
HAL Id: tel-04772451
https://hal.science/tel-04772451v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From property graphs to knowledge graphs
Julian Bruyat

To cite this version:
Julian Bruyat. From property graphs to knowledge graphs. Databases [cs.DB]. INSA Lyon, 2024.
English. �NNT : 2024ISAL0044�. �tel-04772451�

https://hal.science/tel-04772451v1
https://hal.archives-ouvertes.fr

N° d’ordre NNT : 2024ISAL0044

THESE de DOCTORAT DE L’INSA LYON,
membre de l’Université de Lyon

Ecole Doctorale N° 512
Ecole Doctorale d’Informatique et de Mathématiques de Lyon

Discipline de doctorat : Informatique

Soutenue publiquement le 03/06/2024, par :

Julian Bruyat

Des graphes de propriétés aux graphes
de connaissances

Devant le jury composé de :

LAMARRE Philippe Professeur des Universités, INSA Lyon Président
FARON Catherine Professeure des Universités, Université Côte d’Azur Rapporteure
HARTIG Olaf Senior Associate Professor, Linköping University Rapporteur
DIMOU Anastasia Assistant Professor, Katholieke Universiteit Leuven Examinatrice
LABRA GAYO Jose Emilio Full Professor, University of Oviedo Examinateur

LAFOREST Frédérique Professeure des Universités, INSA Lyon Directrice de thèse
CHAMPIN Pierre-Antoine Mâıtre de conférences - HDR, Université Lyon 1 Co-directeur de thèse

MÉDINI Lionel Mâıtre de conférences, Université Lyon 1 Co-directeur de thèse

Département FEDORA – INSA Lyon - Ecoles Doctorales

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

ED 206

CHIMIE

CHIMIE DE LYON

https://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr

M. Stéphane DANIELE
C2P2-CPE LYON-UMR 5265
Bâtiment F308, BP 2077
43 Boulevard du 11 novembre 1918
69616 Villeurbanne
directeur@edchimie-lyon.fr

ED 341

E2M2

ÉVOLUTION, ÉCOSYSTÈME, MICROBIOLOGIE, MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Bénédicte LANZA
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.e2m2@univ-lyon1.fr

Mme Sandrine CHARLES
Université Claude Bernard Lyon 1
UFR Biosciences
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69622 Villeurbanne CEDEX
e2m2.codir@listes.univ-lyon1.fr

ED 205

EDISS

INTERDISCIPLINAIRE SCIENCES-SANTÉ

http://ediss.universite-lyon.fr
Sec. : Bénédicte LANZA
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.ediss@univ-lyon1.fr

Mme Sylvie RICARD-BLUM
Laboratoire ICBMS - UMR 5246 CNRS - Université Lyon 1
Bâtiment Raulin - 2ème étage Nord
43 Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
Tél : +33(0)4 72 44 82 32
sylvie.ricard-blum@univ-lyon1.fr

ED 34

EDML

MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Yann DE ORDENANA
Tél : 04.72.18.62.44

yann.de-ordenana@ec-lyon.fr

M. Stéphane BENAYOUN
Ecole Centrale de Lyon
Laboratoire LTDS
36 avenue Guy de Collongue
69134 Ecully CEDEX
Tél : 04.72.18.64.37
stephane.benayoun@ec-lyon.fr

ED 160

EEA

ÉLECTRONIQUE, ÉLECTROTECHNIQUE, AUTOMATIQUE
https://edeea.universite-lyon.fr
Sec. : Philomène TRECOURT
Bâtiment Direction INSA Lyon
Tél : 04.72.43.71.70

secretariat.edeea@insa-lyon.fr

M. Philippe DELACHARTRE
INSA LYON
Laboratoire CREATIS
Bâtiment Blaise Pascal, 7 avenue Jean Capelle
69621 Villeurbanne CEDEX
Tél : 04.72.43.88.63
philippe.delachartre@insa-lyon.fr

ED 512

INFOMATHS

INFORMATIQUE ET MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46
infomaths@univ-lyon1.fr

M. Hamamache KHEDDOUCI
Université Claude Bernard Lyon 1
Bât. Nautibus
43, Boulevard du 11 novembre 1918

69 622 Villeurbanne Cedex France

Tél : 04.72.44.83.69

direction.infomaths@listes.univ-lyon1.fr

ED 162

MEGA

MÉCANIQUE, ÉNERGÉTIQUE, GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Philomène TRECOURT
Tél : 04.72.43.71.70
Bâtiment Direction INSA Lyon
mega@insa-lyon.fr

M. Etienne PARIZET
INSA Lyon
Laboratoire LVA
Bâtiment St. Exupéry
25 bis av. Jean Capelle
69621 Villeurbanne CEDEX
etienne.parizet@insa-lyon.fr

ED 483

ScSo

ScSo1

https://edsciencessociales.universite-lyon.fr
Sec. : Mélina FAVETON
Tél : 04.78.69.77.79
melina.faveton@univ-lyon2.fr

M. Bruno MILLY (INSA : J.Y. TOUSSAINT)
Univ. Lyon 2 Campus Berges du Rhône
18, quai Claude Bernard
69365 LYON CEDEX 07
Bureau BEL 319
bruno.milly@univ-lyon2.fr

1 ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Résumé

Les graphes de propriétés et les graphes RDF sont deux familles populaires de bases de données
graphe. Bien qu’elles soient toutes les deux basées sur la notion de graphe, ces deux familles ne
sont pas interopérables. Les graphes de propriétés constituent une famille d’implémentations de
bases de données très flexible, où des propriétés peuvent être rattachées aux noeuds et aux arcs
des graphes. La seconde est un modèle standardisé de description de connaissances, reposant
sur des vocabulaires partagés entre tous les graphes RDF. Dans cette thèse, nous définissons
des méthodes pour permettre une interopérabilité sémantique entre graphes de propriétés et
graphes RDF, configurée à travers un “contexte” fourni par l’utilisateur. La première méthode
est une méthode bas niveau, compatible avec n’importe quel graphe de propriétés. La seconde
méthode est une méthode haut niveau, reposant sur la notion de schéma de graphe de propriétés,
et pour laquelle la réversibilité de certains contextes est étudiée formellement. Enfin, pour
faciliter l’écriture des “contextes” en RDF, et plus généralement de n’importe quel document
RDF, nous proposons une méthode d’auto-complétion basée sur les vocabulaires de schémas
RDF existants.

1

2

Abstract

Property graphs and RDF graphs are two popular categories of graph databases. However,
despite the fact that they are both based on the notion of graphs, these two categories are not
interoperable. Property graphs are a very flexible category of database implementations, where
properties can be attached to the nodes and edges of the graph. The second is a standardized
model for describing knowledge, based on vocabularies shared by all RDF graphs. In this
thesis, we define methods to enable semantic interoperability between property graphs and
RDF graphs, configured through a user-provided mapping named “context”. The first method
is a low-level method, compatible with any property graph. The second is a high-level method,
based on the notion of property graph schema, and for which the reversibility of certain contexts
is formally studied. Finally, to facilitate the writing of “contexts” in RDF, and more generally
of any RDF document, we propose an auto-completion method based on existing RDF schema
vocabularies.

3

4

Résumé substantiel

Introduction

Il existe de nombreux paradigmes de stockage de données. Avec le big data, des représentations
NoSQL (Not Only SQL) se sont développées ; parmi elles les bases de données graphe. Dans une
base de données graphe, les nœuds représentent les différentes entités, et les arcs les relations
entre ces entités.

Au fil des années, deux manières de représenter des données sous forme de graphes se sont
développées : les graphes de propriétés et les graphes RDF (Resource Description Framework).

Les graphes RDF sont un standard du W3C, publié en 1997 et depuis régulièrement mis
à jour. Un graphe RDF est défini comme un ensemble de triplets RDF composé de trois
termes : le sujet (le point de départ de l’arc), le prédicat (le type de relation décrit par l’arc)
et l’objet (le point d’arrivée de l’arc). La majorité des termes dans un graphe RDF sont des
URL, offrant à tous les graphes RDF une sémantique partagée car définie par le standard et
le possesseur des URL utilisées. Les autres types de termes utilisables sont des nœuds blancs,
des termes ayant une sémantique locale à un graphe RDF donné, et des littéraux, équivalent à
des châınes de caractères ne pouvant être utilisés qu’en position objet. Les graphes RDF étant
définis formellement et ayant une sémantique partagée, de nombreux travaux se sont construits
au-dessus de RDF, comme des ontologies ou des systèmes d’inférence.

Les graphes de propriétés sont une famille d’implémentations de graphes, dont une des plus
connues est Neo4j, avec quelques différences mineures entre les différentes implémentations. On
définit ici un graphe de propriétés comme étant un ensemble de nœuds et d’arc. Chaque nœud
et chaque arc possède un ensemble d’étiquettes ainsi qu’un ensemble de propriétés, des paires
clé-valeur.

Bien que le modèle des graphes RDF possède une sémantique bien définie, garantissant
une compatibilité entre les différents graphes, les graphes de propriétés sont souvent considérés
comme plus intuitifs, chaque nœud et arc pouvant stocker une multitude d’informations ; là où
dans un graphe RDF, chaque information sera représentée sous la forme d’au moins un triplet
/ d’un arc. De plus, chaque moteur de graphe de propriétés possède souvent son écosystème
complet, les rendant plus faciles à utiliser en apparence que l’écosystème RDF qui se compose
d’une multitude d’outils dispersés. Néanmoins, choisir entre concevoir un graphe RDF ou un
graphe de propriétés a des conséquences à long terme : choisir un modèle de graphe empêche
l’utilisation des outils développés pour l’autre modèle.

Dans cette thèse, on souhaite proposer une interopérabilité sémantique entre les graphes de
propriétés et les graphes RDF : l’ambition étant de proposer aux graphes de propriétés une
manière d’obtenir une sémantique globale, les rendant compatibles avec les outils développés
pour RDF. Cela passe non seulement par le fait de produire un graphe RDF à partir d’un graphe
de propriétés, mais surtout de le rendre idiomatique : c’est-à-dire de produire un graphe RDF
utilisant des constructions RDF usuelles et des ontologies déjà existantes qui peuvent être
exploitées par des applications existantes.

5

6

Cette thèse présente deux contributions autour de l’interopérabilité entre graphes de pro-
priétés et graphes RDF, articulées autour de convertisseurs qui sont pilotés par l’utilisateur
via un graphe RDF nommé le contexte. Ce contexte décrit le mapping entre les termes du
graphe de propriétés et la représentation RDF correspondante. Nous présentons également une
troisième contribution avec une méthode d’auto-complétion de graphes RDF, visant à faciliter
l’écriture des contextes.

État de l’art

Dans l’état de l’art, nous notons qu’il y a déjà des travaux de formalisation des deux modèles.
En particulier, pour les graphes de propriétés, la définition formelle de Angles semble être
celle qui fait aujourd’hui consensus. Des travaux existent déjà pour convertir d’autres formats
vers RDF à travers une configuration fournie par l’utilisateur : R2RML pour les bases de
données SQL, JSON-LD pour JSON . . . C’est donc dans la continuité de ces travaux que nous
proposerons une méthode similaire pour les graphes de propriétés. La particularité du problème
de convertir des graphes de propriétés en graphe RDF est principalement dans la manière de
représenter les propriétés des arcs des graphes de propriétés : en effet, dans un graphe RDF,
un arc est défini comme un simple triplet, et ne peut donc pas contenir de propriétés. Certains
auteurs étudient les différentes manières de représenter ces informations à travers différentes
constructions comme la réification RDF classique ou les propriétés singletons comme Das et al.
C’est dans ce sens que Hartig et Thompson ont développé RDF-star, une extension du modèle
RDF permettant d’utiliser des triplets comme sujet ou objet d’autres triplets RDF. Cette
extension, à la base développée pour l’interopérabilité entre les deux modèles de graphes, est
jugée si intéressante qu’elle est actuellement en discussion pour être intégrée dans le standard
RDF. D’autres auteurs proposent de convertir des graphes de propriétés en graphes RDF,
soit en décrivant structurellement en RDF le graphe de propriétés comme le fait la Property
Graph Ontology, soit en proposant une manière plus directe en forgeant de nouvelles URL
pour les termes du graphe de propriétés comme le fait NeoSemantics, soit en demandant la
correspondance entre les termes du graphe de propriétés et les URL comme le font Hartig et al.
Mais si de nombreux travaux existent pour convertir des graphes de propriétés en graphe RDF,
aucun ne tient réellement compte de la diversité des manières de représenter de l’information :
dans un graphe RDF idiomatique, la manière de représenter le fait que deux personnes se
connaissent n’est pas la même que celle pour représenter un contrat de travail par exemple.

Le framework PREC

La thèse commence par présenter les différents formalismes existants et à les discuter. Une
formalisation alternative des graphes de propriétés est proposée afin de couvrir à la fois les
graphes de propriétés répondant à la définition largement utilisée de Angles, et ceux supportés
par Gremlin, une interface de requêtage populaire pour graphes de propriétés.

L’idée des graphes de propriétés à nœuds blancs est également introduite : lorsque l’on
définit une fonction de conversion de graphes de propriétés vers graphes RDF, plutôt que de
demander de fournir une fonction qui associe chaque élément du graphe de propriétés à un nœud
blanc, la fonction de conversion attend un graphe de propriétés dont les éléments sont des nœuds
blancs. Les éléments formels d’un graphe de propriétés ne portant aucune sémantique, deux
graphes de propriétés isomorphes sont considérés égaux. Ainsi, le graphe de propriétés à nœuds
blancs sera également une manière de prouver la réversibilité d’une fonction de conversion, en

7

montrant qu’il est possible de retrouver le même graphe de propriétés à nœuds blancs à partir
d’un graphe RDF produit.

PREC-C : une conversion bas niveau

La première contribution est une conversion dite “bas niveau” des graphes de propriétés.
L’utilisateur choisit une représentation par défaut des nœuds, arcs et propriétés, regroupés
sous le terme de NEP (Node, Edges and Properties). Puis il peut spécialiser pour certains
NEPs leur représentation en leur assignant une autre représentation.

Formellement, PREC-C est défini à travers une fonction qui prend en entrée un graphe de
propriétés et un contexte PREC-C, et donne en sortie un graphe RDF. Un contexte PREC-
C est défini comme une fonction totale associant à chaque sélecteur un graphe template. Un
sélecteur permet de sélectionner les différents NEP selon leurs étiquettes (pour un nœud ou un
arc) ou leur clé (pour une propriété), et le ou les NEPs auxquels ils sont rattachés (aucun pour
les nœuds, les nœuds source et destination pour un arc, le porteur de la propriété pour une
propriété). Un graphe template décrit la manière de représenter un NEP en RDF. Il contient
des URL réservées faisant office de variables, qui seront remplacées par les valeurs propres à
un NEP donné, comme un nœud blanc représentant le NEP, sa valeur pour une propriété, son
nœud source ou son nœud destination pour un arc.

L’algorithme est présenté itérativement dans trois versions : la première n’utilise pas le
contexte, produisant un graphe similaire à ce qui serait produit par la Property Graph Ontology.
La seconde présente une implémentation näıve de l’application d’un contexte, en utilisant pour
chaque NEP le graphe template correspondant à son sélecteur. La troisième version adapte la
seconde version en tenant compte du fait qu’un graphe template peut modifier la manière dont
un NEP portant une propriété est représenté : le plus souvent, soit par un nœud blanc, soit
par un triplet qui sera à intégrer aux triplets de la propriété avec RDF-star.

Dans l’implémentation, les contextes sont décrits en RDF et l’utilisateur associe à des sous-
ensembles de sélecteurs un template graphe. Ainsi, l’utilisateur fourni une représentation par
défaut de chaque catégorie de NEP, puis spécialise la manière de représenter certains NEPs,
par exemple comment représenter les arcs ayant une étiquette donnée.

Cette approche, si elle est capable d’émuler les méthodes de conversion existantes, souffre de
deux problèmes majeurs. Ces problèmes viennent de la manière d’écrire des contextes PREC-C,
en considérant les nœuds et les arcs indépendamment de leurs propriétés, le système refaisant
ensuite le lien entre eux :

• les contextes sont souvent verbeux, en particulier lorsque l’on souhaite redéfinir toutes les
propriétés ;

• il peut être difficile de prédire ce qu’il va produire, par exemple si pour un sélecteur donné,
deux sous-ensembles de sélecteurs ont un graphe template redéfini mais qu’aucun n’est
plus spécifique que l’autre ;

• il s’est avéré, dans des articles citant PREC-C, que l’approche était mal comprise, sans
doute à cause de cette accumulation de différents concepts.

PRSC : une conversion basée sur les schémas

Dans cette approche, l’utilisateur fourni un contexte PRSC, qui fait la correspondance entre
le schéma d’un graphe de propriétés, c.à.d. les différents types présents dans celui-ci, et les
graphes templates décrivant comment les représenter en RDF.

8

Dans PRSC, un type de nœud ou d’arc ne concerne que ceux ayant strictement une liste
d’étiquettes et de clés de propriétés données. Ainsi, dans PRSC, les propriétés sont contenues
dans les types de nœuds et d’arc, et les graphes templates doivent décrire quel triplet produire
pour chaque propriété du nœud ou de l’arc.

Lors de la conversion, pour chaque nœeud et arc, le convertisseur va calculer son type,
chercher le graphe template correspondant dans le contexte, remplacer les espaces réservés
en particulier pour les propriétés, ainsi que la source et la destination pour les arcs, et ainsi
produire le graphe RDF correspondant.

La simplicité de cette nouvelle méthode de conversion nous permet alors d’en étudier les
propriétés. En particulier, nous caractérisons une famille de contexte PRSC nommée les con-
textes PRSC bien élevés. Nous prouvons formellement que les conversions opérées à travers des
contextes bien élevés sont réversibles : à partir du groupe RDF produit et du contexte PRSC
bien élevé, il est possible de retrouver un graphe de propriétés isomorphe.

Un contexte PRSC bien élevé se repose sur trois critères :

• Chaque type est associé à une signature : un triplet template qu’il est le seul à produire.
• Le nœud blanc associé au nœud ou à l’arc est conservé dans chaque triplet.
• Chaque propriété, ainsi que pour les arcs, la source et la destination de l’arc, dispose
dans le graphe template d’un triplet permettant de retrouver sa valeur de manière non
ambiguë.

L’algorithme de reconstruction du graphe de propriétés se déroule ensuite en 4 étapes :

• Supposer que chaque nœud blanc du graphe RDF correspond à un nœud ou à un arc du
graphe de propriétés.

• Pour chaque nœud ou arc, retrouver son type grâce aux triplets produits par les triplets
signés.

• Isoler le sous-graphe RDF produit pour chaque nœud ou arc.
• Produire pour chaque sous-graphe RDF la partie correspondante du graphe de propriétés
originel.

Les preuves formelles se reposent sur deux mécanismes majeurs :

• La définition d’une fonction de caractérisation κ qui associe chaque triplet template à un
sur-ensemble des triplets qu’il peut produire.

• De nouveaux opérateurs formels sur les graphes de propriétés permettant de les décomposer
et recomposer un graphe de propriétés selon ses éléments.

Des extensions sont proposées pour améliorer l’expressivité et la facilité d’usage de PRSC.
En particulier, une extension est proposée pour gérer le cas où un type d’arc ne sera utilisé
qu’une seule fois entre deux nœuds donnés : dans ce cas, la contrainte de représenter dans le
graphe RDF le nœud blanc de l’arc est remplacée afin de faciliter la production de graphes
RDF idiomatiques tout en conservant la preuve de la réversibilité de la conversion.

Shacled Turtle

Les contextes PREC-C et PRSC sont tous les deux décrits par l’utilisateur à travers un graphe
RDF. Dans cette section, nous proposons une méthode pour tenter de faciliter non seulement
l’écriture de contextes mais plus généralement l’écriture de graphes RDF qui sont conformes à
une certaine ontologie.

9

L’intuition derrière Shacled Turtle est qu’une fois que l’on a donné le type d’une ressource
RDF, lorsque l’on écrit de nouveaux triplets pour cette ressource, le moteur devrait suggérer
les prédicats en lien avec les types de la ressource. Les ontologies comme RDFS et les schémas
de validations comme SHACL sont des technologies qui décrivent précisément les liens entre
les types et les prédicats qui leur sont liés ; et elles sont déjà couramment utilisées.

On propose donc une méthode pour convertir les différents triplets RDFS et SHACL en
règles d’inférences et de suggestions et nous alimentons un moteur d’auto-complétion avec ces
règles.

Néanmoins, lors d’une évaluation avec 30 utilisateurs, les résultats sont plutôt décevants :
les utilisateurs ne prennent pas en compte le fait que le moteur leur suggère uniquement les
prédicats qu’il a sélectionnés. À la place, ils se reposent principalement sur le fait de filtrer les
termes en cherchant empiriquement à réduire la liste de termes proposés en tapant les premières
lettres probables du terme qu’ils cherchent, et lorsqu’il ne reste que quelques termes, vérifient
avec la description si le terme proposé correspond à celui qu’ils cherchent.

Des pistes d’améliorations de Shacled Turtle seraient donc de mettre en valeur les termes
que le moteur considère pertinent, plutôt que d’enlever les autres afin de limiter la frustration
des utilisateurs experts ; et d’utiliser l’analyse mise en place par le moteur pour compléter
les descriptions des ontologies et expliquer pourquoi le moteur considère qu’un terme est plus
pertinent qu’un autre.

Conclusion

Dans cette thèse, nous exposons deux manières de convertir des graphes de propriétés en graphes
RDF à travers des deux types de contextes.

Les contextes PREC-C proposent une conversion très souple, permettant de représenter
sous la forme de nœud blanc les propriétés, représenter les propriétés sur des propriétés, de
convertir n’importe quel graphe de propriétés.

Les contextes PRSC se reposent sur un schéma, une liste de types, et ne peuvent convertir
que les graphes de propriétés conformes à ce schéma. Cela permet de simplifier grandement
l’algorithme de conversion, et nous permet d’étudier les propriétés des différentes catégories de
contextes PRSC. Néanmoins, cette méthode perd la souplesse de PREC-C, en particulier en
créant une profusion de types dans les cas où le type des différents nœuds et arcs sont très
similaires à quelques étiquettes ou propriétés optionnelles prêt. À ce titre, il serait intéressant
d’améliorer PRSC en lui apportant la puissance des propriétés PREC-C pour faciliter la gestion
de propriétés optionnelles sans créer de nouveaux types dans le contexte.

De plus, si les propriétés formelles des contextes PRSC ont été étudiées, il serait intéressant
de faire une étude avec des utilisateurs pour évaluer l’acceptabilité de l’approche, et comment
l’améliorer au besoin.

10

Remerciements

Je vais commencer par remercier mes directeurs de thèse pour m’avoir fait confiance : Pierre-
Antoine de m’avoir embarqué dans cette aventure, et Frédérique et Lionel pour m’avoir fait
redescendre quand ça partait trop loin inutilement.

Merci également aux membres du jury d’avoir pris le temps de regarder mon travail :
Philippe Lamarre qui a présidé le jury, Catherine Faron et Olaf Hartig qui ont rapporté et
annoté mon travail, José Emilio Labra Gayo qui l’a reannoté, et Anastasia Dimou.

Merci également au LIRIS et à l’équipe TWEAK qui m’ont accueilli.

Merci à ma famille, sans qui je ne serais pas là : mes parents, ma soeur, mes cousins /
cousines, oncles / tantes . . . , avec une pensée émue pour mon grand-père.

Merci à Jordan, Jonathan et Nuh de me supporter depuis tant d’années, surtout quand
je pars dans des argumentations interminables sur des trucs sans intérêt. Merci également à
Kenan qui m’a supporté mais dans un autre sens ; Alexandre, Eli, Théo, Gaétan, . . . ; Marc et
Romain ; Stepehn, Gabriel, Walid, Julien, Jade, Amaury, Rémy ; Sylvain et Stéphane ; et ceux
que j’ai oubliés.

11

12

Contents

1 Introduction 17
1.1 Two kinds of knowledge graphs . 17

1.1.1 RDF graphs . 17
1.1.2 Property Graphs . 19
1.1.3 Choosing a knowledge graph model . 20

1.2 Interoperability . 21
1.2.1 Syntactic interoperability . 21
1.2.2 Semantic interoperability . 22

1.3 Motivation . 22
1.4 Structure of the thesis . 23

2 State of the art 25
2.1 The two graph data models . 25

2.1.1 Property Graphs . 25
2.1.2 RDF . 26

2.2 Comparing RDF with PGs . 29
2.3 A general purpose RDF auto-completion tool . 32

2.3.1 Where do RDF Triples come from? . 32
2.3.2 How do current editors help users? . 32
2.3.3 What could be used? . 33

3 PREC: the general framework 35
3.1 Formal definitions of Property Graphs . 35
3.2 The need for another PG definition . 37
3.3 Gremlinable Property Graphs . 39
3.4 Discussion about Gremlinable Property Graphs 43
3.5 Formal definitions of RDF and template graphs 44

3.5.1 RDF(-star) graphs . 44
3.5.2 Template graphs . 46

3.6 PREC (PG to RDF graph Experimental Converter) 48
3.6.1 The terminology around PREC . 48
3.6.2 Blank node Property Graphs . 49

4 PREC-C: a low level converter 53
4.1 Formal definition of PREC-C . 54

4.1.1 Characterization of the compatible graphs 54
4.1.2 First iteration: using a default context 54
4.1.3 Second iteration: context basic support 58
4.1.4 Third iteration: supporting ?self -less templates 62

13

14 CONTENTS

4.1.5 The final version of the PREC-C algorithm 66
4.1.6 Going further . 66
4.1.7 Complexity analysis . 70

4.2 Implementation of PREC-C . 72
4.2.1 The PREC-C ontology . 74
4.2.2 Substitution predicates: re-using existing templates 76
4.2.3 PREC-0 provides a PG model . 78

4.3 Discussion . 79
4.3.1 PREC-C encompasses existing conversions 79
4.3.2 Usability discussion . 81

4.4 Conclusion . 81

5 PRSC: A higher level approach using schemas 83
5.1 PRSC in practice . 83
5.2 Used Property Graph formalism . 86
5.3 General definitions . 86

5.3.1 Domain and image of a function . 87
5.3.2 Compatible functions . 87

5.4 PRSC: mapping PGs to RDF graphs . 88
5.4.1 Type of a PG element and PG schemas 88
5.4.2 Placeholders . 89
5.4.3 PRSC context . 89
5.4.4 Application of a PRSC context on a PG 91
5.4.5 Complexity analysis . 93

5.5 PRSC reversibility . 95
5.5.1 The notion of reversibility . 96
5.5.2 Well-behaved contexts . 96
5.5.3 Reversion algorithm . 105
5.5.4 Discussion about the constraints on well-behaved PRSC contexts 116

5.6 Optimizing the reversion algorithm . 117
5.6.1 Checking if a context is a PRSC well-behaved context 117
5.6.2 Associating the elements of the future PG with their types 120
5.6.3 Producing the PG . 121
5.6.4 Complexity of the optimized RDF to PG function 125

5.7 Extensions . 125
5.7.1 Edge-unique extension . 125
5.7.2 Default context . 128
5.7.3 IRI Property Graphs . 129

5.8 Conclusion . 130

6 Shacled Turtle: a general purpose autocompletion engine 133
6.1 Shacled Turtle usage example . 134
6.2 Shacled Turtle architecture . 135
6.3 The interaction loop . 135

6.3.1 The graphs . 136
6.3.2 The inference engine . 137
6.3.3 The suggestion engine . 137

6.4 The preprocessing . 138
6.4.1 Rules built by looking up some triple patterns 138

CONTENTS 15

6.4.2 Rules built from SHACL Paths . 140
6.5 Inside the Shacled Turtle white box when writing a PRSC context 142
6.6 Evaluation . 145
6.7 General purpose discussion . 146
6.8 Shacled Turtle and PREC requirements . 147
6.9 Conclusion . 148

7 Conclusion 151

Bibliography 154

Appendices 163

A β redefinition in PREC-C 163

B Proof of properties on Property Graphs 165
B.1 Extra mathematical elements . 165
B.2 Redefinition of the projection . 166
B.3 Proof of Theorem 5 . 166

16 CONTENTS

Chapter 1

Introduction

Along the history of software engineering, multiple data modelling paradigms have been pro-
posed. For a long time, tabular/relational databases, i.e. SQL (Structured Query Language)
based databases, dominated the field. In this paradigm, multiple tables are defined: each table
represents a category of information, for example a table of characters in comic books; each
table has a list of columns, for example the name of the character, its gender, . . . and each row
is an entry, for example one line corresponds to the character Tintin, another to the character
captain Haddock.

The rise of big data required the development of more flexible database types, following the
NoSQL (Not Only SQL) paradigm. Multiple database systems have been developed, for exam-
ple based on documents like MongoDB; key-value databases, like Redis; or graph databases.

Graph databases rely on the idea that data can be stored into a graph structure. Information
is represented through nodes that represent objects and edges that represent the relationships
between these objects.

Graph databases are also named knowledge graphs in the literature [1, 2]. Knowledge graph
is a term created in the 1970s to denote a graph that is used to store knowledge about the
world [3].

1.1 Two kinds of knowledge graphs

Two different types of graph databases have emerged: RDF (Resource Description Framework)
graphs and Property Graphs.

1.1.1 RDF graphs

Listing 1.1: The RDF graph in Figure 1.1 in Turtle format
@prefix dbpedia: <http :// dbpedia.org/resource/> .

@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix ex: <http :// www.example.org/> .

This first triple corresponds to the edge on the left

dbpedia:Titnin foaf:knows dbpedia:Captain_Haddock .

This second triple corresponds to the edge on the right

dbpedia:Tintin foaf:name "Tintin" .

Other triples

dbpedia:Tintin ex:owns "Snowy" .

dbpedia:Snowy foaf:name "Snowy" .

17

18 CHAPTER 1. INTRODUCTION

Figure 1.1: An example of an RDF graph about Tintin and the Captain Haddock

dbpedia:Tintin rdf:type foaf:Person .

dbpedia:Captain_Haddock rdf:type foaf:Person .

dbpedia:Snowy rdf:type dbpedia:Animal .

RDF graphs are specified in a W3C standard for which the initial draft has been published
in 1997 by Lassila and Swick1. They are defined as a set of triples, describing each edge with
the starting point of the edge named the subject, the ending point of the edge named the
object and the type of relationship described by the edge named the predicate. For example,
consider the RDF graph represented by a graphical representation in Figure 1.1 and a textual
representation in Turtle [4] format in Listing 1.1. This RDF graph contains two triples. The
first triple, on the left of the Figure, links a node named dbpedia:Tintin (the subject) to a
node named dbpedia:Captain Haddock (the object) and the edge is marked with the label
foaf:knows (the predicate). This triple is usually described as the triple dbpedia:Tintin

foaf:knows dbpedia:Captain Haddock.
When the RDF model is used, resources are identified by using IRIs (Internationalized

Resource Identifier, which can be seen as an extension of URLs). In particular, IRIs can be
used in any position (subject, predicate or object). IRIs provide the RDF model with a semantic
that is shared by all RDF graphs: the semantics of an IRI, i.e. what object it identifies, is
determined by the owner of the IRI. In our example, the dbpedia: prefix is used as a shorthand
for http://dbpedia.org/resource/. By consequence, the semantics of dbpedia:Tintin i.e.
http://dbpedia.org/resource/Tintin is determined by the owner of the
http://dbpedia.org/ domain. Because IRI are heavily related to the web, and as RDF was
designed for exchanging structured data on the web, the RDF community is often named the
Semantic Web community: the purpose of RDF being to add semantics, i.e. machine-readable
annotation, to a web that was at first developed for humans. In addition to IRIs, there are
two other kinds of terms: blank nodes that can be considered as resources without an IRI, and
literals which are a pair composed of a string and an IRI that explains how to interpret the
string. In the RDF-star extension, there is a fourth kind of term that can be used in triples: the
triplets themselves. Consider back the example of the RDF graph in Figure 1.1 and Listing 1.1.
The subject of the second triple, on the right of the figure, is dbpedia:Tintin, its predicate is

1https://www.w3.org/TR/WD-rdf-syntax-971002/

https://www.w3.org/TR/WD-rdf-syntax-971002/

1.1. TWO KINDS OF KNOWLEDGE GRAPHS 19

foaf:name and the object is the literal “Tintin”.
The RDF model also heavily relies on the concept of ontology, i.e. a common vocabulary

that describes concepts, properties and relations in a certain domain. The terms of an RDF on-
tology typically share a common prefix, for example terms described by the foaf ontology share
the http://xmlns.com/foaf/0.1/ prefix, and users of the RDF model are heavily encouraged
to use existing ontologies instead of creating new ones. Today, a wide diversity of ontologies
exists, from very generic ontologies like the schema.org ontology that describes a wide variety
of concepts, to more specialized ones like the foaf ontology that is focused on describing the
relationships between people.

Besides being important for interoperability, ontology can bring inference capabilities to
RDF graphs. Using (meta-)ontologies such as RDF Schema (RDFS) [5] and the Web Ontology
Language (OWL) [6], one can formally describe the semantics of an ontology. Inference engines
can then leverage these semantic descriptions to deduce additional triples from an RDF graph.

1.1.2 Property Graphs

Property Graphs (PGs) are a family of implementations of graph databases with no unique
specification. It is usually accepted that modern Property Graphs were developed around
2010, with Neo4j2 first release in 2010, and Apache TinkerPop3 and the Gremlin traversal
language4 being first released in 2009.

Figure 1.2: An example of a Property Graph about Tintin, Snowy and the Captain Haddock

PGs are usually described as a set of nodes and a set of edges that link these nodes. Labels
are attached to nodes and edges to describe them. Some authors use the name “Labeled
Property Graph” for PGs that allow the user to use labels [7, 8], which is the case of all modern
PG implementations. For this reason, when we use the term PG, we actually mean Labeled
Property Graph. Properties, a list of pairs with a property key and a property value, can also
be added to the node and edges.

In Figure 1.2, we can see that there is a node with the Person label and two properties.
The first property has the property key “name” and the property value “Tintin”. The second
property has the property key “job” and the property value “Reporter”.

2https://neo4j.com/fr/
3https://tinkerpop.apache.org/
4https://tinkerpop.apache.org/gremlin.html

https://neo4j.com/fr/
https://tinkerpop.apache.org/
https://tinkerpop.apache.org/gremlin.html

20 CHAPTER 1. INTRODUCTION

1.1.3 Choosing a knowledge graph model

RDF graphs are good candidates to be named knowledge graphs for several reasons: (1) They
use a simple data model, consisting in of a set of subject-predicate-object triples, (2) they use
IRIs for as-less-as possible ambiguous terms, (3) and they have a well-defined semantics, for
example the fact that an RDF graph is monotonic (a triple can not contradict another triple),
PGs could also be considered to be knowledge graphs as they also contain knowledge about a
part of the world in the form of a graph.

When getting started in the project to build a graph database, developers have to choose
between PGs or RDF graphs. Performance is not really a tiebreaker: some authors compare the
performance of one system or another for querying data for their use cases [9, 10], without any
clear winner for one system or the other. Usability is often more determinant. At first glance,
the RDF ecosystem may look less practical: it is composed of a great variety of different
standards, each one addressing a specific problem (defining the data model, specifying an
inference system, querying data. . .). Moreover, the use of IRIs may not be intuitive at first,
and the fact that the RDF model requires the use of an IRI for the different resources in the
graph may look restrictive. On the other hand, getting started in building a PG is easier as
the labels and properties of the nodes and edges of a PG are composed by raw strings and
numbers, i.e. PGs have a local semantics. Moreover, PG engines generally come with intuitive
tools, that encompass a lot of the features that a user expects (a querying language/API, a
visualization, . . .).

For example, when installing Neo4j, the database system comes with a Getting Started
tutorial, the Neo4j application embeds a very intuitive graph visualization, Cypher, the querying
language of Neo4j consists in ”drawing the query in ASCII”. On the other hand, SPARQL,
the standard RDF query language uses pattern matching, which may seem less intuitive for

Figure 1.3: The Neo4j browser tool that comes with a Neo4j Desktop fresh install

1.2. INTEROPERABILITY 21

some users. Figure 1.3 is a screenshot of the Neo4j Browser tool: 1) on the bottom, the
running example Property Graph is created with a Cypher query, 2) on the top, by writing a
query that queries all nodes, the whole PG is shown and can be interacted with. While some
RDF database vendors also offer some kind of visualization, like GraphDB, overall, the RDF
community recognizes that RDF may be harder to approach, as demonstrated by the existence
of the EasierRDF initiative 5.

Despite the fact that RDF may seem to be a harder to use, its vast majority of tools and its
well-defined semantics may sometimes miss to PG users. On the other hand, RDF users may
sometimes want to use PG query languages and its tools to have a more compact visualization.
Making a choice towards one system or the other has long term consequences. For example,
Amazon Neptune is a database system that supports both systems, but forces the user to make
a choice when creating their database between RDF or PG; users of Amazon Neptune often
request the ability to change the database paradigm because they realize the other database
system would actually better suit their use-cases [11].

1.2 Interoperability

Both RDF graphs and PGs have their advantages and disadvantages, as well as their advocates
and detractors. Rather than being forced into choosing one or the other, all would benefit from
increased interoperability between the two models.

Because both RDF graphs and PGs rely on a graph structure, one could think that con-
verting a PG to an RDF graph and an RDF graph to a PG is a trivial task.

When studying the interoperability problem, we can distinguish two levels of interoperabil-
ity:

• Syntactic interoperability is the ability of two systems to exchange data.
• Semantic interoperability is the ability of two systems to exchange the semantics of the
data.

1.2.1 Syntactic interoperability

The key syntactic difference between PGs and RDF graphs lies in their structural representa-
tion. While a PG is actually defined as a graph, an RDF graph is not formalized as a graph
but as a set of triples. Consequently, there are several structural differences:

• PGs allow adding properties to edges, while in RDF, there are no equivalents to adding
properties to triples.

• Some PGs engine allow multiple edges with the same labels between the two same nodes,
while in RDF, trying to produce an RDF graph with the same triple twice will collapse
these triples into a single one (per the definition of a set of triples).

Syntactic interoperability has been addressed in multiple works, both from RDF graph to
PGs [12][13] and from PGs to RDF graphs [14]. However, the solution proposed in these works
produce graphs that heavily use the terminology of the other graph model. For example, from
an RDF graph, these solutions produce a PG that uses the terms “IRI”, “literal” and “blank
node” as labels of the produced PG, whereas labels are commonly expected to refer to concepts
in the application domain.

5https://github.com/w3c/EasierRDF

https://github.com/w3c/EasierRDF

22 CHAPTER 1. INTRODUCTION

1.2.2 Semantic interoperability

In addition to the syntactic differences between both models, there is also a semantic difference.

In a PG, the labels and property keys of nodes and edges are strings, and the values of the
properties are strings, numbers, or array of these. The strings can use any arbitrary vocabulary,
at the convenience of the designer of the PG. In other words, PGs use a local semantics : each
PG has its own semantics and a term used in a PG can have another meaning in another PG.
It may especially be the case for PGs in different languages: a “pain” label in an English PG
likely refers to a medical condition, while in a French PG it likely refers to a bakery as “pain”
means “bread”. On the opposite, in the RDF model, all terms present in RDF graphs share
the same semantics through the use of IRIs.

In addition to the semantics of the terms themselves, the RDF model also has its own
semantics: for instance, the RDF model specifies that any RDF triple that is in an RDF graph
is asserted, regardless of any other triple in the graph.

The main challenge to achieve semantic interoperability between the two models comes from
this discrepancy between local and global semantics. In particular, converting a PG to an RDF
graphs requires the local and largely implicit semantics of the PG to be elicited and aligned to
RDF’s global semantics. Existing tools, such as NeoSemantics, elude this issue by minting an
ad-hoc ontology from the terms used in the PG. Others, such as PGO [14], merely encode the
syntactic structure of the PG in RDF, leaving the domain-specific semantics implicit.

1.3 Motivation

The issue of PGs is not that they are not RDF graphs, but that the semantics stored in PGs
is hidden in the lines of code of the applications that use them, and directly looking at the PG
relies on the fact that the creator of the PG used a common language with the person that
is currently looking at it. Moreover, as discussed earlier, because merging PGs is a tedious
task, linking knowledge stored in multiple PGs is also a tedious task. In general, because the
semantic used for PGs is a local semantics, a given PG is restricted to the applications that
have been developed for it. On the opposite, consider a graph that uses terms that are shared
with many other graphs, i.e. that use an explicit vocabulary/a widely shared vocabulary; such
graph can be used in any application developed for these other graphs.

Hence, the goal of this thesis is to help users elicit the semantics of PGs. The method
heavily relies on RDF as it is usually the accepted implementation of the knowledge graph
idea: in practice, most knowledge graphs today are RDF graphs [1, 15, 16] like the WikiData
knowledge graph [17]. By consequence, eliciting the semantics of a PG consists in defining how
to convert it into RDF.

We therefore do not want to convert PGs to arbitrary RDF graphs containing the same
information, but to actually produce an RDF graph that reuses existing terms and modelling
patterns that are commonly admitted as RDF good practices. We name this kind of RDF
graph that looks like other existing RDF graph idiomatic RDF graphs.

Listing 1.2: A non-idiomatic method to represent a “knows” relationship
@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

_:e rdf:subject _:alice .

_:e rdf:predicate foaf:knows .

_:e rdf:object _:bob .

1.4. STRUCTURE OF THE THESIS 23

For example, consider the RDF graph in Listing 1.2. In this RDF graph, the fact that
Alice knows Bob is represented using the RDF reification pattern, which is not the idiomatic
method to assert that a person knows another one in RDF, especially using the foaf:knows

predicate. On the opposite, an RDF graph that consists in a single triple, that tells that
:alice foaf:knows :bob is an idiomatic RDF graph. This graph is idiomatic because the
only namespace that is used is the foaf namespace, the “friend of a friend” being a very well
known ontology, and it is used accordingly to how it is defined, i.e. the foaf:knows predicate
is defined as a property in the ontology. Modelling a PG edge as an RDF triple is however
not always the most idiomatic choice: an employment contract or any other temporally limited
relationship should not be directly asserted in the graph, especially if the relationship is finished.

In addition to proposing methods to elicit the semantics through mapping languages, this
thesis will also discuss the properties of the proposed mapping languages, both in terms of the
capabilities of the mapping languages and desired properties of the mapping written by the
user.

This process of defining mapping languages is very common to elicit data from other data
models to RDF. The most known one is R2RML [18], a mapping language designed to produced
RDF data from relational databases. Other mapping languages include RML [19], an extension
of R2RML to any source and JSON-LD [20], a mapping language from the popular JSON
format to RDF. All these tools make assumptions about the resources that are going to be
represented: in R2RML, a row in a table corresponds to a resource; in RML, each object that
comes from a logical source is a resource; and in JSON-LD the resources are expected to be
JSON objects. In order to provide more expressivity to produce idiomatic RDF graphs, we
propose mapping languages that are dedicated to PGs.

1.4 Structure of the thesis

The rest of the thesis is structured as follows: Chapter 2 gives an overview of the state of
the art. The state of the art will be composed of two parts: one part focused on the PG
to RDF graph conversion problem and one part with a higher focus on how RDF triples are
produced. Chapter 3 gives an overview of the PREC framework under which the work of this
thesis will be described, i.e. describe the formalism and the common parts of the PG to RDF
methods described in the following chapters. In particular, the chapter introduces the concept
of a context, an input provided by the user, in addition to the PG to convert, that will drive
the conversion. Chapter 4 describes a first PG to RDF conversion method, named PREC-C.
This conversion method is a highly customizable method, that is able to convert any supported
PG from any PREC-C context. On the other hand, Chapter 5 describes a conversion method
named PRSC in which contexts are based on the idea of a PG schema. In this chapter, we
also exhibit some special properties of the PRSC schemas. Because both PREC-C and PRSC
contexts are written in Turtle, in Chapter 6, we present Shacled Turtle, an auto-completion
tool whose purpose is to help users writing RDF documents by using existing RDF ontologies
and RDF schemas. Finally, in Chapter 7, we conclude with a discussion about the described
converters, Shacled Turtle and potential future works.

24 CHAPTER 1. INTRODUCTION

Chapter 2

State of the art

In this chapter, different works related to PG and RDF graphs are discussed. In Section 2.1, PG
and RDF graphs are presented under the scope of existing works. In Section 2.2, we discuss the
existing works on RDF to PG conversion, and on PG to RDF conversion. This section serves
as the base of the contributions of Chapters 3, 4 and 5 in which we propose our own solution
to tackle the RDF to PG conversion problem. In Section 2.3, another field of the RDF domain
is studied: the production of RDF triples and in particular tools that are built to help users
writing them. The solution proposed for the PG to RDF conversion relies on a configuration
file, written by the user in an RDF format. To make easier writing this configuration file, we
propose an auto-completion engine that is presented in Chapter 6.

2.1 The two graph data models

2.1.1 Property Graphs

As mentioned in the introduction, PGs are not a unique model. Instead, they are a family
of implementations. Some of the popular PG engines include Neo4j, Amazon Neptune, Azure
Cosmos DB from Microsoft, or JanusGraph.

However, some kind of standardization work has been done, both at the theoretical level
and at a practical level.

At the theoretical level, the consensual formal definition is the one provided by Angles [21]
and which is used in multiple works on Property Graphs, in particular the one that focus
interoperability between RDF and PGs. This definition will be provided later in the thesis in
Definition 1 in Section 3.1 of Chapter 3. Today, all works are using Angles’s definition or a
definition that is very close. Intuitively, Angles’s definition consists of defining a PG as a tuple
composed of the set of nodes of the PG, the set of edges, one or two functions that maps the
edges to its source and/or destination, one or two functions that maps the nodes and edges
to its set of label and one or two partial functions that maps pairs composed of 1) a node or
an edge and 2) a property key to the property value. Across existing works, the number and
the name of these functions may differ slightly: for example, some works prefer to have a label
function both for nodes and edges, while other works may use two different label functions.

At the practical level, Gremlin/Tinkerpop is a standard API for PG traversal. It has been
developed so it can be used by many PG engines.

Some authors use a different method to formalize PGs. For example, Hölsch et al. [22] define
the attributes (the equivalent of properties) as a set of functions. Each of these functions are
defined for all nodes and/or edges and either return a value defined in a given set, or a special

25

26 CHAPTER 2. STATE OF THE ART

value that means that this property does not exist for this node or edge. Bergami [23] proposes
another definition, where each node and edge can be used as a function where the name of the
attribute is passed as a parameter: for example, if a is a node and name is a property, a(name)
is the value of the “name” property. However, these formalisms are rare, and are either an
answer for very specific needs, or are just older than Angles’s definition.

GQL1 is an ISO work whose purpose is to provide a SQL inspired query language, standard
for all PG engines. The formal definition used in this work is the same as the one provided by
Angles. SQL/PGQ is a subset of GQL designed for relational databases. It has been developed
to be able to build views using data stored in a relational database and query them like a PG.

Junghanns et al. [24, 25] propose the Extended Property Graph Model (EPGM). In addition
to a PG definition very close to Angles’s one, the authors define a set of operators that can
be used. However, the paper is mostly about a part of the implementation of Gradoop, a PG
database system, so most operators are not formally defined.

Inspired by existing works on the classical join operator on SQL databases, Bergami et
al. [26][23] propose a join operation defined on PGs. This work is mainly targeted to define
how queries using the join operator can be defined. Hölsch et al. [22] propose different sets
of operators to translate the different components of a Cypher query. This work is aimed at
optimizing query plans by proposing a logic similar to the one developed to optimize relational
queries. The common point of these works is that they are targeted at building queries. In this
thesis, we will propose our own join operator, named the ⊕ merge operator. This operator will
be designed to be able to work on PGs that may or may not share nodes and edges, including
strange cases where an element is defined as a node in one graph and as an edge in the other.
The particularity of this operator, and the π projection operator that will also be defined, is
that they will be designed to be used in formal proofs.

Other authors translated the usual PG query languages to relational algebra. For example,
Marton et al. formalized OpenCypher in [27], an open source version of the Cypher language
developed for Neo4j. Thakkar et al. propose a formalization of the Gremlin API in [28].

2.1.2 RDF

RDF (Resource Description Framework) is a W3C standard designed for data exchange on the
web. It has been designed to be decentralized and interoperable. To achieve this purpose, RDF
has been designed to facilitate data integration by using global identifiers. The used global
identifiers are IRIs, which have a shared semantics across all RDF graphs: the semantics of an
IRI is specified by the owner of the IRI.

Formally, an RDF graph is defined as a set of triples of three elements. The first element is
named the subject, the second the predicate and the third the object. As it is defined as a set,
classic mathematical operators can be used; in particular the union ∪ operator can be used to
merge two RDF graphs into a single one2. As any RDF graphs are supposed to be able to be
merged, the RDF model is defined as monotonic model: adding or removing triples should not
change the semantics of other triples.

RDF has been standardized in 1999 [29], and has been updated multiple times, in 2004 [30],
in 2014 [31], and a new update is being currently discussed based on the work of the RDF-star
W3C Community Group [32]. A formal definition of RDF will be provided in Chapter 3. This

1https://www.gqlstandards.org/ / https://www.iso.org/standard/76120.html
2Only in the case where the two RDF graphs do not share any blank node. Otherwise, the merge operation

is specified by 1) first computing RDF graphs that are isomorphic to the two RDF graphs to merge and that
share no blank nodes, 2) and then the ∪ operator can be applied.

https://www.gqlstandards.org/
https://www.iso.org/standard/76120.html

2.1. THE TWO GRAPH DATA MODELS 27

formal definition will include quoted triples/RDF-star.
Note that, unlike a mathematical graph or PG, an RDF graph is not defined a set of nodes

and a set of edges, but as a set of triples. This has several subtle consequences. For example,
while in PGs, a node with no edges can exist, in an RDF graph, to exist, a node must either
have an out-coming edge (being in the subject position of a triple) or have an incoming edge
(being in the object position of a triple); the predicate of the triple serving as the label of the
edge. Other differences include the fact that between two RDF nodes, multiple edges can not
share the same IRI/label, while in PGs this feature is supported.

As the data model is very simple, patterns to represent composite data have been developed.
A famous such pattern is the standard RDF reification, described in the RDF standard [33]
in the “Reification” section as a method to add knowledge about RDF triples, even about the
ones that are not in the RDF graph3. The RDF reification consists in assigning to an RDF
resource the semantics of a triple, adding three triples to describe the subject, the predicate
and the object of the triple assigned to the resource.

Listing 2.1 gives an example of the use of the RDF reification pattern to add the information
about the fact that Tintin travels with the Captain Haddock since “The Crab with the Golden
Claws”. Triples are added to denote that the blank node :a identifies the RDF triple “Tintin
travels with Captain Haddock” and the temporal meta-data is added by adding a new triple
with :a in the subject position. Listing 2.2 lists the same information, but instead of using an
RDF reification, thanks to RDF-star, the triple “Tintin travels with Captain Haddock” itself
can be used in place of :a. Note that in both examples, the triple is also part of the graph
because in this case, the annotated triple is also considered true.

Listing 2.1: An example of the RDF reification pattern in Turtle

An RDF triple that tells that Tintin travels with the Captain Haddock

dbpedia:Tintin ex:travelsWith dbpedia:Captain_Haddock .

The RDF reification is used to ad

The blank node _:a identifies the RDF triple above

_:a rdf:type rdf:Statement .

_:a rdf:subject dbpedia:Tintin .

_:a rdf:predicate ex:travelsWith .

_:a rdf:object dbpedia:Captain_Haddock .

Add a temporal information about the triple through the use of _:a

_:a ex:since ex:TheCrabWithTheGoldenClaws .

ex:TheCrabWithTheGoldenClaws schema:name "The Crab with the Golden Claws" .

Listing 2.2: An example of how RDF-star can be used in place of the RDF reification in
Turtle-star

An RDF triple that tells that Tintin travels with the Captain Haddock

dbpedia:Tintin ex:travelsWith dbpedia:Captain_Haddock .

The metadata is added to the triple itself by using it as the subject

<< dbpedia:Tintin ex:travelsWith dbpedia:Captain_Haddock >>

ex:since ex:TheCrabWithTheGoldenClaws .

ex:TheCrabWithTheGoldenClaws schema:name "The Crab with the Golden Claws" .

Multiple other constructs have been proposed to represent RDF data. These constructs
are grouped under the term “ontology design patterns”, are listed by some platforms4, and are

3Because RDF graphs are monotonic, an RDF triple can not be in the RDF graph if the triple is not
considered true. The RDF reification provides an option to comment that a given triple may only be true with
a certain confidence percentage, or that it is false.

4For example http://ontologydesignpatterns.org

http://ontologydesignpatterns.org

28 CHAPTER 2. STATE OF THE ART

frequently the topic of workshops.
As RDF has been standardized for a long time, in addition to ontology design patterns, a lot

of specifications have been developed around RDF: SPARQL [34] is a standard query language
for querying RDF data, multiple specifications for reasoning have been developed like RDFS [5]
and OWL [6], specifications for validating data like SHACL [35] and ShEx5. . . RDF also has a
variety of serialization formats, among which RDF/XML [36], Turtle [4] and JSON-LD [20].
Among these tools, two kinds will be the starting point of the work in Chapter 6: reasoning
systems and validation engines:

Ontologies and reasoning systems Gruber defines an ontology as a specification of a
conceptualization of the concepts and relationships between these concepts in an area of inter-
est [37].

RDFS [38] (RDF schema) is a popular and simple ontology language. It provides a way to
define classes and properties in RDF, organizing them into specialization hierarchies/lattices,
and relating properties to their domain and range.

Another popular ontology language is OWL [6] (Web Ontology Language). Compared
to RDFS, it includes more properties to describe ontologies, and is much more expressive.
However, as the full OWL semantics is undecidable, it has been specialized into several profiles,
with different expressiveness and associated time complexity.

Validating schemas SHACL [35] (Shapes Constraint Language) is a W3C specification to
check RDF graph validity against a set of constraints. A SHACL graph describes shapes and
the set of constraints associated to these shapes. When a resource is targeted by a shape, the
SHACL validator will check if none of the associated constraints are violated.

ShEx (Shape Expressions) is another validating schema language developed for RDF. Com-
pared to SHACL, ShEx takes a different approach to validation, but discussing it is out of scope
of this thesis. Furthermore, ShEx shapes are expressed in an ad-hoc compact grammar, while
SHACL shapes are expressed in RDF.

Converting data to RDF To produce RDF data, mapping data from one format to RDF
has been a widely studied problem, mostly from SQL and spreadsheets.

R2RML [18] maps relational databases and tabular data to RDF by using mappings provided
by the user, RML [19] extends the latter to support other kinds of data sources, RDF123 [39]
aims to produce RDF data by using spreadsheets as an abstraction, JSON-LD [20] transforms
JSON documents to RDF and is the way recommended by Google to add metadata to a website
in order to improve its SEO (Search Engine Optimization). The focus of the thesis is to convert
PG data into RDF, and the following Section 2.2 will focus more towards PG and RDF graph
interoperability.

When designing a mapping language, users should be able to describe the RDF triples that
they want to model, multiple templating systems already exist:

• An R2RML/RML document is a set of triple maps. Each triple map has a logical
table/logical source as the object of rr:logicalTable/rml:logicalSource, and the
set of triples to produce as the value of rr:subjectMap, rr:predicateObjectMap, rr:
predicateMap and rr:objectMap. The object of the four latter predicates can either be
the term to use, or a term that describes how to construct the term to use from the input
data. The system enables to use IRIs composed of multiple values from the logical source

5http://shex.io/shex-semantics/index.html

http://shex.io/shex-semantics/index.html

2.2. COMPARING RDF WITH PGS 29

at any position. However, this system is very verbose, requiring to write at least four
triples to produce one triple.

• OTTR [40] is a tool to produce RDF graphs and ontologies. It offers a templating system
that requires the user to provide a list of parameters that describes the input of the OTTR
template and a pattern that describes the triples to produce. The OTTR template can
then be instantiated to produce the triples. OTTR templates and instantiations can be
serialized in multiple formats, including a custom format and an RDF serialization. How-
ever, in its Turtle serialization, all templates, including the OTTR template to describe a
single RDF triple, the ottr:Triple template, take a list of terms as a parameter which
may be error-prone in the case of the ottr:Triple template. Quoted triples are also not
supported by the system.

• SPARQL-Generate [41] is an extension of SPARQL to produce RDF data from hetero-
geneous sources. SPARQL-Generate offers powerful constructs to build terms from data,
iterate on data and describe the triples to produce. However, being an extension of
SPARQL, SPARQL-Generate introduces new keywords to learn for the user and support
for the implementation, even considering that the authors describe the learning curve as
very low for a user that already knows SPARQL. In this thesis, we wanted to evaluate
the opportunity of using quoted triples from RDF-star as a simple solution to describe
triples to produce in use-cases in which powerful constructs are not required.

2.2 Comparing RDF with PGs

Many works already exist to address the interoperability between PGs and RDF.

Opposing one family of graphs to another In Semantic property graph for scalable knowl-
edge graph analytics, S. Purohit et al. [42] propose to store RDF graphs into PGs which are
named Semantic Property Graphs. In particular, they map RDF reified triples to PG edges.
The authors argue that as the resulting Semantic Property Graph is smaller than the original
RDF graph, in the sense that there are fewer nodes, data analytics is easier to perform. While
this work propose a way to represent RDF data in PGs, the produced PGs are not intended to
be merged with other existing PGs.

On the opposite, Alocci et al. [9] stored the structure of a particular molecule, the Glycan
molecule that they were studying, in several RDF graph database engines and in Neo4j in order
to compare their performances. All measured RDF engines have equivalent benchmarks expect
Blazegraph which is way faster.

Warren and Mulholland [43] compared PG and RDF from a usability perspective. They
note that there are very few work about it. They proposed different modelings both in RDF
and Cypher to participants. Participants considered that both PGs and RDF graphs were as
easy to use. The modelling decisions made by the participants both in PGs and RDF graph
were similar, in particular in terms of creating a new node for some resources like cities instead
of assigning them to properties. However, the researchers note that most participants were by
default more familiar with RDF than PGs which may induce a bias in these modelling choices.

A common pivot for PGs and RDF To achieve interoperability, some authors propose to
store the data into another data model, and then expose the data through classic PG and RDF
APIs. Angles et al. propose multilayered graphs [44], of which the OneGraph vision from
Lassila et al. [11] is a more concrete version. These works propose to describe the data with a

30 CHAPTER 2. STATE OF THE ART

list of edges, with the source of the edge, a label and the destination of the edge. All edges are
associated with an identifier, that can be used as the source or the destination of other edges.
However, Lassila et al. note that several challenges are raised about the way to implement the
interoperability between the OneGraph model and the existing PG and RDF APIs.

In a Unified Relational Storage Scheme [45], Zhang et al. propose to store the data in
relational databases. While they specify how to store both models in a similar relational
database structure, they do not mention how they align the data that come from one model
with the data that come from another, for example to match the PG label “Person” with the
RDF type foaf:Person.

The Singleton Property Graph model proposed by Nguyen et al. [46] is an abstract graph
model that uses the RDF Singleton Property pattern that can be implemented both with a PG
and an RDF graph. They also describe how to convert a regular RDF graph or a regular PG
into a Singleton Property Graph. But the use of the Singleton Property pattern induces the
creation of many different predicates, which hinders the performance of many RDF database
systems as shown by Orlandi et al. [47].

From PGs to RDF In terms of PG to RDF conversion, the most impactful work is probably
RDF-star [48, 49, 7, 32], an extension of the RDF model originally proposed by Olaf Hartig
and Bryan Thompson to bridge the gap between PGs and RDF by allowing the use of triples
in the composition of other triples. Indeed, the most blatant difficulty when converting PG
to RDF is converting the edge properties. With RDF-star, it is possible to use RDF triples
in the subject or object position of other RDF triples. However, most PG engines support
multi-edges, i.e. two edges of the same type between the two same nodes. On the other hand,
the naive approach consisting in using the source node, the type of the edge and the destination
node as respectively the subject, the predicate and the object of an RDF triple would collapse
the multi-edges. Converting each edge property to an RDF-star triple that uses the former
triple as its subject would lead to the properties of each multi-edge to be merged. Even outside
the context of converting PGs to RDF graph, the RDF-star proposal is so impactful that it is
the new key feature that will be fully integrated in the new RDF update. Indeed, RDF-star
provides a concise and intuitive method to add information about other triples.

Khayatbashi et al. [50] study on a larger scale the different mappings described by Hartig
and benchmark them, but they never consider using different modelings for different elements
of the PG during the same conversion. By allowing triples to be used as the subject and the
object of other triples, it is possible to emulate the edge properties of PGs. To tackle the
edge property problem, Das et al. study how to use already existing reification techniques to
represent properties [10]: the modelings that do not rely on quads can be used when writing a
PRSC context.

Tomaszuk et al. propose the Property Graph Ontology (PGO) [14], an ontology to describe
PGs in RDF. As this solution forces the produced data to use the PGO ontology, to the
exclusion of any other, it only captures the structure of the PG, and it fails to capture its
underlying semantics. Thanks to the Neosemantics6 plugin developed by Barrasa, Neo4j is able
to benefit from RDF related tools like ontologies, and performs a 2-way conversion from and to
RDF-star data. However, the PG to RDF conversion performed by Barrasa tends to generate
asserted triples for all PG edges, including those annotated with for example a probability or
that are time restricted: for example, if an edge with the label “marriedTo” exists between
nodes “Alice” and “Bob”, with a property “ended: 2017”, the RDF triple :Alice :marriedto

:Bob should probably not be produced.

6https://github.com/neo4j-labs/neosemantics

https://github.com/neo4j-labs/neosemantics

2.2. COMPARING RDF WITH PGS 31

Gremlinator [51] allows users to query a PG and an RDF database by using the SPARQL
language. This is a first step towards federated queries across PGs and RDF graphs. However,
it supposes that data stored in the PG and data stored in the RDF graph have a similar
modeling, and it does not support RDF-star. With Expressive Reasoning Graph Store, Neelam
et al. [52] propose to store RDF graphs in a JanusGraph PG database. They describe both how
to convert RDF data into PG data and SPARQL queries into Gremlin traversals. They show
that their approach is faster than Gremlinator and have similar performance as RDF graphs
databases.

Excluding the papers on RDF-star, all previously cited work do not propose a user configured
conversion: instead, each tool has its own hard coded method to translate PGs into RDF.

The solutions to convert PGs into RDF graph in this thesis will rely on a user defined
mapping, named a context

In this regard, Fathy et al. note that sometimes, manually writing a mapping may be
time-consuming. They proposed ProGoMap [53], an engine that first generates a putative
ontology for the terms in a PG, aligns this ontology with a user chosen pre-existing ontology,
and finally converts the PG to an RDF graph with an RML [19] mapping generated from the
alignment. The RML mapping generated by this work uses xR2RML [54] to query the PG using
the Cypher queries. However, by generating a putative ontology, this work also assumes that
all PG edges should be represented by using the same structure in the generated RDF graph.
However, in this thesis, we assume that in an idiomatic RDF graph, PG edges that model a
“know” relationship and PG edges that model an employer-employee relationship should not
be modelled in the same way.

From RDF to PGs Abuoda et al. [55] study the different RDF-star to PG approaches and
identified two classes: the RDF-topology preserving transformation which converts each term
(including the literals) into a PG node, and the PG transformation that converts literals into
property values. They also evaluate the performance of these different approaches. In the for-
mer, the PG reflects only the structure of the RDF graph, rather than the domain knowledge.
The topology preserving transformations is close to what we referred as syntactic interoperabil-
ity in the introduction, while PG transformation is closer to semantic interoperability.

In [12], Angles et al. discuss different methods to transform an RDG graph into a PG.
They propose different mappings, including an RDF-topology preserving one and a PG trans-
formation. In [13], Atemezing and Hyunh propose to use a mapping similar to the former to
publish and explore RDF data with a PG tool, namely Neo4j. However, these works offer little
customization for the user.

With G2GML [56], Chiba et al. propose to convert RDF data by using queries: the output
of the query is transformed into a PG by describing a template PG, similar to a Cypher insert
query. This approach can be considered to be a counterpart of PRSC, but to convert RDF into
PG.

PG schemas Finally, the “Property Graph needs a Schema” Working Group proposes a
formal definition of PG schemas [57]. Some PG engines, like TigerGraph, are based on the use
of schemas. For PG engines that do not enforce a schema at creation, like Neo4j or Amazon
Neptune, the effective schema may be extracted from the data, as proposed by Bonifati et al. [58]
or Beereen [59]. The idea of using schema as the base for designing a mapping language, in a
simplified version from the previously mentioned works, will be the starting point of PRSC in
Chapter 5

32 CHAPTER 2. STATE OF THE ART

2.3 A general purpose RDF auto-completion tool

In the work presented in this thesis, the user will be required to drive the conversion from
PG to RDF by writing a configuration file. The configuration file will be expressed in RDF,
more precisely in the Turtle format. Therefore, the question of how easy it is to write the
configuration file arose, and how to help the user writing them.

2.3.1 Where do RDF Triples come from?

RDF data are usually not written by hand. Most approaches to generate RDF data either rely
on some kind of abstraction, converting existing data or directly writing programs that output
RDF data.

From user input To generate RDF data from user input, the most popular abstractions are
forms. Protégé [60] requires the user to fill forms to build their ontology and then generate the
corresponding RDF file. The SHACL specification explicitly mentions the possibility to gener-
ate forms from property shapes, which has been implemented by systems like Schimatos [61].
Form generators have also been developed for ShEx, the other main shape language for RDF.

Converting data to RDF As described in Section 2.1.2, using tools like RML [19] or JSON-
LD [20] is a popular way to produce RDF data from existing data.

Writing programs that output RDF data Software can also directly produce RDF data
as an output.

Even by using these approaches, users may still have to write RDF documents by themselves:
for example the R2RML mappings must be described in RDF, users may want to fine tune the
ontology produced by Protégé. . .

2.3.2 How do current editors help users?

Plugins for popular code editors have been developed, like LNKD. tech Editor 7 and RDF and
SPARQL 8 for the JetBrain suite. Following the Server Language Protocol [62], a language
server for Turtle has been developed by Stardog Union9. But all these plugins mainly focus on
syntactic checking and coloration.

In [63], Rafes et al. list some of the expected features from a SPARQL auto-completion
module. They identify 3 major categories: suggestion of snippets, prefix declaration and auto-
completion for Internationalized Resource Identifiers (IRIs). Snippets suggestion is described
as being mostly requested by experienced users and can be seen as the step after suggesting
terms. Prefix auto-completion is deployed by most editors, through the use of the prefix.cc
API10.

To the best of our knowledge, IRI suggestions in all RDF document editors, like RDF and
SPARQL and Yasgui [64] are limited to proposing all the terms that exist in a given ontology.

7https://plugins.jetbrains.com/plugin/12802-lnkd-tech-editor
8https://sharedvocabs.com/products/rdfandsparql/
9https://marketplace.visualstudio.com/items?itemName=stardog-union.vscode-langserver-turtle

10https://prefix.cc

https://plugins.jetbrains.com/plugin/12802-lnkd-tech-editor
https://sharedvocabs.com/products/rdfandsparql/
https://marketplace.visualstudio.com/items?itemName=stardog-union.vscode-langserver-turtle
https://prefix.cc

2.3. A GENERAL PURPOSE RDF AUTO-COMPLETION TOOL 33

Yasgui filters the list of suggestions depending on the position: for example if the current
term is a predicate, all properties in the ontology are displayed and other terms are discarded.
This approach is best suited for small ontologies, but for big ontologies, like schema.org11, the
number of suggestions can reach hundreds, making it impractical for users.

Some SPARQL editors like the Flint SPARQL Editor12 or the one presented by Gombos and
Kiss in [65] use intermediate SPARQL queries to help users write their queries. Sparqlis [66]
also uses this approach but goes further by exposing an interface in natural language, removing
the need for the end-user to know SPARQL. In [67], De la Parra and Hogan first compute
the relationships between all types and predicates in the graph, and use the result of this
computation to provide auto-completion when the user builds their SPARQL query. All these
approaches resort on using the actual data to produce the effective schema of the graph. But in
our case, as we are interested in writing new data, these kinds of approaches are not applicable.
Hence instead of using the effective schema of the graph we will rely on the expected schema
as specified by an RDFS ontology or a set of SHACL shapes.

To help people querying RDF data, including those who are not familiar with SPARQL,
tools to abstract queries have been developed. The Sparnatural [68] lets user compose their
query by using a visual editor. The visual editor shows the different options and guide the
user by listing the possible options. Sparnatural engine uses OWL ontologies as a configuration
files, with added annotation properties to choose which classes to use and how to display
them. SPARE-LNC [69] is a tool that requires the user to describe their query in a grammar
close to natural language, then translates it to proper SPARQL and executes it. However, the
controlled natural language supported by SPARE-LNC and its use case is very constrained:
the input must follow a precise formal grammar that only supports querying a specific kind of
data (modelled traces).

2.3.3 What could be used?

Of the three categories mentioned by Rafes et al. in [63], IRI suggestion is the least studied
domain to help users writing RDF document. Yet, the idea behind IRI suggestion is very
simple: for a given resource, it would consist in suggesting the predicates related to its types.

RDF documents that describe the predicates that connect different types already exist
and are widely spread through ontologies, namely RDFS and OWL mentioned earlier. More
recently, the need to validate RDF document lead to the development of the schema languages
SHACL and ShEx. These two kinds of schemas, ontologies and validating schemas, could be
used to provide IRI suggestion, which will be discussed in Chapter 6.

11https://www.schema.org
12http://fr.dbpedia.org/sparqlEditor

https://www.schema.org
http://fr.dbpedia.org/sparqlEditor

34 CHAPTER 2. STATE OF THE ART

Chapter 3

PREC: the general framework

In this chapter, we present the common framework, PREC (Property Graph to RDF graph
Experimental Converter), for the two PG to RDF converters presented in this thesis: the
PREC-C (PREC-Context) converter presented in Chapter 4 and the PRSC (Property Graph
to RDF Graph Schema-based Converter) converter presented in Chapter 5.

First, in Sections 3.1 and 3.2, the definition of Angles for PG is presented and discussed
with respect to existing PG implementations. The discussion ends with a proposal for a new
formal definition of PGs in Sections 3.3 and 3.4.

Then, in Section 3.5, we first present the formal definition of RDF-star graphs, i.e. RDF
graphs that allow nested triples. Then, we introduce our concept of template triples: triples
that are provided by the user to guide the conversion process.

Finally, in Section 3.6, the terminology around the PREC system is presented in addition
to the first step towards the proposed PG to RDF conversions.

3.1 Formal definitions of Property Graphs

Definition 1 is an adaptation of Angle’s original definition from [21]. In fact, while Angles’
formalization of PGs is largely reused in the literature, there are many minor differences in the
way different authors define it.

Definition 1 [Property Graphs as defined by Angles in [21]]
A property graph pg is defined as the tuple (Npg, Epg, srcpg, destpg, labelspg, propertiespg),
where:

• Npg and Epg are finite sets with Npg ∩ Epg = ∅. Npg and Epg are respectively the set
of nodes and the set of edges of the property graph pg.

• srcpg : Epg → Npg and destpg : Epg → Npg are two total functions. These two
functions map each edge to its starting and destination nodes.

• labelspg : Npg ∪ Epg → 2Str is a total function. This function maps the nodes and
edges to their sets of labels.

• propertiespg : (Npg ∪Epg)×Str → V is a partial function. This function describes the
properties of the elements. V is the set of all possible property values. Considering a
property is a key-value pair, it expects two inputs: a node or an edge, and a property
key. The output is the property value.

where:

35

36 CHAPTER 3. PREC: THE GENERAL FRAMEWORK

• Str denotes the set of all strings.
• V denotes the set of property values. Usually, this set is a super-set of the set of real
numbers R and a super-set of the set of strings Str .

The set of all PGs that follow this definition is denoted APG (Angles’ Property Graphs).

:Person
 name: ''Tintin''
 job: ''Reporter''

name: ''Snowy''

:TravelsWith
 since: 1978

Figure 3.1: A small PG about Tintin that serves as a running example in this chapter

Example 1
The PG exposed on Figure 3.1 can formally be defined as the APG (Angles Property
Graph) denoted TT with

• NTT = {n1, n2} ;ETT = {e1}
• srcTT = {e1 7→ n1} ; destTT = {e1 7→ n2}
• labelsTT = {n1 7→ {“Person”} ;n2 7→ ∅; e1 7→ {“TravelsWith”}}

• propertiesTT =

{
(n1, “name”) 7→ “Tintin”; (n1, “job”) 7→ “Reporter”

(n2, “name”) 7→ “Snowy”; (e1, “since”) 7→ 1978

}

For a given PG, its nodes and edges are grouped under the term of element (or PG
element).

Remark 1 [Minor differences between PG formalization inspired by Angles]
Most authors use slightly different formalisms. For example, some authors merge the src
and the dest functions into one function that maps all edges to a pair of nodes. Some
others define a set for the set of all labels and do not specify it further. It is the case of the
original work of Angles, as it defines respectively a set L and a set P for the set of labels
and the set of property keys. Others split the labels function to have one that maps the
nodes to their set of labels and another one that maps the edges to their set of labels.

However, these differences are minor and do not add or remove expressivity to the
model.

Remark 2 [PGs are lazily defined as tuples in this thesis]
Other works always explicitly define any new PG as a tuple
(N,E, src, dest , labels , properties), and define subsequent PGs if needed with a tuple of new
symbols.

We find it more convenient and readable to consider that N , E, src, dest , labels and
properties are implicitly defined for any PG and disambiguated by using an indexed nota-

3.2. THE NEED FOR ANOTHER PG DEFINITION 37

tion. For example, given a PG x, Nx is its set of nodes, Ex is its set of edges. . . without the
need to explicitly define x as the tuple (Nx, Ex, srcx, destx, labelsx, propertiesx).

3.2 The need for another PG definition

Despite the PG formal definition of Angles being the consensual definition, this definition is
unable to capture all possible implementations.

Figure 3.2: A PG whose properties may not be supported by all PG models

Consider the PG exposed in Figure 3.2, composed of a single node. Listing 3.1 shows how
to create this node with the Gremlin API:

Listing 3.1: Multiple properties with the same key in Gremlin
1 // Create an empty graph

2 gremlin > graph = TinkerGraph.open (); g = traversal (). withEmbedded(graph)

3 ==> graphtraversalsource[tinkergraph[vertices :0 edges :0], standard]

4
5 // Add a node with the person label

6 gremlin > g.addV(" person ")

7 // With a property whose key is name and whose value is "Haddock"

8 .property ("name", "Haddock ")

9 // With another property , added in the list of properties ,

10 // whose value is name and whose value is "Archibald Haddock"

11 .property(list , "name", "Archibald Haddock",

12 // Add to this property the meta property whose key is "type"

13 // and whose value is "fullname"

14 "type", "fullname"

15)

16 ==>v[0]

17
18 // Only one node in the graph

19 gremlin > g.V()

20 ==>v[0]

21
22 // Its label is person

23 gremlin > g.V(). label ()

24 ==>person

25
26 // It has two properties with the same key (unsupported by Angles definition)

27 gremlin > g.V()[0]. properties ()

28 ==>vp[name ->Haddock]

29 ==>vp[name ->Archibald Haddock]

30
31 // The "name ->Haddock" property has no meta properties

32 gremlin > g.V(). properties ("name "). hasValue (" Haddock "). properties ()

33
34 // The "name ->Archibald Haddock" property has one meta property

35 // - Not natively supported by Angles definition

36 // - Could be emulated by integrating meta properties in the set V

37 gremlin > g.V(). properties ("name "). hasValue (" Archibald Haddock "). properties ()

38 ==>p[type ->fullname]

• Line 2 creates the PG.
• In Lines 5–16, the node is created:

– Line 6 creates a new vertex whose label is Person.

38 CHAPTER 3. PREC: THE GENERAL FRAMEWORK

– Line 8 adds a property with the key “name” and the value “Haddock” to the vertex
created in line 6.

– Line 11 adds another property with the key “name” and the value “Archibald Had-
dock”. Note that because the insertion strategy is set to “list”, the property is added
without any consideration about other properties that already exist.

– Line 14 adds a meta property to the property added by line 11: a property whose
key is “type” and whose value is “fullname”.

• Lines starting from line 18 are dedicated to printing the created PG to check if it is
correct, in particular:

– In lines 27–29, both properties with the same key exist.
– In lines 31–32, the first property has no meta properties.
– In lines 34–38, the second property has the requested meta property.

This example illustrates that at least one property graph engine, the TinkerGraph engine
supports features that cannot be represented with Angles definition. Indeed, in Angles’s defi-
nition, the properties function is supposed to match a pair of a PG element and a key with a
value. This definition does not fit the example exposed in Listing 3.1 in two ways:

• It is unable to represent the fact that a property key can be used multiple times, like the
“name” properties in our example. However, this is an explicit feature of Gremlin, through
its Cardinality enum that can be passed to the property function to define the insertion
strategy in case a property with the given key already exists: Cardinality.single sets
the key to the value, Cardinality.set only inserts a new property if the key-value pair
does not exist and Cardinality.list always adds a new property. In Angles’s formalism,
only the Cardinality.single behavior is supported.

• The fact that the second property has a property, i.e. a meta property, is not explicitly
supported.

Following the Gremlin API, it may be possible for an implementation to use edges and
properties as the source or the destination of another edge, like demonstrated in Listing 3.2.
However, to the best of our knowledge, no property graph engine actually implement this
behavior, for example in the same listing, an exception is thrown because it is not supported,
and this possibility is not considered in the rest of the thesis.

Listing 3.2: TinkerGraph does not support meta edges
// Creating a graph with three nodes: source , destination and metadestination

gremlin > graph = TinkerGraph.open (); g = traversal (). withEmbedded(graph)

==> graphtraversalsource[tinkergraph[vertices :0 edges :0], standard]

gremlin > g.addV(" source ")

==>v[0]

gremlin > g.addV(" destination ")

==>v[1]

gremlin > g.addV(" metadestination ")

==>v[2]

// Creating source ->destination

gremlin > g.V(). hasLabel (" source ").as(’a’)

.V(). hasLabel (" destination ").as(’b’)

.addE("edge "). from(’a’).to(’b’)

==>e[3][0 -edge ->1]

// Testing the edge

gremlin > g.V(). hasLabel (" source "). out(). label()

==> destination

// Creating (source ->destination)->metadestination

3.3. GREMLINABLE PROPERTY GRAPHS 39

gremlin > g.E(). hasLabel ("edge ").as(’a’)

.V(). hasLabel (" metadestination ").as(’b’)

.addE(" metaedge "). from(’a’).to(’b’)

// As of 3.4.13 , an exception is thrown by TinkerGraph

org.apache.tinkerpop.gremlin.tinkergraph.structure.TinkerEdge cannot be cast to

org.apache.tinkerpop.gremlin.structure.Vertex

Type ’:help ’ or ’:h’ for help.

3.3 Gremlinable Property Graphs

To be able to fully support the possibilities given by the Gremlin API, we propose a larger
definition of PGs.

Definition 2 [Formal definition of a Gremlinable PG]
A Gremlin-able Property Graph (GPG) pg is a PG defined as follows:

• Npg is the finite set of nodes of the PG pg .
• Epg is the finite set of edges of the PG pg .
• Ppg is the finite set of properties of the PG pg .
• srcpg : Epg → Npg is a total function. It maps each edge to its source node.
• destpg : Epg → Npg is a total function. It maps each edge to its destination node.
• labelspg : Npg ∪Epg → 2Str is a total function. It maps each node and edge to its finite
set of labels.

• propertiespg ⊂ (Npg∪Epg∪Ppg)×Ppg is a relation between each node, edge or property
and its properties.

• propdetailspg : Ppg → String × V is a total function. It maps each property to a pair
containing its key and its value.

These sets must comply with the following constraints:

• Npg , Epg and Ppg are pairwise disjoint.
• The relation propertiespg forms a directed forest whose roots are elements (i.e. nodes
or edges):

– Each property has exactly one parent: ∀p ∈ Ppg ,∃!m,m propertiespg p
– Each property has exactly one PG element (node or edge) as an ancestor: ∀p ∈

Ppg ,∃n ∈ N,∃!m ∈ Npg ∪ Epg,m (propertiespg)
n p

– From the two previous points, it follows that there are no cycles in the relation
propertiespg .

The set of all GPGs is denoted GPGs .

This new definition covers the cases missing in Angles’s definition but covered by the features
described in Section 3.2:

• Meta-properties are handled by the fact that the properties relation allows properties, the
elements of the set P , as its first member i.e. as the holder of the property.

• Multiple properties sharing the same property key are handled by the fact that the
properties function does not use the property key as a part of its domain anymore. In-
stead, it is a property that relates the holder with the held property, and the propdetails

40 CHAPTER 3. PREC: THE GENERAL FRAMEWORK

function maps each property to the property key-value pair. It allows multiple properties
to use the same property key1.

Definition 3 [NEP and kind]
A NEP (node or edge or property) is something that is either a PG node, a PG edge or a
property. In other words, it is either a PG element or a property.

The kind of a NEP is “node” if the NEP is a node, “edge” if the NEP is an edge and
“property” if the NEP is a property.

The kindpg function is defined formally as:

kindpg(m) =


“node” if m ∈ Npg

“edge” if m ∈ Epg

“property” if m ∈ Ppg

Notation: In the rest of this thesis, the set of the NEPs of a PG, Npg ∪ Epg ∪ Ppg, may
be written as NEPpg.

Example 2 [Formalization of PG in Figure 3.1 with the GPG formalism]
The PG in Figure 3.1 can be formalized under the GPG definition as the PG TT such
that:

• NTT = {n1, n2} ;ETT ′ = {e1} ;PTT ′ = {p1, p2, p3, p4}
• srcTT = {e1 7→ n1} ; destTT = {e1 7→ n2}
• labelsTT = {n1 7→ {“Person”} ;n2 7→ ∅; e1 7→ {“TravelsWith”}}
• propertiesTT = {(n1, p1), (n1, p2), (n2, p3), (e1, p4)}

• propdetailsTT =

{
p1 7→ (“name”, “Tintin”); p2 7→ (“job”, “Reporter”)
p3 7→ (“name”, “Snowy”); p4 7→ (“since”, 1978)

}

Example 3 [One possible formalization of the PG in Figure 3.2]
The PG in Figure 3.2 can be formalized under the GPG definition as the PG Hd such that:

• NHd = {n1}
• EHd = ∅
• PHd = {p1, p2, p3}
• srcHd = destHd = ∅ → ∅
• labelsHd = {n1 7→ {“Person”}}
• propertiesHd = {(n1, p1), (n1, p2), (p2, p3)}

• propdetailsHd =


p1 7→ (“name”, “Haddock”),

p2 7→ (“name”, “ArchibaldHaddock”),
p3 7→ (“type”, “fullname”)


The PG Hd can not be expressed following Angles’s definition.

1By consequence, the property key is not strictly speaking a key anymore. However, to remain consistent
across the whole thesis, the term “property key” is used in all cases.

3.3. GREMLINABLE PROPERTY GRAPHS 41

Remark 3 [From Gremlinable PGs to Angles PGs]
Consider a GPG satisfying the following hypotheses:

(a) It contains no meta properties.

(b) No element has two properties with the same key.

We show below that all such GPGs can be expressed with Angles’s definition, therefore
these hypotheses are named “Angles’ hypotheses”.

Proof. Note that it is always possible to rewrite the relation propertiespg ⊆ NEP × Ppg into a
function propertiespg : NEP → 2Ppg that maps each NEP to the set of properties that it is in
relation with.

Let pg be a GPG that follows Angles’s hypotheses. We have:

• Npg , Epg and Ppg are pairwise disjoint finite sets
• srcpg : Epg → Npg is a total function
• destpg : Epg → Npg is a total function
• labelspg : Npg ∪ Epg → 2Str is a total function
• propertiespg : Npg ∪ Epg ∪ Ppg → 2Ppg is a total function
• propdetailspg : Ppg → Str × V is a total function

As pg contains no meta property, the domain of propertiespg can be simplified by removing
Ppg : propertiespg : Npg ∪ Epg → 2Ppg (Hypothesis (a))

The set Ppg only appears twice: once in the image of propertiespg and once as the domain
of propdetailspg which is a total function.

We can remove Ppg by replacing any occurrence of a member of Ppg with its image through
propdetailspg . The propdetailspg function can be removed, and the properties function is rewrit-
ten as follows: propertiespg : Npg ∪ Epg → 2Str×V .

We can rephrase (b) as ∀m ∈ Npg ∪ Epg , propertiespg(m) is a function, and apply the
following transformation on propertiespg :

propertiespg : Npg ∪ Epg → 2String×V (Total function)

⇔propertiespg : Npg ∪ Epg → (String → V) (Total function) (b)

⇒propertiespg : (Npg ∪ Epg)× String → V (Partial function) [Uncurryfication]

We end up with the following PG formal definition:

• Npg and Epg are disjoint finite sets.
• srcpg : Epg → Npg is a total function.
• destpg : Epg → Npg is a total function.
• labelspg : Npg ∪ Epg → 2Str is a total function.
• propertiespg : (Npg ∪ Epg)× Str → V is a partial function.

Conversely, all PGs that are covered by Angles’ definition are trivially covered by the GPG
definition: Given a PG h that can be expressed following Angle’s definition, build the set Ph

and a new properties ′h function such as |Ph| = |Dom(propertiesh)| and

∀((holder , key), value) ∈ propertiesh,∃p ∈ Ph,

(holder , p) ∈ properties ′h
∧propdetailsh(p) = (key , value)

42 CHAPTER 3. PREC: THE GENERAL FRAMEWORK

where properties ′h is the propertiesh definition in the GPG formalism.
Hence, following the hypothesis of Angles, our definition can be simplified to the one pro-

posed by Angles. Without these restrictions, the GPG definition encompasses more PG imple-
mentations, i.e. Gremlin-compliant PGs like the PG in Figure 3.2.

Note that the PG TT from Example 2 is not the only one that can be represented by
Figure 3.1: as the identity of the nodes, edges and properties are not specified on the Figure,
any arbitrary element could have been used in place of the one chosen in TT . In other words,
Figure 3.1 does not show a single PG, but an entire class of isomorphic PGs.

Definition 4 [Renaming function]
For all sets N1, N2, E1, E2, P1, P2 where N1∩E1∩P1 = ∅ and N2∩E2∩P2 = ∅, a renaming
is a bijective function ϕ : N1 ∪ E1 ∪ P1 → N2 ∪ E2 ∪ P2 where ∀n ∈ N1, ϕ(n) ∈ N2 ∧ ∀e ∈
E1, ϕ(e) ∈ E2 ∧ ∀p ∈ P1, ϕ(p) ∈ P2.

Example 4
Let TT ′ be another formalization of the PG in Figure 3.1 that uses the sets NTT ′ = {a, b},
ETT ′ = {c} and PTT ′ = {d, e, f, g}.

An example of a renaming function ϕTT from NTT = {n1, n2} ∪ ETT = {e1} ∪ PTT =
{p1, p2, p3, p4} to NTT ′ = {a, b} ∪ ETT ′ = {c} ∪ PTT ′ = {d, e, f, g} is
ϕTT = {n1 7→ a;n2 7→ b; e1 7→ c; p1 7→ d; p2 7→ e; p3 7→ f ; p4 7→ g}.

Definition 5 [Property Graph renaming]
Let pg and pg′ be two GPGs and ϕ be a renaming function from NEPpg to NEPpg ′ . pg

′ =
ϕ(pg) is defined as follows:

• Npg′ = {ϕ(n) | n ∈ Npg}
• Epg′ = {ϕ(e) | e ∈ Epg}
• srcpg′ = {e 7→ ϕ(srcpg(ϕ

−1(e))) | e ∈ Epg′}
• destpg′ = {e 7→ ϕ(destpg(ϕ

−1(e))) | e ∈ Epg′}
• labelspg′ = {m 7→ labelspg(ϕ

−1(m)) | m ∈ Npg′ ∪ Epg′}
• propertiespg′ =

{
(ϕ−1(m), ϕ−1(p)) | (m, p) ∈ propertiespg

}
• propdetailspg′ =

{
m 7→ (key , value)) | (key , value) = propdetailspg(ϕ

−1(m))
}

3.4. DISCUSSION ABOUT GREMLINABLE PROPERTY GRAPHS 43

Example 5
Let us consider back TT , the PG about Tintin defined in Example 1, TT ′ the other
formalization of the same PG and ϕTT the renaming function introduced in the Example 4.

The PG produced by ϕTT (TT) = TT ′ is

• NTT ′ = {a, b} ;ETT ′ = {c} ;PTT ′ = {d, e, f, g}
• srcTT ′ = {c 7→ a} ; destTT ′ = {c 7→ b}
• labelsTT ′ = {a 7→ {“Person”} ; b 7→ ∅; c 7→ {“TravelsWith”}}
• propertiesTT ′ = {(a, d), (a, e), (b, f), (c, g)}

• propdetailsTT ′ =

{
d 7→ (“name”, “Tintin”); e 7→ (“job”, “Reporter”)
f 7→ (“name”, “Snowy”); g 7→ (“since”, 1978)

}

Definition 6 [Isomorphic Property Graph]
Two PGs pg and pg′ are isomorphic iff there exists a renaming function ϕ such that
rename(ϕ, pg) = pg′.

Note that both TT and TT ′ from Examples 1 and 4 match the graphical representation
given in Figure 3.1. An informal way to define the isomorphism between two PGs is to check
if they have the same graphical representation.

Existing works [70, 71] on PG query languages focus on extracting the properties of some
nodes and edges, and never look for the exact identity of NEPs. It is therefore possible to
affirm that the exact identity is not important, and that if two PGs are isomorphic, they are
the same PG as a practical matter.

Remark 4
The formal definition of the PG isomorphism has been built on the GPG definition provided
in Definition 2. From Remark 3, we can deduce that the isomorphism between two PGs
defined from Angles definition is defined as two graphs for which there is a renaming from
the set of nodes and edges from one PG to the other.

3.4 Discussion about Gremlinable Property Graphs

In the previous section, we introduced a new formalization of Property Graphs: the Gremlinable
Property Graphs formalized by Definition 2. As pointed out by Remark 3, this formalization
can model all PGs that can be modeled following the state-of-the-art definition of the PGs, the
definition from Angles, recalled by Definition 1.

It is also able to support a super-set of the PGs that are supported by Neo4j and the
TinkerPop implementation that we are aware of: both Neo4j and the Gremlin API are unable
to support multiple labels on the same edge, despite Angles’ formalization supporting this
feature.

In this thesis, the Gremlinable Property Graph definition serves as a starting point, as it is
able to support both the state-of-the-art standard definition and the existing implementations.

When converting Property Graphs, in this thesis, depending on the expressivity of the
studied transformation method, the set of convertible PGs may be restricted. Furthermore,
for simplicity, as long as the conversion from the Gremlinable PG definition to another PG
definition is computable, we allow ourselves to use the later PG definition.

44 CHAPTER 3. PREC: THE GENERAL FRAMEWORK

Table 3.1: List of prefixes used in this thesis
Prefix IRI
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

xsd http://www.w3.org/2001/XMLSchema#

ex http://example.org/

foaf http://xmlns.com/foaf/0.1/

schema http://schema.org/

prec http://bruy.at/prec#

pvar http://bruy.at/prec-var#

For example, in Chapter 5, the proposed conversion only supports PG without meta prop-
erties i.e. the subset of GPGs that are covered by Angles’ original definition (Definition 1), as
we have shown in Remark 3. In that chapter, we therefore work with Angles’ definition, as it
is better suited for this use case. In Chapter 4, as PREC-C supports features not supported by
Angles’ definition, for instance meta properties, the used formalism is the Gremlinable PG.

3.5 Formal definitions of RDF and template graphs

In this section, first we recall the formal definition of RDF graphs, with the addition of RDF-
star. Then, we introduce the concept of template triples.

3.5.1 RDF(-star) graphs

Definition 7 [Atomic RDF terms]
Let I be the infinite set of IRIs, L = Str × I be the set of literals and B be the infinite set
of blank nodes. The sets I, L and B are disjoint.

IRIs, literals and blank nodes are grouped under the name “Atomic RDF terms”.
Notation: In the examples, the IRIs, the elements of I, will be either noted as full IRIs

between brackets, e.g. <http://example.org/Tintin> or by using prefixes to shorten the
IRI e.g. ex:Tintin. The list of prefixes used in this paper is described in Table 3.1.

Literals, the elements of L, can be noted either by using the usual tuple notation, e.g.
(“1978”, xsd:integer) or with the compact notation “1978”xsd:integer.

Finally, the blank nodes, the elements of B, are denoted by blank node labels prefixed
with the two symbols “ :” e.g. :edge, :2021 or :node35 .

Definition 8 [RDF(-star] triples and graphs)
The set of all RDF triples is denoted RdfTriples and is defined as follows:

• ∀subject ∈ I ∪ B, ∀predicate ∈ I,∀object ∈ I ∪ B ∪ L, (subject , predicate, object) ∈
RdfTriples .

• ∀tsubject ∈ RdfTriples ,∀tobject ∈ RdfTriples , and for all subject, predicate and
object defined as above, (tsubject , predicate, object), (subject , predicate, tobject) and
(tsubject , predicate, tobject) are members of RdfTriples .

A subset of RdfTriples is an RDF graph.

3.5. FORMAL DEFINITIONS OF RDF AND TEMPLATE GRAPHS 45

Both the atomic RDF terms defined in Definition 7 and RDF triples are terms. A triple
used in another triple, in subject or object position, is a quoted triple.

Remark 5 [RDF-star is conflated with the vanilla RDF model]
For the sake of readability, although RDF-star is not yet part of the official RDF recom-
mendation [72], we conflate RDF-star and RDF in this thesis. When we mention an RDF
triple or an RDF graph, we allow them to contain quoted triples.

Example 6

1. The triple (ex :tintin, rdf :type, ex :Person) is an element of RdfTriples . Its Turtle
representation is ex:tintin rdf:type ex:Person.

2. The RDF graph exposed in Listing 5.1 is composed of 5 triples written in Tur-
tle format. In our formalism, the second triple, :tintin foaf:name "Tintin",
is (:tintin, foaf :name, “Tintin”xsd:string).

3. (ex :tintin, ex :travelsWith, ex :snowy) is an element of RdfTriples .
((ex :tintin, ex :travelsWith, ex :snowy), ex :since, “1978”xsd:integer) is an element of
RdfTriples that has a quoted triple in subject position.

Definition 9 [Term membership]
The ∈ operator is extended to triples to check if a term is part of a triple.

∀term ∈ I ∪B ∪ L ∪ RdfTriples ,∀(s, p, o) ∈ RdfTriples ,

term ∈ (s, p, o)⇔


term = s

∨ (s ∈ RdfTriples ∧ term ∈ s)
∨ term = p
∨ term = o
∨ (o ∈ RdfTriples ∧ term ∈ o)



Example 7 [Term membership examples]

• rdf :type ∈ (ex :tintin, rdf :type, ex :Person).
• ex :snowy ̸∈ (ex :tintin, rdf :type, ex :Person).
• :n ∈ (:n, rdf :type, ex :Person)
• :e ̸∈ (:n, rdf :type, ex :Person)
• xsd:string ∈ (xsd:string, ex:p, ex:o)
• xsd:string ̸∈ (ex :tintin, ex:name, “Tintin”xsd:string)
• ex :tintin ∈ ((ex :tintin, ex :travelsWith, ex :snowy), ex :since, “1978”xsd:integer)

46 CHAPTER 3. PREC: THE GENERAL FRAMEWORK

Definition 10 [List of blank nodes used in an RDF graph]
For every RDF graphs rdf , BNodes(rdf) is the list of blank nodes in rdf i.e. ∀rdf ⊆
RdfTriples ,BNodes(rdf) = {bn ∈ B | ∃t ∈ rdf , bn ∈ t}.

Example 8
Let GTT be the RDF graph exposed on Listing 5.1. BNodes(GTT) = { :tintin, :snowy}

3.5.2 Template graphs

PREC uses a novel templating system. Already existing systems, like RML [73][19], use a com-
plex system to express which triples to produce. Some other works like SPARQL generate [74]
are not expressed in terms of pure RDF documents but through SPARQL queries.

However, RDF-star opens new possibilities in terms of templating. Instead of using convo-
luted constructions to describe how to build triples, it is now possible to just use the triples
themselves2. The only remaining issue is how to describe the terms that are going to change,
i.e. the terms that depend on the data.

The exact method of how placeholders are replaced by RDF terms depends on the conversion
method, i.e. PREC-C in Chapter 4 and PRSC in Chapter 5 will use different methods to
produce RDF triples from template triples.

Definition 11 [Term placeholders]
Placeholders are special terms that can only be used in template triples (they can not be
used in RDF triples). They are not included in any of the previously defined sets.

There are two types of placeholders:

• Node placeholders can be used in the subject and in the object position of a template
triple. They are bound to be replaced with blank nodes or IRIs. The set of node
placeholders is PN .

• IRI placeholders can be used in any position of a template triple. they are bound to
be replaced with IRIs. The set of IRI placeholders is PI .

• Literal placeholders can only be used in the object position of a template triple. They
are bound to be replaced with literals. The set of literal placeholders is PL.

The exact composition of the sets PN , PI and PL depends on the conversion method.
The list of their members will be described at the beginning of the description of each
converter.

Multiple strategies can be applied to define the placeholders:

• Each algorithm define a finite list of fixed placeholders, prefixed by ? in the formal defini-
tions. For example, ?self is a placeholder that is bounded to be replaced with the NEP
itself. This strategy is mostly used to define the placeholders in the sets PN and PI . In
the implementation, these placeholders are represented by IRIs in the reserved namespace
pvar, e.g. ?self is represented by pvar:self.

2Named graphs could also have been used instead of a list of quoted triples to list the triples to produce.
However, to the best of our knowledge, there are no work discussing this possibility.

3.6. PREC (PG TO RDF GRAPH EXPERIMENTAL CONVERTER) 47

• For literal placeholders, another possible strategy is to use infinite sets. In the PRSC
conversion presented in Chapter 5, the sets of literal placeholders PL will be defined as
the set of all pairs in the set Str × {valueOf }, for example (name, valueOf). In the im-
plementation, this is reflected by the introduction of the special datatype prec:valueOf,
introducing placeholders like "name"^^prec:valueOf. These placeholders will be re-
placed by the algorithm by the value of the property that is named by the placeholder,
for instance the value of the property whose key is “name”.

• Other strategies are possible, but are not applied in this thesis. For example, the imple-
mentation could use placeholders such as
"http://example.org/{name}"^^prec:templatedIRI to produce IRIs depending on the
content of the PG. However, note that using placeholders that are implemented as literals
with a special datatype restrict the usage of these literals to the object position in the
standard RDF-star model. Using these terms in all positions requires to use the extended
RDF model that allows any kind of term to appear in all positions. However, when these
use cases are met, a more sophisticated templating system like the one from R2RML
may be more relevant, as they already support these features at the cost of being more
verbose.

Definition 12 [Template triples]
The set Templates of all template triples is defined inductively as follows:

• ∀subject ∈ I ∪ PN ∪ PI ,∀predicate ∈ I ∪ PI , ∀object ∈ I ∪ PN ∪ PI ∪ L ∪ PL,
(subject , predicate, object) ∈ Templates .

• ∀tsubject ∈ Templates ,∀tobject ∈ Templates , and for all subject , predicate and
object defined as above, (tsubject , predicate, object), (subject , predicate, tobject) and
(tsubject , predicate, tobject) are members of Templates .

Any subset of Templates is named a template graph. Note that unlike RdfTriples ,
the elements of Templates can not contain blank nodes but can contain placeholders. Also
note that the set of template triples are formally different from the set of template triples.

Similarly to Definition 8, template triples can contain nested template triples. Similarly
to Definition 9, the membership operator ∈ is extended to template triples.

Example 9
Consider that ?self is a member of the set PN .

The template triple (?self , rdf :type, ex :Person) is a member of Templates but not of
RdfTriples because it uses an element of PN .

The triple (ex :tintin, rdf :type, ex :Person) is both an element of RdfTriples and an ele-
ment of Templates .

Note that the structure of the template triple with ?self and the structure of the second
triple is very similar: A converter is expected to produce triples like the second triple from
the template triple by replacing the placeholder ?self with appropriate terms.

48 CHAPTER 3. PREC: THE GENERAL FRAMEWORK

3.6 PREC (PG to RDF graph Experimental Converter)

3.6.1 The terminology around PREC

Figure 3.3 shows the main component in the PREC framework, both as formally defined in this
thesis on the left hand-side and as implemented on the right-hand side.

In both versions, the input is composed of the PG to convert and a context, and the output
is an RDF graph. A context is the input provided by the user to guide the transformation of
the PG. In the formal definitions, it is a function that tells how to map the elements of the PG
to template graphs. In the implementation, it takes the form of a configuration file, expressed
in RDF.

As mentioned previously, two converters are presented in this thesis: the PREC-C converter
that is presented in Chapter 4 and the PRSC converter presented in Chapter 5. The contexts
that are used for PREC-C and for PRSC are very different: there is no ambiguity if one

Figure 3.3: The main components of PREC, both as formally defined and in the implementation

3.6. PREC (PG TO RDF GRAPH EXPERIMENTAL CONVERTER) 49

converter is used or the other from the content of the context.
Formally, these converters do no share any step: their computations are defined separately.

However, they still share some common concepts, like the concept of template graphs presented
in Section 3.5.2 or the concept of Blank Node Property Graphs presented in the next section.
As the converters share no part during the processing, and as the PREC-C contexts and PRSC
contexts are trivially distinguishable, following the formal definitions, PREC only serves as a
term to talk about both PREC-C and PRSC.

In the implementation, the PREC-C and the PRSC converter are not directly called by the
PREC framework. Because of the great diversity of PG engines and APIs, before the context
is applied, the PG is retrieved using one of the supported PG querying API (at the time of
writing, Neo4j or Gremlin) and stored in memory. This step is referred as the PREC-0 (PREC
with 0 contexts) step. The produced “intermediate representation of the PG” is an RDF graph,
but the format is not relevant as this intermediate representation is produced to be used as
a PG input by the PREC-C or the PRSC implementation. The benefit of this architecture
is to decouple the process of adding a new supported API and the process of adding a new
conversion algorithm. When the “intermediate representation of the PG” has been produced,
the context is read and the converter corresponding to the context is used. As the input format
of the context is the same for both converters, an RDF file, and as the context is expressed
as a list of rules to apply, we say that contexts can be written using two distinct rulesets: the
PREC-C ruleset and the PRSC ruleset.

In the following two chapters, we start by formally defining the corresponding converters,
then present some consideration specific to their respective implementations.

3.6.2 Blank node Property Graphs

First, note that in the PG definitions, the sets N , E and P are very loosely characterized, and
their exact members are considered not important. The only important aspects are that they
are finite and disjoints. Implementations will often use some identifiers that can be queried
by the user: for example, Neo4j use numerical identifiers for the node and edges. However,
these identifiers are generally not considered, and graphs are queried using the content of some
properties and then by traversing the graphs through the edges. It means that in practice, two
isomorphic PGs are considered equal by the users.

Note that the set of blank nodes B in RDF graphs is also loosely characterized: its only
distinctive trait is that it is disjoint from the sets of IRIs and literals.

When implementing a PG to RDF converter without any information loss, the first issue is
to decide how each NEP will be represented. The easiest method is to assign a blank node to
each NEP to identify each one of them.

When formally defining the conversion, we also need to define this step of mapping the NEPs
to blank nodes. However, we mentioned that the exact identity of the NEP is not important.
Theoretically, nothing prevents a Property Graph to take its nodes and edges in the set B, in
other words, to have N ⊂ B and E ⊂ B.

Furthermore, for any PG pg , we can build an isomorphic PG pg ′ such that Npg ′∪Epg ′∪Ppg ′ ⊂
B. Being isomorphic to pg , pg ′ is indistinguishable from pg for any practical purpose, because
the exact identity of nodes and edges is not important: only the structure and the values of
the PG are. Therefore, without any loss of generality, we can restrict our work to PGs whose
nodes, edges and properties are elements of B.

50 CHAPTER 3. PREC: THE GENERAL FRAMEWORK

Definition 13 [Blank node Property Graph]
A blank node Property Graph is a Property Graph for which all NEPs are blank nodes.

In the following, for any set of Property Graph named X, we will denote its subset of
blank node properties by BX :

BX =

pg ∈ X

∣∣∣∣∣∣
Npg ⊂ B

∧ Epg ⊂ B
∧ Ppg ⊂ B if the set Ppg exists in this PG formalization


In particular, a Blank node Gremlinable Property Graph (BGPG) is a Gremlinable

Property Graph, a member of GPGs, whose nodes, edges and properties are blank nodes.
The set of all BGPG is noted BGPG .

BGPG = {g ∈ GPGs | NEP g ⊂ B}

Remark 6 [All Property Graph sets in this thesis]
The full list of PG sets that are used in this thesis is as follows:

• Gremlinable Property Graphs, denoted by the set GPG, as defined in Definition 2
and its corresponding BGPG set.

• Angles Property Graphs, denoted by set APG, as defined in Definition 1 and its
corresponding BAPG set. It is the usual PG description. The BAPG set will be used
in Chapter 5.

• PREC-C compatible Property Graphs, denoted by set CPG, will be defined in Def-
inition 14. Its corresponding Blank Node Property Graph set is BCPG. CPG is a
subset of the BPG property graphs where all edges have one and only one label. The
BCPG set will be used in Chapter 4.

Similarly to the usual PGs defined in Definition 1, two BPGs are considered to be distinct
and their sets of PG elements are only considered for this given PG. To the best of our knowl-
edge, in all existing works, the possibility of an element e being shared by two PGs is never
considered as the only semantic of e is a local semantic in a given PG pg through the srcpg ,
destpg , labelspg , propertiespg , and propdetailspg if it exists in the currently used PG formaliza-
tion, functions. Moreover, because two isomorphic PGs are considered, if two PGs were to
share the same element e, a PG isomorphic to one of them would be instead considered to
ensure that the PG elements of two PGs are distinct, and usual works would consider that
this step would not lead to any loss of information. Likewise, for two given BPGs, the sets of
their PG elements is considered distinct. This is consistent with how the merge operation of
RDF graphs is defined [75]; to merge two RDF graphs, the shared blank nodes of the two RDF
graphs are first distinguished before performing the mathematical union of the RDF graphs.

The PG to RDF graph conversion functions described in this thesis are only defined for
Blank node Property Graphs. In other words, the PG input in Figure 3.3 is always a BPG. If
the user does not have a BPG but only a PG, they are simply required to build an isomorphic
BPG which is a trivial operation.

This restriction does not impede the generality of our work, and provides several advantages:

• In formal definitions, this enables us to define the PG to RDF conversion as a determin-
istic operation, i.e. a function. It is beneficial, in particular when trying to prove the
reversibility of the conversion.

3.6. PREC (PG TO RDF GRAPH EXPERIMENTAL CONVERTER) 51

• Implementation-wise, building a BPG isomorphic to the PG to convert is equivalent to
assigning to each node, edge and property (if applicable in the case of properties) a blank
node, and sticking to this choice for the duration of the conversion process. Therefore, this
assignation can be seen as the first step of the conversion. In this thesis, as we will never
introduce any further blank node, this step is the only step that is not deterministic. Note
that in the RDF world, two graphs which only differ in the name of their blank nodes,
i.e. two isomorphic RDF graphs, are usually considered equal.

52 CHAPTER 3. PREC: THE GENERAL FRAMEWORK

Chapter 4

PREC-C: a low level converter

In this chapter, we introduce the first converter named PREC-C (for PREC context).

The PREC-C algorithm has been designed by using the transformation performed by NeoSe-
mantics as a starting point. NeoSemantics is a Neo4j PG to RDF converter (and back) that
produces a triple for each label, a triple for each edge and a triple for each property. The predi-
cate of triples forged from edges and properties, and the object of triples forged from labels are
forged from the label or the property key. However, this approach suffers from two issues: 1) it
does not allow the user to easily choose to which IRI the label or property key is mapped, and
2) more generally, it does not let the user choose the structure of the produced RDF graph. For
example, consider the running example and imagine that Snowy stops travelling with Tintin.
In this case, we would want to avoid producing an RDF triple that asserts that Tintin still
travels with Snowy. However, NeoSemantics does not allow to not produce this triple.

To tackle this issue, we want to enable the user to specify how to convert into RDF the PG
for which they do not want the default representation. To specify which part of the PG for
which they want to specify the transformation, we define the concept of selectors. There are
three kinds of selectors: node selectors, edge selectors and properties selectors. Each kind of
selector selects NEPs using the label or the property key. The PREC-C context is defined as
a mapping from selectors to template graphs: after a collection of NEPs has been selected by
a selector, the template graph is used to produce RDF triples. As different selectors may be
mapped to different template graphs, this approach makes it possible to specify different RDF
structures for different parts of the PG. In particular, each template specifies de facto the IRI
of the corresponding label or property key.

In Section 4.1, we first formally define how PGs are transformed into RDF graphs using
the PREC-C context. In particular, the notions of selectors and PREC-C context are formally
defined, and we specify how the different template graphs interact with each other. Then in
Section 4.2, we propose a method to express PREC-C contexts using RDF graphs through the
definition of the PREC-C ontology, and relate the PREC-C ontology with the formal definition.

A PREC-C context consists in overriding a default behavior: similarly to NeoSemantics
which is always able to convert any PG (as it does not have the concept of context to begin
with), PREC-C is able to produce an RDF graph from a PG and an empty context.

It is worth noting that, in our implementation described on the right-hand side of Fig-
ure 3.3, the PREC-0 step is equivalent to applying PREC-C with an empty context. Then the
implementation of the PREC-C step transforms the intermediate representation based on the
context, this transformation being the identity if the context is empty.

53

54 CHAPTER 4. PREC-C

4.1 Formal definition of PREC-C

In this section, the PREC-C algorithm is formally described. It takes as input a PG and a
context and outputs an RDF graph. Intuitively, the context allows the user to specify how the
different NEPs of the PG are mapped to RDF constructs.

In order to better explain the design choices of the PREC-C algorithm, we will present
several versions of it; each adding more features to the previous one.

4.1.1 Characterization of the compatible graphs

The PREC-C conversion algorithm is only defined for a subset of Property Graphs: the one
for which all edges have one and only one label. This is motivated by the fact that we consider
Cypher and Gremlin as the mainly used APIs for Property Graph querying, and they both
share the common restriction of one and only one label for edges.

Definition 14 [PREC-C compatible Property Graphs]
A PREC-C compatible Property Graph (CPG) is a Gremlinable Property Graph for which
all edges have one and only one label:

CPGs = {pg ∈ PGs | ∀e ∈ Epg, |labelspg(e)| = 1}

The set of all CPGs is denoted CPGs .
As discussed in Definition 13, the set BCPGs is the subset of PREC-C compatible

Property Graphs where all nodes, edges and properties are blank nodes:

BCPGs = {pg ∈ BPGs | ∀e ∈ Epg, |labelspg(e)| = 1}

4.1.2 First iteration: using a default context

Algorithms 1, 2 and 3 describe the operation performed by PREC-C to convert a PG to an
RDF graph, without any consideration about the user’s choices. The RDF graph produced by
this first version of PREC-C corresponds exactly to the PREC-0 pre-processing used in our
implementation as described in Section 3.6.

Overview of the main algorithm precc in Algorithm 1 The entry point of the PREC-C
conversion is the precc function described in Algorithm 1. It takes a PG named pg that belongs
to the set BCPGs .

The precc function is composed of three main loops, one per kind of NEP, that loops on
each NEP of this kind. The algorithm mainly consists in the following steps, for each NEP:

• Compute the selectors matching it:

– For nodes, there is one independent selector for each label.
– For edges, there is only one selector based on the label.
– For properties, there is only one selector based on the property key.

• Pass the selector(s) to the corresponding p0NodeLabelRules , p0EdgeRules or
p0PropertyRules function to get a template graph. The function returns a template graph
that describes the structure of the triples to produce.

• Apply the build function to the template graph to convert the placeholders. Then, the
produced triples are merged with the output RDF graph.

4.1. FORMAL DEFINITION OF PREC-C 55

The build function in Algorithm 2 The build function relies on a sub-function named
β. The β function recurses on the given triple until it is called on an atomic RDF term1 or
a placeholder. Then it checks its value, and if it is a placeholder, it replaces it with a value
extracted from the Property Graph.

Note that a utility function getHolder is defined to find the NEP holding a given property.

The PREC-0 rules The PREC-02 functions, i.e. the p0NodeLabelRules , the p0EdgeRules
and the p0PropertyRules functions, provide for a given label or property key the corresponding
template graph. They are described in Algorithm 3.

These functions suppose that there is a function forgeIRI that can build an IRI from an
IRI prefix and a string literal.

Note that the p0NodeLabelRules , p0EdgeRules and p0PropertyRules functions shape the
schema of the produced RDF graph. The produced RDF graph complies with the schema
presented in Figure 4.2. The idea of this representation is to describe the PG with generic RDF
constructions, in particular by using the standard RDF reification for PG edges.

Algorithm 1: The algorithm applied by PREC-C (without any context)

1 Function precc(pg ∈ BCPGs)→ 2RdfTriples :
2 rdf ← {}
3 forall n ∈ Npg do
4 rdf ← rdf ∪ {(n, rdf :type, pgo:Node)}
5 forall label ∈ labelspg(n) do
6 template ← p0NodeLabelRules(label)
7 rdf ← rdf ∪ build(template, pg, n)

8 forall e ∈ Epg do
9 rdf ← rdf ∪ {(e, rdf :type, pgo:Edge)}

10 label ← the only value in the set labelspg(e)
11 template ← p0EdgeRules(label)
12 rdf ← rdf ∪ build(template, pg, e)

13 forall p ∈ Ppg do
14 (key ,)← propdetailspg(p)

15 template ← p0PropertyRules(key)
16 rdf ← rdf ∪ build(template, pg, p)

17 return rdf

1An atomic RDF term is any term that is not an RDF Triple: either a literal, an IRI or a blank node. In
RDF 1.1, the recursion depth will never exceed 1. In RDF-star, however, β may recurse further.

2The C in PREC-C stands for Context. However, in this first version, the user provides no (0) context, so
the algorithm falls back to PREC-0 rules.

56 CHAPTER 4. PREC-C

Algorithm 2: The build function for PREC-C

/* Transform the placeholders in the template graph t with values in the PG */

1 Function build(tps ⊂ Templates , pg ∈ BCPGs , x ∈ Npg ∪ Epg ∪ Ppg)→ 2RdfTriples :
2 triples ← {}
3 forall tp ∈ tps do
4 triples ← triples ∪ {β(tp, pg , x)}
5 return triples

/* Transform the placeholders in the triple or term t with values in the PG */

6 Function β(tp, pg, x):
7 if tp ∈ RdfTriples then
8 (s, p, o)← tp
9 return (β(s, pg, x), β(p, pg, x), β(o, pg, x))

10 else if tp ∈ L then return tp
11 else if tp ∈ B then raise Error
12 else if tp =?self then return x
13 else if tp =?source then return srcpg(x)
14 else if tp =?destination then return destpg(x)
15 else if tp =?holder then return getHolder(x, pg)
16 else if tp =?value then
17 (key , value) = propdetailspg(x)

18 return toLiteral(value)

19 else
20 assert(tp ∈ I)
21 return tp

/* Return the entity the property is on */

22 Function getHolder(p ∈ NEPpg, pg ∈ BCPGs):
23 assert(p ∈ Ppg)

24 holders =
{
holder | (holder , p) ∈ propertiespg

}
25 assert(|holders| = 1)
26 return the only holder in the set holders

4.1. FORMAL DEFINITION OF PREC-C 57

Algorithm 3: General purpose PREC-0 functions for Algorithm 1

1 Function p0NodeLabelRules(label):
/* Build an IRI for the label */

2 triples ← {}
3 iri ← forgeIRI (:label/, label)
4 triples ← triples ∪ {(iri , rdfs :label , toLiteral(label))}

/* Add the triples specific to this node */

5 triples ← triples ∪ {(?self , rdf :type, iri)}
6 return triples

7 Function p0EdgeRules(label):
/* Build an IRI for the label */

8 triples ← {}
9 iri ← forgeIRI (:label/, label)

10 triples ← triples ∪ {(iri , rdfs :label , toLiteral(label))}
/* Add the triples specific to this edge */

11 triples ← triples ∪ {(?self , rdf :predicate, iri)}
12 triples ← triples ∪ {(?self , rdf :subject , ?source)}
13 triples ← triples ∪ {(?self , rdf :object , ?destination)}
14 return triples

15 Function p0PropertyRules(key):
16 triples ← {}

/* Build an IRI for the property key */

17 iri ← forgeIRI (:key/, key)
18 triples ← triples ∪ {(iri, rdf :type, prec:PropertyKey)}
19 triples ← triples ∪ {(iri , rdfs :label , toLiteral(key))}

/* Add the triples specific to this property */

20 triples ← triples ∪ {(?self , rdf :type, prec:PropertyKeyValue)}
21 triples ← triples ∪ {(?holder, iri , ?self)}
22 triples ← triples ∪ {(?self , rdf :value, ?value)}
23 return triples

58 CHAPTER 4. PREC-C

Example 10 [PREC-0 on the running example]
Consider the PG in Figure 3.1 using the GPG formalism introduced in Example 2.

The output of the precc algorithm in Algorithm 1 is provided in Listing 4.1

Listing 4.1: Output of PREC-0 on the running example
Type of _:n1 (generated by the precc function)

_:n1 rdf:type pgo:Node .

Label of Tintin (p0NodeLabelRules)

:label/Person rdfs:label "Person" .

_:n1 rdf:type :label/Person .

Type of _:n2 (generated by the precc function)

_:n2 rdf:type pgo:Node .

Type of _:e1 (generated by the precc function)

_:e1 rdf:type pgo:Edge .

TravelsWith edge (p0EdgeRules)

:label/TravelsWith rdfs:label "TravelsWith" .

_:e1 rdf:predicate :label/TravelsWith .

_:e1 rdf:subject _:n1 .

_:e1 rdf:object _:n2 .

name property of Tintin (p0PropertyRules)

:key/name rdf:type prec:PropertyKey . # Also added by _:p3

:key/name rdfs:label "name" . # Also added by _:p3

_:p1 rdf:type prec:PropertyKeyValue .

_:n1 :key/name _:p1 .

_:p1 rdf:value "Tintin" .

job property of Tintin (p0PropertyRules)

:key/job rdf:type prec:PropertyKey .

:key/job rdfs:label "job" .

_:p2 rdf:type prec:PropertyKeyValue .

_:n1 :key/name _:p2 .

_:p2 rdf:value "Reporter" .

name of Snowy (p0PropertyRules)

_:p3 rdf:type prec:PropertyKeyValue .

_:n2 :key/name _:p3 .

_:p3 rdf:value "Snowy" .

since property of the edge (p0PropertyRules)

:key/since rdf:type prec:PropertyKey .

:key/since rdfs:label "since" .

_:p4 rdf:type prec:PropertyKeyValue .

_:e1 :key/since _:p4 .

_:p4 rdf:value 1978 .

4.1.3 Second iteration: context basic support

In this section, the support of the context is added to allow users to customize the transforma-
tion. Indeed, the transformation presented in the previous Section 4.1.2 can not be customized,
despite the motivations of building PREC-C being to be able to do it.

PREC-C Context

A PREC-C context is a function that maps selectors to template graphs. The set of PREC-C
contexts is Ctxc.

4.1. FORMAL DEFINITION OF PREC-C 59

Definition 15 [PREC-C Placeholders]
The set of PREC-C placeholders is as follows:

• The node placeholders, i.e. the members of the set PN , are ?self , ?source,
?destination, ?holder. They are respectively placeholders for the NEP itself, the
source node of an edge, the destination node of an edge and the holder of a property.

• The IRI placeholders, i.e. the members of the set PI , are ?nodeLabelIRI, ?edgeIRI
and ?propertyIRI. They are respectively placeholders for an IRI that represent the
label of a node, the label of an edge and a property key.

• The literal placeholders, i.e. the members of the set PL, are ?label, ?key and ?value.
They are respectively placeholders for the string representation of a node or edge
label, the string representation of a property key, and the property value.

Definition 16 [Selector of NEPs]
A selector lets the user select NEPs depending on their type and their position in the PG
relatively to NEPs they are linked to.

There are three kinds of selectors, one per kind of NEP:

• Node selectors are pairs (“node”, theLabel) where theLabel is a node label.
• Edge selectors are tuples (“edge”, label , srcLabels , destLabels) where label is the edge
label, srcLabels is the list of all source node labels and destLabels is the list of all
destination node labels.

• Property selectors are tuples (“property”, key , holderKind , holderLabels) where key is
the property key, holderKind is the kind of the property holder and holderLabels is
the list of labels of the holder or the singleton composed of the holder key if it is a
property key.

The set of all selectors is denoted Sel and is formally defined as:

Sel =
⋃

{“node”} × Str Node selectors
{“edge”} × Str × 2Str × 2Str Edge selectors

{“property”} × Str × {“node”, “edge”, “property”} × 2Str Property selectors

Definition 17 [Computing the selector of a NEP]
Let pg be a PG.

A node can be selected by multiple node selectors. The list of all selectors of a node n
is {(“node”, theLabel) | theLabel ∈ labelspg(n)}. Note that nodes that have no label do not
have any selector.

Edges and properties have one and only one selector, that can be computed by the
selectpg : Epg ∪ Ppg → Sel function.

For edges, the selectpg function computes the labels and the edge, its source and its

60 CHAPTER 4. PREC-C

destination:

∀e ∈ Epg, selectpg(e) = (“edge”, label , srcLabels , destLabels) with:

{label} = labelspg(e),

srcLabels = labelspg(srcpg(e)),

destLabels = labelspg(destpg(e))

For properties, the selectpg function computes the key of the property, the kind of the
holder and its labels/property key:

∀p ∈ Ppg, selectpg(p) = (“property”, key , holderKind , holderLabels) with:

(key ,) = propdetailspg(p),

holderKind = kindpg(getHolder(p, pg)),

holderLabels =

{
labelspg(getHolder(p, pg)) if getHolder(p, pg) ∈ Npg ∪ Epg{

propdetailspg(getHolder(p, pg))
}

if getHolder(p, pg) ∈ Ppg

Example 11 [Selectors]
In the PG that serves as a running example in Figure 3.1:

• The selector of the “Person” label of Tintin is (“node”, “Person”).
• The selector of the “name” property of Tintin is
(“property”, “name”, “node”, {“Person”}).

• The selector of the “name” property of Snowy is (“property”, “name”, “node”, {}).
• The selector of the “job” property of Tintin is (“property”, “job”, “node”, {“Person”})
• The selector of the only edge in the PG is (“edge”, “TravelsWith”, {“Person”} , {}).
• The selector of the “since” property of the edge is
(“property”, “since”, “edge”, {“TravelsWith”})

The PG in Figure 3.2 only has one node on which there are two “name” properties:
one without any meta-property and one with a “type” meta-property. The selector of the
“type” meta-property is (“property”, “type”, “property”, {“name”}).

Definition 18 [PREC-C contexts]
A PREC-C context is a total function that maps all selectors to template graphs:

ctx ∈ Ctxc ⇔ ctx : Sel → 2Templates

The template graphs must be valid i.e. placeholders reserved to a specific kind should
only be used in template graphs used by this kind. The list of allowed placeholders is:

• In template graphs used by node label selectors: ?self .
• In template graphs used by edge selectors: ?self , ?source and ?destination.
• In template graphs used by property selectors: ?self , ?holder and ?value.
• The placeholders ?nodeLabelIRI, ?edgeIRI, ?propertyIRI, ?key and ?label are not
allowed in any template graph: they are used for internal purposes discussed later in
Section 4.2.2.

4.1. FORMAL DEFINITION OF PREC-C 61

Algorithm 4: The algorithm applied by PREC-C with a context

1 Function precc(pg ∈ BCPGs , ctx ∈ Ctxc)→ 2RdfTriples :
2 rdf ← {}
3 forall n ∈ Npg do
4 rdf ← rdf ∪ {(n, rdf :type, pgo:Node)}
5 forall label ∈ labelspg(n) do
6 selector ← (“node”, “label”)
7 template ← ctx (selector)
8 rdf ← rdf ∪ build(template, pg, n)

9 forall e ∈ Epg do
10 rdf ← rdf ∪ {(e, rdf :type, pgo:Edge)}
11 label ← the only value in the set labelspg(e)
12 selector ← selectpg(e)
13 template ← ctx (selector)
14 rdf ← rdf ∪ build(template, pg, e)

15 forall p ∈ Ppg do
16 (key ,)← propdetailspg(p)

17 selector ← selectpg(p)
18 template ← ctx (selector)
19 rdf ← rdf ∪ build(template, pg , p)

20 return rdf

Definition 19 [The PREC-0 context]
The PREC-0 context ctx p0 is defined as:

ctx p0(selector) =


p0NodeLabelRules(label) if selector = (“node”, label)

p0EdgeRules(label) if selector = (“edge”, label , 1, 2)
p0PropertyRules(key) if selector = (“property”, key , 1, 2)

ctx p0 is the context implicitly used in Algorithm 1, i.e. the precc function in Algorithm 1
is the same function as the precc function in Algorithm 4 when the value of the second
parameter is ctx p0.

Discussion about selectors

Selectors do not only hold the kind and the label of the NEPs they select, but also some
information about the NEPs the selected NEP is connected to.

This enables to use different template graphs on NEPs with the same kind and label. For
example, consider the running example PG. The name of a person and the name of an animal
may use different IRIs to provide a more precise semantics.

Property selectors could be further extended by including more information about the
holder, the holder of the holder, . . . like in Definition 20 instead of using only information
about the holder. Doing so would not really change the formal definitions, as only the Sel
set and the select function would need to be redefined. The selector definition presented in
Definition 16 is the one that has been implemented.

62 CHAPTER 4. PREC-C

Definition 20 [Possible property selector extension]
For a given PG pg and a given property p, the selectpg(p) function could be redefined as
selectpg(p) = (“property”, subselectpg(p)) with

subselectpg(m) =


labelspg(m) if m ∈ Npg(

subselectpg(srcpg(m),
subselectpg(destpg(m))

)
if m ∈ Epg(

key ,
subselectpg(getHolderpg(m))

)
if m ∈ Ppg

with (key , 1) = propdetailspg(m)

Note that this definition is not actually used. The rest of the chapter sticks to the
selection definition provided in Definition 16.

4.1.4 Third iteration: supporting ?self -less templates

Motivation

Figure 4.1: A simplified PG where Tintin knows Haddock

Listing 4.2: The expected RDF graph from the PG in Figure 4.1
_:tintin foaf:name "Tintin" .

_:haddock foaf:name "Haddock" .

_:tintin foaf:knows _:haddock .

<< _:tintin foaf:knows _:haddock >> ex:since "The Crab ..." .

Consider the PG in Figure 4.1. A fairly idiomatic way to represent the same information in
RDF is exposed in Listing 4.2. To produce the later RDF graph using PREC-C, it is expected
that the following context can be used:

ctx (sel) =


{(?holder , foaf :name, ?value)} if sel = (“property ′′, “name ′′, 1, 2)
{(?holder , ex :since, ?value)} if sel = (“property ′′, “since ′′, 1, 2)

{(?source, foaf :knows , ?destination)} if sel = (“edge ′′, “knows ′′, 1, 2)
∅ otherwise

However, by following the exposed algorithms, the produced RDF graph is not the one
exposed in Listing 4.2 but the one exposed in Listing 4.3. Note that the fourth triple is not
the same: instead of using the new identity of the edge, :tintin foaf:knows :haddock, the
PREC-C engine continues to use the edge blank node.

Listing 4.3: The expected RDF graph currently produced by PREC-C from the PG in Figure 4.1
and the given context
_:tintin foaf:name "Tintin" .

_:haddock foaf:name "Haddock" .

_:tintin foaf:knows _:haddock .

_:p3 ex:since "The Crab ..." .

4.1. FORMAL DEFINITION OF PREC-C 63

When a template is written, the ?self placeholder may not be in the template graph. If
?self is not in the template graph of an edge or a property, the term that plays its role, which
may be a triple considering RDF-star, must be used as the ?holder value instead of the NEP
identity when converting the properties it holds.

Specifying the new self identity

For this purpose, we now require contexts to not only provide the template graph, but also the
new self identity.

Definition 21 [PREC-C Context with explicit self]
A PREC-C context ctx ∈ Ctxc is now a function that maps all selectors to a template
graph and the new self identity : ctx : Sel → (2Templates , I ∪ PN ∪ Templates)

The template graph still has to be valid as described by Definition 18. Moreover, the
new self identity associated to node selectors is restricted to always be ?self a.

The ctxp0 function is now defined as:

ctx p0(selector) =


(p0NodeLabelRules(label), ?self) if selector = (“node”, label)

(p0EdgeRules(label), ?self) if selector = (“edge”, label , 1, 2)
(p0PropertyRules(key), ?self) if selector = (“property”, key , 1, 2)

aA node can be selected by multiple labels. If the context assigned a different “new self identity” to
different selectors of the same node, there would be an ambiguity on the identity of that node in the RDF
graph. Therefore, the “self identity” of a node may not be changed.

To account for the fact that the context now returns two values, Algorithm 4 is extended
into Algorithm 5 with the following modifications. First, all lines template ← ctx (selector) are
replaced by (template,) ← ctx (selector). Then, the property loop is updated to use a new
function resolveHolder . This functions looks for a given NEP its new self identity template, and
instantiates it with the build function to replace the placeholders with the actual values, for
example to replace ?self with the NEP, or ?source with the source node. The recursion handles
the possible meta-properties. The result of the resolveHolder function is used to replace the
value of ?holder in the template graph with the actual holder identity. The substitute function
is introduced in Algorithm 6: it takes as input a template triple and a pair composed of a source
term and a destination term, and outputs the same template graph where all occurrences of
the source term have been replaced with the destination term.

Explicitly defining the self identity might be a tedious task, and may be error-prone in
practice. A utility function that computes the most likely new self identity is provided.

Definition 22 [Deducing the new self identity]
The deduceSelf : Templates → I ∪ PN ∪ Templates function tries to find the most likely
new self identity and is defined as:

64 CHAPTER 4. PREC-C

Algorithm 5: The algorithm applied by PREC-C with a context

1 Function precc(pg ∈ BCPGs , ctx ∈ Ctxc)→ 2RdfTriples :
2 rdf ← {}

/* Same node and edge loops as in Algorithm 4 with the previously discussed

modification */

3 forall p ∈ Ppg do
4 (key ,)← propdetailspg(p)

5 selector ← selectpg(p)
6 (template,)← ctx (selector)
7 myHolder = resolveHolder(holderpg(p), pg, ctx)
8 template = substitute(template, (?holder,myHolder))
9 rdf ← rdf ∪ build(template, pg, p)

10 return rdf

11 Function resolveHolder(nep, pg, ctx):
12 if nep ∈ Npg then

/* Nodes can not be remapped */

13 return nep

14 selector ← selectpg(p)
15 (, selfIdentity)← ctx (selector)
16 if nep ∈ Epg then

/* Instantiate the variables in the identity and return it */

17 return β(selfIdentity , pg , nep)

18 else
19 assert(nep ∈ Ppg)

/* We need to resolve the holder of the holder */

20 myHolder ← holder pg(nep)
21 holderSelf ← resolveHolder(myHolder , pg, ctx)

/* Instantiate the new self identity and return it */

22 selfIdentity ← substitute(selfIdentity , (?holder, holderSelf))
23 return β(selfIdentity , pg , nep)

4.1. FORMAL DEFINITION OF PREC-C 65

Algorithm 6: The substitute function

1 Function substitute(template, (from, to)):
2 if template = from then
3 return to
4 else if template ⊆ Templates ∪ RdfTriples then
5 return {substitute(triple, (from, to)) | triple ∈ template}
6 else if template ∈ Templates ∪ RdfTriples then
7 (s, p, o)← template
8 subS ← substitute(s, (from, to))
9 subP ← substitute(p, (from, to))

10 subO ← substitute(o, (from, to))
11 return (subS , subP , subO)

12 else
13 return template

deduceSelf (template)

=


s =?self if ∃t ∈ template, s ∈ t

s = (?source, iri , ?destination) else if ∃iri ∈ I, t ∈ template, s ∈ t
s = (?destination, iri , ?source) else if ∃iri ∈ I, t ∈ template, s ∈ t

s = (?holder, iri , ?value) else if ∃iri ∈ I, t ∈ template, s ∈ t
undefined otherwise

The deduceSelf function has to guess the intent of the template designer, and more
precisely what may identify an edge or a property. It may be identified by:

• A unique identifier. The only term that may generate a unique identifier in a template
graph is ?self as it generates a blank node that is specific for each NEP. No other
placeholder can generate a blank node or IRI specific to this NEP.

• Not relying on a unique identifier: A unique identifier is not required because:

– The edge is considered to be edge-unique, i.e. an edge such that there is at
most one edge with this given label between two nodes. In this case, it is very
likely that a direct triple will be built, with either the source or the destination
as the subject, the other one as the object and an IRI that describes the label
as the predicate.

– The property follows the set insertion strategy of Gremlin, i.e. all key-value
pairs are unique for a given holder and for this given key. In this case, it is very
likely that the template graph contains a triple with the holder of the property
as the subject, a predicate that identifies the property key, and the property
value as the object.

For deterministic purpose and to keep the formalism as simple as possible, if multiple
triples match the same requirements of the deduceSelf function, the triple (1) that is the
less nested in the template triples, (2) with the smaller iri member in lexicographical order
is chosen by deduceSelf .

66 CHAPTER 4. PREC-C

The current implementation actually behaves differently: all candidates are picked, and
every time the value of self is required for a holder, the template graph is instantiated for
each found new self identity. However, having multiple candidates with the same priority
should probably be considered bad practice. It seems preferable to have a template graph
as small as possible with as few as possible redundancy, and infer later the redundancy
with an inference language like RDFS or OWL.

4.1.5 The final version of the PREC-C algorithm

Algorithm 7: The main PREC-C algorithm

1 Function precc(pg ∈ BCPGs , ctx ∈ Ctxc)→ 2RdfTriples :
2 rdf ← {}
3 forall n ∈ Npg do
4 rdf ← rdf ∪ {(n, rdf :type, pgo:Node)}
5 forall label ∈ labelspg(n) do
6 selector ← (“node”, label)
7 (template,)← ctx (selector)
8 rdf ← rdf ∪ build(template, pg , n)

9 forall e ∈ Epg do
10 rdf ← rdf ∪ {(e, rdf :type, pgo:Edge)}
11 label ← the only value in the set labelspg(e)
12 selector ← selectpg(e)
13 (template,)← ctx (selector)
14 rdf ← rdf ∪ build(template, pg , e)

15 forall p ∈ Ppg do
16 (key ,)← propdetailspg(p)

17 selector ← selectpg(p)
18 (template,)← ctx (selector)
19 myHolder = resolveHolder(holder pg(p), pg, ctx)
20 template = substitute(template, (?holder,myHolder))
21 rdf ← rdf ∪ build(template, pg , p)

22 return rdf

Algorithm 7 exposes the final version of the PREC-C function. This function expects two
parameters: the PG to convert and the PREC-C context.

The PREC-C context ctx is a function such as described by Definition 21
Selectors are as defined in Definition 16 and the associated function select is defined in

Definition 20. The build / β functions are unchanged from Algorithm 23.

4.1.6 Going further

The PREC-0 ontology

When the PREC-C algorithm is used in the first version presented in Section 4.1.2, an RDF
graph that complies with the schema presented in Figure 4.2 is produced.

3Appendix A proposes a rewriting of the β function.

4.1. FORMAL DEFINITION OF PREC-C 67

Figure 4.2: The schema of the PREC-0 graphs

Nodes and edges of the PG are all represented in the RDF graph by blank nodes, which are
instances of the types pgo:Node and pgo:Edge, respectively. Nodes are linked to their labels
through the rdf:type label. Edges are represented with the classic RDF reification: they
are connected to their starting node through rdf:subject, their destination node through
rdf:object and their label by using rdf:predicate. Each label (as a resource) is linked to its
value as a literal using the rdfs:label predicate. Note that the prec:Label type is not given
to these resources, and is only shown in the Figure in parentheses to help to understand. Nodes
and edges are linked to the property they hold through IRIs forged using the property key. These
forged IRIs are typed with the prec:PropertyKey type, linked to their label as a literal with
the rdfs:label predicate, and represented in the figure by the “instanceOf(prec:PropertyKey)”
labels on the edges. Meta-properties are connected to properties using the same mechanism.
The raw value of the property as a literal is linked to the property blank node through the
rdf:value predicate.

The PREC-0 schema has been built with two major and one minor design goals:

• It should reuse as much as possible RDF constructions. This is achieved by using the
standard RDF reification for edges, and using terms in the rdf and rdfs namespaces.
The only terms not in these namespaces are pgo:Node and pgo:Edge which we borrowed
from the Property Graph Ontology, the prec:PropertyKey and prec:PropertyKeyValue

types and the IRIs that are forged for labels and property keys.
• It should be reversible, i.e. it allows reconstructing the original PG from the RDF
graph. It achieves this by being a literal description of the converted Property Graph.
rdf:subject means “starting PG node”, rdf:object means “destination PG node”,
rdf:type and rdf:predicate respectively mean node label and edge label. To avoid
some NEP collapsing, i.e. two NEPs having the same representation in the produced
RDF graph making them indistinguishable4, no blank node from the original BPG is
discarded during the conversion.

4For example two properties with the same key being converted to the same triples

68 CHAPTER 4. PREC-C

For a given forged IRI, its “contextual triples” are always the same, e.g. a property key
IRI forged for two different properties has the same property key for both properties.

• The minor design goal is that the PREC-0 ontology should be as close as possible to an
idiomatic RDF graph, under the constraint of relying on a one-size-fit-all transformation.
This is partly answered by the first major design goal, i.e. using as much as possible usual
RDF constructs. This is also answered by the fact that the forged property keys are used
in predicate position. Indeed, they are very likely to be mapped to existing predicates like
foaf:name. On the opposite, consider a construction like PGO as exposed in Figure 4.3
where generic predicates are used and the name of the property is in the object position
of a triple whose subject is the property. With such a construction, the generated RDF
graph structure is more different from the final expected RDF graph than the RDF graph
produced by the PREC-0 ontology. Moreover, while PGO tends to directly use the labels
and property keys in object position as a literal, by using forged label IRIs and property
keys, PREC-0 lets the user map these forged terms to real world terms, for example by
later using owl:equivalentProperty on the produced RDF graph.

Figure 4.3: The schema of the Property Graph Ontology

Reversibility of PREC-C contexts

The reversibility of a PREC-C context ctx is defined as the possibility to compute back any
PG pg from the value of precc(pg , ctx) and the PREC-C context ctx .

In this section, reversibility will only be discussed informally, and in particular what may
be good criteria to decide quickly if a context may be reversible or not. A formal definition of
reversibility will be provided later in Section 5.5.1.

Trivially, not all contexts are reversible. Consider a context that produces the empty tem-
plate graph for all selectors. When using the precc function, the output will always be the
empty RDF graph. From the empty RDF graph, it is impossible to compute back the PG as
multiple PGs (in fact, any PG) may have produced it.

Example 12 [Different template graphs to model that Tintin travels with Snowy]
Consider a PG in which there is an edge with the label “travelsWith” between Tintin and

4.1. FORMAL DEFINITION OF PREC-C 69

Snowy, with no property. Examples of template graphs that could be used to model this
edge in RDF are:

1. {(?self , ex :traveler , ?source), (?self , ex :traveler , ?destination)} with ?self as the “self
identity”.

• This template graph is not reversible because it is impossible to find which node
was the source and which node was the destination as the ex :traveler predicate
is used for both.

2. {(?self , ex :traveler1 , ?source), (?self , ex :traveler2 , ?destination)} with ?self as the
“self identity”.

• This template graph is reversible: if a triple (:travelers , ex :traveler1 , :tintin) is
mapped to the template triple (?self , ex :traveler1 , ?source), then :travelers is
an edge of the PG and :tintin is a node of the PG. A similar process can be
applied for the destination. All properties will be attached to ?self so properties
will properly be connected to the edge in the output RDF graph.

3. {(?source, ex :travelsWith, ?destination)} with ?self as the “self identity”.

• This template graph is not reversible: the properties of the edge will not be
related with the source and the destination of the edge in the output RDF
graph. This case is the one that led us to add the notion of “self identity” in
Section 4.1.4.

4. {(?source, ex :travelsWith, ?destination)} with the whole template triple as the “self
identity”.

• This template graph looks reversible: if a triple (:tintin, ex :travelsWith, snowy)
is mapped to the template triple {(?source, ex :travelsWith, ?destination)}, then
:tintin and snowy are nodes, and there is another edge in the PG, for which
the source is :tintin and the destination is snowy . While the exact original PG
cannot be computed back, we can build an isomorphic PG.

• However, this assumes that between any two PG nodes, there is at most one
PG edge with the label “travelsWith”. If that is not the case, then multiple PG
edges will be collapsed into a single RDF triple, and the information about how
many such edges were in the PG, and the distribution of their properties, will
be lost.

5. The empty template graph with any “self identity”.

• This template graph is trivially not reversible because the source and the des-
tination are not related with the edge in the RDF graph, especially in the case
where there are no properties for the edge.

• Using an empty template graph with {(?source, ex :travelsWith, ?destination)}
as the “self identity” may find some uses in situations where we are guaranteed
that there will be at least one property, but we do not want to assert the triple,
and do not want to use other constructs. In the example of a “TravelsWith” edge,
it may be because all edges have a “until” property that limits the truthiness of
the triple to a time period.

70 CHAPTER 4. PREC-C

From Example 12, we can see that there are (at least) two important criteria to determine
if a template graph used in a PREC-C context is reversible:

• The “self identity” of each template triple must be unique.
• The “self identity” must be related in the RDF graph with all information that are
relevant, in a non-ambiguous manner:

– For edges, the source and the destination must be in the template graph.
– For properties, the holder and the property value must be in the template graph.
– In both case, the “self identity” and the triples of the template graph must be

consistent (unlike the fourth template graph of Example 12)

Another question that is not considered in this section is how to determine the selectors
that selected the NEPs, and how to find in a non-ambiguous manner the information, i.e. how
to map the triples in the produced RDF graph to the template triple that produced it. While
this question is left for future works in the case of PREC-C, in the following Chapter 5, that
presents another converter named PRSC, this question will be formally answered.

4.1.7 Complexity analysis

We now discuss the complexity of the precc algorithm as presented in Algorithm 7.

Functions considered constant

For a given PG pg, the complexity of all functions that define the PG, i.e. srcpg, destpg, labelspg,
getHolder pg and propdetailspg are considered constant.

The complexity of the function toLiteral is also considered constant.
Evaluating if something is a member of a given set, for example if an entity is part of the

set Npg, is generally considered to be constant time thanks to hash maps5.

Considered metrics

For a given PG pg and a given PREC-C context ctx , the following metrics are considered:

• The number of NEPs in the PG, denoted NbOfNEPs .

NbOfNEPs = |Npg ∪ Epg ∪ Ppg |

• The maximal number of labels in the PG, denoted TypeComplexity :

TypeComplexity = max
n∈Npg

(|labelspg(n)|)

• The size of the biggest template graph, denoted BiggestTemplateSize.

BiggestTemplateSize = max
selector∈Dom(ctx)

(|tps | (tps, 1) = ctx (selector)|)

• The depth of the most nested meta property, denoted MetaDepth.

MetaDepth = max
p∈P

({n ∈ N | ∃m = getHoldern(p)})
5Inserting and searching in a hash map is not strictly speaking a constant time operation but has an

amortized constant complexity, and is linear in the worst case.

4.1. FORMAL DEFINITION OF PREC-C 71

• The cost of calling the ctx function CtxCost . As ctx is a total function, it is difficult to
evaluate the precise complexity without its actual definition. The function could serve
very generic templates like the ctx p0 function, or very specific templates for multiple
selectors.

In RDF-star, quoted triples can be used as subject or object of other triples, without limit
on how deeply triples can be nested. In practice, however, it is rare to have more than one level
of nesting. Usually, users are expected to use atomic RDF triples like :tintin :travelsWith

:haddock or to use RDF-star triples with a depth of one like << :tintin :travelsWith

:haddock >> :since 1978. We therefore consider the depth of any triple to be bound by
a constant. As a consequence, in all functions processing terms and triples recursively (such
as β in Algorithm 2 or substitute in Algorithm 6), we can ignore the recursion depth in the
complexity analysis.

In all complexity analyses, all metrics but MetaDepth are considered non null. Indeed, if
there are no NEPs or if the biggest template graph is empty, the produced RDF graph will be
empty so this case is not interesting. In the case of MetaDepth, we consider that by convention
if there is no meta property, its value is equal to zero.

Complexity of the utility functions

We now discuss the complexity of the utility functions from which the precc function is defined.

substitute The substitute function can be called on graphs, on triples and on terms. Its com-
plexity is constant for terms, so as discussed in Section 4.1.7, its complexity is also constant on
triples. As the substitute function calls itself on all triples when called with a list of triples, and
as it is always called on a graph to transform, produced from a template graph, its complexity
is linear with the size of the biggest template graph: O(BiggestTemplateSize).

select The select function can be called in constant time: it calls all functions that characterize
a PG at most twice, and do not call any other function:

• For edges, only the labels , src and dest functions are called, and they are called once.
• For properties, the propdetails and the getHolder functions are called once for the property
itself. At most two set membership operations are performed to find the holder kind,
which are performed in constant time. Depending on the kind of the holder, either the
labels function is called once, or the propdetails function is called an extra time.

resolveHolder The resolveHolder is called recursively until it finds a node or an edge. Calls on
a node are trivially done in a constant time. Calls on edges and properties first call the select
function which is called in constant time. Then for properties, it calls the getHolder function,
the resolveHolder and the substitute function on a template term; the first is performed in
constant time as mentioned in Section 4.1.7 and the third is also performed in constant time
as mentioned previously.

As all calls done in the resolveHolder function are done in constant time, and as the recursion
depth is equal to MetaDepth, the complexity of the resolveHolder is linear with the depth of
the most nested property.

72 CHAPTER 4. PREC-C

Complexity of the build / β functions The β function consists in calling the function
recursively on template triples until an atomic RDF term is found. Then, several checks are
performed on the term, and either the term itself is returned or a function with a constant cost
is called. As the recursion depth of recursive functions on terms is considered negligible, the
complexity of the β function is also considered constant.

The build function consists in calling the β function on each template triple. Its complexity
is O(BiggestTemplateSize) as the β has a constant complexity.

Complexity of the precc function

The precc function consists in three loops: one per kind of NEP.

• For nodes, there is a loop on each label (the number of loops is equal to the type complex-
ity). For each label, there are one call to the ctx function (linear with its given metric)
and one call to the build function (linear with the size of the biggest template graph). The
cost of the iteration of each node is TypeComplexity ∗ (CtxCost + BiggestTemplateSize).

• For edges, there is one call to the selectpg (constant complexity), ctx (linear with its given
metric) and the build function (linear with the size of the biggest template graph). The
cost of the iteration of each edge is CtxCost + BiggestTemplateSize.

• For properties, there is one call to the propdetails function (constant complexity), to the
selectpg (constant complexity), to the resolveHolder (linear with the depth of the most
nested property) and the getHolder (constant complexity), to the ctx function (linear with
its own metric), to the substitute function (linear with the size of the biggest template
graph), and to the build function (linear with the size of the biggest template graph). The
cost of the iteration on each property is MetaDepth + CtxCost + BiggestTemplateSize.

The final complexity of the precc function is:

O(NbOfNEPs ∗ (TypeComplexity ∗ CtxCost ∗ BiggestTemplateSize)

+ NbOfNEPs ∗ (CtxCost + BiggestTemplateSize)

+ NbOfNEPs ∗ (MetaDepth + CtxCost + BiggestTemplateSize))

=O(NbOfNEPs
∗ (TypeComplexity ∗ (CtxCost + BiggestTemplateSize) +MetaDepth))

We notice that the complexity of precc is linear in each of the metrics we introduced.
Implementations can therefore be expected to scale well.

4.2 Implementation of PREC-C

Section 4.1 provides a formal definition of the PREC-C transformation. This section connects
the formal definition with the actual API and implementation of PREC-C, and in particular
how PREC-C contexts are expressed.

PREC-C contexts are described by the user using the Turtle language, the PREC ontology
and the various placeholders that are represented by IRIs in the reserved pvar namespace.
Table 4.1 gives an overview of the different rule types, corresponding to each kind of element,
and their related predicates.

4.2.
IM

P
L
E
M
E
N
T
A
T
IO

N
O
F
P
R
E
C
-C

73

Table 4.1: Rule types and the predicates related to them in the PREC-C ruleset
Type prec:NodeLabelRule prec:EdgeRule prec:PropertyRule

Selector

Target
Nodes selected by
(“node”, label)

Edges selected by
(“edge”, label , srcLabels , destLabels)

Properties selected by
(“property”, key , holderKind , holderLabels)

Required
predicates

prec:label: The value
of label

prec:label: The value of label
prec:propertyKey: The value
of key

Optional
predicates

None

prec:sourceLabel: The subset
values of srcLabels

prec:destinationLabel: The subset
values of destLabels

prec:label: The subset
values of holderLabels

prec:onKind: The value
of holderKind

Priority prec:priority: If several rules match a selector, the rule with the lowest priority will be used
Production

Specify the used
extended template
graph

prec:templatedBy: The name of the extended template graph to use

Template graph prec:produces: The template triples in the template graph as embedded triples

Expected
placeholders
in the template
graph

pvar:nodeLabelIRI

pvar:self

pvar:label

pvar:edgeIRI

pvar:self

pvar:source

pvar:destination

pvar:label

pvar:propertyIRI

pvar:property

pvar:holder

pvar:value

pvar:key

New ?self identity N/A prec:edgeIs prec:entityIs

Predicate for
IRI description

prec:nodeLabelIRI prec:edgeIRI prec:propertyIRI

74 CHAPTER 4. PREC-C

4.2.1 The PREC-C ontology

Table 4.1 exposes the three different types of rules that exist in the PREC-C ruleset:
NodeLabelRules, EdgeRules and PropertyRules. Each type of rule corresponds to a specific
kind of selector and applies to all the NEPs that match their conditions. The table lists for
each rule type the list of related predicates. Note that the listed placeholders for each type
should be used in the template graph, and can be used in any position in the template triples.

Selector predicates

The upper part of Table 4.1 describes the selectors that are concerned by the rule. It is
worth noting that, although prec:NodeLabelRules always match exactly one node selector,
prec:EdgeRules and prec:PropertyRules may match several selectors:

• A prec:EdgeRule matches any edge selector whose srcLabels contains all values of
prec:sourceLabel (and possibly others), and whose destLabel contains all values of
prec:destinatonLabel.

• A prec:PropertyRule matches any property selector whose holderKind is one of the
values of prec:onKind, and whose holderLabels contains all the values of prec:label. If
no value is provided for prec:onKind, the rule is considered to match all possible values.
It is worth noting that for meta-properties, the value of prec:onKind is "property"

and holderLabels must have at most one value which is the parent property key. As a
consequence, a rule for meta-properties with several values for prec:label will fail to
match any property because a property can only have one key.

However, a selector may be concerned by multiple rules. Consider the PREC-C context in
Listing 4.4. Two edge rules select edges with the “travelsWith” label: the
:TravelWithRulePerson rule and the :TravelWithRuleAnimal. The only thing that distin-
guishes them is that one can only be applied to edges with a source node with the “Person”
label and the other one to edges with a destination node with the “Animal” label. However,
what happens if a “travelsWith” edge starts on a person and ends on an animal? In other
words, which rule should be used by the engine for the selector
(“edge”, “TravelsWith”, {“Person”} , {“Animal”}), and by extension, any selector for which
the third and fourth members are a super-set of this selector?

Listing 4.4: Two rules for edge selectors on the “since” edge label
:TravelWithRulePerson a prec:EdgeRule ;

prec:label "travelsWith" ;

prec:sourceLabel "Person" ;

prec:templatedBy prec:RDFReification .

:TravelWithRuleAnimal a prec:EdgeRule ;

prec:label "travelsWith" ;

prec:destinationLabel "Animal" ;

prec:templatedBy prec:DirectTriples .

The prec:priority predicate enables to pick the rule that should be applied in case multiple
rules are applicable. The rule with the highest value will be applied. For example, if the user
adds the triples :TravelWithRulePerson prec:priority 1 and
:TravelWithRuleAnimal prec:priority 2, the rule that is applied to a “travelsWith” edge
that both starts on a person and ends on an animal will be :TravelWithRulePerson.

The criteria to determine which rule has the highest priority, and by consequence, for any
selectors, which rule should be applied is as follows: for two given rules,

4.2. IMPLEMENTATION OF PREC-C 75

• If one rule has a priority and not the other one, the one with the explicit priority is
applied. If two rules have a priority, the rule with the highest priority value is applied.

• If the two rules have the same prec:priority value or no prec:priority, the rule that
has the most optional predicates is applied.
For example a rule with two prec:sourceLabel (or one prec:sourceLabel and one
prec:destinationLabel, or two prec:destinationLabel) has a higher priority than a
rule with one prec:destinationLabel (or one prec:sourceLabel).

• If the two rules have the same number of optional predicates, the list of optional predicates
is serialized and the first in lexical order is chosen.

Production

In Definition 21 of Section 4.1.4, we defined PREC-C contexts as functions ctx ∈ Ctxc that
map selectors to a pair composed of a template graph and the self identifier. We name this
pair the extended template.

When a rule is applied, the chosen extended template is the one in object position of the
prec:templatedBy triple. Its property prec:produces describes the template graph, as a set
of template triples expressed by using RDF-star quoted triples. If a prec:selfIs triple exists,
it will be used, else the value of pvar:self will be computed by using the deduceSelf function
defined in Definition 22.

The semantics of all placeholders but pvar:nodeLabelIRI, pvar:propertyIRI and pvar:

edgeIRI has been described by the β function in Algorithm 2. These three placeholders will
be replaced by the values of prec:nodeLabelIRI, prec:propertyIRI and prec:edgeIRI re-
spectively. This leverages the mechanism of predicate substitution which will be presented in
Section 4.2.2.

Example 13

Listing 4.5: An example of a template graph.
_:MyTemplate prec:produces

<< ex:thisdataset ex:generatedBy prec: >> ,

<< pvar:self rdf:type ex:Element >> .

In Listing 4.5, the pair :MyTemplate prec:produces has for objects two templates
triples: << ex:thisdataset ex:generatedBy prec: >> and << pvar:self rdf:type

ex:Element >>.
When :MyTemplate is used, the triple ex:thisdataset ex:generatedBy prec: will

always be produced as it contains no placeholder. The other template triple, pvar:self
rdf:type ex:Element contains the placeholder pvar:self: triggering this rule will pro-
duce a triple whose subject will be the NEP itself, whose predicate is rdf:type and whose
object is ex:Element.

Fallback templates

When the engine has to convert a NEP, it has to choose a rule according to the selectors
computed from the NEP.

To do so, it looks for all the rules that select the NEP label or key.
Multiple cases can occur:

• If only one rule matches, the rule is applied.

76 CHAPTER 4. PREC-C

• If multiple rules match, the rule to apply is decided according to the criteria described
earlier in Section 4.2.1.

• There are no rules for the selector.

If there are no rules for the selector, the default behavior is to use the corresponding PREC-
0 template graph described by Algorithm 3 through the p0NodeLabelRules , p0EdgeRules and
p0PropertyRules functions.

However, users may want to customize this behavior to not use the PREC-0 fallback tem-
plate graphs, for example to represent edges with an RDF triple by default instead of using the
standard RDF reification.

This is performed by adding to the context a triple in the form
S prec:templatedBy ExtendedTemplate where ExtendedTemplate is the name of the ex-
tended template to use, and S is one of the 6 following IRIs:

• prec:Nodes is the fallback used for any node selector that is concerned by no rules.
• prec:Edges is the fallback used for any edge selector that is concerned by no edges.
• prec:NodeProperties is the fallback used for any property selector that is concerned by
no rule and whose holder kind is “node”, i.e. selectors on node properties.

• prec:EdgeProperties is the fallback used for any property selector that is concerned by
no rule and whose holder kind is “edge”, i.e. selectors on edge properties.

• prec:MetaProperties is the fallback used for any property selector that is concerned by
no rule and whose holder kind is “property”, i.e. selectors on meta-properties.

• prec:Properties is the fallback used for any property selector that is concerned by no
rule and if the corresponding holder fallback is not specified.

4.2.2 Substitution predicates: re-using existing templates

Starting from the algorithms proposed during the second iteration presented by Section 4.1.3,
the user has to provide the precc function with a context, a mapping from all selectors to
template graphs. Building new templates for each selector might be a tedious task in practice,
especially when several templates may share similar structures. To lighten the burden of defin-
ing new templates, this section proposes a solution to use existing templates and modify them:
substitution predicates.

Definition 23 [Substitution predicate]
A substitution predicate allows users to specify custom substitutions to be applied to tem-
plate graphs.

When the substitution predicate is used on a rule, the value of the predicate will replace
all occurrences of its target in the template graph of the rule.

The syntax is as follows:

prec:nodeLabelIRI a prec:SubstitutionPredicate .

prec:nodeLabelIRI prec:substitutionTarget pvar:nodeLabelIRI .

:MyTemplate

prec:produces << pvar:self rdf:type pvar:nodeLabelIRI >> .

prec:nodeLabelIRI :knows .

In this example, when the substitution predicate prec:nodeLabelIRI is used, it will
look for all pvar:nodeLabelIRI occurrences and replace it. For instance, in :MyTemplate,
pvar:nodeLabelIRI will be replaced with :knows.

Five internal placeholders were introduced in Definition 15 and Definition 18:

4.2. IMPLEMENTATION OF PREC-C 77

• The internal placeholder ?nodeLabelIRI is the target of the built-in substitution predicate
prec:nodeLabelIRI : when writing a PREC-C context, instead of explicitly defining a
separate template for each node label, the writer of the context can use the same template
graph, and apply to it the substitution predicate to choose the IRI. The PREC-C engine
will then produce the appropriate template graph from the base template graph and the
substitution predicates.

• The two internal placeholders ?edgeIRI and ?propertyIRI play the same role: they are
respectively targeted by the built-in substitution predicates prec:edgeIRI and
prec:propertyIRI .

• The last two internal placeholders are ?key and ?label. The PREC-C engine replaces
them respectively with the property key as a string and the label as a string6.

Remark 7 [The forged IRI of the PREC-0 functions is a substitution]
In the implementation, in the functions p0NodeLabelRules , p0EdgeRules and p0PropertyRules ,
instead of directly forging an IRI for the label/property key, the internal placeholders
?nodeLabelIRI, ?edgeIRI and ?propertyIRI are used in the template graph. When the
template graph is used, if the corresponding substitution predicate is used, then the place-
holder will be replaced using the substituted term. If the corresponding substitution pred-
icate is not used, then the internal placeholder will be replaced with the forged IRI, as if
the substitution predicate was implicitly used to replace the target placeholder with the
forged IRI.

In the implementation, when a PREC-C rule is read, the template graph is modified ac-
cording to the different substitution predicates that are found. The substitution predicates can
be both applied directly on the template like in Definition 23 or on a PREC-C rule like in
Listing 4.6.

The latter listing provides an example where a rule :Ownership is created: this rule matches
all edge selectors that have the “Owns” label. The template graph produced from these se-
lectors is the prec:RDFReification template graph: a built-in template graph designed to
model edges with the classic RDF reification. However, thanks to the usage of the three sub-
stitution predicates prec:subject, prec:predicate and prec:object, the template graph is
transformed to use the n-ary relation pattern.

Listing 4.6: Example of usage of a PREC-C context with a substitution predicate
These triples are built into the PREC-C implementation

Built-in template graph

prec:RDFReification

prec:produces

<< pvar:self rdf:subject pvar:source >> ,

<< pvar:self rdf:predicate pvar:edgeIRI >> ,

<< pvar:self rdf:object pvar:destination >> ;

prec:selfIs pvar:self .

Built-in substitution predicate

prec:edgeIRI is a substitution predicate for pvar:edgeIRI

prec:edgeIRI a prec:SubstitutionPredicate ; prec:substitutionTarget pvar:edgeIRI .

prec:subject is a substitution predicate for rdf:subject

prec:subject a prec:SubstitutionPredicate ; prec:substitutionTarget rdf:subject .

prec:predicate is a substitution predicate for rdf:subject

6In a sense, they can be seen as terms substituted by the substitution target prec:label and prec:propertyKey .
However, these values are hard coded in the implementation, rather than the prec:label and prec:propertyKey
predicates being defined as substitution predicates.

78 CHAPTER 4. PREC-C

prec:predicate a prec:SubstitutionPredicate ; prec:substitutionTarget rdf:predicate .

prec:object is a substitution predicate for rdf:subject

prec:object a prec:SubstitutionPredicate ; prec:substitutionTarget rdf:object .

The context explicitly provided by the user

:Ownership a prec:EdgeLabelRule ;

prec:label "Owns" ;

The following triple is not stricly required, as the fallback

template graphs for edges (from PREC-O) is exactly the one in

prec:RDFReification

prec:templatedBy prec:RDFReification ;

Provide a type to the N-ary relationship

Substitute rdf:predicate with rdf:type

prec:predicate rdf:type ;

Substitute prec:edgeIRI with :Owns

prec:edgeIRI :Ownership ;

Properly name the link with the two other entities

Substitute rdf:subject with :owner

prec:subject :owner ;

Substitute rdf:object with :owned

prec:object :owned .

Possible output

_:ownership1 rdf:type :Ownership ;

:owner _:tintin ;

:owned _:snowy .

4.2.3 PREC-0 provides a PG model

Implementation wise, the PREC-C conversion is not directly applied to the source PG. As
there exist many Property Graph models, and many property graph API, implementing the
conversion for each supported PG API would be costly.

Instead, as mentioned in Chapter 3, the engine performs a two-step conversion:

• The first step consists in connecting to the PG API. The current implementation supports
Gremlin and Cypher, reading a PG and storing it with an intermediate representation,
common for both APIs. This step does not use the PREC-C context at all.

• The second step consists in converting the PGs from the intermediate representation into
RDF, using the PREC-C context.

Consider the PREC-0 schema in Figure 4.2. It is an ideal candidate for this intermediate
format:

• It is expressed in RDF and the final result will be in RDF. Using an RDF representation
avoids choosing another representation model. In particular, it enables to define the
conversion operated by an empty PREC-C context as the identity operation.

• As PREC-0 is reversible, it can be considered as “yet another Property Graph model”
whose goal is to be able to store the data of any PG models we are aware of.

• As the nodes, edges and properties of the PREC-0 graph can be blank nodes, converting
any PG to the PREC-0 graph corresponds to the initial step of the conversion: build an
isomorphic BPG to the one to convert, or “for each NEP, choose a blank node and stick
to it for the rest of the conversion”.

4.3. DISCUSSION 79

4.3 Discussion

4.3.1 PREC-C encompasses existing conversions

In terms of PG-to-RDF graph conversion, PREC provides the same options as the two existing
tools.

Neosemantics Reproducing the behavior of Neosemantics to convert Neo4j graphs to RDF
is trivial. This can be achieved by using the context in Listing 4.7, i.e. modeling every prop-
erty with the prec:DirectTriples template and every edge with the prec:RdfStarUnique

template.

Listing 4.7: The PREC-C context that produces a NeoSemantics-like RDF graph
Explicit triples

prec:Edges prec:templatedBy prec:DirectTriples .

prec:Properties prec:templatedBy prec:RdfStarUnique .

The following triples are automatically added by the PREC-C engine

Edges are modelled using RDF triples and quoted triples for properties

prec:RdfStarUnique a prec:EdgeTemplate ;

prec:edgeIs << pvar:source pvar:edgeIRI pvar:destination >> ;

prec:produces

<< pvar:source pvar:edgeIRI pvar:destination >> ,

<< << pvar:source pvar:edgeIRI pvar:destination >> a pgo:Edge >> .

Properties are modelled using RDF triples and quoted triples for meta properties

prec:DirectTriples a prec:PropertyTemplate ;

prec:entityIs << pvar:entity pvar:propertyKey pvar:propertyValue >> ;

prec:produces << pvar:entity pvar:propertyKey pvar:propertyValue >> ;

The Property Graph Ontology PREC-C is also able to produce graphs that follow the
PG Ontology [14]. To do so, the user needs to provide a context with explicit templates that
describes how nodes, edges and properties are represented.

The ontology was described earlier by Figure 4.3. In this ontology:

• Nodes and edges are linked to their label directly represented by the label as a literal
• Nodes and edges are linked to their property through their respective predicate,
pgo:hasNodeProperty or pgo:hasEdgeProperty.

• Properties have two out-coming predicate: pgo:key and pgo:value respectively linked
to the property key as a literal and the property value as a literal.

Listing 4.8 describes the context that must be provided to the PREC engine.

Listing 4.8: The PREC-C context that produces a graph that complies with the PGO ontology
-- Property Graph Ontology replication

prec:NodeLabels prec:templatedBy ex:pgoNodeLabel .

ex:pgoNodeLabel

prec:produces << pvar:self pgo:label pvar:label >> .

prec:Edges prec:templatedBy ex:pgoEdge .

ex:pgoEdge

prec:produces

<< pvar:self pgo:startNode pvar:source >> ,

<< pvar:self pgo:endNode pvar:destination >> ,

<< pvar:self pgo:label pvar:label >> ;

prec:edgeIs pvar:self .

80 CHAPTER 4. PREC-C

-- Properties

prec:NodeProperties prec:templatedBy ex:pgoNodeProperty .

ex:pgoNodeProperty ;

prec:produces

<< pvar:holder pgo:hasNodeProperty pvar:self >> ,

<< pvar:self pgo:key pvar:label >> ,

<< pvar:self pgo:value pvar:value >> ,

<< pvar:self a pgo:Property >> ;

prec:entityIs pvar:self .

prec:EdgeProperties prec:templatedBy ex:pgoEdgeProperty .

ex:pgoEdgeProperty

prec:produces

<< pvar:holder pgo:hasEdgeProperty pvar:self >> ,

<< pvar:self pgo:key pvar:label >> ,

<< pvar:self pgo:value pvar:value >> ,

<< pvar:self a pgo:Property >> ,

prec:entityIs pvar:self .

Meta properties are not supported by PGO: produce the empty graph

prec:MetaProperties prec:templatedBy ex:pgoMetaProperty .

ex:pgoMetaProperty

No value for ex:pgoMetaProperty prec:produces

= the empty template graph is associated to ex:pgoMetaProperty

prec:entityIs pvar:self .

---- Producing the RDF node for the PG itself

We extend the pgoEdge and pgoNodeLabel templates to add a triple between

the pg instance and the node

PREC is unable to apply a rule on unlabeled nodes, neither can it select

isolated nodes only. In the current state, we produce a triple between the

PG and the node for each node that is either labeled or is connected to another

node (or both).

ex:pgoEdge prec:produces

<< _:thisPG pgo:hasEdge pvar:edge >> ,

<< _:thisPG pgo:hasNode pvar:source >> ,

<< _:thisPG pgo:hasNode pvar:destination >> ,

<< _:thisPG rdf:type pgo:PropertyGraph >> .

ex:pgoNodeLabel prec:produces

<< _:thisPG pgo:hasNode pvar:node >> ,

<< _:thisPG rdf:type pgo:PropertyGraph >> .

ex:pgoNodeProperty prec:produces << _:thisPG rdf:type pgo:PropertyGraph >> .

ex:pgoEdgeProperty prec:produces << _:thisPG rdf:type pgo:PropertyGraph >> .

ex:pgoMetaProperty prec:produces << _:thisPG rdf:type pgo:PropertyGraph >> .

The two first rules, ex:pgoEdge and ex:pgoNodeLabel are very straightforward as they sim-
ply describe the triples to produce for edges and nodes. These two templates are used as the fall-
back template to use for edges (through prec:Edges) and nodes (through prec:NodeLabels).
Similarly, three templates are defined for node properties, edge properties and meta proper-
ties. As the predicates pgo:hasNodeProperty and pgo:hasEdgeProperty are part of PGO
and specialized respectively for node properties and edge properties, we use them for the re-
lated kinds of elements through prec:NodeProperties and prec:EdgeProperties. For meta
properties, as they are not supported by PGO, the empty template graph is associated with
prec:MetaProperties.

The final set of rules is a hack to add the fact that in the Property Graph Ontology, an
RDF resource is supposed to be created to represent the PG itself. For this purpose, we add
extra triples to the template graphs used for nodes and edges to create a resource for the PG
and link it to the current node or edge. A similar process is used for the property templates,

4.4. CONCLUSION 81

creating a triple isolated from the rest of the template graph. Note that because PREC-C does
not support nodes with no labels and no properties (they can not be selected), it is unable to
successfully emulate PGO for PGs that contain them. However, such PG can be considered to
have a very limited usefulness.

4.3.2 Usability discussion

While PREC-C seems to offer a lot of possibilities thanks to its selector system, when designing
the examples, we were quickly faced with the difficulty to use PREC-C to build simple mappings.

The difficulty to write PREC-C contexts comes from several aspects:

• The context written by the user is not the one used by the engine: implicit triples are
added, for example the built-in templates or the representation of unspecified selectors.
While this enables to have shorter context files and avoid reinventing the template of
common patterns, for example the RDF reification, it forces the user to keep in mind all
the implicit triples.

• A lot of different terms are defined by the ontology, from the built-in templates, the built-
in substitution predicates, the predicates related to the rules. . . The diversity of existing
terms forces the user to use the documentation to write a context. Even the author, the
creator of PREC-C and its ontology, had to refer a lot to the specification and to other
examples to write the example in this chapter.

• While the implicit priority system is deterministic, it may be hard to know which rule
is applied in case multiple rules apply without looking at the specification. Specifying a
priority for all rules may be a tedious task.

Through the course of the thesis, multiple papers [55, 50] cited PREC-C (at the time PREC)
as an existing tool for RDF to PG conversion. However, in their quick summary, most of them
miss some features of PREC-C, either by telling that a feature is not supported despite the
feature being actually supported, or by asserting that the scope of PREC-C is narrower than
what it actually is. People misunderstanding PREC-C shows that either the tool is hard to
explain (or badly explained), hard to understand, or a mix of both. All tools require a time
for the user to learn them. When they are facing a problem, a potential user will weight the
time required to learn tools to solve the problem against the possibility to solve it by hand. In
this case, all PG to RDF tools, including PREC-C, compete with an ad-hoc conversion. A tool
that is too hard to use or understand does not fit its purpose, which seems to be the case of
PREC-C.

Finally, in its design, PREC-C has a very schema-less approach: a PREC-C context is able
to select anything and to convert any supported PG through its fallback mechanism. However,
in many cases, PGs are constrained by some kind of schema, and any data not complying with
these schemas would be rejected or considered meaningless. A conversion that leverages the
declared or inferred schema of the PG would be a solution to both make easier the writing of
contexts and increase the perceived reliability of the tool.

4.4 Conclusion

The PREC-C engine lets the user convert any PG, either through the Cypher API or the
Gremlin API, in a user-configured manner through the use of a PREC-C context. PREC-C
contexts are expressed as a list of rules. Each rule selects a group of NEPs, and lets the user
choose how to represent them in RDF.

82 CHAPTER 4. PREC-C

We introduced the notion of selectors : a PREC-C context maps all selectors to (extended)
template graphs, and the PREC-C algorithm is in charge of producing an RDF graph from the
template graphs related to the selectors of all NEPs of the PG. NEP selectors are expressed not
only as the kind of the selected NEP and its label/property key, but also contain information
about the NEPs related to the selected NEP; i.e. the source and destination for edge selectors,
the kind and the label of the holder for property selectors. Such extra information in selectors
enables to use different selectors, and therefore different template graphs, for NEPs that share
the same label; for example to use a different IRI for the name of a person and the name of an
animal.

As a PREC-C context can be used on any PG, the user can write their PREC-C context
incrementally: starting from the empty PREC-C context, they can add rules to change the
content of the produced PG until they are satisfied by the output.

The PREC-C rule-set quickly shows its limits for several reasons:

• The multiplication of predicates, making it hard to write a context without heavily relying
on the specification. Presenting a simple running example is hard as it either requires to
have a lot of implicit templates, or a very lengthy context.

• A very nested rule-set, with lots of objects and default rules. Users may feel there is a
steep learning curve to learn the rules and not feel in control of the output of the engine
without a high expertise.

• In particular, the PREC-C ruleset forces an approach where all NEPs are considered
separately. However, properties are forced to be on a holder, and the semantics of the
property may vary depending on the holder type. For example the name of a company
is not the same as the name of a person. When writing a context, the natural approach
consists in looking at an element, node or edge, see the missing rules in terms of node or
edge label and the held properties and then move on to the next element. However, the
rule-set forces the user to write separate rules for the element and its properties, with the
risk of adding a new property rule for a property key that already exists. If a rule for
the same property key exists and if the chosen predicate or model is different, the user
would have to check and edit previous property rules to avoid conflicts by adding extra
constraints on the holder.

• There is little to no data checking of the source PG, as there is a default behavior for
everything. While this could be circumvented by adding some specific predicates that
disable default templating, the definition of property rules would still render the mapping
very permissive.

All these insights motivates the development of a simpler rule-set and with some kind of
PG checking.

Chapter 5

PRSC: A higher level approach using
schemas

In this chapter, we introduce a new converter named PRSC (PG to RDF Schema-based Con-
verter).

This approach differs from the PREC-C approach presented in Chapter 3 in that, instead
of building a mapping which works for all PGs, and which can be customized for certain NEPs
through contexts, the contexts are going to only work for certain well-defined PGs explicitly
defined by the context.

Although PG schemas are not yet standardized, it is possible to use a simple PG schema
model. For example, consider the running example PG shown by Figure 5.1. A trivial schema
that describes the PG is a schema that allows 1) nodes with the “Person” label and two
properties: “name” and “job”, 2) nodes with no label and one property: “name”, and 3) edges
with the “TravelsWith” label and one property: “since”. As it is very likely that a schema like
this will be supported by any standardization of PG schemas, it is possible to build a mapping
that maps all PGs that comply with this schema to RDF.

Formally, our notion of schema is defined from Angles’ PG definition (Definition 1). The
notion of type is built on the kind of the PG element (node or edge), its labels and properties.
The notion of a PRSC context is defined as a mapping from the types to template graphs,
and the PRSC algorithm is in charge of converting the PG elements to RDF using the PRSC
context. We then study a subset of PRSC contexts, named PRSC well-behaved contexts, for
which we show that the conversion is reversible: the original PG can be reconstructed from the
produced RDF graph.

Implementation-wise, in Figure 3.3 that shows the architecture, the PREC-0 algorithm
still serves as the abstraction for heterogeneous PG APIs. From the RDF graph produced by
PREC-0, the PRSC context is applied to produce a brand new RDF graph.

The work on this chapter has been accepted by the Semantic Web Journal. The main differ-
ences between this chapter and the article are 1) the proposal of an optimization of the reversion
algorithm in Section 5.6, and 2) some additional extensions are proposed in Section 5.7 while
the article only proposed the edge-unique extension.

5.1 PRSC in practice

The Property Graph exposed on Figure 5.1 describes the relationship between Tintin and
Snowy. It is composed of two nodes. The first one holds the label “Person” and two properties:
its name is “Tintin” and its job is “Reporter”. The other node only has one property: its name

83

84 CHAPTER 5. PRSC

:Person
 name: ''Tintin''
 job: ''Reporter''

name: ''Snowy''

:TravelsWith
 since: 1978

Figure 5.1: A small PG about Tintin that serves as a running example in this chapter

Listing 5.1: An example of an RDF-star graph in Turtle Format
_:n1 rdf:type ex:Person .

_:n1 foaf:name "Tintin" .

_:n1 ex:profession "Reporter" .

_:n1 ex:isTeammateOf _:n2 .

<< _:n1 ex:isTeammateOf _:n2 >> ex:since 1978 .

_:n2 foaf:name "Snowy" .

“Snowy”. These two nodes are connected by an edge that holds one label, “TravelsWith”, and
a property that tells that it is “since” “1978”.

A similar example represented in RDF-star is exposed on Listing 5.1. Most information
that was in the PG is represented by the triples in lines 1-4 and 6. The information about since
when Tintin travels with Snowy is represented through a nested RDF-star triple.

Using a user-defined mapping, PRSC is able to convert the PG in Figure 5.1 into the RDF-
star graph in Listing 5.1, and more generally any Property Graph complying with the schema
described in the introduction into the corresponding RDF graph. The user-defined mapping,
named PRSC context, that the user must provide is exposed on Listing 5.2. A PRSC context
is a list of rules that are split in two parts:

• The target part that describes which elements of the Property Graph are targeted. The
target is described depending on three criteria: (1) whether the element must be an edge
or a node, (2) the labels and (3) the properties of the element.

• The production part that describes the triples to produce with a list of template triples.
Values in the pvar namespace are mapped to the blank node in the resulting RDF graph.
The literals that use valueOf as their datatype are converted to the property values in
the RDF graph.

In particular, the PRSC context exposed on Listing 5.2 reads as follows:

• The first rule is named :PersonRule (line 1)

– The rule is used for all PG nodes (line 3) that only have the node label “Person”
(line 4) and have the properties “name” and “job” (line 5). In our example, the node
corresponding to Tintin matches this description, but Snowy does not as it misses
the Person label and the job property.

– It will produce three triples:

⋆ One triple with a blank node as its subject, rdf:type as its predicate and
ex:Person as its object (line 8). Each node from the Property Graph is identified
by a distinct blank node. In this example, :n1 rdf:type ex:Person will be
produced.

5.1. PRSC IN PRACTICE 85

Listing 5.2: The PRSC context that maps the PG running example to the RDF graph running
example
_:PersonRule

Target: all nodes with label "Person" and two properties "name" and "job"

a prec:PRSCNodeRule ;

prec:label "Person" ;

prec:propertyKey "name", "job" ;

Production part of the rule: a template graph

prec:produces

<< pvar:self rdf:type ex:Person >> ,

<< pvar:self foaf:name "name "^^ prec:valueOf >> ,

<< pvar:self ex:profession "job"^^ prec:valueOf >> .

_:NamedRule

Target: all nodes with no label and one property "name"

a prec:PRSCNodeRule ;

prec:propertyKey "name" ;

Production part of the rule

prec:produces

<< pvar:self foaf:name "name "^^ prec:valueOf >> .

_:TravelsWithRule

Target: all edges with the label "TravelsWith" and one property "since"

a prec:PRSCEdgeRule ;

prec:label "TravelsWith" ;

prec:propertyKey "since" ;

Production part of the rule

prec:produces

<< pvar:source ex:isTeammateOf pvar:destination >> ;

<< << pvar:source ex:isTeammateOf pvar:destination >> ex:since "since "^^ prec:valueOf >> .

⋆ Another triple with the same blank node as above as its subject, foaf:name as
its predicate and a literal that matches the value of the name property in the PG
(line 9). The PRSC engine converts all literals whose datatype is prec:valueOf
into the value of the corresponding property in the PG. In this example, :n1

rdf:type "Tintin" will be produced.
⋆ One last triple is produced with the same blank node as its subject,
ex:profession as its predicate and a literal corresponding to the value of the
property job (line 10). In this example, :n1 ex:profession "Reporter" will
be produced.

• The second rule is named :NamedRule (line 12).

– It is applied to nodes (line 14) that have no labels and only one property: name (line
15). This is the case of the PG node used to describe Snowy but not the one that
describes Tintin as it has an extra label and an extra property.

– These PG nodes will be converted into one triple with a blank node that identifies the
PG node as its subject, foaf:name as its predicate and the literal that correspond
to the value of the name property as its object (line 18). In this example, the triple
:n2 foaf:name "Snowy" is produced.

• The third rule is named :TravelsWithRule (line 20):

– It is used to convert edges (line 22) whose only label is “TravelsWith” (line 23) and
with one and only one property named “since” (line 24).

– These edges are converted by producing a triple with the identifier of the source
PG node as the subject, ex:isTeammateOf as the predicate and the identifier of
the destination PG node as the object (line 27). In this example, the triple :n1

ex:isTeammateOf :n2 is produced.

86 CHAPTER 5. PRSC

– A triple with a quoted triple is created by the rule on line 28: the triple that was
created by the line 27 is used on the subject position of the triples created by this
triple, ex:since is used as the predicate and the value of the “since” property is
used as the object. In our example, the triple << :n1 ex:isTeammateOf :n2

>> ex:since 1978 is produced.
– Note that in this example, pvar:self is not used in lines 27 and 28. If it was used,

it would be mapped to a blank node that identifies the edge. The consequence of
not using it is a smaller RDF graph, at the cost of losing information if several edges
of that type exist in the PG between the same nodes.

5.2 Used Property Graph formalism

Note that unlike PREC-C that enables to write rules for each kind of NEP (node, edges and
properties), PRSC only allows the user to write rules about PG elements (nodes and edges).
This choice of excluding rules about properties is inspired by the works of the PGSWG (Property
Graphs needs a Schema Working Group), in particular by their article on PG schemas [57] that
only defines node types and edges types, and no property type. Properties are considered to
be part of the node and edge types, and meta properties are not considered. Following the
example of the PGSWG, PRSC is therefore defined on Angles’ widely used definition of PGs,
rather than our more general definition of Gremlinable PGs. Extending PRSC to GPGs would
raise additional challenges (especially the reversibility properties described in Section 5.5) and
is left for future work.

As mentioned in its definition, the set of all PGs following Angles’ definition is denoted
APG . Following the motivations exposed by Section 3.6.2, the set of PGs supported by the
algorithms is the set of “Blank Node Angles Property Graphs”, i.e. Property Graphs that
follow Angles’ definitions and for which all nodes and edges are blank nodes. Following the
convention defined by Definition 13, and as defined by Remark 6, this set is denoted BAPG .

Example 14 [Running example of a Property Graph (Reminder])
We remind the possible formal definition of the PG in Figure 5.1 that was provided in
Example 1 from Chapter 3, denoted TT with

• NTT = {n1, n2} ;ETT = {e1}
• srcTT = {e1 7→ n1} ; destTT = {e1 7→ n2}
• labelsTT = {n1 7→ {“Person”} ;n2 7→ ∅; e1 7→ {“TravelsWith”}}

• propertiesTT =

{
(n1, “name”) 7→ “Tintin”; (n1, “job”) 7→ “Reporter”

(n2, “name”) 7→ “Snowy”; (e1, “since”) 7→ 1978

}

Definition 24 [The empty PG]
The empty PG, which is the PG that contains no nodes and no edges, is formalized as
follows: pg∅ with Npg∅ = Epg∅ = ∅, srcpg∅ = destpg∅ = labelspg∅ = ∅ → ∅ and propertiespg∅ :
∅ × ∅ → ∅.

5.3 General definitions

This section introduces some standard definitions, mostly inspired from previous works.

5.3. GENERAL DEFINITIONS 87

5.3.1 Domain and image of a function

Definition 25 [Domain and image of a function]
For all partial functions f : D → A, Dom and Img are defined as follows:

• Dom(f) = {x | ∃y ∈ A, such that f(x) = y}
• Img(f) = {y | ∃x ∈ D, such that f(x) = y}.

Example 15
For the partial function inverse : R → R, with inverse(x) = 1/x, Dom(inverse) =
Img(inverse) = R− {0}.

Let E be a set, we recall that 2E denotes the set of all parts of E.

5.3.2 Compatible functions

For all functions f , we recall that they can be seen as sets: f = {(x, f(x)) | x ∈ Dom(f)}.
For all sets S of 2-tuples, S can be seen as a function iff (if and only if) ∀(x, y1, y2), (x, y1) ∈
S ∧ (x, y2) ∈ S ⇒ y1 = y2.

Example 16
Consider the three functions f1, f2, f3 exposed in Table 5.1.

Table 5.1: Some functions defined both with the usual function notation and with a set
notation

Function notation Set notation

f1(x) =

{
0 if x = 0
1 if x = 1

f1 = {(0, 0), (1, 1)}

f2(x) =


66 if x = −2
33 if x = −1
0 if x = 0

f2 = {(−2, 66), (−1, 33), (0, 0)}

f3(x) =

{
10 if x = 0
1 if x = 1

f3 = {(0, 10), (1, 1)}

As f1, f2 and f3 can be defined with a set, it is possible to use the usual set operations.
The set f1 ∪ f2 = {(−2, 66), (−1, 33), (0, 0), (1, 1)} is a function: the first element of all

tuples has a different value. Using a function notation, it may be written as:

(f1 ∪ f2)(x) =


66 if x = −2 [f2(−2) = 66]
33 if x = −1 [f2(−1) = 33]
0 if x = 0 [f1(0) = f2(0) = 0]
1 if x = 1 [f1(1) = 1]

On the opposite, f1 ∪ f3 = {(0, 0), (0, 10), (1, 1)} is not a function. Both (0, 0) and
(0, 10) are members of the set f1 ∪ f3, (f1 ∪ f3)(0) would be equal to both f1(0) = 0 and
f3(0) = 10 which are different values.

88 CHAPTER 5. PRSC

Remark 8
Instead of using the notation {(x0, f(x0)), (x1, f(x1)), . . . },
the notation {x0 7→ f(x0), x1 7→ f(x1), . . . } is sometimes used to clarify the fact that a set
is a function. For example, f3 may be noted as f3 = {0 7→ 10, 1 7→ 1}.

Definition 26 [Functions compatibility]
Two functions f and g are compatible iff f ∪ g is a function, i.e. ∀(x, yf , yg), (x, yf) ∈
f ∧ (x, yg) ∈ g ⇒ yf = yg.

In other words, two functions f and g are compatible iff for every common input, they
share the same output i.e. ∀x ∈ Dom(f) ∩Dom(g), f(x) = g(x).

5.4 PRSC: mapping PGs to RDF graphs

PRSC enables the user to convert any Property Graph to an RDF graph by using user-defined
templates.

5.4.1 Type of a PG element and PG schemas

We define the type of a PG element and PG schemas as follows.

Let pg be a PG.

Definition 27 [Property keys of an element]
We recall that in Definition 1, properties are described as key-value pairs.

keyspg is the function that maps a PG element (node or edge) of the PG pg to the list
of property keys for which it has a value, i.e. keyspg : Npg ∪ Epg → 2Str , with
∀m ∈ (Npg ∪ Epg), keyspg(m) = {key | propertiespg(m, key) is defined}.

Definition 28 [Type of a PG element]
A type is a triple composed of 1) the kind of the PG element, i.e. if it is a node or an edge,
2) a set of labels and 3) a set of property keys. The set of all types is denoted Types and
is defined as Types = ({“node”, “edge”} × 2Str × 2Str).

The type of an element m ∈ Npg ∪ Epg is

typeofpg(m) = (

{
“node” if m ∈ Npg

“edge” if m ∈ Epg

}
, labelspg(m), keyspg(m))

A set of PG types is named a schema.
The functions kind , labels and keys are defined for types such that ∀type = (u, l, key) ∈

Types , kind(type) = u, labels(type) = l, keys(type) = key .

5.4. PRSC: MAPPING PGS TO RDF GRAPHS 89

Example 17
Table 5.2 shows the types of the PG elements in the running example.

Table 5.2: The types of the elements in the PG BTT
m typeofBTT (m)
:n1 (“node”, {“Person”}, {“name”, “job”})
:n2 (“node”, ∅, {“name”})
:e1 (“edge”, {“TravelsWith”}, {“since”})

Remark 9
If two PGs pg and pg′ are isomorphic, their elements share the same type.

Indeed, by definition, there exists a renaming function ϕ from the elements of pg to the
elements of pg′, and ∀m ∈ Npg ∪ Epg, typeofpg(m) = typeofpg ′(ϕ(m)).

5.4.2 Placeholders

Similarly to PREC-C, PRSC resorts on a mechanism of templating. As the notion of template
triples has already been defined in Definition 11, we only need to define which placeholders are
used by PRSC.

Definition 29 [PRSC Placeholders]
Let valueOf be an element that is not included in any of the sets I, B and L. In the
implementation, valueOf is mapped to the datatype prec:valueOf.

The sets of PRSC placeholders are as follows:

• The node placeholders, i.e. the members of the set PN , are ?self , ?source and
?destination. They are respectively placeholders for the NEP itself, the source node
of an edge and the destination node of an edge

• There is no IRI placeholder, i.e. the set PI is empty.
• The set of literal placeholders is PL = Str × {valueOf }. Elements of PL can be
noted using the same notations as for the literals, for example (“name”, valueOf)
and “name”valueOf denote the same literal placeholder. Elements of PL serve as
placeholder to be replaced with an RDF literal that represents the value of a property
in the PG.

5.4.3 PRSC context

The PRSC context is the keystone to let the user drive the conversion from a PG to an RDF
graph. It maps PG types to template graphs. The prsc algorithm proceeds by looping on each
node and edge of the PG, computing its type, finding the associated template graph in the
context, and replacing the placeholders of this template graph with data extracted from the
PG to produce an RDF graph.

90 CHAPTER 5. PRSC

Definition 30 [PRSC Context]
A PRSC context ctx : Types → 2Templates is a partial function that maps types to template
graphs.

All template graphs must be valid, i.e. for all types, the placeholders used in the
associated template graph must be consistent with the type: (1) for any given property
key, its associated placeholder may only be used in template graphs associated with types
that contain the property key, for example the placeholder “name”valueOf may only be used
if the property key “name” is in the type associated to this template; (2) and templates
associated to node types are not allowed to use the placeholders ?source and ?destination,
as they are related to the source or the destination of an edge.

Formally, all template graphs used by a context ctx are valid iff ∀type ∈ Dom(ctx):

1. ∀(key , valueOf) ∈ P, (∃tp ∈ ctx (type) | (key , valueOf) ∈ tp)⇒ key ∈ keys(type).

2. (kind(type) = “node”)⇒ [∄tp ∈ ctx (type) | ?source ∈ tp ∨ ?destination ∈ tp].

The set of all context functions is denoted Ctx .

Definition 31 [Complete PRSC contexts for a given PG]
A PRSC context is said complete for a Property Graph pg ∈ BPGs iff there is a template
graph defined for each type used in pg. The set of all complete contexts for a PG pg is
noted Ctx pg = {ctx ∈ Ctx | ∀m ∈ Npg ∪ Epg , typeofpg(m) ∈ Dom(ctx)}.

Remark 10
Note that the type system described in Definition 28 is trivial to resolve as the type of a
PG element m, denoted by typeofpg(m), only depends on its kind (node or edge), the list
of its labels and the list of its property keys. For this reason, checking if a PRSC context
ctx is complete for a Property Graph pg is also trivial as it consists in computing the type
of each PG element of pg and checking if all types are in the domain of ctx .

Example 18
Table 5.3 exposes an example of a complete ctx context function for our running exam-
ple. First, the function is a context as all template graphs are valid: The placeholders
“name”valueOf and “job”valueOf are only used in types with the associated property key.
The fact that the property key “since” in the third type has no associated placeholder oc-
currence in the template graph does not invalidate the context. The placeholders ?source
and ?destination are only used in the third type, which is an edge type. Then, all three
types used by our running example have an associated template graph, so it is a complete
context for the PG exposed in Example 5.1.

5.4. PRSC: MAPPING PGS TO RDF GRAPHS 91

Table 5.3: An example of a complete context for the Tintin Property Graph.
type ctx (type)

(“node”, {“Person”} , {“name”, “job”})
(?self , rdf :type, ex :Person)

(?self , foaf :name, “name”valueOf)
(?self , ex :profession, “job”valueOf)

(“node”, ∅, {“name”}) (?self , foaf :name, “name”valueOf)
(“edge”, {“TravelsWith”} , {“since”}) (?source, ex :isTeammateOf , ?destination)

Example 19
The function ctx in Table 5.4 is not complete for the PG BTT as its domain lacks the type
of :n2 and the type of :e1 .

Table 5.4: An incomplete context for the Tintin PG
type ctx(type)

(“node”, {“Person”} , {“name”, “job”})
(?self , rdf :type, ex :Person)

(?self , foaf :name, “name”valueOf)
(?self , ex :profession, “job”valueOf)

Example 20
The function ctx below in Table 5.5 is not a context because “surname”, which is used in
the template graph mapped to the first listed type (“node”, {“Person”} , {“name”, “job”}),
is not a key in {“name”, “job”}.

Table 5.5: A function that is not a context
type ctx(type)

(“node”, {“Person”} , {“name”, “job”}) (?self , ex :familyName, “surname”valueOf)
(“node”, ∅, {“name”}) (?self , foaf :name, “name”valueOf)

(“edge”, {“TravelsWith”} , {“since”}) (?source, ex :isTeammateOf , ?destination)

5.4.4 Application of a PRSC context on a PG

We now define formally the conversion operated by PRSC. A PRSC conversion of a PG depends
on a chosen context ctx ∈ Ctx .

Definition 32 [Property value conversion]
For the conversion of property values to literals, we consider that we have a fixed total
injective function toLiteral : V → L, common for all PGs and contexts. We suppose that
toLiteral is reversible, i.e. we are able to compute toLiteral−1.

The exact definition of toLiteral obviously depends on the specific set V , which in turns
depends on the PG implementation. Defining it is however relatively straightforward for the
most common datatypes, by using the standard XML Schema Datatypes [76] or the rdf:JSON
datatype [77].

92 CHAPTER 5. PRSC

Definition 33 [The prsc function]
The operation that produces an RDF graph from the application of a PRSC context ctx ∈
Ctx pg on a Property Graph pg ∈ BPGs is noted prsc(pg , ctx). The result of the prsc
function is the union of the RDF graphs built by converting all elements of the PG, into
RDF. The conversion of a single element is performed by the build function.
∀tps ⊆ Templates ,∀pg ∈ ABPGs , ∀m ∈ Npg ∪ Epg ,

build(tps , pg ,m) = {βpg,m(tp) | tp ∈ tps} with βpg,m defined as follows:

βpg,m :


Templates → RdfTriples

PL ∪ L → L

I → I

PN → B

βpg,m(x) =



(βpg,m(xs), βpg,m(xp), βpg,m(xo)) if x = (xs, xp, xo) ∈ Templates

x if x ∈ L ∪ I

m if x = ?self

srcpg(m) if x = ?source ∧m ∈ Epg

destpg(m) if x = ?destination ∧m ∈ Epg

toLiteral(propertiespg(m, key)) if x = (key , valueOf) ∈ PL

undefined otherwise

As said previously, the result of prsc is the union of the graphs produced by build , i.e.

prsc(pg , ctx) =
⋃

m∈Npg∪Epg

build(ctx (typeofpg(m)), pg,m)

Example 21
Table 5.6 exposes the resolution of prsc on the running example.

Table 5.6: Application of a PRSC context on the running example
m typeofBTT(m) ctx(typeofBTT(m)) build(ctx(typeofBTT(m)),BTT ,m)

:n1
(“node”, {“Person”} ,
{“name”, “job”})

(?self , rdf :type, ex :Person)
(?self , foaf :name, “name”valueOf)
(?self , ex :profession, “job”valueOf)

(:n1 , rdf :type, ex :Person)
(:n1 , foaf :name, “Tintin”)

(:n1 , ex :profession, “Reporter”)
:n2 (“node”, ∅, {“name”}) (?self , foaf :name, “name”valueOf) (:n2 , foaf :name, “Snowy”)

:e1
(“edge”, {“TravelsWith”} ,

{“since”}) (?source, ex :isTeammateOf , ?destination) (:n1 , ex :isTeammateOf , :n2)

The resolution of :n2 is as follows:

5.4. PRSC: MAPPING PGS TO RDF GRAPHS 93

Algorithm 8: The prsc function

Input: pg ∈ BAPG , ctx ∈ Ctx pg

Output: An RDF graph
1 Main Function prsc(pg , ctx):
2 rdf ← {}
3 forall PG element m ∈ Npg ∪ Epg do
4 tps ← ctx (typeofpg(m))

/* build function */

5 built ← {}
6 forall tp ∈ tps do
7 built ← built ∪ {β(tp, pg ,m)}
8 rdf ← rdf ∪ built

9 return rdf

/* In the formal definition, pg and m are implicitly passed to β */

10 Function β(tp, pg ,m):
11 if tp ∈ Templates then
12 (s, p, o)← tp
13 return (β(s, pg ,m), β(p, pg ,m), β(o, pg ,m))

14 else if tp ∈ L then return tp
15 else if tp ∈ I then return tp
16 else if tp ∈ PL then
17 (key , valueOf)← tp
18 return toLiteral(propertiespg(m, key))

19 else
20 assert(tp ∈ PN)
21 switch tp do
22 case ?self do return m
23 case ?source do return srcpg(m)
24 case ?destination do return destpg(m)

build(ctx (typeofBTT (:n2),BTT , :n2)

=build(ctx ((“node”, ∅, {“name”})),BTT , :n2) Resolution of the type

=build(
{
(?self , foaf :name, “name”prec:valueOf)

}
,BTT , :n2) Application of ctx

= {(:n2 , foaf :name, toLiteral(propertiesBTT (:n2, “name”)))} Application of build

= {(:n2 , foaf :name, toLiteral(“Snowy”))} Evaluation of the property

=
{
(:n2 , foaf :name, “Snowy”xsd:string)

}
Application of toLiteral

Algorithm 8 gives an algorithmic view of the prsc function presented by Definition 33.

5.4.5 Complexity analysis

In this section, we discuss the different metrics that can be used to evaluate the complexity
and evaluate the time complexity of the prsc function.

94 CHAPTER 5. PRSC

Functions considered constant

For a given PG pg, the complexity of the functions srcpg , destpg , labelspg and propertiespg are
considered constant.

The complexity of the functions keyspg , toLiteral and toLiteral−1 is also considered constant.
Evaluating if something is a member of a given set, for example if an entity is a member of

the set Npg, is generally considered to be in constant time thanks to hash maps1.

Considered metrics

For a given PG pg and a given context ctx, the following metrics are considered:

• The number of nodes and edges in pg, denoted NbOfPGElements .

NbOfPGElements = |Npg ∪ Epg |

• The size of the biggest template graph, denoted BiggestTemplateSize.

BiggestTemplateSize = max
type∈Dom(ctx)

(|ctx (type)|)

• The complexity of the types in the context, denoted TypeComplexity , reflected by the
number of labels and the number of properties of the type with the highest number of
labels and properties. Note that since the context has to be valid, i.e. all elements of the
PG must have their type in the context, TypeComplexity is also an upper bound of the
type complexity of the types in the PG.

TypeComplexity = 1 + max
type∈Dom(ctx)

(|labelspg(type)|+
∣∣keyspg(type)∣∣)

• The number of types supported by the context.

NbTypes = |Dom(ctx)|

In RDF-star, quoted triples can be used as subject or object of other triples, without limit
on how deeply triples can be nested. In practice, however, it is rare to have more than one level
of nesting. Usually, users are expected to use atomic RDF triples like :tintin :travelsWith

:haddock or to use RDF-star triples with a depth of one like << :tintin :travelsWith

:haddock >> :since 1978. We therefore consider the depth of any triple to be bound by a
constant. As a consequence, in all functions processing terms and triples recursively (such as
β in Algorithm 8), we can ignore the recursion depth in the complexity analysis.

In all complexity analyses, all metrics are considered non null. Indeed, if there are no
elements or if the biggest template graph is empty, the produced RDF graph will be empty so
this case is not interesting. As we add one to the number of labels and properties, the type
complexity can never be zero, even if the context only supports nodes and edges with no labels
and no properties.

1Inserting and searching in a hash map is not strictly speaking a constant time operation but has an
amortized constant complexity, and is linear in the worst case.

5.5. PRSC REVERSIBILITY 95

Complexity of ctx calls in the prsc function

For each given PG element m, the complexity of a call to ctx (typeofpg(m)) is
O(TypeComplexity ∗ ln(TypeComplexity)):

• The type of m in the PG pg must be computed. typeofpg(m) has a complexity of O(1):

– Evaluating ifm is a node or an edge is constant as checking if an element is a member
of a set is constant.

– Calls to labelspg(m) and keyspg(m) are considered constants in Section 5.4.5.

• In the complexity analysis, we consider that ctx is implemented as a hash map from
the types to the template graphs. A ctx call would first need to compute the hash of
the type. To do so, it has to look at all the labels and properties in the type in a
deterministic order; for this, the labels and keys need to be sorted, which has a complexity
of O(TypeComplexity ∗ ln(TypeComplexity)). After the hash has been computed, the cost
of retrieving the template graph has an amortized constant complexity. The overall
complexity of a ctx call is O(TypeComplexity ∗ ln(TypeComplexity)).

Complexity of prsc

Given a PG pg ∈ BAPG and a context ctx ∈ Ctxpg ,

• Calls to ctx (typeofpg(m)) in line 4 have a complexity of
O(TypeComplexity ∗ ln(TypeComplexity)).

• Calls to the β function in line 7 are in constant time, as it has been assumed that the
depth of the most nested triple is low enough to be ignored and the operations it performs
are in constant time.

• There are two for loops, one iterating on all PG elements (NbOfPGElements) and one
iterating on all template triples of a template graph (BiggestTemplateSize). All instruc-
tions in the prsc but the one on line 4 are computed in constant time. Line 4 is inside
the first loop but outside the second loop.

The prsc function has an O(NbOfPGElements ∗ (BiggestTemplateSize + TypeComplexity ∗
ln(TypeComplexity))) complexity.

5.5 PRSC reversibility

When PGs are converted into RDF graphs, an often desired property is to avoid any information
loss. To determine whether or not a conversion induces information loss is to check if the
conversion is reversible, i.e. if from the output, it is possible to compute back the input. The
reversion is studied relatively to the used PRSC context: the PRSC context is used as both an
input of both the PRSC algorithm and the reversion algorithm. In other words, we consider
that the information stored in the PRSC context do not need to be stored in the produced
RDF graph to produce a reversible conversion.

This section first shows that not all PRSC contexts are reversible. Then, properties are
exhibited about PRSC contexts, leading to a description of a subset of reversible PRSC contexts,
i.e. contexts that we prove do not induce information loss.

96 CHAPTER 5. PRSC

5.5.1 The notion of reversibility

In this thesis, we call a function f reversible if we can find back x in practice from f(x). This
implies that:

• The function f must be injective. Indeed, if two different values x and x′ can produce
the same value y, it is impossible to know if the value responsible for producing y was x
or x′.

• The inverse function f−1 must be computable and tractable in reasonable time. By
counter-example, a public-key encryption function is supposed to be injective. It is theo-
retically possible, although prohibitively costly, to decipher a given message by applying
the encryption function on all possible inputs until the result is the original encrypted
message. This is not the kind of “reversibility” we are interested in.

We say that a context ctx is reversible if for any PG pg ∈ BPGs such that the context ctx
is complete for the PG pg , it is possible to find back pg from the context ctx and the result of
prsc(pg , ctx).

More formally, when studying reversibility, we want to check if for a given ctx ∈ Ctx,
we are able to define a tractable function prsc−1

ctx such that ∀pg ∈ BPGs , [ctx ∈ Ctxpg ⇒
prsc−1

ctx(prsc(pg, ctx)) = pg].

Example 22 [A trivially non-reversible context]
Consider the context ctx ∅ such that for all types, it returns the empty template graph, i.e.
∀type ∈ Types , ctx∅(type) = ∅. As it is complete for all Property Graphs, it is possible
to use this context on any Property Graph. However, applying the context ctx ∅ produces
the empty RDF graph. Therefore, the use of the context ctx∅ makes the function prsc not
injective, and therefore not reversible.

Example 23 [A more realistic example of a non-reversible context]
Another example of a non-reversible context is the context exposed in Table 5.3: while this
context can be applied on PGs in which edges have the “since” property, the value of this
property will never appear in the produced RDF graph.

As not all contexts are reversible, the next sections focus on characterizing some contexts
that produce reversible conversions.

5.5.2 Well-behaved contexts

Characterization function

To be able to reverse back to the original PG, we need a way to distinguish the triples that
may have been produced by a given member of Templates from the ones that cannot have been
produced by it. For this purpose, this section introduces the κ function. This function must
verify that, for every triple template tp and every triple t, κ(t) = κ(tp) if and only if t can be
produced from tp by the β function. It would then follow that two template triples that may
produce the same triple have the same image through κ.

Definition 34 [Characterization function]

5.5. PRSC REVERSIBILITY 97

The κ function maps:

• All template triples to a super set of triples that it is able to generate.
• All RDF triples t to a super-set of the RDF triples that a template triple that may
generate the triple t may also generate. For example, a literal may be generated by
any element of PL. An element of PL may generate any literal. Therefore, the κ
function maps all literals to the set of all literals.

κ :


Templates ∪ RdfTriples → 2RdfTriples

L ∪ PL → {L}
I → 2I

B ∪ PN → {B}

κ(x) =


κ(s)× κ(p)× κ(o) if x = (s, p, o) ∈ RdfTriples ∪ Templates

L if x ∈ L ∪ PL

{x} if x ∈ I

B if x ∈ B ∪ PN

The κ function is extended to all template graphs and RDF graphs xs as κ(xs) =⋃
t∈xs κ(t).

Example 24 [κ applied to the running example from Figure 5.1]

• κ(?source) = B, κ(:n1) = B.
• κ(foaf :name) = {foaf :name}.
• κ(“name”valueOf) = L, κ(“Tintin”) = L.
• κ((?self , foaf :name, “name”valueOf)) = B × {foaf :name} × L.
• κ((:n1 , foaf :name, “Tintin”)) = B × {foaf :name} × L.
• Note that

– κ((:n1 , foaf :name, “Tintin”)) = κ((?self , foaf :name, “name”valueOf))
– (:n1 , foaf :name, “Tintin”) ∈ κ((?self , foaf :name, “name”valueOf))

• κ((?source, ex :isTeammateOf , ?destination)) = B × {ex :isTeammateOf } ×B
• κ(((?source, ex :isTeammateOf , ?destination), ex :since, “since”valueOf))
= (B × {ex :isTeammateOf } ×B)× {ex :since} × L

Table 5.7 provides an example of applying κ on the running example context of Table 5.3.

Remark 11 [κ on terms and triples is, as expected, a super-set of the possible generated
values]
When comparing the definition of the κ function with the β functions defined in Sec-
tion 5.4.4, it appears that:

• For elements in B, PN , L and PL, the image of κ is equal to the corresponding image

98 CHAPTER 5. PRSC

set of the β function.
• For elements in I, the image of κ is equal to a singleton containing that element; β
maps any IRI to itself.

• If the given term is a triple, the image of κ is the cross product of the application of
the κ function to the terms that compose the RDF triple. As β on triples recursively
applies itself to the three terms in the triple, we can see that ∀β, ∀triple, β(triple) ∈
κ(triple).

Therefore, if x is a term or an RDF triple, for any β function, β(x) ∈ κ(x).

Remark 12 [The result of build is, as expected, a subset of the result of κ]
The build function, from which prsc is defined, uses β on each template triple. After β is
applied, the union of the singletons containing each triple is computed. This is similar to
the definition of κ on a set of triples.

From Remark 11, it can be deduced that if tps is a set of template triples,
∀pg,∀m, build(tps , pg,m) ⊆ κ(tps).

Remark 13 [A template and its produced values share the same image through κ]
When using the κ function, elements in B and PN both map to B, and elements in L and
PL both map to L. Elements in I are wrapped into a singleton and both RdfTriples and
Templates apply the function recursively on their members.

When using the β function:

• Elements in PN map for all PGs pg ∈ BAPG to elements of Npg and Epg, which are
both subsets of B.

• Elements in PL map to elements in Img(toLiteral), which is a subset of L.
• Elements in L and I are mapped to themselves.
• Elements in Templates apply the β function recursively on their members.

Therefore, ∀tp ∈ Templates , κ(β(tp)) = κ(tp)

As mentioned previously, the role of κ is to allow us to determine whether two template
triples with placeholders may produce the same triple. It maps all placeholders to a super-set 2

of all elements they can generate with the build function. All RDF triples are mapped by the
κ function to a subset of RdfTriples they are a member of.

Lemma 1
If an RDF triple is generated by a template graph, then there exists a template triple with
the same image through κ.
∀pg ∈ BAPG ,∀m ∈ (Npg ∪ Epg),∀tps ⊆ Templates ,∀td ∈ build(tps , pg,m),∃tp ∈ tps |

κ(td) = κ(tp)

2Note that as κ maps to a super set, it may catch false positives. For example, PL can only generate
elements in Img(toLiteral), but the κ function considers that all elements of L can be generated from PL. For
the scope of this thesis, κ catching false positives is considered acceptable, as we are only trying to prove the
reversibility of a given class of contexts, rather than to characterize the whole class of reversible contexts.

5.5. PRSC REVERSIBILITY 99

Proof. Per the Definition 33 of build , an RDF triple can only be generated by a template graph
by the application of β to one of its template triples. Per Remark 13, the generated triple and
the corresponding template triple have the same image through κ.

Definition 35 [unique template triple]
A template triple tp is unique in a set of template triples if no other template triple in the
set has the same image through κ as tp.

It is defined as follows with tp ∈ tps ⊂ Templates :

unique(tp, tps) = (∀tp ′ ∈ tps , κ(tp) = κ(tp ′)⇔ tp = tp ′)

Combined with Remark 13, what unique(tp, tps) tells us is that any triple, with the same
image through κ as tp , can not have be generated by any other element of tps than tp itself.
This leads us to Theorem 1 below.

Theorem 1 [Triples produced by a unique template triple]
In the result of the build function, if a data triple and a unique template triple have the
same value through κ, then the data triple must have been produced by this template
triple.
∀pg ∈ ABPG ,∀ctx ∈ Ctx pg ,∀m ∈ (Npg ∪ Epg), let tps = ctx (typeofpg(m)), ∀td ∈

build(tps , pg,m),∀tp ∈ tps :

unique(tp, tps) ∧ κ(td) = κ(tp)⇒ td ∈ build({tp} , pg,m)

Proof. We prove the theorem by contradiction.
Let us suppose that:

• (A) td ∈ build(tps, pg, b)
• (B1) unique(tp, tps), i.e. (∀tp′ ∈ tps, κ(tp) = κ(tp′)⇒ tp = tp′)
• (B2) κ(td) = κ(tp)
• (C) td ̸∈ build({tp} , pg, b)

td ∈ build(tps− {tp} , pg, b) [(A) and (C)]

⇒∃tdp ∈ tps− {tp} , κ(tdp) = κ(td) [Lemma 1]

⇒∃tdp ∈ tps− {tp} , κ(tdp) = κ(tp) [(B2)]

⇒∃tdp ∈ tps− {tp} , tdp = tp [(B1)]

⇒tp ∈ tps− {tp}

tp can not be part of the set tps − {tp}, as it explicitly excludes it. As we reached a
contradiction, it means that td ∈ build({tp} , pg, b).

Theorem 1 allows us to link an RDF triple to the unique template triple that produced
it. Then by comparing the terms of the RDF triple to the corresponding placeholders in the
template triple, we will be able to reconstruct the original PG.

100 CHAPTER 5. PRSC

Well-behaved PRSC context

In this section, we define a subset of contexts that we call well-behaved PRSC contexts. In the
next section, we will prove that these contexts are reversible.

Definition 36
(Well-behaved contexts)

A PRSC context ctx is well-behaved if it conforms to those 3 criteria:
∀type ∈ Dom(ctx), let tps = ctx (type)

• Element provenance: all generated triples must contain the blank node that identifies
the node or the edge it comes from. This is achieved by using the ?self placeholder
in all template triples:

– ∀tp ∈ tps , ?self ∈ tp

• Signature template triple: tps contains at least one template triple, called its signature
and noted signctx (type), that will produce triples that no other template in ctx can
produce. This will allow, for each blank node in the produced RDF graph, to identify
its type in the original PG.

– ∃signctx (type) ∈ tps ,∀x ∈ Dom(ctx), κ(signctx (type)) ⊆ κ(ctx (x))⇒ x = type

• No value loss : for all elements in the PG, we do not want to lose information stored
in properties, nor for edges, the source and destination node. Each of these pieces of
information must be present in an unambiguously recognizable triple pattern.

– ∀key ∈ keys(type),∃tp ∈ tps | unique(tp, tps) ∧ (key , valueOf) ∈ tp
– kind(type) = “edge”⇔ ∃tp ∈ tps | unique(tp, tps) ∧ ?source ∈ tp
– kind(type) = “edge”⇔ ∃tp ∈ tps | unique(tp, tps) ∧ ?destination ∈ tp

The set of all well-behaved contexts is Ctx+, and the set of all well-behaved contexts
for a PG pg is Ctx+

pg . Ctx
+ ⊂ Ctx and Ctx+

pg = Ctx+ ∩ Ctx pg .

Remark 14 [Handling multiple signctx candidates]
In the case where there are multiple template triples candidates to become the signature
template triple, the choice of the signature template triple among the candidates is generally
not important.

To make the choice deterministic, it could be considered that the chosen signature
template triple is the first in lexicographic order. In the case of the presented algorithms,
the choice of the signature template triple is not important, and will lead to the same
output.

Remark 15 [The template graphs used in well-behaved contexts are not empty]
A well-behaved context cannot map a type to an empty template graph: the signature
template triple criterion ensures that every template graph contains at least one template
triple: ∀tps ∈ Img(ctx), ∃tp ∈ tps ⇔ |tps| ⩾ 1.

5.5. PRSC REVERSIBILITY 101

Remark 16 [Inside a well-behaved context, all template graphs are different from all
others]
For any well-behaved context ctx , two types cannot share the same template graph. Indeed,
if two types share the same template graph, i.e. there are two types type1 and type2 with
type1 ̸= type2 such that ctx (type1) = ctx (type2), it would contradict the signature template
triple criterion as it would lead to type1 = type2 .

Example 25
Table 5.7 studies the context used in our running example, exposed in Example 18.

Table 5.7: The running example context with the corresponding values through κ
type ctx(type) κ(ctx(type))

tn1 = (“node”, {“Person”} , {“name”, “job”})
(?self , rdf :type, ex :Person)

(?self , foaf :name, “name”valueOf)
(?self , ex :profession, “job”valueOf)

(B × {rdf :type} × {ex :Person})
∪ (B × {foaf :name} × L)
∪ (B × {ex :profession} × L)

tn2 = (“node”, ∅, {“name”}) (?self , foaf :name, “name”valueOf) (B × {foaf :name} × L)
te1 = (“edge”, {“TravelsWith”} , {“since”}) (?source, :isTeammateOf, ?destination) (B × {:isTeammateOf} ×B)

• The type tn1 matches all criteria of a well-behaved PRSC context:

– All triples contain ?self .
– At least one template triple is a signature: the image through κ of

(?self , rdf :type, ex :Person) is not contained in the image through κ of other
types. It is also the case of
(?self , ex :profession, “job”valueOf).

– The properties “name” and “job” have a unique template triple inside κ(ctx (tn1)).

• The type tn2 violates the signature template triple criterion as
(?self , foaf :name, “name”valueOf), its only template triple, is shared with the type
tn1,

• The type te1 violates the element provenance criterion as ?self is missing. It also
violates the no value loss criterion as the term “since”valueOf is missing from any
template triple.

For all these reasons, this context is not well-behaved.

Example 26 [A well-behaved context for the running example]
Let ctxTTWB be the function described in Table 5.8. In this new context, an arbitrary
ex:NamedEntity IRI is used to sign the PG nodes that have no label and only a name,
and a classic RDF reification is used to model the PG edges.

102 CHAPTER 5. PRSC

Table 5.8: An example of a complete and well-behaved context for the Tintin Property
Graph.

type ctx(type)

(“node”, {“Person”} , {“name”, “job”})
(?self , rdf :type, ex :Person)⋆

(?self , foaf :name, “name”valueOf)
(?self , ex :profession, “job”valueOf)⋆

(“node”, ∅, {“name”}) (?self , foaf :name, “name”valueOf)
(?self , rdf :type, ex :NamedEntity)⋆

(“edge”, {“TravelsWith”} , {“since”})

(?self , rdf :subject , ?source)⋆
(?self , rdf :object , ?destination)⋆

(?self , rdf :predicate, ex :TravelsWith)⋆
(?self , ex :since, “since”valueOf)⋆

This context is well-behaved:

• ?self appears in all triples,
• Template triples that are signatures are marked with a ⋆. At least one signature triple
appears for each type,

• All property keys have a unique template triple.

Listing 5.3 is the RDF graph produced by the application of the context ctxTTWB on
the PG BTT . Each part that starts with a # denotes a build application to the PG element
described in the comment. The elements are ordered in the same order as their type in
Table 5.8, and the RDF triples and the template triples that produced them are also in the
same order.

Listing 5.3: The RDF graph produced by the application of the well-behaved context
ctxTTWB on the running example PG BTT .

From _:n1

_:n1 rdf:type ex:Person .

_:n1 foaf:name "Tintin" .

_:n1 ex:profession "Reporter" .

From _:n2

_:n2 foaf:name "Snowy" .

_:n2 rdf:type ex:NamedEntity .

From _:e1

_:e1 rdf:subject _:n1 .

_:e1 rdf:object _:n2 .

_:e1 rdf:predicate _:TravelsWith .

_:e1 ex:since 1978 .

Remark 17 [Relationship between the empty PG and the empty RDF graph with well-be-
haved PRSC context]
For all well-behaved PRSC contexts, the only PG that can produce the empty RDF graph
is the empty PG:

∀pg ∈ BAPG , ctx ∈ Ctxpg
+, |prsc(pg , ctx)| = 0⇔ pg = pg∅

Indeed, Remark 15 ensures that the template graphs are non-empty. So any application
of the build function with any well-behaved context produces at least one RDF triple. As

5.5. PRSC REVERSIBILITY 103

the produced RDF graph is the union of the graphs produced by the use of build on each
node and edge, the only way to have an empty result is to have no node nor edge in the
Property Graph.

Implementation and complexity analysis

PRSC well-behaved contexts will be proved to be reversible in Section 5.5.3, meaning that
producing an RDF graph from them will preserve all information stored in the PG. It is therefore
important to be able to determine if in practice, it is possible to compute if a PRSC context is
well-behaved.

Lemma 2
The values through κ of two given terms are either disjoint or equal:

Proof. Consider any atomic RDF term t:

• If t ∈ I, its value through κ is the singleton composed of the element t. Other terms can
not map κ to a super-set of the singleton {t}, in particular no term can be mapped to I.

• If t ∈ L ∪ PL, the value through κ is L. No other term can be mapped to a super-set or
a subset of L.

• If t ∈ B ∪PN , the value through κ is B. No other term can be mapped to a super-set of
a subset of B.

As L, I and B are pairwise disjoint, for two given atomic RDF terms, the value through κ
is either disjoint or equal.

For two given RDF triples composed of atomic terms, their value through κ are equals to
the Cartesian product of the value through κ of the components. As the values through κ of
their components are either equal or disjoint, the values through κ of the triples are also either
equal or disjoint. By induction, this is true for any two RDF triples, even if their subjects or
objects are also triples.

Remark 18 [Implementing κ and complexity analysis]
The function κ is defined to return sets, some of them being infinite sets. While this
definition is useful to prove different theorems, it is not practical from an implementation
perspective.

Let λ and δ be two distinct values that are not members of the set I. We propose below
an alternative function κimpl to be used instead of κ in algorithms:

κimpl(x) =



{κ(triple) | triple ∈ x} if x ∈ RdfTriples ∪ Templates

(κimpl(s), κimpl(p), κimpl(o)) ifx = (s, p, o) ∈ RdfTriples ∪ Templates

λ if x ∈ L ∪ PL

x if x ∈ I

β if x ∈ B ∪ PN

Compared to Definition 34, we replaced:

• the singleton {x} with x, in the case where x ∈ I,
• the sets L and B with two constants λ and δ that are not elements of I,

104 CHAPTER 5. PRSC

• the cross product with a simple triple of the values returned for each element of x
when x is a triple.

The complexity of the κimpl(x) is:

• For any x that is not a triple nor a graph, calls to this function can be done in constant
time, by simply checking the type of x.

• When x is a triple, calls to this function involve recursive calls up to the depth of x,
which we consider to be bounded by a constant (see Section 5.4.5). So it is also done
in constant time.

• When x is a graph, calls to this function involve calling κimpl on each triple of the
graph. As the call on a triple is constant, the call on the graph x has a linear
complexity depending on the size of the graph.

Note that:

• For two triples, checking if their value through κimpl are equal can be done in constant
time.

• Thanks to Lemma 2, checking if the value through κimpl of a triple t is included in
the value through κimpl of a graph tps can be done in linear time by iterating on each
triple tp of the graph tps and comparing the values through κimpl of the triples t and
tp.

Remark 19 [Complexity of checking if a PRSC context is a well-behaved]
The first task to check if a context ctx is well-behaved consists in computing the value
through κ of all triples used in it. As the depth of a template triple is considered to be
negligible, the complexity is the number of template triples, bounded to the number of types
multiplied by the size of the biggest template graph: O(NbTypes ∗ BiggestTemplateSize).

After the value through κ of all template triples have been computed, for each type, we
need to check if the type complies with the three criterion exposed in the Definition 36.

• The element provenance criterion consists in checking if ?self is in all templates
triples of all type. This task has an O(1) complexity for each template triple and an
overall O(NbTypes ∗ BiggestTemplateSize) complexity for the whole context.

• The signature template triple consists in checking if there is at least one signature
template triple in the template graph of all types, i.e. checking if the value through
κ of one of the template triples of each type is not contained in the set of the value
through κ of the other types template graph. As hash sets make the membership
check constant, this task has an O(NbTypes) complexity for a single template triple
candidate, and an overall O(NbTypes ∗BiggestTemplateSize ∗NbTypes) for the whole
context.

• For a given type, checking the no value loss criterion consists in checking if a unique
template triple can be found in the template graph for each placeholder, i.e. a
placeholder corresponding to each property keys in the type; and if the PG element
is an edge, the ?source and ?destination placeholders must also be found. Thanks to
hash sets, checking if a template triple is unique inside its template graph is constant.
Implementing the test by following the definition leads to an O(TypeComplexity ∗
BiggestTemplateSize) complexity for each type and an O(NbTypes ∗TypeComplexity ∗

5.5. PRSC REVERSIBILITY 105

BiggestTemplateSize) complexity for the whole context.

The final complexity of checking if a context is a well-behaved PRSC context is:

O(NbTypes ∗ BiggestTemplateSize ∗ (NbTypes + TypeComplexity))

5.5.3 Reversion algorithm

Algorithm 9 aims to convert an RDF graph, that was produced from a PG and a known
well-behaved context, into the original PG.

It is a four steps algorithm: 1) it finds the elements of the PG, by assuming they are
the same as the blank node in the RDF graph, 2) it gives a type to all PG elements with the
FindTypeOfElements function in Algorithm 103, 3) it assigns each triple to a single PG element,
corresponding to the production of the build function, with the AssociateTriplesWithElements
function in Algorithm 11, and 4) it looks for the source, destination and properties of all
elements with the buildpg function in Algorithm 12.

Further subsections prove that for all ctx ∈ Ctx+, for all PGs pg, applying these algorithms
to rdf = prsc(pg , ctx) actually produces pg, meaning that the reversion algorithm is a sound
and complete implementation of prsc−1 for well-behaved contexts. Applying this algorithm to
an arbitrary RDF graph and/or an arbitrary context is out of the scope of this paper.

Finding the elements of the PG

The first step of the algorithm relies on the assumption that the blank nodes of the RDF graph
and the elements of the original PG are the same.

Definition 37 [List of blank nodes used in an RDF graph]
For every RDF graph rdf , BNodes(rdf) is the set of blank nodes in rdf i.e. ∀rdf ⊆
RdfTriples ,BNodes(rdf) = {bn ∈ B | ∃t ∈ rdf , bn ∈ t}.

Example 27
Let GTT be the RDF graph exposed on Listing 5.1. BNodes(GTT) = { :tintin, :snowy}

Algorithm 9: The main algorithm to convert back an RDF graph into a PG by using
a context
Input: rdf ⊂ RDFTriples, ctx ∈ Ctx+

Output: A BPG or error
1 Main Function RDFToPG(rdf , ctx):
2 Elements ← BNodes(rdf)
3 typeof ← FindTypeOfElements(rdf , ctx ,Elements)
4 builtfrom ← AssociateTriplesWithElements(rdf ,Elements , typeof)
5 return buildpg(ctx ,Elements , typeof , builtfrom)

3To help the comprehension of Algorithm 10, we recall that for a given set A, the mathematical notation
∃!a ∈ A, somepredicate(a) means that in the set A, there is one and only one element, denoted by a, that
matches somepredicate. By extension, ∃!a ∈ A means that there is one and only one element in the set A that
is denoted by a.

106 CHAPTER 5. PRSC

Algorithm 10: Associate the elements of the future PG with their types

Input: rdf ⊂ RDFTriples , ctx ∈ Ctx+,Elements = BNodes(rdf)
Output: A mapping between Elements and Dom(ctx) or error

1 Function FindTypeOfElements(rdf , ctx , Elements):
2 typeof ← {}
3 forall element m ∈ Elements do

/* Find possible types */

4 candtypesnodes ← {}
5 candtypesedges ← {}
6 forall triple t ∈ rdf | m ∈ t do
7 forall type ∈ Dom(ctx) do
8 if κ(signctx (type)) = κ(t) then
9 if kind(type) = “node” then

10 candtypesnodes ← candtypesnodes ∪ {type}
11 else
12 candtypesedges ← candtypesedges ∪ {type}

/* Choose a type */

13 if (∃!type ∈ candtypesnodes) or (∃!type ∈ candtypesedges and candtypesnodes = ∅)
then

14 typeof (m)← type
15 else
16 raise Error(No type found)

17 return typeof

Algorithm 11: Associate each triple to the element that has produced it

Input: rdf ⊂ RDFTriples ,Elements = BNodes(rdf), typeof : Elements 7→ Type
Output: A mapping Elements → 2RdfTriples or error

1 Function AssociateTriplesWithElements(rdf ,Elements , typeof):
2 builtfrom ← {}
3 forall b ∈ Elements do builtfrom(b)← {}
4 forall td ∈ rdf do
5 bns← {term ∈ td | term ∈ B}
6 if (∃!b ∈ bns) or (∃!b ∈ bns | kind(typeof (b)) = “edge”) then
7 builtfrom(b)← builtfrom(b) ∪ {td}
8 else

/* No blank node in bns, or multiple PG nodes but no PG edges, or multiple

PG edges */

9 raise Error(No element provenance)

10 return builtfrom

5.5. PRSC REVERSIBILITY 107

Algorithm 12: Produce a PG from the previous analysis of the elements and triples.

Input: ctx ∈ Ctx+,Elements ⊂ B, typeof : Elements → Type, builtfrom : Elements →
2RdfTriples

Output: A BPG or error
1 Function buildpg(ctx ,Elements , typeof , builtfrom):
2 g is initialized to the empty PG
3 forall b ∈ Elements do
4 labelsg(b)← labels(typeof (b))
5 if kind(typeof (b)) = “edge” then
6 srcg(b)← extract(?source, builtfrom(b), ctx(typeof (b)))
7 destg(b)← extract(?destination, builtfrom(b), ctx(typeof (b)))
8 Ng ← Ng ∪ {srcg(b), destg(b)}
9 Eg ← Eg ∪ {b}

10 else
11 Ng ← Ng ∪ {b}
12 forall key ∈ keys(typeof (b)) do
13 propertiesg(b, key)← extract(key , builtfrom(b), ctx (typeof (b)))

14 return g

15 Function extract(placeholder , tds , tps):
16 values ← {}
17 forall tp ∈ tps | unique(tp, tps) ∧ placeholder ∈ tp do
18 samekappa ← {td ∈ tds | κ(td) = κ(tp)}
19 if ∥samekappa∥ ≠ 1 then raise Error(Unique data triple is not unique)
20 td ← the only element in samekappa
21 answer ← The term from td that is at the same place as placeholder in tp
22 values ← values ∪ {answer}
23 if |values| ≠ 1 then raise Error(Not exactly one value for a placeholder)
24 answer ← The only member of values
25 if placeholder ∈ P then
26 return toLiteral−1(answer)
27 else
28 return answer

Theorem 2 [Equality between the elements of a PG and the blank nodes of the RDF
graph]
If the RDF graph rdf has been produced from a PG pg and a PRSC well-behaved context
ctx , then the set of all blank nodes of rdf is the set of PG elements of pg .

∀pg ∈ BAPG , ctx ∈ Ctx+
pg, rdf = prsc(pg, ctx), Npg ∪ Epg = BNodes(rdf)

Proof.

• The build function, described in Section 5.4.4, produces specific triples depending on
the given template. The template graphs cannot contain blank nodes: the blank node

108 CHAPTER 5. PRSC

produced by prsc are forced to be the elements of the converted BPG. So BNodes(rdf) ⊆
Npg ∪ Epg .

• From Remark 15, we know that ctx (typeofpg(m)) contains at least one triple pattern
tp. Combined with the element provenance criterion from Definition 36, we know that
?self ∈ tp. When β is applied to tp, a triple that contains m is forced to appear, meaning
that Npg ∪ Epg ⊆ BNodes(rdf).

Theorem 2 proves the correctness of the Elements ← BNodes(rdf) step in Algorithm 9.

Finding the type related to each element

In this part of the proof, we show that the FindTypeOfElements function from Algorithm 10 is
correct, i.e. it is able to find back the right type of all elements m in the original pg graph.

Lemma 3
If a data triple shares the same value through κ as one of the signature triples of a type,
then the element from which the data triple was produced must be of this type:

∀td ∈ rdf ,∀type ∈ Dom(ctx),∀m ∈ Npg ∪ Epg ,

[κ(td) = κ(signctx (type)) ∧ td ∈ build(ctx (typeofpg(m)), pg ,m)]⇒ typeofpg(m) = type

Proof. ∀td ∈ rdf ,∀type ∈ Dom(ctx),∀m ∈ Npg ∪ Epg

Assuming (A) κ(td) = κ(signctx (type))

td ∈ build(ctx (typeofpg(m)), pg ,m)

⇒ ∃tp ∈ ctx (typeofpg(m)) | κ(td) = κ(tp) [Lemma 1]

⇒ ∃tp ∈ ctx (typeofpg(m)) | κ(signctx (type)) = κ(tp) [A]

⇒ ∃tp ∈ ctx (typeofpg(m)) | κ(signctx (type)) = κ(tp) ⊆ κ(ctx (typeofpg(m)))

[
tp ∈ ctx (typeofpg(m))

and by construction of κ

]
⇒ typeofpg(m) = type

[
Signature template triple

in Definition 36

]

Definition 38 [Formalizing candtypes]
For a given blank node/PG element b, candtypesnodes and candtypesedges , introduced in
Algorithm 10, can be formally defined as:

candtypesnodes(b) = {type ∈ Dom(ctx) | kind(type) = “node”

∧∃td ∈ rdf | b ∈ td ∧ κ(signctx (type)) = κ(td)}
candtypesedges(b) = {type ∈ Dom(ctx) | kind(type) = “edge”

∧∃td ∈ rdf | b ∈ td ∧ κ(signctx (type)) = κ(td)}

5.5. PRSC REVERSIBILITY 109

They give the set of all node types and edge types, respectively, for which one of their
signature triple could have produced a triple with b.

Theorem 3 [candtypes correctness]
Even though the candtypes functions are defined by only used the used context and the
produced RDF graph, they can be used to compute the type of any blank node in the
original PG:

• ∀b ∈ Npg , candtypesnodes(b) = {typeofpg(b)}
• ∀b ∈ Epg , candtypesnodes(b) = ∅ and candtypesedges(b) = {typeofpg(b)}.

Table 5.9 provides an overview of the cardinality of the different candtypes sets.

Table 5.9: A simple view of Theorem 3
|candtypesnodes(b)| |candtypesedges(b)|

b ∈ Npg 1 any
b ∈ Epg 0 1

Proof.

∀b ∈ BNodes(rdf),∀type ∈ candtypesnodes(b)

Per Definition 38, kind(type) = “node” ∧ ∃td ∈ rdf | b ∈ td ∧ κ(signctx (type)) = κ(td).

We are going to restrict the portion of the graph rdf where such triples td may be located:

td ∈ rdf

⇔ td ∈
⋃

m∈Npg∪Epg

build(ctx (typeof (m)), pg ,m) [Definition of rdf / prsc]

⇒ td ∈
⋃

m∈Npg∪Epg |typeof (m)=type

build(ctx (type), pg ,m)

[
κ(td) = κ(signctx (type))

and Lemma 3

]
⇒ td ∈

⋃
m∈Npg |typeof (m)=type

build(ctx (type), pg ,m) [kind(type) = “node”]

• We see that all triples td contributing to candtypenodes(b) must have been produced by
the signature triple template applied to a node from the PG. Also remember that td must
contain b.

• If b ∈ Npg , then the signature triple of ctx (typeofpg(b)) must have generated a td containing
b (since it must contain ?self , according to Definition 36), so typeofpg(b) ∈ candtypenodes(b).
Furthermore, no other node can produce a td containing b (?self is the only blank node
placeholder in node type templates), so candtypenodes(b) can not contain any other type.
Therefore candtypenodes(b) = {typeofpg(b)}.

• If b ∈ Epg , it is impossible to produce the blank node b from any node m ∈ Npg (again,
?self is the only blank node placeholder in node type templates). No td containing b can
be found, so candtypesnodes(b) is empty.

110 CHAPTER 5. PRSC

The reasoning for candtypesedges(b) when b is an edge is similar to the one for candtypesnodes(b)
when b is a node: only b can produce triples containing itself, and it will, because having at least
one signature triple with ?self is imposed by Definition 36. So candtypeedges = {typeofpg(b)}.

Finally, a blank node b ∈ Npg can appear in any number of triples that share the same
value through κ with an edge signature template triple: an edge signature template triple can
contain ?source or ?destination, that can be mapped to any node depending on the PG. So
candtypeedges(b) can contain an arbitrary number of types in that case.

Remark 20
Theorem 3 not only shows that the FindTypeOfElements function in Algorithm 10 will
always find the right typeofpg function by using candtypes , i.e. that it is computable from
rdf and ctx , but Table 5.9 also explicitly shows that the Error(No type found) scenario can
not appear if the RDF graph was produced from a PG, making the FindTypeOfElements
function both sound and complete.

Remark 21 [Using different signatures to determine the types]
As mentioned previously, the choice of the signature template triple signctx (type) of a given
type is not important for the reversion algorithm. Choosing one or another signature
template triple only leads to other data triples being used to determine the type of the
elements. However, the end-result does not change.

Finding the generated triples for each PG element

For each PG element, given the produced RDF graph and the type of this PG element, we
are able to compute the list of RDF triples produced from this PG element. In other words,
Algorithm 11 correctly partitions the RDF graph into sub-graphs describing each element of
the original PG.

Theorem 4
In Algorithm 11, assuming that the passed value of typeof is equal to typeofpg , ∀m ∈
Npg ∪ Epg, build(ctx (typeofpg(m)), pg ,m) = builtfrom(m).

Proof. As rdf =
⋃

m∈Npg∪Epg
build(ctx (typeof (m)), pg ,m), each triple td ∈ rdf is a member of

at least one build(ctx (typeof (m)), pg ,m). For all triples td ∈ build(ctx (typeof (m)), pg ,m), the
element provenance criterion ensures that m ∈ td . So the first step that consists in listing in
the set bns the blank nodes in td, and consider that m is part of the set bns is correct: the
actual element m is in the set.

The Algorithm associates each triple td with a single builtfrom(m):

• Let us first recall that blank nodes in rdf can only be produced via the placeholders from
PN : ?self , ?source, and ?destination. Let us also recall that every triple pattern in the
Well-behaved context ctx must contain ?self (per the element provenance criterion).

• If bns contains only one blank node m, then m must come from ?self , and the correspond-
ing triple pattern must then belong to ctx (typeof (m)). td must then have been produced
by build(ctx (typeof (m)), pg ,m) so putting it in builtfrom(m) is correct.

• If bns contains multiple blank nodes, td must have been produced by a template triples
with several placeholders from PN .

5.5. PRSC REVERSIBILITY 111

– Node template graphs can contain only one placeholder from PN : ?self . Nom ∈ Npg

could then have produced td . It follows that td must have been produced by the
template graph of an edge.

– Edge template graphs can contain several placeholders from PN . But by definition of
β, only ?self can be mapped to an edge (when m ∈ Epg); ?source and ?destination
are always mapped to nodes. Of the multiple blank nodes in bns , exactly one of
them, m, must therefore be an edge, and come from ?self . Following the same
reasoning as above, when bns contained only one blank node, we conclude that td
must then have been produced by build(ctx (typeof (m)), pg ,m) and that putting it
in builtfrom(m) is correct.

• Error(No element provenance) will never be raised if rdf was produced by prsc: each triple
will contain at least one blank node generated from ?self (per the element provenance
criterion), and if there are multiple blank nodes we showed that there must be only one
edge blank node.

As each triple in rdf is attributed in builtfrom(m) to the right element m that produced
it from
build(ctx (typeofpg(m)), pg ,m), ∀m ∈ Npg∪Epg, builtfrom(m) = build(ctx (typeofpg(m)), pg ,m).

Building the PG element

Projecting Property Graphs As an RDF graph is defined as a set of RDF triples, any
subset of that set, as well as the union of two RDF graphs, are formally defined and are also
RDF graphs. Algorithm 12 constructs back the original PG in an iterative manner. To prove
its correctness, we need operators similar to ⊂ and ∪ for RDF graphs, but for our formalization
of PGs.

In this section, the projection of a Property Graph is defined by focusing only on a single
PG element, node or edge. The concept of merging PGs, which is the inverse of the projection,
is also defined.

Let pg be an APG, i.e. a PG that follows Angles’ definition (Definition 1). Note that in
this subsection, pg is allowed to contain no blank nodes.

Definition 39 [π projection of a Property Graph on an element]
The π projection of a PG on a node is equal to the PG with only the node itself. The π
projection of a PG on an edge is the edge, and its source and destination nodes without
the labels and properties of these nodes.
∀m ∈ Npg ∪ Epg , πm(pg) is a PG such as:

• If m ∈ Npg , Nπm(pg) = {m} , Eπm(pg) = ∅, srcπm(pg) = destπm(pg) = ∅ → ∅
• If m ∈ Epg , Nπm(pg) = {srcpg(m), destpg(m)} , Eπm(pg) = {m},
srcπm(pg) = {m 7→ srcpg(m)}, destπm(pg) = {m 7→ destpg(m)}

• ∀x ∈ Nπm(pg) ∪ Eπm(pg), labelsπm(pg)(x) =

{
labelspg(x) if x = m
∅ otherwise

• ∀key ∈ keyspg(m), propertiesπm(pg)(m, key) = propertiespg(m, key), all other values are
undefined.

112 CHAPTER 5. PRSC

Definition 40 [Property Graph merge operator ⊕]
The merge operator ⊕ is the inverse of the projection operator π. It can only be used on
two PGs that are compatible, i.e. (1) a PG element defined as a node is not defined as an
edge in the other, (2) an edge defined in both PGs have the same source and destination
in both, and (3) if in both PGs, the value of a property key on the same PG element is
defined, the values should be the same. The ⊕ operator builds a PG with the PG elements,
labels and properties of both PGs.

We now define the⊕merge operator on Property Graphs. ∀(pg ′, pg ′′) ∈ APG2,⊕(pg ′, pg ′′)
(or pg ′ ⊕ pg ′′) is defined only if:

• Epg ′ ∩Npg ′′ = ∅ ∧ Npg ′ ∩ Epg ′′ = ∅
• srcpg ′ is compatible with srcpg ′′ and destpg ′ is compatible with destpg ′′ (see compati-
bility definition in Section 5.3.2).

• propertiespg ′ is compatible with propertiespg ′′ .

Its value is ⊕(pg′, pg′′) = pg with:

• Npg = Npg ′ ∪Npg ′′

• Epg = Epg ′ ∪ Epg ′′

• srcpg : Epg → Npg , srcpg = srcpg′ ∪ srcpg′′ .
• destpg : Epg → Npg , destpg = destpg ′ ∪ destpg ′′ .

• ∀m ∈ Npg∪Epg , labelspg(m) =


labelspg′(m) ∪ labelspg′′(m) if both are defined

labelspg′(m) if labelspg′(m) is defined
labelspg′′(m) if labelspg′′(m) is defined

• propertiespg : (Npg ∪ Epg)× Str → V , propertiespg = propertiespg ′ ∪ propertiespg ′′ .

Lemma 4
⊕ is commutative, associative, and the neutral element is the empty PG pg∅

a.

aThe empty PG pg∅ is the graph such that Npg∅ = Epg∅ = ∅.

Proof. (Sketch) ⊕ is defined by using the ∪ operator, which is commutative, associative and
whose neutral element is ∅. The equivalent of ∅ for PGs is pg∅.

Theorem 5
The

⊕
merge of the π projection of a PG on all its PG elements is equal to the PG itself:

∀pg ∈ APG , pg =
⊕

m∈Npg∪EG

πm(pg)

Proof. The proof is provided in Appendix B.

While the ⊕ operator has been primarily designed as the inverse operation of the projection
operator π, it can only merge two PG that are consistent between themselves. If a PG defines
an entity as a node, the other PG can not define it as an edge. If a PG has a given source
and destination for a given edge, the other one can not define another source or destination.
Properties must also be consistent in both PGs. The presented version of the merge operator

5.5. PRSC REVERSIBILITY 113

can only add information, and in the case merging two PGs would lead to an inconsistent PG,
the merge operator is undefined.

Relationship between prsc and projections We are now going to redefine the prsc func-
tion using the π operator.

The RDF graph built by prsc from a PG pg with a context ctx is equal to:

rdf =
⋃

m∈Npg∪Epg

build(ctx (typeofpg(m)), pg ,m)

The build function is defined in such a way that the RDF triples it produces from an element
m are only influenced by:

• m itself.
• Its labels, i.e. labelspg(m).
• Its property values, i.e. ∀key , propertiespg(m, key).
• If m is an edge, its source and destination nodes, i.e. srcpg(m) and destpg(m).
• The template graph ctx (typeofpg(m)).

Therefore, the following equality can be asserted, ∀pg ∈ BAPG ,∀m ∈ Npg ∪ Epg ,∀ctx ∈
Ctxpg :

build(ctx (typeofpg(m)), pg ,m)

= build(ctx (typeofpg(m)), πm(pg),m)

πm(pg) can be considered as the minimal required Property Graph to produce the RDF
triples related to the element m in the PG pg. If we can prove that the reversion algorithm
constructs all πm(pg) graphs and merges them with the ⊕ operator, then it means that we have
properly reconstructed the pg PG.

Completing the proof of the reversion algorithm We are now back to proving that for
all well-behaved contexts ctx , the RDFToPG function presented in Algorithm 9 is an imple-
mentation of the prsc−1 function. pg is a PG for which we know the value of prsc(pg , ctx) = rdf .
We are focusing on the last line of Algorithm 9, where the buildpg function is invoked.

To prove the correctness of the buildpg function in Algorithm 12, starting from an empty
PG g, we are going to show that at each iteration, we are adding to the PG g the π projection
of pg on an element m. After iterating on all elements, as we merged the π projection of all
PG elements, the PG g ends up being equal to the PG pg itself.

Lemma 5 [Merging the projection of one PG element to the reconstructed PG]
In Algorithm 12, assuming that the typeof parameter is equal to typeofpg and buildfrom is
a total function that maps all PG elements b to build(ctx (typeofpg(b)), pg , b), at the end of
an iteration of an element b ∈ Npg ∪ Epg after line 13, the computed PG gafter is equal to
gbefore ⊕ πb(pg), where gbefore is the PG g at the beginning of the iteration between lines 3
and 4.

Proof. The PG πb(pg) is described in Table 5.10. Bold values are the ones for which we need
to prove that we compute the correct value: srcg(b), destg(b) and propertiesg(b, key). Other
values are trivially correct by construction.

114 CHAPTER 5. PRSC

Table 5.10: Description of the PG projection that is built in Algorithm 12
b ∈ Npg b ∈ Epg

Nπb(pg)) {b} Img(srcπb(pg)) ∪
Img(destπb(pg))

Eπb(pg) ∅ {b}
srcπb(pg) ∅ → ∅ b 7→ srcg(b)
destπb(pg) ∅ → ∅ b 7→ destg(b)

b ∈ Npg ∪ Epg

labelsπb(pg) {b 7→ labels(type)}
propertiesπb(pg)

⋃
key∈keys(type) {(b, key) 7→ propertiesg(b, key)}

In the following, we want to check that extract(?source, build(πb(pg), pg , b), ctx (typeof (b)))
properly returns srcπb(pg). Proofs for ?destination / destπb(pg) and key ∈ keys typeofpg (b) /
properties(b, key) are identical.

The values set is filled by iterating on all tp such that unique(tp, tps)∧?source ∈ tp. The no
value loss criterion ensures that at least one such template triple exists, so the loop in extract
is iterated at least once.

Theorem 1 ensures that the built set samekappa in the loop of the extract function will
always have 1 element, that we name td . Error(Unique data triple is not unique) may never
be raised if rdf was produced by PRSC. By definition of the build function, ?source in tp and
srcπb(pg) in td are at the same position.

After the loop, because only srcπb(pg) is added to values in the loop, Error(Not exactly one
value for a placeholder) may never be raised.

The last instructions differ for ?source / ?destination and P . In the case of ?source and
?destination, the obtained value is directly the value of the PG node; in the case of P , the
obtained RDF literal needs to be converted into the proper PG property value, which is possible
because toLiteral−1 is assumed to be computable in Section 5.4.4.

extract properly computes the values that are missing in πb(pg). When these values are
extracted, they are directly merged with the ∪ operator into the g Property Graph. Values
that were already known or can be computed from the values that were just extracted, i.e.
labelsπm(pg) , Nπm(pg) and Eπm(pg), are also merged into g.

As all values of πb(pg) are merged into gbefore , gafter = gbefore ⊕ πm(pg)

Remark 22 [Completeness of buildpg]
In the case where rdf is built from a PG pg , the value that a placeholder is mapped to
is the same everywhere, so we never run at the risk of encountering multiples values, i.e.
Error(Not exactly one value for a placeholder) is never raised. Furthermore, the proof of
Lemma 5 shows that Error(Unique data triple is not unique) may not be raised, because
we know that each unique template triple has produced one data triple.

Theorem 6 [Merging the projection of all PG elements to the reconstructed PG]
Under the same assumptions as Lemma 5, the PG returned by Algorithm 12 is the original
pg, the PG that was used to produce the RDF graph rdf = prsc(pg , ctx) .

5.5. PRSC REVERSIBILITY 115

Proof. The PG g in the algorithm is initialized to pg∅. Lemma 5 shows that after each iteration
in the loop with an element b, the PG g is ⊕-merged with the PG πb(pg). The loop iterates on
all elements in the PG pg , so after all the iterations, the PG g is equal to:

g = pg∅ ⊕
⊕

b∈Npg∪Epg

πb(pg)

=
⊕

b∈Npg∪Epg

πb(pg) [pg∅ is the neutral element of ⊕]

= pg [Theorem 5]

As buildpg in Algorithm 12 correctly reconstructs pg , and as its value is directly returned
by the RDFToPG function in Algorithm 9, we have finally proven that the latter is a sound
and complete implementation of prsc−1 function for any well-behaved PRSC context ctx .

Complexity analysis

Let us now discuss the complexity of the RDFToPG function described in Algorithm 9. In this
discussion, a new metric is considered: the number of triples in the RDF graph: NbTriples =
|rdf |. It is assumed that we have first checked if the context ctx is a well-behaved PRSC
context, and computed the signctx function so it can now be called in constant time.

Extracting the list of blank nodes of an RDF graph on line 2 has a linear complexity of
O(NbTriples).

The FindTypeOfElements function in Algorithm 10 uses three nested loops and only uses
constant time operations: its complexity is O(NbOfPGElements ∗ NbTriples ∗ NbTypes).

Trivially, Algorithm 11 has a complexity of O(NbOfPGElements + NbTriples).
In Algorithm 12:

• Calls to extract(placeholder , tds , tps) have a complexity of O(|tps|2 ∗ |tds|):
– It loops all triples in the template graph tps such that they are unique. Evalu-

ating unique(tp, tps) itself has an O(|tps|) complexity so the overall complexity of
evaluating all tp ∈ tps | unique(tp, tps) is O(|tps|2).

– Inside the loop, building the samekappa set forces to loop on all tds , multiplying the
complexity by a |tds| factor.

In the context of the buildpg function, the extract function is always called with a
template graph tps from the PRSC context and a sub-graph of the RDF graph rdf
as tds . the complexity of the calls of the extract function in the buildpg function is
O(BiggestTemplateSize2 + NbTriples)4.

• The buildpg function loops on all PG elements.

– Notice that while ctx (typeof(b)) is called multiple times, it can be called once and
then its value can be cached. Its cost is O(TypeComplexity ∗ ln(TypeComplexity))
as mentioned in Section 5.4.5.

4Note that if rdf has been generated by the prsc function, the number of triples in the graph tds is inferior
or equal to the number of triples in the template graph tps as tds has been generated from tps. In this case,
the complexity of calling extract in the context of the buildpg function is O(BiggestTemplateSize3).

116 CHAPTER 5. PRSC

– There are at most 2+TypeComplexity calls of the extract function. All of them have
a
O(BiggestTemplateSize ∗ NbTriples) complexity.

– The complexity of each iteration is
33O(TypeComplexity∗ln(TypeComplexity)+TypeComplexity∗BiggestTemplateSize2∗
NbTriples))

• The overall complexity of the buildpg function is
O(NbOfPGElements ∗ TypeComplexity ∗ (ln(TypeComplexity) + BiggestTemplateSize2 ∗
NbTriples))

The overall complexity of the RDFToPG function presented in Algorithm 9 presented in
this section for an RDF graph produced from a PG and a well-behaved PRSC context is:

O(NbTriples
+ NbTypes ∗ NbTriples ∗ BiggestTemplateSize

+ NbOfPGElements + NbTriples

+ NbOfPGElements ∗ TypeComplexity ∗ (ln(TypeComplexity) + BiggestTemplateSize2 ∗ NbTriples))
=O(NbTypes ∗ NbTriples ∗ BiggestTemplateSize

+ NbOfPGElements ∗ TypeComplexity ∗ (ln(TypeComplexity) + BiggestTemplateSize2 ∗ NbTriples))

The RDFToPG function is computable in polynomial time w.r.t. all the considered metrics,
and is therefore considered as tractable.

5.5.4 Discussion about the constraints on well-behaved PRSC con-
texts

In this section, we discuss the acceptability of the different constraints posed by PRSC well-
behaved contexts in terms of usability. In other words, to what extent do they limit what can
be achieved with PRSC?

The no value loss criterion on well-behaved contexts ensures that the data are still present
and can be found unambiguously: as its name implies, this constraint is obviously required
to avoid information loss. Therefore, it should not be perceived as overly constraining when
building PRSC contexts.

The signature template triple is a method to force the user to unambiguously capture the
type of each resource, which is usually considered to be good practice. The type can either be
explicit, through a triple with rdf :type as the predicate, or implicit through a property that
is only used by this type. For example, the template graph for a type Person could contain
a signature template triple like (?self , :personId , “pid”valueOf). The constraint of a signature
composed of only one triple can be considered too strong: one may want to write a context that
works for all PGs. For example, many authors [48, 14] propose to map each label to an RDF
type or a literal used as the object of a specific predicate like pgo:label. More generally, users
may want to use a composite key to sign their types. For these kinds of mappings, our approach
of identifying the type by finding a single signature template is not sufficient. It requires finding
all the signature template triples and deciding to which type they are associated, for example
through a Formal Concept Analysis process. This could be studied as a future extension of the
PRSC reversion algorithm.

5.6. OPTIMIZING THE REVERSION ALGORITHM 117

The element provenance constraint may hinder the integration of RDF data coming from
a PG with regular RDF data: it forces the user to keep the structure exposed in the PG,
with blank nodes representing the underlying structure of the PG. The edge-unique extension
enables to leverage this constraint, by avoiding representing PG edges as RDF nodes.

5.6 Optimizing the reversion algorithm

While the provided RDFToPG function has been proved to be reversible and tractable, in prac-
tice, the exposed complexity is disappointing. The motivations behind presenting a suboptimal
algorithm in Section 5.5.3 are 1) to provide an easier to understand version, and 2) to make
proofs easier to follow.

In this section, we provide new versions of some of the previous algorithms to improve their
complexity.

5.6.1 Checking if a context is a PRSC well-behaved context

Algorithm 13 shows an optimized method to check if a context is a PRSC well-behaved context.
The main idea of this algorithm is to use hash-maps from the value through κ of template triples
to a list of something that is supposed to be unique: the template triple itself for the “no value
loss” criterion and the type for the “signature template triple” criterion. After exploring all
template triples, we check if the template triple or the type is the only element in the list.

Ideas behind the new algorithm

“No value loss” criterion The “no value loss” criterion check is implemented by 1) building
a map with the value through κ as the key and the list of template triples with this value through
κ as the value, 2) listing the list of placeholders that must be found for the considered type
and 3) for all template triples that are alone in their list, i.e. the ones that are unique, looking
for each placeholder in the template triples and then remove this list from the list of expected
placeholders.

“Signature template triple” criterion The “signature template triple” criterion check is
implemented by using Lemma 2: checking if the value through κ of a template triple tp is in
the value through κ of a template graph g is equivalent to checking if the value through κ of
the template triple tp is equal to one of the value through κ of one of the template triple of
the template graph g. It makes this criterion very similar to check with the “no value loss”
criterion. We 1) map the value through κ of each template triple to the list of types that contain
a template triple with the same value through κ, 2) list the types that are alone in their list,
i.e. the types that have a template triple for which its value through κ can not be found for
any other type, and 3) check if the list of types that have a signature template triples is the
same as the list of types supported by the context.

Note that this algorithm can easily be modified to get the signature template triples by
simply modifying the lists contained in signatureCandidates(aValueThroughKappa) from the
list of types to a pair composed of the list of types and the list of template triples. If the list
of types contains only one element, then all template triples in the list are signature template
triples for this type.

118 CHAPTER 5. PRSC

Algorithm 13: An optimized way to compute if a context is a PRSC well-behaved
context
Input: rdf ⊂ RDFTriples, ctx ∈ Ctx+

Output: An element of APG or error
1 Main Function IsWellBehaved(ctx):
2 signatureCandidates ← {} /* A map from image through kappa to types */

3 forall type ∈ Dom(ctx) do
4 uniqueCandidates ← {} /* A map from image through kappa to triples */

5 forall triple ∈ ctx (type) do
6 kappa ← κ(triple)

/* Check violation of the "Element Identification" criterion */

7 if ?self ̸∈ triple then return False
/* Other criteria */

8 signatureCandidates(kappa)← signatureCandidates(kappa) ∪ {type}
9 uniqueCandidates(kappa)← uniqueCandidates(kappa) ∪ {triple}

/* Check violation of the "No value loss" criterion */

10 expectedPlaceholders ← {(key , valueOf) | key ∈ keys(type)}
11 if kind(type) = “edge ′′ then
12 expectedPlaceholders ← expectedPlaceholders ∪ {?source, ?destination}
13 forall (kappa, triples) ∈ uniqueCandidates do

/* Remove the placeholders of the expectedPlaceholders list that are in

unique template triples */

14 if ∃!triple ∈ triples then
15 actualPlaceholders ← {term | term ∈ triple ∧ term ∈ P}
16 expectedPlaceholders ← expectedPlaceholders − actualPlaceholders

17 if expectedPlaceholders ̸= ∅ then return False

/* Check violation of the "Signature template triple" criterion */

18 signedTypes ← {}
19 forall (kappa, types) ∈ signatureCandidates do
20 if ∃!type ∈ types then
21 signedTypes ← signedTypes ∪ {type}

22 if signedTypes ̸= Dom(ctx) then return False
/* No violation has been detected */

23 return True

5.6. OPTIMIZING THE REVERSION ALGORITHM 119

Complexity analysis

First outer loop The first outer loop loops on the list of types from line 3 to line 17. Its
first inner loop loops on the list of template triples of each type in lines 5-9, and performs four
operations: 1) computing the value through κ of the template triple in lines 6, 2) checking if
?self is in the template triple in line 7, 3) adding the type to signatureCandidates in line 8,
and 4) adding the template triple to uniqueCandidates in line 9. All the listed operations have
a constant complexity so the complexity of the content of the first inner of the first inner loop
is constant and the whole first inner loop has a complexity linear with BiggestTemplateSize.

Lines 10 to 12 build the list of expected placeholders for a given type. The
expectedPlaceholders set contains one placeholder per property key in the current type, and
potentially two extra placeholders for the source and the destination. Its size is linear with
TypeComplexity and so is the complexity of building it.

The second nested loop from line 13 to line 16, aims to remove the placeholders from
expectedPlaceholders as they are spotted in unique template triples, the size of uniqueCandidates
is in the worst case equal to BiggestTemplateSize. This case occurs when all template triples
are unique. In the removal nested loop, listing the list of placeholders in the template triple
is considered constant, and the complexity of removing elements from expectedPlaceholders
depends on the size of actualPlaceholders . Because the size of the triples is bounded by a
constant, so is the size of actualPlaceholders , and the time to remove all its elements from
expectedPlaceholders at each step of the loop. Therefore, the complexity of the whole loop from
line 13 to line 16 is linear with the number of triples BiggestTemplateSize.

To summarize, the cost of 1) the first nested loop is linear with the number of template triples
in the type, i.e. BiggestTemplateSize, 2) computing expectedPlaceholders is TypeComplexity ,
and 3) the expected placeholder removal is BiggestTemplateSize. So the overall cost of the first
outer loop is O(NbTypes ∗ (BiggestTemplateSize + TypeComplexity)).

Rest of the algorithm The signatureCandidates set has at most
NbTypes ∗ BiggestTemplateSize: it is the case where all template triples in the context are
signature template triples. All operations of the second outer loop are in constant time, so the
complexity of this loop is O(NbTypes ∗ BiggestTemplateSize)

The signedTypes set has at most NbTypes , so the complexity of checking if signedTypes is
equal to Dom(ctx) is in the worst case scenario linear with NbTypes .

Final complexity The added cost of the other instructions is overshadowed by the com-
plexity of the first outer loop, so the final complexity of the optimized IsWellBehaved function
presented in Algorithm 13 is:

O(NbTypes ∗ (BiggestTemplateSize + TypeComplexity))

For reference, the naive cost presented in Section 5.5.3 was:

O(NbTypes ∗ BiggestTemplateSize ∗ (NbTypes + TypeComplexity))

We see that we saved a NbTypes factor and a BiggestTemplateSize factor, respectively, on
the two terms of the complexity. This is achieved by using efficient data structures for checking
the “signature template triple” and “no value loss” criteria. Note that these data structures
have a size linear to the complexity indicators, therefore comparable to that of the context
itself. The improvement in time complexity comes with no additional cost in space complexity.

120 CHAPTER 5. PRSC

Finding the signatures As discussed previously, the same algorithm can be used to build
the list of the signature template triple of each type. This can be done with no added complexity
as each signatureCandidates map is simply filled with one extra information: a template triple
that has the corresponding value through κ.

Note that the TypeComplexity factor comes from checking the “No value loss” criterion. If
one is only interested in implementing a function that looks for one signature template triple
for each type, all instructions related to the “no value loss” criterion may be removed, lowering
the complexity of the function to O(NbTypes ∗ BiggestTemplateSize).

5.6.2 Associating the elements of the future PG with their types

Algorithm 10 is inefficient in its usage of signature template triples. Instead of “discovering”
the signature template triple of each type for each explored data triple, Algorithm 14 maps
the signatures to their types and then uses the map to find if the data triple corresponds to a
signature or not.

Algorithm 14: Associate the elements of the future PG with their types (optimized
version of Algorithm 10)

Input: rdf ⊂ RDFTriples, ctx ∈ Ctx+,Elements = BNodes(rdf)
Output: A mapping between Elements and Dom(ctx) or error

1 Function FindTypeOfElements(rdf , ctx, Elements):
/* Build the map from signatures to their type */

2 signed ← {κ(signctx (type)) 7→ type | type ∈ Dom(ctx)}
/* Explore the RDF graph */

3 candtypesnodes ← {}
4 candtypesedges ← {}
5 forall triple t ∈ rdf do
6 kappa ← κ(t)
7 if kappa ̸∈ Dom(signed) then
8 Continue

9 type ← signed(kappa)
10 foreach m ∈ t ∧m ∈ B do
11 if kind(type) = “node” then
12 candtypesnodes(m)← candtypesnodes(m) ∪ {type}
13 else
14 candtypesedges(m)← candtypesedges(m) ∪ {type}

/* Decide the type of each PG element */

15 typeof ← {}
16 forall element m ∈ Elements do
17 if (∃!type ∈ candtypesnodes(m)) or (∃!type ∈ candtypesedges(m) and

candtypesnodes(m) = ∅) then
18 typeof (m)← type
19 else
20 raise Error(No type found)

21 return typeof

5.6. OPTIMIZING THE REVERSION ALGORITHM 121

Differences with the original version

The main difference between the two algorithms 10 and 14 is that the exploration of all triples
in the RDF graph is mutualized for all PG elements/blank nodes: the RDF graph is explored
only once.

The candtypes sets are computed for all PG elements at the same time, instead of by pair
of two candtypesnodes/candtypesedges for a given PG element like in the original algorithm.

The optimized algorithm fully relies on the fact that a signature template triple is a template
triple for which its value through κ is not shared by any other type by definition. It is reflected
by the usage of the map from signatures to types to directly find if the data triple may help to
find the type of the element or not.

Complexity analysis

Like the unoptimized version, we assume that calls to the signctx are constant because we
already checked if the context is a PRSC well-behaved context. If it is not the case, the
complexity discussed in Section 5.6.1 should be added to the complexity calculated in this
section.

Building the map from the value through κ of the signatures to the corresponding type has
a complexity linear with the number of types NbTypes .

In the exploration of the RDF graph loop, all operations are constant. Even the loop that
consists in looking for all blank nodes in a given triple is done in constant time because we
consider that a triple has a bound depth. So the cost of exploring the RDF graph is linear with
the size of the RDF graph NbTriples .

The operations performed in the loop to decide the type of each PG element are all done in
constant time. The loop iterates on each PG element, so the cost of the complete loop is linear
with NbOfPGElements .

The final complexity of this optimized version of the FindTypeOfElements function is:

O(NbTypes + NbTriples + NbOfPGElements)

The previous version has an O(NbOfPGElements ∗ NbTriples ∗ NbTypes) complexity. The
gain mostly comes from un-nesting the different loops.

5.6.3 Producing the PG

Algorithm 12 is inefficient in how it looks for the values corresponding to the placeholders. Each
call to the extract function searches in the entire sub-graph corresponding to the element. Each
call to extract also has to discover which template triples are unique. Algorithm 15 addresses
these two issues.

122 CHAPTER 5. PRSC

Algorithm 15: Produce a PG from the previous analysis of the elements and triples
(optimized version of Algorithm 12).

Input: ctx ∈ Ctx+,Elements ⊂ B, typeof : Elements → Type, builtfrom : Elements →
2RdfTriples

Output: A member of APG or error
1 Function buildpg(ctx,Elements , typeof , builtfrom):
2 g is initialized to the empty PG
3 forall b ∈ Elements do

/* Compute the unique template triples */

4 tps ← ctx(typeof (b))
5 uniques ← {κ(tp) 7→ tp | unique(tp, tps)}

/* Explore the RDF graph */

6 forall td ∈ builtfrom(b) do
7 if κ(td) ∈ Dom(uniques) then
8 merge(g, b, td, uniques(κ(td)))

/* Ensure that all placeholders are filled */

9 forall key ∈ keys(typeof (b)) do
10 if (b, key) ̸∈ Dom(propertiesg) then
11 raise Error(Missing a property key)

12 if kind(typeof (b)) = “edge” then
13 if b ̸∈ Dom(srcg) ∨ b ̸∈ Dom(destg) then
14 raise Error(Missing source or destination)

/* Leftovers */

15 labelsg(b)← labels(typeof(b))
16 if kind(typeof (b)) = “edge” then
17 Ng ← Ng ∪ {srcg(b), destg(b)}
18 Eg ← Eg ∪ {b}
19 else
20 Ng ← Ng ∪ {b}

21 return g

5.6. OPTIMIZING THE REVERSION ALGORITHM 123

Algorithm 16: Utility functions of Algorithm 15

/* Merges in the PG g the data that can be extracted from the triple td considering

it was produced from element b and the template triple tp */

1 Function merge(g, b, td, tp):
2 extractedPairs ← extractPairs(td, tp)
3 forall (placeholder , term) ∈ extractedPairs do
4 if placeholder = ?source then
5 if b ∈ Dom(srcg) ∧ srcg(b) ̸= term then
6 raise Error(Inconsistent value for ?source)

7 srcg(b)← term

8 else if placeholder = ?destination then
9 if b ∈ Dom(destg) ∧ destg(b) ̸= term then

10 raise Error(Inconsistent value for ?destination)

11 destg(b)← term

12 else
13 (key ,)← placeholder

14 if (b, key) ∈ Dom(propertiesg)∧ propertiesg(b, key) ̸= toLiteral−1(term) then
15 raise Error(Inconsistent value for ?destination)

16 propertiesg(b, key)← toLiteral−1(term)

/* Extract the list of terms produced from the placeholders. Recursive function on

triples/terms. */

17 Function extractPairs(tp, td):
18 if td ∈ RdfTriples ∧ tp ∈ Templates then
19 (ts, tp, to)← tp
20 (s, p, o)← td
21 return extractedPairs(ts, s) ∪ extractedPairs(tp, p) ∪ extractedPairs(to, o)

22 else if td ∈ L then
23 if tp ∈ L then return ∅
24 else if tp ∈ PL then return {(tp, td)}
25 else if td ∈ B then
26 if tp = ?source then return {(tp, td)}
27 else if tp = ?destination then return {(tp, td)}
28 else if tp = ?self then return ∅
29 else if td = tp then return ∅
30

31 raise Error(tp did not generate td)

Explanation of the new algorithm

The extractPairs is in charge of extracting the different information contained in a data triple
assuming it has been produced by the given template triple. It is a recursive function that
can be seen as the inverse of the β function. Note that it can return several times the same
pairs, or may even in principle return multiple pairs with the same first member but a different
second member. For example, consider the template triple (?source, rdf :type, ?source) and the
data triple (:a, rdf :type, :b). In this case, the set (?source, :a), (?source, :b) will be returned.

124 CHAPTER 5. PRSC

However, as we supposed that the RDF graph is produced from the prsc function, and in
particular by using a PRSC well-behaved context, this case will never occur.

The merge function is in charge of extracting the different information contained in the data
triple and filling the PG with it. Using the result of extractPairs , it merges the data in the
right places (the srcg, destg and propertiesg functions of the PG being constructed), ensuring
that the inserted data remains consistent. It is where the erroneous example presented above
is caught.

The new buildpg function, for each PG element, 1) computes the unique template triples,
2) for each data triple that has the same value through κ as a unique template triple calls the
merge function, 3) ensures that all missing piece of information has been filled, and 4) adds the
remaining data.

Complexity analysis

Like the β and the κ functions, the extractPairs function has a constant complexity as it is a
recursive function on triples and atomic terms.

As the merge function loops on the output of the extractPairs function, and only performs
constant operations, it is also assumed to be run in constant time. This is because each pair
of template triple and data triple with a bounded nesting depth will only contain a bounded
amount of elements to merge in the PG.

Let us now study the new buildpg function from the point of view of one given element, i.e.
inside the outermost loop:

• The first step lines 4-5 consists in building the list of template triples that are unique.
Finding the template graph, i.e. calling the ctx function, has an O(TypeComplexity ∗
ln(TypeComplexity)) complexity as discussed in Section 5.4.5. The computation of the
uniques set, in line 5, can be performed using the same method as Algorithm 12, with
a complexity of O(BiggestTemplateSize) by reusing the ideas presented in the optimized
PRSC Well-behaved context check in Algorithm 13 of Section 5.6.1. The final complexity
of this step is O(TypeComplexity ∗ ln(TypeComplexity) + BiggestTemplateSize).

• The second step lines 6-8 consists in extracting data from exploring the triple from the
graph. As calling merge has a constant complexity, this step has an O(NbTriples) com-
plexity. Note that in the case where the RDF graph has been produced by the PRSC
well-behaved context ctx, builtfrom(b) will return at most BiggestTemplateSize triples, so
the complexity drops to O(BiggestTemplateSize) complexity.

• The third step lines 9-14 ensures that all required data is in the PG, which has an
O(TypeComplexity) complexity.

• The fourth step has a constant complexity.

As the buildpg function loops on all PG elements, its complexity is

O(NbOfPGElements∗(TypeComplexity∗ln(TypeComplexity)+BiggestTemplateSize+NbTriples))

The complexity of the previous non-optimized version of buildpg is

O(NbOfPGElements∗TypeComplexity∗(ln(TypeComplexity)+BiggestTemplateSize2∗NbTriples))

By un-nesting the different loops and by using appropriate data structures, we are able to
transform some factor into additions.

5.7. EXTENSIONS 125

5.6.4 Complexity of the optimized RDF to PG function

By using the new versions of the FindTypeOfElements and the buildpg functions, the new
complexity of the RDFToPG function is:

O(NbTriples
+ NbTypes + NbTriples + NbOfPGElements

+ NbOfPGElements + NbTriples

+ NbOfPGElements ∗ (TypeComplexity ∗ ln(TypeComplexity) + BiggestTemplateSize + NbTriples))

=O(NbTypes
+ NbOfPGElements ∗ (TypeComplexity ∗ ln(TypeComplexity) + BiggestTemplateSize + NbTriples))

The complexity of the non optimized version was:

O(NbTypes ∗ NbTriples ∗ BiggestTemplateSize

+ NbOfPGElements ∗ TypeComplexity ∗ (ln(TypeComplexity) + BiggestTemplateSize2 ∗ NbTriples))

The complexity of the optimized version is way more acceptable. Most of the cost comes from
the final buildpg function. The biggest factor in practice is the NbOfPGElements ∗ NbTriples
part, which in the case of RDF graphs generated from PRSC well-behaved context will be
further lowered as the number of triples actually processed for each element will be bound
by BiggestTemplateSize instead of NbTriples . It means that the reversion algorithm is very
efficient and can scale with large graphs.

5.7 Extensions

In this section, multiple extensions are proposed to make the prsc function more user-friendly.

5.7.1 Edge-unique extension

In many cases, there is only one edge of a certain type between two nodes, like the “TravelWith”
edge in our running example or for relationships like knowing someone, a parental relationship. . .
For this type of edges, it is more intuitive to represent them with a simple RDF triple, and
get rid of the blank node corresponding to the edge. However, Well-Behaved PRSC contexts
require ?self in edge templates. In this section, we propose an extension to allow ?self to be
missing in edge templates and still produce reversible conversions.

Table 5.11: A context for the Tintin PG with the since property
type ctx(type)

(“node”, {“Person”} , {“name”, “job”})
(?self , rdf :type, ex :Person)

(?self , foaf :name, “name”valueOf)
(?self , ex :profession, “job”valueOf)

(“node”, ∅, {“name”}) (?self , foaf :name, “name”valueOf)

(“edge”, {“TravelsWith”} , {“since”}) (?source, ex :isTeammateOf , ?destination)
((?source, ex :isTeammateOf , ?destination), ex :since, “since”valueOf)

Consider the Tintin PG exposed in Figure 5.1 and the context exposed in Table 5.11, which
uses RDF-star to convert the “since” property. The output of PRSC from those two inputs is

126 CHAPTER 5. PRSC

exposed in Listing 5.4. By looking at the produced RDF graph, it appears that the RDF graph
captures all the information of the PG. More generally, RDF graphs produced by this context
would always be reversible as long as the source PG does not contain multiple “TravelsWith”
edges between two given nodes.

Listing 5.4: The output of PRSC for the Tintin PG and the context exposed in Table 5.11
% Tintin node

_:n1 rdf:type ex:Person .

_:n1 foaf:name "Tintin" .

_:n1 ex:profession "Reporter" .

% Snowy node

_:n2 foaf:name "Snowy" .

% TravelsWith edge

_:n1 ex:isTeammateOf _:n2 .

<< _:n1 ex:isTeammateOf _:n2 >> ex:since 1978 .

Definition 41 [Edge-unique extension]

a) In a context ctx, an edge-unique type edgeunq is an edge type such that:

• ctx(edgeunq) complies with the no value loss criterion and is not empty.
• For all triples tp ∈ ctx(edgeunq):

– ?source ∈ tp and ?destination ∈ tp
– tp is a signature template triple, i.e. no other type has a template triple that

shares its value through κ.
– tp is a unique template triple, i.e. no other template triple in ctx(edgeunq)

shares its value through κ.

b) A PG pg is said edge-unique valid for a context ctx if for all edge-unique types in
the context, there is at most one edge of this type between two given nodes:

∀e ∈ Epg, typeofpg(e) is an edge-unique type⇒

(∀e′ ∈ Epg,

 typeofpg(e) = typeofpg(e
′)

∧ srcpg(e) = srcpg(e
′)

∧ destpg(e) = destpg(e
′)

⇒ e = e′)

c) The prscEdgeUnique function is introduced to serve as a proxy to the prsc function
to be applied only if the given PG is edge-unique valid relatively to the given context:

prscEdgeUnique(pg, ctx) =

{
prsc(pg, ctx) if pg is edge-unique valid for ctx
undefined otherwise

Theorem 7 shows that prscEdgeUnique is reversible up to an isomorphism.

Theorem 7
Let ctx be a context such that each type either a) matches the constraints of a type in a
well-behaved PRSC context in Definition 36 or b) is an edge-unique type.

5.7. EXTENSIONS 127

• For every two BPGs, pg1 and pg2, such that
prscEdgeUnique(pg1, ctx) = prscEdgeUnique(pg2, ctx), pg1 and pg2 are isomorphic.

• It is possible to define an algorithm such that ∀pg ∈ BAPG , from the RDF graph
prscEdgeUnique(pg, ctx), the algorithm computes a PG pg′ such that
prscEdgeUnique(pg, ctx) = prscEdgeUnique(pg′, ctx), i.e. from the produced RDF
graph and the context, it is possible to compute a PG that is isomorphic to the
original one.

Proof. (Sketch) The context ctx is composed of two parts: a) the well-behaved part and b) the
edge-unique part. The well-behaved part has been proven to be reversible. As template triples
used for edge-unique types are signatures, their value trough κ is different from the triples
produced from the value through κ of the triples of the well-behaved part: triples produced
from edge-unique types are distinguishable from the rest of the RDF graph.

Denote W the set of all types in the well-behaved part and U the types in the edge-unique
part. Let pg be a PG such that rdf = prscEdgeUnique(pg, ctx) exists. It is possible to split pg
using W and U :

pg =
⊕

m∈Npg∪Epg |typeof pg(m)∈W

πm(pg)︸ ︷︷ ︸
pgW

⊕
⊕

u∈Epg |typeof pg(u)∈U

πu(pg)︸ ︷︷ ︸
pgu

It is also possible to split rdf by defining an isWellBehaved predicate that uses κ to filter
triples that come from types in the well-behaved part:
∀td ∈ RdfTriples , isWellBehaved(td)⇔ ∃type ∈ W,∃tp ∈ ctx (type), κ(td) = κ(tp).

rdf = {td ∈ rdf | isWellBehaved(td)}︸ ︷︷ ︸
rdfW

∪{td ∈ rdf | ¬isWellBehaved(td)}︸ ︷︷ ︸
rdf U

From all the theorems on well-behaved contexts, there is a bijection between pgW and rdf W .
All template triples used in the template graph of edge-unique types are both signature

and unique: from any triple in rdf U , it is possible to find which template triple produced it.
Consider an arbitrary edge u, whose type is an edge-unique type, i.e. typeof (u) ∈ U . As
edge-unique template graphs must also comply with the no value loss criterion, all properties,
the source node and the destination node of u can be found in a non-ambiguous manner in
rdf U . The only missing information is the edge identity, i.e. the blank node u itself.

By using a fresh blank node for u, it is possible to build a PG isomorphic to πu(pg) from
rdf U , by extension, a PG isomorphic to pgU from rdf U , and by extension a PG isomorphic to
pg from rdf .

Remark 23 [Reversibility of the union of two contexts]
We proved for Theorem 7 that given a context ctx that can be split into two contexts ctxw

and ctxu where ctxw is a PRSC well-behaved context and ctxu is the “edge-unique” part
of the context, the context ctx = ctxw ∪ ctxu is reversible.

However, the proof is based on the fact that:

• The image through κ of all template triples in the context ctxw and the image through
κ of all template triples in the context ctxu are disjoint.

• The contexts ctxw and ctxu are reversible.

128 CHAPTER 5. PRSC

Let us now consider the case of two contexts ctx a and ctx b such that the images through
κ of their template triples are disjoint and such that they are reversible, possibly up to an
isomorphism.

If the two contexts are compatible (no type is defined in both contexts), the function
ctx a ∪ ctx b is a context and is reversible, up to an isomorphism if ctx a or ctx b is reversible
up to an isomorphism.

By consequence, similarly to how we showed that contexts that use the edge-unique
extension are still reversible, the range of reversible contexts can be increased by splitting
the context into multiple parts and proving that each one is reversible.

5.7.2 Default context

The definition of a PRSC context forces the user to map each type present in the PG. By
consequence, it is impossible to write in practice a PRSC context that works for all PGs as it
would require to write an infinite number of rules. In this section, we introduce the notion of
a default context.

Let us suppose that we have an injective function toiri : Str 7→ I that maps all possible
labels to distinct IRIs.

Definition 42 [Default context]
The context ctx default is defined for all types as follows:

ctx default : type 7→



if kind(type) = “node”, (?self , rdf :type, pgo:Node)
if kind(type) = “edge”, (?self , rdf :type, pgo:Edge)
∀label ∈ labels(type), (?self , :label , toiri(label))

∀key ∈ keys(type), (?self , toiri(key), (keyvalueOf))
if kind(type) = “edge”, (?self , pgo:start , ?source)
if kind(type) = “edge”, (?self , pgo:end , ?destination)


ctxdefault can be used for all PGs, i.e. ∀pg ∈ APG , ctxdefault ∈ Ctxpg.

Lemma 6
The default context is not a PRSC well-behaved context, i.e. ctxdefault ̸∈ Ctx+

Proof. Consider back the running example (Figure 5.1, and especially 1) the node for Tintin
that has a Person label and two properties: the name property and the job property; and 2)
the node for Snowy that only has a name property.

The type corresponding to Tintin has four template triples: one to add the type pgo:Node,
one for the label and two for the properties, in particular the template triple
(?self , :label , “name”valueOf) for the name property. The type corresponding to Snowy has two
templates triples, one to add the type pgo:Node, and the template triple
(?self , : label , “name”valueOf) for the name property.

As the latter template graph is a subset of the former template graph, the default context
is not a well-behaved PRSC context.

5.7. EXTENSIONS 129

Lemma 7 [The default context is reversible]

Proof. The default context trivially satisfies the no value loss and the element provenance
criteria from well-behaved contexts. The only part of the reversion algorithm (Algorithm 9
that needs to be changed to be used for the default context is the type identification method
(the FindTypeOfElements function from Algorithm 10).

However, it is possible to write a new function as the retrieval of the type is trivial: with
pg the original PG and rdf the built RDF graph, for any element m, its type typeof pg(m) is

•
kind(typeof pg(m)) =

{
“edge” if ∃n ∈ B, (m, pgo:start , n)
“node” otherwise

• labels(typeof pg(m)) =
{
toiri−1(iri) | iri , (m, :label , iri) ∈ rdf

}
• keys(typeof pg(m)) =

{
toIri−1(iri) | iri ,∃value ∈ L, (m, iri , value) ∈ rdf

}

It is possible to apply the idea introduced by Remark 23 of combining two contexts, a user-
defined context and the default context, to produce a context that works for any PG in the case
where we want to use PRSC but still want to be able to convert any arbitrary PG. Formally,
the new context would be defined as the union of 1) the user-defined context and 2) the default
context deprived of the types defined by the user-defined context, i.e. a version of the default
context in which the types in the user-defined context are removed from the domain. From
the same Remark 23, as the default context is reversible (Lemma 7), if image through κ of all
templates triples in the user-defined context are disjoints from the ones of the default context,
and if the user-defined context is reversible, then the context composed of both contexts is still
reversible.

5.7.3 IRI Property Graphs

In Section 3.6.2, we discussed using Property Graphs with Blank Nodes to build RDF graphs.
The process to convert PGs into RDF graphs was, 1) build an isomorphic PG for which each
element has been mapped to a blank node, and 2) then each element is converted depending
on its type.

However, a blank node has no tangible identity, and using blank nodes reduces the utility
of the produced RDF graph in the context of Linked Data, as its elements can not be linked
from other graphs.

Very few IRIs are used when converting a PG into an RDF graph: the used IRIs are limited
to the ones that are present in the PRSC context. Instead of using blank nodes for the PG
elements, we could use any IRI that is not used in the context. These IRIs can be forged using
the values of some properties.

Definition 43 [Used IRIs]
The usedIris function extracts all the IRIs used in a template graph:

usedIris : Templates → 2I

usedIris(tps) = {i | i ∈ I ∧ ∃tp ∈ tps , i ∈ tp}
The usedIris function is extended to contexts to provide the list of IRIs used in the

130 CHAPTER 5. PRSC

context:
∀ctx ∈ Ctx , usedIris(ctx) =

⋃
tps∈Img(ctx)

usedIris(tps)

When reversing an RDF graph produced by prsc using a context ctx, the only IRIs that
can be generated from the template graphs themselves are the ones explicitly written in the
context, i.e. FI ctx = usedIris(ctx). Let us call theses IRIs “fixed iris”.

By replacing in the proofs presented in Section 5.5 I with FI ctx , the terms in the set of
variable IRIs VI ctx = B∪(I−FI ctx) may never be produced from the non placeholders terms of
the template graphs. These variables IRIs can play the role of the set B, i.e. we may substitute
all mentions of B with VI ctx .

Then, by extending the notion of BPGs to also allow IRIs as the PG elements identity,
we are able to produce RDF graphs that contain IRIs as PG elements identifiers, and for any
BPGs that do not contain a PG element that is part of the set FI ctx, i.e. they are all part of
the set VI ctx , if ctx is a PRSC well-behaved context, then the conversion is reversible.

Example 28
In our running example about the PG about Tintin, the PG TT , consider that we want to
build IRIs for all nodes in the form ex:individual/{name} where {name} is substituted
with the value of the property name. For example, Tintin is now mapped to the IRI
ex:individual/Tintin instead of an arbitrary blank node.

Using any PRSC well-behaved context such as the one presented in Table 5.8 that do
not map any IRI to the ex:individual/ namespace will still produce a reversible RDF
graph: during the reversion, instead of only considering the elements in the set B, elements
in the ex:individual/ namespace may also be considered as PG elements.

The main use case would be to generate IRIs by using a prefix in a given namespace and
a suffix that depends on a property value, like Example 28 above. It could also be imagined
that multiple properties can be used to generate an IRI, for example to use both the given
name and the family name of the persons in the PG to generate an IRI to identify the persons.
However, generating IRIs from property values comes with an additional constraint: in addition
to not collide with the IRIs in the context, the IRI generated from the property values must
be different for all PG elements. In other words, the tuple composed of all properties used in
an IRI must be a primary key (in its database definition) in the PG.

5.8 Conclusion

In this chapter, we presented PRSC, a converter from PG to RDF graphs based on a PRSC
context. The PRSC context is written by the user and maps the different types in the PG to
template graphs. Then the PRSC algorithm transforms the PG into an RDF graph by looking
at each PG element and by using for each of them the appropriate template graph depending
on the type of the PG element. We defined a subclass of contexts named PRSC well-behaved
contexts for which we formally proved the reversibility, and provided the related algorithm. We
showed that the reversion algorithm can be optimized to a version with a complexity that makes
it usable with large graphs. We then introduced some extensions to this work, in particular
we extended the notion of PRSC well-behaved contexts to consider PGs for which certain edge
labels may be edge-unique.

The work on PRSC would be extended further to improve its usability, in particular on
properties:

5.8. CONCLUSION 131

• The system currently does not allow optional properties. Two types that differ only by the
fact that the second type has an extra property are considered to be distinct types. This
is especially annoying in the case of PRSC well-behaved contexts where the “signature
template triple” criterion forces the user to have a distinct triple in the template graphs
of these two types. To tackle this issue, the types could be recognized not by using a
single signature template triple, but through an approach based on FCA (formal concept
analysis), or using existing tools like ShEx to detect type overlapping and/or recognize
the types.

• Meta properties are currently not supported. Supporting them does not add any challenge
as meta properties can be considered to be a fancy method to name properties. For
example the property named “name.since” can be considered to be the meta property
“since” on the property “name”.

• Multi valued properties, i.e. two properties with the same key, is also not supported.
Again, supporting this feature introduces no extra challenge to produce the RDF graph as
the same template triple could be used for the different values of the properties that share
the same property key. However, note that for the reversion, a special attention must be
paid to multi-valued properties with both the same key and value to avoid collapsing them
in the same triple, for example producing two (:(tintin), foaf :name, “Tintin”) triples that
are actually collapsed into one triple. Note that this issue is very similar to the issue of
edge-unique types where the property holder is similar to the edge source, and the property
value is similar to the edge destination.

• However, supporting both meta-properties and multi- valued properties adds new chal-
lenges for the RDF to PG reversion algorithm. Indeed, consider a node that has two
“name” properties and a meta property on both of them. When reverting the RDF graph
to a PG, the system must be able to identify to which “name” property each “since” meta
property was attached to.

Compared to PREC-C, PRSC faces some limitations:

• As there are no placeholders corresponding to the RDF node of PG properties, i.e. the
elements of the set P in the GPG formalism, it is impossible to produce an RDF graph
with a unique identifier for properties. This is especially a problem when trying to
reproduce some ontologies, for example the PGO ontology that uses a blank node for
each property as the value of pgo:hasNodeProperty and pgo:hasEdgeProperty as seen
in Figure 4.3.
Being able to use the RDF node of PG properties is a solution to be able to support the
reversion of a conversion that supports both meta and multi properties.

• The list of supported types must be specified by the user, which may be tedious for PGs
with heterogeneous types in the PG. The lack of any default mechanism blocks the user
from producing a PG without defining a complete context that supports everything in
the PG.

Over PREC-C, PRSC also has many advantages:

• The ontology to describe PRSC contexts is simpler than the ontology to describe PREC-
C: it contains fewer terms.

• Moreover, the context is self-contained: it does not have any implicit rules like the default
template graph of PREC-C.

• As for a given context, some PGs may not be valid, PRSC includes some form of schema
validation which is less error-prone. With PREC-C, users may produce unexpected triples

132 CHAPTER 5. PRSC

from a PG that contain data that they are not aware of without the converter explicitly
noticing them about these data.

Chapter 6

Shacled Turtle: a general purpose
autocompletion engine

Chapters 3, 4 and 5 introduced PREC, a PG to RDF converter that relies on a context, a file
written in Turtle-star that describes how to convert the different PG entities into RDF triples.

The two rule-sets used by PREC, PREC-C and PRSC, rely on rules that describe the target
and the production. However, users may not be fluent in writing a context.

When users are facing a new ontology, they are most of the time expected to extensively
read its documentation. Moreover, ontologies are often described in RDF themselves using
ontology languages like RDFS or OWL. Validation schema languages like SHACL and ShEx
have been proposed to represent constraints and verify that some graphs have some properties,
for example that all instances of a class have a given property. It should be noted that these
two kinds of schemas essentially describe the links between the different objects used in an
RDF graph, and could be used for this property.

Like other ontologies, the PREC vocabulary is also described by a user-friendly page and
by an RDF document suitable for machine processing. To help users use the PREC ontology,
we propose to use the RDF document for computers to power up an auto-completion engine.

Listing 6.1: A subgraph of the PREC shape graph

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix prec: <http :// bruy.at/prec#>.

@prefix sh: <http :// www.w3.org/ns/shacl#> .

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#> .

PRSC ruleset

prec:PRSCNodeRule a rdfs:Class , sh:NodeShape ;

sh:property [sh:path prec:label] ;

sh:property [sh:path prec:propertyKey] ;

sh:property [sh:path prec:produces] .

prec:PRSCEdgeRule a rdfs:Class , sh:NodeShape ;

sh:property [sh:path prec:label] ;

sh:property [sh:path prec:propertyKey] ;

sh:property [sh:path prec:produces] .

PREC -C ruleset

prec:PropertyRule a rdfs:Class , sh:NodeShape ;

sh:property [sh:path prec:propertyKey] ;

sh:property [sh:path prec:propertyIRI] ;

sh:property [sh:path prec:label] ;

...

.

Listing 6.1 shows a sub-graph of the SHACL shape graph describing the PREC ontology.

133

134 CHAPTER 6. SHACLED TURTLE

As we can see, the predicates related to the different rule types are different, and this document
could be used to provide auto-completion.

Instead of building an auto-completion tool that would only work for PREC, this chapter
focuses on building a general purpose auto-completion tool using schemas, both RDFS as an
inferential schema and SHACL as a validation schema, then evaluates the tool for other existing
ontologies and finally concludes with a refocus on PREC.

The work on this chapter has been published at the VOILA! 2022 workshop [78]. The main
difference between this chapter and the article is a re-contextualization of the work with PREC.
In particular, this chapter uses writing PRSC as a running example and offers a final discussion
on the usability of Shacled Turtle for PREC.

6.1 Shacled Turtle usage example

Shacled Turtle is implemented as a Code Mirror 61 extension that provides support for the
Turtle language.

Figure 6.1: Shacled Turtle helps writing a context by exposing the types and then the different
predicates related to the chosen type and its documentation.

1https://codemirror.net/6/

https://codemirror.net/6/

6.2. SHACLED TURTLE ARCHITECTURE 135

The selling key-point of Shacled Turtle is the auto-completion module. While most advanced
editors suggest all terms from the ontology, Shacled Turtle narrows the list to the parts of the
ontology that are related to the currently edited resource.

We consider that most resources in an RDF graph must be typed. When the type of a
resource is known, it is likely that the predicates related to the known types will be used to
describe it.

Figure 6.1 shows a concrete usage example: we first write a resource named :PersonRule.
As it has not yet any type, Shacled Turtle suggests the term rdf:type and then the list of all
types that exist in the PREC ontology. From this list, the user chooses prec:PRSCNodeRule.
Then, they write a new triple, and Shacled Turtle is now able to list the predicates that are re-
lated to node rules in the PRSC ruleset: prec:label, prec:produces and prec:propertyKey.
The engine does not show any of the predicates that exist in the PREC ontology but are
unrelated to prec:PRSCNodeRule, like prec:labelIRI or prec:propertyIRI.

6.2 Shacled Turtle architecture

Figure 6.2 shows the general architecture of Shacled Turtle.

0. Before the interaction starts, a preprocessing phase is performed. The content of a schema
graph is converted into inference rules and suggestion rules by the schema to rules con-
verter. This schema graph can be written either in RDFS, in SHACL or a mix of both.

1. When the user is writing an RDF graph, the inference engine uses all complete triples to
deduce the types of all resources and the list of shapes that these resources should comply
with. These results are stored in the meta graph.

2. When the user is writing a new incomplete triple, after the subject has been written, i.e.
on writing the predicate or on writing the object, the suggestion engine queries the meta
graph for the list of all the types and shapes of the subject. It will then return to the
user:

• If the incomplete triple only has a subject, the list of all predicates related to the
types and shapes of the subject.

• If the incomplete triple has a subject and a predicate, a list of resources depending
on the types and shapes of the subject and the predicate2.

In Section 6.3, we describe the basics of all the components used by the interaction loop.
In particular, we specify how the rule systems used by the inference engine and the suggestion
engine work. In Section 6.4, we describe how the preprocessing translates the schema graph
into inference and suggestions rules.

6.3 The interaction loop

The interaction loop comprises all operations performed when the user uses the editor.

2Note that for some predicates like rdf:type, the suggestion may be independent of the list of types and
shapes of the subject.

136 CHAPTER 6. SHACLED TURTLE

Figure 6.2: The different components of Shacled Turtle

6.3.1 The graphs

During the interaction loops, two different graphs are used:

• The currently written graph is the graph in the text editor. It is composed of two different
parts:

– The completed triples, triples for which the subject, the predicate and the object are
known. These triples are used to power up the inference engine and produce triples
for the meta graph.

– The incomplete triple that the user is currently editing. If the subject of this incom-
plete triple is known, the suggestion engine and the meta graph will be requested
to provide a list of suggested terms. If some other triples are incomplete, they are
ignored by the engine.

• The meta graph is the graph that stores triples produced by the inference engine. Its role
is to store, for each resource, the list of all known types, and the list of shapes that the
resource should comply with. The content will then be used by the suggestion engine, in
particular to know the list of types and shapes of the subject of the incomplete triple.

6.3. THE INTERACTION LOOP 137

6.3.2 The inference engine

The purpose of this engine is to deduce types using an RDFS ontology and to list the SHACL
shapes each resource should comply with.

These inferences are specified by inference rules (see Tables 6.1 and 6.3). These rules go
beyond the ones defining RDFS semantics, but do not need to capture the full semantics of
SHACL as we are not aiming at validating the graph.

Each inference rule has the form:

DataTriple? SourceMetaTriple?

ProducedMetaTriple

where:

• The body is composed of

– DataTriple?: 0 or 1 complete triple from the currently written graph.
– SourceMetaTriple?: 0 or 1 triple from the meta graph.

• The head is a triple called ProducedMetaTriple that will be stored in the meta graph,
and its predicate must either be rdf:type or :pathsOf3.

Because inference rules can only produce triples with rdf:type or :pathsOf as the predi-
cate, only such triples are stored in the meta graph.

6.3.3 The suggestion engine

In the same way, the system relies on a set of rules to deduce the possible suggestions at
run-time, from the meta graph and the incomplete triple.

We suppose that ?s, ?p, ?o are variables, terms that depend on the currently written graph
i.e. when the rule is used, and A and P are IRIs chosen when the rule is built.

Each suggestion rule has the form:

IncompleteTriple MetaTripleCondition?

Suggestion

where:

• The IncompleteTriple, extracted from the currently written graph, is either

– (?s, . . . , . . .) for applying the rule when only the subject of the incomplete triple is
known.

– (?s, A, . . .) for applying the rule when both the subject and predicate are known.

• The MetaTripleCondition? is extracted from the meta graph and is either:

– A triple pattern of the form (?s, P, ?o) that is searched in the meta graph, where ?s
is the subject occurring in IncompleteTriple. The value of P is fixed for each rule
and is either equal to rdf:type or :pathsOf.

– “No info on ?s”, for applying the rule only if there are no type or shape known for
the resource ?s.

3The triple (u, :pathsOf, s) means that for the resource u we should suggest the paths specified by the shape
s.

138 CHAPTER 6. SHACLED TURTLE

– none when no condition holds on the meta graph content.

• The Suggestion is either

– suggest(A) to add A to the list of suggested terms.
– suggestAll(?p, ?o) to add to the list of suggested terms all resources α such that

(α, ?p, ?o) is in the meta graph.

6.4 The preprocessing

We now describe the preprocessing, which is the step where the schema to rules converter
converts the schema graph into inference and suggestion rules for the eponymous engines. It
uses two kinds of transformations: rules that are built by searching all triples with a certain
pattern in the schema graph, and SHACL paths whose recursive nature is handled by using
finite state automata.

6.4.1 Rules built by looking up some triple patterns

Table 6.1 exposes the list of inference and suggestion rules that are generated from the schema
graph. It can be seen as a list of meta rules, i.e. rules that tell how to generate the inference
and suggestion rules :

• The first row exposes the axiomatic inference and suggestion rules. These axioms include
some of the RDFS rules, for example the second inference rule is about deducing that a
resource used as a type has the rdfs:Class type. In terms of suggestions, the generated
rules are relative to the types, i.e. suggesting rdf:type as a predicate and suggesting
types when the predicate is rdf:type

• The next two rows are standard RDFS rules about deducing the type of a resource used
either as the subject or the predicate. In the rdfs:domain row, it should be noted that
suggestion rules are generated to suggest predicates whose domain is known when the
subject of an incomplete triple has no known types or shapes, as choosing this predicate
will allow the inference engine to deduce a type for the subject.

• On the fourth and fifth row, corresponding to the second part of the table, the sugges-
tion engine generate suggestion rules for schema:domainIncludes and schema:range

Includes. Unlike rdfs:domain and rdfs:range, these predicates can not be used for
inference as they do not enforce any type relation.

• On the third part of the table, rules related to shape targets are generated. The gener-
ated inference rules are used to compute to which shape each resource that appears in the
currently written graph are supposed to comply, which will serve us to suggest the predi-
cates related to these shapes for these resources. Suggestions rules are also generated for
the shape targets, based on the observation that the pair rdfs:domain and rdfs:range;
and the pair sh:targetSubjectsOf and sh:targetObjectsOf play a similar role in their
respective schema vocabulary.

Note that the purpose of this tool is neither to infer all possible suggestions, nor to validate
the graph, but to make suggestions that are as relevant as possible. This is a subjective
criterion, as having either too few or too many suggestions would make the tool less useful. We
will discuss this further in Section 6.7.

6.4. THE PREPROCESSING 139

Table 6.1: Transformation of triples in the schema graph into inference and suggestion rules.
Triple in schema graph Inference rules Suggestion rules

(?u, rdf :type, ?t) none

(?u, rdf :type, ?t)

none (?u, rdf :type, ?t)

(?t, rdf :type, rdfs:Class)

(?u, . . . , . . .) No info on ?u

suggest(rdf :type)

(?u, rdf :type, . . .) none

suggestAll(rdf :type, rdfs:Class)

(P ′, rdfs:domain, T)
∀P = P ′ or

P ′ subproperty of P

(?u, P, ?v) none

(?u, rdf :type, T)

(?u, . . . , . . .) No info on ?u

suggest(P)

(?u, . . . , . . .) (?u, rdf :type, T)

suggest(P)

(P ′, rdfs:range, T)
∀P = P ′ or

P ′ subproperty of P

(?u, P, ?v) none

(?v, rdf :type, T)

(?u, P, . . .) none

suggestAll(rdf :type, T)

(P, s:domainIncludes, T)
(?u, . . . , . . .) (?u, rdf :type, T)

suggest(P)

(P, s:rangeIncludes, T)
(?u, P, . . .) none

suggestAll(rdf :type, T)

(S, rdf :type, sh:NodeShape)
and (S, rdf :type, rdfs:Class)

none (?u, rdf :type, S)

(?u, :pathsOf, S)

(S, sh:targetNode, U)
none none

(U, :pathsOf, S)

(S, sh:targetClass, T)
none (?u, rdf :type, T)

(?u, :pathsOf, S)

(?u, rdf :type, . . .) none

suggest(T)

(S, sh:targetSubjectsOf, P)
(?u, P, ?v) none

(?u, :pathsOf, S)

(?u, . . . , . . .) No info on ?u

suggest(P)

(?u, . . . , . . .) (?u, :pathsOf, S)

suggest(P)

(?u, . . . , . . .) none

suggest(P)

(S, sh:targetObjectsOf, P)
(?u, P, ?v) none

(?v, :pathsOf, S)

(?u, P, . . .) none

suggestAll(:pathsOf,S)

(S1, sh:node, S2)
and S1 is a node shape

none (?u, :pathsOf, S1)

(?u, :pathsOf, S2)

140 CHAPTER 6. SHACLED TURTLE

6.4.2 Rules built from SHACL Paths

Similarly to SPARQL paths, a SHACL path can be either a predicate path (an outgoing
triple with a given predicate) or a composition of other paths with one of the following op-
erators: inverse (sh:inversePath), sequence, alternative (sh:alternativePath), repetition
(sh:oneOrMorePath), Kleene (sh:zeroOrMorePath), and optional (sh:zeroOrOnePath).

One issue with paths is that we want to be able to process complex paths, and provide
suggestions at any point in the path. For example, for the sequence path (:a :b), :b should
be a suggested predicate for nodes targeted by :a.

Because complex paths exist, we can not simply rely on a set of meta rules for SHACL
paths and we must use another solution.

Unit paths and virtual shapes Our solution is to split composite paths into what we
consider unit paths. Unit paths are either predicate paths, e.g. :owns, or inverse paths of a
predicate path, e.g. [sh:inversePath :ownedBy]. These unit paths are connected with
virtual shapes, shapes that do not explicitly exist in the original shape graph. The chain of all
the unit paths through the virtual shapes is equivalent to the original composite path for the
purpose of our suggestion engine.

Let us consider the shape graph on Listing 6.2. This shape graph means any node
?postalAddress extracted from the SPARQL request on Listing 6.3 must comply with the node
shape s:PostalAddress. For our purpose, it is equivalent to the shape graph on Listing 6.4
where we introduced a new shape, ex:VirtualShape that acts as the shape of all the matches
for ?o in the SPARQL request.

Listing 6.2: An example shape

s:Person rdf:type sh:NodeShape ;

sh:targetClass s:Person ;

sh:property [

sh:path (

s:worksFor

s:address

) ;

sh:node s:PostalAddress

] .

Listing 6.3: SPARQL query to get all the re-
sources targeted by the property shape con-
tained by s:Person
SELECT ?postalAddress WHERE {

All resources targeted by the shape

?person rdf:type s:Person .

Travel the path

?person s:worksFor ?o .

?o s:address ?postalAddress .

}

Listing 6.4: The same shape graph with a vir-
tual shape
s:Person rdf:type sh:NodeShape ;

sh:targetClass s:Person ;

sh:property [

sh:path s:worksFor ;

sh:node ex:VirtualShape01

] .

ex:VirtualShape01

rdf:type sh:NodeShape ;

sh:property [

sh:path s:address ;

sh:node ex:PostalAddress

] .

Overview on transforming SHACL Paths into rules. To process SHACL paths, we
assume that:

• We can decompose any path into unit paths connecting virtual shapes.
• Processing a chain of unit predicate paths is similar to processing a string with a regex.
Hence, we can use finite-state automaton (FSA) to recognize if a chain of triples is rec-
ognized by a path.

6.4. THE PREPROCESSING 141

Table 6.2: Mapping from all kinds of path to automata

Kind and SHACL Syntax
Regex

equivalent
Built automaton

Predicate
pred

p

Inverse
[sh:inversePath P]

None

Take automaton P
Inverse all transitions
Transform all + into -
Transform all - into +

Sequence
(P1 P2)

P1 P2

Alternate
[sh:alternatePath

(P1 P2)]

(P1 | P2)

Zero or one
[sh:zeroOrOnePath P]

P?

One or more
[sh:oneOrMorePath P]

P+

Zero or more
[sh:zeroOrMorePath P]

P* Equivalent to (P+)?

• The only difference between a predicate path and an inverse predicate path is whether
the corresponding shape applies to the subject or the object.

Based on these assumptions, to parse the SHACL path into a list of inference and suggestion
rules, we first transform the path into an FSA, then we transform the FSA into rules.

From SHACL paths to FSA. We build the FSA that describes the path P by composition.
Predicate paths produce an FSA with two states and only one transition. The FSA of other
paths, that are composite paths, are built by combining the automaton of their components
in some way. The transition symbol used by all the produced automata are composed by
combining either the sign + for out-going edges or − for incoming edges, with the predicate
to travel. Table 6.2 describes all the composition rules, where we consider that pred/p is any
predicate, P, P1 and P2 are paths. In the third column, s (start state) and e (end state) are
new fresh states that are built each time the automaton is built

142 CHAPTER 6. SHACLED TURTLE

Table 6.3: Converting the transitions of the produced FSA to rules
Transition Inference rules Suggestion rules

(S,+P,E)
(?u, P, ?v) (?u, :pathsOf,m(S))

(?v, :pathsOf,m(E))

(?u, . . . , . . .) (?u, :pathsOf,m(S))

suggest(P)

(?u, P, . . .) (?u, :pathsOf,m(S))

suggestAll(:pathsOf,m(E))

(S,−P,E)
(?u, P, ?v) (?v, :pathsOf,m(S))

(?u, :pathsOf,m(E))

From FSA to rules. After minimization and determination, an FSA can be defined as one
initial state, a set of final states and a set of transitions (StartState, Symbol, EndState).

• We define m a total function from all states state of the FSA to RDF Nodes. For each
state state, m(state) is a fresh RDF node, i.e. it is not used elsewhere.

• The virtual shape mapped from the initial state of the FSA is a super-shape of the starting
shape of the property shape, i.e. any resource that complies with the starting shape also
complies with the initial state shape.

• If a destination shape is known for the property shape, it is declared as a sub-shape of
all the final states of the FSA, i.e. any resource that complies with the final state shape
also complies with the destination shape of the property.

• Table 6.3 describes how to convert the transitions to inferences rules.

6.5 Inside the Shacled Turtle white box when writing a

PRSC context

Using the example exposed in Section 6.1, we are going to see how the Shacled Turtle engine
behaves.

The preprocessing Shacled Turtle first requires the user to load a schema graph. Let us
consider that the loaded schema graph is the PREC ontology, and in particular the triples
exposed in Figure 6.1.

Following the ruleset exposed in Section 6.4, the first rules generated by the preproces-
sor are the ones described in Table 6.4. Similar rules are produced for prec:PRSCEdgeRule,
prec:PropertyRule, and all types and properties that are not exposed in the listing but exist
in the PREC ontology.

The interaction loop We now study the interaction loop through the example exposed in
Figure 6.1.

The list of rules triggered by each subsequent user interaction are exposed in Table 6.5.

6.5.
IN

S
ID

E
T
H
E
S
H
A
C
L
E
D
T
U
R
T
L
E
W

H
IT

E
B
O
X
W

H
E
N
W

R
IT

IN
G
A
P
R
S
C
C
O
N
T
E
X
T
143

Table 6.4: The first rules generated from Listing 6.1.
Triple in schema graph Inference rules Suggestion rules

(?u, rdf :type, ?t) none

(?u, rdf :type, ?t)

none (?u, rdf :type, ?t)

(?t, rdf :type, rdfs:Class)

(?u, . . . , . . .) No info on ?u

suggest(rdf :type)

(?u, rdf :type, . . .) none

suggestAll(rdf :type, rdfs:Class)

(prec:PRSCNodeRule, rdf :type, sh:NodeShape)
(prec:PRSCNodeRule, rdf :type, rdfs:Class)

none (?u, rdf :type, prec:PRSCNodeRule)

(?u, :pathsOf, prec:PRSCNodeRule)

(prec:PRSCNodeRule, sh:property, :n1)
(:n1 , sh:path, prec:label)

(?u, . . . , . . .) (?u, :pathsOf, prec:PRSCNodeRule)

suggest(prec:label)
3

(prec:PRSCNodeRule, sh:property, :n2)
(:n2 , sh:path, prec:propertyKey)

(?u, . . . , . . .) (?u, :pathsOf, prec:PRSCNodeRule)

suggest(prec:propertyKey)
3

(prec:PRSCNodeRule, sh:property, :n3)
(:n3 , sh:path, prec:produces)

(?u, . . . , . . .) (?u, :pathsOf, prec:PRSCNodeRule)

suggest(prec:produces)
3

(prec:PRSCEdgeRule, rdf :type, sh:NodeShape)
(prec:PRSCEdgeRule, rdf :type, rdfs:Class)

none (?u, rdf :type, prec:PRSCEdgeRule)

(?u, :pathsOf, prec:PRSCEdgeRule)

(prec:PRSCEdgeRule, sh:property, :n4)
(:n4 , sh:path, prec:propertyKey)

(?u, . . . , . . .) (?u, :pathsOf, prec:PRSCEdgeRule)

suggest(prec:propertyKey)
3

(. . .)

(prec:PropertyRule, rdf :type, sh:NodeShape)
(prec:PropertyRule, rdf :type, rdfs:Class)

none (?u, rdf :type, prec:PropertyRule)

(?u, :pathsOf, prec:PropertyRule)

(. . .)

3After determination / minimization

144
C
H
A
P
T
E
R

6.
S
H
A
C
L
E
D

T
U
R
T
L
E

Table 6.5: The rules triggered by the user actions exposed in Figure 6.1.
Input Engine Triggered rules

:PersonRule, . . . , . . .) Suggestion
(:PersonRule, . . . , . . .) No info on :PersonRule

suggest(rdf :type)

(:PersonRule, rdf :type, . . .) Suggestion
(?u, rdf :type, . . .) none

suggestAll(rdf :type, rdfs:Class)

(:PersonRule, rdf :type, prec:PRSCNodeRule) Inference

(:PersonRule, rdf :type, prec:PRSCNodeRule) none

(:PersonRule, rdf :type, prec:PRSCNodeRule)

none (:PersonRule, rdf :type, prec:PRSCNodeRule)

(:PersonRule, :pathsOf, prec:PRSCNodeRule)

(:PersonRule, . . . , . . .) Suggestion

(:PersonRule, . . . , . . .) (:PersonRule, :pathsOf, prec:PRSCNodeRule)

suggest(prec:label)

(:PersonRule, . . . , . . .) (:PersonRule, :pathsOf, prec:PRSCNodeRule)

suggest(prec:propertyKey)

(:PersonRule, . . . , . . .) (:PersonRule, :pathsOf, prec:PRSCEdgeRule)

suggest(prec:produces)

6.6. EVALUATION 145

Note that, although the first and the fourth row have the same input, they produce different
suggestions due to extra information being added to the meta graph about the :PersonRule

resource in the third row.

6.6 Evaluation

Shacled Turtle uses schemas to reduce the number of suggestions proposed to users, keeping
only the most relevant ones. The underlying assumption is that this is more helpful for users
than a less selective suggestion engine. In order to evaluate the validity of this assumption, we
asked volunteers to translate two texts into Turtle documents by using a given ontology. One
of the documents had to be written by using our auto-completion engine, the other by using an
auto-completion engine similar to the one used by YASGUI, i.e. that displays all the terms of
the ontology. The order of the two different documents and of the two auto-completion engines
was randomized.

We used two different schemas:

• The Schema.org ontology. For this session, we used the RDF schema graph published
on Github by Schema.org4. We slightly altered the graph to transform the cases where
a predicate only had one value for schema:domainIncludes or schema:rangeIncludes
to rdfs:domain and rdfs:range to help the inference engine of Shacled Turtle. This
alteration has no impact on the naive suggestion engine. As said previously, Schema.org
is a big ontology with thousands of terms. For this session, we had 23 volunteers, 21 of
them were Semantic Web experts with more than 3 years of usage and 6 had already used
the Schema.org ontology.

• Friend of a friend (foaf)5. As this ontology is defined by using mostly RDFS, it benefits
fully from the inference engine. Moreover, it is a small ontology, with a few dozen of
terms. For this session, we had 11 volunteers, 7 of them were Semantic Web experts and
none declared to already have used the ontology.

Shacled Turtle has been evaluated without any consideration of PREC because 1) requiring
users to write PREC contexts would have required them to understand the whole PREC process,

4https://github.com/schemaorg/schemaorg/blob/main/data/releases/14.0/schemaorg-all-https.ttl
5https://xmlns.com/foaf/spec/

https://github.com/schemaorg/schemaorg/blob/main/data/releases/14.0/schemaorg-all-https.ttl
https://xmlns.com/foaf/spec/

146 CHAPTER 6. SHACLED TURTLE

thus reducing the potential pool of users for our experiment, 2) as Shacled Turtle has been
designed as a general purpose tool, and not only a tool to be used for PREC, we wanted to
evaluate it as such. The produced documents were expected to be constituted of approximately
10 triples.

After writing the two different RDF documents, one with Shacled Turtle and one without
it, they were asked to grade on a Likert scale [79] their feeling about the usefulness of both
completion engines (naive and Shacled Turtle) and if they preferred an auto-completion engine
over another one. We also let users explain in a free field why they preferred one engine, if any;
and another free field to collect general feedback. Finally, we measured how much time each
volunteer took to write each document.

The whole evaluation was conducted online. We published the source code of the platform
and the anonymized collected results on Github at https://github.com/BruJu/shacled-turtle-
evaluation.

Of the 34 volunteers, 17 declared to have no preference towards an engine or the other. Six
volunteers even admitted having seen no difference between the two engines. The number of
people that prefer one engine over another is almost equal for both engines.

When asked separately, all volunteers gave a similar rank to both engines, the worst case
being a strong appreciation on an engine and a neutral appreciation on the other; but 21 users
gave the same appreciation to both.

Using Shacled Turtle does not enable the user to complete the task faster: 20 volunteers
were faster to complete the second task than the first, regardless of if Shacled Turtle is the first
engine or the second, and 14 took about the same time.

6.7 General purpose discussion

In this section, we study some of the most recurring comments made by the volunteers about
the tool to have a better understanding of what can be improved in Shacled Turtle.

Relevance of suggestions. Five volunteers showed a high enthusiasm about the approach
and their comments showed that they understood well the purpose of the tool. In particular,
two of them appreciated that the tool leads to fewer errors, feeling more confident about the
produced graph.

However, in Section 6.4.1, we mentioned that the choice of which suggestions to filter out
is, to some extent, arbitrary, and could lead to false negatives.

The question arises especially in the case of SHACL shapes: we suggest only predicates
that are mentioned in the shape(s) of the subject, but unless these shapes are flagged with
sh:closed true, they actually do not disallow other predicates. Similar issues may apply
with RDFS classes, because an instance of a class might still be an instance of another one.

Indeed, three volunteers complained about the fact that Shacled Turtle produced fewer
suggestions than the other engine. 21 volunteers ranked both engines similarly, and six of them
explicitly reported that they did not notice any difference, suggesting that there is no clear
benefit in reducing the overall number of suggestions.

Other filtering strategy. Most auto-completion engines enable users to filter the list of
suggestions by name. In Code Mirror, and therefore in Shacled Turtle, when the user types for
example s:na, the system will only show the terms that contain the characters s:na in that
order (e.g. s:familyName or s:eventStatus). A common practice to find a desired term is

https://github.com/BruJu/shacled-turtle-evaluation
https://github.com/BruJu/shacled-turtle-evaluation

6.8. SHACLED TURTLE AND PREC REQUIREMENTS 147

to opportunistically reduce the list of terms using the filtering by name. Then when the user
considers the list of terms to be short enough, they look further at the displayed terms. The
responses of the volunteers indicate that they proceeded that way.

Therefore, it might be more valuable to promote the suggestions we deem relevant than to
filter out the others, and leave it to the user to reduce the number of suggestions using filtering
by name. Once a suggestion list is filtered out by the user, we think that Shacled Turtle could
provide an efficient strategy to help the user pick the right term, in conjunction with manual
filtering by name.

The importance of good documentation. Shacled Turtle shows, with each suggested
term, a description (rdfs:comment) of that term when provided by the schema. While the query
GUI of Wikidata does the same, because Wikidata IRIs are opaque, many other suggestions
engine do not. During our experiment, seven volunteers reported that the descriptions of the
terms are important, as they complained when descriptions were missing or incomplete, either
because of bugs during the early stages of the experiment or because of the used schema. Five
volunteers reported to have consulted the ontology online documentation to check how to use
the ontology and have a better idea of the usage of the terms and their links. At the opposite,
a volunteer reported that thanks to this tool, they fortunately did not feel the necessity to
consult the ontology documentation.

One of the volunteers explained that the domain and the range of a property can be more
informative than a description. The schema to rules converter could also be used to enrich the
descriptions to add the links between the predicates and the different types and shapes.

As mentioned previously, Shacled Turtle should not be used to filter out choices from con-
textual data, but to enrich the documentation. This could be changed by using Shacled Turtle
to promote terms that we deem relevant, either by displaying them first in the list, by high-
lighting them, or both: it would solve the issue of users not seeing a difference. To increase
the perceived reliability of the tool, the decision made should be explained to the users, i.e. in
case of an incomplete triple with only a subject, displaying which type or shape of the subject
is used to suggest each relevant predicate; and for an incomplete triple with only a missing
object, which type or shape of the suggested objects is used to suggest them depending on the
subject and the predicate.

6.8 Shacled Turtle and PREC requirements

Unlike most ontologies, the PREC defined types are not intended to be mixed with other
ontologies: rules are expected to only use the terms in the ontology, and possibly some generic
descriptive predicates such as rdfs:label. Rules are also expected to be of one and only one
type. The fact that the suggestions of Shacled Turtle are limited is a desired property, as a
context using unexpected terms will most of the time be ignored, which might be unexpected
from the point of view of the user. Listing 6.5 shows three examples of triples that will be ignored
by the PREC engine: the second and third triples will have no effect which may surprise users.
On the opposite, the fourth triple being ignored by the PREC engine is probably expected.

Listing 6.5: Some unexpected predicates for a PRSC node rule
_:MyRule a prec:PRSCNodeRule ;

Will be ignored as it is a PREC -C predicate , this is unexpected by the user

prec:priority 2 ;

This triple will have no effect which is probably unexpected by the user

foaf:birthdate "birthdate "^^ prec:valueOf ;

The user probably intended to write

148 CHAPTER 6. SHACLED TURTLE

prec:produces << pvar:self foaf:birthdate "birthdate "^^ prec:valueOf >>

However , this triple will have the expected behaviour

rdfs:label "My rule" ;

.

However, Shacled Turtle in the context of writing PREC contexts suffers from the lack of
RDF-star support. As it is impossible to write SHACL property shapes about an embedded
triple, it is impossible to populate the suggestion engine with suggestions about those triples.
Writing template graphs could also benefit from a useful auto-completion engine, in particular
to suggest the relevant terms in the pvar namespace, or to suggest prec:valueOf as the
datatypes of literals.

6.9 Conclusion

As writing PREC contexts can be a tedious task, especially for newcomers, in this chapter,
we tackled the problem of writing RDF documents by hands. For this purpose, we proposed
Shacled Turtle, an auto-completion engine that resorts to a schema graph to suggest terms
related to the types and shapes of the subject of the triple that the user is writing. The system
relies on two different rule engines: an inference engine that deduces the list of types and
shapes of all resources in the currently written graph, and a suggestion engine that provides
possible following terms. However, in our experiments, the users barely saw any difference
between a naive approach, proposing all terms that are in the ontology, and our approach: to
find appropriate terms, they preferred to rely on other strategies like filtering by name and
reading the ontology online documentation. We explain this by the inability of our method
to display explicit insights: the difference between Shacled Turtle and the naive approach is
implicit, as it consists in showing less options.

As users are in quest of information, four aspects can be considered:

• Enriching the descriptions of the terms, both with information extracted from the schema
to rules converter like the links between the predicates and the types and shapes, and
with contextual information to explain why the system thinks a term may be relevant in
the current incomplete triple.

• Instead of using Shacled Turtle to filter out irrelevant terms, promote these relevant terms
in the list of all existing terms.

• Running an inference engine to provide the list of types of the resources when the user
hovers the resource. While this is currently done for RDFS, it could be expanded to any
inference rule-set like OWL.

• Using a SHACL validation report to report errors, i.e. as a linting tool. This would lead
to more accurate information and more visible error.

Another perspective is to propose snippets, i.e. complete set of triples, instead of simple
paths. SHACL sequence paths are paths composed of other paths: instead of requiring the
user to chain blank nodes for each path that composes the sequence path, a snippet could be
suggested that would build all the intermediate blank nodes at once. This approach would
better benefit from SHACL paths and offer a higher level of suggestion.

Finally, the current rule-set does not allow considering RDF-star to be able to provide
suggestions for quoted triples. To support RDF-star, we either need to wait for the integration
of RDF-star in existing schema languages like SHACL6, to develop a specific ontology built to
be able to express nested terms suggestion in Shacled Turtle, or use another existing ontology
that already supports RDF-star and that could be diverted to be used for auto-completion like

6.9. CONCLUSION 149

ShEx-star[80]. However, to the best of our knowledge, no such ontology currently exists and
building a new ontology contradicts the original philosophy of Shacled Turtle to provide an
auto-completion tool with already existing ontology documents. As Shacled Turtle is able to
guide users through the useful predicates for the rules they chose, it can be seen as the first
stepping stone to build a graphical user interface to use PREC.

Acknowledgments

We would like to thank all the volunteers for their time and their very valuable feedback.

6Solutions for the integration of RDF-star in SHACL are for example discussed at
https://github.com/w3c/shacl/issues/15.

https://github.com/w3c/shacl/issues/15

150 CHAPTER 6. SHACLED TURTLE

Chapter 7

Conclusion

Studied approaches in this thesis In this thesis, we studied the problem of converting
PGs into RDF graphs in a manner that is driven by the user. The purpose was to produce an
idiomatic RDF graph, i.e. an RDF graph that uses existing ontologies, and/or design patterns
that are commonly used in RDF. The user choice is materialized by the fact that the user
has to provide to the algorithm two inputs: the PG to transform and a description of how to
represent the content of the PG in RDF, named a context. In the course of the thesis, two
different algorithms have been proposed: PREC-C and PRSC. For each algorithm, the context
contains different information.

The PREC-C algorithm, presented in Chapter 4, relies on a context that maps each NEP
(node, edge or property) of the PG, to a template graph. PREC-C is then responsible for
instantiating the template graph with the data related to the NEP. The PREC-C approach is
an approach where all PGs can be transformed by any context, and the context is a method
to override the PREC-C default behavior for certain NEPs, that are specified by a notion of
selectors.

The PRSC algorithm, presented in Chapter 5, relies on contexts that contain both a schema
and how to translate into RDF the types described by the schema. In PRSC, types are defined
as a specific set of labels and properties that a node or edge of that type must have. On the
opposite of PREC-C, a PRSC context can only be used to transform PGs that comply with its
schema.

Both PREC-C and PRSC require the user to use RDF to express the context. As PREC-C
has a large number of different predicates, the question of how to help potential users getting
familiar with the PREC-C ontology was raised. We proposed Shacled Turtle in Chapter 6,
a method to populate the list of terms proposed by an auto-completion engine when writing
Turtle documents. This tool relies on the RDFS and SHACL description of the PREC ontology
to populate the list of proposed terms.

Observations on each proposed solution

PREC-C and PRSC PREC-C and PRSC have different advantages and drawbacks. The
PREC-C algorithm can work on any PG with any PREC-C context. It lets the user quickly
convert a PG to RDF and start exploiting the produced RDF data. Through the use of our
GPG (Gremlinable Property Graph) formal definition (Definition 2), it has been designed to
cover all existing implementations of PGs that we are aware of. The only constraint is that
it can not support a potential PG implementation that allows any number of labels on edges.
The PREC-C context enables the user to override a part or the totality of the rules used to

151

152 CHAPTER 7. CONCLUSION

produce the RDF graph by specifying templates. It enables the user to build incrementally
their context, by overriding the PREC-0 behavior on parts of the graphs until all selectors use
an overridden template graph. However, PREC-C lacks ergonomics for the user. The PREC-C
ontology contains a lot of terms, and a lot of specific placeholders are allowed in the template
graphs. The concept of overriding the default behavior on a super-set of the specified selectors
in the context can be hard to understand. In addition, experience shows that the tool behavior
is generally not well understood: some papers citing PREC wrongly report that PREC-C does
not support features that it actually supports like generating nested triples. In other words,
PREC-C is a very powerful tool to use, especially on properties as it supports any depth of
meta-properties. However, it is very difficult to understand and to use.

On the opposite, the PRSC algorithm only works on some PGs that are specified by the
schema of the PRSC context. The content of the PG to convert is first checked against any
type explicitly specified by the PRSC context, and for each type, the PRSC context specifies
a template graph. While PREC-C selectors can either select nodes, edges or properties, the
types supported by PRSC are only about nodes and edges: properties are part of the type.
By consequence, if a property is optional for a given node label or edge label, PRSC requires
specifying a lot of different types: one for each variation of properties. The presented version
does not support some common features supported by PGs engines, especially meta-properties
and multi-valued properties. Instead, PRSC relies on the very common definition of PGs
by Angles and is based on solid theoretical foundations. In particular, a subset of the PRSC
contexts named PRSC well-behaved contexts have been studied: for these contexts, we formally
proved that the conversion operated by PRSC is reversible, i.e. from the produced RDF graph
and the used PRSC context, we are able to revert back to the PG that produced it. While
PRSC seems less usable to quickly produce an RDF graph from a PG, we proposed a default
PRSC context that works for any PG. In addition, it is possible to imagine to first generate a
context with all the types present in the PG, and require the user to only write the template
graphs for each type.

Overall, thanks to the fact that the PRSC conversion is easier to understand and provide
some kind of error checking through the fact that it is based on a schema, the PRSC algorithm
should be preferred other the PREC-C algorithm. PREC-C should only be used for edge cases
that are not yet supported by PRSC. To enhance PRSC usability, it may be possible to import
property selectors from PREC-C to PRSC. It would solve the problem of PRSC being able to
only support closed types, i.e. types with a given set of properties and no others. It would also
help to support some kind of meta-properties for which the semantics is shared across all its
usage like a provenance meta-property.

Shacled Turtle While Shacled Turtle received good informal feedback on the principle,
the user experiments showed disappointing results. This is due to the fact that users rely more
on a text filtering strategy, consisting on typing the first letters of the term they want and
reading the description when there are few, instead of relying on the fact that the engine is
smart enough to remove some predicates based on the type of the resources. In fact, some users
were unhappy about the fact that the engine removes some options. User feedback reported
that instead of using the schema analysis from Shacled Turtle to remove predicates, the auto-
completion engine should instead promote the terms that it considers as relevant, and explain
the reasoning behind it. Showing the result of Shacled Turtle in the term descriptions would
also contribute to provide more precise descriptions about the terms, by adding for example the
domain and the range of a suggested predicate, instead of natural language descriptions that
may be too vague. Note that the experiments were performed on general purpose ontologies:

153

in this context, as they did not find the right predicate in the proposed ontology, some of the
volunteers tried to use predicates that are not related to the classes of a term, and others
tried to import other ontologies which were intentionally blocked in the experiments; these
volunteers expressed frustration that these attempts were not successful. However, in the case
of writing mappings, like PREC contexts or RML documents, limiting the creativity of the user
may actually be a good thing: any term that is used in an unexpected context will be ignored.
For example the prec:nodeLabelIRI predicate used on a PREC-C’s prec:EdgeRule or on a
prec:PRSCNodeRule will be ignored as it can only be used on PREC-C’s prec:NodeLabelRule;
in these instances, the system should not propose this predicate, and highlight the error if it
is used by the user as it would lead to an unexpected behavior from the point of view of the
user. As RDFS and SHACL do not support RDF-star, the problem of suggesting relevant
terms in quoted triples is still untackled, despite quoted triples being a main component of
PREC through how template graphs are expressed. The Shacled Turtle utility can also be
discussed with respect to the proposed algorithms: PREC-C strongly requires the user to look
at examples or use an auto-completion engine to be usable because there are a lot of terms.
On the opposite, PRSC, which should be preferred over PREC-C, requires less a tool such
as Shacled Turtle because it uses less than ten terms. Moreover, as it only uses two types,
providing an overview of all PRSC capacities through a short example is easier and sufficient.

Template triples In this thesis, we also proposed the concept of template graphs and
template triples: instead of using complex constructions to describe the triples to produce like
the templating system of R2RML, we use quoted triples to describe the triples to produce with
actual RDF triples. While this method provides a very intuitive way to represent RDF triples,
it restricts how template placeholders can be encoded. More specifically, literals can only be
used in the object position. This is especially annoying as it missed the use-case of producing
IRIs that contain the value of some properties: instead of forging IRIs for the NEPs for the PG,
the user must stick with blank nodes. The idea behind the OTTR templating system of using
lists instead of quoted triples could be a method to express template triples with terms that
can be templated. While we proposed a brand-new ontology to express the rules, it could be
possible to develop an alternative method to represent PREC contexts, and in particular PRSC
contexts, in RML: the type of the PG elements corresponds to the logical source in RML, and
the template graph can be expressed through usual RML constructs. However, RML forces the
user to use the same subject for all triples generated from a given logical source.

Perspectives In the whole thesis, we only considered transforming all the data contained
in a PG into RDF, and studied the reversion in the case of PRSC. However, in a real world
context, especially in big data, converting the whole content of the database may not be an
acceptable approach because it would take too much time, or lead to data duplication causing
in the long term two versions of the data that may drift apart. The main benefit of converting
a graph from one model to another is to benefit from the tools of the other graph model: the
Cypher or Gremlin API from PGs, shared ontologies from RDF, already standardized validation
schemas from RDF, inference systems from RDFS/OWL. . . The transformation of queries from
one model to query the other model is especially a widely studied problem in the literature, but
always with a fixed encoding of one model in the other. For example, consider an hypothetical
tool that enables to query PGs with SPARQL: if the transformation assumes that PG edges are
all represented using RDF reification, the user can not change it, and must use RDF reification
to query PG edges. If one wants to use PRSC contexts to change how the content of a PG
is represented, and query the PG data using SPARQL, the interaction between contexts and

154 CHAPTER 7. CONCLUSION

queries must be studied. For example, if only PG nodes of a certain type use a given predicate
in a context, and if the query requires the same predicate, then the engine must be able to use
the appropriate Gremlin or Cypher constructs to only query the nodes of this type. However,
note that even in the case where no term is specified, querying a triple such as << ?ss ?sp

?so >> ?p ?o already adds some potential constraints about the PG elements that must be
queried, for example if only one type of PG element can produce nested triples.

Another aspect left for future work is to study the kind of transformations that are possible
to apply on an RDF graph produced from a PRSC well-behaved context that do not hinder
the possibility to revert to a valid PG.

On a practical level, the biggest focus of the thesis is on a theoretical level, especially on
the study of PRSC contexts. Studying the actual usability of the three proposed solutions is
left for future works:

• From our own experience and from the analysis of how other works talk about PREC-C,
PREC-C in itself seems to be too complex. Improving PREC-C itself may not be useful,
however, reusing the management of properties in PREC-C to improve PRSC may be a
good idea to let the latter manage some corner cases like open types (types that allow
unexpected properties).

• PRSC has been shown to have good properties, in particular the reversibility of some
PRSC contexts has been proven. While the constraints of PRSC well-behaved context,
especially with the edge-unique extension, may seem to be reasonable, we still have to
check that they are not constraining too much actual users. In addition, we still need
to run some user experiments to evaluate how easy and how useful PRSC is for an end-
user that wants to convert a PG into an RDF graph. We also studied the theoretical
complexity of PRSC and showed that it has a good theoretical complexity: we still have
to verify with actual data if the algorithm is able to convert big PGs in a reasonable time.
However, as PGs are mostly used in an industry context, big PGs are not freely available
to use.

• We propose a first iteration of Shacled Turtle, an auto-completion tool based on schemas.
While the first results were disappointing, we received a lot of feedback about the tool and
ideas to improve it. The tool could be improved further by implementing term promotion
and using schemas to improve the term descriptions; and then running another batch
of user experiment. We also did not evaluate the tool in the context of writing PREC
contexts or RML mappings, as it would require volunteers to be familiar with these tools,
and also familiar with the format of the data to convert. However, these experiments
should still be run to confirm or invalidate the intuition that Shacled Turtle is a tool that
help the end-users writing these mappings.

Finally, a totally unexplored approach in this thesis is using ontology alignment processes.
The idea of the thesis was to help users write a mapping that convert their PG into the RDF
graph that they want, and study what are the good properties of these mapping, both in terms
of 1) the possibilities provided by the mapping language, i.e. the PRSC approach based on
schemas seems to be better than the PREC-C approach based on a more low level consideration
of NEPs, and 2) in terms of the mappings themselves, i.e. well-behaved PRSC contexts have
been proved to be reversible. However, another approach, would have been to study how usable
ontology alignment techniques are in this context, i.e. use an already existing tool to convert
data from PG to RDF, for example with PGO, then from the produced RDF graph, transform
it by aligning the ontology produced by PGO with existing ontologies.

Bibliography

[1] Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic web, 8(3):489–508, 2017.

[2] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. SEMANTiCS
(Posters, Demos, SuCCESS), 48(1-4):2, 2016.

[3] Edward W Schneider. Course modularization applied: The interface system and its impli-
cations for sequence control and data analysis. 1973.

[4] Gavin Carothers and Eric Prud’hommeaux. RDF 1.1 turtle. W3C recommendation, W3C,
February 2014. https://www.w3.org/TR/2014/REC-turtle-20140225/.

[5] Ramanathan Guha and Dan Brickley. RDF Schema 1.1. W3C recommendation, W3C,
February 2014. https://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

[6] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology language overview.
W3C recommendation, 10(10):2004, 2004.

[7] Olaf Hartig. Foundations to query labeled property graphs using SPARQL. In SEM4TRA-
AMAR@ SEMANTICS, 2019.

[8] Nico Baken. Linked data for smart homes: Comparing RDF and labeled property graphs.
LDAC2020, pages 23–36, 2020.

[9] Davide Alocci, Julien Mariethoz, Oliver Horlacher, Jerven T Bolleman, Matthew P Camp-
bell, and Frederique Lisacek. Property graph vs RDF triple store: A comparison on glycan
substructure search. PloS one, 10(12):e0144578, 2015.

[10] Souripriya Das, Jagannathan Srinivasan, Matthew Perry, Eugene Inseok Chong, and
Jayanta Banerjee. A tale of two graphs: Property graphs as RDF in oracle. In EDBT,
pages 762–773, 2014.

[11] Ora Lassila, Michael Schmidt, Olaf Hartig, Brad Bebee, Dave Bechberger, Willem
Broekema, Ankesh Khandelwal, Kelvin Lawrence, Carlos Manuel Lopez Enriquez, Ronak
Sharda, et al. The onegraph vision: Challenges of breaking the graph model lock-in 1.
Semantic Web, (Preprint):1–10, 2023.

[12] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. Mapping RDF databases to prop-
erty graph databases. IEEE Access, 8:86091–86110, 2020.

[13] Ghislain Auguste Atemezing and Anh Huynh. Knowledge graph publication and browsing
using neo4j. In The 1st workshop on Squaring the circle on graphs, 2021.

155

156 BIBLIOGRAPHY

[14] Dominik Tomaszuk, Renzo Angles, and Harsh Thakkar. PGO: Describing property graphs
in RDF. IEEE Access 8, pages 118355–118369, 2020.

[15] Xiaohan Zou. A survey on application of knowledge graph. In Journal of Physics: Con-
ference Series, volume 1487, page 012016. IOP Publishing, 2020.

[16] Dieter Fensel, Umutcan Şimşek, Kevin Angele, Elwin Huaman, Elias Kärle, Oleksandra
Panasiuk, Ioan Toma, Jürgen Umbrich, Alexander Wahler, Dieter Fensel, et al. Introduc-
tion: what is a knowledge graph? Knowledge graphs: Methodology, tools and selected use
cases, pages 1–10, 2020.

[17] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78–85, 2014.

[18] Seema Sundara, Richard Cyganiak, and Souripriya Das. R2RML: RDB
to RDF mapping language. W3C recommendation, W3C, September 2012.
https://www.w3.org/TR/2012/REC-r2rml-20120927/.

[19] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik Mannens,
and Rik Van de Walle. RML: a generic language for integrated RDF mappings of hetero-
geneous data. In Ldow, 2014.

[20] Pierre-Antoine Champin, Gregg Kellogg, and Dave Longley. JSON-ld 1.1. W3C recom-
mendation, W3C, July 2020. https://www.w3.org/TR/2020/REC-json-ld11-20200716/.

[21] Renzo Angles. The property graph database model. In AMW, 2018.

[22] Jürgen Hölsch and Michael Grossniklaus. An algebra and equivalences to transform graph
patterns in Neo4j. 2016.

[23] Giacomo Bergami. On efficiently equi-joining graphs. In Proceedings of the 25th Interna-
tional Database Engineering & Applications Symposium, pages 222–231, 2021.

[24] Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gómez, and Erhard
Rahm. Analyzing extended property graphs with apache flink. In Proceedings of the
1st ACM SIGMOD Workshop on Network Data Analytics, pages 1–8, 2016.

[25] Martin Junghanns, André Petermann, and Erhard Rahm. Distributed grouping of property
graphs with GRADOOP. 2017.

[26] Giacomo Bergami, Matteo Magnani, and Danilo Montesi. A join operator for property
graphs. In EDBT/ICDT Workshops, 2017.

[27] József Marton, Gábor Szárnyas, and Dániel Varró. Formalising opencypher graph queries
in relational algebra. In Advances in Databases and Information Systems: 21st European
Conference, ADBIS 2017, Nicosia, Cyprus, September 24-27, 2017, Proceedings 21, pages
182–196. Springer, 2017.

[28] Harsh Thakkar, Dharmen Punjani, Sören Auer, and Maria-Esther Vidal. Towards an
integrated graph algebra for graph pattern matching with gremlin. In Database and Expert
Systems Applications: 28th International Conference, DEXA 2017, Lyon, France, August
28-31, 2017, Proceedings, Part I 28, pages 81–91. Springer, 2017.

BIBLIOGRAPHY 157

[29] Ora Lassila. Resource description framework (RDF) model and syntax specification. W3C
recommendation, W3C, February 1999. https://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/.

[30] Frank Manola, Eric Miller, Brian McBride, et al. RDF primer. W3C recommendation,
10(1-107):6, 2004.

[31] Guus Schreiber and Yves Raimond. RDF 1.1 primer. W3C note, W3C, June 2014.
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/.

[32] Olaf Hartig, Pierre-Antoine Champin, Gregg Kellogg, and Andy Seaborne. RDF-
star and SPARQL-star. W3C Community Group Report, Online at https://www. w3.
org/2021/12/rdf-star. html, 2021.

[33] Peter Patel-Schneider and Patrick Hayes. RDF 1.1 semantics. W3C recommendation,
W3C, February 2014. https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/.

[34] Steven Harris and Andy Seaborne. SPARQL 1.1 query language. W3C recommendation,
W3C, March 2013. https://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

[35] Dimitris Kontokostas and Holger Knublauch. Shapes constraint language (SHACL). W3C
recommendation, W3C, July 2017. https://www.w3.org/TR/2017/REC-shacl-20170720/.

[36] Guus Schreiber and Fabien Gandon. RDF 1.1 XML syntax. W3C recommendation, W3C,
February 2014. https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/.

[37] Thomas R Gruber. A translation approach to portable ontology specifications. Knowledge
acquisition, 5(2):199–220, 1993.

[38] Dan Brickley and Ramanathan Guha. RDF Schema 1.1. W3C recommendation, W3C,
February 2014. https://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

[39] Lushan Han, Tim Finin, Cynthia Parr, Joel Sachs, and Anupam Joshi. RDF123: from
spreadsheets to RDF. In International Semantic Web Conference, pages 451–466. Springer,
2008.

[40] Martin G Skjæveland, Henrik Forssell, Johan W Klüwer, Daniel Lupp, Evgenij
Thorstensen, and Arild Waaler. Pattern-based ontology design and instantiation with
reasonable ontology templates. A Higher-Level View of Ontological Modeling, 69, 2019.

[41] Maxime Lefrançois, Antoine Zimmermann, and Noorani Bakerally. A SPARQL extension
for generating RDF from heterogeneous formats. In The Semantic Web: 14th International
Conference, ESWC 2017, Portorož, Slovenia, May 28–June 1, 2017, Proceedings, Part I
14, pages 35–50. Springer, 2017.

[42] Sumit Purohit, Nhuy Van, and George Chin. Semantic property graph for scalable knowl-
edge graph analytics. In 2021 IEEE International Conference on Big Data (Big Data),
pages 2672–2677. IEEE, 2021.

[43] Paul Warren and Paul Mulholland. Edge labelled graphs and property graphs; a compar-
ison from the user perspective. arXiv preprint arXiv:2204.06277, 2022.

158 BIBLIOGRAPHY

[44] Renzo Angles, Aidan Hogan, Ora Lassila, Carlos Rojas, Daniel Schwabe, Pedro A Szekely,
and Domagoj Vrgoc. Multilayer graphs: a unified data model for graph databases. In
GRADES-NDA@ SIGMOD, pages 11–1, 2022.

[45] Ran Zhang, Pengkai Liu, Xiefan Guo, Sizhuo Li, and XinWang. A unified relational storage
scheme for RDF and property graphs. In International Conference on Web Information
Systems and Applications, pages 418–429. Springer, 2019.

[46] Vinh Nguyen, Hong Yung Yip, Harsh Thakkar, Qingliang Li, Evan Bolton, and Olivier
Bodenreider. Singleton property graph: Adding a semantic web abstraction layer to graph
databases. In BlockSW/CKG@ ISWC, pages 1–13, 2019.

[47] Fabrizio Orlandi, Damien Graux, and Declan O’Sullivan. Benchmarking RDF metadata
representations: Reification, singleton property and RDF. In 2021 IEEE 15th International
Conference on Semantic Computing (ICSC), pages 233–240. IEEE, 2021.

[48] Olaf Hartig and Bryan Thompson. Foundations of an alternative approach to reification
in RDF. arXiv preprint arXiv:1406.3399, 2014.

[49] Olaf Hartig. Foundations of RDF* and SPARQL*:(an alternative approach to statement-
level metadata in RDF). In AMW 2017 11th Alberto Mendelzon International Workshop
on Foundations of Data Management and the Web, Montevideo, Uruguay, June 7-9, 2017.,
volume 1912. Juan Reutter, Divesh Srivastava, 2017.

[50] Shahrzad Khayatbashi, Sebastián Ferrada, and Olaf Hartig. Converting property graphs
to RDF: a preliminary study of the practical impact of different mappings. In GRADES-
NDA@ SIGMOD, pages 10–1, 2022.

[51] Harsh Thakkar, Dharmen Punjani, Jens Lehmann, and Sören Auer. Two for one: Query-
ing property graph databases using SPARQL via gremlinator. In Proceedings of the 1st
ACM SIGMOD Joint International Workshop on Graph Data Management Experiences &
Systems (GRADES) and Network Data Analytics (NDA), pages 1–5, 2018.

[52] Sumit Neelam, Udit Sharma, Sumit Bhatia, Hima Karanam, Ankita Likhyani, Ibrahim
Abdelaziz, Achille Fokoue, and LV Subramaniam. Expressive reasoning graph store:
A unified framework for managing RDF and property graph databases. arXiv preprint
arXiv:2209.05828, 2022.

[53] Naglaa Fathy, Walaa Gad, Nagwa Badr, and Mohamed Hashem. Progomap: Automatic
generation of mappings from property graphs to ontologies. IEEE Access, 9:113100–113116,
2021.

[54] Franck Michel, Löıc Djimenou, Catherine Faron Zucker, and Johan Montagnat. xR2RML:
Relational and non-relational databases to RDF mapping language. PhD thesis, CNRS,
2017.

[55] Ghadeer Abuoda, Daniele Dell’Aglio, Arthur Keen, and Katja Hose. Transforming RDF-
star to property graphs: A preliminary analysis of transformation approaches–extended
version. arXiv preprint arXiv:2210.05781, 2022.

[56] Hirokazu Chiba, Ryota Yamanaka, and Shota Matsumoto. G2gml: Graph to graph map-
ping language for bridging RDF and property graphs. In International Semantic Web
Conference, pages 160–175. Springer, 2020.

BIBLIOGRAPHY 159

[57] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair Green, Jan
Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, et al. Pg-schema: Schemas
for property graphs. Proceedings of the ACM on Management of Data, 1(2):1–25, 2023.

[58] Angela Bonifati, Stefania Dumbrava, Emile Martinez, Fatemeh Ghasemi, Malo Jaffré,
Pacôme Luton, and Thomas Pickles. Discopg: property graph schema discovery and
exploration. Proceedings of the VLDB Endowment, 15(12):3654–3657, 2022.

[59] Nimo Beeren. Designing a visual tool for property graph schema extraction and refinement:
An expert study. arXiv preprint arXiv:2201.03643, 2022.

[60] Mark A Musen. The protégé project: a look back and a look forward. AI matters, 1(4):4–
12, 2015.

[61] Jesse Wright, Sergio José Rodŕıguez Méndez, Armin Haller, Kerry Taylor, and Pouya G
Omran. Sch́ımatos: a shacl-based web-form generator for knowledge graph editing. In
International Semantic Web Conference, pages 65–80. Springer, 2020.

[62] Jonas Kjær Rask, Frederik Palludan Madsen, Nick Battle, Hugo Daniel Macedo, and Pe-
ter Gorm Larsen. The specification language server protocol: A proposal for standardised
lsp extensions. arXiv preprint arXiv:2108.02961, 2021.

[63] Karima Rafes, Serge Abiteboul, Sarah Cohen-Boulakia, and Bastien Rance. Designing
scientific SPARQL queries using autocompletion by snippets. In 2018 IEEE 14th Interna-
tional Conference on e-Science (e-Science), pages 234–244. IEEE, 2018.

[64] Laurens Rietveld and Rinke Hoekstra. YASGUI: not just another SPARQL client. In
Extended Semantic Web Conference, pages 78–86. Springer, 2013.

[65] Gergő Gombos and Attila Kiss. SPARQL query writing with recommendations based
on datasets. In International Conference on Human Interface and the Management of
Information, pages 310–319. Springer, 2014.

[66] Sébastien Ferré. Sparklis: An expressive query builder for SPARQL endpoints with guid-
ance in natural language. Semantic Web, 8(3):405–418, 2017.

[67] Gabriel de la Parra and Aidan Hogan. Fast approximate autocompletion for SPARQL
query builders. 2021.

[68] Thomas Francart. Sparnatural: a visual knowledge graph exploration tool. In European
Semantic Web Conference, pages 11–15. Springer, 2023.

[69] Bryan Kong Win Chang, Marie Lefevre, Nathalie Guin, and Pierre-Antoine Champin.
SPARE-LNC : un langage naturel contrôlé pour l’interrogation de traces d’interactions
stockées dans une base RDF. In IC2015, Rennes, France, June 2015. AFIA.

[70] Oskar Van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. Pgql: a
property graph query language. In Proceedings of the Fourth International Workshop on
Graph Data Management Experiences and Systems, pages 1–6, 2016.

[71] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Vic-
tor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher:
An evolving query language for property graphs. In Proceedings of the 2018 international
conference on management of data, pages 1433–1445, 2018.

160 BIBLIOGRAPHY

[72] Richard Cyganiak, David Wood, Markus Lanthaler, Graham Klyne, Jeremy J Carroll, and
Brian McBride. RDF 1.1 concepts and abstract syntax. W3C recommendation, 25(02):1–
22, 2014.

[73] Richard Cyganiak, Seema Sundara, and Souripriya Das. R2RML: RDB
to RDF mapping language. W3C recommendation, W3C, September 2012.
https://www.w3.org/TR/2012/REC-r2rml-20120927/.

[74] Maxime Lefrançois, Antoine Zimmermann, and Noorani Bakerally. Flexible rdf generation
from rdf and heterogeneous data sources with SPARQL-generate. In European Knowledge
Acquisition Workshop, pages 131–135. Springer, 2016.

[75] Patrick Hayes. RDF semantics. W3C recommendation, W3C, February 2004.
https://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

[76] Henry Thompson, Sandy Gao, David Peterson, Ashok Malhotra, Michael
Sperberg-McQueen, and Paul V. Biron. W3C xml schema definition lan-
guage (XSD) 1.1 part 2: Datatypes. W3C recommendation, W3C, April 2012.
https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/.

[77] Gregg Kellogg, Pierre-Antoine Champin, and Dave Longley. Json-ld 1.1–a json-based
serialization for linked data. W3C recommendation, W3C, 2020.

[78] Julian Bruyat, Pierre-Antoine Champin, Lionel Médini, and Frederique Laforest. Shacled
turtle: Schema-based turtle auto-completion. In Workshop on Visualization and Interac-
tion for Ontologies and Linked Data 2022, co-located with the International Semantic Web
Conference 2022, volume 3253, pages 2–15, 2022.

[79] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology, 1932.

[80] Jose Emilio Labra-Gayo. Extending shape expressions for different types of knowledge
graphs. In 1st Workshop on Data Quality meets Machine Learning and Knowledge Graphs,
DQMLKG, part of Extended Semantic Web Conference 2024, ESWC24, May 2024.

Appendices

161

Appendix A

β redefinition in PREC-C

In Chapter 4, the PREC-C algorithm is presented in an iterative manner. However, after
defining the substitute function, it is possible to redefine the β function for the final version of
the algorithm in Section 4.1.5.

However, attentive readers may have noticed that the β function definition could be rewrit-
ten by using the substitute function.

Definition 44 [β alternative version]
For a given usage of the function β(t, pg, x), let value be the value such that (key, value) =
propdetailspg(x)

β(t, pg, x) =substitute(substitute(substitute(substitute(substitute(t,

(?self , x)),

(?source, srcpg(x))),

(?destination, destpg(x))),

(?holder, getHolder(x, pg))),

(?value, value))

Note that this rewriting is possible because the placeholders are never replaced by another
placeholder. It also means that the order in which the substitute functions are called does not
change the β function behavior.

163

164 APPENDIX A. β REDEFINITION IN PREC-C

Appendix B

Proof of properties on Property
Graphs

In this section, we expose the proof for Theorem 5

B.1 Extra mathematical elements

Definition 45 [Restriction]
For all functions f , for all sets X, f |X = {(x, f(x)) | x ∈ X ∩Dom(f)}. f |X is called the
restriction of the function f to the set X. In other words, the restriction of a function by a
set X is equal to a function in which the domain is restricted to the elements of the set X.

Remark 24
The restriction of a function to its domain is equal to the function itself:
f |Dom(f) = {(x, f(x)) | x ∈ Dom(f)} = f .

Remark 25
A functional definition of Definition 45 would be, for all functions f , f |X : x 7→ f(x) if x ∈
X ∩Dom(f), undefined otherwise.

Lemma 8
For all functions f , for all sets X1 and X2, the union of the function restricted by the two
sets is equal to the function restricted by the union of the two sets: f |X1

∪ f |X2
= f |X1∪X2

.

Proof.

f |X1
∪ f |X2

= {(x, f(x)) | x ∈ X1 ∩Dom(f)} ∪ {(x, f(x)) | x ∈ X2 ∩Dom(f)}
= {(x, f(x)) | x ∈ (X1 ∩Dom(f)) ∪ (X2 ∩Dom(f))}
= {(x, f(x)) | x ∈ (X1 ∪X2) ∩Dom(f)}
=f |X1∪X2

165

166 APPENDIX B. PROOF OF PROPERTIES ON PROPERTY GRAPHS

Remark 26
For all function f , for all sets X1 and X2, f |X1

and f |X2
are always compatible.

Theorem 8
If the union of the sets Xi is a super-set of the domain of a function f , then the union
of the function f restricted by each set Xi is equal to the function f itself: (Dom(f) ⊆⋃n

i=1Xi)⇒ (
⋃n

i=1 f |Xi
= f).

Proof.

n⋃
i=1

f |Xi
=

n⋃
i=1

{(x, f(x)) | x ∈ Xi ∩Dom(f)}

=

{
(x, f(x)) | x ∈

n⋃
i=1

(Xi ∩Dom(f))

}

=

{
(x, f(x)) | x ∈ (

n⋃
i=1

Xi) ∩Dom(f)

}
= {(x, f(x)) | x ∈ Dom(f)} = f

B.2 Redefinition of the projection

Remark 27
srcπm(pg), destπm(pg) and propertiesπm(pg) can be redefined by using the restriction:

• srcπm(pg) = srcpg |{m}
• destπm(pg) = destpg |{m}
• propertiesπm(pg) = propertiespg |{(m,str)|str∈Str}

Proof. For nodes, m ∈ Npg cannot be in the domain of srcpg , as their domain is a subset of
Epg . Therefore, srcpg |{m} = ∅ → ∅ = srcπm(pg).

For edges, m ∈ Epg is forced to be in the domain of srcpg , and its value is srcpg(m).
Therefore, srcpg |{m} = (m 7→ srcpg(m)) = srcπm(pg)

The same reasoning applies for destpg .
The new definition of propertiesπm(pg) that uses restrictions is immediate from the definition

of the restriction.

B.3 Proof of Theorem 5

B.3. PROOF OF THEOREM 5 167

Remark 28
The property graphs used in the following proof are described with formula. To help
readability, for a given PG x, we allow ourselves to use the notation N(x) instead of Nx.
Similar notation will be used for E(x), src(x), dest(x), labels(x) and properties(x). For
example, N⊕

m∈Npg∪Epg
πm(pg) will instead of noted N(

⊕
m∈Npg∪Epg

πm(pg)).

Proof. We first need to check if we can apply the ⊕ operator, i.e. if the three conditions of
Definition 40 are met:

• When the π function is applied, nodes remain nodes and edges remain edges. The ⊕
operator also conserves this property. As ∀m,Nπm(pg) ⊆ Npg and Eπm(pg) ⊆ Epg , the first
condition is met.

• The definition of π (restriction of the original function), the definition of ⊕ (union of the
functions) and the Lemma 8 (the union of two restriction is a restriction) imply that the
src, dest and properties are compatible.

As ⊕ is commutative and associative, we can write the following decomposition:⊕
m∈Npg∪Epg

πm(pg) = (
⊕

m∈Npg

πm(pg))⊕ (
⊕

m∈Epg

πm(pg))

To prove the theorem, we are going to check if it is true for all functions related to pg .

Edges (Epg):

E(
⊕

m∈Npg∪Epg

πm(pg)) =
⋃

m∈Npg∪Epg

E(πm(pg)) [Definition of ⊕ on E]

= (
⋃

m∈Npg

E(πm(pg))) ∪ (
⋃

m∈Epg

E(πm(pg)))

= (
⋃

m∈Npg

∅) ∪ (
⋃

m∈Epg

{m}) =
⋃

m∈Epg

{m} [Definition of π on E]

= Epg

Nodes (Npg):

N(
⊕

m∈Npg∪Epg

πm(pg))

= (
⋃

m∈Npg

N(πm(pg))) ∪ (
⋃

m∈Epg

N(πm(pg)))

= Npg ∪ (
⋃

m∈Epg

N(πm(pg)))

To prove that the last expression above is equal to Npg , we need to prove that
(
⋃

m∈Epg
N(πm(pg))) ⊆ Npg :

∀m ∈ Epg , N(πm(pg)) = {srcpg(m), destpg(m)} ⊆ Npg ⇒
⋃

m∈Epg

N(πm(pg)) ⊆
⋃

m∈Epg

Npg = Npg

168 APPENDIX B. PROOF OF PROPERTIES ON PROPERTY GRAPHS

Source of the edges (srcpg):

src(
⊕

m∈Npg∪Epg

πm(pg))

=
⋃

m∈Npg∪Epg

srcpg |{m}

= srcpg [per Theorem 8, since
⋃

m∈Npg∪Epg

{m} ⊇ Epg = Dom(srcpg)]

Destination of the edges (destpg): The proof for destpg follows the same steps as the proof
for srcpg .

Properties (propertiespg) The proof is very similar to srcpg .
Noticing that:

• ∀m ∈ Npg ∪ Epg , properties(πm(pg)) = propertiespg |{(m,str)|str∈Str}
•
⋃

m∈Npg∪Epg
{(m, s) | s ∈ Str} = {(m, str) | m ∈ Npg ∪ Epg ∧ str ∈ Str} = (Npg ∪ Epg) ×

Str
⊇ Dom(propertiespg)

we can reapply the same reasoning as for srcpg to find

properties(
⊕

m∈Npg∪Epg

πm(pg)) = propertiespg

Labels (labelspg) The domain of definition of labels(
⊕

m∈Npg∪Epg
πm(pg)) is:

N(
⊕

m∈Npg∪Epg

πm(pg)) ∪ E(
⊕

m∈Npg∪Epg

πm(pg)) = Npg ∪ Epg

The value of this function is ∀x ∈ Npg ∪ Epg ,

labels(
⋃

m∈Npg∪Epg

πm(pg))(x) =
⋃

m ∈ Npg ∪ Epg

if labels(πm(pg))(x) is defined

labels(πm(pg))(x)

From the definition of π applied on labels , two outcomes are possible for labels(πm(pg))(x):

• For m = x, labels(πm(pg))(x) = labelspg(x).
• For all other m ̸= x, labels(πm(pg))(x) is either the empty set or undefined. In both cases,
no extra value is contributed to labels(

⋃
m∈Npg∪Epg

πm(pg))(x).

It can be concluded that labels(
⋃

m∈Npg∪Epg
πm(pg))(x) = labelspg(x), so labels(

⊕
m∈Npg∪Epg

πm(pg)) =
labelspg .

Conclusion : We have demonstrated that
∀pg ∈ APG , ∀f ∈ {Npg , Epg , srcpg , destpg , labelspg , propertiespg} , f(pg) = f(

⊕
m∈Npg∪Epg

πm(pg))

therefore ∀pg ∈ APG , pg =
⊕

m∈Npg∪Epg
πm(pg)

ANALYSIS SUMMARY
magister

TH1110_BRUYAT
Julian_Manuscrit 9%

Suspicious
texts

4% Similarities
0% similarities between quotation
marks
0% among the sources mentioned

6% Unrecognized languages

Document name: TH1110_BRUYAT Julian_Manuscrit.pdf
Document ID: 9932498db9cc0de7e39a93a1930a8f69336760bc
Original document size: 1.75 MB

Submitter: Mickael Lallart
Submission date: 4/9/2024
Upload type: interface
analysis end date: 4/9/2024

Number of words: 62,767
Number of characters: 363,595

Location of similarities in the document:

Main sources detected

No. Description Similarities Locations Additional information

1
TH1093_JEONG Jihyuk_Manuscrit.pdf | TH1093_JEONG Jihyuk_Manuscrit #aa721a

 The document is from my document database

94 similar sources
2% Identical words: 2% (2,534 words)

2
ZHANG Ruochen_Manuscrit_réduit.pdf | ZHANG Ruochen_Manuscrit_réduit #235732

 The document is from my document database

93 similar sources
2% Identical words: 2% (2,207 words)

3
TH1099_FORTIER Patrik_Manuscrit.pdf | TH1099_FORTIER Patrik_Manuscrit #7c44f8

 The document is from my document database

91 similar sources
2% Identical words: 2% (2,047 words)

4
TH0908_Lucas Ollivier-Lamarque_Manuscrit.pdf | TH0908_Lucas Ollivier-L… #ebdcc8

 The document is from my document database

90 similar sources
2% Identical words: 2% (2,031 words)

5
bonndoc.ulb.uni-bonn.de
https://bonndoc.ulb.uni-bonn.de/xmlui/bitstream/20.500.11811/9083/1/6224.pdf

110 similar sources
2% Identical words: 2% (2,270 words)

Sources with incidental similarities

No. Description Similarities Locations Additional information

1 liris.cnrs.fr | Angela Bonifati | Laboratoire d'InfoRmatique en Image et Systèmes d'…
https://liris.cnrs.fr/page-membre/angela-bonifati < 1% Identical words: < 1% (38 words)

2 www.emse.fr
https://www.emse.fr/~zimmermann/Papers/ekaw2016demo.pdf < 1% Identical words: < 1% (39 words)

3 sferrada.com
https://sferrada.com/uploads/resume.pdf < 1% Identical words: < 1% (36 words)

4 ceur-ws.org
https://ceur-ws.org/Vol-3262/paper12.pdf < 1% Identical words: < 1% (35 words)

5 link.springer.com
https://link.springer.com/content/pdf/10.1007/978-3-030-33220-4_8.pdf < 1% Identical words: < 1% (39 words)

Ignored sources These sources have been excluded by the document owner from the calculation of the similarity percentage.

No. Description Similarities Locations Additional information

1 www.semantic-web-journal.net
https://www.semantic-web-journal.net/system/files/swj3675.pdf 22% Identical words: 22% (14,600 words)

2 www.semantic-web-journal.net
https://www.semantic-web-journal.net/system/files/swj3426.pdf 8% Identical words: 8% (5,076 words)

Referenced sources (without similarities detected) These sources were cited in the paper without finding any similarities.

1 https://www.edchimie-lyon.fr

2 http://e2m2.universite-lyon.fr

3 http://ediss.universite-lyon.fr

4 http://ed34.universite-lyon.fr

5 https://edeea.universite-lyon.fr

170 APPENDIX B. PROOF OF PROPERTIES ON PROPERTY GRAPHS

FOLIO ADMINISTRATIF

..THESE.. . . .DEL’INSA..LYON,.MEMBREDE..L’UNIVERSITE.. . . .DELYON

NOM : BRUYAT DATE de SOUTENANCE : 3 Juin 2024

Prénoms : Julian

TITRE : Des graphes de propriétés aux graphes de connaisances

NATURE : Doctorat Numéro d’ordre : 2024ISAL0044

École Doctorale : École Doctorale en Informatiques et Mathématiques de Lyon

Spécialité : Informatique

RÉSUMÉ :
Les graphes de propriétés et les graphes RDF sont deux familles populaires de base de données graphe. Néanmoins,
malgré le fait qu’elles soient toutes les deux basées sur la notion de graphe, ces deux familles ne sont pas in-
teropérables. Les graphes de propriétés sont une famille d’implémentations de base de données très flexible, où
des propriétés peuvent être rattachées aux noeuds et aux arcs du graphe. La seconde est un modèle standardisé
de description de connaissances, reposant sur des vocabulaires partagés entre tous les graphes RDF. Dans cette
thèse, nous définissons des méthodes pour permettre une interopérabilité sémantique entre graphes de propriétés
et graphes RDF configurée à travers un “contexte” fourni par l’utilisateur. La première méthode est une méthode bas
niveau, compatible avec n’importe quel graphe de propriétés. La seconde méthode est une méthode haut niveau,
reposant sur la notion de schéma de graphe de propriétés, et pour laquelle la réversibilité de certains contextes est
étudiée formellement. Enfin, pour faciliter l’écriture des “contextes” en RDF, et plus généralement de n’importe quel
document RDF, nous proposons une méthode d’auto-complétion basée sur les vocabulaires de schémas RDF exis-
tants.

MOTS-CLÉS : Graphes de propriétés, RDF, Interopérabilité, Autocomplétion, Schéma

Laboratoire(s) de recherche : Laboratoire d’Informatique en Image et Systèmes d’information

Directeur de thèse : Frédérique LAFOREST
Co-encadrants : Pierre-Antoine CHAMPIN, Lionel MÉDINI

Président du Jury : Philippe LAMARRE

Composition du Jury :
Catherine FARON
Olaf HARTIG
Anastasia DIMOU
Jose Emilio LABRA GAYO
Philippe LAMARRE
Frédérique LAFOREST
Pierre-Antoine CHAMPIN
Lionel MÉDINI

	Introduction
	Two kinds of knowledge graphs
	RDF graphs
	Property Graphs
	Choosing a knowledge graph model

	Interoperability
	Syntactic interoperability
	Semantic interoperability

	Motivation
	Structure of the thesis

	State of the art
	The two graph data models
	Property Graphs
	RDF

	Comparing RDF with PGs
	A general purpose RDF auto-completion tool
	Where do RDF Triples come from?
	How do current editors help users?
	What could be used?

	PREC: the general framework
	Formal definitions of Property Graphs
	The need for another PG definition
	Gremlinable Property Graphs
	Discussion about Gremlinable Property Graphs
	Formal definitions of RDF and template graphs
	RDF(-star) graphs
	Template graphs

	PREC (PG to RDF graph Experimental Converter)
	The terminology around PREC
	Blank node Property Graphs

	PREC-C: a low level converter
	Formal definition of PREC-C
	Characterization of the compatible graphs
	First iteration: using a default context
	Second iteration: context basic support
	Third iteration: supporting ?self-less templates
	The final version of the PREC-C algorithm
	Going further
	Complexity analysis

	Implementation of PREC-C
	The PREC-C ontology
	Substitution predicates: re-using existing templates
	PREC-0 provides a PG model

	Discussion
	PREC-C encompasses existing conversions
	Usability discussion

	Conclusion

	PRSC: A higher level approach using schemas
	PRSC in practice
	Used Property Graph formalism
	General definitions
	Domain and image of a function
	Compatible functions

	PRSC: mapping PGs to RDF graphs
	Type of a PG element and PG schemas
	Placeholders
	PRSC context
	Application of a PRSC context on a PG
	Complexity analysis

	PRSC reversibility
	The notion of reversibility
	Well-behaved contexts
	Reversion algorithm
	Discussion about the constraints on well-behaved PRSC contexts

	Optimizing the reversion algorithm
	Checking if a context is a PRSC well-behaved context
	Associating the elements of the future PG with their types
	Producing the PG
	Complexity of the optimized RDF to PG function

	Extensions
	Edge-unique extension
	Default context
	IRI Property Graphs

	Conclusion

	Shacled Turtle: a general purpose autocompletion engine
	Shacled Turtle usage example
	Shacled Turtle architecture
	The interaction loop
	The graphs
	The inference engine
	The suggestion engine

	The preprocessing
	Rules built by looking up some triple patterns
	Rules built from SHACL Paths

	Inside the Shacled Turtle white box when writing a PRSC context
	Evaluation
	General purpose discussion
	Shacled Turtle and PREC requirements
	Conclusion

	Conclusion
	Bibliography
	Appendices
	 redefinition in PREC-C
	Proof of properties on Property Graphs
	Extra mathematical elements
	Redefinition of the projection
	Proof of Theorem 5

