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Abstract/Résumé

Abstract- This thesis is concerned with trajectory tracking in Linear Complemen-
tarity Systems (LCSs). LCS is a subclass of Non-Smooth Dynamical Systems (NSDS)
defined by the combination of differential equations and non-smooth constraints known
as complementarity conditions. These conditions are represented by a Linear Comple-
mentarity Problem LCP, which has the form of 0 ≤ w ⊥ λ ≥ 0, where both variables
w = Mλ + q and λ are called complementarity variables. It is important to note that
the difficulty in studying LCS stems from the non-smooth constraints represented by
the complementarity problem, which can also induce state jumps. The main analytical
tools for stability analysis and control design are passivity which is an input/output
property, and the maximal monotonicity of the non-smooth part. The notion of passiv-
ity is studied before applying complementarity constraints between w, as the output of
the system, and λ, considered as a virtual input. Matrix inequalities which arise from
passivity play a crucial role in the control design process; thus, solving linear matrix
inequalities (LMIs) is an important objective of this thesis.

The contributions of this work are theoretical results on the stability analysis of the
error dynamics, where the error represents the difference between the trajectories of the
real system and the desired system (i.e., the system to be tracked). First, the nominal
case without state jumps is tackled. Then, the study focuses on cases with state jumps,
analyzing stability for both jumps at initial time and further state jumps. In this case,
preserving passivity during the state jump is crucial for stability analysis. Furthermore,
the analysis is extended to the case when parametric time-varying uncertainties are
added to the dynamical system to be controlled, resulting in the boundedness of the
error under strong passivity conditions, which can be relaxed under certain conditions.
In addition, this thesis illustrates various numerical applications, with a particular
focus on electrical circuits with ideal diodes. It also presents applications on networks
with unilateral interactions and mechanical systems with unilateral springs.

Building on the theoretical contributions presented, this work is extended to address
the challenges of trajectory tracking in frictional oscillators. Frictional oscillators with
set-valued friction are studied due to their dynamics which are suitable for modeling
within the LCS framework. Relaxing strong passivity conditions is essential for the
analysis of trajectory tracking in the presence of uncertainties. Moreover, the set-
valued friction model is enhanced by including the Stribeck effect which enables us to
design a new control strategy based on passifying the friction model. The dynamics of
the frictional oscillator introduce a complex control problem when incorporating pulley-
belt dynamics into the analysis. This leads to a new contribution which is the design

ii



of a controller based on backstepping strategy, since the previous theoretical results
on trajectory tracking in the nominal case could not be applied when considering the
entire dynamical system.
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Résumé- Cette thèse se concentre sur la poursuite de trajectoires dans les Systèmes
de Complémentarité Linéaire (LCS). Les LCS sont une classe de systèmes dynamiques
non lisses (NSDS) définis par la combinaison d’équations différentielles et de contraintes
non lisses aussi connues sous le nom de conditions de complémentarité. Ces conditions
sont représentées par un problème de complémentarité linéaire (LCP), de la forme
0 ≤ w ⊥ λ ≥ 0, où les deux variables w = Mλ + q et λ sont appelées variables de
complémentarité. Il est important de noter que la difficulté de l’étude des LCS vient
du caractère non-régulier des contraintes, qui peuvent également engendrer des sauts
d’état. Le principal outil analytique pour l’analyse de la stabilité et la conception des
commandes est la passivité, qui est une propriété entrée/sortie, ainsi que la mono-
tonie maximale de la partie non-régulière. La notion de passivité est étudiée avant
d’appliquer des contraintes de complémentarité entre w, la sortie du système, et λ,
l’entrée virtuelle. Les inégalités matricielles qui découlent de la passivité jouent un
rôle crucial dans le processus de conception des commandes; ainsi, la résolution des
inégalités matricielles linéaires (LMIs) est un objectif important de cette thèse.
Les contributions de ce travail donnent des résultats théoriques sur l’analyse de stabilité
de la dynamique d’erreur, où l’erreur représente la différence entre les trajectoires du
système réel et celles du système désiré. Tout d’abord, le cas nominal sans sauts d’état
est abordé. Ensuite, l’étude se concentre sur les cas avec sauts d’état, en analysant
la stabilité pour des sauts au moment initial et des sauts d’état suivants. Dans ce
cas, la préservation de la passivité pendant le saut d’état est cruciale pour l’analyse
de stabilité. En outre, l’analyse est étendue au cas où des incertitudes paramétriques
variant dans le temps sont ajoutées au modèle du système dynamique à commander,
ce qui se traduit par une erreur bornée garantie par la passivité forte, que l’on peut
relaxer sous certaines conditions. De plus, cette thèse illustre diverses applications
numériques, avec un accent particulier sur les circuits électriques avec diodes idéales.
Elle présente également des applications sur des réseaux à interactions unilatérales et
des systèmes mécaniques à ressort unilatéral.
En s’appuyant sur les contributions théoriques présentées, ce travail est étendu pour
relever les défis de la poursui de trajetoires dans les oscillateurs à frottement. Les
oscillateurs à frottement, dont le frottement est supposé multi-valué lorsque la vitesse
de glissement est nulle, sont étudiés en raison de leur dynamique, adaptée à la modéli-
sation dans le cadre LCS. La relaxation des conditions de passivité forte est essentielle
pour l’analyse du suivi de trajectoire en présence d’incertitudes. De plus, le modèle
de frottement à valeurs multi-valué est amélioré en incluant l’effet Stribeck qui nous
permet de concevoir une nouvelle stratégie de commande basée sur la passification du
modèle de frottement. Les dynamiques de l’oscillateur à frottement posent un prob-
lème de commande complexe lors de l’incorporation des dynamiques de poulie-courroie
dans l’analyse. Cela conduit à une nouvelle contribution, qui est la conception d’une
commande basée sur une stratégie appelée backstepping, car les résultats théoriques
précédents sur la poursuite de trajectoires dans le cas nominal ne peuvent pas être
appliquées lorsque l’on considr̀e l’ensemble du système dynamique.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction
Complementarity dynamical systems are a class of nonsmooth nonlinear systems, that
has received attention in the Automatic Control and Applied Mathematics literature
because of their applications in many fields like electrical circuits with nonsmooth com-
ponents, mechanical systems with unilateral contact, networks with unilateral inter-
actions, economics with projected dynamical systems, genetics, traffic flow and neural
networks, etc, see [38, 24, 82]. A Linear Complementarity System (LCS) with inputs
is a nonsmooth dynamical system defined as:(a) ẋ(t) = Ax(t) + Bλ(t) + Eu(t) (almost everywhere)

(b) 0 ≤ λ(t) ⊥ w(t) = Cx(t) + Dλ(t) + Fu(t) ≥ 0
(1.1)

where x ∈ IRn, λ ∈ IRm and w ∈ IRm, A, B, C, D, E and F are constant matrices of
appropriate dimensions, u : IR+ → IRp is an exogenous signal or a control input. The
constraint in (1.1) (b) is the short form of the following three conditions: i) λ(t) ∈ IRm

+ ,
ii) w(t) = Cx(t) + Dλ(t) + Fu(t) ∈ IRm

+ , and iii) ⟨λ(t), w(t)⟩ = 0. Such constraints
describe a linear complementarity problem (LCP), denoted LCP(D, Cx + Fu). The
LCP (1.1) (b) states that for i = 1, . . . , k, either λi = 0 or wi = 0. The set of constraints
corresponding to the indices where wi = 0 is the set of active constraints and it varies as
the system evolves over time. Thus, the LCS in (1.1) can transition from one operation
mode to another.
The Lyapunov-based stability of linear complementarity systems (LCS) is studied in
[47, 44, 31, 30, 75, 130, 11], and the output regulation is analyzed in [144]. Linear
Passive Complementarity system (LPCS) are investigated in [44] with some insights
provided on their stability. The trajectory tracking problem is given a solution in
[116, 115, 117, 72, 71, 34, 33, 21, 119, 118, 99, 79, 131, 132] for different systems and
using various strategies. The tracking control for mechanical systems with unilateral
constraints and/or impacts is tackled in [118, 33, 34, 79, 117]. The tracking of cyclic
trajectories which undergo constrained/unconstrained/impacting phases of motion, in-
cluding multiple constraints and multiple impacts phenomena, is studied in [34, 33,
21, 119, 118] for n-degree-of-freedom (dof) systems. Basically, in these studies, the
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Chapter 1. Introduction and Preliminaries

controllers are extended passivity-based algorithms which switch between three sub-
controllers (persistent contact with constant number of activated constraints, mode
obtained from the deactivation of one or several constraints, and impacting transition
phase between two persistent contact modes when the number of activated constraints
increases). The authors introduce the notion of weak stability, which extends Lya-
punov stability by disregarding the Lyapunov function variation during the transition
phases (nonmonotonic Lyapunov functions are used). Trajectory tracking in planar
billiards is studied in [116, 115, 117, 72, 71]. The objective is to control a two-dof
particle inside a closed compact domain when trajectories collide with the domain’s
boundary and never undergo persistent contact with it (a kind of vibro-impact systems
[27, section 1.3.2]). Tracking control for a class of hybrid systems with state jumps is
studied in [69, 20, 132], where in [69] the state feedback controller is designed with the
property that the plant’s jump times coincide with those of the reference trajectory,
while [20] proposes a novel tracking error definition that deals with the non-coinciding
jump times. It is noteworthy that in most of these articles, the desired trajectory is
suitably modified in the neighborhood of state jumps (impacts), and/or the tracking
error dynamics ’stability is tailored to the problem.

Trajectory tracking in fully-actuated complementarity Lagrangian systems has been
tackled in [116, 115, 72, 71, 34, 33, 21, 119, 118, 79, 131]. This thesis, however, is ded-
icated to trajectory tracking in LCS, which represent a class of complementarity sys-
tems different from the Lagrangian complementarity systems studied in the references
mentioned before. The main differences between Lagrangian systems with unilateral
constraints and impacts, and LCS as presented in this manuscript, are that impacts in
mechanical systems are state-dependent, see (3.39), and passivity does not hold when
the complementarity variables (i.e., the contact force multiplier and the gap function,
which is usually a nonlinear function of the position) are used as the input and output
variables to define the supply rate (see Remark 3.6.1). In passive LCS, state jumps are
essentially exogenous (i.e., they are triggered by the signal Fu(t) in the variable w in
(1.1) above), and passivity holds between the complementarity variables. Moreover the
complementarity variables are not of the same form in mechanical systems and in LCS.
In the latter they take the form of a linear function of the state, the multiplier and
an exogenous signal (see definition of LCS in (1.1)), while unilateral constraints in La-
grangian systems always have D = 0 and F = 0 (hence excluding the strong passivity
of the closed-loop system), and usually are a nonlinear function of one part of the state
only, i.e., positions. However, even linear unilaterally constrained Lagrangian systems
do not fit within the class of LCS studied in this thesis, because of the different nature
of state jumps as explained above. One major consequence is that state jumps can be
triggered instantaneously by the exogenous signal, which is not possible in mechanical
systems where exogenous signals (external forces and torques) do not act directly in
the complementarity constraints. The way the desired trajectories are designed in the
above works and in this manuscript, are quite different as well. When the unilateral
constraints are replaced by unilateral springs, things differ significantly as illustrated
in section 3.6.

Certainly, the frameworks that are the closest to what is presented in the sequel, are in

2



1.1. Introduction

[144] and [99] (though the class of studied systems is not the same, and the robustness
analysis is not led in [99]). The output regulation problem tackled in [144] differs from
the problem tackled in this work. First, the desired systems are different: The desired
system to be tracked is defined by the dynamics of the quadruple (Ar, Gr, Hr, Jr) as
mentioned in [144] which is different from the real system defined. It is noticeable
that the controller u in [144] is introduced only in the ordinary differential equation
(ODE) of the real system, but not in the variational inequality (VI). Besides, there
is no presence of a desired controller ud in the desired system, which is autonomous.
Second, the objectives are different: In the presence of uncertainties, the real and the
desired systems have different dynamics. Hence, in this case, the aim of the regulation
problem in [144] is to design a controller using internal model principle that achieves a
zero steady-state regulation error: e

∆= x − Πxr for some matrix Π. But, the aim of the
tracking problem tackled in this work, in the presence of uncertainties, is to ultimately
bound the tracking error: e

∆= x − xd, where xd(·) is generated by desired dynamics.
Third, the controller in [144] is state feedback, while state and multiplier feedback are
considered in this thesis.
The authors in [99] study tracking for Measure Differential Inclusions (MDIs), which
differ from LCS investigated in this work. They give sufficient conditions for the uni-
form convergence of MDIs with maximal monotonicity properties. In the tracking
control of MDIs, the authors considered a desired trajectory xd of locally bounded
variation, and control inputs with an impulsive part (which we avoid, see section 2.1.3
and condition (C1)). In our approach, the desired trajectory xd is designed indepen-
dently by a LCS as shown in (2.1). Another difference with [99] is that the authors
are interested in designing a controller such that the MDI of the closed-loop system is
uniformly convergent with zero tracking error, while this thesis is primarily concerned
with studying the stability of the error dynamics without explicitly considering the
convergence of the closed-loop system.

The second part of the thesis focuses on frictional oscillators, which are low-dimension
mechanical systems where friction plays a prominent role due to its nonlinear and non-
smooth effect. Frictional oscillators have gained significant attention in the Nonlinear
Dynamics scientific community due to their applications in mechanical engineering.
The friction in these oscillators is modeled by a set-valued signum function, specifically
representing planar Coulomb’s friction with constant normal contact force. The set-
valued signum function is quite amenable for complementarity [43, 27], which allows the
study of frictional oscillators within the complementarity framework. This connection
with complementarity systems motivates us to apply some of the theoretical results
derived in the first part and introduce original extensions to address some challenges.
One-degree-of-freedom oscillator have been widely studied in the Applied Mathematics
and in the Bifurcation and Chaos scientific communities, see, e.g., [92, Chapter 9]
[100, 97, 96, 64, 66, 139, 16, 98]. It may also be linked to a simplified Burridge-
Knopoff model in seismology (see [67]). Many authors studied the behaviour of the
stick-slip oscillators with various frictional laws see, e.g., [100, 97, 96, 7, 85, 105,
109, 129, 146, 147]. The construction and stability analysis of periodic solutions for
periodically excited frictional oscillator was first presented by [66, 139], with further
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results on the existence and stability of periodic solutions presented in [129, 108, 91,
109, 64]. Externally excited frictional oscillators, as studied in [146, 147, 7, 85], may
exhibit chaotic behaviour and they usually undergo rich bifurcation behaviour, see,
e.g., [126, 63, 97, 96, 73, 114, 85, 108, 91, 101]. Stick-slip vibrations, which are self-
sustained oscillations induced by dry friction are described in [147, 129]. Several control
techniques have been proposed for the stability analysis of frictional oscillators, such
as active feedback control to superimpose frictional force in [80], and control strategies
based on delayed time feedback in [65, 102].

Contributions
The main contributions of this thesis are presented in two main parts:

• Part 1: Trajectory Tracking in Linear Complementarity Systems

• Part 2: Trajectory Tracking in Frictional Oscillators

In the first part, which is covered in Chapters 2 and 3, a solution for the trajectory
tracking in LCS is proposed. The study addresses case when all parameters are known,
and when parameter uncertainties are taken into account. In the case when all param-
eters are known, both absolutely continuous solutions and solutions with state jumps
are treated. Passivity and maximal monotonicity of suitable operators are crucial tools
used to design stable closed-loop systems. Solving matrix inequalities, which are de-
rived from passivity is central for the controller design. The theoretical developments
are illustrated by numerical examples on nonsmooth circuits, networks with unilateral
interactions, and mechanics with unilateral springs. A significant focus is given to
electrical circuits with ideal diodes, where the passivity of electrical circuits with ideal
diodes is investigated, strongly passive circuits are presented, and different approaches
are explained for building passive circuits.
The second part of this thesis is represented by Chapters 4 and 5. It contributes to
solve the tracking control problem in frictional oscillators. First, the strong passivity
assumption is relaxed to assume strict state passivity for robustness analysis in the
presence of uncertainties. Then, an extended controller with a compensation term is
designed to handle the Stribeck effect in the friction model. Another contribution ad-
dresses the tracking control problem when incorporating pulley-belt dynamics, propos-
ing a backstepping strategy for the controller design. This approach ensures stability
of the tracking error and boundedness of the pulley’s angle dynamics, supported by
numerical simulations for nominal and uncertain cases to guarantee some robustness
for the controller. Furthermore, the controller is studied in discrete time when using
the Backward-Euler (implicit) method. Stability results are proved.

Outline
This manuscript is divided into five chapters. The first chapter is dedicated to the
general introduction of the thesis, along with useful preliminaries and definition for the
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analysis in the following chapters. Chapters 2 and 3 represent the first part of the thesis.
In Chapter 2, the problem of trajectory tracking control in LCS is given a solution for
cases with and without state jumps, and with and without uncertainties. Also, a simple
example is given to illustrate the case of state jumps. In Chapter 3, various numerical
applications are provided to explain the theoretical results developed in Chapter 2
which are supported by numerical simulations. Most of Chapter 3 is concerned with the
study of electrical circuits with ideal diodes, where different approaches are explained
to enhance the passivity of electrical circuits and achieve strictly and strongly passive
circuits. Other applications are introduced like networks with unilateral interactions
and mechanical systems with unilateral springs.
Chapters 4 and 5 cover the second part of the thesis. In Chapter 4, the problem of
trajectory tracking control in frictional oscillators is considered. The stability is an-
alyzed for cases with and without uncertainties. Then, the friction model is refined
by including Stribeck effect, and a new approach is tackled to design the controller,
followed by stability analysis for the tracking error. Chapter 5 focuses on backstepping
tracking control in frictional oscillators with pulley-belt dynamics. In this chapter,
the controller is designed based on backstepping strategy and the stability analysis is
performed in continuous time and discrete time domains. In addition, numerical simu-
lations is carried out for the nominal case and the case when parametric uncertainties
are presented.

Publications
1. A.Younes, F. Miranda-Villatoro, and B. Brogliato. ”Trajectory tracking in linear

complementarity systems with and without state jumps: A passivity approach”.
In: Nonlinear Analysis: Hybrid Systems 54 (2024), p.101520.DOI: https://
doi.org/10.1016/j.nahs.2024.101520

There are two additional papers under preparation, corresponding to the contents of
Chapters 4 and 5, to be submitted to journals before the end of this year.

1.2 Preliminaries

1.2.1 Notations and Definitions
This section provides an overview of the notations and definitions used throughout the
manuscript, which ensures clarity of the discussion in the following chapters.

Matrices. The elements of a matrix M ∈ IRn×m are denoted Mij. M•,j is its jth
column, and Mi,• is its ith row. A matrix M ∈ IRn×n, possibly nonsymmetric, is said
to be positive definite, M ≻ 0 (resp. positive semi-definite, M ≽ 0) if x⊤Mx > 0 for all
x ̸= 0 ∈ IRn (resp. x⊤Mx ≥ 0). M is a P-matrix if all its principal minors are positive;
a positive definite matrix is a P-matrix. The minimum and the maximum eigenvalues
of M are denoted λmin(M) and λmax(M). The maximum singular value of M ∈ IRn×m
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is denoted σmax(M), Im(M) is its image, Ker(M) is its null space. The singular values
are ordered as σmax(M) = σ1(M) ≥ σ2(M) > . . . > σr(M) > 0, where r = rank(M).
Let M = M⊤, its eigenvalues are real and ordered as λmax(M) = λ1(M) ≥ λ2(M) ≥
. . . ≥ λn(M) = λmin(M). M † denotes the Moore-Penrose pseudo-inverse of M .

Functions. Let 1 ≤ p < +∞, a Lebesgue integrable function f : I ⊆ IRn → IR

belongs to Lp
loc(I; IR) if (

∫
I ||f(t)||pdt)

1
p < +∞ for any open set I (extended spaces).

If I = IRn then f ∈ Lp(IRn; IR). Also f ∈ L∞(IRn; IR) if f(·) is Lebesgue integrable
and ||f(x)|| < +∞ almost everywhere on IRn. We denote ||f ||I,p

∆= (
∫

I ||f(t)||pdt)
1
p for

1 ≤ p < +∞, and ||f ||I,∞
∆= esssupt∈I ||f(t)|| (when I is obvious from the context it

may be avoided). The range of the function f(·) is Im(f), its domain is dom(f) =
{x | f(x) < +∞}. Right and left limits of the function f(·) at t are denoted f(t+) and
f(t−). AC is for absolute continuity, DI for differential inclusion, BV is for bounded
variation, LBV is locally BV, and RCLBV is for right-continuous LBV.

Sets. Let S be a nonempty set, rint(S) is its relative interior [134]. Let S and S ′ be
closed sets, dH(S, S ′) denotes the Hausdorff distance between S and S ′. Let S ⊆ IRm

be a closed convex set containing 0. Its polar cone S◦ = {x ∈ IRm | x⊤v ≤ 0, ∀v ∈
S} = −S⋆ where S⋆ is the dual cone.
Let us recall some useful definitions [38, 134, 135, 62, 40].

Definition 1 (Normal Cone). Let S ⊂ IRn be a closed, non-empty and convex set.
The normal cone to S at a point x ∈ S is given by

NS(x) =
{
g ∈ IRn | g⊤(z − x) ≤ 0, ∀z ∈ S

}
. (1.2)

For x ̸∈ S one usually sets NS(x) = ∅. The tangent cone TS(·) is the polar to the
normal cone.

The domain of a set-valued mapping T : IRn ⇒ IRn is Dom(T ) = {x ∈ IRn | T (x) ̸= ∅}.

Definition 2 (Monotonicity). A multivalued mapping T : Dom(T ) ⊆ IRn ⇒ IRn is
monotone if for all u1, u2 ∈ Dom(T ), for all v1 ∈ T (u1), v2 ∈ T (u2)

⟨u1 − u2, v1 − v2⟩ ≥ 0.

It is hypomonotone if there exists a real k > 0 such that: ⟨u1 − u2, v1 − v2⟩ ≥
−k||u1 − u2||2. It is maximal monotone if its graph cannot be enlarged without de-
stroying monotonicity.

The normal cone to a convex closed nonempty set defines a maximal monotone set-
valued mapping. More generally, let φ : IRn → IR ∪ {+∞} be a proper, convex and
lower semicontinuous function. Its subdifferential at x is defined as the set ∂φ(x) =
{g ∈ IRn | φ(v) − φ(x) ≥ g⊤(v − x), ∀v ∈ IRn}, and it defines a maximal monotone
mapping. The normal cone in (1.2) is the subdifferential of the indicator function
defined as ΨS(x) = 0 if x ∈ S, ΨS(x) = +∞ if x ̸∈ S. Another function plays an
important role: the support function of the set S, defined as σS(y) = supv∈S v⊤y. It is
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related to the indicator function as: η ∈ NS(v) = ∂ΨS(v) ⇔ v ∈ ∂σS(η) = N −1
S (η) (the

indicator and the support functions are conjugate functions, and their subdifferentials
are inverse mappings). The set-valued signum function sgn(x) is:

sgn(x) =


+1, if x > 0
−1, if x < 0
[−1, +1], if x = 0

(1.3)

Definition 3 (Generalized Equation). A Generalized Equation (GE) is a nonlinear
problem characterized by set-valued mapping denoted as:

0 ∈ F (x) (1.4)

where dom(F ) ⊆ IRn ⇒ IRp. One common form is: 0 ∈ f(x)+NK(x), where f : IRn →
IRp is a single-valued function and NK(x) is the normal cone to the closed convex set
K at x.
Definition 4 (LCCS). A linear cone complementarity system (LCCS) is a particular
class of a nonsmooth dynamical system given by:ẋ(t) = Ax(t) + Bλ(t) + Eu(t)

K ∋ λ(t) ⊥ w(t) = Cx(t) + Dλ(t) + Fu(t) ∈ K⋆
(1.5)

where K ⊆ IRm is a nonempty closed convex cone, K⋆ = {z ∈ IRm | z⊤w ≥ 0, ∀ w ∈
K} is its dual cone.
It is noteworthy that most of the results in this thesis apply to linear cone complemen-
tarity systems (LCCS).
Definition 5 (DI). A differential inclusion (DI) describes the time evolution of a state
variable x and has the form:ẋ(t) ∈ F (t, x(t)), a.e. t ∈ [0, T ]

x(0) = x0 ∈ IRn

where F : [0, ∞) × IRn ⇒ IRn is a multi-valued mapping.
Using tools from convex analysis it is possible to rewrite equivalently the LCS in (1.1)
as the differential inclusion (DI) [38]:

ẋ(t) ∈ Ax(t) + Eu(t) − B(D + N −1
IRm

+
)−1(Cx(t) + Fu(t)) ∆= −H(t, x(t)), (1.6)

where λ(t) ∈ −(D + N −1
IRm

+
)−1(Cx(t) + Fu(t)). We shall see later that the DI may

sometimes be written in a slightly different way when the input is given a specific
form, see (2.8) below. A state x∗ is an equilibrium point of (1.1) if and only if there
exist λ∗ and w∗ ∈ Rn such that the mixed LCP (MLCP)0 = Ax∗ + Bλ∗

0 ≤ λ∗ ⊥ w∗ = Cx∗ + Dλ∗ ≥ 0

holds.
Passivity plays an important role in the sequel of this work.
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Definition 6 (Passivity). A quadruple (A, B, C, D) is said to be passive, or dissipative
with respect to the supply rate u⊤y, if there exists a non-negative function V : IRn →
IR+, called a storage function, such that for all t0 ≤ t1 and all time functions (u, x, y)
∈ L2([t0, t1]; IRm × IRn × IRm) such that ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t),
the following inequality holds:

V (x(t0)) +
∫ t1

t0
u⊤(t)y(t) dt ≥ V (x(t1)) (1.7)

The inequality (1.7) is called the dissipation inequality. Equivalently, the following LMI
(

A⊤P + PA PB − C⊤

B⊤P − C −D − D⊤

)
≼ 0 (1.8)

has a solution P = P ⊤ ≽ 0. Then V (x) = 1
2x⊤Px. The quadruple (A, B, C, D) is said

strictly state passive if the LMI (1.8) holds with P = P ⊤ ≻ 0 and A⊤P + PA + ϵP ≼ 0
for some ϵ > 0. It is said strongly passive if the LMI (1.8) holds with strict inequality
and P = P ⊤ ≻ 0.

When LCS are considered, then the multiplier λ is chosen as the input u while w is
chosen as the output y for the passivity property. Passivity is then to be seen as a
structural property related to internal variables of the LCS, and motivated by the fact
that it corresponds to a physical property in some applications like circuits.

Definition 7 (VIs). [68, Definition 1.1.1] Given a subset K of the Eucledian n-
dimensional space IRn and a mapping F : K → IRn, the variational inequality, denoted
VI(K, F ) is to find a vector x ∈ K such that:

(y − x)⊤F (x) ≥ 0, ∀y ∈ K ⇔ −F (x) ∈ NK(x) (1.9)

where NK(x) is the normal cone to K at a point x. The set of solutions to this problem
is denoted SOL(K, F ). In addition, if K is a polyhedral set, the variational inequality
is called ’affine’ and denoted AVI(K, F ).

Definition 8 (Transfer Functions). [40, Definitions 2.34, 2.58, 2.78] The transfer
function H(s) = C(sI − A)−1B + D ∈ Cmxm is positive real (PR) if: H(s) has no pole
in Re[s] > 0, H(s) is real for all positive real s, H(s) + H⋆(s) ≽ 0 for all Re[s] > 0.
The transfer function H(s) ∈ Cmxm is strictly positive real (SPR) if H(s − ϵ) is PR
for some ϵ > 0 [40, Definition 2.58] and it is strong SPR (SSPR) if H(s) is analytic
in Re[s] ≥ 0 and Re[H(jω)] ≥ δ > 0, for all ω ∈ [−∞, ∞] and some δ ∈ IR [40,
Definition 2.78].

Strict state passivity is related to SPR tranfer functions, while strong passivity is
related to SSPR transfer functions [40, 110]. Using the Schur complement theorem (see
e.g., [40, Theorem A.65]), strong passivity implies that D ≻ 0 and −A⊤P − PA ≻ 0.
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1.2.2 Well-posedness of Linear Complementarity Systems
LCS as in (1.1) are nonlinear nonsmooth dynamical systems with external inputs,
whose well-posedness (existence, uniqueness, and continuous dependence of solutions)
has been investigated. Let us provide a short summary of well-posedness results in [44,
47, 46, 45, 39, 41, 31, 144]. Most of them apply to larger classes of nonsmooth systems
than LCS. Let us remind that a right-continuous function f : I ⊆ IR → IR of locally
bounded variation (RCLBV), has a countable set of discontinuities on I (allowing for
left accumulations of jump instants), and possesses a differential measure df , see [113].
The conditions associated with the results recalled below, are sufficient. However they
are well fitted with the conditions imposed in this article for stability purposes, i.e.,
passivity.

1. (Well-posedness based on reduction to an ODE)
• Assume that D is a P-matrix. Then from the fundamental theorem of Com-
plementarity Theory [62], it follows that λ is a piecewise continuous, Lipschitz
single-valued function of x and u. Hence the LCS in (1.1) is the ODE:

ẋ(t) = Ax(t) + Bλ(x(t), u(t)) + Eu(t).

Provided u(·) satisfies Lebesgue integrability conditions, an AC solution exists
on IR+ for any bounded initial condition, with uniqueness and continuous depen-
dence on initial data [53, 51].
• Assume that D ≻ 0 (not necessarily symmetric), then using the formalism in
(1.6), the result can be extended to systems with operators (D + Mt)−1(·) where
Mt(·) is a maximal monotone operator for each fixed t. Using [31, Proposition
1] or [5], the mapping (D + Mt)−1(·) is then single-valued, defined everywhere,
and Lipschitz continuous with constant 1

λmin(D+D⊤) for each fixed t. Therefore the
mapping H(t, x) in (1.6) is single-valued Lipschitz continuous in x and classical
results on ODE’s well-posedness apply.

2. (Well-posedness based on passivity and relaxations of passivity) Let us summarize
the results presented in [44, 144, 46, 48, 31, 45], which deal with the case with
external inputs.

(a) [44, Theorem 7.5] Assume that:
• i) (B⊤, D + D⊤)⊤ has full column rank,
• ii) (A, B, C, D) is passive with P = P ⊤ ≻ 0, and minimal,
• iii) u(·) is piecewise continuous with rational Laplace transform.

Then for any x(0) = x0, there exists a unique global solution to (1.1) such
that (λ, x, w) ∈ L2

δ(IR+; IRm+n+m), the space of Schwartz’ distributions, with
regular parts in L2

loc ⊆ L1
loc, and atomic part with isolated atoms (instants of

state jumps) that is represented by sums of Dirac measures (higher degree
distributions do not occur).

(b) [46, Theorems 7, 8, 9] Assume that:
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• i) (A, B, C, D) is passive with P = P ⊤ ≻ 0,
• ii) Fu(t) ∈ Q⋆

D +Im(C) for all t ≥ [0, T ), T > 0 (see paragraph of State
Jumps below for the definition of QD and of its dual cone),

• iii) u(·) is a Bohl function (i.e., u(t) = M exp(Nt)R for some constant
matrices M , N , R).

Then x(0+) is calculated as in (1.11), there exists a unique AC solution
x : (0, T ) → IRn, and λ(·) is locally Lebesgue integrable. The solution is
a forward solution, i.e., it is the concatenation of Bohl functions defined
between state jumps. Left accumulations of state jumps are allowed.

(c) [144, Corollary 2] [38, Corollary 5.9] Assume that:
• i) D ≽ 0, Ker(D + D⊤) ⊆ Ker(PB − C⊤) for some P = P ⊤ ≻ 0,
• ii) rint(IRm

+ − Fu(t)) ⊆ rint(Im(∂σIRm
+ −F u(t) + D)),

• iii) DIRm
+ ⊆ Im(C),

• iv) Im(C) − IRm
+ = IRm,

• v) for each x ∈ IRn and each t ≥ 0, if the set Λ = {λ ∈ IRm
+ | v =

Cx + Dλ + Fu(t) ≥ 0, λ⊤v = 0} has a nonzero element, and Λ ∩
Im(D + D⊤) ̸= ∅.

Then if Fu(·) is AC (resp. RCLBV), there exists a unique AC (resp.
RCLBV) solution to (1.1) for any x(0) such that Cx(0) ∈ Im(∂σIRm

+ −F u(0) +
D).

(d) [45, Theorems 11, 26] Let:
• i) (A, B, C, D) be passive,
• ii) Im(C) ∩ rint(Im(D + NIRm

+
) − Fu(t)) ̸= ∅,

• iii) Fu(·) be AC.
Then there exists a unique AC solution for any x(0) = x0 ∈ Dom(H(0, ·)).

(e) [31, Theorem 1, Corollaries 2, 3] Assume that:

• i) D =
(

0 0
0 D2

)
∈ IRm2×m2 , m2 ≤ m

• ii) F = 0,
• iii) u(·) is continuous with u̇ ∈ L1

loc(IR+; IRp),
• iv) there exists a full-rank R = R⊤ ∈ IRn×n such that R2B1 = C⊤

1 ,
B = (B1 B2), C = (C⊤

1 C⊤
2 )⊤,

• v) there exists w0 ∈ IRm1 at which the operator w 7→ ∂ΨIRm1
+

(C1R
−1w)

is continuous,
• vi) the operator w 7→ RB2(D2 + ∂ΨIRm2

+
)−1(−C2R

−1w) is well-defined,
single-valued and Lipschitz continuous.

Then there exists a unique continuous right-differentiable solution for any
x(0) ∈ Dom(∂ΨIRm1

+
(C1R

−1·)) = {w ∈ IRn | C1R
−1w ≥ 0}, with ẋ ∈

L∞(IR+; IRn). The result holds if m2 = 0 and i-v) are verified, or if m2 = m
and vi) is verified (then item 1 applies). Condition vi) holds if D2 is a
P-matrix [31, Proposition 1, Corollary 1].
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(f) [94, Theorems 5.3, 5.4] and [93, Theorems 1, 2] deal with DIs of the form:

ẋ(t) ∈ g(t, x(t)) − B(D + F −1
t,x )−1(Cx(t)),

where Ft,x : IRm ⇒ IRm is maximal monotone for each (t, x). For briefness
we focus on Ft,x(·) = NK(t,x)(·) [93]. Assume that:

• i) D ≽ 0, Im(D) ⊂ Im(C), Ker(D + D⊤) ⊆ Ker(PB − C⊤) for some
P = P ⊤ ≻ 0,

• ii) K(t, x) has closed convex values, K(t, x) ∩ Im(C) ̸= ∅, dH(K(t, x) ∩
Im(C), K(s, y) ∩ Im(C)) ≤ k1|t − s| + l2||x − y|| for all t, s, x, y, l1 ≥ 0,
0 ≤ l2 ≤ λ2

||C|| , λ2 the smallest positive eigenvalue of CC⊤,
• iii) (N −1

K(t,x) +D)−1(Cx) ̸= ∅ ⇒ Im(D +D⊤)∩ (N −1
K(t,x) +D)−1(Cx) ̸= ∅,

• iv) Im(C) ∩ rint(Im(N −1
K(t,x) + D)) ̸= ∅,

• v) g(·, ·) is continuous in t and Lipschitz continuous in x.
Then existence and uniqueness of Lipschitz continuous solutions is guaran-
teed for each initial condition such that (N −1

K(0,x0) + D)−1(Cx0) ̸= ∅. More-
over, ∥ẋ(t)∥ ≤ α + β∥x(0)∥ for some α > 0 and β > 0.

3. (Well-posedness by transformation to a sweeping process [39, 38, 22]) Assume
that D = 0, and that:

• i) PB = C⊤ for some P = P ⊤ ≻ 0,
• ii) u ∈ L1

loc(IR+; IRp),
• iii) Im(C) − IRm

+ = IRm.

Then the LCS in (1.1) can be rewritten equivalently as a FOSwP (see (2.32)
in section 2.3, and [39, 38] for details on the transformation, and [113, 38] for
details on FOSwP). The basic condition i) is implied by, but does not imply, the
passivity of (A, B, C, 0). Depending on the signal u(·) being AC (resp. RCLBV),
the solution is shown to be AC (resp. RCLBV), defined on IR+, and uniqueness
holds. For AC to hold it is needed that x(0) ∈ S(0) (no initial jump).

The various assumptions made in items 2 and 3 (which may be thought as constraint
qualifications in many instances, a concept which is familiar in Optimization) have
different meanings:

• property of the plant’s model: item 2 (a) ii), (b) i), (c) i), (d) i), (e) i) ii) iv),
item 3 i),

• constraints qualifications: item 2 (a) i), (b) ii), (c) ii), iii), iv), v), (e) v), (f) ii),
iii), iv), item 3 iii),

• exogenous signals properties: item 2 (a) iii), (b) iii), conclusion of item 2 (c),
item 2 (e) iii), (f) v), conclusion of item 3.
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The condition in item 2 (b) ii) stems from a fundamental result in Complementarity
Theory [62, Theorem 3.8.6, Corollary 3.8.10], which guarantees the existence of solu-
tions to the LCP in (1.1). This assumption thus secures that there exists a bounded
multiplier λ(t) which solves the LCP (notice that at the end time T , there may be a
state jump if this assumption does not hold). This is an assumption quite similar to
item 2 (c) ii), and item 2 (d) ii). Roughly speaking, they all guarantee that the various
operators have nonempty domains so that the problem makes sense. They stem from
[135, Theorem 12.43] to guarantee maximal monotonicity (see [31, section 3.2.1]). Such
CQ may not be easy to check and may require some developments [29]. Condition in
item 2 (c) iii) and (f) i) (Im(D) ⊂ Im(C)) are used to compute Vladimirov’s pseudo
distance (see [149] for the definition, which is beyond the scope of this article) between
time-varying and/or state-dependent sets.

Multipliers boundedness (AC solutions)

Well-posedness analyses usually focus solely on the state. However, the boundedness
of the multiplier is an important feature, since it may be used for feedback in this
article. The condition in item 2 (b) ii) guarantees the existence of a solution to the
LCP in (1.1). If the conditions in item 3 are verified, then explicit upper-bounds
∥ẋ(t)∥ ≤ v̇(t) + α(t)∥x(t)∥ can be obtained for some integrable α(·) and AC v(·)
[145, Theorem 4.3] [113, section 5.2, Theorem 2.1]. In our case, these upper-bounds
depend on the properties of the set-valued map t 7→ S(t) (which in turn depend on
Fu(·) being AC, or Lipschitz continuous, or LBV [39, Proposition 3.2]). Following the
developments in [144] (see item 2. (c) in section 1.2.2), λ = λim(t, x) + λker, where
x 7→ λim(t, x) ∈ Im(D + D⊤) is Lipschitz continuous, while λker ∈ Ker(D + D⊤).
Moreover, λim is the least norm element in the (possibly) set-valued right-hand side
of the DI, see [144, Equ. (15), Lemma 3]. It is inferred that in case the existence of
AC solutions is proved, then Bλ(·) is a bounded selection of the (possibly set-valued)
right-hand side in (1.1). The part of λ inside Ker(B) does not play any role in x(·),
but we may need the whole multiplier vector for feedback purpose. It is therefore
reasonable to assume that the minimum norm element is available and that it satisfies
a linear growth condition in ∥x∥. Finally, it is worth recalling that even if x(·) is
AC, the multiplier λ(·) may have discontinuities at junction times when w(·) reaches
the boundary (i.e., w = 0), when D is not a P-matrix. In the case of item 1, the
multipliers are AC when Fu(t) is AC since they are a Lipschitz continuous function of
AC functions.
From a more practical point of view, multipliers in LCS can be calculated by con-
structing the contact LCP [38, section 2.4.1]. Thus, they appear to be a nonsmooth
function of both state and input. The uniqueness of λ can be deduced from the condi-
tions in item 2 (a) and (b), where passivity is the main property, plus some constraints
qualification.

State jumps

Let the solution x(·) of (1.1) be RCLBV. Then x(·) may undergo discontinuities and
the LCS has to be interpreted in the Measure Differential Inclusion (MDI) formalism

12
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[113, 70, 38]. In other words, the DI (1.6) has to be embedded into an MDI: dx ∈
(Ax(t) + Eu(t))dt − B(D + N −1

IRm
+

)−1(Cx(t+) + Fu(t))dν, where dx is the differential
measure associated with the RCLBV function x(·) [113], dt is the Lebesgue measure,
and dν is a specific Radon measure, see [144, Definition 4] for a rigorous introduction.
The dissipation inequality extends to MDI, see [27, section 5.4.4.5] [40, section 7.2.4.1].
Let the set of time instants at which the state undergoes a jump, be denoted as Jx,
and the set of time instants at which Fu(·) is discontinuous be denoted as JF u. Then
if conditions of item 2 (a) hold, Jx ⊆ {0} ∪ JF u [44, 39]. In other words, the state
can jump only initially, or at times of discontinuity in Fu(·) (or in the set S(t) in the
FOSwP formalism). This means that state jumps can be chosen and dwell times can
be imposed (contrarily to complementarity mechanical systems), by suitably choosing
Fu(t).
In the case of BV solutions, and under the conditions stated above, the term Bλ is a
Dirac measure at times of state jumps, and we may denote λ = λimp + λreg. The input
in (2.2) below, may be defined with the complete λ ("impulsive" input), or just with its
function part λreg. In both cases, the stability analysis has to incorporate the jumps.
At an instant of jump t, using (1.6) and [144, section 3.4], we have:

x(t+) − x(t−) ∈ −B(D + ∂σS(t+))−1(Cx(t+)), (1.10)

with S(t+) = IRm
+ −Fu(t+). State jump rules formulations are given in [38, Lemma 2.3],

compiling results in [44, 39, 46, 76]. They are based on a maximum dissipation principle
(a kind of plastic impact, inspired from [125]). Let us introduce such rules briefly. If
(A, B, C, D) is passive with P = P ⊤ ≻ 0 and if 0 ∈ K ∆= {z ∈ IRn | Cz +Fu(t+) ∈ Q⋆

D}
(notice that the set K ̸= ∅ by the condition in item 2 (b) ii)), QD = {z ∈ IRm | 0 ≤ z ⊥
Dz ≥ 0}, then the jumps dissipate "energy", i.e., V (x(t+)) ≤ V (x(t−)) [76, Lemma 3],
and the state jump rule is given by:

x(t+) = argminx∈K
1
2(x − x(t−))⊤P (x − x(t−)). (1.11)

Notice that QD is a polyhedral set, and so is its dual cone [135, Lemma 6.45, Theorem
3.52]. If D ≻ 0 then QD = {0}, Q⋆

D = IRm, K = IRn and using (1.11), x(t+) = x(t−).
If D = 0 then QD = IRm

+ = Q⋆
D, K = {z ∈ IRn | Cz + Fu(t+) ≥ 0}, hence 0 ∈ K if and

only if Fu(t) ≥ 0. Thus, strongly passive systems have continuous-time solutions, but
strictly state passive systems may have state jumps. Notice that : x(t+)−x(t−) = Bσ,
with λimp = σδt, and 0 ≤ σ ⊥ Dσ ≥ 0. As shown in [44, 38, 76] the state jump does
not depend on a particular choice of the storage function matrix P . The meaning of
the complementarity conditions at discontinuity times is explained in [44, Theorems
6.1, 9.1], see also [38, Lemma 2.3].

Zeno behavior

LCS undergo two classes of events, i.e., switching between modes of the LCP (1.1) (b)
(AC solutions), and state discontinuities (BV solutions). Zenoness with AC solutions is
tackled in [141, 47, 140] when Fu(·) = 0. It states that if BSOL(D, Cx) is a singleton,
then the LCS (1.1) is Zeno-free. This holds if D is a P-matrix. Thus junction and
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detachment times are separated (dwell time). The conditions stated in [46, Theorem 7]
also prevent Zeno behaviour in LCS with external inputs and state jumps, by imposing
condition ii) in item 2 (b) between jumps.

Time-varying LCS (TVLCS)

We may also encounter TVLCS of the form:(a) ẋ(t) = A(t)x(t) + B(t)λ(t) + E(t)u(t) (almost everywhere)
(b) 0 ≤ λ(t) ⊥ w(t) = C(t)x(t) + D(t)λ(t) + F (t)u(t) ≥ 0

(1.12)

when we deal with uncertainties which may be time-varying. The TVLCS is rewritten
equivalently as:

ẋ(t) ∈ A(t)x(t) + E(t)u(t) − B(t)(D(t) + N −1
IRm

+
)−1(C(t)x(t) + F (t)u(t))

= A(t)x(t) + E(t)u(t) − B(t)(D(t) + N −1
IRm

+ − F (t)u(t))−1(C(t)x(t)) (1.13)

Clearly, some of the results described above can be used to analyse (1.13), in particular
cases [39, 45]. One such case is as follows. Assume that A = A(t), E = E(t), F = F (t),
D = 0, C and B are constant. Assume that there exists P = P ⊤ ≻ 0 such that
PB = C⊤. Then, (1.13) is rewritten equivalently as:

ẋ(t) ∈ A(t)x(t) + E(t)u(t) − BNIRm
+ − F (t)u(t)(Cx(t)) (1.14)

After the classical state change z = Rx, R2 = P , R = R⊤ ≻ 0 [38], (1.14) is rewritten
equivalently as:

ż(t) ∈ RA(t)R−1z(t) + RE(t)u(t) − NIRm
+ − F (t)u(t)(z(t)),

which is a FOSwP with affine perturbation. Hence, the material in item 3 section 1.2.2
can be used to analyse the well-posedness with both AC and RCLBV solutions. The
general problem of well-posedness of (1.13) is not tackled in this work.
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Chapter 2

Trajectory Tracking in Linear
Complementarity Systems

This chapter is dedicated to trajectory tracking in linear complementarity systems
(LCS). It focuses mainly on the control design based on passivity and the stability
analysis of the error dynamics. Several cases are addressed in the following sections of
the chapter, including systems with and without state jumps in the known parameter
case, and then the results are extended to the case when parametric uncertainties
are considered. A simple example is provided to illustrate the trajectory tracking
results in the case of state jumps. Furthermore, trajectory tracking in First-order
Sweeping Process (FOSwP), which is equivalent to LCS with matrix D = 0 under
some conditions, is investigated.

2.1 Trajectory Tracking in the Nominal Case
In this section, it is assumed that the plant model and parameters have no uncertainties.
That is, the matrices A, B, C, D, E, F in (1.1) are known.

2.1.1 Controller Design
Let us consider the LCS with external input in (1.1). Let us define the system which
generates the desired trajectory to be tracked, as follows: ẋd(t) = Axd(t) + Bλd(t) + Eud(t)

0 ≤ λd(t) ⊥ wd(t) = Cxd(t) + Dλd(t) + Fud(t) ≥ 0
(2.1)

where ud(·) is the desired input. Following the LCS of the desired system in (2.1), the
designer has to perform a preliminary analysis of the desired dynamics to determine a
suitable trajectory for tracking. This analysis may involve numerical methods or the
approaches presented in [138, 81]. The aim is to design a feedback controller such that
the error dynamics with state vector e

∆= x − xd possesses some stability property, to
be defined later. Let us state the following assumptions which will be used later:
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Assumption 2.1.1. The solution xd : IR+ → IRn of the LCS (2.1) is AC and uniformly
bounded, and the multiplier vector λd(ud, xd) is a bounded function of time.

Conditions such that this holds can be obtained from the results stated in section 1.2.2.

Assumption 2.1.2. The state x(·) and the multiplier λ(·) are available for measure-
ment.

In practice, the multiplier may be a physical quantity (like voltages and currents in
circuits, contact force in mechanics), and Assumption 2.1.2 is reasonable (and studying
state observers in the loop is outside the scope of this thesis). Thus, the feedback
controller in the plant (1.1) is chosen generically as:

u(x, λ, t) = K[x − xd(t)] + G[λ − λd(t)] + ud(t). (2.2)

where the example in Remark 2.1.3 plays the role of a motivating example for intro-
ducing a feedback from λ in the controller (2.2).

Remark 2.1.3. To motivate the addition of a feedback from λ in the controller (2.2),
consider the LCS in (1.1) with the following matrices:

A =
(

−1 0
0 −2

)
, B =

(
1
0

)
, C =

(
1 0
0 1

)
, D =

(
1 0
0 0

)
, E = 0, F =

(
0
1

)

Let u = K(x − xd) + ud, then the closed-loop system’s quadruple (A, B, C + FK, D) is

strictly state passive with K = (1.12, −1), P =
(

1.12 −0.006
−0.006 2.012

)
given by solving

the BMI in (2.6) after transforming it to LMI according to Appendix A.1. However, the
LMI for strong passivity in (2.7) does not have a solution for the closed-loop quadruple
(A, B, C + FK, D).
Let us introduce feedback from the complementarity variable λ, resulting in the extended
controller in (2.2): u = K(x−xd)+G(λ−λd)+ud. In order to check if the closed-loop
quadruple (A, B, C + FK, D + FG) with the extended controller is strongly passive, let
us check if the BMI in (2.7) has a solution. It appears that the transformed BMI in
(2.7) for strong passivity has a solution given by:

K =
(
1.13 −0.99

)
, G = 0.59, P =

(
1.17 −0.014

−0.014 2.16

)

Strong passivity of the closed-loop system is a fundamental assumption in robustness
analysis in section 2.4 in order to guarantee the boundedness of the tracking error e.
Therefore, there is a need to introduce a feedback from λ in the controller u to enhance
the passivity of the closed-loop system in certain applications.

Inserting (2.2) into (1.1) for some feedback gains K ∈ IRp×n and G ∈ IRp×m gives rise
to the closed-loop LCS:

ẋ(t) = (A + EK)x(t) + (B + EG)λ(t) − EKxd(t) − EGλd(t) + Eud(t) (a.e.)
0 ≤ λ(t) ⊥ w(t) = (C + FK)x(t) + (D + FG)λ(t) − FKxd(t) − FGλd(t)

+ Fud(t) ≥ 0
(2.3)
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It is important to note that, in general, both λd(·) and ud(·) in (2.1) may be discon-
tinuous time-functions, hence (2.3) is in general an LCS as (1.1) with a potentially
discontinuous term −FKxd(t) − FGλd(t) + Fud(t) inside the complementarity con-
straints. As a consequence, jumps in x(·) may occur unless some conditions hold (see
the end of section 2.1.2). We shall come back to state jumps in section 2.1.3. Rewriting
(2.1) equivalently as{

ẋd(t) = (A + EK)xd(t) + (B + EG)λd(t) + Eud(t) − EKxd(t) − EGλd(t)
0 ≤ λd(t) ⊥ wd(t) = (C + FK)xd(t) + Dλd(t) + Fud(t) − FKxd(t) ≥ 0 (2.4)

gives rise to the error dynamics:
ė(t) = (A + EK)e(t) + (B + EG)(λ(t) − λd(t))

0 ≤
(

w(t)
wd(t)

)
=
(

C + FK
−C − FK

)
e(t) +

(
D + FG −FG

0 D

)(
λ(t)
λd(t)

)

+
(

0 C
C + FK −FK

)(
x(t)
xd(t)

)
+
(

Fud(t)
Fud(t)

)
⊥
(

λ(t)
λd(t)

)
≥ 0

(2.5)

Clearly, the LCS in (2.5) is well-posed if both (2.1) and (2.3) are. However, the LCS
in (2.5) cannot be used for well-posedness directly, because x(·) acts as an exogenous
signal in the complementarity constraints, whose properties have to be proved. The
closed-loop’s well-posedness has to be tackled with (2.3) and (2.4) (or (2.1)). In view
of the structure of the closed-loop LCS in (2.3), let us state the following assumptions,
which will be used in the sequel for both well-posedness and stability purposes.
Assumption 2.1.4. There exist matrices K and G such that the plant’s closed-loop
quadruple (A + EK, B + EG, C + FK, D + FG) is strictly state passive.
From Assumption 2.1.4, there exist gain matrices K and G such that the following
nonlinear matrix inequality with unknowns P , K and G:

M
∆=
(

(A + EK)⊤P + P (A + EK) P (B + EG) − (C + FK)⊤

(B + EG)⊤P − (C + FK) −(D + FG) − (D + FG)⊤

)
≼

(
−ϵP 0

0 0

)
,

(2.6)
has a solution P = P ⊤ ≻ 0. This may be replaced by the more stringent assumption:
Assumption 2.1.5. There exist matrices K and G such that the plant’s closed-loop
quadruple (A + EK, B + EG, C + FK, D + FG) is strongly passive.
From Assumption 2.1.5, there exist gain matrices K and G such that the nonlinear
matrix inequality:

M ≺ 0 (2.7)
has a solution P = P ⊤ ≻ 0. For numerical purposes, it is important to note that the
BMIs in (2.6) and (2.7) are transformed into LMIs, as detailed in Appendix A.1.
Using Convex Analysis, the closed-loop system (2.3) is rewritten equivalently as the
DI:

ẋ(t) ∈ (A + EK)x(t) − (B + EG)((D + FG) + ∂σS(t))−1((C + FK)x(t))

−EKxd(t) − EGλd(t) + Eud(t)
(2.8)
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where S(t) = {v ∈ IRm
+ | v + FKxd(t) + FGλd(t) − Fud(t) ≥ 0} is closed nonempty

convex for each t, and σS(t)(·) is the support function of S(t). The DI in (2.8) has the
form

ẋ(t) ∈ −M(t, x(t)) + f(t), (2.9)
with f(t) = −EKxd(t) − EGλd(t) + Eud(t) and M(·, ·) is a set-valued operator. In
view of (2.1) and Assumption 2.1.1, depending on the system’s parameters, the mul-
tiplier λd(·) may be discontinuous at some instants, hence the set S(t) may also be
discontinuous at those instants (D ≻ 0 prevents such jumps). The LCS in (2.1) is also
equivalently rewritten as the DI:

ẋd(t) ∈ Axd(t) − B(D + ∂σSd(t))−1(Cxd(t)), (2.10)

with Sd(t) = {v ∈ IRm | v − Fud(t) ≥ 0}, and the set Sd(t) is continuous as long as
ud(t) is. Therefore, the DI in (2.10) also fits with (2.9). Let us now examine (2.5).
Using that x(t) = e(t) + xd(t), the error dynamics may be rewritten as:

ė(t) ∈ Ãe(t) − B̃(D̃ + N −1
S̃(t,e(t)))

−1(C̃e(t)) (2.11)

with S̃(t, e) = {z ∈ IR2m | z + Ẽe + F̃ (t) ≥ 0}, Ẽ =
(

0
C + FK

)
,

F̃ (t) =
(

Cxd(t) + Fud(t)
Cxd(t) + Fud(t)

)
, D̃ =

(
D + FG −FG

0 D

)
, C̃ =

(
C + FK

−C − FK

)
,

B̃ = (B + EG − B − EG), Ã = A + EK.
The DI in (2.11) has a state and time-dependent polyhedral set S̃(·, ·) which renders
its study more complex. For each t and e, the normal cone NS(t,e) defines a maximal
monotone mapping, which may allow to recast (2.11) in the framework of item 2 (f)
in section 1.2.2, and deduce conditions such that (2.11) has a Lipschitz solution. A
second equivalent way to write the LCS (2.5) is:

ė(t) ∈ Āe(t) − B̄(D̄ + N −1
S̄(t))

−1(C̄e(t)) ⇔
{

ė(t) = Āe(t) + B̄λ̃(t)
0 ≤ λ̃(t) ⊥ C̄e(t) + D̄λ̃(t) + F̄ (t) ≥ 0 ,

(2.12)

with Ā = Ã, B̄ = B̃, C̄ =
(

C + FK
0

)
, D̄ = D̃, S̄(t) = {z ∈ IR2m | z + F̄ (t) ∈ IR2m

+ },

F̄ (t) =
(

Cxd(t) + Fud(t)
Cxd(t) + Fud(t)

)
. It is noteworthy that some conditions have to be imposed

so that the construction of the DIs in (2.11) and (2.12) is possible, see section 2.1.3
for more details. Now, we have at our disposal several (equivalent) formalisms for the
closed-loop plant dynamics (2.3) and (2.8), the desired trajectory generator (2.1) and
(2.10), and the error dynamics (2.5), (2.11) and (2.12). This is useful for the well-
posedness analyses relying on the various results recalled in section 1.2.2. A difficulty
is to determine under which conditions the passivity in Assumptions 2.1.4 or 2.1.5,
implies the passivity of the quadruples (Ã, B̃, C̃, D̃), or (Ā, B̄, C̄, D̄), see (2.18).

Remark 2.1.6 (Closed-loop system’s well-posedness). In the framework of this thesis,
the well-posedness of the plant dynamics is not a fundamental issue, since it is only
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the closed-loop system which is used in the analysis. In a similar way as feedback can
be used to make an unstable system stable in closed-loop, it may be used to render an
ill-posed plant’s model well-posed in closed loop. The well-posedness of the closed-loop
plant LCS (2.3) (equivalently the DI in (2.8)) can be inferred from [39, 45, 144, 94,
31], assuming that the desired signals xd(·), λd(·) and ud(·) are AC or L2

loc(⊆ L1
loc),

and that some basic constraint qualification conditions hold. Clearly, in this setting,
Assumption 2.1.1 is important. When D + FG ≻ 0 (this is the case if Assumption
2.1.5 holds), then the results reported in item 1 in section 1.2.2 apply. If D + FG = 0
(which may be the case if Assumption 2.1.4 holds), then the results in item 3 in section
1.2.2 apply. When D + FG ≽ 0 but not null, then the various results in item 2 in
section 1.2.2 can be used. This requires to check the constraint qualifications listed in
item 2 (a) through (f). This is not tackled in this thesis whose primary goal is tracking
control.

Remark 2.1.7. The trajectory tracking problem as tackled in this work, can be inter-
preted as a synchronization problem between the master system (2.1), and the plant
(1.1).

2.1.2 Error Dynamics Stability Analysis (no state jumps)
This section is dedicated to the stability analysis of the error dynamics (2.5), and it is
assumed that all trajectories are at least absolutely continuous. The arguments used
for the proof of Proposition 2.1.8 are similar to those employed in [32, 6, 31], and are
given for completeness.

Proposition 2.1.8. Suppose that Assumptions 2.1.1, 2.1.2 and 2.1.4 hold, and that
the solution x(·) of the closed-loop LCS (2.3) is AC on IR+. Then, the error dynamics
in (2.5) has a globally exponentially stable equilibrium point e∗ = 0.

Proof. Let ∆λ(t) ∆= λ(t) − λd(t) and ∆w(t) ∆= w(t) − wd(t) = (C + FK)e(t) + (D +
FG)∆λ(t). Consider the Lyapunov function candidate V (e) = e⊤Pe, where P = P ⊤ ≻
0 satisfies (2.6). From the assumptions, e(·) is absolutely continuous and thus it has
a derivative almost everywhere. Along the error dynamics trajectories (2.5), it holds
that:

V̇ (t) = e⊤[(A + EK)⊤P + P (A + EK)]e + 2e⊤P (B + EG)∆λ(t)

From the complementarity conditions in (2.3) and (2.4), we obtain equivalently:

λ(t) ∈ −NS(t)((C + FK)x(t) + (D + FG)λ(t))

and
λd(t) ∈ −NS(t)((C + FK)xd(t) + (D + FG)λd(t))

with S(t) defined after (2.8). It follows from the monotonicity of the normal cone
mapping that:

[w(t) − wd(t)]⊤[λ(t) − λd(t)] = ∆w(t)⊤∆λ(t) ≤ 0. (2.13)
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In matrix form (the time argument is dropped on the right-hand side):

V̇ (t) =
(

e
∆λ

)⊤

M

(
e

∆λ

)
+
(

e
∆λ

)⊤ ( 0 (C + FK)⊤

C + FK D + FG + (D + FG)⊤

)(
e

∆λ

)

=
(

e
∆λ

)⊤

M

(
e

∆λ

)
+ 2∆λ⊤∆w ≤

(
e

∆λ

)⊤

M

(
e

∆λ

)
≤ 0,

(2.14)
where (C + FK)e = ∆w − (D + FG)∆λ. So, for all e and ∆λ and using the strict
state passivity, it is inferred:

V̇ (t) ≤ −ϵ e(t)⊤Pe(t) = −ϵ V (t).

Classical arguments yield V (t) ≤ V (0) exp(−ϵt). Using the inequality: λmin(P )∥e∥2 ≤
e⊤Pe, the following is obtained

∥e(t)∥2 ≤ V (t)
λmin(P ) ≤ V (0)

λmin(P ) exp(−ϵt)

Therefore, the equilibrium point of the error dynamics is globally exponentially stable.

Notice that using (2.5) it follows that λ(t) − λd(t) converges exponentially fast to
Ker(B − EG).

Comments on passivity Following on from the proof of Proposition 2.1.8, the
supply rate in (2.13) indicates that the passivity, in this case, is studied between the
input λ − λd and the output w − wd. The variation of the storage function in (2.14)
is written as V̇ (t) ≤ 2∆λ⊤∆w. This shows the incremental passivity [128, 40] of the
LCS defined in (2.3).

Continuity of the solutions A sufficient condition for no state-jump is that both
matrices D and D + FG are P-matrices, and ud(·) is continuous. Then (2.1) has
continuously differentiable solutions xd(·) with uniqueness for any initial data, and
λd(·) is time-continuous (being a Lipschitz continuous function of xd and ud). Thus,
the trajectories of the closed-loop system (2.3) (or (2.8)) are also state-jump free. Let
now G = 0 in (2.2). Then λd(·) does not appear in (2.3). Thus, provided both xd(·) and
ud(·) are continuous, no state jump occurs, except possibly at the initial time. These
results follow by applying, e.g., items 1 or 2 (a) in section 1.2.2. When D = 0 and/or
D + FG = 0 (which cannot be excluded by Assumption 2.1.4), item 3 in section 1.2.2
can be used. We may also rely on item 2 (f) to analyse (2.11) and guarantee that it has
Lipschitz continuous solutions for the admissible initial state. Let us check conditions
i) of item 2 (f) 1.2.2 under Assumption 2.1.4 (⇒ D + FG ≽ 0) and D ≽ 0 (most of
the conditions assuring Assumption 2.1.1 imply it):

(a) D̃ ≽ 0 ⇔ D̃ + D̃⊤ ≽ 0. Using Lemma A.3.1, equivalently we have:

1. Im(G⊤F ⊤) ⊆ Im(D + D⊤),
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2. D + FG + (D + FG)⊤ ≽ FG(D + D⊤)†G⊤F ⊤. A sufficient condition for this
to hold is D + FG ≻ 0, and σmax(FG(D + D⊤)†G⊤F ⊤) < σmax(D + FG +
(D + FG)⊤) = λmax(D + FG + (D + FG)⊤). From [17, Corollary 9.6.5], we
have: σmax(FG(D + D⊤)†G⊤F ⊤) ≤ σ2

max(FG)σmax((D + D⊤)†). If D + D⊤ = 0,
the matrix inequality is satisfied. If D + D⊤ ̸= 0 and rank(D + D⊤) = d, then
σmax((D+D⊤)†) = σ−1

d (D+D⊤) [17, Fact 6.3.28], and σd(D+D⊤) = λd(D+D⊤)
since D + D⊤ ≽ 0 is symmetric. Thus, a sufficient condition is σ2

max(FG) <
λd(D + D⊤)λmax(D + FG + (D + FG)⊤). Another sufficient condition, following
similar steps, is D+D⊤ ≻ 0, σmax(FG) < λd(D+FG+(D+FG)⊤)λmax(D+D⊤).
We see that in both cases we allow for D + D⊤ of D + FG + (D + FG)⊤ to be
low rank, which hampers D̃ ≻ 0. Finally, we may use Lemmas A.3.1, A.3.2, as
well as the matrix decompositions described after Lemma A.3.2, to get necessary
and sufficient conditions.

(b) Im(D̃) ⊆ Im(C̃): ⇔ Im(D + FG) + Im(FG) ⊆ Im(C + FK) and Im(D) ⊆
Im(C + FK).

(c) Ker(D̃ + D̃⊤) ⊆ Ker(PB̃ − C̃⊤) for some IRn×n ∋ P = P ⊤ ≻ 0: ⇔ {(x, y) ∈
IRm×m | ((D + FG) + (D + FG)⊤)x − FGy = 0, −G⊤F ⊤x + (D + D⊤)y = 0} ⊆
{(x, y) ∈ IRm×m | x−y ∈ Ker(P (B+EG)−(C+FK)⊤)}. This is verified if FG = 0 and
Assumption 2.1.4 holds, since in this case Ker(D+D⊤) ⊆ Ker(P (B+EG)−(C+FK)⊤)
[46] [40, section 3.8]. If D and D + FG are P-matrices, and if FG(D + D⊤)−1G⊤F ⊤ ̸=
D + FG + (D + FG)⊤, then Ker(D̃ + D̃⊤) = {0}, hence the inclusion holds. If
FG(D +D⊤)−1G⊤F ⊤ = D +FG+(D +FG)⊤, then Ker(D̃ + D̃⊤) = IRm × IRm, hence
the inclusion holds only if P (B + EG) = (C + FK)⊤.
The various conditions stated in section 1.2.2 are sufficient only, so it may be that
some of them are unnecessary in some cases (e.g., condition b)) above is needed for
continuity arguments using the Vladimirov’s pseudo-distance defined in [149] as done
in [144, 94, 93], but it is not necessary at all [38, section 5.3] [45]). Condition b) is not
necessary for the well-posedness of (2.5) when both D and D + FG are P-matrices.
The point is also that the error system (2.5) or (2.11) is a specific interconnection of
both subsystems, which does not necessarily inherits good properties of the subsystems
(e.g., D ≽ 0 and D + FG ≽ 0 may not imply D̃ ≽ 0). Conditions in a) and c) are
necessary for the passivity of (Ã, B̃, C̃, D̃) [46] [40, section 3.8].
The stability proof shows that under the proposition’s assumptions (like the continuity
of the solutions) the generalized equation 0 ∈ Āe∗ − B̄(D̄ + N −1

S̄(t))
−1(C̄e∗) has the

unique solution e∗ = 0 for all t ≥ 0.

2.1.3 Error Dynamics Stability Analysis including State Jumps
An important question is whether or not the tracking control framework developed
above is suitable for trajectories with discontinuities. Let us study how to relax As-
sumption 2.1.1 and the continuity of the closed-loop state x(·). State jumps are known
to add difficulty to the trajectory tracking problem, especially when the jump times
are unknown. The so-called peaking phenomenon, due to non-synchronized jumps in
the plant and the desired trajectories, has long been known to be one of the obstacles.
The jumps in x(·) and xd(·) may arise from different reasons:
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1. Let the conditions in section 1.2.2 item 2 (a) or item 3 hold for (A, B, C, D).
Jumps at t in xd(·) occur only if Fud is discontinuous at t and rank(D) < m.

2. Let the conditions in section 1.2.2 item 2 (a) or item 3 hold for (A + EK, B +
EG, C +FK, D+FG). Jumps at t in the closed-loop state occur only if rank(D+
FG) < m and −FKxd − FGλd + Fud is discontinuous at t.

The following is deduced, where Tf denotes the set of discontinuity times of the function
f(·):

Lemma 2.1.9. Let FGλd(·) and ud(·) be bounded functions of time. (a) Txd
⊆ {t0} ∪

TF ud
and (b) Tx ⊆ {t0} ∪ TF ud

∪ TF Gλd
.

Proof. (a) is obvious. (b): Tx ⊆ {t0}∪T−F Kxd−F Gλd+F ud
⊆ {t0}∪TF Kxd

∪TF Gλd
∪TF ud

⊆
{t0} ∪ TF Gλd

∪ TF ud
since TF Kxd

⊆ TF ud
.

Lemma 2.1.9 indicates that when FGλd is continuous, then either xd(·) jumps while x(·)
is continuous, or the inverse, or they jump simultaneously. This will be illustrated on
examples. Notice that when xd(·) jumps, then λd is a Dirac measure, and the meaning
of the feedback in (2.2) has to be carefully studied, as well as the mere meaning of the
complementarity constraints in (2.3) which contain the term FGλd. Also, depending
on FG, the sum of two Dirac measures, one stemming from λd (due to a jump in ud(t))
and one stemming from λ (due to a jump in −FKxd − FGλd + Fud) could occur in
the differential part of the closed-loop dynamics (see section 2.2): we may call this a
forbidden situation (this is not to be confused with the case of Measure Differential
Inclusions, or with passive LCS with state jumps [38, 39, 44]). It is inferred that:
(C1) If xd(·) jumps, we impose FG = 0. A sufficient condition to prevent forbidden
situations, is that FG = 0 if ud(·) is discontinuous. In other words, only continuous
ud(·) is allowed if FG ̸= 0.
In view of condition (C1), we can refine item 2: Jumps in the closed-loop state can
occur at t if:

1. FG = 0 and −FKxd + Fud is discontinuous at t,

2. or FG ̸= 0, xd is continuous at t and λd jumps at t (which can occur if ud is
continuous at t at a junction time with the constraint boundary (Cxd + Dλd +
Fud)i = 0 for some 1 ≤ i ≤ m).

Conditions in item 2 are not straightforward, because we want that FG ̸= 0, but FG
also multiplies λ, see (2.3), and passivity implies D + FG ≽ 0. The scalar case m = 1
is analysed in section 2.2.
The first step is to characterize the jumps in (2.5), then to study the variation
∆V (e(t)) = V (e(t+)) − V (e(t−)) = (e(t+) − e(t−))⊤P (e(t+) − e(t−)).
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Case G = 0 and D = 0

In this case λd does not enter (2.3), and D̃ = 0. Let Assumptions 2.1.1 and 2.1.4
hold, and let us study the case when x(·) jumps while xd(·) is continuous. Then,
(A + EK, B, C + FK, 0) is strictly state passive and PB = (C + FK)⊤ for some
P = P ⊤ ≻ 0. The closed-loop system in (2.8) becomes:

ẋ(t) ∈ (A + EK)x(t) − BNS(t)((C + FK)x(t)) − EKxd(t) + Eud(t). (2.15)

where S(t) = {v ∈ IRm
+ | v − FKxd(t) + Fud(t) ≥ 0}. This DI can be rewritten

equivalently as a FOSwP, see item 3 in section 1.2.2, [38, 39, 22], and section B.2 as:

ζ̇(t) ∈ R(A + EK)R−1ζ(t) + RE(−Kxd(t) + ud(t)) − NΦ(t)(ζ(t)) (2.16)

where R2 = P , R = R⊤ ≻ 0, ζ = Rx, Φ(t) = {Rx | (C + FK)x − FKxd(t) +
Fud(t) ∈ S(t)}. We see that Φ(t) ̸= ∅ for each t if and only if there exists x such that
(C + FK)x − FKxd(t) + Fud(t) ≥ 0. This is guaranteed if a condition as in item 3 iii)
holds, i.e., Im(C + FK) − IRm

+ = IRm (which is a constraint qualification). Assume in
addition that ud(·) is continuous on IR+. Suppose that Cxd(0)+Fud(0) ≥ 0, hence xd(·)
is continuous at t = 0. Then, a jump in x(·) (thus in e(·)) can occur only at the initial
time and V (0+)−V (0−) = e(0+)⊤Pe(0+)−e(0−)⊤Pe(0−) = (e(0+)+e(0−))⊤P (e(0+)−
e(0−)) = (x(0+)+x(0−)−2xd(0))⊤P (x(0+)−x(0−)) = x(0+)⊤Px(0+)−x(0−)⊤Px(0−)−
2xd(0))⊤P (x(0+) − x(0−)). Now, using the passivity of (A + EK, B, C + FK, 0), we
have (see the paragraph State Jumps at the end of section 1.2.2): x(0+)⊤Px(0+) −
x(0−)⊤Px(0−) ≤ 0, provided that 0 ∈ {z ∈ IRn | (C +FK)z−FKxd(0)+Fud(0) ≥ 0},
equivalently 0 ∈ Φ(0), equivalently −FKxd(0) + Fud(0) ≥ 0. In this case, V (0+) −
V (0−) ≤ −2xd(0))⊤P (x(0+) − x(0−)). We have P (x(0+) − x(0−)) ∈ −NK(x(0+))
[38, Lemma 2.3]. Thus, it is necessary and sufficient that xd(0) ∈ (NK(x(0+)))◦ =
TK(x(0+)) to guarantee that the right-hand side is nonpositive. Therefore, the following
has been proved:

Lemma 2.1.10. Assume that ud(·) is time-continuous, G = 0, D = 0, −FKxd(0) +
Fud(0) ≥ 0, and xd(0) ∈ TK(projP [K; x(t−

0 )]). Then, at an initial state jump, we have
V (0+) − V (0−) ≤ 0, where P = P ⊤ ≻ 0 is a solution of the passivity LMI associated
with the triple (A + EK, B, C + FK) and V (t) = V (e(t)).

The condition on xd(0) is certainly not easy to check in general (but xd(0) = 0 is
always suitable). The interest of Lemma 2.1.10 is that it allows for a jump in x(0)
while xd(0) does not jump. But applying it at any time of state jump tk > 0 implies to
impose a suitable desired state, which may not be possible in our framework where xd is
generated by (2.1). Under the same conditions, assume that Fud(·) has a discontinuity
at time tc. From (2.1) and (2.3), both x(·) and xd(·) may jump at tc, so λ and λd are
Dirac measures at tc. From (2.3), the discontinuity may act in both terms FKxd and
Fud. Using (2.8) and (2.10), this implies that the jumps’ magnitudes in the sets S(t)
and Sd(t), may not be equal. The post-jump states are computed using (1.11), where
K = {z ∈ IRn | (C + FK)z − FKxd(t) + Fud(t) ≥ 0} for the closed-loop plant, and
Kd = {z ∈ IRn | Cz + Fud(t) ≥ 0} for the desired system.
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Extension for further jumps at t > 0

Let us now place ourselves in another perspective. Until now we have assumed that
xd(·) is time-continuous. First notice that condition (C1) can be relaxed, if we admit
that the state xd(·) of the dynamics in (2.1) can be arbitrarily reset to some value
at arbitrary times, without considering λd as a Dirac measure. This has important
consequences because as we shall see, this means that the desired dynamics is no
longer autonomous (the desired state has to be modified online, a common feature in
trajectory tracking for systems undergoing state jumps [119, 118, 131]). Consider (2.3),
with Assumption 2.1.4.

Proposition 2.1.11. Let V (e) = e⊤Pe, with P a solution of the closed-loop passivity
LMI, and let {0} ∈ K = {z ∈ IRn | (C+FK)z−FKxd−FGλd(t+)+Fud(t) ∈ Q∗

D+F G}.
Assume that xd(t+) ∈ TK(projP [K; x(t−)]) and xd(t+)⊤Px(t−) ≥ xd(t−)⊤Px(t−), then
∆V (e(t)) ≤ (xd(t+) − xd(t−))⊤P (xd(t+) + xd(t−)).

Proof. At a state jump time:

∆V (e(t)) = (x(t+) − x(t−))⊤P (x(t+) + x(t−)) − (x(t+) − x(t−))⊤P (xd(t+) + xd(t−))
−(xd(t+) − xd(t−))⊤P (x(t+) + x(t−)) + (xd(t+) − xd(t−))⊤P (xd(t+) + xd(t−))

≤ −(x(t+) − x(t−))⊤P (xd(t+) + xd(t−)) − (xd(t+) − xd(t−))⊤P (x(t+) + x(t−))
+(xd(t+) − xd(t−))⊤P (xd(t+) + xd(t−))

= −(xd(t+) + xd(t−))⊤P (x(t+) − x(t−)) − (xd(t+) − xd(t−))⊤P (x(t+) − x(t−))
−2(xd(t+) − xd(t−))⊤Px(t−) + (xd(t+) − xd(t−))⊤P (xd(t+) + xd(t−))

= −2xd(t+)⊤P (x(t+) − x(t−)) − 2(xd(t+) − xd(t−))⊤Px(t−)
+(xd(t+) − xd(t−))⊤P (xd(t+) + xd(t−))

(2.17)
The first term in the first equality in (2.17) is nonpositive from the passivity. It is

noteworthy that we cannot infer the same conclusions about the last term in (2.17)
from (2.4) because these dynamics are equivalent to that in (2.1). Let us consider the
last equality in (2.17). We know that P (x(t+) − x(t−)) ∈ −NK(x(t+)) [38, Lemma
2.3]. Thus, the nonpositivity of the first term is equivalent to xd(t+) ∈ (NK(x(t+)))◦ =
TK(x(t+)). Using (1.11), the first condition follows. The second condition is obvious.

Thus, under the conditions of Proposition 2.1.11, ∆V (e(t)) ≤ 0 if and only if

xd(t+)⊤Pxd(t+) ≤ xd(t−)⊤Pxd(t−),

which means that the desired state jump is dissipative with respect to the closed-loop
storage function (in general there is no reason that it should satisfy this property).
This makes a set of constraints that the reset desired state xd(t+) has to satisfy. Note
that the conditions of Proposition 2.1.11 are sufficient only. Examples show that they
may not be satisfied, while ∆V (e(t)) ≤ 0, see section 2.2.4. Also, we note that the
reset mechanism is not needed when G = 0 (then condition C1) holds true), while the
characterization of ∆V (e(t)) as in (2.17) remains valid.
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Using the DI (2.12)

The formalism in (2.11) is not convenient for the state jumps analysis, because it
involves a state-dependent set. Let us recall the error dynamics in (2.12) to analyze
the state discontinuities.

ė(t) ∈ Āe(t) − B̄(D̄ + N −1
S̄(t))

−1(C̄e(t)) ⇔
{

ė(t) = Āe(t) + B̄λ(t)
0 ≤ λ(t) ⊥ C̄e(t) + D̄λ(t) + F̄ (t) ≥ 0 ,

with Ā = Ã, B̄ = B̃, C̄ =
(

C + FK
0

)
, D̄ = D̃, S̄(t) = {z ∈ IR2m | z + F̄ (t) ∈ IR2m

+ },

F̄ (t) =
(

Cxd(t) + Fud(t)
Cxd(t) + Fud(t)

)
. At a state jump time t, the DI in (2.12) may be written

as:
e(t+) − e(t−) ∈ −B̄(D̄ + N −1

S̄(t+))
−1(C̄e(t+)).

which has a solution (possibly with jumps) if the quadruple (Ā, B̄, C̄, D̄) is passive
with positive definite storage function. Then, (1.11) holds. Thus, it is inferred that
∆V (e(t)) ≤ 0 provided that 0 ∈ K = {e ∈ IRn | C̄e + F̄ (t) ∈ Q⋆

D̄
}, and:−P (A + EK) − (A + EK)⊤P −P (B + EG) + (C + FK)⊤ P (B + EG)

−(B + EG)⊤P + C + FK D + FG + (D + FG)⊤ FG
(B + EG)⊤P (FG)⊤ D + D⊤

 ≽ 0,

(2.18)
where P = P ⊤ ≻ 0 is a solution to −M ≽ 0 with M in (2.7). Notice that (2.18) holds
only if M ⪯ 0, hence only if P is also a solution of the plant’s closed-loop LMI. Thus,
the solution P of (2.18) must be the solution of BMI in (2.7). From Assumption 2.1.4,
we have −M ≽ 0. Using Lemma A.3.1, we infer that (2.18) holds if and only if:

1. D̄ + D̄⊤ ≽ 0 (see item a) at the end of section 2.1.2 for sufficient conditions),

2. Im
(

−(B + EG)⊤P + C + FK
(B + EG)⊤P

)
⊆ Im(D̄ + D̄⊤),

3.

−M ≽
(
−P (B + EG) + (C + FK)⊤ P (B + EG)

)
(D̄ + D̄⊤)†

(
−(B + EG)⊤P + C + FK

(B + EG)⊤P

)
(2.19)

Some comments arise:

• A sufficient condition for (2.19) to hold is D̄ = −D̄⊤ ⇐⇒ D+FG = −(D+FG)⊤,
D = −D⊤, FG = 0. This is allowed by strict state passivity in Assumption
2.1.4. However, item 2 then implies that −(B + EG)⊤P + C + FK = 0 and
(B + EG)⊤P = 0, hence C + FK = 0 and B + EG = 0 since P is full-rank.
Thus, in (2.3) the ODE part and the complementarity part are decoupled.

• Assume that D =
(

D1 0
0 0

)
, D1 ≻ 0. Item 1 implies that FG =

(
(FG)1 0

0 0

)
.

Then, D̄ + D̄⊤ =
(

D̄1 + D̄⊤
1 0

0 0

)
, and (D̄ + D̄⊤)† =

(
(D̄1 + D̄⊤

1 )† 0
0 0

)
, with
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D̄1 + D̄⊤
1 =

D1 + (FG)1 + D1 + (FG)⊤
1 0 −(FG)1

0 0 0
−(FG)⊤

1 0 D1 + D⊤
1

. Similar calculations

can be done for M in (2.7), and also for the ranges inclusion in item 2. Pursuing
the calculations and matrices partitions allows to simplify (2.19).

• Assume that (Ā, B̄, C̄, D̄) is passive. A jump in e(·) occurs at t only if F̄ (·) jumps
at t. In turn, F̄ (·) jumps at t if and only if Cxd+Fud jumps at t, while xd(·) jumps
only if ud(·) does. Hence, e(·) jumps at t only if ud(·) does. How is this related to
the jumps in x(·) in (2.3) and in xd(·) in (2.1) ? As we saw above, if xd(·) jumps
at tc then λd is a Dirac measure at tc and the complementarity constraints in (2.3)
are meaningless at tc. This means that applying an impulsive feedback control
to an LCS (1.1) with FGu ̸= 0, has to be avoided as pointed out in condition
(C1). In fact, the DIs in (2.11), (2.12), (2.8), and (2.9) are constructed with
the underlying assumption that the complementarity conditions can be rewritten
equivalently as inclusion into a normal cone (see, e.g., [38, Equ. (B.1)] [134,
Corollary 23.5.4]). For instance, f(t) in (2.9) is a Dirac measure if EGλd is. This
might let one think that in this case, x(·) jumps at tc. We set that this is true if
F = 0 only, in which case xd(·) can jump only initially, see (2.1). Obviously, if
λd is a Dirac measure, both formalisms (complementarity and inclusion) require
further analysis for their understanding if FG ̸= 0.

• The conditions in this paragraph are different from those of the foregoing para-
graph, because now we consider both the desired system and the closed-loop
plant simultaneously, instead of looking at (2.15) only. However, jumps in both
x(·) and xd(·) are permitted under some conditions as stated above. A quick
examination of the LMI in (2.18) shows that the occurrence of state jumps is
quite restricted in this context. Indeed, if D + D⊤ = 0, then (2.18) implies that
B + EG = 0 and FG = 0. In fact, the LMI in (2.18) shows that studying state
jumps from the passivity error dynamics in (2.12) is almost impossible.

• The controller may be impulsive if G ̸= 0 and a jump occurs in x(·). Condition
(C1) still applies.

Analysis of jump sets K and Kd

These sets are crucial in the state jump characterization and computation, see (1.10).
We have:

K = {z ∈ IRn | Cz + Fud(t+) + FK(z − xd(t+)) ∈ Q⋆
D+F G} (2.20)

and
Kd = {z ∈ IRn | Cz + Fud(t+) ∈ Q⋆

D} (2.21)
In general, both sets are different. However, if FG = 0 then they differ only by the
term FK(z − xd(t+)). Since x(t+) belongs to K, both sets are almost equal if the
tracking error x(t−) − xd(t−) and FK are very small. So, if in addition both storage
functions matrices P (calculated from the closed-loop system LMI) and Pd (computed
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from the desired dynamics LMI when this dynamics is passive) are closed one to each
other, both state jumps are almost the same as well. On the other hand, the state
jump as computed in (1.10) is independent of P (or Pd, respectively), provided it is a
solution of the passivity LMI. Thus, if EG = 0, which implies that the "input" matrix
of the closed-loop system is equal to the input matrix of the desired system, the forms
of K and Kd in (2.20) and (2.21) will imply that both jumps in x and xd are close one
to each other.

The jump-mismatch (peaking) phenomenon

This is a well-known phenomenon in trajectory tracking when state jumps are present,
as recalled in the introduction. The problem that is faced in this study is twofold: 1)
is the discontinuity mismatch issue present? If it is, how can it be coped with? In the
scalar case treated in section 2.2, it will be shown that if both states jump then they
jump at the same time. However, it is also possible that x jumps while xd does not,
and vice versa. Lemma 2.1.9 shows that when FGλd is continuous, then if both states
jump they jump simultaneously.

2.2 Simple Scalar Example with State Jumps
This section is dedicated to analyse and mainly to present numerical simulations of
the theoretical development on state jumps presented in section 2.1.3. The numerical
simulations are done with the INRIA software package siconos1 [3], and the LMIs are
solved with mosek 9.3.14 solver [9].

2.2.1 Dynamics and Closed-loop System
Consider the scalar LCS with d = 0:ẋ(t) = ax(t) + bλ(t) + u1(t)

0 ≤ λ(t) ⊥ w(t) = cx(t) + u2(t) ≥ 0
(2.22)

where a, b, and c ∈ IR, u = (u1, u2)⊤, u1 = Eu, u2 = Fu with E = (1, 0) and F = (0, 1).
The desired system is represented by an LCS as follows:ẋd(t) = axd(t) + bλd(t) + u1d(t)

0 ≤ λd(t) ⊥ wd(t) = cxd(t) + u2d(t) ≥ 0
(2.23)

If a > 0, then the real system in (2.22) and the desired system (2.23) are unstable (i.e,
the quadruple (a, b, c, 0) has a real positive pole). But, in the context of trajectory
tracking, the stability of the error dynamics is the main concern and not the stability
of the plant and desired dynamics. Let

u1 = k1(x − xd) + g1(λ − λd) + u1d

u2 = k2(x − xd) + g2(λ − λd) + u2d
(2.24)

1https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/index.html
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so that K = (k1, k2)⊤ and G = (g1, g2)⊤. By substituting the expressions of u and v in
(2.22), the closed-loop system is written in the form of (2.3) as follows:ẋ(t) = (a + k1)x(t) + (b + g1)λ(t) − k1xd(t) − g1λd(t) + u1d(t)

0 ≤ λ(t) ⊥ w(t) = (c + k2)x(t) + g2λ(t) − k2xd(t) − g2λd(t) + u2d(t) ≥ 0.
(2.25)

Remark 2.2.1. Consider G = 0. Recall the conditions of well-posedness given in
section 1.2.2, item 3 for the case when d = 0. Assume that there exists p > 0 such that
the quadruple (a, b, c, 0) is passive (i.e., the LMI in (1.8) has a solution). Then the
condition pb = c holds. In addition, if the closed-loop system in (2.25) is well-posed,
then the condition pb = c + k2 holds. Therefore, knowing that p > 0, the variables b,
c and c + k2 should have the same sign. Notice also that the contact LCPs have the
matrix cb, hence cb < 0 implies no or several solutions for some u1d(t) and u2d(t):
passivity avoids this.

2.2.2 State-jumps Analysis
State-jumps in x(·) and xd(·) can occur for different reasons discussed in section 2.1.3.
The purpose of this section is to analyze state jumps in the desired and closed-loop
systems in different cases which illustrate the general developments.

If the controller gain G = 0

Notice that the dynamics (2.25) may not be well-posed due to the possible presence of
Dirac measures that stem from both the complementarity conditions in (2.25) which
create an impulsive multiplier λ and from the complementarity in (2.23) which implies
an impulsive multiplier λd. Therefore, we shall consider G = 0 (which means that
(C1) in section 2.1.3 is satisfied). In order to analyze state jumps, the following sets
are calculated as follows (see section 1.2.2). For the desired system in (2.23):

Qd,D = {λd ∈ IR | 0 ≤ λd ⊥ dλd ≥ 0} = {λd ∈ IR | 0 ≤ λd ⊥ 0 ≥ 0}
= {λd ∈ IR | λd ∈ IR+}

Q⋆
d,D = {wd ∈ IR | ⟨wd, λd⟩ ≥ 0} = {wd ∈ IR | wd ∈ IR+}

Kd = {xd ∈ IR | cxd + u2d(t+) ∈ Q⋆
d,D} = {xd ∈ IR | cxd ≥ −u2d(t+)}

(2.26)

A jump can occur in the desired state xd at time t = tc, tc ∈ [0, +∞), if and only if
cxd(t−

c ) < −u2d(t+
c ). For the closed-loop system in (2.25):

QD = {λ ∈ IR | 0 ≤ λ ⊥ dλ ≥ 0} = {λ ∈ IR | λ ∈ IR+}

Q⋆
D = {w ∈ IR | ⟨w, λ⟩ ≥ 0} = {w ∈ IR | w ∈ IR+}

K = {x ∈ IR | (c + k2)x − k2xd(t+) + u2d(t+) ∈ Q⋆
d,D}

= {x ∈ IR | (c + k2)x ≥ k2xd(t+) − u2d(t+)}

(2.27)
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The state x of the closed-loop system in (2.25) jumps at any t = tc, tc ∈ [0, +∞), if
and only if cx(t−

c ) + k2[x(t−
c ) − xd(t+

c )] < −u2d(t+
c ). Thus, when G = 0, the jumps at

t > 0 in x(·) and xd(·) occur only if u2d is discontinuous at t, as expected.

If the controller gain G ̸= 0 and xd is continuous

In this case, a state jump in x (if any) is caused by the discontinuity in λd, which
can arise when the complementarity problem switches mode (i.e., w(t) = cx(t) + u2(t)
vanishes). The desired system’s state is considered continuous to avoid a Dirac measure
λd in complementarity conditions in (2.25). For the closed-loop system represented by
(a + k1, b + g1, c + k2, g2) to be strictly passive, one must have g2 > 0 given that d = 0.
But, g2 multiplies λ as shown in (2.25). The LCP of the closed-loop system (2.25) is

0 ≤ λ(t) ⊥ w(t) = (c + k2)x(t) + g2λ(t) − k2xd(t) − g2λd(t) + u2d(t) ≥ 0

has a unique piecewise continuous solution λ. Hence, the LCS in (2.25) is an ODE
with an AC solution on IR+ provided that u1(t) and u2(t) are continuous (see section
1.2.2, item 1). Thus, the closed-loop system’s state is jump-free in the scalar case with
G ̸= 0 and the desired system’s state xd is continuous. Therefore, the error dynamics
e(t) is continuous in this case. The explanation of this result can be further understood
by analyzing the following sets of the closed-loop system:

QD = {λ ∈ IR | 0 ≤ λ ⊥ (d + g2)λ ≥ 0} = {0}

Q⋆
D = {w ∈ IR | ⟨w, λ⟩ ≥ 0} = {IR}

K = {x ∈ IR | (c + k2)x(t) + g2λ(t) − k2xd(t) − g2λd(t) + u2d(t) ∈ Q⋆
d,D} = {IR}

Using the optimization problem in (1.11), x(t+) = x(t−). Thus, the closed-loop sys-
tem’s state x(t) is continuous even if λd is discontinuous. Therefore, the error dynamics
e(t) is continuous.

2.2.3 Stability Analysis of Error Dynamics
This section is dedicated to the stability analysis of the error dynamics in (2.28) when
state jumps occur. Consider that G = 0, then the error dynamics e(t) = x(t) − xd(t)
is written in the form of (2.5) as:

ė(t) = (a + k1)e(t) + b (λ(t) − λd(t))

0 ≤
(

λ(t)
λd(t)

)
⊥
(

w(t)
wd(t)

)
=
(

c + k2
−c − k2

)
e(t) +

(
0 c

c + k2 −k2

)(
x(t)
xd(t)

)
+
(

u2d(t)
u2d(t)

)
≥ 0

(2.28)
Let us now try the passivity criterion introduced in (2.18) to cope with state jumps
directly from the error dynamics passivity. Let ā = a + k1, b̄ =

(
b −b

)
and c̄ =(

c + k2
0

)
. The passivity of the error dynamics represented by the quadruple (ā, b̄, c̄, 0)
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Chapter 2. Trajectory Tracking in Linear Complementarity Systems

is determined by checking analytically if the BMI in (2.18) has a solution for the system
(2.28). Consider

Mext
∆=

−2p(a + k1) −pb + c + k2 pb
−bp + c + k2 0 0

bp 0 0

 ⪰ 0.

From Lemma A.3.1, it follows that Mext ≽ only if −pb + c + k2 = pb = 0. Therefore, it
is inferred that this approach (imposing the passivity of the error dynamics with the
LMI in (2.18)) is not fruitful in this case.
The following Lemma states the stability result.

Lemma 2.2.2. Consider the dynamical systems in (2.25) and in (2.23). Suppose that
Assumptions 2.1.2 and 2.1.4 hold. Assume that the states x(·) and xd(·) have jumps
for t > 0 (which is possible since d = 0 in the complementarity constraint). Then, the
error dynamics in (2.28) has a globally asymptotically stable equilibrium point e⋆ = 0.

Proof. Consider the Lyapunov candidate function V (e(t)) = e(t)⊤Pe(t). Recall from
section 2.1.2, Proposition 2.1.8, that the error dynamics in (2.28) has a globally ex-
ponentially stable equilibrium point e∗ = 0 when both the states x(·) and xd(·) are
continuous. This result is proved by showing the variation of the storage function of
the error dynamics V̇ (e(t)) < 0 for all e ̸= 0.
In view of the desired dynamics (2.23), the closed-loop dynamics (2.25) and the con-
trollers (2.24), let tk where k > 0 be the set of time instants at which u2d(·) is discon-
tinuous. The states x and xd undergoes a jump at t ∈ {0} ∪ {tk}. The goal is to study
the sign of ∆V (e(t)) at the jump time which is written as follows in scalar case:

∆V (e(t)) = V (e(t+)) − V (e(t−))
=
(
x(t+) − xd(t+)

)⊤
p
(
x(t+) − xd(t+)

)
− (x(t−) − xd(t−))⊤ (x(t−) − xd(t−))

= p
(
x(t+) − xd(t+)

)2 − p (x(t−) − xd(t−))2

(2.29)

There are three cases to consider when analyzing the sign of ∆V (e(t)). To lighten
notations we denote f+ = f(t+) and f− = f(t−).

First case In this case, both x and xd jump at the same time t. The values of the
state jump for the desired and the closed-loop system are given by x+

d = −1
c
u+

2d and
x+ = k2x+

d
−u+

2d

c+k2
respectively by referring to Appendix B.1. If we substitute the value of

x+
d in x+, then x+ = −1

c
u+

2d. The variation of the storage function at the jump time is:

∆V (e(t)) = p (x(t+) − xd(t+))2 − p (x(t−) − xd(t−))2

= p
(
−1

c
u+

2d + 1
c
u+

2d

)
− p (x(t−) − xd(t−))2

= −p (x(t−) − xd(t−))2 ≤ 0

Thus, when both x and xd jump, the variation of the storage function of the error
dynamics ∆V (e) < 0 for all e ̸= 0.
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2.2. Simple Scalar Example with State Jumps

Second case In this case, the closed-loop system’s state x jumps and the desired
system’s state xd is continuous such that x+

d = x−
d = xd. The value of the closed-loop

system’s state jump is given by x+ = k2xd−u+
2d

c+k2
(see Appendix B.1). If these values are

substituted in ∆V (e(t)) in (2.29), then

∆V (e(t)) = p
(

k2xd−u+
2d

c+k2
− xd

)2
− p(x− − xd)2 = p

((
−cxd−u+

2d

c+k2

)2
− (x− − xd)2

)

= p
((

−cxd−u+
2d

c+k2
− x− + xd

)(
−cxd−u+

2d

c+k2
+ x− − xd

))

= p
((

−(c+k2)x−+k2xd−u+
2d

c+k2

)(
(c+k2)x−−(2c+k2)xd−u+

2d

c+k2

))

= p
(c+k2)2

((
−(c + k2)x− + k2xd − u+

2d

) (
(c + k2)x− − (2c + k2)xd − u+

2d

))
Let h(x) ∆= −(c + k2)x− + k2xd − u+

2d and r(x) ∆= (c + k2)x− − (2c + k2)xd − u+
2d. Let

us study the signs of h(x) and r(x).
Knowing that x− /∈ K, the following inequality holds:

(c + k2)x− − k2xd + u+
2d < 0 ⇔ −(c + k2)x− + k2xd − u+

2d > 0 ⇔ h(x) > 0

Now, let us check the sign of r(x). If we add and subtract u+
2d, then

r(x) ± u+
2d

∆= (c + k2)x− − k2xd + u+
2d − 2cxd − 2u+

2d
∆= −h(x) − 2cxd − 2u+

2d

Provided that −h(x) < 0 and cxd + u+
2d ≥ 0 (i.e., xd ∈ Kd) ⇔ −2cxd − 2u+

2d ≤ 0. So,
r(x) < 0.
Thus, h(x) > 0 and r(x) < 0. Therefore, ∆V (e(t)) ∆= p

(c+k2)2 (h(x)r(x)) < 0.

Third case In this case, the desired system’s state xd jumps and the closed-loop
system’s state x is continuous such that x+ = x− = x(t). The value of the desired
system’s state jump is x+

d = −1
c
u+

2d (see Appendix B.1). If these values are substituted
in ∆V (e(t)) in (2.29), then

∆V (e(t)) = p
(

x + u+
2d

c

)2
− p(x − x−

d )2 = p
((

x + u+
2d

c
+ x − x−

d

)(
u+

2d

c
+ x−

d

))

Let h(x) ∆= x + u+
2d

c
+ x − x−

d and r(x) ∆= u+
2d

c
+ x−

d . Let us study the signs of h(x) and
r(x). Knowing that x−

d /∈ Kd, then

cx−
d + u+

2d < 0 ⇔ x−
d + u+

2d

c
< 0 ⇔ r(x) < 0

Now, let us check the sign of h(x) by adding and subtracting u+
2d. Then,

h(x) ± u+
2d

∆= 2(cx + u+
2d) − cx−

d − u+
2d

∆= 2(cx + u+
2d) − r(x)
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The following holds:

x ∈ K ⇔ (c + k2)x − k2x
+
d + u+

2d ≥ 0
⇔ (c + k2)x + k2

c
u+

2d + u+
2d ≥ 0

⇔ (c+k2)
c

(cx + u+
2d) ≥ 0.

According to Remark 2.2.1, c+k2
c

> 0. So, cx+u+
2d ≥ 0 ⇔ 2cx+2u+

2d ≥ 0 and −r(x) > 0,
and h(x) > 0. Thus, h(x) > 0 and r(x) < 0 and ∆V (e(t)) ∆= p (h(x)r(x)) < 0.
Therefore, the storage function is strictly decreasing (i.e., V̇ < 0 when t ̸= tk and
∆V < 0 when t = tk for all e ̸= 0 where tk are the time instants of jumps) on IR+.

The next lemma states the existence of finite-time tracking.

Corollary 2.2.3. Following on from Lemma 2.2.2, assume that u2d(·) is discontinuous
at time instants tk, with k = {1, 2, ..., n} where n ∈ IN⋆. For any tk, if there exists
u2d(t+

k ) < min
{
−cx(t−

k ), −cxd(t−
k )
}
, then both x and xd jump to the value xd(t+

k ) =
x(t+

k ) = −1
c
u2d(t+

k ). Therefore, there is perfect tracking for all t ≥ tk (i.e., finite-time
tracking is achieved).

Proof. Let the time instants at which u2d(·) is discontinuous be denoted by tk with k =
{1, 2, . . . , n}. The goal is to show that if the input u2d(t+

k ) < min{−cx(t−
k ), −cxd(t−

k )},
then both x and xd jump to the same value at t = tk. According to the set Kd in (2.26),
the state xd performs a jump at t = tk if and only if xd(t−

k ) /∈ Kd, which is written as
follows:

xd(t−
k ) /∈ Kd ⇔ cxd(t−

k ) + u2d(t+
k ) < 0 ⇔ u2d(t+

k ) < −cxd(t−
k )

Also, the state x in (2.25) performs a jump at t = tk if and only if x(t−
k ) /∈ K in (2.27).

Let us write the following:

x(t−
k ) /∈ K ⇔ (c + k2)x(t−

k ) − k2xd(t+
k ) + u2d(t+

k ) < 0 (2.30)

Given that xd jumps at t = tk, let us substitute xd(t+
k ) = −1

c
u2d(t+

k ) (see (B.1) in
Appendix B.1) in (2.30). Then,

(c + k2)x(t−
k ) + k2

c
u2d(t+

k ) + u2d(t+
k ) < 0 ⇔ c+k2

c

(
cx(t−

k ) + u2d(t+
k )
)

< 0

Let c and c + k2 have the same sign (see Remark 2.2.1). It is inferred that equivalently

u2d(t+
k ) < −cx(t−

k ).

According to the solution of the optimization problem (1.11) presented in Appendix
B.1, the closed-loop system’s state x jumps at tk such that x(t+

k ) = k2xd(t+
k

)−u2d(t+
k

)
c+k2

=
−1

c
u2d(t+

k ) where xd(t+
k ) = −1

c
u2d(t+

k ). Therefore, both x and xd jump at tk to the
same value xd(t+

k ) = x(t+
k ) = −1

c
u2d(t+

k ) (see Appendix B.1) if and only if u2d(t+
k ) < µ,

where µ is given by µ = min
{
−cxd(t−

k ), −cx(t−
k )
}
.
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2.2.4 Numerical Applications
Let us consider that the open-loop system with u1 = u2 = 0 is not strictly passive
but there exist k1, k2, and p such that the closed-loop quadruple (a + k1, b, c + k2, 0) is
strictly state passive, equivalently the bilinear matrix inequality in (2.6) has a solution
p > 0 with ϵ > 0. According to Appendix A.1, the following LMI is obtained with
G = 0 (

−2qa − 2N1 − ϵq −b + qc + N2
−b + cq + N2 0

)
⪰ 0 (2.31)

where q = p−1, N1 = k1q and N2 = k2q. The LMI in (2.31) has a solution such that:

k1 = −1.198, k2 = 0.96 and p = 1.9607

for a = 0.5, b = 1 and c = 1. For the sake of numerical simulation, take a = 0.5 (so
that the solutions of systems in (2.23) and (2.22) diverge slowly).

Example 1. Let us take b = 1, and c = 1. The numerical simulation below for
the closed-loop system and the desired system is implemented with a discontinuous
controller u2d(t) at tk with k = {1, 2, 3, 4}. Take x(0) = 3, xd(0) = −3, u1d = 5 sin 3t
and u2d = 4 for t ≤ 1s with the time step h = 0.01. Given that xd(1−) = −0.7 and
x(1−) = 2.28, and following Corollary 2.2.3, let us choose u2d(1+) such that u2d(1+) =
min{−xd(1−) − δ, −x(1−) − δ} < min{−xd(1−), −x(1−)} with δ = 0.5. Based on the
value of δ, u2d(1+) = min{0.2, −2.78} = −2.78.
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Figure 1: Numerical simulation of LCS where both x and xd jump

1

Figure 2.1: Numerical simulation of LCS where both x and xd jump

Both x and xd jumps at t = 1 to the same value of −u2d(t+
1 ) = 2.87. Notice that

the storage function’s variation ∆V is non-positive at the time of the state jump (i.e.,
V (e(1+)) − V (e(1−)) ≤ 0). After the first jump of both states x and xd at the same
time t = 1 and following Corollary 2.2.3, the controller u2d can take any value at the
time of discontinuities such that u2d(t+

k+1) ∈ IR and perfect tracking is preserved (i.e.,
e = 0).

Example 2. Let us illustrate the case when xd jumps but x does not jump. Take
x(0) = 3, xd(0) = −3. Knowing that xd(1−) = −0.7 and x(1−) = 2.28 from the
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simulation in Figure 2.1, let us choose u2d(1+) such that xd(1−) /∈ Kd in (2.26) and
x(1) ∈ K in (2.27). Thus,

xd(1−) /∈ Kd ⇔ cxd(1−) + u2d(1+) < 0 ⇒ u2d(1+) < 0.7

and

x(1) ∈ K ⇔ (c + k2)x(1) − k2xd(1+) + u2d(1+) ≥ 0 ⇒ u2d(1+) ≥ −2.28

with c = 1 and k2 = 0.96 (the solution of LMI in (2.31)). Take u2d(1+) = −1.
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1

Figure 2.2: Numerical simulation of LCS when only xd jumps

It is noticed from Figure 2.2 that the variation of the storage function V = pe2 is
negative when xd jumps at t = 1s even though the closed-loop system’s state x does
not jump at t = 1s. Let us create another jump in xd in the transient regime of
the error dynamics (i.e., before e = 0 at t = 1.5s). Knowing that xd(1.2−) = 1
and x(1.2−) = 2.057, choose −2.057 ≤ u2d(1.2+) < −1 so that xd(1.2−) /∈ Kd and
x(1.2) ∈ K. Take u2d(1.2+) = −1.5.
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Figure 2.3: Numerical simulation of LCS where only xd jumps
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In Figure 2.3, the desired state xd jumps at t = 1.2s such that xd(1.2+) = −u2d(1.2+) =
1.5. The value of the error e(1.2+) = 0.557 < e(1−) = 1.057, so the variation of the
storage function V , computed in (2.29), is negative at the jump time t = 1.2. It is
observed in Figure 2.3 that the error has an asymptotically stable equilibrium point
e⋆ = 0 which is consistent with the result in Lemma 2.2.2. It is important to state that,
in the case of Figures 2.2 and 2.3, the necessary and sufficient conditions to have a
jump in the closed-loop state x (i.e., u2d(1+) < −2.28) generate a jump as well in the
desired state xd at the same time, illustrating Corollary 2.2.3.

Example 3. The above conditions that guarantee a negative Lyapunov function jump,
may not match with the sufficient conditions of Proposition 2.1.11. The goal is to find
an example such that the sufficient conditions of Proposition 2.1.11 are satisfied, as an
illustration. Recall that a = 0.5, b = 1, c = 1, p = 1.96 and k2 = 0.96.

Let x(0) = −15, xd(0) = 1, u1d(t) = 5 sin 3t and u2d is a discontinuous function
as shown in Figure 2.4. Let us create a jump at t = 1s such that the conditions in
Proposition 2.1.11 are satisfied. At t = 1−, the values of the states are x(1−) = −2.06
and xd(1−) = 5.89. Let us consider the case when xd is continuous at t = 1s (i.e.,
xd(1+) = xd(1−) = xd(1)) and x is discontinuous at t = 1 (i.e., x(1+) = k2x+

d
−u+

2d

c+k2
from

Appendix B.1). Assume that at t = 1s:

0 ∈ K ⇔ −k2xd(1+) + u2d(1+) ≥ 0 ⇔ u2d(1+) ≥ 5.65

and

xd(1+)px(1−) ≥ xd(1−)px(1−) ⇔ xd(1)px(1−) = xd(1)px(1−)

and

xd(t+) ∈ TK(projP [K; x(t−)]) ⇔ xd(t+) ∈ TK(x(t+)) ⇔ xd(t+) ∈ (NK(x(t+)))◦.

Knowing that −p(x(1+) − x(1−)) ∈ NK(x(1+)), then the last condition is written as

xd(1+) ∈ (NK(x(1+)))◦ ⇒ −xd(1+)p(x(1+) − x(1−)) ≤ 0

⇒ xd(1+)p
(

k2x+
d

−u+
2d

c+k2
− x(1−)

)
≤ 0

⇒ u2d(1+) ≥ 1.5

Let u2d(1+) ≥ 5.56 such that the above conditions (i.e., the conditions of Proposition
2.1.11) are satisfied and −5 ≤ u2d(1+) < 9.6 (i.e., xd(1) ∈ Kd and x(1−) /∈ K at
t = 1s), thus choose u2d(1+) = 6. The numerical simulation is shown in the Figure 2.4
with a time step h = 0.01s.
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Figure 1: Numerical simulation of LCS where only x jumps

1

Figure 2.4: Numerical simulation of LCS where only x jumps

As shown in Figure 2.4, at the jump time t = 1s, the variation of the storage function
∆V (e(1)) = V (e(1+))−V (e(1−)) ≤ 0 which agrees with the result stated in Proposition
2.1.11.

2.2.5 Recapitulation
The occurrence of "peaking phenomenon", which occurs when the jump times of two
trajectories do not coincide, is not observed in our case. This is due to the fact that
the desired system in (2.23) is derived from the dynamics of the real system in (2.22)
and that both systems are passive.
The challenge in our work results from the different situations leading to state jumps
(i.e., discontinuities in vd(t) or in λd(t)). It is noteworthy that, in the scalar case, the
jumps only occur due to discontinuities in u2d(t) as discussed in section 2.2.2. The
closed-loop system’s state x(t) in (2.25) jumps when either xd(t) or u2d(t) jumps, and
since the desired system’s state xd(t) only jumps when u2d(t) jumps, it follows that both
states jump at the same time (i.e., no jump mismatch occur).
The electrical circuits with ideal diodes, presented as examples in Chapter 3, section
3.3.2 provide a more advanced analysis for state jumps and show the stability of the
error dynamics in the presence of state jumps through numerical simulations.

2.3 Tracking Control for First-order Sweeping Pro-
cess

The first order sweeping process (FOSwP) is a differential inclusion of the form:

ẋ(t) ∈ −NS(t)(x(t)) + f(t, x) (2.32)

where NS(t)(x(t)) is the normal cone to the closed convex non-empty set S(t) ⊆ IRn at
x(t), defined in Definition 1, and f(t, x) is a single-valued map such that f : IR×IRn →
IRn. This type of differential inclusion is first introduced by J.J. Moreau in [124, 123,
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121] and motivated by the problems of elastoplasticity. Indeed, the control of FOSwP
has recently received much attention, especially its optimal control [57, 10, 49, 50, 55].
Many papers focused on deriving necessary and optimal conditions for different types
of sweeping processes (i.e., perturbed, unperturbed, etc.) using the method of discrete
approximations [50, 56, 58, 59, 77, 78, 120]. Optimal control problems governed by
sweeping process have been addressed with various applications, such as marine surface
vehicles [50], robotics and pedestrian traffic [55], and crowd motions with obstacles [49].
Additionally, the existence of periodic solutions for FOSwP is discussed in [87], with
further studies performed on the stability of these solutions in [150, 54]. Thus, it is of
interest to investigate the trajectory tracking issue for such DIs.
Under some conditions (see, e.g., section B.2), LCS can be equivalently rewritten as a
First-order Sweeping Process (FOSwP). Here we are interested to see how the material
in section 2.2 is generalized to trajectory tracking in FOSwP, considering the analysis
of state jumps discussed in section 2.1.3.

2.3.1 Dynamics under FOSwP
Let us first rewrite both the closed-loop plant and the desired dynamics under the
perturbed FOSwP format, when D = 0 in (2.1) and D + FG = 0 in (2.3). The
LCS of the desired system in (2.1) can be represented equivalently as a FOSwP when
D = 0 if the conditions in section 1.2.2, item 3 are satisfied. These conditions require
the system represented by the quadruple (A, B, C, 0) to be passive which implies the
condition PB = C⊤ where P = P ⊤ ≻ 0 is the solution of the matrix inequality of strict
passivity in (2.6), the controller u ∈ L1

loc(IR+ : IRp) and the constraint qualification
Im(C) − IRm

+ = IRm holds. The desired FOSwP is represented as follows (see section
B.2):

ζ̇d(t) ∈ RdAR−1
d ζd(t) − Nϕd(t)(ζd(t)) (2.33)

where R2
d = Pd, Rd = R⊤

d , ζd = Rdxd and ϕd(t) = {Rdxd | Cxd ∈ Sd(t)} with
Sd(t) = {v ∈ IRm | v + Fud(t) ≥ 0}. Given that xd(t) = R−1

d ζd(t), then ϕd(t) = {ζd ∈
IRn | CR−1

d ζd + Fud(t) ≥ 0}.
Recall that the closed-loop system in (2.16) when D+FG = 0 is the following FOSwP:

ζ̇(t) ∈ R(A + EK)R−1ζ(t) + RE(−KR−1
d ζd(t) + ud(t)) − NΦ(t)(ζ(t)) (2.34)

where ϕ(t) = {Rx | (C + FK)x ∈ S(t)} with S(t) = {v ∈ IRm | v − FKxd(t+) +
Fud(t) ≥ 0} and ζ(t) = Rx(t). It is noteworthy that the set ϕ(t) depends on the
post-jump of the desired state x+

d . This means that it can be characterized only once
the desired state’s jump has been calculated. Thus, ϕ(t) = {ζ ∈ IRn | (C +FK)R−1ζ −
FKR−1

d ζd(t+) + Fud(t) ≥ 0}. Note that x ∈ K if and only if ζ ∈ ϕ(t) and xd ∈ Kd if
and only if ζd ∈ ϕd(t).

2.3.2 Conditions for Post-Jump Equality: x+ = x+
d

Recall that f(t+) = lims→t
s>t

f(s) and f(t−) = lims→t
s<t

f(s). Taking advantage of the
FOSwP formalism, the aim in the following is to show under which conditions x+

d = x+
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holds. As a first step, let us check if x+
d ∈ ∂K. It is required to show that x+

d ∈ K (the
set K is defined for (2.3)). Given that x+

d ∈ Kd, then

Cx+
d + Fud ≥ 0 ⇔ (C + FK)x+

d − FKx+
d + Fud ≥ 0 (2.35)

This means that x+
d satisfies the condition of the set K. Hence, x+

d ∈ K.
In addition, given that x+

d ∈ ∂Kd, it follows that[
Cx+

d + Fu+
d

]
k

= 0 ⇔
[
(C + FK)x+

d − FKx+
d + Fu+

d

]
k

= 0 for some k ∈ {1, . . . , m}
(2.36)

Thus, the following is proved:

Lemma 2.3.1. The post-jump desired state satisfies: x+
d ∈ ∂K ∩ ∂Kd. So, a necessary

condition to have x+ = x+
d is that x+ ∈ ∂K, which is equivalent to x− ̸∈ Int(K).

If it is assumed that P (x− − x+
d ) ∈ NK(x+

d ), equivalently x+
d = ProjP [K; x−] = x+ (the

last equality holds from (1.11)). The question that arises is: what are the conditions
such that the first inclusion holds?
Let us present the given information in the following. The optimization problem in
(1.11) for the desired system leads to the following:

x+
d = ProjPd

[Kd; x−
d ] ⇔ Pd(x−

d − x+
d ) ∈ NKd

(x+
d ) (2.37)

Similarly, according to the optimization problem in (1.11) for the closed-loop system,
the following is derived:

P (x− − x+) ∈ NK(x+) (2.38)

Using the definition of the normal cone in (1.2), the equations in (2.37) and (2.38) are
written as follows, for the desired and closed-loop systems, respectively:

(x−
d − x+

d )⊤Pd(xd − x+
d ) ≤ 0 ∀ xd ∈ Kd

(x− − x+)⊤P (x − x+) ≤ 0 ∀ x ∈ K

And the third inclusion for x+
d = x+ is equivalent to the variational inequality VI (see

Definition 7):
(x− − x+

d )⊤P (x − x+
d ) ≤ 0 ∀ x ∈ K

Note that x+
d ∈ ∂K if and only if Rx+

d ∈ ∂ϕ(t) ⇔ RR−1
d ζ+

d ∈ ∂ϕ(t), where ζd = Rdxd

and ζ = Rx. Hence, the state RR−1
d ζd becomes relevant and the set RR−1

d ϕd(t) is
considered in the following since RR−1

d ζd ∈ RR−1
d ϕd(t). Let ζ ′

d = RR−1
d ζd = Rxd and

ϕ′
d(t) = RR−1

d ϕd(t) = RKd which is defined as:

ϕ′
d(t) = {ζ ′

d ∈ IR2 | CR−1ζ ′
d + Fud ≥ 0} (2.39)

The desired system in (2.33) is written, in the terms of the new variable ζ ′
d = RR−1

d ζd,
as follows:

ζ̇ ′
d ∈ RAR−1ζ ′

d − RP −1
d RNϕ′

d
(t)(ζ ′

d) (2.40)
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Similarly, x+ ∈ ∂K if and only if ζ+ ∈ ∂ϕ((t). Hence, equivalently the three VIs are
obtained:

(ζ ′−
d − ζ ′+

d )⊤(ζ ′
d − ζ ′+

d ) ≤ 0 ∀ ζ ′
d ∈ ϕ′

d(t) (2.41)
(ζ− − ζ+)⊤(ζ − ζ+) ≤ 0 ∀ ζ ∈ ϕ(t) (2.42)

(ζ− − ζ ′+
d )⊤(ζ − ζ ′+

d ) ≤ 0 ∀ ζ ∈ ϕ(t) (2.43)
The optimization problem in (2.38) for the closed-loop FOSwP in (2.34) is written as
follows:

ζ+ = Proj[ϕ(t), ζ−] ⇔ ζ− − ζ+ ∈ Nϕ(t)(ζ+) (2.44)

Then, it is required to prove under which conditions ζ− − ζ ′+
d ∈ Nϕ(t)(ζ ′+

d ) (which is
the VI (2.43)) holds, equivalently ζ ′+

d = ζ+ (i.e., R−1ζ+ = R−1
d ζ+ ⇔ x+

d = x+). Let us
study this on a particular example.

Example 4. Consider the desired FOSwP in (2.33). Take A = −I, B = I, and C = I

where I is the 2 × 2 identity matrix. Let E =
(
1 0

)⊤
and F =

(
2 1

)⊤
. The LMI

of strict passivity in (2.6), related to the desired system’s quadruple (A, B, C, 0), has a
solution Pd = P ⊤

d = I ≻ 0. Thus, the desired system is strictly state passive. Given
that R2

d = Pd, then Rd = I.
Let us check if there exist K and P such that the closed-loop system’s quadruple (A +
EK, B, C + FK, 0) is strictly passive. This means that it is required to check if the
matrix inequality in (2.6) has a solution. In order to solve the BMI in (2.6), it is
transformed into an LMI (see Appendix A.1) and the solution is given by the software
mosek 9.3.14 [9]:

K =
(
0.07 0.035

)
and P =

(
1.14 0.07
0.07 1.035

)

Given that R2 = P , then R =
(

1.07 0.034
0.034 1.017

)
. Thus, the FOSwP associated with the

closed-loop system in (2.34) is written as follows:(
ζ̇1
ζ̇2

)
∈
(

−0.93 0.034
0.034 −1

)(
ζ1
ζ2

)
−
(

0.14 0.07
0.07 0.034

)(
ζ+′

1d

ζ+′

2d

)
+
(

1.07
0.034

)
ud − Nϕ(t)(ζ) (2.45)

where Nϕ(t)(ζ) = {v ∈ IR2 | v⊤(ζ − η) ≤ 0 ∀ η ∈ ϕ(t)} and the set ϕ(t) is given by:

ϕ(t) = {ζ ∈ IR2 | (C + FK)R−1ζ − FKR−1ζ ′
d(t+) + Fud(t) ≥ 0}

=
{

ζ ∈ IR2
∣∣∣∣
(

1.065 0.034
0.034 1.016

)(
ζ1
ζ2

)
−
(

0.129 0.065
0.064 0.032

)(
ζ+′

1d

ζ+′

2d

)
+
(

2
1

)
ud ≥

(
0
0

)}
(2.46)

The desired FOSwP in (2.40) is written as follows:(
ζ̇ ′

1d

ζ̇ ′
2d

)
∈
(

ζ ′
1d

ζ ′
2d

)
−
(

1.14 0.07
0.07 1.035

)
Nϕ′

d
(t)(ζ ′

d) (2.47)
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where Nϕ′
d
(t)(ζ ′

d) = {v ∈ IR2 | v⊤(ζ ′
d − ηd) ≤ 0 ∀ ηd ∈ ϕ′

d(t)} and the desired set ϕ′
d(t)

is given by:

ϕ′
d(t) = {ζd ∈ IR2 | CR−1ζ ′

d + Fud ≥ 0}

=
{

ζ ′
d ∈ IR2

∣∣∣∣
(

0.936 −0.031
−0.031 0.984

)(
ζ ′

1d

ζ ′
2d

)
+
(

2ud

ud

)
≥
(

0
0

)} (2.48)

Let us define the set of active constraints for the desired system in (2.47) as:

Ad(ϕ′
d(t)) = {i ∈ {1, 2} | (CR−1)i,•ζ

′+
d + Fi,•ud(t) = 0 and ζ ′+

d ∈ ϕ′
d(t)} (2.49)

and we define

Ωid
∆=
ζ ′+

d ∈ IR2
∣∣∣∣
(

0.936 −0.031
−0.031 0.984

)
i,•

ζ ′+
d +

(
2ud

ud

)
i,•

= 0 and ζ ′+
d ∈ ϕ′

d(t)
 ,

for i ∈ {1, 2}.
Let us draw the set ϕ′

d(t) in (2.48) as shown in Figure 2.5 below

2ud

ud

ϕ′
d(t)

Ω1d

Ω2d

ζ1

ζ2

Figure 2.5: Plot of set ϕ′
d(t)in(2.48)

It is noticeable that the set ϕ(t) in (2.46) depends on the value of the state ζ ′+
d . This

implies that there exists a unique set ϕ(t) associated with each ζ ′+
d which is the solution

to the optimization problem in (2.37) with a specific set of active constraints applied.
Let us consider the following cases based on the different values of ζ ′+

d , each resulting
in a different set of ϕ(t).

Case 1: the state ζ ′+
d ∈ Ω1d ∩ Ω2d

In this case, both constraints Ω1d and Ω2d in (2.49) for the desired system are considered
active. According to the set of active constraints Ad(ϕ′

d(t)) in (2.49) and given that
the matrix CR−1 is invertible in this example, it follows that the state variable ζ ′+

d is

40



2.3. Tracking Control for First-order Sweeping Process

expressed as ζ ′+
d = −RC−1Fud ∈ Ω1d ∩ Ω2d. By substituting the value of ζ ′+

d in the set
ϕ(t) in (2.46), it gives the following expression of ϕ(t):

ϕ(t) = {ζ ∈ IR2 | ((C + FK)R−1)ζ + (FKC−1F )ud(t) + Fud(t) ≥ 0} (2.50)

Figure 2.6 below shows both sets ϕ(t) and ϕd(t).

2ud

ud

ζ ′+
d

ϕ(t)

Nϕ(t)(ζ ′+
d )

I II

IIIIV

ζ1

ζ2

Figure 2.6: Plots of sets ϕ(t) in (2.50) and ϕ′
d(t)

By observing the plots in Figure 2.6, it is noticeable that the state ζ ′+
d is located at the

corner of the set ϕ′
d(t) (i.e., ζ ′+

d ∈ Ω1d ∩ Ω2d defined in (2.49)). This corner represented
by ζ ′+

d is shared by both sets ϕ′
d(t) and ϕ(t) such that ζ ′+

d ∈ ∂ϕ(t)∩∂ϕ′
d(t). Let us define

the active constraints for the closed-loop system in (2.45) as follows:

A(ϕ(t)) = {i ∈ {1, 2} | ((C + FK)R−1)i,•ζ+ + (FKC−1F )i,•ud(t) + Fi,•ud(t) = 0, for ζ+ ∈ ϕ(t)}
(2.51)

and we define

Ωi
∆=
ζ+ ∈ IR2

∣∣∣∣
(

1.065 0.034
0.034 1.016

)
i,•

ζ+ +
(

2.35ud

1.75ud

)
i,•

= 0 for ζ+ ∈ ∂ϕ(t)
 ,

for i ∈ {1, 2}.

• If ζ− ∈ Region I (i.e., ζ− /∈ ϕ(t)) and the active constraint is Ω1 defined in (2.51),
then the post-jump state ζ+ ∈ Ω1 and is defined as ζ+ = Proj[Ω1; ζ−].

• If ζ− ∈ Region II (i.e., ζ− ∈ int ϕ(t)), then ζ+ = ζ− ∈ int ϕ(t).

• If ζ− ∈ Region III (i.e., ζ− /∈ ϕ(t)) and the active constraint is Ω2 as defined in
(2.51), then ζ+ ∈ Ω2.

• If ζ− ∈ Region IV (i.e., ζ− − ζ ′+
d ∈ Nϕ(t)(ζ ′+

d )) and both constraints Ω1 and Ω2

are active as defined in (2.51), then ζ+ = ζ ′+
d

Thus, regardless of the active constraint, ζ+ = ζ ′+
d if and only if ζ− − ζ ′+

d ∈ Nϕ(t)(ζ ′+
d ).
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Case 2: the state ζ ′+
d ∈ Ω1d

In this case, only one of the constraints for the desired system is considered active which
is Ω1d as defined in (2.49). Let ζ ′+

d = (−2.104 ud, ud)⊤ ∈ Ω1d and let us substitute the
value of ζ ′+

d in the set ϕ(t) in (2.46), then:

ϕ(t) =
{

ζ ∈ IR2
∣∣∣ (1.065 0.034

0.034 1.016

)(
ζ1
ζ2

)
−
(

0.129 0.065
0.064 0.032

)(
−2.1036ud

ud

)
+
(

2ud

ud

)
≥ 0

}
(2.52)

and it is represented graphically in Figure 2.7 below

2ud
ud

ϕ′
d(t)

ϕ(t)

ζ ′+
dNϕ(t)(ζ ′+

d )

ζ1

ζ2

Figure 2.7: Plots of sets ϕ(t) in (2.52) and ϕ′
d(t)

By observing Figure 2.7, the state ζ ′+
d is shared between the active constraint of the

desired system Ω1d and the set ϕ(t). It can be noticed that the set ϕ(t) in Figure 2.7
is different from that in Figure 2.5 due to the new selection of ζ ′+

d . Let us define the
active constraints for the closed-loop system in (2.45) as follows:

A(ϕ(t)) =
{
i ∈ {1, 2} | ((C + FK)R−1)i•ζ

+ + (FKR−1)i•ζ
′+
d (t)

+Fi•ud(t) = 0, for ζ+ ∈ ϕ(t)
}

(2.53)

and we define

Ωi =
{

ζ+ ∈ IR2
∣∣∣∣ Ωi

∆=
(

1.065 0.034
0.034 1.016

)
i•

ζ+ +
(

2.206ud

0.815ud

)
i•

= 0 for ζ+ ∈ ϕ(t)
}

,

for i ∈ {1, 2}.
The same reasoning as before is applicable in this case. It is worth noting that the
equality ζ+ = ζ ′+

d holds if and only if ζ− is selected such that ζ− − ζ ′+
d ∈ Nϕ(t)(ζ ′+

d ).
Otherwise, the resulting feasible solution ζ+ ̸= ζ ′+

d but it belongs to the boundary of the
set ϕ(t). That is, ζ+ ∈ ∂ϕ(t), which can be any of the three possible domains: Ω1, Ω2,
or Ω1 ∩ Ω2 as defined in (2.53).
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Case 3: the state ζ ′+
d ∈ Ω2d

In this case, only one of the constraints for the desired system is considered active
which is Ω2d defined in (2.49). Let ζ ′+

d = (4 ud, −0.89 ud)⊤ ∈ Ω2d and let us substitute
the value of ζ ′+

d in the set ϕ(t) in (2.46), then:

ϕ(t) =
{

ζ ∈ IR2
∣∣∣∣
(

1.065 0.034
0.034 1.016

)(
ζ1
ζ2

)
−
(

0.129 0.065
0.064 0.032

)(
4ud

−0.89ud

)
+
(

2ud

ud

)
≥ 0

}
(2.54)

which is represented in Figure 2.8

2ud
ud

Ω2

Ω1

ϕ(t)

ζ ′+
d

Nϕ(t)(ζ ′+
d )

ζ1

ζ2

Figure 2.8: Plots of sets ϕ(t) in (2.54) and ϕ′
d(t)

The state ζ ′+
d is shared by both sets ϕ(t) and ϕd(t), as shown in Figure 2.8. More

precisely, ζ ′+
d ∈ Ω2d ∩ ϕ(t). Let us define the active constraints for the closed-loop

system in (2.45) as follows:

A(ϕ(t)) =
{

i ∈ {1, 2} | ((C + FK)R−1)i•ζ+ + (FKR−1)i•ζ ′+

d (t) + Fi•ud(t) = 0 for ζ+ ∈ ϕ(t)
}

and let Ωi
∆=
{

ζ+ ∈ IR2
∣∣∣∣
(

1.065 0.034
0.034 1.016

)
i•

ζ+ +
(

1.542ud

0.773ud

)
i•

= 0 for ζ+ ∈ ϕ(t)
}

, for

i ∈ {1, 2}.

The same result as in the previous cases is determined: ζ+ = ζ ′+
d if and only if ζ−−ζ ′+

d ∈
Nϕ(t)(ζ ′+

d ).

In this section, an equivalence between LCS and FOSwP under certain conditions
is demonstrated. Significantly, Lemma 2.3.1 gives a necessary condition to ensure
that the equality x+ = x+

d holds. Example 4 illustrates the conditions under which
the post-jump states of the desired and the closed-loop systems are equal. However,
further investigation is required on trajectory tracking in FOSwP, particularly on the
conditions that guarantee that the assumption P (x− − x+

d ) ∈ NK(x+
d ) is satisfied.
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2.4 Robustness Analysis: Tracking with Paramet-
ric Uncertainties

It is of interest to analyse the tracking problem when the plant’s dynamics have uncer-
tainties. In this case, the desired dynamics’ matrices in (2.1), and the plant’s model
matrices, differ. The desired dynamics (2.1) has to be designed using a nominal plant
model.

2.4.1 Controller Design
The controller u(t) = K0[x(t) − xd(t)] + G0[λ(t) − λd(t)] + ud(t) is designed from
the plant’s nominal quadruple (A0, B0, C0, D0), along the same procedure as in the
foregoing section. Therefore the desired system (2.1) is represented by the following
LCS: ẋd(t) = A0xd(t) + B0λd(t) + E0ud(t)

0 ≤ λd(t) ⊥ wd(t) = C0xd(t) + D0λd(t) + F0ud(t) ≥ 0.
(2.55)

If strong passivity is used (Assumption 2.1.5) instead of strict state passivity as in
the foregoing section (Assumption 2.1.4), the controller gains are computed assuming
there exist matrices K0 and G0 such that the inequality (2.7) is satisfied for the nominal
plant, i.e.,

M0
∆=
(

(A0 + E0K0)⊤P0 + P0(A0 + E0K0) P0(B0 + E0G0) − (C0 + F0K0)⊤

(B0 + E0G0)⊤P0 − (C0 + F0K0) −D0 − F0G0 − (D0 + F0G0)⊤

)
≺ 0

(2.56)
has a solution P0 = P ⊤

0 ≻ 0. The plant dynamics is represented as followsẋ(t) = (A0 + ∆A)x(t) + (B0 + ∆B)λ(t) + (E0 + ∆E)u(t)
0 ≤ λ(t) ⊥ w(t) = (C0 + ∆C)x(t) + (D0 + ∆D)λ(t) + (F0 + ∆F )u(t) ≥ 0

where ∆A, ∆B, ∆C, ∆D, ∆E and ∆F represent additive uncertainties. Sufficient
conditions on the uncertainties upperbounds are calculated in the next section, so that
some stability is guaranteed. The closed-loop system is given by:

ẋ(t) = (A0 + ∆A + (E0 + ∆E)K0)x(t) + (B0 + ∆B + (E0 + ∆E)G0)λ(t)
−(E0 + ∆E)(K0xd(t) + G0λd(t) − ud(t))

0 ≤ λ(t) ⊥ w(t) = (C0 + ∆C + (F0 + ∆F )K0)x(t) + (D0 + ∆D + (F0 + ∆F )G0)λ(t)
−(F0 + ∆F )(K0xd(t) + G0λd(t) − ud(t)) ≥ 0

(2.57)
It is noteworthy that the well-posedness of (2.57) may not be guaranteed for any un-

certainties. Some of the results in section 1.2.2 can be used. The following assumption
is supposed to hold in this section:

Assumption 2.4.1. The closed-loop system (2.57) is well-posed, i.e., it has unique AC
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solutions for any initial condition x(t0) = x0 satisfying w(t0, x0) ≥ 0, equivalently:

x0 ∈ Dom
(
(D0 + ∆D + (F0 + ∆F )G0 + ∂σS(t))−1

)
= Im

(
(D0 + ∆D + (F0 + ∆F )G0 + ∂σS(t))

)
,

with S(t) = {ν ∈ IRm | ν + (F0 + ∆F )(K0xd + G0λd − ud) ≥ 0}.
Remark 2.4.2. It is clear that time-varying uncertainties give rise to a time-varying
LCS in (2.57). As pointed out in section 1.2.2, it is only in few particular cases that the
well-posedness of time-varying LCS has been studied. In this section, stability relies on
the fact that the closed-loop nominal system is strongly passive, and that the closed-loop
plant feedthrough matrix (D0 + ∆D + (F0 + ∆F )G0) ≻ 0. Thus, item 1 in 1.2.2 applies
if this matrix is constant.

2.4.2 Error Dynamics Stability Analysis
The error dynamics is given by:

ė(t) = (A0 + E0K0)e(t) + (B0 + E0G0)∆λ(t) + ∆Ax(t) + ∆Bλ(t) + ∆EK0e(t)
+∆EG0∆λ(t) + ∆Eud(t)

∆w(t) = w(t) − wd(t) = (C0 + F0K0)e(t) + (D0 + F0G0)∆λ(t) + ∆Cx(t)
+∆Dλ(t) + ∆FK0e(t) + ∆FG0∆λ(t) + ∆Fud(t)

0 ≤ w(t) ⊥ λ(t) ≥ 0 and 0 ≤ wd(t) ⊥ λd(t) ≥ 0.
(2.58)

with ∆λ(t) = λ(t) − λd(t). Let:

p(x, t, λ) ∆= ∆Ax(t) + ∆Bλ(t) + ∆EK0e(t) + ∆EG0∆λ(t) + ∆Eud(t)
and

q(x, t, λ) ∆= ∆Cx(t) + ∆Dλ(t) + ∆FK0e(t) + ∆FG0∆λ(t) + ∆Fud(t).
Let us now state the stability result.
Proposition 2.4.3. Let Assumptions 2.1.1, 2.1.2, 2.1.5 hold for the nominal system,
and Assumption 2.4.1 hold for the closed-loop system. Let the inequalities

∆A⊤Λ−1
A ∆A ≼ In, ∆B⊤Λ−1

B ∆B ≼ Im, ∆C⊤Λ−1
C ∆C ≼ In

∆D⊤Λ−1
D ∆D ≼ Im, ∆E⊤Λ−1

E ∆E ≼ Ip, ∆FΛ−1
F ∆F ⊤ ≼ Im

(2.59)

hold for any Λk = Λ⊤
k ≻ 0, k ∈ {A, B, C, D, E, F}, and assume there exist P0, K0 and

G0 such that the matrix inequality

−(M0)11 −(M0)12 P0 P0 K⊤
0 In 0 0 0

−(M0)12 −(M0)22 0 0 0 0 G⊤
0 Im Im

P0 0 Λ−1
1 0 0 0 0 0 0

P0 0 0 Λ̃−1
1 0 0 0 0 0

K0 0 0 0 Λ̃−1
F 0 0 0 0

In 0 0 0 0 1
2In 0 0 0

0 G0 0 0 0 0 Λ̃−1
F 0 0

0 Im 0 0 0 0 0 Λ−1
2 0

0 Im 0 0 0 0 0 0 Λ̃−1
2


≻ 0 (2.60)
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and P0 = P ⊤
0 ≻ 0, with Λ̃F

∆= Ip+ΛF , Λ̃1
∆= ΛA+2ΛE +ΛB, Λ̃2

∆= ΛC +ΛD +4Im, holds.
Then, the solution of the error dynamics in (2.58) is globally uniformly ultimately
bounded. Note that (M0)ij denotes the element of the matrix M0 in (2.56) located at
the ith row and jth column where i, j ∈ {1, 2}.

Proof. The derivative of the Lyapunov function candidate V (t) = e⊤P0e along the
closed-loop trajectories is calculated as follows:

V̇ = e⊤
[
(A0 + E0K0)⊤P0 + P0(A0 + E0K0)

]
e+2e⊤P0(B0 +E0G0)∆λ+2e⊤P0p(x, t, λ)

In matrix form

V̇ (t) =
(

e
∆λ

)⊤((A0 + E0K0)⊤P0 + P0(A0 + E0K0) P0(B0 + E0G0)
(B0 + E0G0)⊤P0 0

)(
e

∆λ

)

+2e⊤P0p(x, t, λ)

±
(

e
∆λ

)⊤( 0 (C0 + F0K0)⊤

C0 + F0K0 D0 + F0G0 + (D0 + F0G0)⊤

)(
e

∆λ

)

The purpose of the ± term is to obtain the matrix in (2.56) and
(

e
∆λ

)⊤( 0 (C0 + F0K0)⊤

C0 + F0K0 D0 + F0G0 + (D0 + F0G0)⊤

)(
e

∆λ

)
=

2∆λ⊤ [(C0 + F0K0)e + (D0 + F0G0)∆λ] = 2∆λ⊤(∆w − q(x, t, λ))

Then,

V̇ (t) =
(

e
∆λ

)⊤

M0

(
e

∆λ

)
+ 2e⊤P0p(x, t, λ) + 2∆λ⊤(∆w − q(x, λ)).

Let us substitute the values of p and q and write explicitly the following

2e⊤P0p(x, t, λ) − 2∆λT q(x, λ) = 2e⊤P0[∆Ax + ∆Bλ + ∆EK0e + ∆EG0∆λ + ∆Eud

±∆Axd ± ∆Bλd)]
−2∆λT [∆Cx + ∆Dλ + ∆FK0e + ∆FG0∆λ
+∆Fud ± ∆Cxd ± ∆Dλd].

Hence,

2e⊤P0p(x, t, λ) − 2∆λ⊤q(x, λ) =(
e

∆λ

)⊤((∆A + ∆EK0)⊤P0 + P0(∆A + ∆EK0) P0(∆B + ∆EG0) − (∆C + ∆FK0)⊤

(∆B + ∆EG0)⊤P0 − (∆C + ∆FK0) −∆D − ∆FG0 − (∆D + ∆FG0)⊤

)(
e

∆λ

)
+2e⊤P0(∆Axd + ∆Bλd + ∆Eud) − 2∆λ⊤(∆Cxd + ∆Dλd + ∆Fud)

Let

∆M0
∆=
(

−(∆A + ∆EK0)⊤P0 − P0(∆A + ∆EK0) −P0(∆B + ∆EG0) + (∆C + ∆FK0)⊤

−(∆B + ∆EG0)⊤P0 + (∆C + ∆FK0) ∆D + ∆FG0 + (∆D + ∆FG0)⊤

)
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Thus,

V̇ ≤ −
(

e
∆λ

)⊤

(−M0 + ∆M0)
(

e
∆λ

)
+ 2e⊤P0(∆Axd + ∆Bλd + ∆Eud)

−2∆λ⊤(∆Cxd + ∆Dλd + ∆Fud)

Let a(t) ∆= ∆Axd + ∆Bλd + ∆Eud and b(t) ∆= ∆Cxd + ∆Dλd + ∆Fud. For any
Λ⊤

1 = Λ1 ≻ 0 and Λ⊤
2 = Λ2 ≻ 0, it holds that:∣∣∣2e⊤P0a(t)

∣∣∣ ≤ e⊤P0Λ1P0e + a⊤(t)Λ−1
1 a(t)

∣∣∣2∆λ⊤b(t)
∣∣∣ ≤ ∆λ⊤Λ2∆λ + b⊤(t)Λ−1

2 b(t)

So,

V̇ ≤ −z⊤
[
−M0 + ∆M0 −

(
P0Λ1P0 0

0 Λ2

)]
z + a⊤(t)Λ−1

1 a(t) + b⊤(t)Λ−1
2 b(t)

≤ −λmin

[
−M0 + ∆M0 −

(
P0Λ1P0 0

0 Λ2

)]
∥z∥2 + λ−1

min(Λ1)∥a(t)∥2 + λ−1
min(Λ2)∥b(t)∥2

where z(t) ∆=
(

e
∆λ

)
. Let us prove that if the conditions, (2.59) and (2.60) hold, then

the matrix −M0 + ∆M0 −
(

P0Λ1P0 0
0 Λ2

)
is positive definite. For this purpose, the

upper-bounding of ∆M0 can be done term by term as:
(

e
∆λ

)⊤

∆M0

(
e

∆λ

)
= −2e⊤P0(∆A + ∆EK0)e − 2e⊤P0(∆B + ∆EG0)∆λ

+2e⊤(∆C + ∆FK0)⊤∆λ + 2∆λ⊤(∆D + ∆FG0)∆λ

Thus, for any Λk = Λ⊤
k ≻ 0, k ∈ {A, B, C, D, E, F}, the following hold

• 2e⊤P0(∆A+∆EK0)e ≥ −e⊤
[
P0(ΛA + ΛE)P0 + ∆A⊤Λ−1

A ∆A + K⊤
0 ∆E⊤Λ−1

E ∆EK0
]

e

• 2∆λ⊤(∆B + ∆EG0)⊤P0e ≥ −e⊤ [P0(ΛB + ΛE)P0] e

−∆λ⊤
[
∆B⊤Λ−1

B ∆B + G⊤
0 ∆E⊤Λ−1

E ∆EG0
]

∆λ

• 2∆λ⊤(∆C + ∆FK0)e ≥ −∆λ⊤
[
ΛC + ∆FΛ−1

F ∆F ⊤
]

∆λ

−e⊤
[
∆C⊤Λ−1

C ∆C + K⊤
0 ΛF K0

]
e

• 2∆λ⊤(∆D + ∆FG0)∆λ ≥ −∆λ⊤
[
ΛD + ∆D⊤Λ−1

D ∆D + G⊤
0 ΛF G0 + ∆FΛ−1

F ∆F ⊤
]

∆λ
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Assume that the constraints on uncertainties in (2.59) stated in Proposition 2.4.3 are
satisfied, then:
(

e
∆λ

)⊤

∆M0

(
e

∆λ

)
≥ −

(
e

∆λ

)⊤(
P0Λ̃1P0 + K⊤

0 Λ̃F K0 + 2In 0
0 Λ̃2 + G⊤

0 Λ̃F G0

)(
e

∆λ

)

Thus:

z⊤
[
−M0 + ∆M0 −

(
P0Λ1P0 0

0 Λ2

)]
z ≥

z⊤
(

(−M0)11 − P0Λ1P0 − P0Λ̃1P0 − K⊤
0 Λ̃F K0 − 2In −(M0)12

−(M0)12 −(M0)22 − Λ̃2 − Λ2 − G⊤
0 Λ̃F G0

)
z

(2.61)
Applying the Schur complement Theorem for positive definiteness [40, Theorem

A.65], it is inferred that the matrix obtained in (2.61) is positive definite if and only
if the matrix inequality (2.60) in Proposition 2.4.3 holds. The inequality obtained in
(2.60) is a bilinear matrix inequality BMI due to the upper-left sub-matrix M0. Then,
in order to solve this inequality, it must be transformed into LMI (see A.1). It follows
that

M0lin

∆= −
(

−Q0A
⊤
0 − Q0A0 − N⊤

0 E⊤
0 − E0N0 −B0 − E0G0 + Q0C

⊤
0 + N⊤

0 F ⊤
0

−B⊤
0 − G⊤

0 E⊤
0 + C0Q0 + F0N0 D0 + F0G0 + (D0 + F0G0)⊤

)
(2.62)

with Q0 = P −1
0 and N0 = K0Q0. So, the BMI in (2.60) is written as:



−(M0lin
)11 −(M0lin

)12 In In N⊤
0 Q0 0 0 0

−(M0lin
)21 −(M0lin

)22 0 0 0 0 G⊤
0 Im Im

In 0 Λ−1
1 0 0 0 0 0 0

In 0 0 Λ̃−1
1 0 0 0 0 0

N0 0 0 0 Λ̃−1
F 0 0 0 0

Q0 0 0 0 0 1
2In 0 0 0

0 G0 0 0 0 0 Λ̃−1
F 0 0

0 Im 0 0 0 0 0 Λ−1
2 0

0 Im 0 0 0 0 0 0 Λ̃−1
2


≻ 0 (2.63)

where (M0lin
)ij denotes the element of the matrix M0lin

in (2.62) located at the ith row
and jth column with i, j ∈ {1, 2}. The LMI in (2.63) can be solved, under some con-
ditions, in the new variables Q0 = Q⊤

0 ≻ 0, N0 and G0. Thus, it is possible to say that

the inequality: z⊤
[
−M0 + ∆M0 −

(
P0Λ1P0 0

0 Λ2

)]
z ≻ 0 holds. As a consequence of

the result obtained about positive definiteness of the matrix obtained in (2.61) and due

to symmetry, there exists µ > 0 such that −λmin

[
M0 + ∆ − M0 −

(
P0Λ1P0 0

0 Λ2

)]
=

−µ < 0. According to Assumption 2.1.1 where ud, xd and λd are bounded, the terms
∥a(t)∥2 and ∥b(t)∥2 are bounded such that ∥a(t)∥2 < β1 and ∥b(t)∥2 < β2 for some
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β1,β2 > 0. Then, it is inferred that:

V̇ ≤ −µ∥z∥2 + λ−1
min(Λ1)β1 + λ−1

min(Λ2)β2

≤ −µ∥e∥2 − µ∥∆λ∥2 + λ−1
min(Λ1)β1 + λ−1

min(Λ2)β2

≤ −µ∥e∥2 + λ−1
min(Λ1)β1 + λ−1

min(Λ2)β2.

It shows that V̇ < 0 outside the ball Br(0) ⊂ IRn, with r
∆=
√

λ−1
min(Λ1)β1+λ−1

min(Λ2)β2
µ

. Then,
the solution of (2.58) is GUUB [88, 61]. According to Theorem A.2.1, the ultimate
bound with α1(∥e∥) = λmin(P0)∥e∥2 and α2(∥e∥) = λmax(P0)∥e∥2 is given by

∥e∥ ≤ α−1
1 (α2(r)) =

√√√√λmax(P0)r2

λmin(P0)
=

√√√√λmax(P0)
(
λ−1

min(Λ1)β1 + λ−1
min(Λ2)β2

)
λmin(P0)µ

Notice that under the conditions of the proposition, then M0 + ∆M0 ≻ 0. This implies
that the closed-loop system’s quadruple in (2.57) is strongly passive (in other words the
uncertainties do not destroy the strong passivity of the nominal closed-loop system).
In particular this implies that D0 +∆D+(F0 +∆F )G0 ≻ 0. Consequently, Assumption
2.1.1 and item 1 in section 1.2.2 guarantee that the solutions of (2.57) are AC as long
as uncertainties are constant matrices. Time-varying uncertainties yield a closed-loop
system which can be analyzed along the lines of section 1.2.2.

2.4.3 Relaxing Strong Passivity to Strict State Passivity
It is of interest to relax the strong passivity condition (Assumption 2.1.5) of Proposition
2.4.3, with strict state passivity (Assumption 2.1.4). The strict state passivity BMI in

(2.56) modified to M0 ≼

(
−ϵP0 0

0 0

)
. This means that the nominal closed-loop system

may have D0 + F0G0 ≽ 0, hence M0 ≼ 0. Therefore we have to find conditions which
guarantee

−M0 + ∆M0 −
(

ϵ′P0 0
0 0

)
−
(

P0Λ1P0 0
0 Λ2

)
≽ 0 (2.64)

for some 0 < ϵ′ < ϵ, where M0 corresponds to the strict state passivity LMI. To this
end, we may rely on Lemma A.3.1 in Appendix A.3.

Proposition 2.4.4. Let Assumptions 2.1.1, 2.1.2, 2.1.4 hold for the nominal system,
and Assumption 2.4.1 holds for the closed-loop system. Then the matrix inequality in
(2.64) holds if and only if:

1. R
∆= (D0 + F0G0) + (D0 + F0G0)⊤ + (∆D + ∆FG0) + (∆D + ∆FG0)⊤ − Λ2 ≽ 0,

2. Q
∆= −(A0 + E0K0 + ϵ′

2 In)⊤P0 − P0(A0 + E0K0 + ϵ′

2 In) − (∆A + ∆EK0)⊤P0 −
P0(∆A + ∆EK0) − P0Λ1P0 ≽ 0, with −(A0 + E0K0)⊤P0 − P0(A0 + E0K0) ≽ ϵP0,
ϵ > ϵ′ > 0,
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3. Im(S⊤) ⊆ Im(R), with S
∆= −P0(B0 +E0G0)+(C0 +F0K0)⊤ −P0(∆B +∆EG0)+

(∆C + ∆FK0)⊤,

4. Q ≽ SR†S⊤.

Proof. Notice that Q and R are symmetric by construction. The proof follows from
Lemma A.3.1.

The tracking error ultimate boundedness can be shown as follows.

Proposition 2.4.5. Assume that Proposition 2.4.4 holds, then the tracking error e is
globally ultimately bounded as:

||e|| ≤

√√√√λmax(P0)ηr

λ2
min(P0)ϵ′ (2.65)

where ηr is the upper bound on the positive term r(t), which is defined by the parametric
uncertainties as detailed in the proof.

Proof. Under the proposition’s assumptions, the rate of change of the Lyapunov func-
tion V (e) = e⊤P0e where P0 = Q−1

0 is the solution of the strict state passivity LMI

M0lin
≼

(
−ϵQ0 0

0 0

)
where M0lin

is defined in (2.62) is:

V̇ ≤ −
(

e
∆λ

)⊤ [
−M0 + ∆M0 −

(
P0Λ1P0 0

0 Λ2

)](
e

∆λ

)
+ a⊤(t)Λ−1

1 a(t) + b⊤(t)Λ−1
2 b(t)︸ ︷︷ ︸

r(t)
≤ −ϵ′ e⊤P0e + r(t)

where ϵ′ > 0 and r(t) is a positive bounded term determined by the parametric
uncertainties ∆A, ∆B, ∆C, ∆D, ∆E, and ∆F such that ||r(t)|| ≤ ηr. So,

V̇ ≤ −ϵ′λmin(P0)||e||2 + ηr

Hence, the rate of change of the storage function V̇ < 0 outside the ball Br(0) ⊂ IRn,
with r

∆=
√

ηr

ϵ′λmin(P0) . Therefore, the tracking error is GUUB [88, 61] and the expression
of the ultimate bound is in (2.65).

The difference between the case with strong passivity and the case with strict state
passivity, is mainly that there is no −||∆λ||2 that helps to accelerate the convergence
in the second case (see (2.4.2)). Moreover, the strong passivity allows us to dispense
with strict conditions on the structure of the uncertainties. In a sense, strict state
passivity allows us to obtain a more fragile robustness.
It is of interest to analyze under which conditions on the plant’s nominal model and
on the uncertainties, the conditions in items 1–4 in Proposition 2.4.4 hold. For item
1, assume that ∆D = 0, ∆F = 0, ∆C = 0 (the complementarity constraint has no
uncertainty) then we may take Λ2 = 0 (since b(t) = 0), so that R ≽ 0 by closed-
loop strict-state passivity. For item 2, using the fact that Q0 ≻ 0, Corollary A.3.4
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can be used to derive sufficient condition such that Q ≻ 0: σmax(Q0) > ϵλmax(P0) >
2σmax(P0)(σmax(∆A) + σmax(∆EK0)) + σ2

max(P0)σmax(Λ1), where we used [17, Fact

9.14.15, Corollary 9.6.5]. Let us focus on items 3 and 4. We have −M0 =
(

Q0 S0
S⊤

0 R0

)
,

and −M0+∆M0−
(

P0Λ1P0 0
0 Λ2

)
=
(

Q0 + ∆Q S0 + ∆S
S⊤

0 + ∆S⊤ R0 + ∆R

)
, where the matrices stem

from (2.56) and items 1, 2 and 3 in Proposition 2.4.4. Using Lemmas A.3.1 and A.3.2,
the strict-state passivity LMI for the nominal system implies that Q0 ≻ Q0 − ϵP0 ≽
S0R

†
0S

⊤
0 , and Im(S0R

†
0S

⊤
0 ) ⊆ Im(Q0 − ϵP0) (we also have Im(S0R

†
0S

⊤
0 ) ⊆ Im(Q0) = IRn

since strict state passivity implies that Q0 ≻ 0), and Im(S⊤
0 ) ⊆ Im(R0) = Im(R†

0) [18,
Proposition 8.1.7]. Assume that Im(∆S⊤) ⊆ Im(S⊤

0 ), then Im(S⊤) = Im(S⊤
0 +∆S⊤) ⊆

Im(S⊤
0 ). Thus, item 3 is satisfied if Im(R) = Im(R0) (which holds if ∆D = 0, ∆F = 0,

∆C = 0, since in this case ∆R = 0). We can therefore state the following:

Lemma 2.4.6. Let Assumption 2.1.4 hold for the nominal system. Assume that
Im(∆S⊤) ⊆ Im(S⊤

0 ), and that Im(R) = Im(R0), then Im(S⊤) ⊆ Im(R).

Notice that item 4 is Q0 + ∆Q ≽ (S0 + ∆S)(R0 + ∆R)†(S⊤
0 + ∆S⊤). In the next

proposition, we derive conditions on the uncertainty matrices that guarantee that the
inequality in item 4 holds true when the nominal system is strictly state passive.

Proposition 2.4.7. Let Assumption 2.1.4 hold for the quadruple (A0, B0, C0, D0).
Assume that: (i) R ≽ 0, (ii) Im(∆R) ⊆ Im(R0), (iii) rank(R0) = r, R0 ̸= 0,
σmax(∆R) < σr(R0), (iv) σmax(OT ) + σmax(O((R†

0∆R)2)) + σmax(∆Q) < ϵλmax(P0),
where OT is in (2.66). Then, Q ≽ SR†S⊤.

Proof. Since ∆R = ∆R⊤, using [18, Fact 8.4.3] and [18, Fact 8.4.38] and (ii), we have

(R0 + ∆R)† = (Im + R†
0∆R)†(R†

0 + R†
0∆RR†

0)(Im + ∆RR†
0)†

Using Corollary A.3.4, [18, Fact 8.3.33], [18, Corollary 11.6.5], it follows from (iii) that
Im + R†

0∆R ≻ 0. Thus,

(Im + R†
0∆R)† = (Im + R†

0∆R)−1 =
∞∑

k=0
(−R†

0∆R)k = Im − R†
0∆R + O((R†

0∆R)2)

[18, Proposition 11.3.10]. Therefore,

(R0 + ∆R)† = (Im − R†
0∆R)(R†

0 + R†
0∆RR†

0)(Im − ∆RR†
0) + O((R†

0∆R)2)

= R†
0 − R†

0∆RR†
0 + O((R†

0∆R)2)

Consequently,

(S0 + ∆S)(R0 + ∆R)†(S⊤
0 + ∆S⊤) = (S0 + ∆S)(R†

0 − R†
0∆RR†

0 + O((R†
0∆R)2))(S⊤

0 + ∆S⊤)

= S0R†
0S⊤

0 + OT + O((R†
0∆R)2)
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where OT stands for other terms defined as:

OT = S0R
†
0∆S⊤ − S0R

†
0∆RR†

0S
⊤
0 − S0R

†
0∆RR†

0∆S⊤ + ∆SR†
0S

⊤
0 + ∆SR†

0∆S⊤

−∆SR†
0∆RR†

0S
⊤
0 − ∆SR†

0∆RR†
0∆S⊤.

(2.66)
The result follows from Q0 − S0R

†
0S

⊤
0 ≽ ϵP0, (iv), Corollary A.3.4 and [18, Fact

11.16.18], which guarantee that ϵP0 ≻ OT − ∆Q + O((R†
0∆R)2), so that Q0 + ∆Q ≻

(S0 + ∆S)(R0 + ∆R)†(S⊤
0 + ∆S⊤).

Item (iv) in Proposition 2.4.7 means that a class of nonzero, sufficiently small uncer-
tainties are allowed. The matrix Λ1 which appears in ∆Q can be chosen small if ∆A,
∆B, ∆E are small. As said above, ∆R can be made small if the uncertainties inside
the complementarity constraints are small. In some cases, there are no uncertainties
in the complementarity constraints, see Chapter 4 section 4.5.

Conclusion
This chapter focuses on the trajectory tracking of linear complementarity systems. Pas-
sification by feedback and maximal monotonicity are central tools for stability analysis.
Systems with and without state jumps, as well as systems with and without paramet-
ric uncertainties, are analyzed. To illustrate stability analysis in the presence of state
jumps, a simple example is provided. In addition, trajectory tracking in First-order
Sweeping Process (FOSwP) is introduced, where LCS with matrix D = 0 is represented
by a FOSwP under certain conditions.
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Chapter 3

Numerical Applications and
Simulations

This chapter is dedicated to study various numerical applications based on the the-
oretical results presented in Chapter 2. The main focus is on electrical circuits with
ideal diodes (note that hydraulic circuits share same components where ideal diodes
are replaced by check valves [89], hence all what applies to electrical circuits can be
transposed to hydraulic circuits). These examples differ by the structure of the matrix
D as well as the position and the type of the controller, affecting the passivity of the
circuit and leading to possible state jumps. A detailed derivation of the dynamics of
the electrical circuits is provided in Appendix D. In addition to the electrical circuits,
the chapter also presents examples about networks with unilateral interactions and
mechanical system with unilateral spring.

Each example includes numerical simulations which is performed using the INRIA soft-
ware package siconos1[3]. The algorithm begins with defining the the nominal system
to optimize the controller gains by solving the BMI in (2.6) after being transformed
into an LMI, according to Appendix A.1 using mosek 9.3.14 solver [9]. Then, these
control gains are used to define the closed-loop system within siconos, more details
about modeling and simulating the systems in siconos are provided in Appendix C.1.

3.1 Electrical Circuit with Parametric Uncertain-
ties

Consider the circuit in Figure 3.1 with the states x1: the charge on the capacitor C
and x2: the current passing through the inductor L. The dynamics of the electrical
circuit in Figure 3.1 is given by the system in (3.1):

1https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/index.html

53

https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/index.html


Chapter 3. Numerical Applications and Simulations

L

u

C

x2

iC

R

+ −

− +

w

Figure 3.1: RLCD circuit with one ideal diode and voltage sources


ẋ1(t) = −x2(t) + λ(t)
ẋ2(t) = x1(t)

LC + u(t)
L

0 ≤ λ(t) ⊥ w(t) = x1(t)
C + Rλ(t) ≥ 0

(3.1)

with L = 1 H, C = 0.025 F, R = 10 Ω.

3.1.1 Open-loop Passivity

The energy stored in the circuit of Figure 3.1 with u = 0 is V (x) = 1
2C

(
x1
C

)2
+ 1

2Lx2
2.

The rate of change in stored energy is given by V̇ (x) = C
(

x1
C

) (
ẋ1
C

)
+ Lx2ẋ2. If the

first two lines of (3.1) are substituted in the equation of V̇ , then

V̇ (x) = Lx2
x1

LC
+ x1

C
(−x2 + λ) = x1λ

C
Knowing that x1 = CVC = C(−VR − VD) where VR and VD are the voltages across
the resistor and the diode respectively, the rate of change of the storage function is
represented as follows:

V̇ (x) = λ

C
(−Rλ − wλ) = −R

C
λ2

where wλ = 0 due to orthogonality. So, V̇ (x) ≤ 0 (i.e., the rate of change in stored
energy is less than the power supplied to the system). Thus, the dynamical system in
(3.1) with u = 0 is passive.
Let us check the passivity of (3.1) by proving that its open loop transfer function (i.e.,
TF with u = 0) which is given by H0(s) = C(sI − A)−1B + D is positive real (see
Definition 8 for the relation between positive realness and passivity). Then,

H0(s) = w(s)
λ(s) = RLCs2 + Ls + R

LCs2 + 1

The transfer function H0 is Hurwitz and Re(H0(jω)) = R > 0. Then, the transfer
function H0 is strictly positive real [40, Theorem 2.45]. Therefore, the open loop system
in (3.1) is strictly passive.
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3.1. Electrical Circuit with Parametric Uncertainties

3.1.2 Passivity of the Closed-loop System without Uncertain-
ties

Let u = K(x − xd) + G(λ − λd) + ud with K =
(
k1 k2

)
and G = g1. In the case of

which the system (3.1) has no uncertainties, the control gains are calculated by solving
the BMI in (2.7) after being transformed into LMI according to Appendix A.1; the
solution is obtained as follows:

K =
(
493.079 −42.075

)
, G = 40.650 and P =

(
40.121 −3.143
−3.143 0.323

)

If the BMI in (2.7) is solved with the minimum value of the control gain G, then the
solution is given by the following:

K =
(
75.028 −5.259

)
, G = −3.9 × 10−13 and P =

(
26.063 −0.992
−0.992 0.257

)
(3.2)

It is observed that the control gain G has a negligible value and this indicates that the
additional feedback from the complementarity variable λ is useless in this example. So,
in the following, the value of G is neglected.

In order to decrease the magnitude of the control gain K, the steps below are followed
knowing that K = NQ−1:

• solve the LMI derived from the BMI in (2.7) (see Appendix A.1 for transforma-
tion) with G = 0 for the minimum Euclidean norm of the matrix N with fixed
Q = P −1 in (3.2).

• Now, fix the value of N obtained from the previous step and solve the LMI in
(2.7) again for the maximum trace of the matrix Q.

• repeat the first two steps until there is no change in the values of N and Q
obtained.

This methodology gives the following solution when followed:

K =
(
38.894 −2.146

)
, P =

(
10.911 −0.269
−0.269 0.126

)
and N =

(
3.32 −9.946

)

The plots in Figures 3.2 and 3.3 show the numerical simulation for the desired and
closed loop system with two different forms of controllers. The initial state vectors are
x(0) = (1, 0)⊤ and xd(0) = (−1.5, 1)⊤, the time step h = 10−3 and the desired input is
ud(t) = 30 sin 5t.
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Figure 3.2: Numerical simulation showing the closed-loop system’s trajectory x, the desired system’s
trajectory xd and the error dynamics e = x − xd of the LCS in (3.1), without uncertainties. The
simulation also presents the controller u with G = 0 and the complementarity variables λ and w.
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Figure 3.3: Numerical simulation showing the closed-loop system’s trajectory x, the desired system’s
trajectory xd and the error dynamics e = x − xd of the LCS in (3.1), without uncertainties. The
simulation also presents the controller u with G = 40.65 and the complementarity variables λ and w.

In Figures 3.2 and 3.3, L2 and L∞ norms of the error between real and desired trajecto-
ries are observed at steady state. In Figure 3.2, ∥e1∥[2,3],∞ = 0.04 and ∥e2∥[2,3],∞ = 0.23
and both values decreases to zero as shown in Figure 3.3. This decrease shows that the
transient response takes a shorter time when the controller has an additional feedback
from the complementarity variable λ as observed in Figure 3.3 even if it is shown that
this additional feedback is useless in the sense of tracking.

3.1.3 Passivity of the Closed-loop System in the Presence of
Uncertainties

The uncertainties are introduced to the passive elements R, L and C. The plots below
show the numerical simulation for the desired and closed-loop systems. It shows the

56



3.1. Electrical Circuit with Parametric Uncertainties

trajectories of the systems, the complementarity variables λ and w, and the controller
u with different values of bounded uncertainties.
In Figure 3.4, the matrix D is perturbed by ∆D due to disturbance in the resistor R.
The perturbation is selected such that ∆D is bounded according to the value of ΛD

defined in (2.59), with ∆D = ∆R. For this purpose, the following LMI


(M0lin

)11 (M0lin
)12 0 0

(M0lin
)21 (M0lin

)22 Im Im

0 Im Λ−1
2 0

0 Im 0 Λ̃−1
2

 ≻ 0 (3.3)

which is a special case of the LMI in (2.63) is solved with Λ̃−1
2 ≤ 0.25 and Λ−1

2 ≥ 10;
the solution is given as follows:

K0 =
(
71.729 −4.626

)
, P0 =

(
26.648 −0.891
−0.891 0.257

)
, Λ−1

2 = 13.36 , Λ̃−1
2 = 0.15

The numerical simulations shown in Figures 3.4 and 3.5 with the initial vectors x(0) =
(1, 0)⊤ and xd(0) = (−1.5, 1)⊤, the time step h = 10−3 and the desired input ud(t) =
30 sin 5t.
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Figure 1: ∆D = sin 5t

1

Figure 3.4: Numerical simulation showing the error dynamics e = x−xd of the LCS in (3.1), with the
uncertainty ∆D = ∆R = sin 5t. The simulation also presents the controller u and the complementarity
variables λ and w.

Then ∆D is selected such that |∆D| ≤ 2.38 as in Figure 3.4. It is observed that
∥e1∥[4,5],2 = 0.27 and ∥e2∥[4,5],2 = 3.64. Also, ∥e1∥[4,5],∞ = 0.054, ∥e2∥[4,5],∞ = 0.75 and
∥u∥[4,5],∞ = 31.74. In order to increase the upper bound of ∆D, the constraint on
Λ̃−1

2 is modified such that Λ̃−1
2 ≤ 0.12. The solutions of the LMI in (3.3) with a new

constraint on Λ̃−1
2 are given as follows:

K0 =
(
83.9 − 4.51

)
, P0 =

(
30.25 −0.87
−0.87 0.26

)
, Λ−1

2 = 13.4 , Λ̃−1
2 = 0.09.

57



Chapter 3. Numerical Applications and Simulations

plots

ayay67547

May 2023

−10

0

10
e1(t)

e2(t)

0

5

10
λ(t)

λd(t)

0 1 2 3 4 5

−50
0

50
100

t[s]

u(t)

0 1 2 3 4 5
0

50

100

t[s]

w(t)

wd(t)

Figure 1: ∆D = 3 sin 5t

1

Figure 3.5: Numerical simulation showing the error dynamics e = x − xd of the LCS in (3.1), with
increasing value of uncertainty such that ∆D = ∆R = 3 sin 5t. The simulation also presents the
controller u and the complementarity variables λ and w.

Then, it is possible to choose ∆D such that |∆D| ≤ 3.17. It is noticeable that a higher
control gain K0 is obtained when the bound of the uncertainty is increased. As the
value of ∆D increases, it is noticed in Figure 3.5 that L2 and L∞ norms of the error
function increase such that ∥e1∥[4,5],2 = 0.67, ∥e2∥[4,5],2 = 10, ∥e1∥[4,5],∞ = 0.13 and
∥e2∥[4,5],∞ = 2.08 with ∥u∥[2,3],∞ = 34.2.

Let us introduce disturbances in the resistor, the inductor, and the capacitor as ∆R,
∆L, and ∆C respectively. Thus, the uncertainties are present in the matrices A =
A0 + ∆A, C = C0 + ∆C, D = D0 + ∆D and E = E0 + ∆E. The controller is designed
by calculating K0 and G0 such that the quadruple (A0 + E0K0, B0 + E0G0, C0, D0) is
strongly passive where the control gains are given by the solution of the LMI in (2.63):

K0 =
(
34.88 −10.52

)
, G0 = 2.686 , P0 =

(
58.187 −4.671
−4.671 1.374

)
, Λ̃−1

1 =
(

18 0.195
0.195 7.74

)

Λ̃−1
2 = 0.101, Λ−1

1 =
(

15.635 0.16
0.16 7.2

)
and Λ−1

2 = 15.54

and the bounds of the uncertainties are calculated according to the values of Λ̃−1
1 and

Λ̃−1
2 .
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Figure 3.6: Numerical simulation showing the error dynamics e = x − xd of the LCS in (3.1), with
the parametric uncertainties ∆R = 2 sin 5t, ∆L = 0.02, and ∆C = 0.01 cos 5t. The simulation also
presents the controller u and the complementarity variables λ and w.
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3.2. Enhancing Electrical Circuit Passivity through Current Source Integration

The plot in Figure 3.6 shows the numerical simulation of the error e(t) = x(t) − xd(t),
and the complementarity variables. The initial state vectors are x(0) = (1, 0)⊤ and
xd(0) = (−2, 1)⊤, the time step h = 10−3 and the desired input is ud(t) = 30 sin 5t.
The values of L2 norm of the error function are ∥e1∥[4,5],2 = 1.65 and ∥e2∥[4,5],2 = 10.7
and that of L∞ norm are ∥e1∥[4,5],∞ = 0.34 and ∥e2∥[4,5],∞ = 1.6.

In this section, strong passivity, which is a crucial property to prove stability in the
presence of uncertainties, is achieved without the need of additional feedback from λ
(i.e., G = 0). The results presented confirm that of Proposition 2.4.3. It is notice-
able that adding uncertainties in more matrices complicates the LMI to be solved and
that the bound of the error increases with larger values of uncertainties or when it is
presented in more matrices.

3.2 Enhancing Electrical Circuit Passivity through
Current Source Integration

In this section, we explore how changing the type of the controller in electrical circuits
(current source or voltage source) can affect the passivity of the circuit, with detailed
examination for each approach.

3.2.1 Passivity Analysis with Voltage Sources: Motivation
Consider the circuit depicted in Figure 3.7, with the states x1 which is the charge on
capacitor C and x2 is the current passing through the inductor L.

L

R

u2

u1

C

iC

ω
iR

iL

−

+

λ
−

+

−

+

Figure 3.7: RLCD circuit with one ideal diode and voltage sources


ẋ1(t) = −x1(t)

RC + x2(t) + 1
Rλ(t) − 1

Ru1(t)
ẋ2(t) = −x1(t)

LC + 1
Lλ(t) − 1

Lu1(t) − 1
Lu2(t)

0 ≤ λ(t) ⊥ w(t) = −x1(t)
RC + x2(t) + 1

Rλ(t) − 1
Ru1(t) ≥ 0

(3.4)
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Take L = 1H, C = 0.025F and R = 10Ω. Let us begin with studying the passiv-
ity of the open loop system. So, it is required to check passivity of the quadruple
(A, B, C, D) with u1 = u2 = 0 by checking the positive realness of the transfer function
(see Definition 8 for the relation between positive realness and passivity):

H0(s) = w(s)
λ(s) =

s2 + R
L s

Rs2 + 1
Cs + R

LC

where H(s) = C(sI −A)−1B +D. The Nyquist plot of H(s) lies in the closed right-half
plane (see Figure 3.8), which is consistent with positive-real systems theory.

Figure 3.8: Nyquist Diagram

Then, from minimality and the KYP Lemma [40], the quadruple (A, B, C, D) is passive.
The storage function of the circuit of Figure 3.7 with u = 0 is: V (x) = 1

2C
(

x1
C

)2
+ 1

2Lx2
2.

It follows that:
V̇ (x) = − x2

1
RC2 + λ

(
x2 + x1

RC

)
Due to complementarity conditions between λ and w, we have:

• If λ = 0, then V̇ (x) = − x2
1

RC2 ≤ 0.

• If λ > 0, then w = 0 and λ = x1
C − Rx2. Hence, V̇ (x) = −Rx2

2 ≤ 0.

Thus, the storage function of the circuit of Figure 3.7 with u = 0 is nonincreasing.
Take u = u1 and u2 = 0, then the transfer function of the closed-loop system is:
H1(s) = [C + FK][sI − (A + EK)]−1[B + EG] + D + FG. Knowing that u = K[x −
xd] + G[λ − λd] + ud with K =

(
k1 k2

)
and G = g, the following is obtained:

H1(s) = w(s)
λ(s) = (1 − g) LCs2 + RCs

RLCs2 + (L + k1LC + k2RC)s + k1RC + R
(3.5)

Let us consider u1 = 0 and u = u2. The transfer function of the systems is represented
as follows:

H2(s) = w(s)
λ(s) = LCs2 + (k2C + RC − gRC)s

RLCs2 + (k2RC + L)s + k2 + k1RC + R
(3.6)
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3.2. Enhancing Electrical Circuit Passivity through Current Source Integration

If u = (u1, u2)⊤ with K =
(

k1 k2
k3 k4

)
and G =

(
g1
g2

)
, then the transfer function of the

system is represented as follows:

H3(s) = w(s)
λ(s) = (1 − g1)(LCs2 + [(k2 + k4)C − g2(RC + k2C)]s)

RLCs2 + [RC(k2 + k4) + L + k1LC]s + RC(k1 + k3) + C(k1k4 + k2k3) + R + k4
(3.7)

We can see from (3.5), (3.6) and (3.7) that the transfer functions of the closed loop
system cannot be made strictly positive real, thus the circuit shown in Figure 3.7 cannot
be made strictly passive with u1 and u2 of the general form u = K[x−xd]+G[λ−λd]+ud.
In terms of zero dynamics of the closed-loop system, when w = 0, there is always one
zero at zero (i.e ẋ1 = 0).

3.2.2 Passivity Analysis with Current Source
The problem that appeared in section 3.2.1, which states that the system in (3.4)
cannot be made strictly state passive even with u = (u1, u2)⊤ motivates us to change
the type and the connection of the controller for the circuit of Figure 3.7. If the
controller is implemented as a current source connected in parallel with the capacitor,
then the following is obtained:

L

R

C

i(t)

iC

ωiR

iL

−

+

λ

Figure 3.9: RLCD circuit with current source

Let i(t) ∆= u(t) and id(t) ∆= ud(t) be the controller and the desired controller respectively.
The dynamics are represented as follows:

ẋ1(t) = −x1(t)
RC + x2(t) + 1

Rλ(t) + u(t)
ẋ2(t) = −x1(t)

LC + 1
Lλ(t)

0 ≤ λ(t) ⊥ w(t) = −x1(t)
RC + x2(t) + 1

Rλ(t) ≥ 0
(3.8)

If u(t) = K[x − xd] + ud(t), then the transfer function of the closed loop system is:
H4(s) = C[sI − (A + EK)]−1B + D and represented as follows:

H4(s) = LCs2 + (RC − k1LC)s − k1RC
RLCs2 + (L − k1RLC)s + R + k2R

(3.9)
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It is noticeable that the zeros of the transfer function are replaced by the feedback
controller designed and implemented in the RLCD circuit as shown in Figure 3.9. This
is observed through the zero dynamics of the system presented in (3.8). If w = 0,
then ẋ1 = u which means that the zero dynamics is set in the desired place using the
feedback controller.

Proposition 3.2.1. The transfer function in (3.9) is strongly strictly positive real
(SSPR) if and only if there exists K =

(
k1 k2

)
such that

• k1 < 0

• k2 ∈
]
−1, k1(k1LC − L

R − 2RC) + 2
√

−k3
1RLC2 + k2

1LC − k1R2C − k1R
[

Proof. In order to check the strong strict positive realness of the transfer function
H4(s), it is required to present the transfer function in its frequency domain as H4(jω) =
Re[H4(jω)] + Im[H4(jω)] such that:

Re[H4(jω)] = RL2C2ω4 + (−k2RLC + k2
1RL2C2 − k1L2C)ω2 − k1R2C(1 + k2)

(−RLCω2 + R + k2R)2 + (L − k1RLC)2ω2

(3.10)

Im[H4(jω)] = j
(L2C − R2LC2)ω3 + (R2C + k2R2C − k2

1R2LC2 − k1k2RLC)ω
(−RLCω2 + R + k2R)2 + (L − k1RLC)2ω2

(3.11)
The transfer function H4(s) is strongly strictly positive real if and only if the following
conditions are satisfied [40, Definition 2.78]:

• H4(s) is Hurwitz,

• Re[H4(jω)] ≥ δ > 0 for all ω ∈ [−∞, ∞] and some δ ∈ R.

The transfer function H4(s) is Hurwitz if the poles of H4 have real part in the open
left half-plane (LHP). The quadratic function: RLCs2 +(L−k1RLC)s+R+k2R has
roots with negative real part if and only if k1 and k2 satisfy:

• 1 + k2 > 0

• L − k1RLC > 0

The function Re[H4(jw)] ≥ δ > 0 if and only if the function g(ω) ∆= RL2C2ω4 +
(−k2RLC + k2

1RL2C2 − k1L2C)ω2 − k1R2C(1 + k2) has a global minimum at ω = ω0
such that g(ω0) > 0. Knowing that 1 + k2 > 0, it is necessary to have:

−k1R2C(1 + k2) > 0 ⇒ k1 < 0 (3.12)

so that the function g(0) > 0. The minimum of g(ω) is studied as follows:
∂g

∂ω
(ω) = 4RL2C2ω3 + 2(−k2RLC + k2

1RL2C2 − k1L2C)ω

At this step, there are two cases:
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First case: If

−k2RLC + k2
1RL2C2 − k1L2C > 0 ⇔ k2 < k1

L
R

(k1RC − 1)

then the function g(ω) is convex and has a global minimum at ω = 0 where ∂g
∂ω

(0) = 0.
The function g(ω) > 0 ∀ω ∈ [−∞, +∞] if and only if the following holds:

g(0) = −k1R2C(1 + k2) > 0 ⇔ k1 < 0

Second case: If

−k2RLC + k2
1RL2C2 − k1L2C < 0 ⇔ k2 > k1

L
R

(k1RC − 1) (3.13)

then the roots of ∂g
∂ω

(ω) are: ω1 = 0 and ω2,3 = ±
√

−−k2RLC+k2
1RL2C2−k1L2C

2RL2C2 . The
second derivative of g(ω) is:

∂2g

∂ω2 (ω) = 12RL2C2ω2 + 2(−k2RLC + k2
1RL2C2 − k1L2C)

The value of ∂2g
∂ω2 (ω2,3) = −4(−k2RLC + k2

1RL2C2 − k1L2C) > 0. So, the function

g(ω) has global minima at ω = ±
√

−−k2RLC+k2
1RL2C2−k1L2C

2RL2C2 . The value of g(ω2,3) must
be positive. It follows that:

g(ω2,3) = −(−k2RLC + k2
1RL2C2 − k1L2C)2 + 4RL2C2(−k1R2C(1 + k2))

4RL2C2 > 0
(3.14)

Then,

−R
4 k2

2 + k2

(
k2

1
RLC

2 − k1
L
2 − k1R2C

)
− k4

1
RL2C2

4 + k3
1
L2C

2 − k2
1

L2

4R
− k1R2C > 0

(3.15)
The function g(ω2,3) in (3.15) is a concave function in k2 with the discriminant:

∆ = 16R4C(−k3
1RLC + k2

1L + k2
1R2C − k1R) > 0 since k1 < 0

The roots of the quadratic function h(k2) are:

k21 = k2
1LC − k1(

L
R

+ 2RC) + 2
√

−k3
1RLC2 + k2

1LC − k1R2C − k1R

or
k22 = k2

1LC − k1(
L
R

+ 2RC) − 2
√

−k3
1RLC2 + k2

1LC − k1R2C − k1R

So, the function h(k2) is positive if and only if k22 < k2 < k21 . Hence, the function g(ω),
in this case, is positive, if and only if the conditions (3.12),(3.13) and (3.14) are satisfied.

It is noteworthy that if k2 = k1
L
R (k1RC − 1), then:

RL2C2ω4 − k1R2C
(

1 + k2
1LC − k1

L
R

)
> 0 ∀ω ∈ [−∞, +∞]
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If the transfer function in (3.9) is SSPR for k1 and k2 satisfying Proposition 3.2.1, then
the BMI in (2.7) always has a solution. Thus, the system is strongly passive.
Let us check strong passivity by solving the LMI derived from the BMI in (2.7) (see
Appendix A.1). Take L = 1 H, C = 0.025 F, and R = 10 Ω. The solution is shown
below:

K =
(
−11.7802 0.5488

)
and P =

(
27.6522 −0.2693
−0.2693 0.9959

)

Using the given values of L, R, C and K parameters, the plot of Re[H4(jω)] in (3.10)
is depicted in the following figure:

Figure 3.10: Graphical representation of (3.10) with given parameters

which shows that Re[H4(jω)] ≥ δ > 0 with δ = Re[H4(j∞)] = 1
R = 0.1. After

designing the controller, the simulation of the system is performed with the desired
current source ud = 30 sin 5t and the initial state vectors are x(0) =

(
−5 1

)⊤
and

xd(0) =
(
−3 −1

)⊤
with the time step h = 10−2.
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Figure 3.11: Numerical simulation showing the error dynamics e = x − xd of the LCS in (3.8). The
simulation also presents the controller u and the complementarity variables λ and w.

It is shown in Figure 3.11 that the error converges to zero quickly. Consequently, the
controller u = K(x − xd) + ud converges to the sinusoidal function ud(t). Additionally,
the error between the real and the desired complementarity variables converges to zero
as well.
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In this section, simply having more controllers (i.e., two voltage sources) as in the
circuit of Figure 3.7 didn’t ensure the strict state passivity of the system. However, by
changing the type of the controller (i.e., one current source) as in the circuit of Figure
3.9, strict state passivity is achieved.

3.3 Electrical Circuits with Possible State Jumps

In this section, some electrical circuits that may possess state jumps (D = 0 or D ⪰ 0)
are introduced. The main property in order to be able to analyse state jumps is strict
state passivity which is studied for each circuit introduced.

3.3.1 Building Strictly State Passive Circuit

The circuits of the foregoing section have the matrix D = D⊤ ⪰ 0 which gives the
possibility of having state jumps according to section 2.1.3. Let x1, x2, x3 and x4 be
the voltages across the capacitors C1, C2, C3 and C4 respectively. Take C1 = C2 =
C3 = C4 = C and C = 0.025 F, R = 10 Ω. Consider the circuit of Figure 3.12 with
its dynamics in (3.16)

u

R

C4

C1

R

C2

C3

i1 iR

i4

i2 i3

λ2+

−

+ −

−

+

w1

w2

Figure 3.12: RC circuit with two ideal diodes
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ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

 =


0 0 0 0
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC


︸ ︷︷ ︸

∆=A


x1(t)
x2(t)
x3(t)
x4(t)

+


1
C 0
0 0
0 1

C
1
C 0


︸ ︷︷ ︸

∆=B

λ1(t)
λ2(t)



0 ≤

 λ1(t)
λ2(t)

 ⊥

w1(t)
w2(t)

 =
1 0 0 1

0 0 1 0


︸ ︷︷ ︸

∆=C


x1(t)
x2(t)
x3(t)
x4(t)

+
R 0

0 0


︸ ︷︷ ︸

∆=D

λ1(t)
λ2(t)



+
−1

0

u ≥ 0

(3.16)

Motivation

In order to study the trajectory tracking in the presence of state jumps, it is required
to have strict state passivity of the closed-loop LCS according to section 2.1.3. Note
that there exists P ⪰ 0 such that the open-loop system’s quadruple (A, B, C, D) of
(3.16) is passive (i.e the LMI in (1.8) has a solution).
In order to check the strict state passivity of the closed-loop system’s quadruple
(A, B, C + FK, D) with the controller u = K(x − xd) + ud, let us observe the strict
positive realness (SPR) of the transfer function matrix (see Definition 8 for the relation
between positive realness and passivity). Given that K =

(
k1 k2 k3 k4

)
, then

G(s) =


R2Cs4+s3(5R−k1R−k4R)+ s2

C (−3k1+k2+k3−2k4+5)
RCs4+3s3

k3RCs3+s2(k2+2k3+k4−1)
RC2s4+3Cs3

−s2

RC2s4+3Cs3
Rs3+ 2s2

C
RCs4+3s3

 (3.17)

where G(s) ∆=
(

G11(s) G12(s)
G21(s) G22(s)

)
∆=
(

w1
λ1

w1
λ2

w2
λ1

w2
λ2

)
.

In view of the matrix of the transfer functions in (3.17), it is noticeable that the
transfer function is not Hurwitz, hence not strictly positive real due to the pole at
zero of multiplicity 3. This pole at zero persists even if the controller is extended by
considering another feedback from λ such that u = K(x − xd) + G(λ − λd) + ud where
G =

(
g1 g2

)
.

Remark 3.3.1. According to [40, Definition 2.70], all the principal sub-matrices of the
transfer function matrix G11, G22 and |G11 ∗ G22 − G21 ∗ G12| are of index = 1 (i.e all
the principal sub-matrices are proper). So, the transfer matrix G(s) is totally index 1.
As well, according to [40, Proposition 2.71], the transfer matrix G(s) (3.17) is totally
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of index 1 knowing that (A, B, C, D) is passive, (A, B) is controllable and the matrix(
B

D + D⊤

)
has full column rank.

Thus, the electrical circuit of Figure 3.12 is not strictly state passive (SSP) under the
control input u(t) and we cannot analyze the stability of the error dynamics e = x−xd

in the presence of state jumps. This result motivates us to build a strictly state passive
electrical circuit from that in Figure 3.12 using two different approaches as discussed
in the following sections.

First approach: adding resistors for passivity

In the case of state jumps, strict state passivity is sufficient condition for stability
analysis. The aim is to find a strictly state passive circuit with a matrix D ⪰ 0. One
approach would be adding proper resistors, (i.e., adding dissipativity into the circuit)
to ensure that the circuit of Figure 3.12 becomes strictly state passive. Consider the
circuit in Figure 3.13 where three resistor are connected in parallel with the capacitors
C1, C2 and C4 to enhance passivity. This connection allows each capacitor to dissipate
its stored energy through the resistor, rather than being returned to the circuit when
it discharges.

u

R

C4

C1 C2

R R

R

R

C3

i1 iR

i2 i3

λ2+

−

+ −

−

+

w1

w2

Figure 3.13: Strictly state passive RC circuit with two ideal diodes

Recall that the states x1, x2, x3 and x4 are the voltages across the capacitors C1, C2,
C3 and C4 respectively and that C1 = C2 = C3 = C4 = C. The dynamical system is
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given by:


ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

 =


− 1

RC 0 0 0
0 − 2

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 2

RC




x1(t)
x2(t)
x3(t)
x4(t)

+


1
C 0
0 0
0 1

C
1
C 0


λ1(t)

λ2(t)



0 ≤

 λ1(t)
λ2(t)

 ⊥

w1(t)
w2(t)

 =
1 0 0 1

0 0 1 0




x1(t)
x2(t)
x3(t)
x4(t)

+
R 0

0 0

λ1(t)
λ2(t)



+
−1

0

u ≥ 0

(3.18)

Remark 3.3.2. The connection of a resistor across the capacitor C3 cancels the prop-
erty of positive semi-definiteness (PSD) for the matrix D which is a necessary condi-
tion for the existence of state jumps. The matrix D becomes positive definite such that

D =
(

R 0
0 R

)
.

Let us define H(s) as the matrix of the transfer function of the closed-loop system of
the LCS in (3.18) with u = K(x − xd) + ud and K =

(
k1 k2 k3 k4

)
. Then,

H(s) ∆=
(

w1
λ1

w1
λ2

w2
λ1

w2
λ2

)
∆=
(

H11(s) H12(s)
H21(s) H22(s)

)

where

H11(s) = R4C3(k1+k2+2)s3+R3C2(5k1−k2−k3+4k4+9)s2+R2C(5k1−k2−2k3+4k4+9)s
R4C4s4+6R3C3s3+10R2C2s2+6RCs+1

+ R(k1−k3+k4+2)
R4C4s4+6R3C3s3+10R2C2s2+6RCs+1 + R

H12(s) =
R4C3k3s3 + R3C2(−k2 + 5k3 − k4 − 1)s2 + R2C(−2k2 + 4k3 − 2k4 − 2)s + R(−k2 + 3k3 − k4 − 1)

R4C4s4 + 6R3C3s3 + 10R2C2s2 + 6RCs + 1

H21(s) = −R3C2s2 − 2R2Cs − R
R4C4s4 + 6R3C3s3 + 10R2C2s2 + 6RCs + 1

H22(s) = R4C3s3 + 5R3C2s2 + 4R2Cs + 3R
R4C4s4 + 6R3C3s3 + 10R2C2s2 + 6RCs + 1

The poles are the roots of the characteristic equation:

R4C4s4 + 6R3C3s3 + 10R2C2s2 + 6RCs + 1

and they are represented as follows:

• s = − 1
RC (double root),
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• s = − 2
RC +

√
3

R2C2 , and

• s = − 2
RC −

√
3

R2C2 .

Hence, the problem of the pole at zero with multiplicity 3 which appears in the LCS
represented by the circuit in Figure 3.12 is solved in the LCS represented by the circuit
in Figure 3.13 since all the poles have a negative real part.
In order to check if there exist K and P such that the quadruple (A, B, C + FK, D) of
the closed loop system of the LCS in (3.18) is strictly state passive, the BMI in (2.6)
is transformed to LMI as shown in Appendix A.1 and it is solved. The solution is:

K =
(
−0.304 −0.658 0 −0.962

)
and P =


0.0032 0 0 0

0 0.005 0 0.002
0 0 0.0025 0
0 0.002 0 0.005


with ϵ = 0.1. The variable ϵ is chosen arbitrarily by the user such that the system is
strictly state passive with a desired degree of strict passivity (as ϵ increases, the degree
of strict passitvity increases). The value of ϵ can be increased until it reaches a critical
value, at which the LMI becomes infeasible again. If F = 0, then the open loop system
of (3.18) is strictly passive as well. So, in our case, the open loop system is strictly
passive and the role of ϵ is to increase the degree of strict passivity by pushing the
eigenvalues of the matrix A + EK to be more negative. But, E = 0 in this system,
thus varying the value of ϵ does not have an interesting effect on the control gain. It
is noteworthy that the critical value of ϵ (the last value at which the system is strictly
passive) is ϵ = 2 in the closed-loop system of the LCS represented by (3.18).

Remark 3.3.3. It is necessary to connect three resistors in parallel across C1, C2,
and C3 to get strict state passivity. If one of the resistor is removed, then a pole at
zero appears when evaluating the transfer function.

Second approach: adding controllers for passivity

Let us now add controllers (current sources) to the circuit in Figure 3.12 in order to
study strict state passivity of the closed-loop system.

u0

R

C4

C1 C2

ic1 ic2

ic3

R

C3

i1 iR

i2 i3

λ2+

−

+ −

−

+

w1

w2

Figure 3.14: Strictly state passive RC circuit with current and voltage sources
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The dynamics are given by the following LCS:



ẋ(t) =


0 0 0 0
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC

x(t) +


1
C 0
0 0
0 1

C
1
C 0

λ(t) +


0 − 1

C 0 0
0 0 − 1

C 0
0 0 0 0
0 0 0 − 1

C

u(t)

0 ≤ λ(t) ⊥ w(t) =
(

1 0 0 1
0 0 1 0

)
x(t) +

(
R 0
0 0

)
λ(t) +

(
−1 0 0 0
0 0 0 0

)
u(t) ≥ 0

(3.19)
where u = (u0, ic1, ic2, ic3)⊤. If E = 0 and F = 0, then the BMI in (2.6) has no

solution and the open loop system (A, B, C, D) for the circuit in Figure 3.14 is not
strictly passive. In order to avoid Dirac measure in the presence of state jumps, let
us take G = 0 in the following study (so that (C1) is satisfied). The BMI in (2.6)
for strict state passivity has a solution when solved after being transformed to LMI
(see Appendix A.1) for the closed loop system (A + EK, B, C + FK, D) represented
by (3.19). The solution is:

K =


0.52 −0.01 0 0.504
0.014 −0.00001 0 −0.0006

0 −0.088 −0.302 −0.025
−0.0006 0.18 0.302 0.09

 , P =


0.012 0 0 0

0 0.012 0 0.00025
0 0 0.025 0
0 0.00025 0 0.012


(3.20)

with ϵ = 0.1. Thus, the closed-loop system with controller u = (u0, ic1, ic2, ic3)⊤

is strictly state passive and stability of the error dynamics can be analyzed in the
presence of state jumps.

Let us decrease the number of controllers (current sources) as shown in Figure 3.15
below.

u0

R

C4

C1 C2

ic1 ic2

R

C3

i1 iR

i2 i3

λ2+

−

+ −

−

+

w1

w2

Figure 3.15: RC circuit with a voltage source and two current sources
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The dynamics are given by the following LCS:

ẋ(t) =


0 0 0 0
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC

x(t) +


1
C 0
0 0
0 1

C
1
C 0

λ(t) +


0 − 1

C 0
0 0 − 1

C
0 0 0
0 − 1

C − 1
C

u(t)

0 ≤ λ(t) ⊥ w(t) =
1 0 0 1

0 0 1 0

x(t) +
R 0

0 0

λ(t) +
−1 0 0

0 0 0

u(t) ≥ 0

(3.21)
where u = (u0, ic1, ic2)⊤. In order to check if the closed-loop system’s quadruple (A +
EK, B, FK, D), is strictly passive, let us check if there exist matrices P and K such
that the BMI in (2.6) has a solution. This is done by transforming the BMI into an
LMI and solve it using mosek 9.3.14 solver. The result indicates that the problem
is infeasible, thus, the closed-loop system with u = (u0, ic1, ic2)⊤ is not strictly state
passive.

3.3.2 Analysis of State Jumps
This section analyzes the state jumps of the desired system, the closed-loop system
and the error e = x − xd. It explains that the state jumps can occur at the initial time
if the states are initialized such that the complementarity constraints are not satisfied,
and at t = tc if there is a discontinuous controller ud at t = tc (see section 2.1.3). The
following analysis is followed by numerical simulation for each case. Recall that the
simulation is performed with the INRIA software package siconos2, and the LMIs are
solved with mosek 9.3.14 solver.

At the initial time t = 0

Let us consider the circuit of Figure 3.14 with the dynamics in (3.19). The state jumps
are analysed for the desired system and the closed-loop system. The desired system
xd = (x1d, x2d, x3d, x4d)⊤ is defined by the following LCS:

ẋd(t) =


0 0 0 0
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC

xd(t) +


1
C 0
0 0
0 1

C
1
C 0

λd(t) +


0 − 1

C 0 0
0 0 − 1

C 0
0 0 0 0
0 0 0 − 1

C

ud(t)

0 ≤ λd(t) ⊥ wd(t) =
(

1 0 0 1
0 0 1 0

)
xd(t) +

(
R 0
0 0

)
λd(t) +

(
−1 0 0 0
0 0 0 0

)
ud(t) ≥ 0

(3.22)
with ud(t) = (u0d, ic1d, ic2d, ic3d)⊤. In order to study the state jumps in the desired

system represented by the LCS in (3.22), let us define the corresponding sets which are
2https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/index.html
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defined and explained in paragraph State Jumps in section 1.2.2 and in section 2.1.3:

Qd,D = {λd ∈ IR2 | 0 ≤ λd ⊥ Dλd ≥ 0} = {λd ∈ IR2 | λ1d = 0 and λ2d ∈ IR+}

The dual cone of Qd,D is given by:

Q⋆
d,D = {wd ∈ IR2 | ⟨wd, λd⟩ ≥ 0} = {wd ∈ IR2 | w1d ∈ IR and w2d ∈ IR+}

and

Kd = {xd ∈ IR4 | Cxd + Fud(t+) ∈ Q⋆
d,D} = {xd ∈ IR4 | x1d, x2d, x4d ∈ IR and x3d ≥ 0}

Notice that the post-jump x+
d ∈ Kd. According to the conditions stated in the set

Kd, a state jump exists only at the initial time in the desired system trajectory x3d.
This jumps occurs if and only if x3d(0−) < 0. Notably, by solving the minimization
problem in (1.11), if x3d(0−) < 0, then x3d(0+) = 0. Otherwise, if x3d(0−) ≥ 0, then
x3d(0+) = x3d(0−).
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The closed loop system with u =
(
u0 ic1 ic2 ic3

)⊤
= K(x − xd) + ud where

K =


k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44

 is represented as follows:



ẋ(t) =


−k21

C
−k22

C
−k23

C
−k24

C
−k31

C − 1
C( 1

R + k32) − 1
C( 1

R + k33) − 1
C( 1

R + k34)
0 − 1

RC − 1
RC − 1

RC
−k41

C − 1
C( 1

R + k42) − 1
C( 1

R + k43) − 1
C( 1

R + k44)

x(t) +


1
C 0
0 0
0 1

C
1
C 0

λ(t)

−


−k21

C −k22
C −k23

C −k24
C

−k31
C −k32

C −k33
C −k34

C
0 0 0 0

−k41
C −k42

C −k43
C −k44

C

xd(t) +


0 − 1

C 0 0
0 0 − 1

C 0
0 0 0 0
0 0 0 − 1

C

ud(t)

0 ≤ w(t) =
(

1 − k11 −k12 −k13 1 − k14

0 0 1 0

)
x(t) +

(
R 0
0 0

)
λ(t)

−
(

−k11 −k12 −k13 −k14

0 0 0 0

)
xd(t) +

(
−1 0 0 0
0 0 0 0

)
ud(t) ⊥ λ(t) ≥ 0

(3.23)
For the closed-loop system (3.23), the state jumps are analysed by considering the

following sets:

QD = {λ ∈ IR2 | 0 ≤ λ ⊥ Dλ ≥ 0} = {λ ∈ IR2 | λ1 = 0 and λ2 ∈ IR+}

with a dual cone:

Q⋆
D = {w ∈ IR2 | ⟨w, λ⟩ ≥ 0} = {w ∈ IR2 | w1 ∈ IR and w2 ∈ IR+}

and the set:

K = {x ∈ IR4 | (C + FK)x − FKxd + Fud(t) ∈ Q⋆
D}

= {x ∈ IR4 | x3 ≥ 0 and x1, x2 and x4 ∈ IR}

In the closed-loop system, it is observed from the set K and the state jump rule in
(1.11) that a state jump occurs in the state x3 only at t = 0, and it occurs if and only
if x3(0−) < 0 so that x3(0+) = 0.
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The error dynamics e = x − xd is written in the form of (2.5) as follows:

ė(t) =


−k21

C
−k22

C
−k23

C
−k24

C
−k31

C − 1
C ( 1

R + k32) − 1
C ( 1

R + k33) − 1
C ( 1

R + k34)
0 − 1

RC − 1
RC − 1

RC
− k41

C − 1
C ( 1

R + k42) − 1
C ( 1

R + k43) − 1
C ( 1

R + k44)

 e(t) +


1
C 0
0 0
0 1

C
1
C 0


(

λ1 − λ1d

λ2 − λ2d

)

0 ≤


w1(t)
w2(t)
w1d(t)
w2d(t)

 =


1 − k11 −k12 −k13 1 − k14

0 0 1 0
k11 − 1 k12 k13 k14 − 1

0 0 −1 0

 e(t) +


R 0 0 0
0 0 0 0
0 0 R 0
0 0 0 0




λ1(t)
λ2(t)
λ1d(t)
λ2d(t)



+


0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0

1 − k11 −k12 −k13 1 − k14 k11 k12 k13 k14

0 0 1 0 0 0 0 0





x1

x2

x3

x4

x1d

x2d

x3d

x4d


+


−u0d

0
−u0d

0



⊥


λ1(t)
λ2(t)
λ1d(t)
λ2d(t)

 ≥ 0

(3.24)
The sets for the state jumps in the error dynamics in (3.24) are:

Qe,D =

λ ∈ IR4 | 0 ≤


λ1
λ2
λ1d

λ2d

 ⊥


R 0 0 0
0 0 0 0
0 0 R 0
0 0 0 0




λ1
λ2
λ1d

λ2d

 ≥ 0


=
{
λ ∈ IR4 | λ1 = 0, λ1d = 0, λ2 and λ2d ∈ IR+

}
with the dual cone given by:

Q⋆
e,D = {w ∈ IR4 | ⟨w, λ⟩ ≥ 0} = {w ∈ IR4 | w1 ∈ IR, w2 ∈ IR+, w1d ∈ IR and w2d ∈ IR+}

and the set

Ke =
{

e ∈ IR4 |
(

C + FK
−C − FK

)
e +

(
0 C

C + FK −FK

)(
x
xd

)
+
(

Fud

Fud

)
∈ Q⋆

e,D

}
= {e ∈ IR4 | e1, e2, e4 ∈ IR, e3 + x3d(0+) ≥ 0 and − e3 + x3(0+) ≥ 0}
= {e ∈ IR4 | e1, e2, e4 ∈ IR and e3 ∈

[
−x3d(0+), x3(0+)

]
}

Knowing that the minimization problem in (1.11) is the same at initial time for the
states x3 and x3d, the jump in e3 vanishes when x3(0−) = x3d(0−). A jump occurs at
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3.3. Electrical Circuits with Possible State Jumps

t = 0, in the error dynamics in e3 if and only if e3(0−) < −x3d(0−) or e3(0−) > x3(0−).
If x3d and x3 have state jumps at t = 0 and if x3(0−) ̸= x3d(0−) , then e3 jumps.
Consider the following numerical simulation with the initial state x(0−) = (−1, 1, −2, 2)
and xd(0−) = (1, 0, 1, −2) and with a time step h = 0.001. Take u0d = 5 sin 10t,
ic1d = sin 5t, ic2d = 3 sin 5t and ic3d = 2 sin 3t.
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Figure 3.16: Numerical Simulation of desired, closed-loop and error dynamics of LCS in (3.19). The
numerical simulation show the complementarity variables λ and w, as well as the storage function of
the error system V (e(t)).

It is observed from the numerical simulation in Figure 3.16 that the state x3 of the
closed-loop system performs a state jump from x3(0−) = −2 to x3(0+) = 0. This
numerical result confirms the jump rule given by the minimization problem in (1.11).
In the plots of the complementarity variables λ and w, a synchronization is noticed
between the desired and the real systems. The reason of this result is the fact that the
term λ − λd in (3.24) converges to Ker(B + EG) which is zero in this example.
It is also observable in Figure 3.16 that the storage function of the error V = e⊤Pe
jumps at initial time such that V (0+) − V (0−) < 0. By applying Lemma 2.1.10, it
is given in our example that u0d(0) is time continuous, xd is continuous at t = 0 and
FKxd(0) − Fud(0) ≥ 0 ⇔ 0 ∈ {x ∈ IR4 | (C + FK)x + FKxd(0) − Fud(0) ≥ 0}, then
at an initial state jump we have V (0+)−V (0−) ≤ 0 where P = P ⊤ ≻ 0 given in (3.20).

Further jump at t = tc ≥ 0

In this section, the goal is to create a jump at t = tc > 0 when ud is discontinuous at
time tc. For this purpose, let us move the voltage controller u0 in the circuit of Figure
3.14 and connect it in series with the capacitor C3 as shown in the figure below:
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R
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ic3
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+

−

+ −
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Figure 3.17: RC circuit with two ideal diodes

The dynamics are given by the following LCS:

ẋ(t) =


0 0 0 0
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC

x(t) +


1
C 0
0 0
0 1

C
1
C 0

λ(t) +


0 − 1

C 0 0
− 1

RC 0 − 1
C 0

− 1
RC 0 0 0

− 1
RC 0 0 − 1

C

u(t)

0 ≤ λ(t) ⊥ w(t) =
(

1 0 0 1
0 0 1 0

)
x(t) +

(
R 0
0 0

)
λ(t) +

(
0 0 0 0
1 0 0 0

)
u(t) ≥ 0

(3.25)
where u = (u0, ic1, ic2, ic3)⊤.

The open loop quadruple (A, B, C, D) (i.e., E = 0 and F = 0) of the circuit in Figure
3.17 is not strictly passive. But, while checking if there exist matrices K and P such
that the closed loop quadruple (A + EK, B, C + FK, D) is strictly passive, the BMI
which is transformed to LMI according to Appendix A.1 in (2.6) has a solution such
that:

K =


−0.238 0.625 0.298 0.389
0.009 0.006 0.009 0.003
0.042 −0.22 −0.25 −0.109
0.045 −0.31 −0.303 −0.17

 , P =


0.029 0.001 −0.006 −0.004
0.001 0.033 0.016 0.001

−0.006 0.016 0.032 0.01
−0.004 0.001 0.01 0.0304


(3.26)

with ϵ = 0.01.
The desired dynamics of (3.25) is given as follows:

ẋd(t) =


0 0 0 0
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC
0 − 1

RC − 1
RC − 1

RC

xd(t) +


1
C 0
0 0
0 1

C
1
C 0

λd(t) +


0 − 1

C 0 0
− 1

RC 0 − 1
C 0

− 1
RC 0 0 0

− 1
RC 0 0 − 1

C

ud(t)

0 ≤

(
λ1d(t)
λ2d(t)

)
⊥ wd(t) =

(
1 0 0 1
0 0 1 0

)
xd(t) +

(
R 0
0 0

)
λd(t) +

(
0 0 0 0
1 0 0 0

)
ud(t) ≥ 0

(3.27)
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In order to study the state jumps in the desired system represented by the LCS in
(3.27), let us define the corresponding sets:

Qd,D = {λd ∈ IR2 | 0 ≤ λd ⊥ Dλd ≥ 0} = {λd ∈ IR2 | λ1d = 0 and λ2d ∈ IR+}

The dual cone of Qd,D is

Q⋆
d,D = {wd ∈ IR2 | ⟨wd, λd⟩ ≥ 0} = {wd ∈ IR2 | w1d ∈ IR and w2d ∈ IR+}

and the set
Kd = {xd ∈ IR4 | Cxd + Fud(t+) ∈ Q⋆

d,D}

= {xd ∈ IR4 | x1d, x2d, x4d ∈ IR and x3d + u1d(t+) ≥ 0}

Thus, the desired state x3d jumps at t = tc ≥ 0 if and only if x3d(t−) < −u1d(t+).

Let u =
(
u1 ic1 ic2 ic3

)⊤
= K(x − xd) + ud with K =


k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44

. The

closed-loop system is represented as follows:

ẋ(t) =


−k21

C
−k22

C
−k23

C
−k24

C
−k11
RC − k31

C − 1
RC (1 + k12) − k32

C − 1
RC (1 + k13) − k33

C − 1
RC (1 + k14) − k34

C
− k11

RC − 1
RC (1 + k12) − 1

RC (1 + k13) − 1
RC (1 + k14)

− k11
RC − k41

C − 1
RC − k12

RC − k42
C − 1

RC − k13
RC − k43

C − 1
RC − k14

RC − k44
C

x(t)

+


1
C 0
0 0
0 1

C
1
C 0

λ(t) −


− k21

C − k22
C − k23

C − k24
C

−k11
RC − k31

C
−k12
RC − k32

C
−k13
RC − k33

C
−k14
RC − k34

C
−k11
RC

−k12
RC

−k13
RC

−k14
RC

−k11
RC − k41

C
−k12
RC − k42

C
−k13
RC − k43

C
−k14
RC − k44

C

xd(t)

+


0 − 1

C 0 0
− 1

RC 0 − 1
C 0

− 1
RC 0 0 0

− 1
RC 0 0 − 1

C

ud(t)

0 ≤ w(t) =
(

1 0 0 1
k11 k12 1 + k13 k14

)
x(t) +

(
R 0
0 0

)
λ(t) −

(
0 0 0 0

k11 k12 k13 k14

)
xd(t)

+
(

0 0 0 0
1 0 0 0

)
ud(t) ⊥ λ(t) ≥ 0

(3.28)
For the closed-loop system whose dynamics is in (3.28), the sets are calculated as :

QD = {λ ∈ IR2 | 0 ≤ λ ⊥ Dλ ≥ 0} = {λ ∈ IR2 | λ1 = 0 and λ2 ∈ IR+}

with a dual cone:

Q⋆
D = {w ∈ IR2 | ⟨w, λ⟩ ≥ 0} = {w ∈ IR2 | w1 ∈ IR and w2 ∈ IR+}
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and the set:

K = {x ∈ IR4 | (C + FK)x − FKxd + Fud(t) ∈ Q⋆
D}

= {x ∈ IR4 | x1 + x4 ∈ IR and k11(x1 − x1d) + k12(x2 − x2d) + k13(x3 − x3d)
+ k14(x4 − x4d) + x3 + u1d(t+) ≥ 0}

Let tc be the time of discontinuity of the controller u1d(·). Given that the states x−

and x−
d are known, it is possible to determine which state jumps at tc. However,

this is not trivial in the closed-loop system during the transient response due to the
coupled conditions in the set K. In the interval [t⋆, ∞] where e = 0 for all t ≥ t⋆

(i.e., the steady state response), the set K simplifies to K = {x ∈ IR4 x1 + x4 ∈
IR and x3 + u1d(t+) ≥ 0}. If the controller is discontinuous at time tc ∈ [t⋆, ∞] and
the states x3(t−

c ) = x3d(t−
c ) < −u1d(t+

c ), then the states x3d and x3 jump simultaneously
at tc to the same value −u1d(t+

c ). In this example, a numerical simulation is performed
to show which state in the closed-loop system jumps when u1d is discontinuous.

The error dynamics is written in the form of the dynamics in (2.12) as follows:



ė(t) =


−k21

C
−k22

C
−k23

C
−k24

C
−k11
RC − k31

C − 1
RC (1 + k12) − k32

C − 1
RC (1 + k13) − k33

C − 1
RC (1 + k14) − k34

C
− k11

RC − 1
RC (1 + k12) − 1

RC (1 + k13) − 1
RC (1 + k14)

− k11
RC − k41

C − 1
RC − k12

RC − k42
C − 1

RC − k13
RC − k43

C − 1
RC − k14

RC − k44
C

 e(t)

+


1
C 0 − 1

C 0
0 0 0 0
0 1

C 0 − 1
C

1
C 0 − 1

C 0




λ1(t)
λ2(t)
λ1d(t)
λ2d(t)



0 ≤


w1(t)
w2(t)
w1d(t)
w2d(t)

 =


1 0 0 1

k11 k12 1 + k13 k14

0 0 0 0
0 0 0 0




e1(t)
e2(t)
e3(t)
e4(t)

+


R 0 0 0
0 0 0 0
0 0 R 0
0 0 0 0




λ1(t)
λ2(t)
λ1d(t)
λ2d(t)



+


x1d(t) + x4d(t)
x3d(t) + u1d(t)
x1d(t) + x4d(t)
x3d(t) + u1d(t)

 ⊥


λ1(t)
λ2(t)
λ1d(t)
λ2d(t)

 ≥ 0

(3.29)
Consider the following numerical simulation with the initial state x(0−) = (1, 3, −3, 1)
and xd(0−) = (1, 1, −3, 0) and with a time step h = 0.01. The value of the control
gain K is given in (3.26). Take ic1d(t) = sin 5t, ic2d = 0.5 sin 5t, ic3d(t) = 0.2 sin 3t and

u1d(t) =
{

1 if t ≤ 1
−10 if t ≥ 1
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Figure 3.18: Numerical Simulation of the desired, the closed-loop and the error dynamics of LCS in
(3.19). The numerical simulation show the complementarity variables λ and w, as well as the storage
function of the error system V (e(t)).

The numerical simulation in Figure 3.18 shows two state jumps at t = 0 and t = 1s.
At the initial time, the states x3 and x3d jump, but not to the same value, according to
the conditions stated in sets K and Kd at t = 0, respectively. Another jump is observed
in x3 and x3d at t = 1s due to the discontinuity in the controller u1 at the same time
t = 1s.

In the plot of the storage function of the error V (e(t)), it is noticeable that the variation
of the storage function is negative during these jumps where V (0+) − V (0−) < 0 and
V (1+) − V (1−) < 0. In addition, the complementarity variables λ2 and λ2d exhibit a
Dirac measure at the times of the jumps (i.e., at t = 0 and t = 1s).

3.4 Diode Bridge Example

Consider the diode bridge rectifier circuit in Figure 3.19. Let x1 be the current passing
through the inductor L, x2 be the voltage across the capacitor C1, and x3 be the
voltage across the capacitor C2. The dynamics are written as a linear complementarity
system LCS and are given in (3.30), where λ(t) ∆=

(
iDF 1, iDR1, −vDF 2, iDR2

)⊤
and

w(t) ∆=
(
−vDF 1, −vDR1, iDF 2, −vDR2

)⊤
.
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Figure 3.19: Diode Bridge with one controller



ẋ(t) =


0 1

L 0
− 1

C1
0 0

0 0 − 1
RC2

x(t) +


0 0 0 0

− 1
C1

0 0 1
C1

1
C2

1
C2

0 0

λ(t)

0 ≤ λ(t) ⊥ w(t) =


0 −1 1
0 0 1
0 0 0
0 1 0

x(t) +


0 0 −1 0
0 0 −1 0
1 1 0 −1
0 0 1 0

λ(t) +


−1
0
0
1

u(t) ≥ 0

(3.30)
Clearly PB = C⊤ with P = CI3 when C1 = C2 = C, and D + D⊤ = 0 (i.e., D is a
skew-symmetric matrix). Numerical analysis shows that the BMI in (2.6) transformed
to LMI for the closed-loop system’s quadruple (A, B, C + FK, D) has no solution.
Thus, the closed-loop system with u = K(x − xd) + ud is not strictly state passive, and
the results from section 2.1 cannot be applied.

Let us add another controller (i.e., voltage source) as shown in the circuit in Figure
3.20

C1

u1

L

u2iC1 iL

iR

iDF1

iDR1

iDR2

iDF2

R

C2

+

−

+ −

Figure 3.20: Diode Bridge with two controllers
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The dynamics are given by the following LCS:

ẋ(t) =


0 1

L 0
− 1

C1
0 0

0 0 − 1
RC2

x(t) +


0 0 0 0

− 1
C1

0 0 1
C1

1
C2

1
C2

0 0

λ(t) +


1
L 0
0 0
0 0

u(t)

0 ≤ λ(t) ⊥ w(t) =


0 −1 1
0 0 1
0 0 0
0 1 0

x(t) +


0 0 −1 0
0 0 −1 0
1 1 0 −1
0 0 1 0

λ(t) +


−1 −1
0 0
0 0
1 1

u(t) ≥ 0

(3.31)
The closed-loop system of the LCS with the external input u = (u1, u2)⊤ = K(x −

xd) + ud where K =
(

k11 k12 k13
k21 k22 k23

)
is given by:



ẋ =


k11
L

1
L + k12

L
k13
L

− 1
C1

0 0
0 0 − 1

RC2

x(t) +

 0 0 0 0
− 1

C1
0 0 1

C1
1

C2
1

C2
0 0

λ(t) −


k11
L

k12
L

k13
L

0 0 0
0 0 0

xd(t)

+


1
L 0
0 0
0 0

ud(t)

0 ≤ λ(t) ⊥ w(t) =


−k11 − k21 −1 − k12 − k22 1 − k13 − k23

0 0 1
0 0 0

k11 + k21 1 + k12 + k22 k13 + k23

x(t)

+


0 0 −1 0
0 0 −1 0
1 1 0 −1
0 0 1 0

λ(t) −


−k11 − k21 −k12 − k22 −k13 − k23

0 0 0
0 0 0

k11 + k21 k12 + k22 k13 + k23

xd(t)

+


−1 −1
0 0
0 0
1 1

u(t) ≥ 0

(3.32)
The BMI of the closed-loop system’s quadruple (A+EK, B, C+FK, D) is transformed
into an LMI according to Appendix A.1 and solved using mosek. Take L = 0.5 H,
C1 = 0.25 F, R = 1 ohms, and C2 = 0.025 F, the solution is given by:

P =

 0.0008 −0.0001 0
−0.0001 0.0008 0

0 0 0.024

 and K =
(

−0.54 1.07 −0.003
0.54 −2.068 0.003

)
(3.33)

with ϵ = 0.1 and where PB = (C + FK)⊤ holds. Thus, the closed-loop system in
(3.32) with u = (u1, u2)⊤ is strictly state passive.
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Consider the following numerical simulation with the initial states x(0) = (3, , −1 , −5)⊤

and xd(0) = (−2, , 2 , −3)⊤ and with a time step h = 0.01. Take the desired external
inputs as u1d(t) = 5 sin 3t and u2d(t) = sin 2t.
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Figure 3.21: Numerical Simulation of the desired, the closed-loop and the error dynamics of LCS in
(3.31). The numerical simulation show the complementarity variables λ and w.

The numerical simulation in Figure 3.21 shows that the error e = x−xd converges to
zero, confirming the result stated in Proposition 2.1.8 for a strictly state passive system
without uncertainties. The plot of the state x3 (i.e., the voltage across the capacitor
C2) represents the output of the diode bridge and displays a full-wave rectified voltage.
An interesting observation from the plot is that both states x3 and x3d jumps at t = 0,
resulting in a jump in the error e3 = x3 − x3d at t = 0, which converges promptly to
zero. This jump occurs due to the initial values assigned to the states x3 and x3d such
that the complementarity constraints are not satisfied at the initial time. As a result of
the coupling between the states and the complementarity variables in the LCS (3.31),
it is noticeable that some of the complementarity variables such as w3, λ1 exhibit a
Dirac measure at t = 0 (the jump time of x3).

3.5 Networks with Unilateral Interactions
This example focuses on the study of trajectory tracking for a system of networks
with unilateral interactions with inputs. Let us present an example of a network with
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unilateral interactions [111]. These systems can be treated as LCS [38], and by adding
exogenous signals, they can be formulated as LCS with external inputs as in (1.1).
They find applications in various fields such as sensor network, robotics, and game
theory. Let us consider the following dynamics:

ẋ1(t) = max(0, x3(t) − x1(t) − u1(t)) + u2(t)
ẋ2(t) = x1(t) − x2(t) + min(0, x3(t) − x2(t) + u3(t)) + u4(t)
ẋ3(t) = max(0, x1(t) − x3(t) − u5(t)) + u6(t)

(3.34)

which is written in the form of the LCS in (1.1) with [38, Equation (3.16)]:

A =

0 0 0
1 −1 0
0 0 0

 , B =

1 0 0
0 −1 0
0 0 1

 , C =

 1 0 −1
0 −1 1

−1 0 1

 , D =

1 0 0
0 1 0
0 0 1

 ,

E =

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 and F =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


(3.35)

The desired system is defined by the LCS in (2.1) with the same plant matrices in
(3.35).

Remark 3.5.1. In this analysis, the most general form of inputs is chosen (they appear
in both the linear and the nonsmooth parts of the dynamics). It is out of the scope of
this analysis to justify the feasibility of such inputs. The well-posedness of this LCS
easily follows from section 1.2.2 item 1.

First case: Complete controller

Let u =
(
u1 u2 u3 u4 u5 u6

)⊤
. The closed-loop system with u(t) = K[x(t) −

xd(t)] + ud(t) where K =

k11 k21 k31 k41 k51 k61
k12 k22 k32 k42 k52 k62
k13 k23 k33 k43 k53 k63


⊤

is written in the form of the

LCS in (2.3) with

ẋ(t) =

 k21 k22 k23

1 + k41 −1 + k42 k43

k61 k62 k63

x(t) +

1 0 0
0 −1 0
0 0 1

λ(t) −

k21 k22 k23

k41 k42 k43

k61 k62 k63

xd(t) +

u2d(t)
u4d(t)
u6d(t)



0 ≤ λ(t) ⊥ w(t) =

 1 + k11 k12 −1 + k13

k31 −1 + k32 1 + k33

−1 + k51 k52 1 + k53

x(t) +

1 0 0
0 1 0
0 0 1

λ(t)

−

k11 k12 k13

k31 k32 k33

k51 k51 k53

xd(t) +

u1d(t)
u3d(t)
u5d(t)

 ≥ 0

(3.36)
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The solution of the BMI in (2.6) which is transformed to LMI (see Appendix A.1)
with ϵ = 0.001 for the closed-loop system in (3.36)

K =



−0.43 −0.003 0.996
−0.497 −0.017 0.0029
0.003 0.431 −0.996
−0.97 0.5 −0.003
0.996 −0.003 −0.43
0.002 0.009 −0.497


and P =

 0.57 −0.003 −0.003
−0.0032 0.57 −0.003
−0.003 −0.003 0.57



Hence, the closed-loop system’s quadruple (A + EK, B, C + FK, D) is strictly state
passive. Take x(0) = (−1, 1, 0)⊤, xd(0) = (1, 2, −1)⊤ and
ud =

(
sin t cos t sin 2t cos 2t sin 3t cos 3t

)⊤
. The numerical simulation is shown

below with time step h = 0.01s (see Figure 3.22).
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Figure 3.22: Numerical simulation showing the tracking error e = x − xd of the Network dynamics
in (3.34) controlled by the complete controller u. The simulation also shows the behaviour of the
complementarity variables λ and w.

In this case, the closed-loop quadruple (A+EK, B, C +FK, D) is strongly passive.
Thus, the system can be studied within the framework of section 2.4 which allows the
consideration of uncertainties.

Second case: u =
(
u2 u4 u6

)⊤

The solution is:

K =

0 −0.87 0 −0.16 0 0.26
0 −0.42 0 0.327 0 0.233
0 0.18 0 −0.0001 0 −1.27


⊤

and P =

 0.99 −0.085 −0.26
−0.085 0.72 −0.2
−0.26 −0.2 1.18


Hence, the closed-loop system (A+EK, B, C, D) is strictly state passive. Take x(0) =
(−2, 1, 1)⊤, xd(0) = (2, −5, −1)⊤ and ud =

(
sin t cos t sin 2t cos 2t sin 3t cos 3t

)⊤
.

The numerical simulation is shown below with time step h = 0.01s (see Figure 3.23).
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Figure 3.23: Numerical simulation showing the tracking error e = x − xd of the Network dynamics
in (3.34) with the active controller u = (u2, u4, u6)⊤ included in the linear part of the LCS in (3.34).
The simulation also shows the behaviour of the complementarity variables λ and w.

It is important to note that, in this case, the closed-loop quadruple (A+EK, B, C, D)
is strongly passive. This property allows us to analyse the problem of trajectory track-
ing in the presence of uncertainties (see section 2.4). However, whether or not consid-
ering such uncertainties in networks with unilateral interactions makes sense, is out of
the scope of this thesis.

Third case: u =
(
u1 u3 u5

)⊤

The BMI in (2.6) has no solution. Hence, the quadruple of the closed-loop system
(A, B, C + FK, D) cannot be made strictly state passive with such a set of inputs and
the chosen feedback, and the framework developed in the foregoing sections does not
apply. It is noteworthy that the conclusions are still valid even if we consider G ̸= 0.

3.6 Nonsmooth Mechanical Systems with
Unilateral Springs

It is known that unilateral spring/dashpot contact/impact models, can be written
in a complementarity framework [27, 38, 28, 11]. This class of contact/impact models
significantly differs from unilateral constraints which yield complementarity constraints
and impact models as in Remark 3.6.1
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Figure 3.24: Mechanical system with unilateral spring.

Consider the mechanical system in Figure 3.24 which possesses the following dynamics:mq̈(t) = u(t) + λ(t)
0 ≤ λ(t) ⊥ w(t) = λ(t) + k(q(t) − l) ≥ 0

(3.37)

where q − l is the deformation of the spring, k > 0 is the stiffness of the spring.
The complementarity constraint is written between the contact force and the signed
distance between the spring and the mass. Clearly the dynamics (3.37) fits with our
general framework. Let x = (x1, x2)⊤ = (q − l, q̇)⊤, (3.37) is rewritten equivalently as
the LCS:  ẋ(t) =

(
0 1
0 0

)
x(t) +

(
0
1
m

)
λ(t) +

(
0
1
m

)
u(t)

0 ≤ λ(t) ⊥ w(t) = λ(t) + kx1(t) ≥ 0
(3.38)

Here A =
(

0 1
0 0

)
, B = E =

(
0
1
m

)
, C = (k, 0), D = 1, F = 0, and the system has AC

solutions with uniqueness, see section 1.2.2 item 1. The quadruple (A, B, C, D) can be
made strongly passive with state feedback u = Kx = k1x1 + k2x2. This means that
there exists a control gain K = (k1, k2) such that the quadruple (A + EK, B, C, D) of
the closed-loop system is strongly passive. Equivalently, the BMI in (2.7) has a solution
after being transformed into an LMI, as detailed in Appendix A.1 and the solution is
given by:

P =
(

7.863 0.538
0.538 0.337

)
and K =

(
−21.38 −2.148

)
with m = 1kg and k = 5N/m. Thus, the results in section 2.4.2 apply to this example.
As the stiffness of the spring k increases, the control gain gives very large numerical
values like k1 = −1.2×107 for k = 100N/m. This is explained analytically by explicitly
writing the matrix inequality in (2.7) and verifying the positive definiteness conditions.
Following the matrix M in (2.6), the matrix inequality is written as: −2p12k1

m
−p11 − p12k2

m
− p22k1

m
−p12

m
+ k

−p11 − p12k2
m

− p22k1
m

−2p12 − 2p22k2
m

−p22
m

−p12
m

+ k −p22
m

2

 ≻ 0

with P =
(

p11 p12
p12 p22

)
≻ 0. One of the necessary conditions to be satisfied is:

2 ×
(

−2p12k1
m

−p11 − p12k2
m

− p22k1
m

−p11 − p12k2
m

− p22k1
m

−2p12 − 2p22k2
m

)
−

(−2p12
m

+ k
)2

0
0 0

 ≻ 0
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Given that −p12k1
m

> 0 which is a necessary condition for positive definiteness, thus
for strong passivity of the quadruple (A + EK, B, C, D), it is required to prove that:
−4p12k1

m
−
(
−2p12

m
+ k

)2
> 0. This condition implies that if k → +∞, then k1 → +∞.

This conclusion is similar to the result in [27, section 7.6] [35] which deals with quadratic
stabilization of the same system. It demonstrates the limitation of the stabilization
approach which certainly provides conservative sufficient conditions.
It is seen that, in a certain sense, this class of mechanical systems (with D > 0 and
F = 0) lies in-between the unilaterally constrained mechanical systems (with always
D = 0 and F = 0), and LCS (with possibly both D and F nonzero).

Remark 3.6.1 (Linear Complementarity Lagrangian Systems). Linear Lagrangian
systems with unilateral constraints have the nonlinear nonsmooth dynamics:

Mq̈(t) + Rq̇(t) + Sq(t) = u(t) + C⊤
q λ(t)

0 ≤ λ(t) ⊥ w(t) = Cqq(t) + Fq ≥ 0
Cq q̇(t+) = −enCq q̇(t) if Cqq(t) = 0 and Cq q̇(t−) ≤ 0,

(3.39)

where q(t) ∈ IRn, M = M⊤ ≻ 0, the restitution coefficient en ∈ [0, 1], R ≽ 0 is a
Rayleigh dissipation matrix [40, Definition 6.12], S ≽ 0 is a stiffness matrix, and it
is assumed that q̇ has left and right limits. For simplicity, we also assume that there
is a unique unilateral constraint, i.e., Cq ∈ IR1×n, λ ∈ IR and Fq ∈ IR is a constant
(the system’s admissible domain in the configuration space, is a convex polyhedral set,
assumed to be nonempty). Denoting x = (q⊤, q̇⊤)⊤, x1 = q, x2 = q̇, we obtain:

ẋ(t) =
(

0 In

−M−1S −M−1R

)
x(t) +

(
0

M−1

)
u(t) +

(
0

M−1C⊤
q

)
λ(t)

0 ≤ λ(t) ⊥ w(t) = Cx(t) + Fq = (Cq, 0)x(t) + Fq ≥ 0
Cẋ(t+) = −enCẋ(t−) if Cx(t) = 0 and Cẋ(t−) ≤ 0.

(3.40)

Therefore, A =
(

0 In

−M−1S −M−1R

)
, B =

(
0

M−1C⊤
q

)
, E =

(
0

M−1

)
, F = 0, C =

(Cq, 0), D = 0. Since D = 0 and no control acts in the complementarity constraint,
passivity implies that PB = C⊤ whatever the controller u(x) = Kx. It can be checked
that this is not possible with P ≻ 0. Adding a multiplier feedback u(x, λ) = Kx + Gλ
does not change the conclusion. Fundamentally, systems as (3.40) have a relative
degree 2 when λ is seen as the input and w is seen as the output [27] (hence hampering
passivity [40]), while systems as in (3.38) have a relative degree 0 between the same
input/output variables.

Conclusion
This chapter studies various numerical applications on electrical circuits, networks with
unilateral interactions and mechanical systems with unilateral springs, which illustrate
the theoretical developments in Chapter 2. The controller gains are computed using
mosek 9.3.14 solver, and numerical simulations are performed using the software
package siconos. The analysis of electrical circuits in this chapter shows how the
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structure of the circuit affects its passivity properties. So, different approaches are
proposed, such as changing the type of the controller to enhance the passivity of the
circuit.
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Chapter 4

Trajectory Tracking in Frictional
Oscillators

This chapter addresses the problem of trajectory tracking control in frictional oscilla-
tors. First, the dynamics of frictional oscillators are represented within the framework
of complementarity systems, which is followed by analysis of the stick/slip behaviour
of the desired system. Then, the stability analysis of the error dynamics in nominal
case is investigated based on theoretical results derived in Chapter 2. These results
are extended to tackle the case with parametric uncertainties. In this case, strong
passivity assumption is relaxed to strict state passivity for the stability analysis of the
error dynamics in the presence of uncertainties. In addition, this chapter introduces
a new approach for the control design, based on passifying the friction model when
Stribeck effect is considered, along with analyzing the stability of the error dynamics.
Theoretical findings in this chapter are supported by numerical simulations made with
siconos.

4.1 Friction Modeling
There is a plethora of friction models, and the analysis and the control of systems with
friction has witnessed a huge number of articles in the past thirty years both in the
Automatic Control and in the Nonlinear Dynamics scientific communities. Roughly
speaking, friction models of interest for Control may be classified as follows: static
models (which may be set-valued or single-valued, with constant or with varying friction
coefficient), and dynamic models which aim at incorporating pre-sliding effects, bristle
effects, hysteretic behaviours, etc. Static models comprise Coulomb’s friction with
constant coefficient or varying coefficient (e.g., Stribeck [12, 106], Dieterich-Ruina [42,
Equation (21)]), which are set-valued at zero relative tangential velocity, as well as
regularized models (mainly applied to planar friction where the signum function is
replaced by a saturation, or a sigmoid function). Set-valuedness at zero tangential
velocity allows to correctly handle sticking modes (contrarily to regularized models)
and is thus essential in multibody applications. Dynamic models with internal state
are numerous (LuGre, Leuven, Bliman-Sorine, Dahl, elastoplastic etc [106]). Dynamic
models are better for modeling micro stick-slip effects, though Coulomb with Stribeck
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coefficient of friction also provides good results in this respect [106]. However, dynamic
models also present severe drawbacks [133, 137]. Coulomb friction (with constant
coefficient) has limitations [42], but it can also provide quite good results in many
instances, see, e.g., [112, 103, 60]. It is sometimes not easy task to choose between
a regularized (around zero tangential velocity) model and the set-valued model, see,
e.g., [148]. It is inferred that conducting preliminary research work using the set-
valued Coulomb’s model (with constant coefficient of friction) is a reasonable path
for trajectory traking, keeping in mind that Stribeck effects, which render the system
nonlinear, can be included in the analysis: this will be done in this work, within a
robustness analysis. Finally see [15] for a survey on friction models.

4.2 Controlled Frictional Oscillators

m
u1

q

−g

r

ω

(a)

k

m
u1

f

q

ω

(b)

Figure 4.1: Simple frictional oscillators with Coulomb’s friction

Consider the simple frictional oscillator system depicted in Figure 4.1a. The objective
is to perform trajectory tracking for the mass m. Two main steps will be tackled: first,
we assume that the pulleys can be given arbitrary angular velocity in this Chapter,
second, the pulley-belt system dynamics is taken into account in Chapter 5. Assuming
that the belt can be given arbitrary velocity, its dynamics are given by:

q̈(t) ∈ 1
m

u1(t) − µg sgn(q̇(t) − u2(t)) (4.1)

with u = (u1, u2)⊤, u2 = rω is considered as a control input, µ > 0 is the friction
coefficient, ω rad/s is the pulleys’ angular velocity, r is their radius, g is the gravity
acceleration, m kg the mass weight. Notice that the dynamics (4.1) can be rewritten as
q̈(t) = 1

m
u1(t) − µgλt(t), with λt(t) ∈ sgn(q̇(t) − u2(t)). If u1 ≡ 0 or if u1 = u1(q, q̇, t),

then the dynamics (4.1) fit within the robot-object class of systems [26] where the
robot’s dynamics (the pulley-belt system) is neglected: the mass m is the object which
can be controlled only through the contact force multiplier λt(·). Neglecting the friction
effects on the belt dynamics so that the pulleys-belt’s velocity can be considered not
influenced by the friction with the mass, is a common assumption in the Nonlinear
Dynamics literature [100, 97, 96, 64, 66, 139, 104], see also references therein. The
system in Figure 4.1a represents a one-degree-of-freedom oscillator. In this setting we
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may link the mass to a rigid wall with a linear spring-dashpot model as shown in Figure
4.1b, yielding the dynamics:

q̈(t) ∈ 1
m

u1(t) − k

m
(q(t) − l) − f

m
q̇(t) − µg sgn(q̇(t) − u2(t)) (4.2)

where k > 0 is the stiffness and f > 0 is the viscous friction coefficient.

Remark 4.2.1. The system in (4.1) is fully acutuated (if we consider both u1 and u2,
then it is even overactuated with two independent inputs and one degree of freedom q).
The system in (4.2) is fully actuated. As we shall see next, the passivity-based control
strategy that is chosen uses the monotonicity of the set-valued part.

4.2.1 The Complementarity System Framework
The dynamics (4.1) are equivalently rewritten in a complementarity systems framework
as:

ẋ(t) =
(

0 1
0 0

)
︸ ︷︷ ︸

∆=A

x(t) +
(

0 0
1
m

0

)
︸ ︷︷ ︸

∆=E

u(t) +
(

0
µg

)
︸ ︷︷ ︸

∆=E′

+
(

0 0
−2µg 0

)
︸ ︷︷ ︸

∆=B

λ(t)

0 ≤ λ(t) ⊥ w(t) =
(

0 1
0 0

)
︸ ︷︷ ︸

∆=F

u(t) +
(

0
1

)
+
(

0 1
−1 0

)
︸ ︷︷ ︸

∆=D

λ(t) +
(

0 −1
0 0

)
︸ ︷︷ ︸

∆=C

x(t) ≥ 0,
(4.3)

with x = (q, q̇)⊤, λ = (λ1, λ2)⊤, u = (u1, u2)⊤. The complementarity conditions in
(4.3) stem from the representation of the set-valued signum function [43]. It is verified

that the quadruple (A, B, C, D) is passive with storage matrix P =
(

p11 0
0 1

2g

)
. There

are two peculiarities to system (4.3): a) D ≽ 0 and D + D⊤ = 0, b) there are constant

terms
(

0
1

)
̸∈ Im(F ) and E ′ =

(
0

−µg

)
∈ Im(E), hence it does not fit with (1.1).

Solutions to (4.3) are AC under some conditions on the control input, as discussed
below. The first step is the computation of fixed points of (1.1) in the closed-loop, in
order to determine whether or not a feedback controller of the form:

u(x, λ, t) = K[x − xd(t)] + G[λ − λd(t)] + ud(t). (4.4)

with feedback gains K ∈ IR2×2 and G ∈ IR2×2, is able to modify the set of equilibria.
Notice that λ1 = λt+1

2 where µmgλt is the tangent interaction force between the mass
and the belt, i.e., λt ∈ sgn(q̇ − u2). However, the multiplier λ2 has no clear mechanical
meaning and may be assumed as non-measurable. It is inferred that only λ1 is available
for feedback. Moreover, we avoid the use of λ1 in u1, for otherwise the tangential
force could be compensated for directly: this is not a desirable control strategy. Most
importantly, our analysis applies to the case when the mass is attached to a rigid wall
by a linear spring-dashpot system as in Figure 4.1b, while u1 is to be interpreted as
a feedforward controller, that depends only on xd(t) and ud(t). In such a setting, the
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tracking control problem is that of a mass+spring-dashpot system, with feedforward
control and feedback control through the tangential contact force. These observations

constrain the input matrix G to satisfy G =
(

0 0
g21 0

)
. It is also noticed that a

feedback using λ2 is useless as it is unable to modify the matrix Dcl to get strong
passivity instead of strict state passivity, because of the structure of the matrix F .
In general, it is even better to assume G = 0. However, the subsequent analysis in
section 4.5 shows that g21 > 0 allows to regularize the set-valued friction and to get
robustness that is otherwise impossible to obtain. Thus, it is worth presenting it even
if its implementation may remain questionable. Inserting (4.4) to (4.3), with the above
restrictions on G, gives the closed-loop system dynamics:



(a) ẋ(t) =
 0 1

k11
m

k12
m


︸ ︷︷ ︸

∆=Acl

x(t) +
 0 0

−2µg 0


︸ ︷︷ ︸

∆=Bcl

λ(t) −

 0 0
k11
m

k12
m

xd(t) +
 0

µg



+
 0 0

1
m

0

ud(t)

(b) 0 ≤ λ(t) ⊥ w(t) =

∆=Ccl︷ ︸︸ ︷k21 −1 + k22

0 0

x(t) +

∆=Dcl︷ ︸︸ ︷g21 1
−1 0

λ(t) −

k21 k22

0 0

xd(t)

−

g21 0
0 0

λd(t) +
u2d(t)

1

 ≥ 0

(4.5)

Remark 4.2.2. No physical parameters appear in the complementarity conditions in
(4.3) or (4.5), because the complementarity merely represents the set-valued signum
function. This will have consequences on the robustness analysis (see section 4.5). It
is noteworthy that even a feedback from λ1 cannot guarantee strong passivity of the
closed-loop, because at best Dcl ≽ 0. One question which arises is how much g21 ̸= 0
can improve the robustness with respect to uncertainties in µ.

The desired system is:


ẋd(t) =
(

0 1
0 0

)
xd(t) +

(
0 0
1
m

0

)
ud(t) +

(
0

µg

)
+
(

0 0
−2µg 0

)
λd(t)

0 ≤ λd(t) ⊥ wd(t) =
(

0 1
0 0

)
ud(t) +

(
0
1

)
+
(

0 1
−1 0

)
λd(t) +

(
0 −1
0 0

)
xd(t) ≥ 0,

(4.6)
where xd = (qd, q̇d)⊤ = (x1d, x2d)⊤. This is equivalent to its differential inclusion form:

q̈d(t) ∈ 1
m

u1d(t) − µgλt,d(t), λt,d(t) ∈ sgn(q̇d(t) − u2d(t)) (4.7)
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The closed-loop error dynamics e = x − xd is:

ė(t) =
((

0 1
0 0

)
+
(

0 0
1
m 0

)
K

)
e(t) +

((
0 0

−2µg 0

)
+
(

0 0
1
m 0

)
G

)
(λ(t) − λd(t))

0 ≤ λd(t) ⊥ wd(t) =
(

0 1
0 0

)
ud(t) +

(
0
1

)
+
(

0 1
−1 0

)
λd(t) +

(
0 −1
0 0

)
xd(t) ≥ 0

0 ≤ λ(t) ⊥ w(t) =
((

0 1
0 0

)
K +

(
0 −1
0 0

))
e(t) −

(
0 1
0 0

)
Gλd(t) +

(
0 1
0 0

)
ud(t)

+
((

0 1
−1 0

)
+
(

0 1
0 0

)
G

)
λ(t) +

(
0 −1
0 0

)
xd(t) +

(
0
1

)
≥ 0,

(4.8)
which is equivalent to:

ė(t) =

Acl︷ ︸︸ ︷(
0 1

k11
m

k12
m

)
e(t) +

Bcl︷ ︸︸ ︷(
0 0

−2µg 0

)
(λ(t) − λd(t))

0 ≤ λd(t) ⊥ wd(t) =
(

0 1
0 0

)
ud(t) +

(
0
1

)
+
(

0 1
−1 0

)
λd(t) +

(
0 −1
0 0

)
xd(t) ≥ 0

0 ≤ λ(t) ⊥ w(t) =
(

k21 k22 − 1
0 0

)
︸ ︷︷ ︸

Ccl

e(t) −
(

g21 0
0 0

)
λd(t) +

(
0
1

)
+
(

g21 1
−1 0

)
︸ ︷︷ ︸

Dcl

λ(t)

+
(

0 −1
0 0

)
xd(t) +

(
0 1
0 0

)
ud(t) ≥ 0

(4.9)

with G =
(

0 0
g21 0

)
. The closed-loop LCP matrix is Dcl.

Remark 4.2.3. It is important to note that rank(B) = rank(Bcl) = 1. So, the passi-
fication conditions on the rank of the input matrix [40, Theorem 3.61] are not met in
this context.

4.2.2 Well-posedness issues
The well-posedness of (4.5) and (4.6) has to be guaranteed as a prerequisite to stability
analysis. Similarly to Assumption 2.1.4, we are led to assume the following:

Assumption 4.2.4. The quadruple (Acl, Bcl, Ccl, Dcl) is strictly state passive.

This implies that g21 ≥ 0. As examples will show, this can hold with g21 = 0 in certain
cases (no tangential contact force feedback). Let us examine the well-posedness of the
closed-loop system in (4.5):

• The criterion in [44] (see section 1.2.2 item 2 (a)) does not apply since(
Bcl

Dcl + D⊤
cl

)
=


0 0

−2µg 0
2g21 0

0 0

 is not full column rank.

93



Chapter 4. Trajectory Tracking in Frictional Oscillators

• The criterion in item 2 (f) does not apply because Im(Dcl) = IR2 ̸⊂ Im(Ccl).

• The conditions in section 1.2.2 item 2 (d) apply. This is confirmed by the passivity
of the quadruple (Acl, Bcl, Ccl, Dcl) in Assumption 4.2.4. Additionally, Im(Dcl +

NIR2
+
)−Fcl(t)) = Im(Dcl)+IR2

−−Fcl(t) = IR2, where Fcl(t) ∆= −
(

k21 k22
0 0

)
xd(t)−(

g21 0
0 0

)
λd(t) +

(
u2d(t)

1

)
and we used a result from [23, Section 3.2.1] and the

fact that NIR2
+
(·) = N −1

IR2
−

(·).

The only condition which remains to be satisfied is that u(·) is a Bohl function
which depends only on the desired system. Thus, it is assumed that ud(·), xd(·)
and g21λ1d(·) are AC (the latter becomes trivial in case of no force feedback).
It is known that in general λd(·) could be discontinuous even if ud(·) and xd(·)
are AC, inducing possible state jumps in (4.5). It is however not the case for

(4.5). Indeed let us consider (1.11), we obtain: QDcl
=
(

0
IR+

)
, Q⋆

Dcl
=
(

IR
IR+

)
,

and Kcl = IR2: there is no state jump in (4.5), even at times where λd(·) may be
discontinuous.

Remark 4.2.5. Let us consider the DI in (4.1). There is in principle no problem
in introducing a contact force feedback inside the signum set-valued function. Indeed
let u2 = u2(q, q̇, λt), then λt ∈ sgn(q̇ − u2(q, q̇, λt)) ⇔ q̇ − u2(q, q̇, λt) ∈ N[−1,1](λt),
where the inversion of maximal monotone set-valued mapping is used. This is a gen-
eralized equation with unknown λt, whose well-posedness can be characterized. Indeed
u2(q, q̇, λt) = k21(q − x1d) + k22(q̇ − x2d) + g21(λ1 − λ1d) + u2d, with λ1(q, q̇) = λt(q,q̇)+1

2 .
This yields when g21 > 0:

−q̇ + k21(q − x1d) + k22(q̇ − x2d) + g21(λt+1
2 − λ1d) + u2d ∈ −N[−1,1](λt)

⇕
λt(q, q̇) = proj

(
[−1, 1]; 2 q̇−k21(q−x1d)−k22(q̇−x2d)+g21λ1d−2g21−u2d

g21

) (4.10)

Therefore the force feedback regularizes the set-valued signum function, as is known in
other contexts [27, Remark 2.8] [90]. It is also possible to prove that the LCP in (4.5)
(b) has a unique solution λ(t) for any Cclx(t) + Fcl(t) and g21 > 0. In spite of the
fact that Dcl ≽ 0, the result holds due to the special structure of the LCP (especially
the second line) and rank(Dcl) = 2. Also, the result concerns only λ1, not λ2. It is
noteworthy that the multiplier λt in (4.10) depends only on known control parameters,
mass state, and desired signals. This is expected since the LCP in (4.5) does not involve
mechanical parameters. Taking g21 > 0 means that the multiplier λ1, solution to the
LCP in (4.5) (b), can be explicitly calculated. So there is no need for a contact force
measurement in this case, measurement of x is sufficient to solve the LCP in (4.5)
(b). Note that λ1 does not depend on µ nor on the normal contact force. In fact,
the numerical simulations shown in sections 4.4.3 and 4.5.3, use the calculation of
the multiplier as in (4.10), since this is the way siconos is solving complementarity
systems.
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4.2. Controlled Frictional Oscillators

Let us continue with the well-posedness of (4.6), equivalently of (4.7). Assume that
ud(·) is AC, then posing z = q̇d − u2d it follows that ż = q̈d − u̇2d where u̇2d is the
almost-everywhere derivative of u2d. This gives the DI:

ż(t) ∈ −u̇2d(t) + u1d(t)
m

− µg sgn(z(t)). (4.11)

Using for instance [13], it is deduced that the DI in (4.11) has a unique Lipschitz
continuous solution on [0, T ) for any T > 0, for any z(0) = z0 ∈ IR and any ud(·)
with u̇1d(·) and ü2d(·) bounded in the extended (or local) L2 norm. Thus, q̇d(·) is AC
(Lipschitzness implies AC), q̈d(·) is defined almost everywhere, and qd(t) = qd(0) +∫ t

0 q̇d(s)ds is continuously differentiable.
The conclusion of this section is that imposing mild conditions on ud(·) guarantees the
well-posedness of the closed-loop, the desired, and the error dynamics, with continuous
states x(·) and xd(·).

4.2.3 Equilibrium Points of the Error System
Let us assume that the closed-loop system in (4.5) is strictly state-passive (i.e., As-
sumption 2.1.4 holds ). Recall that from passivity of (Acl, Bcl, Ccl, Dcl), it follows that
g21 ≥ 0. The equilibria of the LCS (4.8) are characterized as follows:

Proposition 4.2.6. Consider the error dynamics in (4.8) or (4.9). Assume that the
quadruple (Acl, BclCcl, Dcl) is strictly state passive. Then, the unique equilibrium point
is e⋆ = (0, 0).

Proof. In order to find the equilibrium points of the error dynamics, the LCS in (4.8)
is written as follows:

0 = e⋆
2

0 = k11
m

e⋆
1 − 2µg(λ⋆

1(t) − λ1d(t))

0 ≤ λd(t) ⊥ wd(t) =
0 1

0 0

ud(t) +
0

1

+
 0 1

−1 0

λd(t) +
0 −1

0 0

xd(t) ≥ 0

0 ≤ λ⋆(t) ⊥ w⋆(t) =
k21 k22 − 1

0 0

 e⋆(t) +
g21 1

−1 0

λ⋆(t) −

g21 0
0 0

λd(t)

+
0 1

0 0

ud(t) ≥ 0

(4.12)
The problem in (4.12) is a mixed LCP with unknown e⋆

1, e⋆
2, λ⋆

1, λ⋆
2. The equilibrium

point of the error dynamics is given by e⋆
1(t) = 2mµg

k11
(λ⋆

1(t) − λ1d(t)). It is dependent
on the complementarity variables λ1d and λ⋆

1. In the above analysis, the LCP of the
desired system is solved which gives the values of λd and xd. Now, it is required to
solve the LCP of the closed-loop system (i.e., 0 ≤ λ⋆ ⊥ w⋆ ≥ 0) in order to find λ⋆

and then calculate the equilibrium point e⋆
1. Let us substitute e⋆ in terms of λ⋆ and λd,
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Chapter 4. Trajectory Tracking in Frictional Oscillators

then the LCP to be solved is:

0 ≤
(

λ⋆
1(t)

λ⋆
2(t)

)
⊥
(

w⋆
1(t)

w⋆
2(t)

)
=

(
2mµg k21

k11
+ g21 1

−1 0

)(
λ⋆

1(t)
λ⋆

2(t)

)
+
(

u2d(t) − x2d(t)
1

)

+
(

−2mµg k21
k11

− g21 0
0 0

)(
λ1d(t)
λ2d(t)

)
≥ 0

(4.13)
It is important to note that the system can be at equilibrium, while the multipliers are
time-varying. We can observe the new term 2mµg k21

k11
+ g21 that appears in the matrix

of the multiplier λ⋆(t) in (4.13). This term plays a significant role in the subsequent
analysis of the equilibrium point, so let us study the sign of this term. Let Assumption
4.2.4 holds for the closed-loop system in (4.8), then it is necessary to ensure that the
following holds:

−A⊤
clP − PAcl − ϵP ⪰ 0 (4.14)

where P = P ⊤ =
(

p11 p12
p12 p22

)
≻ 0 and ϵ > 0. Then, the matrix inequality in (4.14) is

written as:(
−2k11

m
p12 −p11 − k11

m
p22 − k12

m
p12

−p11 − k11
m

p22 − k12
m

p12 −2p12 − 2k12
m

p22

)
− ϵ

(
p11 p12
p12 p22

)
⪰ 0 (4.15)

According to the equality implied by passivity, PBcl = C⊤
cl since Dcl +D⊤

cl = 0, we have
−2p12µg = k21 and −2p22µg = k22 − 1. Let us substitute the value of p12 in (4.15),
then

−2k11

m
p12 − ϵp11 ≥ 0 ⇔ k11k21

mµg
− ϵp11 ≥ 0

Given that p11 > 0, then k11k21
mµg

must be positive. This means that k11 and k21 have
same signs. So, the term 2mµg k21

k11
and according to Assumption 4.2.4 that imposes

strict passivity on the closed-loop system is nonnegative (i.e., 2mµg k21
k11

≥ 0). Hence,
the term 2mµg k21

k11
+ g21 which is multiplied by λ⋆

1(t) is non-negative. In order to study
the well-posedness of the closed-loop system’s LCP in (4.13), let us consider different
cases as above:

case 1: λ⋆
1 ∈]0, 1[ In this case, w⋆

1 = (2mµg k21
k11

+ g21)(λ⋆
1 − λ1d) = 0. Hence, λ⋆

1 = λ1d.

The solutions are given by:
λ⋆ = (λ1d, 0)⊤

w⋆ = (0, 1 − λ1d)⊤ .

case 2: λ⋆
1 = 0 In this case, w⋆

1 = −(2mµg k21
k11

+ g21)λ1d + u2d − x2d ≥ 0 which holds
only if u2d − x2d ≥ 0. If u2d − x2d > 0, then the solution of the desired LCP in (4.12)
is: λd = (0, 0)⊤

wd = (u2d − x2d, 1)⊤

If u2d − x2d = 0, then the solution is λ1d = 0. Thus, in this case, λ⋆
1 = λ1d = 0. The

unique solution is given by:
λ⋆ = (0, 0)⊤

w⋆ = (u2d − x2d, 1)⊤ .
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4.3. Analysis of the Desired Trajectories

case 3: λ⋆
1 = 1 In this case, w⋆

1 = (2mµg k21
k11

+ g21)(1 − λ1d) + λ⋆
2 + u2d − x2d = 0 ⇒

λ⋆
2 = −(2mµg k21

k11
+ g21)(1 − λ1d) + x2d − u2d ≥ 0 which holds only if x2d − u2d ≥ 0. If

x2d − u2d > 0, then the solution of the desired system’s LCP in (4.12) is:λd = (1, x2d − u2d)⊤

wd = (0, 0)⊤

If x2d − u2d = 0, then the inequality −(2mµg k21
k11

+ g21)(1 − λ1d) ≥ 0 holds if and
only if λ1d = 0. So, λ⋆

1 = λ1d = 1. The solution is unique and it is given by:λ⋆ = (1, x2d − u2d)⊤

w⋆ = (0, 0)⊤

Therefore, in all the possible cases of λ⋆
1, it is observed that λ⋆

1 = λ1d. It is noteworthy
that in all cases, we have λ⋆ = λd and w⋆ = wd. Given that e⋆

1 = 2mµg
k11

(λ⋆
1(t) − λ1d(t))

and λ⋆(t) = λd(t), then e⋆ = (e⋆
1, e⋆

2)⊤ = (0, 0)⊤. This is in accordance with the fact
that Proposition 4.4.2 guarantees global exponential stability (hence uniqueness of the
origin of the error dynamics).

4.3 Analysis of the Desired Trajectories
This section focuses on the analysis of the desired trajectories of the LCS in (4.6) by
studying the stick/slip behaviour. Furthermore, it shows the impact of external forces
u1d(t) and u2d(t) on the behaviour of the system through numerical simulation.

4.3.1 Properties of the Desired Trajectories
The desired dynamics are given in our work in the form of a dynamical system that
produces some trajectories. In practice it is certainly interesting to understand which
desired trajectories can be designed. To that aim it is of interest to understand the
properties of the desired trajectory represented by (4.6) to be tracked. In the study of
harmonically forced dry frictional oscillators, there are results on the construction of
periodic solutions of such systems. The physical system considered in [66, 139, 64] is a
simple mass-spring dashpot system with dry friction which is different from the system
considered in Figure 4.1a. When addressing the non-sticking behaviour, the solution
relies on solving a second-order differential equation which represents the equation of
motion.
Denhartog [66] provided an exact symmetric and periodic solution for non-sticking
motion with µ = 1. His approach starts by assuming that the external force exerted
has the form of Fext = Pcos(ωt+ϕ) and that the solution is symmetric (i.e., the period
T is divided into two equal half cycles each of length π/ω). The boundary conditions
of the steady-state solution were established as follows:t = 0, x(0) = x0, ẋ(0) = 0

t = π
ω

, x( π
ω

) = −x0, ẋ( π
ω

) = 0
(4.16)
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Chapter 4. Trajectory Tracking in Frictional Oscillators

Shaw [139] extended this work to the case where µ ̸= 1. He followed the same boundary
conditions in (4.16) for non-sticking motion, then analyzed the stability of the periodic
motion. By following the same approach as before (i.e., two turnarounds per cycle and
boundary conditions in (4.16)), the authors in [64] prove mathematically that the 2π

ω
-

periodic solutions, where ω is the excitation frequency, are symmetric. This property
was previously assumed but not proven yet.

Following up from the system studied in [139, 66, 64] where there is no moving belt
(i.e., u2d = 0), let us analyse, in the following, the stick/slip behaviour of these tra-
jectories based on the desired input u1d(t), which represents the external force applied
on the mass m and u2d(t) = 0. According to the complementarity problem in (4.6),
the multiplier λ1d ∈ [0, 1]. Let us determine the value of u1d for each behavior by
considering the following analysis of the desired system in (4.6):

• If λ1d ∈]0, 1[⇒ x2d = 0 ⇒ ẋ2d = 0 ⇒ u1d ∈] − mµg, mµg[. The system is in
sticking mode as shown in Figure 4.2a.

• If λ1d = 0 ⇒ x2d ≤ 0. When u1d = −mµg, then x2d = 0 and the system is in
sticking mode as shown in Figure 4.2b. But, when u1d(t) < −mµg ∀t, then the
solution x2d < 0 (i.e., sliding mode) and it diverges.

• If λ1d = 1 ⇒ x2d = λ2d ≥ 0. When u1d = mµg, then x2d = 0 and the system
behaves in sticking mode. When u1d is chosen such that u1d(t) > mµg ∀t, then
the solution x2d > 0, it behaves in sliding mode and it is unbounded.

It is noteworthy that, in the cases when λ1d = 1 or λ1d = 0 (i.e., u1d = mµg or
u1d = −mµg respectively), and the initial velocity of the mass x2d(0) is chosen
such that it is in the direction of the external force u1d (i.e., u1d < 0 and x2d(0) <
0). Then the trajectory x1d diverges and it is sliding mode at a constant velocity
as illustrated in Figure 4.2c.

If u1d(t) is chosen as a periodic, time-varying, and bounded signal in the form of
u1d = Acos(wt) where |A| > mµg, then the system will behave in both sticking
and sliding modes as shown in Figure 4.2d or non-sticking mode depending on
the amplitude A.

The following numerical simulation is carried out at m = 1kg, µ = 0.5, and
h = 0.01 using siconos.

98



4.3. Analysis of the Desired Trajectories

drawin2

ayay67547

June 2023

1.0

1.5

x1d(t)

0

2 x2d(t)

0

1

w1d(t)

λ1d(t)

0 1 2 3 4 5
0

2

t[s]

w2d(t)

λ2d(t)

Figure 1

1

(a) u1d = −0.5mµg sin 3t and x2d(0) = 2
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(b) u1d = −mµg and x2d(0) = 2
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(c) u1d = −mµg and x2d(0) = −2
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(d) u1d = 2mµg sin 3t and x2d(0) = 0

Figure 4.2: Numerical simulation of (4.6) with u2d = 0 for different values of u1d(t)

In the above numerical simulation, a periodic solution with a periodic external input
u1d(t) is depicted in Figure 4.2d. It represents a periodic and bounded solution x(t)
and it has the same period T as the input u1d(t). The existence of periodic solution
confirms the results presented in [66, 100, 64].
However, note that not every bounded periodic input leads to a bounded periodic
solution. In order to achieve both periodicity and boundedness, it is important to
follow the general conditions in (4.16). Let us consider the case when u2d ̸= 0 which is
studied in [100, 97, 96, 7] when u2d is constant and [109] when u2d(t) is time-varying.
The stick-slip mechanical system considered in [100, 97, 96] is a simple mass-spring
system on a moving belt with constant speed. But, our system presented in Figure
4.1a differs because it includes an external force u1d(t) acting on the mass and allows
for time-varying belt speed u2d(t). In [100], the authors introduce the shooting method
as a periodic solution finder to address the computational challenges of solving stiff
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differential equations. To tackle this issue, the authors present the switch model as
an alternate friction model to simulate stick-slip vibrations by solving a set of non-
stiff differential equations. Furthermore, a time-dependent friction model is studied.
The authors in [96] study bifurcations of periodic solutions in mechanical systems with
dry friction and discuss the existence of infinitely unstable periodic solutions through
repulsion sliding mode in stick/slip mechanical systems.

The paper [83] proposes two numerical methods for the computation of periodic solu-
tion in maximal monotone dynamical systems, including linear complementarity sys-
tems and systems with dry friction. It provides formal justifications to ensure the
consistency of the proposed numerical schemes. The results of [83] could be applied
to our frictional oscillator system, which is represented as an LCS in (4.6) and, equiv-
alently, as a differential inclusion with maximal monotonicity properties in (4.7). A
recent paper [95] introduces a new method for computing periodic solutions of systems
with frictional occurrences. The approach formulates all equations, including friction,
as equalities and allows for an exact Coulomb’s friction law without regularizing the
friction force. This equality-based approach is implemented through a highly compact
weighted residual formulation and it represents accurately multiple sticking and sliding
phases that converges to the solution in few iterations. Given that the Coulomb fric-
tion in our system is represented within the the complementarity framework in (4.3)
and without any approximation of the friction force, the method developed in [95] is
applicable to design periodic desired trajectories.

4.3.2 Numerical Simulation of the Desired Trajectories

In this section, a numerical simulation of the desired trajectory represented by the LCS
in (4.6) is performed. This simulation involves implementing a suitable desired input
ud and observe the resulting desired trajectory. The simulation is done with the INRIA
software package siconos1[3].

The following Figures 4.3-4.6 show the numerical simulations of the desired system in
(4.6) with different values of u1d(t) and u2d(t) leading to different interesting results.
For some Figures, the phase portrait of the desired system in (4.6) is presented as a
3-dimensional plot, depicting the two states x1d and x2d and the time axis t as the
system is non-autonomous.

In order to design a periodic desired trajectory xd, the frictional oscillator is excited by
periodic desired input ud = (u1d, u2d)⊤ where u1d and u2d have the same period T but
different amplitudes, as shown in Figure 4.3. Take xd(0) = (1, 0)⊤ and the time step
h = 0.01s.

1https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/index.html
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Figure 1: Numerical simulation of (??) with u1d = 0.8mµg cos 2t, u2d =
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1

Figure 4.3: Numerical simulation of (4.6) with u1d = 0.8mµg cos 2t, u2d = 0.5mµg cos 2t

The simulation depicted in Figure 4.3 shows a periodic desired trajectory with
period T = 2π

2 s which is the same period as that of the desired input ud. Also, it can
be observed that the frictional oscillator exhibits both sticking and slipping behaviours,
as depicted in the plot of the relative velocity Vrel = x2d − u2d.

Let us consider the desired inputs u1d and u2d with different periods.

drawin2

ayay67547

June 2023

0

2
x1d(t)

0

4
u1d u2d

0

3 x2d(t)

0

2

λ1d(t) w1d(t)

0 2 4 6 8 10 12 14

−2

0

t[s]

Vrel

0 2 4 6 8 10 12 14
0

2

t[s]

λ2d(t) w2d(t)

Figure 1: Numerical simulation of (??) with u1d = 0.8mµg cos 2t, u2d =
0.5mµg cos 2t

1

Figure 4.4: Numerical simulation of (4.6) with u1d = 0.5mµg cos 2t, u2d = 0.5mµg cos 3t

In Figure 4.4, the external inputs are chosen to be periodic with the same amplitude
but with different periods Tu1d

= 2π
2 s and Tu2d

= 2π
3 s. It is noticeable that the desired

trajectories doesn’t exhibit a periodic behaviour. This can be further illustrated by the
phase portrait given by Figure 4.5:
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Figure 4.5: Phase portrait of simulated system in Figure 4.4

The novelty of the simulation in Figure 4.6 is the selection of the desired inputs, which
impacts the solution of the desired system (4.6). The inputs u1d and u2d are periodic
with non-rational periods Tu1d

= 2π√
2 and Tu2d

= 2π√
5 while having the same amplitude.
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Figure 4.6: Numerical simulation of (4.6) with u1d = 0.5mµg cos
√

2, u2d = 0.5mµg cos
√

5

The desired trajectories depicted in Figure 4.6 are not periodic. It is interesting
to observe from the plot of Vrel = x2d − u2d in Figure 4.6 that the mass has a larger
sticking period which shows a different stick/slip behaviour from the previous Figures.
Consider the phase portrait of this system in Figure 4.7.
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Figure 4.7: Phase portrait ofnthe system simulated in Figure 4.6

The behaviour of the system shown in the phase portrait in Figure 4.7 is obviously
not periodic. However, it is out of the scope of this thesis to determine whether this
system is chaotic.
The purpose of this section is to highlight the possibility to generate various desired
trajectories to be tracked later, particularly periodic ones. As it is possible to track any
desired trajectory generated by the LCS in (4.6), even in the cases where the behavior
depicted appears unusual as in Figure 4.6.

Comments on passivity: By considering incremental passivity, let us recall the
dynamics of the desired system in (4.7) as follows:mẍ1d(t) = −mgµλt + u1d(t)

λt ∈ sgn(ẋ1d(t) − u2d(t))
(4.17)

u1d

mass
(x1d, ẋ1d)

sgn(ẋ1d − u2d)

+
−

λt

ẋ1d

Figure 4.8: Feedback interconnection of an incrementally passive system and a maximal monotone
mapping.

This approach is valid when u2d is constant, in order to keep the property of maxi-
mal monotonicity of the signum multifunction (for otherwise it would be monotone for
each t ≥ 0 only). The system as represented in Figure 4.8 is an interconnection of the
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plant (i.e., integrator), which is passive between the input v1
∆= −µgλt + u1d and the

output ẋ1d. The storage function corresponding to the output is given by V = 1
2mẋ2

1d.
Then, the feedback nonlinearity is maximal monotone if we are considering λt and the
relative velocity ẋ1d −u2d, ensuring the incremental passivity of the system (4.17) [128]
(the fact that the graph of the mapping in the feedback does not contain in general
the point (0, 0) because of constant but nonzero u2d, prevents the interconnection to
be passive). The papers [142] and [8, Proposition 4.4] present a result about the ex-
istence of T -periodic solution for incrementally stable system forced with T -periodic
input. However, it is important to note that this result is established in the context of
smooth systems, and extending this result to a non-smooth system requires technical
work and is out of the scope of this study. In [81], the authors focus on the numeri-
cal computation of periodic solutions for a class of set-valued dynamical systems with
maximal monotonicity properties when subjected to periodic excitation. They intro-
duce two numerical time-stepping methods: the Asymptotic Simulation (AS) and the
Two-Point Boundary Value (2PBV) as it highlights their theoretical guarantee such as
convergence properties.

4.4 Trajectory Tracking of Frictional Oscillator in
Nominal Case

In this section, the trajectory tracking of the frictional oscillator is solved without un-
certainties. The stability analysis of the error dynamics is shown using two approaches:
one using LCS formulation and the other one based on the maximal monotonicity of
the signum function.

4.4.1 Passivity-based Control Framework

In the subsequent analysis, consider that g21 = 0. Then, the closed-loop plant is the
DI:

q̈(t) ∈ 1
m

(k11(q(t) − x1d(t)) + k12(q̇(t) − x2d(t)) + u1d(t))

−µg sgn (q̇(t) − k21(q(t) − x1d(t)) − k22(q̇(t) − x2d(t)) − u2d(t)) .
(4.18)

Remark 4.4.1. It is noteworthy that due to the matrix F structure, it is impossible to
get strong passivity of the closed-loop system quadruple (Acl, Bcl, Ccl, Dcl), because even
a feedback with nonzero G in (4.3) cannot make Dcl full rank in (4.5) (b).
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Using (4.7) and (4.18) , the error dynamics are equal to:
¨̃q(t) ∈ µg sgn(q̇d(t) − u2d(t)) + 1

m
(k11(q(t) − x1d(t)) + k12(q̇(t) − x2d(t)) + u1d(t))

−µg sgn (q̇(t) − k21(q(t) − x1d(t)) − k22(q̇(t) − x2d(t)) − u2d(t)) − 1
m

u1d(t)

= 1
m

(
k11q̃(t) + k12 ˙̃q(t)

)
+ µg[sgn(q̇d(t) − u2d(t))

−sgn
(

˙̃q(t) − k21q̃(t) − k22 ˙̃q(t) + q̇d(t) − u2d(t)
)
]

= 1
m

(
k11q̃(t) + k12 ˙̃q(t)

)
+ µg[λt,d(t) − λt(t)].

(4.19)
which is equivalent, when g21 = 0, to its complementarity system counterpart (4.8) and
(4.9), with e = (q̃, ˙̃q)⊤. Finally, recalling that λ1 = λt+1

2 , we can rewrite equivalently
(4.19) as:

ė(t) ∈ Acle(t) +
(

0
µg

)
sgn(q̇d(t) − u2d(t)) −

(
0

µg

)
sgn(−(Ccl)1,•e(t) + q̇d(t) − u2d(t))

= Acle(t) − Bcl

(
λ1d(t) − λ1(t)
λ2d(t) − λ2(t)

)
(4.20)

where λ1d(t) ∈ sgn(q̇d(t) − u2d(t)), λ1(t) ∈ sgn(−(Ccl)1,•e(t) + q̇d(t) − u2d(t)). Notice
that since Dcl = −D⊤

cl (when g21 = 0), it follows that the strict state passivity of
(Acl, Bcl, Ccl, Dcl) is equivalent to the strict state passivity of (Acl, Bcl, Ccl, 0).

4.4.2 Closed-loop Error Stability Analysis
The stability analysis from section 2.1.2 based on the LCS formulations is repeated in
this section. Furthermore, an alternative analysis method is presented (see Remark
4.4.3). Assume that all the trajectories are AC.

Proposition 4.4.2. Consider the error dynamics (4.20) with bounded initial condi-
tions, and assume that (Acl, Bcl, Ccl, Dcl) is strictly state passive with constant ϵ > 0.
Then e(·) converges globally exponentially fast to zero. Then, (λ1 − λ1d)(·) converges
globally exponentially fast to zero.

Proof. Starting from (4.3) and (4.6) the following is obtained:
w(t) = Cclx(t) + Dclλ(t) + Cxd(t) + Fud(t) +

(
0
1

)
− Cclxd(t)

wd(t) = Cclxd(t) + Dclλd(t) + Cxd(t) + Fud(t) +
(

0
1

)
− Cclxd(t).

Therefore, it is inferred that:
λ(t) ∈ NS(t)(Cclx(t) + Dclλ(t))

λd(t) ∈ NS(t)(Cclxd(t) + Dclλd(t)),
(4.21)
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with S(t) ∆= {ξ ∈ IRm | ξ + Cxd(t) + Fud(t) +
(

0
1

)
− Cclxd(t) ≥ 0}. Therefore:

(w(t) − wd(t))⊤(λ(t) − λd(t)) ≤ 0

follows from the monotonicity of the normal cone and the fact that w(t) − wd(t) =
Ccle(t) + Dcl(λ(t) − λd(t)). Let V (e) = e⊤Pe, with P = P ⊤ ≻ 0 the solution of the
closed-loop passivity matrix inequality. Then, along the closed-loop error dynamics
trajectories (using for instance (4.20)):

V̇ (e(t)) = e⊤(A⊤
clP + PAcl)e(t) + 2e(t)⊤PBcl(λ(t) − λd(t))

= e⊤(A⊤
clP + PAcl)e(t) + 2e(t)⊤Ccl(λ(t) − λd(t))

= e⊤(A⊤
clP + PAcl)e(t) + 2(w(t) − wd(t) − Dcl(λ(t) − λd(t))⊤(λ(t) − λd(t))

= e⊤(A⊤
clP + PAcl)e(t) + 2(w(t) − wd(t))⊤(λ(t) − λd(t))

≤ e⊤(A⊤
clP + PAcl)e(t) ≤ −ϵ e(t)⊤Pe(t)

Hence, e⋆ = 0 is globally exponentially stable.
The last assertion (λ1 − λ1d) → 0 exponentially follows from the fact that ||e(t)|| ≤
α exp(−ϵt) for some α > 0, hence ė(·) converges exponentially fast to zero, and from
using (4.20). We see that Propositions 4.2.6 and 4.4.2 are coherent in the sense that
global exponential stability implies the uniqueness of the equilibrium point (here the
origin in the error dynamics state space). It is significant to note that the strict state
passivity of the closed-loop quadruple (Acl, Bcl, Ccl, Dcl) can consistently be achieved.

This is due to the fact that it is always possible to find P = P ⊤ =
(

p11 p12
p12 p22

)
≻ 0 such

that PBcl = C⊤
cl (i.e., p22 = −k22−1

2µg
> 0 and p12 = − k21

2µg
) with K =

(
k11 k12
k21 k22

)
.

Remark 4.4.3. The stability analysis of Proposition 4.4.2 is established through the
maximal monotonicity of the signum function without relying on the LCS interpretation
(i.e., the normal cone approach as in (4.21)). This is done for the sake of coherency
with respect to the first part of this thesis. However, another, more direct approach,
can be used in the case of interest in this part, using the monotonicity of the signum
set-valued function without resorting to any LCS interpretation. This will be useful
later when we deal with Stribeck effects. Let us consider again the closed-loop error
dynamics in (4.20) as:

ė(t) ∈ Acle(t) +
(

0
µg

)
sgn(q̇d(t) − u2d(t)) −

(
0

µg

)
sgn(q̇(t) − u2(t))

By taking V (e) = e⊤Pe, with P = P ⊤ ≻ 0 as before, then:

V̇ (e(t)) = e⊤(A⊤
clP + PAcl)e + 2e⊤P

(
0

µg

)
[sgn(q̇d(t) − u2d(t)) − sgn(q̇(t) − u2(t))]
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Take P =
(

p11 p12
p12 p22

)
, then: P

(
0

µg

)
=
(

p12µg
p22µg

)
and PBcl =

(
−2p12µg 0
−2p22µg 0

)
. Hence,

P

(
0

µg

)
= −1

2(PBcl)•,1 = −1
2(C⊤

cl )•,1. From the fact that (Ccl)1,•e(t) = u2(t) − q̇(t) −

u2d(t) + q̇d(t) (see (4.5)), and that the mapping x 7→ sgn(x) is maximal monotone, the
rate of change of the storage function is calculated as:

V̇ (e(t)) = e⊤(A⊤
clP + PAcl)e − e⊤(PBcl)•,1 [sgn(q̇d(t) − u2d(t)) − sgn(q̇(t) − u2(t))]

= e⊤(A⊤
clP + PAcl)e − e⊤(C⊤

cl )•,1 [sgn(q̇d(t) − u2d(t)) − sgn(q̇(t) − u2(t))]

= [q̇(t) − u2(t) − q̇d(t) + u2d(t)]⊤ [sgn(q̇d(t) − u2d(t)) − sgn(q̇(t) − u2(t))]

+e⊤(A⊤
clP + PAcl)e

= − [q̇(t) − u2(t) − (q̇d(t) − u2d(t))]⊤ [sgn(q̇(t) − u2(t)) − sgn(q̇d(t) − u2d(t))]

+e⊤(A⊤
clP + PAcl)e

≤ e⊤(A⊤
clP + PAcl)e ≤ −ϵ e(t)⊤Pe(t)

(4.22)
Thus, e(·) converges globally exponentially to zero.

Remark 4.4.4. Proposition 4.4.2 shows that a linear feedback u1(q, q̇, t) is sufficient to
guarantee exponential stability. Another approach is to design a sliding-mode controller
to compensate for the friction force as if it was a disturbance. This is however a quite
different approach which does not use u2 as an input. The goal here is to investigate
how the combination of u1 and u2 allows to achieve tracking.

4.4.3 Numerical Simulation
Take m = 1 kg, g = 9.8m/s2, and µ = 0.5. Let us check if there exist matrices K, G and
P such that the closed-loop system’s quadruple (Acl = A + EK, Bcl = B + EG, Ccl =
C + FK, Dcl = D + FG) is strictly state passive. This means that the BMI in (2.6)
has a solution which is given by the following:

K =
(

−1.49 −1.18
−5.463 −12.09

)
, G =

(
0 0

0.5 0

)
and P =

(
1.3367 0.56
0.56 1.3361

)
≻ 0

with ϵ = 0.01. Let us take G = 0 and check if there exist K and P such that the
closed-loop system’s quadruple (Acl = A + EK, Bcl = B, Ccl = C + FK, Dcl = D) is
strictly state passive which means that the BMI in (2.6) has a solution given by:

K =
(

−1.49 −1.17
−5.46 −12.1

)
and P =

(
1.34 0.557
0.557 1.34

)

with ϵ = 0.01. Notice that when G = 0 the passivity LMI implies that PBcl = C⊤
cl

since D + D⊤ = 0, which yields −2p12µg = k21 and −2p22µg = k22 − 1 < 0.
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Chapter 4. Trajectory Tracking in Frictional Oscillators

The plots in Figures 4.9 and 4.10 show the numerical simulation of the desired system
in (4.6), the closed-loop system in (4.5), and the error dynamics in (4.9) with external
input u = (u1, u2)⊤ = K(x − xd) + ud. The desired system which is subject to tracking
is analyzed in section 4.3. Take x(0) = (0, −1)⊤, xd(0) = (1, 0)⊤ and the time step
h = 0.01.
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Figure 1: Numerical simulation of the desired, closed-loop and error systems of
the LCS in (??) with u1d = u2d = 0.5mµg cos 2t and G = 0

1

Figure 4.9: Numerical simulation of the desired, closed-loop and error systems of the LCS in (4.3)
showing the controller u(t) with u1d = u2d = 0.5mµg cos 2t and G = 0. The simulation also presents
the complementarity variables λ and w.
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Figure 4.10: Numerical simulation of the desired, closed-loop and error systems of the LCS in (4.3)
with u1d = 0.5mµg cos

√
2t, u2d = 0.5mµg cos

√
5t and G ̸= 0. The simulation also presents the

complementarity variables λ and w.

The numerical simulation depicted in Figure 4.9 shows that tracking of the desired
trajectory xd is achieved without the requirement of an additional feedback from λ
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(i.e., G = 0) which confirms the theoretical result in Proposition 4.4.2. An additional
feedback from λ results in faster convergence for the system simulated in Figure 4.10
with different external desired inputs. Furthermore, it is interesting to observe that
the complementarity variables of the closed-loop system (λ and w) converge to the
complementarity variables of the desired system (λd and wd) in both Figures 4.9 and
4.10. The plots of the controller u in the two figures exhibit a periodic behaviour in
the steady state response (i.e., e = x − xd = 0), where u converges to the periodic
desired input ud.

4.5 Parametric Robustness Analysis

This section is dedicated to analyse the robustness of the above scheme (which is de-
signed assuming the strict state passivity of the closed-loop system, not its strong
passivity) when uncertainties ∆µ are present in the friction coefficient, which is sup-
posed to be known only with a nominal value µ0 > 0. Then, it is crucial that a kind
of contact force feedback is made (using the multiplier λ1 and the gain g21), for other-
wise the robustness is lost. Propositions 2.4.4, 2.4.7 and Lemma 2.4.6 are used in this
setting.

4.5.1 Robustness Analysis with Bounded and Time-varying
Uncertainties ∆µ(q̇rel)

Let us recall that with q̇rel = q̇ − u2. Here, we consider that the nominal friction
coefficient µ0 (used in the desired dynamics and the nominal model of the plant) and
the "real" plant’s friction coefficient µ, are not the same. It could even be that µ0 is
chosen constant while µ = µ(t, q̇), then ∆µ(q̇rel) = µ(q̇rel) − µ0. It is noteworthy from
(4.3) that uncertainties satisfy:

∆A = 0, ∆C = 0, ∆D = 0, ∆E = 0, ∆F = 0, ∆B =
(

0 0
−2g∆µ 0

)
, ∆E ′ =

(
0

g∆µ

)
.

According to Remark 4.4.1, the closed-loop system in (4.5) cannot be made strongly
passive. Thus, it is not possible to apply directly the results from section 2.4.2. Instead,
let us try to relax the conditions of strong passivity by referring to the material in
section 2.4.3. Recall the dynamics of the desired system in (4.6) as:


ẋd(t) =
0 1

0 0


︸ ︷︷ ︸

A0

xd(t) +
 0 0

−2µ0g 0


︸ ︷︷ ︸

B0

λd(t) +
 0 0

1
m

0


︸ ︷︷ ︸

E0

ud(t) +
 0

µ0g


︸ ︷︷ ︸

E′
0

0 ≤ λd(t) ⊥ wd(t) =
0 −1

0 0


︸ ︷︷ ︸

C0

xd(t) +
 0 1

−1 0


︸ ︷︷ ︸

D0

λd(t) +
0 1

0 0


︸ ︷︷ ︸

F0

ud(t) +
0

1


︸ ︷︷ ︸

F ′
0

≥ 0
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The dynamics of the closed-loop system in (4.5) with parametric uncertainties is written
as:

ẋ(t) = (A0 + E0K0)x(t) + (B0 + ∆B)λ(t) − E0K0xd(t) + E0ud(t) + E ′
0 + ∆E ′

0 ≤ λ(t) ⊥ w(t) = (C0 + F0K0)x(t) + (D0 + F0G0)λ(t) − F0K0xd(t) − F0G0λd(t)
+F0ud(t) + F ′

0 ≥ 0
(4.23)

The closed-loop error dynamics e = x − xd is:
ė(t) = Acle(t) + Bcl∆λ(t) + ∆Bλ(t) + ∆E ′

∆w(t) = Ccle(t) + Dcl∆λ(t)
0 ≤ λ(t) ⊥ w(t) ≥ 0 and 0 ≤ λd(t) ⊥ wd(t) ≥ 0

(4.24)

where ∆λ(t) = λ(t) − λd(t) and Acl = A0 + E0K0, Bcl = B0, Ccl = C0 + F0K0 and
Dcl = D0 + F0G0. The stability result is stated as follows.

Proposition 4.5.1. Consider the error dynamics in (4.24). Assume that:

• The closed-loop system’s quadruple (Acl, Bcl, Ccl, Dcl) in (4.23) is strictly state
passive with P0 = P ⊤

0 ≻ 0.

• The uncertainties are bounded such that ∆B⊤Λ̂B∆B ≼

(
1 0
0 0

)
and ∆E⊤Λ̂1∆E ≼

Im hold for any Λ̂k = Λ̂⊤
k ≻ 0 where k = {1, B}.

• The matrix inequality −M0 + ∆M0 −
(

P0Λ̂1P0 0
0 0

)
≽

(
ϵ′P0 0

0 0

)
holds for some

0 < ϵ′ < ϵ.

Then, the solution of the error dynamics in (4.24) is globally uniformly ultimately
bounded (GUUB) and the bound is given by (4.33).

For the sake of notation simplicity, the matrices M0 and ∆M0 are not explicitly stated
in the theorem. These matrices are defined in the following proof.

Proof. The proof is divided into two main parts. In the first part, a suitable storage
is derived for the error dynamics in (4.24) to serve as a Lyapunov function. Then,
the second part presents explicitly the conditions to prove that the Lyapunov function
decreases over time.

Construction of Lyapunov function. The storage function V (t) = e⊤P0e where
P0 is the solution of the strict passivity BMI transformed into LMI (see Appendix A.1)

given by: M0 ≼

(
−ϵP0 0

0 0

)
where M0 is defined as:

M0
∆=
(

A⊤
clP0 + P0Acl P0Bcl − C⊤

cl

B⊤
cl P0 − Ccl −Dcl − D⊤

cl

)
(4.25)
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Let us define p(t, λ) ∆= ∆Bλ(t) + ∆E ′. The rate of change of the storage function is:

V̇ = e⊤(A⊤
clP0 + P0Acl)e + 2e⊤P0Bcl∆λ + 2e⊤P0p(t, λ) ± 2∆λ⊤∆w

The added and subtracted term is to recover the matrix M0 in (4.25). In matrix form,
it is represented as:

2∆λ⊤∆w =
(

e
∆λ

)⊤ ( 0 C⊤
cl

Ccl Dcl + D⊤
cl

)(
e

∆λ

)

Then,

V̇ =
(

e
∆λ

)⊤

M0

(
e

∆λ

)
+ 2e⊤P0p(t, λ) + 2∆λ⊤∆w (4.26)

Let us substitute the expression of p(t, λ) in (4.26), then:

V̇ =
(

e
∆λ

)⊤

M0

(
e

∆λ

)
+
(

e
∆λ

)⊤ ( 0 P0∆B
∆B⊤P0 0

)(
e

∆λ

)
+ 2e⊤P0∆E ′ + 2∆λ⊤∆w

By considering incremental passivity with respect to ∆λ = λ − λd and ∆w = w − wd,
the following inequality is obtained:

V̇ ≤ −
(

e
∆λ

)⊤

(−M0 + ∆M0)
(

e
∆λ

)
+ 2e⊤P0∆E ′

with ∆M0
∆=
(

0 −P0∆B
−∆B⊤P0 0

)
. Let us introduce Λ̂1 such that for any Λ̂⊤

1 = Λ̂1 ≻

0, the following condition holds:

|2e⊤P0∆E ′| ≤ e⊤P0Λ̂1P0e + ∆E ′⊤Λ̂−1
1 ∆E ′

Thus,

V̇ ≤ −
(

e
∆λ

)⊤ (
−M0 + ∆M0 −

(
P0Λ̂1P0 0

0 0

))(
e

∆λ

)
+ ∆E ′⊤Λ̂−1

1 ∆E ′ (4.27)

The expression
(

e
∆λ

)⊤

∆M0

(
e

∆λ

)
is equivalently written as: −2e⊤P0∆B∆λ. Assume

that ∆B⊤Λ̂−1
B ∆B ≼ Im for Λ̂⊤

B = Λ̂B ≻ 0, then:

2∆λ⊤∆B⊤P0e ≥ −e⊤P0Λ̂BP0e − ∆λ⊤∆B⊤Λ̂−1
B ∆B∆λ

Let z
∆=
(

e
∆λ

)
, thus:

z⊤
[
−M0 + ∆M0 −

(
P0Λ̂1P0 0

0 0

)]
z ≥ z⊤

(
−(M0)11 − P0(Λ̂1 + Λ̂B)P0 −(M0)12

−(M0)21 −(M0)22 − Im

)
z

(4.28)
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It is impossible to prove that the matrix inequality −M0+∆M0−
(

P0Λ̂1P0 − ϵ′P0 0
0 0

)
≽

0 holds because, according to the conditions for positive semi-definiteness in Lemma

A.3.1, the bottom-right diagonal term: −(M0)22−Im = Dcl+D⊤
cl−Im =

(
2g21 − 1 0

0 −1

)
is not positive semidefinite.
This result motivates us to change the assumption ∆B⊤Λ̂−1

B ∆B ≼ Im which is similar
to the assumptions in (2.59) stated in Proposition 2.4.3. Now, let us take Λ̂B =(

d e
e f

)
≻ 0 for some d, e, f ∈ IR. Assume that:

∆B⊤Λ̂−1
B ∆B = 1

df − e2

(
4g2∆µ2d 0

0 0

)
≼

(
1 0
0 0

)
(4.29)

According to the new assumption in (4.29), the inequality in (4.28) is written as:

z⊤
[
−M0 + ∆M0 −

(
P0Λ̂1P0 0

0 0

)]
z ≥ z⊤

(
−(M0)11 − P0(Λ̂1 + Λ̂B)P0 −(M0)12

−(M0)21 −(M0)22 − Î

)
z

where Î
∆=
(

1 0
0 0

)
. Let us define

L̂
∆= −M0 + ∆M0 −

(
P0Λ̂1P0 0

0 0

)
−
(

ϵ′P0 0
0 0

)

∆=
(

−A⊤
clP0 − P0Acl − P0(Λ̂1 + Λ̂B)P0 − ϵ′P0 −P0Bcl + C⊤

cl

−B⊤
cl P0 + Ccl Dcl + D⊤

cl − Î

)
≽ 0

(4.30)

For stability analysis, it is required to prove that V̇ ≤ 0 holds in a certain domain to
be defined. This means that it is necessary to show that the matrix inequality L̂ ≽ 0
holds for ϵ′ > 0, as detailed below.

Conditions for L̂ ≽ 0 in (4.30) to hold true. The goal is to prove that the matrix
inequality L̂ ≽ 0 holds. The conditions presented below are derived from proving
positive semi-definite matrix under the property of relaxing strong passivity into strict
state passivity which is explained in section 2.4.3.
Take Q̂

∆= −A⊤
clP0 − P0Acl − ϵ′P0︸ ︷︷ ︸

Q̂0

+ (−P0(Λ̂1 + Λ̂B)P0)︸ ︷︷ ︸
∆Q̂

, Ŝ
∆= −P0Bcl + C⊤

cl︸ ︷︷ ︸
Ŝ0

and

R̂
∆= Dcl + D⊤

cl︸ ︷︷ ︸
R̂0

+ (−Î)︸ ︷︷ ︸
∆R̂

where P0 =
(

p11 p12
p12 p22

)
such that P0 = P ⊤

0 ≻ 0, which is the

solution of M0 ≼

(
−ϵP0 0

0 0

)
with M0 defined in (4.25).

Consider that Λ̂1 =
(

a b
b c

)
≻ 0 for some a, b, c ∈ IR. The matrices Acl, Bcl, Ccl and Dcl

are defined in (4.5). Let us explicitly write the matrices Q̂ = Q̂0 + ∆Q̂, R̂ = R̂0 + ∆R̂
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and Ŝ = Ŝ0:

Q̂0 =
(

−2p12
k11
m − ϵ′p11 −p11 − k12

m p12 − k11
m p22 − ϵ′p12

−p11 − k12
m p12 − k11

m p22 − ϵ′p12 −2p12 − 2k12
m p22 − ϵ′p22

)
,

−∆Q̂ =(
p2

11(a + d) + p2
12(c + f) + 2p11p12(b + e) (p2

12 + p11p22)(b + e) + p11p12(a + d) + p12p22(c + f)
(p2

12 + p11p22)(b + e) + p11p12(a + d) + p12p22(c + f) p2
12(a + d) + p2

22(c + f) + 2p12p22(b + e)

)

Ŝ = Ŝ0 =
(

2p12µg + k21 0
2p22µg − 1 + k22 0

)
, R̂0 =

(
2g21 0

0 0

)
, and ∆R̂ =

(
−1 0
0 0

)

By considering the conditions for positive semi-definiteness in Appendix A.3, and fol-

lowing Lemma A.3.1, the matrix L̂
∆=
(

Q̂0 + ∆Q̂ Ŝ0

Ŝ⊤
0 R̂0 + ∆R̂

)
≽ 0 if and only if:

1. R̂ ≽ 0 ⇔
(

2g21 − 1 0
0 0

)
≽ 0 which is satisfied for all g21 such that g21 ≥ 1

2 .

2. Im(Ŝ⊤) ⊆ Im(R̂) and this condition holds as a consequence of the following:
Im(Ŝ⊤

0 ) = Im(Ŝ⊤)

=
{

w ∈ IR2 | w =
(

(2µgp12 + k12)x + (2µgp22 − 1 + k22)y
0

)
for some x, y ∈ IR

}

⊆ Im(R̂) =
{

w ∈ IR2 | w =
(

(2g21 − 1)t
0

)
for some t ∈ IR

}

3. Q̂ ⪰ ŜR̂†Ŝ⊤. Let us follow the conditions presented in Proposition 2.4.7 in order
to check the validity of this item (i.e., Q ⪰ SR†S⊤), then:
(i) R̂ ≽ 0 for g21 ≥ 1

2 ,

(ii) Im(∆R) =
{

w ∈ IR2 | w =
(

−y
0

)
for some y ∈ IR

}

⊆ Im(R0) =
{

w ∈ IR2 | w =
(

2g21x
0

)
for some x ∈ IR

}
,

(iii) rank(R0) = 1, σmax(∆R) = 1 < σ1(R0) = 2g21 which holds for g21 > 1
2 ,

(iv) σmax(OT ) + σmax(∆Q̂) < ϵλmax(P0) where OT is defined in (2.66) and in
this case, where ∆Ŝ = 0, it is written as:

OT = −Ŝ0R̂
†
0∆R̂R̂†

0Ŝ
⊤
0

with R̂† =
( 1

2g21
0

0 0

)
. After performing calculations, the matrix OT is explicitly

written as:

OT = 1
4g2

21

(
(2p12µg + k21)2 (2p12µg + k21)(2p22µg − 1 + k22)

(2p22µg − 1 + k22)(2p12µg + k21) (2p22µg − 1 + k22)2

)

= 1
4g2

21
Ŝ0Ŝ⊤

0
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Chapter 4. Trajectory Tracking in Frictional Oscillators

The passivity matrix inequality implies that P0Bcl = C⊤
cl since Dcl + D⊤

cl = 0.
So, 2p12µg + k21 = 0 and 2p22µg − 1 + k22 = 0. This means that OT = 0 in this
case and σmax(OT ) = 0. Given that P0 = P ⊤

0 ≻ 0, then λmax(P0) > 0. Note that
the matrices ∆Q̂ and −(Λ̂1 + Λ̂B) are congruent, so they have the same number
and signs of eigenvalues [86, Theroem 4.5.8]. This means that λi(∆Q̂) < 0
for i ∈ {1, 2}. Assume that Λ̂1 = αI2 and Λ̂B = βI2, α > 0, β > 0, then
∆Q̂ = −(α + β)P 2

0 which is symmetric (i.e., ∆Q̂ = ∆Q̂⊤). As P0 = P ⊤
0 ≻ 0,

it follows that σi(P0) = λi(P0). Thus, σmax(∆Q̂) = (α + β)λ2
max(P0). Hence,

item (iv) is written as: (α + β)λmax(P0)2 − ϵλmax(P0) < 0. In order to find the
conditions such that item (iv) in Proposition 2.4.7 is satisfied, let us solve the
inequality with the variable θ̂ as follows:

(α + β)θ̂2 − ϵθ̂ < 0 for θ̂ <
ϵ

α + β
, given that θ̂ > 0 (4.31)

Having the ability to constrain the parameters α and β, consequently constraining
∆µ, it is possible to choose these parameters such that λmax(P0) < ϵ

α+β
. Hence,

item (iv) is satisfied.

Thus, this item (i.e., Q̂ ≽ ŜR̂†Ŝ⊤) is satisfied such that all the conditions in
Proposition 2.4.7 holds as explained above. According to the analysis, a necessary
condition for Q̂ ≽ ŜR̂†Ŝ⊤ to hold is to choose the value of g21 > 1

2 .

Therefore, the matrix inequality L̂ ≽ 0 in (4.30) holds. Given that 4∆µ2g2d
df−e2 ≤ 1 derived

from the bound on ∆B in (4.29) where Λ̂B =
(

d e
e f

)
≻ 0, let us assume that ||∆E ′||2 ≤

ρ where ρ = df−e2

4d
. Thus, the inequality in (4.27) is written as:

V̇ ≤ −
(

e
∆λ

)⊤ (
−M0 + ∆M0 −

(
P0Λ̂1P0 0

0 0

))(
e

∆λ

)
+ ∆E ′⊤Λ̂−1

1 ∆E ′

≤ −ϵ′e⊤P0e + E ′⊤Λ̂−1
1 ∆E ′

≤ −ϵ′λmin(P0)||e||2 + λ−1
min(Λ̂1)||∆E ′||2

≤ −ϵ′λmin(P0)||e||2 + λ−1
min(Λ̂1)ρ

(4.32)

So, V̇ < 0 in (4.32) outside the ball Br(0) ⊂ IRn, with r
∆=
√

λ−1
min(Λ̂1)ρ

λmin(P0)ϵ′ . Thus, the solu-
tion of (4.24) is GUUB [88] by relaxing strong passivity and, according to Proposition
2.4.5, the ultimate bound is given by:

||e|| ≤

√√√√λmax(P0)λ−1
min(Λ̂1)ρ

λ2
min(P0)ϵ′ (4.33)
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Remark 4.5.2. It is important to note that taking g21 = 0 within the framework
of bounded uncertainties in this section is not feasible. This is due to the necessary
condition in item 1 (R̂ ≽ 0) to ensure that the matrix inequality L̂ ≽ 0 in (4.30)
holds. Furthermore, it is necessary to select g21 ≥ 1

2 as imposed by item 1 in the above
analysis.

4.5.2 Robustness Analysis with Constant Bounded Uncertain-
ties ∆µ = µ − µ0

In this setting, it is possible to incorporate ∆B directly as an unknown of the matrix
inequality, the techniques used in Proposition 2.4.3 have to be used. Let us recall the
inequality of the storage function V̇ (e) in (4.27):

V̇ ≤ −
(

e
∆λ

)⊤ (
−M0 + ∆M0 −

(
P0Λ̂1P0 0

0 0

))(
e

∆λ

)
+ ∆E ′⊤Λ̂−1

1 ∆E ′

where M0 is defined in (4.25), ∆M0
∆=
(

0 −P0∆B
−∆B⊤P0 0

)
, and Λ̂⊤

1 = Λ̂1 ≻ 0.

It is required to prove that −M0 + ∆M0 −
(

P0Λ̂1P0 0
0 0

)
≽

(
ϵ′P0 0

0 0

)
for ϵ′ > 0. Let

us explicitly represent the matrix to be proven positive semi-definite as follows:

L
∆= −M0 + ∆M0 −

(
P0Λ̂1P0 0

0 0

)
−
(

ϵ′P0 0
0 0

)

=
(

−A⊤
clP0 − P0Acl − P0Λ̂1P0 − ϵ′P0 −P0(Bcl + ∆B) + C⊤

cl

−(Bcl + ∆B)⊤P0 + Ccl Dcl + D⊤
cl

) (4.34)

Take Q
∆= −A⊤

clP0 − P0Acl − ϵ′P0︸ ︷︷ ︸
Q0

+ (−P0Λ̂1P0)︸ ︷︷ ︸
∆Q

, S
∆= −P0Bcl + C⊤

cl︸ ︷︷ ︸
S0

+ (−P0∆B)︸ ︷︷ ︸
∆S

and

R
∆= Dcl + D⊤

cl︸ ︷︷ ︸
R0

as defined in section 2.4.3 where P0 =
(

p11 p12
p12 p22

)
such that P0 = P ⊤

0 ≻

0.

Recall that Λ̂1 =
(

a b
b c

)
≻ 0 for some a, b, c ∈ IR and the matrices Bcl, Ccl and Dcl are

defined in (4.5). Let us write explicitly the matrices Q, S and R.

Q0 =
(

−2p12
k11
m

− ϵ′p11 −p11 − k12
m

p12 − k11
m

p22 − ϵ′p12
−p11 − k12

m
p12 − k11

m
p22 − ϵ′p12 −2p12 − 2k12

m
p22 − ϵ′p22

)
,

−∆Q =
(

p2
11a + p2

12c + 2p11p12b p2
12b + p11p12a + p11p22b + p12p22c

p2
12b + p11p12a + p11p22b + p12p22c p2

12a + p2
22c + 2p12p22b

)
,

S0 =
(

2p12µg + k21 0
2p22µg − 1 + k22 0

)
, ∆S =

(
2p12∆µ g 0
2p22∆µ g 0

)
, R = R0 =

(
2g21 0

0 0

)
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By considering the conditions for positive semi-definiteness in Appendix A.3 and by

following Lemma A.3.1, the matrix L
∆=
(

Q0 + ∆Q S0 + ∆S
S⊤

0 + ∆S⊤ R0

)
≽ 0 if and only if:

1. R0 ≽ 0 which is satisfied by the assumption of strict passivity of the closed-loop
system in (4.5).

2. Im
(
S⊤

0 + ∆S⊤
)

⊆ Im(R0) and this condition is satisfied according to Lemma
2.4.6 because the following conditions hold:
(i) Im(∆S⊤) =

{
w ∈ IR2 | w =

(
2g∆µ(p12x + p22y)

0

)
for some x, y ∈ IR

}
⊆

Im(S⊤
0 ) =

{
w ∈ IR2 |

(
(2µgp12 + k12)t + (2µgp22 − 1 + k22)z

0

)
for some t, z ∈ IR

}
,

(ii) Im(R) = Im(R0) since R = R0 in the system (4.24) studied in this section.

3. Q ⪰ SR†S⊤. Let us follow the conditions presented in Proposition 2.4.7 in order
to check the validity of this item (i.e., Q ⪰ SR†S⊤), then:
(i) R = R0 ⪰ 0,

(ii) Im(∆R) = 0 ⊆ Im(R0) =
{

w ∈ IR2 | w =
(

2g21x
0

)
for some x ∈ IR

}
,

(iii) rank(R0) = 1, σmax(∆R) = 0 < σ1(R0) = 2g21 where g21 > 0 from the
strict passivity of the quadruple (Acl, Bcl, Ccl, Dcl),

(iv) σmax(OT ) + σmax(∆Q) < ϵλmax(P0) where OT is defined in (2.66) and in
this case, where ∆R = 0, it is written as:

OT = S0R
†∆S⊤ + ∆SR†S⊤

0 + ∆SR†∆S⊤

with R† =
( 1

2g21
0

0 0

)
. After performing calculations, the matrix OT is explicitly

written as:
OT = 2g2∆µ2

g21

(
p2

12 p12p22
p12p22 p2

22

)

Note that 2g2∆µ2

g21
≥ 0, then the matrix OT is positive semi-definite (i.e., OT ≽ 0)

since p2
12 > 0, p2

22 > 0 and p2
12p

2
22 − (p12p22)(p12p22) = 0. According to [17, Fact

5.11.19], given that OT is positive semi-definite, σi(OT ) = λi(OT ) for i ∈ {1, 2}.

Also, by referring to [17, Definition 5.6.1], σi(OT ) = 2g2∆µ2

g21
σi

(
p2

12 p12p22
p12p22 p2

22

)
for i ∈ {1, 2}. Thus, σmax(OT ) = 2g2∆µ2

g21
(p2

12 + p2
22) > 0. Knowing that P0 ≻ 0,

then λmax(P0) > 0 such that λmax(P0) = 1
2

(
p11 + p22 +

√
(p11 + p22)2 − 4p2

12

)
. It

is noteworthy that ∆Q and −Λ̂1 are congruent matrices, so the two matrices have
the same number and signs of eigenvalues [86, Theroem 4.5.8]. This means that
λi(∆Q) < 0 for i ∈ {1, 2}. Let us assume that Λ̂1 = αI2, then ∆Q = −αP 2

0 which
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is symmetric (i.e., ∆Q = ∆Q⊤). As P0 = P ⊤
0 ≻ 0, it follows that σi(P0) = λi(P0).

Thus, σmax(∆Q) = αλ2
max(P0). Hence, item (iv) is written as follows:

2g2∆µ2

g21
(p2

12 + p2
22) + αλ2

max(P0) − ϵλmax(P0) < 0 (4.35)

In order to determine the conditions on λmax(P0) that satisfy item (iv) in Propo-
sition 2.4.7, let us solve the following quadratic inequality for the variable θ:

αθ2 − ϵθ + 2g2∆µ2

g21
(p2

12 + p2
22) < 0

Then, the solution is:

θ1 = 1
2α

(
ϵ −

√
ϵ2 − 8αg2∆µ2(p2

12+p2
22)

g21

)
,

θ2 = 1
2α

(
ϵ +

√
ϵ2 − 8αg2∆µ2(p2

12+p2
22)

g21

)
where θ1 > 0 and θ2 > 0. For the inequality in (4.35) to be valid (i.e., item (iv)
in Proposition 2.4.7 holds), the following condition must be satisfied:

−

√√√√ϵ2 − 8αg2∆µ2(p2
12 + p2

22)
g21

< 2αλmax(P0) − ϵ <

√√√√ϵ2 − 8αg2∆µ2(p2
12 + p2

22)
g21

(4.36)
Given the flexibility to choose or constrain the parameter α, consequently con-
straining ∆µ and the parameter ϵ, it is possible to choose these parameters within
the bounds in (4.36). Then, item (iv) in Proposition 2.4.7 is satisfied. In other
words, by analyzing the inequality (4.35), choosing a sufficiently large ϵ guaran-
tees the validity of item (iv) (i.e., inequality (4.35)).

Therefore, the matrix L in (4.34) is positive semi-definite (i.e., L ≽ 0) and the inequal-
ity in (4.27) is written as follows:

V̇ ≤ −
(

e
∆λ

)⊤ (
−M0 + ∆M0 −

(
P0Λ̂1P0 0

0 0

))(
e

∆λ

)
+ ∆E ′⊤Λ̂−1

1 ∆E ′

≤ −ϵ′e⊤P0e + ∆E ′⊤Λ̂−1
1 ∆E ′

≤ −ϵ′λmin(P0)||e||2 + λ−1
min(Λ̂1)||∆E ′||2

Thus, the solution of the error dynamics in (4.24) is GUUB [88, 61]. According to
Proposition 2.4.5, the global ultimate bound is given by

||e|| ≤

√√√√λmax(P0)λ−1
min(Λ̂1)||∆E ′||2

λ2
min(P0)ϵ′

117



Chapter 4. Trajectory Tracking in Frictional Oscillators

Remark 4.5.3. It is clear from (4.36) that it is necessary to have g21 > 0. What
happens when g21 = 0, which means that there is no multiplier λ1 feedback? In that
case, that R = 0, thus R† = 0. So, L ≽ 0 if and only if S0 + ∆S = 0, which implies
∆B = 0 which implies ∆µ = 0. It is inferred that the above analysis of robustness
against uncertainties in the friction coefficient (which is sufficient only) implies g21 ̸= 0.
This is in agreement with Proposition 2.4.7 item (iv).

4.5.3 Numerical simulations
In the presence of uncertainties, it is useful to enhance the dissipativity of the closed-
loop system in (4.5). This involves increasing the parameter ϵ of the strict passivity
that appears in (2.56). However, the limitations of this method is the potential for
high overshoot and extremely large control gains. Let us check if there exists P0, K0
and G0 such that the BMI:

M0 ≼

(
−ϵP0 0

0 0

)
, (4.37)

holds where M0 is defined in (4.25). For numerical purposes the BMI in (4.37) is
transformed into an LMI (see Appendix A.1). Take µ0 = 0.5, m = 1 and g = 9.8. For
ϵ = 10, the solution is:

K0 =
(

−70.79 −11.95
−29.89 −4.22

)
, G0 =

(
0 0

0.67 0

)
and P0 =

(
31.8 3.05
3.05 0.53

)
(4.38)

In order to find the admissible ∆µ, let us solve the LMI of uncertainties L̂ ≽ 0 in
(4.30) with the unknowns Λ̂1 and Λ̂B given the values of K0, P0 and G0 from the strict
passivity of the nominal system (A0 + E0K0, B0, C0 + F0K0, D0 + F0G0) . The solution
is:

Λ̂1 =
(

0.16 0
0 9.2

)
and Λ̂B =

(
0.14 0

0 0.567

)

with the constraint tr(Λ̂1) ≤ 10 and without constraining Λ̂B. The admissible value
of the upperbound on the uncertainty is ∆µ ≤ 0.038. It is possible to increase the
admissible ∆µ for the same ϵ by increasing the values of Λ̂1 or Λ̂B (i.e., increasing the
trace of the matrices Λ̂1 and Λ̂B), maintaining the BMI L̂ ≽ 0. Let us increase the
value of Λ̂B consequently ∆µ such that tr(Λ̂B) = 20, the numerical solution is:

Λ̂1 =
(

0.032 0
0 0.86

)
and Λ̂B =

(
0.023 0

0 19.9

)

The admissible value of the uncertainty is bounded such that ∆µ ≤ 0.22. The fol-
lowing figures illustrate the robustness of the closed-loop error system (4.9) through
simulations, considering perturbation on the parameter µ0 by constant, and bounded
time-varying uncertainties ∆µ. The system depicted in Figure 4.6 is the desired system
used in the numerical simulations for trajectory tracking in the presence of constant
uncertainties in Figures 4.11 and 4.12. Take xd(0) = (1, 0)⊤, x(0) = (0, −1)⊤, and the
time step h = 0.01s.
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Figure 4.11: Numerical simulation of the closed-loop error system with control gains from (4.38) and
the uncertainty value ∆µ = 0.1

In Figure 4.11, it is observed that the error e(t) = x(t) − xd(t), in the presence
of uncertainties on the coefficient of friction in the closed-loop system in (4.24) (i.e.,
∆µ), has the following L∞ norms: ∥e1∥[5,15],∞ = 0.07 and ∥e2∥[5,15],∞ = 0.202. It is
noteworthy that these norms increase as the value of ∆µ increases (see Figure 4.12).
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Figure 4.12: Numerical simulation of the closed-loop error system with control gains from (4.38) and
the uncertainty value ∆µ = 0.2 sin

√
3t.

In Figure 4.12, the value of the uncertainty ∆µ is bounded such that ∆µ < 0.22.
The numerical simulation observed shows that the L∞ norms of the error e = x − xd

are ||e1||[5,15],∞ = 0.08 and ||e2||[5,15],∞ = 0.26. It is also noticeable that in both Figures
4.11 and 4.12, the synchronization between the complementarity variables λ and λd,
as well as between w and wd is lost in the presence of uncertainties.

119



Chapter 4. Trajectory Tracking in Frictional Oscillators

4.6 Controller Design and Stability Analysis with
Stribeck Effect

As usual in control theory, it is interesting to analyse whether or not refining the
model yields better results than designing a robust feedback controller. The foregoing
study guarantees some robustness w.r.t. time-varying bounded uncertainties in the
friction coefficient. Now let us assume that the Coulomb’s model is enhanced to include
Stribeck effects. The reason of this assumption is that on one hand, Stribeck effects
often represent in an acceptable way the frictional effects, on the other hand it will allow
us to propose different control approach, using its hypomonotonicity (actually, any
other modification of Coulomb’s set-valued model which satisfies a hypomonotonicity
constraint, would fit with the control framework in this section). This new approach
consists of passifying (or "monotonifying") a hypomonotone friction model. As noted
in the introduction of this chapter, Stribeck effects often play a major role in practice.

4.6.1 The Stribeck Model and its Properties

One example of a physical model that may be considered as a bounded uncertainty,
is the Stribeck model of sliding friction [12], which states that µ = µ(q̇rel), where
q̇rel

∆= q̇ −u2 is the relative tangential velocity, which can be expressed as [24, Equation
(17)]:

Fstr(q̇rel(t)) = − Fn(µs − µc)
(

exp
(

− q̇2
rel(t)
v2

s

)
− 1

)
sgn(q̇rel(t))︸ ︷︷ ︸

Fdiff (q̇rel)

− µsFnsgn(q̇rel(t))︸ ︷︷ ︸
Fsv(q̇rel(t))

,

(4.39)
where µs > µc > 0, vs are parameters, Fn = mg > 0 is the constant normal contact
force. The total force is therefore the sum of a continuously differentiable, Lipschitz
continuous, hypomonotone decreasing term Fdiff (ẋ), and a set-valued maximal mono-
tone term Fsv(ẋ).

Figure 4.13 shows the graphical representations of different frictional forces, including
Coulomb friction as Fsv and Stribeck friction Fstr in (4.39) with respect to relative
velocity q̇rel. The behaviour of the function Fdiff is depicted with variations in its
parameter vs. Take Fn = mg = 9.8, µs = 0.5 and µc = 0.4.
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Figure 4.13: Different frictional forces as a function of relative velocity q̇rel

The plot in Figure 4.13a shows the Coulomb friction force with respect to the relative
velocity q̇rel and it varies inside an interval such that Fsv ∈ [−Fnµs, Fnµs]. In Figure
4.13b, the function Fdiff shows a smoother non-linearity when a smaller value of the
parameter vs is observed and Fdiff ∈ [−Fn(µs − µc), Fn(µs − µc)]. The plot in Figure
4.13c displays the friction force Fstr without viscous friction represented in (4.39) for
two different values of the parameter vs which causes faster decay towards the value
Fn(µs − µc) as it increases.
Let us analyze the behaviour of the function Fdiff (q̇rel) by finding its derivative. Denote
q̇rel as x for simplicity, then the function Fdiff (x) is expressed as follows:

Fdiff (x(t)) = Fn(µs − µc)
(

exp
(

−x2(t)
v2

s

)
− 1

)
sgn(x(t))

The derivative of Fdiff (x) with respect to x is given for x ̸= 0 by:

d

dx
Fdiff (x) = Fn(µs − µc)

(
−2x

v2
s

exp
(

−x2

v2
s

))
sgn(x)

For x > 0 : d
dx

Fdiff (x) = −Fn(µs − µc)2x
v2

s
exp

(
−x2

v2
s

)
. For x < 0 : d

dx
Fdiff (x) =

Fn(µs − µc)2x
v2

s
exp

(
−x2

v2
s

)
. Then, limx→0−

d
dx

Fdiff (x) = limx→0+
d

dx
Fdiff (x) = 0.

Thus, the function d
dx

Fdiff (·) is continuous at 0, and the function Fdiff (·) is continu-
ously differentiable everywhere, with bounded derivatives (bounded in absolute value).
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It follows that it is a hypomonotone single-valued mapping. Let us write the dynamics
in (4.1) with Stribeck friction presented in (4.39), then:

q̈(t) ∈ 1
m

u1(t) − µg sgn(q̇rel(t)) − Fdiff (q̇rel(t)) ± αq̇rel(t) (4.40)

where the linear term αq̇rel is added and subtracted for compensation. Thus, the
dynamics in (4.40) is written as follows:

q̈(t) ∈ 1
m

u′
1(t) − µg sgn(q̇rel(t)) − (Fdiff + αId)(q̇rel(t)) (4.41)

where u1 = u′
1 − mαq̇rel. It is required to find the suitable gain α > 0 such that the

mapping q̇rel 7→ (Fdiff + αId)(q̇rel) is monotone (it is automatically maximal since it
is single-valued). For this purpose, it is required to find the maximum slope of the
function Fdiff (.). The second derivative of Fdiff (x) is:

d2

dx2 Fdiff (x) = 2
v4

s

Fn(µs − µc)
(

(2x2 − v2
s) exp

(
−x2

v2
s

))
sgn(x)

Let mmax be the maximum slope of Fdiff (x) which is the absolute value of d
dx

Fdiff (x)
at x = vs√

2 and it is given by:

mmax = 2
vs

√
2

Fn(µs − µc) exp
(

−1
2

)
(4.42)

Thus, the monotonicity of the mapping q̇rel 7→ (Fdiff + αId)(q̇rel) is guaranteed by
choosing the gain α such that α > mmax. Take

α =
√

2 exp(1
2)mmax = 2

vs

Fn(µs − µc) (4.43)

in the following.

Remark 4.6.1. If the viscous friction is included in the force of friction given in (4.39),
then the dynamics in (4.41) is rewritten as:

q̈(t) ∈ 1
m

u′
1(t) − µg sgn(q̇rel(t)) − (Fdiff + kv + αId)(q̇rel(t))

where kv is the coefficient of viscous friction. Given that kv > 0, the term kv q̇rel

increases the overall damping by kv, thus enhancing the dissipativity of the system
which is crucial for our analysis. The main effect of adding viscous friction is that the
value of the compensating term α changes such that α > 2

vs

√
2Fn(µs −µc) exp

(
−1

2

)
+kv.

Therefore, it is important to note that the following analytical approach applies to the
Stribeck effect in (4.39) with viscous friction.
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4.6. Controller Design and Stability Analysis with Stribeck Effect

4.6.2 Controller Calculation
Let a suitable α be calculated. The next step consists of applying the foregoing
passivity-based (or monotonicity-based) technique to calculate u = (u′

1, u2)⊤ = K(x −
xd) + ud with x

∆= (q, q̇)⊤ as independent input, then we have u1 = u′
1 − mα(q̇ − u2).

Let us write the dynamics in (4.41) according to the expression of Fdiff in (4.39) as:

q̈(t) ∈ 1
mu′

1(t) − gλt

(
µs + (µs − µc)

(
exp

(
−(q̇(t)−u2(t))2

v2
s

)
− 1

))
− α(q̇(t) − u2(t))

= 1
mu′

1(t) − gµsλt − Fdiff,α(q̇ − u2),

where λt ∈ sgn(q̇ − u2) and

Fdiff,α(q̇rel(t)) ∆= (Fdiff + αId)(q̇rel(t))
= Fn(µs − µc)

((
exp

(
−(q̇rel)2

v2
s

)
− 1

)
+ 2

vs

)
(q̇rel(t))

is maximal monotone given that q̇rel(t) ∆= q̇(t) − u2(t) and α is given in (4.43).
Let us keep the plant dynamics as in (4.41) and write the desired dynamics in (4.7)
with Stribeck friction in (4.39) as:

q̈d(t) ∈ 1
m

u1d(t) − µsgsgn(q̇rel,d(t)) − Fdiff (q̇rel,d(t)) ± αq̇rel,d

∈ 1
m

u′
1d(t) − µsgsgn(q̇rel,d(t)) − (Fdiff + αId)(q̇rel,d(t))

(4.44)

where u1d = u′
1d − mα(q̇rel,d) and Fdiff,α(q̇rel,d(t)) ∆= (Fdiff + αId)(q̇rel,d(t)) is maximal

monotone.
Therefore, the Stribeck model is incorporated into the desired dynamics. In view of the
philosophy followed in this work, this is a logical step.

4.6.3 Error Dynamics Stability Analysis
Using (4.44) and (4.41), the error ¨̃q = q̈ − q̈d is written as:

¨̃q(t) ∈ 1
m

(u1(t) − u1d(t)) − µsgsgn(q̇rel(t)) + µsgsgn(q̇rel,d(t)) ± Fdiff,α(q̇rel(t))

+Fdiff,α(q̇rel,d(t))

∈ 1
m

(u′
1(t) − mα(q̇rel(t) − q̇rel,d(t)) − u′

1d(t)) − µsg(sgn(q̇rel(t)) − sgn(q̇rel,d(t)))

−(Fdiff,α(q̇rel(t)) − Fdiff,α(q̇rel,d(t)))

∈ 1
m

(k11(q(t) − qd(t)) + k12(q̇(t) − q̇d(t))) − µsg(sgn(q̇rel(t)) − sgn(q̇rel,d(t)))

−α (q̇(t) − k21(q(t) − qd(t)) − k22(q̇(t) − q̇d(t)) − q̇d(t))

−(Fdiff,α(q̇rel(t)) − Fdiff,α(q̇rel,d(t)))
(4.45)
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with q̃ = q − qd and e = (q̃, ˙̃q)⊤. The error dynamics in (4.45) is equivalently written
as:

ė(t) ∈
(

Acl +
(

0
α

)
(Ccl)1,•

)
e(t) −

(
0

µsg

)
(sgn(q̇rel(t)) − sgn(q̇rel,d(t)))

−
(

0
Fdiff,α(q̇rel(t)) − Fdiff,α(q̇rel,d(t))

) (4.46)

where λ1d(t) ∈ sgn(q̇d(t) − u2d(t)), λ1(t) ∈ sgn(−(Ccl)1,•e(t) + q̇d(t) − u2d(t)).

Proposition 4.6.2. Consider the error dynamics in (4.46) with bounded initial con-
ditions, and assume that the quadruple (Âcl, Bcl, Ccl, Dcl) of the closed loop system is
strictly state passive with ϵ > 0. Then, the equilibrium point e⋆ = 0 is globally expo-
nentially stable.

Proof. Consider the error dynamics in (4.46). Let us define

Âcl
∆= Acl +

(
0
α

)
(Ccl)1,• =

(
0 1

k11
m

+ αk21
k12
m

+ α(−1 + k22)

)

Assume that the new closed-loop quadruple (Âcl, Bcl, Ccl, Dcl) is strictly state passive.
This means that the following matrix inequality:

(
Â⊤

clP̂ + P̂ Âcl P̂Bcl − C⊤
cl

B⊤
cl P̂ − Ccl −Dcl − D⊤

cl

)
≼

(
−ϵP̂ 0

0 0

)

has a solution with P̂ = P̂ ⊤ ≻ 0. Note that this BMI is transformed into a LMI
(see Appendix A.1) to be solved numerically. Consider the storage function V (e(t)) =
e⊤(t)P̂ e(t). The rate of change of the storage function is:

V̇ (e(t)) = e⊤(Â⊤
clP̂ + P̂ Âcl)e + 2e⊤P̂

(
0

µsg

)
[sgn(q̇rel,d(t)) − sgn(q̇rel(t))]

−2e⊤P̂

(
0

Fdiff,α(q̇rel,d) − Fdiff,α(q̇rel)

)

Take P̂ =
(

p̂11 p̂12
p̂21 p̂22

)
. Given that P̂Bcl = Ccl holds and that (Ccl)1,•e(t) = u2(t) −
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q̇(t)−u2d(t)+ q̇d(t), then the rate of change of the storage function is written as follows:

V̇ (e) = e⊤(Â⊤
clP̂ + P̂ Âcl)e − e⊤(P̂Bcl)•,1 [sgn(q̇rel,d(t)) − sgn(q̇rel(t))]

− 1
µsg

e⊤(P̂Bcl)•,1 [Fdiff,α(q̇rel,d) − Fdiff,α(q̇rel)]

= e⊤(Â⊤
clP̂ + P̂ Âcl)e + e⊤(C⊤

cl )•,1 [sgn(q̇rel(t)) − sgn(q̇rel,d(t))]

+ 1
µsg

e⊤(C⊤
cl )•,1 [Fdiff,α(q̇rel) − Fdiff,α(q̇rel,d)]

= e⊤(Â⊤
clP̂ + P̂ Âcl)e − [q̇rel(t) − q̇rel,d(t)]⊤ [sgn(q̇rel(t)) − sgn(q̇rel,d(t))]

− [q̇rel(t) − q̇rel,d(t)]⊤ [Fdiff,α(q̇rel) − Fdiff,α(q̇rel,d)]

≤ e⊤(Â⊤
clP̂ + P̂ Âcl)e ≤ −ϵe(t)⊤P̂ e(t)

(4.47)
Therefore, the equilibrium point pf the error dynamics in (4.46), e⋆ = 0, is globally
exponentially stable due to the fact: ∥e(t)∥2 ≤ V (0)

λmin(P̂ ) exp(−ϵt).

4.6.4 Numerical simulation

Take m = 1kg, Fn = mg = 9.8m/s2, vs = 0.2, µs = 0.5 and µc = 0.4. Let us check
if there exists a control gain K such that the closed-loop system’s quadruple (A +
EK, B, C + FK, D) is strictly state passive. The LMI derived from the BMI of strict
state passivity in (2.6) has a solution which is given by:

K =
(

−70.79 −11.95
−23.91 −3.18

)
and P =

(
31.8 3.05
3.05 0.53

)

Consider the value of the linear term α in (4.43), and the controller u1 = k11(x1 −
x1d) + k12(x2 − x2d) + u1d − mα(x2 − u2) and u2 = k21(x1 − x1d) + k22(x2 − x2d) + u2d.
The following shows the simulation of the system in (4.41) with xd(0) = (−1, −2)⊤,
x(0) = (1, 3)⊤ and h = 0.01s.
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Figure 4.14: Numerical simulation of the desired, closed-loop and error systems of the LCS in (4.41)
with u1d = 0.7mµg cos 5t, u2d = 0.5mµg sin 3t.

The numerical simulation in Figure 4.14 is performed using a different methodology
from the previous simulations, which enables addressing the nonlinear Stribeck effect
(more details are available in Appendix C.1). It is observed that the the error converges
exponentially to zero when the friction model is improved by including Stribeck effect,
as stated in Proposition 4.6.2. Moreover, it is noticeable that the complementarity
variables synchronize, and the controllers u1and u2 converge to their desired periodic
behaviour u1d and u2d, respectively.

Conclusion
This chapter gives a solution for the trajectory tracking problem in frictional oscilla-
tors for several cases. In the nominal case, the passivity-based controller is designed
to achieve exponential stability of the error dynamics. Then, the case with paramet-
ric uncertainties is investigated under a relaxed assumption of passivity, showing that
the tracking error remains bounded. Moreover, the model of friction is refined to in-
clude Stribeck effect. In this case, the controller is designed based on the approach of
passifying the friction model, which ensures that the tracking error converges exponen-
tially to zero. Numerical simulations are presented to illustrate the theoretical results
developed.
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Chapter 5

Backstepping Tracking Control of
Frictional Oscillators with
Pulley-Belt Dynamics

Tracking control of frictional oscillators poses a complex control problem when incor-
porating pulley-belt dynamics. To address this problem, a backstepping strategy is
proposed in this chapter for the controller design. This strategy requires stabilizing
the pulley-belt dynamics by considering λt as a fictitious input. This chapter begins
with introducing the framework of the controller design based on the backstepping
strategy. Then, the stability of the error dynamics is analyzed and the convergence
of the pulley’s error dynamics is investigated. Numerical simulations are presented for
the nominal case and for the case when parametric uncertainties are added, in order to
ensure some robustness for the proposed approach. The last part of the chapter focuses
on studying the controller design in discrete time using the Backward-Euler method,
ensuring well-posedness and stability analysis in discrete time.

5.1 Frictional Oscillator with Pulley-Belt Dynam-
ics

Recall the frictional oscillator depicted in Figure 4.1a.

m
u1

q

−g

r

ω

Figure 5.1: Simple Frictional Oscillator
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If the pulley-belt dynamics are not neglected, meaning that the assumption rµmg
I

≪ 1
does not hold, then the following dynamical system is obtained:

(a) mq̈(t) = u1(t) − µmgλt(t)
(b) Iθ̈(t) = τ(t) + rµmgλt(t)
(c) λt(t) ∈ sgn(q̇(t) − rθ̇(t))

(5.1)

where τ is the control torque applied on one of the pulleys I is the inertia momentum
of each pulley, θ̇ = ω. Once again we wee that the system in (5.1) possesses the
robot-object structure when u1 ≡ 0 or if u1 = u1(q, q̇).
The link between the two dynamics (5.1) (a) and (b) is made through the potential
function in (c) (recall that sgn(q̇ − rθ̇) = ∂|q̇ − rθ̇|, where the subdifferential is with
respect to the whole argument (i.e., ∂|x| = sgn(x) for all reals x). Hence, the inter-
connection is made with a superpotential in Moreau’s terminology [122], so that the
system has the triangular structure that is suitable for backstepping control (origi-
nally backstepping has been applied to flexible-joint manipulators where the potential
term derives from the joint elastic potential energy [107, 36] and is a quadratic smooth
function of the state).

Remark 5.1.1. The passage from (5.1) to the simpler system in (4.1) is achieved
by assuming that rµmg

I
≪ 1, keeping in mind that |λt| ≤ 1. In other words, the belt

dynamics is unaffected by the contact force, and the biggest assumption is that θ̇ can
be given arbitrary values.

Remark 5.1.2. The system in (5.1) has two degrees of freedom and (considering that
u1 has been fixed as u1(q, q̇, t)) it has one input τ(·): it is underactuated with underac-
tuation degree one.

5.2 First Control Approach: Motivation for Back-
stepping Strategy

This section proposes an approach to control the system in (5.1), which aims at con-
sidering the mass-belt-pulley dynamics as a whole. In this approach, the theoretical
results developed in Chapter 4 can be directly applied to the system with pulley-belt
dynamics.
Let us denote z = (q, q̇, θ, θ̇)⊤, then (5.1) is rewritten equivalently as the relay system
[43]:

ż(t) ∈ Az(t) + Eu(t) − B sgn(Cz(t)),

with A =


0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

, B =


0

µg
0

−rµmg
I

, C = (0, 1, 0, −r), E =


0 0
1
m

0
0 0
0 1

I

, u = (u1, τ)⊤.

It is observed that PB = C⊤ with P = diag
(
1, 1

µg
, 1, I

µmg

)
. This relation can be seen as

a consequence of the principle of virtual work, or of the coordinate invariance principle
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[27, Section 5.8]. Let us use the state space change introduced in [22] (see also [38,
section 3.4]). Let ζ = Rz, R2 = P , to obtain:

ζ̇(t) ∈ RAR−1ζ(t) + REu(t) − R−1C⊤ sgn(CR−1ζ(t)), (5.2)

By applying the chain rule of Convex Analysis, let us define f
∆= | · | ◦ CR−1. Then,

(5.2) is rewritten equivalently as:

ζ̇(t) ∈ RAR−1ζ(t) + REu(t) − ∂f(ζ(t)),

where ∂f(·) is the subdifferential of the convex proper continuous function f(·). The
difference with respect to foregoing sections is that no controller acts inside the set-
valued term (i.e., F = 0). The desired dynamics are:

ζ̇d(t) ∈ RAR−1ζd(t) + REud(t) − ∂f(ζd(t)),

Let ζ̃ = ζ − ζd. The error dynamics are given by:

˙̃ζ(t) ∈ RAR−1ζ̃(t) + RE(u(t) − ud(t)) − ∂f(ζ(t)) + ∂f(ζd(t)).

It is required to check if there exists a matrix K such that the controller u = K(ζ −
ζd)+ud makes the triple (RAR−1+REK, I, I) strictly state passive, which is equivalent
to RAR−1 + REK + (RAR−1 + REK)⊤ ≼ −ϵI for some ϵ > 0. Then, the exponential
stability of the error dynamics ˙̃ζ(t) ∈ (RAR−1 + REK)ζ̃(t) − ∂f(ζ(t)) + ∂f(ζd(t)) is
analysed with the storage function V (ζ̃) = 1

2 ζ̃⊤ζ̃.
Let us check the inequality: RAR−1 +REK +(RAR−1 +REK)⊤ ≼ −ϵI for some ϵ > 0
analytically. For this purpose, assume that the matrices P , R, and K are defined as:

K =
(

k11 k12 k13 k14
k21 k22 k23 k24

)
, P =


1 0 0 0
0 1

µg
0 0

0 0 1 0
0 0 0 1

µmg

 , R = P
1
2 =


1 0 0 0
0 1√

µg
0 0

0 0 1 0
0 0 0 1√

µmg


Then, the expression: RAR−1 + REK + (RAR−1 + REK)⊤ is given by the following
matrix: 

0 √
µg + k11

m
√

µg
0 k21

I
√

µmg

√
µg + k11

m
√

µg
2k12

m
√

µg
k13

m
√

µg
k14

m
√

µg
+ k22

I
√

µmg

0 k13
m

√
µg

2 k23
I
√

µmg

k21
I
√

µmg
k14

m
√

µg
+ k22

I
√

µmg
k23

I
√

µmg
2k24

I
√

µmg


(5.3)

According to the structure of the matrix in (5.3), it is infeasible to find a control gain
K such that RAR−1 +REK +(RAR−1 +REK)⊤ ≼ −ϵI. This limitation is due to the
zero value in the first diagonal element and the positive value of 2 in the third diagonal
element, which makes it impossible to have a strictly state passive closed-loop system
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even with a full controller when P = diag(1, 1
µg

, 1, I
µmg

). However, it is important to
note that the matrix P is not unique. So, let us consider a more general matrix P that
satisfies the passivity condition PB = C⊤ given that D = 0.

Take P =


p11 p12 p13 p14
p12 p22 p23 p24
p13 p23 p33 p34
p14 p24 p34 p44

 ≻ 0 such that PB = C⊤. This implies that:


p12 = p14

rm
I

p22µg = 1 + p24
rµmg

I

p23 = p34
rm
I

p24 = p44
rµmg

I
+ r

It is quite cumbersome to check analytically if RAR−1 + REK + (RAR−1 + REK)⊤ ≼
−ϵI. Thus, our approach focuses on finding numerically R and K such that (RAR−1 +
REK, I, I) is strictly state passive. This is equivalent to check if there exist K and
P such that the BMI of strict state passivity in (2.6) for the closed-loop system (A +
EK, B, C), after being transformed into an LMI (see Appendix A.1), has a solution.
This numerical verification is performed using mosek 9.3.14 solver for various sets of
parameters such as m = 1, 3, 10 kg, r = 0.02, 0.2, 0.7 m, I = 0.01, 0.001, 0.1 kgm2, and
µ = 0.5, 0.3, 0.06. However, the solver fails to find a solution.
Thus, this approach fails to verify that the closed-loop system is strictly state passive
for all the parameters, which is a critical property for the stability analysis of the
error. Additionally, this approach requires tracking both the mass (q, q̇) and the pulley
(θ, θ̇), however our primary focus is on tracking the mass only. This motivates us us
to consider a second approach outlined in the following section.

5.3 Backstepping-Based Control Approach
The dynamical system presented in (5.1) is of the robot-object type when u1 =
u1(q, q̇, qd, q̇d, u1d, t). The goal of this section is to design a controller for (5.1) based
on a backstepping strategy, as advocated in [26] for the class of robot-object systems.
The stability of the error dynamics e = (q − qd, q̇ − q̇d) is analyzed, and the conver-
gence of the pulley’s error dynamics is studied. The results are followed by numerical
simulations to validate the proposed control approach.

5.3.1 Controller Design and Stability Analysis
The goal is to control (5.1) (a), not (5.1) (b). Given that the dynamics in (5.1) is of
the robot-object type, then it can be controlled only through the action of λt. The
signum set-valued function can be seen as the derivative of a Moreau’s superpotential
(i.e., as the subdifferential of a nonsmooth, convex function [122]). Hence, provided
that u1 has been assigned a value (see (5.5) below), the system can be considered as
the cascade of two subsystems: the first one with state (q, q̇) in (5.1) (a), the second
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one with state (θ, θ̇) in (5.1) (b). Both are related through the superpotential contact
force λt in (5.1) (c).
Roughly speaking, the first step consists of stabilizing the object dynamics (5.1) (a)
using λt as a "fictitious" input. Thus, the results concerning the control of (4.1) with
input u2(·) are important. The second step is to propagate the fictitious controller to
the robot dynamics in order to get τ(·).
From this point of view, once u1 = u1(q, q̇, t) is designed, the system in (5.1) has
the triangular structure, which is suitable for the backstepping method. The friction
superpotential plays the same role as the role played by the elasticity potential in
flexible-joint manipulators [143]. Backstepping was introduced in [107, 36] for solving
trajectory tracking control in flexible-joint manipulators. Thus, this approach extends
backstepping from the quadratic elastic potential function 1

2(q1 − q2)⊤K(q1 − q2), K =
K⊤ ≻ 0, to the set-valued superpotential |q̇ − rθ̇|.
In the following, two main cases are considered: g21 = 0 and g21 > 0. However,
it will become evident that backstepping does not accommodate the feedback of the
multiplier λ1 because it is not guaranteed to be differentiable. Below, the last two steps
of the backstepping strategy are described, with the first step being the design of the
controller u2(·) as done in sections 4.2.1–4.4.

Case g21 = 0

Consider the mass dynamics in (5.1)(a). Let us define ud
2

∆= k21(q−qd)+k22(q̇−q̇d)+u2d,
then (5.1) (a) is equivalently rewritten as:

q̈(t) ∈ u1(t)
m

− µg sgn(q̇(t) − ud
2(t) − ũ2(t)) (5.4)

with ũ2
∆= rθ̇ − ud

2. Here, ud
2 plays the role of u2 in (4.1) and should not be confused

with u2d, which is a purely exogenous, time-varying signal. Let us write the closed-loop
dynamics of the mass (q, q̇) with u1(t) = k11(q − qd) + k12(q̇ − q̇d) + u1d, then (5.4) is
written as:

q̈(t) ∈ k11
m

(q(t) − qd(t)) + k12
m

(q̇(t) − q̇d(t)) + u1d(t)
m

−µgsgn (q̇(t) − k21(q(t) − qd(t)) − k22(q̇(t) − q̇d(t)) − u2d(t) − ũ2(t))
(5.5)

Recall the desired dynamics in (4.7):

q̈d(t) ∈ u1d(t)
m

− µgsgn(q̇d(t) − u2d(t))

Using the dynamics in (4.7) and (5.5), the error dynamics q̃ = q − qd is
¨̃q(t) ∈ k11

m
q̃(t) + k12

m
˙̃q(t) − µgsgn(q̇(t) − k21q̃(t) − k22 ˙̃q(t) − u2d(t) − ũ2(t))

+µgsgn(q̇d(t) − u2d(t))

= 1
m

(k11q̃(t) + k12 ˙̃q(t)) + µg [λt,d − λt(t)]

(5.6)
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where λt,d(t) ∈ sgn(q̇d(t) − u2d(t)) and λt(t) ∈ sgn(q̇(t) − ud
2(t) − ũ2(t)).

The objective is to design the controller τ(·) such that ũ2 → 0. Thus ˙̃u2 = rθ̈ − u̇d
2, i.e.:

˙̃u2(t) ∈ r

I
τ(t) + r2µmg

I
sgn(q̇(t) − ud

2(t) − ũ2(t)) − k21(q̇(t) − q̇d(t)) − k22(q̈(t) − q̈d(t)) − u̇2d(t),
(5.7)

where u2d(·) is assumed to be differentiable almost everywhere. Inserting (5.5) into
(5.7) yields:

˙̃u2(t) ∈ r
I τ(t) + r2µmg

I sgn(q̇(t) − ud
2(t) − ũ2(t)) − k21(q̇(t) − q̇d(t)) − u̇2d(t)

−k22

(
k11
m (q(t) − qd(t)) + k12

m (q̇(t) − q̇d(t)) + u1d(t)
m − µg sgn(q̇(t) − ud

2(t) − ũ2(t)) − q̈d(t)
)

(5.8)
Consequently, it is possible to rewrite (5.8) as:

˙̃u2(t) ∈ r
I τ(t) +

(
r2µmg

I + k22µg
)

sgn(q̇(t) − ud
2(t) − ũ2(t))

−g(q(t), q̇(t), qd(t), q̇d(t), u1d(t), u2d(t), u̇2d(t)),
(5.9)

where

g(q, q̇, qd, q̇d, t) = k21(q̇(t) − q̇d(t)) + k22
u1(t)

m
− k22q̈d(t) + u̇2d(t), (5.10)

with u1 = k11(q − qd) + k12(q̇ − q̇d) + u1d.
The next step is to design an input τ(·) such that ũ2 converges to zero, at least asymp-
totically. For this purpose, let us choose τ(t) such that:

r

I
τ(t) = g(q(t), q̇(t), x1d(t), x2d(t), u1d(t), u2d(t), u̇2d(t)) + τs(t), (5.11)

with
τs ∈ −kslsgn(ũ2), (5.12)

and ksl > µg| r2m
I

+ k22|. The closed-loop dynamics for ũ2 is the differential inclusion:

˙̃u2(t) ∈ −ksl sgn(ũ2(t)) + µg

(
r2m

I
+ k22

)
λt(t), λt(t) ∈ sgn(q̇(t) − ud

2(t) − ũ2(t)).

(5.13)
Thus, in this context of sliding mode control, λt which is a selection of the set-
valued signum function, is considered as a bounded disturbance. Under the stated
assumptions, there exists t⋆ < +∞ such that ũ2(t) = 0 for all t ≥ t⋆. Therefore,
q̈(t) ∈ u1(t)

m
− µg sgn(q̇(t) − ud

2(t)) on [t⋆, +∞), and we are back to the analysis made
in sections 4.2.1 to 4.4.

Remark 5.3.1. The two-stage backstepping strategy allows us to define the desired
dynamics as in (4.7), specifically for the "object" part in (5.1) (a). Consequently, it is
the extension of the material in sections 4.2.1 to 4.4 to the case when the belt-pulleys
dynamics are no longer neglected, which is significant in practice.
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The following stability result is stated.
Proposition 5.3.2. Consider the dynamics in (5.1) with bounded initial data and
bounded time-varying functions qd(·), q̇d(·), q̈d(·), u1d(·), u2d(·), u̇2d(·), and let g21 = 0.
The controller defined in (5.11)-(5.12) with u1(q, q̇, t) = k11(q − qd) + k12(q̇ − q̇d) + u1d,
where K is given such that (Acl, Bcl, Ccl, Dcl) is strictly state passive. Therefore, the
error e = (q̃, ˙̃q), where q̃ = q−qd and ˙̃q = q̇− q̇d, is bounded and converges exponentially
fast to zero. Moreover, the variables θ̇ and θ̈ remain bounded.
The proof uses material from section 5.3.2 on the pulley’s angle error dynamics.

Proof. The proof is performed in three steps. First, the focus is on demonstrating the
finite time convergence of ũ2 in (5.13) to zero (i.e., proving that (5.13) has finite time
stable equilibrium point ũ⋆

2 = 0). Then, the stability of (5.6) is analysed when ũ2 = 0.
The third step demonstrates the boundedness of the variables.

First step: Consider the dynamics of ˙̃u2(t) in (5.13). The objective is to show that
ũ2 = 0 for all t ≥ t⋆ where t⋆ < ∞, under the sliding mode control τs = −kslsgn(ũ2)
in (5.12), with the sliding surface ũ2 = 0. The input τ(t) in (5.8) is recovered using
(5.11). Let us take the Lyapunov function V (ũ2(t)) = 1

2 ũ2
2(t), then the rate of change

of the storage function is:
V̇ = ũ2 ˙̃u2

= ũ2
(
τs +

(
r2µmg

I
+ k22µg

)
λt

)
= −kslũ2 sgn(ũ2) + ũ2

(
r2µmg

I
+ k22µg

)
λt

Given that λt is bounded such that λt ∈ [−1, 1] and that ũ2sgn(ũ2) = |ũ2|, hence:

V̇ = −ksl|ũ2| + ũ2
(

r2µmg
I

+ k22µg
)

λt

≤ −ksl|ũ2| + |ũ2|
∣∣∣ r2µmg

I
+ k22µg

∣∣∣
≤ |ũ2|

(∣∣∣ r2µmg
I

+ k22µg
∣∣∣− ksl

)
Considering that ksl >

∣∣∣ r2µmg
I

+ k22µg
∣∣∣, let us define −a

∆=
∣∣∣ r2µmg

I
+ k22µg

∣∣∣ − ksl < 0
with a > 0. Then, the rate of change of the storage function is:

V̇ ≤ −a|ũ2| ≤ −a
√

2V
1
2

Thus, according to [19, Theorem 4.2], the equilibrium point ũ⋆
2 = 0 of the dynamics

in (5.13) is globally finite-time-stable. Let t⋆ to be the finite time required for ũ2 to
reach zero (i.e., the solution ũ2(t) of (5.13) is defined on [0, t⋆] and limt→t⋆ũ2(t) = 0).
In order to calculate the time t⋆, let us write the following:

dV (ũ2(t))
dt

≤ −a
√

2V
1
2 (ũ2(t)) ⇔

∫ V (ũ2(t⋆))
V (ũ2(0))

dV (ũ2(t))
V

1
2 (ũ2(t))

≤ −a
√

2
∫ t⋆

0 dt

⇔ 2
(
V

1
2 (ũ2(t⋆)) − V

1
2 (ũ2(0))

)
≤ −a

√
2t⋆
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Given that V (ũ2(t⋆)) = 0 (i.e., ũ2(t⋆) = 0), the finite time t⋆ is chosen such that
t⋆ = 2V

1
2 (ũ2(0))
a

√
2 . This result aligns with the function of the settling-time given by

[19, Theorem 4.2], which could be directly applied to compute t⋆. It is important to
note that the duration of the transient period [0, t⋆] decreases as the value of ksl and,
consequently, as the value of a increases.
The expression of the controller τ(t) such that the dynamics in (5.8) converges to zero
as t → t⋆ is given by:

τ(t) = I
r

(
τs(t) + u̇d

2 + k22µg sgn(q̇(t) − ud
2(t) − ũ2(t))

)
= I

r

(
−kslsgn(ũ2(t)) + k22k11

m (q(t) − qd(t)) +
(
k21 + k12k22

m

)
(q̇(t) − q̇d(t))

)
+ I

r (k22µgλt,d + u̇2d(t))

(5.14)

which confirms the expression given in (5.11).

Second step: In this step, the stability of (5.6) is analysed for all t ∈ [t⋆, ∞) when
ũ2(t) = 0. The closed-loop system in (5.5) is reduced to the following on the interval
[t⋆, ∞):

q̈(t) ∈ k11
m

(q(t) − qd(t)) + k12
m

(q̇(t) − q̇d(t)) + u1d(t)
m

−µg sgn (q̇(t) − k21(q(t) − qd(t)) − k22(q̇(t) − q̇d(t)) − u2d(t))
(5.15)

The reduced dynamics in (5.15) are equivalent to those in (4.18). Consequently, the
error dynamics q̃ = q − qd in (5.6) is reduced on the interval [t⋆, ∞) and is written as:

¨̃q(t) = 1
m

(k11q̃(t) + k12 ˙̃q(t)) + µg [λt,d(t) − λt(t)] (5.16)

where λt,d(t) ∈ sgn(q̇d(t) − u2d(t)) and λt(t) ∈ sgn(q̇(t) − ud
2(t)). Given that ud

2(t) =
k21(q(t) − qd(t)) + k22(q̇(t) − q̇d(t)) + u2d(t), the error dynamics in (5.16) are equivalent
to the error dynamics in (4.19). Hence, the same analysis in section 4.4 is applied in
this step. Recall the LCS of the error dynamics in (4.20) with e = (q̃, ˙̃q):

ė(t) ∈ Acle(t) +
(

0
µg

)
sgn(q̇d(t) − u2d(t)) −

(
0

µg

)
sgn(−(Ccl)1,•e(t) + q̇d(t) − u2d(t))

= Acle(t) − Bcl

(
λ1d(t) − λ1(t)
λ2d(t) − λ2(t)

)

where λ1 = λt+1
2 ∈ [0, 1].

Third step: This step is dedicated to show the boundedness of the variables. Let us
analyze the dynamics in (5.1) (b). According to the analysis in section 4.4 and given
that ũ2 = 0 for t ≥ t⋆, it follows that the variables q(·), q̇(·) are bounded on [t⋆, +∞).
Assuming that u̇2d(·), q̇d(·) and q̈2d(·) are bounded, then q̈(·) is also bounded. Therefore,
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on [t⋆, +∞), and given that rθ̈ = k21(q̇ − q̇d) + k22(q̈ − q̈d) + u̇2d, it follows that θ̈(·) and
consequently τ(·) are bounded. Similarly, θ̇(·) is bounded on [t⋆, +∞).
Since rθ̇(t) = ud

2(t) on [t⋆, +∞), it follows that

θ(t) = θ(t⋆) + 1
r

∫ t

t⋆
(k21(q(s) − qd(s)) + k22(q̇(s) − q̇d(s)) + u2d(s))ds (5.17)

A necessary and sufficient condition for the boundedness of pulley’s angle is that the
integrand in (5.17) be bounded. However, it is important to note that since θ is defined
modulo 2π, its boundedness is a secondary issue. The boundedness of all variables on
[0, t⋆) is ensured from the fact that there does not exist any finite escape in the closed-
loop system, since all the right-hand sides are sums of linear single-valued terms and
bounded set-valued terms.

Case g21 > 0

This is the case when a force feedback is applied. Recall that ud
2

∆= k21(q − qd) +
k22(q̇ − q̇d) + g21(λ1 − λ1d) + u2d. Using (4.10), the robot-object dynamics (5.1) (a) (b)
is equivalently rewritten as:

q̈(t) = u1(t)
m − µg proj

(
[−1, 1]; 2 q̇(t)−k21(q(t)−qd(t))−k22(q̇(t)−q̇d(t))+g21λ1d(t)−2g21−u2d(t)−ũ2(t)

g21

)
θ̈(t) = τ(t)

I + rµmg
I proj

(
[−1, 1]; 2 q̇(t)−k21(q(t)−qd(t))−k22(q̇(t)−q̇d(t))+g21λ1d(t)−2g21−u2d(t)−ũ2(t)

g21

)
(5.18)

with ũ2 = rθ̇ − ud
2. However, the rest of the control input cannot be designed similarly

as for the case when g21 = 0 in (5.11) and (5.12). This is because the multipliers λ1
and λ1d are not differentiable (and could even be discontinuous), making it impossible
to differentiate ud

2(q, q̇, λ1, t) in order to get (5.7).

Remark 5.3.3. It is known that backstepping strategy can be adapted to yield different
controllers, which do not necessarily all behave identically [36]. Thus, the controller
designed above may be modified.

5.3.2 Analysis of Pulley’s Angle Error Dynamics
This section is dedicated to discussing the possibility of designing desired pulley’s angle
dynamics and then analyzing the corresponding error dynamics. This discussion is
useful for proving the boundedness of these dynamics. The closed-loop robot dynamics
in (5.1) (b) is given by:

θ̈(t) ∈ 1
r

g(q(t), q̇(t), t) − 1
r

ksl sgn(rθ̇(t) − ud
2(q(t), q̇(t), t)) + rµmg

I
sgn(q̇(t) − rθ̇(t))

(5.19)
Let us interpret (5.19) in terms of the desired trajectory for the pulley’s angle. One
approach is to define τ(θ, θ̇, t) = Iθ̈d − kv(θ̇ − θ̇d) − kp(θ − θd), and then find a suitable
function θd(·) such that the object dynamics (5.1) (a) is suitably controlled. Let us
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consider the framework of (4.1), where Iθ̈(t) = τ(t). Let θ̃
∆= θ − θd, then I ¨̃θ(t) +

kv
˙̃θ(t) + kpθ̃(t) = 0, so that θ̃, ˙̃θ and ¨̃θ converge exponentially fast to zero.

The next step is to define θ̇d(t) such that (4.1) is controlled as in section 4.2.1, assuming
that rθ̇ = rθ̇d. Specifically, θ̇d(t) = 1

r
u2(q, q̇, t) = 1

r
(k21(q − qd) + k22(q̇ − q̇d) + u2d).

Then, θ̈d = 1
r
g(q, q̇, t) − 1

r
k22µgλt, where the contact force is necessary to define the

desired pulley’s angle acceleration. Therefore, this control approach is not directly
implementable. However, the above backstepping strategy allows us to avoid this issue
by correctly interpreting the desired angle acceleration. Let us define θ̈′

d
∆= 1

r
g(q, q̇, t)

and ¨̃θ′ ∆= θ̈ − θ̈′
d, it follows from (5.19) that:

¨̃θ′(t) ∈ −1
r

ksl sgn(rθ̇(t) − ud
2(q(t), q̇(t), t)) + rµmg

I
sgn(q̇(t) − rθ̇(t)). (5.20)

Using the expressions of g(q, q̇, t) in (5.10), of ud
2(·), and (5.1) (a), it is possible to show

that g(q, q̇, t) = u̇d
2 + k22µgλt. Therefore,

rθ̇(t) − ud
2(q(t), q̇(t), t) = rθ̇(t) −

∫ t

0
g(q, q̇, t)dt +

∫ t

0
k22µgλt(t)dt = rθ̇(t) − r

∫ t

0
θ̈d(t)dt

Assuming the initial conditions are correct, it follows from (5.19):

¨̃θ(t) ∈ θ̈(t) − 1
r
g(q, q̇, t) + 1

r
k22µgλt ∈ 1

r
k22µgλt − 1

r
ksl sgn(rθ̇(t) − rθ̇d(t)) + rµmg

I
λt

∈ −1
r
ksl sgn(r ˙̃θ(t)) +

(
rµmg

I
+ 1

r
k22µg

)
λt,

(5.21)
with λt(t) ∈ sgn(q̇(t)−rθ̇(t)). Thus, it is possible to reinterpret the above backstepping
control strategy with a suitable definition of the desired angle trajectory. Although θ̈d

is not realizable because it involves λt(t) in its definition, the closed-loop error system
yields the differential inclusion (5.21). Note that the condition on ksl allows us to
deduce that ˙̃θ converges to zero in a finite time. By referring to (5.20), it is inferred
that:

¨̃θ′(t) ∈ −1
r

ksl sgn
(

˙̃θ′(t) + k22µg
∫ t

0
λt(t)dt

)
+ rµmg

I
λt(t)). (5.22)

In summary, the error system resulting from the backstepping strategy is defined by
(5.21), (5.13), and (5.4). Considering the asymptotic tracking for the state of the mass
(i.e., q(t) → qd(t) and q̇(t) → q̇d(t) as t → +∞), it is inferred that,

g(q, q̇, t) = k21(q̇ − q̇d) + k22
k11(q−qd)+k12(q̇−q̇d)+u1d

m
− k22q̈d + u̇2d

→ g∞(t) ∆= k22
u1d(t)

m
− k22q̈d(t) + u̇2d(t), as t → ∞

Therefore,

Corollary 5.3.4. The pulley’s angular velocity is bounded and it satisfies θ̇(t) →
1
r

(
k22
m

∫ t
0 u1d(t)dt − k22q̇d(t) + u2d(t)

)
−
∫ t

0 k22µgλt(t)dt.
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5.3.3 Numerical Simulations

This section is dedicated for the numerical simulations of the dynamical system in (5.1)
after implementing the controller designed in (5.14). The simulations are performed
for the nominal case and the case with parametric uncertainties to test the robustness
of the controller. The sliding-mode controller guarantees some robustness with respect
to uncertainties in µ. According to (5.13) and (5.21), it is sufficient to know an upper-
bound on the friction coefficient. However, a complete robustness analysis mimicking
section 4.5 does not hold since g21 = 0 as noted above. Therefore, in this section,
a numerical analysis of the controller’s robustness is provided when the coefficient of
friction is both under-estimated and over-estimated.

In the Nominal Case (known friction coefficient)

Since the controller in (5.14) possesses a set-valued part (the signum, or relay, multi-
valued function), it is important to perform the simulations with a suitable numerical
integrator. Hence the platform siconos is used again. According to the methodology
followed to simulate LCS, as explained in Appendix C.1, it is required first to write
the closed-loop system of (5.1) in the form of an LCS. This is equivalent to write the
LCS of the closed-loop system’s dynamics in (5.5) for q̇ and (5.19) for θ̇ by considering
ũ2 in (5.13) as an intermediate variable. Let us define the state x = (q, q̇, θ, θ̇)⊤, the
desired state to be tracked xd = (qd, q̇d)⊤, and the slack variable λk ∈ sgn(rθ̇ − ud

2).
Recall that ũ2 = rθ̇ − ud

2, the controllers u1 = k11(x1 − x1d) + k12(x2 − x2d) + u1d,
ud

2 = k21(x1 − x1d) + k22(x2 − x2d) + u2d, and τ = k11k22
rm

(x1 − x1d) +
(

k12k22
rm

+ k21
r

)
(x2 −
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x2d) + 2k22
r

µgλ1,d − k22
r

µg + u̇2d − ksl

r
λk. The closed-loop LCS is written as:



ẋ(t) =

∆=A1︷ ︸︸ ︷
0 1 0 0

k11
m

k12
m 0 0

0 0 0 1
k11k22

rm
k21
r + k12k22

rm 0 0

x(t) +

∆=B1︷ ︸︸ ︷
0 0 0 0

−2µg 0 0 0
0 0 0 0

2r
I mµg 0 − 2

r ksl 0

λ(t) +


0 0
1
m 0
0 0

k22
rm 0

ud(t)

−


0 0

k11
m

k12
m

0 0
k11k22

rm
k21
r + k12k22

rm

xd(t) +


0 0
0 0
0 0

2k22
r µg 0

λd(t) +

∆=E′
1︷ ︸︸ ︷

0
µg

0
− k22

r µg − r
I mµg + 1

r u̇2d + ksl

r



0 ≤ λ(t) ⊥ w(t) =


0 −1 0 r

0 0 0 0
k21 k22 0 −r

0 0 0 0


︸ ︷︷ ︸

∆=C1

x(t) +


0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0


︸ ︷︷ ︸

∆=D1

λ(t) −


0 0
0 0

k21 k22

0 0

xd(t)

+


0
1

u2d

1

 ≥ 0

(5.23)
where λ

∆= (λ1, λ2, λ3, λ4)⊤, λ1 = 1+λt

2 , and λ3 = 1+λk

2 . It is noteworthy that the
transformation of the signum function into LCP formalism is demonstrated in section
4.2.1, as explained in [43].

Take ksl = 2µg
∣∣∣ r2m

I
+ k22

∣∣∣. The closed-loop LCS in (5.23) is strictly state passive since
the BMI in (2.6) after being transformed into an LMI has a solution given by:

K =
(

−3.06 −2.29
−10.77 −11.08

)
and P =

(
2.35 1.099
1.099 1.23

)

with ϵ = 1. Take µ = 0.5, r = 0.5, I = 1kg.m2, and mg = 9.8. The numerical
simulation is performed with the initial values x(0) = (1, 0, 0, 2)⊤ and xd(0) = (3, −4)⊤.
The desired inputs u1d = u2d = 0.5mµg cos 2t and the time step h = 0.01s.
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Figure 5.2: Backstepping control of the pulley-belt-mass system.

It is observed in Figure 5.2 that the error of the mass e = q −qd converges exponen-
tially to zero and that the dynamics of the pulley’s angle, as depicted by the plots x3, x4
are bounded. These observations confirm the results stated in Proposition 5.3.2. In
the steady state response (i.e., e = 0), there is a synchronization noticed between the
desired and closed-loop complementarity variables λ1d, λ2d, w1d, w2d and λ1, λ2, w1, w2,
respectively. Moreover, the controller u = (u1, ud

2)⊤ converges to the desired periodic
behaviour ud = (u1d, u2d)⊤. In order to analyze the stick/slip behaviour of the desired
and the closed-loop system, as shown by the plot Vrel = q̇ − ud

2, let us observe Figure
5.3:

6 7 8 9 10

0
0.2
0.4

t[s]

Vrel(t) Vrel,d(t)

Figure 5.3: Relative velocity in the steady state response

Figure 5.3 shows a part of the plot Vrel in Figure 5.2, and it corresponds to the
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steady state responses of the desired system Vrel,d = q̇d − u2d and the closed-loop
system Vrel = q̇ − ud

2. The relative velocity of the closed-loop system converges to that
of the desired system, and it is observed that the mass exhibits a stick/slip behavior
with a small amplitude of the relative velocity, Vrel = 0.2m/s, during the slip phase.
Let us simulate the intermediate variable ũ2 in two different ways to verify the consis-
tency of our analysis. The first simulation in Figure 5.4a shows the plot of ũ2 where
ũ2 = rθ̇ − ud

2. The second simulation in Figure 5.4b is that of the dynamics of ũ2 in
(5.13).

0 2 4 6 8 10
0

20

t[s]

ũ2

Figure 2

2

(a) Numerical simulation of ũ2 = rθ̇ − ud
2

drawin2

ayay67547

June 2023

0 2 4 6 8 10
0

20

t[s]

ũ2

Figure 1

1

(b) Numerical simulation of ũ2 in (5.13)

Figure 5.4: Numerical simulation of ũ2 using two integration approaches.

It can be observed from Figure 5.4 that the variable ũ2 shows a finite time conver-
gence to zero (i.e., ũ2 = 0 for all t > 0.13s), as predicted theoretically. Also, there
is consistency between Figures 5.4a and 5.4b, which show that deriving ũ2 from the
simulation given in Figure 5.2 as ũ2 = rθ̇ − ud

2 gives the same result as simulating
directly ũ2 from its dynamics in (5.13). It is noteworthy that if ksl is decreased such
that ksl = 1.4µg

∣∣∣ r2m
I

+ k22

∣∣∣, the transient response will increase slightly (i.e., ũ2 = 0
for all t > 0.21s). Additionally, if ksl is decreased to ksl = 1.1µg

∣∣∣ r2m
I

+ k22

∣∣∣, then the
transient response will increase to 0.34s.

In the Presence of Parametric Uncertainties (uncertain friction coefficient)

Let us test the robustness with respect to additive parametric uncertainties ∆µ in the
plant model. The controller is designed from the nominal (known) friction coefficient
µ0. Let µ = µ0 + ∆µ be the coefficient of friction of the real plant model. The nominal
system of the frictional oscillator with pulley-belt dynamics in (5.1) is written as:

q̈d(t) ∈ u1d(t)
m

− µ0mg sgn(q̇d(t) − u2d(t))

The plant’s model with uncertainties is:
q̈(t) ∈ u1(t)

m
− (µ0 + ∆µ)mg sgn(q̇(t) − rθ̇(t))

θ̈(t) ∈ τ(t)
I

+ r(µ0+∆µ)mg
I

sgn(q̇(t) − rθ̇(t))

where the controller u1 = k11(q(t) − qd(t)) + k12(q̇(t) − q̇d(t)) + u1d and τ(t) is defined
in (5.14). Recall that τ(t) is given as follows:

r

I
τ(t) = k11k22

m
(q(t) − qd(t)) +

(
k12k22

m
+ k21

)
(q̇(t) − q̇d(t)) + µ0mgλt,d + u̇2d − kslλk
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where λt,d(t) ∈ sgn(q̇d(t)−rθ̇0(t)), λk ∈ sgn(rθ̇(t)−ud
2(t)), ksl > (µ0 +∆µ)g

∣∣∣ r2m
I

+ k22

∣∣∣.
We have ud

2(t) = k21(q(t) − qd(t)) + k22(q̇ − q̇(t)) + u2d(t). Let us recall that the state
x

∆= (q, q̇, θ, θ̇)⊤ and the desired state xd = (qd, q̇d)⊤, then the closed-loop system
with uncertainties is given by the following LCS:



ẋ(t) = A1x(t) + (B1 + ∆B1)λ(t) −


0 0

k11
m

k12
m

0 0
k11k22

rm
k21
r + k12k22

rm

xd(t) +


0 0
0 0
0 0

2k22
r µ0g 0

λd(t)

+


0 0
1
m 0
0 0

k22
rm 0

ud(t) + E′
1 + ∆E′

1

0 ≤ λ(t) ⊥ w(t) = C1x(t) + D1λ(t) −


0 0
0 0

k21 k22

0 0

xd(t) +


0
1

u2d

1

 ≥ 0

(5.24)
where A1, B1, C1, D1, and E ′

1 are defined in (5.23).
By taking ksl = 2(µ0 + ∆µ)g

∣∣∣ r2m
I

+ k22

∣∣∣, then

∆B1 =


0 0 0 0

−2∆µ g 0 0 0
0 0 0 0

2mgr
I ∆µ 0 −4∆µ g

∣∣∣ r2m
I + k22

∣∣∣ 0

 and ∆E′
1 =


0

∆µ g
0

− rmg
I ∆µ + 2∆µ

∣∣∣ r2m
I + k22

∣∣∣



In the following figures, the coefficient of friction is varied to cover two approaches:
overestimated and underestimated friction, in order to observe the behavior of the
system and the analyze the robustness of the controller. Recall that µ = 0.5, r = 0.5,
I = 1kg.m2, and mg = 9.8. The numerical simulation is performed with the initial
values x(0) = (1, 0, 0, 2)⊤ and xd(0) = (3, −4)⊤. The desired inputs u1d = u2d =
0.5mµg cos 2t and the time step h = 0.01s.
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Figure 5.5: Backstepping control of the pulley-belt-mass system with ∆µ = −0.1

In Figure 5.5, the coefficient of friction is overestimated (i.e., µ0 > µ0 + ∆µ). The
numerical simulation shows that there is a significant error e between the closed-loop
and the desired trajectories such that ∥e1∥[5,10],∞ = 0.162 and ∥e2∥[5,10],∞ = 0.349. It
is important to show that the pulley’s angle dynamics x3

∆= θ and x4
∆= θ̇ are still

bounded in the presence of uncertainties in the friction coefficient.
By observing the plot of the relative velocity Vrel = q̇−rθ̇, the mass presents a stick/slip
behavior with respect to the belt. This behavior can be explained by examining the
plot of λ1. From the complementarity problem in (5.24), we have w1 = −x2 + rx4 + λ2

and w2 = −λ1 + 1. Given that Vrel = q̇ − rθ̇
∆= x2 − rx4, then w1 = −Vrel + λ2. At this

step, it is possible to solve the complementarity problem 0 ≤ (w1, w2)⊤ ⊥ (λ1, λ2)⊤ ≥ 0
for different values of λ1, where λ1 ∈ [0, 1]. Solving this problem as in section 4.3 will
illustrate the relation between λ1 and Vrel: if λ1 = 1, then Vrel = λ2 ≥ 0; if λ1 = 0,
then Vrel = −w1 ≤ 0; and if λ1 ∈]0, 1[, then Vrel = 0.
The plot of the controller u shows that the ud

2 has the same behavior as x4 after ũ2
converges to zero in finite time (0.13s).

Let us now examine the behavior of the system when the friction is underestimated for
∆µ = 0.1, by observing the numerical simulations in Figure 5.6.
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Figure 5.6: Backstepping control of the pulley-belt-mass system with ∆µ = 0.1

It is interesting to notice that the result of tracking in Figure 5.6, where the friction
is underestimated, is better than that in Figure 5.5, with smaller values of error such
that ∥e1∥[5,10],∞ = 0.005 and ∥e2∥[5,10],∞ = 0.013. As well, the pulley’s angle dynamics
θ

∆= x3 and θ̇
∆= x4 show boundedness.

In Figure 5.6, the mass exhibits only sticking mode to the belt (i.e., Vrel = q̇ − rθ̇ = 0)
in the steady state response. This behaviour is further illustrated by the evolution of
the complementarity variable λ1, where λ1 ∈]0, 1[ in the steady state response as shown
in Figure 5.6.

From the above numerical simulations in Figures 5.5 and 5.6, it is observed that for tra-
jectory tracking in frictional oscillators with pulley-belt dynamics using our approach
(i.e., backstepping strategy), it is better to underestimate friction to achieve smaller
tracking error. However, in the case of underestimating friction (i.e.,µ0 < µ0 + ∆µ),
the mass never slides. This result is different from the case of overestimating friction
(i.e., µ0 > µ0 + ∆µ), where the tracking error is larger and the mass shows sliding
phases.

To further check the observations from Figures 5.5 and 5.6, let us add the following
figures with a larger uncertainty ∆µ = ±0.2.
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Figure 5.7: Backstepping control of the pulley-belt-mass system with ∆µ = −0.2

The friction in the numerical simulation in Figure 5.7 is overestimated (i.e., µ0 >
µ0+∆µ) with ∆µ = −0.2. The tracking error e = (q−qd, q̇−q̇d)⊤ increases significantly
from that in Figure 5.5 where ∆µ = −0.1, such that ∥e1∥[5,10],∞ = 0.39 and ∥e2∥[5,10],∞ =
0.76. It can be observed that the pulley’s angle dynamics remain bounded as shown
in the plots of x3

∆= θ and x4
∆= θ̇.

The stick/slip behaviour of the mass is still observable as in Figure 5.5 for the case
of overestimated friction, as shown by the plot of Vrel = q̇ − rθ̇ and λ1. The relation
between Vrel and λ1 can be deduced from the complementarity problem in (5.24), which
is explained in the comment for Figure 5.5. Moreover, the amplitude of the relative
velocity shows a large increase as the overestimation of friction increases, for ∆µ = −0.2
in Figure 5.7 compared to that for ∆µ = −0.1 in Figure 5.5. The numerical simulation
in Figure 5.7 also presents the plots of the controllers u = (u1, ud

2)⊤ and τ(t).

Let us underestimate the friction with ∆µ = 0.2, and observe the behaviour of the
system depicted in Figure 5.8.
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Figure 5.8: Backstepping control of the pulley-belt-mass system with ∆µ = 0.2

In the numerical simulation of Figure 5.8, the friction is underestimated (i.e., µ0 <
µ0 + ∆µ) with ∆µ = 0.2. It is interesting to observe in Figure 5.8 that the tracking
result is represented by a small tracking tracking error e = (q−qd, q̇− q̇d)⊤, as in Figure
5.6 with a slight increase, such that ∥e1∥[5,10],∞ = 0.006 and ∥e2∥[5,10],∞ = 0.014. The
pulley’s angle dynamics x3

∆= θ and x4
∆= θ̇ remain bounded.

Additionally, the mass exhibits sticking behaviour only in the steady steady state
system for the case of underestimating friction in Figure 5.8 with ∆µ = 0.2, which is
similar to the behaviour shown in Figure 5.6 with ∆µ = 0.1. The sticking mode is
explained by the plot of λ1, where λ1 ∈]0, 1[ in the steady state response, which implies
that Vrel = 0 according to the complementarity problem in (5.24). Note that the
controller τ displays a completely different behaviour in Figure 5.8 (when the friction
is underestimated) from that in Figure 5.6 (when the friction is overestimated).
To further analyze the robustness of the controller with respect to the uncertainties
in the friction coefficient and to demonstrate our observations regarding friction es-
timation, let us consider a different set of initial values for the states x and xd.
Consider the following figures with the new initial conditions xd(0) = (1, 0)⊤ and
x(0) = (3, −4, 1, −2)⊤. Recall that µ0 = 0.5, r = 0.5, I = 1 kg.m2, and mg = 9.8. The
desired inputs u1d = u2d = 0.5mµgcos2t and the time step h = 0.01.
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Figure 5.9: Backstepping control of the pulley-belt-mass system with ∆µ = −0.1 and new initial
conditions
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Figure 5.10: Backstepping control of the pulley-belt-mass system with ∆µ = 0.1 and new initial
conditions
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From Figures 5.9 and 5.10, it is observed that underestimating friction (i.e., ∆µ = 0.1)
gives better result for the tracking error, where e = x − xd converges to zero, even
with different initial conditions. The same observations were noticed for other initial
conditions, but their figures are not presented here for brevity.

5.4 The Backward-Euler Discrete-time Implemen-
tation of the Backstepping Controller

The foregoing section presents numerical simulations of the closed-loop dynamics using
specific time-stepping schemes available in the siconos platform, which is similar to
the simulations presented in Chapter 3 for the nonsmooth set-valued electrical circuits
(see Appendix C.1). Set-valued sliding-mode controllers have to be implemented in
discrete-time using implicit Euler algorithms in order to avoid numerical chattering
[37]. Thus, it is crucial to analyze the discrete-time implementation of the controller.
The objective of this section is to analyze the discrete-time backstepping controller
without feedback from λt, as described in section 5.3. To begin this analysis, let us
start with a backward (implicit) Euler discretization of the dynamics in (5.1):

(a) q̇k+1 = q̇k + h
u1,k

m
− hµgλt,k+1

(b) qk+1 − qk = hq̇k

(c) Iθ̇k+1 = Iθ̇k + hτk + hrµmgλt,k+1
(d) θk+1 = θk + hθ̇k

(e) λt,k+1 ∈ sgn(q̇k+1 − rθ̇k+1)

(5.25)

with h > 0 the timestep. The scheme in (5.25) is called implicit because it deals with
the set-valued frictional terms implicitly. This approach avoids chattering at sticking
modes [1], and ensures the convergence of piecewise constant discrete solutions to the
solutions of the continuous-time plant. In other words, implicit (backward Euler)
schemes gives an accurate approximation of the contact force, while explicit (forward
Euler) schemes do not. Therefore, the time-discretization in (5.25) is considered an
appropriate approach for the system’s dynamics. Let us define the implicit controller
to be applied on (tk, tk+1]:

τk = I

r
g(qk, q̇k, tk) − I

r
kslλ3,k+1, λ3,k+1 ∈ sgn(ũ2,k+1), (5.26)

with ũ2,k = rθ̇k − ud
2,k. Recall that xd = (x1d, x2d)⊤ = (qd, q̇d)⊤, then ud

2,k = k21(qk −
x1d,k) + k22(q̇k − x2d,k) + u2d,k. After some manipulations it is obtained:

ũ2,k+1−ũ2,k

h
∈ −ksl sgn(ũ2,k+1) + µg

(
k22 + r2m

h

)
λt,k+1 − k21

x1d,k+1−x1d,k

h

−u2d,k+1−u2d,k

h
− k22

x2d,k+1−x2d,k

h
+ k22ẋ2d,k + u̇2d,k + k21ẋ1d,k.

(5.27)

5.4.1 Well-posedness
In this section, the well-posedness of the dynamical system in (5.25), the controller τ
in (5.26), and the intermediate variable ũ2 in (5.27) is discussed, ensuring the existence
and uniqueness of solutions.

148



5.4. The Discrete-time Implementation of the Backstepping Controller

Study of (5.25) (5.26)

The inclusion in (5.25)(e) is equivalently written as: q̇k+1 − rθ̇k+1 ∈ N[−1,1](λt,k+1).
Using (5.25)(a) (c) and (5.26), then:

q̇k + h
u1,k

m
− hµg

(
1 + r2m

I

)
λt,k+1 − rθ̇k − hg(qk, q̇k, tk) + hkslλ3,k+1 ∈ N[−1,1](λt,k+1)

(5.28)
Given that ũ2,k+1 = rθ̇k+1 − ud

2,k+1 and using (5.25) (a) (c), the inclusion λ3,k+1 ∈
sgn(ũ2,k+1) in (5.26) is equivalently written as:

rθ̇k + hg(qk, q̇k, tk) − hkslλ3,k+1 + hµg
(
k22 + r2m

I

)
λt,k+1 − k21(qk + hq̇k − x1d,k+1)

−k22(q̇k + h
u1,k

m
− x2d,k+1) − u2d,k+1 ∈ N[−1,1](λ3,k+1)

(5.29)
By combining (5.28) and (5.29), the following generalized equation (GE) with the
unknowns (λt,k+1, λ3,k+1) is obtained:

H(qk, q̇k, tk) − Mh

(
λt,k+1
λ3,k+1

)
∈ N[−1,1]2

(
λt,k+1
λ3,k+1

)
(5.30)

with

H =
(

q̇k + h
u1,k

m − rθ̇k − hg(qk, q̇k, tk)
rθ̇k + hg(qk, q̇k, tk) − k21(qk + hq̇k − x1d,k+1) − k22(q̇k + h

u1,k

m − x2d,k+1) − u2d,k+1

)

and Mh = h

 µg
(
1 + r2m

I

)
−ksl

−µg
(
k22 + r2m

I

)
ksl

.

The generalized equation in (5.30) can be written as an affine variational inequality
AVI(K, H, Mh) [68] where K = [−1, 1]2 is a bounded polyhedral set. The GE in (5.30)
has a solution according to [68, Corollary 2.2.5], with a result on the uniqueness of
solution provided in [68, Theorem 4.3.2]. In order to show the uniqueness of the solution
to (5.30), it is required to prove that the matrix Mh is P-matrix [4, Theorem 3]. Given
that ksl >

∣∣∣ r2µmg
I

+ k22µg
∣∣∣ > 0 and µg

(
1 + r2m

I

)
> 0, let us check if kslµg

(
1 + r2m

I

)
−

kskµg
(
k22 + r2m

I

)
is positive. The principal minor kslµg(1 − k22) > 0 for all k22 < 1.

Thus, the matrix Mh is a P-matrix if k22 < 1. A stronger condition requires that
Mh ≻ 0. Consequently, the GE in (5.30) is rewritten as:

0 ∈ F

(
λt,k+1
λ3,k+1

)
,

where F (·) is strongly monotone. Therefore, according to [14, Theorem 23.44], the
solution is unique.
The existence and uniqueness of the multipliers prove that the difference inclusion in
(5.25) (5.26) is well-posed, i.e., there exists a unique solution qk+1, q̇k+1, θk+1, θ̇k+1.
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In order to compute the solution it is convenient to rewrite the GE as an LCS. Let

λ̄k+1
∆=
(

λt,k+1
λ3,k+1

)
and let us define C as the set of λ̄k+1 such that λ̄k+1 ∈ [−1, 1]2, then:

C =

λ̄k+1 ∈ IR2 |


1 0

−1 0
0 1
0 −1

 λ̄k+1 +


1
1
1
1

 ≥ 0

 (5.31)

Let us define the normal cone to C at λ̄k+1 as follows:

NC(λ̄k+1) = {z ∈ IR2 | z1 = −γ1 + γ2 and z2 = −γ3 + γ4, γi ≥ 0 for i ∈ {1, 2, 3, 4}}

= {z ∈ IR2 | z = −R⊤γ, 0 ≤ γ ⊥ Rλ̄k+1 + r ≥ 0}

where γ = (γ1, γ2, γ3, γ4)⊤ is a slack variable, R =


1 0

−1 0
0 1
0 −1

 and r =


1
1
1
1

. Then,

the GE in (5.30) is equivalently written as the MLCP:Mhλ̄k+1 − H(qk, q̇k, tk) = R⊤γ

0 ≤ γ ⊥ Rλ̄k+1 + r ≥ 0

Given that Mh is P-matrix, the following LCP is derived:

0 ≤ γ ⊥ RM−1
h R⊤γ + RM−1

h H(qk, q̇k, tk) + r ≥ 0 (5.32)

By solving (5.32), the variables λt,k+1 and λ3,k+1 are obtained. The matrix RM−1
h R⊤

is not a P-matrix, since it has low-rank 2 provided that k22 < 1. However, it is note-
worthy that the 4 constraints defining C in (5.31) cannot be activated simultaneously.
Therefore, an enumeration procedure can be used to compute the solutions.

Study of (5.27)

The input in (5.26) corresponds to (5.11)-(5.12), and (5.27) corresponds to (5.13). The
last six terms in (5.27) depend only on the desired system states and inputs, and they
vanish as h → 0. However, the lower bound on ksl can be modified compared to the
continuous-time case to cope with these terms. The following is stated:

Lemma 5.4.1. The generalized equation (5.27) has always a unique solution ũ2,k+1.
Moreover, for ksl large enough, the sequence {ũ2,k}k≥0 converges to zero in a finite
number of steps.

The proof is identical to the proofs provided in [2, 37] and it is omitted here.
Let us denote ξk

∆= −k21
x1d,k+1−x1d,k

h
− u2d,k+1−u2d,k

h
− k22

x2d,k+1−x2d,k

h
+ k22ẋ2d,k + u̇2d,k +

k21ẋ1d,k + µg
(
k22 + r2m

h

)
λt,k+1, then (5.27) is rewritten equivalently as:

ũ2,k + hξk ∈ ũ2,k+1 + hksl sgn(ũ2,k+1), (5.33)
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equivalently
ũ2,k+1 = Jhksl

sgn (ũ2,k + hξk), (5.34)
where Jhksl

sgn (·) = (1 + hksl sgn)−1(·) is the resolvent of index hksl of the signum multi-
function, known as a single-valued nonexpansive mapping [14]. By induction, it follows
that ũ2,k+1 is a single-valued function of ũ2,0 and ξ0.
Let us study the well-posedness of the closed-loop system in (5.25). This means that it
is required to check whether q̇k and θ̇k can be computed in a unique way for k ≥ 1, as
a consequence of Lemma 5.4.1. The first controller to be applied on (tk, tk+1] is given
by:

u1,k = k11(qk − x1d,k) + k12(q̇k − x2d,k) + u1d,k.

Using (5.25) (a), this gives rise to:

q̇k+1 − x2d,k+1 =
(
1 + h

m
k12
)

(q̇k − x2d,k) + h
m

k11(qk − x1d,k) + x2d,k − x2d,k+1

+ h
m

u1d,k − hµgλt,k+1
(5.35)

Assume that ũ2,k = 0 for all k > k⋆ (from Lemma 5.4.1, such a k⋆ < +∞ exists), then
rθ̇k = ud

2,k and thus:

q̇k+1 − x2d,k+1 ∈
(
1 + h

mk12
)

(q̇k − x2d,k) + h
mk11(qk − x1d,k) + x2d,k − x2d,k+1 + h

mu1d,k

−hµg sgn(q̇k+1 − k21(qk+1 − x1d,k+1) − k22(q̇k+1 − x2d,k+1) − u2d,k+1)
(5.36)

This difference inclusion is the discrete-time counterpart of (4.18). Let ζk
∆= h

m
k11(qk −

x1d,k) + x2d,k − x2d,k+1 + h
m

u1d,k, and using (5.25) (b), βk
∆= −k21(qk + hq̇k − x1d,k+1) −

u2d,k+1 + x2d,k+1, then (5.36) is rewritten equivalently as:

q̇k+1 − x2d,k+1 ∈
(

1 + h

m
k12

)
(q̇k − x2d,k) + ζk − hµg sgn((1 − k22)(q̇k+1 − x2d,k+1) + βk).

(5.37)
To simplify, let us denote ˙̃qk

∆= q̇k − x2d,k. Then, (5.37) is equivalently rewritten as:
˙̃qk+1 ∈

(
1 + h

m k12
) ˙̃qk + ζk − hµg sgn((1 − k22) ˙̃qk+1 + βk)

⇕

(1 − k22) ˙̃qk+1 + βk ∈ βk + (1 − k22)
((

1 + h
m k12

) ˙̃qk + ζk

)
− (1 − k22)hµg sgn((1 − k22) ˙̃qk+1 + βk)

⇕

(1 − k22) ˙̃qk+1 + βk = J
(1−k22)hµg
sgn

(
(1 − k22)

(
1 + h

m k12
) ˙̃qk + (1 − k22)ζk + βk

)
⇕

˙̃qk+1 = 1
1−k22

(
J

(1−k22)hµg
sgn

(
(1 − k22)

(
1 + h

m k12
) ˙̃qk + (1 − k22)ζk + βk

)
− βk

)
(5.38)

where we assumed that 1 − k22 > 0, which is consistent with the analytical computa-
tions in section 4.4.3 when G = 0. As above, J (1−k22)hµg

sgn (·) is the resolvent of the set-
valued signum function with index (1−k22)hµg. The developments in (5.38) show that
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q̇k+1 in (5.25) (a) with the controllers u1,k and τk as above, can be computed uniquely
at each timestep for all k > k⋆. This uniqueness stems from the one-step-nonsmooth-
problem [1], which is uniquely solvable. For 1 ≤ k ≤ k⋆, we have rθ̇k = ud

2.k − ũ2,k,
where the sequence {ũ2,k}k≥0 is known (see (5.33) or (5.34)). Therefore, the above rea-
soning can be applied again by introducing ũ2,k in (5.36). Specifically, in the expression
sgn(q̇k+1 − k21(qk+1 − x1d,k+1) − k22(q̇k+1 − x2d,k+1) − u2d,k+1 + ũ2,k+1) and adjusting βk

accordingly. Hence, it is inferred that q̇k exists uniquely for all k ≥ 1. Consequently,
from (5.25) (a) (b), it follows that λt,k+1 exists uniquely as well.
Consider now (5.25) (c). Following from the foregoing analysis, λt,k+1 exists uniquely
for all k ≥ 0, thus it can be treated as an exogenous variable for (5.25) (c). The same
applies to ud

2,k. Inserting (5.26) into (5.25) (c) yields:

rθ̇k+1 ∈ rθ̇k + hg(qk, q̇k, tk) − hksl sgn(−ud
2,k+1 + rθ̇k+1) + h r2µmg

I λt,k+1
⇕

rθ̇k+1 − ud
2,k+1 ∈ rθ̇k − ud

2,k + ud
2,k − ud

2.k+1 + hg(qk, q̇k, tk) − hksl sgn(−ud
2,k+1 + rθ̇k+1)

+h r2µmg
I λt,k+1
⇕

rθ̇k+1 − ud
2.k+1 ∈ rθ̇k − ud

2,k + γk − hksl sgn(rθ̇k+1 − ud
2,k+1)

⇕

rθ̇k+1 − ud
2,k+1 = (1 + hkslsgn)−1(rθ̇k − ud

2,k + γk) = Jhkslsgn (rθ̇k − ud
2,k + γk),

with γk
∆= ud

2,k − ud
2,k+1 + hg(qk, q̇k, tk) + h r2µmg

I
λt,k+1. It is inferred that rθ̇k+1 − ud

2,k+1,
hence θ̇k+1 is uniquely defined for all k ≥ 0. Similarly, from (5.25) (d), θk+1 is also
uniquely defined. Therefore, the following is proved:
Proposition 5.4.2. Consider the difference inclusion in (5.25) (5.26), with bounded
initial data q0, q̇0, θ0, θ̇0 and desired signals. Then, the system (5.25) (5.26) is well-
posed.

5.4.2 Stability Analysis
In this section, the stability analysis of (5.36) is studied based on the material presented
in section 4.4. The discretization of (4.7) is given by:

q̇d,k+1 = q̇d,k + h
m

u1d,k − hµgλt,d,k+1
qd,k+1 = qd,k + hq̇d,k

λt,d,k+1 ∈ sgn(q̇d,k+1 − u2d,k)
(5.39)

Using (5.25) (a) the discrete-time error dynamics are given by:

(a) ˙̃qk+1 = ˙̃qk + hµg(λt,d,k+1 − λt,k+1) + h
m

u1,k − h
m

u1d,k

(b) u1,k = k11q̃k + k12 ˙̃qk + u1d,k

(c) λt,d,k+1 ∈ sgn(q̇d,k+1 − u2d,k)
(d) λt,k+1 ∈ sgn(q̇k+1 − rθ̇k+1) = sgn(q̇k+1 − ũ2,k − ud

2,k)
(e) ud

2,k = k21q̃k + k22 ˙̃qk + u2d,k

(f) q̃k+1 = q̃k + h ˙̃qk.

(5.40)
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It is important to note that ũ2,k vanishes after a finite number of steps k⋆ < +∞ (see
Lemma 5.4.1) and that all variables exist uniquely for all k ≥ 1. Hence, it is sufficient
to study the difference inclusion (5.40) for k ≥ k⋆, where (5.40) (d) simplifies to:

λt,k+1 ∈ sgn(q̇k+1 − k21q̃k − k22 ˙̃qk − u2d,k).

Consequently, for k ≥ k⋆ the discrete error dynamics are given by:


(a) ˙̃qk+1 = ˙̃qk + h

m
k11q̃k + h

m
k12 ˙̃qk + hµg(λt,d,k+1 − λt,k+1)

(b) λt,k+1 ∈ sgn(q̇k+1 − k21q̃k − k22 ˙̃qk − u2d,k)
(c) λt,d,k+1 ∈ sgn(q̇d,k+1 − u2d,k)
(d) q̃k+1 = q̃k + h ˙̃qk,

(5.41)

which is the discrete counterpart of (4.19). Recall that λt = 2λ1 − 1, it follows from
(5.41) that:

ek+1 = (I2 + hAcl)ek + hBcl(λk+1 − λd,k+1)

which represents the discrete counterpart of (4.20). In the complementarity framework,
the discrete-time systems read as follows:



ek+1 = (I2 + hAcl)ek + hBcl(λk+1 − λd,k+1)

0 ≤ λd,k+1 ⊥ wd,k+1 =
(

0 1
0 0

)
ud,k +

(
0
1

)
+
(

0 1
−1 0

)
λd,k+1 +

(
0 −1
0 0

)
xd,k+1 ≥ 0

0 ≤ λk+1 ⊥ wk+1 =
(

k21 k22 − 1
0 0

)
︸ ︷︷ ︸

Ccl

ek+1 +
(

0
1

)
+
(

0 1
−1 0

)
︸ ︷︷ ︸

Dcl

λk+1

+
(

0 −1
0 0

)
xd,k+1 +

(
0 1
0 0

)
ud,k ≥ 0

(5.42)
The reasoning in section 4.4.2–(4.21) can be repeated to prove that

(wk+1 − wd,k+1)⊤(λk+1 − λd,k+1) ≤ 0.

where wk+1 − wd,k+1 = Cclek+1 + Dcl(λk+1 − λd,k+1). The KYP Lemma conditions
for passivity in discrete-time systems differ from those in continuous-time systems [40,
section 3.15]. Passivity preservation, with same supply rate, storage function, and for
all h > 0, after discretization with a (θ, γ)-method holds under restrictive conditions
[76]. Let us consider the Lyapunov candidate function Vk = e⊤

k Pek, where P is the
solution of the continuous-time matrix inequality for strict state passivity in (2.6).
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Then,
Vk+1 − Vk = (ek+1 − ek)⊤P (ek+1 + ek)

= he⊤
k A⊤

clP (ek+1 + ek) + h(λk+1 − λd,k+1)⊤B⊤
clP (ek+1 + ek)

= h
2 e⊤

k (A⊤
clP + PAcl)ek + he⊤

k A⊤
clPek+1 + h(λk+1 − λd,k+1)⊤Ccl(ek+1 + ek)

= h
2 e⊤

k (A⊤
clP + PAcl)ek + he⊤

k A⊤
clP (I2 + hAcl)ek + h2e⊤

k A⊤
clPBcl(λk+1 − λd,k+1)

+h(λk+1 − λd,k+1)⊤Ccl(ek+1 + ek)

= he⊤
k (A⊤

clP + PAcl)ek + h2e⊤
k A⊤

clPAclek + h2e⊤
k A⊤

clC
⊤
cl (λk+1 − λd,k+1)

+h(λk+1 − λd,k+1)⊤Cclek + h(λk+1 − λd,k+1)⊤(wk+1 − wd,k+1 − Dcl(λk+1 − λd,k+1))

= he⊤
k (A⊤

clP + PAcl)ek + h2e⊤
k A⊤

clPAclek + h2e⊤
k A⊤

clC
⊤
cl (λk+1 − λd,k+1)

+h(λk+1 − λd,k+1)⊤Cclek + h(λk+1 − λd,k+1)⊤(wk+1 − wd,k+1)

≤ −hϵ e⊤
k Pek + h2e⊤

k A⊤
clPAclek + h2e⊤

k A⊤
clC

⊤
cl (λk+1 − λd,k+1)

+h(λk+1 − λd,k+1)⊤Cclek

Recall that both multipliers λ1,k = λt,k+1
2 and λ1d,k = λt,d+1

2 belong to [0, 1] by con-

struction. Moreover, C⊤
cl λk =

(
k21λ1,k

(k22 − 1)λ1,k

)
. Therefore,

Vk+1 − Vk ≤ −hϵ e⊤
k Pek + h2e⊤

k A⊤
clPAclek + h2e⊤

k A⊤
cl

 k21

k22 − 1

 (λ1,k+1 − λ1d,k+1)

+he⊤
k

(
k21

k22 − 1

)
(λ1,k+1 − λ1d,k+1)

≤ −he⊤
k

(
ϵP − hA⊤

clPAcl

)
ek + h2

2

∥∥∥∥( k21
k22 − 1

)
Aclek

∥∥∥∥2
+ h2

2 (λ1,k+1 − λ1d,k+1)2

+ h
2

∥∥∥∥( k21
k22 − 1

)
ek

∥∥∥∥2
+ h

2 (λ1,k+1 − λ1d,k+1)2

≤ −he⊤
k

(
ϵP − hA⊤

clPAcl − h
2 A⊤

cl(k2
21 + (k22 − 1)2)Acl − 1

2 (k2
21 + (k22 − 1)2)I2

)
ek

+2h2 + 2h.
(5.43)

It is inferred from (5.43) that for sufficiently small h > 0 and sufficiently large ϵ > 0,
there exists a ball IBr(h)(0) centered at the origin e = 0, with a radius proportional to
h such that Vk+1 − Vk < 0 outside IBr(h)(0). Hence, all trajectories of (5.42) converge
to this ball and remain inside it. Moreover, all the solutions are bounded for bounded
initial data. Thus, the following is proved:

Proposition 5.4.3. Consider the difference inclusion in (5.41), with bounded initial
data. Assume that h > 0, ϵ(k11, k12) > 0, and K are such that

ϵP − hA⊤
clPAcl − h

2A⊤
cl(k2

21 + (k22 − 1)2)Acl − 1
2(k2

21 + (k22 − 1)2)I2 ≻ 0,
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then all trajectories {ek}
k∈IN of the error dynamics in (5.42) are uniformly bounded

and converge asymptotically to a ball IBr(h)(0) with r(h) → 0 as h → 0.

For all k ≥ k⋆, according to Lemma 5.4.1, ũ2,k = 0, so rθ̇k = ud
2d,k(qk, q̇k, tk). Hence,

{θ̇k}k≥k⋆ is a bounded sequence. Additionally, for 0 ≤ k < k⋆, Proposition 5.4.2 ensures
that the sequence is also bounded. Thus, we have proved:

Corollary 5.4.4. Consider the difference inclusion in (5.25) (c) (d) (e), with bounded
initial data. Then, the sequence {θ̇k}k≥0 is uniformly bounded.

Conclusion
In this chapter, frictional oscillators with pulley-belt dynamics are considered, which
present challenges in the trajectory tracking problem. Hence, a new approach based
on the backstepping strategy is proposed for the controller design. The stability anal-
ysis shows that the tracking error is exponentially stable and that the pulley’s angle
dynamics remain bounded. Then, numerical simulations are presented to analyze the
robustness of the proposed approach in the cases of underestimated and overestimated
friction. In addition, the controller design and the stability analysis are studied in
discrete time when using Backward-Euler method for discretization.
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Chapter 6

Conclusions and Perspectives

The purpose of this chapter is to provide a summary of the work presented in this
thesis and to introduce some research perspectives to be tackled in the future.

6.1 Summary of Contributions
This thesis makes contributions by developing theoretical results to solve the trajec-
tory tracking control problem in linear complementarity systems (LCS) and frictional
oscillators. The roles of passivity and maximal monotonicity are crucial in the con-
troller design and stability analysis. The thesis initially focuses on the control design
and the stability analysis of the error dynamics in LCS for several cases, including the
nominal case without state jumps and the case with initial and further state jumps.
These results are extended to address the case with parametric uncertainties, where the
boundedness of the tracking error is proved under the assumption of strong passivity.
This conservative assumption is relaxed under some conditions to strict state passivity,
which is particularly useful for robustness analysis in frictional oscillators.
Numerical applications such as electrical circuits with ideal diodes, mechanical sys-
tems with unilateral springs, and networks with unilateral interactions are provided
with their numerical simulations to illustrate the theoretical developments. There is a
specific focus in this work on electrical circuits with ideal diodes by analyzing their pas-
sivity based on different circuit designs. The numerical simulations are implemented
using siconos platform, which is dedicated to a class of nonsmooth dynamical sys-
tems encompassing those studied in this thesis (namely, complementarity dynamical
systems).
The work in this thesis progresses to deal with the challenges posed by the trajectory
tracking problem in frictional oscillators. The set-valued friction model is refined by
including the Stribeck effect in the model. In this case, a new approach to design the
control is considered, which involves passifying the friction model. This approach allows
us to ensure exponential stability of the tracking error. Then, the backstepping strategy
is implemented to design the controller when the pulley-belt dynamics are included
in frictional oscillators. This strategy guarantees that the tracking error converges
exponentially to zero, where the stability analysis is performed in continuous time and
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discrete time domains.

6.2 Research Perspectives
The results developed in this thesis provide some insights for future research work.
This section explores possible research perspectives for the trajectory tracking problem
in linear complementarity systems and frictional oscillators.

6.2.1 Perspectives in LCS
In the context of LCS, there are several interesting problems that require investigations
and are presented as follows:

• Electrical circuits with ideal diodes are studied as numerical applications in this
thesis. For future work, the diode model could be enhanced to Shockley’s law
model which is more realistic. This model poses new challenges for the trajec-
tory tracking problem, including the robustness analysis of the controller in the
presence of the refined diode model.

• The main focus in this work is on trajectory tracking in LCS, where a desired
state xd is defined to be tracked. A possible extension is to solve the output
tracking problem in LCS, which involves tracking the output (i.e., one of the
complementarity variables) wd = Hxd + Jλd + Lud. This problem could be
tackled through implementing a state feedback u = Kx + ud (see e.g., [127]).

• In this thesis, a critical assumption for the controller design is the availability of
the state x for measurement. Relaxing this assumption opens a possible future
direction, which includes implementing state observers for LCS in the closed-loop
[84, 32].

6.2.2 Perspectives in frictional oscillators
This section provides further extensions to the work developed in this thesis on trajec-
tory tracking control in frictional oscillators, as follows:

• This perspective focuses on extending the strategies developed in our work to
study the trajectory tracking control in frictional oscillators with two-mass sys-
tem. A concise discussion is given below on our preliminary work, including the
dynamics of the system and main observations.
If two masses m1 and m2 are sliding on a belt, connected one to the other with a
linear spring-dashpot, with stiffness k ≥ 0 and viscous friction coefficient f ≥ 0,
then the dynamics is given by the following, where each mass is acted upon by a
force control input ui, i = 1, 2.

(a) q̈1(t) ∈ u1(t)
m1

− k
m1

(q1(t) − q2(t)) − f
m1

(q̇1(t) − q̇2(t)) − µ1g sgn(q̇1(t) − u3(t))

(b) q̈2(t) ∈ u2(t)
m2

− k
m2

(q2(t) − q1(t)) − f
m2

(q̇2(t) − q̇1(t)) − µ2g sgn(q̇2(t) − u3(t)),
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with u3 = rω. The pulley-belt dynamics can be considered similarly as in
Chapter 5. The objective is to control the gravity center of masses, while keeping
the states of the masses (q1, q̇1) and (q2, q̇2) bounded. The dynamics are as follows:

(m1 + m2)q̈c(t) ∈ u1(t) + u2(t) − µ1m1g sgn(q̇1(t) − u3(t)) − µ2m2g sgn(q̇2(t) − u3(t))
(6.1)

Knowing that the sum of two maximal monotone operators is maximal mono-
tone (see [14, Corollary 24.4]), a set-valued term is defined such that Ft(−u3) ∆=
µ1m1g sgn(q̇1(t) − u3) + µ2m2g sgn(q̇2(t) − u3). Thus, an analogy is established
between the dynamics of the gravity center of mass in (6.1) and the dynamics
of frictional oscillator with one mass presented in Chapter 4. Building on this
analogy, the basic idea is to mimic the control strategy developed for the nominal
case in Chapter 4 in order to achieve trajectory tracking for (6.1).

• After addressing the trajectory tracking problem in the two-mass systems, an
interesting future research involves extending the results obtained to frictional
oscillators with n-masses (n-mass systems). This may be related to the control
of the Burridge-Knopoff contact model [67].

• Oscillators with rocking blocks and stacked blocks as shown in Figure 6.1 present
a natural extension of frictional oscillators. It is interesting to study trajectory
tracking control in these systems due to their significant applications in seismol-
ogy and mechanical engineering [151, 74].
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Figure 6.1: Frictional oscillators with (a) rocking block, (b) stacked blocks.
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Appendix A

Useful Mathematical Results

A.1 Transformation of BMI to an LMI
The inequalities in (2.7) and (2.56) are bilinear matrix inequalities(BMIs). In order to
solve these inequalities, the BMI must be reformulated to an LMI (following a classical
technique, e.g., [136, Example 5.5 p.136]). First, the left-hand and the right-hand sides

of (2.7) are multiplied by
(

Q 0
0 I

)
, where Q

∆= P −1, and let N
∆= KQ. It follows that

(
QA⊤ + AQ + N⊤E⊤ + EN + ϵQ B + EG − QC⊤ − N⊤F ⊤

B⊤ + G⊤E⊤ − CQ − FN −D − FG − (D + FG)⊤

)
≼ 0 (A.1)

This LMI is a feasible problem and it is solved in the new variables Q = QT ≻ 0, G,
and N where K = NQ−1.

A.2 Uniform and Ultimate Boundedness
The following Lyapunov-like theorem is for showing uniform boundedness and ultimate
boundedness.
Theorem A.2.1. [88, Theorem 4.18] Let D ⊂ IRn be a domain that contains the origin
and V : [0, ∞) × D → IR be a continuously differentiable function such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥)
∂V

∂t
+ ∂V

∂x

∂x

∂t
≤ −W3(x), ∀∥x∥ ≥ µ > 0

for all t ≥ 0, for all x ∈ D, where α1 and α2 are class K functions and W3(·) is a
continuous positive definite function. Take r > 0 such that Br ⊂ D and suppose that,

µ < α−1
2 (α1(r))

Then, there exists a class KL function β and for every initial state x(t0), satisfying
∥x(t0)∥ ≤ α−1

2 (α1(r)), there exists T > 0 (dependent on x(t0) and µ) such that the
solution satisfies

∥x(t)∥ ≤ α−1
1 (α2(r)), ∀t ≥ t0 + T (A.2)
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Moreover, if D = IRn and α1 belongs to class K∞, then (A.2) holds for any initial state
x(t0), with no restrictions on how large µ is.

A.3 Conditions for Positive (Semi) Definiteness

Lemma A.3.1. [17, Proposition 8.2.4] Consider the matrix M =
(

Q S
S⊤ R

)
. Assume

that Q = Q⊤ and R = R⊤. Then M ≽ 0 if and only if:

1. R ≽ 0,

2. SR†R = S ⇔ Im(S⊤) ⊆ Im(R),

3. Q ≽ SR†S⊤.

The equivalence in item 2 follows from [17, Remark after Fact 6.4.5]. The next lemma
provides some necessary conditions for item 3 to hold.

Lemma A.3.2. Assume that Q = Q⊤ ≽ 0 and R = R⊤ ≽ 0. Then Q ≽ SR†S⊤:

1. ⇒ Im(Q) ⊇ Im(SR†S⊤) ⇐= Im(Q) ⊇ Im(S).

2. ⇒ λi(Q) ≥ λi(SR†S⊤) for all i ∈ {1, . . . , n}, and tr(Q) ≥ tr(SR†S⊤) and
det(Q) ≥ det(SR†S⊤) ≥ 0.

Proof. 1. From [18, Fact 7.17.24], there exists matrices L such that Q = LL⊤ and
N such that SR†S⊤ = NN⊤, since R† is symmetric [17, Proposition 6.1.6]. From
[18, Theorem 10.6.1] it follows that LL⊤ ≽ NN⊤ ⇒ Im(N) ⊆ Im(L). Using [17,
Theorem 2.4.3] we have that Im(N) = Im(NN⊤) and Im(L) = Im(LL⊤). The
first implication is proved. Using [17, Lemma 2.4.1] we have Im(SR†S⊤) ⊆ Im(S).
The second implication is proved.

2. From [18, Theorem 10.4.9, Corollary 10.4.10].

Notice that λi(SR†S⊤) = λi(NN⊤) = σ2
i (N) (because R† ≽ 0), and similarly λi(Q) =

σ2
i (L). The matrix inequality in Lemma A.3.1 item 3 can therefore be transformed into

a singular values inequality, provided the matrices N and L are computed (Cholesky de-
composition [18, Fact 10.10.42], or the Gram matrix decomposition [18, Fact 10.10.41]
can be chosen).
An interesting result follows from [18, Theorem 10.6.2] and the same reasoning as in
the proof of Lemma A.3.2 item 1: there exists α > 0 such that αQ ≽ SR†S⊤ ⇐⇒
Im(Q) ⊇ Im(SR†S⊤). A first step may be to check the ranges inclusion, then to
calculate an α > 0, following the reasoning in the proof of [18, Theorem 10.6.2]:
compute the matrices N and L, compute the matrix T such that N = LT , and compute
α = λmax(TT ⊤). If α ≤ 1 then Lemma A.3.1 item 3 holds true. Following the proof of
[18, Theorem 10.6.2], T can be calculated.
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Let us provide an excerpt of [52, Theorem 2.11], and a corollary of it. Let us recall
that for a given M ∈ IRn×n, ||M ||2,2 is the induced matricial norm such that ||M ||2,2 =
σmax(M) (the largest singular value) [17, Proposition 9.4.9], it is a submultiplicative
norm [17, Corollary 9.4.12].

Theorem A.3.3. [52] Let M ∈ IRn×n be a positive definite matrix. Then every matrix

A ∈ {A ∈ IRn×n |
∣∣∣∣∣∣∣∣(M+M⊤

2

)−1
∣∣∣∣∣∣∣∣

2,2
||M − A||2,2 < 1}

is positive definite.

Corollary A.3.4. [25] Let D = P + N , where D, P and N are n × n real matrices,
and P ≻ 0, not necessarily symmetric. If

||N ||2,2 <
1

∥
(

P +P ⊤

2

)−1
∥2,2

then D ≻ 0.
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Appendix B

Supplementary Mathematical
Developments

B.1 Optimization problem in (1.11) for the example
in section 2.2

In this section, the optimization problem in (1.11) is solved using KKT conditions. In
this case, KKT conditions are necessary and sufficient conditions for the optimal value
because the following optimization problem

x(t+) = argminx∈K
1
2(x − x(t−))⊤P (x − x(t−)).

is convex knowing that P = P ⊤ ≻ 0, x(t) and x(t−) ∈ IR. The optimization problem
is solved for the two systems.

B.1.1 Desired system in (2.23)
It is required to find xd(t+) which is the optimal value to minimize the following

fd(xd) = min 1
2(xd − x−

d )2

s.t. xd ∈ Kd

where P = 1 and Kd = {xd ∈ IR | cxd + u2d(t+) ≥ 0} = {xd ∈ IR | − cxd − u+
2d ≤ 0} .

Let us write the Lagrangian function of the minimization problem

L(xd, µ) = 1
2(xd − x−

d )2 − µ(−cxd − u+
2d)

where µ is the lagrangian multiplier. Let us state KKT conditions to be satisfied:

∂L
∂xd

= 0 ⇔ xd − x−
d + cµ = 0 ⇔ xd = x−

d − cµ

µ(−cxd − u+
2d) = 0 ⇔ µ(c2µ − cx−

d − u+
2d) = 0

µ ≤ 0

−cxd − u+
2d ≤ 0 ⇔ c2µ − cx−

d − u+
2d ≤ 0
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KKT conditions are written in the form of a LCP:
0 ≤ −µ ⊥ −c2µ + cx−

d + u+
2d ≥ 0

The LCP(c2, cx−
d + u+

2d) has a unique solution defined by:

−µ =


0 if cx−

d + u+
2d ≥ 0

−1
c
x−

d − 1
c2 u+

2d if cx−
d + u+

2d < 0
Let us substitute the values of the solution in the KKT condition ∂L

∂xd
= 0 to calculate

xd as follows:

xd =


x−

d if cx−
d + u+

2d ≥ 0

−1
c
u+

2d if cx−
d + u+

2d < 0
(B.1)

B.1.2 Closed-loop system in (2.25)
It is required to find the optimal value x(t+) in order to minimize the following

f(x) = min 1
2(x − x−)2

s.t. x ∈ K
where K = {x ∈ IR | (c + k3)x − k3xd(t+) + u2d(t+) ≥ 0} = {x ∈ IR | − (c + k3)x +
k3xd(t+) − u2d(t+) ≤ 0}. Let us write the Lagrangian function

L(x, µ) = 1
2(x − x−)2 − µ

(
−(c + k3)x + k3x

+
d − u+

2d

)
The necessary and sufficient conditions to be satisfied are the following:

∂L
∂x

= 0 ⇔ x − x− + µ(c + k3) = 0 ⇔ x = x− − µ(c + k3)

µ
(
−(c + k3)x + k3x

+
d − u+

2d

)
= 0 ⇔ µ

(
−(c + k3)x− + µ(c + k3)2 + k3x

+
d − u+

2d

)
= 0

µ ≤ 0

−(c + k3)x + k3x
+
d − u+

2d ≤ 0 ⇔ −(c + k3)x− + µ(c + k3)2 + k3x
+
d − u+

2d = 0
KKT conditions are written in the form of a LCP as:

0 ≤ −µ ⊥ −(c + k3)2µ + (c + k3)x− − k3x
+
d + u+

2d ≥ 0

The LCP
(
(c + k3)2, (c + k3)x− − k3x

+
d + u+

2d

)
has a unique solution defined by:

−µ =


0 if (c + k3)x− − k3x

+
d + u+

2d ≥ 0

− 1
(c+k3)x

− + k3
(c+k3)2 x+

d − 1
(c+k3)2 u+

2d if (c + k3)x− − k3x
+
d + u+

2d < 0

Let us substitute the values of the solution in the KKT condition ∂L
∂x

= 0 to calculate
x as follows:

x =


x− if (c + k3)x− − k3x

+
d + u+

2d ≥ 0

−k3x+
d

−u+
2d

(c+k3) if (c + k3)x− − k3x
+
d + u+

2d < 0
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B.2. Proof of the DI in (2.16)

B.2 Proof of the DI in (2.16)
Let us remind the transformation of an LCP into a differential inclusion of the first-
order sweeping process (FOSwP) with perturbation type, as proposed in [38, 22, 39].
It is assumed that the constraint qualification stated after (2.16) holds true. Recall the
closed-loop system in (2.3) with D = 0 and G = 0 as follows:{

ẋ(t) = (A + EK)x(t) + Bλ(t) − EKxd(t) + Eud(t)
0 ≤ λ(t) ⊥ w(t) = (C + FK)x(t) − FKxd(t) + Fud(t) ≥ 0 (B.2)

As a result of convex analysis, the linear complementarity problem (LCP) is written
in the form of a differential inclusion DI as follows:

0 ≤ w ⊥ λ ≥ 0 ⇔ w ∈ −NIRm

+
(λ) ⇔ λ ∈ −NIRm

+
(w)

By applying this property to the LCP in (B.2), then

λ(t) ∈ −NIRm

+
((C + FK)x(t) − FKxd(t) + Fud(t)) ⇔ λ(t) ∈ −NS(t) ((C + FK)x(t))

where S(t) =
{
v ∈ IRm

+ | v − FKxd(t) + Fud(t) ∈ IRm
+

}
. Given that the quadruple of

the closed-loop system (A+EK, B, C+FK, 0) is strictly passive, then PB = (C+FK)⊤

for some P = P ⊤ ≻ 0. The closed-loop system in (B.2) is written as DI:

ẋ ∈ (A + EK)x(t) − BNS(t) ((C + FK)x(t)) − EKxd(t) + Eud(t) (B.3)

Let R2 = P such that R = R⊤ ≻ 0 and ζ = Rx, then the DI in (B.3) is written as:

ζ̇(t) = Rẋ(t) ∈ R(A+EK)R−1ζ(t)−RBNS(t)
(
(C + FK)R−1ζ(t)

)
−REKxd(t)+REud(t)

(B.4)
But

RB = R−1PB = R−1(C + FK)⊤

By using the following property from the convex analysis (the chain rule):

M⊤NS(t)(Mx) = Nϕ(t)(x)

where ϕ(t) = {z | Mz ∈ S(t)}. Then,

R−1(C + FK)⊤NS(t)
(
(C + FK)R−1ζ(t)

)
= Nϕ(t)(ζ(t))

where ϕ(t) = {Rx | (C + FK)x(t) ∈ S(t)}. Thus, the differential inclusion DI in (B.4)
is written as follows:

ζ̇ ∈ R(A + EK)R−1ζ(t) + R (−EKxd(t) + Eud(t)) − Nϕ(t)(ζ(t))
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Appendix C

Numerical Simulations and
Computations

C.1 Numerical Simulations with SICONOS

siconos is an open-source software that aims to provide objects and functions for
modeling and simulating Non-smooth Dynamical Systems (NSDS). Dynamical sys-
tems with non-smooth time evolution are called NSDS and they have a large field of
applications such as mechanical systems, electrical circuits, and robotics. The user
can build simulations with siconos using C++ programs or Python scripts. The two
main points of any siconos simulation is to build the Model that describes the NSDS
and then to define the simulation strategy to be used in order to simulate it during
a given period of time. Thus, a good understanding of the structure of siconos is
necessary to build and simulate a non-smooth problem. In the following, a concise
description is provided about the main steps required to model and simulate LCS in
(1.1), as performed in this thesis.

C.1.1 Modelling
Consider the LCS in (1.1), then the first step is to define the Model. Our system is
defined by a class inherited from the DynamicalSystem class, represented as follows:

FirstOrderLinearTIDS. This class describes the first order linear time-invariant
dynamical system as:

Mẋ(t) = Ax(t) + b + r

with M is n×n for n−dimensional system, b is the exogeneous input and r is the input
due to the non-smooth behaviour. The matrix M is considered an identity matrix by
default.
The simulations of the electrical circuits, the unilateral network, and the mechanical
frictional oscillator with Coulomb friction fit in this formalism in Chapter 3 and sections
4.4.3 and 4.5.3 in Chapter 4. The corresponding part of the code:
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C.1. Numerical Simulations with SICONOS

class my_dynamics ( sk . FirstOrderLinearTIDS ) :
ndof = # number o f s t a t e s
x0 = np . z e r o s ( ndof ) #the i n i t i a l s t a t e
A = np . z e r o s ( ( ndof , ndof ) ) #i n i t i a l i z e the matrix A
b0 = np . z e r o s ( ndof ) #i n i t i a l i z e the v e c t o r b0

def __init__ ( s e l f ) :
super ( ) . __init__ ( s e l f . x0 , s e l f .A, s e l f . b0 )

# A i s empty and w i l l be updated at each time s t e p with a c a l l to computeA .
def computeA ( s e l f , time ) :

# Define the matrix A here

def computeb ( s e l f , time ) :

# Define b ∆= Eud in t h i s func t i on

It is important to note that the vector r defines the non-smooth relation in the dynam-
ical system which corresponds to Bλ in our LCS and is defined later in the relation.
The numerical simulation implemented for the Stribeck effect in section 4.6 uses a
different class for modeling which is defined as:

FirstOrderNonLinearDS. This class describes the nonlinear first order dynamical
system as:

Mẋ(t) = f(t, x(t), z) + r

where f(t, x, z) is the smooth vector field and z ∈ IRs is a set of discrete states, and
it is taken to be zero in our work. To simulate this type of system, the Jacobian
∇xf(t, x, z) must be provided explicitly in the code. More information is given in the
documentation 1 about modeling NSDS under the class DynamicalSystem in siconos.

The second part for modeling in siconos is the interaction. The object Interaction
describes the link between dynamical systems and it is composed of the Relation and
the NonSmoothLaw which will be illustrated below. The class Relation is introduced
to define the mapping between these local variables. In this thesis, we mainly used the
following class:

FirstOrderLinearR. First order linear and time invariant relations:

y = C(t, z)x + D(t, z)λ + e(t)
r = B(t, z)λ

where C, D and B represent the same matrices as in the LCS (1.1). The vector e is
considered as the exogeneous input to the signal Fud.

1https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/users_guide/dynamical_systems.html

167

https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/users_guide/dynamical_systems.html


Chapter C. Numerical Simulations and Computations

class my_relation ( sk . FirstOrderLinearR ) :
# There i s a fu nc t i on de f ined c a l l e d compute_K0G0 ()
#t h a t s o l v e s the LMI and re turns
#the v a l u e s o f the c o n t r o l ga ins K_0 and G_0
def __init__ ( s e l f , K_0, G_0) :

# I n i t i a l i z e opera tors
C = np . z e r o s ( ( , ) ) # Define dimensions f o r C

D = np . z e r o s ( ( , ) ) # Define dimensions f o r D

B = np . z e r o s ( ( , ) ) # Define dimensions f o r B

e = np . z e r o s ( ( ) ) # Define dimensions f o r e

# I n i t i a l i z e r e l a t i o n with opera tors
super ( my_relation , s e l f ) . __init__ (C, B)

# Set p o i n t e r s f o r D and e
s e l f . setDPtr (D)
s e l f . s e t e P t r ( e )

def computeC ( s e l f , time , z , C) :
# Define matrix C here

def computeB ( s e l f , time , z , B) :
# Define matrix B here

def computeD ( s e l f , time , z , D) :
# Define matrix D here

def computee ( s e l f , time , z , e ) :
# Define F ud here

#Define the output y due to the non−smooth behaviour
def computeh ( s e l f , time , x , l l , z , y ) :

s e l f . computeC ( time , z , s e l f .C( ) )
np . matmul ( s e l f .C( ) , x , y )
s e l f . computeD ( time , z , s e l f .D( ) )
s e l f . computee ( time , z , s e l f . e ( ) )
y [ . . . ] += np . matmul ( s e l f .D( ) , l l ) + s e l f . e ( )

#Define the input r due to the non−smooth behaviour
def computeg ( s e l f , time , l l , z , r ) :

s e l f . computeB ( time , z , s e l f .B( ) )
r [ . . . ] += np . matmul ( s e l f .B( ) , l l )

For the simulation of frictional oscillator in the presence on Stribeck effect in section
4.6, another relation is used:

FirstOrderNonLinearR. This is the standard first order nonlinear relation:

y = h(t, x, λ, z)
r = g(t, λ, x, z)

In this case, the functions h and g and their jacobians according to x and λ (i.e.,
∇xh, ∇λh, ∇xg and ∇λg are explicitly defined with some plug-in functions. More
information about the class Relations is given in the documentation 2 for siconos.
In the final step of modeling, it is required to define your non-smooth law which
describes the mapping between y and λ. In our simulation, the non-smooth law is
defined by the complementarity problem in (1.1)(b). In siconos, it is defined by the
class:

2https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/users_guide/relations.html
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ComplementarityConditionNSL. It is a class which models the following comple-
mentarity conditions:

0 ≤ y ⊥ λ ≥ 0
The corresponding code is given by

# Create i n t e r a c t i o n s
r e l a t i o n = ex . my_relation (K_0, G_0)

# Declare a nonsmooth law .
# I t s s i z e must match the s i z e o f the system ,
# d e f i n i n g the c o n s t r a i n t s
# i . e . , the l e n g t h o f y and lambda v e c t o r s o f the r e l a t i o n .
nslaw = sk . ComplementarityConditionNSL (2)
i n t e r = sk . I n t e r a c t i o n ( nslaw , r e l a t i o n )

C.1.2 Integration of the Dynamics
In this section, the Moreau-Jean’s time stepping scheme used to integrate the dynamics
over a time-step is presented. This method involves the time-discretization of the entire
system including the dynamics, the relations, and the non-smooth law. The integration
of the ODE of the first order nonlinear system over the interval [tk, tk+1] results in:∫ tk+1

tk

ẋdt =
∫ tk+1

tk

f(t, x, z)dt +
∫ tk+1

tk

rdt

The left-hand side is equivalent to xk+1 − xk and the terms in the right-hand side are
approximated using θ-method, specifically implicit Euler method, as follows:∫ tk+1

tk
f(t, x, z)dt ≈ hθf(tk+1, xk+1, z) + h(1 − θ)f(tk, xk, z)

≈ hθfk+1 + h(1 − θ)fk

where θ ∈ [0, 1], and the other approximation is∫ tk+1

tk

rdt ≈ hrk+1

This discretization scheme is applied directly to the ODE presented in the LCS in (1.1)
and gives the following:

xk+1 − xk = hθAxk+1 + hA(1 − θ)xk + hBλk+1 + hEθuk+1 + hE(1 − θ)uk

Assume that W
∆= (1 − hAθ) which is invertible, then

xk+1 = xk + hW −1Axk + hW −1Bλk+1 + hEW −1 (θuk+1 + (1 − θ)uk)

The non-smooth law is discretized as follows:

0 ≤ yk+1 ⊥ λk+1 ≥ 0

which is equivalent to
0 ≤ Mλk+1 + qk+1 ⊥ λk+1 ≥ 0 (C.1)
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The LCP in (1.1)(b) approximated according to this time-stepping scheme as:

0 ≤ Cxk+1 + Dλk+1 + Fuk+1 ⊥ λk+1 ≥ 0

which fits with the LCP given by (C.1) after substituting xk+1 obtained before with

M = hCW −1B + D
qk+1 = CW −1(1 + hA)xk + hEW −1C (θuk+1 + (1 − θ)uk) + Fuk+1

C.2 Numerical computation of state-jump times in
(3.25)

Let us check numerically that the state jumps and the state-jump times are independent
of the matrix solution of the passivity LMI, as predicted by theoretical arguments [44,
38, 76]. It is also shown in [76] that the event-capturing time-stepping Moreau-Jean
scheme that is implemented in the siconos software package, does approximate this
state-jump rule. Hence the numerical results obtained from siconos can be taken as
the correct state-jump times when the chosen time-step is small enough.

For the desired system:

Knowing that at the time of discontinuity t = 1, the values of the desired state from
simulation in Figure 3.18 at t = 1− is given by the numerical solver siconos as follows:

xd(1−) =


3.4615397
−1.832126
0.238885
2.91881



In order to calculate the values of the states at t = 1+, the optimization problem in
(1.11) is solved using mosek solver with P = Pd which is the solution of the LMI for
the passivity of the desired system in (1.8). We solved the optimization problem for
different values of the solution Pd (i.e., the solution Pd is not unique). The results is
obtained below:
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Values of Pd Values of xd(1+)

Pd1 = 1.2165869 1.1915869 0 −1.1915867
1.1915869 1.2165866 0 −1.191587

0 0 0.02499 0
−1.1915867 −1.191587 0 1.2165868


3.4615397

−1.832121
10

2.91881



Pd2 =0.9388826 0.9138827 0 −0.9138835
0.9138827 0.9388826 0 −0.9138835

0 0 0.024999 0
0.9138835 −0.9138835 0 0.9388818


3.4615397

−1.832126
10

2.91881



Pd3 =

 0.016668 −0.008336 0 0.008332
−0.008336 0.016673 0 0.008336

0 0 0.025 0
0.008332 0.008336 0 0.016668

 3.4615397
−1.832126

10
2.91881



It is noteworthy that the different values Pd1, Pd2 and Pd3 comes from solving the
BMI in (1.8), after being transformed into LMI as in Appendix A.1, using mosek,
cvxopt and scs solvers respectively. The numerical solver siconos computes the

jump automatically and gives xd(1+) =


3.499868

−1.798264
10

2.932387

 when the time step h = 0.001

as well as xd(1+) =


3.466

−1.834
10

2.92

 when the time step h = 0.00001.

For the closed-loop system:

At the time of discontinuity t = 1, the value of the closed-loop state is given by:

x(1−) =


3.391813
−2.0267
0.723447
3.42975



The value of the state jump is the solution of the optimization problem in (1.11). The
table below shows the values of x(1+) for different value of the storage function matrix
P being the solution of BMI in (2.6) for strict passivity.
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Chapter C. Numerical Simulations and Computations

Values of P Values of x(1+)

P1 =

 0.029 0.001 −0.006 −0.004
0.001 0.033 0.016 0.001

−0.006 0.016 0.032 0.01
−0.004 0.001 0.01 0.0304

 3.397125
−2.0267
9.9417
3.431



P2 = 0.04589 0.006245 −0.005963 −0.006264
0.006245 0.03969 0.015618 −0.001698

−0.005963 0.015618 0.032439 0.009719
−0.006264 −0.001698 0.009719 0.034227


 3.3952

−2.0269
9.9415
3.431



P3 =

 0.03844 0.00339 −0.00596 −0.00489
0.00399 0.03742 0.01562 0

−0.005963 0.015618 0.032439 0.009719
−0.00489 0 0.009719 0.03262

  3.3958
−2.0268
9.9415
3.431



The numerical solver siconos computes the jump automatically and gives x(1+) =
3.4299

−1.9915
9.9262
3.4462

 when the time step h = 0.001 as well as x(1+) =


3.3986
−2.029

9.93
3.4233

 when the time

step h = 0.00001.
According to the results shown above, the value of the jump in the desired state and
closed-loop state xd and x respectively given by siconos converges to the value of
the jump which is the solution of the optimization problem in (1.11) as the time step
h → 0 [76, Definition 8].
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Appendix D

Electrical Circuits’ Dynamics

Let us recall some useful mathematical relations between the voltage V and the current
i of the electrical components R, C and L as follows:

• For the resistor, let us recall Ohm’s Law: VR = RiR where R is the resistance of
the resistor.

• For the capacitor, we have the relations: QC = CVC where C is the capacitance
and QC is the charge on the capacitor and Q̇C = iC

• For the inductor, the relation is VL = LdiL
dt

where L is the inductance of the
inductor.

Circuit in Figure 3.1

Recall that the state x1 is the charge on the capacitor and the state x2 is the current
passing through the inductor. By applying KVL (Kirchhoff’s Voltage Law) we can
write the following equations:

−u + VC − VL = 0 ⇔ −u + x1

C
− Lẋ2 = 0 ⇔ ẋ2 = 1

LC
x1 − u

L

−VC − VR + w = 0 ⇔ −x1

C
− Rλ + w = 0 ⇔ w = x1

C
+ Rλ

Let us apply KCL (Kirchhoff’s Current Law) at the point of connection between the
capacitor C and the voltage source u, then:

iC + iL = iR ⇔ ẋ1 + x2 = λ ⇔ ẋ1 = −x2 + λ

The equations derived, along with the complementarity relation (i.e., 0 ≤ λ ⊥ w ≥ 0),
are consistent with the LCS in (3.1).
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Chapter D. Electrical Circuits’ Dynamics

Circuit in Figure 3.7
Recall that the state x1 is the charge on the capacitor and the state x2 is the current
passing through the inductor. By applying KVL for the lower loop of the circuit, then:

VR = VL + u2

Now, let us apply KVL for the upper loop of the circuit, then:

u1 + VC − λ + VR = 0 ⇔ u1 + VC − λ + VL + u2 = 0

⇔ Lẋ2 = −x1
C + λ − u1 − u2

By applying KCL at any node, then:

iC = iR + iL ⇔ ẋ1 = − x1

RC
+ x2 + λ

R
− u1

R

Given from the circuit that iC = w, then we can have the equation of the complemen-
taity variable. Thus, the dynamics of the LCS in (3.7) are recovered.

Circuit in Figure 3.12
Recall that the states x1, x2, x3 and x4 are the voltages across the capacitors C1, C2,
C3 and C4 respectively, and that C1 = C2 = C3 = C4 = C.
The current passing through C1 is Cẋ1 where Cẋ1 = i1 = λ1. Let us apply KCL on
the node connection the two resistors R and C4, then:

i1 = i4 + iR ⇔ λ1 = Cẋ4 + VR

R

Given that: VR = x1 + x2 + x3 by applying KVL on the second (i.e., right-handed)
loop, hence:

Cẋ4 = −x1 − x2 − x3

R
+ λ1

Now, let us apply KCL on the node that connects between C1, C2, and C4, then:

i4 = i1 + i2 ⇔ Cẋ4 = λ1 + Cẋ2

By substituting the dynamics of x4, the dynamics of x2 is written as:

Cẋ2 = −x2 − x3 − x4

R

Let us apply KCL again on the node connecting C2, C3, and the second diode, the
dynamics of x3 are obtained as follows:

i2 + λ2 = i3 ⇔ Cẋ3 = −x2 − x3 − x4

R
+ λ2
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For the LCP, the capacitor C3 is connected in parallel with the second diode, hence

w2 = x3

By applying KVL on the first (i.e., left-handed) loop, thus:

VR − u − w1 + VC1 + VC4 = 0 ⇔ w1 = Rλ1 − u + x1 + x4

The dynamics derived, along with the complementarity equations which satisfy 0 ≤
λ ⊥ w ≥ 0, allows us to write the LCS in (3.16).

Circuit in Figure 3.19
Recall that x1 is the current passing through the inductor L, x2 is the voltage across the
capacitor C1, x3 is the voltage across the capacitor C2, λ(t) ∆= (iDF 1, iDR1, −vDF 2, iDR2)⊤,
and w(t) ∆= (−vDF 1, −vDR1, iDF 2, −vDR2)⊤.
By applying KVL in the LC loop, we have: VC1 = VL, then x2 = Lẋ1. Given that
iR = VR

R = x3
R , let us apply KCL at the node connecting DF1 , DR1 and the output load,

then:
iDR1

+ iDF1
= iR + iC2 ⇔ C2ẋ3 = λ1 + λ2 − x3

R
Another KCL is applied at the node connecting DF2 , DR2 with the output load, hence:

iDR2
+ iDF2

= iR + iC2 ⇔ w3 + λ4 = λ1 + λ2

In order to derive the dynamics of x2, let us apply KCL at the node connecting DF2 ,
DR1 and the input load, then:

iDR1
= iDF2

+ iL + iC1 ⇔ C1ẋ2 = −x1 − w3 + λ2 ⇔ C1ẋ2 = −x1 − λ1 + λ4

If we apply KVL in the loop of DF2 , DR1 and C2, then: w2 = x3 − λ3. Another KVL
in the loop of C1, u, DF1 , and DR1 , the following is derived:

VC1 + w1 − w2 + u = 0 ⇔ w1 = −x2 + x3 − λ3 − u

For the equation of w4, let us apply KVL in the loop of DF1 , DR2 , and C2, then:
w4 = λ3 + x2 + u.
From the dynamics derived above, and the equations of the complementarity variables
that satisfy 0 ≤ λ ⊥ w ≥ 0, the LCS in (3.30) is obtained.
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