alone does not allow reaching a correct
level of performance. Indeed, very few sentences have a probability of be-
longing to First part of contradiction or Second part of contradiction greater than
0.5, which automatically brings most of the classification metrics to 0. More-
over, the ranking of the sentences made by SummaTRIZD and BaselineANND

is much worse than that of the other tested setups (other architectures and/or
training mode). S and Sm are, in fact, almost twice as low as the other candi-
dates. This means that in the theoretical summaries provided by these mod-
els, very few sentences actually contain information about one or more con-
tradictions. The results in terms of document classification are also lower
than those of the other setups.

PaGAN shows slightly better sentence classification results for the tradi-
tional metrics but also for the new metrics S and Sm with an improvement
of respectively 8% and 6% for S and 3% for Sm comparatively to the baseline
using transfer learning (BaselineANNTL). In terms of document classification
and the number of contradictions extracted, the difference is much more vis-
ible. The loss is about 7% lower for the best configuration of PaGAN. At the
level of the contradictions found CO f ound, in the sense of the good sentences
selected regardless of the classification of the document, we see a maximum
increase of 15.7% (from 580/1600 to 668/1600). Since document classification
is better with GAN, this gap grows even larger when the whole model is con-
sidered with both sentence and document classification. Indeed, we observe
an increase in the number of contradictions extracted and validated by the
document-level classifier of more than 23% to go from 467/1600 to 576/1600
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for the best setup of PaGAN. The contribution of adversarial training is thus
clearly visible, both in terms of losses and metrics, and whether it is at the
level of sentence or document classifications. It is also clear that, even if
GAN works only at the sentence level, the learning of better representations
by the encoder also has a very positive impact on document classification.

Four different setups of PaGAN were tested with different document clas-
sifiers (Probabilistic model, ANN model, LSTM model, Transformer model).
The probabilistic approach PaGANPROB is, unsurprisingly, very poorly per-
forming for document classification since even if an equivalent number of
contradictions are found by sentence classification (CO f ound), very few are
actually validated by document classification (less than one third). The other
three setups show very similar results. The most important metric is preci-
sion since the goal is to limit false positives as much as possible. The ap-
proach with the ANN, which presents at the same time high precisions and a
number of extracted contradictions slightly higher than the others, seems to
be the best choice.

Finally, we studied the impact of the generator architecture as well as
the training mode (see Tables 5.6, 5.7, 5.8). Several generator architectures
have been implemented: LSTM, Transformer, Fully connected. A study of
the impact of adversarial training has also been performed. Initially, only the
sentence classifiers are involved in the adversarial training (index S added
to the name of the generator architectures in tables 5.6, 5.7, 5.8). In another
configuration, we integrate the document classifier to the discriminant which
means that we add a term to the unsupervised losses for the discriminant and
the generator (index ALL added to the name of the generator architectures
in Tables 5.6, 5.7, 5.8):

In a final setup, we remove the terms linked to the sentence classifiers
so that only the document classifier plays the role of discriminant (index D
added to the name of the generator architectures in Tables 5.6, 5.7, 5.8). The
Fully Connected FC generator is only a sentence generator. It takes as input
a latent vector and generates a representation. Therefore, only the results of
the first training configuration (adversarial training on sentence classifiers)
are shown. The LSTM and the Transformer generators generate entire doc-
uments with linked sentence representations. That’s why document-level
adversarial training is relevant.

Tables 5.6, 5.7 show that the architecture of the generator has an effect on
the sentence classification metrics. The Transformer-based generators have
high precisions. Indeed, for the first part of contradiction, Transformers reach a
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precision of 0.61 on average against 0.57 for LSTM-based generators and 0.54
for the FC generator. For the second part of contradiction the average precision
of Transformers is 0.71 against 0.68 and 0.67 for the LSTMs and FC genera-
tors). LSTMs show higher recall (0.23 for the first part of contradiction and 0.59
for the second part of contradiction versus 0.17 and 0.50 for the Transformers).
The fully connected generator shows, as for LSTMs, a low precision but a
high recall. Based on the sentence classification, the Transformer seems to be
the best architecture since it limits the maximum number of false positives.

However, the observation is different for document classification (Table
5.8). Indeed, the LSTMs based and FC architectures show the best preci-
sions (0.75 on average against 0.71 for the Transformers generators) while the
Transformers have higher recalls. The document classification is important
because it validates the sentence selection. Therefore, the best choice of archi-
tecture, validated by the metrics associated with the contradiction extraction
CO f ound and COvalid is an LSTM.

The influence of the training mode is also visible since sentence-level
training (S) goes for better recall for sentence classification and better pre-
cision for document classification and vice versa for document-level training
(D). The dual-level training ALL presents a compromise between the two
but it does not improve the precision of document classification compared to
the S training. Therefore, the latter appears to be the best training mode.

5.5.2 Contradiction matching experiments

We tune our SAM-IDM approach on the Quora set and use the grid search to
determine the optimal parameters. In the MaLSTM part, two identical LSTM
neural networks share the same configuration with the same parameters and
weights. Updating of parameters is mirrored across both subnetworks. In
order to capture and learn the semantic similarity of input pairs of sentences,
a pre-trained 100-dimensional Word2vec model (Ni, Samet, and Cavallucci,
2019) on training an open-source Wikipedia dataset is initially used to ob-
tain word embeddings as inputs of LSTM. More dimensions usually mean
a slower training speed and may contribute to an overfitting problem. For
LSTM, we select the epochs among {25, 50, 75, 100}, batch size among {500,
1000, 1500, 2000} due to a large size of training dataset. Besides, for other pa-
rameters, we separately select validation split as 0.1, rate of drop as 0.17, rate
of drop dense as 0.25, number of LSTM layers as 50, number of dense units as
50, and activation function as ReLU. Specifically, Quora dataset has 403,459
labelled pairwise sentences. Among them, 363,114 pairwise sentences are
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TABLE 5.9: Similarity matching experimental results on the la-
belled SNLI dataset (left) and the labelled patent sentence pairs

(right) for different threshold values

Precision
Threshold

0.6 0.65 0.7 0.75 0.8 0.85 0.9
SNLI Patent SNLI Patent SNLI Patent SNLI Patent SNLI Patent SNLI Patent SNLI Patent

BOW 62.45% 73.77% 60.24% 72.25% 60.04% 68.06% 61.24% 61.99% 62.25% 59.94% 61.24% 44.51% 62.05% 35.05%
TF-IDF 62.05% 72.70% 62.25% 67.88% 61.85% 66.63% 60.84% 51.65% 60.04% 49.86% 61.45% 42.01% 61.85% 26.27%
Word2vec 43.78% 71.36% 45.38% 70.47% 47.19% 72.79% 49.60% 67.26% 56.22% 61.73% 61.85% 58.70% 62.45% 60.74%
MaLSTM 70.28% 70.12% 71.49% 75.38% 73.69% 75.28% 72.49% 76.89% 81.73% 77.88% 76.51% 72.26% 77.11% 72.52%

used as training dataset and 40,345 pairwise sentences as validation dataset.
From the official notification, the ground truth labels are inherently subjec-
tive, as the true meaning of sentences can never be determined with certainty.
Human labeling is also a ’noisy’ process, and reasonable people will disagree.
As a result, this large size of labelled dataset may include many incorrect la-
bellings. Therefore, instead of avoiding the overfit problem when we train
the LSTM, we also try to find a balance point for parameters between under-
fit and goodfit in order to avoid LSTM to learn many wrong characteristics
in wrong labelled dataset even in the goodfit condition. It aims to make the
model have a good generalization on the future patent dataset.The maximum
sequence length is among {20, 30, 40, 50} because of the patent sentences
which are usually longer than normal sentences. Activation function is set
as sigmoid. Dropout rates of LSTM encoder layer and dense layer are sepa-
rately set as 0.17 and 0.25 to prevent neural networks from overfitting. The
optimal parameters are highlighted with bold faces.

To show how MaLSTM can pick up similar sentences, we compare the
performance of different methods on the labelled sample dataset with differ-
ent similarity thresholds.

The results are shown in Table 5.9. MaLSTM generally outperforms BOW,
TF-IDF, and Word2vec on labelled sample datasets. Specifically, when we set
the similarity threshold as 0.8, MaLSTM achieves the promising experimen-
tal results similar to the original research results (Mueller and Thyagarajan,
2016). Besides, we also noticed that with the increase of similarity threshold,
the number of predicted correct sentences out of similar sentences might be
sharply decreased. At the end, our goal is to be able to find inventive solu-
tions after matching contradictions between each other. Therefore, we still
need to ensure there are enough (a few) numbers of predicted similar pairs
of contradictions that will be flowed to the next stage which is extracting in-
ventive solutions. Based on the previous work (Ni, Samet, and Cavallucci,
2019), the final threshold around 0.85 is the right trade-off between the preci-
sion and the obtained number of similar contradiction. So, in this work, we
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ultimately define the similarity threshold as 0.8. It avoids two-thirds of ex-
tra computation consumption. MaLSTM finally retrieves 327 pairs of similar
contradictions from these 2.8 million pairs of contradictions from 8 domains
in Step 4. After experts’ evaluation in step 5, the precision of MaLSTM on
the U.S. patent dataset is 78.59%. The inventive solutions are subsequently
extracted from these corresponding solutions of similar contradictions in dif-
ferent domains.

5.5.3 Use case example with PatRIS

In this section, in order to evaluate the quality of the similarity and the rank-
ing, we choose to evaluate on a real use case from the battery domain. Our
starting input contradiction is Having batteries that charge faster reduces the
number of replacement batteries needed. But a faster charge increases the tempera-
ture and therefore the risk of fire. This is typically a contradiction that highlights
the battery thermal runaway. This sentence is fed to SAM-IDM and then to
PatRIS for finding the best similar contradiction in the same domain. Several
matching sentences are shown as follows:

TABLE 5.10: Ranking of sentence given for the formulated con-
tradiction

PaTRIS ranking Sentence

1 Voltage measurement for multiple cell battery pack
2 Heat exchanging system that exchanges heat between

refrigerant and a temperature regulated portion
3 Secondary battery charging system and method, and

battery pack
4 Germanium-containing active material for anodes for

lithium-ion devices

We look deeper into the patent containing the first ranked sentence. The
matched sentence extracted from patent US20160097815A1 is Overcharging
may cause severe damages to battery cells and may even become safety concerns.
Although the invention is trying to supply the surplus energy to the next cell in
line, this system inevitably causes energy waste for charging which is not friendly
to the environment. The invention relates generally to battery charging and
protection, and more particularly to voltage measurement for a plurality of
rechargeable battery cells. Overcharging lithium-ion or lithium polymer bat-
teries, for example, may cause thermal runaway, and the high temperature
developed may lead to cell rupture. Fire hazards have been reported during
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charging as extreme cases. Therefore, much attention has been paid to bat-
tery over charging and solutions have been designed to avoid battery dam-
age and safety issues. The typical charging system developed applies one
charger to charge all cells connected in series in a battery pack. Since all cells
are not manufactured in the same way, some cells may charge faster than
others. As such, charging a battery pack with a single charger charging a
plurality of cells can lead to the sonic overcharging.

5.6 Conclusion

In this chapter, we investigate the problem of helping R&D engineers to mine
inventive solutions in the Industry 4.0 domain. Therefore, we develop a
threefold contribution: (i) mine TRIZ contradiction from patents using two
summerization approaches called SummerTRIZ and PaGAN; (ii) match con-
tradiction with other user, a similarity-based approach and Siamese LSTM;
(iii) rank the found output using a multi-criteria decision analysis algorithm.
In literature, the TRIZ domain remains poor as far as the data mining-based
approach is concerned. The available contributions offer the baseline and a
foundation for the next improvement and perspectives discussed in Chapter
7.
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6.1 Introduction and related works

In the development of Industry 4.0, energy management and energy effi-
ciency overall has taken center stage. As a matter of fact, given sustainability
regulations, specific power needs, and increasing importance of energy to
drive the smart factory (i.e stationary application) and electrical vehicles (i.e
electrical mobility), there is more attention than ever to energy efficiency in
industrial markets.

It is not exactly a secret that factories and many other industrial facilities
are not just among the main “consumers” of power; power is equally critical
in ensuring continuity and quality of the end-to-end manufacturing process.
There is a reason why in Industry 4.0 so much attention is paid to topics such
as smart energy consumption in logistic mobility and smart battery manage-
ment for electric mobility manufacturers.

6.1.1 Literature review of battery ageing analysis

Vehicle manufacturers in the world are undergoing unprecedented techno-
logical change (Mesbahi et al., 2017; Li et al., 2019). In the logistic transport
field such as electric cars and heavy Automated Guided Vehicles (AGVs),
the voices of progress are linked, among other things, to the hybridization
and electrification. In both configurations, the effective operation of the sys-
tems is mainly linked to the availability of the on-board electrical energy and
therefore of the battery. The energy storage systems used in the latest gen-
eration of Hybrid Electric Vehicles (HEVs) and pure Electric Vehicles (EVs)
are mainly based on Lithium-ion (Li-ion) technology. This is because it has
a high specific energy (around 250 Wh/kg) that this technology has estab-
lished itself on the market of electric traction, especially in the automotive
sector (Mesbahi et al., 2017). The challenge for any car manufacturer, wishing
to develop a clean vehicle, is therefore not only to optimize its electric power-
trains, both in terms of mass, cost and range, but also to bring the battery into
line with the life of the vehicle (Mesbahi et al., 2017; Ren et al., 2018). Battery
lifetime is therefore a key issue for the development of HEVs and EVs under
acceptable cost conditions. In this context, failure as well as unsuitable usage
of the battery could lead to serious inconvenience, performance deteriora-
tion, accelerated ageing and costly maintenance (Li et al., 2019). To the best
of our knowledge, no major work has been established to understand battery
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ageing sequences regardless of the battery technology. A better understand-
ing of ageing patterns through battery charging and discharging sequences
could enhance the prediction of the Remaining Useful Lifetime (RUL).

In automotive or logistic applications, a battery is considered out of use
after reaching 80% of its initial storage capacity. This is referred to as the End
of Life (EoL) criterion. The State of Health (SOH) of a battery is defined as the
ratio between the storage capacity of the battery at any time (Q(t)) and its
initial capacity (Qnom).

SOH(t) =
Q(t)
Qnom

and SOH(t)% =
Q(t)
Qnom

∗ 100 (6.1)

Considering this definition, the Remaining Useful Life (RUL) is the operating
time left to a battery (often expressed as a number of cycles) before its SOH
reaches 80%.

Accurate prediction of RUL of Li-ion battery plays an increasingly crucial
role in battery state estimation and health management (Wang et al., 2017).
The typical method of Li-ion battery RUL prediction is usually divided into
two categories: multiphysical model-based (Virkar, 2011) and data driven
approach (Song et al., 2017; Hong et al., 2014; Jorge et al., 2020). The multi-
physical model-based approaches are typically difficult to develop especially
for battery degradation modeling due to the highly complex chemical reac-
tions inside Li-ion battery. The data-driven method has recently drawn sig-
nificant attention in Li-ion battery RUL prediction research area (Lipu et al.,
2018). The advances in Artificial Intelligence (AI) and Deep Learning intro-
duce new data-driven approaches to this problem. Deep Neural Network
(DNN) is especially suitable for high complex non-linear fitting by training
multi-layer artificial neural networks, and can achieve better accuracy for
complex prediction problems such as multi-battery RUL estimation. Sev-
eral prediction model-based Recurrent Neural Networks (RNN) (Li et al.,
2019; Qu et al., 2019a) or artificial neural networks are introduced. Exten-
sive review of existing battery ageing datasets and data driven approaches
are in (Dos Reis et al., 2021; Hasib et al., 2021). All approaches have two
major shortcomings: (i) they do not fully consider all the available features
to make accurate predictions; (ii) they lack explainability when they make
predictions.
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6.1.2 Battery ageing datasets

The aim of the Sandia National Laboratories dataset (Preger et al., 2020) is
to study the effect of Depth of Discharge (DoD), i.e load current and temper-
ature on battery degradation. Eighty-six cells of three different chemistries
(LFP, NMC and NCA) were considered in this study. Three different DoD
were used, 0%-100%, 20%-80% and 40%-60% at three different temperatures,
15°C, 25°C and 35°C. The discharge rates used are 0.5C, 1C, 2C and 3C. XC
refers to the battery C Rating which is the measurement of current in which a
battery is charged and discharged. The capacity of a battery is generally rated
and labelled at the 1C (1C current). All tests are conducted beyond 80% SOH
and batteries were charged at 0.5C. The NCA cells were not discharged at 3C
since it would be destructive.

In this study, only the data measured from the NMC cells tested at a
0-100% depth of discharge is used. Further research on the impact of the
depth of discharge on capacity degradation and model performance should
be done, as the results show clear evidence that the depth of discharge has
major repercussions on a battery’s capacity.

The NASA PCoE dataset (Saha and Goebel, 2007) is the most widely used
and contains 6 groups of cells for a total of 34. The cycling experiment,
which is the continuous process of charging and discharging the battery cells
until end of life, was segmented into three parts : charging, discharging,
and impedance spectroscopy. Impedance measurements were carried out
through an Electrochemical Impedance Spectroscopy (EIS) frequency sweep
from 0.1Hz to 5kHz. The charging protocol is the same for all tests, a CC-CV
charging protocol with 1.5A and a 4.2V threshold. Various different discharg-
ing currents were used.

The MIT Cycle Life dataset contains data from 124 LFP cells cycled using
various fast-charging protocols consisting of one-step or two-step constant
current charging, switching to 1C CC-CV charging at 80% State of Charge
(SOC). The cells were divided into three batches, and tested under a constant
temperature of 30°C. Internal resistance is measured during charging at 80%
SOC, using an average of ten 30ms or 33ms pulses of ±3.6C.

The datasets contain data about cycle indexes, voltage, current, tempera-
ture, charge and discharge capacity, charge and discharge energy, and battery
impedance.
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6.1.3 Motivation and challenges

There are two different data types in the ageing datasets of Li-Ion batteries:
historical data and local time series. The historical data refers to the evolution
of features according to the cycle number. In Figure 6.1, the SOH of several
batteries from the MIT dataset is plotted as a function of the number of cycles.
The longer the lifetime of the battery, the darker the curve. In Figure 6.2, the
Internal Resistance (IR) of the same batteries is plotted as a function of the
number of cycles. For both SOH and IR, one value is stored per each cycle.
Therefore, SOH and IR are considered as Historical Features (HF).

The time series data concern mainly the current, the voltage, and the tem-
perature that vary according to the use profile of the battery and that are
represented as a function of time inside a given cycle. The time series data is
referred to as local since it results from the usage of the battery by the user.
Figure 6.4 shows time series data of charge current for several given cycles of
the same battery from the MIT dataset.

Historical data and local time series do not vary on the same scale but
both carry information on battery ageing. According to the literature, NAR
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models (Non Linear Auto-Regressive), are very efficient and lead to very ac-
curate predictions of SOH. NAR Neural Networks make use of one single
vector that is given as input to the network and that is the target output of
this network. That means future values of one unique time series are deter-
mined by looking only at its past values, as follows:

y(t + 1) = f {y(t), y(t− 1), ..., y(t− d)} (6.2)

where d refers to the size of the input time window while t stands for the
time stamp. However, building a Prognostic and Health Management (PHM)
strategy for Li-Ion batteries should consider all available information about
the use of the battery. Studying previous value of SOH provides accurate
predictions of SOH for future cycles only if the battery is used in the same
manner continuously. If the use conditions vary, the prediction of SOH will
not be impacted consequently when using NAR models.

In this chapter, we focus on the problem of battery remaining useful life
prediction using usage features. We also investigate the reasons behind bat-
tery SOH degradation using eXplainable Artificial Intelligence (XAI).

6.2 AE-LSTM based model for SOH prediction

Two main parameters are predicted, the SOH and the RUL, which both repre-
sent a battery’s health. We chose to focus on SOH predictions. The majority
of papers focus on using historical capacity values as inputs. In most ap-
proaches, the conclusion is made: the larger the input window, the better the
prediction. We propose a predictive approach based on a sliding window
of limited size that performs well on long term predictions of SOH values.
The proposed architecture is based on auto-encoders as a mean of feature
extraction and dimensional reduction. Local time series data features such
as voltage, current, and temperature vary with the usage conditions of the
battery and its state of degradation. As a battery SOH decreases, its internal
resistance rises and leads to more power loss. Local time series are real time
indicators of how the battery is being used by a driver, and are believed to
be key factors to observe in our PHM strategy. The following six time se-
ries are used to make a prediction: charge voltage (Vc), discharge voltage
(Vd), charge current (Ic), discharge current (Id), charge temperature (Tc) and
discharge temperature (Td).

Figure 6.5 presents the architecture of our AE-LSTM approach. Windows
of raw time series are given as inputs to make a SOH prediction. Each of these
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time series are then distributed into two branches. One of them is made of
the encoding layers of an auto-encoder trained to reconstruct this particular
time series. This encoder outputs a code, corresponding to a vector of data
representative of the input. The second branch is composed of LSTM layers.
The encoder’s weights are frozen during the training of the final model. This

FIGURE 6.5: Architecture summary

allows the first branch to act as a static feature extraction method while the
second branch gives more context as it learns from time series of varying
lengths.

The outputs of the two sub-systems are then concatenated and fed
through LSTM layers to make the SOH prediction. A detailed description
of this architecture is available in Sections 6.2.2 and 6.2.3.

6.2.1 Data pre-processing

Data pre-processing plays a key role in data-driven strategies. Data that is
not properly processed and shaped can not possibly lead to satisfying re-
sults. This is why a step of denoising, outlier excluding and normalization
is needed. During data acquisition, several sensors and data alterations may
add unwanted noise (electromagnetic noise, vibrations, ...).

The model was built using the Sandia National Laboratories 1 (Preger et
al., 2020) dataset and tested on it as well as on the MIT Life Cycle dataset 2

(Severson and Attia, 2019) and the NASA PCoE battery dataset 3 (Saha and
Goebel, 2007).

1Accessed at https://www.batteryarchive.org in March 2021
2Accessed at https://data.matr.io/1/projects/5c48dd2bc625d700019f3204 in March 2021
3Accessed at https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-

repository/ in March 2021

https://www.batteryarchive.org
https://data.matr.io/1/projects/5c48dd2bc625d700019f3204
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
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A first look at the SNL data showed several peaks in most capacity evo-
lution curves, which had to be dealt with using a simple function which de-
tects these peaks and computes their imputed new value instead of using
the neighboring ones. These peaks are artifacts indicated on the dataset’s
download page, and are due to the transitions between normal cycling and
capacity checks. After excluding these outliers, the data could be normalized
before being used.

The NASA PCoE battery dataset, while being the most used dataset in
literature, needed several steps of pre-processing in order to be integrated
in our model. The data is gathered during three distinct steps : charge,
discharge and electrochemical impedance spectroscopy. We do not use the
impedance data; therefore it is excluded. What remains of the data struc-
ture makes a clear distinction between charge and discharge data, which was
grouped in order to get both pieces of information for each cycle. A few ir-
regularities such as two subsequent charging processes should be excluded.
Finally, due to several gaps in the battery capacity measurements, several
batteries are excluded from this work. We use batteries #5-7, #18, #32-36,
#45-48 and #53-56.

The MIT Life Cycle dataset (Severson and Attia, 2019) is the largest and
the most recent battery ageing dataset. This dataset does not need much of
pre-processing as the data do not contain any noise. The data is divided into
three batches which correspond to three series of tests. Several batteries from
each of the batches were selected to conduct performance tests.

The process of normalization is an important step to avoid imbalance be-
tween different input data samples. Here, Min-Max normalization is applied
to the data :

MinMax =
data−min(data)

max(data)−min(data)
(6.3)

The output data ranges from 0 to 1. Note that this normalization process
is applied to the input of the models, as the target data is the SOH which
is obtained by dividing the capacity values by the nominal capacity of the
battery. The batteries are split as follows : 60% for training, 20% for testing
and 20% for validation.

6.2.2 Encoding branch

The auto-encoders are models used to reduce their input to a code which is
representative enough to be reconstructed. Inputs are windows of padded
time series since each and every charge and discharge cycle is of different
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length. The sequence-to-sequence auto-encoders are made of LSTM layers of
the following sizes : [256,16,RL,256,IS] where RL is a RepeatVector layer with
a repetition factor equal to the size of the input window and IS is the size of
the input time series. The encoding layers of these models are then used in
the main AE-LSTM model.

6.2.3 LSTM branch

In parallel to the encoding layers, the input time series are distributed to-
wards LSTM layers. These two LSTM layers are of size 256 and 32. As the
encoding layers extracted from the auto-encoders have their weight frozen,
this structure allows the final model to learn while training the final model.
After concatenating the outputs of the different branches, the SOH prediction
is made using LSTM layers of sizes [512,256,256,32] and a final dense layer
with 1 unit and a linear activation function giving the final output.

6.2.4 Smoothing

Certain predictions of the AE-LSTM model present some irregularities. In
an attempt to improve these predictions, a post-processing method is inves-
tigated. One thing to consider when post-processing SOH predictions is that
each value can only be smoothed using the previous ones. Our smoothing
method uses a window of predicted capacity values to adjust the next one.
These values are assigned a weight in order to give more importance to the
most recent predictions. The weights are computed using a simple polyno-
mial function applied to a vector of progressive integers. For example, if
using a window of size 5, the vector is initialized as [1,2,3,4,5]. A function
f (x) = xn is then applied to this vector to adjust the weights, where n is
a power factor that can be adjusted. With n = 3, we get a weight vector
equal to [1,8,29,64,125] which we can apply to the window of capacity values
preceding the considered prediction.

The smoothing method shows promising results when applied to the pre-
dictions but is not consistent enough. The error values presented in the fol-
lowing sections are the ones computed using the predictions without the
post-processing stage.
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6.3 Window exogenous LSTM for SOH prediction

In this part, we introduce a deep learning model for SOH prediction, based
on the extraction of features from temporal curves of current, voltage and
temperature, which are used as input to a window - based exogenous LSTM.
The architecture is referred to as SOH-window-XLSTM. The global frame-
work of our model is described in Figure 6.6, and the following subsec-
tions detail the principles of feature extraction, feature selection, and window
LSTM for SOH prediction.

FIGURE 6.6: SOH-window-XLSTM architecture

6.3.1 Feature extraction

In this approach, features are computed and extracted from six different tem-
poral curves: charge current, voltage, temperature and discharge current,
voltage and temperature, namely IC, VC, TC, ID, VD and TD. For each of these
curves, and at each cycle of the life of each cell, several features are computed
in the temporal, statistical and spectral domain. The list of all computed fea-
tures for each of the aforementioned curves is separated into domains (Baran-
das et al., 2020). In all equations, s represents the time series signal vector, t
is the corresponding time vector and N is the length of s.
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6.3.1.1 Temporal domain

• Total Energy: ∑N
i=1 s2

tN−t0

• Area Under the Curve (AUC): ∑N
i=1(ti − ti−1) ∗ si+si−1

2

6.3.1.2 Statistical domain

• Mean : 1
N ∑N−1

i=1 si

• Root Mean Square (RMS):
√

1
N ∑N

i=1 s2
i

• Maximum : the largest value in s

• Minimum : the smallest value in s

6.3.1.3 Spectral domain

The Fast Fourier Transform of the signal is computed ( f req, f mag =

f f t(t, s)), from which several features are extracted:

• Fundamental frequency : the lowest frequency of the Fourier trans-
form

• Fmax : the maximum frequency of the Fourier transform

• Power Bandwidth : the width of the frequency interval in which 95%
of the power of the signal is located

By reducing I, V and T° time series to a combination of several scalar fea-
tures, local time series data can then be represented at the same scale as HF,
in the form of Time Series Features (TSF). For example, the global evolution
of the RMS value of charge current is shown in Figure 6.7 over the whole cy-
cle life of different cells, just as historical features can be represented. Every
curve corresponds to a different battery, and the darker the curve, the longer
the cycle life.
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FIGURE 6.7: IC RMS

6.3.2 Feature selection

After computing features from the original time series, each cycle is repre-
sented by a vector of features that includes TSF and HF. This vector has a
very high dimensionality, because the same number of features is computed
from each of the six time series described earlier. A common practice is to re-
duce the dimensionality of the learning algorithm input vector by selecting
a subset of features that best represents the predicting problem (Guyon and
Elisseeff, 2003b).

In our approach, we use wrappers for selecting features (Kohavi and
H.John, 2013). Wrappers have the advantage of evaluating the relevance of
features according to the performance of a predictive model. The wrapper
technique for feature selection uses the training process on a given machine
learning model to select the best combination of features. The aim is to obtain
the best possible performances with a given algorithm by testing iteratively
different subsets, numbers and combinations of features. The strategy is to
start with an initial set of features and to add or remove several features after
each training process in order to study the impact on the performances. This
process is called the Sequential Feature Selection. After the feature selection
process, 10 features are kept, mainly coming from charge curves.

6.3.3 Sliding window approach for SOH prediction

The working principle of our LSTM neural network is to observe a sample of
past values of any given signals to predict future values of any given signals.
The proposed architecture, based on a window exogenous LSTM, makes use
of past values of TSF to forecast future values of SOH. Although LSTMs are
built to learn long term dependencies in time series, small input windows
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FIGURE 6.8: SoHAP architecture. The vector [e0,. . . ,en] repre-
sents the contributions of each input value on the SoH.

are used in this model. Rather than giving as input the whole operating data
of current, voltage and temperature coming from a battery since its begin-
ning of life, a smaller window of several consecutive cycles is considered.
This allows more flexibility in the model. There is no need to store large
data sequences, and data preprocessing is made simpler because the size of
the window is fixed. The window dataset that is built consists in several
overlapping windows of TSF, and the output corresponds to a future value
of SOH. Predictions can be made on a very short scale, or for longer time
horizons. The training dataset for SOH prediction in this approach is built
in a way that several forecasting horizons are made possible. Future values
of SOH are predicted from 25 up to 400 cycles ahead. Another advantage of
this model is that an online prediction of SOH is made. Most approaches (Qu
et al., 2019b; Liu et al., 2012) implement iterative predictions, which consists
in updating the input signal given to the predictive model with the last pre-
diction. Our SOH-window-XLSTM is trained with “offline data”, and pre-
diction can be made “online”, on unseen data corresponding to a window of
25 consecutive cycles at any moment of the cycle life of a battery cell.

6.4 SoHAP: SoH explainable prediction based on

SHAP

The SoHAP architecture is shown in Figure 6.8 and it is based on a CNN
for SoH predictions and the use of SHapley Additive exPlanations (SHAP)
(Lundberg and Lee, 2017) for identifying the impact of the inputs regarding
the SoH value predicted by the CNN.

Windows of raw time series are used as inputs to the CNN to make SoH
predictions. Voltage, current and temperature time series vary with the us-
age conditions of the battery and its degradation. As a battery degrades, its
internal resistance rises and leads to more power loss which can be noticed
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in the evolution of its SoH and in usage time series. Usage time series are real
time indicators of how the battery is being used by a driver and they are key
factors to observe in our prognostics and health management strategy. The
following time series are used to make a prediction: charge and discharge
voltage, charge and discharge current, charge and discharge temperature.

First, our proposed convolutional neural network is introduced. Then
the SHAP method is described; it is used to obtain certain patterns in the
data that are associated with events or situations that degrade the SoH of the
batteries in an abrupt manner.

6.4.1 Convolutional Neural Network used in SoHAP

In literature, when it comes to prediction SOC and SOH, baseline approaches
are based on a CNN architecture (Hannan et al., 2021). Comparatively to
architectures of Section 6.2 and Section 6.3 they provided a small error rate
(Hannan et al., 2021) and fewer parameters.

Although CNN is the most preferred choice for coupling factor analysis
such as classification and segmentation in image applications, in recent years
CNN is also employed for SOH and RUL estimation (Hong et al., 2020; Zhou
et al., 2020). This is mainly due to the ability of the CNN model to capture
local capacity regeneration, thus improving the overall prediction accuracy
of the model. In addition, pooling and dropout layers help to improve the
training speed of the model and to avoid over-fitting in a deep network.

In our approach we build two CNN models. The first one considers as in-
put only the time series of temperature, current and voltage data of a single
cycle, and predicts the SOH at the end of the cycle. The second one considers
as input the time series temperature, current and voltage data of three con-
secutive cycles, and predicts the SOH at the end of the third cycle. Both of
them have the same architecture.

The choices of some parameters for the two convolutional network mod-
els developed are described below. Each choice is the result of a series of
tests in which only one specific parameter has been modified in order to try
to obtain the best possible results. First, regarding the type of pooling used,
it was found that the average pooling gave much better results than the max-
imum pooling. Furthermore, increasing the number of successive convolu-
tion layers does not seem to have a noticeable effect on the performance of
our model; thus a single convolution layer is placed before the MultiLayer
Perceptron (MLP). One of the configurations that gave the best results in
terms of size and number of convolution filters was to have 12 filters, each of
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size 8. As for the MLP itself, it was decided to have three layers of neurons.
The output layer is necessarily composed of a single neuron, since the objec-
tive is to perform a regression and not a classification. As for the number of
neurons in the first two layers, several tests were performed with different
configurations for the two layers (16, 32, 64 or 128 neurons) and we observed
a remarkable improvement of the final mean absolute error obtained up to
64 neurons per layer, while going to 128 allowed a rather small improvement
but considerably increased the time needed for training.

The final model structure for SOH prediction consists of two layers with
64 neurons each and a fully connected output layer of one unit, since a single
value is presented. More details on training and model construction is given
in the section 6.5.

6.4.2 Post-hoc explainability

As discussed by Lipton (Lipton, 2016), approaches to creating interpretabil-
ity can be divided in two main groups: model transparency and post-hoc
explainability. While the former tries to explain the model structure, the
post-hoc explainability presents a distinct approach to extracting informa-
tion from learned models. While post-hoc interpretations often do not elu-
cidate precisely how a model works, they may nonetheless provide useful
information for experts and end-users of machine learning. Some common
approaches to post-hoc interpretations include visualizations of learned rep-
resentations or models, and explanations by example. One advantage of this
concept of interpretability is that we can interpret black box models after-the-
fact, without sacrificing predictive performance.

SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017) pro-
vides a game-theoretical approach to explain machine learning model out-
puts. It is an additive feature attribution method to explain the output of any
machine learning model. SHAP assigns each feature an importance value for
a particular prediction. It combines optimal credit allocation and local expla-
nations using classical Shapley values. The additive in the name emphasizes
an important property. The sum of the SHAP values results in the prediction
of the model. For a simple linear regression problem, the predictions can be
written as:

ŷi = b0 + b1x1i + . . . + bdxdi (6.4)
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where ŷi is the i-th predicted response, x1i, . . . , xdi are the features of current
observation, and b0, . . . , bd are the estimated regression coefficients. In this
case, the ŷi values correspond to the predicted ˆSoHi and the x1i, . . . , xdi to the
time series values of voltage, current and temperature. SHAP is a general-
ization of this concept to more complex neural network models. We define
the following:

• F is the entire set of features, and S denotes a subset.

• S ∪ {i} is the union of the subset S and feature i ∈ F.

Then, the SHAP value is defined to measure the contribution of the i-th
feature as a weighted average of all possible differences, as shown in Equa-
tion 6.5.

ϕi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|! [ fS∪{i}(xS∪{i})− fS(xS)] (6.5)

The terms of the formula can be interpreted in the following way:

• fS∪{i}(xS∪{i})− fS(xS) : captures the marginal contributions of member
i.

• |S|! : ways in which the set S could have been formed before adding i.

• (|F| − |S| − 1)! : Different ways the remaining players could be added.

• |F|! : Number of combinations that can be formed with the coalition.

SHAP values are proved to satisfy good properties such as fairness and con-
sistency on attributing importance scores to each feature. But the calcula-
tion of SHAP values is computationally expensive. In our case, we use Deep
SHAP, which is a model-specific method to improve computational perfor-
mance through a connection between Shapley values and DeepLIFT (Shriku-
mar, Greenside, and Kundaje, 2017).

As shown in Figure 6.8, from a given input and its predicted SoH, this
method allows to obtain a numerical vector with the Shapley values for each
value of the input representing the influence, which can be negative, positive
or negligible on the predicted value of the SoH.
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6.5 Experiments

In order to compare the performances of our models among themselves and
with other approaches described in the literature, several scoring measures
were used. In the vast majority of works, the evaluation of models is based
on the Root Mean Square Error (RMSE), Root Mean Square Percentage Error
(RMSPE) and Mean Absolute Error (MAE). MAE and RMSE are very com-
mon error metrics in regression problems. Individual errors are not taken
into account in the same way in RMSE and MAE. Large errors and outliers
have a greater influence in RMSE due to the squaring information, whereas
MAE is a linear score, which means that all the individual errors are weighted
equally in the average. RMSPE has the advantage of being scale indepen-
dent, which is practical to compare forecast performances across different
datasets (Hyndman and Koehler, 2006; Armstrong and Collopy, 1992).

We also add the Normalised Mean Square Error (NMSE) in order to com-
pare the performances of our models with future work, and the Standard
Deviation of the MAE (σMAE) in order to evaluate the reliability of the mod-
els. These quality measures are expressed as follows:

MAE =
1
N

N

∑
i=1
|ypred,i − yi| (6.6)

σMAE =

√√√√ 1
N

N

∑
i=1

(ai −MAE)2 (6.7)

RMSE =

√√√√ 1
N

N

∑
i=1

(ypred,i − yi)2 (6.8)

RMSPE =

√√√√ 1
N

N

∑
i=1

(
(ypred,i − yi)

yi

)2

(6.9)

NMSE =
∑N

i=1(ypred,i − yi)
2

N ∗V
(6.10)

MAPE =
1
N

N

∑
i=1

|ypred,i − yi|
yi

∗ 100 (6.11)

In all these formulas, ypred,i is the SOH predicted by the model; yi is the
real SOH, and N is the number of samples on which error is calculated; V
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is the variance of y. For example, the use of the mean of y as the predicted
values would give an NMSE of 1.

We investigate the predicting performances of our different models, for
SOH forecasting. The size of the input window stays the same for all tests
and was fixed at 25 consecutive cycles. For both models, all error metrics
will be shown. For SOH forecasting, the output value is scaled with the
maximum-absolute method, so it varies between 0 and 1 (all values are pos-
itive). MAE and RMSE measurements will then refer to signals that have an
amplitude of 1. Different models are trained according to the input data. As
there are important differences between batteries that were tested in the MIT
and in the NASA dataset, distinct models need to be trained. Therefore, the
results regarding MIT batteries and NASA batteries will be described in two
different sections.

6.5.1 SOH forcasting experiments

6.5.1.1 SOH forecasting on the MIT dataset

Table 6.1 shows the predicting performances of our SOH-window-
XLSTM model, on MIT batteries, in the case of multi-step predictions. The
size of the input window is of 25 cycles, and the SOH prediction can be made
from 25 cycles ahead up to 400 cycles ahead. For all cases, two metrics are
given: the average prediction error and the minimum prediction error. Dif-
ferent successive trainings are made on different train/validation/test splits,
and the average error is computed as the mean of all trainings. The predic-
tion error of the best performing model is also shown for each predicting
horizon.

As expected, the best performances are obtained for short term predic-
tions, 25 cycles ahead. As the forecasting horizon grows longer, the predict-
ing performances degrade. The best of our model reaches a 1.14% RMSPE,
for a 25 cycles ahead prediction. Nevertheless, with very long term predic-
tions, up to 400 cycles ahead, the RMSPE stays as low as 3.14%. In Figure
6.11, the average and minimum MAE and RMSE of each model, correspond-
ing to each predicting horizon, are plotted. The curves show that the predic-
tion error increases almost linearly according to the number of cycles ahead.
The structure of the model does not vary from one predicting horizon to the
other, which means that the architecture is quite robust.

In Figures 6.9 and 6.10, a comparison is made between the real SOH curve
and the predicted one, for 25 cycles ahead predictions and 300 cycles ahead
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predictions. Those predicted curves correspond to predictions that were
made with the best performing model, trained to predict 25 or 300 cycles
ahead. The batteries chosen to compare real SOH and predicted SOH were
picked in the test set of the corresponding model. More precision on the train,
validation and test sets are given in the appendix of the article. In both cases,
the predicted curves are very close to the real SOH curve.

Given the results presented in Table 6.1, our models stay on average be-
tween 1.05.10−2 (25 cycles ahead) and 2.4.10−2 (400 cycles ahead) for the
MAE, and the standard deviation of the MAE stays below 2.10−2 (for 400
cycles ahead). Considering that those measures refer to signals that have a
[0,1] range, we can conclude that our SOH-window-XLSTM models give ac-
curate predictions, at both short term and long term, with a high reliability.
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FIGURE 6.9: Real VS 25-cycles ahead predicted SOH for battery
b2c5

6.5.1.2 SOH forecasting on the NASA PCoE dataset

Table 6.1 shows the predicting performances of our SOH-window-
XLSTM model, on NASA batteries, in the case of multi-step ahead predic-
tions. The size of the input window is of 25 cycles, and the SOH prediction
is made only 12 cycles ahead. Contrary to MIT batteries, the ones that were
tested by the NASA PCoE have a short cycle life (168 cycles maximum, com-
pared to more than 2000 cycles for some batteries in the MIT dataset). In
order to have a reasonable number of training samples, the choice was made
to limit the predicting horizon to 12 cycles.

Even though there is not much available training data, the predicting re-
sults are still satisfactory and vary in the same range as the ones obtained
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TABLE 6.1: XLSTM performances for SOH prediction on MIT
batteries

No of cycles MAE STD RMSE RMSPE NMSE
ahead ∗10−2 ∗10−2 ∗10−2 % ∗10−1

25 Average 1.05 1.13 1.50 1.70 1.18
Best 0.77 0.70 1.04 1.14 0.48

50 Average 1.20 1.50 1.90 2.16 1.80
Best 1.07 1.20 1.60 1.80 1.24

100 Average 1.40 1.60 2.10 2.44 2.10
Best 1.19 1.10 1.60 1.80 1.20

150 Average 1.30 1.90 2.30 2.67 2.50
Best 0.90 1.04 1.40 1.60 0.80

200 Average 1.90 2.10 3.00 3.30 3.60
Best 1.50 1.70 2.20 2.60 2.20

250 Average 1.60 1.90 2.5 2.82 2.70
Best 1.10 1.50 1.90 2.14 1.40

300 Average 2.00 2.30 3.00 3.49 3.90
Best 1.50 1.40 2.10 2.50 1.70

350 Average 2.10 2.40 3.20 3.70 4.30
Best 1.60 1.90 2.50 2.90 2.70

400 Average 2.40 2.80 3.70 4.22 5.70
Best 2.00 2.00 2.80 3.14 3.10

with MIT batteries. The three models corresponding to batteries B0005,
B0006 and B0007 have comparable performances. For these three batteries,
the best predicting models have a RMSPE of 1.9% , 3.4% and 2.05% respec-
tively. However, the predicting performances of the model on battery B0018
is slightly lower, with a RMSPE of 5.2% . This might be due to the fact that
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FIGURE 6.11: Evolution of the average and minimum MAE and
RMSE according to the number of cycles ahead

battery B0018 has a lower cycle life than batteries B0005 to B0007. Indeed, bat-
teries B0005, B0006, and B0007 are tested during 168 cycles; batteries B0054
and B0055 are tested during 90 cycles. Battery B0018 is the only one to be
tested for 132 cycles.

Figures 6.12 and 6.13 show a comparison between the real SOH and the
predicted SOH for battery B0005 and battery B0006. In both cases, the two
curves are very close. Even though local regeneration phenomena are not
taken into account, our model catches the global trend of SOH degradation.
With more training data, local variations could be predicted with more accu-
racy.

Despite the predicting performances being quite good on those four bat-
teries, the fact that the worst performance is obtained with the most "iso-
lated" battery in the dataset shows that a low number of training data im-
pacts negatively the performances of our predictive model. In all cases, the
SOH-window-XLSTM trained on MIT data performs better. There are 20
times more exploitable batteries in the MIT dataset than in the NASA dataset,
and they have on average a 5-time longer lifetime. Therefore, the MIT SOH-
window-XLSTM model is trained with a lot more data, leading to better and
more reliable results.

6.5.2 Comparison with other approaches

6.5.2.1 MIT prediction results

There are not many approaches in the literature dealing with the SOH
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TABLE 6.2: XLSTM performances for SOH prediction on NASA
batteries

Tested battery MAE STD RMSE RMSPE NMSE
No. ∗10−2 ∗10−2 ∗10−2 % ∗10−1

B0005 Average 1.60 1.10 2.00 2.60 0.67
Best 1.20 0.70 1.40 1.90 0.32

B0006 Average 2.20 1.60 2.70 4.00 1.00
Best 1.90 1.30 2.30 3.40 0.70

B0007 Average 2.90 1.30 3.20 4.10 3.00
Best 1.50 0.80 1.60 2.05 0.70

B0018 Average 4.50 2.50 5.20 7.00 9.00
Best 3.10 2.40 3.90 5.20 5.30
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prediction from the MIT dataset. We compare our predicting performances
with those of Audin et al. (Audin et al., 2021) that deal with the forecasting of
SOH, multi cycles ahead. Their approach is also based on the use of temporal
series of current, voltage and temperature as input features to a predictive
model. Time series are encoded with an auto encoder coupled with an LSTM.
SOH is forecast at different horizons, from a 25 cycles input window.

In Audin et al. (Audin et al., 2021), the prediction performances of the
AE-LSTM model is given for a 25 cycles input window, and the output is the
value of SOH, 50 cycles ahead. We compare their predicting performances
to our best performing SOH-window-XLSTM model, for a 50 cycles ahead
prediction.

We can see from Table 6.3 that our SOH-window-XLSTM model outper-
forms the AE-LSTM model. For a 50-cycle ahead SOH prediction, our model
shows a RMSE of 1.6 ∗ 10−2 compared to 2.78 ∗ 10−2 for the AE-LSTM model.

Our model is less complex as it only uses LSTM in the model itself. The
data preprocessing requires low computational abilities as very simple fea-
tures are extracted from time series.

TABLE 6.3: Comparison of SOH prediction performances, 50
cycles ahead, on MIT batteries

MAE STD RMSE NMSE
Approach ∗10−2 ∗10−2 ∗10−2 ∗10−1

XLSTM 1.07 1.20 1.60 0.12
AE-LSTM
(Audin et
al., 2021)

2.43 1.40 2.78 8.07

6.5.2.2 NASA prediction results

Most approaches concerning SOH prediction in the literature focus on the
NASA datasets. Although there are very few batteries in this dataset, it was
the first one published, and the numerous approaches in the literature offer
possibilities of comparison. We compare our predictive performances with
two articles published in 2019 by Qu et al. (Qu et al., 2019b) and 2021 by
Liu et al. (Liu et al., 2021). Although these two approaches describe clearly
their architecture and training process, it is not easy to compare our model
with theirs. An exhaustive comparison between the different aspects of their
methods and ours is made in Table 6.4. Considering that our architecture is
based on the use of TSF only and not past SOH values, it is very hard to com-
pare our SOH-window-XLSTM model to the PA-LSTM (Qu et al., 2019b) or
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the LSTM + GPR (Gaussian Process Regression) (Liu et al., 2012). Moreover,
our approach aims at building a generic model from a maximum of available
data. With MIT batteries, it is easier to test the model on several unseen bat-
teries as there are so many. With the NASA dataset, however, we split the
batteries in a way that the validation and test ensemble are fused together,
and contain only one battery.

The major difference of our approach is that all available data from all
batteries are used to train the model. Training data can be considered as
“offline data”, used to learn degradation patterns. Once the model is trained,
predictions can be made online from any input window of the test battery.
This means that it is not necessary to isolate the first part of the data from a
given battery and to use it in model learning to predict future SOH values.
In Qu et al. (Qu et al., 2019b), at least 30% of the data is used for incremental
learning, and it can go up to 70% of the SOH curve. That means only the last
50 cycles can be forecast by the model. In Liu et al. (Liu et al., 2021), 50% of
the SOH data is also used for training. We use input windows of 25 cycles,
which represents less than 20% of the lifetime of battery B0018 and less than
15% of the lifetime of batteries B0005, B0006, and B0007.

As shown in Table 6.2, our model has a RMSE of 1.4 ∗ 10−2, 2.3 ∗ 10−2 and
3.9 ∗ 10−2 for batteries B0005, B0006, and B0007 respectively. Our method
is outperformed by (Qu et al., 2019b) and (Liu et al., 2021), as the first one
reaches an RMSE of 1.19∗10−2, 1.97∗10−2 and 2.08∗10−2 for batteries B0005,
B0006, and B0007, and the second one reaches an RMSE of 3.6∗10−3 and
4.9∗10−3 for batteries B0005 and B0006 (B0007 is not indicated).

However, those results should be analysed regarding the context. Our
model is less complex and takes operating data such as current, voltage, and
temperature as input. The very positive results obtained by NAR models
depend on the nature of the input data. Experimental ageing tests of Li-Ion
batteries lead to a steady degradation trend, but one that does not represent
the real use of an electric vehicle. By using TSF in a model, the SOH predic-
tion is slightly less accurate, but more flexible and adaptable to different use
cases.

6.5.3 Explainabilty analysis

In this subsection, two interesting results on the explanation provided by
SHAP are presented. The first one is about the trained CNN model consid-
ering as input only the operating data of one cycle. The second one is about
the trained CNN model considering as input three consecutive cycles.
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TABLE 6.4: Architecture comparison

SOH-window-
XLSTM

PA-LSTM (Qu et
al., 2019b)

LSTM + GPR (Liu
et al., 2021)

Used features Time series (volt-
age, current, tem-
perature)

SOH SOH

Proposed
archi-
tec-
ture

-Feature extraction -EMD -EMD
-Feature selection -Particle Swarm -GPR

-Attention mecha-
nisms

-LSTM -LSTM -LSTM

Type
of
model

-NRX -NAR -NAR
-Generic model for
all batteries

-One model for
each battery

-One model for
each battery

Training data All available bat-
teries

At least 30% of
SOH for each bat-
tery

50% of SOH for
each battery

Type
of pre-
dic-
tion

-Multi cycles
ahead

-One cycle ahead -Multi cycles
ahead

-Online prediction -Iterative predic-
tion

-Iterative predic-
tion

In the first case, battery b1c1 of the data set was considered as an example.
Figure 6.14 shows the SOH curve of this battery. As can be seen, it is a battery
whose lifespan follows the expected one. Figure 6.15 shows the impacts of
the different input values to estimate the SOHs at different cycles. We can
observe that at the beginning of the lifetime (green area in Figure 6.14) the
charging and discharging protocols used do not have a negative impact on
the SOH; however, these same protocols have a very negative impact when
the battery approaches the end of its lifetime (red area in Figure 6.14), mainly
the current peaks (darker points in the Figure 6.15). This is a phenomenon
that is consistent with expert knowledge. Therefore, here we can see that the
explanation provided by SHAP is valid and supports the SOH prediction.

The second case is about the CNN model considering three consecutive
cycles as input. This model was mainly done to verify that the battery degra-
dation patterns are repeated from cycle to cycle, i.e., if a pattern has a neg-
ative impact in one cycle, it is expected that the same pattern will also have
a negative impact in the next cycle. This is linked to the fact that battery ag-
ing occurs slowly. Therefore, a large difference in SOH values between two
consecutive cycles would not be normal, unless something extreme occurs.
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FIGURE 6.14: SOH curve for battery b1c1.

FIGURE 6.15: Shapley values of features over different cycles.

FIGURE 6.16: Shapley values of features over three consecutive
cycles.

Figure 6.16 shows three consecutive cycles in the red area of Figure 6.14.
From this figure we can observe that sharp increases in tension at that stage
of life have a negative impact on the SOH, and we can also note that this pat-
tern is repeated in the three cycles, which also follows the expert knowledge.
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Therefore, what can be concluded from this situation is that sharp increases
in voltage at this stage of the battery life should be avoided in order to extend
its useful lifetime.

6.6 Conclusion

In this chapter, we tackle the problem of State-of-Health prediction of
Lithium-ion cells. We propose two different models based on LSTM to pre-
dict the SOH-based usage data mainly: the current, the voltage, and the tem-
perature. The models are applied on several public datasets. Additionally,
we investigate the explainability of these black models in an attempt to (i)
check the relation between entries and output to understand the ageing;(ii)
validate, using expert knowledge, the decisions of the models.
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Part IV

Conclusion & Perspectives
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Chapter 7

Conclusions and Perspectives

The industrial sector has always been crucial to the economic development
of countries. Since the end of the 18th century, industries have gone through
massive changes that revolutionized the way how products are manufac-
tured, and brought various benefits, mainly related with productivity in-
crease. Nowadays, after three industrial revolutions, the combination of ad-
vanced technologies and internet is again transforming the industrial land-
scape and is being called the 4th Industrial Revolution or Industry 4.0.

The Industry 4.0 topic emerged as a long-term strategy of the German
government; it was adopted as part of the High-Tech Strategy 2020 Action
Plan in 2011, to ensure the competitiveness of its industry and its factories.
Since then, the German government has institutionalized its commitment to
industry in creating a platform led by Ministries of Economy and Business,
Science and Trade representatives. In other words, Industry 4.0 represents a
natural evolution of previous industrial systems, from the mechanization of
labor in the 18th century to the automation of production in current days.

These smart factories are equipped with advanced sensors, embedded
software and robotics that collect and analyze data and allow for better deci-
sion making. Even higher value is created when data from production oper-
ations is combined with operational data from ERP, supply chain, customer
service and other enterprise systems to create whole new levels of visibility
and insight from previously siloed information. These digital technologies
lead to increased automation, predictive maintenance, self-optimization of
process improvements and, above all, a new level of efficiencies and respon-
siveness to customers, which was not previously possible.

In this work, we tackle three main pillars of Industry 4.0 applications
which are:

• factories’ production safety through the investigation of future machine
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failures under the major topic of predictive maintenance. We use ma-
chine sensor to understand and predict failure using data mining tech-
niques;

• companies’ innovation by exploiting one of the main supports of inno-
vation which are the patents. We combine data mining techniques and
TRIZ theory to discover and solve industrial problems;

• factories’ and logistic transport energy reduction through better under-
standing of battery degradation and remaining useful life. Machine
learning techniques are used to predict and understand battery ageing.

This manuscript presents some research directions to enhance knowledge
extraction using data mining techniques for the purpose of Industry 4.0.
Three main applications are singled out which are: predictive maintenance,
inventive design using TRIZ theory and smart battery management.

7.1 Pattern mining in predictive maintenance

In the preliminary section, we introduce sequential pattern mining and we
highlight some of its limitations in application such as Industry 4.0. These
limitations are: (i) low descriptive pattern mined from sequential data; (ii) ab-
sence of any mining algorithm for mining pattern in the context of Industry
4.0; (iii) absence of any predictive algorithm using chronicles for the purpose
of describing failure and predicting them.

Our proposal is to investigate the use of a special type of time-rich pattern
called chronicle for the task of predictive maintenance. Therefore in Chapter
4, we propose three main contributions:

• two chronicle mining algorithms called CPM and Clasp-CPM. Both are
a two-phase mining algorithm based on closed sequential pattern min-
ing algorithms and time constraint computing. Clasp-CPM offers an
enhanced performance due to its subsequence graph construction and
multi-threading coding.

• three distinct algorithms for predicting future failures using failure
chronicle previously mined. FACE algorithms that rely on picking the
failure chronicle maximizing the confidence value. FCP is an algorithm
that uses a fusing technique based on the evidence theory. Finally, we
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present an approach used to prune chronicles when a few are intro-
duced by an expert. Pruning techniques are based on metrics such as
subsumption, redundancy and conflict.

7.2 Mining inventive design using TRIZ theory

In Chapter 3, we introduce the TRIZ theory that is widely used to analyze in-
ventive documents such as patents, scientific papers, blogs and point out the
provided inventive solution to solve an assumed contradiction. Although,
this theory provides a solid formal background for solving inventive prob-
lems, automatizing it remains understudied. Indeed, to automatize the pro-
cess, contradictions which are sentences that highlight the invention difficulty
should be mined. Contradiction mining is the pillar of any TRIZ automatiza-
tion process.

In this manuscript, we propose a three-step approach to automatize the
process. Therefore in Chapter 5, three main contributions are proposed:

• two main models to mine contradiction from patent documents. First
a baseline approach, called SummerTRIZ based on transformer and an
ANN for text classification. An improvement of this approach is pro-
vided by considering the lack of labelled data. Therefore a Generative
Adversial Network based approach, called PaGAN, is detailed.

• a similarity-based approach, called SIAM-LSTM is introduced to com-
pute similarity between contradictions. Experiments are conducted on
laboratory expert labeled dataset of 1,600 patents.

• TRIZ distinguishes 5 levels of inventiveness. In our study, we rank in-
ventive solutions provided by patents regarding several criteria such as
citation, number of authors, similarity of the solution to the contradic-
tion. The algorithms use a multiple-criteria decision analysis TOPSIS.

7.3 Battery prognostic using neural networks

models

In Chapter 6, we shed light on the problem of energy management in battery
storage systems. Indeed, we rely on the assumption that in order to opti-
mize energy consumption in Industry 4.0 applications, we need to address
battery lifetime prognosis. To do so, in our manuscript, we investigate the
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Remaining Useful Life (RUL) and State of Health (SoH) prediction. We aim
to predict future values on the basis of user usage data such as voltage, cur-
rent, and temperature.

In this manuscript, we propose three main contributions toward battery
lifetime prediction using multivariate time series data. The contributions are:

• a model for SoH prediction, called AE-LSTM , based on a LSTM archi-
tecture. The LSTM is fed with data extracted from multivariate times
series using an auto-encoder. Second, SOH-window-XLSTM similar to
AE-LSTM for SoH prediction is proposed using TSF approach for fea-
ture extraction.

• SoHAP approach for ageing explanation using explainable artificial in-
telligence. SoHAP uses the post-hoc SHAP approach to highlight the
degradation main features when applied to a convolutional neural net-
work model for SoH prediction.

• approaches are validated experimentally on real-world public data of
battery prognosis such as MIT, NASA and SNL.

7.4 Perspectives

The contributions presented in the manuscript can be linked to form per-
spectives. Indeed, as highlighted in Figure 7.1, data mining approaches, and
more specifically chronicle mining, can be used together for explainability
purposes and be applied in the field of battery prognostic and predictive
maintenance. Similarly for text mining, machine learning and knowledge
reasoning can be combined to take TRIZ inventive design a step further.

7.4.1 Crossing pattern mining and explainability for smart

battery management

For the time series data, a post-hoc explainable technique, such as SHAP, is
bridged to the prediction module to compute the weights of usage data on
the degradation. The computed weights of the input feature create a multi-
variate time series in which it encapsulates all feature/SoX relations. There-
fore, the generated explanations turn to be a valuable data to analyze. Two
main directions could be investigated in the near future. First, mining tech-
niques such as Matrix profile (Yeh, Kavantzas, and Keogh, 2017) could be
investigated to find frequent and/or outlying degradation profiles. This will



7.4. Perspectives 141

Data miningPredictive
maintenance

Inventive
design

modelling

Battery
system

chronicle mining text mining

eX
pl

ai
na

bl
e

A
I

M
ac

hi
ne

le
ar

ni
ng

Pattern
mining and

explainability
for smart

battery
management

patent mining
and knowledge

reasoning

FIGURE 7.1: Cross relation between the different investigated
topics

allow to create a causal relationship between input features and SoX degra-
dation. Secondly, explanation, modelled as feature weights or counterfactual
(Verma, Dickerson, and Hines, 2020), could further analyze and detect in-
consistency, contradiction or find any minimal consistent sets (Jabbour et al.,
2016).

As perspective, the idea of using explainable prediction could be explored
since it captures all major degradation patterns while being explainable and
checkable for an expert if needed. Additionally, it allows the merging of
explainable degradation patterns of heterogenous sources (time series, im-
ages, expert knowledge, to cite a few). Since several explanations could be
mined, as shown in Figure 7.2, a perspective could be to check the possi-
ble inconsistent or contradictory explanations. The set of degradation rules
constructed is enriched by combining rules coming from the experts as well
as rules built from the formalization of the explanations mentioned above.
One strategy could be Semantic Technology. These rules could be written in
SWRL (Semantic Web Rule Language) format and enrich the formal model
representing the domain of the batteries written in OWL (Web Ontology Lan-
guage). This may raise issues among the rules, such as contradiction, gen-
erality, specificity, etc. Therefore, the project develops a strategy for prun-
ing rules according to the reliability of each source to determine which rule
should remain in the rule set. In addition, from these rules/explanations, an
analysis is intended to determine the causes that gave rise to these explana-
tions by trying to associate them with physical phenomena or battery usage
behaviour. The early-fusion approach underscores a preliminary extraction
of representative features from the original sensor data that will be fed to the
embedding layer(s) to extract multi-perspective hidden features. Afterward,
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an LSTM-based neural network model is built. The explainability layer is
provided through a model-agnostic based on dependency plots visual expla-
nations. The perspective of exploring explainability with expert knowledge
is under investigation in the Horizon Europe accepted project ENERGETIC1.
This idea is going to be explored through multiple collaborations with Uni-
versity of Luxembourg. In fact, knowledge could be brought from time series
data but image as well in the use case of battery degradation. SAT or Answer
Set Programming Solvers could be another path to instigate contradiction or
consistency among generated explanations. This direction is currently jointly
investigated with CRIL (University of Artois) and Bochum University (Ger-
many).

7.4.2 Crossing TRIZ patent mining and knowledge reason-

ing

The advent of Large Language Models (LLMs) has ushered in a wave of ex-
citement and innovation in the realm of patents and knowledge reasoning
within companies. LLMs are revolutionizing the patent landscape by signif-
icantly streamlining and enhancing the patent analysis and mining. These
models can rapidly analyze vast amounts of patent data, helping companies

1The full list of accepted projects and their details are displayed in Appendix E
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identify existing patents relevant to their innovations. These LLMs have a
major limitation is the lack of reasoning.

The starting hypothesis is that a patent is a source that might solve a con-
tradiction, i.e. it will allow the improvement of both evaluation parameters
at the same time. To automatize the process of inventivity using TRIZ theory,
several objectives are targeted: (i) analyse and mine TRIZ contradiction from
patents; (ii) mine TRIZ parameters from contradictions; (iii) predict the most
plausible inventive principles from TRIZ matrix; (iv) provide the user with
inventive solutions from TRIZ Matrix first and from patent claims. To solve
these challenges, deep learning models are combined to uncertain theories
to increase the robustness of the trained model and to cope with data uncer-
tainty. The potential association of TRIZ and AI is still not explored enough.
Currently, the steps of inventiveness using TRIZ theory are based on human
expert and engineers’ imagination from inventive principles. We could not
only automatize the patent inventive idea mining, but also strengthen the
process by robust approaches coping with data uncertainty. Conditional Ran-
dom Fields (CRF), a type of discriminative undirected probabilistic graphical
model, is currently investgated for mining TRIZ parameters. A CRF (Lafferty,
McCallum, and Pereira, 2001) models the dependencies between neighbor-
ing variables (Chu et al., 2016). In classification tasks, the CRF model com-
putes the conditional probabilities P(Y|X) with Y the labels and X the obser-
vations. While the first results are meaningful, this model would be further
improved to cope with the uncertainty and imprecision. Indeed, we may ask
ourselves how to predict the next sentence label when we are uncertain about
the previous labels. One way to answer this question is to study the use of an
uncertain theory such as the Evidence theory (Dempster, 2008). The strategy
could be investigated with the LGI2A laboratory of the University of Artois
specialized in the Evidence theory. A joint Master internship supervision is
under discussion.

Additionally, to this day, Altshuller inventive principles have never been
unproven. As Altshuller has based all his findings on statistical analysis of
400k patents, we aim to use the same approach to prove or to disprove it.
To do so, from mined contradiction, we mine TRIZ parameters in the first
part and the second part of the contradiction. Once mined, an approach
could be using constraint programming and solvers to disprove the matrix.
First, all inventive principles are introduced as facts in the program. Then, as
long as we analyze patents and we mine parameters we count them. When
that number becomes significant, a new constraint is added to the program
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FIGURE 7.3: Deep active SAT -based learning for TRIZ matrix
finding

showing the link of the found parameters to the inventive principle. If the
constraint is there, we do not bring updates to the set of constraints. On the
contrary, if an inventive principle is not sufficiently identified when two pa-
rameters are met in the contradiction, a constraint is added to emphasize that
this relation is statistically unproven. This process could be integrated as a
deep active learning process, as shown in Figure 7.3, in order to single out
the unlabeled data that could be labeled by an expert to generate a new TRIZ
matrix. This strategy is under study with several German partners such as
Kaiserslautern Hochschule and University of Applied Sciences of Berlin.

7.4.3 Management Strategies, Industrial and Financial

Prospects

This manuscript provides a comprehensive overview of our research endeav-
ors over the past few years. Our research initiatives have yielded fruitful col-
laborations in both academic and industrial spheres, resulting in significant
advancements in the fields of data mining and industry 4.0. This section of
the manuscript delves into the future prospects linked to the future ambition
of collective responsibility, call for projects or industrial collaborations.



7.4. Perspectives 145

7.4.3.1 Management Strategies and Collective Scientific Responsibilities

From a scientific standpoint, activities related to responsibility hold equal im-
portance as purely scientific progresses. Beyond administrative duties asso-
ciated with teaching, there are research obligations, including the leadership
of workgroups, research projects, themes, and research teams. My ambition
for collective responsibility can be seen at two levels: local and national.

Locally, one of the limitations I noticed when I arrived at INSA Strasbourg
in 2017 was that the SDC research team inside the school was limited to two
permanent researchers in computer science while the school clearly stated
its ambition to open up its specialities to AI. As a result of several project
acceptances and internal funding from the school, the team has grown to 3
permanent researchers, 2 PhDs and 4 PhD candidates currently working. De-
spite this growth, it is not enough to meet the internal and external demands
related to the topics addressed in this manuscript. One of our first ambitions
is to strengthen the team with other experienced researchers. One possibility
is to recruit by applying for junior professor chair in the domain of machine
learning and electrical transport.

To fund student training, I have managed to develop the teaching and
computing resources center (in french: Centre de Ressources Pédagogiques
et Informatiques shortened to CRPI) into a platform by investing more than
€250k, obtained among other things, from a response to a call for projects,
in new intensive and parallel computing equipments. In the short term, the
CRPI aims to bring in more industrial training projects that can be turned
into research projects while promoting doctoral training to INSA Strasbourg
students.

Nationally, as SDC team leader at INSA Strasbourg I attach as much im-
portance to scientific production as to its dissemination and popularization.
Since 2022, I have been an elected member of the administrative board of the
French Artificial Intelligence Association (AFIA2). Through this involvement,
I am committed to scientific dissemination via participation in the organi-
zation of the Plate-Forme d’Intelligence Artificielle (PFIA3) conference, the
organization of national scientific days, the organization of tutorials around
emerging themes in AI or even by introducing for the first time the call for
the best demonstrators. The next step would be taking in charge the full re-
sponsibility of one of the ÀFIA platforms. The AFIA, which is made up of
several panels, is a natural facilitator of communication between researchers

2https://afia.asso.fr
3https://pfia23.icube.unistra.fr

https://afia.asso.fr
https://pfia23.icube.unistra.fr
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across France. As I am also involved in the industrial panel, my ambition is
to disseminate my research to industry as well as to my peers, and to raise
awareness of the TRIZ inventive axis or the intelligent battery with a view to
responding to joint calls for projects.

7.4.3.2 Industrial prospect

The hype surrounding AI within companies pursuing Industry 4.0 is noth-
ing short of transformative. AI, with its machine learning algorithms and
data-driven insights, has become the linchpin in the realization of Industry
4.0’s potential. Companies are avidly investing in AI to optimize manufac-
turing processes, from predictive maintenance to electrical transport. Con-
sequently, this has spurred progress in both the industrial and technological
realms, with the aim of enhancing the effectiveness, performance, and acces-
sibility of these solutions. Regarding our endeavors in this area at the ICube
laboratory and INSA Strasbourg, INSA Strasbourg foundation serves as the
bridge connecting our research within the laboratory to businesses. It facili-
tates the transfer of innovative solutions developed in academic laboratories
in Alsace to industrial companies. It is with this in mind that, in collaboration
with the SMH team4, an Industrial Chair in Intelligent Batteries is beginning
to take shape, with a potential start-up date of January 2024. The aim of the
chair is to develop hybrid, explainable and interpretable models for predict-
ing battery health. The chair will explore the use of explainable models to
understand failures or loss of product quality at the end of the production
chain. The aim of this industrial chair will be to anchor its themes within
ICube and to strengthen the team.

7.4.3.3 Research fundings

In addition to these scientific opportunities, it is important to recognize the
ongoing need to secure funding for research projects at regional, national,
and international levels. These projects should engage both academic and
industrial collaborators, enabling theoretical advancements to translate into
practical industrial applications.

In my research, the applied research part is very important, as the region
Grand Est is home to industries of national importance: the region ranks
1st, 2nd or 3rd in France, in terms of employment, for half a dozen sectors,

4https://smh.icube.unistra.fr/en/index.php/MainPage

https://smh.icube.unistra.fr/en/index.php/Main_Pagehttps://smh.icube.unistra.fr/en/index.php/Main_Page
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notably automotive, machinery and equipment (production as well as instal-
lation and repair), metal products, electrical equipment and plastics. That’s
why I’ve always responded to calls for industrial projects such as those from
the Grand Est region, ADEME and InterReg, which focus more on technol-
ogy transfer and applied research. Since 2022, I have won several industrial
projects with my colleague Tedjani Mesbahi from the SMH team, including
the XAI-BATMAN project, which aims to develop explainable AI models for
SOH prediction for electric scooter manufacturing company. In the future,
one type of funding that has not been sufficiently explored is CIFRE thesis
funding in collaboration with companies. We have been approached by a
number of companies, including EDF and WESK companies, and following
the acceptance of the ENERGETIC european project, we are considering sub-
mitting CIFRE applications with students from our training program.

At the same time, I try to answer to National Research Agency (ANR) and
Horizon Europe calls for projects with a low TRL5 to explore fundamental
research directions or open up new exploratory topics. Since 2023, As matter
of fact, the Horizon Europe project ENERGETIC, which aims to develop new
explainable hybrid models, is planned to continue over the next few years
with new submission under the same program. The same goes for the ANR
XQUALITY project, whose results will be used for other European calls for
projects.

To date, the themes I have explored concern the application of AI in
Industry 4.0 domains. These themes have enabled me to collaborate with
several specialties and research teams within ICUBE, such as CSIP6, SMH
and CSTB7, and several INSA Strasbourg departments such as Mechatron-
ics, electrical, Mechanical engineering within the limits of the team’s human
capacities. One of the aims of being authorised to steer research is to be able
to collaborate with other teams from other domains. As INSA Strasbourg is
a school known for its architecture and civil engineering training, it is highly
interesting to study a link between AI and the ageing of materials such as
bitumen. Calls for internal projects or from the INSA group are conceivable
in order to reinforce this theme with doctoral students and PhDs.

5Technology Readiness Levels (TRL) are a type of measurement system used to assess the
maturity level of a particular technology.

6https://csip.icube.unistra.fr/index.php/Accueil
7https://cstb.icube.unistra.fr/index.php/Accueil

https://csip.icube.unistra.fr/index.php/Accueil
https://cstb.icube.unistra.fr/index.php/Accueil
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Appendix A

TRIZ Contradiction Matrix

The "Y-axis" of the contradiction matrix stands for the parameters to be im-
proved and the "X-axis" shows the "undesired results", that is, the parameters
to be deteriorated.

A.1 39 Generic Engineering Parameters

1. Weight of moving object
2. Weight of stationary object
3. Length of moving object
4. Length of stationary object
5. Area of moving object
6. Area of stationary object
7. Volume of moving object
8. Volume of stationary object
9. Speed
10. Force (intensity)
11. Stress or pressure
12. Shape
13. Stability of object’s composition
14. Strength
15. Duration of action of moving object
16. Duration of action of stationary object
17. Temperature
18. Illumination intensity
19. Use of energy by moving object
20. Use of energy by stationary object
21. Power
22. Loss of energy
23. Loss of substance
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24. Loss of information
25. Loss of time
26. Quantity of substance or the matter
27. Reliability
28. Measurement accuracy
29. Manufacturing precision
30. Object-affected harmful factors
31. Object-generated harmful factors
32. Ease of manufacture
33. Ease of operation
34. Ease of repair
35. Adaptability or versatility
36. Device complexity
37. Difficulty of detecting and measuring
38. Extent of automation
39. Productivity

A.2 40 Inventive Principles

The 40 Inventive Principles (IP) are used with the contradiction matrix to
solve technical contradictions. This list with the so-called "sub-principles"
that intend to help clarify the meaning of the principles was taken from the
TRIZ Journal 1.

• Inventive Principle 1: Segmentation

– Divide an object into independent parts.

– Make an object easy to disassemble.

– Increase the degree of fragmentation or segmentation.

• Inventive Principle 2: Taking out

– Separate an interfering part or property from an object, or single
out the only necessary part (or property) of an object.

• Inventive Principle 3: Local quality

1https://the-trizjournal.com/
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– Change an object’s structure from uniform to non-uniform, change
an external environment (or external influence) from uniform to
non-uniform.

– Make each part of an object function in conditions most suitable
for its operation.

– Make each part of an object fulfill a different and useful function.

• Inventive Principle 4: Asymmetry

– Change the shape of an object from symmetrical to asymmetrical.

– If an object is asymmetrical, increase its degree of asymmetry.

• Inventive Principle 5: Merging

– Bring closer together (or merge) identical or similar objects, assem-
ble identical or similar parts to perform parallel operations.

– Make operations contiguous or parallel; bring them together in
time.

• Inventive Principle 6: Universality

– Make a part or object perform multiple functions; eliminate the
need for other parts.

• Inventive Principle 7: “Nested doll"

– Place one object inside another; place each object, in turn, inside
the other.

– Make one part pass through a cavity in the other.

• Inventive Principle 8: Anti-weight

– To compensate for the weight of an object, merge it with other ob-
jects that provide lift.

– To compensate for the weight of an object, make it interact with
the environment (e.g. use aerodynamic, hydrodynamic, buoyancy
and other forces).

• Inventive Principle 9: Preliminary anti-action

– If it will be necessary to do an action with both harmful and useful
effects, this action should be replaced with anti-actions to control
harmful effects.
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– Create beforehand stresses in an object that will oppose known
undesirable working stresses later on.

• Inventive Principle 10: Preliminary action

– Perform, before it is needed, the required change of an object (ei-
ther fully or partially).

– Pre-arrange objects such that they can come into action from the
most convenient place and without losing time for their delivery.

• Inventive Principle 11: Beforehand cushioning

– Prepare emergency means beforehand to compensate for the rela-
tively low reliability of an object.

• Inventive Principle 12: Equipotentiality

– In a potential field, limit position changes (e.g. change operating
conditions to eliminate the need to raise or lower objects in a grav-
ity field).

• Inventive Principle 13: “The other way round"

– Invert the action(s) used to solve the problem (e.g. instead of cool-
ing an object, heat it).

– Make movable parts (or the external environment) fixed, and fixed
parts movable).

– Turn the object (or process) ‘upside down’.

• Inventive Principle 14: Spheroidality - Curvature

– Instead of using rectilinear parts, surfaces, or forms, use curvi-
linear ones; move from flat surfaces to spherical ones; from parts
shaped as a cube (parallelepiped) to ball-shaped structures.

– Use rollers, balls, spirals, domes.

– Go from linear to rotary motion, use centrifugal forces.

• Inventive Principle 15: Dynamics

– Allow (or design) the characteristics of an object, external envi-
ronment, or process to change to be optimal or to find an optimal
operating condition.
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– Divide an object into parts capable of movement relative to each
other.

– If an object (or process) is rigid or inflexible, make it movable or
adaptive.

• Inventive Principle 16: Partial or excessive actions

– If 100 percent of an object is hard to achieve using a given solution
method then, by using ‘slightly less’ or ‘slightly more’ of the same
method, the problem may be considerably easier to solve.

• Inventive Principle 17: Another dimension

– To move an object in two- or three-dimensional space.

– Use a multi-story arrangement of objects instead of a single-story
arrangement.

– Tilt or re-orient the object, lay it on its side.

– Use ‘another side’ of a given area.

• Inventive Principle 18: Mechanical vibration

– Cause an object to oscillate or vibrate.

– Increase its frequency (even up to the ultrasonic).

– Use an object’s resonant frequency.

– Use piezoelectric vibrators instead of mechanical ones.

– Use combined ultrasonic and electromagnetic field oscillations.

• Inventive Principle 19: Periodic action

– Instead of continuous action, use periodic or pulsating actions.

– If an action is already periodic, change the periodic magnitude or
frequency.

– Use pauses between impulses to perform a different action.

• Inventive Principle 20: Continuity of useful action

– Carry on work continuously; make all parts of an object work at
full load, all the time.

– Eliminate all idle or intermittent actions or work.

• Inventive Principle 21: Skipping
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– Conduct a process , or certain stages (e.g. destructible, harmful or
hazardous operations) at high speed.

• Inventive Principle 22: “Blessing in disguise" or “Turn Lemons into
Lemonade"

– Use harmful factors (particularly, harmful effects of the environ-
ment or surroundings) to achieve a positive effect.

– Eliminate the primary harmful action by adding it to another
harmful action to resolve the problem.

– Amplify a harmful factor to such a degree that it is no longer harm-
ful.

• Inventive Principle 23: Feedback

– Introduce feedback (referring back, cross-checking) to improve a
process or action.

– If feedback is already used, change its magnitude or influence.

• Inventive Principle 24: ‘Intermediary’

– Use an intermediary carrier article or intermediary process.

– Merge one object temporarily with another (which can be easily
removed).

• Inventive Principle 25: Self-service

– Make an object serve itself by performing auxiliary helpful func-
tions.

– Use waste resources, energy, or substances.

• Inventive Principle 26: Copying

– Instead of an unavailable, expensive, fragile object, use simpler
and inexpensive copies.

– Replace an object, or process with optical copies.

– If visible optical copies are already used, move to infrared or ul-
traviolet copies.

• Inventive Principle 27: Cheap short-living objects
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– Replace an inexpensive object with a multiple of inexpensive ob-
jects, comprising certain qualities (such as service life, for in-
stance).

• Inventive Principle 28: Mechanics substitution

– Replace a mechanical means with a sensory (optical, acoustic, taste
or smell) means.

– Use electric, magnetic and electromagnetic fields to interact with
the object.

– Change from static to movable fields, from unstructured fields to
those having structure.

– Use fields in conjunction with field-activated (e.g. ferromagnetic)
particles.

• Inventive Principle 29: Pneumatics and hydraulics

– Use gas and liquid parts of an object instead of solid parts (e.g.
inflatable, filled with liquids, air cushion, hydrostatic, hydro-
reactive).

• Inventive Principle 30: Flexible shells and thin films

– Use flexible shells and thin films instead of three dimensional
structures.

– Isolate the object from the external environment using flexible
shells and thin films.

• Inventive Principle 31: Porous materials

– Make an object porous or add porous elements (inserts, coatings,
etc.).

– If an object is already porous, use the pores to introduce a useful
substance or function.

• Inventive Principle 32: Color changes

– Change the color of an object or its external environment.

– Change the transparency of an object or its external environment.

• Inventive Principle 33: Homogeneity
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– Make objects interacting with a given object of the same material
(or material with identical properties).

• Inventive Principle 34: Discarding and recovering

– Make portions of an object that have fulfilled their functions go
away (discard by dissolving, evaporating, etc.) or modify these
directly during operation.

– Conversely, restore consumable parts of an object directly in oper-
ation.

• Inventive Principle 35: Change of physical and chemical parameters

– Change the object’s aggregate state.

– Change concentration or consistency of the object.

– Change the degree of flexibility of the object.

– Change the temperature of the object or environment.

• Inventive Principle 36: Phase transitions

– Use phenomena occurring during phase transitions (e.g. volume
changes, loss or absorption of heat, etc.).

• Inventive Principle 37: Thermal expansion

– Use thermal expansion (or contraction) of materials.

– If thermal expansion is being used, use multiple materials with
different coefficients of thermal expansion.

• Inventive Principle 38: Strong oxidants

– Replace common air with oxygen-enriched air.

– Replace enriched air with pure oxygen.

– Expose air or oxygen to ionizing radiation.

– Use ionized oxygen.

– Replace ozonized (or ionized) oxygen with ozone.

• Inventive Principle 39: Inert atmosphere

– Use inert gases instead of usual ones.

– Add neutral parts or additives to the object.
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• Inventive Principle 40: Composite materials

– Change from uniform to composite (multiple) materials.

A.3 76 Inventive Standards

A.3.1 Some Extra Precision on Inventive Standards

The 76 Inventive Standard Solutions (IS) are divided into five classes with
various sub-classes that are used depending on the type of engineering prob-
lem they solve. The five classes are:

• Class 1: Building and Destruction of Substance-Field Models (13 IS)

• Class 2: Development of Substance-Field Models (23 IS)

• Class 3 Transition to Super-system and Micro level (6 IS)

• Class 4: Standards for Detection and Measuring (17 IS)

• Class 5: Standards on Application of Standards (17 IS)

This appendix describes the classes and the sub-classes.

A.3.1.1 Class 1: Building and Destruction of Substance-Field Models

Class 1 aims to solve problems by building or destroying the Su-Field
Models if they are incomplete or have harmful functions. Class 1 contains
two sub-classes containing 13 IS:

Sub-class 1.1 Building of Su-Fields (if incomplete) (8 IS)

The major recommendations from this sub-class are:

• Make the Su-Field complete.

• Make it minimally workable by introducing an internal additive.

• Make it minimally workable by introducing an external additive.

• Use minimal - maximal mode (add more and remove the extras; add
less and enhance locally).
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Sub-class 1.2 Destruction of Su-Field (harms) (5 IS)

The major recommendations from this sub-class are:

• Introduce a third substance between the given two substances.

• Introduce a third substance from the super-system.

• Introduce a third substance that is a modification of one of the given
two substances.

• Introduce a sacrificial substance.

• Introduce a field that counteracts the harmful field.

A.3.1.2 Class 2: Development of Substance-Field Models

This class is used to improve the efficiency of engineered systems by
introducing small modifications. It provides conceptual solutions on how to
improve and develop the system. The main recommendations in this class
are:

• Use of chain Su-Fields

• Use of double Su-Fields

• Segmentation (including porosity increase)

• Dynamisation

• Rhythm coordination

• Use of magnetic substances.

Class 2 contains 4 sub-classes and 23 IS:

Sub-class 2.1 Transition to complex Su-Field Models (2 IS)

Sub-class 2.2 Evolution of Su-Field Models (6 IS)

Sub-class 2.3 Evolution of rhythms (3 IS)

Sub-class 2.4 Complex forced Su-Field Models (12 IS)
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A.3.1.3 Class 3: System Transitions and Evolution-Transition to Super-
system and Sub-system

Problems in this class are solved by developing solutions at different levels
in the system (super-systems or sub-systems). The main recommendation in
this class is how to improve the system by combining elements or combining
with other systems. Class 3 contains 2 sub-classes containing 6 IS:

Sub-class 3.1 Simplicity-complexity-simplicity (mono-bi-poly) and increasing
flexibility and dynamisation (Transition to super-system and to bi and poly systems;
use no links, rigid links, flexible links, "field" links) (5 IS)

Sub-class 3.2 Transition to micro-level (examine the sub-system, use smart sub-
stances) (1 IS)

A.3.1.4 Class 4: Solutions for Detection and Measurement

This class is used for solving measuring or detection problems in engineering
systems. These solutions contain many distinguished features, especially the
use of indirect methods and the use of copies. The major recommendations
of this class are:

• Try to change the system so that there is no need to measure/detect.

• Measure a copy.

• Introduce a substance that generates a field (introduce a mark internally
or externally).

Class 4 contains 5 sub-classes and 17 IS:

Sub-class 4.1 Indirect Methods (3 IS)

Sub-class 4.2 Create or Build a Measurement System (4 IS)

Sub-class 4.3 Enhancing the Measurement System (3 IS)

Sub-class 4.4 Measure Ferromagnetic-field (5 IS)

Sub-class 4.5 Direction of Evolution of the Measuring Systems (2 IS)
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A.3.1.5 Class 5: Standards on Application of Standards

With the help of previous four classes of the Standard Solutions, Class 5 is
additionally helpful for the further general improvements and simplification
of systems. These Standard Solutions provide recommendations of how to
introduce new substances or fields or use scientific effects more effectively
after applying the relevant Standard Solutions in the previous four classes.

Class 5 solutions are helpful when simplifying or pruning the system to
remove components or reduce the intensity of the associated interactions.
The first four classes of standard solutions mentioned above often lead to in-
creased complexity of the solution because something is often added to the
system in order to solve the problem. This fifth class of solutions illustrates
how to achieve something extra by simplifying, but without introducing any-
thing new. The useful recommendations from this class are:

• Instead of a substance, introduce a field.

• Instead of a substance, introduce a void.

• Introduce a substance for a limited time.

• Introduce a little bit of a substance, but in a very concentrated way.

• Use phase changes.

• Get the substance or environment to change themselves to solve the
problem.

• Use segmentation.

Class 5 contains 5 sub-classes and 17 IS:

Sub-class 5.1 Indirect methods for introducing substances under re-
stricted conditions (4 IS)

Sub-class 5.2 Introducing fields under restricted conditions (3 IS)

Sub-class 5.3 Phase transitions (5 IS)

Sub-class 5.4 Clever use of natural phenomena (2 IS)

Sub-class 5.5 Generating higher or lower forms of substances (3 IS)





165

Appendix B

Evidence theory

In this appendix, we introduce the fundamentals of evidence theory. The ev-
idence theory also called the belief function theory was introduced by Demp-
ster (Dempster, 1968; Dempster, 2008) in order to represent some imprecise
probabilities with upper and lower probabilities. Then, it was mathemati-
cally formalised by Shafer (Shafer, 1976a).
Evidence theory is used for representing imperfect (uncertain, imprecise
and/or incomplete) information. In this section, we present the main con-
cepts of this theory. The frame of discernment is the set of N possible answers
for a treated problem and generally denoted θ. It is composed of exhaustive
and exclusive hypotheses:

θ = (H1, H2, . . . , HN).

These elements are assumed to be mutually exclusive and exhaustive.
From the frame of discernment θ, we deduce the set 2θ containing all the
2N subsets A of θ:

2θ =
{

A, A ⊆ θ
}
=
{

H1, H2, . . . , HN, H1 ∪ H2, ..., θ
}

.

This set constitutes a reference to assess the veracity of any proposal. A Basic
Belief Assignment (BBA) m is the mapping from elements of the power set 2θ

onto [0, 1] such that:
m : 2θ → [0, 1]

having as constraints: ∑A⊆θ m(A) = 1

m(∅) = 0.
(B.1)

Each subsets A of 2θ verifying m(A) > 0 is called focal elements. Con-
straining m(∅) = 0 is the normalised form of a BBA and this corresponds
to a closed-world assumption (Smets and Kennes, 1994), while allowing
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m(∅) > 0 corresponds to an open world assumption (Smets and Kennes,
1994).

The belief function offers many advantages. One of its proposed assets
is the information fusion allowing extracting the more veracious proposition
from a multi-source context. This benefit is granted by the combination rules.
Several operators where defined such the conjunctive rule allowing fusion
without any normalisation (conflict management). For two sources S1 and
S2 having respectively m1 and m2 as BBA, the conjunctive rule is defined by:

m ∩⃝(A) = m1 ∩⃝m2(A) = ∑
B∩C=A

m1(B) ∗m2(C); ∀A ⊆ θ. (B.2)

A normalised version of conjunctive rule proposed by Dempster (Dempster,
2008) integrates a conflict management approach that redistributes the gen-
erated conflictual mass. The Dempster’s rule of combination is defined as
follows:

m⊕(A) = m1⊕m2(A) =
1

1− K ∑
B∩C=A

m1(B) ∗m2(C) =
1

1− K
m ∩⃝(A) (B.3)

where ∀A ⊆ θ, A ̸= ∅ and K is defined as:

K = ∑
B∩C=∅

m1(B) ∗m2(C) = m∩(∅) (B.4)

K represents the conflict mass between m1 and m2.
In literature, among several functions that were proposed, we distinguish the
pignistic probability. The pignistic probability denoted BetP was proposed
by Smets (Smets and Kennes, 1994) within his Transferable Belief Model
(TBM) approach. TBM is based on the differentiation between the knowl-
edge representation and decision-making level.
In the decision phase, the pignistic transformation consists in distributing
equiprobably the mass of a proposition A on its sub-hypotheses, formally:

BetP(Hn) = ∑
A⊆θ

|Hn ∩ A|
|A| ∗m(A); ∀Hn ∈ θ (B.5)
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Introduction to Neural Networks

Neural networks, which are often referred to as Artificial Intelligence, are a
family of algorithms inspired by the behavior of the human brain and neu-
rons. The purpose is to draw inspiration from the human brain to build algo-
rithms capable of learning complex tasks as quickly as possible. The concept
of neurons was introduced in 1943 by McCulloch and Pitts when computer
science was still in its infancy. The real integration of this concept in com-
puter science came more than 15 years later with Rosenblatt in 1959. His
goal was to understand how the retina works and to recognize patterns in
images. Rosenblatt created the perceptron, considered as the first artificial
neuron and the basis of neural networks.

The 1960’s and 1970’s show a progressive disinterest in artificial neurons,
as perceptrons fail to convince; their interest and research is more oriented
towards symbolic approaches. Several major works were carried out in the
1980’s, notably by Hopking who introduced gradient backpropagation in
1982.

Neural networks were massively adopted in the early 2000’s with the de-
velopment of parallel computing capabilities that allowed the construction
of more complex and efficient networks.

C.1 Formal neuron and neural networks

The model of the formal neuron (Figure C.1) is based on that of a real neuron
with incoming and outgoing links between the neurons (synapses, axons).

The output of a neuron will be the result of the application of an activation
function on the linear combination of its inputs plus a constant called bias.
The pre-activation z will thus be defined in this way:

z =
n

∑
i=1

xiwi + w0 (C.1)
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FIGURE C.1: Perceptron

with xi the input i of the neuron and wi the weight corresponding to the input
i. The weights are in fact parameters associated to the neuron whose value
will be learned during the training.

The sigma activation function of a perceptron is originally a step function,
so the output is binary. The bias replaces the threshold applied to the output
to decide when the output should be 1 or 0. However, other activation func-
tions have been developed; the best known of them are the following:

C.1.0.0.1 Sigmoïd

σ(x) =
1

1 + e−x (C.2)

C.1.0.0.2 Softmax (N is the number of element in x)

σ(x)j =
exj

∑N
c=1 exc

(C.3)

C.1.0.0.3 Rectified Linear Unit (ReLU)

σ(x) = max(0, x) (C.4)

C.1.0.0.4 TanH

σ(x) =
1− e−2x

1 + e−2x (C.5)

These activation functions always have the particularity of being non-
linear in order to be able to model more complicated behaviors, but they
also have the advantage of being differentiable over their entire range of def-
inition, which simplifies the training by gradient descent (Part C.2).
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Neural networks are made mostly of a set of neurons organized in lay-
ers as shown in Figure C.2. Each neuron of a layer will be linked to all the
neurons of the previous layer. The neurons of the same layer are not linked.
Thus, the outputs of the last layer will be functions of all the parameters of
all the neurons and of the inputs of the network. A neural network can thus
be modeled by a transfer function f such that:

ŷ = f (xi, wi) (C.6)

with ŷ the network’s output, xi the inputs and wi the weights (or parameters)
of the network.

The number of neurons in the last layer is related to the task of the net-
work. For a regression (prediction of a real value), one neuron in output
will be enough. For classification, there will be as many neurons as there are
classes. In this case the i neuron will give the probability of the i class.

FIGURE C.2: Neural Network

C.2 Training

A neural network can be trained with annotated data, i.e. for a set of N
observations x1, x2, ..., xN, the values of the N variables to predict y1, y2, ..., yN

are provided. We define the objective function as the theoretical function f
allowing to predict yi from an observation xi:

∀i ∈ [1, N], f (xi) = yi (C.7)

The goal of training a neural network is to build a surrogate model for
this function. The neural network can be seen as a mathematical function
g, non-linear and dependent on the values of the parameters associated to
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each neuron. The goal of training is to modify these parameters so that g
approximates f . This type of training is called supervised learning.

C.2.1 Loss

To measure the distance between g and f , a measure called Loss is intro-
duced. The Loss L is computed from the distances between g and f for all
known pairs (xi, f (xi) = yi). The most known losses for regression tasks
(prediction of real values) are the Mean Absolute Error and Mean Square
Error:

C.2.1.0.1 Mean Absolute Error (MSE)

L =
1
N

N

∑
i=1
|yi − ŷi| (C.8)

C.2.1.0.2 Mean Square Error (MSE)

L =
1
N

N

∑
i=1
||yi − ŷi||2 (C.9)

For classification (prediction of the membership to a category called class,
e.g. "car", "bus") the cross-entropy and the negative log likelihood are the
most commonly used. They are in fact very similar. They both measure how
correct the model is on the prediction and the cross entropy has an extra term
allowing to take into account the other classes and to measure the weight put
in the prediction on the bad classes.

C.2.1.0.3 Cross-entropy

L = − 1
N

N

∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (C.10)

C.2.1.0.4 Negative log likelihood

L = − 1
N

N

∑
i=1

log(ŷi) (C.11)
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C.2.2 Error backpropagation

Once the error between expected and actual predictions is calculated, the
network parameters must be updated to decrease this discrepancy. This step
is called backpropagation of the error. The name "backpropagation" refers to
the mechanism of predicting an output from an input which is called forward
propagation.

FIGURE C.3: Gradient descent

A simplified representation of the loss as a function of the values of the
parameters in the network (here only two parameters) is shown in Figure
C.3. At the beginning of the training, the network parameters are randomly
initialized and a first loss value is estimated. The goal of the training is to
reach the global minimum of the loss function. In a favorable case, with no
local minimum, the fastest way is to follow the steepest slope indicated by
the gradient δL

δw (red arrow on Figure C.3). This is the gradient descent. Each
parameter is updated in the following way:

w = w− lr ∗ 1
N

N

∑
i=1

δLi

δw
(C.12)

with lr the learning rate ,i.e. the speed at which the parameters are up-
dated, and Li the value of the loss for a couple (xi, yi). The variation of the
parameters is then deduced:

∆w = −lr
δL
δw

(C.13)
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To evaluate the variation of the loss between steps j and j + 1, and to ver-
ify that it is negative since it is the training purpose, we can use the following
formulas:

Lj+1 = Lj + ∆L (C.14)

∆L = ∆w ∗ δL
δw

(C.15)

This amounts to a linear approximation in the neighborhood of the oper-
ating point. With the ∆w presented previously we obtain:

∆L = −lr
δL
δw

δL
δw

(C.16)

and thus:

∆L = −lr
δL
δw

2
(C.17)

which is less than or equal to 0 if we choose lr > 0. Thus, by applying this
strategy, the loss will converge to a minimum. The larger the learning rate
lr is, the greater the capacity to exceed the local minimums and the faster
the learning will be but the algorithm will also be less stable and will not
always converge. Indeed, as everything relies on a linear approximation in
the neighborhood of the operating point, the further away from this point
with a large lr the more false this approximation is. In most of the current
learning strategies, the lr is adjusted during the training with often a high
value at the beginning of the training and a lower value at the end. Certain
activation functions, like the sigmoid function, squishes a large input space
into a small input space between 0 and 1. Therefore, a large change in the
input of the sigmoid function will cause a small change in the output. Hence,
the derivative becomes small. A small gradient means that the weights and
biases of the initial layers will not be updated effectively with each training
session. Since these initial layers are often crucial to recognizing the core
elements of the input data, it can lead to overall inaccuracy of the whole
network. This problem is commonly called the vanishing gradient problem.

C.3 Training and specialization

The training of a neural network is supervised, so annotated data (dataset) is
required. This data must be numerous to allow optimal learning of each of
the network parameters. The smaller the amount of data available, the higher
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the chances of overfitting. Overfitting occurs when the network performs so
well on training data that its ability to generalize and perform well on new
data decreases.

However, access to a large amount of annotated data for a specific task is
not always guaranteed. This is why transfer learning has been introduced.
It consists in learning the network on a task close to, but different from, the
goal. Then, the network is trained on the data associated with the target task,
which is less numerous, with a very low learning rate to avoid overfitting.

Other training methods are also possible. Reinforcement learning does
not use losses as such but aims at maximizing a "reward" according to the
prediction of the network through trial and error. The gradient is still used
but to maximize the reward instead of minimizing the error.
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Author’s scientific publications

My scientific production started in 2011 with the publication of my first pa-
per as an attempt to put forward my master’s research results. Indeed, in my
early days, I attended conferences on the treatment of uncertainty through
the theory of belief functions. In addition to conferences ranked and known
in the uncertainty community such as IPMU, which,together with ECSQARU
form the reference conferences in the belief function theory community, I
participated in other conferences such as Belief, IUKM, KSE and ICMSAO
which are also carried by influential people in my research area ( for exam-
ple: Arthur Dempster, Glenn Shafer, Thierry Denoeux, Sebastien Destercke).
The multidisciplinary nature of my thesis (belief function theory, data mining
and machine learning), has changed my attendance of conferences. Indeed,
I have opened up to the fields of Artificial Intelligence and data mining, and
started targeting others that are thriving. Since 2015, I have participated in 20
international conferences including several ranking A and A*. As far as my
publication in international journals is concerned, I have endeavored to add
value to my most notable contributions through the extensions. Therefore,
most of my papers have been extended in journals with at least a C rank.
Additionally, since supervised PhD’s are multidisciplinary, I always looked
to publish in non-computer science journals, in full agreement with the PhD
main supervisors.

Articles in international peer-reviewed journals listed in international
databases

Jorge, I., Samet, A., Mesbahi, T., Boné, R.: Time Series Feature extraction
for Lithium-Ion batteries State-Of-Health prediction. Journal of Energy
Storage (to appear).https://doi.org/10.1016/j.est.2022.106436.

https://doi.org/10.1016/j.est.2022.106436
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Guarino, G., Samet, A., Cavallucci, D.: PaTRIZ: A framework for min-
ing TRIZ contradictions in patents. Expert Syst. Appl. 207: 117942
(2022).https://doi.org/10.1016/j.eswa.2022.117942.

Ni, X., Samet, A., Cavallucci, D.: Similarity-based approach for in-
ventive design solutions assistance. J. Intell. Manuf. 33(6): 1681-1698
(2022).https://doi.org/10.1007/s10845-021-01749-4

Cao, Q., Zanni-Merk, C., Samet, A., Reich, C., de Bertrand de Beuvron,
F., A. Beckmann, C. Giannetti: KSPMI: A Knowledge-based System for
Predictive Maintenance in Industry 4.0. Robotics Comput. Integr. Manuf.
74: 102281 (2022). https://doi.org/10.1016/j.rcim.2021.102281

Cao, Q., Zanni-Merk, C., Samet, A., de Beuvron, F. et Reich, C.: Using
Rule Quality Measures for Rule Base Refinement in Knowledge-Based
Predictive Maintenance Systems. Cybernetics and Systems, 1-16, 2020.
https://doi.org/10.1080/01969722.2019.1705550

Sellami, C., Miranda, C., Samet, A., Bach-Tobji, M. A, et de Beuvron,
F.: On mining frequent chronicles for machine failure prediction. Jour-
nal of Intelligent Manufacturing, 1-17, 2019. https://doi.org/10.1007/

s10845-019-01492-x

Samet, A., Bouzembrak, Y., et Lefevre, E. : Evidential Data Mining to de-
sign Supply Chain Network under Uncertainty, Logistics research journal,
10(1): 8 , 2017.

Samet, A., Lefevre, E. et Ben Yahia, S. : Evidential Data mining: Precise
support and confidence, Journal of Intelligent Information Systems, 47(1),
135-163, 2016.

Samet, A., Hammami, I., Lefevre, E. et Ben Yahia, S. : Reliability esti-
mation measure: Generic Discounting Approach. International Journal of
Pattern Recognition and Artificial Intelligence, 29(7), 2015.

https://doi.org/10.1016/j.eswa.2022.117942
https://doi.org/10.1007/s10845-021-01749-4
https://doi.org/10.1016/j.rcim.2021.102281
https://doi.org/10.1080/01969722.2019.1705550
https://doi.org/10.1007/s10845-019-01492-x
https://doi.org/10.1007/s10845-019-01492-x
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Samet, A., Lefevre, E. et Ben Yahia, S. : Integration of extra-information
for belief function theory conflict management problem through generic
association rules. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 22(04):531-551, 2014 (IF 0.899).

Papers in international conferences with refereed proceedings

Hamouni, A., Arbaoui, S., Ayadi, A., Giustozzi, F., Mesbahi, T., Samet,
A.: OntoSoC : An ontology-based approach to battery pack SoC estima-
tion. in proceedings of 27th International Conference on Knowledge-Based and
Intelligent Information & Engineering Systems, Athens, Greece 2023 (to ap-
pear).(Core 2018 : Rank B).

Heitzmann, T., Samet, A., Soufi, C., Mesbahi, T. and Boné, R.: SocHAP: a
new data driven explainable prediction of battery state of charge.in pro-
ceedings of 23RD International Conference on Computational Science, Prague,
Czech republic, 2023. (to appear). (Core 2018 : Rank A)

Venuti, M., Samet, A., Giustozzi, F., Heitzmann, T., Mesbahi, T.: Fouille
de séries temporelles pour l’explicabilité de la dégradation de l’état
de charge des batteries Lithium-ions. 23ème conférence francophone sur
l’extraction et la gestion des connaissances 2023: 305-312.(ERA 2010 : Rank
C).

Guarino, G., Samet, A., Cavallucci, D.: Réseau antagoniste génératif pour
la fouille des contradictions TRIZ dans les brevets. 22ème conférence fran-
cophone sur l’extraction et la gestion des connaissances 2022: 379-386.(ERA
2010 : Rank C).

Douard, N., Samet, A., Giakos, G. C., Cavallucci, D.: Bridging Two Dif-
ferent Domains to Pair Their Inherent Problem-Solution Text Contents:
Applications to Quantum Sensing and Biology. in proceedings of TRIZ Fu-
ture conference 2022: 61-69
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Joël Azemena, H., Ayadi, A., Samet, A.: Explainable Artificial Intelligent
as a solution approach to the Duck Curve problem. in proceedings of 26th
International Conference on Knowledge-Based and Intelligent Information &
Engineering Systems, Verona, Italy 2022: 2747-2756.(Core 2018 : Rank B).

Ni, X., Samet, A., Chibane, H., Cavallucci, D.: PatRIS: Patent Ranking In-
ventive Solutions. in proceedings of the 32nd DEXA Conferences(2), virtual
conference, 2021: 295-309.(Core 2018 : Rank B).

Guarino, G., Samet, A., Nafi, A., Cavallucci, D.: PaGAN: Generative Ad-
versarial Network for Patent understanding. in proceedings of 21st IEEE
International Conference on Data Mining, Auckland, New Zealand 2021:
1084-1089.(Core 2018 : Rank A*).

Audin, P., Jorge, I., Mesbahi, T., Samet, A., de Bertrand de Beuvron, F.,
Boné, R.: Auto-encoder LSTM for Li-ion SOH prediction: a comparative
study on various benchmark datasets. in proceedings of 20th IEEE Inter-
national Conference on Machine Learning and Applications,virtually online,
2021: 1529-1536.(Core 2018 : Rank C).

Guarino, G., Samet, A., Cavallucci, D.: Patent Specialization for Deep
Learning Information Retrieval Algorithms. TFC 2021: 162-169

Ni, X., Samet, A., Cavallucci, D.: Replicating TRIZ Reasoning Through
Deep Learning. in proceedings of TRIZ Future conference 2021: 330-339

Jorge, I., Mesbahi, T., Paul, T., Samet, A.: Study and simulation of an
electric scooter based on a dynamic modelling approach. EVER 2020: 1-6

Guyet, T. , Besnard, P., Ben Salha, N., Samet, A. et Lachiche, C. :
Énumération des occurrences d’une chronique, 20ème conférence franco-
phone sur l’Extraction et la Gestion des Connaissances EGC2020, Bruxelle,
Belgique, 2020 (ERA 2010 : Rank C).
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Cao, Q., Samet, A., Zanni-Merk, C., de Beuvron, F. et Reich, C. : Combin-
ing Evidential Clustering and Ontology Reasoning for Failure Prediction
in Predictive Maintenance, In Proceeding of 12th International Conference on
Agent and Artificial Intelligence, Valletta, Malta, 2020 (Core 2018 : Rank C).

Ni, X., Samet, A. et Cavallucci, D. : An Approach Merging the IDM-
Related Knowledge, In Proceeding of TRIZ Future Conference, Marrakesh,
Morocco 2019, pages 147-158, 2019 (Conférence référence dans la concep-
tion inventive).

Cao, Q., Samet, A., Zanni-Merk, C., de Beuvron, F. et Reich, C. : An
Ontology-based Approach for Failure Classification in Predictive Main-
tenance Using Fuzzy C-means and SWRL Rules, In Proceeding 23rd In-
ternational Conference on Knowledge-Based and Intelligent Information & En-
gineering Systems, Budapest, Hungary, pages 630-639, 2019 (Core 2018 :
Rank B).

Ayadi, A., Samet, A., de Beuvron, F. et Zanni-Merk, C. : Ontology pop-
ulation with deep learning-based NLP: a case study on the Biomolec-
ular Network Ontology, In Proceeding 23rd International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems, Bu-
dapest, Hungary, pages 572-581, 2019 (Core 2018 : Rank B).

Sellami, C., Samet, A. et Bach Tobji, M. A.: Frequent Chronicle Min-
ing: Application on Predictive Maintenance. In Proceeding 17th Interna-
tional Conference On Machine Learning And Applications ICMLA, Orlando,
Miami,1388-1393 2018 (Core 2018 : Rank C).

Samet, A., Guyet, T. , Négrevergne, B., Dao, T-T., Hoang, T. N., et Ho
Ba Tho, M. C.: Expert Opinion Extraction from a Biomedical Database.
In Proceeding of 14th European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty ECSQARU Lugano, Switzerland,
135-145, 2017 (Core 2017 : Rank C).
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Samet, A., Guyet, T. et Négrevergne, B.: Mining Rare Sequential Patterns
with ASP. In Proceeding of 27th International Conference on Inductive Logic
Programming ILP (Late Breaking Papers) Orleans, France, 51-60, 2017 (Core
2017 : Rank B).

Samet, A., Gaudin, T., Lu, H., Wadouachi, A., Pourceau, G., Van Hecke,
E., Pezron, I., EL Kirat, K. et Dao, T-T. : Predictive model based on
the evidence theory for assessing Critical Micelle Concentration prop-
erty, In Proceeding of 16th International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems, Eindhoven,
Netherlands, 510-522, 2016. (Core 2015 : Rank C)

Samet, A., Raddaoui, B., Dao, T-T. et Hadjali, A. : Argumentation Frame-
work based on Evidence Theory, In Proceeding of 16th International Confer-
ence on Information Processing and Management of Uncertainty in Knowledge-
Based Systems, Eindhoven, Netherlands, 253-264, 2016. (Core 2015 : Rank
C)

Samet, A. et Dao, T-T., Bounded Support and Confidence over Evidential
Databases, In Proceeding of the International Conference on Computational
Science, ICCS 2016, San Diego, California, 1822-1833, 2016. (Core 2015 :
Rank A)

Raddaoui, B. et Samet, A.: Mining Frequent Patterns from Correlated
Incomplete Databases. In Proceeding of the 8th International Conference on
Agents and Articial Intelligence, ICAART’2016, Roma, Italy, 377-384, 2016.
(Core 2015 : Rank C)

Samet, A. et Dao, T-T. : Mining over a Reliable Evidential Database :
Application on amphiphilic chemical database. In Proceeding of 14th In-
ternational Conference on Machine Learning and Applications, ICMLA’2015,
Florida, Miami, USA, pages 1257-1262, 2015. (Core 2015 : Rank C)
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Nouaouri, I., Samet, A. et Allaoui, H. : Evidential Data Mining for Length
of Stay (LOS) Prediction Problem, In Proceeding of 11th IEEE International
Conference on Automation Science and Engineering, Gothenburg, Sweden,
pages 1415-1420, 2015.

Samet, A., Lefevre, E. et Ben Yahia, S. : Belief function classification with
conflict management: application on forest image to appear In Proceed-
ings of 10th International Conference on Signal-Image Technology and Internet-
Based Systems, Marrakesh, Marocco, 2014.

Samet, A., Lefevre, E. et Ben Yahia, S. : Evidential database : a new gen-
eralization of databases ? In Proceedings of 3rd International Conference on
Belief Functions, Belief 2014, Oxford, UK, pages 105-114, 2014.

Samet, A., Lefevre, E., et Ben Yahia, S. : Classification with evidential
associative rules. In Proceedings of 15th International Conference on Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems,
Montpellier, France, pages 25-35, 2014. (Core 2015 : Rank C)

Samet, A., Lefevre, E. et Ben Yahia, S. : Reliability estimation with extrin-
sic and intrinsic measure in belief function theory. In Proceedings of 5th
International Conference on Modeling, Simulation and Applied Optimization,
ICMSAO’13, Hammamet, Tunisia, pages 1-6, 2013.

Samet, A., Lefevre, E. et Ben Yahia, S. : Mining frequent itemsets in
evidential database. In Proceedings of the fifth International Conference on
Knowledge and Systems Engeneering, Hanoi, Vietnam, pages 377-388, 2013.

Samet, A., Hammami, I., Lefevre, E. et Hamouda, A. : Generic discount-
ing evaluation approach for urban image classification. In Proceedings of
3rd international symposium on Integrated Uncertainty in Knowledge Mod-
elling and Decision Making, IUKM’2013, Beijing, China, pages 79-90, 2013.
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Samet, A., Ben Dhiaf, Z., Hamouda, A. et Lefevre, E. : Classification
of high-resolution remote sensing image by adapting the distance be-
lief function estimation model. In Proceedings of International Conference
on Communications, Computing and Control Applications, CCCA’2011, Ham-
mamet, Tunisia, pages 1-6, 2011.
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Appendix E

Research funding

During the 2017-2023 period, I was involved as scientific lead partner or coor-
dinator in several research projects. In addition to the projects I contributed
to, in this section I detail the projects I managed since my arrival at INSA
Strasbourg which weigh €2 261k of net funding.

E.1 Laboratory and school internal projects

EXERCISE (2019-2021): The EXERCISE project aims to exploit data from na-
tional, regional or departmental observatories for decision-making purposes.
We propose to analyze data from the "SISPEA" information system for water
and sanitation utilities. Data mining and missing data processing approaches
are applied to extract correlations between service information and perfor-
mance indicators.
Role : Project coordinator
Funding : €10k
Funding organization : ICube.

Guillaume Guarino PhD funding (2019-2022): The purpose of this PhD,
submitted under the supervision of Denis Cavallucci, was to mine contra-
diction using Large Language Model and semi-supervised approach. The
challenge was to use Generative Adversial network to find contradiction un-
der the constraint of having a low number of labelled patents
Role : PhD supervisor and project co-writing
Funding : €110k
Funding organization : INSA Strasbourg.
Funded PhD student : Guillaume Guarino.

Yusif Imamverdiyev PhD funding (2023-2026): This PhD is funded by
the "college doctoral" and under the supervision of Professor Christophe
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Lallemand. This thesis aims to create a lithium-ion battery model that com-
bines the accuracy of multi-physics modeling with the fast computation time
and minimal number of parameters of data-driven models. This multimodal
approach enables accurate prediction of SoX and RUL, and reduces the need
for large amounts of experimental data for model training and aging studies.
Role : PhD supervisor and project co-writing
Funding : €115k
Funding organization : College doctoral Strasbourg.
Funded PhD student : Yusif Imamverdiyev.

E.2 Industrial projects

XAI-BATMAN (2020-2022): This project was funded by the company MO-
BION. MOBION is an electric scooter manufacturer. The project aims to un-
derstand the battery ageing using explainable AI. The scientific challenge
was to extend current semantic models to integrate battery ageing concepts.
Role : Project coordinator
Funding : €220k
Funding organization : MOBION company through SATT connectus.
Funded Postdoc : Franco Giustozzi.

E.3 Regional projects

Pacte de compétence (2021-2023): This regional project aimed to fund new
equipment for the INSA Strasbourg school. The purpose was to fund 35
computers with GPU. Two main class computers were updated for the sake
of new deep learning lectures.
Role : Project contributor in the preparatory department
Funding : €134k
Funding organization : Region Grand Est.

XPLANE-Region (2022-2025): This project is funded by the region Grand
Est and the ADEME. The project aims to reach an interpretable AI for bat-
tery ageing. We aim to combine data mining techniques in addition to the
explainable model.
Role : Project coordinator
Funding : €55k
Funding organization : Region Grand Est.



E.4. National projects 185

Funded PhD student : Theo Heitzmann.
SIMILAR (2023-2025): This project is funded by the region Grand Est.

This funding aims to extend by 8 months a postdoc position funded by
XQUALITY project. The project intends to develop a consistency approach
for explainable AI. The main challenge is to build a set of consistent explana-
tions for a quality assurance application.
Role : Project coordinator
Funding : €25k
Funding organization : Region Grand Est.
Funded postdoc : Amel Hidouri.

E.4 National projects

XAIHyBATMAN (2021-2022): This project was funded by the CNRS
through its AMORCE program in order to support the Horizon Europe
project submission that led to the acceptance of the ENERGETIC project.
Role : Project coordinator
Funding : €15k
Funding organization : National Scientific Research Center (CNRS)

XPLANE (2022-2025): This project is funded by the region Grand Est and
the ADEME. The project aims to reach an interpretable AI for battery ageing.
We aim to combine data mining techniques in addition to the explainable
model.
Role : Project coordinator
Funding : €55k
Funding organization : The French Agency for Ecological Transition
(ADEME)
Funded PhD student : Théo Heitzmann.

XQUALITY (2023-2026): The XQuality project is researching hybrid and
explainable AI approaches to help manufacturing companies implement in-
telligent and automated quality assurance. The project combines data-based
machine learning, semantic technologies and expert knowledge to monitor
and explain product and process quality targets in a company. The goal is to
develop an AI-based system that will assist the staff in identifying the main
causes of quality issues as early as possible, to achieve reliability engineering
in the domain of manufacturing, by means of new quality assurance models.
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Role : Partner scientific leader
Funding : €176k
Funding organization : National Research Agency (ANR)
Funded postdoc : Amel Hidouri.
Funded PhD student : Slimane Arbaoui.

E.5 European projects

HALFBACK (2017-2020): The HALFBACK project aimed to develop a
digital tool for anticipating production equipment deficiencies, optimizing
maintenance planning and proposing available outsourcing solutions. INSA
Strasbourg’s work falls within the field of predictive maintenance. The aim
is to develop new algorithms for real-time machine diagnostics. To date, two
research themes have been addressed: (i) Sequential pattern mining for fault
origin determination; (ii) Predicting the date of machine failure.
Role : Partner scientific leader
funding : €300k
Funding organization : INTERREG V Rhin Supérieur.
Funded PhD student : Quishi Cao, Ines Jorge.

DA-HPC-OR (2018-2020): The DA-HPC-OR project involved the anal-
ysis of data from the consortium’s high-performance computing (HPC)
systems: NEMO at the University of Fribourg (NEMO-UniFR), sciCORE
at the University of Basel (sciCORE-UniBas) and HPC at the University
of Strasbourg (HPC-UniStra). The objectives of the project are to analyze
the data collected at NEMO-UniFR in order to improve their research and
operational activities, and to offer monitoring perspectives. The proposed
approach includes: system and application monitoring; legal compliance
through de-identification and anonymization; and data analysis. The meth-
ods used are as follows: HPC monitoring, legal control, de-identification,
anonymization, data aggregation, data mining and information extraction.
Role : project co-contributor
Funding : €10k
Funding organization : EUCOR.

Fessenheim (2020-2022): The project aims to find alternative energy
sources after the Fessenheim nuclear power plant shutdown. Among the

http://HALFBACK.in.hs-furtwangen.de/home/
https://hpc.dmi.unibas.ch/HPC/DA-HPC-OR.html
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selected solutions are the use of battery in stationary application and the use
of AI for smart energy management.
Role : project co-contributor
Funding : €10k
Funding organization : EUCOR.

ENERGETIC (2023-2026): ENEGETIC is a Horizon Europe project that
aims at developing a next generation BMS for optimizing batteries’ systems
utilisation in the first and the second life on a path towards the reduction
of the Total Cost of Ownership. ENERGETIC’s vision is not just predicting
and monitoring the remaining useful life of a Li-ion battery with digital twin
but also inspecting the reasons for degradation by investigating the model
explainability.
Role : project co-coordinator (with Tedjani Mesbahi).
Funding : €1M
Funding organization : Horizon Europe.
Funded postdoc : Lakhdar Mamouri.
Funded PhD student : Slimane Arbaoui, Marwa Zitouni, Cyrine Soufi.

E.6 Statistics

Since joining INSA Strasboug and ICube laboratory in 2017, I have had
€8006k of total project funding of which €2261k is the net amount. The
projects are local (funded by INSA Strasbourg or ICube), regional (mainly
Région Grand Est), Industrial (PRT, PFE and company research project), na-
tional and European. Over the six years spent at INSA Strasbourg and ICube
laboratory I brought an average of €372k of funding per year.
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Local (€235k): 10.52%

Regional(€231k): 9.58%

National(€214k): 10.34%

European(€1315k): 58.86%

Industrial(€241k): 10.71%

FIGURE E.1: Breakdown of funding sources
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FIGURE E.2: Amount of net INSA Strasbourg funding obtained
per year

Ended and ongoing PhD: 22.86%

Ended and ongoing Postdoc: 8.57%
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4th year engineering: 5.71%

FIGURE E.3: Breakdown of research supervision
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