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Rem

La cité rutile au ceur du temps, tel un rubis parmi
les perles de bois flotté d’un collier d la dérive dans
un paysage de noir sur noir. Tout ce qui a précédé
allait crescendo, et tout ce qui suivra s’amenuisera.
Elle finira par s’abimer dans ces ténébres, et tout ce
qu’elle aura accompli retournera o la poussiére. Ca
n’a strictement aucune importance. Elle existe d cet

instant et, toujours, elle aura existé. Cela suffit.
Zuleika

Personne n’a dit que ce serait facile, et ¢ca ne l’a pas

été. Mais nous l’avons fait quand méme.

La Cité de Soie et d’Acier [CCC23],
Linda, Louise et Mike Carey
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Résumé de la thése en francais

1 Introduction

Cette theése s’intéresse & la géométrie énumérative des courbes algébriques sur des surfaces
toriques. Elle est dédiée a ’étude asymptotique des invariants tropicaux raffinés, en particulier
en genre 0 et 1, via 'utilisation des diagrammes en étages. Avant de parler d’invariants raffinés,

récapitulons d’ou vient ce probléme.

Quelques probléemes énumératifs

Il est connu depuis fort longtemps que par deux points passe une unique droite. Bien que
facile, des questions similaires peuvent se formuler dans des contextes bien plus généraux. Fixons
X une surface algébrique complexe non-singuliere et £ un fibré en droites sur X suffisamment
ample. On définit une courbe sur X comme étant le lieu d’annulation d’une section de £. Si

£2 X)-L . . .
++() — 4 points sur X, on peut se demander combien de courbes avec § points

on choisit
doubles passent par ces points. On note N? (£) ce nombre, qui ne dépend pas du choix des points.
Par la formule d’adjonction qui relie le genre et le nombre de points doubles d’une courbe, on
peut également choisir ¢1(X) - £ — 1 4 g points et compter les courbes de genre g qui passent
par ces points. On obtient un entier Ny(£). Ces nombres correspondent & des invariants de
Gromov-Witten.

Bien que liés I'un & l'autre, les entiers N°(L) et N,(L) se comportent trés différemment.
Les conjectures de Di Francesco-Itzykon [DFI95] et Géttsche [G6t98] stipulent que N®(L) varie
polynomialement lorsque £ varie. Gottsche donne méme une formule pour la série génératrice
de ces nombres. Ces conjectures ont été prouvées par Fomin et Mikhalkin [FM10] dans le cas
o X = CP?, et par Tzeng [Tzel2] en général. En revanche, pour le nombre dual N,(£) Di
Francesco et Itzykson [DFI95] ont montré qu’en genre 0 et pour les courbes de degré d sur CP?
on a In(Np(d)) ~ 3dIn(d), anéantissant I’espoir d’un comportement polynomial.

Plutét que de compter des courbes dans le plan complexe, on peut vouloir compter des
courbes dans le plan réel. Une difficulté majeure est que le nombre de courbes dépend alors des
points qu’on a choisis, de la méme fagon que le nombre de racines réelles d’un polynéme réel
dépend de ses coefficients. Cependant, Welschinger [Wel05] a montré qu’en genre 0, compter
les courbes avec un signe +1 donnait lieu & un invariant W(d). Toujours dans ce cadre, plutdt
que de fixer une configuration de points réels on peut fixer une configuration réelle de points.

Une telle configuration est formée de points réels et de paires de points complexes conjugués, et
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Résumé de la thése en frangais

I’énumération ne dépend toujours pas du choix des points. Cependant, il faut noter que cette
invariance du compte de courbes avec signes est spécifique au genre 0.

Comment déterminer N,(£) ou W(d)?

Il est en général compliqué de calculer Ny(£L) ou W (d). Néanmoins, la géométrie tropicale
fournit des méthodes pour aborder ces questions. En particulier, le théoréme de correspondance
de Mikhalkin [Mik05] rameéne ’énumération de courbes algébriques sur des surfaces toriques &
celle de courbes tropicales. Sous une hypothése technique de h-transversalité, Brugallé et Mikhal-
kin ont ensuite réduit cette énumération a celle d’un certain type de graphes appelés diagrammes
en étages [BMO07, BMO08], qui sont I’outil central de cette thése. Cette approche via la géométrie
tropicale s’avére féconde. Si de nombreux résultats classiques peuvent étre redémontrés dans ce
contexte, les diagrammes en étages fournissent aussi un outil concret pour étudier ces problemes
énumératifs. Un intérét de cette approche combinatoire est qu’elle permet de s’affranchir de cer-
taines hypotheses. Elle autorise en particulier a regarder des surfaces singuliéres, qui n’entrent
pas dans le cadre de la conjecture de Gottsche. De tels objets singuliers ont par exemple été

considérés par Ardila et Block [AB13], ainsi que par Liu et Osserman [LO18].

Raffinons I'’énumération

L’énumération tropicale requiert d’associer a chaque courbe tropicale ou diagramme en étages
une multiplicité entiére. Les travaux de Mikhalkin mettent en évidence deux multiplicités :
I'une permet de retrouver les invariants de Gromov-Witten Ny(L), l’autre les invariants de
Welschinger W (d). Block et Gottsche ont proposé d’utiliser une troisiéme multiplicité, cette
fois-ci polynomiale [BG16b]. Elle dépend d’une variable ¢ et interpole entre les précédentes
multiplicités. Le résultat du comptage de diagrammes en étages (ou de courbes tropicales), est
alors un polynome & coefficients entiers, appelé invariant tropical raffiné. On le note G4(A)(q),
ol g est le genre considéré et A est un polygone qui permet de définir précisément les données du
probléme énumératif, via les géométries torique et tropicale. Cet invariant raffiné prend comme
valeur particuliere en ¢ = 1 et ¢ = —1 les invariants de Gromov-Witten et ceux de Welschinger.
En genre g = 0, Gottsche et Schroeter ont défini une quantité similaire [GS19], qui prend
également en compte le nombre s de paires de points complexes conjugués que 1’on fixe dans la
configuration de points. On note cette quantité Go(A, s)(q).

Dans ’énumération & nombre de points doubles § fixés, on observe sans surprise que les
coefficients de l’invariant raffiné ont eux-méme un comportement polynomial. De fagon plus
étonnante, Brugallé et Jaramillo-Puentes ont montré que c’est encore le cas, du moins en partie,
lorsque le genre g est fixé [BJP22]. Le but de cette thése est d’étudier cette polynomialité et de
montrer, dans I’esprit de la conjecture de Géttsche, des formules universelles pour les coefficients

des invariants tropicaux raffinés.
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2 Invariants de Gottsche-Schroeter en genre quelconque

Un premier travail de cette these est d’étendre la définition des invariants de Gé&ttsche-
Schroeter au genre g > 0. Pour cela, il convient de regarder précisément comment, en genre 0,

ces invariants sont-ils calculés par les diagrammes en étages. La recette est la suivante.

1. Choisir un entier positif s qui représente le nombre de paires de points complexes conjugués
que 'on fixe pour compter les courbes, ainsi qu’'un appariement S d’ordre s.

2. Lister tous les diagrammes en étages marqués.
3. Pour chaque diagramme en étage marqué, déterminer sa S-multiplicité raffinée.

4. Sommer toutes les S-multiplicités raffinées.

En genre 0, on obtient le polyndme Gy(A, s) qui ne dépend pas du choix de ’appariement
S tant que celui-ci est d’ordre s. Ce fait provient de I'indépendance géométriqgue du nombre de
courbes vis-a-vis du choix des points. Pour étendre les invariants de Gottsche-Schroeter au genre
positif, I'idée est d’appliquer la méme recette a des diagrammes de genre positif pour obtenir
un polyndéme G4(A, S) qui a priori dépend de S, et de montrer une indépendance combinatoire

vis-a-vis de S. C’est le contenu du théoréme suivant.

Théoréme 3.1.3. Soit A un polygone h-transverse et g € N. Soit s € N et S,S’ deuzx apparie-
ments d’ordre s. Alors G4(A,S) = G¢(A,S’). On peut donc noter cette quantité G4(A, s).

Pour prouver ce théoréme, il est suffisant de fixer deux appariements S et S’ qui différent
d’une unique paire. La démonstration est alors une étude de cas, en fonction de comment la paire
en question apparait dans les diagrammes en étages marqués. On montre qu’on peut regrouper
les diagrammes en étages marqués par paquets, et que l'invariance apparait au sein de chacun
de ces paquets. Ce sont des calculs qui reposent sur le lemme technique 3.1.2, mais qui sont
valides pour tout genre g > 0.

On obtient donc un nouvel ! invariant Gy4(A, s). On montre ensuite qu'il vérifie certaines
propriétés déja connues dans le cas du genre 0. En particulier, on étudie la dépendance en s de
cet invariant. Dans I’énoncé suivant, la notation (G4(A, s)); représente le coefficient de codegré

i de G4(A, s). Les autres notations sont définies au chapitre 2.

Théoréeme 3.1.8. Soit A un polygone h-transverse et g < gmax(A). St 2i < e”°(A) et i <
Imax(A), alors les valeurs (G4(A, s)); pour 0 < s < smax(A, g) sont interpolées par un polynéme

5 y s -2 ¢ max—%
de degré i, dont le coefficient dominant est %(g ).

Ce résultat avait été prouvé par Brugallé et Jaramillo-Puentes dans le cas du genre 0 [BJP22].

1. De fagon indépendante et simultanée & cette thése, Shustin et Sinichkin ont également proposé une généra-
lisation au genre quelconque des invariants de Gottsche-Schroeter, en utilisant des méthodes géométriques [SS24].
Dans les cas oul 'on a des diagrammes en étages, on peut montrer que les deux généralisations coincident.
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Résumé de la thése en frangais

La démonstration en genre quelconque est simplement une adaptation de leur méthode, qui
requiert de décrire comment le genre peut apparaitre dans les diagrammes en étages qui contri-
buent.

Enfin, on illustre cette partie avec de nombreux exemples. Les observations qu’on en tire
permettent notamment de formuler la conjecture suivante. Dans I’énoncé, le polygone Ag,b in-
dique que l’on considére ’énumeération des courbes de bidegré (a, b) sur la surface de Hirzebruch

F,,, voir I’exemple 2.1.13.
Conjecture 3.2.16, formule d’Abramovich-Bertram. Soit a,b € N et g > 0. Pour tout s > 0
e (b + 25

Gy(AY 411:8) =
=0\ J

on a

> Gg(Ag—j,bJrzj ) 8)-

La formule d’Abramovich-Bertram est une égalité géométrique, vérifiée notamment par les
degrés de Severi Ny(A7 ;) [ABO1, Vak00, BP15]. Bousseau a également montré que les invariants
de Block-Géttsche, i.e. Gg(A7,,0) la satisfont [Bou21]. Si la conjecture ci-dessus est vraie, elle
plaide en faveur d’une interprétation géométrique des invariants de Gottsche-Schroeter en genre

positif 2. C’est une question qu’il serait intéressant d’étudier.

3 Formules universelles en genre 0 et 1

Le coeur de cette theése est ’étude des invariants raffinés G4(A, s) dans les cas o g = 0 et
g = 1. Plus précisément, étant donné la conjecture de Goéttsche [G6t98, Tzel2] et les résultats
de polynomialité de Brugallé et Jaramillo-Puentes [BJP22], le but est de montrer qu'’il existe

des séries universelles qui donnent asymptotiquement les coefficients de G4(A, s).

Le cas du genre 0

Introduisons quelques notations avant d’énoncer les résultats. On a déja mentionné que les
problémes énumératifs considérés sont codés par des polygones. Plus précisément, si A est un
polygone convexe & sommets entiers dans R?, il définit une surface torique X et un fibré en
droites £ a. Les courbes algébriques que 1’on cherche & compter sont alors des lieux d’annulation
de sections de L. On notera y(A) = c1(Xa) - La et x(A) = c2(Xa). On consideére les séries

formelles .

1—z

1 1
’ (.’L') 1 72 ’ (.’L') kLIl 1 ack ’

A(z) =

2. Shustin et Sinichkin montrent que ’évaluation en ¢ = 1 des invariants qu’ils proposent [SS24] donne le
nombre de courbes satisfaisant certaines conditions d’incidence et de tangence. La formule d’ Abramovich-Bertram,
ou une formule comme la proposition 3.1.7, expliqueraient ce résultat.
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3. Formules universelles en genre 0 et 1

et étant donné trois entiers y, x et s on note

Z Pl(y’ X, S)!L'i = Ay_Q_ZSBSPX.

120

La fonction P; ainsi définie est polynomiale de degré ¢ en chacune des variables y, x et s.

Dans le cas rationnel les résultats de cette thése sont tirés de [Mév23]. Pour des surfaces
X non-singuliéres, ils sont résumés dans I’énoncé suivant. Rappelons que (Gg4(A,s)); est le
coefficient de codegré i de G4(A, s).

Théorémes 4.1.5 et 4.1.10. Soit i € N et s € N. Pour tout polygone A non-singulier et h-

transverse, si A est assez grand alors
(Go(A, 5))s = Pi(y(A),x(A), s).

La condition d’étre assez grand est précisée dans ce manuscrit. Comme dans la conjecture
de Gottsche, on note que le comportement des coefficients de I'invariant raffiné est donné par

des polynémes P; universels, dans le sens ou ils ne dépendent pas de la surface considérée.

La démonstration de ce résultat se fait en deux temps. Dans [BJP22|, Brugallé et Jaramillo-
Puentes prouvent des résultats de polynomialité pour une famille de surfaces telles que la di-
vergence des diagrammes en étages correspondants soit constante. On commence par adapter
leur démonstration a une famille plus large de surfaces pour lesquelles la divergence n’est pas
constante. Outre la non-singularité, cette famille est contrainte par une hypothése d’horizontalité
qui permet une description explicite des diagrammes en étages. Cette étape est le contenu du
théoréme 4.1.5. C’est ici que I'on obtient les formules explicites pour les séries génératrices et
les polynémes F;.

La deuxiéme étape consiste a enlever cette hypothése d’horizontalité. Pour cela, on construit
une correspondance entre les invariants raffinés Go(A,s) et Go(A,s), ou A est obtenue par
éclatement de A, c’est-a-dire que la surface torique X X est un éclatement de Xa. En étudiant
dans la proposition 4.1.6 comment changent les diagrammes en étages lorsqu’on passe de A &

5, on obtient le résultat suivant.

Corollaire 4.1.7. Soiti € N et s € N. Si A et A sont tous les deuz assez grands, alors on a

l’équivalence

VEk € {0,...,i}, (Go(A,s))r = Pr(y(A),x(A),s)
& Vke{0,...,i}, (Go(A, s))k = Pu(y(A), x(A), 5).

Etant donné un polygone non-singulier, on peut par éclatements et contractions le lier & un

polygone non-singulier horizontal. La correspondance ci-dessus permet donc de retirer I’hypo-
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Résumé de la thése en frangais

these d’horizontalité et d’obtenir le théoréme 4.1.10. En particulier, un triangle qui définit le
plan projectif CP?, voir exemple 2.1.12, ne satisfait pas ’horizontalité du théoréme 4.1.5 mais
entre dans le cadre du théoreme 4.1.10.

On adapte ensuite la démonstration du théoreme 4.1.5 au cas des surfaces singuliéres. Cela
nécessite de prendre en compte le nombre ng(A) de singularités d’indice k¥ de Xa. Etant donné

des entiers y, s, n1,n2, ..., on considére

> Qi(yss,m,ma, .. )at = A2 B T P(ah)™.

i>0 k>1

La fonction @; est polynomiale de degré i en les variables y et s, et de degré au plus i/k en

chacune des variables ny.

Théoreme 4.1.11. Soit i € N et s € N. Pour tout polygone A horizontal et h-transverse, si A

est assez grand alors

(Go(A, s))i = Qi(y(A), s,n1(A),...).

Si A est non-singulier on a ng(A) = 0si k # 1 et n1(A) = x(A). On retrouve donc
le théoreme 4.1.5 dans ce cas. Notons que le terme [[;-o P(z*)™, qui prend en compte les
singularités, est le méme que celui qui apparait dans [LO18, corollaire 1.10]. Ceci est d’autant
plus surprenant que Liu et Osserman travaillent & nombre de points doubles fixé, alors que ce
manuscrit se place dans le cadre dual on I’on fixe le genre. Il serait intéressant d’étudier plus en
détails ce phénomene.

Comme dans le cas non-singulier, on peut décrire ce qu’il se passe sous l’effet d’un éclatement.
Cependant, la correspondance obtenue n’est pas suffisante pour retirer ’hypothése d’horizonta-
lité dans le cadre singulier, car les éclatements et contractions ne sont pas toujours suffisants
pour se ramener a un polygone horizontal.

Pour finir avec le cas du genre 0, on reformule ensuite les résultats précédents en termes
d’invariants raffinés asymptotiques, qu’on note AR; s ol J est un éventail. L’'invariant raffiné
asymptotique est une fonction qui & un polygone A dual & F associe une série formelle, dont les
premiers coefficients correspondent & ceux de l'invariant tropical raffiné. C’est une fagon pratique
de présenter les résultats et de simplifier les formules, qui a été introduite dans [BM24]. Dans
ce contexte, le théoreme 4.1.5 s’écrit ainsi.

Théoréme 4.2.24. Soit F un éventail non-singulier, horizontal et h-transverse, et soit s € N.

L’invariant raffiné asymptotique de genre 0 est donné par
AR (A) = P(z)X®)

ot A est un polygone dual ¢ F.

Bien que cette formulation soit équivalente a celle du théoréme 4.1.5, on prouve ce résultat
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3. Formules universelles en genre 0 et 1

indépendamment de ce qui précéde. Cela permet de présenter des idées qui seront utilisées pour
traiter le cas du genre 1. Rapidement, plutét que de déterminer les diagrammes en étages puis
de calculer leurs nombres de marquages, il s’agit de décrire directement les diagrammes en étages
marqués. On les encode pour cela grace a des mots auxquels on associe des multiplicités, qu’il

faut ensuite sommer.

Le cas du genre 1

L’étude en genre 1 est plus difficile que celle en genre 0. Cela est di au fait que les diagrammes
en étages correspondants sont plus compliqués & décrire. Néamoins, avec le vocabulaire des
invariants raffinés asymptotiques on peut montrer le résultat suivant, issu de [BM24] pour le cas
ous=0.

Théoréme 5.3.7. Soit F un éventail non-singulier, horizontal et h-transverse, et soit s € N.

L’invariant raffiné asymptotique de genre 1 est donné par

T
AR] () = P@)® (gman(8) + 25

z - 12E2(w)) ,

ot A est un polygone dual @ F, gmax(A) est le genre mazimale d’une courbe définie par A, et
ot Ea(x) = Y ,51 01(n)z" avec o1(n) = > djn d-

L’idée est de relier les diagrammes de genre 1 & ceux de genre 0, en construisant les uns a
partir des autres. Ceci établit une correspondance qui permet de ramener I’énumération & celle de
diagrammes de genre 0, avec toutefois une multiplicité différente de celle utilisée précédemment.
Cette technique est rendue possible par le fait que sous I’hypothese que les polygones soient assez
grands, on peut décrire explicitement les diagrammes de genre 0, comme dans la. démonstration
du théoreme 4.1.5.

Et en genre plus grand ?

Si on augmente encore le genre, les diagrammes en étages sont de plus en plus intriqués et
compliqués a décrire. Les approches utilisées dans cette thése vont atteindre une limite technique.
S’il est incertain qu’on puisse en tirer des formules explicites, des idées similaires pourraient

néanmoins montrer que les invariants raffinés asymptotiques ont la forme générale suivante.

Conjecture 5.3.8. Soit F un éventail non-singulier et h-transverse, g € N et s € N. L’invariant

raffiné asymptotique de genre g a la forme suivante :
max A
AR, (8) = P@)® ((g " )) +Qj(a, s)) ,

ot A est un polygone dual o F, et ot Qg est un polynéme de degré au plus g en les variables
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LzA, La-Kx, ets, dont les coefficients sont des séries formelles en x qui s’annulent en 0.

4 Série génératrice a codegré fixé

Dans une derniére partie, on s’intéresse aux coefficients de degrés fixés des invariants raffinés
asymptotiques, et on forme leur série génératrice en sommant sur le genre. Par exemple, d’apres
[IM13] on sait que le coefficient dominant de l'invariant tropical raffiné G4(A) est (gmaZ(A)),
Ol gmax(A) = 14 2(£%4 + LA - Kx,). Autrement dit, le terme constant de I'invariant raffiné
asymptotique est

(AR] (8))o = (gm(A)).

g

On a donc

> (AR} )ou? = (1 + u)9mex.

9=0
Dans [BM24], nous donnons pour s = 0 une formule pour la série génératrice des coefficients
de degré 1 des invariants raffinés asymptotiques, autrement dit des coefficients de codegré 1 des

invariants tropicaux raffinés. Pour s # 0, on a le résultat suivant.
Théoreme 6.3.1. Soit F un éventail non-singulier, horizontal et h-transverse. La série généra-

trice des termes de degré 1 de l’invariant raffiné asymptotique est

1
1+u

(1+wu)3

Z(ARg’s)lug = (14 w)m= |(x + 2su)
920

— (ul — K)?

o L : A L et K: A~ Kx,. En particulier, les fonctions qui donnent les coefficients de
degré 1 sont polynomiales en L%, K%A, y(A) = —La - Kx,, x(A) et s.

Pour montrer ce résultat on décrit en tous genres les diagrammes de codegré 0 et 1, qui sont
les seuls a intervenir dans le calcul de (AR; s)1. On détermine explicitement les termes de degré

1 de leurs multiplicités, ce qui nous donne la série génératrice.
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CHAPTER 1

Introduction

This thesis settles in the context of the enumerative geometry of algebraic curves on surfaces.
It is dedicated to the study of tropical refined invariants, especially in genus 0 and 1. We prove
the existence and give explicit formulas for formal series that asymptotically give the coefficients
of the tropical refined invariants. We start with a historical review of the enumerative questions

related to curves on surfaces, before exposing our results.

1.1 Algebraic enumerative geometry

1.1.1 Complex enumeration

It is an ancestral question to determine how many lines pass through two distinct points on
the plane. Although the answer is easy ', this question generalizes to many interesting and more
difficult problems. One can for instance ask for the number of curves of a given degree d passing

through d(dQ—Jr?’) points on the plane. The number w

may seem to be chosen at random, but
it is actually the dimension of the space of degree d curves, and thus the appropriate number of
conditions to fix to get a finite but non-zero number of curves.

One can make the question more complex by considering other types of conditions to impose
on the curves. A generic singular curve has only nodes as singularities, and we can prescribe the
number of nodes. We then introduce a new parameter d, and look for the number of degree d

d(d+3)
2

irreducible curves having é nodes and passing through — § points on the plane. If the base

field is C, this number does not depend on the configuration on points we choose. We denote it
by N%(d).

A dual point of view is the following. The genus of a nodal curve of degree d is the number
of nodes it does not have. By the adjunction formula, the genus g and the number of nodes § of

a nodal curve of degree d satisfy

_(@-1)d-2)

0

Thus, we can consider the dual question of determining of many curves of degree d and genus

1. If you are wondering, the answer is 1 ;).
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g pass through 3d — 1 + ¢ points on the plane. Again, over the complex numbers C it does not
depend on the choice of the points, and we denote by Ngy(d) this number.

The values of N°(d) or N,(d) for d = 1,2 are known since the antiquity, but in general it is
very difficult to determine these numbers. Zeuthen computed Ny(4) = 620 in 1873 [ZeuT73], and
very few more was known as the beginning of the XXth century.

More than one century after Zeuthen, Kontsevich proved a recursive formula to compute
No(d) [KM94]. Few years later, Caporaso and Harris found another recursive formula that allows
to compute all the Ny (d) [CHI8]. At the dawn of the XXIst century, complete answers were finally
known.

The question can be generalized to other surfaces. Consider X a complex algebraic and
non-singular surface, and let £ be a sufficiently ample line bundle over X. Curves on X can be
defined as the zero-sets of sections of £. Given a non-negative integer §, we can wonder what

2 .
% — ¢ points in

is the number of irreducible curves on X with § nodes passing through
generic position. This number N®(£) is known as the Severi degree.
In this setting, if a nodal curve has & nodes and geometric genus equal to g, then the

adjunction formula writes

L2 —c1(X)-L+2
5 .

Hence one can also consider the number Ny(£) of curves on X of genus g and passing through

g+dé=

c1(X)-£L —1+ g points. The numbers Ny(£) also correspond to some Gromov-Witten invariants.
Let us mention the Abramovich-Bertram formula [ABO01], which relates rational Severi degrees
of the Hirzebruch surfaces Fy and . This formula has been generalized by Vakil in any genus
[Vak00], and by Brugallé and Puignaux in a symplectic framework [BP15].

1.1.2 Polynomiality and Gottsche’s conjecture

Instead of determining exactly the numbers of curves satisfying some conditions, one can
study the behavior of these numbers when the parameters vary.

For fixed &, Di Francesco and Itzykson conjectured in [DFI95] the function d — N°(d) to be
polynomial for d large enough. This conjecture has been proven by Fomin and Mikhalkin using
tropical methods [FM10], see section 1.2. They also showed that the polynomiality behavior
holds for d > 2§. The function N° is then called a node polynomial. For § = 1,2,3 the node
polynomials were known in the second half of the XIXth century. They have been computed up
to 6 = 6 by Vainsencher [Vai95], § = 8 by Kleiman and Piene [KP04], and § = 14 by Block
[Blo11]. Block also improved the threshold of polynomiality to d > 4.

In [G6t98], Gottsche widened the scope of Di Francesco and Itzykson’s conjecture. He con-
jectured that for any non-negative integer d, there exists a polynomial Ps € C[z,y, 2, t] such that

for any non-singular complex algebraic surface X and for any line bundle £ sufficiently ample,
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1.1. Algebraic enumerative geometry

one has
NO(L) = Ps(L2,c1(X) - £, c1(X)?, e2(X)).

Moreover, the generating series of the sequence (Ps)s was conjectured to be multiplicative, i.e.

there exist some universal power series By, ..., By € Q[u] such that

> Ps(z,y, 2, t)u’ = Bf BYB;B}.
620
He also gave some explicit descriptions for some of the B; in terms of quasi-modular forms.
Gottsche’s conjecture is now a theorem. It has been proven first by Tzeng [Tzel2]. Kool, Shende
and Thomas then gave an alternative proof [KST11].
In the dual setting where the genus g is fixed instead of the number of nodes, Di Francesco
and Itzykson showed the asymptotic In(Ny(d)) ~ 3dIn(d) [DFI95]. Hence we cannot hope for

the numbers Ny(£) to behave polynomially when g is fixed and £ varies.

1.1.3 Real enumeration

Instead of counting curves on the complex plane, one can look at curves on the real plane.
There is still one line passing through two distinct points, and one conic passing through five
points in generic position. However, if one wonders how many cubics of genus 0 (i.e. with 1
node) pass through 8 points on the real plane, trouble starts to appear. Indeed, contrary to
the complex case this number depends on the configuration of points we choose. Degtyarev and
Kharlamov showed there could be 8, 10 or 12 such real cubics [DKO00].

Actually, for a complex nodal curve there is a unique type of node : a node is the intersection
of two branches, and thus locally looks like 22 — y2? = 0. For a real nodal curve, two possibilities
occur : the node can be the intersection of two real branches, or of two complex branches. In the
first case a local equation is 2 — y? = 0 and we call it an hyperbolic node, while in the second
case a local equation is 2 + y? = 0 and we speak about elliptic node. Degtyarev and Kharlamov
showed that when counting real cubics throught 8 given real points, the number of curves with
an hyperbolic node minus the number of curves with an elliptic node is always 8 : this count
does not depend anymore on the configuration of points we choose.

Welschinger generalized this observation [Wel05]. Consider a configuration of 3d — 1 real
points, and let C be a degree d rational curve through these points. Let n be the number of
elliptic nodes of C and define the Welschinger sign of € to be (—1)". Welschinger proved that
counting the degree d rational curves through 3d — 1 real points with their signs leads to an
invariant ; we denote it W (d).

The Welschinger number W (d) provides a lower bound for Ny(d), but it is not clear that

this number is positive. However, Itenberg, Kharlamov and Shustin [IKS03] showed a non-trival
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and positive lower bound for W (d). They also proved the logarithmic asymptotic In(W(d)) ~
In(Np(d)) in [IKS04], and a Caporaso-Harris type formula for Welschinger numbers [IKS09).

More generally, when choosing the configuration of points one can also pick some pairs of
complex conjugated points. We can consider the signed number of rational curves of degree d
passing to a real configuration of 3d — 1 points containing exactly s pairs of complex conjugated
points. This number again does not depend on the configuration of points we choose.

However, this invariance when counting signed real curves is specific to the rational case.
When the degree is d > 4, Welschinger noticed in his paper that the count was not invariant
for curves with 1 node. Itenberg, Kharlamov and Shustin also showed it is not invariant when

considering genus 1 curves.

1.2 Tropical enumerative geometry

1.2.1 Correspondence theorems

We saw that determining the numbers Ny(£) was a difficult problem. However, the emergence
of tropical geometry provided new ways to compute these numbers at the beginning of the
XXIst century. A significant and crucial breakthrough is Mikhalkin’s correspondence theorem
[Mik05]. This result turns an algebro-geometric question into a more combinatorial one. Roughly
speaking, it states that counting algebraic curves on toric surfaces is the same as counting
piecewise linear objects called tropical curves with some multiplicities. Mikhalkin also provides
an algorithm to compute the number of curves on toric surfaces. Moreover, he gives a version
of his correspondence theorem suitable to determine the Welschinger invariants when s = 0,
i.e. when there is no pair of complex conjugated points in the configuration. This enumeration
requires to consider another multiplicity for the tropical curves. This result has been extended
by Shustin [Shu06] to the case s > 1.

Building on Mikhalkin’s approach, one can tropically recover some of the results regarding
these enumerative problems. For instance, Gathmann and Markwig gave a tropical proof of
the Caporaso-Harris formula [GMO07a] and of the Kontsevich formula [GMO08]. Invariance of the
tropical count when determining Severi degree, usually deduced from Mikhalkin’s theorem, can
be proven tropically [GMO07b]. Gathmann, Markwig and Schroeter also introduced broccoli curves
and broccoli invariants which match the Welschinger invariants [GMS13], giving a tropical proof
of the invariance of this tropical count. Let us also mention the tropical proof of the Abramovich-
Bertram formula by Franz and Markwig [FM11].

Counts of tropical curves also gives new results. The study of Welschinger invariants by
Itenberg, Kharlamov and Shustin already mentioned [IKS03, IKS04, IKS09] is based on this
approach. The tropical recipe that gives the Welschinger invariants also leads to some invariants

in any genus, called tropical Welschinger invariants [IKS09]. Brugallé and Markwig generalized
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the Abramovich-Bertram and Vakil’s formulas to the Hirzebruch surfaces F,, and F,;2, by

working in the tropical world and using a correspondence theorem [BM16].

1.2.2 A new tool : floor diagrams

Following Mikhalkin’s correspondence theorem, Brugallé and Mikhalkin gave a combinatorial
method to compute these numbers for a certain class of toric surfaces in [BM07, BM08]. They
reduced the enumeration of tropical curves to the enumeration of a certain type of graphs called
floor diagrams, with some multiplicities. This is possible under a technical condition called h-
transversality. These objects are central in this thesis, as all our proofs rely on their manipulation.

Floor diagrams or their derivatives have been used intensively in the past years. Fomin and
Mikhalkin’s combinatorial proof of the conjecture of Di Francesco and Itzykson relies on floor
diagrams [FM10]. The computation of the node polynomials N % up to § = 14, by Block is based
on ideas of the paper by Fomin and Mikhalkin. Ardila and Block extended the work of [FM10)]
and proved polynomiality results for families of toric surfaces [AB13]. An interesting outcome
of their combinatorial approach is that it allows to also deal with singular surfaces for which
the initial Gottsche conjecture does not say anything. Block, Colley and Kennedy considered a
logarithmic version of a quantity introduced by Fomin and Mikhalkin to give a new proof for the
multiplicativity stated in Gottsche’s conjecture in the case of CP? [BCK14]. Motivated by this
work, Liu recovered in [Liul6] the result of Block, Colley and Kennedy as a particular case of a
more general theorem. Thanks to this theorem, Liu and Osserman completed in [LO18] the work
of Ardila and Block, especially by clarifying the link with Gottsche conjecture and generalizing
the statement to singular surfaces.

With the appropriate multiplicity, floor diagrams can also be used to study Welschinger
invariants. One can recover the logarithmic asymptotic of W(d) [Bru08|. Arroyo, Brugallé and
Lépez de Medrano proved a Caporaso-Harris type formula to compute Welschinger invariants, for

configurations of points potentially containing pairs of complex conjugated points [ABLAM10)].

1.3 Refined enumerations

1.3.1 Block-Go6ttsche multiplicity

Both enumerations of tropical curves and floor diagrams work if one counts the objects with
some multiplicities. Classically, two multiplicities are attached to a tropical curve or a floor
diagram : a complex multiplicity allows to recover the complex count of curves, i.e. to determine
Gromov-Witten invariants, while a real multiplicity leads to the real count of curves, i.e. to
Welschinger invariants. Both these multiplicities are integers.

Block and Géttsche proposed to use a refined multiplicity, which is no longer an integer but a

symmetric Laurent polynomial in a formal variable ¢ [BG16b]. Adapting the proof of Gathmann
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and Markwig of the invariance of tropical count [GMO07b], Itenberg and Mikhalkin showed that
the count with Block-Gottsche multiplicities also leads to an invariant [IM13], known as tropical
refined invariant. We denote by G4(A)(q) the tropical refined invariant, where g is the genus and
A is the polygon which defines both the toric surface and the linear system in which we count
the curves. When ¢ = 1 the Block-Go6ttsche multiplicity recovers the complex multiplicity, and
for ¢ = —1 it gives the real multiplicity. Thus, the tropical refined invariant interpolates between
complex and real enumerations of curves : plugging ¢ = 1 we get Gromov-Witten invariant, and
plugging ¢ = —1 we get tropical Welschinger invariant.

In the rational case, G6ttsche and Schroeter extended Block-Gottsche invariants and defined
a refined broccoli invariant now taking into account the number s of pairs of complex conjugated
points we fix in the points configuration [GS19]. These invariants are denoted by Go(A, s)(q)
and correspond to Block-Gottsche invariants for s = 0. It now interpolates between the broccoli
invariants of [GMS13], i.e. Welschinger invariants involving pairs of complex conjugated points,
and genus 0 descendant Gromov-Witten invariants. Gottsche-Schroeter invariants appeared to
be a particular case of some invariants defined by Blechman and Shustin [BS19]. Schroeter and
Shustin generalized Géttsche-Schroeter invariants to genus 1 [SS18] 2.

The computation of the tropical refined invariants is possible using the floor diagram al-
gorithm, adapted to the refined setting by Block and Gottsche [BG16b]. The floor diagrams
can also be used to compute the broccoli invariants in genus 0 from [GS19], see for instance
[BJP22]. Using floor diagrams, Bousseau has shown that Block-Gottsche invariants satisfy the
Abramovich-Bertram formula [Bou21], settling a conjecture of [Bru20].

1.3.2 Interpretations

Apart from the values at ¢ = £1, the meaning of tropical refined invariants in classical geom-
etry remains quite mysterious. The main conjecture is the one of Gottsche and Shende [GS14].
It states that tropical refined invariants correspond to the refinement of the Euler characteristic
by the Hirzebruch x_,-genus for some relative Hilbert scheme. Some work in this direction has
been accomplished by Nicaise, Payne and Schroeter [NPS18].

There are other interpretations. For instance, Mikhalkin established a link between genus 0
tropical refined invariants and a refined count of real curves [Mik17]. This has been generalized
by Blomme [Blo23]. Through the change of variable ¢ = e**, Bousseau related tropical refined
invariants to a generating series of log Gromov-Witten invariants with insertion of a A-class
[Boul9]. This correspondence has been extended to the case of refined invariants from [GS19]
and [BS19] in [KHSUK23|. In the results of Mikhalkin, Blomme, Bousseau and Kennedy-Hunt

2. Simultaneously and independently with this thesis, Shustin and Sinichkin proposed a generalization of the
work of [SS18] to any genus [SS24]. They also showed that the evaluation at ¢ = 1 gives the number of curves
satisfying some incidence and tangency conditions.
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et al, it is interesting to note that the denominator of the tropical refined invariant seems to be

in excess.

1.3.3 Polynomiality strikes back

Block and Gottsche showed that if we fix the number of nodes § then the coefficients of the
tropical refined invariant are eventually polynomial [BG16b]. In other words, the polynomiality
behaviour stated in Gottsche’s conjecture passes down to the refined level.

More surprisingly, if we fix the genus ¢ instead of the number of nodes § then Brugallé
and Jaramillo-Puentes proved that we recover a polynomial behaviour [BJP22]. For a family
of surfaces that includes the projective plane and Hirzebruch surfaces, the coefficients of small
codegrees of the tropical refined invariant are asymptotically given by some polynomials. This
is also the case for the Gottsche-Schroeter invariant. This raises the question of the existence of
universal polynomials for these coefficients. Is there a Géttsche-like conjecture in this dual and

refined setting ?

1.4 Results of this thesis

This thesis is mainly based on the papers [Mév23] and [BM24] and is devoted to the study
of the tropical refined invariants defined by Block-Géttsche [BG16b] and Gottsche-Schroeter
[GS19]. Chapter 3 combinatorially extends the Goéttsche-Schroeter invariants in higher genus.
Chapters 4 and 5 continue the study of the asymptotic polynomiality of the refined invariants,
as started in [BJP22]. In the spirit of Gottsche’s conjecture, the main results of this thesis give
universal formulas for the coefficients of small codegrees of the refined invariants in the rational
case (chapter 4) and in the genus 1 case (chapter 5). Chapter 6 is dedicated to the study of
generating series in the genus parameter of the coefficients of codegree 0 and 1 of the refined

invariant.

1.4.1 Gottsche-Schroeter invariants in higher genus

The calculation of Gottsche-Schroeter invariants Go(A, s) using floor diagrams requires to
choose a pairing S of order s, see [BJP22, section 2.3] or section 2.2.2 of this thesis. However,
the Gottsche-Schroeter invariant does not depend on the choice of this pairing, as long as it has
order s by [BJP22, theorem 2.13|, reproduced as theorem 2.2.16 in this manuscript. Namely, if
S and S’ are two pairings of order s, one can define the count of floor diagrams Gy(A, S) and
Go(A, S"), and show they are both equal to the Gottsche-Schroeter invariant Go(4, s) (this last
notation is then an abuse of notation).

We give in this manuscript a combinatorial proof of this independence which is valid for any

genus, not only in the rational case. For any genus g we define a quantity G4(A, S) as a count
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of floor diagrams, and show it does not depend on S but only of its order.

Theorem 3.1.3. Let A be h-transverse polygon and g € N. Let s € N and S, S’ be two pairings
of order s. Then G4(A,S) = G4(A,S"). We can then write G4(A, s).

The proof is a study of several cases according to how the pairings S and S’ interact with
a floor diagram. It fulfills the wish of [BJP22, remark 2.14] to get a proof of the independence
with respect to S that does not go through tropical geometry. Moreover, if the genus is g =1

then we can show that the combinatorial invariants defined here match the ones of [SS18] 3.

We then prove few results on this higher genus Gdéttsche-Schroeter invariant Gy4(A,s). Es-
pecially we show some polynomiality behavior with respect to s. The following theorem extends
[BJP22, theorem 1.7] to arbitrary genus. Here, (G4(A, s)); denotes the codegree i coefficient of
Gg4(A, s). Other notations are defined in sections 2.2.1 and 2.2.2.

Theorem 3.1.8. Let A be an h-transverse polygon and g < gmax(A). If 2i < e*°(A) and

@ < gmax(A), then the values (G4(A, s)); for 0 < s < smax(A, g) are interpolated by a polynomial
(_2)i (gmax_i) .

3! g

of degree i, whose leading coefficient is

We also perform computations on manageable examples which leads us to few conjectures.
In particular the higher genus Gottsche-Schroeter invariants seem to satisfy the Abramovich-
Bertam formula. The polygon A7, defines the Hirzebruch surface I, together with the curves

of bidegree (a,b), see example 2.1.13.

Conjecture 3.2.16, Abramovich-Bertram formula. Let a,b € N and g > 0. For any s > 0 one

2 (b+2j5
Gy(A) 411r5) =D ( i )Ga(Ag—j,bm’ s)-
=0

has

Although I do not know if these combinatorial invariants have a geometric meaning, if such
a formula were true it would plea in favor of a geometric interpretation of G4(A, s). This is a

question to delve further into.

1.4.2 Polynomiality and universal generating series

Given the polynomiality results of Brugallé and Jaramillo-Puentes for coefficients of the trop-
ical refined invariants [BJP22], and the polynomiality behavior stated in Go6ttsche’s conjecture
for Severi degrees [G6t98, Tzel2], one can wonder if there exist universal series that asymptot-
ically give the coefficients of G4(A, s). In this thesis we positively answer this question in the

case of genus 0 and 1.

3. This is also true when considering the invariants of [SS24] in any genus, when the polygon A is h-transverse.

30



1.4. Results of this thesis

The rational case

In chapter 4 we study the genus 0 case. Let us introduce some notations before stating the
results. A polygon A defines a toric surface XA and a line bundle £5. We denote y(A) =
c1(Xa) - La and x(A) = c2(Xa). We consider the series

1 1 1
) B(w)zl_—wz, P(w)znm,

Al@) = 11—z

and given three integers y, x and s we consider

Z Pi(y,x, s)z' := AV=2725 B PX,

i>0
The function P; is a polynomial and has degree ¢ in each of the variables y, x and s. Our main
universality result in the rational case is the following, and appears in [Mév23]. It deals with

non-singular toric surface defined by h-transverse polygons.

Theorems 4.1.5 and 4.1.10. Let i € N and s € N. For any non-singular and h-transverse
polygon A, if A is large enough then

(Go(A, 9))i = Bi(y(A), x(A), s).

The large enough condition is made precise in sections 4.1.1 and 4.1.3. As in Gottsche’s
conjecture, it is interesting to note that the behavior of the coefficients of the refined invariants
are given by some wuniversal polynomials P, in a multiplicative way. However, in Go&ttsche’s
conjecture the polynomial behavior is dictated by four topological numbers. Here, only two of
them appear.

The outline of the proof is the following. We adapt the polynomiality proof of [BJP22] to a
more general family of non-singular surfaces, only constrained by a hypothesis of horizontality of
the polygons defining the surfaces, see theorem 4.1.5. We then build a correspondence between
the refined invariants Go(A, s) and Go(&, s), where A is a blow-up of A. This correspondence

gives the following result.

Corollary 4.1.7. Let i € N and s € N. If both A and A are large enough, then one has the

equivalence

Vk € {0’ cee 77:}7 <G0(Aa S))k = Pk(y(A)’ X(A)v S)
& Vk e {0’ s 7i}7 <G0(&73)>k = Pk(y(A)JC(A)vS)'

Again, the large enough condition is made precise in section 4.1.2. Using this correspondence

we are able to remove the horizontality hypothesis and to obtain theorem 4.1.10. In particular,
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one can include the projective plane CP? in the range of surfaces covered by theorem 4.1.10 at
the cost of this correspondence under blow-up.

In [Mév23] we also adapt the proof of theorem 4.1.5 to singular surfaces. This requires to take
into account the number ng(A) of singularities of index k of Xa. Given integers y, s,n1,ng, ...,

we consider the series

> Qily,s,n1,ma,...)a" == AV"22B* ] P(a¥)™.

120 k>1

Note that @; is a polynomial of degree i in the variables y and s, and of degree at most i/k in

each of the variables ny.

Theorem 4.1.11. Leti € N and s € N. For any h-transverse and horizontal polygon A, if A is

large enough then

(Go(A, 9))i = Qi(y(A), s,n1(A),...).

The large enough condition is made precise in section 4.1.4. If A is non-singular one has
ng(A) = 0 unless k = 1, for which n;(A) = x(A). Hence we recover theorem 4.1.5 in that case.
We note that the term ]z P(z*)™, which takes into account the singularities, is the same
as the one appearing in [LO18, corollary 1.10]. This is surprising, especially because Liu and
Osserman work at fixed number of nodes while we work at fixed genus. It may worth investigate
more precisely this phenomenon.

We do not know how to remove the horizontality hypothesis because a singular polygon is
not as constraint as a non-singular one. We are able to describe what happens when we perform

an operation similar to a blow-up, but it is not sufficient to reach any h-transverse polygon.

F
9,8?

where ¥ is a fan. They are a practical way to rephrase the previous results on the tropical refined

We then adopt the slightly different point of view of asymptotic refined invariants AR,

invariants. Roughly speaking, it consists in removing denominators and negative exponents in
the tropical refined invariants, which turns codegrees into degrees and simplify the generating
series, see section 2.3. With the vocabulary of [BM24], theorem 4.1.5 is rephrased as follows.

Theorem 4.2.24. Let F be an h-transverse, non-singular and horizontal fan, and let s € N. The

genus 0 asymptotic refined invariant is
ARJ (A) = P(z)X®)

where A is a polygon dual to F.

We prove this theorem independently from theorem 4.1.5 to present ideas that will be used
in chapter 5 for the genus 1 case. Note that a fan defining the projective plane CP? does not
satisfied the hypothesis of theorem 4.2.24. Besides, we do not say anything on a correspondence

under blow-up or on singular surfaces.
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The genus 1 case
In chapter 5 we study the genus 1 case. We use elements introduced in section 4.2 to prove
the following, which appears in [BM24] for the case s = 0.

Theorem 5.3.7. Let F be an h-transverse, non-singular and horizontal fan, and let s € N. The

genus 1 asymptotic refined invariant is

AR] (&) = @) (gmax(8) + 257

z - 12E2(w)) ,

where A is a polygon dual to F, and Ex(z) = 3,51 01(n)z" with o1(n) = 3 g, d-

The idea to get the genus 1 case is to construct floor diagrams of genus 1 from floor diagrams
of genus 0, and to reduce the genus 1 enumeration to a rational enumeration with a different
multiplicity. This is possible because under a large enough hypothesis, which is hidden in the
definition of asymptotic refined invariants, one can easily and explicitly describe the genus 0
diagrams.

Although it is unlikely that this approach gives explicit results in higher genus, similar ideas

could show that the asymptotic refined invariant has the following general form.

Conjecture 5.3.8. Let F be an h-transverse and non-singular fan, g € N and s € N. The

asymptotic refined invariant ARg’ s has the following form :

AR (&) = P(a)® (("m&;@)) QYA s>) ,

where A is a polygon dual to F, and where Qg is a polynomial of degree at most g in LZA,

La - Kx, and s, whose coefficients are formal series in x that vanish at 0.

1.4.3 Generating series at fixed codegree

Last, in chapter 6 we fixed the codegree and sum over the genus parameter. It is known from
[IM13] that the leading coefficient of the genus g tropical refined invariant, or equivalently the

constant term of the asymptotic refined invariant, is

(ARZ,(A))o = (gma’;(A)>

where gmax(A) =1+ %(LQA + LA - Kx,). In other words, one has

ST(ARY Youf = (1 + u)9me=,
g=>0
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In [BM24] we provide a formula for the degree 1 term of the asymptotic refined invariants for
s =0, i.e. for the codegree 1 term of the tropical refined invariants. For non-zero s, one has the
following,.

Theorem 6.3.1. Let F be an h-transverse, horizontal and non-singular fan. The generating series

of the degree 1 terms of the asymptotic refined invariant is given by

(1+w)?

1
Z(ARgs)lug = (14 w)m=x |(x + 2su)

, — (ul — K)?
550 1+u

where L : A — LA and K : A — Kx,. In particular, the asymptotic polynomials yielding the
degree 1 coefficients are polynomials in L%, y(A) = —Kx, - £a, x(4), K)z(A and s.
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CHAPTER 2

Preliminaries

In this chapter we review of bit of toric geometry, before introducing floor diagrams and

refined invariants.

2.1 Toric surfaces

We briefly recall some notions of toric geometry, and introduce some notations and vocabu-
lary. For more details regarding this subject, we refer to [Ful93] or [CLS11].

2.1.1 Cones and fans

Let N be a lattice of rank 2 and M = Hom(N, Z) its dual. We denote by Mr = M ® R and
Nr = N ®R the associated real vector spaces. The pairing between Nr and My, is denoted (-, -).
In this text, we can always imagine N ~ M ~ Z2 and Nz ~ Mg ~ R2.

Given a finite set A C Ng, the polyhedral cone generated by A is

o(A) = {Z AU, Ay € R+} C Ng ~ R2.
vEA

A cone will be a set of this form. It is strongly convex if it does not contain any vector subspace

of Ng ~ R? except {0}, and its dimension is the dimension of the vector space it spans.

The cone o(A) is rational if the elements of A are lattice vectors, i.e. A C N ~ Z2. A
rational cone is simplicial if the elements of A are linearly independent over R, and non-singular
(or unimodular) if the elements of A are part of a basis of the lattice N ~ Z2. Note that a
simplicial cone is strongly convex.

Let o be a two-dimensional rational cone generated by v € Z? and v € Z2, with u and v
primitive. The indez of o is ind(c) = |det(u,v)|. Note that the cone o is non-singular if and
only if its index is 1.

Definition 2.1.1. A fan F in Ng ~ R? is a finite collection of rational and strongly convex cones,
such that pairwise intersections of cones of F are cones of . The 1-dimensional cones of F are

called the rays. A fan is simplicial (resp. non-singular) if any of its cones is.
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In this text, any fan F will be complete, i.e. its support is the whole ambient vector space :

U o = Np ~ R
o€T
Ezxample 2.1.2. The fan Fp2 of figure 2.1a is formed by seven cones : the 0-dimensional cone {0},
the three rays generated respectively by (—1,0), (0, —1) and (1,1), and the three 2-dimensional
cone generated by the pairs of the previous vectors.
The fan F,, of figure 2.1b has one 0-dimensional cone, four rays and four 2-dimensional cones.

Both Fp2 and JF,, are non-singular fans.

(a) The fan Fepe. * *

(b) The fan F,.

Figure 2.1 — Examples of fans.

2.1.2 Polygons and duality

Given a finite set A C Mg, the polytope defined by A is the convex hull
A4 = conv(A) C My ~ R

It is rational if its vertices are lattice points, i.e. we can choose A C M ~ 7Z2.

Definition 2.1.3. A polygon A in Mg ~ R? is a rational polytope.
Remark 2.1.4. In particular, note that a polygon is convex.

A vector u € Ng ~ R? of the dual space and a real number b € R determine an affine
hyperplane
Hyp={x € Mg | (z,u) =b}

and a negative half-space
H, ,={r e M| (z,u) <b}.
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Definition 2.1.5. A face of a polytope A is a subset F C A such that
F=ANHu, and ACH_,

for some u € Ng and b € R. The vector u is then called an outward normal vector of the face

F. A facet is a face of codimension 1.

Let A be a polygon. Then A is rational so any face of A admits an outward normal vector
in N ~ Z2. For any facet F of A, let ur € N be an outward normal vector of F. For a face P
of A we define the dual cone op = o(up, P C F) C Ng.

Definition 2.1.6. Let A be a polygon. The dual fan (or outer normal fan) of A is
F(A) = {op, P face of A} C Ng.
Conversely, if F C Ng is a fan we denote
D(F)={AcCMr|F(A) =3}

the set of polygons dual to F.

Remark 2.1.7. One can instead consider the positive half-space H, defined by (z,u) > b as in
[CLS11]. It does not change the definition of face, but turns outward normal vector into inward
normal vector, and outer normal fan into inner normal fan. The constructions are equivalent

and the choice is only a matter of convention.

By duality, vocabulary on cones and fans transfers to the polygons. In particular, a polygon
A is simplicial or non-singular if its dual fan is. Moreover, if P is a vertex of A then op is a

two dimensional cone, and the indez of P is ind(P) = ind(op).

(0,d)

(0,0) (d,0)

(a) The triangle Aq.
(b) The dual cones of the faces of Ay.

Figure 2.2

Ezample 2.1.8. Let Ay = conv({(0,0),(d,0),(0,d)}) be the triangle of figure 2.2a. Let u =
(1,1) € Z? and b = d. Then H,; = {z +y = d} and the edge [(d,0), (0,d)] is a face of A4, with
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outward normal vector (1,1). Actually it is a facet of the triangle. The other facets are the edges
[(0,0),(d,0)] and [(0,0), (0,d)] with outer normal vectors (0,—1) and (—1,0).

The vertex (d,0) is a face of Ay (take for instance u = (1,0) and b = d) but not a facet.
Its dual cone is 040y = 0((—1,0), (1,1)). Others 0-dimensional faces are the vertices (0,0) and
(0,d). The triangle A, is itself a face (with u = (0,0) and b = 0) ; its dual cone is just {0}.

On figure 2.2b we represent the faces of A; together with a visualisation of their dual cones.
Note that this drawing is not exact, since the polygon and the cones live in dual spaces ; also,

the cones should have (0,0) as apex. Hence the dual fan of Ay is the fan Fp2 of figure 2.1a.

(0,a) ¢ b,a)

{0}

(07 0) (an ; b, 0)
(a) The trapezoid A7 .
(b) The dual cones of the faces of A7 ;.

Figure 2.3
Ezample 2.1.9. Let A7, = conv({(0,0), (an+b,0), (b, a), (0,a)}) be the trapezoid of figure 2.3a.
On figure 2.3b we represent the faces of Ag,b together with a visualisation of their dual cones.
Hence the dual fan of Ag,b is the fan F,, of figure 2.1b.

2.1.3 Toric surfaces and linear systems

Following [Ful93] or [CLS11], a complete fan F C Ny gives a (compact) toric surface Xg. It
is called toric because it is equipped with the action of an algebraic torus it contains as an open
subset. There is a important dictionary between the properties and elements of the fan F and
the ones of the toric variety X5. We briefly recall some of these correspondences.

> The toric surface X5 can only have a finite number of singular points, and these points
correspond to the vertices of a polygon A dual to JF, i.e. to the fixed points of the torus
action. Moreover, the point of X5 corresponding to the vertex P of A is a singularity if
and only if ind(P) > 1, and in that case it is a singularity of index ind(P), see [LO18,
proposition A.1] or [CLS11, section 10.1]. In particular, the surface X5 is non-singular if
and only if the fan F is non-singular, if and only if any cone of J is unimodular.

> The topological Euler characteristic x(Xg) is the equal to the number of 2-dimensional

cones of F.
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> There is a correspondence between the cones of F and the orbits of the torus action on
X5, see [CLS11, section 3.2 or [Ful93, section 3.1].

> The toric prime divisors of X4 are in bijection with the rays of F. The anti-canonical class
—Kx, is represented by the sum of the toric prime divisors, see [CLS11, theorem 8.2.3].

Ezample 2.1.10. The fan Fp2 of figure 2.1a defines the projective plane CP?. This is a non-
singular surface and one can check that the fan Fp2 is indeed non-singular. Moreover, x (CP?) =

3 is the number of 2-dimensional cones of Fp2.

Example 2.1.11. The fan F, of figure 2.1b defines the Hirzebruch surface [F,,. This is a non-
singular surface and one can check that the fan ¥, is indeed non-singular. Moreover, x(F,) =4

is the number of 2-dimensional cones of F,,.

The toric surface Xy is usually defined from the fan F. Obviously, given a polygon A it
defines a toric surface through its dual fan. Hence, we will indifferently denote toric surfaces by
X5 or XA. However, remembering the polygon instead of the fan can be interesting in several
situations. Indeed, a polygon A actually defines a polarized toric surface, i.e. a toric surface Xa
equipped with a line bundle L. A basis of sections of £ is indexed by the lattice points of
A. The line bundle £ A itself defines a linear system on X,, i.e. a set of curves : a curve is the

zero-set of a section of L.

Ezxample 2.1.12. The triangle Ay of figure 2.2a is dual to the fan of figure 2.1a, hence it defines
CP2. The associated line bundle is £ , = 0(d) on CP?, thus the corresponding linear system
is the curves of degree d on CP2. These curves form the homology class dL € Hy(CP?,7Z) ~ Z,

where L is the class of any line.

Ezample 2.1.13. The trapezoid A7, of figure 2.3a is dual to the fan of figure 2.1b, hence it defines
the Hirzebruch surface F,,. Let F', E = Ey and E,, be the classes of the divisors associated to
rays generated by (—1,0), (0,—1) and (0, 1). Because of the relation

Eoo= O—TLF

the homology group H(F,,Z) is generated by E and F. The linear system associated to A7,
corresponds to the curves with homology class aE + bF, i.e. of bidgree (a, b).

The dictionary between fans and toric surfaces transposes to the setting of polygons. In par-
ticular the anti-canonical divisor —Kx , is the sum of the toric prime divisors, which correspond
to the edges of A. Moreover, the intersection number —Kx, - LA between the anti-canonical

divisor and any curve of the linear system associated to £ is
—Kx, - La = [0ANTZ2|.
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By Kouchnirenko’s theorem, see [GKZ94, section 6.2], the auto-intersection LQA of curves of the

linear system is

L2 = 2Area(A).

By the genus formula (derived from the adjunction formula, see [CLS11, theorem 10.5.1], [Shal3,
theorem 6.4] or [GH94, section 4.1]), if XA is non-singular then the maximal genus of a curve

in the linear system is
_ LzA—}—KXA - LA +2
gmax - 2 .

By Pick’s formula this turns to be
Jmax = |ANZ2|.

More details on this can be found in [CLS11, section 10.5].

2.2 Floor diagrams and tropical refined invariants

Brugallé and Mikhalkin have introduced in [BM07, BMO08] some objects called floor diagrams.
This combinatorial tool allows to count tropical curves, and so to count curves on toric surfaces.
In this section we recall how to define floor diagrams. We then state two theorems that relate
floors diagrams to enumerative questions, and which will be the definitions of refined invariants
for us. Last, we prove some properties on floor diagrams that will be useful throughout this text.

2.2.1 h-transverse polygons and floor diagrams

We introduce first some definitions and notations regarding polygons. Up to notational de-

tails, it is mainly borrowed from [BJP22, section 2].

Definition 2.2.1. Let A be a polygon. We said that A is :

> h-transverse if any of its edge has an outward normal vector of the form (0,£1) or (£1,n)

for some n € Z,

> horizontal if it has a top and bottom horizontal edge.

If F is a fan, then by definition F is h-transverse (resp. horizontal) if any dual polygon
A € D(9) is.
Remark 2.2.2. Note that a fan JF is h-transverse (resp. horizontal) if and only if there exists a
polygon A € D(F) which is h-transverse (resp. horizontal). As noticed in section 2.1.2, the same
holds for“non-singular”.

A polygon A has some combinatorial data that is related to the enumerative problems we
are interested in throughout this text. We set the following notations, and we will drop A when

no ambiguity is possible :
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>

a(A) is the height of A, i.e. the difference between the maximal and the minimal ordinate

of a point of A,

et (A) (resp. e~*°(A)) is the length of the top (resp. bottom) horizontal edge of A (these
may be 0 if A is not horizontal) and e®(A) = et®(A) + e~*®(A),

y(A) = |0A N Z2| the number of integer points on the boundary of A, by section 2.1.3 it
is equal to —La - Kx,,

X(A) is the number of vertices of A, by section 2.1.3 it is the Euler characteristic of Xx,

gmax(A) = |A N Z2| the number of interior lattice points of A, by section 2.1.3 it is the
maximal genus of a curve in the linear system associated to L if X is non-singular,

) = {y(A)—HgJ

Smax(A,g = 2 for g € N.

Note that if A is h-transverse then y(A) = e*°(A) + 2a(A). Moreover, in that case we denote :

>

biefs (A) (resp. bright(A)) the unordered list of integers k appearing j times, where j is the
integral length of the side of A having (—1, k) (resp. (1,%)) as outward normal vector.

Ezxample 2.2.3. Consider the polygons of figure 2.4. The polygons A, and A, are h-transverse

but A, is not, only A is horizontal and only A, is non-singular. We give in table 2.1 their

combinatorial data.

NEDED

a)A —Ag C.

Figure 2.4 — Some polygons.

a(A) | e"°(A) | e7(A) | y(A) | X(A) | gmax(A) | biete(A) | bright(A)
Aq 3 0 3 9 3 1 {0,0,0} | {1,1,1}
Ay 4 1 2 11 7 8 {0,0,1,1} | {~2,0,0,1}
A, 3 0 2 6 5 4 / /

Table 2.1 — Combinatorial data of the polygons of figure 2.4.
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We now introduce some terminology on graphs. An oriented graph T is a collection of vertices
V(T), of bounded edges E°(T) (i.e. of oriented edges adjacent to two vertices), and of infinite
edges E*°(I") (i.e. of oriented edges adjacent to one vertex). An infinite edge oriented toward
(resp. from) its adjacent vertex is called a source (resp. a sink), and we denote by E~°°(A) the
set of sources (resp. by E+°°(T") the set of sinks). We denote by E(T') the set of all edges of
I'. The graph T" is weighted if there is a function w : E(I') — N*. Given a vertex v € V(I') of
an oriented weighted graph, the divergence div(v) is the difference of the weights entering and

leaving v, i.e.

div(v) = Zw(e) - Zw(e).

Last, the genus of a graph T is its first Betti number.

Definition 2.2.4 (Floor diagram). Let A be an h-transverse polygon and g € N. A floor diagram
D with Newton polygon A and genus g is a quadruple (I',w, L, R) such that

> (T, w) s a weighted, connected, oriented and acyclic graph of genus g,
> the graph T has a(A) vertices, e™>®(A) sinks and e~ *°(A) sources,
> all the infinite edges have weight 1,

> L:V({I) = be(A) and R : V(I') = bright (A) are bijections such that for every vertex
v € V(T') one has div(v) = L(v) + R(v).

By abuse of notations, we will use D for I'. If D is a floor diagram its number of elements
n(D) is its number of vertices and edges, i.e.

n(D) = [V(D)| + [E(D)].

Since one has |E(D)| = |E%(D)| + |[E®(D)|, [V(D)| — |E°(D)| = 1 — g with g the genus of D,
and |V(D)| = a(A) with A the Newton polygon of D, then

n(D) =y(A) —1+g.
The degree and codegree of a diagram D with Newton polygon A and genus g are

deg(D)= ) (w(e)—1) and codeg(D) = gmax(A) — g — deg(D).
ecE(D)

Remark 2.2.5. The codegree is always non-negative ; we will prove it later, see proposition 2.2.24.

We will always draw the floor diagrams oriented from bottom to top. Hence we do not put
any arrow on the edges to show the orientation. Moreover we indicate the weights of the edges

only if their are at least 2. We give some examples of floor diagrams.
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Example 2.2.6. Figure 2.5 gives all the floor diagrams with Newton polygon Ags, see figure 2.4a.
Here, the functions R and L are constant equal to 1 and 0, so any vertex has divergence 1.

T %

(a) g =0, (b) =0, (c) =0, (d)g=1,
codeg(D) =1 codeg(D) =0 codeg(D) =1 codeg(D) =0

Figure 2.5 — The floor diagrams with Newton polygon As.

%

(a) g =0, (@g—2
codeg(D) =0 codeg(D
codeg(D) =2 codeg(D) =0 codeg(D) 8

Figure 2.6 — Some floor diagrams with Newton polygon the polygon of figure 2.4b.
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Ezxample 2.2.7. Figure 2.6 gives some floor diagrams with Newton polygon the polygon of figure
2.4b. We show in each vertex the values of R and L,

2.2.2 Refined invariants

We now introduce the necessary notions to relate floor diagrams to enumerative questions,
and define refined invariants. A Laurent polynomial with integer coefficients is an element of Z[g].
If a Laurent polynomial is symmetric, its degree is the maximum of the exponents appearing with
a non-zero coefficient. If a Laurent polynomial P has degree d, we denote by (P); its codegree i

coefficient, i.e. the coefficient of its term of degree d — 3.

Block-Gottsche invariants

The orientation of a floor diagram D induces a partial order < on the set of its elements
E(D) U V(D). More precisely, given two elements « and 5 we write o < f if there exists an
oriented path in D from « to 8. Hence, one can define increasing functions on a floor diagram.

Definition 2.2.8 (Marking). Let D be a floor diagram with Newton polygon A. A marking of D
is an increasing bijection
m:ED)UuV(D) - {1,...,n(D)}

The couple (D, m) is called a marked floor diagram.

Two marked floor diagrams (D, m) and (D’,m') with Newton polygon A and genus g are
isomorphic if there exists an isomorphism ¢ : D — D’ of weighted graphs such that L = L' o ¢,
R =R o and m =m’ o p. We denote by v(D) the number of markings of a diagram D up to
isomorphisms.

Example 2.2.9. Figure 2.7 gives examples of markings of the floor diagram of figure 2.5a. The
marked floor diagrams of figures 2.7a and 2.7b are isomorphic.

Figure 2.7 — Some marked floor diagrams.
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For n € Z the quantum integer [n](g) is defined by

qn/2 _ q—n/2

[n](q) = v p—r g2 4 (=32 L ()2 (D)2 ¢ N[,

We will use the shorcuts
[n]? = [n](g)? and [n]z = [n](¢?).

Definition 2.2.10 (Block-Gottsche multiplicity). The Block-Gottsche multiplicity of a marked

floor diagram (D, m) is

ua(D,m)(@) = ] [w(e)? € z[g*/?).
e€E(D)

It is a Laurent polynomial of degree deg(D).

Theorem 2.2.11 ([BG16a, Theorem 4.3]). Let A be an h-transverse polygon and g € N. The

tropical refined invariant is given by

Gg(A) = Y pra(D) € Z[g™]
(Dm)

where the sums runs over the isomorphism classes of marked floor diagrams with Newton polygon

A and genus g.

Remark 2.2.12. By proposition 2.2.24, the degree of the tropical refined invariant G4(A) is at
most gmax(A) — g. By the same proposition, there exists floor diagrams with Newton polygon
A, genus g and degree gmax(A) — g. Because for any marked diagram D the leading coefficient
of pua (D, m) is 1, we conclude that deg(G4(A)) = gmax(A) — g.

Remark 2.2.13. In this text we will be interested in the codegree i coefficient of G4(A), denoted
by (G4(A));. One has

<G!](A)>Z = Z (“BG(D’m»i—codeg(D)
(Dym)

where the sum is over the isomorphism classes of marked floor diagrams with Newton polygon

A, genus g, and codegree at most 3.

Ezxample 2.2.14. Let D1, Do and D3 be the diagrams of figures 2.5a, 2.5b and 2.5¢c. Let my be
any marking of Dy. One has ppg(D1,m1) = pc (D3, m3) =1 and ppg (D2, m2) =g+2+¢71,
and the numbers of markings are v(D1) = 5, ¥(D2) = 1 and v(D3) = 3. Hence one has Go(A3) =

q+10+q¢ L
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Gottsche-Schroeter invariants

Block-Gottsche invariants admit an extension in genus 0, called Gottsche-Schroeter invari-
ants and denoted Go(4, s), with a new variable s. We now explain how to calculate Géttsche-
Schroeter invariants using floor diagrams.

A pairing of order s of the set {1,...,n} is a set S of s disjoint pairs {i,i+1} C {1,...,n}.
Given a floor diagram D and a pairing S of {1,...,n(D)}, we say that a marking m is compatible

with S if for any o € S, the set m~!(a) consists of
> either an edge and an adjacent vertex,
> or two edges that are both entering or both leaving the same vertex.
Let (D, m) be a marked floor diagram and S a pairing compatible with m. We define
Ey={e€ E(D) |Va€ S,e ¢ m™*(a)},

Ey={e€ E(D) |3 eV (D),3dac S, {e,v} =m(a)},
Ey={{e,'} C E(D) | Ja € S,{e, e} =m (a)}.

Definition 2.2.15 (Refined S-muiltiplicity). The refined S-multiplicity of a marked floor diagram
(D,m) is

,US(@,m)(Q) — H [w(e)]2 H [w(e)]2 H [w(e)][w(e,)][w(e) +w(e/)] e Z[qzl:l/Z]

e€Ep e€E, {e,e’}€E> [2]

if S and m are compatible, and pus(D, m)(q) = 0 otherwise. If non-zero, it is a Laurent polynomial
of degree deg(D).
The following theorem can be taken as a definition of the G&ttsche-Schroeter invariants.

Theorem 2.2.16 ([BJP22, theorem 2.13]). Let A be an h-transverse polygon and s € {0,. .., Smax(A,0)}.
For any pairing S of order s of {1,...,y(A) — 1} one has

GO(A>3) = Z ,U'S(‘Dam)
(Dym)

where the sum runs over the isomorphism classes of marked floor diagrams with Newton polygon
A and genus 0.

Remark 2.2.17. Let D be a diagram of Newton polygon A and codegree 0 (see proposition
2.2.24). Then any pairing S is compatible with any marking m of D, i.e. ug(D,m) # 0. We
deduce that deg(Go(A,s)) = gmax(A).
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Remark 2.2.18. In this text we will be interested in the codegree i coefficient of Go(4, s), denoted
(Go(A, 8));. One has

(GO(A’ S»l = Z <,U/S(D7 m))i—codeg(@)
(D,m)

where the sum is over the isomorphisms classes of marked floor diagrams with Newton polygon

A, genus 0 and codegree at most 3.

Remark 2.2.19. The theorem implies that the right-hand side does not depend on the pairing
S as long as it has order s. Thus, to study Go(4A, s) we can choose a particular pairing which
makes the calculations easier.

Chapter 3 is mainly devoted to prove that we can define an analogous combinatorial quantity
for any genus, see theorem 3.1.3. More precisely, we will give a combinatorial proof that, in any
genus g, the sum of the right hand side of theorem 2.2.16 does not depend on S, leading to a
quantity we will denote G4(4A, s).

Ezample 2.2.20. If s = 0 then S = @ and ps(D,m) = upa(D,m). Hence Go(A,0) = Go(A).
Ezxample 2.2.21. We continue example 2.2.14. Let D1, Dy and D3 be the floor diagrams of figures

2.5a, 2.5b and 2.5c. The following table 2.2 gives their contributions to the refined invariant, using
the pairing S = {{1,2},...,{2s—1,2s}} of order s. Hence one has Go(A3, s) = ¢+ (10—2s)+¢~ .

s=0 s=1 s=2 s=3 s=4
D1 5 3 1 1 1
Dy g+24+q?!' | g+2+qt | g+24+q¢t| g+qt g+q!
D 3 3 3 3 1
Go(As,8) || ¢+10+q | g+8+¢q ! | g+6+qg ! |g+d+qgt|g+2+g!

Table 2.2 — Computation of Go(As, s).

Remark 2.2.22. A lattice preserving transformation is a map f : R2 — R? obtained as a compo-

sition of

> isomorphisms of R? induced by elements of GLy(Z),

> translations that preserves the lattice Z2, i.e. translations by a vector u € Z2.

In other words, a lattice preserving transformation is an element of the affine group of R2
for which the lattice Z2 is invariant. We say that A and A’ are congruent if there exists a
lattice preserving transformation f such that A’ = f(A). If A and A’ are congruent, then
Go(A, s) = Go(A/, s). Indeed, a translation does not change the family of floor diagrams defined

by A. Moreover, a floor diagram is a way to encode a tropical curve C. Via the dual subdivision
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of A corresponding to C, a matrix of GL2(Z) which acts on A also acts on C, and preserves its

multiplicity. Hence the total count does not change.

2.2.3 Few lemmas on floor diagrams

In this section we prove some properties on floors diagrams. By remarks 2.2.13 and 2.2.18
we will look at floor diagrams of codegree at most <. Most of the following lemmas deal with
properties of these diagrams. We determine some conditions which constrain the floor diagrams
to have a total order on the set of their vertices, and to have large weights on their bounded
edges. Before that, we begin this part by describing some operations that transform one floor

diagram into another.
Operations on floor diagrams

We will use the following operations on floor diagrams to prove the lemmas of this section.

At . If there are vertices v; < vy connected by an edge e; and another edge e; leaving v; but

not entering ve, then we construct a new diagram as depicted in figure 2.8a.

A~ : Similarly if ey is entering v, but not leaving v;, see figure 2.8b.

w(ez)

(a) Operation A*. (b) Operation A~.

Figure 2.8 — Operations AT and A~.

Bl : If there are vertices v; < vy connected by an edge e and such that L(v;) > L(vs), then we

construct a new diagram as depicted in figure 2.9a.

B . Similarly if R(v1) > R(v2), see figure 2.9b.

Lemma 2.2.23 ([BJP22, lemma 3.2]). Genus and Newton polygon are invariant under op-
erations A* and BL>R. Purthermore, the codegree decreases by w(es) under operations AT, by

L(v1) — L(ve) under operation B and by R(v1) — R(v2) under operation BE.

We can now prove that the codegree of a floor diagram is non-negative, see remark 2.2.5.

We also give a description of floor diagrams of codegree 0.
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w(e) w(e) + L(v1) — L(v2) w(e) w(e) + R(v1) — R(v2)

(a) Operation BL (b) Operation BR

Figure 2.9 — Operations B and BE.

Proposition 2.2.24. Let A be an h-transverse polygon and g € N. For any floor diagram D of
Newton polygon A and genus g, one has deg(D) < gmax(A) — g, i.e. codeg(D) > 0. Moreover,
codeg(D) = 0 if and only if :

> the order is total on the set of vertices of D,
> the functions R and L are increasing,
> any bounded edge is adjacent to two consecutive vertices,

> any source (resp. sink) is adjacent to the minimal (resp. mazimal) vertex.

In particular, there exists a floor diagram of Newton polygon A, genus g and codegree 0. If g = 0,

such a floor diagram is unique.

Proof. Let D be a floor diagram of Newton polygon A and genus g, and assume that D has
maximal degree among those floor diagrams.

Assume that the order is not total on the vertices of D, i.e. it has two maximal or two
minimal vertices. By symmetry we only deal with the case where D has two maximal vertices.
By a finite number of operations AT we can turn D into the diagram D’ depicted in figure
2.10a, where wy, is the total weight of the edges between vy and wvg, for £k = 1,2. Performing
more operations A1 we get the diagram D” of figure 2.10b. By lemma 2.2.23, the diagram D"
has Newton polygon A and genus g, and codeg(D”) < codeg(D) i.e. deg(D”) > deg(D), which
contradicts the choice of D. Hence the order is total on the vertices of D. Let v; < --- < v, be
the vertices.

If the function R (resp. L) is not increasing, then with an operation B (resp. BL) we
construct another floor diagram with degree greater than the one of D by lemma 2.2.23, which
is a contradiction. Hence the functions R and L are increasing.

Assume D has a bounded edge adjacent to two non-consecutive vertices, or an infinite edge
adjacent to a non-extremal vertex. Then by an operation AT we construct another floor diagram
with degree greater than the one of D by lemma 2.2.23, which is a contradiction. Hence any

bounded edge is adjacent to two consecutive vertices, and any infinite edge is adjacent to an
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Cat et (A) —ul

(a) The diagram D’
(b) The diagram D”

Figure 2.10 — Diagram with two maximal vertices.

extremal vertex. If a source (resp. a sink) is adjacent to the maximal (resp. minimal) vertex, we

similarly obtain a contradiction. Hence, the diagram D looks like the diagram of figure 2.11.

& j

e

Figure 2.11 — A floor diagram of genus g with maximal degree, and its Newton polygon A.

Let gx + 1 be the number of edges between the vertices vy and vg41. Because D has genus
g, one has g1 +--- + go—1 = ¢. Let wi be the sum of the weights of the edges between v, and
vg+1- These edges contribute wi — g, — 1 to deg(D). Moreover, because R and L are increasing

then one has

we= e 2(A)+ Y (R + L) = JAN (= KN 22| +1,
n=k+1
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see figure 2.11, and thus

a—1

deg(D) = Z(wk — 9k — 1) = |A n Z2| —g9= gmax(A) -9
k=1

Hence the maximal degree for a floor diagram of Newton polygon A and genus g iS gmax(A) — g,

and the minimal codegree is then 0, which shows the proposition. O

Properties of diagrams of bounded codegree

We start with an auxiliary lemma that gives a bound on the divergence of a diagram.

Lemma 2.2.25. Given an h-transverse fan &F, there exists dg € N such that for any floor diagram
with Newton polygon A € D(F) one has |div| < dy.

Proof. By hypothesis, the rays of F are defined by vectors of the form +(0,1) or +(1,%) for
some k € Z. Let Ng (resp. ng) be the the maximal (resp. minimal) integer k such that (1,k) is
a primitive vector of a ray of . Then the function R of any floor diagram is bounded :

nr < R < Np.

Similarly, let Ny, (resp. nr) be the the maximal (resp. minimal) integer k such that (—1,k) is a

primitive vector of a ray of . Then the function L of any floor diagram is bounded :
nr, < L < N,

Since div = R + L one has
nr+ng < div< Ngp+ N

and the result holds for dy = max(|Ng + Niz|, |nr + ni|). O

We now prove of bunch of lemmas regarding diagrams of bounded codegree. They are all
in the same flavour, but slightly different hypothesis lead to slightly different applications and
conclusions. In particular, lemma 2.2.30 gives better bounds than the others, but it does not
apply for non-horizontal Newton polygons.

The following lemma is proven in particular cases but with sharper bounds in [BJP22, lemmas
4.1 and 5.5].

Lemma 2.2.26. Let A be an h-transverse polygon with dual fan F.

(1) If et°(A) > i + dy then any floor diagram with Newton polygon A and codegree at most

i has a unique maximal floor.
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(2) If e=°(A) > i + dy then any floor diagram with Newton polygon A and codegree at most

i has a unique minimal floor.

(3) If et (A) > i+ds and e~ (A) > i+ ds then any floor diagram with Newton polygon A,
genus 0, and codegree at most i admits a total order on its set of vertices.

Remark 2.2.27. Note that contrary to (1) and (2), the assertion (3) is not true if the genus is

non-zero.

Proof. The item (3) is an immediate consequence of (1) and (2), and to prove (2) it suffices to
apply (1) to —A. Hence we prove (1).

Let D be a floor diagram with Newton polygon A. Assume that D admits two maximal
vertices. By a finite number of operations AT we can turn D into the diagram D’ depicted in
figure 2.10a. Performing more operations A* we get the diagram D" of figure 2.10b. By lemma,
2.2.23 the codegree decreases by wy+u; under these operations. But wy = et (A) —u; +div(ve)
hence the codegree decreases by e™°(A) + div(vs) and

codeg(D) > codeg(D") + e™°(A) + div(vg) > i.
O

Lemma 2.2.28. Let D be a floor diagram of codegree at most i, and a = |V(D)|. If D has a
unique mazimal (resp. minimal) floor then the order is total on the a—i—1 highest (resp. lowest)
floors.

In particular, if a > 2(i + 2) and if D has a unique mazimal and minimal vertex, then the

order is total on the vertices of D.

Proof. We will give the proof in the case where D has a unique top floor, the other point being
proved applying that case to —A.

Let b be the maximal integer such that the order is total on v,_p < - -+ < v,. We would like
to show that a — b < i + 2. Assume the contrary. By operations A* we reduce to the case where
D looks like the diagram of figure 2.12. By more operations A~ we can attach v, under v.42
which reduces the codegree by at least a — b — ¢ — 2. Then we attach v.1; under v; by other

operations A~ which reduces the codegree by at least c. Hence we have
codeg(D) > (a—b—c—2)+c=a—-b—2>1
which is a contradiction. O

The following lemma is a generalization of the last assertion of [BJP22, lemma 4.1]. It is

specific to the genus 0 case.
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R

= o

Figure 2.12 — A diagram with a unique maximal floor.

Lemma 2.2.29. Leti € N and A be an h-transverse polygon with dual fan F. Let (a,et>, e~>) =
(a(A), et (A),e=®(A)) and assume a > 2(i + 2).

(1) If et > i+ (a — |a/2] + 1)dy, then the weights of the a — |a/2] highest bounded edges
of any floor diagram with Newton polygon A, genus 0 and codegree at most i are greater
than i — codeg(D).

(2) If e*° > i+ (a — |a/2] + 1)dg, then the weights of the a — |a/2] lowest bounded edges
of any floor diagram with Newton polygon A, genus 0 and codegree at most i are greater
than i — codeg(D).

(3) Ife*>® > i+(a—|a/2|+1)ds, then the weights of all the bounded edges of any floor diagram

with Newton polygon A, genus 0 and codegree at most i are greater than i — codeg(D).

Proof. The item (3) is an immediate consequence of (1) and (2), and to prove (2) it suffices to
apply (1) to —A. Hence we prove (1). Note that the hypotheses imply e > i + dg, hence
by lemma, 2.2.26 any floor diagram D with Newton polygon A, genus 0 and codegree at most ¢
has a unique maximal floor. By lemma 2.2.28 the order is total on the a — ¢ — 1 highest floors
of D, and in particular on its a — |a/2] + 1 highest floors. Let v;12 < -+ < v, be the highest
floors. If there is an sink attached to a vertex lower than v,_;, then by A1 operations we see
that codeg(D) > i. Thus D looks like the diagram of figure 2.13. For |a/2] < k < a—1 let e
be the bounded edge between v; and vg1.
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Figure 2.13 — A diagram with a total order on its highest vertices.

> Ifa—i <k <a-—1, the weight of e is
i

w(ey) = e — Z uj + Z div(v;)

j=a—k j=k+1
> i+ (a - EJ + 1) dy — codeg(D) — (a — k)dy
> i — codeg(D) + (g +1- z) dy
> i — codeg(D).
In particular w(eq—;) > ¢ — codeg(D) + (a/2 + 1 —i)dy.

> If |a/2] < k <a—1i—1, the weight of e is
a—1i
w(er) = w(eq—;) + u; + Z div(vj)
j=k+1

>i—codeg(®)+<g+1—i)d;—(a—i—k)dg
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> i — codeg(D) + (EJ - g + 1) dg

> i — codeg(D).
O

Lemma 2.2.30. Let g > 0 and M,i > 0. Let A be an h-transverse polygon. Assume et>®(A) >
M(g+1)+i. Let D be a floor diagram of Newton polygon A, genus g and codeg(D) < i. Then
the vertices of D are totally ordered. Moreover, for any two consecutive floors of D there is a

bounded edge e between them with weight w(e) > M.

Proof. Let wy be the sum of the weights of the edges between the floors k and k£ + 1 in a floor
diagram of Newton polygon A, genus g and codegree 0. Then wy, is the number of integer points
on a horizontal slice of A, see the proof of proposition 2.2.24 and figure 2.11. In particular, since
A is convex one has wy > min(e”®(A),et>®(A)) > M(g+ 1) + 1.

Let D be a floor diagram of Newton polygon A and genus g and codegree at most i. By
a sequence of at most codeg(D) operations AT and BXF, we obtain from D a diagram Dg of
genus g and codegree 0. Let v9 < --- < v be the vertices of Do, and vy be the vertex of D which
is mapped to vg by the sequence of operations. Let w; be the sum of the weights of the edges
adjacent to v and vgy; ; it may be 0 if there is no such edge.

Each of the operations of the sequence increases by at least 1 the weight of at least one edge,

i.e. Wy < wg. If for some k one has wy < wy — codeg(D), then
deg(D) < deg(Dy) — codeg(D)

which is a contradiction since deg(D) = deg(Dg) — codeg(D). Hence for any 1 < k < a — 1 one
has
Wg, > wg, — codeg(D) > wi —1 > (g + 1) M.

In particular, there is at least one edge between the floors vy and vi41, so that the floors are
totally ordered in the diagram. Because D has genus g, the total weight wy, is split into at most
g+ 1 edges. Hence at least one of them has w(e) > M. O

Corollary 2.2.31. Let i € N and A be an h-transverse polygon. Let D be a floor diagram of
Newton polygon A, genus 0 and codeg(D) < i. If et°(A) > 2i — codeg(D) then the vertices of
D are totally ordered, and any bounded edge e of D has a weight w(e) > i — codeg(D).

Proof. Apply lemma 2.2.30 with g =0 and M = i — codeg(D). O
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2.3 From tropical refined invariants to asymptotic refined invariants

2.3.1 Motivations

In section 2.2.2, tropical refined invariants are defined with multiplicities which are products

of terms of the form
n/2 _ q—n/2

@) ="

However, as seen in section 1.3.2 some results suggest that the interesting part of the multiplici-
ties is the numerators. Therefore, we explain in this section how to modify the multiplicities we
count the floor diagrams with. This will turn the tropical refined invariant into another polyno-
mial and we lead to the introduction of the asymptotic refined invariant [BM24]. This framework
will be more comfortable to state our results.

We assume we have already proved an invariance with respect to S in any genus, i.e. we
defined G4(A, s) for any g, see chapter 3, theorem 3.1.3.

2.3.2 A new multiplicity

Let (D, m) be a marked floor diagram and S be a pairing compatible with m. Recall the
notations Eg, E7 and Es used in definition 2.2.15. We consider the partitions

Ey=EJUEL, E; = E{UE and E; = EJ® LI EI®° LI ES®™,

where the superscript 0 stands for “bounded” and the superscript oo stands for “infinite”, for
instance E9® = {{e,e'} € E> | e bounded and ¢ infinite}. For an integer n and a formal

variable z we set the notation z,, = 1 — ™. We introduce the following multiplicity.

Definition 2.3.1. The asymptotic S-multiplicity of the marked floor diagram (D, m) is

E(D7m)(m) :xcodeg(g) H m?u(e) H Z1 H x2w(e) H (1+$)

ecEp e€E®  ecE? e€EX®

I[[ zwezuertuerwey I swetuen I 2
{e,e’}eE° {e,e’}eEI> {e,e’}EP>

if S and m are compatible, and 0 otherwise.

We consider the quantity

G(A, S)( Z,uSDm

where the sum runs over the isomorphism classes of marked floor diagrams with Newton polygon

A and genus g.
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2.3. From tropical refined invariants to asymptotic refined invariants

For P(q) € Clq'/?, gV 2] a symmetric Laurent polynomial we set
P(z) = 29°8P) P(z) € C[z]

i.e. we dispel the negative powers. If P(q) = apq® + a1¢®~! + ... then 13(1') =a+axz+...,
i.e. the coefficient a; of codegree i in P(g) becomes the coefficient of degree i of P(x). Note also
that PQ = PQ for P,Q € C[q"/?,q~/?]. We consider the following formal series :

1 1
d B=——.
—z an 1— 22

Azl

Proposition 2.3.2. Let g € N and A be an h-transverse polygon. Let s € {0, ..., Smax(A,g)} and

S be a pairing of order s. One has
Gy(A, 5)(z) = AVA) =222 Bs G (A, S)(x).

In particular G(A, S)(z) does not depend on the choice of the pairing S of order s, and we can
write Gy (A, s)().

Proof. For any diagram D one has
deg(Gy(A, )) = deg(D) + codeg(D) = deg(us(D,m)) + codeg(D),

hence

Gy(A,s) = Y 2@ g(D,m).
(D,m)

For quantum integers one has

mn, T(w) = (11__32:)2, and [nA]/g(:c) = 11__—30%

T2

[n](z) =

and we get

ps(D,m)(z) =

H (1 _ xw(e)>2 H 1 — g2w(e) H (1 — z@@)(1 — z2(E))(1 — gwE+w())

1-z — x? (1—-12)2(1 —=2)

ecEy e€E; {e,e’}€E>

The product over Ej is rewritten

2
1—Iw(e) 1—x 2E0+Eoo
11 (ﬁ) [1 7= = A" T ol 1T o
ecE} e€Eg° ecEQ e€E3°
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the one over E; becomes

1 — 20 (1-2z)(1+x) Ey| g—|EX
HO - .2 5 1— .2 =B| 1|A |ET° H0x2w(e) Hoo(l-l-m),
e€E] e€E? e€E?} e€E}

and the one over Ey gives

H (1 _ xw(e))(l _ :L.w(e'))(l _ _,L,w(e)-i-w(e’)) H (1 _ l‘w(e))(l _ .,L.w(e)—i—l) 1 — g2
— p)2(1 — 2 _ —_ 2 —_ 2
{e.e/ B (1=2)*(1 - 2%) feeyepge A7 DA=2Y) e 1@
2 EOO EOoo E
= AEEEIBE ] sueruertu@iue)  I1 2weouen T o
{e,e’}cEJ° {e,e’}cEJ> {e,e'}YeEL>®

Putting together the three products, the total power for B is |E1|+ |E2| = s. Given the relations

|Ex| + B2l = s
VI-|E"| = 1—g¢g
lVI+|E*| = y(A)
|E®| = |E§|+|EQ| +2|Eg®| + | Ey”|, where {a, 8} = {0, 00}

the total power for A is y(A) — 2 + 2g — 2s. Hence we eventually get

Gy, 8)(x) = AVB2420-2 B3 3™ k(D m) (o) = AUS) 24292 B3GH(A, ) (a).
(D,m)

Remark 2.3.3. As G(A, S) is independent of the choice of the pairing S as long as it has order
s, we will fix S = {{1,2},...,{2s — 1,2s}}. If moreover we assume e~ *°(A) > i + 2s, then for
any marked floor diagram (D, m) with Newton polygon A, codegree at most ¢ and compatible

with S, the elements in m~!({1,...,2s}) are all sources. Hence the multiplicity p%(D,m) is just

(D, m)(z) = xCOdeg(D)(l _ x)ew(D) (i—i__x) H (1- xw(e))2.
N e€EO(D)

The degree of pg(D,m) is
deg(ps(D,m)) = codeg(D) + (D) + 2 Z w(e)
e€EO(D)
= codeg(D) + (D) + 2deg(D) + 2|E°(D)|
Because of the relations deg(D) = gmax(A) — g — codeg(D), |[V(D)| — |E°(D)| =1—g, y(A) =
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2|V(D)|+e>*(D) and Area(A) = gmax(A)+y(A)/2—1, where Area denotes the Euclidean area,
one has
deg(ns(D,m)) = 2Area(A) — codeg(D)

Definition 2.3.4. Let g € N and A be an h-transverse polygon. Let s € {0,. .., Smax(A,g). We
denote by G (A, s) the quantity G3(A, S), where S is any pairing of order s.

As we saw in proposition 2.3.2, computing the generating series of the functions which give
the codegree i coefficients of G4(A, s) is equivalent to computing the generating series of the
functions that gives the degree i coefficients of G;(A, s). This remark leads to the introduction

of asymptotic refined invariants.

2.3.3 Asymptotic refined invariants

The quantity G}(A, s)(z) is a polynomial, i.e. an element of Z[z]. Its degree is 2Area(A).
However we can see it as a formal series, i.e. an element of Z[z]. Because Z[z] is a valuation
ring, we can endow it with the topology coming from the associated ultrametric distance. A
basis of neighborhoods of 0 for this topology is given by the ideals z"Z[z], so that f € Z[z]
is close to 0 if f = 0 mod z" for n € N large enough. We prefer to use Z[xz] instead of Z[z]
because it is a complete space, more suited to express our asymptotic result.

Meanwhile, for a fan F we have a notion of neighborhood of infinity in the set of dual polygons
D(F) : for C > 0 we say that A > C' if any edge of A has integral length greater than C.

The main goal of this thesis is to study the existence and give formulas for functions
J .
ARg’s : D(F) = Z[x]
which are polynomials ' with coefficients in Z[z] such that for any s € N one has
Gi(A,s) = ARS(A) +o(1) € Z[],

where the asymptotic development takes place when A — +o0 in D(¥).

Definition 2.3.5 (Asymptotic refined invariants). If they exist, such functions AR;{ s are called
asymptotic refined invariants.

F
9,8

polygon A € D(¥) large enough with respect to ¢, and any s € {0,..., Smax(4, g)} one has

To rephrase it, if the asymptotic refined invariant AR . exists then for any i € N, any

G;(A,s) = ARgS(A) mod z°,

i.e. the power series ARg, s(A) correctly gives the first 4 coefficients of G(A, s).

1. By “polynomial in A” we mean polynomial in £3, Kx, - £a, y(A) and x(A).
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Moreover, if AR | exists then the coefficients of AR, .(A) € Z[x] are polynomials in A and
s. Thus, we actually study the polynomiality of the coefficients of G} (A, s), i.e. of @;(A, s), i.e.
of G4(A, s). Note that the polynomial behaviour is not affected by the multiplication or division
by A(z)¥(A)—2+29-25 B(z)%, whose coefficients are also polynomials in A and s.

Remark 2.3.6. This formulation as an asymptotic development is inspired by a reformulation
of Gottsche’s conjecture [G6t98], which states that for a polarized surface (X, £) the number
N%(L) is given by a (universal) polynomial P5(L) = P5(£2,£ - Kx, K%, c2(X)), provided £ is
sufficiently ample. In other words, considering the discrete topology of Z one has

NO(L) = P5(L) + o(1).
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CHAPTER 3

Gottsche-Schroeter invariants in higher
genus

Gottsche-Schroeter invariants are tropical invariants defined in genus 0 that we can compute
combinatorially using floor diagrams, see theorem 2.2.16. In the calculation we need to choose a
pairing S of order s, and we know that the result will be independent of the choice of S as long
as it has order s.

The main result of this chapter is theorem 3.1.3. It states that in any genus we can apply
the recipe of theorem 2.2.16, i.e. choose a S and compute for this pairing, and the result will
be independent of the choice of S as long as it has order s. Hence we get a new combinatorial
invariant that we denote G4(A,s) € Z[g™!] and call Géttsche-Schroeter invariant of genus g.
As wished is [BJP22, remark 2.14] the proof is entirely combinatorial and does not go through
tropical geometry. In the particular case of genus 1, we combinatorially recover the invariants of
[SS18] . We then prove some results regarding this invariant. These results extend the ones we
can find in [BJP22]. In particular, we prove theorem 3.1.8 which generalizes [BJP22, theorem
1.7] to any genus. Last, we perform computations on some small examples. This leads to few
conjectures that may give evidence that this combinatorial invariant may have a geometric

interpretation.

3.1 Refined invariants in the non-rational case

3.1.1 Definition of G,(4A,s)

Definition 3.1.1. Let A be an h-transverse polygon, g € N, s € N and S be a pairing of order s
of {1,...,25max(A, g)}. We define

Gy4(A,S) = Z us(D,m) € Z[qil]
(Dym)

where the sum runs over the isomorphism classes of marked floor diagrams with Newton polygon
A and genus g.

1. We also recover the invariants of [SS24] in any genus, when the polygon A is h-transverse.
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The goal is now to turn the S-dependence into a s-dependence. We start with a technical

lemma on quantum integers. Remember we denote [n]? = [n](¢g)? and [n]s = [n](¢?).

Lemma 3.1.2. Let a,b € Z be integers. Then

2la][blfa + 8] = [2] ([a + b*[al> — [a + b]2[a)?)
= [2) ([a]*[b)2 + [al2[8]?) -
Proof. The first quantity is
(%2 — ¢ ¥2)(¢"? — ¢ ¥*) (¢ +D)/2 — g~ (aD)/2)

(¢1/2 — q~1/2)3

qa+b _ q—a—b _ qa + q—a, _ qb + q—b
(¢1/2 — ¢~1/2)3 :

2[a][b][a + b] = 2

=2

To show the equalities, for any integers c, d we first compute

e | c/2 _ ,—c/2 2 c__ . —c
2 . 4q9—q q q q q
el = = x (e ) <o

_ qc+d _ qc—d _ 2(qd _ q—d) + q—c+d _ q—c—d
(/2 — ¢—1/2)3

Applying this to (¢,d) = (a + b,a) and (c,d) = (a,a + b) we deduce that

q2a+b _ qb _ 2(qa _ q—a) + q—b _ q—2a—b
(/2 — ¢—1/2)3
q2a+b _ q—b _ 2(qa+b _ q—a—b) + qb _ q—2a—b
(/2 — ¢—1/2)3
qa+b _ q—a—b _ qa + q—a _ qb + q—b
(q/2 — g~ 1/2)3

= 2[a][b][a + 8],

M(m+ﬂ%ﬂy—h+ﬂﬁﬁ)=

and applying it to (c,d) = (a,b) and (c,d) = (b, a) we get

at+b _ a—b _ b__ —b —a+b __ ,—a—b
2) (Pl + aaf?) = £~ = A )

qa+b _ q—a+b _ 2(qa, _ q—a) + qa—b _ q—a,—b
(q1/2 _ q—1/2)3

qa-l-b _ q—a,—b _ qa 4 q—a _ qb + q—b
(q1/2 — ¢~1/2)3

= 2[a][b][a + b]

+

=2
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8.1. Refined invariants in the non-rational case

so the three quantities are equal. O

We can now prove the main result of this section.

Theorem 3.1.3. Let A be h-transverse polygon and g € N. Let s € N and S, S’ be two pairings
of order s. Then G4(A,S) = Gy4(A,S).

The strategy to prove the theorem is the following. We will determine a partition (Py)s of
the marked floor diagrams such that for any k one has

Z uS(D7m) = Z /‘S’(‘Dam)'

(D,m)eP; (D,m)eP;

To do so, we inductively construct the partition (Pj)r. We start with a marked floor diagram
(D1, m1) and we determine a set P; of marked floor diagrams such that P; contains (D1, m;)
and

> us(Dym)= Y ps(D,m).
(D,m)eP, (D,m)eP,
We then choose another marked floor diagram (D2, m2) ¢ Pi, and similarly determine a set P,
disjoint from P, etc. Hence, given an arbitrary marked floor diagram it suffices to give the part
P of the partition it is contained in. More precisely, in the proof we introduce partial markings
and we will simultaneously handle the case of several marked diagrams, all coming from the

same partial marked diagram.

Proof of theorem 3.1.3. It is sufficient to suppose that S and S’ differ by one pair, and we can
assume that this pair is {¢,7+1} € S and {i+1,i+2} € S§’. Given D a floor diagram of Newton
polygon A and genus g, a partial marking of D is a map that associates to all but three elements
of D an integer of {1,...,n(D)} \ {¢,%7 + 1,7 + 2} in a bijective and increasing way. A partial
marking gives several markings by labeling the three remaining elements of D with ¢, ¢ + 1 and
1+ 2.

Let D be a floor diagram of Newton polygon A and genus g. Assume we are given a partial
marking of D. We will investigate the possibilities to construct a marked floor diagram from
this data. To do so, for any relative positions of the three elements left aside by the partial
marking, we look at the possible choices to extend the partial marking. We will distinguish cases
according to the number of vertices left aside by the partial marking. In all the proof, W will

be the contribution to ug(D, m) and pg (D, m) of the edges marked by the partial marking.

3 vertices. In that case both S and S’ are incompatible whatever the marking m extending
the partial marking is, i.e.

ps(D,m) = pg/(D,m) = 0.
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So take P = {(D,m), m extension of the partial marking}.

2 vertices. The unique edge left aside by the partial marking can :

> link the two vertices (figure 3.1a),

> be adjacent to only one of the two edges (figure 3.1b, and the symmetric case where the

edge is above the vertex),

> or be adjacent to none of the vertices (figure 3.1c).

On those pictures we do not represent other vertices and edges of D.

o O O

(a) (b) (c)

Figure 3.1 — Possible configurations with 2 vertices.

We deal with the three cases separately.

(a)

There is only one possible marking m and one has
ps(D,m) = pg/(D,m)

so take P = {(D,m)}.

There are three possible markings. Let mj be the extension where the right vertex is i + k&
for k = 0,1,2. The marking m; is incompatible with both S and S’ i.e. pus(D,m1) =
ps'(D,m1) = 0, and one has pug(D,mg) = pg(D,m2) = 0 and ps(D,m2) = pg (D, myp).
Thus

ps(D,mo) + ps(D,my) + ps(D, ma) = ps/ (D, mo) + ps (D, m1) + ps (D, m2)

and we take P = {(D, mg), (D, m1), (D, m2)}.

Any marking m is incompatible with both S and S’ i.e.
ps(D,m) = pg/(D,m) =0
and take P = {(D, m), m extension of the partial marking}.
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1 vertex. The unique vertex left aside by the partial marking can :

> be adjacent to both edges (figure 3.2a where the edges can share a second common vertex

or not, the symmetric case where the edges are above the vertex, and figure 3.2b),

> be adjacent to one of the two edges (figures 3.2c where the edges are adjacent to a common
vertex, the symmetric case where the common vertex is above the edges, figure 3.2d and

its symmetric case),

> or be adjacent to none of the edges (figure 3.2¢ if the edges are adjacent to at least one

common vertex, its symmetric case, and figure 3.2f).

On those pictures, solid lines are for elements left aside by the partial marking, and we

represent other vertices with dashed lines if they are relevant (i.e. play a role) in the calculations.

w1
w2

Figure 3.2 — Possible configurations with 1 vertex.

We deal with the different cases separately.

(a) Denote my (resp. my) the marking where the left edge is ¢ (resp. ¢ + 1). Then one has

ps(D,mo) = ps(D,m1) = ]lwalleor +wo] W, ps(D,mp) = [wi]*[wa]aW and ps/ (D, my) =

[2]

[w1]2[w2]?W. Lemma 3.1.2 shows that

ps(D,mo) + ps(D,m1) = ps (D, mo) + psr (D, ma)

so take P = {(D, mo), (D, m1)}.

(b,c) If the diagram D is in case (b), it might be necessary to include marked diagrams of case
(c) to the part P containing (D, m), where m is the unique marking extending the partial
marking of D. For that reason, cases (b) and (c) are handled together.

In case (b), first assume w; = we. Then one has ps(D,m) = pg(D,m) and we take

P = {(D,m)} ; when w; = wy there is no corresponding diagram of case (c).
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Otherwise w1 # wy and we assume wy > wj. In particular, one has ws > 1 so the edge
with weight wo cannot be an infinite edge and is necessarily adjacent to a second vertex.
Moreover wa can be written w; + (w2 — w;) with both terms positive. In the end, this case
(b) is related to case (c) via an operation A™, see figure 3.3. Conversely any case (c) gives

a case (b) with we > w; via an operation A™.

wy — w1 AT
2 — W1 —

Figure 3.3 — Passing from case (c) to case (b).

Let D’ be the floor diagram of case (c) which gives the diagram D of case (b) with the
AT operation of figure 3.3. Let m] be the marking of D’ where the right edge is i + & for
k=0,1,2. One has :

[wi][we — wi]we]
[2]
[wi][we — wi]we]
2]

> us(D',mh) = [wi]?[ws — wi]oW and pg/ (D', m}) = 0.

> ps(D',mp) = W and pg/(D',mp) = [wi]?[wz — wi]aW,

> /’LS(DIa mll) = W and .U'S’(Dla mll) =0,

For D we have ug(D,m) = [w1]?[w2]eW and pg(D,m) = [wi]2[w2]*W. Hence taking
a=wi and b = wy — wq in lemma 3.1.2 we see that

ps(D,m) + ps(D',my) + ps(D',mh) + ps(D', my)
= :U’S’(D’ m) + :u'S’(‘Dla m6) + /"'S’(Dl, mll) + ,U'S’(Dla ml2)

and we can take P = {(D,m), (D', mg), (D', m}), (D', m4)}. If w1 > wy the proof is analo-

gous using the symmetric case of figure 3.2c and an operation A~.

(d) This is similar to figure 3.1b. There are three possible markings. Let my, be the extension
where the right edge is i + k for kK = 0,1,2. The marking m; is incompatible with both
S and S’ i.e. us(D,m1) = pg(D,m1) = 0, and one has pg(D,mp) = ps/ (D, m2) = 0 and
ps(D, m2) = ps (D, mp) so

HS(D)mO) + .U’S(gaml) + /J'S('D,mZ) = #S’(D)mﬂ) + H’S’(D,ml) + /J'S’(ﬂ’m2)
and take P = {(D,my), (D, m1), (D, m2)}.
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(e) Let my and m) be the two markings where the vertex is i + k for £ = 0,1,2. One has
ps(D,m1) = ps(D,m1) = ps(D,mo) = ps(D,mp) = ps (D, ma) = pg (D, my) =0

and

[wr][wa][wr + wo]
2]

ps(D,mz) = ps(D,my) = ps (D, mg) = pg (D, mgy) = W,

SO

P’S(ga mO) + AU'S(D7 m6) + “5(D7 ml) + /"S(D’ mll) + )U'S(p’ m2) + luS(D’ m,2)
= )U'S’(ﬂﬁ mO) + /JJS/(D’ m6) + 'U'S’(ﬂa ml) + MS’(®7 mll) + :U'S/(ﬂa m2) + AU’S’(D7 ml2)
and we take P = {(D, my), (D, mg), (D, m1), (D, m}), (D, ms), (D, mh)}.

(f) Any marking m is incompatible with both S and S’ i.e.
ps(D,m) = ps/(D,m) =0

and take P = {(D, m), m extension of the partial marking}.

0 vertex. The edges left aside by the partial marking can :

> be adjacent to a common vertex (figure 3.4a and the symmetric case where the vertex is
below the edge),

> one can share at least a common vertex with any of the others, but the other two do not

have a common vertex (figure 3.4b),

> two of them can share at least one common vertex, and the last edge has no common

vertex with the other two (figure 3.4c),

> have no common vertex (figure 3.4d).

On those pictures, solid lines are for elements left aside by the partial marking, and we
represent other vertices with dashed lines if they are relevant (i.e. play a role) in the calculations.

We deal with the different cases separately.

(a) There are six possible markings. The contributions are summed up in table 3.1, where

(4, k, £) denotes the markings of the edges from left to right.

The sums of the two columns are the same, so these marked floor diagrams give the same
contributions to G4(A,S) and G4(A,S’) and we take P the set of these marked floor

diagrams.
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~_ 2 ‘/’-\\‘
S - &2 w3 ~___
\ \
(b) (©) (d)

(d)

Figure 3.4 — Possible configurations with 0 vertex.

S S’
(it1i+2) [wl][w2][[2a])1 R P [w2][w3][[2u])2 sl g2
(it2i+1) [w1][w3][[2¢«])1 R P [WQ][W:%][[;]& sl g2
(i+1,6,i+2) [w1][w2][[2a])1 ol [W1][W3][[;]11 sl g2
(i+1,i+2,0) [w1][W3][[2a]Jl sl [M][wzl[[;])l tewal 2
(i+24i+1) | 22 [w3][[2a])2 sl [wl][ws][[;]il sl 2
(i+2i+1,4) | 22 [w3][[;/]J2 sl [wl][wﬂ[[;]h tewal 2

Table 3.1 — Contribution of the markings in case (a).

Note that, depending on the unshown part of the diagram and on the precise value of the
weights, some markings may give isomorphic marked diagrams : there may be only 3 or
1 marked floor diagram instead of 6. However, in that case some of the weight among w;,
wy and w3 are equal, and removing the superfluous rows if the table does not affect the

equality of the sums of the columns.

Similarly to the previous case we get table 3.2. We see that the sums of the two columns
are the same, so these marked floor diagrams give the same contributions to G4(A, S) and
Gy4(A, S’) and we take P the set of these marked floor diagrams.

This is the same as in figure 3.2e. Let m; and mj be the two markings where the right
edge is ¢ + k for k£ = 0,1,2. Both m; and m/ are incompatible with S and S’, and
the contributions of mo and m(, balance with those of my and m). Hence we take P =
{(D,mo), (D7m6)’ (D’ml)’ (®7 mll)> (ﬂa m2)’ (D’ m,2)}

Any marking m is incompatible with both S and S’ i.e.
/"S(ﬂa m) = “S’(Da m) =0
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S S’
. . [wi][wa][w1 + wo] [wo]ws][w2 + ws]
(i +1,i+2) 2] [ws]? s 2] 2 fwn]?
(6,6 + 2,3 + 1) 0 [m][wf‘][[;])? Tl e
(41,6, +2) [“’1”“’2][[;‘]’1 el 0
(i4+1,i+2,4) 0 [wl][wz][[;fl Tl [ws]?
(i+2,4,i+1) [w2] [w3][[;‘]’2 + ws] [wi]? 0
. . ~ | [wa]ws][wz + ws] [wi][wa][w1 + wo]
(i+2,i+1,0) 2 3[2]2 3 [wi]? 1] we [2]1 2 PAE

Table 3.2 — Contribution of the markings in case (b).

and take P = {(D,m), m extension of the partial marking}.

We can thus abusively write G4(4A, s) instead of G4(A, S).

Definition 3.1.4. Let A be an h-transverse polygon, g € N, s € N and S be any pairing of order
s of {1,...,25max(A, g)}. We define

Gg(A73) = Z ;Ls(@,m) € Z[qil]
(D,m)

where the sum runs over the isomorphism classes of marked floor diagrams with Newton polygon
A and genus g. The Laurent polynomial G4(A, s) is called Gottsche-Schroeter (refined) invariant

of genus g.

3.1.2 Properties of the invariants

In this section we prove few properties satisfied by the higher genus Go6ttsche-Schroeter
invariant. We essentially adapt, when necessary, the proofs given by Brugallé and Jaramillo-

Puentes in [BJP22] for the case of genus 0 invariants.

Proposition 3.1.5. Let (D, m) be a marked floor diagram of genus g, and S1 C Sy be two pairing
of the set {1,...,n(D)}. Then one has ps, (D, m) — us,(D,m) € N[gT!].
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Corollary 3.1.6. Let A be an h-transverse polygon and g € N. For any i € N one has
(Gg(A,0))i = (Gg(A,1))i = ... = (Gy(A, smax(A, 9)))i-

Proof. The proofs of [BJP22, proposition 2.16 and corollary 2.17] rely on calculations on quan-

tum integers, and the genus does not play any role. Thus we can copy their proofs. O

The decrease with respect to S for us(D,m), and with respect to s for G4(A,s) can be
observed in the examples of section 3.2.1.

Proposition 3.1.7. Let A be an h-transverse polygon whose top is depicted in figure 3.5a and A
be the polygon obtained in figure 3.5b by cutting of the top corner of A. If s < smax(A, g), then

Gy(A,s+1) = Gy(A, 5) — 2G4 (A, s).

[ ]
o o
‘ : [ ] I e o ‘\
| (a) A | (b) A
Figure 3.5
Proof. The proof is analogous to the one of [BJP22, proposition 2.19]. O

We now extend [BJP22, theorem 1.7] to arbitrary genus.

Theorem 3.1.8. Let A be an h-transverse polygon and g < gmax(A). If 2i < e°(A) and
@ < gmax(A), then the values (G4(A, s)); for 0 < s < smax(A, g) are interpolated by a polynomial
(_Q)i (gmax_i) .

of degree i, whose leading coefficient is “—— i

Proof. The beginning of the proof is as in [BJP22, theorem 1.7], hence we will not give the
details of the computations before step 2(b) below. Let first introduce few notations.
We denote by a; the polynomial of degree at most Smax = Smax(4, g) which interpolates the

values ((Gg(A, $))i)o<s<smax- 1ts i-th discrete derivative al@ has degree at most smax — %, and we
want to show that

aEZ) (0) == G’EZ) (Smax - ’l) = 22 (gmax ) Z> .
g
Let 0 < s < Smax — ¢ and S be a pairing of order s of {2i + 1,...,y(A) — 1 + g}. For

I c{1,...,i} we denote
st=sulJ{{27 - 1,251}

jeI
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8.1. Refined invariants in the non-rational case

the pairing of order s + |I| of {1,...,y(A) — 1+ g}. Given (D, m) a marked floor diagram with
Newton polygon A and genus g we define

Z Z 1) pgr (D, m).

=11c{1,...i}
|I|=¢
One has
gmax—4g (’L) .
. Z @y ax—g— |J|(5)qj = Z x(D, m)
J=—9gmax+tg (D,m)

where the sum runs over the isomorphism classes of marked floor diagrams of Newton polygon

A and genus g. Hence the diagrams with degree at least gmax — g — 4, i.e. codegree at most 1,
(4)

contribute to a;

Let (D, m) be such a diagram. Denote by i¢ the minimal element of {1,...,n(D)} such that
m~1(ip) € V(D), and by J C {1,...,2i} the set of elements j such that m~1(5) is an elevator
in E~>°(D) adjacent to m~1(4p).

Step 1. If JU {ip} contains a pair {2k — 1,2k} with k < 4, then x(D, m) = 0.
We assume from now on that J U {ip} does not contain any pair {2k — 1,2k} with k <. In
particular, |J| <1

Step 2(a). If igp < 2¢ then (D, m) does not contribute to a( )(s)

Step 2(b). Supppose now that i9 > 2i. In particular, m({1,...,2i}) C E~°°(D). Let K C
{20 +1,...,y(A) — 1+ g} be the set of elements k such that m(k) is an elevator in E~°°(D)
adjacent to m(ip) ; one has |K| < e7*°(A) — 2i. Hence by lemma 2.2.23 one has

codeg(D) > e > (A) — |J| — |K| 2 e (A) —i— (e (A) — 2%) =

so D can contribute to agi)(s) if and only if codeg(D) = i — g, which implies |J| = i and
|K| = e *°(A) — 2i. Thus, i elevators in E~*°(D) are not adjacent to m(ig) and they are the
only elements creating codegree in D. Hence, D contributes to agi)(s) if and only if the following
set of conditions is satisfied :

> the order < is total on V (D),
> elevators in ET°°(D) are all adjacent to the top floor,

> |J| = and J contains no pair {2k — 1,2k},
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> m({1,...,2i} \ J) consists exactly of elevators in E~>°(D) adjacent to the second lowest

floor,
> E7°(D)\ m({1,...,2i}) consists of elevators adjacent to the lowest floor,
> the function L : V(D) — biet(A) and R : V(D) — brignt(A) are increasing,

> any bounded edge is between two consecutive vertices, i.e. the genus is created only by

configurations of figure 3.6a ; there is no configuration of figure 3.6b.

(a) (b)

Figure 3.6 — Possible configuration for the genus.

The first conditions are those of [BJP22], and the last is added to take into account the
genus. These conditions ensure that the marked floor diagrams which contribute to al(.i) (s) all
satisfy k(D,m) = pus(D,m) and have the shape depicted in figure 3.7, where a = a(A) is the
number of vertices.

There are 2° possible choices for J, and given a J it remains to determine how many marked
diagrams of genus g have a marking that corresponds to J. Starting with the unique marked
diagram (Dg, mp) of genus 0 corresponding to J, we need to choose a decomposition g = g; +
“+++ ga—1, and then split the unique edge between v; and v;41 in g; + 1 edges. If the weight
of the edge is w;, then there are (w;j_l) ways to divide the weight and to mark the new edges.
Hence the total number of marked diagrams for a given J is

Z al:[l (wk — 1)
gittga_1=gk=1 \ Ik

g >0, ordered

which is just

(Z(wk - 1)) _ (deg(@o)) _ (gmx - codeg(@0)> _ (gmax —z‘)
k=1 g g g g :
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dpA—i i

Figure 3.7 — The diagrams that contribute to agi)(s).
Hence the total number of marked diagrams is 2° (gma;_i). Since the dominant coefficients of the

multiplicities are 1 we conclude. O

3.2 Examples and conjectures

3.2.1 Some calculations

In this section we run the calculations on some examples. When possible, we use theorem 3.1.8
to compute G4(A, s) for few values of s before interpolating. Otherwise, we compute Gg4(A, s)
for 0 < s < smax(A, g). However, in our examples we notice that (G4(4, s)); is always given by
a polynomial of degree i in s, even when theorem 3.1.8 does not apply. We use tables to present
the computations. In a column corresponding to a floor diagram we indicate its contribution to
Gy4(A, s). We put a x when this contribution does not change passing from s to s+ 1, to highlight
which diagrams contribute to the decrease of G4(A, s) with respect so s, see corollary 3.1.6. Note
that for g = gmax(A) one always has Gy . (a)(A,s) = 1. Also, because the refined invariants
are symmetric we do not precise the coefficients of the negative exponents. In all this section we
use the pairing S = {{1,2},...,{2s — 1,2s}}, and recall the trapezoid Aib of figure 2.3a.
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(s &hmdvoﬁ Jo uorpeinduwio)) — ¢'¢ 9[qRL,

4+ PT+ by 4 b x (4 i 2[zle X X 4
" +gg+ b9+ b x i X x 2lele | ((%le]) || €
4 pe+ b+ b 4 x x 2ely * ?elelel || T
406+ boT + ;P i X 8 ¥ z[cle X I
4+ 0L+ bgT + b 0T 01 91 o rdiz otdiz Jlel o

(s CEy)0D
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Ezample 3.2.1. We compute GQ(A%Q, s) for 0 < g < 2. Tables 3.3 and 3.4 give

Go(A35,8) = ¢* + (12— 2s)g + (25> — 225+ 70) + ...

G1(A3,,8) =2¢+ (16 —2s) +...
G1(A3 5, 5)
4

Ga(AG,5) = 1.

.

®

0| [2? 4 29 +16+...
1 * * * 2 * 2q+14+ ...
Table 3.4 — Computation of G1(AJ,, s).
3 2 2

s GO(A8,3, s)
0l [3° 5[2]2 10 5[2]2 10 27 > +12¢+70+...
1 * 3[2)? 4 * * 17 q>+10g+ 50+ ...
2 * 2]2 * * * 7 @ +8q+34+...
31 [3]2 * * 2[3] + 3[2]2 * 5 @?+6g+22+...
4 * * * 2[3] + [2]2 4 3 P+4g+14+...

Table 3.5 — Computation of Go(Ag’:,,, s).
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s Gl(Ag"g,s)
0 2[2? 6 6 2q+16+...
1 * * 4 2q+ 14+ ...

Table 3.6 — Computation of G1(AJ 3, 5).

Example 3.2.2. We compute Gg(Ag’?’, s) for 0 < g < 2. Tables 3.5 and 3.6 give

Go(AY3,8) = ¢* + (12— 2s)g + (25> — 225 + 70) + . ..
G1(A93,8) =2¢+ (16 —2s) + ...
GQ(A(2)13,S) =1.

Ezxample 3.2.3. We compute Gg(A%,Q, s) for 0 < g < 1. Tables 3.7 and 3.8 give

Go(Ad,8) = ¢ + (12— 2s)g + (25> =225+ 70) + ...
G1(Aj,8) =2q+ (16 —25) + ...
G2(A%72,8) =1.

3 2 2
s GO(A%Q, s)
01 [3]? 6[2]2 15 4[2)? 6 26 > +12¢+ 70 +...
1 * 4[2)? 7 * * 18 q>+10g + 50 + ...
2 * 2[2]2 3 * * 10 > +8¢+34+...

Table 3.7 — Computation of Go(Aj 5, 5).
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s Gl(Aé’z,s)
0| 22 5 7 2q+16+...
1 * * 5 2+ 14+...

Table 3.8 — Computation of G1(Aj, ).

Ezample 3.2.4. Let Viz be the polygon obtained by applying a §-rotation to A%Q. In tables 3.9
and 3.10 the number inscribed in a vertex is its divergence. We obtain

Go(Vig,8) =¢* + (12— 2s)g + (2> =225+ 70) + ...
G1(Vig,s) =2q+ (16 —2s) +...
G2(Vig,s) = 1.

2 (1
1
CoD
3
*

S Gl(v%,Z’s)
0| 222 | [2]? 4 4 1 29+16+...
1 * * * 2 * 2q+14+ ...

Table 3.9 — Computation of G1(V3, ).
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3.2. Examples and conjectures

Ezxample 3.2.5. We compute GQ(A%Q, s) for 0 < g < 1. Table 3.11 gives

Go(A95,8) =q+ (10 —2s) +...
G]_(Ag,z,s) = ]..

2
S GO(Ag,QVS)
0 [2? 4 4 g+10+...
1 * 2 * qg+8+...

Table 3.11 — Computation of Go(AJ,, s).

Ezample 3.2.6. We compute Gg(A3 ), s) for 0 < g < 1. Table 3.12 gives

GO(A%O,S) =q+(8—2s)+...
G1(A3,,s) = 1.

s Go(A%,O,S)
0| [2? 6 qg+8+...
1 * 4 qg+6+...
2 * 2 q+4+...
3 [2]2 * q+2+...

Table 3.12 — Computation of GO(A%,O, s).

Example 3.2.7. We compute GQ(A%’Q, s)for0<g<1l.Forg=0= gmax(Ai2) there is a unique
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marked floor diagram and it has multiplicity 1. There is no diagram for g = 1, hence

GO(A%,Q’ s)=1,
G]_ (A%,Q, 8) = 0

Example 3.2.8. We compute Gg(A%l, s) for 0 < g < 2. Tables 3.13 and 3.14 give

Go(A3,,8) =¢*+ (12— 2s)g + (2> — 225+ 67) + ...
G1(A3,,s) =2¢+ (16 —2s) +...
GQ(A%’:L,S) =1.

|
GO(A%,I’ 5)
21

S

0| [3? 3[2)? 7[2)? 23 @?+12¢+67+...
1 * * 5[2]2 11 17 ¢?+10g + 47 + ...
2 * * 3[2)? 5 11 > +8¢+31+...

Table 3.13 — Computation of Go(A3 |, s).

~~
° G1(A34,5)
8

S
0 2[22 4 2¢+16+...
1 * * 6 2+ 14+...

Table 3.14 — Computation of G1(A3 |, s).
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Ezample 3.2.9. We compute GQ(A%’:,,, s)for0<g<1l.Forg=0= gmax(Ai?,) there is a unique
marked floor diagram and it has multiplicity 1. There is no diagram for g = 1, hence

GO(A%,?), S) = 1,
Gl(A%,f;’ 5) = 0.

Ezample 3.2.10. We compute G3(Ag73, s). Table 3.15 gives

G3(A33,5) =4g+ (26 —25) + ...

2
2
s G3(Ag’3, s)
6 6

0 2[2]2 2[2]2 6 49 +26+...
1 * * 4 * * 4g+24+...

Table 3.15 — Computation of G3(Ag 3, s).

i

~~
s 6 G3(A§70, s)
0 [2]? 3[2]2 10 6 4g+24+...
1 * * 8 * 49+ 22 +...

Table 3.16 — Computation of G3(A3 y, s).
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Ezxample 3.2.11. We compute G3(A§70, s). Table 3.16 gives
G3(A3g,5) =4g+ (24 —25) +...

Example 3.2.12. We compute G3(A%’2, s). Forg=3= gmax(A%’z) there is a unique marked floor
diagram and it has multiplicity 1, hence

Ezample 3.2.13. We compute G3(A? 4, 5). Since gmax(A? ;) = 0, one has
G3(A%,4, S) = 0.

Ezample 3.2.14. As a last example, we perform the computation for A = A, (see figure 2.2a)
and g = gmax(Ag) — 1 = W — 1, with d > 3. We take s < d/2 and use the pairing
S ={{1,2},...,{2s—1,2s}}. Note that thanks to theorem 3.1.8 we could make the computation
only for s < 1. Let vg < -+ < v3 < v; be the vertices of the unique floor diagram with genus

9max(Ag). There are two possible ways to construct a diagram of genus g.

> One can merge two bounded edges into an edge of weight 2, see figure 3.8a.

> One can choose a vertex v; for 2 < i < d, delete an edge below and above v;, then add
an edge adjacent to v;—; and v;;1, see figures 3.8b, 3.8c and 3.8d (in figure 3.8d, one
understands vg4; as a vertex at infinity, hence the added edge is infinite).

(a)2<i<d—1 (b)i=2 ()3<i<d—1 ) i=d

Figure 3.8 — The floor diagrams with Newton polygon A; and genus gmax(Ag) — 1.
In case (a), the S-multiplicity is [2]2. If the bounded edge of weight 2 is adjacent to v; and
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vi+1, then there are ¢ — 1 markings compatible with S. One can choose 2 < 7 < d — 1, hence the

case (a) contributes
d—1
2N(; _ 1) — (o2 @ = 1)(d—2)
PP Y1) = P
to Gg (Ad, 8).
In cases (b), (c) and (d) the S-multiplicity is 1. In case (b) the number of markings is 3. In

case (c) the number of markings is 2i — 1. Last, in case (d) the number of compatible markings
is 2d — 1 — 2s. Hence the cases (b), (c) and (d) contribute

3+d§(2i—1)+2d—1—2s=d2—1—2s
1=3
to Gg(Ag, s).
In the end one has
G gman(Bg)—1(Ad, 8) = W(; +(2d> —3d+1—2s) +...
= (grisz(ﬁdz 1>q+ (2d> —3d+1—2s) +...

In particular, for d = 3 we get Go(As, s) = ¢+ (10 — 2s) + ¢! and we recover example 2.2.21.

3.2.2 Observations and conjectures

From the calculations of the previous section 3.2.1, one can make several observations leading

to few conjectures.

Invariance under lattice preserving transformation

Recall that a lattice preserving transformation is an element of the affine group of R? for
which the lattice Z? is invariant. In the previous section, several polygons for which we performed
calculations are linked by a lattice preserving transformation. First, examples 3.2.1 and 3.2.2
show that for 0 < g < 2 one has

Gg(Ag,3a s) = Gg(Ag,Qa s)-
Second, examples 3.2.3 and 3.2.4 show that for 0 < g < 2 one has
Gg(A%,z, s) = Gg(vég, s).
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Although not detailed in this manuscript, one can check for instance that for 0 < g < 2 one also

has
G4(A31,5) = Gg(AAS ), 5)

10
where A is the matrix A = <1 1), and for g = 3 one has

Gs(A30,5) = Gs(AA3 g, 5).

All these observations lead to the following conjecture.

Conjecture 3.2.15. Let A and A’ be two h-transverse polygons. If there exists a lattice pre-
serving transformation f such that f(A) = A’, then for any g € {0,...,gmax(A)} and s €
{0, ..., Smax(A, g)} one has

Gy(A,s) = Gy(A, 5).

We already know the conjecture is true for g = 0. By the results of chapter 5 this conjecture
is asymptotically true in genus 1, if A and A’ are moreover non-singular and horizontal. Indeed,
if the integral lengths of the sides of A are large enough, we know that the coefficients of small
codegree of G1(A, s) are given by polynomials which only depend on y(A), x(A) and gmax(A),
and similarly for A’. Since the triplet (y, X, gmax) is the same for A and A’, then the coefficients
of small codegrees of G1(A, s) and G1(4A’, s) are the same.

Abramovich-Bertram formula

We already know by Bousseau [Bou21] that Block-Gottsche refined invariants, i.e. G4(A, 0),
and genus 0 Gottsche-Schroeter invariants, i.e. Go(4, s), satisfy the Abramovich-Bertram for-
mula. One can wonder if this formula also holds for g and s both non-zero. Some examples of
the previous section would plea in favor of a positive answer. From examples 3.2.2, 3.2.8 and
3.2.9 we observe that for 0 < g < 2 one has

Gg(A33,8) = Gg(A31,5) +3 x Gg(Af g, ).
From examples 3.2.5, 3.2.6 and 3.2.7 we observe that for 0 < g < 2 one has
Gg(Ag,2a s) = Gg(Ag,o, 8) +2 % GQ(A%,Qa s).
From examples 3.2.10, 3.2.11, 3.2.12 and 3.2.13 we observe that for g = 3 one has
G3(AY3,5) = G3(A3,5) +2 x G3(A3 5, 8) + 6 x G3(Al 4, s)

84



3.2. Examples and conjectures

and one can check ? that the previous equality also holds for g =2 and 0 < s < 2.

These examples lead to conjecture that the higher genus Gottsche-Schroeter invariants satisfy
the Abramovich-Betram formula.

Conjecture 3.2.16 (Abramovich-Bertram formula). Let a,b € N and g > 0. For any s > 0 one
has

2 (b+2j
Gg(Ag,a.H;,S) = Z ( j )GQ(Ag—j,b+2j’ s).
j=0

2. The author did it but is not brave enough to write down in this manuscript the 30 diagrams that take part
in the calculation.
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CHAPTER 4

Generating series in genus (

This chapter is devoted to the study of tropical refined invariants in genus 0. We will show
that the coefficients of small codegree of (Go(4, s)); are given by universal polynomials. More-
over, the generating series of these polynomials is multiplicative in the sense of Go6ttsche con-
jecture.

Section 4.1 aims at proving theorems 4.1.10 and 4.1.11. Here we work with refined S-
multiplicities. At the end of the section we show what become the main results if we remove
the denominators, i.e. if we consider the asymptotic S-multiplicities, see section 2.3. Section 4.2
gives another proof of theorem 4.1.5 where we directly work with asymptotic S-multiplicities.
The main interest of this second proof is that it presents methods and objects we will use in
chapter 5 when dealing with the genus 1 case.

Sections 4.1 and 4.2.1 are based on the paper [Mév23], while the rest of section 4.2 is based
on the paper [BM24]. However, [BM24] only deals with the case s = 0, i.e. it does not look at

Gottsche-Schroeter invariants, as it is done in this text.

4.1 Universal series in genus 0

We first set up some notations we will use throughout this section. For any integer vector
u € NN (or NV") with finite support and any k € N we set

sumg(u) = Zu] and codegy,(u) = Z]’U,J
ji=k ji=k

We will use the shortcut codeg = codeg;, and for ¢ > 1 let

)

={ue N | codeg(u) < i}
i}.

= {u e NV | codeg(u) =

Note that if u € C; or u € B;, then uy = 0 for k£ > i+ 1. Hence we can consider u as a vector in
N¢ by forgetting uy for k > i + 1. For s € N we denote by d(s) the set of all decompositions of
s, i.e.

d(s) = {S € NV | sumg(S) = s},
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Chapter 4 — Generating series in genus 0

and for S € d(s) we set the multinomial coefficient

s\ s _ s!
S]  \So,S1,...)]  Solsit...

For integers a,p € N and vectors with finite supports v € NN and S € NY we define

a-+np—sumy,q(u— 25
yn(a,p,u,5)=< P u _2—;( )>a
I/>n(a,p,u,S) = H Vk(aap9u)S)7
k>n
N(a,p,S)zZ Z V?l(aap’uﬂg) z"
n20 \codeg(u)=n

= Z v>1(a,p, u, S)xCOdeg(“).
u€NN*

Given two integers k, £ > 0 we define

Fk,0)= 3 ﬁz’j and ®y(k) = F(k, k+¢)

14t =0 j=1
ij}l

with the convention ®¢(0) = 1. Recall that we consider the following formal series :

1 1 1
Ax) = ——, B(z)=—=, P(x)= Zp(n)mn = H —
1—2 11—z >0 k>11—x
where p(n) is the number of partitions of n, and that we denote by (P;(y, x, s)); the coefficients

of the formal series

120

We postpone to section 4.1.5 some lemmas regarding all these quantities, whose proofs are
not based on the manipulation of floor diagrams. We will use these lemmas throughout this

section.

We start with the case of horizontal and non-singular polygons in section 4.1.1. This case
is easier because the fact that the diagrams may have a lot a sources and sinks forces them to
have a particular shape. We then relate the refined invariants of a polygon and its blow-up in
section 4.1.2, which permits to state a result about invariants of CIP2. This blow-up trick allows
then to remove the horizontal hypothesis in section 4.1.3. We last adapt the method of section

4.1.1 and the blow-up trick to singular surfaces in section 4.1.4.
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4.1. Universal series in genus 0

4.1.1 Non-singular and horizontal polygons

We first prove the main theorem when the polygon A is horizontal. Together with the fact
we are interested in diagrams of genus 0, it permits an explicit description of the relevant
floor diagrams, based on the one given in [BJP22, section 4.1]. While Brugallé and Jaramillo-
Puentes only considered Hirzeburch surface there, we enlarge the class of surfaces we look at.
The main input is the study of the divergence function of the diagrams. In the Hirzebruch case
the divergence is constant, but in general one has to take care of the divergence of floor diagrams

with small codegree. This is done in lemmas 4.1.1 and 4.1.4 below.

Lemma 4.1.1. Let i € N and A be an h-transverse and non-singular polygon with A > 2i. Let
D be a floor diagram with Newton polygon A, codegree at most i and having a total order on its
vertices v1 < - -+ < vg. Let n = ming R(vk), N = maxy, R(v), and for n < k < N let ay, be the
number of vertices with R(v) = k. Finally let ax = ap + - - - + a.

(1) If 1 < j < an — i then R(v;) =n.
(2) If n < k < N —1 then :

(a) if o, —i+1< j < ai+i then R(v;) € {k,k+ 1} ; moreover there are i vertices with
R(v) = k and i vertices with R(v) =k + 1,

(b) if o +i+1<j<ogy1 —i then R(v;) =k + 1.
(8) Ifan —i+1<j < an then R(vj) = N.

The situation described in lemma 4.1.1 is summarized in figure 4.1.

~ ~ . i
R * R R * /N '\\?(

~N N ~N ~N

/ / X * e / Index of
~ o s* s s & O'% " the vertex
- e ---—--—--- *———— o o & ---—--—--- ——— o
—— ~ ~~ - ~~ - ——

Value of R
R(v)=n R(v) = k (i vertices) R(v)=k+1 R(v) =N

R(v) = k+ 1 (i vertices)

Figure 4.1 — The function R.

Proof. Because A is non-singular, all its vertices have index 1. Hence the right side of A looks
like the picture of figure 4.2, where we indicate the outward normal vectors of the edges. For
any n < k < N, aj is the length of the edge of A having normal vector (1,k) so ar > 2i by
hypothesis, which implies oy — i > ax—1 + ¢ and o > 2(k — n + 1)i. We investigate how we
can choose the function R so that D has codegree at most i. We construct R from the bottom

vertices to the top ones. The key element is lemma, 2.2.23.
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Chapter 4 — Generating series in genus 0

(1,N)

(1,N-1)

(Lin+1)

(1,n)

Figure 4.2 — The right side of A.

(1) Assume that R(v;) > n for some 1 < j < an — 4. The vertex v; has at least a, —j + 1
vertices with R(v) = n above it, thus we can perform at least a,, — j + 1 operations B,
each of them making the codegree drop by at most 1 by lemma 2.2.23. Since —j > i — a,
we get codeg(D) > i + 1, a contradiction.

(2) We prove it by induction over k.

> If kK = n then necessarily R(v;) > n for any j. Among the a,, vertices having R(v) =n
we know by (1) that a, — i of them are vy, ...,v,,—;. Thus it remains ¢ vertices to be
given R(v) = n. If R(v;) = n with j > a,+1 then between v, —;+1 and v,,1; there are
at most 1—1 vertices having R(v) = n, so at least i+1 vertices having R(v) > n. These
i+ 1 vertices are all below v; thus we can perform at least ¢ + 1 operations BF each
of them making the codegree drop by at least 1. Hence codeg(D) > i, contradiction.
Thus between v,,_;+1 and v,,+; there are i vertices with R(v) = n. Assume that
R(v;) > n+1 for some a, —i+1 < j < ap+4. Then v; has at most j —ay, +1 vertices
with R(v) € {n,n + 1} below it, so at least

(t4+ant1)—(F—an+i)=antant1—J=apns1—1>1

vertices with R(v) € {n,n + 1} above it. With some operations B® we compute
codeg(D) > i, contradiction.

> Assume that the result holds up to k — 1 for some n < k—1 < N — 1. All the vertices
with R(v) < k — 1 have been chosen and are below vq, ,+i, and ay — @ vertices with
R(v) = k are between v,,_,—i+1 and vq,_,+i. Thus it remains ¢ vertices with R(v) =k
to choose. If R(v;) = k with j > aj + 14, then between vo, ;1 and v, 4; there are at
most ¢ — 1 vertices having R(v) = k, so at least i+ 1 vertices having R(v) > k. These
i+ 1 vertices are all below v; thus we can perform at least ¢ + 1 operations BE each

of them making the codegree drop by at least 1. Hence codeg(D) > i, contradiction.
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4.1. Universal series in genus 0

Thus between v, —it+1 and vq,+; there are ¢ vertices with R(v) = k. Assume that
R(vj) > k+1 for some aj —i+1 < j < ag +i. Then v; has at most j — oy + 1 vertices
with R(v) € {k, k + 1} below it, so at least

(it+agt1)—(J—ox+i)=ar+tag1—J = aps1 — 1> 1

vertices with R(v) € {k,k + 1} above it. With some operations B® we compute
codeg(D) > i, contradiction.

(3) The proof is similar to (1). If R(v;) < N for some ay —i+ 1 < j < an, then the vertex
v; has j vertices with R(v) = N below it, thus we can perform j operations B, each of
them making the codegree drop by at most 1 by lemma 2.2.23. Since j > ay — i+ 1 and
an = any > 2i we get codeg(D) > i + 1, a contradiction.

O]

Remark 4.1.2. The point (1) is also true if the order is total only on the b lowest vertices, with

some b > a, — i ; the proof is the same.

Remark 4.1.3. Consider A’ the symmetric of A with respect to a vertical axis. Then any diagram
D’ with Newton polygon A’ corresponds to a unique diagram D with Newton polygon A. Their
functions R', L' and R, L are linked by R’ = L and L' = R. Thus, applying lemma 4.1.1 to A’
gives the same result for the function L.

Lemma 4.1.4. Let i € N and A be an h-transverse and non-singular polygon with A > 2i. The
number of possible couples (R, L) to construct a floor diagram with Newton polygon A, codegree

at most i and having a total order on its vertices is

%

> > p(k1) ... p(ky=(a)—2)

k=0 k1+-~-+kx*(A)_2=k

where x*(A) is the number of non-horizontal edges of A.

Proof. We use the same notations as in lemma 4.1.1.
By lemma 4.1.1, the function R is entirely described by the data of vectors 7% € (N*)? for
any n < k < N — 1 such that the vertices between v,, —;t+1 and vq, +; having R(v) = k are the

Uak—ijﬁ]’? for 1 <j <.
Givenn < k < N—1and 1< j <4, the vertex v, _; = has '7]’? —j vertices with R(v) = k+1
J
below it, thus we can perform
N-1 i

cri= Y, > (-7

k=n j=1
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Chapter 4 — Generating series in genus 0

operations BT, each of them making the codegree drop by 1. Hence the function R contributes

cr to the codegree of D.

Similarly, by remark 4.1.3 the function L is entirely determined by vectors 6% € (N*)¢ for
any n’ < k < N'—1, where (—1,n/),(—1,n'+1),..., (=1, N') are the primitive outgoing normal
vectors of the edges of the left side of A, from bottom to top. Similarly, we can perform

N'—-1 4

cLi= Y, Z(gf )

k=n' j=1
operations B, each of them making the codegree drop by 1. Hence the function L contributes
cy, to the codegree of D.

Putting together these two contributions we should have

cr + cr < codeg(D) < 4.

Given a vector 8 € (N*)¢, we consider the vector 8 € Ni defined by B = Bi_j_lr_]_ - Bz'—j -1,
where 50 = 0 by convention. One has
,L. ~

codeg(8) = > (B — 7).

=1

Applying this to the vectors (7*); and (g’“)k, we see that the data of functions R and L satisfying
cr + cr < i is equivalent to the data of vectors (v*); and (6%); satisfying

N-1 N'-1
Z codeg(v*) + Z codeg(6%) < 4,
k=n k=n'

i.e. to the data of N + N’ —n —n’ = x*(A) — 2 vectors whose sum of codegrees is at most 7. If
that sum equals k, this corresponds to the data of a decomposition ki + - - - + ky=(a)—2 = k, and
then for any 1 < j < x*(A) — 2 to the data of a vector of codegree k;. By lemma 4.1.15 there
are p(k;) possibilities for such a vector. Hence, we conclude that the number of possible couples
(R,L) is

7

> > p(k1) .. p(ky(a)_2)-

k=0 Fki+--+k,* (A)_zzk

Theorem 4.1.5. Let i € N and F be an h-transverse, horizontal and non-singular fan. Let
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4.1. Universal series in genus 0

A€ D(F) and s € {0,...,smax(A,0)}. If (A, s) satisfies

A > 20i+2)
e~®(A) > i+2s
ef®(A) > i+ (a(A) - |a(A)/2] + 1)ds

then

(GO(A> 8)), = R(y(A)a X(A)v 3)'

Proof. Let i, ¥, A and s be as in the hypothesis. We look for a formula for (Gy(A, s));. We will
use the pairing {{1,2},...,{2s — 1,2s}} of order s. We use the shortcuts (a,e*>, e, x) =
(a(A),e™®(A),e™(A), x(A)).

Figure 4.3 — Overall shape for D.

By lemma 2.2.26 the order is total on the vertices of any diagram D having Newton polygon
A, genus 0 and codegree at most ¢ ; we denote them by v; < - -+ < v,. Any such diagram D has
the shape of figure 4.3 : it can be entirely described by the data of the vectors u,% € N* and of
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Chapter 4 — Generating series in genus 0

the functions R, L, hence we will use the notation D = (u,u, R, L).

o0

Since e~ > i + 2s then for any compatible marking m and any j < 2s we have m~1(j) €

E=°°(D). In particular, the multiplicity of (D, m) does not depend on m and is just

pea(D) = [ [w(e).
eeEy

We then have

(Go(A, 8))i = > v(D){uBa(D))i—codeg(D)
D

where the sum runs over the floor diagrams of Newton polygon A, genus 0 and codegree at most
i, and where (D) is the number of markings of D compatible with S. For D = (u, %, R, L) this

number only depends on u and % and is

v(D) = Z (;)y>1(e_°°,2,u,S)I/>1(e+°°,2,ﬁ,0).

Sed(s)
By lemma 2.2.29 and lemma 4.1.19 its multiplicity gives
(NBG(D)>i—COdeg(D) = (I)i—codeg(D) (a - 1)

which is also independent of R and L. Thus, to compute (Go(A, s)); we need to determine how
many couples (R, L) are possible and then sum over (u,%). Here, x*(A) = x — 2 so by lemma

4.1.4 the number of possible couples (R, L) is

i Z p(kl) .. -p(kx—4)-

k=0 ki+-tky_a=k

Once (R, L) is chosen and contributes k to the codegree, it remains to sum over (u, @) such

that codeg(u + @) < i —k, i.e. u+ U € C;_. We can now compute

<G0(A7 3)>1 = Z V(®)<NBG(D)>i—codeg(D)

D
A
= p(kl) . -p(kx—4) Z V(D)q)i—k—codeg(u+a) (a‘ - 1)
k=0 ki4-tky—a=k u+ueC_p
% i—k
= Z Z p(k1) ... p(ky—4) Z Z v(D)®i_p—j(a—1)
k=0 Fki+-+ky—a=k =1 utueB;

which shows that (Go(A, s)); coincides with the degree ¢ coefficient of the product of :
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4.1. Universal series in genus 0

> the generating series of Z p(k1)...p(ky—4) | , which is PX=* by definition,
ity —a=k X

> the generating series of ( Z V(D)) , which is B¥A¢” €™ ~2s p4 by lemma 4.1.16,
u+ﬂ€Bk k

> the generating series of (®x(a — 1)), which is 4222 by lemma 4.1.18.
Since y = e~ + €7 + 2a, this product is
Ay—2—2sBsPX

and its degree 7 coefficient is the polynomial P; by definition. O

4.1.2 The blow-up trick and the case of CP?

Let F be a fan. Let w and v be two primitive generators of two consecutive rays of F. Consider
F be the fan constructed from F by adding a ray generated by u+ v. We say that Fisa blow-up
of . This terminology comes from toric geometry : the surface Xz is the blow-up of X5 at one
point. At the level of the dual polygons, any A € D(¥) is obtained by cutting off a corner of a
A € D(9), and is said to be a blow-up of A. Note that to determine A we need to choose the
integral length of the side we add to A.

In this subsection we determine how do the coefficients of small codegrees of tropical refined
invariant change when blowing-up a polygon. The main result is proposition 4.1.6 which estab-
lishes a link between (Go(A, s)); and (Go(A, s);. This relation allows us to determine in corollary
4.1.8 a formula for the coefficients of small codegree of the tropical refined invariant associated

to the surface CPP?, which was not included in the range of surfaces handled in theorem 4.1.5.

Let ¢ € N. For A a polygon with dual fan ¥ and s an integer we consider the following
conditions :
A > 2(i+2)
(*¥)ig e®(A) > i+2s .
e~®(A) > i+ (a(A)—|a(A)/2] +1)ds

Proposition 4.1.6. Let A be an h-transverse and mon-singular polygon, and A be a blow-up
at the bottom right corner. We depict their bottom right corners in figure 4.4. There exists a
series C such that if (A, s) and (A, s) both satisfy (x); then (Go(A, s)); s given by the degree i
coefficient of

AT=@®) =2 psp2 o
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and (Go(A, s)); is given by the degree i coefficient of

Ae_‘x’(Z)—QsBsPS x C.

(L,n)

Figure 4.4 — The polygons A (left) and A (right).

Proof. Let a = a(A) = a(A) and e~ = e~®(A). We denote by ay, the integer length of the
edge of the right side of A having outgoing normal vector (1,n). We denote by b the integer
length we cut off from the sides of A to obtain A, see figure 4.4. We will use the pairing
{{1,2},...,{2s — 1,2s}} of order s.

We will first make a calculation for A. Then we will explain how to construct a correspondence
between the floor diagrams of genus 0 with Newton polygon A and the ones with Newton polygon

5, allowing us to make a calculation for A.

Calculation for A. Because A is large enough, any diagram D that contributes to (Go(4, s));
has a unique minimal vertex by lemma 2.2.26. By lemma 2.2.28, D has a total order on its
a —1—1 lowest vertices. It may have several maximal vertices that we hide in a very top part 7,
see figure 4.5. By remark 4.1.2; the function R is constant on the a,, —i lowest vertices. Moreover,

we have the following inequalities :
itl<bti< VTHJ <a—i—1.

We can cut D into two parts, see figure 4.5 :

> a bottom part : we denote by D~ the diagram consisting of the sources, the vertices from

v1 10 V| (a4b)/2) and the bounded edges between them ;

> a top part : we denote by DT the remaining of D ; it has a — |(a + b)/2] vertices.

This leads to consider the following sets. Let k € {0,...,i}. We define
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@-i—

~—~—

Uq

Figure 4.5 — Decomposition of a diagram.

> Bj(A) the set of all possible bottom parts D~ having | (a + b)/2] vertices and of codegree
k. Encoding how the sources are attached to the vertices we establish a bijection between
By(A) and By, : each D~ can be represented by a u € By.

> T;_;(A) the set of all possible top parts DT having a— | (a + b)/2] vertices and of codegree
at most 7 — k.

As explained above, if C;(A) is the set of floor diagrams of Newton polygon A, genus 0 and

codegree at most ¢ then there is a bijection

Ci(A) = | | Bx x Ti—i(A).
k=0
The number of markings of a diagram D can be calculated separately on its top and bottom

parts. If D is represented by (u,DV) € By X T;_;(A), we denote by v(D*) the number of
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markings of the top part D, and the number of markings of the bottom part is

Z <;> v=1(e”® —2s,2,u,5).

Sed(s)

o0

Moreover, because e~ > i + 2s then for any compatible marking m and any j < 2s one has

m~1(j) € E=°°(D). Hence the multiplicity of (D, m) does not depend on m and is

pBa(u, DT) = ppa(D) = ] [w(e)?
eeEy

= I weEPx [ [eE?

e€EEQNE(D™) e€EyNE(DY)

= ppc (D7) x ppa (D).

By lemmas 2.2.29 and 4.1.19 it gives

</J’BG(®)>Z'—k—codeg(D+) = Z <IU‘BG(D+)>11 (/’LBG(‘D_»iz
i1+i2=i—k—codeg(D1)

= > (uBa(DF))i, @i ([(a+b)/2] — 1)

i1+i2=i—k—codeg(D+)
and this is independent of u. Hence if we set

ak(e—oo,s) = Z Z <;>V21(e_oo _23"“/72)5),

u€By, Sed(s)

Br(a,b) = > v(DF) > (Ba(DF))i iy (L(a +b)/2] — 1),

D+eTy(A) i1+ia=k—codeg(D+)

then we get

(GA(O; 3)>1 = Z V(D)<MBG(®)>i—COdeg('D)
codeg(D)<i

= i Z Z <;> V21(6_oo —25,2,u, S) Z V(D+)<#’BG(U7 D-’-))i—k—codeg(‘)’.)*’)

k=0 u€ By, Sed(s) DHeT;—x(A)

= Z ar(e™, s)Bi—x(a,b)
k=0

which shows that (Ga(0;s)); is the degree i coefficient of the product of
> the generating series of (ax(e~%°, s))x which is A"~ ~2°B*P? by lemma 4.1.16,

> the generating series of (8x(a, b)) that we will denote by C.
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Calculation for A. Now let’s have a look at what happens for A. Let k € {0,...,i} and
j € {0,...,i — k} be integers, let v € By be a vector of codegree k, and let D = (u, D7) €
B; x Tj_p_j(A) be a diagram with Newton polygon A, genus 0 and codegree at most i — k.

Because b > 2(i + 2) we can see v as a vector in N°. Consider 7 € N the vector given by

m—1

Ym = Z (’)’b—é + 1), ie. Ym =Y-mt+1—Vo—m —1
=0

with the convention 49 = 0. Note that we have 71 > 1, 4, > Ym—1 and

b
codeg(y) = > _ (Fim — m).
m=1
In particular, 7, < b+ i otherwise we would have codeg(y) > k. This implies 7, < a, — % and

so R(v; ) =n by lemma 4.1.1.

Consider the diagram D obtained from D with the following process : set R(v; ) =n —1
for any 1 < m < b, adjust the weight of the bounded edges and remove enough sources to the
minimal vertex of D to satisfy the divergence condition. Then D, € CZ(E) ; its codegree is
codeg(D,) = codeg(D) + codeg(y) < i. Note that we did not change anything in the top part

Dt of D.

Conversely let De Cl(ﬁ) By lemmas 2.2.26 and 2.2.28, D admits a total order on its a—i—1
lowest vertices. The diagram D has b vertices with R(v) = n— 1. Suppose there is such a vertex
with more than b+ vertices below it. Then at least i + 1 of the vertices below it have R(v) = n.
Performing i 4+ 1 operations BF we see that codeg(@) > i+ 1, a contradiction. Thus all the
vertices with R(v) = n — 1 are between v; and vp,;. We denote by ¥ € N’ the vector whose
coordinates are the indices of the vertices with R(v) = n — 1, and let v € N® be defined by
Ym = Yo—m+1 — Yo—m — 1. Then

b
k := codeg(y) = Y (Jm — m) < codeg(D) < i

m=1

and D = D, where D is the diagram of C;_x(A) obtained by setting R(v; ) = n for any

1 < m < b, then adjusting the weights and adding enough sources to v;.

In other words, there is a bijection

Cz(ﬁ) ~ Iil By x Cz_k(A)
k=0

and a floor diagram with Newton polygon 5, genus 0 and codegree at most 7 can be represented
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as
D =D, = (7,D) € By x Ci_(A)

for some 1 < k < 4. Its codegree is
codeg(D) = codeg(y) + codeg(D) = k + codeg(D)
The diagram D is itself represented by
D = (u,DF) € Bj x T;_—j(A)
for some 1 < j<i—k,so
D = (y,u, D) € By x Bj x Tj_g_;(A).

The number of markings can be computed separately on a bottom part D- = (7,u) and on a
top part D+ = D+, Moreover, by lemma 2.2.29 all the edges of D~ have a weight greater than
i — codeg(D) so that in the expression

5(0;5)) 1_2 > Z > ( )V>1(e_°°—b—2s,2,u,5’)

k=0~v€By, j=0u€eB; Sed(s)

Z V(D+)<M(7a u, D+)>i—k—j—codeg(®+)
DHeT; k—;(A)

the inner sum does not depend neither on u nor on v by lemma 4.1.19. Hence, the sum over
v € By, contributes p(k) by lemma 4.1.15, and we get

%(055)) Z—X:p(k)X:on * —b,5)Bi—k—j(a,b)

which shows that (G (0; s)); is the degree ¢ coefficient of the product of

> the generating series of (p(k))x which is P by definition,
> the generating series of (o (e~ — b, s))x which is A°™~ ~°=25BP? by lemma 4.1.16,
> the generating series of (8x(a, b)) which is C.

Since e=®(A) = e~ — b we can conclude. O

Corollary 4.1.7. With the same notations as in proposition 4.1.6, let i, be an integer such that
both (A, s) and (A, s) satisfy (x)i,.. The following are equivalent.
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4.1. Universal series in genus 0

(1) For any 1€ {Oa oo 77:m}7 <G0(A7 5)>’L = P’L(y(A)’ X(A)a S);
(2) For anyi € {0,...,im}, (Go(A, s))i = Pi(y(A), x(A), 5).
Proof. For any 0 < i < iy,, both (A, s) and (5, s) satisfy (x);. Hence by definition of (P;); and
proposition 4.1.6 one has the following equivalences :
(1) & AT 7 B)72psp2 5 0 = AVA) 72725 ps pxX(&) mod gim
N Ae‘°°(Z)+b—2sBsP3 x O = Ay(Z)+b—2—2sBst(A)+1 mod '™
& AT @)-2peps y 0 = gVB)-2-20pspX(R)  oq gin

< (2).

This can be used to compute (Go(A, s)); when the underlying toric surface is CP2.

Corollary 4.1.8. Let F be the fan whose rays are generated by (—1,0), (0,—1) and (1,1). For

anyi €N, any A € D(F) and s € {0,. .., smax(A,0)}, if

A > 5(i+1)+6
A > i+2s

then one has

(Go(A,9))i = Pi(y(A), 3, ).

(0,a) (0,a)

(a—b,b) (Ovai_b) (baa_b)

[
(O: 0) (aa O) (07 O) (a - b: 0) (O: 0) (av 0)

Figure 4.6 — The polygons A, (left) and A,y (middle) and A, = Ag, a_p (right).

Proof. A polygon A € D(¥) is a A, for some a € N*| see figure 4.6. Let i, be the maximal

integer such that
{ A > 5(ip+1)+6

A > i, +2s
and b be an integer such that

a+2(im5+1)+1 <b< a—2(z’m2+1)—1.

101



Chapter 4 — Generating series in genus 0

We consider the polygon A, of figure 4.6. The hypotheses imply that for any ¢ € {1,...,in,}

one has
a,ba—b > 2(i+2)
a,a—b > i+2s

a

,a—b > 1 —
a,a 1+ a {2

|+1

so Ag and A, both satisfy the condition (x); and we can apply corollary 4.1.7 with A = A,
and A = Agp. We will check that the assertion (2) of corollary 4.1.7 is true, and deduce that
(1) also holds.

The polygon A, ; is congruent to A;’b, see figure 4.6, so that Go(Aqp,s) = G’O(A;b, s). Note
also that y(Agp) = y(Ag ;) and x(Aqp) = x(A,,) = 4. The hypotheses imply that for any

i €{1,...,im} one has

a,ba—b > 2(i+2)

a > 1+2s
a+b
2

ab > i+a—b—{ J+1

hence by theorem 4.1.5 applied to A;,b one has

<GO( :],,b7 3)>z = Pz'(y(Afz,b)a X(A:z,b)7 3) = P’i(y(Ag,b)a 47 3)

and so (Ga,,(0;8))i = P;(y(Aqap),4,8) for any i € {1,...,4,,}. Hence the point (2) of corollary
4.1.7 is true and we deduce that (1) also holds. In particular, one has

<G0(Aa7 3)>Z = ]Di(y(Aa)’ X(A)’ 3) = F’i(y(Aa)a 3, 3)

for any i € {0,...,%im}. O

4.1.3 The non-singular case

With the blow-up trick described in subsection 4.1.2 as a new ingredient, we can generalize

theorem 4.1.5 and consider fans which are not horizontal.

Lemma 4.1.9. Let F be a non-singular and h-transverse fan. One of the following is true.

(1) The fan F is congruent to an h-transverse and horizontal fan.

(2) The fan F has a single vertical ray. In that case F is obtained from a non-singular and

h-transverse fan with 8 rays performing several blow-ups.

Proof. If the fan J is horizontal it obvisouly fits into point (1). We assume now that JF is not

horizontal.
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4.1. Universal series in genus 0

Assume first that F has no vertical ray. Let n € N be the biggest integer such that F has a
ray generated by (+1,+n). By symmetries we can only consider the case of (1,n). Necessarily
n > 0 otherwise J is not complete.

Let uq,...,us be the primitive generators of the rays of &, taken in the anticlockwise direction
and with u; = (1,n). Write uz = (a,b). Because F is h-transverse one has a € {0,1,—1}. By
hypothesis a # 0, and a # 1 otherwise b would be greater than n. Hence us = (—1,b) and one
has b+ n = 1 because ¥ is non-singular, so ug = (—1,1 — n).

Write us = (¢, d). By hypothesis one has ¢ = +£1 and —d+ (n — 1) = 1, hence uz = (-1, —n)
or ug = (1,n —2). If ug = (=1, —n) = —u; then with the same argument one has us = —ug and
there is no more ray, i.e. k = 4. If ug3 = (1, n— 2) then the only possibility for u4 is uy = (1,n—1)

and there is no more ray, i.e. k = 4. This gives two possible fans we show on figure 4.7a. Applying

1-n 1 1
4.7b, so (1) is true.

-1 -1 -1
the matrices < " ) and (n 0 ) we see these fans are congruent to the fans of figure

(1,m)
(1,7n) 1,n—1)
(1,n—-1) (1,n—2)

(_17 1- n)

(_17_77‘) (_171 _n)

(a) The two possible fans without vertical ray...

(0,1)

(-1,1) (1,1)

(b) ...are congruent to these.

Figure 4.7

Assume now that F has a single vertical ray. By symmetry we can assume that this ray
is generated by (0,—1). Let n € N be the biggest integer such that F has a ray generated by
(£1,n). By symmetry we can only consider the case of (1,7n). Necessarily n > 0 otherwise F is

not complete.
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Chapter 4 — Generating series in genus 0

Let w1, ..., ux be the primitive generators of the rays of F, taken in the anticlockwise direction
and with u; = (1,n). As previously one has us = (—1,1 — n). The sequence of generators
afterwards is of the form u; = (—=1,3 —n —j) for 3 < j < £ —1 for some 3 < £ < k, and
ug = (0,—1). The k — £ remaining generators are necessarily the vectors u; = (1,n —k +j — 1)
for £+ 1 < j < k. Hence J is the fan of figure 4.8a. Consider the non-singular and h-transverse
fan F’ depicted in figure 4.8b. Then F can be obtained from F performing blow-ups, and thus
(2) is true. O

(1,n)

-1,1—
( " (0,-1)
L] ‘ L]
L] l L]
(a) The fan F. (b) The fan F'.

Figure 4.8

If A and A’ are congruent then Go(A, s) = Gar(0;s). Hence by the previous lemma we can
only consider polygons having one or two horizontal sides, i.e. fans having one or two vertical

rays.

Theorem 4.1.10. Let i € N and F be a non-singular and h-transverse fan. Let A € D(F) and
s €{0,...,smax(A,0)}. If

(1) the fan F is horizontal and

A > 2(i+2)
et®(A) > i+ (a(A) —|a(A)/2] + 1)ds
e"®(A) > max(i+2s,i+ (a(A) — |a(A)/2] + 1)dy)

or
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2. the fan F has a single vertical ray generated by (0,¢), with € € {—1,1}, and

A > 20i+2)
a(A) > max(i+2s,5(i+ 1) + 6)
ef®(A) > max(i+2s,5(+ 1)+ 6,7+ (a(A) — [a(A)/2] + 1)dy)

then one has

(GO(A7 3))2 = Pz(y(A)a X(A)v 3)'

Proof. In case (1) we can apply theorem 4.1.5.

In case (2), by lemma 4.1.9 and up to symmetries the fan JF is obtained by several blow-ups
from the fan of figure 4.8b. This fan is congruent to the fan whose rays are generated by (—1,0),
(0,—1) and (1, 1), which defines CP?. Hence we can use corollary 4.1.8, invariance under GLy(Z)

and translations, and several applications of corollary 4.1.7 to conclude. O

4.1.4 The case of singular surfaces

The results of sections 4.1.1 and 4.1.2 can be extended to singular surfaces. Recall that for
a polygon A, we denote by ng(A) its number of vertices of index k. Recall also that we denote

by (Qi(y,s,n1,n2,...)); the coefficients of the formal series

> Qi(y, s,n1,ng,...)a" = BSAY27% [ P(z")™.

>0 k>0
Theorem 4.1.5 generalizes as follows.

Theorem 4.1.11. Let i € N and F be an h-transverse and horizontal fan. Let A € D(F) and
s€{0,...,8max(A,0)}. If (A, s) satisfies

A > 2i+2)
e®(A) > i+2s
et®(A) > i+ (a(A)— [a(A)/2] + 1)dy

then
(GO(A’ s))ﬁ = Qz(y(A)7 s, M1 (A)7 cee )

Remark 4.1.12. If ng(A) = 0 unless k = 1, the product over k is just Px(A) and we recover
theorem 4.1.5.

Remark 4.1.13. For k > 2, ng(A) is the number of singularities of X of index k, see [LO18,
proposition A.1]. Hence the term taking into account the singularities []-o P(z*)™ is the same
as the one in [LO18, corollary 1.10].
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Chapter 4 — Generating series in genus 0

Proof. Let m; = n1(A) — 4 and my, = ng(A) for k > 2. For a vertex of index k > 1 of A, the
adjacent edges have outward normal vectors (1,q) and (1,q + k) for some g € Z. Hence in the
choice of the function R for the construction of a diagram D (see proof of lemma 4.1.4) the

vector 4 will contribute to the codegree by
i
> k(3 —4)
j=1

and if we want codeg(D) < ¢ then the corresponding vector « will satisfy
i
codeg(vy) < s

Thereby, to choose the functions R and L we need, for every k > 1, to choose my vectors

'y,i, 7 of codegree at most i/k and such that

mpg .
Z Z codeg(v}) < i.

k>1j=1

If the divergence contributes c to the codegree of D, then by lemma 4.1.15 the number of choices

for (R,L) is

citeat=c k21 jitetim, =cx/k

where ¢, is the contribution of the vertices of index k. The corresponding generating series is
H P(J:k)mk
k=1

and the rest of the proof is as in theorem 4.1.5. O

If ¥ is a fan having two consecutive rays primitively generated by u and v, we construct
a new fan ¥ from F by adding a ray generated by mu + v for some m > 1. In other words,
we replace a 2-dimensional cone of F of index | det(u,v)| by two 2-dimensional cones of indices
| det(u, v)| and m. Proposition 4.1.6 deals with the case m = 1 and generalizes as follows. Recall

the conditions
A > 2(i+2)
(*¥)ig e®(A) > i+2s .
e~®(A) > i+ (a(A) —|a(A)/2] +1)dy

Proposition 4.1.14. Let A be an h-transverse polygon and A bea blow-up at the bottom right

corner. We depict their bottom right corners in figure 4.9. There exists a series C such that if
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(A, s) and (A, s) both satisfy (x); then (Go(A, s)); is given by the degree i coefficient of
Ae_‘x’(A)—ZsBsPZ x C,
and (G(0;8)); is given by the degree i coefficient of

A¢™>@)=25 gs p2p(zm) % (.

Figure 4.9 — The polygons A (left) and A (right).

Proof. 1t is the same proof as proposition 4.1.6, except that to pass from a floor diagram with
Newton polygon A to a floor diagram with Newton polygon A we drop the divergence of some
vertices by m. Hence, in the computations for A we need to consider Y € Bi/m, where By, = &

if m does not divide k. We will end up with
i PN
(G50 = () S ayle™ ~ b, 5)Biis(an)
k=0 =0

which shows that (G (0; s)); is the degree i coefficient of the product of
> the generating series of (p(k/m))x which is P(z™) by definition,
> the generating series of (o (e~ — bm, s)), which is A¢ "~ ~™~25Bs P2 by lemma 4.1.16,
> the generating series of (8x(an))x which is C.

Since e=®(A) = e~ — bm we conclude. O

We could try to generalize theorem 4.1.10 to singular surfaces, but some difficulties appear.

> If A is an h-transverse polygon with one horizontal edge, it can be obtained by several

transformations described in proposition 4.1.14 starting from a polygon congruent to the
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triangle defining a weighted projective plane CP(1,1,n). Hence we can link the generating
series for A with the one for CP(1,1,n), but still we do not know how to compute explicitly
the latter, although we conjecture it fits in the general form of theorem 4.1.11.

> For an h-transverse and non-horizontal polygon, there is no reason for it to be congruent
to an h-transverse polygon with one horizontal edge (leading to the previous case) or with
two horizontal edges (leading to the case of theorem 4.1.11). Hence we are not able to say
anything for these polygons, but we conjecture they fit in the general form of theorem
4.1.11.

4.1.5 Some technical lemmas

In this section we prove few lemmas regarding the quantities we handled in section 4.1. We

refer to the beginning of section 4.1 for the notations.

Lemma 4.1.15. Let i € N. The cardinality of B; is p(i), the number of partitions of i.

Proof. Let A = (A1,...,A,) be a partition of 7. For 1 < k < 7 let wg(A\) be the number of k
in the sequence A. Then (wi(A),...,w;(A)) € B;. Conversely, any w € B; defines a partition
Aw) = (A1,...,A\p) where A\j =k for w; + - + w1 + 1 < j < wp+ -+ + wy. d

Lemma 4.1.16. (1) Leta,p € N and S € N. One has

N(a,p, S) = A*PP [ (a%*)5.
k>0

(2) Let s,a,p € N. One has

3 <S>N(a,p,S)=A“Bst.
\S

Sed(s

Proof. (1) We will prove the following formula by induction over n :

n—1 (wk)%'k (n1)
N(a,p,S) = A x [] a_ap (1 —=2")*T" 0P x No(a, p, 5)
k=1

where

1—2x )sumn(u—ZS)

— deg,,
Nn(aapa S) = Z V}n(a,p,’u,’S)xco egn (1) (1 —

(uny---)
Note that N7 = N so the formula is true for n = 1. Assume that the formula holds for

some n > 1. Writing v, as a shortcut for v,(a,p,u, S) and using the binomial formula we
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get
Nn(a,p, S)
—285,
1—1 sumy, 41 (u—25) " — gt Un n
= Z V>n+1wCOdegn+l(U) (1 _ xn) Z Un 1—gn (1"”)23”
(unt1,.0) Up >0
() ( Lm@ \n28) (]_gua\ S es)
_ codeg,, , 1 (u n n
—(uz )V>n+193 1 (1—95") 1 (")
ntyene
05 1 _ xn+1 a+np
= (z")™" T Nnt1(a,p, )

which gives the desired formula for N(a, p, S).

(2) This results from the previous point and the multinomial formula :

> (;) N(a,p,S) = A*PP > (;) [ (=) = B=A*PP.
)

Sed(s) Sed(s k>0

0

It is shown in [BJP22, lemma 3.5] that &, is a polynomial of degree £ in k. Actually we can

give an explicit formula for this polynomial.

Lemma 4.1.17. For k,£ € N one has

Bo(k) = (Zk +£e — 1).

Proof. Here is a combinatorial proof. By definition,

k k
k)= Y. [ls= > TIG+0D.

i1 +---i-;;k1=k+z j=1 i1 +~i;-|2-(z')k=e j=1
The interpretation is the following. We first need to choose a decomposition of £ into k parts.
This is the same as taking k£ + ¢ — 1 white boxes in line and choosing k — 1 of them to be black.
The black boxes determine k groups of 41, ...,4; white boxes. We add one blue box in each of
these groups. Then H;?:l (¢; +1) is the number of ways of choosing the places of the blue boxes.
This is the same as taking 2k + £ — 1 whites boxes, then choosing and coloring 2k — 1 of them
alternately blue and black. Thus

2k+4-1 2k+4-1
@g(k)=<2k_l)=< ) ) 0
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Chapter 4 — Generating series in genus 0

For ¢ € N we can thus extend &, to a function t € R — ®y(t).
Corollary 4.1.18. Let t € R. The generating series of (®4(t))een s AZ.

Proof. This comes from the fact that (/') = (—=1)¢("7’) (see the upper negation in [GKP94,
table 174]) and from the binomial formula. O

Lemma 4.1.19 ([BJP22, corollary 3.6]). Let i,k € N and ay,...,ar > i be integers. One has

k
<H[aj]2> = ®4(k).
=

4.2 Genus 0 asymptotic refined invariant

In this section we compute the genus 0 asymptotic refined invariant for any h-transverse,
non-singular and horizontal polygon, i.e. we give another proof of theorem 4.1.5 but working
with the asymptotic S-multiplicity. The interest of this new proof is that it presents methods
that can be applied when dealing with genus 1 in chapter 5. However, the previous section is not
completely included is this one. Indeed, in this section we will not prove any result concerning
non-horizontal polygons ; in particular the invariants related to CP? will not be handled here.
This is because the method we use requires to have a total order on the vertices of the floor
diagrams. To remove the horizontal hypothesis, we could use the same techniques as in section
4.1.2, but there is no new idea. For the same reason we will not deal with singular surfaces.

This section is divided as follows. We first show in section 4.2.1 what become the results
of section 4.1 when we do not consider the denominators. The rest of the section is devoted to
a new proof of theorem 4.1.5. The study is divided in two parts. In section 4.2.2 we look at
Hirzebruch surfaces and introduce words, which are a way of presenting marked floor diagrams.
We then go into the case of h-transverse, non-singular and horizontal surfaces in section 4.2.3
and show how to manage the non-constant divergence function of the floor diagrams in this

setting.

4.2.1 Reformulation of theorems of section 4.1

We give in this section a reformulation of the results of section 4.1, in terms of Gj(A, s)
and asymptotic refined invariants instead of Go(4, s). We first look at an example to see what

happens.

Ezample 4.2.1. We will compute by hand ARg”; mod 23, where F,, is the fan of figure 2.1b
which defines the Hirzebruch surface IF,,. We thus consider the trapezoid A, of figure 2.3a, and
look at floor diagrams of genus 0 with Newton polygon A”,. By lemmas of section 2.2.3 we

can only consider diagrams with a total order on their vertices and with large weights on their
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bounded edges. By remark 2.3.3, if we consider the pairing S = {{1,2},...,{2s — 1,2s}} then
the multiplicity of a marked floor diagram is

1 s
#E(D,m) — J;COdeg(D)(l _ .’E)an+2b (i_ﬁ) mod z3.

Hence to compute (AR((J;’;)Z- we look at the diagrams D with codeg(D) < %, and for a diagram of
codegree k we are interested in the coefficient of degree ¢ — k of

ek (D,m) = (1 — )21 + 2)° mod z°.

In particular if & = ¢ this coefficient is 1 and we only need to determine the number of markings
compatible with S.

> For the constant term of the asymptotic invariant only the unique floor diagram of codegree
0 contributes. This diagram has a single marking, hence (ARg,’;)O =1.

b—1 b
~ = ~ =
~~ ~—

an—+b an+b—1

—~~

a) (b)
Figure 4.10 — The floor diagrams with Newton polygon Ag,b and codegree 1.

> We now look at the degree 1 term. The degree 1 term of the multiplicity of the floor
diagram of codgree 0 is —(an + 2b) + 2s.
The floor diagrams of codegree 1 are depicted on figure 4.10. The one of figure 4.10a has
b+ 2 markings, all compatible with the pairing S, and the degree 1 term of its multiplicity
is 1. The one of figure 4.10b has an + b+ 2 markings but only an + b+ 2 — 2s of them are
compatible with the pairing S. Indeed, the infinite edge on the right cannot be marked by
k for 1 < k < 2s. The degree 1 term of the multiplicity of the diagram is 1. In total the
codegree 1 diagrams contribute an + 2b + 4 — 2s to the degree 1 term of the asymptotic
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invariant.

Hence one has (ARO?,’;):[ =4.

%ﬁ@
R

an+b an+b—2 an+b an+b—1 an+b—1
(a) (b) () (d) ()
Figure 4.11 — The floor diagrams with Newton polygon AZ’b and codegree 2.

> Let’s look at the degree 2 term. The degree 2 coefficient of the multiplicity of the codegree
0 diagram is (“"§%") — 2s(an + 2b) + 2s2.
The floor diagram of codegree 1 of figure 4.10a contributes (b+ 2)(—(an + 2b) + 2s), where
b+ 2 is the number of compatible markings and —(an + 2b) + 2s is the degree 1 term of
the multiplicity. The one of figure 4.10b contributes (an + b+ 2 — 2s)(—(an + 2b) + 2s).
The floor diagrams of codegree 2 are depicted in figure 4.11. Their contributions are re-
spectively (°}?) for 4.11a, (“"t*1272%) 4 5 for 4.11b, b+ 4 for 4.11c, an + b+ 4 — 2s for
4.11d and (b+ 2)(an + b+ 2 — 2s) for 4.11e.

Hence one has (ARg’T;)=14.

These calculations show ARg,’; = 1+4x+142% mod z3. Note that since P(z) = 1+ z + 222
mod 3, one has P(z)* = 1+ 4z + 1422 mod z3, where 4 = X(AZ,b)- In particular, this does

not depend anymore neither on y(A”,) nor on s.

When looking at the genus 0 asymptotic refined invariant, this independence with respect

to y(A) and s is true in general.

Theorem 4.2.2. Let F be an h-transverse fan and A € D(F). Let s € {0,.. ., Smax(4,0)} and S

be a pairing of order s.
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(1) If F is non-singular, let i,, be the mazimal integer such that (A,s) satisfies one of the
conditions (1) or (2) of theorem 4.1.10. One has

G5(A, s)(z) = P(z)X®)  mod z'm

In particular it does not depend on y(A) nor on s. In other words, the asymptotic refined
tnvariant s
AR (A) = P(z)X).

(2) If F has two vertical rays, let i, be the mazimal integer such that (A,s) satisfies the

conditions of theorem 4.1.11. One has

G5(A,3)(z) = ] P(a¥)™™)  mod z'm

k>1

In particular it does not depend on y(A) nor on s. In other words, the asymptotic refined
tnvariant is
AR] (A) = ] P(a*)™@).
k>1

Proof. Recall the transformation A — A described in section 2.3.2.

(1) Theorem 4.1.10 shows that
@O(A, s)(z) = AY(R)=2=2s s px(A) o gim
i.e. by proposition 2.3.2
AVOBBIGE(A 5) () = AN 22BN mod g

hence
(A, s)(z) = PXA) mod z'm

(2) Theorem 4.1.11 shows that

Go(A, 5)(z) = AR =272Bs [T P(zF)™®) mod z'm
k>1

which leads to

Gy(A, 8)(z) = H P(zF)™A)  mod zim
k>1
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In other words, in case (1) the degree i coefficient of G§(A,s) is given by a polynomial
P € N[x] of degree i, and the generating series of (P}); is PX. In case (2), the degree ¢
coefficient of G§(A, s) is given by a polynomial Q} € N[ny,no,...] and the generating series of
(Q)i is TIx>1 P(z*)™. These expressions are easier than the ones of theorems 4.1.10 and 4.1.11.

In particular, it is remarkable that they do not depend neither on y nor on s.

The rest of this chapter is dedicated to a proof of item (1) of theorem 4.2.2 by directly
manipulating Gj(4, s) instead of Go(4, s).

4.2.2 The case of Hirzebruch surfaces

We now aim at proving the existence and a formula for asymptotic refined invariants. In this
section, we deal with the Hirzebruch case, i.e. we investigate formula for the asymptotic invariant
ARg, % associated to the fan F, of figure 2.1b. To do so, we will compute G§(A7 ,, s) modulo Tttt
for some i, before letting ¢ goes to +o0o0. Hence we only look at floor diagrams of codegree at
most 7. In all this section and the following, we fix the pairing S = {{1,2},...,{2s — 1,2s}} of

order s.

As shown in theorem 4.1.5 or in [BJP22, lemma 4.1], if one cares about the asymptotic of
coeflicients of fixed degree of the refined invariant, only a handful of diagrams contribute. In the
Hirzebruch and genus 0 case, provided that a > ¢, b > ¢ and an+b > i+ 2s any marked diagram

contributing to a coefficient of degree at most i of G§(A” ,, s) satisfies the following :

> the floors are totally ordered in the diagram,

> some of the sources (resp. sinks) might not be attached to the bottom (resp. top) floor but

to another one,

> the marking of the bottom floor is at least 2s+1, and for any {2j—1,25} € S, the elements
paired by {25 — 1,2;} are infinite edges adjacent to the same floor.

top

J

a diagram D comes from these ends not attached to the extremal floors. It is equal to

Let u;"’t (resp. u; ") be the number of sources (resp. sinks) that skip j floors. The codegree of

+o00
codeg(D) = Zj(u;(’p +u2%).
j=1
Note that this sum is actually finite. As the floors are totally ordered, each diagram is char-
acterized by the numbers (u;.°p, u}"’t). We then have to account for the markings. Rather than
enumerating the diagrams and count their markings as done in section 4.1, we directly count

the marked diagrams with marking compatible with S, encoding them with words.
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From marked diagrams to words

We consider words over the alphabet {f,e,bj,t;};en. The letters used stand for “floor”,
“edge/elevator”, “bottom end” and “top end”. The indices of the letters refer to the number of
floors they skip. We first explain how to get a word W (D, m) from a genus 0 marked diagram
(D, m) compatible with S whose floors are totally ordered. Let Ag,b be the Newton polygon of
the diagram. The floors of D are labelled from 1 to a. The letters of the word W (D, m) are in

ordered correspondence with the marked points of (D, m) with the following rule :

> for a marked point on a floor, the letter is f,
> for a marked point on a bounded edge, the letter is e,
> for a marked point on a top end that skips j > 0 floors, the letter is t;,

> for a marked point on a bottom end that skips j > 0 floors, the letter is b;.

Definition 4.2.3. We say that a word W = wiws --- is s-compatible if for any 1 < j < s we

have W2j_1 = W2j.

(D1,m1) (D2, m2)

Figure 4.12 — The two marked diagrams of example 4.2.4.

Example 4.2.4. On figure 4.12, we depict two genus 0 marked diagrams. On the drawing, the
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dots represent the marking of the diagram. Their corresponding words are

W(Dl, ml) = bgbgb1 bgfeb: feftgty,
W(D2, mg) = bgbofbyefefeft; totg.

Both words are 1-compatible but not 2-compatible. Note that it is possible to recover the marked
diagrams from the words.

This correspondence between diagrams and words is in fact bijective provided we have some

assumptions on the words.

Proposition 4.2.5. Let (D,m) be a marked floor diagram of Newton polygon AZ,b compatible
with S, with codeg(D) < ¢ and an+b > i+ 2s. Then the word W (D, m) satisfies the following.

(i) Forgetting about the letters by and t., the word is
(fe)®~1 f = fefe - - - fef.

Moreover, there are an + b letters b, and b letters t,.

(it) Given a letter by, assume the word forgetting the e, t; and remaining b; is fPbf*™P, then

we have k > p.

(iit) Given a letter ty, assume the word forgetting the e, b; and remaining t; is f*Pt,fP, then

we have k > p.

(iv) The word is s-compatible.

Conversely, a word satisfying the above conditions yields a marked floor diagram compatible with
S and for which the floors are totally ordered.
The set of words satisfying the above conditions is denoted by W(A” . s).

Remark 4.2.6. A marked floor compatible with S will also be said s-compatible.

Proof. (i) The diagram has a floors and they are totally ordered, so that each floor is linked
to the next one by a unique edge. Thus forgetting about t, and b, we get fef - - - fef. The
numbers of floors as well as the number of ends in each direction are fixed by the Newton

polygon AZ’ b

(#2) In the word fPbyf% P, the marking of the end encoded by by lies between the floors p and
p+ 1. Thus, the end being a bottom end, it skips at least the first p floors and is attached
to a floor after the (p + 1)-th floor, so that k > p.

(#37) The reasoning is the same but with top ends instead of bottom ends.
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(tv) The first 2s marked points lie on ends because an + b > i + 2s and codeg(D) < i. As
the diagram is s-compatible, for any j < s the marked points 2j — 1 and 2j lie on ends
adjacent to the same floor. Thus, the word is also s-compatible.

For the converse construction, let W be a word satisfying (i) — (iv). We start with the ordered
graph having a vertices, each linked to the next one by a unique edge with a marking. For each
b; (resp. tj) we insert a bottom (resp. top) end attached to the floor j + 1 (resp. a — j) with a
marking lying at the corresponding place in the word. There is a unique way to add weights to
the bounded edges so that the diagram is balanced. Condition (7) ensures that the diagram has
the right number of floors and ends, and the conditions (i¢) and (#i¢) ensure that it is possible
to place the marking of an end on the latter. Condition (iv) ensures that the diagram is also

s-compatible. O

Words and codegrees

We define the codegree function on W(A?,, s) so that the codegree of a word matches the
codegree of the associated diagram. Let W be the set of all words on the considered alphabet,

which is a monoid. The codegree function is the restriction of the following morphism of monoids :

codeg: W — N
t;, bj = J
e, f — 0

and by construction we have codeg(D) = codeg(W (D, m)).

Ezample 4.2.7. We continue example 4.2.4. One has

codeg(W(D1,m1)) =04+04+14+04+1+0+ 0 =2 = codeg(D1),
codeg(W(Da,m2)) =04+0+1+4+140+ 0 =2 = codeg(D2).

Remark 4.2.8. The definition of W(A’a‘,b,s) allows the letters b, and t,. to interlace, meaning
there might be a t, before a b,. However, if a t, lies before a b, then all floors are skipped by at
least one of these two ends so that codeg(W (D, m)) > a. If we restrict to words of codegree at

most ¢ and if @ > 4, then this situation will not appear.

The following lemma describes the shape of the words that have a bounded codegree provided

the Newton polygon is large enough.

Lemma 4.2.9. Assume i > 1, a > 2i, and an +b > i+ 2s. The words in W(A?,,s) of codegree
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at most i have the following form :

i A
Bo lH fB§1)eB§2>] (fe)a2i l]‘[ rrgfl_jeTfﬁl_j] fTo
j=1 J=1

— BofB{"eBPB{eB( .. - fefefe - - T e TP FTNeT T,

where By and ng) (resp. Ty and Tgk) ) are words in the letters {b}i>0 and {by}«>; (resp. {t«}s=0

and {t.}«>;), and Bo is s-compatible.

Proof. As a letter b, put after the first ¢ + 1 letters f contributes at least i + 1 to the codegree,
it cannot appear if the latter is assumed to be smaller than ¢, and similarly for t, letters. This
also implies that the diagram corresponding to the word has at least 2s infinite edges attached
to the bottom floor. Hence the first 2s letters b, are before the first letter f in the word. Since
a word in W(Ag’b, s) is s-compatible, then so is By. O

Basically, the word has a core (fe)*~'f and we insert a word in the letters b, (called B-word)
between each of the 2i consecutive letters on the left, a word in the letters t. (called T-word)
similarly on the right. As the roles of B-words and T-words are symmetric, we call them “end-
words”. We denote by S the set of sentences, i.e. of families of end-words in s, where S,s are

meant to be replaced by T,t or B, b:

8 ={(S0,5",5%,...,5,5®) | i > 0, S word in {s,}.>;}.

It is endowed with functions

codeg: § —» N,

to, £ : 8 = N,

£:8 =N,
that associate to a sentence in S the sum of the codegrees of its words, the length of the words
So and S§k) (maybe 0), and the sum of their lengths. For I > 0 we denote by S(I) the set of
sentences with total length [, and 8°(l) the subset of sentences with length [ such that Sy a is

s-compatible word. Lemma 4.2.9 asserts that choosing a word in W(A”,, s) having codegree at

most ¢ and with a, b large enough amounts to choose :

> an element b € 8%(an + b) that encodes the B-words,

> an element t € 8§(b) that encodes the T-words,

such that codeg(t) + codeg(b) < 4. Essentially, elements of $°(an + b) and S(b) tell us how to
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construct half-diagrams which are glued back together. Hence, the computation of a generating
series over W(Azyb, s) will split into the computations of some generating series over 8°(an + b)
and 8(b).

Definition 4.2.10. We define the s-multiplicity of a sentence s € 8%(1) to be

coqae 1 +x s
psso(©) = (1 = a)fasotes) (1E2)

This multiplicity is set to match the multiplicity of the floor diagrams.

Lemma 4.2.11. Assumei > 1, a > 2i and an+b > i+2s. The asymptotic S-multiplicity modulo
ztL of the marked diagram (D, m) encoded by a word W € W(AL,, 8) is

(1 — o+ 2 codeg(W) (_1 + x) " mod 27,
— X

Proof. By definition and remark 2.3.3 the multiplicity is

(1 — z)am+2bycodeg(D) GL””)S I (-zv©)2
T/ eBO(D)

By construction one has codeg(D) = codeg(W). Assume codeg(W) < i, otherwise there is
nothing to prove since we get 0 modulo z**!. By lemma 2.2.30 with M = i, the unique edge

between two consecutive floors has weight bigger than . Thus, (1 — :v“’(e))2 =1 mod z*tl. O

Enumeration of words

We now compute the generating series for words, according to their codegree.

Lemma 4.2.12. Letl > i > 1. The generating series of s-compatible sentences of length | counted
with the s-multiplicity is

Z pss ) (s) = P(z)? mod .
s€85(1)

Proof. As we are looking at an equality modulo z**!, we only care about the elements of $°(I)
with codegree at most ¢ since the other elements contribute 0. In particular, each sentence
contains at most 2 + 1 words and the letters involved in each word can only be in {s, }o<s<i, SO
that the sum on the left is well-defined modulo z**1.

Let’s fix (lo, l§k))1<j<l a family of integers such that [ =1lo+ 3, ; l§k), and look at sentences
k=12

5= (50,551), . ,51(2)) with £p(s) = lp and Eg.k) (s) = lg.k). The sum of the multiplicities of such

119



Chapter 4 — Generating series in genus 0

sentences is

s
(1 _ l‘)l (1 + x) Z zoodeg(So) | H Z xcodeg(S§k))
1-z £(So)=lo gk \ g5z ®
Sop s-compatible J J

Letters in Sg-k) can take values in {s,}.>;, so one has

1k
J

coae, (k) x]
s e (z) - (2)

FECIE =

1k
J

Letters in Sy can take values in {s,}.>0. However, they are not chosen independently since for
any of the first s pairs of letters, the letters of the pair have to take the same value. Thus, we

get

e(So)Zlo k>0 k>0

Sop s-compatible
1 s 1 lo—2s
:(1—w2> (l—fv)
1—z\*/ 1 \b
_(1+x) (1—:c) '

Hence the sum of the multiplicities of the sentences with fixed lengths equal to (I,

l;k) )j,k is

Q)

-0 (122) (352) () (%) SIEE

Jsk

It remains to sum over all the possible choices of (I, l](.k)) k- We can forget about lp since
the tuple is fully determined by the lj(.k) and the fact that the total length of the sentences is [.
Moreover we can sum over l](.k) > 0 instead of ) lj(.k) < I because the excess terms will contribute

0 modulo z!. Therefore, we get

2
Z xEjlg_k) _ H Z wji‘k) = (H . —1;1:J) = P(z)?> mod z'.
j=1

(k) ik ()
(lo,l") 19>0
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Remark 4.2.13. Note that this does not depend on s, which explain why the asymptotic refined
invariant in theorem 4.2.14 below is independent of s. This was already observed in theorem
4.2.2.

Theorem 4.2.14. The genus 0 asymptotic refined invariant of the Hirzebruch surface F,, is
ARJ" = P(z)*.

Proof. We can determine ARg, " mod z*! by summing the multiplicities of the words in W(AZ )
of codegree at most i, with a > 2¢ and an + b > i + 2s. According to lemma 4.2.9, choosing
a word of codegree at most ¢ amounts to choose sentences b € 8°(an + b) and t € 8(b) with
codeg(b) + codeg(t) < 7. Lemma 4.2.11 ensures that the multiplicity of the word is

(1 — z)an+bgoodes(t) <_1 + w)s x (1 — z)bgeodes(®),
— X

Hence, summing over 8°(an + b) x 8(b) (and potentially counting terms which contribute 0

modulo z¢*!) the generating series factors modulo z**! :
an+b 1+z\° codeg(b) b codeg(t)
(1-2) 1% Z x (1-2x) Z x .
T2/ bess(antb) teS(b)

Using lemma, 4.2.12 we get the result modulo z‘*! for any 4, and we conclude. O

4.2.3 The case of non-singular and horizontal toric surfaces

We now consider the case of a toric surface Xy associated to an h-transverse, horizontal and
non-singular fan F. As in section 4.2.2 we will determine ARO({ s be computing G3(A, s) modulo
1 with A € D(F). Remember we fix the pairing S = {{1,2},...,{2s — 1,2s}} of order s.

Words and codegree for h-transverse polygons

Compared to the Hirzebruch case, the marked floor diagrams are modified by incorporating
the data (L, R), i.e. assigning a pair of integers called sloping pair to each floor. According to

proposition 2.2.24, the codegree coming from the sloping pairs is

codeg(L,R)= >, (Lw)-LW)+ Y  (R()-RE)).

v=<v’ <’

s.t. L(v)>L(v") s.t. R’l(]v)>R(11’)

Elements in each of the sums are called inversions. In particular, the contribution to the codegree

is 0 if L and R are increasing, as seen in proposition 2.2.24.
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To enable the word approach to treat the case of h-transverse polygons, we need to add
a sloping pair to each floor. We now consider the alphabet {e,f, ., ts,b.} where the indices of
fi« are the members of the sloping pair. Similarly to proposition 4.2.5 we have the following

proposition that relates words to diagrams.

Proposition 4.2.15. Let (D,m) be a s-compatible marked floor diagram of Newton polygon A,
with codeg(D) < i and e=*° > i+ 2s. Then the word W (D, m) satisfies the following.

1 orgerting aoou %5 t« and wndices o %9 e wora 18 (te)” ~t. OTEeoveEr, €ere are €
)) Forgetting about b d indi fun, th d is (fe)*~f. M. th +oo

letters t, and e~ letters b.
(i)-(v) from proposition 4.2.5 are still satisfied.

(v) If k € biegt(A) (resp. brignt(A)), the number of appearances of k as a L-value (resp. R-
value) in the sloping pairs is the integral length of the edge of A having outward normal
vector (—1,k) (resp. (1,k)).

We denote by W(A,s) the set of words satisfying the above conditions. Given a word W €
W(A, s), there is a unique way to recover a s-compatible marked floor diagram of Newton polygon

A.

Proof. The proof of the four three points is verbatim to those of proposition 4.2.5. The last one
results from the definition of sloping pairs. For the converse construction, we also proceed as
in proposition 4.2.5. The difference is that when adding the weights of the elevators, we may

obtain negative or zero weights. O

Remark 4.2.16. During the reconstruction, the weights that appear may be negative. However,
for the words of W(A,s) that we consider, all the weights will be positive, see point (i%i) of
lemma 4.2.18.

In a word W, we say that two letters fy . and fy ,» appearing in that order form a left inversion
(resp. right inversion) if £ > £' (resp. r > r'). The size of this inversion is the quantity £ — ¢’
(resp. r —1').

The codegree function on W(A,s) is defined to match the codegree of the marked floor
diagrams. The difference with the Hirzebruch case is that the codegree comes from the T-words

and B-words, but also from the sloping pairs :

codeg: W(A,s) — N
W — codeg(ft(W)) + codeg(L, R)

where ft(W) is the word where we forget the indices of the letters f, ..
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Ezample 4.2.17. Let (D, m) be the marked diagram of figure 4.13. the associated word is
W(@, m) = b0b0b1bofl,leblfo’zef_l,()toto.
The word ft(W) is the word W (D1, m1) of example 4.2.4. Hence one has

codeg(W (D, m)) = codeg(ft(W(D,m)) +1+2+2=2+5=7 = codeg(D).

Figure 4.13 — The marked diagram of example 4.2.17.

Up to the indices of letters f, ., lemma 4.2.9 still applies for words in W(A, s) under the

o0

hypothesis a > 2i, e > i 4 2s. We deal with the indices of letters f, . in the following lemma.

Lemma 4.2.18. Let i > 1 and assume that A > 2i. If W € W(A, s) has codegree at most i then

(i) all the inversions in the sloping pairs are of size one, i.e. correspond to consecutive sides

of the polygon,
(it) two letters f, » part of an inversion are separated by at most i — 1 letters f, .,

(iii) the weights of the edges in the associated diagram are strictly bigger than i. In particular

they are positive, so that W corresponds to a true marked diagram.

Proof. We denote by (L, R) the tuple of sloping pairs of W. We first notice that the tuple
L (and similarly for R) differs from the unique tuple of increasing slopes by a finite number
of transpositions that switch two consecutive elements. Indeed, this is true for the tuple of
codegree 0 since this tuple is increasing. If we consider a tuple of positive codegree then there
is a consecutive pair that forms an inversion ; if not the tuple would be increasing. Then,
switching both members of the inversion decreases the codegree, and we conclude by induction.

Each transposition switching consecutive elements increases the codegree by at least 1, so that if
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codeg(W) < i then L differs from the increasing tuple by at most ¢ transpositions (and similarly
for R).

Since A is non-singular and since the lengths of its sides are larger than 2i, it is not possible
to create an inversion of size bigger than 2 with only ¢ transpositions, proving (z).

Take an inversion (...,k+1,...,k,...) with ¢ elements in-between. Any of these 7 elements
is either k or k+ 1, and provides an inversion either with the left £+ 1 or with the right k. Hence
we get at least 1 + ¢ inversion, which is impossible, proving (i%).

Finally for (#i7), lemma 2.2.30 with M = i ensures that the weights of the bounded edges
are strictly bigger than 1. O

Encoding the sloping pairs

Lemma 4.2.18 states that the elements of the sloping pairs are assigned to the floors with
some constraints. We use the following objects to encode these assignments. Let P be the set of
non-constant sequences p € {e,0}%, up to reindexation by translation of the index, such that

the set of pairs
(1) ={(k,1) | k <1, px = o,p1 = o},

is finite. These pairs are also called inversions. We then set codeg(p) = |I(p)|.

Ezxample 4.2.19. We consider the following element, for which the first o has index 0:

p:---..O0.0..0.000"'.

Since I(p) = {(0,2),(0,4),(0,5),(0,7),(1,2),(1,4),(1,5),(1,7),(3,4),(3,5),(3,7),(6,7)}, it has
codegree 12.

Note that for each element p € P, as it is non-constant it contains at least a o and a e. Since
there is a finite number of pairs o < e (i.e. a pair k < [ with p; = o and p; = e), the sequences

is asymptotically constant to @ near —oo and to o near +oo.

Lemma 4.2.20. Let i > 1. There is a finite number of elements of P with codegree smaller than

i, and one has

Zxcodeg(p) — P(.’L‘)

pe?P

Proof. Let p € P be a sequence with codegree smaller than i. Choose the reindexation of p such
that ¢ is the last index whose value is . As I(p) is finite, there is a finite number of o before
index i since each of them yields an inversion. Moreover, none can have negative index otherwise
p would have the form

p:.........o[...].ooo...,
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where the bracketed zone contains ¢ elements, each of them yielding an inversion, leading to at
least i + 1 inversions. Thus the set {p € P | codeg(p) < i} is finite and the generating series is
well-defined.

An element p € P is fully determined by the sequence with finite support u(p) = (u;);>1,
with u; being the number of e with j o on their left. The inverse bijection associates to an

integer sequence with finite support u the element of P defined as follows :
> put a o at 0 and e for negative indices,
> inductively, starting at j = 1, put u; e and then a new o,
> as u is of finite support, the algorithm finishes by only putting o.

The codegree expresses as

+o00
codeg(p) = Zjuj.
j=1

If codeg(p) < i then u; = 0 for j > i. Computing the generating series modulo z**!, we only
care about the p having the sequence u(p) with support in [1;4], and u; may take any value

considered that too large values will contribute 0 modulo z‘*!. Thus one has

“+o00

Y geodes®) = §° 22294 mod it!
peP UL ,yeeyU; =0
4 +oo 1
— Ju; | — od i+1
1:[ doa 1:[ o5 mods
j=1 \u;=1 j=1
= H - = P(z) mod z'L.
L1l —x)
Jj=1
As the congruence is true modulo z**! for every i, we get the result. O

Ezample 4.2.21. Continuing example 4.2.19 one has u(p) = (0,1,2,1,0,0,...).

Lemma 4.2.22. Assume A > 2i and let W € W(A,s) with codeg(W) < i. Then the data of
the sloping pairs (L, R) is equivalent to the data of an element p. € P for any corner of A
non-adjacent to a horizontal edge, such that codeg(L, R) = >, codeg(p)-

Proof. Let (L,R) be the tuple of sloping pairs of W, and let n < k < N be the integers
such that the edges of the left side of A have outward normal vectors (—1,k). Point (i) of
lemma 4.2.18 says that L writes as a concatenation L = (Ly,...,Ly_1) where Lj has the form
(ky... kyx,...,%,k+1,...,k+1) with x € {k,k + 1}. Given a k, let c& be the corner of A
whose adjacent edges have outgoing normal vectors (—1,k) and (—1,% + 1). Replacing k by e
and k + 1 by o, the tuple L gives an element p ok € P. Similarly, R gives elements p cf € P. By

125



Chapter 4 — Generating series in genus 0

construction, one has codeg(L, R) = ). codeg(p.), where the sum runs over the corners of A
non-adjacent to a horizontal edge.

Conversely, assume we are given a family (p.). € PX~*. We construct L from the elements p ok
corresponding to corners of the left side of A in the following way. For any k, truncate Per just
before its first o and just after its last o. Replacing e by k and o by k+1 gives a tuple L. Then L is
the concatenation L = (En, ook kL, k+1,k+1, ... , Ln_1) where we add sufficiently enough
k between Ly_1 and Ly, so that the total number of k is the number given by proposition 4.2.15
(iv). We proceed similarly for R, and by construction one has codeg(L, R) = >, codeg(p.). [

Ezample 4.2.23. To the tuple L = (0,1,0,1,1,0,1,1,1,2,1,2,2) we associate the sequences
pp=:--ee0e00e00--- and pp =---eeo0eoco---, where ® and o correspond to 0 and 1 in p;

(resp. 1 and 2 in pa).

Enumeration of words in the h-transverse setting

We can now compute the asymptotic refined invariant in genus O for h-transverse, non-

singular and horizontal surfaces. The following theorem is equivalent to theorem 4.1.5.

Theorem 4.2.24. Let F be an h-transverse, non-singular and horizontal fan, and let s € N.
Let x be the Euler characteristic of the toric surface X5. Then the genus 0 asymptotic refined
tnvariant is

ARj, = P(z)X.

Proof. We can determine AR({ s mod z'*! by summing the multiplicities of the words of W(A, s)
of codegree at most i, with A € D(F) such that A > 2, and ™ > i + 2s.

By lemma 4.2.18 the weight of every bounded edge in the diagram associated to a word
W € W(A, s) of codegree at most i is strictly bigger than i. Hence the multiplicity modulo z*+!

o 1 s
(1 _ x)e xcodeg(W) <1i_i) .

18

The word is fully determined by the following data :

> an element t € §(e™>) encoding the T-words,
> an element b € 8°(e~*°) encoding the B-words,

> an element p. € P for any of the xy — 4 corners ¢ of A non-adjacent to a horizontal edge,

such that
codeg(W) = codeg(t) + codeg(b) + Z codeg(p.) < i.
[+

The data of t and b are enough to recover the word up to the indices of the letters f, .. The

data of the p. allows to recover the sloping pairs (L, R) by lemma 4.2.22. Hence, summing over
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85(e=>) x 8(e**°) x PX~* (and potentially counting terms which contribute 0 modulo z**') the

generating series of words counted with multiplicity factors modulo z*+! :

x—4
((1 _ x)e_‘” (1 i_ z)s Z xcodeg(b)) ((1 _ m)e+°° Z xcodeg(t)) (Z xcodeg(p)) .

bES* () te8(et®) peDP

Using lemmas 4.2.12 and 4.2.20 we obtain for the generating series
P(z)% x P(z)? x P(z)X™* = P(z)*X mod z**!.

As this is true for every i > 1 we get the result. O

4.3 Examples

The formulas we obtain in theorems 4.1.10, 4.1.11 and 4.2.24 are explicit and we can make

some computations.

Example 4.3.1. The first coefficients of AY~2725B5PX are

PO(y> X 3) =1,
Pi(y,x,8) =y+x—25—2,
1
Py(y,x,8) = i(y2 +2yx + x% —4ys —4xs +4s> — 3y — x + 85+ 2),
1
Ps(y,x,s) = y(y?’ +3y2x + 3yx? + x® — 6y%s — 12yxs — 6x2s + 12ys® + 12xs? — 853
— 3y% 4 3x? + 18ys + 6xs — 245 + 2y — 4y — 165),
1
Py(y, X, 8) = (" +40°x + 65°x" + 4y’ + X" — 8y°s — 24y”xs — 24yx’s — 8x’s
+ 241%5% + 48yxs® + 24x%s% — 32ys® — 32xs3 + 165* — 2¢3 + 6% x
+ 18yx? + 10x3 + 24y%s — 24x2s — T2ys? — 24xs® + 64s% — y? — 14yx
— x% — 32ys 4 16xs + 80s? + 2y + 14x + 32s).

Ezample 4.3.2. In the case of degree d curves on the projective plane CP?, one has y(A) = 3d
and x(A) = 3, see figure 2.2a. With corollary 4.1.8 one has

Vd > max(11,2s), (Go(A,s))o =1,
Vd > max(16,2s), (Go(A,s))1 =3d—2s+1,

Vd > max(21,2s), (Go(A, s))s = %(9d2 —12ds + 45% + 9d — 45 + 8),
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Vd > max(26,2s), (Go(A,s))3 = %(27d3 — 54d?s + 36ds* — 8s® + 54d* — 54ds + 12s?
+ 87d — 525 + 42),
Vd > max(31,2s), (Go(A,s))s = %(81d4 — 216d3s + 216d2%s? — 96ds® + 16s* + 270d3

—432d%s + 216ds® — 325> + 639d? — 744ds + 224>
+ 690d — 3525 + 384).

Note that the bounds we obtain on d in corollary 4.1.8 are not as sharp as the one in [BJP22,

theorem 1.6 and example 1.9].

Ezxample 4.3.3. If we consider the asymptotic refined invariant, one has

2 2 6 3

1 , 34 59 , 7\ 4
+(24X T ggX +4X)x
15

+(i5+14+§3+— 48 ):c5
120X T X T X T X TEX
113 , 55 4 1697 ,

1 6 1 5 6 7
4By sS04y 9903 2090
+(720X T16X T T16X T3e0 X T X)m mod z

1 1
=1+yxz+ EX(X +3)2? + gX(X +1)(x + 8)=3

+ ix(x +1)(x+3)(x + 14)z*

1
+ on(x +3)(x +6)(x® + 21x + 8)2°

1
+ oo X(x + 1)(x +10)(x3 + 34x% + 181 + 144)2® mod z".

1, 3 1, 3, 4
P(z)* =1+ xz + (—x2 + —x) 2’ + (—x3 +5x* + —x) z’

For Hirzebruch surfaces one has x = 4, and so

AR(J;T;(ac) =1+ 4z + 1422 + 4023 + 105z* + 2522 + 5742° mod 7.
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CHAPTER 5

Generating series in genus 1

This chapter is devoted to the study of asymptotic refined invariants in genus 1, using
the ideas of section 4.2. To compute the genus 1 asymptotic invariant we will construct floor
diagrams of genus 1 by adding an edge to a diagram of genus 0. We can group together the
genus 1 diagrams obtained from the same genus 0 diagram, and reduce the enumeration to the
genus 0 case, with a multiplicity corresponding to the weighted count of diagrams. As in 4.2 we
start with Hirzebruch surfaces before going to h-transverse, horizontal and non-singular toric
surfaces. We compute G3(A, s) modulo z**! for some i, before letting i go to +oo. As before,
we fix the pairing S = {{1,2},...,{2s — 1,2s}} of order s.

This chapter is based on [BM24]. However, compared to [BM24] we consider here higher

genus Gottsche-Schroeter invariants as defined in chapter 3, i.e. s can be non-zero.

5.1 Nerved diagrams : from genus 0 to genus 1 diagrams

To get to the genus 1 case, the idea is that a genus 1 diagram is obtained from a genus 0
diagram by adding one edge, and conversely we get a genus 0 diagram by removing an edge
from a genus 1 diagram. However, it might not be clear which edge to remove, and what to do
to balance the diagram again. We make this construction precise by introducing the notion of
nerved diagram.

We fix two integer 7 € N and M € N*. In this section A is an h-transverse, non-singular and

horizontal polygon.

5.1.1 Marked nerved diagrams

Definition 5.1.1. Let (D, m) be a marked floor diagram of Newton polygon A and genus g, with
a > 2i and et® > (g + 1)M + i. Assume codeg(D) < i. A nerve for D is the choice of an edge
between each pair of consecutive floors with weight > M. The data of (D, m) with the choice of
a nerve is called a nerved marked diagram. We denote with a tilde the nerved marked diagrams,
e.g. D. To lighten the notation we will not make visible the marking in the notation of nerved

marked diagrams.

Remark 5.1.2. Provided e*> > (g + 1)M + i and codeg(D) < i, lemma, 2.2.30 ensures that the
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order is total on the vertices of D, so all floor diagrams in this chapter will have a total order
on their vertices. Moreover, the same lemma ensures the existence of a nerve.

Remark 5.1.3. Forgetting about the ends of the diagram, a nerve is a spanning tree of the
underlying graph so that there are g bounded edges not belonging to the nerve.

Lemma 5.1.4. Assume e*>® > i+ 2M and let D be a diagram of Newton polygon A with
codeg(D) < .

(i) If D is of genus 0, there exists a unique choice of nerve.

(ii) If D is of genus 1 with an edge skipping some floors, there exists a unique choice of nerve.

(iii) If D is of genus 1 with two edges linking consecutive floors, there are one or two possible

nerves depending on whether only one of the edges or both have weight larger than M.
Proof. This is a reformulation of lemma 2.2.30. O

Example 5.1.5. Assume M = 1, so that there is no condition on the weight of the edges on a
nerve. On figure 5.1 we depict three nerved marked diagrams, the nerve consisting in thickened
edges. The first nerved diagram is the unique nerved diagram associated to the underlying genus
0 diagram. The remaining two nerved diagrams have the same underlying genus 1 diagram. If

M = 2 then @2 is a valid nerved diagram, but @3 is not.

Dy Dy D3

Figure 5.1 — Nerved marked diagrams of genus 0 and 1.

We assign to each nerved marked diagram a multiplicity so that the count of nerved marked

diagram matches the count of marked diagrams.
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5.1. Nerved diagrams : from genus 0 to genus 1 diagrams

Definition 5.1.6. Assume e*>® > i+2M and let (D, m) be a marked diagram of Newton polygon
A. Let N(D) be the number of nerves of D. The multiplicity of a nerved marked diagram D is

15(D) = 57z5H5(0:m).

5.1.2 Constructing genus 1 nerved diagrams from genus 0 ones

We now explain how to construct diagrams of genus 1 from a diagram of genus 0. Let .@g be
the set of nerved marked diagram of genus g and Newton polygon A. Assume et > 4 + 2M.
There is a map

ft : .@1 — .@0

that forgets the unique bounded edge e not on the nerve and add w(e) to the weights of all the
edges between the two vertices to which e was adjacent. Conversely, we can construct a genus 1
nerved marked diagram from a genus 0 one by adding an edge e with weight w, and removing w
to the weights of all the edges between the two vertices to which e is adjacent. This is possible if
we are provided with the weight w of the added edge, the place of its marking between two floors
k and k + 1, and the floors it is adjacent to, encoded by a pair (s, s_) that are the numbers of

floors it skips above and below its marking. This data is subject to the following constraints :
>s_<k—landsy <a—k-1,

> w < min(w(e’)) — M, where the minimum is over the weights of the edges of the nerve
between the floors kK — s_ and k + 1 4 s, ; this condition ensures that the weights of the

nerve are still larger than M.

Ezxample 5.1.7. Assume M = 2. On figure 5.2 we depicted various ways to get a genus 1 nerved
marked diagram by adding a dashed edge of weight 1 to @0, with marking just above the one
of the second floor. If (s4,s_) = (1,1), we get D; because the edge skips one floor above its
marking, and one below. Taking (1,0) or (0, 1) instead, we get Dy and D3. If 54 = s_ =0, we
get @4.

Let us try to increase the weight w of the dashed edge. For @1, D, and @3, the weight w can
also be set equal to 2, but not 3 since one of the edges on the nerve would get weight 1 < M. For

@4, we can take w = 2 or 3, and in that case the underlying diagram has two possible nerves.

We now relate the multiplicity of a nerved marked diagram constructed by the above process

to the multiplicity of the initial genus 0 marked diagram.

Lemma 5.1.8. Assume M > i and e > i+ 2M. Let D be a genus 0 nerved marked diagram
of Newton polygon A and with codeg(@) < i. Let € be the genus 1 nerved marked diagram
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Chapter 5 — Generating series in genus 1

Figure 5.2 — On the left a genus 0 nerved marked diagram. On the right, various genus 1 nerved
marked diagrams obtained by adding an edge of weight 1.

constructed by the data of the position of the marking, weight w and (s4,s—). Then we have

= 1

R (1- x“’)me(s++s‘)u§(1~)) mod z*1.
wz

Proof. If w > M then s, = s_ = 0, otherwise the codegree would be greater than M, and also
1. Hence in that case the added edge is adjacent to two consecutives floors and there are two
possible nerves for €. If w < M, there is a unique nerve. Hence one has N(&) = 1+ Ly>p.

By lemma 2.2.30, the hypothesis ensures that the weight of the unique edge between two
consecutive floors of D is larger than 2M. By the constraint on the choice of w, these weights
are still larger than M after we added the new edge, so they still do not contribute to the
multiplicity modulo z?*!. Thus, the only edge potentially contributing to the multiplicity of &
'w)2

is the one we add, yielding a factor (1 — 2%)“. The codegree this edge provides is w(s} + s—)

since it has weight w and skips exactly s; + s_ floors. O

Conversely, we can add the multiplicities of the genus 1 nerved marked diagrams constructed
k
x
1—xk-

from a genus 0 nerved marked diagram. Let (k) =

Lemma 5.1.9. Let D be a genus 0 nerved marked diagram and let 1 < k < a — 1. Assume
M > i, a > 2 and et > i+ 2M. Let pos, be the number of positions where to insert a
marking between the floors k and k + 1. Let Wy be the weight of the edge between these floors.

The sum of the multiplicities of the genus 1 nerved marked diagrams obtained by inserting an
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5.1. Nerved diagrams : from genus 0 to genus 1 diagrams

edge with a marking between these floors is

. (k) ifk<i
posy, - (wk; - dk) 15(D) mod 2, where dy = (a—k) ifk>a—1
0 else

Proof. We first choose one of the pos;, possible positions for the marking. We then sum over the

possible choices of w, s. There are two cases.

> If s +s_ > 0, we can assume the weight w is bounded by ¢ since otherwise, we get

multiplicity 0 modulo z*+1.

> If s4 = s_ = 0, the weight w may takes values from 1 to Wy — M, since the nerve has to
keep a weight larger than M. Furthermore, we start having a factor % for the choices of
nerves when w > M. For such a w, we have (1 —z%)2 =1 mod 2**! since M > 2i > i

Thus by lemma 5.1.8 we have to compute

i M—-1 Wm—M 1 .
Z Z (1 . Iw)Z‘,L,w(s++s_) + Z (1 _ Iw)2 + Z ~ mod .'EZ_H.
w=1s4+5->0 w=1 w=M 2

To compute the first sum, we may add the values for w going from ¢ 4+ 1 to infinity since they
contribute 0 modulo z*!. If k£ < 4 one has s_ < k — 1, but s, can goes to +oo since the excess
terms contribute 0 modulo z**1. In that case we get for the first sum

= w\2 1_ka = w)2 kw
w;(l—m ) <—(1—xw)2_1> —wg[l—(l—x 2 -z ]
+oo

Z [1- (1 —2")?] - (k).

If £ > a — i we have the bound s; < a —k — 1, but s_ can goes to +0o and the first sum gives

J’_

8

[1-(-2")? —(a—k).

I
—

w

If i < k < a—1i then both s_ and s; can go to +00 so the first sum is

J’_
3

[1- (-2,

g
Il
_
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The others two sums are

M-1 wg—M M-1 ~
1 - M-M+1
Z(l_mw)2+ _:Z[(l_ww)2_1]+M_1+Wk +
2 2
w=1 w=M w=1
+o00 &3 _
=) [(1 —z%)? — 1} + 2k mod z*!
w=1
Putting all together, the sums over w cancel and we get the result. O

5.2 Integration over the space of genus 0 diagrams

In this section we reformulate the problem of summing the multiplicities of the floor diagrams
into a calculation of some integrals, with measures that take into account the multiplicities. This

formalism lighten notations.

5.2.1 Measures and new formalism

In the computation of the genus 0 asymptotic refined invariants in chapter 4, we encoded
marked diagrams with words and proved that the set of s-compatible words is in bijection with

a subset of 8%(e~>°) x 8§(e*>°) x PX~4, Elements of $°(I) were assigned multiplicities

1+z\°
pse)(s) = (1 — z)'z*des® (—1 - x) :

Recall that there are maps EO,Zg-k) : 8 — N that give the lengths of the words of a sentence.
Let £ be the lengths space, i.e. the space of non-negative integer sequences (lék)) 4,k With finite
support, and 7 be the product map 7 = (Egk)) ik : 8°(1) = £ that maps a sentence to the lengths
of its words except the first one. To each element 1 = (l](-k)) ik € £, we assign a weight

1%

pe() =[]
Jik
During the proof of lemma 4.2.12, we saw that for any [ one has

pssy(m Q) i= D psay(s) = pe (D),
s€8°(1)
m(s)=1
in particular it does not depend on s.
Formally, it is possible to see pgs(;) and p; as measures on their corresponding domains,

which are discrete spaces. These measures have values in the quotient ring Z[z]/(x**!) for our
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5.2. Integration over the space of genus 0 diagrams

choice of . From this point of view, weighted sums become integrals. Moreover, this integral is
Z[x]/(x*T!)-linear. There are several reasons for such a consideration : it shortens notations, it
becomes easier to see some computational steps, and it formalizes the deletion of diagrams with
zero weight. The idea to compute the asymptotic refined invariant in genus 1 is now to integrate
the function given by lemma 5.1.9 on the space of genus 0 diagrams.

Lemma 4.2.12 states that ugs(;) and pg have total weight P(z)?, so that we also consider the
normalized measures vgs(;) = ﬁ; pss(y and vg = ﬁ Wz . For product spaces, we consider the

product measures.

5.2.2 Some integral computations

Before going through the main computation in next section, we introduce some functions

on £ and 8°(1), and compute their integrals against the normalized measures. Consider first the
mk
1—zk*

lengths functions €§k), which are the coordinate functions on £. Recall we set (k) =

Lemma 5.2.1. We have the following integrals :

[ &) ave = (m),
L
[ @)2ave = )+ 2(m?,
L
and for (m,r) # (m/,r’) one has
[ 80 dve = (m) ).
L

Proof. Indeed, by definition, one has

/Zr)du Sy all 1)P( )2

leL
*)
e ST
let Gk
L[ 3X 0 my) 3
= g | X W | ] > o
1o (GR)#(mr) \ 1M =0

Using the identity Y, ny™ = ﬁ we get

¢ dy i = .
/ = ) (1—2m)2 (j7k)]-;-([ l—2i 1-—2zm

m,r)

y+y?

A=) The last one is calculated in

For the second integral, we use the identity ), nZy" =
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the same way as the first one. O

Lemma 5.2.2. We set ¢, = &(%) +Z7(73). One has

/Lfmdl/g = 2(m),
/Lefndyﬁ — 2(m) + 6(m)?,

and for m # m' one has

/ Ol dirg = 4(m) ().
L
In particular, the affine function e, = (1 — acm)e’"T+2 defined on L has integral equal to 1.

Proof. The integrals computations are immediate by linearity and lemma 5.2.1. For the last
assertion, by Z[z]/(z*+1)-linearity one has [, e,,dvy = (1 — xm)w =1 O

By composing with 7 : 8°(I) — £ it is possible to pull-back functions on £ to get functions

on 8%(1). Due to the normalization by the total weight, their integrals are preserved.

Definition 5.2.3. We define on 8°(l) the leak function ¢7,[l](s) equal to the number of letters of
s with an index larger than m. To get a function of 1 € L, we average over the set m~1(1) N &*(1)

of s-compatible sentences with lengths 1 :

1 1 .
[l]( ) 1—gm 'U'Ss(l)( 1(1)) /77_1(1)085(1) ¢m[l]d,uf83(l)

Remark 5.2.4. On the diagram side, the leak function ¢2 [l] corresponds to the number of ends
skipping the floor m. If the sum of the weights of the edges between the floors m and m + 1 of
a diagram D is @y, the leak function ¢2, [!] is also equal to wy, — Wy, where wy, is the maximal
possible weight, i.e. the weight of the edge between the floors m and m+1 in a diagram of genus

0 and codegre 0.

Lemma 5.2.5 expresses the function ¢;,[l] in terms of the monomials £; on £.

Lemma 5.2.5. We have the following expression on L :

m +o00
Crlll) = m) = 2507 + (1), where = (m) 3 5+ 3

j= <J Jj=m+1

Proof. Let 1 € £ and s = (S, (S;k))j,k) € 771(1) N 8%(I) be a sentence. In terms of the letters,
the leak function ¢2,[l] is

b lll(s) = Z]l > m with s =) +Z Z 1(p > m with s =s,).

s€So Gk ges®
J
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Indeed, the leak is due to the ends that skip the floor m, i.e. the letters s, with an index p > m.
We need to compute

I:/ 1(p > m with s = s;)dugs
s -1 ()NS* (1) (p p) 83 (1)

for each term 1(p > m with s = s,) corresponding to a position of the letter s in one of the

)

words Sg or S;k . This amounts to compute

L=(1-2) (1 +”)8 > 1(p > m with s = s,)zE)

s l1—=z s TP '
ser—1()NSs(1)

(k)

L

To do so, we proceed as in lemma 4.2.12. If 1 = (ly, ;") then the sum splits into the product of

> xII X
£(So)=lo i,k e(s(k)):l<k)
So s-compatible J J

sums

but the values of the letters are constrained by the condition (p > m with s =s,,).

Assume first that the position corresponding to s is not in Sg, and let Sgk) be the word

containing the position of s. The product of the sums over other words Sg.{c/) is

+00 lj’(k,) ajj/ lj/(kl)
no(E-) - m (Z)7

(7", k")#(G k) \p=J"' (3" k") #(5:k)

For Sgk) we get

lj(k)—1 o\ Li(k)—1 -
+o00 +o0 j J j
T . T
D > P | — (m—j)+
(E_a:) (_.]l(p/m)a:) (1—9:) T T2
p=j p=j

where (m — j)4+ = max(m — 4,0). For the word Sp, as in lemma 4.2.12 one has

£(S0)=lo k>0 k>0

Sop s-compatible
1—z\*/ 1 \b
_(1+x) (1—:c> '

Putting all together we get

7,k

137



Chapter 5 — Generating series in genus 1

s

Assume now that the position of s is in Sg. Then the choices for the letters in the words j

H( oz )lj(k)
ik AL~

For Sy, if s is not in the first 2s letters then the computation is as above and in the end one has

give

I, =x™ps(l).

It remains to look at the case where the position corresponding to s is among the first 2s letters.

In that case for So we get

(&) (o) (z) -2 () )

This gives
I = 2™ ug (D).

Finally, the integral I is

L = e (1) z2m if s in the first 2s letters,
s T He z(m=9+  else.

Adding the above over all the letter positions in the word, and using pssq) (7~ (1)) = pc(1) we

get
@S [1(1) = L / Pra[n]du
1— 2™ ey (m1(D) Jrrsey ™D
1 2 () 4 e OIe)
=T (2sxm+(l0—2s)x Z(l +1;7)z™ I+ Z (7 +17)
7j=1 j=m+1
18 m ), X
= —2sz™ + (l - El]) (m) + ZZJ? + ._Z 1 _Jxm
j=1 j=1 =m+1
m
= —2sz +l(m)+z_:l](m)(y—1)+ Z L (l—xm_< >)
j=1 j=m+1
m l] +oo
—2sz™ + I(m) (m)Z—+ Z l;
V)
which shows ¢F, [I] = I(m) — 2sz™ + v, as announced. O
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Lemma 5.2.6. We have the following integral :

400
/L emtmdve = @m+1)(m)+2 3 ().

j=m+1

Proof. By 7Z[x]/(z+!)-linearity and given the definition of 1,,, the computation reduces to the
computations of [ en,¢;dv.. By definition of ey, this turns to the computation of [, £,,£;, which

was handled in lemma 5.2.2. Hence if j # m one has

/eméjdm = /(1 —wm)
L L

1 _ m
N /L (bl + 26;)dv

= 15 (fm) () +40)

=201 —2™)(7)((m) +1)
= 2(j),

b + 2

Ejdl/L

and for j = m we get

/ embmdvs = / 1—am)m 2 4,
£ £ 2
1—x™
== /L (2, + 26,)dvy

_ 1—2™

= (2(m) + 6(m)? + 4(m))
(1 —2™)(m)({m) +1)
(m).

3
3

Hence, [enl; = [¢; except for j = m, where we add (m). Thus, we have

O]

So far, we defined functions on 8°(1). The genus 0 marked diagrams of codegree smaller than

i are in bijection with a subset of §%(e~>°) x §(e*>°) x PX~%. By definition, the complement of
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this subset has measure 0 since it consists of elements with codegree strictly larger than . Let
p1, p2 be the projections of 8(e™) x §(et™) x PX~4 to §%(e~°) and §(e*>). We can thus
pull-back functions by p; and ps.

The number pos,,, of positions for a marking between the floors m and m + 1 is :
> equal to pify, +2 = p{fg) + p{ﬁg) + 2 if m < 4, in that case £, is pull-back from 8%(e~°),
> equal to 2 if ¢ < m < a — 1, since the length functions are 0,

> equal to p5ls_m + 2 if m > a — i, in that case £4_p, is now pull-back from S(e*°) instead
of 8%(e™).

There is the same phenomenon for the leak function on a diagram : for m < 4, it is the
pull-back of the leak function on 8°(e™°°), then it is 0 for ¢ < m < a — 4, and gets pulled-back

from §(e*t*) for m > a — .

5.3 Computation of the asymptotic refined invariants

We now compute the asymptotic refined invariants in genus 1. We start with the Hirzebruch
case, so that the divergence of the floor diagrams is constant. We then explain how to modify
the computations of the Hirzebruch case to adapt the proof to any h-transverse, horizontal and

non-singular polygon.

5.3.1 The Hirzebruch case

For n a positive integer we consider o1(n) = > 4, d the sum of divisors of n. Let E be

generating series of the function o1, i.e.

Ey(z) = Z o1(n)z™.

n>1
Lemma 5.3.1. One has
400 n 400 n 400 +00 j
T T T
n=1 n=1 n=1j=n
Proof. Expanding ﬁ in the first sum yields
400 "
an — :Zznx(k+1)n: Zdl(m)meEQ(x),
=1 -~ T >ik>0 m>1
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and expanding it in the second sum gives

n>1 k>0

2
= z" _ " .’Ek
Ol o)
— Z z" (Z z2kn +2 Z x(i—l—j)n)

n>1 k>0 0<i<j
_ Z Z 2@RHDn 4 o Z Z i+ n.
n>1k>0 n>0 0<i<j

If k£ is odd it admits k“ decompositions k = ¢ + j with ¢ < j, and if &k is even this number of

decompositions is Z Hence one has

Z (1 Z Z 2@+Dn 4 o Z Z (i+j+1)n

n=1k>0 n>0 0<i<j

:Z Z kD0 +Z Z (k+1)w(k+1)"+z Z Eg(kHDn

n=>1 k even >0 n>0 k odd >0 n=0 k even >0

= Es(x).
Finally, the last expression yields the first one when switching the sums over n and j. O

Theorem 5.3.2. Let F,, be the fan of figure 2.1b. The genus 1 asymptotic refined invariant of

the Hirzebruch surface F,, is given by

ARi"; = P(iL‘)4 (gmax + 231 f -

- 12E2(w)) ,

where gmax : D(Fn) — N is the function A — gmax(A), i.€. gmax(A7 ) = t(a—1)(an+2b—2).

Proof. The computation of the asymptotic refined invariant goes through three steps : expressing
then integrating over 8°(an-+b) x8(b) the function from lemma 5.1.9, and summing these integrals

over m from 1 to a — 1.

First step : expression over $°(an + b) x §(b). By lemma 5.1.9, the function giving the sum
of the multiplicities of the genus 1 marked diagrams created by inserting an edge with marking

between the floors m and m + 1 is

— Pt lan+8] — 1
(0} +2) (‘*’m ”1%2[“"*] —(m)) it m < i
posm<me_1—dm>= wm — 1 ifi<m<a—i
i — * 10 bl —1
(P3la—m +2) (w p2¢;_m[] —(a—m)) ifm>a—i
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where in the first (resp. last) row, functions are pull-back from 8°(an + b) (resp. 8(b)). For each
value of m we now need to integrate the above function.

Second step : integration over $°(an +b) x 8(b). If i <m < a — i, we have

wm — 1)dugs dvgpy = wm — 1.
/S (anbxS (b)( )AVss (ant5)dVs )

Assume now that m < 4. Since fs(b) 1 =1 we have

. Wm — PiP [an+b] —1
(Pl +2)( o m2[ =1 <m>) dss (ant5)dVs ()

wWm — ¢, lan +b] — 1
= /S (zm + 2) ( [2 ] - <m>> dVSS(an-i-b)-
s (an+b)

m)lm2+2

/58 (an+b) xS (b)

To compute this integral, recall that e, = (1 — z so the integrand rewrites

¢fn[an+b]_2 z™ )

em(wm - 1) +em ((wm - 1)<m> - 1—gm (1 _ xm)2

To compute the integral over 8°(an +b), we first integrate over each 7=1(1) N 8%(an +b) with the
measure figs(qn4p) by considering ua;(l) Jm1 (NS (an-+b)- This gives a function we now integrate

over L. This function is
xm
em(wm — 1) + e ((wm —1)(m) — ¢, [an + b] — 2m> .

Because [, e, = 1 one has [, ep(wm — 1) = wm — 1. It remains to compute the integral of the

correction term e, ((wm —1)(m) — @3, lan + b] — 2—7,0;) As m is close to 1 one has
oylan +b] = (an + b)(m) — 252™ + ¢, and wy, = (@ —m)n +b.
Using the above expressions and lemma 5.2.6 we finally get
xm
/Lem ((Wm — 1){m) — ¢p,[an + b] — QW) dug
m
= / em (((a —m)n+b—1)(m) — (an + b)(m) + 2sz™ — Y, — 23:—) dy,
Iy (1—am)?

_ /L em ((—mn 1) (m) — thm + 255 — 2L) dvg

(1- wm)2
= (—mn — 1)(m) + 2sz™ — (2m + 1)(m) — 2 Z 1_—:77,,)2
j=m+1
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5.8. Computation of the asymptotic refined invariants

= (—n — 2)m(m) + 2sz™ —22 1——957")2
ie.
/ 0s (‘Dm__l —d )dy dv
Ss(an+b)x8(b)p m 2 m Ss (an+b) AVS(b)
m
= wm = 1= (n+2)m(m) + 2s0™ —22 =2

If m > a —i the calculations are similar. By first integrating over 7—1(1) N §(b) we then have

to compute the integral over £ of
0 ma—m
ea—m(Wm — 1) + €a—m | (Wm — 1){a —m) — @,_p,[b] — 2—_2
(1—zom)

The integral of the first term is w,, — 1. For the correction term, one has

@2 [b] =bla —m) + a_m and wp, = (a —m)n +b.
Thus we get

0 ma—m
/L €a—m ((wm —1){a—m) — p4_p[b] — 2m) dyg
x

= /Lea_m (((a —m)n+b—1){a—m)—bla—m) - tom— 2m> dvg

= /L €a—m (((a - m)n - 1)(“ - m> - ¢a—m - 2m) dVL

+o00 a—m

= (@-mn-1){a-m)— 2a-m)+1)a-m-2 > ()-2——00
j=a—m+1 (1 z )
=(n—2)(a—m){a— -2 Z —1 _xt;rjm)Q

j=a—m

i.e.
/ oS (wm_l—d )dy dv
83 (an+b)x8(b) POSm, 2 m 83 (an+b)U¥8(b)
Zo—m
=wm_1+(7’l—2)(a— a_ _2 Z Tm)z-
j=a—m

It now remains to sum eveything over 1 < m < a — 1.
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Chapter 5 — Generating series in genus 1

Third step : summation over the values of m. We have several sums to compute.

> Whatever the value of m is, the term w,, — 1 appears. One has
a—1
Z (Wm - 1) = Gmax
m=1

since it is the number of interior lattice points of the associated Newton polygon.

> We have to sum the correction terms for 1 < m < 4. Since the formula for the correction
term gives 0 modulo z**! when m > i, we let m goes to +00. By lemma 5.3.1, the sum of

the correction terms is

T

— 2B5(z) — 2B5(z) = (—n — 6)Es(z) + 25—

(—n — 2)Es(x) + 2s 1— 2

l1—2x

> For the correction terms for a — i < m < a — 1, with m’ = a — m we sum over m’ going

from 1 to +o0o and get
(n — 2)Eq(z) — 2E3(z) — 2E3(z) = (n — 6) Ea(z).

Adding the three contributions we obtained gmax + 2572, — 12E2(x). Multiplying by the total
weight of the space P(x)* finishes the computation. O

5.3.2 The case of non-singular and horizontal toric surfaces

The computations made in the Hirzebruch case remain valid with two differences. First, we
now need to take into account the sloping pairs of the floors. The marked diagrams of genus
0 and codegree at most i are in bijection with a subset of §°(e~>°) x §(et>) x PX~4, where x
is the number of corners of the polygon and P, defined in section 4.2.3, encodes the default of
increasingness of the slopes. Second, the self-intersection of the divisors corresponding to the top
and bottom horizontal sides, equal to n and —n for the Hirzebruch surface FF,,, are not opposite

anymore, see lemma 5.3.4.

Lemma 5.3.3. We have the following generating series :

3" codeg(p)z**dE®) = Ey(z)P(a)
peP

and forn > 1,

Z .’L'Zk codeg(px) Z codeg(pk) = nEz(x)P(iL')n-
pla"'aP"«e? k=1

Proof. For the first formula, we computed in lemma 4.2.20 the generating series of 2°°e8(®)  so
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5.8. Computation of the asymptotic refined invariants

we just need to differentiate the relation, multiply by x and use lemma 5.3.1 :

dIr 1 = zm 1
mEH 1—af Z_m(l—acm)2 H 1—ad
m=1 Jj#Em

j=1
L ™ T
- (Zml—fcm> H 1—gi

m=1 j=1

= Es(z)P(z).

For the second formula, one has

Z 2 codes(Pr) Z codeg(px) = n Z codeg(pl)xzk codeg(pk)

P1yeeesPn €P k=1 P1ye-espn €P
=n Z codeg(pl)ac“’deg(pl) Z peodeg(p2)+-+codeg(pn)
p1€?P P2y, Pn €P
= nEs(z)P(z)"
by the first formula and lemma 4.2.20. O

Lemma 5.3.4. Let A be an h-transverse, horizontal and non-singular polygon. Assume A > 2i.
Let D be a floor diagram of Newton polygon A, genus 0 and codeg(D) < i. Then the vertices of
D are totally ordered, and the divergence is constant on its i lowest and i highest vertices, equal

to respectively min(div) and max(div). Moreover, one has
max(div) — min(div) = x(A) — 4.

Proof. By lemma, 2.2.30 the vertices are totally ordered. By lemma 4.1.1 and remark 4.1.3 the

divergence is constant on its ¢ lowest and 7 highest vertices. Moreover, one has
min(div) = min(R) + min(L) and max(div) = max(R) + max(L).

Since A is non-singular, max(R) — min(R) + 1 (resp. max(L) — min(L) + 1) is the number
of edges of A with outward normal vector having a positive (resp. negative) ordinate. Hence
max(div) — min(div) 4 4 is the number of edges of A, i.e. is equal to x(A). O

Remark 5.3.5. Here is a statement with a more geometric flavor. Let X be a non-singular toric
surface defined by an h-transverse and horizontal polygon. Let Diop, and Dy, be the divisors
corresponding to the top and bottom horizontal sides of A. One has thop +D2 +x(X)=4.A
geometric proof using divisors and the sheaf of holomorphic functions on X is given in [BM24].

Remark 5.3.6. To rephrase, each vertex of A non-adjacent to a horizontal edge is responsible
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Chapter 5 — Generating series in genus 1

for a drop of the divergence by 1. In general, a vertex of index k is responsible for an increase
of the divergence by k. Hence, if we remove the non-singularity hypothesis we get

max(div) — min(div) = Z kng(A) — 4.

k>0

Theorem 5.3.7. Let F be an h-transverse, horizontal and non-singular fan. Let gmax : D(Fn) —
N be the function A — gmax(A). The genus 1 asymptotic refined invariant is given by

ARis = P(.’I,')X (gmax —+ 231 z

— X

- 12E2(x)) .

Proof. We proceed as in the Hirzebruch case. Let A € D(F) be large enough. Let (D, m) be a
marked diagram of genus 0 and codegree at most i, associated to an element of 8°(an + b) x
8(b) x PX4. Consider L = (p.). € PX~* where we choose an element of P for each corner of A
non-adjacent to a horizontal edge. Let w??l be the maximum possible weight between the floors
m and m+ 1 for a given choice of %B. It differs from wy, in the following way : any element p € P
is the product of exactly codeg(p) transpositions, and each of them reduces the weight at the

position of the transposition by 1. So one has

a—1

> (wh-1)= f (wm —1) = >_ codeg(pc)
m=1 c

m=1
= Jmax — Z COdeg(pc)7
c

where the sum is indexed by the corners non-adjacent to a horizontal side.

Let nip = max(div) and npet = min(div). For a fixed choice of P = (p.). € Px—4 the
contribution of P8 to the asymptotic refined invariant is computed as in the Hirzebruch case. We
separate into three cases depending on whether m < iori <m < a—ior a—1i < m. In the first
(resp. third) case, the computation in the case of the Hirzebruch surface F,, brings a term with
—n — 6 (resp. n — 6), where n appears as the divergence of the lowest (resp. highest) vertices.

Here, these will be —ny,t — 6 (resp. niop — 6), and so the contribution is

a—1

e codeg(Pc)P(x)4 lz (w;ﬁ - 1) + 231 f - (12 — ngop + Moot ) B2 () |

m=1

where the term z2-c ©4%8() aecounts for the codegree coming from the sloping pairs. We now

replace the sum of weights by its expression in the codeg(p.) and sum over all the possible
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5.8. Computation of the asymptotic refined invariants

L = (pc)e. We get modulo zi+! :

3 gdocodeslre) p(g) Kgma,x -y codeg(pc)) +2s7 =

PB=(pc)c B
codeg(pc)<i

— (12 — nop + nbot)E2(w)] :

As we only care about the sum modulo z**!

, we may add all the elements in P since the ones
with higher codegree will contribute 0. There are x — 4 corners where we choose an element

p € P. Using lemma 4.2.20 and 5.3.3 to compute the generating series, we get

P(a)*™*P(2)* |gmax — (X — 4) Ea() + 257

— (12 — ngop + Mbot) B2(z)|  mod 2.
-z

Finally, lemma 5.3.4 allows us to conclude. O

Although it is unlikely that this approach gives explicit results in higher genus (or at the
cost of tedious and lengthy calculations), similar ideas could show that the asymptotic refined

invariant has the following general form.

Conjecture 5.3.8. Let F be an h-transverse and non-singular fan, g € N and s € N. The

asymptotic refined invariant AR_;F; s has the following form :

ARg,s(A) — P(:c)X(A) <<gma>;(A)> + Q_,S;(Aa 3)> ,

where A is a polygon dual to F, and where Qg is a polynomial of degree at most g in L%,
LA - Kx, and s, whose coefficients are formal series in x that vanish at 0.

Ezxample 5.3.9. By theorem 5.3.7 one has

1
AR, = gimax + (Xgmax — 28 = 12)2 + 5 (1 Gimax + 2Xgmax — 4x5 — 24 — 45 — 72)

1
+ = (X gmax + X% gmax — 6x%5 — 36x% + 8xgmax — 30xs — 324 — 125 — 288) 2°

6
1
+ ﬂ (X4gmax + 18X3gmax — 8X33 — 48X3 + 59X29max - 96)(25
— 864x? + 42X gmax — 184xs — 2832 — 48s — 2016) zt
+ o(zh).
Given % . A
gmax(A) = LzA + % +1= Area(A) — %) +1
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one has

AR{S = % (2Area —y +2) + %(2)(Area —XxY+2x—4s—24)z
+ 411 (2X2Area — x%y + 2x? + 6xArea — 3xy — 8xs — 42y — 85 — 144) 2
+ % (2X3Area — 3y + 2x3 + 18x%Area — 9x %y — 12x%s — 54x?
+ 16xArea — 8xy — 60xs — 632 — 24s — 576) z3
+ % (2X4Area — xty + 2x* + 36x3Area — 18x3y — 16x3s — 60x> + 118x%Area
—59x%y — 192x2%s — 1610x2 + 84 Area — 42xy — 368xs — 5580y — 965 — 4032) zt

+ o(z?).
For Hirzebruch surfaces IF,, the Euler characteristic is x(F,) = 4, hence

1
AR?; - (Area -5y + 1) + (4Area — 2y — 25 — 8)x + (14Area — Ty — 10s — 70)x?

1
+ (40Area — 20y — 38s — 320)z> + <105Area — %y —118s — 1155) z* mod 2°.
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CHAPTER 6

Generating series at fixed codegree

In the previous chapters, we fixed the genus and looked at the generating series over the
(co)degree, i.e. we computed
AR =) (AR] )z’
i>0
for g = 0, 1. In this chapter we adopt the dual point of view. We look at the generating series in

the genus parameter at fixed (co)degree, i.e. we wish to determine

Z(ARg,s)iug

g>0
for some values of i. The case ¢ = 0 amounts to compute the leading coefficient of the tropical
refined invariant, which was already known from [IM13]. The main contribution is theorem 6.3.1,
which gives a closed formula for ¢ = 1. To do so, we compute the degree 1 term of G;(A, s) and
sum over g.

This chapter is based on [BM24]. However, compared to [BM24] we consider here higher genus

Gottsche-Schroeter invariants, as defined in chapter 3, i.e. we work with non-zero s. Again, we
use the pairing S = {{1,2},...,{2s,2s — 1}} of order s.

6.1 Reminder on diagrams of codegree 0

Recall from proposition 2.2.24 that a diagram D has codegree 0 if and only if the order is
total on its floors, it has no side edge (i.e. a bounded edge adjacent to non-consecutive floors),
the functions L and R are increasing and the infinite edges are adjacent to the extremal vertices.
Since we look at floor diagrams of small codegree, we will assume that the polygons A are large
enough, in particular e=*°(A) > i + 2s. By lemmas of section 2.2.3 we can also assume that the
diagrams have a total order on their vertices, and we can control the number of side edges as
well as the monotonicity of the functions L and R.

In all this chapter, for F an h-transverse fan and A € D(¥) a polygon, we will refer as Dy
to be the floor diagram of figure 6.1. It is the unique diagram of Newton polygon A, genus 0
and codegree 0. We denote by wy the weight of the edge between the floors vy and wvgy; for

149



Chapter 6 — Generating series at fixed codegree

1 < k <a-—1. Note that

Figure 6.1 — The diagram Dy.

6.2 Degree 0 terms

We start by computing (AR;S)O, the constant term of the asymptotic refined invariant. This
amounts to compute the leading coefficient of the higher genus Gé6ttsche-Schroeter invariant,
which was already handled in [IM13, proposition 2.11] using the lattice path algorithm from
[Mik05]. We recall a proof here, because it uses a construction starting from Dy that will appear

several times in section 6.3.

Proposition 6.2.1 ([IM13]). Let F be an h-transverse fan. The generating series in the genus

parameter of the constant term of the asymptotic refined invariant is given by

D _(ARg Jou? = (1+u)?.
920

Proof. To construct a marked floor diagram of positive genus and codegree 0, we add g edges
between the floors v and vgy; of Do, mark the new edges increasingly from left to right, and

split the weight wy onto the gi + 1 edges. The genus of the new diagram is g; + - - - 4+ g4—1, and
wk—l

e ) tuples of gi + 1 positive integers

the marking is compatible with S. For each k there are (
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with sum wg, i.e. ways to distribute wy onto the marked edges. Since we only care about the

number of compatible marked diagrams of genus g to compute (ARg’ <)o, using the binomial

formula one has

a—1
P (.

9>0 91, mGa—130 k=1 \ Ik

_ ff ) <“”fgk‘ 1) ud

k=1gx=>0

a—1
— H(l + u)wk—l — (1 + u)ymax_
k=1

Remark 6.2.2. Tt is not a surprise that this does not depend on s. Another proof, more compli-
cated, that the constant term is (%) is given in theorem 3.1.8.

6.3 Degree 1 terms

We now compute the generating series of the degree 1 terms.

Theorem 6.3.1. Let F be an h-transverse, horizontal and non-singular fan. The generating series

of the degree 1 terms of the asymptotic refined invariant is given by

(14 u)3

Z(AR?;S)lug = (1 4+ u)9m=x |(x + 2su) — (ul — K)?

g>0 1+u

where £ : A — La and K : A — Kx,. In particular, the asymptotic polynomials yielding the
degree 1 coefficients are polynomials in L%, y(A) = —Kx, - £a, x(A), K)Q(A and s.

Given that the multiplicity takes the form

15(D) = gode(D) (1 _ 7)e=(2) GJF_QC) I (- x“’(e>)2 ,
T/ emo(D)

only diagrams with codegree 0 and 1 contribute to ZQ(ARi s)1u?. We subdivide the proof
of theorem 6.3.1 in four lemmas, each one computing the contribution of a specific family of
diagrams to the global sum. To get theorem 6.3.1, we sum the expressions from lemmas 6.3.2,
6.3.3, 6.3.4 and 6.3.5. In all these lemmas we consider a polygon A € D(F) large enough. We

use the shortcuts gmax = gmax(A), e = e*(A), etc.
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Lemma 6.3.2. The codegree 0 diagrams with Newton polygon A contribute

2 u(2+ u)

(1 + u)gmax —eoo + 28 — 29max 2 2((1 o 1) (]. + U)2

(14+w)

Proof. We construct a diagram of genus g and codegree 0 as in the proof of proposition 6.2.1.
A diagram D of codegree 0 is counted with the degree 1 term of its multiplicity, that is

—e® + 25 — 2|{e € E°(D) | w(e) = 1}|.
Hence, the contribution to }_, (AR;{ s)1u? coming from the first term is
(—e> +25)(1 4 u)Imax,

We now compute the contribution coming from the second term, i.e. we enumerate the choices
of a diagram together with an edge of weight 1. To determine this contribution, we proceed as
previously but for any fixed k, we assume one of the gi+1 edges between v, and vi1 has weight

1, and it remains a weight wy — 1 to split into g, parts. Forgetting the factor —2, this gives

Sz )]s T (o))

k=1 | g;50j#k \ 97 S0 cdges \9k 1
Jj#k Uk —Vk+1
a—1
_ -2
= Y (1 +u)Zs® ) 3 (g 4 1) <w’“ 1)ugk
k=1 9120 9k —
a—1
= 3wy fwg — 2)ud(1 4 u) 3 4+ 2u(1 + )]
k=1
u? u(2 4 u)
— 1 9max - —_ 1 R

O]

We now look at the diagrams of codegree 1. The degree 1 term of the multiplicity of a
diagram of codegree 1 is 1, so it suffices to determine their number. There are two possibilities
for the codegree being 1 : the presence of a side edge, i.e. an edge bypassing a floor, or a slope
inversion, i.e. a lack of growth of the divergence function. We investigate all the cases.

Lemma 6.3.3. The codegree 1 diagrams with Newton polygon A and an infinite side edge con-

tribute ) 5
U +u
1 9gmax 1 =2 00—2 2 .
(1+ ) (w1 + we—1 )(1+u)2+(e s)1+u+ T )

Proof. We first deal with the case when the side edge is a source.
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6.3. Degree 1 terms

Let Dyt be the diagram of figure 6.2a. It is obtained from Dy by putting a source adjacent
to vy. It has genus 0 and codegree 1. Let wy, be the weight of the edge between vi and vgy; for
1 <k <a-—1. One has

w1 =w; —1and Wy =wg for k€ {2,...,a—1}.

To create a diagram of higher genus, as in theorem 6.2.1 we add g edges between the floor
vk and vg41 of Dy, mark the new edges increasingly from left to right, and split the weight
wy, onto the g + 1 edges. The genus of the new diagram is g1 + - - - + g,—1, and for each k there

wr—1
9k
diagram, it remains to mark the side edge. It is parallel to (g1 +1)+ (e °° —1) edges and 1 floor,

are ( ) ways to distribute @y onto the marked edges. To entirely determine the marked floor
hence there are g1 + e~ + 2 possibilities for its marking. However, 2s of them are incompatible

with S. In the end, this case contributes

g1,--:9a—120 k=1

a—1 [/~
-1
Z (g1 +e > +2—2s) (wk )ugk
2

wp — 1
= (]_ + u)gmax—(’UIl—l) Z (gl + e—oo +2— 28) <'LU1 )’U,gl
9120 5

= (1)) (@ — Du(l +u)® 2 4 (7% + 2 — 25)(1 + u) 171

= (1 4wy [(wl ~1) (12 : 5)2] '

U oo 1
S - —2
Arup T Mru™

If the side edge is a sink, by symmetry and considering s = 0 we get

U 1 24u
1 9max = 1 +o0 :| X
(1+u) [(wa 1 )—(1+u)2+e 1+u+(1+u)2
We obtain the result summing the two cases. O

Lemma 6.3.4. The codegree 1 diagrams with Newton polygon A and a bounded side edge con-

tribute
a—2 2
Gonax i — )Y _ U2ty
(1+w) Lz::l (wj + wjy1 —2) 1+ )3 +2(a—2) (1 +u)3

Proof. Start with the diagram D; of figure 6.2b. It has genus 1 and a side edge of weight 1
between v; and vj4 2. Let wy be the weight of the edge between v, and vg4; for 1 <k <a—1.
One has

wj = wj — 1, zﬂj+1=wj+1—1and1ﬂk:’wk fork¢{j,j+1}.

As previously, we add gr edges between the floor vy and vii1 of Dpet, mark the new edges
increasingly from left to right, and split the weight w; onto the gi + 1 edges. The created
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(a) The diagram Dyet. (b) The diagram D;.

Figure 6.2

diagram has genus 1+ g1 + - - - 4+ gq—1, and its marking is compatible with S. The side edge is
parallel to 1 floor and g; + gj+1 + 2 edges, so there are g; + g;+1 + 4 possibilities for its marking.
Hence, the contribution in that case is

a—2 a—1 [/~
Wy — 1
uwy, Y, @tga+y]] < )ug’“
Jj=1 g1,..,.ga—120 k=1 9k
a—2
= (’QEJ + ﬁ]-ﬁ,—l — 2)U2(1 + u)gmax—s + 4(a — 2)u(1 + u)gmax_2
=1

<

a—2 2 u u
= (s | Sy w2 g 20 s )

Lemma 6.3.5. The codegree 1 diagrams with an slope inversion contribute
(= 4L+ wrm

Proof. To get a floor diagram of codegree 1 with an inversion, the only possibility is the existence

of a unique couple (v,v’) of adjacent floors such that v < v' and R(v) = R(v') + 1 (or L(v) =
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L(v') + 1), and anywhere else in the floor diagram R and L are increasing. There are x — 4
possible such pairs, one for each corner of A non-adjacent to a horizontal side. If v = vy (and
s0 v/ = vg41), then the only difference with the codegree 0 diagram from figure 6.1 is that the
weight between vy, and v is wi — 1 so that the sum of weights yields gmax — 1 instead of gmax-
In the end, this case contributes

(x = 4)(1 + u)fm==—",

Proof of theorem 6.3.1. Summing the contributions of the previous lemmas we get
(1 + o) 9max=3 [(23 — €% — 2gmax — 2a + 2)ud + x(1 + u)?

a—1
<4s — 2 — 2gmax — 4a + 2 Z(wk - 1)) u? 4+ (25 — e® — 84wy + wa_1)u| .
k=1

By the adjunction (or Pick’s) formula one has 2gmax = L2 — y + 2 where y = 2a + €*°. Hence
the coefficient of the u? term is 2s — £2. Using the relation gmax = Y, (wx — 1), the coefficient
of the u? term is 4s — 2y. Last, one has

w1 + We—1 = €*° + max(div) — min(div) = e* + x — 4

by lemma 5.3.4. Coupled with Noether’s formula x = 12 — K2, the coefficient of the u term is
2s — K2. In the end, one has

S (ARY )1uf

g=0
= (1 + w)Im (23—52)“—3+(4s—2 ) G (25— K?)— 2%
- 1+ u)? Va+uw)d X1 1u A+u?|

Gathering the terms with s then simplifying we get
ST(ART )1ud = (14w | (x + 2su)—— — £2 W g, W ga U
= A O O A CEa0E
= (1 + u)9ma 2 —(ut —K)*——|.
(14 w2 | O 250 1 = (0l = K s

Remark 6.3.6. If we do not assume the fan to be non-singular, the equality
w1 + We—1 = € + max(div) — min(div) = e~ 4+ x — 4
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obtained by lemma 5.3.4 becomes

w1 + We—1 = € + max(div) — min(div) = e> + Z kng — 4,
k>0
see remark 5.3.6. Moreover, the factor x — 4 in lemma 6.3.5 is replaced by n; — 4. Indeed, only
the vertices of index 1 can contribute to the degree 1 term of the asymptotic refined invariant.
There are n; such vertices, but 4 of them are the vertices adjacent to the horizontal sides of the

polygon, hence they do not contribute. Thus for an h-transverse and horizontal fan F one has

> (AR] )1u?

g>0
3

1 U u? U
= (1 4 u)9max 2 — L2 —2y— kng — 12| ——
(14 w) (n1+ su)1+u TERNE y(1+u)3+(z Nk )(1+u)3

k>0

Example 6.3.7. Take g = 2 and let F be an h-transverse, horizontal and non-singular fan. By
proposition 6.2.1, the constant term of ARg, s is (%%*). By theorem 6.3.1, the degree 1 term is

g
( “;“") + gmax(—Xx + 25 — K%, ) + (4s — 2y + x — 65+ 3K%,)

= (gn;ax) + (gmax — 1)(28 — X) - (gmax - S)Kng —2y.

In light of conjecture 5.3.8, if we set
Qg(A, 8)(.’1)) = ((1 - X(Xﬁr)) (.‘ﬁ;ax) + (gmax - 1)(23 - X(Xﬁt)) - (gmax - 3)K§(g' - 2y) z

_ <( K% —11) (gn;x> + (Gmax — 1)(28 + K%, —12) — (gmax — 3)K%, — Zy) @

then @ is a polynomial of degree 2 in gmax(A), y(A) and s, ie. in £%, y(A) and s, whose

coeflicients are polynomial in x, and one has

A (@) = Py (78] 1 658,90 moa 2
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grammes en étages, étude asymptotique, conjecture de Gottsche

Résumé : En géométrie algébrique énuméra-
tive, le nombres de courbes sur une surface
se comporte difféeremment selon que l'on fixe
le nombre de points doubles ou le genre des
courbes : polynomial dans le premier cas, il
croit plus vite qu’exponentiellement dans le
second. Dans le premier cas la conjecture de
Gottsche, prouvée par Tzeng, donne une for-
mule universelle pour la série génératrice de
ces nombres.

Les invariants tropicaux raffinés ont été in-
troduits par Block et Géttsche. Ce sont des po-
lynbmes qui interpolent entre des probléemes
énumératifs réels et complexes. Si un com-
portement polynomial de leurs coefficients est
attendu et effectivement observé quand le
nombre de points doubles est fixé, Brugallé

et Jaramillo-Puentes ont montré que certains
de leurs coefficients varient également poly-
nomialement lorsque le genre est fixé. Cette
thése prouve, dans I'esprit de la conjecture de
Gottsche, des formules universelles pour les
premiers coefficients des invariants tropicaux
raffinés en genre 0 et 1.

Les méthodes utilisées relevent de la géo-
métrie tropicale. Introduits par Brugallé et
Mikhalkin, les diagrammes en étages sont
un outil qui transforme la question algébro-
géométrique de départ en probléme combina-
toire. Dans cette thése, on étudie précisément
les diagrammes en étages qui interviennent
asymptotiguement dans le calcul des inva-
riants tropicaux raffinés, pour établir des for-
mules universelles.

Title: Asymptotic properties of tropical refined invariants

Keywords: Enumerative geometry, tropical geometry, tropical refined invariants, floor diagrams,

asymptotics, Géttsche conjecture

Abstract: In enumerative algebraic geometry,
the number of curves on a surface behaves
differently whether one fixes the number of
nodes or the genus of the curves. It is polyno-
mial in the first case, but grows more than ex-
ponentially fast in the second case. In the first
case Gottsche conjecture, proven by Tzeng,
gives a universal formula for the generating
series of these numbers.

Tropical refined invariants were introduced
by Block and Géttsche. They are polynomi-
als that interpolates between real and complex
enumerative questions. As expected, their co-
efficients behave polynomially when the num-
ber of nodes is fixed. However, Brugallé and

Jaramillo-Puentes proved that some of their
coefficients are also polynomial when the
genus is fixed. In this thesis we prove some
universal formulas for the first coefficients of
the tropical refined invariants in genus 0 and
1, in the spirit of Gottsche conjecture.

The techniques we use fall under the
scope of tropical geometry. Introduced by Bru-
gallé and Mikhalkin, floor diagrams are a
tool that turns the starting algebro-geometric
question into a combinatorial problem. In this
thesis, we precisely describe the floor dia-
grams that asymptotically take part in the com-
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