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1. Introduction

The exploration of light-matter interactions has been the focus of many theoretical and
experimental efforts over the past centuries to culminate with the development of the field
of quantum optics which describes how photons and quantum matter interact. Today,
the degree of control of light-matter interactions is so advanced that physical systems
of light and atoms can be created, manipulated and observed at the quantum level
in research laboratories around the world. Generally, most of the experiments exploit
light-matter interactions either to use light (lasers) to control an assembly of atoms or
reversely to manipulate and shape light by making it interact with atoms, molecules or
nanostructured materials.

On the one side, our understanding of light-matter interactions together with the pro-
gressive refinement of experimental techniques over the past 70 years enable to control
atoms (their internal or external degrees of freedom) with unprecedented
precision using light fields. Among many breakthroughs, and only focusing on the
field of ultracold atoms, one can underline the crucial role played by the discovery of
optical pumping (Nobel prize 1996 of A. Kastler), of laser cooling and trapping (Nobel
prize 1997 of S. Chu, C. Cohen-Tannoudji and W. D. Phillips) which subsequently lead
to the observation of Bose-Einstein Condensation (Nobel prize 2001 of E. A. Cornell,
W. Ketterle and C. E. Wieman) which in turn enabled to use ultracold atoms to build
artificial quantum systems that are highly controllable (e.g. tunneling rate of atoms in
optical lattices, atomic interactions) and give access to observables that are not available
in solid state systems. This is the essence of quantum simulation where it is now possible
to create and observe strongly correlated states of matter with single atom resolution
using a so-called quantum gas microscope. Today, in the “era of quantum computing
discovery”, scientists are even building the first generation of universal digital quantum
computers using defect-free arrays of single atoms trapped in optical tweezers which play
the role of a quantum memory (qubit register). Using all optical techniques, they can
manipulate individual qubits, realize quantum logic operations between two qubits and
finally measure the final state of the quantum register. This positions the neutral atom
platform as a very serious competitor for the race (that is just beginning) to develop
large scale quantum computing hardware.

On the other side, the properties of light can be controlled and tailored using
matter which lead to many important applications in quantum optics. For
example, interactions between photons can be engineered when light propagates inside a
nonlinear crystal, photons can be stored and retrieved from an atomic ensemble which
serves as a quantum memory, spontaneous parametric down-conversion allows for the
generation of entangled photon pairs and of single photons, and quantum logic gates
have been realized opening interesting perspectives for quantum information applications.
Moreover, quantum simulation with photons has been a rapidly growing field over the
past decade with the possibility to confine light in multi-mode optical cavities or in arrays
of optical resonators together with the ability to control photon-photon interactions
by mediating them through the coupling of light to matter. In these systems, the
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powerful tools of quantum optics provide new ways to probe, detect and characterize the
many-body states of light that are not available for their atomic counterparts.

After writing the above perspective about the research of light-matter interactions,
I realize how modest one should be about his own contribution to this very broad
and exciting research field. At the same time, I feel proud to have contributed to the
two above-described aspects. Indeed, the first part of this habilitation dissertation is
devoted to the atomic aspects: an ultracold gas of bosonic atoms is controlled by lasers
and magnetic fields to explore the generation of quantized vortices when the system is
quench through the normal-to-superfluid thermodynamic phase transition or to create
and investigate mixtures of two spin states of atomic Bose-Einstein condensates which
lead to the observation of spin superfluidity. Conversely, the second part concerns the
photonic aspects: we investigate how new properties of light emerge when it propagates
in a hot atomic vapor cell. In these conditions, photons acquire an effective mass upon
propagation in the paraxial approximation while photon-photon interactions can be tuned
by adjusting the laser frequency with respect to the atomic transition or by varying
the pressure of the atomic vapor. This establishes an interesting new platform for the
exploration of quantum fluids of light where we investigated the hydrodymamic behaviors
of light or the effect of a quench of the photon-photon interactions as light enters or
exits the cell enabling the exploration of the out-of-equilibrium properties of the system.
Finally, in the third part, I conclude and briefly present my future research plans where
I would like to use ultracold atoms excited to Rydberg states to push the frontier of
quantum fluids of light in a regime where the optical nonlinearities are so large that they
manifest themselves at the single photon level. Using this system, I aim at developing
new methods to create, manipulate and detect the resulting strongly correlated photonic
states.

The results presented in this manuscript would not have been possible without collab-
orating with my colleagues. I am grateful to all the researchers, permanent members,
postdocs, PhD and master students with whom I had the chance to work with in stimu-
lating research environments. These very enriching experiences contributed greatly to
my success and to the experimental quantum physicist I am today.

Organization of the report: In each section, after putting my contributions in the
context of the state of the art of the field and describing the research environment in
which these investigations were carried out, I reproduce a selection of my own articles (see
section A.2) that highlights and summarizes my scientific contributions. I reformatted
the selected articles to match the style of this report and I sometimes removed some
technical parts that would distract the reader from getting on overview of my work1.

1The technical parts of the articles that have been discarded are clearly identified. I refer the reader
interested in those parts to the original published versions of the articles which are also available on
arXiv.
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2. Vortices and spin superfluidity in atomic superfluids

2.1. Context

I grew fascinated by the booming field of ultracold gases and quantum simulation after
learning about this exciting research line at conferences and schools during my PhD
(2008–2011). Subsequently to the first observation of atomic Bose-Einstein condensation
(BEC) in 1995 [12, 55, 100], the field has transitioned to explore the properties of bosonic,
fermionic and molecular quantum gases and to use these systems to simulate problems
of condensed-matter [49]. Among the large quantity of milestone achievements of this
research field, I will only mention a few of them to highlight their diversity: the generation
of vortices in BECs [259, 263], the observation of the superfluid-to-Mott quantum phase
transition [153], the realization of a molecular BEC from a Fermi gas [154, 330, 429],
reaching the Tonks–Girardeau regime with a one dimensional ultracold Bose gas in an
optical lattice [306], the exploration of the phase diagram and the thermodynamics of
a universal Fermi gas [285, 362], the observation of Anderson localization with BECs
[43, 333], the in-situ probing of quantum gases with single atom resolution [21, 361], the
realization of the topological Haldane model [201] and more recently the observation of
supersolids in dipolar quantum gases [53, 81, 381].

Driven by my interest in the superfluid properties of quantum gases and more specifically
about quantum vortices, I joined the group of Jean Dalibard in 2013. He and his group
have achieved important results that have been very influential to the ultracold atom
community and beyond. They pioneered the generation of quantum vortices when a
Bose gas is put into rotation [259], studied their dynamics [336], investigated the regime
in which the gas is put in fast rotation [60] and characterized several hydrodynamic
collective modes [59, 76, 95]. Later, by adding a strong transverse confinement to
the quantum gas which enables to freeze one spatial degree of freedom, the interests
of the group evolved towards the exploration of 2D Bose gases: they evidenced the
Berezinskii-Kosterlitz-Thouless phase transition in ultracold atomic gases [166], explored
the thermodynamics of a 2D Bose gas [417] and studied its superfluid behavior [106]. I
started to work in the group around that time. About a year before, Jérôme Beugnon and
Sylvain Nascimbène had joined Jean Dalibard to work on this research activity. While
all the above mentioned studies of the group were carried out in 3D or 2D harmonic
traps, we devoted our efforts to trap 2D Bose gases in all-optical uniform potentials
which consists of a strong transverse harmonic confinement to freeze the gas in the
vertical direction combined with a “box-like” in-plane confinement. Our goal was to
overcome a limitation of harmonic traps, where the nonuniform density leads to spatially
varying energy and length scales which hinders the exploration of critical phenomena
for which the correlation length diverges. We upgraded the existing setup by replacing
the in-plane harmonic confinement by a blue detuned box potential that was realized
by imaging a dark intensity mask obtained by a metallic deposit on a glass plate while
keeping the original transverse confinement consisting of a blue-detuned optical potential
that was shaped into a Hermite-Gauss mode. Finalizing this upgrade, we were loading
the 2D box potential by applying evaporative ramps when we noticed that sometimes
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the absorption images after a short free space expansion featured small density holes
that varied in number and position for each experimental cycle that ran with the exact
same experimental parameters. We soon realized that they were stochastically generated
quantum vortices which were created when the Bose gas was quenched across the normal-
to-superfluid transition and we related the rate of nucleation of these topological defects
to the Kibble-Zurek mechanism [15, 210, 427]. This work was published in [P8] together
with an extensive study of the transverse condensation transition that occur when the
normal-to-superfluid transition is crossed. The ability to design dark intensity masks
with arbitrary shape in the clean room enabled to explore the same physics in an annular
geometry which corresponds to the configuration originally proposed by Zurek [427].
This was realized by measuring the supercurrent that was stochastically created in the
ring-shape trap during the quench with an original interferometric technique [P9]. In
addition to these experiments, I supervised the construction of the next generation of
experimental setup to explore 2D Bose gase in uniform potentials [P19]. The main
innovations of the new design were i) a new 2D confinement method which was realized
by a blue-detuned optical accordion lattice for which the spacing of the interference
fringes can be dynamically tuned to load the quantum gas with a large lattice spacing in a
single dark plane and then compress it to strong 2D confinement by dynamically reducing
the lattice spacing ii) a new high-resolution imaging and in-plane trapping potential
using two microscope objectives located below and above the plane of the 2D gas. The
in-plane potential profile was obtained by direct imaging of the chip of a spatial light
modulator which enables the creation of uniform potentials with arbitray geometry. After
completing the construction of the new setup, we performed a first experiment in which
we studied the cooperative effects when light scatters a dense atomic layer [P17] in strong
connection with the problems I investigated during my PhD2. Moreover, over the years,
the new setup has proven to be very reliable as it later led to many important results
and is still currently being used at Collège de France ten years after its construction.

I first encountered Gabriele Ferrari in 2015 when he came to the PhD defense of
Lauriane Chomaz, a PhD student in the group of Jean Dalibard. After moving to Trento
to start his own group together with Giacomo Lamporesi, they builded a new setup
of sodium BECs. Similarly to what happened at LKB, they fortuitously observed the
first solitonic vortices in their setup while optimising the evaporation ramps to get a
large BEC and connected the rate of their spontaneous creation to the Kibble-Zurek
mechanism [240]. Note that contrary to what happens in uniform traps, the non-uniform
atomic density in a 3D harmonic potential complicated the analysis because the critical
point of the phase transition is crossed locally at different time of the evaporation
ramp. They investigated in great details the properties [109] and the dynamics [359] of
the topological defects that were created during the quench. The properties of these
topological defects interpolate between the characteristics of solitons and vortices due to
the large anisotropy of the trapping potential. I joined the group of Trento in October
2015 driven by my interest to continue working on topological defects in atomic BECs
while I was also given the opportunity to broaden the range of my research expertise

2During my PhD I studied cooperative effects in large and dilute clouds of cold atoms
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by leading a new research direction on spinor BECs. In [P20], we extended the results
of [240], by making more systematic and extansive measurements of the number of
defects that were spontaneously created in the BEC after quench cooling the gas at
different rate and for several transverse confinement. We then moved to the exploration
of the dynamics and the interactions of topological defects using an innovative minimaly
intrusive imaging method that enables to follow the real-time position and orientation
of vortex lines by repeatedly extracting a small fraction of the atoms from the gas. We
applied this technique to visualize the spinning dynamics of a single solitonic vortex line
in an elongated cigar-shaped trap [P18] and to investigate quantum vortex interactions in
an atomic Bose-Einstein condensate [P6]. In these experiments, the initial conditions of
the system, i.e. the number of vortices, their positions and orientations was stochastically
generated which forced us to record a large number of experimental runs to acquire a lot
of data about the dynamics and interactions of vortices for different initial conditions.
Aside from the experimental investigations on topological defects, I was in charge of
developping a new research activity on mixtures of BECs3. Starting from a spin-polarized
sodium BEC in a dipole trap, we created an ultracold mixture of the |F = 1,mF = −1⟩
and |F = 1,mF = +1⟩ spin states of sodium atoms using sequencially a Landau–Zener
transition and a controlled Rabi oscillation. We showed that the specific properties of
this spin mixture – that is not subjected to buoyancy and is missible while still being
very close to the missible-immiscible phase transition – leads to a huge enhancement of
the spin-dipole polarizability and to the consequent softening of the frequency of the
spin-dipole oscillation [P7]. In addition to this study which was done for a mixture of fully
condensed spin states (zero temperature), we explored the effects of finite temperature
which lead to the observation of spin superfluididy [P5]. Note that these first results
on spin mixtures from the group of Trento were seminal to many of their later studies
[89, 124, 125, 421].

In order to give a good perspective about my contributions to the field of atomic
quantum gases I picked i) three articles on the topic of the creation and the dynamics of
topological defects on atomic BECs: two from my work in Paris on quenched induced
topological defects in 2D uniform [P8] and annular geometries [P9] and one from my
work in Trento about the dynamics and interaction of vortices [P6] ii) two articles about
binary mixtures of atomic BECs from my work in Trento [P7] [P5].

2.2. Creation and dynamics of topological defects in atomic Bose gases

2.2.1. Quench-induced supercurrents in an annular Bose gas [P9]

Abstract: We create supercurrents in annular two-dimensional Bose gases through
a temperature quench of the normal-to-superfluid phase transition. We detect the
magnitude and the direction of these supercurrents by measuring spiral patterns resulting
from the interference of the cloud with a central reference disk. These measurements
demonstrate the stochastic nature of the supercurrents. We further measure their

3This research line was new for the group of Trento.
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distribution for different quench times and compare it with predictions based on the
Kibble-Zurek mechanism.

Fluids in annular geometry are ideally suited to investigate the role of topological
numbers in quantum mechanics. The phase winding of the macroscopic wavefunction
around the annulus must be a multiple of 2π, ensuring the quantization of the circulation
of the fluid velocity. The resulting supercurrents have been observed in superfluid systems
such as superconductors [364], liquid helium [35] and atomic gases [280, 343]. Studying
these currents is crucial for the understanding of quantum fluids, as well as for realizing
sensitive detectors like magnetometers [356] and rotation sensors [304].

Supercurrents in annular atomic Bose-Einstein condensates (BECs) are usually created
in a deterministic way by using laser beams to impart angular momentum on the atoms
[33, 280, 343] or by rotating a weak link along the annulus [414]. Supercurrents can
also have a stochastic origin. They may result from thermal fluctuations or appear as
topological defects following a rapid quench of the system. The latter mechanism was
put forward by Kibble and Zurek (KZ), who studied the phase patterns that emerge in a
fluid, when it undergoes a fast crossing of a phase transition point [210, 427].

The KZ mechanism has been studied in several types of systems such as liquid crystals
[82], helium [32, 342], ion chains [325, 390], superconducting loops [276] and BECs
[58, 240, 406]. For a superfluid confined in a ring geometry, which is the configuration
originally considered by Zurek [427], the frozen phase of the wavefunction may lead to a
supercurrent of charge q, i.e. a 2πq phase winding along the ring. In this section, we
study a setup realizing this gedanken experiment using a quasi two-dimensional (2D)
Bose gas trapped in an annular geometry. For each realization of the experiment, we
use matter-wave interference between this annulus and a central disk acting as a phase
reference, to measure the charge as well as the direction of the random supercurrent 4.

Our experiments are performed with a Bose gas of 87Rb atoms. Along the vertical (z)
direction the gas is confined using a harmonic potential with frequency ωz/2π = 370 Hz
(figure 1a) 5. In the horizontal (xy) plane, the atoms are trapped in the dark regions of
a “box-potential” beam, engineered using an intensity mask located in a plane optically
conjugated to the atom cloud 6. We use a target-like mask, consisting of a disk of radius
R0 = 4.5µm surrounded by a ring of inner (resp. outer) radius of Rin = 9µm (resp.
Rout = 15µm) (figure 1b).

The typical time sequence for preparing the gas starts by loading a gas with a 3D
phase-space density ≈ 2.4 slightly below the condensation threshold 7 with the box-
potential beam at its maximal power. Then we lower linearly this power by a factor ∼ 50
in a time tevap to evaporatively cool the atomic cloud and cross the superfluid transition
[106]. Last we keep the atoms at a constant box potential depth during a time thold.

4A similar method has recently been developed to investigate the supercurrent generated by a rotating
weak link [112]

5For details, see Supplemental Material.
6see [142] for a 3D version of a similar setup
7The estimated total atom number 76000 and the temperature is 210 nK. With these parameters, we
never observe any interference fringes such as those of fig 2.
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Figure 1. Production of box-like potentials using an intensity mask. (a) Along the
vertical direction, atoms are confined by a laser beam with an intensity node in the plane z = 0
which is shaped using a phase plate (π phase shift between the upper and lower halves of the phase
plate). In plane, atoms are trapped in box-like potentials created by imaging an intensity mask
onto the atomic plane. The box-like potentials are created by imaging an intensity mask onto the
atomic plane. (b) In-situ images of uniform gases in the square and target potentials. Figure from
[P9].

The final temperature is ∼ 10 nK with similar surface densities in the ring and the disk:
ρ ∼ 80µm−2. The typical interaction energy per atom is Eint/kB ≈ 8 nK, and the gas is
marginally quasi-2D with kBT, Eint ∼ ℏωz. These parameters correspond to a large 2D
phase-space density, D = ρλ2 ≥ 100, so that the gas is deeply in the superfluid regime at

the end of the evaporation ramp (λ =
[
2πℏ2/(mkBT )

]1/2
is the thermal wavelength and

m the mass of the 87Rb atom).
We use matter-wave interference to probe the relative phase distribution between

the cloud in the central disk and the one in the ring. We abruptly switch off the box-
potential while keeping the confinement along the z direction. The clouds experience a
hydrodynamical expansion during which the initial interaction energy is converted into
kinetic energy. After 7 ms of expansion, we record the interference pattern by imaging
the atomic gas along the vertical direction. Typical interference patterns are shown in
figure 2. Most of them consist in concentric rings, as expected for a quasi-uniform phase
distribution in the disk and the annulus. However we also observe a significant fraction
of spiral patterns, revealing the presence of a phase winding in the wavefunction of one
of the two clouds.

We developed an automatized procedure to analyze these patterns, which reconstructs

Page 9 of 127



Tom Bienaimé HDR
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Figure 2. Experimental interference patterns. Examples of interference patterns after
expansion in the 2D plane, along with constrast-amplified pictures. (a) without phase winding, (b)
with phase winding −2π, (c) with phase winding +2π, (d) with phase winding +4π. Figure from
[P9].

the phase ϕ(θ) of the fringes along a line of azimuthal angle θ. From the accumulated
phase ∆ϕ as the angle θ varies from 0 to 2π, we associate to each pattern a winding
number nwind = ∆ϕ/2π, which is a positive, null or negative integer. This number is
recorded for many realizations of the same experimental sequence. Examples of the
probability distribution of nwind are shown on figure 3a and b. The measured histograms
are compatible with a zero mean value 8. For example, if we use all the data presented
on figure 3c and 3d we find ⟨nwind⟩ = 0.002 (20). This confirms the stochastic nature of
the mechanism at the origin of this phase winding.

The first question that arises is the origin of the observed phase winding, which can
be due either to a vortex in the central disk or to a quantized persistent current in the
outer ring. We can experimentally eliminate the first possibility by noticing that when
doing a 3D ballistic expansion (by switching-off both the box-potential beam and the
confining beam in the z direction) we never observe any vortex signature in the small disk

8The observed asymetry on figure 3b (mean value is 1.4 times the standard deviation) is compatible
with the number of realizations: the probability to have a standard deviation equal or larger than
this one is 17%.
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of radius R0 = 4.5µm. By contrast, in larger structures such as the square represented
in Fig. 1b , we can detect deep density holes revealing the presence of vortices [P8].
Hence we conclude that the spiral interference patterns of figure 2 reveal the presence of
a supercurrent in the annulus, whose charge and orientation correspond to the modulus
and sign of the winding number nwind. The lifetime of this supercurrent is similar to the
cloud lifetime (see Fig. 3c).
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Figure 3. Study of the winding number. (a) and (b) Histograms showing the statistical
appearance of winding number nwind for thold = 0.5 s. (a) We show the result of 39 realizations for
tevap = 2 s. We get ⟨nwind⟩ = 0.03 (8). (b) We show the result of 36 realizations for tevap = 0.025 s.
We get ⟨nwind⟩ = 0.19 (14). (c) Mean absolute winding number ⟨|nwind|⟩ as a function of hold
time (tevap = 2 s). The data is fitted with an exponential with a time constant of 7 s. (d) Mean
absolute winding number ⟨|nwind|⟩ as a function of evaporation time (thold = 0.5 s) in log-log scale.
The line is a power-law fit to the data, ⟨|nwind|⟩ ∝ t−α

evap, gives α = 0.19 (6). The uncertainty on
⟨nwind⟩ and the bars on figure 3c-d represent the statistical error determined with a bootstrapping
approach described in Supplemental Material. Figure from [P9].

We now discuss the origin of the observed supercurrents, which can be either ther-
mal excitations or result from the quench cooling. If these currents had a thermal
origin, their probability of occurrence would be given by the Boltzmann law p(nwind) ∝
exp [−E(nwind) / kBT ], where the (kinetic) energy of the supercurrent is

E(nwind) = n2wind

πℏ2ρ
m

ln (Rout/Rin) . (1)

This leads to
p(nwind) ∝ (Rin/Rout)

n2
windD/2 , (2)
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which is negligible for nwind ̸= 0 for our large phase space densities D ≥ 100, in clear
disagreement with the typical 20-50% of pictures showing phase winding. Note that the
probability for a vortex to appear in the central disk as a thermal excitation is even
smaller than (2) because Rin and Rout should be replaced respectively by the healing
length (≲ 0.5µm) and R0.

To check that the quench cooling is indeed responsible for the formation of these
supercurrents, we study the variation of ⟨|nwind|⟩ for evaporation times spanning two
orders of magnitude. The comparison between the results for a slow quench (figure 3a)
and a fast quench (3b) show that the latter indeed increases the probability of occurrence
of a supercurrent, as expected for the KZ mechanism [210, 427]. We summarize in figure
3d the experimental variation of ⟨|nwind|⟩ with tevap, and find that it increases from
0.2 (tevap = 2 s) to 0.6 (tevap = 0.025 s). A power-law fit to the data, inspired by the
prediction for the KZ mechanism, leads to ⟨|nwind|⟩ ∝ t−α

evap with α = 0.19 (6).
To interpret our results we have developed a simple one-dimensional (1D) model

following the KZ scenario presented in [98, 427]. We consider a 1D ring of perimeter L
and we assume that, when the normal-to-superfluid transition is crossed, N domains
of uniform phase ϕj , j = 1, . . . , N are created. Each run of the experiment is modeled
by a set {ϕj}, where the phases ϕj are independent random variables drawn in (−π, π]
(with ϕ1 = 0 by convention). For each set of {ϕj} we calculate the total phase variation
along the ring Φ =

∑
j ϕj and define nwind as the nearest integer to Φ/2π. We then

average over many draws of the set {ϕj}. Our experimental range 0.2 ≤ ⟨|nwind|⟩ ≤ 0.6
is obtained for 3 ≤ N ≤ 10, corresponding to the approximate power-law scaling (see
Supp. Mat.)

⟨|nwind|⟩ ∝ N0.8. (3)

Then we use the general prediction for the KZ mechanism to relate the typical length
ξ̂ = L/N of a domain to the quench time tevap (see e.g. [98])

ξ̂ ∝ tν/(1+νz)
evap , (4)

where ν and z define the universality class of the transition: ν is the correlation length
critical exponent and z the dynamic critical exponent. Using z = 2 and ν = 1/2 relevant
for a mean-field description of a 1D ring-shaped system [98], we get

ξ̂ =
L

N
∝ t1/4evap. (5)

Combining (3) and (5), we predict with this simple model

⟨|nwind|⟩ ∝ t−1/4×0.8
evap ≈ t−0.2

evap , (6)

which is in agreement with the experimental result α = 0.19 (6).
There are two main assumptions that could limit the validity of this model. First, our

system is not uni-dimensional in terms of relevant single particle eigenstates. However,
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we find for our parameters that ξ̂ is in the range 7–25µm 910; this is always larger
than the width of our annulus and justifies the use of a 1D model for describing the
phase coherence properties of the gas. Second, this model does not take into account
beyond mean-field effects, related to either the finite size of the system or the crossover
between standard BEC and the Berezinskii–Kosterlitz–Thouless mechanism. This could
change the value of the critical exponents and even lead to deviations with respect to the
power-law scaling of (4) [194].

We now discuss the possible extension of this work to a more thorough test of the KZ
mechanism. Power-law scaling is challenging to test in our situation because of the low
value of the exponent (≈ 0.2) even if we span two orders of magnitude for tevap. The
extreme values of this range are experimentally limited: (i) The evaporation time tevap
should be chosen long enough so that at any given time a local thermal equilibrium is
achieved in the cloud. (ii) The largest evaporation time is set by the cloud lifetime. These
two limits cannot be significantly modified, which fixes the relative range of variation of
the number of domains N . It could also be interesting to study situations with absolute
larger N = L/ξ̂. For a given density the local equilibrium requirement limits the lower
value of ξ̂ and one can only increase the length of the ring L. Within current experimental
techniques, it should be possible to load one order of magnitude more atoms, leading for
a given transverse size to an increase of N by the same factor.

Here, we skip a section about extracting information from the interference
patterns which goes beyond the determination of the topological number.

In summary, we have created supercurrents in annular Bose gases by a temperature
quench. The measured distribution of direction and magnitude of these supercurrents
are compatible with the KZ mechanism’s predictions. This work could be extended to
more refined tests of the KZ mechanism by testing the power-law scaling with the size of
the annulus and correlate the number of topological defects with the condensed fraction
of the system [98].

2.2.2. Emergence of coherence via transverse condensation in a uniform
quasi-2D Bose gas [P8]

Abstract: Phase transitions are ubiquitous in our three-dimensional world. By contrast
most conventional transitions do not occur in infinite uniform two-dimensional systems
because of the increased role of thermal fluctuations. Here we explore the dimensional
crossover of Bose–Einstein condensation (BEC) for a weakly interacting atomic gas
confined in a novel quasi-two-dimensional geometry, with a flat in-plane trap bottom. We
detect the onset of an extended phase coherence, using velocity distribution measurements
and matter-wave interferometry. We relate this coherence to the transverse condensation

9An estimate of ξ̂ for our geometry is π (Rin +Rout)/N
10We note that ξ̂ is then larger than the size R0 of the central disk. This confirms the fact that we do

not expect the presence of vortices in this disk
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phenomenon, in which a significant fraction of atoms accumulate in the ground state of
the motion perpendicular to the atom plane. We also investigate the dynamical aspects of
the transition through the detection of topological defects that are nucleated in a quench
cooling of the gas, and we compare our results to the predictions of the Kibble–Zurek
theory for the conventional BEC second-order phase transition.

Bose–Einstein condensation (BEC) is a remarkably simple phase transition that can in
principle occur in a fluid even in the absence of interatomic interactions. As a mere result
of single-particle statistics, a phase-coherent fraction appears in the fluid, described by a
uniform wave-function spanning the whole system. During the last two decades, cold
atom experiments have been used to probe many aspects of BEC [249, 312, 317]. However,
most of these cold atom studies are performed in the presence of a harmonic confinement.
BEC becomes in this case a local transition: the condensate forms at the center of the
trap where the density is the largest, and interactions between particles play a dominant
role in the equilibrium state of the fluid. In this geometry the non-homogeneous character
of the gas makes it difficult to address some important features of BEC, such as the
existence of long-range phase coherence. The recent achievement of a three-dimensional
(3D) Bose gas undergoing BEC in a box-like potential [142, 151] constitutes an important
step forward, realizing the text-book paradigm of an extended and uniform coherent
matter wave.

When turning to low-dimensional (low-D) systems, subtle effects emerge due to the
entangled roles of Bose statistics and thermal fluctuations. First, in an infinite low-D
ideal gas, no BEC is expected at non-zero temperature, because of the modification of
the single-particle density of states with respect to the 3D case [183]. In other words, the
phase coherence between two points tends to zero when their distance increases, contrary
to the 3D situation. Second, Bose statistics may facilitate the freezing of some directions
of space required to produce a low-D system. Consider the uniform two-dimensional (2D)
case obtained by imposing a tight harmonic trapping potential (frequency νz) along the
third direction z. The transverse condensation phenomenon [18, 341, 393] allows one
to reach an effective 2D situation even in the “thermally unfrozen” regime, where the
quantum hνz is smaller than the thermal energy kBT (h and kB stand for Planck’s and
Boltzmann’s constants). Third, for the 2D case in the presence of interactions between the
particles, the situation gets more involved with the possibility of a superfluid, Berezinskii–
Kosterlitz–Thouless (BKT) transition [37, 229] for a large enough phase-space-density,
even though the absence of true long-range coherence remains valid [176, 266]. This
superfluid transition has been identified and characterized over the recent years with
non-homogeneous, harmonically trapped Bose gases [79, 84, 106, 164, 166, 185, 388].

Another key feature of phase transitions for uniform systems is the time needed to
establish the coherence/quasi-coherence over the whole sample. As is well known for
critical phenomena [177], the coherence length and the thermalization time diverge at the
transition point, thus limiting the size of the phase-coherent domains that are formed at
its crossing. The Kibble–Zurek (KZ) theory [210, 427] allows one to evaluate the scaling
of the domain size with the speed of the crossing. Once the transition has occurred, these
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domains start merging together. During this coarsening dynamics singularities taking the
form of topological defects can be nucleated at their boundaries, with a spatial density
directly related to the characteristic domain size. The KZ mechanism has been studied in
a variety of experimental systems (see for example [32, 82, 276, 325, 342, 390]), including
cold atomic gases [58, 74, 240, 344, 406] [P9]. In 2D quantum fluids, the singularities take
the form of quantized vortices, i.e., points of zero density around which the macroscopic
wavefunction of the gas has a ±2π phase winding.

In this section, we present an experimental realization of a uniform atomic Bose gas
in a quasi-2D geometry, addressing both the steady state of the fluid and its quench
dynamics. First with the gas in thermal equilibrium, we characterize the threshold for the
emergence of an extended phase coherence by two independent methods, based on (i) the
measurement of the atomic velocity distribution and (ii) matter-wave interferences. We
show in particular that for the thermally unfrozen case ζ ≫ 1 (with ζ = kBT/hνz), the
transverse condensation phenomenon induces an extended in-plane coherence. Second,
we explore the quench dynamics of the gas prepared in an initial state such that ζ ≫ 1
and observe density holes associated to vortices. We study the relation between the
cooling rate and the number of vortices that subsist after a given relaxation time, and
we compare our results with the predictions of the Kibble–Zurek theory.

Results

Production of uniform gases in quasi-2D geometries. We prepare a cold 3D gas
of rubidium (87Rb) atoms using standard laser and evaporative cooling techniques. Then
we transfer the gas in a trap formed with two orthogonal laser beams at wavelength
532 nm, shorter than the atomic resonance wavelength (780 nm), so that the atoms are
attracted towards the regions of low light intensity (Fig. 4 a). The strong confinement
along the z direction (vertical) is provided by a laser beam propagating along the x
direction. It is prepared in a Hermite–Gauss mode, with a node in the plane z = 0, and
provides a harmonic confinement along the z direction with a frequency νz in the range
350 − 1500 Hz. For the confinement in the horizontal xy plane, we realize a box-like
potential by placing an intensity mask on the second laser beam path, propagating along
the z direction (Fig. 4 b). Depending on the study to be performed, we can vary the
shape (disk, square, double rectangle) and the area A (from 200 to 900µm2) of the
region accessible to the gas in the plane. The relevance of our system for the study of
2D physics is ensured by the fact that the size of the ground state along the z direction
az =

√
h/(mνz)/2π ∼ 0.3 – 0.6µm is very small compared to the in-plane extension√

A ∼ 15 – 30µm. The number of atoms N that can be stored and reliably detected in
this trap ranges between 1000 and 100 000. We adjust the temperature of the gas in the
interval T ∼ 10 − 250 nK by varying the intensity of the beam creating the box potential,
taking advantage of evaporative cooling on the edges of this box. The ranges spanned
by νz and T allow us to explore the dimensional crossover between the thermally frozen
regime (ζ ≪ 1) and the unfrozen one (ζ ≫ 1). Examples of in situ images of 2D gases
are shown in Fig. 4 c,d,e.
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Figure 4. Production of uniform Bose gases in quasi-2D geometries. (a) We slice a
horizontal sheet from a 3D cold gas of rubidium atoms using a blue detuned laser beam propagating
along x and shaped with an intensity node in the z = 0 plane. It creates an adjustable harmonic
confinement along z of frequency νz = 350–1500Hz. We superimpose a hollow beam propagating
along z and producing a uniform confinement in the xy plane (see b). The power Pbox of this
beam is ramped up in 10ms to its maximal value Pmax

box corresponding to a potential barrier
Ubox ∼ kB × 3µK for the rubidium atoms. After holding Pbox at Pmax

box for 0.5 s, we lower it

linearly to its final value P f
box in a typical time of tevap = 2 s and keep it constant for a typical

thold = 0.5 s. We vary P f
box to adjust the final temperature of the gas via evaporative cooling.

(b) The in-plane (xy) confinement is provided by a blue-detuned laser beam shaped by placing a
dark intensity mask on its path and imaging it at the position of the atoms. (c, d, e): In-situ
density distributions of uniform gases trapped in a disk of radius R = 12µm, a square box of
length L = 30µm, and two coplanar and parallel rectangular boxes of size 24 × 12µm2, spaced by
d = 4.5µm. These distributions are imaged using a high intensity absorption imaging technique.
Figure from [P8].
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Phase coherence in 2D geometries. For an ideal gas an important consequence
of Bose–Einstein statistics is to increase the range of phase coherence with respect to
the prediction of Boltzmann statistics. Here coherence is characterized by the one-body
correlation function G1(r) = ⟨ψ̂†(r) ψ̂(0)⟩, where ψ̂(r) [resp. ψ̂†(r)] annihilates (resp.
creates) a particle in r, and where the average is taken over the equilibrium state at
temperature T . For a gas of particles of mass m described by Boltzmann statistics, G1(r)
is a Gaussian function ∝ exp(−πr2/λ2T ), where λT = h/(2πmkBT )1/2 is the thermal
wavelength.

Consider the particular case of a 2D Bose gas (e.g., ζ ≪ 1). When its phase-space-
density D ≡ ρλ2T becomes significantly larger than 1 (ρ stands for the 2D spatial density),
the structure of G1(r) changes. In addition to the Gaussian function mentioned above,
a broader feature ∝ exp(−r/ℓ) develops, with the characteristic length ℓ that increases
exponentially with D (see [165])

ℓ =
λT√
4π

exp(D/2). (7)

Usually two main effects amend this simple picture:

� In a finite system, when the predicted value of ℓ becomes comparable to the size L
of the gas, one recovers a standard Bose–Einstein condensate, with a macroscopic
occupation of the ground state of the box potential [313]. The G1 function then
takes non-zero values for any r ≤ L and the phase coherence extends over the whole
area of the gas.

� In the presence of weak repulsive interactions, the increase of the range of G1 for
D ≳ 1 is accompanied with a reduction of density fluctuations, with the formation
of a “quasi-condensate” or “pre-superfluid” state [84, 322, 388]. This state is a
medium that can support vortices, which will eventually pair at the superfluid
BKT transition for a larger phase-space-density, around D ∼ 8 − 10 for the present
strength of interactions [322]. At the transition point, the coherence length ℓ
diverges and above this point, G1(r) decays algebraically.

Role of the third dimension for in-plane phase coherence. When the thermal
energy kBT is not negligibly small compared to the energy quantum hνz for the tightly
confined dimension, the dynamics associated to this direction brings interesting novel
features to the in-plane coherence. First, we note that the function G1(r) can be written
in this case as a sum of contributions of the various states jz of the z motion. The
term with the longest range corresponds to the ground state jz = 0, with an expression
similar to (7) where D is replaced by the phase-space-density D0 associated to this state.
Now, consider more specifically the unfrozen regime ζ ≫ 1. In this case one expects
that for very dilute gases only a small fraction f0 of the atoms occupies the jz = 0
state; Boltzmann statistics indeed leads to f0 = 1 − e−1/ζ ≈ 1/ζ ≪ 1. However for large
total phase-space densities Dtot, Bose–Einstein statistics modifies this result through the
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transverse condensation phenomenon (BEC⊥) [393]: The phase-space-density that can
be stored in the excited states jz ̸= 0 is bounded from above, and D0 can thus become
comparable to Dtot. This large value of D0 leads to a fast increase of the corresponding
range of G1(r), thus linking the transverse condensation to an extended coherence in the
xy plane. This effect plays a central role in our experimental investigation.

Phase coherence revealed by velocity distribution measurements. To char-
acterize the coherence of the gas, we study the velocity distribution, i.e., the Fourier
transform of the G1(r) function. We approach this velocity distribution in the xy plane by
performing a 3D time-of-flight (3D ToF): We suddenly switch off the trapping potentials
along the three directions of space, let the gas expand for a duration τ , and finally image
the gas along the z axis. In such a 3D ToF, the gas first expands very fast along the
initially strongly confined direction z. Thanks to this fast density drop, the interparticle
interactions play nearly no role during the ToF and the slower evolution in the xy plane
is governed essentially by the initial velocity distribution of the atoms. The time-of-
flight (ToF) duration τ is chosen so that the size expected for a Boltzmann distribution
τ
√
kBT/m is at least twice the initial extent of the cloud. Typical examples of ToF

images are given in Fig. 5 a-f. Whereas for the hottest and less dense configurations, the
spatial distribution after ToF has a quasi-pure Gaussian shape, a clear non-Gaussian
structure appears for larger N or smaller T . A sharp peak emerges at the center of the
cloud of the ToF picture, signaling an increased occupation of the low-momentum states
with respect to Boltzmann statistics, or equivalently a coherence length significantly
larger than λT .

In order to analyze this velocity distribution, we chose as a fit function the sum of two
Gaussians of independent sizes and amplitudes, containing N1 and N2 atoms, respectively
(see Fig. 5 d-f). We consider the bimodality parameter ∆ = N1/N defined as the ratio of
the number of atoms N1 in the sharpest Gaussian to the total atom number N = N1 +N2.
A typical example for the variations of ∆ with N at a given temperature is shown in
Fig. 5 g for an initial gas with a square shape (side length L = 24µm). It shows a a
sharp crossover, with essentially no bimodality (∆ ≪ 1) below a critical atom number
Nc(T ) and a fast increase of ∆ for N > Nc(T ). We extract the value Nc(T ) by fitting
the function ∆ ∝ (1 − (Nc/N)0.6) to the data. We chose this function as it provides a
good representation of the predictions for an ideal Bose gas in similar conditions (see
methods).

Phase coherence revealed by matter-wave interference. Matter-wave interferences
between independent atomic or molecular clouds is a powerful tool to monitor the
emergence of extended coherence [14, 142, 166, 175, 223]. To observe these interferences
in our uniform setup, we first produced two independent gases of similar density and
temperature confined in two coplanar parallel rectangles, separated by a distance of
4.5µm along the x direction (see Fig. 4 e). Then we suddenly released the box potential
providing confinement in the xy plane, while keeping the confinement along the z direction
(2D ToF). The latter point ensures that the atoms stay in focus with our imaging system,
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Figure 5. Emergence of bimodal velocity distributions. (a-f) Surface density distribution
ρ(x, y) (first row) and corresponding radial distributions (green symbols) obtained by azimuthal
average (second row). The distribution is measured after a 12ms time-of-flight for a gas initially
confined in a square of size L = 24µm, with a trapping frequency νz = 365Hz along the z
direction. The temperatures T and atom numbers N for these three realizations are a,d: (155 nK,
28 000), b,e: (155 nK, 38 000), c,f: (31 nK, 19 000). The continuous red lines are fits to the
data by a function consisting in the sum of two Gaussians corresponding to N1 and N2 atoms
(N = N1 +N2). The Gaussian of largest width (N2 atoms) is plotted as a blue dashed line. The
bimodal parameter ∆ = N1/N equals a,d: 0.01, b,e: 0.12 and c,f: 0.60. (g) Variation of ∆ with
N for a gas in the same initial trapping configuration as a-f and for T = 155nK (red symbols).
Error bars are the standard errors of the mean of the binned data set (with 4 images per point on
average). The solid line is a fit to the data by the function f(N) = (1 − (Nc/N)0.6) for N > Nc,
and f(N) = 0 for N ≤ Nc, from which we deduce Nc(T ). Here Nc = 3.2 (1) × 104, where the
uncertainty range is obtained by a jackknife resampling method, i.e. fitting samples corresponding
to a randomly chosen fraction of the global data set. Figure from [P8].
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which allows us to observe interference fringes with a good resolution in the region where
the two clouds overlap. A typical interference pattern is shown in Fig. 6 a, where the
fringes are (roughly) parallel to the y axis, and show some waviness that is linked to the
initial phase fluctuations of the two interfering clouds.

We use these interference patterns to characterize quantitatively the level of coherence
of the gases initially confined in the rectangles. For each line y of the pixelized image
acquired on the CCD camera, we compute the x-Fourier transform ρ̃(k, y) of the spatial
density ρ(x, y) (Fig. 6 b). For a given y this function is peaked at a momentum kp(y) > 0
that may depend (weakly) on the line index y. Then we consider the function that
characterizes the correlation of the complex fringe contrast ρ̃[kp(y), y] along two lines
separated by a distance d

γ(d) = | ⟨ ρ̃[kp(y), y ] ρ̃∗[kp(y + d), y + d ] ⟩ | . (8)

Here ∗ denotes the complex conjugation and the average is taken over the lines y that
overlap with the initial rectangles. If the initial clouds were two infinite, parallel lines
with the same G1(y), one would have γ(d) = |G1(d)|2 [318]. Here the non-zero extension
of the rectangles along x and their finite initial size along y make it more difficult to
provide an analytic relation between γ and the initial G1(r) of the gases. However γ(d)
remains a useful and quantitative tool to characterize the fringe pattern. For a gas
described by Boltzmann statistics, the width at 1/e of G1(r) is λT /

√
π and remains

below 1µm for the temperature range investigated in this work. Since we are interested
in the emergence of coherence over a scale that significantly exceeds this value, we use
the following average as a diagnosis tool

Γ = ⟨γ(d)⟩, average taken over the range 2µm < d < 5µm. (9)

For the parameter Γ to take a value significantly different from 0, one needs a relatively
large contrast on each line, and relatively straight fringes over the relevant distances d,
so that the phases of the different complex contrasts do not average out.

For a given temperature T , the variation of Γ with N shows the same threshold-type
behaviour as the bimodality parameter ∆. One example is given in Fig. 6 c, from which
we infer the threshold value for the atom number Nc(T ) needed to observe interference
fringes with a significant contrast.

Scaling laws for the emergence of coherence. We have plotted in Fig. 7 the
ensemble of our results for the threshold value of the total 2D phase-space-density
Dtot, c ≡ Nc λ

2
T /A as a function of ζ = kBT/hνz, determined both from the onset of

bimodality as in Fig. 5 g (closed symbols) or from the onset of visible interference as
in Fig. 6 c (open symbols). Two trapping configurations have been used along the z
direction, νz = 1460 Hz and νz = 365 Hz. In the first case, the z direction is nearly frozen
for the temperatures studied here (ζ ≲ 2). In the second one, the z direction is thermally
unfrozen (ζ ≳ 8). All points approximately fall on a common curve, independent of the
shape and the size of the gas: Dtot, c varies approximately linearly with ζ with the fitted
slope 1.4 (3) for ζ ≳ 8 and approaches a finite value ∼ 4 for ζ ≲ 2.
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Figure 6. Emergence of coherence via matter–wave interference. (a) Example of a
density distribution after a 16 ms in–plane expansion of two coplanar clouds initially confined
in rectangular boxes of size 24 × 12µm2, spaced by d = 4.5µm (νz = 365Hz). The region of
interest considered in our analysis consists of 56 lines and 74 columns (pixel width: 0.52µm). (b)
Amplitude of the 1D Fourier transform of each line of the density distribution. Each line y shows
two characteristic side peaks at ±kp(y) above the background noise, corresponding to the fringes
pattern of a. Here ⟨kp⟩ = 0.17(2)µm−1. (c) Variation of the average contrast Γ (see text for its
definition) for images of gases at T = 155 nK. Error bars show the standard errors of the mean of
the binned data set (with on average 3 images per point). The solid line is a fit to the data of the
function f(N) defined as f(N) = b for N ≤ Nc and f(N) = b+ a (1 − (Nc/N)0.6) for N > Nc.
The parameter b is a constant for a data set with various T taken in the same experimental
conditions. Here we deduce Nc = 3.9 (2) × 104, where the uncertainty range is obtained by a
jackknife resampling method. Figure from [P8].
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Figure 7. Scaling law for the emergence of coherence in a uniform Bose gas in a quasi-
2D geometry. Variation of the threshold phase-space-density Dtot, c = Nc λ

2
T /A for observing a

non-Gaussian velocity distribution (full symbols) and distinct matter-wave interferences (open
symbols), as a function of the dimensionless parameter ζ = kBT/(hνz). For velocity distribution
measurements: νz = 365Hz: disk of radius R = 12µm (red left triangles), disk of R = 9µm (light
green up triangle), square of L = 24µm (blue square), νz = 1460Hz: disk of R = 12µm (orange
right triangles), disk of R = 9µm (dark green down triangles). For interference measurements:
νz = 365Hz: dark blue open circles, νz = 1460Hz: violet open diamonds. Error bars show the
95% confidence bounds on the Nc parameter of the threshold fits to the data sets. The black solid
line shows a linear fit to the data for ζ > 8, leading to Dtot, c = 1.4 (3) ζ. The black dash-dotted
lines show contours of identical ratios of the coherence range to the thermal wavelength λT . The
coherence range is evaluated by the value of r at which G1(r) = G1(0)/20 (see text) and we plot
(in increasing Dtot order) ratios equal to 1, 1.2, 1.5, 2, 3 and 8. Boltzmann prediction corresponds
to a ratio of ∼ 0.98. Figure from [P8].
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In the frozen case, a majority of atoms occupy the vibrational ground state jz = 0 of
the motion along the z direction, so that Dtot essentially represents the 2D phase-space-
density associated to this single transverse quantum state. Then for Dtot ≥ 1, we know
from Eq. (7) and the associated discussion that a broad component arises in G1 with a
characteristic length ℓ that increases exponentially with the phase-space-density. The
observed onset of extended coherence around Dtot ∼ 4 can be understood as the place
where ℓ starts to exceed significantly λT . The regime around Dtot ∼ 4 is reminiscent of
the presuperfluid state identified in [84, 388]. It is different from the truly superfluid
phase, which is expected at a higher phase-space-density (Dtot ∼ 8) for our parameters
[322]. Therefore the threshold Dtot, c is not associated to a true phase transition, but
to a crossover where the spatial coherence of the gas increases rapidly with the control
parameter N .

For νz = 365 Hz, the gas is in the ”unfrozen regime” (ζ ≫ 1), which could be naively
thought as irrelevant for 2D physics since according to Boltzmann statistics, many
vibrational states along z should be significantly populated. However thanks to the
BEC⊥ phenomenon presented above, a macroscopic fraction of the atoms can accumulate
in the jz = 0 state. This happens when the total phase-space-density exceeds the threshold
for BEC⊥:

Dtot, c ≈
π2

6
ζ. (10)

In the limit ζ → ∞, BEC⊥ corresponds to a phase transition of the same nature as the
ideal gas BEC in 3D. In the present context of our work, we emphasize that although
BEC⊥ originates from the saturation of the occupation of the excited states along z,
it also affects the coherence properties of the gas in the xy plane. In particular when
Dtot rises from 0 to Dtot, c, the coherence length in xy increases from ∼ λT (the non-
degenerate result) to ∼ az, the size of the ground state of the z motion. This increase
can be interpreted by noting that when BEC⊥ occurs (Eq. 10), the 3D spatial density
in the central plane (z = 0) is equal to g3/2(1)/λ3T , where gs is the polylogarithm of
order s and g3/2(1) ≈ 2.612. For an infinite uniform 3D Bose gas with this density, a
true Bose-Einstein condensation occurs and the coherence length diverges. Because of
the confinement along the z direction, such a divergence cannot occur in the present
quasi-2D case. Instead, the coherence length along z is by essence limited to the size az
of the jz = 0 state. When Dtot = Dtot, c the same limitation applies in the transverse
plane, giving rise to coherence volumes that are grossly speaking isotropic. When Dtot

is increased further, the coherence length in the xy plane increases, while remaining
limited to az along the z direction. The results shown in Fig. 7 are in line with this
reasoning. For ζ ≫ 1, the emergence of coherence in the xy plane occurs for a total
phase-space-density Dtot, c ∝ ζ, with a proportionality coefficient α = 1.4 (3) in good
agreement with the prediction π2/6 ≈ 1.6 of Eq. (10).

We have also plotted in Fig. 7 contour lines characterizing the coherence range in
terms of ζ and Dtot. Using ideal Bose gas theory, we calculated the one-body coherence
function G1(r) and determined the distance rf over which it decreases by a given factor f
with respect to G1(0). We choose the value f = 20 to explore the long tail that develops
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in G1 when phase coherence emerges. The contour lines shown in Fig. 7 correspond
to given values of r20/λT they should not be considered as fits to the data, but as an
indication of a coherence significantly larger than the one obtained from Boltzmann
statistics (for which r20 ≈ λT ). The fact that the threshold phase-space densities Dtot, c

follow quite accurately these contour lines validates the choice of tools (non Gaussian
velocity distributions, matter-wave interferences) to characterize the onset of coherence.

Observation of topological defects. From now on we use the weak trap along z
(νz = 365 Hz) so that the onset of extended coherence is obtained thanks to the transverse
condensation phenomenon. We are interested in the regime of strongly degenerate,
interacting gases, which is obtained by pushing the evaporation down to a point where
the residual thermal energy kBT becomes lower than the chemical potential µ (see
methods for the calculation of µ in this regime). The final box potential is ∼ kB × 40 nK,
leading to an estimated temperature of ∼ 10 nK, whereas the final density (∼ 50µm−2)
leads to µ ≈ kB × 14 nK. In these conditions, for most realizations of the experiment,
defects are present in the gas. They appear as randomly located density holes after
a short 3D ToF (Fig. 8 a,b), with a number fluctuating between 0 and 5. To identify
the nature of these defects, we have performed a statistical analysis of their size and
contrast, as a function of their location and of the ToF duration τ (Fig 8 c,d). For
a given τ , all observed holes have similar sizes and contrasts. The core size increases
approximately linearly with τ , with a nearly 100 % contrast. This favors the interpretation
of these density holes as single vortices, for which the 2π phase winding around the core
provides a topological protection during the ToF. This would be the case neither for
vortex–antivortex pairs nor phonons, for which one would expect large fluctuations in
the defect sizes and lower contrasts.

Dynamical origin of the topological defects. In principle the vortices observed in the
gas could be due to steady-state thermal fluctuations. BKT theory indeed predicts that
vortices should be present in an interacting 2D Bose gas around the superfluid transition
point [229]. Such “thermal” vortices have been observed in non-homogeneous atomic
gases, either interferometrically [166] or as density holes in the trap region corresponding
to the critical region [79]. However, for the large and uniform phase-space densities that
we obtain at the end of the cooling process (ρλ2T ≥ 100), Ref. [146] predicts a vanishingly
small probability of occurrence for such thermal excitations. This supports a dynamical
origin for the observed defects.

To investigate further this interpretation, we can vary the two times that characterize
the evolution of the gas, the duration of evaporation tevap and the hold duration after
evaporation thold (see Fig. 4 a). For the results presented in this section, we fixed
thold = 500 ms and studied the evolution of the average vortex number Nv as a function of
tevap. The corresponding data, given in Fig. 9 a, show a decrease of Nv with tevap, passing
from Nv ≈ 1 for tevap = 50 ms to Nv ≈ 0.3 for tevap = 250 ms. For longer evaporation
times, Nv remains approximately constant around 0.35 (5).

The decrease of Nv with tevap suggests that the observed vortices are nucleated via a
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Figure 8. Observation of vortices. (a,b) Examples of density distributions after a 3D ToF
of τ = 4.5ms for a gas initially confined in a square of size L = 30µm (νz = 365Hz). The
two examples show respectively one (a) and three (b) holes of high contrast, corresponding to
topologically protected expanding vortex cores. We fit each density hole by a hyperbolic tangent dip
convoluted by a Gaussian of waist w = 1µm accounting for imaging imperfections (see methods).
(c) Evolution of the average size ξ (red circles, left labels) and contrast c (green triangles, right
labels) of density holes with the expansion duration τ . No holes are visible for τ ≲ 0.5ms. Red
circles and dark green left triangles are results from a fit accounting for imaging imperfections
while light green right triangles show contrast resulting from a fit without a convolution by a
Gaussian. (d) Variation of the hole size ξ (red circles, left labels) and contrast c (green triangles,
right labels) with the distance to the nearest edge of the box (same configuration than a,b: ToF of
τ = 4.5ms for a gas in a square of L = 30µm). For a distance larger than ∼ 4µm, ξ and c are
approximately independent from the vortex location. The average values in c are taken over all
holes independent of their positions. One point in c (resp. d) corresponds to 15 (resp. 70) vortex
fits. Error bars show standard deviations of the binned data set. Figure from [P8].
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Kibble–Zurek (KZ) type mechanism [15, 210, 427], occurring when the transition to the
phase coherent regime is crossed. However applying the KZ formalism to our setup is
not straightforward. In a weakly interacting, homogeneous 3D Bose gas, BEC occurs
when the 3D phase-space-density reaches the critical value g3/2(1). For our quasi-2D
geometry, transverse condensation occurs when the 3D phase-space-density in the central
plane z = 0 reaches this value. At the transition point, the KZ formalism relates the size
of phase-coherent domains to the cooling speed Ṫ . For fast cooling, KZ theory predicts
domain sizes for a 3D fluid that are smaller than or comparable to the thickness az of
the lowest vibrational state along z; it can thus provide a good description of our system.
For a slower cooling, coherent domains much larger than az would be expected in 3D at
the transition point. The 2D nature of our gas leads in this case to a reduction of the
in-plane correlation length. In the slow cooling regime, we thus expect to find an excess
of topological defects with respect to the KZ prediction for standard 3D BEC.

More explicitly we expect for fast cooling, hence short tevap, a power-law decay
Nv ∝ t−d

evap with an exponent d given by the KZ formalism for 3D BEC. The fit of this
function to the measured variation of Nv for tevap ≤ 250 ms leads to d = 0.69 (17) (see
Fig. 9 a). This is in good agreement with the prediction d = 2/3 obtained from the
critical exponents of the so-called ”F model” [177], which is believed to describe the
universality class of the 3D BEC phenomenon. For comparison, the prediction for a pure
mean-field transition, d = 1/2, is notably lower than our result.

For longer tevap, the above described excess of vortices due to the quasi-2D geometry
should translate in a weakening of the decrease of Nv with tevap. The non-zero plateau
observed in Fig. 9 a for tevap ≥ 250 ms may be the signature of such a weakening. Other
mechanisms could also play a role in the nucleation of vortices for slow cooling. For
example due to the box potential residual rugosity, the gas could condense into several
independent patches of fixed geometry, which would merge later during the evaporation
ramp and stochastically form vortices with a constant probability.

Lifetime of the topological defects. The variation of the number of vortices Nv with
the hold time thold allows one to study the fate of vortices that have been nucleated during
the evaporation. We show in Fig. 9 b the results obtained when fixing the evaporation to
a short value tevap = 50 ms. We observe a decay of Nv with the hold time, from Nv = 2.3
initially to 0.3 at long thold (2 s). To interpret this decay, we modeled the dynamics of
the vortices in the gas with two ingredients: (i) the conservative motion of a vortex in
the velocity field created by the other vortices, including the vortex images from the
boundaries of the box potential [110], (ii) the dissipation induced by the scattering of
thermal excitations by the vortices, which we describe phenomenologically by a friction
force that is proportional to the non-superfluid fraction of atoms in the gas [128]. During
this motion, a vortex annihilates when it reaches the edge of the trap or encounters
another vortex of opposite charge. The numerical solution of this model leads to a
non-exponential decay of the average number of vortices, with details that depend on the
initial number of vortices and their locations.

Assuming a uniform random distribution of vortices at the end of the evaporation,
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Figure 9. Dynamics of vortex nucleation. (a) Circle symbols: evolution of the mean vortex
number Nv with the quench time tevap (fixed thold = 500ms) for a gas initially confined in a square
of size L = 30µm (νz = 365Hz) and observed after a 3D ToF of τ = 4.5ms. The number of
images per point ranges from 37 to 233, with a mean of 90. We restrict to tevap ≥ 50ms to ensure
that local thermal equilibrium is reached at any time during the evaporation ramp [208]. Red line:
fit of a power-law decay to the short time data (tevap ≤ 250ms), giving the exponent d = 0.69 (17).
The uncertainty range on d is the 95% confidence bounds of a linear fit to the evolution of log(Nv)
with log(tevap). For longer quench times, the mean vortex numbers are compatible with a plateau
at Nv = 0.35 (5). (b) Circle symbols: evolution of the mean vortex number Nv with the hold time
thold (fixed tevap = 50ms) in the same experimental configuration as a. The number of images
per point ranges from 24 to 181, with a mean of 59. In both figures error bars are obtained from
a bootstrapping approach. Red line: results from a model describing the evolution of an initial
number of vortices Nv,0 = 2.5(2) in the presence of a phenomenological damping coefficient [128].
The inferred superfluid fraction is 0.94 (2). Confidence ranges on these parameters are obtained
from a χ2-analysis. Figure from [P8].
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we have compared the predictions of this model to our data. It gives the following
values of the two adjustable parameters of the model, the initial number of vortices
Nv,0 = 2.5 (2) and the superfluid fraction 0.94 (2); the corresponding prediction is plotted
as a continuous line in Fig. 9 b. We note that at short thold, the images of the clouds
are quite fuzzy, probably because of non-thermal phononic excitations produced (in
addition to vortices) by the evaporation ramp. The difficulty to precisely count vortices
in this case leads to fluctuations of Nv at short thold as visible in Fig. 9 b. The choice
thold = 500 ms in Fig. 9 a was made accordingly.

The finite lifetime of the vortices in our sample points to a general issue that one faces
in the experimental studies on the KZ mechanism. In principle the KZ formalism gives a
prediction on the state of the system just after crossing the critical point. Experimentally
we observe the system at a later stage, at a moment when the various domains have
merged, and we detect the topological defects formed from this merging. In spite of
their robustness, the number of vortices is not strictly conserved after the crossing of
the transition and its decrease depends on their initial positions. A precise comparison
between our results and KZ theory should take this evolution into account, for example
using stochastic mean-field methods [45, 87, 98, 262].

Discussion

Using a box-like potential created by light, we developed a setup that allowed us to
investigate the quantum properties of atomic gases in a uniform quasi-2D configuration.
Thanks to the precise control of atom number and temperature, we characterized the
regime for which phase coherence emerges in the fluid. The uniform character of the
gas allowed us to disentangle the effects of ideal gas statistics for in-plane motion, the
notion of transverse condensation along the strongly confined direction, and the role of
interactions. This is to be contrasted with previous studies that were performed in the
presence of a harmonic confinement in the plane, where these different phenomena could
be simultaneously present in the non-homogeneous atomic cloud.

For the case of a weakly interacting gas considered here, our observations highlight
the importance of Bose statistics in the emergence of extended phase coherence. This
coherence is already significant for phase-space densities D0 ∼ 3 − 4, well below the
values required for (i) the superfluid BKT transition and (ii) the full Bose–Einstein
condensation in the ground state of the box. For our parameters, the latter transitions
are expected around the same phase-space-density (∼ 8 − 10) meaning that when the
superfluid criterion is met, the coherence length set by Bose statistics is comparable to
the box size.

By cooling the gas further, we entered the regime where interactions dominate over
thermal fluctuations. This allowed us to visualize with a very good contrast the topological
defects (vortices) that are created during the formation of the macroscopic matter-wave,
as a result of a Kibble–Zurek type mechanism. Here we focused on the relation between
the vortex number and the cooling rate. Further investigations could include correlation
studies on vortex positions, which can shed light on their nucleation process and their
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subsequent evolution [138].
Our work motivates future research in the direction of strongly interacting 2D gases

[164], for which the order of the various transitions could be interchanged. In particular
the critical D for the BKT transition should decrease, and reach ultimately the universal
value of the ”superfluid jump”, D = 4 [293]. In this case, the emergence of extended
coherence in the 2D gas would be essentially driven by the interactions. Indeed once the
superfluid transition is crossed, the one-body correlation function is expected to decay
very slowly, G1(r) ∝ r−α, with α < 1/4. It would be interesting to revisit the statistics
of formation of quench-induced topological defects in this case, for which significant
deviations to the KZ power-law scaling have been predicted [111, 194].

Here, we skip a “Methods” section detailing all elements necessary to allow
interpretation and replication of the results.

2.2.3. Vortex reconnections and rebounds in trapped atomic Bose–Einstein
condensates [P6]

Abstract: Reconnections and interactions of filamentary coherent structures play a
fundamental role in the dynamics of fluids, redistributing energy and helicity among the
length scales and inducing fine-scale turbulent mixing. Unlike ordinary fluids, where
vorticity is a continuous field, in quantum fluids vorticity is concentrated into discrete
(quantized) vortex lines turning vortex reconnections into isolated events, making it
conceptually easier to study. Here we report experimental and numerical observations of
three-dimensional quantum vortex interactions in a cigar-shaped atomic Bose–Einstein
Condensate. In addition to standard reconnections, already numerically and experimen-
tally observed in homogeneous systems away from boundaries, we show that double recon-
nections, rebounds and ejections can also occur as a consequence of the non-homogeneous,
confined nature of the system.

Introduction

The interaction and reconnection of filaments are key aspects in the description of
the dynamics of fluids [28, 211, 357], plasmas [72, 83, 321], nematic liquid crystals [82],
macromolecules [377] (including DNA [394]) and optical beams [39, 105]. In quantum
fluids, vortices are topological defects of the system’s order parameter, around which the
circulation of the velocity field is quantized [110, 132, 301, 399]. Their discrete filamentary
nature makes quantum fluids an ideal setting for the study of vortex interactions and
reconnections. In particular, reconnections trigger a turbulent energy cascade [29] in
which vortex lines self-organize in bundles [20] creating the same Kolmogorov distribution
of kinetic energy over the length scales, signature of a cascade mechanism which is
observed in ordinary turbulence [29, 264, 297, 367]. Cascade processes are central in
turbulent motions. A related cascade of wave-like excitations was in fact recently observed
in the momentum distribution [289], with an exponent consistent with predictions of
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Figure 10. Sketch of an imaging sequence. A trapped condensate (smaller light-blue ellipsoid)
contains a transverse vortex line that moves and rotates around the trap center; the direction of
the atomic flow around the vortex filament is indicated by the yellow arrow. A small fraction of
atoms is repeatedly extracted, typically every 12 ms; these atoms expand and fall in the gravity
field, and are imaged in absorption by a probe laser beam after they are spatially separated from
the trapped condensate. Each absorption image contains the essential features associated with the
vortex lines. Figure from [P6].

wave-turbulence theory [419]. Reconnection events also impact on the evolution of the
flow’s topology [218], redistributing helicity among length scales [86, 351]. Finally, in the
low-temperature limit, reconnections are the ultimate process of dissipation of superfluid
kinetic energy since they trigger a Kelvin wave cascade [230, 231] that turns incompressible
kinetic energy into acoustic modes [247], hence heating. Previous experimental [41, 136],
theoretical [290] and numerical [102, 207, 227, 335, 382, 398, 426] studies of reconnections
have been performed in homogeneous systems away from boundaries.

Here we focus on elongated Bose–Einstein condensates (BECs) of ultracold atoms
confined by magnetic harmonic potentials, ideal systems which allow for different regimes
of three-dimensional (3D) vortex-vortex interactions in the close presence of boundaries.
Anisotropic boundaries induce vortical filaments to preferentially align along the shortest
direction, minimising energy. In flat, cylindrically symmetric, disk-shaped condensates,
vortices are the shortest when aligned along the axis of symmetry, moving along two-
dimensional trajectories clockwise or anti-clockwise, depending on their sign [11, 138, 288,
292, 384, 406]. Instead, vortices in cylindrically symmetric, cigar-shaped condensates
are the shortest when they lie on radial planes. Moreover, the boundaries affect the
structure of the vortical flow [56, 109, 226, 389] in such a way that two vortices only
interact when their minimum distance is within a range of the order of the transverse
size of the condensate.

In the present work, an innovative imaging technique, exploiting self-interference
effects of outcoupled atoms, is introduced in order to extract both the position and
orientation of 3D vortex lines from a temporal sequence of absorption images. We then
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combine experiments and numerical Gross-Pitaevskii (GP) simulations to study the
interaction between two vortex lines approaching at various relative speeds and angles.
Our experiments and simulations show that the interaction between vortex lines in a finite
system is rather different from the one in infinite uniform superfluids. Boundary-induced
effects, such as rebounds, double reconnections, and ejections, are here discussed in
details. These types of processes may play an important role in the dynamics of trapped
condensates in multi-vortex and turbulent-like configurations, and, on a wider perspective,
they can represent novel keys for better understanding the behavior of superfluids near
boundaries.

Experiment

Preparation of BECs with vortices. Experimentally, we confine sodium atoms in
an elongated cigar-shaped harmonic magnetic trap with axial and radial frequencies
ωx/2π = 9.2 Hz and ω⊥/2π = 92 Hz, respectively. By means of a radio-frequency
forced evaporation the cold atomic sample undergoes the BEC transition and, in the
end, condensates containing about N0 = 2 × 107 atoms and a negligible thermal fraction
(T < 150 nK, Tc ≃ 500 nK) are obtained. Thanks to the Kibble–Zurek mechanism
[210, 428] the temperature quench through the BEC transition [108, 138, 240, 406]
produces different phase domains in the order parameter of the system that quickly
evolve into topological defects. In our geometry, these defects are vortex lines mainly
oriented in the transverse direction, as those predicted in [56, 226] and characterized
in [109]. Similar vortices can be obtained as decay products of phase imprinted dark
solitons in a BEC [34] or a Fermi superfluid gas [234, 235]. Here we use a cooling rate
of 4 µK/s in order to produce, on average, two vortices in each condensate at the time
when the observation starts, about 250 ms after the phase transition. Such vortices move
in the non-rotating condensate and can be directly imaged in real-time [138, 328, 359].
In comparison, individual vortex visualisation in superfluid helium is more intrusive,
requiring tracer particles whose diameter is about 104 times larger than the vortex core
[40].

Sample extraction and real-time imaging. A new imaging method allows us to
follow the vortex dynamics in real-time, as sketched in Fig. 10. Similar to [138, 328],
a small sample of the atomic system (∼ 105 atoms) is repeatedly extracted from the
BEC every 12 ms (up to 75 times). The outcoupled atoms freely expand and fall under
the effect of gravity. Each partial extraction is implemented by coupling the trapped
state |F = 1,mF = −1⟩ to the non-magnetic one |1, 0⟩ with a radio frequency (rf )
field. The energy difference between the two states is spatially dependent because of the
inhomogeneity of the trapping potential.

The novelty of our technique is represented by the fact that the rf field is frequency-
swept linearly in time in order to match the resonant condition at different positions
throughout the BEC, from top to bottom. An important point to note is that the phase
of the released atoms evolves more slowly because they do not feel the trapping potential.
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Figure 11. (a) Examples of absorption images of the outcoupled atoms (the same as in Fig. 10).
The vortex axial position is clearly visible. (b) After integrating radially and fitting the absorption
images, we determine the residuals, which exhibit minima (pink) and maxima (green) due to
interference effects among atoms that are outcoupled from the trapped condensate at different
places and times. (c) Full temporal sequence of residuals for a given condensate, showing the
real-time evolution of a vortex which moves axially and rotates around the x axis, from an initial
orientation along y (green-pink) at t1 to an orientation along z (green-pink-green) in t2 and then
along −y (pink-green) at t3. The relation between the shape of the residuals and the orientation
of the vortex is extracted from numerical simulations. Figure from [P6].

As a consequence, the wave function of the outcoupled atoms experiences constructive
or destructive self-interference effects, depending on the phase difference accumulated
between the early-released (upper) and late-released (lower) atoms, and how this relates
to the in situ phase on different sides of the vortex core. We use the GP equation to
simulate the radio frequency extraction in order to determine how a vortex with given
position and orientation in the trapped BEC manifests itself in the observed density
distribution of the outcoupled atoms after expansion.

A microwave field remains on to transfer the extracted atoms from |1, 0⟩ to |2, 0⟩, which
is detectable with the probe light. The resonant condition for the transfer is matched at
zr ≈ 280µm below the trapped BEC, far enough to leave it unaffected. We probe the
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Figure 12. Examples of different interaction mechanisms observed in the case of two approaching
vortices. Each temporal sequence is shown twice with two different color palettes; the red palette
enhances the contrast, so that also vortices close to the edges can be seen, whereas the pink-green
palette better illustrates the vortex orientation in the radial plane. (a,b) Vortices approach and
bounce back; (c) their axial trajectories intersect preserving visibility and orientation; (d) they
cross producing sudden changes of visibility; (e,f) the visibility of one vortex is almost completely
lost after interacting with the other. Figure from [P6].

extracted atoms via standard absorption imaging after 13 ms of total time of flight at
zi ≈ 830µm below the trap center. Such a time of flight is enough for vortices to become
visible with our imaging resolution.

Data analysis. Each absorption image (Fig. 11a) is integrated radially along the z
axis and the axial profile is obtained. By fitting the latter, we calculate the density
residuals (see Fig. 11b). This procedure is performed on each extraction and then the
full temporal sequence is reconstructed in order to follow the vortex trajectories in the
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trapped condensate, as in Fig. 11c.
Thanks to the above mentioned self-interference effect, if a vortex is present, the density

residuals show a strong local deviation from the unperturbed distribution, as in Fig. 11b,
and the fit allows us to extract information on the vortex axial position, as well as on its
orientation in the radial plane at any given time.

Figure 12 shows examples of the temporal evolution of the density-residual profiles in
BECs containing two vortices. Two different color palettes are used in order to extract
different pieces of information. The red palette best highlights the trajectory contrast.
One can track the vortex axial location in time and hence determine the orbit amplitude
and the axial velocity. Notice that in some cases, very faint trajectories (corresponding
to vortices close to the BEC surface) can also be seen. It is also possible to understand
how the vortex line is oriented in the radial plane and how it rotates about the long
axis of the condensate. The diverging pink-green palette helps to visualize the shape of
the density modulation from which one can better track the vortex orientation in time.
From numerical simulations we infer that, at least when the orbiting parameter is not
too large, the vorticity points along y if the interference pattern is green-pink along x
(see row (b) in Fig. 11); its anti-vortex configuration, oriented toward −y, corresponds
to a pink-green pattern; the symmetric pattern green-pink-green is obtained when the
vortex is aligned perpendicularly to the imaging direction, a vortex oriented along +z
providing the same density residual as one oriented along −z.

Numerical simulations

In order to gain closer insight into vortex interactions, we perform numerical simulations
by using the Gross–Pitaevskii equation [96, 317] for a BEC at T = 0. Temperature
effects are expected to be small. In a previous work [359], we have already observed that
the dynamics of single vortices is very weakly affected by thermal excitations. This is
expected to be true also for vortex-vortex interaction processes occurring in the central
region of our BEC, where the thermal density is negligible. There is also evidence that
thermal excitations do not affect the rapid motion of vortex lines during the reconnections
[8].

We track the vortices by employing an algorithm based on the pseudo-vorticity vec-
tor, achieving sub-grid resolution. Since the experimental BECs are too large for our
computational resources, we simulate smaller BECs (∼ 4 × 105 atoms); this implies a
reduction of the ratio R⊥/ξ by a factor of three, where ξ is the healing length and R⊥
is the transverse Thomas–Fermi radius. However, such a difference does not affect the
qualitative comparison between experiments and simulations.

If we imprint a single straight vortex line off-center on a radial plane, we find that
it orbits around the center of the condensate [11, 138] along an elliptical orbit which
is orthogonal to the vortex line itself. The orbit, which is a trajectory of constant
energy [379] and an isoline of the trapping potential, is uniquely determined by the orbit
parameter χ = r0/R⊥ = x0/Rx, where r0 and x0 correspond to the radial and axial
semi-axes of the ellipse, while Rx is the axial Thomas–Fermi radius. The orbital period is
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maximum when the vortex moves on a very small orbit (χ≪ 1) and corresponds to T0 =
8πµ/[3ℏω⊥ωx ln(R⊥/ξ)] [359], while it decreases with increasing χ [131, 256, 360, 379].

If instead we imprint two transverse vortices in a given BEC, we find that the evolution
can be divided into two stages. In the first stage, when the axial separation of the vortices
is larger than R⊥, the vortices move almost independently; in the second stage, when
the axial separation becomes smaller than R⊥, we observe a significant interaction which
seems to be determined mainly by the relative orientation θrel and velocity vrel when
they start interacting.

We first perform simulations in which two orthogonal vortices are initially imprinted
in radial planes at opposite axial positions ±x0, see Figs. 13a-c (orthogonality is chosen
because of its maximal dissimilarity with respect to flat 2D systems). Different x0 values
are chosen, corresponding to different orbit parameters χ and hence to different impact
velocities. The early stage can be described as the combination of two single-vortex
motions on mutually perpendicular elliptical orbits.

In fact, in an elongated condensate, the superfluid flow of each vortex becomes negligible
at distances of the order of R⊥ from the line, as can be verified by solving the stationary
GP equation. This means that when two vortices are at distances larger than ∼ R⊥, they
behave as non-interacting objects, as indeed observed in time-dependent GP simulations.
This is crucial in order to interpret and classify the vortex-vortex interaction as a collision
with well-defined initial and final velocities and orientations. In a different 3D geometry,
it would be very difficult to define and control a global “relative velocity and orientation”
of a vortex line. If a non-rotating condensate is confined in a spherical potential, or is
uniform, for instance, the distance between two vortices and their relative velocity and
orientation could be defined only locally: vortices do not possess a preferred orientation,
they can be easily bent, and each piece of vortex is affected by a long-range interaction
with all other vortices in the condensate. Our geometry instead naturally provides
well-defined collision events, such as reconnecting or bouncing lines, occurring in a narrow
interaction region.

Only when the minimum distance between the vortices becomes of the order of R⊥,
the vortices start rotating in the radial plane, attempting to arrange themselves in the
preferred (energy-conserving) anti-parallel configuration, as shown in Figs. 13a-c. The
axial motion of the vortices towards each other, driven by the inhomogeneous density,
is faster if the vortices are close to the condensate’s boundary [131, 360, 379]. The
anti-parallel configuration which the vortices attempt to achieve induces them to drift
radially towards the radial center of the condensate. This drift is similar to the well-known
self-induced motion of a pair of straight anti-parallel vortex lines [271, 292, 384] in a
homogeneous condensate. The balance between the radial and axial motions which we
have described determines the features of the second stage of the interaction.

Briefly, if the axial collision velocity is sufficiently high (i.e., if the vortex lines start
interacting in a region sufficiently close to the boundary [131, 360, 379]) the two vortices
tend to reconnect before reaching the center of the condensate, as in Fig. 13c.

Vice versa, if the interaction begins in a region sufficiently close to the x-axis, the
radial motion of the vortex lines is fast enough (with respect to the axial motion) to get
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Figure 13. The first six columns show radial and axial snapshots from the GP simulations of
two interacting vortex lines. On the right, the axial coordinate x (in units of Rx) of the center of
vorticity of each vortex is plotted vs. normalized time τ = t/T0. Initial line colors (red/blue) help
identify vortices in the snapshots until they reconnect. After the first reconnection, line colors
switch to orange/green and again to red/blue if a second reconnection occurs. Line transparency
indicates how visible vortices are expected to be, given their orbit amplitude (see Appendix B for
further details on line transparency). The grey region highlights the interaction interval where
the minimum distance between the vortices is smaller than R⊥. (a-c) Perpendicular vortices are
imprinted on opposite radial planes with corresponding orbit parameters χ = 0.22, 0.25, 0.375,
respectively: (a) illustrates a vortex rebound; (b) shows the double reconnection interaction, with
reconnections occurring at τ = 0.208 and τ = 0.221 ; (c) depicts a single reconnection occurring
at τ = 0.179, with the consequent triggering of Kelvin waves. (d) illustrates a non-symmetrical
reconnection (at τ = 0.130) between a vortex imprinted on the central plane of the condensate
through its center (blue) and a vortex (red) imprinted orthogonally to the first one with a large orbit
parameter χ = 0.7. One of the reconnected vortices lies on an even wider orbit (larger χ), where
the BEC density is lower and its visibility becomes consequently greatly reduced. (e) describes
the orbiting dynamics between two parallel vortices imprinted on different orbits (χ = 0.33, 0.5).
Notice that in (a-c) the first snapshot corresponds to τ = 0, whereas in (d,f) the snapshots are all
later in time. Figure from [P6].
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past the radial center of the condensate where they move axially away from each other
due to the reversed velocity field induced by the inhomogeneous density: a rebound takes
place, as in Fig. 13a.

An intermediate regime occurs if, while drifting radially away from the boundary of
the condensate towards the center, the minimum distance between the vortices in the
central region of the condensate is sufficiently small: in this case a double reconnection
[39] occurs. This happens for instance in the sequence in Fig. 13b, where the two vortex
lines touch at a point and exchange their tails both at τ = 0.208 and τ = 0.221, expressed
in units of the precession period T0.

In addition to the simulations with chemical potential µ = 10ℏω⊥, we have also
performed simulations with µ = 5ℏω⊥. The corresponding dynamics are very similar
and the sole discriminant parameter between the distinct vortex interaction regimes is
indeed the orbit parameter χ. The critical value χc switching from rebound to double
reconnection dynamics is 0.25 < χc < 0.28 for µ = 5 and 0.22 < χc < 0.25 for µ = 10,
supporting our argument that the value of µ does not change the essence of the physics.

Interpretation of the results

Rebounds. The simulations in Fig. 13a show that rebound events are characterized
by non intersecting vortex trajectories, as we observe experimentally in a subset of
images, e.g. in Fig. 12a,b. For example, Fig. 13a can be related to Fig. 12b, where the
orientations extracted from the residuals start from an orthogonal configuration before
partially overlapping (however the trajectories do not intersect) and then emerge later
showing an anti-parallel configuration. A simpler, non-rotational, bounce is the one in
Fig. 12a, where vortices are already anti-parallel before interacting. Both of the observed
rebounds are characterized by an increased visibility when vortices are very close to
each other. This is because the residuals are generated by subtracting the unperturbed
density distributions and vortices become more visible where their cores lie within a
region of higher density. The observed increase of vortex visibility in rebound events is
thus consistent with the radial drift of the vortices towards the x-axis seen in numerical
simulations.

By studying the dynamics of hundreds of different experimental realisations, we make a
statistical analysis which reinforces our interpretation. Figure 14a shows the distribution
of events as a function of the relative axial velocity of two approaching vortices. It is
evident that those events, that are identified as rebounds (with approaching, but not
touching, trajectories), preferentially happen when the relative velocity is small. As
anticipated, the relative angle θrel in the radial plane matters when discerning rebound
events from reconnections. Fig. 14b shows the rebound probability as a function of
the vortex relative angle just before their approach. In order to classify the events in
the three bins of Fig. 14b, we use the relation between the shape of the residuals and
the orientation of the vortex as extracted from numerical simulations to post-select all
collisions for which we can safely estimate the relative angle to be approximately 0, 45,
and 90 degrees, within an uncertainty of the order of ∼ 30 degrees. Then, in each group
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Figure 14. Statistical analysis of experimental observations. (a) occurrence of rebound events
(purple) as a function of the vortex-vortex relative velocity, within the ensemble of all collision
events (grey). The velocity vrel is normalized to the speed of sound c evaluated at the center of
the BEC. The inset shows the relative occurrence for each bin; (b) fraction of rebound events as a
function of the relative angle just before the interaction; (c) occurrence of events (green) in which
one vortex line disappears after the interaction, as a function of the largest orbit parameter of the
vortex pair χmax, i.e., the amplitude of the outer vortex orbit in the BEC; the inset shows the
relative occurrence per bin. Figure from [P6].

we count the fraction of rebounds. The results confirm that rebounds are most likely to
occur between anti-aligned vortices, consistent with the simulations.

Orbiting dynamics. Two parallel vortices can orbit around the center of the BEC
in the same direction with distinct orbit parameters χ, only weakly interacting when
they are at the closest distance. When imaged from a radial direction, the two vortices
appear to cross periodically; in reality, they pass by each other without visible changes of
the residual pattern, with, at most, only slight modifications of orbits and visibility. An
example of such orbiting dynamics can be observed in the experimental image Fig. 12c,
and a similar case in the numerical simulations is shown in Fig. 13e.

Reconnections. If the initial orientations of the vortices are not parallel and the
axial collision dynamics is sufficiently fast, single reconnection processes are favored. As
simulations show (Fig. 13c,d), these reconnection processes generate cusps which, as they
relax, form Kelvin waves [215], i.e. helical perturbations of the cores, as for instance
the ones visible at τ = 0.192 in Fig. 13c. The excitation of Kelvin waves via vortex
reconnections was observed in superfluid Helium [136] and similar effects have also been
found in numerical simulations of Fermi superfluids [413]). In our experiment, such a
perturbation of the vortex lines in a reconnection event implies a sudden change of both
the orbit and the residual pattern, along with a significant change of visibility of one or
both vortices, as illustrated in Fig. 12d,e. The nonlinear interaction among Kelvin waves
might lead to Kelvin wave cascades [230, 231]. However, in the confined geometry of
our elongated BEC, the role of Kelvin waves is expected to be reduced compared to a
uniform superfluid, due to finite (transverse) size effects. This is consistent with the fact
that, if we release the whole condensate from the trap in order to observe the vortex lines
by taking absorption images in the axial direction, as done in [109, 359], we typically
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observe almost rectilinear vortices with only smooth bends (mostly induced by boundary
conditions for off-centered vortices), even in the presence of two or more vortices in the
condensate.

Ejections. When a vortex orbits the outer part of the condensate (large χ) a fast
interaction with another vortex (either via a reconnection or a close orbiting interaction)
can cause the expulsion of either vortex towards the surface of the BEC, where the
density is too low for observation (the other vortex remaining inside). Examples of such
ejection processes are shown in Fig. 12e,f (reconnection-induced and orbiting-induced,
respectively). The numerical counterpart of Fig. 12e is illustrated in Fig. 13d (in order to
emphasize this vortex-visibility effect in the numerical simulations, the thickness and the
color of the lines in the plots reported in the right column of Fig. 13 are modulated by
the Thomas–Fermi density at which the corresponding vortex core resides, see Appendix
B). A statistical analysis of experimental data is given in Fig. 14c: excluding cases where
rebounds occur, we count all events of vortex-vortex interaction as a function of the
largest orbit parameter of the vortex pair χmax. Then, among them, we show in green
those in which the visibility of one of the two vortex lines is lost in the interaction.
The relative distribution in the inset clearly supports the idea that ejections occur at
large χ, i.e., near the boundary of the condensate, in agreement with the result of
the numerical simulations. These ejection processes might play a key role in the early
post-quench dynamics of the BEC, when most of the vorticity produced by the Kibble–
Zurek mechanism is progressively lost at the boundaries, eventually leaving only a few
vortex lines in the final BEC [253]. It is also worth noticing that a similar dynamics
was previously discussed in Ref. [34]. In that case, pairs of dark solitons are created
by an optical phase imprinting technique and their subsequent dynamics is observed.
GP simulations show that solitons first decay into vortex rings and then into pairs of
solitonic vortices which, in the experimental conditions, are still detected as dark soliton
stripes. Hence a collision between two soliton stripes is actually a collision between two
pairs of vortices. Such collisions can be inelastic and can also lead to “sling shot” events
where one of the solitonic vortices is ejected from the condensate. Due to the different
mechanism for the creation of vortices, the configurations discussed in Ref. [34] involve
typically more than two vortices in each collision, and thus the dynamics is more complex
than in our case, though qualitatively consistent.

Conclusions

In conclusion, we have developed an innovative experimental technique which, combined
with numerical simulations, is capable of determining the real-time position and 3D
orientation of vortex lines in an elongated BEC. This combined technique allows us to
investigate vortex dynamics in a 3D quantum system with unprecedented resolution:
novel types of vortex interaction regimes are unambiguously identified beyond standard
reconnections already observed in superfluid helium [41]. While in uniform, unbounded
and non-rotating superfluids reconnections of vortex lines moving towards each other are
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unavoidable, and their effects have been extensively investigated [102, 207, 227, 290, 335,
382, 397, 426], here we show that in a confined and inhomogeneous superfluid, depending
on the relative velocity and orientation, two vortex lines can also rebound, perform double
reconnections, maintain their orbits with negligible interaction and undergo ejections.
These processes should play even more important roles when the BEC contains more
than two vortices, for example in the case of turbulence [387].

2.3. Spin superfluidity of binary mixtures of atomic Bose-Einstein
condensates

2.3.1. Spin-dipole oscillation and polarizability of a binary Bose-Einstein
condensate near the miscible-immiscible phase transition [P7]

Abstract: We report on the measurement of the spin-dipole (SD) polarizability and
of the frequency of the SD oscillation of a two-component Bose–Einstein condensate of
sodium atoms occupying the |32S1/2, F = 1,mF = ±1⟩ hyperfine states. This binary
spin-mixture presents the important properties of being, at the same time, fully miscible
and rid of the limit set by buoyancy. It is also characterized by a huge enhancement of the
SD polarizability and by the consequent softening of the frequency of the SD oscillation,
due to the vicinity to the transition to the immiscible phase. The experimental data are
successfully compared with the predictions of theory.

Introduction

The study of mixtures of Bose-Einstein condensates (BECs) has opened rich oppor-
tunities for novel experimental and theoretical investigations. Mixtures of ultracold
atoms offer great flexibility thanks to the variety of atomic species and the additional
degree of freedom related to the hyperfine structure [173, 284, 299, 324, 375, 383] (for a
recent overview see [372]). For a weakly interacting mixture of two BECs, the ground
state of the system can either be a miscible mixture of the two components or a phase
separated configuration [88]. Nevertheless, the stability of mixtures very close to the
critical region is sensitive to other effects, such as asymmetries in the trapping potential
[209]. Moreover, for systems in which the intracomponent coupling constants do not
exactly coincide, one of the two components will experience a positive buoyancy and
will “float” on the other. Previous experiments involving two internal states of rubidium
were affected by both of these problems [122, 167, 169, 295, 408] hence setting strong
limits to explore the many-body properties of miscible binary BECs. In particular, such
conditions prevent the study of the static and dynamic response of an unpolarized system
close to the transition between the miscible and immiscible phases, where interaction
effects are particularly important despite the weakly interacting nature of the gas [195].

Here we report on the first measurement of the spin-dipole (SD) polarizability of a
two-component BEC, as well as the frequency of the SD oscillation, by using an ultracold
mixture of the |32S1/2, F = 1,mF = +1⟩ ≡ |↑⟩ and |32S1/2, F = 1,mF = −1⟩ ≡ |↓⟩
states of atomic sodium. The polarizability characterizes in a fundamental way the
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thermodynamic behavior of binary ultracold gases and exhibits a divergent behavior
at the transition between the miscible and immiscible phases, with the occurrence of
important spin fluctuations [1, 46, 329]. On the other hand, the SD oscillation is the
simplest collective excitation supported by the system in the presence of harmonic
trapping and is characterized by the motion of the two components with opposite phase
around equilibrium. The SD oscillation is the analog of the famous giant dipole resonance
of nuclear physics, where neutrons and protons oscillate with opposite phase [52]. Actually,
collective modes are a popular subject of research in quantum many body systems (see,
e.g., [317]) where experiments are able to determine the corresponding frequencies with
high precision, providing a good testbed for detailed comparison with theory and an
accurate determination of the relevant interaction parameters. Collective dynamics has
been already investigated in quantum binary mixtures of atomic gases like repulsive
gases of Fermi atoms [104, 329, 392, 396], Bose-Bose [114, 167, 195, 258, 267, 272, 274,
296, 347, 348, 365, 423] and Bose-Fermi mixtures [129] as well as Bose-Fermi superfluid
mixtures [130, 340]. In the case of Bose-Bose mixtures both the polarization and the
SD oscillation frequency are predicted to be crucially sensitive to the difference between
the value of the intra and intercomponent interactions [195, 347] which is particularly
small in our case. The dramatic change of the density profile of the trapped gas, caused
by a small displacement of the minima of the trapping potentials of the two species
near the miscible-immiscible phase transition, was first investigated theoretically in [195].
Our mixture is not subject to buoyancy as g↑↑ = g↓↓ ≡ g and is on the miscible side
g↑↓ < g near the boundary of the phase transition (g and g↑↓ are respectively the intra
and intercomponent coupling constants). The fact that (g − g↑↓)/g ≃ 7 %, as given by
the scattering lengths a↑↑ = a↓↓ = 54.54(20)a0 and a↑↓ = 50.78(40)a0, where a0 is the
Bohr radius [219], ensures the stability of the mixture and, together with the absence of
buoyancy, allows us to overcome the ultimate limits to measure both the polarizability
and SD oscillation frequency.

Mixture preparation

Our experiment is based on the apparatus introduced in [240] and starts with a nearly
pure BEC of 23Na atoms in the |↓⟩ state in a crossed optical dipole trap with frequencies
[ωx, ωy, ωz] /2π = [47.7(2), 207.2(3), 156.8(2)] Hz. The magnetic fields along the three
spatial directions are calibrated with a precision of 1 mG using RF spectroscopy techniques.
The first step towards the creation of the spin mixture is to perform a Landau–Zener
transition to the |F = 1,mF = 0⟩ ≡ |0⟩ state with nearly 100 % transfer efficiency. This is
realized at a magnetic field of 100 G to isolate a two-level system exploiting the quadratic
Zeeman shifts. The second step consists in inducing a Rabi oscillation among the three
Zeeman sublevels to obtain a 50/50 spin mixture of |↓⟩ and |↑⟩ [425]. The bias field along
x̂ is taken small enough to allow us to neglect the quadratic Zeeman shifts compared
to the Rabi frequency and is kept on during the whole experimental sequence following
the Rabi pulse. The number of atoms in each spin component is N↑ = N↓ ≃ 106 and
the total chemical potential of the cloud is µtot/kB ≃ 200 nK. Fig. 15(a) shows typical
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(a) I II III (b)

Figure 15. (a) Absorption images taken after a SG expansion for I) the dipole loading, II) the
Landau–Zener transition, III) the Rabi pulse leading to the creation of the binary mixture. (b)
Stabilization of the two components by shifting the |0⟩ state using microwave dressing on the
transition to |F = 2,mF = 0⟩. Figure from [P7].

absorption images of the spinor BEC after a 10 ms Stern–Gerlach (SG) expansion in a
magnetic field gradient along ẑ. In order to prevent the decay of the mixture to |0⟩ by
spin changing collisions, we lift this level by ∼ 10 kHz using blue detuned microwave
dressing on the transition to |F = 2,mF = 0⟩ (see Fig. 15(b)).

Spin-dipole polarizability

The SD polarizability of a spin mixture describes the ability of the system to adapt itself
to a displacement in opposite direction of the trapping potentials of the two components.
After realizing a fully overlapped configuration, we adiabatically apply a magnetic field
gradient B′

x along x̂ using a pair of coils in anti-Helmholtz configuration. The gradient is
controlled with a resolution at the level of 4 mG/cm. This displaces the minima of the
trapping potentials such that V↑,↓ = mω2

x(x± x0)
2/2 where x0 = gFµBB

′
x/(mω

2
x) (gF is

the Landé factor, µB the Bohr magneton and m the atomic mass). The SD polarizability
is defined as

P(x0) ≡
d(x0)

2x0
, (11)

where d = x↓ − x↑ is the in-situ relative displacement between the centers of mass of
each component (see Fig. 16(a)). After a 2 ms SG expansion, we measure d by fitting
each spin component density distribution to independent Thomas–Fermi (TF) profiles to
extract their centers x↑,↓. The individual density profiles are not exactly TF-like, but
we verified, using a Gross–Pitaevskii equation (GPE) simulation, that this approximate
fitting procedure results in an overestimation of P by at most 6%. Later in the text we
discuss the additional correction to the measurement of P related to interactions during
the SG expansion. Fig. 16(a) shows the experimental results where the value of x0 is
estimated after calibrating B′

x. We observe that all data points strongly deviate from
the prediction d = 2x0 for a mixture without intercomponent interactions (green solid
line), revealing the large SD polarizability of the system.

We use a second experimental protocol to determine the polarizability which will later
prove to be useful for measuring the SD oscillation frequency. It consists in realizing the
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Figure 16. (a) Relative displacement d = x↓−x↑ between the spin components as a function of x0
(orange dots). The green solid line corresponds to the situation of no intercomponent interaction
d = 2x0. The figure also shows a sketch of the experimental conditions (the dashed curve is the
total cloud density). (b) SD oscillations for different values of x0 (positive and negative) observed
using the second experimental protocol. The solid lines are fit to the data according to Eq. (12).
In each figure of the paper, data error bars are the sum in quadrature of systematic and statistical
errors (one standard deviation of the mean). Figure from [P7].

Rabi pulse |0⟩ → |↑, ↓⟩ in the presence of a magnetic field gradient. As the minima of the
trapping potentials for the |↑⟩ and |↓⟩ states are shifted by ∓x0 with respect to the initial
state |0⟩, this makes the two components oscillate out of phase after the Rabi pulse. The
in-situ time evolution of the relative displacement D(t) = x↓(t) − x↑(t) is expected to be
given by D(x0, t) = d(x0) [1 − cos [ω(x0)t]]. Measurements of such oscillations after a SG
expansion of tSG = 10 ms for different values of x0 varying the magnetic field gradient
are reported in Fig. 16(b). After the SG expansion, the displacement between the spin
components is given by DSG(x0, t, tSG) = D(x0, t) + ∂tD(x0, t) tSG such that we analyze
the data by fitting it with the following function:

DSG = A(x0, tSG) cos [ω(x0)t+ ϕ(x0, tSG)] + d(x0), (12)

where A(x0, tSG) = −d(x0)
√

1 + ω2(x0)t2SG and ϕ(x0, tSG) = arctan [ω(x0)tSG]. Eq. (12)

allows us to extract the value of d(x0) neglecting here again intercomponent interactions
during the expansion.
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Figure 17. SD polarizability extracted from the data of Fig. 16(a) (orange dots) and (b) (green
triangles). The black (red) solid line is the prediction computed using the GPE (LDA). The shaded
regions give the uncertainties taking into account error bars on the value of the coupling constants
[219]. The green solid line corresponds to the situation of no intercomponent interaction P = 1.
We also provide the density profiles n↑,↓(x, 0, 0) from the GPE for x0/Rx = 0.001, 0.01, 0.05. The
experimental points overestimate the actual value of P due to the approximation of the TF fit and
the interaction effect during the expansion (see text). Figure from [P7].

Fig. 17 shows the SD polarizability as a function of x0/Rx (Rx is the TF radius
along x̂) using the data of Fig. 16. We notice a strong nonlinear dependence of the
polarizability on the separation between the two trapping potential minima, which is
maximal in the linear limit (x0 → 0) and tends to 1 for large separation (x0 ≫ Rx). In
the same figure, we also plot the theoretical predictions obtained within the local density
approximation (LDA) and the numerical integration of the GPE performed with the
experimental parameters. We identify three regions along x̂, with the outer two regions
occupied by either the |↑⟩ or |↓⟩ component and the inner region occupied by both of
them. In the linear limit (x0 → 0) the LDA gives the result

P(x0 → 0) =
g + g↑↓
g − g↑↓

, (13)

for the polarizability [347]11, pointing out its divergent behavior near the phase transition
occurring at g↑↓ = g. The agreement between the LDA and the GPE is excellent except
in the region of small minima separation where the LDA becomes less and less adequate
because of the large value of the spin healing length ℏ/

√
2mn(g − g↑↓) (n is the total

density of the cloud). In general, we observe a good agreement between the theoretical
predictions and the experimental data. In particular, the huge effect on the polarizability
caused by the vicinity to the miscible-immiscible phase transition is clearly revealed
and the scaling with x0/Rx is well reproduced. The data analysis presented so far has
however been performed neglecting interactions between the spin components during the
SG expansion. Indeed, GPE simulations of the expansion in the presence of interactions

11The SD polarizability Eq. (13) should not be confused with the magnetic polarizability χM =
1/ [n(g − g↑↓)] which is defined in uniform matter in terms of the energy cost δE = M2/(2χM )
associated with a small polarization M = (N↑ −N↓)/(N↑ +N↓) of the gas.
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show that the experimentally measured polarizability is overestimated by 5% (30%) for
the 2 ms (10 ms) SG expansion. This explains the remaining difference between the
experimental points of Fig. 17 and the theoretical predictions.

Spin-dipole oscillation

A useful estimate of the SD frequency is obtained by employing a sum rule approach
[317] based on the ratio ℏ2ω2

SD = M1/M−1, where M1 = Nℏ2/2m (N = N↑ +N↓) is the
model independent energy weighted sum rule relative to the SD operator

∑
i(xi↓ − xi↑),

and M−1 = NP(x0 → 0)/(2mω2
x) is the inverse energy weighted sum rule fixed according

to linear response theory by the linear SD polarizability [347]. This leads to the following
relation between the SD frequency and polarizability

ωSD =
ωx√

P(x0 → 0)
. (14)

Using the LDA expression (13) for the polarizability one derives the following prediction
for the SD frequency

ωSD =

√
g − g↑↓
g + g↑↓

ωx . (15)

The same result can be directly obtained by generalizing the hydrodynamic theory
developed in [376] for density oscillations to the case of SD oscillations [317]. Eq. (15)
explicitly points out the crucial role played by the intercomponent coupling constant g↑↓
in softening the frequency of the SD mode with respect to the value ωx characterizing
the frequency of the in-phase center-of-mass oscillation. We check, using time-dependent
GPE simulations of the SD oscillations for our experimental parameters, that the sum
rule prediction (4) provides ωSD with an accuracy better than 1% when substituting the
value of the static SD polarizability P(x0 → 0) from the GPE. This demonstrates that
an accurate SD frequency measurement can be used to determine the value of the SD
polarizability.

As shown on Fig. 16(b), the Rabi pulse in the presence of a magnetic field gradient
gives rise to the excitation of SD oscillations whose frequency can be extracted as a
function of the induced displacement x0. A first estimate of the SD frequency is obtained
considering that ωSD = ω(x0 → 0). Indeed, for large values of x0, the oscillation frequency
ω(x0) approaches ωx while it decreases to ωSD as x0 → 0. Since in the small x0 limit the
amplitude of the oscillation tends to zero, we perform a linear fit to the curve of ω(x0)/ωx

as a function of the oscillation amplitude A(x0) and extract ωSD/ωx = 0.18(1) from
the y-intercept of the linear fit (see Fig. 18(a)). This method shows a good agreement
with the LDA prediction Eq. (15) ωSD/ωx = 0.189(15) and with the GPE simulations
yielding ωSD/ωx = 0.213(17) (uncertainties take into account error bars on the value
of the coupling constants [219]). The different values of ωSD from the LDA and GPE
calculations have the same origin as the one discussed in the case of the polarizability
and are due to the large value of the spin healing length in the vicinity of the quantum
phase transition.
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Fig. 2(b)
Fit

Figure 18. (a) Ratio ω(x0)/ωx as a function of the amplitude A(x0) for the data of Fig. 16(b)
(same marker styles). The black (red) marker is the prediction of the GPE ωSD/ωx = 0.213(17)
(LDA ωSD/ωx = 0.189(15)). Extrapolating the linear fit of ω(x0)/ωx (solid blue line) for vanishing
amplitude gives ωSD/ωx = 0.18(1). (b) SD oscillations using the alternative method (blue dots)
giving ωSD/ωx = 0.218(2). We also show two density profiles n↑,↓(x, 0, 0) illustrating the out-of-
phase SD oscillations (data obtained from the GPE taking the equilibrium state for x0/Rx = 0.01
as initial condition before setting x0 = 0 to start the oscillations). Figure from [P7].

An alternative and more efficient way to excite the SD mode and to measure its
frequency consists in first creating two perfectly overlapped spin states where B′

x = 0
(x0 = 0) and then applying a magnetic field gradient B′

x = 0.1 G/cm (x0 = 1.3µm) for
3 ms ≪ 2π/ω(x0) before restoring B′

x = 0. This leads to an in-situ dipole oscillation
shown in Fig. 18(b) after 10 ms of SG expansion. We measure ωSD/ωx = 0.218(2)
which is slightly larger than the previous estimate based on the data of Fig. 16(b) and
shows better agreement with the prediction from the GPE simulations. For a precise
determination of ωSD, it is important to ensure that the SD mode has a small in-situ

amplitude: here we estimate DSD = DSG/
√

1 + ω2
SDt

2
SG = 5.4µm which is relatively

small compared to the TF radius Rx = 40µm. In all experiments, we observe oscillations
without noticeable damping on very long timescales (they are ultimately limited by the
cloud lifetime). Indeed, the maximal relative velocities of the two superfluid components
vmax = 1.2 mm/s for the data of Fig. 2(b), and vmax = 0.4 mm/s for the data of Fig.
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4(b) are smaller than the critical velocity for the dynamical counterflow instability
vcr =

√
µtot(1 − g↑↓/g)/2m = 1.8 mm/s [2].

Conclusion

In conclusion, we reported on the experimental measurements of the polarizability
and of the frequency of the SD oscillation in a two-component BEC of sodium. Because
of the vicinity to the miscible-immiscible quantum phase transition both quantities are
very sensitive to the value of the intercomponent interaction and their behavior deviates
by large factors from the values predicted in the absence of intercomponent interaction.
This represents a major difference with respect to other available superfluid quantum
mixtures, like the Bose-Fermi mixtures of lithium gases [103, 130], where the role played
by the intercomponent interaction is much less crucial. Similarly to the case of [103, 130]
our mixture is characterized by two interacting superfluids oscillating with opposite phase
and the observed SD oscillation is undamped for small amplitude as a consequence of
superfluidity. For large amplitude motion the Landau’s critical velocity will, however,
behave very differently, being very sensitive to the value of the intercomponent interaction
[2]. Another interesting feature concerns the behavior of the SD oscillation at finite
temperature. While the damping of the SD oscillation was actually observed in the old
experiments of [104] carried out on a normal Fermi gas, understanding the behavior
of the collective modes in the presence of both a condensed (superfluid) and thermal
(non-superfluid) components remains extremely challenging [17, 248]. Other topics of
interest concern the experimental realization of magnetic solitons [327] and the inclusion
of coherent coupling between the two spin components. The Bose mixtures realized and
investigated here then represent an ideal platform to explore important equilibrium and
dynamic properties of binary superfluids.

2.3.2. Observation of spin superfluidity in a Bose gas mixture [P5]

Abstract: The spin dynamics of a harmonically trapped Bose–Einstein condensed
binary mixture of sodium atoms is experimentally investigated at finite temperature.
In the collisional regime the motion of the thermal component is shown to be damped
because of spin drag, while the two condensates exhibit a counterflow oscillation without
friction, thereby providing direct evidence for spin superfluidity. Results are also reported
in the collisionless regime where the spin components of both the condensate and thermal
part oscillate without damping, their relative motion being driven by a mean-field effect.
We also measure the static polarizability of the condensed and thermal parts and we
find a large increase of the condensate polarizability with respect to the T = 0 value, in
agreement with the predictions of theory.

Introduction

In the last years, spin-superfluidity and spin-transport phenomena have attracted a
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great interest in the community of condensed matter physics from both the experimental
and theoretical point of view [371]. Even in systems where spin is conserved, the behavior
of spin transport is highly nontrivial since, at finite temperature, collisions between
different spin species yield relaxation of the spin current, a phenomenon known as spin
drag. So far the study of superfluidity at finite temperature has mainly concerned the
density channel, where both the number of particles and total current are conserved. A
major consequence is that, in the collisional regime, sound can propagate both in the
superfluid phase, where it takes the form of first and second sound, as well as in the
normal phase (ordinary sound). In the presence of collisions, spin sound can instead
propagate only in the superfluid phase, so that its observation, in this case, can be
considered as an ultimate proof of spin superfluidity. In fact, the propagation of spin
sound in the collisionless regime is consistent with superfluidity, but can be predicted
also in the normal phase as a consequence of mean-field interactions (see, for instance,
the propagation of sound in a normal Fermi liquid [316]). Actually the equations of
hydrodynamics applied to a superfluid quantum mixture predict the propagation of three
sounds [13, 402]: pressure, temperature and spin sound (see [17] for a recent application
of three-velocity hydrodynamic theory to Bose–Bose mixtures).

The dynamic behavior of multicomponent quantum gases has been extensively in-
vestigated in the last years (see, for example, [372] for a review on spinor Bose gases).
Experiments on spin dynamics have been carried out in gases occupying two different
hyperfine states, [42, 104, 167, 169, 258, 286, 296, 363, 392], in larger spinor systems
[172, 213, 305, 353, 375, 425], as well as in mixtures of different isotopes or atomic species
[129, 130, 272, 273]. Theoretical activity in these systems has also become very popular
(see, for example, [2, 16, 17, 70, 195, 248, 282, 329, 334, 348, 396, 418, 422]). Spin-drag
phenomena have been experimentally investigated in the unitary Fermi gas [26, 199, 370],
in Bose gases [225], in Bose–Fermi mixtures [103], as well as in two-dimensional Fermi
gases [228, 254]. The role of spin polarization on the stability of supercurrents [33] and
the counterflow instability in Bose–Fermi [130] and in Bose–Bose [174, 213] mixtures
have also been experimentally investigated.

In this section, we experimentally study the spin-dipole oscillation and the role of
collisions at finite temperature. The main result of our work is the observation of
undamped spin oscillations in the collisional regime. This observation actually provides
direct evidence of spin superfluidity.

We consider a symmetric BEC mixture of the |mF = +1⟩ ≡ |↑⟩ and |mF = −1⟩ ≡ |↓⟩
components of the F = 1 hyperfine ground state of sodium atoms, confined in a harmonic
trap. Differently from most of the quantum mixtures so far investigated in the literature,
our sodium mixture is characterized by an almost perfect symmetry between the two
components, both in terms of the number of atoms occupying the two hyperfine states,
the confining potential and the intraspecies interaction. Furthermore the mixture is fully-
miscible, not subject to buoyancy and is close to the miscible-immiscible phase transition
since (a− a↑↓)/a = 0.07 ≪ 1, with a ≡ a↑↑ = a↓↓ = 54.54(20)a0 and a↑↓ = 50.78(40)a0
[219], a0 being the Bohr radius. This mixture, then, represents an ideal system to
investigate the effects of spin superfluidity. The zero temperature behavior of the spin-

Page 48 of 127



Tom Bienaimé HDR

Figure 19. Computed atomic density distribution n↑,↓(x, 0, 0) of the binary mixture at finite
temperature showing the component ↑ (violet) and ↓ (green), each one of these being composed
of a superfluid (top) and a thermal part (bottom). (a) In the absence of any external force the
centers of mass of all four components overlap. (b) In the presence of a differential force F↑,↓,
the condensed part shows a large positive polarization, while the thermal component interacting
with the condensate is polarized in the opposite direction. The thermal part lying outside the BEC
region has a small positive polarization. Figure from [P5].

dipole oscillation was investigated in [P7]. Here, we report results at finite temperature,
both in the collisional and in the collisionless regimes, which are experimentally realized
by varying the frequencies of the trapping potential. We prove that in both regimes
the mixture is able to support undamped spin oscillations. Furthermore, the vicinity to
the miscible-immiscible phase transition is associated with a strong coupling between
the two spin clouds. In addition to the softening of the spin-dipole oscillation frequency
and the sizable increase of the static spin polarizability, that were already observed at
zero temperature [P7], the vicinity to the phase transition causes a further important
amplification of the spin polarization of the superfluid component due to the interaction
with the thermal part.

We start with an equally populated mixture of the ↑, ↓ states [P7] with N↑ = N↓ ≃ 4×
105 (with a spin imbalance fluctuation smaller than 10%) and consider two different trap
geometries: (A) a crossed optical trap with frequencies [ωx, ωy, ωz] /2π = [87, 330, 250] Hz
and (B) a single-beam optical trap with frequencies [ωx, ωy, ωz] /2π = [12, 1350, 1350] Hz.
Using parametric heating, we can adjust the condensed fraction of the mixture, i.e., the
ratio between the total number of atoms in the condensates N0 and the total number
of atoms N = N↑ +N↓. A major difference between the two configurations is that, in
the long axial direction, configuration (A) is basically characterized by a collisionless
regime (ωxτ↑↓ ≫ 1), while configuration (B) by a more collisional one (ωxτ↑↓ ∼ 1). The
difference is not due to significant changes in the density, but rather in the value of ωx.
The collisional time between the ↑, ↓ components can be estimated employing the classical
expression for τ↑↓, with the density calculated in the center of the trap at T = Tc. We
estimate ωxτ↑↓ of a few tens in configuration (A) and of order unity in configuration (B).

Spin dynamics

The spin oscillation is excited by applying a magnetic field gradient B′
x for a few ms.
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This generates a small force F↑,↓ = ±gFµBB′
x (gF is the Landé factor, µB the Bohr

magneton) that tends to separate the two components, as illustrated in Fig. 19. Such
a procedure leaves the total center of mass at rest and gives rise to time-varying spin
displacements

S0 ≡ x0↑ − x0↓, ST ≡ xT↑ − xT↓ ,

of both the condensed S0 and the thermal part ST , where x0↑,↓ and xT↑,↓ are the centers
of the atomic distribution of the condensed and thermal components of the ↑, ↓ density
distributions. In the experiment, we are able to study the dynamics of such four-fluid
system by monitoring each of the four components to reconstruct S0 and ST as a function
of time. The amplitude of oscillation of {S0, ST } is smaller than the Thomas–Fermi radius
Rx of the cloud [for a fully Bose–Einstein condensed mixture at T = 0, Rx = 25µm for
configuration (A) and Rx = 230µm for (B)]. The two spin states are separately imaged
after a Stern–Gerlach expansion in a magnetic field gradient along z, which allows us to

extract the centers of mass of the four components of the fluid
{
x0↑, x

0
↓, x

T
↑ , x

T
↓

}
.

The spin dynamics of the condensate is shown in Fig. 20a and 20b at relatively
high values of T/Tc, corresponding to N0/N ∼ 0.3 and N0/N ∼ 0.4, respectively. The
figure shows that the condensate, in the presence of a large thermal component, exhibits
spin oscillations without visible damping in both collisionless (A) and collisional (B)
regimes. The absence of friction near the BEC border, where the Landau critical velocity
is vanishingly small, is due to the fact that the spin velocity, during the spin-dipole
oscillation, is strongly suppressed near the surface of the condensate (see Fig.19b),
differently from what happens in the rigid motion of the center-of-mass oscillation, and in
agreement with the Steinwedel–Jensen model for the isospin oscillations of nuclear physics
[52]. The measured frequencies (ωSD = 0.205(2)ωx in (A) and ωSD = 0.233(5)ωx in (B))
differ by about 6% from the value reported in Ref. [P7] at very low temperatures (ωSD =
0.218(2)ωx) and by 7% (A) and 20% (B) from the value ω0

SD =
√

(a− a↑↓)/(a+ a↑↓)ωx =
0.19(2)ωx [347], predicted by hydrodynamic theory of superfluids at T = 0 12.

The thermal component, instead, behaves very differently in the two regimes. In the
collisionless regime (A), after a transient of damped oscillations, it oscillates at the same
spin-dipole frequency of the condensate, but with opposite phase and a smaller amplitude
(see Fig. 20a), the ratio between the thermal and the condensed amplitudes being 0.18(2).
In the collisional regime (B), the thermal part is instead strongly damped and quickly
reaches an equilibrium position, where both spin thermal components are at rest in the
center of the trap (see Fig. 20b) 13.

12The hydrodynamic result ω0
SD for the collective frequency is independent of the number of atoms and

of the density of the condensate. It holds in the limit of small amplitude oscillations and in the
Thomas–Fermi approximation which, in the case of spin oscillations, requires the condition that the
spin healing length ξs = 1/

√
8πn(a− a↑↓) be much smaller than the Thomas–Fermi radius [347].

The softening of the frequency for values of the scattering lengths close to the demixing transition is
consistent with the softening of the spin sound velocity in uniform matter given, at T = 0, by the

expression cs =
√

n
2m

4πℏ2
m

(a− a↑↓).
13Actually, we observe a small residual oscillations of the thermal part in opposite phase with respect
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Figure 20. (a) Spin oscillations for the thermal ST (red) and condensed S0 (blue) parts of
the mixture with N0/N = 0.3 (T/Tc ≃ 0.85) for configuration (A). After a small transient
period, ST oscillates at ωT = 0.207(2)ωx which turns out to be equal, within errorbars, to the
oscillation frequency of S0, ωSD = 0.205(2)ωx. The ratio of the oscillation amplitude of ST

and S0 is 0.18(2). (b) Spin oscillations for the condensed and the thermal {S0, ST } parts for
a mixture with N0/N = 0.4 (T/Tc ≃ 0.75) in configuration (B). The condensed component
oscillates at ωSD = 0.233(5)ωx, while the thermal relative motion is quickly damped. We measure
an exponential decay of ST corresponding to ωxτ = 1.5(6). (c) Thermal spin current ST for a
non-superfluid mixture (above Tc) in configuration (A) where we observe a few damped oscillations
at the trap frequency ωx with an exponentially decaying envelope from which we extract the decay
lifetime, and obtain ωxτ = 11(2). (d) Same measurement for configuration (B) where we observe
a purely exponential decay and extract ωxτ = 1.2(4), compatible with the measurement of τ below
Tc. To maintain a roughly constant condensed fraction during the measurement, we limit the
observation time to the first 500ms after excitation. This explains why, due to the different
trapping frequency ωx, more oscillations are shown for configuration (A) than for (B). Figure
from [P5].

In Fig. 20, we report the results for spin dynamics above Tc, as well. In configuration
(A) the cloud exhibits several oscillations before relaxing, thus revealing that collisions
are not very strong (Fig. 20c). Viceversa, in the collisional regime (B), the behavior is
diffusive, suggesting an overdamped spin oscillation (Fig. 20d). A similar spin-drag effect
was observed in the Bose-Fermi mixture of [103], as well as in a Bose gas above Tc in
[225]. From our experimental data, we extract ωxτ = 11(2) for (A) and ωxτ = 1.2(4) for
(B). These measurements are in agreement with the theoretical estimates of ωxτ↑↓ given
earlier in the Letter.

Finally, it is worth pointing out that the behavior of the spin-dipole oscillations is
very different with respect to the center-of-mass motion, where both the condensed and
thermal parts oscillate in phase without damping at the frequency ωx/2π, independent

to the condensed component (the ratio of the oscillation amplitudes of ST and S0 is smaller than
0.04(1)) which is expected to disappear in the deep collisional regime ωxτ↑↓ ≪ 1.
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of the presence of collisions.

Spin-dipole polarizability

The counter-phase oscillation of the thermal component observed in the collisionless
regime (see Fig. 20a) can be physically understood by investigating the behavior of
the spin-dipole polarizability of the gas at finite temperature, employing the mean field
Hartree–Fock theory [317] in the presence of a static spin-dipole constraint of the form
−mω2

xx0xσz (σz is the third Pauli matrix). This additional potential generates a force
acting on the two spin components in opposite directions (F↑,↓ = ±mω2

xx0), x0 being
the displacement of the trap minimum for each component. By neglecting interaction
effects induced by the thermal component on the condensate, as well as thermal-thermal
interactions, and using the Thomas–Fermi approximation for the condensate, one obtains
the following result for the spin density s0z = n0↑ − n0↓ of the condensate [347]:

s0z = −x0
a+ a↑↓
a− a↑↓

∂n0

∂x
. (16)

For the spin density sTz = nT↑ −nT↓ of the thermal component one instead finds the results

sTz = −x0
a+ a↑↓
a− a↑↓

∂nT

∂x
(17)

inside the spatial region occupied by the condensate, where the thermal part feels
interaction effects, and

sTz = −x0
∂nT

∂x
(18)

outside. In the above equations, n0 and nT are the equilibrium condensate and thermal
total densities, respectively. The corresponding contribution to the spin-dipole polariz-
ability is then obtained by integrating the quantities xs0z and xsTz . These results show
that the spin polarization of the inner thermal atoms is amplified by the same large
factor (a+ a↑↓)/(a− a↑↓) as for the condensate. The corresponding polarization effects
have however opposite signs, the density derivative of the condensate, at equilibrium,
being opposite to the one of the inside thermal component (see Fig. 19).

For higher temperatures, interaction effects of the thermal component on the condensate
can no longer be neglected. The behavior of the spin polarization can be explored more
accurately, by solving in a consistent way the coupled Hartree–Fock equations for the
condensate and for the thermal part. Figure 21 shows the resulting predictions for the
condensate and thermal contributions to the spin polarizability, which are respectively
defined as P0 = (

∫
xs0zdr)/N0 and PT = (

∫
xsTz dr)/NT . The figure reveals the occurrence

of a large enhancement of P0 with respect to the T = 0 case, which is caused by the
interaction with the inside thermal component and is strongly enhanced by the smallness
of (a− a↑↓). The resulting values for the temperature dependence of the polarization of
the condensate, as well as of the total polarization, Ptot = (N0P0 +NTPT )/N , turn out
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Figure 21. (a) Static spin-dipole polarizability as a function of temperature showing, respectively,
the different contributions from the superfluid (blue), the thermal component (red) and the total
one (black). (b) The thermal part lying in the region occupied by the superfluid has a negative
polarization (green) whereas the outer part has a small positive polarization. The calculation
has been performed for the two different configurations (A) (solid) and (B) (dashed). The static
polarizabilities measured for N0/N = 0.4 are also shown and well agrees with the predictions of
theory. Figure from [P5].

to be practically the same in the regimes (A) and (B) considered in this work. Despite the
large increase of P0, the total polarization Ptot turns out to be practically independent of
T in a wide range of temperatures. The above discussion suggests that, in the collisionless
regime, the thermal atoms are locked to the condensate and oscillate in opposite phase
in the spin-dipole dynamics. In the collisional regime (Fig. 20b), instead, the thermal
part quickly relaxes to equilibrium, because of spin drag.

Using the experimental method introduced in Ref. [P7] we measure the static spin
polarizability for the trap geometry (B) and identify the contributions that arise from
the condensate and from the thermal part. Starting with both ↑, ↓ components perfectly
overlapped in the harmonic potential, we apply a slowly increasing force F↑,↓ to each
component that eventually shifts their trap minima by ±x0. In this way the global
center of mass is unaffected, while the superfluid and thermal spin components acquire
finite relative displacements {S0, ST }. The spin polarizability of the condensed and
thermal fractions {P0 ≡ S0/(2x0),PT ≡ ST /(2x0)} are extracted in the linear regime,
i.e., for values of {S0, ST } much smaller than the Thomas–Fermi radius of the condensed
component [P7] [347]. Figure 22 shows the spin displacements {S0, ST } of the thermal
and condensed components of the mixture as a function of x0 for N0/N = 0.4. From
this data, we extract the polarizability by performing a linear fit around the origin. The
region where we fit the data to extract the value of the polarizabilities corresponds to
the small x0 linear regime (Rx = 230µm is the Thomas–Fermi radius along x). The
analysis of the data points out the occurrence of a large polarization of the condensate,
in accordance with the predictions of theory (see Fig. 21).

Conclusion
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Figure 22. Measured spin displacements {S0, ST } for the thermal (red) and condensed components
(blue) of the mixture as a function of x0 for N0/N = 0.4 for configuration (B). From such data,
we extract {P0,PT } using a linear fit to the data in the linear region around the origin. We
obtain {P0 = 56(8),PT = −3(3)}. Figure from [P5].

In conclusion, we have investigated the spin dynamics and the spin polarizability of a
superfluid Bose–Bose mixture at finite temperature. Our results reveal the occurrence
of undamped spin oscillations, which are observed not only in the collisionless regime,
where the mean field drives a counter-phase oscillation of the thermal part, but also
in the presence of strong collisions, which are responsible for the relaxation of the
thermal component, because of spin drag. The absence of friction of the spin motion
in the collisional regime provides a direct proof of the spin superfluid nature of the
system. We have also shown that, thanks to the vicinity to the miscible-immiscible phase
transition, the interaction between the two spin clouds causes, at finite temperature, a
large increase of the polarizability of the condensate with respect to the T = 0 value.
Natural generalizations of the present work concern the study of persistent spin currents
in ring geometries and the propagation of spin sound waves and magnetic solitons [327].
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3. Quantum fluids of light in propagating geometry

3.1. Context

After exploring the well-established field of atomic quantum gases, I developed a strong
interest for the exciting new topic of quantum fluids of light that took off around 2010
and benefits from the powerful tools of optics and quantum optics to prepare, detect and
characterize the initial and final state of the system. In order to put my work in context,
it is convenient to divide this research field into three different categories [67]:

� Microcavity devices for the exploration of nonequilibrium physics [68].
Photons trapped inside a single longitudinal mode of a transversely multimode
microscopic cavity acquire an effective mass14. This led to the observation of
Bose-Einstein condensation of photons [217] when elastic photon-photon collisions
are engineered by placing a solution of dye molecules inside the mirrors of the micro-
cavity. Due to the unavoidable losses of photons from the microcavity, the system is
inherently in an “out-of-equilibrium” setting as it requires constant optical pumping
to reach a steady state. Moreover, in the situation where matter (atoms, molecules,
excitons, ...) strongly couples to the microcavity, the resulting quasi-particles, called
polaritons15, possess an effective mass and interact with weak nonlinear interactions
that they inherit from their matter component. This platform led to the observation
of polaritonic “out-of-equilibrium” Bose-Einstein condensation either in cryogenic
environment [206] or at room temperature [250]. The weak interactions between
the polaritons enable to consider this system as an interacting quantum fluid which
was first evidenced by the demonstration of polariton superfluidity [10]. Recently,
the ability to microstructure the photonic or polaritonic landscape paves the way
to use these systems to investigate analogue quantum simulation with photons,
including double-well structures [237] and uniform potentials for optical quantum
gases [62], 1D or 2D tight binding polariton lattices [354] and topological states of
light [303].

� Propagating geometries for the study of conservative dynamics [67].
When light propagates inside a nonlinear medium in the paraxial approximation the
equation of the evolution of the transverse electric field is a nonlinear wave equation
analogous to the 2D Gross-Pitaevskii equation which describes the dynamics of
dilute two-dimensional ultracold gases. This analogy enables to consider light in
this setting as a quantum fluid. The direction of propagation of light plays the
role of an effective-time, diffraction in the transverse plane gives an effective mass
to photons and leads to a kinetic term, the presence of a transverse profile of
the index of refraction acts as an external trapping potential and the interactions
between photons arise from the optical nonlinearity. If absorption can be neglected

14This is due to the low-frequency cutoff imposed by the cavity leading to a quadratic dispersion relation
for photons.

15The polaritons are composite particle of light and matter and are often loosely referred to as “light” in
the literature.
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during the propagation of light (effective-time evolution) inside the nonlinear
medium, the dynamics of the system is conservative contrary to the inherently
driven-dissipative nature of microcavity devices. Experimentally, quantum fluids
of light in propagating geometries have been investigated on three experimental
platforms: thermo-optical media [400], photo-refractive crystals [269, 378] or hot
atomic vapors [346] [P4]. They have been used to explore various hydrodynamic
phenomena including the generation of optical vortices [91], the condensation of
classical nonlinear waves [31, 232, 346, 378], dispersive shockwaves [404] [P3], and
superfluid behaviors [269, 400] [P4]. Moreover, contrary to atomic Bose gases,
quantum fluids of light in propagating geometry are generally probed far from
equilibrium. Indeed, the initial state injected into the nonlinear medium can be
engineered (amplitude, phase, quantum fluctuations) and does not correspond to a
steady state. In addition, the size of the system over which the dynamics occurs
is not sufficient to reach complete thermalization. This led to the observation of
interesting physical phenomena like the observation of nonequilibrium prethermal
states [P2] or the effect of a quench of the interactions when light enters and exits
the medium [P1].

� Strongly correlated fluids of light [67]. The two kinds of quantum fluids
of light that we previously discussed are associated with relatively weak photon-
photon interactions for which mean field theories or semiclassical methods for
treating quantum fluctuations (e.g. truncated Wigner methods) describe accurately
the dynamics of the system. The new frontier of quantum fluids of light is to
investigate the situation in which photons interact at the individual particle level
leading to intriguing many-body quantum states of light made of many photons.
Pioneering experimental efforts enabled to realize the first building block towards
this goal: engineer strong photon-photon interactions [71] either in cavity systems
or in propagating geometries. This progress led to the very recent observation
of few-body strongly correlated quantum fluids of light including a few-photon
Laughlin states [85], the chiral currents observed in a few-site plaquette for strongly
interacting microwave photons [339], a 8-site photonic Mott insulator [257] and a 7
site strongly correlated fluid of light [350]. Experimental efforts are currently in
progress to scale up the number of photons and study strongly correlated fluids
of light made of many photons. At this stage, I will refer the interested reader
to section 4 of this manuscript for further details on this topic as it is one of the
research directions I am pursuing in Strasbourg.

In 2016, the team of quantum fluids of light at Laboratoire Kastler Brossel led by Alberto
Bramati, a renowned expert in the field of polariton superfluidity with semiconductor
microcavities [10], decided under the initiative of Quentin Glorieux to develop a new
experimental platform to explore quantum fluids of light that would be complementary
to the microvavity setup: light propagation in a hot atomic vapor cell. Note that, at that
time, the group of Robin Kaiser was also working on this platform to explore “photon
condensation”. In September 2017, I joined the group of Alberto Bramati at Laboratoire
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Kastler Brossel, excited by the challenge to develop this new platform and convinced
that my previous expertise about light-matter interactions and ultracold Bose gases can
greatly benefit the project.

After working on this project for four years, our joint efforts have helped establish light
propagating in hot atomic vapors as a leading platform for the exploration of quantum
fluids of light in propagating geometry. This was achieved by demonstrating several
important experimental results, including the measurement of the dispersion relation of
elementary excitations [P4][P14], the observation of dispersive shockwaves [P3][P13][P11],
the effect of a quench of the photon-photon interactions on light prethermalization [P2] or
on the quantum fluctuations of light [P1], theoretical investigations of spin-orbit-coupled
fluids of light [P12], the development of new experimental methods to measure the
strength of photon-photon interactions [P10], the exploration of attenuation-free non-
diffracting Bessel beams [P16] and the first experimental efforts towards optomechanical
signatures of light superfluidity [P15].

Among those results, I selected four of my articles which give a good overview of my
contribution to this exciting field of research. Two of these articles probes hydrodynamic
phenomena with this new platform: the dispersion relation of quasi-particle excitations
[P4] and the observation of dispersive shockwaves [P3]. The two other articles highlight
the far-from-equilibrium character of the fluid of light by looking at the effect of a quench
of the photon-photon interactions : the prethermalization of a quantum fluids of light [P2]
and the observation of Sakharov oscillations in the power spectrum of the light intensity
(photon density) fluctuations [P1].

3.2. Hydrodynamic properties of quantum fluids of light

3.2.1. Observation of the Bogoliubov dispersion relation in a fluid of light [P4]

Abstract: Quantum fluids of light are photonic counterpart to atomic Bose gases and
are attracting increasing interest for probing many-body physics quantum phenomena
such as superfluidity. Two different configurations are commonly used: the confined
geometry where a nonlinear material is fixed inside an optical cavity, and the propagating
geometry where the propagation direction plays the role of an effective time for the system.
The observation of the dispersion relation for elementary excitations in a photon fluid has
proved to be a difficult task in both configurations with few experimental realizations.
Here, we propose and implement a general method for measuring the excitations spectrum
in a fluid of light, based on a group velocity measurement. We observe a Bogoliubov-like
dispersion with a speed of sound scaling as the square root of the fluid density. This
study demonstrates that a nonlinear system based on an atomic vapor pumped near
resonance is a versatile and highly tunable platform to study quantum fluids of light.

Introduction

Superfluidity is one of the most striking manifestation of quantum many-body physics.
Initially observed in liquid Helium [9, 205], the realization of atomic Bose-Einstein

Page 57 of 127



Tom Bienaimé HDR

condensates (BEC) has allowed detailed investigations of this macroscopic quantum
phenomenon exploiting the precise control over the system parameters. Recently, another
kind of quantum fluid made of interacting photons in a nonlinear cavity has brought
new perspectives to the study of superfluidity in driven-dissipative systems, with many
fascinating developments [63] such as the observation of polariton BEC [22, 206] and the
demonstration of exciton-polariton superfluidity [10, 250].

A different photon fluid configuration, initially proposed by Pomeau and Rica more
than twenty years ago [139] but long ignored experimentally, relies on the propagation
of a intense laser beam through some nonlinear medium. In this 2D+1 geometry (2
transverse spatial dimensions and 1 propagation dimension analogous to an effective time),
the negative third-order Kerr nonlinearity is interpreted as a photon-photon repulsive
interaction. Few theoretical works addressing mostly hydrodynamic effects using this
geometry have been recently proposed [66, 245] and investigated in photorefractive
crystals [269], thermo-optic media [400, 401] and hot atomic vapors [346].

The theoretical framework used to describe quantum fluids of light relies on the analogy
with weakly interacting Bose gases where the mean field solution has originally been
derived by Bogoliubov [51, 222]. A fundamental property of the Bogoliubov dispersion
relation is the linear dependence in the excitation wavevector at long wavelengths (sound-
like) and the quadratic dependence at short wavelengths (free-particle like). Although this
dispersion has been well characterized in atomic BEC experiments [198, 268, 300, 374], a
direct measurement of this dispersion in a fluid of light remains elusive [391, 400]. In this
section, we propose a general method to experimentally access the dispersion of elementary
density excitations of a photon fluid. We show that the dynamics of these excitations
is governed by a Bogoliubov-like dispersion and that our experimental platform, based
on light propagation in hot atomic vapor, is promisings to study hydrodynamics effects
emerging in fluid of light systems. Our experiment settles the question originally asked by
R. Chiao two decades ago [77]: can one observe sound-like excitations and superfluidity
of light ?

Even if photons in free space are essentially non-interacting particles, engineering an
effective photon-photon interactions is possible by exploiting an optical nonlinear process.
In our experiment, the third-order Kerr nonlinearity is induced by the propagation of a
near-resonant laser field inside a hot Rubidium atomic vapor. The sign and the strength
of the interactions can be finely tuned by adjusting the laser detuning with respect to
the atomic resonance. The atomic density, given directly by the vapor temperature,
provides an additional control over the strength of the interactions. This system has
been extensively studied in the context of quantum and nonlinear optics [148], but the
quantum fluid of light framework gives a better and more complete understanding about
the physical phenomena discussed in this letter. This framework is derived from the
Nonlinear Schrödinger Equation (NSE), describing the propagation along the z-direction
of a monochromatic linearly polarized laser field E(r⊥, z) in a nonlinear medium, when
the paraxial approximation is valid:

i
∂E

∂z
= − 1

2k0
∇2

⊥E −
(
k0n2|E|2 + i

α

2

)
E, (19)
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where k0 = 2π/λ0 is the laser wavevector (λ0 stands for the laser wavelength in vac-
uum) and ∇⊥ the gradient with respect to the transverse spatial coordinate r⊥ = (x, y)
. When the linear absorption coefficient α is negligible and the nonlinear refractive
index ∆n = n2 I (I represents the laser field intensity) is negative, the NLSE is
mathematically analogous to the Gross-Pitaevski equation, describing the dynamics
with respect to an effective time t = zn0/c (c stands for the speed of light in vac-
uum) of a 2D-fluid with repulsive interactions. Using the Madelung transformation
E(r⊥, z) =

√
ρ(r⊥, z) exp [iΦ (r⊥, z)], one obtains a coupled system of hydrodynamic

equations for the electric field density ρ and phase Φ :

∂ρ

∂t
+ ∇⊥ · (ρv) = 0, (20)

c

k0

∂Φ

∂t
+

1

2
v2 + c2

(
n2ρ−

1

2k20

∇2
⊥
√
ρ

√
ρ

)
= 0, (21)

where v = (c/k0)∇⊥Φ. In this formulation, the laser beam is described as a fluid of
density ρ flowing with velocity v in the transverse plane.

The dynamics of the density fluctuations on top of the photon fluid is governed by the
Bogoliubov dispersion relation. For small amplitude modulations moving on a uniform
background fluid at rest, the set of hydrodynamic equations can be linearized assuming
ρ = ρ0(z) + δρ(r⊥, z) and v = δv(r⊥, z). By taking the transverse gradient of Eq. (21),
keeping the first order terms in the expansion and using Eq. (20), one can derive an
equation for δρ only. For a plane-wave density fluctuation mode δρ of wave vector k⊥,
the associated response frequency ΩB will follow the dispersion relation below :

ΩB(k⊥) = c

√

|∆n|k2
⊥ +

(
k2
⊥

2k0

)2

. (22)

When the wavelength Λ = 2π/|k⊥| of the modulation is longer than the healing length

ξ = λ
2

√
1

|∆n| , the dispersion relation becomes linear and the modulations propagate as

sound waves. This regime is characterized by the sound velocity cs = c
√
|∆n|, which

only depends on the nonlinear index of refraction ∆n. Conversely, when Λ ≫ ξ, the
dispersion relation becomes quadratic which is similar to the free propagating particle
one.

Observing the sound like-regime of the Bogoliubov dispersion relation has been proposed
in [66] and first attempted in [400] for propagating geometries. The approach used in [400]
relies on the measurement of the phase velocity difference between plane wave density
modulations propagating at a given transverse wavevector k⊥ = 2π/Λ on top of a high
and a low density photon fluid. The photon fluid is obtained by sending a wide laser
beam through a self-defocusing nonlinear medium; the fluid density is then given by
the light intensity. The small amplitude plane wave density modulation is produced by
interfering this first beam with a wide and weak probe field, propagating with a small
angle with respect to the optical axis. In this configuration, however, a conjugate wave
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Figure 23. Experimental setup. PBS and HWP stand for Polarized Beam Splitter and Half-Wave
Plate respectively. θ is the angle between the probe (orange beam) and the optical axis defined
by the pump (red beam). The probe interferes with the pump and slightly modulates its intensity.
Blue inset: integrated intensity profile at the input of the medium (z = 0). The wavelength Λ of
the density modulation is given by 2π/k⊥ where k⊥ = k0 sin θ. Orange inset: integrated intensity
profile at the output of the medium (z = L). The distance D between the two wavepackets gives
access to the group velocity of the elementary excitations in the transverse plane. The output
plane is imaged on a CMOS camera. Inset on the top left: background-subtracted image obtained
for θ ≈ 0 rad and associated integrated envelope profile (blue: original ; red dotted : high frequency
filtered). Figure from [P4].

propagating in the opposite transverse direction (−k⊥) is spontaneously generated at
the linear/nonlinear interface [245] . Probe and conjugate overlap and interfere, which
strongly alters the phase shift measurement used to determine the dispersion relation.
Moreover, the large nonlinearity needed to observe the sonic dispersion makes extracting
the dispersion relation from this measurement rely on a complex numerical inversion
[244]. On the contrary, we present a direct and intuitive method to extract the dispersion
relation for arbitrary modulation wavelengths.

Our approach is based on the measurement of the group velocity of a small amplitude
Gaussian wavepacket travelling on top of the photon fluid with the transverse wave vector
k⊥. This wavepacket is designed by interfering the wide and intense beam forming the
fluid (at k⊥ = 0) with a Gaussian probe at k⊥ = k0 sin θ ex, as depicted in Fig. 23. At
the entrance of the nonlinear medium, the effective photon-photon interaction constant
undergoes a sudden jump along the optical axis. Two counter-propagating wavepackets
are spontaneously created from the initial Gaussian perturbation and evolve over the
effective time t through the nonlinear medium, with a transverse group velocity ±vg.
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Figure 24. Simulation of the propagation of a weak transverse modulation through a nonlinear
medium (a) with zero transverse speed (θ = 0 rad). The modulation generates two counter
propagating modes (Bogoliubov modes) at the medium interface and get amplified until they
separate from each other. The wavepacket is not spreading along propagation due to the non-
dispersive regime (sound-like behavior). (b) Same as (a), for an incident probe at θ=5×10−3 rad
(high transverse speed). Interference fringes appear and the wavepacket spreads. (c) simulation of
the intensity profile envelope in the output plane for different probe wavevector. Dashed black:
group velocity given by Eq. (22). (d) experimental data. The parameters in (a), (b) and (c) are
those used to obtain the experimental data (d) : λ0 = 780 nm, ∆n = 1.310−5 and ωp

x = 180µm.
The absorption coefficient α was set to 0 in numerical simulations. Colorbars encode the light
intensity in arbitrary units. Figure from [P4].

The separation between these two modulations at a given propagation distance z (i.e.
at given time t), is a direct measurement of the group velocity. In the output plane
(z=L), this distance is given by D(k⊥) = 2Lvg(k⊥). The dispersion relation ΩB(k⊥)
is reconstructed by scanning the wavevector of the modulation k⊥ (tuning the angle θ

between pump and probe) and integrating the group velocity vg: ΩB(k⊥) =
∫ k⊥
0 vg(q) dq.

In order to illustrate our method, we solve numerically the NSE Eq. (19) to get the
evolution of the transverse electric field (pump + probe). We use the second-order split
step Fourier method, for one transverse spatial dimension only (1D+1 geometry) to take
advantage of symmetries in the flat fluid density situation (infinitely wide background
beam). The probe waist is located in the entrance plane at z = 0; its width ωp

x is the
same as the one used in the experiment. For all the density plots in Fig. 24, the uniform
background intensity has been subtracted. The evolution of the two counter-propagative
modulations generated at the entrance of the nonlinear medium is shown in Fig. 24(a)
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Figure 25. a) Group velocity as a function of the transverse wavevector k⊥. The circles represent
the experimental data obtained for P = 175 mW. The theoretical model is plotted in solid dark
(parameters extracted from an independent measurement of the nonlinearity – see text for details).
The dashed green lines are the asymptotic behaviors: constant group velocity at small k⊥ and
linear increase at large k⊥. b) Dispersion relation obtained after integration of the group velocity.
Linear (green) and parabolic (blue) dispersion curves are plotted as a reference. Figure from [P4].

for zero initial transverse speed and presents a sound like-behavior (no spreading of the
wavepacket). The Fig. 24(b) is obtained for on high transverse initial speed modulation
which behaves like a free-particle. Notice that for small incident angle, corresponding
to zero initial transverse speed, the two modulations generated at the entrance of the
nonlinear medium acquire a non-zero opposite transverse speed. This nonlinear refraction
law comes from the linear nature of the dispersion for k⊥ ≪ 2π/ξ [245], which is counter-
intuitive from the linear optics perspective. The envelope of the intensity profile in the
output plane is presented as a function of the probe wavevector in Fig. 24(c), on top of
the experimental results in Fig. 24(d). The black dotted line represents the theoretical
group velocity vg, obtained by taking the derivative of Eq. (22). The distance between the
two wavepackets is constant for k⊥ ≲ 2π/ξ (linear dispersion; constant vg) and linearly
increase for larger k⊥ (quadratic dispersion; vg ∝ k⊥).

The experimental setup is shown in Fig. 23. A continuous-wave Ti:Sapphire laser
beam is split into two beams: a low power probe and a high power pump. The pump
is expanded twice before being focused in the center of the nonlinear medium with two
cylindrical lenses to create an elliptical beam with a width along x of ω0

x ≈ 3.2 mm and
a width along y of ω0

y ≈ 300µm. The pump intensity in the central region can thus be
considered as spatially uniform along x. The Rayleigh length z0R,y associated to ω0

y is
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37 cm, which is five times longer than the length of the nonlinear medium. Therfore,
We can safely consider the pump beam as being collimated and neglect its divergence
along the propagation direction. The probe is directly focused with a cylindrical lens on
the entrance of the nonlinear medium in order to get a flat phase profile. This beam is
elliptically elongated along the y direction. We set the major axis width ωp

y to 1700 µm
and ωp

x to 180 ± 10µm in order to properly separate the Gaussian wavepackets in the
output plane and conserve the probe collimation along its propagation in the nonlinear
medium (zpR,x ≈ 13 cm). We fix the probe intensity at its waist to 1% of the pump
intensity. This pump/probe cross configuration enables us to both get closer to the 1D
case and to increase the integration range along y. The angle θ between pump and probe
in the (xz) plane can be finely tuned thanks to a piezo-actuated mirror mount.

Both beams propagate through a L = 7.5 cm long cell, filled with an isotopically pure
85Rb vapor. The cell is heated up to 150◦C by an oven designed to reduce air turbulence
close to the cell windows. Adjusting the temperature allows us to control the atomic
density and therefore the strength of the optical nonlinearity. In our case, this optical
nonlinearity is obtained by tuning the laser frequency close to the 85Rb D2 resonance line,
composed of 2 hyperfine ground states (F = 2, 3) and 4 hyperfine excited states (F ′ = 1 to
4). Since the laser is highly red-detuned from the F = 3 → F ′ transitions (∆ = −6 GHz),
the Doppler broadening can be safely neglected and the negative nonlinear susceptibility
is close to the one of an effective two-levels system with only one excited state of decay
rate Γ = 6.06 MHz. At these temperature and detuning, the transmission coefficient
of the laser beams through the cell is above 70%, which allows one to neglect multiple
scattering of light (atom-light interaction processes are mainly dominated by Rayleigh
scattering events). In comparison to [400], we can consider that the nonlinear interactions
are local, as long as the length scale of the ballistic transport of excited atoms stays
much shorter than the healing length, which is the case at that temperature.

The output plane of the cell is imaged on a CMOS camera. A microscope objective
can be flipped on the beam path to image the far-field (i.e. k-space) and measure
the probe transverse wavevector k⊥ = k0 sin θ. For every angle θ, the pump intensity
(background), the probe intensity and the k-space are captured. The relative phase
between pump and probe is scanned over 2π. 40 background-subtracted images are
taken during the phase scan. They are then integrated over one hundred pixels around
(Ox) and averaged in absolute values. Averaged images before integration are shown
in inset of Fig. 23(b). The distance D between the counter-propagating wavepackets
is estimated by performing a two-Gaussian fit for small k⊥ i.e. when the conjugate
beam is visible. For large k⊥, the conjugate is not sufficiently amplified anymore and
D is directly measure from the distance between the input and output positions of the
probe beam. In order to fully characterize our system, the third order Kerr susceptibility
n2 is calibrated independently by measuring the self phase accumulated by a slightly
defocusing Gaussian beam propagating through the cell [287, 424]. With the detuning
and temperature reported earlier, we found n2 = 3.1 ± 0.2 10−11 m2/W.

The experimental group velocity and dispersion relation as a function of the probe
transverse wavevector are shown in Fig. 25. The pump power was set at 175 mW leading
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Figure 26. Speed of sound cs as a function of the pump intensity. Due to the 2D+1 geometry,
the speed of sound has the dimension of an angle. Data is plotted in blue dots. The light
intensity corresponds to the fluid density, therefore a scaling as square-root is expected as plotted
in black solid. No free parameters are needed as the nonlinearity has been measured independently.
Uncertainty area in light blue is extracted from this independent measurement. Figure from [P4].

to a nonlinear refractive index ∆n of 3.9 10−6. Two different regimes can be identified
on Fig. 25(a): a constant group velocity at low k⊥ and a linear increase at larger k⊥.
The group velocity clearly goes toward a non-zero value when k⊥ → 0, breaking the
linear trend characteristic of the standard free-particle dispersion. The theoretical model
plotted in Fig. 25 is obtained with no free fitting parameters. The offset at large k⊥
between the model and the experimental data results from constructive interferences
between the two non-fully separated wavepackets, as can be seen on the experimental
data of Fig. 24(d) around k⊥∼1.5 104 m−1 (the envelope intensity significantly increases
in between them leading to a systematic under-estimation of the distance D by the
two-Gaussians fit). After propagation in the cell, the counter-propagating wavepackets
have respectively accumulated the phase ±ΩB(k⊥)L. Constructive interferences occur
when ΩB(k⊥)L = nπ (n is a positive integer) i.e. for k⊥ ∼ 1.8 104 m−1 when n = 1.
This value gives the position of the end of the plateau-like regime at low k⊥. Another
constructive interference should occurs for k⊥ =0 (when n=0), but as both envelopes
have the same amplitude in that case, the two peaks are still disentangle (see inset of
Fig. 23).

More importantly, the dispersion relation of Fig. 25(b) guarantees that light is superfluid
in our experiment. Indeed, the Landau criterion for superfluidity defines a critical

transverse speed vc = min
k⊥

[
ΩB
k⊥

]
for the photon fluid, below which the emission of sound-

like excitations is not possible anymore. In our case, vc = cs > 0 and one could observe
superfluid flow of light around a defect if its transverse velocity v (measured in the defect
frame) was lower than cs. To investigate the sonic regime, we set the probe wavevector
to zero and record directly the sound velocity as function of the background fluid density
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(the pump intensity I). The experimental data are shown in Fig. 26 (blue circles). We
observe that the speed of sound scales with the square-root of the fluid density (plotted
in black solid) as expected. It is worth mentioning that, once again, the third order Kerr
susceptibility measured independently, sets the only parameter of the theoretical model.

Conclusion

In conclusion we have reported two important experimental results: first we measured
the dispersion relation for small amplitude density fluctuations, which shows a linear trend
at low wavevector, characteristic of a superfluid. We have then assessed the associated
sound velocity for different fluid of light densities and obtained a scaling law analogous
to the hydrodynamic prediction. This settles the question initially asked by Chiao about
the possibility to observe a superfluid dispersion in a photon fluid. These results open a
wide range of possible experiments in hydrodynamics with light using a novel versatile
platform based on hot atomic vapors.

3.2.2. Quantitative analysis of shock wave dynamics in a fluid of light [P3]

Abstract: We report on the formation of a dispersive shock wave in a nonlinear optical
medium. We monitor the evolution of the shock by tuning the incoming beam power.
The experimental observations for the position and intensity of the solitonic edge of
the shock, as well as the location of the nonlinear oscillations are well described by
recent developments of Whitham modulation theory. Our work constitutes a detailed
and accurate benchmark for this approach. It opens exciting possibilities to engineer
specific configurations of optical shock wave for studying wave-mean flow interaction.

Introduction

In many different fields such as acoustics [157], plasma physics [193], hydrodynamics
[101, 238, 302], nonlinear optics [5], ultracold quantum gases [69, 99, 200, 202], the short
time propagation of slowly varying nonlinear pulses can be described discarding the effects
of dispersion and dissipation. The prototype of such an approach is given by the system
of equations governing compressible gas dynamics [332]. This type of treatment typically
predicts that, due to nonlinearity, an initially smooth pulse steepens during its time
evolution, eventually reaching a point of gradient catastrophe. This is the wave-breaking
phenomenon, which results in the formation of a shock wave [92, 420]. If, after wave
breaking, dispersive effects dominate over viscosity, the shock eventually acquires a
stationary nonlinear oscillating structure for which the width increases with diminishing
dissipation [345]. In the case of weak dissipation the time for reaching a stationary regime
can be quite long. Gurevich and Pitaevskii [161] made a major contribution to the field
when they first realized the interest of studying the evolution of the associated dynamical
structure, now called a dispersive shock wave (DSW). Besides, they understood that
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Figure 27. Sketch of the experimental setup. To create the initial state we overlap the background
and the hump beams on a beam splitter with their relative phase precisely adjusted such that they
interfere constructively. This state then propagates inside the nonlinear medium consisting of
a hot 85Rb vapor cell of length L. The insets represent cuts of the relevant intensity profiles in
the plane perpendicular to the direction z of propagation. The output intensity is recorded on a
camera by direct imaging through two lenses in 4f configuration. Figure from [P3].

a DSW can be described as a modulated nonlinear traveling wave and studied in the
framework of the Whitham theory of modulations [410].

In the present work we study the propagation of an optical beam in a nonlinear defocus-
ing medium. Wave-breaking and (spatial or temporal) dispersive shocks have already been
observed in such a setting [30, 94, 120, 126, 143–145, 197, 298, 337, 404, 409, 415, 416].
However, all previous theoretical descriptions of experimental optical shocks either
remained only qualitative or resorted to numerical simulations for reaching accurate
descriptions. Indeed, a realistic quantitative characterization of the experimental sit-
uation requires to take into account a number of nontrivial effects which sum up to a
quite difficult task. For instance, saturation effects, such as occurring in semiconductor
doped glasses [93] and in photorefractive media [216], can only be taken into account by
using a nonintegrable nonlinear equation, even for a medium with a local nonlinearity.
Besides, both “Riemann invariants” typically vary during the prebreaking period and
this complicates the description of the nondispersive stage of the pulse spreading, even
in a quasi unidimensional (1D) geometry. Moreover, for realistic initial intensity pulse
profiles, the post-breaking evolution corresponds, at best, to a so-called “quasisimple”
dispersive shock [158], the characterization of which requires an elaborate extension
of the Gurevich-Pitaevskii scheme. Finally, the nonintegrability of the wave equation
significantly complicates the post-breaking description of the nonlinear oscillations within
the shock. Despite these difficulties, it has recently become possible to combine several
theoretical advances [116–119, 137, 159, 160, 186, 187, 204, 221, 233] to obtain a com-
prehensive treatment of the nonlinear pulse spreading and the subsequent formation of a
dispersive shock in a realistic setting [188, 189]. In this Letter, we provide a nonambigu-
ous experimental evidence for the accuracy of this theory with a precise description of
the main features of the shock. This universal and quantitative benchmark is a major
advance for manipulation and engineering of optical shockwaves.

We study the propagation of a laser field in a L = 7.5 cm-long cell filled with an
isotopically pure 85Rb vapor (99% purity) warmed up to a controlled temperature of
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120 ◦C to adjust the atomic vapor density. We use a Ti:sapphire laser detuned by −3.9 GHz
with respect to the F = 3 → F ′ transition of the D2-line of 85Rb at λ0 = 2π/k0 = 780 nm.
For such a large detuning, the natural Lorentzian shape of the line dominates and the
Doppler broadening k0v ≃ 240 MHz can be safely neglected. In these experimental
conditions, the system is self defocusing (repulsive photon-photon interaction) and the
transmission through the cell is 60 %. We find that this medium is well described by local
photon-photon interactions, but contrary to previous works [54, 269, 346] [P4] [P14] we
find it important to take into account the saturation of the nonlinearity to quantitatively
describe the dynamics of the shock waves.

The input intensity profile is a cross-beam configuration of two vertically polarized
laser beams, both propagating along the axis of the cell (denoted as Oz), with their
respective phase precisely adjusted such that the two beams interfere constructively, see
Fig. 27. One of the beams (which is denoted the hump) is extended along the y direction
and significantly more intense than the other one (the background) which is extended
along the x direction. At the entrance of the cell (z = 0) both beams have an elliptic
Gaussian profile. The background beam has a power P0 and waists wx,0 > wy,0, whereas
the hump has power P1 and waists wx,1 < wy,1. During the initial nondiffractive stage of
evolution, nonlinearity acts as an effective pressure which favors spreading of the hump
in the x direction along which is initially tighter collimated. Conversely, the low intensity
background experiences almost no spreading and behaves as a pedestal which triggers
wave breaking of the hump during its spreading. Each beam has a maximum entrance
intensity Iα = 2Pα/(πwx,αwy,α) (α = 0 or 1), and we explore the DSW dynamics for a
fixed ratio I1/I0. We work in the deep nonlinear regime, with I1 = 20 I0. This large
value corresponds to a wave breaking distance typically shorter than the cell length, and
makes it possible, by changing the total power Ptot of the beams, to observe several
stages of evolution of the DSW. The total power can be increased up to 700 mW and is
limited by the laser maximum output power.

We image the total field intensity Iout(x, y) at the output of the cell on a camera. In
order to minimize the effect of absorption and increase the visibility of the DSW, we
determine the normalized output intensity

Ĩout(x, y) ≡ Iout(x, y) − I0out(x, y)

I0
out

, (23)

where I0out(x, y) is the intensity profile at the cell output when only the background
beam propagates through the medium (the hump beam is blocked). I0

out is the maximal
value of I0out(x, y). Ĩout(x, y) is represented in Fig. 28(a). Our theoretical description
relies on only two parameters which characterize the photon-photon interaction, namely,
the Kerr coefficient, n2, and the saturation intensity Isat [cf. Eq. (24)]. Their values
n2 = 1.5×10−4 mm2/W, and Isat = 0.6 W/mm2 have been determined by comparing the
experimental results with large-scale 2D numerical simulations. The excellent agreement
reached in Fig. 28 indicates that two effects – saturable nonlinearity and linear absorption
– are the relevant physical ingredients for a theoretical description of our experiment.

In the regime w1,x ≪ w0,x and I1 ≫ I0 we consider, the normalized output density
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Figure 28. (a) Left: experimental profile Ĩout taken for Ptot = 680mW. Right: Two-dimensional
numerical simulations at the same total entrance power. (b) x and y profiles along the cuts
represented by the two white lines on the two-dimensional profiles (a). The solid blue line
represents the experimental data, the dashed green line the two-dimensional numerical simulation.
On the x profile, the orange line is a one-dimensional numerical simulation, from Eqs. (24) and

(25). (c) Ĩout(x, 0) for various total beam powers. The color code is the same as in (b). The
vertical pink and gray bars on the right part of each intensity profile indicate the positions of the
solitonic edge of the DSW and of the first maxima of oscillations within the DSW. The thickness
of each bar represents the experimental uncertainty. Figure from [P3].

Ĩout becomes independent on the precise shape of the background beam. As a result,
Ĩout(x, 0) can be described by using a simplified 1D theoretical description, where a hump
propagates over a background of uniform intensity I0. Within the cell, the complex
field amplitude at y = 0, denoted as A(x, 0, z) ≡ a(x, z), then obeys a 1D nonlinear
Schrödinger equation where the position z along the axis of the beam plays the role of
an effective “time” [241]. The equation, once included the nonlinearity saturation and
the linear absorption [216], reads

i ∂za = − 1

2n0k0
∂2xa+

k0 n2 |a|2
1 + |a|2/Isat

a− i

Λabs
a, (24)

where n0 ≃ 1 is the linear index of refraction and Λabs = 30 cm, which corresponds to a
60 % transmission for a cell of length L = 7.5 cm. The value of the effective amplitude
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at the entrance of the cell is taken as

a(x, 0) =
√
I0 +

√
I1 exp

(
− x2

w2
x,1

)
, (25)

In order to evaluate the accuracy of the mapping to the 1D model of Eq. (24), we compare
in the upper panel of Fig. 28(b) the corresponding value of |a(x, L)|2 exp(2L/Λabs)/I0−1
with the experimental Ĩout(x, 0) and with the result of 2D simulations. The excellent
agreement is confirmed in Fig. 28(c) for the whole range of beam powers Ptot.

The mapping to a 1D problem enables us to compare our measurements with recent
analytical predictions. In particular, if one neglects the linear absorption within the cell,
for the initial intensity profile (25), wave breaking occurs at a propagation distance [186]

zWB = 4

√
n0I∗

n2

(1 + I∗/Isat)
2

3 + I∗/Isat
· 1

max
∣∣∣dI(x,0)dx

∣∣∣
, (26)

where I(x, 0) = |a(x, 0)|2 is the entrance intensity and I∗ is the value I(x∗, 0) at point x∗

where |dI(x, 0)/dx| reaches its maximum. For low entrance power, no DSW is observed
because zWB is larger than the cell length. Wave breaking first occurs within the cell
for a total power PWB such that zWB = L. For our experimental parameters we obtain
PWB = 48 mW. Numerical tests show that taking absorption into account does not
modify notably this value.

For a total power larger than PWB, the DSW is formed and develops within the cell.
The physical phenomenon at the origin of the DSW is the following: large intensity
perturbations propagate faster than small ones, so there exist values of x reached at
the same “time” by different intensities. When this occurs first, the density gradient is
infinite. This corresponds to the onset of a cusp catastrophe [150, 203], the nonlinear
diffractive dressing of which is a dispersive shock wave. This takes the form of a modulated
oscillating pattern consisting asymptotically (i.e. at large z, or equivalently large Ptot) in
a train of solitons which, away from the center of the beam, gradually evolves into a linear
perturbation. The position of its “solitonic edge” on the y = 0 axis at the cell output
(z = L) is denoted as xs. It is located in Figs. 28(c) by a vertical red bar whose thickness
represents the uncertainty on the estimation of xs from the experimental Ĩout(x, 0). This
uncertainty limits the experimental determination of xs to powers larger than 120 mW.
The following maxima of oscillations, represented by vertical gray lines, are more precisely
determined experimentally. The technique devised in Ref. [189] makes it possible to
theoretically determine xs and the corresponding intensity Ĩout(xs, 0). As illustrated
in Fig. 29 the results of this analytical approach (green solid lines) compare well with
the experimental data, although it does not take absorption into account. Importantly,
omission of the nonlinearity saturation leads to incorrect results (brown solid line).

One may study the DSW in an even more detailed way by locating the position of the
maxima of the nonlinear oscillations. While the theoretical results for xs essentially rely
on an approach due to El [116, 160, 204] which is valid for any type of nonlinearity, the
precise intensity profile within the DSW can be computed only for exactly integrable
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Figure 29. Characterization of the solitonic edge of the DSW as a function of the beam’s power.
The upper panel represents the position xs of the shock, and the lower one the corresponding
intensity Ĩout(xs, 0). In each panel, the red points with error bars are experimental results, from
Fig. 28(c) and, in the upper one, the orange stars are the results of 1D numerical simulations of
Eq. (24). The green solid line is the theoretical result, from Ref. [189]. The brown solid line is
the theoretical result in the absence of saturation. Figure from [P3].

systems, i.e., by neglecting saturation effects. The position-dependent oscillation period
L(x, z) was computed in this framework in Ref. [188] for a parabolic initial intensity
distribution. Fitting the center of the intensity profile (25) by an inverted parabola, the
positions x1, x2, and x3 of the first maxima of oscillation of the DSW at the output of
the cell are determined by

x1 − xs = L
(
xs + x1

2
, L

)
, (27)

and by similar formulas obtained by replacing x1 by x2 (then x3) and xs by x1 (then
x2). The results are compared with the experimental ones in the upper half (x > 0)
of Fig. 30. The small offset in the position of the theoretical maxima with respect to
the experimental ones observed in the figure is due to an initial small overshoot in the
theoretical position of xs (cf. the green solid line in Fig. 29) which is itself due to the
absence of absorption in the model. Indeed, the 1D numerical simulations – which do
take absorption into account – are in slightly better agreement with the experimental
results for xs (cf. the orange stars in Fig. 29). Using the numerical xs in Eq. (27) instead
of the analytical one yields, for the maxima of oscillations, an excellent agreement with
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Figure 30. Color plot of the experimental intensity profiles Ĩout(x, 0) as a function of Ptot. The
purple dot-dashed line represents the edge xs of the DSW extracted from Whitham theory (upper
part of the figure: x > 0) and from 1D numerical simulations (lower part, x < 0). In each half of
the figure (x ≶ 0) the white dashed lines are the corresponding analytic predictions (27) for the
maxima of oscillation. Figure from [P3].

experiment, cf. the lower half of Fig. 30. Such a good agreement despite the fact that
Eq. (27) does not take saturation into account is not surprising: the rapid decrease of
intensity away from the solitonic edge (cf. Fig. 28) significantly reduces the importance
of saturation within the DSW.

Conclusion

It thus appears possible to give a detailed description of precise experimental recordings
of the intensity pattern of an optical shock wave, not only thanks to numerical simulations,
but on the basis of Whitham’s modulation theory. This is an important validation of
recent advances in this approach, which is no longer restricted to integrable systems or
idealized initial configurations. We are reaching a point where these progresses make it
possible not only to study DSWs per se, but also as tools for prospecting new physical
phenomena, such as the type of wave-mean flow interaction recently identified in Ref.
[90]: our platform is ideally designed to investigate scattering of elementary excitations
by a DSW, a study which is also relevant to the domain of analogue gravity. Indeed, a
dispersive shock can be considered as an exotic model of acoustic white hole, and the
good experimental control and theoretical understanding of this structure demonstrated
in the present work opens the prospect of a detailed investigation of the corresponding
induced background fluctuations.
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3.3. Out-of-equilibrium dynamics of a quantum fluid after an interaction
quench

3.3.1. Nonequilibrium prethermal states in a two-dimensional photon fluid [P2]

Abstract: We report on the observation of a prethermal state in a nonequilibrium, two-
dimensional fluid of light. Direct measurements of the first order coherence function of the
fluid reveal the dynamical emergence of algebraic correlations, a quasi-steady-state with
properties close to those of thermal superfluids. By a controlled increase of the fluctuations,
we observe a crossover from algebraic to short-range (exponential) correlations. We
interpret this phenomenon as a nonequilibrium precursor of the Kosterlitz-Thouless
transition.

Introduction

Thermalization is the dynamical process by which any subpart of a many-body system
evolves toward a thermal equilibrium state that maximizes its entropy. While a general
description of how thermal equilibrium establishes in quantum systems remains elusive, a
variety of scenarios have been identified [149, 319]. Examples include the nonequilibrium
dynamics of near-integrable systems [214], the relaxation toward thermalization in
correlated gases [386], the spontaneous emergence of universal scaling laws [121, 147, 323]
following a quantum quench, and even the absence of thermalization in the presence of
disorder [3]. In nonequilibrium many-body systems, the phenomenon of prethermalization
plays a peculiar role [38, 224, 260, 279]. Prethermalization describes a significant slowing
down of the dynamics, where the system initially relaxes toward a quasisteady, long-
lived state after a perturbation. The establishment of thermal equilibrium eventually
occurs over a much longer timescale. In a prethermal state, the system retains a partial
memory of its initial conditions, while showing a strong resemblance to its true thermal
equilibrium state [27, 38, 75, 224, 246, 260, 261, 279, 358]. Experimentally, most studies
of this phenomenon have been conducted in ultracold atomic gases: relaxation and
prethermalization have been observed in one-dimensional (1D) Bose gases [155, 242, 243,
380], where the dynamical emergence of prethermal states arises because the system is
close to integrability. Recently, signatures of prethermal states were also identified in
unitary Bose gases [115].

In parallel, fluids of light in the propagating geometry [68] have emerged as a com-
plementary platform to study two-dimensional (2D) Bose gases, with the observation
of Bogoliubov-like dispersion [P4] [P14] [315, 400], signatures of photon condensation
[346, 378] and spontaneous nucleation of vortices in a lattice [366]. This platform relies
on the formal analogy between a laser field propagating through a nonlinear medium
and the temporal evolution of a 2D quantum fluid. In this propagating geometry, the
initial state can be engineered at will using wavefront shaping techniques, as illustrated
by observations of dispersive shock waves [P3] [P13] [337, 415]. Moreover, upon entering
the nonlinear medium, the beam experiences a sudden change of refractive index, which
effectively reproduces the dynamics of a Bose gas after an interaction quench [27, 246]
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[P1]. This makes it a natural system for exploring nonequilibrium physics.
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Figure 31. Measurement of the coherence function demonstrating light-cone spreading of algebraic
correlations in a 2D photon fluid. (a) Experimental setup. (b) Scenario of pre-thermalization
in 2D. Upon propagation, the initial short-range speckle fluctuations are amplified and exhibit
algebraic correlations associated with long-lived phononic excitations and spreading within a light
cone of boundary ∆r = 2csL. Out of the light cone, g1 is independent of ∆r, reproducing the
initial state long-range coherence. (c) The initial state is prepared using a SLM with a random
phase mask superimposed on a Gaussian laser beam. This results in a weakly fluctuating field
that propagates in a hot 87Rb vapor cell of length L. (d) After propagation in the cell, the
beam is split within a Mach-Zehnder interferometer and flipped using two Dove prisms. (e) The
two inverted copies interfere and the fringe visibility is recorded. (f) The coherence function
g(1)(∆r = 2r) = ⟨Ψ∗(r, L)Ψ(−r, L)⟩ is obtained by computing the ensemble average of the
measured contrast over 2000 realizations. (g) Experimental g(1) functions at z = 0 and z = L.
Light colored data are raw signals, and thin solid curves their azimuthal average. Thick solid
curves are the final measurements, obtained by subtracting laser background imperfections. The
light cone position at 2csL is indicated by the red arrow. The dashed line is a guide emphasizing
the algebraic decay. Figure from [P2].

In this section, we study the dynamical emergence of a prethermal state in a nonequilib-
rium, 2D fluid of light after an interaction quench. We first present direct measurements
of the fluid’s first-order correlation function that reveal the spontaneous emergence
of long-range algebraic correlations spreading within a light cone, a characteristic sig-
nature of prethermalization bearing strong similarities with 2D thermal superfluids
[84, 152, 166, 278, 283, 313]. We then provide a detailed experimental characterization of
the algebraic order and find an agreement with recent theoretical predictions [27]. Finally,
by a controlled increase of the fluid fluctuations, we unveil a crossover from algebraic to
short-range (exponential) correlations, analogous to the celebrated Kosterlitz-Thouless
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transition observed at thermal equilibrium.
Experimentally, our fluid of light is created by letting propagate a laser beam through a

10 mm-long vapor cell of 87Rb heated to a temperature of 150 ◦C. Effective photon-photon
interactions are achieved by tuning the laser close to resonance (detuned by −1.5 ± 0.1
GHz) with respect to the F = 2 → F ′ transition of the D2-line at λ0 = 2π/k0 =
780 nm, as described in [P4] [P10]. Under these conditions, the vapor is self defocusing,
corresponding to repulsive photon-photon interactions. As proposed in [27], we carefully
prepare an initial state consisting of weak random speckle field ψs(r) superimposed on
a more intense laser beam having a wide Gaussian profile (waist w0 = 1.8 mm) and
denoted It(r) = I0 exp(−2r2/w2

0). The optical field impinging on the cell is of the form
Ψ(r, z = 0) =

√
It(r)[1 + ϵψs(r)]/

√
1 + ϵ2, where ϵ ≪ 1 is a dimensionless parameter

quantifying the fluctuations and controlled via SLM patterns. The key idea here is that
the background field, being close to a plane wave, is almost a stationary state of the
problem. The weak speckle fluctuations thus mainly drive the thermalization process.
For ϵ≪ 1, however, the latter becomes slow and leaves room to a prethermal stage where
the dynamics becomes governed by independent phonons of long lifetime [27]. Notice that
the chosen initial state can be seen as the optical analogue of a 2D trapped Bose-Einstein
condensate [of spatial profile It(r) and condensate fraction 1/(1 + ϵ2)], on top of which
small thermal fluctuations (here described by the random speckle) are present.

At the cell entrance, the photon fluid effectively experiences an interaction quench due
to the nonlinear index change. The cell exit plane is imaged on a camera after propagating
within a balanced Mach-Zehnder interferometer. The images of both arms are inverted
with the help of two Dove prisms in a perpendicular configuration [97, 338], see Fig. 31(a).
The coherence function, g(1), is obtained by Fourier filtering the interference contribution,
and averaging the field at the cell exit Ψ(r, z = L) over 2000 speckle realizations:

g(1)(∆r = 2r) = ⟨Ψ∗(r, L)Ψ(−r, L)⟩, (28)

where ⟨. . .⟩ refers to ensemble averaging [see Figs. 31(c-f)].
Typical g(1) measurements are presented in Fig. 31(g). We show the raw data (light

curves) obtained for a given ∆r, their azimuthal average performed by exploiting the
statistical rotational invariance of g(1) and, finally, the data after background residual
inhomogeneity correction in dark colors. While, at z = 0, the coherence function nearly
coincides with the background profile It(r) due to small initial fluctuations, at z = L
one observes a characteristic structure (within the background envelope) where g(1)

first decays algebraically and then saturates at a constant value forming a plateau. A
low-energy effective theory for the propagation of excitations in the vapor, assuming an
homogeneous background laser, provides the dynamical scenario of 2D pre-thermalization
sketched in Fig. 31(b) [27]. After a short propagation distance z ∼ 1/(2gI0) after the
quench, the initial weak speckle fluctuations are amplified, and a quasi long-range order
emerges spontaneously within a light cone of radius ∆r ∼ 2csz, where cs =

√
gI0/k0 is

the speed of sound in the fluid. The position of the light cone can be calculated from the
interaction constant g, measured independently with the method of [P10], and is shown
with a red arrow on Fig. 31(g). Its position agrees with the observed onset of the g(1)
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Figure 32. Direct observation of the long-range algebraic order in a 2D pre-thermal state of
light. (a) Normalized coherence function g(1)(∆r)/I0 vs ∆r for increasing values of the nonlinear
phase ΦNL, at fixed σ = 25µm and ϵ2 = 2.2%. Notice the double logarithmic scale. Dashed curves
are algebraic fits to 1/∆rα in the central region. (b) Extracted algebraic exponents α vs ΦNL, for
three fluctuation strengths (blue: ϵ2 = 2.2%, red: ϵ2 = 5.3%, yellow: ϵ2 = 9.5%) (c) Algebraic
exponent α/σ2 at fixed ϵ2 = 5.3%, for two different speckle correlation lengths σ (green circles:
σ = 25 µm, red squares: σ = 35 µm). All data points fall on the same curve, confirming the
scaling α ∝ σ2. Solid curves are linear fits to Eq. (30). Figure from [P2].

Page 75 of 127



Tom Bienaimé HDR
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Figure 33. Impact of the initial fluctuation amplitude ϵ on the pre-thermal state. Normalized
coherence function g(1)(∆r)/I0 vs ∆r for increasing values of the fluctuation amplitude ϵ (ϵ2 =
0, 0.027, 0.04, 0.05, 0.07, 0.11, 0.16, 0.23, 0.35 from top to bottom). Here σ = 35µm and ΦNL =
20 rad. Dashed curves are algebraic fits to 1/∆rα in the central region. The inset shows the
extracted algebraic exponents (blue dots), together with the prediction (30) [with no free parameters
since we set the proportionality coefficient with that of Fig. 32]. Figure from [P2].

plateau at a propagation length L.
The above observations fall in line with the common picture of prethermalization, where

the short-time dynamics is governed by collisionless quasi-particles (here phonons) of
long lifetime. To confirm this, following [27], we can show from a low-energy Bogoliubov
approach that the post-quench dynamics starting from Ψ(r, z = 0) can indeed be described
in terms of long-lived phonons, giving the following scaling laws for the coherence function
at the cell exit plane when ϵ≪ 1:

g(1)(∆r) ∝ It(r)

{
(ξ/∆r)α for ∆r < 2csL

const for ∆r > 2csL,
(29)

where ξ = 1/
√

4k0gI0 is the healing length. The algebraic exponent is given by

α ∝ ϵ2ΦNLσ
2, (30)

where ΦNL = gI0L is the nonlinear phase accumulated by light upon propagating
through the vapor and σ is the speckle correlation length. Eqs. (29) and (30) emphasize
another property of the pre-thermal state: within the light cone, the fluid of light
resembles a 2D superfluid at thermal equilibrium, characterized by a quasi long-range
order [84, 152, 166, 278, 283, 313]. This is not a strict thermal equilibrium though, since
the characteristic dependence of α differs from the one of a thermal superfluid, for which
α ∝ ϵ2/σ2 and varies weakly with the interaction.

To confirm the above scenario, we confront the experimental results to the prediction
(30). We first show in Fig. 32(a) experimental coherence functions obtained for increasing
values of the interaction g ∝ ΦNL at fixed ϵ, σ. Algebraic exponents extracted from fits
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Figure 34. Cross-over from algebraic to short-range (exponential) correlations at stronger
fluctuation amplitudes, with the interaction strength set to a value ΦNL = 44 rad twice larger
than in the previous data (notice the log scale). (a) Normalized coherence function g(1)(∆r)/I0 vs
∆r when increasing more significantly ϵ (ϵ2 = 0, 0.027, 0.04, 0.05, 0.07, 0.11, 0.16, 0.23, 0.35, 0.64
from top to bottom). Here σ = 35 µm is fixed. (b) Sum-squared error between experimental
data and exponential (orange) vs algebraic (blue) fit. For ϵ2 > 0.35 the exponential fit becomes
more accurate than the algebraic fit. (c) Rate 1/rc of the exponential decay, see Eq. (31), vs the
fluctuation amplitude. The linear fit (black) confirms the theoretical scaling of Eq. (32). Figure
from [P2].

of g(1)(∆r) in the central region are shown in Fig. 32(b), and confirm the linear scaling
of α with the interaction strength predicted by Eq. (30), at least for fluctuations ϵ2 below
10%. The solid lines in Fig. 32(b) are linear fits to Eq. (30) and are used to set the
proportionality coefficient of Eq. (30), such that there is no adjustable parameters for all
other results presented in this work. A second set of measurements, using two different
correlation lengths σ, is presented in Fig. 32(c). By normalizing the exponent α(ΦNL)
to σ2, we observe that α(ΦNL)/σ2 measured at different σ is independent of σ, which is
again in agreement with the scaling law of Eq. (30).

Additionally, we investigated the behavior of g(1) with ϵ, setting σ = 35µm and the
interaction strength ΦNL = 20 rad to a relatively weak value. The results are reported in
Fig. 33. We observe an increase of the algebraic exponent α with ϵ. A comparison of the
extracted α(ϵ) with Eq. (30) is shown in the inset. We find that the theory provides a
good description of experimental results, as long as the initial fluctuations remain small,
typically ϵ2 ≲ 0.25. In fact, deviations at higher ϵ values should not come as a surprise,
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since the characteristic algebraic, “low-energy” behavior (29) of the coherence function is
expected to hold for ϵ≪ 1 only. Indeed, in our 2D system the emergence of a pre-thermal
state can be seen as a consequence of a weak breaking of translation invariance stemming
from the initial speckle, a scenario for pre-thermalization put forward in [260].

To further characterize the non-equilibrium dynamics, we have studied the evolution
of g(1)(∆r) up to larger values of ϵ, setting a stronger interaction strength ΦNL = 44 rad.
From the above discussion, one could naively expect that, upon increasing ϵ, the low-
energy state (29) leaves room to a non-universal dynamics, where no pre-thermalization
stage arises and where g(1)(∆r) has no specific structure. Instead, we have experimentally
observed that the coherence function smoothly turns from algebraic to exponential as ϵ
is increased:

g(1)(∆r) ∼ exp(−∆r/rc). (31)

The cross-over from Eq. (29) to this exponential behavior is presented in the measurements
of Fig. 34(a). We have confirmed it by a computation of the sum of squared estimate
of errors (SSE) that measures the discrepancy between the g(1) data and a fit to either
Eq. (29) or (31), see Fig. 34(b). Note that such an exponential decay differs from the
Gaussian correlations of the initial speckle and, in that, is associated with a genuine
new dynamical regime emerging from the quench. Another statistical test, coefficient of
determination R2 confirms the transition at ϵ2 ∼ 0.2. We also observed this cross-over in
ab initio numerical simulations and found it to be a generic feature of g(1) in the pre-
thermal regime as ϵ or ΦNL are increased to moderate values. This phenomenon was also
previously pointed out in [27]. At a physical level, this algebraic-to-exponential crossover
is reminiscent of the celebrated Kosterlitz-Thouless (KT) transition, which drives 2D
Bose gases at thermal equilibrium from a superfluid to a normal-fluid state when the
temperature is raised. Although out-of-equilibrium, our fluid of light displays a similar
behavior in the pre-thermal regime. This unexpected phenomenon can be understood by
noticing that, at low ϵ and/or small interaction strength, the energy injected into the
system during the quench is low, and so is the effective pre-thermalization “temperature”.
This results in an pre-thermal state with quasi long-range order, which can be seen as
the dynamical counterpart of a 2D, equilibrium superfluid at low temperature. When ϵ
and/or g is increased, on the other hand, one reaches pre-thermal states of effectively
larger temperature. The resulting fluid displays exponentially-decaying correlations,
analogous to the normal phase of a 2D Bose gas above the KT temperature. At the cross
over between the two regimes, the exponent value is α = 1.7±0.1, in strong contrast with
a KT phase transition in thermal equilibrium homogeneous systems where the exponent
is 0.25 [283].

To gain more insight on the pre-thermal regime of exponential correlations, we studied
the dependence of the correlation length rc of the exponential decay, see Eq. (31), on the
initial fluctuation amplitude ϵ. To unveil this dependence, one can take advantage of total
energy conservation Et =

∫
dr(1/(2k)|∇ψ(r)|2 + g/2|ψ(r)|4) during the non-equilibrium

evolution. Equating Et to the normal state energy (31), we obtain:

1

rc
∝ ϵ2

1 + ϵ2
(32)
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We have also confirmed this law from extensive numerical simulations. Experimental
values of 1/rc, extracted from our measurements of g(1), are shown in Fig. 34(c). When
plotted vs ϵ2/(1 + ϵ2), they show a good agreement with the prediction (32).

Conclusion

In summary, our experimental description of a 2D fluid of light through a direct probe of
its spatial coherence has revealed the dynamical emergence of algebraic prethermalization
following an interaction quench. Unlike previous studies involving near-integrable systems
in 1D, prethermalization emerges as a result of the weak breaking of translation invariance
after the quench. Our results further point toward the existence of a crossover from
algebraic to exponential correlations in the prethermal regime of 2D systems, an intriguing
phenomenon that we interpret as a nonequilibrium precursor of the thermodynamic KT
transition. This effect opens exciting perspectives for further studies of nonequilibrium
quantum fluids. While a comprehensive description of 2D thermalization processes remains
open, our analysis emphasizes the assets of photon fluids for probing the dynamics of
far-from-equilibrium many-body systems.

3.3.2. Analogue cosmological particle creation in an ultracold quantum fluid of
light [P1]

Abstract: The rapid expansion of the early universe resulted in the spontaneous pro-
duction of cosmological particles from vacuum fluctuations, some of which are observable
today in the cosmic microwave background anisotropy. The analogue of cosmological
particle creation in a quantum fluid was proposed, but the quantum, spontaneous effect
due to vacuum fluctuations has not yet been observed. Here we report the sponta-
neous creation of analogue cosmological particles in the laboratory, using a quenched
3-dimensional quantum fluid of light. We observe acoustic peaks in the density power
spectrum, in close quantitative agreement with the quantum-field theoretical prediction.
We find that the long-wavelength particles provide a window to early times. This work
introduces the quantum fluid of light, as cold as an atomic Bose-Einstein condensate.

Introduction

The expansion of a universe stretches all length scales, including the wavelengths of
the particle modes. Thus, the frequencies of the modes evolve with time [355], which
implies that the modes at early and late times are related by a Bogoliubov transformation
[64, 156, 281, 307, 308]. This field theory approach avoids the microscopic details, and
predicts the spontaneous production of cosmological particles, including the primordial
density fluctuations which led to the acoustic peaks in the cosmic microwave background
(CMB) spectrum [64, 156, 309]. It is particularly relevant since the acoustic peaks can
be described by linear perturbation theory [179].

Page 79 of 127



Tom Bienaimé HDR

The field theory approach inspired the subject of analogue cosmological particle creation,
in which laboratory experiments mimic the dynamics of scalar fields in curved space
times [23, 24, 127, 134, 191, 320, 407]. The experiments even allow for measurement
over time, which is impossible in the real universe, for which there is only one time
of observation. Since the model is independent of the microscopic description of the
medium, various quantum fluids were proposed for the study of cosmological particle
creation in analogue universes [23, 24, 127, 134, 191, 320, 407]. In a two-dimensional
atomic Bose-Einstein condensate, a qualitative comparison with cosmological particle
creation was reported[184]. In a 1-dimensional experiment not related to quantum fluids,
a rapid switch in the trapping field of two ions led to phonon pair creation and formation
of spatial entanglement [412].

Analogue cosmological particle creation is a type of dynamical Casimir effect [107, 140,
277], which was observed in a superconducting circuit [411] and an optical fiber [395].
The classical, stimulated version of the effect was reported in a Bose-Einstein condensate
[192], but the observation of the quantum effect in a quantum fluid has not been reported.
Pairs can also be produced by a modulational instability [73].

We simulate expanding and contracting universes in a 3-dimensional quantum fluid of
light, as coherent as an atomic Bose-Einstein condensate, and we observe time-resolved
analogue cosmological particle creation out of vacuum fluctuations. Our quantum fluid
is a near-resonant laser pulse traversing a warm atomic vapor cell, as illustrated in Fig.
35a. Within the vapor cell, the repulsive interactions between photons are mediated
by the atoms, due to Kerr nonlinearity induced by the atomic resonance [P4]. The
interactions are suddenly quenched to zero when the laser beam exits the vapor cell
[245]. This configuration mimics an expanding universe, since a rapid reduction of the
interactions causes a sudden red shift of the energy spectrum [23, 24, 127, 191, 407]. We
also observe the reverse process at the cell entrance, in which the interaction suddenly
appears, mimicking a contracting universe. We demonstrate that both processes produce
pairs of analogue cosmological particles, which confirms the predictions of Ref. [245].

Results

Theoretical techniques. Our approach relies on the analogy between light propagation
in a Kerr nonlinear medium, and the temporal dynamic of an atomic Bose-Einstein
condensate. The effective time is τ = z/c, where z is the position in the direction
of propagation, and c is the speed of light. This effective time is equivalent to true
time for the sake of quantum mechanical quasiparticle creation [239, 245]. With no
approximation other than the usual paraxial and slowly-varying envelope approximations
[66], we extend the standard monochromatic limit [66] and find that our fluid is described
by the 3-dimensional Gross-Pitaevskii equation

iℏ
∂ψ

∂τ
= − ℏ2

2m
∇2ψ + U(r, τ)ψ + g(r, τ) |ψ|2 ψ (33)

where ψ is the slowly-varying envelope of the electric field, |ψ|2 is the volume density of
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Figure 35. The analogue universe. a The fluid of light (red) is a laser pulse traversing a
heated 85Rb vapor cell. The axial position gives the effective time τ . The quenches occur at the
entrance and exit of the vapor cell. τ = 0 corresponds to quench 2. The time between the two
quenches is τ12. b The true time gives an effective third spatial dimension z′. c Typical image of
the fluid of light integrated along z′, given in units of photon density. An effective time τ = 130 ps
after quench 2 is shown. Figure from [P1].

the photons, m is their effective mass, U is an external potential, and g |ψ|2 is the mean-
field interaction energy. The three spatial dimensions of ∇ correspond to the transverse
coordinates (x, y) and to z′ = γ (vgt− cτ), which is a coordinate comoving with the laser

pulse at the group velocity vg, and compressed by the factor γ =
(
−v2gk0D0

)−1/2
, where

k0 is the wavenumber of the laser, and D0 is the group velocity dispersion. In other
words, a laser pulse viewed in the z′ coordinate would appear stationary and compressed
relative to its length in the z coordinate.

We study the analogue cosmological particles using the static structure factor, in
analogy with the CMB power spectrum. The static structure factor has been used to
study density fluctuations in Bose-Einstein condensates [184, 352], and we apply this
technique to a fluid of light. It is given by S(kx, ky, kz′) = ⟨|δρ(kx, ky, kz′)|2⟩/M , where
δρ(kx, ky, kz′) is the spatial Fourier transform of the density fluctuation at time τ , and M
is the total number of particles in the fluid. With this definition, a zero-temperature, non-
interacting gas has S(k) = 1, reflecting the presence of spatial shot noise. The operator b̂†k
corresponds to the creation of a quasiparticle after the quench, in mode k = (kx, ky, kz′)

oscillating at frequency ωk. In the presence of quasiparticle populations N ≡ ⟨b̂†kb̂k⟩ and

correlations C ≡ ⟨b̂kb̂−k⟩, the static structure factor within the Bogoliubov approximation
is given by

S(k) = 1 + 2N + 2 Re
(
Ce−2iωkτ

)
. (34)
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The populations and correlations are given by

N = β2 +N0

(
α2 + β2

)
+ 2αβRe (C0) (35)

C = αβ + C0α
2 + C⋆

0β
2 + 2αβN0 (36)

where N0 ≡ ⟨â†kâk⟩ and C0 ≡ ⟨âkâ−k⟩ are the populations and correlations before the

quench, respectively, â†k corresponds to the creation of a quasiparticle before the quench,

and the operators are related by the Bogoliubov transformation b̂k = αâk + βâ†−k. For
our series of two quenches, Eqs. (35) and (36) are applied twice. Since each quench either
starts or ends with no interactions, α and β are the same Bogoliubov coefficients which
diagonalize the Hamiltonian of a weakly-interacting quantum fluid. In the absence of
quasiparticles before a given quench, the pair production is spontaneous, and Eqs. (35)
and (36) become N = β2 and C = αβ. On the other hand, a distribution of quasiparticles
before the quench, thermal or otherwise, will stimulate additional pairs.

Experimental design. To create the fluid of light, we use a laser pulse with a 4
mm Gaussian waist and a power of 100 mW, propagating in an 85Rb vapor cell heated
to 150 ◦C. A pulse length of 100 ns is employed to avoid saturating the camera used
for observation. The laser is detuned −1.5 GHz (90 natural linewidths, 6 times the
Doppler broadening) from the D2 5S1/2, F = 3 → 5P3/2 transition, giving vg = 0.007c.
The interaction energy and healing length ξ = 60µm are determined by the nonlinear
change in the refractive index ∆n, which is computed from the experimental parameters.
By taking into account the compression factor γ, this configuration leads to a weakly
interacting photon gas with a thickness of 2 mm in the z′ coordinate, and a dimensionless
interaction coefficient ρa3s = 7 10−14, where ρ is the average photon density, and as is the
effective scattering length.

The fluid of light is imaged on a sCMOS camera, as shown in Fig. 35c. We tune the
imaging system to pick out a certain z after the cell (fixing the effective time τ after
the second quench), and the camera integrates over true time (thus integrating over z′),
as illustrated in Fig. 35b. According to the Fourier slice theorem, this integration in
position space gives a slice in k-space [50]. Thus, an ensemble of 200 images is obtained
for each τ , and the power spectrum S(kx, ky, kz′ = 0) is computed by 2-dimensional
Fourier transforms within the dashed square shown in Fig. 35c. The computation
partially removes the effects of any drifts such as thermal convection, and accounts for
the measured quantum efficiency of the camera.

Observation of analogue cosmological particle creation. In Fig. 36a we observe
ring patterns in S(kx, ky, kz′ = 0), oscillating as a function of k. These oscillations are
the experimental signature of analogue cosmological particle creation, in close analogy
with the acoustic peaks in the angular spectrum of the CMB. Pairs of quasiparticles
with momenta ±k are generated at the moment of the quench with a random overall
phase, but a definite phase relationship between +k and −k, and oscillate with various
frequencies ωk. Only certain k-values interfere constructively at the observation time τ ,
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Figure 36. Analogue cosmological particle creation in a quantum fluid of light. a The
static structure factor S(kx, ky, kz′ = 0) at various times after the second quench. The dashed
green curves indicate the first minimum of the red curves in (b). The symmetric white points near
the center of all panels are due to spurious fringes in the imaging system. b Radial profiles of
(a). The black curves are the experimental data. The red curves are the prediction for analogue
cosmological particle creation, from Eq. (34). c Density-density correlations. The experimental
(black) and theoretical (red) curves are obtained from b by the spherical Fourier transform of Eq.
(37). Figure from [P1].

resulting in a ring pattern. The rings shrink with τ since lower frequencies take longer
to develop oscillations. The shrinking pattern of rings is described quantitatively by
Eq. (34). The radius of the first minimum in Fig. 36a is seen to be in good agreement
with the theoretical prediction of Eq. (34), indicated by the dashed green curve. The
azimuthal averages S(k) of S(kx, ky, kz′ = 0) are indicated in black in Fig. 36b. The
red curves are calculated from Eq. (34), taking into account the two quenches, and
the variations in α, β, and ωk which result from the measured absorption. Very good
agreement between the experimental black and theoretical red curves is seen.

We also determine the spatial density correlations produced by the analogue cosmo-
logical particle creation. We derive the density-density correlation function g(2)(r) from
S(k) by the 3-dimensional spherically-symmetric Fourier transform

g(2)(r) − 1 =
1

2π2ρ

∫
dk k2

sin (kr)

kr
[S(k) − 1] . (37)

Figure 36c shows g(2)(r) − 1, found by applying Eq. (37) to Fig. 36b. The oscillations
are spherical shells propagating outward. The correlations are seen to reach increasing
distances as time increases. They are on the order of 10−6, which implies that the relative
density fluctuations are on the order of 10−3. The oscillations are clear despite the small
signal, due to the high sensitivity of the optical detection. The theoretical red curves
are obtained by applying Eq. (37) to Eq. (34), and quantitative agreement with the
experimental curves is seen.

Page 83 of 127



Tom Bienaimé HDR

Spontaneous particle creation in the first quench. The low-k behavior of S(k)
provides a window into the early times before the quenches, since the frequency of these
modes approaches zero, so the modes do not have sufficient time to evolve during the
experiment. The first peak in S(k) corresponds to the frequency 1/(4τ), the lowest
frequency which has time to oscillate. Well below this k-value, Eq. (2) reduces to
S(k) = 1 + 2N1, where N1 is the incoherent population before the first quench, and the
unity term corresponds to the quantum shot noise, which is scale invariant (independent
of k). Thus, the value of S(k) gives a direct measure of N1. Figure 37a shows the S(k)
curves for all τ plotted together. We observe that S(k) is at most 1.4 for low k, as
indicated by the dashed green line, giving N1 ≤ 0.2. This value is finite and approximately
scale invariant, which implies a negligible thermal component, since a thermal population
diverges like 1/k. Furthermore, it is less than unity, implying that the spontaneous
contribution dominates. Thus, the analogue cosmological particle creation is spontaneous
in the first quench. This is verified by the blue and green curves in Fig. 37c, which show
that stimulation in the first quench by thermal noise and white noise, respectively, would
produce larger values of S(k) than those of the experiment, for low k.

Stimulated particle creation in the second quench. The quasiparticles sponta-
neously created during the first quench stimulate pair creation in the second quench.
However, if the particle production in the second quench were stimulated by the first-
quench quasiparticles only, S(k) would oscillate about unity, as indicated by the magenta
curve in Fig. 37d. Rather, S(k) features an upward shift relative to unity, and a downward
slope for large k. The downward slope is due to the finite resolution of the imaging system,
measured to be 10µm, and is included in the theoretical curves. The upward shift results
from absorption and spontaneous reemission of photons from the atomic medium. By the
first two terms of Eq. (34), S(k) oscillates about the value 1 + 2 (N1 +Nb), where Nb is
the background population present in the fluid between the two quenches. The population
spontaneously created in the first quench does not contribute to this expression, since
its spectrum (given by β2 in Eq. (35)) does not extend to large k. The upward shift in
Fig. 37a suggests Nb = 1.2, a value which agrees well with our estimate for spontaneous
reemission. The theoretical curves in Fig. 36b include this additional stimulation. While
this incoherent, flat spectrum of 1.2 quasiparticles per mode implies that the fluid is not
in its ground state, like a finite-temperature Bose-Einstein condensate, it does not negate
the oscillatory behavior of S(k), and it even enhances the visibility of the oscillations. We
can control this population by tuning the atomic density, the pulse duration, intensity,
and detuning. In Fig. 37e we verify that this population vanishes for long weak pulses
as expected, due to the finite coherence time of the spontaneous reemission. The unity
value of S(k) confirms that the fluid is shot-noise limited, when the effect of the atomic
medium is absent.

Although our fluid of light is not in thermal equilibrium between the two quenches, we
can put an upper limit on the effective temperature of the thermal component before
the second quench. The blue curve in Fig. 37d includes thermal stimulation with an
effective temperature 2mc2s = 30 mK, where cs is the speed of sound for the Bogoliubov
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Figure 37. Spontaneous and stimulated cosmological particle production. a The
envelope of S(k). The black curves of Fig. 36b are among the curves shown. Darker gray indicates
later time. The low-k limit is indicated by the green dashed line. The kp mark the nodes and
antinodes. b The envelope of the theoretical curves. c The effect of stimulation in the first
quench, on S(k) after both quenches. The blue curve includes additional stimulation by a thermal
distribution in the first quench. The green curve includes stimulation by a flat distribution in
the first quench rather than the second. τ = 153 ps is shown. d The effect of stimulation in the
second quench. The blue curve includes additional stimulation by a thermal distribution in the
second quench. The magenta curve includes no extra stimulation in either quench. τ = 153 ps is
shown. e Effect of the interactions. The black curve is from Fig. 36b. The blue curve employs a
pulse which is 500 times weaker and longer. The red curve is the theoretical prediction for the
long, weak pulse. τ = 87 ps is shown. Figure from [P1].

quasiparticles, which results in a greatly enhanced first peak. Since this enhanced peak
is absent from the experimental curve, we estimate the effective temperature of the
thermal component to be less than 2mc2s, as in an atomic Bose-Einstein condensate.
For the second quench, the thermal component does not diverge like 1/k since the
zero-temperature static structure factor in the fluid of light goes to zero for low k (Ref.
[315]).

Interference pattern and the dispersion relation. Figure 37a exhibits a beating
pattern in the envelope of the various curves, resulting from interference between analogue
cosmological particles created in the two quenches. The theoretical curves in Fig. 37b
show a similar pattern. The envelope has nodes and antinodes at ω12 kp = πp/(2τ12),
where p is an integer. By identifying each kp as shown in Figs. 37a, 4 points on the
dispersion relation are found, as indicated by blue points in Fig. 38a. These points agree
well with the dispersion relation in the medium, calculated from the interactions, and
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Figure 38. Individual modes of the analogue cosmological particles. a The dispersion
relation. The blue points are derived from the kp in Fig. 37a. The error bars indicate one
standard deviation. The black curve is obtained by sinusoidal fits to the gray curves in (c). The
magenta curve is the free-particle dispersion relation. The blue curve is the dispersion relation in
the interacting fluid of light. b The static structure factor at various times. The curves are from
Fig. 37a, and are shifted vertically. The vertical dashed line is used to find the values in (c). c
Each curve shows the τ -dependence of a definite k, given by the values along a vertical line in
b, such as the dashed line. The grayscale is the same as in (b). The k-values shown are equally
spaced by 5.4 10−3 µm−1. The green curves are computed with Eq. (34). Each pair of black and
green curves has been shifted vertically. Figure from [P1].

indicated by the blue curve.

Individual modes. Figure 38b shows the curves of Fig. 37a, one above the other. By
plotting the S(k) values along the dashed line, we obtain the time dependence of a given
mode k, as shown in Fig. 38c. Each mode is seen to oscillate sinusoidally after the second
quench, with no visible damping. The frequencies of the oscillations, indicated by the
black curve in Fig. 38a, agree well with the free-particle spectrum, which is relevant after
the second quench.

Comparison with the CMB power spectrum. We compare and contrast our
observed spectra with the CMB power spectrum in Fig. 39. Since 1990, several successive
space missions have improved the resolution of the CMB measurements [4, 36, 294, 369],
and Fig. 39b shows the latest results [4]. In the CMB spectrum, the oscillations occur as
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Figure 39. Comparing the measured power spectrum with that of the CMB. a The
static structure factor for τ > 0. The wavenumbers are normalized such that unity can be compared
with the first peak of the CMB spectrum in (b). b The power spectrum of temperature fluctuations
in the CMB, as a function of multipole number, from Ref. [6]. Figure from [P1].

a result of the well-defined phase between the cosmological particles [6, 311], which is also
true for our spectra. In the early universe, the density fluctuations relevant for the acoustic
peaks oscillated until the effective time of observation τ , when the photons decoupled
from matter [57]. The mode number ℓ shown in Fig. 39b is proportional to k, when
mapped back to the density fluctuations in the early universe, and the first peak likely
corresponds to ωkτ ≈ π (Refs. [180–182]). In contrast, the Bogoliubov transformation
predicts a first peak in the CMB spectrum at ωkτ ≈ π/2 (Ref. [281]). Figure 39a shows
our spectra for τ > 0. For visual comparison with the CMB spectrum, k is divided by k0,
which satisfies ωk0τ = π/2, where ωk is the magenta curve of Fig. 38a. There are features
which are common to our spectra and that of the CMB, in addition to the oscillations:
the decay of the oscillations for large k or ℓ and the approximately scale-invariant region
for small k or ℓ. The oscillations in the CMB spectrum decay for large ℓ due to damping
by photon diffusion [180]. In contrast, the oscillations in our spectra decay because the
β Bogoliubov coefficient in Eq. (36) decreases for high k. The scale-invariant region of
the CMB spectrum arises from quantum fluctuations [25, 163, 171], assuming that the
inflation model is correct [162, 252, 349, 373]. Similarly, the scale invariant part of our
spectra reflects the quantum nature of the particle production, as a result of the vacuum
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of incoming particles. However, our incoming vacuum is a property of our shot-noise
limited laser, as opposed to red-shifting of the modes which possibly occurred during
inflation [7, 25, 190]. Red-shifting was observed in the laboratory [113], and it would be
interesting to combine it with analogue cosmological particle production.

Discussion

This work establishes the paraxial fluid of light as a quantum fluid. The results
demonstrate that quantum field theory applies to a system in which a spatial coordinate
plays the role of time. The effective temperature is less than twice the interaction energy,
which is comparable to many atomic Bose-Einstein condensates. On the other hand,
the apparatus is an order of magnitude simpler, smaller, and less expensive. The direct
detection of the photon fluid is also an advantage.

In conclusion, we observe both spontaneous and stimulated analogue cosmological
particle creation in a quantum fluid of light. The particle production in the first quench
is seen to be spontaneous, while the second includes stimulation by the first quench
quasiparticles, as well as by an incoherent background. We quantitatively confirm the
quantum field-theoretical prediction. The long wavelength part of the spectrum provides
a window into early times before the particle creation. From an alternative perspective,
we observe the spontaneous and stimulated dynamical Casimir effects in a quantum fluid.

Here, we skip a “Methods” section detailing all elements necessary to allow
interpretation and replication of the results.
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4. Conclusion and future directions

4.1. Context

After spending eight years exploring quantum fluids of matter or light, I am now interested
in investigating the new frontier of quantum fluids of light in which photons are strongly
interacting. Towards this goal and given my expertise in atomic physics, I was naturally
drown to using Rydberg atoms to enhance photon-photon interactions by several orders
of magnitude. After writing a successful CNRS research project on this topic, I started
working as a CNRS researcher in October 2021 in the Exotic Quantum Matter group
lead by Shannon Whitlock. Working in this team allows me to benefit from their
long standing experience in atomic quantum gases excited to Rydberg states. In the
following, I discuss about the evolution and the new trends of the field of quantum fluids
of light and then present two research directions I started investigating in Strasbourg.
This research is being pursued on the experimental setup of potassium atoms of the
Exotic Quantum Matter group in parallel to the other research activities of the team. I
successfully obtained two research grants to support my new research line: an ANR JCJC
on “Strongly interacting quantum fluids of light in propagating geometries” and an ITI
QMat grant of the University of Strasbourg on “Scalable cavity quantum electrodynamics
without cavities” which allowed me to hire two PhD students to work on these topics and
buy some specific research equipment to complement the existing experimental setup.

In addition to the research line I am leading, I am also involved in the other research
activities of the team which includes quantum many-body physics with Rydberg atoms
and the new direction recently initiated by Shannon Whitlock about digital quantum
computing on atomic platforms. Within this framework, I participate to two academic
research projects MSCA Doctoral Networks on “Machine Learning for Quantum” and
on “Quantum and Classical Ultrasoft Matter” and to a SATT Conectus prematuration
project about “Qubit control module for scalable atomic quantum processors”.

4.2. Evolution of the field

Quantum simulation with photons

Quantum simulation and computation are two important research tools based on the
laws of quantum mechanics to explore and understand the complexity of the quantum
world. Besides its importance for fundamental academic research, it also has the poten-
tial to become a world-wide technology with important applications to accelerate the
investigation of societal and industrial problems like pharmaceutical chemistry, genome
sequencing, network grid optimization, stock market, etc. Quantum simulators are special
purpose devices designed to provide insight about specific quantum problems. They are
simpler to implement and potentially more noise tolerant than generally programmable
“digital” quantum computers, which would be capable of solving a wider class of quantum
problems. Quantum simulations are now daily running in research laboratories on a great
variety of experimental platforms [385] ranging from superconducting qubits [178] to
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ultracold atoms [48], arrays of single atoms trapped in optical tweezers [61], photons [19],
nuclear magnetic resonance systems [326] or trapped ions [47]. For more than twenty
years, quantum simulation has pushed the frontier of our understanding of many-body
quantum systems by reaching several milestones like the observation of the MOT-to-
superfluid transition in optical lattices [152], many-body localization [78, 368], quantum
many-body spin systems [291, 331], dipolar supersolids [80] or topological bands [303].

Photons, massless and non-interacting particles in vacuum, are considered an extremely
promising candidate for quantum simulation as they feature several key advantages like
the ease of creation, manipulation and detection, the relatively low hardware requirements,
the possibility to generate initial states with complex multi-photon entanglement, their
mobility (high speed, low-loss transmission) and the intrinsic scalable processing via light-
matter interaction. While weak photonic nonlinearities are currently a major drawback
to overcome for a practical implementation of photonic quantum simulation, the recent
progress of quantum optics now enable the creation of photon-photon interactions at the
individual particle level using either strongly coupled atom-cavity systems [44, 220, 236],
quantum nonlinear optics using atomic ensembles [135, 168] or quantum nonlinear optics
through atom-atom interactions [255, 275]. Beyond their applications for few-photon
all-optical quantum devices, strong photon-photon interactions have been used to create
few-body strongly correlated states of light including molecules made of two or three
photons [133, 251], a two photon Laughlin state of light [85], an 8-site photonic Mott
insulator [257] and a 7 site strongly correlated fluid of light [350]. Yet, bringing photonic
quantum simulation to systems containing a large number of particles is both a major
challenge and an exciting frontier of the field as this would enable the creation of scalable
photonic quantum simulators and the development of detection and characterization
methods for many-body quantum states of light.

The ambition of the research line I am currently pursuing in Strasbourg is to extend the
scope of photonic quantum simulation from the few-body regime to the many-body regime
for which the outcome of the simulation cannot be simulated on classical computers.
Towards this goal, fully leveraging on my past experience and that of the Exotic Quantum
Matter team, I will follow two original routes by exploring on a cold atom Rydberg setup

� Strongly-interacting quantum fluids of light in propagating geometries

� Arrays of strongly coupled atom-cavity systems.

Quantum simulation with quantum fluids of light

As illustrated in figure 40, quantum fluids of light can be classified with a simple
diagram [71] where two important parameters are at play : the strength of photon-photon
interactions and the number of photons. On the one hand, optical nonlinearities at the
single photon level in a blockaded single photonic mode were created using Rydberg
electromagnetic induced transparency (EIT) [65, 71, 133, 196, 314] and paves the way
towards all-optical quantum technologies (optical switches, photon transistors, photonic
quantum gates, etc). On the other hand, weakly interacting photon gases have been
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Figure 40. This diagram from [71] illustrates the different regimes of nonlinear
optical phenomena. “Weakly interacting fluids of light” represent the polariton [67, 68] or
the hot atomic vapor platforms [P4] [P3]. “Optical nonlinearities at single photon level” paves
the way to all-optical quantum technologies [65, 71, 133, 314]. “Few-body photonic states” were
recently observed: molecules made of photons [133, 251], Laughlin states made of light [85], a
8-site photonic Mott insulator [257] and a 7 site strongly correlated fluids of light [350].

studied: they consists of a lot of photons per mode (high laser intensities are used)
with weak photon-photon interactions. For such systems, mean field equations (e.g. the
nonlinear Schrödinger equation) are relevant to describe the system dynamics. This
regime corresponds to the historical platforms for quantum fluids of light in polariton
micro-cavities [67, 68] or quantum fluids of light in propagating geometries (see e.g.
[P4] [P3]). The new frontier is now to explore regimes where the optical non-linearities
are so important that photons are strongly interacting particles and the fluid develops
strong quantum correlations. Very recently, building upon the realization of optical
nonlinearities at the single photon level, an important experimental breakthrough led to
the observation of few-body photonic states [85, 251]. Yet, these states were limited to
few particles or few spatial modes: molecules made of photons [133, 251] and Laughlin
states made of light [85]. This progress paves the way towards the realization of quantum
simulation with strongly correlated fluids of light made of many photons (many optical
modes) in settings where we have a good control over the parameters of the system
(external potential and strength of the interactions) and easy and efficient access to
relevant observables to characterize the quantum correlations of the system. Note that an
early experimental implementation of a weakly-interacting photon gas based on Rydberg
EIT has been recently reported [212].

Quantum simulation with strongly coupled atom-cavity systems

Engineering controllable, strongly interacting many-body quantum systems is a key
requirement for quantum simulation and quantum information processing. In this
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Figure 41. Series of coupled CQED systems which enables to simulate Jaynes-
Cumming-Hubbard like models.

context, cavity quantum electrodynamics (CQED), for which the interaction between
light confined in a cavity and atoms under the conditions where the quantum nature
of light is significant, is a powerful platform for controlling quantum systems. While
CQED was initially developed with macroscopic high-Q cavities and atoms [44, 220, 236],
alternatives based on solid state technologies have emerged: NV centers [123, 170] or
quantum dots [141, 270, 310] coupled to nano-fabricated cavities, and circuit QED where
the photon is stored in a one-dimensional on-chip resonator and the quantum object
is an artificial atom [403]. All these platforms offer prominent advantages towards
applications in quantum information processing and are excellent candidates for future
quantum computation. However these applications are often hindered by scalability
issues, not least because of imperfections in the fabrication process. Recent advances in
CQED technologies have enabled to envision to couple several of these systems together
(see figure 41). Such CQED arrays have been drawing a lot of attention for the ease
of creation and detection offered by optical techniques as well as for the intrinsically
out-of-equilibrium nature of the system. This line of research led to the emergence of new
quantum photonic phases: an 8-site dissipatively stabilized Mott insulator of photons
[257] and a 7-site strongly correlated fluid of light [350]. While these first discoveries had
a huge transversal impact in condensed matter, atomic physics and quantum technologies,
these photonic states were still limited to the few-body regime (less than ten particles).

4.3. Towards quantum simulation with strongly interacting photons

4.3.1. Strongly interacting quantum fluids of light in propagating geometry

We will advance the state of the art of quantum simulation by bringing 2D quantum
fluids of light in the propagating geometry to the strongly interacting regime by mapping
the strong interactions that exists between Rydberg atomic states onto the photons using
Electromagnetic Induced Transparency (EIT) (see figure 42). The resulting interactions
on the probe photons in will be strong, nonlocal and potentially long ranged (if we involve
another Rydberg state and couple it with a microwave field to the one that is addressed by
the control laser). This will simulate the out-of-equilibrium quantum dynamics (“effective
time” evolution as the light field propagates inside the atomic medium) of a strongly
interacting 2D fluid of light with exotic properties. This system can be considered as
a quantum simulator since by precisely controlling the parameters of the lasers, we
can adjust either the strength of the interactions between the photons and the shape
and amplitude of the external potential. This will open a new approach for exploring
emergent quantum phenomena like supersolidity, crystallization of light on a novel hybrid
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Figure 42. Overview of the experimental platform to explore strongly interacting
quantum fluids of light in propagating geometry. The strong interactions between atoms
excited to Rydberg states are mapped to the probe photons using Rydberg EIT. Either uniform
or micro-structured atomic densities will be investigated, leading to uniform or micro-structured
photon-photon interactions.

atom-light platform for quantum simulation. Note that these new phases of matter have
recently attracted a lot of attention since their first observation with ultracold atoms
[Cho22]. Our platform provides full control over the initial (input) state (intensity, phase,
light quantum fluctuations) and enables to probe the final (output) state with a large
variety of easily accessible observables like the intensity, phase, coherence g(1), static
structure factor and quantum correlations g(2) which are typically more difficult to access
in purely atomic systems. Finally, we will push the limits of our quantum simulator deep
into the quantum regime by exploring the photonic Mott-to-Superfluid (SF) transition
by engineering extremely large photon-photon interactions and adding a 2D periodic
potential for the photons. The Mott-to-SF transition can be crossed by either changing
the strength of the photon-photon interactions or by modifying the parameters of the 2D
periodic potential. The output state of the quantum simulation will be fully characterized
by measuring the cross correlations between the optical modes.

4.3.2. Strongly-coupled atom-cavity systems

We will create an original platform to simulate coupled CQED systems using small
ensembles of strongly interacting three-level atoms without the need of an actual optical
cavity (see figure 43). Combined with our ability to create large arrays of atomic micro-
ensembles in arbitrary geometry [405], our approach will overcome the scalability problem
encountered in the fabrication process of solid state devices as our implementation is
naturally resistant to the defects that are common to solid state systems. Indeed, in the
CQED implementation proposed in this project, the Q-factor and resonant frequency of
the cavity, the transition frequency of the emitter, the atom-field coupling term, and the
couplings between the sites are all fixed by the natural properties of the atoms and by
the parameters of our very precisely controlled laser system. First, we will show that
a Rydberg blockaded ensemble of three-level atoms that are coupled by lasers maps to
the Jaynes-Cummings (JC) model by revealing the spectrum of the dressed states of the
system which are polaritons: superposition of a Rydberg excitation and of the excitations
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Figure 43. Mapping of either [(a) a Rydberg blockaded ensemble of three-level atoms trapped
in a single optical tweezer] or [(b) several individual three-level atoms in optical tweezers inside
a blockaded sphere] to the JC model which also describes a strongly coupled atom-cavity system.
The spectrum the system is nonlinear and called the JC ladder. The dressed-states (polaritons)
will be exploited to encode and process quantum information as a qudit.

of a bosonic mode played by the number of atoms in the intermediate state (two-level
system excitation and photons in the original CQED system) (see figure 43). We will
then exploit the dressed states to store quantum information and realize arbitrary unitary
transformation on the Hilbert space spanned by the dressed states. This will enable to
use an ensemble of N three-level atoms as a qudit of dimension 2N , thus going well
beyond the state of the art that uses an atomic ensemble to collectively encode a qubit
(dimension 2) [265].

We will then explore several strategies to couple two Rydberg blockaded atomic en-
sembles (atom-cavity systems) together either by coupling them through their Rydberg
excitations (equivalent of having an interaction between the two-level systems in neighbor-
ing cavities) or by engineering coupling schemes to coherently transfer population of the
intermediate state between two atomic ensembles (equivalent of coupling the atom-cavity
systems through photon tunneling between to neighboring cavities). This will pave the
way to develop an entangling gate between two neighboring Rydberg blockaded atomic
ensembles (qudits) which together with the ability to realize arbitrary unitary operations
on a single qudit will enable to explore new ways to process quantum information with
large arrays of strongly-coupled atom-cavity systems.

Moreover, as displayed in figure 44 large arrays of Rydberg blockaded atomic ensembles
will also provide a novel approach to realizing quantum simulation of coupled atom-cavity
models with

� Full control over the parameters of the Hamiltonian: the coupling strength between
the Rydberg excitation and the bosonic mode (the light-matter coupling between
the two-level system and the photons) and the coupling strength between the sites
(photon tunneling rate between the sites)
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Figure 44. Engineering couplings between the sites of an array of (a) Rydberg blockaded atomic
ensembles, (b) groups of single atoms in optical tweezers inside blockaded spheres (c) strongly-
coupled atom-cavity systems all pave the way towards (i) the creation of an entangling quantum
gate between the sites (qudits) for quantum information processing on a large qudit register (ii)
the quantum simulation of Jaynes-Cummings-Hubbard-like models which leads to a quantum phase
transition for photons. (d) Absorption imaging of a 8-site 1D array of potassium micro-ensembles
in optical tweezers from the EQM lab that will simulate (a). Source: Own experimental data from
the potassium experiment of CESQ in preparation of this project. Note that we can also produce
large arrays of potassium micro-ensembles in 1D or 2D with hundreds of sites [Wan20].

� Easy access to observables with single-site resolution (including measuring the
presence of a Rydberg excitation or the number of excitation of the bosonic mode)
or more global spectroscopic methods.

This will enable to use this quantum simulator to investigate the photonic Mott-to-SF
transition which will be monitored by measuring the variance of the total polaritonic
excitations at a given site when the coupling strength between the Rydberg excitation
and the bosonic mode is varied.
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A. Appendix

A.1. Career overview

Over the last 14 years, I have built a unique international research profile in experimental
atomic, molecular and optical physics. My expertise includes the experimental inves-
tigation of cooperative effects in cold atomic clouds, atomic ultra-cold Bose gases and
quantum fluids of light.

During my PhD, I finished building an experimental setup of rubidium atoms to study
cooperative effects in light scattering by a cloud of cold atoms. My major achievements
were the observation of a cooperative radiation pressure force, the development of a blue
detuned box potential to dynamically compress the cold atomic cloud to large densities
and a seminal theoretical work on how to control subradiance in large cloud of cold atoms
that subsequently guided the observation of this effect in 2016 in the group of R. Kaiser.
As a postdoc I decided to explore the physics of ultracold Bose gases. Towards

this goal, I first joined the group of Prof. Dalibard in Paris where I supervised the
construction of a new experimental setup for the exploration of two dimensional Bose
gases with rubidium atoms that led to a publication about an optical accordion to confine
and dynamically compress a gas of cold atoms in two dimensions [P19] and another one
about cooperative light scattering in a dense cold atomic layer in connection with my PhD
research topic [P17]. In addition, I supervised a second ultracold rubidium setup where
we trapped 2D Bose gases in uniform potentials to explore the creation of topological
defects when the system is quenched through the normal-to-superfluid transition [P9] [P8].
In my second postdoc, I joined the group of Prof. Ferrari in Trento where I continued
working on the physics of topological defects in Bose-Einstein condensates (BECs), this
time on an ultracold sodium setup. I developed a technique to follow in a non destructive
way the dynamics of vortex lines to analyze their interactions [P6] [P18]. The vortex
lines were created by quench cooling [P20]. I also supervised a new research topic in
Trento about spinor BEC which led me to observe for the first time spin superfluidity in
binary mixture of BECs [P7] [P5].
As a lecturer at École Normale Supérieure I decided to combine my past

experiences to explore the emerging field of quantum fluids of light in the group of Prof.
Bramati. While the historical experimental platform of the group was polaritons in
semi-conductor micro-cavities, together with Assoc. Prof. Glorieux, we led a small team
to develop a new platform for the exploration of quantum fluids of light: light propagating
in a hot atomic vapor. We established this experimental system in the community as
a promising and complementary setup for the investigation of quantum fluids of light
by obtaining outstanding results including the measurement of the dispersion relation
of quasi-particle excitations [P4] [P14], the observation of dispersive shockwaves [P3]
[P13] [P11], the study of pre-thermalization [P2], the exploration of the effect of a quench
of the photon-photon interactions [P1] and spin-orbit-coupled fluids of light [P12]. In
addition, we also developped a powerful experimental technique to measure the strength
of the photon-photon interactions [P10]. As side projects complementary to the quantum
fluids of light activity I developed a displacement sensor exploiting a nanofiber [P15] and
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a technique to generate attenuation-free non-diffracting Bessel beams [P16].
As a CNRS researcher at the European Center for Quantum Sciences / ISIS. The

next step of my career was driven by my desire to push the frontier of quantum fluids of
light to a complete new regime where photon-photon interactions are strong. This led me
into the physics of Rydberg atoms which enables the creation of strongly correlated fluids
of light by exploiting the extreme properties of Rydbgerg atoms. Towards this objective,
I joined the European Center for Quantum Sciences (CESQ) in October 2021 as a CNRS
permanent researcher to benefit from the expertise of my colleague Prof. Whitlock about
cold Rydberg systems and start developing my own projects on the potassium setup of
CESQ. In 2022, I secured two research grants to hire two PhD students and buy specific
equipment to complement the potassium setup and initiate my independent research
team on strongly interacting quantum fluids of light with Rydberg atoms.

A.2. Publications (2014 – 2023)

Publications covered in this report

[P1] Analogue cosmological particle creation in an ultracold quantum fluid of light
J. Steinhauer, M. Abuzarli, T. Aladjidi, T. Bienaimé, C. Piekarski, W. Liu, E. Giacobino,
A. Bramati and Q. Glorieux
Nat. Commun. 13, 2890 (2022). Editors’ Highlights

[P2] Non-equilibrium pre-thermal states in a two-dimensional photon fluid
M. Abuzarli, N. Cherroret, T. Bienaimé and Q. Glorieux
Phys. Rev. Lett. 129, 100602 (2022). Editors’ Suggestion

[P3] Quantitative Analysis of Shock Wave Dynamics in a Fluid of Light
T. Bienaimé, M. Isoard, Q. Fontaine, A. Bramati, A. M. Kamchatnov, Q. Glorieux and
N. Pavloff
Phys. Rev. Lett. 126, 183901 (2021).

[P4] Observation of the Bogoliubov dispersion relation in a fluid of light
Q. Fontaine, T. Bienaimé, S. Pigeon, E. Giacobino, A. Bramati and Q. Glorieux
Phys. Rev. Lett. 121, 183604 (2018). Editors’ Suggestion

[P5] Observation of Spin Superfluidity in a Bose Gas Mixture
E. Fava, T. Bienaimé, C. Mordini, G. Colzi, C. Qu, S. Stringari, G. Lamporesi and G.
Ferrari
Phys. Rev. Lett. 120, 170401 (2018).

[P6] Vortex reconnections and rebounds in trapped atomic Bose-Einstein condensates
S. Serafini, L. Galantucci, E. Iseni, T. Bienaimé, R. N. Bisset, C. F. Barenghi, F. Dalfovo,
G. Lamporesi and G. Ferrari
Phys. Rev. X 7, 021031 (2017).

[P7] Spin-Dipole Oscillation and Polarizability of a Binary Bose-Einstein Condensate near the
Miscible-Immiscible Phase Transition
T. Bienaimé, E. Fava, G. Colzi, C. Mordini, S. Serafini, C. Qu, S. Stringari, G. Lamporesi
and G. Ferrari
Phys. Rev. A 94, 063652 (2016).
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[P8] Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional
Bose gas
L. Chomaz, L. Corman, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène, J.
Beugnon and J. Dalibard
Nat. Commun. 6, 6162 (2015).

[P9] Quench-induced supercurrents in an annular Bose gas
L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène, J.
Dalibard and J. Beugnon
Phys. Rev. Lett. 113, 135302 (2014).

Other relevant publications

[P10] Transit effects for non-linear index measurement in hot atomic vapors
T. Aladjidi, M. Abuzarli, G. Brochier, T. Bienaimé, T. Picot, A. Bramati and Q. Glorieux
arXiv:2202.05764 (2022).

[P11] Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor
P. Azam, A. Fusaro, Q. Fontaine, J. Garnier, A. Bramati, A. Picozzi, R. Kaiser, Q. Glorieux
and T. Bienaimé
Phys. Rev. A 104, 013515 (2021).

[P12] Spin-orbit-coupled fluids of light in bulk nonlinear media
G. Martone, T. Bienaimé and N. Cherroret
Phys. Rev. A 104, 013510 (2021).

[P13] Blast waves in a paraxial fluid of light
M. Abuzarli, T. Bienaimé, E. Giacobino, A. Bramati and Q. Glorieux
EPL 134, 24001 (2021).

[P14] Interferences between Bogoliubov excitations and their impact on the evidence of superfluidity
in a paraxial fluid of light
Q. Fontaine, P.-E. Larré, G. Lerario, T. Bienaimé, S. Pigeon, D. Faccio, I. Carusotto, E.
Giacobino, A. and Q. Glorieux
Phys. Rev. Research 2, 043297 (2020).

[P15] Nanofiber based displacement sensor
C. Ding, M. Joos, C. Bach, T. Bienaimé, E. Giacobino, E Wu, A. Bramati and Q. Glorieux
Applied Physics B 126, 103 (2020).

[P16] Attenuation-free non-diffracting Bessel beams
Q. Fontaine, H. Hu, S. Pigeon, T. Bienaimé, E. Wu, E. Giacobino, A. Bramati and Q.
Glorieux
Optics Express 27, 30067 (2019).

[P17] Transmission of near-resonant light through a dense slab of cold atoms
L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J.
Dalibard and J. Beugnon
Phys. Rev. A 96, 053629 (2017). Editors’ Suggestion

[P18] Observation of a spinning top in a Bose-Einstein condensate
R. N. Bisset, S. Serafini, E. Iseni, M. Barbiero, T. Bienaimé, G. Lamporesi, G. Ferrari
and F. Dalfovo
Phys. Rev. A 96, 053605 (2017). Featured in Physics: Synopsis – Editors’ Suggestion
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[P19] Loading and compression of a single 2D Bose gas in an optical accordion
J. L. Ville, T. Bienaimé, R. Saint-Jalm, L. Corman, M. Aidelsburger, L. Chomaz, K.
Kleinlein, D. Perconte, S. Nascimbène, J. Dalibard and J. Beugnon
Phys. Rev. A 95, 013632 (2017).

[P20] Creation and counting of defects in a temperature quenched Bose-Einstein Condensate
S. Donadello, S. Serafini, T. Bienaimé, F. Dalfovo, G. Lamporesi and G. Ferrari
Phys. Rev. A 94, 023628 (2016).
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[53] F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, and T. Pfau.
Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X,
9:011051, Mar 2019.

[54] O. Boughdad, A. Eloy, F. Mortessagne, M. Bellec, and C. Michel. Anisotropic nonlinear
refractive index measurement of a photorefractive crystal via spatial self-phase modulation.
Optics express, 27(21):30360–30370, 2019.

[55] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of bose-einstein
condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75:1687–1690,
Aug 1995.

[56] J. Brand and W. P. Reinhardt. Solitonic vortices and the fundamental modes of the “snake
instability”: Possibility of observation in the gaseous bose-einstein condensate. Phys. Rev.
A, 65:043612, Apr 2002.

[57] R. H. Brandenberger. Lectures on the theory of cosmological perturbations. LECTURE
NOTES IN PHYSICS-NEW YORK THEN BERLIN-, 646:127–168, 2004.

[58] S. Braun, M. Friesdorf, S. S. Hodgman, M. Schreiber, J. P. Ronzheimer, A. Riera, M. Del Rey,
I. Bloch, J. Eisert, and U. Schneider. Emergence of coherence and the dynamics of quantum
phase transitions. Proceedings of the National Academy of Sciences, 112(12):3641–3646,
2015.

[59] V. Bretin, P. Rosenbusch, F. Chevy, G. V. Shlyapnikov, and J. Dalibard. Quadrupole
oscillation of a single-vortex bose-einstein condensate: Evidence for kelvin modes. Phys.
Rev. Lett., 90:100403, Mar 2003.

[60] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard. Fast rotation of a bose-einstein condensate.
Phys. Rev. Lett., 92:050403, Feb 2004.

[61] A. Browaeys and T. Lahaye. Many-body physics with individually controlled rydberg atoms.
Nature Physics, 16(2):132–142, 2020.

[62] E. Busley, L. E. Miranda, A. Redmann, C. Kurtscheid, K. K. Umesh, F. Vewinger, M. Weitz,
and J. Schmitt. Compressibility and the equation of state of an optical quantum gas in a
box. Science, 375(6587):1403–1406, 2022.

Page 103 of 127



Tom Bienaimé HDR
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phenomena in Bose-Einstein condensates: theory and experiment, volume 45. Springer,
2008.

[210] T. W. B. Kibble. Topology of cosmic domains and strings. Journal of Physics A: Mathe-
matical and General, 9(8):1387, aug 1976.

[211] S. Kida and M. Takaoka. Vortex reconnection. Annual Review of Fluid Mechanics, 26(1):169–
177, 1994.

[212] B. Kim, K.-T. Chen, S.-S. Hsiao, S.-Y. Wang, K.-B. Li, J. Ruseckas, G. Juzeliūnas,
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[254] C. Luciuk, S. Smale, F. Böttcher, H. Sharum, B. Olsen, S. Trotzky, T. Enss, and J. Thywissen.
Observation of quantum-limited spin transport in strongly interacting two-dimensional
fermi gases. Physical Review Letters, 118(13):130405, 2017.

Page 115 of 127



Tom Bienaimé HDR
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Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional
bose gas. Nature physics, 8(4):325–330, 2012.

[387] M. C. Tsatsos, P. E. Tavares, A. Cidrim, A. R. Fritsch, M. A. Caracanhas, F. E. A.
dos Santos, C. F. Barenghi, and V. S. Bagnato. Quantum turbulence in trapped atomic
bose–einstein condensates. Physics Reports, 622:1–52, 2016.

[388] S. Tung, G. Lamporesi, D. Lobser, L. Xia, and E. A. Cornell. Observation of the presuperfluid
regime in a two-dimensional bose gas. Phys. Rev. Lett., 105:230408, Dec 2010.

[389] M. Tylutki, S. Donadello, S. Serafini, L. P. Pitaevskii, F. Dalfovo, G. Lamporesi, and
G. Ferrari. Solitonic vortices in bose–einstein condensates. The European Physical Journal
Special Topics, 224:577–583, 2015.

[390] S. Ulm, J. Roßnagel, G. Jacob, C. Degünther, S. Dawkins, U. Poschinger, R. Nigmatullin,
A. Retzker, M. Plenio, F. Schmidt-Kaler, et al. Observation of the kibble–zurek scaling law
for defect formation in ion crystals. Nature communications, 4(1):2290, 2013.

[391] S. Utsunomiya, L. Tian, G. Roumpos, C. Lai, N. Kumada, T. Fujisawa, M. Kuwata-
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