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Preface

Foreword

This habilitation thesis contains an overview and summary of the research I have
published after obtaining my PhD. This research touches upon a variety of topics,
grouped into six separate chapters. The unifying theme of all this work is a connection
to the theory of many-body quantum systems. In some cases, the mathematical results
are of direct relevance to such systems, like N -body systems or particle-field systems.
In others, the connection lies in the fact that the studied equations are used as effective
descriptions of many-body systems, for example in the mean-field approximation.

The goal is to give an account of my own work in a unified presentation. I have
tried to be reasonably consistent with the notation across chapters, and conventions
for repeatedly used notation are spelled out in an index. The chapters are not meant to
be complete reviews on each topic, so only references to results of particular relevance
for the discussion are given. The bibliography of each chapter is thus an incomplete
selection from the literature. More detailed accounts on specific points can generally
be found in the original articles. The style of the presentation varies from one chapter
to another. In some cases, I have decided to give a rather brief synthesis of the main
results and ideas. In others, I have chosen to present the original research from a
slightly different point of view. Generally, the statements of the results have been
optimised for readability and coherence with the explanations, rather than detail or
generality. They thus often differ from the theorems stated in the original articles in
this regard.

I want to express my gratitude towards all of my collaborators who have contributed
to the research presented here, and to the joy of doing this work. I am also grateful to
all colleagues who have provided inspiration by their own work, and their questions.

What follows is a brief summary of the chapters summarising the content of articles
with a common theme, in roughly chronological order. Not covered are the articles [2,
6] contained in my PhD thesis, as well as the articles [1, 9, 10] on a closely related
topic. The recent preprint [24], which would have constituted a chapter of its own, is
also omitted.
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Chapter 1: A many-body RAGE theorem

In this chapter I review the article [3] in collaboration with Mathieu Lewin on an
N -body version of the RAGE Theorem. The original RAGE theorem may be loosely
paraphrased as stating that, in the long-time average of a unitary evolution, only
the bound states of the generating Hamiltonian survive. Other components of the
initial datum vanish in the corresponding limit. Our result provides an account of this
vanishing in a general setting of N -body systems. In the long-time average, the system
decomposes into bound states, including of smaller subsystems where some particles
have been ejected. More precisely, using the notion of geometric convergence, we
find that any limit point of the time-averaged state of an N -body system can be
decomposed into n-particle components, 0 ≤ n ≤ N , which are linear combinations of
projections to bound states of the corresponding n-body system. Our result applies
to N -body Schrödinger operators with slowly decaying potentials, which I will also
discuss.

Chapter 2: Inverse problems and time-dependent density
functional theory

This chapter summarises the articles [4, 16] that are concerned with the inverse prob-
lem of mapping a time-dependent potential to the (one-particle) density of the cor-
responding solution to the Schrödinger equation, for a given initial condition. The
possibility of reconstructing the potential from the density of the solution is a foun-
dational issue in time-dependent density functional theory. It would imply that the
time-dependent density contains, in principle, a complete characterisation of the sys-
tem. It turns out that this inverse problem is related to the control problem of whether
the initial state can be brought to a given final state by applying an external potential.

The first section is dedicated to results obtained in collaboration with Søren Four-
nais, Mathieu Lewin and Thomas Østergaard Sørensen [4]. The first part discusses
a proof that the potential-to-density map V 7→ ρV is one-to-one (up to addition of
constants) in the case of highly regular potentials. This statement is known as the
Runge-Gross Theorem and the proof relies on Taylor expansion in time, similarly to
the original argument. This approach faces serious problems in the presence of singu-
larities, which are examined in the second part.

The second section is about results from [16] on the range of the map V 7→ ρV .
The main result is that, as a set of time-dependent densities, this set is meagre in the
sense of Baire for potentials that are bounded in space and satisfy a local integrability
condition in time. As a consequence, the inverse problem is ill posed. The statement
is proved first for the wave-function V 7→ ψV , and obtained for the density as a
corollary. A second corollary is that the control problem cannot be solved for generic
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target states.

Chapter 3: The Dirac equation with scalar fields

This chapter summarises the works [5, 22] on the Dirac equation in contact with scalar
(or vector) fields.

The subject of the article [5] with Mathieu Lewin is the vacuum polarisation for the
Dirac equation in an external scalar field. It was postulated by Dirac that the states
of negative energy should be completely filled in the vacuum, thus forcing a fermionic
particle to have positive energy and predicting the existence of an anti-particle, the
positron. The negative energy subspace of the Dirac operator in an external field
depends of this field, and thus there should be an associated difference in the energies
of the corresponding vacuum states. Any naive formula for this energy will yield an
infinite value, but one can provide regularised formulas. In [5] we use such a formula
to derive an expansion of the polarisation energy for slowly varying external fields in
terms of local functionals, i.e., integrals over point-wise functions of the field and its
derivatives. We also give a non-rigorous discussion of the physical implications of the
leading order term, including some numerics.

The topic of [22] in collaboration with Loïc Le Treust, Simona Rota Nodari and
Julien Sabin is the Dirac-Klein-Gordon system in the strong coupling limit. This
system is a model for a particle, described by the Dirac equation, interacting with
relativistic, massive scalar or vector fields. The limit in question is that of simultaneous
strong coupling and large masses of the fields. In this regime, the fields can have large
derivatives, allowing them to adjust quickly to the evolution of the Dirac equation.
One thus expects that the interaction becomes an instantaneous self-interaction in the
limit, which yields the non-linear Dirac equation with self-consistent mass and current
terms. Our result is the convergence of the solution to the Dirac equation as part of
the system to that of the non-linear equation, and an estimate on the difference. We
also generalise this to the Dirac-Fock equation for a Hilbert-Schmidt operator, which
describes many particles in a mean-field approximation.

Chapter 4: Interior boundary conditions

Here, I summarise the articles [7, 12, 11, 15, 13, 14, 17, 21, 23] on the use of inte-
rior boundary conditions in non-relativistic quantum field theory. This approach to
the ultraviolet problem in quantum field theory seeks to identify a suitable domain
for the Hamiltonian operator by imposing (generalised) boundary conditions on the
singular set of the interactions. Usually, this set consists of configurations where sev-
eral particles collide. The boundary conditions relate sectors with different numbers of
particles, thereby encoding processes of particle creation. The strategy has similarities
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with singular perturbations for Schrödinger operators with a fixed number of particles,
and, as in that case, the results coincide with those obtained by regularisation and
renormalisation, whenever both are known.

In the first section, I start by explaining the general idea in a minimal example. I
will then discuss the article [7] in collaboration with Julian Schmidt, Stefan Teufel,
and Roderich Tumulka, which gives a characterisation of the domain of self-adjointness
for a singular van Hove Hamiltonian. In light of these examples, I will present joint
work with Tim Binz [14] on an abstract theory of interior boundary conditions which
elucidates the relation to the concept of boundary triples and allows for a classification.

The second section is devoted to the discussion of Hamiltonians for systems of
particles interacting with a quantum field by linear coupling, often called polaron
Hamiltonians. I will explain the construction of their self-adjoint realisations by the
method of interior boundary conditions and its relation to renormalisation. These
results are contained in the article [12] with Julian Schmidt, and the later publica-
tions [11, 15, 13, 21]. I will proceed in the order of increasing strength of the sin-
gularities. I start with Hamiltonians that may be realised as quadratic forms, then
discuss the Nelson Hamiltonian, which can be renormalised using a dressing transfor-
mation, and finally consider stronger singularities for which no dressing transformation
is known. The latter class contains the important example of the Bogoliubov-Fröhlich
Hamiltonian, modelling the interaction of an impurity with the excitation field in a
Bose-Einstein condensate. This Hamiltonian and its renormalisation also feature in
Chapter 6 on the Bose polaron.

In the final section I will explain how the knowledge of the Hamiltonian, without
need for ultraviolet regularisation, can be used in the study of its spectrum. I focus
on the property of the operator to improve positivity, which implies simplicity of any
ground state. This property was proved in the article [17] for the Nelson model, and
similar arguments were applied to the Fröhlich model in the article [23] with David
Mitrouskas and Krzysztof Myśliwy to study the energy-momentum relation. The
recent preprint [20] with Benjamin Hinrichs proves the existence of ground states of
the Bogoliubov-Fröhlich Hamiltonian at fixed, small enough momentum.

Chapter 5: A model for plasmons in a finite medium

In this chapter I present the work [8] in collaboration with Vincent Dorier, Hans
Jauslin and Stéphane Guérin on a model for plasmons in the presence of a finite-size
dielectric. Plasmons are a term for joint excitations of the electro-magnetic field and
charge carriers in a medium. In our case, the latter are modelled by an oscillating
polarisation field. In the first part of the chapter, I will discuss the model on the
levels of both classical and quantum fields and the main results of [8] concerning the
relations of physical quantities with those in the un-coupled model.
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In the second part I give an outline of the proof of the mathematical statement
underlying that discussion, using methods of stationary scattering theory.

Chapter 6: Effective equations for many-boson systems
This chapter concerns the works [18, 25], and [19] about the derivation of effective
equations for systems involving many bosons in the limit of large boson number.

The articles [18, 25] are about the Bose polaron problem. The system of interest
consists of a large number of bosons and one, or few, impurities of a different type,
at temperatures low enough for the bosons to form a Bose-Einstein condensate. Such
systems are of interest in physics since the impurities can probe the properties of the
Bose gas. Their model parameters can be controlled quite precisely in experiments,
whence they are envisaged as platforms for studying impurity physics of less acces-
sible systems, like solids, by analogy. This, however, requires a thorough theoretical
understanding of the system and the relevant models. An important paradigm in the
field is Bogoliubov theory, which describes the excitations out of a perfect condensate,
created by the interactions, by a quantum field.

Together with Peter Pickl we prove in [18] that the dynamics of a boson–impurity
system can be approximated by the Bogoliubov-Fröhlich Hamiltonian. The latter cou-
ples the impurity to Bogoliubov’s excitation field with a linear coupling, similarly to
the well-known Fröhlich Hamiltonian. We consider the system with periodic bound-
ary conditions and a mean-field interaction, i.e., a weakly interacting system at high
density.

With Arnaud Triay we study in [25] the ground state and low-lying eigenvalues of
a dilute system in the Gross-Pitaevski regime. Contrary to the mean-field case, the
interactions are strong but of short range compared to the very small density. Through
rescaling, the problem can be brought into a form resembling the mean-field problem,
but with rescaled potentials that become singular in the limit. These singularities
make the renormalisation of the Bogoliubov-Fröhlich Hamiltonian necessary, which is
achieved using the methods of [13]. This leads to a universal contribution to the ground
state energy, with the excitation spectrum described by the renormalised Hamiltonian.

The subject of the article [19] with Marco Falconi, Nikolai Leopold, and David
Mitrouskas is a system of bosons interacting via a relativistic scalar field, described
by the Nelson Hamiltonian. In the mean-field limit of a dense, weakly interacting
system we prove validity of Bogoliubov theory for the system of field and particles and
show how the renormalisation of the Nelson model induces a renormalisation of the
corresponding Bogoliubov approximation.
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1 A many-body RAGE theorem

This chapter is based on the article [7] on the many-body RAGE theorem. I will
take the opportunity to revisit this result and present a slightly modified version of
the abstract statement, and its proof. This variant was not presented in our original
work, as we did not believe it would apply to the relevant case of N -body Schrödinger
operators (compare [7, Remark 1]), and understood only later that this would indeed
apply, as explained in Corollary 1.3 below.

The RAGE (Ruelle, Amrein-Georgescu, and Enss) Theorem is a fundamental result
relating the long-time behaviour of a unitary group e−itH to the spectrum of its self-
adjoint generator H. In its basic form, it can be stated as follows. Let H,D(H) ⊂ H
be self-adjoint and 0 ≤ γ ∈ S1(H) be a trace-class operator. Consider the ergodic
mean,

MT = 1
T

∫ T

0
e−itHγeitHdt. (1.1)

This defines a bounded family (MT )T≥0 in S1(H), so there exist convergent subse-
quences for the weak*-topology. That is, there exists M∞ ∈ S1(H) (in fact, it is
unique) so that for every compact K ∈ K(H)

Tr(KMT ) T→∞→ Tr(KM∞). (1.2)

The RAGE Theorem states that M∞ is an operator on the pure-point space of Hpp(H).
Moreover, it commutes with e−itH and can thus be decomposed into a linear combi-
nation of projections onto eigenvectors of H. This means that only the bound states
of H are discernible in the long-time average when testing with a compact operator.

In the context of many-body operators this theorem obviously applies, but it fails
to capture the presence of bound states of subsystems. Consider for instance the
Hamiltonians for n electrons in the field of a Hydrogen nucleus,

Hn =
n∑
j=1

(
− ∆xj − 1

|xj |

)
+

∑
1≤j<ℓ≤n

1
|xj − xℓ|

. (1.3)

It is known that H3 has no bound states [6, 9], H2 has finitely many [6, 5], and of
course H1 has an infinity of bound states. Therefore, the RAGE Theorem applied to
H3 only yields that MT converges weakly* to zero. However, from n-body scattering
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theory [3, 10], we know that the system will decompose into a number of free electrons
and bound states of H0 = 0, H1, H2.

The idea behind the many-body RAGE Theorem is to capture the effect of decom-
position into subsystems, without describing the scattering process in detail. This
has the benefit of requiring much weaker hypothesis. The refinement is achieved by
changing the topology for MT to one which allows for convergence to states with fewer
particles, the geometric topology [8].

The geometric topology. We now introduce the geometric topology from a C*
algebraic point of view. Let H be the one-particle Hilbert space and N ∈ N the initial
number of particles. For 0 ≤ n ≤ N let K ∈ K(H⊗n) be a compact operator that
commutes with permutations of the tensor factors, and define for m ≥ n the operator

K ⊗s 1H⊗(m−n) :=
∑

I⊂{1,...m}
|I|=n

KI ⊗ 1Ic ∈ B(H⊗m), (1.4)

where in each summand I denotes the n indices of the tensor factors on which K acts,
and the identity acts on the remaining |Ic| = m− n factors. Let

G ⊂
N⊕
n=0

B(H⊗n) (1.5)

be the C*-algebra generated by operators of the form

K =
N∑

m=n
K ⊗s 1H⊗(m−n) , (1.6)

for K ∈ K(H⊗n) and some 0 ≤ n ≤ N (with the convention that H⊗0 = C). This is a
unital algebra with identity 1 = ⊕N

n=01H⊗n . The operators of this form correspond to
looking for bound subsystems of size n. The algebra G is closely related to the N -body
algebra discussed in [1], with the main difference that in the non-compact factors we
simply have an identity. This corresponds to the fact that we do not want to describe
specifically how the particles that escape behave.

Since elements of G commute with permutations of the tensor factors, they can be
restricted to both the symmetric and anti-symmetric tensor products, so our results
will cover both fermions and bosons.

Definition 1.1. The geometric topology is the weak* topology on G′. We denote the
associated convergence by ⇀

g
.

Any element γ ∈ G′ defines a continuous linear functional on K(H⊗n) by its restric-
tion to operators of the form (1.6) with the given n ≤ N . This functional is given by

9



1 A many-body RAGE theorem

K 7→ Tr(Kγ(n)) with a trace-class operator γ(n), called the n-particle reduced density
matrix. Geometric convergence is thus equivalent to weak* convergence of γ(n) for
every 0 ≤ n ≤ N .

Moreover, γ can be represented by a trace-class operator on ⊕N
n=0 H

⊗n in the fol-
lowing way. The N -particle reduced density matrix can be extended to a functional
GN on G by, using the notation of (1.6),

GN (K) = Tr
(
γ(N)(K ⊗s 1H⊗(N−n))

)
. (1.7)

Subtracting this from γ gives a functional ηN = γ − GN with vanishing N -particle
density, η(N)

N = 0. In this way, we recursively define

Gn = η
(n)
n+1, ηn = ηn+1 −Gn, (1.8)

where the extension to G is implicit. We clearly have η0 = 0, since all of its reduced
densities vanish. Undoing the recursive definition of η0, this implies

0 = η1 −G0 = γ −
N∑
n=0

Gn, (1.9)

so

γ =
N∑
n=0

Gn ∈ S1
( N⊕
n=0

H⊗n
)
. (1.10)

The operator Gn really corresponds to the n-particle component of γ, whereas γ(n)

contains also the partial traces of Gm, m > n.

The Hamiltonian. We consider general n-particle Hamiltonians built from a one-
particle operator h and a two-body interaction w by

H0 = 0
H1 = h

Hn =
n∑
j=1

hj +
∑

0≤j<ℓ≤n
wjℓ, n ≥ 2,

(1.11)

where hj acts on the j-the factor and wjℓ on the j-the and ℓ-th factors. We also
introduce the notation for the induced Hamiltonian on ⊕N

n=0 H
⊗n,

H =
N⊕
n=0

Hn. (1.12)

10



In order to ensure that Hn has a self-adjoint realisation for any n we assume that h
is self-adjoint, bounded from below, and that w12 = w21 is form-bounded by h1 + h2
with relative bound zero.

The non-trivial assumption, which will ensure the decomposition into bound sub-
systems, is that for all t > 0 and K ∈ K(H), the operator

(K ⊗s 1)
∫ t

0
eis(h1+h2)w12e−is(h1+h2)ds ∈ K(H ⊗ H) (1.13)

is compact. In [7], a similar condition using the resolvent of h1 + h2 instead of the
integrated unitary group is given. There, we actively use the energy norm and thus
the lower bound on h. For the argument given here one may drop this assumption if
the relative bound of w12 is in the sense of operators.

In order to state the result, let γ ∈ S1(H⊗N ) be non-negative and Tr γ = 1. This
defines an element of G′ by the natural extension (1.7). Then, set

MT = 1
T

∫ T

0
e−itHNγeitHN dt ∈ G′. (1.14)

For any T > 0, this defines a positive element of G′ which is normalised by MT (1) = 1,
i.e., a state on G. Hence, the family (MT )T≥0 is pre-compact in the geometric topology
and, since G has an identity, every limit point is a state [2, Thm.2.3.15]. Moreover,
by the decomposition (1.10) every limit point has well defined n-particle components
and is given by a trace-class operator. Note that, since G is separable, there exist
geometrically convergent subsequences of MT .

Since every limit point is a state, the vanishing phenomenon we observed for the
RAGE Theorem in the absence of bound states does not happen here. The limit is
always normalised, and in the worst case it just concentrates on the sector with zero
particles, i.e., it equals its zero particle component and G0 = 1.

Theorem 1.2. Let h,w satisfy the hypothesis above, in particular property (1.13). Let
M∞ be a limit point of MT for the geometric topology and for 0 ≤ n ≤ N denote by Gn
its n-particle component from (1.7). Then Gn is a linear combination of projections
onto eigenvectors of Hn.

Sketch of the proof. Let (MTk
)k∈N be a geometrically convergent subsequence of MT

with limit M∞. By a shift in the dt-integral, it is clear that e−iHsMTk
eiHs converges

to the same limit M∞ for any s > 0. We will prove that also

e−iHNsMTk
eiHNs = e−iHsMTk

eiHs ⇀
g

e−iHsM∞eiHs =
N∑
n=0

e−iHnGneiHn , (1.15)

which is non-trivial since the left hand side involves only HN , while on the right
the whole family (Hn)0≤n≤N may appear. This then implies that M∞ is H-invariant
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1 A many-body RAGE theorem

and Gn is Hn-invariant. Hence, each of its finite dimensional eigenspaces are Hn

invariant and thus contained in Hpp(Hn). Consequently, it can be written as a linear
combination of projections onto eigenvectors of Hn.

In order to prove that e−iHsMTk
eiHs converges geometrically to e−iHsM∞eiHs, we

will show that

τt(K) = eitHKe−itH (1.16)

defines a group of isometries of G. Then, geometric convergence implies for all K ∈ G

MTk
(τt(K)) k→∞−→ M∞(τt(K)). (1.17)

The non-trivial point is to show that τt(K) ∈ G for K ∈ G. For this, it is sufficient to
consider K of the form (1.6). For simplicity of notation, we ignore the symmetrisation
and the sum over m and consider K ⊗ 1H⊗(m−n) . Moreover, assume that w is bounded
(otherwise one needs to perform an approximation argument). We need to write
τt(K⊗1H⊗(m−n)) as a sum of compact operators tensored with the identity. For n = m
this is trivial, since the conjugation of a compact operator with a unitary is compact,
so assume m > n. We can write τt using the Dyson series (whose convergence is
immediate for bounded w). With H0

m = ∑m
j=1 hj , the term of order zero in the series

is simply

eitH0
m(K ⊗ 1)e−itH0

m =
(
eitH0

nKe−itH0
n

)
⊗ 1, (1.18)

which is of the claimed form. The first non-trivial term is

i
∫ t

0
ei(t−s)H0

m

[ ∑
0≤j<ℓ≤m

wjℓ, eisH0
m(K ⊗ 1)e−isH0

m

]
e−i(t−s)H0

m (1.19)

=
∑

0≤j<ℓ≤n

(
i
∫ t

0
ei(t−s)H0

n
[
wjℓ, eisH0

nKe−isH0
n
]
e−i(t−s)H0

n

)
⊗ 1

+ i
∑

0≤j≤n
n<ℓ≤m

∫ t

0
ei(t−s)Hm

[
wjℓ, eisH0

n(K ⊗ 1)e−isH0
n
]
e−i(t−s)H0

m .

After simplifying the commutators in this way, the first terms is clearly a product of
a compact operator with the identity. The interesting term is the final one, where we
add a new factor with index ℓ > n in which we do not have compactness a-priori. In
this term the commutator is now no longer of any use and we can simplify the first
summand, for example, to

eiH0
mt
( ∑

0≤j≤n
n<ℓ≤m

i
∫ t

0

(
e−is(hj+hℓ)wjℓeis(hj+hℓ)K ⊗ 1ℓ

)
⊗ 1H⊗(m−n−1)

)
e−iH0

mt. (1.20)
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It now follows from the hypothesis (1.13) that (1.20) is a sum of compact operators
tensored with the identity. Since the Dyson series consists in iterating the intergral
operator from (1.19), the same argument applies to higher orders, where one can add
compactness in one direction per iteration. This completes the proof by convergence
of the series and closedness of G.

A particularly important application of this theorem concerns Schrödinger oper-
ators. Let d ∈ N, H = L2(Rd) and choose the one-particle operator of the form
h = −∆ +V (x) and interaction potential w12 = W (x1 −x2) with W an even function.
We have the following corollary, where the important point is that the decay of V,W
at infinity may be arbitrarily slow (the regularity hypothesis can be improved).

Corollary 1.3. Let V ∈ L1+d/2(Rd) + L∞
0 (Rd), W ∈ L1+d/2(Rd) + L∞

0 (Rd), where
L∞

0 (Rd) denotes the closure of functions with compact support in L∞(Rd). Then The-
orem 1.2 holds for

Hn =
n∑
j=1

(−∆xj + V (xj)) +
∑

1≤j<ℓ≤n
W (xj − xℓ).

Sketch of the proof. We need to show that the compactness property (1.13) holds.
For simplicity consider the case V = 0 (with the arguments below, one can show that
eis∆ − e−ish is compact). The key is to note that∫ t

0
e−is∆W (x)eis∆ = L (1.21)

is a compact operator due to the dispersive properties of ei∆ (by [4, Thm.2] the part
in L1+d/2 gives an element of the Schatten space S2+d, while for the part in L∞

0
compactness follows from this and approximation by functions of compact support).
Writing the Laplacian in relative and centre of mass coordinates, we thus have∫ t

0
eis(h1+h2)w12e−is(h1+h2)ds =

∫ t

0
eis∆x1−x2W (x1 − x2)e−is∆x1−x2 , (1.22)

which is of the from L ⊗R 1, where the tensor product comes from the decomposi-
tion L2(R2d) = L2(Rdx1−x2) ⊗R L

2(Rdx1+x2), with respect to the relative and centre
of mass coordinates. Since vectors of the form x1 and x1 − x2 generate R2d, this
implies that (K ⊗ 1)L ⊗R 1 is compact, by the theory of semi-compact operators [1,
Prop.1] (the argument is elementary: For Hilbert-Schmidt operators the product is
also Hilbert Schmidt by inspection of its integral kernel, and the general case follows
by approximation). The same applies to 1 ⊗K, and this completes the proof.
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2 Inverse problems and time-dependent density
functional theory

In this chapter I review the articles [3, 6] that are concerned with the properties of the
map V 7→ ρV , mapping a time-dependent potential to the (one-particle) density of the
corresponding solution to the Schrödinger equation. More precisely, let ψ0 ∈ L2(RdN )
be a fixed initial condition and ΨV (t) be the solution to the Cauchy problem{

i∂tψV (t) = HV (t)ψV (t)
ψV (0) = ψ0,

(2.1)

where HV is an N -particle Schrödinger operator with external time-dependent poten-
tial V . Then for any class of potentials V for which the equation is well posed, the
map V 7→ ψV (t) is well defined, as is its one-particle density defined by

ρV (t, x) = N

∫
|ψV (t, x, y1, . . . , yN−1)|2 dy1 · · · dyN−1 . (2.2)

We are interested in properties of this map that are relevant to the inverse problem
of reconstructing the potential from the density, as well as the control problem of
reaching a prescribed final state by choice of a potential.

2.1 The Runge-Gross theorem
In this section I summarise the main results of the article [3] on the Runge-Gross
theorem in time-dependent density functional theory.

Density functional theory proposes methods to calculate, or approximate, the one-
particle density of an N -particle quantum system directly – without first calculating
the full N -body wave-function. Such methods are popular computational tools, due
to their moderate cost. This leads to the question how much information about the
full system is contained in the one-body density. More specifically, one may ask which
quantities in the full system may be reconstructed from the density, given some a
priori information, such as what kind of particles constitute the system.

We assume that the quantum system in question consists of N fermions or bosons,
and that its time-dependent Hamiltonian, defined on the anti-symmetric L2

a(RdN ) or
symmetric L2

s (RdN ) L2-space, is of the form

HV (t) := H0 +
N∑
i=1

V (t, xi) , (2.3)
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2 Inverse problems and time-dependent density functional theory

with

H0 =
N∑
i=1

−∆xi + V0(xi) +
∑

1≤i<j≤N
W (xi − xj) . (2.4)

The conditions on the potentials V , V0, W on Rd will be discussed in detail later. We
consider V0 and W as quantities which are a priori known. If, for example, the particles
in our system are electrons they will interact via Coulomb forces W (x) = 1/|x|.

In the time-independent case of ground-states, it is known that for V, V0,W ∈
Ld/2(Rd) + L∞(Rd) (for d ≥ 3) the potential V is uniquely determined by the ground
state density. That is, if V1, V2 ∈ Ld/2(Rd) + L∞(Rd) differ by more than a constant
then the one-particle densities ρ1 and ρ2 corresponding to their ground states ψ1, ψ2
are different. Equivalently, if ρ1 = ρ2, then V1 = V2 + const.. This statement is known
as the Hohenberg-Kohn Theorem [4] (see Lieb [7] for a proof).

Runge and Gross [8] argued that a similar property should hold for time dependent
systems. That is, the time-dependent density ρ(t, x) should determine the external
potential V (t, x) up to a constant C(t) if the system starts with a given initial wave-
function ψ0. The argument is based on an order-by-order analysis of the Taylor series in
time of the density ρ(t, x) obtained from the solution ψ(t) of the Schrödinger equation
with initial condition ψ0 and time-dependent Hamiltonian HV . Such an expansion
clearly relies on smoothness of ρ and V in the time variable, which is intimately
related to the regularity in space. This led to a discussion in the physical chemistry
literature regarding the validity of the argument, see e.g. [10].

The first mathematical work concerning this question is our article [3], where we
discuss the possibility of choosing a set I of admissible initial conditions and V of
external potentials for which the statement above can be proven rigorously, using an
argument similar to that of Runge and Gross. In order to avoid pathologies, these sets
should satisfy the following conditions:

• The set I is invariant under the dynamics generated by HV for any V ∈ V.

• 0 ∈ V and if V (t, x), t ∈ [0, T ) is an admissible potential, then so is the time-
independent potential V (x, t0) for any t0 ∈ [0, T ).

• If the time-independent potential V (x) ∈ V, then any eigenvectors of HV are
admissible initial conditions.

In order to have smooth solutions, we also need to restrict the set of initial conditions

I ⊂
⋂

V (x)∈V
C∞(HV ) , (2.5)
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2.1 The Runge-Gross theorem

where the intersection is over all time-independent potentials, and we denote the set
of HV -smooth vectors by C∞(HV ) := ⋂

k∈ND(Hk
V ). Now, depending on the set V, the

intersection above may be very small – and will in general not be invariant under the
dynamics of the operators HV . In order to avoid this we have to restrict V so that

C∞(HV ) = C∞(H0) (2.6)

for every V ∈ V. This condition clearly shows that the possible choice of V depends
strongly on H0 – and thus on V0 and W .

Smooth potentials. If the potentials V0 and W are smooth, we have natural choices
for I and V and the Runge-Gross argument becomes a rigorous theorem. To be more
precise, let V0,W ∈ C∞

b (Rd,R), W even, and set

I =
⋂
k∈N

H2k(RdN ) ∩ L2
a/s(RdN )

V = C∞
b ([0, T ) × Rd,R)

(2.7)

for some T > 0. We then have:

Theorem 2.1. Let V1, V2 ∈ V and ψ0 ∈ I with one-particle density ρ0. Denote
by ψk(t), k ∈ 1, 2 the solution at time t ∈ [0, T ) of the Schrödinger equation with
Hamiltonian HVk

and initial condition ψk(0) = ψ0. Denote by ρk the corresponding
one-particle density. If ρ1 = ρ2, then for all ℓ ∈ N∫

Rd
ρ0(x)|∇∂ℓt (V1 − V2)|2(0, x)dx = 0 . (2.8)

If additionally the set ρ−1
0 (0) has zero Lebesgue measure, then ∂ℓtV1(x) = ∂ℓtV2(x) + cℓ

for some constant cℓ. If furthermore (V1 − V2) (t, x) is real-analytic in t for every x
we also have V1(t, x) = V2(t, x) + C(t), with C(t) = ∑

ℓ∈N
cℓ
ℓ! t

ℓ.

For the proof of this theorem, one first applies a result of Kato [5] to show that
ψk(t) ∈ I depends smoothly on time. Then Equation (2.8) is obtained recursively
by calculating weak time-derivatives of ρ1 − ρ2 at t = 0, which must equal zero since
ρ1 = ρ2. For instance, the weak second derivative yields

0 = d2

dt2
∣∣∣∣
t=0

∫
Rd
φ(x)(ρ1 − ρ2)(t, x)dx = 2N

∫
(∇φ)(x)∇(V2 − V1)(0, x)dx . (2.9)

Choosing the test-function φ = V2−V1 gives (2.8) for ℓ = 0. The additional statements
follow easily from (2.8).
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2 Inverse problems and time-dependent density functional theory

Singular potentials. If V0 or W are not smooth, the condition (2.6) will lead to
strong restrictions on the set V. For example, it is relatively easy to see that if H0 is the
one-dimensional Schrödinger operator with a delta-potential at x = 0, any potential
satisfying (2.6) must be smooth on R and vanish to infinite order at x = 0 (compare [3,
Theorem 3]). For the Coulomb potential, we have a similar result.
Proposition 2.2. Let d = 3, N = 1 and V0 = − 1

|x| be the Coulomb potential. If
V ∈ C∞(R3,R) is radial and C∞(HV ) = C∞(H0), then

dkV
drk (0) = 0

for all k ≥ 1.
The proof proceeds by examining the boundary conditions at x = 0 that elements

of D(Hk
0 ) must satisfy. If we restrict to radial functions and absorb the factor r2 from

the integration measure into the wave-function, the operator H0 is mapped to the
operator

h0 = − d2

dr2 − 1
r

(2.10)

on L2(R+) with Dirichlet boundary condition at r = 0. If D(Hk
V ) = D(Hk

0 ) for
k = 1, 2, 3 then V must map D(H3

0 ) to D(H2
0 ). Consequently, the Dirichlet condition

in the form h0V ψ(0) = 0 must be satisfied for ψ ∈ D(h3
0). Since (h0ψ)(0) = 0 for

ψ ∈ D(h2
0), this gives

h0V ψ(0) = [h0, V ]ψ(0) = −2V ′(0)ψ′(0) = 0. (2.11)

Since h0 has eigenfunctions with non-vanishing derivative at r = 0, this shows that
V ′(0) = 0. The derivatives of higher order are treated by iterating this type of argu-
ment.

We expect similar statements to hold generically for general non-smooth potentials
V0. The restrictions on V are even more severe for singular interactions W .
Proposition 2.3. Let d = 3, N = 2, V0 = 0, W (x) = 1

|x| be the Coulomb interaction
and H0 the operator acting on symmetric functions given by these choices. If V ∈
C6
b (R3) satisfies D(H4

V ) = D(H4
0 ) then V is constant.

To prove this, one separates the relative and centre-of-mass coordinates and then
applies similar arguments as in the case of a singular one-body potential V0. This
yields ∆V = 0. As V is bounded, it must thus be constant.

We see that for the Coulomb interaction the relation (2.6) already implies that V is
constant, and there is nothing of interest to prove afterwards. Equation (2.8) can still
be shown to hold for ℓ ≤ 3 (ℓ ≤ 4 for fermions), under reasonable assumptions. In
order to obtain more information, an approach that avoids Taylor expansions of high
order is clearly necessary.
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2.2 Time-dependent densities and control theory
In this section I present the results of [6] on range of the map V 7→ ψV . As the
difference between the density |ψV |2 and its marginal ρV plays no role here, we use
the notation corresponding to the case with N = 1 particles, and denote

HV (t) = −∆ + V (t, x). (2.12)

The time-dependent potential V (t, x) will be assumed bounded in space and locally
p-integrable in time, p > 1.

An important idea in this area goes back to Ball, Marsden and Slemrod [1]. These
authors considered a general evolution equation of the form{

∂tψu(t) = Aψu(t) + u(t)Bψu(t)
ψu(0) = ψ0,

(2.13)

where (A,D(A)) is a generator of a strongly continuous semi-group on some Banach
space X, B is a bounded operator, and u(t) ∈ Lploc([0,∞)), p > 1 is a function of time,
the control parameter. They proved that for any given B and ψ0, the attainable set

A =
⋃
p>1

{
ψu(t)

∣∣∣t ≥ 0, ψu solves (2.13) with u ∈ Lploc([0,∞))
}

(2.14)

is a countable union of compact subsets of X. If X has infinite dimension, this means
that it has empty interior, by Baire’s theorem. Consequently, a generic target state
ψ1 is not attainable (the complement of A is the intersection of open and dense sets,
a dense Gδ-set). For the Schrödinger equation, this entails (cf. Turinici [9]) that for
V (t, x) = u(t)V0(x) with fixed V0 ∈ L∞(Rd,R) the attainable set

A =
⋃
p>1

{
ψV (t)

∣∣∣t ≥ 0, V (t, x) = u(t)V0(x) with u ∈ Lploc([0,∞))
}

(2.15)

is meagre in the sphere

S(∥ψ0∥) =
{
ψ ∈ L2(Rd) : ∥ψ∥ = ∥ψ0∥

}
. (2.16)

This leaves the question whether the result depends on fixing V0 before choosing the
target state. In terms of physical modelling of the control problem, this corresponds
to a device that generates a given potential, whose strength can be tuned in time.
But once the target state is decided on, we may well ask if any potential can be used
to attain it, and then try to engineer a device to do so. To resolve this question, we
consider the class

V =
⋃
p>1

Lploc

(
[0,∞), L∞(Rd,R)

)
. (2.17)

of time-varying potentials. The main result of [6] can be stated as follows.
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2 Inverse problems and time-dependent density functional theory

Theorem 2.4. For every ψ0 ∈ L2(Rd) and T > 0 the set of trajectories up to time T

T =
{
t 7→ ψV (t) : V ∈ V

}
is a countable union of compact subsets in C([0, T ], S(∥ψ0∥)).

Since ψ 7→ |ψ|2 is continuous from L2(Rd) to L1(Rd) and continuous images of
compact sets are compact, we immediately have as a corollary that the set of time-
dependent densities

R =
{
t 7→ |ψV (t)|2 : V ∈ V

}
(2.18)

is a countable union of compact subsets in the space of continuous functions of time
to the sphere in L1(Rd). The same applies to any marginals.

Moreover, as the evaluation ψV 7→ ψV (t) is continuous, the result of Turinici for the
attainable set extends to the class V.

The proof of the theorem, which we sketch below, relies crucially on the local smooth-
ing property of the group eit∆. It is thus essential that the problem is set on Rd, or
some non-compact space where the wave-function can disperse. By contrast, the result
of [1], and its generalisations with fixed V0(x) [9, 2], apply without restrictions to the
underlying configuration space.

Sketch of the proof. It is sufficient to show that the operator V 7→ ψV is compact,
since the restriction of V to [0, T ] is a countable union of closed, bounded sets. To do
this, it is convenient to work with larger spaces that are duals of Banach spaces, so we
actually prove the result for this larger class. For p > 1 denote by p′ = (1 − p−1)−1

the dual Hölder exponent, and set

VT =
⋃
p>1

(
Lp

′([0, T ], L1(Rd,R)
))′

. (2.19)

The elements of the dual to Lp′([0, T ], L1) are absolutely continuous L∞-valued mea-
sures, but not necessarily functions in Lp([0, T ], L∞) since L∞ does not have the
Radon-Nikodym property. It is straightforward to define the solution to the Schrödinger
equation with such a potential by the integral equation.

Using Grønwall’s Lemma, we can reduce the problem to the linearised solution
operator

V 7→
∫ t

0
ei∆(t−s)ψ(s)V (ds) = LψV, (2.20)

where V ∈ Lp
′([0, T ], L1)′ is an L∞-valued measure. By the Banach-Alaoglu Theorem,

which applies since we are now working in the dual of a Banach space, it is then
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sufficient to prove that LψVn tends to zero in C([0, T ], L2) for any sequence Vn that
converges weakly* to zero. Considering L∗

φLψ leads us to the expression

KV (s) = φ(s)
∫

ei(s−s′)∆ψ(s′)V (ds′). (2.21)

The key technical point is now to show that K : Lp′([0, T ], L1)′ → C([0, T ], L1) is
compact. This proceeds in the following steps.

• By continuity in φ,ψ, one may assume that these are smooth functions, rapidly
decaying in x.

• It follows that for fixed s, x 7→ KV (s, x) is rapidly decreasing.

• KV (s) is also somewhat regular in x, as φ(s) is smooth and the operator
∫

e−is′∆

is locally smoothing, with localisation coming from φ,ψ.

• It follows from the above points that V 7→ KV (s) ∈ L1(Rd) is compact by
the Rellich–Kondrachov Theorem. Compactness as a map to C([0, T ], L1(Rd))
follows from the Arzelà-Ascoli Theorem, since the spatial regularity can be trans-
lated into regularity of the evolution under ei∆s.

Theorem 2.4 can likely be generalised to potentials in Lploc(R, Lq(Rd)) with appropriate
restrictions on p, q and more regular situations where the wave-function is treated as
an element of some Sobolev space.
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3 The Dirac equation with scalar fields

In this chapter we consider two problems involving the Dirac operator and scalar (or
vector) fields [7, 6]. Both of these problems are motivated by the relativistic mean-
field theory of nuclear physics. The first concerns the polarisation of the vacuum
in approximately homogeneous nuclear matter. The second is on the reduction of
a dynamical interaction with the fields to an instantaneous self-interaction of the
particles, described by the Dirac equation.

3.1 Vacuum polarisation in a scalar field
This section summarises the article [7] on the vacuum polarisation of the Dirac operator
in a scalar field, in the semi-classical regime.

The three-dimensional Dirac operator with an external scalar field φ is

Dφ = −iα · ∇ + β(1 + φ), (3.1)

where the Dirac matrices (αi)3
i=1, β ∈ C4×4 are self-adjoint, square to one, and anti-

commute pairwise. The mass of the particle, Planck’s constant, and the speed of light
have been set to one.

In the picture of the Dirac see, the vacuum state corresponds to a fully occupied
subspace of negative energy, i.e., the spectral projection 1(−∞,0)(Dφ). The correspond-
ing energy would be the trace of the negative part of Dφ, which equals minus infinity.
Of course, the quantity of interest is the energy difference relative to the free case
φ = 0, which would be the trace of (D0)− − (Dφ)−. Moreover, since the spectrum of
Dφ is symmetric with respect to zero, this trace is formally equal to that of

−1
2
(
|Dφ| − |D0|). (3.2)

However, though better behaved, this still does not have a finite trace under any
reasonable assumptions on φ in three space dimensions. One solution to this problem
is to subtract further terms of the expansion of |Dφ| at φ = 0, until the trace is finite.
If one defines a regularised vacuum polarisation in this way, one can make an ansatz for
the full vacuum polarisation by adding a polynomial expression in φ, whose coefficients
are interpreted as renormalised parameters, to be determined experimentally. Here,
we will discuss the regularised expression defined by subtracting terms up to order
four in φ.
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3 The Dirac equation with scalar fields

Definition 3.1. For φ ∈ H1(R3,R) the regularised vacuum polarisation energy is
defined by

Evac(φ) = 1
2 Tr

[
− |Dφ| +

4∑
j=0

1
j!

dj
dsj

∣∣∣∣
s=0

|Dsφ|
]
.

It is shown in [7, Proposition 2.1] that this quantity is finite and defines a continuous
function of φ that is smooth on the open set where 0 /∈ σ(Dφ).

This regularised vacuum energy has been studied in the nuclear physics literature.
For a constant field φ > −1, the energy per unit volume was calculated in [8, 1, 12],
with the result

V(φ) = − 1
4π2 (1 + φ)4 log(1 + φ) − P (φ) , (3.3)

where

P (φ) = − 1
4π2

(
φ+ 7

2φ
2 + 13

3 φ
3 + 25

12φ
4
)

is the fourth-order Taylor polynomial of the first term. Assuming that φ is not constant
but varies slowly, the leading term of Evac(φ) should be given by the integral over
V(φ(x)). This is precisely the result of [7, Theorem 1.1]. Corrections should involve
derivatives of φ and were also discussed in the physics literature (see [7] for references),
and [7, Theorem 3.1] shows existence of such an expansion to arbitrary order. The
precise statement for the leading order is:

Theorem 3.2. Let φ ∈ C∞(R3,R) be such that

• |φ| < 1;

• (1 + |x|2)(1+|α|)/2∂αxφ ∈ L∞(R3) for every multiindex α ∈ N3.

Then we have

lim
ε→0

ε3Evac
(
φ(ε·)

)
=
∫
R3

V(φ(x))dx ,

where V is given by (3.3).

The formula from Theorem 3.2 has an analogue in the case of an electro-magnetic
field, the well-known Euler-Heisenberg energy [5, 4, 3].

We will now sketch how to arrive at this formula, referring to the original article [7]
for more precise statements and error estimates. A first step is to write

|Dφ| = 1
π

∫ ∞

−∞

D2
φ

D2
φ + ω2 dω = 1

2π

∫ ∞

−∞

(
2 − iω

Dφ + iω + iω
Dφ − iω

)
dω (3.4)
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3.1 Vacuum polarisation in a scalar field

which holds by the functional calculus. One can then use the resolvent formula to
evaluate the difference of this expression and its expansion in φ. This yields

Evac(φ) = 1
2 Tr

(∫
I(ω, φ) + I(−ω, φ)dω

)
(3.5)

with

I(ω, φ) = iω(Dφ + iω)−1(βφ (D0 + iω)−1 )5 . (3.6)

One can exchange the trace and the integral in (3.5), and then expand (Dφ ± iω)−1

in a Neumann series, using that |φ| < 1. Calculating term-by-term, using integration
by parts to eliminate the factor ω and cyclicity of the trace, one arrives at an integral
of the trace of a power series in βφ(D0 + iω)−1 (respectively its adjoint for I(−ω, φ)).
Summing this series yields

Evac(φ) = − 1
4π

∫
Tr
(
F (βφ(D0 + iω)−1) + F ((D0 − iω)−1βφ)

)
dω (3.7)

with the explicit function F (z) = log(1 + z) − r(z), r a polynomial of degree four.
Now for a semi-classical pseudo-differential operator, like A = βφ(ε·)(D0 + iω)−1,

an analytic function F (A) is given to leading order by the quantisation of F (a0(x, p)),
with the principal symbol

a0(x, p) = βφ(x)(α · p+ β − iω)−1. (3.8)

The reason is that F (A) is given by Cauchy’s formula, and the principal symbol of
(z − A)−1 is (z − a0)−1. Moreover, if F (a0(x, p)) ∈ L1(R3 × R3), the trace of the
quantisation is

Tr
(
OpεF (a0)

)
= 1

(2πε)3

∫
F (a0(x, p))dxdp. (3.9)

Evaluating the integrals over p and ω yields the claimed formula.
A detailed proof of these statements using pseudo-differential calculus automatically

yields an asymptotic expansion

ε3Evac(φ(ε·)) =
k∑
j=0

∫
Vk(φ)(x)dx+ O(εk+1), (3.10)

where Vk(φ)(x) is a function of ∂αφ(x) with |α| ≤ k. Moreover, one can check that
V1 = 0, cf. [7, Theorem 3.1].

In [7, Section 4.2] we also provide a brief numerical study of the linear response
function of a homogeneous system and observe that the vacuum polarisation has a
stabilising effect.
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3 The Dirac equation with scalar fields

3.2 The strong-coupling limit of the Dirac-Klein-Gordon
system

In this section we present the results of [6] on the Dirac-Klein-Gordon system in
the regime of strong coupling and large field masses. This system couples the Dirac
equation to an equation for a scalar field described by the Klein-Gordon equation. We
also allow for a massive vector field described by the Proca equation. Such equations
arise, for example, in the relativistic mean-field theory of nuclear physics [11]. There,
they model the interaction of nucleons via meson fields, like the scalar σ-meson and the
vectorial ω-meson. The latter are are simplified representations of the strong nuclear
force, and as such they are both strong and of short range, which corresponds to the
regime we consider below.

3.2.1 The one-body problem

We now discuss the case of a single particle described by the Dirac equation interacting
with the fields. Its wavefunction ψ should satisfy the equation

i∂tψ = α · (−i∇ +A)ψ + β(m+ φ)ψ + V ψ, (3.11)

with α, β as in (3.1). The field φ is the scalar field and coupled to ψ by the Klein-
Gordon equation

(∂2
t − ∆ +m2

σ)φ = −g2
σρs(ψ), (3.12)

with the scalar density

ρs(ψ) = ⟨ψ, βψ⟩C4 . (3.13)

The four-dimensional vector field ω = (V,A) satisfies the analogous equation

(∂2
t − ∆ +m2

ω)ω = g2
ωJ(ψ), (3.14)

with the four-current

J(ψ) =
(
|ψ|2, ⟨ψ, αψ⟩). (3.15)

Since this current is divergence-free (i.e., the charge |ψ|2 satisfies the continuity equa-
tion), the equation preserves the Lorentz gauge condition under which the differential
operator equals the vectorial d’Alembert operator. However, due to the mass term it
is not gauge invariant.

We are interested in the regime where both masses m2
σ,m

2
ω and couplings g2

σ, g
2
ω are

large, with

λσ = g2
σ

m2
σ

, λω = g2
ω

m2
ω

(3.16)
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3.2 The strong-coupling limit of the Dirac-Klein-Gordon system

fixed. After dividing the field equations by the respective masses, one is tempted to
set

φ = −λσφs(ψ), ω = λωJ(ψ), (3.17)

as is usually done in the physics literature. This replaces the dynamical self-interaction
of ψ by an instantaneous one, and the equation becomes the non-linear Dirac equation

i∂tψ = α · (−i∇ + ⟨αψ,ψ⟩)ψ + β(m+ ⟨βψ, ψ⟩)ψ + |ψ|2ψ. (3.18)

Of course, dropping the differential operators from the field equations is problematic.
They may have small pre-factors, but these can, and will, be compensated by rapid
oscillations of the solution. The result of [6] is that these oscillations average out as far
as the evolution of ψ is concerned, and the non-linear Dirac equation indeed provides
a good approximation for mσ,mω → ∞. From this point on, one can also consider
the non-relativistic limit of (3.11), i.e., let m → ∞ as well, which leads to a system
of non-linear Schrödinger equations [10]. The combination of these limits was studied
for ground states in [2, 9].

Theorem 3.3. Let s > 5
2 and

ψnl ∈ C((−T nl
min, T

nl
max), Hs(R3,C4))

be the maximal solution to (3.18) with initial condition ψin ∈ Hs(R3,C4). Let λσ, λω ≥
0, mσ,mω > 0 and let

(ψ,φ, ω) ∈ C((−Tmin, Tmax), Hs(R3,C4) ×Hs(R3,R) ×Hs(R3,R4)) ,

be the maximal solution to the Dirac-Klein-Gordon system with initial conditions
ψ|t=0 = ψin and

(φ, ∂tφ)|t=0 ∈ Hs(R3,R) ×Hs−1(R3,R),
(ω, ∂tω)|t=0 ∈ Hs(R3,R4) ×Hs−1(R3,R4).

Then, for all fixed λσ, λω ≥ 0, we have

lim inf
mσ ,mω→∞

Tmin/max ≥ T nl
min/max .

and, for any compact I ⊂ (−T nl
min, T

nl
max) and 0 ≤ s′ < s,

lim
mσ ,mω→∞

∥ψ − ψnl∥C(I,Hs′ (R3,C4)) = 0 .
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3 The Dirac equation with scalar fields

This means that the solution to the Dirac equation (3.11) subject to evolving fields
converges to the solution to the non-linear Dirac equation (3.18) with the same initial
condition, as long as the latter is defined. The proof gives a rate of convergence
of min{mσ,mω}− min{(s−s′),1} which depends on the regularity expended in the final
bound.

The main difficulty in proving this result is the loss of regularity incurred by dropping
the terms

m−2
σ (∂2

t − ∆), m−2
ω (∂2

t − ∆) (3.19)

from the field equations. This makes the equations more singular, while we might also
want appropriate bounds on derivatives to prove convergence. However, the specific
structure of the equations mitigates this problem somewhat. If one writes the equations
for the differences

φ̃ = φ+ λσφs(ψ), ω̃ = ω − λωJ(ψ),

one obtains, e.g.,

(∂2
t − ∆ +m2

σ)φ̃ = λσ(∂2
t − ∆)ρs(ψ), (3.20)

where the right hand side of (3.12) has cancelled with m2
σλσρs, eliminating the large

coupling. Now in (∂2
t −∆)ρs(ψ) all terms involving second derivatives cancel out, since

(−iα · ∇)2 = −∆ and ψ solves a wave equation up to lower-order terms. This leads to
equations of the form

(∂2
t − ∆ +m2

σ)φ̃ = Pσ(ψ, φ̃, ω̃,∇ψ,∇φ̃,∇ω̃) + ∂tQσ(ψ, φ̃, ω̃)
(∂2
t − ∆ +m2

ω)ω̃ = Pω(ψ, φ̃, ω̃,∇ψ,∇φ̃,∇ω̃) + ∂tQω(ψ, φ̃, ω̃)
(3.21)

for appropriate functions Pσ, Pω, Qσ, Qω. This effectively gains one derivative with
respect to the generic case, if one works in sufficiently high regularity to estimate
products like |∇ψ|2. This is the reason for assuming the high initial regularity, Hs,
s > 5/2, which allows us to deal with such products using the Kato-Ponce inequality

∥fg∥Hs ≤ C(∥f∥Hs∥g∥L∞ + ∥f∥L∞∥g∥Hs). (3.22)

With this, one can easily prove a well-posedness result for the equations (3.21) coupled
to the Dirac equation. The fields φ̃, ω̃ have an oscillatory part, essentially due to the
initial conditions, and a small part due to the non-linear terms. Inserting this into
the Duhamel representation for ψ and integrating by parts to deal with the oscillatory
terms gives the claimed convergence during the existence time of the solution.

To show that the solution exists at least as long as ψnl asymptotically, one proves
bounds on φ̃, ω̃ in terms of ψ, and then uses the closeness of ψ to ψnl to prove that
no blowup can occur for (ψ, φ̃, ω̃) inside the existence interval of ψnl.
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3.2 The strong-coupling limit of the Dirac-Klein-Gordon system

3.2.2 The mean-field problem

For a mean-field description of a many-particle system, the wavefunction ψ is replaced
by a one-particle density matrix γ, which we assume to be Hilbert-Schmidt. The
equation for γ is

i∂tγ =
[
α · (−i∇ +A) + β(m+ φ) + V, γ

]
, (3.23)

and the coupling to the field equations is given by

ρs(γ) = TrC4(βγ(x, x))
J(γ) =

(
TrC4(γ(x, x)),TrC4(αγ(x, x))

)
,

(3.24)

where γ(x, y) ∈ C4×4 is the integral kernel of γ.
The corresponding equation with instantaneous interaction is thus

i∂tγ =
[
α · (−i∇ + λTr(αγ(x, x))) + β(m+ Tr(βγ(x, x))) + Tr γ(x, x), γ

]
. (3.25)

The natural functional setting for γ is that of the spaces

S2,s =
{
γ ∈ S2(L2(R3,C4))

∣∣∣∥(1 − ∆)s/2γ(1 − ∆)s/2∥S2 < ∞
}

(3.26)

whose norm we denote by ∥γ∥s. For γ = |ψ⟩⟨ψ| a rank-one projection this is just the
square of the Hs-norm of ψ.

In this setting, much of the analysis can be done in analogy with the one-particle
case. An interesting technical point is the generalisation of the Kato-Ponce inequal-
ity (3.22), which is an important ingredient in our proof, and the study of non-linear
partial differential equations in high regularity in general. One should think of the
function f(x)g(x) as γ(x, x), whose Hs-norm one would like to estimate by a combi-
nation of ∥γ∥s, s > 3/2, and a weaker norm. We have such a bound from [6, Lemma
3.1].

Lemma 3.4. For 3/2 < s′ ≤ s there exists C so that for all γ ∈ S2,s with γ ≥ 0

∥γ(x, x)∥Hs(R3,C4×4) ≤ C∥γ∥1/2
s ∥γ∥1/2

s′ .

Note the additional positivity condition γ ≥ 0. This is necessary for s′ < s, as can
be seen from examples of the type γ = |f⟩⟨g| + |g⟩⟨f | where f and g concentrate at
different points in momentum space (see [6, Remark 3.2]). It is not clear in this setting
what norm could take the place of the L∞-norm from (3.22), being weaker than all
the s′-norms but stronger than the 3/2-norm.

Apart from its role in our analysis, this inequality can be used to prove blowup
criteria for Hartree-type equations for density matrices. By reducing the regularity in
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3 The Dirac equation with scalar fields

one of the factors, one obtains from Grønwall’s Lemma that at the maximal existence
time of the solution in S2,s, the s′-norm must blow up, for any 3/2 < s′ < s. The
existence time is thus independent of s. We are not aware of such results in the
literature on this type of equation.

The convergence result in the many-body setting is [6, Theorem 2].

Theorem 3.5. Let s > 5
2

γnl ∈ C((−T nl
min, T

nl
max),S2,s))

be the maximal solution to (3.25) with initial condition γin ∈ S2,s. Let λσ, λω ≥ 0,
mσ,mω > 0 and let

(γ, φ, ω) ∈ C((−Tmin, Tmax),S2,s ×Hs(R3,R) ×Hs(R3,R4)) ,

be the maximal solution to (3.23) together with the field equations (3.12),(3.14), with
initial conditions γin, and φ, ω as in Theorem 3.3. Then, for all fixed λσ, λω ≥ 0, we
have

lim inf
mσ ,mω→∞

Tmin/max ≥ T nl
min/max ,

and, for any compact I ⊂ (−T nl
min, T

nl
max) and 0 ≤ s′ < s,

lim
mσ ,mω→∞

∥γ − γnl∥C(I,S2,s′ ) = 0 .
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4 Interior boundary conditions

The language of quantum field theory (QFT) is at the core of modern physics. It is the
basis of the physics of fundamental particles, but also ubiquitous in the description
of atoms, molecules and condensed matter. From the very beginning, the mathe-
matical formulation of QFT has been complicated by the appearance of ill-defined
expressions and divergent integrals. Many tools have been developed to address this
problem, and renormalisation techniques have made perturbative QFT a great suc-
cess, with stunningly accurate predictions. However, success has been more limited
on the mathematical formulation of the underlying theory, to which the renormalised
perturbation series should provide an asymptotic approximation.

One of the main problems in QFT is the ultraviolet problem. It stems from the fact
that particles are modelled as point-like, and consequently their interactions usually
involve distributions whose local singularities lead to divergences in the ultraviolet, i.e.
for large values of the Fourier variable. If one wants to see the interacting Hamiltonian
as a modification (perturbation) of the non-interacting one, this means that it is
certainly a singular perturbation.

A common approach to this problem is via renormalisation: one considers the Hamil-
tonian with a regularised interaction and tries to prove existence of a limiting object
as the regularisation is removed, possibly up to subtraction of a divergent energy or
modification (renormalisation) of other parameters in the model.

A different idea is to implement the singularities of the interaction by special bound-
ary conditions. To understand this, consider a model in which a particle in Rd interacts
with a field, represented by an arbitrary number of bosons. The configuration space
of the model is

K =
∞⋃
n=0

Rd × Rdn/Sn, (4.1)

where points obtained by permuting the coordinates of the n bosons are identified.
Assume we know the Hamiltonian H0, D(H0) of the non-interacting theory, which is
a self-adjoint operator on the natural Hilbert space L2(Rd) ⊗ Γ(L2(Rd)) ∼= L2(K). We
would like to define a Hamiltonian with interaction, of the form

H = H0 +Hint. (4.2)
The basic building blocks of the relevant interactions are the creation and annihilation
operators a∗, a. In a simple case, which we consider in detail in Section 4.2,

Hint = a(vx) + a∗(vx), (4.3)
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4.1 Singular perturbations and self-adjoint extensions

where a∗(vx) acts (with a form-factor v ∈ L2(Rd)) by taking the tensor product with
v and projecting to symmetric tensors

a∗(vx)ψ(n) =
√
nPsymv(x− ·) ⊗ ψ(n). (4.4)

However, in practice, v is often a singular function or distribution. The formula above
does not yield a densely defined operator in this case, since the multiplication by v
creates a singularity. These typically lie on the set of collision configurations of the
particle and the bosons

C =
{

(x, y1, . . . , yn) ∈ K :
n∏
j=1

|x− yj | = 0
}
. (4.5)

The idea is now to view C as the boundary of configuration space K and impose con-
ditions on the asymptotic behaviour of functions in D(H) there, so that singularities
created by application of H0 (extended in a distributional sense) and Hint cancel. In
this case the sum H0 +Hint may be (densely) defined, even though Hint alone is not.
These boundary conditions will relate the behaviour of the wave-function at some
points on C, the boundary, with its values at the point where the variables yj with
yj = x are eliminated, an interior point. For this reason, these boundary conditions
were called interior boundary conditions (IBCs) in [40, 41].

Landau and Peierls proposed a (simplified) formulation of quantum electrodynamics
in the particle-position representation [26], which includes constraints that integrate to
IBCs [44]. Similar ideas have since reappeared sporadically, and often independently,
in the literature [30, 29, 31, 42, 32, 45, 15, 37, 38, 43, 27].

In the following sections I will summarise the results of the articles [25, 24, 18, 20,
4, 21, 22, 23] that systematically investigate this idea in the context of non-relativistic
quantum field theory.

4.1 Singular perturbations and self-adjoint extensions
From the point of view of functional analysis, the approach by IBCs means that we
are looking for a suitable domain D(H) for the Hamiltonian including the interaction.
This is necessarily different from the domain D(H0) of free Hamiltonian. In the case
of ordinary boundary conditions, say for the Laplacian on some domain Ω ⊂ Rd, one
may proceed as follows. First, one considers a restriction H̊0 of H0 to functions that
avoid the singularities (the boundary). Then, one obtains an extension of H0 by taking
the adjoint, H0 ⊂ H̊∗

0 . Different boundary conditions can now be imposed on H̊∗
0 to

obtain a self-adjoint operator. Indeed, boundary conditions classify the self-adjoint
extensions of H̊0. The abstract structure is similar in the case of interior boundary
conditions, though the difference between H and H0 consists not only of boundary
conditions, but also has an additive, regular part.
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4 Interior boundary conditions

It has been known for a long time that extension theory can be used to define singular
perturbations, for example the perturbation of the Laplacian by a δ-“potential” in R3.
In this case, the result coincides with that obtained by a renormalisation procedure [16,
1]. One may thus view IBCs as a generalisation of this approach to models from
quantum field theory.

4.1.1 The minimal example

The general ideas we have discussed are best illustrated in a concrete and simple
model, studied independently by Yafaev and Moshinsky [45, 30, 29, 31]. In this model,
a particle, whose position is fixed at x = 0 ∈ R3 can create and annihilate a single
boson at the origin. The relevant Hilbert space is thus H = C ⊕ L2(R3), where the
second summand corresponds to having one boson, and the first to no bosons (i.e.,
C = L2({0})). We take the free evolution of the boson to be generated by minus the
Laplacian. Since creation and annihilation is supposed to take place only at x = 0,
the formal expression for the Hamiltonian should naturally be(

0 δ0
δ∗

0 −∆

)
. (4.6)

Here, δ0 is the Dirac distribution in x = 0, i.e., δ0(f) = f(0). The expression is not
densely defined as δ0 is not closable and thus δ∗

0 is not densely defined.
The non-interacting Hamiltonian is given by

H0(z, ψ) = (0,−∆ψ), D(H0) = C ⊕H2(R3). (4.7)

We restrict H0 to functions that avoid the singularity at x = 0, setting (this is exactly
the kernel of δ0 : C ⊕H2 → H)

D(H̊0) = C ⊕H2
0 (R3), H̊0 = H0|D(H̊0). (4.8)

The domain of the extension H̊∗
0 is easy to determine in this case. It is given by

D(H̊∗
0 ) = D(H0) ⊕ ker(H̊∗

0 + 1) = D(H0) ⊕ span(0, g), (4.9)

where

g(x) = − e−|x|

4π|x|
. (4.10)

Note that, in the sense of distributions,

−∆g = −g − δ0. (4.11)
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4.1 Singular perturbations and self-adjoint extensions

The singular set, i.e., the boundary, is the position of the particle x = 0. To
determine the relevant boundary values, it is instructive to perform an integration by
parts. For rapidly decreasing φ,ψ differentiable in R3 \ {0} we have∫

φ̄(x)(−∆ψ)(x)dx =
∫ ∞

0

∫
S2
rφ̄(rω) r(−∂2

r + 2
r∂r)ψ(rω))︸ ︷︷ ︸

=−∂2
r rψ

dωdr

=
∫

(−∆φ̄(x))ψ(x)dx+ lim
r→0

∫
S2

(rφ̄(rω))∂rrψ(rω)dω

− lim
r→0

∫
S2

(∂rrφ̄(rω))rψ(rω)dω. (4.12)

For functions of the form ψ = φ+ cg, φ ∈ H2(R3), we have

lim
r→0

r(φ(rω) + cg(r)) = − c

4π , (4.13)

and

lim
r→0

∫
S2
∂r(r(φ(rω) + cg(r))dω = 4πφ(0) + c. (4.14)

The relevant boundary values of (z, ψ) = (z, φ+ cg) ∈ D(H∗
0 ) are thus

• the value of the regular part φ ∈ H2(R3) at x = 0,

• the coefficient c of g,

• the value of z (this corresponds to the value of the wave function of the particle
with no boson at the origin, the boundary).

Relating φ(0) and c in such a way as to make H̊∗
0 symmetric gives rise to the self-

adjoint operators that describe a boson interacting with the particle at the origin with
a point interaction [16, 1]. The boson is never created or annihilated, and these do not
correspond to the expression (4.6). If we apply (4.6) to a vector of the form (z, φ+cg),
we obtain

(φ(0) + cδ0(g),−∆φ− cg − cδ0 + zδ0). (4.15)

An obvious choice to make the second part an element of L2(R3) is to take c = z,
which corresponds to the boundary condition on (z, ψ)

Bψ := −4π lim
r→0

rψ(rω) = z. (4.16)

With this choice we obtain

(φ(0) + zδ0(g),−∆φ− zg︸ ︷︷ ︸
=H̊∗

0ψ

). (4.17)
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4 Interior boundary conditions

Now g diverges at x = 0 so δ0(g) is not defined, and it might seem that we have not
gained much. However, the formula (4.14) provides a natural extension of δ0 to the
relevant functions, i.e,

Aψ := 1
4π lim

r→0

∫
S2
∂rrψ(rω)dω. (4.18)

Then we may define

D(H) :=
{

(z, ψ) ∈ D(H̊∗
0 )
∣∣∣Bψ = z

}
,

H(z, ψ) := H̊∗
0ψ +Aψ.

(4.19)

This is clearly well defined and, by our earlier calculations, corresponds to the formal
expression (4.6) up to the choice of extension A.

The formula for H can be re-expressed in a more manifestly symmetric way. Define
a bounded operator by

G : C → H, z 7→ zg. (4.20)

Then ψ −Gz = φ is the regular part of the wave-function, and

D(H) =
{

(z, ψ) ∈ H
∣∣∣ψ −Gz ∈ H2(R3)

}
. (4.21)

Moreover, since (H̊∗
0 + 1)G = 0, we have for (z, ψ) ∈ D(H)

(H̊∗
0 + 1)ψ = (H̊∗

0 + 1)(ψ −Gz) = (−∆ + 1)(ψ −Gz). (4.22)

For φ ∈ H2(R3) it holds

z̄G∗(−∆ + 1)φ = ⟨Gz, (−∆ + 1)φ⟩ = z̄⟨(−∆ + 1)G︸ ︷︷ ︸
=−δ0

, φ⟩ = −z̄φ(0), (4.23)

so for (z, ψ) ∈ D(H)

−G∗(−∆ + 1)(ψ −Gz) = Aψ − z

4π (4.24)

If we interpret G as the operator on H given by G(z, ψ) = (0, zg) and use the additive
notation (z, ψ) = z + ψ ∈ C ⊕ L2(R3), we can thus write

H(z + ψ) = (H∗
0 + 1)(z + ψ) +Aψ − z − ψ

= (1 −G∗)(H0 + 1)(1 −G)(z + ψ) + z

4π − z − ψ. (4.25)

With this representation we can easily prove self-adjointness of H.
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4.1 Singular perturbations and self-adjoint extensions

Proposition 4.1. The operator H, D(H) defined by (4.19) is self-adjoint.

Proof. Since G2 = 0, 1 − G is invertible with bounded inverse (1 − G)−1 = 1 + G.
Hence (1−G)∗(H0 +1)(1−G) with domain D(H) is a symmetric, invertible operator,
whence self-adjoint. By (4.25), H is the perturbation of this self-adjoint operator by
a bounded operator, and thus self-adjoint.

The self-adjoint operator constructed in this way can also be obtained by a renor-
malisation procedure. If one replaces the distribution δ0 by the regularisation with
Fourier transform v̂Λ(k) = (2π)−3/21|k|≤Λ, the operators

HΛ =
(

0 ⟨vΛ
vλ −∆

)
(4.26)

are self-adjoint with domain D(HΛ) = C⊕H2(R3). With GΛ(z, ψ) = (0, z(∆−1)−1vΛ)
they can be written as

HΛ + 1 = (1 −G∗
Λ)(H0 + 1)(1 −GΛ) −G∗

Λ(H0 + 1)GΛ. (4.27)

One can check that the first part converges to (1 − G∗)(H0 + 1)(1 − G) in norm-
resolvent sense. The operator G∗

Λ(H0 + 1)GΛ acts only on the sector with no particle.
It evaluates to the multiplication by

−G∗
Λ(H0 + 1)GΛ = −⟨vΛ, (1 − ∆)vΛ⟩ = − 1

(2π)3

∫
|k|≤Λ

1
k2 + 1dk ∼ − Λ

2π2 . (4.28)

Hence, after adjusting the Hamiltonian on the sector with no particles, i.e., the energy
of the vacuum, by a divergent family EΛ, the Hamiltonians HΛ − EΛP1 converges in
norm-resolvent sense to H from Proposition 4.1, where P1 is the projection to the first
summand in C ⊕ L2(R3). The divergence of EΛ is given by (4.28), while the precise
asymptotics are fixed by the choice of extension A of δ0 used in the defintion of H.

4.1.2 Van Hove Hamiltonians

If we consider the above model without the restriction that there be at most one boson,
the formal expression for the Hamiltonian is

dΓ(−∆ + E0) + a(δ0) + a∗(δ0), (4.29)

where we introduced the rest-energy of the bosons E0 ≥ 0. Such Hamiltonians are
known as (singular) van Hove Hamiltonians [6]. In the article [25] we investigated the
domain of a well-defined version of this formal expression and showed that it is given
in terms of IBCs. This is a natural generalisation of the considerations above to an
arbitrary number of bosons.
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4 Interior boundary conditions

Let H := Γ(L2(R3)) be the Fock space and H0 = dΓ(−∆ + E0). Define H̊0 as the
restriction of this to the kernel of a(δ0) (which is well-defined on D(H0)). To better
understand this, fix n ∈ N and let C(n) be the collision configurations of n bosons with
the particle at the origin, i.e.,

C(n) =
{
x ∈ R3n

∣∣∣ n∏
j=1

|xj | = 0
}
. (4.30)

On H(n), H̊0 acts (up to the constant nE0) as the restriction of minus the Laplacian
on R3n to functions vanishing on C(n). Denote this operator by ∆n, i.e.,

D(∆n) =
{
ψ ∈ L2(R3)⊗sn

∣∣∣ψ ∈ H2(R3n), ψ|C(n) = 0
}
, ∆nψ = ∆ψ. (4.31)

The boundary values have to be imposed on the extension of the Laplacian given by
∆∗
n and link the function with n bosons to the one with n− 1 bosons. The expressions

for the boundary values analogous to (4.16), (4.18) are

Aψ(n)(x1, . . . , xn−1) =
√
n

4π lim
r→0

∂r

∫
S2
rψ(n)(rω, x1, . . . , xn−1)dω (4.32)

Bψ(n)(x1, . . . , xn−1) = −4π
√
n lim
r→0

rψ(n)(rω, x1, . . . , xn−1). (4.33)

One now encounters a difficulty that is familiar from the theory of boundary conditions
for the Laplacian on Ω ⊂ Rd. While in one dimension the boundary consists of
points and both Neumann- and Dirichlet boundary values are merely numbers, in
higher dimensions the boundary values can be functions, and even distributions, on
the boundary. In general the Dirichlet values are elements of H−1/2(∂Ω) while the
Neumann values are merely in H−3/2(∂Ω) (these spaces are natural, since they are
dual to the ranges of the trace maps on H2(Ω), so they are the maximal spaces on
which Green’s identity can hold). Similarly, our boundary values are now distributions
on the boundary, the space with one fewer boson.

One can indeed show that the limits in (4.32), (4.33) exist for ψ(n) ∈ D(∆∗
n) in an

appropriate distributional sense (see [25, Lemma 5.2]). The IBC Bψ(n) = ψ(n−1) is
then well-defined.

We define

D(H) =
{

Ψ ∈ D(H̊∗
0 )
∣∣∣BΨ = Ψ, AΨ ∈ H

}
HΨ = H̊∗

0 Ψ +AΨ.
(4.34)

The main result on this operator is:

Theorem 4.2. The operator defined by (4.34) is self-adjoint if E0 > 0 and essentially
self-adjoint if E0 = 0. It holds that D(H) ∩D

(
dΓ((−∆)1/2))

)
= {0}.
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4.1 Singular perturbations and self-adjoint extensions

The fact that one only has essential self-adjointness for E0 = 0 is related to a lack
of control for large n. The property D(H) ∩D

(
dΓ((−∆)1/2))

)
= {0} shows that H is

a singular perturbation of H0. In particular, it is not a perturbation in the sense of
quadratic forms.

Van Hove type Hamiltonians with regular interactions, i.e.,

Hv = dΓ(−∆ + E0) + a(v) + a∗(v) (4.35)

with v ∈ L2(R3), are unitarily equivalent (for E0 > 0) to H0 + E with

E = −
∫
R3

|v̂(k)|2
k2 + E0

dk (4.36)

via a Weyl transformation. This can be used to define a renormalised version of the
singular Hamiltonian (4.29) by taking a sequence vn ∈ L2 that converges to δ0 in the
sense of distributions, e.g., setting v̂n(k) = (2π)−3/21|k|≤n. The sequence of numbers
En then diverges, but one can show that Hvn −En converges to a self-adjoint operator
Hren in strong resolvent sense [6]. This renormalised operator coincides with the one
constructed in Theorem 4.2 up to a constant:

Theorem 4.3. Let E0 > 0 and H be the self-adjoint operator given by (4.34). Then

H = Hren +
√
E0

4π . (4.37)

4.1.3 An abstract setting and a classification result

One can take a more abstract view of the discussion in the previous sections, which is
explored in [4]. In these sections, we worked with the following data:

• A Hilbert space H;

• A self-adjoint reference operator H0, D(H0) ⊂ H;

• A restriction and an extension H̊0 ⊂ H0 ⊂ H̊∗
0 ;

• Two boundary operators A,B defined on D(H̊∗
0 );

These objects were related by the properties that H0 = H̊∗
0 |ker(B) and H̊0 = H0|ker(A),

so H̊0 is the “minimal” operator, for which all boundary values vanish. From these
objects, we constructed a self-adjoint operator H, D(H) that contains A as an additive
perturbation. But this really maps to the space of boundary values, so to formalise
this properly we need additionally

• A Hilbert space ∂H (∂H = C for Section 4.1.1 and ∂H = H for Section 4.1.2);
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4 Interior boundary conditions

• A bounded operator I : ∂H → H (the inclusion C → C⊕L2(R3) for Section 4.1.1
and I = 1Γ(L2(R3)) for Section 4.1.2).

With the appropriate choices for these objects, we can write the operator H for both
cases as

D(H) =
{

Ψ ∈ D(H̊∗
0 )
∣∣∣BΨ = I∗Ψ, AΨ ∈ ∂H

}
HΨ = H̊∗

0 Ψ + IAΨ.
(4.38)

In this setting, one can consider Robin-type boundary conditions of the form

αAΨ + βBΨ = I∗Ψ, (4.39)

say for α, β ∈ R (more generally these could also be operators). It is then natural to
also include both boundary operators in the Hamiltonian as

H = H̊∗
0 + γIA+ δIB. (4.40)

It is, in general, necessary to include these terms to obtain a symmetric operator, i.e.
H is symmetric subject to the Robin condition (4.39) if βγ − αδ = 1. Note that for
I = 0, which we did not exclude, we are in the familiar situation of (generalised) Robin
conditions that has been studied extensively [2]. The specificity of interior boundary
conditions is that I ̸= 0. Indeed, in both cases studied so far I is injective so the
condition BΨ = I∗Ψ relates boundary values to the part II∗Ψ of the data in H and
IA is a non-trivial term in the operator.

These general operators are studied in [4]. An important role therein is played by
two families of operators indexed by z ∈ ρ(H0). The abstract Dirichlet operator

Gz := (A(z −H0)−1)∗, (4.41)

describes the extension H0 ⊂ H̊∗
0 using solutions to the inhomogeneous equation

(H̊∗
0 − z)Ψ = 0, BΨ = Φ, (4.42)

and was already introduced in Section 4.1.1. The “Dirichlet to Neumann” operator

Tz := AGz. (4.43)

fixes the extension of A = a(δ0) from D(H0) to D(A) ⊂ D(H̊∗
0 ).

Note that the operator H is not a self-adjoint extension of H̊0 if I ̸= 0, since the
conditions BΨ = AΨ = 0 and BΨ = I∗Ψ defining the operators are not compatible (on
a dense set). In order to use the theory of self-adjoint extensions to classify boundary
conditions such as (4.39), it is natural to consider the stronger condition

AΨ = BΨ = (α+ β)−1I∗Ψ. (4.44)
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4.1 Singular perturbations and self-adjoint extensions

With this condition on Ψ, the action of the operator (4.40) can be written as

HΨ = H̊∗
0 + (γ + δ)(α+ β)−1II∗. (4.45)

Hence all the operators with α + β = const. and γ + δ = const. are extensions of one
symmetric operator. Let thus α+ β = 1 = γ + δ and define

D(H̊) =
{

Ψ ∈ D(H̊∗
0 ) : AΨ = BΨ = I∗Ψ

}
H̊ = H̊∗

0 + (γ + δ)(α+ β)−1II∗.
(4.46)

Informally, the results of [4] state that the “maximal operator” H̊∗ and the corre-
sponding boundary operators B − I∗, A− I∗ enjoy very similar properties to the case
I = 0. More precisely, (∂H, B − I∗, A− I∗) form a quasi-boundary triple for H̊∗ and
one can apply general results for such structures [3, 2].

To be precise, let us assume that the families Gz and Tz satisfy the following hy-
pothesis (that can be slightly weakened):

i) The unbounded operator ITzI∗ on H is relatively bounded with respect to (1 −
Gz̄I

∗)∗(H0 − z)(1 −GzI
∗) with bound a < 1.

ii) The bounded operator 1 − I∗Gz is invertible on ∂H and leaves D(Tz) invariant.

By an argument similar to the one of Section 4.1.1, these hypothesis guarantee that
H0,1 (the extension of H̊ with boundary condition BΨ = I∗Ψ and γ = 1, δ = 0) is
self-adjoint (see [4, Thm.3.12] and also Section 4.2.1).

Theorem 4.4. Assume the hypothesis i) and ii) and let R be a symmetric relation
on ∂H. Then

D(HR) =
{

Ψ ∈ D(H̊∗) :
(
(B − I∗)Ψ, (A− I∗)Ψ

)
∈ R

}
HR = H̊∗|D(HR)

(4.47)

is symmetric.

The action of HR will explicitly contain boundary terms. Indeed, using the gener-
alisation of Green’s identity (see [4, Lem.3.3])

⟨H̊∗
0 Φ,Ψ⟩H − ⟨Φ, H̊∗

0 Ψ⟩H = ⟨BΦ, AΨ⟩∂H − ⟨AΦ, BΨ⟩∂H, (4.48)

together with the conditions BΨ = I∗Ψ = AΨ on D(H̊), we find the expression

H̊∗ = H̊∗
0 − IB + IA+ II∗. (4.49)

This can then be simplified using the relation R, e.g., for R = 0⊕∂H we recover H0,1.
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4 Interior boundary conditions

The pre-fix “quasi” to the boundary triple relates to the fact that ∂H may not be the
“full” space of boundary values. In order to classify self-adjoint extensions, we need to
take into account the maximal space of boundary values ∂H ⊂ G′. This comes a space
of regular boundary values G ⊂ ∂H and an isometry ι : ∂H → G′ (for the Laplacian on
a domain with ∂H = L2(∂Ω), these are H1/2(∂Ω) ⊂ L2(∂Ω) ⊂ H−1/2(∂Ω), the space
of Neumann values on the domain of the Dirichlet operator and its dual). Let Sz be
the family of Dirichlet-to-Neumann operators, associated with (∂H, B − I∗, A− I∗).

Theorem 4.5. Assume the hypothesis i), ii) and additionally that D(H̊) is dense.
Let HR be as above and λ ∈ R be in the resolvent set of H0,1. Then HR is self-adjoint
if and only if ι(R − Sλ)ι defines a self-adjoint relation and ιD(R) ⊂ D(Sλ).

Here, the adjoint of a relation is defined exactly like the adjoint of the relation
(Ψ, OΨ) for an operator O, D(O), and the domain of a relation is simply the projec-
tion to the first component. The adjoint relation is always well defined, and in this
sense the hypothesis that D(H̊) is dense is not needed for the symmetry statement of
Theorem 4.4.

Every self-adjoint extension of H̊ gives rise to some boundary relation. If we consider
only extensions with with regular boundary values, i.e., for which (B − I∗)Ψ ∈ ∂H,
(A − I∗)Ψ ∈ ∂H, the statement gives a complete classification if R ∩ ρ(H0,1) ̸= ∅.
The latter holds under the additional hypothesis that H0 is bounded from below. In
the case where ι(R − Sλ)ι is given by the graph of an invertible operator, we have
λ ∈ ρ(HR) and obtain a formula relating the resolvents of H0,1 and HR in λ.

Example 4.6. For the minimal example of Section 4.1.1, the elements of D(H̊∗
0 ) are

of the form Ψ = (z, φ+ cg) with z ∈ C, φ ∈ H2(R3) and g(x) = −e−|x|/(4π|x|). The
conditions BΨ = I∗Ψ = AΨ mean that

c = z, φ(0) + c

4π = z, (4.50)

where the second condition simplifies to φ(0) = z(1 − (4π)−1) using the first. These
two conditions define the (dense) domain of

H̊ = H̊∗
0 + II∗, (4.51)

where II∗ is the projection to the first summand in C⊕L2(R3). As dim(∂H) = 1, the
self-adjoint extensions of this symmetric operator are parameterised by the symmetric
relations on C, i.e. they are given by boundary conditions of the form

a(A− I∗)Ψ + b(B − I∗)Ψ = 0 ⇔ a

a+ b
AΨ + b

a+ b
BΨ = IΨ, (4.52)

with [a : b] ∈ RP1 ∼= S1. Changing the sum of the parameters in the second equation
amounts to changing I or the coupling constant of the model and leads to a different
family of self-adjoint operators that do not extend H̊.
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In this example, all technical hypothesis are trivially satisfied since dim(∂H) = 1.
They are non-trivially satisfied for some of the models we introduce in the next section,
but not for the model from Section 4.1.2 with the canonical choice of H0 (we will
explain this in more detail in Section 4.2.3).

4.2 Polaron models in non-relativistic quantum field
theory

Polaron models arise frequently in the physics of condensed matter. The general idea
is that small local perturbations of a system in equilibrium can be described by a
bosonic field of elementary excitations. An impurity in the system will be influenced
by the bulk properties of the system, which are not affected by its presence. It will
also interact with the excitation field, and vice versa. The nature of this interaction
will be reflected, for example, in the transport properties of the medium.

For example, local distortions of an ionic crystal can be modelled by a polarisation
field. An electron moving through the medium will deform the lattice in its vicinity,
and also experience a force due to any existing polarisation. Assuming that the wave-
function varies slowly on the scale of the lattice, one is led to consider a continuum
model with Hamiltonian

Ω(i∇x) + dΓ(ω(i∇))︸ ︷︷ ︸
=H0

+a(vx) + a∗(vx), (4.53)

where Ω is the effective dispersion of the electron, ω that of the polarisation waves,
and v is the interaction potential between the two. These quantities are determined
by the bulk properties of the crystal. In this specific example, the model is known as
Fröhlich’s large polaron model [7]. Similar models are now considered in a multitude
of situations. Whenever the excitation field is a scalar, the expression (4.53) is the
most simple and natural form of a Hamiltonian. An example of particular interest to
us will be the Bogoliubov-Fröhlich model of an atom interacting with excitations out
of a bulk Bose-Einstein condensate.

In the upcoming sections we will discuss the construction of self-adjoint operators
corresponding to the formal expression (4.53) in the presence of ultraviolet singularities
following [24, 18, 20, 22]. We will mostly focus on the main examples that are the
Fröhlich polaron, the Nelson model, and the Bogoliubov-Fröhlich model. We will
restrict to the case of a single particle for simplicity, though the articles [24, 18] allow
for an arbitrary number.

To obtain a heuristic understanding of the problem, it is instructive to consider the
(essentially) homogeneous case

v̂(k) = |k|−α, ω(k) = (m2/β + k2)β/2, Ω(p) = |p|γ , (4.54)
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with 0 ≤ α < d/2, β, γ,m > 0 (it is really sufficient to have upper/lower bounds
by these functions). The ultraviolet problem concerns the behaviour of the model at
short distances. This corresponds to the behaviour for large λ after a unitary rescaling
induced by f(x) 7→ λ−d/2f(x/λ). The rescaled Hamiltonian has the form

Hλ = λγΩ(i∇x) + λβdΓ(ωλ(i∇)) + λd/2−αHint, (4.55)

with ωλ(k) = (m2/βλ−2 + k2)β/2. For d/2 − α < 0 the Hamiltonian does not have
an ultraviolet singularity, but an infrared (long distance) singularity. We may observe
that for sub-critical scaling,

d/2 − α < max{γ, β}, (4.56)

the growth of the interaction is small relative to that of the free part as λ → ∞. We
may thus expect that the problem can be treated perturbatively, in some sense. In
the language of theoretical physics one would call such models super-renormalisable.

Taking β = γ for simplicity, we have the following picture:

1) We have v̂(Ω + ω)−1/2 ∈ L2(Rd) if

d− 2α < γ, (4.57)

and the interaction defines a quadratic form on D(H1/2
0 ). We explain how to con-

struct the self-adjoint operator associated with the sum of the forms following [24]
in Section 4.2.1.

2) We have v̂(Ω + ω)−1 ∈ L2(Rd) if

d− 2α < 2γ. (4.58)

The map a(vx) : D(H0) → H is continuous, so H̊0 = H0|ker(a(vx)) is a closed,
symmetric operator. We can thus hope to construct H by IBCs on D(H̊∗

0 ). For
d−2α < 3γ/2 the operator obtained in this way coincides with known renormalised
versions of H, as we will explain in Section 4.2.2. In Section 4.2.3 we generalise
this construction to models with 3γ/2 < d−2α < 2γ, for which no renormalisation
procedure was previously known.

3) The interaction is (super-) critical, vΩ−1 /∈ L2(Rd), for

2α+ γ ≤ d, (4.59)

and it is not clear if H can be constructed. One may expect that H̊0 is essentially
self-adjoint and thus the extension H0 ⊂ H̊∗

0 is trivial (as for −∆|H2
0 (Rd\{0}) in

d ≥ 4).
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4.2.1 Quadratic forms and the Fröhlich polaron

The Fröhlich Polaron models the interaction of one (or several) electrons with phonons
in a solid. The Hamiltonian is of the general form (4.53) with Ω(i∇) = −∆, ω ≡ 1
and v̂(k) = (4π|k|)−1, i.e., we have

H0 = −∆x + N , Hint = a∗(|x− ·|−2) + a(|x− ·|−2). (4.60)

In this section we characterise the domain of H in terms of IBCs and give a short proof
of self-adjointness. This can easily be generalised to the general Hamiltonian (4.53)
with 2α+ γ > d, β ≥ 0, m > 0 (see [24] for a proof in the case γ = 2).

The only necessary technical ingredient is the inequality

∥a(vx)H−1/2
0 Ψ∥H ≤ C∥(N + 1)1/4Ψ∥H, (4.61)

which easily follows from the Cauchy-Schwartz inequality in Fourier representation.
With this, we know that the quadratic form corresponding to H

Q(Ψ,Ψ) = ⟨Ψ, H0Ψ⟩ + 2Re⟨Ψ, a(vx)Ψ⟩ (4.62)

is well defined on D(Q) = D(H1/2
0 ). The form of the interaction is bounded relative

to the free one. However, the relative bound is not necessarily less than one, so this
does not immediately yield existence of a self-adjoint realisation H. This problem can
be solved in a variety of ways (cf. [11]). We present here a solution based on IBCs
that is rather simple and also illustrates well the structure of the arguments we use
for more singular models in the upcoming sections.

In order to construct the self-adjoint operator H with quadratic form Q, we do not
need to go through the full programme of restricting H0 to the kernel of a(vx) and
taking the adjoint H̊∗

0 . It is sufficient to parametrise directly a smaller extension that
allows us to impose the boundary conditions.

Let Gz, z ∈ ρ(H0), be the family of abstract Dirchlet operators (cf. 4.1.3), i.e.,

Gz =
(
a(vx)(z −H0)−1)∗ (4.63)

and denote G := G−1. As an extended domain we consider

D = D(H0) ⊕GH. (4.64)

We define the boundary operator B by BD(H0) = 0 and BG = 1, so the condition
BΨ = Ψ is equivalent to (1 −G)Ψ ∈ D(H0).

Theorem 4.7. Define H by

D(H) =
{

Ψ ∈ D(H0) ⊕GH
∣∣∣(1 −G)Ψ ∈ D(H0)

}
H = (1 −G)∗(H0 + 1)(1 −G) − a(vx)(1 +H0)−1a∗(vx) − 1.

(4.65)
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Then H is self-adjoint, D(H1/2) ⊂ D(H1/2
0 ), and for all Ψ ∈ D(H)

⟨Ψ, HΨ⟩ = Q(Ψ,Ψ). (4.66)

Sketch of the proof. From (4.61) one obtains that G is bounded and that ∑∞
k=0G

k

converges in the strong operator topology. Hence (1 − G) is invertible with bounded
inverse. This implies that D(H) is dense and

K = (1 −G)∗(H0 + 1)(1 −G) (4.67)

is invertible, in particular self-adjoint. Also from (4.61), we see that the “Dirichlet to
Neumann” operator

T = a(vx)G = −a(vx)(H0 + 1)−1a∗(vx) (4.68)

is N 1/2-bounded. Since (1 −G)−1 is also bounded on D(N ) (by the same argument)
and H0 ≥ N , this implies that T is infinitesimally K-bounded, so H is self-adjoint
and D(N ) ⊂ D(H).

We have D(H1/2) ⊂ D(H1/2
0 ) since by (4.61) G maps D(N 1/2) ⊂ D(H1/2) to

D(H1/2
0 ). The equality of the forms then follows by expanding K, which yields

H = H0 −G∗(H0 + 1)︸ ︷︷ ︸
=−a(vx)

− (H0 + 1)G︸ ︷︷ ︸
=−a∗(vx)

+G∗(H0 + 1)G︸ ︷︷ ︸
=−T

+T = H0 +a(vx)+a∗(vx). (4.69)

Remark 4.8. Note that in the proof of Theorem 4.7 we have essentially just verified
that T and G satisfy the technical hypothesis i), ii) from Section 4.1.3. In particular
this shows that these hypothesis indeed imply self-adjointness, and after proving self-
adjointness of H in this way we immediately obtain the large family of symmetric
operators given in Theorem 4.4. For certain sub-classes of this family one can prove
self-adjointness using that T ≤ 0 (compare [4, Sect.5], where local Robin conditions
for a model in the same regularity class as the Fröhlich model are treated).

4.2.2 The Nelson model

In this section we discuss the construction of the Nelson model using IBCs and the
appropriate class to which this construction generalises. The Nelson model is of the
form (4.53) with Ω(p) = p2, ω(k) =

√
k2 +m2 and v̂ = ω−1/2. We thus have 2α+γ = 3,

which equals d for the most interesting case.
In [33] Nelson showed that this model can be renormalised in the following sense:

Let

HΛ := −∆x + dΓ(ω) + a∗(vΛ,x) + a(vΛ,x) (4.70)

46



4.2 Polaron models in non-relativistic quantum field theory

with the regularised interaction v̂Λ(k) = ω(k)−1/21|k|≤Λ. Let also

EΛ = −
∫

|k|≤Λ

dk
ω(k)(k2 + ω(k)) (4.71)

and note that EΛ ∼ e log Λ as Λ → ∞. Then HΛ − EΛ converges in strong resolvent
sense to a self-adjoint operator which we call Hren (in fact, convergence holds in norm,
see [12]). This shows that the model is truly singular and provides a construction for
an operator that corresponds to the formal expression (4.53).

However, the operator Hren is not very explicit, and Nelson put forward the problem
of finding a direct description of Hren and its domain, as well as determining whether
D(Hren) ∩ D(H1/2

0 ) = {0}. Such a description is provided by IBCs, and it is then
straightforward to prove that indeed D(Hren) ∩ D(H1/2

0 ) = {0} (see also [12] for
a proof based on Nelson’s construction). Moreover, the method lends itself to the
generalisation for differential operators with non-constant coefficients, such as the
Laplacian of a Riemannian manifold. This generalisation was carried out for the
Nelson model in the master’s thesis [17] (see [9] for a construction inspired by Nelson’s
method).

We start the construction as in the previous section by setting

G = −
(
a(vx)(H0 + 1)−1)∗, (4.72)

where H0 = −∆x+ dΓ(ω). One can check that G is bounded. The boundary operator
B is again defined as the left inverse of of G, and the natural domain for H is

DIBC =
{

Ψ ∈ D(H0) ⊕GH
∣∣∣(1 −G)Ψ ∈ D(H0)

}
. (4.73)

However, we are now faced with the problem that A = a(vx) does not extend in a
straightforward way to the range of G. We already encountered this problem in the
minimal example of Section 4.1.1. There, we found a natural formula providing such an
extension from an integration by parts. Here, the extension will be fixed in a way that
ensures compatibility with Nelson’s renormalisation procedure. This is naturally for-
mulated in Fourier space, but after a Fourier transform still corresponds to expanding
functions in the range of G near the singular set of collision configurations between the
bosons and the particle (the singularities are of the form F(k2 +ω)−1ω−1/2 ∼ |x|−1/2,
in this case).

An extension of A to the range of G is determined by specifying the, possibly
unbounded, operator T = AG. A priori, we can just choose for T any symmetric
operator, but this might not correspond to the model we wish to construct. To single
out a choice of T , consider the regularised model, where

TΛ = −a(vΛ,x)(H0 + 1)−1a(vΛ,x)∗ ∈ B(H). (4.74)
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In Fourier representation we can write

TΛ = −
∫

|k|≤Λ

∫
|ℓ|≤Λ

ek∇pak
v̂(k)v̂(ℓ)

p2 + dΓ(ω) + 1a
∗
ℓe−ℓ∇p dkdℓ, (4.75)

where ek∇p is the translation group in p, the dual variable to x. Rearranging terms
and putting ak, a∗

ℓ into normal order, we obtain

TΛ = −
∫

|k|≤Λ

∫
|ℓ|≤Λ

v̂(k)v̂(ℓ)
(p− k)2 + ω(k) + dΓ(ω) + 1aka

∗
ℓe(k−ℓ)∇pdkdℓ

= −
∫

|k|≤Λ

v̂(k)2

(p− k)2 + ω(k) + dΓ(ω) + 1dk (4.76)

−
∫

|k|≤Λ

∫
|ℓ|≤Λ

a∗
ℓ

v̂(k)v̂(ℓ)
(p− k)2 + ω(k) + ω(ℓ) + dΓ(ω) + 1ake

(k−ℓ)∇pdkdℓ. (4.77)

Note that the integral in (4.76) diverges for Λ → ∞ in the same way as EΛ above,
which is essentially the value of the integral at p = 0 and restricted to the zero-boson
space. After subtracting this number, the integral becomes convergent also for Λ = ∞.
We thus set for Λ ∈ R+ ∪ {∞}

ΘΛ,0 = −
∫

|k|≤Λ

(
v̂(k)2

(p− k)2 + ω(k) + dΓ(ω) + 1 − v̂(k)2

k2 + ω(k)

)
dk. (4.78)

One can also show that the expression (4.77) makes sense as an unbounded operator
when Λ = ∞, since the integral can be made convergent by using decay of akΨ in k.
Denote this operator by ΘΛ,1, Λ ∈ R+ ∪ {∞}.

Note that under scaling as in (4.55), Θ∞,0, Θ∞,1 behave as λd−2α−γ = λ0 (formally,
each a, a∗ contributes λd/2−α and H−1

0 contributes λ−γ), which corresponds to the
(logarithmic) growth of EΛ. We thus expect these operators to be (almost) bounded,
which is made precise by the following key Lemma (compare [24, Sect.3], [21, Sect.A]):

Lemma 4.9. For 0 < ε ≤ 1/2 there exists C > 0 so that for all Ψ ∈ D(Hε
0) ∩D(N )

the inequalities

∥Θ∞,0Ψ∥ ≤ C∥Hε
0Ψ∥

∥Θ∞,1Ψ∥ ≤ C∥N 1−2εHε
0Ψ∥

hold.

We thus define T = Θ∞,0+Θ∞,1, D(T ) = D(Hε
0)∩D(N) and this gives an extension

of A to GD(T ).
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4.2 Polaron models in non-relativistic quantum field theory

Theorem 4.10. The operator

H = (1 −G∗)(H0 + 1)(1 −G) + T − 1

is self-adjoint on D(H) = DIBC. Moreover, we have H = Hren.

This theorem also covers the massless case, ω(k) = |k|, [36, 21] and can be gener-
alised to the case where −∆, ω are replaced by (pseudo-) differential operators with
non-constant coefficients [17].

The proof of self-adjointness follows the same steps as Theorem 4.7, using Lemma 4.9
to show that T is infinitesimally bounded relative to the first term in H, which es-
sentially amounts to bounding TG relative to N . This relative bound holds only for
models that are not too singular. The proof in [24] covers all (massive) models with
γ = 2 ≥ β ≥ 0 and

α > 1
2 − β2

8+β2 (4.79)

in d = 3 dimensions. Schmidt [35] gave a generalisation to models with γ ̸= 2. These
limits can be improved if one is content with a relative form-bound for T , in which
case one obtains less explicit information on D(H). However, a modified construction
does give bounds in the sense of operators and an explicit domain, see Remark 4.12.

The equality of H and Hren is a simple consequence of the fact that one can write,
with the analogous definition of GΛ,

HΛ = (1 −G∗
Λ)(H0 + 1)(1 −GΛ) + TΛ − 1, (4.80)

and T = limΛ→∞(TΛ − EΛ) (in the norm of B(D(T ),H)).

4.2.3 Strongly singular Hamiltonians

There are cases in which the interaction is too singular for both Nelson’s renormali-
sation procedure and the IBC construction of the previous section to work, while still
being in the sub-critical class with vΩ−1 ∈ L2(Rd).

An important example of such a model is the Bogoliubov-Fröhlich model for an
impurity particle interaction with the excitations of a Bose-Einstein condensate in
three dimensions. The formal Hamiltonian for this model is composed of

H0 = −∆x + dΓ(ω), (4.81)

where ω(k) =
√
k4 + c2k2 is the Bogoliubov dispersion of the excitations, and

Hint = a(vx) + a∗(vx), v̂(k) =
√

k2

ω(k) (4.82)
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is the interaction obtained from the δ-interaction through a Bogoliubov transforma-
tion. In terms of the scaling parameters we have d = 3, γ = β = 2, α = 0. Note
that this is the same behaviour as for the van Hove model considered in Section 4.1.2,
which would correspond to the case of an immobile impurity of “infinite mass”.

To see why the method of the previous section cannot be applied to this model as
such, consider the quadratic form of H in the representation of Theorem 4.10

⟨Ψ, HΨ⟩ = ⟨(1 −G)Ψ, (H0 + 1)(1 −G)Ψ⟩ + ⟨Ψ, TΨ⟩ − ∥Ψ∥2

= ⟨(1 −G)Ψ, (H0 + T + 1)(1 −G)Ψ⟩
+ 2Re⟨(1 −G)Ψ, TGΨ⟩ + ⟨GΨ, TGΨ⟩ − ∥Ψ∥2 (4.83)

and note that the first term allows us to control H1/2
0 (1 −G)Ψ.

The scaling behaviour of T (compare (4.55)) is λd−2α−β = λ, which corresponds
to that of H1/2

0 and one can indeed show that T is H1/2
0 -bounded by generalising

Lemma 4.9. Thus, T (1 − G)Ψ is under control. However, the scaling of G∗TG is
λ2d−4α−3β = λ0 (there are two of each a, a∗ contributing λd/2−α, and three resolvents
contributing λ−β), which is a critical case. Indeed, for regular Ψ, GΨ behaves as
|x− y|−1 for |x− y| → 0, and applying H1/2

0 leads to |x− y|−2 which cannot be paired
with another function behaving as |x− y|−1, i.e., ⟨GΨ, TGΨ⟩ does not seem to make
sense at all (see [20] for a detailed analysis in a simplified model).

This problem can be approached by trying to include T with H0 in some way, as it is
H

1/2
0 -bounded. Set H̃0 = H0 + T , which is self-adjoint on D(H0), and, for z ∈ ρ(H̃0),

G̃z = (a(vx)(z − H̃0)−1)∗. Then on a formal level we have

H0 +Hint = (1 − G̃∗
z)(H̃0 − z)(1 − G̃z) + a(vx)(z − H̃0)−1a∗(vx) − T + z. (4.84)

Recall that T was constructed as a renormalised version of a(vx)(−1 − H0)−1a∗(vx),
so we can expect cancellations to occur with a(vx)(z − H̃0)−1a∗(vx). Our guess for
the domain D(H) would now be given by the condition (1 − G̃z)Ψ ∈ D(H0). The
functions in this domain have singularities of the form a|x − y|−1 + b log |x − y| as
|x−y| → 0 (see [20]), which shows that this gives a different domain than the condition
(1 −G)Ψ ∈ D(H0), for which there is no logarithmic term.

To make this approach rigorous, one can set T =: T1 and construct an operator T2
that is a renormalised version of

a(vx)(1 +H0)−1T1(1 +H0)−1a∗(vx) (4.85)

by the same procedure as for T1, i.e., putting creation/annihilation operators into nor-
mal order and subtracting the value of the term with no remaining creation/annihilation
operators after replacing p 7→ 0, dΓ(ω) 7→ 0. There will also be a remainder Rz, given
by the difference of T2 and the expression in (4.84)

With this, we obtain the following result [18, 19, 22].
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4.2 Polaron models in non-relativistic quantum field theory

Theorem 4.11. Let z ∈ R ∩ ρ(H0 + T1) and set

H = (1 − G̃∗
z)(H0 + T − z)(1 − G̃z) + T2 +Rz + z

D(H) =
{

Ψ ∈ H
∣∣∣(1 − G̃z)Ψ ∈ D(H0)

}
.

The following hold true:

1) H is self-adjoint and bounded from below.

2) There is a family (EΛ)Λ≥0 ⊂ R so that the operators HΛ with ultraviolet cutoff Λ
satisfy

lim
Λ→∞

(HΛ − EΛ) = H (4.86)

in the norm resolvent sense.

3) For Ψ ∈ D(H) we have the identity

HΨ = H0Ψ + a∗(vx)Ψ +AΨ, (4.87)

as elements of D(H0)′, where A|D(H0) = a(vx) and AG̃z = (T1 + T2 +Rz).

Self-adjointness for the case α = 0, β = γ = 2 of the Bogoliubov-Fröhlich model
was proved in [18] by finding appropriate bounds on T2, R. The second statement on
renormalisation was first proved in [19]. The asymptotics of EΛ are given by

EΛ = EΛ,1 + e2 log Λ +O(1), (4.88)

where EΛ,1 has the same expression (4.71) as in the Nelson model (which is asymptotic
to e1Λ in this case). This is consistent with our expectation based on the scaling
heuristics. The number e2 can be calculated explicitly (see [19]). It depends essentially
on the mass M of the impurity and vanishes for M → ∞, which explains why no
logarithmic term is present in Section 4.1.2.

The third statement shows that H has the form we originally assumed, up to a
choice of domain and definition of A on this domain. However, now A cannot be
viewed as an extension of a(vx) since T1 is not defined on D(H) and thus AΨ is really
an element of D(H0)′. The modification of the domain arranges for the term T1Ψ from
A to cancel with a singularity created by application of H0.

In [22], Theorem 4.11 is generalised to models with β = γ ∈ {1, 2} and

d− 2α < 2γ, (4.89)

which covers the whole sub-critical regime (with additional technical hypothesis of
rotation invariance and differentiability). For this, one proceeds in n steps, with

n =
⌊
γ(2α+ 2γ − d)−1

⌋
= max

{
n ∈ N : n(2α+ 2γ − d) ≤ γ

}
, (4.90)
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i.e., n = 1 for the Nelson model, n = 2 for Bogoliubov-Fröhlich. One constructs
operators T1, . . . , Tn and sets H̃0 = H0 + T1 · · · + Tn. The result is then analogous to
Theorem 4.11 (inclusion of T2 into H̃0 in this case only changes the form of R). In
principle, one can apply the same construction for β ̸= γ. The case β > γ poses no
difficulties. If β < γ however, there will be an additional difficulty in controlling the
operators T with respect to the number of bosons, since relying on Ω(i∇) for regularity
leads to bounds that grow with this number, as in Lemma 4.9. The condition under
which the construction works will thus depend on d, α, β, γ in a more complicated way,
similarly to (4.79) for n = 1.

The scaling of Tj is λj(d−2α−2γ)+γ , and n is exactly the largest number for which the
exponent is non-negative. If we make explicit the coupling constant g to Hint, the num-
bers EΛ to be subtracted for renormalisation have the form (with the understanding
that Λ0 should be log Λ)

EΛ =
n∑
j=1

ejg
2jΛj(d−2α−2γ)+γ + O(1). (4.91)

This shows clearly the perturbative nature of the construction. Indeed, one can think
of T = ∑n

j=1 Tj as an approximate solution to the equation

a(vx)(z −H0 − T )−1a∗(vx) = T + E, (4.92)

suggested by (4.84). Using this equation it might be possible to generalise to specific
models with critical scaling, at least for small coupling. An interesting example would
be the pseudo-relativistic Nelson model studied in [13, 5], where γ = β = 1, α = 1/2
and d = 3.

Remark 4.12. Note that when T1 is form-bounded by (1 − G∗)H0(1 − G), the ex-
pression (4.85) is well defined. In this case Theorem 4.11 yields the operator domain
and EΛ = EΛ,1 +O(1). This is analogous to the construction of the Fröhlich polaron
in Section 4.2 after n = 1 steps.

4.3 Applications to spectral theory

In the previous section we discussed how to define rigorously polaron Hamiltonians and
provided explicit expressions for the resulting operator and domain. These expressions
can be used to analyse the spectrum of the operator. One advantage of this approach
compared to the definition by renormalisation, i.e., as limit of regularised operators, is
that it avoids the need to control a whole family of operators uniformly in the cutoff
parameter.
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Positivity. An example in which this has been put to use is the property of specific
polaron models to improve positivity. This property is an important tool for further
analysis of the spectrum, implying in particular that the ground state (if it exists) is
simple. It was proved using the IBC representation for the Nelson model in [21] and
the Fröhlich polaron in [23].

A bounded operator A on a Hilbert space H is said to preserve positivity with
respect to a Hilbert cone C if AC ⊂ C . It improves positivity if for all non-zero
φ,ψ ∈ C one has ⟨φ,Aψ⟩ > 0. For a semi-bounded operator H one can consider either
the resolvent or the exponential and by equivalent defintions (see [34, Thm.XIII.44])
H preserves/improves positivity if its resolvent or exponential do (for appropriate
parameters).

We will first present an abstract form of the arguments used in [21, 23] and then
explain briefly how these are applied in the specific context. We consider the Hilbert
space

H = Hp ⊗ Γ(L2(Rd)), (4.93)

where Hp is an auxiliary Hilbert space for the particle(s). Let Cp ⊂ Hp be a Hilbert
cone, and define the cone of positive elements in H as

C+ :=
{

Ψ ∈ H =
n⊕
n=0

H(n)
∣∣∣∀n ∈ N0,∀φ ∈ Cp : ⟨φ,Ψ(n)⟩Hp ≥ 0 a.e. in Rdn

}
.

(4.94)

The operators constructed in the previous section are of the form

H = (1 −G∗)H0(1 −G)︸ ︷︷ ︸
=:K

+T, (4.95)

with H0 ≥ 1 and

G∗ = a(−vx)H−1
0 . (4.96)

With this formula, if v < 0 and H−1
0 preserves positivity, then G, G∗ are positivity

preserving. Moreover, if Φ(n) ≥ 0 is not identivally zero, then a(−vx)Φ(n) is also not
zero, since it is given by the integral over a non-negative function that does not vanish
everywhere.

In the abstract setting, we can formulate the following Lemma.

Lemma 4.13. Assume G∗ is a bounded operator with norm less than one that pre-
serves positivity and maps H(n) to H(n−1) so that Ψ ∈ C+ and G∗Ψ(n) = 0 for some
n ∈ N imply Ψ(n) = 0. If H−1

0 is positivity preserving and its restriction to H(0)

improves positivity, then K−1 improves positivity.
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Proof. Clearly K−1 = (1 − G)−1H−1
0 (1 − G∗)−1 preserves positivity. Take non-zero

Φ,Ψ ∈ H and let n,m ∈ N0 be so that Φ(n),Ψ(m) ̸= 0. Then (G∗)nΦ(n), (G∗)mΨ(m)

are non-zero elements of H(0). Since H−1
0 |H(0) improves positivity, we may neglect

some non-negative terms to obtain

⟨Φ,K−1Ψ⟩H =
∞∑

j,k=0

〈
(G∗)jΦ, H−1

0 (G∗)kΨ
〉

≥
〈
(G∗)nΦ(n), H−1

0 (G∗)mΨ(m)
〉

H(0)
> 0, (4.97)

which proves the claim.

Proposition 4.14. Let G∗, H0 satisfy the conditions of Lemma 4.13. If for λ suffi-
ciently large,

−T (K + λ)−1

is bounded of norm less than one and positivity preserving, then (H + λ)−1 improves
positivity for all λ > − inf σ(H).

Proof. By the assumed bound, we have for λ large enough

(K + T + λ)−1 = (K + λ)−1
∞∑
k=0

(
− T (K + λ)−1)k. (4.98)

The resolvent of K near zero can be written as a power series whose terms are posi-
tivity improving. By analytic continuation, (K + λ)−1 improves positivity. Thus the
summand with k = 0 in (4.98) is positivity improving and by hypothesis all the others
preserve positivity. This proves the claim for sufficiently large λ, and this extends to
all λ > − inf σ(H) by analyticity.

In the article [23] we use these ideas to prove absence of a ground state and unique-
ness of the minimum of the effective dispersion relation for the Fröhlich model discussed
in Section 4.2.1. The proof is by contradiction following ideas of [10]. Assuming that
there is a momentum P ̸= 0 so that the ground state energy of the Hamiltonian H(P )
at fixed total momentum P is a minimum among all P , one concludes that an auxil-
iary operator, which is similar to the Fröhlich Hamiltonian but with the particle space
Hp = L2(R3/(LZ)3), LP ∈ 2πZ3, must have a degenerate ground-state. One arrives
at the sought-after contradiction by proving that the auxiliary operator improves pos-
itivity (which implies that the ground state is simple) using the arguments above. The
required conditions are easy to check. In particular, T is an operator with negative
kernel (compare (4.68)).

The result of [21] is that the Nelson Hamiltonian at fixed total momentum improves
positivity in Fourier representation. Fixing the momentum removes the center of mass,
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so in this case Hp = C. This result was announced in [8], but the first complete proof
appeared only much more recently [28]. The difficulty was that, defining H by renor-
malsation, it is clear that it preserves positivity if this holds for the cutoff Hamiltonians
(since Hilbert cones are closed) but showing that the limit remains strictly positive
is more subtle. In the proof of [21] using the representation of Theorem 4.10, this
difficulty shows itself in the fact that −T no longer preserves positivity as the Fourier
multiplier Θ∞,0 has a non-trivial positive part. The solution lies in including this
positive part with H0 as done for the more singular models of Section 4.2.3. With the
modified choices of H0, G, and T the proof then follows from Proposition 4.14.

Eigenvectors. Knowledge of the domain of self-adjointness is also useful for the
construction of (approximate) eigenvectors. The recent preprint [14] proves that
the Bogoliubov-Fröhlich Hamiltonian at fixed momentum P has a ground state if
|P | ≤ c/M , where M is the particle mass and c the speed of sound in the condensate
(compare (4.81) and Section 6.1). This ground state corresponds to a stable polaron
quasi-particle. This particle may move freely without exciting additional bosons, as
long as its momentum does not exceed c/M , which is a manifestation of the superflu-
idity of the underlying condensate.

Our proof makes use of the information on the domain obtained from the construc-
tion of the Hamiltonian in [19] (see Section 4.2.3) in order to construct trial states.
Thanks to this construction and a-priori estimates on the dependence of the energy on
the momentum, the result does not require an ultra-violet cutoff, nor a small coupling
assumption.

It would be interesting to prove the non-existence of a ground state eigenvector for
|P | > pc for a critical momentum pc. There is numerical evidence for this [39], but
the mathematical problem remains a challenge.
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5 A model for plasmons in a finite medium

Plasmons, or polaritons, are the joint excitations of the electro-magnetic field and
internal degrees of freedom of a material, for example a metal. Their properties dif-
fer from those of free photons, even outside of the medium. This may give rise to
measurable effects, such as the enhancement of spontaneous emission by atoms and
molecules, similar to the Purcell effect in a cavity.

In this chapter I discuss a specific model for the electro-magnetic quantum field inter-
acting with a finite-size dielectric medium. For this model, one can use methods from
mathematical scattering theory to exhibit the structure of the joint excitations and
provide explicit formulas (that can be treated numerically [9], and analytically [12]) for
important quantities, such as the electric field operator. In addition to summarising
the results of [4], I provide in the final section a sketch of the mathematical proofs
that were omitted there.

5.1 Discussion of the model
In our microscopic model, the electro-magnetic field interacts with a medium occupy-
ing some region of space by coupling to the elementary vibrations of charges in the
material. Such models are often employed in physics, thanks to their relative simplicity
and the fact that they can be related to the macroscopic Maxwell equations with, in
general, complex and frequency-dependent susceptibilities. Note that one cannot base
the discussion directly on the macroscopic Maxwell equations since they are, in gen-
eral, not Hamiltonian and it is thus unclear how they relate to a quantum-mechanical
model.

We start by discussing the model on the level of classical fields, which also serves
to fix the parameters in relation to known properties of the material. Matter will be
included into the model in the form of a field of oscillating charges. For every ν > 0,
corresponding to the frequency of the oscillation, let Xν be a field, i.e. Xν : M → R3

is a function, where M ⊂ R3 is the region of space occupied by the matter, which
we assume to be compact. These fields are coupled to the electro-magnetic field by
assigning to their configuration the polarisation density

P(x) =
∫ ∞

0
α(x, ν)Xν(x)dν, (5.1)

with a (real valued) function α modeling the strength of the coupling to the medium.
The form of P corresponds to the assumption that the medium is isotropic, as oth-
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5 A model for plasmons in a finite medium

erwise α would be a tensor. We also neglect a possible magnetic response, which
could be included via an additional magnetisation field [10]. To the polarisation one
associates charge and current densities by

ρ = − div P, j = ∂P

∂t
. (5.2)

The coupled system of equations for the electric and magnetic fields E,B, and (Xν)ν>0
reads

∂E

∂t
= curlB − ∂P

∂t
(5.3a)

∂B

∂t
= − curlE (5.3b)

divE = − div P (5.3c)
divB = 0 (5.3d)
∂2Xν

∂t2
= −ν2Xν + α(ν)E. (5.3e)

This is a system of linear equations of Hamiltonian type, as made explicit in Equa-
tion (5.12) below.

The macroscopic Maxwell equations. One justification for using this model, and
a way to determine the choice of coupling α in a given situation, is its relation to the
macroscopic Maxwell equations in the material. We can eliminate the fields Xν by
substituting the solution of (5.3e) that vanishes as t → −∞

Xν(t, x) =
∫ t

−∞

sin(ν(t− s))
ν

α(x, ν)E(s, x)ds, (5.4)

which gives

P(t, x) =
∫ ∞

0

∫ t

−∞

sin(ν(t− s))
ν

α2(x, ν)E(s, x)dνds. (5.5)

Taking the Fourier transform in the time variable yields

P̂(ω, x) = Ê(ω, x)
(

p.v.
∫ ∞

0

α(x, ν)2dν
ν2 − ω2 + iπ

2
α2(x, |ω|)

ω

)
, (5.6)

where p.v. is the Cauchy principal value. Equations (5.3a) and (5.3c) can be seen as
Maxwell’s equations for the displacement field D = E + P. The Fourier transform of
D is

D̂(ω, x) = Ê(ω, x)
(

1 + p.v.
∫ ∞

0

α(x, ν)2

ν2 − ω2 dν + iπ
2
α2(x, |ω|)

ω

)
=: ϵ(ω, x)Ê(ω, x), (5.7)
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5.1 Discussion of the model

which defines the dielectric function ϵ(x, ω). In practice, given some material whose
effective dielectric function ϵ is known, one can choose α so as to reproduce this
function (note that α2 is completely determined by the imaginary part of ϵ). Two
functional forms for α that are often used in physics are the Lorentz model

α(x, ω) = ω√
a2(ω2 − ω2

0)2 + b2ω2
1M (x) (5.8)

and the Drude model

α(x, ω) = 1√
a2ω2 + b2

1M (x), (5.9)

where a, b, ω0 > 0 are free parameters, and 1M is the characteristic function of the
compact set M ⊂ R3.

The model in oscillator form. Since the system of equations (5.3a)–(5.3e) is
linear, we are essentially dealing with a free field theory. That is, the sum of two
solutions is again a solution so localised wave-packets will pass through each other
without interacting. In order to associate to these fields a quantum field, one should
write the equations (or the Hamilton function) in ‘oscillator’ form [1], in complete
analogy with the standard quantisation of the free electro-magnetic field. That is, we
want to find a change of variables so that, expressed in terms of the new field Ψ, we
have

H = ⟨Ψ,ΩΨ⟩H (5.10)

for a Hilbert space H and a self-adjoint operator Ω, D(Ω) on H, and the symplectic
form is

σ(Ψ,Ψ′) = Im⟨Ψ,Ψ′⟩H. (5.11)

The corresponding quantum theory is then defined on the Fock space Γ(H) over H
and its dynamics is generated by the Hamiltonian H = dΓ(Ω).

In terms of the vector potential A (in Coulomb gauge) and its conjugate momentum
ΠA = −D, we can write a Hamiltonian for the system of equations as

H = 1
2

∫
R3

(
ΠA(x) +

∫ ∞

0
α(x, ν)Xν(x)dν

)2
−A(x)∆A(x)dx

+1
2

∫
R3

∫ ∞

0
(Π2

Xν
(x) + ν2X2

ν (x))dνdx, (5.12)

where ∆ is the vectorial Laplacian ∆ = curl curl − grad div, and thus ∆A = curl2A.
We now interpret the family Xν as one field X on M , taking values in L2(R+,R3),
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5 A model for plasmons in a finite medium

and extend it to the whole of R3 by zero. Setting Φ = ((−∆)−1/2ΠA, X) : R3 →
R3 ×L2(R+,R3) with conjugate momentum Π = (−(−∆)1/2A,ΠX) brings H into the
form

H = 1
2

∫
R3

Φ(x)Ω2Φ(x)dx+ 1
2

∫
R3

Π(x)2dx, (5.13)

with the non-negative operator

Ω2 =
(

curl2 (−∆)1/2⟨α(x, ·), ·⟩L2(R+)
α(x, ν)(−∆)1/2 ν2 + α(x, ν)⟨α(x, ·), ·⟩L2(R+)

)
, (5.14)

Finally, we can move to the complex representation by setting

Ψ = 1√
2

(
Ω1/2Φ + iΩ−1/2Π

)
, (5.15)

and this gives the desired form (5.10). The natural Hilbert space H is the subspace of
L2(R3,C3 × L2(R+,C3)) where the C3-component is divergence free, i.e., orthogonal
to all gradient fields, and the second component has support in M (note that the
appropriate spaces and the symplectic structure for the original fields can be defined
by going backwards from here with the transformations given above). The domain of
Ω is discussed in Section 5.2.

The quantum model of plasmons. From the oscillator representation above, a
model for quantum plasmons is defined on the Fock space over H = PdivL

2(R3,C3) ⊕
L2(M × R+,C3), where Pdiv is the projection to divergence-free fields, with Hamilto-
nian given by H = dΓ(Ω). This is the precise meaning of the often invoked quantisa-
tion rule by which one replaces the complex field Ψ by an annihilation operator and
the complex conjugate field by a creation operator. The properties of the quantum
plasmon Hamiltonian are completely encoded in the spectral theory of Ω.

The Fock space can be identified with the tensor product of Fock spaces over
H1 = PdivL

2(R3,C3) and H2 = L2(M × R+,C3), Γ(H1 ⊕ H2) = Γ(H1) ⊗ Γ(H2), which
intuitively corresponds to the degrees of freedom of the electro-magnetic field and the
polarisation field, respectively. However, since Ω is a two-by-two matrix operator with,
in general, non-trivial off-diagonal entries, H = dΓ(Ω) does not respect this decom-
position. The simplest description of states would be in the spectral representation of
Ω, which does not have such a tensor structure.

The important question is of course how the interaction of the electro-magnetic
field with matter affects the system, which is studied by comparing Ω2 with its non-
interacting counterpart

Ω2
0 =

(
curl2 0

0 ν2

)
. (5.16)
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5.1 Discussion of the model

The mathematical statement that forms the basis of the discussion in [4] is the
following.

Assertion 5.1. Let ρ be a smooth, rapidly decreasing function and denote by Ω2
ρ the

operator Ω2 with an ultra-violet cutoff function ρ on the interaction (see (5.26)). Let
α be of the Drude or Lorentz form (or satisfy the hypothesis of Theorem 5.3). Then

• the spectrum of Ωρ equals [0,∞) and is purely absolutely continuous;

• the wave operators W±(Ω2
ρ,Ω2

0) := s− limt→∓∞ eiΩ2
ρte−iΩ2

0t exist and are unitary.

The precise statement is given in Theorem 5.3 below. The hypothesis are essentially
assumptions on the coupling function α that are compatible with both the Drude and
the Lorentz form above. For technical reasons, one also needs to cut off the interaction
at high energies of the electro-magnetic field with the cutoff ρ.

An immediate consequence is that the spectrum of Ω is the same as that of Ω0,
including multiplicity. This is important to keep in mind when writing down quantities
by expanding into (generalised) eigenfunctions. In the physics literature, it has been
suggested that the degeneracy should be lifted by the interaction. This intuition comes
from the Friedrichs-Fano model, where an eigenvalue dissolves into a continuum, but is
erroneous for the perturbation of continuous spectrum, which is described by scattering
theory (see [13, 10, 3] for contributions to this debate in the physics literature).

A quantity of particular importance is the electric field operator outside of the
medium M . For example, it describes the coupling of the electro-magnetic field to
an atom outside the medium in the dipole approximation. At a point at x /∈ M , the
classical electric field E(x) = D(x) can be expressed in terms of the variables Ψ, Ψ̄ by

E(x) = D(x) = − 1√
2

(
Ω0Ω−1/2(Ψ + Ψ̄)

)
1
, (5.17)

where the index denotes projection to the first component. In general, Ω−1/2 is not
diagonal and a non-local operator. There is thus a contribution to the electric field
outside of the medium that is induced by both components of the Ψ-field inside. The
contribution of the second components of Ψ, Ψ̄ vanishes with the coupling α. The
expression for the field operator E associated to E on the Fock space Γ(H) is obtained
by replacing the symbols Ψ̄,Ψ with bosonic creation and annihilation operators. For
the operator smeared with a regular function f ∈ L2(R3,C3) this gives the expression

E(f) = − 1√
2

(
a(Ω−1/2Ω0(f, 0)) + a∗(Ω−1/2Ω0(f, 0))

)
(5.18)

Again, this operator is not of the form Φ ⊗ 1 or 1 ⊗ Φ in the tensor decomposition of
the Fock space Γ(H) and contains a term involving creation/annihilation operators of
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5 A model for plasmons in a finite medium

both factors. In the formulas suggested in [13, 10], based on the assumption of lifted
degeneracy and an ansatz for the plasmon creation/annihilation operators, the terms
with creation and annihilation operators for the first factor Γ(H1) is absent. This leads
to the issue that the formula does not reproduce the one of the electric field in vacuum
when the coupling is set to zero. Pointing out and resolving this problem was the
central point of our article [4]. Moreover, our construction of the wave operators is
based on the solution of an integral equation that could be evaluated numerically in
order to calculate generalised eigenfunctions of Ω2

ρ and gain information on the form
the electric field and its coupling to matter.

(In-)equivalence of the plasmon and photon representations. The unitary
equivalence of Ω to Ω0 shows that the quantum plasmon model with Hamiltonian H =
dΓ(Ω) and the model of decoupled photons and phonons with H0 = dΓ(Ω0) behave
the same from the spectral point of view. However, it would be misleading to identify
both by using the unitary Γ(W±), as this does not correctly keep track of the physical
meaning of quantities. For example, the electric field (5.18) is not the conjugation
of the vacuum electric field E0 by this unitary. The reason is, of course, that the
relationship of these objects is determined by the relation of the classical fields. To
correctly implement these in the quantum model, one has to consider the Hilbert spaces
as representation spaces for the canonical commutation relations generated by these
fields, on which the symplectic transformations act. Note that these transformations
also depend on the interaction, e.g., by application of Ω, Ω−1/2 in (5.15). Retracing
the different changes of variables, one can spell out the relation between the fields Ψ, Ψ̄
and their non-interacting analogues as

Ψ = 1
2
(
(Ω1/2Ω−1/2

0 + Ω−1/2Ω1/2
0 )Ψ0 + (Ω1/2Ω−1/2

0 − Ω−1/2Ω1/2
0 )Ψ̄0

)
, (5.19)

with a similar formula for Ψ̄. For the associated annihilation operators, this would
correspond to a formula

a(f) = 1
2a0

(
(Ω−1/2

0 Ω1/2 + Ω1/2
0 Ω−1/2)f

)
+ 1

2a0
(
(Ω−1/2

0 Ω1/2 − Ω1/2
0 Ω−1/2)f

)
(5.20)

The question of equivalence of these representations is thus whether there exists a
unitary map U : Γ(H) → Γ(H), called Bogoliubov transformation, so that Ua∗

0(f)U∗

satisfies the identity above. A unitary satisfying the relations

Ua∗(f)U∗ = a∗(Cf) + a(Sf), Ua(f)U∗ = a(Cf) + a∗(Sf) (5.21)

with bounded linear operators C, S exists if and only if

C∗C − S∗S = 1, C∗S − S∗U = 0 (5.22)
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5.2 Mathematical results

and S ∈ S2(H) is a Hilbert-Schmidt operator. The identities simply express the fact
that Ua(f)U∗ and Ua∗(f)U∗ satisfy the canonical commutation relations. They are
evidently satisfied in our case, and generally hold if the transformation arises from a
symplectic transformation of the classical fields.

The condition that S be Hilbert-Schmidt is called the Shale condition. It relates
to the transformation of the particle number operator under U . Indeed, the Hilbert-
Schmidt norm is exactly the expectation value of the transformed number operator in
the vacuum,

⟨∅, UNU∗∅⟩ =
∞∑
j=1

⟨∅, Ua∗(fj)a(fj)U∗∅⟩ =
∞∑
j=1

⟨∅, a(Sfj)a∗(Sfj)∅⟩ = Tr(S∗S).

(5.23)

We should not expect the Shale condition to be satisfied satisfied for S = Ω−1/2
0 Ω1/2 −

Ω1/2
0 Ω−1/2, since Ω2 is not a relatively compact perturbation of Ω2

0, due to the self-
interaction of the polarisation field, which acts like a multiplication operator in x ∈ M
(see the next section). If we compare Ω2

0 to the operator where this self-interaction has
been removed by application of a wave-operator (see (5.36)), the corresponding oper-
ator S should satisfy the Shale condition, at least with the cutoff ρ on the interaction
with the electro-magnetic field.

5.2 Mathematical results

In this section we formulate the exact mathematical hypothesis for the main result,
the existence and unitarity of the wave operators W±(Ω2,Ω2

0) stated in Theorem 5.3
and sketch the proof.

Self-adjointness. First, it is necessary to properly define Ω2. To start with, Ω2
0

is self-adjoint on the domain D(Ω2
0) = PdivH

2(R3,C3) ⊕ L2(M,L2(R+, ν
2dν)). Its

spectrum is purely absolutely continuous and covers [0,∞).
To control the interaction, it is convenient to assume that ν 7→ α(x, ν) is in L2(R+),

uniformly in x, which is satisfied for both the Drude and the Lorentz model.

Lemma 5.2. Assume α ∈ L∞(R3, L2(R+)), then Ω2 − Ω2
0 is infinitesimally form

bounded with respect to Ω2
0.

Proof. We have

Ω2 − Ω2
0 =

(
0 (−∆)1/2⟨α(x, ·), ·⟩

α(x, ·)(−∆)1/2 α(x, ·)⟨α(x, ·), ·⟩

)
. (5.24)
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5 A model for plasmons in a finite medium

The lower diagonal is, up to normalisation, the projection to α(x, ·) for any fixed
x ∈ M , and thus bounded. The relative form-bound for the off-diagonal entries follows
from the fact that the action of Ω2

0 on the first component is curl2 = −∆.

We conclude from the KLMN theorem that Ω2 defines a self-adjoint operator with

D((Ω2)1/2) = D(Ω) = D(Ω0). (5.25)

Note that, in general, Ω2 is not a perturbation of Ω2
0 in the sense of operators since

there is no reason for the second component of a vector in D(Ω2
0) to be differentiable

in x, but the off-diagonal terms of Ω2 contain derivatives.

Construction of the wave operators. Even though Ω is well defined, we need
to impose an ultra-violet cutoff on the interaction for the construction of the wave-
operators. Let

Ω2
ρ =

(
curl2 ρ(−∆)(−∆)1/2⟨α(x, ·), ·⟩L2(R+)

α(x, ν)(−∆)1/2ρ(−∆) ν2 + α(x, ν)⟨α(x, ·), ·⟩L2(R+)

)
, (5.26)

where ρ is a real, smooth, rapidly decreasing function.

Theorem 5.3. Let ρ ∈ S (R) take values in the interval [0, 1]. Let M ⊂ R3 be
compact, and α ∈ L2(R+, L

∞(M,R)) be Hölder continuous of exponent r > 1/2.
Assume moreover that α(x, ν) ̸= 0 for all ν > 0, x ∈ M , and that the modified
coupling α̃ (defined in (5.39)) is of class Cr,s0 for some r, s > 1/2 (with the definition
of (5.49)). Then the wave operators W±(Ω2

ρ,Ω2
0) exist and are complete. Moreover,

the spectrum of Ω2
ρ is purely absolutely continuous and W±(Ω2

ρ,Ω2
0) are unitary.

The construction of the wave operators proceeds in two steps. First, we take care
of the self-interaction of the medium, given by the diagonal entry of the interaction.
This leads to a purely off-diagonal interaction with the modified coupling function α̃.
We then construct the wave operators for this case under an appropriate regularity
assumption on α̃. Finally, in order to show that the spectrum is absolutely continuous,
we need to rule out the existence of eigenvalues. For this, we need to assume that the
coupling α(ν) does not vanish at any ν > 0.

In some of the arguments below we will focus on the case of W+, with W− being
analogous.

Rank one perturbations. The lower block on the diagonal of Ω2 reads

Aα = ν2 + α(x, ν)⟨α(x, ·), ·⟩L2(R+), (5.27)

i.e., for fixed x ∈ M it is the perturbation of the multiplication by ν2 by ∥α(x, ·)∥2
L2(R+)

times the projection to α(x, ·) in L2(R+). Note, hovewer, that on the full Hilbert space
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this is not a relatively compact perturbation, as it acts multiplicatively in the variable
x ∈ M .

For a rank-one perturbation it is not difficult to show that the wave operators exist,
a result that goes back to Kato and Kuroda. Since rank-one perturbations are solvable
models, one even has an explicit formula for the wave operator [7]. We state the result
below, fixing the value of x ∈ M .

Proposition 5.4. Let α ∈ L2(R+,R) be locally Hölder continuous of exponent r > 1/2
and define a self-adjoint operator on D(Aα) = L2(R+, ν

2dν) by

(Aαf)(ν) = ν2f(ν) + α(ν)⟨α, f⟩. (5.28)

Define for z ∈ C \ R+

F (z) = ⟨α, (A0 − z)−1α⟩ =
∫ ∞

0

α2(ν)
ν2 − z

dν. (5.29)

Then:

a) The spectrum of Aα equals [0,∞) and the resolvent is given by

(
(Aα − z)−1f

)
(λ) = f(λ)

λ2 − z
− α(λ)

(1 + F (z))(λ2 − z)

∫ ∞

0

α(η)f(η)
η2 − z

dη. (5.30)

b) If moreover α(ν) ̸= 0 for all ν > 0, the spectrum of Aα is is purely absolutely
continuous and the unitary wave operators W±(Aα, A0) are given by

(W±(Aα, A0)f) (λ) = f(λ) −α(λ) lim
ε→0

∫
α(ω)

1 + F (ω2 ± iε)
f(ω)

λ2 − ω2 ∓ iεdω. (5.31)

Let us comment on how these statements are obtained, without going into the details
of the proofs. Since α⟨α, ·⟩ is a positive, compact operator, it is clear that the spectrum
of Aα equals R+. The resolvent formula is easily checked.

In view of the resolvent formula, the singularities of (Aα−z)−1 are located at exactly
those z ∈ C where 1 + F (z) is not invertible, and it can be proved that these points
form the singular spectrum of Aα [2]. We already know that there is no spectrum in
C \ R+. For ω2 > 0, we denote

F±(ω2) = lim
ε→0

F (ω2 ± iε) = iπα(ω)2

2ω + p.v.
∫ ∞

0

|α(λ)|2
λ2 − ω2 dλ, (5.32)

where p.v. is the Cauchy principal value. The limit exists due to the regularity as-
sumption on α. If α(ω) ̸= 0, the equation 1 + F±(ω2) = 0 cannot hold for ω > 0 since
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5 A model for plasmons in a finite medium

ImF±(ω2) ̸= 0, so ω2 is not in the singular spectrum of Aα. Concerning the remaining
case ω = 0, we may note that

ReF (iε) =
∫ ∞

0

α(λ)2λ2

λ4 + ε2 dλ > 0, (5.33)

so ω = 0 is also not a singular point. We have thus established that the spectrum of
Aα is absolutely continuous.

Existence of the wave operators can be shown using Cook’s method [8, Sect.10.4].
Since the argument also applies to the perturbation of Aα by −α⟨α, ·⟩, they are com-
plete, and since the spectra are absolutely continuous they are unitary. The formula
for the wave operators is obtained by writing

W±(Aα, T )f = lim
t→∓∞

eitAαe−itA0f

= f ∓ i lim
ε→0

∫ ∞

0
e∓it(Aα∓iε)α⟨α, e±itA0f⟩dt

= f − lim
ε→0

∫ ∞

0
α(ν)f(ν)

(
(Aα ∓ iε− ν2)−1α

)
dν, (5.34)

which gives the claimed formula by inserting the formula for the resolvent. This
calculation is justified on a dense set of functions f by the construction of the wave-
operators, wherein one shows that the time integral exists for ε = 0.

We can now use the wave operators above to remove the self-interaction of the
polarisation field. Let

Wα =
(

1 0
0 W+(Aα, A0)

)
, (5.35)

then

W ∗
αΩ2

ρWα (5.36)

= Ω2
0 +

(
0 i curl ρ(−∆)⟨α(x, ·)W+(Aα, A0), ·⟩

W+(Aα, A0)∗α(x, ·)iρ(−∆) curl 0

)
.

The new interaction term can be computed explicitly. We have

⟨α(x, ·),W+(Aα, A0)f(x, ·)⟩

=
∫ ∞

0
α(x, ω)f(x, ω)dω − lim

ε→0

∫ ∞

0

∫ ∞

0

α(x, ω)2

ω2 − η2 − iε
α(η)f(x, η)

1 + F+(x, η2)dωdη

=
∫ ∞

0
α(x, ω)f(x, ω)

(
1 − F+(x, ω2)

1 + F+(x, ω2)

)
dω

=
∫ ∞

0

α(x, ω)
1 + F+(x, ω2)f(x, ω)dω = ⟨α̃(x, ·), f(x, ·)⟩ (5.37)
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where F (z) depends on x via α. We thus have

i curl⟨α(x, ·)W+(Aα, A0) = i curl⟨α̃(x, ·), ·⟩, (5.38)

which is of the same form as before, but with α replaced by the modified coupling

α̃(x, ν) = α(x, ω)
1 + F+(x, ω2) = W+(Aα, A0)∗α(x, ·). (5.39)

Note that the new coupling is no longer real. For our main examples the modified
coupling can be calculated explicitly using the residue calculus. For the Drude cou-
pling (5.9), the result has a simple expression. For ω > 0 we have

F+(ω2) = π

2(a2ω2 + b2)

( i
ω

− a

b

)
. (5.40)

So, while α(x, 0) = b−11M (x) was positive, α̃(x, 0) = 0. The Lorentz coupling (5.8)
already vanishes at ω = 0 and this is not changed by passing to α̃. Hence, now in both
cases, α̃(x, ·) is a differentiable function from R+ to C that vanishes at ω = 0.

Friedrichs-Fadeev theory. We will use methods of stationary scattering theory
to prove existence of the wave operators W±(W ∗

αΩ2
ρWα,Ω2

0). These go back to the
pioneering work of Friedrichs [6] and were further developed by Fadeev [5]. These
works concern perturbation of a multiplication operator with continuous spectrum
by an integral operator, and prove existence of wave operators W± via an integral
equation for the kernel of 1 − W±. We refer to [14] for a detailed exposition of this
material.

First, we will need to bring the operator W ∗
αΩ2

ρWα (cf. (5.36)) into the form of an
operator of multiplication plus an integral operator.

For this, proceed by the following steps:

1. Apply the Fourier transform to the first component to pass to the spectral rep-
resentation of −∆.

2. Parametrise the range of Pdiv by choosing unit vectors ej(k/|k|), j = 1, 2 with
k · ej(k) = 0.

3. Pass to spherical coordinates k 7→ (λ, θ) ∈ R+ × S2.

4. Perform a unitary change of measure L2(R+, λ
2dλ) → L2(R+,dλ).

We thus obtain a transformed operator, which we denote as Ω̃2, acting on L2(R+, h)
with

h = L2(S2,C2) ⊕ L2(M,C3). (5.41)
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5 A model for plasmons in a finite medium

Its action is given by

(Ω̃2Ψ)(λ) = λ2Ψ(λ) + (VΨ)(λ), V =
(

0 B̃

B̃∗ 0

)
, (5.42)

with B̃:L2(R+, L
2(M,C3)) → L2(R+, L

2(S2,C2)),

(B̃ψ)(λ, θ)j = λ2ρ(λ)
(2π)3/2

∫ ∞

0

∫
M
α̃(x, µ)e−iλθ·x⟨ej(θ), ψ(µ, x)⟩C3dxdµ, (5.43)

and its adjoint

(B̃∗φ)(λ, x) =
∑
j=1,2

α̃(x, λ)
(2π)3/2

∫ ∞

0

∫
S2

eiµθ·xµ2ρ(µ)ej(θ)φj(µ, θ)dθdµ, (5.44)

where dθ denotes the volume measure on the unit sphere. Note that V is an integral
operator whose kernel is a bounded operator on h. Since both S2 and M have finite
volume and for fixed λ, µ the kernel is a bounded function of θ, x, it is obvious that
V (λ, µ) is Hilbert-Schmidt, and in particular compact.

We now discuss the construction of the wave operators for the model with cutoff,
following the strategy of [14, Chap.4]. Note that we have written Ω̃2 as a perturbation
of multiplication by λ2, and not λ as in [14], which will slightly alter the explicit
formulas. Moreover, we have a different sign convention for W±, in line with the usual
time-dependent definition [11, Eq.10].

The strategy is to construct a family of operators T (z), where z belongs to the upper
or lower half plane in C, satisfying

T (z) = V − V (Ω̃2 − z)−1V. (5.45)

Using the resolvent formula, we have

(Ω2
0 − z)−1T (z) = (Ω2

0 − z)−1V − (Ω2
0 − z)−1V (Ω̃2 − z)−1V = (Ω̃2 − z)−1V. (5.46)

Thus, T (z) satisfies the equation

T (z) = V − V (Ω2
0 − z)−1T (z). (5.47)

We will use this equation to show that T (z) has an (operator-valued) integral kernel
t(λ, µ, z), which has a limit as z tends to a point µ2 on the positive real line. The wave
operators are then given by [14, Eq.4.2.1]

(W±(Ω̃2
ρ,Ω2

0)Ψ)(λ) = Ψ(λ) − lim
ε→0

∫ ∞

0

t(λ, µ, µ2 ± iε)
λ2 − µ2 ∓ iε

Ψ(µ)dµ. (5.48)
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Construction of the integral kernels. To simplify the notation, we now restrict
ourselves to the the wave operator W+, which is constructed from T (z) with z in the
upper half plane Im z ≥ 0. The construction will be done in an auxiliary space of
Hölder continuous functions, which allows us to deal with the limits Im z → 0 on a
point-wise basis. For a Banach space X, let Cr,s0 (X) be the subspace of the globally
r-Hölder continuous functions f : [0,∞) → X, that vanish at λ = 0 and for which the
norm

∥f∥r,s = sup
λ>0

(1 + λ)s
(

∥f(λ)∥X + sup
|η|≤1

∥f(λ) − f(λ+ η)∥X
|η|r

)
. (5.49)

is finite.
These spaces restrict the coupling functions, which should satisfy α̃ ∈ Cr,s0 (L∞(M))

for some r, s > 1/2. In particular, this ensures that α̃ ∈ L2(R+, L
2(M)). Both for the

Lorentz and the Drude coupling we have α̃ ∈ C1,1
0 (L∞(M)).

Formulated for the integral kernel, Equation (5.47) for T (z) takes the form

t(λ, µ, z) = V (λ, µ) −
∫ ∞

0

V (λ, η)t(η, µ, z)
η2 − z

dη. (5.50)

For Im z > 0, and

t(λ, µ, ω2) = V (λ, µ) − lim
ε→0

∫ ∞

0

V (λ, η)t(η, µ, ω2)
η2 − ω2 − iε dη, (5.51)

for z = ω2 = limε→0 ω
2 + iε.

Observe that in these equations we may fix µ, z and then view them as an equation
for the function λ 7→ t(λ, µ, z) ∈ B(h). In order to obtain an equation for vector valued,
rather than operator valued, functions, we apply the whole equation to an arbitrary
but fixed vector φ ∈ h. Setting

τz(λ, µ) := t(λ, µ, z)φ (5.52)

we thus have an equation for the h-valued function λ 7→ τz(λ, µ), for every fixed
µ ∈ R+, Im z ≥ 0,

τz(λ, µ) = V (λ, µ)φ−
∫ ∞

0

V (λ, η)τz(η, µ)
η2 − z

dη

= V (λ, µ)φ−
∫ ∞

0
kz(λ, η)τz(η, µ)dη. (5.53)

For Im z = 0 this equation is interpreted as in (5.51) and extends the integral operator
Kz = V (Ω2

0 − z)−1 to this case. Our task is now to show that 1 +Kz is invertible. We
will achieve this by appealing to the Fredholm alternative and using the explicit form
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5 A model for plasmons in a finite medium

of the operators to show that the kernel is empty, which provides some simplifications
compared to the general case [14]. We must thus first show that Kz is compact, on an
appropriate space. For this, we use the following generalisation of the Arzelà-Ascoli
Theorem.

Lemma 5.5. Let r > r′ ≥ 0 and s > s′ ≥ 0. Any bounded set F ⊂ Cr,s(h), such that,
for every fixed λ, Fλ = {f(λ), f ∈ F} is pre-compact in h, is pre-compact in Cr

′,s′(h).

For the proof see [5].

Lemma 5.6. Let ρ ∈ S (R) and α̃ ∈ Cr,s0 (L∞(M)) with r, s > 1/2. Then for z ∈ C,
Im z ≥ 0, and every every r′, s′ ∈ [0, 1), with r′ < r, s′ < s, the operator Kz defines a
compact operator on Cr

′,s′

0 (h).

Sketch of the proof. Let Φ =
(
f
g

)
∈ Cr

′,s′

0 (h). We discuss the case z = ω2 ∈ R+

directly. The upper component of (Kω2Φ)(λ) equals (for j = 1, 2)

lim
ε→0

λ2ρ(λ)
(2π)3/2

∫ ∞

0

∫
M

α̃(x, η)e−iλθ·x⟨ej(θ), g(η, x)⟩C3

η2 − ω2 ± iε dxdη. (5.54)

Using the regularity of α̃, g and the fact that both vanish at zero, one can show that
the limit ε → 0 exists for all ω (this is the reason for assuming r > 1/2). The function
vanishes as λ → ∞ because of the cutoff ρ, and also at λ = 0 (here, the cutoff ρ
is crucial, since there is no reason why g should be regular and thus the expression
above might not decay for λ → ∞). Moreover, this defines a smooth function of λ,
as it is the Fourier transform of a function with support in M . One concludes that
it is an element of Cr,s0 (L2(S2,C2)). Moreover, for fixed λ, this is an element of the
pre-compact set of smooth functions in L2(S2,C2) with derivatives bounded in terms
of ∥g(µ, ·)∥L2(M).

For the lower component, a similar property follows easily from the properties of α̃,
ρ and the Fourier transform. Compactness of Kω2 is now a consequence of Lemma 5.5.

From this Lemma and the Fredholm alternative we conclude that, for fixed z, either
there is a unique τz(λ, µ), solution to the equation

τz = V φ−Kzτz, (5.55)

or otherwise the homogeneous equation

Φ = −KzΦ (5.56)

has at least one non-trivial solution. As we will now see, this does not happen for the
model we are interested in.
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Lemma 5.7. Assume the hypothesis of Theorem 5.3 hold. Then for z ∈ C with
Im z ≥ 0 and for any r, s > 1/2 the homogeneous equation (5.56) has no non-zero
solution in Cr,s0 (h).
Proof. For z in the resolvent set of Ω2

0, a solution Φ to the homogeneous equation
corresponds to an eigenfunction Ψ = (Ω2

0 − z)−1Φ of Ω̃2, since

(Ω̃2 − z)Ψ = Φ + V (Ω2
0 − z)−1Φ = 0. (5.57)

As Ω̃2 is self-adjoint and non-negative, this implies Φ = 0.
Now let z = ω2 ≥ 0 and let Φω be a solution to (5.56). By [14, Lem.4.1.3], we must

have Φω(ω2) = 0. By Eq. (5.44), the second component of the solution Φω(ω2) must
equal α̃(x, ω2)φω(x), for some φω ∈ L2(M,C3). Now for almost every x ∈ M we either
have α̃(x, ω2) = 0 or φω(x) = 0. The first case can only occur for ω = 0 by hypothesis.
In the latter case, α̃(x, λ)φω(x) vanishes for all λ, and Eq. (5.54) then gives Φω = 0.

This leaves only the possibility of a solution for ω = 0. To exclude this, consider
the equation satisfied by φ0 in this case. Using that the solution satisfies Φ0 = K2

0Φ0,
we obtain

φ0(x) = 1
(2π)3 lim

ε,δ→0

∫ ∞

0

∫ ∞

0

∫
S2

η4ρ(η)2eiηθ·(x−y)

η2 + iε
|α̃|2(x, ξ)
ξ2 − iδ

×
2∑
j=1

ej(θ)⟨ej(θ), φ0(y)⟩dηdξdydθ.

(5.58)

Since α̃ = W+(Aα, A0)∗α (cf. Section 5.2), we have

lim
δ→0

∫ ∞

0

|α̃|2(x, ξ)
ξ2 − iδ dξ = lim

δ→0
⟨α(x, ·), (Aα − iδ)−1α(x, ·)⟩ = F+(x, 0)

1 + F+(x, 0) =: F̃+(x, 0).

(5.59)

By Equation (5.33), this quantity is of absolute value less or equal to one. Taking the
limit ε → 0 and writing k = ηθ, dk = η2dηdθ we can rewrite the equation for φ0 as

φ0(x) = 1
(2π)3

∫
ρ2(|k|)eik(x−y)ej(k)⟨ej(k), F̃+(y, 0)φ0(y)⟩dydk, (5.60)

i.e., φ0 is an eigenfunction of this operator with eigenvalue one. But by F̃+ ≤ 1,
ρ ≤ 1 and isometry of the Fourier transform, this operator is a composition of maps
of norm at most one. The bound must thus be saturated at every step, and thus
∥ρ2(k)ψ̂(k)∥ = ∥ψ∥, where ψ(y) = F̃+(y, 0)φ0(y), has to hold. Hence, the support of
ψ̂ must lie in the set where ρ ≡ 1. Since limk→∞ ρ(k) = 0, this set is compact. But ψ̂
is the Fourier transform of a function with support in M , so an entire function. This
leaves ψ̂ ≡ 0 as the only possibility.

We have thus proved that the homogeneous equation has only the trivial solution.
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5 A model for plasmons in a finite medium

Note that we have used the cutoff ρ in this proof. In the case of the Lorentz
coupling (5.8), we have ImF+(0) = 0 and thus F̃+(0) < 1, so the argument would also
work for ρ ≡ 1. For the Drude coupling (5.9) on the other hand, we have F̃+(x, 0) = 1
for x ∈ M , and the assumption that ρ(k) → 0 really is needed.
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6 Effective equations for many-boson systems

In this chapter I summarise the works [11, 13, 4] on the derivation of effective equations
for many-boson systems. At very low temperatures, a system containing a large num-
ber of bosons is expected to exhibit Bose–Einstein condensation. This means that,
in the ground state or low-temperature equilibrium states with N ≫ 1 bosons, an
N -independent fraction of the bosons will participate in collective behaviour that can
be described by a single one-particle state, the condensate. The remaining particles
are considered to be excitations out of the perfect condensate, either due to tem-
perature or interactions. Bogoliubov proposed an approximate description of these
excitations by a free quantum field. Bose–Einstein condensation and Bogoliubov’s ap-
proximation have since been the subject of an extensive mathematical literature (see
[19, 17, 18, 16, 15, 2, 6, 8] and references therein). In the following, I will discuss the
justification of Bogoliubov’s theory and investigate its consequences in two specific sit-
uations. In the first, the bosons interact with an impurity particle, and in the second
with an additional bosonic quantum field.

6.1 The Bose polaron
The Bose polaron system consists of a large number N ≫ 1 of bosons together with
one, or few, particles of a different type. The latter are considered impurities in the
Bose gas, and the interaction with these will slightly disturb the Bose gas. If there
are only a few impurities, the interesting effects of this interaction should be visible
at the level of excitations from the condensate, since disturbing the whole condensate
would require an interaction energy of order N .

The system of N bosons and one impurity will be modelled by a Hamiltonian of the
form

HN = −∆x −
N∑
j=1

∆yi +
∑

1≤j<k≤N
VN (yj − yk) +

N∑
j=1

WN (x− yj) (6.1)

with one-periodic boundary conditions, where x denotes the position of the impurity
and yj that of a boson. The choice of the N -dependent potentials will differ in the
mean-field and dilute cases that we discuss separately below.

Due to the periodic boundary conditions, the condensate will simply correspond
to the constant function on the torus. A single excitation is thus modelled by a
function orthogonal to the condensate, i.e., with integral zero. The field of excitations
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6.1 The Bose polaron

can be represented on the Fock space Γ(H+) with H+ = {1}⊥ ⊂ L2(T 3). Following
Bogoliubov’s ideas leads to an effective description of the system of impurity and
excitations by a Hamiltonian of the form

−∆x + dΓ(ω) + a(vx) + a∗(vx) (6.2)

on L2(T 3
x ) ⊗ Γ(H+). Here, ω is the dispersion relation of the excitations, also called

phonons since they are responsible for the propagation of sound waves in the system,
and v is the effective phonon-impurity interaction. This is precisely the form of the
Hamiltonians whose self-adjoint realisation is discussed in Section 4.2.

6.1.1 Mean-field dynamics

We now explain the results concerning the Bogoliubov-Fröhlich Hamiltonian in the
mean-field setting of [11]. The mean-field limit corresponds to weak interactions at
high density and the choice of potentials

VN (y) = N−1V (y), WN (x) = N−1/2W (x), (6.3)

for fixed V,W ∈ L2(T 3). In the case of V , this choice is motivated by asking that
the interaction energy, which may be proportional to the number of boson pairs times
VN , to be of order N , like the kinetic energy. For W , the coupling strength N−1/2 is
chosen so that the interaction of the particle with excitations out of the condensate
is comparable to the energy of these exciations, as we now explain. If all the bosons
condense in the state u0 ≡ 1, then the energy of the system with (normalised) impurity
wave-function ψ would be

〈
ψ ⊗ u⊗N

0 ,
N∑
j=1

WN (x− yj)ψ ⊗ u⊗N
0

〉
= ⟨ψ,ψ⟩N

∫
WN =

√
N

∫
W. (6.4)

This is large, but since the condensate is homogeneous it is a constant and will only
modify the dynamics by a global phase. The first non-trivial contribution of the boson-
impurity interaction will be seen in states with some excitations. Let φ ∈ H+, then

Φ = 1√
N

N∑
j=1

u
⊗(N−j)
0 ⊗ φ⊗ u

⊗(j−1)
0 (6.5)

is a normalised element of L2(T 3)⊗sN . One easily calculates using the orthogonality
of u0, φ,

〈
ψ ⊗ Φ,

N∑
j=1

WN (x− yj)ψ ⊗ Φ
〉

= N − 1√
N

∫
W +N−1/2⟨ψ ⊗ φ,Wψ ⊗ φ⟩, (6.6)
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6 Effective equations for many-boson systems

and 〈
ψ ⊗ Φ,

N∑
j=1

WN (x− yj)ψ ⊗ u⊗N
0

〉
= ⟨ψ ⊗ φ,Wψ ⊗ u0⟩. (6.7)

We see in (6.6) a constant term, and a term that appears to be small, while the
coupling between the states with one and zero excitations (6.7) is of order one.

The extraction of the different terms observed above from the interaction is conve-
niently implemented by the excitation map [16, 15],

UX : L2(T 3)⊗sN → Γ(H+), u⊗j
0 ⊗s Φ 7→ Φ, (6.8)

where Φ ∈ H
⊗s(N−j)
+ , and the normalisation of the symmetric tensor product is such

that this is an isometry, i.e., as in (6.5). Identifying L2(T 3)⊗sN with a subspace of
Fock space, the map can be expressed as

UX =
N⊕
j=0

P⊗j
+

a(u0)N−j√
(N − j)!

, (6.9)

with the orthogonal projection P+ : L2(T 3) → H+. With this formula, one easily
checks that

UX

N∑
j=1

WN (x− yj)U∗
X = (N − N+)+√

N

∫
W +N−1/2dΓ(P+WxP+) (6.10)

+ a∗(P+Wxu0)
√

(N − N+)+√
N

+
√

(N − N+)+√
N

a(P+Wxu0)

with N+ the number operator on Γ(H+) and Wx(y) = W (x − y), as before. Observe
that, assuming N+ is of order one, the leading non-trivial interaction term is a linear
coupling with form factor v = P+Wu0 = W −

∫
W .

Similarly, we can write (see [11, Lem.3.1], [13, Prop.4.2])

UX
∑

1≤j<k≤N
VN (yj − yk)U∗

X = 1
2(N − 1)

∫
V + L2 + L3 + L4 (6.11)

with (as quadratic forms on Γ(H+))

L2 = (N − N+)+dΓ(VN∗) (6.12)

+ 1
2

√
(1 − N+/N)+

√
(1 − (N+ + 1)/N)+

∫
NVN (y1 − y2)ay1ay2 + adj.,

L3 = 1
2

√
(1 − N+/N)+

∫ √
NVN (y1 − y2)a∗

y1ay2ay1 + adj., (6.13)

L4 = 1
2

∫
VN (y1 − y2)a∗

y1a
∗
y2ay1ay2 . (6.14)
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6.1 The Bose polaron

There is no term “L1” linear in creation and annihilation operators, since u0 is con-
stant, and thus V ∗ |u0|2 is orthogonal to H+. Note that L3 carries a pre-factor N−1/2

and L4 a factor N−1 due to the definition of VN . The Bogoliubov Hamiltonian is
obtained by adding dΓ(−∆) to L2 and setting N+/N to zero, i.e.,

HBog = dΓ(−∆) + dΓ(V ∗) + 1
2

∫
V (y1 − y2)ay1ay2 + adj. . (6.15)

Under appropriate conditions on V , this operator is essentially self-adjoint on the
domain of dΓ(−∆) ⊂ Γ(H+). It is unitarily equivalent to dΓ(ω(i∇))+E0 for a constant
E0 and ω(k) =

√
k4 + 2V̂ (k)k2 (see [22]), but we will not make use of this here.

The Bogoliubov-Fröhlich Hamiltonian for the mean-field model is then

HBF = −∆x +HBog + a(P+Wx) + a∗(P+Wx). (6.16)

It is self-adjoint on H2(R3) ⊗ Γ(H+) ∩D(HBog).
The main result of [11] concerns the difference of the dynamics generated by HN

to those of HBF when intertwined by UX . The hypothesis on the initial conditions
ΨN for HN amounts to the fact that the number of excitations remains finite (almost
surely) for N → ∞. Without loss of generality we set the integrals of V,W to zero
here.

Theorem 6.1. Let V,W ∈ L2(T 3) be real-valued, even and satisfy
∫
V = 0 =

∫
W .

Let ΨN ∈ L2(T 3) ⊗ L2(T 3)⊗sN be a sequence such that UXΨN converges to Φ ∈
L2(T 3) ⊗ Γ(H+) for N → ∞. Then

lim
N→∞

∥∥∥UXe−itHN ΨN − e−itHBFΦ
∥∥∥
L2(T 3)⊗Γ(H+)

= 0

locally uniformly in t. If moreover Φ ∈ D(−∆x + dΓ(ω)), there exist v,K > 0 so that
for all N ∈ N, t > 0∥∥∥UXe−itHNU∗

XΦ − e−itHBFΦ
∥∥∥
L2(T 3)⊗Γ(H+)

≤ KevtN−1/4.

The statement in [11] holds for any dimension d ∈ N. We reproduce it here for d = 3
to keep the notation consistent throughout the chapter.

To prove this theorem, it is sufficient to show the second, quantitative bound, which
implies the first by a straightforward approximation argument. The key point is to
control

α(t) =
∥∥∥(N+ + 1)UXe−itHNU∗

XΦ
∥∥∥2

(6.17)

using a Grønwall argument. For this, the commutators [N+, UXHNU
∗
X ] need to be

bounded by N+. For terms in UXHNU
∗
X that are at most quadratic in the creation
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6 Effective equations for many-boson systems

and annihilation operators this is immediate, due to the commutation relations. For
the higher-order terms L3, L4, one can exploit that UXHNU

∗
X preserves the space with

less than N excitations and bound any excess creation/annihilation operators using
the factors N−1/2. The bound on α can then be used to bound the difference of HBF
and UXHNU

∗
X acting on the solution, and thus the difference of the evolutions using

Duhamel’s formula.

6.1.2 Excitation spectrum of a dilute system

In the article [13], we study the Hamiltonian HN from (6.1) in a scaling corresponding
to a dilute system of bosons with density N−2. In this case, we have

VN (y) = N2V (Ny), WN (x) = NW (
√
Nx), (6.18)

for compactly supported, non-negative potentials V,W ∈ L2(R3), whose scaled ver-
sions have support in the unit square and thus define potentials on the torus. Note
that NVN and

√
NWN tend weakly to the δ distribution (multiplied by their inte-

gral) as N → ∞, so one may think of this case as a mean-field limit with singular
interaction.

In [13] we give an expansion of the ground state energy inf σ(HN ) in N . We also
relate the excitation spectrum, the difference of the eigenvalues to the ground state, of
HN to that of the corresponding Bogoliubov-Fröhlich Hamiltonian. The corresponding
analysis in the mean-field situation of Section 6.1.1 was previously done by Myśliwy
and Seiringer [20].

Bogoliubov theory for the dilute Bose gas was studied in [2, 8, 19, 17]. There, it was
proved that the excitation spectrum can be described by the Bogoliubov Hamiltonian

HBog = dΓ(ω(i∇)), ω(k) =
√
k4 + 16πaV k2, (6.19)

where aV is the scattering length, defined for a potential U ∈ L1(R3,R) by

4πaU := inf
φ∈H1(R3)

∫ (
|∇φ(x)|2 + 1

2U(x)|1 + φ(x)|2
)
dx. (6.20)

For U ≥ 0 one observes that 4πaU ≤ 1
2
∫
U by choosing φ = 0. Note that simply

setting the potential VN to N−1 ∫ V times δ yields a different dispersion ω, with 16πaV
replaced by 2

∫
V . The correct formula for ω is the result of taking into account how

the singularity affects the terms that could simply be treated as errors in the mean-
field case. Representing the interaction in the excitation picture as in (6.10) and with
the heuristics that

∫
W should be replaced by 4πaW , the impurity-boson interaction

becomes

v̂(k) = 4πaW

√
k2

ω(k) , (6.21)
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6.1 The Bose polaron

where the k-dependence is due to the Bogoliubov transformation that relates the the
quadratic Hamiltonian (6.15) to dΓ(ω) (cf. [22]). The Bogoliubov-Fröhlich Hamilto-
nian

−∆x + dΓ(ω) + a∗(vx) + a(vx) (6.22)

is thus precisely the periodic version of the one whose construction was discussed in [10]
and Chapter 4.2.3. For given N , the actual interaction in the excitation representation
is of the form

a∗(P+
√
NWN ) + a(P+

√
NWN ), (6.23)

which corresponds to an ultraviolet cutoff at scale
√
N . From the construction in [10]

we thus expect that the interaction gives a divergent contribution to the energy of the
form (cf. (4.88))

EN = e1
√
N + e2 logN + O(1). (6.24)

The first result of [13] is that this is indeed the case. The term of order
√
N is

responsible for changing the term
∫
W

√
N from (6.10) to 8πaW

√
N , and the logN -

term gives a new contribution to the energy. This is universal in the sense that it
depends only on the scattering length of W but not on the details of the interaction.
The precise statement is:

Theorem 6.2 (Expansion of the N -particle energy). Let V,W ∈ L2
comp(R3,R) be

non-negative, W even and V radial. Then as N → ∞

inf σ(HN ) = 4πaVN + 8πaW
√
N − 32π(2π/3 −

√
3)a4

W logN + O(1).

The second result of [13] is that the excitation spectrum is given, in the limitN → ∞,
by that of the Bogoliubov-Fröhlich Hamiltonian on the torus, which is constructed
using a version of Theorem 4.11.

Theorem 6.3 (Excitation spectrum). Let V,W ∈ L2
comp(R3,R) be non-negative, W

even and V radial. Let HBF, D(HBF) be the self-adjoint operator associated to the
expression (6.22) by Theorem 4.11. For n ∈ N0 denote by en(H) the n-th min-max
value of the operator H. Then

lim
N→∞

(
en(HN ) − e0(HN )

)
= en(HBF) − e0(HBF).

The assumption that V be radial is used to obtain an a-priori bound on the number
of excitations. The statements remain true for non-radial V if that bound holds
(compare [13, Condition 4.1]).

As corollaries to the proof of Theorem 6.3, one also obtains estimates on the spectral
projections of HN and the dynamics. We give here the statement for the latter, which
may be compared with Theorem 6.1.
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6 Effective equations for many-boson systems

Corollary 6.4. Assume the hypothesis of Theorem 6.3 and let UX be the excita-
tion map defined in (6.8). There is a unitary UB (the Bogoliubov transformation
of the bosonic system) so that for any sequence ΨN such that UXΨN converges to
Φ ∈ L2(T 3) ⊗ Γ(H+) for N → ∞

lim
N→∞

UXe−it(HN −e0(HN ))ΨN = UBe−it(HBF−e0(HBF))U∗
BΦ

in the norm of L2(T 3) ⊗ Γ(H+).

The N boson Hamiltonian (6.1) can be related to a system in the thermodynamic
limit by scaling. Consider a gas of bosons with density ρ in the thermodynamic limit.
Assume that the boson-boson interaction has scattering length a and that the system
is dilute, meaning that ρa3 ≪ 1. The system also contains impurities with density ρI
that interact with the bosons via a potential with scattering length aI.

Now, consider a subsystem of the Gross-Pitaevski scale L = a(ρa3)−1/2. The ex-
pected number of bosons in this system is N = (ρa3)−1/2. If we choose

ρI/ρ =
√
ρa3 (6.25)

there is on average one impurity in a subsystem of this size. Assuming that there is
exactly one impurity, the Hamiltonian for the subsystem becomes after rescaling by L

L2H̃L = −∆x+
n∑
i=1

(−∆yi) +
∑

1≤i<j≤n
L2V (L(yi−yj)) +

n∑
i=1

L2W (L(x−yi)). (6.26)

The length scale of the boson-boson interaction is now a/L =
√
ρa3 = N−1. If we

choose the relative range of the interactions as

aI/a = (ρa3)−1/4, (6.27)

then aI/L = (ρa3)1/4 = N−1/2, i.e., L2H̃L can be written in the form of HN from (6.1)
with VN , WN as in (6.3). Assuming that the energy of every subsystem of size L
behaves like inf σ(HN ) gives a conjecture on the expansion of the energy per volume.

Conjecure. The energy per volume has the following asymptotic expansion as ρa3 → 0

e(ρ, ρB) = 4πaρ2
(
1 + 2(ρa3)1/4 − 4(2π/3 −

√
3)(ρa3)1/2 log(ρa3) + O((ρa3)1/2)

)
,

Note that the last term in this expansion is larger than the well-known Lee-Huang-
Yang correction to the energy of the dilute Bose gas [6, 7, 14], which is of the order of
the error term.
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6.1 The Bose polaron

Remark 6.5. The logN -term in the expansion of the energy can be interpreted
as a three-body effect. It is well known that potentials of the form (6.3) lead to
important pair-correlations at short distances, where the potential is strongly repulsive
and particles must avoid each other. For the case of the interaction W , the relevant
length scale is N−1/2, and on this scale the behaviour for a boson and the impurity
is given by the minimiser φ in (6.20), i.e., the optimal wave function for a pair is
approximately

1 + φ(
√
N(x− y)) (6.28)

for |x− y| ≲ N−1/2. If we make the ansatz

Ψ(x, y1, y2) = (1 + φ(
√
N(x− y1)))(1 + φ(

√
N(x− y2)))Φ(x, y1, y2) (6.29)

for the three-particle wave-function of two bosons and the impurity, then the action
of the Hamiltonian H2 gives rise to the term

N∇φ(
√
N(x− y1))∇φ(

√
N(x− y2))Φ(x, y1, y2). (6.30)

This can be interpreted as an effective three-body potential acting on Φ, and the logN -
term in Theorem 6.2 is precisely the scattering length of this potential multiplied by
the number of boson pairs ∼ N2/2.

A similar term in the energy expansion of the pure boson system was predicted in the
physics literature [23, 9, 21], and recently established rigorously in the Gross-Pitaevski
limit [3].

The proof of the results described above is quite involved, since one needs to perform
both the analysis of the Gross-Pitaevski limit for the bosons and the construction of
the Bogoliubov-Fröhlich Hamiltonian in the presence of additional terms coming from
the interaction. A rough outline of the procedure is as follows.

1) Use UX to transform HN into UXHNU
∗
X on L2(T 3) ⊗ Γ(H+).

2) Apply a Bogoliubov transformation Uq, whose generator is quadratic in boson cre-
ation and annihilation operators. This implements the idea that in low energy
states the wave-function should behave like 1 + φV (N(yi − yj)) when a pair of
bosons is close, |yi − yj | ≲ N−1, where φV is the minimiser of (6.20) with U = V .
This transformation makes the scattering length aV appear at the leading order of
the energy.

3) Apply a Weyl-transformation UW , which additionally depends on the impurity
position x. This implements the behaviour as 1+φW (

√
N(x−yi) for |x−yi| ≲ N−1/2

and makes the scattering length aW appear in the energy asymptotics.
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6 Effective equations for many-boson systems

4) Apply a transformation Uc to the boson Hamiltonian whose generator is cubic in
creation and annihilation operators. This accounts for scattering processes that
mix low and high energy bosons and is responsible for the scattering length aV
appearing in ω, (6.19).

5) Apply Bogoliubov’s transformation UB, which transforms the remaining boson
Hamiltonian into the simple expression dΓ(ω) plus error terms.

6) After these transformations, one has, schematically

U∗HNU ≈ 4πaV (N − 1) + 8πaW
√
N + e

(U)
N

+ (HBF,ΛN
− e1ΛN ) +N−1/2dΓ(WN,x),

where e(U)
N is a scalar of order one andHBF,ΛN

is essentially the Bogoliubov–Fröhlich
Hamiltonian with an N -dependent cutoff ΛN . The final step is thus to take the
limit ΛN → ∞, as explained in Chapter 4, which will make the logN -term appear.
However, there is an additional term N−1/2dΓ(WN,x) present here, which does not
make sense in the limit, but is also not negligible (a scaling argument suggests it
is of order one). This difficulty is resolved by noticing that this term contributes
only a constant at order one, plus smaller errors. Hence, it does not modify the
Bogoliubov–Fröhlich Hamiltonian describing the excitation spectrum in the limit.

6.2 The mean-field Nelson model
In the article [4] we consider a system of many bosons, weakly coupled to a scalar
quantum field. We derive the mean-field equations for the condensate and a classical
field, and prove the validity of Bogoliubov’s approximation for the excitations.

The formal expression of the Hamiltonian of the full system is

N∑
j=1

−∆xj + dΓ(ω(i∇)) + 1√
N

N∑
j=1

(
a(vxj ) + a∗(vxj )

)
, (6.31)

where ω(k) =
√
k2 + 1 and v̂(k) = ω(k)−1/2 correspond to the Nelson model, cf.

Section 4.2.2. This expression is ultraviolet singular, but one can associate it with a
self-adjoint operator HN , D(HN ) ⊂ HN = L2(R3)⊗sN ⊗ Γ(L2(R3)) by Nelson method
(explained briefly in Section 4.2.2 and below), or a generalisation to N -particles of
Theorem 4.10 (see [12]).

The results of [4] prove an approximation of the dynamics generated by this operator
HN on initial conditions that describe a condensate of particles with a coherent field.
It had been shown in [1] that the time evolution of HN can be approximated, in a
certain weak sense, by the flow of the Schrödinger-Klein-Gordon equations for N → ∞.
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6.2 The mean-field Nelson model

The dynamics of states describing a condensate, and fluctuations around them, were
discussed for the model with an ultraviolet cutoff in [5]. The novelty of our work [4]
consists in removing the ultraviolet cutoff, with the most interesting feature being the
effect on the dynamics of excitations.

Mean-field approximation. For an initial state ΨN where the particles form a
condensate with wave-function u0 and the field is in a coherent state with f =

√
Nα0

(meaning that there are on average N bosons, each with wave-function α0), the time-
evolution e−iHN tΨN will be approximately of the same form, but with different func-
tions (ut, αt). These are determined by solving the Schrödinger-Klein-Gordon equa-
tions {i∂tut(x) = −∆u(x) + φαt(x)u(x) − 1

2⟨u, φαtu⟩ut(x)

i∂tαt(k) = ω(k)αt(k) + ω−1/2(k) ̂|ut|2(k) ,
(6.32)

where φα(x) = 2Re ⟨v̂x, α⟩, with initial condition (u0, α0). This is a Hamiltonian
system of equations with energy

E(u, α) = ⟨u, (−∆ + φα)u⟩ + ⟨α, ωα⟩. (6.33)

In order to capture the corrections to this mean-field picture, we need a generalisa-
tion of the excitation map introduced in (6.8) to allow for a time-dependent condensate
and accommodate the field. Let f ∈ L2(R3) and define the associated Weyl transfor-
mation as

W (f) = exp(a∗(f) − a(f)). (6.34)

The coherent state generated by f is simply W (f)Ω, where Ω ∈ Γ(L2(R3)) is the
vacuum. It is thus mapped back to the vacuum by W ∗(f), so W (f)∗Φ describes the
excitations of an arbitrary Φ ∈ Γ(L2(R3)) relative to the coherent state generated by
f . For the particles, we simply allow the condensate wave-function in (6.9) to be any
normalised element u of L2(R3), and define

UX(u, α) : HN → Γ(L2(R3)) ⊗ Γ(L2(R3))

Ψ 7→
( N⊕
j=0

P⊗j
{u}⊥

a(u)N−j√
(N − j)!

⊗ 1
)(

1 ⊗W ∗(
√
Nα)

)
,

(6.35)

with P{u}⊥ the orthogonal projection to {u}⊥. The image of this isometry is the
subspace

UX(u, α)HN =
( N⊕
j=0

(
{u}⊥)⊗sN

)
⊗ Γ(L2(R3)) ⊂ Γ

(
{u}⊥ ⊕ L2(R3)

)
. (6.36)
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The operator

UX(u0, α0)∗dΓ(1{u}⊥⊕L2)UX(u0, α0) (6.37)

thus corresponds to the number of excitations relative to the mean-field state defined
by (u, α).

By the results of [1, 5], which are extended in [4] to give quantitative bounds without
an UV cutoff, the functions u, α should follow the flow of the equations (6.32). In [4,
Theorem 1.1] we prove a quantitative version of this result, which can be summarised
as follows.

Theorem 6.6. Let (u0, α0) ∈ H3(R3) ⊕ FH5/2(R3) and denote by (ut, αt) the unique
solution to (6.32) with initial condition (u0, α0). Let (ΨN )N∈N be a sequence in HN

with

N−1⟨UX(u0, α0)ΨN , dΓ(1{u}⊥⊕L2)UX(u0, α0)ΨN ⟩ = O(N−1)∣∣N−1⟨ΨN , HNΨN ⟩ − E(u0, α0)
∣∣ = O(N−1/2),

then

N−1⟨UX(ut, αt)e−iHN tΨN , dΓ(1{u}⊥⊕L2)UX(ut, αt)e−iHN tΨN ⟩ = O(N−1/2)

locally uniformly in time.

This theorem means that if at an initial time the fraction of excitations is N−1 and
the energy per particle is close to the mean-field energy up to order N−1/2, then at
later times the ratio of excitations with respect to the time-evolved condensate is still
at most N−1/2. Simply evolving the condensate functions u, α thus accounts for the
vast majority of particles and, e.g., the (normalised) one-particle density matrix of the
time evolved state converges to the one of the evolved condensate for all time.

The apparent loss in the estimates of the particle number at time t compared to
that at time zero stems from a bound on derivatives of UX(u0, α0)ΨN involving the
mean-field energy E and the square-root of the particle number. A result without
such loss can be proved by adapting the hypothesis, but the condition on the energy
difference seems more natural from a physical point of view.

Note that this theorem cannot be applied to the state

ΨN = u⊗N
0 ⊗W (

√
Nα0)Ω (6.38)

with no excitations, since it is not in the form domain of HN (compare Section 4.2.2)
and has infinite energy. However, slight modifications of this state do satisfy the
hypothesis of the theorem, see [4, Proposition 1.2].
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Bogoliubov approximation. In order to approximate the dynamics of the full
system, and not only the majority of particles, one needs to include the dynamics of
the excitations. Setting Φ(t) = UX(ut, αt)e−iHN tΨN , these are exactly given by the
equation

i∂tΦ(t) = UX(ut, αt)HNU
∗
X(ut, αt) + i(∂tUX(ut, αt))U∗

X(ut, αt)Φ(t). (6.39)

Evaluating the expression for the generator yields a sum of terms weighted by powers
of

√
N . The term of order N is scalar, and the non-trivial terms of order

√
N are

eliminated by using the mean-field equation (6.33). Dropping terms with negative
powers of

√
N yields the generator of the Bogoliubov dynamics

dΓ(hα(t)) ⊗ 1 + 1 ⊗ dΓ(ω) +
∫ (

P{ut}⊥ v̂(·)(k)ut
)
(x)akb∗

x + adj.

+
∫ (

P{ut}⊥ v̂(·)(k)ut
)
(x)a∗

kb
∗
x + adj. , (6.40)

where hα(t) = −∆ + φαt − 1
2⟨ut, φαtut⟩. We used here the representation of the

excitation space as a tensor product (6.36) with creation/annihilation operators b∗, b
for the first (particle) factor, and a∗, a for the field. However, this expression is singular.
Since v̂, ω−1/2v̂ are not square-integrable, the interaction term in the second line is
not a (form) perturbation of the first line.

One could imagine giving a meaning to this expression using the techniques of
chapter 4, but this is not straightforward since using hα to control the regularity of
the interaction leads to a loss of control of the number of excitations of the field.

In order to give a meaning to the dynamics generated by the time-dependent expres-
sion (6.40), we used in [4] an approach that is inspired by Nelson’s original construction
of the Hamiltonian HN . This construction relies on the use of the dressing transfor-
mation

WD =
N∏
j=1

W
(
N−1/2(−∆ + ω)−1vxj

)
. (6.41)

This maps the form domain D(H1/2
N ) to the one of the free operator ∑N

j=1(−∆xj ) +
dΓ(ω), and the quadratic form of HN to that of a dressed operator HD

N , which is a
form perturbation of the free operator. It is the product of exponentials of commuting
operators, so we may think of it as the evaluation at “time” θ = 1 of a unitary group
WD(θ). The generator of this group inherits the mean-field scaling. In fact, it is
very similar to the interaction term in (6.31) but with the new form factor wx =
i(−∆ + ω)−1vx. We can thus associate to WD(θ) a mean-field approximation, which
is a flow acting on the condensate functions (u0, α0). At θ = −1, this flow reaches
a point D(u0, α0), which defines a non-linear transformation of (u0, α0). This can
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be seen as a dressed initial condition, and if UX(u0, α0)ΨN has few particles, then
UX(D(u0, α0))WDΨN also has few particles, which are now excitations relative to
the condensate given by the pair D(u0, α0). One can calculate the generator of the
dynamics in the auxiliary time θ of these excitations and its Bogoliubov approximation
as above. Since the form factor wx is more regular (it is an element of L2(R6)), it is
not difficult to prove that the latter generates a two-parameter family of Bogoliubov
transformations WD(θ, θ′) that approximates WD.

Now, the dressed Hamiltonian HD
N = WDHN (WD)∗ is also more regular than HN .

It is associated to a mean-field equation whose solution is D(ut, αt), the dressed version
of the solution to (6.32). Considering excitations with respect to this pair gives rise
to a Bogoliubov Hamiltonian, which is well defined as a quadratic form and generates
a two-parameter family UD(t, s) of Bogoliubov transformations (cf. (5.21)). One may
thus define the dynamics formally associated with the singular expression (6.40) by
U = (WD)∗UDWD (where the time variables and the dependence on the mean-field
solutions are suppressed).

The main results of [4] may be summarised as the commutativity of the following
diagram for N → ∞, with quantitative estimates for each cycle.

ΦD ΦD(t)

WDΨN e−itHD
NWDΨN

Φ Φ(t)

aΨNa e−itHN ΨN

WD

UD

(WD)∗
UX(D(u0,α0))

UX(D(ut,αt))

U

UX(u0,α0) UX(ut,αt)

Figure 6.1: The diagram commutes up to small errors in N . The exact dynamics are represented in the front
plane, with the Bogoliubov approximations in the second plane. Note the dependence of the excitation maps
on the solutions to the mean-field equations.

The commutativity of the diagram is reasonable from a geometric point of view: The
Bogoliubov approximation is essentially a projection of the dynamics to the manifold of
quasi-free states. As long as this is performed in a unique way, the result of projecting
after a unitary dynamics or projecting at the start and then following the induced
dynamics must be equal.

For rather general initial conditions, and thus without an explicit rate of conver-
gence, the result can be stated as follows.
Theorem 6.7. Let (u0, α0) ∈ H3(R3) ⊕ FH5/2 with ∥u0∥L2(R3) = 1 and let (ut, αt)
denote the solution to (6.32) for initial data (u0, α0). Let Φ ∈ Γ({u0}⊥) ⊗ Γ(L2(R3))
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with ∥Φ∥ = 1 and let ΨN , N ≥ 1, be such that

lim
N→∞

∥ΨN − U∗
X(u0, α0)Φ∥HN

= 0.

Then for all T > 0

lim
N→∞

sup
|t|≤T

∥e−itHN ΨN − U∗
X(ut, αt)U(t)Φ∥HN

= 0.

By imposing restrictions on the initial conditions Φ = UX(u0, α0)ΨN , one obtains
a rate of convergence of N−1/4 logNep(t) for a polynomial p. Note that this is similar
to the rate in Section 6.1.1, with an additional logN reflecting the singularity of the
model.

The proof of this theorem makes use of the dynamics with ultraviolet cutoff, i.e.,
where the interaction form factor is replaced by vΛ(k) = ω(k)−1/21|k|≤Λ. For this
interaction, the Bogoliubov Hamiltonian (6.40) is easily shown to be essentially self-
adjoint on the domain of the non-interacting Hamiltonian dΓ(hα + ω) and generate
a two-parameter family of Bogoliubov transformations. As a byproduct, we obtain a
characterisation of the Bogoliubov dynamics U as the limit of the regularised Bogoli-
ubov dynamics UΛ.

Proposition 6.8. The Bogoliubov transformation U(t, s) = (WD)∗UD(t, s)WD satis-
fies

U(t, s) = s–lim
Λ→∞

UΛ(t, s)e−iEΛ(t,s) (6.42)

for a family EΛ(t, s) = −4π(t− s) log Λ + O(1).

The divergence of the numbers EΛ is exactly the same as in Nelson’s construction
of HN , so, in a sense, the singularity is already fully captured at the level of the
Bogoliubov approximation.
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Notation

Symbol Explanation

N Natural numbers (not including zero!)
N0 N ∪ {0}
R+ Non-negative real numbers, R+ = [0,∞)
S (Rd) Space of Schwartz functions on Rd

S ′(Rd) Space of tempered distributions on Rd

Ck(U) Space of k-times continuously differentiable functions U → C
Ck0 (U) Functions in Ck(U) with compact support, suppf ⋐ U

Ckb (U) Bounded functions in Ck(U) with bounded derivatives
Hs(Rd) L2-Sobolev space of order s ∈ R
Hs

0(U) Closure of Ck0 (U) in Hs(Rd)
B(X,Y ) Space of bounded linear operators from X to Y
B(X) Space of bounded linear operators on X, B(X,X)
X ′ Space of bounded linear functionals on X, B(X,C)
Sp(H) Schatten space of p-summable operators on H
K(X) Space of compact linear operators on X, K(H) = S∞(H)
Γ(H) Symmetric Fock space over H, Γ(H) = ⊕∞

n=0 H⊗sn

a(f) Annihilation operator, ⟨Φ(n−1), a(f)Ψ(n)⟩ =
√
n⟨Φ(n−1) ⊗ f,Ψ(n)⟩

a∗(f) Creation operator, a∗(f)Ψ(n) =
√
n+ 1Psymf ⊗ Ψ(n)

Γ(T ) Second quantisation of the transformation T , Γ(T ) = ⊕∞
n=0 T

⊗n

dΓ(A) Second quantisation of the generator A, edΓ(A) = Γ(eA)
N Number operator, N = dΓ(1)
1U Characteristic function of the set U , or identity operator on the vector

space U
F Fourier transform, Ff(k) = 1

(2π)d/2

∫
e−ikxf(x)dx
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