
HAL Id: tel-04753066
https://hal.science/tel-04753066v1

Submitted on 25 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Design Automation and Multi-Objective Optimizations
for High-Performance Embedded Software

Karol Desnos

To cite this version:
Karol Desnos. Design Automation and Multi-Objective Optimizations for High-Performance Embed-
ded Software. Signal and Image Processing. Université de Rennes, 2024. �tel-04753066�

https://hal.science/tel-04753066v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

HABILITATION À DIRIGER
DES RECHERCHES

Délivrée par l’Université de Rennes
Spécialité : Traitement du Signal et de l’Image

Design Automation and
Multi-Objective Optimizations for
High-Performance Embedded Software

Par

Karol DESNOS

Présentée et soutenue à l’INSA Rennes, le 25.06.2024
Unité de recherche : Institut d’Électronique et des Technologies du numéRique (IETR)

Rapporteu·r·se·s avant soutenance :

Abdoulaye GAMATIÉ Directeur de Recherche CNRS, LIRMM, Montpellier
Tanguy RISSET Professeur des Universités, CITI, INSA Lyon, Villeurbanne
Marilyn WOLF Professor, University of Nebraska, Lincoln, US

Composition du Jury :

Président : Guy GOGNIAT Professeur des Universités, Lab-STICC, Université Bretagne Sud, Lorient
Examinateurs : Dominique GINHAC Professeur des Universités, ICB, Université de Bourgogne, Dijon
Garant d’HDR : Christophe MOY Professeur des Universités, IETR, Université de Rennes, Rennes

Oh wow! Much thanks, very grateful,
so recognizing, very appreciative, how
acknowledging.

Acknowledgments

As we all know, this section is likely the one with the highest chance of being read after
the habilitation defense. For this reason, I apologize in advance for the length of this
section, but I have at heart to take this opportunity to thank all the people with whom
I have had the privilege of working with (and living with) over the past 10 years.

First of all, I’d like to thank all the members of my habilitation jury, starting with
Abdoulaye Gamatié, Tanguy Risset, and Marilyn Wolf. Thank you for taking the
time to read this manuscript, and thank you for your insightful reports. Thanks also to
Guy Gogniat and Dominique Ginhac for participating in the defense, and for taking
the risk of being appointed by the university as a reviewer. Finally, special thanks to
Christophe Moy for accepting the role of guarantor for this habilitation. Thank you for
guiding me through the university administrative process, for helping me find the jury,
and for proofreading the manuscript before submission. Thanks to all members of the
jury for their participation in the defense and for the stimulating scientific discussions
thereafter.

This work would not be possible without all the colleagues of the vaader research
team. In particular, I would like to express my gratitude to all the Ph.D. students:
Julien Hascoët, Hamza Deroui, Justine Bonnot, Alexandre Honorat, Florian Ar-
restier, Alban Marie, Mewe-Hezoudah Kahanam, Ophélie Renaud, Alice Chillet,
Quentin Vacher and Paul Allaire. I must humbly say that this work is yours be-
fore it is mine, and thank you for all that I have learned and am learning as I do my
best to accompany you on the bumpy road of your doctoral studies. Thanks also to all
the Vaader’s directors and co-supervisors for these PhDs, with whom it was a plea-
sure to work closely, even when it meant censoring wildly out-of-control brainstorming
sessions: Daniel Menard, Jean-François Nezan, Maxime Pelcat, Mickaël Dardail-
lon, Nicolas Beuve, Thibaut Marty, Luce Morin, and Lu Zhang. Thanks also to the
extra-Vaader co-supervisors for these PhDs: Alix Munier-Kordon, Eduardo Juarez,
Matthieu Gautier, Robin Gerzaguet, and Guillaume Fortier. Many thanks also

iii

to the research engineers, postdocs, or graduate students in the team with whom I have
worked over the past 10 years: Clément Guy, Antoine Morvan, Alexandre Mercat,
Nicolas Sourbier, Julien Heulot, and Hugo Miomandre. Although I cannot name
them all for fear of adding another 100 pages to this manuscript, I would like to thank
all the interns, masters, and InnovR students for their hard work, as well as the other
members of the Vaader team for the stimulating work environment.

Many people from INSA Rennes and the IETR laboratory also deserve their share
of gratitude. Although not strongly reflected in this manuscript, teaching collaborations
should not be forgotten, especially with Muriel Pressigout, Marie Babel, Bruno Ar-
naldi, and François Pasteau. No collaborative project, conference participation, PhD
defense, or daily work would be possible without the administrative support of Corinne
Calo, Jocelyne Tremier, Isabelle Eveillard, Christèle Duhoux, Patricia Soufflet,
Cécile Rocuet and Pierre Corvec of the 2PE platform, as well as the INSA Research
Support Office and INSA services in general. Special thanks also to Frédéric Garesché,
Laurent Guillaume and Jérémy Dossin for their unfailing IT support.

Over the past 10 years, I have had the opportunity to work with many wonderful
French colleagues, both from academia and industry: Kevin Martin, Nicolas Gac,
Andrea Enrici, Jocelyn Sérot, Sébastien Le Nours, Ruben Salvador, Slaheddine
Aridhi, Olivier Gesny, Erwan Raffin, and Erwan Nogues. One of the benefits
of being a researcher is that you get to meet amazing people who work all over the
world, including: Francesca Palumbo from UNISS, the tireless UPM teams with Fer-
nando Pescador, Miguel Chavarrías, Cesar Sanz, Eduardo de la Torre, and Al-
fonso Rodriguez; Jeronimo Castrillon from TUD, Johan Lilius from Åbo Akademi,
John McAllister from QUB, Tomasz Kryjak and Hubert Szolc from AGH, Stephen
Kelly from McMaster University, and Adam Deller from Swinburne University. This
paragraph would not be complete without extending a few thanks to (most of) the part-
ners of the Cerbero project, and especially to the great graduate students who brought
life to this EU project: Raquel Lazcano-Lopez, Daniel Madroñal, Tiziana Fanni,
Claudio Rubattu and Leonardo Suriano.

A few additional words of thanks to the unknowing contributors to this manuscript.
Thanks to Deepl Write for advising on the style of this manuscript. Thanks to my
physiotherapist Aurore Garrau-Gauzins for helping me realign my vertebrae in order
to finish writing this manuscript. Thanks to my colleagues who participate in our Friday
board game sessions for backstabbing me so I can get back to writing faster. And
thanks to the organizers of HellFest Open Air for making sure I got my annual dose of
intravenous heavy metal fun.

iv

To conclude this section, I would like to thank my primary supporters for the past
36 years: my parents, grandparents, sister and brother. Thank you for your love, thank
you for always being there and for raising me. Thanks also to my in-laws for welcoming
me and making me a part of the Martial family.

Thanks to the three little monsters, Loreleï, Azaël and Maëline, for stealing 90% of
my free time. Thank you for bringing so much love, fun, joy and sleep deprivation into
my life.

Last but exact opposite of least, thank you Pauline for sharing my life for the last
<insert-valid-count> years. I’m sorry I didn’t get you a ring the day of this defense,
I hope you’ll forgive me someday. Thank you for enduring me, thank you for gifting
me with these three wonderful children, thank you for sharing all the good (and bad)
moments by my side, thank you for being you, always. I could not have hoped for a
better partner in life. [114]

v

Contents

Acknowledgements iii

1 Introduction: Research Activities Context and History 1
1.1 Embedded System Design Context . 2

1.1.1 Embedded systems . 2
1.1.2 Trends in Embedded Computing Systems 4

1.2 From Multi-core Programming to Many-Facet System-of-Systems Opti-
mization . 8
1.2.1 Career Starting Point: Focus of the PhD Thesis 8
1.2.2 Tackled Research Challenges . 9

1.3 Research Activities History: Research Projects and Supervised Students . 13
1.3.1 Supervised PhDs . 14
1.3.2 Collaborative projects . 15

1.4 Manuscript organization . 18

2 Embedded Parallel Software Synthesis with Dataflow Models of Com-
putations 19
2.1 Dataflow-Based Programming in Modern Computing Systems 20

2.1.1 Dataflow Models of Computation (MoCs) 21
2.1.2 Dataflow Computer Aided Design (CAD) flow 24

2.2 Dataflow Model Extensions . 26
2.2.1 Contributions overview . 26
2.2.2 Persistent States and Initialization in Hierarchical Dataflow MoCs 29

2.3 Model-based front-end optimizations and analysis 32
2.3.1 Contributions overview . 32
2.3.2 Actor Clustering for Controlled Task Granularity 33

2.4 Model-based Design Space Exploration (DSE) 37

vii

CONTENTS

2.4.1 Contributions overview . 37
2.4.2 Multi-criteria Optimization of Algorithmic Design Choices with

Moldable Parameters . 38
2.5 Summary . 41

3 Resilience of Signal Processing Systems to Approximations 43
3.1 Introduction to Approximate Computing 44

3.1.1 Why is it Often Preferable to Make (small) Errors? 44
3.1.2 Approximation Opportunities and Trade-offs 45
3.1.3 Research Challenges for Approximate Computing 47

3.2 Fast Error Characterization for Approximate Computing Systems 48
3.2.1 Circuit-Level Error Characterization with Inferential Statistics . . 48
3.2.2 System-Level Error Characterization with Kriging 52

3.3 Lossy Image Compression for Machine-to-Machine Communications . . . 54
3.3.1 Challenges and Opportunities for Machine-to-Machine Image Com-

munications in the AI Era . 54
3.3.2 Enhancing AI Resilience to Lossy Compression Artifacts 56
3.3.3 Towards Exploitation of the Resilience of AIs to Lossy Compres-

sion to Lower Compressed Image Bitrates 58
3.4 Summary . 60

4 Low-Complexity Reinforcement Learning with Tangled Program Graphs 61
4.1 Introduction to Tangled Program Graphs 62
4.2 Acceleration of Tangled Program Graph Training with Deterministic Par-

allelization . 66
4.2.1 Motivations for Deterministic Parallelism in Tangled Program Graph

(TPG) training. 66
4.2.2 Deterministic and Scalable Parallel TPG training 67
4.2.3 Evaluation of TPG Training Parallelization 69

4.3 Ultra-Fast Inference of Tangled Program Graphs through C Code Gener-
ation . 70
4.3.1 Motivations and Opportunities for Inference Acceleration 70
4.3.2 C Code Generation for TPG Inference 71
4.3.3 Evaluation of Generated Inference Code 72

4.4 Additional Contributions on TPGs . 73
4.5 Summary . 74

viii

CONTENTS

5 Research Perspectives 75
5.1 Perspectives in Model-Based High-Performance Embedded System Pro-

gramming . 75
5.1.1 Dataflow Programming for Radio Astronomy HPC (High-Performance

Computing) . 76
5.1.2 Multi-Objective Co-Design Space Exploration with Moldable Data-

flow MoCs . 77
5.1.3 Long-Term Perspectives and Challenges in Model-Based Program-

ming . 78
5.2 Perspectives in Approximate Computing 79

5.2.1 Source-to-Source Optimization of Data Types and SIMD Instruc-
tions . 79

5.2.2 Global Optimization of Video Coding for Machines (VCM) Systems 79
5.3 Perspectives in Ultra-Lightweight Artificial Intelligence (AI) for Embed-

ded Systems . 81
5.3.1 Full-Stack Optimization for Ultra-Low Power AIs 81
5.3.2 Perspectives of Design Automation for Frugal and Embedded AI . 81

5.4 Conclusion . 82

List of Figures 87

List of Tables 89

Personal Publications 91

Bibliography 101

ix

Pika Pika! Piiiikaaaachuuuuu!

Pikachu, Pallet town

Chapter 1

Introduction: Research Activities
Context and History

The present habilitation (French: Habilitation à Diriger des Recherches (HDR)) ma-
nuscript synthesizes the research objectives pursued in the 10 years following my PhD
defense, back in fall 2014. The research presented in this manuscript covers the work
achieved in the three positions held during this period of time:

• 09.2014 - 08.2015: Assistant Professor (French: Attaché Temporaire d’Enseignement
et de Recherche (ATER)) at INSA Rennes,

• 09.2015 - 11.2015: Research Engineer at INSA Rennes,

• Since 12.2015: Associate Professor (French: Maître de Conférences) at INSA Rennes.

All three positions were held with a joint research appointment in the IETR (Institut
d’Electronique et des Technologies du numéRique) laboratory, UMR6164 of the CNRS,
as a member of the Vaader (Video Analysis and Architecture Design for Embedded
Resources) research team.

This chapter is organized as follows: Section 1.1 introduces the scientific and tech-
nological context of this manuscript, and Section 1.2 gives an overview of the scientific
challenges tackled in my work. Then, as research work generally is the result of collab-
orative efforts, Section 1.3 gives an overview of my research collaborations, covering the
history of PhD supervisions and participation to research projects.

1

Chapter 1 – Introduction: Research Activities Context and History

1.1 Embedded System Design Context

1.1.1 Embedded systems

The design and optimization of high-performance embedded computing systems is a
complex task which constantly requires pushing back the frontiers of scientific and tech-
nological knowledge in many domains. By definition, an embedded computing system is
the combination of a computing infrastructure, called hardware, which executes compu-
tations of a given application, called software.

Embedded systems are generally dedicated to providing a well-specified service with
a great efficiency, as opposed to general-purpose computing systems that can serve many
purposes, but with poor efficiency. Hence, the design of embedded system is a highly
complex task due to the duality between hardware and software concerns, and due to
the tight constraints imposed by the service to be provided. In addition to this intrinsic
design complexity, new technologies, societal needs, and innovations constantly drive
the need for new design techniques, both for hardware and software, and require the
consideration of new design constraints.

The hardware and software stack
This simplistic dual view of a computing system can be supplemented and refined with
several other layers to form a so-called stack. Figure 1.1 illustrates the various layers of
the complete hardware and software stack considered in this work. The basic principles
of each layer are detailed hereafter:

• Domain-specific layer: At the top of the stack, the highest level of abstraction pro-
vides domain-specific languages and tools to developers. This high-level layer takes
the form of Application Programming Interfaces (APIs), which provide developers
with software primitives for interacting with the underlying layers. These APIs are
typically associated with highly optimized full-stack implementations, allowing devel-
opers to take full advantage of the computing capabilities of the system. The main
advantage of these APIs is that they can be used by domain experts who may have
limited knowledge of the underlying layers of the system stack. Examples of such
domain-specific APIs include TensorFlow for deep-learning algorithms [2], DALiuGE
for radio-astronomy applications [108], and GNU Radio for software defined radio
applications [10].

• Generalist Programming Methods: The main layer of the software part of the
stack gathers languages, models, and tools that can be used to program and optimize

2

1.1. Embedded System Design Context

Domain-Specific High-Level
Abstraction Layer

Generalist Programming
Methods

Middleware

Abstracted Hardware

Software

Hardware

Domain-Specific languages
Domain-Specific libraries
Adaptable algorithms

Programming languages
Models of computations

Operating systems
Compilers (including Just-In-Time)
Runtime managers

Instruction sets
Models of Architecture
Soft-processors

Computing Substrate

Hardware resources:
processing, communication,
memory, reconfigurable logic

Architecture organisation

Figure 1.1: A personal view of the hardware and software stack

many types of systems and applications. Models of Computation (MoCs) [88] formal-
ize the mathematically-grounded semantics that can be used to describe the behavior
of a system. Based on this model-based description, key properties of a system can be
guaranteed, either by construction or by exploiting the mathematical formalism asso-
ciated with the model used. For example, a MoC may help guarantee the absence of
deadlock while supporting parallel computation, or may enable the specification and
verification of real-time properties. Programming languages implement one or several
MoCs, which they expose to the programmer through their syntax and grammar. Al-
though MoCs are hardware-agnostic, programming languages are generally dedicated
to a certain type of hardware, through a compiler tool-chain. For example, Python
is used for the programming of General Purpose Processorss (GPPs), while Verilog
is used for the description of hardware. However both languages may implement the
finite-state machine MoC.

• Middleware: At the frontier between hardware and software, the middleware layer
provides necessary services for the deployment of software on hardware. On the soft-
ware side, the middleware layer offers low-level services that relieve upper layers of the
software stack from hardware concerns. For instance, operating systems or runtime
managers automatically schedule and map the software threads on available cores of

3

Chapter 1 – Introduction: Research Activities Context and History

the architecture. On the hardware side, certain software may require additional hard-
ware components to be deployed on a computing architecture. For example, memory
management units are necessary for deploying complex operating systems like Linux.

• Abstracted Hardware: When co-designing an embedded system, manipulating
high-level abstractions of the hardware and software components eases the Design
Space Exploration (DSE). Therefore, high-level hardware models are used to capture
key properties and characteristics of the hardware without the complexity needed to
actually build the hardware. For example, coarse Models of Architecture (MoAs)
can be used to describe an architecture and predict with a high fidelity the energy
consumption of deployed software [J12]. Another example of hardware abstraction is
the description of a processor through its instruction set, which suffices to compile a
piece of software into optimized assembly code.

• Computing substrate: The actual hardware components used to build an architec-
ture constitute the lower level of the stack considered in this work. Each processing,
memory, and communication component integrated within a computing substrate is
by itself a whole research domain, well beyond the scope of this manuscript.

The stack presented in Figure 1.1 is a personal view of the hardware and software
layers, inspired by research works covered in this manuscript. Other views of the hard-
ware and software stack, influenced by subjective system needs, can be found in the
literature [14]

1.1.2 Trends in Embedded Computing Systems

Hardware trends
In the past half-century, the ever-increasing complexity and capabilities of computing
hardware has been closely linked to the number of transistors that can be integrated into
a single chip. Indeed, this fabulous increase of hardware complexity is made possible
by the exponential increase in the achievable density of transistors, dictated by Moore’s
law [67]. While some researchers believe that, due to physical constraints, Moore’s law
will soon come to an end, TSMC, one of the world’s leading semiconductor foundries,
still argues that Moore’s law will not end in the near future [107], thanks to upcoming
innovations in nanotechnologies.

One of the most impacting recent trends in computing architecture, although it is not
the most technically innovative, is the rise of open-hardware initiatives, notably with the
efforts around the RISC-V project [103]. RISC-V (Reduced Instruction Set Computer

4

1.1. Embedded System Design Context

(RISC) five) is an open and extensible Instruction Set Architecture (ISA), originally
introduced by UC Berkeley (USA) in 2010, and whose development is now overseen by
the non-profit RISC-V foundation (CH). An ISA defines a set of assembly instructions
that must be supported by any computing architecture claiming compatibility with this
ISA. Although a standard ISA, such as RISC-V, does not specify or provide any reference
implementation supporting the instruction set, many open-source implementations can
be found in the scientific literature [32, 106]. Several commercial chips based on the
RISC-V architectures are already available, notably low-power Digital Signal Processing
(DSP) chips from GreenWaves Technologies (FR), or high-performance cores from SiFive
(USA). For academics, the RISC-V architecture is a fantastic opportunity to experiment
new architectural concepts with an extensible ISA, while benefiting from a rich and
well-maintained eco-system, including dedicated design tools [49], ISA simulators [84],
or state-of-the-art compilers [78].

Among trending concepts in the architecture domain, in-memory [90] and near-
memory [93] computing have received a lot of attention in recent years. The moti-
vation behind these concepts is the well-known memory wall issue [109], which makes
data accesses and movements a performance and energy bottleneck in modern computing
systems. The cause of this memory wall is that memory technologies do not keep up with
the rapidity of access and capacity needs imposed to them by processing elements and
data-intensive algorithms. To limit costly data movements, and circumvent the memory
wall, the strategy adopted by in- and near-memory computing is to move computations
directly within memory banks, using memristors or charge-based systems; or on the
physical edge of memory banks using small Processing Elements (PEs) with limited ca-
pabilities, that receive instructions from the host Core Processing Unit (CPU) of the
architecture. Preliminary performance evaluation with such architectures show promis-
ing results, notably in data-intensive domains such as Artificial Intelligence (AI) [90].
To take full advantage of the power-efficiency offered by in- and near-memory comput-
ing hardware, should it become a commercial standard, compilers and other algorithmic
optimization tools will need to be adapted.

The last decades has also witnessed many evolutions in the computer architecture
domain:

• Multiprocessor Systems-on-Chips (MPSoCs) integrating both GPPs and reconfig-
urable logic, first commercialized in 2011 by Xilinx (USA), now AMD (USA), [81],
have become more mainstream architectures, notably available in major cloud-computing
services.

5

Chapter 1 – Introduction: Research Activities Context and History

• Use of Graphics Processing Units (GPUs), and the evolution of their architectures,
to better support general purpose computations is another major event in the ar-
chitecture domain. Since 2012, the GPU market is boosted by the development of
deep-learning techniques [53].

• New domain-specific architectures have been introduced, such as Tensor Processing
Units (TPUs) [42] for accelerating AI computations.

• The number of cores integrated in processors has steadily increased. For example in
the Xeon family of processors from Intel (USA), the maximum number of physical
core has increased from 8 cores in 2010, up to 56 cores in 2019 [39]. Another example
of many-core architecture, is the third generation chip developed by Kalray (FR),
which embeds 80 cores [21].

• Techniques and tools used for hardware design have also evolved in the last decade,
with a wider adoption of High-Level Synthesis (HLS) techniques, making hardware
design possible from high-level programming language, such as C++. A striking
example of this adoption is the use of HLS by Google (USA) to develop a hardware
video encoder for their Youtube platform [54].

Software and application trends
On the software side, widespread adoption of new concepts, in the form of new program-
ming languages or tools, is paradoxically much slower than in hardware. For example,
among the 10 most popular general purpose programming languages ranked every year
by IEEE [95], all 10 languages have been created, or are heavily based on a language
created more than 20 years ago. Rust, a trending language created in 2006 favoring safe
and reliable concurrent programming, is ranked at the 20th position in terms of popu-
larity. Unsurprisingly, C and C++ monopolize the 2nd and 3rd positions in this ranking,
and probably take the lead among embedded systems programmers, as they already did
in 2009 [5].

While technologies used to implement embedded software do not evolve rapidly,
despite being a hot research area (see Section 1.2.2), applications and services supported
by embedded systems evolve rapidly.

On the embedded devices side, IoT devices have become extremely popular in the last
few years, backed by the rapid evolution of telecommunication standards [15]. Internet-
of-Things (IoT) devices are small embedded computing systems which generally embed
sensors, and sometimes actuators, and that communicate with other devices or with

6

1.1. Embedded System Design Context

a master system through a wireless internet connection. The pervasive use of these
computing devices opens the way to many new applications, including: industry 4.0,
smart agriculture, smart cities, smart grids, autonomous vehicles, and e-Health, to cite
only a few. Each of these application domains comes with its own set of challenges and
constraints for the development of embedded software.

New generations of applications also need to be developed, pushed by the creation
of new technologies, by scientific needs, or by the evolution of standards in different
domains. For example, giant international scientific infrastructures such as the CERN
particle accelerator or the SKA radio-telescope, constantly require additional processing
capabilities to handle the gigantic amount of data they generate. The evolution of
telecommunication and image compression standards is another example of constantly
evolving application needs where the software of each new generation is often many times
more complex than the previous, following the infamous Wirth’s law [105].

In addition to the apparition of new applications, new algorithms and data-processing
techniques are invented or refined with a sustained pace. Many existing systems need
to be updated to integrate these new algorithms and benefit from their advantages. A
striking example of such evolution is the recent advent of deep-learning algorithms. In
less than ten years, since the breakthrough of AlexNet in the ImageNet challenge [53],
the use of deep-learning algorithms has skyrocketed in all application domains.

Design constraints trends
In recent years, the awareness of new constraints for designing embedded systems has
spread rapidly, for all applications domains and on all types of hardware.

While reliability and safety constraints have always been at the core of many embed-
ded system designs, cybersecurity has recently become a major concern for most systems.
A primary reason for this concern is that the ubiquitous use of vulnerable interconnected
embedded devices opens the door to attacks with catastrophic consequences. The po-
tential threats posed by vulnerable devices range from privacy issues, where personal or
corporate data can be stolen, to life-threatening issues, where, for example, a pacemaker
can be remotely disabled [79]. Although the connectivity features of embedded devices
are a major entry point for attackers, other techniques can be used, such as hardware
attacks that exploit physical and logical weaknesses to leak sensitive data or take control
of a system.

Another important recent constraint for the design of modern embedded systems is
the consideration of sustainability constraints. Minimizing the power consumption of
embedded systems has been the subject of much research, most often motivated by the

7

Chapter 1 – Introduction: Research Activities Context and History

need to extend the battery life of a system. While reducing the energy consumption
of systems may have an undeniable impact on their carbon footprint, the design of
sustainable embedded systems goes far beyond this goal and considers the entire life
cycle of the system. Designing sustainable systems requires addressing complex issues
such as sourcing electronic components, designing maintainable, reusable, and recyclable
systems, and optimizing their power consumption at all stages of their lifecycle [75].

Within this context, during the first years of my career, my research work has been fo-
cused on design automation and optimization for low-level software on high performance
embedded systems.

1.2 From Multi-core Programming to Many-Facet System-
of-Systems Optimization

1.2.1 Career Starting Point: Focus of the PhD Thesis

The PhD work defended in 2014 focused on the programming of Multiprocessor Systems-
on-Chips (MPSoCs) based on dataflow Models of Computation (MoCs) [B4].

The first set of contributions from this thesis focused on the optimization of the
memory footprint allocated to run applications specified with Synchronous Dataflow
(SDF) graphs [59]. In particular, contributions introduced a graph modeling the con-
straints that condition the validity of an allocation of memory used to transfer data
between concurrent tasks exposed by the dataflow model. Based on this model, the
memory footprint to be allocated could be bounded [J5, C20], statically allocated on
shared memory [J5, J6, C18, C21] and distributed memory architectures [C19].

The second contribution of this thesis was an extension of the SDF MoC. The main
advantage of using an SDF graph to describe the behavior of an application is that it
captures the task, data, and pipeline parallelism of applications while guaranteeing de-
terminism and the absence of deadlock at compile time. In addition to existing features,
the Parameterized and Interfaced SDF (PISDF) extension of the SDF MoC brings new
hierarchy and reconfigurability features to the model [C22]. Compositional hierarchy
allows an application to be decomposed into separately analyzable subgraphs, while re-
configurability allows the modeling of applications with more data-dependent dynamic
behavior than in the SDF MoC [C27].

8

1.2. From Multi-core Programming to Many-Facet System-of-Systems Optimization

1.2.2 Tackled Research Challenges

Since the end of my PhD, the scope of my research has broadened and is now focused
on the multi-criteria optimization of middle-ware for the design of embedded
systems. This research area is at the intersection of several research areas, and most
importantly: Computer Aided Design (CAD) techniques for MPSoCs programming,
operational research, compilation, image and signal processing, computer vision, and
artificial intelligence.

The following paragraphs summarize the main challenges tackled in my research
between 2014 and 2024. It should be noted that the purpose of this introductory section
is not to summarize all the contributions proposed during this work period, but to give
a global scope of the scientific challenges motivating the work detailed in the following
chapters.

Design levers for embedded system optimization
The co-design flow for embedded systems is a complex process involving many steps
at different levels of abstraction, many models, and often many tools. At each step of
the design process, many decisions can be made, each of which has an impact on the
performance and quality of the built system. An important challenge for a researcher in
the field of CAD is to expose and exploit the different design levers, at all steps of the
design process, that allow developers to seamlessly optimize their embedded system.

Algorithmic choices are a first lever to optimize a system. There are often many dif-
ferent algorithms available to solve a given problem. Some algorithms may be inherently
different, each providing a different solution to a problem, with a different approach, and
each having its own advantages and drawbacks. For example, 184 algorithms are evalu-
ated in [100] for the stereo matching problem, which consists of reconstructing the depth
of a scene from two images captured by a pair of cameras. Each of these 184 algorithms
offers a different trade-off between accuracy and suitability for real-time implementation
on different types of hardware targets. Once a well-defined algorithm has been chosen,
algorithmic choices can still be made about how this algorithm is implemented. For
example, by using approximate computation techniques, it is possible to trade off the
accuracy of the algorithm for a reduction in memory space [C7, 66], or for a reduction
in computational complexity [C8]. Different implementations of an algorithm may also
be functionally equivalent, but exhibit different non-functional properties, such as their
degree of parallelism [C28], or their task granularity [C43].

9

Chapter 1 – Introduction: Research Activities Context and History

Resource allocation choices are another key lever for optimizing an implementation.
Resource allocation consists of the logical, temporal, and spatial distribution of the hard-
ware resources required to support the execution of a system. Resources to be allocated
typically include: processing elements, memory, communications, and reconfigurable
logic.

• Processing elements: The computations of the system must be logically and tempo-
rally allocated, that is mapped and scheduled, to the available processing elements
of the architecture. This allocation is often highly complex due to the presence of
heterogeneous processing elements with different capabilities [C23, C27]. In addition
to mapping and scheduling, managing processing elements also requires taking care of
idle and sleep modes, and configuring the speed and energy tradeoff of the processing
element using DVFS (Dynamic Voltage and Frequency Scaling) [C28, C29, C45].

• Memory: Data received, processed, and produced by a system must be stored in the
memory banks of the embedded architecture. In most embedded systems, memory
is a scarce resource whose access is often a bottleneck for system computation [90].
The allocation of data in memory, both spatially and temporally, is therefore a key
lever to optimize the performance of a system [J6, C21]. In addition to the scarcity
of resources, the memory allocation problem is made more complex in the presence
of complex memory hierarchies with distributed memory banks, caches and scratch-
pads [J5, C19].

• Means of communication: Data exchange and synchronization between processing
elements must be scheduled on appropriate hardware to support the execution of an
application. Different communication strategies can be used, such as synchronous and
asynchronous communications [C26, 35], with active or passive wait mechanisms.

• Reconfigurable Logic: Major semiconductor companies, namely Intel and AMD, now
offer MPSoCs that integrate both classical processing elements (GPPs, GPUs) and
reconfigurable logic. To take advantage of this hardware, the reconfigurable logic
must be spatially configured with a bitstream, either statically at compile time or at
runtime with dynamic partial reconfiguration [J15].

Optimization strategies
There are many different strategies, at all stages of the design process, to exploit the
aforementioned optimization levers [57].

10

1.2. From Multi-core Programming to Many-Facet System-of-Systems Optimization

Early in the design process, choosing the right algorithm and modeling it with the
right MoC [85] is a major lever to guarantee key properties of a system by design, such
as real-time properties [C29].

The largest corpus of work on exploiting these optimization levers focuses on compi-
lation steps. Compilation steps encompass many different types of optimizations, includ-
ing model-based optimizations and code generation [J9, C17, C43, C45], source-to-source
transformations [6], resource allocation [C19, C23], and classical code compilation [B2].

Some optimization levers can also be exploited while the system is running [C21,
C27]. While dynamic optimizations provide great adaptability to the system, they re-
quire the use of a runtime manager or operating system, which imposes an overhead on
the performance and resource usage of the system [J3]. Another drawback of dynamic op-
timizations is that while they may be more efficient than their static counterparts [C21],
it is sometimes impossible to give guarantees on their behavior, which may be a problem
in systems with hard real-time or tight hardware resource constraints [C39].

There also exist hybrid strategies that rely on both compile-time and run-time op-
timizations. For example, reconfigurable dataflow semantics MoCs [B3] supports both
compile-time analysis and optimization of the system, but requires a lightweight run-
time manager to handle on-the-fly resource allocation of data-dependent computations.
Other hybrid strategies, called quasi-static, consist of precomputing a set of resource
allocations at compile time and switching between these precomputed allocations at
runtime [26].

When designing a system, choosing the right combination of optimization techniques
is inherently challenging. First, the impact of each individual optimization is often hard
to predict and competing techniques each have their own strengths and weaknesses.
Second, when multiple optimizations are chained together in a development flow, the
interactions between different techniques can be difficult to predict. For example, a
transformation applied early in the design flow may hinder the efficiency of a later
one [J6, C43].

Multi-criteria optimization
In past works on embedded system design, optimization processes typically focused on
a single optimization criterion. For example, many papers on mapping and scheduling
strategies for dataflow graphs focused solely on minimizing the latency [29] or minimizing
the memory footprint [28] of the system. Often, even when multiple optimization criteria
are studied, one criterion is secondary, observed only as a by-product, or used as a
constraint for optimizing a primary criterion [97].

11

Chapter 1 – Introduction: Research Activities Context and History

In modern CAD techniques, system designers must consider and jointly optimize
many different optimization criteria [C28]. The performance of the system, measured
in terms of latency and throughput, its power and energy consumption, the quality
of service provided, the utilization of hardware resources, such as memory, processing
elements, or reconfigurable logic, are just a few examples of metrics to optimize. Unfor-
tunately, optimizing one metric often has negative side effects on the value of another
one, and acceptable trade-offs must be selected by the system designer. This set of
acceptable solutions is usually represented as a front of Pareto efficient solutions. In a
multicriteria optimization problem, a solution is said to be Pareto efficient if there is no
other solution that improves the value of one criterion without sacrificing another.

The global design space to be explored for embedded system development is often
extremely large, and it is not uncommon to have thousands or millions of potential con-
figurations to evaluate. Since it is not feasible to evaluate the optimized metrics for all
configurations of the system, alternative methods must be used to identify the Pareto-
efficient configurations without relying on exhaustive exploration. The two main meth-
ods to drastically reduce the explored design space are to rely on an analytical approach
or to rely on heuristics. The analytical approach consists of identifying the mathemati-
cal model that relates the configuration parameters to the observed metrics [97], which
requires formal models for the system specification and for the effect of optimizations
and processes in the design flow. Alternatively, a heuristic approach generally considers
the effect of configuration parameters on optimized criteria as a black box process [C28].
Heuristic approaches navigate the design space with a wide range of strategies, such as
gradient descent or genetic approaches, with no guarantee to identify the optimal set of
Pareto-efficient configurations [C9].

Multi-criteria optimization problems have notably been studied in the following per-
sonal works: [C28, C30, C38, C43].

Embedded system hardware and software jungle
A final challenge for the development of embedded systems is the sustained pace at
which new types of hardware and applications have emerged over the last 10 years.

On the hardware side, as was mentioned in Section 1.1.2, the use of heterogeneous
MPSoCs has exploded in recent years, integrating GPPs [C15], GPUs, dedicated hard-
ware accelerators [C47], reconfigurable logic [B3], and microcontrollers [C17] on a single
chip. The increasing use of systems of systems for cyber-physical applications [23] also
makes hardware considerations more complex for system designers. Indeed, the design
of systems of systems that rely on interconnected and heterogeneous devices to provide a

12

1.3. Research Activities History: Research Projects and Supervised Students

service requires the use of new design techniques inspired by the HPC (High-Performance
Computing) literature, mixed with innovative approaches such as swarm intelligence.

On the application side, design complexity stems from the wide variety of applica-
tion domains that must be considered, each with its own set of challenges, tools, and
constraints. For example, the design domains considered in this thesis include stream
processing and computer vision applications [J5, J8, C8], image and video coding [J11,
C38], AI [C23, C37], cybersecurity [J14], and real-time systems [C29].

1.3 Research Activities History: Research Projects and
Supervised Students

An overview of my research career, including supervised PhDs, collaborative research
projects, and teaching activities is given in Figure 1.2. The topics of the supervised PhD
theses are detailed in Section 1.3.1 and details on the collaborative projects are given in
Section 1.3.2.

Ph.D.

14 15 16 17 18 19 20 21 23

ATER+IGR Maître de Conférences - INSA & IETR

Julien Hascoët (40%)

Hamza Deroui (40%)

Su
pe

rv
is
ed

 P
hD

s

Justine Bonnot (40%)

Florian Arrestier (37.5%)

Alexandre Honorat (40%)

ANR ARTEFaCT ANR DARK ERA

H2020 CERBERO

MORDRED

Alban Marie (40%)

Alice Chillet (30%)

Ophélie Renaud (60%)

Mewe Kahanam (40%)

PHC Sakura

ANR Foutics

22

P
ro
je
ct

s
T
ea

ch
in
g

231h 158h 136h 137h 225h 219h 220h 258h 262h

24

Quentin Vacher (40%)

Paul Allaire (30%)

253h

Figure 1.2: Research career at a glance

13

Chapter 1 – Introduction: Research Activities Context and History

1.3.1 Supervised PhDs

A detailed view of supervised PhD students is presented in Table 1.1. For each student,
this table gives the supervision rate, the names of the co-supervisors, the source of
funding, and the date of the PhD.

PhD Superv. Co-supervisors Funding Date
Student rate

J. Hascoet 40% J. Nezan (60%) CIFRE Kalray 10.2015→9.2018
H. Deroui 40% J. Nezan (30%) MESR 10.2015→9.2019

A. Munier (30%)
Defended J. Bonnot 40% D. Menard (60%) ANR Artefact 10.2016→9.2019

PhDs F. Arrestier 37.5% D. Menard (37.5%) ANR Artefact 10.2017→9.2020
E. Juarez (25%) & H2020 Cerbero

A. Honorat 40% J. Nezan (60%) H2020 Cerbero 10.2017→9.2020
& Regional Funds

A. Marie 40% L. Zhang (30%) Regional Funds 10.2020→9.2023
L. Morin (30%) & INSA

O. Renaud 60% J. Nezan (40%) ANR Dark Era 10.2021→9.2024
A. Chillet 30% R. Gerzaguet (40%) DGA 10.2021→9.2024

PhDs M. Gauthier (30%)
in M. Kahanam 40% M. Pelcat (30%) CIFRE Inetum 12.2022→10.2025

Progress G. Fortier (30%)
Q. Vacher 40% M. Dardaillon (30%) ANR Foutics 10.2023→9.2027

T. Marty (30%)
P. Allaire 30% M. Dardaillon (40%) ANR Foutics 10.2023→9.2027

N. Beuve (30%)

Table 1.1: Details of supervised PhDs.

In continuity with my PhD, most of the supervised PhDs focus on the use of data-
flow MoCs for programming heterogeneous MPSoCs. In particular, the PhDs of Julien
Hascoët and Ophélie Renaud focus on controlling the granularity of dataflow graphs
to minimize the complexity of resource allocation while maintaining system perfor-
mance [C25, C43]. Hamza Deroui’s PhD focuses on developing fast analytical heuristics
to predict the latency and throughput of hierarchical dataflow graphs deployed on mul-
ticore targets [C14, C15]. Florian Arrestier studied extensions to dataflow MoCs for
specifying persistent data [C5] and developed a numerical representation that replaces
memory- and time-consuming graph transformations used for resource allocation of re-
configurable dataflow graphs [J3]. Alexandre Honorat developed dataflow modeling
and optimization techniques for multi-objective resource allocation under real-time con-
straints [C28–C30].

14

1.3. Research Activities History: Research Projects and Supervised Students

Justine Bonnot and Alban Marie’s PhD research explores how approximations of
computation and data can be used to build better systems. Justine Bonnot has devel-
oped techniques to rapidly simulate the error of hardware approximation operators [C6,
C11], and models and heuristics to support and accelerate the design space exploration
process for approximate computing systems [C9, P1]. Alban Marie works in the context
of Video Coding for Machines (VCM). His goal is to explore the accuracy-bandwidth
tradeoff made possible by the resilience of deep learning AIs to image artifacts caused
by lossy compression.

Alice Chillet’s and Mewe Kahanam’s PhD research focuses on the development of
low-power machine learning techniques. Alice Chillet is working on using deep learn-
ing and genetic programming techniques to identify Radio Frequency (RF) emitters by
detecting their unique RF fingerprint caused by small variations in their manufacturing
process. Mewe Kahanam’s goal is to create mathematical models that predict a pri-
ori the benefits for different deep learning complexity reduction techniques, on different
types of layers, and on different types of hardware.

Finally, Quentin Vacher’s and Paul Allaire’s PhD will study the design of ultra-
low power Reinforcement Learning (RL) agents built with an innovative technique in-
spired by genetic programming.

1.3.2 Collaborative projects

A detailed overview of my personal involvement in research projects is presented in
Table 1.2. This table shows the name of the projects, the source of funding, my role in
the consortium, the name of the leading institution, and the total budget of the projects.

Date Project Funding Personal role Leader Budget
2011-15 Compa ANR Partner IETR/INSA 800ke
2016-19 Artefact ANR Participant CEA Leti 660ke
2017-20 Cerbero H2020 INSA scientific coord. IBM 5.3Me

& Task leader
2017-18 Mordred GdR ISIS Leader IETR/INSA 6.5ke
2021-25 Dark Era ANR Participant L2S 498ke
2022-23 Mobilité PHC Sakura Co-writer & Participant INSA 19ke
2023-26 Foutics ANR Co-leader INSA 282ke
2023-xx Rising Stars Horiz. Eur. Participant Obs. de Paris 634ke

Table 1.2: Details of funded collaborative projects.

15

Chapter 1 – Introduction: Research Activities Context and History

Funded projects
Five of the collaborative projects in which I have actively participated study the use of
dataflow MoCs for programming parallel architectures: Compa, Cerbero, Mordred,
Dark Era, and Rising Stars. In Compa, reconfigurable dataflow MoCs and associ-
ated runtime managers were developed, as well as application graphs for standard video
decoders [C27]. In Cerbero, a model-based tool chain integrating components from
several partners was built, covering high-level application modeling with Preesm [C5,
C41] (INSA), support for runtime adaptation in software with Spider [J3, J15, C27]
(INSA) and in hardware with Artico3 (UPM-CEI) and MDC [73] (UniSS), detailed
profiling with Papify [J10] (UPM-CITSEM), and on-the-fly polyhedral optimization
with Apollo [56] (UPM-CITSEM & Inria). In Mordred, a young researcher project
I personally led, the Spider runtime manager for reconfigurable dataflow graphs was
ported to the Kalray MPPA2, a many-core architecture with 288 cores [C39]. Finally,
the goal of the Dark Era and Rising Stars projects is to extend the use of the embed-
ded dataflow MoCs to the HPC system in order to support exa-scale radio astronomy
projects, such as the Square Kilometer Array (SKA) giant radio telescope.

The Artefact project focused on the study and development of CAD methods
based on approximate computation techniques. The PHC Sakura project supported
the mobility of graduate students and researchers between Japan and France to initiate
collaborative work on VCM.

The Foutics project is a young researcher project, co-proposed with Mickaël Dard-
aillon, with equal involvement, and officially submitted by M. Dardaillon. The goal
of the Foutics project is to develop energy-efficient reinforcement learning agents based
on the Tangled Program Graph (TPG) model, inspired by genetic programming tech-
niques. A full-stack and energy-centric approach is considered in this project, from the
integration of energy concerns in the TPG model to its energy-efficient implementation
on low-power embedded devices and reconfigurable logic.

Non-funded projects
Writing project proposals is an important scientific activity for a researcher, but it is
not always successful. Nevertheless, the fruitful scientific discussions with the partners
of the written proposals and the important time spent on this activity justify, in my
opinion, their appearance in the section related to research activities. Many projects
that were not funded in previous attempts may succeed in the future, as was the case
with the Cerbero, Dark Era, and Foutics projects, all of which were funded in their
second attempt.

16

1.3. Research Activities History: Research Projects and Supervised Students

The list of non-funded collaborative projects I have contributed to is given in Ta-
ble 1.3. Most of the submitted projects focus on the model-based programming of MP-
SoCs, including BusyStream, two follow-on projects from Cerbero: Heracles and
Rubeus, Visygo and Gigantic. The goal of these projects was to study the design of
cyber-physical systems of systems, swarm intelligence, and generative design techniques.
The Licornn and Dacofab projects focus on the Video Coding for Machines (VCM)
problem, which later led to the PhD thesis of Alban Marie. Finally, the goal of the
aimed project was to exploit the simplicity and adaptability of TPGs in the context of
explainable AI.

Project partners
Fruitful collaborations with the following institutions were established during these
projects, but also during direct collaborations:

• Companies: Texas Instruments (Fr, USA), IBM (Isr), Kalray (Fr), Nokia Bell Labs
(Fr), Abinsula (It), Atos (Fr), Silicom (Fr), Inetum (Fr)

• Research Centers: Inria (Fr), TNO (NL)

• Academics: Universidad Politecnica de Madrid (UPM, Es), Università degli Studi
di Sassari (UniSS - It), Hosei University (Jap), University of Maryland (USA), Tech-
nische Universität Dresden (Ger), McMaster University (Can), Queen’s University
Belfast (UK), EPFL (CH), Abo Akademi (Fin), ENIT (Tun), ENIS (Tun), Irisa (Fr),
Lab-STICC (Fr), Lip6 (Fr), L2S (Fr), Institut Pascal (Fr)

Attempts Project Funding Personal role Leader Partners Grade Budget
2016 BusyStream H2020 INSA Leader Linköping U. 11 13/15 5.5Me
2019 Heracles H2020 INSA Leader Eurescom 10 10/15 4.9Me
2019 Dacofab Cominlabs Leader INSA 2 - 179ke

19,20,21 Visygo ANR/DFG Partner INSA 4 - 480ke
19,20,21 Licornn ANR JCJC Leader INSA 1 B 247ke

2020 Aimed Chist-era Partner Uni. Vaasa 3 - 470ke
2022 Rubeus Horiz. Europe Partner Abinsula 13 11.5/15 7.8Me
21,22 Gigantic Horiz. MSCA Partner INSA 13 88%, 74% 2,7Me

Table 1.3: Non-funded collaborative projects.

17

Chapter 1 – Introduction: Research Activities Context and History

1.4 Manuscript organization

This habilitation manuscript is organized as follows, following the three main research
axes of personal works. Chapter 2 presents contributions on computer-aided design
techniques based on dataflow MoCs. Chapter 3 focuses on how the resilience of embedded
systems to approximations can be characterized and exploited to build more efficient
signal processing and AI systems. Chapter 4 details work on TPG for building low-
power reinforcement learning agents. Finally, Chapter 5 concludes this manuscript with
potential directions and challenges for future work.

18

Pppmppfpmmpppff
mfmppfppppppmmm mfmmfffpmmpp
ffmppffmf fmfpfm Pppmppfpmmpppff
mfmppfppppppmmm pmfmppfmp
ffmppffmf mpmppffppppp

Kenny McCormick, South Park

Chapter 2

Embedded Parallel Software
Synthesis with Dataflow Models
of Computations

Programming embedded Multiprocessor Systems-on-Chips (MPSoCs) is a tedious task
that requires overcoming many challenges. The first challenge the developer often faces
is how to efficiently and seamlessly capture the parallelism of the applications. To
address this issue, there is a wide variety of parallel Models of Computation (MoCs) [88],
each defining a mathematically grounded semantics suitable for specifying, verifying,
analyzing, and optimizing a particular type of system [T5, 85].

In this chapter, we focus on the use of dataflow MoCs to specify parallel software for
embedded MPSoCs. The chapter is organized as follows: Section 2.1 introduces the basic
semantics of dataflow MoCs and presents the design flow used to build a system with
them. Sections 2.2, 2.3, and 2.4 present the scientific contributions proposed for dataflow
MoCs. Section 2.2 presents contributions on the semantics of dataflow models, extending
their expressiveness and analyzability. Section 2.3 focuses on front-end analysis and
optimization techniques, and Section 2.4 introduces novel DSE techniques based on
dataflow semantics. Potential directions for future works on dataflow MoCs are outlined
in Section 2.5 and detailed in Chapter 5.

This chapter summarizes and synthesizes content from the following personal publi-
cations: [J3, J9, B2, B3, C14, C15, C19, C28–C31, C39, C43]

19

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

2.1 Dataflow-Based Programming in Modern Computing
Systems

A common semantics of all dataflow MoCs is the specification of systems with directed
graphs called dataflow graphs or process networks [43]. Some elements found in this
general dataflow semantics are

• Actors: The vertices of a dataflow graph, commonly called actors or processes,
represent the computational entities of the dataflow MoCs. Each actor in the graph
can consume and produce data on a set of data ports, and perform some processing
using or generating that data.

• Communication channels: The edges of a dataflow graph represent communication
channels used to transfer data between actors, usually assuming a First-in, First-Out
queue (Fifo) mechanism.

• Data tokens: The atomic pieces of data that pass along the edges of a dataflow
graph are called data tokens. The type of data abstracted by an individual data
token depends on the specified system requirements. A data token can be a simple
8-bit integer, a complex number with two floating-point values, or even an entire 2D
image with millions of pixels. Heterogeneous types of data tokens can coexist in a
single dataflow graph, with each communication channel typically associated with a
single type of data token.

Specifying the internal behavior of actors is not always an integral part of MoC
semantics. Instead, dataflow MoCs typically specify a set of rules that govern when
actors are allowed to consume and produce a certain number of tokens [59].

The popularity of dataflow MoCs for the design of stream processing systems stems
largely from the advantages they offer for deriving efficient implementations on mod-
ern hardware and software technologies. Implementing efficient software on modern
hardware requires allocating processing, memory, communication, and power resources
to each part of the system. By clearly exposing separate computational entities, data
movements, and computation triggers, dataflow MoCs facilitate this implementation
process. Another key advantage of dataflow MoCs is their expressiveness for concurrent
computation and data movement, which is an essential feature for both hardware and
parallel software design [24].

20

2.1. Dataflow-Based Programming in Modern Computing Systems

The remainder of this section is organized as follows: Section 2.1.1 describes the
semantics of dataflow MoCs that will be studied in later contributions, and Section 2.1.2
presents the typical design flow based on dataflow MoCs.

2.1.1 Dataflow MoCs

Synchronous Dataflow (SDF)
The SDF MoC was introduced by Lee and Messerschmidt [59] to model and optimize
DSP applications on parallel hardware. The semantics and an example of SDF graph
are presented in Figure 2.1.

A

C

DB

2 2

2
1

1 4

2
313

x1

x2

(a) SDF graph example.

Delay and
number of
tokens

FIFO

ActorA
Port
and rate3

x4

(b) SDF semantics

Figure 2.1: Synchronous Dataflow (SDF) example and semantics

Formally, an SDF graph G = ⟨A, F ⟩ is a directed graph containing a set of actors A

connected by a set of Fifos F . prod(f) and cons(f) denote the actors in A that produce
and consume tokens on a Fifo f , respectively. For each output Fifo f ∈ F connected
to an actor a ∈ A, a data rate is specified by the function rateprod : A × F → N∗.
Symmetrically, ratecons : A × F → N∗ defines the consumption rate of an actor a ∈ A

on an input Fifo f ∈ F . These production and consumption rates specify the exact
number of data tokens exchanged by the actor each time it fires and completes an
atomic execution. As shown in 2.1b, production and consumption rates are denoted by
an integer value written next to the data ports.

To ensure the liveness of cyclic data paths, that is, the absence of deadlocks when
executing the SDF graph, delays must be used to specify the presence of data tokens
in a Fifo at initialization time. The number of delays on each Fifo is specified by
delay : F → N. For example, in the SDF graph of Figure 2.1a, the delay in the Fifo
(C, C) ensures the liveness of the self-loop on the actor C. When executing a live SDF
graph, an iteration of the graph occurs when all its actors have been executed at least
once, and the number of tokens in each Fifo is back to the initial number specified by
delays.

21

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

Dataflow forms of parallelism
The SDF execution is data-driven, meaning that an actor can fire as soon as it has
enough tokens, as specified by its consumption rates on the input Fifos. This semantics
makes it easier to specify task parallelism, since two actors with enough tokens in their
input Fifos can be fired concurrently. For example, in the SDF graph in Figure 2.1a,
each firing of actor A produces data tokens that can trigger executions of actors B
and C, possibly in parallel. It may happen that the number of tokens available on a
Fifo is sufficient to trigger multiple firings of its consumer actor. Since SDF actors do
not maintain an internal state, there is no hidden data dependency between successive
firings of an actor. Therefore, multiple firings of an actor can occur in parallel if enough
input data tokens are available. An example of such data parallelism can be observed in
Figure 2.1a, where actor A produces enough data tokens at each firing to trigger three
firings of actor B. In addition to task and data parallelism, pipeline parallelism can also
be explicitly specified using delays [59].

Static, dynamic and reconfigurable dataflow MoCs
SDF is a static MoC, meaning that all production and consumption rates are fixed at
compile time. While static MoCs promote compile-time analyzability and optimiza-
tions, their restricted semantics, which is not Turing complete, hinders the specification
of more dynamic applications. For this reason, dynamic and reconfigurable dataflow
MoCs have been proposed. In both dynamic and reconfigurable MoCs, the data ex-
change rates of actors can change during the execution of an application. In dynamic
MoCs, data exchange rates can change at any time during system execution, while in
reconfigurable MoCs, reconfiguration can only occur at limited points in application exe-
cution [69]. This difference gives dynamic MoCs greater adaptability, but reconfigurable
models have better predictability, making them more susceptible to compile-time and
run-time optimizations.

Parameterized and Interfaced SDF (PISDF)
PISDF is a reconfigurable dataflow MoC, whose semantics is presented in Figure 2.2.
The PISDF semantics combine the semantics of SDF, a hierarchy mechanism [76], and
an explicit parameterization tree with a reconfiguration mechanism [C22].

The hierarchy mechanism allows specifying the internal behavior of an actor with
a dataflow subgraph instead of code for non-hierarchical actors. In the PISDF MoC,
each data port of a hierarchical actor is viewed as a data interface to its subgraph.
The purpose of an interface-based hierarchy [76] is to ensure the compositionality of the

22

2.1. Dataflow-Based Programming in Modern Computing Systems

PiSDF semantics

Configuration
input interface

Configuration
input port

Locally static
parameter

Parameter
dependency

P

Parameterization
semantics

Configuration
output port

Configurable
parameter

Configuration
actor

P

A

Reconfiguration
semantics

Delay and
number of
tokens

FIFO

ActorA
Port
and rate3

x4

SDF
semantics

Hierarchy
semantics

Data input
interface

Data output
interface

Hierarchical
actor

ou
t

in

h

(a) PISDF semantics

Filter SendRead 3size size
size size

1

size

x2*size

SetN

Kernel size/Nsize/N
size/Nsize/N

N

(b) PISDF graph example

Figure 2.2: Parameterized and Interfaced SDF (PISDF)

model, which makes a separate analysis of each subgraph equivalent to a global analysis
of the entire hierarchy. Using the divide and conquer approach, compositionality can
be used to speed up analyses and optimizations of the graph [C14, C15, 20]. To enable
this compositionality, data interfaces automatically duplicate and discard data tokens
if, during a subgraph iteration, the number of tokens exchanged on Fifos connected
to interfaces is greater than the number of tokens produced on the corresponding data
ports of the parent actor.

The parameterization semantics of the PISDF MoC consists of a set of parameters P

and parameter dependencies, configuration input ports, and interfaces. A parameter
p ∈ P is a vertex of the PISDF graph associated with an integer valuation function
val : P → N. The value associated with a parameter is propagated through explicit
dependencies to other parameters and to actors that may use this value in expressions
specifying their own values or rates of their dataflow ports. In the PISDF MoC, it is
possible to disable all firings of an actor by setting all its rates to zero.

The reconfiguration semantics of PISDF MoC is based on special reconfiguration
actors. When fired, reconfiguration actors dynamically change the value of a parameter
in their graph. Reconfiguration actors must be fired exactly once per firing of their
parent actor, before any non-configuration actor in their subgraph. This restriction is
essential to ensure safe reconfiguration of the subgraph to which configuration actors
belong. For example, in the PISDF graph of Figure 2.2b, when the hierarchical Filter

23

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

actor is fired in the top-level graph, the SetN reconfigurable actor is fired first in its
subgraph. The SetN actor sets a new value for the parameter N, which is used in the
production and consumption rate expressions of the Kernel actor.

The short time between a reconfiguration and the execution of actors can be used
to verify graph properties, such as the absence of deadlock, but also to make on-the-fly
resource allocation decisions. The Spider runtime was developed [C27] to support the
execution of PISDFs graphs on heterogeneous platforms.

2.1.2 Dataflow CAD flow

A simplified overview of a typical Computer Aided Design (CAD) flow based on dataflow
MoCs is presented in Figure 2.3.

Front-End

Analysis
Pre-Transformations

Ressource allocation

Computations, memory,
communications

Back-end

Code generation
runtime, profiling

Developer

Dataflow
graph

Mem

Core 1Core0

Model of
Architecture Hardware

Design

Metrics
Verifications

Control

Design Space
Exploration

Traces
& Stats

Simulations

Figure 2.3: Typical datflow-based CAD flow.

Inputs:
As illustrated in Figure 2.3, the CAD flow based on dataflow MoCs takes as input the
dataflow graph of the application and a high-level Model of Architecture (MoA) of the
target hardware [J12, C41]. These two input models are completely independent, which
ensures portability of dataflow graphs to multiple hardware and usability of hardware for
multiple applications. In addition to these inputs, a set of additional constraints is often

24

2.1. Dataflow-Based Programming in Modern Computing Systems

required to capture the specific deployment constraints for a given pair of application
and hardware.

Front-end:
The front-end part of the design flow performs analysis and model transformation based
on the semantics of the input dataflow MoC. For example, a first analysis for static
dataflow MoCs is to verify the consistency of the dataflow description [59]. A graph
is said to be consistent if its infinite execution is possible without accumulating an
infinite number of data tokens in any Fifo. Analyses can also be used to predict, early
in the design flow, key properties of the design system, such as its latency [20], its
throughput [C14, C15], or its memory footprint [C20].

Graph transformations applied during the front-end part of the design flow are often
used to pre-optimize application graphs for resource allocation. For example, the single-
rate transformation is often applied to dataflow models with well-defined production
and consumption rates associated with actors, such as the SDF and PISDF models. The
single-rate transformation produces a functionally equivalent application graph where all
data parallelism is converted to task parallelism, and where each Fifo is written to and
read from only once per execution of the dataflow graph. The allocation of processing
and memory resources is much simpler for the single-rate graph than for the original
graph. In fact, each actor is executed only once per execution of the single-rate graph,
and each Fifos has a fixed size and is either full or empty during graph execution.

Resource allocation:
Resource allocation consists of the temporal, logical, and spatial allocation of hard-
ware resources that support the execution of the described dataflow application. When
deploying a dataflow graph on an MPSoC, resource allocation includes: mapping and
scheduling actor firings to processing elements, allocating Fifos in memory, scheduling
communications.

Together with front-end optimizations, resource allocation forms the Design Space
Exploration (DSE) part of the dataflow MoCs design flow. As illustrated in Figure 2.3,
supervised or unsupervised iteration of these two parts of the design flow is often used
to gradually refine the deployment of a dataflow graph on a MPSoCs [C29, C43].

Back-end:
Once all design decisions have been made during the DSE process, they must be trans-
lated into an executable prototype by the back-end process. For static dataflow MoCs,

25

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

a code generation process is generally responsible for generating parallel code from the
actor firing and communication schedule and memory allocation [C41, C43, B4].

For dynamic and reconfigurable dataflow MoCs, resource allocation is performed
dynamically while the application is running. A lightweight runtime manager is there-
fore needed with dynamic MoCs to manage the DSE process and implement on-the-fly
decisions [C27].

The following sections present personal contributions that address key challenges in
all steps of the dataflow CAD process illustrated in Figure 2.3. Section 2.2 presents
contributions that extend the expressiveness of dataflow MoCs. Section 2.3 introduces
front-end analysis and transformation aimed at increasing the efficiency of the DSE
process, itself studied and extended in Section 2.4.

2.2 Dataflow Model Extensions

The basic semantics of dataflow MoCs introduced in Section 2.1 has been extended many
times, improving its expressiveness, analyzability, user-friendliness, and conciseness. An
excellent survey of the state of state-of-the-art dataflow MoCs can be found in [85]. This
section presents an overview of personal contributions to dataflow model semantics in
Section 2.2.1, and a focus on a selected contribution in Section 2.2.2.

2.2.1 Contributions overview

Numerical representation for directed acyclic graph.
Building the single-rate equivalent of an SDF graph is a way of explicitly exposing
dependencies across all actor firings of the original SDF graph. By ignoring delays,
the single-rate graph becomes a Directed Acyclic Graph (DAG), further simplifying its
analysis. Thus, the single-rate DAG is an intermediate representation where information
is already pre-processed to help make simpler and faster scheduling algorithms. However,
once the DAG is built, the scheduler no longer benefits from the compact and expressive
representation of the original MoC used to describe the application. In fact, losing the
compactness of the original graph can become problematic when building the DAG of
graphs with a high degree of parallelism. In such massively parallel applications, the
complexity of the DAG grows exponentially with the data parallelism, and so does the
complexity of the scheduling problem. Building the single-rate DAG of a SDF graph is
therefore not well suited for embedded runtimes, where scheduling must be done on the
fly.

26

2.2. Dataflow Model Extensions

To address this issue, a numerical representation of dependencies between actors for
the SDF and PISDF MoCs is introduced in [J3]. With this numerical representation,
all data and reconfiguration dependencies between actor firings are computed on-the-
fly from the original dataflow graph instead of building a DAG. We showed that the
numerical representation is better suited for fast resource allocation of the application
than DAG-based methods due to the cost of building and storing DAG. Experiments on
various computer vision and machine learning applications showed significant gains over
DAG-based methods, with on average a 97% smaller memory footprint of the interme-
diate model and a 7.8x acceleration of the resource allocation process.

Real-time extension.
As a synchronous MoC, the SDF semantics has no notion of execution or transfer time
for actors and data. The execution of actors, and the associated consumption and
production of tokens, occurs instantaneously if enough data tokens are available. While
this untimed property is essential to support the implementation agnosticism of SDF, it
makes the model ill-suited for specifying real-time systems.

In order to model the timing constraints of a real-time system, an extension of the
SDF semantics has been proposed in [C29]. In the proposed extended semantics, each
actor is associated with a WCET (Worst-Case Execution Time), and some actors have
periodic release times with implicit deadlines, meaning that they must complete a firing
at regular time intervals. While actors without periodic deadlines are aperiodic by defi-
nition, their data dependency on periodic actors imposes constraints on their scheduling.
We say that such a graph has partially periodic constraints. In addition to extending the
SDF semantics, [C29] also formalizes a condition for quickly assessing the schedulabil-
ity of a graph without computing a schedule; and an offline non-preemptive scheduling
algorithm that satisfies the periodicity and precedence constraints. Experiments show
that the proposed non-preemptive scheduler is fast, scalable, and efficient, on par with
equivalent state-of-the-art real-time schedulers.

Passive-active flowgraphs.
In applications specified with a dataflow graph, special actors are often needed to perform
data reorganization. These actors may be used, for example, to transpose a matrix, to
broadcast data from a single producer to multiple consumers, or to interleave data
from individual producers into a single stream. While these actors are essential to the
specification of any streaming application, they do not represent actual computations,
but are nonetheless modeled as a black-box actor in the dataflow graph.

27

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

In [J9], a separation between active and passive blocks in dataflow semantics is
introduced. Active blocks are regular actors that perform computations during their
firing, while passive blocks represent actors that reorganize data. When executing the
passive-active flow graph formed by these blocks, passive blocks do not need to be
executed. Instead, passive blocks alter the way preceding or succeeding actors read and
write data, according to the pattern specified by the passive block. Through model-based
optimization, passive-active flowgraphs can be optimized, especially by merging chains
of passive blocks. Simulation results show that the use of passive-active flowgraphs
enables significant improvements in both throughput and memory footprint compared
to equivalent dataflow models.

Nested for loops modeling
One can model single for loops by SDF graphs, as long as the loop can be divided into
sub-parts that access chunks of data of equal size. However, there is no general technique
for modeling multiple nested for loops in the SDF MoC, especially when the boundaries
of the inner loops vary.

for (int i = 0; i < N; ++i) {
for (int j = 0; j < func(i); ++j) {

output [i][j] = comput (input[i][j]);
}}

Listing 2.1: Perfect nested for loops example

The contribution in [C31] is the modeling, through SDF graphs, of multiple perfectly
nested loops with explicit parallelism and variable bounds in their inner loops. An
example of such nested for loops is given in Listing 2.1. In loops with explicit parallelism,
there is no data dependency between successive iterations. Boundary variability means
that the number, start, and end points of inner loop iterations vary as a function of the
outer loop iterator. Perfectly nested loops perform computations only in the innermost
loop.

To model perfectly nested for loops with an SDF graph, the technique proposed
in [C31] first identifies the entire iteration space by simulating an execution of the nested
loops. Then, the iteration space is cut into chunks of equal size to regularize the itera-
tion space. Finally, iterations over these chunks are represented by an SDF actor that
consumes chunks one at a time, but possibly multiple times in parallel thanks to data
parallelism. Experiments show that computations modeled in SDF using this technique
achieve competitive performance against OpenMP [C31].

28

2.2. Dataflow Model Extensions

2.2.2 Persistent States and Initialization in Hierarchical Dataflow MoCs

Dataflow MoCs have proven efficient for modeling continuous streaming applications
with coarse-grained data and task parallelism. However, modern streaming applications,
such as adaptive filtering or machine learning, integrate parameters that persist and are
updated across multiple graph iterations. While dataflow delays [59] can theoretically
be used to model persistent data, their behavioral semantics is often limited and cannot
be used to uniquely specify the persistence scope and initialization of data.

To enable unambiguous specification of persistent data in dataflow MoCs, the State-
Aware Dataflow (SAD) metamodel is introduced in [C5]. The SAD metamodel can be
used to extend the semantics of any dataflow MoC that implements a well-defined notion
of graph iteration. SAD adds both explicit initialization of delays and hierarchical state
awareness through the use of a customizable persistence scope of delays to the extended
MoC.

State-Aware Dataflow (SAD) initialization semantics
In the proposed semantics illustrated in Figure 2.4, a delay d is defined by a tuple
d = ⟨f, n, cin, cout⟩, where f ∈ F is the Fifo to which the delay is associated, n ∈ N is
the number of initial tokens, and cin, cout ∈ A are two optional data connections. Data
connections cin and cout are equivalent to data ports of dataflow actors that can be
connected to Fifos to consume and produce data tokens, respectively. The input data
connection cin of the delay associates a Setter actor, which is responsible for initializing
the data tokens of f . The output data connection cout of the delay associates a Getter
actor that receives the last values held by the delay. The data flow rates of cin and cout

are such that rate(cin) = rate(cout) = n. However, the production rate of the Setter
actor and the consumption rate of the Getter actor need not be equal to the rates of cin

and cout.

n

CP p c

S
i

Go

Figure 2.4: SAD: delay initialization semantics.

In Figure 2.4, actors S and G are the Setter and Getter actors of the delay associated
with the Fifo between actors P and C, called Producer and Consumer of this Fifo. The
new data connections introduced by SAD induce the following precedence rules in the
firing order of actors during each graph iteration.

29

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

R1. All firings of the Setter actor of a delay must occur before the first firing of the
Consumption actor of this delay.

R2. description All firings of the Consumption actor of a delay must occur after the last
firing of the Production actor of this delay.

These rules can be easily enforced by the legacy dataflow resource allocation process
using a graph transformation of the proposed delay semantics into the equivalent, but
much more complex, SDF semantics [C5]. For example, Figure 2.5 shows the SDF
graph that implements the same behavior as the one from Figure 2.4. The integer values
a, b ∈ N∗ represent the number of executions of actors P and C, respectively, during
a graph iteration. This graph is valid under the condition that the number of delays
n divides p × a = c × b, the number of tokens that are exchanged between actors P

and C during a graph iteration. Several special actors must be introduced for this SDF
graph to work: Duplic. actors that duplicate consumed tokens to satisfy production
rates on their output ports, Switch actors that forward tokens received from S on its
first execution and then those received from the feedback loop, Iter, which produces an
increasing sequence of integer values needed to control the state-less Switch actor, Last,
which forwards the last tokens it consumed to G, and Swap, whose internal datapath is
depicted in the figure.

Duplic. pxa
n

Switch
n

nDuplic.

n
nn

Swap

Duplic.n

Cc

npxa Last Gon
n

n
xb

n

P p

S i n

xa

Iter pxa/n

1

Figure 2.5: SDF equivalent to the SAD graph from Figure 2.4.

SAD persistence scope semantics
In hierarchical dataflow MoCs, such as the PISDF model presented in Section 2.1.1,
the presence of delays in the hierarchy poses a persistence scope problem. Indeed, the
presence of a delay in a subgraph GH of a hierachical actor H induces an internal state.
Such a state can either be discarded at the end of the firing of H or preserved for the
next firing. To preserve the state of H, it is therefore necessary to extend the persistence
scope of the delay outside the subgraph GH with an unambiguous persistence semantics.

30

2.2. Dataflow Model Extensions

Hierarchical actor
with internal state

Globally Persistent
Delay

Local Delay
D

A

L

D

Locally Persistent
delay

G

D

(a) Semantics

2 1
A

4
D

1

C
1 1

B

1

1
11

12 1

L

H

(b) Graph example

Figure 2.6: SAD persistence scope.

The proposed SAD semantics [C5] for explicitly specifying the persistence scope of
delays in hierarchical graphs is illustrated in Figure 2.6. There are three persistence
scopes for delays in this semantics: local, locally persistent, and global. Local delays do
not persist beyond one iteration of the graph to which they belong. Locally persistent
delays persist for one level of the hierarchy, meaning that their value is propagated
through successive firings of their parent hierarchical actor. Thus, locally persistent
delays establish a precedence relationship for successive firings of the parent actor H

of the subgraph GH to which they belong. Globally persistent delays persist through
all upper levels of the hierarchy. In Figure 2.6b, a locally persistent delay is used in
the subgraph of H. As for the SAD initialization semantics, the contribution in [C5]
provides rules for translating the different types of delays into legacy dataflow semantics.

SAD semantics benefits
The main benefit of the SAD semantics is that it allows unambiguous specification of
persistent data initialization and scope in dataflow semantics. Although equivalent be-
havior can usually be described using legacy dataflow semantics, this requires expensive,
complex, and non-generic dataflow patterns. For example, as shown in Figure 2.5, 6
special actors and 6 Fifos are introduced in the SDF graph to mimic the effect of a
single initialized delay. Contrary to the SAD semantics, the SDF pattern presented here
is not generic, as it is not valid if, for example, n is neither a divisor nor a multiple of
p × a. Similarly, in [C5], a use-case analysis on a state-of-the-art reinforcement learning
application shows a 35% reduction in allocated memory with SAD semantics compared
to legacy PISDF.

31

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

2.3 Model-based front-end optimizations and analysis

A key advantage of dataflow MoCs is that the mathematically grounded semantics of
models opens the way for powerful model-based analysis and optimization, early in
the CAD flow. This section presents an overview of personal contributions to dataflow
analysis in Section 2.3.1, and an emphasis on a pre-optimization technique for controlling
the granularity of applications in Section 2.3.2.

2.3.1 Contributions overview

Throughput evaluation of hierarchical SDF graphs
During the design of stream processing applications, throughput is one of the key metrics
to be evaluated and optimized as early as possible by the designer. Especially in real-
time systems, evaluation of this metric can be used to identify timing problems early in
the design flow, without going through the whole time-consuming DSE process. Very
fast evaluation of application throughput is thus useful for providing real-time feedback
to the developer during application development, or as part of the DSE process [86].

State-of-the-art throughput evaluation techniques for SDF graphs do not consider or
exploit the hierarchy in the graph, as enabled by the PISDF semantics. Therefore, when
evaluating the throughput of a hierarchical graph using these techniques, the hierarchy
must first be flattened. Flattening a graph consists of replacing hierarchical actors
with their subgraphs, potentially resulting in an exponentially large graph that is very
complex to analyze.

Contributions in [C14] propose to exploit the hierarchy and the compositionality of
the PISDF dataflow MoC to speed-up the computation of it theoretical throughput. The
basic idea behind these contributions is that a bottom-up approach can be used, where
levels of hierarchy are analyzed separately. To do so, the throughput of each lower-level
sub-graph is analyzed. Then, instead of flattening the graph hierarchy, each hierarchical
actor is replaced with a simple model, capturing the throughput characteristics of its
sub-graph. Using this technique, the evaluation of the global throughput of a hierarchical
graph is considerably sped-up, with minor or no loss of accuracy [C14, C15].

Automated Pipelining of SDF
The SDF semantics provides intuitive constructs for expressing task and data parallelism.
While the SDF semantics also supports pipelining of applications through the use of
delays, this type of parallelism is less intuitive to use and is often viewed by developers
as a by-product of resource allocation rather than a developer’s responsibility. Moreover,

32

2.3. Model-based front-end optimizations and analysis

adding delays to a SDF graph requires extra care, as delays can alter and even corrupt
the proper functioning of an application [77].

A fast heuristic algorithm for pipelining SDF graphs is proposed in [C30]. The
heuristic automatically adds pipeline stages in the SDF graph in the form of delays,
given the execution time of the actors and the number of Processing Elements (PEs).
The heuristic is parametric: the developer can choose the number of pipeline stages to
add. To select the best position to introduce a new pipeline stage, the proposed ap-
proach relies on simple as-soon-as-possible and as-late-as-possible topological orderings
of dataflow graphs. Combined with the execution times of the actors, these topological
orders provide all the information needed to balance the computational load of the cre-
ated pipeline stages. The efficiency of the approach is illustrated by optimizing a set of
signal and image processing applications running on multiple PEs. On average, when
adding a pipeline stage, our heuristic selects a stage that results in better throughput
than 90% of all possible stage placements.

2.3.2 Actor Clustering for Controlled Task Granularity

Many resource allocation methods for dataflow MoCs rely on complex graph transforma-
tions to expose their parallelism, which can result in complex graphs for embarrassingly
parallel applications. For such applications, state-of-the-art mapping and scheduling
techniques are prohibitively complex, while the exposed parallelism often exceeds the
parallel processing capabilities of the target architecture. In this context, clustering
heuristics can be used to preprocess dataflow graphs to reduce their complexity prior
to resource allocation. Proposed in [C43], SCAPE is an automated clustering method
that automatically adapts the granularity of a hierarchical PISDF graph to the parallel
processing capabilities of the target MPSoC.

Clustering of SDF actors
Clustering SDF actors consists of aggregating selected actors into groups that are consid-
ered as a single atomic actor during subsequent graph transformations and model-based
resource allocation. In other words, clustering replaces the complexity of multiple ac-
tors firing and exchanging data tokens with different patterns with a simple “black box”
processing unit: a cluster actor. The internal computations of a cluster correspond to
calls to all clustered actors, which are typically managed by a single-processor scheduler,
which is a polynomial-time algorithm [9].

33

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

BA C24 11

x1 x4 x2

(a) Original SDF graph

A 4 F 1
1

4

C0J1 2
1

2

1
1

1 B0 1

1 B1 1

1 B2 1

1 B3 1

C1J1 2
1

2

(b) DAG expansion

ΩAB C24

x1 x2

(c) Clustered SDF graph

ΩAB 4 F 2
2

4
C02

C12

(d) Clustered DAG expansion

Figure 2.7: SDF clustering for controlled DAG complexity

A dummy example illustrating the benefits of SDF clustering is presented in Fig-
ure 2.7. The original SDF graph with three actors is presented in Figure 2.7a, and its
DAG extension used for resource allocation in Figure 2.7b. Special actors F and J are
introduced in the DAG to handle distribution and collection of data to multiple con-
sumers and from multiple sources. In Figure 2.7c, a clustered SDF graph is presented
where actors A and B have been merged into ΩAB. The internal schedule of ΩAB con-
tains one call to A followed by four calls to B. The DAG obtained from the clustered
SDF graph shown in Figure 2.7d is much simpler than the one obtained from the original
SDF graph. While a simple DAG implies a faster allocation of resources, it is important
to note that this may come at the cost of lost parallelism. For example, in Figure 2.7d,
parallel executions of actor B is no longer possible. Unlike state-of-the-art clustering
techniques that sacrifice application parallelism, the Scaling up of Clusters of Actors on
Processing Element (SCAPE) method aims to preserve application parallelism so that
it can exploit the parallel computing capabilities of the target architecture.

The SCAPE method
The SCAPE method is a parametric method where a parameter nc is used to control
the granularity of the clustered hierarchical SDF graph. The method consists of 3 steps,
which are illustrated in Figure 2.8:

1. Complete clustering of the (nc − 1)th lower levels of the hierarchy.
Finer granularity of computations is simplified by clustering all subgraphs beyond
a user-defined hierarchy level. The clustering is done using the acyclic pairwise
grouping of adjacent nodes algorithm proposed in [9]. For example, fully clustering

34

2.3. Model-based front-end optimizations and analysis

A 1

x3
x3

B 12
8

C4

D4

3 x2

x1

E 12
24

1

H3

x8
11

x12
F

3
1G

x12
x1

1

I 1
2

1

K1

x6
1

x3
J

1

x3

1

L 1
6
3

x1

(a) Input PISDF graph

A 1

x3
x3

B 12
8

C4

D4

3 x2

x1

E 12
24

1

3

x8
11

x12
F

3
1G

x12
x1

1ΩH

(b) Step 1

A 1

x3
x3

B 12
8

C4

D4

3 x2

x1

E 12
24

12

24

x1 3
12

x1

8ΩH'

x1
ΩFG

(c) Step 2

A 1

x3
x3

B 12
8

C4

D4

3 x2

x1

E 12
24

3

6

x4 3
3

x1

2ΩH''

x4
ΩFG'

(d) Step 3

Figure 2.8: SCAPE method step-by-step example for a quad-core target.

the hierarchical PISDF graph of Figure 2.8a with nc = 2 results in the graph in
Figure 2.8b with 2 levels of parallelism remaining. Actors in the subgraph of the
H actor have been clustered into the ΩH actor. When executed, ΩH sequentially
executes the following actor calls 3I-3J-6K-1L, where 3J means that actor J is
executed three times.

2. Partial clustering of the nth
c level of the hierarchy.

The new bottom level of the hierarchy is partially clustered by identifying certain
patterns of related dataflow actors that, when clustered, may still retain some
degree of the data parallelism exploited in step 3 of the methodology. The first
pattern identified is the Unique Repetition Count (URC) pattern, which is a chain
of actors with the same number of executions per graph iteration. For example,
in Figure 2.8b, the actors F and G form a URC chain, since both are executed
12 times during an iteration of their subgraph. The second pattern identified is
the Single Repetition Vector (SRV) pattern, where a single actor is not part of
an URC chain, and its number of executions is greater than the number of target
processing elements. For example, in Figure 2.8b, actor H is an SRV actor. Both
the URC and SRV patterns are replaced by a single cluster actor executed once,
simplifying the equivalent DAG used for resource allocation. The graph resulting
from the second step of the methodology is illustrated in Figure 2.8c. The actors
F and G are clustered into the actor ΩF G, whose unique firing corresponds to the
sequential execution of 12F-12G.

3. Architecture-aware optimization of parallelism at the nth
c level of the hierarchy.

The purpose of this last step is to change the number of firings of actors clustered

35

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

in step 2 to match their data parallelism to the parallel processing capabilities of
the target platform. To do this, some of the data parallelism that was hidden
inside the cluster during step 1 is brought back to the clustered actors. This is
accomplished by changing the number of iterations of the clustered actors to match
the number of processing elements in the architecture. For example, assuming a
target architecture with 4 cores, the Ω′

F G actor is modified to be executed 4 times,
where each firing corresponds to the sequential execution of 3F-3G.

Using this technique, the complexity of the equivalent DAG is effectively controlled
from 137 vertices for the input graph of Figure 2.8a to 41 after step 1, 11 after step 2,
and 17 after step 3.

DSE time vs latency trade-off
Experimental results with SCAPE demonstrate the trade-off between the complexity of
the resource allocation process and the quality of the produced results. Figure 2.9
presents experimental results for a stereo matching image processing algorithm de-
scribed with a 2-level hierarchical PISDF graph [J5]. Experiments were performed with
nc ∈ 0, 1, 2, 3, and mapping and scheduling computations on homogeneous multi-core
architectures with nbcore ∈ 1, 2, 4, 8, 16.

2 4 6 8 10 12 14 16
0

10k

20k

30k

40k

50k
Level n c =0
Level n c =1
Level n c =2
Level n c =3

Number of cores

A
na

ly
si

s
tim

e
(m

s)

(a) Host Analysis Time

2 4 6 8 10 12 14 16
0

5k

10k

15k

20k

25k

30k

Level n c =0
Level n c =1
Level n c =2
Level n c =3

Number of cores

La
te

nc
y

(m
s)

(b) Produced Latency on the Target

Figure 2.9: Analysis time and latency trade-off for SCAPE configurations.

Figure 2.9a shows the resource allocation time as a function of the number of cores
targeted, for different levels of nc with SCAPE. When nc = 0, no clustering is applied,

36

2.4. Model-based Design Space Exploration (DSE)

which leads to larger DAGs and longer analysis time. On the contrary, the larger the
value of nc, the more clustered actors there are and the shorter the analysis time.

Figure 2.9b plots the simulated latency of generated multi-core schedules as a function
of the number of cores targeted, for different values of nc with SCAPE. At lower values of
nc, most of the fine-grained parallelism of the application is preserved, resulting in better,
that is, shorter, latency of the produced schedules. An extreme case can be observed
with nc = 3, where all actors of the graph are clustered into a single atomic actor, whose
firing is equivalent to a single-core execution. Finally, an interesting trade-off is obtained
with nc = 1, where the analysis time is almost halved, as shown in Figure 2.9a, but the
schedule latencies produced remain equivalent to those of the unclustered application
graph. Further results on another application with a different profile are published
in [C43].

2.4 Model-based Design Space Exploration (DSE)

To execute an application modeled with a dataflow MoC, hardware resources must be
allocated spatially, logically, and temporally. Dataflow MoCs are well suited for this pro-
cess, because computations are already separated into well-identified actors and memory
requirements are modeled as Fifo buffers. Nevertheless, each of these resource alloca-
tion problems is NP-hard. Therefore, intelligent DSE strategies must be developed to
tackle these problems. Section 2.4.1 presents an overview of personal contributions on
dataflow-based DSE algorithms, and Section 2.4.2 details a contribution on the use of
moldable parameters for multi-objective DSE optimization.

2.4.1 Contributions overview

Static distributed memory allocation
Optimizing the allocation of memory to support the execution of an SDF graph was one
of the main contributions of my doctoral thesis [B4]. The methodology used to allocate
memory for a static dataflow graph is based on a graph called Memory Exclusion Graph
(MEG) that models the memory reuse possibilities. Each vertex of the MEG represents
a buffer of a DAG, and the edges of the MEG model the impossibility of allocating
two buffers in overlapping address spaces, mostly because the lifetimes of the data they
store may overlap. Based on the MEG, bounding algorithms [C20] and shared memory
allocation algorithms [J5, C21] were proposed during my thesis.

37

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

As a continuation of this work, an extension of the memory allocation process to
support distributed memory has been proposed [C19]. To support distributed memory,
a MEG is built for each distributed memory bank of the target architecture, based on the
mapping and scheduling of dataflow actors. Experiments show that even in the presence
of shared memory and private caches, the use of distributed memory closer to the cores
significantly accelerates computations, up to 380% without caches and up to 19% with
caches, on embedded MPSoCs [C19].

Reconfigurable dataflow runtime manager for many-core architectures
The PISDF model proposed in my PhD thesis is a reconfigurable dataflow model whose
behavioral semantics allows runtime changes in data paths and computational work-
loads [B3, T4]. To support these dynamic changes, a runtime manager is required to
keep track of parameter values in the executed graph and make on-the-fly graph trans-
formations and resource allocation decisions. For the PISDF graph, the Spider (Syn-
chronous Parameterized and Interfaced Dataflow Embedded Runtime) runtime manager
has been proposed by Heulot et al. in [C27].

Based on Spider, the first embedded runtime manager allowing the execution of
reconfigurable dataflow graphs on a many-core NUMA (Non-Uniform Memory Access)
architecture was proposed in [C39]. The proposed runtime is based on new scheduling,
synchronization, and memory allocation algorithms specifically designed for clustered
architectures, where PE are grouped into clusters, each with a private memory bank.
Experiments on Kalray’s 256-core MPPA architecture demonstrate the viability of the
proposed runtime and its great potential, with energy efficiency up to 10 times better
than a desktop CPU.

2.4.2 Multi-criteria Optimization of Algorithmic Design Choices with
Moldable Parameters

When developing an application, developers often want to experiment with different con-
figurations. In practice, different configurations can differ in many ways, from functional
differences of alternative algorithmic choices to non-functional differences that only af-
fect, for example, the degree of parallelism of a specification. This work aims to facilitate
and automate the exploration of multiple configurations for dataflow applications.

Most related works on DSE for applications modeled with static dataflow graphs
assume that the dataflow graph is fixed before entering the DSE process. Thus, for a
given application graph, the DSE process is responsible for evaluating multiple solutions

38

2.4. Model-based Design Space Exploration (DSE)

provided by the resource allocation solvers. To explore different configurations with such
a DSE process, the developer must manually modify the application graph, possibly by
changing its static parameters, and restart the entire DSE process for each configuration.
Few works consider exploring design choices on the application model itself, exploiting
the dataflow MoC semantics. MASES [89] is one of them; it optimizes the throughput,
latency, and processor utilization of applications represented with a restriction of the
SDF MoC, where it automatically adds software pipelining.

This contribution [C28] goes beyond the state of the art by introducing new moldable
parameters in the MoC semantics to explicitly specify different configuration alterna-
tives. Building on these parameters, the multi-criteria DSE process can be automated
to automatically find the set of Pareto-efficient configurations.

Moldable parameters
Parameters in the PISDF MoC can be used to set various characteristics of the appli-
cation: data production and consumption rates on Fifos, delay sizes, execution times
and energy per actor firing, and even actor static integer input arguments. Tuning such
single expression parameters is cumbersome for developers, as they must manually set
the correct expression of a parameter to perform application analysis or code generation
for each application configuration.

Moldable parameters are a simple extension of parameters as defined in the PISDF
semantics [C22]. Each moldable parameter contains a list of symbolic expressions sep-
arated by semicolons. The first expression is the default, so moldable parameters can
always be used as regular parameters. Just like regular parameters, symbolic expressions
held by moldable parameters can be a simple static integer value, or a complex expres-
sion that depends on other parameters using mathematical operators and functions. A
parameter configuration of the application dataflow graph is obtained by selecting and
evaluating for each moldable parameter a single expression from the list of available
ones.

h*wRead Split

h*w

(h+6n)*w
Dilat°

(h/n+4)*w

h/n*w
Disp.

h*wx1 x1 xn x1

Eros°
h/n*wxn

Sobel

(h/n+6)*w

Join

h*w

h*w

xn x1

(h/n+4)*w
pip1*(h+6n)*w pip2*h*w

(a) Parameterized graph

(h,w) ∈ {480x720, 720x1280, 1080x1920}
n ∈ {1, 2, 4, 8}
pip1 ∈ {0, 1}, pip2 ∈ {0, 1}
freq ∈ {400, 600, 800, 1000}

(b) Moldable parameter values

Figure 2.10: Dataflow graph with moldable parameters.

39

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

An image processing dataflow application that embeds moldable parameters is given
in Figure 2.10. The behavior of the graph in Figure 2.10a is configured using 6 moldable
parameters: h and w which control the processed image resolution, n which controls the
number of image slices processed in parallel, pip1 and pip2 which can be used to activate
different pipeline stages, and freq which represents the frequency of the target processor.
Only the h and w parameters affect the output produced by the described application.
All other parameters are called non-functional parameters, because they change the way
the application can be executed, but not the result it produces. The list of values for
each moldable parameter is given in Figure 2.10b. Considering all possible combinations
of moldable parameter values, there are 192 configurations for this simple application
example.

Multi-criteria exhaustive DSE
Running an exhaustive DSE for an application graph with moldable parameters consists
of performing resource allocation for each configuration. The result is a set of metrics
for each configuration that can be used to evaluate the efficiency of each configuration.
Common optimization metrics include latency, throughput, power, and memory usage.

0 0.5 1 1.5 2 2.5 3 3.5

Power

0

0.5

1

1.5

2

2.5

3

5.53

5.82

6.04

6.21

6.22

6.27

T
h
ro

u
g

h
p
u
t-1

 (
1

0
0

 m
s)

M
e
m

o
ry

 (
M

B
)

Figure 2.11: Pareto-front (Power, Throughput−1, Memory) of SIFT for 2 pipeline stages.

Figure 2.11 presents an excerpt of results for a SIFT computer vision algorithm
modeled with a moldable dataflow graph [C28, C31]. The plot represents the value of 3
optimization criteria to be minimized: Power, Throughput−1, Memory footprint, for a
fixed pipelining configuration of the application.

Among all the solutions generated by the exhaustive DSE process, only Pareto-
efficient solutions are presented in Figure 2.11, that is, solutions that cannot be improved
on one criterion without sacrificing another. These Pareto-efficient solutions are the ones

40

2.5. Summary

sought by application developers, as they represent the best possible tradeoffs between
observed metrics. As shown in [C28], a limited subset of moldable configurations leads
to such Pareto-efficient solutions, with only 1% of the 10k configurations for the large
SIFT application, and up to 20% of the configurations for smaller applications such as
the one shown in Figure 2.10.

Towards smarter DSE
Exhaustive exploration of all moldable configurations is impractical. The heuristic al-
gorithms responsible for mapping and scheduling dataflow computations and allocating
memory take seconds to minutes to run for each configuration. In cases where there
are thousands of configurations, exhaustive exploration can take hours or days, which is
highly impractical.

Since only a few moldable configurations are Pareto efficient, a smarter DSE algo-
rithm should seek these configurations without relying on exhaustive exploration. While
such a DSE algorithm has not yet been built, a preliminary study [C28] shows that
for many moldable parameters, it is possible to identify how variations in the parame-
ter value affect the observed optimization criteria after resource allocation. We classify
moldable parameters into 4 categories according to their influence on the optimization
criteria:

• Same →: The criterion is constant when the parameter changes.

• Increase ↗: The criterion increases strictly as the parameter value increases.

• Decrease ↘: The criterion decreases strictly as the parameter value increases.

• Inconsistent ↗↘: The variation of the criterion is not strictly monotone, while the
variation of the parameter value is monotone.

In [C28], it is empirically shown that a reliable classification of the influence of
moldable parameters on optimization metrics can be built by exploring less than 15% of
the DSE space. A goal for future work is then to build on such a classification to drive
the search for moldable configurations that lead to Pareto efficient solutions.

2.5 Summary

In this chapter, contributions to design automation techniques for embedded software
have been reviewed. These contributions are based on several dataflow MoCs whose se-
mantics can be used to capture characteristics of parallel stream processing applications.

41

Chapter 2 – Embedded Parallel Software Synthesis with Dataflow MoCs

Building on this semantics, powerful optimization techniques are proposed to automati-
cally build highly optimized system prototypes that rival and often surpass handcrafted
software.

The proposed contributions fall into three main categories:

• Model extensions that extend the semantics of the dataflow MoCs to improve its
expressiveness and analyzability.

• Front-end optimizations and analysis that exploit dataflow semantics early in the
design flow to provide rapid feedback to the user or to simplify and accelerate the
subsequent design flow.

• Model-based DSE techniques responsible for transforming high-level dataflow graphs
into multi-optimized prototypes on modern MPSoCs.

The contributions presented here have been made possible thanks to the hard work
and dedication of the following individuals:

• PhD students: Florian Arrestier, Hamza Deroui, Julien Hascoët, Alexandre
Honorat, Ophélie Renaud.

• Master Students: Hugo Miomandre, Thomas Bourgoin, Dylan Gageot.

• Post-Doc and engineers: Clément Guy, Julien Heulot, Antoine Morvan.

Research perspectives on dataflow MoCs include work on distributed multi-node HPC
and swarm systems, on dynamic neural networks, and on multiobjective optimizations.
These directions are described in detail in Chapter 5.

42

I am Groot.

Groot, Planet X

Chapter 3

Resilience of Signal Processing
Systems to Approximations

Integrated circuits packed with transistors implementing logic circuits using binary sig-
nals are the foundation of modern computing systems. With such hardware, compu-
tations must be modeled with finite-length binary words, which cannot support the
infinitesimal precision of mathematical models. For example, with the 32-bit IEEE754
float format, the closest value immediately above 1 that can be represented is 1.00000012.
Any operation that results in a number between 1 and 1.00000012 is quantized, that is,
either thresholded or rounded to one of these values. While such approximations can be
neglected most of the time, they can also be the cause of catastrophic system failure,
such as the instability of a closed-loop system. When implementing a signal and image
processing system, a key task of the designer is to translate the mathematical equations
governing the operation of the system into digital computations, which may require the
introduction and control of approximation errors. These approximations may concern
the data formats, but also the arithmetic operations or even the implemented algorithm.

This chapter presents a series of contributions aimed at characterizing, optimizing,
and exploiting approximations made in the design of complex signal processing systems.
The chapter is structured as follows Section 3.1 briefly introduces the necessity, risks,
and benefits of approximations in modern signal processing systems. Section 3.2 focuses
on work done to accelerate the characterization of errors caused by approximations in
simple and complex signal processing systems. In Section 3.3, we study how the resilience
of AI to degraded data can be exploited to reduce the bitrate of images transmitted in
the context of Video Coding for Machines (VCM). Finally, Section 3.4 concludes this
chapter.

43

Chapter 3 – Resilience of Signal Processing Systems to Approximations

This chapter summarizes contributions and gathers content from the following per-
sonal publications: [C6, C9, C37, C38, P1, T2].

3.1 Introduction to Approximate Computing

3.1.1 Why is it Often Preferable to Make (small) Errors?

The most common approach to designing a computing system is to design the most
accurate system possible. For example, when prototyping a signal processing algorithm
with Matlab, NumPy, or Julia, the default data type used for real numbers is the double

type. In fact, it can unerringly be assumed that miscalculations made with this 64-bit
format are negligible in most algorithms. While the choice of a high-accuracy data
format is often made unthinkingly, the deliberate pursuit of higher accuracy is also very
common. A striking example of this pursuit is the ongoing competition to build the AI
model that achieves the best possible accuracy in computer vision tasks, such as image
classification on public datasets [52, 53].

Contrary to common practice, striving for higher accuracy is often unnecessary and
may even be counterproductive or harmful in some applications. An antique example of
a useful approximation is Archimede’s approximation of π ≈ 22/7. Since antiquity, this
approximation of π has been used extensively and without harm in many fields, including
construction and architecture, because of its simplicity [98]. For more modern and
sensitive computations, higher accuracy may be required. For example, NASA uses 15
decimals of π, which is sufficient for their highest accuracy calculations for interplanetary
navigation [25]1. Another famous example of a useful approximation is the inverse square
root calculation used in the 3D graphics engine of Quake 3. This fast algorithm for
computing 1/

√
x is based on a hack of the 32-bit binary float numbers [63], followed

by an iteration of Newton’s algorithm. The algorithm produces an approximation of
the result with a maximum relative error of 0.00175228, which is perfectly acceptable in
most cases.

Useful approximations can also be made at the algorithmic and application level.
An example of such an approximation is proposed by Muvva et al. in [68], where they
evaluate several machine learning-based algorithms for controlling a drone that visually
tracks and follows another drone. In this example, the authors show that it is sometimes
preferable to have a less accurate but fast tracking algorithm than a more accurate but
slightly slower one, with the latter losing its target more often than the former.

1This coincidentally corresponds to the accuracy of a double number for π.

44

3.1. Introduction to Approximate Computing

While approximations are often used to get results faster, as shown in the previous
examples, another benefit is often found on the energy consumption side. In fact, at
the computational level, high-precision results require more resources to produce than
approximate results. An interesting proof of this assertion is the difference in the energy
used to compute int, float, and double multiplications on a standard CPU. As shown
in [101] for a big.LITTLE Arm architecture with 4 A7 cores and 4 A15 cores, the
energy used for a float multiplication is between 9% and 102% higher than for a 32-bit
int, and for a double multiplication it is between 23% and 200% higher, despite the
presence of floating-point units in all cores. In addition, float and double multiplication
instructions have a latency between 33% and 133% longer than their int counterpart.
Therefore, in such an architecture, using fixed-point arithmetic, where real values are
encoded with int data types, can result in both a lower power footprint and higher
performance at the expense of computational accuracy.

In summary, approximations can be used in system design to build more cost-effective
systems where accuracy and quality of service are kept to an acceptable minimum.

3.1.2 Approximation Opportunities and Trade-offs

Many approximation opportunities have been studied in the scientific literature for the
design of computing systems. As illustrated in fig. 3.1, these approximations can gen-
erally be categorized along three axes [11]: data, hardware, and algorithmic approxima-
tions.

Data

Hardware

Algorithm

reliable inexact
error-prone

accurate

inexact
incomplete

deprecated

exact

approximated
pruned

Figure 3.1: Approximate computing optimization axes [11].

Data approximations take many forms in the literature, with approximation levers
encompassing data quality, quantity, and temporality. Lowering data quality consists
of adopting storage formats that lose some accuracy of the data. As discussed in Sec-
tion 3.1.1, a controlled loss of accuracy for real numbers can be achieved by adopting

45

Chapter 3 – Resilience of Signal Processing Systems to Approximations

standard data types with narrower bit widths, such as 32-bit float, half-precision 16-bit
float16 formats [36], or even floating-point formats with custom widths [65]. Another
alternative is to convert real numbers to fixed point formats of variable width, which can
be manipulated using integer ALUs (Arithmetic and Logic Units) [60, 91]. Reducing the
amount and temporality of data consists of neglecting some available input data of an
algorithm, which reduces the number of energy- and time-consuming data accesses and
synchronizations within a computing system. For example, a common way to reduce
the amount of data in image processing algorithms is to reduce the resolution of the
processed images by subsampling the input images [C38, T2, 47, 53]. Working with out-
dated data rather than fetching the most current data is another strategy for reducing
the number of data accesses a computer system makes [82].

Hardware approximations take two main forms: inexact logic circuitry and error-
prone working conditions. An inexact logic circuit implements a function with hard-
wired shortcuts compared to the exact version. Because of these shortcuts, the circuit
deterministically produces computational errors for some input values, but uses less sil-
icon area, consumes less power, and is faster than its exact counterpart [C6, C11, 40].
Using hardware in error-prone conditions consists of using an exact circuit with unsafe
voltage and frequency parameters. For example, using a circuit slightly below its mini-
mum nominal voltage [80] allows significant power savings while introducing statistically
harmless computational errors. A complementary approach, timing speculation, consists
of increasing the clock frequency of a circuit beyond its safe limit [41]. Timing spec-
ulation can be used with [3] or without [41] error correction mechanisms, and allows
further reduction of power consumption when combined with undervoltage powering of
the circuit.

Algorithm approximations are modifications to the algorithms executed by a sys-
tem that deliberately reduce the accuracy provided in exchange for reduced complexity.
Algorithm approximations can be introduced by modifying the control flow of an appli-
cation, for example by skipping iterations of a for loop [C8], or by choosing an early exit
from an iterative algorithm [C8, 63]. At a higher level of abstraction, removing compu-
tations that do not dramatically affect the result of an algorithm [70]. In recent years,
the popularity of this technique has increased dramatically with the pruning of Deep
Neural Network (DNN) [60]. Another algorithm approximation technique is simply to
replace all or part of an algorithm with an alternative algorithmic solution that provides
a different tradeoff between the delivered Quality of Service (QoS) and the optimized
non-functional properties that are being optimized.

46

3.1. Introduction to Approximate Computing

Each of the above approximation techniques introduces potential or systemic inac-
curacies and errors into the system in exchange for a non-functional benefit. The most
commonly considered benefits are energy savings, reduced execution time or increased
throughput, reduced silicon area, and reduced memory footprint of the system. Although
introduced errors may be completely benign to the system, they most often degrade the
QoS of the system, and may even be the cause of catastrophic failures, especially in
closed-loop systems where even small errors can propagate rapidly [51].

3.1.3 Research Challenges for Approximate Computing

At a time when frugality is paramount, approximate computation remains a very active
research area along its three research axes. Most of the ongoing open challenges in this
domain concern the following 4 questions:

• How to harmlessly approximate subparts of a system? Creating new ap-
proximation techniques remains a fundamental open challenge to provide system
designers with new optimization possibilities.

• How to expose approximation opportunities to developers. Many effi-
cient approximation techniques have been proposed in the scientific literature for
decades, but are not used by system developers. The reason for this non-use is
that high-level programming languages and development tools simply do not ex-
pose or recommend these approximation techniques in their features. Thus, the use
of approximation techniques requires a voluntary approach by the developer, who
must identify candidate regions of his code and manually write the low-level code
required to implement the optimizations.

• How to predict the impact of local approximations on the global system.
When implementing approximations within a system, their separate and combined
effects on the proper functioning of the system must be predicted in order to assess
their viability. While formal methods exist to mathematically model the effect of
approximations within a chain of computations, these formal methods are often
not applicable [C11] in large systems with complex and dynamic control and data-
flows. Therefore, new formal, statistical, or empirical methods are needed to quickly
predict the effects of approximations in complex systems.

• How to automate the Design Space Exploration (DSE) for optimal ap-
proximations? The design space to explore when selecting and implementing

47

Chapter 3 – Resilience of Signal Processing Systems to Approximations

approximations within a system is immense. The DSE requires considering many
design choices, various constraints to satisfy, and multiple criteria to optimize [C7,
C28, 66]. In this context, DSE consists of choosing the right combination of ap-
proximations, each of which offers several degrees of approximation to choose from,
and each of which affects system performance and QoS in its own way. Each tested
configuration must be evaluated, which usually requires running complex analy-
ses or simulations [C9, C11]. Therefore, intelligent heuristics are needed to find
the Pareto optimal solutions with respect to various metrics, such as performance,
energy, and QoS, with as few evaluations as possible, while respecting the design
constraints.

The personal contributions that study the impact and use of approximations in
different contexts are presented in the following sections. Section 3.2 introduces fast
techniques for modeling the influence of approximations on the behavior of a system.
Then Section 3.3 examines how image approximations, that is, images degraded by lossy
compression, can be exploited in the context of Video Coding for Machines (VCM).

3.2 Fast Error Characterization for Approximate Comput-
ing Systems

When implementing approximations within a computing system, it is essential to char-
acterize how these approximations affect the functioning of the system. Indeed, during
the DSE process, quantifying the impact of approximations helps the designer select the
appropriate degree of approximation to introduce in each part of the system. Providing
this characterization quickly is important to allow faster DSE and evaluation of more
alternative configurations.

A circuit-level approximation characterization technique is presented in Section 3.2.1,
and a system-level approximation characterization technique is presented in Section 3.2.2.

3.2.1 Circuit-Level Error Characterization with Inferential Statistics

The goal of this contribution is to characterize the frequency and amplitude of errors
made by hardware approximate operators using inferential statistics.

Motivations & background:
An approximate operator is a logic circuit that takes operands as inputs and produces
a result with a predefined word length, such as a 32-bit adder. Compared to their exact

48

3.2. Fast Error Characterization for Approximate Computing Systems

counterparts, approximate operators are modified at the gate level to gain speed, power,
or silicon area [41, 62].

An illustration of the computational errors made by an approximate adder is given
in Figure 3.2. The simple approximate circuit considered is an 8-bit LOA (Lower-
part Or Adder) adder [64], where the added operands are divided into two parts, the
lower 5-bit part and the upper 3-bit part. The sum of the lower part is approximated
with a simple bitwise Or operator, while the higher part is summed with a full adder.
The heatmap presented in Figure 3.2 depicts as color intensity the error made for each
pair of operand values, relative to the exact results: RelativeError = (Resultexact −
Resultapprox.)/Resultexact . This adder produces large relative errors, up to 50% of the
exact result, for small operand values. Overall, this operator produces the exact result
only 24% of the time, but its average absolute relative error with respect to the exact
result is only 3.77%.

0 32 64 96 128 160 192 224 256
0

32

64

96

128

160

192

224

256

0

20

40

60

80

100

1st operand values

2n
d

op
er

an
d

va
lu

es

Figure 3.2: Relative error for an 8-bit LOA approximate adder [64]. Color intensity
represents the error made for each pair of operand values, relatively to the exact results.

Characterizing the error introduced by an approximation circuit is not straight-
forward. While analytical methods exist to mathematically model approximation er-
rors [61], these methods require time-consuming expert analysis of the circuits, and are

49

Chapter 3 – Resilience of Signal Processing Systems to Approximations

often specific to a given operator with predefined circuit modifications. An alternative
approach to characterize the error of these circuits is to measure the errors produced
by the circuits by simulating their operation for different operand values. Unfortu-
nately, bit-accurate hardware simulation is a computationally intensive process that can
take between 300 and 4000 times longer to emulate than running a native addition or
multiplication with the same CPU [C6]. However, since the simulation process can be
automated, this method is often preferred over the analytical approach.

To characterize the frequency and amplitude of errors with simulations, a first option
is to simulate the operator exhaustively, for all possible operand values, as done in
Figure 3.2. For a 2-operand operator with a word length of n bits, the number of
simulations to run is

Nbsimulations = (2n)2

While the number of input values to simulate remains reasonable for operators with
short word lengths, for example 65 536 values for an 8-bit operator, this number becomes
prohibitively large for larger ones, for example ∼ 4 · 109 values for a 16-bit operator, and
∼ 18 · 1018 values for a 32-bit operator. Such an exhaustive simulation is simply not
feasible for large operators. For example, assuming an optimistic simulation time of 1µs
on one core, per pair of input values, and using 500 parallel cores, more than a year
of simulation would be required to cover all possible values. Even taking into account
symmetries to reduce the number of simulations to be run, which requires expertise in
circuit analysis, exhaustive simulation remains prohibitively expensive.

Statistical methods are therefore needed to derive approximate but reliable error
models from as few simulations of an operator as possible.

Characterization with Adaptive Sample-Size Inferential Statistics (Cassis)
The goal of the Cassis method [C6] is to automatically select the minimum number
of random operand values to simulate in order to obtain a trustworthy error charac-
terization of a circuit. The error model obtained for the analyzed circuit consists of a
mean error distance (µ), which is the average absolute error made by the approximation
circuit, and an error rate (f), which represents the probability that a result produced by
the circuit is inaccurate. Formally, for a circuit with two n-bit operands, these metrics
are expressed as follows:

µ = 1
22n

2n−1∑
i=0

2n−1∑
j=0

|resexact(i, j) − resapprox(i, j)|

50

3.2. Fast Error Characterization for Approximate Computing Systems

f = 1
22n

2n−1∑
i=0

2n−1∑
j=0

err(i, j), where err(i, j) =

1 if resexact(i, j) ̸= resapprox(i, j)

0 otherwise

where resapprox(i, j) and resexact(i, j) represent the approximate and exact results, re-
spectively, for the circuit under consideration. For example, for the LOA adder from Fig-
ure 3.2, the exact error characteristics obtained from exhaustive simulations are µ = 7.75
and f ≈ 0.24. While the previous equations assume a 2-operand circuit, a generalization
to N operands would be straightforward.

The confidence criteria of the Cassis method are set by the user, with the de-
sired confidence constraints defined as an accuracy constraint h and a confidence con-
straint p, both expressed as probabilities. Thus, the method automatically returns a
result µestimated such that there is a probability p that |µestimated − µexact |/µexact ≤ h.

Cassis builds on inferential statistical techniques [87] to automatically derive the
minimum number of simulated random input values to estimate the mean error distance
and error rate within the confidence interval defined by ⟨h, p⟩. In particular, this method
relies on the Central Limit Theorem, which assumes that the distribution of independent
random variables, in our case the errors, converges to a standard normal distribution.
The iterative algorithm used to model the error can be summarized in the following
4 steps, with a user-defined refresh rate T ∈ N and a maximum number of simulated
samples Nmax:

1. Create an initial population P consisting of 30 random input values ⟨i, j⟩ for the
circuit.

2. Compute µest and fest over P , and their standard deviations σµ and σf .

3. From µest, fest, σµ, σf , and from confidence constraints h and p, infer Nmin ∈ N,
the estimated minimum number of samples to simulate.

4. If |P | < Nmin < Nmax, add T new random input values to P and go back to
step 2. Otherwise, enough samples have been evaluated, and µest and fest satisfy
the requested confidence constraints.

Thus, based on the empirical values of µ and f computed on a subset of the inputs, the
algorithm automatically infers the remaining number of input values Nmin to simulate
to satisfy its constraints. Since inferential statistics are used in step 3, it follows that the
larger the estimated standard deviation σµ and the tighter the confidence constraints,
the larger Nmin will be. Nevertheless, by re-evaluating Nmin every T new input pairs,
the algorithm converges to a minimized value for Nmin.

51

Chapter 3 – Resilience of Signal Processing Systems to Approximations

Experimental results
The Cassis method was evaluated on 8 different arithmetic circuits, with operand word
lengths ranging from 8-bit to 32-bit [C6]. All experiments were performed with h = 5%
and p = 95%, and Nmax = 2.5 ∗ 107. Only the most important experimental results are
presented in this section, for a detailed presentation of the experiments the interested
reader should refer to [C6].

Fast Convergence: When it converges automatically, that is, for operators with a
small standard deviation of errors, the Cassis method simulates a very limited number
of input values. On average, only 25% of all values are simulated for 8-bit operators,
1.5 ∗ 10−3% for 16-bit operators, and 2.4 ∗ 10−11% for 32-bit operators. In all cases, at
most a few minutes of simulation are required to run the proposed algorithm.

Adaptive Complexity: While it may be tempting to run an arbitrarily large number
of simulations to predict the error models, for example 5M pairs of inputs, the results
show that for some operators this number is sometimes far too small, while for others it
is far too large. For example, experiments show that for various operators, between 50k
and 17M input pairs are needed to characterize their error with confidence constraints
of h = 5% and p = 95%.

3.2.2 System-Level Error Characterization with Kriging

Simulations for Approximate DSE
Characterizing the impact of errors at the system level is a key step in the DSE process.

While at the operator level the goal of error characterization is to derive a statistical
model of errors for a fixed logic component, at the system level the challenge is to
evaluate many potential approximate configurations to identify the most appropriate
one. A simple example of such a DSE process is the selection of the appropriate fixed-
point format for n different data channels within a complex system. Assuming an 8-
bit constraint on data formats, 9 fixed-point configurations can be used for each data
channel, for a total of 9n system configurations. Thus, for a system with only 5 data
channels, 59049 configurations are possible.

In complex stream processing systems that mix complex control and data streams,
the impact of approximations on system performance is not trivial to model. As with
operator-level error characterization, simulations must be used to evaluate the impact
of a given approximation configuration on system performance. For each considered
configuration, the system behavior needs to be emulated with a representative input
data set in order to generate a quality metric for that approximate configuration [C8].

52

3.2. Fast Error Characterization for Approximate Computing Systems

Simulating a complex algorithm is time-consuming, especially when it is necessary to
emulate approximations within the algorithm. The total DSE time TDSE can be modeled
by the following equation:

TDSE = Nbconfig × Tsim × Nbsim

where Nbconfig represents the number of configurations evaluated, Tsim the time taken
by each simulation, and Nbsim the number of simulations needed to produce a rele-
vant system quality metric for the DSE process. Many state-of-the-art techniques focus
on speeding up the DSE process by reducing Nbsim, using heuristics to find the most
promising configurations faster [P1, 74]. Another common approach to speed up the
DSE process is to reduce the simulation time Tsim, for example by using statistical
models of approximate operators instead of bit-accurate exact simulations [C11].

Kriging-based DSE acceleration
The goal of the contribution proposed in [C9] is to speed up the DSE process of approxi-
mate systems by skipping the simulation of some explored configurations and predicting
their results instead. The basic idea behind this technique is that a configuration sim-
ulation that produces a quality metric may be skipped if enough nearby configurations
have already been simulated. In such a case, the quality metric for the evaluated con-
figuration is predicted using an interpolation of its neighbor evaluations, which is much
faster to compute than simulating the system.

The identification of skippable simulations and the interpolation methods are both
based on the Kriging technique [18]. Kriging is a technique used in geostatistics, and
more specifically in mining, to predict the value of random multidimensional functions
from known nearby values, with a confidence interval. Without going into details, from
a set of known and spatially close values of a random function, the Kriging technique
identifies a so-called semi-variogram that relates these known values to each other. The
identified semi-variogram can then be used to predict the value of the random function
by interpolation, with a confidence interval depending on the proximity to the set of
known values. In practice, each configurable approximation implemented within a sys-
tem represents a dimension of the explored space. For example, each variable with a
configurable word-length format, or each operator with a tunable precision, represents
a dimension for the Kriging technique.

53

Chapter 3 – Resilience of Signal Processing Systems to Approximations

Experimental results
The Kriging-based method for accelerating the DSE of the approximate system has
been implemented for 5 applications, ranging from simple FIR (Finite Impulse Re-
sponse) filters to part of the HEVC (High-Efficiency Video Coding) video encoder and
the SqueezeNet CNN (Convolutional Neural Network) [C9]. For digital signal processing
applications, the quality metric estimated by the technique is the noise power at the out-
put of the system, while for the CNN the more complex rate of successful classification
is evaluated, demonstrating the genericity of the proposed method.

Depending on the confidence interval imposed for the Kriging interpolation method,
on average between 65% and 86% of the configurations are interpolated instead of simu-
lated. Thus, the confidence interval imposed by the user controls the trade-off between
the number of interpolated simulations and the accuracy of those interpolations. Over-
all, this technique can reduce the time required for DSE by a factor of 2 to 10, with
larger gains for the largest applications, even with fewer dimensions to explore. More
detailed experimental results can be found in [C9, 11].

3.3 Lossy Image Compression for Machine-to-Machine Com-
munications

Approximate techniques presented in Section 3.2 are generic error characterization tech-
niques applicable to any circuit or system with well-defined quality metrics and config-
urable approximations. Rather than focusing on the search for generic methods, this
section studies the impact and resilience to approximations for a specific application
context: machine-to-machine communications, and more specifically Video Coding for
Machines (VCM). Section 3.3.1 introduces the challenges of the VCM context, and Sec-
tions 3.3.2 and 3.3.3 present contributions in this area.

3.3.1 Challenges and Opportunities for Machine-to-Machine Image Com-
munications in the AI Era

The IoT era has accelerated the trend toward a society in which a distributed network
of embedded systems and intelligent sensors communicate with the cloud to provide ser-
vices. Combined with the leap in capabilities of AI techniques, the forthcoming ubiquity
of IoT devices paves the way for applications such as smart cities, smart buildings, and
e-health [33].

54

3.3. Lossy Image Compression for Machine-to-Machine Communications

In a typical sensor network system, a number of low-power IoT devices generate
data that is transmitted to a dedicated facility, such as the cloud or fog computing, for
processing. Cisco estimated that between 2016 and 2021, data generated by IoT devices
and transmitted to data centers for processing would grow from 220 to 847 Zetabytes [17].
In this context, a key challenge for the AI and signal processing scientific community is
to find innovative solutions to contain this so-called deluge of data from IoT devices. It
is therefore necessary to consider aggressive data compression solutions to limit traffic
bandwidth and reduce the energy footprint associated with IoT transmissions, while
preserving the benefits of massive IoT deployment.

To reduce the amount of data transmitted, an opportunity lies in the ephemeral
nature of 99% of the data generated by IoT devices [17]. Ephemeral data is data that is
transmitted to a processing facility where it is used directly to provide a service, but is
not stored for further reuse. This ephemeral nature of data creates an opportunity for
approximation in the form of aggressive lossy data compression techniques. Lossy com-
pression consists in reducing the volume of transmitted data by voluntarily discarding
useless parts of the transmitted information, thus lowering its intrinsic quality. In fact,
since ephemeral data is neither stored nor reused, its quality can be reduced to a bare
minimum, just high enough to allow correct interpretation by AI techniques.

IoT Device Processing facility

Camera Edge
Processing

Lossy
Compression

Transmission Decompression AI

Raw
Image

Pre-Processed
Image

(optional)

Distorted
Image

Bitstream

01101110010

Figure 3.3: Image and Video Coding for Machine Information Flow

The work presented herein focuses on the transmission of approximated image and
video data, degraded by lossy compression techniques, and consumed by an AI-based
computer vision algorithm. A typical flow for such a VCM system is presented in Fig-
ure 3.3. On the edge or IoT device side, the image captured by the camera may be
subject to local processing before transmission, which is often limited by the small com-

55

Chapter 3 – Resilience of Signal Processing Systems to Approximations

putational capacity of embedded processors, especially on battery-powered devices. This
local processing can be used, for example, to perform a lightweight first part of the com-
puter vision task, or to pre-process images before compression. For example, image
preprocessing is used in [96] to identify potential regions of interest in images captured
by a drone, and to remove chrominance components for all pixels outside that region
before transmission. On the processing facility side, which is usually located close to the
device in fog computing or in cloud computing facilities, processing power is generally
not an issue, and power-hungry AI are usually used to process the data.

The challenge in designing a VCM system like the one presented in Figure 3.3 is to
optimize and balance four aspects:

• the compressed image size, which affects the bandwidth needed for transmission,

• the embedded computational complexity, latency, and throughput for compression
and pre-processing, which must match the capabilities of the embedded device and
the real-time requirements of the applications,

• the power consumption associated with compression and transmission, which is
critical for battery-powered IoT devices,

• the AI quality of service, which must be maintained at an acceptable level for the
end user of the system.

The contribution presented in Section 3.3.2 focuses on the AI part of the processing
facility, studying its resilience to lossy compression artifacts. Then Section 3.3.3 outlines
a study of the impact of various lossy compression schemes from the device side on
various computer vision tasks.

3.3.2 Enhancing AI Resilience to Lossy Compression Artifacts

The goal of this contribution is to improve the resilience of a given CNN to image
degradation caused by a particular lossy encoding scheme. The different strategies that
can be used to train a CNN when considering images degraded by a lossy image encoder
are illustrated in Figure 3.4.

In most AI-based computer vision applications, image compression effects are simply
ignored, and CNNs are trained on supposedly pristine images. As shown in the origi-
nal training method in Figure 3.4, the weights of the CNN are simply trained using a
backpropagation of prediction errors given by a loss function that compares the network
predictions to a reference gold truth (not shown in the figure). The main problem with

56

3.3. Lossy Image Compression for Machine-to-Machine Communications

Original
Image

BPG

JPG

Loss(f(x))

f(x)

Noise-resilient training

Loss(g(y))

g(y), y∈{x,x',x"})

back-propag.

back-propag.
x x

Expert training

Loss(h(x"),)

h(x")

back-propag.

{x,x',x"}

x"

f(x)

x"

x'

Lossy
Codecs

Original training

Degraded
Images

Figure 3.4: Expert training for enhancing resilience of CNNs to compression noise.

this classical technique is that the performance of the trained CNNs can degrade rapidly
in the presence of noise not seen during the training process [C38, T2, 19, 22].

From the literature, a first way to train noise-resistant CNNs is to expose them to
multiple types of noise during the training process. While this technique provides good
results, the potential caveats are an unwanted drop in accuracy on pristine images and
still significantly lower performance on distorted images [112].

The proposed contribution [C37] is a training technique aimed at making a network
expert for a very specific type of noise. The intuition behind this idea is that when
designing a VCM system, the designer will choose a specific image processing system
with a well-defined coding algorithm. Thus, instead of trying to be resilient to many
types of noise, expert training focuses on a single type of noise, and does not even
consider pristine images for training the CNN.

Expert training of a network h(.) goes beyond simple fine-tuning on degraded images
of a network f(.) trained on pristine images, as illustrated in Figure 3.4. A key element
of the proposed technique, inspired by [112], is that the training of h(.) on a degraded
image x′′ is boosted by forcing it to provide a similar result to f(.) exposed to the original
undegraded image x.

The expert training technique was evaluated on two image classification CNNs,
namely MnasNet and ResNet50, trained on the ImageNet dataset [53]. Three image
encoders, namely JPEG, JPEG2000, and BPG, were used in the experiments, each with
three degrees of distortion. As expected, specializing a network for a specific type and de-
gree of distortion significantly increases its accuracy for that configuration. On average,
the expert network is able to increase the classification accuracy by 2% to 45% compared

57

Chapter 3 – Resilience of Signal Processing Systems to Approximations

to a network trained only on pristine images. Compared to a fine-tuning technique on
the selected encoder and distortion level, the proposed expert training technique also
achieves an average 0.61% better classification accuracy. A detailed experimental evalu-
ation of the expert training technique is presented in [C37], in particular an analysis of
the noise resilience of different encoders for expert networks.

3.3.3 Towards Exploitation of the Resilience of AIs to Lossy Compres-
sion to Lower Compressed Image Bitrates

This contribution studies the impact of a wide set of lossy encoders and lightweight pre-
processings on the performance of an AI-based computer vision algorithm. The main
goal of this study is to find, for each encoder, the set of Pareto configurations that
give the best achievable tradeoffs between the size of the transmitted images (i.e. the
bitrate) and the accuracy of the AIs. For a fair comparison, the expert training presented
in Section 3.3.2 is used in each considered configuration to ensure optimal performance
of the AI.

Grayscale
Down

sample
Encode Decode

Up
sample

Image reconstructionBitrate reduction

Semantic
Segment.

Figure 3.5: Evaluation pipeline for encoder in a VCM context (from [C38]).

The evaluation pipeline used in this contribution is illustrated in Figure 3.5. Two
optional preprocessings of the input image can be used in this study: a grayscale im-
age conversion, which consists of ignoring the color components of the image, and a
downsampling of the input images to a lower resolution using a bicubic interpolation
algorithm. In addition to this optional preprocessing, the quality parameter Q of the
image encoders can be configured to different values, each offering a different trade-
off between quality and bitstream size. The AI task considered in this study is image
segmentation, which aims to delineate and classify objects within an image.

During this study, 5 standard image and video encoders were considered: JPEG,
JPEG2000, JM, X265, VVenc. It should be noted that the video encoders were used
in intra-mode to encode the still image under consideration, thus not using temporal
prediction mechanisms that are useful for video compression. For each encoder, up to 7
image resolutions and up to 11 quality parameter values were tested, in addition to the
optional grayscale pre-processing. In total, 1486 different encoding and pre-processing
configurations were evaluated in this study.

58

3.3. Lossy Image Compression for Machine-to-Machine Communications

Since training a deep learning network for each configuration is time-consuming, a
faster training strategy, named progressive training, is proposed in [C38]. The progres-
sive training strategy consists of iteratively increasing the values of the downscaling
and quality parameters, and fine-tuning the network weights along the way, instead of
starting training from scratch for each configuration. The speed of exploration of config-
urations can be traded off against the accuracy of the trained networks using a parameter
s to control the speed of iterative progress of quality and scaling values. This method
can save between 74% and 13% of the training time for exploring all configurations of
a given encoder, compared to training dedicated networks for each configuration. The
impact of progressive training on the accuracy of the image segmentation network is
minimal, ranging from a loss of 16% to a gain of 2.62%, for faster and slower values of
s, respectively.

A first interesting counterintuitive result is that removing color from images does
not result in interesting tradeoffs between image size and accuracy in most of the newer
encoders: JM, x265, and VVEnc. Although this is a strategy used in some publica-
tions [96], this result is explained by the fact that color information is only a small part
of the encoded bitstream, and that removing color strongly affects the accuracy of deep
learning networks. For older encoders, where color is still a larger part of the bitstream,
the grayscale option may be interesting for the lowest quality configurations.

A second interesting result of this study is that image resolution plays an impor-
tant role in the tradeoff between accuracy and bitstream size. To show this, two sets
of configurations are compared: on the one hand, configurations obtained by varying
only the quality parameter of the encoder and, on the other hand, by also varying the
downscaling factor. The Pareto fronts of the tradeoffs produced by the two configura-
tions, in the accuracy and bitrate 2D space, are compared using the Bjøntegaard-Delta
Rate (BDR) metric. The BDR metric represents the average bitrate savings at equiva-
lent network accuracy between two sets of configurations. Using this approach, JPEG
achieves 43% bitrate savings over JM, which in turn saves 14% over x265, which saves
19.9% over VVenc. Therefore, older encoders, which are several orders of magnitude less
complex than most newer ones, can save bandwidth by downsampling if lower network
accuracy is acceptable. This can be explained by the fact that most recent encoders are
more suitable for larger images, beyond 720p resolutions, but do not perform well for
smaller images. This is due to the block partitioning mechanism implemented in recent
codecs, which cannot be applied when the compressed image size is close to or below the
minimum size of a basic block.

59

Chapter 3 – Resilience of Signal Processing Systems to Approximations

A conclusion of this study, supported experimentally [C38], is that finding the
best encoding configuration is not straightforward when considering the complexity of
the encoder, the use of lightweight pre-processing, different encoders, different hyper-
parameters for system configuration, and different quality and bandwidth constraints.

3.4 Summary

In this chapter, contributions to approximate computing techniques have been reviewed.
These contributions include domain-agnostic methods and tools to support the DSE of
approximate computing systems, and more specific contributions that exploit and study
the resilience of AI to compression approximation in the context of VCM.

The contributions presented here were made possible by the hard work and dedication
of the following individuals:

• PhD students: Justine Bonnot, Alban Marie.

• Master students: Mathieu Dejean-Servières.

Research perspectives on approximate computing techniques include work on transpilers
for automated use of approximation at the source code level, and on automation of
optimization of VCM systems. These axes are described in detail in Chapter 5.

60

Hoooodor. Hooooooodor,
hoooooodor, hoDOR, hoDOR,
hoDOR.

Hodor, to himself,
A Storm of Swords,
George R.R. Martin

Chapter 4

Low-Complexity Reinforcement
Learning with Tangled Program
Graphs

In less than a decade, AIs powered by Deep Neural Network (DNN) have outperformed
and replaced human-made algorithms in many application domains, from computer vi-
sion [13] to Natural Language Processing (NLP) [1]. This sudden breakthrough of Deep
Neural Networks (DNNs) is largely due to the availability of affordable and easily pro-
grammable hardware with significant computing power, such as GPUs [53]. Driven by
the ever-increasing computing power of commercial chips, the current race for omnipo-
tent AIs is leading to the creation of increasingly complex DNNs requiring millions [13]
to hundreds of billions [1] of parameters.

Contrary to the increasing computational complexity of DNNs, the need for light-
weight AIs is also growing. In fact, the ubiquity of IoT devices and the enormous amount
of data they generate [17], call for new paradigms where data processing is performed
locally, close to the data producer. The processing of data by AIs on embedded IoT
devices is not compatible with the use of compute-, storage- and power-hungry DNNs.

A common way to create lightweight and frugal AIs is to exploit the resilience of
DNNs to approximations, using techniques such as pruning, low-precision, and approxi-
mate computation [72, 102]. Using such techniques, it is possible to simplify the trained
DNN models while retaining most of their accuracy, with typical gains of up to 1 order
of magnitude in computational complexity and 2 orders of magnitude in memory us-
age [72, 102]. Even with these techniques, only relatively small and less powerful DNNs,

61

Chapter 4 – Low-Complexity Reinforcement Learning with TPGs

such as MobileNet or EfficientNet [99], can be embedded in tight memory-, energy-, and
time-constrained systems.

An alternative way to create lightweight AIs is to develop new machine learning
techniques that rely on light-by-construction models, such as the TPG model studied in
this chapter. The chapter is structured as follows: Section 4.1 introduces the TPG tech-
nique for constructing ultra-light Reinforcement Learning (RL) AIs. Then, Sections 4.2
and 4.3 present contributions for accelerating the training and inference of TPG-based
AIs. Some additional contributions using TPGs are outlined in Section 4.4. Finally,
Section 4.5 concludes the chapter.

This chapter summarizes contributions and gathers content from the following per-
sonal publications: [J14, C12, C17, C23, C46, T1].

4.1 Introduction to Tangled Program Graphs

TPG, which stands for Tangled Program Graph, is a Reinforcement Learning (RL) tech-
nique proposed by Stephen Kelly and Malcolm Heywood in [47]. Building on state-of-
the-art genetic programming techniques, TPGs are grown from scratch for each learning
environment in which they are trained. The content of this section is also covered in a
9-minute video introduction to TPGs produced in 2020 [T3].

Learning
Agent

Learning
Environment

Action

State

Reward

Figure 4.1: Reinforcement Learning (RL) principles

Background: Reinforcement Learning and Genetic Programming
Reinforcement Learning is a branch of machine learning techniques in which an artificial
intelligence learns how to interact with an environment through trial and error, as illus-
trated in Figure 4.1. In RL, an artificial intelligence, called a learning agent, observes
the current state of its learning environment and interacts with it through a finite set
of actions. As a result of these actions, or due to external phenomena such as time

62

4.1. Introduction to Tangled Program Graphs

or physics, the state of the learning environment evolves. By observing the constantly
evolving state of the environment, the learning agent has the opportunity to react and
build a meaningful sequence of actions. In order for the agent to learn which sequences of
actions are useful, an additional reward mechanism is implemented. By rewarding useful
behavior of the learning agent and penalizing harmful or useless behavior, this reward
mechanism helps the learning agent select the most appropriate behavior for each new
experience. Although TPGs were originally developed for RL purposes, the possibility
of adapting them to other types of learning environments, such as classification or time
series predictions, has already been demonstrated [48].

Genetic programming is a subset of machine learning techniques that mimics the
evolutionary process of natural selection to breed programs for a selected purpose [113].
The iterative learning process of genetic programming can be broken down into four
steps:

1. Create an initial population of n ∈ N∗ random programs.

2. Evaluate the fitness of the n programs against the learning environment.

3. Discard the m < n, m ∈ N∗ programs in the population with the worst fitness.

4. Regenerate m new programs from the remaining programs using genetic operations
such as mutations or crossovers.

5. If a termination criterion, usually a maximum number of generations, is not met,
go back to step 2 to iterate the natural selection process.

As detailed in [46, 47], TPGs add a compositional mechanism to this genetic learning
process that favors the emergence of stable clusters of useful programs by building a
hierarchical decision structure.

A B+>

B

(a) TPG example

Team
(Vertex)

Ac�on
(Vertex)

Program
(Edge)

(b) TPG semantics

Figure 4.2: Semantics of the Tangled Program Graphs (TPGs)

63

Chapter 4 – Low-Complexity Reinforcement Learning with TPGs

TPG: Model Semantics
The semantics of the Tangled Program Graph (TPG) model, shown in Figure 4.2, con-
sists of three elements that form a direct graph: programs, teams, and actions. The
teams and actions are the vertices of the graph, teams are the internal vertices and ac-
tions are the leaves of the graph. The programs, associated to the edges of the graph,
each connecting a source team to a destination team or action vertex. Self-loops, that
is, an edge connecting a team to itself, are not allowed in TPGs.

42.0e

Figure 4.3: Program from a TPG. On the left, the learning environment state fed to the
program. In the middle, the sequence of instructions of the program. On the right, the
result produced by the program.

From afar, a program can be seen as a black box that takes the current state of the
learning environment as input, processes it, and produces a real number, called a bid, as
a result. More concretely, a program is a sequence of simple arithmetic instructions, such
as additions or exponents. As shown in Figure 4.3, each instruction takes as operand
either data coming from the observed learning environment, or the value stored in a
register by a previous instruction. The last value stored in a specific register, generally
called R0, is the result produced by the program.

The execution of a TPG starts from its unique root team when a new state of the
environment becomes available. All programs associated with outgoing edges of the root
team are executed with the current state of the environment as their input. Once all
programs have completed their execution, the edge associated with the largest bid is
identified, and the execution of the TPG continues following that edge. If another team
is pointed by this edge, its outgoing programs are executed, still with the same input
state, and execution continues along the edge with the largest bid1. Eventually, the edge
with the largest bid leads to an action vertex. In this case, the action is executed by

1Although theorized and supported in [46], cyclic paths are never structurally introduced in trained
TPGs.

64

4.1. Introduction to Tangled Program Graphs

the learning agent, a new resulting state of the environment is received, and the TPG
execution restarts from its root team.

TPG: Training Process
The genetic evolution process of a TPG is based on a graph with several root teams. The
initial TPG created for the first generation contains only root teams whose outgoing edges
each lead directly to a action vertex. At a given generation of the learning process, each
root team of the TPG represents a different policy whose fitness is evaluated. Evaluating
a root team consists of executing the TPG stemming from it a fixed number of times,
or until a terminal state of the learning environment is reached, like a game-over in a
video game. The rewards obtained after evaluating each root team of the TPG are used
by the genetic evolution process. The least fitting root teams with the lowest rewards
are deleted from the TPG.

To create new root teams for the next generation of the evolution process, randomly
selected remaining teams from the TPG are duplicated with all their outgoing edges.
Then these new edges undergo a random mutation process, possibly changing their
target vertex and modifying their programs by adding, removing, swapping, and changing
their instructions and operands. Surviving root teams from previous generations may
become the destination of an edge added during the mutation process, thus becoming
internal vertices of the TPG. This mutation mechanism favors the emergence of long-
lived, valuable subgraphs of connected teams. Indeed, useful teams that contribute to
higher rewards have a greater chance of becoming internal vertices of the TPG, which
cannot be discarded unless they become root teams again. Thus, complexity is adaptively
added to the TPG only if that complexity leads to better rewards for the learning agent.
A detailed description of this evolution process can be found in [46].

TPG Capabilities
The capabilities of TPGs have been extensively demonstrated [46, 47] on the 55 video
games of the Arcade Learning Environment (ALE) [7]. In this learning environment,
the adaptive complexity leads to TPG of different sizes, depending on the complexity
of the strategies developed to play each game. For example, there are two orders of
magnitude between the number of vertices of the smallest and largest networks built
in these learning environments. On the performance side, TPGs has been shown to
achieve a level of competence comparable to state-of-the-art deep learning techniques on
ALE games, at a fraction of their computational and memory cost. Compared to state-
of-the-art techniques, TPGs achieve comparable competency with one to three orders

65

Chapter 4 – Low-Complexity Reinforcement Learning with TPGs

of magnitude fewer computations, and two to ten orders of magnitude less memory
required to store their inference model [46, 94]. Recently, an extension of the TPG
model supporting continuous action space has been proposed to address new learning
environments, such as time-series prediction [48].

4.2 Acceleration of Tangled Program Graph Training with
Deterministic Parallelization

Gegelati2 is an open source framework, developed at IETR, for training and execution
of TPGs [C23]. The main motivation behind the creation of the Gegelati library is
the desire to have an efficient, embeddable, portable, parallel and deterministic library.
Because of the efficiency and embeddability goals, C++ was a natural choice for the
development of Gegelati. Previous open source C++ implementations, including the
reference C++ code from Kelly [47], were neither parallel nor deterministic. The creation
of a new library from scratch was also motivated by the low code quality of existing C++
implementations, particularly due to a lack of code documentation and monolithic code.

From the beginning, the Gegelati library has been designed to promote its adapt-
ability to different learning environments and its portability to different architectures,
without sacrificing its performance. To this end, two original contributions have been
integrated into the library: the parallelization of the deterministic learning process, pre-
sented below; and the support for customizable instructions, detailed in [C23].

4.2.1 Motivations for Deterministic Parallelism in TPG training.

The portability of the Gegelati library allows it to be used on both general-purpose and
embedded architectures. Indeed, when training a learning agent to run on an embedded
system, a common design process is to first prototype the agent on a general-purpose
processor before embedding it on the embedded target. Portability also makes it possible
to train a learning agent offline on a HPC architecture before deploying it for inference
on a less powerful architecture.

Parallelism in the learning process is an essential feature for accelerating the train-
ing of new learning agents, which encourages the adoption of a new machine learning
technique. Indeed, the breakthrough of deep learning models is largely due to the ac-
celeration of their training process with GPUs [53]. Support for parallel computation is

2Gegelati (Generic Evolvable Graphs for Efficient Learning of Artificial Tangled Intelligence)

66

4.2. Acceleration of TPG Training with Deterministic Parallelization

useful for general-purpose and HPC architectures, but also for embedded systems, which
today often integrate heterogeneous MPSoCs.

Determinism of a learning process is the property that ensures that, given a set of
initial conditions, the learning process will always end with the same result. Determinism
can only be obtained under the assumption that the state of the learning environment
itself changes deterministically, depending only on the sequence of actions applied to it.
Determinism is a key feature, especially for a pseudo-stochastic learning process like the
training of TPGs. In fact, the outcome of training may depend in part on luck, which
is precisely why being able to reproduce a result deterministically is crucial.

Determinism is antagonistic to the goals of parallelism and portability, and to the
stochastic nature of the learning process, making it difficult to achieve all of these goals
together. In fact, parallelism is inherently a source of non-determinism, since the concur-
rency of computations accessing and modifying shared resources, often in an unknown
order, tends to produce variable results.

4.2.2 Deterministic and Scalable Parallel TPG training

During the learning process of TPGs, the most computationally intensive parts are the
fitness evaluation of the policies and the mutations of the programs added during the
evolution process.

The fitness evaluation of individual policies can be performed deterministically in
parallel, provided that 1/ the learning environment can be cloned to evaluate multiple
policies simultaneously, and 2/ any stochastic evolution of the state of the learning
environment can be controlled deterministically. Under these conditions, the parallel
evaluation of policies is possible because the topology of the TPG, which is a shared
resource for all policies, is fixed during this evaluation process.

The mutation of programs can be applied deterministically in parallel. Two types of
mutations are applied to the TPG: mutations that affect the graph topology by inserting
new root teams and edges; and mutations that affect the instructions of the programs
associated with the new edges. While mutating the graph topology cannot be done in
parallel, since the graph is a shared resource, individual programs are independent and
can be mutated in parallel.

To control a stochastic process, a Pseudo-Random Number Generator (PRNG) must
be used each time a random number is needed. Given an initial seed, a PRNG produces
a deterministic sequence of numbers. Such pseudo-random numbers are needed in the
TPG mutation process, but can also be used to simulate stochastic behavior in a learning

67

Chapter 4 – Low-Complexity Reinforcement Learning with TPGs

environment. To ensure full determinacy of the training of a TPG, a unique PRNG
should be called in a fixed order during the whole training. It is not possible to let the
parallel parts of the training process call the PRNG directly, because the absolute order
in which the parallel computations occur is itself random. It is also not possible to give
each parallel task a precomputed list of pseudorandom numbers, since the number of
random numbers needed for each task is itself stochastic. For example, when mutating
a program, mutations are applied iteratively until the behavior of the program becomes
“original” compared to pre-existing programs in the TPG. Therefore, it is not feasible
to specify a fixed number of precomputed random numbers for the program mutations.

Master
PRNG

Pseudo-Random
Number Generator

Master
Seed

1 seed per program

1 seed per root
Program
Muta�on

Root
Evalua�on

Itera�ve
Training

Worker
PRNG

Worker
PRNG

Figure 4.4: Deterministic and parallel TPG training.

The parallelization strategy adopted in Gegelati is based on the master/worker
principle, with a distributed PRNG. The principle of the distributed PRNG, illus-
trated in Figure 4.4, is the use of two different PRNG instances: the prngmaster and
the prngworker . The prngmaster is used exclusively in the sequential parts of the learn-
ing process, which gives it a deterministic nature given an initial seed. Besides being
used for stochastic tasks performed sequentially, such as TPG topology mutations, the
prngmaster is also used to generate a seed for each parallel worker task. In each worker
task, a private prngworker is instantiated and initialized with the seed provided by the
prngmaster . Since all calls to PRNG from worker tasks use only their private prngworker ,
the random number sequences generated in each parallel task are deterministic.

The detailed pseudocode of the master and worker tasks for policy fitness evaluation
is presented in [C23], and an open source implementation is available on GitHub3.

3Gegelati. GitHub repository: http://github.com/gegelati/gegelati

68

http://github.com/gegelati/gegelati

4.2. Acceleration of TPG Training with Deterministic Parallelization

4.2.3 Evaluation of TPG Training Parallelization

The proposed parallelization strategy for training TPGs was evaluated on several targets,
including a high-end Intel Xeon 24-core CPU, a laptop Intel i7 8-core CPU, and an
embedded Arm Big.LITTLE 8-core CPU.

The first important result obtained is that, despite its additional features, the se-
quential performance of Gegelati for training TPGs is on average 11% faster than the
reference code of Kelly et al. [47]. This result was not a foregone conclusion, as the in-
struction set customization and determinism enforced by Gegelati have a non-negligible
performance overhead.

nbcores1 6 12 18 24

Speedup

x5
x10
x15
x20

Figure 4.5: Speedup of TPG training on an Intel Xeon E5-2690 24-core CPU.

To evaluate the scalability of the parallelism on each target, TPGs were trained in
5 different learning environments from the ALE, and an inverted pendulum for training
run on the embedded Arm processor. The training time was measured for a number
of threads varying between 1 and the number of physical cores of the architecture. No
affinity constraint was imposed on the threads, leaving the scheduling to the Linux
operating system. Each experiment with a chosen environment and number of threads
was repeated 5 times with different seeds for the master PRNG.

Figure 4.5 shows the speedup results, compared to sequential training, for the Intel
Xeon 24-core CPU. The thick line represents the average speedup observed for all learn-
ing environments and seeds, and the dotted lines represent the minimum and maximum
speedups observed. As can be seen from these results, parallelizing the learning process
is highly scalable, with an average speedup of 18.9 on the 24-core Xeon CPU. Similar
results were obtained on other targets, with a speedup of 2.61 on the Intel i7 4-core CPU
and a speedup of 4.12 on the Arm Big.LITTLE CPU when using the 4 large A15 cores
and the 4 smaller A7 cores simultaneously.

69

Chapter 4 – Low-Complexity Reinforcement Learning with TPGs

4.3 Ultra-Fast Inference of Tangled Program Graphs through
C Code Generation

This section introduces a new design flow to enable ultra-fast and lightweight inference of
RL agents based on the TPG model. The core of this contribution consists of translating
pre-trained TPG graphs into standalone and standard C code that can be compiled
without relying on any third-party library.

4.3.1 Motivations and Opportunities for Inference Acceleration

The main motivation behind this contribution is to accelerate the inference of TPGs
by reducing the computational complexity of the inference process. A first benefit of
accelerating the inference of TPGs is to obtain better response time for AI agents imple-
mented with this model, which can be a strong asset for integration in tightly constrained
real-time systems. A second benefit of faster inference time is energy savings. Indeed,
reducing the computation time required to obtain the same result reduces the computa-
tional load on the processor used, which generally translates into power savings. A third
benefit of reducing the computational complexity of TPG inference is that it may allow
developers to meet their time constraints while using less powerful, less expensive, and
less polluting hardware for their systems.

This contribution focuses on accelerating the inference of TPGs whose graph topology
and programs have been fixed during a training process. Considering a TPG with a fixed
topology provides many opportunities for acceleration:

• Removing overhead for dynamic TPG structures. During the training process, the
topology of the TPG team, its number of programs, and the instruction list of each
program may change as a result of the genetic mutation process. To support these
constant mutations, flexible data structures must be used to support the creation
and destruction of random teams, programs, and instructions. The flexibility of these
dynamic graph and list data structures, which imposes memory and computation
overhead, is not needed for inference and can thus be optimized.

• Removing TPG instruction decoding and data fetching overhead. Because during
training, TPG programs contain a dynamic list of instructions that refer to operands
that may also mutate during the genetic evolution process, executing these programs
requires software instruction decoding and data fetching mechanisms. Even in their
simplest forms, such as using function pointers for instructions and indexed arrays
for data, these decoding and fetching mechanisms introduce indirection overhead

70

4.3. Ultra-Fast Inference of Tangled Program Graphs through C Code Generation

during program execution. In a program with a fixed list of instructions with known
operands, these software instruction decoding and data fetching mechanisms are no
longer needed.

• Getting rid of complex TPG framework. While the training of TPGs requires substan-
tial software to handle the pseudo-random mutations, export and import of TPG files,
or the parameterization and logging of the training process, none of these features are
needed to infer a pre-trained TPG. The benefits of discarding useless software are: 1.
reduce the memory footprint of the software, which is critical on embedded targets,
and 2. avoid having to build complex, useless third-party dependencies to support
TPG inference.

• Benefiting from compiler optimization. By translating a pre-trained TPG into stan-
dalone standard C code, the inner workings of the TPG and its programs are directly
exposed to C compilers, making it possible to benefit from their powerful optimization
passes.

4.3.2 C Code Generation for TPG Inference

Instruc�on Program Graph
eLambdaInstruction<double>(

[](double a)->double {return exp(a);},
"$0 = exp($1)");

double P0(double* envData)
{

double reg[8] = {0};
{ /* 1st Instruction */

double op0 = envData[12];
reg[2] = exp(op0);

}
... // Following instructions
return reg[0]

}

Program Code
while(true){

switch(team){
case T0:

T0Bids[0] = P0(envData);
T0Bids[1] = P2(envData);
best = maxBidIndex(T0Bids);
team = T0Successors(best);
break;

case action1:
return 1;

}
}

TPG Code

Figure 4.6: Principles of C Code Generation for TPG inference

The various parts of the proposed code generation framework [C17], implemented
within the Gegelati library, are illustrated in Figure 4.6. Two main pieces of code are
generated by this process: Program code and TPG code.

71

Chapter 4 – Low-Complexity Reinforcement Learning with TPGs

Program Code Generation
In a trained TPG, a program is an evolved sequence of assembly-like instructions that
process the data observed by the learning environment to produce a single double value
as a result. To generate the C code corresponding to a program, each instruction must
be translated into C code. To support custom instructions declared by the user of the
library, a string template is used when declaring the instruction, as shown in Figure 4.6.
This string template, which adopts the syntax of regular expressions, uses the placeholder
$0 for the register that stores the result returned by the instruction, and the placeholder
$n for the name of the nth operand of the instruction.

For each program of the TPG, a separate C function is printed, as shown in Figure 4.6.
The printed function takes as arguments the pointers to the data sources used to observe
the current state of the environment. Then the function declares the registers used to
store the results of the instructions throughout the program. The instructions of the
programs follow and are printed one by one. For each instruction, the operands are first
retrieved from the environment data source. For simple data types this is done by simple
pointer dereferencing, as shown in Figure 4.6. For more complex operand types, such
as arrays of data, the container class managing the environment data may provide more
complex code generation schemes for fetching the operands. Finally, the value held in
the first register is returned as the bid for the program.

TPG Code Generation
The TPG structure is encoded as an Finite State Machine (FSM) using a switch-case

structure. A snippet of the TPG switch structure is shown in Figure 4.6. Each case

represents a team containing several program executions. The transitions in the FSM
represent the edges of the graph. The results of programs are stored in a special array
to avoid running programs multiple times, which can happen when a program is used
by several teams. Traversing a leaf team, returns the integer value of the corresponding
action.

4.3.3 Evaluation of Generated Inference Code

For the experimental evaluation of the code generation scheme, 10 trainings with different
seeds for the pseudo-random evolution process were run for each of the 5 selected games
from the ALE [7]. Each of the 50 TPG graphs was trained for 400 generations using the
meta-parameters described in [46]. These TPGs cover a wide range of use cases, with the
smallest TPG consisting of only 3 teams and 8 programs, and the largest consisting of

72

4.4. Additional Contributions on TPGs

25 teams and 50 programs. The performance of the 50 pre-trained TPGs was evaluated
on 4 different platforms: an Intel Xeon CPU, an Intel i7 laptop CPU, an Arm A57 CPU
from NVidia’s Jetson Nano Tx2 platform, and an Arm A7 CPU from a Raspberry Pi2.

xeon laptop jetson rpi2

20x

40x

60x

80x

100x

120x

alien
asteroids
centipede
fishing_derby
frostbite

Platforms

S
pe

ed
up

Figure 4.7: Speedup in inference time of the generated code with respect to the library.

The speedups in the inference time of the generated switch-based code compared to
the library are shown in Figure 4.7. They are based on the total TPG inference time
during a game and are presented as a ratio between the library and the generated code.
Each box plot represents the statistics for the 10 TPGs trained for a given game and
inferred on a given platform. On average across all games, the observed speedups are 44×
on xeon, 24× on laptop, 45× on jetson, and 85× on rpi2. There are many possible
reasons for this difference in average speedup between platforms, notably: different
hardware complexity (in-order vs. out-of-order pipeline, bitwidth, instruction & data
cache sizes), or different compiler versions. Nevertheless, the results obtained are very
good, especially for the rpi2, which is the lightest CPU and benefits the most from the
acceleration brought by code generation.

4.4 Additional Contributions on TPGs

In addition the contributions reviewed in Sections 4.2 and 4.3, other works using TPG
were the object of personal contributions.

A first notable contribution is the work published in [C46], which investigates the
ability of TPGs to classify data from a highly imbalanced data set. In general, when
training an AI to classify data, the data-set presented during the training process is
balanced so that the probability of observing a sample from any class is roughly equal.
In an unbalanced data set, some classes have many more occurrences than others in the

73

Chapter 4 – Low-Complexity Reinforcement Learning with TPGs

training data set. An unbalanced dataset introduces a bias in the training process [110],
since predicting membership in a less frequent class is more risky for the trained AI
agent, which will tend to avoid it. The work presented in [C46] shows that with an
appropriate training loss function, TPGs exhibit great resilience to imbalanced data
sets. The results are presented for data sets where a rare class has up to 104 less samples
than a majority class.

Two other contributions present the use of TPGs in cybersecurity applications.
In [C12], TPGs are used to identify wireless communicating devices by Radio Frequency
(RF) fingerprint. Due to variations in the manufacturing process of wireless devices,
each RF emission chain has its own small imperfections, called its fingerprint, which can
be used to identify that device. Experimental results on an open database show that
the performance of TPGs on this task is comparable to that of deep neural networks,
for a fraction of their training cost.

In [J14], TPGs are used as a network intrusion detection system, which tries to
detect malicious events by observing data packets passing through a computer network.
The system built with TPGs is shown to be 8 times more energy efficient than random
forests, a concurrent lightweight machine technique. On a state-of-the-art database,
the proposed system is able to process 13.2k connections per second at a peak power
consumption of less than 3.3 Watts.

4.5 Summary

This chapter introduced works on Tangled Program Graphs (TPGs), an innovative tech-
nique for building ultra-lightweight RL agents. The presented contributions aim at ac-
celerating the training and inference of TPGs, both on General Purpose Processorss
(GPPs) and on embedded hardware. All presented contributions are integrated into the
open source Gegelati framework, which was created and is being maintained by the
Vaader team of the IETR.

The presented contributions were made possible thanks to the hard work and dedi-
cation of the following people:

• PhD students: Nicolas Sourbier, Alice Chillet

• Master Students: Pierre-Yves Le Rolland - Raumer, Thomas Bourgoin.

74

WALL.E: WALL-E.
EVE: WALL-E?
EVE: EVE.

Wall-E, N.62675

Chapter 5

Research Perspectives

Personal contributions of the last decade have been presented in previous chapters.
These contributions share a common focus on studying various aspects of automatic
optimization for embedded system design. This challenge is studied under the prism
of model-based programming in Chapter 2, by integrating and characterizing approxi-
mations in Chapter 3, and for the design of lightweight Reinforcement Learning (RL)
agents in Chapter 4.

This chapter formulates the research perspectives and challenges of personal interest
for the foreseeable future of embedded system design. This chapter covers both short
and long term perspectives, some of which are already funded and will be pursued over
the next 3 years, while other more speculative ideas are still in an embryonic stage.
Following the organization of this manuscript, the proposed perspectives are grouped
into three main sections. Section 5.1 presents perspectives for model-based design au-
tomation of embedded systems. Section 5.2 proposes research goals for approximate
computing and its use in the Video Coding for Machines (VCM) context. Then, Sec-
tion 5.3 outlines research directions for the co-design of ultra-lightweight embedded AI.
Finally, Section 5.4 concludes this chapter and manuscript.

5.1 Perspectives in Model-Based High-Performance Em-
bedded System Programming

This section presents three sets of research perspectives: Section 5.1.1 explores the use of
dataflow MoCs in the context of radio astronomy applications, Section 5.1.2 proposes new
goals exploiting the idea of moldable parameters for the co-design of embedded systems,
and Section 5.1.3 suggests potential long-term developments for dataflow-based CAD.

75

Chapter 5 – Research Perspectives

5.1.1 Dataflow Programming for Radio Astronomy HPC

Modern radio astronomy relies on large-scale scientific facilities such as the SKA radio
telescope, whose hundreds of dishes and hundreds of thousands of antennas are spread
over hundreds of thousands of square kilometers in South Africa and Australia [12].
These gigantic installations generate an astronomical amount of data, up to 50Tb per
second, for which real-time processing is essential. The massive processing of this data
relies on infrastructures that transform the electromagnetic waves picked up by the
antennas into multispectral images of the sky. Optimizing the computations for such
installations has many similarities and links to the field of embedded systems. Although
at first glance part of the HPC domain, optimizing the use of computational resources is
subject to strong real-time constraints and requires the use of many hardware elements
typical of embedded systems, such as Field Programmable Gate Arrays (FPGAs) or
GPUs. Moreover, driven by the fight against global warming, sustainability and frugality
goals are becoming unavoidable for building HPC systems, imposing resource and power
efficiency constraints similar to what is already the norm in embedded system design.

Since astronomers responsible for writing sky imaging algorithms are not computer
scientists, they need to be provided with development tools that facilitate the deployment
of these algorithms on complex targets. This is the goal of two ongoing research projects,
the Dark ERA [27] and Rising STARS projects, which in particular have funded the work
on application granularity control presented in Section 2.3.2.

The main research challenge in this context is to interface dataflow-based program-
ming methods with HPC-oriented APIs and associated MoCs. While there are many
software synthesis strategies for translating dataflow specifications into multicore code,
as presented in Chapter 2, the unrelying imperative multi-threaded execution model is
quite different from those used for programming High-Performance Computing (HPC)
systems. In particular, the programming of multiple computing nodes interconnected
by a high-speed local area network is typically accomplished using the communication-
oriented Message Passing Interface (MPI) API. The use of GPU to accelerate computa-
tion relies on Single Instruction, Multiple Threads (SIMT) languages such as CUDA or
OpenCL, which are closely related to the Bulk Synchronous Processing (BSP) MoC [38],
and the programming of FPGAs mostly relies on the synchronous discrete event MoC.

A promising direction for programming HPC targets from dataflow MoCs is to au-
tomate the synthesis of high-level HPC-oriented API, such as MPI, CUDA, StarPU [4]
or OpenMP [111]. Automatic code synthesis using these high-level APIs will allow to
benefit from years of HPC research, while bringing the advantages of model-based pro-

76

5.1. Perspectives in Model-Based High-Performance Emb. Syst. Programming

gramming to the built design flow. Although some preliminary work has been done
on this topic, such as transforming dataflow graphs to make them more data-parallel
and thus more GPU-friendly [44], or generating FPGA implementations [37], the full
automation of the design flow is still far from tangible.

These goals will be pursued in particular in 2025 during a 6-month personal mobility
to Swinburne University in Melbourne, Australia, funded by the Rising STARS project.
The host team at Swinburne University specializes in the design and implementation of
radio astronomy algorithms on HPC facilities.

5.1.2 Multi-Objective Co-Design Space Exploration with Moldable Data-
flow MoCs

The papers presented in Section 2.4.2 introduced the concept of moldable parameters to
the MoCs dataflow. In a nutshell, a moldable parameter in the application description is
a parameter that affects the behavior of the application, functionally or non-functionally,
but whose value is left undefined by the developer and is automatically set by the DSE
framework. The seminal work [C28] on this topic only superficially explores the potential
of this idea, and a deeper study represents an important perspective for future work.

On the software side, a key research goal is to propose intelligent heuristic algorithms
for exploring the vast design space opened by moldable parameters. While it is shown
in [C28] that the impact of most moldable parameters on optimized metrics can be
classified, this result remains to be exploited for building a fast automated DSE. In a
multi-objective context, where several potentially antagonistic metrics are optimized, an
intelligent heuristic algorithm should automatically generate a front of Pareto-optimal
configurations for the designer, while exploring a minimal subset of the design space.

Another direction for future work is to extend the idea of moldable parameters to the
hardware side of the co-design flow. A moldable description of the target architecture
could expose many settings to the DSE engine, such as variable numbers and types
of PEs, different communication bus widths and speeds, different memory hierarchies,
or different operating system options, such as real-time or not. As for the software
counterpart, such a moldable architecture model would support multi-objective DSE for
hardware-generative design flows. In the long term, building on such moldable models
for architectures and applications will lay the foundation for building a fully automated
co-design flow.

77

Chapter 5 – Research Perspectives

5.1.3 Long-Term Perspectives and Challenges in Model-Based Pro-
gramming

Model-based design for programming embedded systems is still a very active research
topic, with many promising directions for long-term future work, including

• Using reconfigurable dataflow MoCs to support the execution of dynamic
neural networks. Dynamic neural networks introduce some dynamic control into
the otherwise highly static dataflow of neural networks [34]. This dynamism can
be used at a coarse granularity to disable processing of entire layers or channels,
but also at a finer granularity, for example by dynamically adjusting the weights
of the kernels. While these dynamic neural network models show promising results
in terms of accuracy and theoretical complexity, their dynamism often makes them
ill-suited for the GPU-oriented optimizations of most frameworks [34]. In fact, the
execution model of GPUs mostly supports symmetric data-parallel computations,
where a kernel is repeated many times without too much dynamism or asymmetry in
the data path. Using reconfigurable dataflow MoCs, such as PISDF, is a promising
direction to model and support efficient execution of these models on embedded
hardware.

• Bridging the gap between dataflow-based design and compilation with
MLIR. Most work on dataflow MoCs focuses on software or hardware synthesis
from high-level semantics. This approach is inherently limited when it comes to
jointly optimizing what happens at the graph level and what happens inside the
actors, which are often viewed as black-box functions, with a few notable exceptions
such as RVC-CAL [8]. Recently, Multi-Level Intermediate Representation (MLIR)
has gained popularity as an intermediate layer between the compiler world and
higher levels of abstraction [55]. A promising direction for dataflow research [16] is
to study how the joint optimization of higher and lower levels of abstraction using
the MLIR infrastructure could help produce more efficient software.

• Proposal for a unified dataflow MoC semantics supporting data-parallel
static, reconfigurable, and dynamic descriptions. Although this problem has
been studied many times, from Ptolemy’s origin [58], to more recent attempts [92,
104], no solution is massively adopted in popular development environments or
programming languages. On the contrary, most programming frameworks using
dataflow-like MoCs continue to use the simplest static DAG-based models [2, 4,
83]. Therefore, a compelling MoC that combines the advantages of dynamic, re-

78

5.2. Perspectives in Approximate Computing

configurable, and static dataflow models with multidimensional capabilities [45] and
a user-friendly API remains to be invented.

5.2 Perspectives in Approximate Computing

This section presents perspectives in the field of approximate computing, including
domain-agnostic contributions in Section 5.2.1 and perspectives for the VCM domain
in Section 5.2.2.

5.2.1 Source-to-Source Optimization of Data Types and SIMD In-
structions

In the short term, work on approximate computing will continue during Baptiste Daniel
Lamazière’s PhD, in partnership with WeDoLow. WeDoLow is a startup founded
by former PhD student Justine Bonnot, specialized in code optimization based on
approximate computing techniques.

The first goal of this thesis is to automate the joint optimization of variable word
length [P1] and the use of Single Instruction, Multiple Data (SIMD) instructions within
an algorithm [71]. The novelty of this work is to consider the two intertwined problems
as one, where the best global solution is most likely not a simple combination of the
solutions of the two separate problems. In this context, the metrics to be optimized will
be the latency of the system, as well as its memory footprint, its quality of service, and
its energy footprint. The work will be developed as a transpiler tool, where the outputs
of the optimization process are code change suggestions to the developer, supported by
associated gains on the studied metrics.

A second goal of this thesis will be to combine the optimization of data word length
and SIMD instructions with iterative compilation techniques [50]. Iterative compilation
aims at automatically finding the best combination of compiler flags for a given code.
In the context of this thesis, the goal is to use high-level knowledge of the compiled
algorithm to constrain the design space explored during the iterative compilation process.

5.2.2 Global Optimization of VCM Systems

Alban Marie’s PhD thesis showed that specializing a deep learning network for a spe-
cific type and intensity of compression noise makes it possible to achieve high resilience
to compression artifacts [C37]. However, in scenarios where multiple compression al-
gorithms feed images into a single AI, it becomes quite impractical to store a specific

79

Chapter 5 – Research Perspectives

network for each type of noise. A possible direction for future work would be to study
how a network is affected when it is tuned for a specific type of noise. The goal of this
study would be to isolate the minimal parts of the network that require specialization in
order to limit the effects of backpropagation to those parts when specializing a network.
Thus, instead of storing a whole dedicated network for each type of compression noise,
only a minimal subset of weights of the network could be swapped to have a lightweight
specialization of the network for different types of compression noise. This approach
could be combined with neural network quantization techniques [30] to further minimize
the memory required for specialized weights.

Another perspective in the continuation of Alban Marie’s thesis is the integration of
VCM-oriented quality metrics into image or video encoders. As shown in [C36], common
image quality metrics such as SSIM or PSNR do not correlate well with the quality of
an image as perceived by an AI. This lack of correlation is due to the assumption that
higher quality measured by a metric should lead to better accuracy of the AI algorithm,
which is not the case for these reference metrics. Since these reference metrics correlate
well with the subjective quality perceived by human psychovisual systems, they are
used at the core of most rate-distortion optimization processes of image encoders. The
proposed direction for future work is therefore to develop new image quality metrics that
correlate well with the fitness of AIs, and to integrate them as part of the rate-distortion
optimization process of VCM-oriented encoders.

As a first long-term perspective in this area, automating the global optimization of a
VCM pipeline is the most challenging. Previous contributions have mostly focused on a
specific part of a VCM system, either on the AI side [C37] or on the encoder side [C35,
C36, C38]. Building on these studies, a global optimization of the whole VCM system
could be done, where all stages of the pipeline are optimized together. For example,
from a global perspective, optimizing the energy of the pre-processing, the encoder, the
RF transmission, and the receiving AI may yield completely different solutions than
optimizing each part separately, where more energy may be spent in one part to help
save some energy elsewhere.

A final long-term perspective in the field of lossy coding for machines is to extend
the work done on images and videos to other stream processing application domains.
Indeed, it would be interesting to study the adaptation of the results from the VCM
domain to the processing of audio, radar, or biosignals.

80

5.3. Perspectives in Ultra-Lightweight AI for Embedded Systems

5.3 Perspectives in Ultra-Lightweight AI for Embedded
Systems

5.3.1 Full-Stack Optimization for Ultra-Low Power AIs

During the next three years, the research on TPGs will be funded by the Foutics
(Full-stack Optimization of Ultra-low-power TPGs for Intelligent Cyberphysical Sys-
tems) project, co-led with Mickaël Dardaillon. The general objective of Foutics is
to propose a full-stack machine learning technique, with multidisciplinary contributions
to the TPG model, training and inference implementation, to achieve new performance
at ultra-low power.

The scientific goals of the Foutics project are threefold:

• Extend the TPG learning capabilities: In addition to improving the efficiency
of TPG on existing environments, model extensions will open up new types of learn-
ing environments, such as continuous action spaces or non-reinforcement learning
environments, needed to extend TPG to cyber-physical system use cases.

• Integrate energy optimizations at the core of the TPG training process:
Overall energy optimization will minimize the energy consumption of the computing
system for TPG training and inference, as well as, where relevant, the energy
consumption of the physical actuators of the controlled RL environment.

• Propose highly efficient implementation techniques: In order to find the
most suitable hardware platform for TPGs, the implementation will be pursued
and compared on several state-of-the-art hardware. The implementation will be
investigated for both efficient training and inference on battery-powered ultra-low-
power devices and reconfigurable devices for nanosecond response times.

Beyond the Foutics goals, a potential direction for future work is to combine sev-
eral bio-inspired AI techniques to study their competitiveness with deep learning. For
example, combining spiking neurons [31] with TPGs could be an interesting research
direction to build ultra-lightweight AI.

5.3.2 Perspectives of Design Automation for Frugal and Embedded AI

The pervasive use of AI and the urgent need for more sustainable systems make the
search for frugal AI an inescapable goal for the next decades, as a research perspective
for embedded system design automation. While many techniques exist to reduce the

81

Chapter 5 – Research Perspectives

complexity of deep learning AIs, such as pruning, quantization, or compression, their
impact on optimized network complexity and accuracy is still difficult to predict. An
interesting direction for future work, explored in Mewe Kahanam’s thesis, is to build
analytical models to predict the impact of such optimization techniques on a network
for a given hardware. A key advantage of such analytical methods is that they could be
performed a priori, that is, without actually performing the optimizations and associated
re-training that is often required to measure their efficiency. Such a prediction technique
would be a key asset when exploring the design optimization space of an AI-based system,
and could help select the appropriate hardware and network architecture without relying
on the best guesses of developers or a brute-force approach.

5.4 Conclusion

This habilitation manuscript presents personal research works developed over the last 10
years, in the area of embedded system design automation. Along the 4 main chapters,
the contributions cover a wide but coherent variety of topics, ranging from model-based
programming to evolution-inspired AI algorithms to approximate computing and VCM.
As this manuscript attests, the life of a researcher is full of surprises, and these con-
tributions far outshine the perspectives established at the end of my PhD work, or in
the research project presented for my hiring as an associate professor. Thus, these final
chapters have presented only a tiny fraction of the research perspectives opened up by
the research to date, which will most likely continue in new, unpredictable, and exciting
directions.

82

Glossary

AI Artificial Intelligence. ix, 5, 13, 15, 17, 18, 43, 44, 54, 55, 56, 58, 60, 61, 62, 70, 73,
74, 75, 79, 80, 81, 82

ALE Arcade Learning Environment. 65, 69, 72

ALU Arithmetic and Logic Unit. 46

API Application Programming Interface. 2, 76, 79

ATER Attaché Temporaire d’Enseignement et de Recherche. 1

BDR Bjøntegaard-Delta Rate. 59

BSP Bulk Synchronous Processing. 76

Cassis Characterization with Adaptive Sample-Size Inferential Statistics. 50, 51, 52

CAD Computer Aided Design. vii, 9, 12, 16, 24, 26, 32, 75, 87

CNN Convolutional Neural Network. 54, 56, 57, 87

CPU Core Processing Unit. 5, 38, 45, 50, 69, 73, 88

DAG Directed Acyclic Graph. 26, 27, 34, 35, 36, 37, 78, 87

DNN Deep Neural Network. 46, 61

DSE Design Space Exploration. vii, 4, 19, 25, 26, 32, 36, 37, 38, 39, 40, 41, 42, 47, 48,
52, 53, 54, 60, 77

DSP Digital Signal Processing. 5, 21

DVFS Dynamic Voltage and Frequency Scaling. 10

83

Fifo First-in, First-Out queue. 20, 21, 22, 23, 25, 29, 31, 37, 39

Foutics Full-stack Optimization of Ultra-low-power TPGs for Intelligent Cyberphysical
Systems. 81

FIR Finite Impulse Response. 54

FPGA Field Programmable Gate Array. 76, 77

FSM Finite State Machine. 72

Gegelati Generic Evolvable Graphs for Efficient Learning of Artificial Tangled Intelli-
gence. 66, 68, 69, 71, 74

GPP General Purpose Processors. 3, 5, 10, 12, 74

GPU Graphics Processing Unit. 6, 10, 12, 61, 66, 76, 77, 78

HDR Habilitation à Diriger des Recherches. 1

HEVC High-Efficiency Video Coding. 54

HLS High-Level Synthesis. 6

HPC High-Performance Computing. ix, 13, 16, 42, 66, 67, 76, 77

IETR Institut d’Electronique et des Technologies du numéRique. 1, 66, 74

IoT Internet-of-Things. 6, 54, 55, 56, 61

ISA Instruction Set Architecture. 5

LOA Lower-part Or Adder. 49, 51, 87

MEG Memory Exclusion Graph. 37, 38

MLIR Multi-Level Intermediate Representation. 78

MoA Model of Architecture. 4, 24

MoC Model of Computation. vii, ix, 3, 8, 11, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 75, 76, 77, 78

MPI Message Passing Interface. 76

84

MPSoC Multiprocessor System-on-Chip. 5, 8, 9, 10, 12, 14, 17, 19, 25, 33, 38, 42, 67

NLP Natural Language Processing. 61

NUMA Non-Uniform Memory Access. 38

PE Processing Element. 5, 33, 38, 77

PISDF Parameterized and Interfaced SDF. 8, 22, 23, 24, 25, 27, 30, 31, 32, 33, 35, 36,
38, 39, 78, 87

PRNG Pseudo-Random Number Generator. 67, 68, 69

QoS Quality of Service. 46, 47, 48

RF Radio Frequency. 15, 74, 80

RISC-V Reduced Instruction Set Computer (RISC) five. 4, 5

RL Reinforcement Learning. 15, 62, 63, 70, 74, 75, 81, 87

Spider Synchronous Parameterized and Interfaced Dataflow Embedded Runtime. 24,
38

SAD State-Aware Dataflow. 29, 30, 31, 87

SCAPE Scaling up of Clusters of Actors on Processing Element. 33, 34, 35, 36, 37, 87

SDF Synchronous Dataflow. 8, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 39, 85,
87

SIMD Single Instruction, Multiple Data. ix, 79

SIMT Single Instruction, Multiple Threads. 76

SKA Square Kilometer Array. 16, 76

SRV Single Repetition Vector. 35

TPG Tangled Program Graph. viii, 16, 17, 18, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 81, 87, 88

TPU Tensor Processing Unit. 6

85

URC Unique Repetition Count. 35

Vaader Video Analysis and Architecture Design for Embedded Resources. 1, 74

VCM Video Coding for Machines. ix, 15, 16, 17, 43, 48, 54, 55, 56, 57, 58, 60, 75, 79,
80, 82, 87

WCET Worst-Case Execution Time. 27

86

List of Figures

1.1 A personal view of the hardware and software stack 3
1.2 Research career at a glance . 13

2.1 Synchronous Dataflow (SDF) example and semantics 21
2.2 Parameterized and Interfaced SDF (PISDF) 23
2.3 Typical datflow-based CAD flow. 24
2.4 SAD: delay initialization semantics. 29
2.5 SDF equivalent to the SAD graph from Figure 2.4. 30
2.6 SAD persistence scope. 31
2.7 SDF clustering for controlled DAG complexity 34
2.8 SCAPE method step-by-step example for a quad-core target. 35
2.9 Analysis time and latency trade-off for SCAPE configurations. 36
2.10 Dataflow graph with moldable parameters. 39
2.11 Pareto-front (Power, Throughput−1, Memory) of SIFT for 2 pipeline stages. 40

3.1 Approximate computing optimization axes [11]. 45
3.2 Relative error for an 8-bit LOA approximate adder [64]. Color intensity

represents the error made for each pair of operand values, relatively to
the exact results. 49

3.3 Image and Video Coding for Machine Information Flow 55
3.4 Expert training for enhancing resilience of CNNs to compression noise. . . 57
3.5 Evaluation pipeline for encoder in a VCM context (from [C38]). 58

4.1 Reinforcement Learning (RL) principles 62
4.2 Semantics of the Tangled Program Graphs (TPGs) 63
4.3 Program from a TPG. On the left, the learning environment state fed to

the program. In the middle, the sequence of instructions of the program.
On the right, the result produced by the program. 64

87

4.4 Deterministic and parallel TPG training. 68
4.5 Speedup of TPG training on an Intel Xeon E5-2690 24-core CPU. 69
4.6 Principles of C Code Generation for TPG inference 71
4.7 Speedup in inference time of the generated code with respect to the library. 73

88

List of Tables

1.1 Details of supervised PhDs. 14
1.2 Details of funded collaborative projects. 15
1.3 Non-funded collaborative projects. 17

89

Personal Publications

Book chapters & Thesis
[B1] J. Bonnot, D. Menard, and K. Desnos. “Analysis of the Impact of Approximate

Computing on the Application Quality”. In: Approximate Computing Techniques:
From Component- to Application-Level. Ed. by A. Bosio, D. Menard, and O.
Sentieys. Springer, June 2022. Chap. 6, pp. 145–176. published.

[B2] J. Castrillon, K. Desnos, A. Goens, and C. Menard. “Dataflow Models of Compu-
tation for Programming Heterogeneous Multicores”. In: Handbook of Computer
Architecture. Springer, May 2021. Forthcoming (cit. on pp. 11, 19).

[B3] K. Desnos and F. Palumbo. “Dataflow Modeling for Reconfigurable Signal Pro-
cessing Systems”. In: Handbook of Signal Processing Systems. Ed. by S. S. Bhat-
tacharyya, E. F. Deprettere, R. Leupers, and J. Takala. Third. Springer, Jan.
2018. published (cit. on pp. 11, 12, 19, 38).

[B4] K. Desnos. “Memory Study and Dataflow Representations for Rapid Prototyping
of Signal Processing Applications on MPSoCs”. Thèse de doctorat dirigée par
Nezan, Jean-François, Rennes, INSA 2014. PhD thesis. 2014. url: http://www.
theses.fr/2014ISAR0004 (cit. on pp. 8, 26, 37).

Journal articles
[J1] M. Ammar, M. Baklouti, M. Pelcat, K. Desnos, and M. Abid. “Comparing

Three Clustering-based Scheduling Methods for Energy-Aware Rapid Design of
MP2SoCs”. In: Journal of Signal Processing Systems (JSPS) (Aug. 2017). Ed. by
Springer. published.

[J2] M. Ammar, M. Baklouti, M. Pelcat, K. Desnos, and M. Abid. “MDE-based Rapid
DSE of multi-core embedded systems: The H.264 Decoder Case Study”. In: Infor-
macije Midem-journal of Microelectronics Electronic Components and Materials
46.4 (Jan. 2016), pp. 219–228. url: https://hal-univ-rennes1.archives-
ouvertes.fr/hal-01502348. published.

91

http://www.theses.fr/2014ISAR0004
http://www.theses.fr/2014ISAR0004
https://hal-univ-rennes1.archives-ouvertes.fr/hal-01502348
https://hal-univ-rennes1.archives-ouvertes.fr/hal-01502348

[J3] F. Arrestier, K. Desnos, E. Juarez, and D. Menard. “Numerical Representation of
Directed Acyclic Graphs for Efficient Dataflow Embedded Resource Allocation”.
In: Transactions on Embedded Computing Systems - EMSOFT Proceedings 18.55
(Oct. 13, 2019), pp. 1–22. published (cit. on pp. 11, 14, 16, 19, 27).

[J4] J. Bonnot, V. Camus, K. Desnos, and D. Menard. “Adaptive Simulation-based
Framework for Error Characterization of Inexact Circuits”. In: Microelectronics
Reliability (Feb. 2019). Ed. by Elsevier. published.

[J5] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. “Memory Analysis and Op-
timized Allocation of Dataflow Applications on Shared-Memory MPSoCs”. In:
Journal of Signal Processing Systems 80.1 (Nov. 1, 2014). Ed. by Springer, pp. 19–
37. url: https://doi.org/10.1007/s11265-014-0952-6. published (cit. on
pp. 8, 10, 13, 36, 37).

[J6] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. “On Memory Reuse Between
Inputs and Outputs of Dataflow Actors”. In: Transactions on Embedded Com-
puting Systems (TECS) 15.2 (2016). Ed. by ACM, 30:1–30:25. url: http://
doi.acm.org/10.1145/2871744. published (cit. on pp. 8, 10, 11).

[J7] A. Enrici, J. Lallet, R. Pacalet, L. Apvrille, K. Desnos, and I. Latif. “Model-
Based Programming for Multi-processor Platforms with TTool/DIPLODOCUS
and OMC”. In: Communications in Computer and Information Science (Ex-
tended and revised paper from Model-Driven Engineering and Software Develop-
ment (MODELSWARD)) (Jan. 2019). Ed. by Springer, pp. 56–81. published.

[J8] R. Lazcano, D. Madroñal, R. Salvador, K. Desnos, M. Pelcat, R. Guerra, H.
Fabelo, S. Ortega, S. Lopez, G. M. Callico, E. Juarez, and C. Sanz. “Porting
a PCA-based hyperspectral image dimensionality reduction algorithm for brain
cancer detection on a manycore architecture”. In: Journal of Systems Architec-
ture (JSA) 77 (Oct. 2017). Ed. by Elsevier, pp. 101–111. url: http://www.
sciencedirect.com/science/article/pii/S1383762116302934. published
(cit. on p. 13).

[J9] Y. Lee, Y. Liu, K. Desnos, L. Barford, and S. S. Bhattacharyya. “Passive-Active
Flowgraphs for Efficient Modeling and Design of Signal Processing Systems”. In:
Journal of Signal Processing Systems 92.10 (July 2020), pp. 1133–1151. published
(cit. on pp. 11, 19, 28).

[J10] D. Madroñal, F. Arrestier, J. Sancho, A. Morvan, R. Lazcano, K. Desnos, R.
Salvador, D. Menard, E. Juarez, and C. Sanz. “PAPIFY: automatic instrumen-
tation and monitoring of dynamic dataflow applications based on PAPI”. In:
IEEE Access (Aug. 2019). published (cit. on p. 16).

[J11] A. Mercat, J. Bonnot, M. Pelcat, K. Desnos, W. Hamidouche, and D. Menard.
“Smart search space reduction for approximate computing: A low energy HEVC
encoder case study”. In: Journal of Systems Architecture (JSA) 80 (Oct. 2017).
Ed. by Elsevier, pp. 56–67. published (cit. on p. 13).

92

https://doi.org/10.1007/s11265-014-0952-6
http://doi.acm.org/10.1145/2871744
http://doi.acm.org/10.1145/2871744
http://www.sciencedirect.com/science/article/pii/S1383762116302934
http://www.sciencedirect.com/science/article/pii/S1383762116302934

[J12] M. Pelcat, A. Mercat, K. Desnos, L. Maggiani, Y. Liu, J. Heulot, J. Nezan, W.
Hamidouche, D. Ménard, and S. S. Bhattacharyya. “Reproducible Evaluation
of System Efficiency With a Model of Architecture: From Theory to Practice”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 37.10 (Oct. 2018), pp. 2050–2063 (cit. on pp. 4, 24).

[J13] C. Rubattu, F. Palumbo, C. Sau, R. Salvador, J. Sérot, K. Desnos, L. Raffo,
and M. Pelcat. “Dataflow-Functional High-Level Synthesis for Coarse-Grained
Reconfigurable Accelerators”. In: Embedded Systems Letters (Nov. 2018). Ed. by
IEEE, p. 4. published.

[J14] N. Sourbier, K. Desnos, T. Guyet, F. Majorczyk, O. Gesny, and M. Pelcat.
“SECURE-GEGELATI Always-On Intrusion Detection through GEGELATI Light-
weight Tangled Program Graphs”. In: Journal of Signal Processing Systems (Nov.
2021). Forthcoming (cit. on pp. 13, 62, 74).

[J15] L. Suriano, F. Arrestier, A. Rodriguez, K. Desnos, J. Heulot, M. Pelcat, and E.
de la Torre. “DAMHSE: Programming Heterogeneous MPSoCs with Hardware
Acceleration using Dataflow-based Design Space Exploration and Automated
Rapid Prototyping”. In: Microprocessors and Microsystems: Embedded Hardware
Design (MICPRO) 71 (Sept. 2019). published (cit. on pp. 10, 16).

[J16] Z. Zhou, W. Plishker, S. S. Bhattacharyya, K. Desnos, M. Pelcat, and J.-F.
Nezan. “Scheduling of Parallelized Synchronous Dataflow Actors for Multicore
Signal Processing”. In: Journal of Signal Processing Systems (JSPS) 83.3 (Oct.
2014). Ed. by Springer, pp. 309–328. url: https://doi.org/10.1007/s11265-
014-0956-2. published.

Patent
[P1] J. Bonnot, D. Ménard, and K. Desnos. Procédé et dispositif d’optimisation de

longueurs de représentation de variables. Apr. 2019 (cit. on pp. 15, 44, 53, 79).

Conference articles
[C1] M. Ammar, M. Baklouti, M. Pelcat, K. Desnos, and A. Mohamed. “Automatic

Generation of S-LAM Descriptions from UML/MARTE for the DSE of Massively
Parallel Embedded Systems”. In: Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD). Takamatsu, Japan.:
Springer International Publishing, Jan. 2016, pp. 195–211. url: https://hal.
archives-ouvertes.fr/hal-01252511/file/ammar_automatic_2015.pdf.
published.

93

https://doi.org/10.1007/s11265-014-0956-2
https://doi.org/10.1007/s11265-014-0956-2
https://hal.archives-ouvertes.fr/hal-01252511/file/ammar_automatic_2015.pdf
https://hal.archives-ouvertes.fr/hal-01252511/file/ammar_automatic_2015.pdf

[C2] M. Ammar, M. Baklouti, M. Pelcat, K. Desnos, and A. Mohamed. “MARTE to
PiSDF transformation for data-intensive applications analysis”. In: Conference
on Design and Architectures for Signal and Image Processing (DASIP). Madrid,
Spain, Oct. 2014. url: https://hal.archives-ouvertes.fr/hal-01122725/
file/DASIP_2014_submission_27.pdf. published.

[C3] M. Ammar, M. Baklouti, M. Pelcat, K. Desnos, and A. Mohamed. “Off-Line
DVFS Integration in MDE-Based Design Space Exploration Framework for MP2SoC
Systems”. In: International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE). Ed. by IEEE. Paris, France, June 2016,
pp. 160–165. published.

[C4] M. Ammar, M. Baklouti, M. Pelcat, K. Desnos, and A. Mohamed. “On Exploiting
Energy-Aware Scheduling Algorithms for MDE-Based Design Space Exploration
of MP2SoC”. In: International Conference on Parallel, Distributed, and Network-
Based Processing (PDP). Heraklion, Greece, Feb. 2016, pp. 643–650. url: https:
//hal.archives- ouvertes.fr/hal- 01305971/file/ammar_exploiting_
2016.pdf. published.

[C5] F. Arrestier, K. Desnos, M. Pelcat, J. Heulot, E. Juarez, and D. Menard. “De-
lays and States in Dataflow Models of Computation”. In: International Confer-
ence on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS). Pythagorion, Greece: ACM, July 15, 2018, pp. 47–54. published (cit.
on pp. 14, 16, 29–31).

[C6] J. Bonnot, V. Camus, K. Desnos, and D. Menard. “CASSIS: Characterization
with Adaptive Sample-Size Inferential Statistics Applied to Inexact Circuits”. In:
European Signal Processing Conference (EUSIPCO). Roma, Italy: IEEE, Sept. 3,
2018, pp. 677–681. published (cit. on pp. 15, 44, 46, 50, 52).

[C7] J. Bonnot, K. Desnos, and D. Menard. “Accuracy Evaluation Based on Simula-
tion for Finite Precition Systems Using Inferential Statistics”. In: International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK,
May 2019. published (cit. on pp. 9, 48).

[C8] J. Bonnot, K. Desnos, and D. Menard. “Algorithm-Level Approximation for Fast
(or not) Embedded Stereovision Algorithm”. In: International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS).
Pythagorion, Greece: ACM, July 2018. url: https://hal.archives-ouvertes.
fr/hal-01879595. published (cit. on pp. 9, 13, 46, 52).

[C9] J. Bonnot, K. Desnos, and D. Menard. “Fast Kriging-based Error Evaluation for
Approximate Computing Systems”. In: Design, Automation and Test in Europe
Conference (DATE). ACM, Mar. 9, 2020. published (cit. on pp. 12, 15, 44, 48,
53, 54).

94

https://hal.archives-ouvertes.fr/hal-01122725/file/DASIP_2014_submission_27.pdf
https://hal.archives-ouvertes.fr/hal-01122725/file/DASIP_2014_submission_27.pdf
https://hal.archives-ouvertes.fr/hal-01305971/file/ammar_exploiting_2016.pdf
https://hal.archives-ouvertes.fr/hal-01305971/file/ammar_exploiting_2016.pdf
https://hal.archives-ouvertes.fr/hal-01305971/file/ammar_exploiting_2016.pdf
https://hal.archives-ouvertes.fr/hal-01879595
https://hal.archives-ouvertes.fr/hal-01879595

[C10] J. Bonnot, K. Desnos, and D. Menard. “Stochastic Modeling to Accelerate Ap-
proximate Operators Simulation”. In: International Symposium on Circuits and
Systems (ISCAS). May 2018. url: https://hal.archives-ouvertes.fr/hal-
01812706/document. published.

[C11] J. Bonnot, K. Desnos, M. Pelcat, and D. Menard. “A Fast and Fuzzy Functional
Simulator of Inexact Arithmetic Operators for Approximate Computing Sys-
tems”. In: Great Lakes Symposium on VLSI (GLSVLSI). Chicago, USA: ACM,
May 2018. url: https : / / hal . archives - ouvertes . fr / hal - 01812719 /
document. published (cit. on pp. 15, 46–48, 53).

[C12] A. Chillet, B. Boyer, R. Gerzaguet, K. Desnos, and M. Gautier. “Tangled Pro-
gram Graph for Radio-Frequency Fingerprint Identification”. In: International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).
Toronto, Canada: IEEE, Sept. 2023. published (cit. on pp. 62, 74).

[C13] A. Chillet, R. Gerzaguet, K. Desnos, M. Gautier, E. S. Lohan, E. Nogues, and M.
Valkama. “How to Design a Channel-Resilient Database for Radio Frequency Fin-
gerprint Identification?” In: International Conference on Communications (ICC).
Denver, CO, USA: IEEE, June 2024. published.

[C14] H. Deroui, K. Desnos, J.-F. Nezan, and A. Munier-Kordon. “Relaxed Subgraph
Execution Model for the Throughput Evaluation of IBSDF Graphs”. In: Inter-
national Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS). Samos, Greece, Jan. 1, 2017. url: https://hal.
archives-ouvertes.fr/hal-01569593/file/32_Final_Paper.pdf. published
(cit. on pp. 14, 19, 23, 25, 32).

[C15] H. Deroui, K. Desnos, J.-F. Nezan, and A. Munier-Kordon. “Throughput Eval-
uation of DSP Applications based on Hierarchical Dataflow Models”. In: Inter-
national Symposium on Circuits and Systems (ISCAS). Baltimore, MD, USA,
Jan. 1, 2017. url: https://hal.archives-ouvertes.fr/hal-01514641/file/
ISCAS2017%20_published.pdf. published (cit. on pp. 12, 14, 19, 23, 25, 32).

[C16] K. Desnos, S. E. Assad, A. Arlicot, M. Pelcat, and D. Menard. “Efficient mul-
ticore implementation of an advanced generator of discrete chaotic sequences”.
In: International Workshop on Chaos-Information Hiding and Security (C-IHS).
London, UK, Dec. 2014, pp. 31–36. url: https://hal.archives-ouvertes.
fr/hal-01094677/file/ICITST2014-ID-103_v35.pdf. published.

[C17] K. Desnos, T. Bourgoin, N. Sourbier, M. Dardaillon, O. Gesny, and M. Pelcat.
“Ultra-Fast Machine Learning Inference through C Code Generation for Tan-
gled Program Graphs”. In: International Workshop on Signal Processing Systems
(SiPS). Rennes, France: IEEE, Nov. 2, 2022. published (cit. on pp. 11, 12, 62,
71).

95

https://hal.archives-ouvertes.fr/hal-01812706/document
https://hal.archives-ouvertes.fr/hal-01812706/document
https://hal.archives-ouvertes.fr/hal-01812719/document
https://hal.archives-ouvertes.fr/hal-01812719/document
https://hal.archives-ouvertes.fr/hal-01569593/file/32_Final_Paper.pdf
https://hal.archives-ouvertes.fr/hal-01569593/file/32_Final_Paper.pdf
https://hal.archives-ouvertes.fr/hal-01514641/file/ISCAS2017%20_published.pdf
https://hal.archives-ouvertes.fr/hal-01514641/file/ISCAS2017%20_published.pdf
https://hal.archives-ouvertes.fr/hal-01094677/file/ICITST2014-ID-103_v35.pdf
https://hal.archives-ouvertes.fr/hal-01094677/file/ICITST2014-ID-103_v35.pdf

[C18] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. “Buffer merging technique
for minimizing memory footprints of Synchronous Dataflow specifications”. In:
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Brisbane, Australia, Apr. 1, 2015, pp. 1111–1115. url: https://hal.archives-
ouvertes.fr/hal-01146340/file/20150423-ICASSP15_Desnos_perso%20%
281%29.pdf. published (cit. on p. 8).

[C19] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. “Distributed Memory Alloca-
tion Technique for Synchronous Dataflow Graphs”. In: International Workshop
on Signal Processing Systems (SiPS). Dallas, TX, USA, Oct. 1, 2016, pp. 45–
50. url: https://hal.archives- ouvertes.fr/hal- 01390486/document.
published (cit. on pp. 8, 10, 11, 19, 38).

[C20] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. “Memory bounds for the dis-
tributed execution of a hierarchical Synchronous Data-Flow graph”. In: Interna-
tional Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS). Samos, Greece, July 1, 2012, pp. 160–167. url: https:
//hal.archives-ouvertes.fr/hal-00721335/file/Samos12.pdf. published
(cit. on pp. 8, 25, 37).

[C21] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. “Pre- and post-scheduling
memory allocation strategies on MPSoCs”. In: Electronic System Level Synthe-
sis Conference (ESLsyn). Austin, TX, USA: IEEE, May 1, 2013, pp. 1–6. url:
https://hal.archives-ouvertes.fr/hal-00868945/file/ESLSyn13.pdf.
published (cit. on pp. 8, 10, 11, 37).

[C22] K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, and S. Aridhi. “PiMM:
Parameterized and Interfaced dataflow Meta-Model for MPSoCs runtime recon-
figuration”. In: International Conference on Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation (SAMOS). Samos, Greece, July 1, 2013,
pp. 41–48. url: http://kdesnos.fr/wp-content/uploads/publis/Desnos_
Pimm_2013.pdf. published (cit. on pp. 8, 22, 39).

[C23] K. Desnos, N. Sourbier, P.-Y. Raumer, O. Gesny, and M. Pelcat. “GEGELATI:
Lightweight Artificial Intelligence through Generic and Evolvable Tangled Pro-
gram Graphs”. In: Workshop on Design and Architectures for Signal and Image
Processing (DASIP). International Conference Proceedings Series (ICPS). Bu-
dapest, Hungary: ACM, Jan. 18, 2021. published (cit. on pp. 10, 11, 13, 62, 66,
68).

[C24] G. Georgakarakos, S. Kanur, J. Lilius, and K. Desnos. “Task-based Execution
of Synchronous Dataflow Graphs for Scalable Multicore Computing”. In: Inter-
national Workshop on Signal Processing Systems (SiPS). Ed. by IEEE. Lorient,
France, Jan. 2017. published.

[C25] J. Hascoët, K. Desnos, J.-F. Nezan, and B. D. de Dinechin. “Hierarchical Data-
flow Model for efficient programming of clustered manycore processors”. In: In-
ternational Conference on Application-specific Systems, Architectures and Pro-

96

https://hal.archives-ouvertes.fr/hal-01146340/file/20150423-ICASSP15_Desnos_perso%20%281%29.pdf
https://hal.archives-ouvertes.fr/hal-01146340/file/20150423-ICASSP15_Desnos_perso%20%281%29.pdf
https://hal.archives-ouvertes.fr/hal-01146340/file/20150423-ICASSP15_Desnos_perso%20%281%29.pdf
https://hal.archives-ouvertes.fr/hal-01390486/document
https://hal.archives-ouvertes.fr/hal-00721335/file/Samos12.pdf
https://hal.archives-ouvertes.fr/hal-00721335/file/Samos12.pdf
https://hal.archives-ouvertes.fr/hal-00868945/file/ESLSyn13.pdf
http://kdesnos.fr/wp-content/uploads/publis/Desnos_Pimm_2013.pdf
http://kdesnos.fr/wp-content/uploads/publis/Desnos_Pimm_2013.pdf

cessors (ASAP). Ed. by IEEE. Seattle, WA, USA, July 2017, pp. 137–142. url:
https://hal.archives- ouvertes.fr/hal- 01564019/file/ASAP- 2017-
Hierarchical-Dataflow-Model.pdf. published (cit. on p. 14).

[C26] J. Hascoet, B. D. de Dinechin, K. Desnos, and J.-F. Nezan. “A Distributed Frame-
work for Low-Latency OpenVX over the RDMA NoC of a Clustered Manycore”.
In: High Performance Extreme Computing Conference (HPEC). Waltham, MA,
USA: IEEE, Sept. 2018, pp. 1–7. published (cit. on p. 10).

[C27] J. Heulot, M. Pelcat, K. Desnos, J.-F. Nezan, and S. Aridhi. “Spider: A Syn-
chronous Parameterized and Interfaced Dataflow-based RTOS for multicore DSPS”.
In: Embedded Design in Education and Research Conference (EDERC). Milan,
Italy, Sept. 1, 2014, pp. 167–171. url: https://hal.archives-ouvertes.fr/
hal-01067052/file/ederc2014.pdf. published (cit. on pp. 8, 10, 11, 16, 24,
26, 38).

[C28] A. Honorat, T. Bourgoin, H. Miomandre, K. Desnos, D. Menard, and J.-F.
Nezan. “Influence of Dataflow Graph Moldable Parameters on Optimization Cri-
teria”. In: Workshop on Design and Architectures for Signal and Image Processing
(DASIP). Budapest, Hungary, June 20, 2022. published (cit. on pp. 9, 10, 12, 14,
19, 39–41, 48, 77).

[C29] A. Honorat, K. Desnos, S. S. Bhattacharyya, and J.-F. Nezan. “Scheduling of Syn-
chronous Dataflow Graphs with Partially Periodic Real-Time Constraints”. In:
Conference on Real-Time Networks and Systems (RTNS). ICPS. Paris, France:
ACM, June 2020, pp. 22–33. published (cit. on pp. 10, 11, 13, 14, 19, 25, 27).

[C30] A. Honorat, K. Desnos, M. Dardaillon, and J.-F. Nezan. “A Fast Heuristic to
Pipeline SDF Graphs”. In: International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS). Vol. 12471. LNCS.
Pythagorion, Greece: Springer, July 2020. published (cit. on pp. 12, 14, 19, 33).

[C31] A. Honorat, K. Desnos, M. Pelcat, and J.-F. Nezan. “Modeling Nested For Loops
with Explicit Parallelism in Synchronous Dataflow Graphs”. In: International
Conference on Embedded Computer Systems: Architectures, Modeling, and Sim-
ulation (SAMOS). Vol. 11733. LNCS. Pythagorion, Greece: Springer, July 2019,
pp. 269–280. published (cit. on pp. 19, 28, 40).

[C32] R. Lazcano, D. Madronal, K. Desnos, M. Pelcat, R. Guerra, S. Lopez, E. Juarez,
and C. Sanz. “Parallelism Exploitation of a Dimensionality Reduction Algo-
rithm Applied to Hyperspectral Images”. In: Conference on Design and Archi-
tectures for Signal and Image Processing (DASIP). Rennes, France, Jan. 2016.
url: https://hal.archives-ouvertes.fr/hal-01415948. published.

[C33] R. Lazcano, I. Sidrach-Cardona, D. Madroñal, K. Desnos, M. Pelcat, E. Juarez,
and C. Sanz. “Parallelism exploitation of a PCA algorithm for hyperspectral
images using RVC-CAL”. In: SPIE Remote Sensing. Edimburgh, UK, Jan. 2016.
published.

97

https://hal.archives-ouvertes.fr/hal-01564019/file/ASAP-2017-Hierarchical-Dataflow-Model.pdf
https://hal.archives-ouvertes.fr/hal-01564019/file/ASAP-2017-Hierarchical-Dataflow-Model.pdf
https://hal.archives-ouvertes.fr/hal-01067052/file/ederc2014.pdf
https://hal.archives-ouvertes.fr/hal-01067052/file/ederc2014.pdf
https://hal.archives-ouvertes.fr/hal-01415948

[C34] D. Madroñal, R. Lazcano, A. Morvan, R. Salvador, K. Desnos, E. Juarez, and
C. Sanz. “Automatic Instrumentation of Dataflow Application using PAPI”. In:
International Conference on Computing Frontiers. Ischia, Italy: ACM, May 2018,
pp. 232–235. published.

[C35] A. Marie, F. Chen, K. Desnos, J. Zhou, L. Morin, and L. Zhang. “Towards
Machine Perception Aware Image Quality Assessment”. In: 25th International
Workshop on Multimedia Signal Processing. Poitiers, France: IEEE, Sept. 2023.
published (cit. on p. 80).

[C36] A. Marie, K. Desnos, L. Morin, and L. Zhang. “Evaluation of Image Quality
Assessment Metrics for Semantic Segmentation in a Machine-to-Machine Com-
munication Scenario”. In: International Conference on Quality of Multimedia Ex-
perience (QoMEX). Ghent, Belgium: IEEE, June 2023. published (cit. on p. 80).

[C37] A. Marie, K. Desnos, L. Morin, and L. Zhang. “Expert Training: Enhancing AI
Resilience to Image Coding Artifacts”. In: Electronic Imaging, Image Process-
ing: Algorithms and Systems XX. Society for Imaging Science and Technology,
Jan. 17, 2022. Forthcoming (cit. on pp. 13, 44, 57, 58, 79, 80).

[C38] A. Marie, K. Desnos, L. Morin, and L. Zhang. “Video Coding for Machines:
Large-Scale Evaluation of DNNs Robustness to Compression Artifacts for Seman-
tic Segmentation”. In: International Workshop on Multimedia Signal Processing
(MMSP). Shanghai, China: IEEE, Sept. 26, 2022. published (cit. on pp. 12, 13,
44, 46, 57–60, 80).

[C39] H. Miomandre, J. Hascoët, K. Desnos, K. Martin, B. D. D. Dinechin, and J.-F.
Nezan. “Embedded Runtime for Reconfigurable Dataflow Graphs on Manycore
Architectures”. In: PARMA-DITAM. Manchester, United Kingdom, Jan. 2018.
url: https://hal.archives-ouvertes.fr/hal-01704702. published (cit. on
pp. 11, 16, 19, 38).

[C40] F. Palumbo, T. Fanni, C. Sau, A. Rodriguez, D. Madroñal, K. Desnos, A. Mor-
van, M. Pelcat, C. Rubattu, R. Lazcano, L. Raffo, E. de la Torre, E. Juarez,
C. Sanz, and P. S. de la Roja. “Hardware/Software Self-Adaptation in CPS: the
CERBERO Project Approach”. In: International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS). Vol. 11733.
LNCS. Pythagorion, Greece: Springer, July 2019, pp. 416–428. published.

[C41] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi. “Preesm: A
dataflow-based rapid prototyping framework for simplifying multicore DSP pro-
gramming”. In: Embedded Design in Education and Research Conference (ED-
ERC). Milan, Italy, Sept. 2014, pp. 36–40. url: https : / / hal . archives -
ouvertes.fr/hal-01059313/file/ederc2014.pdf. published (cit. on pp. 16,
24, 26).

98

https://hal.archives-ouvertes.fr/hal-01704702
https://hal.archives-ouvertes.fr/hal-01059313/file/ederc2014.pdf
https://hal.archives-ouvertes.fr/hal-01059313/file/ederc2014.pdf

[C42] M. Pelcat, K. Desnos, L. Maggiani, Y. Liu, J. Heulot, J.-F. Nezan, and S. S.
Bhattacharyya. “Models of Architecture: Reproducible Efficiency Evaluation for
Signal Processing Systems”. In: International Workshop on Signal Processing
Systems (SiPS). Ed. by IEEE. Dallas, TX, USA, Oct. 2016, pp. 121–126. url:
https://hal.archives-ouvertes.fr/hal-01390508/file/sips_moa.pdf.
published.

[C43] O. Renaud, D. Gageot, K. Desnos, and J.-F. Nezan. “SCAPE: HW-Aware Clus-
tering of Dataflow Actors for Tunable Scheduling Complexity”. In: Workshop on
Design and Architectures for Signal and Image Processing (DASIP). Toulouse,
France: Springer, Jan. 2023. published (cit. on pp. 9, 11, 12, 14, 19, 25, 26, 33,
37).

[C44] O. Renaud, N. Haggui, K. Desnos, and J.-F. Nezan. “Automated Clustering
and Pipelining of Dataflow Actors for Controlled Scheduling Complexity”. In:
European Signal Processing Conference (EUSIPCO). Helsinki, Finland: IEEE,
Sept. 2023. published.

[C45] H. Rexha, S. Lafond, and K. Desnos. “Energy-Efficient Actor Execution for SDF
Application on Heterogeneous Architectures”. In: International Conference on
Parallel, Distributed, and Network-Based Processing (PDP). Mar. 2018. pub-
lished (cit. on pp. 10, 11).

[C46] N. Sourbier, J. Bonnot, O. Gesny, F. Majorczyk, K. Desnos, T. Guyet, and M.
Pelcat. “Imbalanced Classification with TPG Genetic Programming: Impact of
Problem Imbalance and Selection Mechanisms”. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion (GECCO). Boston, USA:
ACM, July 2022. published (cit. on pp. 62, 73, 74).

[C47] L. Suriano, A. Rodriguez, K. Desnos, M. Pelcat, and E. de la Torre. “Analysis
of a Heterogeneous Multi-Core, Multi-HW-Accelerator-Based System Designed
Using PREESM and SDSoC”. In: International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC). Madrid, Spain, July 2017,
pp. 1–7. published (cit. on p. 12).

[C48] S. Wang, N. Gac, H. Miomandre, J.-F. Nezan, K. Desnos, and F. Orieux. “Al-
gorithmic and Hardware Design Space Exploration for Radio-Interferometric Al-
gorithms”. In: Workshop on Design and Architectures for Signal and Image Pro-
cessing (DASIP). LNCS. Springer, Jan. 2024. published.

[C49] Z. Zhou, K. Desnos, M. Pelcat, J.-F. Nezan, W. Plishker, and S. S. Bhat-
tacharyya. “Scheduling of parallelized synchronous dataflow actors”. In: Inter-
national Symposium on System on Chip (SoC). Tampere, Finland, Oct. 2013,
pp. 1–10. published.

99

https://hal.archives-ouvertes.fr/hal-01390508/file/sips_moa.pdf

Technical Reports & Project Deliverables
[T1] T. Bourgoin, N. Sourbier, M. Dardaillon, and K. Desnos. Génération de code

pour une bibliothèque d’apprentissage par renforcement. Tech. rep. INSA Rennes,
Oct. 2021. url: http://kdesnos.fr/wp-content/uploads/publis/20211004-
Internship_Report_Bourgoin_final.pdf (cit. on p. 62).

[T2] M. Dejean-Servières, K. Desnos, K. Abdelouahab, W. Hamidouche, L. Morin,
and M. Pelcat. Study of the Impact of Standard Image Compression Techniques
on Performance of Image Classification with a Convolutional Neural Network.
Intership report. INSA Rennes, Dec. 2017 (cit. on pp. 44, 46, 57).

[T3] K. Desnos. GEGELATI: Reinforcement Learning Framework with Tangled Pro-
gram Graphs. Tech. rep. Feb. 2020. url: https://www.youtube.com/watch?v=
t0Ta5Vo5h7s (cit. on p. 62).

[T4] K. Desnos, F. Arrestier, A. Morvan, M. Pelcat, D. Madronal, and E. Juarez.
Energy Optimized Sensor-Based Adaptive Software on Heterogeneous Platforms.
Tech. rep. CERBERO H2020-ICT-2016, 2018. url: https://youtu.be/a9WIucWfjkU
(cit. on p. 38).

[T5] K. Desnos, M. Pelcat, J. Oliveira, C. Sau, L. Pulina, E. de la Torre, E. Juarez,
P. Muños, S. Salvador, A. Morvan, F. Palumbo, and M. Masin. Models of Com-
putation. Tech. rep. D3.5. CERBERO H2020-ICT-2016, June 2018. url: https:
//www.cerbero-h2020.eu/wp-content/uploads/2018/12/D3.5.pdf (cit. on
p. 19).

[T6] D. Madronal, L. L. Raquel, K. Desnos, F. Arrestier, A. Morvan, M. Pelcat, and
E. Juarez. Dataflow applications real-time monitoring PoC: PREESM-SPIDER-
PAPIFY/PAPIFY-Viewer. Tech. rep. CERBERO H2020-ICT-2016, 2018. url:
https://youtu.be/9QbqtEjKI2U.

[T7] M. Pelcat, K. Desnos, L. Maggiani, Y. Liu, J. Heulot, J.-F. Nezan, and S. S. Bhat-
tacharyya. Models of Architecture. Research Report PREESM/2015-12TR01, 2015.
INSA Rennes, Dec. 2015.

[T8] P.-Y. Raumer, N. Sourbier, M. Dardaillon, M. Pelcat, and K. Desnos. Reinforce-
ment Learning Library based on Tangled Program Graphs: Development of New
Learning Environments and Library Features. Tech. rep. INSA Rennes, Aug.
2020. url: http://kdesnos.fr/wp- content/uploads/publis/20200831_
tech_report.pdf.

100

http://kdesnos.fr/wp-content/uploads/publis/20211004-Internship_Report_Bourgoin_final.pdf
http://kdesnos.fr/wp-content/uploads/publis/20211004-Internship_Report_Bourgoin_final.pdf
https://www.youtube.com/watch?v=t0Ta5Vo5h7s
https://www.youtube.com/watch?v=t0Ta5Vo5h7s
https://youtu.be/a9WIucWfjkU
https://www.cerbero-h2020.eu/wp-content/uploads/2018/12/D3.5.pdf
https://www.cerbero-h2020.eu/wp-content/uploads/2018/12/D3.5.pdf
https://youtu.be/9QbqtEjKI2U
http://kdesnos.fr/wp-content/uploads/publis/20200831_tech_report.pdf
http://kdesnos.fr/wp-content/uploads/publis/20200831_tech_report.pdf

Bibliography

[1] Brown T. et al. “Language Models are Few-Shot Learners”. In: (2020). arXiv:
2005.14165 [cs.CL] (cit. on p. 61).

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Systems. Software avail-
able from tensorflow.org. 2015. url: https://www.tensorflow.org/ (cit. on
pp. 2, 78).

[3] O. Assare and R. K. Gupta. “Performance Analysis of Timing-Speculative Pro-
cessors”. In: IEEE Transactions on Computers 71.2 (2022), pp. 407–420 (cit. on
p. 46).

[4] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. “StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures”. In: Euro-
Par 2009 Parallel Processing: 15th International Euro-Par Conference, Delft,
The Netherlands, August 25-28, 2009. Proceedings 15. Springer. 2009, pp. 863–
874 (cit. on pp. 76, 78).

[5] M. Barr. “Real men program in C”. In: Embedded systems design 22.7 (2009),
p. 3 (cit. on p. 6).

[6] A. Bastidas Fuertes, M. Pérez, and J. Meza Hormaza. “Transpilers: A Systematic
Mapping Review of Their Usage in Research and Industry”. In: Applied Sciences
13.6 (2023), p. 3667 (cit. on p. 11).

[7] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. “The Arcade Learning
Environment: An Evaluation Platform for General Agents”. In: CoRR (2012).
eprint: 1207.4708. url: http://arxiv.org/abs/1207.4708 (cit. on pp. 65,
72).

101

https://arxiv.org/abs/2005.14165
https://www.tensorflow.org/
1207.4708
http://arxiv.org/abs/1207.4708

[8] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli, and M.
Raulet. “Overview of the MPEG reconfigurable video coding framework”. In:
Journal of Signal Processing Systems 63 (2011), pp. 251–263 (cit. on p. 78).

[9] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. “APGAN and RPMC: Com-
plementary heuristics for translating DSP block diagrams into efficient soft-
ware implementations”. In: Design Automation for Embedded Systems 2 (1997),
pp. 33–60 (cit. on pp. 33, 34).

[10] E. Blossom. “GNU radio: tools for exploring the radio frequency spectrum”. In:
Linux journal 2004.122 (2004), p. 4 (cit. on p. 2).

[11] J. Bonnot. “Error Analysis for Approximate Computing Systems”. PhD thesis.
Rennes, INSA, 2019 (cit. on pp. 45, 54).

[12] P. C. Broekema, R. V. Van Nieuwpoort, and H. E. Bal. “Exascale high perfor-
mance computing in the square kilometer array”. In: Proceedings of the 2012
workshop on High-Performance Computing for Astronomy Date. 2012, pp. 9–16
(cit. on p. 76).

[13] A. Canziani, A. Paszke, and E. Culurciello. “An analysis of deep neural network
models for practical applications”. In: arXiv preprint (2016). url: https://
arxiv.org/pdf/1605.07678.pdf (cit. on p. 61).

[14] J. Castrillon, M. Lieber, S. Klüppelholz, M. Völp, N. Asmussen, U. Assmann,
F. Baader, C. Baier, G. Fettweis, J. Fröhlich, et al. “A hardware/software stack
for heterogeneous systems”. In: IEEE Transactions on Multi-Scale Computing
Systems 4.3 (2017), pp. 243–259 (cit. on p. 4).

[15] M. Chui, M. Collins, and M. Pattel. The Internet of Things:Catching up to anac-
celerating opportunity. Tech. rep. McKinsey & Compagny, Nov. 2021 (cit. on
p. 6).

[16] P. Ciambra, M. Dardaillon, M. Pelcat, and H. Yviquel. “Co-optimizing Dataflow
Graphs and Actors with MLIR”. In: 2022 IEEE Workshop on Signal Processing
Systems (SiPS). IEEE. 2022, pp. 1–6 (cit. on p. 78).

[17] CISCO. Cisco Global Cloud Index: Forecast and Methodology, 2016 – 2021. White
Paper. 2018. url: https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paper-c11-738085.
pdf (cit. on pp. 55, 61).

[18] N. Cressie. “The origins of kriging”. In: Mathematical geology 22 (1990), pp. 239–
252 (cit. on p. 53).

[19] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, S. Li, L. Chen, M. E. Kounavis,
and D. H. Chau. “Shield: Fast, practical defense and vaccination for deep learning
using jpeg compression”. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2018, pp. 196–204 (cit. on
p. 57).

102

https://arxiv.org/pdf/1605.07678.pdf
https://arxiv.org/pdf/1605.07678.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf

[20] H. Deroui. “Etude et implantation d’algorithmes pour le placement et l’ordonnancement
d’applications Dataflow”. Thèse de doctorat dirigée par Nezan, Jean-François
Signal, Image, Vision Rennes, INSA 2019. PhD thesis. 2019. url: http://www.
theses.fr/2019ISAR0022 (cit. on pp. 23, 25).

[21] B. D. de Dinechin. “A Qualitative Approach to Many-core Architecture”. In:
Multi-Processor System-on-Chip 1: Architectures (2021), pp. 27–52 (cit. on p. 6).

[22] S. Dodge and L. Karam. “Understanding how image quality affects deep neu-
ral networks”. In: 2016 eighth international conference on quality of multimedia
experience (QoMEX). IEEE. 2016, pp. 1–6 (cit. on p. 57).

[23] M. Duranton et al. Key recommendations of the HiPEAC Vision 2021. Tech. rep.
European Network on High-performance Embedded Architecture and Compila-
tion (HiPEAC), 2021. url: https://www.hipeac.net/media/public/vision/
article/HiPEAC_Vision_2021_00.pdf (cit. on p. 12).

[24] W. Ecker, W. Müller, and R. Dömer. “Hardware-dependent software”. In: Hardware-
dependent Software. Springer, 2009, pp. 1–13 (cit. on p. 20).

[25] N. Edu. How Many Decimals of Pi Do We Really Need? online. Oct. 2022. url:
https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-
pi-do-we-really-need/ (cit. on p. 44).

[26] P. Fradet, A. Girault, and P. Poplavko. “SPDF: A schedulable parametric data-
flow MoC”. In: 2012 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE). IEEE. 2012, pp. 769–774 (cit. on p. 11).

[27] N. Gac, J.-F. Nezan, A. Ferrari, C. Ferrari, M. Quinson, and C. Dumez-Viou.
Rapid prototyping of a supercomputer dedicated to radio astronomy. 2023 (cit. on
p. 76).

[28] M. Geilen, T. Basten, and S. Stuijk. “Minimising buffer requirements of syn-
chronous dataflow graphs with model checking”. In: Proceedings of the 42nd
annual Design Automation Conference. 2005, pp. 819–824 (cit. on p. 11).

[29] A. H. Ghamarian, S. Stuijk, T. Basten, M. Geilen, and B. D. Theelen. “Latency
minimization for synchronous data flow graphs”. In: 10th Euromicro Conference
on Digital System Design Architectures, Methods and Tools (DSD 2007). IEEE.
2007, pp. 189–196 (cit. on p. 11).

[30] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. “A
survey of quantization methods for efficient neural network inference”. In: Low-
Power Computer Vision. Chapman and Hall/CRC, 2022, pp. 291–326 (cit. on
p. 80).

[31] S. Ghosh-Dastidar and H. Adeli. “Spiking neural networks”. In: International
journal of neural systems 19.04 (2009), pp. 295–308 (cit. on p. 81).

[32] Open Hardware Group. CORE-V Family of Open-Source RISC-V Cores. online.
Sept. 2022. url: https://github.com/openhwgroup/core-v-cores (cit. on
p. 5).

103

http://www.theses.fr/2019ISAR0022
http://www.theses.fr/2019ISAR0022
https://www.hipeac.net/media/public/vision/article/HiPEAC_Vision_2021_00.pdf
https://www.hipeac.net/media/public/vision/article/HiPEAC_Vision_2021_00.pdf
https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/
https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/
https://github.com/openhwgroup/core-v-cores

[33] GrowthEnabler. Market Pulse Report, Internet of Things. Tech. rep. 2017. url:
https : / / growthenabler . com / flipbook / pdf / IOT % 20Report . pdf (cit. on
p. 54).

[34] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang. “Dynamic neural
networks: A survey”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 44.11 (2021), pp. 7436–7456 (cit. on p. 78).

[35] J. Hascoët, B. D. de Dinechin, P. G. de Massas, and M. Q. Ho. “Asynchronous
one-sided communications and synchronizations for a clustered manycore proces-
sor”. In: Proceedings of the 15th IEEE/ACM Symposium on Embedded Systems
for Real-Time Multimedia. 2017, pp. 51–60 (cit. on p. 10).

[36] N.-M. Ho and W.-F. Wong. “Exploiting half precision arithmetic in Nvidia
GPUs”. In: 2017 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE. 2017, pp. 1–7 (cit. on p. 46).

[37] A. Honorat, M. Dardaillon, H. Miomandre, and J.-F. Nezan. “Automated Buffer
Sizing of Dataflow Applications in a High-Level Synthesis Workflow”. In: ACM
Transactions on Reconfigurable Technology and Systems 17.1 (2024), pp. 1–26
(cit. on p. 77).

[38] Q. Hou, K. Zhou, and B. Guo. “BSGP: bulk-synchronous GPU programming”.
In: ACM Transactions on Graphics (TOG) 27.3 (2008), pp. 1–12 (cit. on p. 76).

[39] Intel. Xeon Platinum 9282 Processos. [online]. 2019. url: https://ark.intel.
com/content/www/us/en/ark/products/194146/intel- xeon- platinum-
9282-processor-77m-cache-2-60-ghz.html (cit. on p. 6).

[40] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han. “Approximate arithmetic
circuits: A survey, characterization, and recent applications”. In: Proceedings of
the IEEE 108.12 (2020), pp. 2108–2135 (cit. on p. 46).

[41] X. Jiao, V. Camus, M. Cacciotti, Y. Jiang, C. Enz, and R. K. Gupta. “Combin-
ing structural and timing errors in overclocked inexact speculative adders”. In:
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.
Ieee. 2017, pp. 482–487 (cit. on pp. 46, 49).

[42] N. Jouppi, C. Young, N. Patil, and D. Patterson. “Motivation for and Evaluation
of the First Tensor Processing Unit”. In: IEEE Micro 38.3 (2018), pp. 10–19 (cit.
on p. 6).

[43] G. Kahn. “The semantics of a simple language for parallel programming”. In:
Information processing 74 (1974), pp. 471–475 (cit. on p. 20).

[44] S. Kanur, J. Lilius, and J. Ersfolk. “Detecting data-parallel synchronous dataflow
graphs”. In: 2017 Conference on Design and Architectures for Signal and Image
Processing (DASIP). IEEE. 2017, pp. 1–6 (cit. on p. 77).

[45] J. Keinert and E. F. Deprettere. “Multidimensional dataflow graphs”. In: Hand-
book of Signal Processing Systems. Springer, 2013, pp. 1145–1175 (cit. on p. 79).

104

https://growthenabler.com/flipbook/pdf/IOT%20Report.pdf
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html

[46] S. Kelly. “Scaling genetic programming to challenging reinforcement tasks through
emergent modularity”. PhD thesis. Halifax, Nova Scotia, Canada: Dalhousie Uni-
versity, 2018. url: https://dalspace.library.dal.ca/bitstream/handle/
10222/73979/Kelly-Stephen-PhD-CSCI-June-2018.pdf (cit. on pp. 63–66,
72).

[47] S. Kelly and M. I. Heywood. “Emergent tangled graph representations for Atari
game playing agents”. In: Genetic Programming: 20th European Conference, Eu-
roGP 2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings 20.
Springer. 2017, pp. 64–79 (cit. on pp. 46, 62, 63, 65, 66, 69).

[48] S. Kelly, J. Newsted, W. Banzhaf, and C. Gondro. “A Modular Memory Frame-
work for Time Series Prediction”. In: Genetic and Evolutionary Computation
Conference. GECCO ’20. Cancún, Mexico: Association for Computing Machin-
ery, 2020, pp. 949–957. url: https://doi.org/10.1145/3377930.3390216
(cit. on pp. 63, 66).

[49] F. Kermarrec, S. Bourdeauducq, H. Badier, and J.-C. Le Lann. “LiteX: an open-
source SoC builder and library based on Migen Python DSL”. In: OSDA 2019,
colocated with DATE 2019 Design Automation and Test in Europe. 2019 (cit. on
p. 5).

[50] P. M. Knijnenburg, T. Kisuki, and M. F. O’Boyle. “Iterative compilation”. In:
Embedded Processor Design Challenges: Systems, Architectures, Modeling, and
Simulation—SAMOS (2002), pp. 171–187 (cit. on p. 79).

[51] H.-J. Ko and J. J. Tsai. “Robust and computationally efficient digital IIR filter
synthesis and stability analysis under finite precision implementations”. In: IEEE
Transactions on Signal Processing 68 (2020), pp. 1807–1822 (cit. on p. 47).

[52] A. Krizhevsky, G. Hinton, et al. “Learning multiple layers of features from tiny
images”. In: (2009) (cit. on p. 44).

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger. Curran Associates, Inc., 2012, pp. 1097–1105 (cit. on pp. 6, 7, 44,
46, 57, 61, 66).

[54] A. Kuusela and C. Smullen. “Video Coding Unit (VCU): Hot Chips 2021”. In:
2021 IEEE Hot Chips 33 Symposium (HCS). IEEE. 2021, pp. 1–30 (cit. on p. 6).

[55] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle,
T. Shpeisman, N. Vasilache, and O. Zinenko. “MLIR: Scaling compiler infras-
tructure for domain specific computation”. In: 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE. 2021, pp. 2–14
(cit. on p. 78).

105

https://dalspace.library.dal.ca/bitstream/handle/10222/73979/Kelly-Stephen-PhD-CSCI-June-2018.pdf
https://dalspace.library.dal.ca/bitstream/handle/10222/73979/Kelly-Stephen-PhD-CSCI-June-2018.pdf
https://doi.org/10.1145/3377930.3390216

[56] R. Lazcano, D. Madroñal, E. Juarez, and P. Clauss. “Runtime multi-versioning
and specialization inside a memoized speculative loop optimizer”. In: Proceedings
of the 29th International Conference on Compiler Construction. 2020, pp. 96–107
(cit. on p. 16).

[57] E. A. Lee and S. Ha. “Scheduling strategies for multiprocessor real-time DSP”. In:
1989 IEEE Global Telecommunications Conference and Exhibition’Communications
Technology for the 1990s and Beyond’. IEEE. 1989, pp. 1279–1283 (cit. on p. 10).

[58] E. A. Lee and I. John. “Overview of the ptolemy project”. In: (1999) (cit. on
p. 78).

[59] E. A. Lee and D. G. Messerschmitt. “Synchronous data flow”. In: Proceedings of
the IEEE 75.9 (1987), pp. 1235–1245 (cit. on pp. 8, 20–22, 25, 29).

[60] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang. “Pruning and quantization
for deep neural network acceleration: A survey”. In: Neurocomputing 461 (2021),
pp. 370–403 (cit. on p. 46).

[61] C. Liu, J. Han, and F. Lombardi. “An analytical framework for evaluating the er-
ror characteristics of approximate adders”. In: IEEE Transactions on Computers
64.5 (2014), pp. 1268–1281 (cit. on p. 49).

[62] T. Liu and S.-L. Lu. “Performance improvement with circuit-level speculation”.
In: Proceedings of the 33rd annual ACM/IEEE international symposium on Mi-
croarchitecture. 2000, pp. 348–355 (cit. on p. 49).

[63] C. Lomont. “Fast inverse square root”. In: Tech-315 nical Report 32 (2003) (cit.
on pp. 44, 46).

[64] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas. “Bio-inspired impre-
cise computational blocks for efficient VLSI implementation of soft-computing
applications”. In: IEEE Transactions on Circuits and Systems I: Regular Papers
57.4 (2009), pp. 850–862 (cit. on p. 49).

[65] Q. Milot, M. Dardaillon, J. Bonnot, and D. Ménard. “Wordlength Optimization
for Custom Floating-Point Systems”. In: Workshop on Design and Architectures
for Signal and Image Processing (DASIP). LNCS. Munich, Germany: Springer,
2024 (cit. on p. 46).

[66] H. Miomandre, J.-F. Nezan, D. Menard, A. Campbell, A. Griffin, S. Hall, and
A. Ensor. “Approximate buffers for reducing memory requirements: Case study
on SKA”. In: 2020 IEEE Workshop on Signal Processing Systems (SiPS). IEEE.
2020, pp. 1–6 (cit. on pp. 9, 48).

[67] G. E. Moore et al. Cramming more components onto integrated circuits. 1965
(cit. on p. 4).

[68] K. Muvva, J. M. Bradley, M. Wolf, and T. Johnson. “Assuring learning-enabled
components in small unmanned aircraft systems”. In: AIAA Scitech 2021 Forum.
2021, p. 0994 (cit. on p. 44).

106

[69] S. Neuendorffer and E. Lee. “Hierarchical reconfiguration of dataflow models”. In:
International Conference on Formal Methods and Models for Co-Design, 2004.
MEMOCODE’04. IEEE and ACM. 2004, pp. 179–188 (cit. on p. 22).

[70] E. Nogues, D. Menard, and M. Pelcat. “Algorithmic-level approximate computing
applied to energy efficient hevc decoding”. In: IEEE Transactions on Emerging
Topics in Computing 7.1 (2016), pp. 5–17 (cit. on p. 46).

[71] D. Nuzman, S. Dyshel, E. Rohou, I. Rosen, K. Williams, D. Yuste, A. Cohen, and
A. Zaks. “Vapor SIMD: Auto-vectorize once, run everywhere”. In: International
Symposium on Code Generation and Optimization (CGO 2011). IEEE. 2011,
pp. 151–160 (cit. on p. 79).

[72] K. Ota, M. S. Dao, V. Mezaris, and F. G. D. Natale. “Deep learning for mobile
multimedia: A survey”. In: ACM Transactions on Multimedia Computing, Com-
munications, and Applications (TOMM) 13.3s (2017), pp. 1–22. url: https:
//dl.acm.org/doi/abs/10.1145/3092831 (cit. on p. 61).

[73] F. Palumbo, N. Carta, D. Pani, P. Meloni, and L. Raffo. “The multi-dataflow
composer tool: generation of on-the-fly reconfigurable platforms”. In: Journal of
real-time image processing 9 (2014), pp. 233–249 (cit. on p. 16).

[74] K. Parashar, R. Rocher, D. Menard, and O. Sentieys. “A hierarchical methodol-
ogy for word-length optimization of signal processing systems”. In: 2010 23rd In-
ternational Conference on VLSI Design. IEEE. 2010, pp. 318–323 (cit. on p. 53).

[75] M. Pelcat. GHG emissions of semiconductor manufacturing in 2021. Tech. rep.
Univ Rennes, INSA Rennes, CNRS, IETR – UMR 6164, F-35000 Rennes, June
2023. url: https://hal.science/hal-04112708 (cit. on p. 8).

[76] J. Piat, S. S. Bhattacharyya, and M. Raulet. “Interface-based hierarchy for syn-
chronous data-flow graphs”. In: 2009 IEEE Workshop on Signal Processing Sys-
tems. 2009, pp. 145–150 (cit. on p. 22).

[77] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee. “A hierarchical multiprocessor
scheduling system for DSP applications”. In: Conference Record of The Twenty-
Ninth Asilomar Conference on Signals, Systems and Computers. Vol. 1. IEEE.
1995, pp. 122–126 (cit. on p. 33).

[78] M. Poorhosseini, W. Nebel, and K. Grüttner. “A Compiler Comparison in the
RISC-V Ecosystem”. In: 2020 International Conference on Omni-layer Intelli-
gent Systems (COINS). 2020, pp. 1–6 (cit. on p. 5).

[79] H. A. M. Puat and N. A. Abd Rahman. “IoMT: a review of pacemaker vulnerabil-
ities and security strategy”. In: Journal of Physics: Conference Series. Vol. 1712.
1. IOP Publishing. 2020, p. 012009 (cit. on p. 7).

[80] A. Rahimi, A. Ghofrani, K.-T. Cheng, L. Benini, and R. K. Gupta. “Approx-
imate associative memristive memory for energy-efficient GPUs”. In: 2015 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE). IEEE.
2015, pp. 1497–1502 (cit. on p. 46).

107

https://dl.acm.org/doi/abs/10.1145/3092831
https://dl.acm.org/doi/abs/10.1145/3092831
https://hal.science/hal-04112708

[81] V. Rajagopalan, V. Boppana, S. Dutta, B. Taylor, and R. Wittig. “Xilinx Zynq-
7000 EPP: An extensible processing platform family”. In: 2011 IEEE Hot Chips
23 Symposium (HCS). 2011, pp. 1–24 (cit. on p. 5).

[82] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener. “Programming with
relaxed synchronization”. In: Proceedings of the 2012 ACM workshop on Relaxing
synchronization for multicore and manycore scalability. 2012, pp. 41–50 (cit. on
p. 46).

[83] M. Rocklin et al. “Dask: Parallel computation with blocked algorithms and task
scheduling”. In: Proceedings of the 14th python in science conference. Vol. 130.
SciPy Austin, TX. 2015, p. 136 (cit. on p. 78).

[84] A. Roelke and M. R. Stan. “Risc5: Implementing the RISC-V ISA in gem5”.
In: First Workshop on Computer Architecture Research with RISC-V (CARRV).
Vol. 7. 17. 2017 (cit. on p. 5).

[85] G. Roumage, S. Azaiez, and S. Louise. “A survey of main dataflow MoCCs for
CPS design and verification”. In: 2022 IEEE 15th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC). IEEE. 2022, pp. 1–9
(cit. on pp. 11, 19, 26).

[86] F. S. Saadatmand, T. Stefanov, I. G. Alonso, A. D. Pimentel, B. Akesson, M.
Herget, and M. Bor. “Automated Derivation of Application Workload Models for
Design Space Exploration of Industrial Distributed Cyber-Physical Systems”. In:
IEEE International Conference on Industrial Cyber-Physical Systems (ICPS).
2024 (cit. on p. 32).

[87] P. K. Sahu, S. R. Pal, and A. K. Das. Estimation and inferential statistics.
Springer, 2015 (cit. on p. 51).

[88] J. E. Savage. Models of computation. Vol. 136. Addison-Wesley Reading, MA,
1998 (cit. on pp. 3, 19).

[89] T. Schwarzer, J. Falk, S. Müller, M. Letras, C. Heidorn, S. Wildermann, and
J. Teich. “Compilation of dataflow applications for multi-cores using adaptive
multi-objective optimization”. In: ACM Transactions on Design Automation of
Electronic Systems (TODAES) 24.3 (2019), pp. 1–23 (cit. on p. 39).

[90] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou. “Memory
devices and applications for in-memory computing”. In: Nature nanotechnology
15.7 (2020), pp. 529–544 (cit. on pp. 5, 10).

[91] O. Sentieys and D. Menard. “Customizing Number Representation and Preci-
sion”. In: Approximate Computing Techniques: From Component-to Application-
Level. Springer, 2022, pp. 11–41 (cit. on p. 46).

[92] J. Sérot. “Hocl: High level specification of dataflow graphs”. In: Proceedings of the
32nd Symposium on Implementation and Application of Functional Languages.
2020, pp. 11–22 (cit. on p. 78).

108

[93] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Corporaal,
and A.-J. Boonstra. “A review of near-memory computing architectures: Oppor-
tunities and challenges”. In: 2018 21st Euromicro Conference on Digital System
Design (DSD). IEEE. 2018, pp. 608–617 (cit. on p. 5).

[94] R. J. Smith, R. Amaral, and M. I. Heywood. “Evolving simple solutions to the
CIFAR-10 benchmark using tangled program graphs”. In: 2021 IEEE Congress
on Evolutionary Computation (CEC). IEEE. 2021, pp. 2061–2068 (cit. on p. 66).

[95] IEEE Spectrum. Top Programming Languages 2022. [online]. Aug. 2022. url:
https://spectrum.ieee.org/top- programming- languages- 2022 (cit. on
p. 6).

[96] B. Stabernack and F. Steinert. “Architecture of a Low Latency H.264/AVC Video
Codec for robust ML based Image Classification”. In: Workshop on Design and
Architectures for Signal and Image Processing (14th Edition). DASIP ’21. Bu-
dapest, Hungary: Association for Computing Machinery, 2021, pp. 1–9. url:
https://doi.org/10.1145/3441110.3441149 (cit. on pp. 56, 59).

[97] S. Stuijk, M. Geilen, and T. Basten. “Exploring trade-offs in buffer requirements
and throughput constraints for synchronous dataflow graphs”. In: Proceedings of
the 43rd annual design automation conference. 2006, pp. 899–904 (cit. on pp. 11,
12).

[98] H. Svenshon. “Heron of Alexandria and the dome of Hagia Sophia in Istanbul”.
In: Proceedings of the Third International Congress on Construction History.
Vol. 3. 2009, pp. 1387–94 (cit. on p. 44).

[99] M. Tan and Q. Le. “Efficientnet: Rethinking model scaling for convolutional
neural networks”. In: International Conference on Machine Learning. PMLR.
2019, pp. 6105–6114 (cit. on p. 62).

[100] B. Tippetts, D. J. Lee, K. Lillywhite, and J. Archibald. “Review of stereo vision
algorithms and their suitability for resource-limited systems”. In: Journal of Real-
Time Image Processing 11 (2016), pp. 5–25 (cit. on p. 9).

[101] E. Vasilakis. “An instruction level energy characterization of arm processors”.
In: Foundation of Research and Technology Hellas, Inst. of Computer Science,
Tech. Rep. FORTH-ICS/TR-450 (2015) (cit. on p. 45).

[102] G. Venkatesh, E. Nurvitadhi, and D. Marr. “Accelerating deep convolutional net-
works using low-precision and sparsity”. In: 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2017, pp. 2861–
2865. url: https://ieeexplore.ieee.org/abstract/document/7952679 (cit.
on p. 61).

[103] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, V. I. U. level Isa, A. Waterman,
Y. Lee, and D. Patterson. “The RISC-V instruction set manual”. In: Volume I:
User-Level ISA’, version 2 (2014) (cit. on p. 4).

109

https://spectrum.ieee.org/top-programming-languages-2022
https://doi.org/10.1145/3441110.3441149
https://ieeexplore.ieee.org/abstract/document/7952679

[104] M. Wipliez and M. Raulet. “Classification and transformation of dynamic data-
flow programs”. In: 2010 Conference on Design and Architectures for Signal and
Image Processing (DASIP). IEEE. 2010, pp. 303–310 (cit. on p. 78).

[105] N. Wirth. “A plea for lean software”. In: Computer 28.2 (1995), pp. 64–68 (cit.
on p. 7).

[106] C. Wolf. Picorv32-a size-optimized RISC-V cpu (2019). 2019. url: https://
github.com/YosysHQ/picorv32 (cit. on p. 5).

[107] H.-S. P. Wong, R. Willard, and I. K. Bell. “IC Technology – What Will the Next
Node Offer Us?” In: 2019 IEEE Hot Chips 31 Symposium (HCS). 2019, pp. 1–52
(cit. on p. 4).

[108] C. Wu, R. Tobar, K. Vinsen, A. Wicenec, D. Pallot, B.-q. Lao, R. Wang, T.
An, M. Boulton, I. Cooper, et al. “DALiuGE: A graph execution framework
for harnessing the astronomical data deluge”. In: Astronomy and computing 20
(2017), pp. 1–15 (cit. on p. 2).

[109] W. A. Wulf and S. A. McKee. “Hitting the memory wall: implications of the
obvious”. In: ACM SIGARCH 23.1 (1995), pp. 20–24 (cit. on p. 5).

[110] S.-J. Yen and Y.-S. Lee. “Under-sampling approaches for improving prediction of
the minority class in an imbalanced dataset”. In: Intelligent Control and Automa-
tion: International Conference on Intelligent Computing, ICIC 2006 Kunming,
China, August 16–19, 2006. Springer. 2006, pp. 731–740 (cit. on p. 74).

[111] C. Yu, S. Royuela, and E. Quiñones. “Taskgraph: A Low Contention OpenMP
Tasking Framework”. In: IEEE Transactions on Parallel and Distributed Systems
34.8 (2023), pp. 2325–2336 (cit. on p. 76).

[112] S. Zheng, Y. Song, T. Leung, and I. Goodfellow. “Improving the robustness of
deep neural networks via stability training”. In: Proceedings of the ieee conference
on computer vision and pattern recognition. 2016, pp. 4480–4488 (cit. on p. 57).

[113] W. Banzhaf, P. Machado, and M. Zhang, eds. Handbook of Evolutionary Machine
Learning. Springer, 2023 (cit. on p. 63).

[114] K. Desnos, “Ghost Paper: Exposing Errors in Bot-Generated Citation Analytics
from PDFs”, In Journal of Non-Existing Papers (2024), pp. 6-66, Casper Edition.

110

https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32

Titre : Automatisation de la conception et optimisations multi-objective pour logiciel embarqués
à haute performance

Mot clés : Conception automatisée, Systèmes embarqués, Flux de données, Calculs approxi-
més, IA frugale

Résumé : Ce manuscrit d’habilitation pré-
sente dix ans de recherche sur la concep-
tion des systèmes embarqués de haute per-
formance selon trois axes de recherche.

Le premier axe porte sur l’utilisation de
modèles de flux de données de calcul pour
programmer des puces hétérogènes multi-
cœurs. Des extensions de la sémantique du
flux de données ont été proposées, ainsi que
des optimisations basées modèles pour auto-
matiser le déploiement d’applications sur des
systèmes de calcul à haute performance.

Le deuxième axe concerne l’utilisation
d’approximations pour réduire la complexité
de calcul des systèmes complexes. Des mé-
thodes de caractérisation rapide des erreurs
causées par les approximations ont été dé-

veloppées, ainsi que des techniques pour ex-
ploiter la résilience des algorithmes de vi-
sion artificielle aux artefacts de la compres-
sion d’images avec perte.

Le troisième axe concerne le développe-
ment d’agents artificiels frugaux basés sur les
graphes de programmes entremêlés (TPGs).
Des contributions ont été proposées pour ac-
célérer l’apprentissage des TPGs grâce à la
parallélisation, et pour accélérer l’inférence
pour les dispositifs à faible puissance grâce à
la génération d’un code d’inférence dédié.

Le dernier chapitre du manuscrit présente
les perspectives de recherche ouvertes, no-
tamment l’exploration multi-objectifs et multi-
contraintes de l’espace de conception.

Title: Design Automation and Multi-Objective Optimizations for High-Performance Embedded
Software

Keywords: Design Automation, Embedded Systems, Dataflow, Approximate Computing, Fru-
gal AI

Abstract: This habilitation manuscript
presents a decade of research aimed at tam-
ing the design complexity of high-performance
embedded systems, with contributions along
three main research axes.

The first research axis explored is the use
of dataflow models of computation to pro-
gram heterogeneous multicore chips. Contri-
butions include extensions to dataflow seman-
tics and model-based optimizations to auto-
mate the deployment of large applications on
high-performance computing systems.

The second research axis explores the
use of approximations as a tool to reduce
the computational complexity of complex sys-
tems. Proposed contributions include generic
methods for rapidly characterizing hardware

and software errors caused by approxima-
tions, and techniques for exploiting the re-
silience of computer vision algorithms to arti-
facts introduced by lossy image compression.

The third research axis explored concerns
the development of frugal artificial agents
based on Tangled Program Graphs (TPGs).
Contributions in this area aim at accelerating
the training of TPGs through parallelization,
and at accelerating inference for low-power
devices through the generation of dedicated
inference code.

Research perspectives that follow the on-
going shift towards multi-objective and multi-
constraint design space exploration are pre-
sented in the final chapter of the manuscript.

	Acknowledgements
	Introduction: Research Activities Context and History
	Embedded System Design Context
	Embedded systems
	Trends in Embedded Computing Systems

	From Multi-core Programming to Many-Facet System-of-Systems Optimization
	Career Starting Point: Focus of the PhD Thesis
	Tackled Research Challenges

	Research Activities History: Research Projects and Supervised Students
	Supervised PhDs
	Collaborative projects

	Manuscript organization

	Embedded Parallel Software Synthesis with Dataflow Models of Computations
	Dataflow-Based Programming in Modern Computing Systems
	Dataflow moc
	Dataflow cad flow

	Dataflow Model Extensions
	Contributions overview
	Persistent States and Initialization in Hierarchical Dataflow moc

	Model-based front-end optimizations and analysis
	Contributions overview
	Actor Clustering for Controlled Task Granularity

	Model-based dse
	Contributions overview
	Multi-criteria Optimization of Algorithmic Design Choices with Moldable Parameters

	Summary

	Resilience of Signal Processing Systems to Approximations
	Introduction to Approximate Computing
	Why is it Often Preferable to Make (small) Errors?
	Approximation Opportunities and Trade-offs
	Research Challenges for Approximate Computing

	Fast Error Characterization for Approximate Computing Systems
	Circuit-Level Error Characterization with Inferential Statistics
	System-Level Error Characterization with Kriging

	Lossy Image Compression for Machine-to-Machine Communications
	Challenges and Opportunities for Machine-to-Machine Image Communications in the AI Era
	Enhancing AI Resilience to Lossy Compression Artifacts
	Towards Exploitation of the Resilience of AIs to Lossy Compression to Lower Compressed Image Bitrates

	Summary

	Low-Complexity Reinforcement Learning with Tangled Program Graphs
	Introduction to Tangled Program Graphs
	Acceleration of Tangled Program Graph Training with Deterministic Parallelization
	Motivations for Deterministic Parallelism in tpg training.
	Deterministic and Scalable Parallel tpg training
	Evaluation of tpg Training Parallelization

	Ultra-Fast Inference of Tangled Program Graphs through C Code Generation
	Motivations and Opportunities for Inference Acceleration
	C Code Generation for tpg Inference
	Evaluation of Generated Inference Code

	Additional Contributions on tpg
	Summary

	Research Perspectives
	Perspectives in Model-Based High-Performance Embedded System Programming
	Dataflow Programming for Radio Astronomy hpc
	Multi-Objective Co-Design Space Exploration with Moldable Dataflow moc
	Long-Term Perspectives and Challenges in Model-Based Programming

	Perspectives in Approximate Computing
	Source-to-Source Optimization of Data Types and simd Instructions
	Global Optimization of vcm Systems

	Perspectives in Ultra-Lightweight ai for Embedded Systems
	Full-Stack Optimization for Ultra-Low Power ai
	Perspectives of Design Automation for Frugal and Embedded ai

	Conclusion

	List of Figures
	List of Tables
	Personal Publications
	Bibliography

