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ABSTRACT

Abstract

Forest ecosystems cover around one tenth of the earth’s surface. They provide numerous ecological
functions and ecosystem services, thanks to their high biodiversity and their role in climate regu-
lation and biogeochemical cycles. However, climate change, linked to global warming, jeopardizes
the conservation of these ecosystems by plunging the plant species present into conditions for
which they are not adapted. Vegetation in forest ecosystems can be monitored using quantitative
remote sensing, by estimating functional traits defined in ecology as indicators of growth, repro-
duction or survival capacities. More specifically, for plant species, some functional traits, known as
leaf traits, are linked to the biochemical composition of foliage and affect the optical properties of
vegetation through physical processes. By solving an inverse problem, leaf traits can be retrieved
from airborne and spaceborne hyperspectral remote sensing in the 0.4 − 2.5 µm optical range.
Hyperspectral sensors, already launched or planned for the next decade, will provide massive
data flows, making it possible to monitor forest ecosystems, but requiring automated processing
methods. In this context, this thesis targets the development of a generalizable method capable
of processing all images of temperate forests from a spatial sensor for the estimation of four leaf
traits: leaf concentrations of chlorophylls (Cab), carotenoids (Cxc), water (EWT) and dry matter
(LMA). To meet this objective, this thesis proposes to test estimation methods at the leaf scale
and then at the canopy scale, based on data collected on five forest sites in California, covering
several ecosystems and different seasons. At the leaf scale, several trait estimation methods from
spectroscopic measures are compared, including physical and statistical approaches, and based
on leaf samples collected from the five sites. The main results show that the statistical method
based on Gaussian processes regression yields the most accurate estimates whatever the trait. At
canopy level, leaf traits are estimated using both a statistical and a hybrid approach, based on
AVIRIS acquisitions over the five sites. The statistical approach involves training regression mod-
els on AVIRIS hyperspectral data. The hybrid approach consists of training a convolution neural
network (CNN) on a synthetic database generated from the DART radiative transfer model. This
step shows that statistical approaches perform better than the hybrid approach. Nevertheless, all
the methods tested prove ill-suited to extract the effects of leaf traits from canopy-scale reflectance,
and estimation errors remain too large to analyze seasonal and intra-specific variation in leaf traits.
In order to improve estimation performance, a more in-depth study of the effects of canopy and
understory geometry would be required. In addition, it would be necessary to test the predictabil-
ity of forest health based on leaf trait mapping in order to achieve a comprehensive monitoring of
these ecosystems.
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RÉSUMÉ

Résumé

Les écosystèmes forestiers couvrent environ un dixième de la surface de la terre. Ils assurent de
nombreuses fonctions écologiques et services écosystémiques, grâce à leur grande biodiversité et
à leur rôle dans la régulation du climat et des cycles biogéochimiques. Cependant, le changement
climatique, lié au réchauffement de la planète, met en péril la conservation de ces écosystèmes en
plongeant les espèces végétales présentes dans des conditions auxquelles elles ne sont pas adap-
tées. La végétation des écosystèmes forestiers peut être suivie par télédétection quantitative, en
estimant des traits fonctionnels définis en écologie comme des indicateurs des capacités de crois-
sance, de reproduction ou de survie. Plus précisément, pour les espèces végétales, certains traits
fonctionnels, connus sous le nom de traits foliaires, sont liés à la composition biochimique du feuil-
lage et affectent les propriétés optiques de la végétation par le biais de processus physiques. En
résolvant un problème inverse, les caractéristiques foliaires peuvent être extraites de la télédétec-
tion hyperspectrale aéroportée et spatiale dans la gamme optique de 0, 4 à 2, 5 µm . Les capteurs
hyperspectraux, déjà lancés ou prévus pour la prochaine décennie, fourniront des flux de don-
nées massifs, permettant de surveiller les écosystèmes forestiers, mais nécessitant des méthodes
de traitement automatisées. Dans ce contexte, cette thèse vise le développement d’une méthode
généralisable capable de traiter toutes les images de forêts tempérées provenant d’un capteur spa-
tial pour l’estimation de quatre traits foliaires : les concentrations foliaires en chlorophylles (Cab),
en caroténoïdes (Cxc), en eau (EWT) et en matière sèche (LMA). Pour répondre à cet objectif, cette
thèse propose de tester des méthodes d’estimation à l’échelle de la feuille puis à l’échelle de la
canopée, à partir de données collectées sur cinq sites forestiers en Californie, couvrant plusieurs
écosystèmes et différentes saisons. A l’échelle de la feuille, plusieurs méthodes d’estimation des
traits à partir de mesures spectroscopiques sont comparées, incluant des approches physiques et
statistiques, et basées sur des échantillons de feuilles collectés sur les cinq sites. Les principaux
résultats montrent que la méthode statistique basée sur la régression des processus gaussiens pro-
duit les estimations les plus précises quel que soit le caractère. Au niveau de la canopée, les
caractéristiques des feuilles sont estimées à l’aide d’une approche à la fois statistique et hybride,
basée sur les acquisitions AVIRIS sur les cinq sites. L’approche statistique implique l’apprentissage
de modèles de régression sur les données hyperspectrales AVIRIS. L’approche hybride consiste à
entraîner un réseau neuronal à convolution (CNN) sur une base de données synthétique générée
à partir du modèle de transfert radiatif DART. Cette étape montre que les approches statistiques
sont plus performantes que l’approche hybride. Néanmoins, toutes les méthodes testées s’avèrent
mal adaptées pour extraire les effets des traits foliaires à partir de la réflectance à l’échelle de la
canopée, et les erreurs d’estimation restent trop importantes pour analyser les variations saison-
nières et intraspécifiques des traits foliaires. Afin d’améliorer les performances d’estimation, une
étude plus approfondie des effets de la géométrie de la canopée et du sous-étage serait néces-
saire. En outre, il serait nécessaire de tester la prévisibilité de la santé des forêts sur la base de la
cartographie des traits foliaires afin de parvenir à une surveillance complète de ces écosystèmes.
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INTRODUCTION

Introduction

Forest ecosystems account for a large proportion of continental land surface, covering around 10%
of the earth’s surface (FAO 2020). A forest ecosystem is a vegetation type dominated by trees,
but various definitions exist worldwide that set specific criteria in terms of size, tree cover, height,
and land use. The Food and Agriculture Organization (FAO) of the United Nations defines forests
as “land spanning more than 0.5 hectares with trees higher than 5 meters and a canopy cover of
more than 10%, or trees able to reach these thresholds in situ” (FAO 2020). Additionally, the FAO
excludes land that is predominantly under agricultural or urban land use. This definition is broad
enough to cover many types of tree cover, including areas with lower vegetation.

Forest ecosystems play a crucial role in benefiting both climate and biodiversity. This role is es-
pecially highlighted in the 2021-2023 IPCC and 2019 IPBES reports. Such as other vegetation-based
ecosystems, forests convert solar energy into organic matter through photosynthesis, absorbing
carbon dioxide from the atmosphere. Forests ecosystems are the largest supplier of biomass pro-
ducing 75% of organic matter on continental surfaces and constitute the largest terrestrial carbon
sink (Masson-Delmotte et al. 2021). Forest not only plays a role in long-term carbon storage but
also has significant positive effects on climate stability (Seymour et al. 2022). Latest research pin-
points the contribution of forests to stabilize local temperatures and rainfall patterns (Pörtner et
al. 2022; Seymour et al. 2022). Particularly, forests cool the earth’s surface and lower atmosphere
through evapotranspiration and the roughness of canopies alter wind and atmospheric mixing.
Forests contribute to biodiversity conservation by providing habitats for a wide range of species
(Brondizio et al. 2019). Indeed, the plant cover, the biomass created and the different levels of
vegetation provide an environment in which a wide variety of species - plants, fungi and animals
- can thrive. Forests therefore play a fundamental role in conserving biodiversity. As a result,
forests make up a large part of the regions classified as biodiversity hotspots (Myers et al. 2000),
which concentrate 44% of vascular plant species and 35% of vertebrate species, and have become
priorities for ecosystem conservation because of the pressures they face.

Forest ecosystems cover a wide diversity of biomes. Major biome types can be distinguished on
the basis of mean annual rainfall and mean annual temperature (Whittaker 1975). These biomes
include tropical moist forests and tropical dry forests around the Equator, boreal forests in sub-
arctic climates, and at the mid-latitudes, a wide range of temperate forests (moist temperate,
continental temperate, mediterranean, and subtropical forests). Temperate forests are located in
mid-latitude regions where different air masses collide and climate is affected by significant sea-
sonal rhythms (Figure 1). Temperate forests are spread along a wide variety of climates following
the Köppen-Geiger climate classification and can be classified in three main biomes (Olson et al.
2001): temperate broadleaf and mixed forests, temperate coniferous forest, mediterranean forests
and woodlands.

Figure 1: Map of the temperate forest biomes on the Earth, adapted from Olson et al. 2001.

19



INTRODUCTION

Climate science studies have reached the scientific consensus that Earth is facing global warm-
ing driven by anthropic greenhouse gas emissions for at least the past 30 years (Masson-Delmotte
et al. 2021; Oreskes 2004). Progress in climate science shed light on the climate change caused by
global warming and increase of anthropogenic greenhouse gas concentration in the atmosphere.
Climate change not only alters mean temperature and precipitation but also the frequency and
intensity of extreme hydro-meteorological events such as droughts and heatwaves. Consequently,
climate change jeopardizes the resilience of forest ecosystems. Besides, climate change has been
listed by the IPBES as one of the five major threats to biodiversity along with the destruction of
natural habitats, overexploitation of species, pollution, and invasive species (Brondizio et al. 2019).

The alteration of temperature and rainfall patterns plunges forest trees directly into condi-
tions to which they are not adapted and in combination with other disturbance factors, pushes
forests beyond thresholds of sustainability (Millar and Stephenson 2015). Droughts directly in-
crease water stress in trees and lead to forest desiccation and a reduced resilience to pathogens.
Additionally, the elevation of mean temperature and shifts in seasonal timing also ease the spread
of pest and disease, as well as invasive species. At the end of the day, climate change has increased
the likelihood of tree mortality compared to the mortality levels experienced in the 20th-century
(Millar and Stephenson 2015). Cases of sudden and unexpected elevated tree mortality following
heat and drought events have already been observed and documented, including in ecosystems
that previously were considered tolerant or not at risk of exposure (Hartmann et al. 2022). Extreme
hydro-meteorological events also alter fire regimes and intensify fire risk. Wildfire has become a
main driver of forest loss, and particularly for temperate forest. For example, wildfires caused
40% of the forest loss in North America over the 2001-2015 period (Curtis et al. 2018).

Climate change alters the physiological processes of forest trees. Consequently, monitoring
these physiological processes is a key factor in understanding and assessing the impacts described
previously. In ecology, concepts of functional traits have been developed to monitor specifically
these physiological processes. Functional traits are defined as any morphological, physiological or
phenological feature, measurable at the individual level, which impacts the plant fitness indirectly
via its effects on growth, reproduction or survival (Violle et al. 2007).

Subsequently, Essential Biodiversity Variables (EBVs) have been defined by the Group on Earth
Observations Biodiversity Observation Network (GEO BON), with the aim of creating a harmo-
nized global observation system to inform scientists and policy-makers (Pereira et al. 2013; GEO
BON n.d.). EBVs have been defined on the basis of Essential Climate Variables that guide the
Global Climate Observing System (GCOS). EBVs are defined as measurable quantities necessary
to study and monitor biodiversity change. They provide a structural, taxonomic and functional
description of the environment under study. EBVs include numerous functional vegetation traits.
These functional traits are indicators of physiology within the species and within the ecosystem
(Pereira et al. 2013).

However, functional traits are not measurable on a large scale, and one solution for covering
large areas is the use of remote sensing. Several vegetation functional traits, included in EBVs,
have been listed as biodiversity metrics to be observed from space as a priority (Skidmore et al.
2021). Remote sensing “is the science and art of obtaining information about an object, area or
phenomenon through the analysis of data acquired by a device that is not in contact with the
object, area, or phenomenon under investigation” (Lillesand et al. 2015). The estimation of land
physical parameters such as EBVs is part of new trends in remote sensing to move toward quan-
titative assessments in contrast to qualitative ones.

Among functional traits, several are measurable at the leaf level and are consequently gathered
under the name “leaf traits”. Four leaf traits are Chlorophylls a and b content (Cab), carotenoids
content (Cxc), Equivalent Water Thickness (EWT) and Leaf Mass Area (LMA). They are linked
to the plant’s physiological processes and, at ecosystem level, to biogeochemical cycles and are
therefore considered as valuable indicators of vegetation’s health and stress levels (Lausch et al.
2016).

• Chlorophylls a and b are the dominant pigments in the leaf. They are the main photosyn-
thetic pigments in leaves and give them their green coloration. They constitute the major
part of light-harvesting complexes in photosystems located on thylakoids membranes in the
chloroplasts, and therefore play a key role in the conversion of light into chemical energy
(Taiz and Zeiger 2010). Cab expresses the mass of chlorophylls a and b per unit of leaf area.

• Carotenoids comprise both carotene and xanthophyll families. Carotenoids are also photo-
synthetic pigments and are bound with chlorophylls molecules in photosystems (Taiz and
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Zeiger 2010). Xanthophylls also provide protection against harmful radiation through the
xanthophyll cycle (Demmig-Adams and Adams 1996). Cxc expresses the mass of carotenoids
per unit of leaf area.

• The leaf water content is an indicator of water management by plant tissues. The EWT is the
area-weighted moisture content of the leaf (Riano et al. 2005).

• Other main constituents of the leaf are gathered in the dry matter. The leaf dry matter
encompasses a wide range of organic compounds that can be divided in two main groups:
nitrogen-based constituents (proteins) and carbon-based constituents (including cellulose,
lignin, hemicellulose, starch and sugars) (Féret et al. 2021). The LMA is expressed as the dry
mass per unit of leaf area. It is the inverse of Specific Leaf Area (SLA) that is also often used
as a leaf functional trait.

Biochemical constituents absorb the energy of light radiation at the microscopic level. Photons
are absorbed via the phenomenon of electronic transitions for pigments, or converted into the
form of vibrational energy internal to the molecules for water, nitrogen-based and carbon-based
constituents. These absorption phenomena involve photons of specific energies. Therefore, foliar
biochemistry, and consequently, the four leaf traits impact the leaf optical properties through ab-
sorption bands specific to each constituent. The absorption bands are located in the visible range
(400 − 750 nm) for Cab and Cxc; in the Near InfraRed range (NIR; 800 − 1400 nm) and the Short
Wave InfraRed (SWIR; 1400 − 2500 nm) for EWT and LMA (Figure 2).
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Figure 2: (top) Atmospheric transmittance in the optical domain (400 − 2500 nm), the annotation
provide the main gases responsible of the atmospheric absorption for each band. (bottom) Typical
reflectance spectra of a leaf (blue solid line), the annotations provides the main absorption bands
and the related phenomena (from Curran 1989, in green absorption related to pigments, in blue to
water, in red and purple to dry matter).

The absorption bands constitute spectral fingerprints of each leaf trait. In this frame, the anal-
ysis of optical measurements with a high spectral resolution can help to quantify leaf traits.

In remote sensing, a concept of instrument called imaging spectrometers has emerged since
the 1990s. The emergence of imaging spectroscopy has spawned a wide field of research in the
remote sensing realm (Schaepman 2009; Rast and Painter 2019). Imaging spectroscopy implies that
many bands in adjacent wavelengths are measured so that all bands over a specified wavelength
interval completely sampled the spectrum. Imaging spectroscopy is often called hyperspectral
imaging, but this latter denomination appears unclear because it does not specify that the many
bands measured are adjacent. Furthermore, estimation of land physical parameters such as EBV
has been cited as one of the main challenges to be overcome in hyperspectral remote sensing
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(Bioucas-Dias et al. 2013). Physical parameter estimation is an intermediate step to transform
remote sensing measurements into useful estimates. Physical parameters can be estimated using
the optical properties transmitted in the atmospheric windows (Figure 2).

In the past, hyperspectral sensors were confined to airborne sensors such as AVIRIS (Green
et al. 1998). The development of hyperspectral spaceborne sensors paused since the launch of
Hyperion in the 2000s, but more recently, a new wave of spaceborne hyperspectral sensors has
found its place in space programs (Ustin and Middleton 2021). This new wave includes sensors
recently launched (PRISMA (Cogliati et al. 2021), EnMAP (Guanter et al. 2015), EMIT (Green et al.
2020)), and missions planned for the coming decade (CHIME (Rast et al. 2021), SBG (Green et al.
2022)). These new sensors will generate an unprecedented flow of hyperspectral images of the
Earth.

The estimation of land physical parameters, including estimation of leaf traits, from imaging
spectroscopy, is part of the inverse problem. In general terms, inverse problems infer parameters
of a system from observed data, in contrast to direct problems which simulate the effects given all
the parameters (Tarantola 2005; Patow and Pueyo 2003). In vegetation remote sensing modeling,
the direct, or forward problem, is a case of radiative transfer. It involves modeling the propaga-
tion of light radiation received from the sun through the atmosphere and vegetation to predict
observations. Much work has focused on modeling the interaction of light with matter in the case
of vegetation leading to the creation of multiple Radiative Transfer Models (RTMs). Formally, the
forward problem can be expressed as:

Y = f (x, θ) + n

where Y is a set of observations, x is the set of parameters, θ is a set of controllable conditions,
and n is an additive noise. f is the function that models the radiative transfer.

The inverse problem, implies to retrieve one or multiple variables of interest from the measure-
ment of the radiance by a sensor. It can be expressed as:

x̂ = g(Y, ω)

where g is a function parametrized by weights ω, that approximate parameters x̂ from the set of
observations Y.

Solving the inverse problem therefore depends to a large extent on understanding the direct
model. In addition, as with most inverse problems, estimation of leaf traits is an ill-posed prob-
lem, meaning that distinct combinations of vegetation characteristics can lead to similar optical
measurements, and multiple solutions (Baret and Buis 2008).

Estimation of land physical parameters involves a specific taxonomy of inversion methods.
This taxonomy was first introduced in the 2000s (Baret and Buis 2008) and later reintroduced by
(Bioucas-Dias et al. 2013) and (Verrelst et al. 2019). The taxonomy considers three inversion strate-
gies: statistical, physical and hybrid. Statistical strategy involves learning statistically the inverse
model, i.e. the function g, from a set of observations and corresponding measured parameters.
The learning phase can be done through simple transformation of the hyperspectral observation
or through training of more complex Machine Learning Regression Algorithms (MLRAs). Sta-
tistical strategy is also sometimes referred to as a data-driven approach, or empirical approach.
Physical strategy tries to invert the RTM, meaning that it is searching for the most likely set of
parameters that would provide the observation. Various approaches have been considered, includ-
ing iterative optimization, look-up-table (LUT), Markov Chain Monte Carlo (MCMC), and genetic
algorithms. The physical strategy is reserved for RTM with low computation cost since under-
lying approaches require numerous calls to the RTM. Hybrid strategy combines aspects of both
statistical and physical strategies: it statistically learns an inverse model, i.e. the function g, from
a set of input-output data generated by forward RTM simulations. The learning phase is typically
performed with an MLRA.

However, examining the literature, there is no consensus that appears regarding the strategies
to prioritize in the development of leaf traits estimations from space-borne hyperspectral images
(Hill et al. 2019). In fact, some authors advocate to focus on hybrid strategies such as Verrelst
et al. 2019 while other focus their work on statistical strategies, even for estimation at large scales
(e.g., Wang et al. 2020). Most of the studies in the field of leaf traits estimation underline that
statistical (or empirical) approaches could theoretically lack of generalization capacities compared
to RTM-based methods. Nonetheless, one should noticed that RTM-based methods could also lack
generalization capacities if RTM are tune to local conditions, and that shortcomings of statistical
methods are becoming less pronounced in recent research results (Hill et al. 2019). Past researches
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in this field exhibits two major drawbacks considering the projected requirements of future space-
borne sensors. One the one hand, as emphasized by Homolová et al. 2013 and Gamon et al. 2019,
most published studies have focused on a given time period, usually using a single point in time
near the center of the growing season, and did not evaluate the reliability of retrieval methods
along the whole year. As expected, estimation protocols developed from one season usually fail to
reproduce the same accuracy on datasets collected in another season (Gamon et al. 2019). On the
other hand, these studies also usually consider a single or few images, covering limited regions
with a single forest ecosystem type and consequently do not provide methods to estimate leaf
traits over several sites far from each other containing distinct species. Additionally, only few
studies have studied estimation of leaf traits both at the leaf scale and canopy scale on the same
site and time period. Thus, the transition from leaf-scale to tree-scale or canopy-scale remains an
open question in the literature, and would be highly dependent on the type of trees and the scale
of observation. Besides, site and period specific methods would require long processing times
compared to the amount of data, or the generation of new simulations, or the measurement of
new data in situ. Only few published studies have explicitly targeted a generalizable method to
cope with several ecosytems (Martin et al. 2008, Singh et al. 2015, or more recently Wang et al.
2020). Yet, estimation algorithms are required to produce robust estimates in acceptable processing
time in view of operational processing chains (Verrelst et al. 2019). Moreover, the development of
an algorithm related to future space-borne sensors required to be applied across a wide range of
sites and remote sensing scenes. In this frame, it would be preferable to seek more generalized
canopy chemistry algorithms to take into account the great variability of temperate forests, and
provide a algorithm capable of adapting to variations linked to different ecosystems (species,
forest structure) and to spatial-temporal variations in the acquisition (phenology, solar irradiance,
latitude). Consequently, current methods are not compatible with the massive hyperspectral data
streams that will be provided by new spaceborne sensors in the future. At the end of the day,
the field of leaf traits estimation require more work on the comparison of statistical and RTM-
based methods for the development of generalizable estimation methods reliable to use on the
diversity of temperate forests along the year. The development of a generalized and, hence, more
operational approach would expand the ecological utility of the growing volumes of imaging
spectrocopy data, now becoming available. In addition, the reliability and accuracy of estimation
methods could be improved understanding the change of scale between the leaves up to the
canopy.

Objective of the thesis

In the context of recent and future satellite hyperspectral missions, the objective of the present the-
sis targets the development of a generalizable method to estimate four leaf traits; namely Cab, Cxc,
EWT and LMA; from hyperspectral data, robust to the various ecosystems of temperate forests,
and temporal changes, including phenological variations of the forest and seasonal illumination
variations.

This general problem, imposed by the development of future hyperspectral spaceborne sensors,
is based on two underlying scientific challenges and questions. First of all, species from different
temperate forest ecosystems have foliage with specific morphological and phenological character-
istics linked to their adaptation to climates. Are the estimation methods identified in the literature
applicable to foliage of temperate forest species, whatever their characteristics linked to climate
and ecosystem? Secondly, species characteristics are also expressed at canopy scale, and influ-
ence the signal captured at this scale, as well as landscape variations related to solar illumination
and understory. Considering the variations due to canopy structure, the solar illumination and
understory, are the estimation accuracies achieved at the leaf scale transferable at the canopy scale?

Chapter 1 of this manuscript focuses on the forward problem. It provides a state-of-the-art
of the RTM to model the vegetation at various scales and argues on the selection of three RTMs.
It then presents the integration of selected RTMs in the thesis, and conducts sensitivity analyses.
This work highlights the link between leaf traits and radiometric quantities.

Chapter 2 introduces the methodology for estimating leaf traits through the three inversion
strategies. It reviews the state-of-the-art of methodologies used to estimate leaf traits and details
the main algorithms selected in this thesis to build estimation methods.

Chapter 3 describes a dataset that fulfills the criteria required to test the methods presented
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in Chapter 2 and meet the challenges set out in this thesis. The dataset encompasses in situ and
in-lab data from five sites in California; covering mediterranean, broadleaf, and coniferous moun-
tain forest ecosystems; and seasonal variations. The dataset compiles leaf traits measurements and
corresponding radiometric observations from both a portable spectroradiometer and an airborne
hyperspectral sensor.

Chapter 4 focuses on estimation of leaf traits at the leaf scale from spectroradiometer measure-
ments presented in Chapter 2, and compares the accuracy of several estimation methods from the
state-of-the-art. It aims to assess the robustness of state-of-the-art methods at this scale regard-
ing ecosystem types and seasonal variations of the vegetation from data presented in Chapter 2.
State-of-the-art methods gather methods from the three strategies: statistical, physical and hybrid.
Physical and hybrid methods are based on a leaf RTM presented in Chapter 1. Statistical and
hybrid methods use four MLRAs introduced in Chapter 2. Moreover, the work from Chapter 4

aims to assess the transferability of statistical methods using an open source dataset.

Chapter 5 assesses the capabilities of estimation methods to cope with other interfering fac-
tors at the canopy scale; namely canopy structure, solar illumination, and understory impacts. It
examines the robustness of statistical methods and a hybrid method to retrieve leaf traits from
hyperspectral airborne data. By comparing with the accuracies from Chapter 4, this work aims
to highlight the effects of canopy structure, solar illumination and understory; which vary tempo-
rally and/or with the ecosystems types; with a view to developing a generalizable estimator for
satellite hyperspectral image processing.

Finally, a general conclusion and perspectives are given at the end of the manuscript.
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Introduction

Les écosystèmes forestiers représentent une grande partie des terres continentales, couvrant en-
viron 10 % de la surface terrestre (FAO 2020). Un écosystème forestier est un type de végé-
tation dominé par les arbres, mais il existe plusieurs définitions dans le monde qui fixent des
critères spécifiques en termes de taille, de couverture arborée, de hauteur et d’utilisation des ter-
res. L’Organisation des Nations Unies pour l’alimentation et l’agriculture (FAO) définit les forêts
comme "des terres s’étendant sur plus de 0,5 hectare avec des arbres d’une hauteur supérieure
à 5 mètres et un couvert de plus de 10 %, ou des arbres capables d’atteindre ces seuils in situ"
(FAO 2020). En outre, la FAO exclut les terres qui sont principalement utilisées à des fins agricoles
ou urbaines. Cette définition est suffisamment large pour couvrir de nombreux types de couvert
arboré, y compris les zones à végétation basse.

Les écosystèmes forestiers jouent un rôle crucial en faveur du climat et de la biodiversité. Ce
rôle est particulièrement mis en évidence dans les rapports 2021-2023 du GIEC et 2019 de l’IPBES.
Comme les autres écosystèmes végétaux, les forêts transforment l’énergie solaire en matière or-
ganique par la photosynthèse et absorbent le dioxyde de carbone de l’atmosphère. Les écosys-
tèmes forestiers sont le plus grand fournisseur de biomasse, produisant 75 % de la matière
organique sur les surfaces continentales et constituant le plus grand puits de carbone terrestre
(Masson-Delmotte et al. 2021). Les forêts jouent non seulement un rôle dans le stockage du car-
bone à long terme, mais ont également des effets positifs significatifs sur la stabilité du climat
(Seymour et al. 2022). Les dernières recherches mettent en évidence la contribution des forêts à
la stabilisation des températures locales et des régimes de précipitations (Pörtner et al. 2022; Sey-
mour et al. 2022). En particulier, les forêts refroidissent la surface de la terre et la basse atmosphère
grâce à l’évapotranspiration, et la rugosité des canopées influe sur les vents et les courants atmo-
sphérique. Les forêts contribuent à la conservation de la biodiversité en fournissant des habitats à
un large éventail d’espèces (Brondizio et al. 2019). En effet, le couvert végétal, la biomasse créée et
les différents niveaux de végétation constituent un environnement dans lequel une grande variété
d’espèces - plantes, champignons et animaux - peuvent prospérer. Les forêts jouent donc un rôle
fondamental dans la conservation de la biodiversité. Ainsi, les forêts constituent une grande partie
des régions classées comme points chauds de la biodiversité (Myers et al. 2000), qui concentrent
44% des espèces de plantes vasculaires et 35 % des espèces de vertébrés, et sont devenues des
priorités pour la conservation des écosystèmes en raison des pressions qu’elles subissent.

Les écosystèmes forestiers couvrent une grande diversité de biomes. Les principaux types
de biomes peuvent être distingués sur la base des précipitations et des températures annuelles
moyennes (Whittaker 1975). Ces biomes comprennent les forêts tropicales humides et les forêts
tropicales sèches autour de l’équateur, les forêts boréales dans les climats subarctiques et, aux
latitudes moyennes, un large éventail de forêts tempérées (forêts tempérées humides, tempérées
continentales, méditerranéennes et subtropicales). Les forêts tempérées sont situées dans des ré-
gions de latitude moyenne où différentes masses d’air s’entrechoquent et où le climat est affecté
par des rythmes saisonniers importants. Les forêts tempérées s’étendent sur une grande variété
de climats selon la classification climatique de Köppen-Geiger et peuvent être classées en trois
biomes principaux (Olson et al. 2001) : les forêts tempérées à feuilles larges et mixtes, les forêts
tempérées de conifères et les forêts méditerranéennes.

Les études sur la science du climat ont abouti, depuis au moins 30 ans, à un consensus sci-
entifique selon lequel la Terre est confrontée à un réchauffement climatique dû aux émissions
anthropiques de gaz à effet de serre (Masson-Delmotte et al. 2021; Oreskes 2004). Les progrès
de la science du climat ont mis en lumière le changement climatique causé par le réchauffement
de la planète et l’augmentation de la concentration des gaz à effet de serre anthropiques dans
l’atmosphère. Le changement climatique modifie non seulement la température moyenne et les
précipitations, mais aussi la fréquence et l’intensité des phénomènes hydrométéorologiques ex-
trêmes tels que les sécheresses et les vagues de chaleur. Par conséquent, le changement climatique
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met en péril la résilience des écosystèmes forestiers. En outre, le changement climatique a été
répertorié par l’IPBES comme l’une des cinq principales menaces pesant sur la biodiversité, avec
la destruction des habitats naturels, la surexploitation des espèces, la pollution et les espèces en-
vahissantes.

L’altération des températures et des précipitations plonge les arbres forestiers directement dans
des conditions auxquelles ils ne sont pas adaptés et, en combinaison avec d’autres facteurs de per-
turbation, pousse les forêts au-delà des seuils de durabilité (Millar and Stephenson 2015). Les
sécheresses augmentent directement le stress hydrique des arbres et conduisent à la dessiccation
des forêts et à une moindre résistance aux agents pathogènes. En outre, l’élévation de la tem-
pérature moyenne et les changements dans le calendrier saisonnier facilitent la propagation des
ravageurs et des maladies, ainsi que des espèces envahissantes. En fin de compte, le changement
climatique a augmenté la probabilité de mortalité des arbres par rapport aux niveaux de mortalité
enregistrés au XXème siècle (Millar and Stephenson 2015). Des cas de mortalité élevée, soudaine
et inattendue d’arbres à la suite d’épisodes de chaleur et de sécheresse ont déjà été observés et
documentés, y compris dans des écosystèmes qui étaient auparavant considérés comme tolérants
ou ne risquant pas d’être exposés (Hartmann et al. 2022). Les événements hydrométéorologiques
extrêmes modifient également les régimes d’incendie et intensifient le risque d’incendie. Les in-
cendies de forêt sont devenus l’un des principaux facteurs de perte des forêts, en particulier des
forêts tempérées. Par exemple, les incendies de forêt ont causé 40 % de la perte de forêts en
Amérique du Nord sur la période 2001-2015 (Curtis et al. 2018).

Le changement climatique modifie les processus physiologiques des arbres des forêts. Par con-
séquent, le suivi de ces processus physiologiques est un facteur clé pour comprendre et évaluer les
impacts décrits précédemment. En écologie, les concepts de traits fonctionnels ont été développés
pour surveiller spécifiquement ces processus physiologiques. Les traits fonctionnels sont défi-
nis comme toute caractéristique morphologique, physiologique ou phénologique, mesurable au
niveau individuel, qui a un impact indirect sur l’aptitude de la plante via ses effets sur la crois-
sance, la reproduction ou la survie (Violle et al. 2007).

Par la suite, des variables essentielles de la biodiversité (EBV) ont été définies par le réseau
d’observation de la biodiversité du Groupe sur l’observation de la Terre (GEO BON), dans le
but de créer un système d’observation mondial harmonisé pour informer les scientifiques et les
décideurs politiques (Pereira et al. 2013; GEO BON n.d.). Les EBV ont été définies sur la base
des variables climatiques essentielles qui guident le système mondial d’observation du climat
(GCOS). Les EBV sont définies comme des quantités mesurables nécessaires à l’étude et au suivi
de l’évolution de la biodiversité. Elles fournissent une description structurelle, taxonomique et
fonctionnelle de l’environnement étudié. Les EBV comprennent de nombreux traits fonctionnels
de la végétation. Ces traits fonctionnels sont des indicateurs de la physiologie de l’espèce et de
l’écosystème (Pereira et al. 2013).

Cependant, les traits fonctionnels ne sont pas mesurables à grande échelle, et l’une des solu-
tions pour couvrir de vastes zones est l’utilisation de la télédétection. Plusieurs traits fonctionnels
de la végétation, inclus dans les EBV, ont été répertoriés comme des mesures de la biodiversité à
observer en priorité depuis l’espace (Skidmore et al. 2021). La télédétection "est la science et l’art
d’obtenir des informations sur un objet, une zone ou un phénomène par l’analyse de données
acquises par un dispositif qui n’est pas en contact avec l’objet, la zone ou le phénomène étudié"
(Lillesand et al. 2015). L’estimation des paramètres physiques terrestres tels que les EBV fait par-
tie des nouvelles tendances de la télédétection qui s’orientent vers des évaluations quantitatives
plutôt que qualitatives.

Parmi les traits fonctionnels, plusieurs sont mesurables au niveau des feuilles et sont donc
regroupés sous le nom de "traits foliaires". Quatre traits foliaires sont la teneur en chlorophylles a
et b (Cab), la teneur en caroténoïdes (Cxc), l’épaisseur équivalente de l’eau (EWT) et la surface de
la masse foliaire (LMA). Ils sont liés aux processus physiologiques de la plante et, au niveau de
l’écosystème, aux cycles biogéochimiques et sont donc considérés comme des indicateurs précieux
de la santé de la végétation et du niveau de stress (Lausch et al. 2016).

• Les chlorophylles a et b sont les pigments dominants de la feuille. Elles sont les principaux
pigments photosynthétiques des feuilles et leur donnent leur couleur verte. Elles constituent
la majeure partie des complexes de capture de la lumière dans les photosystèmes situés sur
les membranes des thylakoïdes dans les chloroplastes, et jouent donc un rôle clé dans la
conversion de la lumière en énergie chimique (Taiz and Zeiger 2010). Cab exprime la masse
de chlorophylles a et b par unité de surface foliaire.
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• Les caroténoïdes comprennent les familles du carotène et de la xanthophylle. Les caroténoïdes
sont également des pigments photosynthétiques et sont liés aux molécules de chlorophylle
dans les photosystèmes (Taiz and Zeiger 2010). Les xanthophylles assurent également une
protection contre les rayonnements nocifs grâce au cycle de la xanthophylle (Demmig-Adams
and Adams 1996). Cxc exprime la masse de caroténoïdes par unité de surface foliaire.

• La teneur en eau des feuilles est un indicateur de la gestion de l’eau par les tissus végétaux.
L’EWT est la teneur en eau pondérée de la feuille (Riano et al. 2005).

• Les autres constituants principaux de la feuille sont rassemblés dans la matière sèche. La
matière sèche des feuilles comprend un large éventail de composés organiques qui peuvent
être divisés en deux groupes principaux : les constituants à base d’azote (protéines) et les
constituants à base de carbone (y compris la cellulose, la lignine, l’hémicellulose, l’amidon
et les sucres) (Féret et al. 2021). La LMA est exprimée en masse sèche par unité de surface
foliaire. C’est l’inverse de la surface foliaire spécifique (SLA) qui est également souvent
utilisée comme caractéristique fonctionnelle des feuilles.

Les constituants biochimiques absorbent l’énergie du rayonnement lumineux au niveau micro-
scopique. Les photons sont absorbés par le phénomène des transitions électroniques pour les
pigments, ou convertis sous forme d’énergie vibratoire interne aux molécules pour l’eau, les con-
stituants azotés et carbonés. Ces phénomènes d’absorption impliquent des photons d’énergies spé-
cifiques. Par conséquent, la biochimie foliaire, et donc les quatre caractéristiques de la feuille, ont
un impact sur les propriétés optiques de la feuille par le biais de bandes d’absorption spécifiques
à chaque constituant. Les bandes d’absorption sont situées dans le domaine visible (400− 750 nm)
pour Cab et Cxc ; dans le proche infrarouge (NIR ; 800 − 1400 nm) et dans l’infrarouge à ondes
courtes (SWIR ; 1400 − 2500 nm) pour l’EWT et le LMA.

Les bandes d’absorption constituent les empreintes spectrales de chaque caractéristique de la
feuille. Dans ce cadre, l’analyse des mesures optiques à haute résolution spectrale peut aider à
quantifier les caractéristiques des feuilles.

En télédétection, un concept d’instrument appelé spectromètre imageur a émergé depuis les
années 1990. L’émergence de la spectro-imagerie a donné naissance à un vaste champ de recherche
dans le domaine de la télédétection (Schaepman 2009; Rast and Painter 2019). La spectro-imagerie
implique que de nombreuses bandes dans des longueurs d’onde adjacentes soient mesurées de
sorte que toutes les bandes sur un intervalle de longueur d’onde spécifié échantillonnent com-
plètement le spectre. La spectroscopie par imagerie est souvent appelée imagerie hyperspectrale,
mais cette dernière dénomination n’est pas claire car elle ne précise pas que les nombreuses ban-
des mesurées sont adjacentes. En outre, l’estimation des paramètres physiques des terres, tels
que l’EBV, a été citée comme l’un des principaux défis à relever en matière de télédétection hy-
perspectrale (Bioucas-Dias et al. 2013). L’estimation des paramètres physiques est une étape in-
termédiaire pour transformer les mesures de télédétection en estimations utiles. Les paramètres
physiques peuvent être estimés en utilisant les propriétés optiques transmises dans les fenêtres
atmosphériques.

Dans le passé, les capteurs hyperspectraux étaient limités aux capteurs aéroportés tels qu’AVIRIS
(Green et al. 1998). Le développement de capteurs hyperspectraux spatiaux a marqué une pause
depuis le lancement d’Hyperion dans les années 2000, mais plus récemment, une nouvelle vague
de capteurs hyperspectraux spatiaux a trouvé sa place dans les programmes spatiaux (Ustin
and Middleton 2021). Cette nouvelle vague comprend des capteurs récemment lancés (PRISMA
(Cogliati et al. 2021), EnMAP (Guanter et al. 2015), EMIT (Green et al. 2020)), et les missions
prévues pour la prochaine décennie (CHIME (Rast et al. 2021), SBG (Green et al. 2022)). Ces
nouveaux capteurs produiront un flux sans précédent d’images hyperspectrales de la Terre.

L’estimation des paramètres physiques des terres, y compris l’estimation des caractéristiques
des feuilles, à partir de la spectro-imagerie, fait partie du problème inverse. De manière générale,
les problèmes inverses déduisent les paramètres d’un système à partir des données observées,
contrairement aux problèmes directs qui simulent les effets compte tenu de tous les paramètres.
Dans la modélisation de la télédétection de la végétation, le problème direct, ou forward, est un
cas de transfert radiatif. Il s’agit de modéliser la propagation du rayonnement lumineux reçu du
soleil à travers l’atmosphère et la végétation afin de prévoir les observations. De nombreux travaux
se sont concentrés sur la modélisation de l’interaction de la lumière avec la matière dans le cas
de la végétation, ce qui a conduit à la création de multiples modèles de transfert radiatif (RTM).
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Formellement, le problème à terme peut être exprimé comme suit :

Y = f (x, θ) + n

où Y est un ensemble d’observations, x est l’ensemble des paramètres, θ est un ensemble de
conditions contrôlables, et n est un bruit additif. f est la fonction qui modélise le transfert radiatif.

Le problème inverse implique de récupérer une ou plusieurs variables d’intérêt à partir de la
mesure de la radiance par un capteur. Il peut être exprimé comme suit :

x̂ = g(Y, ω)

où g est une fonction paramétrée par des poids ω, qui approxime les paramètres x̂ à partir de
l’ensemble des observations Y.

La résolution du problème inverse dépend donc dans une large mesure de la compréhension
du modèle direct. En outre, comme pour la plupart des problèmes inverses, l’estimation des car-
actéristiques des feuilles est un problème mal posé, ce qui signifie que des combinaisons distinctes
de caractéristiques de la végétation peuvent conduire à des mesures optiques similaires, et à des
solutions multiples (Baret and Buis 2008).

L’estimation des paramètres physiques des terres implique une taxonomie spécifique des méth-
odes d’inversion. Cette taxonomie a été introduite pour la première fois dans les années 2000 par
(Baret and Buis 2008), puis réintroduite par (Bioucas-Dias et al. 2013) et (Verrelst et al. 2019). La tax-
onomie prend en compte trois stratégies d’inversion : statistique, physique et hybride. La stratégie
statistique implique l’apprentissage statistique du modèle inverse, i.e. la fonction g, à partir d’un
ensemble d’observations et de paramètres mesurés correspondants. La phase d’apprentissage peut
être réalisée par une simple transformation de l’observation hyperspectrale ou par l’entraînement
d’algorithmes de régression par apprentissage automatique (MLRA) plus complexes. La stratégie
statistique est aussi parfois appelée approche fondée sur les données ou approche empirique.
La stratégie physique tente d’inverser le RTM, ce qui signifie qu’elle recherche l’ensemble de
paramètres le plus susceptible de fournir l’observation. Diverses approches ont été envisagées,
notamment l’optimisation itérative, la table de recherche (LUT), la chaîne de Markov Monte Carlo
(MCMC) et les algorithmes génétiques. La stratégie physique est réservée aux RTM à faible coût
de calcul, car les approches sous-jacentes nécessitent de nombreux appels au RTM. La stratégie
hybride combine des aspects des stratégies statistique et physique : elle apprend statistiquement
un modèle inverse, i.e. la fonction g, à partir d’un ensemble de données d’entrée-sortie générées
par des simulations RTM directes. La phase d’apprentissage est généralement réalisée à l’aide
d’un MLRA.

Cependant, l’examen de la littérature ne permet pas de dégager un consensus sur les stratégies
à privilégier dans le développement de l’estimation des caractéristiques foliaires à partir d’images
hyperspectrales spatiales (Hill et al. 2019). En effet, certains auteurs préconisent de se concentrer
sur des stratégies hybrides telles que Verrelst et al. 2019, tandis que d’autres concentrent leurs
travaux sur des stratégies statistiques, même pour l’estimation à grande échelle (e.g., Wang et al.
2020). La plupart des études dans le domaine de l’estimation des traits foliaires soulignent que
les approches statistiques (ou empiriques) pourraient théoriquement manquer de capacités de
généralisation par rapport aux méthodes basées sur la RTM. Néanmoins, il convient de noter que
les méthodes basées sur les RTM peuvent également manquer de capacités de généralisation si
les RTM sont adaptées aux conditions locales, et que les lacunes des méthodes statistiques sont
de moins en moins prononcées dans les résultats de recherche récents. Les recherches antérieures
dans ce domaine présentent deux inconvénients majeurs compte tenu des exigences prévues pour
les futurs capteurs spatiaux. D’une part, comme le soulignent Homolová et al. 2013 et Gamon
et al. 2019, la plupart des études publiées se sont concentrées sur une période donnée, en utilisant
généralement un seul point dans le temps près du centre de la saison de croissance, et n’ont pas
évalué la fiabilité des méthodes d’extraction tout au long de l’année. Comme attendu, les proto-
coles d’estimation élaborés à partir d’une saison ne parviennent généralement pas à reproduire
la même précision sur des ensembles de données collectés au cours d’une autre saison (Gamon
et al. 2019). D’autre part, ces études portent généralement sur une seule ou quelques images,
couvrant des régions limitées avec un seul type d’écosystème forestier et, par conséquent, ne four-
nissent pas de méthodes pour estimer les caractéristiques des feuilles sur plusieurs sites éloignés
les uns des autres et contenant des espèces distinctes. En outre, seules quelques études ont étudié
l’estimation des caractéristiques des feuilles à la fois à l’échelle de la feuille et à l’échelle de la
canopée sur le même site et à la même période. Ainsi, le passage de l’échelle de la feuille à
l’échelle de l’arbre ou de la canopée reste une question ouverte dans la littérature, et dépendrait
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fortement du type d’arbres et de l’échelle d’observation. En outre, les méthodes spécifiques à
un site ou à une période nécessiteraient de longs délais de traitement par rapport à la quantité
de données, à la génération de nouvelles simulations ou à la mesure de nouvelles données in
situ. Seules quelques études publiées ont explicitement ciblé une méthode généralisable pour
faire face à plusieurs écosystèmes (Martin et al. 2008, Singh et al. 2015, ou plus récemment Wang
et al. 2020). Pourtant, les algorithmes d’estimation sont nécessaires pour produire des estimations
robustes dans un temps de traitement acceptable compte tenu des chaînes de traitement opéra-
tionnelles (Verrelst et al. 2019). En outre, le développement d’un algorithme lié aux futurs capteurs
spatiaux doit être appliqué à un large éventail de sites et de scènes de télédétection. Dans ce cadre,
il serait préférable de rechercher des algorithmes de chimie de la canopée plus généralisés pour
prendre en compte la grande variabilité des forêts tempérées, et fournir un algorithme capable de
s’adapter aux variations liées aux différents écosystèmes (espèces, structure forestière) et aux varia-
tions spatio-temporelles de l’acquisition (phénologie, irradiance solaire, latitude). Par conséquent,
les méthodes actuelles ne sont pas compatibles avec les flux massifs de données hyperspectrales
qui seront fournis par les nouveaux capteurs spatiaux à l’avenir. En fin de compte, le domaine
de l’estimation des traits foliaires nécessite davantage de travail sur la comparaison des méthodes
statistiques et des méthodes basées sur la RTM pour le développement de méthodes d’estimation
généralisables et fiables à utiliser sur la diversité des forêts tempérées tout au long de l’année.
Le développement d’une approche généralisée et, par conséquent, plus opérationnelle, élargirait
l’utilité écologique des volumes croissants de données de spectro-imagerie, qui deviennent main-
tenant disponibles. En outre, la fiabilité et la précision des méthodes d’estimation pourraient être
améliorées en tenant compte du changement d’échelle entre les feuilles et la canopée.

Objectifs de la thèse

Dans le contexte des missions hyperspectrales satellitaires récentes et futures, l’objectif de la
présente thèse est de développer une méthode généralisable pour estimer quatre traits foliaires, à
savoir Cab, Cxc, EWT et LMA, à partir de données hyperspectrales, robustes aux différents écosys-
tèmes des forêts tempérées, et aux changements temporels, y compris les variations phénologiques
de la forêt et les variations saisonnières de l’illumination.

Cette problématique générale, imposée par le développement des futurs capteurs hyperspec-
traux spatiaux, repose sur deux défis et questions scientifiques sous-jacents. Tout d’abord, les
espèces des différents écosystèmes forestiers tempérés ont un feuillage avec des caractéristiques
morphologiques et phénologiques spécifiques liées à leur adaptation aux climats. Les méthodes
d’estimation identifiées dans la littérature sont-elles applicables au feuillage des espèces des forêts
tempérées, quelles que soient leurs caractéristiques liées au climat et à l’écosystème ? Deuxième-
ment, les caractéristiques des espèces s’expriment également à l’échelle de la canopée, et influen-
cent le signal capturé à cette échelle, ainsi que les variations du paysage liées à l’illumination
solaire et au sous-étage. En considérant les variations dues à la structure de la canopée, à
l’illumination solaire et au sous-étage, les précisions d’estimation obtenues à l’échelle de la feuille
sont-elles transférables à l’échelle de la canopée ?

Le Chapitre 1 de ce manuscrit se concentre sur le problème de l’avant. Il fournit un état de
l’art des RTM pour modéliser la végétation à différentes échelles et argumente sur la sélection
de trois RTM. Il présente ensuite l’intégration des RTM sélectionnés dans la thèse et effectue des
analyses de sensibilité. Ce travail met en évidence le lien entre les caractéristiques des feuilles et
les quantités radiométriques.

Le Chapitre 2 présente la méthodologie d’estimation des traits foliaires à travers les trois straté-
gies d’inversion. Il passe en revue l’état de l’art des méthodologies utilisées pour estimer les traits
foliaires et détaille les principaux algorithmes sélectionnés dans cette thèse pour construire les
méthodes d’estimation.

Le Chapitre 3 décrit un ensemble de données qui remplit les critères requis pour tester les
méthodes présentées au chapitre 2 et relever les défis énoncés dans cette thèse. L’ensemble de
données comprend des données in situ et en laboratoire provenant de cinq sites en Californie, cou-
vrant des écosystèmes de forêts méditerranéennes, de feuillus et de conifères de montagne, ainsi
que des variations saisonnières. L’ensemble des données compile les mesures des caractéristiques
des feuilles et les observations radiométriques correspondantes provenant d’un spectroradiomètre
portable et d’un capteur hyperspectral aéroporté.
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Le Chapitre 4 se concentre sur l’estimation des caractéristiques des feuilles à l’échelle de la
feuille à partir des mesures du spectroradiomètre présentées dans le chapitre 2, et compare la
précision de plusieurs méthodes d’estimation de l’état de l’art. Il vise à évaluer la robustesse des
méthodes de pointe à cette échelle en fonction des types d’écosystèmes et des variations saison-
nières de la végétation à partir des données présentées au chapitre 2. Les méthodes de l’état de
l’art regroupent des méthodes issues des trois stratégies : statistique, physique et hybride. Les
méthodes physiques et hybrides sont basées sur un RTM foliaire présenté au chapitre 1. Les méth-
odes statistiques et hybrides utilisent quatre MLRA introduites au chapitre 2. En outre, le travail
du chapitre 4 vise à évaluer la transférabilité des méthodes statistiques à l’aide d’un ensemble de
données open source.

Le Chapitre 5 évalue les capacités des méthodes d’estimation à faire face à d’autres facteurs
d’interférence à l’échelle de la canopée, à savoir la structure de la canopée, l’illumination solaire
et les impacts du sous-étage. Il examine la robustesse des méthodes statistiques et d’une méthode
hybride pour extraire les caractéristiques des feuilles à partir de données hyperspectrales aéro-
portées. En comparant les précisions obtenues au chapitre 4, ce travail vise à mettre en évidence
les effets de la structure de la canopée, de l’illumination solaire et du sous-étage, qui varient dans
le temps et/ou en fonction des types d’écosystèmes, en vue de développer un estimateur général-
isable pour le traitement d’images hyperspectrales par satellite.

Enfin, une conclusion générale et des perspectives sont données à la fin du manuscrit en
français et en anglais.
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Chapter 1

Radiative transfer modeling of forest
canopies

As presented in Introduction, the estimation of vegetation traits from optical measurements is a
challenging inverse problem. In essence, estimation methods aim to develop an inverse model to
the underlying physical process. The propagation of radiation in a medium is described math-
ematically by the equations of radiative transfer. However these integro-differential equations
have proven to be remarkably intractable (Hapke 2012) and cannot be solved exactly except un-
der very simplifying assumptions. Therefore, computational physics is the only way to obtain
an approximate but reasonably accurate solution of the radiative transfer in a complex environ-
ment. Computational physics models are essential to understand the forward problem that is how
electromagnetic radiation interacts with vegetation elements. They are also a key tool to directly
relate observed optical properties to leaf traits and therefore they can guide the development of
an estimation method regardless of the chosen strategy. This first chapter focuses on the forward
problem and presents the work made on radiative transfer modeling of forest leaves and canopies.

The study of the forward problem has a twofold goal: (i) to understand the link between
vegetation composition and its observed optical properties to guide the building of estimation
methods; (ii) and to produce reliable simulations of optical properties for the development of
physically-based and hybrid estimation strategies. To fulfill these goals, the underlying work con-
sists of the development of a simulation framework that faithfully models the physical processes.
The processing chain must be controlled (i.e., it generates outputs that are physically reliable) and
configurable (i.e., it exhibits a limited number of parameters that control simulation results, the
effects of each parameter are known).

The chapter is structured into four sections, each addressing aspects of the development of the
simulation framework/simulation chain and a better understanding of the forward problem for
leaf traits estimation.

Firstly, Section 1.1 provides a literature overview of existing RTM for vegetation. This overview
is divided in two parts, depending on the scale considered for simulating physical processes. It
includes a first part on RTM for simulating physical processes and predicting optical properties at
the leaf scale, and a second part on RTM for processes at the canopy scale. From the state-of-the-
art, a leaf-scale RTM called PROSPECT, and two canopy-scale RTMs, namely SAIL and DART, are
selected for subsequent exploration.

Secondly, Section 1.2 presents the implementations and parametrization of the selected mod-
els. This section describes the simulation framework/simulation chain to integrate the RTM and
delineates the methodology employed in this thesis to simulate vegetation optical properties.

Following this, Section 1.3 delves into sensitivity analyses conducted on the selected RTM.
Various sensibility analyses are conducted, including local sensitivity analyses aiming to discern
the influence of key model parameters, and broader variance-based global sensitivity analyses on
optical properties and classic transformations. This section aims to identify spectral signatures
corresponding to targeted vegetation traits, and to provide assumptions to build inverse models
for leaf traits estimation.

Additionally, this section highlights disparities between assumptions from 1D and 3D canopy
RTM, and emphasizes their respective applicability and implications for vegetation assessment
and the contribution of 3D models compared to 1D models to simulate forest canopies.

Finally, the conclusion of this first chapter outlines the limitations of RTMs and the simula-
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tion framework/simulation chain that may impact the accuracy and reliability of some leaf traits
estimation methods.

1.1 Vegetation radiative transfer modeling

A RTM can be defined as the computer realization of radiative transfer processes. A RTM includes
a virtual environment (also called scene) that defines the geometry and optical properties (such
as scattering, absorption, reflection) of its elements, the light sources, and one or multiple sen-
sors. The RTM defines a computer algorithm that tracks the radiation in this virtual environment
to simulate the required quantities, such as the instrument’s observed reflectance. For the most
simple RTM with strong assumptions, the radiative transfer equations can be analytically solved
through the mathematical formalism and the algorithm consists of several equations. For more
complex RTM, several strategies have been developed to solve the radiative transfer equations.

RTMs can be distinguished by the scale they aim to simulate physical processes. We can dis-
tinguish leaf scale RTMs from canopy-scale RTMs. Leaf-scale RTMs aim to simulate only the
optical properties from leaf structure and constituents. They take into account microscopic and
macroscopic effects inside the leaves that are respectively the absorption by chemical constituents
and the scattering by leaf materials. Canopy-scale RTMs simulate the canopy reflectance from the
canopy structure, optical properties of various elements and the illumination conditions. Canopy-
scale RTMs primarily simulate the scattering of the light by large vegetation elements, absorption
effects are only indirectly simulated through the material properties. Canopy RTMs mostly use
spectral invariance (Lewis and Disney 2007), meaning that the computation process is the same
for all the wavelengths because the considered elements are too large to scatter differently the
rays from distinct wavelengths. The wavelength dependent effects in canopy RTMs comes from
absorption of materials (which are precomputed and provided as inputs) and scattering in the
atmosphere. State-of-the-art is provided for leaf-scale RTMs in Section 1.1.1 and for canopy-scale
RTMs in Section 1.1.2. In spite of this scale consideration, both leaf-scale and canopy-scale RTMs
use common methods to solve the radiative transfer equations.

In the state-of-the-art, several taxonomies of RTM can be found. RTM models can be classified
in two ways, which partially overlap: RTM can be classified by the way they solve the radiative
transfer equations, but also by the complexity of the embedded scene. Regarding the embedded
scene complexity, RTM can be divided into one-dimensional (1D) and three-dimensional (3D)
models. RTMs that consider horizontally homogeneous and infinite but vertically variable media,
such as plate models or N-flux models, are called 1D (Liang 2005). Conversely, 3D RTMs consider
both vertical and horizontal variability of the media embedded in the scene. Regarding the strategy
to find a solution of the radiative transfer equations, at least five categories can be cited:

• N-flux models: N-flux models are derived from the Kubelka–Munk theory (Kubelka and
Munk 1931). The models have evolved from two-flux to three-flux and four flux theory (e.g.,
SAIL ; Verhoef 1984).

• Geometric optical models: Analytic models can be derived from simple geometric models
of the scene such as the plate model (Allen et al. 1970) or the compact spherical particle
models (Melamed 1963).

• Stochastic approach: Within stochastic approaches the transfer of photons is simulated
through a stochastic process. The stochastic process is often from the Markov chain family
that considers several discrete states for the photons and controls the transition probabilities
from one state to another.

The two other methods are called ray tracing methods. Ray tracing methods repeatedly sample
the light path through the scene. The light path, or photon trajectory, is sampled with basic optical
laws (reflection, refraction, and absorption). This is a stochastic process, but more complex than
Markov chains. The stochastic process converges toward the solution when a sufficient number of
rays have been simulated. Ray tracing methods have as a main advantage their flexibility and are
able to simulate a variety of light sources, sensors, radiometric quantities and radiative processes,
including in a complex environment. Two kinds of ray tracing methods can be distinguished:
discrete ordinates methods and Monte Carlo methods.
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• Discrete ordinates methods: Discrete ordinates methods solve the radiative transfer problem
for a finite number of radiation propagation directions and considering a finite number of
voxels to describe the scene (e.g., DART-FT; Gastellu-Etchegorry et al. 1996).

• Monte Carlo methods: Monte Carlo methods consider elements of the scene as triangle
meshes. The photon trajectories are not constrained to a spatial grid or predefined directions
(e.g., DART-Lux (Wang et al. 2022), FLIGHT (North 1996), Raytran (Govaerts and Verstraete
1998)). Monte Carlo methods are considered as the most accurate methods but also the most
computationally demanding. Over the last two decades, research into Monte Carlo methods
has tremendously increased in the computer graphics field, boosted by the capabilities of
video game and film industries.

The choice, design and complexity of an RTM depends on the scientific objective. In the case of
a model inversion, an essential first step is to check if the model is well adapted to the vegetation
type. The choice of the model could also depend on the selected inversion strategy.

1.1.1 Leaf radiative transfer modeling

1.1.1.1 State-of-the-art

Computer-based leaf models were developed from the late 1960s to the present and have improved
our understanding of the interaction of light with plant leaves. Extensive reviews of the computer-
based leaf models are provided by several authors (Baranoski and Rokne 2004; Ustin 2004) and a
broad overview of these models was provided in Jacquemoud and Ustin 2019 book, Leaf Optical
Properties .

The propagation of light through plant leaves is driven by microscopic and macroscopic inter-
actions that respectively lead to absorption and scattering phenomena. Leaf models embedded
varying complexities for the modeling of physics, from the simplest model considering the blade
as a single scattering and absorbing layer to the most complicated where all cells are described in
detail by their shape, size, position, and biochemical content. Therefore, leaf models are often cat-
egorized into different classes following their complexity. By order of increasing complexity, can
be quoted plate models, compact spherical particle models, N-Flux models, stochastic approaches,
and ray tracing models.

The plate model is a model that approximates the scattering medium by plane-parallel layers.
The plate model was first introduced in Allen et al. 1969 and furtherly extended to the general-
ized plate model by Allen et al. 1970. The generalized plate model simply consists of stacking
elementary plates: the leaf is modeled by N uniform compact plates separated by N-1 air spaces
to account for intercellular spaces in the leaf mesophyll. This type of problem was first solved
for reflectance and transmittance in the 19th century through Stokes glass plate theory (Stokes
1862), but can be extended to a continuous distribution where N does not need to be an integer.
The PROSPECT model was designed based on the generalized plate model in the early 1990s
(Jacquemoud and Baret 1990). The PROSPECT model is now widely used in the remote sensing
community.

Some other leaf-scale RTM can be classified as compact spherical particle models. Most of the
models are not adapted to model needle-shaped leaves, specifically because they cannot be treated
as discrete plane parallel layers. To overcome this issue Melamed’s theory (Melamed 1963) was
adapted to simulate reflectance and transmittance of pine needles in the LIBERTY model (Dawson
et al. 1998). Melamed’s theory was initially designed for suspended powders and considers a
compact layer of spherical particles. It was adapted to pine needles considering that the spherical
particles are the needle-leaf cells.

N-flux models are derived from the Kubelka–Munk theory (Kubelka and Munk 1931). In these
models the leaf is considered as a slab of an absorbing and diffusing material. The material is only
described by its absorption coefficient and its scattering coefficient.

Stochastic approaches simulate the radiative transfer, as indicated by their name, by a stochas-
tic process. In these approaches, the photons are described by several states (e.g., diffuse reflected
radiation, diffuse transmitted radiation, absorbed, . . . ). The photon state is therefore a discrete
random variable, and the transition between the states are deduced from the stochastic process.
The lfmod1 model (Tucker and Garratt 1977) is an example of stochastic approach and is based on
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the Markov chain.

Ray tracing models simulate rays (individual photons) incident on the leaf surface, and their
propagation using laws of reflection, refraction and absorption. Ray tracing models provide sta-
tistically valid estimates when sufficient numbers of rays have been simulated. They require a
detailed description of the leaf, with leaf cells and their structure, and that defines the optical
properties of the leaf materials. Ray tracing models are more computationally expensive, but they
are the only existing category that can account for the complexity of the internal leaf structure.
Their high level of description also allows for the simulation of more detailed optical properties
such as the absorption profile of light inside the leaf or the bidirectional reflectance at the blade
surface (Jacquemoud and Ustin 2019). Several variants of this strategy have been applied to simu-
late leaf reflectance and transmittance such as Raytran (Govaerts and Verstraete 1998).

Most of the leaf-scale RTM simulate only the leaf as a Lambertian surface. This approxima-
tion can cause inaccurate results for a large variety of plants that have strong specular reflection,
particularly because of the presence of wax on their surface (Jacquemoud and Ustin 2019). Some
strategies were developed to simulate more accurately the leaf directional effects but studies on
this topic are scarce because of the lack of experimental measurements. Additionally, most canopy
reflectance models assume leaves as Lambertian surfaces and ignore the directional effects of the
leaves. In fact, it is often considered that leaf directional properties only marginally influence the
vegetation reflectance that can be measured from an aircraft or a satellite. Therefore, directional
leaf RTMs are neither considered nor presented in this thesis.

Considering all the leaf-scale RTMs, the PROSPECT has been selected to simulate leaf-scale
optical properties in this thesis for its simplicity to use and its reliability. Details on the PROSPECT
RTM are provided in the following section.

1.1.1.2 The PROSPECT model

As detailed in section 1.1.1.1 the PROSPECT model is based on the generalized plate model from
Allen et al. 1970, it was first introduced in the early 1990s by Jacquemoud and Baret 1990, and
has been the most extensively used radiative transfer model over the past 30 years in the remote
sensing community. The PROSPECT model is open-source and was among the first leaf-scale
RTM to accurately simulate the directional-hemispherical reflectance and transmittance over the
solar spectrum from 400 nm to 2500 nm for various plant leaves. PROSPECT has been extensively
validated and is the reference leaf RTM and a cornerstone of all canopy RTM.

The PROSPECT model assumes that leaves can be modeled as a stack of N plates whose optical
properties are given by a refractive index and absorption (Figure 1.1). The absorption is computed
from the Beer-Lambert law, i.e. it is the sum for each leaf constituents of their surface concentration
multiplied by the specific absorption coefficients.

Figure 1.1: Schematic representation of a dicot leaf (left) and multiple reflections produced by a
set of plates (right), adapted from Jacquemoud and Ustin 2019

In the PROSPECT model, the leaf structure is fully determined by the structural parameter N.
Through the generalized plate model, N can also be a decimal value. The structural parameter N
allows to represent the optical effects occurring in the internal leaf structure (multiple reflections
and scatterings). Although, it is complex to link this parameter to any precise leaf feature. N is
only accessible by fitting PROSPECT to leaf reflectance and transmittance and cause-effect rela-
tionships cannot be clearly identified with any other measurable feature. The values of N have
been evaluated by some studies and often range between 1 and 2.5 (Jacquemoud et al. 1996; Spaf-
ford et al. 2021). The parameter N being the single structure parameter constitutes one of the main
advantages of the PROSPECT model.

34



CHAPTER 1. RADIATIVE TRANSFER MODELING OF FOREST CANOPIES

Over the years, several updated versions of the PROSPECT model were released to include
more leaf chemical constituents. The original version of the PROSPECT model (Jacquemoud and
Baret 1990) only uses three parameters: N, Cab and EWT. PROSPECT-4 added dry matter (through
LMA) and brown pigments as leaf constituents and PROSPECT-5 added carotenoids (through Cxc)
(Féret et al. 2008). PROSPECT-D added anthocyanins as constituents and updated the pigments
specific absorption coefficients and the refractive index (Féret et al. 2017). Finally the PROSPECT-
PRO version separated the dry matter between the nitrogen-based constituents (proteins) and the
carbon-based constituents (e.g., cellulose and lignin) (Féret et al. 2021). For all the work in this
thesis only the PROSPECT-D version is used, and will be simply referred as “PROSPECT”.

The plate model is not adapted to needle-shaped leaves, but PROSPECT has been adapted to
simulate the optical properties of conifer needles (Malenovský et al. 2006; Moorthy et al. 2008;
Zarco-Tejada et al. 2004). Adaptations consist in the definition of a correction factor to account
for the geometry of needle-shaped leaves or a recalibration of the specific absorption coefficients
of leaf constituents to improve comparisons between simulated and measured optical properties.
Additionally, for Cab estimation, inversions of PROSPECT yielded more accurate estimates than
inversions of LIBERTY (Moorthy et al. 2008).

1.1.2 Canopy radiative transfer modeling

1.1.2.1 State-of-the-art

A large diversity of canopy RTMs have been developed over the years. Canopy RTMs are designed
for the study of land surface functioning and aim to simulate the radiative transfer near the land
surface. They feature several common points. The lower boundary of a forested scene is the Earth
surface beneath the vegetation that could be a bare soil or understory layer. The upper boundary
is the top of the atmosphere with direct incoming solar radiation. Atmospheric optical properties
are determined by the characteristics of aerosol particles, and atmospheric gasses causing multiple
scattering and absorption of photons.

The leaf orientation is, in more abstract models, randomly sampled following a distribution
function that determine the zenith angle of the leaf surface. Most of the distribution function are
not configurable (e.g., spherical, planophile). Conversely, the ellipsoidal distribution (Campbell
1986) admit a single parameter, the average leaf angle (ALA). The ellipsoidal distribution, given
its adaptability, is the only one used in this thesis.

Canopy RTM are often divided in two categories regarding the degrees of abstraction for
canopy representation, and following the taxonomy: homogeneous and heterogeneous models.
This taxonomy is respectively equivalent to the 1D and 3D taxonomy.

For the homogenous models family, the vegetation canopy is assumed to be an unlimited, hori-
zontal turbid medium. The turbid medium is constituted of randomly distributed leaf clumps and
gaps in between (Pinty et al. 2001). The canopy structure or canopy architecture is summarized
by two descriptors: the LAI (Leaf Area Index) and the LAD (Leaf Angle Distribution). The leaf
optical properties are given as input of the canopy RTM. The leaf optical properties are in most
cases composed of a Lambertian reflectance and a Lambertian transmittance, but some RTMs ad-
mit a specular component of the reflectance (Shultis and Myneni 1988; Malenovský et al. 2007).
Thanks to the simplifying assumptions, the radiative transfer equations can be solved analytically
for the homogeneous (or 1D) canopy RTMs. Therefore, the execution of homogeneous canopy
RTMs is fast, with a low computer resource demand. One way to solve the radiative transfer
equations for homogeneous canopy RTMs is through the four flux theory which is an extension
of the Kubelka–Munk theory; these RTMs are specifically part of the flux-based RTMs. The SAIL
model (Verhoef 1984; Verhoef et al. 2007) is the main canopy flux-based RTM.

Heterogeneous, or 3D, canopy RTMs allow making more flexible assumptions. Here, variations
of the vegetation can be admitted in the horizontal planes, and can model discontinuous vegetation
canopies. The complexity of the scene varies greatly between canopy RTMs, and even for unique
RTM depending on the input parameters. Most simple 3D canopy models extend the homogenous
canopy RTMs to meet the assumption of heterogeneous vegetation. GeoSAIL(Huemmrich 2001)
and INFORM (Atzberger 2000) models extend the SAIL RTM, modeling tree crowns as geometric
primitives and considering the scene as fractions of sunlit vegetation, shadowed vegetation, sun-
lit soil, and shadowed soil. Ray tracing RTMs allow more detailed structures of the vegetation.
On the one hand, discrete ordinates methods, such as DART-FT (Gastellu-Etchegorry et al. 1996)
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can admit a high level of detail within the scene, but details need to be in line with the assump-
tions of the discrete ordinates. On the other hand, Monte Carlo methods can be more flexible.
Strong assumptions are embedded in the FLIGHT (North 1996) canopy RTM. But other Monte
Carlo methods, such as DART-Lux (Wang et al. 2022) and Raytran (Govaerts and Verstraete 1998),
and particularly most recent ones from the computer graphics field, can handle any form of the
heterogeneous canopy and arbitrarily complex scenes.

The RAMI (RAdiation transfer Model Intercomparison) initiative was set up in the early 2000s
to identify, intercompare and benchmark existing canopy RTMs. For the intercomparison, canopy
RTM’s outputs are derived from equivalent inputs and are compared. Four phases of the RAMI
exercise have been held since the early 2000s (Pinty et al. 2001; Pinty et al. 2004; Widlowski et al.
2007; Widlowski et al. 2013; Widlowski et al. 2015). RAMI-III experiments (Widlowski et al. 2007)
evidenced that six RTMs (DART-FT (Gastellu-Etchegorry et al. 1996), drat (Lewis and Disney
2007), FLIGHT (North 1996), Rayspead (Widlowski et al. 2006) and raytran (Govaerts and Ver-
straete 1998), Sprint3 (Thompson and Goel 1998)) showed good agreement simulating the optical
properties of abstract vegetation canopies (homogeneous or geometric primitives). RAMI-IV (Wid-
lowski et al. 2013; Widlowski et al. 2015) improved the vegetation canopy representation toward
facet-based description of stems, branches and leaves. However, due to the lack of consistency be-
tween RTMs’ ability to model vegetation with such details, RAMI-IV did not provide a benchmark
result such as RAMI-III.

Considering all the canopy-scale RTMs, two of them have been selected for further study in
this thesis. On the one hand, SAIL has been selected for its simplicity to use and its popularity
in the remote sensing research community (Berger et al. 2018; Jacquemoud et al. 2009). On the
other hand, the DART-Lux model was selected for its flexibility and ability to model accurately
heterogeneous vegetation canopies with a wide range of details (Wang et al. 2022). Details on the
SAIL and the DART-Lux RTMs are provided in the two following sections.

1.1.2.2 The SAIL model

The SAIL model was initially developed in the mid 1980s (Verhoef 1984) updated with several
versions. The last version, named 4SAIL (Verhoef et al. 2007), implements an extended four-flux
theory for both the optical and thermal domain.

SAIL has usually been combined with the leaf-scale PROSPECT model. The combination of
PROSPECT and SAIL is usually denominated as PROSAIL in the literature. The PROSAIL combi-
nation has been used either to solve the forward problem to design vegetation indices or to solve
the inverse problem for leaf and canopy traits estimation (Jacquemoud et al. 2009; Berger et al.
2018). Its popularity in the field of remote sensing research is due to its relative simplicity and
accuracy.

1.1.2.3 DART

The first version of DART (Discrete Anisotropic Radiative Transfer) was released in the mid 1990s
(Gastellu-Etchegorry et al. 1996). Initially the DART RTM only implemented a discrete ordinates
method. This version is called DART-FT (for Flux Tracking). In DART-FT, a scene is a 3D matrix of
parallel-piped cells (voxels) containing the landscape components (e.g., leaves, trunks, branches,
water, soil, atmosphere) characterized by their optical properties (scattering phase functions, and
structural parameters).

More recently a new version of DART, called DART-Lux, was released and implements the Lux-
CoreRender open-source rendering software (Wang et al. 2022). LuxCoreRender is a physically-
based rendering software based on Monte-Carlo ray-tracing program (Pharr et al. 2023; LuxCor-
eRender – Open Source Physically Based Renderer n.d.). In DART-Lux, a scene is composed of 3D
objects defined by vertices or triangle meshes.

DART offers a high degree of flexibility when it comes to defining scene characteristics. The
number of possible parameter combinations is almost infinite. As such, DART should be consid-
ered as a software rather than a simple RTM. Although, it is easily possible to define a RTM with
clear parameters and a finite number of degrees of freedom from DART.

To fulfill the goals of this thesis, an heterogeneous RTM must be easily configurable regarding
the density of crowns. This feature will be controlled by the canopy cover that is intrinsically
linked to the stem/crown density. A forest canopy RTM called DART-SFR has been implemented

36



CHAPTER 1. RADIATIVE TRANSFER MODELING OF FOREST CANOPIES

from DART software in this thesis. The development of the DART-SFR RTM is further presented
in this chapter, in the next section (Section 1.2). In this thesis, the denomination “DART” will refer
to the whole software while “DART-SFR” will refer to forest canopy RTM.

1.2 Simulation framework

This section focuses on the technical aspect to simulate canopy reflectance from the leaf traits in
a controlled and parameterized environment. This step aims to describe how the leaf-scale and
canopy-scale RTMs are combined in the simulation framework. The main challenge presented
in this section is the definition of a controlled and configurable RTM from DART software: the
DART-SFR model. The simulation framework also includes tools to interact with RTMs inputs and
outputs. Tools related to inputs include the definition of experimental designs. Tools related to
RTMs outputs enable simulation results to be processed and formatted into databases for supply
to learning algorithms.

1.2.1 Overview of the simulation framework

The simulation chain to scale leaf traits to canopy reflectance encompasses two steps: the leaf-scale
RTM and the canopy scale RTM. The leaf RTM is PROSPECT-D and the canopy RTM is SAIL or
DART-SFR. The schematic representation of the simulation chain is given in Figure 1.2.

The PROSPECT-D model is implemented in an open source library, coded in the Python lan-
guage (Domenzain et al. 2019).

The transfer of simulated leaf optical properties (PROSPECT outputs) as inputs of canopy
RTMs are already implemented. Indeed, for the PROSPECT and SAIL combination, a full im-
plementation of PROSAIL is provided in Python language (Domenzain et al. 2019). Regarding
the PROSPECT and DART-SFR combination, DART includes implementation of the PROSPECT
model and the transfer of leaf optical properties to scene parameters.

The simulation chain admits as input parameters those of the PROSPECT model (leaf traits
and PROSPECT leaf structure parameter N), parameters to define the geometry at the canopy
level (sun direction, canopy geometry) and other optical properties (soil reflectance) (Figure 1.2).

The selected RTM can include other parameters but these latter are fixed to specific values for
the purpose of the study. Locked parameters include at the leaf level contents of anthocyanins
and brown pigments because these compounds are considered to be in negligible concentration
in the leaf of the species and ecosystems under study. At the canopy level, the view direction is
set at nadir (View Zenith Angle VZA set to 0°, and View Azimuth Angle VAA is consequently
undefined). For DART-SFR, the atmospheric properties are set to mid latitude summer model
(with a visibility of 23 km and a rural aerosol model) (Figure 1.2).

Figure 1.2: Schematic representation of the simulation chain from leaf traits to canopy reflectance.
White boxes highlight the RTMs parameters. Gray boxes highlight the locked parameters.
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1.2.2 The DART-SFR model

1.2.2.1 DART-SFR mock-up

DART software allows modeling Earth scenes, particularly forest scenes, with an infinite number
of possible configurations. For the purpose of the study, the forest scene must be standardized,
meaning that it needs to be easily configurable through an acceptable number of parameters. The
construction of a configurable scene includes a simplification of the representation at both tree and
stand scales.

It is important to notice that the intrinsic size of objects has no influence on the simulated out-
put. Indeed, DART-Lux will compute the optical effect during ray tracing regardless of the objects
sizes, therefore, the simulated output will remain the same for any homothety or homogeneous
dilation of the scene. That is to say that the simulated reflectance will be the same with a scene of
10 m side length, its shrunk version of side 10 cm, or its enlarged version of size 1 km, as long as
ratios between lengths of objects remain the same. Therefore in the following work, length values
are given arbitrarily, what matters to reproduce the results is to preserve the ratios between all the
lengths.

To model temperate forests canopies, a unique configurable geometry shape for every tree
composing the forest has been selected. At the tree scale the tree crowns are simplified through
geometric primitives. Here, tree crowns are simplified as composed ellipsoids, which provide
realistic shapes and allow relative flexibility. Composed ellipsoids include two half ellipsoids:
one for the bottom of the crown and one for the top of the crown. The shape of composed
ellipsoids are configured by crown radius, crown height and crown factor as detailed in Figure
1.3. The positions of the composed ellipsoids are partially configured by the height below the
crown (Figure 1.3). The full position and shape parameters are given as inputs of DART through a
text file. At the tree scale, all the woody elements, which include branches and trunks are neglected
to reduce modeling complexity. The crown is only composed as triangles representing the leaves.
The orientation of each triangle is randomly sampled for an ellipsoidal leaf distribution.

Figure 1.3: Parameters of the composed ellipsoid shape and position.

At the stand scale, it is required to define the density of crowns. All the crowns in the stand
have the same shape and dimensions, consequently, it creates a one to one relationship between
the crown density and the canopy cover. Thus, the crown density will be controlled by the canopy
cover. Besides, the model forest stand should mimic properties of natural stands, meaning that
the directional optical properties should be as close as possible from natural stands.

Considering these constraints, the Simplified Forest Representation (SFR) was proposed by
Gastellu-Etchegorry et al. 2003 and Gascon et al. 2004 using DART. The SFR considers an elemen-
tary stand of four trees without any alignment (Figure 1.4) in a square scene. Gastellu-Etchegorry
et al. 2003 showed that this representation provides a Bidirectional Reflectance Factor (BRF) closer
to a forest BRF compared to a single tree stand. The forest understory is neglected and the forest
floor is represented as a Lambertian surface such as in the homogeneous canopy RTM.
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(a) (b)

Figure 1.4: (a) Schematic representation of the SFR from a nadir point of view with tree crowns in
green and soil in pale yellow ; (b) 3D mock-up of the SFR from DART.

The radius of tree crowns are set to a fixed value and therefore the canopy cover variation is
obtained by varying the scene dimensions (Gascon et al. 2004). The x and y coordinates of crown
centers are defined as a fraction of the scene side. The larger the scene, the further apart the
trees will be and the canopy cover will decrease. Conversely, higher canopy covers are obtained
reducing the scene size.

The analytical link between canopy cover and the scene dimensions cannot be found easily,
but it can be approximated by computation. For the computation, the projection of the crowns
on the (x,y) plane is considered, and the (x,y) plane is meshed with a grid of size 5 cm. The
approximation of the canopy cover is given by the number of cells covered by the crowns over the
total number of cells. The approximated function between the scene size and the canopy cover
is given in Figure 1.5 for several values of tree crown diameter. The effect of the canopy cover
variation on the bird-eye view of the SFR scene is schematically represented in Figure 1.6.
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Figure 1.5: Correspondence between the canopy cover (in percent) and the size of the simulated
square scene given by its side length (in meters) for several crown radius.
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Figure 1.6: Effect on the size of the simulated scene on the canopy cover. Images represent the
surface covered by tree crowns (in green) and soil (in pale yellow) from a nadir point of view.
Numbers above the images give the canopy cover in percent.

As a result of the impossibility of analytically calculating the link between the scene dimension
and the canopy cover CC, only discrete values of the canopy cover will be considered, even though
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this parameter is a continuous variable. The step size for canopy cover variation is set to 1%. Thus,
91 text files were generated to define tree positions in mock up from 10% to 100% canopy cover.

1.2.2.2 DART rendering parameters

In addition to geometric and surface optical properties parameters, DART also involves parameters
to render images. These parameters are linked to the ray-tracing process. Three main parameters
control the image rendering and are under study, two of them are linked to the LuxCoreRender
module included in the DART software (Wang et al. 2022):

• Target Ray Mean Density per Pixel is linked to the LuxCoreRender module, and corresponds
to the number of photons drawn for each pixel. It is a mean value since the photon drawing
is an adaptive process, meaning that more photons are drawn for pixels with a low return
rate. The Target Ray Mean Density per Pixel depends on the pixel size, and to overcome
this issue it can be converted as Ray Mean Density (dR ; expressed in m−2) through a simple
division by the pixel area.

• The maximal scattering order (Scatmax ; no units) is also linked to the LuxCoreRender mod-
ule. It corresponds to the number of times each photon can interact with surfaces (reflected
or transmitted). The larger the Scatmax, the more accurate is the rendered image. Conversely,
a low Scatmax could result in inaccurate modeling of the scattering from the vegetation.

• The number of repetitions of the scene (Nrep ; no units) is linked to DART and its way to
solve the radiative transfer equations. It corresponds to the number of times a photon can
cross the vertical boundaries of the scene. For small scenes, as the SFR scene, a photon is
likely scattered towards the side of the scene and would be lost. Increasing Nrep partially
solves this issue creating virtually a bigger scene which is the repetition of the input scene.

This section aims to assess the impact of these three parameters on the accuracy of simulated
spectra with DART-SFR. The main goal is to find input values that yield an admissible error on
DART-SFR spectra within an acceptable computation time.

For this study, the SFR scene is defined as in Subsection 1.2.2.1, with parameters set arbitrary
to the following values:

• Canopy Cover : 80 % (scene size: 11.75 m)

• Tree crowns as composed ellipsoids

• Crowns as triangle clouds

• Leaf optical properties : PROSPECT simulation (N = 1.5, Cab = 50 µg · cm−2, Cxc =
10 µg · cm−2, EWT = 0.012 cm, LMA = 0.01 g · cm−2)

• Soil optical properties : lambertian property from DART database (dry grass)

• Sun direction : θ = 30◦, ϕ = 225◦ (DART default parameters).

• Pixel size: 0.25m

Target Ray Mean Density (dR)

Firstly, the influence of dR is assessed by simulating images with increasing values. The image
rendering is based on random sampling (Monte-Carlo process) therefore the reflectances from two
simulations with the same parameters may not be exactly the same. In order to take into account
the Monte Carlo effects the images are rendered 10 times for the same dR value. dR values are
sampled on a logarithmic scale from 1.5 · 102 m−2 to 3.0 · 106 m−2 with 4 points per decade. Scatmax
and Nrep parameters are set to the defaults values (respectively 25 and 1).

Reflectance of all pixels are averaged to obtain the whole image reflectance. Reflectance at three
wavelengths are examined: 670 nm in the visible range, 950 nm in the NIR range, and 1520 nm in
the SWIR range. Results are shown in Figure 1.7. Additionally, the computation time is recorded
for each rendered image. The influence of dR on the computation time is depicted in Figure 1.8.

The mean simulated reflectance varies little as dR increases. The range of variation of the
mean simulated reflectance is less than 0.001, which is under the accuracy of any instrument.
As expected, the standard deviation of simulated reflectances decreases as dR increases. The
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Figure 1.7: Average reflectance obtained from 10 rendered images at 3 wavelengths (670, 950 and
1520 nm). Error bars indicate the standard deviations of the reflectance for the 10 images.
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Figure 1.8: Average computation time as function of the Target Ray Mean Density.

mean reflectance converges toward a definite value for dR values above 5 · 104 m−2 (the simulated
reflectances are all in a 0.0001 range). dR has a strong impact on the computation time. Indeed,
the computation time increases linearly with Ray Mean Density. Although, for dR values under 3 ·
103 m−2, the computation time depends less on dR and may depend more on other computations
from DART. In conclusion, a dR value of 104 m−2 seems a proper compromise to reduce the
simulations variability and perform the rendering in a reasonable time.

Maximal scattering order (Scatmax) and number of repetitions of the scene (Nrep) The influence
of Scatmax and Nrep is assessed with a distinct experiment. Scatmax (resp. Nrep) is increased step
by step keeping all other parameters at fixed values. For each step, the spectra is compared to an
“ideal” image. The ideal image was generated by setting the three parameters to the maximum
values allowed in DART (dR = 4.0 · 106 m−2 ; Scatmax = 6250; Nrep = 50). All the images
are generated with a 0.25 m pixel size. Additionally, the computation time is recorded for each
rendered image. dR is set to the default value (dR = 100 m−2).

Spectra from simulated images are compared to the ideal spectrum using a MSE (Mean Squared
Error). The evolution of the MSE and the computation time according to Scatmax value is shown
in Figure 1.9. In the same way, Figure 1.10 shows the results for the Nrep parameter.

Both Scatmax and Nrep have little effect on the computation time (Figures 1.9 and 1.10). The
computation time is increased approximately by 6 seconds for Scatmax over 102 compared to the
default value (Scatmax = 20). Higher Nrep values increase the computation time by less than 3

seconds compared to the default values (Nrep = 1). Considering that computation time is more
affected by dR, it is not a determining factor in setting Scatmax and Nrep values. Observing the
evolution of MSE and PSNR according to Scatmax and Nrep, we can see that the error remains
stable after the values Scatmax = 250 and Nrep = 6. This behavior is identical for the spectra of the
whole scene and also for the three specific material patches.
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Figure 1.9: MSE (top) and computation time (bottom) as function of the Maximal Scattering Order
(Scatmax)
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Figure 1.10: MSE (top) and computation time (bottom) as function of the Number of Repetition of
the scene (Nrep)

In conclusion, the values chosen for simulations with the DART-SFR model are Scatmax = 250
and Nrep = 6.

1.3 Sensitivity analyses and spectral signatures

Sensitivity studies were carried out on the selected RTMs: PROSPECT alone, SAIL and its com-
bination with PROSPECT (named PROSAIL), DART-SFR and its combination with PROSPECT.
Sensitivity analyses are performed to quantify the sources of variation in leaf optical properties or
canopy reflectance. More broadly, sensitivity analyses of the model outputs is a key step for the
verification and validation of the forward problem modeling, and provide the insurance that the
computational model conforms to theory (Saltelli et al. 2004).

Particularly, sensitivity analyses allow checking the most sensitive spectral range for each pa-
rameter, and more specifically from leaf traits. Additionally, sensitivity analyses aim to measure
the impact of ancillary parameters such as soil reflectance and foliage inclination on total re-
flectance, parameters which are not estimated and unknown in practice.

Various strategies have been developed to perform sensitivity analyses and therefore their full
taxonomy is complex. However, they can be split into two categories: local methods and global
methods. On the one hand, local methods analyze the response of model output by varying model
parameters one at a time around a local neighborhood of their central values. The local methods
have two main limitations: they vary parameters sequentially and therefore cannot highlight in-
teractions between them ; they explore a small subset of the possible parameter values. Although,
local methods provide rapidly easily interpretable results to apprehend the behavior of a model
regarding its parameters.

On the other hand, global methods analyze the response of the model output averaged over
variation of all parameters exploring a finite region. Global sensitivity analysis aims to overcome
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the limitations of local methods and was developed in the late 1980s (Saltelli et al. 2004). Global
sensitivity analysis techniques vary the parameters simultaneously in model runs. Therefore they
can explore full ranges of the model parameters rather than a local area around a mean value,
and analyze the interactions between parameters. Global sensitivity analysis techniques can be
subdivided into finer categories according to the strategy used to explore the parameter space and
to evaluate their impact on the output.

In this thesis, both a local method and a global method are performed to analyze the sensitivity
of the RTM regarding their parameters. Firstly, a local method is performed to study the impact of
some parameters: the impact of the PROSPECT parameters on leaf optical properties, the impact
of the LAI on the canopy reflectance simulated by PROSAIL, and the impact of the canopy cover
on the canopy reflectance simulated by PROSPECT+DART-SFR. Secondly, as a global method,
variance-based sensitivity analyses from Sobol’s sensitivity indices are performed with Saltelli’s
algorithm (Saltelli et al. 2010). The variance-based sensitivity analyses are computed thanks to the
OpenTURNS python library (Baudin et al. 2017) through Saltelli’s Sobol indices experiment. The
analysis is performed with Sobol’s total effects index for each parameter p (ST,p). which measures
the contribution to the output variance of p, including all variance caused by its interactions, of
any order, with any other input variables. The sensitivity (Sp) of a parameter p is expressed as
the total-effect index for this parameter (ST,p) over the sum of the the total-effect indices of all the
parameters following equation 1.1 (below).

Sp =
ST,p

∑i ST,i
(1.1)

Sensitivities are first computed on the reflectance for each spectral band. In a second step, sen-
sitivities are computed on CWTs (Continuous Wavelet Transform; Mallat 1999) of the reflectance
to explore the links between leaf traits and the filtered response of reflectances. The CWT pro-
vides a time-scale representation (or more specifically here a wavelength-scale representation) of
the signal. The CWT coefficients are computing through the convolution of the signal with the
scaled and translated wavelet (scale and translation are further represented in the y-axis and x-
axis, respectively). The wavelet used in this section is a Ricker wavelet.

In section 1.3.1 are presented the analyses at the leaf-scale of the PROSPECT model. Section
1.3.2 presents the result at the canopy scale, at first for SAIL and the PROSPECT+SAIL combina-
tion and in the second step for DART-SFR and the PROSPECT+DART-SFR combination.

The following distribution are used to perform the sesitivity analyses for each parameters : N:
uniform distribution [1 − 2.6] ; Cab: uniform distribution [0 − 120] ; Cxc: Chi square distribution
(ν = 7.7) ; EWT: Dirichlet distribution (θ = [6.3, 550]) ; LMA ; Log-uniform distribution (a = −5.5,
b = −3.8) ; LAI: uniform distribution [0.05− 7] ; ALA: uniform distribution [0− 90] ; CC: uniform
distribution [0.1 − 1] ; SZA: uniform distribution [0 − 60] ; SAA: uniform distribution [0 − 360]
; Soil reflectance: normal distribution (m = 0.18, σ2 = 0.13) truncated at 0 and 1 ; ρlea f : Beta
distribution (a = 0.57, b = 1.27) ; τlea f : Beta distribution (a = 0.64, b = 1.37).

1.3.1 Leaf level sensitivity analyses

1.3.1.1 Local effects of PROSPECT parameters

The local sensitivity analysis, presented in Figure 1.11, illustrates the variations of leaf reflectance
and transmittance due to PROSPECT parameters as a function of wavelength. Firstly, the increase
in leaf traits induces an increase in absorption, which is characterized by an almost symmetrical
decrease in leaf reflectance and transmittance (Figure 1.11 (a) to (d)). Absorption bands specific to
each leaf trait can be observed.

Cab alters leaf reflectance and transmittance mainly between 520 and 750 nm, with absorption
peaking between 650 and 700 nm. For the absorption peak, there is a saturation effect, including
for relatively low Cab values (above 20 µg · cm−2). The saturation effect masks Cab variations in this
band (650 − 700 nm), so, as Sims and Gamon 2002 point out, wavelengths outside this absorption
peak would be used instead for Cab retrieval. Outside the absorption peak, a shift of the red-edge
towards longer wavelengths can be noticed as Cab increases, as well as a change in the absorption
minimum in green (530 − 570 nm), which increases and is shifted to shorter wavelengths.
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Cxc affects leaf reflectance and transmittance mainly between 5oo and 550 nm. Low Cxc is
characterized by a minimal absorption around 530 nm. The absorption increases with Cxc and
shifts the reflectance peak to the 550 nm wavelength.

EWT is characterized by absorption from 900 to 2500 nm, in which some wavelengths are
marked by strong absorption peaks (1400 − 1500 nm, 1900 − 2000 nm, and beyond 2500 nm) and
secondary absorption peaks (around 950 nm and 1200 nm).

Increasing LMA values induce higher absorption over the 750 − 2500 nm range but LMA does
not clearly exhibit identifiable absorption peaks in Figure 1.11 (d). This parameter competes with
EWT absorption, i.e. LMA absorption is only visible outside EWT absorption peaks. At last, the
structure parameter N does not appear to influence leaf absorption, which is consistent with the
PROSPECT underlying theory. Specifically, an increase in N seems to redirect the incident energy
into reflectance at the expense of transmittance.
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Figure 1.11: Simulated leaf reflectance (lower lines) and transmittance (upper lines) for different
values of PROSPECT-D input parameters. Variations around a standard leaf composition defined
by : [N = 1.8; Cab = 33 µg · cm−2 ; Cxc = 8.6 µg · cm−2 ; EWT = 0.0150cm ; LMA = 0.0300 g · cm−2]
are shown for: (a) Cab; (b) Cxc; (c) EWT; (d) LMA; and (e) structure parameter N.

1.3.1.2 Global effects of PROSPECT parameters

For further analysis, a variance-based sensitivity analysis is performed on the PROSPECT model.
The size of the experiments is set to 1000, leading to 7000 simulations. Sobol’s Total-effect in-
dex is computed for each wavelength for both leaf reflectance and transmittance. The sensitivity,
expressed as a percentage, for each PROSPECT parameter and for each wavelength is shown in
Figure 1.12. Results of the variance-based sensitivity analysis are consistent with the results of the
local analysis from section 1.3.1.1. However, it can be seen that Cab also influences short wave-
lengths below 500 nm (around 40% of the total-effect Sobol indices). N has a significant influence
between 750 nm and 1400 nm on reflectance and transmittance variances, with a sensitivity around
70%. EWT is the predominant factor in the SWIR range and followed by N. This indicates that
LMA effects could be masked by EWT and N effects.
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Figure 1.12: Sensitivity of PROSPECT simulated leaf reflectance and transmittance with respect to
PROSPECT parameters.

Regarding the variance-based sensitivity analysis on the CWT of leaf reflectance, some CWT
coefficients are sensitive to leaf traits, in particular for Cab in the visible range and for EWT in the
SWIR range (Sensitivity above 80%). For Cxc and LMA, sensitivity of CWT coefficients peaks at
70%. The separations between the effects of leaf traits are clearer than in the previous analysis. In
fact, the analysis highlights that the influence of Cab and Cxc on leaf reflectance are distinguishable
for wavelengths below 550 nm. The same applies for EWT and LMA influence in the SWIR range.
Characteristic signatures of leaf traits are noticeable for medium wavelet scales.

Figure 1.13: Sensitivity of CWT coefficients of PROSPECT simulated leaf reflectance with respect
to PROSPECT parameters.
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1.3.2 Canopy level sensitivity analyses

1.3.2.1 Local effects of canopy models parameters

At the canopy level, local sensitivity analyses are carried out to explore how leaf transmittance
and reflectance, LAI and CC alter the top-of-canopy reflectance. This can be theoretically under-
standable because a large part of the light is directly reflected by the upper leaves and this stream
of light is only subjected to leaf reflectance.

Figure 1.14 shows the effect of leaf transmittance and reflectance on canopy reflectance with
SAIL (for a fixed LAI, ALA and soil reflectance). For equal variation, leaf reflectance alters more
the canopy reflectance compared to the leaf transmittance.
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Figure 1.14: SAIL canopy reflectance as a function of leaf reflectance (ρ) and leaf transmittance (τ).
Canopy reflectance is computed for a 0.3 soil reflectance, SZA=30°, and a canopy structure defined
by: LAI = 3 And ALA = 45°.

Figure 1.15 shows the influence of LAI in the SAIL model for a constant ground reflectance
for all wavelengths and equal to 0.2. Decreasing LAI brings canopy reflectance closer to ground
reflectance. Examining the effect of LAI for some wavelengths, as LAI increases, canopy reflectance
converges asymptotically towards the reflectance corresponding to infinite LAI.
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Figure 1.15: SAIL simulation of canopy reflectance for different values of LAI. Variations for a 0.2
soil reflectance, SZA = 30° and ALA = 45°. Leaf optical properties are computed from PROSPECT
with a standard leaf composition [N = 1.8; Cab = 33 µg · cm−2 ; Cxc = 8.6 µg · cm−2 ; EWT =
0.0150 cm ; LMA = 0.0300 g · cm−2]. (left) The canopy reflectances are drawn as function of wave-
length. Hatched rectangles represent atmospheric absorption bands. (right) Canopy reflectance is
given for some wavelengths as a function of LAI

Figure 1.16 shows the influence of the canopy cover in the DART-SFR model for a constant
ground reflectance for all wavelengths and equal to 0.2. As CC decreases, the top-of-canopy
reflectance converges toward the ground reflectance. For a CC of 100%, top-of-canopy reflectance
matches the canopy reflectance simulated by SAIL, and the top-of-canopy reflectance simulated
by DART for an homogeneous plot, both simulated the same parameters. The effect of CC seems
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similar to the effects of LAI. However, the behavior of top-of-canopy reflectance is not always
monotonic as the canopy cover increases (e.g., at 1650 nm ; Figure 1.16). This could be explained
by the fact that as the CC increases, the evolution of sunlit and shaded fractions of the background
do not evolve linearly (as shown in Figure 1.17). Particularly, as the CC increases, the scene reaches
two tipping points: when the shaded fraction of soil starts to decrease and when the sunlit fraction
of soil becomes null (Figure 1.17).

However, the effects of LAI and CC remain similar, and one could expect that a variation of
the LAI could be compensated by variation of CC in the DART-SFR RTM.
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Figure 1.16: DART-SFR simulation of top-of-canopy reflectance for different values of canopy
cover. Variations for a 0.2 soil reflectance, SZA=30, SAA = 225°, LAI = 3 and ALA = 45°. Leaf
optical properties are computed from PROSPECT with a standard leaf composition [N = 1.8; Cab
= 33 µg · cm−2 ; Cxc = 8.6 µg · cm−2 ; EWT = 0.0150 cm ; LMA = 0.0300 g · cm−2]. (left) The
top-of-canopy reflectances are drawn as function of wavelength. Hatched rectangles represent
atmospheric absorption bands. For reference, blue dashed line indicates the reflectance simu-
lated from DART with an homogenous plot of vegetation and the pink dashed line indicates the
reflectance simulated by PROSPECT+SAIL, both using the same parameters. (right) Canopy re-
flectance is given for some wavelengths as a function of Canopy Cover
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Figure 1.17: (a) Illustration of SFR scene segmentation between canopy, sunlit background and
shaded background for a canopy cover of 50%; (b) Evolution of the fraction of each element in the
scene as a function of canopy cover, for SZA = 30° and SAA = 225°.

1.3.2.2 Global effects of canopy models parameters

The variance-based sensitivity analysis is performed at first on the SAIL model alone with a size
of the experiments set to 50000, leading to 700000 simulations. The importance of each parameter
is directly examined though Sobol’s total effect indices. This analysis confirms the importance of
leaf reflectance on canopy reflectance. This parameter is at least twice as important as the other
parameters, and six times more important as leaf transmittance (Figure 1.18). The three other
parameters that stand out are related to canopy structure (LAI and ALA) and soil reflectance. The
illumination geometry (SZA) plays a minor role on the canopy reflectance in SAIL.

Considering the full PROSAIL model, PROSPECT parameters show less importance than
canopy structure and soil reflectance. The variance-based sensitivity analysis is performed on
the PROSAIL model with the size of the experiments set to 1000, leading to 11000 simulations.
Soil reflectance explains around 20% of the variance of the canopy reflectance for all the wave-
lengths. Canopy structure parameters (LAI and ALA) have a strong impact on canopy reflectance
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Figure 1.18: Sobol’s total-effect indices for parameters of the SAIL model. Black lines indicate the
95% confidence intervals delivered by Saltelli’s algorithm

along the whole optical domain (sensitivity around 60%). Regarding leaf traits, each of them ex-
plain no more than 20% of the variance of the canopy reflectance. Wavelengths where each leaf
trait has the most impact are identical as the one found analyzing the PROSPECT model (section
1.3.1.2, Figure 1.12)

Figure 1.19: Sensitivity of PROSAIL simulated canopy reflectance with respect to all PROSAIL
parameters. Hatched rectangles represent atmospheric absorption bands.

The sensitivity analysis is then performed on the CWT coefficients using the same parameters
(Figure 1.20). The patterns are similar to the ones from the analysis at leaf level (section 1.3.1.2,
Figure 1.13). However, the CWT coefficients are less sensitive with respect to leaf traits. The
sensitivity peaks around 70% for Cab and EWT, and 60% for Cxc and LMA.

The experiment performed on PROSAIL is now performed on the PROSPECT - DART-SFR
model in order to compare the particular effects of homogenous and heterogenous canopies. The
variance-based sensitivity analysis is performed on the PROSAIL model with the size of the ex-
periments set to 1000, leading to 13000 simulations and the results are shown in Figure 1.21. With
DART-SFR as a canopy model, the prevailing parameter with DART-SFR is the CC which explains
at least 20% of the top of canopy variance in the NIR range and up to 40% in the visible and SWIR
ranges. Compared to PROSAIL, the influence of LAI and ALA are decreased at the expense of
the CC. The sensitivity of top-of-canopy reflectance for Cab and LMA peaks around 20%, which
is similar to the sensitivity from PROSAIL. The sensitivity decreases to 10% for EWT and to less
than 5% for Cxc.

Examining the results of the sensitivity analysis on the CWT coefficients, the same trends as
PROSAIL can be found (Figure 1.22). The sensitivity with respect to leaf traits is reduced compared
to the leaf level to 60% for Cab, EWT and LMA, and around 50% for Cxc. It is also essential to
notice that the top-of-canopy reflectance with PROSPECT - DART-SFR is computed with a 10 nm
spectral resolution, compared with 1 nm for PROSPECT and PROSAIL. Consequently, the finest
spectral signatures are no longer, or less, visible.

1.3.3 Conclusions on sensitivity analysis

Analyses on CWT reveal spectral signatures that cannot be identified from top-of-canopy re-
flectance analysis alone. The CWT coefficients used to extract these spectral signatures are re-
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Figure 1.20: Sensitivity of CWT coefficients of PROSAIL simulated canopy reflectance with respect
to leaf traits. Hatched rectangles represent atmospheric absorption bands.

Figure 1.21: Sensitivity of PROSPECT - DART-SFR simulated canopy reflectance with respect to all
PROSPECT - DART-SFR parameters. Hatched rectangles represent atmospheric absorption bands.

Figure 1.22: Sensitivity of CWT coefficients of PROSPECT - DART-SFR simulated top-of-canopy
reflectance with respect to leaf traits. Hatched rectangles represent atmospheric absorption bands.

markably sensitive to leaf traits, even at canopy level. It can be explained by the fact that leaf
traits rely on biochemical molecules that have wavelength specific absorption bands that influence
the shape of the reflectance spectrum while all other parameters have wavelength independent
influence on the entire optical domain. Here, the significant influence of leaf traits on CWT out-
puts evidence that a well-chosen filter, such as wavelet filters, applied to reflectance spectra may
isolate the influence of a specific leaf trait. Moreover, the only a minority of scale and translation
combination provide sensitive outputs, highlighting that a leaf-trait-sensitive representation of the
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reflectance is sparse or reduce to few values (reduction of the dimension).

Conclusions

The work conducted in this first chapter on radiative transfer modeling led to an overview of
existing models from the state-of-the-art. From this overview, a leaf-scale RTM as well as two
canopy RTMs have been selected: PROSPECT, SAIL and the DART software. In a second step the
selected RTMs were included in a simulation chain. The work on the simulation chain involved
the selection of RTMs parameters, the formatting of inputs and outputs data. A major part of the
development of the simulation chain was also dedicated to the building of the DART-SFR model
from DART and its calibration to produce reliable simulations.

In a third step, RTMs were analyzed using the simulation chain. Sensitivity analyses carried
out in this chapter emphasize specific spectral ranges for each leaf trait: 400 − 750 nm for Cab;
500 − 550 nm for Cxc; 900 − 2500 nm for EWT; and 800 − 2500 nm for LMA. However, the influ-
ence of leaf traits on measurable optical properties is partially masked by ancillary parameters.
This is particularly noticeable in top-of-canopy reflectance, where variations in vegetation struc-
ture have a greater impact than variations in vegetation traits. Additionally, the analyses on CWT
of reflectances highlighted the spectral signature of leaf traits. The sensitivity analysis on DART-
SFR reveals the importance of the canopy cover effect and the soil reflectance in heterogeneous
canopies. An homogenous canopy model such as SAIL is not able to simulate these effects. As
a consequence, to simulate heterogeneous temperate forest, DART-SFR will be selected in this
work. The results obtained in this chapter would drive the decision for the estimation of leaf
traits regardless of the chosen strategy. The building of the simulation chain will ease the develop-
ment of RTM-based methods. The results from the sensitivity analyses guide the choice of MLRA
toward algorithms able to identify the spectral signatures of leaf traits. Indeed, the experiment
demonstrated that a proper MLRA, for inversion at the canopy level, should be able to build a
representation of the hyperspectral signal robust to variations of the canopy geometry and illumi-
nation conditions. The use of CWT highlighted that convolution filters are able to extract sensitive
features from reflectance spectra. In this frame, MLRAs that act as, or include convolution filters
(such as CNN) are promising algorithms to estimate leaf traits from hyperspectral data.

Nevertheless, the selected RTM under their current status exhibit some limitations. Firstly, the
limitation of the considered models is the simulation of mixed canopies, i.e. canopies with spatial
variation in leaf traits or LAI. It is also often not possible to simulate species-specific properties,
and complex details of the trees, such as branches usually are not taken into account. Particularly,
conifers remain difficult to model faithfully due to the complexity of their shoots. Secondly, current
RTMs provide a unique solution to a set of parameters, while in fact many natural landscapes can
match these parameters and have distinct reflectances. Indeed, a finite set of parameters cannot
describe completely any forest landscape, therefore RTMs may be required to provide, as outputs,
probability distributions to account for the hidden parameters. The resolution of these limitations
is out of the scope of this thesis, but it will be necessary to take them into account to analyze the
estimation performances of the tested methods, and to provide new leads for future investigations.
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Chapter 2

Methods

This chapter introduces the underlying methodologies for leaf traits estimation. It reviews the
state-of-the-art of methodologies and underlying algorithms used to estimate leaf traits. Moreover,
the chapter details the algorithms selected in this thesis to build estimation methods.

As presented in the Introduction, the estimation of land physical parameters, and particularly
estimation of leaf traits, through hyperspectral remote sensing are a case of inverse problem. The
forward or direct problem is a case of radiative transfer and has been detailed in Chapter 1. It can
be expressed as:

Y = f (x, θ) + n

where f is the function that models the radiative transfer; i.e. a RTM; Y is a set of observations, x
is the set of parameters, θ is a set of controllable conditions, and n is an additive noise.

Meanwhile, estimation of leaf traits from hyperspectral data, i.e. the inverse problem, can be
expressed as:

x̂ = g(Y, ω)

where g is a function parametrized by weights ω, that approximate parameters x̂ from the set of
observations Y.

A specific taxonomy of strategies to solve the inverse problem was developed and considers
three classes: statistical, physical and hybrid (Baret and Buis 2008; Bioucas-Dias et al. 2013; Ver-
relst et al. 2019). All these strategies involve underlying algorithms and techniques from various
domains including statistics, machine learning and data mining, optimization. The main step
involved for each strategies is illustrated in Figure 2.1.

Figure 2.1: Global chart illustrating the main strategies for leaf traits estimation

Statistical strategies, also often called empirical strategies or data-driven methods in the liter-
ature, are based on the statistical learning of the inverse model, i.e. the function g. The learning
phase is done with a set of observations with corresponding measured parameters, and often
performed through MLRAs that can embed various degrees of complexity. Various MLRAs have
been used in the literature to fulfill this goal. Training and validation steps of MLRAs involve
techniques from machine learning.

Physical and hybrid strategies rely on the inversion of an RTM, and can therefore be described
as RTM-based strategies. Physical strategies rely exclusively on RTM and search for parameters
which provide the simulation result closest to the observation. These strategies therefore involve
two elements: an algorithm to search for the proper parameter values, and a cost function to
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measure the distance between an RTM simulation and the observation. Search strategies include
iterative optimization, Markov Chain Monte Carlo (MCMC), and genetic algorithms.

Hybrid strategies combine aspects of both statistical and physical strategies and learn an in-
verse model, i.e. the function g, typically from an MLRA. The MLRA learns from a set of input-
output data generated by forward RTM simulations and called a synthetic database. Consequently,
hybrid strategies share the same issue with statistical strategies regarding training and validation
of MLRAs. Additionally, they require sampling techniques to generate synthetic databases.

Statistical and hybrid strategies protocols provide estimators (or inference models) after the
training phase of the MLRA, i.e. a computation rule, while physical strategies imply to repeat the
process each time a new sample is presented (Figure 2.1).

To address all the aspects of the methodology for estimation of leaf traits and validation of
estimation models this chapter is structured into three sections. Each section provides an overview
of the state-of-the-art and a focus on the selected algorithms and methods for the development of
estimation models in Chapter 4 and Chapter 5.

Firstly Section 2.1 presents the techniques related to RTM-based methods and focuses on opti-
mization algorithms and sampling strategies.

Secondly, Section 2.2 provides an overview of the MLRAs used in statistical and hybrid strate-
gies and details the selected MLRAs that will be used in Chapter 4 and Chapter 5. Following this,
the section presents the techniques used to train and validate MLRAs.

Finally, Section 2.3 introduces the selected metrics to assess accuracy, validate and compare
estimation models, and then provides a discussion on these metrics.

Look-Up-Table (LUT) based methods are complicated to categorize. While LUT-based meth-
ods have been categorized as hybrid methods since Bioucas-Dias et al. 2013, their behavior and
protocol fall more into the domain of hybrid methods. Indeed, one could argue that LUT-based
methods are equivalent to a hybrid method using a k-nearest neighbors (k-NN) regression algo-
rithm (Hastie et al. 2009) for several reasons. As hybrid strategies, LUT-based strategy requires
generating a synthetic database from a RTM (the LUT) gathering spectra (Xi)i∈1,··· ,N and corre-
sponding values of the target feature (Yi)i∈1,··· ,N . LUT-based strategy and k-NN regression follow
the same process of a local interpolation: for a sample x, the algorithm finds a predefined number
k of training samples (x̃i)i∈1,··· ,k closest in distance to the new point x. The distance function is pre-
defined and is often the euclidean distance. Then, the target feature value y is predicted from the
(ỹi)i∈1,··· ,k features corresponding to the (x̃i)i∈1,··· ,k samples in the training database. The predic-
tion is often performed by computing the mean of the (ỹi)i∈1,··· ,k set, but other aggregate functions
could be used. Therefore in this chapter, the LUT-based strategy is presented in Section 2.2 as a
k-NN regression algorithm to build a hybrid method.

2.1 Techniques for RTM-based strategies

2.1.1 Optimization methods for physical inversions

2.1.1.1 Optimization algorithms

Iterative optimization inversion is a classical technique to invert models. Given an observation
sobs the technique searches for the model inputs that provide the output ssim the most similar as
possible from sobs. To do this, the technique consists in updating iteratively the values of the input
variables of the model until the output ssim closely fits the corresponding measurements sobs (Baret
and Buis 2008). The similarity, or the goodness of fit, between measured and simulated reflectance
spectra is quantified by a cost function. In other words, the input variables are updated by an
optimization algorithm to minimize the cost function. The algorithm stops when convergence is
reached.

The iterative optimization inversion method requires numerous calls to the RTM function, and
is therefore reserved for RTMs with a low computational cost. In the general case, RTMs are not
differentiable functions, or at least their Jacobian matrix is not analytically calculable. Therefore
the optimization algorithms are often from the family of the quasi-Newton methods because they
avoid the computation of the Jacobian or Hessian matrices (for example Féret et al. 2011 and Féret
et al. 2019). Additionally, optimization algorithms that admit constraints are preferred in order to
limit input variables in their physically acceptable range. However, the exact algorithm used is
not clearly identifiable for most of the studies. For example Spafford et al. 2021 and Wang et al.
2023 cited that they used functions from Matlab but these functions implement several algorithms
as options. Consequently, the underlying optimization algorithm used remains unknown.
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In Chapter 4, the Powell’s algorithm (Powell 1964) implemented in the scipy.optimize python
module is used.

2.1.1.2 Cost functions

Optimization algorithms require a cost function to minimize and that define the goodness of fit
between the RTM output and the corresponding measurement. The cost function could depend
on the type of measurements and the chosen RTM for inversion as the cost function may account
explicitly for measurements and model uncertainties (Baret and Buis 2008). For vegetation RTM,
and when no prior information is available, the cost function is usually defined as the Euclidean
distance (defined by the L2 norm) between simulated spectrum Rsim and measured spectrum
Rmeas, but other functions have also been proposed (Baret and Buis 2008). The cost function
defined by the Euclidean distance can also be weighted according to the wavelengths (with a
weight Wλ; Féret et al. 2019) and the general form of the cost function can be written following
equation 2.1 for a measured reflectance Rmeas.

C =
λn

∑
λ=λ1

Wλ(Rsim,λ − Rmeas,λ)
2 (2.1)

2.1.2 Sampling methods

The building of hybrid methods requires the synthesis of a large number of simulations gathered
in a synthetic dataset. Those simulations are obtained with various input values of the RTM
parameters. The distribution of the input values is done through the sampling of the space of input
variables. Several sampling schemes have already been tested and described in previous studies
for RTM inversions (Féret et al. 2011). Two main sampling schemes are used in the quantitative
remote sensing literature.

2.1.2.1 Random sampling

Values of the variables of interest can be sampled from a multidimensional probability distribution.
This approach may take into account the dependencies between variables. For example Féret et al.
2011 sampled PROSPECT parameters using a multivariate normal distribution to take into account
covariance between leaf constituents.

Numerous numerical libraries are available to generate samples from probability distributions,
but most of them only include standard probability distributions which are not bounded and could
provide values in unrealistic ranges. Although, standard probability distributions can easily be
truncated by drawing samples with the acceptance-rejection sampling method. More recently the
openturns Python library has been released (Baudin et al. 2017) and enables generating samples
for a wide variety of marginal and conditional distributions.

2.1.2.2 Latin Hypercube Sampling (LHS)

The Latin Hypercube Sampling (LHS) is a sampling method for multidimensional distributions
but with independent input variables. The LHS applies a stratified sampling strategy enabling to
better cover the domain of variations of the input variables with a limited number of simulations
(McKay et al. 1979; Stein 1987). For each variable, it is required to define a sampling probability
distribution. The sampling procedure is based on dividing the range of each variable into several
intervals of equal probability, thus, LHS maintains properties of marginal probability distribution
for each variable. LHS has the advantage of requiring a much smaller sample number than simple
random sampling to cover all the considered space of input variables.

LHS scheme can be built with pyDOE Python library or openturns Python library (Baudin et al.
2017).

2.2 Statistical learning techniques

For both statistical and hybrid strategies the resolution of the inverse problem, modeled by the
approximation of the function g, is a supervised learning task. Indeed, both strategies attempt
to learn g by examples, i.e. a set of observations gathering inputs and corresponding outputs
of g. The learning algorithm predicts outputs for each input and modifies the input/output
relationship in response to differences between original and predicted outputs; this process is
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called the learning or training phase. Moreover, it is a regression task as the outputs of the
approximated function are continuous variables rather than discrete variables (as in classification).

Numerous algorithms have been proposed in the realm of machine learning for regression.
The use of several Machine Learning Regression Algorithms (MLRA) have been investigated for
land parameter estimation in remote sensing.

2.2.1 Standard Machine Learning Regression Algorithms (MLRAs)

This thesis focuses on the comparison of four MLRA, namely Gaussian Process Regression (GPR),
Partial Least Square Regression (PLSR), Random Forest Regression (RFR) and Ridge Regression
(Ridge), in Chapter 4 and Chapter 5. The implementations of these MLRA used in Chapter 4 and
Chapter 5 are the ones from the scikit-learn python library (Pedregosa et al. 2011).

Additionally, the LUT-based methods presented here as a k-NN regression algorithm, will be
only used in Chapter 4.

2.2.1.1 k-Nearest Neighbors (k-NN) for regression

The k-Nearest Neighbors (k-NN) regression algorithm is a local interpolation method.To predict
the target feature ŷ corresponding to a set of features x, this approach consists in: finding the k
training samples (x̃i)i∈1,··· ,k closest from x according to a distance function; then predict the ŷ from
the (ỹi)i∈1,··· ,k features corresponding to the (x̃i)i∈1,··· ,k samples in the training database using an
aggregate function. The aggregation function is usually the statistical mean, but other aggregate
functions could be used such as the median value. The distance function is usually the euclidean
distance, which is equivalent to the mean square error. The euclidean distance between observed
features and a sample of the training database is given by equation 2.2.

MSE =
1
n

λn

∑
λ=λ1

(Rsimu,λ − Rmeas,λ)
2 (2.2)

Other distance functions can be used. For example the Spectral Angle Mapper (SAM) measures
the collinearity and presents the advantage of not being sensitive to the intensity of the signals.
The definition of SAM is linked to the dot product of two vectors such as described in equation
2.3.

SAM =

[
∑λn

λ=λ1
Rsimu,λRmeas,λ

∑λn
λ=λ1

R2
simu,λ ∑λn

λ=λ1
R2

meas,λ

]
(2.3)

2.2.1.2 Ridge regression

Ridge regression is a regularized ordinary least square linear regression. Ridge regression is a
parametric model and finds a linear relationship between the input and the output. To address
the overfitting issue, the cost function is regularized by the norm of the model weights as detailed
in equation 2.4.

C = ∥Y − wTX∥2
2 + α∥w∥2

2 (2.4)

where α is the regularization hyperparameter and controls the amount of shrinkage for the
model weights.

The proper value of α is a compromise between a model with no regularization (α = 0) equiv-
alent to an ordinary least square linear regression, and a too regularized model where the weights
are zeros (value of α is too large). The value of the regularization hyperparameter α is usually
determined with cross-validation.

2.2.1.3 Partial Least Square Regression (PLSR)

The Partial Least Square Regression (PLSR) is a linear parametric model (Wold et al. 2001). The
PLSR algorithm is designed and well suited for problems where there is multicollinearity among
the features, and thus, is widely used in chemometrics, particularly to quantify relationships be-
tween biochemicals and their spectral properties. The algorithm seeks to maximize the covariance
between inputs and target values, projecting the inputs onto orthogonal components (also called
latent vectors). Such as Ridge regression, PLSR is a form of regularized linear regression where
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the strength of the regularization is controlled by the number of components. If too many compo-
nents are kept, PLSR can overfit the training data. Thus, the number of components is determined
with cross-validation.

2.2.1.4 Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a kernel-based machine learning algorithm (Rasmussen and
Williams 2005). GPR is a Bayesian approach and is a non-parametric algorithm, meaning that it
does not make any assumptions about the functional form of the underlying relationship between
the input and output variables. With GPR, the approximation of the target function is built with
a gaussian stationary process with a prior covariance specified by a kernel object. In the fitting
process, the gaussian process is then constrained from training samples optimizing the kernel
hyperparameters by maximizing the log-marginal-likelihood. In gaussian process regression, the
kernel embeds prior information and should be selected according to the regression problem. Sev-
eral types of kernels have been proposed, including some kernels that are more specific for certain
types of data such as periodic kernels for problems with periodic signals. The most common
kernel in GPR application is the Radial Basis Function (RBF) kernel defined for two data points xi
and xj by the equation 2.5 and parameterized by a length scale γ > 0.

KRBF(xi, xj) = exp

(
−∥xi − xj∥2

2

2γ2

)
(2.5)

2.2.1.5 Random Forest Regression (RFR)

Random Forest Regression (RFR) is an ensemble method derived from the decision tree algorithm
(Breiman 2001). With RFR, a set of decision trees are built from a bootstrap sampling of the training
data. The prediction of the ensemble is given as the averaged prediction of all the individual
decision trees. This strategy injects randomness in the fitting process and leads to more robust
predictions than decision trees.

2.2.2 Deep learning algorithms

Deep learning is a subset of machine learning specifically involving algorithms known as arti-
ficial neural networks (ANN). The name deep learning comes from the structure of ANN with
successive layers of interconnected nodes (the artificial neurons) that extract increasingly abstract
features from the data (Goodfellow et al. 2016). The first ANN architecture and quintessential
example of deep learning is the multilayer perceptron (MLP), also known as feedforward deep
network. The MLP consists of multiple layers of neurons, organized in a feedforward manner.
Each neuron in one layer is connected to every neuron in the following layer, forming a directed
graph without cycles. ANN can deal with complex issues creating highly nonlinear functions.
Indeed, it has been formally demonstrated that neural networks are universal function approxi-
mators (Hornik et al. 1989), that is to say, a neural network can approximate any function, as long
it is deep and expressive enough.

The training of a neural network is not very different from a standard machine learning algo-
rithm. They use the same principle: during training the weights of a neural network are modified
in order to minimize the prediction error defined by a cost function with a gradient descent (Good-
fellow et al. 2016). In deep learning the cost function is usually named “loss”. The weights are
updated by optimizers that compute new weights values with backpropagation of the gradient.
The standard gradient descent is usually too computationally expensive considering the number
of weights and number of samples, therefore the loss minimization is done through a stochastic
gradient descent.

A convolutional neural network (CNN) is a type of deep learning algorithm composed of layers
that perform convolution operations. CNNs were originally designed specifically for processing
and analyzing visual data, with automatic features learning from images to classify them accu-
rately (LeCun et al. 2010). CNN architectures can be modified and adapted for various tasks and
domains by adjusting the number of layers, filter sizes, and other parameters to suit the specific re-
quirements of the problem at hand. CNNs have demonstrated remarkable performance in various
tasks in computer vision and image processing such as image classification, object detection, facial
recognition, and image segmentation. More specifically, CNNs are increasingly being applied to
remote sensing problems (Kattenborn et al. 2021).
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CNNs consist of multiple layers, including convolutional layers and fully connected layers
(Goodfellow et al. 2016). Convolutional layers apply convolution operations to the input data.
Each layer consists in multiple filters (also called kernels) that scan across the input signal to
perform a discrete convolution and produce a feature map. The convolution outputs are linear
combinations of a portion of the input where the weights are the filter ones. The filter’s weights are
learned during the training process to extract meaningful features from the input data. Typically,
multiple filters are used in each convolutional layer, allowing the network to learn different fea-
tures at each layer. Convolution layers are usually followed by the activation function to introduce
non-linearity and a pooling layer to reduce the dimensionality of the feature maps. Convolution
layers are followed by fully connected layers that are similar to layers from traditional neural net-
works (MLP). Between the last pooling layer and the fully connected layers, the data are typically
reshaped into a one-dimensional vector by a flattening layer.

CNN may cope with the non-linearity of the remotely sensed observed physical processes.
Besides, 1D-CNNs could analyze the one-dimensional imaging spectroscopy signals, enabling
processing the whole spectrum at the same time. However, CNNs have been little used in imaging
spectroscopy analysis for land biophysical parameter estimation. Some studies can be found for
soil analysis (Kawamura et al. 2021; Ng et al. 2019; Shen and Viscarra Rossel 2021), and many
fewer studies can be found for vegetation analysis and they are all very recent (Cherif et al. 2023;
Pullanagari et al. 2021; Shi et al. 2022; Annala et al. 2020).

2.2.3 Training and evaluation strategies

For both statistical and hybrid strategies, the model training and fitting processes remain the
same. For MLRAs with hyperparameters, the optimal values of their respective hyperparameters
are determined with a cross validation (CV).

The evaluation strategy differs for statistical and hybrid strategies, mainly due to the difference
in the number of samples to train and test the models. Indeed, for hybrid methods, synthetic
datasets can be arbitrarily large because increasing the dataset size only requires RTM simulations.
It is consequently easy to get large datasets for both the train and test phase with synthetic data.
In a hybrid strategy, the trained MLRA can be then tested on a dataset with actual measurements
to assess its accuracy.

For statistical methods both train and test phases are done on actual measurements which are
costly to obtain, and therefore a small size dataset. Thus, the results may be more sensitive to the
train/test split of the dataset. Some can minimize the effect of small dataset in the results such as
the repeated random sub-sampling validation (section 2.2.3.2).

Moreover, machine learning algorithms are developed for variables with similar ranges of
variations. Therefore the preliminary step before training a MLRA is to scale the training features
to lie in similar ranges of values. Here, two scalers are distinguished: the standard scaler and the
min-max scaler. The standard scaler scales the data by removing the mean (centering) and dividing
by the standard deviation. Scaled data have a null mean and a unit variance. The min-max scaler
linearly scales the data such that the minimal and maximal values are 0 and 1.

2.2.3.1 k-fold cross validation for hyperparameter tuning

The hyperparameter tuning can be performed in a simple hold-out evaluation on the training set,
but this strategy has two main disadvantages. The hold-out divides the dataset in three parts
(train, validation and test), thus reducing the number of training and test samples. It may also
provide an hyperparameter value too specific to the train subset leading to overfitting. The k-fold
cross validation (CV) provides a solution to these disadvantages (Hastie et al. 2009).

In the k-fold cross validation, a test set should still be held out for final evaluation, but the
validation set is no longer needed. The train dataset is split in a number k of subsets, known
as folds. The same procedure is applied for each of the k folds: the model is fitted using the
remaining k − 1 folds as training data and the resulting model is evaluated on the selected fold.
Then, the k results for each fold can be averaged to produce a single performance measure. It is
usually suggested to set k = 5 or k = 10 (Hastie et al. 2009).

The procedure can assess the performance of several hyperparameter values and find the best
one (hyperparameter tuning). There are several underlying methods for hyperparameter tuning,
including grid search and random search. Grid search is the simplest method for hyperparameter
tuning. A grid of hyperparameter values is defined and the model is trained and evaluated
for each combination of hyperparameters in the grid. The combination of hyperparameters that
results in the best performance is selected as the optimal set of hyperparameters values. For the
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Random search, the same procedure is followed except that the hyperparameters are randomly
sampled from a specified distribution instead of defining a grid.

2.2.3.2 Repeated random sub-sampling validation

The hold-out evaluation or a single run of a k-fold cross-validation procedure may result in a noisy
estimate of model performance. Indeed, different splits of the data may result in very different
performance results.

To overcome this issue, the repeated random sub-sampling validation, also known as Monte
Carlo cross-validation, creates repeated random splits of the dataset into train and test subsets in
order to provide an expected error that is independent from the train/test split. The flow chart in
Figure 2.2 depicts the main steps of this evaluation strategy.

For each repetition of random split, the model is fitted from the train subset, including the
hyperparameters tuning through a k-fold CV (model selection). Then, the predictions (ypred) are
made from the features of the test subset (xtest) and compared to target values of the test subset
(ytest). The comparison between ypred and ytest provides the test error, this error is conditional on
the train subset of this repetition. The process is repeated an arbitrary number of times (T), and
the expected error is computed by averaging all the T conditional errors.

Data
X,y

Random Split
Train/Test

Model Selection
and Fitting

Prediction
Model

Assessment

Xtrain

ytrain ypred

Xtest
ytest

Training
Error

Test (or Generalization)
Error

Repeat T times

Expected
Error

Figure 2.2: Flow chart of the repeated random subsampling validation.

2.3 Evaluation and validation of models

Evaluation is an essential step in the development of a model for biophysical parameter estimation
in remote sensing. A review of the metrics used in the literature for validation of biophysical
parameter estimation was published by Richter et al. 2012 and showed that a consequent number
of metrics are used in the remote sensing literature. In this thesis, accuracy of estimation models
are evaluated using mainly three metrics: the coefficient of determination (R2), the root mean
squared error (RMSE), and the bias (BIAS). Additionally, other metrics for the discussions are
used: nRMSE, sRMSE, Kendall’s Tau.

This section provides the definition of all the validation metrics used in this thesis.

2.3.1 Metrics for accuracy evaluation

Metrics for accuracy evaluation compare a set of measured values to the set of corresponding
estimates. In this section, the vector of the measured values (also called reference values) will be
denoted as v = (v1, v2, ·, vN)

T and the vector of the estimates as v̂ = (v̂1, v̂2, ·, ˆvN)
T

2.3.1.1 Mean Squared Error (MSE) and derived metrics

The Mean Square Error (MSE), as its name suggests, is defined by the average of the squared
errors following equation 2.6.
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MSE(v̂, v) =
1
N

N

∑
i=1

(v̂i − vi)
2 (2.6)

From the MSE are derived other metrics such as the Root Mean Square Error (RMSE) which
is by definition the square root of the MSE (equation 2.7). The RMSE is the most frequently used
metrics by far (Richter et al. 2012).

RMSE =
√

MSE (2.7)

The RMSE has the advantage of being expressed in the same unit as the variable under study.
From the RMSE, can be defined other metrics with no unit: the relative RMSE (rRMSE; equa-
tion 2.8) which is the RMSE divided by the mean of reference values m; the standardized RMSE
(sRMSE; equation 2.9) which is the RMSE divided by the standard deviation σ of reference val-
ues; the normalized RMSE (nRMSE; equation 2.10) which is the RMSE divided by the range of
reference values.

rRMSE =
RMSE

m
(2.8)

sRMSE =
RMSE

σ
(2.9)

nRMSE =
RMSE

max(v)− min(v)
(2.10)

2.3.1.2 Coefficient of determination

The coefficient of determination R², is the second most frequently used metric (Richter et al. 2012)
and is given following equation 2.11.

R2(v̂, v) = 1 − ∑N
i=1(v̂i − vi)

2

∑N
i=1(v̂i − v̄)2

(2.11)

The coefficient of determination is also linked to the MSE reduced by the variance of reference
data, and by definition to the sRMSE (equation 2.12). The coefficient of determination represents
the proportion of variance explained by the independent variables in the model. R² is an indica-
tor of the goodness of fit and therefore a measure of how well unseen samples are likely to be
predicted by the model, through the proportion of explained variance.

R2(v̂, v) = 1 − MSE
var(v)

(2.12)

The best possible value for R² is 1, and it can be negative because the model can be arbitrarily
worse. It is important to note that the coefficient of determination for estimation validation should
not be confused with the coefficient of determination for linear regression which is the squared
Pearson correlation coefficient, and only ranges between 0 and 1.

2.3.1.3 Bias

The bias indicates the difference between averages of reference values and estimates. It is also
equivalent to the mean of errors and is computed following equation 2.13.

BIAS(v̂, v) =
1
N

N

∑
i=1

(v̂i − vi) (2.13)

One should notice that the bias is not a commutative metric. Bias is in this thesis always
computed with respect to reference values in order to get a negative value (respectively positive
value) if the variable is underestimated (respectively overestimated).
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2.3.1.4 Correlation coefficients

Correlation coefficients can indicate the match between reference values and estimates. They
range between -1 and 1, indicating a perfect correlation when its absolute is close to 1, and no
correlation when it is close to 0. The most commonly known correlation coefficient is the Pearson’s
correlation coefficient r. But it only indicates linear correlation and conceals potential non-linear
effects. Two main non-linear correlation coefficients have been introduced in statistics: Spearman’s
rank correlation coefficient (Spearman’s ρ) and Kendall rank correlation coefficient (Kendall’s τ).
Both of them assess how well the relationship between two variables can be described using
a monotonic function. Spearman’s ρ is the usual Pearson correlation coefficient applied to the
rank variables. Kendall’s τ computation examines all the pairs ((vi, v̂i);(vj, v̂j)) and checks their
concordance, i.e. if either both vi > vj and v̂i > v̂j holds or both vi < vj and v̂i < v̂j. Kendall’s τ
is computed from the number of concordant pairs and the number of discordant pairs following
equation 2.14.

τ(v̂, v) =
Nconcordant pairs − Ndiscordant pairs

1
2 N(N − 1)

(2.14)

From Kendall’ τ the fraction of concordant pairs fc can be deduced: fc =
τ+1

2

2.3.2 Discussions on evaluation and validation of models

The metrics for validation of models do not emphasize the same trends in the estimations. MSE
and R² are both sensitive to the bias and variance of the errors (Figure 2.3 (a) to (e)). But with-
out looking at a plot of estimated vs. reference values it is difficult to distinguish if the model
shortcomings originate from a bias effect or a variance effect. By definition, the bias metric is only
sensitive to the bias of estimates and expresses specific information about it. Correlation coeffi-
cients are altered by the variance of estimates errors (Figure 2.3 (a) to (c)), but the bias has almost
no effect on them (Figure 2.3 (d) and (e)). Moreover, non-linear correlation coefficients highlight to
what extent the estimates are ordered in the same sequence as the reference data. Estimation mod-
els that obtain low MSE but achieve non-linear correlation coefficient close to 1 can be corrected,
such as in the case of saturation effect (Figure 2.3 (f))
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Figure 2.3: Illustration of the behavior of the validation metrics for possible estimation scenarios:
(a) unbiased estimation with low variance; (b) unbiased estimation with medium variance; (c)
unbiased estimation with high variance; (d) low variance estimation with additive bias; (e) low
variance estimation with multiplicative bias; and (f) unbiased low variance estimation with satu-
ration effect for higher values
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Validation metrics can also highlight the gain of information that is provided by the optical
measurements compared to the prior information contained only in the reference data. Typical
values of the MSE and coefficient of determination R² can be derived for two scenarios where
estimates are only derived using prior information from the basic statistics of the reference values.

Average guess. In the average guess assumption, all the estimates are set to the empirical mean
of the reference data : ∀i, v̂i = v̄. In this case, the MSE and R2 can be computed easily : MSE =
var(v) and R2 = 0.

Random normal guess. In the random normal guess assumption, all the estimates are drawn

from a normal distribution v̂i
iid∼ N (µ, σ2) where µ = v̄ and σ2 = var(v) the empirical variance of

reference values. In this case the expected value of the MSE is:

E[MSE] = 2σ2

The expected value of the coefficient of determination is E[R2] = −1

Thus, critical values of the coefficient of determination are R2 = −1 and R2 = 0.

Besides, the computed metrics contain in practice errors that are due to measurements of
reference data (Figure 2.4). Indeed, while the estimation process intent to retrieve the actual value
of leaf traits (blue arrow in Figure 2.4) it is not possible to directly access these values and the
validation is performed on measured data, which contains errors that affect the evaluation metrics.
Other sources of errors can be exhibited for hybrid methods specifically. The inverse model built
for a hybrid method contains the approximation errors of the RTM, and could additionally lack
adaptability to the measures reflectance that embedded the sensor noise.

Figure 2.4: Diagram illustrating the sources of errors embedded in the estimation strategies and
their validation process
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Conclusion

In conclusion, the state-of-the-art provides algorithms and techniques from the fields of statistics,
machine learning and optimization to define a protocol for building and validating an estimation
model. From the state-of-the-art several algorithms and techniques are selected to perform estima-
tion of leaf traits in this thesis. Optimization algorithms are selected to perform inversion of the
PROSPECT model by iterative optimization inversion. Two protocols for the generation of data
are selected to synthesize datasets from RTM for hybrid strategies (LHS as random sampling).
Four MLRA are selected to build statistical and hybrid strategies, namely Ridge regression, PLSR,
GPR, RFR. Additionally, techniques from machine learning have been presented to calibrate and
evaluate the MLRA-based estimations.

Besides, another MLRA, the 1D-CNN, is introduced. The architecture of such models with con-
volution layers may extract specific features from the top-of-canopy reflectance that are sensitive
to leaf traits as the CWT coefficients presented in Chapter 1.

The estimation models that will be built from the fundamental components presented in this
chapter will require data collected in situ in order to validate them. Chapter 3 will propose
data collected in situ in association with in-lab and hyperspectral measurements to validate the
estimation protocols.

61





CHAPTER 3. MATERIAL

Chapter 3

Material

This chapter introduces all the measurements and data gathered and processed as reference data
to evaluate the accuracy of estimation methods presented in Chapter 2. In this chapter, the study
area is introduced as well as the HyspIRI Preparation Mission context that enabled the acquisition
of reference data in section 3.1. Then the study sites and species are described in greater detail
in section 3.2. section 3.3 presents the protocols for measurements and processing of reference
field data. section 3.4 presents the acquisition and processing of airborne hyperspectral images. A
statistical analysis of the reference data is provided in section 3.5.

3.1 The case study

3.1.1 California geography and ecosystems

California is an eco-climatic region with a Mediterranean climate. It offers a diversity of micro-
climates due to its complex topography and its location between the Pacific Ocean and the Great
Basin of the United States, with a mountainous region and semi-arid high plateaus. In botani-
cal geography, California constitutes a floristic region whose eastern part is formed by the Sierra
Nevada mountain range covered by vast forests. The California floristic province is part of the
Mediterranean biome, characterized by a temperate climate with long, dry and hot summers and
mild, wet winters with precipitation occurring mainly from October to May. Moreover, it con-
stitutes an area of major interest in terms of global biodiversity since it is part of the 25 regions
defined by Norman Myers as "Biodiversity hotspots" (Myers et al. 2000). The California floristic
province biodiversity hotspot covers a major part of the state of California, the south-west part
of Oregon and north-west part of Baja California in Mexico. It spans from west to east including
the Pacific coastline, the California coastal mountain ranges, the California central valley and the
Sierra Nevada mountains up to the ridge line. From north to south, the hotspot stretches from
the Klamath Mountains and the southern Cascade Range to the Sierra de Juarez in Baja California
(Figure 3.1).

The WWF (World Wide Fund for Nature) identifies several ecoregions in the California Floris-
tic Province including the California Interior Chaparral and Woodlands and the Sierra Nevada
Forests (Olson et al. 2001; WWF 2023b). The California Interior Chaparral and Woodlands ecore-
gion surrounds California’s Central Valley and includes the foothills of the Sierra Nevada Forests
ecoregion in the east. The Sierra Nevada Forests ecoregion lies between the California Interior
Chaparral and Woodlands ecoregion to the west and the Great Basin Shrub Steppe ecoregion to
the east. The Sierra Nevada runs 640 km from north to south and 100 km east to west. The
mountains increase gradually in height from north to south, peaking at Mount Whitney at 4,421

m elevation above sea level.

The Sierra Nevada and its foothills exhibit a substantial elevation gradient that induces a high
diversity of climates and vegetation types in the area. The western slopes of the Sierra Nevada,
including its foothills, are heavily influenced by the Mediterranean climate of California. Precip-
itation occurs mostly from fall through spring and ranges from 510 to 2,030 mm and winters are
relatively mild. On the western slopes, the annual rainfall spatial distribution mirrors the eleva-
tion gradient: roughly, the climate is wetter as the elevation increases. Precipitation peaks between
1,500 and 2,400 m elevation and diminishes upslope toward the ridgeline on the east.
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The gradients of elevation and climatic conditions create a succession of various ecosystems
and vegetation types. The multiplicity of ecosystems present in this relatively small area also
increases the number of ecotones, reinforcing the region’s high biodiversity. On the foothills of
the Sierra Nevada, oak woodland and chaparral are the most widespread and characteristic nat-
ural communities as part of the California Interior Chaparral and Woodlands ecoregion. Valleys
are dominated by foothill pine (pinus sabiniana), blue oak (quercus douglasii), and chaparral species,
other distinctive oaks in this ecoregion are coast live oak (quercus agrifolia), canyon live oak (quercus
chrysolepis), valley oak (quercus lobata), and interior live oak (quercus wislizeni) (Sawyer and Keeler-
Wolf 1995; Earth 2023a). Above the foothills, a succession of vegetation zones can be observed,
from montane through subalpine to alpine. The montane zone features ponderosa pine (pinus
ponderosa) at lower elevations, along with California black oak (quercus kelloggii), incense cedar
(calocedrus decurrens), and some other trees. Above this is a mixed-conifer forest with ponderosa
pine, Jeffrey pine, Douglas-fir, white fir, sugar pine. Above the mixed-conifer forests, in the zone
of deepest snow, are simpler forests dominated by white fir and then red fir. Above these forests is
the subalpine zone with extensive stands of lodgepole pine with interspersed mountain meadows
and montane chaparral. Jeffrey pine, western white pine, mountain juniper, whitebark pine, and
quaking aspen also occupy this zone. Mountain hemlock, whitebark pine, foxtail pine, and limber
pine occur at the upper limit of the subalpine zone. Above timberline, the alpine zone contains
alpine meadows, talus slopes, and rocky outcrops. (Arno 1973; North et al. 2016; Sawyer and
Keeler-Wolf 1995; WWF 2023a; Earth 2023b)

The Californian Sierra Nevada is home to a large number of monitored and/or protected
forest sites. Indeed, about 52% of the land in the Sierra Nevada Mountains is owned by the US
government through the National Park Service, the US Forest Service and the Bureau of Land
Management. The state of California owns about 27 million acres in and surrounding the Sierra-
Cascades mountain region in California. More particularly, a large number of forest sites are
studied for scientific purposes and to understand forest ecosystems.

3.1.2 HyspIRI Preparation Mission

In preparation for the HyspIRI hyperspectral satellite mission (now replaced by the Surface Biol-
ogy and Geology mission, often shorten to SBG), NASA has supported and carried out several
annual hyperspectral airborne campaigns over California to demonstrate the important scientific
applications research that is uniquely enabled by HyspIRI-like data sets. These campaigns involve
the Airborne Visible/Infrared Imaging Spectrometer sensor (AVIRIS; Green et al. 1998 ).

AVIRIS is an instrument developed by NASA at the Jet Propulsion Laboratory (JPL). AVIRIS
was flown on a NASA Lockheed ER-2 research aircraft over large diverse regions. The ER-2 re-
search aircraft was flown at an altitude of around 20 km (Lee et al. 2015). Considering this altitude
and the 1 milliradian instantaneous field of view of the sensor, AVIRIS provides images with a
ground resolution around 14m for the HyspIRI Airborne Campaign. Data sets from AVIRIS pur-
pose was to simulate measurements similar to the projected HyspIRI-VSWIR instrument and were
collected at regular intervals to obtain seasonal coverage.

In the frame of this HyspIRI Airborne Campaign, regions overflown with AVIRIS were de-
limited in five boxes. Among them, two boxes included overflight of the Sierra Nevada and its
foothills: Tahoe box and Yosemite box (Figure 3.1; Lee et al. 2015). This set of hyperspectral images
constitutes a unique and unprecedented dataset in the field of hyperspectral remote sensing.

3.2 Description of Sites and Species

3.2.1 Study Sites

In this thesis, five sites are studied located on the west-side of the Sierra Nevada Mountains and its
foothills: Tonzi Ranch (TONZ), San Joaquin Experimental Range (SJER), Blodgett Forest (BLOF),
Soaproot Saddle (SOAP) and Teakettle experimental Range (TEAK). They are highly instrumented
sites and belong to the Ameriflux network1 (US-Ton, US-CZ1, US-Blo, US-xSP, US-CZ2, US-xTE,
US-CZ4). Moreover, three of these sites belong to the National Ecological Observatory Network
(NEON): SJER, SOAP and TEAK. These five sites are spread across latitudes varying between 37°

1https://ameriflux.lbl.gov/
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Figure 3.1: Topographic map of California with boundaries California floristic province and
AVIRIS boxes, and location of study sites

and 39°, and the most distant sites are separated by about 250 km. They are also distributed
along an elevation gradient, from lower to mid-elevations of the Sierra Nevada West slopes, with
elevation ranging from 150 m to 2300 m above sea level (Figure 3.1). All these five study sites
are included in the areas flown over by the AVIRIS instrument since 2013, as reference sites of the
HyspIRI preparatory mission. TONZ and BLOF are located in the Tahoe box while SJER, SOAP
and TEAK are located in the Yosemite box (Figure 3.1).

TONZ and SJER are the lower elevation sites located in the foothills of the Sierra Nevada and
are part of the California Interior Chaparral and Woodlands ecoregion. TONZ and SJER mean an-
nual temperature and precipitation are 15.8°C and 559 mm, 16.5°C and 485 mm, respectively (Ma
et al. 2016), consistent with their more northern and southern locations in the Sierra Nevada range.
TONZ and SJER are grass-oak-pine woodland savannas. Both TONZ and SJER experience cattle
grazing. TONZ is privately owned land while SJER is state-owned land managed jointly by the
California State University’s Agricultural Foundation and the U.S. Forest Service. The woodland
savannas of TONZ and SJER are mainly composed of two vegetated active layers (excluding to
first order the presence of occasional shrubs): an understory of annual grass species and an over-
story dominated by two species, blue oaks (Quercus douglasii) and gray pines (Pinus sabiniana). For
example, on TONZ, blue oaks account for about 40 % of the overstory, and gray pines are sparsely
spread (3 trees/ha). For SJER, in addition to blue oaks, interior live oaks (Quercus wislizeni) are
part of the canopy mix.

BLOF, SOAP and TEAK are located on the west slopes of the Sierra Nevada mountains and
are part of the Sierra Nevada Forest ecoregion. BLOF and SOAP are mid-elevation sites and are
located at the elevation limit between oak forest and Sierra mixed conifer forest.

BLOF is managed by UC Berkeley from the Blodgett Forest Research Station to improve the
understanding and management of commercial forest types. On BLOF, temperature ranges from
0°C to 9°C in winter and from 14°C to 32°C in summer, with an average annual precipitation of
1651 mm (Blodgett Forest Research Station 2023). BLOF is mainly covered by a productive mixed
conifer forest and to a lesser extent by oak forest.

SOAP is part of the U.S. Forest Service’s Major Land Resource Area. The annual tempera-
ture and rainfall average 13.4°C and 900 mm respectively (NEON 2023b). SOAP is composed of
mixed mid-elevation conifer forests over a complex terrain of coarse hills, steep slopes and nar-
row drainage basins. The SOAP overstory is dominated by ponderosa pine (pinus ponderosa) and
incense cedar (Calocedrus decurrens), with co-dominant canyon live oaks (Quercus chrysolepis) and
black oaks (Quercus kelloggii) mainly located on lower elevations in the site.
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TEAK is managed by the U.S. Forest Service and partially encompasses the Pacific Southwest
Research Station’s Teakettle Experimental Forest in the southern part of the area (NEON 2023a;
North et al. 2016). TEAK is located at higher elevation (ranging in elevation from 1,900 to 2,807

m). Mean annual temperature is 8°C and mean annual precipitation is 1222.5 mm. The varied
terrain is typical of the Sierra Nevadas, with rugged mountains, meadows and prominent granite
outcrops. TEAK receives substantial snowfalls in the winter and the vegetation is a montane
conifer forest dominated white fir (Abies concolor) and red fir (Abies magnifica). Along with fir
species, the forest also features pine species adapted to mountain climates : Jeffrey pine (Pinus
jeffreyi) at lower elevation and lodgepole pine (Pinus contorta) in the upper areas.

3.2.2 Tree Species

Eleven species are under study, including four North American oak species and seven North
American conifer species (four pine species, two fir species, and one cypress species). This sec-
tion describes each species under study, nevertheless, more details about their characteristics can
be found in the the California Native Plant Society database 2 and UC Jepson eFlora database 3.
Species will be further referred with their species code from the USDA Plant Database (USDA
PLANTS Database 2021) which consist of 4 letters from the binomial nomenclature: the two first
letters of the genus and the two first letters of the specific epithet. Moreover, for oak species ever-
green and deciduous species will be identified by superscript (e) or (d), respectively. A summary
of site species names and their presence on the sites is given in Table 3.1.

The four oak species under study are endemic to California, namely blue oak (Quercus douglasii
; QUDO(d)), interior live oak (Quercus wislizeni ; QUWI(e)), black oak (Quercus kelloggii ; QUKE(d)),
and canyon live oak (Quercus chrysolepis; QUCH(e)).

QUDO(d), commonly called blue oak are broadleaf deciduous trees, up to 18 m tall, that are
generally found in a ring bordering the Central Valley, in the lower reaches of the Sierra Nevada
foothills, the San Francisco Bay Area and both the North of South Coast Range, between 150 m
and 600 m elevation. QUDO(d) are distributed on dry and well drained slopes, prefer full sun
exposure and are drought tolerant. Their dull blue-green deciduous leaves are oblong (length
from 3 to 8 cm), with wavy or slightly lobed margins and are pubescent below.

QUWI(e), commonly called interior live oak, is a broadleaf evergreen tree, up to 22 m tall,
present in foothills and hot/dry canyons, being most abundant in the lower elevations of the
Sierra Nevada, but also widespread in the Pacific Coast Ranges at elevation from sea level to 1500

m. Its evergreen alternate leaves are thick, leathery, small (2–5 cm), flat, generally elliptical, but
shiny, lighter green below, and may have either toothed or smooth margins.

QUCH(e), called canyon live oak, grows up to 30 m tall, and is the most widely distributed
oak in California. QUCH(e) is a broadleaf evergreen species and occurs from 30 m to 2800 m in
mountainous regions, growing close to creeks and drainage swales, in moist cool microhabitats
(Sierra Nevada, Coast Ranges, etc.). Its leaves are flat, elliptical to oblong extending to an acute
leaf tip (length from 2.5 to 8 cm), green dark and glossy above with spines, dull golden and hairy
below.

QUKE(d), commonly known as the California black oak, is a broadleaf deciduous tree growing
up to 35 m height. It occurs in pure or mixed stands, growing in a wide range of mixed evergreen
forests, oak woodlands, and coniferous forests distributed from the foothills and lower mountains
of California to elevations between 30 m and 2600 m. Its wide deciduous leaves are deeply lobed
(length from 10 to 20 cm) with acute tips, dark and shiny green on top and pale and noticeably
fuzzy underneath.

For conifers, all the seven North American species are evergreen as they are part of Pinus, Abies,
and Calocedrus genera.

The four pine species are the gray pine (Pinus sabiniana ; PISA), ponderosa pine (Pinus ponderosa
; PIPO), sugar pine (Pinus lambertiana ; PILA), and Jeffrey pine (Pinus jeffreyi ; PIJE).

PISA, commonly called gray pine or foothill pine, is a native and endemic tree that grows
equally in northern, southern and central California. It tends to grow in places with poor soils, at
elevations from 0 to 1300 m and reach a height of 25 m at maturity. The needles grow in fascicles
of three and are long gray-green and drooping needles (they usually grow between 20 and 30 cm).

2https://calscape.org
3https://ucjeps.berkeley.edu/eflora
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PIPO, commonly known as ponderosa pine, is a widespread and variable pine native to western
North America. PIPO grows in the upper foothills up to the mid-height peaks of the Sierra Nevada.
Mature individuals can reach the height of 70 m. The needles are long (12 to 26 cm), thin (under
2 mm), and grow in bundles of three.

PILA, commonly known as the sugar pine, is the tallest and most massive pine tree. It is native
to the mountains of the Pacific coast of North America, from Oregon through California to Baja
California. Commonly growing to 40–60 m, PILA is distributed at mid-elevation between 500 and
1,500 m above sea level. This pine grows needles between 5 and 11 cm in bundles of five.

PIJE, named Jeffrey Pine in honor of its documenter John Jeffrey, is an endemic pine from the
California floristic province. PIJE is a large tree, reaching 25 to 40 m and is closely related to PIPO.
PIJE grows widely at 1,500 to 2,100 m elevation, and up to 2900 in the southern mountain ranges.
The needles, in bundles of three, are waxy pale gray-blue-green, 12 to 23 cm long, and thick.

The two fir species under study are the white fir (Abies concolor ; ABCO), and the red fir (Abies
magnifica ; ABMA).

ABCO, commonly known as white fir, is a native North American fir species distributed in
the mountainous areas of California, Oregon, Idaho and Colorado. ABCO grows in the moderate
elevation mix conifer forest and up to 3,200 m elevation in the red fir forest. ABCO trees grow
to 25-60 meters tall. The leaves are needle-like, twisted upward and flattened, 2.5-6 cm long and
2 mm wide by 0.5-1 mm thick, green to waxy pale blue-green above, and with two waxy pale
blue-white bands of stomata below.

ABMA, called red fir, is an endemic fir species from the California floristic province. ABMA is
a high altitude tree that grows up to 40-60 m tall. The leaves are needle-like, 2-3.5 centimeter long,
and waxy blue-green with a sharp acute tip that bends upward.

From the Calocedrus genus, the California incense cedar (Calocedrus decurrens ; CADE) is a
native tree from the western North America from the cypress family. It grows from lower to high
elevation up to 2,500 m. Such as other species from the cypress family, CADE foliage grows in flat
sprays with scale-like leaves.

Scientific name Abbreviation Common Name TONZ SJER BLOF SOAP TEAK
Abies concolor ABCO white fir

Abies magnifica ABMA red fir
Calocedrus decurrens CADE incense cedar

Pinus jeffreyi PIJE jeffrey pine
Pinus lambertiana PILA sugar pine
Pinus ponderosa PIPO ponderosa pine
Pinus sabiniana PISA grey pine

Quercus chrysolepsis QUCH(e) canyon live oak
Quercus douglasii QUDO(d) blue oak
Quercus kelloggii QUKE(d) black oak
Quercus wislizeni QUWI(e) interior live oak

Table 3.1: The scientific name, common name, four-letter abbreviated species code used in the
thesis. Colored cells indicate if the species is present on the site

3.3 Field data

3.3.1 Field campaigns

On the five study sites, several field campaigns and data collections took place in 2013 and 2014.
These data collections are part of the project entitled “Identification of Plant Functional Types By
Characterization of Canopy Chemistry Using an Automated Advanced Canopy Radiative Transfer
Model” (principal investigator: Susan Ustin ; CSTARS lab, University of California, Davis, NASA
grant #NNX12AP87G). This project was one of the 14 proposals funded over three years by NASA
to support participation in the HyspIRI Preparatory Airborne Activities, Associated Science and
Application Research (Lee et al. 2015; NASA 2011). The main objective of the CSTARS lab with this
proposal was to assess the consistency between plant functional types and biochemical diversity
at the canopy, and aims to address the HyspIRI mission to monitor changes in physiological
functioning. The third and last sub-objective was to “Test the potential for complete automation
of the radiative transfer model inversion to retrieve canopy chemistry products from HyspIRI
spectra”.
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To this aim, leaves were collected from the field for chemical analysis. Additionally, reflectance
and transmittance were measured on leaves for chemical analysis using an integrating sphere
and an ASD Fieldspec-3 spectrometer. For chemical analysis, the project targeted physiologically
active canopy chemistry components that are relevant for fluxes of carbon and water with the at-
mosphere, namely: chlorophyll a and b, carotenoids, water and ligno-cellulose dry matter (NASA
2011).

Between 4 or 5 field campaigns occurred in 2013 and 2014 for each site. They took place at three
times of the year, approximating seasons (i.e., spring, summer and fall) to capture the variation
linked to the phenology. The dates of the field campaigns are detailed in Table 3.2.

Table 3.2: Dates of the field campaigns (format DD/MM).

Site 2013 2014
Summer Fall Spring Summer Fall

TONZ 11/06 24/09 15/04 - 17/04 06/06 - 08/06 06/10 - 08/10

SJER 16/06 - 20/06 06/11 - 11/11 09/04 - 11/04 11/06 - 16/06 21/10 - 23/10

BLOF - 30/09 - 03/10 21/04 - 23/04 01/06 - 04/06 04/11 - 06/11

SOAP 16/06 - 20/06 06/11 - 11/11 11/04 - 13/04 11/06 - 16/06 27/10 - 30/10

TEAK 16/06 - 20/06 06/11 - 11/11 - 11/06 - 16/06 27/10 - 30/10

Each field campaign was split into three main steps that are detailed in the further subsections:
leaf collection, leaf traits measurements, leaf reflectance and transmittance measurements.

A total of 290 trees were sampled during the field campaigns, including 114 oaks trees, 101

pines, 56 firs, and 19 CADE (Table 3.3). The number of sampled trees is variable considering the
species, site, and season. Several reasons explain the differences of sampled trees: (i) some species
are only present on one site and are therefore less sampled; (ii) priority was given to deciduous
species in spring and fall campaigns to capture their more pronounced phenological variations
compared to evergreen species.

3.3.2 Leaf sampling

Between 10 and 20 plots were distributed across each study site to cover the full variation in species
composition and canopy density. Species and plots sampled during each season varied by site.
Plots dominated by deciduous species were measured in all three seasons in order to analyze the
temporal evolution of the vegetation while plots dominated by evergreen species were measured
at most during two seasons.

In each plot, one or several open grown trees were selected, i.e. trees that were not too tall to
access leaves from the extended pole clipper (about 6 m) and that were in a more open location so
that the foliage was not likely shadowed by other nearby taller trees. The location of each sampled
tree was recorded with a Trimble Geo7X GPS unit. Two sets of 15 leaves/needles were collected
from the upper and sunlit portion of the canopy from the selected individuals with a tree trimmer.
For evergreen species, which keep their leaves for several years, new leaves were not collected
with the assumption that previous years leaves made up the majority of canopy regardless of the
season. A similar assumption was made for conifers and only needles from the 2nd or 3rd year
were collected. The first set of leaves/needles was placed in a sterilized and previously weighed
plastic bag for water and dry matter content estimation while the second set of leaves was placed
in foil packets, to avoid the light from reaching them for spectral measurements and pigment
extraction. Both sets were stored on blue ice in coolers until they arrived at the lab where they
were placed in a lab refrigerator. Leaf measurements were conducted less than 48 hours after they
were removed from the plant.

3.3.2.1 Leaf traits Measurements

Cab, Cxc, EWT and LMA are four leaf functional traits expressed as the mass contained per unit of
leaf area. Therefore, the measurement protocol of leaf traits involves the measure of the leaf area
and the respective mass of each family of compounds.

To derive leaf area (further noted A), on both leaf sets, all the leaves and needles were scanned
with 150 dpi using a white background to amplify the contrast between leaves and background.
Then, leaf areas were derived by delineating the leaves from the background in the scans. Addi-
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Table 3.3: Sample distributions for each species, season and site.

TONZ SJER BLOF SOAP TEAK TOTAL
Species Season

ABCO Spring 5 5

Summer 5 8 13

Fall 5 4 12 21

Total 15 4 20 39
ABMA Spring

Summer 7 7

Fall 1 9 10

Total 1 16 17
CADE Spring

Summer
Fall 10 9 19

Total 10 9 19
PIJE Spring

Summer 9

Fall 12

Total 21 21
PILA Spring

Summer
Fall 1 1 2

Total 1 1 2
PIPO Spring 5 5

Summer 5 5 10

Fall 10 13 1 24

Total 20 18 1 39
PISA Spring 5 5

Summer 5 10 15

Fall 5 10 15

Total 15 20 35
QUCH Spring 5 5

Summer 2 2

Fall 12 12

Total 19 19
QUDO Spring 5 5 10

Summer 8 9 17

Fall 9 8 17

Total 22 22 44
QUKE Spring 6 5 11

Summer 4 9 13

Fall 7 7

Total 10 21 31
QUWI Spring 3 3

Summer 8 8

Fall 9 9

Total 20 20

tionally, the leaf or needle thickness was measured with a caliper.

To determine mass of leaf pigments from the second set of leaves/needles, samples were frozen
in liquid nitrogen immediately after the spectral measurements. They were stored frozen for a
short time and then lyophilized. The pigments extraction was done with 90% acetone (14 mL)
for 48 hours. Each vial contains one sample (5 leaves from one individual). Three replicates
were taken from each vial. Lambda 25 UV/Vis spectrophotometer were used with concentrations
for chlorophylls and carotenoids of 23 mg/mL and 8 mg/mL. A detailed explanation of the lab
protocol is explained in the work of Lichtenthaler 1987. Then, the mass of chlorophylls a and b
(mchlorophylls) and the mass of carotenoids (mcarotenoids) were derived from concentrations measured
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in the solutions and used to compute the Cab and Cxc values following equations 3.1 and 3.2.

Cab =
mChl a&b

A
(3.1)

Cxc =
mxc

A
(3.2)

To derive EWT and LMA from the first set of leaves, the Ziplock bags for leaf water samples
were weighed empty and then they were weighed again with leaves. Leaves were dried at 60°C
for a minimum of 48 hours in an oven. Dry and fresh weights (respectively mdry and m f resh) were
used to compute LMA and EWT following equations 3.3 and 3.4.

EWT =
m f resh − mdry

A
1

ρwater
(3.3)

LMA =
mdry

A
(3.4)

One could notice that the density of water (ρwater = 1 g · cm−3) is a factor in the computation
of EWT. Therefore EWT is expressed as a length, its values are given in cm. The EWT can be seen
as the thickness of a volume of water occupying a specific area, and for this very reason EWT is
actually an equivalent thickness.

3.3.2.2 Leaf spectral measurements

From the second set of leaves/needles, directional-hemispherical reflectance and transmittance
were measured from each individual using an ASD FieldSpec Pro (1-2 nm sampling interval,
with 3-10 nm resolution) attached to a Li-cor 1800-12 integrating sphere with a 6 V, 10 W, 3100

K illumination source (LI-COR 1983). For broadleaf species, five leaves were randomly selected
as sample replicates. For conifers species, since needles did not cover the entire sample port of
the LI-1800, three sample replicates were created by arranging leaves as close together as possible
with no overlap (i.e., minimizing gaps between leaves) and sealing the ends of the leaves using
either black rubber gaskets or black electric tape.

The spectra were collected in radiance from 350 to 2500 nm. The protocol also involves the mea-
surements of the reference material illumination Ir and stray radiation illumination Id. Reflectance
Rs and transmittance Ts of samples are derived using the equation provided by the manufacturer
and described below (equations 3.5 and 3.6; LI-COR 1983). The manufacturer also provides the
intrinsic reflectance of the sphere reference material Rr.

Rs =
(Is − Id)Rr

Ir − Id
(3.5)

Ts =
IsRr

Ir
(3.6)

where Is is the measured sphere output when the sample is illuminated and Ir is the measured
sphere output when the reference material is illuminated. The five processed spectra per sample
were averaged. Then, a Savitzky-Golay filter (Savitzky and Golay 1964) was applied to smooth the
SWIR part of the spectrum (1600 − 2500 nm).

The leaf traits measurement associated with the corresponding directional-hemispherical re-
flectance and transmittance constitute the CSTARS-Leaf dataset.

3.4 Remote sensing data

3.4.1 AVIRIS flight lines

AVIRIS is an hyperspectral airborne imaging sensor developed by NASA at the JPL (Jet Propulsion
Laboratory, Pasadena, California). AVIRIS is a whiskbroom scanner with an instantaneous field
of view of 1 mrad and a total field of view of 34°. AVIRIS features 224 contiguous bands in the
optical range from 365 nm to 2, 500 nm. The bands are split on two sensors: one for the visible
and near infrared range and one for the short wave infrared range. The FWHM (Full Width at
Half Maximum) is around 10 nm for each band (Green et al. 1998).
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AVIRIS is loaded on the NASA ER-2 aircraft and was flown at an altitude of 20 km, and
provides images with a GSD of approximately 14-15 m (Table 3.4). AVIRIS was flown around
noon and images were acquired at nadir to avoid as much as possible the directional effects. In
the frame of the HyspIRI Preparation mission, at least three sets of flights were scheduled each
year from 2013 to 2015 in each flight box. The flights took place in spring, summer and fall to
capture the phenological variations of the vegetation. A total of 47 images were acquired over the
five study sites and cover at least 30% of the site area during the years 2013 and 2014 (Figure 3.2).
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Figure 3.2: Timeline of all the AVIRIS acquisitions available on the five study sites (red) and the
field campaign (blue)

The NASA JPL processed the raw AVIRIS data to provide ortho-corrected reflectance images.
The processing steps includes: (i) the radiometric calibration to convert image in luminance val-
ues, (ii) the geometrical orthorectification based on a geometric lookup-table methodology for
data rendering and employing a full three-dimensional ray tracing and a 30m spatial resolution
digital elevation model for complete orthorectification, and (iii) the atmospheric correction per-
formed with the ATmosphere REMoval Algorithm (ATREM) to provide images of scaled surface
reflectance (Gao et al. 1993).

Images that were acquired more than one month before or after a field campaign were removed
from the flight line list. Images of the Tahoe box from September 2014 were also removed from the
list because of the presence of a wildfire and the spread of its smoke over the study area, which
would have required revision of the applied atmospheric correction. A total of 38 flight lines were
selected to extract spectral data.

3.4.2 CSTARS-Canopy dataset

The 38 ortho-corrected reflectance images were downloaded from the AVIRIS data portal4. Visual
inspection of the images from the AVIRIS data portal downloaded showed that they often exhibit
a spatial shift up to 2 pixels (about 30m). To reduce the uncertainty linked to georeferencing, the
images were processed with the gefolki algorithm (Brigot et al. 2016) to provide a more consistent
georeferencing. Images were georeferenced to Maxar Technology RGB images, and resampled at
the same GSD of the AVIRIS image, extracted from Google Earth service. AVIRIS images were
not spatially resampled in order to minimize the spatial shift uncertainty associated with such
processes.

Then, for each image, GPS positions of sampled trees of the site and the season were associated
with the image. For each GPS position, the closest pixel in the image was identified and the
reflectance data was extracted (Figure 3.3). Two occurrences of the AVIRIS sensor were built by
the JPL and both were used in the HyspIRI Preparation Mission. Both payloads were built with
the same features, although, for feasibility reasons, they have slightly different center wavelengths
and FWHM for each band (e.g., center wavelengths could differ by 1 nm). Therefore, in order to
standardize the spectral data, the reflectance data were spectrally resampled with a third order
spline interpolation on a standard grid (201 bands, from 400 nm to 2500 nm, every 10 nm).

On average, between 7 and 8 pixels were extracted for one image (Table 3.4). A total of 292

pixels and reflectance data associated with ground measurements were extracted from the AVIRIS
images. Since the areas covered by some flight lines overlap, multiple pixels from the same day
and distinct images could be associated with a single sampled individual.

This dataset with AVIRIS reflectance data associated with in-lab measurements of leaf traits is
further denominated the CSTARS-Canopy dataset in Chapter 5.

4https://aviris.jpl.nasa.gov/dataportal/
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Figure 3.3: Schematic diagram of extraction processing of AVIRIS reflectance.

The temporal shift between the image acquisition and field sampling ranges from -22 days to
13 days (Table 3.4). On average AVIRIS images were acquired earlier than the field sampling date
(average temporal shift of -5.3 days, with a standard deviation of 8.4 days). Indeed, most of the
pixels were acquired before leaf collection in the field (Figure Figure 3.4). The difference of dates
between leaf collections and AVIRIS acquisition is due to feasibility reasons. In fact, due to travel
time into different forest sites it was not possible to access multiple sites on the same day, and it
was not possible to have multiple crews at each site due to lack of equipment and lack of staff.
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Figure 3.4: Distribution of selected pixels as a function of temporal shift

In the CSTARS-Canopy dataset the assumption is made that the time between image acquisition
and in-field collection caused minimal changes to the leaf traits. Additionally, there was any
rainfall between leaf collection and AVIRIS acquisition that could alter the EWT. Besides, to build
the CSTARS-Canopy dataset, the assumption that the collected twigs and leaves are representative
of the entire individual.

3.4.3 Background reflectance spectra

In addition, soil reflectance spectra were extracted from hyperspectral images to simulate canopy
reflectance with canopy RTMs (see Chapter 1 for details on canopy RTM parameters). This step in-
volves finding areas without tree cover and large enough to cover an entire pixel of a hyperspectral
image.

Soil reflectance spectra were extracted from two types of images: AVIRIS images and NIS
(NEON imaging spectrometer) images. The NIS is supported and operated by NEON, and is flown
every two years over NEON sites at vegetation maximum greenness (Musinsky and Thibault n.d.).
NIS is a pushbroom sensor and has a 1 mrad instantaneous field of view at nadir providing GSD
of 1 m for the typical flight altitude (1000m above ground level). NIS features 426 bands, covering
wavelengths from 380 nm to 2510 nm with a 5 nm spectral resolution and a 7.5 nm FWHM (Gallery
et al. n.d.).

AVIRIS images have a GSD of 14 m, and were therefore only used to extract soil spectra at
sites with a low canopy cover. Indeed, for TONZ and SJER, which have low canopy covers,
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Table 3.4: List of AVIRIS-C flight lines with associated pixel size, sample number, date and tem-
poral shift.

Pixel
Size
(m)

Number
of Selected

Pixels

Date of
flight

(YYYY-MM-DD)

Date of
sampling
(YYYY-MM-DD)

Temporal
shift

(days)
Site Name

BLOF f130919t01p00r12 14.9 8 2013-09-19 2013-10-01 -12

f140410t01p00r13 14.7 11 2014-04-10 2014-04-22 -12

f140602t01p00r15 14.9 12 2014-06-02 2014-06-03 -1
f141117t01p00r14 14.6 13 2014-11-17 2014-11-04 13

SJER f130612t01p00r09 14.8 12 2013-06-12 2013-06-19 -7
f131105t01p00r15 14.5 10 2013-11-05 2013-11-07 -2
f140407t01p00r09 14.5 4 2014-04-07 2014-04-11 -4
f140603t01p00r17 14.6 7 2014-06-03 2014-06-11 -8
f141006t01p00r09 14.6 6 2014-10-06 2014-10-21 -15

SOAP f130606t01p00r05 14.5 4 2013-06-06 2013-06-16 -10

f130612t01p00r07 14.0 9 2013-06-12 2013-06-16 -4
f130612t01p00r14 14.0 3 2013-06-12 2013-06-16 -4
f130626t01p00r07 14.0 6 2013-06-26 2013-06-16 10

f130626t01p00r09 14.0 4 2013-06-26 2013-06-16 10

f131105t01p00r10 13.8 3 2013-11-05 2013-11-09 -4
f131105t01p00r11 13.7 15 2013-11-05 2013-11-09 -4
f131117t01p00r06 14.1 12 2013-11-17 2013-11-09 8

f140407t01p00r07 13.7 8 2014-04-07 2014-04-12 -5
f140407t01p00r18 14.1 8 2014-04-07 2014-04-12 -5
f140410t01p00r18 15.1 5 2014-04-10 2014-04-12 -2
f140603t01p00r10 14.0 9 2014-06-03 2014-06-14 -11

f140603t01p00r12 13.9 2 2014-06-03 2014-06-14 -11

f140603t01p00r21 14.2 8 2014-06-03 2014-06-14 -11

f141006t01p00r07 13.8 16 2014-10-06 2014-10-28 -22

f141006t01p00r16 14.2 18 2014-10-06 2014-10-28 -22

TEAK f130612t01p00r06 14.3 5 2013-06-12 2013-06-17 -5
f130612t01p00r15 14.3 9 2013-06-12 2013-06-19 -7
f130626t01p00r06 14.5 5 2013-06-26 2013-06-17 9

f130626t01p00r08 14.3 11 2013-06-26 2013-06-18 8

f131105t01p00r08 14.1 11 2013-11-05 2013-11-09 -4
f131105t01p00r09 14.3 5 2013-11-05 2013-11-07 -2
f140603t01p00r09 14.4 1 2014-06-03 2014-06-15 -12

f140603t01p00r11 14.2 5 2014-06-03 2014-06-13 -10

f141006t01p00r06 14.3 4 2014-10-06 2014-10-27 -21

TONZ f130604t01p00r12 14.9 3 2013-06-04 2013-06-11 -7
f130919t01p00r13 14.9 5 2013-09-19 2013-09-24 -5
f140410t01p00r14 14.6 6 2014-04-10 2014-04-17 -7
f140602t01p00r16 15.0 9 2014-06-02 2014-06-06 -4

soil reflectance spectra could be extracted from AVIRIS images. For SOAP and TEAK, larger
treeless areas correspond to rocky outcrops and their reflectance is not representative of soils
under the canopy. These sites required to select smaller treeless areas in zones with a higher
canopy cover whose reflectance spectra could only be extracted from NIS images with 1 m GSD.
The NIS images used in this step were acquired in June 2017. For BLOF, the high canopy cover
and lack of hyperspectral images with a small GSD on the site imply that reliable soil reflectance
spectra cannot be obtained. Since BLOF has a geology similar to SOAP and TEAK, soil reflectance
spectra from these latter sites will also be used for BLOF canopy simulations.

3.5 Data statistical analysis

The measurements presented in this chapter can be analyzed statistically regarding species. They
provide prior information regarding the range of variations of leaf traits.
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Mean statistics for each leaf trait are given in Table 3.5 and more detailed distributions per
species are given in Figure 3.5.

Table 3.5: Basic statistics of the measured foliar traits compared for oak and conifers species

Cab Cxc EWT LMA
(µg.cm−2) (µg.cm−2) (cm) (g.cm−2)

Mean 33.7 / 62.6 8.7 / 16.3 0.0112 / 0.0367 0.0124 / 0.0321

Standard Dev. 13.2 / 23.2 2.9 / 5.0 0.0026 / 0.0062 0.0043 / 0.0059

Min. 0.5 / 19.3 2.0 / 6.3 0.0051 / 0.0223 0.0045 / 0.0179

Max. 68.4 /136.0 17.8 / 31.4 0.0202 / 0.0527 0.0215 / 0.0539
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Figure 3.5: Distribution of the four leaf traits for each species.

Statistical analysis shows that leaf traits distribution are different for broadleaf and conifer
species. For example, pigments contents are almost twice higher for conifers, and almost three
times higher for EWT and LMA. Detailed distributions by species from Figure 3.5 and standard
deviations from Table 3.5 highlights that leaf traits values are more restricted for oak species. The
two by two leaf traits scatter plot representation (Figure 3.6) confirms that oaks and conifers leaf
traits distributions are distinct, and that the conifer distributions of leaf traits are more spread than
the oak ones.

For oak species, evergreen species tend to have higher values of leaf traits than deciduous
species (Figure 3.5). Inter-species discrepancy is particularly visible for LMA where each species
appears to have a specific range of values.

For conifer species, pine and fir species exhibit similar distributions of leaf traits. CADE is the
only species that stands out among conifers with leaf trait values intermediate between oaks and
firs.
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Figure 3.6 emphasizes the correlation between leaf traits. Table 3.6 give the correlation between
leaf traits values, for oak species and conifer species respectively. Cab and Cxc show the highest
correlation (0.91 for oak, 0.95 for conifers) and are both correlated to LMA (correlation over 0.5).
EWT is less correlated to other leaf traits and more particularly for oak species (around 0.22 with
pigments-related traits for oak compared to 0.4 for conifer species). More generally, traits are more
correlated for conifer species than for oak species (except between Cxc and EWT).
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Figure 3.6: Scatter plots of the four leaf traits.

Table 3.6: Correlation matrix for the four leaf traits by pooling all Quercus species (left) and all
conifer species (right).

Cab Cxc EWT LMA

Cab 1.00 0.91 0.20 0.49

Cxc 1.00 0.24 0.67

EWT 1.00 0.48

LMA 1.00

Cab Cxc EWT LMA

Cab 1.00 0.95 0.38 0.57

Cxc 1.00 0.46 0.63

EWT 1.00 0.74

LMA 1.00

For oak species, the average leaf thickness, regardless of the species, is 0.29 mm. Although
leaf thickness shows discrepancies between species similar as LMA. Indeed, average leaf thickness
per species follow the same trend as LMA with the smallest for QUKE(d) (0.24 mm) followed by
QUDO(d) (0.28 mm), QUWI(e) (0.32 mm) and QUCH(e) (0.35 mm). In fact, leaf thickness is slightly
correlated to LMA (0.68), but with higher correlation than EWT (0.56). As expected, leaf thickness
is even more correlated to leaf surface weight (sum of LMA and EWT; 0.73) that represents the
quantity of matter per unit area of leaf, all types of compounds included.
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Chapter 4

Estimation at the leaf scale

This Chapter focuses on leaf scale estimation of leaf traits. The work on this topic regarding the
studied oak species has been published in a peer-reviewed article "Estimation of Oak Leaf Functional
Traits for California Woodland Savannas and Mixed Forests: Comparison between Statistical, Physical, and
Hybrid Methods Using Spectroscopy", Gaubert et al. 2024, which is inserted in this chapter. The fol-
lowing paragraph introduces the overall thesis approach for leaf traits estimation at the leaf scale
that lead to the publication of the article. After the article, a conclusion is added in this manuscript
to summarize the main results and how the article fits in with this thesis.

As seen in Chapter 1 the remotely sensed signal acquired at the top of a tree canopy is to first
order influenced by leaf reflectance and transmittance. From this point of view, understanding
how the leaf traits can be estimated at the leaf scale from leaf reflectance and transmittance is a
key step to further perform accurate estimations at the canopy scale.

Several methods from three classes of estimation strategies presented in the Chapter and Chap-
ter 2 have been developed to estimate leaf traits from leaf reflectance and transmittance. However,
the accuracy of estimation methods have been compared only by a few authors, more particularly
considering methods from distinct classes of strategies (Féret et al. 2019; Wang et al. 2023). In
addition, most studies focused on one or two leaf trait retrieval and at the peak vegetation growth
with mature leaves. Studies considering data collected at different stages of the phenological cycle
are scarce in the literature (Noda et al. 2021).

Therefore, this study focuses on the estimation of the four leaf traits from laboratory directional-
hemispherical leaf reflectance and transmittance measurements and aims to compare the perfor-
mances of estimation methods taken from the state-of-the-art (statistical, physical and hybrid;
Chapter ). In this Chapter, physical and hybrid methods are based on the PROSPECT leaf ra-
diative transfer model (presented in Chapter 1) and therefore are referred as PROSPECT-based
methods. PROSPECT-based methods include inversion of PROSPECT from iterative algorithms
and LUT-based inversion. For LUT-based methods, two distance functions (spectral angle mapper
and euclidean distance) and two sampling schemes (Latin hypercube sampling and Multivariate
gaussian sampling ; Chapter 2) were tested. For statistical and hybrid methods, the four distinct
MLRA described in Chapter 2 Section 2.2 were used to build estimators and compared: Ridge,
PLSR, GPR, and RFR. Additionally, for statistical methods, the MLRAs were trained either on
the CSTARS-Leaf database or on an independent database from the state-of-the-art (ANGERS) in
order to assess the transferability of such methods. Considering all these features, a total of 17

estimation strategies were compared.

To compare the strategies under study, the data from the CSTARS-Leaf dataset, presented
in Chapter 3 and gathering the leaf traits measurements and directional-hemispherical leaf re-
flectance and transmittance measurements, is used in this article to evaluate the accuracy of the
selected methods. Although the CSTARS-Leaf dataset also included measurements of conifers leaf
traits and needles optical properties, the peer-reviewed article focuses on estimation of leaf traits
for oak species and excluded the conifer samples for several reasons. As a matter of fact, the
PROSPECT model has been calibrated and validated on broadleaves species (Féret et al. 2017) and
therefore simulating the optical properties of other functional groups, such as conifers, is poten-
tially outside the validity domain of PROSPECT. Thus, to compare only the estimation methods
performance it is required to restrict the study to samples that are in the validity domain of
PROSPECT to avoid as much as possible the potential misrepresentation of this RTM. In addition,
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measuring tools are not adapted to the shape of conifer needles (Yáñez-Rausell et al. 2014). As
a result, the leaf directional-hemispherical reflectance and transmittance measurement protocol
required to be adapted to cope with conifer leaves. In this protocol, adapted from Mesarch et al.
1999 the conifer leaves (needles) are stacked into bundles for optical measurements and require an
additional processing step to correct the effects of gaps between the leaves. This protocol provides
spectral measurements with less controlled uncertainties. Consequently, for these reasons conifer
samples were excluded from the study. Nevertheless, tests that were carried out on conifer sam-
ples are presented in Appendix B.

For simplicity, the article refers to the oak samples of the CSTARS-Leaf dataset as “CSTARS
dataset” or “our dataset”. Also for simplicity’s sake, the expression “CSTARS-Leaf dataset” will
only refer to the oak samples in the rest of this Chapter.

As detailed in Chapter 3 the CSTARS-Leaf dataset gathers samples from 114 deciduous and
evergreen oak trees collected over three seasons (spring, summer and fall) and from four out of
the five study sites of the thesis where the oaks species are present (TONZ, SJER, BLOF, SOAP).

The objective of the peer-reviewed article is threefold:

1. Compare all the estimation methods performances on the CSTARS-Leaf dataset and identify
the most suitable one for each trait and for all of them.

2. Explore the transferability statistical approaches when MLRA are trained on an independent
dataset (here ANGERS) containing distinct species from other ecosystem types.

3. Study the distribution of the PROSPECT structural parameter N values, retrieved by itera-
tive inversions, for the oak specimens included in the CSTARS-Leaf database and study its
seasonal, intra- and inter-specific variability.

Leaf-scale estimation of oak leaf traits : Comparison of statistical
and PROSPECT-based methods

The article is divided with the following structure: Section 1 introduces the context of the study,
the targeted leaf traits and the state-of-the-art methods. Section 2 describes the data collection and
processing performed to build the CSTARS-Leaf dataset and further details the tested methods.
Finally, the results are shown in Section 3 and are followed by discussions in Section 4.
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Abstract: Key leaf functional traits, such as chlorophyll and carotenoids content (Cab and Cxc),
equivalent water thickness (EWT), and leaf mass per area (LMA), are essential to the characterization
and monitoring of ecosystem function. Spectroscopy provides access to these four leaf traits by
relying on their specific spectral absorptions over the 0.4–2.5 µm domain. In this study, we compare
the performance of three categories of estimation methods to retrieve these four leaf traits from
laboratory directional-hemispherical leaf reflectance and transmittance measurements: statistical,
physical, and hybrid methods. To this aim, a dataset pooling samples from 114 deciduous and
evergreen oak trees was collected on four sites in California (woodland savannas and mixed forests)
over three seasons (spring, summer and fall) and was used to assess the performance of each
method. Physical and hybrid methods were based on the PROSPECT leaf radiative transfer model.
Physical methods included inversion of PROSPECT from iterative algorithms and look-up table
(LUT)-based inversion. For LUT-based methods, two distance functions and two sampling schemes
were tested. For statistical and hybrid methods, four distinct machine learning regression algorithms
were compared: ridge, partial least squares regression (PLSR), Gaussian process regression (GPR), and
random forest regression (RFR). In addition, we evaluated the transferability of statistical methods
using an independent dataset (ANGERS Leaf optical properties database) to train the regression
algorithms. Thus, a total of 17 estimations were compared. Firstly, we studied the PROSPECT leaf
structural parameter N retrieved by iterative inversions and its distribution over our oak-specific
dataset. N showed a more pronounced seasonal dependency for the deciduous species than for the
evergreen species. For the four traits, the statistical methods trained on our dataset outperformed
the PROSPECT-based methods. More particularly, statistical methods using GPR yielded the most
accurate estimates (RMSE = 5.0 µg·cm−2; 1.3 µg·cm−2; 0.0009 cm; and 0.0009 g·cm−2 for Cab, Cxc,
EWT, and LMA, respectively). Among the PROSPECT-based methods, the iterative inversion of this
model led to the most accurate results for Cab, Cxc, and EWT (RMSE = 7.8 µg·cm−2; 2.0 µg·cm−2;
and 0.0035 cm, respectively), while for LMA, a hybrid method with RFR (RMSE = 0.0030 g·cm−2)
was the most accurate. These results showed that estimation accuracy is independent of the season.
Considering the transferability of statistical methods, for the four leaf traits, estimation performance
was inferior for estimators built on the ANGERS database compared to estimators built exclusively
on our dataset. However, for EWT and LMA, we demonstrated that these types of statistical
methods lead to better estimation accuracy than PROSPECT-based methods (RMSE = 0.0016 cm
and 0.0013 g·cm−2 respectively). Finally, our results showed that more differences were observed
between plant functional types than between species or seasons.

Keywords: oak ecosystems; leaf functional traits; seasonality; inversion methods; PROSPECT;
machine learning; spectroscopy
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1. Introduction

Oak trees from the Quercus genus comprise around 500 species, including both decid-
uous and evergreen species. They are mostly distributed in the Northern Hemisphere from
cool temperate to tropical climates, and their numbers are the greatest in North America
and China. According to the Red List of Oak 2020 report and analyses of over 430 species
studied worldwide, about 31% of oak species are estimated to be threatened and globally,
41% are considered to be of conservation concern [1]. They are mainly endangered by land
use change due to agriculture and urbanization expansion, as well as logging and global
climate change, which is leading to a decrease in water availability and increase in fires,
pests, and diseases. However, oak trees are of high ecological and economic importance
since they provide food (acorns) and habitat for fauna, serve as carbon sinks, and are
used for timber, furniture, fuel, dyes, and tannins [2]. They are present in 18 out of the
36 biodiversity hotspots recognized by the Critical Ecosystem Partnership Fund (CEPF),
which feature a rich biodiversity but experience severe habitat loss. About 89 oak species
exist in the United States and 20 are present in California, of which 7 are endemic [3]. Oak
trees are distributed between oak woodland savannas and oak forest ecosystems, the former
representing about 50,000 km2 while the latter 27,000 km2 [4]. Most are threatened due to
population increase and demand for wood and fuel; management plans have been drawn
up for the six regions of California to preserve oak resources, promote stand regeneration,
and prevent fire propagation [5].

Optical remote sensing is a widely used technology to observe large-scale terrestrial
landscapes with high temporal revisit. Remote sensing has been used to observe oak
ecosystems: for instance, for monitoring the spatio-temporal land cover change of a cork
oak forest due to anthropogenic disturbance [6], for assessing the post-fire recovery of a
mixed pine–oak forest [7], for estimating tree cover over an evergreen oak woodland [8],
and for identifying pest-infected oak trees [9]. The remotely sensed signal acquired at the
top of a tree canopy is to a certain extent influenced by canopy structure, but primarily by
leaf reflectance and transmittance. These optical properties have been demonstrated to be
the expression of plant functions and strategies [10]. The latter can be explained through
the definition of plant traits and plant functional traits, which can be upscaled from the
individual to the ecosystem level. A plant trait is any morphological, physiological, or
phenological feature measurable without reference to the environment, while a functional
trait is any trait that impacts fitness indirectly via its effects on growth, reproduction, and
survival [11].

Among the optically relevant traits at the leaf level, chlorophyll a and b content (Cab),
carotenoid content (Cxc), equivalent water thickness (EWT), and leaf mass area (LMA) are
often studied since they have been proven to be valuable indicators to assess vegetation
health and stress levels [12].

Due to their biochemical (Cab, Cxc, EWT) or morphological nature (LMA), they have
become fundamental for monitoring environmental function and structure in order to im-
prove our understanding of physiological vegetation processes and global biogeochemical
cycles [13]. Monitoring leaf traits would also provide insight into vegetation resilience
against the increased impact of global climate change. As such, their accurate and quantita-
tive estimation is targeted for a precise monitoring of essential biodiversity variables over
space and time [14]. Cab and Cxc are leaf photosynthetic pigments that intervene in light
harvesting and its conversion into chemical energy. Cxc include xanthophylls and carotenes,
and also contribute to photoprotection [13,15,16]. EWT is correlated with the amount of
water per leaf area and thus with water management by plant tissues. EWT is therefore a
determining factor for thermal regulation, drought resistance, and flammability [17]. LMA
is the inverse of the specific leaf area (SLA) and is a key indicator of resource allocation and
plant strategies since it aggregates a wide range of organic compounds that can be sepa-
rated into nitrogen-based constituents (proteins) and carbon-based constituents (including
cellulose, lignin, hemicellulose, starch, and sugars) [18,19]. All of these four traits have spe-
cific spectral absorption features over the visible and near-infrared to short-wave infrared
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range (VSWIR) or 0.4–2.5 µm range [20]: pigments absorb light mainly in the visible range
from 400 to 750 nm, while both EWT and LMA absorb light in the near-infrared (NIR) and
more strongly in the short-wave infrared range (SWIR).

In situ and laboratory measurements provide the most accurate estimations of leaf
traits. However, considering the high costs and time consumption of laboratory analy-
sis and the spatial limitations of field leaf sampling, estimating these traits using these
techniques over large ecosystems is unrealistic. An alternative that has been increasingly
and broadly used is leaf spectroscopy with the measurement of leaf optical properties
(LOPs: leaf reflectance and transmittance) from VSWIR spectroradiometers [20]. In general,
these estimation methods can be classified into three main categories: statistical methods,
physical methods, and hybrid methods [21]. The first category uses a training dataset
composed of concurrent leaf traits and LOP measurements to build regression models
with a machine learning regression algorithm (MLRA). Applying the trained regression
model upon LOP enables estimating the associated leaf trait values. Physical methods
rely on LOP measurements and LOP simulations from radiative transfer models (RTMs)
which relate leaf traits to LOP with a mechanistic description of the physical scattering
processes that drives interactions between light and leaf constituents. Then, an inversion
method is performed to estimate leaf traits by finding the best fit between the measured
and simulated LOP among strategies including iterative optimization based on minimiza-
tion algorithms [22] or look-up table (LUT) building [23]. The last category, called hybrid
methods, combines aspects of both statistical and physical strategies. Hybrid methods
build an inverse model with an MLRA trained on a synthetic dataset constituted by LOP
simulations generated with an RTM [24]. On the one hand, physical and hybrid methods
are RTM-based methods, i.e., they depend on the ability of the RTM to accurately simulate
the physical processes by which LOPs are derived from leaf traits. On the other hand,
statistical methods mainly depend on the properties of the training dataset and the MLRA
fitting protocol.

Several RTMs with different levels of complexity to model leaf structure exist: from
simplified 1D descriptions to very accurate 3D ones. The PROSPECT model is the most
widely used leaf-scale RTM and has numerous versions, accounting for a large variety of leaf
compounds (see ref. [25] for the original version, ref. [26] for versions 4 and 5, ref. [27] for
version D, and ref. [18] for version PRO). It simulates directional-hemispherical LOPs from
biochemical and morphological variables (including Cab, Cxc, EWT, and LMA) and a unique
structure parameter based on the generalized plate model (structure parameter N) [28].
Many research studies have used the PROSPECT model to estimate leaf traits for trees with
computational efficiency from many optical databases and over a large variety of world-
wide species [22,29,30]. Most studies have focused on leaf trait retrieval from mature and
sunlit leaves at peak vegetation growth, but few do so throughout the whole phenological
cycle, tackling seasonal variations and vertical crown heterogeneity, which affects plant
light conditions [31–34] and which depends on the plant functional type, which for trees is
either deciduous or evergreen [13]. Also, studies have mainly been conducted on a diversity
of tree genera and a mix of species either in one particular ecosystem type [35] or in as many
ecosystems worldwide as possible [30], in order to draw global conclusions on performance
accuracy. Generally, this work has been conducted using one leaf trait estimation method
category but little research has been conducted using all the three aforementioned cate-
gories [33] or on species from the same genus for comparison purposes [36]. This is because
complete datasets encompassing all these variation sources (e.g., leaf position, seasonality,
species, functional group, geographical areas, etc.) are complex to collect, and choosing
the most appropriate estimation method requires having representative datasets. In ad-
dition, assessing the transferability of these methods trained on one dataset and applied
to an independent one continues to be challenging and still requires research to achieve a
global mapping of leaf traits. This has been recently investigated by Wang et al. [30], who
demonstrated a good transferability of PROSPECT-based estimation methods in contrast to
statistical methods based on partial least squares regressions. Moreover, to our knowledge,



Remote Sens. 2024, 16, 29 4 of 34

hybrid methods have not been tested and compared to physical or statistical methods,
although they could provide more stable inverse models than physical methods. Also,
several studies have highlighted the need for prior information on the N leaf structure
parameter for PROSPECT to achieve better leaf trait estimation performance [37]. The
seasonal and intra-/interspecific variability in this parameter has been poorly studied
but has been demonstrated to change between species and between different strategies
for light environments (i.e., sun or shade), even within a single functional type [34]. The
correlation of N with leaf thickness has already been emphasized [31], but previous studies
have not yielded much knowledge on the cause of N discrepancy. Indeed, N simulates
several optical effects occurring inside the leaf but does not represent a single concrete
physical parameter of leaves. Hence, the interpretation of its value and variations is a
thorny issue since cause–effect relationships cannot be clearly identified. Interpreting the
variations in N, one is restricted to making assumptions based on the correlations of N
with other variables. Secondly, we study the variations in N between species and seasons
to provide a more detailed distribution of N. These more detailed distributions could be
used in future studies as prior knowledge on N for simulating accurate optical properties,
or to estimate leaf traits with LUT-based methods or hybrid methods, both at the leaf and
canopy scales. For oak trees, some or all of the four traits (mainly Cab) have been estimated
for a given species [34,38,39], a selection of species [40], or a large variety of species within
the genus [36] at the leaf level, while some have been estimated at the canopy level [24,41].
But to our knowledge, no study has simultaneously estimated all the four traits at the leaf
level for several oak species, compared the three estimation method categories between
seasons and sites sharing the same ecosystem type, and investigated variations in N.

Thus, the present study aims to estimate four leaf traits (Cab, Cxc, EWT, and LMA) of
oak trees by comparing statistical and PROSPECT-based methods (physical and hybrid)
with the use of a unique dataset collected over three seasons (spring, summer and fall),
measuring leaves of four oak species (including both deciduous and evergreen functional
types) present in two ecosystems (woodland savannas and mixed broadleaf/conifer forests)
along an elevation and a latitudinal gradient in the Sierra Nevada Range, California,
USA. More specifically, the tackled scientific goals are (1) to study the distribution of the
PROSPECT structural parameter N’s values in our oak-specific dataset and its seasonal,
intra- and interspecific variability; (2) to compare all the estimation methods and identify the
most suitable one for each trait and for all of them; and (3) to explore the transferability of
the statistical approach when trained on an independent dataset (here, the freely available
ANGERS dataset [42], which expands the data to trees others than oaks). Finally, this
study will bring new insights into the most appropriate estimation methods and their
retrieval performance achieved for trees within the same genus (here, Quercus), and how
these results can potentially be transferred to other oak species in comparison to more
generalized datasets such as ANGERS.

Section 2 describes the datasets and further details the tested methods. Results are
shown in Section 3 and are followed by discussions in Section 4.

2. Materials and Methods
2.1. Experimental Dataset
2.1.1. Oak Species and Study Sites

Four endemic Californian oak species were selected for our study, namely blue oak
(Quercus douglasii), interior live oak (Quercus wislizeni), black oak (Quercus kelloggii), and
canyon live oak (Quercus chrysolepis) [3]. More information, including their spatial distri-
bution, leaf characteristics, and their respective acronyms (QUWI(e), QUKE(d), QUCH(e),
QUDO(d)) that will be used throughout this article, is given in Figure 1, and on the websites
of the California Native Plant Society (https://calscape.org; accessed on 18 September 2023)
and UC Jepson eFlora (https://ucjeps.berkeley.edu/eflora; accessed on 18 September 2023).
Superscript (d) (respectively (e)) in the species acronyms denote if the species is deciduous
(respectively evergreen). QUDO(d), commonly called blue oak, is a broadleaf deciduous tree
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up to 18 m tall that is generally found in a ring bordering the Central Valley, in the lower
reaches of the Sierra Nevada foothills, the San Francisco Bay Area, and both the Northern
and Southern Coast Range, at between 150 m and 600 m elevation. QUDO(d) is distributed
on dry and well-drained slopes, prefers full sun exposure, and is drought-tolerant. Its dull
blue-green deciduous leaves are oblong (length from 3 to 8 cm), with wavy or slightly
lobed margins, and are pubescent below. QUWI(e), commonly called interior live oak, is a
broadleaf evergreen tree, up to 22 m tall, present in foothills and hot/dry canyons, being
most abundant in the lower elevations of the Sierra Nevada but also widespread in the
Pacific Coast Ranges at an elevation from sea level to 1500 m. Its evergreen alternate leaves
are thick, leathery, small (2–5 cm), flat, generally elliptical, but shiny, lighter green below,
and may have either toothed or smooth margins. QUCH(e), called canyon live oak, grows
up to 30 m tall and is the most widely distributed oak in California. QUCH(e) is a broadleaf
evergreen species and occurs in mountainous regions at an elevation from 30 m to 2800 m,
growing close to creeks and drainage swales, in moist cool microhabitats (Sierra Nevada,
Coast Ranges, etc.). Its leaves are flat, elliptical to oblong extending to an acute leaf tip
(length from 2.5 to 8 cm), green dark and glossy above with spines, dull golden and hairy
below. QUKE(d), commonly known as the California black oak, is a broadleaf deciduous
tree growing up to 35 m in height. It is found in pure or mixed stands, growing in a wide
range of mixed evergreen forests, oak woodlands, and coniferous forests distributed from
the foothills and lower mountains of California to elevations between 30 m and 2600 m. Its
wide deciduous leaves are deeply lobed (length from 10 to 20 cm) with acute tips, dark and
shiny green on top and pale and noticeably fuzzy underneath.

The study sites and their associated data collections between 2013 and 2014 are part of
NASA’s HyspIRI Preparatory Science initiative [44] and were collected by the CSTARS lab
(University of California, Davis, CA, USA). The four sites are located at lower to medium
elevations on the west side of the Sierra Nevada mountains and their foothills, in California,
USA, with latitudes varying between 37◦ and 39◦ (250 km separate the most distant sites)
and an elevation gradient between 200 m and 1500 m above sea level (Figure 1): Tonzi
Ranch site (TONZ), San Joaquin Experimental Range site (SJER), Blodgett Forest site (BLOF)
and Soaproot Saddle site (SOAP). They are highly instrumented sites and belong to the
Ameriflux network (https://ameriflux.lbl.gov/; US-Ton, US-CZ1, US-Blo, US-xSP). TONZ
and SJER are grass–oak–pine woodland savannas composed mainly of two vegetated
active layers (excluding the presence of occasional shrubs): an understory of annual grass
species and an overstory dominated by QUDO(d) (40% cover) with sparse gray pines
(Pinus sabiniana; 3 trees/ha) for TONZ and a mix of QUDO(d), QUWI(e), and gray pines
for SJER. Both TONZ and SJER experience cattle grazing, TONZ on privately owned
land and SJER on state-owned land managed jointly by the California State University’s
Agricultural Foundation and the US Forest Service. The major difference is that TONZ is
classified as a woody savanna in the IGBP (International Geosphere–Biosphere Programme)
ecosystem surface classification since its mean forest canopy cover is between 30% and
60% (specifically 47%), while SJER is classified as a savanna since its cover is lower (equal
to 30%). Their mean annual temperature and precipitation are 15.8 ◦C and 559 mm and
16.5 ◦C and 485 mm, respectively [45]. BLOF is mainly covered by a productive mixed
conifer forest and to a lesser extent by an oak forest. BLOF is managed by UC Berkeley
from the Blodgett Forest Research Station to improve the understanding and management
of commercial forest types. The temperature ranges from 0 ◦C to 9 ◦C in winter and from
14 ◦C to 32 ◦C in summer, with an average annual precipitation of 1651 mm [46]. SOAP is
part of the US Forest Service’s Major Land Resource Area. SOAP is composed of mixed
mid-elevation conifer forests over a complex terrain of coarse hills, steep slopes, and narrow
drainage basins. The SOAP overstory is dominated by ponderosa pine (Pinus ponderosa) and
incense cedar (Calocedrus decurrens), with co-dominant QUCH(e) and QUKE(d). The annual
temperature and rainfall average 13.4 ◦C and 900 mm, respectively [47]. Finally, all sites
experience a Mediterranean-type climate with hot and dry summers, with precipitation
occurring mainly from October to May.
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Figure 1. (Top): distribution map of six endemic California oak species (adapted from [43])
and oak ecosystem types, woodlands (including savannas) and forests (adapted from [4]).
(Middle): descriptive photos of the four study sites with their geographic coordinates.
(Bottom): photos of the leaves (adaxial and abaxial side) of the four studied oaks with their
scientific name, common name, acronym in brackets (following the USDA Plant Database,
https://plants.usda.gov/), and sites where they were sampled.
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2.1.2. Leaf Sampling

The dataset contains a total of 114 leaf samples collected during 5 field campaigns
in 2013 and 2014 over 3 seasons (i.e., spring, summer and fall) (Table 1). The number of
sampled trees per site and per season is given in Table 2. QUDO(d) is the species with the
highest number of samples, with 44 trees, followed by QUKE(d) with 31 trees. QUCH(e)

and QUWI(e) are only present on one site and therefore fewer trees were sampled (circa
20 trees).

Table 1. Dates of field campaigns (format DD/MM).

Site
2013 2014

Summer Fall Spring Summer Fall

BLOF - 30/09 22/04 02/06 04/11
SJER 19/06 07/11 11/04 11/06 21/10

SOAP 16/06 09/11 12/04 14/06 28/10
TONZ 11/06 24/09 17/04 06/06 06/10

Table 2. Sample distribution for each species, season, and site.

BLOF SJER SOAP TONZ Total
Species Season

QUKE(d)

Spring 6 - 5 - 11
Summer 4 - 9 - 13

Fall - - 7 - 7

Total 10 - 21 - 31

QUCH(e)

Spring - - 5 - 5
Summer - - 2 - 2

Fall - - 12 - 12

Total - - 19 - 19

QUDO(d)

Spring - 5 - 5 10
Summer - 9 - 8 17

Fall - 8 - 9 17

Total - 22 - 22 44

QUWI(e)

Spring - 3 - - 3
Summer - 8 - - 8

Fall - 9 - - 9

Total - 20 - - 20

TOTAL 114

Around 4 to 10 plots were distributed along each study site to cover the full variation
in species composition and canopy density. Species and plots sampled during each season
varied by site. Plots dominated by deciduous species were measured in all three seasons
in order to analyze the temporal evolution of the vegetation while plots dominated by
evergreen species were measured at most during two seasons.

In each plot, a representative tree (not too big, not too small) with accessible leaves
was selected. Two sets of leaves were collected from the upper and sunlit portion of the
canopy from five selected individuals per species (five samples) with a tree trimmer. For
evergreen species, new leaves were not collected with the assumption that previous years’
leaves made up the majority of the canopy regardless of the season. The first set of leaves
was placed in a sterilized and previously weighed plastic bag for water and dry matter
content estimation, while the second set of leaves was placed in foil packets (to avoid the
light from reaching them) for spectral measurements and pigment extraction. Both sets
were stored on blue ice in coolers until they arrived at the lab, where they were placed in a
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lab refrigerator. Leaf measurements were conducted less than 48 h after they were removed
from the plant.

2.1.3. Leaf Spectral Measurements

From the second set of leaves, leaf directional-hemispherical reflectance and transmit-
tance [48] were measured in five randomly selected leaves from each individual (or sample)
using an ASD FieldSpec Pro (1–2 nm sampling interval, with 3–10 nm resolution) attached
to a Licor 1800-12 integrating sphere with a 6 V 10 W 3100 K illumination source [49]. The
spectra were collected in radiance from 350 to 2500 nm. The protocol also involved the
measurements of the reference material illumination Ir and stray radiation illumination Id.
Reflectance Rs and transmittance Ts of samples were derived using the equation provided
by the manufacturer and described below [49]. The manufacturer also provides the intrinsic
reflectance of the sphere reference material Rr.

Rs =
(Is − Id)Rr

Ir − Id
(1)

Ts =
IsRr

Ir
(2)

where Is is the measured sphere output when the sample is illuminated and Ir is the
measured sphere output when the reference material is illuminated.

The five processed spectra per sample were averaged. Then, a Savitzky–Golay filter
was applied to smooth the SWIR part of the spectrum (1600–2500 nm).

2.1.4. Leaf Trait Measurements

Cab, Cxc, EWT, and LMA are four leaf functional traits expressed as the mass contained
per unit of leaf area. Therefore, the measurement protocol of leaf traits involves measuring
the leaf area and the respective mass of each family of compounds.

To derive leaf area (further noted A), in both leaf sets, all the leaves were scanned
with 150 dpi using a white background to amplify the contrast between the leaves and
the background. The leaves were placed far enough apart to avoid overlapping or contact
between them. A supervised classification was then applied using the support vector
machine implemented in ENVI 5.0 software. Two ROIs (regions of interest) were used to
define the training areas. One ROI represents the white background, and the other ROI
represents the leaf. The results from the leaf class were converted to a vector shapefile,
each vector representing an individual leaf. Finally, the area of each vector (i.e., each leaf)
was estimated using ArcGIS 10.1 software. Additionally, leaf thickness was measured
with a caliper.

To determine the mass of leaf pigments from the second set of leaves, leaf samples
were frozen in liquid nitrogen immediately after the spectral measurements. They were
stored frozen for a short time and then lyophilized. Pigment extraction was conducted with
90% acetone (14 mL) for 48 h. Each vial contained one sample (5 leaves from one individual).
Three replicates were taken from each vial. A PerkinElmer Lambda 25 UV/Vis spectropho-
tometer was used with concentrations of chlorophylls and carotenoids of 23 mg/mL and
8 mg/mL (PerkinElmer, Waltham, MA, USA). A detailed explanation of the lab protocol is
explained in the work of Lichtenthaler et al. [50,51]. Then, the mass of chlorophylls a and b
(mchlorophylls) and the mass of carotenoids (mcarotenoids) were derived from concentrations
measured in the solutions and used with leaf area A to compute the Cab and Cxc values
following Equations (3) and (4).

Cab =
mchlorophylls

A
[µg·cm−2] (3)

Cxc =
mcarotenoids

A
[µg·cm−2] (4)
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To derive EWT and LMA from the first set of leaves, ziplock bags with leaf water
samples were weighed empty and then they were weighed again with leaves. Leaves
were dried at 60 ◦C for a minimum of 48 h in an oven. Dry and fresh weights (respec-
tively, mdry and m f resh) were used with leaf area A to compute LMA and EWT following
Equations (5) and (6).

EWT =
m f resh−mdry

A
ρwater [cm] (5)

LMA =
mdry

A
[g·cm−2] (6)

One could notice that the density of water (ρwater) is a factor in the computation of
EWT. Therefore, EWT is expressed as a length, its values are given in cm, and for this very
reason, EWT is actually an equivalent thickness.

Mean statistics for each leaf trait are given in Table 3 and more detailed distributions
per species are given in Figure 2. Globally, evergreen species tend to have higher values of
leaf traits than deciduous species (Figure 2). Interspecies discrepancy is particularly visible
for LMA, where each species appears to have a specific range of values. Table 4 gives the
correlation between leaf trait values, all species considered. Cab and Cxc show the highest
correlation (0.92) and are both correlated to LMA (over 0.5). EWT is the least correlated to
other leaf traits (around 0.25 with pigments-related traits and 0.43 with LMA).

Table 3. Basic statistics of CSTARS dataset (ours) compared to ANGERS dataset for the four leaf traits.

ANGERS/CSTARS Cab (µg·cm−2) Cxc (µg·cm−2) EWT (cm) LMA (g·cm−2)

Mean 33.6/33.9 8.7/8.7 0.0112/0.0116 0.0124/0.0052
Standard Dev. 13.2/21.7 2.8/5.1 0.0026/0.0049 0.0043/0.0036

Min. 0.8/0.5 0.0/2.0 0.0044/0.0050 0.0017/0.0045
Max. 106.7/68.4 25.3/17.8 0.0340/0.0202 0.0331/0.0215
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Table 4. Correlation matrix for the four leaf traits obtained by pooling all species, sites, and seasons.

Cab Cxc EWT LMA

Cab 1.00 0.92 0.24 0.52
Cxc 1.00 0.26 0.66

EWT 1.00 0.43
LMA 1.00

Average leaf thickness, regardless of species, is 0.29 mm, although it shows discrepan-
cies between species, similar to LMA. Indeed, average leaf thickness per species follows
the same trend as LMA; the smallest values are those for QUKE(d) (0.24 mm) followed
by QUDO(d) (0.28 mm), QUWI(e) (0.32 mm), and QUCH(e) (0.35 mm). In fact, leaf thick-
ness is slightly correlated to LMA (0.68), but with a higher correlation than EWT (0.56).
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As expected, leaf thickness is even more correlated to leaf surface weight (sum of LMA
and EWT; 0.73), which represents the quantity of matter per unit area of leaf, all types of
compounds included.

Finally, our dataset is further named the CSTARS dataset and comprises both leaf
spectra and leaf traits.

2.2. Supplementary Dataset

ANGERS is a dataset collected at INRA in June 2003 in Angers (France) [26,42].
ANGERS contains 276 samples from 43 plant species. Samples contain joint measure-
ments of leaf biochemistry (including Cab, Cxc, EWT, and LMA) and spectral measure-
ments (directional-hemispherical reflectance and transmittance between 400 and 2450 nm).
ANGERS is freely available on the Opticleaf website (http://opticleaf.ipgp.fr/index.php?
page=database; accessed on 1 September 2023). In ANGERS, 4 oak samples are present:
2 from Quercus palustris (deciduous) and 2 from Quercus ilex L. (evergreen). These data
were used as a reference to calibrate the specific absorption coefficients of chlorophylls and
carotenoids in PROSPECT (versions 5 and D) [26,27]. The main statistics computed for leaf
traits (Table 3) are compared with those of our dataset.

2.3. Estimation Methods

Two strategies were selected for the physical category (Section 2.3.2): iterative op-
timization (Section 2.3.2.1 Iterative Optimization Inversion) and LUT-based inversions
(Section 2.3.2.2 LUT-Based Inversion). Statistical strategies are presented in Section 2.3.3
and hybrid strategies in Section 2.3.4. The organization chart of all tested methods is given
in Figure 3.
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For both statistical and hybrid strategies, the same four MLRAs were used. These
MLRAs are presented in Section 2.3.3: ridge regression (Section 2.3.3.1), partial least squares
regression (Section 2.3.3.2), Gaussian process regression (Section 2.3.3.3), and random forest
regression (Section 2.3.3.4). All estimation strategies were implemented in Python language.
Version D of PROSPECT [27] was used for PROSPECT-based methods (physical and hybrid
methods) implemented in Python language (https://github.com/jgomezdans/prosail
(accessed on 1 September 2023); DOI: 10.5281/zenodo.2574925).
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All the methods estimate the traits separately, except IO-PROSPECT. The IO-PROSPECT
method uses all the spectral bands in the [400–2500] nm range (see Section 2.3.2.1 Iterative
Optimization Inversion). For all the other methods, leaf traits are estimated separately, and
prior selection of spectral ranges from LOPs is important since only parts of the spectrum
are sensitive to the targeted leaf traits. The selection of spectral ranges is further explained
in Section 2.3.1.

2.3.1. Selection of Spectral Ranges Adapted for Each Leaf Trait

Sun et al. [52] conducted a sensitivity analysis to determine which spectral ranges are
altered by a given trait. Cab have a dominant effect between 500 and 750 nm. Cxc alters
reflectance and transmittance spectra only between 450 and 550 nm and plays a dominant
role in an even narrower band around 500 nm. EWT dominates leaf spectra variations at
wavelengths above 1400 nm. EWT also alters leaf reflectance and transmittance at shorter
wavelengths between 900 and 1400 nm since liquid water has absorption bands around
950 nm and 1200 nm. LMA alters leaf reflectance and transmittance in the near-infrared
and short-wave infrared regions, although its effects are never dominant at wavelengths in
the optical domain. Thus, in our study we used the following spectral ranges: [450–760] nm
for Cab, [450–560] nm for Cxc, [900–2400] nm for EWT, and [750–2400] nm for LMA.

2.3.2. Physical Methods
2.3.2.1. Iterative Optimization Inversion

The inversion of PROSPECT based on iterative optimization consists in minimizing
the residual error between measured and PROSPECT predicted spectra. This method is
further named IO-PROSPECT.

This minimization is performed through cost function C and an optimization algorithm
that explores the input parameter space of the PROSPECT model. As an optimization
algorithm, we used the modified Powell’s algorithm [53] implemented in the scipy.optimize
Python module. Cost function C is here defined as the Euclidean distance between spectra
and the computed sum of the squared error for all considered n wavelengths λ.

C =
λn

∑
λ=λ1

[(
Rpred, λ − Rmeas, λ

)2
+
(

Tpred, λ − Tmeas,λ

)2
]

(7)

Five parameters are considered as inputs by the optimization algorithm during the
minimization process: the four leaf traits (Cab, Cxc, EWT, LMA) and the structural parameter
N. Thus, for IO-PROSPECT, and only for this method in our study, the four leaf traits and
the structural parameter N are estimated simultaneously. Moreover, to keep all parameters
in a realistic range of values during the optimization process, we added constraints to
parametrize Powell’s algorithm. We considered the following minimal and maximal values
in the minimization process: [0–5] for N, [0.0–50.0] µg·cm−2 for Cab, [0.0–50.0] µg·cm−2

for Cxc, [0.00–0.07] cm for EWT, and [0.00–0.07] g·cm−2 for LMA. Powell’s algorithm
was initialized with known average values of leaf traits: 1.8 for N, 40 µg·cm−2 for Cab,
10 µg·cm−2 for Cxc, 0.015 cm for EWT, and 0.015 µg·cm−2 for LMA.

In the minimization process, all the wavelengths available between 400 nm and 2400 nm
were considered. Although the cost function can include wavelength-dependent weights [37],
we chose to grant the same weights for all the wavelengths.

2.3.2.2. LUT-Based Inversion

LUT synthetic spectra were generated with PROSPECT-D following two sampling
schemes as already described in previous studies [54].

• Sampling #1: In this first approach, parameter values are generated through a Latin
hypercube (LH) sampling scheme built with pyDOE Python library. LH sampling
enables generating random samples that are evenly distributed over the parameter
space. LH sampling maintains the properties of a uniformly distributed sampling but
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has the advantage of requiring a much smaller sample number than simple uniform
random sampling to cover all the considered space. For each variable, we define a spe-
cific sampling range: [0.8–3.5] for N, [0.0–100.0] µg·cm−2 for Cab, [0.0–30.0] µg·cm−2

for Cxc, [0.00–0.05] cm for EWT, and [0.00–0.05] g·cm−2 for LMA.
• Sampling #2: In this second approach, the four leaf trait values (Cab, Cxc, EWT,

and LMA) are generated as a Gaussian vector (GV). This approach aims to take
into account actual correlations between the constituents. The traits are sampled
as a Gaussian random vector where the mean vector is derived from the empirical
average in Table 4 and the covariance matrix between four variables is derived from
an empirical covariance matrix of the measured samples (Table 3). This sampling
scheme is designed to reduce the number of unrealistic optical properties that are likely
simulated with LH (sampling #1). This sampling scheme introduces prior information
on the values of the parameters. To keep the sampled values in a realistic range, we
truncated the multivariate Gaussian with the following bounds: [0.0–100.0] µg·cm−2

for Cab, [0.0–30.0] µg·cm−2 for Cxc, [0.00–0.05] cm for EWT, and [0.00–0.05] g·cm−2

for LMA. Samples were drawn from the truncated law with the acceptance–rejection
method. N parameter values were drawn from a uniform law between 0.8 and 3.5 and
independent from the multivariate Gaussian law of leaf traits.

For both sampling schemes, the number of PROSPECT simulations is 10,000.
The LUT-based approach consists in finding the trait values that minimize the distance

function between the measured spectrum and the computed spectra in the LUT. Two
functions are used as distance measures to retrieve the optimal solution within the LUT: the
mean square error (MSE) and spectral angle mapper (SAM). Both distances are computed
for all the n = 2101 wavelengths λ between λ1 = 400 nm and λn = 2400 nm. The distances
are computed separately between measured reflectance Rmeas and computed reflectance
Rsimu and between measured transmittance Tmeas and computed transmittance Tsimu.

The mean square error is defined for two vectors as the normalized squared Euclidean
norm of their difference as in Equation (8) below.

MSE =
1

2n

λn

∑
λ=λ1

[
(Rsimu,λ − Rmeas,λ)

2 + (Tsimu,λ − Tmeas,λ)
2
]

(8)

The SAM between two vectors is defined from their dot product. As described in
Equation (9), we sum the SAM for reflectance and for transmittance as the distance measure.

SAM =

[
∑λn

λ=λ1
Rsimu,λRmeas,λ

∑λn
λ=λ1

Rsimu,λ
2∑λn

λ=λ1
Rmeas,λ

2

]
+

[
∑λn

λ=λ1
Tsimu,λTmeas,λ

∑λn
λ=λ1

Tsimu,λ
2∑λn

λ=λ1
Tmeas,λ

2

]
(9)

LUT-based methods are further named LUT-SS-FFF, where SS is the sampling scheme
used (LH or GV) and FFF the distance function (MSE or SAM).

This inversion problem is ill posed, meaning that multiple sets of PROSPECT pa-
rameters can yield similar spectra. To alleviate this ill-posedness and increase estimation
robustness, the mean trait values corresponding to the set of q best-matching spectra were
considered as the final solution.

The optimal number of best-matching cases q∗ used for the inversion was determined
on a per-variable basis. q∗ is the value of q that minimizes the RMSE between field data
and estimations. Therefore, inversions were performed considering several values for q:

{1, 2, 3, 5, 8, 10, 15, 20, 30, 50, 75, 100, 150, 200, 300, 500, 750, 1000, 1500, 2000}

The optimal values obtained for each sampling method and distance function are
given in Table 5.
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Table 5. Optimal q∗ values of LUT-based strategies for each sampling scheme and distance function.

Cab Cxc EWT LMA

LUT-GV-MSE 200 750 3 1000
LUT-GV-SAM 500 1500 3 50
LUT-LH-MSE 8 3 2 2000
LUT-LH-SAM 150 2000 2 200

2.3.3. Statistical Methods

Statistical methods differ by training dataset and MLRA used to build the statistical
relationship between LOPs and reference leaf trait values. In this study, we focus on
the comparison of four MLRAs, namely Gaussian process regression (GPR), partial least
square regression (PLSR), random forest regression (RFR), and ridge regression (Ridge). We
consider two training datasets, namely ANGERS and CSTARS. The training and evaluation
strategies are slightly different for the ANGERS or CSTARS datasets and are detailed in
Section 2.3.3.5 Training Strategies. These methods are further named STAT-DDDDDD-Algo
where DDDDDD is the dataset used as training data (ANGERS or CSTARS) and Algo is the
MLRA used (GPR, PLSR, RFR or Ridge). We implement the statistical methods from the
Python scikit-learn library.

2.3.3.1. Ridge Regression

Ridge regression is a regularized ordinary least squares linear regression. Ridge
regression is a parametric model that finds a linear relationship between the input and
the output: yi = wTxi. To address the overfitting issue, cost function is regularized by the
L2 norm of the model weights w, as detailed in Equation (10):

C = ‖Y− wTX‖2
2 + α‖w‖2

2 (10)

where α is the regularization hyperparameter. α controls the amount of shrinkage for the
model weights. Ridge uses an L2 norm, while other regularized algorithms such as LASSO
use an L1 norm. Penalization with an L1 norm would result in a sparse model with few
non-zero coefficients, equivalent to a selection of spectral bands. However, in this study,
we want to keep most of the coefficients as non-zero values to obtain a model that accounts
for all the spectral band information and is more robust to wavelength-independent noise.

2.3.3.2. Partial Least Squares Regression

PLSR is a linear parametric model [55]. The PLSR algorithm is designed and well
suited for problems where there is multicollinearity among the features and is thus widely
used in chemometrics, particularly to quantify relationships between biochemicals and
their spectral properties. The algorithm seeks to maximize the covariance between inputs
and target values projecting the inputs onto l orthogonal components (also called latent
vectors). Like ridge regression, PLSR is a form of regularized linear regression where
the strength of regularization is controlled by the number of components l. If too many
components are kept, PLSR can overfit the training data. Thus, the number of components
l is determined with cross-validation (see Section 2.3.3.5 Training Strategies).

2.3.3.3. Gaussian Process Regression

Gaussian Process Regression (GPR) is a kernel-based machine learning algorithm [56].
GPR is a Bayesian approach and a non-parametric algorithm, meaning that it does not
make any assumptions about the functional form of the underlying relationship between
the input and output variables.

With GPR, the approximation of the target function is built with a Gaussian stationary
process, with prior covariance specified by a kernel object. In the fitting process, the
Gaussian process is then constrained from the training samples optimizing the kernel
hyperparameters by maximizing the log marginal likelihood.
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We used an implementation based on Algorithm 2.1 from [56]. As the kernel, we used
the sum of a radial basis function (RBF) kernel and a white kernel. The first kernel helps to
deal with non-linearity while the latter specifies the noise level in the targets.

The RBF kernel is defined for two samples xi and xj by length scale parameter γ
following Equation (11).

KRBF
(

xi, xj
)
= exp


−

∥∥xi − xj
∥∥2

2
2γ2


 (11)

The white kernel is defined for two samples xi and xj by noise level parameter σ
following Equation (12).

Kw
(
xi, xj

)
= σ if xi = xj else 0 (12)

γ and σ are the two parameters that are optimized during the fitting of GPR.

2.3.3.4. Random Forest Regression

Random forest regression (RFR) is an ensemble method derived from a decision tree
algorithm [57]. With RFR, a set of ntrees decision trees are built from a bootstrap sampling
of the training data. The prediction of the ensemble is given as the averaged prediction of
all the individual decision trees. This strategy injects randomness into the fitting process
and leads to more robust predictions than decision trees.

Here, we chose ntrees = 500, which is considered enough to reach a good prediction
accuracy but is not the optimal number of trees.

2.3.3.5. Training Strategies

The model training and fitting processes were the same for both the STAT-CSTARS
and STAT-ANGERS categories. For all algorithms, a different final calibrated model was
built for each leaf trait, accounting for all the spectral bands included in the spectral
range, which is trait-dependent (see Section 2.3.1). Reflectance and transmittance mea-
surements were scaled by removing the mean and scaling to unit variance. For PLSR and
ridge regression, the optimal values of their respective hyperparameters were determined
with a five-fold cross validation (5-CV) and using an exhaustive grid search (for ridge:
α ∈

{
2−16; 2−15; . . . ; 210}, for PLSR: l ∈ J1; 15K).

Evaluation strategies differed for STAT-CSTARS and STAT-ANGERS. For STAT-ANGERS,
all the data were used for training. Then, for the test, the trained model was applied on
the full CSTARS dataset to estimate leaf trait values and compute the validation metrics
(see Section 2.4). For STAT-CSTARS, data were randomly split into train (75%) and test
(25%) datasets. This process was repeated 10 times in order to build 10 trained models for
each of the 4 studied MLRAs. Each time, we evaluated the trained model on the remaining
25% of the CSTARS dataset to compute the validation metrics (Section 2.4). Finally, for each
validation metric, the 10 values were averaged to compute their expected values.

2.3.4. Hybrid Methods

The tested hybrid methods use MLRAs presented in the previous subsection
(Section 2.3.3: GPR, PLSR, RFR, or ridge). For the hybrid methods, MLRAs were trained
on synthetic datasets generated with the PROSPECT-D model. Here, the synthetic dataset
was built using a GV random sampling scheme (Sampling #2) in order to minimize the
number of unrealistic sets of traits and to cover the subspace of realistic parameter values
with fewer points.

MLRAs were trained using the training protocol detailed in Section 2.3.3.5 for the
ANGERS dataset.

To train the MLRAs, the influence of training dataset size was tested by consider-
ing several sizes of the synthetic training dataset (250, 500, 1000, 1500, 2000, 2500, 5000,
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and 10,000 samples). The trained MLRAs were then tested on another independently
generated GV-sampled PROSPECT-D synthetic dataset comprising 1000 samples. These
preliminary results showed that with more than 1000 samples, there was no additional
significant improvement in RMSE. Therefore, we only used 1000 samples from the syn-
thetic dataset, which constituted a reasonable trade-off between computation time and
performance estimation.

The hybrid methods are further named Hybrid-Algo where Algo is the MLRA used
(GPR, PLSR, RFR, or Ridge).

2.4. Validation Metrics

The performance of the calibrated models on the CSTARS dataset was evaluated using
the coefficient of determination (R2), root mean squared error (RMSE), and bias (BIAS).

If v denotes the vector of n measured values and v̂ is the vector of n estimated values,
these scoring metrics can be computed with Equations (13)–(15).

RMSE(v̂, v) =

√
1
n

n

∑
i=1

(v̂i − vi)
2 (13)

R2(v̂, v) = 1− ∑n
i=1(v̂i − vi)

2

∑n
i=1(vi − v)2 = 1− RMSE

Var(v)
(14)

BIAS(v̂, v) =
1
n

n

∑
i=1

(v̂i − vi) (15)

3. Results
3.1. Variability in PROSPECT N Structural Parameter

The parameter N has a major influence on LOPs simulated by the PROSPECT model
since an increase in N tends to increase leaf reflectance and lower leaf transmittance. For
example, Figure 4 highlights that a variation of 0.5 in N implies an increase in reflectance of
0.1 in the NIR region.
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leaf composition: Cab = 33 µg·cm−2, Cxc = 8.7 µg·cm−2, EWT = 0.015 cm, and LMA = 0.015 g·cm−2.

All estimated N values for each sample (i.e., tree) in the CSTARS dataset are within the
range 1.0–2.4 (Figure 5). Globally, QUKE(d) has the lowest N median value while QUCH(e)

has the highest N, with an absolute difference of 0.6. In comparison, QUDO(d) and QUWI(e)

have comparable median values. The range of N values for QUKE(d) and QUWI(e) is 0.8,
whereas it is 0.6 for QUDO(d) and QUCH(e). These results show the inter- and intraspecies
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variability in N can be larger than 0.5 and would be mirrored by the variability in LOPs.
No site dependency is observed for N for the QUKE(d) and QUDO(d) species (Table 6).
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Figure 5. Histograms of estimated PROSPECT leaf structural parameter N values for each species
and per plant functional type (light and dark green: evergreen, orange and red: deciduous).

Table 6. Basic statistics of estimated PROSPECT leaf structural parameter N by species and sites.

Species QUCH(e) QUWI(e) QUKE(d) QUDO(d)

Site
SOAP

(n = 19)
SJER

(n = 20)
BLOF

(n = 10)
SOAP

(n = 21)
All

(n= 31)
SJER

(n = 22)
TONZ
(n = 22)

All
(n = 44)

Mean 2.13 1.81 1.27 1.48 1.42 1.79 1.68 1.74
Std. 0.14 0.23 0.17 0.15 0.18 0.11 0.11 0.12

Med. 2.12 1.85 1.21 1.58 1.46 1.78 1.69 1.73
Min. 1.85 1.37 1.04 1.19 1.04 1.62 1.46 1.46
Max. 2.36 2.18 1.54 1.77 1.77 2.05 1.93 2.06

For deciduous species, N has a seasonal influence since its value increases from spring
to fall. But it is small for QUDO(d), with median N values from 1.67 in spring to 1.76 in the
fall. In contrast, it is large for QUKE(d), with median variations from 1.22 to 1.60 (Figure 6).
For evergreen species, no seasonal trend is clearly noticeable, mainly due to the lack of data
in summer for QUCH(e) and spring for QUWI(e).
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Estimated values of N are highly correlated with LMA (Pearson correlation coefficient
equals 0.82; see Figure 7). For comparison, the three other leaf traits (Cab, Cxc, and EWT)
show less correlation with estimated N (respectively, 0.39, 0.56, and 0.25). Moreover,
estimated N is less correlated with leaf thickness (0.59) and leaf surface weight (sum of
EWT and LMA; 0.69) than with LMA.
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parameter N.

3.2. Leaf Trait Estimations

This section is divided into four subsections, each one describing the results for one
leaf trait. For each leaf trait, all the accuracy metrics of all methods are compared for the
whole CSTARS dataset. Detailed metric values by species and season are given for the two
methods with the best accuracy (with the exception of Cxc due to comparable performance
of two methods). Additionally, scatterplots compare estimates to measured leaf trait values
for the most accurate method within each subcategory (cf. gray blocks in Figure 3). Two
representations are chosen to display these scatterplots, the first by species and the second
by season, in order to highlight potential specific or seasonal trends.

3.2.1. Chlorophyll Content

Higher accuracy was obtained for the STAT-CSTARS category, regardless of the chosen
MLRA, with mean performance giving an RMSE equal to 5.7 µg/cm2, R2 around 0.77, and
a bias under 0.3 µg/cm2 (Table 7). In this category, STAT-CSTARS-GPR yielded the most
accurate estimates. For STAT methods, using the ANGERS dataset instead of CSTARS
worsened RMSE performance by a factor of two on average.

For PROSPECT-based methods, IO-PROSPECT was the second best among all the
methods considered, with bias still under 5.0 µg/cm2. LUT-based and hybrid inversions
led to mitigating results. The accuracy of LUT-based methods was sensitive to the sampling
strategy used to build the LUT (average RMSE for GV of 8.9 µg/cm2, average RMSE for
LH of 14.5 µg/cm2). For hybrid methods, similar accuracy was obtained using non-linear
methods (GPR, RFR) on the one hand and linear methods (PLSR, ridge) on the other, the
former achieving better performance.

The influence of species and seasons on the results of the two most accurate methods
(STAT-CSTARS and IO-PROSPECT) is analyzed in Table 8. For IO-PROSPECT, evergreen
oaks (QUCH(e), QUWI(e)) deliver the best estimates whatever the season and have a low
absolute bias (less than 2 µg/cm2). On the contrary, performance for deciduous oaks
is inferior by a factor of two in terms of RMSE and has a significant bias. This plant
functional type trend is not observed for STAT-CSTARS-GPR, which presents excellent
biases whatever the species and season, under 2 µg/cm2 globally. Spring and fall have a
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better performance than summer for both methods. In general, QUDO(d) and QUCH(e)

estimates are overestimated whatever the method, except for STAT-CSTARS (Figure 8). For
fall and QUKE(d), particularly low Cab contents are observed and not correctly estimated
(either over- or underestimated), except for IO-PROSPECT (Figure 8). This may highlight
the limitations of PROSPECT in some cases and those of the training datasets (ANGERS,
CSTARS) when dealing with extreme values.

Table 7. Performance of methods for the estimation of Cab (in each subcategory, the most accurate
method is highlighted in bold).

Category Method RMSE
(µg/cm2) R2 Bias

(µg/cm2)

Physical

IO-PROSPECT 7.8 0.64 4.9

LUT-GV-MSE 8.0 0.63 4.9

LUT-GV-SAM 8.0 0.63 5.5

LUT-LH-MSE 13.5 −0.05 11.5

LUT-LH-SAM 14.3 −0.19 12.4

Hybrid

Hybrid-Ridge 11.3 0.26 9.2

Hybrid-PLSR 11.8 0.19 9.5

Hybrid-GPR 9.0 0.53 5.8

Hybrid-RFR 8.6 0.57 5.8

Statistical

STAT-ANGERS-Ridge 12.9 0.04 11.7

STAT-ANGERS-PLSR 10.3 0.39 8.7

STAT-ANGERS-GPR 9.4 0.49 6.3

STAT-ANGERS-RFR 11.5 0.24 7.0

STAT-CSTARS-Ridge 6.4 0.71 0.3

STAT-CSTARS-PLSR 5.8 0.76 0.2

STAT-CSTARS-GPR 5.0 0.83 b

STAT-CSTARS-RFR 5.7 0.78 0.1

Table 8. Detailed results of STAT-CSTARS-GPR/IO-PROSPECT for Cab.

RMSE
(µg/cm2) R2 Bias

(µg/cm2)

Species

QUCH(e) 6.4/4.3 0.71/0.88 1.0/0.6

QUWI(e) 4.6/4.5 0.80/0.87 0.9/1.8

QUDO(d) 4.6/9.9 0.76/−0.20 1.1/8.1

QUKE(d) 3.0/9.4 0.73/0.36 0.3/7.1

Season

Spring 3.7/7.0 0.93/0.78 −1.2/3.4

Summer 5.8/9.2 −0.02/−0.15 1.2/6.2

Fall 4.8/7.0 0.81/0.73 2.1/4.7

3.2.2. Carotenoid Content

Same as Cab, STAT-CSTARS methods perform better than all other methods regardless
of the chosen MLRA, with mean performances of RMSE = 1.4 µg/cm2, R2 around 0.71, and
a bias under 0.1 µg/cm2 (Table 9). STAT-CSTARS-GPR yields the most accurate estimates
for Cxc. Then, both IO-PROSPECT and non-linear hybrid methods provide the second most
accurate results (RMSE around 2.0 µg/cm2, R2 around 0.5, bias around 0.5 µg/cm2). Like
for Cab, non-linear hybrid methods perform better than linear ones. LUT-based inversions



Remote Sens. 2024, 16, 29 19 of 34

perform the worst (RMSE higher than 3.2 µg/cm2, GV still better than LH). STAT-ANGERS
RMSE performance is inferior by a factor of more than 2 compared to STAT-CSTARS
methods and by a factor of 1.5 compared to hybrid methods. Results are highly dependent
on MLRA: they are better for non-linear methods (RMSE lower than 3.0 µg/cm2) than
for linear ones (RMSE over 5.0 µg/cm2). Whatever the MLRA, estimates are biased (bias
ranging from 1.5 to 5.1 µg/cm2).
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Table 9. Performance of methods for the estimation of Cxc (in each subcategory, the most accurate
method is highlighted in bold).

Category Method RMSE
(µg/cm2) R2 Bias

(µg/cm2)

Physical

IO-PROSPECT 2.0 0.5 0.4

LUT-GV-MSE 2.1 0.46 0.3

LUT-GV-SAM 2.7 0.08 0.7

LUT-LH-MSE 4.7 −1.75 4.3

LUT-LH-SAM 3.6 −0.56 2.4

Hybrid

Hybrid-Ridge 2.3 0.36 0.5

Hybrid-PLSR 2.3 0.37 0.0

Hybrid-GPR 2.0 0.52 0.1

Hybrid-RFR 2.0 0.52 0.6

Statistical

STAT-ANGERS-Ridge 5.0 −2.13 4.6

STAT-ANGERS-PLSR 5.6 −2.83 5.1

STAT-ANGERS-GPR 3.0 −0.09 2.0

STAT-ANGERS-RFR 2.8 0.06 1.5

STAT-CSTARS-Ridge 1.4 0.70 0.1

STAT-CSTARS-PLSR 1.4 0.69 0.1

STAT-CSTARS-GPR 1.3 0.75 0.1

STAT-CSTARS-RFR 1.4 0.70 0.1
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Analyzing the three most accurate methods, STAT-CSTARS-GPR, HYBRID-GPR,
and IO-PROSPECT, their species-dependent performance is less obvious in comparison
with Cab (Table 10). On the one hand, when using HYBRID-GPR, there are more non-
linear variations in Cxc estimates for evergreen oaks, with underestimations of Cxc above
13 µg/cm2 (Figure 9). A similar comment can be made for LUT-GV-MSE. On the other
hand, STAT-CSTARS-GPR seems to have more homogeneous and robust variations what-
ever the species, which is indicated by R2 values between 0.5 and 0.7 while those of
HYBRID-GPR are globally lower than 0.2 (Figure 9, Table 10). IO-PROSPECT behaves simi-
larly to STAT-CSTARS-GPR, except that the absolute bias and RMSE are higher. Seasonally,
HYBRID-GPR and IO-PROSPECT have similar performance. Taking into account R2 and
bias, the three methods all had the worst results in summer.

Table 10. Detailed results of STAT-CSTARS-GPR/HYBRID-GPR/IO-PROSPECT for Cxc.

RMSE
(µg/cm2) R2 Bias

(µg/cm2)

Species

QUCH(e) 1.9/2.6/2.3 0.47/0.19/0.37 0.8/−0.8/0.3

QUWI(e) 1.3/2.5/2.2 0.69/0.17/0.32 0.2/−1.4/−1.5

QUDO(d) 1.0/1.4/1.9 0.63/0.23/−0.46 0.4/0.1/0.5

QUKE(d) 0.7/1.8/1.8 0.75/0.12/0.16 0.0/1.6/1.5

Season

Spring 1.1/2.2/2.2 0.90/0.60/0.62 0.1/−0.1/0.9

Summer 1.5/1.7/2.0 0.21/0.18/−0.17 0.6/0.3/0.9

Fall 1.2/2.0/1.9 0.72/0.57/0.62 0.5/0.0/−0.4
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3.2.3. Equivalent Water Thickness

Accurate estimates and excellent performance are obtained with STAT-CSTARS (RMSE
< 0.0015 cm), without bias, while STAT-ANGERS is second best, also with a very low bias
(<0.0007 cm in absolute values) except for when RFR is used (RMSE≤ 0.0018 cm) (Table 11).
Unexpectedly, for both STAT-ANGERS and STAT-CSTARS, GPR, ridge, and PLSR achieved
quite similar results. Thus, it can be inferred that the relationship between spectral data
and EWT is almost linear. IO-PROSPECT, LUT-based, and hybrid methods give RMSE
estimations which are half as accurate as those provided by statistical methods (0.0033–
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0.0070 cm) and with higher biases (0.0018–0.0063 cm). Globally, IO-PROSPECT and LUT-
based methods perform similarly for EWT. Hybrid methods delivered the highest biases.

The two best methods, STAT-CSTARS-GPR and STAT-ANGERS-Ridge, are further
compared in Table 12. For STAT-CSTARS-GPR, RMSE is in the range 0.009–0.0015 cm, with
a bias less than 0.0006 cm in absolute value. The highest RMSE is obtained for QUCH(e),
and the highest bias is obtained for QUDO(d). One can note that the R2 of QUWI(e) is much
lower (0.31). For STAT-ANGERS-Ridge, QUDO(d), QUCH(e), and QUWI(e) estimates have
a similar RMSE (~0.0013 cm) with a bias less than 0.006 cm. In comparison, performance
for QUKE(d) is inferior by almost a factor of two and with a larger bias (−0.0018 cm)
when using the STAT-ANGERS-Ridge model. As such, non-specific species dependency is
observed for the two methods. Then, considering each method by season, their RMSEs are
similar and bias performance is low, with the spring season performing a bit worse.

Table 11. Performance of methods for the estimation of EWT (in each subcategory, the most accurate
method is highlighted in bold).

Category Method RMSE
(cm) R2 Bias

(cm)

Physical

IO-PROSPECT 0.0035 −0.73 0.0018

LUT-GV-MSE 0.0037 −0.90 0.0020

LUT-GV-SAM 0.0034 −0.63 0.0019

LUT-LH-MSE 0.0034 −0.66 0.0017

LUT-LH-SAM 0.0033 −0.50 0.0018

Hybrid

Hybrid-Ridge 0.0070 −5.93 0.0063

Hybrid-PLSR 0.0069 −5.66 0.0061

Hybrid-GPR 0.0052 −2.84 0.0030

Hybrid-RFR 0.0043 −1.56 0.0029

Statistical

STAT-ANGERS-Ridge 0.0016 0.66 −0.0001

STAT-ANGERS-PLSR 0.0018 0.52 −0.0007

STAT-ANGERS-GPR 0.0018 0.53 0.0004

STAT-ANGERS-RFR 0.0048 −2.29 0.0036

STAT-CSTARS-Ridge 0.0009 0.87 0.0001

STAT-CSTARS-PLSR 0.0010 0.83 0.0000

STAT-CSTARS-GPR 0.0009 0.87 0.0001

STAT-CSTARS-RFR 0.0015 0.62 0.0000

Table 12. Detailed results of STAT-CSTARS-GPR/STAT-ANGERS-Ridge for EWT.

RMSE
(cm) R2 Bias

(cm)

Species

QUCH(e) 0.0015/0.0014 0.76/0.71 −0.0002/0.0004

QUWI(e) 0.0010/0.0012 0.31/0.35 0.0003/0.0004

QUDO(d) 0.0009/0.0012 0.58/0.33 0.0006/0.0006

QUKE(d) 0.0012/0.0022 0.83/0.52 −0.0003/−0.0018

Season

Spring 0.0013/0.0017 0.67/0.22 0.0002/−0.0006

Summer 0.0010/0.0017 0.88/0.57 0.0002/−0.0001

Fall 0.0010/0.0013 0.86/0.78 0.0003/0.0001
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All methods that rely on PROSPECT (physical and hybrid) seem to have a multiplica-
tive bias whatever the species (Figure 10). The same trend is present for three species
(QUCH€, QUDO(d), and QUWI(e)), leading to an overestimation of EWT as EWT values
increase. For QUKE(d) only, EWT is underestimated for values over 0.010 cm and under
this threshold, EWT is accurately estimated. Notice that the cases with EWT over 0.010 cm
are almost exclusively samples collected in spring. In contrast, statistical methods have
almost no bias, which is more of an additive nature.
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3.2.4. Dry Matter Content

Consistent with EWT estimations, STAT-CSTARS provides the most accurate estimates,
followed by STAT-ANGERS with the use of GPR, PLSR, and ridge (RMSE = 0.0009 g/cm2,
R2 = 0.95, and no bias for the former; mean RMSE = 0.0014 g/cm2, mean R2 = 0.9, and
mean bias 0.0005 g/cm2 for the latter; Table 13). For STAT-ANGERS, PLSR and ridge
have a lower RMSE, but PLSR is more reliable since it reduces the bias by a factor of two
compared to ridge. The use of RFR leads to the lowest performances. For STAT-ANGERS,
RMSE is increased by a factor of three and bias is five times greater than in the case of
the other MLRAs. IO-PROSPECT, LUT-based, and hybrid methods yielded more biased
estimations (bias is always higher than 0.0020 g·cm−2, except for hybrid-RFR, for which
it was 0.0014 g/cm2) and lower accuracy than statistical methods (RMSE is around two
times higher for the most accurate PROSPECT-based methods). For LUT-based methods,
choosing SAM as a cost function instead of MSE improves accuracy (RMSE is reduced by a
factor of two).
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Table 13. Performance of methods for the estimation of LMA (in each subcategory, the most accurate
method is highlighted in bold).

Category Method RMSE
(g/cm2) R2 Bias

(g/cm2)

Physical

IO-PROSPECT 0.0055 −0.64 0.0038

LUT-GV-MSE 0.0038 0.20 0.0017

LUT-GV-SAM 0.0021 0.76 0.0014

LUT-LH-MSE 0.0049 −0.29 0.0037

LUT-LH-SAM 0.0030 0.52 0.0026

Hybrid

Hybrid-Ridge 0.0071 −1.72 0.0071

Hybrid-PLSR 0.0069 −1.61 0.0041

Hybrid-GPR 0.0062 −1.12 0.0038

Hybrid-RFR 0.0030 0.5 0.0014

Table 13. Cont.

Category Method RMSE
(g/cm2) R2 Bias

(g/cm2)

Statistical

STAT-ANGERS-Ridge 0.0013 0.91 −0.0006

STAT-ANGERS-PLSR 0.0013 0.91 −0.0003

STAT-ANGERS-GPR 0.0016 0.86 0.0005

STAT-ANGERS-RFR 0.0044 −0.04 −0.0024

STAT-CSTARS-Ridge 0.0009 0.95 0.0000

STAT-CSTARS-PLSR 0.0009 0.95 0.0000

STAT-CSTARS-GPR 0.0009 0.95 0.0000

STAT-CSTARS-RFR 0.0013 0.90 0.0000

For deciduous species (QUDO(d) and QUKE(d)), both the STAT-CSTARS-GPR and
STAT-ANGERS-Ridge methods showed similar performance, with better estimates than
global RMSE (RMSE < 0.0009 g·cm−2; Table 14). In contrast, for evergreen species, the per-
formance of STAT-CSTARS-GPR and STAT-ANGERS-Ridge is worse. Moreover, evergreen
species exhibit poorer performance in terms of RMSE and R2. LMA for evergreen species is
underestimated with STAT-ANGERS-Ridge (Figure 11) and estimates show a negative bias
over 0.001 g·cm−2. No specific seasonal trend is noticed for both methods.

Table 14. Detailed results of STAT-CSTARS-GPR/STAT-ANGERS-Ridge for LMA.

RMSE
(g/cm2) R2 Bias

(g/cm2)

Species

QUCH(e) 0.0011/0.0017 0.60/0.20 −0.0001/−0.0012

QUWI(e) 0.0012/0.0023 0.64/−0.04 −0.0003/−0.0020

QUDO(d) 0.0008/0.0007 0.79/0.81 0.0002/−0.0001

QUKE(d) 0.0007/0.0007 0.82/0.80 −0.0000/−0.0002

Season
Spring 0.0008/0.0013 0.98/0.94 0.0001/−0.0005

Summer 0.0009/0.0014 0.92/0.83 0.0001/−0.0006

Fall 0.0011/0.0013 0.91/0.89 −0.0001/−0.0007
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Globally, for statistical methods, linear MLRAs (ridge and PLSR) produce similar
or better estimations than the two non-linear methods (GPR, RFR), and there are fewer
significant differences between linear and non-linear methods with the use of the CSTARS
dataset (STAT-CSTARS category).

4. Discussion
4.1. Variability in the PROSPECT Structure Parameter N

Considering the estimated N values, our study highlights the high interspecific and
intraspecific variability in N. N has also a seasonal evolution in the four species of the
same genus. Estimated global values of N range between 1 (minimum value for QUKE(d))
and 2.4 (maximum value for QUCH(e)), which is in line with previous studies. Indeed,
Jacquemoud et al. [25] mentioned that, for dicotyledon leaves, N is usually in the range
of 1.5–2.5 in experimental datasets and Spafford et al. [37] found a range of 1–2.5 for
PROSPECT simulations in order to encompass a large variety of species. Below, variations
in N are further discussed based on their interspecific variability (Section 4.1.1), intraspecific
variability (Section 4.1.2), and influence on PROSPECT LOP simulations and leaf trait
estimations (Section 4.1.3).

4.1.1. Interspecific Variability in N

In our results, intraspecific variations in N are noticeable. Evergreen oak species
(QUWI(e) and QUCH(e)) exhibit higher N values than deciduous oaks regardless of the
season. Particularly, QUKE(d) has a much lower mean N (1.42) compared to other species
(1.74, 1.81, and 2.13 for QUDO(d), QUWI(e), and QUCH(e), respectively).

Analyzing the statistical link between N values and measurable parameters provides
more interpretability of N variability. Indeed, the interspecific trend of N follows the
interspecific trend of LMA exactly (2.1.3). This trend is confirmed by the high correlation
between N and LMA (Pearson’s R = 0.82; Figure 7). While Demarez et al. [31] emphasized
that N is correlated to leaf thickness, we found that N is less correlated to this latter
parameter (Pearson’s R = 0.59) than to LMA. Moreover, compared to LMA, N shows less
correlation to leaf surface weight (0.69) while this latter factor is more strongly linked to leaf
thickness. Considering this, interspecific variations in N may be driven by LMA variations.
And particularly, N being more correlated to LMA than to thickness means that N may be
more related to the nature of leaf material than to its quantity.

The specificity of leaf surface, such as the presence of wax or a complex cuticle
structure, is not simulated in the PROSPECT model. Therefore, we question whether the
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structural parameter N can compensate for effects due to cuticles and pubescence when
modeling leaf reflectance. In our dataset, evergreen oaks QUWI(e) and QUCH(e) have a
hard cuticle, leading to high specular reflection (as seen in Figure 1), and QUCH(e) leaves
are pubescent on the abaxial side. QUDO has a quite hard leaf compared to QUKE(d), which
is consistent with plant adaptation strategies for hot, low foothill habitats (i.e., woodland
savannas). Considering these properties, N values might be higher for QUCH(e), QUWI(e),
and QUDO(d) compared to QUKE(d) to compensate for their complex surface properties.

4.1.2. Intraspecific Variability in N

We also observe intraspecific variations in N. N dynamic range is 0.6 for QUCH(e) and
QUDO(d) and reaches 0.8 for QUKE(d) and QUWI(e). Several factors can drive these
intraspecific variations and are discussed hereafter.

The N parameter is expected to change over the course of the year following the pheno-
logical evolutions of a given species. Our dataset, collected at three different phenophases
during the year, provides insight into this evolution. However, few studies actually provide
information that can be compared with our results about N distribution for a given species
and even less throughout a phenological cycle. Considering deciduous plants, phenological
variations in N show an increase from spring to fall, as observed in forests [31,34] and
crops [58]. For instance, Noda et al. [34] found that N ranges between 1 (from budburst in
mid-May) and 1.4 (before leaf fall at the end of October) for leaves of Quercus Crispula. In our
oak dataset, the same seasonal tendencies were observed for QUDO(d) (from 1.67 to 1.76)
and QUKE(d) (from 1.22 to 1.60).

For evergreen species, QUCH(e) and QUWI(e), we found no particular seasonal trend
for N with our dataset. However, during field sampling, priority was not given to evergreen
species due to their smaller variations in leaf functional traits, and therefore we lack data
throughout the year for QUCH(e) and QUWI(e) (respectively, in summer and spring).
Moreover, for evergreen species, new leaves that grew in the years of sampling were not
collected due to the assumption that previous years’ leaves make up the majority of the
canopy. Therefore, during the leafing out period of evergreen oaks in spring, when one
could expect the highest discrepancy compared to previous year’s generation, the new leaf
generation was not sampled. This may explain why QUCH(e) and QUWI(e) show similar
values of N and leaf traits in spring, summer, and fall. However, the two generations of
leaves are less distinguishable in summer, and some new-generation leaves might have
been collected in summer. This could explain why QUWI(e) N values are more variable
for summer.

Jacquemoud et al. [22] provided a hypothesis to explain the increase in N from spring to
fall, which was at least observed in deciduous species [31,34]. They stated that N estimated
for dry leaves is higher than N estimated for fresh ones, probably due to an increase
in multiple scattering due to the loss of water. However, our results show that N is
strongly correlated to LMA. In addition, N exhibited almost no correlation with EWT and
particularly leaves with lower N values could have high EWT values, around the average
(e.g., QUKE(d) leaves in spring, see Figure 12). Therefore, N variations throughout the
phenological cycle may be driven by the content of dry matter, which only increases during
the leaf’s lifetime and may not be driven by water loss. Furthermore, other intraspecific
variabilities in N that were observed might only be compelled by factors of LMA variation.
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Figure 12. Validation plots for EWT for IO-PROSPECT, STAT-ANGERS-Ridge, and STAT-CSTARS-GPR.
Color indicates the value of PROSPECT structural parameter N estimated through PROSPECT-IO.
Spring leaves of QUKE(d) with a value of N below 1.2 are clearly identifiable in the IO-PROSPECT
method plot.

In addition, other sources of variations in the N parameter include leaf position within
the highly heterogeneous vertical profile of the tree canopy and if the leaf developed in the
shade or in the sun [31,34]. This could lead to a 5–10% rise in intraspecific variability [31].
In our dataset, it was sometimes impossible to collect leaves at the very top of the canopy,
so for some of the 20 m and taller trees, leaves were collected from a part of the canopy that
received less sunlight instead. Thus, this is another factor of N variation in our study that
could have artificially increased intra- and interspecific variabilities in N.

4.1.3. Limitations of the PROSPECT Structure Parameter N and Its Impact on Leaf
Trait Estimations

Generally, the N parameter has a substantial influence on the spectral shape of LOPs
(cf. Figure 4). Ceccato et al. [59] conducted a sensitivity study showing that the N parameter
can explain about 40% of the output. Thus, a precise estimation of N may therefore
be required to accurately estimate leaf traits. In addition, assessing the performance of
PROSPECT for leaf trait estimation at the extremes of the observed N values (close to 1 or 3)
has not been explored; therefore, limitations of the PROSPECT model for these values
remain partially unknown.

Spafford et al. [37] assessed the impact of retrieving the N value prior to estimating
leaf traits with a method similar to IO-PROSPECT. They developed a correlation function
between N and reflectance in the NIR band (wavelengths where pigments do not absorb)
and used this correlation to accurately estimate the N parameter in isolation. Leaf traits
were estimated with better accuracy than without the prior retrieval of the N value. How-
ever, their conclusion stated that with the knowledge of both leaf directional-hemispherical
reflectance and transmittance, the use of optimized spectral subdomains yielded better ac-
curacy without using the prior estimation of N. In our study, we did not use any previously
estimated N value. Despite this fact, our results highlighted a large intraspecific variability
in this parameter; therefore, one should not use a single previously estimated N value by
species but rather estimate N each time, as in [37].

Moreover, Pacheco-Labrador et al. [60] found better estimations for the pigments
and EWT of Quercus Ilex leaves with IO-PROSPECT by removing trichomes from the
surfaces of the leaves. Their work indicates qualitatively that leaf surface impacts the leaf
trait estimation accuracy of PROSPECT-based methods. In fact, the PROSPECT model
does not simulate any specificity of leaf surface, while most plant leaves display a waxy
surface or a complex cuticle structure. This shortcoming has been emphasized by several
studies. Furthermore, for Cab estimation with PROSPECT, taking into account leaf surface
reflection by adding an additional surface layer into the PROSPECT model or changing
pigment-specific absorption coefficients demonstrated better performance, especially for
leaves covered by heavy wax or hard cuticles [61,62]. But these results have barely been
investigated for other leaf traits (i.e., Cxc, EWT, and LMA) and the concurrent impact of
N values has not been studied to our knowledge.
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In our dataset, QUWI(e) and QUCH(e) have a hard cuticle, leading to high specular
reflection (as seen in Figure 1). In particular, QUCH(e) leaves are pubescent on the abaxial
side. However, despite the fact that these features (presence of hairs, hard cuticle, asymme-
try between adaxial and abaxial leaf surfaces) are not taken into account in the PROSPECT
model, our estimations for all leaf traits are quite acceptable because they are globally only
slightly poorer than those obtained for deciduous oaks (Figures 8–11) by PROSPECT-based
methods. Even though QUKE(d) possesses waxy leaf surfaces on the upper side (adaxial; as
seen in Figure 1), QUKE(d) samples in spring exhibited low N values, between 1 and 1.4. In
this range, a variation in N implies higher changes in simulated spectral variations in NIR
and SWIR (Figure 4) where EWT is spectrally sensitive. These may be the two main reasons
explaining the inaccurate estimations of EWT we obtained for QUKE(d) spring samples
(see Figure 12 and Section 4.2 for further discussions on EWT estimation).

4.2. Comparison of Leaf Trait Estimation Methods

Estimation methods were tested for four leaf traits and to varying degrees, trends
in the results are specific for each leaf trait. However, it is possible to identify trends
common to all four leaf traits and to draw general conclusions; these are discussed below
in Section 4.2.1. The specificity of results related to leaf pigment contents, EWT, and LMA
are further discussed in Section 4.2.2, Section 4.2.3, and Section 4.2.4 respectively.

4.2.1. Estimation Method Considerations Common to All Four Variables

Globally, STAT-CSTARS methods showed greater accuracies, as expected, since the
training and test data came from the same dataset which potentially included the same
specific errors and bias. However, the four selected MLRAs yielded different estimation
accuracies, with GPR providing the most accurate estimates for all the traits. Its perfor-
mance is further used as a reference as it achieved the greatest retrieval performance in
comparison with the other methods.

PROSPECT-based methods estimated leaf traits with less accuracy than STAT-CSTARS
methods. Compared with STAT-ANGERS methods, the advantage of statistical methods
is less clear, particularly for pigment content estimation. The transferability of statistical
methods is further discussed in Section 4.3.

IO-PROSPECT was globally more accurate than the other PROSPECT-based methods.
In our study, IO-PROSPECT presented limitations only in LMA estimation, which are
discussed further in Section 4.2.4. For Cab, Cxc, and EWT, LUT-based and HYBRID methods
yielded equally or less accurate estimates. Our assumption is that LUT-based and HYBRID
methods are both built on synthetic datasets generated with PROSPECT and are therefore
dependent on the sampling strategy used. This is particularly noticeable when comparing
LUT-GV and LUT-LH used for the same trait. Conversely, IO-PROSPECT and other
iterative inversions of PROSPECT use direct simulations with only the required parameter
values. Moreover, LUT-based methods are difficult to calibrate since they involve three
main parameters (sampling scheme, distance function, and q) whose effects remain unclear.
For example, the optimal q was selected from our dataset, but this could be considered
overfitting, and the results we obtained with LUT-based methods should be considered less
reliable. In addition, LUT-based methods are not clearly more efficient than IO-PROSPECT,
particularly when using a LUT with many samples. Thus, we consider that iterative
inversions of PROSPECT should be chosen over LUT-based methods. HYBRID methods
build estimators from an MLRA and a synthetic dataset. They can overfit on synthetic data
and become less resilient to noise or other spectral measurements errors.

In our study, for both statistical and hybrid methods, we compared estimators built
with four MLRAs: ridge, PLSR, GPR, RFR. However, it may not be possible to draw an
unambiguous conclusion regarding the most appropriate choice of MLRA. For statistical
methods, Yang et al. [63] compared different MLRAs trained on leaf reflectance only (SVR,
PLSR, RFR and K-Nearest Neighbors) for the estimation of EWT and LMA. Overall, their
results show that EWT was more accurately estimated with SVR. For LMA, results were not
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unequivocal and mostly depended on the training dataset. In contrast, for EWT and LMA,
we obtained an accurate estimation with linear MLRAs (ridge and PLSR), highlighting that
the relationship between LOPs and EWT/LMA is approximately linear. These two MLRAs
were followed by GPR. GPR also provided good results for Cab and Cxc (only RFR stayed
one step ahead for Cxc). While choosing an MLRA for statistical methods, GPR may be
the best compromise, since it is more versatile and able to deal with linear and non-linear
problems. For hybrid methods, RFR obtained the best accuracy for Cab, EWT, and LMA
and a very good accuracy for Cxc compared to other MLRAs. Therefore, RFR may provide
more robust estimators to cope with the transition from synthetic data to measured data.

Each method includes numerous parameters that could be optimized. However, the
idea of our study is to investigate a wide range of methods; therefore, we choose to optimize
only major parameters which were always considered in previous studies. In contrast,
some studies specifically tackled the optimization of other parameters whose effects are not
evaluated in our work. Firstly, defining a trait-specific spectral range is a thorny question
for all estimation methods. Some previous studies tackle this issue and search for opti-
mal ranges of several leaf traits. But these investigations focus on iterative inversions of
PROSPECT, such as those developed by Féret et al. [29] or Spafford et al. [37], who found
optimized spectral subdomains for the four leaf traits (Cab: 0.7–0.72 µm, Cxc: 0.52–0.56 µm,
and EWT/LMA: 1.7–2.4 µm). It is not clear if using these spectral subdomains for statis-
tical or hybrid methods would yield more accurate estimates. In our study, we used the
same spectral ranges for statistical, hybrid, and LUT-based methods (Cab: 0.45–0.76 µm,
Cxc: 0.45–0.56 µm, EWT: 0.9–2.4 µm, and LMA: 0.75–2.4 µm) and they were built on sen-
sitivity analysis results. These ranges differ from the optimal ranges found for iterative
inversions of PROSPECT [29,37]. They also differ from those already used at the canopy
level for oaks (Cab: 0.5–0.75 µm and Cxc: 0.5–0.55 µm with a LUT-based method [64];
EWT/LMA: 1.5–2.4 µm with hybrid PLSR [24]). Nevertheless, despite potential for future
improvements, good performance was obtained for each leaf trait of these four oak species.

Moreover, transformations of spectral data could be used in statistical and hybrid
methods to extract features or reduce their number for MLRA inputs. Particularly, Yang
et al. [63] compared statistical methods based on reflectance or spectral indices. They found
that estimation accuracy was improved (reduced by 5.7%) when using spectral indices
rather than reflectance. However, all our tested approaches were LOP-based and we did
not apply transformations such as spectral indices or dimensionality reductions.

4.2.2. Estimation of Leaf Pigments

For leaf pigments, IO-PROSPECT was the best method after STAT-CSTARS-GPR with
a higher accuracy for Cab (RMSE of 7.8 and 5.0 µg·cm−2, respectively) than for Cxc (2.0 and
1.3 µg·cm−2). In particular, STAT-CSTARS-GPR estimates had a very low bias for both pig-
ments (both 0.1 µg·cm−2) compared to IO-PROSPECT (4.9/0.4 µg·cm−2 for Cab/Cxc). Gener-
ally, in the literature, IO-PROSPECT is the most widely used inversion
method [26,30,31,62]. For Cab, the results are in the same order of magnitude when compared
to other studies. Demarez et al. [31] found an RMSE of 7.3 µg·cm−2 over phenological varia-
tions of oaks, beeches, and hornbeams. They had a bias that increased with crown leaf position:
from 2 µg·cm−2 for sunlit leaves to 19 µg·cm−2 for shaded leaves for oaks. In comparison, we
obtained a bias of 4.9 µg·cm−2. Qiu et al. [62] obtained an RMSE of 8.9 µg·cm−2 for broadleaf
leaf samples by accounting for leaf surface reflection. Wang et al. [30] produced an RMSE
of 13.1 and 10.9 µg·cm−2 for two large datasets including trees, shrubs, and grass from USA
and China and from temperate to tropical climates. Féret et al. [26] reported an RMSE of
9.0 µg·cm−2 among several available datasets and [32] provided an RMSE of 6.3 µg·cm−2 for
a temperate forest with vertical variability within the canopy. For Cxc, our results are also in
line with previous studies ([26]: RMSE = 3 µg·cm−2; [30]: RMSE = 3.5/5.3 µg·cm−2).

Then, evaluating seasonal variations in estimation performance for Cab, Gara et al. [32],
using a LUT-based method, noticed that the lowest accuracy corresponds to the summer period
when they pooled all leaf samples collected from the upper canopy (spring/summer/fall: RMSE
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= 7.1/7.3/5.8 µg·cm−2). The same tendency occurred in our dataset (spring/summer/fall:
RMSE = 7.0/9.2/7.0 µg·cm−2) and was also reported by Zhang et al. [65]. This can possibly
be explained by a reorganization of the chloroplast (which contains the pigments) in the leaf
cytoplasm from being clumped during peak vegetative growth to being more uniformly
distributed when leaves start being senescent [32]. However, we also found that a statistical
method such as PLSR [66] produced better estimations for summer than other seasons. For
Cxc, we did not find a particular seasonal trend compared to Cab (spring/summer/fall:
RMSE = 2.2/2.0/1.9 µg·cm−2). To our knowledge, no study exists in the literature with
which to compare our findings for Cxc. Differentiating by species and plant functional
types, we observed better results for evergreen species for Cab (RMSE twice lower, R2 very
significantly higher, low biases) but the opposite was found for Cxc to a lesser extent (higher
RMSE and R2, similar biases).

At the canopy level, using the same dataset as ours combined with AVIRIS airborne
hyperspectral images, Miraglio et al. [24,64] found that leaf pigments were correctly esti-
mated with a LUT-based method for QUDO(e) at the TONZ site (Cab: RMSE = 5.2 µg·cm−2;
Cxc: RMSE = 1.34 µg·cm−2) and with a statistical method for QUDO(d) and QUWI(e) at
both the TONZ and SJER sites (Cab: RMSE ≈ 7.91 µg·cm−2; Cxc: RMSE ≈ 1.73 µg·cm−2).
This demonstrates that our results have potential for upscaling from the leaf to canopy
level for oak woodland savannas. But in contrast to the leaf level, canopy estimations for
Cab during summer periods did not produce particularly worse results than those made
for fall samples [64].

4.2.3. Estimation of Leaf Water Content

For EWT, statistical methods yielded more accurate estimates than PROSPECT-based
methods. RMSE was reduced by 50% with STAT-ANGERS-Ridge compared to IO-PROSPECT
or LUT-LH-SAM. On the other hand, Féret et al. [29] reached the opposite conclusion and
showed that PROSPECT inversions could outperform statistics-based methods (using SVM
as the MLRA) using an optimized spectral subdomain (1700 to 2400 nm).

PROSPECT inversions for EWT estimation lead to an RMSE of 0.0035 cm, which is
similar to that obtained by Asner et al. [35] for heterogeneous humid tropical forests using
an 800–2400 nm spectral range. However, regardless of the PROSPECT-based method, our
estimates exhibit two major deficient trends: a multiplicative bias and underestimation for
some QUKE(d) samples.

Firstly, EWT is estimated with multiplicative bias, which is particularly noticeable
for QUDO(d), QUWI(e), and QUCH(e) samples, which have higher EWT. While such mul-
tiplicative bias was not systematically reported by previous studies, one can find some
hints of such bias in the work of Gara et al. [32]. Indeed, using a LUT-based method,
Gara et al. [32] found that higher values of EWT were overestimated, which reveals a
similar multiplicative bias. However, EWT values in Gara et al. [32] only reach 0.012 cm;
therefore, the bias is less noticeable than in our experiment, where some EWT values are
over 0.015 cm. Similarly, a multiplicative bias was found by Pacheco-Labracor et al. [60] for
IO-PROSPECT, which in their study tended to underestimate EWT. This bias was atten-
uated by removing leaf trichomes from Quercus Ilex prior to spectral measurement. Con-
versely, Wang et al. [30] did not find the same tendency in large datasets using PROSPECT
iterative inversion and they obtained unbiased estimates of EWT with high accuracy
(R2 = 0.74/0.77, RMSE = 0.0022/0.0036). Different sources of errors could explain the bias
observed in our results when using PROSPECT. On the one hand, the Quercus species
present in our sites are not considered in the calibration databases used to set some param-
eters of PROSPECT-D (surface scattering, unique value of refractive index, etc.). On the
other hand, some bias could exist in the leaf optical measurements [29].

Secondly, EWT is underestimated for some samples. These latter samples originate
from QUKE(d) oaks, almost exclusively from spring 2014 collections. Inaccurate estimations
for QUKE(d) in spring can have multiple sources of origin. (i) Most of the samples that
exhibit an underestimation of EWT were collected at the BLOF site in the 2014 spring



Remote Sens. 2024, 16, 29 30 of 34

campaign. Measurements from this campaign could have been biased. (ii) QUKE(d)

leaves are larger compared to those of the other species, which may have led to a poor
representativeness of LOPs when considering the whole leaf area. Lastly, (iii) these samples
also exhibited low N values (Figure 12). This range of values for N has not been fully
studied, and in this range, N has more impact in NIR and SWIR (Figure 4) where EWT is
spectrally sensitive.

However, both issues (multiplicative bias and underestimation for QUKE(d) spring
samples with low N) are not observed in estimates from statistics-based methods, including
STAT-ANGERS methods (see Figure 12). This may also indicate that these estimation issues
come from inaccurate modeling of PROSPECT for oak EWT and suggest that PROSPECT is
not fully suited for our dataset.

4.2.4. Estimation of Leaf Dry Matter Content

Estimating LMA using PROSPECT, Asner et al. [35] found similar orders of magnitude
as in our results (0.0033 g·cm−2), although the forest types in their study are very different.
Nevertheless, our statistical methods, including STAT-ANGERS methods, outperform
PROSPECT-based methods. Similar to EWT, this leads to opposite conclusions than those
made by Féret et al. [29]. However, results obtained with IO-PROSPECT are surprising
since this method yielded equally or more accurate estimates than other PROSPECT-based
methods for the other three leaf traits. In the case of LMA, LUT-based methods provided
more accurate estimates. Particularly, using SAM as the distance function for LUT-based
methods led to better result; with MSE, this difference was not as noticeable for other
leaf traits. Considering hybrid methods, using RFR as the MLRA yielded more accurate
estimates. Indeed, the difference between RFR and other MLRAs was more pronounced
for LMA than for other leaf traits.

Generally, our estimation results showed global overestimations of LMA using PROSPECT-
based methods (bias over 0.0014 g·cm−2) while statistical methods showed lower bias.
Gara et al. [32] found underestimations regardless of the season. They found no partic-
ular seasonal trend in their dataset (spring/summer/fall: R2 = 0.67/0.82/0.78, RMSE =
0.0014/0.0013/0.0014 g·cm−2; global: R2 = 0.76, RMSE = 0.0014 g·cm−2). More particu-
larly for evergreen oaks, Gonzáles-Cascón et al. [38] estimated the LMA of Quercus Ilex
leaves with high performance (R2 = 0.90) by using a PLSR statistical method. For compar-
ison, for QUCH and QUWI, we obtained a mean R2 of 0.62 and RMSE of 0.0012 g·cm−2

with STAT-CSTARS-GPR.

4.3. Transferability of Statistical Methods Trained on an Independent Dataset

Considering the transferability of statistical methods, similar trends are observed for
all leaf traits when comparing STAT-ANGERS to STAT-CSTARS. The lowest RMSE obtained
with STAT-ANGERS methods is around twice the value obtained by STAT-CSTARS-GPR
for Cab, Cxc, and EWT. For LMA, the difference is less important: the RMSE obtained
with STAT-ANGERS-Ridge is around 1.3 times the size of the RMSE obtained with STAT-
CSTARS-Ridge. The same trend is observed in the work of Wang et al. [30]. They evaluated
the transferability of a PLSR statistical method to retrieve foliar traits across two datasets
collected in a tropical and subtropical forest in China and a temperate and subtropical forest
in the United States. Wang et al. demonstrated that their PLSR-based method yielded a
lower accuracy when applied to an independent dataset, unused in training data. Similarly
to our results, they found that a lower relative RMSE difference was reached for LMA
(around 35%).

Féret et al. [29] and Yang et al. [30] evaluated the transferability of statistics-based
methods for EWT and LMA. They performed a cross-dataset validation using two inde-
pendent training and test datasets. They showed that the results are highly dependent
on both the training and test datasets. Moreover, Féret et al. (2019) demonstrated that
combining several datasets for training in order to increase the size of the training set
improves the results. Consequently, the order of magnitude we found when comparing the
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RMSE obtained with STAT-CSTARS and STAT-ANGERS depends on our datasets, and it is
very likely that different RMSE variations would be observed using other datasets.

Both Féret et al. [29] and Wang et al. [30] also compared statistical methods to
PROSPECT-based methods similar to our IO-PROSPECT. Wang et al. [30] estimated the
same four leaf traits as in our study, while Féret et al. focused on EWT and LMA. In the
work of Wang et al., the transferred PLSR-based method achieved better accuracy than
their equivalent to our IO-PROSPECT method for LMA and Cxc. Féret et al. obtained
better accuracy for LMA with statistical methods for half of the cases they studied, but
these results were highly dependent on the datasets used for training and testing. These
results are in line with the accuracy we obtained for LMA. However, both studies reached
better accuracy with improved versions of IO-PROSPECT and demonstrated that our IO-
PROSPECT method is not perfectly suited for the estimation of EWT and LMA. Therefore,
the opposite conclusions could be drawn if we modified the IO-PROSPECT method.

5. Conclusions

This work aimed to compare several statistical, physical, and hybrid estimation meth-
ods for four foliar traits of leaves of California oak species collected from four sites in three
different seasons.

We showed that the structural parameter N in PROSPECT depends little on the
season for evergreen species, which was not the case for deciduous species. Our estimation
methods had no prior knowledge of the N parameter, although trait estimates were obtained
with good accuracy.

In conclusion, the most accurate estimation methods for all leaf traits are statistical
methods built on a dataset that include the same species composition and are measured
with the same protocol. Among the four MLRAs tested, GPR enabled the development of
the most accurate estimator (i.e., STAT-CSTARS-GPR). However, we noticed that statistical
linear methods deliver better results for EWT and LMA. On the contrary, non-linear ones
are better for leaf pigments. However, deriving such data is very demanding in terms of
time and resources (for instance, to account for seasonality and geographic sampling) and
requires high laboratory measurement costs (e.g., for pigments).

Other than that, physical inversion methods yield more accurate estimates for leaf
pigment contents. Indeed, this class of methods delivers a similar performance. We recom-
mend using IO-PROSPECT for pigments and EWT because it estimates these traits with
good accuracy and performs a joint estimation of the leaf traits. For LMA, HYBRID-RFR is
the most powerful method.

We used our dataset to evaluate the transferability of statistical methods trained
on an independent dataset (ANGERS). For EWT and LMA, we demonstrated that this
type of statistical methods leads to better estimation accuracy than PROSPECT-based
methods. Particularly, statistical methods using linear models (STAT-ANGERS-PLSR or
-Ridge) provided more accurate estimates. The performance of STAT-ANGERS methods
was inferior compared to physical methods for pigments. In particular, results for Cxc were
inferior by 50%, but for Cab, this occurred to a lesser extent. Therefore, we emphasize that
statistical methods are promising estimation methods and a better understanding of their
functioning could improve their transferability.

Considering the impact of seasons on each trait and its associated most accurate estima-
tion method, estimation errors in terms of RMSE were similar. Estimation performance did
not depend particularly on species but on plant functional type (evergreen or deciduous).

Finally, trait estimates were obtained from spectra averaged over several leaves and
compared to the mean biochemical composition of this set of leaves. This constitutes
an intermediary scale between the single-leaf and the canopy scales. Thus, this work
provides insights into the upscaling of leaf trait estimation at the canopy level using
imaging spectroscopy.
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CHAPTER 4. ESTIMATION AT THE LEAF SCALE

Conclusion

The work conducted with the CSTARS-Leaf dataset and presented in the peer-reviewed arti-
cle Gaubert et al. 2024 aimed to compare several estimation methods, including statistical and
PROSPECT-based methods, for the four key leaf traits and the four oak species from TONZ, SJER,
BLOF and SOAP sites.

Comparing all the estimation methods, the statistical methods trained on the CSTARS-Leaf
dataset outperformed the PROSPECT-based methods regardless of the leaf trait. Statistical meth-
ods built on CSTARS-Leaf dataset reach higher accuracy than PROSPECT-based methods re-
gardless of the MLRA considered, but estimators based on GPR (i.e., STAT-CSTARS-GPR) glob-
ally yielded more accurate estimates considering the four leaf traits (RMSE of 5.0 µg · cm−2;
1.3 µg · cm−2; 0.0009 cm; 0.0009 g · cm−2 for Cab, Cxc, EWT and LMA respectively). However,
it can be noticed that nonlinear MLRAs achieved more accurate estimates for leaf pigments while
linear MLRAs delivered more accurate estimates for EWT and LMA. Examining the existing liter-
ature it seems that this is the first time this result is highlighted. In conclusion, a statistical method
built on a dataset that includes the same species composition and measured with the same pro-
tocol may be the most accurate estimation method for all leaf traits. Nonetheless, deriving data
to build statistical methods from scratch can be very demanding in time, material and financial
resources. Therefore, to estimate leaf traits in ecosystems, or for species, where leaf traits and
leaf optical properties have never been sampled, a user may prefer to refer to a PROSPECT-based
method or a transferred statistical method.

Comparing the PROSPECT-based methods, the iterative inversion of the leaf RTM may be
recommended to a user. The iterative inversion of PROSPECT (i.e., IO-PROSPECT) led to more
accurate estimates for Cab, Cxc and EWT (RMSE of and 7.8 µg · cm−2, 2.0 µg · cm−2, 0.0035 cm
respectively). Additionally, IO-PROSPECT performs a joint estimation of the leaf traits which
could ease its use in practice. Estimates for LMA show a distinct behavior and were more accurate
for the hybrid method built with RFR (i.e., HYBRID-RFR; RMSE = 0.0030 g · cm−2).

The impact of sampling seasons and species were also investigated. According to the results,
estimation accuracy seems to be little affected by the sampling season. Additionally, the estimation
accuracy did not depend particularly on the species but rather on its plant functional type.

To assess the transferability of statistical methods, estimators were also built from an indepen-
dent dataset (ANGERS). As expected, estimation accuracies were degraded for estimators built on
the ANGERS database (STAT-ANGERS) compared to estimators built exclusively on the CSTARS-
Leaf dataset (STAT-CSTARS). Using ANGERS, RMSE were degraded by a factor of around 2 for
Cab, Cxc and EWT, and a factor 1.3 for LMA. For EWT and LMA transferred statistical methods
lead to more accurate estimates than PROSPECT-based methods. Similarly as STAT-CSTARS esti-
mators, STAT-ANGERS estimators were more accurate for EWT and LMA when they were built
from a linear MLRA. For Cab and Cxc, the performance yielded by STAT-ANGERS estimator de-
graded compared to PROSPECT-based methods. Therefore, statistical methods are to some extent
transferable. However, as highlighted in other studies (Féret et al. 2019; Yang et al. 2020), the
accuracies obtained by statistical strategies are highly dependent on both the trained and the test
datasets. Therefore, RMSE variations would likely have been different if other training datasets
had been used. To conclude on the transferability of statistical methods, future work should pro-
vide a better understanding of natural variability of leaf traits spectral signatures across species
and ecosystems, and understand how MLRAs identify their spectral signatures. Future work
could provide new ways to regularize MLRAs in order to achieve the transferability of statistical
methods across species and ecosystems.

The distribution of the structural parameter N from the PROSPECT model has been studied
for the four oak species under study. Retrieved N values lie in the 1.0 − 2.2 range which is in line
with the previous ranges proposed in the literature (1.0 − 2.5 ; Spafford et al. 2021) and have an
intraspecific dynamic range bigger than 0.5. Additionally, the results showed that N is strongly
correlated to the LMA for these species. Consequently, N follows the same seasonal trends as
LMA: N depends little on the season for evergreen species, and tends to increase over the year for
deciduous species, which is consistent with previous observations (Noda et al. 2021). PROSPECT-
based estimation methods had no prior knowledge on N to estimate the leaf traits, while such
prior is often recommended in the state-of-the-art. Nevertheless, with PROSPECT-based methods
the four leaf traits were estimated with suitable accuracies compared to past studies results.
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Regarding the samples of conifer species that were originally present in the CSTARS-Leaf
dataset, their reliability can be questioned. Indeed the protocol from Mesarch et al. 1999 was used
to perform the measurement of conifer needle-leaves reflectance and transmittance to by-pass
the measurement issue with the wide opening of the integrating sphere. However the obtained
measures were uncertain because a large number of them were physically unrealistic (e.g., negative
transmittance) even after applying the correction protocol.

Not surprisingly, PROSPECT iterative inversions and ANGERS-based statistical strategies yielded
poor accuracies and estimation errors that have a high variance and/or are highly biased (Ap-
pendix B). This experience does not allow to draw any conclusions on the applicability of the
PROSPECT-based and ANGERS-based statistical methods considering potential intrinsic errors in
the reflectance and transmittance data.

The statistical strategies using only these samples yielded coherent estimates with suitable ac-
curacies and highlight that statistical algorithms learn the biases contained in the training data
(see Appendix B Tables B.1, B.2, B.3 and B.4; RMSE of 13.4 µg · cm−2, 3.1 µg · cm−2, 0.0042 cm,
0.0044 g · cm−2; R2 of 0.64, 0.58, 0.52, 0.46; for Cab, Cxc, EWT and LMA respectively with Ridge).
But again, considering measurement errors it is not possible to conclude that estimation uncer-
tainties are intrinsic to the tested statistical strategies.

At least one other measurement protocol exists for needle-leaves reflectance measurement and
requires the use of a special carrier (Harron 2000). Although, it is considered that the difference
between Mesarch et al. 1999 and Harron 2000 protocols is approximately an offset because the use
of the special carrier only eliminates the specular forward scattering (Zarco-Tejada et al. 2004).

Besides, several datasets gathering leaf optical properties and corresponding leaf traits are
freely available for broadleaved species but only few of them for needle-leaved species. Such
datasets are necessary to improve the analysis and accuracy of statistical methods.

The traits were estimated at the leaf scale from spectra averaged over several leaves and com-
pared to the mean biochemical composition of this set of leaves. This scale constitutes an interme-
diary scale between the single leaf and the canopy scales: on the one hand, the leaf scale is able
to represent the mean behavior of the tree rather than taking into account the variance from each
single leaf ; on the other hand, this representation avoids the impacts of structure, geometry and
non-photosynthetic parts of the trees that alter the optical properties at the canopy scale.

Nevertheless, with all these simplifications, the leaf scale is still far from being able to apply
imaging spectroscopy to remote sensing of canopies. Although leaf traits are correctly estimated at
the leaf scale, there is no guarantee that the results obtained at this scale can be transposed to the
canopy scale. However, leaf scale estimates provide insight for canopy scale estimation where the
effects of canopy geometry, non photosynthetic vegetation and background are taken into account.

As a continuation of this work, the next chapter will present estimation methods at the canopy
scale. The difference of accuracies from leaf scale and canopy scale will be discussed.
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Chapter 5

Estimation at the Canopy Scale

In the previous chapter, estimation methods for leaf traits were evaluated and compared at the
leaf scale using spectral in-lab data. This work demonstrated that both statistical methods and
PROSPECT-based methods could estimate leaf traits from oak leaf samples, all species and sea-
sons included. Although, statistical methods yielded more accurate estimates.
In this chapter, the performance of leaf traits estimation methods are analyzed at the canopy scale
for all the ecosystems, species, and seasons. Leaf traits are estimated in this chapter from AVIRIS-C
airborne imaging spectroscopy with a GSD around 14 m. The chapter aims to compare statistical
and hybrid methods using the CSTARS-Canopy dataset introduced in Chapter 3. At canopy scale,
many factors can impact canopy reflectance (understory, canopy geometry, woody elements) such
as mentioned in Chapter 1. As a result, spectral measurements are carried out in a less controlled
environment than at the leaf scale. For this reason, this chapter also seeks to compare the ac-
curacy of estimates between canopy scale and leaf scale. With AVIRIS-C spectral measurements,
reflectance is sampled every 10 nm with a bandwidth of 10 nm, in contrast to leaf-scale measure-
ments carried out with an ASD with a sampling step of 1 nm and a bandwidth of 3 nm in the
visible and NIR range and with a sampling step of 2 nm and a 10 nm bandwidth in the SWIR
range.

To assess the accuracy of the methods at the canopy scale, leaf traits are estimated with both
statistical and hybrid methods from AVIRIS-C extracted spectra and compared to corresponding
reference leaf traits measurements included in the CSTARS-Canopy dataset introduced in Chap-
ter 3. In the first step, leaf traits are estimated using the same statistical methods evaluated in
Chapter 4 at the leaf scale and using the same evaluation strategy. These statistical methods are
built with four MLRA (Ridge, PLSR, GPR and RFR, detailed in Chapter 2, Subsection 2.2.1. As
with all statistical methods, performance depends on the training and validation datasets (here,
subsets of the CSTARS-Canopy dataset). Although, since statistical methods alleviate potential
biases from measurements, the expected error from these methods provides a comparison point to
benchmark hybrid methods evaluated in the second and third steps. In the second step, leaf traits
are estimated using a hybrid method that does not depend on illumination geometry. This global
approach uses a 1D-CNN as MLRA to build an estimator from radiative transfer simulations
accounting the various illumination geometries from all the images.

Section 5.1 presents the statistical methods and their evaluation. Section 5.2 introduces the
1D-CNN based method, details the calibration of the 1D-CNN architecture and the estimation
results. Finally, Section 5.3 discusses the results obtained with the three canopy-scale methods
and highlights the upscaling effects by comparison with results from Chapter 4.
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5.1 Assessment of statistical methods accuracy on the CSTARS-
Canopy dataset

5.1.1 Methodology

Four statistical methods are proposed and differ by the MLRA used to build the estimators: Ridge,
PLSR, GPR, and RFR. The approach is similar to STAT-CSTARS methods from Chapter 4. The
methods are evaluated through an iterative hold-out evaluation with shuffling such as detailed in
Chapter 2, Subsection 2.2.3. This evaluation strategy provides an assessment of the expected error
for the four methods.

During the iterative hold-out evaluation with shuffling, the train/test split ratio is set to
75%/25% and the dataset is split randomly. The hold-out evaluation is repeated for 200 itera-
tions. Since the test set is selected randomly, the number of times a sample is selected in the test
set remains random and unpredictable. However, the number of times a sample would be selected
in the test set follows a binomial law with parameters 200 trials and a probability of success of 0.25.
Therefore the probability that a sample will be drawn in the test set more than 15 times is 98.89%,
and 99.99% that it will be drawn more than 10 times. The evaluation metrics are computed at each
iteration of the iterative hold-out evaluation and are saved. The expected value of each metric is
the mean value of the metric over all the iterations.

To evaluate the specific expected error for a species or family of species, several subsets of the
CSTARS-Canopy dataset were considered before applying the train/test split. Subsets were built
to contain only samples with the same features (species, species family, plant functional types,
ecosystems...). These subsets are given in Table 5.1

Subset name Species Sites

Oaks QUCH(e), QUDO(d), QUKE(d), QUWI(e) BLOF, SJER, SOAP, TONZ
Woodland Savannas oaks QUDO(d), QUWI(e) SJER, TONZ
Mid-Elev. Forests oaks QUCH(e), QUKE(d) BLOF, SOAP

Conifers PISA, PIPO, PILA, PIJE, BLOF, SJER, SOAP, TEAK, TONZ
ABCO, ABMA, CADE

Pinus spp. PISA, PIPO, PILA, PIJE BLOF, SJER, SOAP, TEAK, TONZ
Abies spp. ABCO, ABMA BLOF, SOAP, TEAK

Table 5.1: Subsets of species considered for the evaluation of estimation methods. The last columns
provide the sites involved
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5.1.2 Results

The expected values for RMSE, R2, bias and Kendall’s Tau are given in Tables 5.2, 5.3 , 5.4 and 5.5
for Cab, Cxc, EWT, and LMA respectively. Results are given for several subsets of CSTARS-Canopy
dataset including species, species pooled by families or species pooled by ecosystems.
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Table 5.2: Accuracy metrics expected values of statistical methods for Cab on several subsets of
CSTARS-Canopy. The mean m and standard deviation σ of reference data are given in the first
column.

MLRA RMSE
µg.cm−2

R2

-
Bias

µg.cm−2
tau

-

Oaks Ridge 13.6 0.08 0.1 0.25

(m = 31.6) PLSR 13.7 0.05 0.1 0.24

(σ = 14.6) GPR 13.0 0.15 -0.2 0.24
RFR 13.3 0.11 0.3 0.24

Woodland Ridge 10.5 -0.25 0.4 0.16

Savannas PLSR 10.8 -0.36 0.5 0.15

(m = 35.2) GPR 9.7 -0.06 -0.4 0.21

(σ = 10.2) RFR 9.6 -0.06 0.2 0.26

QUDO(d) Ridge 11.2 -0.64 -0.3 0.07

(m = 36.2) PLSR 12.0 -0.92 -0.3 0.10

(σ = 10.5) GPR 9.8 -0.24 -0.7 0.19

RFR 9.7 -0.21 -0.0 0.26

QUWI(e) Ridge 10.2 -1.71 -0.5 0.14

(m = 33.3) PLSR 10.7 -2.22 -0.5 0.15

(σ = 9.8) GPR 8.9 -1.02 -1.0 0.32

RFR 9.9 -1.59 -0.2 0.17

Mid-Elev. Ridge 14.7 0.11 0.2 0.30

Forests PLSR 14.7 0.09 0.2 0.29

(m = 30.0) GPR 14.2 0.16 0.1 0.29

(σ = 16.0) RFR 14.7 0.09 0.4 0.26

QUKE(d) Ridge 9.0 0.60 -0.2 0.61

(m = 23.3) PLSR 9.0 0.59 -0.2 0.61

(σ = 14.8) GPR 9.2 0.57 0.0 0.60

RFR 10.3 0.45 -0.1 0.52

QUCH(e) Ridge 11.5 -0.03 -0.7 0.24

(m = 39.8) PLSR 12.0 -0.15 -0.8 0.23

(σ = 12.3) GPR 12.6 -0.22 -0.1 0.00

RFR 13.2 -0.37 -0.7 0.07

Conifers Ridge 20.0 0.27 -0.3 0.41
(m = 62.2) PLSR 20.4 0.23 -0.4 0.40

(σ = 23.8) GPR 20.2 0.26 -0.5 0.40

RFR 20.6 0.22 -0.2 0.38

Pinus spp. Ridge 21.9 0.13 0.2 0.36

(m = 68.2) PLSR 22.9 0.04 -0.1 0.33

(σ = 24.8) GPR 22.3 0.10 0.5 0.34

RFR 21.9 0.12 1.2 0.36

Abies spp. Ridge 15.3 -0.13 -0.1 0.31

(m = 63.3) PLSR 15.1 -0.11 -0.3 0.32

(σ = 15.9) GPR 16.2 -0.22 -0.3 0.15

RFR 15.5 -0.19 -0.1 0.19

CADE Ridge 10.8 -0.50 0.3 0.15

(m = 35.3) PLSR 11.1 -0.64 0.1 0.15

(σ = 10.3) GPR 11.3 -0.63 0.5 -0.08

RFR 11.2 -0.72 1.2 0.08
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For Cab, RMSE ranges from 8.9 (with GPR for QUWI(e)) to 22.9 µg · cm−2 (with PLSR for Pinus
spp.). Although, computing the ratio of the RMSE with the mean of reference values, the results
show less discrepancy between categories. For oaks, the overall rRMSE is equal to 40% percent.
But the rRMSE is greater for QUKE(d) (39%) than QUDO(d), QUCH(e) or QUWI(e) (less than 30%).
For conifers and each subset of conifers, the rRMSE is less important, rRMSE are around 30%.

All sRMSE vary between 85 and 95%, except for QUKE(d) (61%) and CADE (105%). The trends
observed for sRMSE also appear with the R2 and Kendall’s Tau. In fact R2 ranges from −2.22
(QUWI(e)) to 0.60 (QUKE(d)), and most of them are negative or close to zero, highlighting that the
MSE is close to the variance of reference data.

Tau ranges from −0.08 (with GPR for CADE) to 0.61 (with PLSR for QUKE(d)). Tau is closer to
zero when R2 is negative. Tau around 0.6 and over are obtained for QUKE(d), whose samples have
a greater variance. Tau over 0.3 are obtained for pine and fir species.

For most of the categories the bias is negligible and ranges between −0.5 and 0.5 µg · cm−2.
Bias is larger for oaks species when considered separately: the bias is around −0.7 µg · cm−2 for
QUCH(e) with Ridge, PLSR and RFR, for QUWI(e) it is −1.0 µg · cm−2 with GPR. RFR-based esti-
mators reach a positive bias for pine species and CADE (1.2 µg · cm−2).

Considering all the results, none of the MLRA clearly stands out from the others. Overall, the
difference between linear and non-linear MLRA is not pronounced. Estimates are slightly more
accurate if they are provided by Ridge-based estimators since Ridge provides the most accurate
results in 6 categories.
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Table 5.3: Accuracy metrics expected values of statistical methods for Cxc on several subsets of
CSTARS-Canopy. For reference the mean m and standard deviation σ of reference data are given.

MLRA RMSE
µg.cm−2

R2

-
Bias

µg.cm−2
tau

-

Oaks Ridge 3.2 -0.04 0.0 0.14

(m = 8.2) PLSR 3.2 -0.05 0.0 0.13

(σ = 3.2) GPR 3.0 0.06 -0.1 0.24
RFR 3.1 0.01 0.0 0.24

Woodland Ridge 2.2 -0.35 0.0 -0.11

Savannas PLSR 2.3 -0.41 0.0 -0.08

(m = 9.1) GPR 2.1 -0.19 0.0 0.15

(σ = 2.1) RFR 2.3 -0.42 -0.1 0.10

QUDO(d) Ridge 2.2 -0.55 0.0 -0.04

(m = 9.3) PLSR 2.4 -0.78 0.0 -0.04

(σ = 2.2) GPR 2.2 -0.43 0.0 -0.04

RFR 2.5 -0.98 -0.1 -0.04

QUWI(e) Ridge 2.6 -33.65 -0.3 -0.01

(m = 8.6) PLSR 2.8 -28.01 -0.4 -0.01

(σ = 2.1) GPR 2.0 -25.86 -0.2 0.14

RFR 2.1 -24.01 -0.0 0.30

Mid-Elev. Ridge 3.3 0.05 0.0 0.24

Forests PLSR 3.3 0.04 0.0 0.24

(m = 7.7) GPR 3.4 0.03 0.0 0.25

(σ = 3.6) RFR 3.4 -0.01 0.0 0.25

QUKE(d) Ridge 1.8 0.39 -0.1 0.49

(m = 6.0) PLSR 1.8 0.35 -0.1 0.47

(σ = 2.4) GPR 2.1 0.17 0.0 0.39

RFR 2.1 0.17 0.0 0.39

QUCH(e) Ridge 2.5 0.32 0.0 0.44

(m = 10.3) PLSR 2.5 0.27 -0.1 0.42

(σ = 3.4) GPR 3.1 0.00 0.0 0.27

RFR 3.0 0.00 0.1 0.28

Conifers Ridge 4.3 0.28 -0.1 0.40
(m = 16.0) PLSR 4.4 0.25 -0.1 0.39

(σ = 5.1) GPR 4.9 0.08 -0.2 0.24

RFR 4.6 0.17 -0.2 0.33

Pinus spp. Ridge 4.4 0.13 0.0 0.34

(m = 17.8) PLSR 4.6 0.07 0.0 0.32

(σ = 5.0) GPR 4.8 -0.03 0.0 0.21

RFR 4.6 0.05 0.0 0.27

Abies spp. Ridge 3.6 -0.33 -0.1 0.19

(m = 15.6) PLSR 3.6 -0.40 -0.1 0.17

(σ = 3.6) GPR 3.6 -0.19 -0.2 0.14

RFR 3.6 -0.36 0.0 0.14

CADE Ridge 2.6 -1.14 0.1 -0.02

(m = 9.8) PLSR 2.7 -1.86 0.2 -0.03

(σ = 2.4) GPR 2.5 -0.72 0.1 0.04

RFR 2.5 -0.76 0.3 0.08
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For Cxc, RMSE ranges from 1.8 (for QUKE(d) with Ridge) to 4.9 (for Conifers with GPR)µg · cm−2.
RMSE is globally higher for pine and fir species.

The rRMSE is equivalent to around 25% for all conifer categories, QUCH(e) and woodland sa-
vanna oak species (QUDO(d), QUWI(e)). For QUKE(d) the rRMSE is around 30%. The RMSE are
close to the reference Cxc standard deviation for most of the categories (sRMSE above 90%), excep-
tions are QUKE(d) (sRMSE=75%), QUCH(e) (sRMSE=74%) and all conifers combined (sRMSE=84%).

Ratios between RMSE and standard deviation are mirrored by the R2 and Tau values. In fact,
R2 close to 0.3 or above are obtained for all conifers, QUCH(e) and QUKE(d) with Ridge-based
estimators (respectively 0.28, 0.32 and 0.39). Other categories obtain R2 values close to zero or
even negative values.

Tau ranges from −0.11 (for oaks of woodland savannas with Ridge) to 0.49 (for QUKE(d) with
Ridge). Values around 0.4 or above are obtained for QUCH(e) (with Ridge and PLSR), QUKE(d)

(with the four MLRA), and all conifers combined (with Ridge and PLSR). Suitable performance
is also obtained for pines with linear MLRAs (Tau above 0.3). Other categories show weaker
correlation according to Kendall’s Tau values.

Expected bias ranges from −0.4 (for QUWI(e) with PLSR ) to 0.3 (for CADE with RFR). Overall,
estimates remain little biased because for all the categories and for the MLRA which minimizes
RMSE, the absolute value of bias is less than 0.15 µg · cm−2.

Considering all the categories, GPR and Ridge yield the most accurate estimates. In cases
where Ridge-based estimators provide the more accurate estimates, PLSR-based estimators also
provide estimates with the second best accuracy. This highlights the linearity of the problem.
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Table 5.4: Accuracy metrics expected values of statistical methods for EWT on several subsets of
CSTARS-Canopy. For reference the mean m and standard deviation σ of reference data are given.

MLRA RMSE
cm

R2

-
Bias
cm

tau
-

Oaks Ridge 0.0040 -0.11 0.0001 -0.02
(m = 0.0111) PLSR 0.0041 -0.15 0.0001 -0.07

(σ = 0.0040) GPR 0.0041 -0.18 0.0001 0.13

RFR 0.0042 -0.23 0.0000 0.16

Woodland Ridge 0.0022 -0.28 0.0000 0.03

Savannas PLSR 0.0023 -0.44 0.0000 0.04

(m = 0.0110) GPR 0.0022 -0.32 0.0000 0.03

(σ = 0.0022) RFR 0.0022 -0.31 -0.0001 0.21

QUDO(d) Ridge 0.0018 -0.52 -0.0001 0.10

(m = 0.0105) PLSR 0.0018 -0.58 -0.0001 0.11

(σ = 0.0017) GPR 0.0018 -0.56 0.0000 0.04

RFR 0.0017 -0.39 0.0000 0.12

QUWI(e) Ridge 0.0027 -2.84 0.0002 -0.19

(m = 0.0122) PLSR 0.0033 -5.34 0.0005 -0.15

(σ = 0.0026) GPR 0.0027 -2.60 0.0002 -0.04

RFR 0.0028 -2.14 0.0003 -0.24

Mid-Elev. Ridge 0.0047 -0.18 0.0001 0.07

Forests PLSR 0.0048 -0.26 0.0002 0.00

(m = 0.0111) GPR 0.0048 -0.27 0.0001 0.13

(σ = 0.0047) RFR 0.0048 -0.28 0.0000 0.15

QUKE(d) Ridge 0.0020 0.47 0.0001 0.51

(m = 0.00091) PLSR 0.0021 0.45 0.0001 0.51

(σ = 0.0031) GPR 0.0029 -0.01 -0.0001 0.30

RFR 0.0029 -0.01 0.0001 0.26

QUCH(e) Ridge 0.0051 -0.49 0.0001 0.12

(m = 0.0139) PLSR 0.0052 -0.62 0.0002 0.11

(σ = 0.0052) GPR 0.0055 -0.61 0.0001 0.02

RFR 0.0062 -1.32 0.0004 -0.03

Conifers Ridge 0.0059 0.21 0.0001 0.39
(m = 0.0371) PLSR 0.0060 0.16 0.0001 0.38

(σ = 0.0068) GPR 0.0064 0.05 0.0000 0.27

RFR 0.0061 0.15 -0.0001 0.32

Pinus spp. Ridge 0.0058 0.06 0.0000 0.30

(m = 0.0376) PLSR 0.0061 -0.05 0.0000 0.28

(σ = 0.0062) GPR 0.0057 0.10 -0.0003 0.32

RFR 0.0060 0.03 -0.0003 0.23

Abies spp. Ridge 0.0064 -0.22 -0.0002 0.18

(m = 0.0401) PLSR 0.0066 -0.32 -0.0003 0.16

(σ = 0.0063) GPR 0.0064 -0.18 -0.0001 0.07

RFR 0.0061 -0.11 0.0001 0.21

CADE Ridge 0.0031 -0.02 -0.0001 0.48

(m = 0.0295) PLSR 0.0032 -0.12 -0.0001 0.49

(σ = 0.0037) GPR 0.0030 0.08 0.0001 0.51

RFR 0.0032 -0.07 0.0004 0.42
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For EWT, the RMSE values are below 0.0025 cm for QUDO(d) (with the four MLRA), QUKE(d)

(with Ridge and PLSR) and less specifically for oaks of woodland savannas (with the four MLRA).
Highest RMSE values are obtained for pines and firs and are above 0.0060 cm.

However, rRMSE values for conifers, pines, firs and CADE is only around 15%. rRMSE equals
more than 30% for all oaks combined, oaks of mid elevation forests and QUCH(e). For all oak
categories, the sRMSE is around 100%, except for QUKE(d) (sRMSE is around 65%). The sRMSE
ranges between 85% and 100% for conifer categories.

Most of R2 scores are negative. Suitable R2 scores are only obtained for QUKE(d) with linear
MLRAs (0.45 with PLSR and 0.47 with Ridge). Intermediate R2 is obtained for conifers species
with Ridge (R2 = 0.21).

Expected bias values range from −0.0003 (Abies spp.) to 0.0005 cm (QUWI(e)). Globally, the
bias is more pronounced for conifers categories, but remains negligible and acceptable for all
categories.

Tau ranges from −0.24 (for QUWI(e) with RFR) to 0.51 (for CADE with GPR). Best tau values
are obtained for QUKE(d) (0.51 with Ridge), then for all conifers combined (0.39 with Ridge) and
for pines (0.32 with GPR). For QUWI(e), the four MLRA yield negative values for Tau, highlighting
that estimators perform worse than a random guess from a normal distribution N (m, sigma).

Ridge yields more accurate estimates for oaks or conifers. GPR or RFR provide more accurate
estimates for smaller subsets but Ridge-based estimators are often the second most accurate. Ridge
and PLSR yield almost equivalent results, but PLSR results are always slightly under those from
Ridge.
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Table 5.5: Accuracy metrics expected values of statistical methods for LMA on several subsets of
CSTARS-Canopy. For reference the mean m and standard deviation σ of reference data are given.

MLRA RMSE
g.cm−2

R2

-
Bias

g.cm−2
tau

-

Oaks Ridge 0.0044 0.07 0.0000 0.28

(m = 0.0119) PLSR 0.0046 -0.02 0.0000 0.23

(σ = 0.0047) GPR 0.0042 0.19 -0.0002 0.32

RFR 0.0038 0.32 0.0000 0.43

Woodland Ridge 0.0025 -0.12 0.0000 0.27

Savannas PLSR 0.0026 -0.20 0.0000 0.26

(m = 0.0135) GPR 0.0025 -0.09 -0.0002 0.25

(σ = 0.0026) RFR 0.0024 -0.07 0.0001 0.32

QUDO(d) Ridge 0.0016 -0.06 0.0000 0.36

(m = 0.0123) PLSR 0.0016 -0.15 0.0000 0.33

(σ = 0.0019) GPR 0.0016 -0.09 -0.0000 0.27

RFR 0.0016 -0.07 0.0000 0.37

QUWI(e) Ridge 0.0023 -1.36 -0.0002 0.25

(m = 0.0158) PLSR 0.0025 -2.33 -0.0002 0.24

(σ = 0.0023) GPR 0.0021 -0.59 -0.0001 0.25

RFR 0.0023 -1.31 -0.0002 0.14

Mid-Elev. Ridge 0.0047 0.14 0.0002 0.37

Forests PLSR 0.0050 0.00 0.0002 0.32

(m = 0.0111) GPR 0.0045 0.21 0.0001 0.36

(σ = 0.0052) RFR 0.0042 0.32 0.0000 0.42

QUKE(d) Ridge 0.0015 -0.05 -0.0001 0.27

(m = 0.0071) PLSR 0.0015 -0.12 -0.0001 0.27

(σ = 0.0016) GPR 0.0016 -0.17 0.0000 0.15

RFR 0.0014 0.00 0.0000 0.30

QUCH(e) Ridge 0.0021 -0.37 -0.0001 -0.13

(m = 0.0171) PLSR 0.0022 -0.63 -0.0001 -0.12

(σ = 0.0020) GPR 0.0020 -0.28 0.0000 -0.05

RFR 0.0025 -1.02 -0.0001 -0.14

Conifers Ridge 0.0053 0.14 0.0000 0.35

(m = 0.0328) PLSR 0.0055 0.08 0.0000 0.33

(σ = 0.0058) GPR 0.0056 0.04 -0.0003 0.20

RFR 0.0053 0.16 -0.0002 0.29

Pinus spp. Ridge 0.0041 0.22 0.0000 0.42

(m = 0.0338) PLSR 0.0043 0.13 0.0000 0.40

(σ = 0.0050) GPR 0.0049 -0.05 -0.0001 0.14

RFR 0.0048 -0.03 -0.0001 0.17

Abies spp. Ridge 0.0068 -0.18 -0.0001 0.23

(m = 0.0335) PLSR 0.0071 -0.29 -0.0001 0.19

(σ = 0.0070) GPR 0.0073 -0.29 0.0000 0.06

RFR 0.0067 -0.14 0.0001 0.28

CADE Ridge 0.0029 -0.23 -0.0001 0.25

(m = 0.0275) PLSR 0.0030 -0.34 -0.0001 0.24

(σ = 0.0031) GPR 0.0030 -0.28 0.0001 0.29

RFR 0.0025 0.11 0.0002 0.44
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For LMA, lowest RMSE are obtained for the two deciduous oak species (QUKE(d) and QUDO(d),
RMSE lower than 0.0016 g · cm−2) compared to evergreen oak species (QUCH(e) and QUWI(e),
RMSE is around 0.0022 g · cm−2). LMA estimations combining all the oak species obtain higher
RMSE values (around 0.40 g · cm−2), probably due to the more important errors with mid-elevation
oak species. Similar RMSE values are obtained for pines. Highest RMSE values are obtained for
fir species.

However LMA distributions are distinct considering the species, and considered categories
have distinct means m and standard deviations σ. Therefore, rRMSE is the lowest for QUDO(d),
QUCH(e), QUWI(e), pines and CADE (rRMSE smaller than 15%) and is around 20% for QUKE(d)

and fir species. sRMSE is around 80% for all oak species combined, oak species of mid-elevation
forests, and CADE. For all other categories, sRMSE values vary between 90% and 100% and reach
110% for oak species of woodland savannas.

Most of R2 scores are negative or very close to zero. Best R2 scores are obtained with RFR-
based estimators for all oak species (0.32), oak species of mid-elevation forests (0.32) and all conifer
species (0.16), and with Ridge-based estimators for pines (0.22).

Tau values emphasize that estimates are more correlated to reference combining all oak species,
combining mid-elevation oak species, for QUDO(d), pines and CADE (Tau is around 0.40).

For QUCH(e), the four MLRA yield negative Tau values, highlighting that estimators perform
worse than a random guess from a normal distribution N (m, sigma).

Biases are negligible. With some exceptions, absolute bias values are smaller than 0.0001 g · cm−2.

RFR yields more accurate estimates than other MLRA for both oak and conifer species. Indeed,
RFR-based estimators yield the most accurate results in 8 categories. Ridge-based estimators yield
the most accurate results in 2 categories and the second most accurate in 7, which emphasizes that
the LMA estimation is close to a linear problem.

125



CHAPTER 5. ESTIMATION AT THE CANOPY SCALE

5.1.3 Summary and conclusion

Regarding the choice of the MLRA to estimate leaf traits, RMSE, R2 and Tau values mostly depend
on the samples (i.e., pixels and associated leaf traits measurements) considered and less on the
MLRA chosen to build estimators. For Cab, Cxc and EWT, Ridge and GPR often yield the better
estimation performances while for LMA RFR achieved better estimates. Results for Ridge and
PLSR follow the same trends, but in most cases the Ridge yields better results than PLSR.

Overall, RMSE values were higher for categories of conifer species, but hide the fact that mean
and standard deviation of leaf traits are intrinsically higher for conifer species. As a result, R2

and Kendall’s Tau are more appropriate to compare estimation performances for oak and conifer
species. R2 scores are globally not significant and are often under 0.2 or even negative. Tau values
show that estimated values are often correlated to reference data. However, correlations remain
weak, with values under 0.4 in most of the cases. Since a 0.4 tau value equals a misclassification of
30% of pairs, such estimators remain limited to detect the intra-specific intra-group variability of
leaf traits. For the four leaf traits and for all categories under consideration, the bias is negligible,
regardless of the chosen MLRA.

For oak species, estimation performances are better for QUDO(d), QUCH(e) and QUKE(d) com-
pared to QUWI(e). Fewer samples are in the CSTARS-Canopy dataset for QUWI(e), and QUWI(e)

leaf traits have a narrow variance. This may explain why estimation performances for QUWI(e) are
lower. RMSE values are lower for oak species of woodland savannas. However, for oak species of
the mid-elevation forests, better R2 and Tau are obtained and demonstrate that the estimates are
more representative of leaf traits variability.

For conifer species, regardless of the leaf trait, RMSE performances are lower for CADE com-
pared to pine or fir species. But this hides the fact that average leaf trait values are greater for pine
and fir species. Analyzing R2 scores and Tau correlations, estimation performances are better for
pine species compared to fir species.

0 20 40 60 80 100 120
Measured Cab ( g. cm 2)

0

20

40

60

80

100

120

Es
tim

at
ed

 C
ab

 (
g.

cm
2 )

0 5 10 15 20 25 30 35 40
Measured Cxc ( g. cm 2)

0

5

10

15

20

25

30

35

40

Es
tim

at
ed

 C
xc

 (
g.

cm
2 )

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Measured EWT (cm)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Es
tim

at
ed

 E
W

T 
(c

m
)

0.00 0.01 0.02 0.03 0.04 0.05
Measured LMA (g. cm 2)

0.00

0.01

0.02

0.03

0.04

0.05

Es
tim

at
ed

 L
M

A 
(g

.c
m

2 )

QUCH
QUWI
QUDO
QUKE
Pinus spp.
Abies spp.
CADE
Spring
Summer
Fall

Figure 5.1: Mean leaf traits estimates compared to measured values. Gray vertical lines indicate
the range between minimal and maximal estimated values for each sample. Results are given for
the MLRA highlighted in Tables 5.2 to 5.5 (for oaks: GPR, GPR, Ridge, RFR; for conifers: Ridge,
Ridge, Ridge, RFR; for Cab, Cxc, EWT, and LMA respectively)
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5.2 The Hybrid 1D-CNN Strategy

Most studies focused on classical MLRA including artificial neural networks (ANN) or multi-layer
perceptrons. More recently, convolutional neural networks (CNN) have emerged and have the
ability to deal with complex supervised learning problems, such as image classification problems.
However, only a few studies have used it for vegetation analysis with spectroscopic data (Pul-
lanagari et al. 2021; Shi et al. 2022; Cherif et al. 2023). Cherif et al. 2023 study represents the
most advanced work on estimating leaf traits from canopy reflectance with the help of a 1D-CNN.
However their work focuses on a purely statistical approach.

Sensitivity analysis (Chapter 1) demonstrates that canopy reflectance alone is mainly sensitive
to variations in canopy geometry and background reflectance and only marginally to variations of
leaf traits. However, CWT (Continuous Wavelet Transform) outputs could be highly sensitive to
leaf traits, highlighting that well-chosen convolutional filters could extract and isolate information
on leaf traits. In this frame, 1D-CNNs are promising algorithms to create inverse models to assess
canopy foliar biochemistry since the first layer of a CNN acts as a set of filters, and could indeed
extract features from the shape of the spectra.

Moreover, previous work on hybrid methods lead to suitable estimation performances but
present two drawbacks: leaf traits are estimated separately from specific spectral ranges and they
were usually trained and evaluated on a single site at a specific date.

The objective of this section is to perform a joint estimation of the four leaf traits from the
whole range 400 − 2500 nm with a hybrid approach based on 1D-CNN and evaluate its perfor-
mance. With this hybrid approach, the 1D-CNN model is trained on the illumination geometry
considered in the synthetic dataset generation. Thus, the trained 1D-CNN provides a global es-
timator that could handle the estimation of the four leaf traits analyzed in this study for all the
AVIRIS images.

In this section, the work is organized in two steps. Firstly, the 1D-CNN hyperparameters are
calibrated and the model is trained on the synthetic dataset to build the 1D-CNN-based estimator.
Secondly, the 1D-CNN-based estimator is applied on AVIRIS spectra from CSTARS-Canopy to
evaluate its accuracy.

5.2.1 Synthetic dataset generation

A synthetic dataset was built to train and test MLRA in hybrid methods. Radiative transfer sim-
ulations are performed with a combination of PROSPECT DART-SFR RTMs (see Chapter 1 for
detailed explanation on RTM functioning). Besides the four leaf traits, the PROSPECT-DART
combination include as parameter: the leaf structure parameter (N), illumination parameters (sun
zenith angle SZA, sun azimuth angle SAA), parameters related to the canopy geometry (canopy
cover CC, leaf area index LAI, average leaf angle ALA) and soil reflectance (see Chapter 3, Sub-
section 3.4.3 for details on the extraction of background reflectance spectra).

Illumination angles were based on sun angles of the 32 AVIRIS images for the five study
sites. Other simulation inputs were generated through a Latin hypercube sampling. Other model
inputs include leaf traits, but also canopy geometry parameters (CC, LAI, ALA) and several types
of soil reflectance. For each AVIRIS image, 1000 cases were generated and ranges used for Latin
hypercube sampling are defined in Table 5.6. In total 32,000 canopy reflectance spectra were
simulated.

Parameter Unit Min. Value Max. Value

Cab µg.cm−2
0.0 140

Cxc µg.cm−2
0.0 35

EWT cm 0.001 0.055

LMA g.cm−2
0.001 0.050

N - 1.0 3.0
LAI m2.m−2

0.05 7.0
ALA ° 0 90

CC % 10 100

Table 5.6: Ranges of values used for Latin hypercube generation.
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Table 5.7: Hyperparameter ranges for the TPE sampling experiment and optimal values found.

TPE sampling

Hyperparameter Type Min. Max. Scale Optimal Values

Learning Rate float 10−5 10−2 log 5.6.10−4

Batch Size int 50 1000 linear 195
Number of conv. layers int 1 3 linear 1
Kernel Size int 3 159 linear 115
Number of channels int 4 16 linear 16
Number of dense hidden layers int 1 5 linear 2
Size of hidden layers int 4 100 log {86; 90}

5.2.2 1D-CNN calibration

5.2.2.1 Architecture selection

The 1D-CNN is based on a classical CNN architecture detailed in Chapter 2. The architecture
includes: several one-dimensional convolution layers (each time followed by an activation layer
and a maxpooling layer), a flatten layer, and several fully-connected layers. Inputs of the network
are reflectance at 160 wavelengths to match AVIRIS data specifications (one wavelength every 10

nm between 400 nm and 2500 nm except for water absorption bands between 1270-1450 nm and
1800-1980 nm) and four outputs (the four leaf traits of interest).

The architecture was trained with a stochastic gradient descent which aims to minimize the
MSE loss function. In the stochastic gradient descent, the weights were updated with the Adam
optimizer (Kingma and Ba 2014). This architecture involves at least five hyperparameters: number
of convolutional layers, size of convolutional kernels, number of kernels, number of dense layers,
and size of hidden layers. We explore different combinations of hyperparameters with a TPE (Tree-
structured Parzen Estimator) sampler (Bergstra et al. 2011) implemented in the optuna library
(Akiba et al. 2019). Additionally, the batch size and learning rate were parameters included in
the TPE sampling. TPE sampling is an adaptive sampling strategy and aims to reach the optimal
hyperparameters that minimize the MSE loss on test data.

The training process is implemented on the synthetic PROSPECT-DART dataset. From the syn-
thetic PROSPECT-DART dataset 5,000 simulations are selected randomly and saved as test data.
Remaining simulations are used as train dataset for the stochastic gradient descent process. For
the train dataset, a Gaussian noise is added to the simulated reflectance to increase the robustness
of the model toward noisy input data (the variance of the noise is set to 0.01). The test dataset
is kept noise-free. The 1D-CNN is trained with a mean squared error loss during 100 epochs.
Training the 1D-CNN during 100 epochs was enough to reach convergence in the training process.

A learning rate between 5.10-4 and 7.10-4 leads to smaller mean square error loss after 100

epochs (Figure 5.2). Batch size was found optimal between 100 and 250, although the choice of
batch size had less significant impact on the results.

Figure 5.2: Distribution of the mean square error validation loss compared to the learning rate
(left), and the batch size (right).

The following architecture leads to the minimal mean square error loss: a single convolution
layer (16 kernels of size 115) and 3 dense layers (hidden layers of size 86 and 90).

More generally, the TPE experiment highlights that one convolution layer is enough to extract
features to retrieve leaf traits on simulated spectra (Figure 5.3). Moreover, better results were
reached with architectures that include a single convolution layer with a kernel size greater than
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100. The MSE loss appears to decrease with the number of channels within convolution layers.
By extrapolation, a number of channels greater than 16 seems to provide a smaller loss value,
although these cases have not been tested in the experiment.

The MSE loss value is minimal for a number of 3 dense layers (Figure 5.4). The loss value
seems to decrease with the size of the hidden layers and to saturate for greater sizes. However
the saturation does not appear to be reached for the maximal value of 100 that was set in the TPE
experiment.

Figure 5.3: Distribution of the mean square error validation loss compared to numbers of convo-
lution layers (left), number of channels (middle) and kernel size of the first layer (right).

Figure 5.4: Distribution of the mean square error validation loss compared to numbers of dense
layers (left), size of the first layer (middle), size of the second layer (right)

5.2.2.2 1D-CNN training process

During the training process, the 1D-CNN model is initialized randomly at the first iteration. Due
to the complexity of the loss evolution in the parameters space (meaning that the loss is not likely
a convex function in the parameters space) the parameter values on which the loss converges are
dependent on the initial values (Li et al. 2018). To overcome the dependence of convergence values
on initial values, 50 1D-CNN models are trained from distinct and randomly chosen initial values.
This strategy also provides the variability of estimates and enables to study the reliability of the
protocol. Indeed, each of the 50 models provides an estimation, meaning that one sample has
50 corresponding estimated values that can be summarized into basic statistics (mean, standard
deviation, quantiles). The same goes for the accuracy metrics, 50 values are computed for each
metrics and will be summarized into basic statistics. During the training process, the loss is
computed at each epoch on the validation synthetic dataset. The parameters values that reach the
best prediction accuracy on the validation synthetic dataset are saved to perform estimation on
the measured data.

During training, both the train loss and the validation on synthetic data loss are decreasing
along the epochs for all the 50 models (Figure 5.5, left). The decay of the validation loss highlights
that the models are not overfitted on the train dataset compared to the validation synthetic dataset.
Moreover, along the 100 epochs, the majority of most accurate models on the validation synthetic
dataset occur on the 10 last epochs (epochs 90 to 100, see Figure 5.5, right).

When applied on the 5000 synthetic samples saved for validation, this architecture revealed
the ability to estimate the leaf traits on the synthetic dataset. The mean R2 ranges between 0.78
and 0.87 for the four traits, and the mean RMSE is respectively 14.8 µg · cm−2, 4.8 µg · cm−2,
0.0058 cm ; 0.0055 g · cm−2 for Cab, Cxc, EWT and LMA. However the estimated values are not
stable considering the initialisation of the training process. Indeed, the mean standard deviations
of estimated values are 8.7 µg · cm−2, 2.4 µg · cm−2, 0.0035 cm, 0.0032 g · cm−2 for Cab, Cxc, EWT
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Figure 5.5: Left: Loss evolution for train and validation on synthetic data. Solid lines indicate the
mean losses and filled areas indicate the 1st and 9th deciles ; Right: Distribution of best models
for validation on synthetic data.

and LMA; they highlight the instability of the estimation (Figure 5.6). Moreover, the variance
of errors is too large to indicate properly the small leaf traits variations. This can be noticed
considering smaller ranges of leaf traits reference values and looking at the range of predicted
values (Figure 5.6).
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Figure 5.6: Scatter plot of leaf traits mean estimates compared to input values for validation
synthetic data. Gray vertical lines indicate the 1st and 9th deciles of estimated values for each
sample.
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5.2.3 Evaluation of the 1D-CNN estimator performances

To evaluate its estimation accuracy on measured data, the 1D-CNN-based estimators are applied
on AVIRIS spectra from CSTARS-Canopy dataset. For each AVIRIS spectrum included in CSTARS-
Canopy, the 1D-CNN estimators are applied and the estimated values are compared to the refer-
ence measurements values.

Moreover, the MSE loss can be computed for all the epochs on CSTARS-Canopy and analyzed.
The MSE for CSTARS-Canopy does not decrease along the epochs (Figure 5.7 ). Particularly, the
loss increases strongly in the first 15 epochs and remains stable after the 20th epoch. The models
with the most accuracy are all obtained before the 6th epoch.

Respective contributions of Cab, Cxc, EWT and LMA to the MSE loss show the same behaviors
(Figure 5.7, right). Although this behavior is less pronounced for LMA and Cab, the loss decreases
slightly from epoch 1 to 60.
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Figure 5.7: Top left: Distribution of best models for validation CSTARS-Canopy ; Bottom left: Loss
evolution for train and validation on synthetic data and validation CSTARS-Canopy ; Right: Trait-
specific loss evolutions for train, validation on synthetic data and validation on CSTARS-Canopy

The mean values for RMSE, R2, bias and Kendall’s Tau are given in Tables 5.8, 5.9 , 5.10 and 5.11

for Cab, Cxc, EWT, and LMA respectively. Results are given for several subset of CSTARS-Canopy
dataset including species, species pooled by families or species pooled by ecosystems.

131



CHAPTER 5. ESTIMATION AT THE CANOPY SCALE

Table 5.8: Mean values of accuracy metrics for the 1D-CNN estimator for Cab on CSTARS-Canopy.
The 5th and 95th percentiles are given in square brackets. For reference, the mean m and standard
deviation σ of reference data are given for each CSTARS-Canopy subset.

RMSE
µg.cm−2

R2

-
Bias

µg.cm−2
tau

-

Oak 19.8 -0.37 8.4 0.04

(m = 31.6 ; σ = 14.6) [16.8 ; 24.0] [-1.72 ; -0.33] [0.2 13.0] [-0.03 ; 0.17]

Woodland Savannas 15.9 -1.52 1.5 0.05

(m = 35.2 ; σ = 10.2) [12.9 ; 18.7] [-2.42 ; -0.62] [-6.9 ; 8.2] [ -0.12 ; 0.2]

QUDO(d)
15.8 -1.38 0.04 0.04

(m = 36.2 ; σ = 10.5) [12.8 ; 18.4] [-2.2 ; -0.55] [-5.1 ; 10.9] [-0.13 ; 0.23]

QUWI(e)
16.1 -2.00 -2.2 0.03

(m = 33.3 ; σ = 9.8) [10.9 ; 20.9] [-3.89 ; -0.34] [-12.2 ; 6.5] [-0.29 ; 0.32]

Mid-Elev. Forests 21.2 -0.80 9.6 0.13

(m = 30.0 ; σ = 16.0) [17.3 ; 26.6] [-1.79 ; -0.17] [2.5 ; 17.8] [-0.01 ; 0.24]

QUKE(d)
22.5 -1.42 16.3 0.27

(m = 23.3 ; σ = 14.8) [16.4 ; 29.5] [-3.03 ; -0.24] [9.3 ; 23.3] [0.07 ; 0.41]

QUCH(e)
18.8 -1.46 -0.2 0.00

(m = 39.8 ; σ = 12.3) [15.3 ; 23.4] [-2.73 ; -0.6] [-8.5 ; 9.5] [-0.19 ; 0.21]

Conifers 35.9 -1.31 -23.5 0.05

(m = 62.2 ; σ = 23.8) [31.6 ; 39.7] [-1.81 ; -0.78] [-30.3 ; -17.1] [-0.08 ; 0.15]

Pinus spp. 40.8 -1.75 -30.5 0.10

(m = 68.2 ; σ = 24.8) [36.1 ; 44.8] [-2.29 ; -1.14] [-36.5 ; -24.3] [-0.02 ; 0.24]

Abies spp. 31.6 -3.09 -22.9 0.02

(m = 63.3 ; σ = 15.9) [25.6 ; 38.3] [-4.91 ; -1.65] [-30.9 ; -14.8] [-0.13 ; 0.19]

CADE 16.7 -1.80 -3.9 0.10

(m = 35.3 ; σ = 10.3) [12.2 ; 20.9] [-3.29 ; -0.47] [-4.8 ; 11.7] [-0.09 ; 0.28]

For Cab, RMSE ranges from 10.9 for QUWI(e) to 44.8 µg · cm−2 for pine species. Average RMSE
is higher for pine and fir species (above 30 µg · cm−2) compared to oak species and CADE (all
under 22.5 µg · cm−2). The average rRMSE ranges between 45% and 60% except for oaks of mid-
elevation forest (70%) and QUKE(d) (96%). R2 scores are almost all negative and emphasize that the
RMSE is greater than the standard deviation of the reference Cab values (sRMSE > 1). Particularly,
R2 scores are strongly negative for fir species (mean R2 = −3.09). R2 scores are less negative for all
oak species combined (mean R2 = −0.37) and particularly for mid-elevation forest species (mean
R2 = −0.80). The bias varies widely from one category to another. Globally, the Cab for conifers
species is underestimated while Cab is overestimated for QUKE(d). Particularly, the bias is strongly
negative for pine and fir species. The bias for QUDO(d), QUCH(e) and QUWI(e) tend to be around
zero. The positive bias for all oak species combined and mid-elevation forest species is mainly due
to QUKE(d). Kendall’s Tau ranges from −0.29 for QUWI(e) to 0.41 for QUKE(d). Average values of
Tau indicate that, overall, estimates misrepresent Cab variations. QUKE(d) appears as the exception
with an average Tau of 0.27 and 90% of values within the interval [0.07 ; 0.41].
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Table 5.9: Mean values of accuracy metrics for the 1D-CNN estimator for Cxc on CSTARS-Canopy.
The 5th and 95th percentiles are given in square brackets. For reference, the mean m and standard
deviation σ of reference data are given for each CSTARS-Canopy subset.

RMSE
µg.cm−2

R2

-
Bias

µg.cm−2
tau

-

Oak 12.3 -13.66 9.7 -0.08

(m = 8.2 ; σ = 3.2) [10.4 ; 14.3] [-18.76 ; -9.32] [7.8 ; 11.6] [-0.11 ; -0.03]

Woodland Savannas 4.4 -3.5 2.1 0.05

(m = 9.1 ; σ = 2.1) [3.5 ; 5.6] [-5.98 ; -1.66] [0.2 ; 4.5] [-0.12 ; 0.14]

QUDO(d)
4.3 -3.16 1.8 -0.04

(m = 9.3 ; σ = 2.2) [3.4 ; 5.3] [-5.19 ; -1.58] [-0.1 ; 4.4] [-0.18 ; 0.11]

QUWI(e)
4.6 -4.68 2.6 0.14

(m = 8.6 ; σ = 2.1) [2.9 ; 6.5] [-9.71 ; -1.18] [0.0 ; 5.3] [-0.14 ; 0.36]

Mid-Elev. Forests 14.5 -15.95 13.2 0.06

(m = 7.7 ; σ = 3.6) [12.2 ; 17.0] [-22.21 ; -10.84] [10.8 ; 15.6] [-0.02 ; 0.14]

QUKE(d)
15.5 -40.91 14.5 0.03

(m = 6.0 ; σ = 2.4) [13.2 ; 17.8] [-53.3 ; -28.79] [12.2 ; 16.7] [-0.05 ; 0.13]

QUCH(e)
12.7 -13.77 11.2 0.04

(m = 10.3 ; σ = 3.4) [9.7 ; 16.0] [-21.91 ; -7.33] [8.2 ; 14.3] [-0.09 ; 0.2]

Conifers 11.3 -3.98 4.5 -0.14

(m = 16.0 ; σ = 5.1) [9.9 ; 13.1] [-5.58 ; -2.77] [2.7 ; 6.5] [-0.2 ; -0.1]

Pinus spp. 10.2 -3.25 1.2 -0.14

(m = 17.8 ; σ = 5.0) [8.9 ; 11.7] [-4.53 ; -2.17] [-0.9 ; 3.1] [-0.21 ; -0.06]

Abies spp. 11.1 -9.01 7.0 -0.17

(m = 15.6 ; σ = 3.6) [9.5 ; 13.1] [-12.66 ; -6.15] [4.9 ; 9.3] [-0.29 ; -0.06]

CADE 15.2 -43.33 13.1 0.10

(m = 9.8 ; σ = 2.4) [12.8 ; 18.0] [-60.56 ; -30.13] [10.6 ; 15.3] [-0.0 ; 0.2]

For Cxc, RMSE ranges from 2.9 for QUWI(e) to 18 µg · cm−2 for CADE. RMSE is the lowest for
oak species of woodland savannas (QUDO(d) and QUWI(e)) with an average around 4.5 µg · cm−2.
Compared to the mean, RMSE is also lower for QUDO(d) and QUWI(e) (respectively 46% and 53%).
The rRMSE is respectively 57% and 71% for pine and fir species, and is over 150% for other species
(CADE, QUCH(e) and QUKE(d)). R2 scores are all strongly negative and emphasize that the RMSE
is greater than the standard deviation of the reference Cxc values. Average R2 scores are above −4
only for QUDO(d) and pine species. For all the categories, estimates of Cxc are positively biased.
The bias follows roughly the same trend as RMSE and is the lowest for QUDO(d), QUWI(e) and
pine species. Average Kendall’s Tau is at most 0.14 for QUWI(e). Values of Tau indicate that for all
the cases Cxc estimates misrepresents the trends of Cxc reference values.
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Table 5.10: Mean values of accuracy metrics for the 1D-CNN estimator for EWT on CSTARS-
Canopy. The 5th and 95th percentiles are given in square brackets. For reference, the mean m and
standard deviation σ of reference data are given for each CSTARS-Canopy subset.

RMSE
cm

R2

-
Bias
cm

tau
-

Oak 0.0120 -7.94 0.0097 0.01

(m = 0.0111 ; σ = 0.0040) [0.0100 ; 0.0145] [-11.89 ; -5.21] [0.0078 ; 0.012] [-0.08 ; 0.09]

Woodland Savannas 0.0094 -18.69 0.0076 -0.08

(m = 0.0110 ; σ = 0.0022) [0.0077 ; 0.0110] [-25.8 ; -12.19] [0.0046 ; 0.0098] [-0.21 ; 0.04]

QUDO(d)
0.0097 -34.39 0.0081 -0.05

(m = 0.0105 ; σ = 0.0017) [0.0081 ; 0.0113] [-46.45 ; -23.0] [0.0055 ; 0.0100] [-0.22 ; 0.1]

QUWI(e)
0.0086 -11.14 0.0065 -0.02

(m = 0.0122 ; σ = 0.0026) [0.0062 ; 0.0111] [-18.65 ; -5.08] [0.0027 ; 0.0099] [-0.25 ; 0.18]

Mid-Elev. Forests 0.0129 -6.91 0.0107 0.05

(m = 0.0111 ; σ = 0.0047) [0.0104 ; 0.0160] [-10.81 ; -4.06] [0.0086 ; 0.0135] [-0.04 ; 0.14]

QUKE(d)
0.0132 -17.92 0.0120 0.07

(m = 0.0091 ; σ = 0.0031) [0.0110 ; 0.0162] [-27.02 ; -11.99] [0.0101 ; 0.0147] [-0.14 ; 0.26]

QUCH(e)
0.0124 -5.17 0.0089 0.02

(m = 0.0139 ; σ = 0.0052) [0.0089 ; 0.0166] [-9.58 ; -2.09] [0.0058 ; 0.013] [-0.09 ; 0.12]

Conifers 0.0166 -5.1 -0.0123 0.08

(m = 0.0371 ; σ = 0.0068) [0.0142 ; 0.0189] [-6.90 ; -3.43] [-0.0160 ; -0.0092] [-0.01 ; 0.16]

Pinus spp. 0.0168 -6.49 -0.0129 0.06

(m = 0.0376 ; σ = 0.0062) [0.0148 ; 0.0190] [-8.52 ; -4.73] [-0.0162 ; -0.0101] [-0.02 ; 0.16]

Abies spp. 0.0173 -6.96 -0.0128 -0.10

(m = 0.0401 ; σ = 0.0063) [0.0145 ; 0.0206] [-10.17 ; -4.49] [-0.0174 ; -0.0083] [-0.25 ; 0.02]

CADE 0.0135 -13.6 -0.0090 -0.10

(m = 0.0295 ; σ = 0.0037 ) [0.0099 ; 0.0166] [-20.4 ; -6.67] [-0.0126 ; -0.0050] [-0.33 ; 0.13]

For EWT, RMSE ranges from 0.0077 cm for oaks of woodland savannas to 0.0206 cm for fir
species. The rRMSE is around 45% for conifer species and the three subcategories. For oak species,
the rRMSE is lower for QUWI(e) (70%) compared to QUCH(e), QUDO(d) and QUKE(d) (respectively
89%, 92% and 145%). For all the categories, R2 scores are strongly negative. Average R2 scores are
above −6 only for QUCH(e) and all conifer species pooled together. Bias is systematically positive
for oak species and systematically negative for conifer species. Average values for Tau are all
under 0.1 and the greatest value is reached with QUKE(d) (0.26). Consequently, the EWT estimates
are not correlated to the reference values.
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Table 5.11: Mean values of accuracy metrics for the 1D-CNN estimator for LMA on CSTARS-
Canopy. The 5th and 95th percentiles are given in square brackets. For reference, the mean m and
standard deviation σ of reference data are given for each CSTARS-Canopy subset.

RMSE
g.cm−2

R2

-
Bias

g.cm−2
tau

-

Oak 0.0069 -1.24 0.0022 0.09

(m = 0.0119 ; σ = 0.0047) [0.0059 ; 0.0085] [-2.29 ; -0.61] [0.0001 ; 0.0045] [-0.05 ; 0.21]

Woodland Savannas 0.0058 -4.39 0.0007 0.22

(m = 0.0135 ; σ = 0.0026) [0.0045 ; 0.0079] [-8.78 ; -2.14] [-0.0022 ; 0.0037] [0.10 ; 0.32]

QUDO(d)
0.0057 -8.88 0.0006 0.16

(m = 0.0123 ; σ = 0.0019) [0.0046 ; 0.0069] [-13.4 ; -5.23] [-0.002 ; 0.0036] [-0.07 ; 0.36]

QUWI(e)
0.0060 -6.93 0.0010 0.17

(m = 0.0158 ; σ = 0.0023) [0.0043 ; 0.0092] [-16.63 ; -2.76] [-0.0032 ; 0.0041] [-0.06 ; 0.40]

Mid-Elev. Forests 0.0074 -1.04 0.0029 0.07

(m = 0.0111 ; σ = 0.0052) [0.0061 ; 0.0093] [-2.17 ; -0.37] [0.0000 ; 0.0057] [-0.12 ; 0.23]

QUKE(d)
0.0081 -26.7 0.0063 0.09

(m = 0.0071 ; σ = 0.0016) [0.0058 ; 0.0110] [-47.11 ; -12.29] [0.0037 ; 0.0094] [-0.23 ; 0.15]

QUCH(e)
0.0059 -7.86 -0.0022 0.04

(m = 0.0171 ; σ = 0.0020) [0.0047 ; 0.0072] [-11.95 ; -4.44] [-0.0057 ; 0.0015] [-0.13 ; 0.20]

Conifers 0.0209 -12.1 -0.0192 0.02

(m = 0.0328 ; σ = 0.0058) [0.0182 ; 0.0241] [-16.21 ; -8.82] [-0.0227 ; -0.0159] [-0.05 ; 0.10]

Pinus spp. 0.0214 -17.75 -0.0200 0.01

(m = 0.0338 ; σ = 0.0050) [0.0188 ; 0.0245] [-23.46 ; -13.33] [-0.0235 ; -0.0169] [-0.11 ; 0.11]

Abies spp. 0.0219 -9.01 -0.0198 -0.05

(m = 0.0335 ; σ = 0.0070) [0.0181 ; 0.0255] [-12.45 ; -5.81] [-0.0241 ; -0.0153] [-0.17 ; 0.12]

CADE 0.0163 -29.24 -0.0149 0.07

(m = 0.0275 ; σ = 0.0031) [0.0135 ; 0.0196] [-42.08 ; -19.28] [-0.0186 ; -0.0113] [-0.09 ; 0.23]

For LMA, RMSE ranges from 0.0043 g · cm−2 for QUWI(e) to 0.0255 g · cm−2 for fir species. For
oak species, the RMSE is higher for QUKE(d) (average is 0.0081 g · cm−2) compared to QUDO(d),
QUCH(e) and QUWI(e). Compared to the mean of reference data, the same arrangement is found:
rRMSE is under 45% for QUDO(d), QUCH(e) and QUWI(e) and above 100% for QUKE(d). The
average RMSE is around 0.02 g · cm−2 for conifer species but represents a rRMSE of only 60 to
65%. R2 score are all negative for all the categories. Best R2 scores are achieved considering all
the oaks together, or considering oaks of mid-elevation forests. The bias is systematically negative
for conifer species. The biases are different considering the oak species: LMA is overestimated for
QUKE(d) and slightly underestimated for QUCH(e). Tau for QUDO(d) and QUWI(e), mirrored in
the Average Tau for oaks of woodland savanna category (0.22, 90% of values within the interval
[0.10 ; 0.32]).

135



CHAPTER 5. ESTIMATION AT THE CANOPY SCALE

For Cab, low Cab values for QUKE(d) are overestimated, these points correspond to samples
collected in autumn. This misestimation of senescent leaves in fall may explain the particular
results for QUKE(d) samples. The range Cab estimates match the range of reference values for
QUWI(e), QUCH(e) and QUDO(d). For conifers, Cab is strongly underestimated, and the range of
estimates does not match the range of measured Cab. All estimated values are located in a small
range centered around a mean value of 40 µg · cm−2 (Figure 5.8).

Cxc for QUKE(d) and QUCH(e) (oak species of mid-elevation forests) is significantly overesti-
mated for all seasons. Cxc Estimates for QUDO(d) and QUWI(e) are in the right order of magnitude.
Cxc estimates for conifers are in the same order of magnitude as measured Cxc values, although
there is no apparent link between estimated and measured values.

EWT is overestimated for oak species and underestimated for conifer species. For LMA, the
measured range is smaller than the estimated range for all the species. LMA estimates are in the
good order of magnitude for QUDO(d). LMA is overestimated for QUKE(d) and underestimated
for QUCH(e) and even more underestimated for conifer species. For conifers, LMA is strongly
underestimated, and the range of estimates does not match the range of measured LMA. All
estimated values are located in a small range centered around a mean value of 0.012 g · cm−2.

0 20 40 60 80 100 120
Measured Cab ( g. cm 2)

0

20

40

60

80

100

120

Es
tim

at
ed

 C
ab

 (
g.

cm
2 )

0 5 10 15 20 25 30 35 40
Measured Cxc ( g. cm 2)

0

5

10

15

20

25

30

35

40

Es
tim

at
ed

 C
xc

 (
g.

cm
2 )

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Measured EWT (cm)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Es
tim

at
ed

 E
W

T 
(c

m
)

0.00 0.01 0.02 0.03 0.04 0.05
Measured LMA (g. cm 2)

0.00

0.01

0.02

0.03

0.04

0.05

Es
tim

at
ed

 L
M

A 
(g

.c
m

2 )

QUCH
QUWI
QUDO
QUKE
Pinus spp.
Abies spp.
CADE
Spring
Summer
Fall

Figure 5.8: Mean leaf traits estimates compared to measured values for validation data. Gray
vertical lines indicate the 1st and 9th deciles of estimated values for each sample.

Globally, for the four leaf traits, the estimates are highly uncertain. Indeed, for each sample,
the range from the 1st decile to the 9th decile of estimated values is large compared with the total
range of variation for each variable (greater than 20 µg · cm−2 for Cab, greater than 0.01 cm for
EWT). For the four leaf traits the performances do not significantly depend on the season and the
site (Figure 5.8).
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5.3 Discussions

5.3.1 Discussion on machine learning algorithms

Four MLRA were compared to build statistical estimation methods: Ridge, PLSR, GPR, and RFR.
The four MLRA provide similar results. Specifically, linear MLRA (Ridge and PLSR) provided
estimates close to non-linear MLRA (GPR and RFR). Similarities between linear and non-linear
MLRA accuracy were already highlighted at the leaf scale for EWT and LMA for oak species
(Chapter 4). At the canopy scale, these results may also highlight that estimation of leaf traits from
canopy reflectance may be close to a linear problem and that it could be solved with simple linear
MLRA. Although, the higher variance of errors at the canopy scale may also hide the non-linear
behavior of the data.

Additionally, Ridge and PLSR achieve similar estimation performances for all the cases. This
result is in line with previous studies that highlighted from experiments the almost identical
behavior of Ridge and PLSR (Firinguetti et al. 2017; Jensen 2021). However, in the vast majority
of cases, Ridge obtained slightly better performance than PLSR. This result may emphasize that
estimation of leaf traits from canopy reflectance is a problem with high error variance since the
Ridge algorithm performs better than PLSR in such types of problems (Firinguetti et al. 2017).

In the case of LMA estimation, RFR performs better estimation in most of the cases considered.
The hypothesis is that LMA absorption signatures are more localized within the reflectance spec-
tra and that RFR, which performs a feature selection, is more likely to isolate the specific spectral
features for LMA.

During the search of optimal 1D-CNN architecture with the TPE sampling experiment, ar-
chitectures with big kernel size (over 100 and corresponding to a 1000 nm length) were more
efficient. Yet, choosing a kernel size almost as large as the size of signal (160) means that the
cross-correlation is only computed on a few points. In the extreme case where the kernel size is
identical to the size of the signal, the cross-correlation is computed only on one point and the con-
volution layer is equivalent to a fully connected layer from a classical neural network architecture.
This means that the convolution kernel is not shifted, or only slightly, over the spectral dimension.
This is a different behavior from other CNN use (e.g., object detection in images, image classifica-
tion) where kernel size of the first layer remains usually very small compared to the signal total
dimension. The reason for kernel size remaining smaller than images in such applications is that
the targeted objects can be located anywhere in the image, so the convolution kernel needs to be
translatable across the entire image. Therefore the hypothesis is that the patterns that activate the
convolution layer in the estimation of leaf traits problem are spectrally localized and consequently
do not require translation of the kernel.

The impact of hyperparameters and their optimal values for 1D-CNN in remote sensing prob-
lems based on spectral data has not been investigated in state-of-the-art studies or their range of
variation or were restricted to a small subset of values.

In contrast with the kernel size optimization results obtained in Subsection 5.2.2, the past
published studies usually consider a small kernel size for the first layer, by analogy to image pro-
cessing problems. For example, in regression problems from reflectance, kernel size are equivalent
to small windows narrower than 50 nm (3 nm equivalent window for Pullanagari et al. 2021, 30

nm for Annala et al. 2020, 20 nm for Ng et al. 2019). Wider equivalent windows of 100 nm have
been investigated by Guidici and Clark 2017 for classification of reflectances on hyperspectral im-
ages. For the retrieval of Cab and Cxc from synthetic spectra (PROSPECT-5) Shi et al. 2022 explored
different kernel sizes. However, the maximal kernel size explored by Shi et al. 2022 corresponds
to a 11 nm window, this window size is not enough to cover the wide band absorption features of
chlorophylls and carotenoids.

Shi et al. 2022 also explored the number of convolution layers and showed that the accuracy
error decreases with the number of layers, which is the opposite of the result found in Subsec-
tion 5.2.2. But, again, this result can be qualified because the proposed kernel sizes do not seem
appropriately chosen.

Most studies used the same optimizer (Adam from Kingma and Ba 2014). However, some
studies used an adaptive learning rate: Guidici and Clark 2017 used Adagrad, which is an opti-
mizer with adaptive learning rate, for a classification problem of pixels of hyperspectral AVIRIS
images ; Ng et al. 2019 used a learning rate (geometric) decay to retrieve properties of soil samples
from ASD reflectance measurements. An adaptive learning rate was not considered to train the
1D-CNN but this modification may improve the convergence of the network during the learning
process.
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For regression problems from reflectance data, all the review studies use a single output and
build a specific model for each variable to be determined, except Cherif et al. 2023. Cherif et al.
2023 showed that a multi-output 1D-CNN model is more efficient than several models to estimate
multiple traits. The hypothesis that would explain this result is that the multi-output 1D-CNN
model incorporates traits’ co-variation. The same multi-output strategy has been used in the Hy-
brid 1D-CNN approach. However in the Hybrid 1D-CNN approach problem the training set is
derived from simulations built without traits’ co-variation.

The loss curves exhibit different behavior between the train step, the validation on synthetic
data step, and for CSTARS-Canopy dataset. As shown in (Figure 5.5) and (Figure 5.7) loss for the
train and validation steps are continuously decreasing along the epoch. Moreover, most accurate
models on the validation synthetic dataset occur after epoch 80 (Figure 5.5, right). An opposite
behavior is observed for the MSE loss for CSTARS-Canopy. This loss increases in the first epochs
and remains constant after the 20th epoch, and models with the most accuracy are all obtained
before the 6th epoch (Figure 5.7). These opposite behaviors highlight that the 1D-CNN learns pat-
terns that are contained in the synthetic data but may not present in the CSTARS-Canopy dataset.
Simulated data are likely not consistent with measured data from CSTARS-Canopy dataset.

5.3.2 Discussion on accuracy of estimations

5.3.2.1 Summary and comparison with literature

For oaks, the Cab rRMSE is around 40% (13.0 µg · cm−2) for the statistical methods, and around
60% with the Hybrid-1D-CNN method. Miraglio et al. 2022 estimated Cab of QUCH(e) and
QUWI(e) (woodland savanna sites) with an hybrid-PLSR method and obtained a RMSE of 7.9 µg · cm−2

(rRMSE = 22%). Mean rRMSE for these two species was around 26% with statistical methods and
43% with the Hybrid 1D-CNN method. Wang et al. 2020 estimated Cab over regions mainly com-
posed of forests (Appalachian and Cumberland plateau, occupied with deciduous and evergreen
forests and pasture, and Ozarks Complex occupied with deciduous/evergreen/mixed forests and
woody wetlands). They found rRMSEs in the range 11.62% - 16.13%. In brief, RMSE obtained
with STAT-GPR is 1.6 times higher compared to the state-of-the-art results. For conifers, Cab is es-
timated over all the forests with a rRMSE of 30% (20.0 µg · cm−2) but with quite no bias. Blackburn
2002 also estimated Cab content of conifer forests with rRMSE of 24%. Moorthy et al. 2008, esti-
mated the Cab of conifer forest with a rRMSE in the range 10 − 20% by coupling leaf and canopy
models. Schlerf et al. 2010 estimated a rRMSE of 8.1% over one spruce forest by comparing differ-
ent preprocessing methods applied on a Hymap camera. Zarco-Tejada et al. 2019 estimated Cab
over a sparse forest of conifers and reached a RMSE of 8.1 µg · cm−2. Globally the RMSE results
achieved by STAT-Ridge are two times higher compared to the state-of-the-art results.

For Cxc, the overall RMSE is around 3.0 µg · cm−2 (rRMSE = 37%). In comparison, Miraglio
et al. 2022 estimated Cxc with a hybrid-PLSR method and obtained a RMSE of 1.73 µg · cm−2

(rRMSE = 18%). For Wang et al. 2020, Cxc from broadleaf/evergreen/mixed forest is estimated
with rRMSE ranging from 16.13% to 11.62%.

For EWT, rRMSE are found above 20% for oak species (RMSE above 0.0020 cm) and are specif-
ically degraded for QUCH(e) and QUWI(e). The accuracy remains lower than the one achieved by
Wang et al. 2020 (0.0036 cm). For conifers, rRMSE is around 15% (RMSE around 0.0060 cm). These
results could be compared with results from the work of Zhu et al. 2019. They estimated EWT
over mixed forests of canopy cover in the range 70 − 100% and obtained a rRMSE around 16%.

For LMA, the RMSE is in the range 10 − 25% for oaks species (RMSE between 0.0015 and
0.0025 g · cm−2). For conifers rRMSE is around 15% (RMSE around 0.0050 g · cm−2). For oaks, the
RMSE is equivalent to the results obtained on one site by Chadwick and Asner 2016 (0.0020 g · cm−2)
and lower than results from Miraglio et al. 2022 (0.0053 g · cm−2) on QUDO(d) and QUWI(e) species.
With a hybrid approach, Ali et al. 2016 over mixed forest estimated LMA with a rRMSE of 4.39%.

Overall, the most accurate results from the statistical methods built from CSTARS-Canopy,
exhibit lower estimation performances compared to the state-of-the-art results. The discrepancy
between the results presented in this chapter and the state-of-the-art may have several origins,
each of which is examined below.
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5.3.2.2 Potential sources of errors and uncertainty

Sources of variability and uncertainty in the process of retrieving leaf traits from imaging spec-
troscopy data of vegetation canopies were reported by Malenovský et al. 2019. Malenovský et al.
2019 divide the source of variability and uncertainty into three classes. The first class is linked
to the radiometric data acquisition and processing to deliver the surface reflectance. The second
class includes the uncertainties of the process to retrieve the traits and assumptions embedded in
the radiative transfer simulation. Finally, the last and third class integrates errors to the field data
acquisition and to build the validation procedure. The potential sources of errors and uncertainty
in the estimation and validation processes are further discussed following the classification from
Malenovský et al. 2019.

The first class of sources of variations includes the quality of the acquisition system. The
acquisition system can provide data containing error, but sensor calibration and atmospheric cor-
rections are usually well controlled by the providers. For AVIRIS radiance acquisition, the absolute
calibration of the sensor is accurate to 7%, and 2% with in-flight calibration (Boardman 2014).

As emphasized in Chapter 1, the impact of geometry and illumination condition are major
factors of reflectance variance. This variability could be a source of error in the estimation process.
To alleviate this issue, some authors add further processing steps to the canopy reflectance. For
example, Feilhauer et al. 2010 or Wang et al. 2020 reduced the variability by normalizing the spec-
tra before any retrieval process. Such preprocessing techniques were not considered in this thesis.

The second class deals with the quality of the retrieval process. There is no consensus on the
recommendation for the selection of the proper retrieval method. Such a choice should depend on
the type of forest, the present species, their architecture and organization, but also on the quality
of the train dataset in the case of statistical approaches.

Regarding statistical approaches, the number of samples is critical to build robust estimators.
Hoeppner et al. 2020 collected data over 40 plots in summer 2017 from coniferous, broadleaf, and
mixed forest stands. Wang et al. 2020 collected about 108 samples in June and August and 140 in
May. For comparison, the CSTARS-Canopy dataset contains 109 samples for oaks and 171 samples
for conifers. However, CSTARS-Canopy samples are acquired over 5 sites and 3 forest types, at
three seasons; these acquisition discrepancies must have increased variance of the CSTARS-Canopy
samples.

Regarding hybrid approaches, it is required to provide physically accurate simulated reflectance.
This point is crucial as simulated data are compared to sensor measurement expressed in the sur-
face reflectance unit. A first control step is to check if the distribution of simulated reflectances
overlap the distribution of measured reflectances. Here a comparison between spectra provides a
relative confidence on the consistency between DART simulations and AVIRIS spectra, at least for
oak species (Figure 5.9).
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Figure 5.9: Reflectances of extracted AVIRIS pixels compared to reflectances computed with DART-
SFR simulations. (top) Reflectances as a function of wavelength, gray area in the background shows
the minimal and maximal reflectance simulated by DART-SFR. (bottom) Scatterplot for four pairs
of bands, grey dots show the simulated reflectance values

The SFR scene used in this thesis may not be suitable to match the AVIRIS acquired signals.
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CHAPTER 5. ESTIMATION AT THE CANOPY SCALE

The SFR scene gloss over the effects of several elements of the structure of the environment (e.g.,
the effects of branches and woody elements reflectance). However, most of published studies
focusing on hybrid methods also use simple representations of the vegetation within their chosen
RTM. Complex and detailed representations of the vegetation are mostly used for evaluation of
RTMs for solving the direct problem (e.g., the RAMI-IV experiment, Widlowski et al. 2015).

The simulation issued from RTM should involve the elements that cause canopy reflectance
variations. These elements are numerous, and are further discussed. A first element that is a
source of variability of the canopy reflectance is the LAI and its combined effect with the back-
ground reflectance. As mentioned by Gao et al. 2022, based on a lab experiment over wheat-like
canopy, the spectral signature of the canopy varies considerably with the background reflectance,
particularly for LAI less than 3 (Barton and North 2001). This threshold could depend on the type
of vegetation as Goel 1988 reported that a LAI over 3 or 4 has no impact on the spectral signature.
Nonetheless, it seems that high LAI (> 6) do not have a significant impact on the spectral signa-
ture, their knowledge of LAI is necessary for low values (< 3) for a good estimation of forest traits
(Xiao et al. 2014). Additionaly, Cheng et al. 2006 mentioned the retrieval of EWT was affected by
vegetation canopy architecture causing over or under estimations. The canopy cover is another
source of variability of the canopy reflectance, mainly because by definition lower canopy covers
leave a larger fraction of soil and undergrowth visible. With high canopy cover levels, the canopy
structure has a weaker impact on the spectral reflectance (Xiao et al. 2014). Ali et al. 2016 also
mentioned that the forest traits can be estimated from the spectral reflectance of a forest canopy
without any information on the forest structure for a canopy cover higher than 50%. However, for
lower canopy cover information on the canopy cover is required. Nonetheless, the tested meth-
ods with CSTARS-Canopy seem to be insensitive to the canopy cover regardless of the leaf trait.
Indeed, the estimation absolute errors do not show any particular correlation to the canopy cover
(Table Table 5.12 and Figure 5.10).

Table 5.12: Non linear correlation (measured by Kendall’s Tau) between absolute estimation error
and canopy cover.

STAT methods Hybrid 1D-CNN

Oaks Conifers Oaks Conifers

Cab 0.00 0.09 0.06 -0.04

Cxc 0.09 -0.07 0.34 0.01

EWT 0.07 -0.02 0.14 -0.02

LMA 0.07 0.04 0.05 -0.06
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Figure 5.10: Evolution of the traits estimation errors as a function of the canopy cover, the best
retrieval method of each trait is kept to graph each figure.

The tree structure and its woody elements can alter the canopy reflectance. By comparing two
tree mockups, Miraglio et al. 2021 showed that the impact of the 3D model of tree woody elements
in the range 0.75 − 1.3 µm had an impact on the spectral reflectance but no influence was noted in
the 1.5 − 2.4 µm range to estimate EWT and LMA.

Finally, the traits’ inter-correlation can be taken into account in the retrieval process, particu-
larly between Cab and Cxc that exhibit naturally strong linear correlation. For example, Miraglio
et al. 2022 and Wocher et al. 2020 built such a relation between Cab and Cxc, leading to a better
estimation performance. Although, estimates from the Hybrid-1D-CNN estimator are obtained
without any relation between Cab and Cxc.

The third class of sources of errors integrates errors to the field data acquisition (from ground
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or lab measurements) and the validation procedure. Firstly, the data acquisition for validation is
performed at the leaf scale and on a unique branch. Therefore this reference for validation is not
exactly at the same scale as the radiometric acquisition. Particularly, the ratio GSD- size of the
object of interest is also crucial because if the GSD is too large in regard to the size of the object,
this will introduce mixed pixels. In the case of CSTARS-Canopy, the radiometric acquisition is
performed at a 14 m GSD over a landscape with a large range of canopy covers (20% to 100%).
As a consequence, a larger number of pixels are a mix between several trees and/or canopy and
background. This presence of mixed pixels is not the case for Hoeppner et al. 2020 (who worked
with a 3 m GSD ) or Wang et al. 2020 (1 m GSD).

Besides, an error can occur when the airborne acquisitions are not synchronized with the
ground measurements. But, the estimation absolute errors do not show any particular correlation
to the temporal shift (Table 5.13 and Figure 5.11). This shows that a temporal shift between
ground measurements and airborne acquisitions in CSTARS-Canopy has a limited influence on
the estimates of the tested statistical methods and Hybrid-1DCNN.

Table 5.13: Non linear correlation (measured by Kendall’s Tau) between absolute estimation error
and temporal shift.

STAT methods Hybrid 1D-CNN

Oaks Conifers Oaks Conifers

Cab -0.03 0.02 0.01 -0.13

Cxc 0.00 0.01 0.05 0.08

EWT 0.17 0.01 0.03 -0.12

LMA 0.03 -0.06 0.01 -0.16
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Figure 5.11: Evolution of the traits estimation errors as a function of the temporal shift between
images and data collection, the best retrieval method of each trait is kept to graph each figure.

5.3.2.3 Upscaling leaf trait estimation from leaf to canopy scale

Globally, the traits estimates at canopy level exhibited a lower accuracy when compared to the
estimates at leaf levels for deciduous forests. Regarding statistical methods, the RMSE degraded
at least by a factor 2 for Cab from 5.0 µg · cm−2 to 13.0 µg · cm−2, for Cxc from 1.3 µg · cm−2 to
3.0 µg · cm−2, and at least by a factor 4 for EWT from 0.0009 cm to 0.0040 cm and for LMA from
0.0009 g · cm−2 to 0.0038 g · cm−2. Several authors detailed the reason for accuracy losses. As
mentioned by Schlerf et al. 2010 the upscaling process introduced effects like architecture (canopy
cover, LAI), and influence of soil and understory background. For low canopy cover (< 50%), the
heterogeneity of the structural variables can also explain the dispersion of the results (Ali et al.
2016). Ali et al. 2016 demonstrated by simulation that the spectral variation at canopy level is
lower than that at leaf level, due to the structural variables effect and as a consequence lead to a
highest estimation uncertainty. Several parameters have to be considered in the upscaling process
which are sources of uncertainties. More particularly, Wocher et al. 2020 mentioned that for low
LAI the soil background affects the spectral signature in the VNIR and as a consequence the Cab
estimation. Further, the estimation of EWT degrades with a LAI increase which intensifies the
910 nm water absorption band but also in presence of moist soil leading to an underestimation of
EWT (Wocher et al. 2020).
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Conclusion

The work carried out in this chapter focused on the estimation of leaf traits at the canopy level
from AVIRIS images. Two estimation strategies were evaluated: a statistical strategy where four
MLRA were tested (Ridge, PLSR, RFR, GPR), and a hybrid strategy based on DART-SFR simula-
tions and a 1D-CNN as MLRA. More specifically the two strategies estimated the leaf traits for all
the AVIRIS images included in the dataset at the same time, covering several forest types and sites
at three seasons.

The statistical methods considered separately the broadleaf species (oaks) and the conifer
species. The four MLRA evaluated achieved similar accuracies (RMSE of 13.0 µg · cm−2 ; 3.0 µg · cm−2;
0.0040 cm ; 0.0038 g · cm−2 for Cab, Cxc, EWT and LMA respectively for oaks; RMSE of 20.0 µg · cm−2

; 3.1 µg · cm−2 ; 0.0042 cm; 0.0044 g · cm−2 for Cab, Cxc, EWT and LMA respectively for conifers).
Although, estimation errors are too large compared to the natural infra-specific variations of leaf
traits in the CSTARS-Canopy dataset and consequently these methods does not appear suitable to
monitor leaf traits for those sites and species.

The hybrid 1D-CNN method provides unreliable estimates for both oaks and conifers. More
specifically, the inverse model learned from the simulations does not match the reflectances ex-
tracted from the AVIRIS images. Indeed, MSE loss computed on the CSTARS-Canopy dataset did
not decrease during the 1D-CNN traning. This indicates that the radiative transfer simulation
from the DART-SFR model are not suitable in this case. Yet, the results on the synthetic dataset
highlight that 1D-CNN may be not a suitable algorithm to deal with spectroscopy. In fact, the 1D-
CNN obtained a better accuracy with large kernels, behaving in this case as a simple multi-layer
perceptron.

Therefore, the four statistical methods produced most accurate estimates than the hybrid
method, whatever the trait and/or species considered. Nevertheless, statistical methods evalu-
ated in this chapter obtained worse performances than methods evaluated in the state-of-the-art.
This difference can be partially explained by the strategy employed here, combining data from
different dates and sites while most of the published studies usually consider site- and period-
specific data. The performances obtained in this chapter could also be explained by the type of
data. Indeed, the resolution of AVIRIS likely covers several trees and background in the same
pixel. Considering this, the signal is altered which act as noise in the dataset, and the validation
protocol from this thesis protocol is not perfectly suited to the AVIRIS data. Conversely, studies
that obtain better estimation accuracy in the state-of-the-art used images with a smaller GSD.

To cope with the limitations highlighted in this chapter, future works should focus on images
with lower GSD or use more extensive reference data that assess the properties of the multiple trees
detected in one pixel. Additionally, more knowledge on the preprocessing of imaging spectroscopy
data to alleviate the effects of canopy structure or illumination variability would be necessary.
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Conclusions and Perspectives

Conclusions

Forest ecosystems are important reservoirs of biodiversity and play important roles in regulat-
ing biogeochemical cycles and climate. As such, forest ecosystems provide numerous ecological
functions and ecosystem services. However, these ecosystems are under threat from current and
future climate change, which is leading to an increase in dry periods, the spread of pathogens
and invasive species. As a result, the health of forests and their trees needs to be monitored. Leaf
traits, defined in ecology, can be used to assess the health of vegetation. They can be estimated
using hyperspectral optical remote sensing by solving an inverse problem, as they alter the optical
properties of vegetation in the 0.4 − 2.5 µm optical range. The estimation of functional traits, of
which leaf traits are a part, is one of the main challenges of environmental remote sensing, along
with the classification of plant species to assess and monitor the evolution of species richness and
their geographical extent. Spaceborne hyperspectral sensors have already been launched or are
planned for the next decade. These sensors will provide massive and unprecedented flows of
hyperspectral images of the Earth, making it possible to monitor forest ecosystems, but requiring
automated processing methods.

In this context, it will be necessary to use generalizable methods for estimating leaf traits,
i.e. capable of processing all forest images from a spatial sensor and therefore being robust to
different temperate forest types and their temporal variations. The work in this thesis is part
of this approach. The aim is to estimate four leaf traits - leaf concentrations of chlorophylls
(Cab), carotenoids (Cxc), water (EWT) and dry matter (LMA) - at five forest sites in California,
covering three temperate forest types at three times of year. In addition, the development of a
generalizable method rests upon two underlying scientific challenges and questions related to the
scale of observation. To address these challenges, the thesis work has been divided into two main
parts.

On the one hand, the different tree species of temperate forests have foliage with specific mor-
phological and phenological characteristics linked to their adaptation to climates. It was therefore
necessary to check whether the estimation methods based on spectroscopic measurements identi-
fied in the literature are applicable to the foliage of temperate forest species. At the leaf scale, the
challenge was to determine the most accurate method for estimating each leaf trait, applicable to
the species studied. At this scale, several estimation methods using spectroscopic measurements
and from the literature were compared on the basis of leaf samples collected at the five sites. The
methods selected include both physical and statistical approaches.

On the other hand, specific features are also visible at the canopy scale, modifying reflectance
above the canopy, as well as landscape variations related to solar illumination and understory. It
therefore appeared necessary to assess the extent to which the estimation accuracies obtained at
leaf scale are transferable to canopy scale, taking into account variations due to canopy structure,
solar illumination and understory. At the tree and canopy scale, the challenge was to identify an
estimation method capable of coping with temporal changes in apparent forest reflectance, based
on AVIRIS acquisitions made at the five sites in conjunction with leaf collections for laboratory
measurements. At this scale, leaf traits were estimated using various statistical approaches based
on the same algorithms employed at the leaf scale. A hybrid method, based on 1D-CNN and
DART-SFR radiative transfer simulations, was also evaluated.

At the leaf scale, four categories of methods were considered for estimating the four leaf traits:
iterative inversion of PROSPECT (IO-PROSPECT), LUT-based PROSPECT inversion, four MLRA-
based PROSPECT inversions (hybrid approaches) and statistical approaches based on the same
four MLRAs. The four MLRAs studied are Ridge, PLSR, GPR and RFR. For the statistical ap-
proaches, two training databases were used (CSTARS-Leaf and ANGERS), enabling us to assess
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the transferability potential of these statistical methods. The accuracies of the estimation methods
were compared using the CSTARS-Leaf dataset. This contains leaf trait measurements combined
with hemispherical reflectance and directional transmittance measurements for coniferous and
deciduous species over three distinct seasons.

Regarding conifer species, the experience did not allow drawing any conclusions on the ap-
plicability of the methods considered in this work. In fact, as the measurement tools used are
poorly adapted to conifer needles, reflectance and transmittance measurements are highly uncer-
tain, even after the application of a correction protocol. For these reasons, it was not possible to
determine whether the estimation errors originate from the measurement or are intrinsic to the
different estimation methods.

In particular, estimation methods were examined for the four hardwood species present in the
CSTARS-Leaf dataset, which are four species of oak (Quercus spp.). For these four oak species, the
main results show that statistical methods lead to the best performance for all four leaf traits, in
particular using GPR as MLRA (RMSE of 5.0 µg · cm−2 ; 1.3 µg · cm−2; 0.0009 cm ; 0.0009 g · cm−2

for Cab, Cxc, EWT and LMA respectively). Using the ANGERS database to assess the transferability
potential of statistical methods, accuracies were degraded by a factor of 2 in terms of RMSE, for all
four leaf traits. Without a representative database, IO-PROSPECT is the recommended method for
estimating Cab, Cxc and EWT. For LMA, a hybrid approach based on the RFR algorithm achieved
better estimation accuracy. Performance seemed to depend little on the season. In addition, the
accuracy of the estimate does not depend particularly on the species, but rather on the functional
type of the plant (i.e., deciduous or evergreen species). The distribution of PROSPECT’s N struc-
ture parameter was also analyzed. It was observed that N was strongly correlated with LMA for
the oak species studied. Moreover, the distribution of N appeared stable for evergreen species
throughout the year, while N tended to increase over the year for deciduous species.

The results of the leaf-scale work highlight several limitations. On the one hand, the dataset
shows that optical measurement lacks reliability for conifers due to the type of foliage: needles
instead of broadleaves. To compare estimation methods reliably, it would be necessary to improve
the precision of the protocols for physically reliable measurements. For example, Harron 2000

proposed the use of a specific carrier to conduct reflectance measurements on needle-like foliage.
On the other hand, it is commonly accepted that fine spectral resolution, i.e. below 10 nm, is suf-
ficient to estimate leaf traits. However, the effect of changing spectral resolution on performance
estimation at the leaf level has not been studied. Indeed, portable spectroradiometers commonly
have a bandwidth of 3 nm, while airborne sensors, notably future space missions, have a band-
width of 10 nm (Rast et al. 2021; Green et al. 2022).

At the canopy scale, two strategies were evaluated: a statistical strategy for which the four
algorithms already employed at the leaf scale were tested, and a hybrid strategy including DART-
SFR simulations and a 1D-CNN algorithm. In particular, the results of the hybrid 1D-CNN method
show that the inverse model learned from the simulations does not match the reflectances extracted
from the AVIRIS images. Furthermore, the 1D-CNN hybrid method does not use any species-
specific simulations (deciduous, coniferous), and in particular the RTMs used are calibrated for
deciduous rather than coniferous species. Overall, the four statistical methods produced better
estimates than the hybrid method, whatever the trait and/or species considered. The statistical
methods achieved similar accuracies in terms of RMSE (RMSE of 13.0 µg · cm−2 ; 3.0 µg · cm−2 ;
0.0040 cm ; 0.0038 g · cm−2 for Cab, Cxc, EWT and LMA respectively). Nevertheless, the estimation
performances obtained here for the statistical methods remain of lower accuracy than the results
presented in the state of the art. More specifically, estimation errors remain too large to detect
seasonal and intra-specific variations in leaf traits for the species and sites considered in this
thesis. The differences in estimation accuracy with the state of the art can be partly explained by
the choice made in this work to combine different sites and different periods of the year at the
same time, whereas the work carried out in the state of the art generally considers site- and period-
specific data. However, the study conducted in this thesis is more realistic to actually measure real
ecosystems.

The data processing and simulations presented in this document for work at the canopy scale
reveal certain limitations. The following points are intended to remove or mitigate these limita-
tions. In canopy-scale work, no pre-processing is carried out on reflectances measured at the top
of the canopy. Nevertheless, pre-processing has been used in the state of the art by some authors
and could be of interest in attenuating the effects of differences in illumination. Furthermore, the
data used here do not include any relief-related corrections. The cases considered here are little
affected by the effects of relief, and the collections were carried out on slight slopes for accessibility
reasons (i.e., less than 15°). Nevertheless, a generalizable method will have to take into account
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the effects of more significant slopes.
In addition, it is important to take into account the influence of understory vegetation in future

estimates. For variable forest densities, the resolutions used necessarily cover trees or portions of
trees with portions of understory. Another point concerns woody elements, which are not taken
into account in the simulation for hybrid methods. The resolution of future missions (i.e., 30 m ;
Green et al. 2022; Rast et al. 2021) implies the collection of data on surfaces containing several trees
and portions of understory. Pixels will therefore be mixed, covering several individuals, hence the
interest in taking measurements, directly or indirectly, on an entire stand rather than a single tree.

The work presented in this thesis is limited to two ecoregions of the California floristic province.
Even though the species and sites selected are similar to plant communities of other ecoregions of
the temperate biomes, the study has been limited to this geographical area, and therefore it is not
possible to simply generalize the conclusions at the global scale.

Perspectives

The work proposed in this thesis offers numerous prospects. Firstly, these prospects concern the
improvement of estimation performance from a methodological point of view, and secondly, the
monitoring of forest ecosystems in the context of future hyperspectral missions.

With the aim of developing a generalizable method, the validation datasets must cover a wider
range of species and ecosystems, with a greater number of samples collected per tree group, in
order to match the potential resolution and extent of future space-based sensors.

The new trend in machine learning is the explainability (Schwalbe and Finzel 2023). The field
of explainable artificial intelligence (XAI) involves understanding how machine learning models
work, in order to guarantee their reliability. The field of remote sensing, in particular for leaf
trait estimation, could benefit from XAI advances to build estimation methods based on statistical
and hybrid strategies. The aim would be to guarantee the reliability of these methods and the
identification of key variables in the decision-making process of these models. In addition, transfer
learning techniques can allow the use of several datasets with different distribution characteristics,
and ease the transferability of statistically learned models (Weiss et al. 2016). At the end of the
day, the generalization leaf traits estimations through a statistical strategy could drastically benefit
from both XAI and transfer learning.

For hybrid methods, more insight are required regarding the complexity of the direct mod-
eling. Addition of more elements in radiative transfer models might be necessary to provide
more reliable simulated reflectances to feed statistical algorithms. The proper level of details re-
quired for leaf traits estimation should be assessed. It is expected that the proper level of details
would vary as a function of the GSD. Besides, more details models can be provided from growth
model developed for tree physiology studies (Eloy et al. 2017) or for computer graphics purposes
(Makowski et al. 2019), including at the stand scale (Dufour-Kowalski et al. 2012). These growth
models can also take into account environmental factors to deliver simulations adapted to a wide
number of ecoregions.

The LMA comprises a large number of compounds (proteins, cellulose, hemicellulose and
lignin ; Féret et al. 2021). To obtain more precise information on plant physiology, it is interesting
to be able to estimate the concentration of each of these compounds. In particular, nitrogen-based
compounds (proteins) can be spectrally distinguished from carbon-only elements, as the N-H bond
has a specific spectral signature (Curran 1989).

At the leaf scale, several datasets, gathering leaf traits and optical measures, are freely available,
but concern mainly broadleaved species. In order to improve the analysis of coniferous forests
using statistical methods, it will be necessary to have more datasets of this kind for these types of
species.

The datasets used here correspond to three collections at different seasons (spring, summer,
autumn). A more complete validation of the methods requires work on data sets covering the
whole year with the same frequency as a spatial sensor (i.e., with an interval of 1 month or less).
These observation frequencies would enable physiological processes to be monitored through-
out the phenological cycle. In addition, it will be necessary to link the observations with plant
physiology in order to monitor and predict the state of health of the forest ecosystem.

In the longer term, two major missions are planned: SBG (NASA ; Green et al. 2022) and
CHIME (ESA ; Rast et al. 2021). These missions will make systematic acquisitions of all continen-
tal surfaces, similar to current multispectral observations (Sentinel-2, Landsat 8 and 9). These two
sensors are planned to deliver hyperspectral images with a 30 GSD. With these large GSD, a single
pixel will cover several trees, potentially encompassing a wide variety of species. Consequently,
the validation protocol of leaf traits estimation methods needs to be adapted. One solution could
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be to take measurements for the main trees of a whole stand included in the pixel, but would
tremendously time consuming and require a large work force. Another solution could be to grad-
ually upscale the estimation methods: a first validation method from low GSD airborne images
would be validated in a first time, and then be used to produce reliable leaf traits maps that will
be the reference values for estimation methods using a larger GSD.

Besides, hyperspectral data, especially space-borne data, could be coupled with multispectral
data with a higher spatial resolution and therefore provide more information on canopies.

The signal received by a sensor will be sensitive to both vegetation features and the amount
of foliage defined by LAI . This raises the question, particularly for larger GSD, of whether it
is preferable to estimate canopy contents defined by the product of foliage traits and LAI, as
opposed to foliage traits alone. Moreover, canopy contents will be directly related to the amount
of chlorophyll per square meter, which directly gives the carbon dioxide absorption capacity per
hectare.
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Conclusions et Perspectives

Conclusions

Les écosystèmes forestiers sont d’importants réservoirs de biodiversité et jouent un rôle impor-
tant dans la régulation des cycles biogéochimiques et du climat. En tant que tels, les écosystèmes
forestiers assurent de nombreuses fonctions écologiques et de nombreux services écosystémiques.
Toutefois, ces écosystèmes sont menacés par le changement climatique actuel et futur, qui en-
traîne une augmentation des périodes de sécheresse, la propagation de pathogènes et d’espèces
envahissantes. Par conséquent, la santé des forêts et de leurs arbres doit être surveillée. Les
caractéristiques foliaires, définies en écologie, peuvent être utilisées pour évaluer la santé de la
végétation. Ils peuvent être estimés par télédétection optique hyperspectrale en résolvant un
problème inverse, car ils modifient les propriétés optiques de la végétation dans la gamme op-
tique 0, 4− 2, 5 µm. L’estimation des traits fonctionnels, dont les traits foliaires font partie, est l’un
des principaux défis de la télédétection environnementale, avec la classification des espèces végé-
tales pour évaluer et suivre l’évolution de la richesse des espèces et leur étendue géographique.
Des capteurs hyperspectraux spatiaux ont déjà été lancés ou sont prévus pour la prochaine dé-
cennie. Ces capteurs fourniront des flux massifs et sans précédent d’images hyperspectrales de la
Terre, ce qui permettra de surveiller les écosystèmes forestiers, mais nécessitera des méthodes de
traitement automatisées.

Dans ce contexte, il sera nécessaire d’utiliser des méthodes généralisables pour l’estimation des
traits foliaires, i.e. capables de traiter toutes les images forestières à partir d’un capteur spatial et
donc d’être robustes aux différents types de forêts tempérées et à leurs variations temporelles. Le
travail de cette thèse s’inscrit dans cette approche. L’objectif est d’estimer quatre caractéristiques
foliaires - les concentrations foliaires de chlorophylles (Cab), de caroténoïdes (Cxc), d’eau (EWT)
et de matière sèche (LMA) - sur cinq sites forestiers en Californie, couvrant trois types de forêts
tempérées à trois périodes de l’année. De plus, le développement d’une méthode généralisable
repose sur deux défis scientifiques sous-jacents et des questions liées à l’échelle d’observation.
Pour relever ces défis, le travail de thèse a été divisé en deux parties principales.

D’une part, les différentes espèces d’arbres des forêts tempérées ont un feuillage avec des car-
actéristiques morphologiques et phénologiques spécifiques liées à leur adaptation aux climats.
Il a donc été nécessaire de vérifier si les méthodes d’estimation basées sur des mesures spec-
troscopiques identifiées dans la littérature sont applicables au feuillage des espèces forestières
tempérées. A l’échelle de la feuille, l’enjeu était de déterminer la méthode d’estimation de chaque
caractère foliaire la plus précise et applicable aux espèces étudiées. A cette échelle, plusieurs
méthodes d’estimation utilisant des mesures spectroscopiques et issues de la littérature ont été
comparées sur la base d’échantillons de feuilles collectés sur les cinq sites. Les méthodes sélec-
tionnées comprennent à la fois des approches physiques et statistiques.

D’autre part, des caractéristiques spécifiques sont également visibles à l’échelle de la canopée,
modifiant la réflectance au-dessus de la canopée, ainsi que les variations du paysage liées à
l’illumination solaire et au sous-étage. Il est donc apparu nécessaire d’évaluer dans quelle mesure
les précisions d’estimation obtenues à l’échelle de la feuille sont transférables à l’échelle de la
canopée, en tenant compte des variations dues à la structure de la canopée, à l’illumination solaire
et au sous-étage. A l’échelle de l’arbre et de la canopée, le défi était d’identifier une méthode
d’estimation capable de faire face aux changements temporels de la réflectance apparente de la
forêt, en se basant sur les acquisitions AVIRIS réalisées sur les cinq sites en conjonction avec des
collectes de feuilles pour des mesures en laboratoire. À cette échelle, les caractéristiques des
feuilles ont été estimées à l’aide de diverses approches statistiques basées sur les mêmes algo-
rithmes que ceux utilisés à l’échelle des feuilles. Une méthode hybride, basée sur des simulations
de transfert radiatif 1D-CNN et DART-SFR, a également été évaluée.
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À l’échelle de la feuille, quatre catégories de méthodes ont été envisagées pour estimer les
quatre caractères foliaires : l’inversion itérative de PROSPECT (IO-PROSPECT), l’inversion de
PROSPECT basée sur la LUT, quatre inversions de PROSPECT basées sur les MLRA (approches
hybrides) et des approches statistiques basées sur les mêmes quatre MLRA. Les quatre MLRA
étudiés sont Ridge, PLSR, GPR et RFR. Pour les approches statistiques, deux bases de données
d’entraînement ont été utilisées (CSTARS-Leaf et ANGERS), ce qui nous a permis d’évaluer le
potentiel de transférabilité de ces méthodes statistiques. Les précisions des méthodes d’estimation
ont été comparées à l’aide de l’ensemble de données CSTARS-Leaf. Cette base de données contient
des mesures de caractéristiques foliaires combinées à des mesures de réflectance hémisphérique
et de transmittance directionnelle pour des espèces de conifères et de feuillus au cours de trois
saisons distinctes.

En ce qui concerne les espèces de conifères, l’expérience n’a pas permis de tirer des conclusions
sur l’applicabilité des méthodes considérées dans ce travail. En effet, les outils de mesure utilisés
étant mal adaptés aux aiguilles de conifères, les mesures de réflectance et de transmittance sont très
incertaines, même après l’application d’un protocole de correction. Pour ces raisons, il n’a pas été
possible de déterminer si les erreurs d’estimation proviennent de la mesure ou sont intrinsèques
aux différentes méthodes d’estimation.

En particulier, les méthodes d’estimation ont été examinées pour les quatre espèces de feuillus
présentes dans l’ensemble de données CSTARS-Leaf, qui sont quatre espèces de chênes (Quercus
spp.). Pour ces quatre espèces de chênes, les principaux résultats montrent que les méthodes
statistiques donnent les meilleurs résultats pour les quatre caractères foliaires, en particulier en
utilisant le GPR comme MLRA (RMSE de 5.0 µg · cm−2 ; 1.3 µg · cm−2 ; 0.0009 cm ; 0.0009 g · cm−2

pour Cab, Cxc, EWT et LMA respectivement). En utilisant la base de données ANGERS pour
évaluer le potentiel de transférabilité des méthodes statistiques, les précisions ont été dégradées
par un facteur de 2 en termes de RMSE, pour les quatre caractères foliaires. En l’absence d’une
base de données représentative, IO-PROSPECT est la méthode recommandée pour estimer Cab,
Cxc et EWT. Pour la LMA, une approche hybride basée sur l’algorithme RFR a permis d’obtenir
une meilleure précision d’estimation. Les performances semblent peu dépendre de la saison. En
outre, la précision de l’estimation ne dépend pas particulièrement de l’espèce, mais plutôt du type
fonctionnel de la plante (i.e., espèces à feuilles caduques ou à feuilles persistantes). La distribution
du paramètre de structure N de PROSPECT a également été analysée. Il a été observé que N
était fortement corrélé avec LMA pour les espèces de chênes étudiées. De plus, la distribution
de N semble stable pour les espèces à feuilles persistantes tout au long de l’année, alors que N a
tendance à augmenter au cours de l’année pour les espèces à feuilles caduques.

Les résultats du travail à l’échelle de la feuille mettent en évidence plusieurs limites. D’une
part, l’ensemble des données montre que les mesures optiques manquent de fiabilité pour les
conifères en raison du type de feuillage : des aiguilles au lieu de feuilles larges. Pour comparer
les méthodes d’estimation de manière fiable, il serait nécessaire d’améliorer la précision des pro-
tocoles pour obtenir des mesures physiquement fiables. Par exemple, Harron 2000 a proposé
l’utilisation d’un support spécifique pour effectuer des mesures de réflectance sur un feuillage en
forme d’aiguille. D’autre part, il est communément admis qu’une résolution spectrale fine, i.e.
inférieure à 10 nm, est suffisante pour estimer les caractéristiques des feuilles. Cependant, l’effet
d’une modification de la résolution spectrale sur l’estimation des performances au niveau des
feuilles n’a pas été étudié. En effet, les spectroradiomètres portables ont généralement une largeur
de bande de 3 nm, tandis que les capteurs aéroportés, notamment les futures missions spatiales,
ont une largeur de bande de 10 nm (Rast et al. 2021; Green et al. 2022).

A l’échelle de la canopée, deux stratégies ont été évaluées : une stratégie statistique pour laque-
lle les quatre algorithmes déjà utilisés à l’échelle de la feuille ont été testés, et une stratégie hybride
comprenant des simulations DART-SFR et un algorithme 1D-CNN. En particulier, les résultats de
la méthode hybride 1D-CNN montrent que le modèle inverse appris à partir des simulations ne
correspond pas aux réflectances extraites des images AVIRIS. En outre, la méthode hybride 1D-
CNN n’utilise pas de simulations spécifiques aux espèces (feuillus, conifères) et, en particulier,
les RTM utilisés sont calibrés pour les feuillus plutôt que pour les conifères. Dans l’ensemble,
les quatre méthodes statistiques ont produit de meilleures estimations que la méthode hybride,
quels que soient le caractère et/ou l’espèce considérés. Les méthodes statistiques ont atteint des
précisions similaires en termes de RMSE (RMSE de 13.0 µg · cm−2 ; 3.0 µg · cm−2 ; 0.0040 cm
; 0.0038 g · cm−2 pour Cab, Cxc, EWT et LMA respectivement). Néanmoins, les performances
d’estimation obtenues ici pour les méthodes statistiques restent moins précises que les résultats
présentés dans l’état de l’art. Plus précisément, les erreurs d’estimation restent trop importantes
pour détecter les variations saisonnières et intraspécifiques des caractéristiques des feuilles pour
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les espèces et les sites considérés dans cette thèse. Les différences de précision d’estimation avec
l’état de l’art peuvent être partiellement expliquées par le choix fait dans ce travail de combiner
différents sites et différentes périodes de l’année en même temps, alors que le travail effectué dans
l’état de l’art considère généralement des données spécifiques au site et à la période. Cependant,
l’étude menée dans cette thèse est plus réaliste pour mesurer réellement des écosystèmes réels.

Les traitements de données et les simulations présentés dans ce document pour les travaux à
l’échelle de la canopée révèlent certaines limites. Les points suivants ont pour but de supprimer
ou d’atténuer ces limitations. Dans les travaux à l’échelle de la canopée, aucun prétraitement n’est
effectué sur les réflectances mesurées au sommet de la canopée. Néanmoins, le prétraitement a
été utilisé dans l’état de l’art par certains auteurs et pourrait être intéressant pour atténuer les
effets des différences d’illumination. Par ailleurs, les données utilisées ici ne comportent pas de
corrections liées au relief. Les cas considérés ici sont peu affectés par les effets du relief, et les
collectes ont été réalisées sur des pentes faibles pour des raisons d’accessibilité (i.e., moins de
15°). Néanmoins, une méthode généralisable devra prendre en compte les effets de pentes plus
importantes.

En outre, il est important de prendre en compte l’influence de la végétation de sous-bois dans
les estimations futures. Pour des densités forestières variables, les résolutions utilisées couvrent
nécessairement des arbres ou des portions d’arbres avec des portions de sous-bois. Un autre
point concerne les éléments ligneux, qui ne sont pas pris en compte dans la simulation pour les
méthodes hybrides. La résolution des futures missions (i.e., 30 m ; Green et al. 2022; Rast et al.
2021) implique la collecte de données sur des surfaces contenant plusieurs arbres et des portions
de sous-bois. Les pixels seront donc mélangés, couvrant plusieurs individus, d’où l’intérêt de
prendre des mesures, directement ou indirectement, sur un peuplement entier plutôt que sur un
seul arbre.

Le travail présenté dans cette thèse se limite à deux écorégions de la province floristique de
Californie. Même si les espèces et les sites sélectionnés sont similaires aux communautés végétales
d’autres écorégions des biomes tempérés, l’étude a été limitée à cette zone géographique et il n’est
donc pas possible de généraliser simplement les conclusions à l’échelle mondiale.

Perspectives

Les travaux proposés dans cette thèse offrent de nombreuses perspectives. Ces perspectives con-
cernent d’une part l’amélioration des performances d’estimation d’un point de vue méthodologique,
et d’autre part le suivi des écosystèmes forestiers dans le cadre des futures missions hyperspec-
trales.

Dans le but de développer une méthode généralisable, les jeux de données de validation
doivent couvrir une plus large gamme d’espèces et d’écosystèmes, avec un plus grand nombre
d’échantillons collectés par groupe d’arbres, afin de correspondre à la résolution et à l’étendue
potentielles des futurs capteurs spatiaux.

La nouvelle tendance en matière d’apprentissage automatique est l’explicabilité (Schwalbe and
Finzel 2023). Le domaine de l’intelligence artificielle explicable (eXplanable Artificial Intelligence
- XAI) consiste à comprendre le fonctionnement des modèles d’apprentissage automatique afin
de garantir leur fiabilité. Le domaine de la télédétection, en particulier pour l’estimation des car-
actéristiques des feuilles, pourrait bénéficier des avancées de l’XAI pour construire des méthodes
d’estimation basées sur des stratégies statistiques et hybrides. L’objectif serait de garantir la fi-
abilité de ces méthodes et l’identification des variables clés dans le processus de décision de ces
modèles. En outre, les techniques d’apprentissage par transfert (transfer learning) peuvent perme-
ttre l’utilisation de plusieurs ensembles de données présentant des caractéristiques de distribution
différentes, et faciliter la transférabilité des modèles appris statistiquement (Weiss et al. 2016). En
fin de compte, la généralisation des estimations de traits de feuilles par le biais d’une stratégie
statistique pourrait bénéficier considérablement de l’XAI et de l’apprentissage par transfert.

Pour les méthodes hybrides, il est nécessaire de mieux comprendre la complexité de la mod-
élisation directe. L’ajout d’autres éléments dans les modèles de transfert radiatif pourrait être
nécessaire pour fournir des réflectances simulées plus fiables afin d’alimenter les algorithmes
statistiques. Il convient d’évaluer le niveau de détail requis pour l’estimation des caractéristiques
des feuilles. On s’attend à ce que le niveau de détail approprié varie en fonction du GSD. En
outre, des modèles plus détaillés peuvent être fournis par des modèles de croissance développés
pour des études de physiologie des arbres (Eloy et al. 2017) ou à des fins d’infographie (Makowski
et al. 2019), y compris à l’échelle du peuplement (Dufour-Kowalski et al. 2012). Ces modèles de
croissance peuvent également prendre en compte des facteurs environnementaux pour fournir des
simulations adaptées à un grand nombre d’écorégions.
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La LMA comprend un grand nombre de composés (protéines, cellulose, hémicellulose et lig-
nine ; Féret et al. 2021). Pour obtenir des informations plus précises sur la physiologie des plantes,
il est intéressant de pouvoir estimer la concentration de chacun de ces composés. En particulier, les
composés à base d’azote (protéines) peuvent être distingués spectralement des éléments unique-
ment carbonés, car la liaison N-H possède une signature spectrale spécifique (Curran 1989).

A l’échelle de la feuille, plusieurs jeux de données, rassemblant des traits foliaires et des
mesures optiques, sont librement disponibles, mais concernent principalement des espèces di-
cotylédones. Afin d’améliorer l’analyse des forêts de conifères à l’aide de méthodes statistiques, il
sera nécessaire de disposer de plus de jeux de données de ce type pour ces types d’espèces.

Les jeux de données utilisés ici correspondent à trois collectes à des saisons différentes (print-
emps, été, automne). Une validation plus complète des méthodes nécessite de travailler sur des
jeux de données couvrant l’ensemble de l’année avec la même fréquence qu’un capteur spatial
(i.e., avec un intervalle de 1 mois ou moins). Ces fréquences d’observation permettraient de suivre
les processus physiologiques tout au long du cycle phénologique. En outre, il sera nécessaire de
relier les observations à la physiologie des plantes afin de surveiller et de prédire l’état de santé
de l’écosystème forestier.

À plus long terme, deux grandes missions sont prévues : SBG (NASA ; Green et al. 2022) et
CHIME (ESA ; Rast et al. 2021). Ces missions feront des acquisitions systématiques de toutes les
surfaces continentales, similaires aux observations multispectrales actuelles (Sentinel-2, Landsat
8 et 9). Ces deux capteurs sont prévus pour fournir des images hyperspectrales avec un GSD
de 30. Avec ces grandes dimensions, un seul pixel couvrira plusieurs arbres, englobant poten-
tiellement une grande variété d’espèces. Par conséquent, le protocole de validation des méthodes
d’estimation des caractéristiques des feuilles doit être adapté. Une solution pourrait consister à
prendre des mesures pour les principaux arbres d’un peuplement entier inclus dans le pixel, mais
cela prendrait énormément de temps et nécessiterait une main-d’œuvre importante. Une autre
solution pourrait consister à augmenter progressivement l’échelle des méthodes d’estimation :
une première méthode de validation à partir d’images aéroportées à faible GSD serait validée
dans un premier temps, puis utilisée pour produire des cartes de caractéristiques foliaires fiables
qui constitueront les valeurs de référence pour les méthodes d’estimation utilisant une GSD plus
importante.

En outre, les données hyperspectrales, en particulier les données spatiales, pourraient être
couplées à des données multispectrales avec une résolution spatiale plus élevée et fournir ainsi
davantage d’informations sur les couverts.

Le signal reçu par un capteur sera sensible à la fois aux caractéristiques de la végétation et à
la quantité de feuillage définie par le LAI . Cela soulève la question de savoir s’il est préférable
d’estimer le contenu du couvert défini par le produit des caractéristiques du feuillage et du LAI,
plutôt que par les seules caractéristiques du feuillage, en particulier pour les GSD les plus impor-
tantes. En outre, le contenu de la canopée sera directement lié à la quantité de chlorophylle par
mètre carré, qui donne directement la capacité d’absorption du dioxyde de carbone par hectare.
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Appendix A

June 2022 field campaign

This appendix presents the fieldwork that occurred in June 2022 (from June 13th to June 20th) on
two study sites SOAP and TEAK, already introduced in Chapter 3. This fieldwork aims to assess
the health status of forest plots in the context of an extended drought and bark beetle outbreaks.

The appendix reports the proceedings of the fieldwork, the measured data, the processing of
the data and the first analysis and results. Fieldwork focuses on the estimation of health status
from the ground through visual assessments and noticing pathogens presence. Measurement
protocols and basic statistics of the data are presented in this document. This fieldwork leads
to a ground truth health status of small-forested plots. At the same time, the PRISMA satellite
acquired spectral characteristics of the forest. The end of the section presents acquisitions from
PRISMA and the processing of the images.

A.1 Fieldwork

The team was comprised of five people, including three students from the University of California
in Davis who volunteered for this fieldwork. For fieldwork, the team was split into two groups:
one group of 3 people and one group of two.

Fieldwork aims to perform forest inventories on 40 meter-sided square plots (1600 m² area)
to evaluate locally the forest health status. The size of the plot was defined in order to include
a full pixel of PRISMA images (30 m GSD) and with the smallest possible area to reduce time
consumption. Squares of 40 m by 40 m seemed to be the best compromise. Selected plots are
shown on Figure A.1 for SOAP and Figure A.2 for TEAK.

Figure A.1: Map of SOAP site (coordinates given in meter in the UTM 11N system (EPSG 32611),
Google terrain as map background). Orange squares represent sampled forest plots and the blue
triangle highlights the location of the base camp.

While performing inventories, the groups took note of the tree species, the stress status of the
trees (qualitative assessment) and signs of pathogens (see details of the inventory protocol further
in this section). Basic measurements were performed on each tree such as measurement of DBH
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Figure A.2: Map of TEAK site (coordinates given in meter in the UTM 11N system (EPSG 32611),
Google terrain as map background). Orange squares represents sampled forest plots and the blue
triangle highlight the location of the based camp

(Diameter at Breast Height of the trunk) and record of GPS positions. Details of the sampling
protocol are given at the end of this section.

Each plot is defined by a 40m by 40m square. For each plot, we define a regular grid of 25

points (5 rows, 5 columns). We use two numbers to refer to each point: its row number and its
column number. The 25 points grid defines 16 subplots. The southwest point gives the subplot
number (see Figure A.3). GPS units embedded the 25 points regular grid coordinates for each plot
under a waypoint file. In the field, we put a flag at each point coordinate to delimit the subplots.

Figure A.3: Naming convention of subplots numbers and plot grid.

For each point of the regular grid, the type of ground cover (among ten categories, considered
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types are listed below) and the type of canopy cover (whether or not there is canopy above the
point and which tree species) were observed.
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A.2 Measurements of tree-scale metrics

This part details the protocol used to perform the tree inventories inside plots. The protocol is
designed to provide basic information on the stress level and growth status of the trees in the plot.
The DBH is an indicator to assess the height, the age, and the total biomass of the tree. The Global
Health index, the Chlorosis index and the Defoliation index provide information on the state and
stress level of the tree. Signs of pathogens presence aim to give hypothetical explanatory factors
on the health status observed. The inventory only considers trees with a DBH larger than 20 cm,
smaller trees were rejected from the census.

Protocol:

• Record of the position of the tree (GPS measurement, taken on the north side of the tree),

• Identification of the tree species (written down with species code),

• Measurement of the DBH (taken at 1.3 m height),

• Evaluation of the global health status of the tree (through Global Health index, see details
below),

• Evaluation of chlorosis level and defoliation level (through Chlorosis index and Defoliation
index, see details below),

• Visual identification of pathogens and their signs of presence (for bark beetles, mistletoe and
cankers, see details below).

After measuring a tree in our inventory, the team put a railroad chalk mark on the bark (always
on the north side) in order to prevent measuring the tree twice or forgetting a tree.

Global Health Index: The Global Health Index rates each tree between 1 and 10. The evaluator
rates the tree on its global visual aspect. For 1, the tree seems perfectly healthy. For 10 the tree is
dead.

Chlorosis and defoliation indices are adaptations of Hawksworth’s 1977 protocol designed to
evaluate the invasion on dwarf mistletoe (Hawksworth 1977). The protocol separates the crown in
tree parts with an independent rating for each part.

Chlorosis index: This index rates the chlorotic aspect of a tree. For the rating: we divide the
crown in three parts (bottom, middle, top). For each third, the chlorosis is rated between 0 and 4

according to the number of branches affected by chlorosis:

• 0 => 0% of branches,

• 1 => 0-25% of branches,

• 2 => 25-50% of branches,

• 3 => 50-75% of branches,

• 4 => >75% of branches.

The final index is the sum of the three rates. Hence, this index ranges from 0 to 12.
NB: The Chlorosis index presented here does not discriminate between chlorosis due to a par-

tial or full decay of the leaf going along with desiccation (brown leaves) and chlorosis only due to
a lack of chlorophylls (unusual light green leaves) often caused by lack of some nutrients.

Defoliation index: This index rates the defoliated aspect of a tree. We proceed the same way as
the chlorosis index.

During the ten days of fieldwork, 20 plots were sampled: 11 plots on SOAP and 9 plots on
TEAK. The location of the 20 plots are illustrated in Figure A.1 and Figure A.2. At the end of
fieldwork our teams census 1034 trees on the nine different species living on the two sites.
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A.3 Plot-scale metrics

During data processing, plot-scaled metrics are derived by averaging these tree-scaled metrics.
Comparison of plot-scaled metrics highlight the structural diversity and health status variability
among sampled forest plots.

Statistics on measurements highlight the diversity of the 20 visited plots.
First, statistics on DBH measurements mirror the structural differences between plots. As an

indicator of the age of trees, the DBH, and more precisely its distribution, show the diversity of
vegetation types (Figure A.4). Some of the visited plots can be considered as young forest (low
DBH with little variance) but most are older plots undergoing a renewal process (high and low
DBH present on the plot).

SO
AP

_0
1

SO
AP

_0
2

SO
AP

_1
2

SO
AP

_1
3

SO
AP

_1
4

SO
AP

_2
3

SO
AP

_2
4

SO
AP

_2
5

SO
AP

_2
6

SO
AP

_2
7

SO
AP

_2
8

TE
AK

_0
4

TE
AK

_0
8

TE
AK

_0
9

TE
AK

_1
4

TE
AK

_1
5

TE
AK

_1
8

TE
AK

_1
9

TE
AK

_3
3

TE
AK

_3
4

20

40

60

80

100

120

140

160

DB
H 

(c
m

)

Distribution of DBH among plots

Figure A.4: Distribution of DBH for each visited plot.
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Figure A.5: Species distribution for each plot in proportion of total DBH.

All measurements are tree-scaled metrics, but it is possible to derive plot-scaled metrics by
averaging all tree-scaled metrics from one plot. Averages can be computed considering each tree
or stem equally or by weighting tree-scaled metrics with DBH. Since DBH is a good proxy for the
total biomass of a tree, DBH-weighted averages provide information taking account for the size of
each tree and should better match with what a spaceborne sensor can see.

Statistics the Global Health index emphasize gaps between the health status of all the plots
(Figure A.6). The part of trees in decline (index of 6 or higher) is not the same for all plots. Some
plots seem stable with few decaying trees compensated by natural renewal such as SOAP_24 and
TEAK_04. For other plots, the high level of decaying trees jeopardizes the forest’s future (TEAK_09

and TEAK_18).
More particularly, the mortality rate (index of 10) is included in these data. Figure A.6 shows

directly this mortality rate in dark red.
From the data analysis, we are able to select five plot-scaled metrics (or indices). First, there

are health indices which take account of all the trees and their health status. These indices are
respectively derived from global health index, chlorosis index and defoliation index by computing
the DBH-weighted averages:

• Plot global index
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Figure A.6: Global Health index distribution by plots in proportion of total DBH.

• Plot chlorosis index

• Plot defoliation index

Secondly, there are two mortality indices:

• Plot stem mortality: number of dead trees (10 as global index) on the plot

• Plot biomass mortality: sum of DBH of all dead trees (10 as global index)

A.4 Remote sensing data

PRISMA is an experimental satellite from ASI (Italian spatial agency). Its payload is an imaging
spectrometer (30 m GSD and 30 km swath). Vegetation traits can be estimated from PRISMA
hyperspectral data.

PRISMA pre-feasibility service1 on May 30th 2022, forecasted 12 overflights of SOAP and TEAK
sites by the PRISMA satellite during June and July 2022. For each overflight, an acquisition was
requested from the PRISMA web application. Two acquisitions succeeded in June at the same time
as fieldwork (RGB images shown in Figure A.7).

Acquisition from 2022-06-11 on SOAP shows good quality, without any clouds over the area.
Acquisition from 2022-06-23 on TEAK is less reliable. The weather over the TEAK area was

cloudy that day. The image contains several clouds, including clouds over some sampled plots.

Figure A.7: PRISMA images (RGB extraction) acquired over Soaproot Saddle on 2022-06-11 (left)
and Teakettle Experimental Range on 2022-06-23 (right).

Processing of PRISMA images includes their geo-referencing and extraction of pixels matching
the plots’ locations. PRISMA images already include a geo-referencing when downloaded from the

1http://prisma-prefeasibility.asi.it/
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PRISMA server, but a visual quality check showed that this geo-referencing is not reliable. They
show shifts that are up to 6 pixels (180 m). Therefore, the first processing step was to perform
a new registration for both PRISMA images. Gefolki (Brigot et al. 2016) algorithm performed
a reliable geo-referencing. Reference images are RGB images from Maxar Technology, extracted
from Google Earth service and resampled at a 30 m GSD. Coordinate reference system of the
reference images is EPSG:32611 (UTM 11N). The reference band used for geo-referencing is Band
30 of the PRISMA VNIR sensor, at 641 nm. After registration, the second step is to extract data
from pixels with ground truth. The ground sampling distance of the PRISMA sensor is 30 m,
therefore during processing one pixel was extracted for each plot. Geographic position of plots’
centroids defines the list of pixels to extract. Pixels of interest are extracted from the hyperspectral
datacubes with rasterio python library. Figure A.8 illustrates the location of extracted pixels on
correctly georeferenced images. Figure A.9 illustrates the reflectance data from all extracted pixels.
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Figure A.8: RGB representation of PRISMA images correctly georeferenced for the SOAP (left) and
TEAK (right). Each cross shows the location of a plot and the extracted pixels (coordinates given
in meters in the UTM 11N system (EPSG 32611)).

Figure A.9: Reflectance spectra extracted from PRISMA images (one spectrum for each plot).

It is important to notice that the PRISMA sensor acquired the image over TEAK while the sky
was cloudy. For three plots, the extracted pixels are reflectance of cloudy atmosphere and will be
rejected for the following steps of the study. These three spectra are noticeable on Figure A.9 (plot
TEAK_04, TEAK_33, TEAK_34 respectively in orange, green and light blue).
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Appendix B

Leaf scale estimation for needle-leaf
species

The measurement protocol from Mesarch et al. 1999 provide two equation to derive the true re-
flectance ρ and transmittance τ of needle-leaves from the measured reflectance ρmeas and transmit-
tance τmeas. The computation ρ and τ correct the effect of the gap fraction fg between needle-leaves.
The computation of τ take also into account the reflectance of the integrating sphere surface ρw.
The computation of ρ and τ are respectively given by equations B.1 and B.2.

ρ =
ρmeas

(1 − fg)
(B.1)

τ =
τmeas − ρw fg

(1 − fg)
(B.2)

Equations B.1 and B.2 can be reversed to assess the impact of the gap fraction on the apparent
reflectance ρmeas and transmittance τmeas. These effects are shown in Figure B.1. Globally, when
the gap fraction increase, ρmeas increase while τmeas decrease, possibly below zero.
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Figure B.1: Influence of gap fraction on measured reflectance ρmeas (lower lines) and transmittance
τmeas (upper lines) following equations from Mesarch et al. 1999

Tables B.1, B.2, B.3 and B.4 and Figures B.2, B.3, B.4 and B.5 provides the results of leaf traits
estimation on the needles-leaf species at the leaf scale.

0 25 50 75 100 125 150
measured Cab ( g. cm 2)

0

20

40

60

80

100

120

140

pr
ed

ic
te

d 
C a

b 
(

g.
cm

2 ) RMSE : 36.6
R2 : -1.50

IO-PROSPECT

0 25 50 75 100 125 150
measured Cab ( g. cm 2)

RMSE : 22.8
R2 : 0.03

STAT-ANGERS-Ridge

0 25 50 75 100 125 150
measured Cab ( g. cm 2)

RMSE : 13.5
R2 : 0.64

STAT-CSTARS-Ridge

Pinus spp.
Abies spp.
Calocedrus spp.
Spring
Summer
Fall

Figure B.2: Validation plots for Cab for the methods highlighted in Table B.1
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Table B.1: Performance of methods for the estimation of Cab (in each subcategory, the most accurate
method is highlighted in bold).

Category Method RMSE
µg.cm−2

R2

-
Bias

µg.cm−2

Physical IO-PROSPECT 36.6 -1.50 -26.8

Statistical

STAT-ANGERS-Ridge 22.8 0.03 -14.1
STAT-ANGERS-PLSR 24.3 -0.10 -16.6
STAT-ANGERS-GPR 27.5 -0.41 -21.2
STAT-ANGERS-RFR 30.3 -0.71 -13.1

STAT-CSTARS-Ridge 13.4 0.64 -0.1
STAT-CSTARS-PLSR 14.0 0.61 -0.2
STAT-CSTARS-GPR 13.6 0.63 0.4
STAT-CSTARS-RFR 17.0 0.42 0.5

Table B.2: Performance of methods for the estimation of Cxc (in each subcategory, the most accurate
method is highlighted in bold).

Category Method RMSE
µg.cm−2

R2

-
Bias

µg.cm−2

Physical IO-PROSPECT 14.0 -6.99 -12.5

Statistical

STAT-ANGERS-Ridge 5.6 -0.30 -2.7
STAT-ANGERS-PLSR 5.4 -0.18 -2.0
STAT-ANGERS-GPR 7.5 -1.28 -5.7
STAT-ANGERS-RFR 8.0 -1.63 -5.6

STAT-CSTARS-Ridge 3.1 0.58 0.0
STAT-CSTARS-PLSR 3.2 0.54 -0.1
STAT-CSTARS-GPR 3.4 0.48 0.0
STAT-CSTARS-RFR 3.6 0.42 0.1
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Figure B.3: Validation plots for Cxc for the methods highlighted in Table B.2
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Figure B.4: Validation plots for EWT for the methods highlighted in Table B.3
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Table B.3: Performance of methods for the estimation of EWT (in each subcategory, the most
accurate method is highlighted in bold).

Category Method RMSE
cm

R2

-
Bias
cm

Physical IO-PROSPECT 0.0165 -6.13 -0.0105

Statistical

STAT-ANGERS-Ridge 0.0158 -5.49 -0.0147

STAT-ANGERS-PLSR 0.0155 -5.25 -0.0144

STAT-ANGERS-GPR 0.0138 -3.96 -0.0129

STAT-ANGERS-RFR 0.0115 -2.44 -0.0098

STAT-CSTARS-Ridge 0.0042 0.52 -0.0004
STAT-CSTARS-PLSR 0.0043 0.48 -0.0005

STAT-CSTARS-GPR 0.0043 0.50 -0.0005

STAT-CSTARS-RFR 0.0047 0.41 -0.0006

Table B.4: Performance of methods for the estimation of LMA (in each subcategory, the most
accurate method is highlighted in bold).

Category Method RMSE
g.cm−2

R2

-
Bias

g.cm−2

Physical IO-PROSPECT 0.0222 -13.61 0.0097

Statistical

STAT-ANGERS-Ridge 0.0133 -4.26 -0.0118
STAT-ANGERS-PLSR 0.0134 -4.35 -0.0119

STAT-ANGERS-GPR 0.0195 -10.24 -0.0166

STAT-ANGERS-RFR 0.0149 -5.59 -0.0123

STAT-CSTARS-Ridge 0.0044 0.46 -0.0002

STAT-CSTARS-PLSR 0.0045 0.41 -0.0002

STAT-CSTARS-GPR 0.0043 0.46 0.0000
STAT-CSTARS-RFR 0.0055 0.14 -0.0002
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Figure B.5: Validation plots for LMA for the methods highlighted in Table B.4
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