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Résumé [FR]

Ce document présente les travaux de thèse effectués par M. Javier
CUADRADO ANÍBARRO lors de son contrat en tant qu’étudiant en thèse
au sein du Centre de Recherche Cerveau et Cognition (CerCo - CNRS UMR
5549) à Toulouse entre Septembre 2021 et Août 2024. Ce projet de thèse,
rendu possible grâce au financement attribué par l’Agence Nationale de la
Recherche (ANR) au projet DeepSee (bourse ANR-20-CE23-0004-04), a eu
pour but le développement d’algorithmes de vision artificielle, reposant sur
les réseaux de neurones impulsionnels, pour la prédiction du flux optique à
partir des données issues des caméras événementielles.

Le premier pilier sur lequel ce projet de thèse trouve son socle est le
flux optique, c’est à dire, le champ de vitesse dans la scène visuelle, dû
à la fois au mouvement relatif entre l’observateur et la scène et à leur
profondeur rélative. Cette grandeur a une importance clé chez les êtres
vivants, notamment due à sa contribution pour la détection des obstacles
et à leur évitement. Pour ces raisons, elle a été étudiée en profondeur en
vue de potentielles applications dans le domaine de la navigation artificielle
(e.g. déploiement dans des voitures autonomes). Par ailleurs, le flux
optique est une grandeur essentiellement dynamique, qui prend en compte
non seulement l’information spatiale (i.e. la profondeur) mais surtout la
temporalité des informations (une scène sans mouvement présenterait un
champ de flux optique nul), et ce sont en effet les informations liées à la
temporalité du mouvement qui joueront le rôle principal dans son estimation.

La deuxième composante de ce projet de thèse repose sur les caméras
basées sur des événements (event cameras, ECs, ou event-based sensors,
EBSs). Ce type de capteur se différentie des caméras conventionnelles
principalement dans son fonctionnement: au lieu de produire une image
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2 RÉSUMÉ

(frame) dense avec une cadence fixe, les EBSs sont constitués par des
pixels asynchrones, qui déclenchent des événements quand les variationes
locales de luminosité dépassent un certain seuil préfixé, soit avec une polarité
positive pour des increments de luminosité, soit avec une polarité négative
pour des décrements. Ces capteurs, inspirés du fonctionnement des cellules
ganglionnaires trouvées dans la rétine des animaux, présentent plusieurs
avantages par rapport à leur contrepartie basée sur des frames, à savoir:

• Latence inférieure: les pixels des EBS sont capables de déclencher des
événements avec un délai dans l’ordre de grandeur des microsecondes,
ce qui les rend capables de fonctionner virtuellement en temps réel.

• Gamme dynamique très large: les EC peuvent fonctionner dans une
pléthore de conditions lumineuses, avec de très rapides variations
d’intensité lumineuse, sans poser des problèmes de saturation. Cette
propriété est cruciale pour des scénarios de conduite, car elle permet
l’utilisation de ce type de caméras dans des situations très diverses: en
journée, le soir, dans des tunnels, etc.

• Efficacité énergétique: contrairement aux caméras traditionnelles,
qui produissent une image à chaque pas de temps indépendamment
des variations dans la scène visuelle, les EC ne produissent pas
d’événements lors que la scène reste statique (en absence de mouvement
rélatif). Par conséquent, la production d’information est déclenchée
par les variations de luminosité dans la scène, sans redondance
d’information.

En revanche, ces avantages sont mitigés par les désavantages de ce type
de capteur, consistant surtout en un manque d’information sur la vraie
intensité lumineuse (la seule information disponible est liée aux variations
de luminosité), à une faible résolution spatiale (normalement de l’ordre des
Megapixels) et à leur coût économique élevé. Toutefois, l’information de
nature éminemment temporelle qu’elles produissent, intrinsiquement liée
au mouvement, se présente comme étant particulièrement adaptée pour
la prédiction du flux optique. Dès lors, une absence de mouvement serait
répresentée à la fois par une absence de flux optique et d’événements. Ainsi,
nous avons décidé de choisir cette famille de capteurs pour le développement
de notre modèle.
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Enfin, le troisième pilier de ce projet de thèse est les réseaux de neurones
impulsionnelles (spiking neural networks, SNNs). Ce type de neurones
artificiels, inspirés des neurones biologiques trouvés dans le cerveau des
animaux, présente deux différences clés par rapport aux neurones artificielles
analogiques souvent trouvées dans les modèles d’apprentissage profond:

• Les neurones impulsionnels, tout comme les neurones biologiques,
présentent une récurrence (mémoire) intrinsèque, répresentée par le
potentiel de membrane du neurone. Ce potentiel est affecté par les
connexions présynaptiques des neurones afférents, ainsi que par le
phenomène de fuite cherchant à ramener le potentiel de membrane vers
sa valeur de repos.

• Quand la valeur du potentiel de membrane dépasse un certain seuil,
une impulsion (spike) se déclenche. À ce moment-là, une information
binaire est trainsmise aux neurones post-synaptiques, et la valeur du
potentiel de membrane est remise à sa valeur de reset.

Nous pouvons constater que ce type de neurones artificielles semblent
être adaptées pour le traitement des informations temporelles, notamment
à cause des phenomènes de mémoire/oubli répresentés par le couple
potentiel/fuite. Par ailleurs, en absence d’information d’entrée, aucune
impulsion ne pourra pas être déclechée (en absence de biais dans le modèle),
et aucune information ne sera traitée, ce qui rend les SNNs très efficaces en
termes de consommation d’énergie quand déployés sur des puces dédiées.
De plus, cette propriété est pertinente vis-à-vis de notre problématique
à résoudre, car une absence de flux optique dans la scène visuelle ne
déclencherait pas d’événements au niveau du capteur, et donc aucune
information n’aura à être traitée par le réseau. En revanche, ce type de
neurones artificiels bio-inspirés posent de nouveaux problèmes au niveau de
leur entrâınement du fait de leur activation binaire (fonction de Heaviside, à
derivée nulle partout hormis à zéro où elle passe à l’infini). Afin de parvenir
à entrâıner des SNNs avec les techniques de différentiation automatique
implementées dans les librairies Python les plus connues (e.g. PyTorch),
nous employerons la technique du surrogate gradient, c’est à dire, une
approximation du gradient de la fonction d’activation permettant le flux
d’information dans l’ensemble du modèle lors de l’entrâınement.
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Nos premiers pas vers le développement d’un modèle impulsionnel pour la
prédiction du flux optique basée sur des données issues des ECs ont consisté
à adapter une architecture du type U-Net pour l’estimation du flux optique
en exploitant la mémoire des neurones, avec un entrainement séquentiel sur
des histogrammes d’événements (cumul des événements par pixel e polarité
pendant une fenêtre de temps fixe) consécutifs. Cependant, nous avons vite
constaté les difficultés liées à ce type d’entrâınement:

• D’un côté, le coût computationnel associé à dérouler le réseau lors de
la rétropropagation des gradients rend l’entrâınement impossible pour
des très longues séquences.

• D’un autre côté, il est apparu compliqué de trouver le bon équilibre
entre mémoire et oubli, ce qui menait à des résultats d’entrâınement
incohérents et désestructurés.

Nous avons alors tourné notre attention vers les connaissances acquises
lors de nos travaux précedents sur l’estimation de la profondeur à partir
des EBS avec des SNNs, employant des unités sans mémoire pour sa
computation. Néanmoins, cette stratégie n’a pas fonctionné pour l’estimation
du flux optique, car elle prend uniquement en compte un seul histogramme
d’événements, qui ne permet pas de restituer l’information temporelle. Cette
information temporelle joue le rôle principale pour l’estimation du flux
optique. Nous avons donc ciblé nos efforts à explicitement l’introduire
dans le modèle d’une façon pertinente, tout en respectant les contraintes
bio-inspirées qui permettraient à notre modèle d’être déployé sur des puces
neuromorphiques. La solution que nous avons trouvée consiste à utiliser un
tenseur cinq-dimensionnel pour répresenter l’information d’entrée du réseau:

• La première dimension réprésente le batch size.

• La deuxième dimension comporte les canaux des histogrammes: un
pour le cumul des événements à polarité positive par pixel, et un autre
pour les événements à polarité négative.

• La troisième dimension contient l’information temporelle, c’est à dire
la suite d’histogrammes fournis au modèle.

• Les deux dernières dimensions réprésentent la résolution spatiale des
histogrammes d’événements.
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Ainsi, nous avons modifié notre modèle de base pour que l’information
temporelle soit gérée par des convolutions 3D le long de la dimension
temporelle, analogues à des lignes de délais, de sorte qu’elle collapse au
niveau du bottleneck du réseau pour augmenter son champ récepteur effectif
tout en gardant la temporalité le long de l’encodeur. En imposant à la fois
la diminution du modulo du vecteur erreur et de l’écart angulaire entre la
prédiction et la vraie valeur du flux optique, nous avons réussi à entrâıner
notre modèle, qui présente les meilleures performances de l’état de l’art
atteintes par un SNN sur cette tâche.

La suite du projet a consisté à essayer d’expôıter des images en niveau
de gris, en conjonction avec des données événementielles, pour de meilleures
estimations du flux optique. Étant donné que beaucoup de caméras bassées
sur des événements sont capables de produire à la fois des événements (dotés
d’une incroyable finesse temporelle) et de ”vraies” images (avec une meilleure
résolution spatiale), nous avons essayé d’explôıter ces deux modalités à la
fois pour améliorer nos résultats. L’approche suivie, déjà introduite dans
la littérature, a consisté à une architecture à double encodeur (un pour
chacune des modalitées d’entrée), qui combine les sorties des encodeurs au
niveau du bottleneck et décode l’information bimodale pour l’estimation du
flux optique.

Pour récapituler, ces travaux de thèse comportent deux études:

• Premièrement, une méthode d’estimation du flux optique à partir de
données issues des EBS en employant des SNNs. Nos travaux ont abouti
à une publication qui introduit le SNN le plus performant de l’état de
l’art sur cette tâche, à la fois sur des scénarios de vol intérieur (MVSEC
Dataset) et des scénarios de conduite à l’extérieur (DSEC Dataset).
Son implémentation sur des puces neuromorphiques réprésente un axe
d’amélioration potentiel. À cet égard, deux lignes de recherche sont
possibles:

– D’un côté, le réseau pourrait être simplifié en nombre de
paramètres et de throughput si les convolutions tridimensionnelles
étaient remplacées par des convolutions 2d standard. Il y aurait
plusieurs façons d’atteindre cet objectif, soit en introduissant la
recurrence intrinsèque des SNN dans le modèle (avec un modèle
stateful), soit en traitant toute l’information temporelle d’un coup
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avec une convolution unidimensionnelle qui apprend le long de la
dimension temporelle.

– D’un autre côté, les améliorations pourraient viser l’amélioration
de la consommation énergétique du modèle en encourageant
explicitement l’encodage d’information dans des tenseurs creux
(sparse), ainsi que la réduction du coût de mémoire associé aux
paramètres à travers de leur quantization.

• Deuxièmement, nous avons ciblés nos efforts de recherche sur la fusion
bi-modale des données issues des EBS et des FBS pour une amélioration
des performances. Malgré nos meilleurs efforts, nous n’avons pas
encore réussi à améliorer notre réseau unimodal. Néanmoins, nous
avons réussi à developper des modèles exploitant à la fois les images
et les événements pour l’estimation du flux optique. Cela conforte
la faisabilité de l’estimation du flux optique reposant sur la fusion de
données, ce qui devrait constituer la future ligne de recherche du projet.

Pour conclure, cette thèse a été complétée par le suivi de plusieurs
formations, détaillées en profondeur dans le Chapitre 1. Finalement, il y a eu
plusieurs acteurs qui ont rendu possible cette thèse outre l’Agence Nationale
de la Recherche, que nous tenons à remercier: l’Agence National de Recherche
espagnole (Spanish National Grant PID2019-109434RA-I00/SRA), le
financement FLAG-ERA (projet DOMINO), le programme DesCartes et
la région Occitanie (grâce à l’attribution du projet 2022-p22020 pour
l’utilisation du supercalculateur Olympe).



Chapter 1

Introduction

Artificial intelligence has always been a pivotal interest to humanity. It
probably comes as no surprise, since being able to develop intelligent,
self-operating machines could in turn help us understand our very own
nature, as well as providing answers to some of life’s deep-rooted questions,
which most likely belong in a philosophical dissertation, instead of in a
PhD manuscript about informatics. It is this interest, though, which has
pushed innovation in many fields, and a journey through history can help us
understand not only where we come from, but also where we are going.

If we think about artificial intelligence in the sense of autonomous
machines, we can go back in time to Jewish mythology, in particular to
the figure of golems: autonomous clay-beings obeying the instructions that
they were given by their masters. While more in the realm of fantasy than
science, it is the will of achieving such a machine that would push scientists
in the not so distant past to develop ingenuities such as robots. In fact,
many centuries later, the most simple form of automatons were presented
to the world, and although earlier versions were purely mechanical devices,
they would nonetheless represent the missing piece that would culminate in
the development of robots and other machines alike. Not only researchers
and engineers would be inspired by these myths: we can also find examples
in literature, where the famous Isaac Asimov formulated his Three Laws of
Robotics.

Science fiction lived a golden age during the 20th century, and the
topic of artificial intelligence and human/machine interaction was ever
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present. Examples can be found as early as 1925, with the film Metropolis
presenting robots impersonating real people to the point of tricking most
of the characters around them. This recurrent topic would also appear in
the 1968 novel Do androids dream of electric sheep? by Philip K. Dick,
later adapted into the movie Blade Runner by Ridley Scott in 1982, and
it invites the spectators to reflect on what being human and being alive
really means. This topic is closely intertwined with the natural human
strive to live forever, and has inspired many to dream about transferring
their consciousness into computers and automatons alike (e.g. the 1987
film Robocop, which has to be mentioned when talking about this topic).
Dreaming of developing artificial brains has undoubtedly been at least
partially motivated by this desire, and the development of spiking neural
networks (bio-inspired artificial units with brain-like behaviour) is a natural
milestone towards the ultimate goal of immortality. Finally, the 1982 film
Koyaanisqatsi invites its viewers to think about the role of technology in
our daily life and our societies, as well as pondering how we interact with it
and how it shapes the world around us.

Reality, however, is still far from these science-fiction inventions. While
recent developments such as ChatGPT [5] or DALL-E [6] make us dream
of (and even fear) the rise of intelligent computers like HALL 9000 (firstly
imagined by Sir Arthur C. Clarke in his novel 2001: A Space Odyssey, then
masterfully adapted to the big screen by Stanley Kubrick on a namesake
film), artificial intelligence in our daily life remains limited to more prosaic
applications, ranging from intelligent vacuum cleaners to personal voice
assistants, tumor detection software or collision avoidance systems in cars.
It is in the automotive field that this PhD finds its inspiration, since our
goal is to develop optical flow estimation algorithms that may one day be
deployed in cars and other similar vehicles. Our motivation, as we will
further explain in Section 2.1, comes from the rich information on both
depth and motion that optical flow contains. To achieve our goal, we will use
data obtained from event-based cameras because of their intrinsic ability to
capture temporal information (more on event cameras will be presented in
Section 2.2). The final piece of the puzzle, and the glue holding everything
together, will be an artificial neural network composed of spiking neurons:
bio-inspired units that mimic the brain’s behaviour, and which achieve
superior energy efficiency when cleverly deployed on dedicated hardware.
We will introduce spiking neural networks (SNNs) in Section 2.3, and we
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will explain the nuances of our model in Chapter 3. Finally, we will explore
the possibility of combining event-based sensors (EBS) and frame-based
cameras (FBS) in Chapter 4, seeking to exploit the high spatial resolution
provided by FBSs when combined with the fine temporal information that
EBSs can provide.

This PhD project, which started as a Master’s Degree internship,
has been possible thanks to the funding of the Agence Nationale de la
Recherche under Grant ANR-20-CE23-0004-04 DeepSee (Figure 1.1). This
project seeks to develop event-based vision using spiking neural networks
and neuromorphic hardware for real-world automotive applications (e.g.
autonomous driving). Three laboratories integrate this ANR grant: the
Laboratory of Electronics, Antennas and Telecommunications (LEAT -
University Côte d’Azur / UMR 7248 CNRS), the Laboratory of Computer
Science, Signals and Systems of Sophia Antipolis (I3S - University Côte
d’Azur / UMR 7271 CNRS) and the Brain and Cognition Research Center
(CerCo - University Toulouse 3 / UMR 5549 CNRS). In addition, the
automotive company Renault makes part of the project as an industrial
contributor due to their interest in the potential applications of the research
carried out during the ANR. Finally, the company Prophesee will act as an
industrial consultant due to their expertise in event-cameras.

Figure 1.1: Overview of the DeepSee Project
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The DeepSee Project has been structured in three work packages (WP),
each of them concerning one or several levels of study of event-based
processing (Table 1.1). This PhD project will focus on WP2 (even-based
learning) and WP4 (fusion between FB and EB processing). The project will
therefore cover all of the different levels of study to some extent, i.e. we will
develop spiking neural networks (L2) that learn from event-based data (L1)
under the constraint of potential neuromorphic hardware implementations
(L3), and we will finally seek to combine event-based and frame-based data
for optimal performances (L4).

WP1 WP2 WP3 WP4
L1 – Event-based learning x x x

L2 – Event-based discrete processing x x x
L3 – Event-based neuromorphic hardware x x x x

L4 - EBS/FBS fusion x x

Table 1.1: Levels of study of event-based processing

This PhD project has managed to publish one contribution in Frontiers in
Neuroscience – Neuromorphic Engineering, on a special issue on Spike-based
learning applications for neuromorphic engineering, entitled “Optical flow
estimation from event-based cameras and spiking neural networks” [7]. Our
model achieved state-of-the-art performance on the MVSEC dataset [8],
as well as good performance on the DSEC dataset [4], showing the best
performance so far on the latter dataset using spiking neural networks. The
publication has received a good number of citations during its first year
of life (21 citations in Google Scholar as of July 11th 2024), showing its
relevance as well as the interest that this research topic is still generating. In
addition, we have also collaborated in a project involving depth estimation
using event-based data and spiking neural networks [9], which was published
in 2022 in IEEE Access. Although this work is indeed heavily linked to
this doctoral thesis’ subject, we believe that this manuscript’s leitmotiv is
temporal information, present in the three legs of the tripod that supports
our research works: optical flow as a metric of relative motion, event sensors
as asynchronous devices triggered by motion, and spiking neural networks
as dynamic computational units. Therefore, we have decided not to include
this project in this thesis’ manuscript, although multiple references to it will
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be found along this document due to the precious insights we gained while
working on this publication. Finally, this PhD project has explored the
introduction of frame-based images into a dual spiking neural network for
enhanced optical flow estimation (Chapter 4). Although our results so far
are rather lackluster in terms of quality, their progression leads us to remain
optimistic, and we believe that such a model is indeed possible to be achieved.

The doctorate program has not only been an opportunity to work on
the fields of computer vision and neuromorphic computing, but also to
publicly share ongoing investigations and results in forums such as the
GDR BioComp PhD Forum (held online in November 2021) or the GDR
BioComp Colloquium (which took place in Banyuls-sur-Mer in November
2023). Furthermore, the preliminary results on optical flow estimation with
event-camera data using spiking neural networks were presented during the
poster session of the SNUFA Workshop in 2022.

In addition, several formations and missions have taken place in parallel
to the PhD works, the most relevant to the PhD subject being:

• A trip to Grenoble where we could exchange with Prophesee, allowing
us to delve into the hardware and simulation of event data.

• A one-week visit to the LEAT laboratory in Sophia-Antipolis
(Université Côte d’Azur, Nice), where we could learn more about
neuromorphic hardware in general and their custom-made FPGAs in
particular.

• A two-day intensive formation on High-Performance Computing (HPC)
provided by the CALMIP supercalculator’s staff, teaching us about the
generalities of HPC and about the usage of the Olympe supercalculator
in particular.

• A three-day formation on Docker, delving into the basics of the system
and the deployment of containers, as well as introducing us to some
simple use-cases.

• Two one-day formations on mastering the Zotero bibliography handling
tool: one introductory session, and an additional one covering more
advanced applications.
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• A one-day formation on search engines, learning about how to best use
them, their working mechanisms and the legislation they are subject
to. This formation also targeted how to best exploit research engines
to improve the impact factor of research works, as well as optimizing
their indexation.

• A one-day formation on ethics and integrity applied to research, where
the subject of morality was considered as a whole during the first half,
and it was then applied to the research environment.

In addition to the funding provided by Grant ANR-20-CE23-0004-04,
this PhD would have not been possible without the support of the Spanish
National Grant PID2019-109434RA-I00/ SRA (State Research Agency
/10.13039/501100011033), by a FLAG-ERA funding (Joint Transnational
Call 2019, project DOMINO), and by the Program DesCartes and the
National Research Foundation, Prime Minister’s Office, Singapore under its
Campus for Research Excellence and Technological Enterprise (CREATE)
Program. We would also like to express our gratitude to the Occitanie’s
region for allowing us to use the Olympe Supercalculator in the CALMIP
center thanks to the allocation 2022-p22020, which greatly helped us to speed
up calculations and the obtention of results.



Chapter 2

Related Work

All the work performed during this thesis relies on three main pillars:
optical flow, event-based cameras and spiking neural networks. A thorough
revision of each of these fields literature will be performed, in order to better
understand our study case. However, there is substantial overlap between
these fields, suggesting an implicit connection of these domains. While we
will try our best to classify the different references, it may be argued that
some of them belong in a different subsection, so it is advised to read this
whole section to better understand each of the different fields, in spite of
some parts being less pertinent to some readers.

2.1 Optical Flow

The first leg upon which our founding tripod relies on is optical flow.
Optical flow, or optic flow, was a magnitude first introduced in the 1940s
by the American psychologist James J. Gibson [10]. It consists of the
apparent pattern of motion present within a visual scene, due to the relative
displacement between the observer and its surroundings. Due to its richness
in information, containing displacement and depth information alike, it
has remained a relevant research topic ever since its inception, intriguing
neuroscientists and engineers alike (e.g. motion parallax and how it is
exploited in the animal kingdom for perception and navigation).

Optical flow has been widely studied in the neuroscience community.
A great number of publications have focused on optical flow processing
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in macaques, discovering they cortical networks involved in optic flow
processing in the monkey’s brain through functional magnetic resonance
imaging (fMRI) [11], and showing selectivity to optical flow patterns in
cortical areas (e.g the medial superior temporal area [12, 13, 14], the ventral
intraparietal area [15] or the V6 area [16]). One particularly interesting
outcome of these studies is that selectivity to optical flow patterns across
different brain areas is a phenomenon akin to the way ANNs learn optical
flow, since the kernels usually obtained during training within the CNN
naturally end up encoding the combination of the different optical flow
patterns. As far as humans are concerned, fMRI studies have shown the
influence that optical flow processing has on perception of ego-motion and
navigation [17, 18], although the role that each brain region plays in optical
flow perception and processing remains unknown.

As far as the artificial intelligence community is concerned, optical
flow was quickly adopted as one of the major computer vision tasks, due
to its wide range of potential applications: video compression, object
detection and tracking, obstacle avoidance, visual odometry, etc. However,
since optical flow is not a measurable magnitude (due to its intrinsic
subjective nature, which is dependent on relative motion), it is hard to
find high-quality annotated datasets. Indeed, most datasets rely on a
combination of depth measurements obtained with LiDAR and IMUs to
infer it, such as MVSEC [8] or DSEC [4] for optical flow estimation from
event-based data. Additionally, there are simulators that allow researchers
to generate artificial ground-truth following this approach, like the CARLA
Simulator [19]. Nevertheless, the simulated nature of the data means
that no realistic noise is usually present (realistic noise models providing
ecological perturbations are difficult to achieve), therefore limiting their
applicability for real-world applications. Other available datasets rely on
synthetic data [20] for optical flow estimation, superposing foreground
images to random background images and then imposing relative motion
between both layers, or measure optical flow from simple artificial scenes
[21]. Another approach which has been explored to improve optical flow
ground truth consisted of trying to increase size, complexity and variety by
simulating optical flow from movies, ideally keeping challenging conditions
such as reflections or blur for example [22]. Nevertheless, these methods
also suffer from the lack of noisy data associated to simulated optical
flow, with the added limitation of not providing ecological images. Even
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(a) Longitudinal displacement relative to an
object.

(b) Corresponding radial
optical flow pattern.

(c) Transversal displacement relative to an
object.

(d) Corresponding
horizontal optical flow
pattern.

(e) Axial rotation relative to an object.
(f) Corresponding twisting
optical flow pattern

Figure 2.1: Basic optical flow patterns
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publications trying to tackle these issues were eventually bound to admitting
the inherent limitations of simulated optical flow [23]. Additional datasets
have been proposed to automatically generate optical flow ground-truth
from frame sequences captured on real-world scenarios with standard
cameras [24], providing real-world optical flow ground-truth with minimal
investment in recording gear. Other datasets [25] propose different scene
representations for optic flow estimation, taking advantage of the statistical
data distribution of outdoor scenes. Finally, the KITTI dataset [26]
provides optical flow ground-truth obtained from a combination of depth
and ego-motion measurements, thus presenting highly-ecological optical flow
labels for driving scenarios.

When considering the estimation of optical flow, the task that is usually
tackled is the projection of motion in the 2D focal plane (often neglecting
local luminance changes due to brightness variations), measured as the
pixel displacement between two consecutive frames/timestamps. The first
methods successfully processing optical flow date back to 1981: on the one
hand, Lucas and Kanade [27]proposed a method relying on a data term
(representing the brightness constancy assumption), on the other hand, Horn
and Schunk [28] introduced the first method using also a regularization term
(representing the smoothness constraint) for optical flow estimations. From
that point onwards, traditional optical flow estimation approaches have relied
on variational methods [29], which consist of minimizing an energy function
containing a combination of the data term D and the regulariser term R.
The α factor is a positive coefficient balancing the influence of both terms.

E(u) =

∫
Ω

[D(u) + α ·R(u)]dΩ (2.1)

This method assumes that the image brightness of grayscale images is
constant within short timespans (a hypothesis know as the optic flow
constraint), and its applicability has been extensively studied in the
literature [30], even demonstrating their viability for real-time optical flow
estimation on standard computers [31]. The method has been extensively
used since its inception, and has suffered many iterations and modifications.
In fact, the problem with local optical flow estimation methods is the
aperture problem or the window problem, i.e. the ambiguity in determining
the true velocity of moving objects within the visual scene during a sequence
when its trajectory is not perpendicular to the intensity gradient in the
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image. This challenge has led more recent solutions to combine local-global
optical flow estimations, which provide higher accuracy at the cost of
increased computational power requirements. Among the modifications to
traditional optical flow estimation methods, we can find models penalizing
the Laplacian of the flow components instead of the standard Regularization
term R [32] (suitable for ecological driving scenarios due to large optical
flow variations). Some other publications propose using both D, R and the
Laplacian of R in a combined energy function for better performance on
video interpolation [33]. Finally, other publications propose a completely
different function yet follow the same philosophy, e.g. using a Laplacian
mesh energy term [34]. For more information on traditional optical flow
computation methods, a keen reader can consult [35], showing an extensive
survey of optical flow algorithms published until 1995, and [36] to find more
information on how optical flow estimation methods have evolved across
time. Moreover, the Scholarpedia article on optical flow [37] provides very
clear definitions and explanations of optical flow, in addition to reviewing
the more recent literature on the topic.

The advent of deep learning led to convolutional neural networks
taking over the computer vision field, and optical flow estimation was
also subject to this trend. CNNs have been used in a plethora of tasks
ever since their adoption by the community, be it for direct optical flow
estimation of for optical-flow-dependent tasks. For example, future frame
prediction algorithms exploiting optical flow found in GANs a way to
improve the quality of their predictions [38]. Also for future-frame video
prediction, [39] achieves multistep flow prediction from still images leveraging
spatio-temporal information learnt with 3D convolutions. Additionally,
optical flow has been employed in information technology as a technique
for video compression [40]. Looking at optical flow estimation itself, some
models (e.g. [41]) have been proposed to exploit its vector nature (Figure
2.1) for better per-pixel estimations between two consecutive images. A
wide range of different techniques has been used to achieve DNNs with
better estimation scores, e.g. adaptive pyramid sampling [42] (for better
feature representation), Hampel filters [43] (for better denoising), cross-strip
correlations [44] (to better capture long-distance dependencies), or the
aforementioned GANs (for more ecological estimations). SAMFlow [45]
proposes an implementation of Segment Anything [46] for better contour
definition, allowing for sharper optical flow maps. Finally, much like



18 CHAPTER 2. RELATED WORK

CNNs were predominant in deep architectures, transformers [47] took the
field by storm, dominating the computer vision scene until the resurgence
of convolutional models in recent years. Many models have appeared
inspired by the transformer architecture, either trying to exploit attention
to improve performance [48], or using transformers within their architecture
(e.g. [49] introducing a transformer-based model for optical flow estimation,
or [50] proposing a unified approach for flow, depth and disparity estimation).

2.2 Event-based cameras

The idea of event cameras was introduced as early as 1991 in The Silicon
Retina by Misha Mahowald [51], during her time as a PhD student at
the California Institute of Technology (Caltech). The main idea behind
this innovative device was mimicking the way in which a biological retina
operates, with ganglion cells asynchronously triggering signals in the form
of electrical impulses when subject to luminance variations. In the same
vein, an event camera would consist of an array of independent pixels, where
signed events would asynchronously be triggered due to local brightness
variations (Figure 2.2). Unfortunately, Misha Mahowald would pass away
in 1996 at age 33, and the computer vision community still mourns her loss,
wondering what could have been achieved were she still actively researching
bio-inspired vision systems. Her impact on the event-vision field has been
acknowledged by many researchers over the years [52], and we can find
solace in her legacy living on thanks to the Misha Mahowald Prizes for
Neuromorphic Engineering, awarded yearly to the most influential research
results in neuromorphic engineering.

When compared to traditional frame-based sensors, event cameras
present some qualities that set them aside, the most important ones being:

• Advantages:

– Low latency, since the pixels fire independently in virtually
real-time.

– Low energy consumption, since still scenes do not trigger events.
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Figure 2.2: Events triggered by an event camera (firing threshold of 0.5 on
the log(Luminance))

– Higher dynamic range, being able to work in a wide range of
brightness conditions without saturating.

• Disadvantages:

– Low spatial resolution, usually in the range of 1Mp, although this
feature is constantly improving.

– Event data does not provide information on intensity within the
image, but rather about brightness variations over time.

– Event-based sensors are usually more expensive than their
frame-based counterparts.

Nowadays, a number of commercial solutions exist for event sensors,
and a variety of available datasets for event-based vision have arisen. For
instance, Innivation has developped the DAVIS 346 camera [53], which
was used to record the UZH-FPV Drone Racing dataset [54] and the
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MVSEC dataset [8]. Other companies such as Prophesee have specialized on
event-based sensors, providing not only event cameras (like the Prophesee
Gen3.1 camera [55] used to record the DSEC dataset [4]) but also the
Metavision software toolkit for event-based vision [56]. In addition, they
also work with industrial partners to develop event sensors according to
their needs, like the SilkyEvCam by Century Arks [57], the VisionCam
by IMAGO technologies [58], the Triton™ GigE vision camera prototype
by LUCID Vision Labs [59] or the Sony IMX636 and IMX637 stacked
event-based vision sensors by Sony [60]. There are also event-based solutions
developed in academia, like the CeleX-V event sensor [61].

Although event cameras have gained ground in the computer vision
scene, their availability remains a concern, for their price has held them back
from widespread applications. Several publications have tried to tackle this
issue, trying to provide good quality event data at a minimal cost. Such is
the case of the aforementioned CARLA simulator [19], which has a built-in
DVS simulator. In the same line, [62] and [63] both propose rendered
event datasets for optical flow estimation. Other approaches have tried to
exploit the plethora of available video datasets by transforming them into
event-like data [64], but the intrinsic high latency of frame-based cameras
prevents them from achieving competitive temporal resolution, in addition
to making them subject to motion blur. Furthermore, these methods lack
the real-world noise associated to event cameras, providing unrealistic event
data. On the opposite side of the spectrum, others studies have targeted
their efforts in denoising event data [65]. Finally, some mobile applications
have been developed for real-time optical flow simulation on smartphones
[66], providing an inexpensive alternative for real-world event data at the
expense of temporal resolution.

The state of the art of event-based vision has been thoroughly reported
over the years [67, 68], and the technology has been applied for a wide range
of tasks: from image reconstruction [69] to object detection and tracking
[70, 71, 72], disparity estimation [73] and even semantic segmentation
[74]. Moreover, numerous studies have been carried out concerning data
representation for event-based cameras (e.g. [75]) and on the loss functions
to use for event-based vision (e.g. [76]).

As far as optical flow estimation is concerned, many different methods
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have been proposed over the years. Unsupervised methods have been often
used, since they do not require ground-truth data for their training. These
methods often rely on warping events to a reference time through the optical
flow estimation, and then computing a photometric loss function between
the real measured events and the warped events, usually imposing other
additional constraints such as image deblurring or contrast maximization
[77, 78], but other alternatives exist relying on probability distributions,
such as the Fisher-Rao metric [79]. While these methods have historically
provided good results, the metrics are constrained to pixels containing
events, thus being inadequate for dense optical flow estimation. On the
other hand, other architectures have opted for recurrent neural networks
trained in a supervised manner, either with an standard MSE loss [80] or
combining a simple L1 loss with other constraints, such as image deblurring
[81] or motion compensation [82]. Finally, some recent models try to exploit
the latest state-of-the-art advancements in the deep learning scene and apply
them to event-based vision, e.g. state space models specifically tailored to
event data [83].

2.3 Spiking Neural Networks

The final building block of our project consists of spiking neural networks,
i.e. artificial neural networks where stateful neurons take the place of
standard activation functions (e.g. ReLU, sigmoid, etc.), thus enabling
biologically-plausible algorithms. Much like their biological counterparts,
artificial spiking neurons emit spikes, i.e. stereotype “all-or-none” electrical
impulses emitted when a neuron is sufficiently stimulated (in other words,
when its membrane potential reaches the firing threshold).

This section starts by introducing some mathematical models for
spiking neurons. Afterwards, we will discuss about information encoding,
differentiating between spike- and rate-based approaches. Next, the different
learning mechanisms used to train SNNs will be presented. We will then
proceed to compare spiking neural networks with their standard analog
counterparts, and we will end up by listing some of the many applications
of spiking neural networks in the literature.
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Figure 2.3: Hodgkin-Huxley neuron model (borrowed from [1])

2.3.1 Spiking Neuron Models

Examples of brain-like artificial units can be found as early as 1952, with
the introduction of the Hodgkin-Huxley neuron model [1]. This bio-physical
model, equivalent to the electrical circuit shown in Figure 2.3, is as close to
a biological brain as possible, modelling the different ion currents present
during a neuron’s charge/discharge cycle (sodium and potassium), was well
as the membrane potential and a leakage current. Although this model is
able to reproduce the behaviour of a real brain, its high computational cost
(four differential equations) has relegated it to toy examples and proofs of
concept rather than real-world applications.

Since the publication of the Hodgkin-Huxley model, many more
neuron models have arisen, sacrificing biological plausibility for ease of
implementation. Such is the case of the Izhikevich neuron model [84],
published in 2003. This model opts to model the membrane potential and
the membrane recovery value instead of the ion currents, thus requiring only
two differential equations. While significantly simple than its predecessors, it
manages to capture a wide range of neural dynamics, from regular spiking to
bursting or chattering. Nevertheless, it remains too complex for large-scale
deep learning tasks, and it has mostly been used to model small populations
of neurons.

The simplest artificial neuron model that has prevailed is the Leaky
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Figure 2.4: LIF neuron model (borrowed from [2])

Integrate-and-Fire neuron, i.e. an exponential decay of the membrane
potential (Equation 2.2). Although this model places itself rather far from
biology, its simple implementation (see Figure 2.4 for its equivalent electric
circuit, very simple to a standard resistor-capacitor architecture) and low
associated computational power have propelled it to the go-to spiking
neuron model for large-scale deep learning algorithms.

dV

dt
= −λ · V =⇒ Vt = Vt−1 · e−λ·∆t (2.2)

The LIF neuron model in itself is very easy to understand, yet it
poses some challenges when being deployed in a computer for its training.
The main issue is that the evolution we have just described happens in
real-time, whereas computers need data to be discretized to perform their
computations. The evolution of the neuron’s membrane potential can be
modelled with three equations:

• Neuronal charge (Equation 2.3): at time t, the membrane potential
before firing Ht is a function of its previous value Vt−1 (membrane
potential after firing at time t-1 ), affected by the neuron’s time constant
τm (leak factor), and by all of the input spikes Xt triggered on afferent
neurons during the time window (t − 1 → t). However, these input
events are seen as if they had happened simultaneously, potentially
hindering the temporal resolution. Since event data is continuous,
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though, the time window (t − 1 → t) can be as short as desired,
increasing computational cost but also improving temporal resolution.

Ht = f(Vt−1, Xt) = Vt−1 +
1

τm
[−(Vt−1 − Vreset) + Xt] (2.3)

This neuron model combines a good approximation of the membrane
potential’s temporal evolution and a reasonably low computation cost.
Related to this model, it is also worth mentioning integrate-and-fire
neurons, a further simplification where the spiking neurons have no
leak, therefore acting as perfect integrators until their firing threshold is
reached (hence their name). The integrate-and-fire membrane potential
evolution can be seen in Equation 2.4.

Ht = f(Vt−1, Xt) = Vt−1 + Xt (2.4)

• Neuronal fire (Equation 2.5): the membrane potential before firing
is compared to the firing threshold Vthreshold using the Heaviside step
function (Θ), and a spike St is triggered if the threshold is reached.

St = g(Ht − Vthreshold) = Θ(Ht − Vthreshold) (2.5)

• Neuronal reset (Equation 2.6): the membrane potential after firing Vt

is either set to the reset value if a spike has been triggered (hard reset),
or it remains unchanged otherwise (its value set to Ht).

Vt = Ht · (1− St) + Vreset · St (2.6)

The model itself may be very simple, but the actual implementation took
researchers many years. Indeed, the challenge here is the Heaviside step
function, which is non-differentiable at zero and constant everywhere else.
While it may seem that the problem with this function is the discontinuity
at zero, it is actually the other way round. In real-world applications (and
specially when making computations), it is virtually impossible to have an
exactly-zero value at any point. On the other hand, for every other possible
value that the Heaviside function may take as an input, the derivative of
the step function would be exactly zero, thus preventing information to
flow through the gradients. This impossibility to integrate spiking neurons
into standard autodifferentiaton tools (commonly used in deep learning)
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relegated spiking neurons to mere coincidence detectors for a very long time,
preventing them from achieving competitive results on standard, real-world
tasks. It would be in 2019 when the field of SNNs was revolutionized thanks
to the introduction of Surrogate Gradient Learning [85], which is explained
in Subsection 2.3.3.

2.3.2 Description Levels

Research in spiking neural networks has not only focused on neuron models,
though, and information coding has remained a major research topic since
their inception. Two possible description levels exist: on the one hand,
spike-coding relies on spikes themselves to carry information, on the other
hand, rate-coding encodes information in firing rate rather than in spikes
alone [86]. Both approaches have extensively studied, and many iterations
have emerged for each of them. For instance, some spike-based models
have decided to encode to information in the first neuron to spike [87, 88],
therefore proposing models following a winner takes all philosophy. Other
spiking models have relied on allowing at most one spike per neuron, for
efficient information large-scale artificial intelligence tasks [89]. Meanwhile,
other spike-based models encode information the neurons’ time to first
spike [90] instead of in the firing rate itself, showing the power of spikes as
encoding mechanisms by exploiting a floating-point value (the firing time)
all while encoding the information in the spikes themselves. A keen reader
will have realized that, in a nutshell, the main difference between both
approaches is the nature of the encoded information: spike-based methods
use binary information (i.e. spikes), whereas rate-based models work with
real numbers (e.g. firing rate or time to spike). This key difference, as
naive as it may seem, is actually crucial when training a SNN: rate-based
models may be more limited (e.g. they cannot act as coincidence detectors),
but they can be trained through regular gradient descent and are therefore
much easier to implement. Spike-based models theoretically represent a
more powerful information encoding, since firing rate and time to spike
are implicit information, but their binary nature has long prevented their
application for real-world tasks.
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2.3.3 Learning Mechanisms for SNNs

Of course, neuron models and data representation are worthless on their
own, since algorithms must be able to learn to perform relevant tasks. As
far as spiking neural networks are concerned, the inherent limitation of
neuronal activation, i.e. a Heaviside function with infinite derivative at
zero and null derivative elsewhere, has prevented them from integrating
into standard deep-learning libraries exploiting automatic differentiation
(see Equation 2.5, showing the firing of a neuron as a function of the input
spike train Si, the synaptic connections wi and the neuron’s own firing
threshold assuming a zero membrane potential before the input spike train’s
arrival). SNNs have therefore traditionally been trained using Hebbian
learning rules [91], succinctly resumed in the now famous expression those
who fire together wire together. This learning rule, combined with the
complementary statement those who fire out of sync, lose their link led to
Spike-Timing-Dependent Plasticity (STDP) [92], a biologically-plausible
learning mechanism consisting of excitation or inhibiting synapses depending
on the relative temporal offset of pre- and post-synaptic spikes. This method
has been studied in depth over the years, and also some promising and
interesting results have been obtained with it (e.g. [93]).Otherwise, spiking
neural networks were trained either by adapting a pre-existing ANN [94] or
by using a proxy ANN [95] as the learning mechanism, often with lackluster
results. It would be in 2019 when the popularity of SNNs would explode
thanks to the apparition of surrogate gradient learning (SGL) [85]. In a
nutshell, the method consists of using a proxy function when computing
the gradients for the backward pass (see Figure 2.5): the forward pass is
performed using a Heaviside step activation, but the backward pass pretends
that a sigmoid-like function has been used, utilizing its gradient to keep
information flowing through the network. This approximation allows spiking
neurons to be integrated into standard deep-learning libraries, and has
allowed them to reach state-of-the-art results on a variety of tasks. Since
then, many libraries have been developed proposing a variety of neuron
models for deep learning tasks (e.g. Spikingjelly [96], Norse [97] or snnTorch
[98], all of them with direct PyTorch integration), and many results have
appeared showing the advantages SNNs may present when compared to
their analogical counterparts.
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Figure 2.5: Surrogate gradient using a sigmoid function (borrowed from [3])

2.3.4 Comparison with Standard ANNs

There are some key differences that set spiking neural networks apart from
their analogical counterparts, the main ones being:

• Unlike ANNs, which always forward information after the activation
function (even if that information be zero), information in SNNs
should be understood as a binary process, the lack of spikes therefore
representing lack of information (either because of irrelevance, or
because of too poor excitation). This spike-driven nature of the data
translates into sparse tensors within the models. In fact, sparsity
itself can be enforced within the models with loss functions, therefore
achieving ultra-light information communication within the network.

• When no data is being fed to the model, no processing of information
is being performed at all, and therefore there is no associated energy
cost.

• SNNs can be implemented on neuromorphic hardware, where
sparsity can be directly implemented and exploited for lower energy
consumption. In addition, neuromorphic chips work in almost-real time
(contrarily to GPUs, working in discrete time), thus providing a higher
temporal resolution and finesse.
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• The inner potential of the neurons, in addition to their real-time
information processing these networks achieve when deployed on
dedicated hardware, mean that SNNs are tailored to processing natural
sensory information, which can be understood as a continuous time
series.

2.3.5 Application of SNNs

Due to their intrinsic temporal nature (i.e. intrinsic recurrence and memory
thanks to the membrane potential), SNNs have been extensively researched
for temporal tasks. In the computer vision field, SNNs have been widely used
in a variety of classification tasks, with gesture recognition being the first
challenge the community tackled, and still one of the most popular tasks to
date (e.g. [99]). As far as regression algorithms are concerned, the prevalent
task has been optical flow estimation either with hybrid [100, 101] or with
fully-spiking architectures [102, 103, 104, 105], although other tasks have
also been tackled (e.g. depth estimation from stereo event data using SNNs
[9]). Spiking neural networks are starting to be successfully implemented
in real-world applications, e.g. an energy-efficient SNN embarked on a
drone and deployed on a Loihi chip, capable of estimating the drone’s
egomotion from event data and commanding it [106]. Additionally, other
lines of research have focused on spiking architectures itself, often taking
energy-efficiency constraints into consideration. These publications have
either focused on network models as a whole [107] or on key network blocks,
e.g. spiking residual blocks [108]. Finally, some methods have proposed
adapting state-of-the-art memory units to spiking architectures, like the
SpikGRU block proposed in [109].

Of course, the main driving motivation in SNN research is their
energy gains when deployed on dedicated hardware, as opposed to the
power-intensive GPUs used with standard ANNs. Many neuromorphic chips
have thus appeared over recent years, from custom FPGAs developed in
academic circles (e.g. [110]) to industrial solutions, such as the Loihi chip
by Intel [111] or the TrueNorth chip by IBM [112]. The drive to exploit
neuromorphic hardware has even led to the appearance of non-spiking
hardware-friendly solutions that can be deployed on neuromorphic chips.
Such is the case of Sigma-Delta networks [113], which have already been
deployed on the Loihi 2 chip for audio and video processing [114] and for
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noise suppression [115].

Finally, a great part of research on spiking neural networks has focused in
energy efficiency, since it is probably their main advantage when compared to
their analogical counterparts. This research has mostly focused on sparsity
as an indicator of energy efficiency: less spikes translate into less information
being forwarded, and therefore into less neurons spiking at post-synaptic
layers, thus making a more energy-efficient model overall. Nevertheless, this
research has often been misleading, First of all, to take advantage of sparsity
for energy efficiency, SNNs must be implemented on dedicated hardware.
Indeed, implementing SNNs on GPUs does not improve energy efficiency even
if sparse data is being forwarded, since the number of FLOPs does not change
in function of the data being propagated. Meanwhile, on neuromorphic
chips, the number of operations is instead measured in Multiply-accumulate
(MAC) and Accumulate (AC) operations, which are spike-driven and can
thus exploit sparsity for energy efficiency.[116, 117]. In fact, implementing
SNNs on GPUs is more computationally costly than using an equivalent
ANN, due to the increased memory cost associated to storing the membrane
potentials, as well as the additional operations induced by the membrane
leak and reset. As a result, SNNs should always be developed with their
associated hardware in mind in order to claim energy-efficiency as one of
their advantages over standard ANNs, and non-implementable operations
(e.g. bilinear upsampling or in-network real-valued information) should
therefore be avoided. Secondly, sparsity alone is not enough for a spiking
neural network to achieve competitive energy savings, and even more so
when considering that it is often associated to a decrease in performance. It
has been demonstrated that energy efficiency is directly linked with memory
access [118], where ANNs often outperform spiking models even when the
latter are implemented on dedicated hardware. Consequently, although
sparsity is a key player to achieve better energy efficiency, optimizing memory
loss within the model (understood as the combination of hardware and
software) becomes a necessity to further push the competitive advantage that
SNNs can provide regarding energy consumption. Lastly, weight quantization
[119], and even weight binarization [120] have been proposed as a way to
tackle all of the limitations preventing SNNs from consistently achieving
competitive results in power consumption: on the one hand, integer weights
within a network allow it to modify the costlier MAC operations into
successive AC operations, on the other hand, integer weights require less
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bits to be stored than floating-point numbers, hence enabling better data
transmission and easier memory access.



Chapter 3

Optical flow estimation from
event-based cameras and
spiking neural networks

The research results of this chapter have been published in CUADRADO, J.,

RANÇON, U., COTTEREAU, B. R., BARRANCO, F., and MASQUELIER,

T. (2023). Optical flow estimation from event-based cameras and spiking neural

networks. Frontiers in Neuroscience, 17, 1160034. [7] The code of the published

model can be found on https://github.com/J-Cuadrado/OF EV SNN

In this chapter, we will present our results on optical flow estimation
from event cameras using spiking neural networks, from the earliest stages
of the project to the final model published in [7].

3.1 Materials and Methods

3.1.1 Project Overview

The first idea that we explored as a potentially feasible spiking optical flow
estimator was a U-Net [121] inspired stateful model using the MVSEC dataset
[8]. The main motivations behind these decisions were:

• The U-Net architecture is a well-established model within the literature
for computer vision tasks, due to its feature-extraction capabilities.

31
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In fact, the encoder half of the architecture may have a working
mechanism not very different from the visual cortex’s early stages,
where higher-order visual features are extracted as we progress deeper
into the system. In addition, this architecture has been extensively
studied for similar tasks (e.g. [122, 102] to cite some of the
most relevant publications). This model can theoretically achieve
good results without exploding in trainable parameters (thanks to
the use of simple convolutional layers) when compared to more
sophisticated alternatives, which makes it also a desirable architecture
for light-weight applications. Finally, this architecture can be
turned into a neuromorphic-hardware-friendly version with very minor
modifications, which lines up perfectly with the reasons encouraging
the use of SNNs instead of their analogical counterparts.

• Spiking neurons are stateful neurons by default, since their inner
membrane potential remains over time (albeit their leak value). Since
optical flow is a priori a highly-temporal task, it becomes natural to
think that sequentially treating data for virtually real-time optical flow
estimation is an interesting route to pursue. Indeed, the influence
of distant events in time would eventually be forgotten thanks to
the membrane potential’s leak, while more recent events would have
a greater effect on the neuron potential’s evolution. The network
would therefore be trained by successively being fed event histograms
(more details in Subsection 3.1.3), and the backwards propagation of a
supervised loss via truncated back-propagation through time (modified
from [123]). We will resort to the Spikingjelly [96] Python library
for spiking neuron implementation and training, since it can be fully
integrated with the PyTorch library and its automatic differentiation
capabilities.

• As of the starting time of the project, the Multi Vehicle Stereo Event
Camera dataset was incontestably the go-to dataset for depth and
optical flow estimation from event data, and was therefore the chosen
dataset to train and test our models without much hesitation.

The first draft of the project therefore consisted of sequential optical flow
estimation, from event data, using a stateful spiking network. We will present
the different parts of the project, as well as the decisions that were made,
until the final iteration of the network was achieved.
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3.1.2 Training Dataset

The first choice (and quite a relevant one) we were confronted with when
starting to develop our model was the selection of a training dataset.
However, it was a simple one, since at the time the only option for real-world
scenarios was the Multi-Vehicle Stereo Event Camera dataset. While it
had many advantages, i.e. the variety of different sequences and a great
amount of labels, it was also limited in its quality, specially because of the
optical flow ground-truth generation. It is important to note that optical
flow is not a measurable magnitude, and it must instead be inferred from
a combination of ego-motion (e.g. IMU Data) and depth data (obtained in
this case from LIDAR measurements). This situation means that no optical
flow ground-truth data is available in pixels where no LIDAR measurements
are available. For the most part those pixels are related to near-infinite
depths (e.g. sky or far horizon) where optical flow values are negligible,
but the point-cloud data obtained from LIDAR also presents some holes
where optical flow value is simply unknown. These pixels’ optical flow value
is set by default to NaN in the ground-truth, which is incompatible with
our supervised learning procedure (more details in Subsection 3.1.6). This
situation becomes particularly problematic when the vehicle changes course
and starts moving backwards, since during a small time window the scene
remains still, showing not only a lack of optical flow, but also a lack of events.
We explored some potential solutions to overcome this difficulty:

• Our first idea was to set all of the problematic pixels’ values to zero,
which would allow us to train our model in a supervised way because
all pixels would have a numeric optical flow value. Intuitively, this idea
made sense because most of the NaN values come from the LIDAR
not being able to measure depth, e.g. far away points such as the
sky where the optical flow value is negligible. However, due to the
point-cloud nature of LIDAR measurements, some of the NaN values
are holes in the ground-truth where optical flow does exist, and setting
these pixels’ optical flow value to zero introduces discontinuities in the
flow field that translate into poor learning.

• Next, we tried to fill the problematic holes in the ground-truth, so
we could learn a more realistic optical flow map where zero-valued
pixels would actually correspond to lack of luminance variations in
the scene. To do so, we resorted to image area closing (see [124]
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for a more in-depth explanation on mathematical transformations for
image processing), a well-known technique for image smoothness which
can be easily implemented using a variety of Python libraries (e.g.
the kornia.morphology.closing method from the Kornia library or
the skimage.morphology.area closing method from the scikit-image
library). While we expected this transformation to improve our
accuracy, the effect was rather the opposite. Indeed, morphological
closing has the side effect of blurring edge lines, making it impossible
to predict sharp optical flow variations. Furthermore, since the holes
in the ground truth have different sizes, it is very hard to account for
all of them, either keeping some of them (and therefore making the use
of this technique futile) or completely distorting the ground-truth into
a smooth flow field.

The fact that none of our ideas were working to improve learning
on MVSEC, as well as the publication of the DSEC dataset [4], which
was quickly establishing itself as the go-to dataset for event-based driving
scenarios, motivated our decision to switch to this new dataset. Below are
listed the main differences between the two datasets (a rough comparison
can be found on Table 3.1):

• First, the image resolution of the DSEC dataset’s event camera
(Prophesee PPS3MVCD) is significantly larger than the event camera
used in the MVSEC dataset (DAVIS 346B). While this impacts image
sharpness, greater resolution also translates into greater dataset overall
size (0.3Mp vs. 0.1Mp translates into tensors three times larger).

• The ground-truth frequency is also different between both datasets:
10Hz for DSEC vs. 20Hz for MVSEC. However, this frequency does
not impact the real prediction rate, since it will rather be imposed by
the input events and how they are fed to the network (more details
in Subsection 3.1.3). Moreover, the pre-treatment of the ground-truth
performed in the DSEC dataset yields higher quality data, most notably
in the lower presence of noise within the flow maps.

• In addition to providing optical flow maps to be used as ground-truth,
DSEC also provides its users with ground-truth masks, i.e. pixels were
the optical flow value is accurate. It is also only on those pixels that
metrics are evaluated on their official, independent benchmark. While
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MVSEC DSEC

Image Size 260x346 px 480x640px
Ground-truth Frequency 20Hz 10Hz

Num. Labels Size (GB) Num. Labels Size(GB)
Outdoor Driving Day 18300 62.2

8173 128.7
Outdoor Driving Night 18240 59.6

Indoor Flying 5360 15.2 - -
Motorbike∗ 30000 42.7 - -

Table 3.1: Dataset Comparison
(∗Motorbike LIDAR data is not available on MVSEC dataset)

a similar approach can be used with MVSEC (creating a mask only
where optical flow is known within the scene), it is a more lacking
solution in this second case, since data may still be noisy. Still, it is
the best solution we found, and the one we adopted when training on
this dataset.

• The MVSEC dataset is richer than DSEC as far as the nature of its
sequences is concerned, presenting not only car driving scenarios but
also motorbike and even indoor flying. Moreover, there are frequent
vehicle stops during the sequences of the MVSEC dataset that the
DSEC dataset lacks.

• While not applicable for the task at hand, it is also interesting to
point out that the MVSEC dataset provides the grayscale images of
its sequences (obtained jointly with the event data by the DAVIS 346B
camera), whereas the DSEC dataset provides RGB images (the use of
these images further impacts the dataset size, but it is not taken into
consideration for Table 3.1 since they are not used in the current study)
taken from FLIR Blackfly S USB3 cameras facing forward in parallel
to the event sensors.

To sum up, we chose the DSEC dataset as our training dataset due to its
greater ground-truth quality, as well as an external benchmark that allows
for fairer comparisons among models. To be able to compare ourselves with
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pre-existing methods, though, we have also trained and evaluated our model
on the MVSEC dataset, both on driving and on indoor-flying scenarios.

3.1.3 Input Event Representation

Having set on a training dataset, the next step to take was figuring out a
way of feeding the event data into an artificial neural network. To achieve
this, the first thing to do is understanding the output information that an
event camera provides. As we have already explained in Subsection 2.2, event
cameras trigger asynchronous events on pixels where the variation of the log
luminance reaches a certain threshold. Each event ei is usually presented in
the following form:

ei = (xi, yi, ti, pi) (3.1)

• xi and yi are the spatial coordinates of the pixel where the event has
been triggered (let us not forget that pixels in event cameras operate
asynchronously)

• ti is the event’s timestamp, i.e., the moment when the event triggered.
This parameter is in direct link with the camera’s temporal resolution,
which is usually in the range of the microsecond.

• Finally, pi corresponds to the event’s polarity, i.e., whether the event
represents an increase (pi = +1) or a decrease (pi = −1) in the log
luminance at location (xi, yi).

The information an event camera provides is therefore not an image-like
tensor, but rather a sorted list of consecutive independent events. However,
a discretization is needed in order to train a deep-learning model on a GPU.
We decided to accumulate all of the events taking place within a given time
window in an image-like input that would then be treated by our CNN,
and we decided to call these tensors event histograms. We achieve this by
creating a two-channel tensor (one channel for each polarity) of width W
and height H equal to the event camera resolution. Then, we add 1 on the
first channel at each pixel for each time a positive event has been triggered
during the frame’s time window in that pixel, and we perform the same
operation on the second channel for each negative event. A pseudo-code
example of the frame creation can be found in Algorithm 1. We decided to
call these frames event histograms because they represent a two-dimensional,
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two-channel event distribution within the visual scene, the same way a
standard histogram would represent a data distribution in a simple plot.
This approach to represent input event data, while extensively used within
the literature (see Chapter 2 for some examples), is not the only possible
option. We would also like to mention the input representation adopted in
[125], where input events within the frame duration are binarily encoded,
i.e., each pixel contains information about whether or not events occurred
in it during the time window, but not about how many of them took place.
While a priori more hardware-friendly than our integer encoding approach,
it is in fact not needed to go this far, since many neuromorphic chips can
handle integer information. Furthermore, we believe that the event count
can be crucial information when estimating optical flow due to its temporal
nature, since collapsing this information to binary frames would effective
translate into severely hindering the temporal resolution of event cameras,
thus questioning the pertinence of their use in such a task. Finally, there
may be an argument for an event-driven approach, but it is not possible
to pursue this approach on a GPU, and it would instead require on-chip
learning in a dedicated device.

Algorithm 1 Event Histogram Creation

1: Inputs: event list, t start, ∆t
2: event histogram← zeros(C = 2, H,W )
3: for event in event list do
4: (x, y, t, p)← event
5: if t ≥ t start and t < t start + ∆t then
6: if p == +1 then
7: event histogram[0, y, x]← event histogram[0, y, x] + 1
8: else
9: event histogram[1, y, x]← event histogram[1, y, x] + 1
10: end if
11: end if
12: end for
13: Return: event histogram

The result of this process can be seen in Figure 3.1, where we have
plotted one channel of an event histogram both in perspective (where the
histogram-like nature of the tensor can be seen, with peaks representing



38 CHAPTER 3. OPTIC FLOW FROM EVENT CAMERAS AND SNN

(a) Event accumulation at each pixel for
a given time interval.

(b) Top view of the corresponding event
frame.

Figure 3.1: Example of an input frame for 1 polarity.

event concentration) and in top view. Furthermore, we can see in the top
view that events are heavily linked to contours (e.g. the windows on a
building on the right side, or the zebra crossing on the bottom section of the
scene), while regions with almost-constant luminance values (e.g. the sky or
the pavement of the road) barely trigger events.

3.1.4 Network Architecture

Once the training dataset was chosen, we proceeded to develop our model’s
architecture. As we explained in Subsection 3.1.1, our first approach
consisted of sequentially feeding event histograms to a U-Net-like network to
statefully estimate optical flow. We would resort to leaky integrate-and-fire
(LIF) neurons as our spiking units. This model would in theory be able to
integrate temporal information thanks to the spiking neurons’ membrane
potential, while irrelevant information would be forgotten through the
neurons’ leak. The model would be trained with supervised learning
using truncated back-propagation through time (TBPTT) and surrogate
gradient learning (SGL). Optical flow would be represented by the inner
potential of a final nonspiking neuron pool (leaky integrators with an infinite
firing threshold). Finally, we would use separable convolutions [126, 127]
everywhere in the model to ensure the lowest possible number of parameters,
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Figure 3.2: Network architecture: first model (draft)

speeding up training and improving generalization in the process. An
example of our first architecture model can be found in Figure 3.2. The
model, while heavily inspired by the EV-Flownet [122] architecture, presents
one major difference: intermediate, lower-scale predictions are absent in
our version of the network. This decision was made in order to remain as
hardware-friendly as possible, since re-injecting intermediate predictions is
not a spike-friendly operation supported by neuromorphic chips.

The main difference between our approach and most of the existing
spiking models for optical flow estimation, either analog or spiking, is its
hardware-friendliness. Indeed, to ensure that our model could one day
be implemented on neuromorphic chips, all of the information within the
network is encoded in binary tensors, and all of the input information is
integer-natured. This means that we cannot resort to some of the techniques
that have been used in the literature (e.g. feeding the last event timestamp
at each pixel to the model for more informative input tensors, or re-injecting
lower-scale predictions at the decoder for improved resolution), instead
focusing our efforts on a fully-spiking, completely binary model that would
exploit the temporal information of event data contained in events alone for
accurate optical flow estimation.

The aforementioned approach made sense at first, since we believed
temporal information to be key in optical flow estimation (as we would
eventually demonstrate). Furthermore, lack of motion would translate
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into absence of events, which would in turn naturally decrease the model’s
membrane potentials to zero provided that no biases were present within
the model (achieved by removing the biases present in convolutional layers,
as well as removing all instances of batch normalization within the model).
However, this method never managed to produce sufficiently good results,
and mostly converged to noisy predictions. We have long theorized about
the possible reasons behind this phenomenon, and the conclusions we have
reached are:

• First, in order to make TBPTT work as a training mechanism, we need
to initialize the network to a point where transient optical flow values
due to network warming-up have been fully forgotten. Furthermore,
during training, we would like to use long sequences where both
long- and short-term effects could be captured. However, since the
computational graph has to be unrolled after the series of forward
passes to perform back-propagation, the process soon becomes too
costly for our hardware to handle.

• Second, the network’s dynamics (represented by the different layers’
leak factors) play a major role in accurate optical flow estimation. This
situation is even more true for the very last neuron pool, responsible
of optical flow predictions. The simplest iteration of the model would
have constant leak factors within each layer, and they would be shared
by all of the neurons present in a layer. Nevertheless, this is a
very strict approach to learn optical flow dynamics. We therefore
switched our spiking units into Parametric LIF neurons (PLIF, leaky
integrate-and-fire spiking neurons with a learnable time constant). In
this case, the leak factor of each layer is still shared by all of the neurons
within the layer, but it is not fixed from the beginning: rather, it is
initialized to a given factor, and learnt during training. Using these
neurons, though, caused the time constants to explode, completely
removing the leak and turning the spiking units into almost-perfect
integrators. In the end, we believe that both of these approaches were
lacking, and that shared time constants within a layer is too strict of a
constraint. Indeed, the dynamics of optical flow being subtle, a more
robust model would probably consist of heterogeneous leak factors,
since the speed at which flow values change is usually larger at the
scene’s edges than in the center section. These time constants should
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ideally be input-dependent, taking into account additional information
such as event concentration, focus of motion, etc. (not explicitly
in the input data, but reasonably easy for the model to extract).
This approach is nonetheless too complex to implement on current
neuromorphic devices, and we therefore decided to abandon it in order
to stay as close to a real implementation as possible.

• Finally, the difficulty of generating such a high number of flow
estimations at each timestep has to be acknowledged, and our approach
was probably too naive to capture so many event interactions with such
a simple model.

The task at hand having proven too ambitious for our set constraints, we
decided to take a step back and simplify both the model and its learning.
Using the knowledge we had acquired while developing Stereospike[9], we
decided to try this approach for optical flow estimation. Our model would
therefore switch into a stateless network where a full reset of the membrane
potentials would be performed after each forward pass. This modification
effectively means that our SNN is equivalent to a standard ANN where
the non-linearities (usually represented by Rectified Linear Units) have
been replaced by Heaviside step activation functions. While some may
argue that this decision pulls us away from spiking neural networks, we
strongly disagree, since our main focus has always been to develop a
hardware-friendly algorithm, and this approach respects the constraints
imposed by neuromorphic hardware. Moreover, both the leak and the reset
have an energy cost for these chips, so depending on the targeted device
the decision may be justified from an energy efficiency point of view. This
approach presents a major limitation when compared to the previous one,
though, because temporal context is lost as only one frame is fed at a time
to the model. To overcome this situation, we decided to concatenate a
series of event frames along the channel dimension, therefore obtaining an
input tensor which consists of a suite of consecutive event histograms (this
approach has also already been used in the literature, e.g. [125]). The model
would thus consist of a 2-dimensional CNN estimating optical flow from a
chunk of consecutive event frames.

We were optimistic about this approach, but in the end it did not
pay off. We believe that the main issue with this approach was relegating
temporal information to the very first convolutional layers, i.e., the layers
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Figure 3.3: Network architecture: final model

representing the lowest number of parameters within the network. Due to
the way convolutions work, temporal information would be shuffled after
the first encoding step, and only the first layer would see “raw” continuity
information. Since zero-input was now virtually impossible for our model,
we tried including batch normalization in the architecture, due to its
widespread use within the literature (even found to be crucial for certain
tasks [125]), but the final result of this version of the network consisted
of noisy predictions lacking any structure whatsoever. It became evident
that, if we wanted to succeed in our task, we would need to be able to
keep temporal information for as long as possible, giving the model time to
correctly extract and interpret it.

The final iteration of the model, and the one that managed to achieve
competitive results on both datasets, consists of a variation on the previous
model, trying to incorporate temporal context into a stateless model.
Inspired by Temporal Convolutional Networks (TCN) [128, 129], we tried to
adapt their approach for a two-dimensional input (i.e. our event histograms).
The main goal was to increase the network’s bottleneck temporal effective
receptive field [130] while keeping the temporal continuity along the different
encoding stages.

Our final architecture can be found in Figure 3.3. It consists of a



3.1. MATERIALS AND METHODS 43

U-Net-like architecture taking a three-dimensional tensor of shape (B, C,
T, H, W) as its input, where:

• B represents the training batch size. In our experiments, we
surprisingly found that B=1 yielded the best results for our method.
While astonishing, it is the same result we obtained in [9] for depth
estimation, and extensive ablation studies have led us to accept this
batch size as the optimal solution.

• C is the number of input channels, one for each polarity. After a first
encoding stage increases this dimension up to 32 channels while keeping
the spatial resolution unchanged, each subsequent encoder doubles the
number of channels until 512 channels are reached in the bottleneck.

• T represents the temporal dimension, i.e. the number of consecutive
frames that the model is seeing at once. The original input consists of
21 consecutive event histograms of 9.1 milliseconds each (the optimal
duration and number of frames we found, as we will present in Section
3.2). Each encoding stage decreases this dimension until it collapses to
1 right before the bottleneck (Figure 3.4 illustrates the temporal ERF
evolution across the encoding stages). It is important to note that the
passage into 3-dimensional convolutions is not “free”, since the network
requires longer training times. Moreover, while latency is not hindered
because event histograms can be fed in a sliding window fashion into
the final model, the number of floating-point operations (FLOPS) does
severely increase. Still, this is the line of research that provided the
best results, and thus the one we decided to pursue.

• Finally, H and W represent the tensor spatial resolution. Each
encoding stage halves each of these dimensions, and each decoder stage
doubles them until reaching a full-resolution tensor in the final layer.

Delving more in-depth into our network, there are a few details that set
it apart from the most standard architectures. The first main difference
is found in the encoder blocks, because downsampling is performed via
a strided maximum pooling layer instead of a strided convolution. Both
approaches were compared (see Subsection 3.2.4), and this is in fact the
approach that yielded the best results. We believe that this result is due to
they way maximum pooling works, propagating information as long as one
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Figure 3.4: Temporal receptive field evolution along the network’s encoder

single spike is present within the kernel’s receptive field, therefore giving
less importance to individual spikes in favor of broader spatial information.
This method can also be implemented in neuromorphic hardware [131], and
it is to the best of our knowledge the first time it has been used for dense
regression with spiking neural networks. The other biggest difference we
present against other similar architectures is nearest-neighbor upsampling
in the decoder stages, opposed to bilinear upsampling (e.g. [102] or [122]).
This choice is motivated by the fact that, unlike bilinear upsampling,
nearest neighbor upsampling guarantees binary tensors after performing
the upsampling operation (see Figure 3.5), thus being implementable on
neuromorphic hardware. Finally, since our encoder is three-dimensional and
our decoder is two-dimensional, tensor shapes do not match and regular
skip connections are impossible. To overcome this issue, we only take
the very last element along the T dimension, since it is the closest one
to the present and therefore the most relevant one for optical flow estimation.

Lastly, there is an argument to be made about using more complex
architectures, i.e. LSTMs or GRUs, or even attention-based models like
transformers, since state-of-the-art publications usually include one or more
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(a) Upsampled tensor via Bilinear
Upsampling.

(b) Upsampled tensor via Nearest
Neighbor Upsampling.

Figure 3.5: Upsampling techniques comparison.

of these blocks within their algorithms (see Section 3.2). While certainly
interesting and intriguing, the problem with these blocks is that they are
not implementable on neuromorphic hardware, and they were therefore out
of the conversation from the very beginning given our set of constraints.

3.1.5 Spiking Neuron Model

Our initial approach to the problem led us to choose a LIF neuron as
the desired spiking unit within out network, i.e. a memory unit whose
membrane potential suffers an exponential decay over time (Equation
2.2) towards a certain resting potential (Vrest). Affected by the afferent
connections, this inner potential can be increased (excitatory connections)
or decreased (inhibitory connections). At some point, the potential will
reach the neuron’s firing threshold (Vthreshold), causing the neuron to spike
and resetting the membrane potential. The reset can be either a hard reset,
i.e., setting the membrane potential to a reset value Vrest, or a soft reset,
decreasing the membrane potential by a given delta.

As previously explained (see Subsection 3.1.4), our first attempts
consisted of training a stateful SNN using truncated back-propagation
through time. This approach would exploit the membrane leak as a
forgetting mechanism for irrelevant, distant past information. Despite our
best efforts, though, we were unable to achieve competitive results with
this approach. Indeed, the noisy nature of event data greatly complicated
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reaching competitive error metrics, and the high computation cost required
by TBPTT was forcing us to choose a non-optimal compromise between
frame duration and overall temporal context. We therefore decided
to change our approach and exploit the insights we had gained while
developing StereoSpike [9], using stateless units after each forward pass.
Since the leak factor was no longer necessary, we switched the neuron
model to the simpler integrate-and-fire units. While more limited in their
performances, these neurons are also less computationally costly than their
leaky counterparts, since the reset operation is easier to compute than the
membrane update that the leak factor requires. Furthermore, temporal
information has not been lost, since it has instead been transferred to an
additional temporal dimension.

3.1.6 Supervised Learning Method

Loss Function

The final step towards developing our model was finding how to make it learn
to predict optical flow, all while keeping a reasonable level of generalization.
When measuring performance on optical flow estimation, there are many
possible metrics to use [21], yet two of them stand out above the others:
Average Endpoint Error (AEE, Equation 3.2) and Average Angular Error
(AAE, Equation 3.3). In both equations, u represents the x-component of
the optical flow, and v represents the y-component of the vector. In addition,
(ũ, ṽ)i,j represents the estimated optical flow at location (i, j), and (u, v)i,j
its ground-truth value.

AEE =
1

n

∑
i,j

√
(ũi,j − ui,j)2 + (ṽi,j − vi,j)2 (3.2)

AAE =
1

n

∑
i,j

arccos

 ũi,j · ui,j + ṽi,j · vi,j√
ũ2
i,j + ṽ2i,j ·

√
u2
i,j + v2i,j

 (3.3)

• Average Endpoint Error represents the average of the error vector’s
modulo among all pixels.

• Average Angular Error represents the average angular offset between
the estimated optical flow vector and its associated ground-truth. It
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Figure 3.6: AEE vs. AAE: both cases have the same AEE, but the angular
error is not the same.

is associated with the estimation’s quality, since it account for the
alignment between estimation and ground-truth.

Among the two of them, AEE is stronger as a metric, since a zero-valued
AEE (i.e. a perfect estimation) would also translate into a zero-valued AAE,
whereas the opposite is not truth. We therefore started by adopting it as
our base loss function. Nevertheless, we soon found that it was limited in
its performance as a loss function, since it naturally prioritizes pixels with
a high-valued ground truth over the rest. This phenomenon can be easily
seen in Figure 3.6, where two instances of the same AEE yield drastically
different AAE. It became clear to us that, if we wanted to improve our
predictions, we would have to ensure that the model was not only learning to
decrease the absolute error between prediction and label, but also explicitly
aligning both vectors.

The first intuition we had to align ground-truth and estimations was
switching the AEE loss to an Average Relative Error (ARE), described in
Equation 3.4. This function would account for the differences in absolute
optical flow value by normalizing pixel-wise L2 error by the ground-truth’s
modulo (plus a small ϵ factor to ensure nonzero values in the denominator).
Small errors in pixels with low-valued ground-truth would therefore be
magnified, and the opposite would happen for high-valued ground-truth
pixels.

ARE =
1

n

∑
i,j

√
(ũi,j − ui,j)2 + (ṽi,j − vi,j)2√

u2
i,j + v2i,j + ϵ

(3.4)

Although we were optimistic about our new loss function, our efforts
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did not pay off. In fact, this loss function led to noisy, unstable training
results, where learning was severely impacted and only random predictions
were obtained. We therefore decided to take a more direct approach and
train our model with a two-term loss function, comprising a combination of
the AEE and the AAE metrics. While the inclusion of the first term was
straightforward, the angular term presented some challenges. First, if either
the prediction or the ground-truth showed a zero value, there would be no
way of computing the angle’s cosine. To overcome this issue, we included
a small positive ϵ in the cosine computation. Second, in order to calculate
the angle, we needed to make sure that the cosine belonged to the interval
[−1,+1], but since the derivative of the arc-cosine function is infinite at its
bounds, we decided to clamp its values in an approximation of the ]− 1,+1[
interval, that we achieved by offsetting the bounds by the same ϵ we had
previously used. A draft of the angular loss function’s algorithm can be seen
in Algorithm 2.

Algorithm 2 Angular loss function

1: Inputs: prediction, label, mask, ϵ = 1e− 5

2: n pixels =
∑

mask

3: pred mod =
√

prediction2
x + prediction2

y

4: label mod =
√

label2x + label2y

5: dot product = predictionx · labelx + predictiony · labely

6: cosine =
dot product + ϵ

pred mod · label mod + ϵ
7: cosine← clamp(cosine,−1 + ϵ,+1− ϵ)

8: Return:
1

n pixels

∑
[arccos(cosine) ·mask]

Finally, when talking about optical flow estimation from event data,
it is worth talking about photometric and smoothness losses, used for
unsupervised learning (e.g. [102]).

• As far as photometric loss is concerned for event-based optical flow
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estimation, it is used for accurate predictions wherever events have
been triggered during the input event histogram time window, thus
yielding sparse flow maps, and therefore not applicable for our task.

• Regarding the smoothness loss, we explored its inclusion, but the
results we obtained consisted mostly of smooth maps with either fuzzy
contours or lack of contours altogether. Despite our best effort, we
did not manage to find a good trade-off between loss contribution
and image sharpness, and we ultimately decided to abandon it for our
model.

Data Augmentation

In addition to the supervised loss functions, we turned our attention to
data augmentation, trying to prevent as much as possible the overfitting
problem, inherent to supervised learning. We explored several options for
event data augmentation, with varying degrees of success. The pseudocode
for all of the different transformations we tested can be found in Appendix A.

• Random horizontal flip (Algorithm 3) is perhaps the easiest and most
intuitive transformation we can perform on our data, since it generates
ecological samples that keep the data structure. Its inclusion in the
data augmentation pipeline translated into a significant improvement
on the network’s generalization capabilities for the task at hand.

• Random vertical flip (Algorithm 4) is also another widespread data
augmentation technique in computer vision, with existing examples
in the literature applying it to optical flow prediction (e.g. [102]).
Nevertheless, it did prove detrimental for our model, since significantly
changing the spatial data distribution while training led to poor
evaluation metrics.

• Random rotation (Algorithm 5) was developed in parallel to our vertical
flip code as yet another way to augment data. In the end, though, it
was also abandoned, since it did not only present the same issues as
the random vertical flips, but also modified the tensors’ aspect ratio
during training.
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• Random event drop (Algorithm 6) was conceived due to the noisy
nature of event data, since slight modifications to the input tensors may
lead to more robust estimations. Random patches (Algorithm 7) follows
the same philosophy, this time serving a twofold purpose. On the one
hand, this method increase the likelihood of masking an area comprising
events (event tensors presenting a certain level of data sparsity, random
event drops often affect empty pixels and therefore have no effect). On
the other hand, it allow us to simulate potential temporary occlusions
to the event camera, which should in turn make the algorithm more
robust to these situations. Both models slightly increased the overall
performance, but the trade-off between improvement vs. increase in
computational cost was not justifiable, and we therefore decided to not
include them moving on with the project.

• Temporal mirroring (Algorithm 8) is the most complex of all the data
augmentation techniques, since it does take into account the vector-like
nature of the ground-truth in addition to the event camera’s motion
(impacting the event polarities). However, it is such a widespread
technique that some datasets (e.g. DSEC) event provide the users
with backwards data. This technique did not improve our test metrics
either, but we are convinced that this is due to the datasets being
heavily biased towards forward motion, and we remain positive that it
is a transformation to include when working on more challenging and
diverse datasets.

In the end, only random horizontal flip was kept as a data augmentation
technique. Nevertheless, we are convinced that some of our methods may
indeed be beneficial when training on a more challenging dataset with a
wider variety of motion patterns.

3.1.7 Training Procedure and Technical Details

All of our calculations have been performed on either NVIDIA A40 GPUs
belonging to the CerCo laboratory, or in Tesla V100-SXM2-16GB GPUs
belonging to the French regional public supercomputer CALMIP, owned by
the Occitanie region and that we were allowed to use under the allocation
2022-p22020.
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Regarding our training samples on DSEC, we performed the following
data division:

• Trainin split:

– zurich city 01 a

– zurich city 02 a

– zurich city 02 c

– zurich city 02 e

– zurich city 05 a

– zurich city 05 b

– zurich city 06 a

– zurich city 07 a

– zurich city 09 a

– zurich city 10 a

– zurich city 10 b

– zurich city 11 a

– zurich city 11 c

• Validation split:

– thun 00 a

– zurich city 02 d

– zurich city 03 a

– zurich city 08 a

– zurich city 11 b

This data split was performed in order to ensure that around 75% of the
available data would be used during training, while the remaining 25% was
used in evaluation. For the final submission to the DSEC test benchmark, all
of the available samples were used in training. For training and evaluation
on the MVSEC dataset, we used the data splits proposed in [132] and [133].

3.2 Results

Having presented the choices we had to make to achieve our final model,
we will now proceed to show the different iterations we went through until
reaching the final architecture. We will also demonstrate that our model
reaches good levels of performance on both the DSEC and the MVSEC
datasets, showing competitive results with a fraction of the number of
parameters when compared to other existing methods in the literature. We
will continue by presenting the ablation studies we performed in our model.
Finally, we will briefly talk about potential simplifications we explored
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for real-life implementation, targeting the SPLEAT neuromorphic chip in
particular [110].

3.2.1 Model Optimization

Kernel Size

Ever since their introduction in the famous Attention is all you need paper
[47], transformers established themselves as the go-to architecture for many
deep-learning tasks, eventually taking over the field of computer vision
as well. This was mainly due to two facts: first, unlike recurrent neural
networks, they can be easily parallelized; second, their attention mechanism
can capture distant dependencies, be it in time or space. Yet, during the
past few years we have seen the rise in popularity of convolutional neural
networks once again. Indeed, it has been shown that sufficiently large kernel
sizes can manage to capture long-distance dependencies within a tensor
(similarly to transformers), and competitive results have been achieved
with kernel sizes as large as 31x31 [134] and even 51x51 [135] thanks to
efficient kernel reparametrization. Furthermore, the development of new
learning techniques such as dilated convolutions with learnable spacings
[136] has allowed the development of ultra-large spatial kernels with a sparse
weight distribution, whose spacings within the kernel are learned through
back-propagation.

Seeking easiness of implementation, we decided to constrain our model to
a standard CNN. Still, there was the question of which size the spatial kernel
should have without hindering performance. After a thorough study, we
concluded that a kernel size of 7x7 was optimal for our task at hand, since
larger kernels simply increased learning time without significant accuracy
improvements. This results is in line with the findings of [134], which shows
that standard Python libraries struggle to optimize kernel sizes larger than
seven, and it is therefore the size we decided to use in our model.

After finding the optimal spatial kernel size, we turned our attention
to the temporal dimension. The convolution along the temporal axis can
be seen as a learnable delay among the frames affected by the kernel, and
finding the optimal kernel size was thus key to ensuring accurate temporal
feature extraction. Since we wanted the temporal dimension to collapse to
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Frame duration AEE (px/s) AAE (rad)
4.5ms 1.41 0.129
9ms 1.10 0.094
18ms 1.19 0.087

Table 3.2: Optimization results on event histogram duration

one when reaching the residual block (by using unstrided convolutions along
the temporal dimension), larger kernel sizes naturally translated into longer
input sequences (more input frames fed at once to the model), consequently
representing a longer overall temporal context. We tested our model for
kernel sizes of 3 (11 input histograms, 100ms of temporal context), 5 (21
input histograms, 192ms of temporal context) and 7 (31 input histograms,
282ms of temporal context). In the end, we found 5 to be the optimal kernel
size along the temporal dimension, i.e. using event information further in
the past than 192ms did not improve the evaluation metrics.

Temporal Context

Having found 21 input event histograms to be the optimal amount of frames
to use for our chosen configuration, we proceeded to question ourselves
on whether 9ms was the optimal histogram duration. A larger frame
duration would translate into further-in-the-past temporal information,
sacrificing temporal resolution in the process. On the contrary, shorter event
histograms would contain finer temporal information, but this information
would be constrained to a temporal context much closer to the present.
To check the effect of input histogram timespan with a fixed number of
input histograms (21, as found during our aforementioned study), we tested
our base architecture (Figure 3.3) on frames comprising 4.5ms, 9ms and
18ms. The results we obtained for this study have been gathered on Table 3.2,

Our results show that 9ms is in fact the optimal frame duration for
our architecture. Indeed, 18ms frames do manage to capture long-term
dependencies along the temporal axis, but the lower temporal resolution
does hinder the model’s performance to some extent. On the other hand,
finer input histograms do not manage to properly translate into accurate
optical flow estimations due to the lack of overall temporal context, thus
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Architecture AEE (px/s) AAE (rad) Num. Params. (x 1e6)
1 res + sum 1.18 1.101 1.1
1 res + cat 1.10 0.094 1.2
2 res + sum 1.15 0.097 1.7
2 res + cat 1.16 1.109 1.8

Table 3.3: Optimization results on network architecture

showing the worst performance metrics.

Residual Blocks and Skip Connections

Finally, we questioned ourselves about the network architecture itself.
Trying to stay as close to neuromorphic hardware as possible, the model
had to be as light as possible to facilitate implementation. Among all of
the blocks present in the network, the most expensive ones in terms of
computational requirements were by far the residual blocks, since each one of
them represented roughly 600.000 trainable parameters (i.e. 50% of the total
parameters of the base model). Nevertheless, the standard practice within
the literature is to include two residual blocks in U-Net-like architectures, so
we decided to verify if the associated increase in the number of parameters
translated into better predictions. In addition, we tested whether our model
should concatenate tensors in its skip connections, or if simply summing
them would be enough, since concatenation allows information to be treated
separately, but at the cost of more trainable parameters. The results of all
of these studies can be found in Table 3.3.

We have found that using one single residual block, in conjunction
with concatenations in the skip connections, yields the best results for our
combination of temporal context/histogram resolution. We believe that this
result is justified by two reasons:

• As we have previously stated, concatenation allows the skip connection
to spread information along channels, therefore having much richer
information for the decoders to extract (potentially even treating
channels separately if necessary).

• Integrating two residual blocks in the architecture seems to make
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the model more prone to overfitting, showing worse results on the
evaluation metrics.

3.2.2 Model Evaluation on the DSEC Dataset

Having set on a final architecture for our SNN optical flow estimator, we
now proceeded to test it on the most relevant state-of-the-art datasets,
both comprising ecological data recorded with real event cameras. The
first dataset we tested our model on was the DSEC dataset [4], available at
https://dsec.ifi.uzh.ch/. This dataset is becoming the go-to comparison
benchmark for disparity and optical flow estimation, not only because of its
superior ground-truth quality, but also because of its official benchmark,
providing an equal playing field for all models alike. Thus, we decided to
train our definitive architecture on all of the available data for a total of
100 epochs, and then submit our best result to the official benchmark. The
results we obtained, as well as a comparison to other existing publications,
can be found on Table 3.4. Please note that the DSEC benchmark is
very dynamic, and it is possible to submit anonymously and remove the
submissions at will. We have therefore only included in our comparison
table the results that can be cited, but we invite the readers to consult
https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/

to see all the most up-to-date submissions.

Our results comfortably place us in the middle of the table, at a
reasonable distance from the top performers, but also outclassing some of
the most complex models, establishing our model as the best-performing
spiking neural network on the task. Furthermore, we achieve this result not
only through a hardware-friendly approach (potentially leading to significant
energy savings when correctly deployed on a dedicated chip), but also at
a fraction of our competitors’ trainable parameters, making us the lightest
model among all of the published alternatives.

Our results are also good as far as qualitative estimations are concerned,
which is shown on Figure 3.7. This image contains three samples of optical
flow estimations obtained with our model: in order, each one of them
represents the optical flow ground-truth, the masked prediction (valid
pixels only) and the unmasked estimation of the flow field. In addition,
Figure 3.7d shows the colormap used for optical flow representation (the

https://dsec.ifi.uzh.ch/
https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/
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Model AEE (px/s) AAE (deg) Num. Params (M)

IDNet [81] 0.72 2.72 2.5

TMA [137] 0.74 2.68 6.9

E-Flowformer [62] 0.76 2.68 n/a

ADMFlow [63] 0.78 2.84 7.0

E-RAFT [138] 0.79 2.85 5.3

Ours 1.71 6.34 1.2

VSA-SM [139] 2.22 8.86 N/A

TamingCM [77] 2.33 10.56 31.4

MultiCM [78] 3.47 14.0 n/a

RTEF [140] 4.88 10.82 n/a

Table 3.4: Comparison with the state-of-the art, obtained from https://

dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/

https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/
https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/
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optical flow vectors are encoded as Lab images, where the luminance
channel represents the absolute magnitude of the flow, and the a and b
channels the x and y components respectively). It can be seen that our
method achieves accurate predictions within the scene, with particular
good results when estimating the focus of expansion. Furthermore, our
method is able to identify artifacts within the scene (e.g. vertical posts
on Figure 3.7a or traffic signals on Figure 3.7c). This final result was
somewhat unexpected, since masked supervised training is more similar to
learning an optical flow point-cloud than it is to learning an overall flow
distribution, and it demonstrates the generalization capabilities of our model.

3.2.3 Model Evaluation on the MVSEC Dataset

For the sake of easiness of comparison with most of the existing models
within the literature, in addition to analyzing our model’s generalization
capabilities, we also tested our architecture on the MVSEC dataset [8],
available online at https://daniilidis-group.github.io/mvsec/. Using
the data splits introduced in Subsection 3.1.7, we tested our model for
indoor flying and outdoor driving scenarios.

Wanting to keep our training philosophy, we were bound to develop a
ground-truth mask akin to the one we used when training on the DSEC
dataset. To achieve this, we only considered as valid pixels those showing an
optical flow value greater than a threshold on both of their components. We
set the threshold to thr = 10−5 to ensure keeping as many pixels as possible.
To keep our training pipeline consistent, we also evaluated the optical flow
estimations on valid pixels only.

We started by testing our model on indoor flying sequences (Table 3.5).
After several test, we found that the best results were obtained when the
architecture was initialized to a set of weights previously learnt on DSEC.
We therefore initialized the weights with a model obtained after training for
35 epochs on our DSEC train subsplit, and proceeded to optimize them on
the indoor flying sequences of the MVSEC dataset. The results on Table
3.5 show that we achieve near-state-of-the-art performance (best result in
bold, runner-up underlined), beating all but one of the previously published
methods on two out of three splits and overall performance, and placing

https://daniilidis-group.github.io/mvsec/
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(a) Optical flow discontinuities due to vertical artifacts within the
visual scene.

(b) The silhouette of the leftmost tree can be perceived on the
unmasked optical flow map.

(c) Traffic signs clearly distinguishable on the right side

(d) Optic Flow Encoding

Figure 3.7: Example predictions of our best architecture on our validation
set (ground-truth, estimation and masked estimation).
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ourselves as the best spiking neural network for optical flow estimation on
this task.

Next, we proceeded to evaluate our architecture on MVSEC’s outdoor
driving sequences, training on outdoor day 2 and testing on outdoor day 1.
Although we were optimistic after finding out our performance levels on the
indoor flying sequences, our enthusiasm would soon be tempered:

• First, we struggled to stabilize the training, getting noisy results with
no real structure for quite a long time. In fact, the training data
itself consists only of a nine-minute sequence subject to high-frequency
vibrations (see [122]), which translates into noisy data that greatly
complicates learning.

• Second, unlike for the previous scenario, we found that network
initialization was actually detrimental for the final result in this case,
despite the sequences being apparently more similar in nature.

We believe that both of this issues are related to the noisy nature of the data
in general, and to the presence of the car’s dashboard in particular. Indeed,
unlike the sequences in the DSEC dataset, the car’s dashboard makes part of
the visual scene in the MVSEC dataset. This part of the car being reflective,
it triggers an enormous amount of events not linked to motion, and therefore
being detrimental to optical flow estimation. Eventually, we managed to
stabilize our training results by masking the corresponding section both
in the input tensors and in the ground-truth. We are convinced that this
manual fix should not raise major concerns, since the dashboard does not
move relative to the event camera and therefore optical flow there should
consistently be zero, but we acknowledge that even after this engineering
solution our results for this scenario remain far from the top-performing
publications in the literature.

While somewhat disappointing, the results on the MVSEC outdoor
sequences are nevertheless not discouraging, because:

1. when optimizing our network architecture, and specially the spatial
kernel size, we were targeting event histograms and optical flow
predictions of 480x640 pixels of image resolution. Nevertheless,
MVSEC presents a much lower-resolution ground-truth (only 260x346
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Model Split 1 Split 2 Split 3 AEE sum

EV-FlowNet [122] 1.03 1.72 1.53 4.28

Zhu et. al.[141] 0.58 1.02 0.87 2.47

Spike-FlowNet [100] 0.84 1.28 1.11 3.23

Back to Event BasicsEvf

[142]
0.79 1.40 1.18 3.37

Back to Event BasicsFire

[142]
0.97 1.67 1.43 4.07

XLIF-EV-FlowNet [102] 0.73 1.45 1.17 3.35

XLIF-FireNet [102] 0.98 1.82 1.54 4.34

Orchard et. al. [143] 0.83 1.22 0.97 3.02

Fusion-FlowNet [144] 0.56 0.95 0.76 2.27

Adaptive-SpikeNet (ANN)
[104]

0.84 1.59 1.36 3.79

Adaptive-SpikeNet (SNN)
[104]

0.79 1.37 1.11 3.27

FSFNFP [145] 0.82 1.21 1.07 3.10

FSFNHP−ADC [145] 0.85 1.29 1.13 3.27

Shiba et. al. [78] 0.42 0.60 0.50 1.52

VSA-SM [139] (dt = 1) 0.57 0.91 0.69 2.17

Ours 0.58 0.72 0.67 1.97

Table 3.5: Performance comparison on the MVSEC dataset (indoor flying
sequences): per-sequence AEE (px/s).
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Model outdoor day1 AEE (px/s)

EV-FlowNet [122] 0.49

Zhu et. al. [141] 0.32

ECNmasked [146] 0.30

Spike-FlowNet [100] 0.49

Back to Event BasicsEvf [142] 0.92

Back to Event BasicsFire [142] 1.06

XLIF-EV-FlowNet [102] 0.45

XLIF-FireNet [102] 0.54

Fusion-FlowNet [144] 0.59

Adaptive-SpikeNet (best ANN) [104] 0.48

Adaptive-SpikeNet (best SNN) [104] 0.44

FSFNFP [145] 0.51

FSFNHP−ADC [145] 0.48

Shiba et. al. [78] 0.30

VSA-SM [139] (dt = 1) 0.46

Ours 0.85

Table 3.6: Performance comparison on the MVSEC dataset (outdoor
sequences).
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pixels), thus potentially having a different optimal kernel size associated
with its resolution.

2. when optimizing our overall temporal context and event histogram
duration, we did so for a specific event camera with a given
configuration. However, since the MVSEC dataset was filmed
with a different camera, potentially with different dynamics, a
new optimization may be required to find its optimal temporal
representation.

3. when optimizing the training pipeline (learning rate, optimizer,
scheduler, etc.), we designed it for 480x640 pixels of ground-truth
resolution and a certain signal-to-noise ratio present in the DSEC
dataset (this ratio, although unknown, can be safely assumed to
be constant within the data due to the lack of variety across
sequences). The MVSEC dataset does not only present lower-resolution
ground-truth, but also sequences of different nature, and each one of
them with its own signal-to-noise ratio that would require its own
hyperparameter tuning.

We therefore believe that we have demonstrated the generalization
capabilities of our model, and this belief is supported by the evidence
shown in Table 3.5. In addition, when trying to accomplish the same task
(optical flow estimation for driving scenarios) with a different EC, our base
architecture is able to estimate optic flow from scratch, without undergoing
any modification to target this new condition.

3.2.4 Ablation Studies

Several ablation studies were performed on our architecture and training
procedure, which we will hereby discuss. In order not to clutter this section
with so many different graphs, we have decided to gather them in Appendix
B, where they can be easily consulted. All of the results presented in this
section have been obtained on the DSEC dataset, using the train/validation
split proposed in Subsection 3.1.7.
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Downsampling: Pooling vs. Convolution

Although maximum pooling as a downsampling technique is a
hardware-friendly operation, and even if we got good results when
using this technique, the fact remains that it is not a widespread method
of tensor downsampling, since convolutions are the go-to operation for
achieving lower-resolution tensors. We therefore performed an ablation
study, modifying the architecture to be fully-convolutional instead of using
maximum pooling as a downsampling method. The result (Figure B.3)
shows that indeed pooling performs better for our task. We believe that
this result is due to the fact that, by using pooling, we somewhat remove
the importance of individual spikes in favor of more “global” information,
i.e. whether any spikes were triggered within the pooling kernel’s receptive
field. However, it is also important to note that, since implementing pooling
layers in our network also requires us to perform unstrided convolutions, the
computational cost in terms of number of operations is higher with respect
to a fully-convolutional architecture.

Encoding: Three-dimensional vs. Two-dimensional

Next, we proceeded to ablate the use of three-dimensional convolutions
instead of regular bidimensional layers. Indeed, albeit our conviction that
they were beneficial for the model, they also meant a great training time
increase, so their use should be properly justified. To make this comparison,
we trained an equivalent model where all the temporal information had been
concatenated along the channel dimension, and compared it to our proposed
architecture. The results, shown in Figure B.4, clearly show that explicitly
handling the temporal context is indeed beneficial for network performance,
since higher-order information is sequentially concatenated respecting its
transient nature, thus allowing for better temporal feature extraction.

Loss Function

We have also studied different loss function combinations and their effect on
the final model’s performance. Specifically, we have paid attention to three
study cases: training the model only on error modulo (i.e. using AEE as
the loss metric), explicitly enforcing both error modulo and angular error
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(i.e. a combination of AEE and AAE), and training the model on relative
error only (implicitly imposing both AEE and AAE at the same time).
Eventually, ARE loss was abandoned due to lackluster performance levels,
so our attention turned towards the angular loss term and its influence on
estimation accuracy.

Our studies show that simply enforcing minimum error modulo is not
enough to achieve competitive results on the optical flow estimation task,
due to the reasons already explained in Subsection 3.1.6 - Loss Function.
Additionally, introducing a penalization term in the loss function seems to
allow the network to better understand the optical flow structure within the
visual scene without explicitly enforcing it, as we can clearly see on Figure
3.7c where obstacles are easily identified even after training on masked
flow maps. Furthermore, the network trained with a combination of AEE
and AAE reaches a lower AEE than an equivalent model trained only on
error modulo penalization, suggesting that this second approach gets the
model trapped in a local minimum. The angular loss term would therefore
make the optimization landscape easier to traverse, allowing for better
performance levels.

Polarities: Single-channel vs. Two-channel

Another ablation study we performed was trying to combine the effects
of both polarities in a single channel at the level of the event histogram,
therefore caring about an overall per-pixel event count rather than about
physical luminance variations. This idea was motivated by the fact that
objects of different color can yield drastically opposed event patterns (see
Figure 3.8) that are nonetheless not linked to relative motion, but to the
object’s color instead. The toy example we show here is illustrative of
real-world situations, since differently-colored cars would present a different
event front evolution potentially associated to equal relative motion. By
combining both polarities in a single channel, we could potentially get rid of
this effect, instead accounting only for the event front displacement within
the scene.

This ablation study shows that, in spite of our previous concerns,
combining polarities is detrimental for our current task. Nevertheless, we
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Figure 3.8: Objects of different color can yield opposite event patterns, even
if they present the exact same motion.
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believe this result to be caused by the lack of variety within the dataset,
therefore always causing one-way event patterns. Furthermore, there is
information to be gained from split polarities, since event cameras can
be calibrated using different thresholds for positive and negative events,
therefore leading to different dynamics for each of the polarity channels.

Effect of Stereo Vision

In order to improve the model’s performance, we also explored the possibility
of exploiting stereo vision for better optical flow estimation. The rationale
behind this approach was fairly natural, since optical flow is a magnitude
which is heavily intertwined with depth, and stereo vision has been proven
to be a major player in depth/disparity estimation. We therefore proceeded
to train a model using the data obtained from the left and right cameras
of the DSEC dataset (instead of only the left one that we used for our
monocular model), and proceeded to compare it with our base model. Much
to our surprise, we found stereo vision not only to not improve our results,
but rather to be detrimental to the model’s performance. We believe this
situation to be due to optical flow being mostly a temporal task, thus
relying less on spatial information for accurate estimations. Furthermore,
our network architecture has been explicitly developed to better extract
temporal features, which may be hindering the implementation of stereo
inputs, since the information that is expected to be extracted from them
relies on spatial discrepancies. Additionally, the inclusion of an additional
input was creating a heavier model both in terms of operations and of
trainable parameters, so we ultimately decided to abandon this line of
research.

Post-residual Skip Connection

We finally tested the role of the first post-residual skip connection in our
architecture. Indeed, a keen reader will have already remarked that it
is the only skip connection that consists of a tensor addition instead of
a concatenation. The origin of this difference lies in a simple bug, since
we forgot to modify that skip connection while iterating on the model’s
architecture. Thus, when we realized that it was different from all of the
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Figure 3.9: Residual Block Architecture

other ones, it was quite late in the optimization process, and we therefore
needed to make sure that it was not detrimental to our overall performance.
Nevertheless, we needn’t worry, for the ablation study showed that indeed
this skip connection worked better for our task. We believe that this
situation is due to the architecture of the residual block itself (Figure
3.9), which already implicitly includes a sum skip connection between
the input and the output. Thus, an additional sum skip connection is
equivalent to applying a gain of two to the residual’s input with respect
to the pre-addition output, whereas a concatenation would have to juggle
two skip connections of different nature at the same time. Since resorting
to sums for this very first skip connection also reduces the number of
parameters (we are at the stage of the network handling the most channels),
we decided to validate this architecture and to keep it as it was first conceived.

3.2.5 Simplification for Real-world Implementation

Before moving on to the second work package of the project, regarding sensor
fusion for optical flow estimation, we performed one last study concerning
the physical implementation of our model in a neuromorphic chip. Indeed,
although our approach was hardware friendly and theoretically deployable
on neuromorphic hardware, technological limitations might prevent it from
achieving a real-world implementation. To find out how implementable
our model really was, we decided to target the SPLEAT [110] FPGA, and
started to work on model adaptations.
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After visiting the LEAT laboratory in University Côte d’Azur (Nice),
we were informed of the limitations that the latest versions of the chip still
presented:

• While our model was extremely light parameter-wise, it was still too
large for on-chip deployment.

• SPLEAT does not currently support 3D convolutions

• Pooling is not yet implemented on the SPLEAT FPGA.

• The SPEAT hardware does not yet support residual connections, but
they are working towards their implementation.

The two latter limitations were not insurmountable, since one of them
was even a work in progress, but the two former represented a bottleneck
for on-chip implementation. It was obvious that simplifying the model was
a necessity to implement it on SPLEAT, and that the model should be fully
bidimensional as far as convolutions were concerned. In other words, we
would have to find a way to implement our ERF evolution along the encoder
with two-dimensional convolutions, ensuring that temporal information
was kept for as long as possible without explicitly including the additional
temporal dimension.

To do this, we developed a model that was able to keep sequential
information in the channel dimension, making a former/latter split for
each downsampling stage thanks to grouped convolutions. We decided to
call this method Time-Aware Grouped Convolutions (TAGC), since overall
temporal information would not be combined until the very last encoding
stage. Figure 3.10 illustrates this method, that we will now explain. Let
us assume that the overall temporal context consists of a time window of
timespan ∆t, and let us assume that 512 different channels are present
just before our residual block, and 256 before the deepest encoder. In
addition, let us assume that we are trying to estimate optical flow at time
t. Our goal is to constrain the information concerning the time interval
[t−∆t, t−∆t/2[ within the first 128 channels of the pre-encoder tensor, and
the information concerning [t −∆t/2, t[ in the second half. By sequentially
applying this methodology to each of the encoder blocks, we see that a
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Figure 3.10: TAGC - Temporal context evolution along the network’s encoder

five-stage architecture would need a total of 32 input histograms, each
of them with two polarity channels. By using sequentially smaller group
sizes, we can achieve a temporal separation akin to the one obtained for
our three-dimensional model, but constrained to the channel dimension,
since implementing grouped convolutions prevents temporal information
from being completely shuffled after the very first stage. Furthermore, the
use of grouped convolutions has the side benefit of reducing the number of
trainable parameters present within the network.

Although the idea was promising, the results were disappointing. The
network was able to achieve stable learning, but the estimations were
extremely noisy, and no structure was to be found in them. We made a
thorough study, including strided convolutions vs. pooling as downsampling
strategies, residual blocks vs. the absence of them, and additive vs.
concatenation as skip connections, but in every single case the predictions
were blurry at best (these ablation results have been included in Appendix
B.3). We believe that this situation may be in part due to the lower number
of parameters (see Table 3.7), and in part due to using the same frame
length as in our previous studies (i.e. 9ms, since we did not optimize the
frame duration for this task). Moreover, our studies showed that pooling
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Model Num. Params. Best AEE (valid)
Base model (Figure 3.3) 1.2M 1.10

TAGC: sum skip + res. block 995K 1.24
TAGC: cat skip w/o res. block 510K 1.36
TAGC: sum skip w/o res.block 420K 1.37

Table 3.7: TAGC model comparison

downsampling and residual blocks greatly improved model performance
which, although still far from our base model, was pushing us further away
from the FPGA’s capabilities. At the light of these discouraging results,
and wanting to continue our works on the second half of the PhD project,
we decided to abandon this line of research. Nevertheless, we still think
that results could be improved after optimizing the training procedure, and
we believe that lower-resolution optical flow predictions may benefit of this
approach, since the amount of predictions per timestamp is significantly
lower and therefore less neurons are needed to guarantee sufficient network
expressivity.



Chapter 4

Optical Flow from Event- and
Frame-based Sensor Fusion
using Spiking Neural Networks

This chapter will introduce our first results on sensor fusion for optical flow
estimation using SNNs. We will be presenting the main idea of the project,
the challenges we have encountered, and our preliminary results. Despite
the fact that the current state of the fusion architecture is far from our
desired performance levels, and even though it may eventually be found that
image data does not greatly contribute towards accurate bimodal optical
flow estimation, our most recent results remain promising, and we are still
convinced that there is a way to improve optical flow estimation from event-
and frame-based data combined.

4.1 Materials and Methods

4.1.1 Project Overview

After having successfully developed an optical flow estimation SNN, we
proceeded to tackle the 4th level of study (L4) of the DeepSee project, i.e.
the fusion of frame-based and event-based sensors for better optical flow
estimation. Our drive to pursue this line of research is motivated by the
low spatial resolution that EBS often provide (e.g. 480x640 pixels for the

71
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Prophesee Gen3.1 cameras [55] used in the DSEC dataset [4]). Meanwhile,
frame-based sensors often show higher spatial resolution, thus being
potentially complementary and beneficial for computer vision problems with
high accuracy constraints.

Perhaps the most relevant publication to our task is Fusion-FlowNet
[144], which performs optical flow estimation using a hybrid SNN-ANN
architecture from event data and images combined, although other
applications for EBS-FBS fusions exist (e.g. [147]). Of course, event and
frame fusion is not the only line of research that has ever been explored,
and a plethora of different domains have exploited fusion to improve their
performance (e.g. EBS and radar fusion for drone navigation [148]). Sensor
fusion, however, is not a novel research topic. For instance, it has been
extensively investigated for autonomous driving applications, due to the
high safety constraints associated with these vehicles and the high levels
of redundancy usually sought, and proof of this interest is the number of
surveys [149] and reviews [150] on the subject. Additional efforts have been
made towards finding the best fusion strategies for machine learning [151]
and deep learning [152] applications, which have allowed more complex
fusion strategies to arise (e.g. attention bottlenecks [153]).

The idea of using a bimodal input to better estimate optical flow appears
as quite natural, since event sensors often provide gray-scale images in
addition to the event stream (e.g. the Davis 346 camera [53] used to record
the MVSEC [8] dataset), and even datasets using cameras without this
functionality often provide the users with synchronized frame-based data
(e.g. DSEC dataset). Although EBSs are widely renowned for their high
temporal resolution, they often lack in the spatial domain. Meanwhile,
FBSs provide high levels of spatial resolution, but at the cost of a lower data
latency. Thus, by fusing both modalities, a network should theoretically
be able to optimize the extraction of temporal and spatial information for
better performance. Of course, the integration of an additional modality
would also translate into an increase in required computation power and in
estimation latency, but they should be compensated by the improvement of
the quality of the estimations.

Using the knowledge we have gained during our previous study, our goal
is once again to develop a fully-spiking, hardware-friendly model, this time
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Figure 4.1: Draft of EBS and FBS fusion.

exploiting two inputs of different nature to boost the model’s accuracy. To
achieve this goal, we intend to develop a dual-encoder architecture, fusing
both modalities at the bottleneck level and combining the information of
both modalities from that point onward (Figure 4.1). The training dataset,
input event representation and spiking neuron model remain unchanged,
and can be consulted in Section 3.1. Additionally, the loss function will
largely remain unchanged, although the relative contributions of each of the
loss terms may be tuned for this new task.

4.1.2 Fusion Strategy

As soon as we started to work on combining frame- and event-based data
into a single model, we encountered two main challenges, both linked to the
differences in resolution these sensors present:

• On the one hand, the discrepancy in temporal resolution (virtually
real-time for event-data vs. discrete time for frames) forces us to make
a choice: either we keep the sliding window introduced in Chapter
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3, thus meaning that the relative shift between the present (i.e. the
current optical flow estimation) and and the last (most recent) input
image will inevitably be variable, or we switch the sliding window time
span to the frame rate of the FBS, therefore increasing the model’s
latency but keeping a constant temporal context for each estimation.
In the end, we decided to follow the final approach, since the frame-rate
of the DSEC dataset (20fps) appears to us as fast enough for the task
at hand.

• On the other hand, the difference in spatial resolution (480x640 px for
the ECS vs. 1080x1440 for the FBS in the DSEC dataset, i.e. 2.25
greater spatial resolution for the FBS along each axis) enormously
complicates the fusion itself, both at bottleneck level and at each
decoder step via the skip connections.

We explored different potential solutions to overcome the challenge that
nonmatching spatial resolutions poses. Our first idea was to use nonmatching
convolutions along the image encoder, i.e. applying different parameters
to each convolution to ensure matching spatial resolution at the bottleneck
stage. However, this approach is not optimal, because:

1. There is not a straightforward combination of parameters that achieves
the desired tensor resolution at bottleneck level.

2. This approach does not allow to naturally incorporate skip connections
in the model.

Indeed, the initial ratio between the image tensors and the event histograms
being 2.25 times larger along each dimension, it is impossible to achieve
a perfect multiple of the dimensions after just a single convolution, thus
requiring multiple stages of downsampling and resizing along the encoder.
Since this approach was clearly not working, we decided to slightly modify
the model’s philosophy, collapsing the output of each encoder into a
feature vector. By performing this operation, the tensors could easily
be concatenated even if they contained a different number of elements.
Nevertheless, this approach also presented its challenges:

1. First, using latent vectors in the residual block (and therefore
fully-connected layers instead of convolutions) translated into an
unacceptable increase of the number of trainable parameters. We tried
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to mitigate this by using smaller feature vectors (by adding additional
encoders), but the model was still unable to perform properly.

2. Second, upsampling into images from latent vectors is not a
straightforward process. Indeed, using latent vectors instead of feature
maps at the bottleneck dimension meant that, at the post-residual
stage of the model, the locality of the information had been lost in
favor of a more global representation of the information (in other
words, the ERF of each pixel after the residual block comprises all
of the input pixels of both modalities, both in the temporal and in the
spatial dimensions). Therefore, when resized into a tensor shape and
upsampled, the information was too mixed, and it was hard for the
model to extract the relevant relationships within the data.

3. Finally, the implementation of skip connections is still not solved with
this approach.

In the end, this approach was also abandoned due to the many challenges
it posed, aggravated by the fact that skip connections were also not
implementable in the model. At this point we only had two choices to
continue with this study: either we abandoned our desire to implement skip
connections altogether, or we found a more “natural” way to implement
them in the network. Completely removing them from the architecture was
never an option, since the model was deep enough for vanishing gradients
to be a concern, and the removal of skip connections would most likely
translate into a loss of spatial details. Another potential solution could be
to add intermediate convolutions or reshaping blocks between the image
encoder outputs and the decoder inputs, but this caused an increase in the
number of parameters and was a bit too close to a manual fix, in the same
line that nonmatching convolutions were.

In the end, the best result we found was perhaps the simplest one we
could have come up with: instead of using the 1080x1440 pixel tensors
as input for the FBS encoder, we scale them to 960x1280 px images. By
performing this transformation, we preserve the image’s aspect ratio, all
while ensuring that a first encoding stage with strided convolutions achieves
matching resolutions for the FBS and the EBS sides of the encoder when
using a stride value of 2 (with appropriate padding and no dilation).
Although this approach somewhat hinders the spatial resolution of the FBS
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(1.23Mp vs. 1.56Mp on the original images), it is the simplest possible
approach, and the one that allows us to freely modify the architecture later
on, and it is therefore the one we decided to adopt for our model.

4.1.3 Image Input Representation

Images in the DSEC dataset are provided as RGB arrays. However, we
wish to extract optical flow information linked to motion itself, so color is
not considered to be crucial data for our task. We have therefore started
by converting the colored images into grayscale data using the following
equation:

grayscale = 0.2990 · red + 0.5870 · green + 0.1140 · blue (4.1)

By applying this transformation at each pixel, we get an image which
should preserve the structural spatial information, but where color has been
removed. Afterwards, as explained in the previous subsection, images are
reshaped from 1080x1440 px into 960x1280 px tensors (i.e. exactly twice
larger than the event histograms along each spatial dimension) for ease of
implementation.

We also decided to once again re-use our TCN-inspired architecture on the
image-side, i.e., using three-dimensional convolutions along a time dimension
until it naturally collapses to one in order to increase the temporal ERF
while preserving a sense of continuity. We decided to use three consecutive
grayscale images as our image input because:

• A pair of consecutive images would not be sufficient for the model to
estimate second-order derivatives.

• We that no more images are necessary, since the temporal information
ought to be extracted by the event encoder. In fact, the images of
the DSEC dataset have been recorded using FLIR BFS-U3-16S2C-CS
cameras, able to record RGB video at a frame rate of 20Hz. The
temporal context of our image sequence thus consists of 100ms of
information, which is far from the temporal context provided by the
event encoder (192ms), but acceptable since temporal features are not
the focus of the new encoder.
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In hindsight, using 5 input images instead of 3 might have been a
more relevant choice, specially when considering the future event-only vs.
image-only comparisons that we will perform later in this chapter. Indeed, it
is complicated to assess both of each modalities’ appropriateness for optical
flow estimation by comparing each of them when both inputs represent a
different overall temporal context, and although we remain convinced that
event data is probably the better choice due to the temporal finesse of their
information, a more thorough study could be done to assess if the superiority
of event data is indeed linked to temporal resolution or rather to overall
temporal context. Nevertheless, the results we have obtained using 5 input
images don’t show a significant improvement over exploiting only 3 images
for bimodal optical flow estimation, so we believe that all of the reflections
that we will present in this chapter remain reasonable and acceptable.

Moreover, due to the physical layout of the different sensors used to record
the dataset’s sequences (Figure 4.2), there is a slight spatial offset between
the FBS and the EBS data (see Figure 4.3). Furthermore, while slight,
this misalignment is not exactly constant among sequences, meaning that
each image-event pair would require a different correction depending on the
sequence they belong to. Despite correction parameters being provided by
the dataset, we have opted not to perform the correction on the input data
because:

1. Introducing a correction stage in the model would require more
computational resources, which we are actively trying to limit as much
as possible. However, a CNN should in theory be able to learn how to
correct this situation itself.

2. By forcing the network to learn how to treat different misalignments,
we are virtually performing a kind of data augmentation during the
training, thus making the model more robust to potential life-cycle
misalignments due to real-life relative displacements between both
cameras.

The difference in field of view (FOV) and associated lens distortion also
play a role in data misalignment, since frame-based data (Figure 4.3a) shows
a wider, more distorted scene than the associated event histogram (Figure
4.3b). Although the wider FOV of the frame-based camera means that we
could have cropped the images instead of downsampling them in order to
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Figure 4.2: Camera rig of the DSEC dataset (picture borrowed from [4]).

make their dimensions match the event camera resolution, the problem of
the slight distortion and of the alignment mismatch would always persist.
We therefore decided to keep the images as they are prior to downsampling,
and to once again let the network learn the relevant information by itself.

4.1.4 Network Architecture

Figure 4.4 shows the final iteration of the FBS/EBS fusion model that we
have developed. It consists of two encoders, one handling 21 consecutive
event histograms 9ms apart from one another, and another one handling
3 consecutive downscaled grayscale images for a total temporal context of
100ms. Every encoder stage but the first one (which increases the number
of channels to 32) doubles the number of channels, until 512 channels are
achieved at the bottleneck level per modality. Both inputs are downsampled
via 3d convolutions until the temporal dimension collapses: for the event
encoder, a temporal kernel size of 5 is used, therefore collapsing at the
bottleneck level; for the image encoder, a kernel size of 2 is used, therefore
collapsing after the second encoding stage. Both encoders’ outputs are
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(a) FBS frame (b) EBS frame (c) Ground-truth frame

Figure 4.3: Data provided by the DSEC dataset: images, events and masked
ground-truth (pictures borrowed from [4]).

concatenated along the channel dimension before the residual block, and
remain together from that point onwards. The decoder upsamples these
tensors using nearest neighbor upsampling and separable convolutions,
halving the number of channels after each stage. In addition to the previous
decoder output, skip connections are included from the encoder side,
using the closest-to-present information at the stages where the temporal
dimension has not yet collapsed. Finally, each decoder output is upsampled
into a tensor of shape (C = 2, H = 480,W = 640), and all of these results
contribute to the final optical flow estimation.

Although we explored many different architectures with a plethora of
iterations, the final model turned out to be as similar as possible to our
optical flow estimator using only event data (Figure 3.3). This choice is
not by accident, and while simplicity has played a role in the choice of
the architecture, it has not been the main driving force in this direction.
Indeed, skip connections have heavily influenced the architectural choice,
but challenges related to learning have also pushed us towards this model.
In reality, although all of the model iterations we had tested so far were
able to learn how to estimate optical flow to some degree, the results were
lackluster at best, often consisting of inconsistent, incoherent optical flow
maps. By implementing a new architecture which is in essence an update
of our previous model, we are able to initialize all event-related weights to
the values obtained with our previous model, thus exploiting the expertise
already acquired. A discussion of the influence of network initialization on
performance can be found in Section 4.2, since this is a result we found
relatively late into the development of the fusion algorithm.
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Figure 4.4: Sensor fusion network architecture
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A relevant remark to our fusion architecture would be its increased
number of parameters when compared to its event-only counterpart. Indeed,
this new model amounts to a total of 3.3 millions of trainable parameters,
mostly due to the fact that fusing modalities before the bottleneck doubles
the number of channels at the “heaviest” part of the network. However,
it can be seen in Table 3.4 that this value remains below most of the
other available alternatives, with only IDNet [81] showing better results
both in performance levels and in number of parameters, although the
computational cost it requires is increased by the additional deblurring step.

4.1.5 Training Procedure and Technical Details

All of the calculations that we have performed to study the feasibility of
sensor fusion for enhanced optical flow estimation have taken place on
either the NVIDIA A40 GPUs belonging to the CerCo laboratory, or in the
four NVIDIA A100 GPUs installed in CerCo’s recently acquired HPC cluster.

Only results on DSEC are available for this study. The data split that we
have used to obtain all of our results is the same one that we introduced in
Subsection 3.1.7, to ensure fair comparisons among the different iterations
of the model that we have studied and our baseline architecture.

4.2 Results

We will now present all of the insights we have gained concerning EBS and
FBS fusion for optical flow estimation. Although we have not yet achieved
competitive results for our fusion model, we believe that our results so far
are steps in the right direction for successful sensor fusion using deep SNNs.

4.2.1 Exploiting Dual Inputs

We started this project by focusing our efforts into making the model exploit
both modalities during training. Indeed, we remarked that models naively
trained from scratch either on event-data only, on image-data only or on



82 CHAPTER 4. OPTIC FLOW FROM EBS AND FBS FUSION

both event and image data yielded similar results, with the fusion model
actually presenting the worst metrics of the three. It was clear that we
would have to guide the model towards exploiting bimodal data for better
optical flow estimation.

Our first reflex was turning into neuroscience, specifically to the global
workspace theory [154]. In a nutshell, this theory proposes a shared latent
space for different modalities, where the same information is encoded into
the global workspace at the same location regardless of its origin (modality).
Since we wanted to exploit two inputs of different nature to improve optical
flow performance, we thought that some inspiration might be taken from this
domain. In particular, we looked at their training procedure, and specially at
how they manage to make the model exploit the different modalities. This
result is often achieved by randomly masking one of the input modalities
during training, thus achieving unimodal and multimodal samples during
the training procedure. Because of this alternating lack of information, the
model is forced to adapt and to be able to exploit both modalities to achieve
a good information encoding. Although this approach did indeed improve
performance metrics on our validation set, the results did not manage to beat
our previous best metrics, achieved with the event-only model. We believe
that this was due to the different goals that both methods are trying to
achieve:

• The global workspace seeks to encode the same information into the
same latent space regardless of its origin, i.e. regardless of which
modality it comes from. In other words, it is heavily linked to
information redundancy, extracting the same features from different
inputs and discarding the irrelevant information.

• Our approach focuses instead on making the most out of both
modalities at the same time, i.e. exploiting the temporal finesse
that event cameras can provide and mix it with the superior spatial
resolution that frame-based sensors can offer. As such, even if we
merge modalities before the bottleneck, our goal is to extract different
features from each of the modalities (ideally keeping most of the
temporal information restrained to the event encoder and most of the
spatial dependencies to the image encoder), and then exploit this richer
information for better optical flow estimations both qualitatively and
in metrics.
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Our goal consisted of exploiting both modalities at the same time to extract
richer information, rather than using them as a complement of one another
for more robust feature extraction. We therefore needed the model to rely
on both modalities at the same time, since we wanted to prevent it from
focusing on one of them all while neglecting the other one. In the end, we
decided to solve this issue by implementing a reasonably aggressive dropout
layer after the modality fusion, right before the bottleneck. This layer should
create a sufficient number of holes for the network to need both modalities
in order to compensate for this lack of information, thus exploiting both
modalities at the same time. On the other hand, both modalities would
always be present, and different information could be extracted from them
both, contrary to the global workspace approach where the alternation
in input modality forced the network to redundantly encode the same
information from both modalities (this hypothesis is further supported by
the similar metrics we obtained for both unimodal studies).

4.2.2 Network Initialization

Despite our best efforts, we were struggling to improve our previous best
results. Indeed, although the model was able to learn how to estimate
optical flow from both modalities, and even if results improved epoch after
epoch until the learning procedure’s stagnation, we were not managing to
improve our event-only network’s performance.

Given the difficulties we were encountering, we decided to try giving the
fusion network a head-start. To this end, we initialized all event-related
weights within the network to the values obtained for our event-only model.
For the remaining weights, we explored different alternatives following the
chronology described below:

1. Our first intuition was to set all the remaining weights to zero before
training. In theory, this initialization would only allow performance
to improve during training, since before training the model is exactly
equivalent to our previously published model. However, this approach
did not work, and training procedures often crashed as soon as
they were launched. After a thorough examination, we discovered
that weights were exploding due to poorly-defined gradients, since
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zero-initialization everywhere was preventing gradient information from
flowing during the backward pass.

2. Since initializing the whole model to zero was not an option, we decided
to initialize all of the unknown weights to a small epsilon value, and to
train from that point onwards. This starting point should be equivalent
to zero initialization (provided that the firing threshold of the spiking
units was not reached, which could be achieved with a sufficiently
small epsilon value), but it should in theory allow gradients to flow
and weights to be updated. Nevertheless, this initialization did not
work either, since we were unable to find a good compromise between
epsilon value and performance at training time 0:

• On the one hand, too large values of epsilon allowed information to
easily flow, but they were very far from our desired initial metrics.

• On the other hand, too little values of epsilon fell into the
same ill-defined backward information that the exactly zero
initialization showed.

Although we spent a significant amount of time researching this
initialization, we were unable to find an intermediate epsilon value
showing a good compromise between initialization and gradient flowing,
and we ultimately abandoned this approach.

3. Trying to achieve a less aggressive initialization, we tried randomly
initializing all of the weights without a known value except for the
very first convolutional layers of the image encoder. The philosophy
behind this approach was really simple: since the first encoding stage
would output a zero-valued tensor (due to the lack of biases in the
convolutional layers), the initialized model would be equivalent to the
event-only network regardless of the initialization of the later stages.
While this approach allowed us to successfully complete the training
process without crashing, the results were lackluster, very close to
the event-only network but never significantly improving them. After
careful examination, we discovered that the image-related weights were
not being updated during the training, which was preventing the
model from exploiting the additional modality. Indeed, an exactly-zero
initialization on the very first convolutional layer, although it did in
theory allow backwards propagation of gradients, it also made the
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forward weight update impossible, since only a zero value was known
to the model. We were probably on the right track, but there was still
an additional modification to include in our initialization process.

4. The final iteration on network initialization, and the one that showed
the most promising results, consisted of a mixture of all of the previous
ideas. In this case, we decided to randomly initialize the network, and
then fixed the known weights to the values obtained for our event-only
model. To make sure that we were close to our departure point, though,
we initialized the weights corresponding to the very first image encoder
to a uniform distribution centered around zero and spanning over a
small epsilon value (ϵ = 1e−3 for each of the layers within the separable
convolution), effectively silencing most of the image input, but keeping
gradient information flowing within the model.

Although this approach seemed to work at first, even beating our
previous best results on our validation split, results were consistently
bad when submitting to the official test benchmark, even worse than the
departure point. To try to understand what was happening within the model,
we decided to test it on event-only and image-only input after bimodal
training. Our idea was quite straightforward: if both modalities were helping
and contributing to optical flow estimation, both of the unimodal results
should yield worse metrics than the fusion model. The result we obtained,
though, was the opposite of what we were expecting: the event-only model
presented the best performance results, followed by the fusion model. It
became apparent that the model was not exploiting the image side: it was
instead oscillating around the initial value trying to mitigate the impact
of image input on the overall performance. We believe that this result
is due to the initialization: by initializing to our best event-only model,
we are most likely starting close to a local minimum, therefore making it
extremely hard for the bimodal network to take advantage of both modalities.

The final step in our study on network initialization consisted of verifying
whether a bimodal network trained from scratch would be able to exploit
both modalities, regardless of how good the metrics of this model may be.
To do this, we trained a model using our standard event input and 5 input
images instead of the usual three, so both encoders would represent an
equal time span of information for the sake of a fairer comparison. These
results are shown in Table 4.1, where it can be seen that, when starting
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Initialization
AEE (px/s)

Bimodal Event-only Image-only
Pretrained + Silenced Images 1.961 1.919 14.348

Random Initialization 2.988 3.131 14.731

Table 4.1: Per-input network performance comparison

from a random initialization, both modalities contribute to optical flow
estimation. However, even in that case, the model seems to naturally favor
the event information over the image tensors, suggesting that the temporal
finesse associated to event data is more important for accurate optical flow
estimation than the larger spatial resolution of frame-based images.

4.2.3 Next Steps

Despite not yet having succeeded in exploiting a bimodal input for enhanced
performance, we have nonetheless managed to exploit both inputs at the
same time, and we believe we are taking steps in the right direction.
Nevertheless, images might not be needed for optical flow estimation
altogether, or at least not when event data is available, and we have not yet
fully abandoned this possible outcome either.

As far as potential future modifications are concerned, the first approach
we would like to test consists of normalizing the image tensors, i.e. restricting
their values between 0 and 1 instead of 0 and 255. Indeed, this technique
would bring the data distributions between event tensors (with per-pixel
values often ranging between 1-20) and image tensors closer together, which
could improve network performance. In the same vein, network modifications
could be implemented to account for different data distributions across
modalities, mainly in the form of different firing threshold values for each of
the inputs.

A different approach would consist of pretraining also the image side,
and initializing all image-related weights to these values. By initializing
both modalities to pretrained values, we would ensure that they would
depart from an equal playing field for joint optical flow estimation. However,
this initialization would not ensure the departure metrics to be those of the
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unimodal networks, and we remain skeptical of its efficacy.

Another line of research would consist of exploiting temporal information
contained on an image chunk instead of blindly feeding the images to
the network. We are currently exploring the implementation of adaptive
filters [155] on the image input before the encoding stages, whose trainable
parameters should theoretically be able to learn the appropriate balance
between sustained and transient information. We have managed to obtain
minimal gains with this approach over our base models, but so far they
are not significant enough to establish the AdapTrans filter as a beneficial
layer for our model. Furthermore, should the adaptive filter indeed improve
network performance, it would raise new questions that should be addressed
with further studies, for example:

• What is the interest of transient image information when using
event cameras, which themselves are able of yielding only transient
information?

• Would event data remain a necessity if transient information can be
easily obtained from higher-resolution sensors?

Again, all of these questions would only arise should the adaptive filter
work, but they are nonetheless considerations worthy of being taken into
account.

Finally, concerns about bimodality itself and its implementation should
also be addressed. On the one hand, we might be trying to wrongly exploit
bimodality, using a too naive of an approach to achieve it. However,
this fusion strategy is rather standard in the literature, so we are not
leaning towards this hypothesis. On the other hand, sensor fusion might
simply not be needed for optical flow estimation, since the temporal finesse
that event data can provide with could potentially be the key factor to
achieve performing results instead of the increased spatial resolution that
frame-based cameras can provide with. Furthermore, FBSs are extremely
efficient in capturing information like texture and color, which are often
considered to be irrelevant for optical flow estimation. Consequently, the
fact that fusion models have not managed to beat the event-only network
might not be as surprising as initially thought, and this result should not
be interpreted as a failure but rather as a confirmation that fine temporal
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information is the key to accurate optical flow estimation. This idea seems
to be further supported by the recent publication of [156], where the authors
acknowledge that only minor improvements were achieved when using dual
data instead of event-only information, and only after strenuous fine tuning
studies, suggesting that there might be a minimal gain to be achieved from
frame based images when used for bimodal optical flow estimation.
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Conclusions

5.1 Optical flow estimation from event-based

cameras and spiking neural networks

5.1.1 Discussion

The main takeaway from our studies on optical flow estimation using
EBS data with spiking neural networks is the key role that temporal
information plays in accurate prediction, both in terms of overall temporal
context and temporal finesse (i.e. the global input duration and the event
histogram temporal resolution respectively). In addition, we have shown
that temporal information handling is equally important for accurate
optical flow estimation, introducing a novel stateless model that exploits
three-dimensional convolutions (akin to delay lines) to increase the model’s
effective receptive field in the temporal domain. Furthermore, by using
depthwise and pointwise separable convolutions, we manage to reduce the
number of parameters by a factor of up to ten when compared to other
existing models in the literature, and we ensure that our model is at least
theoretically implementable on dedicated neuromorphic chips by respecting
hardware-friendliness constraints.

Our three-dimensional network has proven its efficacy in estimating
optical flow for a variety of scenarios (outdoor driving on the DSEC Dataset
and indoor flying on the MVSEC Dataset), and our combination of modulo
and angular losses ensures that the scene’s structure is learnt despite not
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being esplicitly enforced (see Figure 3.7). These results place us as the
best SNN for optical flow estimation from event data, and we believe that
they also help to further establish event cameras as the go-to sensor for
optical flow estimation, specially when coupled with spiking neural networks.

5.1.2 Perspectives

Future lines of research regarding optical flow estimation from event data
using spiking neural networks should focus on improving the model by
bringing it closer to neuromorphic hardware. Indeed, while our model is
hardware friendly and therefore theoretically implementable on dedicated
chips, there gap between our model size and existing chips remains a bit too
large. Some potential improvements to close this gap could therefore be:

• Exploiting the intrinsic recurrence of spiking neurons, developing a
stateful model capable of optical flow estimation. By handling temporal
information through the neurons’ membrane potential instead of with
delay lines (implemented as 3d convolutions), we would achieve a
lighter model both in terms of size (number of parameters) and
required computational power (2d convolutions are easier operations
to implement), thus increasing the model’s maximum throughput and
improving its deployability on dedicated hardware. However, the
input-dependent dynamics to introduce within the network make this
approach extremely challenging, and therefore potentially too time
consuming and too complex to be worthy of consideration.

• Another potential line of research could consist of swapping the
3d encoding of temporal information by a learnable delay line (1d
convolution) along the temporal dimension. Were temporal information
to be handled all at once, this technique would translate into a
bi-dimensional architecture, improving network’s size and throughput.

In addition, some steps could be taken towards energy optimization:

• in terms of energy consumption, sparsity could be enforced within
the model, which would help further exploit the energy efficiency
capabilities associated to spiking neural networks. However, too much
sparsity can translate into worse performances, and an in-depth study
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should be performed to ensure that it is not detrimental to the
network’s metrics.

• in terms of memory requirements, steps should be taken towards weight
quantization. Indeed, integer weights require less memory to be stored
and less computational power overall (MAC operations can be replaced
by AC), and are standard in SNN hardware.

5.2 Optical Flow from Event- and

Frame-based Sensor Fusion using Spiking

Neural Networks

5.2.1 Discussion

Our preliminary studies on sensor fusion for improved optical flow estimation
have left us with a lukewarm sensation. Although we have been able to
develop models that jointly exploit images and events for optical flow
regression, none of them have managed to overthrow our event-only spiking
neural network. These results seem to indicate that image tensors might not
be able to compete with the temporal finesse that event data can provide
with, thus acting as a fine-tuning contribution to the event-based prediction,
but greatly complicating the network training due to increased parameters.
Indeed, some of our results have managed to surpass our previous best score
on our own validation split, but they have systematically fell short when
evaluated on DSEC’s test benchmark. Furthermore, these results seem to
show a preference for events, silencing image data while improving on our
previous best results.

Another possible explanation of why event and image fusion has not yet
yielded sufficiently accurate results, specially when testing hybrid models
on uni-modal input on the test set, might be linked to the nature of the
sequences themselves. While the test set presents a reasonably balanced
data distribution, including urban and road sequences in day, night, dusk
and dawn conditions, the training data is heavily skewed towards day urban
sequences. Whereas this situation does not hinder the performance of event
data, mostly due to the high dynamic range that event cameras present, as
well as the lack of information on absolute brightness in event data, the same
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is not true for frame-based images. Indeed, different luminosity conditions
translate into different input data distribution, and fast brightness variations
can cause the sensors to saturate, thus hindering data expressivity and
overall performance. We have so far naively tested some data augmentation
techniques on image data to account for this phenomenon, consisting of
mean brightness variations both by an absolute (constant offset) and a
relative (multiplicative factor) quantity. The results are not yet conclusive,
but we are optimistic about the effect that this kind of data augmentation
might have on overall network performance.

5.2.2 Perspectives

The first line of research to pursue for optical flow estimations from EBS
and FBS data combined pertains to the network’s training itself. To exploit
bimodality, both inputs seem to need to depart from an equal playing
field. Furthermore, even from scratch, the model seems to prefer events
over images. To test this hypothesis, we trained a bimodal network from
a random initialization, and tested it on both bimodal, event-only and
image-only inputs. Our results show that the best performance is achieved
with dual input, closely followed by event-only data, and finally image-only
input (see the second line of Table 4.1). This result seems to point towards
our initial idea that temporal information alone is more than enough for
accurate optical flow estimation. However, it is hard to believe that images
play virtually no role in optical flow prediction, and our preliminary results
obtained with bimodal networks trained from scratch seem support this
theory.

On the other hand, temporal information seems to be key in optical
flow computation, as demonstrated by the fact that randomly initialized
networks seem to lean towards exploiting event information, using images
as a fine-tuning mechanism more than as a true contribution to optical
flow estimation. Although this phenomenon may be linked to the data
distribution, as explained in the previous subsection, it may also prove that
spatial resolution is not key for optical flow estimation, and that it is the
combination of overall temporal context and frame temporal finesse that
counts (however, it is difficult to asses whether or not this lack of significance
is linked to the spatial resolution of the optical flow estimations, which is
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the same as that of the DVS sensor). We have tried using more images to
include a larger temporal context in the image encoder, so it would not be
hindered when compared to the event encoder, but our preliminary results
show that using more than 3 input images does not significantly increase the
model’s accuracy. We therefore believe that future efforts should be focused
on exploiting temporal images also from the image side of the network,
for example by using adaptive filters able to extract transient information.
However, we remain aware that even with transient information, images
might not be able to compete with the temporal finesse that event data
can provide, and events might therefore be enough (and possibly the default
choice) for optical flow computation using deep learning models.
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Vijay Kumar, and Kostas Daniilidis. The multivehicle stereo event
camera dataset: An event camera dataset for 3d perception. IEEE
Robotics and Automation Letters, 3(3):2032–2039, 2018.

94



BIBLIOGRAPHY 95
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[138] Mathias Gehrig, Mario Millhäusler, Daniel Gehrig, and Davide
Scaramuzza. E-raft: Dense optical flow from event cameras. In
International Conference on 3D Vision (3DV), 2021.



110 BIBLIOGRAPHY

[139] Hongzhi You, Yijun Cao, Wei Yuan, Fanjun Wang, Ning Qiao, and
Yongjie Li. Vector-symbolic architecture for event-based optical flow.
arXiv preprint arXiv:2405.08300, 2024.

[140] Vincent Brebion, Julien Moreau, and Franck Davoine. Real-time
optical flow for vehicular perception with low-and high-resolution event
cameras. IEEE Transactions on Intelligent Transportation Systems,
23(9):15066–15078, 2021.

[141] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas
Daniilidis. Unsupervised event-based learning of optical flow, depth,
and egomotion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 989–997, 2019.

[142] Federico Paredes-Vallés and Guido CHE de Croon. Back to event
basics: Self-supervised learning of image reconstruction for event
cameras via photometric constancy. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
3446–3455, 2021.

[143] Garrick Orchard, E Paxon Frady, Daniel Ben Dayan Rubin, Sophia
Sanborn, Sumit Bam Shrestha, Friedrich T Sommer, and Mike Davies.
Efficient neuromorphic signal processing with loihi 2. In 2021 IEEE
Workshop on Signal Processing Systems (SiPS), pages 254–259. IEEE,
2021.

[144] Chankyu Lee, Adarsh Kumar Kosta, and Kaushik Roy. Fusion-flownet:
Energy-efficient optical flow estimation using sensor fusion and deep
fused spiking-analog network architectures. In 2022 International
Conference on Robotics and Automation (ICRA), pages 6504–6510,
2022.

[145] Marco Paul E Apolinario, Adarsh Kumar Kosta, Utkarsh Saxena, and
Kaushik Roy. Hardware/software co-design with adc-less in-memory
computing hardware for spiking neural networks. arXiv preprint
arXiv:2211.02167, 2022.

[146] Chengxi Ye, Anton Mitrokhin, Cornelia Fermüller, James A Yorke,
and Yiannis Aloimonos. Unsupervised learning of dense optical flow,
depth and egomotion with event-based sensors. In 2020 IEEE/RSJ



BIBLIOGRAPHY 111

International Conference on Intelligent Robots and Systems (IROS),
pages 5831–5838. IEEE, 2020.

[147] Wen Yang, Jinjian Wu, Jupo Ma, Leida Li, Weisheng Dong, and
Guangming Shi. Learning for motion deblurring with hybrid frames
and events. In Proceedings of the 30th ACM International Conference
on Multimedia, pages 1396–1404, 2022.

[148] Ali Safa, Tim Verbelen, Ilja Ocket, André Bourdoux, Hichem Sahli,
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Appendix A

Data Augmentation Functions

Algorithm 3 Random Horizontal Flip

1: Inputs: events, label, mask, p flip
2: if p flip ≤ random x drawn from U(0, 1) then
3: events← hflip(events)
4: label← hflip(label)
5: labelx ← (−1) · labelx
6: mask ← hflip(mask)
7: end if
8: Return: events, label, mask

Algorithm 4 Random Vertical Flip

1: Inputs: events, label, mask, p flip
2: if p flip ≤ random x drawn from U(0, 1) then
3: events← hflip(events)
4: label← hflip(label)
5: labely ← (−1) · labely
6: mask ← hflip(mask)
7: end if
8: Return: events, label, mask
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Algorithm 5 Random Rotate

1: Inputs: events, label, mask, p rotate
2: if p rotate ≤ random x drawn from U(0, 1) then
3: p1 = random x drawn from U(0, 1)
4: if p1 <= 0.5 then
5: events← rotate(events,−90)
6: label← rotate(label,−90)
7: label← flip channels(label)
8: label[1]← (−1) · label[1]
9: mask ← rotate(mask,−90)

10: else
11: events← rotate(events,+90)
12: label← rotate(label,+90)
13: label← flip channels(label)
14: label[0]← (−1) · label[0]
15: mask ← rotate(mask,−90)
16: end if
17: end if
18: Return: events, label, mask

Algorithm 6 Random Event Drop

1: Inputs: events, p drop, min drop rate, max drop rate
2: if p drop ≤ random x drawn from U(0, 1) then
3: q1← x drawn from U(0, 1)
4: q2← (min drop rate−max drop rate) · q1 + max drop rate
5: event mask ← [random like(events) > q2]
6: events← events ∗ event mask
7: end if
8: Return: events
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Algorithm 7 Random Patch

1: Inputs: events, p patch, min patch size, max patch size, max patch
2: (H,W )← size(events)
3: if p patch ≤ random x drawn from U(0, 1) then
4: n patches← random choice(max patch)
5: for n in range(n patches) do
6: size← random choice(min patch size,max patch size)
7: x start← random choice(W − size)
8: y start← random choice(H − size)
9: events[y start : y start + size, x start : x start + size]← 0
10: end for
11: end if
12: Return: events

Algorithm 8 Random Temporal Mirror

1: Inputs: events, prevlabel, next label, prevmask, next mask, p mirror
2: if p mirror ≤ random x drawn from U(0, 1) then
3: events← flip channels(events)
4: label← (−1) ∗ prev label
5: mask ← prev mask
6: else
7: events← events
8: label← next label
9: mask ← next mask
10: end if
11: Return: events, label, mask



Appendix B

Network optimization and
Ablation studies

B.1 3D Network - Optimization

B.1.1 Temporal Context

Figure B.1: Temporal context optimization (frame duration comparison)
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B.1.2 Residual Blocks and Skip Connections

Figure B.2: Architecture optimization - Skip connections and residual blocks

B.2 3D Network - Ablation Studies

B.2.1 Downsampling: Pooling vs. Convolution

Figure B.3: Downsampling strategies comparison: Max. pooling vs. Strided
Convolutions
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B.2.2 Encoding: Three-dimensional vs.
Two-dimensional

Figure B.4: Bidimensional vs. tridimensional encoders: effect on
performance

B.2.3 Loss Function

Figure B.5: Effect of loss function on network accuracy
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Figure B.6: Influence of the angular loss on model network accuracy

B.2.4 Polarities: Single-channel vs. Two-channel

Figure B.7: Split vs. Combined polarities: effect on network accuracy
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B.2.5 Effect of Stereo Vision

Figure B.8: Influence of stereo vision on model accuracy

B.2.6 Post-residual Skip Connection

Figure B.9: Effect of post-residual skip connection on performance (best
architecture).
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B.3 2D Network (TAGC)- Ablation Studies

B.3.1 Downsampling: Pooling vs. Convolution

Figure B.10: TAGC: Influence of downsampling strategy on performance.

B.3.2 Residual Blocks

Figure B.11: TAGC: Influence of residual block on performance.
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B.3.3 Skip Connections

Figure B.12: TAGC: Influence of skip connections on performance.
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Titre : Es�ma�on du flux op�que à par�r des données issues des capteurs événemen�els avec des réseaux de neurones impulsionnels
Mots clés : appren�ssage machine, vision basée sur des événements, bio-inspira�on, réseaux de neurones impulsionnels
Résumé : Ces travaux de thèse ont pour but le développement d’un modèle de vision ar�ficielle prenant des données issues d’une caméra basée sur
des événements pour l’es�ma�on du flux op�que dans la scène visuelle. 

 Ce projet repose donc sur trois piliers : premièrement, le flux op�que, grandeur associée à la fois à la profondeur et au déplacement rela�f entre
l’observateur et le monde autour de lui, et qui représente la distribu�on du champ de vitesses dans la scène visuelle. Ce�e grandeur, d’importance
clé pour la naviga�on des animaux, est de plus en plus recherchée en vue de ses poten�elles applica�ons dans de nouvelles technologies telles que
les voitures autonomes. 

 Deuxièmement, les caméras basées sur des événements (EC), un type de capteur bio-inspiré dont les pixels fournissent une informa�on sur les
varia�ons locales de la luminosité de façon asynchrone et en temps réel : une augmenta�on locale de la luminosité déclencherait un événement
posi�f au pixel concerné, tandis qu’une diminu�on de la luminosité déclencherait un événement néga�f. C’est en effet ce�e informa�on temporelle
qui rend les EC aussi intéressantes en tant que capteur pour la vision ar�ficielle, et notamment pour des tâches temporelles telle que l’es�ma�on du
flux op�que. Ce type de capteurs présente certains avantages par rapport aux caméras conven�onnelles : latence inférieure, gamme dynamique très
large et efficacité énergé�que. Ces avantages sont mi�gés par une résolu�on spa�ale inférieure, ainsi que par un manque d’informa�on sur la
luminosité absolue dans la scène. 

 Finalement, les réseaux de neurones impulsionnels (SNN) sont des algorithmes d’appren�ssage profond composé de neurones bio-inspirées. D’une
part les neurones impulsionnels sont dotés d’une mémoire au niveau de leur poten�el de membrane, d’autre part l’informa�on n’est propagée que
quand ce poten�el dépasse un certain seuil. Ces neurones sont caractérisés par leur efficacité énergé�que quand déployés sur des puces dédiées, car
une absence d’informa�on se traduit dans une absence d’impulsions, et par conséquent dans une très faible consomma�on énergé�que. Ainsi, la
triade flux op�que – EC – SNN se présente comme un système fermé et cohérent : des capteurs liés au mouvement (avec absence d’informa�on si le
déplacement rela�f est nul), avec des neurones bio-inspirés à propriétés similaires, et tout cela appliqué pour l’es�ma�on d’une grandeur
essen�ellement liée à la temporalité du mouvement. 

 Nos travaux ont commencé par le développement d’un SNN capable d’es�mer le flux op�que à par�r des données issues des EC. Finalement, nos
efforts ont abou� à une publica�on en mai 2023 dans Fron�ers en Neuroscience, introduisant le meilleur SNN de l’état de l’art pour ce�e tâche.
Notre modèle, disponible dans h�ps://github.com/J-Cuadrado/OF_EV_SNN, présente un SNN sans mémoire capable d’exploiter la temporalité des
données évènemen�elles grâce à des convolu�ons le long de la dimension temporelle pour une représenta�on améliorée de ce�e informa�on au
niveau du bo�leneck en augmentant son champ récepteur effec�f. 
Nous avons con�nué nos travaux avec une étude sur l’intégra�on des images en niveau de gris dans un modèle plus complexe pour améliorer les
performances du modèle. Bien que nos résultats aient été encourageants jusqu’à présent, nous n’avons pas encore réussi à systema�quement
ba�re nos meilleurs résultats. Ainsi, il s’avère que l’informa�on contenue dans des images standard pourrait en effet ne pas être nécessaire pour
l’es�ma�on du flux op�que. Par conséquent, nous allons poursuivre nos travaux sur ce�e ligne de recherche, soit pour vérifier ce�e hypothèse, soit
pour effec�vement améliorer les performances de notre modèle grâce à l’exploita�on d’une informa�on bimodale.

Title: Op�cal flow es�ma�on from event-based data using spiking neural networks
Key words: machine learning, event-based vision, bio-inspira�on, spiking neural networks
Abstract: This PhD project seeks to develop an ar�ficial vision model exploi�ng event data for op�cal flow es�ma�on within the visual scene. 

 The project lies on three main axis: first, op�cal flow, a magnitude linked at the same �me to depth and to rela�ve movement between the observer
and the world around it. This magnitude represents the velocity field distribu�on within the visual scene, and it is key for naviga�on in living animals.
It is currently being heavily researched because of its poten�al applica�ons in new technologies such as autonomous cars. 

 Second, event cameras are a bio-inspired sensor with asynchronous pixels yielding real-�me informa�on on local luminosity varia�ons: brightness
increments trigger posi�ve events, and nega�ve events are caused by luminosity decrements. It is indeed this temporal informa�on that makes
event cameras appropriate for computer vision tasks, specially for temporal tasks such as op�cal flow es�ma�on. This type of camera presents a
number of advantages over their frame-based counterparts: lower latency, higher dynamic range and lower energy consump�on. This advantages
are somewhat mi�gated by a lower spa�al resolu�on, as well as by the lack of informa�on on absolute brightness within the scene. 

 Finally, spiking neural networks (SNNs) are consist of deep learning algorithms using bio-inspired neurons. Spiking neurons show memory
capabili�es inherent to their membrane poten�al, and they only propagate informa�on when this poten�al surpasses a certain value (firing
threshold). These neurons are characterized by their energy efficiency when deployed on dedicated hardware, since a lack of input informa�on
translates into an absence of spikes within the model (provided that there are no biases in the model’s layers), and therefore into a very low energy
consump�on. The triad op�cal flow – event vision – spiking neural networks is therefore a closed and coherent system: movement-linked sensors
(with lack of events for sta�c scenes), processed with bio-inspired neurons showing the same behavior, and all of this applied to the es�ma�on of a
temporal magnitude such as op�cal flow. 

 Our research works started with the development of a SNN capable of es�ma�ng op�cal flow from event data. Our results were published in may
2023 in Fron�ers in Neuroscience, introducing the best SNN in the literature for this task. Our model, which can be found on h�ps://github.com/J-
Cuadrado/OF_EV_SNN, consists of a stateless SNN able to exploit temporal informa�on from event data via convolu�ons along a temporal
dimension for a be�er representa�on of temporal encoding at the bo�leneck level, increasing its effec�ve recep�ve field. 

 We have con�nued our research by seeking to integrate grayscale images into a more complex architecture to improve the model’s performance.
Although our results are encouraging, we have so far been unable to consistently beat our previous best results. Thus, is possible that the
informa�on present in frame-based sequences might not be needed for op�cal flow es�ma�on when coupled with event data. We are therefore
going to con�nue pursuing this line of research, either to test this hypothesis, or to eventually succeed in improving the model’s metrics thanks to
the exploita�on of bimodal informa�on.
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